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The Ecole Polytechnique, one of France’s top academic institutions, has a longstand-
ing tradition of producing exceptional scientific textbooks for its students. The origi-
nal lecture notes, the Cours de l’Ecole Polytechnique, which were written by Cauchy
and Jordan in the nineteenth century, are considered to be landmarks in the develop-
ment of mathematics.
The present series of textbooks is remarkable in that the texts incorporate the most
recent scientific advances in courses designed to provide undergraduate students with
the foundations of a scientific discipline. An outstanding level of quality is achieved
in each of the seven scientific fields taught at the Ecole: pure and applied mathe-
matics, mechanics, physics, chemistry, biology, and economics. The uniform level
of excellence is the result of the unique selection of academic staff there which in-
cludes, in addition to the best researchers in its own renowned laboratories, a large
number of world-famous scientists, appointed as part-time professors or associate
professors, who work in the most advanced research centers France has in each field.
Another distinctive characteristic of these courses is their overall consistency; each
course makes appropriate use of relevant concepts introduced in the other textbooks.
This is because each student at the Ecole Polytechnique has to acquire basic knowl-
edge in the seven scientific fields taught there, so a substantial link between depart-
ments is necessary. The distribution of these courses used to be restricted to the
900 students at the Ecole. Some years ago we were very successful in making these
courses available to a larger French-reading audience. We now build on this success
by making these textbooks also available in English.
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Preface

Felix qui potuit rerum cognoscere causas
(Lucky are those who have been able
to understand the causes of things.)

R. Goscinny and A. Uderzo, Asterix in Corsica, 1973, page 22;

see also: Virgil, Georgics II

Quantum mechanics has the unexpected feature that there is as yet no em-
pirical evidence that it has limited applicability. The only hypothetical in-
dication that some “new physics” might exist comes from cosmology, and
concerns the first 10−43 s of the universe. This is quite unlike the situation
for other physical theories. Quantum physics was born at the beginning of
the 20th century from the questioning of physicists faced with an incredi-
ble variety of experimental facts which were steadily accumulating without
any global explanation. This questioning was amazingly ambitious and fruit-
ful. In fact, quantum theory is undoubtedly one of the greatest intellectual
endeavors of mankind, perhaps the greatest of the 20th century.

It was born in an unexpected way. At the beginning of the 19th century,
the sagacious French philosopher Auguste Comte claimed that one could
never know the chemical composition of stars since it was impossible for us
to visit them. Had he thought that the same remark could apply just as
well to a hot oven, he would have described unintentionally, and by pure
reasoning, the cradle of quantum physics.

Quantum physics appeared fortuitously in an idea of Planck about the
black-body radiation spectrum, which was acknowledged to be a fundamen-
tal problem. Quantum physics first developed by disentangling spectroscopic
data. In that sense it owes much to astrophysics, which was developing at
the same time, and revealed the complex spectra of elements. The phenom-
enological analysis of the regularities of spectra (by Balmer, Rydberg, Ritz
and Rayleigh) had led to a set of efficient recipes. But there was no indica-
tion that this scrupulous classification would lead to such an upheaval of the
foundations of physics.

In fact, the fate of quantum physics was unexpected. It started by ex-
plaining the laws of radiation, and no one could have imagined that it would
end up giving a complete explanation of the structure of matter, of atoms and
molecules. Atomic theory ceased to be a qualitative controversy. It became a
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fact, and this struck the minds of people. In an article published in 1948 en-
titled “2400 years of quantum mechanics”, Schrödinger said that Democritus
and the inventors of atomism were the “first quantum physicists”.1 He paid
tribute to all those who had tried to understand the fundamental structure
of matter. This had been difficult for many reasons. The Catholic Church, for
instance, remained strongly opposed to the idea for a long time since atoms
do not have souls. Even Leibniz thought he could disprove the existence of
atoms.2 Our first quantitative ideas about atoms came on one hand from the
chemists of the 19th century, who discovered that they could reduce chemical
reactions to an interplay of integers, and on the other hand from the initiators
of statistical physics, Maxwell and Boltzmann, who showed that the thermo-
dynamic properties of gases found natural explanations within the molecular
hypothesis. Because it succeeded in describing quantitatively the structure of
atoms, quantum mechanics consecrated their existence.

The range of its applications was also unexpected. Quite rapidly, all
physics and all chemistry became quantum theories. The theory accounts
not only for atoms and molecules, but also for the structure of nuclei, for
particle physics and cosmology, for the electrical and mechanical properties
of solid-state materials, etc. Astrophysics was well paid back and underwent
spectacular developments because of quantum theory. These developments
led to new observational means to probe the cosmos, and also to the explana-
tion of truly macroscopic quantum objects such as white dwarfs and neutron
stars.

Since its beginning, quantum theory has also generated considerable intel-
lectual and philosophical turmoil. For the first time, not only pure reasoning
but also what we think to be common sense appeared to be falsified by exper-
imental facts. We needed a new way of thinking about reality, a new logic. It
was necessary to develop a quantum intuition, which often seemed contrary
to common intuition. As one can guess, an epistemological revolution took
place. Philosophers such as Kirkegaard, Höffding, Husserl, Wittgenstein and
many others had already discovered how treacherous common language may
be. It is full of a priori conclusions on the nature of things, and any new ex-
perimental field can be analyzed only with new concepts and a new language.
Quantum mechanics seems to have been invented to prove the philosophers
were right. In some respects it goes against some aspects of rationalism. It is
quite remarkable that, although at present everyone accepts the mathemat-
ical and operational framework of the theory, there are still bitter disputes
about its interpretation and its philosophical content.3

1 E. Schrödinger, “2400 Jahre Quantenmechanik”, Ann. Phys. 3, 43 (1948).
2 G.W. Leibniz, New Essays on Human Understanding, Leibnitii Opera Omnia,

L. Duten (ed.) Geneva (1768).
3 See for instance Quantum Theory and Measurement, edited by J.A. Wheeler and

W.H. Zurek, Princeton University Press, Princeton (1983).
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What was really unexpected in quantum theory was that it would tackle
so directly and so successfully the fundamental structure of matter. There is
no experimental evidence at present that a more elaborate conceptual frame-
work is necessary in order to understand the fundamental constituents of
matter and their interactions. By its predictive power, quantum physics has
been able to radically transform numerous technological sectors in the last
50 years. It has changed the orders of magnitude of what was conceivable. It
is now possible to manufacture a material with a virtually unlimited range
of thermal, optical, mechanical and electrical properties. It is more and more
feasible to detect a deficiency in a biological function and to cure it in a
planned and reasoned manner. The results of the development of semicon-
ductor physics and of microelectronics fill our daily life. In the history of
mankind, it is a true revolution which multiplies the power of man’s mind,
just as the industrial revolution multiplied our strength. This gigantic tech-
nological progress is modifying deeply the structure of social, economic and
political life, and the mere question of how to adapt our societies to these
developments has become a major problem.

Obviously, the number of problems to be solved increases faster than those
which have been solved. For instance, in order to go from elementary processes
to macroscopic phenomena, one needs the concepts of statistical physics. It
is one of the great discoveries of the past decades that it is impossible to
reduce everything to microscopic processes. However, one cannot deny that
the dimensions and perspectives of physics have changed radically since it
has entered the quantum era.

Let us recall that the construction of quantum mechanics benefited consid-
erably from the collaboration of mathematicians. The mathematical frame-
work of the theory was discovered very soon by Hilbert and Von Neumann.
The mathematical structure of quantum mechanics and of quantum field the-
ory has always been a fruitful field of research for mathematicians.

Conversely, one must admit that one of the difficulties one meets in ap-
prehending the theory lies in the fact that the experimental reality of the
quantum world is quite far from what is directly accessible. Many interme-
diate steps are necessary in order to build one’s own representation of a
phenomenon. This is of course reflected by the mathematical structure of the
theory, which certainly deserves the criticism of being abstract. In the epi-
graph of his book An Introduction to the Meaning and Structure of Physics
(Leon N. Cooper, Harper & Row, New York (1968)), Leon Cooper writes,
in beautiful French, S’il est vrai qu’on construit des cathédrales aujourd’hui
dans la Science, il est bien dommage que les gens n’y puissent entrer, ne
puissent pas toucher les pierres elles-mêmes.4

4 “While it is true that we build cathedrals nowadays in Science, it is a great pity
that people cannot enter them, and touch the stones they are made of.” (Free
translation).
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How to teach quantum mechanics has been a source of discussion per-
haps as rich as that of its foundations. Many of the first textbooks were
oriented along one of the two following lines. The first consisted in explaining
at length the failure of classical conceptions and in using similarities which
were often as long as they were obscure. The other method, which was more
radical, consisted in expounding first the mathematical beauty and virtues
of the theory, and in mentioning briefly some restricted set of assertions or
experimental facts. A third approach appeared in the 1960s. It consisted in
first describing quantum phenomena and then in introducing, or sometimes
inventing, the mathematical structures as they became necessary.

In the last twenty years or so, the situation has evolved considerably for
three main reasons.

The first reason is experimental. Many fundamental experiments which
are easy to discuss but difficult to achieve technically have become possi-
ble. A first example is the Young double-slit interference experiment with
atoms, which was performed in the 1990s and which we present in Chap 1.
This experiment allows us to discuss in a clear and concrete way what was
a gedanken experiment before that. A second example is the neutron inter-
ference experiments which we mention in Chap 12. Such experiments were
carried out in the early 1980s near high-flux nuclear reactors. They put an
end to a 50 year old dispute about the measurability of the phase of the wave
function, be it in a magnetic field or in a gravitational field.

The second reason comes from what we may call the breakdown of para-
doxes. The formulation of Bell’s inequalities and their experimental study are
undoubtedly major intellectual steps in the history of quantum mechanics.
We now possess quantitative experimental answers to questions which used
to come within a hair’s breadth of metaphysics. These experiments, together
with other experiments on entangled states which we refer to in Chap 14, have
changed our way of thinking. In some sense, one discovers that Einstein was
right when he claimed that the interpretation of quantum mechanics causes
genuine physical problems, even though the solution he had in mind was ap-
parently not the correct one. More recently, the development of the theory
of decoherence and its verification on mesoscopic systems have constituted
a major step forward in the understanding of the foundations of quantum
mechanics.

The third reason stems from the remarkable development of numerical
simulation methods and imaging with modern computers. We are now able
to perform true visual representations of processes on very small space–time
scales. This allows a direct intuitive visualization of the theory and of its
consequences which is radically different from what could be done previously.

In this book, whose origin lies in the 25 year teaching experience of one of
us with third year undergraduates at the Ecole Polytechnique, we have made
use of these three aspects. Perhaps more of the first and third, even though
the second has played a major role psychologically, as illustrated in Chap. 14.
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We have followed a rather traditional path, starting from wave mechanics
in order to become familiarized with the relevant mathematical notions. We
have done our best to introduce the mathematical tools of the theory start-
ing, as much as possible, from the structure of observed phenomena. This
textbook contains a set of 90 (rather simple) exercises and their solutions. Its
natural complement is The Quantum Mechanics Solver,5 which we published
ahead of time, a year ago, and where applications to genuine, recent physi-
cal phenomena can be found, such as neutrino oscillations, entangled states,
quantum cryptography, Bell’s inequalities, laser cooling, Bose–Einstein con-
densates, etc. In addition, the book comes with a CD-ROM, due basically to
Manuel Joffre, which contains examples, applications and web links which,
we hope, will help the user to become familiar both with the theory and with
its present applications.

But we cannot avoid two obstacles. First, an axiomatic presentation is
more economical and easier for the person who teaches. Secondly, the rela-
tion between physical concepts and their mathematical representations is not
as direct as in classical physics. If this book seems too abstract or theoretical,
we cannot avoid pleading guilty. Building one’s own representation of quan-
tum phenomena is a personal matter which can only result from practicing
with the theory and from experimental results, including all the unexpected
features they reveal.

We wish to thank all our colleagues who contributed to this book in the
exceptional teaching team which was created around us. We pay a tribute to
the memory of Eric Paré, Dominique Vautherin and Gilbert Grynberg. Eric,
who was a remarkable physicist and a marvelous friend, died accidentally
on July 1998 at the age of 39. Dominique, a theorist who made decisive
contributions to Nuclear Physics and to the Many-Body problem, kept all
his sense of humor, his generosity and his beautiful intelligence during a one-
year fight against a disease which defeated him in December 2000 at the age of
59. Gilbert was a delightful man, and a most talented specialist of Quantum
Optics and Atomic Physics. He played an important role in the elaboration of
this text in the early 1980s. During 20 years, he fought against a brain tumor
which disabled him physically, but which he resisted intellectually with an
admirable courage and success until his tragic death in January 2003 at the
age of 54. Eric, Dominique and Gilbert made decisive contributions to this
text.

We thank Florence Albenque, Hervé Arribart, Alain Aspect, Gérald
Bastard, Denis Bernard, Silke Biermann, Adel Bilal, Alain Blondel, Ulrich
Bockelmann, Jean-Noël Chazalviel, Jean-Yves Courtois, Nathalie Deruelle,
Henri-Jean Drouhin, Claude Fabre, Hubert Flocard, Michel Gonin, Philippe
Grangier, Denis Gratias, François Jacquet, Thierry Jolicoeur, Christoph Kop-
per, Manuel Joffre, David Langlois, Pierre Le Doussal, Martin Lemoine,
5 J.-L. Basdevant and J. Dalibard, The Quantum Mechanics Solver: How to Apply

Quantum Theory to Modern Physics, 2nd ed., Springer, Berlin Heidelberg (2005).
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Rémi Monasson, Gilles Montambaux, Rémy Mosseri, Jean-Yves Ollitrault,
Rasvigor Ossikovski, Pierre Pillet, Daniel Ricard, Jim Rich, André Rougé,
Emmanuel Rosencher, Michel Spiro, Alfred Vidal-Madjar, Jean-Eric Wegrowe
and Henri Videau. They all contributed significantly to what is interesting in
this book.

One of us (JLB) expresses his gratitude to Yves Quéré, Bernard Sapoval,
Ionnel Solomon and Roland Omnès for their interest and help when this
course started. He thanks his mathematician colleagues Alain Guichardet,
Yves Meyer, Jean-Pierre Bourguignon and Jean-Michel Bony, and the chemist
Marcel Fétizon, for useful interdisciplinary collaborations. He also pays a
tribute to the memory of Bernard Gregory, to that of Michel Métivier and to
that of Laurent Schwartz whose illuminating remarks are present throughout
this book.

Palaiseau, Paris, Jean-Louis Basdevant
January 2002 Jean Dalibard



Contents

Physical Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XXIII

1. Quantum Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Franck and Hertz Experiment . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Interference of Matter Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 The Young Double-Slit Experiment . . . . . . . . . . . . . . . . . 6
1.2.2 Interference of Atoms in a Double-Slit Experiment . . . . 7
1.2.3 Probabilistic Aspect of Quantum Interference . . . . . . . . 8

1.3 The Experiment of Davisson and Germer . . . . . . . . . . . . . . . . . . 10
1.3.1 Diffraction of X Rays by a Crystal . . . . . . . . . . . . . . . . . . 10
1.3.2 Electron Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Summary of a Few Important Ideas . . . . . . . . . . . . . . . . . . . . . . . 15
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. The Wave Function and the Schrödinger Equation . . . . . . . . 17
2.1 The Wave Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Description of the State of a Particle . . . . . . . . . . . . . . . . 18
2.1.2 Position Measurement of the Particle . . . . . . . . . . . . . . . 19

2.2 Interference and the Superposition Principle . . . . . . . . . . . . . . . 20
2.2.1 De Broglie Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 The Superposition Principle . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 The Wave Equation in Vacuum . . . . . . . . . . . . . . . . . . . . 22

2.3 Free Wave Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Definition of a Wave Packet . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Fourier Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Structure of the Wave Packet . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Propagation of a Wave Packet: the Group Velocity . . . 26
2.3.5 Propagation of a Wave Packet:

Average Position and Spreading . . . . . . . . . . . . . . . . . . . . 27
2.4 Momentum Measurements and Uncertainty Relations . . . . . . . 28

2.4.1 The Momentum Probability Distribution . . . . . . . . . . . . 29
2.4.2 Heisenberg Uncertainty Relations . . . . . . . . . . . . . . . . . . . 30

2.5 The Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



XII Contents

2.5.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Particle in a Potential: Uncertainty Relations . . . . . . . . 32
2.5.3 Stability of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Momentum Measurement in a Time-of-Flight Experiment . . . 34
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3. Physical Quantities and Measurements . . . . . . . . . . . . . . . . . . . 39
3.1 Measurements in Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 The Measurement Procedure . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 Experimental Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.3 Reinterpretation of Position

and Momentum Measurements . . . . . . . . . . . . . . . . . . . . . 41
3.2 Physical Quantities and Observables . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Expectation Value of a Physical Quantity . . . . . . . . . . . 42
3.2.2 Position and Momentum Observables . . . . . . . . . . . . . . . 43
3.2.3 Other Observables: the Correspondence Principle . . . . . 44
3.2.4 Commutation of Observables . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Possible Results of a Measurement . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Eigenfunctions and Eigenvalues of an Observable . . . . . 45
3.3.2 Results of a Measurement

and Reduction of the Wave Packet . . . . . . . . . . . . . . . . . . 46
3.3.3 Individual Versus Multiple Measurements . . . . . . . . . . . 47
3.3.4 Relation to Heisenberg Uncertainty Relations . . . . . . . . 47
3.3.5 Measurement and Coherence of Quantum Mechanics . . 48

3.4 Energy Eigenfunctions and Stationary States . . . . . . . . . . . . . . . 48
3.4.1 Isolated Systems: Stationary States . . . . . . . . . . . . . . . . . 49
3.4.2 Energy Eigenstates and Time Evolution . . . . . . . . . . . . . 50

3.5 The Probability Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 Crossing Potential Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6.1 The Eigenstates of the Hamiltonian . . . . . . . . . . . . . . . . . 52
3.6.2 Boundary Conditions at the Discontinuities

of the Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.3 Reflection and Transmission on a Potential Step . . . . . . 54
3.6.4 Potential Barrier and Tunnel Effect . . . . . . . . . . . . . . . . . 56

3.7 Summary of Chapters 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4. Quantization of Energy in Simple Systems . . . . . . . . . . . . . . . . 63
4.1 Bound States and Scattering States . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Stationary States of the Schrödinger Equation . . . . . . . 64
4.1.2 Bound States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.3 Scattering States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 The One Dimensional Harmonic Oscillator . . . . . . . . . . . . . . . . . 66



Contents XIII

4.2.1 Definition and Classical Motion . . . . . . . . . . . . . . . . . . . . 66
4.2.2 The Quantum Harmonic Oscillator . . . . . . . . . . . . . . . . . 67
4.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Square-Well Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.1 Relevance of Square Potentials . . . . . . . . . . . . . . . . . . . . . 70
4.3.2 Bound States in a One-Dimensional

Square-Well Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Infinite Square Well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.4 Particle in a Three-Dimensional Box . . . . . . . . . . . . . . . . 74

4.4 Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.1 A One-Dimensional Example . . . . . . . . . . . . . . . . . . . . . . 75
4.4.2 Extension to Three Dimensions . . . . . . . . . . . . . . . . . . . . 77
4.4.3 Introduction of Phase Space . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 The Double Well Problem and the Ammonia Molecule . . . . . . 78
4.5.1 Model of the NH3 Molecule . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Wave Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.3 Energy Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.4 The Tunnel Effect and the Inversion Phenomenon . . . . 82

4.6 Other Applications of the Double Well . . . . . . . . . . . . . . . . . . . . 84
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5. Principles of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1 Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.1 The State Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1.2 Scalar Products and the Dirac Notations . . . . . . . . . . . . 90
5.1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1.4 Bras and Kets, Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Operators in Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.1 Matrix Elements of an Operator . . . . . . . . . . . . . . . . . . . . 92
5.2.2 Adjoint Operators and Hermitian Operators . . . . . . . . . 93
5.2.3 Eigenvectors and Eigenvalues . . . . . . . . . . . . . . . . . . . . . . 94
5.2.4 Summary: Syntax Rules in Dirac’s Formalism . . . . . . . . 95

5.3 The Spectral Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 Hilbertian Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.2 Projectors and Closure Relation . . . . . . . . . . . . . . . . . . . . 96
5.3.3 The Spectral Decomposition of an Operator . . . . . . . . . 96
5.3.4 Matrix Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Measurement of Physical Quantities . . . . . . . . . . . . . . . . . . . . . . 99
5.5 The Principles of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . 100
5.6 Structure of Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6.1 Tensor Products of Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6.2 The Appropriate Hilbert Space . . . . . . . . . . . . . . . . . . . . . 105
5.6.3 Properties of Tensor Products . . . . . . . . . . . . . . . . . . . . . . 105
5.6.4 Operators in a Tensor Product Space . . . . . . . . . . . . . . . 106



XIV Contents

5.6.5 Simple Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.7 Reversible Evolution and the Measurement Process . . . . . . . . . 107
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6. Two-State Systems, Principle of the Maser . . . . . . . . . . . . . . . 115
6.1 Two-Dimensional Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 A Familiar Example: the Polarization of Light . . . . . . . . . . . . . 116

6.2.1 Polarization States of a Photon . . . . . . . . . . . . . . . . . . . . 116
6.2.2 Measurement of Photon Polarizations . . . . . . . . . . . . . . . 118
6.2.3 Successive Measurements and “Quantum Logic” . . . . . . 119

6.3 The Model of the Ammonia Molecule . . . . . . . . . . . . . . . . . . . . . 120
6.3.1 Restriction to a Two-Dimensional Hilbert Space . . . . . . 120
6.3.2 The Basis {|ψS〉, |ψA〉} . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.3 The Basis {|ψR〉, |ψL〉} . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4 The Ammonia Molecule in an Electric Field . . . . . . . . . . . . . . . 123
6.4.1 The Coupling of NH3 to an Electric Field . . . . . . . . . . . 124
6.4.2 Energy Levels in a Fixed Electric Field . . . . . . . . . . . . . . 125
6.4.3 Force Exerted on the Molecule

by an Inhomogeneous Field . . . . . . . . . . . . . . . . . . . . . . . . 127
6.5 Oscillating Fields and Stimulated Emission . . . . . . . . . . . . . . . . 129
6.6 Principle and Applications of Masers . . . . . . . . . . . . . . . . . . . . . . 131

6.6.1 Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.6.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.6.3 Atomic Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7. Commutation of Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.1 Commutation Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2 Uncertainty Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3 Ehrenfest’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.3.1 Evolution of the Expectation Value of an Observable . . 138
7.3.2 Particle in a Potential V (r) . . . . . . . . . . . . . . . . . . . . . . . . 139
7.3.3 Constants of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4 Commuting Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.4.1 Existence of a Common Eigenbasis

for Commuting Observables . . . . . . . . . . . . . . . . . . . . . . . 142
7.4.2 Complete Set of Commuting Observables (CSCO) . . . . 142
7.4.3 Completely Prepared Quantum State . . . . . . . . . . . . . . . 143
7.4.4 Symmetries of the Hamiltonian

and Search of Its Eigenstates . . . . . . . . . . . . . . . . . . . . . . 145
7.5 Algebraic Solution of the Harmonic-Oscillator Problem . . . . . . 148

7.5.1 Reduced Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.5.2 Annihilation and Creation Operators â and â† . . . . . . . 148
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10.2.3 Action of Ĵ± on the States |j, m〉 . . . . . . . . . . . . . . . . . . . 192
10.2.4 Quantization of j and m . . . . . . . . . . . . . . . . . . . . . . . . . . 193
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˚ 1 Å= 10−10 m (∼ size of an atom)
Femtometer∗ 1 fm = 10−15 m (∼ size of a nucleus)
Electron-volt 1 eV = 1.60218 10−19 J

Fundamental constants

Planck’s constant h = 6.6261 × 10−34 J s,
h̄ = h/2π = 1.05457 × 10−34 J s

= 6.5821 × 10−22 MeVs

Velocity of light c = 299 792 458m s−1

h̄c = 197.327 MeV fm � 1973 eV Å
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1. Quantum Phenomena

Any matter begins
with a great spiritual disturbance.

Antonin Artaud

The birth of quantum physics occurred on December, 14 1900, when Max
Planck, at the German Physical Society, proposed a simple formula in ex-
cellent agreement with the observed black-body radiation spectrum. Planck
had first obtained his result empirically, but he noticed that he could deduce
the key point of his argument from Boltzmann’s statistical thermodynamic
theory by making the puzzling assumption that charged mechanical oscilla-
tors of frequency ν emit or absorb radiation only in discrete amounts, energy
“quanta” which are integer multiples of hν. The quantum of action h is a
fundamental constant, as Planck realized:

h � 6.6261 × 10−34 J s . (1.1)

Planck’s quanta were mysterious, but his result was amazingly successful.
Until 1905, neither the scientific community nor Planck himself fully appre-
ciated this discovery. In that year, Einstein published his famous article, “On
a heuristic point of view concerning the production and transformation of
light”,1 where he analyzed Planck’s argument. Einstein found some inconsis-
tencies and corrected them. If one pushes Planck’s argument a bit further,
one must admit that light itself has “quantum” properties, and Einstein in-
troduced the concept of a quantum of radiation, called the photon by G.N.
Lewis in 1926. A quantum of light of frequency ν (or angular frequency ω)
has an energy

E = hν = h̄ω , where h̄ =
h

2π
= 1.0546 × 10−34 J s. (1.2)

In the course of his work, Einstein realized that he could also explain
the laws of the photoelectric effect, discovered in 1887 by Hertz and system-
atically studied by Lenard and Millikan. He also proposed that the photon
carries a momentum
1 Ann. Phys. 17, 132 (1905); translated into English by A.B. Arons and M.B.

Peppard, Am. J. Phys. 33, 367 (1965).
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p = h̄k , |k| = 2π/λ , (1.3)

where k is the wave vector of the electromagnetic wave. This idea was con-
firmed by Compton’s experiments (scattering of X rays by thin aluminum
sheets) in 1923.

Planck’s quanta were mysterious, although they were well accepted by
the scientific community owing to the remarkable efficiency of his formula.
Conversely, Einstein’s quanta were quite controversial, and remained so for
some time. Many people considered the idea of quanta was nonsense since
it contradicted Maxwell’s equations, which describe the energy of radiation
as a continuous function in space and time. Einstein was aware of that, but
he considered that measurements in optics involved only time averages, and
that it was conceivable that Maxwell’s theory could be insufficient whenever
quasi-instantaneous processes take place. Einstein called his introduction of
the light-quanta hypothesis a “revolutionary” step. He had the premonition
that the manifestations of the properties of light could be both wave-like and
particle-like. This can be considered as the true starting point of quantum
theory.

The second step took place in the years 1912–1914. Niels Bohr, in trying
to find a consistent model for atomic structure, managed to reconcile the
Ritz combination principle of spectral lines, the atomic model of Rutherford
(who had discovered the existence of the nucleus in 1911) and the quanta of
Planck and Einstein. Bohr assumed that the energies of atomic and mole-
cular systems can only take discrete values, and that the emission and the
absorption of light by these systems take place only at fixed frequencies:

νif = |Ei − Ef |/h , (1.4)

where Ei and Ef are the energies of the system before and after the emission
(or the absorption). By chance, Bohr learned in 1913 of the existence of the
empirical Balmer formula. In a few weeks, he guessed the rule for energy
quantization, and developed his celebrated model of the hydrogen atom. The
mechanism for absorption and emission of light remained obscure in Bohr’s
theory. It was only explained a few years later, in particular by Einstein.
However, as soon as 1914, the experiments of Franck and Hertz gave a direct
proof of the quantization of matter, i. e. of energies in atoms.

Thus the quantization of radiation had been discovered before the quanti-
zation of matter. This latter quantization seemed to imply a “discontinuous”
aspect of the laws of nature. It was therefore with some relief and enthusi-
asm that many physicists, including Einstein, reacted to the idea Louis de
Broglie proposed in 1923. In the same way as light manifests a particle-like
behavior, de Broglie suggested that particles should have a wave-like be-
havior under appropriate circumstances. With a particle of velocity v and
momentum p = mv, de Broglie “associated” a wave, of wavelength

λ = h/p . (1.5)
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This wave hypothesis could provide a means to understand energy quantiza-
tion as a stationary wave problem, and to restore the continuity of nature.

Louis de Broglie’s idea originated from a series of remarkable theoretical
works by Marcel Brillouin (the father of Léon Brillouin). He also spent some
time in the laboratory of his brother Maurice de Broglie, and he was surprised
to hear physicists talk about the same physical concept both as an “electron”
and as a “β ray” in radioactivity.

In its present formalism, the theory of quantum mechanics was developed
quite rapidly between 1925 and 1927. It is the collective fruit of the work of
an exceptional group of physicists and mathematicians such as Schrödinger,
Heisenberg, Born, Bohr, Dirac, Pauli, Hilbert, von Neumann, etc. This re-
markable synthetic work, which was followed by crucial experiments, was
based on extensive theoretical and experimental investigations which had
taken place in the first quarter of the century. We have mentioned above a
few important steps.

Among all these experiments, we have chosen to discuss three which are
particularly significant. In Sect. 1.1 we present the experiment of Franck and
Hertz, which was the first experimental demonstration of the quantization of
energy in atoms. In Sect. 1.2 we discuss an experiment which shows the wave
behavior of particles, specifically atoms. In analyzing the results of this ex-
periment, we shall demonstrate the probabilistic features of quantum physics
and see in what sense they differ from the usual probabilistic effects. Finally,
in Sect. 1.3 we sketch the first experimental proof of the wave behavior of
electrons, due to Davisson and Germer, who observed the diffraction of an
electron beam impinging on a crystal.

These experiments are significant insofar as they show how difficult it is
at first to gain insight into the quantum world. Our usual intuition, “reason”
and “common sense”, which we have built by observing the world of classical
phenomena, conceal unexpected traps. The experiments described here are
also significant because they contain the essential basic concepts one needs
in order to understand quantum phenomena.

1.1 The Franck and Hertz Experiment

The ideas of Niels Bohr received a spectacular and unexpected confirmation
as soon as 1914. At that time, James Franck and Gustav Hertz were studying
cathode rays and discharges in rarefied gases. This had important applications
in the improvement of electron tubes, in particular for long-distance telephone
technology.

In 1914 Franck and Hertz, who were shooting electrons with an energy of
a few electron-volts at mercury atoms, discovered the following remarkable
fact. As long as the energy of the electrons is smaller than some threshold
energy, Eth = 4.9 eV, the collision is elastic; the outgoing electrons have the
same energy as the incident ones. Nothing surprising, since the mass of a
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mercury atom is ∼ 400 000 times larger than the electron mass and its recoil
is negligible. The surprising fact was that when one reaches the threshold
energy Eth = 4.9 eV, the outgoing electrons lose practically all their energy
in the process. Above that energy, a fraction of the outgoing electrons have
an energy smaller than their initial energy by exactly the amount 4.9 eV, the
other electrons keep all their energy in the collision process.

Furthermore, when the energy of the electrons is larger than the thresh-
old Eth, the mercury atoms emit ultraviolet radiation of wavelength λ =
253.7 nm, and this does not occur if the energy of the incident electrons is
smaller than the threshold. The spectral line of mercury at λ = 253.7 nm was
well known to spectroscopists; the corresponding frequency ν is indeed such
that hν = 4.9 eV!

This was a simple and spectacular confirmation of Niels Bohr’s ideas on
the structure of atoms, and of his explanation of spectroscopic measurements.
The results of Franck and Hertz supported the idea that the energy of an
atom can only take discrete (or quantized) values and that the lines observed
in spectroscopy correspond to transitions between such energy levels. In the
collision, an electron can transfer its energy to an atom and excite it to a
higher-energy state, losing the corresponding energy difference in the process.
This can only happen if the electron energy is equal to or larger than this
energy difference. Once the atom is in its excited state, it can decay to its
ground state by emitting radiation at the Bohr frequency.

The result of Franck and Hertz, who were awarded the Nobel prize for
this discovery in 1925, was acknowledged by the scientific community. It is a
direct mechanical proof of energy quantization in atomic and molecular sys-
tems. Franck and Hertz pursued their explorations systematically. They were
able to observe other known spectral lines of mercury and of other elements
such as helium. The experiment was also seminal work; many discoveries in
nuclear and particle physics have been made by studying resonant effects in
the collisions of electrons with nuclear and subnuclear targets.

A more recent example, shown in Fig. 1.1, concerns diatomic molecules.
In such molecules, for instance carbon monoxide, CO, the two atoms can
vibrate with respect to one another along the axis of the molecule. For small
oscillations, the vibrational motion is harmonic. We shall study the quantum
version of this problem in Chap. 4. The expression for the energy levels is
particularly simple for a harmonic oscillator. If ν is the vibration frequency
(2πν =

√
K/m, where K is the spring constant of the restoring force and m

is the reduced mass) the energy levels, labeled by an integer n, are equally
spaced:

En =
(

n +
1
2

)
hν .

The energy difference between two levels is an integer multiple of hν .
The experimental verification consists in sending a beam of electrons of a

given energy (typically 2 eV) into a molecular beam. A detector measures the
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Fig. 1.1. Energy spectrum of electrons scattered by a beam of CO molecules, at an
incident energy of E1 = 2.05 eV. The peaks in the signal correspond to excitation
of the vibrational motion of the molecules after a collision with an electron. The
curve corresponding to inelastic collisions (less probable than elastic ones) has been
multiplied by 3

energy distribution of the outgoing electrons. The energy loss of an outgoing
electron is transferred to the molecules; the theory predicts this loss to be
nhν (n = 0, elastic collision; n = 1, 2, . . . , inelastic collisions). Therefore one
expects a series of equally spaced peaks whose positions give the vibration
frequency of the molecule.

The results2 for the CO molecule are shown in Fig. 1.1. They indeed
display the equal spacing of the vibrational levels. With these data one can
determine the energy spacing ∆E = hν and the vibration frequency of the
CO molecule:

∆E ∼ 0.26 eV , ν ∼ 6.5 × 1013 Hz .

This type of experiment has been performed with many other molecular
species and has provided information on their structure.

1.2 Interference of Matter Waves

The fundamental experiment which demonstrated the wave behavior of ma-
terial particles, as predicted by Louis de Broglie, was performed in 1927. It
was due to Davisson and Germer, who observed the diffraction of an elec-
tron beam by a nickel crystal. In order to analyze the fundamental quantum
phenomena that this type of experiment reveals, we shall first refer to a two-
slit interference experiment which is conceptually simpler although it is more
difficult to achieve in practice. The discussion of the Davisson and Germer
result will be done in the subsequent section.
2 G.J. Schulz, Phys. Rev. 135, 988 (1964).
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1.2.1 The Young Double-Slit Experiment

The Young double-slit interference experiment, represented in Fig. 1.2, is
usually quite simple to perform with a monochromatic field associated with
a given wave phenomenon. This can be a light wave, an acoustic wave, rip-
ples on the surface of a liquid, etc. One starts with an initial plane wave of
wavelength λ, which is sent at normal incidence onto an opaque plate. The
plate is pierced with two parallel, identical slits S1 and S2, separated by a
distance a. These two slits act as secondary sources oscillating in phase, and
the intensity on a screen located downstream reveals the interference between
the waves emerging from these two sources.

The amplitude Ac of the field at a point C of the screen is the sum of
the two amplitudes A1 and A2 of the waves issuing from the two slits. The
intensity Ic at point C is

Ic = |Ac|2 = |A1 + A2|2 . (1.6)

This is the basic formula of the interference phenomenon. The intensity Ic is
large if the two amplitudes A1 and A2 are in phase, and it vanishes if they
are out of phase by π. We assume that both x and a are small compared
with D, where x is the distance between C and the center of the screen and
D is the distance between the slit plane and the screen (see Fig. 1.2). In this
approximation, the difference between the two path lengths S1C and S2C is
δ � xa/D. This difference of path lengths for the two waves issuing from S1

and S2 induces a phase shift φ between the corresponding amplitudes A1 and
A2: φ = 2πδ/λ = 2πxa/(λD). Therefore the fringe spacing, defined as the
distance xs between two consecutive lines on the screen, is xs = λD/a.

x

D

a

S1

S2

C I

x

xs

Fig. 1.2. Young double-slit experiment: a monochromatic wave with wavelength
λ arrives at normal incidence at a plate pierced with two linear, parallel slits,
separated by a distance a. The illumination I(x) of a screen located at a distance
D � a reveals an interference pattern with a fringe spacing xs = λD/a
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1.2.2 Interference of Atoms in a Double-Slit Experiment

The principle and the result of a Young double-slit interference experiment
performed with atoms3 are represented in Fig. 1.3. A small cloud of neon
atoms was first captured in a laser trap, and cooled down to a temperature
of the order of one millikelvin. It was then released and fell with zero initial
velocity onto a plate pierced with two parallel slits of width 2 microns, sep-
arated by a distance of 6 microns. The plate was located 3.5 cm below the
center of the laser trap. The atoms were detected when they reached a screen
located 85 cm below the plane of the two slits. This screen registered the
impacts of the atoms: each dot in Fig. 1.3 represents a single impact. The
impacts are distributed in a system of fringes similar to the one obtained
with light waves. On some lines, parallel to the slit direction, very few atoms
are detected. On either side of such a line, a large atom flux is detected.

This type of experiment has also been performed with other particles:
electrons, neutrons and molecules. In all cases the distribution of impacts on
the detection screen reveals an interference-like pattern. The measured fringe
spacing is xs = λD/a, where the wavelength λ and the momentum p = mv
of the particles of velocity v are related by the de Broglie relation

p = h/λ . (1.7)

In the experiment shown in Fig. 1.3, an accurate calculation of the positions of the
interference fringes must take into account the variation of the de Broglie wave-
length λ = h/p since the atoms are accelerated by gravity. The velocity of the
atoms is 0.8m s−1 in the plane of the slits and 4m s−1 on the detecting screen.

3,5 cm

85 cm

cold atoms

1 cmdetection screen

Fig. 1.3. Left: Young double-slit experiment with neon atoms cooled by lasers to
a temperature T ∼ 1mK. Right: detected pattern, with clearly visible interference
fringes. Each point of the figure corresponds to the impact of an atom on the
detection screen

3 F. Shimizu, K. Shimizu, H. Takuma, Phys. Rev. A 46, R17 (1992) and private
communication.
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1.2.3 Probabilistic Aspect of Quantum Interference

The physical content of interference experiments with particles such as atoms
or electrons extends much beyond the usual wave phenomena. As such, the
result is extraordinary because the atoms are point-like particles in the ex-
periment. Their dimensions are of the order of a fraction of a nanometer,
which is much smaller than any of the length scales in the problem, i. e. the
dimensions of the slits or the fringe spacing. Conversely, a wave fills all space!
A ripple wave on a water surface, for instance, constitutes a field, defined as
the set of liquid heights at all points of the surface.

In order to make progress, we shall now analyze what happens if one sends
the atoms individually, one after the other, into the apparatus, each atom
being prepared by the same experimental procedure. The relevant results are
as follows:

1. Each atom is detected at a single point of the detector. This confirms
the idea that the atoms or the electrons can be considered as point-like
objects, whose position can be determined with a much better accuracy
than the other distances, such as the slit separation or the fringe spacing.

2. As far as we can judge, the impact points are distributed at random. Two
particles, prepared in what we think to be the same initial conditions,
have different impact points.

3. When the opaque plate is pierced with only one slit, either S1 or S2, we
observe a smooth distribution of impacts I1 or I2. These distributions
are nearly flat on the length scale xs if the width of the open slit is much
smaller than a (Fig. 1.4a).

4. When the opaque plate is pierced with the two slits, the distribution of a
large number of impacts reveals the interference-like pattern of Fig. 1.3
or Fig. 1.4b.

(a) (b)

Fig. 1.4. Particles with momentum p arrive at normal incidence on a plate pierced
with a single (a) or a double (b) slit. The slit width is b = 10 λ and the distance
between the slits is a = 30 λ for the figure on the right (where λ = h/p). Each figure
shows a typical (computer-simulated) distribution of impacts on a screen located
at a distance D = 104 λ after the plate. The width of each rectangle is 4200 λ
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Points 1, 2, 3 show that we are facing a phenomenon whose nature is
probabilistic. Two experiments performed with what we believe to be the
same initial conditions can lead to different results. This difficulty, in the
absence of point 4, could be solved within the framework of classical physics.
One could imagine that our control of the initial conditions is not as good as
what we think it is, and that some hidden parameters, which remain to be
discovered, fluctuate from one atom to the next and introduce the apparent
randomness of the impact positions.

However, the addition of point 4 renders such a classical probabilistic
account difficult if not impossible. In fact, the classical probabilistic account
would lead to the following line of argument.

• We send the atoms one after the other. Therefore, the events are indepen-
dent.

• Each atom necessarily goes through one of the slits.
• We can measure through which slit each atom has passed (with counters,

or by shining light on the slits S1 and S2, etc.).
• If we perform this measurement, we can separate the events into two sets:

those events for which the atoms passed through S1, and those for which
they passed through S2.

• For all events in which the atoms passed through S1, everything is such
as if S2 was blocked. Their impact distribution is the pattern shown in
Fig. 1.4a (and a quasi-identical pattern is obtained for the events in which
the atoms passed through S2).

In the context of probabilities as encountered in everyday life, if we put
together the two sets of events, the result obtained by opening the two slits
should be the sum of these two distributions. However, this is not the case
(see Figs. 1.3 and 1.4b). On the contrary, the act of opening a second slit,
i. e. the act of providing an additional possible way to pass through the plate,
has prevented the atoms from reaching the empty fringe regions, which they
can very well reach if only one slit is open.

Fortunately we can still reach a consistent description. The key point is
that in order to measure through which slit the atoms have passed, we must
perform a different experiment from that of Fig. 1.3, and this second experi-
ment indeed leads to the distribution of Fig. 1.4a. Conversely, if the experi-
mental setup is such that we observe an interference-like pattern (Fig. 1.4b),
we cannot determine physically through which slit each atom has passed.

From this we draw two fundamental conclusions:

1. If we do not measure through which slit the atoms pass, an interference-
like pattern can be observed. If we perform such a measurement by any
means, the interference pattern no longer shows up. In quantum physics,
a measurement generally perturbs the system.

2. The atoms do not possess a trajectory in the classical sense. When we
observe the impact of an atom in an interference experiment, we cannot
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tell which path it followed before. The best we can say is that the atom
passed through both slits, which is certainly a paradoxical statement for a
classical particle. In quantum physics, the concept of a trajectory, which
is one of the foundations of Newtonian mechanics, does not stand the
test of experiment.

Naturally, such a phenomenon would presumably be very difficult to ex-
plain if it did not resemble so much an interference phenomenon of the usual
kind. We are facing a phenomenon which is both wave-like and probabilistic,
and we shall make use of what we know about waves in order to construct
the theory.

In a way similar to that followed for explaining other interference phenom-
ena, we shall introduce probability amplitudes A1(x) and A2(x) that an atom
issuing from one slit (the other one being closed) reaches the detector at a
point x. We shall assume that the probability amplitude A(x) that the atom
reaches this point when both slits are open is the sum A(x) = A1(x)+A2(x),
and that the probability for the atom to reach this point is, as in (1.6), the
modulus squared of this sum:

P (x) = |A(x)|2 = |A1(x) + A2(x)|2 .

In the next chapter, we shall see how one can cast this into a quantitative
form.

1.3 The Experiment of Davisson and Germer

In 1927, Davisson and Germer gave an experimental demonstration that elec-
trons, which were known to be particles with a well-defined mass and charge,
exhibit a wave behavior as predicted by Louis de Broglie in 1923.

1.3.1 Diffraction of X Rays by a Crystal

Suppose that we irradiate a crystal with a quasi-monochromatic beam of X
rays, i. e. an electromagnetic wave with a wavelength λ between 0.01 nm and
1 nm. We place a photographic plate beyond the crystal at a distance large
compared with the crystal size. We then observe, in addition to the central
spot corresponding to unaffected X rays, a set of spots which correspond to
the intersection of the plate with diffracted beams.

The interpretation of this experiment is well known, and it follows the
same lines as for the two-slit experiment. Consider a crystal whose unit cell
has one atom. This cell is defined by the three vectors a1, a2 and a3. Suppose
the crystal has Ni lattice sites in the directions xi (i = 1, 2, 3). The origin of
space is chosen such that the position of an atom α of the crystal is given by

rα = n1a1 + n2a2 + n3a3 , where ni = 0, 1, . . . , Ni − 1 . (1.8)
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Fig. 1.5. Diffraction of X rays by a crystal

We assume that the incident wave is a plane wave, with a wave vector k
and an amplitude ψ(r, t) = ψ0 ei(k·r−ωt). We also assume that the atomic
scattering is elastic (i. e. the modulus of k is not altered).

We now calculate the amplitude scattered by the atoms of the crystal in
a direction defined by k′ such that |k′| = |k| (Fig. 1.5). The amplitude at r
of the wave scattered by the atom α can be written

ψα(r, t) = F (k,k′) ψ0 ei(k′·r−ωt+ϕα) .

The factor F (k,k′) is the scattering amplitude of the elementary process; it
is the same for all atoms. The phase factor eiϕα , where

ϕα = ∆k · rα , ∆k = k − k′ ,

accounts for the difference of lengths between the path involving scattering by
the atom at the origin and the path where the wave is scattered by the atom
α. If, for simplicity, we neglect multiple-scattering events, the total amplitude
ψ of the wave scattered in the direction k′ by the crystal is the sum of all
these amplitudes, ψ =

∑
α ψα, which is proportional to

G(∆k) =
∑
α

ei ∆k·rα . (1.9)

We now introduce a new system of axes, called the reciprocal lattice,
defined by the vectors a∗

1,a
∗
2, a

∗
3 such that a∗

i · aj = δij . Let ∆ki be the
coordinates of ∆k in this system. We have

G(∆k) =
∑

n1,n2,n3

ei(n1∆k1+n2∆k2+n3∆k3)

= G1(∆k1) G2(∆k2) G3(∆k3) , (1.10)

where

Gj(∆kj) =
Nj−1∑
nj=0

einj∆kj =
1 − eiNj∆kj

1 − ei∆kj
. (1.11)
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Any given point of the photographic plate corresponds to a direction k′. The
electromagnetic energy density detected at that point is proportional to the
intensity diffracted in the direction k′:

I(k′) = |F (k,k′)|2 |G1|2 |G2|2 |G3|2

where |Gi|2 =
sin2(Nj ∆ki/2)

sin2(∆ki/2)
. (1.12)

The appearance of diffracted spots on the photographic plate can be un-
derstood by noticing that the variation of |Gi|2 with ∆ki is very sharp. For
scattering directions such that ∆ki = 2nπ, n integer, this function is equal
to N2

i , and it takes nonnegligible values only in intervals of width 2π/Ni cen-
tered on these particular values of ∆ki. These directions correspond to the
diffracted beams, and the width of the corresponding spots on the screen is
inversely proportional to the size of the crystal.

Remarks

1. The above calculation needs to be completed: the ∆ki are constrained
by the relation |k| = |k′|, which leads to ∆k · (∆k− 2k) = 0. The proper
orientation conditions of the crystal with respect to k must be satisfied
in order to ensure that this equation has solutions different from ∆k = 0.

2. This calculation shows that measurement of the diffraction peaks gives
the reciprocal lattice (a∗

i ), and therefore the crystal lattice (ai).
3. More generally, if one studies the scattering of X rays by a sample of

condensed matter, solid or liquid, of electron density ρ(r), the discrete
sum in (1.10) becomes

∫
ei(k−k′)·r ρ(r) d3r. The amplitude scattered in

the direction k′ is proportional to the Fourier transform of the density
of scattering centers. This is the basis of X ray crystallography of solids,
liquids, and organic and biological materials.

1.3.2 Electron Diffraction

The Davisson and Germer experiment consisted of irradiating a nickel crystal
with a beam of electrons with a well-defined momentum p. The outgoing elec-
trons were collected in a detector (a Faraday box in the original experiment).
In the same way as with X rays, outgoing diffracted beams were observed
in well-defined directions, and the diffraction patterns obtained with X rays
and with electrons were similar for a given crystal.

The diffraction pattern obtained with electrons is simply changed by a
global scaling factor when one varies their momentum p. This pattern can be
exactly superimposed on one obtained with X rays of wavelength λX if the
de Broglie wavelength associated with the electrons λe = h/p coincides with
λX. This identity originates from the interference term

∑
α ei ∆k·rα , which

is the same in both cases, although the elementary scattering processes are
different for X rays and for electrons.
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Davisson, who was an engineer, had been Millikan’s student. In 1919 he studied
the emission of secondary electrons in electron tubes in order to improve their per-
formance, in view of their use in the American transcontinental telephone system.
Davisson noticed that a fraction of these secondary electrons were scattered elas-
tically by the atoms of the electrodes. In 1921, he decided to probe the internal
structure of atoms with these electrons. He constructed a very sophisticated appa-
ratus, but he was unsuccessful in his attempts; the angular distribution of outgoing
electrons did not show any significant structure. In 1926, he spent some vacation
time in England, where fortuitously he heard about the developments of quantum
theory and de Broglie’s hypothesis. It took him only a few weeks to demonstrate
the diffraction phenomenon. He worked with backward-scattered electrons from a
nickel crystal at an energy of 60 to 80 eV. He published his results one month
before G.P. Thomson, who used transmission through thin mica sheets at much
higher energies (104 to 105 eV) (Debye–Scherrer diffraction).

Electron diffraction is now a common tool in industrial research. It is used,
in particular, to study properties of materials and surfaces: corrosion, cataly-
sis and chemical reactions, dislocations, etc. Figure 1.6 shows the principle of
the measurement of the electron diffraction pattern of a thin slice of a solid
material. The parallel electron beam crosses the slice M and an electron lens
of focal length f1. One measures the diffracted intensity in a given direction
k by measuring the electron intensity in the focal plane S1 of the lens. One
can also obtain an image of the diffracting object by putting a second lens,
of focal length f2 (with f2 � f1) in the plane S1. The electron detector is
placed in the image plane of M , and this setup constitutes a microscope with
magnification f2/(f2 − f1).

Some results obtained with this method are shown in Fig. 1.7. The ma-
terial is an AlMnSi alloy obtained by rapid solidification. Fig. 1.7a shows
the very inhomogeneous structure of the alloy, observed with an electron
microscope at a small magnification. The dark “petals”, whose sizes are of
the order of a few microns, correspond to strongly diffracting regions, whose

f1 D = f1 f2 / ( f2 - f1)

L1 L2S1 S2M

Fig. 1.6. Typical optical setup giving either the diffraction pattern of a slice of
material M in the plane S1 or a magnified image of the sample in the plane S2. The
converging lenses L1 and L2 have focal lengths f1 and f2, and the incident electron
beam is collimated
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(a) (b) (c)

10 nm

Fig. 1.7. Observation of the first quasicrystals. (a) Large-scale structure of an
AlMnSi alloy, observed with an electron microscope. In the dark regions, the crystal
planes have the proper orientation to diffract the electron beam. (b) Magnified
image of a dark region, revealing the fivefold symmetry of the material (look for
pentagons!). (c) Electron diffraction pattern obtained with 200 keV electrons. The
fivefold symmetry is clearly visible (photographs courtesy of Denis Gratias)

crystal planes are well oriented with respect to the incident electron beam.
Figure 1.7b is an image of a dark petal at a high magnification. One can
observe that it is not a periodic, but a quasiperiodic lattice of atoms, with
a pentagonal elementary cell. Figure 1.7c shows the diffraction pattern, ob-
tained in the focal plane of the first lens of Fig. 1.6. The fivefold symmetry
appears in a spectacular manner. This series of pictures4 constitutes the first
experimental observation of quasicrystals, and has created considerable in-
terest in condensed-matter physics. It has revealed that a solid material can
have order of a type different from the usual crystalline order, i. e. without
the periodic repetition of an elementary cell. Electron diffraction was the only
possible tool to study these very small samples since the X ray diffraction
signal was too weak to be detected. It is now possible to prepare quasicrys-
tals in which the quasiperiodic order extends over several centimeters, which
renders an X ray study feasible.

Similar diffraction experiments are often performed with other material
particles, such as neutrons. For electrons with a kinetic energy of 100 eV, the
de Broglie wavelength is 0.124 nm, which is the order of magnitude of atom
spacings in crystals. Since the neutron mass is roughly 2000me, similar dif-
fraction patterns are obtained with neutrons of energy 0.05 eV. Such thermal
neutrons are produced abundantly (fluxes of the order of 1013 cm−2 s−1) in
nuclear reactors. A special high-flux reactor with a large spectrum of ener-
gies – and therefore of wavelengths – has been constructed by Germany and
France in Grenoble (the Laue–Langevin Institute). Neutrons interact only
4 D. Schechtman, I. Blech, D. Gratias and J.W. Cahn, Phys. Rev. Lett. 53, 1951

(1984). We thank D. Gratias for enlightening discussions.
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with nuclei, and penetrate matter, contrary to electrons. They constitute
very clean probes of the structure of matter. Neutron diffraction gives infor-
mation complementary to electron diffraction, which essentially probes the
electron distribution of the scatterers.

1.4 Summary of a Few Important Ideas

In what follows we shall constantly refer to the quantum phenomena we have
just discussed. Later on, we shall present other observations, such as the
Stern–Gerlach experiment, which will guide us in building quantum theory.
We shall keep in mind the following aspects, which are in contradiction to
“common sense” classical concepts.

1. Quantum phenomena are probabilistic. One can only predict the results
of a measurement in statistical form (for a large number of events) or in
probabilistic form (for a single event).

2. The analysis of interference and diffraction phenomena shows that one
cannot work directly with probability laws, as in random phenomena of
the usual kind. One must introduce probability amplitudes whose moduli
squared give the desired probabilities.

3. At the microscopic level, particles have a wave-like behavior. We must
abandon the concept of a trajectory for a particle.

4. Some physical quantities, which classically can take a continuous set of
values, take only discrete values in quantum mechanics. This is the case
for the internal energy of an atom or a molecule.

5. In general, the act of measuring a physical system affects this system.

Further Reading

• For the historical development of quantum mechanics one can refer to M.
Jammer, The Conceptual Development of Quantum Mechanics, McGraw-
Hill, New York (1966); B.L. Van Der Waerden, Sources of Quantum Me-
chanics, North-Holland, Amsterdam (1967); J. Mehra and H. Rechen-
berg, The Historical Development of Quantum Theory, Springer New York
(1982).

• For an fascinating introduction to quantum phenomena, see T. Leggett,
“Quantum physics: weird and wonderful”, Phys. World, December 1999,
p. 73.

• Davisson’s interesting story can be found in R.K. Gehrenbeck, Phys. Today
31, January 1978, p. 34.

• A description of interference experiments with material particles can be
found in:
– for electrons: G. Matteuci et al., Am. J. Phys. 46, 619 (1978);



16 1. Quantum Phenomena

– for neutrons: “Neutron scattering”, Phys. Today 38, 25 (1985);
– for Na2 molecules: M.S. Chapman et al., Phys. Rev. Lett. 74, 4783

(1995);
– for fullerenes, C60 molecules: M. Arndt et al., Nature 401, 680 (1999).

Exercises

1.1. Photoelectric effect in metals. If one irradiates a potassium pho-
tocathode with λ = 253.7 nm photons (the resonance line of mercury), the
maximum energy of the ejected electrons is 3.14 eV. If visible radiation with
λ = 589 nm is used (the resonance line of sodium), the maximum energy of
the ejected electrons is then 0.36 eV.

a. Calculate the value of Planck’s constant.
b. Calculate the energy for extraction of electrons in potassium.
c. What is the maximum wavelength of radiation which can produce a pho-

toelectric effect on potassium?

1.2. Photon fluxes.

a. A radio antenna emits waves at a frequency of 1 MHz with a power of 1
kW. How many photons are emitted per second?

b. A first-magnitude star emits a light flux of ∼ 1.6× 10−10 W m−2 as mea-
sured on earth, at an average wavelength of 556 nm. How many photons
pass through the pupil of an eye per second?

1.3. Orders of magnitude for de Broglie wavelengths. What is the
de Broglie wavelength (a) of an electron of energy 100 eV, (b) of a thermal
neutron? How do these compare with atomic sizes?

1.4. De Broglie relation in the relativistic domain. In high-energy
physics, electron accelerator energies reach ∼100 GeV. What is the de
Broglie wavelength of such electrons? Why are such high energies neces-
sary? Remember the relativistic relation between energy and momentum
E =

√
p2c2 + m2c4.



2. The Wave Function
and the Schrödinger Equation

Believe and you will understand;
faith precedes, intelligence follows.

Saint Augustine

Erwin Schrödinger learned about Louis de Broglie’s work in 1925. He was
attracted by the ideas, but he remained skeptical for fundamental reasons
related to his prejudices about relativity. Nevertheless, several people, in-
cluding Debye and Einstein, encouraged him to take advantage of his skill in
partial differential equations in order to investigate further this hypothesis.
This resulted in a series of eight outstanding articles published by Schrödinger
in 1926, which founded what is now called wave mechanics. This version of
quantum mechanics was developed a little later than the matrix mechanics
of Heisenberg, Born, Jordan and Dirac, which we shall describe later on.
The most decisive contribution of Schrödinger was to obtain a wave equation
which governs the behavior of a particle placed in a potential. The calcula-
tion of energy levels then appears as a well-defined mathematical problem, of
the same type as the determination of standing waves with given boundary
conditions.

We choose to approach quantum mechanics by means of wave mechanics,
where we shall study the simplest problem of classical physics, i. e. the motion
of a point-like particle under the influence of a field of force derived from a
potential. We shall proceed in a semideductive way by stating principles,
which will be illustrated by their consequences.

Before entering the discussion, we define our terminology. Common lan-
guage contains many implicit conclusions about the nature of things, and,
although one cannot avoid using it, it may lead to wrong ideas if one does
not define a few basic words unambiguously. Physics is based on experimen-
tal observations and measurements, which consist of characterizing aspects
of reality by numbers. These aspects of reality are elaborated into concepts
of physical quantities (energy, intensity of an electric current, etc.). We shall
say that, under given physical conditions, a physical system, i. e. an object
pertaining to reality, is at any time in a given state. The state of the system
corresponds to the particular form of its physical reality. We possess informa-
tion about the state of a system if we have performed some observations on it
and have collected the corresponding set of measured numbers. In addition,
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we assume that, by acting on the system and by filtering out the values of
some subset of physical quantities (yet to be defined), we can prepare the
system to be in a given well-defined state.

There will be four steps in the theory.

1. We must describe the state of the system. This means giving the state a
mathematical representation which defines it in an operational manner.
For instance, in Newtonian mechanics, the state of a point-like particle
of mass m is described at any time t by its position r(t) and its velocity
v(t) = dr(t)/dt or its linear momentum p = mv.

2. We need to know the time evolution of the state after it has been prepared
under given initial conditions. This means we want to be able to predict
the state at time t if we know it at time t = 0. In Newtonian mechanics,
the evolution is given by the fundamental law dp/dt = f , where f is the
force acting on the particle.

3. We want to predict the results of measurements of physical quantities
on a given system. This means knowing the laws that lead from the
mathematical representation of the state of the system to the numbers
which appear on measuring devices (meters, counters, etc.). In classical
mechanics, these are functions of the state variables r and p.

4. Finally, as we anticipated in the first chapter, we must address questions
which were absent in classical mechanics. What does a measurement
process consist of? What do we know after performing a measurement?

In the present chapter, we shall study the first two questions in the case of
a “point-like particle” evolving in space. By point-like particle we mean any
physical system whose internal structure or internal degrees of freedom are
not relevant in the experiments of interest. At the present stage, a particle will
be characterized by its mass and its electric charge, and its classical motion in
an electromagnetic or gravitational field is known. For instance a neon atom
can be considered as a particle in the experiment shown in Fig. 1.3, although
one may have to take into account its internal structure (10 electrons, 10
protons and 10 neutrons) in order to describe other experimental effects.

2.1 The Wave Function

The first concept we need is that of a wave function and its probabilistic
interpretation.

2.1.1 Description of the State of a Particle

The basic principle by which the state of a particle is described is the follow-
ing.
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Principle 2.1

The description of the state of a particle of mass m at time t is performed
with a complex wave function ψ(r, t). The probability d3P (r) to find the
particle at time t in a volume d3r around the point r is given by

d3P (r) = |ψ(r, t)|2 d3r . (2.1)

Comments

1. The wave function ψ(r, t) is also called the probability amplitude of finding
the particle at point r. It is square integrable and normalized to unity. If
we denote by D the domain in space accessible to the particle, the total
probability of finding the particle at any point in D is equal to 1:∫

D
|ψ(r, t)|2 d3r = 1 . (2.2)

2. A given wave function constitutes a complete description of the state of
the particle at time t. Two different wave functions describe two different
states, except when they differ only by a constant multiplicative phase
factor. The wave functions ψ1(r, t) and ψ2(r, t) = eiαψ1(r, t), where α
is a constant, describe the same state. They obviously lead to the same
spatial probability density and also, as we shall see later on, to the same
predictions for any other physical quantity.

3. This is a nonclassical probabilistic description. We do not work directly
with probabilities but with probability amplitudes, whose moduli squared
are probabilities. We shall see below how this accounts for interference
phenomena.

2.1.2 Position Measurement of the Particle

What do we find when measuring at some time t the position of the par-
ticle? This type of question is fundamental in quantum mechanics, and we
shall come back to it constantly. The following important observations or
assumptions are in order.

1. The measurement is made with a classical, or macroscopic, apparatus
whose description does not require a quantum description.

2. The accuracy of the measuring apparatus is in principle arbitrarily good
(although it is limited in practice by technical constraints).

3. Concerning a position measurement, the answer of the measuring appa-
ratus consists in the statement “at time t, a particle has been detected
in a vicinity δ3r of point r and nowhere else, δ3r being intrinsic to the
measuring apparatus”.
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Therefore, in measuring the position of the particle at time t, one finds
a well-defined value r, up to the accuracy δ3r of the measuring apparatus.
The probabilistic description by a wave function has the following meaning.
If we prepare independently a large number N of particles in the same state
– i. e. all of these N particles are described by the same wave function ψ(r)
when each position measurement is made – the N results ri, i = 1, . . . N , will
not all be the same, but will be distributed according to the probability law
(2.1).

The “expectation value” of these results, which we denote by 〈r〉, is

〈r〉 =
∫

r |ψ(r)|2 d3r . (2.3)

This is a set of three equations for the three coordinates {x, y, z}.
The scattering of the results around the expectation value is characterized

by a root mean-square (rms) deviation which we will call a dispersion. Let
∆x,∆y and ∆z be the dispersions of the three coordinates of the position;
we have, by definition,

(∆x)2 = 〈x2〉 − 〈x〉2 =
∫

x2 |ψ(r)|2 d3r − 〈x〉2 , (2.4)

and similarly for ∆y and ∆z. The smaller these dispersions, the more accu-
rately we know the position of the particle when it is prepared in the state
ψ(r).

2.2 Interference and the Superposition Principle

As is indicated above, the wave function provides us with a probabilistic
description of quantum phenomena. The basic properties of wave functions
can be inferred from the observation of interference experiments.

2.2.1 De Broglie Waves

We turn back to the interpretation of interference experiments. The simplest
idea is to assume that particles of well-defined velocity v and momentum
p = mv, moving freely in space, are described by wave functions close to
monochromatic plane waves of the form

ψ(r, t) = ψ0 ei(k·r−ωt) , (2.5)

where ψ0 is a constant. In these plane waves, the wavelength λ = h/p and,
equivalently, the wave vector k satisfy the relations

λ = h/p , k = p/h̄ , (2.6)
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as predicted by de Broglie. If we apply the usual arguments which lead to
acoustic or light interference, this should explain the experimental observa-
tions.

However, an interference experiment – be it a Young double-slit experi-
ment or a Davisson–Germer-type experiment – does not tell us the frequency
ω of these waves. Indeed the phase factor e−iωt factorizes out of the ampli-
tude of the wave on a detector, and the measured signal does not depend on
the particular choice of ω. The choice made by de Broglie in 1923 consists
in relating this frequency to the energy of the particle in the same way as
Einstein did for the photon:

h̄ω = E , where, for a free particle, E = p2/2m . (2.7)

We then obtain the following form for what are called de Broglie waves:

ψ(r, t) = ψ0 ei(p·r−Et)/h̄ , where E = p2/2m . (2.8)

2.2.2 The Superposition Principle

Consider the specific case of the Young slit experiment sketched in Fig. 1.2.
By analogy with the usual interference phenomena, we can explain the ob-
servations provided the following condition is satisfied. We send a plane de
Broglie wave from the left onto the screen pierced with two slits. Suppose we
know the wave function ψ1(rC , t) for any point rC of the detection screen
if only S1 is open. Similarly, suppose we know the wave function ψ2(rC , t)
diffracted by the slit S2. The interference phenomenon can be accounted for
provided that, when both slits are open, the wave function on the screen is
the sum of these two wave functions:

ψ(rC , t) ∝ ψ1(rC , t) + ψ2(rC , t) . (2.9)

Under this condition, de Broglie waves will account for the interference ex-
periments on matter waves described in the previous chapter.

Equation (2.9) expresses the fundamental property of wave functions. We
can state it as a fundamental principle of quantum mechanics:

Superposition Principle

Any linear superposition of wave functions is also a possible wave function.

Specifically, this means that if ψ1(r, t) and ψ2(r, t) describe possible states
for the particle, any linear combination

ψ(r, t) ∝ α1 ψ1(r, t) + α2 ψ2(r, t) , (2.10)
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where α1 and α2 are arbitrary complex coefficients, also represents a possible
state; the proportionality coefficient in (2.10) is adjusted so that (2.2) is
satisfied. The coefficients α1 and α2 need not be equal: one can attenuate or
modify the phase of one of the beams.

This is a central principle in quantum theory. The additivity of proba-
bility amplitudes is the basis of interference phenomena. It goes beyond the
particular wave equation obeyed by the wave functions ψ(r, t) that we shall
give below. This wave equation must be linear in order to ensure that the
superposition principle holds at all times. When we generalize quantum me-
chanics to systems more complicated than point-like particles, we shall see
that this property is much more important than the notion of wave functions
itself. In mathematical terms, this means that the family of wave functions
of a system forms a vector space.

2.2.3 The Wave Equation in Vacuum

Consider the de Broglie waves in (2.8). These particular plane waves describe
free particles of well-defined momentum p, and energy E = p2/2m. Taking
the time derivative on one hand and the Laplacian on the other, we observe
that de Broglie waves satisfy the partial differential equation

ih̄
∂

∂t
ψ(r, t) = − h̄2

2m
∆ψ(r, t) .

In a similar way as for the principle of inertia in classical mechanics, we
can take this as a principle for the propagation of particles in free space, i. e.
in the absence of forces:

Principle 2.2.a: Motion of a Free Particle

If a particle is in vacuum and is not subject to any interaction, the wave
function satisfies the partial differential equation

ih̄
∂

∂t
ψ(r, t) = − h̄2

2m
∆ψ(r, t) . (2.11)

This partial differential equation is nothing but the Schrödinger equation in
the absence of forces, as we shall see in Sect. 2.5. It is a linear equation, in
agreement with the superposition principle.

Energy–Frequency Relation. The result E = h̄ω in (2.7) can also be
obtained directly by requiring that the function (2.5) satisfies the wave equa-
tion (2.11). Indeed, if we substitute the form (2.5) into this wave equation
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we directly obtain the constraint

h̄ω =
h̄2k2

2m
=

p2

2m
.

Therefore two equivalent points of view may be considered in order to find
the dynamics of the wave function for a free particle. One may assume that
the most general wave function is a linear combination of de Broglie waves
(2.8). One can then show the result that the wave equation in vacuum is of
the form (2.11). Alternatively, one can assume the Schrödinger equation for
a free particle (2.11), and de Broglie waves appear as particular plane wave
solutions of this equation.

Interference Phenomena. From a mathematical standpoint, the result of
the Young double-slit experiment can be explained rigorously by solving the
wave equation (2.11) with the following boundary conditions.

1. For any r on the surface of the pierced plate, ψ(r) = 0. Indeed, since the
probability of finding the particle at a point ri inside the material of the
plate is zero, one has ψ(ri) = 0. The value of ψ on the surface follows by
continuity. Therefore, in the plane of the slits, the wave function takes
nonzero values in the location of the slits only.

2. For z → −∞, where z is the propagation axis, ψ(r) is the superposition
of the incident plane wave ei(p·r−Et)/h̄ and some reflected wave which is
irrelevant in the present discussion.

3. For z → +∞, ψ → 0.

One can show that this is a well-defined mathematical problem which
has a unique solution. The exact solution is involved and requires computer
calculations, but one can show analytically that, at large distances from the
plate (D � a) and for small angular deviations x/D, the usual formula for
interference calculations, in particular (2.9), applies.

Conservation of the Norm. Consider at time t0 a function ψ(r, t0) which
is normalized to unity. This function describes a possible state of the par-
ticle at time t0, and the wave equation (2.11) then allows one to determine
ψ(r, t) at any other time. We can check that the quantity

∫ |ψ(r, t)|2 d3r
is time-independent during the evolution (2.11). This guarantees that ψ will
remain normalized at all times, which is of course essential in order for us
to interpret |ψ(r, t)|2 as a probability density. To show this, we calculate the
time derivative:

d
dt

∫
|ψ(r, t)|2 d3r =

∫
ψ∗ ∂ψ

∂t
d3r +

∫
∂ψ∗

∂t
ψ d3r

=
ih̄
2m

(∫
ψ∗ ∆ψ d3r −

∫
∆ψ∗ ψ d3r

)
= 0 ,

where we have integrated by parts in the last step of the calculation, and we
assume that ψ and ψ∗ vanish at infinity.
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2.3 Free Wave Packets

Realistic free wave functions are constructed as follows.

2.3.1 Definition of a Wave Packet

The monochromatic plane wave (2.8) cannot represent the state of a particle,
since it is not normalizable. A physically acceptable state is a wave packet,
consisting of a complex linear superposition of monochromatic plane waves
of type (2.8), in agreement with the superposition principle:

ψ(r, t) =
∫

ϕ(p) ei(p·r−Et)/h̄ d3p

(2πh̄)3/2
;

for a free particle, E =
p2

2m
. (2.12)

The constant (2πh̄)3/2 is introduced for normalization and dimensionality
reasons, and ϕ(p) is arbitrary except that we require that this expression
exists and that it is suitably normalized.

Expression (2.12) is the general solution of the wave equation (2.11). In
order to understand the physical properties of wave packets, we remark that,
in (2.12), the functions ψ(r, t) and ϕ(p) e−iEt/h̄ are Fourier transforms of
one another.

2.3.2 Fourier Transformation

The properties of Fourier transformation are given in Appendix B. We outline
here those which are relevant to the following discussion:

1. Two functions f(r) and g(p) are Fourier transforms of one another if

f(r) = (2πh̄)−3/2

∫
eip·r/h̄ g(p) d3p . (2.13)

2. The inverse transformation is then

g(p) = (2πh̄)−3/2

∫
e−ip·r/h̄ f(r) d3r . (2.14)

The product p · r has the dimension of an action, which explains the
presence of the constant h̄ in these expressions.

3. Differentiating (2.13) with respect to xj = x, y or z gives

∂f

∂xj
= (2πh̄)−3/2

∫
eip·r/h̄ ipj

h̄
g(p) d3p . (2.15)

This means that the Fourier transform of ∂f/∂xj is ipjg(p)/h̄. A dif-
ferentiation in r space corresponds to a multiplication by the relevant
variable in p space (and vice versa, using (2.14)).
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4. The Fourier transformation is “isometric”. If f1(r) and f2(r) are the
Fourier transforms of g1(p) and g2(p), respectively, the Parseval–
Plancherel theorem implies∫

f∗
1 (r) f2(r) d3r =

∫
g∗1(p) g2(p) d3p . (2.16)

5. The smaller the “width” of |g(p)|2 (in the vicinity of a given value p0),
the larger the “width” of |f(r)|2. More precisely, if we define

〈px〉 =
∫

px |g(p)|2 d3p , (∆px)2 = 〈p2
x〉 − 〈px〉2 (2.17)

and similarly for 〈x〉 and ∆x starting from f , the product of the disper-
sions ∆x and ∆px is constrained by the inequality

∆x∆px ≥ h̄/2 , (2.18)

and similarly for the y and z axes. Here we implicitly assume that |f |2
and therefore |g|2 are probability distributions both normalized to 1.

2.3.3 Structure of the Wave Packet

Owing to (2.16), the wave packet (2.12) satisfies∫
|ψ(r, t)|2 d3r =

∫
|ϕ(p)|2 d3p . (2.19)

Therefore, ψ(r, t) is square integrable and properly normalized if and only if
ϕ(p) is also square integrable and normalized:∫

|ϕ(p)|2 d3p = 1 . (2.20)

The construction of a wave packet consists in choosing a square-integrable,
normalized function ϕ(p). The resulting wave function ψ(r, t) is also normal-
ized at any time t. It is a linear superposition of plane waves which interfere
destructively outside a localized region in space. It is useful to keep in mind
the following two limiting cases, illustrated in Fig. 2.1:

1. Approximation to a plane wave. If ϕ(p) is peaked in the vicinity of some
value p0, ψ(r, t) is close to a monochromatic plane wave in a large region
of space, while it can be normalized (Fig. 2.1a).

2. Approximation to a well-localized particle. Conversely, we can construct
wave packets for which |ψ(r, t)|2 is very concentrated around some value
r0 (Fig. 2.1c). Such wave packets involve a superposition of plane waves
with a large dispersion in |p|.
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Fig. 2.1. Examples of wave packets (real part of ψ(x)) corresponding to a Gaussian
function ϕ(p): ϕ(p) ∝ exp{−(p−p0)

2/[2(h̄σ)2]}. (a) Approximation to a monochro-
matic plane wave: large spread in x, obtained for ϕ(p) peaked in the vicinity of p0

(h̄σ = p0/50). (b) Intermediate case (h̄σ = p0/10). (c) Localized wave correspond-
ing to a large dispersion of ϕ(p) (h̄σ = p0/2). In order to keep the functions on the
same graph, the vertical scales of (a), (b) and (c) differ

2.3.4 Propagation of a Wave Packet: the Group Velocity

Consider a linear superposition of plane waves of the form

f(x, t) =
∫

ei(kx−ωt) g(k) dk , (2.21)

where ω ≡ ω(k) is a function of k and where g(k) is chosen such that∫ |g(k)|2 dk =
∫ |f(x, t)|2 dx = 1. For simplicity we restrict ourselves here

to a one-dimensional situation, but the argument can easily be extended to
three dimensions. In optics or acoustics, |f |2 is proportional to the energy
density. Here, |f |2 is a probability density.

We assume that the spreading of the function g(k) around its center
k0 =

∫
k |g(k)|2 dk is sufficiently small so that the linear expansion

ω(k) � ω0 + vg(k − k0) , where ω0 = ω(k0) , vg =
dω

dk

∣∣∣∣
k=k0

, (2.22)

is valid for all k’s where g(k) takes significant values. If we insert this expan-
sion into (2.21) we obtain

f(x, t) � ei(k0vg−ω0)t f(x − vgt, 0)
⇒ |f(x, t)|2 � |f(x − vgt, 0)|2 . (2.23)
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Fig. 2.2. For a distribution g(k) concentrated around a value k0, the evolution of
the wave packet f(x) during a relatively short time is a displacement at the group
velocity vg = dω/dk

∣∣
k=k0

. For longer times the change in the width of the wave

packet has to be taken into account (Sect. 2.3.5)

Equation (2.23) shows that the distribution |f(x, t)|2 of the energy (for
electromagnetic waves, acoustic waves, etc.) or of the probability density (in
quantum mechanics) propagates along the x axis with a velocity vg (Fig. 2.2).
This quantity is called the group velocity and is in general different from the
phase velocity of a monochromatic wave vϕ = ω/|k|.

For de Broglie waves (2.12), the angular frequency ω varies quadratically
with k = p/h̄:

ω =
h̄k2

2m
=

p2

2mh̄
. (2.24)

If the width ∆p of |ϕ(p)|2 is much smaller than the mean value p0, the
expansion (2.22) is valid and yields

vg = p0/m . (2.25)

The propagation velocity of the probability density is equal to the velocity of
a classical particle with a momentum equal to the mean value p0 of the wave
packet. This is how the classical limit of the theory will emerge. If one uses
the relativistic form of the energy E = c(p2 + m2c2)1/2, the group velocity is
again equal to the velocity of the particle v = pc2/E. This was actually the
original formulation of de Broglie.

2.3.5 Propagation of a Wave Packet:
Average Position and Spreading

Using the equation of motion (2.3), we can go one step further and deter-
mine the general time evolution of the center of a wave packet and of its
width. We consider again a one-dimensional case for simplicity and examine
the evolution of 〈x〉t, which represents the expectation value of a position
measurement at time t. The time derivative of (2.2) gives
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d〈x〉t
dt

=
∫

x

(
ψ∗ ∂ψ

∂t
+

∂ψ∗

∂t
ψ

)
dx =

ih̄
2m

∫
x

(
ψ∗ ∂2ψ

∂x2
− ∂2ψ∗

∂x2
ψ

)
dx

=
ih̄
2m

∫ (
ψ

∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
dx , (2.26)

where we have integrated by parts. The right-hand side is constant in time,
as can be shown by taking its time derivative and again integrating by parts.
If we set

v0 =
ih̄
2m

∫ (
ψ

∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
dx = − ih̄

m

∫
ψ∗ ∂ψ

∂x
dx (2.27)

where v0 has the dimensions of a velocity, we obtain

〈x〉t = 〈x〉0 + v0t . (2.28)

The motion of the center of the wave packet is uniform, as is the motion of
a free classical particle.

We can proceed along similar lines to obtain the evolution of the variance
∆x2

t of the position probability distribution (see Exercise 2.2). We obtain

∆x2
t = ∆x2

0 + ξ1t + ∆v2t2 , (2.29)

where ξ1 and ∆v are constant coefficients. Notice that there exists a constraint
on the relative values of ∆x2

0, ξ1 and ∆v2, since ∆x2
t ≥ 0 at any time. In

particular, ∆v2 is positive and is given by

∆v2 = v2
1 − v2

0 , where v2
1 =

h̄2

m2

∫
∂ψ

∂x

∂ψ∗

∂x
dx , (2.30)

where v1 also has the dimensions of a velocity.
The physical consequences of (2.29) are important: the variance ∆x2

t of
a wave packet varies quadratically with time. As a function of time, ∆x2

t

reaches a minimum value at some time t1 before it expands indefinitely; for
large |t|, we find ∆xt ∼ ∆v |t|. This is similar to the variation of the spatial
extent of a focused acoustic or light wave, before and after its focal point.
The spreading of the wave packet in time is a consequence of the quadratic
dispersion law for de Broglie waves ω ∝ k2. The result (2.23) found in the
previous section is valid as long as this spreading is negligible. In the next
section we shall obtain a physical interpretation for the coefficients v0 and
∆v which appear in the two equations (2.28) and (2.29).

2.4 Momentum Measurements
and Uncertainty Relations

We now address the problem of finding the momentum probability amplitude
of the particle.
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2.4.1 The Momentum Probability Distribution

The wave function completely describes the state of the particle. Up to now,
we have used it only as the probability distribution of the position. We want
now to exploit the structure of the wave packet in order to infer the distrib-
ution of the results when we measure the momentum of the particle.

Consider the wave packet (2.12) at t = 0 for simplicity, and examine the
following assumption:

In a measurement of the momentum, the probability of finding a result
located in a volume d3p enclosing the value p is

d3P (p) = |ϕ(p)|2 d3p . (2.31)

The statement (2.31) is consistent with what precedes it. Indeed, |ϕ(p)|2 can
be a probability density. It is a positive definite quantity and its integral is
normalized to one (see (2.20)).

We have already seen that the more the support of ϕ(p) is concentrated
in the vicinity of p0, the closer the wave packet (2.12) is to a monochromatic
plane wave with a wave vector k0 = p0/h̄. In the limit of an infinitely narrow
function ϕ(p) we obtain a de Broglie plane wave associated with a particle of
well-defined momentum p0. In Sect. 2.6 we shall give a proof of the statement
(2.31), by investigating the results of a velocity measurement in a time-of-
flight procedure.

Assuming that (2.31) is true, we can repeat all steps of Sect. 2.1.2 for mo-
mentum instead of position measurements. We define an expectation value:

〈p〉 =
∫

p |ϕ(p)|2 d3p . (2.32)

This definition coincides with the constant mv0 introduced in (2.27), as a
consequence of the Parseval–Plancherel theorem (2.16) applied to the pair
of Fourier transforms (i) f∗

1 (r) = ψ∗(r) and g∗1(p) = ϕ∗(p) (ii) f2(r) =
−ih̄ ∂ψ/∂x and g2(p) = pxϕ(p) (see 2.15):

−ih̄
∫

ψ∗(r)
∂ψ

∂x
d3r =

∫
ϕ∗(p) px ϕ(p) d3p . (2.33)

We can also define the dispersions ∆pj (j = x, y, z):

(∆pj)2 = 〈p2
j 〉 − 〈pj〉2 . (2.34)

Using the Parseval–Plancherel theorem, we also find that the dispersion ∆px

coincides with the coefficient m ∆v appearing in the one-dimensional time
evolution of the spatial width of a wave packet (2.29).

In this framework, the physical interpretation of the equations giving the
time evolution of the center of a wave packet is simple. The wave packet is
formed by a superposition of plane waves, each of which corresponds to a
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well defined momentum p. The center of the wave packet propagates with
the average momentum deduced from the probability distribution |ϕ(p)|2. In
addition, the group velocity dω/dk of each component is different, and the
wave packet spreads out as time increases.

2.4.2 Heisenberg Uncertainty Relations

The previous observations, in particular the statement (2.31), lead to a cor-
nerstone of quantum mechanics. As follows from Fourier analysis (cf. (2.18)),
whatever the wave function is, the following inequalities hold:

∆x ∆px ≥ h̄/2 , ∆y ∆py ≥ h̄/2 , ∆z ∆pz ≥ h̄/2 . (2.35)

These are called the Heisenberg uncertainty relations. The uncertainty rela-
tions are saturated, i. e. ∆x∆px = h̄/2, if and only if the wave function is
a Gaussian. As we shall see in the next section, these relations remain valid
when the particle is placed in a potential.

These uncertainty relations should be understood in the following way.
Suppose we prepare 2N particles all in the same state ψ(r), with N � 1
(see Fig. 2.3). For N of them, we measure the position. We obtain some dis-
tribution of results, with some mean value r0 and standard deviations ∆x,
∆y and ∆z. For the remaining N particles, we measure the momentum. The
distribution of the results has a mean value p0 and standard deviations ∆px,
∆py and ∆pz. The Heisenberg uncertainty relations state that one necessarily
finds (2.35) if N is large enough that the statistics of the measured distrib-
utions are significant. This holds whatever ψ(r) is, i. e. for any state of the
system.

Theses inequalities are intrinsic properties of the quantum description
of any system. They have nothing to do with any uncertainty of an indi-
vidual measurement or with the accuracy of the measuring devices. They

x

N position
measurements

2N particles

x0

p

N momentum
measurements

p0

Fig. 2.3. Measurement of the position (left) and momentum (right) distributions
for a collection of 2N � 1 particles, all prepared in the same state. The Heisenberg
uncertainty relation states that the product of the standard deviations of the two
histograms is always larger than h̄/2, whatever the accuracy of each individual
measurement (i. e. the width of the channels of the histograms and the number of
individual measurements)
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mean that a point-like particle cannot be conceived as being localized both
in position and in momentum beyond the limit (2.35). The starting point of
classical mechanics, where the state of a particle is described by a simulta-
neous knowledge of its position and momentum, is in contradiction with the
uncertainty relations.

The classical limit corresponds to cases where ∆x and ∆px are both
much smaller than the accuracy of the measurements. Given the value of
h̄ ∼ 10−34 J s, this will be the case in most macroscopic observations. Consider
for instance, an object of mass m = 1 gram, and a measuring apparatus that
gives the position of the center of mass with a precision of 10−15 m (the
diameter of a nucleus) and its velocity with a precision of 10−15 m s−1 (a
rather impressive apparatus!). This is still not accurate enough to detect
the quantum uncertainty. Whenever we refer to the classical limit, it is this
precise sense we mean, i. e. ∆x and ∆px are small but they still satisfy (2.35).

A plane wave is a limiting case of the uncertainty relations. It would corre-
spond to a well-defined momentum, ∆px = 0, but it is completely delocalized
in space, ∆x = ∞.

Finally, we note that the uncertainty relations, taken together with the
relation (2.29) giving the time evolution of the spatial width of the wave
packet, indicate that it is not possible to have an arbitrarily good spatial
localization of a free quantum particle at two different times t1 and t2 if
these two times are sufficiently far apart from one another. If the particle
is localized at time t1 within a short distance ∆r1, the momentum width
∆p1 ≥ h̄/2∆r1 is quite large. Consequently, the spatial width at time t2 will
be dominated by the spreading term ∆p1 (t2 − t1)/m, which is also quite
large, except for very small values of (t2 − t1).

It is instructive to examine quantitatively the phenomenon of wave packet spreading
in two extreme cases:
1. Consider a free electron which is initially localized within an atomic size (∆x0 ∼

10−10 m) and suppose for simplicity that ξ1 = 0 in (2.29). After one second, the
result ∆x ∼ 600 km (!) shows that the wave function has literally exploded. This
simply means that one second is a very long time on the atomic scale, and that
a much shorter time is sufficient to ensure that an electron is delocalized over
any relevant macroscopic length, such as the crystal size in electric-conduction
phenomena, for instance.

2. Conversely, consider a mass of 1mg of water initially localized with a precision
∆x0 = 1mm. We find that the position uncertainty doubles in a time t =
2×1022 s ∼ 1015 years. This shows that, with great confidence one may usually
neglect quantum effects on a macroscopic scale.

2.5 The Schrödinger Equation

The wave equation (2.11) for a free particle is a direct consequence of the
structure of de Broglie waves. The first major contribution of Schrödinger
was to find the wave equation which is satisfied when the particle is placed
in a potential V (r).
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2.5.1 Equation of Motion

This wave equation is the Schrödinger equation:

Principle 2.2.b: The Schrödinger Equation

When a particle is placed in a potential V (r, t), the time evolution of the
wave function is governed by the Schrödinger equation:

ih̄
∂

∂t
ψ(r, t) = − h̄2

2m
∆ψ(r, t) + V (r, t)ψ(r, t) . (2.36)

This equation is also linear, in agreement with the superposition principle.
It is a first order partial differential equation in time. Therefore, it completely
determines the wave function ψ(r, t) at any time t, if it is known at some
initial time t0. Naturally, it reduces to (2.11) if the potential vanishes or is
constant (the change from a vanishing potential to a constant one amounts
to a simple change of the phase of the wave function).

The justification for the Schrödinger equation lies in its consequences. As
we shall see throughout the following chapters, it gives results in agreement
with experiments as long the average velocities of the particles are small
compared with the velocity of light (i. e. in the nonrelativistic limit).

Schrödinger first tried other equations which he found more sensible, because they
incorporated relativity.1 Unfortunately, they did not give the correct relativistic
corrections to the Bohr–Balmer formula, and he was somewhat discouraged. He
noticed one day that a “nonrelativistic approximation” (which he said he didn’t
really understand) gave the correct result.2 Schrödinger was not aware of spin,
which played a major role in the relativistic corrections he was looking for, which
were called the fine structure of the hydrogen atom. Schrödinger gave the symbol
ψ to the wave function. He mistook its physical interpretation. It was Max Born
who, at the end of 1926, found the correct interpretation of ψ as a probability
amplitude, by analyzing experiments on the scattering of electrons on nuclei. The
use of a new experimental technology, i. e. Geiger–Müller counters, which allowed
one to count numbers of electrons, as opposed to Faraday boxes, which measured
electrical intensities or charges, played an important role in this conceptual progress:
in the same experiment, electrons could behave as waves (when they interacted with
the nuclei) and as particles (when they interacted with the detector).

2.5.2 Particle in a Potential: Uncertainty Relations

The wave function ψ(r, t) of a particle moving in a potential can be written
as
1 Schrödinger was the first to write down what is now known as the Klein–Gordon

equation.
2 See M. Jammer, The Conceptual Development of Quantum Mechanics, Chap. 5,

McGraw-Hill, New York (1966).
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ψ(r, t) =
∫

ϕ(p, t) eip·r/h̄ d3p

(2πh̄)3/2
, (2.37)

where ϕ(p, t) is the Fourier transform of ψ(r, t).
It is a fact that the modulus squared of this Fourier transform |ϕ(p, t)|2

gives the probability density for the momentum distribution at time t (see
Sect. 2.6) as it does for free particles (we come back to this point in Sect. 2.6).
Therefore, as a consequence of the results of Fourier analysis, the uncertainty
relations remain valid for a particle in a potential.

Equation (2.35) is the rigorous form of the uncertainty relations, which
are saturated if and only if the wave function is a Gaussian. However, in
addition to this exact result, it is useful to remember that for an arbitrary
potential well V (r) and for a quantum particle bound by this potential in
one of its lowest energy states, one always has the relation

∆x∆px ∼ γ h̄ , (2.38)

where the geometrical constant γ is of order one. This provides a very simple
means to calculate the orders of magnitude of the velocities and energies of
many physical systems, once their sizes are known.

Consider for example a nucleus with A nucleons (protons and neutrons).
Measurements show (i) that the nucleus can be treated as a sphere of ra-
dius r0 A1/3, with r0 ∼ 1.2 × 10−15 m, and (ii) that the proton and neutron
densities are (roughly) constant inside this sphere. Therefore each nucleon
is confined in a sphere of radius ∼ r0 and we must have ∆p ∼ h̄/r0, which
corresponds to a mean momentum of |p| ∼ 140 MeV/c. This agrees with
experimental values (typically |p| ∼ 200 MeV/c). The mean kinetic energy
of a nucleon is Ek = ∆p2/2mp, where mp is the proton (or neutron) mass,
which gives Ek ∼ 10 MeV. Since each nucleon is bound in the nucleus, we
conclude that its (negative) potential energy is larger in absolute value than
this kinetic energy |〈V 〉| ≥ 10 MeV, and that the binding energy (V + Ek) is
likely to be also of the order of a few MeV. This is indeed the correct order
of magnitude: for large nuclei, i. e. A ≥ 20, the binding energy per nucleon is
roughly a constant, approximately 8 MeV.

2.5.3 Stability of Matter

The uncertainty relations provide the solution to a fundamental inconsis-
tency of classical physics concerning the stability of matter made up of point
particles. Consider the simple case of the hydrogen atom, with an electron
moving in the Coulomb field of the proton V (r) = −q2/4πε0r. We consider
for simplicity a classical circular orbit of radius r. The mechanical equilibrium
condition is mev

2/r = q2/4πε0r
2, and the electron energy is therefore

E =
p2

2me
+ V (r) = −1

2
q2

4πε0r
.



34 2. The Wave Function and the Schrödinger Equation

This energy is not bounded from below, since it tends to −∞ as the radius
shrinks to 0. In its circular motion, the electron is accelerating. It is an
inevitable consequence of Maxwell’s equations that an accelerating electric
charge radiates. Therefore, from a classical point of view, the electron should
lose energy continuously and an atom should be unstable. It should radiate an
infinite amount of energy and the electron should collapse onto the nucleus.

The uncertainty relations save us from this catastrophic fate. Let 〈r〉 be
the mean distance between the proton (which we consider as fixed) and the
electron. This distance measures the uncertainty in the electron position. The
Coulomb potential energy is of the order of q2/4πε0〈r〉. Using the order of
magnitude (2.38), the kinetic energy is Ek ≥ h̄2/2me〈r〉2. The total average
energy is therefore of the order of or larger than

E ≥ h̄2

2me〈r〉2 − q2

4πε0〈r〉 . (2.39)

The right-hand side of this expression is bounded from below. Its minimum,
obtained for 〈r〉 = 4πε0h̄

2/(meq
2) ∼ 0.53 × 10−10 m, is

Emin = − me

2h̄2

(
q2

4πε0

)2

= −13.6 eV .

This is a fundamental result. The uncertainty relations put a lower bound on
the mean distance and the binding energy between the electron and proton.
This explains the stability of matter.

The above argument is not mathematically rigorous. Later on (Chap. 9),
we shall prove other uncertainty relations such as 〈p2〉 ≥ h̄2〈1/r〉2 for any
system. Applying this result to 〈E〉 = 〈p2〉/2me − (q2/4πε0)〈1/r〉, one can
make the argument exact, i. e. demonstrate that 〈1/r〉 is bounded from above.

2.6 Momentum Measurement
in a Time-of-Flight Experiment

In order to show that the Fourier transform ϕ(p, t) of the wave function is the
probability amplitude for the momentum distribution, we examine an exper-
imental procedure for performing such a measurement. This is based on the
“time-of-flight” method, which relies on the determination of the macroscopic
distance over which the particle travels freely during a given macroscopic time
interval.

We start at time t = 0 with a particle whose wave function is ψ(r, t = 0).
Either the particle is free, or it moves in a potential V (r). In order to deter-
mine the momentum distribution P(p) at t = 0, we assume we can switch off
suddenly the potential and let the wave packet of the particle evolve freely
for some macroscopic time t. This can easily be achieved if the potential is
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created by external sources, e. g. electric fields, magnetic fields, light waves.
It is not possible to do so if the potential is due to microscopic interactions,
such as the Coulomb field created by a nucleus, but our ambition here is
to give a proof of principle and not a universal practical method. In recent
years, gaseous Bose–Einstein condensates have provided remarkable physical
systems on which this method has been tested directly (see, e. g., Fig. 16.4).

At time t = 0, we assume that the state of the particle is such that 〈r0〉 = 0
(this is a convention) with some uncertainty δr0 due to the extension of its
wave function. This means that we know the initial position of the particle
within δr0 (in full rigor, within a small multiple of δx0 in the x variable, of δy0

in the y variable and of δz0 in the z variable). At some later time t we perform
a measurement of the position of the particle. When we detect it at a point
r with a precision δr ≡ (δx, δy, δz), we obtain a measurement of its velocity
v or its momentum p = mv, since these quantities are constant between 0
and t (free motion). The result of such a measurement is p = mr/t, with an
uncertainty δp involving both the initial (δr0) and final (δr) uncertainties in
position. We assume the experimental conditions are such that δr � δr0 so
that δp ∼ m δr/t. We are free to choose the time t as large as necessary so
that δp is as small as we wish.

Therefore, the probability of obtaining the result p (with uncertainty δp)
in this time-of-flight momentum measurement is

δ3P(p) = |ψ(r, t)|2 δx δy δz , where r = pt/m (for large t) . (2.40)

In order to show that this definition is related to the Fourier transform ϕ(p)
of ψ(r, 0), we first establish the following result:

After a free propagation during the time interval t, the position probability
density at a point r is given by

|ψ(r, t)|2 = (m/t)3 |ϕ̃(mr/t)|2 , (2.41)

where the function ϕ̃ is defined by

ϕ̃(p) =
1

(2πh̄)3/2

∫
e−ir′·p/h̄ eimr′2/(2th̄) ψ(r′, 0) d3r′ . (2.42)

In order to prove this result, we rewrite the probability density as

|ψ(r, t)|2 =
1

(2πh̄)3

∫∫
d3p1 d3p2 ei(p1−p2)·r/h̄ei(p2

2−p2
1)t/2mh̄ϕ(p1)ϕ

∗(p2)

=
1

(2πh̄)3

∫∫
d3p d3p′ eip′·(r−pt/m)/h̄ϕ(p + p′/2)ϕ∗(p − p′/2) , (2.43)

where we have set p = (p1 + p2)/2 and p′ = p1 − p2. We can express
ϕ(p + p′/2)ϕ∗(p − p′/2) in terms of the wave function at t = 0:
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ϕ(p + p′/2)ϕ∗(p − p′/2)

=
1

(2πh̄)3

∫∫
d3r1 d3r2 e−ir1·(p+p′/2)/h̄ eir2·(p−p′/2)/h̄ ψ(r1, 0)ψ∗(r2, 0) .

Inserting this expression into (2.43), we evaluate the integral over p′:∫
exp
{
ip′ · [r − pt/m − (r1 + r2)/2

]
/h̄
}

d3p′

= (2πh̄)3δ(r − pt/m − (r1 + r2)/2) .

The integral over p in (2.43) is then straightforward and leads to

|ψ(r, t)|2 =
m3

(2πh̄t)3

∫∫
d3r1 d3r2 eimr·(r2−r1)/(h̄t) eim(r2

1−r2
2)/(2h̄t)

× ψ(r1, 0)ψ∗(r2, 0) ,

which proves the result stated in (2.41).
As the time t increases, the function ϕ̃ tends to the Fourier transform ϕ. In

fact, these functions differ only by the extra factor eimr′2/(2th̄) in the integrand
which defines ϕ̃. This factor provides an effective cutoff in the r′ integration
of (2.42) above r′ ≥ √2th̄/m. If δr0 is the size of the region where ψ(r, 0)
takes a nonnegligible value, this cutoff factor therefore plays a negligible role
if t � m δr2

0/h̄. Physically, this also amounts to considering a time-of-flight
duration t large enough that the initial position distribution plays a negligible
role in the determination of the momentum. We have, consequently,

t � m δr2
0/h̄ ⇒ |ψ(r, t)|2 � (m/t)3 |ϕ(mr/t)|2 .

If we take this equation into account in (2.40) we obtain, using δp = m δr/t,

δ3P(p) = |ϕ(p)|2 δpx δpy δpz . (2.44)

This is the result we anticipated3. The probability density for the momentum
distribution corresponding to a wave function ψ(r, 0) is given by the modulus
squared of the Fourier transform ϕ(p) of this wave function.

Notice, finally, that this method is by no means in contradiction with the
uncertainty relations. The momentum distribution of the measured particles
at time t is obviously such that the uncertainty relations for the initial state
hold.

Further Reading

• In this chapter we have deliberately refrained from defining physical reality
itself, and from getting involved in the corresponding debates. On this
subject, see for instance H. Margenau, The Nature of Physical Reality,
McGraw-Hill, New York (1950); Quantum Theory and Measurement, edited

3 A similar argument can be found in R.P. Feynman and A.R. Hibbs, Quantum
Mechanics and Path Integrals, McGraw-Hill, New-York (1965).
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by J.A. Wheeler and W.H. Zurek, Princeton University Press, Princeton
(1983).

• D. Cassidy, “W. Heisenberg and the uncertainty principle,” Sci. Am., June
1992.

Exercises

2.1. Phase velocity and group velocity. The Klein–Gordon equation(
1
c2

∂2

∂t2
− ∆ +

m2c2

h̄2

)
ψ(r, t) = 0

is a relativistic wave equation for free particles.

a. What relation between ω and k must hold in order for a plane wave
ei(k·r−ωt) to satisfy this equation? Can all frequencies propagate freely?

b. If p = h̄k is interpreted as the momentum of a free particle of mass m,
what is the relation between the energy E and the frequency ω?

c. What is the group velocity vg of the corresponding wave packets and how
is vg related to the phase velocity of such waves?

2.2. Spreading of a wave packet of a free particle.

a. Consider a free particle moving along the x axis. Show that the time
derivative of 〈x2〉t can be written as

d〈x2〉t
dt

= A(t) , where A(t) =
ih̄
m

∫
x

(
ψ

∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
dx .

b. Calculate the time derivative of A(t) and show that:

dA

dt
= B(t) , where B(t) =

2h̄2

m2

∫
∂ψ

∂x

∂ψ∗

∂x
dx .

c. Show that B(t) is constant.
d. By setting

v2
1 =

h̄2

m2

∫
∂ψ

∂x

∂ψ∗

∂x
dx

and ξ0 = A(0), show that 〈x2〉t = 〈x2〉0 + ξ0t + v2
1t2.

e. Show that (2.29) holds, where

ξ1 =
ih̄
m

∫
x

(
ψ0

∂ψ∗
0

∂x
− ψ∗

0

∂ψ0

∂x

)
dx − 2x0v0 .

Here ψ0 ≡ ψ(r, 0). The coefficient ξ1 can be interpreted physically, us-
ing the results of the next chapter, as the correlation at time 0 between
position and velocity: ξ1/2 = 〈xv〉0 − x0v0. One can verify that the con-
straint on ξ1 resulting from the fact that (∆xt)2 > 0 is equivalent to the
condition that ∆xt ∆pt ≥ h̄/2 at all times t.
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2.3. The Gaussian wave packet. Consider the wave packet given by

ϕ(p) = (πσ2h̄2)−1/4 exp
(
− (p − p0)2

2σ2h̄2

)
. (2.45)

a. For t = 0, show that ∆x∆p = h̄/2.
b. Show that the spatial width of the wave packet at time t is given by

∆x2(t) =
1
2

(
1
σ2

+
t2σ2h̄2

m2

)
. (2.46)

2.4. Characteristic size and energy in a linear or quadratic potential
Using an argument similar to that of Sect. 2.5.3 evaluate the characteristic
size of the wave function, and energy of a particle with mass m placed in (i) a
one-dimensional harmonic potential V (x) = mω2x2/2; (ii) a one-dimensional
linear potential V (x) = α|x|, when the particle is in its ground state.



3. Physical Quantities and Measurements

If you want knowledge, you must take part
in the practice of changing reality.

Mao Zedong

It seems obvious that one acquires information about a system when one
measures physical quantities. The question we address in this chapter is:
what kind of information do we acquire when we perform a measurement in
quantum mechanics?

There are several different aspects to this seemingly simple question.

• First, suppose we know the state of the system, i. e. its wave function
ψ(r, t). How can we predict the result of the measurement of a given phys-
ical quantity A, i. e. the set of possible outcomes and the corresponding
probabilities? With the probabilistic interpretation of the wave function,
we already know the answer as far as the position and momentum variables
are concerned, but this is not yet the case in general, for other physical
quantities.

• Secondly, suppose we perform an experiment. For instance, we may want to
demonstrate an experimental fact or verify some theoretical prediction. In
the outcome of the experimental procedure, the system under consideration
will be in some state, and we wish to obtain all the possible information
about this state.

• Thirdly, suppose we want to perform an experiment on a given state of a
system. The experiment will consist (schematically) in a process where the
system interacts with a series of devices and we observe (i. e. measure) its
final state. In this case, we want to be confident that the initial state has
been prepared experimentally so that it has well-defined properties.

In classical physics, all three aspects boil down to the same point. All we
need to do is to determine or define the position and momentum of the parti-
cle under consideration. The values of physical quantities are all completely
determined as functions of these state variables.

In quantum physics, the evolution of the state of a system is deterministic
in the sense that it is completely defined by the Schrödinger equation, which
allows one to calculate the state ψ(r, t) at any time t in terms of the initial
state ψ(r, t0). However, we emphasized in the previous chapter that even
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though the state of the system can be well known, there exists indeterminacy
in the possible results of position or momentum measurements. This property
is very general in quantum mechanics: the measured values of a given physical
quantity are usually distributed at random and only the probability law can
be determined.

Naturally, we shall concentrate here on the particular case of a point-like
particle, for which the wave mechanics presented in Chap. 2 applies. However,
all the concepts introduced in this chapter will be reexamined in Chap. 5 when
we work in the more general Hilbert space formalism. Therefore we shall not
give proofs of all of the results presented in this chapter. Such proofs, as well
as the correct statement of the measurement postulate, will be much easier
to perform when the algebraic structure of Chap. 5 is available.

3.1 Measurements in Quantum Mechanics

Before plunging into the mathematical description of physical quantities and
of their measurement, a few general comments are in order.

3.1.1 The Measurement Procedure

In Chap. 2 we have presented the possible outcomes of a position or momen-
tum measurement, and we have discussed the procedure one must follow in
order to acquire the maximum available knowledge about the system from
the measurement of these two particular quantities r and p. This procedure
remains essentially valid for any other physical quantity, so that we outline
it here as a starting point for our discussion.

We prepare N � 1 systems independently in the same state, i. e. they
have the same wave function ψ(r, t) at the time t at which the measurement
is performed. The result of the measurement of a physical quantity A is, most
of the time, not unique: there is a set {ai} of possible results, or outcomes.
This set {ai} may be continuous, as when we measure the position or the
momentum of a free particle. It can also be discrete, for instance when we
measure the energy of a bound atomic electron. In the first case it is char-
acterized by a probability density P(a), and in the second case by the set of
probabilities {pi}. The N measurements lead to an expectation value 〈a〉, a
dispersion ∆a, etc., where for instance, 〈a〉 =

∫
aP(a) da or 〈a〉 =

∑
i ai pi.

The complete result of an experimental measurement of the quantity A
on the system consists of a determination of the possible outcomes {ai} and
the corresponding probabilities P(a) or pi. By assumption, the wave function
ψ(r, t) contains all the physical information about the system. Therefore the
theory consists in a prescription which can extract the numbers {ai, pi} from
the function ψ(r, t).
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3.1.2 Experimental Facts

When we construct the general framework of the measurement procedure,
the following two very general facts will serve as guidelines.

Outcomes and Probabilities. A fundamental experimental observation is
that the set of possible outcomes ai does not depend on the state ψ(r, t) of
the system, but only on its nature. If one measures the binding energy of the
electron of a hydrogen atom, one always finds a result in the set {−EI/n2, n =
1, 2, . . . } with EI � 13.6 eV, whatever the state of the bound electron. There
exist particular states for which some possible outcomes (i. e. some values of
n) are missing, but no state ψ(r) of the electron can lead to any outcome
not belonging to the set. Consequently, the nature of the system (the mass of
the particle and the potential V (r)) determines the possible outcomes {ai},
while the state ψ(r, t) of the system determines the probability law pi.

Repeatability of a Measurement. Consider a single system in the state
ψ(r, t). Suppose that we measure at time t1 the quantity A and that we find
the result ai. If we repeat the same measurement at a later time t2 arbitrarily
close to t1, then we always find the same result ai. Consequently, immediately
after we have performed a measurement yielding the result ai, the state of
the system has changed ; it has been transformed into a new state on which
a measurement of A gives the result ai with certainty (i. e. probability one).

This sudden change of the state of the system is a consequence of the simplifying
assumption (presented in the Sect. 2.1.2) that the measuring apparatus is described
by classical mechanics and only the system is described by quantum mechanics. If we
were aiming at giving a quantum description of the measuring apparatus, we would
have to deal with the global quantum state of the system plus the measuring device,
and the measurement process would result from the evolution of this global state.

In particular, we can conclude that:

• There exist particular wave functions ψ(r) for which a measurement of A
gives a unique answer, with no uncertainty (probability 1).

• For each possible outcome ai of the first measurement, there must cor-
respond at least one state ψi(r) which has this property of giving with
probability 1 the same result ai in the second measurement.

3.1.3 Reinterpretation of Position and Momentum Measurements

To conclude this introductory section, we come back to the position and mo-
mentum measurements that we have investigated in the previous chapter. Our
goal here is to reinterpret the results that we have already derived in order to
fulfill the requirement outlined above, that the theory should provide us with
a law to extract numbers (here 〈r〉 or 〈p〉) from the state of the system ψ.
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According to the previous chapter, the wave function ψ(r, t) and its
Fourier transform ϕ(p, t) provide us with the probability laws for the po-
sition r and the momentum p. In particular, the expectation values of r and
p read

〈r〉t =
∫

r |ψ(r, t)|2 d3r , (3.1)

〈p〉t =
∫

p |ϕ(p, t)|2 d3p . (3.2)

However, we do not yet know the probability laws for physical quantities
which are functions of both r and p, such as the angular momentum L = r×p.

It would not be convenient to resort to a new operation similar to the
Fourier transform for each new physical quantity we can think of. Conse-
quently, we want to express all expectation values directly in terms of the
wave function ψ(r, t) in the simplest possible way. Concerning 〈r〉t the ex-
pression (3.1) is fine. However, the expression for 〈p〉t, needs to be trans-
formed. Actually, we have already done this in the previous chapter when we
obtained the fundamental result (see (2.33)):

〈px〉t =
∫

ϕ∗(p, t) px ϕ(p, t) d3p = −ih̄

∫
ψ∗(r, t)

∂

∂x
ψ(r, t) d3r . (3.3)

This follows by noticing that −ih̄∂ψ/∂x and pxϕ are Fourier transforms
of one another, as ψ and ϕ, and by making use of the Parseval-Plancherel
theorem (2.16).

If we collect the two relations analogous to (3.3) for the other components
px, py and pz of the momentum p, we obtain

〈p〉t =
∫

ψ∗(r, t)
h̄

i
∇ψ(r, t) d3r . (3.4)

The purpose of the next section is to generalize the structure of this expression
to any measurable physical quantity.

3.2 Physical Quantities and Observables

We now consider the question of how to extract the predictions of measure-
ments from a given wave function.

3.2.1 Expectation Value of a Physical Quantity

As a generalization of the results (3.1) and (3.4), we introduce the following
principle:
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Principle 3.1

With any physical quantity A we associate an observable Â, which is a
linear Hermitian operator acting in the space of wave functions. For a par-
ticle whose state is described by the wave function ψ(r, t), the expectation
value 〈a〉t of a measurement at time t of the quantity A is given by

〈a〉t =
∫

ψ∗(r, t)
[
Â ψ(r, t)

]
d3r . (3.5)

Comments

• A linear operator is a linear mapping of the space onto itself, ψ(r, t) →
χ(r, t) = Âψ(r, t). In this context Â is said to be Hermitian if∫ [

Âψ2

]∗
ψ1 d3r =

∫
ψ∗

2

[
Âψ1

]
d3r (3.6)

for any pair of functions ψ1, ψ2. This guarantees that the expectation value
(3.5) is a real number.

• If the observable Â is associated with the physical quantity A, the operator
Â2 is associated with the square of the quantity A. Consequently, we can
also use (3.5) to calculate the expectation value 〈a2〉t and the dispersion
∆at of the results:

∆a2
t =

∫
ψ∗(r, t)

[
Â2 ψ(r, t)

]
d3r − 〈a〉2t . (3.7)

3.2.2 Position and Momentum Observables

As far as the position r is concerned, the above principle simply consists of
rewriting (3.1) in the form

〈r〉t =
∫

ψ∗(r, t) [r ψ(r, t)] d3r . (3.8)

The operator r̂ associated with the position is simply the multiplication of
the wave function by r (this means of course the set of three quantities x, y
and z). The momentum observable p̂ can be read off from the result (3.4). It
has the fundamental form

p̂ =
h̄

i
∇ . (3.9)
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3.2.3 Other Observables: the Correspondence Principle

In this chapter, we shall only deal with observables which have classical
analogs that are functions of the state variables r and p. For these observ-
ables, the correspondence principle consists of choosing operators which are
the same functions of the position and momentum operators r̂ and p̂ as in
classical mechanics. This leads to the results listed in Table 3.1.

Table 3.1. Observables corresponding to common physical quantities

Physical quantity A Observable Â

Position x, y, z, r Multiplication by x, y, z, r

Momentum px, py, pz, p p̂x =
h̄

i

∂

∂x
, p̂y =

h̄

i

∂

∂y
, pz =

h̄

i

∂

∂z
,

p =
h̄

i
∇

Kinetic energy Ek =
p2

2m
Êk = − h̄2

2m
∇2 = − h̄2

2m
∆

Potential energy V (r) Multiplication by V (r)

Total energy E = Ek + V (r) Ĥ = − h̄2

2m
∆ + V (r)

Angular momentum L = r × p L̂ = r̂ × p̂ =
h̄

i
r × ∇

The operator Ĥ associated with the total energy of the system is called
the Hamiltonian of the system. In nonrelativistic quantum mechanics, time is
not an observable, but a parameter on which the state of the system depends.
In other words, we assume there is a clock, external to the system. At some
instant, read on this clock, we perform measurements or observations with a
macroscopic measuring apparatus.

3.2.4 Commutation of Observables

We notice a fundamental property of position and momentum observables:
these operators do not commute. For instance, x̂p̂x and p̂xx̂ are not equal.
Indeed,

x̂p̂x ψ = x̂ [p̂xψ] = −ih̄x
∂ψ

∂x
,

p̂xx̂ ψ = p̂x [x̂ψ] = −ih̄
∂

∂x
(xψ) = x̂p̂xψ − ih̄ψ .

This result can be written by introducing the commutator [Â, B̂] = ÂB̂−B̂Â
of any two observables:

[x̂, p̂x] ≡ x̂p̂x − p̂xx̂ = ih̄Î ,
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where Î is the identity operator. In contrast, it is clear that x̂ and p̂y commute.
Denoting the components of r̂ and p̂ by x̂i and p̂i, i = 1, 2, 3, we have in
general

[x̂i, x̂j ] = [p̂i, p̂j ] = 0 , [x̂j , p̂k] = ih̄δjk , (3.10)

where, for simplicity, we do not write explicitly the identity operator Î.

The correspondence between physical quantities and operators is simple when the
quantity is a function of either the position or the momentum alone. When the
quantity is a function of both r̂ and p̂, some care has to be taken, since products of
operators depend in general on the order in which the terms are written. This does

not happen for the angular momentum L̂, since x̂p̂y is equal to p̂yx̂, for instance.
In contrast, if we consider the classical quantity xpx, the two operators x̂p̂x and
p̂xx̂ are not the same. In simple cases, one usually obtains the appropriate result
by symmetrizing the expression, i. e. by taking the observable (x̂p̂x + p̂xx̂)/2 to
describe the physical quantity xpx. We shall come back to the general form of the
correspondence principle in Sect. 15.3.

3.3 Possible Results of a Measurement

We now examine how one finds the possible outcomes of a measurement and
the corresponding probabilities.

3.3.1 Eigenfunctions and Eigenvalues of an Observable

Consider an observable Â. A function ψα(r) is called an eigenfunction of this
operator, and aα the corresponding eigenvalue, if ψα is not identically zero
and if the following relation is satisfied:

Âψα(r) = aαψα(r) . (3.11)

We assume that the eigenfunctions ψα(r) are normalized, i. e.
∫ |ψα(r)|2 d3r =

1. We note that the eigenvalues of a Hermitian operator are real. Indeed, if
we multiply (3.11) by ψ∗

α(r) and integrate over r we obtain

aα =

∫
ψ∗

α(r)
[
Â ψα(r)

]
d3r∫ |ψα(r)|2 d3r

, (3.12)

which is real.
The following theorem plays an important role in our discussion.

A measurement at time t of a physical quantity A yields a result a with
certainty (i. e. with a probability equal to 1) if and only if the wave function
of the particle at time t is an eigenfunction ψα(r) of the observable Â. The
result a is then the eigenvalue aα associated with ψα(r).
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One form of the equivalence is easy to prove. If ψ is an eigenfunction of
Â with eigenvalue aα, clearly the expectation value 〈a〉 given in (3.5) is equal
to aα (we recall that ψ is normalized so that

∫ |ψ|2 d3r = 1). We also see
from (3.11) that ψ is an eigenfunction of Â2 with eigenvalue a2

α. Therefore
the variance ∆a2 given in (3.7) vanishes. This means that the dispersion of
the results is zero, or in other words that we are certain to find the result
aα when we perform a measurement of the physical quantity A on a system
prepared in the state ψα. The proof of the converse form of the equivalence
is slightly more complicated to write with wave functions. We shall give it in
Chap. 5, within the general formalism of Hilbert space.

The concept of eigenfunctions can be extended to the notion of (non-
normalizable) eigendistributions. For instance, the eigendistributions of the
momentum operator −ih̄∇ are the plane waves ψp0

(r) = eip0·r/h̄. The eigen-
value corresponding to ψp0

is p0 (see Appendix Appendix C for more details).

3.3.2 Results of a Measurement
and Reduction of the Wave Packet

We have already mentioned in Sect. 3.1.2 that after a measurement of A yield-
ing the result ai, a subsequent immediate measurement must yield the same
result with probability 1. This consistency condition of the theory, associ-
ated with the theorem given in the previous subsection, implies the following
essential result:

The outcome ai of the measurement of the physical quantity A must be an
eigenvalue of Â, and the state of the system after the first measurement must
be an eigenfunction of Â corresponding to the eigenvalue ai.

We can therefore make the following statement, which is deliberately
vague at this stage:

Principle 3.2

When a measurement is performed on a system, the state of the system
just after the measurement is in general different from the state ψ(r) just
before the measurement.

Consequently, a measurement is destructive in the sense that the state of
the system is modified in an irreversible way by the measurement process.
It is changed “instantaneously” from ψ(r, t) to ψα(r). This aspect of the
measurement process is referred to as the reduction of the wave packet.

Probabilities. At this stage, we have only discussed the expectation value
〈a〉 of the measurement (3.5). This quantity can also be written

〈a〉 =
∑
α

pαaα , (3.13)
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where the aα’s are the possible outcomes of the measurement (i. e. the eigen-
values of Â) and the pα’s are the probabilities of obtaining the result aα

(
∑

α pα = 1). Using the spectral theorem of Riesz, we shall show in Chap. 5
that the probability pα is given by

pα =
∣∣∣∣
∫

ψ∗
α(r) ψ(r, t) d3r

∣∣∣∣2
/∫

|ψα(r)|2 d3r (3.14)

where ψα(r) is the eigenfunction of Â with eigenvalue α, if the eigenvalue α
is not degenerate, i. e. if all the eigenfunctions associated with aα are propor-
tional to each other. In the case of a degenerate eigenvalue, the expression
for pα is slightly more involved and will be given in Chap. 5.

3.3.3 Individual Versus Multiple Measurements

Since the state of the system is generally changed by a measurement, an in-
dividual measurement on a single system cannot provide any detailed infor-
mation about the state of the system ψ(r, t) before the measurement process.
We get from the measurement a single number, i. e. the indication aα of a
meter or of a counter. Such an individual measurement only provides infor-
mation about the state of the system after the measurement, since we know
that the state is then an eigenfunction ψα. The measurement can be viewed
as a means to prepare the system in a known state with some known physical
characteristics, or, equivalently, as a filtering operation on the possible values
of A.

In order to obtain precise information about the wave function ψ(r, t)
itself before the measurement, it is necessary to perform multiple measure-
ments, i. e. perform the same measurement on a large number N of systems
all prepared independently in the state ψ(r, t). With this procedure, one can
determine the possible outcomes aα and their probability distribution.

3.3.4 Relation to Heisenberg Uncertainty Relations

Consider again a position measurement performed on a free particle. Suppose
that this measurement gives the result x with some accuracy δx arising from
the measuring apparatus. We then can make the statement that “the position
of the particle is x within an accuracy δx”. This means that the wave function
just after the measurement is localized in a neighborhood δx of the point x.
This new wave function can be very different from the wave function before
the measurement. If, for instance, δx is very small compared with the spatial
extension ∆x of the initial wave function, the measurement will transform
the wave function into another one for which the spread in momentum ∆p
will be much larger than it was initially.

Originally, some confusion occurred in the interpretation of the uncer-
tainty relations. Heisenberg first presented his principle by stating that “If
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we measure the position of a particle with some accuracy ∆x, we must modify
its momentum in an unknown random way by an amount ∆p ∼ h/∆x and,
consequently, we cannot know this momentum with an accuracy better than
h/∆x”. It is true that by measuring the position of the particle, one modi-
fies its momentum distribution. Nevertheless, the relation ∆x∆px ≥ h̄/2 is
an intrinsic property of the quantum description of physical quantities and
should not be confused with the reduction of the wave packet, which is a
consequence of the act of measurement.

3.3.5 Measurement and Coherence of Quantum Mechanics

To conclude this section we note that the measurement problem is still a
controversial question concerning the foundations of quantum mechanics. We
shall give some details of the relevant problems in Chap. 5 since our formal-
ism will then be applicable to systems more general that a point-like particle
moving in space. However, we can already point out one of the main dif-
ficulties associated with the approach followed here. We have referred to a
classical measuring apparatus, for which a quantum description is not nec-
essary. This allowed us to make some claims such as the repeatability of a
given measurement, which leads us to the “reduction of the wave packet”.

Therefore the situation is ill founded in the sense that, on one hand,
quantum theory should contain classical physics as a limiting case, while on
the other hand, the theory needs its own limiting case, i. e. classical physics,
in order to establish its own foundations.

3.4 Energy Eigenfunctions and Stationary States

In all quantum systems the energy observable, or Hamiltonian, plays a central
role. Notice that using the form of the Hamiltonian Ĥ

Ĥ =
p̂2

2m
+ V̂ = − h̄2

2m
∆ + V (r) , (3.15)

one can rewrite the Schrödinger equation in the form

ih̄
∂

∂t
ψ(r, t) = Ĥψ(r, t) . (3.16)

This form will be extended later on to all quantum systems. It is quite re-
markable that the energy observable “governs” the time evolution of a sys-
tem. Actually, this is also a result of analytical classical mechanics, as we
shall recall in Chap. 15.
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3.4.1 Isolated Systems: Stationary States

Assume that the system is isolated, in other words that the potential V
does not depend explicitly on time (this would not be the case for a charged
particle placed in an oscillating electric field). Consider the eigenfunctions of
the Hamiltonian, which are defined by the eigenvalue equation

Ĥ ψα(r) = Eα ψα(r) , (3.17)

where the Eα are the energy eigenvalues, which are real as a consequence of
(3.12).

These particular wave functions correspond to states of the system which
have well-defined values Eα of the energy. Using these eigenfunctions, we
obtain solutions of the Schrödinger equation (3.16), by choosing

ψ(r, t) = ψα(r) e−iEαt/h̄ . (3.18)

The time dependence of such states is periodic, with angular frequency ω =
Eα/h̄. These are called stationary states. Indeed, the following are true.

• The corresponding probability distribution for the position is time inde-
pendent:

|ψ(r, t)|2 = |ψα(r)|2 .

• The expectation value of any observable Â which does not depend explicitly
on time is also time independent:

〈a〉 =
∫

ψ∗(r, t)
[
Â ψ(r, t)

]
d3r =

∫
ψ∗

α(r)
[
Â ψα(r)

]
d3r . (3.19)

We therefore discover a very remarkable property. A state whose energy
is well defined “does not evolve”. Neither the probability law nor the expec-
tation value of its position evolves with time. In order for a system to evolve
with time, it must be a superposition of at least two stationary states with
different energies. For instance, one can readily check that in the superposi-
tion ψ(r, t) = λ ψ1(r) e−iE1t/h̄ +µ ψ2(r) e−iE2t/h̄, the cross term proportional
to ψ∗

2ψ1 in |ψ|2 depends on time. For such a state, one finds that ∆E �= 0,
i. e. the energy is not well defined. We shall prove later on that if τ is a char-
acteristic time of evolution of a system and if ∆E is the dispersion of the
energy of the system, then

∆E τ ≥ h̄/2 ,

which is called the time–energy uncertainty relation and will be discussed in
Chap. 17. In the limit of stationary states, we have ∆E = 0 and τ = ∞.
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3.4.2 Energy Eigenstates and Time Evolution

If we use the explicit form of the Hamiltonian, the eigenvalue equation (3.17)
becomes

− h̄2

2m
∆ψα(r) + V (r) ψα(r) = Eα ψα(r) , (3.20)

which is a partial differential equation involving only the space variables
r. This equation is called the time-independent Schrödinger equation. Its
solutions define the set {Eα, ψα(r)} of eigenvalues and eigenfunctions of the
energy. The numbers Eα are the energy levels of the system.

Consider a wave function ψ(r, t) which, at time t = 0, is a linear super-
position of stationary states:

ψ(r, t = 0) =
∑
α

Cα ψα(r) . (3.21)

Using the linearity of the Schrödinger equation (2.36), the evolution in time
of this wave function can be written readily without solving any further
equation:

ψ(r, t) =
∑
α

Cα e−iEαt/h̄ ψα(r) . (3.22)

As we shall see in Chap. 5, owing to the spectral theorem of Riesz, any
wave function can be expanded in the form (3.21) with

Cα =
∫

ψ∗
α(r)ψ(r, 0) d3r , (3.23)

where the ψα’s are normalized. Consequently, the time evolution of an isolated
system is immediately known if one knows the stationary solutions of the
Schrödinger equation. Therefore, for an isolated system, the solution of a
quantum mechanical problem consists first of finding the eigenvalues and
eigenfunctions of the Hamiltonian. The time evolution of any given state
follows immediately.

3.5 The Probability Current

Consider the probability density ρ(r, t) of the particle at point r:

ρ(r, t) = ψ∗(r, t)ψ(r, t) , for which
∫

ρ(r, t) d3r = 1 . (3.24)

We can calculate its time evolution using the Schrödinger equation (2.36)
and its complex conjugate:
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∂

∂t
ρ(r, t) = ψ∗ ∂ψ

∂t
+

∂ψ∗

∂t
ψ

=
1
ih̄

ψ∗
(
− h̄2

2m
∆ψ + V (r)ψ

)
− 1

ih̄

(
− h̄2

2m
∆ ψ∗ + V (r)ψ∗

)
ψ .

=
ih̄
2m

(ψ∗∆ψ − ψ∆ψ∗) . (3.25)

We can introduce the probability current J(r, t):

J(r, t) =
h̄

2im
(ψ∗ ∇ψ − ψ ∇ψ∗) . (3.26)

This can also be written

J =
1
m

Re
(

ψ∗ h̄

i
∇ψ

)
= Re

(
ψ∗ p̂

m
ψ

)
, (3.27)

where p̂/m is the velocity observable v̂. A simple calculation yields

∂

∂t
ρ(r, t) + ∇ · J(r, t) = 0 . (3.28)

This equation, whose structure is identical to the mass conservation equation
for the flow of a fluid, is the local expression of the conservation of probabil-
ity. Consider for instance a closed surface S and the corresponding enclosed
volume V . We have

d
dt

∫
V

ρ(r, t) d3r = −
∫

S

J · dS . (3.29)

The left-hand side gives the time variation of the probability of finding the
particle inside the volume V , or in other words the difference between the
probabilities per unit time that the particle crosses the surface S outwards
and inwards. As a consequence, the equality (3.29) indicates that this balance
is given directly by the flux of J through the surface S.

For a stationary state, which describes a steady-state probability distrib-
ution, ρ is independent of time, and we obtain

Stationary state:

{
2 or 3 dimensions: ∇ · J = 0

1 dimension:
dJ

dx
= 0 ⇒ J = constant.

(3.30)

In particular, in the case of de Broglie waves ψ0 ei(k·r−ωt), the probability
current is

J =
h̄k

m
|ψ0|2 . (3.31)
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3.6 Crossing Potential Barriers

In this last section we consider examples of one-dimensional motions of par-
ticles in simple potentials V (x) which are made up of step functions. The
solution of the Schrödinger equation is then the same as in the usual prob-
lems of wave physics.

We shall consider the propagation of plane waves in such potentials. In
regions where the potential is a constant, and where the kinetic energy is
positive, the eigenstates of the Hamiltonian can be written as a single plane
wave eikx or as a superposition of two plane waves e±ikx. Once these eigen-
states are known, the physical interpretation of the results can be performed
in two equivalent ways, which lead to identical conclusions:

1. One can consider a plane wave as representing a continuous flux of par-
ticles and use the notion of the probability current given in the previous
section. One can then calculate the relevant reflection and transmission
coefficients from the ratios between the various fluxes.

2. One can superimpose these eigenstates in order to construct a wave
packet whose time evolution can be studied subsequently.

In what follows we shall restrict ourselves to the first interpretation, but
it is useful to keep in mind the second in order to gain insight into the physics
of wave packets.

3.6.1 The Eigenstates of the Hamiltonian

In a region of space where the potential is a constant (V (x) = V ), the time-
independent Schrödinger equation has a simple form:

− h̄2

2m
ψ′′(x) + (V − E) ψ(x) = 0 . (3.32)

For simplicity, we omit in this section the index α in the function ψα(x) and
the energy Eα (see, e. g., (3.20)). This equation is readily integrated:

ψ(x) = ξ+ eipx/h̄ + ξ− e−ipx/h̄ , (3.33)

where ξ± are constant and where p is related to E by

p2/2m = E − V . (3.34)

We remark that:

1. If E − V > 0, p is real and the wave function is a superposition of
monochromatic plane waves propagating to the right and to the left:

ψ(x, t) = ξ+ ei(px−Et)/h̄ + ξ− e−i(px+Et)/h̄ . (3.35)

In this region, the particle propagates freely; p is the modulus of its
momentum, and p2/2m is its kinetic energy.
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2. If E−V < 0, the quantity p2/2m is negative and the wave function (3.33)
is a sum of real exponentials. Classically, the particle cannot penetrate
a region where its total energy is lower than its potential energy. In
quantum physics, as we shall see, although a particle cannot propagate,
there is nevertheless a nonvanishing probability of finding the particle in
that region.

3.6.2 Boundary Conditions at the Discontinuities of the Potential

In order to simplify the calculations, in this chapter as well as in the following
ones, we substitute for the actual potentials (which are usually continuous
functions) simplified forms which can have discontinuities or infinite values.
One must impose continuity relations on the solutions, which are direct con-
sequences of the differential equation (3.32).

x

V

- ε  ε
VL

VR

Fig. 3.1. Rapid variation of the potential in the vicinity of x = 0

Consider a potential V (x) which varies rapidly around x = 0 (Fig. 3.1).
Integrating the differential equation (3.32) between x = −ε and x = +ε, one
finds

ψ′(+ε) − ψ′(−ε) =
2m

h̄2

∫ +ε

−ε

[V (x) − E]ψ(x) dx .

When the width 2ε of the interval in which the potential varies from VL to
VR tends to 0, the integral tends to zero. Therefore the derivative ψ′ of the
wave function is continuous, as well as the wave function itself.

This property can be derived rigorously in the context of distribution theory: if
ψ were discontinuous at x = 0, we could write it as ψ(x) = ψ̃(x) + b θ(x), where

ψ̃(x) is continuous, θ(x) is the Heaviside function, and b is the discontinuity of
ψ. Therefore ψ′ would contain a term b δ(x) and ψ′′ a term b δ′(x). However, the
equation ψ′′ = 2m (V − E) ψ/h̄2 would then impose b = 0 (no term on the right-
hand side can compensate b δ′(x)). Therefore ψ is continuous and so is ψ′.

This continuity of ψ and ψ′ at x = 0 is valid if the potential V (x) has a
finite discontinuity at x = 0. Later on, we shall study cases such as an infinite
well or a δ function potential, where only the wave function ψ is continuous.
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3.6.3 Reflection and Transmission on a Potential Step

Consider the potential of Fig. 3.2, V = 0 for x < 0, V = V0 > 0 for x ≥ 0.
Classically, there are two possibilities: (a) if the particle, coming from the
left, has an energy larger than V0, it continues on its way to the right; (b) if
its energy is smaller than V0, the particle bounces back to the left.

In the quantum problem, consider a solution of the form (3.18), i. e.
ψ(x, t) = ψ(x) e−iEt/h̄, where E is the energy, and set

k =
√

2mE/h̄ . (3.36)

As in classical mechanics, we must consider two cases.

x

V(x)

V0

incident wave

reflected wave
transmitted wave

Fig. 3.2. Potential step

The case E < V0. We set

κ′ =
√

2m(V0 − E)/h̄ . (3.37)

The general form of the solution of the differential equation (3.32) is, up to
a multiplicative factor,

x < 0 : ψ(x) = eikx + ξ e−ikx ; x > 0 : ψ(x) = β e−κ′x . (3.38)

For x > 0 we keep only the decreasing exponential for obvious normalization
reasons (it is impossible to construct normalized wave packets by superposing
waves which diverge as eκ′x when x → ∞). For x < 0 we normalize to 1 the
term eikx, which represents the incoming wave.

The continuity conditions for ψ and ψ′ give

1 + ξ = β , ik(1 − ξ) = −κ′β , (3.39)

from which we deduce

ξ =
k − iκ′

k + iκ′ . (3.40)
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We notice in particular that |ξ|2 = 1, which means that the reflected wave
has the same flux as the incoming wave. There is a total reflection of the
wave, as in the classical case. However, the wave function does not vanish
inside the potential step. It decreases exponentially with a penetration length
proportional to h̄/

√
2m(V0 − E), which is reminiscent of the skin effect in

electromagnetism. The penetration length vanishes in the three limits h̄ → 0,
m → ∞, V0 − E → ∞, in agreement with our expectations for the classical
limit.

The Case E > V0. We set

k′ =
√

2m(E − V0)/h̄ . (3.41)

The general solution of (3.32) can be written

x < 0 : ψ(x) = ξ+ eikx + ξ− e−ikx ; (3.42)

x > 0 : ψ(x) = β+ eik′x + β− e−ik′x . (3.43)

The continuity of ψ and ψ′ at x = 0 gives two relations between the four
coefficients ξ±, β±:

ξ+ + ξ− = β+ + β− , k(ξ+ − ξ−) = k′(β+ − β−) , (3.44)

which allows us to express two coefficients, e. g. ξ− and β+, in terms of the
two other ones, ξ+ and β−. We remark that the physical meaning of the
wave function is not changed if we multiply it by a constant (it cannot be
normalized anyway), therefore we can always set one coefficient to unity, as
we did in (3.38). We are still left with one undetermined coefficient, which
is simply an illustration of the superposition principle. Indeed, two physical
situations can be considered for E > V0: (i) one can send the particle in
from the left (eikx) and obtain a reflected wave (e−ikx) and a transmitted
wave (eik′x), in which case β− = 0; (ii) one can also send the particle in from
the right (e−ik′x) and obtain a reflected wave (eik′x) and a transmitted wave
(e−ikx), in which case ξ+ = 0. The general solution of (3.32) is an arbitrary
linear superposition of these two particular solutions. We concentrate here
on the situation (i) and set ξ+ = 1, β− = 0 so that the wave coming from the
left is normalized to unity, and there is only an outgoing wave on the right.

We obtain

ξ− =
k − k′

k + k′ , β+ =
2k

k + k′ . (3.45)

We see that the reflection coefficient |ξ−|2 is never zero. This is contrary to
the classical observation that the particle passes across the potential step and
goes to the right if its energy is larger than V0. In quantum mechanics there
is always a nonvanishing probability |ξ−|2 that the particle is reflected.

To interpret (3.45) physically we calculate the probability currents Ji, Jr

and Jt associated with the incident wave eikx, the reflected wave ξ−e−ikx and
the transmitted wave β+eik′x, respectively. We obtain
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Ji =
h̄k

m
, Jr = − h̄k

m
|ξ−|2 , Jt =

h̄k′

m
|β+|2 . (3.46)

We can check using (3.45) that Ji = |Jr|+Jt which means that the current is
conserved, as expected for a stationary state in one dimension (cf. (3.30)). One
can therefore define a reflection coefficient R and a transmission coefficient
T for this barrier:

R =
|Jr|
Ji

= |ξ−|2 , T =
Jt

Ji
= |β+|2 k′

k
, (3.47)

with R + T = 1.

One may wonder why the reflection coefficient R does not vanish in the “classical”
limit h̄ → 0. This is an artifact due to our choice of a discontinuous potential, which
would correspond to an infinite force −V0 δ(x) at x = 0. For a smoother and more
realistic potential one does recover full transmission for E > V0 and h̄ → 0. For
instance, for the potential V (x) = V0/(1+e−αx), which becomes square in the limit

α → +∞, the reflection coefficient is proportional to R ∼ exp[−4π
√

2m E/(αh̄)],
which does vanish for any finite value of α as h̄ → 0, but which keeps a constant
value if one takes first the limit α → +∞ (see L. Landau and E. Lifshitz, Quantum
Mechanics, Chap. 3, Sect. 25, Pergamon, Oxford (1965)).

3.6.4 Potential Barrier and Tunnel Effect

We turn now to a bona fide quantum effect of great importance. Consider
the potential barrier shown in Fig. 3.3, and suppose that the energy of the
incident particle is smaller than V0. If E < V0, we know that, classically, the
particle cannot cross the potential barrier. Let us examine the quantum case.
Again we set κ′ = [2m(V0 −E)]1/2/h̄, and we look for a solution of (3.32) of
the form

ψ(x) =

⎧⎨
⎩

eikx + ξ e−ikx x < 0
γ e−κ′x + δ eκ′x 0 ≤ x ≤ a .
β eikx a < x

(3.48)

x

V(x)

V0

incident wave

reflected wave
transmitted wave

0 a

Fig. 3.3. Potential barrier
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As above, we consider here the particular case of a wave incident from the
left. The continuity conditions for ψ and ψ′ give{

1 + ξ = γ + δ
ik(1 − ξ) = κ′(δ − γ)

{
γ e−κ′a + δ eκ′a = β eika

κ′(δ eκ′a − γ e−κ′a) = ikβ eika (3.49)

From these, we obtain

β =
4ikκ′ e−ika

(k + iκ′)2 eκ′a − (k − iκ′)2 e−κ′a . (3.50)

In the case κ′a � 1, which is of particular interest, we have simply

|β|2 � 16 k2k′2

(k2 + k′2)2
e−2κ′a . (3.51)

The probability |β|2 that the particle crosses the barrier is nonzero al-
though the incident kinetic energy is smaller than the height of the barrier!
This phenomenon is called the tunnel effect and is unknown in classical me-
chanics. We note that this probability tends to zero exponentially in the limits
(a) m � h̄2/(V0 − E)a2 (classical limit), (b) V0 − E � h̄2/ma2 (very high
barrier), (c) a2 � h̄2/m(V0 − E) (very broad barrier).

The tunnel effect plays a fundamental role in physics. It is, for instance,
responsible for α decay of nuclei, which classically should be stable; it plays
a major role in nuclear fission and fusion reactions and it is responsible for
chemical binding, etc. Two spectacular applications of quantum tunneling
have received the Nobel prize in the last few decades. In 1973 Josephson
was awarded the prize, together with Esaki and Giaever, for a discovery
of a junction which couples coherently two macroscopic wave functions in
superconducting materials, separated by a thin insulating junction. In 1985
the prize was awarded to Binnig and Rohrer, inventors of the tunneling-
effect microscope. In this device one displaces a very sharp conducting tip
close to the surface of a conducting sample. Electrons can tunnel between
the tip and the sample, and the corresponding macroscopic current allows
a very accurate mapping of the surface of the sample. The extremely fast
variation of the exponential function e−2κ′a entering into the expression for
|β|2 (proportional to the current) allows a resolution of the order of 0.01 nm,
as shown in Fig. 3.4. By extending this technique, one can also manipulate
atoms or molecules deposited on the surface of a crystal. This technology is
the basis of considerable developments in electronics.

3.7 Summary of Chapters 2 and 3

• The state of a particle in space is described by a wave function ψ(r, t)
whose modulus squared gives the probability density for finding the particle
around point r at time t.
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tunnelling

crystal

(a) (b)

tip

Fig. 3.4. (a) Principle of a tunneling microscope: a sharp tip is displaced in the
vicinity of a crystal using piezoelectric transducers. A feedback loop adjusts the
distance from the tip to the crystal such that the current associated with the tun-
neling of the electrons is constant. The error signal of the feedback loop gives a
direct mapping of the distribution of the electron density (more precisely, the elec-
trostatic potential) at the surface of the crystal. An example is shown in (b), which
displays the surface of an InSb crystal. The antimony atoms appear raised. The
size of the image is ∼ 3 nm (picture by Y. Liang et al., J. Vac. Sci. Technol. B9,
730 (1991))

• The time evolution of the wave function of a particle placed in a potential
V (r) is given by the Schrödinger equation,

ih̄
∂

∂t
ψ(r, t) = Ĥψ(r, t) ,

where the energy observable Ĥ, or the Hamiltonian of the system, is

Ĥ = − h̄2

2m
∆ + V (r) .

• The probability amplitude for the momentum of the particle is given by
the Fourier transform of the wave function,

ϕ(p, t) =
∫

e−ip·r/h̄ ψ(r, t)
d3r

(2πh̄)3/2
.

• This results in the Heisenberg uncertainty relations, which relate the mean
square deviations of position and momentum measurements:

∆x ∆px ≥ h̄/2 .

• To each physical quantity A is associated an observable Â, which is a linear
Hermitian operator acting on the wave functions. The expectation value
〈a〉t at the time t of the measurement of the quantity A is

〈a〉t =
∫

ψ∗(r, t)
[
Â ψ(r, t)

]
d3r .
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The position observable r̂ corresponds to multiplying the wave function by
r; the momentum observable is:

p̂ =
h̄

i
∇ .

These observables do not commute; we have, for instance,

[x̂, p̂x] = ih̄ .

• If the wave function is an eigenfunction of the observable Â corresponding
to the eigenvalue aα, the result of a measurement of A is equal to aα with
probability one.

• For an isolated system placed in a time-independent potential, the station-
ary states are the eigenstates of the energy, whose wave functions are of
the form

ψ(r, t) = ψα(r)e−iEαt/h̄ ,

where ψα is a solution of the time-independent Schrödinger equation

Ĥψα(r) = Eα ψα(r) .

The time evolution of any wave function ψ(r, t) can be written directly,
provided one knows the stationary solutions, as

ψ(r, t) =
∑
α

Cαe−iEαt/h̄ψα(r) ,

where Cα =
∫

ψ∗
α(r) ψ(r, t = 0) d3r .

Further Reading

• S. Hawking and R. Penrose, “The nature of space and time”, Sci. Am.,
August 1996.

• C.F. Quate, “Vacuum tunneling: a new technique for microscopy”, Phys.
Today 39, August 1986; K. Likarov and T. Claeson, “The ultimate elec-
tronics”, Sci. Am., July 1992; J. Gimzewski, “Molecules, nanophysics and
nanoelectronics”, Phys. World, June 1998, p. 29; J. Bernholc, “Compu-
tational material science: the era of applied quantum mechanics”, Phys.
Today, September 1999, p. 30.

• The question of the “tunneling” time raises interesting problems addressed
for instance by R.Y. Chiao, P.G. Kwiat, and A.M. Steinberg, “Faster than
light?”, Sci. Am., August 1993, p. 38.
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Exercises

3.1. Expectation values and variances. Consider the one-dimensional
wave function ψ(x) =

√
2/a sin(πx/a) if 0 ≤ x ≤ a, and ψ(x) = 0 otherwise.

Calculate 〈x〉, ∆x, 〈p〉,∆p and the product ∆x ∆p.

3.2. The mean kinetic energy is positive. Verify that for any wave
function ψ(x), the expectation value 〈p2〉 is positive.

3.3. Real wave functions. Consider a real one-dimensional wave function
ψ(x). Show that 〈p〉 = 0.

3.4. Translation in momentum space. Consider a one-dimensional wave
function ψ(x) such that 〈p〉 = q and ∆p = σ. What are the values of 〈p〉 and
∆p for the wave function ψ(x)eip0x/h̄?

3.5. The first Hermite function. Show that the wave function ψ(x) =
e−x2/2 is an eigenfunction of the operator (x2 − ∂2/∂x2) with eigenvalue 1.

3.6. Ramsauer effect. In 1921, Ramsauer noticed that for some particu-
lar values of the incident energy, rare gases such as helium, argon or neon
were transparent to low-energy electron beams. This can be explained in
the following one-dimensional model. Consider a stationary solution of the
Schrödinger equation of positive energy E, for a particle of mass m in the
following one-dimensional potential (V0 > 0):

V (x) = 0 for |x| > a , V (x) = −V0 for |x| ≤ a .

We set q2 = 2m(V0 + E)/h̄2, k2 = 2mE/h̄2 and we are interested in a
solution of the form

ψ(x) = eikx + A e−ikx x ≤ −a ,

ψ(x) = B eiqx + C e−iqx − a < x ≤ a ,

ψ(x) = D eikx x > a .

a. Write down the continuity relations at x = −a and x = a.
b. Setting ∆ = (q+k)2−e4iqa(q−k)2, calculate the transmission probability

T = |D|2. Calculate the reflection probability R = |A|2. Check that
R + T = 1.

c. Show that T = 1 for some values of the energy. Interpret this result and
the Ramsauer effect.
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d. In helium, the lowest energy at which the phenomenon occurs is E =
0.7 eV. Assuming that the radius of the atom is a = 0.1 nm, calculate the
depth V0 of the potential well inside the atom in this model.

e. How does the reflection coefficient behave as the ratio E/V0 tends to
zero? When one directs very slow hydrogen atoms onto a liquid-helium
surface, these atoms bounce back elastically instead of being adsorbed.
Explain this phenomenon qualitatively.
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Why do simple when one can do complicated?
Second Shadok principle

(Jacques Rouxel, Les Shadoks, Circumflexe, Paris (1994))

As beautiful as it may be, a theory can only be accepted if its predictions
stand the test of experiment. The hydrogen atom, which we shall study later
on, was the first testing ground for quantum mechanics. The spectrum of the
hydrogen atom was calculated nearly simultaneously by Pauli (at the end of
1925 with matrix mechanics), by Schrödinger (in the beginning of 1926 with
wave mechanics) and by Dirac (in 1926 with his mechanics of noncommuting
observables). Other simple problems, such as the Stark effect in this atom, the
harmonic oscillator and its nonharmonic corrections, convinced the scientific
community of the validity of the theory.

In this chapter we consider some simple applications of wave mechanics.
We aim to illustrate its principles by treating a few examples of motions
of particles in time-independent potentials. These potentials are sufficiently
simple that the Schrödinger equation can be solved analytically. Starting from
the solution of such simple models one can understand qualitatively, and often
quantitatively, the structure of atomic, molecular or nuclear systems.

4.1 Bound States and Scattering States

In classical mechanics, one can make a distinction between two regimes in
the motion of a particle in a potential which has a finite limit V1 at infinity.
When the energy E of the particle, which is a constant of the motion, is
smaller than V1 the trajectory is confined in a finite region of space at all
times. In contrast, if E > V1 the trajectory goes to infinity as t → ±∞. The
first situation is called a bound state, and the second one a scattering state
(Fig. 4.1). The same distinction exists in quantum mechanics. According to
whether the value of the energy is smaller or larger than V1, we shall deal
either with bound states or with scattering states.
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O

O

E < 0 E > 0

Fig. 4.1. Classical motion for the attractive Kepler problem (1/r potential, with
V1 = 0). A particle with E < 0 remains confined within a finite region of space,
while a particle with E > 0 escapes to infinity

4.1.1 Stationary States of the Schrödinger Equation

In this chapter, we shall study the quantum motion of a particle of mass m,
placed in a potential V (r), so that the Hamiltonian Ĥ has the form

Ĥ = − h̄2

2m
∆ + V (r) . (4.1)

We have seen in Chap. 3 that the first step in this study consists of finding
the eigenfunctions (or “stationary states”) of the Hamiltonian Ĥ, given by

Ĥψα(r) = Eαψα(r) , (4.2)

and the corresponding eigenvalues. In fact, an arbitrary state ψ(r, 0) can
always be written as a linear combination of the ψα(r):

ψ(r, 0) =
∑

Cα ψα(r) , (4.3)

where the symbol
∑

can stand for either a discrete sum or an integral. The
time evolution of this state can be written immediately as

ψ(r, t) =
∑

Cα ψα(r) e−iEαt/h̄ . (4.4)

The boundary conditions which the functions ψα(r) satisfy at infinity are
different according to whether we consider bound states or scattering states.

4.1.2 Bound States

A bound state is defined as a solution of (4.2) for which the function ψα(r)
is square integrable, and therefore normalizable:∫

|ψα(r)|2 d3r = 1 . (4.5)

One can prove that this happens only for a discrete set {En} of values of the
energy, which are called the energy levels. This is the origin of the quantization
of energy.
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Energy

V1

Vmin

bound states

scattering
statesV(x)

x

Fig. 4.2. For a potential which tends to a finite value V1 at infinity and which has
a minimum value Vmin, the eigenvalues E of the Hamiltonian form (i) a discrete
set En between Vmin and V1 corresponding to bound states and (ii) a continuous
set of values above V1 corresponding to scattering states. Any physical state of the
system can be written as a linear superposition of these eigenfunctions

The fact that the functions ψn ≡ ψα can be normalized is associated with
the classical property that the trajectory of the particle remains confined in
a finite region of space at all times. Each En is smaller than the value of the
potential at infinity V1, and larger than the minimal value Vmin over all space
(see Fig. 4.2):

Vmin < En < V1 . (4.6)

It may happen that one of these two bounds becomes formally infinite. For
instance the left-hand side is −∞ for the Kepler problem, and the right-hand
side is +∞ for a harmonic oscillator.

Since the ψn’s can be normalized, each of them represents a possible state
of the particle. If we choose ψ(r, 0) = ψn(r), the particle has a well-defined en-
ergy. The time evolution of the state is simply ψ(r, t) = ψn(r) exp (−iEnt/h̄)
and the expectation value of any physical quantity is time independent: there
is no motion in the usual sense. Motion appears only when we construct linear
combinations of stationary states with different energies.

4.1.3 Scattering States

The time-independent Schrödinger equation (4.2) also has solutions for a
continuous set of energies E larger than V1. Asymptotically, such solutions
are plane waves, since the potential is constant as r → ∞. If one performs a
proper analysis of such solutions, one finds that these correspond to scattering
states of an asymptotically free particle, scattered by the potential V (r).

We have already encountered such cases in Chap. 3 when we studied trans-
mission and reflection at a one-dimensional potential barrier. The solutions



66 4. Quantization of Energy in Simple Systems

of (4.2) can no longer be labeled by an integer n, since they form a continuous
set. In addition, as we noticed in Chap. 3, they are not square integrable and
they cannot represent physical states of the particle. One must form wave
packets in order to obtain physical states (the sum in (4.3) is then replaced
by an integral).

As we noted in Chap. 3, a great deal of physical information can nev-
ertheless be extracted from the expression for the stationary solutions ψα

themselves, even though they are not eligible to be physical states for the
particle. In one dimension, one can deduce, for instance, the reflection and
transmission coefficients of a potential barrier as a function of the incident
energy. In three dimensions, the solution of scattering problem proceeds along
the same general lines although it is technically more complicated. From a
knowledge of the ψα’s, one can derives scattering amplitudes and cross sec-
tions, which are the relevant physical quantities in scattering processes. This
type of problem will be analyzed in Chap. 18.

4.2 The One Dimensional Harmonic Oscillator

Our first example is the harmonic oscillator which has a large variety of
applications.

4.2.1 Definition and Classical Motion

A harmonic oscillator is a system consisting of a particle of mass m elastically
bound to a center x0, with a restoring force F = −K(x−x0) proportional to
the distance from the center. The coefficient K is the spring constant of the
oscillator, and the potential energy reads V (x) = V0 + K(x − x0)2/2.
Many systems can be approximated by harmonic oscillators. For instance when
a classical particle is in stable equilibrium at x = x0, its potential energy is a
minimum. Therefore ∂V (x)/∂x|x=x0 = 0 and a Taylor expansion in the vicinity of
x0 yields

V (x) = V0 +
K

2
(x − x0)

2 + C(x − x0)
3 + . . . . (4.7)

For small displacements around x0 (|x − x0| � K/C), the cubic term is negligible
and this system can be approximated by a harmonic oscillator.

The classical equation of motion is mẍ = −K(x−x0). The motion is sinu-
soidal with an angular frequency ω =

√
K/m independent of the amplitude.

For simplicity we shall assume in the following that the origins of energy and
position have been chosen such that V0 = 0 and x0 = 0. The total energy
(kinetic + potential) of the classical particle is then

E =
1
2
mẋ2 +

1
2
mω2x2 . (4.8)

This energy is always positive and there are only bound states, since the
potential tends to infinity as |x| → ∞.
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4.2.2 The Quantum Harmonic Oscillator

In the quantum problem the Hamiltonian has the form

Ĥ =
p̂2

x

2m
+

1
2
mω2x̂2 , (4.9)

and we want to solve the eigenvalue equation(
− h̄2

2m

d2

dx2
+

1
2
mω2x2

)
ψ(x) = E ψ(x) . (4.10)

Since the potential tends to infinity when x → ±∞, there are only bound
states in this problem. The only relevant values of the energy E are those for
which the solutions are square integrable.

In the quantum problem, the combination of the physical parameters of
the problem m and ω together with Planck’s constant h̄ yields the natural
scales for energies and lengths. These scales are h̄ω and a =

√
h̄/(mω), re-

spectively. As a consequence, it is natural to work with dimensionless quan-
tities ε and y, defined as

ε =
E

h̄ω
, y =

x

a
, (4.11)

so that the time-independent Schrödinger equation reads

1
2

(
y2 − d2

dy2

)
φ(y) = ε φ(y) , (4.12)

where we have put φ(y) = ψ(x)
√

a.
This differential equation is well known in mathematics. Its square inte-

grable solutions are proportional to the Hermite functions

φn(y) = cn e−y2/2 Hn(y) , (4.13)

where cn = (
√

π 2n n!)−1/2 and where Hn(y) is a polynomial of degree n,
containing only even powers of y if n is even, and odd powers of y if n is odd,
defined by

Hn(y) = (−1)n ey2 dn

dyn

(
e−y2

)
.

For instance

H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2, H3(y) = 8y3 − 12y .

The corresponding eigenvalues are

εn = n +
1
2

, n nonnegative integer . (4.14)

As an exercise, one can check that the above expressions satisfy the eigenvalue
equation for n = 0 and n = 1.
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Consequently, the quantized energy levels of the one-dimensional har-
monic oscillator are

En =
(

n +
1
2

)
h̄ω . (4.15)

The additive constant h̄ω/2, called the zero-point energy, is crucial in order
to satisfy the Heisenberg uncertainty relations, as shown in Exercise 4.1.

The normalized eigenfunctions ψn(x) are

ψn(x) =
π−1/4

√
2n n! a

e−x2/2a2
Hn(x/a) . (4.16)

These functions, the first four of which are plotted in Fig. 4.3 for the first
four values of n, are real and orthogonal, i. e.∫

ψ∗
n(x) ψn′(x) dx = δn,n′ . (4.17)

Using the definition (4.13), one can check that these functions satisfy the
following recursion relations:

x
√

2 ψn(x) = a
√

n + 1 ψn+1(x) + a
√

n ψn−1(x) , (4.18)

a
√

2
d
dx

ψn(x) =
√

n ψn−1(x) −√
n + 1 ψn+1(x) . (4.19)

These relations are very useful in practice, as we shall see. They give the
action of the operators x̂ and p̂x = −ih̄∂ /∂x on the set ψn(x).

-5 0 5 -5 5 -5 5 -5 5
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1
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Fig. 4.3. The first four Hermite functions (abscissa x/a): ψ0(x) is a Gaussian,

ψ1(x) is this Gaussian multiplied by
√

2x/a, etc.

Remark. We can separate the eigenfunctions ψn(x) into two classes: the
symmetric solutions ψn(x) = ψn(−x) obtained for n even (see, e. g., (4.13)),
and the antisymmetric solutions ψn(x) = −ψn(−x) obtained for n odd. This
originates from the invariance of Ĥ under the transformation x → −x (see
(4.9)). Therefore, if ψ(x) is a solution of (4.10), ψ(−x) is also a solution with
the same eigenvalue. Consequently, the symmetric and antisymmetric func-
tions ψ(x)±ψ(−x) are either solutions corresponding to the same eigenvalue
or identically zero. This is the first example of a very important property in
quantum mechanics, which we shall meet again. If the Hamiltonian possesses
invariance properties, these are reflected in the symmetry properties of the
eigenfunctions.



4.2 The One Dimensional Harmonic Oscillator 69

4.2.3 Examples

Molecular Physics. Consider a diatomic molecule such as CO, which we
encountered in Sect. 1.1. Besides the rotation of the molecule, the two atoms
can vibrate with respect to one another in their center-of-mass frame. These
atoms are bound by a chemical-binding force. Let x be the distance between
the two nuclei. The potential V (x) from which the force is derived is difficult
to calculate exactly. However, we can certainly approximate it by the shape
represented in Fig. 4.4. The potential must go to infinity if x tends to zero
(in which case the two atoms are on top of each other). Also, V (x) goes to a
constant if the atoms are far apart. Since the system is bound, the potential
has some minimum at the classical equilibrium position x0. We therefore
replace the “true” potential V (x) by a parabola (dotted line in Fig. 4.4).
Intuitively, we expect that this will give a good approximation for the energy
levels whose wave functions are concentrated in the region where V (x) and
its parabolic approximation are close.

V(x)

xx0

Fig. 4.4. Molecular potential (full
line) and its harmonic approxima-
tion (dashed line)

Black-Body Radiation and Planck Oscillators. The classical model of
an oscillator formed by an elastically bound charge, due to H.A. Lorentz, was
well known to physicists at the end of the 19th century. As early as 1895,
Planck had tried to tackle the problem of the thermodynamic equilibrium be-
tween electromagnetic radiation and a set of such oscillators forming the inner
surface of a closed container (an oscillator of frequency ν absorbs and emits
light at this frequency ν). In order to interpolate between the two regimes of
low and high frequencies of the spectral distribution of the radiation inside
the container, Planck had introduced an empirical two-parameter formula
relating the entropy and the internal energy of the radiation field. From this
formula, he was able to obtain a relation between the energy and the entropy
of the oscillators. Planck then realized that he could fix these two parameters
using Boltzmann’s statistical theory. Indeed, in the first chapter of his 1877
memoir, Boltzmann had considered the “academic” case of the equilibrium
distribution of a system of N molecules with a total energy E split into n
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discrete and equal energy amounts E/n. Assuming that for an oscillator of
frequency ν, the discrete energy amounts were equal to hν, Planck calculated
the value of the fundamental constant h, and obtained his celebrated formula
for black-body radiation. To some extent, Max Planck had guessed that the
quantization of the energy of an oscillator occurs in integer multiples of hν.

Trapping Charged Particles. A Penning trap consists in a superposition
of a uniform magnetic field B and a quadrupole electric field. In such a
device, a charged particle can be confined around the center of the quadrupole
by harmonic forces. In this way one can construct an artificial atom, called
“geonium”. This allows one to measure very precisely constants such as the
electron magnetic moment, the fine structure constant (see Chap. 11) and
the ratio of the proton and electron masses mp/me.

Quantization of a Field. A crystal containing N atoms may be considered
as a set of 3N harmonic oscillators. Also, the classical stationary electromag-
netic waves in a container with reflecting walls can be shown to be equivalent
to a set of harmonic oscillators. These are the starting points of quantum field
theory, which gives rise to the concepts of phonons for the vibrations of the
crystal and of photons in the case of the electromagnetic field. The harmonic
oscillator is one of the foundation stones of relativistic quantum field theory.

4.3 Square-Well Potentials

In the rest of this chapter, we shall consider piecewise constant potentials,
for which a simple analytical determination of the bound states can be per-
formed.

4.3.1 Relevance of Square Potentials

Although the use of such potentials might seem at first sight quite academic
it is worth emphasizing that they constitute accurate models of reality in
many physical situations. Let us mention two of them.

• Nuclear forces are very strong but they have a short range, i. e. they act only
at small distances. The corresponding potentials are quite different from
the Coulomb potential qq′/4πε0r. A first approximation can be obtained
by using potentials of the form

V = V0 for 0 < r ≤ r0 , V = 0 for r > r0 (V0 < 0) ,

where r0 is of the order of 10−15 m, i. e. the dimensions of a nucleus. In
many cases, with an appropriate adjustment of the parameters V0 and r0,
such potentials give a good account of nuclear phenomena at low energies.



4.3 Square-Well Potentials 71

• In modern microelectronics, such simple piecewise constant potentials also
have numerous applications (see Fig. 4.5). When an electron moves in a
semiconductor such as GaAs or GaAlAs, it is subject to a constant poten-
tial whose value depends on the nature of the semiconductor. Consequently,
by constructing “sandwiches” of alternating thin layers of different semi-
conductors, one can form square wells and barriers with typical widths of
2 to 5 nm. The confinement of electrons in these domains, named quantum
wells, has led to unprecedented technological developments in electronics
and in computer technologies. Such devices are also very promising in the
development of optoelectronics; the transitions between the corresponding
bound states (∆E ∼ 50 to 200 meV) are located in the infrared part of the
spectrum.

Fig. 4.5. Sandwich composed of AlGaAs – GaAs – AlGaAs. The central part,
consisting of GaAs, is 6 nm wide. The vertical scale indicates the concentration of
aluminum (from 0 to 40%), which controls the potential (averaged over a distance of
the order of the lattice spacing) seen by a conduction electron. Photograph courtesy
of Abbas Ourmazd, ATT Bell Labs

4.3.2 Bound States in a One-Dimensional Square-Well Potential

Consider a symmetric square-well potential of depth V0 and width 2a
(Fig. 4.6a). In regions I′ (x < −a) and I (x > a), the potential is constant,
equal to V0. Inside the well (−a ≤ x ≤ a), the potential is zero (this is a mere
choice of the origin of the energy). The eigenvalue E of the Hamiltonian which
we want to calculate is therefore the kinetic energy inside the potential well.
We are only interested here in bound states, such that 0 < E < V0 (the
classical analog is a particle confined inside the potential well).

In a region where the potential is a constant, the time-independent
Schrödinger equation (4.2) boils down to

ψ′′ +
2m

h̄2 (E − V )ψ = 0 . (4.20)
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Fig. 4.6. Square well potential: (a) form of the potential well; (b) graphical deter-
mination of the energy levels; (c) the limit of an infinite square well

This equation has solutions whatever the value of E. The solutions have
different forms according to the sign of E − V :

1. If E − V > 0, the solutions are sinusoids.
2. If E − V < 0, the solutions are exponentials.

In the present case V = 0 for |x| ≤ a and V = V0 for |x| > a. Conse-
quently, for 0 < E < V0 the solutions of (4.2) are sinusoids in the middle
region II, increasing exponentials in I′ and decreasing exponentials in I, as
follows

I′ ψ(x) = D eKx ,

II ψ(x) = A sin kx + B cos kx ,

I ψ(x) = C e−Kx , (4.21)

where K =
√

2m(V0 − E)/h̄ and k =
√

2mE/h̄. The constants A, B, C and
D are to be determined from the continuity of ψ and ψ′ at ±a. Note that
we discard solutions with an increasing exponential in I or a decreasing ex-
ponential in I′, since a contribution of such a function to the expansion (4.3)
cannot lead to square integrable solutions since it increases exponentially at
infinity.

The continuity of the function ψ(x) at x = ±a yields

A sin ka + B cos ka = Ce−Ka , (4.22)
−A sin ka + B cos ka = De−Ka . (4.23)

Similarly the continuity of the derivative of ψ(x) at ±a gives

A k cos ka − Bk sin ka = −K Ce−Ka , (4.24)
A k cos ka + Bk sin ka = K De−Ka . (4.25)

This set of four equations has no solutions for which the two coefficients A
and B are both different from 0. If such a solution existed the two relations
k cot ka = −K and k tan ka = K would be satisfied simultaneously and the
elimination of K between the two would yield tan2 2ka = −1, which is absurd.



4.3 Square-Well Potentials 73

Therefore we classify the solutions into two categories:

A = 0 and C = D , k tan ka = K (even solutions) ;
B = 0 and C = −D k cot ka = −K (odd solutions) . (4.26)

In exactly the same manner as for the harmonic oscillator, the potential satisfies
V (x) = V (−x), and the Hamiltonian is invariant under the transformation x → −x.
We can therefore classify its eigenfunctions according to their parity.

The conditions (4.26) express a quantization of k, and therefore of the
energy. These transcendental equations have a simple graphical solution
(Fig. 4.6b). We must have

K2a2 + k2a2 =
2ma2V0

h̄2 = constant . (4.27)

In the plane {ka, Ka}, this is the equation of a circle. We must find the inter-
sections of this circle with the curves Ka = ka tan ka and Ka = −ka cot ka.
These intersections form a finite set and they relate alternately to even and
odd solutions. Suppose a is fixed; the number of intersections increases with
V0. If V0 is smaller than a minimum value given by

a
√

2mV0

h̄
<

π

2
⇒ V0 <

π2h̄2

8ma2
, (4.28)

there is only one bound state.

A theorem due to Sturm and Liouville states that one can classify the levels in
order of increasing energy using the number of nodes of their wave function. The
wave function of the ground state has no node, the wave function of the first excited
state has a single node, and so on. This theorem holds if the potential is sufficiently
regular (which will be the case in all of this book).

4.3.3 Infinite Square Well

The limit where V0 becomes infinite is particularly simple and interesting. In
this limit, the particle is confined in region II, where the potential is zero;
V (x) is infinite in regions I and I′.

For convenience, we place this infinite square well between x = 0 and
x = L as shown in Fig. 4.6c. The calculation is straightforward: the coefficient
K introduced in Sect. 4.3.2 is infinite and we must have ψ(x) = 0 in regions
I and I′. By continuity, we deduce

ψ(0) = 0 ψ(L) = 0 . (4.29)

The eigenfunctions of the Hamiltonian which satisfy these boundary condi-
tions are

ψn(x) = A sin(nπx/L) , n integer > 0 , (4.30)

and the normalization condition gives A =
√

2/L.
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The energy levels are given by

En = n2 π2h̄2

2mL2
, n integer > 0 . (4.31)

In this case, only the wave function ψ(x) is continuous at x = 0 and x = L.
Contrary to what happens for a finite potential well V0, ψ′(x) is discontinu-
ous at these points.1 Notice that the quantization condition can be written
as kL = nπ, where k is the wave number defined by E = h̄2k2/2m: the quan-
tization of energy appears as an elementary stationary-wave phenomenon.

4.3.4 Particle in a Three-Dimensional Box

We now extend the previous case to three dimensions, and consider the prob-
lem of a particle of mass m confined inside a parallelepiped of sides L1, L2,
L3. The confining potential can be written

V (3)(x, y, z) = V (x) + V (y) + V (z) , (4.32)

where

V (xi) = 0 if 0 ≤ xi ≤ Li ,

V (xi) = ∞ if xi < 0 or xi > Li ,

and xi = x, y, z for i = 1, 2, 3.

Separation of the Variables. We want to solve the eigenvalue equation

Ĥ Ψ(r) = E Ψ(r) , (4.33)

where

Ĥ = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V (3)(x, y, z) . (4.34)

We look for particular solutions which are factorized as follows:

Ψ(r) = ψ1(x) ψ2(y) ψ3(z) . (4.35)

One can verify that such a factorized function is a solution of (4.33) with the
eigenvalue E if the following conditions are fulfilled:

− h̄2

2m
ψ′′

i (xi) = [Ei − V (xi)] ψi(xi) (4.36)

for i = 1, 2, 3, and

E = E1 + E2 + E3 . (4.37)

We then recover a one-dimensional problem and we can use the solutions
that we found in the previous subsection (Sect. 4.3.3). One can prove that
this procedure determines all the eigenvalues and that it provides a basis of
eigenfunctions.
1 The continuity of ψ and the discontinuity of ψ′ at the edges of the potential well

can be obtained directly by taking the limit V0 → +∞ in the solutions (4.26).
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Solution of the Eigenvalue Equation. In order to obtain a solution of
(4.33), we can combine three solutions of the type (4.30). Such a solution
depends on three quantum numbers n1, n2 and n3 (strictly positive integers)
and on the dimensions L1, L2, L3 of the volume under consideration:

Ψn1,n2,n3(r) =
√

8√
L1L2L3

sin
(

n1πx

L1

)
sin
(

n2πy

L2

)
sin
(

n3πz

L3

)
, (4.38)

E = En1,n2,n3 =
h̄2π2

2m

(
n2

1

L2
1

+
n2

2

L2
2

+
n2

3

L2
3

)
. (4.39)

Degeneracies. It may happen that for a given eigenvalue E, there are sev-
eral different eigenfunctions. In the present case, for instance, if L1 = L2, the
two solutions obtained by interchanging n1 and n2 in (4.38) correspond to the
same eigenvalue E. When such a situation occurs, we say that the eigenvalue
is degenerate, and the degree of degeneracy is equal to the dimension of the
eigensubspace.

Remark. Despite their great simplicity, the results of this calculation can be
used in many cases. For instance, molecules in a container cannot penetrate
through the walls of the container. Free electrons in a conductor are confined
by the attractive potential of the crystal lattice. The neutrons of a neutron
star are confined by the gravitational field inside a sphere of radius ∼ 10 km,
for a total mass of the order of the solar mass (see Sect. 19.3.2).

4.4 Periodic Boundary Conditions

In many circumstances, it is convenient to use plane waves in order to de-
scribe the states of free particles, or of particles confined in a large box.
This happens, for instance, in statistical mechanics when dealing with gases,
in which particles move freely within some volume. It is also convenient to
use plane waves when one is considering collision processes between particles
(Chap. 18). Before and after the collision, the particles have well-defined en-
ergies and momenta. The question arises as to how to deal with such plane
waves, which cannot be normalized. A convenient method consists in con-
sidering a problem similar to the infinite potential well, but where periodic
boundary conditions are imposed on the wave functions.

4.4.1 A One-Dimensional Example

Consider again the one-dimensional problem studied in Sect. 4.3.3, and sup-
pose that we replace the boundary conditions ψ(0) = 0 and ψ(L) = 0 by the
following ones:

ψ(L) = ψ(0) and ψ′(L) = ψ′(0) . (4.40)
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These periodic boundary conditions correspond to a particle confined on a cir-
cle of circumference L, rather than a segment of length L. In practice, they
are used in situations where the predictions for physical quantities (equa-
tions of state in statistical physics, cross sections in scattering theory) do
not depend on L in the limit L → ∞. The mathematical distinction between
confinement on a circle and on a segment is then unimportant.

It is possible to find a set of normalized eigenfunctions of the momentum
operator p̂ = −ih̄ ∂/∂x satisfying these boundary conditions. These eigen-
functions are

ψn(x) =
1√
L

eipn x/h̄ , (4.41)

where the eigenvalue pn of p̂ associated with the state ψn is

pn =
2πh̄

L
n , n negative or positive integer . (4.42)

Each wave function ψn is also an eigenfunction of the kinetic-energy op-
erator p̂2/2m, with the eigenvalue

En =
p2

n

2m
=

4π2h̄2

2mL2
n2 . (4.43)

The wave functions (4.41) are therefore normalizable eigenfunctions of both
the momentum and the energy (whereas in a closed box, for instance, the
energy eigenfunctions are not eigenfunctions of the momentum).

Counting the Number of Quantum States. In statistical physics as well
as in scattering theory, one often expresses the prediction P for a physical
quantity as a sum of a given function f(p) over possible momenta, e. g.

P =
∑

n

f(pn) . (4.44)

Suppose that L is very large in the sense that the splitting between two
successive possible momenta ∆p = 2πh̄/L is very small compared with the
typical momentum scale in the problem under consideration (the thermal
momentum, for instance). It is then possible to transform a discrete summa-
tion such as (4.44) over microscopic states into an integral, by introducing
the number dN of energy-momentum quantum eigenstates whose momenta
are located in a neighborhood dp of some given value p. This number can be
obtained readily from (4.42) as dN/dp = L/2πh̄. One obtains

P � L

2πh̄

∫
f(p) dp . (4.45)
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4.4.2 Extension to Three Dimensions

The extension to three dimensions is straightforward. In a cube of side L with
periodic boundary conditions for the three variables (x, y, z), the normalized
eigenstates of the momentum are

ψn(r) =
1√
L3

eipn·r/h̄ , pn =
2πh̄

L
n , (4.46)

where n stands for a triplet (n1, n2, n3) of positive or negative integers. These
momentum eigenstates are orthogonal to one another:∫

L3
ψ∗

n(r) ψn′(r) d3r = δn1,n′
1
δn2,n′

2
δn3,n′

3
. (4.47)

Density of States. As done previously in the one-dimensional case, we can
replace a discrete sum over the momentum eigenstates

P =
∑
n

f(pn) (4.48)

by an integral over p if the function f(p) varies slowly on the scale 2πh̄/L.
The number of independent quantum states (i. e. eigenstates of p̂) in a volume
d3p of momentum space is

d3N =
L3

(2πh̄)3
d3p , (4.49)

so that

P � L3

(2πh̄)3

∫
f(p) d3p . (4.50)

Quite often one meets situations where the function f(p) is a function only
of the energy E = p2/2m: f(p) ≡ g(E). In this case the integral (4.50) can be
written in spherical coordinates and integrated over the polar angles defining
the direction of p. The result can be cast into the form

P �
∫ +∞

0

g(E) ρ(E) dE . (4.51)

The density of states ρ(E) is defined as the ratio dN/dE, where dN is the
number of independent quantum states in the (narrow) energy slice dE:

ρ(E) =
dN

dE
=

mL3
√

2mE

2π2h̄3 . (4.52)

For particles of spin s (see Chap. 12), these formulas generalize to d3N = (2s + 1)

(L/2πh̄)3 d3p and ρ(E) = (2s + 1)mL3
√

2mE/(2π2h̄3).
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4.4.3 Introduction of Phase Space

In classical mechanics the state of a particle is defined at time t by a point in
a six-dimensional space called phase space. The coordinates of this point are
the components of the position and the momentum x, y, z, px, py, pz. We wish
to transpose to phase space the result (4.49). This formula indicates that the
number of independent states is equal to the accessible volume of phase space
(L3) (∆px∆py∆pz) divided by the cube of Planck’s constant h = 2πh̄.

Assuming all necessary care is taken about the orders of magnitude which
must be satisfied, we can generalize this result. In an arbitrary volume of
phase space

∆6V = (∆x∆y∆z) × (∆px∆py∆pz) , (4.53)

the number of independent quantum states is given by the relation

∆6N =
∆6V

(2πh̄)3
. (4.54)

This formula is essential in statistical mechanics. We have derived it in the
context of periodic quantization conditions, but its validity can be established
on much more general grounds.

The accuracy of this formula can be tested on the simple case of the
one-dimensional harmonic oscillator of angular frequency ω. Let us estimate,
for instance, the number N (E0) of independent states whose energy is lower
than some given value E0, much larger than h̄ω. The accessible phase space
domain is the area within an ellipse in the x–p plane:

N (E0) =
∫

E(x,p)≤E0

dxdp

2πh̄
, where E(x, p) =

p2

2m
+

1
2
mω2x2 . (4.55)

The half-axes of the ellipse in the x and p directions are (2E0/mω2)1/2 and
(2mE0)1/2, respectively, so that the one-dimensional version of (4.54) then
yields

N (E0) � E0

h̄ω
. (4.56)

This is in excellent agreement with the exact result deduced from (4.15),
which says that N (E0) is the integer nearest to E0/h̄ω.

4.5 The Double Well Problem
and the Ammonia Molecule

We shall now consider a problem which at first sight is similar to the square
well studied above, but will turn out to be much more subtle and will bring
new physics.
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4.5.1 Model of the NH3 Molecule

The ammonia molecule NH3 has the shape of a pyramid (Fig. 4.7a), where
the nitrogen atom is at the apex and the three hydrogen atoms form the
base in the shape of an equilateral triangle. The plane of the three hydrogen
atoms is denoted P and the perpendicular to this plane passing through the
nitrogen atom is denoted D. The distance x represents the position of the
intersection of P with D. The position of the nitrogen atom is chosen as the
origin of the x axis. For low excitation energies, the molecule preserves its
pyramidal shape and the nitrogen atom remains fixed.

Qualitatively, the variations of the potential energy V(x) with x are as
follows. At the equilibrium position x = b, V(x) has a minimum (Fig. 4.7b).
If we force x to become smaller, the energy increases; it goes through a
maximum for x = 0, which corresponds to an unstable state where the four
atoms are in the same plane. If x becomes negative, the molecule is turned
over like an umbrella in the wind. For symmetry reasons there exists another
minimum for x = −b and the potential energy satisfies V(x) = V(−x).

In the following we replace the actual potential V(x) by the simplified
square-well potential V (x) represented by dotted lines in Fig. 4.7b. For this
potential, which reproduces the main interesting features of V(x), we study
the quantum motion of a “particle” representing the collective motion of the
three hydrogen atoms, assuming that they stay in the same plane. The mass
m of the particle is equal to 3mH, where mH is the mass of a hydrogen atom.

(b)(a)

L M R

V0

a a

-b b
x

V(x)

∆

Fig. 4.7. The ammonia molecule: (a) the two classical configurations; (b) the
actual potential (full line) and the simplified potential (dotted line) which describes
the inversion of the molecule

4.5.2 Wave Functions

Following the same procedure as in Sect. 4.3, it is straightforward to find
the stationary states in this problem. We concentrate on the case E < V0,
for which the classical motion of the “particle” is confined in one of the
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potential wells (left or right), i. e. the molecule cannot turn over classically.
The solutions to the quantum problem are sinusoids in the regions L and R
and exponentials in the middle region M. Since the wave functions have to
vanish for x = ±(b + a/2), the eigenstates of the Hamiltonian can be written

ψ(x) = ±λ sin k(b + a/2 + x) region L,

ψ(x) =
{

µ cosh Kx symmetric solution
µ sinhKx antisymmetric solution

}
region M, (4.57)

ψ(x) = λ sin k(b + a/2 − x) region R,

where we set, as previously, k =
√

2mE/h̄ and K =
√

2m(V0 − E)/h̄. These
two types of solutions are represented in Fig. 4.8.

x

(a) ψS

x

(b) ψA

Fig. 4.8. Symmetric solution (a) and antisymmetric solution (b), in the symmetric
double-well model of the ammonia molecule

The continuity equations for the wave function and its derivative at the
points x = ±(b − a/2) lead to the conditions

tan ka = − k

K
cothK(b − a/2) for a symmetric solution ψS ,

tan ka = − k

K
tanhK(b − a/2) for an antisymmetric solution ψA .

In order to obtain some physical insight with simple algebra, we consider
the case where the ground-state energy E is very small compared with the
height V0 of the potential barrier. This leads to K ∼ √

2mV0/h̄ � k. In
addition, we assume that the central potential barrier is wide enough that
K∆ � 1, where ∆ = 2b − a is the width of this barrier. These assumptions
hold in the case of the ammonia molecule, as we shall see below. We then
have

tan ka � − k

K

(
1 ± 2e−K∆

)
, (4.58)
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Fig. 4.9. (a) Graphical determination of the energy levels in the double well; (b)
positions of the two first energy levels. They are both lower than the ground-state
energy of a single potential well similar to L or R (E0 → E′

0), and we observe a
splitting of these levels (E′

0 → EA and ES) owing to the coupling between the two
wells due to quantum tunneling

where the + sign corresponds to ψS and the − sign to ψA. This equation
allows us to calculate the quantized values of ka. These values appear on
the graph in Fig. 4.9 as the abscissae of the intersections of the successive
branches of y = tan ka with the two straight lines y = −εAka and y = −εSka.
These intersections are located in the vicinity of ka ∼ π. The two constants
εA and εS are

εA =
1

Ka

(
1 − 2e−K∆

)
, εS =

1
Ka

(
1 + 2e−K∆

)
. (4.59)

They are close to each other and such that εA < εS � 1, since Ka � ka ∼ π.

4.5.3 Energy Levels

We denote by kS and kA the two (close) values of k corresponding to the
eigenstates ψS and ψA of lowest energy. The graph in Fig. 4.9 shows the
following:

1. The two quantities kS and kA are slightly smaller than π/a, which is the
lowest value of the wave number in an individual well, similar to L or R,
of width a with infinitely high and thick walls.

2. The quantity kS is slightly smaller than kA; consequently the respective
energies of the two lowest-lying levels

ES = h̄2k2
S/2m , EA = h̄2k2

A/2m (4.60)

are such that ES < EA.

In the range of parameters considered here (K � k, Ka � 1), we find
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kS ∼ π

a(1 + εS)
, kA ∼ π

a(1 + εA)
, (4.61)

with εS and εA � 1. Putting together (4.58), (4.60) and (4.61), we obtain
the mean energy E′

0 = (EA + ES)/2:

E′
0 � h̄2π2

2ma2

(
1 − 2

Ka

)
. (4.62)

The splitting EA − ES between these two energy levels will be of particular
interest. It is given by

EA − ES ≡ 2A � h̄2π2

2ma2

[
1

(1 + εA)2
− 1

(1 + εS)2

]
, (4.63)

where

A � h̄2π2

2ma2

4e−K∆

Ka
. (4.64)

Since K is approximately equal to
√

2mV0/h̄, we see that A decreases expo-
nentially when the width ∆ or the height V0 of the intermediate potential
barrier increases. We also note that A vanishes as exp (−const./h̄) in the limit
h̄ → 0.

4.5.4 The Tunnel Effect and the Inversion Phenomenon

Classically, for E < V0, the plane of the three hydrogen atoms in the mole-
cule is either on the right or on the left. No transition L ↔ R is possible.
There are two ground states of equal energy, one in the L configuration, the
other in the R configuration. In contrast, the two lowest-lying energy states
of the quantum molecule have different energies. The two corresponding wave
functions have well-defined parities: one is symmetric (ψS), the other is anti-
symmetric (ψA). In both cases the probabilities (modulus squared of ψ) that
the particle (or the triangle of hydrogen atoms) is on the right and on the
left are equal.

For both eigenstates ψS and ψA the probability density is nonzero in the
M region, which is classically forbidden. Again we are facing the possibility
that a quantum particle can be located in regions where its total energy is
less than the local potential energy. This results in a lowering of the energies
of the two lowest eigenstates of the Hamiltonian with respect to the case
V0 = ∞. Indeed, in that case there would be two possible ground states
for the molecule, corresponding to the L and R configurations (or to any
linear combination of these states), with the same energy E0 = h̄2π2/(2ma2).
Because V0 is finite the molecule sees an effective size of each well (L or R)
which is slightly larger than a (aeff ∼ a + K−1); this explains the lowering of
the mean energy E0 → E′

0.
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This global lowering is followed by a splitting E′
0 → E′

0 ± A into two
sublevels. The physical origin of this splitting is the tunneling effect, i. e. the
possibility for the particle to cross the potential barrier and pass from one
well to the other. We now investigate this very important phenomenon in
more detail.

The wave functions ψS and ψA are eigenstates of the Hamiltonian. We
can combine them to form other physically acceptable states of the system.
Two linear combinations are particularly interesting:

ψL = (ψS − ψA)/
√

2 and ψR = (ψS + ψA)/
√

2 . (4.65)

These wave functions describe states for which the probability density is
concentrated nearly entirely on the left for ψL and on the right for ψR. These
correspond to the “classical” configurations, for which the molecule is oriented
towards either the left- or the right-hand side (Fig. 4.10).

(a)

-b b

x

(b)

x

b-b

ψL(x) 2 ψR(x) 2

Fig. 4.10. Classical configurations of the ammonia molecule

Consider a wave function ψ(x, t) equal to ψR at time t = 0. It describes
a molecule localized in the “right” configuration. Its time evolution is

ψ(x, t) =
1√
2

(
ψS(x) e−iESt/h̄ + ψA(x) e−iEAt/h̄

)
=

e−iESt/h̄

√
2

(
ψS(x) + ψA(x)e−iωt

)
, (4.66)

where we have introduced the Bohr frequency h̄ω = EA − ES = 2A.
We notice that after a time t = π/ω = πh̄/(2A), the wave function

ψ(x, t) is, up to a phase factor, proportional to ψL, and the molecule is
in the left configuration! At time t = 2π/ω the wave function ψ(x, t) is
again proportional to ψR: the molecule is back to the right configuration. In
other words the superposition (4.66) represents a state of the molecule which
oscillates from right to left at the Bohr frequency ν = ω/2π. The ammonia
molecule prepared in a classical configuration at t = 0, turns over periodically
because of quantum tunneling. This phenomenon, called the inversion of the
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NH3 molecule, plays a fundamental role in the principle of the ammonia
maser, which we shall discuss in Chap. 6.

The quantity A controls the frequency at which the transition from one
minimum of the potential to the other occurs. Comparing the expression
(4.64) for A with the tunneling probability found in Sect. 3.6.4, we notice that
the two expressions are very similar, the essential point being the presence
of the exponential term. For ammonia, the energy difference 2A is small
compared with typical binding energies in atomic and molecular physics:
2A ∼ 10−4 eV. The frequency ν and period T of the oscillation are

ν =
ω

2π
=

2A

h
� 24 GHz , T =

1
ν

=
h

2A
� 4.2 × 10−11 s .

As we shall see in Chap. 6, the oscillation is associated with the emission
or absorption of electromagnetic radiation. The corresponding wavelength is
λ = c/ν = 1.25 cm. This wavelength can be measured with great accuracy,
and it constitutes a “fingerprint” of ammonia, which, for instance, allows us
to detect the presence of this molecule in the interstellar medium.

4.6 Other Applications of the Double Well

The general formalism we have just developed for the ammonia molecule can
be extended to many other symmetric double-well situations. Consider for
instance two identical atoms A1 and A2 at a distance ∆ from one another.
An electron sees a double well, sketched in Fig. 4.11, each minimum being
centered on one of the atoms. We choose the origin of energy such that V → 0
for x → ∞. If ∆ is sufficiently large, one may, to a good approximation,
consider that V ∼ 0 in the middle region between the two atoms.

An electron bound to one atom in a given energy level E0 < 0 must cross
a potential barrier of height |E0| and width ∆ in order to jump to the other
atom. We want to estimate, in terms of ∆ and E0, the order of magnitude of
the typical time T needed for this transition.

∆

E0 E0

x
E

Fig. 4.11. Double well seen by an electron when two atoms are separated by a
distance ∆
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We shall assume here that the kinetic energy Ek of the bound electron is
of the order of |E0| (for hydrogen atoms, this is exact because of the virial
theorem applied to the Coulomb potential). In the exponential related to
the tunnel effect, we have K =

√
2m|E0|/h̄. Since the electron is bound

in an atom, we have Ka ∼ π (see Chap. 11). The essential result of the
previous section, i. e. the exponential dependence of the oscillation frequency
on the parameter K∆, remains valid. Therefore we rewrite (4.64) in the form
A ∼ Eke−K∆ ∼ |E0|e−K∆, where we neglect a numerical factor of order
unity.

In a molecule or in a solid, the interatomic distance is of the order of one
or a few angstroms. In a gas at room temperature and atmospheric pressure,
the interatomic distance is ∼ 30 Å. The least bound electrons in an atom
(valence electrons) have binding energies of a few eV; we then find

Solid: ∆ = 2 Å , |E0| = 4 eV , A = 1 eV ; T = 10−15 s ,

Gas: ∆ = 30 Å ; |E0| = 4 eV A = 10−12 eV ; T = 10−3 s .

We see that tunneling is important for valence electrons inside a molecule or in
a solid. These electrons jump rapidly from one atom to another, and they are
delocalized in the global molecular structure. In contrast, the corresponding
phenomenon is completely negligible in gases. Indeed, because of the thermal
motion, two given atoms or molecules in a gas remain at a relative distance
of the order of 30 Å only for a time shorter than 10−10 s. The oscillation
associated with the tunneling effect has a period of 10−3 s and it cannot have
an appreciable effect on a timescale as short as 10−10 s. In a gas, it is justified
to consider that even the least bound electrons “belong” to a given atom.

The essential ingredient in the above reasoning is the exponential variation
of A with ∆ and K =

√
2m|E0|/h̄. This very large variation explains why, in

going from a system to another one which seems similar, the characteristic
times may be extremely different. For a system where K∆ is slightly too
large, the oscillation period T can become so incredibly large that tunneling
may safely be neglected.

The particularly interesting case of NH3 and the similar molecules ND3,
PH3, AsH3, etc. is treated in detail by Townes and Schawlow,2 who give more
realistic forms of the potentials. Consider, for instance, the passage from NH3

to AsH3:

NH3 : V0 = 0.25 eV , b = 0.4 Å : ν0 = 2.4 × 1010 Hz ;
AsH3 : V0 = 1.5 eV , b = 2 Å : ν0 = 1.6 × 10−8 Hz .

A change by a factor 6 in V0 and a factor 5 in b induces a dramatic decrease
of the inversion frequency, by 18 orders of magnitude! The frequency found
for AsH3 corresponds to one oscillation every two years, and its detection
2 C.H. Townes and A.L. Schawlow, Microwave Spectroscopy, Chap. 12, McGraw-

Hill, New York (1955).
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is completely beyond the reach of current experimental techniques. In other
words AsH3, which seems to differ only moderately from NH3, behaves as a
classical object from the point of view of the tunneling phenomenon that we
have considered here, simply because the As atom is ∼ 5 times larger than
the nitrogen atom.

The stability of systems which do not have definite symmetry properties
is frequently encountered on the microscopic scale. Among many examples,
there is the case of optical isomers in organic chemistry. The simplest exam-
ple is the molecule CHClFBr. The tetrahedral structure of the bonding of
carbon results in the fact that two nonequivalent configurations exist. They
are represented in Fig. 4.12 and are called optical isomers. Such isomers have
different optical, chemical and biological properties. The situation for these
isomers is similar to the situation we have just described. Such molecules
should, in principle, oscillate from one configuration to the other. However,
both types of such molecules are perfectly stable in practice. This is due to
the fact that the inversion period T is so large that one cannot detect the
oscillation.

Cl

H

F

Br

C

H

ClC

Br

F

Fig. 4.12. Two optical isomers: can one detect the tunneling oscillation between
these two configurations?

Further Reading

• The history of Planck’s procedure for explaining the black-body radiation
is presented in J. Mehra and H. Rechenberg, The Historical Development
of Quantum Theory Vol. 1, Chap. 1, Springer, New York (1982).

• The principle and applications of the Penning trap are presented by L.S.
Brown and G. Gabrielse, “Geonium theory: physics of a single electron
or ion in a Penning trap”, Rev. Mod. Phys. 58, 223 (1986). See also G.
Gabrielse, “Ultracold antiprotons”, Sci. Am., January 1993; J.-L. Basde-
vant and J. Dalibard, “The Quantum Mechanics Solver: How to Apply
Quantum Theory to Modern Physics”, Springer, Berlin, Heidelberg (2005),
Chaps. 17 and 21.

• Square-well potentials in semiconductor physics: M.A. Reed, “Quantum
dots”, Sci. Am., February 1993, p. 98; L.L. Chang and L. Esaki, “Semicon-
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ductor quantum heterostructures”, Phys. Today 45, 36 (1992); L. Kouwen-
hoven and C. Marcus, “Quantum dots”, Phys. World, June 1998, p. 35; C.
Dekker, “Carbon nanotubes as molecular quantum wires”, Phys. Today,
May 1999, p. 22.

• Application of the square-well model to explain the properties of col-
ored centers in crystals: J.-L. Basdevant and J. Dalibard, “The Quantum
Mechanics Solver: How to Apply Quantum Theory to Modern Physics”,
Springer, Berlin, Heidelberg (2000), Chap. 1.

Exercises

4.1. Uncertainty relation for the harmonic oscillator. Using the recur-
sion relations satisfied by the Hermite functions (4.18), show that, in a state
of energy En given by (4.16), 〈x〉 = 〈p〉 = 0. Calculate 〈x2〉 and 〈p2〉 and show
that the zero-point energy is essential in order to preserve the uncertainty
relations.

4.2. Time evolution of a one-dimensional harmonic oscillator. Con-
sider a harmonic oscillator with the Hamiltonian Ĥ = p̂2/2m+mω2x̂2/2 and
its first two normalized eigenfunctions φ0(x) and φ1(x).
Consider a system which at time t = 0 has the wave function

ψ(x, t = 0) = cos θ φ0(x) + sin θ φ1(x) , where 0 ≤ θ < π .

a. What is the wave function ψ(x, t) at time t?
b. Calculate the expectation values 〈E〉, 〈E2〉 and ∆E2 = 〈E2〉 − 〈E〉2.

Explain their time dependence.
c. Calculate the time evolution of 〈x〉, 〈x2〉 and ∆x.

4.3. Three-dimensional harmonic oscillator. Consider in three dimen-
sions a particle of mass m and the Hamiltonian Ĥ = p̂2/2m + mω2r̂2/2,
where r̂2 = x̂2 + ŷ2 + ẑ2.

a. What are the energy levels and their degeneracies?
b. How do these results change in the case of an anisotropic potential

V = m
(
ω2

1x2 + ω2
2y2 + ω2

3z2
)
/2 ?

4.4. One-dimensional infinite potential well. Consider an infinite po-
tential well of width a: V (x) = 0 for 0 < x < a and V = ∞ otherwise.

a. Show that in the energy eigenstate ψn(x), one has 〈x〉 = a/2 and ∆x2 =
a2(1 − 6/n2π2)/12.

b. Consider the wave function ψ(x) = Ax(a − x).
(i) What is the probability pn of finding the particle in the nth excited

state using (3.15)?
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(ii) From this set of probabilities, calculate the expectation values 〈E〉
and 〈E2〉 for that wave function.

Recall that
∑∞

k=0(2k + 1)−2n = π2/8 for n = 1, π4/96 for n = 2 and
π6/960 for n = 3.

c. Check that if one applies blindly the correspondence principle, i. e. if one
uses Ĥ2 = (h̄2/2m)2d4/dx4 in the definition of 〈E2〉, one obtains the
absurd result ∆E2 < 0. What is the reason for this?

4.5. Isotropic states of the hydrogen atom. The energy levels of spher-
ically symmetric states of the hydrogen atom can be obtained by means of
the following one-dimensional calculation. Consider an electron of mass m in
a potential V (x) such that V = ∞ if x ≤ 0 and V = −A/x if x > 0, where
A = q2/4πε0 and q is the elementary charge. We set α = q2/(4πε0h̄c) � 1/137
(a dimensionless constant), where c is the velocity of light.

a. Show that the wave function ψ(x) = Cxe−x/a for x ≥ 0 and ψ(x) = 0 for
x < 0 is an eigenfunction of the Hamiltonian, with energy E for a given
value of a. Express E and a in terms of m, α, h̄ and c.

b. Calculate the numerical values of E and a. You can use mc2 = 5.11 ×
105 eV and h̄c = 197 eV nm.

c. Determine the normalization constant C in terms of a.
d. Calculate the expectation value of 1/x in the state |ψ〉 and deduce from

that the expectation value of the kinetic energy. What is the relation,
valid also in classical mechanics, between these two quantities?

4.6. δ-function potentials.

a. Consider a particle of mass m in the one-dimensional potential V (x) =
αδ(x), α < 0. We are interested in bound states (E < 0).
(i) Assuming that the wave function ψ(x) is continuous at x = 0 (which

can be proven), find the relation between the discontinuity of its
derivative and ψ(0) by integrating the Schrödinger equation between
x = −ε and x = +ε .

(ii) How many bound states are there? With what energies? Set K =√−2mE/h̄ and λ0 = −h̄2/mα.
b. Consider the double-δ-function potential

V (x) = α [δ(x + d/2) + δ(x − d/2)] .

(i) Write down the general form of the bound-state wave functions.
What is the quantization condition?

(ii) Discuss the number of bound states as a function of the distance d
between the two wells.

4.7. Localization of internal atomic electrons. Estimate the tunneling
time between adjacent atoms for highly bound internal electrons in a molecule
or a solid (E0 = −1 keV).



5. Principles of Quantum Mechanics

The everlasting silence of these infinite spaces frightens me.

Blaise Pascal

Wave mechanics started in 1923 with de Broglie’s pioneering idea, but it
became a respectable theory only in 1926 with the work of Schrödinger.
However, as early as 1924, Heisenberg, in a brilliant inspiration largely based
on philosophical ideas,1 had developed a somewhat mysterious theoretical
scheme whose results were amazingly efficient. Quite rapidly, Max Born recog-
nized, in the symbolic multiplication introduced by Heisenberg, the rules
of matrix multiplication. At the beginning of 1925, the Göttingen school
(Heisenberg, Born and Jordan, who were joined by Pauli) had set out the ba-
sis of matrix mechanics, called Quanten Mechanik for the first time by Born.
After hearing a lecture that Heisenberg gave in Cambridge in July 1925, Dirac
developed independently his own formulation of the theory, which was based
on the property that quantum variables are noncommutative. This formula-
tion was equivalent to the Göttingen formulation, but it was more general
and more elegant.

The controversy between the two types of quantum theory – matrix theory
and wave theory – disappeared when Schrödinger, at the end of 1926, and
Dirac, at the beginning of 1927, showed that the two approaches were equiv-
alent. The unifying concept was Hilbert space analysis. The mathematical
foundations of quantum mechanics, as we use them now, were set down by
Hilbert and Von Neumann in 1927. In this chapter, we are interested in this
unifying process, which leads to a clearer formulation of the basic principles.

As far as the motion of a particle in space is concerned, this is a mere
rewriting of the theory in a different language. However, this recasting of the
theory will prove to be a considerable conceptual improvement. It will allow
us to extend the theory to systems or quantities which do not possess clas-
sical analogs. It will also simplify many problems by eliciting the important
structures and parameters.

1 One can talk only about what is observable and measurable, i. e. the positions
and intensities of spectral lines, and not the position and velocity of an electron
in an atom.
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After introducing the basic notion of a state vector and the notation due
to Dirac, we shall see how the matrices of Heisenberg emerge in a natural
way. Then we shall come back to observables and physical quantities. This
will enable us to expound the general principles of quantum mechanics.

5.1 Hilbert Space

We now recall the general framework of Hilbert spaces, in which we shall
formulate the theory.

5.1.1 The State Vector

The fundamental property of wave functions ψ(r, t) in wave mechanics is that
they belong to a Hilbert space EH. For a particle moving in three-dimensional
space, the Hilbert space EH is the space of square-integrable functions in three
real variables (x, y, z) called L2(R3) (where R3 denotes the set of real triplets
x, y, z).

The description of the state of a particle in terms of ψ(r, t) is not the
only one possible. The Fourier transform ϕ(p, t) provides an equivalent de-
scription of this state since ψ(r, t) and ϕ(p, t) have a one-to-one relationship.
Actually, there exist an infinite number of other equivalent descriptions of
this state. The situation is similar to what happens in the usual Euclidean
geometry, where a point or a vector can be represented by an infinite set of
different coordinates, according to which basis one chooses. These are differ-
ent representations of a single mathematical object, in our case a vector of
the Hilbert space EH of interest. From now on, we shall say that a physical
system is described at any time t by a state vector, which we write, according
to the notation introduced by Dirac, as

|ψ(t)〉 , which is an element of the Hilbert space EH . (5.1)

Dirac called these vectors kets.

It was a remarkable idea of some mathematicians of the early 20th century, such
as Banach, Fréchet and Hilbert that one could use a geometric language in order
to solve problems of analysis by considering functions as vectors of appropriate
spaces. The starting point for this idea was actually contained in Fourier’s work,
one century earlier.

5.1.2 Scalar Products and the Dirac Notations

A Hilbert space EH is a complex vector space which possesses a positive def-
inite Hermitian scalar product. In this book, we assume that the Hilbert
space EH is complete (all “Cauchy sequences” converge) and that it is sepa-
rable (there exists a “sequence” which is everywhere “dense” in EH).
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The Hermitian scalar product of |ψ1〉 and |ψ2〉 is denoted by 〈ψ2|ψ1〉. It
possesses the Hermitian symmetry:2

〈ψ2|ψ1〉 = (〈ψ1|ψ2〉)∗ .

It is linear in |ψ1〉 and antilinear in |ψ2〉. The norm of a vector, denoted by
|| |ψ〉|| or ||ψ||, is defined as

||ψ|| =
√
〈ψ|ψ〉 .

By definition, owing to the probabilistic interpretation as we shall see, the
norm of a state vector is equal to one:

〈ψ(t)|ψ(t)〉 = 1 . (5.2)

5.1.3 Examples

In a finite-dimensional Hilbert space of dimension n (which is also called a
Hermitian space), the vectors can be represented as column matrices:

|u〉 =

⎛
⎜⎜⎜⎝

u1

u2

...
un

⎞
⎟⎟⎟⎠ , |v〉 =

⎛
⎜⎜⎜⎝

v1

v2

...
vn

⎞
⎟⎟⎟⎠ , (5.3)

where the ui and vi are complex numbers. The scalar product 〈v|u〉 is then
simply

〈v|u〉 =
n∑

i=1

v∗i ui , (5.4)

i. e. it is the matrix product of the row matrix

(v∗1 , v∗2 , . . . , v∗n) (5.5)

with the column matrix |u〉.
In the space of square-integrable functions defined on the three-dimensional

Euclidean space (noted L2(R3) in mathematics), which is infinite dimen-
sional, we define the scalar product of |ψ1〉 and |ψ2〉 as

〈ψ2|ψ1〉 =
∫

ψ∗
2(r) ψ1(r) d3r . (5.6)

2 Unfortunately, the notations of physicists and of mathematicians, often differ.
The complex conjugate of a number z is written z by many mathematicians
while we write it as z∗ here. Similarly, many mathematicians, including Hilbert
himself, would write scalar products the other way around, i. e. (ψ1|ψ2), which
is linear on the left and antilinear on the right.
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5.1.4 Bras and Kets, Brackets

One can show that there is a bijection between the space EH and its dual
space E∗

H, i. e. the space of continuous “linear forms” defined on EH. Dirac’s
notations profit from this isomorphism in the following way:

• With any ket |φ〉 of EH, we associate an element of E∗
H denoted by 〈φ|,

called a bra.
• The action of the bra 〈φ| on any ket |ψ〉 is equal to the scalar product of
|ψ〉 and |φ〉:

〈φ| (|ψ〉) = 〈φ|ψ〉 .

Dirac’s notation therefore appears as a very simple grammatical rule, which
is identical to the usual rules of matrix multiplication in finite-dimensional
spaces that we recalled in (5.3) and (5.4), The bra 〈v| is nothing but (5.5)
in this case. In Dirac’s notation, the bra 〈φ| acts on the ket |ψ〉 to give a
bracket, i. e. a complex number equal to the scalar product 〈φ|ψ〉.

5.2 Operators in Hilbert Space

Let us give a few definitions together with their analogs in finite-dimensional
spaces.

5.2.1 Matrix Elements of an Operator

Consider a linear operator Â acting in the Hilbert space EH. It transforms
any given ket |ψ〉 into another ket Â|ψ〉 of EH. We shall frequently consider
the scalar product of Â|ψ〉 with another ket |φ〉:

〈φ|(Â|ψ〉) . (5.7)

(a) Operators in Finite-Dimensional Spaces. Consider first a space of
finite dimension n. The operator Â is an n×n square matrix, and the above
expression can be interpreted in the following way. We first multiply the
column vector |ψ〉 by the n × n matrix in order to obtain another column
vector, and we then take the scalar product of this second vector with the
vector 〈φ|. However, we know that this product is associative; we can just as
well do the operation(〈φ|Â)|ψ〉
first, i. e. calculate first the product of the row matrix 〈φ| and the square
matrix which represents Â. This results in a new row matrix, and we then
take the scalar product with the column matrix |ψ〉. In other words, in finite-
dimensional spaces, owing to the associativity of matrix products, there is no
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reason to use any parentheses in (5.7), and we can set

〈φ|Â|ψ〉 = 〈φ|(Â|ψ〉) =
(〈φ|Â)|ψ〉 . (5.8)

The quantity 〈φ|Â|ψ〉 is called the matrix element of Â between 〈φ| and |ψ〉.
(b) Operators in Infinite-Dimensional Spaces. In infinite-dimensional
spaces, we shall use the same simplification, although there exist “patholog-
ical” operators for which, in full rigor, some care must be taken. In Appen-
dix Appendix C, we justify our assertion that one can use a notation similar
to (5.8) for the “nonpathological” operators we shall deal with.

In what follows, we shall mention in a few places some mathematical
difficulties that one may meet in manipulating operators in Hilbert space,
but most of the time we shall just forget these difficulties. In other words,
we work as if we were dealing with finite-dimensional spaces. It is possible to
use a rigorous formalism, but this is quite cumbersome and does not bring
anything really new to the physics, at least at this level.

(c) Expectation Value of an Operator. Consider a state vector |ψ〉. The
expectation value of an operator Â in the state |ψ〉 (which is supposed to be
normalized, cf. (5.2)) is defined as

〈a〉 = 〈ψ|Â|ψ〉 . (5.9)

5.2.2 Adjoint Operators and Hermitian Operators

Consider an operator Â acting in EH. The adjoint of Â, noted Â†, is defined
by the relations:

〈ψ2|Â†|ψ1〉 = (〈ψ1|Â|ψ2〉)∗ for any |ψ1〉, |ψ2〉 in EH . (5.10)

An operator Â is Hermitian, or self-adjoint, if

Â = Â† , i. e. 〈ψ2|Â|ψ1〉 = 〈ψ1|Â|ψ2〉∗ . (5.11)

If Â is self-adjoint the expectation value of the observable Â, defined in (5.9),
is real :

Â = Â† ⇒ 〈a〉 = 〈a〉∗ . (5.12)

Conversely, one can show that if an operator Â is such that 〈ψ|Â|ψ〉 is real
for any ψ, this operator is Hermitian. This is the reason why the observables
are self-adjoint operators, since the measured quantities (and therefore their
mean value) are real numbers.3

3 One can of course also consider complex combinations of observables, for instance
when one deals with the amplitude and phase of a wave. On the other hand, the
Hamiltonian is always self-adjoint in order to ensure the conservation of the norm
and of probabilities (see Sect. 5.5).
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Examples.

1. In the finite-dimensional case, an operator is Hermitian if and only if its
matrix representation [Aij ] in an orthonormal basis satisfies Aij = A∗

ji.
2. Consider the (infinite dimensional) space of square integrable functions

of one variable (L2(R)), and consider the position operator x̂ introduced
in Chap. 3: if ψ(x) is the wave function associated with the ket |ψ〉, xψ(x)
is the wave function associated with x̂|ψ〉. We obtain:

〈ψ2|x̂†|ψ1〉 = (〈ψ1|x̂|ψ2〉)∗ =
(∫

ψ∗
1(x)x ψ2(x) dx

)∗

=
∫

ψ∗
2(x)x ψ1(x) dx = 〈ψ2|x̂|ψ1〉 .

The position operator is therefore Hermitian. Consider now the momen-
tum operator p̂x. We know from the results of Chap. 3 that this operator
corresponds to h̄/i times differentiation with respect to x. In other words,
if the function ψ(r) is associated with the ket |ψ〉, then (h̄/i)(∂ψ/∂x) is
associated with p̂x|ψ〉. We obtain:

〈ψ2|p̂†x|ψ1〉 = (〈ψ1|p̂x|ψ2〉)∗ =
(∫

ψ∗
1

h̄

i

∂ψ2

∂x
d3r

)∗

= − h̄

i

∫
∂ψ∗

2

∂x
ψ1 d3r .

After integrating by parts, we obtain

〈ψ2|p̂†x|ψ1〉 =
h̄

i

∫
ψ∗

2

∂ψ1

∂x
d3r = 〈ψ2|p̂x|ψ1〉 . (5.13)

The momentum operator is therefore also Hermitian (notice that the
factor i is crucial).

5.2.3 Eigenvectors and Eigenvalues

A nonzero vector |ψa〉 is said to be an eigenvector of the operator Â if

Â|ψa〉 = aα|ψa〉 . (5.14)

The number aα is the eigenvalue associated with this eigenvector.
Writing (5.12) with |ψ〉 = |ψα〉 we deduce that the eigenvalues aα of

Hermitian operators are real. In addition, if |ψα〉 and |ψβ〉 are two eigenvectors
of a Hermitian operator associated with different eigenvalues aα and aβ , they
are orthogonal. We have, indeed,

〈ψα|Â|ψβ〉 = 〈ψα|
(
Â|ψβ〉

)
= aβ 〈ψα|ψβ〉

=
(
〈ψα|Â

)
|ψβ〉 = aα 〈ψα|ψβ〉 ,

which implies 〈ψα|ψβ〉 = 0 if aα �= aβ .
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5.2.4 Summary: Syntax Rules in Dirac’s Formalism

1. When a bra is on the left of a ket, they contract to give a number:

(〈ψ2|)(|ψ1〉) = 〈ψ2|ψ1〉 .

2. The Hermitian conjugate of an expression is obtained by

– reversing the order of the terms
– transforming

(a) the operators into their adjoints,
(b) the kets into bras and vice versa,
(c) the numbers into their complex conjugates.

For example, the Hermitian conjugate of λ|φ〉〈ψ|Â†B̂ is λ∗B̂†Â|ψ〉〈φ| .

5.3 The Spectral Theorem

The notion of Hilbertian bases and the spectral theorem of F. Riesz play a
central role in the physical interpretation of quantum mechanics.

5.3.1 Hilbertian Bases

In nonrelativistic quantum mechanics, the Hilbert spaces which are used are
always separable. This implies the existence of at least one denumerable
orthonormal basis, also called a Hilbertian basis. Consider the example of
L2(R). The family {φn} of Hermite functions defined in (4.13),

φn(x) = cn ex2/2

(
d
dx

)n

e−x2
, n = 0, 1, 2, ... , (5.15)

is a particular Hilbertian basis of this space. We have∫ +∞

−∞
φ∗

n(x) φm(x) dx = δn,m , (5.16)

and any square-integrable function ψ(x) can be expanded in this basis as

ψ(x) =
∞∑

n=0

Cnφn(x) , where Cn =
∫

φ∗
n(x)ψ(x) dx . (5.17)

We notice that there are usually an infinite number of nonvanishing coef-
ficients Cn. More formally and more generally, let {|n〉, n = 1, 2, ...} be a
Hilbertian basis with

〈m|n〉 = δn,m . (5.18)

Any ket |ψ〉 or bra 〈ψ| can be decomposed in this basis as
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|ψ〉 =
∑

n

Cn|n〉 , 〈ψ| =
∑

n

C∗
n〈n| , (5.19)

where Cn = 〈n|ψ〉 and C∗
n = 〈ψ|n〉. We have, therefore, 〈ψ|ψ〉 =

∑
n |Cn|2.

We remark that the set of coordinates {Cn} in the basis {|n〉} defines |ψ〉 (or
ψ(x)) completely. Therefore it is a new representation of the state |ψ〉, as we
anticipated above in (5.3). Moreover, if |ψ〉 =

∑
n Cn|n〉 and |χ〉 =

∑
n Bn|n〉,

then

〈χ|ψ〉 =
∑

n

B∗
n Cn . (5.20)

5.3.2 Projectors and Closure Relation

The expression |u〉〈v| can be considered as an operator if we use Dirac’s
multiplication rules:

(|u〉〈v|)|ψ〉 = |u〉〈v|ψ〉 = λ|u〉 , (5.21)

where λ is the complex number 〈v|ψ〉. Consider a Hilbertian basis {|n〉 , n =
1, 2, ...}. The operator

P̂n = |n〉〈n| (5.22)

is a projection operator, or projector, onto the state |n〉, i. e.

P̂n|ψ〉 = (|n〉〈n|)|ψ〉 = 〈n|ψ〉|n〉 = Cn|n〉 (5.23)

and P̂ 2
n = P̂n.

This can be extended to any subspace Eν of EH generated by a subset {|n〉,
n ∈ {ν}} of basis vectors. We define the projector P̂ν onto this subspace as

P̂ν =
∑

n∈{ν}
P̂n . (5.24)

The projection of |ψ〉 onto the entire Hilbert space is naturally |ψ〉 itself.
Therefore we have the important closure relation, or decomposition of the
identity,∑

all n

P̂n =
∑
all n

|n〉〈n| = Î , (5.25)

where Î is the identity operator.

5.3.3 The Spectral Decomposition of an Operator

Consider a Hermitian operator Â = Â†. The set of its eigenvalues is denoted
by {aα, α = 1, 2, . . . }, and the corresponding normalized eigenvectors are
|α, r〉:
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Â|α, r〉 = aα |α, r〉 . (5.26)

We recall that the eigenvalues aα are real since Â = Â†, and that two eigen-
vectors corresponding to two different eigenvalues are orthogonal. Here, by
convention, two different indices α and β correspond to two different eigen-
values aα �= aβ . In order to write the eigenvectors, we introduce the extra
label r, because the eigensubspace corresponding to the eigenvalue aα may be
of dimension nα > 1; r then takes the values r = 1, 2, . . . , nα. When nα > 1,
we say that the eigenvalue aα is degenerate with a degree of degeneracy nα.
We choose these vectors orthonormal:

〈β, r′|α, r〉 = δα,βδr,r′ . (5.27)

We shall use frequently the following fundamental theorem of Hilbertian
analysis, called the spectral theorem and due to Frederic Riesz:

The set {|α, r〉} of orthonormal eigenvectors of a Hermitian operator is a
Hilbertian basis of EH.

Consequences.
(i) Any vector |ψ〉 can be expanded in the set of the eigenvectors of Â,
{|α, r〉}. Equivalently, we have a decomposition of the identity:

Î =
∑
α

nα∑
r=1

|α, r〉〈α, r| . (5.28)

(ii) The operator Â possesses a spectral decomposition, i. e. we can write it
as

Â =
∑
α

nα∑
r=1

aα |α, r〉〈α, r| . (5.29)

Strictly speaking, our formulation of the spectral theorem is valid in finite-
dimensional spaces only. For infinite-dimensional spaces, the formulation
needs in principle to be refined, and based rather on the properties which fol-
low from (5.28) and (5.29). It is nevertheless convenient to work in the above
terminology. Using a mathematically rigorous language would not change the
conclusions that we shall reach, but would certainly obscure the discussion.

5.3.4 Matrix Representations

Consider a Hermitian basis {|n〉, n = 1, 2, ...} and the formulas (5.19) and
(5.20). In this basis, |ψ〉 can be represented by a (possibly infinite) column
vector, and 〈ψ| can be represented by a row vector, as follows:
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|ψ〉 ⇔

⎛
⎜⎜⎜⎜⎜⎜⎝

C1

C2

...
Cn

...

⎞
⎟⎟⎟⎟⎟⎟⎠ , 〈ψ| ⇔ (C∗

1 , C∗
2 , . . . , C∗

n, . . . ) . (5.30)

Similarly, any operator Â is represented, in this basis, by the matrix whose
elements An, m are

An,m = 〈n|Â|m〉 . (5.31)

Indeed, if |χ〉 = Â|ψ〉, and if {Bn} and {Cn} are the coefficients of the
expansions of |χ〉 and |ψ〉, we have

Bn = 〈n|χ〉 = 〈n|
(
Â|ψ〉

)
(5.32)

and, by inserting this in the expansion of |ψ〉, we obtain

Bn =
∑
m

〈n|Â|m〉 Cm (5.33)

Example. Consider a harmonic oscillator of mass m and angular frequency
ω. The matrix representation of the operators x̂ and p̂ in the basis of the
energy eigenfunctions can be obtained easily by using the recursion relations
of the Hermite functions given in Chap. 4, in (4.18). We obtain

x̂ ⇒
√

h̄

2mω

⎛
⎜⎜⎜⎜⎜⎝

0
√

1 0 0 . . .√
1 0

√
2 0 . . .

0
√

2 0
√

3 . . .

0 0
√

3 0 . . .
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎠ , (5.34)

p̂ ⇒ −i

√
mωh̄

2

⎛
⎜⎜⎜⎜⎜⎝

0
√

1 0 0 . . .

−√
1 0

√
2 0 . . .

0 −√
2 0

√
3 . . .

0 0 −√
3 0 . . .

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎠ . (5.35)

In this basis, the matrix which represents the Hamiltonian is diagonal.

The matrices given above are nothing but the (infinite) matrices that, in his re-
markable inspiration, Heisenberg introduced as early as 1924. The previous pages
reflect the work done by Schrödinger and Dirac when they unified wave mechanics
and matrix mechanics.
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5.4 Measurement of Physical Quantities

In Sect. 5.5, when stating the general principles of quantum mechanics, we
shall generalize a statement made in Chap. 3 with respect to wave mechanics:
with each physical quantity A we associate a Hermitian operator Â. The
expectation value 〈a〉 and the dispersion ∆a of the possible results are then
given by

〈a〉 = 〈ψ|Â|ψ〉 , ∆a2 = 〈ψ|Â2|ψ〉 − 〈a〉2 . (5.36)

Here |ψ〉 designates the state of the system when the measurement is per-
formed. The purpose of this section is to analyze the consequence of this
statement in terms of the possible results of an individual measurement, and
also to give a constraint on the state of the system after the measurement
has been performed. The property we wish to establish is the following:

In a measurement of a quantity A, the only possible results of the mea-
surement are the eigenvalues aα of the observable Â.

We denote by {|α〉} a normalized set of eigenvectors of Â, associated
with the eigenvalues aα. For simplicity we restrict ourselves here to the case
where the eigenvalues aα are not degenerate. Owing to the spectral theorem,
the normalized state vector |ψ〉 of the system before the measurement is
performed can be expanded as follows:

|ψ〉 =
∑
α

Cα |α〉 , Cα = 〈α|ψ〉 ,
∑
α

|Cα|2 = 1 . (5.37)

The expectation value 〈a〉 of the physical quantity A is

〈a〉 = 〈ψ|Â|ψ〉 =
∑
α

aα |Cα|2 . (5.38)

This formula can be read as the expectation value of a random variable with
possible outcomes aα and probabilities |Cα|2. This is in agreement with the
property that we want to establish and, in addition, it yields the probability
|Cα|2 of finding the value aα as a result of the measurement. It is plausible
that |Cα|2 is the probability of finding aα. This probability law is properly
normalized. Furthermore, if the particle is in the state |α0〉, then |Cα|2 =
δα,α0 , and we are sure to find the result aα0 and no other result.

In order to be convinced that the only possible results of the measurement
of the quantity A are the eigenvalues aα, we first prove the following theorem:

The mean square deviation ∆a of an observable Â vanishes if and only if
the state |ψ〉 is an eigenstate of Â.

The proof is simple. If |ψ〉 is an eigenstate of Â with eigenvalue aα, then
Â|ψ〉 = α|ψ〉 and Â2|ψ〉 = α2|ψ〉. Therefore the expectation values of A and
A2 are 〈a〉 = α and 〈a2〉 = α2, respectively: the variance ∆a2 = 〈a2〉 − 〈a〉2
vanishes.
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Conversely, consider the norm of the vector (Â− 〈a〉Î)|ψ〉, where Î is the
identity operator. We obtain

‖(Â − 〈a〉Î)|ψ〉‖2 = 〈ψ|(Â − 〈a〉Î)2|ψ〉
= 〈ψ|Â2|ψ〉 − 〈a〉2 = ∆a2 .

If the mean square deviation vanishes, this means that the vector (Â−〈a〉Î)|ψ〉
is the null vector, or, in other words, Â|ψ〉 = 〈a〉 |ψ〉. Therefore if ∆a = 0,
|ψ〉 is necessarily an eigenstate of Â with eigenvalue 〈a〉.

Consider a measurement of the physical quantity A and suppose that
we find the result a with as good an accuracy as we wish. If the act of
measuring gives us information, which is the basis of physics, we are sure
that immediately after this measurement, i. e. before the system has evolved
appreciably, a new measurement of the same quantity performed on the state
of the system will give us the same answer a with probability one. In other
words, after a measurement, the system is in a state for which the quantity
A is well defined. Owing to the above theorem, this can only happen if a
belongs to the set of eigenvalues {aα}.

We can deduce the probability P(aα) of finding the result aα in a mea-
surement of A. We simply use the result (5.38), which can be generalized
to any power of A, assuming that the operator Ân is associated with the
physical quantity An:

〈an〉 = 〈ψ|Ân|ψ〉 =
∑
α

an
α |Cα|2 . (5.39)

A probability law is completely determined if one knows its possible outcomes
and its moments 〈an〉. In the present case the set of possible outcomes is the
set of eigenvalues {aα}. Consequently, the only possible set of probabilities
which can lead to (5.39) is P(aα) = |Cα|2 = |〈α|ψ〉|2.

Remarks
1. The last formula must be modified when the eigenvalue aα is degener-
ate. We shall come back to this technical point when stating precisely the
principles of quantum mechanics.
2. In the cases of the position and momentum observables x̂ and p̂, the
spectrum, i. e. the set of eigenvalues, is a continuous set, and the previous
statement must be modified appropriately, in order to recover the probability
laws of Chaps. 2 and 3. This point will also be considered below.

5.5 The Principles of Quantum Mechanics

We now state the principles of quantum mechanics. These are valid for any
system and generalize the principles that we gave for wave mechanics, which
was concerned with the special case of a point particle. The only restriction is
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that we are dealing here with physical systems which are in “pure states”. The
notion of “statistical mixtures” is considered in Appendix D. This distinction
is well known in optics: completely polarized light is in a pure polarization
state (linear, circular, etc.), whereas nonpolarized or partially polarized light
is a statistical mixture of polarization states.

First Principle: the Superposition Principle
With each physical system one can associate an appropriate Hilbert space
EH. At each time t, the state of the system is completely determined by a
normalized vector |ψ(t)〉 of EH.

This principle entails that any normalized linear superposition |ψ〉 =∑
Ci|ψi〉 of state vectors |ψi〉, where the Ci are complex and such that

〈ψ|ψ〉 =
∑

i,j C∗
j Ci 〈ψj |ψi〉 = 1, is an accessible state vector. Notice that

the convention ‖ψ‖ = 1 leaves an indeterminacy: a state vector is defined up
to a phase factor eiδ (δ real). This phase factor is arbitrary: it is not possible
to make a distinction between |ψ〉 and eiδ|ψ〉 in a measurement or in the
evolution of the state.

However, the relative phases of the various states of the system are not
arbitrary. If |ψ′

1〉 = eiδ1 |ψ1〉 and |ψ′
2〉 = eiδ2 |ψ2〉, the superposition of states

C1|ψ′
1〉 + C2|ψ′

2〉 represents a state different from C1|ψ1〉 + C2|ψ2〉.

Second Principle: Measurements of Physical Quantities
(a) With each physical quantity A one can associate a linear Hermitian
operator Â acting in EH: Â is the observable which represents the quantity
A.
(b) We denote by |ψ〉 the state of the system before the measurement
of A is performed. Whatever |ψ〉 may be, the only possible results of the
measurement are the eigenvalues aα of Â.
(c) We denote by P̂α the projector onto the subspace associated with the
eigenvalue aα. The probability of finding the value aα in a measurement
of A is

P(aα) = ‖ψα‖2 , where |ψα〉 = P̂α|ψ〉 . (5.40)

(d) Immediately after the measurement of A has been performed and has
given the result aα, the new state |ψ′〉 of the system is

|ψ′〉 = |ψα〉/‖ψα‖ . (5.41)
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In the case of a nondegenerate eigenvalue aα, the projector Pα is simply
|α〉〈α|. If the eigenvalue is nα times degenerate, we introduce as in Sect. 5.3.3
the nα orthonormal eigenstates |α, r〉, with r = 1, 2, ..., nα, which span the
eigensubspace Eα. The projector P̂α onto Eα is then

P̂α =
nα∑
r=1

|α, r〉〈α, r| . (5.42)

Equation (5.40) can be written in the equivalent forms

P(aα) = 〈ψ|P̂α|ψ〉 = |〈ψ|ψα〉|2 . (5.43)

Terminology. Statement (b) of the Second Principle is called the quantiza-
tion principle. Statement (c) is called the principle of spectral decomposition.
Statement (d) is the principle of the reduction of the wave packet. It provides
the quantitative formulation of the fact that a measurement perturbs the
system.

The Case of Variables with a Continuous Spectrum. In this case,
the only meaningful prediction is that the result falls in some range of values
[a, a+da[. The discrete probability law (5.40) is then replaced by a continuous
law. In the case of the position observable x of a point particle, for instance,
this law is

P(x) dx = |ψ(x)|2 dx , (5.44)

where the function ψ(x) is the wave function introduced in Chap. 2.

This law can be cast into a form analogous to (5.43) if we introduce the eigenstates
|x〉 of the position operator (see Appendix C):

P(x) dx = |〈x|ψ〉|2 dx .

The “states” |x〉 are not normalizable and do not belong to the Hilbert space.

Expectation Value of a Measurement. Knowing the probability P(aα)
of finding aα in a measurement of A, we can calculate the expectation value
〈a〉 for a system in a state |ψ〉. By definition, we have

〈a〉 =
∑
α

aαP(aα) . (5.45)

Among the various equivalent forms of P(aα) (see (5.43)), we choose P(aα) =
〈ψ|P̂α|ψ〉. We therefore obtain

〈a〉 =
∑
α

aα〈ψ|P̂α|ψ〉 . (5.46)

After applying the spectral theorem (5.29), we know that
∑

α aαP̂α = Â, and
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therefore

〈a〉 = 〈ψ|Â|ψ〉 . (5.47)

The statement (5.36), which we made at the beginning of the Sect. 5.4 as
a direct transcription of the principles of wave mechanics, can therefore be
viewed as a consequence of the more general formulation of the Second Prin-
ciple.

Third Principle: Time Evolution
We denote by |ψ(t)〉 the state of the system at time t. As long as the
system does not undergo any observation, its time evolution is given by
the Schrödinger equation:

ih̄
d
dt

|ψ(t)〉 = Ĥ|ψ(t)〉 , (5.48)

where Ĥ is the energy observable, or Hamiltonian, of the system.

Conservation of the Norm. The norm ‖ψ‖ =
√〈ψ|ψ〉 of a state vector

is time independent. This is a consistency condition for the theory, which
follows from the fact that the Hamiltonian is Hermitian: Ĥ = Ĥ†. Let us
write down the relation (5.48) and its Hermitian conjugate:

ih̄
d
dt

|ψ〉 = Ĥ|ψ〉 , −ih̄
d
dt

〈ψ| = 〈ψ|Ĥ† = 〈ψ|Ĥ .

Multiplying the first relation on the left by 〈ψ| and the second on the right
by |ψ〉 and subtracting, we obtain

ih̄
[
〈ψ|
(

d
dt

|ψ〉
)

+
(

d
dt

〈ψ|
)
|ψ〉
]

= 0 , i. e.
d
dt

〈ψ|ψ〉 = 0 .

Time Dependence of a State Vector. We assume the system is isolated,
i. e. that Ĥ does not depend on time. The energy eigenstates are the eigen-
states of the operator Ĥ:

Ĥ|ψα〉 = Eα|ψα〉 .

We assume, for simplicity, that the eigenvalues Eα are not degenerate. The
set of eigenvectors {|ψα〉} forms a basis of the space EH, in which we can
expand any state vector |ψ〉. At t = 0 we have

|ψ(t = 0)〉 =
∑
α

Cα|ψα〉 , where Cα = 〈ψα|ψ(t = 0)〉 .
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At any later time t we can write |ψ(t)〉 =
∑

α λα(t)|ψα〉, where λα(0) = Cα.
The Schrödinger equation is

ih̄
∑ d

dt
λα(t)|ψα〉 =

∑
λα(t)Eα|ψα〉 .

Since the vectors |ψα〉 are orthogonal, this reduces, for any α, to

ih̄
d
dt

λα(t) = Eαλα(t) .

We therefore obtain the fundamental relation

|ψ(t)〉 =
∑

Cαe−iEαt/h̄|ψα〉 . (5.49)

5.6 Structure of Hilbert Space

Let us return to the First Principle and to the terminology that we have used
of an “appropriate” Hilbert space. The question we address is: what is the
structure of the Hilbert space in which one describes a given system?

5.6.1 Tensor Products of Spaces

For the one-dimensional motion of a particle along an axis x, the Hilbert
space is L2(R), for which the Hermite functions {φn(x), n integer ≥ 0}
form a basis. Consider a particle moving in the xy plane. The appropriate
Hilbert space is L2(R2), i. e. the square-integrable functions ψ(x, y) of two
variables. A particular basis of this space L2(R2) is constituted by the set
{φm(x)φn(y), m, n integer ≥ 0}. In other words, any function Ψ(x, y) of
L2(R2) can be expanded as

Ψ(x, y) =
∑
m,n

Cm,n φm(x)φn(y) . (5.50)

Mathematically, this operation reflects the fact that the space L2(R2) can
be considered as the tensor product of the space L2(R) in which we describe
the motion along x and of the space L2(R) in which we describe the motion
along y. Using Dirac’s notation, (5.50) can be written as

|Ψ〉 =
∑
m,n

Cm,n |φm〉 ⊗ |φn〉 , (5.51)

where |φm〉 ⊗ |φn〉 is by definition the ket of L2(R2) corresponding to
φm(x) φn(y).

In order to define the notion of a tensor product in general, we consider
two Hilbert spaces E and F . We associate with E and F a third Hilbert space
G and a bilinear mapping T of the direct product E × F on G such that the
following apply.
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1. T (E × F) generates G, i. e. any element of G is a (possibly infinite) sum
of elements of the form

T (|u〉, |v〉); |u〉 ∈ E , |v〉 ∈ F .

2. Consider a basis {|em〉} of E and a basis {|fn〉} of F . Then the family
{T (|em〉, |fn〉)} is a basis of G.

The space G is called the tensor product of E and F ; this relation is denoted
G = E ⊗F . The mapping T is written as T (|u〉, |v〉) = |u〉⊗ |v〉. The elements
of E ⊗ F are called tensors; they have the general form

|Ψ〉 =
∑
m,n

Cm,n |em〉 ⊗ |fn〉 . (5.52)

Elements of the form |u〉 ⊗ |v〉 are said to be factorized. Any tensor can be
written in a nonunique way as a (possibly infinite) sum of factorized tensors.

5.6.2 The Appropriate Hilbert Space

In order to define the Hilbert space in which we describe the state of a
quantum system, we introduce the notion of degrees of freedom. A particle
moving in space has three translational degrees of freedom, corresponding to
motions along x, y and z. A system of two particles in space has six degrees
of freedom. We shall see later that a particle may possess an intrinsic angular
momentum (its spin), which results in a new degree of freedom.

Each degree of freedom is described in a particular Hilbert space. For
instance the motion along x is described in the space of square-integrable
functions of the variable x, L2(R), as we have just said. We postulate that any
given system involving N degrees of freedom can be described in the Hilbert
space E which is the tensor product of the Hilbert spaces Ei, i = 1, 2, ..., N ,
in which each of these N degrees of freedom is described:

E = E1 ⊗ E2 ⊗ . . . ⊗ EN .

5.6.3 Properties of Tensor Products

1. If the dimensions NE and NF of E and F are finite, the dimension of
G = E ⊗ F is NG = NENF .

2. When there are no ambiguities, it is useful to use the compact notations
|u〉 ⊗ |v〉 ≡ |u〉|v〉 ≡ |u, v〉.

3. The Hermitian scalar product of two factorized kets |ψ〉 = |u〉 ⊗ |v〉 and
|χ〉 = |u′〉 ⊗ |v′〉 factorizes as follows:

〈χ|ψ〉 = 〈u′|u〉 〈v′|v〉 . (5.53)
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5.6.4 Operators in a Tensor Product Space

Consider two operators ÂE and B̂F acting in E and F , respectively. We can
define the tensor product of the operators ÂE and B̂F ,

ĈG = ÂE ⊗ B̂F ,

by the rule

(ÂE ⊗ B̂F )(|u〉 ⊗ |v〉) = (ÂE |u〉) ⊗ (B̂F |v〉) . (5.54)

This allows us to define the action of ĈG on the elements of the factorized
basis {|m〉 ⊗ |n〉} and, consequently, on any element of G. In particular, we
can define the continuation, or extension, of the operator ÂE in G by ÂG =
ÂE ⊗ ÎF , where ÎF is the identity operator in F .

5.6.5 Simple Examples

A Two-Particle System. Consider two particles, labeled 1 and 2, of masses
m1 and m2, performing a one-dimensional harmonic motion. The appropriate
Hilbert space is the tensor product of individual Hilbert spaces EH = E(1) ⊗
E(2) = L2(R) ⊗ L2(R) = L2(R2). The Hamiltonian of the system can be
written as

Ĥ =
(

p̂2
1

2m1
+

1
2
m1ω

2
1 x̂2

1

)
⊗ Î2 + Î1 ⊗

(
p̂2
2

2m2
+

1
2
m2ω

2
2 x̂2

2

)
.

When there is no ambiguity, this can be written in the more compact form

Ĥ =
p̂2
1

2m1
+

1
2
m1ω

2
1 x̂2

1 +
p̂2
2

2m2
+

1
2
m2ω

2
2 x̂2

2 .

From the wave-function point of view, the state of the system is described by
a function Ψ(x1, x2) which is square integrable in both of the variables x1 and
x2. The operators p̂1 and p̂2 are −ih̄∂/∂x1 and −ih̄∂/∂x2, respectively. We
know the solution of the eigenvalue problem for a one-dimensional harmonic
oscillator (Sect. 4.2). The eigenfunctions are the Hermite functions φn(x/a)
(with a =

√
h̄/mω) and the eigenvalues are (n + 1/2)h̄ω. In the problem

considered here, an eigenbasis of Ĥ is therefore given by the set

Φn1,n2(x1, x2) = φn1(x1/a1) φn2(x2/a2) , n1, n2 integers ,

where ai = (h̄/miωi)1/2. The associated eigenvalues are

En1,n2 =
(

n1 +
1
2

)
h̄ω1 +

(
n2 +

1
2

)
h̄ω2 .

These eigenvalues are nondegenerate, except if ω1/ω2 is rational. Any function
Ψ(x1, x2) of L2(R) ⊗ L2(R) = L2(R2) can be written as

Ψ(x1, x2) =
∑

n1,n2

Cn1,n2 φn1(x1/a1) φn2(x2/a2) .
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Particle in a Box. When we studied in Chap. 4 the motion of a particle
in a three-dimensional cubic box of side L, it was convenient to separate the
motions of the particle along x, y, z and to seek particular solutions of the
form

Ψn1,n2,n3(x, y, z) = ψn1(x) ψn2(y) ψn3(z)
∝ sin(n1πx/L) sin(n2πy/L) sin(n3πz/L) .

In the present language these are nothing but factorizable tensors. A general
wave function is of the form

Ψ(x, y, z) =
∑

Cn1,n2,n3 Ψn1,n2,n3(x, y, z) .

More subtle examples will occur when we study particles with internal
degrees of freedom, such as the magnetic moment of an atom in the Stern–
Gerlach experiment or the spin 1/2 of the electron.

5.7 Reversible Evolution and the Measurement Process

The principles we have just stated imply that there are two different types of
evolution for a quantum system. When the system is not subject to a mea-
surement, its evolution can be considered as reversible since a knowledge of
the state vector |ψ(t)〉 at time t and of the Hamiltonian between an initial
time ti and the time t allows one to determine4 the state vector at the initial
time |ψ(ti)〉. The reduction of the wave packet which occurs in a measure-
ment (Second Principle part (d) in Sect. 5.5) is, in contrast, fundamentally
irreversible: after a single measurement has been made on a given system, one
cannot reconstruct the state vector |ψ〉 of the system before the measurement.
We only know the projection P̂α|ψ〉.

The coexistence of two different types of evolution is very paradoxical.
Indeed, it should in principle be possible to describe the set of atoms which
constitute the detector by quantum mechanics, and to determine the Hamil-
tonian which couples this detector to the system S on which the measure-
ment is made. The evolution of the large system {S + detector} should then
be governed by the Schrödinger equation during the measurement process,
in contradiction with the principle of wave packet reduction.

Actually, the principle of such a procedure was outlined by Von Neumann
in the early days of quantum mechanics. Consider a system S on which we
wish to measure a quantity A corresponding to the operator Â. We denote
by {|α〉} the eigenstates of Â. To perform this measurement we couple this
system to a quantum detector D. The Hilbert space in which we describe the
state of the ensemble “S and D” is the tensor product of the space associated

4 This does not depend on whether the Hamiltonian is time dependent.
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with the system S and the space describing the state of the detector, cor-
responding to the various outcomes of the measurement. Initially, when no
measurement has been made, the detector is in the state |D0〉. For instance,
if the detector is a photomultiplier, |D0〉 is the state for which no photon has
been counted. When we couple the system and the detector, we arrange Ĥ
so that the interaction between S and D leads to the following evolution:

|α〉 ⊗ |D0〉 −→ |α〉 ⊗ |Dα〉 ,
|α′〉 ⊗ |D0〉 −→ |α′〉 ⊗ |Dα′〉 , . . . ,

(5.55)

where the two states |Dα〉 and |Dα′〉 are “macroscopically” different from
each other. Each state |Dα〉 corresponds, for instance, to a given position of
the needle on a meter, or to a given number of counts written in the memory
of a computer. The evolution given in (5.55) expresses the intuitive fact that
the detector should give an indication Dα when the system S is with certainty
in the state |α〉.

If the system S is in a state
∑

α cα|α〉 before the measurement, the lin-
earity of the Schrödinger equation implies that the evolution of the ensemble
S + D reads(∑

α

cα|α〉
)

⊗ |D0〉 −→
∑
α

cα|α〉 ⊗ |Dα〉 . (5.56)

This result is quite different from one would expect from part (d) of the
Second Principle, which would be, rather,(∑

α

cα|α〉
)
⊗ |D0〉 −→

⎧⎨
⎩

|α〉 ⊗ |Dα〉 with a probability |cα|2
|α′〉 ⊗ |Dα′〉 with a probability |cα′ |2
. . .

. (5.57)

This difference is not surprising, since the Schrödinger equation is per-
fectly deterministic, and cannot generate the nondeterministic evolution
(5.57). The relevant question at this stage is the following: what are the
consequences of the difference between (5.56) and (5.57), both in terms of
the interpretation of quantum mechanics and in terms of the prediction of
experimental results.

We first note that (5.56) raises a new and fundamental question. The state
of the ensemble S + D is a linear superposition of macroscopically different
states, and it is quite difficult to obtain intuitive insight into its meaning: what
is the significance of the sentence “the oscilloscope is in a linear superposition
of the two results 1 volt and 2 volts”? The most celebrated example of a
quantum superposition of macroscopic states is the Schrödinger cat paradox.
By considering a cat shut up in a chamber with a radioactive substance, a
small flask of hydrocyanic acid and a “diabolical device”, one arrives at the
conclusion that the state of the whole system after some time has “the living
and the dead cat (pardon the expression) mixed or smeared out in equal
parts”.
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The possible solutions to these paradoxical situations involving superposi-
tions of macroscopic states are at present the subject of many public debates
and discussions. One can, of course, assume that quantum mechanics does not
apply to large objects such as a detector or a cat, which must be sufficiently
complex that it can be read or seen by a human eye. Notice, however, that
there does not exist at present any experiment that can tell us the critical
size above which quantum mechanics would not apply.

A possible interpretation of (5.56) is to say that the human observer
should be included as a part of the detector. In this case (5.56) expresses
the fact that the global wave function is a superposition of several possible
“worlds”, each of which corresponds to a possible result of the measurement:
as a result of observation, the world splits into several new worlds. As long
as it is not possible to travel from one world to another, this interpretation
does not lead to any contradiction with the postulates presented above. It is
also an essential ingredient of several science-fiction novels.

However this “many worlds” interpretation is rejected by several authors,
who consider that it is meaningless to consider a very large or infinite number
of worlds with which we have no contact, and which have no influence on
us. An opposite view considers that the discontinuity in the measurement
operation (part (d) of the Second Principle) indeed exists, and that it takes
place in the mind of the observer. Before the observer becomes aware of
the results, the system is in the complicated superposition of states (5.56),
which includes all possible results of the measurement. It is when the observer
becomes aware of the result that the state vector is projected onto the state
P̂α|ψ〉 (or that the poor cat is killed); one is then left with (5.57).

Between these two extreme points of view, one finds a large class of physi-
cists who do not ask quantum mechanics to give a proper description of “re-
ality”, but simply to give an operational method for calculating the possible
outcomes of an experiment. In this respect, an appropriate analysis of the
measuring apparatus along the lines initiated by Von Neumann indeed per-
mits one to “circumvent” part (d) of the Second Principle. To summarize
these ideas, we first note that, from a purely operational point of view, part
(d) of the Second Principle becomes of interest only if one performs at least
two consecutive measurements on a system S. In a single measurement, it is
sufficient to know the various possible outcomes and the corresponding prob-
abilities, which are given by parts (a), (b) and (c) of the Second Principle.
However, in the case of two measurements, it is essential to know the state of
S after the first measurement in order to evaluate the probabilities obtained
in the second measurement. Suppose we perform on S a sequence of mea-
surements corresponding to the observables Â, B̂, . . . ; we want to know the
probability of finding the sequence of results aα, bβ , . . . . According to part (d)
of the Second Principle, when the first measurement is made, we must project
the state vector onto |α〉, then let it evolve under the Schrödinger equation
until we perform the second measurement, then project it again onto |β〉, etc.
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However, without invoking the reduction of the wave packet, and by perform-
ing an appropriate quantum analysis of the detectors along lines similar to
(5.56), including their coupling to the outside environment, one can calculate
the probability that detector A displays the value aα, detector B the value
bβ , etc., after the sequence of measurements has been performed. One finds
that this probability coincides with the probability one obtains by assuming
the reduction of the wave packet (see Exercise 5.5).

In this context, the reduction of the wave packet appears to be a conve-
nient tool rather than a new principle. It allows one to evaluate results of
multiple measurements without getting involved in a complicated description
of all the detectors which participate in the series of measurements. This ap-
proach, which has undergone much recent development, is called decoherence
theory. The reason for this name is that the theory is based on the fact that
quantum correlations (coherences), which appear between the various macro-
scopically different states |α〉 ⊗ |Dα〉 as a consequence of the measurement
process, are very rapidly washed out owing to the coupling of the detectors
to their environment.

Further Reading

• The problem of measurement in quantum mechanics has caused debates
which started immediately after the theory was founded and which are still
going on. The book Quantum Theory and Measurement, edited by J.A.
Wheeler and W.H. Zurek, Princeton University Press, Princeton (1983),
contains the essential papers on this subject published before 1982. In par-
ticular, an English translation of the paper in which Schrödinger discussed
the fate of a cat in front of a diabolical device is reproduced in this book.
See also S. Goldstein, “Quantum theory without observers”, Phys. Today,
March 1998, p. 42.

• The book entitled The Many-World Interpretation of Quantum Mechanics,
by B.S. DeWitt and N. Graham, eds., Princeton University Press, Prince-
ton (1973) presents several papers centered on this particular theory.

• The possible role of human consciousness in wave packet reduction was ad-
vocated in particular by E.P. Wigner, Symmetries and Reflection, Indiana
University Press, Bloomington (1967).

• For recent discussions of the decoherence approach, or rather of the de-
coherence approaches since different conceptions of the notion of reality
emerge among different authors, see for instance W.H. Zurek, Phys. Today
44, 36 (1991); M. Gell-Mann, The Quark and the Jaguar, Little, Brown,
London (1994); S. Haroche, “Entanglement, decoherence, and the quan-
tum/classical boundary”, Phys. Today, July 1998, p. 36; R. Omnès, Un-
derstanding Quantum Mechanics, Princeton University Press, Princeton
(1999); F. Laloë, “Do we really understand quantum mechanics?”, Am. J.
Phys. 69, 655 (2001).
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• Recent experimental results on quantum superposition of mesoscopic states
(“Schrödinger kittens”) are presented in M. Brune et al., Phys. Rev. Lett.
77, 4887 (1996). See also P. Yam, “Bringing Schrödinger cat to life”, Sci.
Am., June 1997, p. 104; P. Kwiat, H. Weinfurter and A. Zeilinger, “Quan-
tum seeing in the dark”, Sci. Am., November 1996, p. 52.

Exercises

5.1. Translation and rotation operators.

a. Consider a one-dimensional problem and a wave function ψ(x) which can
be expanded in a Taylor series. Show that the operator T̂ (x0) = e−ix0p̂/h̄,
where x0 is a length and p̂ is the momentum operator, is such that

T̂ (x0)ψ(x) = ψ(x − x0) .

N.B. The expansion eiû =
∑∞

n=0 (iû)n
/n! is mathematically legitimate.

b. We now consider a two-dimensional problem in the xy plane and define
the z component of the angular momentum operator by (cf. Table 3.1)

L̂z = x̂p̂y − ŷp̂x = −ih̄
(

x
∂

∂y
− y

∂

∂x

)
= −ih̄

∂

∂θ
,

where the polar coordinates r, θ are defined by r =
(
x2 + y2

)1/2 and
θ = arctan(y/x). Show that the operator R̂(ϕ) = e−iϕL̂z/h̄, where ϕ is
dimensionless, is such that

R̂(ϕ)ψ(r, θ) = ψ(r, θ − ϕ) .

5.2. The evolution operator. Consider a system whose Hamiltonian does
not depend on time (an isolated system). Show that the state vector at time
t, denoted |ψ(t)〉, can be deduced from the state vector |ψ(t0)〉 at the initial
time using

|ψ(t)〉 = Û(t − t0) |ψ(t0)〉 , where U(τ) = e−iĤτ/h̄ . (5.58)

Show that Û(τ) is unitary, i. e. Û† = Û−1.

5.3. Heisenberg representation. Consider an isolated system whose
Hamiltonian is Ĥ. We denote by |ψ(0)〉 the state vector of the system at
time t = 0. We want to calculate the expectation value a(t) of the results of
the measurement of an observable Â at time t.

a. Express a(t) in terms of |ψ(0)〉, Â and the evolution operator Û(t) defined
in the previous exercise.
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b. Show that a(t) can be written as the expectation value of an operator
Â(t) for the state |ψ(0)〉. Show that Â(t) can be determined from

ih̄
dÂ(t)

dt
= [Â(t), Ĥ] and Â(0) = Â . (5.59)

This approach is called the Heisenberg representation (or Heisenberg picture):
the state vector is time independent, and the operators obey the Heisenberg
equation (5.59).

5.4. Dirac formalism with a two-state problem. Consider two normal-
ized eigenstates |ψ1〉 and |ψ2〉 of a Hamiltonian Ĥ corresponding to different
eigenvalues E1 and E2 (one can set E1 − E2 = h̄ω).

a. Show that |ψ1〉 and |ψ2〉 are orthogonal.
b. Consider the state |ψ−〉 = {|ψ1〉 − |ψ2〉}/

√
2, calculate the expectation

value 〈E〉 of the energy and the dispersion ∆E in this state.
c. Assume that at t = 0 the system is in the state |ψ(t = 0)〉 = |ψ−〉. What

is the state of the system |ψ(t)〉 at time t?
d. Consider an observable Â defined by Â|ψ1〉 = |ψ2〉, and Â|ψ2〉 = |ψ1〉.

What are the eigenvalues a of Â in the subspace generated by |ψ1〉 and
|ψ2〉?

e. Construct the corresponding combinations of |ψ1〉 and |ψ2〉, which are
eigenvectors of Â.

f. Assume that at t = 0 the system is in the state |ψ−〉 corresponding to
the eigenvalue a = −1. What is the probability of finding a = −1 in a
measurement of A at a later time t?

5.5. Successive measurements and the principle of wave packet re-
duction. Consider a quantum system S which is prepared in a state |ψ0〉 at
time t = 0, and two observables Â and B̂ associated with this system. We
are interested in the (joint) probability P (αi, 0; βj , t) that a measurement of
A at time t = 0 gives the result αi and that a measurement of B at time t
gives the result βj .

We note using {|ai〉} (resp. {|bj〉}) a basis of eigenvectors of Â (resp. B̂)
associated with the eigenvalues {αi} (resp. {βu}). We assume for simplicity
that the spectra of Â and B̂ are nondegenerate.

a. In this question, we assume we can apply part (d) of Second Principle
(reduction of the wave packet).
i) In terms of 〈ai|ψ0〉, express the probability that a measurement of A

gives the result αi at time t = 0.
ii) We assume that the measurement of A has given the result αi.

i. What is the state |ψ(0+)〉 of the system just after this measure-
ment?
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ii. Write the state of the system at time t using the evolution oper-
ator e−iĤSt/h̄ (see Exercise 2), where ĤS is the Hamiltonian of
the system S.

iii. Express in terms of 〈bj |e−iĤSt/h̄|ai〉 the probability that a mea-
surement of B at time t gives the result βj .

iii) Calculate the desired probability P (αi, 0;βj , t).
b. In this section, we do not apply the reduction part (d) of the Second

Principle. We consider two quantum detectors A and B which measure,
respectively, the physical quantities A and B. The initial state of the
ensemble E , formed by S, A and B, can be written as:

|Ψ0〉 = |ψ0〉 ⊗ |A0〉 ⊗ |B0〉 ,

where the states |A0〉 and |B0〉 correspond to detectors which have not
yet measured anything. We assume that the measurement operation of A
amounts to coupling S and A in order to generate the following evolution:

|ai〉 ⊗ |A0〉 ⊗ |B〉 → |ai〉 ⊗ |Ai〉 ⊗ |B〉 (|B〉 : arbitrary state of B) .

We make the similar assumption concerning the measurement of B:

|bj〉 ⊗ |A〉 ⊗ |B0〉 → |bj〉 ⊗ |A〉 ⊗ |Bj〉 (|A〉 : arbitrary state of A) .

Here the states |Ai〉 (resp. |Bj〉) are macroscopically different from each
other and they correspond to the different possible result αi (resp. βj) dis-
played on the detector A (resp. B). Apart from time intervals when mea-
surements of A and B are performed, and where couplings are present,
the evolution of E occurs via the Hamiltonian

Ĥ = ĤS + ĤA + ĤB .

We assume that the states |A0〉 and |Ai〉 (resp. |B0〉 and |Bj〉) are eigen-
states of ĤA (resp. ĤB). We note A0 and Ai (resp. B0 and Bj) the
corresponding eigenvalues. The time interval of the coupling correspond-
ing to the measurement of A or B is assumed to be sufficiently small so
that we can neglect the action of Ĥ during that interval.
(a) Write the state of E at time 0+, i. e. just after the coupling of S and

A which results in a measurement of A.
(b) Write the state of E at time t, just before the measurement of B. In

order to do that, introduce the evolution operator e−iĤt/h̄ and use
the fact that ĤS , ĤA and ĤB all commute.

(c) Write the state of E at time t+, just after the measurement of B.
(d) What is the probability of finding the detector A in the state |Ai〉

and the detector B in the state |Bj〉? Compare the result with what
one obtains by applying the principle of wave packet reduction.

c. Discuss the differences between the two approaches, both in their princi-
ples and in their practical aspects.
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Act as a primitive and predict as a strategist.

René Char

In Chaps. 2 to 4, we became familiar with quantum theory in the form of
wave mechanics. This approach is well suited for studying the quantum mo-
tion of a point particle in space. The physics of this problem is simple and
intuitive. However, the mathematical tools turn out to be somewhat cumber-
some: the Hilbert space has an infinite number of dimensions, we make use
of the Fourier transform, etc. In the present chapter we want to exploit the
matrix formulation presented in the previous chapter, in order to consider a
physical problem which, in contrast, can be described in the simplest possible
mathematical structure: a two-dimensional Hilbert space.

We choose to study a particular problem, the ammonia maser, for which
we shall make use of the physical results obtained for the NH3 molecule in
Chap. 4. However, the results we shall obtain actually have a much larger
class of applications than this particular example, which we have simplified
intentionally. Numerous physical systems can be described in two- or three-
dimensional Hilbert spaces, either exactly (the electron spin or magnetic mo-
ment that we shall meet later on; light polarization, which we briefly consider
in Sect. 6.2; the physics of neutral K and B mesons in particle physics, the
problem of neutrino masses; etc.) or approximately (masers, laser physics and
many atomic-physics problems).

The vectors of a two-dimensional space can all be constructed as linear
superpositions of two independent basis vectors, and one frequently calls
such systems two-state systems. Of course, these systems can be in an infinite
number of states, but these states are all linear superpositions of two of them.
This is the reason for this terminology.

6.1 Two-Dimensional Hilbert Space

Consider two orthonormal basis vectors |ψ1〉 and |ψ2〉. We can use a matrix
representation of the form
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|ψ1〉 ⇔
(

1
0

)
, |ψ2〉 ⇔

(
0
1

)
, (6.1)

〈ψ1| ⇔ (1 0), 〈ψ2| ⇔ (0 1) , (6.2)

and the general form of any vector |ψ〉 is

|ψ〉 = α|ψ1〉 + β|ψ2〉 ⇔
(

α
β

)
, (6.3)

〈ψ| = α∗〈ψ1| + β∗〈ψ2| ⇔ (α∗ β∗) , (6.4)

with the normalization condition 〈ψ|ψ〉 = |α|2 + |β|2 = 1.
A linear operator in this space can be represented by a 2 × 2 complex

matrix. The most general 2 × 2 Hermitian matrix M̂ can be written as

M̂ =
(

a + d b − ic
b + ic a − d

)
= aÎ + bσ̂1 + cσ̂2 + dσ̂3 , a, b, c, d real numbers,

where Î is the unit matrix and where the Hermitian matrices σ̂k, which are
called the Pauli matrices, are defined as

σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
. (6.5)

6.2 A Familiar Example: the Polarization of Light

There exists a familiar phenomenon for which a description in a two-dimen-
sional Hilbert space is natural: the polarization of light.

6.2.1 Polarization States of a Photon

Light waves are transverse. Classically, the polarization of light describes the
behavior of the electric-field vector, transverse to the direction of propaga-
tion. There exist various types of polarization; in general it is elliptical, with
the limiting cases of circular or linear. Natural light is not polarized; more
precisely, it is in a statistical mixture of polarization states. Light with an
arbitrary polarization can be prepared by means of a suitable combination of
polarizers and quarter- or half-wave plates. In practice, two types of polarizers
are used. One-way polarizers transmit light which has a polarization parallel
to a given axis, and absorb light polarized orthogonally to that axis. Two-
way polarizers transmit light that is incident with a given linear polarization,
and deflect in another direction the light with the orthogonal polarization
component (Fig. 6.1).

Rather than working with the classical description of the electric field
vector, we shall consider here the polarization states of the individual photons
which constitute the light beam. These photons are elementary particles and
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incident
light beam

(a) (b)

no
light

Fig. 6.1. (a) A one-way polarizer: incident light with a polarization parallel to
the axis of the polarizer is transmitted, and light with a polarization orthogonal
to the axis is absorbed; (b) a two-way polarizer (e. g. a calcite prism): the two
polarizations emerge in different directions. This latter polarizer, when considered
for a single photon, is very similar to the Stern–Gerlach apparatus for a spin of 1/2
(see Chaps. 8 and 12)

cannot be split into pieces. A beam of red light with a power of 1 watt carries
3 × 1018 photons per second. Such photons do not interact with one another
because their mutual separations are much too large. Therefore, a light beam
is a collection of independent photons.

One describes the polarization states of a photon in a two-dimensional
Hilbert space. In this space, we can choose the basis states corresponding to
horizontal and vertical polarization states, which we write as

|→〉 and |↑〉 , (6.6)

respectively. These states are defined physically by the fact that if the photon
is in the polarization state |→〉, it is transmitted with probability 1 by a one-
way polarizer whose axis is horizontal. In the opposite case, if the polarization
state of the photon is |↑〉, it is absorbed by this same polarizer, i. e. it is
transmitted with probability zero, but it is transmitted with probability one
by a vertical polarizer. By definition, these states are such that 〈↑|→〉 = 0.

We denote by |θ〉 the state of the photon corresponding to a linear polar-
ization in the direction making an angle θ with respect to the horizontal axis
(0 ≤ θ < π). This state is a linear combination of the basis states (6.6)

|θ〉 = cos θ |→〉 + sin θ |↑〉 , (6.7)

with real components.
If there existed only states with a linear polarization, there would be no

need to introduce a Hilbert space formalism. Geometry in a two-dimensional
Euclidean space, consisting of linear combinations of |→〉 and |↑〉 with real
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coefficients, would suffice.1 However it is known in optics that one must also
consider states with complex components, such as

|ΨL,R〉 =
1√
2
|→〉 ± i√

2
|↑〉 . (6.8)

One can easily check that these states keep the same mathematical form
if they are expressed in any other basis of linear polarization states. These
states correspond to left or right circular polarization. More generally, states
of the type

|ψ〉 = α|→〉 + β|↑〉 ,

where α and β are arbitrary complex numbers (satisfying |α|2 + |β|2 = 1),
correspond to elliptical polarization states and are physically relevant. There-
fore it is essential to use Hilbert space (and not simply the transverse two-
dimensional Euclidean space) in order to describe all polarization states of
the photon.

6.2.2 Measurement of Photon Polarizations

After having introduced the Hilbert space in which the polarization of the
photon is described, we turn to measurements. Consider first a linearly po-
larized light beam, obtained by filtering light with a one-way polarizer. The
direction of the polarization of the beam is that of the axis of the polarizer,
say horizontal. If the beam, of intensity I0, meets a second polarizer (also
called an analyzer) whose axis is at an angle θ to the first one, one finds that
the transmitted intensity is I0 cos2 θ (Malus’s law).

Let us describe this result in terms of photons, which cannot be divided,
as mentioned above. When a photon encounters a polarizer, whatever its
polarization state is, there are only two possibilities; either it crosses the
polarizer or it doesn’t (i. e. it is ejected in another direction or it is absorbed).
Therefore Malus’s law can be interpreted by saying that a linearly polarized
photon has a probability cos2 θ of passing through a polarizer at an angle θ,
so that a fraction cos2 θ of the incident photons are transmitted.

This result can be recovered from the general principles presented in the
previous chapter, applied to the Hilbert space that we have just introduced.
If we measure whether a photon is transmitted or not by a polarizer with its
axis at an angle θ, we perform a measurement which can yield two results: 1
(transmission) or 0 (no transmission). The operator Âθ associated with this
1 Polarization comes from the fact that the photon is a spin-one particle. As we

shall see in Chap. 10, the description of a spin-one degree of freedom should be
done in a three-dimensional Hilbert space. The fact that here this space is two-
dimensional instead of three-dimensional (i. e. that the polarization state parallel
to the momentum of the photon does not exist) is related to gauge invariance
and to the fact that the photon is a zero-mass particle.
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measurement is the projector onto the state |θ〉, i. e. the 2 × 2 Hermitian
matrix

Âθ = |θ〉〈θ| =
(

cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

)
.

This operator has two eigenstates: |θ〉, associated with the eigenvalue 1, and
|θ̄〉, associated with the eigenvalue 0 (with θ̄ = θ±π/2, so that 〈θ|θ̄〉 = 0). In
particular, the probability for a photon initially in state |→〉 to be transmitted
is given by

P (θ) = |〈θ|→〉|2 = cos2 θ ,

as expected from Malus’s law.
We can also study the case of a circularly polarized photon, with an initial

state given by (6.8). We obtain in this case

PL,R(θ) = |〈θ|ΨL,R〉|2 =
∣∣∣∣e±iθ

√
2

∣∣∣∣2 =
1
2

.

The result is independent of the angle of the analyzer θ, as expected for
circularly polarized light.

6.2.3 Successive Measurements and “Quantum Logic”

We set two polarizers at right angles (Fig. 6.2a). No light can get through,
since two states polarized in perpendicular directions are orthogonal. Between
these two crossed polarizers, we introduce another polarizer whose axis is at
an angle θ (Fig. 6.2b). Light appears after the last polarizer, although we
have introduced an object which absorbs or, at most, is transparent to light!
It is easy to interpret this striking result in terms of polarization states.
Consider for simplicity a photon initially polarized horizontally, so that the
transmission probability at the first polarizer is P1 = 1. The photon is trans-
mitted by the second polarizer with a probability P2 = cos2 θ. After crossing
this polarizer, it is in the new polarization state |θ〉 (reduction of the wave
packet). Therefore, the probability that it crosses the third vertical polar-
izer is P3 = |〈↑|θ〉|2 = sin2 θ. Altogether, the probability that a photon ini-
tially polarized horizontally crosses the set of three successive polarizers is
P = P1P2P3 = sin2(2θ)/4, which vanishes only for θ = 0 and θ = π/2, i. e. if
the axis of the intermediate polarizer is parallel to one of the two others.

It is clear in this example that classical probabilistic logic does not apply.
Suppose we place two “contradictory”, or mutually exclusive, logical gates
one after the other, say “heads” and “tails”. The probability that a coin
crosses both gates is zero. Suppose that, between these two gates, we insert a
logical gate that selects coins according to another criterion such as “North
American” or “European”. In a quantum financial world, one would observe
that half of the coins which fell onto “heads” and which we know are Eu-
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θ

no
light

(a)

(b)

Fig. 6.2. (a) No light is transmitted by a set of two polarizers whose axes are
orthogonal to each other. (b) If one inserts another polarizer between the two
polarizers of (a), light emerges at the output of the setup. The relative intensity of
the transmitted light is sin2(2θ)/4

ropean had actually flipped onto “tails”! Business would be rather involved.
This is a mere reflection of the superposition principle superimposed on the
noncommutation of the relevant observables Â0, Âθ, Âπ/2 of the problem,
as we shall see in Chap. 7. For instance, the result is different according to
whether the polarizer with axis θ is placed before the vertical polarizer (as
in Fig. 6.2b) or after it.

6.3 The Model of the Ammonia Molecule

As an example we examine here how the ammonia molecule studied in Chap. 4
is described in the matrix formalism and, at low temperature, as a two-state
system.

6.3.1 Restriction to a Two-Dimensional Hilbert Space

We recall first the results of the calculation done in Sect. 4.5 concerning
the double-potential-well model of the NH3 molecule. The two lowest energy
levels correspond to symmetric and antisymmetric wave functions, denoted by
ψS(x) and ψA(x), respectively. The corresponding energies are ES = E0 − A
and EA = E0 + A, with A > 0. All other energy levels Eα of the molecule
are such that Eα − E0 � A. Therefore the splitting 2A of the two levels ES

and EA is very small compared with the spacing between these levels and the
other levels of the molecule. More precisely, for NH3 one finds 2A ∼ 10−4 eV;
the first excited state is also split into two sublevels E′

S = E1 − A1, and
E′

A = E1 + A1 with 2A1 ∼ 5 × 10−3 eV and E1 − E0 ∼ 0.12 eV.
In this chapter, we shall be interested only in states which are linear

combinations of the two lowest-lying energy states |ψS〉 and |ψA〉, i. e.

|ψ〉 = λ|ψS〉 + µ|ψA〉 . (6.9)
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The physical meaning of this restriction is the following. The NH3 molecule
is a very complicated system and, in full generality, a state of this molecule
is of the form

|ψ〉 =
∑

an|n〉 , (6.10)

where we have denoted by {εn} the ordered sequence of its energy levels and
|n〉 the corresponding eigenstates. For a molecule in the state |ψ〉, the prob-
ability of finding εn in an energy measurement is P (εn) = |an|2. Physically,
it is rather easy to impose constraints on the energy of NH3 molecules in a
gas, for instance if this gas is in thermal equilibrium with its environment.
At a temperature T , the ratio of the populations of the energy levels Ei and
Ej is given by Boltzmann’s law:

N(Ej)/N(Ei) = e−(Ej−Ei)/kBT ,

where kB is the Boltzmann constant. Inserting the numerical values given
above, one can readily check that, at a temperature of 100 K, N(ES)/N(EA) ∼
1, whereas N(E′

S)/N(ES) ∼ N(E′
A)/N(ES) < 10−6. Therefore the probabil-

ity of finding the molecule in a higher-energy state is very small, and we can
safely approximate the state (6.10) of each molecule in a gas at 100 K by a
combination of only the two states |ψS〉 and |ψA〉 such as (6.9).

6.3.2 The Basis {|ψS〉, |ψA〉}
Consider the basis of energy eigenstates {|ψS〉, |ψA〉}. A state vector |ψ〉 =
λ|ψS〉+µ|ψA〉, where λ and µ are complex numbers such that |λ|2 + |µ|2 = 1,
is written in this basis as

|ψ〉 =
(

λ
µ

)
. (6.11)

The quantities |λ|2 and |µ|2 are the probabilities of finding ES and EA, respec-
tively, in an energy measurement. The Hamiltonian operator Ĥ is a diagonal
matrix in this basis:

Ĥ =
(

E0 − A 0
0 E0 + A

)
. (6.12)

Of course, this is not the total Hamiltonian of the NH3 molecule, which in full
generality is an infinite matrix acting on the states (6.10). Instead, the above
operator is the restriction of the general Hamiltonian to the two-dimensional
subspace which we are interested in.

The time evolution of a state vector which is defined at t = 0 by (6.11)
can be calculated by solving the Schrödinger equation

ih̄
d
dt

|ψ(t)〉 = Ĥ|ψ(t)〉 (6.13)
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and can be written directly as

|ψ(t)〉 = exp(−iE0t/h̄)
(

λ exp(iω0t/2)
µ exp(−iω0t/2)

)
, (6.14)

where we have introduced the Bohr frequency ω0 of the system, given by

2A = h̄ω0 . (6.15)

We can define the states |ψR〉 and |ψL〉 which correspond to the classical
right and left configurations, respectively, as

|ψR〉 =
1√
2

(|ψS〉 + |ψA〉) , |ψL〉 =
1√
2

(|ψS〉 − |ψA〉) , (6.16)

or, in matrix form,

|ψR〉 =
1√
2

(
1
1

)
, |ψL〉 =

1√
2

(
1
−1

)
. (6.17)

These states |ψR〉 and |ψL〉 are the eigenstates of the matrix σ̂1 given in (6.5),
with eigenvalues ±1. We thus define an observable X̂, which we shall call the
“position” operator of the particle representing the plane of hydrogen atoms,
or, more precisely, the location of the particle with respect to the center:

X̂ =
(

0 1
1 0

)
; X̂|ψR〉 = |ψR〉 ; X̂|ψL〉 = −|ψL〉 . (6.18)

This observable has eigenvalues ±1. If the result of a measurement of X is +1,
the particle is “in the right-hand well”; if the result is −1, it is “in the left-
hand well”. The observable X̂ is not the position operator in the sense we used
when dealing with wave functions. It only measures the side of the double well
in which the particle is located. One can verify that, owing to the Heisenberg
inequalities, if we require that the position of the particle be defined more
precisely than the half-width of one of the wells, it is inconsistent to restrict
the problem to two states. Indeed, a precise knowledge of the position is
accompanied by a large spread in momentum and in kinetic energy, and
more energy levels must be taken into account. Note that (6.18) is similar to
the first 2 × 2 block of (5.34), which gives the matrix representation of the
position operator x̂ in the energy eigenbasis of a harmonic oscillator.

A straightforward calculation gives the expectation value 〈x〉 of the ob-
servable X̂ in the state |ψ(t)〉 of (6.14) as

〈x〉 = 〈ψ(t)|X̂|ψ(t)〉 = λ∗µ e−iω0t + λµ∗ eiω0t . (6.19)

In particular, if the particle is “on the right” at t = 0 (λ = µ = 1/
√

2), we
obtain

〈x〉 = cos ω0t . (6.20)

As already pointed out in Chap. 4, the particle oscillates between right and
left with an angular frequency ω0. This inversion phenomenon of the NH3

molecule occurs with a period 2π/ω0 = πh̄/A.
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6.3.3 The Basis {|ψR〉, |ψL〉}
The two vectors |ψL〉 and |ψR〉 also form a basis of our two-dimensional
Hilbert space. In this new basis, which corresponds to the classical configu-
rations, it is interesting to see how the inversion phenomenon occurs. We can
write the basis vectors as

|ψR〉 =
(

1
0

)
, |ψL〉 =

(
0
1

)
. (6.21)

In this basis, the states |ψS〉 and |ψA〉 read

|ψS〉 =
1√
2

(
1
1

)
, |ψA〉 =

1√
2

(
1
−1

)
. (6.22)

These expressions reveal a very simple interference phenomenon: |ψR〉 is a
linear superposition of the states |ψS〉 and |ψA〉, which interferes destructively
on the left, and |ψL〉 is a superposition that interferes destructively on the
right. Using (6.18) we find that in this basis, the observable X̂ is diagonal:

X̂ =
(

1 0
0 −1

)
. (6.23)

On the other hand, the Hamiltonian Ĥ is no longer diagonal. It has the form:

Ĥ =
(

E0 −A
−A E0

)
, (6.24)

whose eigenvectors are |ψS〉 and |ψA〉, with eigenvalues E0 ∓ A as expected.
The nondiagonal terms in the above Hamiltonian are called transition

terms. These terms are responsible for the inversion phenomenon, i. e. the
periodic oscillation of the molecule between the right and left configurations
|ψR〉 and |ψL〉. The larger A is, the faster this oscillation (i. e. T = 2π/A).

The matrix formalism simplifies things considerably, compared with the
calculations of Chap. 4. Of course, when comparing the results with experi-
ment, a fundamental ingredient of this matrix approach is the numerical value
of the parameter A. In the double-square-well model we could calculate this
parameter A. However, such a calculation is, in itself, an approximation, and
the only accurate access we have to this number is through an experimental
measurement. Once this value is known, the result of the matrix calculation
is straightforward.

6.4 The Ammonia Molecule in an Electric Field

We are going to use the two-state formalism to present the principle of masers.
These devices have brought about decisive progress in microwave physics, in
telecommunications and in astrophysics. We shall concentrate here on the
ammonia maser.
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There exist a large variety of masers and lasers, whose principles are similar. In
spite of their diversity, they are all governed essentially by the same mathematics
as here. Some cases require more basis states (three- or four-state systems), but
qualitatively the physical results can be understood starting from the prototype of
the two-state ammonia molecule.

6.4.1 The Coupling of NH3 to an Electric Field

In the classical configurations of the molecule represented in Fig. 6.3, the
molecule possesses an electric dipole moment D. This is a consequence of
the large electron affinity of the nitrogen atom, which displaces the center of
mass of the negative charges (electrons) with respect to that of the positive
charges (nuclei). For symmetry reasons this electric dipole moment lies along
the axis of the molecule, and it changes sign when the molecule flips from
the right to the left configuration.

Suppose we apply a static electric field E to the molecule. Classically, the
potential energy W of the molecule in this field E is

W = −D · E . (6.25)

For simplicity, we assume that the field E is parallel to the x axis. We want
to find the form of the corresponding potential-energy observable Ŵ .

From now on, we work with the basis {|ψS〉, |ψA〉}. In the problem under
consideration (i. e. the two-state system), the natural choice for the electric-
dipole moment observable of the molecule is to assume it is proportional to
the position observable X̂ that we have defined previously:

D̂ = d0X̂ =
(

0 d0

d0 0

)
, (6.26)

where d0 is a characteristic measurable parameter of the molecule (experi-
mentally, d0 ∼ 3 × 10−11 eV/(V/m)). In other words, we assume that if, in
a measurement of the “position” (right or left) of the molecule, we find the
values ±1 with some probabilities, then when we measure its electric dipole
moment, we shall find the two values ±d0 with the same probabilities. This

Fig. 6.3. The two classical configurations of the NH3 molecule and the correspond-
ing electric dipole moment
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fulfills the condition that the electric dipole moment D flips if the molecule
flips.

The natural choice for the potential-energy observable of the molecule in
an electric field then consists in copying the classical form (6.25), i. e. taking
the product of the observable D̂ and the value of the field E :

Ŵ = −ED̂ =
(

0 −η
−η 0

)
, where η = Ed0 . (6.27)

Of course, the real justification for this choice, a stronger justification than
these plausibility arguments, is that it leads to a convincing explanation of
experimental results.

The NH3 molecule is a complex system containing four nuclei and ten electrons. For
any configuration of these charged particles, one can define the centers r+ and r−
of the positive and negative charge distributions. The corresponding electric dipole
moment is then D = Q(r+ − r−), where Q = 10q and q is the unit charge. Using

the correspondence principle, the observable Ŵ is Ŵ = −E ·D̂ = −Q E ·(r̂+− r̂−).
The form (6.27) is the restriction of this operator to the two-dimensional subspace
under consideration.

6.4.2 Energy Levels in a Fixed Electric Field

In an electric field E , the Hamiltonian of the molecule is therefore

Ĥ =
(

E0 − A −η
−η E0 + A

)
= E0Î −

√
A2 + η2

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
, (6.28)

where tan 2θ = η/A, −π/4 < θ < π/4, and Î is the unit matrix. The eigen-
values and eigenvectors of Ĥ can be calculated without difficulty:

E− = E0 −
√

A2 + η2 , |ψ−〉 =
(

cos θ
sin θ

)
, (6.29)

E+ = E0 +
√

A2 + η2 , |ψ+〉 =
(− sin θ

cos θ

)
. (6.30)

Validity of the Calculation. The rule of the game is to remain in the two-
dimensional subspace of the lowest-energy states. Therefore, there is a limit
on the value of the field E that we can apply. This field must be such that
E+ � E1, the first excited state. Otherwise it would be necessary to take
into account higher excited states of the molecule and perform four-state,
six-state, etc. calculations. Given the values of A, d0 and E1 − E0 for NH3,
this approximation is valid for all fields achievable in the laboratory. Two
limits are particularly interesting.
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Weak Field. In the weak-field limit, the mixing angle θ is small and the
levels and corresponding eigenstates are, to the lowest nontrivial order in E ,

E∓ � E0 ∓
(

A +
d2
0E2

2A

)
, (6.31)

|ψ−〉 � |ψS〉 +
d0E
2A

|ψA〉 , |ψ+〉 � |ψA〉 − d0E
2A

|ψS〉 . (6.32)

In the absence of an electric field, each eigenstate of Ĥ is symmetric or
antisymmetric, and the expectation value of the electric dipole moment D
vanishes if the molecule is prepared in one of these two states. In the presence
of an electric field, the eigenstates of Ĥ correspond to a partially polarized
molecule. The expectation value of the dipole moment in the states |ψ−〉 and
|ψ+〉 is proportional to E :

〈D〉∓ � ±d2
0

A
E .

The quantity d2
0/A is called the polarizability of the molecule. It is large for

NH3 because the value of A is comparatively small. The shift of the energy
levels varies quadratically with the field E . This is understandable, since the
interaction energy is proportional to the product of the field E and the induced
dipole moment, which is itself proportional to the field.

Strong Field. If the field is strong, i. e. if η � A, the mixing angle θ ap-
proaches π/4 and the eigenvalues and eigenstates are:

E± � E0 ± d0E |ψ−〉 � |ψR〉 |ψ+〉 � −|ψL〉 . (6.33)

In the strong field regime, the eigenstates of the Hamiltonian correspond to
a molecule which is completely polarized:

〈D〉∓ � ±d0 .

The energies are linear in the field, as is the case for a classical electric dipole.
Between these two limits, two effects compete to determine the eigenstates

of the Hamiltonian. The transition term A, which is due to the tunneling
between right and left, tends to symmetrize the molecule and to favor the
states of well defined symmetry |ψS〉 and |ψA〉. The presence of the field
polarizes the molecule and tends to pull it towards the classical configurations
|ψR〉 and |ψL〉. Figure 6.4 shows the evolution of the energy levels as a function
of the intensity of the applied field (in units of A/d0). The value of the electric
dipole moment of ammonia is d0 ∼ 3 × 10−11 eV/(V m−1). The borderline
between the two regimes is Ec = A/d0 ∼ 1.7× 106 V m−1 (an extremely high
lab. field). This can be compared with the case of PH3 molecule, where the
splitting A is much smaller and where A/d0 ∼ 30 V m−1.



6.4 The Ammonia Molecule in an Electric Field 127

� � �

EA

ES

ψA

ψ-

ψ+

ψS

E

��d0 / A

ψL

ψR

Fig. 6.4. Energy eigenvalues of an NH3 molecule in an electric field

6.4.3 Force Exerted on the Molecule by an Inhomogeneous Field

Let us assume that we are in the weak-field regime, where the energy levels
are given by (6.31). The term d2

0E2/2A can be interpreted as a potential-
energy term of the molecule in the field. This potential energy has opposite
signs according to whether the internal state of the molecule is |ψ−〉 or |ψ+〉.

Suppose that we prepare a molecular beam traveling along some direction
x, and that the beam crosses a region where we apply an inhomogeneous
field. The molecules are “large” objects, and, to a good approximation, their
motion in space can be treated as classical.2 When the molecules cross this
inhomogeneous field, they are subjected to a force

F∓ = ±∇
(

d2
0E2

2A

)
. (6.34)

The sign of this force depends on the internal state (|ψ−〉 or |ψ+〉) of each
molecule. Consequently, when the molecules leave the field zone, the initial
beam is split into two outgoing beams: one beam contains molecules in the
|ψ−〉 state, and the other contains molecules in the |ψ+〉 state.

In the specific case of an ammonia maser, the inhomogeneous field is
such that E2 ∝ y2 + z2. The molecules in the state |ψ+〉 are therefore in a
potential d2

0E2/2A which is harmonic in the yz plane transverse to the beam.
Their trajectories are superpositions of a linear uniform motion along x and
small oscillations in the transverse plane (Fig. 6.5). In contrast, molecules
in the |ψ−〉 state are in a reversed harmonic potential −d2

0E2/2A and are
expelled from the vicinity of the x axis. The field inhomogeneity is a means
of selecting molecules whose (internal) state is |ψ+〉 ∼ |ψA〉, by separating
them from molecules in the state |ψ−〉 ∼ |ψS〉.
2 The ensuing argument will be justified rigorously by means of the Ehrenfest

theorem in the analogous case of the motion of silver atoms in the Stern–Gerlach
experiment (Chap. 8).
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Fig. 6.5. Stabilization of the beam |ψ+〉 and divergence of the beam |ψ−〉 in an
electrostatic quadrupole field (E2 ∝ y2 + z2)

The resulting beam is no longer in thermal equilibrium, since the most
populated state is not the lowest-energy state |ψS〉. This type of operation
is called population inversion. The simple device described above is only one
of the many techniques to achieve population inversion. Population inversion
destroys the thermal equilibrium between |ψS〉 and |ψA〉, which may have
existed in the initial molecular beam.

Remarks

a. A beam in the pure state |ψ−〉 will be defocused and a beam in the pure
state |ψ+〉 will be channeled. It is by no means obvious what happens to
a beam in the quantum superposition α|ψ−〉+β|ψ+〉. We shall study this
problem in the similar case of the Stern–Gerlach experiment in Chap. 8.
The net result is that two outgoing beams of relative intensities |α|2
and |β|2 are defocused and channeled, respectively. The molecules in the
defocused beam are in the internal state |ψ−〉 and the molecules in the
channeled beam are in the state |ψ+〉.

b. The hypothesis that the electric field is parallel to the axis of the molecule
might seem questionable. To address this point correctly, one must con-
sider the real structure of the symmetric and antisymmetric states, which
requires some knowledge about the properties of angular momentum in
quantum mechanics (Chap. 10). One finds that each energy level ES and
EA is actually degenerate. One can choose a basis of the corresponding
subspaces ES and EA such that each basis state corresponds to a given
projection of the angular momentum of the molecule along a given axis,
say the direction of the electric field at the location of the molecule. The
exact treatment is more involved3 than what we have presented here, but
the main conclusion remains valid. The internal state of the molecule can
be expanded in these basis states, of which some are focused (as |ψ+〉)
and the others are expelled from the center of the beam (as |ψ−〉).

3 See J.P. Gordon et al., Phys. Rev. 99, 1264 (1955), which also takes into account
the hyperfine splitting of the energy levels ES and EA.
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6.5 Oscillating Fields and Stimulated Emission

In order to achieve the maser effect, we are going to force those molecules
which we have selected to be in the state |ψA〉 to release their energy 2A by
falling down to the ground state |ψS〉. The molecules can decay spontaneously
and emit a photon, but they do so with a lifetime of the order of a month,
which is much too long for our purpose. However, one can stimulate this
emission by acting on them with an oscillating field of angular frequency ω,
E = E0 cos ωt, provided ω is tuned to the Bohr frequency ω0 of the system.

Let us again set η = d0E0; the Hamiltonian is

Ĥ =
(

E0 − A −η cos ωt
−η cos ωt E0 + A

)
. (6.35)

Because of the time dependence of this Hamiltonian, the notion of stationary
states is inadequate. We must solve the Schrödinger equation ih̄(d/dt)|ψ(t)〉 =
Ĥ|ψ(t)〉 in order to determine the time evolution of the system. We write the
state vector of a given molecule as

|ψ(t)〉 =
(

a(t)
b(t)

)
.

The Schrödinger equation reduces to the first-order coupled linear differential
system

ih̄ȧ = (E0 − A)a − ηb cos ωt , (6.36)
ih̄ḃ = (E0 + A)b − ηa cos ωt . (6.37)

If we set a(t) = e−i(E0−A)t/h̄α(t) and b(t) = e−i(E0+A)t/h̄β(t), we obtain:

2iα̇ = −ω1 β
(
ei(ω−ω0)t + e−i(ω+ω0)t

)
, (6.38)

2iβ̇ = −ω1 α
(
e−i(ω−ω0)t + ei(ω+ω0)t

)
. (6.39)

This system involves three angular frequencies:

ω, ω0 = 2A/h̄ and ω1 = η/h̄ = d0E0/h̄ . (6.40)

Physically, this system corresponds to forced oscillations with a reso-
nance4 at ω = ω0. It is not possible to solve this system analytically. However,
we can obtain a good approximation in the vicinity of the resonance ω ∼ ω0

if we neglect the rapidly oscillating terms e±i(ω+ω0)t whose effect averages to
zero after a time ∼ 2π/ω. The system then reduces to an analytically soluble
problem, which we shall study in greater detail in Chap. 12, in the context of
4 There are actually two resonances, at ω = ±ω0, but these two values are equiv-

alent for our purposes.
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Fig. 6.6. Rabi oscillation. (a) Probability of finding the molecule in state |ψS〉 as a
function of time. (b) Resonance curve, showing the maximum transition probability
as a function of the angular frequency ω of the external field

magnetic resonance. Here, we only give the solution of this simplified prob-
lem. The transition probability PA→S(t) that the molecule is found at time t
in the state |ψS〉, having thus released its energy 2A = EA − ES, is given by

PA→S(t) � ω2
1

(ω − ω0)2 + ω2
1

sin2

(√
(ω − ω0)2 + ω2

1

t

2

)
. (6.41)

This formula is due to Rabi. As shown in Fig. 6.6a, the probability PA→S(t)
oscillates in time between 0 and a maximum value Pmax given by

Pmax =
ω2

1

(ω − ω0)2 + ω2
1

.

When we vary the frequency ω of the applied field (Fig. 6.6b), the maximum
probability Pmax has a characteristic resonant behavior, with a maximum
equal to 1 for ω = ω0. The half width at half maximum of the resonance
curve is ω1.

If the frequency of the field is tuned close to resonance, i. e. |ω−ω0| � ω1,
practically all the molecules have released their energy 2A at a time T =
π/ω1. This energy release occurs through the emission of an electromagnetic
radio wave of frequency ν = ω0/(2π) � 24 GHz, and is called stimulated
emission. The smaller ω1, the narrower the resonance curve of Fig. 6.6b will
be, and the longer the release time.

In the absence of an external field, the molecules can undergo spontaneous transi-
tions from the state |ψA〉 to |ψS〉. The lifetime for spontaneous emission is very long
(1 month). The mechanism of stimulated emission allows this transition to occur
very rapidly (T ∼ 7 × 10−8 s for a field E0 ∼ 103 V m−1). It was Einstein who, in
1917, in his celebrated analysis of the equilibrium of radiation and matter in the
black-body problem, first understood the stimulated emission effect (see Chap. 17
for more details).
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6.6 Principle and Applications of Masers

A schematic description of a maser (microwave amplification by stimulated
emission of radiation) is given in Fig. 6.7. Starting from a molecular beam
of mean velocity v (v � √kT/m), one first separates the molecules in the
state |ψA〉 by means of an electrostatic quadrupole field (see Sect. 6.4.3).
The resulting beam then enters a high-frequency cavity, where the oscillating
field E0 cos ω0t is applied. The length L of the cavity is adjusted5 so that
L/v = T = (2n+1)π/ω1. When they leave the cavity, the molecules are in the
state |ψS〉 and have released their energy 2A in the form of electromagnetic
radiation of angular frequency ω0. There are basically three ways to use such
a device.

molecular
beam of NH3

quadrupole
electric field

population
inversion

ψA ψS

L

High frequency cavity

�0 cosωt

ψS

ψS

stimulated emission

Fig. 6.7. Sketch of an NH3 maser device

6.6.1 Amplifier

One can amplify, in a selective way and with little background noise, a very
weak signal (for NH3, a bandwidth of 3 kHz is possible, i. e. δω/ω ∼ 10−7).
This technique resulted in a major revolution in radio astronomy. Masers
have been the starting point for studying the interstellar medium.

In his first experiments, Townes used a beam of 1014 molecules per second, giving
a power of 10−9 W at resonance. Nowadays maser amplifiers containing solid-state
materials such as ruby (an Al2O3 crystal doped with Cr+3 ions at about 0.05%
concentration) have gains of about 36 dB. Such masers were used in 1965 by Penzias
and Wilson when they discovered the 2.73K cosmic background radiation, which
is one of the clearest observational signatures of the Big Bang.

5 It is not necessary for L to have exactly the correct value; the transition proba-
bility has a significant value provided one does not have the bad luck to fall on
the unfavorable values T = 2nπ/ω1. In practice, a servo mechanism constantly
tunes the cavity so that the signal is a maximum.
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Figure 6.7 does not in fact show an amplifier, but rather an emitter since
the output energy does not depend on the intensity of the input signal. In
order to see how this device can work as an amplifier, one must calculate its
response to an incoherent signal with a spread of frequencies. Our calculation
was done explicitly for a coherent, monochromatic external field.

6.6.2 Oscillator

A field of angular frequency ω0 will maintain itself in the cavity. If we extract
the electromagnetic wave produced, we have a very stable oscillator.

6.6.3 Atomic Clocks

Atomic clocks, which are our official timekeepers at present, function ac-
cording to a very similar scheme. Such devices are used to define the time
standard. They use cesium atomic beams (the isotope 133Cs). The ground
state of this atom is split by a hyperfine interaction (see Chap. 13) orig-
inating from the interaction between the magnetic moment of the valence
electron and the magnetic moment of the nucleus. This interaction results
in a splitting of the atomic ground-state level into a two-level structure sim-
ilar to what we have studied here, except that we are now dealing with a
magnetic interaction instead of an electric one. The two sublevels |g1〉 and
|g2〉 have energies E1 and E2. The splitting ν12 = (E2 − E1)/h is equal to
9 192 631 770 Hz by definition of the time standard.

In order to build an atomic clock, one first prepares a beam of cesium
atoms in the state |g1〉. These atoms cross a cavity where one applies a radio
wave of frequency ν, and one adjusts ν in order to maximize the flux of
outgoing atoms in the state |g2〉. The frequency ν is therefore locked in the
vicinity of ν12. One measures any length of time by counting the number of
oscillations of the wave of frequency ν during this period of time.

Present-day cesium clocks have a relative accuracy of 10−15, which makes
the time standard the most accurate of all. Such an accuracy is mandatory
in positioning and navigation in the Global Positioning System. It is also
crucial in fundamental physics, in astrophysics and in testing the theory of
relativity.

Further Reading

• For the ammonia maser, see C.H. Townes and A.L. Schawlow, Microwave
Spectroscopy, McGraw-Hill, New York (1954), Chap. 15; M. Brotherton,
Masers and Lasers, McGraw-Hill, New York (1964).

• M. Elitzur, “Masers in the sky”, Sci. Am., February 1995, p. 52; R. Vessot
et al., “Test of relativistic gravitation with a space-borne hydrogen maser”,
Phys. Rev. Lett. 45, 2081 (1980).



Exercises 133

• For atomic clocks: J. Vanier and C. Audouin, The Quantum Physics of
Atomic Frequency Standards, Adam Hilger, Bristol (1989); W. Itano and
N. Ramsey, “Accurate measurement of time”, Sci. Am., July 1993, p. 46.

Exercises

6.1. Linear three-atom molecule. We consider the states of an electron
in a linear three-atom molecule (such as N3 or C3) with equally spaced atoms
L, C, R at distances d from one another.

Let |ψL〉, |ψC〉 and |ψR〉 be the eigenstates of an observable B̂, corre-
sponding to an electron localized in the vicinity of the atoms L, C and R,
respectively:

B̂|ψL〉 = −d|ψL〉 , B̂|ψC〉 = 0 , B̂|ψR〉 = +d|ψR〉 .

In the basis {|ψL〉, |ψC〉, |ψR〉}, the Hamiltonian of the system is represented
by the matrix

Ĥ =

⎛
⎝E0 −a 0

−a E0 −a
0 −a E0

⎞
⎠ , a > 0 .

a. Calculate the energy levels and eigenstates of Ĥ.
b. Consider the ground state. What are the probabilities of finding the elec-

tron in the vicinity of L, C and R?
c. Suppose the electron is in the state |ψL〉, and we measure its energy.

What values can we find, with what probabilities? Calculate 〈E〉 and
∆E in this state.

6.2. Crystallized violet and malachite green. The active ingredient
of the dye Crystal Violet (C.I. number 42555) is the organic monovalent
cation C[C6H4N(CH3)2]+3 . The skeleton of this ion is made of three identical
branches (Fig. 6.8). The electron deficit responsible for the positive charge
can be taken from either of these three branches. One can treat the electronic
state of this ion as a three-state system. The Hamiltonian Ĥ is not diagonal in
the basis {|1〉, |2〉, |3〉} (which we assume orthonormal), because of tunneling
between these classical configurations.

a. We work in the basis {|1〉, |2〉, |3〉} corresponding to the “classical con-
figurations”. We choose the origin of the energy such that 〈1|Ĥ|1〉 =
〈2|Ĥ|2〉 = 〈3|Ĥ|3〉 = 0. We set 〈1|Ĥ|2〉 = 〈2|Ĥ|3〉 = 〈3|Ĥ|1〉 = −A,
where A is real and positive (A > 0).

Write the matrix Ĥ in this basis. Comparing the present case with
the case of the ammonia molecule NH3, justify briefly the choice of this
matrix.
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Fig. 6.8. The three possible configurations of the molecule of crystallized violet

b. Consider the states |φ1〉 = (|1〉+ |2〉+ |3〉)/√3 and |φ2〉 = (|2〉− |3〉)/√2.
Calculate the expectation value 〈E〉 and the dispersion ∆E in each of
these states. Interpret the result.

c. Determine the energy levels of the system. Give a corresponding ortho-
normal eigenbasis. Is this basis unique?

d. The value of A is A ≈ 0.75 eV. Why is this ion violet?
We recall that the colors of the spectrum of natural light are, for increasing
energy (E = hc/λ), red (from ≈ 1.65 to 2.0 eV), orange (from ≈ 2.0 to 2.1 eV),
yellow (from ≈ 2.1 to 2.3 eV), green (from ≈ 2.3 to 2.55 eV), blue (from ≈ 2.55
to 2.65 eV) and violet (from ≈ 2.65 to 3.1 eV). The main pairs of “comple-
mentary colors”, which produce white light when the members of the pair are
combined, are yellow–violet, red–green and blue–orange.

e. One of the N(CH3)2 groups is replaced by a hydrogen atom. We assume
that the sole effect of this substitution is to increase 〈1|Ĥ|1〉 by an amount
∆ > 0, and that it leaves the other matrix elements of Ĥ unchanged.
(i) Show that A is still an eigenvalue of the Hamiltonian. What are the

other energy levels of this new system?
(ii) How do they behave in the limits ∆ � A and ∆ � A?

f. This modified ion (dye Malachite green (C.I. number 42000)) absorbs
light of two wavelengths: 620 and 450 nm. Calculate ∆ and comment on
the agreement between theory and experiment.
You can use hc ≈ 1240 eV nm.
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God was wise when he placed birth before death;
otherwise, what would we know about life?

Alphonse Allais

When Dirac studied Heisenberg’s papers in the summer of 1925, he realized
that all ingredients of the newborn theory boiled down to the noncommu-
tativity of physical quantities. An amazing property appeared. In quantum
physics, multiplying A by B is not the same as multiplying B by A, the or-
der is of great importance. Such a property of physical quantities had never
occurred before in physics, and Heisenberg was worried by what appeared to
be a very unpleasant feature of his theoretical framework. He did his best to
conceal this aspect when he presented his theory. Dirac, who knew of the ex-
istence of noncommutative algebras, thought that, after all, no fundamental
principle imposes a requirement that physical quantities should be commuta-
tive. He therefore attempted to construct a new approach to quantum theory.
This consisted in modifying the classical equations in order to incorporate this
noncommutativity. Independently of the Göttingen group, he built his own
formalism, proving the relation x̂p̂ − p̂x̂ = ih̄ at the same time as Born and
Jordan did. He published his own results, which were actually quite close to
those of Born, Heisenberg and Jordan, who had founded Quanten Mechanik,
in the fall of 1925.

The principles of quantum mechanics which we have laid down in Chap. 5
are only a general framework. In order to treat a specific problem, it is nec-
essary to specify the form of the Hamiltonian and of the various observables
of the system under consideration. In wave mechanics these are provided by
the correspondence principle. In the abstract Hilbert space formalism, what
plays a crucial role is not so much the specific form of the observables, but
the algebraic relations between them, and in particular their commutation
relations. For systems which have a simple classical analog, we shall of course
make use of the correspondence principle in order to obtain the commutation
relations. In many problems, however, once the symmetries and invariance
laws (translation, rotation) have been taken into account in the first step,
there is no substitute for confronting a given prescription with experiment.

In this chapter, after presenting some general considerations on commu-
tation relations, we shall study four points which play a crucial role. We



136 7. Commutation of Observables

shall first derive the general form of the uncertainty relations. Then we shall
demonstrate the important Ehrenfest theorem, which, among its many appli-
cations, shows how quantum mechanics transforms into Newtonian mechanics
in the classical limit. We shall then introduce the notion of a complete set of
commuting observables (CSCO). We shall finish with a concrete illustration
of the algebraic method, due to Dirac, which will enable us to find the so-
lution of the harmonic-oscillator problem in a simple and elegant way. This
method, which relies on the notion of creation and annihilation operators,
is a foundation stone of quantum field theory. Note the historical fact that
the first correct calculation of the hydrogen atom was performed in 1925 by
Pauli using the algebraic methods of Quanten Mechanik, before Schrödinger’s
1926 calculation based on the solution of a partial differential equation with
boundary conditions.

7.1 Commutation Relations

In the wave function formalism of Chaps. 2, 3 and 4, we have investigated the
practical consequences of principles such as the uncertainty relations and the
quantization of energy. Our analysis was based on the explicit form (differen-
tial or multiplicative) of the operators associated with physical quantities. In
the general formalism of Hilbert space, this role is played by the commutation
relations of the various observables.

The principles do not give us the form of the commutation relations.
We must postulate their form. For quantities with a classical analog, we
shall make use of the correspondence principle. Thus, the definition of a pair
of conjugate position and momentum observables lies in the fundamental
relations

[x̂, p̂x] = ih̄ , [ŷ, p̂y] = ih̄ , [ẑ, p̂z] = ih̄ . (7.1)

From these relations, we can derive all the commutation relations for quan-
tities which have a simple classical analog, since the classical observables are
functions of positions and momenta. Consider for instance the angular mo-
mentum observable L̂ = r̂ × p̂, which, in the wave function formalism, is
given by

L̂z =
h̄

i

(
x

∂

∂y
− y

∂

∂x

)
,

with two analogous relations for L̂x and L̂y. From the definition of the three
observables L̂x, L̂y and L̂z, one can easily prove, using the fundamental rela-
tion (7.1), the commutation relation

[L̂x, L̂y] = ih̄L̂z (7.2)
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and two others deduced by cyclic permutation. We can group these relations
together in the form

L̂ × L̂ = ih̄L̂ . (7.3)

When we study angular momentum in Chap. 10, we shall use the commu-
tation relations (7.3) as our starting point. Such relations will define the
angular-momentum observables.

7.2 Uncertainty Relations

Our first use of the commutation relations is the general derivation of the un-
certainty relations. Consider two quantities A and B, and the corresponding
observables Â and B̂. Let |ψ〉 be the state of the system. The measurement
of A and B yields the expectation values 〈a〉 and 〈b〉, and the rms deviations
∆a and ∆b. More precisely, we prepare N systems (N � 1) in the state
|ψ〉. For half of them we perform a measurement of A and derive from the
distribution of the results the two quantities 〈a〉 and ∆a. For the other half,
we measure B and find the values of 〈b〉 and ∆b. We now want to relate ∆a
and ∆b, knowing the state |ψ〉 and the two observables Â and B̂.

We first define centered variables, i. e. we set Â′ = Â−〈a〉, so that 〈Â′〉 = 0
and we have

(∆a)2 = 〈ψ|Â′2|ψ〉 .

Similarly, for B̂, (∆b)2 = 〈ψ|B′2|ψ〉 with B̂′ = B̂ − 〈b〉.
Consider an arbitrary state |ψ〉 and the vector (Â′ + iλB̂′)|ψ〉, where λ is

real. The square of the norm of this vector is

‖(Â′ + iλB̂′)|ψ〉‖2 = 〈ψ|(Â′ − iλB̂′)(Â′ + iλB̂′)|ψ〉
= 〈ψ|Â′2|ψ〉 + λ2〈ψ|B̂′2|ψ〉 + iλ〈ψ|[Â′, B̂′]|ψ〉
= ∆a2 + λ2∆b2 + iλ〈ψ|[Â′, B̂′]|ψ〉 .

Since Â′ and B̂′ are Hermitian, the operator i[Â′, B̂′] is also Hermitian, and
the last term is real. Since the above expression is the square of a norm, it
must be positive or zero for any λ. This holds obviously for λ → ∞. Therefore,
the above trinomial in λ must not have two different real roots, otherwise it
would change sign in between. Therefore its discriminant must be negative
or zero, i.e.

∆a ∆b ≥ 1
2
|〈ψ|[Â, B̂]|ψ〉| (7.4)

since [Â′, B̂′] = [Â, B̂].
For the quantities x and px, the value of the commutator is ih̄, and we

recover

∆x∆px ≥ h̄/2 .
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Equation (7.4) is the general form of the uncertainty relations for any two
observables. If Â and B̂ do not commute, the two mean square deviations
∆a and ∆b cannot simultaneously be made as small as one wants (except for
very special cases of states for which the expectation value of the commutator
vanishes).

7.3 Ehrenfest’s Theorem

Here, we calculate the time evolution of the expectation value of a quantity.
By applying the result to the r and p variables, we shall find a form remi-
niscent of the classical equations of motion. We shall then understand how
quantum mechanics and Newtonian mechanics can join together.

7.3.1 Evolution of the Expectation Value of an Observable

Consider a physical quantity A (which may depend explicitly on time) and
its expectation value 〈a〉 = 〈ψ|Â|ψ〉. We take the time derivative of this
expression:

d
dt

〈a〉 =
(

d
dt

〈ψ|
)

Â|ψ〉 + 〈ψ|
(

∂

∂t
Â

)
|ψ〉 + 〈ψ|Â

(
d
dt

|ψ〉
)

.

Using the Schrödinger equation and its Hermitian conjugate,

ih̄
d|ψ〉
dt

= Ĥ|ψ〉 and − ih̄
d〈ψ|
dt

= 〈ψ|Ĥ . (7.5)

we obtain

d
dt

〈a〉 =
1
ih̄
〈ψ|[Â, Ĥ]|ψ〉 + 〈ψ|∂Â

∂t
|ψ〉 . (7.6)

This formula, which was found by Dirac in 1925, is called the Ehrenfest
theorem: it was in fact rederived and published in 1927 by Ehrenfest, as
a step towards a more involved result. If the operator Â does not depend
explicitly on time, we obtain

d
dt

〈a〉 =
1
ih̄
〈ψ|[Â, Ĥ]|ψ〉 . (7.7)

We remark that the time evolution of the physical quantities of a system
is governed by the Hamiltonian, i. e. the energy observable, through the com-
mutator of each observable and this Hamiltonian. This is directly related to
the fact that in the Schrödinger equation, the Hamiltonian governs the time
evolution of the system.
In the above equations, we see the deep relation between the time evolution and
the Hamiltonian of the system. This relation also appears in classical mechanics,
as we shall see in Chap. 15. It is quite remarkable and intriguing that two physical
concepts as fundamental and as mysterious as energy and time be so intimately
related. We shall come back to this point when we study the time evolution of
systems in Chap. 17.
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7.3.2 Particle in a Potential V (r)

We denote by qi the three position variables x, y, z and denote by pi the
coordinates of the momentum px, py, pz (i = 1, 2, 3). The operators q̂i and p̂i

satisfy the commutation relations

[q̂i, q̂j ] = 0 , [p̂i, p̂j ] = 0 , [q̂j , p̂k] = ih̄ δj,k . (7.8)

From these relations we obtain the commutation relations

[q̂j , p̂
m
j ] = m(ih̄)p̂m−1

j , [p̂j , q̂
n
j ] = −n(ih̄)q̂n−1

j , (7.9)

which we can generalize to an arbitrary differentiable function F̂ = F (q̂i, p̂i)
of the operators q̂i and p̂i:

[q̂j , F̂ ] = ih̄
∂F̂

∂p̂j
and [p̂j , F̂ ] = −ih̄

∂F̂

∂q̂j
. (7.10)

We assume the Hamiltonian does not depend on time. Choosing F̂ = Ĥ,
we obtain the evolution equations

d
dt

〈qj〉 =

〈
∂Ĥ

∂p̂j

〉
,

d
dt

〈pj〉 = −
〈

∂Ĥ

∂q̂j

〉
. (7.11)

In Chap. 15, we shall see how similar the structure of these equations is to
the canonical Hamilton–Jacobi equations of analytical mechanics.

The Hamiltonian of a particle in a potential V (r) is

Ĥ =
p̂2

2m
+ V (r̂) . (7.12)

Substituting in (7.11), we obtain

d〈r〉
dt

=
〈p〉
m

, (7.13)

d〈p〉
dt

= −〈∇V (r)〉 . (7.14)

Equation (7.13) is the correct definition of the group velocity of a wave packet.
It relates the expectation value of the momentum operator to the mean ve-
locity, defined as the time derivative of the expectation value of the position.
This relation between expectation values is identical to that found in classical
physics. In contrast, (7.14) differs from the classical equation

d〈p〉
dt

= −∇V (r)
∣∣∣
r=〈r〉

(7.15)

since, in general, f(〈r〉) �= 〈f(r)〉.
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The Classical Limit. Suppose that the position distribution is peaked
around some value r0. Then 〈∇V (r)〉 � ∇V (r0), and (7.14) and (7.15) are
close to each other. In this case, (7.13) and (7.14), for the expectation values,
are essentially the same as the classical equation of motion.1 This observa-
tion constitutes the 1927 Ehrenfest theorem. It ensures, in particular, that
one recovers classical dynamics for a macroscopic object. When the quantum
uncertainties ∆r and ∆p are too small to be detected, one can safely consider
that the wave packets are localized both in position and in momentum space.
This justifies the correspondence principle, which guarantees that classical
mechanics emerges as a limit of quantum mechanics.

To evaluate the validity criterion for the classical approximation, we can restrict
ourselves to a one-dimensional case. We have

d

dt
〈p〉 =

〈
−dV

dx

〉
�= −dV

dx

∣∣∣
x=〈x〉

.

If we expand the function f(x) = −dV/dx in the vicinity of x = 〈x〉, we obtain

f(x) = f(〈x〉) + (x − 〈x〉)f ′(〈x〉) +
1

2
(x − 〈x〉)2f ′′(〈x〉) + . . .

and, by taking the expectation values,

〈f〉 = f(〈x〉) +
∆x2

2
f ′′(〈x〉) + . . . ,

where ∆x2 = 〈(x − 〈x〉)2〉. The nonclassical term in the time evolution of the
expectation value will be negligible if

|∆x2f ′′(〈x〉)/f(〈x〉)| � 1 ,

or, in terms of the potential V :∣∣∣∣∆x2 d3V

dx3

∣∣∣∣�
∣∣∣∣dV

dx

∣∣∣∣ ,

i. e. if the potential is slowly varying over the extent of the wave packet (or over an
interval of the order of the de Broglie wavelength). We notice that this condition is
identically satisfied if V (x) is a second-order polynomial.

7.3.3 Constants of Motion

Consider (7.7). It tells us under what conditions the quantity 〈a〉 remains
constant as a function of time when the system evolves. In order for this to
happen, it suffices that the observable Â commutes with the Hamiltonian Ĥ.
In that case, for any state |ψ〉, we have d〈a〉/dt = 0. Let us consider some
important examples.

1 A more detailed analysis relying on the Wigner representation of the density
operator of the particle is presented in Appendix D.



7.3 Ehrenfest’s Theorem 141

Conservation of the Norm. If Â is the identity operator Î, we obtain

d〈ψ|ψ〉
dt

= 0 .

Notice that it is essential that the Hamiltonian be self-adjoint in order to
have (7.5) and therefore the conservation of the norm.

Conservation of Energy for an Isolated System. In a time-independent
problem, the choice Â = Ĥ yields

d〈E〉
dt

= 0 .

Conservation of Momentum. Consider the motion of a free particle, of
Hamiltonian Ĥ = p̂2/2m. The observables p̂x, p̂y, p̂z commute with Ĥ, and
therefore

d〈pi〉
dt

= 0 , i = x, y, z .

As in classical physics, this is not true if the particle is placed in a potential
V (r), since the operators p̂i no longer commute with Ĥ.

Conservation of Angular Momentum. Consider the motion of a particle
in a central potential V (r). Classically, the angular momentum L = r × p is
a constant of the motion, as a result of rotational invariance. This remains
true in quantum mechanics. One can check that[

p̂ 2

2m
, L̂i

]
= 0 ,

[
V (r̂), L̂i

]
= 0 , i = x, y, z ,

which leads to

d〈Li〉
dt

= 0 , i = x, y, z .

This is no longer true if V (r) is not central but depends on variables other
than the modulus of r, such as the polar and azimuthal angles θ and ϕ.

More generally, when a physical problem possesses a symmetry property
(translation, rotation, etc.), this is reflected in the fact that the Hamiltonian
commutes with the operators associated with this symmetry (the total mo-
mentum operator, the total angular-momentum operator, etc.). Owing to the
Ehrenfest theorem, we know that the expectation value of that operator is
a constant of the motion. In quantum mechanics, as in classical mechan-
ics, it is essential to identify the symmetry properties of the system under
consideration in order to exploit their consequences.
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Remark If |ψ〉 is an eigenstate of Ĥ, the expectation value 〈a〉 of any ob-
servable Â is time independent, since the state |ψ〉 is stationary.

7.4 Commuting Observables

Observables which commute lead to interesting properties. This is particu-
larly true if an observable commutes with the Hamiltonian.

7.4.1 Existence of a Common Eigenbasis
for Commuting Observables

The following theorem is of great practical importance:

If two observables Â and B̂ commute, there exists an eigenbasis of EH formed
from eigenvectors common to Â and B̂.

This theorem can be readily generalized to the case of several observables
Â, B̂, Ĉ which all commute with one another.

Consider as an example a two-dimensional isotropic harmonic oscillator.
Finding the energy eigenfunctions seems, a priori, a difficult problem since it
amounts to a second-order partial differential problem. However, the Hamil-
tonian can be split into the sum of two Hamiltonians acting on different
variables:

Ĥ = − h̄2

2m

∂2

∂x2
+

1
2
mω2x2 − h̄2

2m

∂2

∂y2
+

1
2
mω2y2 = Ĥx + Ĥy . (7.16)

The two operators Ĥx and Ĥy, which are both one-dimensional harmonic os-
cillator Hamiltonians, obviously commute. Solving separately the eigenvalue
problems for Ĥx and Ĥy,

Ĥxφn1(x) = En1φn1(x) , Ĥyφn2(y) = En2φn2(y) , (7.17)

we obtain the eigenvalues of Ĥ as the sums of the eigenvalues of Ĥx and Ĥy,
with eigenfunctions which are products of the corresponding one-dimensional
eigenfunctions:

En1,n2 = En1 + En2 = (n1 + n2 + 1)h̄ω ,

Φn1,n2(x, y) = φn1(x) φn2(y) .

7.4.2 Complete Set of Commuting Observables (CSCO)

A set of operators Â, B̂, Ĉ, . . . is said to form a complete set of commuting
observables (CSCO) if their common eigenbasis is unique; in other words,
to any set of eigenvalues aα, bβ , cγ , . . . there corresponds a single eigenvector
|α, β, γ, . . . 〉 (up to a phase factor).
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In general, for a given system, there exists an infinite number of CSCOs. In any
given problem, one chooses the most convenient set. Neither the nature nor the
number of observables which constitute a CSCO is fixed a priori.

Example. For a one-dimensional harmonic oscillator, the Hamiltonian

Ĥx =
p̂2

x

2m
+

1
2
mω2x̂2

is by itself a CSCO. There is only one eigenbasis of Ĥx, made up of
the Hermite functions φn(x). On the other hand, for the isotropic two-
dimensional harmonic oscillator considered above, whose Hamiltonian is given
in (7.16), this is no longer the case. A possible basis is the set of functions
{φn1(x)φn2(y), n1, n2 integers}, where φn1(x) and φn2(y) are the eigenstates
of Ĥx and of Ĥy, respectively. The eigenvalue corresponding to φn1(x)φn2(y)
is

En1,n2 = h̄ω(n1 + n2 + 1)

and is degenerate, except in the case n1 = n2 = 0. This means that there are
several different eigenbases of Ĥ (actually an infinite number). For instance,
in the subspace corresponding to 2h̄ω, two possible bases are

{φ1(x) φ2(y), φ2(x) φ1(y)}
and{

1√
2

[
φ1(x)φ2(y) + φ2(x)φ1(y)

]
,

1√
2

[
φ1(x) φ2(y) − φ2(x) φ1(y)

]}
.

Therefore Ĥ taken alone is not a CSCO in this case, while the set {Ĥx, Ĥy}
is a CSCO. Indeed, a knowledge of the two eigenvalues {Enx = (nx +1/2)h̄ω,
Eny

= (ny + 1/2)h̄ω} specifies the eigenvector uniquely.

7.4.3 Completely Prepared Quantum State

Why is the notion of a CSCO important physically? Suppose we want to
specify the initial condition of an experiment. We need to know if this initial
condition corresponds to a specific state, or if it is some more or less defined
mixture of states. In the case of the isotropic two-dimensional oscillator,
if we know the total energy nh̄ω, we know only that the state belongs to
a subspace of dimension n, spanned by the n functions φn1(x)φn2(y) with
n1 +n2 +1 = n. A measurement of the total energy is not sufficient to specify
the state unambiguously. In contrast, if we measure simultaneously the energy
of the motion along the x axis and that of the motion along the y axis (which
is possible since the corresponding operators Ĥx and Ĥy commute), we can
specify the state of the system completely. We shall say that we are dealing
with a completely prepared quantum system.
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More generally, we consider an isolated system in some unknown state |ψ〉,
and we assume that {Â, B̂, . . . , X̂} is a CSCO. If we measure successively all
the physical quantities A, B, . . . , X and obtain the results aα, bβ , . . . , xξ, the
state of the system after this series of measurements is

|ψ0〉 = c P̂ξ . . . P̂βP̂α|ψ〉 , (7.18)

where c is a normalization coefficient and where P̂α, P̂β , . . . project onto the
eigensubspaces of Â, B̂, . . . associated with the eigenvalues aα, bβ , . . . . By
definition of a CSCO, the state |ψ0〉 is

• an eigenstate of Â, B̂, . . . , X̂,
• uniquely defined (up to an arbitrary phase factor).

Indeed, since Â commutes with B̂, . . . , X̂, the projector P̂α also commutes
with P̂β , . . . , P̂ξ. Therefore, using P̂ 2

α = P̂α and ÂP̂α = aαP̂α, we find

Â|ψ0〉 = c Â
(
P̂ξ . . . P̂βP̂ 2

α

)
|ψ〉 = c ÂP̂α

(
P̂ξ . . . P̂βP̂α

)
|ψ〉

= aα c
(
P̂ξ . . . P̂βP̂α

)
|ψ〉 = aα|ψ0〉 ,

which means that |ψ0〉 is an eigenstate of Â with eigenvalue aα. In addition,
the completeness of the set {Â, B̂, . . . , X̂} ensures that there is only one state
of the Hilbert space which is simultaneously an eigenstate of Â, B̂, . . . , X̂ for
the eigenvalues aα, bβ , . . . , xξ. This proves the uniqueness of |ψ0〉, to within
an arbitrary phase factor. We have obtained, by this series of measurements
of all the physical quantities of a CSCO, a completely prepared quantum state.

Since |ψ0〉 is an eigenstate of Â, B̂, . . . , any new measurement of Â,
B̂, . . . , on this state will yield the same results aα, bβ , . . . . This is also an
important result. When two (or more) observables Â and B̂ commute, if one
measures successively A, finding a result aα, and B, finding a result bβ , this
latter measurement does not change the value found previously for A. If we
measure A again (provided the system has not evolved) we recover the result
aα with probability one.

Remarks

a. The order in which the measurements of A, B, . . . , X are made is of no
importance since Â, B̂, . . . , X̂ commute.

b. If the Hamiltonian of the system commutes with all the operators of the
CSCO, the above statements are valid at any time. If not, all of the
preceding results are valid only if all measurements of A, B, . . . , X are
performed within a time interval short compared with ω−1

0 , where ω0 is
a typical Bohr frequency of the Hamiltonian.



7.4 Commuting Observables 145

7.4.4 Symmetries of the Hamiltonian
and Search of Its Eigenstates

The theorem presented at the beginning of this section plays an essential role
when one is looking for the eigenstates of a given Hamiltonian. Let us give
three examples.

Even Potential. Consider the one-dimensional motion of a particle in an
even potential V (x), i. e. V (x) = V (−x). Let us introduce the (Hermitian)
parity operator P̂ , defined by its action on any wave function ψ(x) as follows:

P̂ψ(x) = ψ(−x) .

One can check that if V (x) is even, P̂ commutes with the Hamiltonian
p̂2/2m + V (x̂). We can therefore look for a basis of eigenfunctions common
to Ĥ and P̂ . The eigenvalues and eigenfunctions of P̂ are very simple to
determine. Since P̂ 2 = 1, the eigenvalues are ±1. The corresponding eigen-
functions are the set of even wave functions (corresponding to the eigenvalue
+1) and the set of odd wave functions (corresponding to the eigenvalue −1).
We therefore know that we can search for the eigenfunctions of Ĥ as even or
odd functions.

Rotation-Invariant Potential. Consider again the isotropic two-dimen-
sional potential of Sect. 7.4.1. This problem may also be treated in polar
coordinates (r, ϕ). The Hamiltonian has then the form

Ĥ = − h̄2

2m

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2

)
+

1
2
mω2r2 . (7.19)

We can immediately check that, owing to the rotation invariance of this
Hamiltonian around the z axis, it commutes with the z component of the
angular momentum:

[Ĥ, L̂z] = 0 , where L̂z = x̂p̂y − ŷp̂x =
h̄

i

(
x

∂

∂y
− y

∂

∂x

)
=

h̄

i
∂

∂ϕ
.

We can therefore diagonalize Ĥ and L̂z simultaneously. The eigenfunctions
of L̂z are very simple in polar coordinates:

• First, these functions satisfy

L̂zψ(r, ϕ) = Aψ(r, ϕ) ⇒ ψ(r, ϕ) = f(r)eiAϕ/h̄ ,

where f(r) is an arbitrary function.
• Secondly, since (r, ϕ) and (r, ϕ+2π) are two parameterizations of the same

point of the plane, the only acceptable eigenvalues A are those such that
ψ(r, ϕ + 2π) = ψ(r, ϕ), in other words, A/h̄ = n, where n is an integer.
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We are left with the determination of f(r). Replacing ψ(r, ϕ) by f(r)einϕ in
the eigenvalue equation of Ĥ, we obtain[

− h̄2

2m

(
d2

dr2
+

1
r

d
dr

)
+

n2h̄2

2mr2
+

1
2
mω2r2

]
f(r) = Ef(r) .

This is a simple linear differential equation whose solution can be found quite
easily, and which determines, for each value of n, the energy levels of Ĥ.
We remark that this approach, which transforms a two-dimensional problem
into a one-dimensional one, is not restricted to the harmonic oscillator. It
applies for any central potential V , i. e. a potential which depends only on
r =

√
x2 + y2. If, on the other hand, V depends on both r and ϕ, Ĥ no

longer commutes with L̂z and this procedure does not apply.

The Case of a Periodic Potential. Consider the one-dimensional motion
of a particle of mass m in a potential V (x) which is periodic in space, of
period a: V (x + a) = V (x). Following the same arguments, we can prove
some remarkable properties of the eigenfunctions ψ(x) and of the energy
levels that satisfy

− h̄2

2m

d2ψ

dx2
+ V (x)ψ(x) = E ψ(x) . (7.20)

This problem has great practical importance. It is the basis of the treatment
of electric conduction in crystals, where the periodic potential is created by
the lattice of the atoms acting on an electron.

The translation symmetry of the Hamiltonian can be expressed as

[Ĥ, T̂a] = 0 ,

where T̂a is the translation operator; this acts on wave functions ψ(x) such
that T̂aψ(x) = ψ(x + a). The operator Ta is not Hermitian, but it is unitary
(T̂ †

a = T̂−1
a ). Therefore one can diagonalize Ĥ and T̂a simultaneously.

Let ψ(x) be an eigenfunction of T̂a associated with a given (complex)
eigenvalue λ. By definition, we have ψ(x+na) = λnψ(x), where n is a positive
or negative integer. Since we know that exponentially increasing functions at
±∞ are not acceptable, this imposes the condition |λ| = 1.

Consider a function ψ(x) which is an eigenfunction of both Ĥ and T̂a.
Since the eigenvalue λ of T̂a is of unit modulus, we can write it as λ = eiqa,
with −π ≤ qa < π. Consequently, the function ψ(x) can always be written as
ψ(x) = eiqx u(x), where u(x) is periodic with period a. This first important
result is known as the Bloch theorem.

For a given potential V (x) and for any value of q, one can then determine
u(x) by solving in one period (ranging from x = 0 to x = a, for instance),
the eigenvalue equation deduced from (7.20):
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Fig. 7.1. Energy spectrum of a particle of mass m in the periodic potential V (x) =
(µh̄2/ma)

∑
n δ(x − na). The figure, plotted for µ = 7, represents the variation of

the energies En(q) with q; the spectrum consists of allowed energy bands separated
by forbidden regions

1
2m

(
h̄

i
d
dx

+ h̄q

)2

u(x) + V (x)u(x) = E u(x) . (7.21)

The boundary conditions result from the periodicity of u(x):

u(a) = u(0) , u′(a) = u′(0) . (7.22)

Mathematically, this problem with periodic boundary conditions is similar to
the quantization of energies in an infinite square-well potential. One obtains
a discrete set of eigenvalues En(q), n = 0, 1, . . . .

In order to obtain the spectrum of the initial Hamiltonian, we let q vary
between −π/a and π/a in order to obtain the entire spectrum of the initial
Hamiltonian. In the case of a regular potential V (x), each energy En(q) is
a continuous function of q. We therefore obtain a second important result
concerning the spectrum: it consists of allowed energy bands, separated by
gaps (or forbidden bands). An example of such a spectrum is given in Fig. 7.1.

This band structure of the spectrum plays an essential role in solid-state
physics. Together with the Pauli principle, it allows one to predict whether
the material under consideration will be a conductor, a semiconductor or an
insulator. It is also of great practical interest for understanding the conse-
quences of the presence of defects (which can be intentional, as in doped
semiconductors) in the periodic structure.
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7.5 Algebraic Solution
of the Harmonic-Oscillator Problem

In order to illustrate how commutation relations function in practice, we give
here the celebrated method, due to Dirac, for solving the harmonic-oscillator
problem.

7.5.1 Reduced Variables

Consider the Hamiltonian

Ĥ =
p̂2

2m
+

1
2
mω2x̂2 . (7.23)

With the change of observables

X̂ = x̂

√
mω

h̄
, P̂ =

p̂√
mh̄ω

, (7.24)

we obtain

Ĥ = h̄ωĤ , where Ĥ =
1
2

(
X̂2 + P̂ 2

)
. (7.25)

The commutation relation of X̂ and P̂ follows from that of x̂ and p̂:

[X̂, P̂ ] = i . (7.26)

Our goal is to derive the spectrum of the operator Ĥ given in (7.25) by using
only this commutation relation.

7.5.2 Annihilation and Creation Operators â and â†

In order to solve the eigenvalue problem we introduce the following operators:

â =
1√
2
(X̂ + iP̂ ) , â† =

1√
2
(X̂ − iP̂ ) , (7.27)

whose commutator is

[â, â†] = 1 . (7.28)

These operators â and â† are called annihilation and creation operators, re-
spectively, for reasons which will become clear in the following.

We also define the number operator

N̂ = â†â =
1
2
(X̂2 + P̂ 2 − 1) . (7.29)

This Hermitian operator satisfies the commutation relations

[N̂ , â] = −â , [N̂ , â†] = â† , (7.30)

and we have Ĥ = N̂ + 1/2, so that Ĥ and N̂ have the same eigenvectors. We
want to show that the eigenvalues ν of N̂ are the nonnegative integers and
that these eigenvalues are not degenerate.
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7.5.3 Eigenvalues of the Number Operator N̂

The determination of the eigenvalues ν is performed by use of the following
lemmas:

a. The eigenvalues ν of the operator N̂ are nonnegative.
To show this, we consider an eigenvector |φν〉 associated with the eigen-
value ν and calculate the square of the norm of the vector â|φν〉:

‖â|φν〉‖2 = 〈φν |â†â|φν〉 = 〈φν |N̂ |φν〉 = ν 〈φν |φν〉 = ν ‖|φν〉‖2 .
(7.31)

Therefore ν ≥ 0, and

â|φν〉 = 0 if and only if ν = 0 . (7.32)

b. The vector â|φν〉 either is an eigenvector of N̂ , corresponding to the
eigenvalue ν − 1, or is equal to the null vector.
Consider the vector N̂ â|φν〉. Using the commutation relation of N̂ and
â, we obtain

N̂(â|φν〉) = âN̂ |φν〉 − â|φν〉 = νâ|φν〉 − â|φν〉 = (ν − 1)(â|φν〉) .

Consequently,
(a) either â|φν〉 is different from the null vector, which means that ν − 1

is an eigenvalue of N̂ and â|φν〉 is a corresponding eigenvector;
(b) or â|φν〉 is the null vector.

c. The vector â†|φν〉 is always an eigenvector of N̂ , corresponding to the
eigenvalue ν + 1.
Using the commutation relation between N̂ and â†, we indeed obtain

N̂(â†|φν〉) = â†N̂ |φν〉 + â|φν〉 = νâ†|φν〉 + â†|φν〉 = (ν + 1)(â†|φν〉) .

We notice that the vector â†|φν〉 cannot be equal to the null vector, since
its norm is strictly positive:

‖â†|φν〉‖2 = 〈φν |ââ†|φν〉 = 〈φν |(N̂ + 1)|φν〉 = (ν + 1)‖|φν〉‖2 .
(7.33)

Since ν is nonnegative, this implies that â†|φν〉 is an eigenvector of N̂
with eigenvalue ν + 1.

It is now simple to prove the following result:

The eigenvalues of N̂ are the nonnegative integers only.

Consider a given eigenvalue ν of N̂ , with an associated eigenvector |φν〉. We
apply the operator â repeatedly to |φν〉, generating thus a sequence of eigen-
vectors of N̂ , namely |φν〉, â|φν〉, â2|φν〉, . . . , associated with the eigenvalues
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0 ν −1ν −2 ν

ν ' â â

Fig. 7.2. By repeated action of the annihilation operator â on a given eigenstate

|φν〉 of N̂ , we construct a sequence of eigenstates associated with the eigenvalues

ν − 1, ν − 2, . . . . Since the eigenvalues of N̂ are positive, this sequence cannot be
infinite, which implies that ν is an integer (see text)

ν, ν −1, ν −2, . . . , respectively (see Fig. 7.2). Since the eigenvalues of N̂ are
nonnegative, one of the elements of the set {ν, ν−1, ν−2, . . . } is the smallest.
Let us call this eigenvalue νmin. Since νmin is the smallest eigenvalue, νmin−1
is not an eigenvalue. Therefore we deduce from lemma b that â|φνmin〉 is the
null vector. Since we have established in (7.31) that ‖â|φ′

ν〉‖2 = ν′‖|φ′
ν〉‖2 for

all ν′, this implies that νmin = 0. Consequently, the initial eigenvalue ν, which
by construction differs from νmin by a integer, has to be a positive integer
n. Coming back to the initial Hamiltonian Ĥ = h̄ω(N̂ + 1/2), we therefore
recover the energy levels (n + 1/2)h̄ω of the harmonic oscillator.

7.5.4 Eigenstates

Ground State. An eigenstate |φ0〉 associated with the eigenvalue ν = 0,
i. e. with an energy h̄ω/2, satisfies (7.32):

â|φ0〉 = 0 ⇒
(
X̂ + iP̂

)
|φ0〉 = 0 . (7.34)

In terms of wave functions, this relation becomes(
mω

h̄
x +

d
dx

)
φ0(x) = 0 . (7.35)

This equation can be solved readily:

φ0(x) = C0 e−mωx2/2h̄ , (7.36)

where C0 is a normalization constant: we recover the result of Chap. 4. In
particular, we observe that the ground-state is nondegenerate. To simplify
the notation, we shall write |φ0〉 = |0〉.

Nondegeneracy of Energy Levels. In order to prove that the energy
levels are not degenerate, we proceed by induction. We have just seen that
the ground state, associated with n = 0, is not degenerate. We suppose that
the level En = (n + 1/2)h̄ω is also not degenerate and we denote by |n〉
the corresponding eigenstate. We have to show now that the level En+1 is
not degenerate. We consider an eigenstate |ψn+1〉 of N̂ , associated with the
eigenvalue n + 1: N̂ |ψn+1〉 = (n + 1)|ψn+1〉. We know that â|ψn+1〉 is an
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eigenstate of N̂ with eigenvalue n. By assumption, the energy level En is
not degenerate. Consequently, we must have â|ψn+1〉 = γ|n〉, where γ is a
constant. If we multiply this equation by â†, we obtain

â†â|ψn+1〉 = γâ†|n〉 , or, equivalently, |ψn+1〉 =
γ

n + 1
â†|n〉 .

This equation defines in a unique way (up to a phase factor) the eigenstate
|ψn+1〉 associated with the eigenvalue n + 1, which demonstrates that the
energy levels of a one-dimensional harmonic oscillator are not degenerate.

Excited States. Assuming that the states |n〉 are normalized, owing to
lemmas 2 and 3 given above and to (7.31) and (7.33), we obtain

â|n〉 =
√

n|n − 1〉 , â†|n〉 =
√

n + 1|n + 1〉 . (7.37)

Hence the names annihilation operator (for â) and creation operator (for â†),
since these operators transform a state of energy (n + 1/2)h̄ω into a state
(n+1/2∓1)h̄ω. In other words, they annihilate or create a quantum of energy
h̄ω. Similarly, the observable N̂ is associated with the measurement of the
number of quanta.

The sequence of states |n〉 is generated, starting from the ground state
|0〉, by repeatedly applying the operator â†:

|n〉 =
1√
n!

(â†)n|0〉 . (7.38)

This allows us to find the wave function φn(x) of the nth excited state,
starting from the ground state wave function:

φn(x) =
1√
n!

1√
2n

(
x

√
mω

h̄
−
√

h̄

mω

d
dx

)n

φ0(x) . (7.39)

This can be viewed as a compact formula for the Hermite functions defined
in Chap. 4. In this example, we see the elegance and power of the algebraic
method. This treatment of the harmonic oscillator and the operators â, â†

and N̂ are basic tools in many branches of physics, such as quantum field
theory, statistical mechanics and the many-body problem.

Further Reading

R.C. Hovis and H. Kragh, “P.A.M. Dirac and the beauty of physics”, Sci.
Am., May 1993, p. 62; M. Berry, “Paul Dirac, the purest soul in physics”,
Phys. World, February 1998, p. 36.
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Exercises

7.1. Commutator algebra. Prove the following equalities:

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ] ,

[Â, B̂n] =
n−1∑
s=0

B̂s[Â, B̂]B̂n−s−1 ,

[Â, [B̂, Ĉ]] + [B̂, [Ĉ, Â]] + [Ĉ, [Â, B̂]] = 0 (Jacobi identity) .

7.2. Glauber’s formula. If two operators Â and B̂ do not commute, there
is no simple relation between eÂeB̂ and eÂ+B̂ . Suppose here that Â and B̂
both commute with their commutator [Â, B̂]. Prove Glauber’s formula,

eÂeB̂ = eÂ+B̂e[Â,B̂]/2 . (7.40)

Hint: you can introduce the operator F̂ (t) = etÂetB̂ , where t is a dimensionless
variable, and show that

dF

dt
=
(
Â + B̂ + t[Â, B̂]

)
F̂ (t).

You can then integrate this equation between t = 0 and t = 1.
Examples: Â = x̂/x0, B̂ = p̂/p0 (where x0 and p0 have the dimensions

of a position and a momentum); Â = λâ, B̂ = µâ† (where â and â† are the
annihilation and creation operators for a harmonic oscillator and λ and µ are
two complex numbers).

7.3. Classical equations of motion for the harmonic oscillator. Show
that for a harmonic oscillator with a potential V (x) = mω2x2/2, the Ehren-
fest theorem gives identically the classical equation of motion,

d2〈x〉
dt2

= −ω2〈x〉 .

7.4. Conservation law. Consider a system of two particles interacting
through a potential V (r1−r2). Check that the total momentum P = p1+p2

is conserved. Show that this property can be extended to a system of n in-
teracting particles.

7.5. Hermite functions. Prove, from (7.37) and the definition of â and â†,
the recursion relations for the following Hermite functions:

x̂|n〉 =

√
h̄

2mω

(√
n + 1|n + 1〉 +

√
n|n − 1〉) , (7.41)

p̂|n〉 = i

√
mh̄ω

2
(√

n + 1|n + 1〉 − √
n|n − 1〉) . (7.42)
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7.6. Generalized uncertainty relations.

a. Consider, in three dimensions, the radial variable r =
√

x2 + y2 + z2 and
a real function f(r) of this variable. Show that the commutator of p̂x with
f(r̂) is

[p̂x, f̂ ] = −ih̄
x̂

r
f ′(r̂) ,

where f ′(r) is the derivative of f .
b. Consider the operator Âx = p̂x − iλx̂f(r̂), where λ is a real number.

• Calculate the square of the norm of Âx|ψ〉 for an arbitrary vector |ψ〉.
• Add the analogous relations for Ây and Âz, and derive an inequality

relating 〈p2〉, 〈r2f2〉, 〈f〉 and 〈rf ′〉 which holds for any function f and
any state |ψ〉.

c. Considering the cases f = 1, f = 1/r and f = 1/r2, show that the
following relations are satisfied in three dimensions:

〈p2〉〈r2〉 ≥ 9
4
h̄2 , 〈p2〉 ≥ h̄2

〈
1
r

〉2

, 〈p2〉 ≥ h̄2

4

〈
1
r2

〉
.

d. Harmonic oscillator. The Hamiltonian of a three-dimensional harmonic
oscillator is Ĥ = p̂2/2m + mω2 r̂2/2.
• Using the first inequality, find a lower bound for the ground-state en-

ergy of this oscillator, and explain why this bound is equal to the
ground-state energy.

• Write down the differential equation satisfied by the corresponding
ground-state wave function and calculate this wave function.

e. Hydrogen atom. The Hamiltonian of the hydrogen atom is, considering
the proton mass as very large compared with the electron mass,

Ĥ =
p̂2

2me
− e2

r
,

where, for simplicity, we set e2 = q2/4πε0.
• Using the second inequality, find a lower bound for the ground-state

energy of the hydrogen atom, and explain why this bound is equal to
the ground-state energy.

• Write down the differential equation satisfied by the corresponding
ground-state wave function φ(r) and calculate this wave function.

7.7. Quasi-classical states of the harmonic oscillator. We consider a
one-dimensional harmonic oscillator of frequency ω and study the eigenstates
|α〉 of the annihilation operator, given by

â|α〉 = α|α〉 ,
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where α is a complex number. We expand |α〉 in the basis {|n〉}:

|α〉 =
∑

n

Cn|n〉 .

a. Determination of α.
(i) Write down the recursion relation between the coefficients Cn.
(ii) Express the Cn’s in terms of the first coefficient C0.
(iii) Calculate the coefficients Cn by normalizing |α〉, i. e. 〈α|α〉 = 1.
(iv) What are the allowed values of the number α?
(v) In an energy measurement on the state |α〉, what is the probability

of finding the value En = (n + 1/2)h̄ω?
b. Consider a state |α〉. Starting from the expression for the Hamiltonian

and the definition of this state, do the following:
(i) Calculate the expectation value 〈E〉.
(ii) Calculate the expectation value of the square of the energy 〈E2〉 (use

the commutator of â and â†).
(iii) Deduce the value of the dispersion ∆E in this state.
(iv) In what sense can one say that the energy is defined more and more

accurately as |α| increases and becomes much greater than 1?
c. Calculate 〈x〉,∆x, 〈p〉, ∆p in the state |α〉. In that state, what is the value

of the product ∆x∆p?
d. We assume that at t = 0, the oscillator is in the state |α〉.

(i) Write down the state |ψ(t)〉 of the system at time t.
(ii) Show that the state |ψ(t)〉 is also an eigenstate of the operator â and

give the corresponding eigenvalue.
(iii) We set α = α0eiφ, where α0 is real and positive. What are, at time

t, the values of 〈x〉, 〈p〉 and ∆x∆p?
e. We now determine the wave functions corresponding to |α〉.

(i) Check that the change of variables from x and p to X and P leads
to the following expression for the operator P̂ when it acts on wave
functions ψ(X, t):

P̂ = −i
∂

∂X
.

Give the corresponding expression for the operator X̂ when it acts
on functions ϕ(P, t).

(ii) Calculate the wave function ψα(X) of the state |α〉.
(iii) Calculate the Fourier transform ϕα(P ) of this wave function.
(iv) Starting from the time dependence of |ψα(X, t)|2 and |ϕα(P, t)|2,

explain the results obtained previously.
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7.8. Time–energy uncertainty relation. Consider a state |ψ〉 of a system
whose energy dispersion is ∆E, and an observable Â whose expectation value
and dispersion are 〈a〉 and ∆a, respectively. Using the commutation relations,
show that following inequality holds:

∆a ∆E ≥ h̄

2

∣∣∣∣d〈a〉dt

∣∣∣∣ .

Deduce from this that if the typical evolution timescale τ of the system is
defined by τ = |∆a/(d〈a〉/dt)|, one has the inequality τ∆E ≥ h̄/2.

7.9. Virial theorem. Consider a one-dimensional system with the Hamil-
tonian Ĥ = p̂2/2m + V (x̂), where V (x) = λxn.

a. Calculate the commutator [Ĥ, x̂p̂].
b. By taking the expectation value of this commutator, show that, for any

eigenstate of Ĥ, one has the relation

2〈T 〉 = n〈V 〉 ,

where T̂ = p̂2/2m is the kinetic-energy operator. Check this relation on
the harmonic oscillator.

c. Generalize this result to three dimensions by calculating [Ĥ, r̂ · p̂] and
considering a potential V (r) which is a homogeneous function of the
variables x, y, z, of degree n. A homogeneous function of degree n satisfies
V (αx, αy, αz) = αnV (x, y, z) and r · ∇V = nV .

d. Show that, for an arbitrary potential V (r), one has the general relation

2〈T 〉 =
〈

r
∂V

∂r

〉
.

7.10. Benzene and cyclo-octatetraene molecules. Consider the states
of an electron in a hexagonal C6 molecule composed of six equally spaced
atoms. The distance between two neighboring atoms is denoted by d. We
denote by |ξn〉, n = 1, . . . , 6, the states localized in the vicinity of the atoms
n = 1, . . . , 6, respectively. We assume that 〈ξn|ξm〉 = δn,m. The Hamiltonian
Ĥ of this system is defined in the basis {|ξn〉} by Ĥ = E0Î + Ŵ , where

Ŵ |ξn〉 = −A(|ξn+1〉 + |ξn−1〉)

and A > 0. We use here the cyclic conditions |ξ7〉 ≡ |ξ1〉 and |ξ0〉 ≡ |ξ6〉.
We denote by |ψn〉 and En, n = 1, . . . , 6, the eigenstates of Ŵ and the
corresponding eigenvalues. For simplicity, we choose the origin of energy such
that E0 = 0.
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We define the rotation operator R̂ by R̂|ξn〉 = |ξn+1〉.
a. What are the eigenvalues λk, k = 1, . . . , 6 of R̂?
b. The eigenvector corresponding to λk is denoted by |φk〉 =

∑6
p=1 ck,p|ξp〉.

Write down the recursion relation between the coefficients ck,p and de-
termine these coefficients by normalizing |φk〉.

c. Check that the vectors |φk〉 form an orthonormal basis of the six-
dimensional space under consideration.

d. Check that the same vectors |φk〉 are eigenvectors of the operator
R̂−1 = R̂† defined by R̂−1|ξn〉 = |ξn−1〉 and calculate the correspond-
ing eigenvalues.

e. Show that Ŵ and R̂ commute. What conclusions can we draw from that?
f. Express Ŵ in terms of R̂ and R̂−1. Deduce the eigenstates of Ŵ and the

corresponding eigenvalues. Discuss the degeneracies of the energy levels.
g. Consider now a regular eight-center chain of atoms closed into a ring

(cyclo-octatetraene molecule).
(i) Using a method similar to the preceding one, deduce the energy levels

for an electron moving on this chain. Discuss the degeneracies of these
levels.

(ii) At time t = 0, the electron is assumed to be localized on the site
n = 1, |ψ(t = 0)〉 = |ξ1〉. Calculate the probability p1(t) of finding
the electron again on the site n = 1 at a later time t; set ω = A/h̄.

(iii) Does there exist a time t �= 0 for which p1(t) = 1? Explain why. Is
the propagation of an electron on the chain periodic?

h. Consider now an electron on a ring of N sites, located regularly on a circle
with a distance d between two adjacent sites. The states localized in the
vicinity of each center n = 1, . . . , N are denoted by |ξn〉. The Hamiltonian
is defined, as above, by Ĥ = E0Î+Ŵ , where Ŵ |ξn〉 = −A(|ξn+1〉+|ξn−1〉)
and A > 0. By extending the argument above, calculate the energy levels
and the corresponding eigenstates. What happens in the limit of a chain
of infinite length closed into a ring?



8. The Stern–Gerlach Experiment

The capital things that have been said to mankind
have always been simple things.

Charles de Gaulle

In this chapter, we turn our attention to the celebrated 1922 experiment of
Stern and Gerlach. We shall show, for this example of a highly “nonclassical”
experimental situation, how one can construct phenomenologically the space
of states and the relevant observables. We shall obtain a description of this
experiment which, as a by-product, will provide us with a concrete way to
discuss a measurement process in quantum mechanics.

8.1 Principle of the Experiment

A collimated beam of atoms is sent into a region where an inhomogeneous
magnetic field is applied along the z direction, perpendicular to the initial
velocity of the atoms (Fig. 8.1a). The possible deflection of the beam by the
field gradient is then measured by observing the impacts of the atoms on a
detection plate perpendicular to the initial direction of the beam.

8.1.1 Classical Analysis

We first analyze this experiment within classical mechanics. The atoms are
neutral and are not subject to a magnetic Lorentz force. However, if they
have a nonvanishing magnetic moment µ, a force

Fz = µz
∂Bz

∂z
, (8.1)

parallel to the z direction, acts on them and deflects their trajectory. The
expression (8.1) is a well-known result of classical mechanics and magneto-
statics. We first outline its derivation here. When a magnetic moment µ is
placed in a magnetic field B, the magnetic interaction energy is

W = −µ · B , (8.2)
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Fig. 8.1. (a) The Stern–Gerlach experiment: atoms from a collimated beam are
deflected as they cross a region where an inhomogeneous magnetic field is applied.
This experiment can be interpreted as a measurement of the component of the
atomic magnetic moment along the direction of the field (z in the figure). (b)
Magnetic gradient between the pole pieces of the magnet

and a torque:

Γ = µ × B (8.3)

is exerted on the magnetic moment. In addition, if the magnetic field is
inhomogeneous, a force

F = ∇(µ · B) =
∑

i=x,y,z

µi(t)∇Bi (8.4)

acts on the dipole.
We can make a classical model of an atom (let us say hydrogen for sim-

plicity) by considering a particle with mass me and charge −q (the electron),
moving with a uniform velocity v in a circle of radius r centered on a charge
+q. This positive fixed charge represents the nucleus and is supposed to be
much heavier than the electron. The angular momentum of this system is

L = r × p = merv u , (8.5)

where u is the unit vector orthogonal to the orbital plane of the electron.
The magnetic moment of this elementary current loop is

µ = IS u , (8.6)

where I = −qv/(2πr) is the current in the loop, and S = πr2 is the loop area.
We then find a remarkably simple relation between the angular momentum
and the magnetic moment of this classical system:
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µ = γ0L, where γ0 =
−q

2me
. (8.7)

Note that the proportionality coefficient, called the gyromagnetic ratio, does
not depend on the radius r of the trajectory of the electron, nor on its velocity
v. Strictly speaking, the presence of an external magnetic field perturbs the
electron motion and modifies this very simple relation, but one can show that
this perturbation is very weak for realistic fields, and we neglect it here.

From (8.3) one might naively expect that the magnetic moment of the
atom would become aligned with the local magnetic field, as does the needle
of a compass. However, the proportionality between the magnetic moment
and the angular momentum gives rise to a radically different phenomenon,
analogous to the gyroscopic effect. The evolution of the angular momentum
is given by dL/dt = Γ. The proportionality between L and µ then implies

dµ

dt
= −γ0 B × µ . (8.8)

Consequently, for an atom at r, the magnetic moment does not align with
the axis of the local magnetic field B(r), but precesses around this axis with
an angular frequency

ω0 = −γ0B(r) . (8.9)

The quantity ω0 is called the Larmor frequency.

This precession phenomenon is very important in practice. It is a particular case
of a general theorem1 of electrodynamics proven by Larmor in 1897. This problem
was considered independently the same year by Lorentz.

We assume that the classical trajectory of the atoms lies in the plane of
symmetry x = 0 of the magnet (see Fig. 8.1b). Along this trajectory the
magnetic field is always parallel to the z axis, so that the Larmor preces-
sion takes place around z. Also, owing to the symmetry of the device, the
quantities ∂Bz/∂x and ∂Bz/∂y vanish along the atomic-beam trajectory (we
neglect possible edge effects). If the displacement of the magnetic moment
during a single precession period 2π/ω0 is small compared with the typical
scale of variation of the magnetic field, we can average the force (8.4) over
the Larmor period. The contributions of µx and µy to (8.4) then vanish, and
one is left only with the z component of the force Fz = µz(t) ∂Bz/∂z. In
addition, we deduce from (8.8) that µz stays constant as the atom moves in
the magnetic-field gradient, which justifies the result (8.1).

8.1.2 Experimental Results

In the absence of magnetic-field gradient one observes a single spot on the
detecting plate, in the vicinity of x = z = 0 (Fig. 8.2a). The magnetic-
field gradient provides a way to measure the z component of the magnetic
1 See, e. g., J. D. Jackson, Classical Electrodynamics, Wiley, New York (1975).
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µz
+ µ0

− µ0

0

(a) (c)

Fig. 8.2. Possible results of a Stern–Gerlach experiment. (a) In the absence of
a magnetic-field gradient no deflection of the atomic trajectories occurs, and the
atoms form a single spot around the point x = z = 0; each dot represents the
impact of an atom on the detection screen. (b) Simulation of the result expected
from classical mechanics, assuming that all atoms carry the same magnetic mo-
ment µ0 with a random orientation; the distribution of the z component of the
magnetic moment is uniform between −µ0 and +µ0. (c) Simulation of the result
found experimentally with silver atoms: the experiment, which can be considered
as a measurement of the z component of the magnetic moment, yields only the two
results +µ0 and −µ0

moment of the atoms as they enter the field zone. Let us assume that all the
atoms carry the same magnetic moment, of norm µ0, and that this moment is
oriented at random when an atom enters the field zone. Classically, this should
produce some continuous distribution of µz between the two extreme values
−µ0 and +µ0, so that one would expect that the impacts of the atoms on the
screen would form an extended line parallel to z (Fig. 8.2b). The endpoints
of the line correspond to atoms whose magnetic moments are oriented such
that µz = +µ0 and µz = −µ0, respectively.

The experimental observation differs radically from this classical predic-
tion. The set of impacts never forms a continuous line on the screen. For some
atoms, such as silver, the impacts are grouped into two spots corresponding
to µz = +µ0 and µz = −µ0, with µ0 = 9.27 × 10−24 J T−1 (Fig. 8.2c). For
other atoms, one may find three, four, etc. spots, which are always placed
symmetrically with respect to the trajectory in the absence of a magnetic
field. Some atoms, such as helium in its ground state, do not show any ap-
preciable deviation. This latter case can obviously be interpreted as meaning
that these atoms do not have a magnetic moment. We shall investigate in the
next section how the quantum formalism can describe these results. We shall
concentrate here on the case where there are two spots, such as with silver
atoms. This method can be extended to cases where there are 3, 4, . . . spots.

To conclude this presentation, we remark that the order of magnitude
of µ0 is understandable. In fact, the only quantity with the dimensions of
a magnetic moment that we can construct with fundamental and atomic
constants is h̄q/m, where q is the elementary charge (proton or electron)
and m is a typical atomic mass. According to whether we choose for m the
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electron mass me or the proton mass mp, we obtain results which differ by
three orders of magnitude, ranging from 10−23 to 10−26 J T−1. The result µ0

of the Stern–Gerlach experiment is consistent with

µ0 = h̄ |γ0| =
h̄q

2me
, (8.10)

which amounts to taking L = h̄ in (8.7). The quantity (8.10) is the absolute
value of the Bohr magneton.

Why would Stern and his colleague Gerlach want to do this experiment in 1921, five
years before quantum mechanics as we now understand it was developed? Stern’s
goal was to test one of the mysterious aspects of the old quantum theory, which
was called “space quantization”. When theorists learned about the project of Stern
and Gerlach, most of them were quite skeptical. For instance Born declared later,
“It took me a time before I took this idea seriously. I thought always that direction
[space] quantization was a kind of symbolic expression for something which you
don’t understand. But to take it literally like Stern did, this was his own idea ... I
tried to persuade Stern that there was no sense [in it], but then he told me that it was
worth a try.” The experiment was quite difficult, requiring at the same time a good
vacuum system and a hot oven (1000◦C) to produce an intense beam of silver atoms.
When the result finally came out, it was at first considered as a very successful proof
of the space quantization idea. However Einstein and Ehrenfest quickly pointed out
crucial inconsistencies in the description of the experimental results within the old
theory of quanta, and it was only when quantum mechanics was developed in 1926–
27 (including the concept of spin) that a consistent description of this experiment
became possible.

8.2 The Quantum Description of the Problem

The first stage of the quantum description consists in specifying the Hilbert
space of the system, by examining the degrees of freedom of the atom. There
are, a priori, two different sets of degrees of freedom involved in this exper-
iment. First, the atoms can move in space, with the corresponding transla-
tional degrees of freedom along each of the three directions x, y, z. In addition,
there is another degree of freedom corresponding to the internal magnetic
moment of the atom.

In the case of ground-state helium atoms, for which no deviation occurs,
the internal degree of freedom can be ignored. The state of the atom can be
described by a wave function ψ(r) whose evolution is given by the Schrödinger
equation for a free particle (Chap. 2). For a silver atom, the internal degree
of freedom associated with its magnetic moment plays a crucial role. This is
what leads to the splitting of the trajectories of the atoms when they cross
the inhomogeneous-field zone, giving rise to two spots.

The space of states that we have to consider, in order to explain the
experiment, has the structure of a tensor product E = Eexternal ⊗ Einternal.
The space corresponding to the translational degrees of freedom Eexternal is
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the space of square-integrable wave functions seen in Chaps. 2 and 3. In
order to construct the space Einternal associated with the internal-magnetic-
moment degree of freedom, we remark that the Stern–Gerlach experiment
can be reinterpreted as a measurement of the z component of the magnetic
moment of the atom. We denote the corresponding observable by µ̂z.

The first experimental observation is that, whatever the state of the mag-
netic moment of the atom, a measurement of µz gives one of the results +µ0

and −µ0, and these values only. The dimension of the space Einternal is there-
fore at least 2, since there are at least two eigenstates of µ̂z, with eigenvalues
+µ0 and −µ0.

Obviously, there is nothing special about the z axis. The same remarks
hold for the projections µx and µy of the magnetic moment on the x and y
axes, and for the corresponding observables µ̂x and µ̂y. There are at least
two eigenstates of µ̂x, with eigenvalues +µ0 and −µ0, and similarly for µ̂y.

In which space Einternal should we describe the magnetic-moment states
of the atom? The answer to this question is by no means obvious. Classically
the magnetic moment µ of a system is a vector quantity, characterized by its
three components (µx, µy, µz) in a reference system. In quantum mechanics
we must deal with a set of three observables (µ̂x, µ̂y, µ̂z) and we know that
each of them has only two eigenvalues +µ0 and −µ0.

It is a remarkable fact that one can explain the experimental results under
the “minimal” assumption that the Hilbert space Einternal associated with
the magnetic moment is of dimension 2. As we shall see, this assumption is
consistent, and it leads to an explanation of all phenomena related to the
magnetic moment in the Stern–Gerlach experiment.2

Suppose therefore that Einternal is two-dimensional. A basis of this space
is then provided by the two eigenstates of µ̂z corresponding to the two results
+µ0 and −µ0. We write these states as |+〉z and |−〉z. By assumption,

µ̂z|+〉z = µ0|+〉z , µ̂z|−〉z = −µ0|−〉z , (8.11)

and any internal state |µ〉 of the atom can be written as

|µ〉 = α|+〉z + β|−〉z (8.12)

where |α|2 + |β|2 = 1. A measurement of the component µz of the magnetic
moment then gives +µ0 (i. e. the atom is detected in the upper spot) with
probability |α|2 and −µ0 (lower spot) with probability |β|2.

Using a matrix representation, we have, in the basis {|±〉z},

|+〉z =
(

1
0

)
, |−〉z =

(
0
1

)
, |µ〉 =

(
α
β

)
(8.13)

2 As always in physics (be it quantum or classical), one can never prove that a
given theoretical explanation is the only acceptable one. Theories can only be
falsified. Our goal here is to propose a scheme that is as simple as possible and
explains all observed phenomena.
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and

µ̂z = µ0

(
1 0
0 −1

)
. (8.14)

8.3 The Observables µ̂x and µ̂y

Consider now the experimental situation shown in Fig. 8.3. We place two
magnets consecutively in the beam. The first has a field gradient directed
along z and splits the incident beam into two beams corresponding to the
two internal states |+〉z and |−〉z. When the beams leave the field zone, we
stop the beam corresponding to the state |−〉z and keep only the beam in
the state |+〉z. This latter beam is then sent into another Stern–Gerlach
device, whose axis is along the x axis, orthogonal to z. We therefore perform
a measurement of the x component of the atomic magnetic moment, whose
corresponding observable is µ̂x. The result observed experimentally is that
the beam is again split into two beams of equal intensities, corresponding to
values of the magnetic moment along x equal to +µ0 and −µ0, respectively.

We want to find the form of the operator µ̂x. By assumption, this operator
acts in Einternal and is described by a 2 × 2 matrix in the basis |±〉z:

µ̂x = µ0

(
αx βx

γx δx

)
. (8.15)

x
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Fig. 8.3. A beam of silver atoms crosses two magnetic-field zones. The first creates
a field gradient along z, the second a field gradient along x. After the first magnet, a
shutter lets only the atoms in the internal state |+〉z continue. The second magnet
allows one to perform a measurement of the x component of the magnetic moment.
One finds the two results +µ0 and −µ0 with equal probabilities
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There are several constraints on the four parameters αx, βx, γx, δx:

a. The operator µ̂x is Hermitian, therefore αx and δx are real, and γx = β∗
x.

b. The possible results of a measurement of the x component of the magnetic
moment are +µ0 and −µ0. These are the eigenvalues of the observable
µ̂x, which imposes the requirements that:

the sum of eigenvalues = Tr(µ̂x) ⇒ αx + δx = 0 , (8.16)
the product of eigenvalues = det(µ̂x) ⇒ αxδx − βxγx = −1 . (8.17)

c. If the initial state is |+〉z and if we measure µx, we find the values +µ0

and −µ0 with equal probabilities. The expectation value of the results is
therefore 0 for this initial state. This requires that

0 = z〈+|µ̂x|+〉z = µ0αx . (8.18)

Combining this set of constraints, we deduce that the operator µ̂x is nec-
essarily of the form

µ̂x = µ0

(
0 e−iφx

eiφx 0

)
. (8.19)

In the previous argument, we discussed the x axis. However, the same
argument holds for any axis provided it is perpendicular to z. In particular,
it is also true for the y axis, which is orthogonal to both x and z. We can
repeat the argument and end up with an expression similar to (8.19):

µ̂y = µ0

(
0 e−iφy

eiφy 0

)
. (8.20)

The last step of our reasoning is to determine the relation between the
phases φx and φy entering (8.19) and (8.20). In order to do that, consider
an atomic beam prepared in the eigenstate of µ̂x with eigenvalue +µ0. This
eigenstate, which we write as |+〉x, is, in the basis |±〉z,

|+〉x =
1√
2
(|+〉z + eiφx |−〉z) . (8.21)

If we measure the y component of the magnetic moment of atoms prepared in
this state, a direct transcription of the above argument tells us that we shall
find the two results +µ0 and −µ0 with equal probabilities. The expectation
value of the result vanishes, and therefore

0=x〈+|µ̂y|+〉x =µ0 cos(φx − φy) , i. e. φy − φx =
π

2
(moduloπ) . (8.22)

One can check that it is not possible to go further in this determination3

of φx and φy. Any pair that satisfies (8.22) gives rise to operators µ̂x and µ̂y

3 The only extra ingredient one can impose is that the set of axes (x, y, z) be right-
handed; the remaining arbitrary phase reflects the fact that the choice of the x
and y axes in the plane orthogonal to z is arbitrary.
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which can account for the set of experimental results. In order to simplify
the notation, we choose the particular values φx = 0, φy = π/2. This leads
to the following three operators µ̂x, µ̂y, µ̂z which describe the components of
the magnetic moment along the three axes:

µ̂x = µ0

(
0 1
1 0

)
, µ̂y = µ0

(
0 −i
i 0

)
, µ̂z = µ0

(
1 0
0 −1

)
. (8.23)

We recover, up to the coefficient µ0, the Pauli matrices introduced in Chap. 6
(6.5). The eigenstates of µ̂x and µ̂y are

|±〉x =
1√
2

(|+〉z ± |−〉z) , |±〉y =
1√
2

(|+〉z ± i|−〉z) . (8.24)

8.4 Discussion

We now analyze our findings.

8.4.1 Incompatibility of Measurements Along Different Axes

The three operators µ̂x, µ̂y, µ̂z which we have just found do not commute.
They obey the three cyclic commutation relations

[µ̂x, µ̂y] = 2iµ0 µ̂z , [µ̂y, µ̂z] = 2iµ0 µ̂x , [µ̂z, µ̂x] = 2iµ0 µ̂y . (8.25)

Physically, this means that one cannot know simultaneously two components
of the magnetic moment of an atom. Suppose we start with atoms in the
state |+〉z (the z component is known). If we measure the x component of
the magnetic moment, the two results +µ0 and −µ0 are possible, with equal
probabilities. Suppose we find +µ0 in this latter measurement. After the
measurement of µx, the state of the system is the corresponding eigenstate
of µ̂x:

|+〉x =
1√
2
(|−〉z + |−〉z) .

A measurement of µx on this new state will again give the result +µ0. How-
ever, if we turn our attention back to the z axis and measure µz, the expres-
sion for |+〉x shows that the new measurement will give the results +µ0 and
−µ0 with equal probabilities. Since we started initially with the state |+〉z,
for which the z component of the magnetic moment was well defined, we see
that the intermediate measurement of µx has changed (or has perturbed) the
state of the system.

In this simple example, we recover the paradoxical character of quantum
“logic” as opposed to classical probabilistic logic. Suppose, for instance, that
one performs a separation of red and blue objects, followed by a separation
of, say, large and small objects. After the second separation, half of the “blue
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and large” objects would be ... red. In the example of the Stern–Gerlach
experiment, sorting into the two categories µz = +µ0 and µz = −µ0 loses all
its meaning if one attempts to sort the systems into subcategories µx = +µ0

and µx = −µ0.

8.4.2 Classical Versus Quantum Analysis

What would the argument lead to in classical mechanics? In a Stern–Gerlach
apparatus oriented along the z axis, a magnetic moment precesses around this
direction and, for realistic values of the parameters, it makes many rotations
between the entrance and the exit. Therefore it seems that, just as in quantum
mechanics, the final values of µx and µy should be completely uncorrelated
with the initial values. However, nothing prevents us, at least in principle,
from controlling sufficiently well the trajectories and the value of the field.
Therefore, we can, to an arbitrary accuracy, make the precession angle equal
to an even multiple of 2π. We then end up with a situation where we can
measure µz without perturbing µx and µy.

Things become more involved if one performs a quantum description of
the center of mass of the atom, still treating the magnetic moment classically.
When the atom enters the Stern–Gerlach apparatus, the wave packet has
some transverse extension ∆z and some momentum dispersion ∆pz, with
∆z ∆pz ≥ h̄/2. Let us denote by b′ = ∂Bz/∂z the field gradient along the
z axis, and denote by T the time it takes to cross the magnet. In order for
the measurement of µz to be accurate, the momentum variation during the
crossing of the field must be large compared with the initial dispersion, i. e.

µ0b
′T � ∆pz , (8.26)

otherwise the spreading of the beam at the exit of the magnet will simply
reflect the initial spreading. On the other hand, the angle of precession cannot
be a constant, because the inhomogeneity of the field over the extension ∆z
induces a dispersion ∆ω0 = γ0b

′ ∆z in the Larmor frequency (8.9). If we
require that the values of µx and µy are not smeared out in the crossing of
the field, the dispersion of the precession angle must be small compared with
2π:

T ∆ω0 = T γ0 b′ ∆z � 2π . (8.27)

Owing to the Heisenberg inequality and to the experimental result µ0 ∼
h̄γ0 (see (8.10)), the two conditions (8.26) and (8.27) cannot be satisfied
simultaneously; a quantum description of the center-of-mass motion of the
atom suffices to make the measurements of µx, µy and µz “incompatible”
with one another.
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8.4.3 Measurement Along an Arbitrary Axis

Up to now, we have only considered measurements along the three axes x, y
and z. Now we are interested in measuring the component of the magnetic
moment along an arbitrary axis. This is shown in Fig. 8.4. We place a Stern–
Gerlach apparatus along an arbitrary direction defined by the unit vector uθ,
such that

uθ = ux sin θ + uz cos θ . (8.28)

Classically, this corresponds to a measurement of the component µθ of
the magnetic moment along uθ, i. e. µθ = µx sin θ + µz cos θ. Using the cor-
respondence principle, we assume that the corresponding observable is

µ̂θ = µ̂x sin θ + µ̂z cos θ = µ0

(
cos θ sin θ
sin θ − cos θ

)
. (8.29)

This choice guarantees that the expectation values 〈µx〉, 〈µy〉 and 〈µz〉 of
the components of the magnetic moment transform as the components of a
three-vector of the usual kind under rotations.

Just like µ̂x, µ̂y, µ̂z, the operator µ̂θ has the eigenvalues +µ0 and −µ0. Its
eigenvectors are

x

z

gradient
along z

gradient
along θ

incident
beam

beam
blocker

θ

x

z

z
−

z
+

Fig. 8.4. A beam of silver atoms is prepared in the state |+〉z. It then crosses a
field gradient directed along uθ. In this measurement of the component of the mag-
netic moment along uθ, the two possible results are +µ0 and −µ0, with respective
probabilities cos2 θ/2 and sin2 θ/2. The graph in the lower right corner shows a
typical result for θ = π/4



168 8. The Stern–Gerlach Experiment

|+〉θ = |+〉z cos (θ/2) + |−〉z sin (θ/2) =
(

cos(θ/2)
sin(θ/2)

)
, (8.30)

|−〉θ = −|+〉z sin (θ/2) + |−〉z cos (θ/2) =
(− sin(θ/2)

cos(θ/2)

)
. (8.31)

The experimental observations are the following. If a beam prepared in the
state |+〉z is sent into a field gradient directed along uθ, one finds that this
beam is split into two beams corresponding to magnetic moments along uθ

equal to +µ0 and −µ0, with relative intensities I+(θ) = I+(0) cos2(θ/2) and
I−(θ) = I+(0) sin2(θ/2).

In order to account for this result, we apply the principles of Chap. 5.
A measurement of µ̂θ can give two possible values, which are the eigenval-
ues +µ0 and −µ0; if the initial system is in the state |+〉z, the respective
probabilities for these two possible outcomes are

p+ = |θ〈+|+〉z|2 = cos2(θ/2) , (8.32)
p− = |θ〈−|+〉z|2 = sin2(θ/2) . (8.33)

Therefore, (8.29) explains why the experimental measurement, which involves
a large number of atoms, gives two spots with relative intensities cos2(θ/2)
and sin2(θ/2). The measurement gives a result with probability 1 only when
θ is 0 or π, i. e. when the preparation axis uz and the measurement axis uθ

are parallel or antiparallel.

8.5 Complete Description of the Atom

We now address the question of giving a complete description of the state
of the atom. The motion of the center of mass of the atom is described in
the Hilbert space Eexternal of square-integrable functions L2(R3). The internal
state corresponding to the degree of freedom associated with the magnetic
moment is described in the two-dimensional space Einternal.

8.5.1 Hilbert Space

The full Hilbert space is the tensor product of these two spaces:

EH = Eexternal ⊗ Einternal .

Any element |ψ〉 of EH is of the form

|ψ〉 = |ψ+〉 ⊗ |+〉 + |ψ−〉 ⊗ |−〉 , (8.34)

where |ψ+〉 and |ψ−〉 are vectors of Eexternal, i. e. square-integrable functions
of r, and where |+〉 and |−〉 are the eigenstates of µ̂z. For simplicity, in what
follows we shall omit the subscript z when writing the kets |±〉z. The space
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observables Âext (for instance x̂ or p̂) and the magnetic-moment observables
µ̂x, µ̂y, µ̂z act in different spaces and therefore commute. The product of two
such observables is defined as

(Âext ⊗ µ̂x)(|ψε〉 ⊗ |ε〉) = (Âext|ψε〉) ⊗ (µ̂x|ε〉) , ε = ±1 . (8.35)

8.5.2 Representation of States and Observables

There are several possible representations of the states, with corresponding
representations of the observables. We give two of these representations. The
choice of one or the other, or a third one, is merely a matter of convenience.

(a) Mixed Representation. Any state |ψ(t)〉 can be represented by a vec-
tor of Einternal whose components are square-integrable functions:

ψ+(r, t)|+〉 + ψ−(r, t)|−〉 . (8.36)

The scalar product of |ψ(t)〉 and |χ(t)〉, represented by ψ+(r, t)|+〉+
ψ−(r, t)|−〉 and by χ+(r, t)|+〉 + χ−(r, t)|−〉, respectively, is

〈ψ(t)|χ(t)〉 =
∫ (

ψ∗
+(r, t)χ+(r, t) + ψ∗

−(r, t)χ−(r, t)
)

d3r .

The physical meaning of this representation follows from the fact that we
are dealing with a pair of random variables r and µz. The probability law for
the pair is the following:

|ψ+(r, t)|2 d3r and |ψ−(r, t)|2 d3r are the probabilities of detecting the par-
ticle in a vicinity d3r of the point r, with the projection µz of its magnetic
moment equal to +µ0 and −µ0, respectively.

This results in the following properties:

a. Normalization:∫ (|ψ+(r, t)|2 + |ψ−(r, t)|2) d3r = 1 . (8.37)

b. Probability density of finding the particle at point r independently of the
value of µz:

P (r, t) = |ψ+(r, t)|2 + |ψ−(r, t)|2 . (8.38)

c. Conditional probabilities. Knowing that the particle is at r (within d3r),
the probabilities that a measurement of µz yields the results +µ0 and
−µ0 are

P+(r, t) =
|ψ+(r, t)|2

P (r, t)
, P−(r, t) =

|ψ−(r, t)|2
P (r, t)

, (8.39)

respectively, where P+(r, t) + P−(r, t) = 1.



170 8. The Stern–Gerlach Experiment

(b) Two-Component Wave Function or Spinor. It may also be conve-
nient to use matrix representations for the states |ψ(t)〉 such as(

ψ+(r, t)
ψ−(r, t)

)
, (8.40)

and, for 〈ψ(t)|, the row matrix(
ψ∗

+(r, t), ψ∗
−(r, t)

)
. (8.41)

The physical interpretation of ψ+ and ψ− as probability amplitudes for the
pair of random variables (r, µz) is the same as above.

Any observable which acts only on space variables is a 2×2 scalar matrix
whose elements are operators acting in L3(R3). For instance, the kinetic
energy operator can be written as

p̂2

2m
=
(−(h̄2/2m)∆ 0

0 −(h̄2/2m)∆

)

Any matrix acting only on magnetic-moment variables is a linear combination
of the Pauli matrices (8.23) and of the identity. In this representation, the
sum or the product of two observables is the sum or the product of the
corresponding matrices.

8.5.3 Energy of the Atom in a Magnetic Field

If the atom is placed in a magnetic field B(r), the magnetic potential inter-
action energy is

Ŵ = −µ̂ · B(r̂) . (8.42)

In this formula, we have collected the set of three observables µ̂x, µ̂y and µ̂z

into the form of a vector operator µ̂, and, by definition,

µ̂ · B(r̂) = µ̂xBx(r̂) + µ̂yBy(r̂) + µ̂zBz(r̂) . (8.43)

8.6 Evolution of the Atom in a Magnetic Field

We now show how this theoretical model explains experimental facts.

8.6.1 Schrödinger Equation

Suppose the atom moves in space in a potential V (r) and that, in addition,
a magnetic field B acts on it. The Hamiltonian is the sum of two terms
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Ĥ = Ĥext ⊗ Îint + Ŵ , (8.44)

where the Hamiltonian

Ĥext =
p̂2

2m
+ V (r̂)

is of the same type as what we studied in Chaps. 2–4. In particular, Ĥext does
not act on the internal magnetic moment variable. Conversely, Ŵ is given
by (8.42). This operator acts in the space Einternal via the three operators
µ̂x, µ̂y, µ̂z; if the field is inhomogeneous, it also acts in the external Hilbert
space through the three functions Bx(r̂), By(r̂), Bz(r̂).

The Schrödinger equation is

ih̄
d
dt

|ψ〉 = Ĥ|ψ〉 . (8.45)

Choosing the representation of states (8.36) and decomposing the vectors in
the orthonormal basis {|+〉, |−〉}, we obtain the coupled differential system

ih̄
∂

∂t
ψ+(r, t) =

(
− h̄2

2m
∆ + V (r )

)
ψ+(r, t)

+ 〈+|Ŵ |+〉 ψ+(r, t) + 〈+|Ŵ |−〉 ψ−(r, t) ,

ih̄
∂

∂t
ψ−(r, t) =

(
− h̄2

2m
∆ + V (r )

)
ψ−(r, t)

+ 〈−|Ŵ |+〉 ψ+(r, t) + 〈−|Ŵ |−〉 ψ−(r, t) .

The matrix elements of Ŵ in the basis {|+〉, |−〉} are functions of the external
variables. They act in addition to the usual potential terms (diagonal terms)
and couple the evolution equations of the components ψ+ and ψ−.

8.6.2 Evolution in a Uniform Magnetic Field

Consider a silver atom moving freely in space (V (r) = 0), with a uniform
applied magnetic field B. We assume that at time t = 0 the complete atomic
wave function (external and internal) is

ψ(r, 0)(α0|+〉 + β0|−〉) , (8.46)

i. e. it factorizes in the space and magnetic-moment variables. The total
Hamiltonian contains both the kinetic energy of the atom and its interac-
tion energy with the field B:

Ĥ =
p̂2

2m
− µ̂ · B , (8.47)

where, from now on, we omit the identity operators Îint and Îext. At any later
time t, the solution of the Schrödinger equation is also factorized:
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ψ(r, t)(α(t)|+〉 + β(t)|−〉) , (8.48)

where

ih̄
∂ψ(r, t)

∂t
= − h̄2

2m
∆ψ(r, t) , (8.49)

ih̄
d
dt

(α(t)|+〉 + β(t)|−〉) = −µ̂ · B (α(t)|+〉 + β(t)|−〉) . (8.50)

Indeed, if we assume that the state is factorized as in (8.48), we can read-
ily check that it satisfies the Schrödinger equation if (8.49) and (8.50) are
satisfied. Since it coincides with the initial state (8.46) at t = 0, it therefore
represents the solution of the time evolution equation.

We observe that the two types of degrees of freedom decouple from one
another. The first equation (8.49) describes the motion of the particle in
space (the decoupling remains valid even if a potential V (r) is present). The
second equation determines the evolution of the internal magnetic state of
the atom. If B is parallel to z, (8.50) becomes{

ih̄α̇(t) = −µ0B α(t)
ih̄β̇(t) = µ0B β(t)

⇒
{

α(t) = α0 exp(−iω0t/2)
β(t) = β0 exp(iω0t/2) , (8.51)

where we have set ω0 = −2µ0B/h̄.
We can determine the expectation values Mx, My, Mz of the three com-

ponents µ̂x, µ̂y, µ̂z:

Mx(t) = 〈ψ(t)|µ̂x|ψ(t)〉 = 2µ0 α0β0 cos ω0t ,

My(t) = 〈ψ(t)|µ̂y|ψ(t)〉 = 2µ0 α0β0 sinω0t , (8.52)
Mz(t) = 〈ψ(t)|µ̂z|ψ(t)〉 = µ0 (|α0|2 − |β0|2) .

Here we have assumed that α0 and β0 are real; the calculation can be gener-
alized to complex coefficients with no difficulty.

As we could have expected from the Ehrenfest theorem, Mz is time in-
dependent, since µ̂z commutes with the Hamiltonian when B is along the
z direction. On the contrary, Mx and My are not constants of the motion.
In order to obtain a more intuitive picture of this evolution, we can rewrite
these three equations in the form⎧⎨

⎩
Ṁx = −ω0My

Ṁy = ω0Mx

Ṁz = 0
or

dM

dt
= Ω × M , (8.53)

where Ω = ω0uz. We recover the Larmor precession described in (8.8)
(Fig. 8.5). We shall see later on that this precession can be observed experi-
mentally and that the Larmor frequency can be measured very accurately, for
instance in magnetic resonance experiments. This has numerous applications
in physics, chemistry, biology and medicine.
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Ω

M Fig. 8.5. Time evolution of the expectation values of
the components of the magnetic moment of a silver atom
placed in a magnetic field directed along z. One observes
a gyroscopic motion identical to the Larmor precession of
a classical magnetic moment placed in the same field

8.6.3 Explanation of the Stern–Gerlach Experiment

The last question we want to examine is whether the theoretical model that
we have built can explain the observed spatial separation of the states |±〉z.
We consider an incident atomic beam propagating along y; each atom pos-
sesses a magnetic moment. In a region of length L, a magnetic field B parallel
to z is applied with a gradient along z:

B(r) = Bz(r)uz , where Bz(r) = B0 + b′z . (8.54)

In full rigor, (8.54) is incorrect since the field B(r) does not satisfy ∇ · B = 0. A
more realistic calculation can be done with a field B = B0uz +b′(zuz−xux), which
satisfies Maxwell’s equations. If the dominant part of the field B0ez is much larger
than the transverse field −b′xex over the transverse extension ∆x of the atomic
wave packet (i. e. B0 � b′∆x), the eigenstates of −µ̂ · B remain practically equal
to |±〉z and the present approach is valid.

Under these conditions, the Schrödinger equation (8.45) can be decoupled
into two equations:

ih̄
∂

∂t
ψ+(r, t) =

(
p̂2

2m
− µ0B

)
ψ+(r, t) , (8.55)

ih̄
∂

∂t
ψ−(r, t) =

(
p̂2

2m
+ µ0B

)
ψ−(r, t) . (8.56)

These two equations are both of the same type as the Schrödinger equation
seen in Chap. 3, but the potential is not the same for ψ+ and ψ−. In order
to proceed further, we set

π± =
∫

|ψ±(r, t)|2 d3r , π+ + π− = 1 , (8.57)

where π+ and π− are the probabilities of finding µz = +µ0 and µz = −µ0.
We deduce from (8.55) and (8.56) that
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dπ+

dt
=

dπ−
dt

= 0 . (8.58)

We define the functions

φ±(r, t) = ψ±(r, t)/
√

π± , (8.59)

which are the conditional probability amplitudes of particles for which µz =
±µ0. These normalized functions also satisfy the Schrödinger-type equations
(8.55) and (8.56).

We now define:

〈r±〉 =
∫

r |φ±(r, t)|2 d3r , (8.60)

〈p±〉 =
∫

φ∗
±(r, t)

h̄

i
∇φ±(r, t) d3r , (8.61)

where 〈r+〉 and 〈r−〉 are the average positions of particles for which µz = +µ0

and µz = −µ0, respectively, and 〈p±〉 are their average momenta. A simple
application of the Ehrenfest theorem gives

(d/dt)〈r±〉 = 〈p±〉/m , (8.62)
(d/dt)〈px±〉 = (d/dt)〈py±〉 = 0 , (8.63)
(d/dt)〈pz±〉 = ±µ0b

′ . (8.64)

At t = 0, we assume that

〈r±〉 = 0 , 〈px±〉 = 〈pz±〉 = 0 , 〈py±〉 = mv .

We obtain, at time t,

〈x±〉 = 0 , 〈y±〉 = vt , 〈z±〉 = ±µ0b
′t2/2m . (8.65)

Therefore there is a spatial separation along z of the initial beam into two
beams. One beam corresponds to µz = +µ0, the other to µz = −µ0. When
the beams leave the magnet of length L, their separation is

δz = 〈z+〉 − 〈z−〉 =
µ0b

′

m

L2

v2
. (8.66)

If the field gradient is sufficiently strong that δz > ∆z (the separation is larger
than the spatial extension of each wave packet), we obtain two well defined
beams, one in the internal state |+〉, the other in the state |−〉. Therefore, the
formalism we have developed in this section explains completely the Stern–
Gerlach experiment and its results. It elicits two fundamental aspects of a
measurement process in quantum mechanics:

• a measurement requires a finite spatial extension (δz = 0 in (8.66) if L = 0),
• a measurement is never instantaneous (δz = 0 if T = L/v = 0).
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These two aspects were absent in the formulation of the principles of quantum
mechanics presented in Chap. 5.

Finally a simple inspection of the evolution of the expectation value of the
separation of the two spots, and of their dispersion at the exit of the magnet
leads to the following result. Let T = L/v be the time the atoms spend in
the inhomogeneous magnetic field, and let us denote by E⊥ = 〈p2

z〉/2m the
transverse energy communicated to the atom by the field gradient. In order
for us to observe the splitting, the following condition must be satisfied:

TE⊥ ≥ h̄/2 .

This condition, where the value of the field gradient has disappeared, is one
important aspect of the so-called time–energy uncertainty relation, which
appears in any quantum measurement. We shall come back to this relation
in Chap. 17.

8.7 Conclusion

In this chapter, we have proposed a quantum treatment which fully describes
the phenomena encountered in Stern–Gerlach-type experiments with silver
atoms (or, more generally, with “two-spot” atoms). We could generalize this
approach to other classes of atoms or particles (three-spot atoms, four-spot
atoms, etc.). In the case of three-spot atoms, for instance, there are three
possible values +µ0, 0,−µ0 for the z component of the magnetic moment
µ̂z. By considering various combinations of measurements, one can construct
the observables µ̂x and µ̂y in the basis |+〉z, |0〉z, |−〉z, in other words, in a
three-dimensional Hilbert space.

In fact, such a procedure becomes tedious if the dimension of the space
Einternal is larger than 2. Later on, we shall use instead a more general ap-
proach which relies on the proportionality between magnetic moments and
angular momenta. We shall see that the commutation relations (8.25), which
we have found phenomenologically here, have a much larger scope and a much
more fundamental character.

Further Reading

We strongly recommend any reader interested in the historical aspects of
Stern and Gerlach’s work to read “Space Quantization: Otto Stern’s Luck
Star”, by B. Friedrich and D. Herschbach, Daedalus 127, 165 (1998). See also
M. Jammer, The Conceptual Development of Quantum Mechanics, McGraw-
Hill, New York (1966); B.L. Van Der Waerden, Sources of Quantum Mechan-
ics, North-Holland, Amsterdam (1967); J. Mehra and H. Rechenberg, The
Historical Development of Quantum Theory, Springer, Berlin (1982).
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Exercises

8.1. Determination of the magnetic state of a silver atom. Consider
a silver atom in an arbitrary state of its magnetic moment

α|+〉z + β|−〉z , where |α|2 + |β|2 = 1 . (8.67)

a. Show that this is an eigenstate of u · µ̂ with eigenvalue +µ0, where u is
a unit vector, whose direction should be determined.

b. Alice sends to Bob one silver atom in the unknown state (8.67). Can Bob
determine this state using Stern–Gerlach measurements?

c. Alice sends to Bob N (� 1) silver atoms, all prepared in the same un-
known state (8.67). Give a possible strategy for Bob to determine this
state (within statistical errors).

8.2. Results of repeated measurements: quantum Zeno paradox.
The magnetic moment µ of a neutron can be described in the same way as
the magnetic moment of a silver atom in the Stern–Gerlach experiment. If
a neutron is placed in a uniform magnetic field B parallel to the z axis, it
can be considered as a two-state system for magnetic-moment measurements
(disregarding space variables).

We denote by |+〉 and |−〉 the eigenstates of the observable µ̂z. These
eigenstates correspond to the two eigenvalues +µ0 and −µ0. The Hamiltonian
of the system in the field B is Ĥ = −Bµ̂z. We set ω = −2µ0B/h̄.

a. Give the energy levels of the system.
b. At time t = 0 the neutron is prepared in the state |ψ(0)〉 = (|+〉 +

|−〉)/√2. What results can be obtained by measuring µx on this state,
with what probabilities?

c. Write down the state |ψ(T )〉 of the magnetic moment at a later time T .
d. We measure µx at time T . What is the probability of finding +µ0?
e. We now perform on the same system a sequence of N successive measure-

ments at times tp = pT/N, p = 1, 2, . . . , N . What is the probability
that all these measurements give the result µx = +µ0?

f. What does this probability become if N → ∞? Interpret the result; do
you think it makes sense physically?



9. Approximation Methods

Any necessary matter is by nature boring.

Aristotle, Metaphysics IV.5

In quantum mechanics the number of problems for which there exist ana-
lytical solutions is rather restricted, as it is in classical mechanics. We met
some of these cases in Chap. 4 and we shall investigate the Coulomb prob-
lem in Chap. 11. In general one must resort to approximation methods. In
this chapter, we present two of these methods: perturbation theory and the
variational method.

9.1 Perturbation Theory

Perturbation theory consists of starting from a solvable problem and adding
small modifications to the Hamiltonian.

9.1.1 Definition of the Problem

Consider the eigenvalue problem

Ĥ|ψ〉 = W |ψ〉 (9.1)

associated with the Hamiltonian Ĥ. We assume that Ĥ can be cast into the
form of a dominant term Ĥ0 plus a perturbation, which we write as λĤ1,
where λ is a real parameter:

Ĥ = Ĥ0 + λĤ1 . (9.2)

We assume that we know the solution of the eigenvalue problem for Ĥ0,

Ĥ0|n, r〉 = En|n, r〉 , r = 1, 2, . . . , pn , (9.3)

where the degeneracy of the eigenvalue En is pn, and where the pn ortho-
normal eigenstates |n, r〉 with r = 1, 2, . . . , pn span the eigensubspace En.
We also assume that the term λĤ1 is sufficiently weak to cause only small
perturbations to the spectrum of Ĥ0.
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Example. Consider the shift of the energy levels of a hydrogen atom in
the presence of an external electric field (Stark effect). In the absence of the
external field, the binding energies of the hydrogen atom are a few electron-
volts and the size of the atom is of the order of a few angstroms. Therefore the
electric field created by the proton and seen by the electron is of the order of
1010 V m−1. This is enormous compared with any static field one deals with
in a laboratory. Consequently the applied static field can be safely treated
as a small perturbation to the Coulomb field. The parameter λ can be the
intensity of the applied field, measured relative to some relevant reference,
for instance the typical Coulomb field of 1010 V m−1.

9.1.2 Power Expansion of Energies and Eigenstates

We assume that the energy levels W of Ĥ vary analytically with λ. Therefore,
if λ is small enough, these levels and the corresponding states will be close
to those of the nonperturbed Hamiltonian Ĥ0.

Perturbation theory consists in expanding |ψ〉 and W in powers of λ, i. e.

|ψ〉 = |ψ0〉 + λ |ψ1〉 + λ2 |ψ2〉 + . . . , (9.4)
W = W (0) + λ W (1) + λ2 W (2) + . . . , (9.5)

and calculating the coefficients of the expansion. We insert these expansions
in the eigenvalue equation (9.1) to obtain(

Ĥ0 + λĤ1

) (|ψ0〉 + λ |ψ1〉 + . . .
)

=
(
W (0) + λW (1) + . . .

) (|ψ0〉 + λ|ψ1〉 + . . .
)

, (9.6)

and identify each order in terms of powers of λ:

Ĥ0|ψ0〉 = W (0)|ψ0〉 , (9.7)
Ĥ0|ψ1〉 + Ĥ1|ψ0〉 = W (0)|ψ1〉 + W (1)|ψ0〉 , (9.8)
Ĥ0|ψ2〉 + Ĥ1|ψ1〉 = W (0)|ψ2〉 + W (1)|ψ1〉 + W (2)|ψ0〉 , (9.9)

. . . = . . . .

We also have to take into account the normalization condition

1 = 〈ψ|ψ〉 = 〈ψ0|ψ0〉 + λ
(〈ψ0|ψ1〉 + 〈ψ1|ψ0〉)+ . . . (9.10)

which yields

〈ψ0|ψ0〉 = 1 , (9.11)
Re〈ψ0|ψ1〉 = 0 , (9.12)

. . . = 0 .

Since the description of the perturbed state is given in the same Hilbert
space as for the unperturbed state, each term |ψi〉 can be expanded in the
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original eigenbasis of H0:

|ψi〉 =
∑

n

pn∑
r=1

γi
n,r|n, r〉 . (9.13)

The series of equations (9.7)–(9.12) provides recursion relations for calculat-
ing all terms |ψi〉 and W (i). At any given order, we obtain an approximation
to the exact solution.

We note that (9.7) implies that |ψ0〉 is an eigenvector of H0 and that W (0)

is an eigenvalue of H0. Therefore

W (0) = En (9.14)

and |ψ0〉 is a vector of the corresponding eigensubspace En.

9.1.3 First-Order Perturbation in the Nondegenerate Case

If the level En is not degenerate, we simply denote the corresponding
eigenvector by |n〉. The solution to first order is particularly simple. Let
|ψn〉 = |ψ0

n〉+λ|ψ1
n〉+. . . be the perturbed state and Wn = W

(0)
n +λW

(1)
n +. . .

the corresponding energy level. Equation (9.7) then implies

|ψ0
n〉 = |n〉 , W (0)

n = En , (9.15)

which expresses the fact that the perturbed state and energy level are close
to the unperturbed ones. We take the scalar product of (9.8) with the vector
〈n|. Taking into account (9.15) and the fact that 〈n|Ĥ0 = En〈n|, we obtain,
by setting ∆E

(1)
n = λW

(1)
n ,

∆E(1)
n = 〈n|λĤ1|n〉 . (9.16)

To first order, the energy shift ∆En of the level En is equal to the expectation
value of the perturbing Hamiltonian for the unperturbed state |n〉.

9.1.4 First-Order Perturbation in the Degenerate Case

Suppose that the level En of Ĥ0 has a pn-fold degeneracy. We denote by
|n, r〉, r = 1, . . . , pn, an orthonormal basis of the corresponding eigensub-
space. In general the perturbation λĤ1 will lift the degeneracy and the level
En will be split into pn sublevels En + λW

(1)
n,q , q = 1, . . . , pn. We denote by

|ψn,q〉 the corresponding eigenstates and |ψ0
n,q〉 the zeroth order in λ of each

of these eigenstates. As stated at the end of Sect. 9.1.2, we know that each
|ψ0

n,q〉 belongs to the eigensubspace En. Note that there is no reason why
|ψ0

n,q〉 should coincide with one of the basis vectors |n, r〉, since these have
been chosen arbitrarily. In other words, we have, in general,
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|ψ0
n,q〉 =

pn∑
r=1

Cq,r|n, r〉 (9.17)

and we want to determine the coefficients Cq,r.
We multiply (9.8) on the left by 〈n, r′| and obtain

pn∑
r=1

〈n, r′|λĤ1|n, r〉Cq,r = λW (1)
n,q Cq,r′ . (9.18)

For any given value of q, this is nothing but the eigenvalue problem for the
pn × pn matrix 〈n, r′|λĤ1|n, r〉. The pn shifts ∆E

(1)
n,q = λW

(1)
n,q of the level En

are given by the solutions of the secular equation1∣∣∣∣∣∣∣
〈n, 1|λĤ1|n, 1〉−∆E . . . 〈n, 1|λĤ1|n, pn〉

... 〈n, r|λĤ1|n, r〉−∆E
...

〈n, pn|λĤ1|n, 1〉 . . . 〈n, pn|λĤ1|n, pn〉−∆E

∣∣∣∣∣∣∣=0

We also obtain the Cq,r and therefore the eigenstates to zeroth order in λ
corresponding to these eigenvalues.

Summary. In all cases, degenerate or not, the first-order energy shift of a
level En is obtained by diagonalizing the restriction of the perturbing
Hamiltonian to the corresponding subspace.

9.1.5 First-Order Perturbation to the Eigenstates

Consider the nondegenerate case. Using (9.8) and taking the scalar product
with the eigenstate |k〉 for k �= n, we obtain

(En − Ek) 〈k|ψ1
n〉 = 〈k|Ĥ1|n〉 .

Therefore we can write |ψ1
n〉 as

|ψ1
n〉 = |n〉 〈n|ψ1

n〉 +
∑
k �=n

〈k|Ĥ1|n〉
En − Ek

|k〉 . (9.19)

Equation (9.11) implies Re
(〈n|ψ1

n〉
)

= 0. By making the change of phase
|ψn〉 → eiα|ψn〉 in (9.4), we can choose α such that Im

(〈n|ψ1
n〉
)

= 0 without

1 Perturbation theory was first used in celestial mechanics, by Laplace and La-
grange. The initial purpose was to calculate the perturbations of the motions
of planets around the sun (dominant term) due to the gravitational field of the
other planets (perturbation). Poisson and Cauchy showed that the problem was
basically an eigenvalue problem (6 × 6 matrices for Saturn, up to 8× 8 for Nep-
tune).
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loss of generality. The first-order perturbation |ψ1
n〉 to the state vector is then

completely determined as

|ψ1
n〉 =

∑
k �=n

〈k|Ĥ1|n〉
En − Ek

|k〉 . (9.20)

9.1.6 Second-Order Perturbation to the Energy Levels

We consider the nondegenerate case for simplicity. Using the above result for
the first-order perturbation to the state vector, and taking the scalar product
of (9.9) with the eigenstate |n〉, we obtain the second-order correction to the
energy of the eigenstates:

∆E(2)
n = λ2W (2)

n = λ2
∑
k �=n

|〈k|Ĥ1|n〉|2
En − Ek

. (9.21)

9.1.7 Examples

Harmonic Potential with a Modified Spring Constant. We consider
first a harmonic oscillator which is perturbed by a complementary harmonic
term. We write Ĥ = Ĥ0 + λĤ1, where

Ĥ0 =
p̂2

2m
+

1
2
mω2x̂2 , λĤ1 =

λ

2
mω2x̂2 . (9.22)

The energy levels of Ĥ0 are well known: En = (n+1/2) h̄ω. Since the Hamil-
tonian Ĥ still corresponds to a harmonic oscillator, we know exactly its energy
levels as long as λ > −1:

Wn =
(

n +
1
2

)
h̄ω

√
1 + λ . (9.23)

Perturbation theory gives, to first order (see (9.16)),

∆E(1)
n = 〈n|λ

2
mω2x̂2|n〉 . (9.24)

This energy shift can be calculated easily by using the expression for x̂ in
terms of creation and annihilation operators,

x̂ =

√
h̄

2mω

(
â + â†) (9.25)

and we obtain

∆E(1)
n =

(
n +

1
2

)
h̄ω

λ

2
. (9.26)

As expected, this coincides with the first-order term in the expansion in
powers of λ of the exact result (9.23).
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Anharmonic Potential. Consider a harmonic potential which is perturbed
by a quartic potential:

Ĥ0 =
p̂2

2m
+

1
2
mω2x̂2 , λĤ1 = λ

m2ω3

h̄
x̂4 , (9.27)

where λ is a dimensionless real parameter. Using again the expression for x̂ in
terms of annihilation and creation operators, we find the shift of the energy
level En = (n + 1/2) h̄ω to first order in λ to be

∆E(1)
n = λ

m2ω3

h̄
〈n|x̂4|n〉 =

3λ

4
h̄ω (2n2 + 2n + 1) . (9.28)

9.1.8 Remarks on the Convergence of Perturbation Theory

In using the expansions (9.4) and (9.5), we implicitly assumed that the solu-
tion could be expanded in a power series in λ, and therefore that it is analytic
in the vicinity of λ = 0 and that the series converges for λ sufficiently small.

In the first example given above, corresponding to a harmonic oscil-
lator with a modified spring constant, the exact result is known: Wn =
(n + 1/2) h̄ω

√
1 + λ. We see that the series converges for −1 < λ ≤ 1. This

is physically quite reasonable: for λ < −1 the potential mω2(1 + λ)x2/2 is
repulsive and there are no bound states. For λ > 1 the “dominant” term
mω2x2/2 is actually “small” compared with λ mω2x2/2, and it is that term
which should be treated as a perturbation.

The case of the anharmonic potential (second example) is somewhat
pathological in the sense that one can prove that the power expansion in
λ never converges: the power series has a vanishing radius of convergence!
Nevertheless, the result (9.28) is a good approximation as long as the cor-
rection to the unperturbed term (n + 1/2)h̄ω is small. For a fixed value of
λ (small compared with unity), this will only occur for values of n smaller
than some value nmax(λ), since the correction increases as n2. This can be
understood physically since:

• The term proportional to x4 is only small if the extension of the wave
function is not too large; it becomes dominant as soon as 〈x2〉 is large.

• For λ ≥ 0 the potential mω2x̂2/2 + λĤ1 has bound states, while for λ < 0
(even arbitrarily small) the force becomes repulsive for x sufficiently large.
The Hamiltonian is no longer bounded from below and there are no bound
states. Therefore when one crosses the value λ = 0, the physical nature
of the problem changes dramatically. This is reflected in the mathematical
properties of the solution; there is a singularity at λ = 0 and the power
series expansion around the origin has a vanishing radius of convergence.

A well-known example of a series which does not converge but whose
first terms give an excellent approximation to the exact answer is Stirling’s
formula, used to approximate Euler’s gamma function:
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Γ(x) =

√
2π

x

(x

e

)x
(

1 +
1

12 x
+

1
288 x2

+ . . .

)
.

This is called an asymptotic series; it can be used safely in computers, al-
though it is not convergent.

9.2 The Variational Method

We briefly describe the variational method, which is very convenient for esti-
mating the approximate value of energy levels (mostly the ground state) and
which is frequently used in quantum chemistry.

9.2.1 The Ground State

The first use of the variational method is to derive an upper bound on the
ground-state energy of a quantum system. It is based on the following theo-
rem:

Let |ψ〉 be any normalized state; the expectation value of a Hamiltonian Ĥ
in this state is always greater than or equal to the ground-state energy E0 of
this Hamiltonian, i. e.

〈ψ|Ĥ|ψ〉 ≥ E0 for any |ψ〉 . (9.29)

To prove this result, we expand |ψ〉 in an eigenbasis of Ĥ:

|ψ〉 =
∑

n

Cn|n〉 ,
∑

n

CnC∗
n = 1 ,

where Ĥ|n〉 = En|n〉 and, by definition, E0 ≤ En. Calculating 〈ψ|Ĥ|ψ〉−E0,
we obtain

〈ψ|Ĥ|ψ〉 − E0 =
∑

n

EnCnC∗
n − E0

∑
n

CnC∗
n =

∑
n

(En − E0)|Cn|2 ≥ 0 ,

which proves (9.29). Alternatively, one may simply observe that if the spec-
trum of an operator is bounded from below, the expectation value of this
operator is necessarily greater than or equal to the lower bound of the spec-
trum.

In practice, this result is used in the following way. We choose a state |ψ〉
which depends on some parameters and we calculate 〈E〉 in this state. The
minimum value that we find by varying the parameters gives an approxima-
tion to the ground-state energy, which is, furthermore, an upper bound on
this energy level.
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Example. Consider the harmonic oscillator Ĥ = p̂2/2m+mω2x̂2/2 and the
normalized test function

ψa(x) =

√
2a3

π

1
x2 + a2

.

In this case there is a single variational parameter a, and we obtain

E(a) = 〈ψa|Ĥ|ψa〉 =
∫

ψa(x)
(
− h̄2

2m

d2

dx2
+

1
2
mω2x2

)
ψa(x) dx .

We can compute E(a) by using∫ +∞

−∞

dx

x2 + a2
=

π

a

and its derivatives with respect to a. We obtain

E(a) =
h̄2

4ma2
+

1
2
mω2a2 ,

which has a minimum for a2 = h̄/(mω
√

2). Hence

Emin =
h̄ω√

2
.

This gives an upper bound on the exact result h̄ω/2. The difference between
the exact result and the value derived from the variational method can be
further reduced by choosing more elaborate test functions with several vari-
ational parameters. Had we chosen Gaussian functions as the set of test
functions, we would have obtained the exact result of course, since the true
ground state of Ĥ would have been an element of this set.

9.2.2 Other Levels

One can generalize the variational method to other states by using the fol-
lowing theorem:

The function

|ψ〉 −→ Eψ =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

is stationary with respect to |ψ〉 if and only if |ψ〉 is an eigenstate of Ĥ.

To prove this result we consider a variation |δψ〉 of |ψ〉, i. e. |ψ〉 → |ψ〉+ |δψ〉.
Expanding the above formula to first order, we find

〈ψ|ψ〉 δEψ = 〈δψ|(Ĥ − Eψ)|ψ〉 + 〈ψ|(Ĥ − Eψ)|δψ〉 .
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If |ψ〉 is an eigenstate of Ĥ with eigenvalue E, then Eψ = E and (Ĥ −
Eψ)|ψ〉 = 0. Consequently δEψ = 0 whatever the infinitesimal variation
|δψ〉.

Conversely, if δEψ = 0 whatever the variation |δψ〉, we must have

〈δψ|(Ĥ − Eψ)|ψ〉 + 〈ψ|(Ĥ − Eψ)|δψ〉 = 0 .

In particular, this must happen if we make the choice

|δψ〉 = η (Ĥ − Eψ)|ψ〉 ,

where η is an infinitesimal number. Inserting this in the above formula, we
obtain

〈ψ|(Ĥ − Eψ)2|ψ〉 = 0 .

The norm of the vector (Ĥ − Eψ)|ψ〉 vanishes, and therefore

(Ĥ − Eψ)|ψ〉 = 0 .

This means that |ψ〉 is an eigenvector of Ĥ with eigenvalue Eψ.
In practice, we can use this result in the following way. We choose a set

of wave functions (or state vectors) which depend on a set of parameters,
which we call α collectively. We calculate the expectation value of the energy
E(α) for these wave functions. All the extrema of E(α) with respect to the
variations of α will be approximations to the energy levels. Of course, these
extrema will not in general be exact solutions, since the choice of test wave
functions does not cover the entire Hilbert space.

9.2.3 Examples of Applications of the Variational Method

Calculations of Energy Levels. Consider a particle of mass m placed in
an isotropic 3D potential V (r) ∝ rβ . We choose the normalized Gaussian test
function

ψa(r) = (a/π)3/4 exp(−ar2/2) . (9.30)

We find, in this state,

〈p2〉 =
3
2
ah̄2 , 〈rβ〉 = a−β/2 Γ(3/2 + β/2)

Γ(3/2)
.

This gives an upper bound on the ground state for the following potentials:

• The harmonic potential (β = 2), for which we recover the exact result.
• The Coulomb potential V (r) = −e2/r. We find

E0 = − 4
3π

me4

h̄2 , to be compared with the exact result − 1
2

me4

h̄2 .
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• The linear potential V (r) = gr. We find

E0 =
(

81
2π

)1/3 (
h̄2g2

2m

)1/3

� 2.345
(

h̄2g2

2m

)1/3

,

to be compared with the coefficient 2.338 of the exact result.

Relation to Perturbation Theory. We have the following result.

The first order of perturbation theory provides an upper bound on the
ground-state energy.

Indeed, in first-order perturbation theory, the ground-state energy is

W0 = 〈ψ0| (Ĥ0 + λĤ1) |ψ0〉 ,

where |ψ0〉 is the ground-state wave function of H0. Because of the theorem
(9.29), W0 is an upper bound on the ground-state energy of H0 + λH1.

Uncertainty Relations. Using the inequality (9.29) for systems whose
ground state is known, we can derive uncertainty relations between 〈p2〉 and
〈rα〉, where α is a given exponent.

a. The 〈r2〉 〈p2〉 uncertainty relation. Consider a one-dimensional harmonic
oscillator, whose ground-state energy is h̄ω/2. Whatever the state |ψ〉,
we have

〈p2〉
2m

+
1
2
mω2〈x2〉 ≥ h̄ω

2
⇒ 〈p2〉 + m2ω2〈x2〉 − h̄mω ≥ 0 .

We recognize a second-degree polynomial inequality in the variable mω.
The necessary and sufficient condition for this to hold for all values of
mω is

〈p2〉〈x2〉 ≥ h̄2

4
. (9.31)

In three dimensions, using the notation r2 = x2 + y2 + z2, we obtain, in
the same manner

〈p2〉〈r2〉 ≥ 9h̄2

4
. (9.32)

b. The 〈1/r〉 〈p2〉 uncertainty relation. The hydrogen atom Hamiltonian is
H = p̂2/2m− e2/r̂ and its ground-state energy is E0 = −me4/(2h̄2) (see
Chap. 11). Consequently, we have for all |ψ〉

〈p2〉
2m

− e2

〈
1
r

〉
≥ −me4

2h̄2 .

We have again a second-degree polynomial in the variable me2 which is
always positive, from which we deduce

〈p2〉 ≥ h̄2

〈
1
r

〉2

. (9.33)
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Exercises

9.1. Perturbed harmonic oscillator. Using the results (9.19) and (9.21),
calculate the second-order energy shift of the perturbed harmonic oscillator
(9.22), and compare this with the power expansion in λ of the exact result
(9.23).

9.2. Comparison of the ground states of two potentials. Consider
two potentials V1(r) and V2(r) such that V1(r) < V2(r) at all points r. Show
that the energy of the ground state of a particle moving in the potential V1 is
always lower than the energy of the ground state of the same particle moving
in V2.

9.3. Existence of a bound state in a potential well. Consider a particle
moving in one dimension in a potential V (x) which tends to zero at ±∞ and
which is such that V (x) ≤ 0 for all x. Show that there is always at least one
bound state for this motion. Is this result still valid in three dimensions?

9.4. Generalized Heisenberg inequalities. Consider the Hamiltonian
Ĥ = p2/2m+grα, where g and α have the same sign and where α > −2. The
energy levels En of Ĥ can be derived from the eigenvalues εn of the operator
(−∆ρ + ηρα) (where ρ is a dimensionless variable and η = |α|/α) by use of
the scaling law

En = εn |g|2/(α+2)

(
h̄2

2m

)α/(α+2)

,

as one can check directly by applying the scaling r = ρ
(
h̄2/(2m|g|))1/(α+2)

.
Show, using the variational method, that the following general relation

holds:

〈p2〉 〈rα〉2/α ≥ κ h̄2 where κ = |α| 22/α

( |ε0|
α + 2

)(α+2)/α

.

Here ε0 is the smallest eigenvalue of the operator −∆ρ + ηρα.



10. Angular Momentum

Done like a Frenchman; turn and turn again!

William Shakespeare, Henry VI

Angular momentum plays a central role in physics. It is a constant of the
motion in rotation invariant problems. It is also essential in the interpreta-
tion of physical phenomena such as magnetism, which is conceived classically
as originating from the motion of charges. Ferromagnetism, however, cannot
be explained with classical ideas. Instead, it arises from the intrinsic mag-
netic moment of electrons related to their spin, i. e. their intrinsic angular
momentum, whose origin and description are purely quantum mechanical.

Starting from the classical definition of the orbital angular momentum
L = r × p of a particle, we shall first write down the commutation relations
of the corresponding observable L̂. These commutation relations will then be-
come the definition of all angular-momentum observables Ĵ , including cases
where classical analogs do not exist. We shall study the general form of the
eigenstates and eigenvalues of such observables.

We shall then come back to orbital angular momenta in the wave function
formalism and we shall determine the corresponding eigenfunctions, called
spherical harmonics. Among their many applications, these functions will be
a useful tool when we study the hydrogen atom in the next chapter.

The fundamental proportionality relation between the angular momen-
tum and the magnetic moment of a microscopic system will provide us with
an experimental means to verify the quantization of angular momenta. We
shall return to the experimental results which we analyzed phenomenologi-
cally in Chap. 8, i. e. the Stern–Gerlach experiment. The foundations of this
analysis will appear to be much deeper and more general. We shall see how
experiment can prove that there exist in nature angular momenta which have
no classical analog, namely the spins of particles. The spin-1/2 formalism and
the complete description of a particle including its intrinsic spin variables will
be treated in Chap. 12.
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10.1 Orbital Angular Momentum
and the Commutation Relations

In classical mechanics, the angular momentum L, with respect to the origin,
of a particle of momentum p located at position r is

L = r × p . (10.1)

Our starting point will be to assume, according to the correspondence prin-
ciple, that the angular-momentum observable is

L̂ = r̂ × p̂ . (10.2)

The three components L̂x, L̂y, L̂z of this (vector) observable do not com-
mute. One finds, after a simple calculation,

[L̂x, L̂y] = ih̄L̂z , [L̂y, L̂z] = ih̄L̂x , [L̂z, L̂x] = ih̄L̂y , (10.3)

which we can summarize as

L̂ × L̂ = ih̄ L̂ . (10.4)

The angular momentum with respect to an arbitrary point r0 is L = (r − r0)×p. It
is straightforward to check that this observable also satisfies the above commutation
relations.

Consider a system of N particles with position and momentum operators
r̂i, p̂i, i = 1, . . . , N . The total angular-momentum operator is

L̂
(tot)

=
N∑

i=1

L̂i =
N∑

i=1

r̂i × p̂i .

One can check that L̂
(tot)

satisfies the three commutation relations (10.3),
since an operator L̂i commutes with all the others L̂j (j �= i). We shall there-
fore take as the definition of an angular-momentum (vector) observable Ĵ the
following fundamental relation between its components, directly inspired by
(10.4):

Ĵ × Ĵ = ih̄ Ĵ . (10.5)

10.2 Eigenvalues of Angular Momentum

The commutation relation (10.5) defines an angular-momentum observable.
In group theory this relation is the Lie algebra of the rotation group (no-
tice that, by defining the dimensionless observable K̂ = Ĵ/h̄, we obtain
[K̂x, K̂y] = iK̂z, in which h̄ has disappeared). The quantization of angular
momenta was actually derived by Elie Cartan as early as 1914 in his analysis
of Lie groups, long before quantum mechanics was developed.
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10.2.1 The Observables Ĵ2 and Ĵz and the Basis States |j, m〉
The observable Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z , which is associated with the square of the
angular momentum, commutes with each component of Ĵ :

[Ĵ2, Ĵ ] = 0 . (10.6)

To show this, consider for instance the component Ĵx:

[Ĵx, Ĵ2] = [Ĵx, Ĵ2
y + Ĵ2

z ] = ih̄
(
ĴyĴz + ĴzĴy

)
− ih̄

(
ĴyĴz + ĴzĴy

)
= 0 .

As a consequence, starting from the three operators Ĵx, Ĵy and Ĵz and
functions of only these three operators, one can construct a CSCO made up
of the square of the angular momentum Ĵ2 and one of the components of
Ĵ . By convention, we choose the CSCO {Ĵ2, Ĵz}. The eigenvectors common
to these two operators are denoted by |j, m〉. The dimensionless quantum
numbers j and m are defined such that the eigenvalues of Ĵ2 and Ĵz are
j(j + 1)h̄2 and mh̄, respectively. In other words, we set

Ĵ2|j, m〉 = j(j + 1)h̄2|j, m〉 , (10.7)
Ĵz|j, m〉 = mh̄|j, m〉 . (10.8)

We can always choose j ≥ 0. Indeed, all eigenvalues of Ĵ2 are nonnegative
since 〈ψ|Ĵ2|ψ〉 ≥ 0 for all |ψ〉, and any nonnegative real number can always
be written j(j + 1), where j is also nonnegative. For the moment, there is
no other restriction on the possible values of j and m. We assume these
eigenvectors are orthonormal:

〈j, m|j′, m′〉 = δj,j′ δm,m′ .

Since Ĵ2 and Ĵz form a CSCO, the vector |j, m〉 is unique for given values of
j and m.

Some systems are such that the only observables are angular-momentum observ-
ables and functions of these observables. This is, for instance, the case for the free
motion of a particle on a sphere. However, in general, a system will have other
degrees of freedom. The term “CSCO” used above is then an abuse of language,

since a true CSCO will contain other observables Â, B̂, etc., and the corresponding
eigenbasis will depend on other quantum numbers |α, β, . . . , j, m〉. Fortunately, the

existence of these extra quantum numbers does not affect the diagonalization of Ĵ2

and Ĵz, which is of interest here. Once this diagonalization is performed, one will
have to diagonalize the other relevant observables of the CSCO. For instance, when
we consider the hydrogen atom in the next chapter, we shall use a CSCO made up

of the Hamiltonian Ĥ, L̂2 and L̂z, L̂ being the orbital angular momentum. In such
a case, it is straightforward to write the complete form of (10.7) and (10.8). Assume

for instance that {Â, Ĵ2, Ĵz} form a true CSCO for a given system; the common
eigenbasis |α, j, m〉 is unique and we have
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Â|α, j, m〉 = aα|α, j, m〉 ,

Ĵ2|α, j, m〉 = j(j + 1)h̄2|α, j, m〉 ,

Ĵz|α, j, m〉 = mh̄|α, j, m〉 ,

〈α, j, m|α′, j′, m′〉 = δα,α′δj,j′δm,m′ .

One can verify that the arguments developed below are unchanged but with a more
complicated notation, owing to the presence of the index α, which is unaffected and
remains a “spectator” index in the derivation.

The physical significance of the choice of the CSCO {Ĵ2, Ĵz} and of the
quantum numbers (10.7) corresponds to the following questions:

a. What are the possible results of a measurement of the square of the
angular momentum?

b. Once the square of the angular momentum is fixed, what are the possible
results of a measurement of the projection of this angular momentum on
an axis, here the z axis?

The method we shall follow in order to determine the quantum numbers
j and m is similar to the algebraic technique developed for the harmonic
oscillator in Chap. 7.

10.2.2 The Operators Ĵ±

We first introduce the two operators Ĵ+ and Ĵ−,

Ĵ+ = Ĵx + iĴy and Ĵ− = Ĵx − iĴy , (10.9)

which are Hermitian conjugates of one another: Ĵ†
+ = Ĵ−, Ĵ†

− = Ĵ+. Since
Ĵ± are linear combinations of Ĵx and Ĵy, which commute with Ĵ2, these
operators Ĵ± also commute with Ĵ2:

[Ĵ2, Ĵ±] = 0 . (10.10)

On the other hand, Ĵ+ and Ĵ− do not commute with Ĵz. Using the relations
(10.5), we find

[Ĵz, Ĵ±] = [Ĵz, Ĵx] ± i[Ĵz, Ĵy] = ih̄Ĵy ± i(−ih̄Ĵx)

= ±h̄Ĵ± . (10.11)

10.2.3 Action of Ĵ± on the States |j, m〉

Consider a given state |j, m〉 and the two vectors Ĵ±|j, m〉. Using the defin-
itions (10.7) and (10.8) and the commutation relations we have just estab-
lished, we find that
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Ĵ2Ĵ±|j, m〉 = Ĵ±Ĵ2|j, m〉 = j(j + 1) h̄2Ĵ±|j, m〉 , (10.12)
ĴzĴ±|j, m〉 = (Ĵ±Ĵz ± h̄Ĵ±)|j, m〉 = (m ± 1)h̄ Ĵ±|j, m〉 . (10.13)

From these two relations we deduce that:

• The vector Ĵ+|j, m〉 is an eigenvector of Ĵ2 and Ĵz, corresponding to the
eigenvalues j(j+1)h̄2 and (m+1)h̄. Otherwise it is equal to the null vector.

• The vector Ĵ−|j, m〉 is an eigenvector of Ĵ2 and Ĵz, corresponding to the
eigenvalues j(j+1)h̄2 and (m−1)h̄. Otherwise it is equal to the null vector.

In other words, starting from a vector |j, m〉, the repeated action of the
operators Ĵ+ and Ĵ− generates a whole series of vectors in the same eigen-
subspace of Ĵ2, corresponding to eigenvalues of Ĵz which differ from m by
positive or negative integers (Fig. 10.1). However, we expect intuitively that
the number of such vectors should be limited, since the projection mh̄ of
the angular momentum along a given axis should not exceed the modulus√

j(j + 1)h̄ of the angular momentum. In order to make this statement more
quantitative, we consider the square of the norm of Ĵ±|j, m〉:

‖Ĵ±|j, m〉‖2 = 〈j, m|Ĵ†
±Ĵ±|j, m〉 = 〈j, m|Ĵ∓Ĵ±|j, m〉 .

Using:

Ĵ∓Ĵ± = (Ĵx ∓ iĴy)(Ĵx ± iĴy) = Ĵ2
x + Ĵ2

y ± i[Ĵx, Ĵy] = Ĵ2 − Ĵ2
z ∓ h̄Ĵz ,

we obtain:

‖Ĵ±|j, m〉‖2 =
[
j(j + 1) − m(m ± 1)

]
h̄2 . (10.14)

In order for these two quantities to be positive, we must have

−j ≤ m ≤ j . (10.15)

This inequality relates the projection of the angular momentum on the z axis
to its modulus. The forbidden region |m| > j of the j, m plane corresponds
to the hatched areas in Fig. 10.1.

10.2.4 Quantization of j and m

We can now obtain the main result of this section, i. e. the quantization of the
values of j and m. Let us start from a given eigenstate |j, m〉 of Ĵ2 and Ĵz. By
applying Ĵ+ repeatedly to this state, we generate a series of eigenvectors of
Ĵ2 and Ĵz proportional to |j, m+1〉, |j, m+2〉, . . . . Because of the inequality
(10.15), this series cannot be infinite. Consider the maximum value mmax

that can be reached: by definition Ĵ+|j, mmax〉 is not an eigenvector of Ĵ2

and Ĵz. Consequently, it is equal to the null vector and its norm is zero.
From the combination of (10.14) and (10.15), we find that this is possible if
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m

j
m = - j

m =
 j

Ĵ+

Ĵ−

,j m

Fig. 10.1. Geometric representation of the action of the operators Ĵ± on a ket
|j, m〉. The areas with horizontal hatching, which correspond to |m| > j, are for-
bidden

and only if mmax = j. We therefore obtain an initial result: there exists an
integer N such that

m + N = j

In other words, the two real numbers j and m always differ by an integer.
Consider now the state |j, mmax = j〉 and apply repeatedly the operator

Ĵ− to this vector. We generate in this way a second series of eigenvectors
of Ĵ2 and Ĵz proportional to |j, j − 1〉, |j, j − 2〉, . . . . Again, because of the
inequality (10.15), this series cannot be infinite and there exists a minimum
value mmin that can be reached. Consequently the vector Ĵ−|j, mmin〉 is not
an eigenvector of Ĵ2 and Ĵz, and it is necessarily equal to the null vector.
Its norm is zero, which, owing to (10.14) and (10.15), implies mmin = −j.
Consequently, there exists an integer N ′ such that

j − N ′ = −j .

In other words, the eigenvalues of the square of the angular momentum (10.7)
are such that the number j is integer or half-integer:

j = N ′/2 . (10.16)

Summary. If Ĵ is an observable such that Ĵ × Ĵ = ih̄Ĵ , the eigenvalues of
the observable Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z are of the form j(j + 1)h̄2, where j is a
positive (or zero) integer or half integer. The eigenvalues of the observable
Ĵz are of the form mh̄, where m is an integer or a half integer (Fig. 10.2).

If a system is in an eigenstate of Ĵ2 corresponding to the value j, the only
possible values of m are the 2j + 1 numbers m = −j,−j + 1, . . . , j − 1, j .
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-3/2

1/2 1 3/2

Fig. 10.2. Allowed values of the pairs (j, m)
for an arbitrary angular-momentum observ-
able

Remark. We have already emphasized that for m ≤ j − 1, the vector
Ĵ+|j, m〉, is proportional to |j, m + 1〉, and for m ≥ −j + 1, Ĵ−|j, m〉 is
proportional to |j, m− 1〉. In all of what follows, we choose the phases of the
vectors |j, m〉 such that (10.14) becomes

Ĵ±|j, m〉 =
√

j(j + 1) − m(m ± 1) h̄ |j, m ± 1〉 . (10.17)

For m = j and m = −j we recall

Ĵ+|j, j〉 = 0 , Ĵ−|j,−j〉 = 0 . (10.18)

10.2.5 Measurement of Ĵx and Ĵy

We can calculate the expectation value and the uncertainty of the result of a
measurement of the transverse components of the angular momentum when
the state of the system is |j, m〉. Of course, the results derived above for the
z axis can be transposed to the x and y axes. Therefore the only possible
results of a measurement of Jx or Jy are m′h̄, m′ being one of the values
−j,−j + 1, . . . , j − 1, j.

Expectation Values of Jx and Jy. Using Ĵx = (Ĵ+ + Ĵ−)/2 and Ĵy =
(Ĵ+ − Ĵ−)/2i, we see that the expectation values of these operators in the
state |j, m〉 vanish identically. We obtain for Ĵx, for instance:

〈j, m|Ĵx|j, m〉 =
1
2
〈j, m|Ĵ+|j, m〉 +

1
2
〈j, m|Ĵ−|j, m〉 = 0

since the states |j, m〉 and |j, m ± 1〉 are orthogonal.
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If the system is in an eigenstate |j, m〉 of Ĵ2 and Ĵz, the expectation values
of Jx and Jy vanish.

Mean Square Deviation of Jx and Jy. We can calculate the expectation
values of J2

x and J2
y as follows:

〈j, m|Ĵ2
x + Ĵ2

y |j, m〉 = 〈j, m|Ĵ2 − Ĵ2
z |j, m〉 = [j(j + 1) − m2]h̄2 .

The rms deviation ∆Jx, which is equal to ∆Jy for symmetry reasons, is
therefore

∆Jx = ∆Jy = h̄
√

[j(j + 1) − m2]/2 .

The uncertainty in the measurements of Jx and Jy vanishes if and only if
j = 0. We recover in this example the general uncertainty relation

∆Jx ∆Jy ≥ h̄

2
|〈Jz〉| ,

since

|m| ≤ j ⇒ h̄2
[
j(j + 1) − m2

]
/2 ≥ h̄2|m|/2 .

10.3 Orbital Angular Momentum

Here we consider the orbital angular momentum of a particle with respect to
the origin, L̂ = r̂ × p̂. According to the previous results, if �(� + 1)h̄2 are the
eigenvalues of L̂2 (� ≥ 0) and mh̄ those of L̂z, then 2� and 2m are integers.
In the specific case of orbital angular momenta, we shall see that � and m
are integers.

10.3.1 The Quantum Numbers m and � are Integers

m is an Integer. When dealing with an orbital angular momentum, we
consider a particle moving in space, whose state can be described by a wave
function. In the wave function formalism the operator L̂z has the form

L̂z = x̂p̂y − ŷp̂x = −ih̄
(

x
∂

∂y
− y

∂

∂x

)
.

In order to solve the eigenvalue problem for the angular momentum, it is
convenient to switch to spherical coordinates. We give the corresponding
useful formulas in Sect. 10.3.2 below. If z is the polar axis, θ the colatitude
(0 ≤ θ ≤ π) and ϕ the azimuthal angle (0 ≤ ϕ < 2π), the operator L̂z has
the very simple form
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L̂z =
h̄

i
∂

∂ϕ
. (10.19)

Consider a state of the particle which is an eigenstate of L̂z with eigenvalue
mh̄. The corresponding wave function ψm(r) therefore satisfies

L̂z ψm(r) = mh̄ ψm(r) .

The form (10.19) of L̂z gives us the following very simple ϕ dependence of
the wave function:

ψm(r) = Φm(r, θ) eimϕ ,

where Φm(r, θ) is arbitrary at this stage. In the change ϕ → ϕ+2π, we notice
that x, y and z do not change, and the function ψm(r) keeps the same value.
It must therefore be periodic in ϕ with period 2π. Consequently,

eimϕ = eim(ϕ+2π) ⇒ ei2πm = 1 ,

which shows that m must be an integer in the case of an orbital angular
momentum.
� is an Integer. In the general analysis performed in Sect. 10.2, we have
seen that m and j differ by an integer. Therefore, in the case of an orbital
angular momentum, since m is an integer, � is also an integer.

10.3.2 Spherical Coordinates

We give here some formulas in spherical coordinates which will be useful in
what follows. We have already seen the expression for L̂z:

L̂z =
h̄

i
∂

∂ϕ
.

We shall use the following expression for the operator L̂2 = L̂2
x + L̂2

y + L̂2
z:

L̂2 = −h̄2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
. (10.20)

The operators L̂±, corresponding to the operators Ĵ± introduced in Sect. 10.2,
have the form:

L̂± = L̂x ± iL̂y = h̄e±iϕ

(
± ∂

∂θ
+ i cot θ

∂

∂ϕ

)
. (10.21)

Notice that all the angular momentum operators are scale invariant: they
involve only the angular variables θ and ϕ and do not depend on the radial
coordinate.

We shall frequently make use of the following expression for the Laplacian
operator ∆:

∆ =
1
r

∂2

∂r2
r − 1

r2h̄2 L̂2 . (10.22)
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10.3.3 Eigenfunctions of L̂2 and L̂z: the Spherical Harmonics

The eigenfunctions common to the observables L̂2 and L̂z are called the
spherical harmonics and are denoted Y�,m(θ, ϕ), the eigenvalues being �(� +
1)h̄2 and mh̄, respectively:

L̂2 Y�,m(θ, ϕ) = �(� + 1)h̄2 Y�,m(θ, ϕ) , (10.23)

L̂z Y�,m(θ, ϕ) = mh̄ Y�,m(θ, ϕ) . (10.24)

The spherical harmonics form a basis for the square integrable functions on
the unit sphere. They are completely defined as follows:

a. They are normalized to unity:∫∫
Y ∗

�,m(θ, ϕ) Y�′,m′(θ, ϕ) sin θ dθ dϕ = δ�,�′ δm,m′ .

b. Their phases are such that the recursion relation (10.17), which we
rewrite below, is satisfied, and that Y�,0(0, 0) is real and positive:

L̂±Y�,m(θ, ϕ) =
√

�(� + 1) − m(m ± 1) h̄ Y�,m±1(θ, ϕ) . (10.25)

c. As seen in Sect. 10.3.1, the fact that Y�,m(θ, ϕ) is an eigenfunction of L̂z

leads to a very simple dependence on ϕ:

Y�,m(θ, ϕ) = F�,m(θ) eimϕ . (10.26)

d. Starting from the relation

L̂+Y�,�(θ, ϕ) = 0 , (10.27)

we obtain, using (10.21) and (10.26),

Y�,�(θ, ϕ) = C (sin θ)�ei�ϕ , (10.28)

where the modulus and phase of the normalization constant C are deter-
mined by the previous conditions. The functions Y�,�−n(θ, ϕ) are obtained
by applying (L̂−)n to the function Y�,�(θ, ϕ) above.

Summary. For a particle moving in space, the orbital angular-momentum-
operator is L̂ = r̂ × p̂. The eigenvalues of the observable L̂2 = L̂2

x + L̂2
y + L̂2

z

are of the form h̄2�(� + 1), where � is an integer ≥ 0.
If the system is in an eigenstate of L̂2 corresponding to the quantum

number �, the 2� + 1 possible eigenvalues of the observable L̂z are mh̄, with
m integer such that −� ≤ m ≤ �.

The corresponding eigenfunctions ψ�,m(r) are

ψ�,m(r) = R�,m(r) Y�,m(θ, ϕ) .

The radial dependence of these functions, which is contained in the function
R�,m(r), is a priori arbitrary, since this variable does not appear in the angular

momentum-operators L̂2 and L̂z.
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10.3.4 Examples of Spherical Harmonics

The spherical harmonics play a central role in atomic and molecular physics.
Together with their linear combinations, they form the atomic orbitals of
external electrons in monovalent atoms, in particular of the hydrogen atom,
which we shall consider in the next chapter. The first few spherical harmonics
are

� = 0 Y0,0(θ, ϕ) =
1√
4π

, (10.29)

� = 1 Y1,1(θ, ϕ) = −
√

3
8π

sin θ eiϕ , (10.30)

Y1,0(θ, ϕ) =

√
3
4π

cos θ , (10.31)

Y1,−1(θ, ϕ) =

√
3
8π

sin θ e−iϕ . (10.32)

We have drawn in Fig. 10.3 the functions |Y�,m(θ, ϕ)|2 = |F�,m(θ)|2 for the
lowest values of � and m.

0=� 1=� 1=�

2=� 2=� 2=�

0m = 0m =

0m =

1m =

1m = 2m =

Fig. 10.3. Graphs of |Y�,m(θ, ϕ)|2 = |F�,m(θ)|2 in terms of the polar angle θ, for
� = 0, 1, 2 and for |m| ≤ �
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10.3.5 Example: Rotational Energy of a Diatomic Molecule

A simple illustration of the quantization of the values of L̂2 can be obtained
through the rotational energy spectrum of a molecule. Such a spectrum is
presented in Fig. 10.4 for the diatomic cesium molecule Cs2. The spectrum
was obtained1 by measuring the frequency of the photons needed to ionize Cs2
molecules formed in a very cold atomic vapor of cesium atoms (temperature
∼ 100 µK). The data of Fig. 10.4, which represents only a small fraction of
the total spectrum, exhibits a series of peaks characteristic of a quantized
rotational energy.

One can visualize a diatomic molecule formed by two atoms of mass
M separated by a distance R as a two-body system bound by a potential
(Sect. 4.2.3). Classically, if the interatomic distance R is at its equilibrium
value, the molecule has a rotational energy

Erot =
L2

2I
, (10.33)

where I = MR2/2 is the moment of inertia of the system and L is its angular
momentum with respect to its center of mass. In quantum mechanics, this
result transposes into

Erot(�) =
h̄2�(� + 1)

2I
, (10.34)

which shows that the rotational energy is quantized. The formula (10.34)
accounts very well for the series of peaks in Fig. 10.4. The distance between
two consecutive peaks increases linearly with the peak index, as expected
from

Erot(�) − Erot(� − 1) =
h̄2

I
� .

The moment of inertia deduced from this spectrum corresponds to a distance
R = 1.3 nm between the two cesium atoms. This distance, much larger than
the usual interatomic spacing in diatomic molecules, indicates that the Cs2
dimer has actually been prepared in a long-range molecular state.

If one investigates the absorption spectrum of the cold molecular gas
over a much wider range, one finds several series of lines such as the one
in Fig. 10.4. Each series corresponds to a particular vibrational state of the
molecule. The moments of inertia associated with these series differ slightly
from one another: this is a consequence of the variation of the average distance
between the two atoms in the various vibrational states of the molecule.

Remark. The study of rotational excitations of molecules is an important
field of research in physics, chemistry and astrophysics. If we choose x, y and
1 These data, corresponding to the 17th excited vibrational state, have been ex-

tracted from A. Fioretti et al., Eur. Phys. J. D 5, 389 (1999).
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Fig. 10.4. Rotational spectrum of cold Cs2 molecules, showing the quantization

of L̂2. This spectrum was obtained by measuring the number of molecular ions
produced by a laser beam crossing the assembly of cold molecules as a function
of the laser frequency ν (ν0 is a reference frequency corresponding to � = 0). The
height of each peak is proportional to the population of the corresponding rotational
level �

z to be along the principal axes of inertia of a rigid rotator and denote by
Ix, Iy, and Iz the corresponding moments of inertia, the rotational energy
spectrum arises from the Hamiltonian

ĤR =
L̂2

x

2Ix
+

L̂2
y

2Iy
+

L̂2
z

2Iz
.

where we neglect the vibrational energies (there exist subtleties in this prob-
lem since L̂x, L̂y, L̂z refer to a body-fixed reference system and not to a
space-fixed one). If the three moments of inertia are all different, the diago-
nalization of such an operator cannot be written in closed form, except for
low values of L̂

2
. If two of the moments of inertia are equal, for instance

Ix = Iy ≡ I, the spectrum is simple since ĤR =
(
L̂2 − L̂2

z

)
/(2I) + L̂2

z/(2Iz)
whose eigenvalues are

El,m = h̄2

(
l(l + 1) − m2

2I
+

m2

2Iz

)
.

From this point of view, a diatomic molecule can be considered as a rigid
rotator for which Ix = Iy = MR2/2 and Iz � 0. Therefore the excitation
energies of the z term are very large, and we can restrict ourselves to the
ground state m = 0, thus ending up with the form (10.34).

10.4 Angular Momentum and Magnetic Moment

To a large extent, the experimental evidence for the quantization of angular
momenta relies on the fact that when a charged particle possesses an angular
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momentum, it also possesses a magnetic moment. We have already illustrated
this with a simple classical model in Sect. 8.1.1. Using the quantum analog
of this analysis, we reinterpret in this section simple experimental results
such as the Stern–Gerlach experiment, which have led to the discovery of
half-integer angular momenta, i. e. angular momenta which correspond to
half-integer values of j and m.

10.4.1 Orbital Angular Momentum and Magnetic Moment

In Chap. 8, by considering a very simple classical model of a hydrogen-like
atom, we derived the proportionality relation between the magnetic moment
µ of the current loop formed by the electron and its angular momentum L:

µ = γ0L , where γ0 =
−q

2me
. (10.35)

In this chapter we have established the quantum properties of the observable
L̂. Consider now a particle with orbital angular momentum. We postulate
that if the particle has a magnetic moment µ associated with this orbital
motion, the corresponding observable µ̂ is proportional to L̂. In particular,
for the magnetic moment associated with the orbital angular momentum of
an electron, we set

µ̂ = γ0L̂ and ĤM = −µ̂ · B , (10.36)

where ĤM is the magnetic-energy observable of the system in a magnetic field
B.

From the properties of L̂, we deduce the following results, anticipating
the conclusions of the next chapter.

1. Consider an electron moving in a central potential. We suppose that
the electron is in a given energy level En and in an eigenstate of the
orbital angular momentum with eigenvalue �(� + 1)h̄2. As a consequence
of rotation invariance, in the absence of an external magnetic field, the
2�+1 states corresponding to m = −�, . . . ,+� have the same energy En.
Let us denote these states by |n, �, m〉; they are eigenstates of L̂z with
eigenvalues mh̄. From the assumption (10.36), the state |n, �, m〉 is also
an eigenstate of µ̂z. The corresponding eigenvalue is µz = γ0mh̄. The
negative quantity

µB = γ0h̄ =
−qh̄

2me
∼ −9.27 × 10−24 J T−1 (10.37)

is called the Bohr magneton.
2. If we place the system in a magnetic field B parallel to z, the degeneracy

is lifted. The state |n, �, m〉 is an eigenstate of the observable ĤM, with
the eigenvalue
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Wm = −mµBB .

We therefore expect to observe a splitting of the atomic energy level En

into 2� + 1 sublevels, equally spaced by an interval ∆E = −µBB. This is
called the Zeeman effect. It can be observed in a transition En → En′ . In
the absence of a magnetic field, this transition occurs at a single frequency
(En −En′)/2πh̄. If we apply a field B, several lines appear. The number
of such lines is directly related to the angular momenta � and �′ of the
initial and final levels.

10.4.2 Generalization to Other Angular Momenta

These arguments developed for the case of an orbital electron can be gen-
eralized to any microscopic system (an atom, an electron, a nucleus, etc.).
For a microscopic quantum system which is in an eigenstate of the square of
the angular momentum Ĵ2, with eigenvalue j(j +1)h̄2, we postulate that the
magnetic moment µ̂ and the angular momentum Ĵ are proportional:

µ̂ = γĴ , (10.38)

where γ is the gyromagnetic ratio of the system in that state. If we apply a
magnetic field B, this system acquires a magnetic energy corresponding to
the observable

ĤM = −µ̂ · B . (10.39)

In general, a complex system, such as an atom or a nucleus, has a whole series
of energy levels, each of which is in an eigensubspace of Ĵ2. The constant γ
then depends on the level under consideration.

The above relations are a theoretical conjecture, i. e. we have not proved
them. In order to check this theory, we must submit it to experiment. A di-
rect verification of (10.38) would consist in measuring µ and J separately and
observing that the proportionality holds. However, although direct measure-
ments of angular momenta are perfectly feasible, they fall outside the scope
of this book. On the other hand, it is easy to imagine magnetic-moment mea-
surements. For instance, the conclusions of Sect. 10.4.1 concerning the energy
spectrum of a system with orbital angular momentum placed in a magnetic
field can be generalized to any Ĵ .

Another consequence of this proportionality relation between Ĵ and µ̂ is
the Larmor precession phenomenon, which takes place at the quantum level
for the expectation values 〈µ〉. The Ehrenfest theorem yields

d
dt

〈µ〉 =
1
ih̄
〈[µ̂, ĤM]〉 ,

where we assume that only the term ĤM in the Hamiltonian does not com-
mute with µ̂. Indeed, the other terms of the Hamiltonian are supposed to be
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rotationally invariant. Hence they commute with Ĵ and with µ̂. Owing to
(10.5), the commutation relations of µ̂ are

µ̂ × µ̂ = ih̄γµ̂ .

Therefore, a simple calculation yields

d
dt

〈µ〉 = −γB × 〈µ〉 .

The expectation value 〈µ〉 satisfies the equations of motion found in Chap. 8
for the classical quantity (cf. (8.8)). This comes from the fact that the Hamil-
tonian is linear in µ̂. The measurement of the Larmor precession frequency
provides a direct determination of the gyromagnetic ratio γ and a consis-
tency test of the results. We therefore have an experimental means to check
that (10.38) and (10.39) are verified, and, after this has been checked, we can
measure angular momenta via measurements of magnetic moments.

10.4.3 What Should We Think about Half-Integer Values
of j and m ?

To conclude this chapter, we come back to the half-integer values of j and
m which we found in the general derivation of the eigenvalues of angular
momenta. In relation to orbital angular momentum, we did not accept such
values (Sect. 10.3.1). Nevertheless, one may wonder whether these values
appear in nature, or whether they are simply a mathematical artifact.

If we recall the Stern–Gerlach experiment and the proportionality relation
between J and µ, we see a simple and natural answer to this question. We
have seen in Chap. 8 that this experiment can be visualized as a means to
measure µz. If the angular momentum is an integer, µz can only take an odd
number of values:

µz = −h̄γj, −h̄γ(j − 1), . . . , 0, . . . , h̄γ(j − 1), h̄γj .

This means that we should observe an odd number of spots on the screen
located after the field gradient. Conversely, if j is half-integer, µz has an even
number of possible values, corresponding to an even number of spots.

We know that two spots are observed for some atoms, such as silver.
This is one of the many decisive proofs that there exist in nature half-integer
angular momenta. For the moment, we know nothing about their nature
except that they cannot correspond to orbital angular momenta L = r×p. We
shall study such half integer angular momenta in Chap. 12, for the particular
example of a spin 1/2.

Further Reading

• A.R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton
University Press, Princeton (1950).
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• For a discussion of the rotational properties of molecules, see for example
L. Landau and E. Lifshitz, Quantum Mechanics, chapters XI and XIII,
Pergamon Press, Oxford (1965); C. Cohen-Tannoudji, B. Diu, and F. Laloë,
Quantum Mechanics, Chap. VI, Wiley, New-York (1977); C.H. Townes and
A.L. Schawlow, Microwave Spectroscopy, Chaps. 1 to 4, McGraw-Hill, New
York (1955); G. Herzberg, Molecular Spectra and Molecular Structure, vol.
I, D. Van Nostrand, Princeton (1963).

Exercises

10.1. Operator invariant under rotation. Show that if an operator Â
commutes with two components of the angular momentum (e. g. Ĵx and Ĵy),
it also commutes with the third component (e. g. Ĵz).

10.2. Commutation relations for r̂ and p̂. Prove the following commu-
tation relations:

[L̂j , x̂k] = ih̄εjk�x̂� , [L̂j , p̂k] = ih̄εjk�p̂� ,

where εijk = 1 if (i, j, k) is an even permutation of (x, y, z), εijk = −1 if
(i, j, k) is an odd permutation, and εijk = 0 otherwise. Deduce the following
identity:

[L̂, p̂2] = [L̂, r̂2] = 0 .

10.3. Rotation-invariant potential. Consider a particle in a potential
V (r). What is the condition on V (r) in order for L to be a constant of the
motion?

10.4. Unit angular momentum. Consider a system in an eigenstate of L̂2

with eigenvalue 2h̄2, i. e. � = 1.

a. Starting from the action of the operators L̂+ and L̂− on the basis states
{|�, m〉} common to L̂2 and L̂z, find the matrices which represent L̂x, L̂y

and L̂z.
b. Give, in terms of the angles θ and ϕ, the probability density for a system

in the eigenstate of L̂2 and L̂x corresponding to the eigenvalues � = 1
and mx = 1.
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10.5. Commutation relations for Ĵ2
x, Ĵ2

y and Ĵ2
z .

a. Show that [Ĵ2
x , Ĵ2

y ] = [Ĵ2
y , Ĵ2

z ] = [Ĵ2
z , Ĵ2

x ].
b. Show that these three commutators vanish in states where j = 0 or

j = 1/2, for example

〈j, m1|[Ĵ2
z , Ĵ2

x ]|j, m2〉 = 0 ,

for any relevant pair m1, m2 in the cases j = 0 and j = 1/2.
c. Show that these commutators also vanish in states where j = 1. Find the

common eigenbasis of Ĵ2
x , Ĵ2

y of Ĵ2
z in this case.
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However much we inflate our ideas
beyond conceivable spaces,

we only give birth to atoms,
at the expense of the truth of things.

Blaise Pascal

At the end of the 19th century, understanding atomic spectroscopy was a
challenge for the physics community. The explanation of spectroscopic data
was one of the first great victories of quantum theory. In modern science and
technology, the mastery of atomic physics has been responsible for decisive
progress ranging from laser technology to the exploration of the cosmos.

The particular case of the hydrogen atom is perhaps the most striking. Its
particularly simple spectrum delivered the first clues to the quantum laws. It
has been used as a test bed for the development of quantum theory. Its hy-
perfine structure is responsible both for the hydrogen maser (Chap. 13) and
for a revolution in astrophysics, since the corresponding 21 cm line has been
extensively studied in radio astronomy to probe the structure of the interstel-
lar and intergalactic media. Furthermore, the hydrogen atom is probably the
physical system which is known with the greatest accuracy. It can be calcu-
lated “completely” in the sense that the accuracy of the present experimental
results is the same as the accuracy of theoretical computer calculations.

The successive approximations one makes in atomic physics are of various
origins. One starts, as in this chapter, by treating the problem of a nonrel-
ativistic spinless electron in the Coulomb field of the proton. The problem
therefore consists in finding the energy levels of the Hamiltonian

Ĥ =
p̂e

2

2me
+

p̂p
2

2mp
− q2

4πε0|r̂e − r̂p| ,

where p̂e, p̂p, r̂e, r̂p are the momentum and position operators of the electron
and of the proton. Taking the effects of relativistic kinematics and spin ef-
fects of the electron into account requires a formalism which is not covered in
this book: the Dirac equation. The resulting corrections are small compared
with the leading terms. Up to this point, the problem can be solved analyt-
ically. Other fine-structure effects, such as the Lamb shift, require the more
elaborate formalism of quantum field theory.
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The theoretical treatment of complex atoms (i. e. atoms with more than
one electron) involves serious computational problems, even at the nonrela-
tivistic stage. The helium atom, with its two electrons, can only be calcu-
lated numerically. Actually, this calculation was considered as the first true
test of quantum mechanics, since the much simpler case of hydrogen could be
treated successfully by several other approaches derived from the “old” Bohr–
Sommerfeld quantum theory. Owing to the accuracy of the present numerical
calculations, the helium atom is considered to be known exactly.1

In this chapter we shall first consider, in Sect. 11.1, the problem of the
interaction of two particles via a potential which depends only on their rela-
tive coordinates. We shall see how this reduces to the problem of the relative
motion of the two particles. In Sect. 11.2 we shall restrict ourselves to the case
of a central potential, which depends only on the distance between the parti-
cles. We shall use the invariance properties of the problem in order to choose
a CSCO constructed from the Hamiltonian and the angular momentum, i. e.
Ĥ, L̂2 and L̂z, and we shall see how the traditional quantum numbers used
in atomic physics show up. In Sect. 11.3 we shall study the Coulomb po-
tential and we shall calculate the bound-state energies of hydrogen in the
nonrelativistic approximation. In Sect. 11.4 we shall extend the results to
hydrogen-like atoms. Finally, in Sect. 11.5, we shall give a qualitative inter-
pretation of the spectra of alkali atoms. The problems of complex atoms, of
the Mendeleev classification and of some subtle effects due to spin will be
treated in Chapts. 13 and 16.

11.1 The Two-Body Problem; Relative Motion

Consider a system of two particles, of masses M1 and M2, at positions r1 and
r2, whose mutual interaction is given by a potential V (r1−r2). The potential
depends only on the relative position of the particles. The Hamiltonian is

Ĥ =
p̂1

2

2M1
+

p̂2
2

2M2
+ V (r̂1 − r̂2) , (11.1)

and the system is described by wave functions Ψ(r1, r2).
We can separate the global motion of the center of mass of the system

and the relative motion of the two particles. We introduce the position and
momentum operators of the center of mass,

R̂ =
M1r̂1 + M2r̂2

M1 + M2
, P̂ = p̂1 + p̂2 , (11.2)

and the relative position and momentum operators,
1 T. Kinoshita, “Ground state of the helium atom”, Phys. Rev. 105, 1490 (1957).
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r̂ = r̂1 − r̂2 , p̂ =
M2p̂1 − M1p̂2

M1 + M2
. (11.3)

We can rewrite the Hamiltonian as

Ĥ = Ĥc.m. + Ĥrel , (11.4)

where

Ĥc.m. =
P̂

2

2M
, Ĥrel =

p̂2

2µ
+ V (r̂) . (11.5)

Here we have introduced the total mass M and the reduced mass µ:

M = M1 + M2 , µ =
M1M2

M1 + M2
. (11.6)

Just as in classical mechanics, the Hamiltonian Ĥ separates into the sum
of (i) the Hamiltonian Ĥc.m., describing the free motion of the center of mass
(momentum P , total mass M), and (ii) the Hamiltonian Ĥrel, which describes
the relative motion of the two particles in the potential V (r) (momentum p,
reduced mass µ).

Let {X̂i} and {P̂i} be the components of R̂ and P̂ , and {x̂i} and {p̂i}
those of r̂ and p̂. The commutation relations are

[X̂j , P̂k] = ih̄δjk , [x̂j , p̂k] = ih̄δjk , (11.7)

and

[X̂j , p̂k] = 0 , [x̂j , P̂k] = 0 . (11.8)

In other words, the position and momentum operators of the center of mass
and of the relative motion obey the canonical commutation relations (11.7),
while any variable associated with the center-of-mass motion commutes with
any variable associated with the relative motion (11.8).

These commutation relations imply

[P̂ , Ĥrel] = 0 , [P̂ , Ĥ] = 0 , [Ĥ, Ĥrel] = 0 . (11.9)

Consequently, we can look for a basis of eigenfunctions of Ĥ which will be
simultaneously eigenfunctions of P̂ and Ĥrel. The eigenfunctions of P̂ are the
plane waves eiK.R, where K is an arbitrary wave vector. Consequently, the
desired basis of eigenfunctions of Ĥ has the form

Ψ(R, r) = eiK.R ψ(r) ,

where ψ(r) is an eigenfunction of Ĥrel:

Ĥrel ψ(r) = E ψ(r) . (11.10)
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The eigenvalues Etot of Ĥ are

Etot =
h̄2K2

2M
+ E , (11.11)

i. e. the sum of the kinetic energy of the global system (Ĥc.m.) and the internal
energy (Ĥrel).

According to the Ehrenfest theorem, the relation [Ĥ, P̂ ] = 0 implies the conserva-
tion of the total momentum, d〈P 〉/dt = 0. This is due to the fact that the potential
depends only on the relative variable r = r1 − r2, in other words, the Hamiltonian
of the system is translation invariant.

In what follows, we are interested only in the relative motion of the two
particles, corresponding to the eigenvalue problem (11.10). This amounts to
studying the quantum motion of a particle of mass µ in a potential V (r),
since p̂ and r̂ satisfy the canonical commutation relations of momentum and
position operators. For an atomic system made up of an electron (M1 = me)
and the rest of the atom (M2), we have M2 � me. Therefore we neglect
the small difference between the reduced mass µ and the electron mass me,
remembering that it is easy to correct for reduced-mass effects if necessary.

11.2 Motion in a Central Potential

Consider a particle of mass me moving in a central potential. This means
that the potential V (r) depends only on the distance r = |r| and not on the
orientation of r.

11.2.1 Spherical Coordinates

Spherical coordinates are well adapted to our problem. Equation (11.10) is
then written, using the expression (10.22) for the Laplacian, as(

− h̄2

2me

1
r

∂2

∂r2
r +

L̂2

2mer2
+ V (r)

)
ψ(r) = E ψ(r) . (11.12)

As already noticed in Sect. 7.3.3, the Hamiltonian Ĥrel commutes with the
three angular-momentum operators L̂i, i = x, y, z. Each L̂i commutes with
L̂2. In addition, L̂i acts only on the variables θ and ϕ, and it commutes with
r, ∂/∂r and V (r). In other words, the Hamiltonian Ĥrel, which from now on
will be denoted by Ĥ for simplicity, commutes with the angular momentum:

[Ĥ, L̂] = 0 .

Consequently Ĥ, L̂2 and a given component of L̂, e. g. L̂z, form a set of
commuting observables. We shall verify a posteriori that this set is complete
by checking that the corresponding common eigenfunction basis is unique.
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According to the Ehrenfest theorem, the relation [Ĥ, L̂] = 0 implies the conserva-
tion of angular momentum, d〈L〉/dt = 0. This is due to the fact that the potential
depends only on the radial variable r = |r1 − r2|; in other words, the Hamiltonian
of the system is rotation invariant.

11.2.2 Eigenfunctions Common to Ĥ, L̂2 and L̂z

Separation of the Angular Variables. Part of the eigenvalue problem
(11.12) is already solved since we know the form of the eigenfunctions common
to L̂2 and L̂z. These are the spherical harmonics. We separate the variables
in the following way:

ψ�,m(r) = R�(r)Y�,m(θ, ϕ) , (11.13)

L̂2ψ�,m(r) = �(� + 1)h̄2 ψ�,m(r) , (11.14)

L̂zψ�,m(r) = mh̄ ψ�,m(r) , (11.15)

where � and m are integers, with |m| ≤ �. Substituting in (11.12), the eigen-
value equation becomes(

− h̄2

2me

1
r

d2

dr2
r +

�(� + 1)h̄2

2mer2
+ V (r)

)
R�(r) = E R�(r) . (11.16)

This equation is independent of the quantum number m. That is why we
have not put an index m on the unknown function R�(r) in (11.13). This
differential equation is the radial equation and R�(r) is called the radial wave
function.

The boundary condition – i. e. normalizability of the wave function –
which we must impose in finding bound states is

∫ |ψ(r)|2 d3r = 1, i. e., in
spherical coordinates,∫

d2Ω
∫ ∞

0

dr r2 |ψ(r, θ, ϕ)|2 = 1 .

Here Ω is the solid angle, where d2Ω = sin θ dθ dϕ. Since the spherical har-
monics are normalized, we obtain∫ ∞

0

dr r2 |R�(r)|2 = 1 (11.17)

for the radial wave function R�(r).
If we introduce the reduced wave function u�(r) = r R�(r), the Schrödinger

equation becomes(
− h̄2

2me

d2

dr2
+

�(� + 1)h̄2

2mer2
+ V (r)

)
u�(r) = E u�(r) , (11.18)

where
∫∞
0

|u�(r)|2 dr = 1. One can prove that any normalizable solution
R�(r) is bounded at the origin, and therefore u�(0) = 0. This equation has the
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r

Veff (r)

r

Veff (r)

��= 0��= 0

Fig. 11.1. Effective potential entering the one-dimensional Schrödinger equation
for the reduced radial wave function u�(r). For � = 0 (left) the motion occurs in the
“bare” potential V (r); for � �= 0 (right) the effective potential is the superposition
of V (r) and of the centrifugal barrier �(� + 1)h̄2/(2mer

2). The figure is drawn for a
Coulomb potential V (r) ∝ 1/r

structure of the Schrödinger equation describing the one-dimensional motion
of a particle of mass me in the following potential for r > 0:

Veff(r) = V (r) +
�(� + 1)h̄2

2mer2
. (11.19)

This effective potential is a superposition of the interaction potential between
the two particles 1 and 2, and a centrifugal barrier term which is repulsive
and increases as the angular momentum increases (Fig. 11.1).

The Radial Quantum Number n′. The radial equation depends on the
parameter �. For each �, corresponding to a given value of the square of the
angular momentum, we deal with a one-dimensional problem of the same
type as that which we studied in Chap. 4. The bound-state energy levels
(E < 0) correspond to solutions R�(r) which satisfy (11.17).

For a given �, we can arrange the possible values of the bound-state
energies in an increasing sequence, which we label by an integer n′ (n′ =
0, 1, 2, . . . ), the state n′ = 0 being the most strongly bound. Depending on
the potential, this sequence may be finite (as for a square-well potential) or
infinite (as for the Coulomb potential).

The general mathematical properties of the differential equation (11.16),
together with the conditions that R�(0) is finite and that R�(r) can be nor-
malized as in (11.17), show that this number n′ corresponds to the number
of nodes of the radial wave function, i. e. the number of times it vanishes
between r = 0 and r = ∞. This is independent of the form of the potential
V (r) (provided it is not too pathological).

The quantum number n′ is called the radial quantum number. A radial
wave function, defined by the two quantum numbers � and n′ and normalized
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to unity, is unique (up to a phase factor). The eigenvalues of the Hamiltonian
are therefore labeled in general by the two quantum numbers n′ and �. They
do not depend on the quantum number m, as a consequence of the rotation
invariance of the system. This means that the 2� + 1 states corresponding to
given values of n′ and � and to different values of m have the same energy
and are degenerate.

These general considerations apply to any two-body system with a central
potential: this includes the hydrogen atom, and also to a certain extent alkali
atoms, diatomic molecules, the deuteron and quark systems.

The Principal Quantum Number n. In Sect. 11.3, we shall solve (11.18)
exactly in the case of a Coulomb potential V (r) = −q2/4πε0r. In this par-
ticular case, the energy levels depend only on the quantity n′ + � + 1. It is
therefore customary to label atomic levels with the three quantum numbers
�, m and the positive integer n, called the principal quantum number, defined
by the relation

n = n′ + � + 1 .

The energy eigenstates are then classified by their values of n (n = 1, 2, 3, . . . ).
The classification of atomic states by the three integers (n, �, m) is just a
redefinition of a catalog made in terms of (n′, �, m). For a given value of n,
there are only n possible values of �: � = 0, 1, . . . , n − 1. For each value of �,
there are 2�+1 possible values of m. The wave function of an energy eigenstate
is labeled by the three corresponding quantum numbers (ψn,�,m(r)), and the
corresponding energy is denoted by En,�.

Spectroscopic Notation (s, p, d, f, . . . states). The measurement of the
energy levels of an atom is often performed by the observation of the wave-
lengths of its spectral lines. We show in Fig. 11.2 the energies En,� of the va-
lence electron of sodium and some of the observed transitions. Each horizontal
line represents a state; the number on the left is the value of the principal
quantum number n. Each column corresponds to a given value of �. The en-
ergy of the state is given on the vertical axis (for instance, E3,0 = −5.13 eV).
On the right, we give the energy levels En of hydrogen, which, as we shall
see, depend only on n.

The quantum theory of the emission of a photon by an excited atom
imposes selection rules (Chap. 17). For a transition from a state (n, �) to
a state (n0, �0) by emission of a photon of energy h̄ω = En,� − En0,�0 , all
transitions are not allowed. Only the transitions for which � = �0 ± 1 are
intense.

Experimental observations in the 19th century showed that one can group
the lines into series, which were given names according to their aspect. In
the case of sodium, after the theory had been understood, it turned out that
these series correspond to the following transitions:
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Fig. 11.2. Energy levels of the external electron of sodium (left) and energy levels
of hydrogen (right)

the sharp series h̄ω = En,�=0 − E3,1 ,

the principal series h̄ω = En,�=1 − E3,0 ,

the diffuse series h̄ω = En,�=2 − E3,1 ,

the fundamentalseries h̄ω = En,�=3 − E3,2 .

Each of these four series corresponds to transitions from a state of given
� (and various values of n) to a well defined state. Consequently, tradition
associates each value of � with the initial letter of the corresponding series
(spectroscopic notation):

Symbolic letter: s p d f g h
Corresponding value of � : 0 1 2 3 4 5 .

A state of well defined energy is then noted by a number (the value of n)
followed by a letter (corresponding to the value of �):

n = 1, � = 0 : state 1s ; n = 3, � = 2 : state 3d .
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11.3 The Hydrogen Atom

The hydrogen atom is the simplest atomic system. Here, we consider the prob-
lem in its first approximation, where we neglect spin effects. We consider the
problem of a particle of mass me in the Coulomb field of the proton, which is
considered as infinitely massive (the reduced-mass correction is straightfor-
ward):

V (r) = − q2

4πε0r
= −e2

r
.

Here q is the elementary charge and we set e2 = q2/4πε0. The radial equation
is (

− h̄2

2me

1
r

d2

dr2
r +

�(� + 1)h̄2

2mer2
− e2

r

)
R�(r) = E R�(r) . (11.20)

11.3.1 Orders of Magnitude: Appropriate Units in Atomic Physics

The above equation involves three constants: h̄ (action), me (mass), and e2

(a product of an energy and a length). It is useful to form units of length
and energy relevant to our problem using these three constants. We can
then reformulate the eigenvalue equation (11.20) in terms of dimensionless
quantities.

What are the appropriate units in atomic physics? In other words, what
are the orders of magnitude of the expected results? We first note that e2/h̄
has the dimensions of a velocity. Unless the differential equation has patholo-
gies (which fortunately is not the case), e2/h̄ must represent the typical ve-
locity v of the electron in the lowest energy levels of the hydrogen atom.
This velocity has to be compared with the velocity of light c, which is the
absolute velocity standard in physics. The ratio between these two velocities
forms a dimensionless constant α, which is a combination of the fundamental
constants q, h̄ and c:

α =
e2

h̄c
=

q2

4πε0h̄c
∼ 1

137
.

The smallness of this constant α guarantees that the nonrelativistic approxi-
mation is acceptable up to effects of the order of v2/c2 ∼ 10−4. The constant
α is called, for (unfortunate) historical reasons, the fine structure constant.
A more appropriate terminology would have been “fundamental constant of
electromagnetic interactions”.

Any charge Q is an integer multiple of the elementary charge Q = Zq (or an in-
teger multiple of q/3 if one includes quarks). Therefore the fundamental form of
Coulomb’s law between two charges Q = Zq and Q′ = Z′q is V (r) = αZZ′(h̄c/r),
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where Z and Z′ are integers, which involves only mechanical quantities. The intro-
duction of electric units and of ε0 is only a convenient device to describe macroscopic
cases, where Z and Z′ are very large. The experimental determination of the fun-
damental constant α is a keypoint in physics: the accepted value corresponds to
1/α =137.0359779(32).

The length unit of the problem is the Bohr radius

a1 =
h̄2

mee2
=

1
α

h̄

mec
∼ 0.53 Å ,

where h̄/mec is the Compton wavelength of the electron. The Bohr radius is
the typical size of an atom.

The energy unit relevant to the hydrogen atom is

EI =
mee

4

2h̄2 =
1
2
mec

2α2 ∼ 13.6 eV ,

which, as we shall see, is the ionization energy of the atom. The electron-volt
is a typical energy of external atomic electrons.

The atomic timescale is 2πh̄3/(mee
4) ∼ 1.5 × 10−16 s. It represents the

period of the classical circular motion of an electron around a proton for the
energy −EI.

11.3.2 The Dimensionless Radial Equation

Having identified the relevant length and energy scales of the problem, we
introduce the dimensionless quantities ρ = r/a1 and ε = −E/EI. We define
ε with a minus sign so that this quantity is positive if we are dealing with a
bound state, whose energy is negative. We obtain the following dimensionless
equation:(

1
ρ

d2

dρ2
ρ − �(� + 1)

ρ2
+

2
ρ
− ε

)
R�(ρ) = 0 . (11.21)

This equation is well known to mathematicians, and the following prop-
erties can be proven.

a. For each value of �, we obtain an infinite set of normalizable solutions,
labeled by an integer n′ = 0, 1, . . . :

R(ρ) = e−
√

ερ ρ� Qn′,�(ρ) . (11.22)

where Qn′,�(ρ) = C0 +C1ρ+ . . .+Cn′ρn′
is called a Laguerre polynomial

of degree n′. It has n′ real zeros between ρ = 0 and ρ = +∞.
b. These normalizable solutions correspond to particular values of ε, i. e.

ε =
1

(n′ + � + 1)2
. (11.23)
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Table 11.1. Radial wave functions Rn,�(ρ) for the Coulomb problem, for n = 1, 2, 3

n = 1 � = 0 2 e−ρ

n = 2 � = 0
1√
2

(
1 − ρ

2

)
e−ρ/2

� = 1
1

2
√

6
ρ e−ρ/2

n = 3 � = 0
2

33/2

(
1 − 2

3
ρ +

2

27
ρ2

)
e−ρ/3

� = 1
25/2

37/2
ρ
(
1 − ρ

6

)
e−ρ/3

� = 2
23/2

39/2
√

5
ρ2 e−ρ/3

As already mentioned in Sect. 11.2, the integer n′ gives the number of nodes
of the radial wave function and is called the radial quantum number. The
principal quantum number is the integer n = n′ + � + 1. The first few radial
wave functions Rn,�(ρ) are given in Table 11.1. We remark that εn = 1/n2

is an eigenvalue of all radial equations corresponding to values of � smaller
than n: � = 0, 1, . . . , n − 1.

Although we do not give here a proof that the normalizable solutions of
(11.21) can indeed be cast into the form (11.22), we can check that these
solutions make sense both around the origin and at infinity.

Around ρ = 0. The Coulomb term 1/ρ and the constant term ε are negli-
gible compared with the centrifugal term �(�+1)/ρ2 (for � �= 0). Assuming a
power-law dependence Rn,�(ρ) ∝ ρs around ρ = 0, we find that the only pos-
sible exponent s compatible with a normalizable solution is s = � (s = −�−1
is not square integrable for � ≥ 1). This corresponds to the expansion of
(11.22) around ρ = 0. Notice that in the case of an s wave (� = 0), a so-
lution behaving as 1/r is square integrable; however, it does not satisfy the
Schrödinger equation, since ∆(1/r) = −4πδ(r).

At Infinity. Keeping only the leading terms in the expansion in Rn,�, we
obtain

Rn,�(ρ) ∼ e−
√

ερ
(
Cn′ρn−1 + Cn′−1ρ

n−2 + . . .
)

.

If we insert this expansion into the differential equation (11.21), we can imme-
diately check that the term in e−

√
ερρn−1 always cancels in the equation, while

the coefficient of the next term, e−
√

ερρn−2, is proportional to Cn′(1−n
√

ε).
We can check that this term also cancels for the particular choice ε = 1/n2.
The subsequent terms of the expansion, which depend on the centrifugal
barrier, allow the determination of the coefficients Cn′ , Cn′−1, . . . , C0.
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Coming back to the initial variables for length and energy, we can sum-
marize the above results as follows.

Each solution of the Schrödinger equation (11.12) corresponding to a bound
state for the Coulomb problem can be labeled by three integers (or quantum
numbers):

n = 1, 2, . . . , � = 0, 1, . . . , n − 1 , m = −�, . . . , � .

The energy of a solution depends only on the principal quantum number n:

En = −EI

n2
, where EI =

mee
4

2h̄2 ∼ 13.6 eV .

To each energy level there correspond several possible values of the angular
momentum. The total degeneracy (with respect to � and m) of a level with
given n is

n−1∑
�=0

(2� + 1) = n2 .

The wave function corresponding to a given set n, �, m is unique (up to a
phase factor) and reads

ψn,�,m(r) = Y�,m(θ, ϕ) e−r/(n a1)

(
r

a1

)�

×
(

C0 + C1
r

a1
+ . . . + Cn−�−1

(
r

a1

)n−�−1
)

, (11.24)

where the Ck’s (k = 0, . . . , n − � − 1) are the coefficients of the Laguerre
polynomials and where a1 = h̄2/(mee

2) ∼ 0.53 Å.

Remark. The degeneracy with respect to � is a specific property of the 1/r
potential. For central potentials different from the Coulomb (1/r) and the
harmonic (r2) potentials, it is not the case that two series of energy levels
corresponding to two different values � and �′ of the angular momentum
overlap, and one has to use the two quantum numbers n and � to specify
the energy levels (i. e. En,�). This degeneracy in the case of the Coulomb
problem is a signature of an extra symmetry, called a dynamical symmetry.
This symmetry, which can be represented by an O(4) or SU(2) × SU(2) Lie
group, was used by Pauli in his 1925 derivation of the hydrogen spectrum.
The existence of this “hidden symmetry”, which is additional to the rotational
invariance of the problem, is also present in classical mechanics. In addition to
the angular momentum, a second independent quantity is conserved for the
Coulomb potential: the Lenz vector. A direct consequence of this additional
constant of motion is the fact that in a 1/r potential, all trajectories with a
negative total energy are closed, which is not true for other central potentials
(except for the harmonic case).



11.3 The Hydrogen Atom 219

11.3.3 Spectrum of Hydrogen

In Fig. 11.3 we represent the energies En of the hydrogen atom. Each line
represents an energy level, the number to the right of the line is the value of
n, each column corresponds to a given value of �, and we give the value of
the energy on the vertical axis.

The selection rule given for the observable spectral lines of the sodium
atom � = �0 ± 1 still holds. The most famous series is the Balmer series. It
corresponds to transitions from states ns to the state 2p:

h̄ω = En − E2 = 13.6
n2 − 4
4n2

eV .

The first few lines of the Balmer series are in the visible part of the spectrum
(h̄ω ∼ 2 to 3 eV; λ ∼ 0.5 µm). The Lyman series, corresponding to transitions
to the ground state, lies in the ultraviolet (λ ≤ 121.5 nm).

Integers played an important role in science in the 19th century. Examples can be
found in chemical reactions, atomic theory, and the classification and evolution of
species in zoology and in botany. It was by chance that, in 1885, Balmer, who was
a high-school teacher in Basel and was fascinated by numerology, learned about
the positions of the first four lines of hydrogen. He realized that the wavelengths
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Fig. 11.3. Energy levels of hydrogen
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of the lines could be represented to an accuracy of 10−3 by a formula involving
integers: 1/λ ∝ (n2 − 4)/n2, n ≥ 3; this same formula still applied accurately when
Huggins found eight more lines of hydrogen in stellar spectra. Although he was not
a physicist, Balmer found the simplicity of the formula quite striking. In his 1885
paper, he wrote: “It appears to me that hydrogen ... more than any other substance
is destined to open new paths to the knowledge of the structure of matter and its
properties”.

In 1912, Niels Bohr, who was 27, was working with Rutherford on an atomic
model. He was not aware of Balmer’s formula or of the analogous results obtained
by Rydberg for alkali atoms. One day, by chance, he learned of the existence of
Balmer’s formula; it took him only a few weeks to construct his celebrated model
of the hydrogen atom, which was one of the turning points of quantum physics.

11.3.4 Stationary States of the Hydrogen Atom

The Ground State (1s). The ground state corresponds to n = 1, and
therefore � = 0 and m = 0 (the 1s state in spectroscopic language). Since the
spherical harmonic Y0,0(θ, ϕ) is a constant equal to 1/

√
4π, the normalized

wave function of this state is

ψ1,0,0(r) =
e−r/a1√

πa3
1

.

The probability of finding the electron in a spherical shell of thickness dr,
represented in Fig. 11.4, is

P (r) dr = |ψ1,0,0(r)|2 4πr2 dr .

The probability density per unit volume is proportional to the exponential
function e−2r/a1 , and is maximum at r = 0. The most probable distance
between the electron and the proton is the Bohr radius a1 = 0.53 Å.

r / a1

10 2 3 4

P(r)

Fig. 11.4. Radial probability density P (r), giving the probability of finding the
electron between r and r + dr in a hydrogen atom prepared in its ground state
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Other States. Figure 11.5 represents the radial probability density Pn,�(r) =
r2 |Rn,�(r)|2 for various states n, �. We note the reduction of the number of
nodes of the radial wave function as � increases for a given n. For a level n, l,
the function Pn,�(r) has n′ = n − � − 1 zeros, where n′ is the degree of the
corresponding Laguerre polynomial. In particular, for � = n − 1, we remark
that P (r) has a single maximum, located at a distance r = n2a1 (see (11.24)).

Figure 11.6 represents some spatial probability densities |ψn,�,m(r)|2 in
the plane y = 0 (these are axially symmetric functions around the z axis). For
large quantum numbers n � 1, we notice that one gets closer to “classical”
situations, corresponding to a well-localized particle.

��= 0

0 10 20 30 400 10 20 30 400 10 20

n = 2 n = 3 n = 4

r / a1

��= 1

��= 0

��= 1

��= 2

��= 0

��= 1
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��= 3

Fig. 11.5. Radial probability density r2 |Rn,�(r)|2 of the states n = 2, 3, 4 of hy-
drogen

11.3.5 Dimensions and Orders of Magnitude

Consider a hydrogen atom prepared in a stationary state |n, �, m〉. Using
the virial theorem (Chap. 7, exercise 7.9), one can show that the classical
relation between the kinetic energy and the potential energy still holds for
the expectation values of these quantities:

E(kin)
n =

〈
p2

2me

〉
= −En =

EI

n2
(11.25)

E(pot)
n =

〈−e2

r

〉
= 2En = −2EI

n2
hence

〈
1
r

〉
=

1
n2a1

. (11.26)

Using the properties of the Laguerre polynomials, one finds that the mean
radius has the following variation with n and �:

〈r〉 =
a1

2
[
3n2 − �(� + 1))

]
. (11.27)
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Fig. 11.6. Probability density |ψn,�,m(r)|2 in the y = 0 plane for n = 6, � = 5
(mesh size 60 a1 × 60 a1). For m = 0, the particle is localized in the vicinity of the
z axis. For large |m| (in particular, m = ±5), the particle is localized in the plane
z = 0, in the vicinity of a circle centered on the origin, of radius r = 30 a1 (circular
state). The vertical scale of the surface for m = 0 has been reduced by a factor of
2 with respect to the five other surfaces in order to improve the visibility

One can also show that〈
1
r2

〉
=

2
n3 (2� + 1) a2

1〈
r2
〉

=
n2 a2

1

2
[
5n2 + 1 − 3�(� + 1)

]
.

Also, setting ρ = r/a1, one obtains the following result for p > −2� − 1:

p + 1
n2

〈ρp〉 − (2p + 1)〈ρp−1〉 +
p

4
[
(2� + 1)2 − p2

] 〈ρp−2〉 = 0 .

Remark. Because of the n2 quadratic variation of the mean atomic radius,
the maximal probability density for a given radial wave function decreases
as 1/n4. For this reason, a readjustment of scales is necessary in order to
visualize Fig. 11.5 properly.
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11.3.6 Time Evolution of States of Low Energies

We can now briefly discuss the nature of the motion of the electron in the
hydrogen atom when it is prepared in a linear superposition of some of its
lowest-energy states. In one-dimensional problems such as the harmonic oscil-
lator or the inversion of the NH3 molecule, we have seen that superpositions
of stationary states oscillate periodically. How does the wave function of the
electron evolve in a three-dimensional problem such as the hydrogen atom?

Consider the superposition of wave functions of different energies, with a
maximum value m = � of the azimuthal quantum number. For simplicity we
restrict our analysis to the equatorial plane θ = π/2, perpendicular to the z
axis. The spherical harmonics Y�,�(θ, ϕ) have a maximum in this plane and
vary as exp(i�ϕ). The wave function is therefore

ψ(r, π/2, ϕ, t) =
∑
n,�

γn,� e−iEnt/h̄ Rn,�(r) ei�ϕ .

The probability density |ψ|2 in this equatorial plane is a function of r and
ϕ, and it varies with time. We investigate the nature of this variation in two
examples.

• Consider first a superposition with equal weights of the 1s ground state
and the 2s first excited state, both of zero angular momentum. The wave
function does not have any angular dependence:

|ψ(r, t)|2 =
1
2
|R1,0(r) + e−3iωt/4R2,0(r)|2 ,

where h̄ω = EI. The radial variation of R2,0(r) has a zero and changes sign.
Therefore, the interference between the two radial functions is alternately
destructive and constructive around the origin, and the system exhibits a
radial beat between r = a1 and r = 4a1 (breathing mode).

• Consider now a superposition, still with equal weights, of the 1s ground
state and the 2p first excited state (� = 1):

|ψ(r, ϕ, t)|2 =
1
2
|R1,0(r) + e−i(3ωt/4−ϕ)R2,1(r)|2 .

At time t = 0, this distribution shows an asymmetry in ϕ. The interference
between the two wave functions R1,0(r) and R2,1(r) is constructive at ϕ = 0
and destructive at ϕ = π. As a function of time, this asymmetry displays
a rotation around the polar axis with a constant angular velocity 3ω/4.

More complicated superpositions of states produce combinations of these
two basic fundamental motions of radial and angular pulsations, with various
frequencies. This motion is a relatively simple wave phenomenon, but one has
little intuitive understanding of it since it concerns waves which are attracted
by a center. This is a much less frequent situation than waves confined by
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walls, in a waveguide for instance. Another situation where an attractive
situation occurs is gravitation, where there are (classical) density waves in
galactic clouds. However, in that case, the timescales are too large to allow
the direct observation of such motions.

11.4 Hydrogen-Like Atoms

The eigenstates of the Hamiltonian describing an atom of atomic number Z,
ionized Z − 1 times, are readily obtained from the previous results. We just
have to replace the potential −e2/r by

V (r) = −Ze2

r
.

If we make this change in the radial equation, we recover the same equation
as for hydrogen. What changes physically is the length and energy scales.
Hydrogen-like atoms have the same wave functions as the hydrogen atom,
but distances are reduced by a factor Z, and energies are multiplied by a
factor Z2:

a
(Z)
1 =

h̄2

Zmee2
, E(Z)

n = −Z2mee
4

2n2h̄2 . (11.28)

This also applies, to a first approximation, to internal electrons of an atom
of large Z, which can be thought of as evolving in the field of the nucleus
only. In lead, for instance (Z = 82), an internal electron is on average at
a distance a1/Z � 6 × 10−13 m, with an energy −EIZ

2 ∼ −105 eV. There
exist sizeable corrections to the nonrelativistic approximation in such cases
since the average velocity of the electron, of order Zαc, becomes close to the
velocity of light.

11.5 Muonic Atoms

The µ lepton, or muon, discovered in 1937, has the physical properties of a
heavy electron. Like the electron, it is elementary or point-like, it has the
same electric charge and the same spin, but it is 200 times more massive:
mµ = 206.8me. It is unstable and decays into an electron and two neutrinos,
µ → e + νe + νµ, with a lifetime of 2 × 10−6 s.

With particle accelerators, one can produce muons, slow them down and
have them captured by atoms, where they form hydrogen-like systems. In a
complex atom, the muon is not constrained with respect to electrons by the
Pauli principle. The muon expels electrons, cascades from one level to another
and eventually falls into the vicinity of the nucleus at a distance from it of
aµ = h̄2/Zmµe2, which is 200 times smaller than the corresponding distance
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for the internal electrons. Therefore, it forms a hydrogen-like atom, since
it does not feel the electric field of the electrons. The lifetime of the muon
is much larger than the total time for the cascades (∼ 10−14 s). It is also
much larger than the typical atomic time h̄3/mµe4 ∼ 10−19 s. The muon can
therefore be considered as stable on these timescales.

The Bohr radius of a muonic atom is of the same order as a nuclear
radius. Consider again lead (Z = 82), whose nuclear radius is R ≈ 8.5 fm. We
find aµ ≈ 3.1 fm, which means that the µ penetrates the nucleus noticeably.
In fact, in the ground state, it has a 90% probability of being inside the
nucleus. The description of the nucleus as a point particle creating a Coulomb
potential is inadequate, and one has to turn to a more elaborate model of
the electrostatic potential created by this nucleus. Consequently, the spectra
of muonic atoms provide information on the structure of nuclei, in particular
concerning their charge distribution, i. e. the distribution of protons inside
these nuclei.

For a spherical nucleus, the potential is harmonic inside the nucleus (as-
suming a constant charge density), and Coulomb-like outside the nucleus. If
the nucleus is deformed, i. e. flattened or cigar-shaped, the spherical symme-
try is broken, and the levels will no longer be degenerate with respect to the
magnetic quantum number m. This results in a splitting of the spectral lines.

Figure 11.7, obtained at CERN, shows the spectra of muonic atoms in the
cases of gold (Z = 79), which has a spherical nucleus, and of uranium (Z =
92), which has a deformed nucleus. We notice the more complicated structure
of the higher-energy line for uranium. This is a very accurate method to
determine the deformations of nuclei.

197Au 238U

5500 5800 6000 6500

Fig. 11.7. Transition line from the 2p level (actually split into two sublevels 2p1/2

and 2p3/2; see Sect. 13.2) to the 1s level in muonic atoms of gold (Z = 79, A = 197)
and uranium (Z = 92, A = 238) (horizontal scale in keV). The gold nucleus is
spherical, and the corresponding spectrum has a simple shape; the uranium nucleus
is deformed, and the upper peak is split into four lines (CERN document)
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The existence of the muon has been a mystery for more than 40 years. When
it was discovered, Rabi said, “Who ordered that?” Why a heavy electron? All
matter around us that we know about can be built starting with protons, neutrons,
electrons and neutrinos, or, in terms of fundamental constituents, with the family of
quarks and leptons {u, d, e, ν}. So why a heavy electron, with which one can imagine
a Gulliver universe: atoms, molecules, chemistry and biology 200 times smaller than
the matter we know? There are many applications of the muon, such as probing
nuclei, crystals and pyramids, but why is it there? What role is it supposed to play?

In 1974, with the discovery of a new quark, the charm quark c, it was realized
that the muon forms, together with its neutrino, the charm quark and the strange
quark s (constituent of the strange particles discovered in the 1940s), a new family
of quarks and leptons (c, s, µ, νµ). This family generates, at higher scales, a new
atomic and nuclear physics, but its members are unstable. In 1975–76, with the dis-
covery of a new lepton τ , another new quark was discovered, the b quark (beautiful
or bottom), and, in 1995, the top quark t, hence a third family (t, b, τ, ντ ).2

In 1989, at the LEP electron collider, it was proven that the (light) fundamental
constituents of matter belong to only these three families. Present ideas are that the
Big Bang could not have happened so nicely, if these two extra (“useless”) families
of quarks and leptons did not exist. They are of importance in order to create the
world! However, we still do not understand the masses of these quarks and leptons
(and therefore their stability). The mass problem is one of the great problems of
modern physics.

11.6 Spectra of Alkali Atoms

The wave functions of the hydrogen atom enable us to understand qual-
itatively some characteristics of the spectra of alkali atoms, in particular
Fig. 11.2 above.

The alkali atoms (Li, Na, K, Rb, Cs, Fr) are monovalent, i. e. they have one
more electron than the number corresponding to a set of complete shells. We
shall explain this expression in Chap. 16, when we study the Pauli principle
and complex atoms. Sodium, for instance, has 11 electrons. Ten of them are
localized close to the nucleus, the last one, the valence electron, is less bound
than the others, and can be excited more easily.

If sodium is heated to a high temperature, the electron cloud will be
excited, but this excitation will mostly affect the valence electron. In Fig. 11.2
we have indicated the energy levels by using only the quantum numbers n
and � of the valence electron, starting from the value n = 3, since the levels
n = 1 and n = 2 are filled (Pauli principle).

For alkali atoms, one may consider, to a good approximation, that the
nucleus of charge +Ze and the Z − 1 internal electrons form a spherically
symmetric charge distribution. The potential V (r) felt by the valence electron

2 T.M. Liss and P.L. Lipton, “The discovery of the top quark”, Sci. Am., September
1997, p. 36; M. Perl, “The leptons after 100 years”, Phys. Today, October 1997,
p. 34.
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can therefore be described to a first approximation by a function of the type

V (r) = −e2

r
Zeff(r) .

The boundary values of Zeff(r) are Z for r → 0 and 1 for r → ∞. With this
definition of V (r), the radial equation becomes(

− h̄2

2me

1
r

d2

dr2
r +

�(� + 1)h̄2

2mer2
− e2

r
Zeff(r)

)
R�(r) = ER�(r) .

Referring to the form of the hydrogen wave functions, one can understand
the following:

• If the probability density of the electron around the center (r = 0) is large,
then Zeff is noticeably larger than 1, and the electron is more strongly
bound than in hydrogen.

• Conversely, if the electron’s mean distance from the center is large, Zeff ∼ 1.

More precisely for a given n, the value of the wave function at the origin
becomes smaller as the quantum number � increases, because of the term
(r/a1)� originating from the centrifugal potential. Therefore we expect that,
for a given n, the levels of sodium should be lower than those of hydrogen, and
that they should get closer to the hydrogen case as � increases. For increasing
values of n and �, the average distance between the electron and the nucleus
also increases. The potential resembles more and more the Coulomb potential
of a hydrogen atom, and the energy levels tend to those of hydrogen. This
can be checked in Fig. 11.2.

Further Reading

• The richness of the physics involved in the understanding of the hydrogen
atom is described in T.W. Hänsch, A.L. Schawlow and G.W. Series, “The
spectrum of atomic hydrogen”, Sci. Am., March 1979; D. Kleppner, M.G.
Littman and M.L. Zimmerman, “Highly Excited Atoms”, Sci. Am., May
1981; M. Nauenberg, C. Stroud and J. Yeazell, “The classical limit of an
atom”, Sci. Am., June 1994, p. 24.

• Once the physics related to Coulomb interactions has been understood,
atoms can also be used as microscopic laboratories to test other theories,
such as electroweak interactions which manifest themselves as a parity-
violating effect. See, for example, M.A. Bouchiat and L. Pottier, “Atomic
preference between right and left”, Sci. Am., June 1984; S.C. Bennett and
C.E. Wieman, Phys. Rev. Lett. 82, 2484 (1999).

• For more elaborate treatments of atoms see, for example, W. Thirring,
Quantum Mechanics of Atoms and Molecules, Chap. 4.3, Springer, New
York (1981).
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Exercises

11.1. Expectation value of r for the Coulomb problem. Consider the
dimensionless radial equation for the hydrogen atom,(

d2

dρ2
− �(� + 1)

ρ2
+

2
ρ

)
un,�(ρ) = ε un,�(ρ) , (11.29)

where un,�(ρ) = ρRn,�(ρ) is the reduced wave function and satisfies the con-
ditions

∫∞
0

|un,�(ρ)|2 dρ = 1 and un,�(0) = 0.

a. By multiplying this equation by ρ un,�(ρ) and integrating over ρ, show
that

〈ρ〉
n2

+
�(� + 1)

n2
− 2 =

∫ +∞

0

ρ un,�(ρ) u′′
n,�(ρ) dr .

You can use the result 〈1/ρ〉 = 1/n2 deduced from the virial theorem
(11.26).

b. By multiplying the Schrödinger equation by ρ2u′
n,�(ρ) and integrating

over ρ, show that

〈ρ〉
n2

− 1 = −
∫ +∞

0

ρ un,�(ρ) u′′
n,�(ρ) dr .

c. Deduce from the above results that 〈ρ〉 = [3n2 − �(� + 1)]/2.

11.2. Three-dimensional harmonic oscillator in spherical coordi-
nates. We treat the three-dimensional harmonic-oscillator problem as a
central-potential problem. Consider the Hamiltonian

Ĥ =
p̂2

2m
+

1
2
mω2r̂2 ,

where r̂2 = x̂2 + ŷ2 + ẑ2.

a. Introduce the dimensionless quantities ρ = r
√

mω/h̄ and ε = E/h̄ω.
Show that the radial equation (11.16) becomes(

−1
ρ

d2

dρ2
ρ +

�(� + 1)
ρ2

+ ρ2 − 2ε

)
R�(ρ) = 0 . (11.30)

b. It can be proved that the normalizable solutions of (11.30) can be labeled
by an integer n′:

Rn′,�(ρ) = ρ� Pn′,�(ρ2) e−ρ2/2 ,

where Pn′,� is a polynomial of degree n′. These solutions correspond to
particular values of ε:

ε = 2n′ + � + 3/2 .
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In the following we set n = 2n′ + �. Show that one recovers the levels
E = h̄ω(n1 + n2 + n3 + 3/2) (ni integer ≥ 0) that were obtained in
Cartesian coordinates in Chap. 4 (exercise 4.3) and are associated with
the eigenstates |n1;n2;n3〉. To what values of the angular momentum do
the energy levels En correspond?

c. Give the explicit correspondence between the states |n1;n2;n3〉 and
|n, �, m〉 for n = n1 + n2 + n3 = 1.

11.3. Relation between the Coulomb problem and the harmonic os-
cillator. Consider the three-dimensional harmonic-oscillator problem treated
in the previous exercise, but writing the potential as V (r) = K2mω2r2/2,
where K is dimensionless, in order to keep track of the parameters. Using
the dimensionless variable ρ of the previous exercise, the radial equation for
the reduced wave function u = ρR(ρ) is(

d2

dρ2
− �(� + 1)

ρ2
− K2ρ2 + 2

E

h̄ω

)
u(ρ) = 0 . (11.31)

Similarly, consider the Coulomb problem with a potential V (r) = −Ze2/r,
where Z is dimensionless. The radial equation for the variable ρ = r/a1 is(

d2

dρ2
− �(� + 1)

ρ2
+

2Z

ρ
+

E

EI

)
u(ρ) = 0 . (11.32)

a. Show that, under the transformation u(ρ) = xαf(x), where x =
√

ρ,
and with an appropriate choice of α, one can cast the hydrogen problem
(11.32) into the same form as the harmonic-oscillator problem (11.31).

b. Discuss the correspondence between the parameters of the two problems.
c. Recalling the results of the previous exercise, find the energy levels of the

hydrogen atom.

11.4. Confirm or invalidate the following assertions.

a. If [Ĥ, L̂] = 0, the energy levels do not depend on m (i. e. on the eigenval-
ues of the projection of one of the components of the angular momentum
L̂).

b. If [Ĥ, L̂2] = 0, the energy levels do not depend on �.

11.5. Centrifugal-barrier effects. Consider a central potential. We denote
by E� the lowest energy level for a given �. Show that E� increases with �.
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11.6. Algebraic method for the hydrogen atom. We consider the radial
dimensionless equation for the Coulomb problem (11.29) and we introduce
the operators:

A−
� =

d
dρ

+
� + 1

ρ
− 1

� + 1
, A+

� =
d
dρ

− � + 1
ρ

+
1

� + 1
.

a. Calculate A−
� A+

� . Show that (11.29) can be written

(
A−

� A+
�

)
u� =

(
ε − 1

(� + 1)2

)
u� . (11.33)

b. Show that

A+
� A−

� = A−
�+1A

+
�+1 −

1
(� + 2)2

+
1

(� + 1)2
.

By multiplying (11.33) by A+
� , show that A+

� u�(ρ) satisfies the radial
equation, with the same eigenvalue ε but with an angular momentum
�′ = � + 1.

c. Similarly, show that A−
�−1u�(ρ) satisfies the radial equation with the same

eigenvalue ε but an angular momentum �′ = � − 1.
d. Calculate the expectation value of A−

� A+
� for the radial function u�(ρ),

and show that ε ≤ 1/(� + 1)2.
e. Show that, for a given value of ε, there exists a maximum value �max of the

angular momentum such that ε = 1/n2, where we have set n = �max + 1.
Show that the corresponding radial wave function u�max(ρ) satisfies the
differential equation(

d
dρ

− n

ρ
+

1
n

)
u�max(ρ) = 0 .

f. Deduce from these results the energy levels and the corresponding wave
functions of the hydrogen atom.

11.7. Molecular potential. Consider a central potential of the form

V (r) = A/r2 − B/r (A, B > 0) .

We want to calculate the energy levels of a particle of mass me in this po-
tential.

a. Write down the radial equation.
b. By a change of notation, reduce this equation to an eigenvalue problem

which is formally identical to the Kepler problem. Check that one can
solve this equation by using the same arguments as for the hydrogen
atom.

c. Give the explicit values of the energy levels in terms of A and B.
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The object must be presentable.

Charles Perrault, The Ducks and the Little Water Spaniel

The elaboration of the concept of spin was certainly the most difficult step of
all of quantum theory during the first quarter of the 20th century. After the
triumph of the Bohr model in 1913, the “old theory of quanta” of Bohr and
Sommerfeld, which was based on the idea of quantum restrictions on clas-
sical quantities, had accumulated successes. People contemplated reaching a
unified theory of spectroscopic data. Alas! the catalog of more and more ad
hoc and complicated recipes could also be considered as reflecting a scholarly
form of ignorance. The accumulation of successes was followed by a similar
accumulation of unexplained facts, and even paradoxes. The anomalous Zee-
man effect, the splitting of spectral lines, electron shells in complex atoms
and the Stern–Gerlach experiment seemed to be challenges to the scientific
community. Nobody imagined that these effects had a common origin.

The explanation was simple, but it was revolutionary. For the first time
people were facing a purely quantum effect, with no classical analog. Nearly
all the physical world depends on this concept, that of spin 1/2.

We have already mentioned experimental arguments which show that
there exist in nature half-integer angular momenta. It is not possible to ac-
count for various effects in atomic-physics experiments if one assumes that
the electron, which is a point-like particle down to distances of 10−18 m, has
only the three degrees of freedom corresponding to translations in space. A
series of experimental and theoretical arguments show that it must have an
internal degree of freedom, its intrinsic angular momentum. This quantity
does not have a classical analog. Any attempt to make a semiclassical model
for this intrinsic angular momentum immediately leads to inconsistencies. In
other words, the electron is both a point-like and a spinning object; spin is a
purely quantum property.

We shall refer mainly to the case of the electron, but our considerations
extend to many other particles or systems. The proton, the neutron, quarks
and neutrinos have the same spin as the electron. In relativistic quantum
mechanics, the structure of the Lorentz group shows that the spin of a particle
characterizes this particle as well as its mass and its electric charge.
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Fig. 12.1. Three physicists dis-
cussing the optimal way to measure
spin effects in proton collisions at the
Argonne ZGS accelerator (U.S.A.)
(CERN document)

Here, we are interested in a spin of 1/2, i. e. an intrinsic angular momen-
tum which corresponds to eigenvalues j = 1/2, m = ±1/2. In general, one
uses the term spin for the intrinsic angular momentum of a particle, as op-
posed to its orbital angular momentum. The spin can then take any of the
values seen in Chap. 10: j = 0 for the π meson, j = 1 for the photon and the
deuteron, etc.

Our first goal here is to become familiar with the concept of spin 1/2. It is
a purely quantum physical quantity, and the intuitive representation each of
us constructs for it is a personal matter, as shown in Fig. 12.1. We shall then
come back to the relation between angular momenta and magnetic moments
in order to describe, in the final section, a phenomenon of great practical
importance: magnetic resonance.

The hypothesis of spin for the electron was due to Uhlenbeck and Goudsmit in 1925.
Both of them were quite young, since Uhlenbeck was still hesitating between a career
in physics and in history, while Goudsmit had not yet passed his final exams. As
soon as they realized that their hypothesis could explain many experimental facts,
they discussed it with their professor, Ehrenfest, who encouraged them to publish
their work. This idea was received with very varied feelings by the community. Bohr
was very enthusiastic about it, while Pauli and Lorentz had several objections. One
of these objections was connected with relativity. If one models the electron as an
extended charged sphere whose electrostatic energy is equal to its mass energy mec

2,
the radius of the sphere is of the order of e2/(mec

2) and the equatorial velocity of
the sphere has to be much larger than the speed of light in order to account for the
angular momentum h̄/2 (one actually obtains veq ∼ c/α = 137c). We know now that
this objection is not relevant; it must be interpreted as an argument showing that a
classical representation of the electron’s intrinsic angular momentum is impossible.
Spin is a fully quantum concept.

12.1 The Hilbert Space of Spin 1/2

The degree of freedom associated with the spin of a particle manifests itself in
the measurement of particular physical quantities. These are the projections



12.1 The Hilbert Space of Spin 1/2 233

of the intrinsic angular momentum on three orthogonal axes x, y, z, and all
functions of these quantities. The fundamental property of a spin-1/2 particle
is that in a measurement of the projection of its spin along any axis, the only
outcomes that one can observe are the two values +h̄/2 and −h̄/2.

From this experimental result, it follows that if we measure the square of
any component of the spin, we find a single value h̄2/4, with probability one.
Therefore a measurement of the square of the spin S2 = S2

x +S2
y +S2

y always
gives the result S2 = 3h̄2/4, whatever the spin state of the particle. Any spin
state is a linear superposition of two basis states and the degree of freedom
corresponding to spin is described in a two-dimensional Hilbert space, Espin.

12.1.1 Spin Observables

Let Ŝ be the vector spin observable, i. e. a set of three observables {Ŝx, Ŝy, Ŝz}.
These three observables have the commutation relations of an angular mo-
mentum:

Ŝ × Ŝ = ih̄Ŝ . (12.1)

Each of the observables Ŝx, Ŝy and Ŝz has eigenvalues ±h̄/2. The observable
Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z is proportional to the identity in Espin, with eigenvalue
3h̄2/4.

12.1.2 Representation in a Particular Basis

We choose a basis of states in which both Ŝ2 and Ŝz are diagonal, which we
denote by {|+〉, |−〉}:

Ŝz|+〉 =
h̄

2
|+〉 , Ŝz|−〉 = − h̄

2
|−〉 , Ŝ2|±〉 =

3h̄2

4
|±〉 . (12.2)

Using the notation of Chap. 10, the states |±〉 would be |j = 1/2, m = ±1/2〉.
The action of Ŝx and Ŝy on the elements of this basis is written as (see (10.17))

Ŝx|+〉 = h̄/2|−〉 , Ŝx|−〉 = h̄/2|+〉 , (12.3)
Ŝy|+〉 = ih̄/2|−〉 , Ŝy|−〉 = −ih̄/2|+〉 . (12.4)

An arbitrary spin state |Σ〉 can be written as

|Σ〉 = α |+〉 + β |−〉 , |α|2 + |β|2 = 1 . (12.5)

The probabilities of finding +h̄/2 and −h̄/2 in a measurement of Sz on this
state are P (+h̄/2) = |α+|2, P (−h̄/2) = |α−|2, respectively.
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12.1.3 Matrix Representation

It is convenient to use the following matrix representations for the states and
the operators:

|+〉 =
(

1
0

)
, |−〉 =

(
0
1

)
, |Σ〉 =

(
α+

α−

)
. (12.6)

We can use the Pauli matrices σ̂ ≡ {σ̂x, σ̂y, σ̂z} introduced in Chap. 6:

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (12.7)

These satisfy the commutation relations

σ̂ × σ̂ = 2i σ̂ . (12.8)

The spin observables are represented as

Ŝ =
h̄

2
σ̂ . (12.9)

In this basis, the eigenstates |±〉x of Ŝx and |±〉y of Ŝy are

|±〉x =
1√
2

(
1
±1

)
, |±〉y =

1√
2

(
1
±i

)
. (12.10)

12.1.4 Arbitrary Spin State

Consider the most general spin state |Σ〉. Up to a phase factor, this state can
always be written as

|Σ〉 = e−iϕ/2 cos(θ/2) |+〉 + eiϕ/2 sin(θ/2) |−〉 ,

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. One can then check that |Σ〉 is the
eigenstate with eigenvalue h̄/2 of the operator Ŝu = u · Ŝ, i. e. the projection
of the spin along an axis of unit vector u, with polar angle θ and azimuthal
angle ϕ. In fact, we have

u = sin θ cos ϕ ex + sin θ sinϕ ey + cos θ ez ,

i. e., in matrix notation,

Ŝu =
h̄

2

(
cos θ sin θ e−iϕ

sin θ eiϕ − cos θ

)
.

In other words, for any spin-1/2 state, there is always a direction u for which
this state is an eigenstate of the operator u · Ŝ, the projection of the spin
along this direction. This remarkable property does not generalize to higher
spins.
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12.2 Complete Description of a Spin-1/2 Particle

The preceding discussion is similar to the phenomenological analysis of the
magnetic moment in Chap. 8. The state in three-dimensional Euclidean space
of a spin-1/2 particle is described in the space Eexternal of square-integrable
functions L2(R3), and the spin state is described in the space Espin introduced
above.

12.2.1 Hilbert Space

The complete Hilbert space is the tensor product of these two spaces:

EH = Eexternal ⊗ Espin . (12.11)

Any element |ψ〉 of EH can be written as

|ψ〉 = |ψ+〉 ⊗ |+〉 + |ψ−〉 ⊗ |−〉 , (12.12)

where |ψ+〉 and |ψ−〉 are elements of Eexternal.
We notice that the space observables Âex (x̂, p̂, etc.) and the spin observ-

ables B̂sp (Ŝx, Ŝy, etc.) act in different spaces, and therefore they commute.
The (tensor) product of two such observables is defined as(

Âex ⊗ B̂sp

)
(|ψσ〉 ⊗ |σ〉) =

(
Âex|ψσ〉

)
⊗
(
B̂sp|σ〉

)
σ = ± . (12.13)

12.2.2 Representation of States and Observables

There are several possible representations of the states and of the observables,
each of which has its advantages according to the problem under considera-
tion.

Mixed Representation. The state is represented by a vector of Espin whose
components are square-integrable functions:

ψ+(r, t) |+〉 + ψ−(r, t) |−〉 . (12.14)

We recall the physical interpretation of this representation: |ψ+(r, t)|2 d3r
and |ψ−(r, t)|2 d3r are the probabilities of finding the particle in a volume
d3r around the point r, with a spin component +h̄/2 and −h̄/2, respectively,
along z.

An operator in Eexternal acts on the functions ψ±(r, t), a spin operator
acts on the vectors |+〉 and |−〉, and the products of operators Âex ⊗ B̂sp can
be deduced from (12.13).
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Two-Component Wave Function. The state vector is represented in the
form(

ψ+(r, t)
ψ−(r, t)

)
. (12.15)

The physical interpretation of ψ+ and ψ− as probability amplitudes for the
pair of random variables (r, Sz) is the same as above.

Atomic States. In many problems of atomic physics, it is useful to use the
quantum numbers n, �, m to classify the states |n, �, m〉, which form a basis of
Eexternal. The introduction of spin is done in the space spanned by the family
{|n, �, m〉 ⊗ |σ〉}, where the spin quantum number can take the two values
±1. It is convenient to use the compact notation

|n, �, m, σ〉 ≡ |n, �, m〉 ⊗ |σ〉 , (12.16)

where the states of an electron are described by four quantum numbers. The
action of space operators on the states |n, �, m〉 is known (see Chap. 11), and
therefore the action of general operators on the states |n, �, m, σ〉 can readily
be inferred from the considerations above.

12.3 Spin Magnetic Moment

We have already emphasized in Chap. 10 that the connection between the
angular momentum of a system and its magnetic moment allows a quanti-
tative test of the angular-momentum theory. This connection remains valid
for the spin degree of freedom and gives direct evidence for the existence of
half-integer angular momenta.

12.3.1 The Stern–Gerlach Experiment

To the spin of a particle, there corresponds a magnetic moment which is
proportional to it:

µ̂ = γŜ = µ0σ̂ , (12.17)

where µ0 = γh̄/2. This proportionality relation is fundamental. It implies
the commutation relations between the components of the magnetic moment
that we found in Chap. 8 by analyzing the Stern–Gerlach experiment. We
recall that this experiment gives direct access to the nature of the angular
momentum of the particle under consideration. The deviation of the beams is
proportional to µz, and therefore to Jz. If the magnetic moment of the atom
is due to an orbital angular momentum, we expect an odd number of spots.
The observation of an even number of spots, two for monovalent atoms such
as silver, is a proof that half-integer angular momenta exist in nature.
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12.3.2 Anomalous Zeeman Effect

We place an atom, prepared in a level of energy E and angular momentum
j, in a magnetic field B parallel to z. The magnetic energy is

Ŵ = −µ̂ · B . (12.18)

The corresponding level is split into 2j + 1 sublevels with energies

E − γh̄B0m , m = −j, . . . , j

A corresponding splitting of each line is observed in the spectrum. If all
angular momenta are orbital angular momenta (i. e. they have a classical
interpretation), j must be an integer. In that case 2j+1 is odd and we expect
a splitting into an odd number of levels. The splitting of spectral lines in a
magnetic field, first observed by Zeeman in 1896–1903, shows that in many
cases, in particular for alkali atoms, this is not true. There is a splitting into
an even number of levels.

Faraday was convinced as early as 1845 that there was a deep connection between
optical and magnetic phenomena. In one of the last experiments of his life, in 1862,
he attempted to investigate the influence of magnetic fields on radiation. Many
technical problems prevented him from obtaining a positive answer. It was only in
1896 that these experiments were performed successfully by Zeeman. At that time,
theorists, in particular Lorentz, had already predicted that one should observe a
splitting into an odd number of lines (one line, i. e. no splitting, or three). Zeeman
first confirmed this result on the spectra of cadmium and zinc. The discovery, in the
particular case of sodium, of what was to be called the “anomalous Zeeman effect”,
i. e. an even number of lines, remained a real challenge to the scientific community,
who were totally confused by this phenomenon, for more than 25 years. It was only
in the years 1925–1926, after much struggle, with the ideas of Pauli, Uhlenbeck
and Goudsmit, that the introduction of the notion of spin completely solved the
problem. The “anomalous Zeeman effect” then appeared as a natural phenomenon.

12.3.3 Magnetic Moment of Elementary Particles

The electron, the proton and the neutron are spin-1/2 particles. The cor-
responding spin magnetic moment is related to the spin S by the relation
µ̂ = γŜ. Experiments give the following values of the gyromagnetic ratios:

electron γ � 2γ0 = −q/me ,

proton γ � +2.79 q/mp ,

neutron γ � −1.91 q/mp .

The possible results of a measurement of the component of these magnetic
moments along a given axis are therefore

electron µz = ±µB = ∓qh̄/2me ,

proton µz = ±2.79 qh̄/2mp ,

neutron µz = ±1.91 qh̄/2mp .



238 12. Spin 1/2 and Magnetic Resonance

The quantity µB = −9.274 × 10−24 J T−1 is called the Bohr magneton. The
quantity µN = qh̄/2mp = 5.051×10−27 J T−1 is called the nuclear magneton.

Dirac’s relativistic theory of the electron predicts the value of the electron magnetic
moment, i. e.

µ̂ = ge

(
q

2me

)
Ŝ , where ge = 2 .

The value measured experimentally for the gyromagnetic factor ge nearly coincides
with this prediction. One can account for the slight difference between the exper-
imental result and Dirac’s prediction by taking into account the coupling of the
electron to the quantized electromagnetic field (quantum electrodynamics). This
constitutes one of the most spectacular successes of fundamental physics. The ex-
perimental and theoretical values of the quantity ge coincide within the limits of
the accuracy of experiments and of computer calculations. At present, we have for
the electron, setting ge = 2(1 + a),

atheo. = 0.001 159 652 200 (40) , (12.19)

aexp. = 0.001 159 652 193 (10) ; (12.20)

the errors in parentheses relate to the two last digits.
The coefficients +2.79 and −1.91 for the proton and the neutron are due

to the internal structure of these particles. They can be measured with great
accuracy by magnetic-resonance experiments: µp/µN = 2.792 847 386 (63) and
µn/µN = −1.913 042 75 (45); they can be calculated with a 10% accuracy by using
the quark model.

12.4 Uncorrelated Space and Spin Variables

In most physical situations, such as the Stern–Gerlach experiments, the space
and the spin variables are correlated. For instance, in Chap. 11 we studied
only a first approximation to the hydrogen atom, where we neglected spin
effects. If we include the spin degree of freedom in this approximation, we
find that the states |n, �, m,+〉 and |n, �, m,−〉 are degenerate. Actually, there
exist corrections to this approximation, such as the fine structure of the hy-
drogen atom, which we shall describe in Chap. 13 and which is due to the
interaction between the spin magnetic moment and the electromagnetic field
created by the proton. The degeneracy is then partially lifted and the new
eigenstates are combinations of the initial states |n, �, m, σ〉. In other words,
in a given eigenstate of the total Hamiltonian, the spatial wave function of
an electron depends on its spin state, and the two random variables r and
Sz are correlated.

This correlation is sometimes extremely weak. In such cases, the two vari-
ables r and Sz can be considered as independent and their probability law
can be factorized. Such a physical situation can be represented by a factorized
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state vector,

Φ(r, t)
(

α+(t)
α−(t)

)
. (12.21)

If one performs spin measurements in this case, the results are independent
of the position of the particle. The only observables which are relevant are
2 × 2 Hermitian matrices with numerical coefficients (which can depend on
time).

Such cases happen in practice, in particular in magnetic-resonance exper-
iments. We then use the term “spin state of the proton” instead of “state of
the proton” since the position of the proton in space does not play any role
in the experiment under consideration.

12.5 Magnetic Resonance

In the fundamental proportionality relation between the spin and the asso-
ciated magnetic moment µ = γS, the determination of the gyromagnetic
coefficient γ is an important issue. In the case of objects such as the elec-
tron or the proton, it provides a test of fundamental interactions. For nuclei
in molecules, the value of γ gives precise information about the electronic
environment and the chemical bonding in these molecules.

We describe below how one can perform very accurate measurements of
γ. As often in physics, this consists in using a resonance phenomenon. We
shall then present some applications of magnetic resonance, electronic and
nuclear.

12.5.1 Larmor Precession in a Fixed Magnetic Field B0

We choose the z axis to be parallel to the field B0. Ignoring space variables
(see Sect. 12.4), the Hamiltonian is

Ĥ = −µ̂ · B0 = −µ0B0 σ̂z . (12.22)

We set

−µ0B0/h̄ = ω0/2 , i. e. ω0 = −γB0 . (12.23)

The eigenstates of Ĥ are the eigenstates |+〉 and |−〉 of σ̂z.
Consider an arbitrary state |ψ(t)〉 such that |ψ(0)〉 = α|+〉+ β|−〉, where

|α|2 + |β|2 = 1. Its time evolution is

|ψ(t)〉 = α e−iω0t/2 |+〉 + β eiω0t/2 |−〉 . (12.24)
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The expectation value 〈µ〉 reads

〈µx〉 = 2µ0 Re
(
α∗β eiω0t

)
= C cos(ω0t + ϕ) , (12.25)

〈µy〉 = 2µ0 Im
(
α∗β eiω0t

)
= C sin(ω0t + ϕ) , (12.26)

〈µz〉 = µ0

(|α|2 − |β|2) , (12.27)

where C and ϕ are the modulus and phase, respectively, of the complex num-
ber µ0α

∗β. We recover the Larmor precession that we derived for an arbi-
trary angular momentum in Sect. 10.4.2. The projection 〈µz〉 of the magnetic
moment along the field is time independent, and the component of 〈µ〉 per-
pendicular to B rotates with an angular velocity ω0. The fact that µz is a
constant of motion is a consequence of the commutation relation [Ĥ, µ̂z] = 0
and of the Ehrenfest theorem.

This provides a simple method to measure the angular frequency ω0. We
place a coil in a plane parallel to B0 and prepare a macroscopic quantity of
spins all in the same spin state |ψ(0)〉. The precession of 〈µ〉 at the frequency
ω0 causes a periodic variation of the magnetic flux in the coil, and this induces
an electric current at the same frequency. This method is, however, not as
accurate as the resonance experiment we present below.

12.5.2 Superposition of a Fixed Field and a Rotating Field

A technique invented by Rabi in the 1930s allows one to perform a very
accurate measurement of ω0 by means of a resonance phenomenon. We place
the magnetic moment in a known field B0, on which we superimpose a weak
field B1 which rotates at a variable angular velocity ω in the xy plane. Such
a field can be obtained using two coils oriented along the x and y axes, with
alternating currents at frequency ω/2π with a phase difference equal to π/2
(radio frequencies are used in experiments of this type). We show below that,
at resonance, i. e. for ω = ω0, the spin flips between its two possible states
|±〉. Notice that this calculation, which is characteristic of a driven two-state
system, is similar to that performed for the ammonia maser in Chap. 6.

The form of the Hamiltonian is

Ĥ = −µ̂ · B = −µ0B0σ̂z − µ0B1 cos ωt σ̂x − µ0B1 sinωt σ̂y . (12.28)

We set

|ψ(t)〉 = a+(t)|+〉 + a−(t)|−〉 . (12.29)

The Schrödinger equation yields the differential system

iȧ+ =
ω0

2
a+ +

ω1

2
e−iωt a− , (12.30)

iȧ− =
ω1

2
eiωt a+ − ω0

2
a− , (12.31)

where we have defined µ0B0/h̄ = −ω0/2, µ0B1/h̄ = −ω1/2.
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A change of functions b±(t) = exp(±iωt/2)a±(t) leads to

iḃ+ = −ω − ω0

2
b+ +

ω1

2
b− , (12.32)

iḃ− =
ω1

2
b+ +

ω − ω0

2
b− . (12.33)

The above transformation is the quantum form of a change of reference frame.
It transforms from the laboratory frame to a frame rotating, like the magnetic
field, with an angular velocity ω around the z axis. With this change of
reference frame, the basis of the Hilbert space is time dependent, whereas
the Hamiltonian is time independent:

ˆ̃H =
h̄

2

(
ω0 − ω ω1

ω1 ω − ω0

)
= − h̄

2
(ω − ω0)σ̂z +

h̄

2
ω1σ̂x .

One can check that the equations (12.32), (12.33) imply b̈± + (Ω/2)2 b± = 0,
where

Ω2 = (ω − ω0)2 + ω2
1 . (12.34)

Suppose that the spin is initially in the state |+〉, i. e. b−(0) = 0. One
finds

b−(t) = − iω1

Ω
sin
(

Ωt

2

)
, (12.35)

b+(t) = cos
(

Ωt

2

)
+ i

ω − ω0

Ω
sin
(

Ωt

2

)
. (12.36)

The probability that a measurement of Sz at time t gives the result −h̄/2 is

P+→−(t) = |〈−|ψ(t)〉2 = |a−(t)|2 = |b−(t)|2

=
ω2

1

(ω − ω0)2 + ω2
1

sin2

(
Ωt

2

)
. (12.37)

This formula, which is due to Rabi, exhibits a resonance phenomenon:

• If the frequency ω of the rotating field is noticeably different from the
frequency ω0 we want to measure, more precisely if |ω − ω0| � ω1, the
probability that the spin flips, i. e. that we measure Sz = −h̄/2, is very
small for all t.

• If we choose ω = ω0, then the probability of a spin flip is equal to one at
times tn = (2n + 1)π/ω1 (n integer) even if the amplitude of the rotating
field B1 is very small.

• For |ω−ω0| ∼ ω1, the probability amplitude oscillates with an appreciable
amplitude, smaller than one.

In Fig. 12.2, we have drawn the time oscillation of the probability P+→−
off resonance and at resonance. For a typical magnetic field of 1 T, the res-
onance frequency is ωe/2π ∼ 28 GHz for an electron, and 2.79 ωN/2π ∼
43 MHz for a proton. These frequencies correspond to decameter waves in
the nuclear case and centimeter waves in the electronic case.
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Fig. 12.2. Rabi oscillations: (a) slightly off resonance, ω − ω0 = 3ω1; (b) at reso-
nance, ω = ω0

12.5.3 Rabi’s Experiment

The resonance effect described above was understood by Rabi in 1939. It
provides a very accurate measurement of a magnetic moment. The device
used by Rabi consists of a source, two Stern–Gerlach deflectors with magnetic
fields in opposite directions, and a detector (Fig. 12.3). Between the two
Stern–Gerlach magnets, a zone containing a superposition of a uniform field
B0 and a rotating field B1, as described above, is placed.

Consider first the effect of the two Stern–Gerlach magnets in the absence
of the fields B0 and B1. A particle emitted by the source in the spin state |+〉
undergoes two successive deflections in two opposite directions and reaches
the detector. When the fields B0 and B1 are present, this is not true anymore.
If the frequency ω of the rotating field is close to the Larmor frequency ω0,
the resonance phenomenon will change the component µz of the particle.
When such a spin flip occurs between the two Stern–Gerlach magnets, the
two deflections have the same direction (upwards in the case of Fig. 12.3), and
the particle misses the detector. The signal registered on the detector as a

B0

B1
detector

incident
beam

z
B

z
∂
∂

z
B

z
∂−
∂

Fig. 12.3. Apparatus developed by Rabi for observing the magnetic resonance
effect. In the absence of magnetic resonance, all particles emitted in the state |+〉
reach the detector. If the resonance occurs, the spins of the particles flip between
the two magnets and the signal drops
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Fig. 12.4. Signal (obtained by Rabi)
recorded on the detector of Fig. 12.3 with
a beam of HD molecules, as a function of
the field B0 (B1 = 10−4 T, ω/2π = 4MHz)

function of the frequency of the rotating field B1 undergoes a sharp drop for
ω = ω0 (Fig. 12.4). This leads to a measurement of the ratio |µ|/j = h̄ω0/B0

for a particle of angular momentum j. Actually, this measurement is so precise
that the main source of error comes from the determination of B0. In practice,
as shown in Fig. 12.4, the frequency ω is fixed and one varies the magnitude
of the field B0, or, equivalently, the frequency ω0.

In 1933 Stern, with his apparatus, had measured the proton magnetic
moment with a 10% accuracy. That was a very difficult experiment, since
nuclear magnetic moments are 1000 times smaller than electronic ones. One
must operate with H2 or HD molecules, where the pairing cancels the effects
due to the magnetic moment of the electrons. In 1939, with his resonance
apparatus, Rabi gained a factor of 1000 in the accuracy of the measurement.
The resonance is very selective in frequency, and the presence of other mag-
netic moments causes no problem. Rabi’s result made an impression on the
minds of people. It was greeted as a great achievement. Stern remarked that
Rabi had attained the theoretical accuracy of the measurement, which is fixed
by the uncertainty relations. When Hulthén announced that Rabi had been
awarded the Nobel prize on December 10, 1944 on Stockholm radio, he said
that, “By this method Rabi has literally established radio relations with the
most subtile particles of matter, with the world of the electrons and of the
atomic nucleus.”

The great breakthrough in the application of nuclear magnetic resonance
(N.M.R.) came with the work of Felix Bloch at Stanford and of Edward Pur-
cell at MIT, in 1945. Owing to the development of radio wave technologies
during the Second World War, due to the development of radar, Bloch and
Purcell were able to operate on condensed matter, and not on molecular
beams. Here one uses macroscopic numbers of spins, thereby obtaining much
more intense signals and more manageable experiments. The resonance is ob-
served by measuring, for instance, the absorption of the wave generating the
rotating field B1. The imbalance between the populations of the two states
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|+〉 and |−〉, which is necessary in order for a signal to be obtained, results
from the conditions of thermal equilibrium. In a field B0 = 1 T, the mag-
netic energy for a proton is 2.79 µNB ∼ 10−7 eV and the relative population
difference between the two spin states due to the Boltzmann factor at room
temperature is π+−π− ∼ 4×10−6. This relative difference is small, but quite
sufficient for one to observe a significant signal since one deals with samples
containing a macroscopic number of spins (typically 1023).

12.5.4 Applications of Magnetic Resonance

The applications of magnetic resonance, in domains ranging from solid-state
physics and low temperatures to chemistry, biology and medicine, are numer-
ous. Because of its magnetic effects, spin can play the role of a local probe
inside matter. NMR has transformed chemical analysis and the determina-
tion of the structure of molecules (see Fig. 12.5). It has become an invaluable
tool in molecular biology. Since 1980, NMR has also caused a revolution in
medical diagnosis and physiology. It allows one to measure and visualize, in
three dimensions and with a spatial precision better than a millimeter, the
concentration of water in “soft matter” (muscles, brain, etc.), which, in con-
trast to bones, is difficult to observe with X rays. One can study in this way
the structure and metabolism of living tissues, and one can detect internal
injuries, tumors, etc. The nuclear spin, which was a curiosity to some vision-
ary physicists of the 1940s and 1950s, has become one of the great hopes of
modern medicine.

�

Nuclear
induction
signal

Magnetic field B0

Fig. 12.5. One of the first examples of nuclear magnetic resonance applied to
chemistry: the resonance signal obtained from the protons of the ethanol molecule
CH3CH2OH consists of a three-peak structure. These peaks are associated with the
three protons of the CH3 group, the two protons of the CH2 group and the single
proton of the OH group. The magnetic field B0 was ∼ 0.8T, and the total trace is
7.5µT wide
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One can use NMR to visualize the activity of the brain in real time. It is possible to
localize and register the response of the visual cortex to a stimulation. The following
step, after submitting volunteers to a sequence of such excitations, is to ask them to
think about the signal. The NMR response of the brain is the same as that obtained
with an external stimulation! This may be considered a direct proof that we think,
which is somewhat comforting for the mind.

12.5.5 Rotation of a Spin 1/2 Particle by 2π

It seems obvious and a matter of common geometric sense that a rotation
by 2π of a system around a fixed axis is equivalent to the identity. However,
strictly speaking, this is not true for a spin-1/2 particle.

Let us come back to the calculation of section Sect. 12.5.1 and suppose
that, at time t = 0, the state of the system is | + x〉:

|ψ(t = 0)〉 =
1√
2

(|+〉 + |−〉) .

The mean value of the magnetic moment, given by (12.25), (12.26) and
(12.27), is 〈µ〉 = µ0 ux. Equation (12.24) gives the evolution of this state.
After a time t = 2π/ω0, classically, the system has precessed by an angle 2π
around B. In quantum mechanics one can verify that the expectation value
is back to its initial value 〈µ〉 = µ0 ux. What can we say, however, about
the state vector? We can check that |ψ(t)〉 is still an eigenvector of Ŝx (or
of µ̂x) with an eigenvalue +h̄/2. However, we notice that, quite surprisingly,
the state vector has changed sign:

|ψ(t = 2π/ω0)〉 =
1√
2

(
e−iπ|+〉 + eiπ|−〉) = − 1√

2
(|+〉 + |−〉) = −|ψ(0)〉 .

A rotation by 2π is therefore not equivalent to the identity for a spin-1/2
particle. Only rotations of 4nπ give back the initial state identically. This
property can also be guessed from the dependence eimϕ for orbital angular
momenta: using the same formula for m = 1/2 and ϕ = 2π would give
eiπ = −1.

This peculiarity was understood as soon as spin 1/2 was discovered, in
1926. It remained a controversial point for more than 50 years. Does the
phase of the state vector after a rotation of 2π have a physical meaning?
A positive experimental answer was only obtained in the 1980s in a series
of remarkable experiments.1 The spin-1/2 particles were sent into a two-
channel interferometer. In one of them a magnetic field rotated the spins by
multiples of 2π. The change in sign of the wave function was observed by
means of the displacement of the interference fringes, and the experimental
signal confirmed that a rotation of 4π was needed to recover the fringe pattern
1 A.W. Overhauser, A.R. Collela and S.A. Werner, Phys. Rev. Lett. 33, 1237

(1974); Phys. Rev. Lett. 34, 1472 (1975); Phys. Rev. Lett. 35, 1053 (1975). A.G.
Klein and G.I. Opat, Phys. Rev. Lett. (37), 238 (1976).
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which was measured in the absence of rotation. The fact that a rotation of a
spin-1/2 particle by 2π is not equivalent to the identity, contrary to common
sense, is another manifestation that spin 1/2 is basically quantum mechanical.

This property reflects an important mathematical structure which relates the two
groups SO(3) and SU(2). Let us first see how these two groups appear in this
context. Rotations in Euclidean space R3 form the well-known group SO(3). Each
rotation R of R3 can be parameterized by a unit vector u (the axis of rotation) and
an angle of rotation ϕ (0 ≤ ϕ ≤ π) around this axis; with each rotation R ≡ (u, ϕ),

one can associate a rotation operator M̂(R) of Espin:

M̂(R) = cos(ϕ/2) Î − i sin(ϕ/2) u · σ̂ .

This rotation operator is unitary (M̂M̂† = M̂†M̂ = Î) and of determinant 1, and it

gives the transform |ψ′〉 of a state vector |ψ〉 under a rotation R: |ψ′〉 = M̂(R) |ψ〉.
On can check this property immediately for the result (12.24) in the particular case

u = uz and ϕ = ω0t. The group formed by the matrices M̂(R) which is named
SU(2) in mathematics (i.e. the group of 2 × 2 unitary matrices of determinant 1)
is a representation of the rotation group.

The minus sign found previously arises as a consequence of a general property of
this representation: it is a projective representation, i. e. for two arbitrary rotations

R and R′, M̂(RR′) is not equal, strictly speaking, to M̂(R) M̂(R′), but can differ
from it by a phase factor. In particular, if one chooses R = R′ ≡ (uz, π), one finds

RR′ = IR3 but M̂(R) M̂(R′) = (−iσ̂z) (−iσ̂z) = −Î .

Mathematically, one says that there is a local isomorphism between the Lie algebras
of the two groups SO(3) and SU(2), but that these two groups are not globally
isomorphic. This formalism, which is called spinor theory, was developed in the

early 20th century by the mathematician Élie Cartan.

Further Reading

• For the development of the ideas which led to the concept of spin, see, for
example M. Jammer, The Conceptual Development of Quantum Mechanics,
Chap. 3 (McGraw-Hill, New York, 1956); G. Uhlenbeck, “Fifty years of
spin”, Phys. Today, June 1976, p. 43.

• R.L. Jaffe, “Where does the proton really get its spin?”, Phys. Today,
September 1995, p. 24.

• I.L. Pykett, “Medical applications of NMR”, Sci. Am., May 1982; “Images
of pain in the brain”, Sci. Am., 1991,

• E. Cartan, The Theory of Spinors, Hermann, Paris (1966).
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Exercises

12.1. Products of Pauli matrices. Show that

σ̂j σ̂k = δj,k + iεj,k,� σ̂l , (12.38)

where εj,k,� = 1 or −1 if (j, k, �) is an even or odd permutation, respectively,
of (x, y, z), and εj,k,� = 0 otherwise.

12.2. Algebra with Pauli matrices. Consider the Pauli matrices σ̂, and
two vectors A and B. Show that

(σ̂ · A)(σ̂ · B) = A · B + iσ̂ · (A ∧ B) .

12.3. Spin and orbital angular momentum. Consider a spin-1/2 particle
whose state is |ψ〉 = ψ+(r)|+〉+ψ−(r)|−〉. Let Ŝ be the spin observable and
L̂ the orbital angular momentum. We assume that

ψ+(r) = R(r)
(

Y0,0(θ, ϕ) +
1√
3
Y1,0(θ, ϕ)

)
,

ψ−(r) =
R(r)√

3
[Y1,1(θ, ϕ) − Y1,0(θ, ϕ)] .

a. What is the normalization condition on R(r)?
b. What are the probabilities of finding ±h̄/2 in measurements of Sz or Sx?
c. What are the possible results of a measurement of Lz? Give the corre-

sponding probabilities.

12.4. Geometric origin of the commutation relations of Ĵ . The gen-
eral definition of the angular momentum Ĵ = (Ĵx, Ĵy, Ĵz) of a quantum
system is based on the transformation of the state of this system under a
rotation. More specifically, we assume that in an infinitesimal rotation by an
angle dϕ around the axis u, the state vector of the system |ψ〉 is changed in
accordance with

|ψ〉 −→
(

1 − i
dϕ

h̄
u · Ĵ + . . .

)
|ψ〉 , (12.39)

where we neglect terms of order dϕ2 or higher (see exercise 5.1 of Chap. 5).
We know that in a geometric rotation of dϕ around u in three-dimensional
Euclidean space, a vector V transforms in accordance with

V −→ V + dϕ u × V + . . . .

a. We consider the following four successive rotations:
• rotation around the x axis by an angle dα,
• rotation around the y axis by an angle dβ,
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• rotation around the x axis by an angle −dα,
• rotation around the y axis by an angle −dβ.
We are interested in the resulting geometric transformation to second
order in dα and dβ.
(i) Justify that the terms in dα2 and dβ2 do not contribute.
(ii) Calculate the term in dα dβ.
(iii) Show that the resulting transformation after these four infinitesimal

rotations is a rotation of −dα dβ around the z axis.
b. We apply the previous four successive rotations to a quantum system.

(i) Write the final state of the system in terms of the initial state |ψ〉,
Ĵ and the angles dα and dβ up to second order in these angles.

(ii) Deduce that one is led to [Ĵx, Ĵy] = ih̄Ĵz in order to ensure the
consistency of the definition (12.39).

c. Consider a spin-1/2 system which we rotate around the z axis.
(i) How does the state vector |ψ〉 = α|+〉 + β|−〉 transform under a

rotation of angle dϕ?
(ii) Generalize the result to an arbitrary angle ϕ.
(iii) Relate this to the Larmor precession phenomenon discussed in Sect.

12.5.1.



13. Addition of Angular Momenta,
Fine and Hyperfine Structure
of Atomic Spectra

It is not obviously true that two and two are four,
assuming four means three and one.

Gottfried Wilhelm Leibniz

When atomic spectral lines are observed with sufficient resolution, they ap-
pear in general to have a complex structure, each line being in fact a group of
nearby components. The fine and hyperfine splittings of atomic levels are of
particular importance, both from the fundamental point of view and in terms
of applications. The origin of such structures lies in the magnetic interactions
of the electron inside the atom. In this chapter we shall study some examples
of these interactions and the ensuing effects.

In order to do this, we need a technical tool: the addition of angular mo-
menta in quantum mechanics and the notion of the total angular momentum
of a system. This notion is useful in many physical problems and we shall
give its basic elements in Sect. 13.1. In Sect. 13.2 we shall describe the spin–
orbit interaction of the electron spin magnetic moment with the magnetic
field originating from the orbital motion of the electron around the nucleus.
A well-known example of the resulting splitting is the yellow line (D line) of
sodium. In Sect. 13.3 we shall describe the hyperfine interaction between the
spin magnetic moments of the electron and of the proton in the ground state
of atomic hydrogen. This interaction produces a splitting which is responsible
for the 21 cm line of hydrogen, of considerable interest in astrophysics.

13.1 Addition of Angular Momenta

We now consider the total angular momentum of a complex system. We shall
start with the simple case of two spin-1/2 subsystems and then generalize
the procedure.

13.1.1 The Total-Angular Momentum Operator

In classical mechanics, one defines the total angular momentum of a system
of two (or n) particles as the sum
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Ltot = L1 + L2

of the individual angular momenta of these two (or n) particles.
Consider now, in quantum mechanics, two angular-momentum observ-

ables Ĵ1 and Ĵ2, which, by definition, act in two different Hilbert spaces
E1 and E2. For instance, this may concern a system of two particles: E1 and
E2 are then the spaces L2(R3) of square-integrable functions of r1 and r2,
respectively. A similar situation can also arise for a particle moving in space
(E1 = L2(R3)) which possesses an intrinsic angular momentum (E2 = Espin).

The Hilbert space of the total system is the tensor product

E = E1 ⊗ E2 .

By definition, the total-angular-momentum observable of the system is

Ĵ = Ĵ1 ⊗ Î2 + Î1 ⊗ Ĵ2 ≡ Ĵ1 + Ĵ2 , (13.1)

where Î1 and Î2 are the identity operators in E1 and E2, respectively. This ob-
servable acts in E and is an angular-momentum observable. Indeed, it satisfies
the commutation relations

Ĵ × Ĵ = ih̄Ĵ , (13.2)

since Ĵ1 and Ĵ2 commute. Therefore we know that we can diagonalize Ĵ2

and Ĵz simultaneously. We also know the set of their possible eigenvalues:
h̄2j(j + 1) with 2j integer for Ĵ2, and h̄m with m = −j, . . . , j − 1, j for Ĵz

for a given j.
One can check that the four angular-momentum observables

Ĵ2
1 , Ĵ2

2 , Ĵ2, Ĵz

commute. Moreover, we shall see in Sect. 13.1.4 that this set forms a CSCO
in the sense of Sect. 10.2. Their common eigenbasis is therefore unique. We
write their common eigenvectors as |j1, j2; j, m〉. We have, by definition,

Ĵ2
1 |j1, j2; j, m〉 = j1(j1 + 1)h̄2 |j1, j2; j, m〉 , (13.3)

Ĵ2
2 |j1, j2; j, m〉 = j2(j2 + 1)h̄2 |j1, j2; j, m〉 , (13.4)

Ĵ2|j1, j2; j, m〉 = j(j + 1)h̄2 |j1, j2; j, m〉 , (13.5)
Ĵz|j1, j2; j, m〉 = mh̄ |j1, j2; j, m〉 . (13.6)

As in Chap. 10, we omit the presence of other possible quantum numbers
which would be cumbersome to write and are irrelevant to the present dis-
cussion.

13.1.2 Factorized and Coupled Bases

The Hilbert space E corresponding to the degrees of freedom associated with
the angular momentum is generated by the family of factorized states

{|j1, m1〉 ⊗ |j2, m2〉} ≡ {|j1, m1; j2, m2〉} .
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In this basis, the observables Ĵ2
1 , Ĵ1z, Ĵ

2
2 , Ĵ2z are diagonal. Consider the eigen-

subspace of the two observables Ĵ2
1 and Ĵ2

2 corresponding to given values of
j1 and j2. The dimension of this subspace is (2j1 + 1)(2j2 + 1) and we ask
the following question:

What are, in this subspace, the eigenvectors of Ĵ2 and Ĵz, and the corre-
sponding eigenvalues j(j + 1)h̄2 and mh̄?

In other words, we want to perform in each eigensubspace of Ĵ2
1 and Ĵ2

2

a change of basis to go from the factorized eigenbasis common to {Ĵ2
1 , J1z,

Ĵ2
2 ,Ĵ2z} to the coupled eigenbasis common to {Ĵ2

1 ,Ĵ2
2 ,Ĵ2,Ĵz}. The eigenvalues

of Ĵ2 and Ĵz will be expressed as functions of j1, j2, m1 and m2. Once the
determination of the values of j has been performed, we shall express the
eigenstates |j1, j2; j, m〉 in terms of the states |j1, m1; j2, m2〉:

|j1, j2; j, m〉 =
∑

m1m2

Cj,m
j1,m1;j2,m2

|j1, m1; j2, m2〉 , (13.7)

Cj,m
j1,m1;j2,m2

= 〈j1, m1; j2, m2|j1, j2; j, m〉 . (13.8)

The coefficients Cj,m
j1,m1;j2,m2

of the change of basis (13.7) are called the
Clebsch–Gordan coefficients.

13.1.3 A Simple Case: the Addition of Two Spins of 1/2

The case of two spin-1/2 particles will be of particular interest in the following
(21 cm line of hydrogen, Pauli principle, etc.). We shall first treat this case
in an elementary way, before considering the general problem of the coupling
of two arbitrary angular momenta.

The Hilbert Space of the Problem. Consider a system of two spin-1/2
particles, for instance the electron and the proton in a hydrogen atom or the
two electrons of a helium atom. We denote the particles by 1 and 2. The
Hilbert space of the system is

EH = E1
external ⊗ E1

spin ⊗ E2
external ⊗ E2

spin .

We denote by Es the tensor product of the two spin spaces:

Es = E1
spin ⊗ E2

spin . (13.9)

Es is a four-dimensional space generated by the family {|σ1〉 ⊗ |σ2〉}, σ1 =
±, σ2 = ±, which we write in the simpler form

{|+ ; +〉 , |+ ; −〉 , |− ; +〉 , |− ; −〉} , (13.10)

by setting |σ1〉 ⊗ |σ2〉 ≡ |σ1 ; σ2〉. The total spin operator is

Ŝ = Ŝ1 + Ŝ2 .

The most general state (space + spin) |ψ〉 of this system of two spin-1/2
particles can be written as
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|ψ〉 = ψ++(r1, r2)|+ ; +〉 + ψ+−(r1, r2)|+ ; −〉
+ ψ−+(r1, r2)|− ; +〉 + ψ−−(r1, r2)|− ; −〉 . (13.11)

Matrix Representation. We can use a matrix representation of the spin
states and spin operators for this system. In the basis (13.10), a state is rep-
resented by a four-component vector. The observables Ŝ1 and Ŝ2 (extended
to the tensor product space) can easily be written in the following way, using
the Pauli matrices and a block 2 × 2 notation for the 4 × 4 matrices:

Ŝ1x =
h̄

2

⎛
⎜⎜⎝ 0

... Î
. . . . . . . . .

Î
... 0

⎞
⎟⎟⎠ , Ŝ2x =

h̄

2

⎛
⎜⎜⎝ σ̂x

... 0
. . . . . . . . .

0
... σ̂x

⎞
⎟⎟⎠ ,

Ŝ1y =
h̄

2

⎛
⎜⎜⎝ 0

... −iÎ
. . . . . . . . .

iÎ
... 0

⎞
⎟⎟⎠ , Ŝ2y =

h̄

2

⎛
⎜⎜⎝ σ̂y

... 0
. . . . . . . . .

0
... σ̂y

⎞
⎟⎟⎠ ,

Ŝ1z =
h̄

2

⎛
⎜⎜⎝ Î

... 0
. . . . . . . . .

0
... −Î

⎞
⎟⎟⎠ , Ŝ2z =

h̄

2

⎛
⎜⎜⎝ σ̂z

... 0
. . . . . . . . .

0
... σ̂z

⎞
⎟⎟⎠ ,

where Î stands for the 2 × 2 identity matrix.

Total Spin States. We consider Es and we denote by |S,M〉 the eigenstates
of Ŝ2 and Ŝz with eigenvalues S(S + 1)h̄2 and Mh̄, respectively. Since Ŝz =
Ŝ1z + Ŝ2z, the largest possible value of M is 1/2+1/2 = 1. The corresponding
state is unique; it is the state |+ ; +〉. Similarly, the smallest possible value
of M is −1/2 − 1/2 = −1, and the corresponding eigenstate is |− ; −〉.

Let us calculate the action of the square of the total spin on these two
vectors:

Ŝ2|+ ; +〉 =
(
Ŝ2

1 + Ŝ2
2 + 2Ŝ1 · Ŝ2

)
|+ ; +〉

=
(

3
4
h̄2 +

3
4
h̄2 +

h̄2

2
(σ̂1xσ̂2x + σ̂1yσ̂2y + σ̂1zσ̂2z)

)
|+ ; +〉

= 2h̄2|+ ; +〉 .

Similarly,

Ŝ2|− ; −〉 = 2h̄2|− ; −〉 .

The two states |+ ; +〉 and |− ; −〉 are therefore eigenstates of Ŝ2 with an
eigenvalue of 2h̄2, which corresponds to an angular momentum equal to 1. In
the notation of Sect. 13.1.2, we have, therefore,



13.1 Addition of Angular Momenta 253

|s1 = 1/2, m1 = 1/2; s2 = 1/2, m2 = 1/2〉
= |s1 = 1/2, s2 = 1/2;S = 1, M = 1〉

and:

|s1 = 1/2, m1 = −1/2; s2 = 1/2, m2 = −1/2〉
= |s1 = 1/2, s2 = 1/2;S = 1, M = −1〉 .

Since we have recognized two states |S = 1, M = ±1〉 of angular momentum
1, we now look for the third one |S = 1, M = 0〉. In order to do this, we use
the general relation found in Chap. 10, Ŝ−|j, m〉 ∝ |j, m − 1〉, and we obtain

Ŝ−|S = 1, M = 1〉 =
(
Ŝ1− + Ŝ2−

)
|+ ; +〉 ∝ |− ; +〉 + |+ ; −〉 .

After normalization, we obtain the state

|S = 1, M = 0〉 =
1√
2

(|+ ; −〉 + |− ; +〉) .

One can check that this state is indeed an eigenstate of Ŝ2 and Ŝz, with
eigenvalues 2h̄2 and 0, respectively.

We have identified a three-dimensional subspace in Es corresponding to a
total angular momentum equal to 1. The orthogonal subspace, of dimension
1, is generated by the vector

1√
2

(|+ ; −〉 − |− ; +〉) .

One can readily verify that this vector is an eigenvector of Ŝ2 and of Ŝz with
both eigenvalues equal to zero.

To summarize, the total spin in the particular case j1 = j2 = 1/2 corre-
sponds to

S = 1 or S = 0 ,

and the four corresponding eigenstates, which form a basis of EH, are

|1, M〉 :

⎧⎨
⎩

|1, 1〉 = |+ ; +〉
|1, 0〉 = (|+ ; −〉 + |− ; +〉)/√2
|1, −1〉 = |− ; −〉

, (13.12)

|0, 0〉 : |0, 0〉 = (|+ ; −〉 − |− ; +〉)/
√

2 . (13.13)

In this particular case of two spin-1/2 particles, we have solved the problem
of Sect. 13.1.2 by decomposing the 4 = 2 × 2-dimensional space Es (the
tensor product of the two two-dimensional spaces) into a direct sum of a
one-dimensional space (S = 0) and a three-dimensional space (S = 1), i. e.
2 × 2 = 1 + 3.



254 13. Addition of Angular Momenta

Symmetry Properties. The following symmetry properties will be impor-
tant when we consider identical particles and the Pauli principle.

The three states |1, M〉 are called collectively the triplet state of the two-
spin system. They are symmetric with respect to the interchange of the z
projections of the spins of the two particles, σ1 and σ2. The state |0, 0〉 is called
the singlet state and is antisymmetric with respect to the same exchange. In
mathematical terms, if we define a permutation operator P̂ s

12 in Es by the
relation

P̂ s
12|σ1 ; σ2〉 = |σ2 ; σ1〉 , (13.14)

the triplet and singlet states are eigenvectors of this operator:

P̂ s
12|1, M〉 = |1, M〉 , P̂ s

12|0, 0〉 = −|0, 0〉 . (13.15)

13.1.4 Addition of Two Arbitrary Angular Momenta

We now want to establish the following result:

Consider two angular-momentum observables Ĵ1 and Ĵ2. In the subspace
corresponding to given values of j1 and j2, the possible values for the quantum
number j associated with the total angular momentum Ĵ are

j = |j1 − j2| , |j1 − j2| + 1 , . . . , j1 + j2 − 1 , j1 + j2 .

Construction of the States such that j = j1 +j2. We first remark that
any vector |j1, m1; j2, m2〉 is an eigenvector of Ĵz = Ĵ1z + Ĵ2z with eigenvalue
mh̄, and m = m1 + m2. One therefore deduces the following result:

The vector |j1, j2; j, m〉 corresponding to m = j1 + j2 exists and is unique.

Indeed, the maximum values of m1 and m2 are j1 and j2, and therefore the
maximum value of m is mmax = j1 + j2. We deduce that the maximum
value of j is also jmax = j1 + j2 since the index m can take all the values
m = −j , −j + 1 . . . , j in a given eigensubspace of Ĵ2.

There is only one normalized vector in the Hilbert space which fulfills the
condition m = mmax (up to a phase factor):

|j1, m1 = j1; j2, m2 = j2〉 .

This vector is also an eigenstate of Ĵ2, with eigenvalue j(j + 1)h̄2, and j =
j1 + j2, as can be checked directly using the following expression:

Ĵ2 = Ĵ2
1 + Ĵ2

2 + Ĵ1+Ĵ2− + Ĵ1−Ĵ2+ + 2Ĵ1zĴ2z .

Consequently, we can write

|j = j1 + j2, m = j1 + j2〉 = |m1 = j1;m2 = j2〉 . (13.16)
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Remark. In what follows, we omit the indices j1 and j2 in the left- and right-
hand sides of (13.16); these are implicit in the forms |j, m〉 ≡ |j1, j2; j, m〉 and
|m1;m2〉 ≡ |j1, m1; j2, m2〉.

We now define, as in Chap. 10, the raising and lowering operators as
follows:

Ĵ+ = Ĵ1+ + Ĵ2+ , Ĵ− = Ĵ1− + Ĵ2− .

We have

Ĵ±|j, m〉 ∝ |j, m ± 1〉 ,

Ĵ1±|m1;m2〉 ∝ |m1 ± 1; m2〉 , Ĵ2±|m1;m2〉 ∝ |m1;m2 ± 1〉 ,

where the proportionality coefficients are given in (10.17). Starting with |j =
j1 + j2, m = j1 + j2〉, we can generate a series of states |j = j1 + j2, m

′〉 for
m′ = j1 + j2 − 1, . . . ,−(j1 + j2) by applying repeatedly the operator Ĵ−. For
instance, using the normalization coefficients given in (10.17), we find

|ψa〉 = |j = j1 + j2, m = j1 + j2 − 1〉
∝
√

j1 |m1 = j1 − 1;m2 = j2〉 +
√

j2 |m1 = j1; m2 = j2 − 1〉 .

(13.17)

Eigensubspaces of Ĵz. A graphical representation of the uncoupled basis
states |m1;m2〉 is given in Fig. 13.1. Each dot in the m1, m2 plane represents
a basis state. A fixed m = m1 + m2, corresponding to an eigensubspace
E(m) of Ĵz, is represented by a straight dashed line. The dot in the upper
right corner corresponds to the state (13.16). As we have already noted, the
dimension of this particular eigensubspace E(j1 + j2) is 1. The next dashed
line corresponds to m = j1 + j2 − 1, and the corresponding eigensubspace
E(j1 + j2 − 1) has dimension 2, with the following possible basis:

|m1 = j1 − 1; m2 = j2〉 , |m1 = j1;m2 = j2 − 1〉 . (13.18)

In general the eigenvalue mh̄ of Ĵz has some degeneracy, except for m =
±(j1 + j2).

By construction, each eigensubspace E(m) of Ĵz is invariant under the
action of the Hermitian operators Ĵ+Ĵ− and Ĵ−Ĵ+. Indeed Ĵ+ and Ĵ− globally
increase and decrease, respectively, the value of m1 + m2 by 1. From the
expression

Ĵ2 =
1
2

(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
+
(
Ĵ1z + Ĵ2z

)2

,

it follows that E(m) is also globally invariant under the action of Ĵ2.
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m1

m2

1

-1

1/2 3/2-1/2-3/2

m=5/2 

m=3/2 
m=1/2

m=-1/2 

m=-3/2 

m=-5/2 

Fig. 13.1. Representation of the uncoupled basis states |m1; m2〉. The dashed lines

represent the eigensubspaces E(m) of Ĵz. These subspaces are globally invariant

under the action of Ĵ2. This figure corresponds to j1 = 3/2 and j2 = 1

Construction of all States of the Coupled Basis. The total dimension
of the Hilbert space, is (2j1 + 1)(2j2 + 1). Inside this space we have already
identified the 2j + 1 vectors of the coupled basis with j = j1 + j2. We now
describe the principle by which all remaining states of the coupled basis can
be determined.

Consider the subspace E(j1 + j2 − 1) of Ĵz, a possible basis of which is
given in (13.18). Inside this subspace, we have already identified the vector
|ψa〉 given in (13.17), which is, by construction, an eigenvector of Ĵz and Ĵ2,
with eigenvalues (j1 + j2 − 1)h̄ and (j1 + j2)(j1 + j2 + 1)h̄2. Consider the
vector of E(j1 + j2 − 1) orthogonal to |ψa〉:

|ψb〉 =
√

j2 |m1 = j1 − 1;m2 = j2〉 −
√

j1 |m1 = j1;m2 = j2 − 1〉 .

Since E(j1 +j2−1) is globally invariant under the action of Ĵ2, we can diago-
nalize this operator inside E(j1 + j2 − 1), and the corresponding eigenbasis is
orthogonal. We know that |ψa〉 is an eigenvector of Ĵ2. Therefore |ψb〉, which
is orthogonal to |ψa〉, is also an eigenvector of Ĵ2, i. e.

Ĵ2 |ψb〉 = j(j + 1)h̄2|ψb〉 , (13.19)

and we want to determine the value of j. On one hand we have Ĵz|ψb〉 =
mh̄|ψb〉, with m = j1 + j2 − 1; therefore j ≥ j1 + j2 − 1, since one always has
j ≥ m. On the other hand, we cannot have j = j1 +j2, since this would mean
that there existed two independent vectors (|ψa〉 and |ψb〉) corresponding to
the same values of j and m (i. e. j1 + j2 and j1 + j2 − 1, respectively). This
cannot be true, since (i) there is only one vector corresponding to j = m =
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j1+j2 and (ii) there is a one-to-one correspondence, through the action of Ĵ±,
between states associated with (j, m) and states associated with (j, m ± 1).
Consequently, we must have j = j1 + j2 − 1 in (13.19):

|ψb〉 ∝ |j = j1 + j2 − 1, m = j1 + j2 − 1〉 .

By applying repeatedly the operator Ĵ− to |ψb〉, we generate a new series of
states, which are labeled |j = j1 + j2 − 1, m′〉.

We have now identified all vectors in the two subspaces E(j1 + j2) and
E(j1 + j2 − 1). We can repeat the same operation for the subspace E(j1 +
j2 − 2) (whose dimension is 3, with two vectors already identified), etc., until
all the eigenstates |m1;m2〉 have been used. This occurs when we reach a
quantum number m such that the dimension of E(m) is less than or equal
to the dimension of E(m + 1) (m = −1/2 for the values chosen in Fig. 13.1).
Altogether, we find 2jmin + 1 series of states, where jmin = min(j1, j2). The
possible values for j are therefore

j = j1 + j2 , j = j1 + j2 − 1 , . . . , j = j1 + j2 − 2jmin = |j1 − j2| .
We can check that the numbers of states of the coupled and uncoupled bases
coincide, since

(2j1+1)(2j2+1) = 2(j1+j2) + 1 + 2(j1+j2) − 1 + . . . + 2|j1−j2| + 1 .

Mathematically, we have decomposed the (2j1 + 1) × (2j2 + 1)-dimensional space
(the tensor product of a (2j1 +1)- and a (2j2 +1)-dimensional space) into the direct
sum of spaces of 2(j1 + j2) + 1, 2(j1 + j2) − 1, . . . , etc. dimensions.

Using this general procedure, one can determine the coefficients which
relate the vectors of the uncoupled basis to those of the coupled basis (the
Clebsch–Gordan coefficients, defined in (13.7)). The general expression for a
Clebsch–Gordan coefficient is quite involved.1 Here we shall give two exam-
ples which are useful in numerous problems. Consider first the case where
j2 = 1/2. One finds in this case∣∣∣∣j = j1 +

1
2
, m

〉
= cos θm

∣∣∣∣m +
1
2
;−1

2

〉
− sin θm

∣∣∣∣m − 1
2
;
1
2

〉
,∣∣∣∣j = j1 − 1

2
, m

〉
= sin θm

∣∣∣∣m +
1
2
;−1

2

〉
+ cos θm

∣∣∣∣m − 1
2
;
1
2

〉
,

where

cos θm =

√
j1 − m + 1/2

2j1 + 1
, sin θm = (−1)2(j1+m)

√
j1 + m + 1/2

2j1 + 1
.

As a particular example, for j1 = 1/2, we recover the triplet and singlet states
introduced in Sect. 13.1.3.
1 See, e. g., exercise 13.4 and A.R. Edmonds, Angular Momentum in Quantum

Mechanics, Princeton University Press, Princeton (1950).
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Another case of practical interest is the addition of two angular momenta
equal to 1: j1 = 1 and j2 = 1. The possible values of j are 2, 1, 0, and the
corresponding vectors are, for j = 2 (with ε = ±1),

|j = 2, m = 2ε〉 = |ε; ε〉 ,√
2 |j = 2, m = ε〉 = |ε; 0〉 + |0; ε〉 ,√
6 |j = 2, m = 0〉 = |+1;−1〉 + 2 |0; 0〉 + |−1; +1〉 .

For j = 1, one finds
√

2 |j = 1, m = ε〉 = |ε; 0〉 − |0; ε〉 ,√
2 |j = 1, m = 0〉 = |+1;−1〉 − |−1; +1〉 ,

and, finally, the j = 0 state is given by
√

3 |j = 0, m = 0〉 = |+1;−1〉 − |0; 0〉 + |−1; +1〉 .

13.1.5 One-Electron Atoms, Spectroscopic Notations

In Chap. 11, we neglected spin effects in the hydrogen atom. If one takes
spin into account, the classification of atomic states requires four quantum
numbers: |n, �, m, σ〉, σ = ±. The states σ = ± are degenerate in energy in the
Coulomb approximation. The spin–orbit interaction, which we shall discuss
later on, lifts this degeneracy, and we shall see that the energy eigenstates are
the eigenstates |n, �, j,mj〉 of the total angular momentum J = L+S. Their
energies do not depend on the quantum number mj giving the projection on
z of J , since the Hamiltonian is rotation invariant. In the case of an electron
of orbital angular momentum � and spin 1/2, the values of j are therefore

j = � ± 1/2 ,

except for � = 0 in which case j = 1/2.
One can classify the states according to the above quantum numbers. In

the spectroscopic notation, one adds, on the right of the symbol (n�) described
in Chap. 11, the value of j. For instance,

2p3/2 ⇔ n = 2 , � = 1 , j =
3
2

= � +
1
2

;

3d3/2 ⇔ n = 3 , � = 2 , j =
3
2

= � − 1
2

.

13.2 Fine Structure of Monovalent Atoms

The resonance lines of monovalent atoms are split into two components. One
example is the yellow line of sodium, corresponding to the transition 3p →
3s. This line is split into two lines, called D1 and D2, of wavelengths λ1 �
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589.6 nm and λ2 � 589.0 nm, respectively. The same effect is observed in the
hydrogen atom: the Lyman α line, corresponding to the transition 2p → 1s,
is also split into two components.

This splitting is due to the spin–orbit interaction: the first excited level,
which has an orbital angular momentum � = 1 (p state), is split into two
sublevels because of this interaction. One level corresponds to j = 3/2, and
the other to j = 1/2. The splitting is weak compared with the main effect,
i. e. the energy difference between the initial levels (1s and 2p for hydrogen).
The 2p3/2–2p1/2 energy difference for hydrogen is roughly 4.5 × 10−5 eV,
corresponding to a frequency of 10 GHz; the 3p3/2–3p1/2 splitting in sodium
is ∼ 2 × 10−3 eV (500 GHz).

The physical origin of the spin–orbit coupling can be understood from
a classical argument. Suppose we model the hydrogen atom as an electron
orbiting with a velocity v around a proton. The proton is much heavier than
the electron and is assumed to be at rest in the laboratory frame. It creates
an electrostatic field acting on the electron,

E =
q

4πε0r3
r . (13.20)

In the rest frame of the electron, the proton moves at velocity −v and this
gives rise, in addition to the electric field (13.20), to a magnetic field

B = −v × E/c2 =
q

4πε0mec2r3
L . (13.21)

Here L = mer × v stands for the angular momentum of the electron in the
laboratory frame. In order to derive (13.21), we have assumed that |v| � c
and have considered only the dominant terms in v/c. The spin magnetic mo-
ment of the electron µ̂s = −(q/me)Ŝ interacts with this magnetic field, and
this gives rise to a magnetic energy, which can be written in the laboratory
frame as

Ws.o. =
1
2

e2

m2
ec

2

1
r3

L · S . (13.22)

The associated quantum Hamiltonian is obtained by replacing r, L and S
with the corresponding operators. We can rewrite this expression using the
natural atomic units, i. e. the Bohr radius a1 and the ionization energy EI,
together with the fine structure constant α:

Ŵs.o. = α2EI

(a1

r̂

)3 L̂ · Ŝ
h̄2 . (13.23)

Remarks

a. The spin–orbit coupling is a relativistic effect. We notice in (13.23) that,
since a1/r and L̂ ·Ŝ/h̄2 are of the order of 1, the spin–orbit coupling with
of order α2 � (1/137)2 compared with the main effect. This is indeed of
order v2/c2, since v/c ∼ α.
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b. For the s states (� = 0), the term (13.23) vanishes. However, one can
show that there exists a relativistic shift of the levels, called the Darwin
term, whose value is

WD =
π2e2h̄2

2m2
ec

2
|ψ(0)|2 .

This term vanishes for � �= 0, since ψ(0) = 0 in that case. This term only
affects s waves.

All the above terms can be obtained directly and exactly in the framework of
the relativistic Dirac equation. When one solves this equation for the Coulomb
potential, one finds that the states 2s1/2 and 2p1/2 of hydrogen are degenerate, and
that the state 2p3/2 lies 10GHz above these two states. Experimentally, a splitting
between the two states 2s1/2 and 2p1/2, called the Lamb shift after its discoverer, is
observed. This splitting, of the order of 1GHz, is due to the coupling of the electron
to the quantized electromagnetic field. The calculation of the Lamb shift was the
first spectacular success of quantum electrodynamics.

The spin–orbit splitting is small, and we can calculate it using pertur-
bation theory (Chap. 9). For instance, for the level n = 2 of hydrogen, we
have to diagonalize the restriction of Ws.o. (13.23) to the subspace generated
by the six states |n = 2, � = 1, m, σ〉. This coupling Ŵs.o. involves the scalar
product L̂ · Ŝ, which is diagonal in the basis |n, �, j, mj〉 of the eigenstates of
the total angular momentum. We have the equality

L̂ · Ŝ =
1
2

(
(L̂ + Ŝ)2 − L̂2 − Ŝ2

)
=

1
2

(
Ĵ2 − L̂2 − Ŝ2

)
,

with eigenvalues [j(j + 1)− �(� + 1)− 3/4]h̄2/2. Using (13.23), one therefore
obtains the splitting between the j = � + 1/2 and j = � − 1/2 states (for
instance 2p3/2 and 2p1/2) as follows:

∆E(n, �) ≡ E(j = � + 1/2) − E(j = � − 1/2) = (� + 1/2)An,� ,

where

An,� = α2EI

∫
|ψn,�,m(r)|2

(a1

r

)3

d3r .

One can check easily that this quantity is independent of m and that its
numerical value coincides with the experimental result for the 2p1/2–2p3/2

splitting of hydrogen. For other atoms, one may observe more complicated
effects. For instance, in sodium, there is an inversion of the spin–orbit ef-
fect: E(3d3/2) > E(3d5/2). This comes from an effect of the core of internal
electrons.

The origin of this doubling of the p levels, like the existence of an even number
of levels in the “anomalous” Zeeman effect and of even numbers is the Mendeleev
classification (an even number of electrons in a closed shell), is due to the elec-
tron spin, entangled with the Pauli principle in the latter case. However, in the
early days of quantum mechanics, it was nearly impossible to guess that all these
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manifestations of the number 2 had a common origin. The discovery of spin and of
the Pauli principle was truly one of the most difficult steps of quantum mechan-
ics. It was so difficult that it took some time for the physics community to really
appreciate the significance and importance of these notions. Pauli was awarded
the Nobel prize as late as 1945, whereas his contemporaries Heisenberg, Dirac and
Schrödinger had received the prize in the early 1930s. Note that a direct calculation
of the spin–orbit coupling, with the usual formulations of special relativity, gives
a value twice as large as (13.22), and therefore a fine-structure splitting twice too
large. This is why Pauli, at the end of 1925, did not believe in the idea of spin,
and called it a “Irrleher” in a letter to Niels Bohr. However, in March 1926, L.H.
Thomas remarked that the rest frame of the electron is not an inertial frame, and
that a correct calculation introduces a factor of 1/2 in the formula (the Thomas
precession2). This convinced Pauli of the validity of the spin-1/2 concept.

Finally, one can understand the origin of the name fine structure constant
for α, which governs the order of magnitude of fine structure effects. The name
was introduced in 1920 by Sommerfeld, who had calculated the fine structure
of hydrogen in the framework of the old quantum theory, by considering the
relativistic effects due to the eccentricity of the orbits. Sommerfeld’s calcula-
tion gave the correct result, but this was simply another awkward coincidence
due to the particular symmetries of the hydrogen problem and to the ensuing
degeneracies with respect to �.

13.3 Hyperfine Structure; the 21 cm Line of Hydrogen

An even smaller effect (a splitting of the order of 6×10−6 eV) has very impor-
tant practical applications. This effect comes from the magnetic interaction
between the spin magnetic moments of the electron and the proton:

µ̂e = γeŜe , γe = −q/me ; (13.24)
µ̂p = γpŜp , γp � 2.79 q/mp . (13.25)

This interaction is called the spin–spin, or hyperfine, interaction. We shall
consider only its effect on the ground state of hydrogen, n = 1, � = 0.

13.3.1 Interaction Energy

We neglect here effects due to the internal structure of the proton and treat
it as a point-like particle. The calculation of the magnetic field created at a
point r by a magnetic dipole µp located at the origin is a well-known problem
in magnetostatics.3 The result can be written

B(r) = − µ0

4πr3

(
µp − 3(µp · r) r

r2

)
+

2µ0

3
µp δ(r) . (13.26)

2 See, e. g., J.D. Jackson, Classical Electrodynamics, Sect. 11.8, Wiley, New York
(1975).

3 See, e. g., J.D. Jackson, Classical Electrodynamics, Sect. 5.6, Wiley, New York
(1975).
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The interaction Hamiltonian between the magnetic moment µe of the
electron and this magnetic field reads

Ŵ = −µ̂e · B̂ .

For r �= 0, Ŵ reduces to the usual dipole–dipole interaction:

r �= 0 , Ŵdip =
µ0

4πr̂3

(
µ̂e · µ̂p − 3(µ̂e · r̂)(µ̂p · r̂)

r̂2

)
.

This interaction will not contribute to our calculation, because of the follow-
ing mathematical property. For any function g(r), r = |r|, that is regular at
r = 0, an angular integration yields∫

g(r) Wdip(r) d3r = 0 . (13.27)

At r = 0, the field (13.26) is singular because of the contribution of the term
proportional to δ(r). This leads to a contact interaction

Ŵcont = −2µ0

3
µ̂e · µ̂p δ(r̂) .

The origin of the singularity at r = 0 is the point-like nature of the proton that
we have assumed in our analysis. This implies that all field lines converge to the
same point. A calculation taking into account the finite size of the proton and
the corresponding modification to the field leads to essentially the same result,
because the size of the proton is very small compared with the size of the probability
distribution of the electron in the 1s state. Note that this point-like model is strictly
valid for positronium, which is an atom consisting of an electron and a positron,
both being point-like objects.

Here we have taken into account the magnetic interaction between the
proton and electron spins. There is also a contribution from the magnetic
interaction between the proton spin and the magnetic moment associated
with the current loop formed by the electron, which is proportional to its
orbital angular momentum L. In the following we are interested in the prop-
erties of the ground state, for which � = 0, and this additional term does not
contribute.

13.3.2 Perturbation Theory

The observable Ŵ acts on space and spin variables. We consider the orbital
ground state of the hydrogen atom, which, owing to the spin variables, is a
four-state system. An arbitrary state of this four-dimensional subspace can
be written as

|ψ〉 = ψ100(r) |Σ〉 , (13.28)
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where ψ100(r) is the ground-state wave function found in Chap. 11: ψ100(r) =
e−r/a1/

√
πa3

1. First-order perturbation theory requires that we diagonalize
the restriction of Ŵ to this subspace.

We shall proceed in two steps. First we treat the space variables, which
results in an operator acting only on spin variables, and then we diagonalize
this latter operator. Consider

Ĥ1 =
∫

ψ∗
100(r) Ŵ ψ100(r) d3r .

The probability density for the ground-state level |ψ100(r)|2 is isotropic. As
a consequence of (13.27), Ŵdip does not contribute to Ĥ1. The contact term
is readily evaluated as

Ĥ1 = −2µ0

3
µ̂e · µ̂p |ψ100(0)|2 . (13.29)

Ĥ1 is an operator which acts only on spin states. It can be cast into the form

Ĥ1 =
A

h̄2 Ŝe · Ŝp , (13.30)

where the constant A can be inferred from the values of γe, γp and ψ100(0):

A = −2
3

µ0

4π

4
a3
1

γeγph̄2 =
16
3

× 2.79
me

mp
α2EI .

One obtains

A � 5.87 × 10−6 eV , ν =
A

h
� 1417 MHz , λ =

c

ν
� 21 cm .

(13.31)

13.3.3 Diagonalization of Ĥ1

The diagonalization of Ĥ1 in the Hilbert space of spin states is simple. Con-
sidering the total spin Ŝ = Ŝe + Ŝp, one has

Ŝe · Ŝp =
1
2

(
Ŝ2 − Ŝ2

e − Ŝ2
p

)
,

which is diagonal in the basis of the eigenstates |S, M〉 of the total spin, with
the following eigenvalues:

h̄2

2
[S(S + 1) − 3/2] , where S = 0 or S = 1 .

The ground state E0 = −EI of the hydrogen atom is therefore split by the
hyperfine interaction into two sublevels corresponding to the triplet |1, M〉
and singlet |0, 0〉 states:
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E+ = E0 + A/4 ,
E− = E0 − 3A/4 ,

triplet state |1, M〉 ;
singlet state |0, 0〉 .

(13.32)

The difference between these two energies is equal to A, i. e. 5.87 × 10−6 eV;
it corresponds to the characteristic line of hydrogen at a wavelength λ ∼ 21
cm.

Remarks

(1) In its ground state, the hydrogen atom constitutes a four-level system
with two energy levels. By a method whose principle is similar to that dis-
cussed in Chap. 6, it is possible (but technically more complicated) to devise
a hydrogen maser.4 Among other things, this allows one to measure the con-
stant A, or, equivalently, the frequency ν = A/h with an impressive accuracy:

ν = 14︸︷︷︸
A

20︸︷︷︸
B

40︸︷︷︸
C

5751︸︷︷︸
D

. 7684︸︷︷︸
E

±0.0017 Hz .

In this result, we have labeled several groups of digits. The first two digits (A)
were obtained by Fermi in 1930; they correspond to the contact term considered
above. The following two digits (B) can be calculated using the Dirac equation
and the experimental value for the anomalous magnetic moment of the electron
(a deviation of the order of 10−3). Other corrections can account for the next
two digits (C): relativistic vacuum polarization corrections, the finite size of the
nucleus, polarization of the nucleus, etc. The set (D, E) is out of range for theorists
at present.

Such an accuracy has, in particular, provided a means to test the pre-
dictions of general relativity.5 A hydrogen maser was sent in a rocket to an
altitude of 10 000 km, and the variation of its frequency as the gravitational
field and the velocity varied was measured. Despite numerous difficulties, it
was possible to check the predictions of relativity with an accuracy of 7×10−5;
the result is still one of the most accurate verifications of the theory (more
precisely, of the equivalence principle).

(2) The hyperfine splitting of alkali atoms has the same origin as that of hy-
drogen, although it is more difficult to calculate theoretically. The frequencies
listed in Table 13.1 are observed. These splittings have been used in masers
and atomic clocks. One of the many applications is the definition of the time
standard on the basis of the hyperfine effect in the cesium-133 isotope in its
ground state (∆E ∼ 3.8 × 10−5 eV). One second is defined as being equal
to 9 192 631 770 periods of the corresponding line. The relative accuracy of
the practical realization of this definition is 10−15. Such impressive preci-
sion has been made possible by the use of laser-cooled atoms, whose residual
temperature is of the order of only 1µK.
4 H.M. Goldenberg, D. Kleppner and N.F. Ramsey, Phys. Rev. Lett. 8, 361 (1960).
5 R. Vessot et al., Phys. Rev. Lett. 45, 2081 (1980).
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Table 13.1. Frequencies associated with hyperfine splittings of alkali atoms

Atom Frequency State
(GHz)

7Li 0.83 2s
23Na 1.77 3s
39K 0.46 4s
85Rb 3.04 5s
87Rb 6.83 5s
133Cs 9.19 6s

13.3.4 The Effect of an External Magnetic Field

If we place the hydrogen atom in an external magnetic field, the magnetic
Hamiltonian becomes

ĤM =
A

h̄2 Ŝe · Ŝp − µ̂e · B0 − µ̂p · B0 . (13.33)

Here we do not take into account space variables, and we assume that the
Zeeman splitting is small enough that first-order perturbation theory is valid.

The nuclear magneton µN is much smaller than the Bohr magneton
µB. Therefore, we can neglect the last term on the right-hand side of
(13.33). In this approximation, the diagonalization of HM is simple. We set
η = qh̄B0/(2me) and tan 2θ = 2η/A, and we obtain the following splitting:

(A/4) + η → |1, 1〉 ,

(A/4) − η → |1,−1〉 ,

−(A/4) +
√

A2/4 + η2 → cos θ |1, 0〉 + sin θ |0, 0〉 ,

−(A/4) −
√

A2/4 + η2 → − sin θ |1, 0〉 + cos θ |0, 0〉 .

The levels are represented in Fig. 13.2.
One observes, as for NH3, a competition between the hyperfine coupling

and the presence of the field. For weak fields, the states |1, 0〉 and |0, 0〉 are
unaffected, whereas the energies of the states |1, 1〉 and |1,−1〉 vary linearly
with B. There is a splitting of the 21 cm line into three components. For
strong fields, the eigenstates are the factorized states |σe ; σp〉. The transition
region (η ∼ A) is around B ∼ 0.1 T.

13.3.5 The 21 cm Line in Astrophysics

In galaxies, visible matter exists in two main forms. The first, which is directly
visible, is condensed matter: stars at various stages of their evolution and
planets, which are now being discovered in solar systems other than ours.
However, there also exists a diffuse interstellar medium, composed mainly of
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Fig. 13.2. Zeeman splitting of the 21 cm line

atomic hydrogen, whose total mass is quite important (from 10 to 50% of the
total visible galactic mass).

The temperature of these interstellar clouds is typically 100 K. Since
the corresponding thermal energy kT ∼ 10−2 eV is much smaller than EI,
hydrogen atoms cannot be appreciably excited by thermal collisions from the
1s ground state to the other states of the Lyman series. However, transitions
between the two hyperfine states S = 1 and S = 0 can occur easily. The
emission of 21 cm radiation corresponds to a spontaneous transition from
the S = 1 state to the S = 0 state. This emission is very weak, because
the lifetime of the triplet S = 1 state is extremely long: τ ∼ 3.5 × 1014 s ∼
107 years.6 Nevertheless, the amounts of atomic hydrogen in the interstellar
medium are so large that an appreciable signal is emitted.

The observation of this line of hydrogen has deeply modified our under-
standing of the interstellar medium. Measurements of the intensity of the line
give the mass distribution of the amount of hydrogen. The Doppler shift al-
lows us to measure the velocities of the hydrogen clouds. The splitting of the
line and its polarization provide a measurement of the magnetic field inside
the interstellar medium. By analyzing the structure of our galaxy, the Milky
Way (which is difficult to observe because we are in its plane), it has been
possible to show that it is a spiral galaxy, of radius 50 000 light-years, and
that we are 30 000 light-years from the center (see Fig. 13.3). One can also
measure the density of the interstellar medium (0.3 atoms cm−3 on average),
its temperature (20 K to 100 K), its structure (roughly one interstellar cloud

6 This very long lifetime is due to a combination of two facts: the energy difference
is very small, and the emission proceeds through a magnetic dipole transition
(while atomic resonance lines correspond to electric dipole transitions).
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Fig. 13.3. Spiral structure of the Milky Way, reconstructed from radio-astronom-
ical observations at a wavelength of 21 cm (By courtesy of Mr. Frederic Zantonio)

every 1000 light-years along a line of sight) and its extension outside the
plane of the galaxy (roughly 1000 light-years).

Finally, this 21 cm line, which comes from the ground state of the simplest
and most abundant element in the universe, provides a coding procedure for
communicating with possible extraterrestrial civilizations, who, obviously, see
the same universe, with the same dominant element, whose ground state has
the same hyperfine structure. On the few space probes which have now left
the solar system, NASA scientists have put a plate which carries a message
from our civilization and which uses this key.

The plate on the Pioneer 10 space probe, represented in Fig. 13.4, is
an example. At the top, two atoms with parallel and antiparallel spins are
represented, meaning that the hyperfine transition of wavelength 21 cm takes
place between these two states. The transition is symbolized by a line between
the two atoms, which is used as a length unit (21 cm) and a time unit (the
inverse of the frequency). The length unit may be checked by comparing the
sketch of the Pioneer probe, which would be recovered with the plate. Two
human beings are represented on the same scale.

The spider-like diagram on the left gives the directions and frequencies of
the main known pulsars that can be observed from the earth at present. A
given configuration of this kind happens only at one time and at one location
in our galaxy. Knowing the history of pulsars, it is therefore possible to find
the few stars which were roughly in the right place at the right time. The
extraterrestrial beings (whom, by definition, we know nothing about, except
that if they exist they are intelligent) will therefore be able to localize both
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Fig. 13.4. Plate on the Pioneer 10 space probe, aimed at some possible extrater-
restrial civilization. The message on this plate uses the 21 cm line of hydrogen as a
“Rosetta stone” in order to tell where and when the probe was launched

in space and time the people who sent the message (perhaps thousands of
years before). Fifty percent of the 300 scientists who had tested this message
understood practically all of its content. Unanimously, however, they agreed
that the sketches of the two human beings were totally incomprehensible.
Therefore, this was suppressed on the later space probes, Pioneer 11 and the
two Voyager spacecrafts.

Further Reading

• A.R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton
University Press, Princeton (1950).

• For the fine structure of the hydrogen atom, one can read T.W. Hänsch,
A.L. Schawlow and G.W. Series, “The spectrum of the hydrogen atom”,
Sci. Am., March 1979.

• For developments in atomic clocks, see, for example, W. Itano and N.
Ramsey, “Accurate measurement of time”, Sci. Am., July 1993, p. 46.
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Exercises

13.1. Permutation operator. Show that the permutation operator defined
in (13.14) can be written as P̂ s

12 = (1 + σ̂1 · σ̂2)/2 .

13.2. The singlet state. Consider two spin-1/2 systems, and the eigenbasis
{|±〉u ⊗|±〉u} of the two operators S1 ·u and S2 ·u, u being any unit vector
of R3. Show that the singlet state can be written in that basis as

1√
2

(|+〉u ⊗ |−〉u − |−〉u ⊗ |+〉u) .

13.3. Spin and magnetic moment of the deuteron. We denote by Ĵ
the total-angular-momentum observable of the electron cloud of an atom, and
denote by Î the angular momentum of the nucleus. The respective magnetic
moment observables are µ̂J = gJµBĴ/h̄ and µ̂I = gIµNÎ/h̄, where gJ and
gI are dimensionless factors. The magnetic-interaction Hamiltonian of the
electron cloud with the nucleus is of the form Ŵ = aµ̂J · µ̂I, where a is a
constant which depends on the electron distribution around the nucleus.
a. Suppose that the state of the nucleus (energy EI, square of the angular

momentum I(I + 1)h̄2) and the state of the electron cloud (energy EJ ,
square of the angular momentum J(J + 1)h̄2) are both fixed. What are
the possible values K(K +1)h̄2 of the total angular momentum K̂ of the
atom?

b. Express Ŵ in terms of Î
2
, Ĵ

2
and K̂

2
. Express the hyperfine energy levels

of the atom in terms of I, J and K.
c. Calculate the splitting between two consecutive hyperfine levels.
d. When one applies a uniform weak magnetic field B to a deuterium atom,

it is observed that the two hyperfine levels (EK and EK′) of the ground
state are split as a function of B, as shown in Fig. 13.5. Given that the
electron is in its orbital ground state � = 0, what is the value of the
deuteron spin?

e. Assuming that the proton and neutron inside the deuteron have zero
orbital angular momentum, what is their spin state?

f. It can be shown that a = −8µ0/12πa3
1, where a1 is the Bohr radius and

ε0µ0c
2 = 1. Given that ge = 2 and gI = 0.86, to what frequency must a

radio telescope be tuned in order to detect deuterium in the interstellar
medium?

Fig. 13.5. Zeeman splitting of the ground state of
deuterium
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13.4. Determination of the Clebsch–Gordan coefficients.

a. Show that a Clebsch–Gordan coefficient Cj,m
j1,m1;j2,m2

is nonzero only if
m1 + m2 = m.

b. Using Ĵ+ = Ĵ1+ + Ĵ2+, prove the following recursion relation:√
j1(j1 + 1) − m1(m1 − 1) Cj,m

j1,m1−1;j2,m2

+
√

j2(j2 + 1) − m2(m2 − 1) Cj,m
j1,m1;j2,m2−1

=
√

j(j + 1) − m(m + 1) Cj,m+1
j1,m1;j2,m2

. (13.34)

Deduce from this a relation between Cj,j
j1,m1−1;j2,m2

and Cj,j
j1,m1;j2,m2−1.

c. We impose the requirement that Cj,j
j1,j1;j2,j−j2

is real and positive. Show
that the coefficients Cj,j

j1,m1;j2,m2
are defined unambiguously.

d. Prove the following recursion relation:√
j1(j1 + 1) − m1(m1 + 1) Cj,m

j1,m1+1;j2,m2

+
√

j2(j2 + 1) − m2(m2 + 1) Cj,m
j1,m1;j2,m2+1

=
√

j(j + 1) − m(m − 1) Cj,m−1
j1,m1;j2,m2

. (13.35)

Deduce a method to calculate any given Clebsch–Gordan coefficient.

13.5. Scalar operators. An operator Ô is said to be scalar if it commutes
with the three components of the angular momentum Ĵi, i = x, y, z. Consider
the (2j + 1) × (2j′ + 1) matrix elements

〈α, j, m|Ô|β, j′, m′〉 , m = −j, . . . , j , m′ = −j′, . . . , j′ ,

where α and β represent the set of quantum numbers which are necessary,
in addition to the angular momentum quantum numbers j, m and j′, m′, in
order to specify the state of the system. We want to show that all these
matrix elements vanish if j �= j′ or m �= m′, and that the remaining matrix
elements, i. e. those for which j = j′ and m = m′, are equal to each other.

a. Using [Ĵz, Ô] = 0, show that 〈α, j, m|Ô|β, j′, m′〉 can be nonzero only if
m = m′. We set Om = 〈α, j, m|Ô|β, j′, m〉.

b. Using [Ĵ+, Ô] = 0, show that√
j(j + 1) − m(m + 1)Om =

√
j′(j′ + 1) − m(m + 1)Om+1 .

Show also that√
j(j + 1) − m(m + 1)Om+1 =

√
j′(j′ + 1) − m(m + 1)Om .

c. Deduce from these results that Om vanishes if j �= j′, and that all these
terms are equal if j = j′.
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Examples: Ô = r̂2, p̂2, L̂2, . . . , where r̂, p̂, L̂ are the position, momentum and
orbital-angular-momentum operators of a point-like particle.

13.6. Vector operators and the Wigner–Eckart theorem. A triplet of
operators (V̂x, V̂y, V̂z) is called a vector operator if the following commutation
relations with the total-angular-momentum operator Ĵ are satisfied:

[Ĵj , V̂k] = ih̄εj,k,� V̂� , (13.36)

where εj,k,� = 1 or −1 if (j, k, �) is an even or odd permutation, respectively,
of (x, y, z), and 0 otherwise.

a. Show that the position r̂, momentum p̂ and orbital-angular-momentum
L̂ operators of a point-like particle are vector operators.

b. We set

V̂+1 =
−1√

2
(V̂x + iV̂y) , V̂0 = V̂z , V̂−1 =

1√
2
(V̂x − iV̂y) .

Show that the commutation relations (13.36) can also be written

[Ĵz, V̂q] = h̄qV̂q , (13.37)[
Ĵ±, V̂q

]
= h̄
√

2 − q(q ± 1) V̂q±1 . (13.38)

c. As in the previous exercise, we want to characterize the 3 × (2j + 1) ×
(2j′ + 1) matrix elements

〈α, j, m|V̂q|β, j′, m′〉 , m = −j, . . . , j , q = −1, 0, 1 ,

m′ = −j′, . . . , j′ .

(i) Using (13.37), show that the matrix elements can only be nonzero if
m = m′ + q.

(ii) Using (13.38), show that these matrix elements satisfy recursion re-
lations whose structure is identical to (13.34) and (13.35).

(iii) Deduce that for |j−j′| ≤ 1, the matrix elements under consideration
are proportional to the Clebsch–Gordan coefficients, i. e.

〈α, j, m|V̂q|β, j′, m′〉 ∝ Cj,m
j′,m′;1,q , (13.39)

where the proportionality coefficient for a given operator V̂ depends
only on α, β, j and j′.

(iv) Show that these matrix elements vanish if |j − j′| > 1.

This theorem, which proves the proportionality of all vector operators for a pair of
subspaces characterized by (α, j) and (β, j′), is called the Wigner–Eckart theorem.

It explains, in particular, the hypothesis µ̂ = γĴ that we made in Sect. 10.4, relating
the magnetic moment and the angular momentum of a quantum system. It also
allows to find in a simple way the selection rules, which tell us whether a given
coupling (electric dipole, magnetic dipole, etc.) can induce a transition between two
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levels. The multiplicative factor in (13.39) is usually written 〈α, j||V ||β, j′〉 / (2j+1),
i. e.

〈α, j, m|V̂q|β, j′, m′〉 =
〈α, j||V ||β, j′〉

2j + 1
Cj,m

j′,m′;1,q .

The quantity 〈α, j||V ||β, j′〉 is called the reduced matrix element of V̂ between the
subspaces (α, j) and (β, j′).



14. Entangled States,
EPR Paradox and Bell’s Inequality

Written in collaboration with Philippe Grangier1

The way of paradoxes is the way of truth.
To test Reality we must see it on the tight-rope.

When the Verities become acrobats, we can judge them.

Oscar Wilde, The Picture of Dorian Gray

As soon as a quantum system has more than one degree of freedom, the
corresponding Hilbert space E has a tensor structure, E = Ea⊗Eb⊗. . . , where
each of the Ei is associated with one of the degrees of freedom. Consider for
instance a spin-1/2 particle; the Hilbert space is the product of the space
Eexternal = L2(R3), in which we describe the orbital motion of the particle,
and of the space Espin of dimension 2, in which we describe its spin state. This
tensor structure of the Hilbert space generates specific quantum mechanical
properties of systems, such that the various degrees of freedom are correlated
or entangled.

Einstein, Podolsky and Rosen were the first to point out, in a celebrated
paper,2 the subtle and paradoxical character of quantum entanglement. They
used this notion to demonstrate the conflict between quantum mechanics
and a realistic, local theory of the physical world. In the last 10 to 15 years,
this quantum property has been used in very clever and original setups.
For instance, arrangements have been devised to perform the coding and
treatment of information, with the aim of realizing quantum cryptography.
Similar ideas have led to the concept of a quantum computer.

Consider a physical system with two degrees of freedom A and B, whose
states are described in a space E = EA ⊗ EB . Some state vectors have a very
simple factorized form:

|Ψ〉 = |α〉 ⊗ |β〉 . (14.1)

If the system is prepared in such a state, each subsystem is in a well-defined
state |α〉 for A, and |β〉 for B. However, an arbitrary state of E cannot be
1 Philippe Grangier (CNRS), Institut d’Optique, bâtiment 503, B.P. 147, 91403

Orsay Cedex, France, e-mail: philippe.grangier@iota.u-psud.fr
2 A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935).
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factorized. It consists of a (possibly infinite) sum of factorized states. Such a
state is called an entangled state. Consider, for instance, the state

|Ψ〉 =
1√
2

(|α1〉 ⊗ |β1〉 + |α2〉 ⊗ |β2〉) . (14.2)

In this state there are strong correlations between the degrees of freedom
of A and B. If we measure separately the states of each of these degrees of
freedom, we can find with probability 1/2 that A is in the state |α1〉 and B
is in the state |β1〉, or, also with probability 1/2, that A is in the state |α2〉
and B is in the state |β2〉. However, we can never find that A is in the state
|α1〉 and B is in the state |β2〉, or that A is in the state |α2〉 and B in the
state |β1〉.

The aim of this chapter is to study the consequences of such correlations.
We shall consider the EPR argument, and we shall show how Bell was able
to put the notion of a realistic theory, which Einstein had in mind, into a
quantitative form. Bell proved that the predictions for observable correla-
tions which can be calculated within this class of theories are constrained by
a specific inequality, which can be violated by quantum mechanics. We shall
describe experiments showing that this Bell inequality is indeed violated un-
der some specific experimental conditions. Next we shall describe quantum
cryptography, which allows one to transmit a message and make sure that
it has not been intercepted. Finally, in Sect. 14.3, we shall discuss the quan-
tum computer. Up to now, this has been mainly a theoretical concept, whose
practical design is only in its first stages. Such a device, which makes use of
a generalization of the states (14.2), can in principle perform certain types of
calculations with algorithms much more efficient than those used by conven-
tional computers. This is at present the subject of very strong experimental
and theoretical activity.

14.1 The EPR Paradox and Bell’s Inequality

We now examine the celebrated argument of Einstein, Podolsky and Rosen,
and the remarkable analysis done by Bell in 1964.

14.1.1 “God Does not Play Dice”

In their article published in 1935, Einstein, Podolsky and Rosen (EPR)
showed an amazing characteristic of quantum mechanics which proved, in the
opinions of the authors, that this theory could not constitute the ultimate
description of the physical world. The EPR argument relies on the funda-
mental indeterminism of quantum mechanics. Let us be precise about what
we mean by indeterminism in this context. Consider for instance a spin-1/2



14.1 The EPR Paradox and Bell’s Inequality 275

particle prepared in the state3

|ψ〉 =
1√
2

(|+z〉 + |−z〉) . (14.3)

If we measure the component Sz of the particle’s spin along z, we know that
there is a probability 1/2 of finding +h̄/2 and a probability 1/2 of finding
−h̄/2. The result of a measurement is not certain, although we know perfectly
well (in the quantum sense) the initial state of the system.

At first sight, this kind of indeterminism resembles the classical situation
of the toss of a coin. However such an analogy does not stand up to a more
advanced analysis. In a classical toss, we know that a sufficiently precise
knowledge of the initial state (position, velocity, the state of the surface on
which the coin falls, etc.) can in principle determine the result of the toss.
The fact that we attribute a probability 1/2 to each possible outcome is a
convenient and simple way to say we do not want, in practice, to worry about
all that information. On the contrary, in the quantum case, if the initial spin
state of the particle is (14.3), we cannot find any further information which
would allow us to predict in advance the result ±h̄/2 of the measurement of
Sz.

Quantum indeterminism is in complete opposition to the principles of
classical theories. This provoked many debates and criticisms, such as the
famous phrase of Einstein, “God does not play dice”. What Einstein was
hoping for was a super-theory, which would reproduce the predictions of
quantum mechanics (no one would think of denying the practical successes
of the theory), but which would be deterministic. Can such a super-theory
exist? In fact, it cannot be ruled out by experiments if one considers only
one-particle systems. However, if one considers entangled states involving
two or more particles, such as those considered by Einstein, Podolsky and
Rosen, it is possible to put constraints on the predictions of any possible
super-theory. Such constraints, which were discovered by John Bell, are in
some circumstances in contradiction to the predictions of quantum mechanics.
This has provided the possibility of experimental tests, whose results have
all clearly confirmed the validity of quantum mechanics. The deterministic,
local4 super-theory that Einstein dreamed of cannot exist.

14.1.2 The EPR Argument

We present the EPR argument in the form given by David Bohm in 1952.
This presentation is more convenient to explain and to treat mathematically
3 The state |+z〉 is identical to the state that we denoted by |+〉 in Chap. 12. Here,

we mention explicitly the quantization axis, in order to avoid any ambiguity.
4 In the present context, “locality” means that an action at a point in space cannot

immediately have a detectable effect at some other point in space at a distance
r. One must wait for a time of at least r/c in order for such an effect to be
observable.
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ba
Alice

ua ub

Bob

Fig. 14.1. Gedankenexperiment corresponding to the EPR argument. Two spin-
1/2 particles a and b are prepared in the singlet state. Alice measures the component
of the spin of particle a along an axis ua. Bob measures the component of the spin
of particle b along an axis ub

than the initial version, although it is basically equivalent from the conceptual
point of view. Suppose we prepare two spin-1/2 particles a and b in the singlet
spin state

|Ψs〉 =
1√
2

(|a : +z ; b : −z〉 − |a : −z ; b : +z〉) . (14.4)

Particle a is detected by Alice, who measures the component of its spin along
an axis of unit vector ua (Fig. 14.1); similarly, particle b is detected by Bob,
who measures its spin component along an axis of unit vector ub.

The results of the measurements of Alice and Bob are strongly correlated.
Let us assume first that Alice and Bob choose the same axis z to do their
measurements: ua = ub = ez. The argument presented in the introduction
applies: with a probability 1/2, Alice will find +h̄/2 and Bob will find −h̄/2,
and with the same probability 1/2, Alice will find −h̄/2 and Bob will find
+h̄/2. Alice and Bob can never obtain the same result. There is a perfect
correlation, or rather anticorrelation, of the two results.

This is easily generalized to all situations where Alice and Bob measure
along the same axis. Suppose, for example, that they choose ua = ub = ex.
The singlet state can be rewritten in the eigenbasis of the observables Ŝax

and Ŝbx. Using

|±z〉 =
1√
2

(|+x〉 ± |−x〉) (14.5)

for both particles a and b, we obtain

|Ψs〉 =
1√
2

(|a : +x ; b : −x〉 − |a : −x ; b : +x〉) . (14.6)

The form of |Ψs〉 in the basis corresponding to the x axis is the same as the
form obtained using the z axis. This generalizes to any axis.5 As a conse-
quence, the perfect anticorrelation of the results of Alice and Bob remains
5 The invariance of the structure of |Ψs〉 under a change of the quantization axis

is a consequence of the rotation invariance of the singlet state, which has zero
angular momentum (Sect. 13.1.3).
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true whatever spin component they choose, provided it is the same for both
of them, i. e. ua = ub.

Such correlations appear frequently in daily life. Suppose we have two
cards, one red and the other one yellow. We place each of them in a sealed
envelope, we mix the envelopes in a closed box, and we give one of them to
Alice and the other one to Bob. When Alice opens her envelope, she sees the
color of her card (red with a probability 1/2, yellow with a probability 1/2).
There is obviously a perfect anticorrelation with Bob’s subsequent result: if
Alice’s card is red, Bob’s card is yellow, and vice versa. There is no paradox
in these anticorrelations: the fact that Alice looks at the color of her card
does not affect the color of Bob’s card. This is the central point in a key
statement of the EPR article:

If, without in any way disturbing a system, we can predict with cer-
tainty (i. e. with a probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality correspond-
ing to this physical quantity.

This argument means that there is an element of physical reality associ-
ated with the color of Bob’s card, since, without perturbing it in any manner,
one can determine the color of this card by simply asking Alice what her re-
sult is. Similarly, there is an element of physical reality associated with the
component Sbz, since, without perturbing particle b in any manner, one can
determine the value of Sbz that one would measure in an experiment: it is
sufficient to ask Alice to measure the component Saz and to tell Bob the
result. If Alice finds +h̄/2, Bob is sure to find −h̄/2 by measuring Sbz, and
vice versa.

Actually, the EPR argument goes one step further. Since we can transpose
the argument about the z axis to the x axis, there must also exist an element
of physical reality associated with the component Sbx of particle b. If one
prepares a two-particle system in the singlet state, Bob can determine the
component Sbx without “touching” particle b. It is sufficient to ask Alice to
measure the component Sax and to tell him her result. Although the term
“element of physical reality” is quite vague at this point, we feel that we are
reaching dangerous ground. The observables Ŝbx and Ŝbz do not commute.
How can they possess simultaneously this element of physical reality?

In fact, all of the above argument is contrary to the basic principles of
quantum mechanics. When the particles a and b are in an entangled state,
such as the singlet state, it is risky to claim that one doesn’t “act” on particle
b when performing a measurement on a. Taken separately, particles a and b
are not in well-defined states; only the global system a+b is in a well-defined
quantum mechanical state. It is only for factorized states, of the type (14.1),
that the EPR argument can be applied safely. However, in that case, there is
no paradox: a measurement on a gives no information about a measurement
which might be performed on b later on.
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At this stage, we can take either of the following attitudes. We can stick to
the quantum description, which has this paradoxical nonlocal character: the
two particles a and b, as far as they may be from one another (for example
a on earth, b on the moon), do not have individual realities when their spin
state is an entangled state. It is only after Alice (on earth) has measured Saz

that the quantity Sbz (for the particle on the moon) acquires a well-defined
value.6 Alternatively, we can adopt the point of view of Einstein, and hope
that some day someone will find a more “complete” theory than quantum
mechanics. In that theory, the notion of locality would have the same meaning
as it has in classical physics, and so would the notion of reality.

14.1.3 Bell’s Inequality

In 1964, John Bell, an Irish physicist working at CERN, made a decisive
theoretical breakthrough. This allowed scientists to carry this debate between
two radically antagonistic conceptions of the physical world into the realm
of experiment. Bell’s formulation is the following: if the super-theory that
Einstein was hoping for exists, it will involve, for any pair (a, b) of the EPR
problem described above, a parameter λ which determines completely the
results of the measurements of Alice and Bob. For the moment, we know
nothing about the parameter λ, which is absent in any orthodox quantum
description.

We denote by Λ the manifold in which the parameter λ evolves. In the
super-theory framework, there must exist a function A(λ, ua) = ±h̄/2 for
Alice and a function B(λ, ub) = ±h̄/2 for Bob which give the results of
their measurements. These results therefore depend on the value of λ: for
instance, if λ pertains to some subset Λ+(ua), then A(λ, ua) = h̄/2; if λ is in
the complementary subset Λ−Λ+(ua), then A(λ, ua) = −h̄/2. Locality plays
a crucial role in the above assumptions: we have assumed that the function
A depends on the value of λ and on the direction of analysis ua chosen by
Alice, but not on the direction of analysis ub chosen by Bob.

The parameter λ of the super-theory varies from one pair (a, b) to another,
whereas, in quantum mechanics, all the pairs are prepared in the same state
|Ψs〉 and there is nothing that allows one to identify any difference between
them. This parameter is therefore not accessible to a physicist who uses
quantum mechanics: it is a hidden variable. The beauty of Bell’s argument
was that it proved that there exist strong constraints on theories with local
hidden variables, and that these constraints can be established without any
assumptions other than the ones given above. Notice that all correlations
encountered in daily life can be described in terms of hidden-variable theories.
6 One can check that this formulation does not allow the instantaneous transmis-

sion of information. In order to see the correlations with Alice’s result, Bob must
ask Alice what her result is and the corresponding information travels (at most)
at the velocity of light (see Appendix Appendix D for more details).
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In the previous example of cards of different colors, the hidden variable comes
from the shuffling of the cards. If careful observers memorize the motion of
the cards in this shuffling, they can predict with probability 1 the result of
Alice (red or yellow) and that of Bob (yellow or red).

In order to obtain Bell’s result, we introduce the correlation function
E(ua, ub). This function is equal to the expectation value of the product
of the results of Alice and Bob, for given directions of analysis ua and ub,
divided by h̄2/4 in order to obtain a dimensionless quantity. Whatever the
underlying theory, we note the following property:

|E(ua, ub)| ≤ 1 . (14.7)

Indeed, for each pair, the product of Alice’s and Bob’s results is ±h̄2/4.
For a hidden-variable theory, the function E(ua,ub) can be written as

E(ua, ub) =
4
h̄2

∫
P(λ)A(λ, ua) B(λ, ub) dλ , (14.8)

where the function P(λ) describes the (unknown) distribution law of the
variable λ. The only constraints on P are

for any λ , P(λ) ≥ 0 and
∫

P(λ) dλ = 1 . (14.9)

Here we assume that the function P(λ) does not depend on the directions of
analysis ua and ub. Indeed, these directions can be chosen by Alice and by
Bob after the pair with the hidden parameter λ has been prepared.

In the framework of quantum mechanics, one can show that the value of
the function E(ua,ub) is

E(ua, ub) =
4
h̄2 〈Ψs|Ŝa.ua ⊗ Ŝb.ub|Ψs〉 = −ua.ub . (14.10)

Bell’s theorem can be stated in the following way:

1. For a local hidden-variable theory, the quantity

S = E(ua,ub) + E(ua,u
′
b) + E(u′

a,u
′
b) − E(u′

a, ub) (14.11)

always satisfies the inequality

|S| ≤ 2 . (14.12)

2. This inequality can be violated by the predictions of quantum mechanics.

We first prove the inequality satisfied by hidden variable theories. We
introduce the quantity

S(λ) = A(λ, ua) B(λ, ub) + A(λ, ua) B(λ, u′
b)

+ A(λ, u′
a) B(λ, u′

b) − A(λ, u′
a)B(λ, ub) ,
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Fig. 14.2. A choice of the directions of the measurements of
Alice and Bob which leads to a violation of Bell’s inequality

which enters into the definition of S as follows:

S =
4
h̄2

∫
P(λ) S(λ) dλ .

This quantity S(λ) can be rewritten as

S(λ) = A(λ, ua) [B(λ, ub) + B(λ, u′
b)]

+ A(λ, u′
a) [B(λ, u′

b) − B(λ, ub)] , (14.13)

which is always equal to ±h̄2/2. Indeed, the quantities B(λ, ub) and B(λ, u′
b)

can only take the two values ±h̄/2. Therefore they are either equal or oppo-
site. In the first case, the second line of (14.13) vanishes, and the first line is
equal to ±h̄2/2. In the second case, the first line of (14.13) vanishes, and the
second line is ±h̄2/2. We then multiply S(λ) by P(λ) and integrate over λ
in order to obtain the inequality we are looking for.

Concerning the second point of Bell’s theorem, it suffices to find an ex-
ample for which the inequality (14.12) is explicitly violated. Consider the
vectors ua, u′

a, ub, and u′
b represented in Fig. 14.2, where

ub.ua = ua.u
′
b = u′

b.u′
a = −ub.u′

a =
1√
2

. (14.14)

Using (14.10), we find

S = −2
√

2 , (14.15)

which obviously violates the inequality (14.12).
After this remarkable step forward due to Bell, which transformed a philo-

sophical discussion into an experimental problem, experimentalists had to
find the answer. Is quantum mechanics always right, even for a choice of
angles such as in Fig. 14.2, which would eliminate any realistic, local super-
theory, or, on the contrary, are there experimental situations where quantum
mechanics can be falsified, which would allow for a more complete theory, as
Einstein advocated?
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Fig. 14.3. Left: levels of atomic calcium used to produce photon pairs with cor-
related polarizations. Right: the photons a and b are first selected by frequency:
Fa transmits photons a and stops photons b, and vice versa for Fb. They are then
detected by the photomultipliers PMa+, PMa−, PMb+ and PMb−. The polarizing
cubes are analogs of Stern–Gerlach devices. They transmit photons with the po-
larization |↑〉 towards the detectors PMa+, PMb+, and they deflect photons with
polarization |→〉 towards the detectors PMa−, PMb−. Since the photons are emitted
nearly isotropically, only a small fraction (∼ 10−5) of the emitted pairs is actually
used

14.1.4 Experimental Tests

The first experimental attempts to find a violation of Bell’s inequality started
at the beginning of the 1970s. These experiments were performed on photon
pairs rather than on spin-1/2 particles, because it is experimentally simpler
to produce a two-photon entangled state of the type (14.2).

The previous argument can be transposed with no difficulty to photon
pairs. The spin states |+z〉 and |−z〉 are replaced by the polarization states
of the photon |↑〉 and |→〉, corresponding to vertical and horizontal polar-
izations. The states |+x〉 and |−x〉, which are symmetric and antisymmetric
combinations, respectively, of |± : z〉, are replaced by photon states linearly
polarized at ±45 degrees from the vertical direction:

|↗〉 =
1√
2

(|↑〉 + |→〉) , |↖〉 =
1√
2

(−|↑〉 + |→〉) . (14.16)

The first experimental tests, performed between 1970 and 1975 in the
USA and in Italy, led to contradictory results concerning the violation of
Bell’s inequality. The experiments of Fry and Thomson in Texas in 1976 and,
particularly those of Aspect and his group in Orsay between 1980 and 1982 led
to the first undeniable violation of Bell’s inequality in a situation close to the
gedankenexperiment presented above.7 The experiments of Aspect used pairs
of photons emitted in an atomic cascade of calcium atoms (Fig. 14.3). These
calcium atoms are prepared by lasers in an excited state e1. This excited
state has a lifetime of 15 ns, and decays to an excited state e2 by emitting
a photon a, of wavelength λa = 551 nm. This latter level e2 has a lifetime
7 A. Aspect, P. Grangier and G. Roger, Phys. Rev. Lett. 49, 91 (1982); A. Aspect,

J. Dalibard and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).
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of 5 ns, and itself decays to the ground state f by emitting a second photon
b, of wavelength λb = 422 nm. The initial level e1 and the final level f have
zero angular momentum, whereas the intermediate level e2 is has an angular
momentum of 1. Under these conditions, one can show that the polarization
state of the emitted photon pair is

|Ψp〉 =
1√
2

(|a :↑ ; b :↑〉 + |a :→ ; b :→〉) . (14.17)

This entangled state leads to the same type of correlations as does the singlet
spin state considered above. The transposition of Bell’s argument shows that
some quantity S′, involving correlation functions between the polarizations of
detected photons, must satisfy |S′| ≤ 2 for any local hidden-variable theory.
The Orsay result, S′ = 2.697 ± 0.015, violates this inequality, while it is
in perfect agreement with the quantum mechanical prediction S′ = 2.70.
Therefore the universal, realistic, local super-theory which was supposed to
replace quantum mechanics, as Einstein believed, cannot exist, at least for
this system. Physicists must learn to live with the genuine indeterminism of
quantum mechanics.

14.2 Quantum Cryptography

The aim of cryptography is to transmit a message from an sender (Alice)
to a receiver (Bob) and to minimize the risk that a spy might intercept
and decipher the message. In order to do that, classical cryptography uses
sophisticated methods which cannot be “broken” in a reasonable amount of
time, with the present capacities of computers. Quantum cryptography is
based on a somewhat different principle. It allows Alice and Bob to make
sure no spy has intercepted the message before it has actually been sent!

14.2.1 The Communication Between Alice and Bob

A message can always be coded in binary language, i. e. by a succession of
numbers 0 and 1. Each number, 0 or 1, represents an elementary piece of
information, or bit. In order to transmit her message, we assume that Alice
sends Bob a beam of spin-1/2 particles in a well-controlled sequence, and
that Bob detects these particles one after the other in a Stern–Gerlach type
of apparatus. Each particle carries a bit, coded through the spin state of the
particle.

Suppose first that Alice sends each particle in the state |+ z〉 or |− z〉. By
assumption, |+ z〉 represents the value 1 and |− z〉 the value 0. Bob orients his
Stern–Gerlach apparatus along the z axis also, he measures the spin states
of the particles which arrive and he reconstructs Alice’s message. Such a
procedure has no quantum feature and is simple to spy upon. The spy just
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sits between Alice and Bob and places his own Stern–Gerlach apparatus in
the z direction. He measures the spin state of each particle and reemits it
towards Bob in the same spin state. He therefore reads the message and
neither Alice nor Bob can detect his presence.

The situation changes radically if Alice chooses at random, for each of
the particles she is sending, one of the four states |+ z〉, |− z〉, |+x〉 or |−x〉,
without telling anyone which axis she has chosen (x or z) for a given particle.
Suppose Alice sends Bob a series of particles without trying, for the moment,
to give it any intelligible form. There are 16 particles in the examples shown
on Tables 14.1 and 14.2, but in practice one would work with much larger
numbers. It is only at the end of the procedure, as we shall see, that Alice
will decide which particles should be taken into account in order to construct
the message she wants to transmit.

What can Bob do in this situation? He can orient the axis of his Stern–
Gerlach apparatus in the direction x or z arbitrarily. On average, for half
of the particles, his choice is the same as Alice’s, in which case the bit he
detects is significant. Indeed, if Alice sends a particle in the state |+x〉 and
if Bob chooses the x axis, he measures + with probability 1. For the other
half of the particles, Alice and Bob choose different axes and Bob’s results
are useless: if Alice sends |+x〉 and if Bob chooses the z axis, he will detect
+ with probability 1/2 and − with probability 1/2.

In order to make sure that no spy has intercepted the transmission, Bob
announces openly the set of axes he has chosen, x or z, for all events. He
also announces the results he has obtained, i. e. + or −, for a fraction of the
particles. For instance, in the case of the 16 particles shown in Tables 14.1
and 14.2, Bob announces publicly his 16 choices of axes, and his first 8 re-
sults. Alice examines the results, and she can detect whether or not a spy
has operated. Her argument is the following. The spy does not know the
directions x or z she has chosen for each particle. Suppose that the spy ori-

Table 14.1. Detection of a possible spy: among Bob’s results obtained along the
same axis (particles 1, 3, 4 and 7), Alice looks for a possible difference which would
mean a spy had operated. No anomaly appears here. In practice, in order to have
a sufficient confidence level, one must use numbers of events much larger than 8

Number of particle 1 2 3 4 5 6 7 8

Axis chosen by Alice z z x z z x x z
(kept secret)
State chosen by Alice + − + − − − + −
(kept secret)
Axis chosen by Bob z x x z x z x x
(broadcast openly)
State measured by Bob + − + − − + + +
(broadcast openly)
Useful measurement? Yes No Yes Yes No No Yes No
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Table 14.2. After making sure that there is no spy, Alice chooses, out of the useful
measurements, those which allow her to communicate the message. For instance,
to communicate the message “1, 1”, i. e. “+, +”, she openly asks Bob to look at
the results of his measurements 11 and 15

Number of particle 9 10 11 12 13 14 15 16

Axis chosen by Alice x z x z z x z z
(kept secret)

State chosen by Alice + − + + − − + −
(kept secret)

Axis chosen by Bob z z x x z z z x
(broadcast openly)

State measured by Bob − − + + − + + +
(kept secret)

Useful measurement ? No Yes Yes No Yes No Yes No

ents his Stern–Gerlach apparatus in a random way along x or z, and that he
reemits a particle whose spin state is the same as what he has measured: if
he chooses the x axis and obtains the result +, he sends to Bob a particle
in the |+x〉 state. This operation is detectable, because it induces errors in
Bob’s observations.

Consider for instance the case where Alice has sent a particle in the state
|+ z〉, and Bob has also oriented his detector along the z axis, but where
the spy has oriented his own Stern–Gerlach apparatus along the x axis. The
spy will measure + with a probability 1/2 and − with a probability 1/2.
According to his result, he reemits to Bob a particle in the state |+x〉 or
|−x〉. In both cases, since Bob’s detector is oriented along z, Bob will measure
+ with a probability 1/2 and − with a probability 1/2. If the spy had not
been present, Bob would have found + with probability 1.

Therefore, out of all the results announced by Bob, Alice looks at those
where her own choice of axes is the same as Bob’s (Table 14.1). If no spy is
active, Bob’s results must be identical to hers. If a spy is present, there must
be differences in 25% of the cases. Therefore, if Bob announces publicly 1000
of his results, on average 500 will be useful for Alice (same axes), and the
spy will have induced an error in 125 of them on average. The probability
that a spy is effectively present but remains undetected by such a procedure
is (3/4)500 ∼ 3 × 10−63, which is completely negligible.

Once Alice has made sure that no spy has intercepted the communication,
she tells Bob openly which measurements he must read in order to reconstruct
the message she wants to send him. She simply chooses them out of the
sequence of bits for which Bob and she have made the same choice of axes,
and for which Bob did not announce his result openly (see Table 14.2).
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14.2.2 The Quantum Noncloning Theorem

In the previous paragraph, we have assumed that the spy chooses at random
the axis of his detector for each particle, and that he sends to Bob a particle
in the state corresponding to his measurement. One may wonder whether this
is his best strategy to remain unseen. In particular, if the spy could clone each
incident particle sent by Alice into two particles in the same state, it would
be possible to send one of them to Bob and to measure the other one. The
spy would then become undetectable!

Fortunately for Alice and Bob, this cloning of an unknown state is impos-
sible in quantum mechanics.8 One cannot generate in a reliable way one or
more copies of a quantum state unless some features of this state are known
in advance. In order to prove this result, let us denote by |α1〉 an initial
quantum state which we want to copy. The system on which the copy will be
“printed” is initially in a known state, which we denote by |φ〉 (the equivalent
of a blank sheet of paper in a copying machine). The evolution of the total
system original + copy during the cloning operation must therefore be

cloning: |original:α1〉 ⊗ |copy:φ〉 −→ |original:α1〉 ⊗ |copy:α1〉 . (14.18)

The evolution is governed by some Hamiltonian, which we need not specify,
but which cannot depend on |α1〉, since this state is unknown by assumption.
For another state |α2〉 of the original, orthogonal to |α1〉, we must also have

cloning: |original:α2〉 ⊗ |copy:φ〉 −→ |original:α2〉 ⊗ |copy:α2〉 . (14.19)

The impossibility of cloning is then obvious if we consider the initial state

|α3〉 =
1√
2

(|α1〉 + |α2〉) . (14.20)

If the cloning were successful for this state, we would find

cloning: |original:α3〉 ⊗ |copy:φ〉 −→ |original:α3〉 ⊗ |copy:α3〉 . (14.21)

However, the linearity of the Schrödinger equation imposes, by linear super-
position of (14.18) and (14.19), the result

|original:α3〉 ⊗ |copy:φ〉
−→ 1√

2
(|original:α1〉 ⊗ |copy:α1〉 + |original:α2〉 ⊗ |copy:α2〉) .

This final state is an entangled state. It is therefore different from the desired
state (14.21).

An inspection of this proof allows us to understand the way in which
quantum mechanics can contribute to cryptography. If we limit ourselves to
8 W.K. Wooters and W.H. Zurek, Nature 299, 802 (1982).
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a two-state transmission, where |α1〉 = |+ z〉 and |α2〉 = |− z〉, then the spy
can remain invisible as we have explained in the previous section. The two
operations (14.18) and (14.19) are possible; we simply need to measure the
spin state of the incident particle along the z axis and to reemit one or more
particles in the same state. It is the fact that we can use simultaneously the
states |α1〉, |α2〉 and linear combinations of these states |α3,4〉 = |± : x〉 which
makes quantum cryptography original and forbids any reliable duplication of
a message intercepted by a spy.

14.2.3 Present Experimental Setups

As for experimental tests of Bell’s inequality, current physical setups use
photons rather than spin-1/2 particles. Various methods can be used to code
information with photons. We shall consider only coding by means of po-
larization, which is the method effectively used in practice. Alice uses four
states which define two nonorthogonal bases, each of which can code the bits
0 and 1, for instance in the form

|↑〉 : 1 ; |→〉 : 0 ; |↗〉 : 1 ; |↖〉 : 0 . (14.22)

In the present quantum cryptography devices, the challenge is to obtain suf-
ficiently large distances of transmission. Distances of the order of 10 km are
currently being reached, by using optical telecommunication techniques, in
particular photons in optical fibers.

An important point is the light source. The noncloning theorem, which is
crucial for the security of the procedure, applies only to individual photons. In
contrast, the light pulses normally used in telecommunications contain very
large numbers of photons, typically more than 106. If one uses such pulses
with polarization coding, the noncloning theorem no longer applies. Indeed,
it is sufficient for the spy to remove a small part of the light in each pulse
and to let the remaining part propagate to Bob. The spy can measure in this
way the polarization of the photons of the pulse without modifying the signal
noticeably.

In order to guarantee the security of the procedure, each pulse must con-
tain a single photon. This is a difficult condition to satisfy in practice, and
one uses the following alternative as a compromise. Alice strongly attenuates
the pulses so that the probability p of finding one photon in any one pulse
is much smaller than one. The probability of finding two photons will be
p2 � p, which means that there will be very few pulses with two (or more)
photons. Obviously, most of the pulses will contain no photons, which is a
serious drawback of the method since Alice must code the information re-
dundantly. In practice, a value of p between 0.01 and 0.1 is considered to be
an acceptable compromise.

Once this basic question is solved, the essential part of the system uses
optical telecommunication technologies. The source is a strongly attenuated
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pulsed laser, and the coding by means of polarization is performed directly
in the optical fiber using integrated modulators. The attenuated pulses are
detected with avalanche photodiodes, which transform a single photon into a
macroscopic electrical signal by means of an electron multiplication process.
In order to identify unambiguously the photons emitted by Alice and de-
tected by Bob, electric pulses synchronized with the laser pulses are sent to
Bob by conventional techniques, and they play the role of a clock. Finally, a
computerized treatment of the data, involving a large number of pulses, real-
izes the various stages of the procedure described above, in particular those
related to testing for the absence of a spy on the line.

At present, most systems which have been built are more demonstration
prototypes than operational systems. Several relevant parameters have been
tested, such as the transmission distance, the transmission rate and the error
rate. Actually, developing these systems has for the moment a prospective
character, since conventional (nonquantum) cryptographic systems are con-
sidered to be very reliable by civilian and military users. This confidence was
shaken a little in 1994, as we shall see in the next section.

14.3 The Quantum Computer

We briefly sketch a fascinating concept which is currently under very active
investigation.

14.3.1 The Quantum Bits, or “Q-Bits”

In the previous section, we have seen that one can code a bit of information
(0 or 1) with two orthogonal states of a spin-1/2 particle or with a polar-
ized photon. At this stage of a quantum mechanics course, a question arises
naturally: in terms of information theory, what is the significance of a linear
superposition of these two states? In order to account for this possibility, the
notion of a “q-bit” is introduced, which, contrary to a classical bit, allows
the existence of such intermediate states. The notion of a q-bit in itself is not
very rich; however, it has interesting implications if one considers a quantum
computer based on the manipulation of a large number of q-bits.

We use the very simplified definition of a computer as a system which
is capable of performing operations on sets of N bits called “registers”. The
content of a register is a binary word, which represents a number memorized
by the computer. For N = 3, we therefore have 8 possible words:

(+,+,+) (+,+,−) (+,−,+) (+,−,−)
(−,+,+) (−,+,−) (−,−,+) (−,−,−)

Consider now a q-register, made up of a set of N q-bits. The 2N possible
states of the corresponding classical register will define a basis of the space
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of states of the q-register, which can itself be in a linear superposition of all
the basis states, of the form

|Ψ〉 =
∑

σ1=±

∑
σ2=±

∑
σ3=±

Cσ1,σ2,σ3 |σ1, σ2, σ3〉 for N = 3 .

Suppose that the computer calculates, i. e. it performs an operation on the
state of the q-register. Since this operation is performed on a linear superpo-
sition of states, we can consider that it is done “in parallel” on 2N classical
numbers. This notion of quantum parallelism is the basis of the gain in effi-
ciency of the computer. The gain may be exponential if the 2N calculations
corresponding to N q-bits are indeed performed simultaneously.

Naturally, many questions arise. From the fundamental point of view,
what kind of calculations can one perform and what kind of algorithms can
one use with such a device? In practice, how can one construct it?

14.3.2 The Algorithm of Peter Shor

In the previous section, we referred to nonquantum cryptography. The cor-
responding systems are often called algorithmic protocols. One of these pro-
tocols is based on the fact that some arithmetic operations are very easy
to perform in one direction, but very difficult in the reverse direction. For
instance, it is simple to calculate the product of two numbers, but it takes
much more time to factorize a number into its prime divisors. If one considers
the product P of two large prime numbers, one must perform approximately√

P divisions in order to identify the factors. The computing time increases
exponentially with the number of digits (or of bits) of P : the factorization op-
eration becomes impossible in practice for numbers of more than 300 digits,
while the product operation leading to P can still be performed easily with
a small computer. This “nonreversibility” is the origin of a cryptographic
method due to Rivest, Shamir and Adleman (RSA), which is commonly used
(in credit cards, electronic transactions, etc.), and which is considered to be
extremely reliable.

This is why the 1994 paper of Peter Shor9 created a shock in the commu-
nity. Shor showed that a quantum computer could factorize the product of
two prime numbers with a number of operations that was reduced exponen-
tially as compared with known algorithms running on classical computers!
The turmoil has now calmed down and the present situation is the following.
The algorithm proposed by Shor is correct in principle, and it does pro-
vide the expected gain in efficiency. However, the practical development of a
quantum computer seems outside the range of present technology, although
no physical law forbids it.
9 P.W. Shor, Proceeding of the 35th Annual Symposium on Foundations of Com-

puter Science, Santa Fe, NM, USA, Nov. 20–22, 1994, IEEE Computer Society
Press, Los Alamitos, CA, USA, pp. 124–134.
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14.3.3 Principle of a Quantum Computer

We shall not attempt to explain Shor’s algorithm here; we shall only give
some intuitive ideas about how a quantum computer could perform a calcu-
lation. The basic principle is that the calculation must reduce to the evolution
of a system with a Hamiltonian. This evolution starts from some initial state
and ends with a “measurement” which determines the state of the q-register,
and which interrupts the evolution. According to the principles of quantum
mechanics, the value found in the measurement is one of the eigenvalues
corresponding to the eigenstates of the measured observable. In this con-
text, this value corresponds to the state of a classical register, i. e. a binary
word. In order to perform the successive operations, the Hamiltonian of the
system is made time-dependent, and it evolves under the action of a clock
which determines the “rhythm” of the calculation. At first sight, the deter-
mination of this Hamiltonian for a given practical calculation seems to be
a formidable task. Actually, however, one can show that the construction of
the Hamiltonian can be done relatively easily. An actual calculation can be
decomposed into a succession of simple operations which affect only one or
two bits. These simple operations are performed by logical gates, such as the
well-known classical NOT, AND and OR.

The quantum gates required for the Shor algorithm must have some par-
ticular features:

• They must be reversible, since they follow from a Hamiltonian evolution of
the initial bits.

• They must handle q-bits, on which one can perform certain logical opera-
tions which are classically inconceivable.

A simple example of a quantum gate is a
√

NOT gate. This gate trans-
forms the q-bits 0 and 1 into the symmetric and antisymmetric linear super-
positions of 0 and 1 (it is a rotation by π/2 for a spin of 1/2). If one applies
this gate twice, one inverts 0 and 1, which corresponds to a NOT gate, hence
the name of gate

√
NOT.

One might think that it would be sufficient to let the computer evolve
towards a one-component state, which would be the desired value. Actually,
very few algorithms give rise to such a simple manipulation. In general, the
final state of the computer is still a linear superposition, and the result of the
calculation is therefore probabilistic. For instance, in Shor’s algorithm, the
result is an indication of a possible result. It is easy to check by a conventional
method whether the answer is correct, and if not, to continue the calculation.
Peter Shor has proven that this trial and error procedure gives the correct
answer with a probability arbitrarily close to 1, using a number of trials which
increases linearly (not exponentially) with the number of digits of the number
we want to factorize.
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14.3.4 Decoherence

The principle of a quantum computer is compatible with the laws of physics,
and it seems as though it may be possible to construct such a computer, at
least if one considers only simple calculations with a small number of gates.
If, however, one wants to perform large computations, the global state of the
computer has to be a quantum superposition of a large number of states,
whose evolution must be controlled in such a way that all the properties of a
linear superposition are preserved. It is not clear at present whether such a
system can be devised. Studies are under way in two main directions:

• First, the register which evolves must be extremely well protected from
the outside environment. Any coupling with this environment will induce a
decoherence effect, which may destroy the interferences between the various
terms of the linear superposition.

• Second, in case perturbations occur, one must prepare error correction
codes, in order to place the computer in the same state as where it was
before the external perturbation occurred.

These two directions – the choice of the system and the correction codes –
are under intensive investigation, and the questions raised have been stimu-
lating both for the development of algorithms and for experimental quantum
mechanics. At present it is very difficult to predict the outcome of these inves-
tigations. However, one spin-off is that it is quite possible that simple logical
operations will, in the medium term, be applied in quantum cryptography
systems.
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Exercises

14.1. Bell measurement. Consider a system of two particles of spin 1/2,
whose spin state is written as

α|+; +〉 + β|+;−〉 + γ|−; +〉 + δ|−;−〉 , (14.23)

where |α|2 + |β|2 + |γ|2 + |δ|2 = 1.

a. The component of the spin of each particle along the z axis is measured.
What are the possible results and the corresponding probabilities?

b. Rather than the preceding measurement, a detection which projects the
spin state of the two particles onto one of the four states of the Bell basis,

|Ψ+〉 =
1√
2

(|+; +〉 + |−;−〉) , |Φ+〉 =
1√
2

(|+;−〉 + |−; +〉) ,

|Ψ−〉 =
1√
2

(|+; +〉 − |−;−〉) , |Φ−〉 =
1√
2

(|+;−〉 − |−; +〉) ,

is performed. What is the probability of each of the four possible results?

14.2. Quantum teleportation of a spin state. Alice has a spin-1/2 par-
ticle A in the spin state

α|+〉 + β|−〉 , where |α|2 + |β|2 = 1 ,

that she wants to teleport to Bob. Alice and Bob also have a pair of spin-1/2
particles B and C, prepared in the singlet state

1√
2

(|+;−〉 − |−; +〉)

(see Fig. 14.4)
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Alice Bob

particle A

unknown state  (to be teleported)

part. Cpart. B

singlet spin state

Bell
measurement

Fig. 14.4. Principle of the quantum teleportation of the quantum state of a particle

a. Alice performs a measurement of the spin state of AB, which projects
this state onto one of the four vectors of the Bell basis of AB (see the
preceding exercise). What are the probabilities of each of the four possible
results?

b. Suppose that Alice finds the pair AB in the spin state |Φ−〉. What is the
spin state of particle C after this measurement?

c. Deduce from the preceding questions the principle of quantum telepor-
tation.

d. Can this principle be used to transmit information from Alice to Bob
faster than with classical channels (and thus faster than the speed of
light)?



15. The Lagrangian and Hamiltonian
Formalisms, Lorentz Force
in Quantum Mechanics

Nature always proceeds by the shortest means.

Pierre de Fermat

The Lorentz force q v × B acting on a particle of charge q moving with a
velocity v in a magnetic field B cannot be derived from a potential. Therefore,
the formulation of quantum mechanics we have used up to now does not apply.
The aim of this chapter is to generalize the correspondence principle, in order
to obtain the form of the Hamiltonian in such a problem.

Of course, it would suffice to simply introduce this Hamiltonian with no
other justification than the fact that it accounts for observed phenomena.
However, it is instructive to first develop some considerations related to clas-
sical mechanics. The development of analytic mechanics in the 18th and 19th
centuries, which was due to the work of d’Alembert, Bernoulli, Euler, La-
grange, Hamilton and others, brought out an amazing geometric structure
of the theory, based on a variational principle, the principle of least action.
It was one of the first remarkable discoveries of Dirac, in 1925–1926, that
the same basic structure underlies quantum mechanics. Starting from this
observation, the correspondence principle can be stated in a much more pro-
found manner, which enables one to treat complex problems which would be
difficult to attack without this analysis.

In Sect. 15.1 we shall recall the basic elements of the Lagrangian formu-
lation of mechanics, based on the principle of least action. In Sect. 15.2, we
shall present the “canonical” formulation of Hamilton, which will allow us to
exhibit, in Sect. 15.3, the parallelism between classical and quantum mechan-
ics. The word Hamiltonian, which we have used so often, will then take on its
full significance. In Sect. 15.4, we shall give the Lagrangian and Hamiltonian
formulations of the problem of interest, i. e. the motion of a charged particle
in a magnetic field. Finally, in Sect. 15.5, we shall transpose the result to
quantum mechanics and we shall also take into account the possibility that
the particle has spin.
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15.1 Lagrangian Formalism
and the Least-Action Principle

In his Méchanique analytique, published in 1787, one century after Newton’s
Principia, Lagrange proposed a new way to consider mechanical problems.
Instead of determining the position r(t) and the velocity v(t) of a particle
at time t knowing its initial state {r(0),v(0)}, Lagrange asked the following
equivalent but different question: what is the trajectory actually followed by
the particle if, leaving r1 at time t1, it reaches r2 at t2?

15.1.1 Least Action Principle

In order to simplify the discussion, consider first a one-dimensional problem.
Among the infinite number of possible trajectories (see Fig. 15.1) such that

x(t1) = x1 , x(t2) = x2 , (15.1)

what is the law that determines the correct one? Lagrange made use of the
“principle of natural economy”,1 which is an expression due to Fermat that
was adopted by Maupertuis and Leibniz (who called it the principle of “the
best”). Lagrange’s prescription is the following:

t

x real trajectory X(t)

possible trajectory x(t)
x1,t1

x2,t2

Fig. 15.1. Examples of trajectories starting
from x1 at time t1 and arriving at x2 at time
t2. Among all these possible trajectories, the
trajectory actually followed by the particle
is the one for which the action S is extremal

a. Any mechanical system is characterized by a Lagrange function, or La-
grangian, L(x, ẋ, t), which depends on the coordinate x, on its derivative
with respect to time ẋ = dx/dt and possibly on time. The quantities x
and ẋ are called state variables. For instance, considering a particle in a
one-dimensional potential, one has

L =
1
2
mẋ2 − V (x, t) . (15.2)

1 To be precise, the variational principle as we present it here was formulated by
Hamilton in 1828. In order to simplify the presentation, we have omitted some
of the history.
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b. For any trajectory x(t) satisfying (15.1), the action S is defined as

S =
∫ t2

t1

L(x, ẋ, t) dt . (15.3)

The principle of least action states that the physical trajectory X(t) is such
that S is minimal, or, more generally, extremal.

15.1.2 Lagrange Equations

Let X(t) be the physical trajectory. Consider a trajectory x(t) infinitesimally
close to X(t), and also starting from x1 at time t1 and arriving at x2 at time
t2:

x(t) = X(t) + δx(t) , ẋ(t) = Ẋ(t) + δẋ(t) , δẋ(t) =
d
dt

δx(t) , (15.4)

where, by assumption,

δx(t1) = δx(t2) = 0 . (15.5)

To first order in δx, the variation of S is

δS =
∫ t2

t1

(
∂L
∂x

δx(t) +
∂L
∂ẋ

δẋ(t)
)

dt .

Integrating the second term by parts and taking into account (15.5), we
obtain

δS =
∫ t2

t1

[
∂L
∂x

− d
dt

(
∂L
∂ẋ

)]
δx(t) dt . (15.6)

It follows from the principle of least action that δS must vanish whatever the
infinitesimal function δx(t). Therefore, the equation which determines the
physical trajectory is the Lagrange equation,

∂L
∂x

=
d
dt

(
∂L
∂ẋ

)
. (15.7)

We can check readily that we recover the usual equation of motion mẍ =
−dV/dx for a point particle placed in the potential V (x, t) if we consider the
Lagrangian (15.2).

The generalization to s degrees of freedom, i. e. {xi, ẋi}, i = 1, . . . , s
(where, for instance, s = 3N for N particles in a three-dimensional space), is
straightforward. One uses a Lagrangian L({xi}, {ẋi}, t) and obtains the set
of Lagrange equations

∂L
∂xi

=
d
dt

(
∂L
∂ẋi

)
, i = 1, . . . , s . (15.8)
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Remarks

(1) The Lagrange equations keep the same form in any coordinate system.
This is particularly useful when one makes changes of variables, e. g. to get
from Cartesian coordinates (x, y, z) to spherical coordinates (r, θ, ϕ). The xi

are called generalized coordinates.

(2) It is remarkable that the laws of mechanics can be derived from a varia-
tional principle, which states that the physical trajectory minimizes a certain
quantity, here the action. Almost all physical laws can be formulated in terms
of variational principles like the Fermat principle in geometrical optics. The
situations which are encountered physically appear to result from “optimiz-
ing” the effects of various “conflicting” contributions.

(3) In the absence of forces (i. e. a uniform potential in (15.2)), S is minimum
for ẋ = constant, corresponding to a linear, uniform motion. The presence
of the potential can be visualized as a property of space which bends the
trajectories. Forces and inertia appear to be in conflict. The particle follows
a trajectory of minimal “length”, this length being measured by the action
S. Therefore one can say that a mechanical problem has been reduced to a
geometric problem. The motion of a particle in a field of force derived from
a potential in a flat Euclidean space can be transformed into the free motion
of a particle in a curved space where it follows a geodesic. Einstein had this
idea in mind in 1908 when he started to construct general relativity. It took
him seven years to develop the mathematical structure of the theory.

The development of the fundamental concepts and principles of mechanics was
performed during the 17th century. Copernicus had given us the notion of reference
frames. Galileo had understood the principle of inertia: uniform linear motion is
a state relative to the observer, and not a process. It is the modification of the
velocity which constitutes a process. The final lines were written by Newton.

After the Newtonian synthesis and the publication in 1687 of the Philosophiae
Naturalis Principia Mathematica, the 18th and the 19th centuries were marked
by a fascinating endeavor. Through the impetus of d’Alembert, Maupertuis, the
Bernoulli brothers (in particular Daniel), Euler and Lagrange, the basic structure
of mechanics, i. e. its geometric structure, was discovered. A large class of problems
could be reduced to problems of pure geometry. D’Alembert, who was the first to
understand the importance of the abstract concepts of mass and of momentum,
attacked the concept of force introduced by Newton. For d’Alembert, motion was
the only observable phenomenon, whereas the “causality of motion” remained an
abstraction. Hence the idea of studying not a particular trajectory of the theory,
but the set of all motions that it predicts (to characterize a force by the set of
all its effects is actually a very modern point of view.) In 1787, one century after
the Principia, Lagrange published his Méchanique analytique, and gave a new for-
mulation of mechanics where the geometric and global structure of the theory was
emphasized.

The first formulation of a physical law in terms of the least-action principle
originated from a dispute between Fermat and Descartes, around 1640, about the
notion of proof (Descartes’s “proof” of Snell’s law of refraction was actually wrong).
Fermat, who was a mathematician and who knew little, if any, physics, became
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interested in the laws of geometrical optics, in particular the equality between the
angles of incidence and of reflection. He proved that the results were a geometrical
property of the optical length of the light rays (in the case of reflection, this had
been understood by Heron of Alexandria in 100 AD). The Snell–Descartes laws
predicted which path would be followed by a light ray with given initial properties.
In the more general point of view of Fermat, one determines the path effectively
followed by a light ray which goes from A to B. At the end of his life, in 1661,
Fermat stated his “principle of natural economy”, which led to numerous fields of
research, still very active today, related to variational principles.

15.1.3 Energy

We assume the system is isolated, i. e. ∂L/∂t = 0, and we calculate the time
evolution of the quantity L(x, ẋ) along the physical trajectory x(t):

dL
dt

(x, ẋ) = ẋ(t)
∂L
∂x

+ ẍ(t)
∂L
∂ẋ

=
d
dt

(
ẋ(t)

∂L
∂ẋ

)
,

where we have transformed the first term using the Lagrange equation (15.7).
Therefore

d
dt

(
ẋ(t)

∂L
∂ẋ

− L
)

= 0 .

For an isolated system, the quantity:

E = ẋ(t)
∂L
∂ẋ

− L(
and correspondingly E =

s∑
i=1

ẋi(t)
∂L
∂ẋi

− L
)

, (15.9)

is conserved. It is a constant of the motion, called the energy of the system.
In the simple case (15.2) we recover E = mẋ2/2 + V (x).

15.2 Canonical Formalism of Hamilton

The so-called canonical formulation of Hamilton has led to an impressive
number of applications, both in physics and mathematics. As we shall see,
this formalism led Dirac to the modern formulation of quantum mechanics.

15.2.1 Conjugate Momenta

The quantity

p =
∂L
∂ẋ

(
and correspondingly pi =

∂L
∂ẋi

)
, (15.10)

which appears in the definition of the energy (15.9), is called the conjugate
momentum, or generalized momentum, of the variable x. In the simple case
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(15.2), it reduces to the linear momentum p = mẋ, but this is no longer true
in non-Cartesian coordinates or, as we shall see, when the forces are velocity
dependent. We notice that (15.7) implies

ṗ =
∂L
∂x

(
and correspondingly ṗi =

∂L
∂xi

)
. (15.11)

15.2.2 Canonical Equations

The description of the state of a particle (or a system) by x and the conjugate
momentum p, instead of x and the velocity ẋ, has some advantages. We
assume that we can invert (15.10) and calculate ẋ in terms of the new state
variables x and p. The equations of motion are obtained by performing what
is called a Legendre transformation. Let us introduce the Hamilton function,
or Hamiltonian

H(x, p, t) = pẋ − L(
and correspondingly H(xi, pi, t) =

∑
i

piẋi − L
)

. (15.12)

We write down the total differential of H:

dH = p dẋ + ẋdp − ∂L
∂x

dx − ∂L
∂ẋ

dẋ − ∂L
∂t

dt .

If we take into account (15.10) and (15.11), the first and the fourth term
cancel, and the third term is nothing but −ṗ dx, and therefore

dH = ẋdp − ṗ dx − ∂L
∂t

dt . (15.13)

This gives the equations of motion:

ẋ =
∂H

∂p
, ṗ = −∂H

∂x(
and correspondingly ẋi =

∂H

∂pi
, ṗi = −∂H

∂xi

)
, (15.14)

which are called the canonical equations of Hamilton. They are first-order
differential equations in time, and are symmetric in x and p (up to a minus
sign). They have the big technical advantage of representing the time evo-
lution of the state variables directly in terms of these state variables. More
generally, if we denote by X = (r,p) the coordinates of the system in phase
space, these equations have the form Ẋ = F (X). Such a problem, called a
dynamical system, is of considerable interest in many fields, including math-
ematics.

Notice that in quantum mechanics, the Ehrenfest theorem, derived in
Chap. 7, gives the time evolution of expectation values as follows
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d
dt

〈xi〉 =

〈
∂Ĥ

∂p̂i

〉
,

d
dt

〈pi〉 =

〈
−∂Ĥ

∂x̂i

〉
,

where we can see some similarity to the canonical Hamilton–Jacobi equations.

15.2.3 Poisson Brackets

Consider two functions f and g of the state variables x, p and possibly of
time, for instance two physical quantities. The Poisson bracket of f and g is
defined as the quantity

{f, g} =
∂f

∂x

∂g

∂p
− ∂f

∂p

∂g

∂x(
or {f, g} =

s∑
i=1

∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi

)
. (15.15)

We find immediately

{f, g} = −{g, f} , {x, p} = 1 , (15.16)

and, more generally,

{xi, xj} = 0 , {pi, pj} = 0 , {xi, pj} = δij , (15.17)

and

{x, f} =
∂f

∂p
, {p, f} = −∂f

∂x
. (15.18)

Let us now calculate the time evolution of a quantity f(x, ẋ, t):

ḟ =
df

dt
=

∂f

∂x
ẋ +

∂f

∂p
ṗ +

∂f

∂t
. (15.19)

Using Hamilton’s equations (15.14), we obtain

ḟ = {f,H} +
∂f

∂t
. (15.20)

In particular, the canonical equations (15.14) are written in the following
completely symmetric way:

ẋ = {x, H} , ṗ = {p, H} . (15.21)

In the canonical formalism, the Hamiltonian governs the time evolution of
the system. If a physical quantity f does not depend explicitly on time, i. e.
∂f/∂t = 0, then its time evolution is obtained through the Poisson bracket
of f and the Hamiltonian: ḟ = {f, H}. If this Poisson bracket vanishes, f is
a constant of the motion.
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15.3 Analytical Mechanics and Quantum Mechanics

The results derived in the previous section reveal an amazing property. There
is a strong analogy in the structures of analytical mechanics and quantum
mechanics. Let us associate with any quantum observable Â an observable
ˆ̇A, such that, by definition,

〈 ˆ̇A〉 ≡ d

dt
〈a〉

for any state of the system. The Ehrenfest theorem then implies

ˆ̇A =
1
ih̄

[Â, Ĥ] +
∂Â

∂t
, (15.22)

to be compared with (15.20). Similarly, the canonical commutation relations

[x̂j , p̂k] = ih̄δjk (15.23)

are highly reminiscent of (15.17).
This identity between the structures of the two kinds of mechanics was one

of the first great discoveries of Dirac. Of course, the mathematical nature and
the physical interpretation of the objects under consideration are different.
But the equations which relate them are the same provided we apply the
following correspondence, which was understood by Dirac during the summer
of 1925:

Quantization rule. The Poisson brackets of analytical mechanics are re-
placed by the commutators of the corresponding observables, divided by ih̄:

Analytical mechanics {f, g} −→ 1
ih̄

[f̂ , ĝ] Quantum mechanics. (15.24)

This is the genuine form of the correspondence principle. In general, for
complex systems (large number of degrees of freedom, constraints, etc.), the
systematic method of obtaining the form and the commutation relations of
the observables consists in referring to the Poisson brackets of the corre-
sponding classical system. We shall see an example below when we treat the
Lorentz force in quantum mechanics.

One can now understand why the name of Hamilton (1805–1865) appears so often
in quantum mechanics, although Hamilton lived one century before its invention.
Hamilton was one of the great geniuses of science. He made decisive contributions
to analytical mechanics and invented vector analysis; he also invented, in the same
year as Cayley and Grassmann (1843), noncommutative algebras and matrix calcu-
lus (the elements of Hamilton’s quaternions are called ... Pauli matrices in quantum
mechanics). He was the author of the synthesis of the geometrical and wave theories
of light. He found in what limit the former theory is an approximation to the latter.
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Hamilton was fascinated by variational principles, in particular by the similarity
between Maupertuis’s principle in mechanics and Fermat’s principle in optics. In
1830 he made the remarkable statement that the formalisms of optics and of me-
chanics were basically the same and that Newtonian mechanics corresponded to the
same limit as geometrical optics, which was only an approximation. This remark
was ignored by his contemporaries, and the mathematician Felix Klein said in 1891
that it was a pity. It is true that, in 1830, no experimental fact could have revealed
the existence of Planck’s constant. However, in many ways, Hamilton can be con-
sidered as a precursor of quantum mechanics. Louis de Broglie refers to Hamilton’s
work in his thesis.

15.4 Classical Charged Particles
in an Electromagnetic Field

Classically, a particle of charge q, placed in an electromagnetic field, is subject
to the Lorentz force

f = q (E + v × B) .

This force is velocity dependent and cannot be derived from a potential.
Furthermore, the magnetic force qv × B does not do any work, and the
energy of the particle is E = mv2/2 + qΦ, where Φ is the scalar potential
associated with the electric field E.

The Hamiltonian is certainly different from p2/2m + qΦ. Otherwise, the
equations of motion would be strictly the same as in the absence of a magnetic
field. We can use the previous considerations in order to determine the correct
form of the Hamiltonian H.

Maxwell’s equations, specifically the pair of equations

∇ · B = 0 , ∇ × E = −∂B

∂t
, (15.25)

allow us to express the fields E and B in terms of the scalar and vector
potentials Φ and A:

B = ∇ × A , E = −∇Φ − ∂A

∂t
. (15.26)

Consider a particle of mass m and charge q placed in this electromagnetic
field. We denote by r and ṙ = v the position and the velocity of this par-
ticle. A possible Lagrangian for this particle can be written in terms of the
potentials A and Φ:

L =
1
2
mṙ2 + q ṙ · A(r, t) − q Φ(r, t) . (15.27)

Indeed, starting from the Lagrange equations and using
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d
dt

A(r, t) =
∂A

∂t
+ ẋ

∂A

∂x
+ ẏ

∂A

∂y
+ ż

∂A

∂z
,

we can check that we obtain the desired equation of motion:

m
dv

dt
= q(E + v × B) .

Consider now the conjugate momentum p. From the definition (15.10),
we have

p = mṙ + qA(r, t) . (15.28)

In other words, the conjugate momentum p no longer coincides with the
linear momentum, i. e. the product of the mass and the velocity mṙ!

Equation (15.28) is easily inverted: ṙ = [p− qA(r, t)]/m, which gives the
Hamiltonian we are looking for:

H =
1

2m
[p − qA(r, t)]2 + qΦ(r, t) . (15.29)

Like the Lagrangian, it is expressed in terms of the potentials A and Φ, and
not the fields E and B.

15.5 Lorentz Force in Quantum Mechanics

In order to treat the Lorentz force in quantum mechanics, we follow Dirac’s
quantization rules of Sect. 15.3.

15.5.1 Hamiltonian

The Hamiltonian of a charged particle in an electromagnetic field is

Ĥ =
1

2m
[p̂ − qA(r̂, t)]2 + qΦ(r̂, t) , (15.30)

where the position and the conjugate momentum operators r̂ and p̂ satisfy
the canonical commutation relations

[x̂j , x̂k] = 0 , [p̂j , p̂k] = 0 , [x̂j , p̂k] = ih̄ δjk .

In the wave function formalism, we can still choose p̂ = −ih̄∇. The velocity
observable is no longer p̂/m, but

v̂ =
1
m

[p̂ − qA(r̂, t)] . (15.31)

Note that two components of the velocity (e. g. v̂x and v̂y) do not, in general,
commute in the presence of a magnetic field. Using the Ehrenfest theorem,
one can verify that (15.30) provides the appropriate structure of the equations
of motion for the expectation values.
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15.5.2 Gauge Invariance

One thing, though, seems surprising. The potentials Φ and A are not unique.
Two sets (Φ,A) and (Φ′,A′) related to each other by a gauge transformation

A′ = A + ∇χ(r, t) , Φ′ = Φ − ∂χ

∂t
, (15.32)

where χ(r, t) is an arbitrary function, correspond to the same electric and
magnetic fields E and B. Since the energy observable Ĥ is expressed in terms
of A and Φ, the energy seems to depend on the gauge. However, we know
that physical results should not depend on the gauge!

The answer to this problem is simple and remarkable. In a gauge trans-
formation, the wave function also changes:

ψ(r, t) → ψ′(r, t) = eiqχ(r,t)/h̄ ψ(r, t) . (15.33)

One can check that if ψ is a solution of the Schrödinger equation for the
choice of potentials (A,Φ), then ψ′ is a solution for the choice (A′,Φ′). For
time-independent problems, this guarantees that the energy spectrum of the
Hamiltonian for the choice (A,Φ) coincides with the spectrum obtained with
(A′,Φ′).

The transformation (15.33) does not modify the probability density,

|ψ(r, t)|2 = |ψ′(r, t)|2 ,

which is of course crucial. The transformation simply affects the phase of the
wave function by an amount which depends on the point in space.

One can verify, more generally, that the expectation values of all mea-
surable quantities are gauge invariant. Consider, for instance, the velocity
operator v̂ =

(
p̂ − qÂ

)
/m. We find(

p̂ − qÂ
′)

ψ′ =
(
−ih̄∇− qÂ − q∇χ̂

)
eiqχ/h̄ ψ

= eiqχ/h̄
(
−ih̄∇− qÂ

)
ψ = eiqχ/h̄

(
p̂ − qÂ

)
ψ ,

from which we deduce that

ψ′∗
(
p̂ − qÂ

′)
ψ′ = ψ∗

(
p̂ − qÂ

)
ψ .

This proves that the probability current is the same in both gauges. If we
integrate this relation over space, we find that the expectation value of the
velocity is also gauge independent. In contrast, the momentum p̂ is not a
gauge-invariant physical quantity.

If one postulates that the laws of physics are invariant under all gauge transforma-
tions (15.33), where χ(r, t) is arbitrary, one can derive the result that the Hamil-
tonian has the structure (15.30). In quantum field theory, gauge invariance plays
a crucial role in the physics of fundamental interactions and of the elementary
constituents of matter.
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The fact that the Hamiltonian (15.30) depends on the potentials and
not on the fields can be verified experimentally, following a suggestion by
Aharonov and Bohm in 1956. In a Young slit interference device, one places
between the two slits a solenoid of small diameter, parallel to the slits
(Fig. 15.2). When a current flows in the solenoid, one can observe a modifica-
tion of the system of fringes. However, the magnetic field is zero everywhere
outside the solenoid, in particular near the slits. Conversely, the vector po-
tential is non zero outside the solenoid. This experiment has been performed
and has confirmed the quantum mechanical predictions.2

charged
particles

solenoid
detection

screen

Fig. 15.2. The Aharonov–Bohm effect: in a Young slit experiment performed
with charged particles, the interference pattern is shifted when a current is passed
through the solenoid. However, the magnetic field created by this solenoid is zero
everywhere except inside the solenoid itself. The corresponding phase shift has no
classical counterpart (in terms of a force acting on the particles, for instance) and
one refers to it as a topological phase shift

15.5.3 The Hydrogen Atom Without Spin
in a Uniform Magnetic Field

We place a hydrogen atom in a constant uniform field B, which is derived
from the vector potential A = B × r/2, and we neglect spin effects for the
moment. The Hamiltonian

Ĥ =
1

2me
(p̂ + qÂ)2 + V (r̂) ,

where V (r) = −q2/4πε0r and −q is the electron charge, can be expanded as

Ĥ = Ĥ0 +
q

2me

(
p̂ · Â + Â · p̂

)
+

q2

2me
Â

2
, where H0 =

p̂2

2me
+ V̂ (r) .

2 A. Tonomura et al., Phys. Rev. Lett. 56, 792 (1986).
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The first term Ĥ0 is simply the Hamiltonian studied in Chap. 11. The second
term is called the paramagnetic term. We remark that, since p̂ · Â = Â · p̂ in
this gauge, we can rewrite this term as

q

2me
(B × r̂) · p̂ =

q

2me
(r̂ × p̂) · B = −γ0 L̂ · B = −µ̂L · B , (15.34)

where γ0 = −q/2me. We recover the magnetic dipole interaction term intro-
duced in Chap. 10 (10.36).

The third term, q2Â
2
/2me, is called the diamagnetic term. One can check

that for the lowest-lying levels En of the hydrogen atom, for magnetic fields
below 1 T, the diamagnetic term is negligible: it is much smaller (by a factor
of ∼ 10−4) than the paramagnetic term, which is itself small (by a factor of
∼ 10−4) compared with |En|.

15.5.4 Spin-1/2 Particle in an Electromagnetic Field

Consider a spin-1/2 particle, which may or may not be charged, with an
intrinsic magnetic moment µ̂S = γSŜ, where Ŝ is the spin observable. If
we place this particle in an electromagnetic field, and possibly in another
potential V (r), its Hamiltonian is

Ĥ =
1

2m
[p̂ − qA(r̂, t)]2 + qΦ(r̂, t) + V (r̂) − µ̂S · B(r̂, t) , (15.35)

where q is the charge of the particle, and A and Φ are the electromagnetic
potentials.

This Hamiltonian is called the Pauli Hamiltonian. It acts in the Hilbert
space Eexternal⊗Espin described in Chap. 12. For an electron, the form (15.35)
can be directly obtained as the nonrelativistic limit of the Dirac equation,
which predicts γS = 2γ0 = −q/me.

Further Reading

• Concerning the importance of variational principles in physics, see for in-
stance R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures
on Physics, Vol. II, Chap. 19, Addison-Wesley, Reading, MA (1964).

• Concerning variational principles in quantum mechanics, see R.P. Feynman
and A.R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill,
New York (1965).

Exercises

15.1. The Lorentz force in quantum mechanics. In this exercise, we
want to check that with the prescription
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Ĥ =
1

2m
[p̂ − qA(r̂)]2

for the Hamiltonian of a charged particle in a magnetic field, one can recover,
using the Ehrenfest theorem, the classical equations of motion.

a. We assume in all that follows that the field B is constant, uniform and
directed along the z axis. We set B = |B|. We introduce the vector
potential A = B × r/2. Check that this choice gives the appropriate
value of B.

b. Write down the classical equation of motion of a particle of charge q and
mass m in this field. Give the expression for the energy E of the particle.
Describe the characteristics of the motion of the particle.

c. Consider the observable û = p̂ − qÂ, where Â = A(r̂). Here p̂ is the
usual momentum operator, i. e. p̂ = −ih̄∇ (which yields [x̂, p̂x] = ih̄).
Show that p̂ · Â = Â · p̂. Write down the commutators [ûx, ûy], [ûy, ûz]
and [ûz, ûx] for the three components of the observable û.

d. We assume that the quantum Hamiltonian has the form Ĥ = û2/2m.
Calculate d〈r〉 / dt and d〈u〉 / dt. Compare the result with the classical
equations of motion.

e. Deduce from this result the form of the velocity observable v̂.
f. Can the three components of the velocity be defined simultaneously in a

magnetic field? Write down the corresponding uncertainty relations.

15.2. Landau levels. In this exercise we determine the energy levels of
a spinless particle of charge q and mass m, which is placed in a constant,
uniform magnetic field B = B uz. We use here the Landau gauge A(r) =
Bxuy.

a. Write down the eigenvalue equation for the Hamiltonian Ĥ. The eigen-
function is denoted by Ψ(r) and the corresponding eigenvalue by Etot.

b. We look for particular solutions which are factorized in the following form

Ψ(x, y, z) = eikzz ψ(x, y) .

Show that ψ(x, y) is a solution of the eigenvalue equation

−h̄2

2m

(
∂2

∂x2
+
(

∂

∂y
− i

qB

h̄
x

)2
)

ψ(x, y) = E ψ(x, y) , (15.36)

where E = Etot − h̄2k2
z/2m.

c. Equation (15.36) describes the motion of the charged particle in the xy
plane. We look for particular solutions of this equation which are also
factorized with respect to x and y:

ψ(x, y) = eikyy χ(x) .
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(i) Write down the equation which determines χ(x). To which physical
problem does it correspond? Introduce the cyclotron angular fre-
quency ωc = qB/m.

(ii) Show that the possible eigenvalues for the energy E are

E =
(

n +
1
2

)
h̄ωc . (15.37)

Do the eigenvalues depend on the wave vector ky? The corresponding
energy levels are called the Landau levels.

d. We now determine the degeneracy of a Landau level, assuming that the
xy motion of the particle is confined in a rectangle [0, X] × [0, Y ]. We
shall neglect any edge effect, assuming that a0 = (2h̄/qB)1/2 � X, Y ,
and we restrict ourselves to relatively low values of the quantum number
n.
(i) We choose periodic boundary conditions for the motion along the y

axis. Show that the wave vector ky is quantized according to ky =
2πj/Y , where j is an integer.

(ii) What are the relevant values of j, such that the wave function ψ(x, y)
is localized in the rectangle X×Y (and thus is physically acceptable)?

(iii) Express the degeneracy of a Landau level as a function of the flux
Φ = BXY and of the magnetic flux quantum Φ0 = h/q.

15.3. The lowest Landau level (LLL). As in the previous exercise, we
consider the quantum motion of a particle of charge q and mass m in a uniform
magnetic field B = B uz. Here we choose the symmetric gauge A = B×r/2.
We restrict ourselves to the motion of the particle in the xy plane (kz = 0)
and we set, as above, ωc = qB/m.

a. Write down the eigenvalue equation for the energy. Introduce L̂z = x̂p̂y−
ŷp̂x.

b. Consider the Landau level with the lowest energy ELLL = h̄ωc/2 (see
(15.37)). Show that the functions

ψ�(x, y) = (x + iy)� e−(x2+y2)/(2 a2
0) ,

where � is an arbitrary integer and a0 = (2h̄/qB)1/2 are all energy eigen-
states for the eigenvalue ELLL.

c. Recover for the LLL the degeneracy calculated in the previous exercise,
assuming that the particle is confined in a disk centered on x = y = 0,
with a radius R � a0.

This eigenstate basis plays an important role in the study of the fractional quantum
Hall effect, which was discovered in a two-dimensional electron gas placed in a
magnetic field.
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15.4. The Aharonov–Bohm effect. Consider the two-hole Young inter-
ference experiment shown in Fig. 15.3. A solenoid whose axis is perpendicular
to the plane of the figure is placed between the two holes B and B′. A par-
ticle is emitted from the source point O at time t1, and the impact of this
particle on the detection screen is detected at a later time t2. We shall as-
sume that the probability amplitude A(C) for detecting the particle at C is
approximately given by3

A(C) = AOBC + AOB′C ∝ eiS/h̄ + eiS′h̄ ,

where S and S′ are the classical actions calculated along the paths OBC and
OB′C, respectively.

a. In the absence of a current in the solenoid, recover the fringe spacing xs

found in Chap. 1 (Sect. 1.2.2).
b. Determine the change in the interference signal when a current flows

in the solenoid. Express the result in terms of the total magnetic flux
Φ = πr2B (where r is the radius of the solenoid and B the magnetic field
inside the solenoid) and the magnetic flux quantum Φ0 = h/q.

O

B

B'

C

O'

Fig. 15.3. Study of the Aharonov–Bohm effect: classical paths in a two-hole Young
interference experiment

3 This prescription can be deduced from the formulation of quantum mechanics
based on path integrals; see R.P. Feynman and A.R. Hibbs, Quantum Mechanics
and Path Integrals, McGraw-Hill, New York (1965).



16. Identical Particles
and the Pauli Principle

If atoms existed . . . ,
some would be by nature indistinguishable . . . ,

which contradicts the most fundamental principles of reason.

Gottfried Wilhelm Leibniz

The origin of geometry (from Pythagoras to Euclid) lies in our environment,
and in the observation that one can model the world in which we live by
a space where each object is described by a point or a set of points. The
concept of space itself came after the simpler concept of the “place” of an
object. The idea of space arose from the question as to whether a place
exists independently from the fact that some object occupies it or not. In
this context, by definition, two objects cannot have the same position at the
same time.

In this chapter, we address the quantum transposition of this problem.
In the probabilistic quantum description, there is no reason a priori why
the probability density for two particles to be at the same point in space
should vanish, contrary to the classical observation. It is therefore legitimate
to elevate the above question to state vectors (or wave functions) rather than
positions. Can two particles be in the same state at the same time?

Naturally, two particles of different kinds, such as an electron and a pro-
ton, will never be in the same state: even if their wave functions coincide, their
mass difference implies differences in the values of various physical quantities
and one can always tell them apart from one another. However, there exist in
nature identical particles: all electrons in the universe have the same mass,
the same charge, etc. Can such particles, whose intrinsic properties are all
the same, be in the same state? The answer lies in one of the simplest, but
most profound principles of physics, whose consequences for the structure of
matter are numerous and fundamental: the Pauli principle.

The principles of Chap. 5 do not suffice when one is dealing with systems
containing identical particles. We show in Sect. 16.1 that there is a genuine
physical problem: some predictions are ambiguous. A new fundamental prin-
ciple must be added in order to get rid of this ambiguity. The basic property
of two identical particles is that they can be interchanged in a physical sys-
tem without modifying any property of this system. The mathematical tool
which corresponds to the interchange of two particles is the exchange oper-
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ator, which we introduce in Sect. 16.2. In Sect. 16.3 we express the Pauli
principle as an additional axiom. Finally, in Sect. 16.4, we discuss some con-
sequences of this principle.

16.1 Indistinguishability of Two Identical Particles

We first define what is meant by identical particles and the ensuing quantum
mechanical problem.

16.1.1 Identical Particles in Classical Physics

By definition, two particles are identical if all their intrinsic properties are the
same. In classical mechanics, for a two-particle system, it is always possible
to measure at a given time the position of each particle. At that instant, we
can define which particle we call 1 and which one we call 2. It is also possible
to follow the trajectory of particle 1 and that of particle 2. We can keep on
distinguishing unambiguously each particle at any later time. For instance, in
a collision of two billiard balls of the same color, we can unambiguously tell
the difference between the two processes shown in Fig. 16.1. Therefore, for
any system which is described by classical physics, two particles are always
distinguishable, whether or not they are identical (concerning macroscopic
objects, the notion of identity is an idealization anyway).

1 2

1'

2'

1

1'

2

2'

Fig. 16.1. Collision between two identical particles

16.1.2 The Quantum Problem

The situation is different in quantum mechanics. At a given time we can still
measure the positions of the particles and label them with the indices 1 and 2.
However, since the notion of a trajectory is not defined, it may be impossible
to follow the two particles individually as time goes on. For instance, one
cannot tell the difference between the two processes sketched in Fig. 16.1
if the two wave functions of particles 1 and 2 overlap. It is impossible to
know whether particle 1 has become particle 1′ or particle 2′. In quantum
mechanics two identical particles are indistinguishable.



16.1 Indistinguishability of Two Identical Particles 311

Here, physics falsifies the famous “principle of the identity of indistinguishables”,
which was a basic principle of the philosophy of Leibniz, for whom two real objects
were never exactly similar. We shall see that there exist cases where N particles can
be in the same state (a Bose–Einstein condensate) although they are not a single
entity. The number N of these particles is a measurable quantity, although they
are indistinguishable from one another.

In the framework of the principles of Chap. 5, this indistinguishability
leads to ambiguities in the predictions of physical measurements. Consider
for instance two identical particles moving in a one-dimensional harmonic
potential. We label the particles 1 and 2 and we assume that the Hamiltonian
is

Ĥ =
p̂2
1

2m
+

1
2
mω2x̂2

1 +
p̂2
2

2m
+

1
2
mω2x̂2

2 = ĥ(1) + ĥ(2) .

For simplicity, we suppose that the particles have no mutual interaction. Let
(n + 1/2)h̄ω and φn(x) (n = 0, 1, . . . ) be the eigenvalues and eigenfunctions
of the one-particle Hamiltonian ĥ = p̂2/2m + mω2x̂2/2.

No problem occurs in describing the physical situation where both parti-
cles are in the ground state of ĥ. The corresponding state is

Φ0(x1, x2) = φ0(x1) φ0(x2) ,

and its energy is E0 = h̄ω.
In contrast, the description of the first excited state of the system is

ambiguous. This corresponds to one of the particles being in the first excited
state of ĥ and the other in the ground state. The total energy is 2h̄ω. One
possible state is φ1(x1) φ0(x2), another possible state is φ0(x1)φ1(x2). Since
these two states are possible candidates, then, according to the superposition
principle, any linear combination

Φ(x1, x2) = λ φ1(x1) φ0(x2) + µ φ0(x1) φ1(x2)

also corresponds to an energy 2h̄ω.
Therefore there are several different states which appear to describe the

same physical situation. This might not be a problem, provided no measure-
ment could tell the difference. Alas, this is not true! These various states lead
to different predictions concerning physically measurable quantities. Consider
for instance the product of the two positions, i. e. the observable x̂1 ⊗ x̂2, for
which the labeling of the two particles is irrelevant. Its expectation value is

〈x1x2〉 =
h̄

mω
Re(λ∗µ) .

This prediction depends on λ and µ! However, nothing in the theory that we
have presented tells us the values of these parameters. Therefore there is a ba-
sic ambiguity in the predictions of our principles, and we need a prescription
in order to fix the values of λ and µ.
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It is a remarkable fact of nature that the only allowed values are λ = ±µ,
and that the sign depends only on the nature of the particles under consid-
eration. The allowed states for a system of identical particles are therefore
restrictions of the most general states that one could imagine if the particles
were distinguishable.

16.2 Two-Particle Systems; the Exchange Operator

We consider a system of two identical particles. We shall elicit the constraint
that this places on the two-particle state.

16.2.1 The Hilbert Space for the Two Particle System

Within the framework that we have used up to now, we describe a two-
particle system (distinguishable or not) by labeling these particles. Here we
choose to call them 1 and 2. The Hilbert space of the system is the tensor
product of the Hilbert spaces of the two particles E = E(1) ⊗E(2). We denote
by {|k〉} and {|n〉} a basis of E(1) and of E(2), respectively. A state of the
system is therefore of the form

|ψ〉 =
∑
k,n

Ck,n |k〉 ⊗ |n〉 ≡
∑
k,n

Ck,n |1 : k ; 2 : n〉 . (16.1)

16.2.2 The Exchange Operator Between Two Identical Particles

The labeling of the particles that we have used above has no absolute meaning
if they are identical. Consequently, the predictions of experimental results
must be independent of this labeling. In order to describe this property due
to the exchange symmetry, we introduce the exchange operator P̂12 such that,
for any pair (k, n),

P̂12 |1 : k ; 2 : n〉 = |1 : n ; 2 : k〉 . (16.2)

One can verify that this operator is Hermitian and that it satisfies

P̂ 2
12 = Î . (16.3)

Examples.

a. For two spinless particles, we have

P̂12 ≡ P̂
(external)
12 , i. e. P̂12 Ψ(r1, r2) = Ψ(r2, r1) .

b. For two particles with spin, P̂12 exchanges both the orbital and the spin
variables of the two particles:

P̂12 = P̂
(external)
12 ⊗ P̂

(spin)
12 .
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c. Permutation of two spin-1/2 particles. In this case, one can write down
explicitly the action of P̂12 by using the mixed representation introduced
in Chap. 12:

P̂12

∑
σ1,σ2

Ψσ1,σ2(r1, r2) |1 : σ1 ; 2 : σ2〉

=
∑

σ1,σ2

Ψσ1,σ2(r2, r1) |1 : σ2 ; 2 : σ1〉 ,

where σi = ±, with i = 1, 2. In order to discuss the properties of this per-
mutation, it is convenient to shift from the factorized basis |1 :σ1; 2 :σ2〉
to the coupled basis |S,m〉, which is the eigenbasis of the square of the
total spin Ŝ = Ŝ1 + Ŝ2 and Ŝz (see Chap. 13):

|S = 1, m = 1〉 = |1 : + ; 2 : +〉 ,

|S = 1, m = 0〉 =
1√
2

(|1 : + ; 2 : −〉 + |1 : − ; 2 : +〉) ,

|S = 1, m = −1〉 = |1 : − ; 2 : −〉 ,

|S = 0, m = 0〉 =
1√
2

(|1 : + ; 2 : −〉 − |1 : − ; 2 : +〉) .

We have already noticed that:
• the triplet states (S = 1) are symmetric under the interchange of σ1

and σ2:

P̂
(spin)
12 |S = 1, m〉 = |S = 1, m〉 ;

• the singlet state (S = 0) is antisymmetric under this interchange:

P̂
(spin)
12 |S = 0, m = 0〉 = − |S = 0, m = 0〉 .

16.2.3 Symmetry of the States

How can one fulfill the requirement that the experimental results must be
unchanged as one goes from |Ψ〉 to P̂12|Ψ〉? These two vectors must represent
the same physical state; therefore, they can differ only by a phase factor, i. e.
P̂12|Ψ〉 = eiδ |Ψ〉. Since P̂ 2

12 = Î, we have e2iδ = 1 and eiδ = ±1. Therefore

P̂12|Ψ〉 = ±|Ψ〉 . (16.4)

We then reach the following conclusion:

The only physically acceptable state vectors for a system of two identical
particles are either symmetric or antisymmetric under the permutation of
the two particles.

Referring to (16.1), this implies Ck,n = ±Cn,k. The only allowed states
are either symmetric under the exchange of 1 and 2, i. e.
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|ΨS〉 ∝
∑
k,n

Ck,n (|1 : k ; 2 : n〉 + |1 : n ; 2 : k〉) , P̂12|ΨS〉 = |ΨS〉 , (16.5)

or antisymmetric, i. e.

|ΨA〉 ∝
∑

k,n (k �=n)

Ck,n (|1 : k ; 2 : n〉 − |1 : n ; 2 : k〉) , P̂12|ΨA〉 = −|ΨA〉 ,

(16.6)

where the Ck,n’s are arbitrary.
This restriction to symmetric or antisymmetric state vectors is a consid-

erable step forward in resolving the ambiguity pointed out in the previous
section. For instance, the expectation value 〈x1x2〉 considered in Sect. 16.1.2
can now take only two values ±h̄/(2mω), corresponding to the two choices
λ = ±µ = 1/

√
2. However, this is not yet sufficient, and two essential ques-

tions are still open:

a. Can a given species, e. g. electrons, behave in some experimental situa-
tions with the plus sign in (16.4) and in other situations with the minus
sign?

b. Assuming that the answer to the first question is negative, what decides
the sign which should be associated with a given species?

16.3 The Pauli Principle

The answers to the two questions above lead us to one of the simplest and
most fundamental laws of physics. It is called the Pauli principle, although
the general formulation was derived from Pauli’s ideas by Fermi and Dirac.

16.3.1 The Case of Two Particles

Principle 4: the Pauli Principle

All particles in nature belong to one of the two following categories:

• bosons, for which the state vector of two identical particles is always
symmetric under the operation P̂12;

• fermions, for which the state vector of two identical particles is always
antisymmetric under the operation P̂12.

All particles of integer spin (including 0) are bosons (photon, π meson, α
particle, gluons, etc.).
All particles of half-integer spin are fermions (electron, proton, neutron,
neutrino, quarks, 3He nucleus, etc.).
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The state vectors of two bosons are of the form |ΨS〉 (16.5), and those of
fermions are of the form |ΨA〉 (16.6). The Pauli principle therefore consists in
restricting the set of accessible states for systems of two identical particles.
The space of physical states is no longer the tensor product of the basis
states, but only the subspace formed by the symmetric or antisymmetric
combinations.

The Pauli principle also applies to composite particles such as nuclei or
atoms, provided the experimental conditions are such that they are in the
same internal state (be it the ground state or a metastable excited state).
For instance, hydrogen atoms in their ground electronic and hyperfine state
have a total spin S = 0 (Chap. 13) and behave as bosons.

This connection between the symmetry of states and the spin of parti-
cles is an experimental fact. However, it is both a triumph and a mystery
of contemporary physics that this property, called the “spin–statistics con-
nection”, can be proven starting from general axioms of relativistic quantum
field theory. It is a mystery because it is probably the only example of a
simple physical law for which a proof exists but cannot be explained in an
elementary way.

Examples

a. The wave function of two identical spin-zero particles must be symmetric:
Ψ(r1, r2) = Ψ(r2, r1).

b. The state of two spin-1/2 particles must be of the form

|Ψ〉 = Ψ0,0(r1, r2) |S = 0, m = 0〉 +
∑
m

Ψ1,m(r1, r2) |S = 1, m〉 ,

where Ψ0,0 and Ψ1,m are symmetric and antisymmetric, respectively:

Ψ0,0(r1, r2) = Ψ0,0(r2, r1) Ψ1,m(r1, r2) = −Ψ1,m(r2, r1) .

Therefore the orbital state and the spin state of two identical fermions
are correlated.

16.3.2 Independent Fermions and Exclusion Principle

Consider a situation where two fermions, for instance two electrons, are in-
dependent, i. e. they do not interact with each other. The total Hamiltonian
then reads Ĥ = ĥ(1) + ĥ(2). In such conditions, the eigenstates of Ĥ are
products of eigenstates |n〉 of ĥ: |1 : n ; 2 : n′〉. We remark that if n = n′, i. e.
if the two particles are in the same quantum state, the state |1 : n ; 2 : n〉 is
necessarily symmetric. This is forbidden by the Pauli principle, which results
in the following (weaker) formulation:

Two independent fermions in the same system cannot be in the same state.
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If |n〉 and |n′〉 are orthogonal, the only acceptable state is the antisymmetric
combination

|ΨA〉 =
1√
2

(|1 : n ; 2 : n′〉 − |1 : n′ ; 2 : n〉) .

In this simplified form, the Pauli principle appears as an exclusion princi-
ple. This point of view is an approximation since two particles are never
completely independent.

16.3.3 The Case of N Identical Particles

In the case of a system of N identical particles, we proceed in a similar
manner. We introduce the exchange operator P̂ij of the two particles i and j.
The indistinguishability imposes the condition that P̂ij |Ψ〉 leads to the same
physical results as |Ψ〉. The general form of the Pauli principle is as follows:

Principle 4: the Pauli Principle (General Form)

The state vector of a system of N identical bosons is completely symmetric
under the interchange of any two of these particles.
The state vector of a system of N identical fermions is completely anti-
symmetric under the interchange of any two of these particles.

For instance, for N = 3, one has

Ψ±(u1, u2, u3) ∝ [f(u1, u2, u3) + f(u2, u3, u1) + f(u3, u1, u2)]
± [f(u1, u3, u2) + f(u2, u1, u3) + f(u3, u2, u1)] ,

where f is any function of the three sets of variables u1, u2, u3. The plus sign
corresponds to a function Ψ which is completely symmetric, and the minus
sign to a function which is completely antisymmetric.

More generally, let us consider an orthonormal basis {|n〉} of the one-
particle states, and the N ! permutations P of a set of N elements. We want
to describe the following physical situation: “one particle in the state |n1〉,
one particle in the state |n2〉, ..., one particle in the state |nN 〉”. In order
to do this, we number the N particles in an arbitrary way from 1 to N and
consider the following states.

• For bosons, we take

|Ψ〉 =
C√
N !

∑
P

|1 : nP (1) ; 2 : nP (2) ; . . . ; N : nP (N)〉 , (16.7)

where
∑

P denotes the sum over all permutations. Notice that two (or
more) indices ni, nj , . . . labeling the occupied states may coincide. The
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normalization factor C is expressed in terms of the occupation numbers Ni

of the states |ni〉:

C = (N1! N2! . . . )
−1/2

.

• In the case of fermions, the result is physically acceptable if and only if the
N states |ni〉 are pairwise orthogonal. The state |Ψ〉 is then

|Ψ〉 =
1√
N !

∑
P

εP |1 : nP (1) ; 2 : nP (2) ; . . . ; N : nP (N)〉 , (16.8)

where εP is the signature of the permutation P : εP = 1 if P is an even
permutation and εP = −1 if P is odd. This state vector is often written in
the form of a determinant, called the Slater determinant:

|Ψ〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
|1 : n1〉 |1 : n2〉 . . . |1 : nN 〉
|2 : n1〉 |2 : n2〉 . . . |2 : nN 〉

...
...

...
|N : n1〉 |N : n2〉 . . . |N : nN 〉

∣∣∣∣∣∣∣∣∣
. (16.9)

If two particles are in the same state, two columns are identical and this
determinant vanishes.

The set of states which can be constructed using (16.7) or (16.8) forms a
basis of the Hilbert space of an N -boson or N -fermion system, respectively.

16.3.4 Time Evolution

By definition, the Hamiltonian Ĥ of a system of N identical particles com-
mutes with all exchange operators P̂ij . Otherwise this would mean that par-
ticle i and particle j do not have the same dynamics and are distinguishable.
Therefore a state vector preserves its symmetry properties during its evolu-
tion. In the study of a N -boson or N -fermion system, the symmetrization or
antisymmetrization is performed only once, and persists at all later times.

16.4 Physical Consequences of the Pauli Principle

We give below a few of the many physical consequences of the Pauli principle
which concern both few-body systems and the macroscopic properties of a
large number of bosons or fermions.
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16.4.1 Exchange Force Between Two Fermions

Consider the helium atom and neglect magnetic effects, as we did for hydrogen
in Chap. 11. We label the electrons 1 and 2, and the Hamiltonian is

Ĥ =
p̂2
1

2me
+

p̂2
2

2me
− 2e2

r̂1
− 2e2

r̂2
+

e2

r̂12
, where r̂12 = r̂1 − r̂2 .

The eigenvalue problem is technically complicated and can only be solved nu-
merically, but the results of interest here are simple (Fig. 16.2). The ground
state (E0 = −78.9 eV) corresponds to a symmetric spatial wave function,
while the first two excited states E1A = −58.6 eV and E1S = −57.8 eV have
antisymmetric and symmetric spatial wave functions, respectively. The sym-
metry of the wave function implies a specific symmetry of the spin state: E0

and E1S are singlet spin states, and E1A is a triplet spin state. In the ground
state, the two spins are antiparallel. In order to flip one of them to make
them parallel, one must spend a considerable amount of energy (∼ 20 eV).

This corresponds to a “force” which maintains the spins in the antipar-
allel state. It is not a magnetic coupling between the spins: this magnetic
interaction can be calculated, and it corresponds to an energy of the order of
10−2 eV. The “force” that we are facing here has an electrostatic origin, i. e.
the Coulomb interaction, and it is transformed into a constraint on the spins
via the Pauli principle. Such an effect is called an exchange interaction. The
same effect is the basic cause of ferromagnetism.

E1S
E1A

E0

0.8 eV

20 eV

Fig. 16.2. The first three levels of the helium
atom

16.4.2 The Ground State of N Identical Independent Particles

Consider N identical independent particles. The Hamiltonian is therefore the
sum of N one-particle Hamiltonians:

Ĥ =
N∑

i=1

ĥ(i) . (16.10)

Let {φn, εn} be the eigenfunctions and corresponding eigenvalues of ĥ: ĥφn =
εnφn, where we assume that the εn are ordered: ε1 ≤ ε2 . . . ≤ εn . . . .
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From the previous considerations, we see that the ground state energy of
a system of N bosons is:

E0 = Nε1 ,

whereas, for a system of fermions, we have

E0 =
N∑

i=1

εi .

In this latter case, the highest occupied energy level is called the Fermi en-
ergy of the system; it is denoted by εF. The occupation of the states φn is
represented in Fig. 16.3 for both a bosonic and a fermionic assembly.

εF

ε1

Fig. 16.3. Ground state of a system of N independent identical particles. Left:
bosonic case, with all the particles in the ground state of the one-body Hamiltonian.
Right: fermionic case, where the first N/(2s+1) states of the one-body Hamiltonian
are occupied (here s = 1/2)

Consider for instance N independent fermions of spin s confined in a cubic
box of size L. We choose here a basis of states corresponding to periodic
boundary conditions (see Sect. 4.4). Each eigenstate of the Hamiltonian ĥ is
a plane wave φp(r) = eip·r/h̄/

√
L3, associated with one of the 2s + 1 spin

states corresponding to a well-defined component msh̄ of the spin parallel
to a given axis (ms = −s,−s + 1, . . . , s). The momentum p can be written
as p = (2πh̄/L)n, where the vector n = (n1, n2, n3) stands for a triplet of
positive or negative integers. The ground state of the N -fermion system is
obtained by placing 2s + 1 fermions in each plane wave φp, as long as |p| is
lower than the Fermi momentum pF. This Fermi momentum pF is determined
using:

N =
∑

p (p<pF)

(2s + 1) .

For a large number of particles, we can replace this discrete sum by an integral
(cf. (4.50)), which yields

N � (2s + 1)
L3

(2πh̄)3

∫
p<pF

d3p =
2s + 1
6π2

L3p3
F

h̄3 . (16.11)
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The following equation relates the density ρ = N/L3 of the gas to the Fermi
momentum, independently of the size of the box:

ρ =
2s + 1
6π2

(pF/h̄)3 . (16.12)

The average kinetic energy per particle can also be easily calculated:

〈p2〉
2m

=
1
N

∑
p (p<pF)

(2s + 1)
p2

2m
� 2s + 1

N

L3

(2πh̄)3

∫
p<pF

p2

2m
d3p ,

which leads to

〈p2〉
2m

=
3
5

p2
F

2m
. (16.13)

16.4.3 Behavior of Fermion
and Boson Systems at Low Temperature

The difference between the ground states of N -fermion and N -boson systems
induces radically different behaviors of such systems at low temperature.

In a system of fermions at zero temperature and in the absence of interac-
tions, we have just seen that all the energy levels of the one-body Hamiltonian
are filled up to the Fermi energy εF. This simple model describes remarkably
well the conduction electrons in a metal, and it accounts for many macro-
scopic properties of a solid, such as its thermal conductivity. Using the result
(16.12), the Fermi energy εF = p2

F/2me can be written in terms of the number
density ρe of conduction electrons as

εF =
h̄2
(
3ρeπ

2
)2/3

2me
,

where we have used 2s + 1 = 2 for electrons. This energy can reach large
values (εF = 3 eV for sodium). This is much larger than the thermal en-
ergy at room temperature (kBT � 0.025 eV). This explains the success of
the zero-temperature fermion gas model for conduction electrons. At room
temperature, very few electrons participate in thermal exchanges.

The application of the Pauli principle to fermionic systems has many
consequences, ranging from solid-state physics to the stability of stars such as
white dwarfs or neutron stars. In nuclear physics, the Pauli principle explains
why neutrons are stable with respect to β decay inside nuclei. An isolated
neutron is unstable and decays through the process n → p + e + ν̄e with
a lifetime of the order of 15 minutes. Inside a nucleus, a neutron can be
stabilized if all the final states allowed by energy conservation for the final
proton are already occupied.

Concerning bosonic systems, a spectacular consequence of quantum statis-
tics is the Bose–Einstein condensation. In the absence of interactions between
the particles, if the number density ρ = N/V is such that
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ρΛ3
T > 2.612 , where ΛT =

h√
2πmkBT

, (16.14)

a macroscopic accumulation of particles occurs in a single quantum state, i. e.
the ground state of the confining potential of the particles. This “gregarious”
behavior of bosons contrasts with the “individualistic” character of fermions.

Until June 1995, the usual example of a Bose–Einstein condensation that
was given in textbooks was the normal liquid → superfluid liquid transition
of helium, which happens at a temperature of T = 2.17 K. However, the
complicated interactions inside the liquid make the quantitative treatment of
the superfluid transition quite involved, and different from the simple theory
of the Bose–Einstein condensation of an ideal gas.

We now have at our disposal experiments performed on gases of alkali
atoms (lithium, sodium, potassium, rubidium), which are initially cooled by
lasers inside a vacuum chamber with a very low residual pressure (below
10−11 mbar). The atoms are then confined by an inhomogeneous magnetic
field and are cooled further by evaporation until they reach the Bose–Einstein
condensation, at a temperature below 1 microkelvin. The evaporative cooling
technique consists in eliminating the more energetic atoms, in order to keep
only the slower ones. Collisions between the trapped atoms maintain thermal
equilibrium throughout the process. Starting from 109 atoms, one can obtain,
after evaporation, a situation where the 106 remaining atoms are practically
all in the ground state of the system. Figure 16.4 shows the time evolution of
the momentum distribution of a gas of bosons (rubidium-87 atoms) confined
in a magnetic trap and cooled down to the condensation point. These Bose–

Fig. 16.4. Bose–Einstein condensation of a gas of 87Rb atoms observed via the
evolution of the momentum distribution of the particles in the xy plane. The atoms
are confined in an anisotropic harmonic trap (ωx < ωy) and cooled by evaporation.
The trapping potential is then turned off suddenly and the momentum distribution
is measured using a time-of-flight technique (Sect. 4.6). Left: the temperature T is
noticeably larger than the condensation temperature Tc. The momentum distribu-
tion is isotropic and close to a Maxwell–Boltzmann distribution (m〈v2

i 〉 = kBT for
i = x, y). Middle images (T ≤ Tc): a noticeable fraction of the atoms accumulate in
the ground state of the magnetic trap. Right image (T � Tc): a very large fraction
of the atoms is in the ground state of the trap. The momentum distribution of the
trap reflects the trap anisotropy (m〈v2

i 〉 = h̄ωi/2). Strictly speaking, one needs to
take into account the interactions between the atoms to explain quantitatively the
details of this distribution (photographs by F. Chevy and K. Madison, ENS Paris)
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Einstein condensates possess remarkable coherence and superfluid properties,
and this has been a very active field of research in recent years.

16.4.4 Stimulated Emission and the Laser Effect

Consider a system of independent bosons (see Sect. 16.4.2), to which we
apply, for a finite length of time, the one-body potential V̂ =

∑
i v̂(i). Each

potential v̂(i) acts only on the particle i and can induce transitions between
the various eigenstates of ĥ(i). We want to show that the probability for a
particle to reach a given final state |φl〉 is increased if this state is already
occupied.

Consider first the case where we are dealing with a single particle initially
in the state |φk〉. If we assume that the effect of v̂ is weak, the probability
that the particle reaches the state |φl〉 under the action of v̂ is proportional
to |vkl|2 = |〈φk|v̂|φl〉|2. This result of time-dependent perturbation theory
will be proven in Chap. 17 (see, e. g., (17.15)).

Suppose now that the state |φl〉 is already occupied by N particles, but
there is only one particle in the state |φk〉. The properly symmetrized initial
state of the (N + 1)-boson system is

|Ψi〉 =
1√

N + 1

(
|1 : φk ; 2 : φl ; . . . ; N : φl ; N + 1 : φl〉

+ |1 : φl ; 2 : φk ; . . . ; N : φl ; N + 1 : φl〉 + . . .

+ |1 : φl ; 2 : φl ; . . . ; N : φl ; N + 1 : φk〉
)

,

and we are interested in the probability of reaching the final state

|Ψf〉 = |1 : φl ; 2 : φl ; . . . ; N : φl ; N + 1 : φl〉 .

The transition probability is now proportional to

|Vif |2 = |〈Ψi|V̂ |Ψf〉|2 = (N + 1) |vkl|2 .

The presence of N particles in the state |φl〉 increases, by a factor N +1, the
probability that the particle initially in |φk〉 reaches this state. The transition
probability is the sum of the rate for a spontaneous transition, proportional
to |vkl|2 and independent of N , and of the rate stimulated by the presence
of the N bosons in the state |φl〉 and proportional to N |vkl|2.

This gregarious behavior also manifests itself for photons, which are mass-
less bosons. This explains the phenomenon of stimulated emission of light,
which is the basis of the principle of the laser. An excited atom decays pref-
erentially by emitting a photon in the quantum state occupied by the photons
already present in the laser cavity. This leads to a chain reaction in the pro-
duction of photons, which is the key point in the mechanism of lasers.
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16.4.5 Uncertainty Relations for a System of N Fermions

Consider N independent fermions of spin s, each placed in a potential V (r)
centered at the origin. The Hamiltonian is therefore

Ĥ =
N∑

i=1

ĥ(i) , where ĥ =
p̂2

2m
+ V (r̂) .

We denote by εn the energy levels of ĥ, and denote by gn their degeneracies.
The ground state E0 of Ĥ is obtained by filling the lowest-lying levels εn up
to the Fermi energy εF, each with (2s + 1) particles per state:

E0 = (2s + 1)
k∑

n=0

gnεn ,

where the number k is determined by the relation N = (2s+1)
∑k

n=0 gn. For
a harmonic potential V (r) = mω2r2/2, we have

εn = (n + 3/2)h̄ω , gn = (n + 2)(n + 1)/2 .

Therefore we find, for N � 1,

k �
(

6N

2s + 1

)1/3

, E0 � ξ N4/3h̄ω ,

where ξ = (3/4)61/3(2s + 1)−1/3.
Consider now an arbitrary state |Ψ〉 of these N fermions. We define 〈r2〉 =

〈r2
i 〉 and 〈p2〉 = 〈p2

i 〉, where i = 1, . . . , N . In this state, 〈H〉 ≥ E0 and,
consequently,

〈H〉 = N
〈p2〉
2m

+
N

2
mω2〈r2〉 ≥ ξN4/3h̄ω ,

which gives

〈p2〉 + m2ω2〈r2〉 − 2ξN1/3h̄mω ≥ 0 for N � 1 .

This second-degree trinomial in mω is positive for all values of mω. Its dis-
criminant must be negative. Therefore we obtain the result that in any state
of these N fermions,

〈r2〉 〈p2〉 ≥ ξ2 N2/3 h̄2 for N � 1 . (16.15)

This relation is valid, in particular, in the center-of-mass frame, where 〈p〉 =
0. If we choose the origin of space at the center of the cloud, we obtain

∆x∆px ≥ ξ

3
N1/3 h̄ for N � 1 . (16.16)

For spin-1/2 particles, ξ/3 ∼ 0.36.
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A similar calculation for fermions placed in a 1/r potential leads to

〈p2〉 ≥ γ h̄2

〈
1
r

〉2

N2/3 for N � 1 (16.17)

where γ = 3−1/3(2s+1)−2/3 (cf. exercise 16.4). The relation (16.17) plays an
important role in the stability of self-gravitating systems, as we shall see in
Chap. 19.

The Pauli principle therefore modifies the uncertainty relations. If we
place N identical fermions in a volume V ∼ (∆x)3, each of these fermions
must occupy a different quantum state. We can thus consider that the space
accessible to each particle is a region of linear extension ∼ (V/N)1/3, so that
the de Broglie wavelength of each particle is reduced by a factor N1/3.

This brings a different, but equivalent, point of view to the physics of an
N fermion system that we investigated in Sect. 16.4.3. In particular, consider
again an ideal Fermi gas confined in a cubic box of size L at zero temperature.
The position distribution in the box is uniform and the average momentum
per particle can be deduced from (16.13) so that

∆x2 =
1
L

∫ L/2

−L/2

x2 dx =
L2

12
,

∆p2
x =

∆p2

3
=

p2
F

5
=

h̄2N2/3

5L2

(
6π2

2s + 1

)2/3

,

from which one can check that (16.16) is well satisfied. Actually the product
∆x ∆px calculated for an ideal Fermi gas confined in a square box exceeds
by ∼ 10% the rigorous lower bound (16.16).

16.4.6 Complex Atoms and Atomic Shells

We now indicate how one can describe in a simple, approximate way the
structure of atoms with several electrons. The combination of a mean-field
approximation to describe the electron–electron interaction with the Pauli
principle will lead us to a qualitative understanding of the periodic classifi-
cation of elements due to Mendeleev.

It was actually the Mendeleev classification, where series of elements appeared to be
grouped into sets of twice the degeneracy of the hydrogen atom (2n2 = 2, 8, . . . ),
that led Pauli to the idea that electrons in atoms should be described by four
quantum numbers, not three. The fourth quantum number was two-valued. In order
to explain the classification, one had to apply the “Pauli verbot”, i. e. that two
electrons could not have the same values of the four quantum numbers.

The Hamiltonian of a Complex Atom. A complex neutral atom consists
of a nucleus of charge Ze and Z electrons. Assuming the nucleus is infinitely
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heavy and neglecting magnetic effects, the Hamiltonian of the system is

Ĥ =
Z∑

i=1

p̂2
i

2me
−

Z∑
i=1

Ze2

r̂i
+

Z∑
i=1

Z∑
k=i+1

e2

r̂ik
. (16.18)

Owing to the Coulomb repulsion between the electrons, the diagonalization of
this Hamiltonian is complicated. This repulsion term cannot be neglected or
treated as a perturbation, since the distances rik between the electrons are of
the same order of magnitude as the distances ri between the electrons and the
nucleus. There are Z(Z − 1)/2 terms corresponding to the electron–electron
repulsion e2/rik, and their sum is of the same order of magnitude as the Z
terms −Ze2/ri corresponding to the attraction of the electrons by the nu-
cleus. An ingenious method due to Hartree, however, gives an approximation
method which can lead very far in the description of atoms.

Remark. Since we have neglected magnetic effects, the Hamiltonian (16.18)
does not contain spin-dependent variables. Of course, although they are ab-
sent from the interaction, spin variables play a crucial role through the Pauli
principle in this problem.

The Hartree Method and the Mean-Field Approximation. We rewrite
the Hamiltonian (16.18) in the form

Ĥ =
∑

i

p̂2
i

2me
+
∑

i

−Ze2

r̂i
+ V (r̂i)︸ ︷︷ ︸∑

i U(r̂i)

+
∑

i

(∑
k>i

e2

r̂ik
− V (ri)

)
︸ ︷︷ ︸

Hc

. (16.19)

If the function V (r) is chosen in an appropriate way, the term Hc can be
sufficiently small to be neglected in a first approximation, although neither∑

e2/rik nor
∑

i V (ri) are separately small.
The potential V (r) can be obtained by an iteration method called the self-

consistent Hartree–Fock method. Its physical meaning is intuitive: it is a mean
potential which represents as well as possible, for each electron, the repulsive
Coulomb potential

∑
i �=k e2/rik created by the set of the other electrons. We

shall not describe here how one obtains V (r).

Electronic Configurations. Suppose the function V (r) has been deter-
mined sufficiently well that one can neglect the term Ĥc. In this approxima-
tion, the Hamiltonian is a sum of one-particle terms:

Ĥ0 =
Z∑

i=1

ĥ(i) , where ĥ =
p2

2me
+ U(r) . (16.20)

The variables of the various electrons are separated and it is possible to
determine either analytically or numerically the eigenfunctions ψn,�,m(r) and
the corresponding energies En,� of the one-body Hamiltonian ĥ:
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(
p2

2me
+ U(r)

)
ψn,�,m(r) = En,� ψn,�,m(r) .

Using (16.8), one can then form a state vector for the Z-electron system with
a total energy E = E1 + E2 + . . . + EZ .

An electronic configuration is a description of the state of the Z electrons
in which we specify the number of electrons in a given energy level En,�.
Consider, for instance, the ground states of some atoms:

• The ground state of the simplest atom, hydrogen, is the 1s state (n = 1, � =
0).

• The following atom, helium, is obtained by adding one electron, also in
the 1s state. This is possible provided the spin state of the two electrons is
antisymmetric, i. e. it is the singlet state. The configuration of the helium
atom in its ground state is therefore 1s2. This set of two electrons with
the quantum number n = 1 forms a complete shell, called the K shell. It
is complete in the sense that the Pauli principle forbids a third electron to
be in the same orbital state.

• The sodium atom in its ground state has the configuration 1s22s22p63s1.
The L shell, corresponding to n = 2, is also complete since it can accom-
modate eight electrons. The eleventh and last electron is in the M shell,
corresponding to n = 3.

• For atoms with a larger number of electrons, the � dependence of the en-
ergies produces modifications of this simple filling scheme. For instance,
for potassium (Z = 19), the filling of the N shell (n = 4) starts be-
fore the M shell is complete, and the configuration of the ground state
is 1s22s22p63s23p64s1. The single valence electron in an s state is charac-
teristic of alkali atoms (first column of the periodic table).

Therefore the simplest form of the Pauli principle, i. e. the exclusion prin-
ciple, explains how the successive elements are grouped in the Mendeleev
table. We insist, however, on the fact that this is only an approximate model.
Several coincidences, such as the smallness of the fine structure constant, re-
sult in the fact that the mean-field approximation is excellent. This can be
considered in some sense as a “miracle” of nature.

Further Reading

• The importance, profoundness, revolutionary aspects and philosophical im-
plications of the Pauli principle are analyzed by H. Margenau, The Nature
of Physical Reality, Chap. 20, McGraw-Hill, New York (1950). This au-
thor points out that this principle did not provoke the same interest as,
for instance, relativity among philosophers, because it explained so many
experimental facts (actually many more than relativity) that it had been
immediately incorporated into the general theory of quantum mechanics.
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• I. Duck and E.C.G. Sudarshan, Pauli and the Spin–Statistics Theorem,
World Scientific, Singapore (1997).

• An elementary analysis of the collision process of two identical particles
can be found in R.P. Feynman, R.B. Leighton and M. Sands, The Feynman
Lectures on Physics, Vol. III, Chap. 3 (Sect. 4) and 4 (Sect. 1), Addison-
Wesley, Reading, MA (1965). This shows the difference between fermions
and bosons in an elementary interaction process. See also R.P. Feynman,
Elementary Particles and the Laws of Physics, 1986 Dirac Memorial Lec-
ture, Cambridge University Press, Cambridge (1987).

• “The discovery of superfluidity”, Phys. Today, July 1995, p. 30; J. de Nobel,
“The discovery of superconductivity”, Phys. Today, September 1996, p. 40;
R. Hallock, “The magic of helium 3 in two, or nearly two, dimensions”,
Phys. Today, June 1998, p. 30.

• E. Cornell and C. Wieman, “Bose–Einstein condensation”, Sci. Am., March
1998, p. 26; W. Ketterle, “Experimental studies of Bose-Einstein conden-
sation”, Phys. Today, December 1999, p. 30; K. Helmerson et al., “Atom
Lasers”, Phys. World, August 1999, p. 31; Y. Castin et al., “Bose–Einstein
condensates make quantum leaps and bounds”, Phys. World, August 1999,
p. 37.

• C.H. Townes, How the Laser Happened: Adventures of a Scientist, Oxford
University Press, Oxford (1999); A. Siegman, Lasers (University Science
Books, Mill Valley, 1986); O. Svelto, Principles of Lasers, Plenum, New
York (1998).

• E.R. Scerri, “The evolution of the periodic system”, Sci. Am., September
1999, p. 56.

Exercises

16.1. Identical particles incident on a beam splitter. Consider a par-
ticle prepared at an initial time ti in a wave packet ψ(r, ti) = φ1(r), incident
on a 50%–50% beam splitter (Fig. 16.5). At a later time tf , the wave packet
has crossed the beam splitter and the state of the particle can be written
ψ(r, tf) = [φ3(r) + φ4(r)] /

√
2, where φ3 and φ4 correspond to normalized

wave packets propagating in each of the output ports. We assume 〈φ3|φ4〉 � 0.

a. We prepare the particle in the state ψ(r, ti) = φ2(r), which is obtained
from φ1(r) by symmetry with respect to the beam splitter plane. The
state of the particle at time tf can then be written

ψ(r, tf) = αφ3(r) + βφ4(r) .

Determine (within a global phase factor) the coefficients α and β. Make
use of the fact that the interaction of the particle with the beam splitter
is described by a Hamiltonian (which need not be written explicitly). We
take 〈φ2|φ1〉 = 0.
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φ1(r)

φ2(r)

φ3(r)

φ4(r)

Beam
splitter

Fig. 16.5. An incident wave packet φ1(r)
or φ2(r) crosses a 50%–50% beam splitter.
After the crossing, this provides a coherent
superposition of two outgoing wave packets
φ3(r) and φ4(r)

b. We prepare at time ti two fermions in the same spin state, one in the
external state φ1(r), the other one in the state φ2(r). What is the final
state of the system? Can one detect both fermions in the same output
port?

c. Consider the same problem for two bosons, also prepared in the same spin
state, one in the external state φ1(r), the other one in the state φ2(r).
Show that the two bosons always exit in the same port. This experiment
has been performed with photons by C.K. Hong et al., Phys. Rev. Lett.
59, 2044 (1987).

16.2. Bose–Einstein condensation in a harmonic trap. Consider N
spin-0 bosons in an isotropic harmonic trap of angular frequency ω. We ne-
glect interactions between the particles and we recall that the average number
of particles in a given state of energy E is given by the Bose–Einstein law,

nE =
(
e(E−µ)/kBT − 1

)−1

,

where µ is the chemical potential and T the temperature.

a. Show that the chemical potential obeys the inequality µ < 3h̄ω/2.
b. Show that the number of particles N ′ occupying a state different from

the ground state of the trap cannot exceed F (ξ), where

ξ =
h̄ω

kBT
, F (ξ) =

∞∑
n=1

(n + 1)(n + 2)
2(enξ − 1)

.

Recall that the degeneracy of an energy level En = (n + 3/2) h̄ω is gn =
(n + 1)(n + 2)/2.

c. We consider the limiting case kBT � h̄ω, which allows us to replace the
sum defining F (ξ) by an integral. Show that the upper bound on the
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total population of the excited states is

N ′
max = ζ(3)

(
kBT

h̄ω

)3

, ζ(x) =
∞∑

n=1

n−x .

Here ζ(x) is the Riemann function, and ζ(3) � 1.2.
d. What happens if one places more than N ′

max atoms in the trap? At what
temperature can this phenomenon be observed with a trap containing
106 atoms, with ω/(2π) = 100 Hz?

16.3. Fermions in a square well. Consider two spin-1/2 particles of mass
m confined in a one-dimensional infinite square well of size L (Sect. 4.3.3).

a. We neglect the interactions between the particles. Determine the four
lowest energy levels.

b. We suppose that the particles interact via a contact potential V (x1 −
x2) = g δ(x1 − x2), where the coupling constant g does not depend on
spin. Determine to first order in g the four lowest energy levels of this
two-particle system.

16.4. Heisenberg–Pauli inequality (continuation). Here we use the
same type of arguments as in Sect. 16.4.5 for a Coulomb potential.

a. Consider the ground state of an N -fermion system placed in the external
potential V (r) = −e2/r. We assume that the fermions do not interact
with each other and that N � 1. We denote by E0 the energy of the
ground state. Recall that the energy levels of the one-body Hamiltonian
are −EI/n2, where n is a positive integer and EI = me4/2h̄2; the degen-
eracy of each level is (2s + 1)n2 (see Chap. 11). Show that there exists
an integer k such that

N � (2s + 1)
k3

3
, E0 � −(2s + 1)EIk .

b. Show that E0 and N are related by

E0 � −me4

2h̄2 (2s + 1)2/3 (3N)1/3 .

c. Consider an arbitrary state |Ψ〉 of this N -fermion system. Prove the result
(16.17).



17. The Evolution of Systems

Stop the world, I want to get off!
Anonymous, June 1968, on a bus stop in Paris

(collected by Christian Nugue)

Any experimental observation or any practical use of quantum phenomena
relies on processes, where one observes the evolution of a system at some time,
knowing in what state it was initially. It is therefore essential to understand
the various types of evolution a system can have, whether it is subject to
external forces or not.

In this chapter, we present two characteristic processes: the oscillatory
behavior of a two-state system under the influence of an external constant
or oscillating field, and the irreversible evolution of a system coupled to a
continuum. In Sect. 17.1, we introduce the notion of a transition probability
and the basic method of calculation: time-dependent perturbation theory. In
Sect. 17.2, we consider the atomic transitions induced by an external elec-
tromagnetic field, i. e. absorption and induced emission. We also present the
physical processes which underlie the control of atomic motion by laser light.
In Sect. 17.3, we consider the problem of the decay of a system, such as an
excited atom or an excited nucleus. We show how the exponential decay law
emerges, and how one can calculate the lifetime of a system. We also intro-
duce the notion of the width of an unstable system. Finally, in Sect. 17.4, we
discuss a few aspects of the time–energy uncertainty relation, ∆E ∆t ≥ h̄/2,
which differs quite radically from the uncertainty relations we established in
Chap. 7, and which illustrates the special role played by time in nonrelativis-
tic quantum theory.
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17.1 Time-Dependent Perturbation Theory

Time-dependent perturbation theory consists of starting with a solvable prob-
lem and perturbing it with an additional Hamiltonian, which allows for tran-
sitions between the original eigenstates.

17.1.1 Transition Probabilities

Consider a system whose evolution can be derived from the Hamiltonian

Ĥ = Ĥ0 + Ĥ1(t) , (17.1)

where Ĥ0 is time independent. The eigenvectors |n〉 and eigenvalues En of
Ĥ0 are assumed to be known:

Ĥ0|n〉 = En|n〉 . (17.2)

The operator Ĥ1(t) is an interaction term which may depend explicitly on
time, and which, a priori, does not commute with Ĥ0. This term can induce
transitions between two eigenstates |n〉 and |m〉 of Ĥ0.

Our aim is the following. Assuming the system is prepared at time t0 in
a given state |ψ(t0)〉 = |n〉, we want to calculate the probability

Pn→m(t) = |〈m|ψ(t)〉|2 (17.3)

of finding the system in the eigenstate |m〉 of Ĥ0 at a later time t.

Example: a Collision Process. In addition to the examples that we shall
meet in this chapter, a collision is a typical situation where this problem
appears. Consider two particles a and b, each of which is prepared in a wave
packet sharply defined in momentum p. At the initial time the centers of
these two wave packets propagate towards each other. In the absence of in-
teraction the particles propagate freely: 〈pa〉 and 〈pb〉 are constants of the
motion. However, if we take into account the interaction potential Ĥ1 be-
tween the particles, a scattering process takes place. A measurement of the
final momenta of the particles will give a result which generally differs from
the initial values 〈pa〉 and 〈pb〉. The question is how to calculate the proba-
bility of measuring given final momenta, knowing the interaction potential.

17.1.2 Evolution Equations

At any time, the state of the system |ψ(t)〉 can be expanded in the basis {|n〉}
of eigenstates of Ĥ0:

|ψ(t)〉 =
∑

γn(t)e−iEnt/h̄|n〉 . (17.4)
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In this expression, we explicitly write the time evolution factors e−iEnt/h̄ that
would be present for Ĥ1 = 0. This simplifies the evolution equations of the
coefficients γn(t). Using the Schrödinger equation, we obtain

ih̄
∑

n

[γ̇n(t) − i

h̄
Enγn(t)] e−iEnt/h̄|n〉 =

∑
n

γn(t)e−iEnt/h̄(Ĥ0 + Ĥ1)|n〉 ,

and therefore

ih̄
∑

n

γ̇n(t)e−iEnt/h̄|n〉 =
∑

n

γn(t)e−iEnt/h̄Ĥ1|n〉 . (17.5)

Multiplying by 〈k|, we obtain

ih̄γ̇k(t) =
∑

n

γn(t) e−i(En−Ek)t/h̄ 〈k|Ĥ1|n〉 . (17.6)

The problem is completely determined by this set of coupled differential equa-
tions and by the initial condition which specifies |ψ(t0)〉.

17.1.3 Perturbative Solution

In general, this set of equations does not have an analytic solution. In order
to make progress, we assume, as in Chap. 9, that Ĥ1 is “small” compared
with Ĥ0. More precisely, we consider the Hamiltonian Ĥλ = Ĥ0 + λĤ1 and
we assume that the corresponding coefficients γk(t) are analytic functions of
λ around the origin, including the case of λ = 1:

γk(t) = γ
(0)
k (t) + λ γ

(1)
k (t) + . . . + λp γ

(p)
k (t) + . . . . (17.7)

Inserting this expansion in (17.6), we identify the coefficients of each power
of, λ and we obtain the following

to order 0: ih̄γ̇
(0)
k (t) = 0 , (17.8)

to order 1: ih̄γ̇
(1)
k (t) =

∑
n

γ(0)
n (t) e−i(En−Ek)t/h̄ 〈k|Ĥ1|n〉 ; (17.9)

to order r: ih̄γ̇
(r)
k (t) =

∑
n

γ(r−1)
n (t) e−i(En−Ek)t/h̄ 〈k|Ĥ1|n〉 . (17.10)

This system can be solved by iteration. The terms γ
(0)
k (t) are determined

by the knowledge of the initial state of the system. Inserting these into (17.9),
we can calculate the terms of order 1, γ

(1)
k (t), which in turn give the terms of

order 2 through (17.10), and so on. One can therefore determine successively
all the terms in the expansion.
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17.1.4 First-Order Solution: the Born Approximation

The zeroth-order equation can be solved immediately. We find that γ
(0)
k (t) is

a constant. If we choose the initial condition |ψ(t0)〉 = |i〉, we obtain

γ
(0)
k (t) = δk,i . (17.11)

Inserting this in (17.9), we obtain, for f �= i,

ih̄γ̇
(1)
f (t) = ei(Ef−Ei)t/h̄ 〈f |Ĥ1|i〉 . (17.12)

Taking into account the assumption γ
(1)
f (t0) = 0, this gives

γ
(1)
f (t) =

1
ih̄

∫ t

t0

ei(Ef−Ei)t/h̄ 〈f |Ĥ1|i〉dt . (17.13)

In this approximation, the transition probability from an initial state |i〉 to
a final state |f〉 (with f �= i) is given by

Pi→f (t) = |γ(1)
f (t)|2 .

This approximation is acceptable if Pi→f � 1 (a necessary condition).

17.1.5 Particular Cases

Constant Perturbation. We suppose the perturbation Ĥ1 is “switched on”
at t0 = 0 and “switched off” at a later time T . We suppose also that it does
not depend on time between 0 and T . Setting h̄ω0 = Ef − Ei, we obtain

γ
(1)
f (t ≥ T ) =

1
ih̄

〈f |Ĥ1|i〉 eiω0T − 1
iω0

, (17.14)

and consequently

Pi→f (t ≥ T ) =
1
h̄2 |〈f |Ĥ1|i〉|2 y(ω0, T ) . (17.15)

We shall frequently make use of the above function y(ω, T ), defined as

y(ω, T ) =
sin2(ωT/2)

(ω/2)2
, where

∫ +∞

−∞
y(ω, T ) dω = 2πT . (17.16)

Its graph is given in Fig. 17.1.
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T Fig. 17.1. Graph of the function y(ω, T )

Sinusoidal Perturbation. Consider a coupling Ĥ1(t) such that Ĥ1(t) =
H̃1e−iωt for 0 < t < T and Ĥ1(t) = 0 otherwise. A simple calculation gives

Pi→f (t ≥ T ) =
1
h̄2 |〈f |H̃1|i〉|2 y(ω − ω0, T ) . (17.17)

There is a resonance if the angular frequency ω of the perturbation is equal
to the Bohr frequency ω0 = (Ef −Ei)/h̄ of the system. The resonance curve
giving the variation of Pi→f as a function of ω has a full width at half
maximum ∆ω ∼ 2π/T . The resonance is sharper as the interaction time T
increases.

17.1.6 Perturbative and Exact Solutions

We have already met the case of a two-state system in Chap. 12 when we
studied the magnetic resonance of a spin-1/2 particle placed in a rotating
magnetic field. For this particular problem, we know the exact solution of the
evolution equations and it is instructive to compare it with the approximate
result derived above.

Consider the specific example of the Rabi experiment. We denote by T
the time spent by the molecular beam inside the cavity where the magnetic
field rotating at frequency ω/2π is applied. The time-dependent coupling Ĥ1

is (cf. (12.28))

〈+|Ĥ1|−〉 =
h̄ω1

2
e−iωt (ω1 = −γB1) .

The exact formula obtained by Rabi (12.37) is

P+→−(T ) =
ω2

1

Ω2
sin2 (ΩT/2) , where Ω =

(
(ω − ω0)2 + ω2

1

)1/2
,

and the approximation (17.17) gives
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P+→−(T ) =
ω2

1

(ω − ω0)2
sin2[(ω − ω0)T/2] .

We notice that the two formulas nearly coincide in two cases:

• If the excitation frequency is sufficiently far from resonance, i. e. |ω−ω0| �
ω1. In this case Ω � |ω − ω0| and the two results coincide for all times.

• If the excitation is close to resonance (|ω−ω0| � ω1) and if the interaction
time is short enough, i. e. ω1T/2 � 1.

17.2 Interaction of an Atom
with an Electromagnetic Wave

Electromagnetic transitions in atomic and molecular systems play a central
role in physics. Three basic processes are involved. Under the influence of an
electromagnetic wave, an atom or a molecule can absorb energy. If it is in
an excited state, it can also decay into a lower-energy state either by sponta-
neous emission of radiation or through the emission of radiation induced by
an external electromagnetic wave. These three processes were introduced in
1917 by Einstein, who understood, in a remarkable piece of intuition, how a
collection of atoms and photons could reach thermal equilibrium.

Here we want to study the behavior of an atom in a monochromatic wave
whose electric field is

E(r, t) = E0 ε cos(ωt − k · r) . (17.18)

This plane traveling wave has an amplitude E0, a wave vector k and a po-
larization ε orthogonal to k. We want to calculate the probabilities for the
two processes of absorption and induced emission of light by the atom. Spon-
taneous emission cannot be treated quantitatively in this book, because a
correct approach requires the quantization of the electromagnetic field. We
shall simply make a few qualitative remarks concerning this latter process
(see also Sect. 17.3).

17.2.1 The Electric-Dipole Approximation

We assume that we know the energy levels of the atomic system. We denote
the ground state of energy E1 and an excited state of energy E2 by |1〉 and
|2〉, respectively. We want to study here the absorption of light which results
in a transition of the atom from the initial state |1〉 to the final state |2〉. The
induced emission of light can be calculated in the same way, assuming the
initial state is |2〉 and the final state is |1〉.

In order to describe this phenomenon, we consider the simple case of a one-
electron atom. We denote by D̂ = qr̂ the electric-dipole-moment operator,
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which is proportional to the position of the external electron with respect to
the core of the atom. We treat the atom as infinitely heavy, and denote by
R0 the position of the core. The coupling between the atom and the electric
field (17.18) is given by

Ĥ1(t) = −D̂ · E(R0, t) . (17.19)

This coupling is called the electric-dipole interaction Hamiltonian.

17.2.2 Justification of the Electric Dipole Interaction

The complete interaction of an atom with an external electromagnetic field
(E,B) derived from the potentials (A,Φ) can be obtained using the consid-
erations developed in Chap. 15. Let r̂i and p̂i be the position and momentum
operators of the electrons (i = 1, . . . , Z). Assuming the nucleus of charge Z
is fixed, and omitting the spin magnetic interactions, the Hamiltonian of the
system in the presence of the external fields is

Ĥ =
N∑

i=1

1
2m

[p̂i − qeA(r̂i, t)]
2 + qeΦ(r̂i, t) − Zq2

e

4πε0r̂i

+
1
2

∑
i

∑
j �=i

q2
e

4πε0|r̂i − r̂j | . (17.20)

As such, this expression is much too complicated. In practice, one must ex-
pand (17.20) and make approximations.

In a systematic expansion of the Hamiltonian (17.20), there exist terms
due to the electric field of the incident wave, and others due to the magnetic
field. We neglect this second type of interaction. In fact, we have |B| = |E|/c
for a plane wave in vacuum. Since the typical velocity of an external electron
in an atom is of the order of αc ∼ c/137, i. e. much smaller than the velocity
of light, the Lorentz force and the ensuing magnetic effects are very small
compared with the electric part. If we were considering X rays and internal
electrons, these magnetic effects would be comparable to the electric effects.

Even if we limit ourselves to the electric-dipole interaction of a one-
electron atom, we should, in full rigor, keep the dependence of the incident
field on r. However, the typical spatial extension of the electron orbit is the
atomic scale (〈r〉 ∼ 1 Å). This is much smaller than the wavelength of radia-
tion corresponding to the infrared, visible or ultraviolet part of the spectrum
(λ = 2π/k ≥ 103 Å). Consequently the variation of E with r is negligible and
it is legitimate to replace E(R0 + r, t) by E(R0, t).

To summarize, the simple expression that we choose for Ĥ1 in the case
of a one-electron atom is the dominant term of the interaction between the
electromagnetic field (E,B), and the charge and current densities inside the
atom. It is the first term of a multipole expansion which also contains smaller
effects, of magnetic and/or relativistic origin.
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17.2.3 Absorption of Energy by an Atom

In order to simplify the notation, we assume that the center of mass of the
atom is at R0 = 0. At time t, the atomic state is

|ψ(t)〉 = γ1(t) e−iE1t/h̄ |1〉 + γ2(t) e−iE2t/h̄ |2〉 +
∑

n �=1,2

γn(t) e−iEnt/h̄ |n〉 ,

with the initial conditions γ1(0) = 1 and γ2(0) = . . . = γn(0) = 0. Inserting
the expression (17.19) into the general result (17.13), we find

γ2(t) =
qeE0

2h̄
〈2|r̂ · ε|1〉

(
ei(ω0+ω)t − 1

ω0 + ω
+

ei(ω0−ω)t − 1
ω0 − ω

)
, (17.21)

where h̄ω0 = E2 − E1.
A resonance phenomenon appears for ω ∼ ω0. In the above expression,

the first term is of the order of 1/ω = T0/2π, where T0 is the period of the
exciting field (T0 ∼ 10−15 s in the optical domain). For ω = ω0, the second
term increases linearly with the interaction time t. If t � T0, we can neglect
the first term compared with the second, and we obtain

P1→2(t) =
q2
eE2

0

4h̄2 |〈2|r̂ · ε|1〉|2 y(ω − ω0, t) . (17.22)

In this expression, the presence of the square of the matrix element |〈2|r̂|1〉|2
is of great importance in determining which transitions are allowed, as we
shall see. We also note the presence of the function y(ω−ω0, t) (17.16). This
transition probability has a resonant behavior in the vicinity of ω = ω0, and
the width of the resonance is of the order of 1/t.

Contribution of Spontaneous Emission. At resonance, the time t must
be sufficiently small that |γ2(t)| � 1, which is a necessary condition for the
perturbative approach to be valid. Also, the time t has to be much smaller
than the lifetime τ of the level |2〉 due to spontaneous emission. Otherwise,
this process has to be taken into account in the above calculation, and it gives
a finite width to the resonance line (see Sect. 17.3). We shall see in Sect. 17.2.5
that τ � T0, so that it is possible to fulfill simultaneously t � T0 so that
(17.22) holds, and t � τ so that spontaneous emission can be neglected.

The Concept of the Photon. We comment here on the result (17.22) that
the transitions are important only when the frequency of the light wave is
close to a Bohr frequency of the atom, h̄ω = E2 − E1. This phenomenon is
analogous to the photoelectric effect: an electron jumps from one state to
another provided the incoming frequency is tuned to a Bohr frequency. In
the case of the photoelectric effect, an electron is emitted and the final state
belongs to the continuum of ionized states. Contrary to a common prejudice
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due to the chronology of the discoveries, we obtain an explanation of the
photoelectric effect although we have not quantized the electromagnetic field
and we have not introduced the concept of the photon. This concept only
becomes necessary when we wish to explain the properties of radiation itself
or to account for the spontaneous emission of radiation.

Validity of the Perturbative Treatment. The electrostatic Coulomb
field seen by an electron in an atom is of the order of 1011 V/m, which is
enormous compared with the electric field of a “standard” light wave. In or-
der to compete with the Coulomb field, one must use laser beams with an
intensity of ∼ 1015 W/cm2, which is considerable. We can see that the use of
perturbation theory is justified, i. e. the external field appears as a very small
fluctuation compared with the Coulomb field.

17.2.4 Selection Rules

We now derive from (17.22) the selection rules for electric-dipole absorption
and induced emission. Consider the matrix element

〈2|r̂|1〉 ≡ 〈n2, �2, m2|r̂|n1, �1, m1〉 .

In spherical coordinates, we have z = r cos θ, x ± iy = r sin θ e±iϕ, i. e. the
coordinates of r are expressed linearly in terms of r Y1,m(θ, ϕ). In the above
matrix element, the contribution of interest is the angular integral∫

[Y�2,m2(Ω)]∗ Y1,m(Ω) Y�1,m1(Ω) d2Ω .

Owing to the properties of spherical harmonics described in Chap. 10, this
integral is nonzero if and only if

�2 = �1 ± 1 and m2 − m1 = 1, 0, −1 . (17.23)

This is the case, for instance, for the Lyman α line of hydrogen, 2p → 1s, and
for the resonance line of sodium, 3p → 3s; in both cases, �1 = 1 and �2 = 0.
For a pair of levels which does not fulfill (17.23), the transition is forbidden.
An example is the transition corresponding to the 21 cm line of hydrogen, for
which both levels have zero orbital angular momentum (�1 = �2 = 0). The
dominant coupling between these two levels is a magnetic-dipole interaction,
whose matrix element is much smaller than for an electric-dipole coupling.

17.2.5 Spontaneous Emission

A complete calculation of spontaneous emission requires the quantization of
the electromagnetic field, and we shall not treat this subject here. However,
it is interesting to give the main results and to discuss them.
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Consider an excited atomic state |i〉 which is coupled by an electric-dipole
transition to a state |f〉 with a lower energy. An atom prepared in the state
|i〉 may decay to the state |f〉 by emitting spontaneously a photon with an
energy h̄ωif = Ei − Ef . One can show that the probability dPi→f that the
decay takes place during an arbitrarily short time interval dt is proportional
to dt. Therefore one defines a probability per unit time dPi→f/dt, which is
independent of dt, and which is given by the formula

dPi→f

dt
=

ω3
if

3πε0h̄c3
|〈i|D̂|f〉|2 , (17.24)

where D̂ is the electric dipole moment introduced above. Since each photon
carries an energy h̄ωif , the energy radiated per unit time dI/dt is therefore

dI

dt
=

ω4
if

3πε0c3
|〈i|D̂|f〉|2 .

We notice that these transitions follow the same selection rules as found in
Sect. 17.2.4, since the same matrix element is concerned.

We can compare this result with the classical formula giving the total intensity
radiated per unit time by an electric dipole of moment p(t) = P cos ωt:

dI

dt
=

1

6πε0c3
|p̈(t)|2 .

After performing a time average over a period 2π/ω, we obtain

dI

dt
=

ω4

12πε0c3
P 2 .

We notice the analogy between the classical and quantum formulas, with the cor-
respondence set out in Table 17.1. This substitution was made by Heisenberg in
1925. It was a basic ingredient of his matrix mechanics.

Table 17.1. Correspondence between classical and quantum formulas for sponta-
neous emission of radiation

Classical Quantum

Frequency ω → ωif = (Ei − Ef )/h̄

Amplitude P → 2 |〈i|D̂|f〉|

Lifetime of an Atomic Level; Orders of Magnitude. Consider an as-
sembly of N0 atoms all in state |i〉 at time 0. Since the probability that a
given atom decays in a time step dt is proportional to dt, the number of
atoms N(t) still in the state |i〉 at time t follows an exponential decay law:

N(t) = N0 e−t/τ , where
1
τ

=
dPi→f

dt
.

The quantity τ is called the lifetime of the level |i〉.
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For a monovalent atom, we know that the size a of an outer electron orbit
is of the order of h̄2/me2 � e2/h̄ω, which gives

1
τ

∼ ω3
if

3πε0h̄c3
q2
ea2 ∼ ωif α3 , where α =

e2

h̄c
� 1

137
. (17.25)

For optical radiation, the order of magnitude of the lifetime τ of atomic levels
is 10−7 to 10−9s. This is much longer than a typical Bohr period 2π/ωif ,
owing to the smallness of the coefficient α3 entering into (17.25).

17.2.6 Control of Atomic Motion by Light

In the above considerations, we have assumed that the atom is fixed at a point
R0. If the atom has a velocity v, our analysis must be modified, owing to the
Doppler effect. The apparent angular frequency of the light wave becomes
ω−k · v, which shifts the resonance position. For a typical atomic velocity at
room temperature (500 m/s) and for a visible wavelength (0.5 µm), this shift
is of the order of 1 GHz.

The recoil of the atom in an absorption or emission process should also
be taken into account. Even if the atom is initially at rest, the fact that it
absorbs or emits photons with momentum h̄k will set it in motion. This effect
is called radiation pressure, and we can estimate the corresponding force. In
each absorption event, the atom gains a momentum h̄k. When it falls back
to the ground state by induced emission, it “gives back” this momentum to
the wave. In contrast, if it falls back to the ground state by a spontaneous
emission process, the change of the atom momentum vanishes on average
since the probability for spontaneous emission is the same in two opposite
directions. Each absorption–spontaneous-emission cycle therefore results in
a variation of the atomic velocity of h̄ k/m. This recoil velocity is ∼ 3 cm/s
for a sodium atom irradiated by a light wave tuned to its resonance line
(λ = 0.59 µm).

If the light wave is of sufficient intensity, it is possible to repeat these
cycles at a rate equal to 1/(2τ), i. e. one cycle every two lifetimes τ of the
excited state. The corresponding acceleration of the sodium atom (τ = 16 ns)
is then h̄k/(2mτ) ∼ 106 m s−2, i. e. 105 times the acceleration of gravity. This
radiation pressure force allows one to deflect an atomic beam with an initial
velocity ∼ 500 m s−1, and even to stop it in a distance of the order of one
meter.

If the incident light wave has a more complex structure than a plane
traveling wave, other forces will act on the atom. Suppose for instance that
the atom is placed in a light wave with a gradient of intensity. The frequency
of the light ω/2π is assumed to be close (but not equal) to the Bohr frequency
ω0/2π of the atom for its resonance transition, which connects the ground
state and the first excited state. One can show that the light wave creates
a dipole force on the atom which, for aqE0 � h̄ |ω − ω0| (a being a typical
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Fig. 17.2. Cesium atoms confined (a) at the intersection of two focused laser
beams (dimensions of the focal spot ∼80µm), (b) in a hexagonal lattice formed
by the interference pattern of three laser beams (distance between two adjacent
sites ∼28µm). The temperature of the trapped atoms is 30microkelvins. (Photo-
graph (a): Hélène Perrin and Christophe Salomon. Photograph (b): D. Boiron et
al., Phys. Rev. A 57, R4106 (1998))

atomic size), derives from the potential

U(R) =
q2E2

0 (R)
4h̄(ω − ω0)

|〈2|r · ε|1〉|2 .

This expression can be compared with the result found in Chap. 6, concerning
ammonia molecules placed in a static electric-field gradient. According to the
sign of the difference between the frequency of the light wave and the atomic
Bohr frequency, the atom is attracted towards regions of high luminous in-
tensities (ω < ω0) or is repelled by these regions (ω > ω0). It is therefore
possible to confine atoms in a vacuum, in the vicinity of the focal point of an
intense laser beam (see Fig. 17.2a). Using a standing light wave, one can also
construct a regular lattice of atoms in space by trapping them at the nodes
or the antinodes of the wave (see Fig. 17.2b).

The velocity dependence of the radiation forces opens up the possibility
of cooling atomic gases. Here one uses particular electromagnetic field con-
figurations, where the force created by the light is always in the direction
opposite to the atomic velocity. This results in a damping of the motion of
the atoms. This optical molasses allows investigators to reach temperatures
in the microkelvin range. The manipulation and cooling of atoms by light
have had many applications in recent years, in metrology (improvement of
atomic clocks), atom interferometry, collisions and statistical physics.
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17.3 Decay of a System

After studying the resonant or quasi-resonant coupling between two levels,
we turn to another class of problems, where an initial state is coupled to a
continuum of final states, i. e. a collection of states whose energies are very
close and can be considered as a continuum. This is a central problem in
collision physics and in the description of the decay of a system.

17.3.1 The Radioactivity of 57Fe

In order to present in a concrete way the issues addressed in this section,
we consider the specific case of a radioactive nucleus. We start with cobalt-
57. This has the peculiarity that the isolated 57Co nucleus is stable, but the
atom is not. A proton of the nucleus can absorb an electron of the internal
K shell. This gives rise to what is called an electron capture, or, equivalently,
an inverse β reaction:

57Co + e− → 57Fe∗∗ + ν .

The 57Co atom has a lifetime of 270 days.
The excited Fe nucleus 57Fe∗∗ produced in this reaction emits a first

photon γ1, of energy 123 keV, with a very short lifetime τ1 � 10−10 s. This
leaves the nucleus in another excited state, 57Fe∗. The 57Fe∗ nucleus then
emits a second photon γ2, of energy 14 keV, with a lifetime τ2 � 1.4×10−7 s,
leaving the 57Fe nucleus in its ground state:

57Fe∗∗ → 57Fe∗ + γ1 , h̄ω1 = 123 keV ;
57Fe∗ → 57Fe + γ2 , h̄ω2 = 14 keV .

It is possible to measure, for each decay, the time interval between the emis-
sions of the two photons γ1 and γ2.

By convention, we denote by t0 = 0 the time when the photon γ1 is
detected. We want to calculate the probability P (t) that the nucleus decays
and falls back to its ground state between the times 0 and t. Experimentally,
the answer to this question is well known: the decay 57Fe∗ → 57Fe + γ obeys
the exponential law

P (t) = 1 − e−t/τ ,

where in the present case, τ � 1.4 × 10−7 s. For t � τ , the probability that
the system decays between 0 and t is proportional to t:

t � τ → P (t) � t

τ
. (17.26)
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The Hilbert Space of the Problem. For this example, we must consider
the Hilbert space which describes the state of an iron nucleus, accompanied
by a certain number of photons. This is a situation different from those we
have met up to now. Strictly speaking, it requires the formalism of quantum
field theory. Here we simply assume that some matrix elements between the
relevant states exist, but we shall not attempt to calculate them explicitly.

There are two types of states to be considered:

• The initial state |i〉 ≡ |Fe∗〉 prepared at time t = 0, in the absence of
photons (the photon γ1, which is the signature that indicates that the Fe∗

has been prepared, is absorbed by the detector at t = 0).
• The possible final states |f〉 ≡ |Fe + γ, Ef 〉, representing the Fe nucleus in

its ground state accompanied by one photon. Ef represents the sum of the
energies of the γ photon and of the nucleus in its ground state. In full rigor,
we must specify also the direction of propagation of the outgoing photon
and its polarization, in order to define |f〉 completely.

The states |i〉 and |f〉 are eigenstates of the Hamiltonian Ĥ0, which de-
scribes nuclear forces on one hand and freely propagating photons on the
other hand. These states are not eigenstates of the coupling Ĥ1 between the
nucleus and the quantized electromagnetic field. In particular, a nucleus pre-
pared in the state |i〉 will not remain in this state indefinitely. We want to
calculate the evolution of the system assuming we know the matrix elements
〈f |Ĥ1|i〉.

Density of Final States. For simplicity, we neglect the recoil of the nucleus.
The energy of the 57Fe nucleus is therefore fixed. The emitted photon can be
in a whole series of energy states, which form a discrete set if we assume that
the system is contained in a finite volume. Consider some energy band dE.
Inside this band, there is a number dN of photon states. As in Sect. 4.4.2,
we define the density of states ρ(E):

ρ(E) =
dN

dE
.

This allows us to replace a discrete sum over the possible final states by an
integral over the final-state energy Ef , which is much easier to handle:

∑
f

−→
∫

ρ(Ef ) dEf .

Although we have not defined precisely the relation between photons and
the electromagnetic field, all we need to know here is that photons are mass-
less particles. The corresponding density of states can then be easily calcu-
lated. It is sufficient to make use of the fact that photons of momentum p
have an energy E = c |p|. As for the nonrelativistic particles that we studied
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in Chap. 4, the momenta of the photon are quantized if we suppose that
the experiment takes place in an (arbitrarily large) cubic box of size L, with
periodic boundary conditions:

p =
2πh̄

L
n , n = (n1, n2, n3) , n1, n2, n3 integers . (17.27)

Combining E = cp and (17.27), we obtain

ρ(E) =
L3

2π2h̄3

E2

c3
,

to be compared with (4.52) obtained in Chap. 4 for nonrelativistic massive
particles. It remains to be checked at the end of the calculation that the
predictions for any measurable quantity do not depend on the volume L3 of
the fictitious box that we have introduced. In the present case this is ensured
by the expression for the matrix element 〈f |Ĥ1|i〉, which scales as L−3/2.

17.3.2 The Fermi Golden Rule

We now come back to our decay problem. The nucleus 57Fe∗ can decay into
a continuous set of Fe + γ states. We are not interested in the probability
that it decays to a specific state, but in the probability that it decays to
some domain Df of final states, characterized by their direction Ω (within a
small solid angle d2Ω). We must therefore sum the formula which gives Pi→f

(17.15) over all possible final states of the domain Df :

d2Pi→Df
(t) =

1
h̄2

∑
f∈Df

|〈f |Ĥ1|i〉|2 y(ωif , t)

=
1
h̄2

∫
Df

|〈f |Ĥ1|i〉|2 y(ωfi, t) ρ(Ef ) dEf
d2Ω
4π

, (17.28)

where ωfi = (Ef−Ei)/h̄. We now use the fact that, as the time t increases, the
quantity y, considered as a function of Ef , becomes more and more peaked
in the vicinity of Ef = Ei. Using (17.16), we obtain

1
2πt

y(ωfi, t) ≈ δ(ωfi) = h̄ δ(Ef − Ei) . (17.29)

We can therefore neglect the variations of ρ(E) and of the matrix element
〈f |Ĥ1|i〉 in the integral over Ef . In other words, we extract the matrix element
〈f |Ĥ1|i〉 and the density of states ρ from the integral and evaluate them at
the central point Ef = Ei. Using (17.16), this leads to

d2Pi→Df
(t) =

2π

h̄
|〈f,Ef = Ei|Ĥ1|i〉|2 ρ(Ei)

d2Ω
4π

t . (17.30)
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We recover the linear dependence on time observed experimentally for
short times (see (17.26)). Let us assume for simplicity that the matrix element
〈f, Ef = Ei|Ĥ1|i〉 does not depend on the direction Ω of the emitted photon.
Summing over all solid angles, we deduce the lifetime of state |i〉:

1
τ

=
2π

h̄
|〈f,Ef = Ei|Ĥ1|i〉|2 ρ(Ei) . (17.31)

The fundamental relation (17.30) is called the Fermi golden rule. The
range of times t for which it can be applied is limited by two constraints:

• The time t must be short enough that Pi→all f (t) � 1:

t � τ . (17.32)

This is a necessary condition for the validity of first-order perturbation
theory.

• The time t must be long enough that the frequency width ∼ 1/t of the
function y(ωif , t) in (17.28) is much smaller than the typical scale of vari-
ation of the two other terms, 〈f |Ĥ1|i〉 and ρ. Denoting by κ this scale of
variation in the frequency domain, the second constraint reads

t−1 � κ . (17.33)

In any problem where the Fermi golden rule is used, one must check that there
exists a time interval during which these two constraints are simultaneously
satisfied.

17.3.3 Orders of Magnitude

We have already given in (17.25) the scaling laws for the lifetime of an ex-
cited atomic level, which can decay by spontaneous emission by means of an
electric-dipole transition. Aside from geometric factors, this decay rate reads

1
τ
∼ α

a2
1ω

3
if

c2
=

h̄3ω3
if

m2
ee

2c3
, (17.34)

where me is the electron mass, a1 = h̄2/mee
2 is the Bohr radius and h̄ωif is

the energy of the emitted photon.
We can discuss the consistency of the Fermi golden rule in this example.

The frequency scale κ for the variations of 〈f |Ĥ1|i〉 and ρ is typically κ ∼ ωif .
Therefore (17.32) and (17.33) can be simultaneously satisfied if:

ω−1
if � τ ⇒ h̄3ω2

if

m2
ee

2c3
� 1 .

A typical Bohr frequency is EI/h̄, where EI = mee
4/2h̄2 is the ionization

energy of the hydrogen atom. The requirement for the consistency of our
approach then reads
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α3 � 1 .

Since α � 1/137 � 1, this inequality is well satisfied. The smallness of the fine
structure constant guarantees that the perturbative treatment of the effect
of electromagnetic interactions on atomic levels is a good approximation.

In going from atomic systems to nuclear systems, considering the expres-
sion 1/τ ∼ αa2

1ω
3
if/c2, we expect that the electric-dipole decay rates should

be (i) reduced by a factor of order 10−10 owing to the change of size (10−15 m
instead of 10−10 m), and (ii) enhanced by a factor of order 1018 owing to the
change of energy scale (1 MeV instead of 1 eV).

We can therefore transpose (17.34) to the nuclear scale using R ∼ r0A
1/3

for the radius of a nucleus, where r0 ∼ 1.2 fm and A is the number of nucleons.
We obtain

1
τ
∼ α

r2
0 A2/3 ω3

c2
. (17.35)

One can check that the energies and lifetimes of the excited states of 57Fe
agree acceptably with this estimate. In particular, we can verify immediately
that τ2/τ1 ∼ (ω1/ω2)3 ∼ 103. In the case of nitrogen-13, there exists an
excited state with h̄ω = 2.38 MeV and a lifetime τ ∼ 10−15 s. Using these
parameters and (17.35), we obtain τ ∼ 2 × 10−15 s, which is a perfectly
acceptable order of magnitude.

17.3.4 Behavior for Long Times

We have just found how the notion of a lifetime of an excited atomic or nuclear
level emerges using the short-time approximation to the decay law. For longer
times, first order perturbation theory no longer applies since we no longer
have Pi→all f � 1. In this case, one can recover the measured exponential
decay law using another approximation due to Wigner and Weisskopf.

In order to illustrate this, we consider the following simple model. We
assume that the only nonvanishing matrix elements are 〈i|Ĥ1|f〉 and 〈f |Ĥ1|i〉:

〈i|Ĥ1|i〉 = 〈f |Ĥ1|f〉 = 0 .

The initial state is |ψ(0)〉 = |i〉. Using the above form of the coupling, we can
write the state of the system at a later time t as

|ψ(t)〉 = γi(t) e−iEit/h̄ |i〉 +
∫

γ(f, t) e−iEf t/h̄ |f〉 ρ(Ef ) dEf . (17.36)

Here we assume for simplicity that the energy is the only quantum number
which characterizes the final states. We set H(f) ≡ 〈i|Ĥ1|f〉 (H(f) is simply
a function of Ef ), and the Schrödinger equation gives



348 17. The Evolution of Systems

ih̄γ̇i(t) =
∫

ei(Ei−Ef )t/h̄ H(f) γ(f, t) ρ(Ef ) dEf , (17.37)

ih̄γ̇(f, t) = ei(Ef−Ei)t/h̄ H∗(f) γi(t) , (17.38)

with the initial conditions γi(0) = 1, γ(f, 0) = 0.
We integrate (17.38) formally:

γ(f, t) =
H∗(f)

ih̄

∫ t

0

ei(Ef−Ei)t
′/h̄ γi(t′) dt′ , (17.39)

and we insert this result into (17.37). We then obtain the integro-differential
equation

γ̇i(t) = − 1
h̄2

∫
dEf ρ(Ef )

∫ t

0

ei(Ei−Ef )(t−t′)/h̄ |H(f)|2 γi(t′) dt′ , (17.40)

which can be rewritten as

γ̇i(t) = −
∫ t

0

N (t′′) γi(t − t′′) dt′′ ,

where

N (t′′) =
1
h̄2

∫
ei(Ei−Ef )t′′/h̄ |H(f)|2 ρ(Ef ) dEf .

The function N (t′′) is proportional to the Fourier transform of the function
of the final energy G(Ef ) = |H(f)|2 ρ(Ef ). By the definition of a continuum,
the width of the function G(Ef ) is large. Therefore N (t′′) has a narrow width
and it is nonvanishing only if t′′ is close enough to 0. We denote by t′′ = τc the
characteristic time above which the integrand oscillates so rapidly that N (t′′)
is negligible. We make the approximation (to be justified a posteriori in each
case) that γi(t − t′′) varies slowly in the time interval 0 < t′′ < τc. We can
then replace γi(t−t′′) by γi(t) in the right hand side of the integro-differential
equation, and we obtain

γ̇i(t) = −γi(t)
∫ t

0

N (t′′) dt′′ .

For times t large compared with τc, the upper bound of the integral can be
extended to infinity. Finally, we use the relation∫ +∞

0

ei(ω−ω0)t
′′

dt′′ = πδ(ω − ω0) + iPP
(

1
ω − ω0

)
,

where PP is the principal-value integral, and we obtain

γ̇i(t) = −
(

1
2τ

+ iδωi

)
γi(t) ,
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where

1
τ

=
2π

h̄
|H(f)|2ρ(Ei) and δωi = PP

(∫ |H(f)|2
Ei − Ef

ρ(Ef )dEf

)
. (17.41)

The differential equation which gives the evolution of γi(t) can be integrated
immediately. This gives the probability that the system has decayed at time
t:

P (t) = 1 − |γi(t)|2 = 1 − e−t/τ , (17.42)

i. e. the exponential law. One can check that the value for τ derived in (17.41)
coincides with the value (17.31) calculated previously using perturbation the-
ory.

The quantity h̄ δωi corresponds to an energy shift of the excited state
due to the coupling of the nucleus and the electromagnetic field. This shift
is exactly the same as what one obtains in second-order time-independent
perturbation theory (see (9.21)). Note that to first order, the energy shift
vanishes because of our assumptions concerning the diagonal elements of Ĥ1.
In the case of atomic levels, this second-order shift is called the Lamb shift
(see Sect. 13.2).

We now insert the result for γi(t) in (17.39), the equation giving γ(f, t).
We obtain the energy distribution of the final states as follows:

p(Ef ) = |γ(f, t = ∞)|2 = |H(f)|2 1
(Ef − Ēi)2 + Γ2/4

, (17.43)

where Ēi = Ei + h̄ δωi and Γ = h̄/τ . If we assume that |H(f)|2 varies slowly,
this probability law is a Lorentz function, centered at Ēi, with a full width
at half maximum Γ = h̄/τ (see Fig. 17.3). In other words the energy of the
final states is, on average, Ēi with a dispersion ∆E, where

∆E = Γ/2 = h̄/2τ . (17.44)

This dispersion in energy of the final state is characteristic of any unstable
system: it occurs in beta decay of nuclei, radiative decay of atomic states,

0-5-10 5-15-20

Ef  - Ei  (neV)

N (Ef )

Fig. 17.3. Energy distribu-
tion of the photon γ2 emitted
in the decay of 57Fe∗
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etc. It originates from the fact that the initial state |i〉 is an eigenstate of
the Hamiltonian in the absence of the interaction but is not an eigenstate of
the full Hamiltonian. Therefore, this initial state does not have a well-defined
energy.

17.4 The Time-Energy Uncertainty Relation

One of the great controversial questions in the 1930s concerned the time–
energy uncertainty relation

∆E ∆t ≥ h̄/2 . (17.45)

Although this relation is commonly accepted, its interpretation varies con-
siderably from one author to the other. It is indeed quite different from the
uncertainty relations that we derived in Chap. 7. The relation ∆x∆p ≥ h̄/2,
for instance, follows directly from the principles of quantum mechanics and
the commutation relation of the operators x̂ and p̂. It is therefore an intrin-
sic property of any system. On the other hand, in the Schrödinger equation,
time is not an operator, but a parameter which has a well-defined value in the
equations. Although we can measure it physically, time is not an observable.

We shall not give an exhaustive review of all points of view, neither will
we adopt one attitude rather than another.1 We simply wish to make a few
observations which can be used as a starting point for further reflection.

17.4.1 Isolated Systems and Intrinsic Interpretations

We recall some results presented in the first few chapters for systems whose
Hamiltonians do not depend on time.

Stationary States. These are eigenstates of the energy, whose time evolu-
tion reduces to a multiplicative global phase factor: |ψ(t)〉 = e−iEt/h̄|ψ(0)〉.
If the system is prepared in such a state, the expectation value 〈a〉 of any
observable Â does not change with time. This agrees with the relation (17.45):

An isolated system whose energy is well defined (∆E = 0) does not evolve
from t = −∞ to t = +∞.

Evolution of a System. The state of a system |ψ(t)〉 can be a superposition
of two or more energy eigenstates. For instance, in Chap. 2, we constructed
a wave packet as an infinite sum of stationary states. Such a system does
not have a well defined value of the energy, and the expectation values of
observables evolve with time, unless they correspond to a conserved quantity.
1 See for instance the article by Y. Aharonov and D. Bohm, Phys. Rev. 122, 1649

(1961).
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Consider a physical quantity A associated with the system, such as the
position of a hand on a wristwatch. We denote by 〈a〉t and ∆a the mean
position and the mean square deviation of this quantity at time t. Let v =
d〈a〉t/dt be the velocity associated with 〈a〉t. The characteristic time τ it
takes the “wave packet” to cross a certain point, for instance a = 0, is τ =
∆a/|v|. In Chap. 7 we proved the following properties:

• ∆a is related to the energy dispersion ∆E by

∆a∆E ≥ 1
2
|〈ψ|[Â, Ĥ]|ψ〉| ,

where |ψ〉 is the state of the system at time t.
• v is given by

v =
d〈a〉t
dt

=
1
ih̄

〈ψ|[Â, Ĥ]|ψ〉 .

Combining these two relations, we obtain

τ ∆E =
∆a

|v| ∆E ≥ h̄

2
.

We recover a relation similar to (17.45), and it appears here as an intrinsic
property of the quantum system: the larger the dispersion ∆E of the en-
ergy, the shorter the characteristic time of evolution of any quantity. This
formulation is due to Mandelstamm and Tamm.

Decay of an Unstable System. We have seen in Sect. 17.3.4 above that
when a system is unstable and decays, its energy is not well defined. The
energy distribution of the final products is peaked around some value with a
dispersion related to the lifetime τ by ∆E = h̄/(2τ). This is also of the form
(17.45), and it is again an intrinsic property of the system.

17.4.2 Interpretation of Landau and Peierls

This interpretation2 comes from the analysis of the measurement of the en-
ergy E of a system. In order to perform such a measurement, we must couple
the system of Hamiltonian Ĥs, to a detector of Hamiltonian Ĥd. The detector
is initially in a state of known energy εd, and the coupling takes place for
an interval of time T . When the coupling is switched off, the state of the
set system + detector is a superposition of eigenstates of Ĥs + Ĥd, with an
average energy E′ + ε′d close to E + εd, up to an uncertainty h̄/T :

|E′ + ε′d − E − εd| ∼ h̄

T
.

2 See, for instance, L. Landau and E. Lifshitz, Quantum Mechanics, Pergamon,
Oxford (1965).
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This results from the shape of the function y(ω = E/h̄, t) introduced in
Sect. 17.1.5. Suppose that we know precisely the initial and final energies of
the detector εd and ε′d. We can therefore deduce the uncertainty in E′ − E:
∆(E′ − E) � h̄/T . In other words, even if the system is in a well-defined
energy state before the measurement, an observer has access to this value
only up to an uncertainty h̄/T .

17.4.3 The Einstein–Bohr Controversy

In 1930, Einstein presented the following argument. A clock is placed in
a box, hanging on a spring. It is set to open a shutter at time t1 and to
close it at time t2 = t1 + T , the interval T being determined with great
accuracy. Some radiation escapes from the box when the shutter is open,
and we measure the corresponding energy E by weighing the box before and
after the experiment (E = δm c2). Since we have as much time as we want
to do this weighing, it can be very precise. Therefore this procedure seems to
provide a counterexample to the relation ∆E T ≥ h̄/2. Bohr disproved the
argument in the following way:

(1) The position of the box which contains the clock is defined up to some
quantum uncertainty ∆z. Since the clock is placed in a gravitational field, its
rate depends on the gravitational potential and, owing to general relativity,
there is an uncertainty, given by

∆T

T
=

g ∆z

c2
, (17.46)

in how long the shutter stays open.

(2) At time t2, the determination of the decrease of the weight δm g = Eg/c2

of the box is performed by measuring the momentum the box acquires during
this time interval T ,

pz = δm gT =
Eg

c2
T .

Here we assume that T is shorter than the oscillation period of the spring;
a similar argument could be developed in the reverse case. Owing to the
quantum uncertainty ∆pz in the initial momentum of the box, the accuracy
in the measurement of the energy is

∆E =
c2

gT
∆pz . (17.47)

Combining the two equations (17.46) and (17.47) and using Heisenberg’s
inequality ∆z ∆pz ≥ h̄/2 for the position and the initial momentum of the
box, we recover the desired inequality. The story goes that Bohr, who had
spent an entire night to find this counterargument, was quite proud of using
Einstein’s general relativity to solve the problem.
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Further Reading

• For a discussion of the coupling between atoms and the electromagnetic
field, see, for example, C. Cohen-Tannoudji, J. Dupont-Roc and G. Gryn-
berg, Atom–Photon Interactions, Basic Processes and Applications, Wiley,
New York (1992).

• For laser cooling of atoms and its applications to atomic clocks, see, for
example, the 1997 Nobel lectures by S. Chu, C. Cohen-Tannoudji and
W. Phillips, Rev. Mod. Phys. 70, 685, 707 and 721 (1998); C. Cohen-
Tannoudji and W.D. Phillips, “New mechanisms for laser cooling”, Phys.
Today, October 1990, p. 33; S. Chu, “Trapping neutral particles”, Sci. Am.,
March 1992.

• The debate between Bohr and Einstein is presented in detail in: A. Pais,
Subtle is the Lord: the Science and the Life of Albert Einstein, Oxford
University Press, Oxford (1982); N. Bohr, a Centenary Volume, edited by
A.P. French and P.J. Kennedy, Harvard University Press, Cambridge, MA
(1985).

Exercises

17.1. Excitation of an atom with broadband light. Consider n two-
level atoms driven by an electric field E(t) = E0ezf(t) cos ωt, where f(t) is
a function which is zero outside the interval [−τ, τ ]. We consider an electric-
dipole coupling between the atoms and the field. The ground and excited
atomic states are denoted by a and b, respectively, and we set by convention
Ea = 0 and Eb = h̄ω0. We suppose that (i) the typical scale of variation of f(t)
is very large compared with the period 2π/ω and (ii) the excitation frequency
ω/2π is close to the Bohr frequency ω0/2π. We neglect the contribution of
nonresonant terms.

a. We define h̄Ω1 = −dE0, where d = 〈b|D · ez|a〉 (Ω1 is real) and we
denote by g(Ω) the Fourier transform of f(t). Using perturbation theory,
calculate the average number of excited atoms at time τ . This number is
denoted by nb(τ).

b. The electric field now consists of a succession of wave packets:

E(t) = E0 ez

∞∑
p=1

f(t − tp) cos[ω(t − tp)] , where t1 < t2 < . . . .

Consider T such that t� + τ < T < t�+1 − τ . Calculate nb(T ).
c. We suppose that the successive wave packets arrive in a random way,

with γ wave packets per unit time on average. We denote by n̄b(T ) the
statistical mean of nb(T ). Calculate n̄b(T ) for γT � 1. Show that one
can define a transition probability per unit time from level a to level b.
This quantity will be denoted Γa→b.
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d. We put w(ω + Ω) = (ε0c/2)E2
0γ|g(Ω)|2 and we denote by Φ the incident

flux of energy. Relate w and Φ. Express Γa→b in terms of w(ω0).
e. We suppose now that all atoms are initially in the state b. How can we

transpose the previous reasoning?
f. Write down the evolution equations for the mean populations na(t) and

nb(t). What is the steady state of the system?

17.2. Atoms in equilibrium with black-body radiation. We consider
the model of the previous exercise and suppose that the atomic assembly is
irradiated by radiation from a black body of temperature T . We recall that
we have in this case

w(ω) = µ
ω3

eh̄ω/kBT − 1
,

where µ depends only on fundamental constants. What must one add to the
previous model in order to ensure the consistency of statistical physics? (This
question was considered by Einstein in 1917.)

17.3. Ramsey fringes. A neutron (which is a spin-1/2 particle) propagates
along the z axis. We denote by |±〉 the eigenstates of the operator Ŝz, the
projection of the neutron spin on the z axis. The neutron is initially prepared
in the state |+〉, and it crosses two radio-frequency cavities of length L,
separated by a distance D � L (Fig. 17.4). In each cavity, a rotating magnetic
field

B1 = B1(cos ωt ux + sinωt uy)

is applied. The whole experimental setup is placed in a constant, uniform
magnetic field B0 parallel to the z axis. The motion of the neutron is treated
classically as a uniform linear motion with velocity v. We are interested only
in the quantum evolution of the spin state of the neutron. The magnetic
moment operator of the neutron is denoted by µ̂ = γŜ, and we set ω0 = −γB0

and ω1 = −γB1.
Calculate to first order in B1 the probability amplitude for finding the

neutron in the spin state |−〉 at the output of the device. Show that the spin

D

L L

x

z

Fig. 17.4. Experimental setup for the observation of Ramsey fringes
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flip probability varies rapidly with the detuning ω − ω0, and that one can
determine the resonance frequency ω0 with a much better precision than one
can if only one of the two cavities is used.

17.4. Damping of a quantum oscillator. Consider a harmonic oscillator
of angular frequency ω (the “system”) characterized by the creation and
annihilation operators â† and â. This oscillator is coupled to a “bath” of
oscillators labeled by an index λ. An oscillator of the bath has an angular
frequency ωλ and is characterized by the creation and annihilation operators
b̂†λ and b̂λ. The total Hamiltonian reads

Ĥ = h̄ωâ†â +
∑

λ

h̄ωλb̂†λb̂λ +
∑

λ

gλ

(
â†b̂λ + âb̂†λ

)
,

where the gλ are real coefficients. We recall that [â, â†] = [b̂λ, b̂†λ] = 1. We use
the Heisenberg representation (see exercise 5.3).

a. Write down the evolution equation of â(t) and of each b̂λ(t).
b. Integrate the evolution equation of b̂λ(t). Write down an evolution equa-

tion for â as a function of the operators b̂λ(0) and of

N (t′′) =
1
h̄2

∑
λ

g2
λ ei(ω−ωλ)t′′ .

c. The bath of oscillators is assumed to be in its ground state. Using an
approximation for the function N (t′′) similar to that of Sect. 17.3.4,
derive the evolution equation for the average values of â(t) and â†(t), for
an arbitrary initial state of the system oscillator.



18. Scattering Processes

It is when you get too close to a lady...
that she says you’re going too far.

Alphonse Allais

Scattering processes play a key role in the investigation of the properties
of matter. Rutherford’s experiment, which demonstrated the existence of a
nucleus with a positive charge and a size 105 times smaller than the atomic
radius, was based on the scattering of α particles by gold atoms. Modern
laser spectroscopy, which provides information on the structure of atoms
and molecules, can be viewed as a photon scattering process. The electric
conductivity of a metal can only be understood quantitatively if one takes
into account the scattering of conduction electrons by the impurities in the
crystal. Last but not least, particle physics is entirely based on the analysis of
scattering processes. The very large energies reached in modern accelerators
(center-of-mass energies of approximately 100 GeV to a few TeV) allow us to
probe matter at very short distances (≤ 10−18 m).

This chapter gives an elementary approach to scattering processes. We
first present the concept of the cross section, which plays a central role in the
description of a collision, both in classical and in quantum physics. We shall
then calculate cross sections to the lowest order in the scattering potential,
and obtain what is known as the Born approximation. We shall use this
expression to explain why and how scattering can be used to gain information
on the structure of composite systems such as atoms and nuclei. In the last
section, we explain how one can go beyond the Born approximation and
obtain an exact (implicit) expression for the scattering cross section.

In all of this chapter we shall consider the scattering of a particle by a
potential V (r). This formalism also allows us to study a collision between
two particles. Indeed, as we have already shown in Sect. 11.1, the solution of
the two-body problem, whose Hamiltonian reads

Ĥ2body =
p̂2

1

2M1
+

p̂2
2

2M2
+ V (r̂1 − r̂2) ,

can be reduced to solving the one-body problem in the fixed potential V (r).
The motion of the relative particle, of coordinate r = r1 − r2 and of mass
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m = M1M2/(M1 + M2), is given by the Hamiltonian

Ĥ =
p̂2

2m
+ V (r) . (18.1)

The scattering of a particle of mass m by the potential V (r) therefore deter-
mines completely the result of a collision between the two particles of masses
M1 and M2.

18.1 Concept of Cross Section

Classically, the exploration of a field of force consists in studying the trajec-
tories of a particle placed in it. The smallness of atomic distances (≈1 nm) or
nuclear distances (≈1 fm) and the fact that the notion of a trajectory loses
its meaning in quantum mechanics mean that we must use another approach
on such scales.

This analysis is based on the statistical concept of a cross section. This
concept is used in classical physics and it remains valid in quantum mechanics.
Its principle is based on sending a beam of particles with a well defined
velocity to a target and measuring the angular and energy distribution of the
final particles (Fig. 18.1).

Dete
cto

r

Target

p

Incident
flux F

dΩ

Fig. 18.1. Scattering of particles by a target

18.1.1 Definition of Cross Section

The notion of the cross section is basically experimental. Incident particles
of momentum p, whose flux is F , arrive at a target and are scattered. A
detector counts the number of outgoing particles in a given solid angle1 dΩ
1 In this chapter, dΩ denotes either a first-order (2π sin θ dθ) or a second-order

(sin θ dθ dϕ) element according to whether or not we have integrated over the
azimuthal angle ϕ.
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in the vicinity of a direction Ω. We assume that the particles of the target
are sufficiently far apart from one another that an incident particle interacts
with only one target particle, and we neglect processes involving multiple
scattering events.

Let N be the number of particles in the target. The average number dn of
particles which are detected per unit time in the solid angle dΩ is proportional
to N , to F and to dΩ. We denote by dσ/dΩ the coefficient of proportionality:

dn = NF
dσ

dΩ
dΩ . (18.2)

The quantity dσ/dΩ, which has the dimensions of an area, is the differential
cross section in the direction Ω. It is independent of the incident flux F and
of the number N of scatterers in the target. The total number n of particles
scattered per unit time is n = NFσ, where σ is the total cross section, given
by

σ =
∫

dσ

dΩ
dΩ . (18.3)

18.1.2 Classical Calculation

In classical physics, a knowledge of the trajectories yields directly the differ-
ential scattering cross section if we use the following simple physical interpre-
tation of dσ/dΩ. The quantity (dσ/dΩ) δΩ represents the area of the opaque
surface that one would need to put perpendicular to the incident beam in
order to block all particles which are scattered into the solid angle δΩ around
the direction Ω (Fig. 18.2).

Consider a single, fixed target particle and a flux F of incident particles
of momentum p. For each of these particles, one can calculate the trajectory
in terms of the impact parameter b. We assume that the interaction potential

O
θ θ + dθ

bb+db

a

Fig. 18.2. Classical scattering of particles of momentum p by a spherically sym-
metric potential centered at the origin 0 and of range a. The shaded area represents
the opaque surface that one would need to place perpendicular to the incident
beam in order to block the particles scattered by the angle θ into the solid angle
dΩ = 2π sin θ dθ. By definition, this area of surface is equal to (dσ/dΩ) dΩ, where
dσ/dΩ is the differential cross section
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V (r) is of finite range and that it has spherical symmetry. We denote the
scattering angle by θ. Integration of the equations of motion gives the relation
b(θ). The particles scattered into the interval between θ and θ + dθ are those
whose impact parameter is between b and b+db (see Fig. 18.2). The number
dn of outgoing particles per unit time in the solid angle dΩ = 2π sin θ dθ is
equal to the number of incident particles whose impact parameter is between
b and b + db. By the definition of the flux F , this number is dn = 2π b db F ,
therefore the differential cross section is

dσ

dΩ
(θ) =

b(θ)
sin θ

∣∣∣∣db

dθ

∣∣∣∣ . (18.4)

A measurement of dσ/dΩ gives information about the relation b(θ), and
therefore about the potential V .

18.1.3 Examples

Hard Spheres. Consider a particle incident on a hard sphere of radius R.
Assuming the incident particle is point-like, one can show with no difficulty
that db/dθ = −(R/2) sin(θ/2). Since b/R = cos(θ/2), the differential cross
section is isotropic:

dσ

dΩ
=

R2

4
.

The total cross section is σ = πR2, which is the geometric cross section of
the target sphere. In the case of two identical hard spheres, the scattering is
isotropic in the center-of-mass frame and one obtains σ = 4πR2.

Coulomb Scattering. A particle of charge Z1e, of kinetic energy Ei =
mv2/2, is scattered by a fixed center of charge Z2e located at the origin (the
potential is V (r) = Z1Z2e

2/r, where e2 = q2/(4πε0)). In this hyperbolic Ke-
pler motion, the relation between the impact parameter b and the scattering
angle θ is

b =
Z1Z2e

2

2Ei
cot

θ

2
,

and the differential cross section is

dσ

dΩ
=
(

Z1Z2e
2

4Ei

)2 1
sin4(θ/2)

. (18.5)

This formula, called the Rutherford cross section, played a crucial role in the
discovery of the nucleus inside the atom.
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The Total Cross Section in Classical Mechanics. In classical mechan-
ics, the total cross section is finite only if the potential V (r) is a constant (i. e.
the force vanishes) for distances r larger than some finite radius. Otherwise
the combination of (18.3) and (18.4) leads to

σ ≥ 2π

∫ ∞

0

b db = ∞ .

The physical meaning of this infinite total cross section is simple. If the force
F = −∇V is not strictly zero outside some given volume, all incident parti-
cles are deflected by some finite amount, even when the impact parameter b
is very large. This is very different from the situation in quantum mechanics,
where one finds a finite total cross section even for potentials decreasing as
r−n at infinity (provided n is larger than 3). In quantum mechanics, there is a
finite probability that an incident particle with a well defined momentum pi,
i. e. in the state eipi·r/h̄, remains in this state even when the force is different
from zero everywhere in space.

18.2 Quantum Calculation in the Born Approximation

An exact calculation of the scattering cross section requires the determination
of the eigenstates of the Hamiltonian (18.1). This is a difficult numerical task,
except in some specific cases where the analytic form of these eigenstates is
known. We shall address this problem in Sect. 18.4. Here we consider the
case where the probability of scattering is small, and we treat the effect
of the scattering potential as a small perturbation of the free motion of the
particle. We derive an approximate value of the scattering cross section, valid
to second order in V . This is the Born approximation, which is very useful
in practice.

18.2.1 Asymptotic States

A scattering experiment is characterized by the following assumptions:

a. The particle has, initially, a well-defined momentum and is far from the
scattering center, and therefore outside the range of the interaction po-
tential V (r). This preparation takes place at some initial time ti in the
“distant past”: ti → −∞.

b. We are interested in the final momentum distribution of the particle when
it is again far from the interaction region. This occurs at a time tf in the
“distant future”: tf → +∞.

The interaction region has dimensions of the order of a nanometer for
atomic collisions and of a femtometer for nuclear collisions. The measuring
devices have macroscopic dimensions. Under these conditions, the states of
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the initial and final particles are free-particle states. These states are called
asymptotic states.

In the asymptotic states, the particle has a well-defined momentum.
Strictly speaking, we know that such states, which correspond to plane waves,
are not physical. A real initial state is described by a wave packet whose dis-
persion in momentum ∆p is small: ∆p/p � 1. It is mathematically possible
to consider such a wave packet at time ti. One can calculate its evolution as it
overlaps with the region of space where V (r) is not negligible, and determine
the final wave packet at time tf . In this analysis, one extracts the scatter-
ing cross section by taking the limit ∆p/p → 0. However, this formalism is
technically quite heavy, and does not bring out any new physical information
compared with the much simpler procedure that we shall follow, and which
is also based on a limiting procedure.

We assume that the initial and final states are plane waves, normalized
in a cubic box of volume L3 and defined with periodic boundary conditions
as in Sect. 4.4:

|p〉 → φk(r) =
eik·r
√

L3
, where p = h̄k =

2πh̄

L
n . (18.6)

Here n = (n1, n2, n3) is a triplet of positive or negative integers. We use the
formalism developed in Chap. 17 to derive, to first order in V , the transition
probability from the initial state |p〉 to a set of final states whose momentum
p′ lies within a solid angle dΩ around the direction Ω.

18.2.2 Transition Probability

Consider the scattering of a spinless particle of mass m by a potential V (r)
centered at the origin. In the language of time-dependent perturbation theory,
the dominant term in the Hamiltonian

Ĥ =
p̂2

2m
+ V (r) (18.7)

is the kinetic energy Ĥ0 = p̂2/2m of the particle. We treat the potential V (r)
as a perturbation. The asymptotic states (18.6) are, by definition, eigenstates
of the dominant term Ĥ0.

We have already derived in Chap. 17 the transition probability from an
initial state |i〉 to a domain of final states, under the action of a small pertur-
bation. Here we have |i〉 = |p〉, with energy Ei = p2/2m, and the domain of
final states Df consists of states |p′〉, with energy E′ = p′2/2m. The direction
p′/p′ is assumed to lie in a neighborhood dΩ of Ω. The transposition of the
result (17.30) to our problem yields

dPi→Df =
2π

h̄
|〈p′|V̂ |p〉|2 ρ(Ei)

dΩ
4π

t .
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In this case, the energy conservation condition (17.29) leads to |p′| = |p|,
and the density of states ρ(E) for a nonrelativistic particle is given by (4.52):
ρ(E) = mL3

√
2mE/(2π2h̄3).

We recover here the linear variation of the transition probability with the
interaction time which is characteristic of a continuum of final states. We can
therefore define a transition rate dΛi→Df , which is independent of t:

dΛi→Df =
dPi→Df

t
=

2π

h̄
|〈p′|V̂ |p〉|2 ρ(Ei)

dΩ
4π

. (18.8)

Here the potential V̂ plays the role of the transition Hamiltonian Ĥ1 of
Chap. 17. Its matrix element between states of well defined momentum |p〉
and |p′〉 is

〈p′|V |p〉 =
1
L3

∫
ei(p−p′)·r/h̄ V (r) d3r =

1
L3

Ṽ (p − p′) , (18.9)

where Ṽ is the Fourier transform of the potential up to a constant factor of
(2πh̄)3/2:

Ṽ (q) =
∫

eiq·r/h̄ V (r) d3r . (18.10)

18.2.3 Scattering Cross Section

By definition, the cross section dσ for scattering into the solid angle dΩ
around the value Ω is

dσ =
dΛi→Df

F
, (18.11)

where the flux F associated with the state |p〉 is related to the velocity
v = p/m of the incident particle by

F =
v

L3
=

p

mL3
. (18.12)

In fact, the particle is in the volume L3 with probability 1 and the probability
distribution associated with the plane wave |p〉 is uniform (for particles of
velocity v and density ρ, the flux is F = ρv).

The exact expression for the transition rate (18.8), i. e. to all orders of perturbation
theory, is of the form

dΛi→Df =
dPi→Df

t
=

2π

h̄
|〈p′|T̂ |p〉|2 ρ(Ei)

dΩ

4π
.

The quantity L3〈p′|T̂ |p〉 is called the scattering amplitude. The operator T̂ is related

to the potential V̂ by an integral equation, called the Lippman–Schwinger equation,

which reduces to T̂ = V̂ in the Born approximation.
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Using (18.8), (18.10) and (18.12), we find the following result:

dσBorn

dΩ
=

(
m|Ṽ (p − p′)|

2πh̄2

)2

. (18.13)

The normalization volume L3 cancels out identically, as expected. With this
result, we see that in quantum mechanics, in the Born approximation, a
measurement of the differential cross section gives us direct access to the
Fourier transform of the potential, and therefore to the forces themselves.
This result can be compared to diffraction, where the diffracted amplitude
is the Fourier transform of the diffracting system. Notice that the modulus
of the Fourier transform |Ṽ (q)| is invariant under the translation V (r) →
V (r − r0). Therefore the target need not be localized. This is one of the
many reasons why the concept of the cross section is relevant in quantum
mechanics.

18.2.4 Validity of the Born Approximation

The Born approximation is valid when the expansion of the eigenstates ψ(r)
of Ĥ in powers of the scattering potential V is possible and rapidly con-
vergent. To zeroth order in V , the relevant eigenstates of Ĥ are simply the
incident plane waves

ψ(0)(r) =
eik·r
√

L3
. (18.14)

Anticipating the exact results derived in Sect. 18.4 (see (18.46)), we use the
following expression for the term of order 1 in V in the expansion of ψ(r):

ψ(1)(r) = − m

2πh̄2

∫
eik|r−r′|

|r − r′| V (r′) ψ(0)(r′) d3r′ . (18.15)

Suppose that the maximum value of |V (r)| is V0 > 0, and that the region
where V (r) has a significant value is centered at r = 0, with an extension a.
For slow particles such that ka � 1, the value of |ψ(1)(r)| is small compared
with |ψ(0)(r)| at any point r (in particular at r = 0) if

m

2πh̄2 (4πV0a
2) � 1 ⇒ V0 � h̄2

ma2
. (18.16)

For fast particles (ka � 1) the above condition (18.16) can be weakened,
since the oscillating factor eik|r−r′| reduces the value of the integral (18.15).
In this case2 one obtains the following validity criterion:

V0 � h̄2

ma2
ka if ka � 1 . (18.17)

2 See, e. g., the books by Messiah and by Landau and Lifshitz, whose references
are given at the end of this chapter.
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18.2.5 Example: the Yukawa Potential

A very large class of elementary interactions can be described by superposi-
tions of Yukawa potentials, whose basic form is

V (r) = g
h̄c

r
e−r/a , (18.18)

where a is the range of the potential and g is a dimensionless coupling con-
stant. We denote the angle between p and p′ by θ so that

|p − p′| = 2h̄k sin(θ/2) .

We obtain

Ṽ (p − p′) =
4πgh̄ca2

1 + 4a2k2 sin2(θ/2)
, (18.19)

so that

dσBorn

dΩ
=
(

2mgca2

h̄

)2 1(
1 + 4a2k2 sin2(θ/2)

)2 . (18.20)

The total cross section is

σBorn(k) =
(

2mgca

h̄

)2 4πa2

1 + 4k2a2
. (18.21)

The validity condition for the Born approximation in this case is obtained by
taking V0 ∼ V (a) ∼ gh̄c/a in (18.16) or (18.17). For low-energy particles we
obtain gm � h̄/(ac).

The Yukawa potential describes the interaction between two particles through the
exchange of a massive particle of mass M = h̄/ac. The validity condition given
above can then be written as gm � M : the mass of the scattered particle m,
multiplied by the dimensionless coupling constant g, must be much smaller than
the mass M of the exchanged particle.

In the limit where the range a of the Yukawa potential tends to infinity,
we recover the Coulomb potential. We take g = Z1Z2α, which corresponds to
the Coulomb scattering of a particle of charge Z1e, mass m and momentum p
(electron, muon, α particle) by a fixed charge Z2e (proton, nucleus). If we use
(18.19) in this case, we recover exactly the classical Rutherford formula (18.5).
This result would not normally be expected the exact answer, since it has been
obtained in the Born approximation. Fortunately, it is possible to calculate3

an exact expression for the eigenstates of positive energy for the Coulomb
problem (as we did in Chap. 11 for the negative-energy eigenstates) and to
obtain the exact value of the cross section. Quite remarkably, one recovers
the classical result (18.5). For the Coulomb problem, the exact cross section
and the cross section calculated in the Born approximation with asymptotic
states such as (18.6) coincide, and are both equal to the classical cross section.
3 See, e. g., the book by Messiah (reference at the end of the chapter).
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One reason for this coincidence is that the nonrelativistic Coulomb scattering prob-
lem for a particle of mass m with an incident energy Ei involves a natural length
scale L = e2/Ei where both h̄ and c are absent. There is, of course, a quantum
mechanical length scale LQ = h̄2/(me2), with which we can form a dimensionless
constant LQ/L = h̄2Ei/(me4). From dimensional arguments, we therefore expect
the quantum cross section to be of the form

dσ

dΩ
=

(
Z1Z2L

4

)2
1

sin4(θ/2)
F [θ, h̄2E/(me4)] ,

where F is a dimensionless function with F (θ, 0) = 1. The surprising fact is that
F (θ, x) = 1 for all x, whereas it would be expected to contain quantum effects, i. e.
a dependence on h̄.

18.2.6 Range of a Potential in Quantum Mechanics

In all this chapter, the notion of the range of the scattering potential plays
an essential role. Assume that the scatterer is centered at r = 0. The range
a is defined as the characteristic distance from the origin beyond which the
incident particle does not feel appreciably the field of force created by the
scatterer. For hard spheres or Yukawa potentials, this notion is quite obvious.
For potentials which decrease as power laws at infinity, i. e.

V (r) ∼
|r|→∞

Cn

rn
, (18.22)

this notion is less obvious, but still relevant as we now show.
We first notice that, classically, a potential which behaves as (18.22) has

an infinite range. A particle prepared at any distance from the origin with a
kinetic energy Ek ∼ Cn/rn will be accelerated significantly. Consider now a
quantum particle prepared in a wave packet centered at r with an extension
∆r. The hypothesis of a particle localized at r requires that ∆r � r, so
that the probability density of the wave packet is negligible at 0. From the
Heisenberg inequality, we know that the dispersion ∆p of the momentum
distribution of the wave packet is such that ∆r∆p ≥ h̄/2. Therefore the
kinetic energy Ek of the particle is such that

Ek ≥ ∆p2

2m
≥ h̄2

8m ∆r2
� Emin

k =
h̄2

mr2
.

This provides a lower bound on the kinetic energy of the particle localized
at r.

Suppose now that the exponent n of the potential (18.22) is strictly larger
than 2. In this case, there is a characteristic distance beyond which the kinetic
energy of the particle is necessarily much larger than its potential energy. This
characteristic distance, which we denote by a, is such that the lower bound
on the kinetic energy Emin

k is equal to |V (r)|:

a =
(
m |Cn|/h̄2

)1/(n−2)
. (18.23)
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Therefore, in quantum mechanics, potentials decreasing at infinity faster than
r−2 can be considered as finite-range interactions.

18.3 Exploration of Composite Systems

We now investigate the information which can be obtained about a composite
system, such as an atom or a nucleus, when it is used as a target in a scattering
experiment. Taking the example of Coulomb scattering, we show that the
cross section gives access to the charge distribution inside the target. For
simplicity, we perform this analysis in the Born approximation and neglect
multiple scattering within the composite target.

18.3.1 Scattering Off a Bound State and the Form Factor

Consider the scattering of a particle a of mass m and position r by a particle b
of mass m1 and position r1. The particle b is supposed to be bound to a center
of force by a potential U(r1) and we denote by {ψn(r1)} the corresponding
eigenfunctions:(

p̂2
1

2m1
+ U(r1)

)
ψn(r1) = En ψn(r1) . (18.24)

We denote by V (r − r1) the interaction potential between a and b which is
responsible for the scattering.

We assume that b is initially in the ground state ψ0(r1). The wave function
of the initial asymptotic state is therefore

|i〉 → Ψi(r, r1) =
eip·r/h̄

√
L3

ψ0(r1) . (18.25)

In the final state, b can remain in the ground state ψ0(r1) of (18.24) or it can
be excited into one of the states ψn(r1). Here, we are interested in the case of
an elastic collision, where b remains in the ground state after the collision.4

The final state, such that the momentum of particle a has changed from p
to p′, is then

|f〉 → Ψf(r, r1) =
eip′·r/h̄

√
L3

ψ0(r1) . (18.26)

4 The generalization to an inelastic collision, where b is left in an excited state
ψn(r1) and a loses the energy En − E0, can be treated with no difficulty. Such
a generalization can be used to provide a quantitative treatment of the Franck
and Hertz experiment presented in Chap. 1.
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In the Born approximation, the transition probability from |i〉 to the
continuum of final states |f〉 (within a solid angle dΩ around the direction of
p′) involves only the matrix element of the interaction potential V̂ :

〈f |V̂ |i〉 =
∫

ei(p−p′)·r/h̄ |ψ0(r1)|2 V (r − r1) d3r d3r1

= Ṽ (p − p′) F (p − p′) ,

where Ṽ (q) is the same as in (18.10), and we have defined the form factor
F (q) as

F (q) =
∫

eiq·r1/h̄ |ψ0(r1)|2 d3r1 . (18.27)

The form factor F (q) is the Fourier transform of the probability density of
particle b in the ground state ψ0(r1).

Consequently, the cross section for the scattering of a by the bound par-
ticle b factorizes as the product of the elementary cross section σ0 of a and
b, i. e. the cross section we would observe if b were not bound, and of the
modulus squared of the form factor:

dσ

dΩ
=

dσ0

dΩ
|F (p − p′)|2 . (18.28)

In other words, if we know the elementary cross section σ0, a measurement
of the variation of the cross section as a function of the momentum transfer
q = p−p′ provides a measurement of the wave function of the bound state.5

We note that for q = 0, F (0) = 1: at low momentum transfer, the target
appears to be point-like. The larger the momentum transfer |q|, the more
accurately one detects the structure of the bound state. The form factor of a
hydrogen-like wave function ψ0 ∼ e−r/2a is |F (q)|2 = 1/(1 + q2a2/h̄2)2. For
a Gaussian wave function ψ0 ∼ e−r2/2σ2

, one finds |F (q)|2 = e−q2σ2/h̄2
.

18.3.2 Scattering by a Charge Distribution

In the previous subsection we studied the scattering of a particle a by a single
target particle b bound in an external potential U(r1). In most situations,
the target consists of n particles b1, . . . , bn forming a bound state of wave
function ψ0(r1, . . . , rn). In atomic physics, the target consists of a point-like
nucleus surrounded by bound electrons. In nuclear physics, the n particles
are the nucleons (protons and neutrons), bound together by nuclear forces.

5 Some caution must be exercised in the above manipulations, in order to render
all operations legitimate. For more details, see for instance the books by Messiah
and by Mott and Massey (references at the end of this chapter).
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Scattering Cross Section of a Composite System. As above, we shall
consider only elastic scattering, for which the target remains in the state ψ0

after the scattering. Therefore the asymptotic states read

|i〉 → Ψi(r, r1, . . . , rn) =
eip·r/h̄

√
L3

ψ0(r1, . . . , rn) ,

|f〉 → Ψf(r, r1, . . . , rn) =
eip′·r/h̄

√
L3

ψ0(r1, . . . , rn) .

We work in the Born approximation. We calculate the cross section for the
scattering of particle a to lowest order in the interaction potential

V̂ =
n∑

j=1

Vj(r̂ − r̂j)

and we neglect the contribution of multiple scattering. Note that the particle
a may interact differently with the various particles bj bound in the target,
so that not all Vj ’s may be equal.

A calculation similar to that of the previous subsection leads to the scat-
tering cross section

dσ

dΩ
=
(

m

2πh̄2

)2

|〈f |V̂ |i〉|2 , where 〈f |V̂ |i〉 =
∑

j

Ṽj(q) Fj(q) .

(18.29)

Here we have set q = p − p′ and have defined the form factors

Fj(q) =
∫

eiq·rj/h̄ |ψ0(r1, ..., rj , ..., rn)|2 d3r1 . . .d3rj . . .d3rn .

Notice that the cross section dσ/dΩ given in (18.29) is not the sum of the indi-
vidual cross sections for scattering by particles b1, . . . , bn. The total scattering
amplitude is the sum of the individual scattering amplitudes of b1, . . . , bn in
the Born approximation. This leads to interference phenomena in scattering
processes.

Coulomb Scattering by a Charge Distribution. To be more specific,
we consider the Coulomb scattering of a particle a with a charge Ze by a
bound system formed by the particles bj , whose charges are denoted Zje (as
usual, we set e2 = q2/(4πε0), where q is the elementary charge). We introduce
the charge density operator

ρ̂(R) =
n∑

j=1

Zje δ(R − r̂j) ,

whose expectation value ρ(R) = 〈ψ0|ρ̂(R)|ψ0〉 is the charge distribution of
the composite system formed by the n particles. The result (18.29) can be
written in this case as
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dσ

dΩ
=
(

Ze

4Ei

)2 |ρ̃(q)|2
sin4(θ/2)

, (18.30)

where q = p − p′ and ρ̃(q) is the Fourier transform of ρ(R), with the same
normalization as in (18.10).

We denote by a the characteristic extension of the bound state formed by
the n particles and we consider the case of small momentum transfers, such
that |q|a/h̄ � 1. We find, in this case,

ρ̃(0) =
∫

ρ(r) d3r = eZtot ,
dσ

dΩ
=
(

ZZtote
2

4Ei

)2 1
sin4(θ/2)

, (18.31)

where eZtot is the total charge of the bound system. Consequently, at low
momentum transfers, (18.30) reduces to the Rutherford cross section for a
particle of charge Ze incident on a point-like particle of charge Ztote. This
is called coherent scattering by the bound state; the phases of the scattering
amplitudes of each constituent are all equal.

Scattering of a Charged Particle by a Neutral Atom. We now suppose
that the target is a neutral atom, from which we scatter a particle of charge
Ze and incident energy Ei. The neutral atom is a composite system which
consists of a point-like nucleus of charge +Z1e localized at R = 0, and an
electron cloud with a charge density ρe(R) and a total charge −Z1e:

ρ(R) = Z1e δ(R) + ρe(R) , ρ̃(q) = Z1e + ρ̃e(q) .

We set ρe(R) = −Z1eF (R), where F (R) gives the probability distribution
of the electron cloud. The cross section for the scattering process is therefore:

dσ

dΩ
=
(

ZZ1e
2

4Ei

)2 [1 − F̃ (q)]2

sin4(θ/2)
. (18.32)

Consider the case of momentum transfers such that |q|a/h̄ � 1. In this
case, F (q) is much smaller than 1. For instance, for the electron distribution
of the 1s state of the hydrogen atom F (r) = e−2r/a1/(πa3

1), we find

F (q) =
1

[1 + (|q|a1/2h̄)2]2
→ F (q) ∝ |q|−4 for large |q| .

In the Rutherford experiment, α particles of energies Ei ∼ 4–8 MeV and of
mass mα � 4mp are scattered by neutral atoms. For scattering angles larger
than 1 degree, we obtain qa/h̄ > 103, taking a ∼ 1 Å as a typical extension
of the electron density of an atom. In this case F (q) plays a negligible role
in (18.32): the incident α particles simply do not see the electrons and are
scattered only by the nucleus.
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Charge Distribution in Nuclei. The nucleus itself is a composite struc-
ture made up of protons and neutrons, whose extension is a few femtome-
ters. A very efficient means to probe its internal structure, in particular the
proton distribution, is to perform collisions of high-energy electrons (E ∼
150–500 MeV) with nuclei; the results give direct information about the dis-
tribution of positive charges, i. e. protons. At small momentum transfers, or
at small angles, one observes scattering off a point-like particle of charge +Ze,
Z being the number of protons in the nucleus. At larger angles, the ratio of
the measured cross section to the Rutherford cross section gives the square
of the form factor, i. e. the proton distribution inside the nucleus.6

Electrons are very clean probes of the structure of matter. Unlike α par-
ticles, for instance, they have no nuclear interactions but only electromag-
netic ones, which are well known and can be calculated in the Born approx-
imation owing to the smallness of the fine structure constant. Figure 18.3
shows the angular dependence of the differential cross section for the scat-
tering of 250 MeV electrons by calcium nuclei. The continuous line is a fit
by a theoretical model assuming a “Saxon–Woods” charge density profile,
ρ(r) = ρ0 {1 + exp[(r − r0)/a]}−1. These measurements show that to a good
approximation, the charge density is constant inside a sphere of radius ≈ 6.2
fm. Similar experiments, due to Hofstadter, have measured the charge and
magnetic moment distributions inside the proton and the neutron. These
distributions are well accounted for by the quark model.
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Fig. 18.3. Scatter-
ing of 250MeV elec-
trons by calcium nuclei
(40Ca)

6 Further theoretical and experimental details can be found in R. Hofstadter, Elec-
tron Scattering and Nuclear and Nucleon Structure, W.A. Benjamin, New York
(1963).
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18.4 General Scattering Theory

In order to obtain the above results, we have used perturbation theory in the
Born approximation. This approximation is very useful in many instances,
but it is often necessary to go beyond it. We now present a general scattering
theory, which is based on a formal derivation of the exact scattering states
of the Schrödinger equation. Of course, we shall recover the Born approxi-
mation as a limiting case of this exact treatment, for weak enough scattering
potentials.

18.4.1 Scattering States

In Sect. 3.5, we studied the scattering properties of potential barriers and
wells in one dimension. We calculated the general form of the eigenstates
of the total Hamiltonian, which is the sum of the kinetic energy and the
potential energy associated with the barrier. We then considered eigenstates
whose asymptotic behavior at x = ±∞ corresponded to a given physical
situation. For instance, particles arriving from −∞ can be either reflected or
transmitted by a barrier located at x = 0. Finally, we derived the transmission
and reflection coefficients of the barrier by calculating the ratio between the
transmitted, reflected and incident probability currents.

We shall follow a similar procedure for the three-dimensional situation
which is of interest here. Our goal in this subsection is to find an expression
for the eigenstates of the Hamiltonian in the scattering problem which will
allow a simple interpretation in terms of scattering cross sections.

Consider the scattering of a particle of mass m by a potential V (r) cen-
tered at the origin. The Hamiltonian Ĥ is

Ĥ = Ĥ0 + V (r̂) , Ĥ0 = − h̄2

2m
∆ . (18.33)

We assume that the potential V (r) tends to 0 faster than r−2 as r → ∞. The
stationary states of energy E are of the form Ψ(r, t) = ψ(r) e−iEt/h̄, where
ψ(r) satisfies the eigenvalue equation(

− h̄2

2m
∆ + V (r)

)
ψ(r) = E ψ(r) . (18.34)

Since we are considering a scattering process, the energy E is positive and can
be written E = h̄2k2/(2m). We recall that, as in the one-dimensional case, the
corresponding eigenstates ψ(r) cannot be normalized (unlike bound states).

Consider the eigenvalue equation (18.34) at a point r such that |r| � a,
where a is the range of the potential V (r). In this region, we have

∆ψ + k2ψ � 0 for |r| � a .
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Among all possible forms of states satisfying this equation, we shall choose
the following one:

ψ(r) ∼
|r|→∞

eik·r + f(k,u,u′)
eikr

r
, (18.35)

where the unit vectors u and u′ are defined as u = k/k and u′ = r/r. An
eigenstate of Ĥ with the asymptotic form (18.35) is called a scattering state.
Such a form is intuitive in relation to our scattering problem. An incident
plane wave eik·r interacts with a center located at the origin. The scattering
process due to the potential V (r) gives rise to a divergent spherical wave
varying as eikr/r, whose amplitude depends on the energy h̄2k2/2m, the
incident direction u and the direction of observation u′.

18.4.2 The Scattering Amplitude

We now relate the asymptotic form (18.35) to the physically observable quan-
tities. This relation is based on the following property:

The differential cross section for the scattering of a particle of momentum
p = h̄k by the potential V (r) is

dσ

dΩ
= |f(k,u,u′)|2 . (18.36)

f(k,u,u′) is called the scattering amplitude.

As in the one-dimensional case, the relation between the asymptotic be-
havior of an eigenstate of the Hamiltonian and the physical properties of a
scattering process is obtained using the probability current (see Sect. 3.5).
The incident probability current corresponding to the incident plane wave
eik·r is

J inc =
h̄k

m
. (18.37)

We can calculate the scattered current associated with the contribution
of the spherical wave function eikr/r to (18.35). Using spherical coordinates,
we obtain the following for the radial component of the probability current:

Jscatt,r(r) =
h̄k

m

|f(k,u,u′)|2
r2

. (18.38)

At large distances, and away from the incident direction (i. e. for θ �= 0), the
two other components of the probability current, Jscatt,θ and Jscatt,ϕ, decrease
faster than Jscatt,r (as r−3). Therefore the scattered current is asymptotically
radial.

The number dn of particles that are detected per unit time in a detector
of area dS at a large distance in the direction u′ is therefore
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dn = J scatt(r) · dS =
|r|→∞

Jscatt,r(r) r2 dΩ , (18.39)

where dΩ = u′ · dS/r2 is the solid angle of the detector as seen from the
origin. We therefore obtain

dn = Jinc |f(k,u, u′)|2 dΩ , (18.40)

which proves (18.36), as a consequence of the definition of the cross section.

18.4.3 The Integral Equation for Scattering

The Schrödinger equation (18.34) can be cast into the form of an integral
equation by introducing the Green’s functions Gk(r), defined by

−h̄2

2m
(∆ + k2)Gk(r) = δ(r) (k2 > 0) , (18.41)

two independent solutions of which are

G±
k (r) =

m

2πh̄2

e±ikr

r
. (18.42)

These are called the outgoing (e+ikr) and incoming (e−ikr) Green’s functions.
Only the first one is of interest in the present discussion.

Let φ(r) be a solution of the Schrödinger equation for a free particle of
energy E = h̄2k2/2m:

(∆ + k2) φ(r) = 0 . (18.43)

One can verify, using the definition (18.41), that any function ψ(r) which
satisfies the integral equation

ψ(r) = φ(r) −
∫

G±
k (r − r′) V (r′) ψ(r′) d3r′ (18.44)

satisfies the Schrödinger equation (18.34) in the presence of the potential
V (r). For the scattering problem under consideration, we choose

φk(r) = eik·r , (18.45)

and we obtain the integral equation for scattering :

ψk(r) = eik·r −
∫

G+
k (r − r′) V (r′) ψk(r′) d3r′ . (18.46)

We can check that the asymptotic form of this wave function corresponds
to the requirement (18.35). The integration over r′ in (18.46) runs over values
of |r′| smaller than the range a of the potential. Consider a point r such that
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|r| � a. We find |r| � |r′| and |r−r′| ∼ r−u′ ·r′, where u′ = r/r. Inserting
these results in the definition of the Green’s function G+

k , we obtain

G+
k (r − r′) ∼ m

2πh̄2

eikr

r
e−ik′·r′

, (18.47)

where we have set k′ = ku′. Therefore the asymptotic variation of ψk has
the expected form (18.35), where

f(k,u,u′) = − m

2πh̄2

∫
e−ik′·r′

V (r′) ψk(r′) d3r′ , (18.48)

and k = ku. This expression relates the scattering amplitude, i. e. the be-
havior of the scattering state at infinity, to the values of the scattering state
inside the range of the potential.

The integral equation (18.46) is the basis of both analytical and numerical
calculations concerning the scattering process.7 The equation can be used to
calculate ψk as a power series in the scattering potential in V . We have
already given in (18.14) and (18.15) the first two terms of this expansion,
which can be evaluated to arbitrary order in V . To order 1 in V , we can
evaluate the scattering amplitude by taking ψk(r′) = eik·r′

in the integral of
(18.48):

f(k,u,u′) � − m

2πh̄2

∫
ei(k−k′)·r′

V (r′) d3r′ . (18.49)

We can then derive the scattering cross section dσ/dΩ = |f |2 to first order in
V . We can readily check that we recover the Born approximation (18.13). This
shows the consistency between the two approaches based on time-dependent
perturbation theory and on a formal solution of the Schrödinger equation for
the scattering problem.

18.5 Scattering at Low Energy

Low-energy scattering is of considerable interest in nuclear, atomic and mole-
cular physics. It is of great importance in the physics of cold quantum gases.

18.5.1 The Scattering Length

For a low enough incident kinetic energy (ka � 1), the scattering amplitude
is independent of the incident and final directions u and u′. This result can
be seen from (18.48). If ka � 1, the term in the integral e−ik′·r′

can be
7 This equation can be transformed into the Lippmann–Schwinger integral equa-

tion mentioned in Sect. 18.2.3, which is well suited for both formal and practical
applications.
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replaced by 1, since the points r′ contributing to the integral are such that
r′ ≤ a. This shows that f(k,u,u′) does not depend on the third variable u′.
Using the time-reversal invariance of the scattering process, one can prove
the identity f(k,u,u′) = f(k,−u′,−u), which shows that f does not depend
on u either, at low energies.

Consequently, the scattering process is isotropic for ka � 1 and the as-
ymptotic behavior of the scattering state can be written as

ψ(r) ∼
|r|→∞

eik·r + f(k)
eikr

r
. (18.50)

When the energy tends to zero, the function f(k) usually tends to a finite
real limit, and one can set

as = − lim
k→0

f(k) . (18.51)

The quantity as has the dimensions of a length and is called the scattering
length. The total cross section in this case is σ = 4πa2

s .
In the Born approximation (18.49), the scattering length is given by

as =
m

2πh̄2

∫
V (r′) d3r′ . (18.52)

Because of the factor r′2 appearing in the infinitesimal volume d3r′, this
integral converges only if the potential decreases faster than r−3 at infinity. If
this is not the case, there may remain an angular dependence of the scattering
cross section at low energies, as is the case in Coulomb scattering.

18.5.2 Explicit Calculation of a Scattering Length

Assume for simplicity that the scattering potential is spherically symmetric:
V (r) = V (r). We define u(r) = r

∫
ψ(r) dΩ and integrate the Schrödinger

equation (18.34) over a solid angle of 4π. Using the expression (10.22) for the
Laplacian operator, we find that u(r) is a solution of the equation

d2u

dr2
− 2mV (r)

h̄2 u = 0 , u(0) = 0 , (18.53)

where we explicitly take the limit E → 0. For large r, V (r) makes a negligible
contribution and the asymptotic form of the solution is u(r) = C(r−b), where
C is an arbitrary multiplicative constant. The length b, which depends on the
behavior of V (r) at short distances, is nothing but the scattering length. In
order to prove this, we simply integrate (18.50) over the solid angle in the limit
k → 0, and we obtain u(r) ∼ 4π(r − as). Consequently, the determination of
the scattering length beyond the Born approximation (18.52) simply requires
one to solve the one-dimensional differential equation (18.53) and to examine
the asymptotic behavior of its solution.
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Thermal Neutrons. Consider neutrons with momentum p ∼ √
mnkBT ,

where T = 300 K. This corresponds to a wave vector k ∼ 3×1010 m−1. When
these neutrons propagate in matter, they interact with the nuclei through
nuclear forces whose ranges are a few femtometers. Therefore ka is smaller
than 10−4 and the scattering of the neutrons by the nuclei of the material
is described very well by a scattering length as. As it is commonly done in
optics, one can sum the spherical waves as eik|r−ri|/|r − ri| scattered by the
various nuclei of the material and define an index of refraction n for the
propagation of the neutrons, obtaining

n = 1 − 2π
ρsas

k2
,

where ρs is the density of scatterers in the medium.

Cold Atoms. Using laser cooling, one can obtain atoms with temperatures
in the microkelvin range. Consider for instance rubidium atoms (A = 85 or
87) for which k ∼ 107 m−1. These atoms interact with one another at long
distance through a van der Waals potential −C6/r6, where C6 ∼ 3 meV nm6.
Using (18.23) we find the characteristic range of interaction a to be of the
order of 10 nm, so that ka ∼ 0.1 in this case. A description of the interactions
between cold atoms in terms of a scattering length is again well justified. For
85Rb and 87Rb, the value of as are −23 nm and 5.3 nm, respectively.

18.5.3 The Case of Identical Particles

Consider, finally, a collision between two identical particles, labeled 1 and
2. We assume for simplicity that the spins of the particles are polarized, so
that the orbital wave function is symmetric for bosons, and antisymmetric
for fermions. In the center-of-mass frame, the two-particle scattering state is
therefore:

bosons: Ψ(r1, r2) =
1√
2

[ψk(r) + ψk(−r)] ;

fermions: Ψ(r1, r2) =
1√
2

[ψk(r) − ψk(−r)] .

Here we have set r = r1 − r2 and we have used P̂12ψ(r) = ψ(−r). At low
energies (ka � 1) the scattering state (18.50) leads to:

bosons: Ψ(r1, r2) ∼
|r|→∞

eik·r + e−ik·r
√

2
+

√
2f(k)

eikr

r
; (18.54)

fermions: Ψ(r1, r2) ∼
|r|→∞

eik·r − e−ik·r
√

2
. (18.55)

The physical consequences of these two expressions are important. The scat-
tering cross section of two bosons at low energy is increased by a factor 2
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compared with the result one would find in the case of distinguishable parti-
cles interacting through the same potential V (r). In particular, one obtains
σ = 8πa2

s for the total cross section in the limit k → 0.
For two polarized fermions, the result (18.55) shows that the scattering

cross section is zero: two identical, polarized fermions “do not see each other”
at very low energies. This leads to an important property of a gas of polarized
fermions at low temperature. It always behave as a quasi-ideal gas in which
the particles do not interact with each other. Using an expansion of the scat-
tering state in spherical harmonics (which is called a partial-wave expansion),
one can go one step further and show that the collision cross section varies
as k2 for small wave vectors k. On the other hand, if the Fermi gas is not
completely polarized, it does not behave as an ideal gas, since the collision
cross section between two fermions in different spin states does not vanish
when k tends to 0.

Further Reading

• L. Landau and E. Lifshitz, Quantum Mechanics, Chap. 17, Pergamon, Ox-
ford (1965).

• A. Messiah, Quantum Mechanics, Chap. 11 and 19, North-Holland, Ams-
terdam (1961).

• M.L. Goldberger and K.M. Watson, Collision theory, Wiley, New York
(1964).

• N.F. Mott and H.S.W. Massey, The Theory of Atomic Collisions, Claren-
don Press, Oxford (1965).

• C.J. Joachain, Quantum Collision Theory, North-Holland, Amsterdam
(1983).

Exercises

18.1. Scattering length for a hard-sphere potential. Consider the low-
energy scattering of particle of mass m by a potential V (r) such that

V (r) = V0 if r ≤ b , V (r) = 0 if r > b .

We assume that V0 is positive.

a. Calculate the scattering length a in terms of V0 and b. What is the sign
of a? Show that one recovers the result of the Born approximation when
V0 is small enough.

b. How does the scattering length vary when V0 tends to infinity, for a
constant b (hard sphere)?
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c. Consider the limit of a δ function potential, by letting V0 tend to infinity
and b to 0, the product 4πV0b

3/3 =
∫

V (r) d3r remaining constant. How
does the scattering length vary?

18.2. Scattering length for a square well. Consider again the potential
studied in the previous exercise, but assume now that V0 is negative.

a. Show that the scattering length varies in a resonant manner when V0

increases for a fixed b. Relate the position of these resonances to the
number of bound states in the potential V (r).

b. Recover the result of the Born approximation for a sufficiently small value
of V0. What is the sign of a in this case?

These “zero-energy resonances” play an important role in the physics of ultracold
atoms. Using an external magnetic field, one can modify slightly the interaction
potential between atoms, and change the intensity (the size of |a|) and the nature
(attractive or repulsive depending on the sign of a) of the effective interactions
between the particles. One can then shift continuously from the ideal-gas regime to
the strongly interacting case.

18.3. The pseudopotential. There is no scattering in a potential V (r) =
g δ(r) (see exercise 18.1). In contrast, the pseudopotential8 V defined by

V̂ ψ(r) = gδ(r)
∂

∂r
[r ψ(r)]

has scattering properties that can be calculated exactly.

a. Check that the wave function

ψ(r) = eik·r − a

1 + ika

eikr

r

is solution of the eigenvalue equation for the Hamiltonian Ĥ = p̂2/2m +
V̂ , for a value of a that can be expressed in terms of g and m.

b. What is the scattering length associated with the pseudopotential?
c. Characterize the angular dependence of the scattering.
d. How does the total scattering cross section vary with the incident energy

h̄2k2/2m?

This pseudopotential also plays an important role in the theory of ultracold gases. It
allows one to treat quantitatively and in a simple manner the interactions between
particles, provided the scattering length associated with this potential is equal to
the actual scattering length.

8 See, e. g., K. Huang, Statistical Physics, Chap. 13, Wiley, New York (1963).



19. Qualitative Physics on a Macroscopic Scale

Written in collaboration with Alfred Vidal-Madjar1

We spend our time romanticizing our motivations
and simplifying facts.

Boris Vian

Quantum mechanics constitutes a complete theory of the structure of matter
and of its interaction with the electromagnetic field. It allows us to calculate
the size, geometry and binding energies of atomic and molecular structures.
The accurate quantitative description of a given phenomenon requires one
to solve equations which are often complicated. In this chapter, our pur-
pose is to show how a good understanding of the fundamental laws of quan-
tum mechanics enables us to estimate important physical effects qualitatively
or semiquantitatively. Starting from fundamental constants and elementary
processes, we shall obtain, with very good accuracy, the orders of magnitude
of some macroscopic phenomena which belong to “everyday life” (or nearly).

The majority of phenomena that we see around us originate from elec-
tromagnetic interactions, mainly Coulomb forces between charged particles
(electrons and nuclei), and gravitational interactions. Therefore we shall ex-
press the characteristic orders of magnitude of the behavior of matter as we
see it, starting from the fundamental constants which are involved: the proton
mass mp (close to the neutron mass), the electron mass me, the elementary
charge q (with e2 = q2/4πε0), the velocity of light c, Newton’s constant G,
and Planck’s constant h̄.

We recall that the fine structure constant, which is the fundamental con-
stant of electromagnetic interactions, is

α =
e2

h̄c
� 1

137
.

Consider Newton’s universal law of gravitation f = −Gmm′/r2. Since the
mass of an atom is, to a good approximation, an integer multiple of the
proton mass, we can define in a similar way a dimensionless constant αG

which characterizes the gravitational interactions:
1 Alfred Vidal-Madjar, Institut d’Astrophysique de Paris, 98bis Boulevard Arago,

75014 Paris, France, e-mail: alfred@iap.fr.
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αG =
Gm2

p

h̄c
� 5.90 × 10−39 (G � 6.67 × 10−11 m3 kg−1 s−2) .

We see that electromagnetic forces are considerably stronger than gravita-
tional forces. However, gravitational forces are always additive, whereas elec-
tric neutrality screens electrostatic interactions at large distances.

One of our aims is to determine the amount of matter beyond which
gravitational forces “beat” electric forces, or, in more sophisticated terms,
to understand how we can get from a crystal, whose geometric structure is
dominated by electric forces and which has an arbitrary shape, to a spherical
planet.

We shall first recall the relevant orders of magnitude for microscopic sys-
tems. We shall extend and complete these orders of magnitude for N -fermion
systems. We shall then obtain an estimate of the conditions under which grav-
itational and Coulomb forces are of the same order, which will lead us to an
estimate of the maximum size of mountains on a planet. Finally, using a very
simple model, we shall understand the characteristics of white dwarf stars
and neutron stars, including the existence of a “gravitational catastrophe”
for systems whose mass is too large.

19.1 Confined Particles and Ground State Energy

We first examine how the uncertainty relations lead to semiquantitative es-
timates for isolated atoms as well as macroscopic objects.

19.1.1 The Quantum Pressure

Consider a particle which is confined in a region of dimension ξ, i. e. its
dispersion in position is ∆x = ξ. If the particle is in the ground state of the
confining potential, the uncertainty relation requires that its kinetic energy
is of the order of

Ek =
〈p2〉
2m

∼ h̄2

2mξ2
. (19.1)

If the particle is in some excited state, the de Broglie wavelength is shorter
than ξ and the kinetic energy is correspondingly larger.

The confinement energy (19.1) becomes larger as ξ becomes smaller. One
can view this increase of energy as a quantum pressure exerted by the parti-
cle against this confinement. If we use the thermodynamic definition of this
pressure as the derivative (up to a minus sign) of the kinetic energy with
respect to the volume, this quantum pressure (also called the Schrödinger
pressure) scales as

PS ∼ h̄2

mξ5
.
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19.1.2 Hydrogen Atom

For the hydrogen atom, the mean value of the energy is

〈H〉 =
〈p2〉
2me

− e2

〈
1
r

〉
.

We denote by ξ1 the size of the ground state of the hydrogen atom. More
precisely, we set ξ−1

1 = 〈1/r〉. As mentioned above, 〈p2〉 � h̄2/ξ2
1 , and

〈H〉 � h̄2

2meξ2
1

− e2

ξ1
.

The minimum value of this expression as a function of ξ1 gives the order of
magnitude of the ground-state energy. This minimum corresponds to

ξ1 = a1 and E1 = 〈H〉min = −EI ,

where a1 is the Bohr radius and EI the Rydberg energy, i. e. the ionization
energy of the hydrogen atom:

a1 =
h̄2

mee2
, EI =

mee
4

2h̄2 .

Here we obtain the exact result because the general rigorous inequality 〈p2〉 ≥
h̄2〈1/r〉2 (see Sect. 9.2.3) is saturated if the average is taken over the hydrogen
ground-state wave function.

One could perform this calculation for excited states also. The principle
of this calculation can be also applied to the case of a particle confined in a
square well or a harmonic potential.

19.1.3 N-Fermion Systems and Complex Atoms

For N identical fermions with spin 1/2, the ground state can be obtained by
a similar argument. However, because of the Pauli principle, the Heisenberg
relations must be replaced by:

〈r2〉 〈p2〉 ≥ ξ2 N2/3 h̄2 , where ξ = 34/3/4 and N � 1 ,
(19.2)

or

〈p2〉 ≥ γ N2/3 h̄2

〈
1
r

〉2

, where γ = (12)−1/3 and N � 1 ,

(19.3)

as seen in Chap. 16, (16.15) and (16.17) (we assume that 〈r〉 = 0 and 〈p〉 = 0).
Both inequalities (19.2) and (19.3) may be used, and we shall choose in the
following the one which leads to the simplest calculations.
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Consider for instance a neutral complex atom with Z electrons. The
Hamiltonian is

Ĥ =
Z∑

i=1

p̂2
i

2me
−

Z∑
i=1

Ze2

r̂i
+

1
2

∑
i

∑
j �=i

e2

r̂ij
.

We repeat the previous argument, setting 〈p2
i 〉 = 〈p2〉 and 〈1/ri〉 = 1/ξ for

each electron. In addition, we make the approximation2 〈1/rij〉 � 1/ξ and
we obtain the following for large Z:

〈H〉 � Z
〈p2〉
2me

− Z2e2

ξ
+

Z(Z − 1)e2

2ξ

� Z
〈p2〉
2me

− Z2e2

2ξ
. (19.4)

Now, we assume that the minimum-energy state saturates the inequality
(19.3) (〈p2〉 � γZ2/3h̄2/ξ2), and we minimize the resulting expression, choos-
ing ξ as a variational parameter. We obtain

ξ � 0.9
a1

Z1/3
and 〈H〉min � −0.6 Z7/3EI for Z � 1 . (19.5)

If the orders of magnitude (Bohr radius and Rydberg energy) were expected,
the powers of Z are not that obvious. They arise from the combination of the
Heisenberg inequalities with the Pauli principle. The ground-state energy of
a Z electron atom increases as Z7/3, or, equivalently, as Z4/3 per electron
(to be compared with Z2 for hydrogen-like atoms with a single electron),
whereas the mean distance decreases as Z−1/3 (to be compared with Z−1 for
hydrogen-like atoms). These results can be recovered using more sophisticated
methods such as Hartree’s.

Notice that ξ is the average distance between an electron and the nucleus,
and not the “size” d of the atom. This size is usually defined as the mean
distance between the small number of external electrons and the nucleus, and
it is more or less independent of Z. Typically,

a1 < d < 6a1 .

Correspondingly, the ionization energy, i. e. the energy necessary to remove
the least bound electron, is in the range 0.2EI to EI.

19.1.4 Molecules, Liquids and Solids

Consider now two neutral atoms separated by a distance D. When D is large
compared with the atomic size d, the electrostatic interaction between the
2 For particles uniformly distributed in a sphere of radius R, one finds 〈1/ri〉 =

3/(2R) and 〈1/rij〉 = 5/(3R). Making this distinction between 〈1/ri〉 and 〈1/rij〉
would affect the final results only marginally.
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two atoms results in an attractive potential, which varies as D−6. This is
called the van der Waals interaction and can be understood within a simple
classical picture. The instantaneous electric dipole P of one of the two atoms
creates an electric field at the second atom, whose magnitude varies as D−3.
This field polarizes the second atom, and the induced dipole (∝ D−3) creates
an electric field E at the first atom, whose magnitude varies as D−3 × D−3.
The van der Waals interaction corresponds to the interaction energy −P ·E
between the initial dipole and this electric field.3

For a distance D of the order of the atomic size d, this attractive inter-
action becomes even stronger owing to the tunnel effect, which allows the
external electrons to jump from one atom to the other. Depending on the
type of material, other types of bonding may also come into the game, such
as ionic or hydrogen bonds. If one tries to reduce further the distance be-
tween the two atoms (D < d), the interaction becomes strongly repulsive:
the two electron clouds start to overlap, and Pauli exclusion together with
the quantum pressure term dominates. Consequently, the typical distance
between the two atoms when they form a molecule is the atomic size d. The
dissociation energy D of this molecule is

D = βEI , where 0.2 < β < 0.5 .

The electrostatic interaction between two atoms, due either to the van der
Waals or the tunneling interaction, decreases very rapidly as the distance D
increases: it is a short-range interaction. This allows us to define the binding
energy B of an atom in a solid or a liquid as the energy necessary to extract
the atom from the surface. This energy is typically B ∼

∣∣∣∑N
i=1 V (rA − ri)

∣∣∣,
where rA is the position of the atom at the surface of the solid. The sum
runs over the N atoms which constitute the solid. Owing to the fast decrease
of V as the interatomic distance tends to infinity, this sum does not depend
on the shape of the solid, nor on its size (this would not be true if V were
to decrease more slowly than D−3, since the three-dimensional integral over
the various positions ri would then be divergent for a solid of infinite size).
The typical binding energy B of an atom or a molecule in a liquid or a solid
is

B = γEI , where
{

0.05 < γliquid < 0.1
0.1 < γsolid < 0.3 .

19.1.5 Hardness of a Solid

We can now understand an elementary property of matter: why is a solid ...
solid? The hardness of a solid can be measured by its resistance to compres-
3 Here we neglect retardation effects related to the propagation of the electromag-

netic field, assuming that D < λ, where λ is the characteristic electromagnetic
wavelength of the problem (λ ∼ hc/EI ∼ 10−7 m). For D > λ, the interaction
energy varies as D−7.
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sion, defined by the compression modulus

C = PV/∆V .

This is the ratio between the applied pressure P and the relative variation of
the volume ∆V/V .

We can evaluate the order of magnitude of C for a metal, assuming for
simplicity that the atoms are monovalent. The N positive ions form a struc-
ture inside an N -electron gas. Each electron occupies freely a volume V/N ,
and therefore has a kinetic energy

Ek ∼ h̄2

md2
,

where d = (V/N)1/3 represents the distance between two ions of the crystal.
For a more accurate result, we can use the expressions (16.12) and (16.13),
which give the energy of an N -fermion gas confined in a box of volume
V : NEk = ξNh̄2/md2, where ξ = 3(3π2)2/3/10 � 2.9. The corresponding
Schrödinger pressure is

PS ∼ h̄2

med5
. (19.6)

For a typical value d = 4a1, we find PS ∼ 5×1010 Pa. Such a pressure does not
cause a piece of metal to blow up, simply because it is exactly compensated by
the Coulomb attraction forces between the ions and the electrons. However,
in order to compress a metal and change its volume by a significant amount,
one must exert a pressure of the same order. Therefore, we expect C to be
also of the order of 1010 Pa. This is indeed the typical value which is observed
in metals and also in other crystalline solids (i. e. compression moduli of 1010

to 1011 Pa are observed).

19.2 Gravitational Versus Electrostatic Forces

Up to know, we have neglected gravitational interactions in our estimates of
the internal energy of an atom and the binding energy of an atom in a solid.
This is legitimate as long as the solid is small enough, but it cannot hold for
arbitrarily large bodies, as we shall see.

19.2.1 Screening of Electrostatic Interactions

Consider a system of N � 1 neutral atoms or molecules bound, as described
in the previous section, by electrostatic forces. The electrostatic binding en-
ergy of this system (a crystal or a piece of rock) is proportional to N and is
of the order of
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Eelec. ∼ −NEatom for N � 1 , (19.7)

where Eatom is the electrostatic binding energy of a single atom. In other
words, the binding energy per atom (or molecule) is a constant, independent
of the size of the sample.

This important property is a direct consequence of the screening of electro-
static forces in neutral matter. We have seen above that the van der Waals and
tunneling interactions between two atoms are of short range. Consequently,
the energy necessary to fragment a piece of rock or some other solid material
is small compared with the total binding energy: it is a surface energy, not a
volume energy. This conclusion is confirmed by observation in everyday life:
breaking an object at a given place is easier if the object is thin at that place,
independent of the size of the object itself.

19.2.2 Additivity of Gravitational Interactions

Consider a material body which contains a large number N of atoms of atomic
mass A (mass of the nucleus = Amp). The gravitational potential energy of
this body is

Egrav. = −1
2

N∑
i=1

∑
j �=i

GA2m2
p

rij
. (19.8)

Note that we neglect here the gravitational attraction of the electrons, since
they are much lighter than the nuclei.

Suppose now that the distance between neighboring particles d is still
determined by electrostatic interactions and that it remains constant as one
increases the total number N of atoms. For a spherical object of total mass
M = NA mp with a uniform spatial density of matter, the number of atoms
is N = (4π/3) (R/d)3 and the gravitational energy is

〈Egrav.〉 = −3
5

GM2

R
∼ −N5/3

GA2m2
p

d
. (19.9)

This potential energy increases faster than the number of constituents in the
system.

At this stage, a question naturally arises: what is the critical number of
atoms Nc above which the gravitational energy becomes dominant compared
with the electrostatic energy? For N smaller than Nc, one can still rely on
the determination of the interatomic distance d from purely electrostatic
considerations, which leads to values of d of the order of a few Bohr radii.
For N larger than Nc, the gravitational interaction becomes dominant and
one has to turn to a more elaborate determination of d.
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The critical number Nc is obtained when the two energies (19.7) and
(19.9) are equal:

N2/3
c =

Eatom d

GA2m2
p

.

In this context, the relevant energy Eatom is the energy of the k valence
electrons (k ∼ 1 to 4), whose average positions determine the atomic size d.
Therefore we take as a typical value Eatom ∼ kEI and we obtain

Nc ∼ k3/2

A3
N0 , where N0 =

(
d

2 a1

)3/2(
α

αG

)3/2

. (19.10)

The fact that N0 is a function of the ratio of dimensionless constants α/αG

was certainly expected, but the power 3/2, due to the Pauli principle, is less
obvious. Inserting the values of α and αG and taking d ∼ 4 a1 as a typical
value for the interatomic spacing, we obtain N0 ∼ 4×1054. The corresponding
critical radius and mass are

Rc = d

(
3Nc

4π

)1/3

∼ 2.5 a1N
1/3
c , (19.11)

Mc = ANc mp =
k3/2

A2
M0 , (19.12)

where

M0 = mp N0 � 6 × 1027 kg ∼ 3 × 10−3 M�

The quantity M� is the mass of the sun: M� = 2 × 1030 kg. It is instructive
to compare these orders of magnitude with objects in our close environment:

• The planet Jupiter is mainly composed of hydrogen (A = 1, k = 1) and its
mass is 1.9 × 1027 kg, of the same order of magnitude as Mc.

• The Earth is composed of “ferrous” materials A ∼ 50 (notice that the
molecular mass of silica SiO2 is very close to the atomic mass of iron)
and its mass is 6.0 × 1024 kg. Taking as a typical value k = 2, we obtain
Mc ∼ 7 × 1024 kg, of the same order as the mass of our planet.

Consequently, gravitational forces play a dominant role in the cohesion of
these planets. However, the gravitational interactions do not overwhelm the
electrostatic interactions, which still play a role in the structure of matter
both in the crust and in the core of these planets.

19.2.3 Ground State of a Gravity-Dominated Object

As we have just seen, the gravitational energy dominates over the electro-
static energy for sufficiently large objects. In particular, the average spacing



19.2 Gravitational Versus Electrostatic Forces 389

between two neighboring atoms can be reduced with respect to what is found
in a smaller object, since the gravitational forces induce a compression which
can be significantly larger than the standard Schrödinger pressure. The pur-
pose of this subsection is to address the theoretical description of objects of
this type, and to derive their ground-state size and energy.

Consider N nuclei of atomic mass A, surrounded by kN valence electrons
(as above, k is between 1 and 4). At normal densities of matter, only the
valence electrons are delocalized. The Z − k internal electrons of each atom
are bound to a particular nucleus, which forms with them an effective nucleus
of mass Amp and charge k. We shall consider in Sect. 19.3 a situation (white
dwarf) where all Z electrons are delocalized.

The following remarks are of interest for the determination of the ground
state of the system:

a. Since the electrons are fermions, the spatial extent of their wave function
is constrained by the Heisenberg–Pauli relations (19.2) and (19.3).

b. Local electric neutrality imposes the requirement that the spatial distri-
bution of the nuclei is the same as that of the electrons, whatever the
spin of the nuclei and their statistical nature (bosons or fermions).

c. Since the nuclei are confined in the same spatial volume and are much
heavier than the electrons, their kinetic energy is much smaller. The
kinetic energy of the system is, to a good approximation, the kinetic
energy of the electrons.

d. By assumption, the potential energy is dominated by the Newtonian
attraction between the nuclei.

Therefore, to a first approximation, the Hamiltonian is

Ĥ �
kN∑
i=1

p̂2
i

2me
− 1

2

N∑
i=1

∑
j �=i

GA2m2
p

r̂ij
.

Let us assume that we are dealing with a spherical object of radius R and
a uniform spatial density. As in (19.9), the gravitational energy is given by
−(3/5)GM2/R, where M = NAmp is the total mass, so that

〈H〉 ∼ kN
〈p2〉
2me

− 3
5

GM2

R
. (19.13)

We now use (19.2) to relate 〈p2〉 and R. We first notice that for a uniform
distribution within a sphere of radius R, 〈r2〉 = 3R2/5. We then assume that
the inequality (19.2) is saturated4 and we minimize the total energy (19.13)
with respect to R. This yields the approximate ground state radius

R ∼ 3a1
α

αG

k5/3

A2N1/3
∼ Rc

(
Nc

N

)1/3

, (19.14)

4 For a uniform distribution of particles inside a sphere, one can easily check that
inequality (19.3) is weaker (and therefore less useful) than (19.2).
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where Nc and Rc are defined in (19.10) and (19.11) (as above, we choose
d = 4a1 and k = 2). The corresponding energy is

Egrav. = 〈H〉min ∼ 0.2 EI
A4N7/3

k5/3

(αG

α

)2

.

Let us emphasize that this result is valid only if the object is large enough, so
that the electrostatic energy Eelec. of the valence electrons can be neglected.
The approximation Eelec. � Egrav. is correct if the number of atoms N
exceeds the critical number Nc.

To summarize, the variation of the size of a celestial body with the number
N of atoms is quite complex. First, for N much smaller than Nc (given in
(19.10)), the size R increases as N1/3, the distance between two neighboring
atoms staying constant, of the order of a few Bohr radii. Then, when N ∼ Nc,
the size reaches a maximum of the order of the critical radius Rc (see (19.11)).
For a larger number of atoms, the size decreases as N−1/3 (see (19.14)), since
gravitational forces become dominant. We shall see in the next section how
this picture must be refined for very massive objects, such as white dwarf
stars and neutron stars.

19.2.4 Liquefaction of a Solid and the Height of Mountains

Even in a relatively small celestial body, in which the gravitational inter-
actions are not strongly dominant, the gravitational force may have a very
significant impact on the shape of this body. A mountain on this celestial
body (a planet or an asteroid) cannot be too high, otherwise the base of the
mountain starts to flow. Indeed it may be energetically favorable to have a
reduction of the height of the mountain, accompanied by a conversion of po-
tential energy into latent heat associated with the fusion of the base of the
mountain.

In order to liquefy a given fraction of a solid, containing δN atoms, one
has to supply an energy which is typically 10−2 EI × δN . More precisely, the
necessary energy per atom is a small fraction (∼ 5%) of the binding energy of
the atom to the solid, which itself is a small fraction (∼ 20%) of the Rydberg
energy.

Consider first a mountain, which we assume to be cylindrical for sim-
plicity (Fig. 19.1), on earth. The potential energy gained by reducing the
height of the mountain is δEp = δM gH, where δM = Amp δN represents
the mass which has been liquefied. This reduction of height is energetically fa-
vorable if δEp is larger than the energy δE� necessary to liquefy the mass δM :
δE� = 10−2 EI δN . This process will occur until the height of the mountain
is reduced to a value H such that

AmpgH ≤ 10−2 EI . (19.15)

For the earth, A ∼ 50, and the critical height is found to be H ∼ 27 km,
whereas the actual height of the highest mountains is ∼ 10 km. The agreement
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H

Fig. 19.1. Following an argument by Weisskopf, one can show that a mountain is
stable only if it is not too high. Otherwise it is energetically favorable to convert a
fraction of the potential energy of the mountain into liquefaction energy associated
with the fusion of the base of the mountain

of these orders of magnitude is remarkable, considering the very simplified
model that we have considered.

We can generalize these results to any planet, and relate the maximum
height H to the radius R of the planet. The gravity at the surface of the
planet is

g =
GM

R2
,

where M = ANmp is the mass of the planet. The total number of atoms N
is given by 4πR3/3 = Nd3. Assuming d ∼ 4a1, we derive from (19.15) the
following relation between R and the maximum mountain height H:

HR ∼ 0.1 a2
1

1
A2

α

αG
. (19.16)

The maximum height of mountains on a planet is proportional to the inverse
of the radius of this planet. This is the case for Mars, where the mountains
are twice as high as on earth. It is not, however, the case on the moon, where
the tectonic activity has not been sufficient to create appreciable mountains.
Otherwise, these mountains could reach ∼60 km in height

Finally, from (19.16), one can calculate the size that a planet should have
in order for it not to be spherical, i. e. for which H ∼ R. This occurs for a
critical radius given by

R ∼ 0.3 a1
1
A

(
α

αG

)1/2

. (19.17)

One finds R ∼ 350 km for A = 50, in interesting agreement with obser-
vations, since the smallest spherical asteroids known have diameters of 400
to 700 km, whereas the satellite of Jupiter Amalthea, of diameter 250 km, is
clearly nonspherical. This is another example where the competition between
gravity and electromagnetism, together with the Pauli principle, governs the
states of matter on all scales, including astronomical objects.
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19.3 White Dwarfs, Neutron Stars
and the Gravitational Catastrophe

The sun is quietly burning its hydrogen and transforming it into helium.
In 5 billion years, the fuel will be exhausted and there will no longer exist
a thermal pressure to balance the gravitational pressure. The system will
implode until it reaches temperature and density conditions such that fusion
reactions of helium into carbon and oxygen can start: 3 4He→ 12C and 4
4He→ 16O. After this second phase, which will be much shorter (∼ 108 years)
than the previous one, a new effect will appear, which will prevent further
thermonuclear reactions from starting, such as burning carbon and oxygen
into 23Na, 28Si and 31P, and these latter nuclei into 56Fe, the most tightly
bound nucleus. The density will become so high that the quantum pressure of
the degenerate electron gas will stop the gravitational collapse. The system
will then become a white dwarf star, whose only fate will be to lose its heat
by radiating. For initial masses somewhat above M�, a star can reach the
28Si or 56Fe stage before this happens

All stars do not end up as white dwarfs. Beyond some critical value of
the final mass of the star, called the Chandrasekhar mass, the pressure of
the degenerate electron gas cannot compete any longer with gravitation, and
this leads to a gravitational catastrophe, the explosion of a supernova and
the formation, in its center, of a neutron star.

White dwarfs have masses of the order of the solar mass M�, sizes compa-
rable to the radius of the earth (i. e. 0.01R� ∼ 104 km) and densities of order
106 g cm−3 (i. e. ∼ 106 larger than normal densities). Neutron stars are much
more compact objects, with masses ∼ M� and radii ∼ 10 km. Their densities
reach 1015 g cm−3. We wish to understand these orders of magnitude.

19.3.1 White Dwarfs and the Chandrasekhar Mass

Consider N nuclei of mass Amp and charge Z, surrounded by NZ electrons.
As in Sect. 19.2.3, the dominant terms in the total energy of the system are
assumed to be the following:

1. The potential energy Ep is dominated by the gravitational attraction
between these nuclei. Assuming for simplicity a spherical object of radius
R and with a uniform spatial density, we take

Ep = −3
5

GM2

R
,

where M = NA mp is the mass of the star.
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2. The kinetic energy Ek is that of the electrons, which may become rela-
tivistic:5

Ek =
NZ∑
i=1

√
p2

i c
2 + m2

ec
4 ⇒ 〈Ek〉 ∼ NZc

√
〈p2〉 + m2

ec
2 .

As seen before, the average squared momentum 〈p2〉 is bounded from
below owing to the confinement of the electrons in the volume V = 4πR3/3
of the star. This induces a competition between the gravitational forces, which
tend to reduce R, and the quantum pressure term, which tends to increase it.
Since we wish to explore a domain of energy where the electron motion may
be relativistic, the inequality (19.2), which was derived in Chap. 16 using a
nonrelativistic argument, is not an exact result anymore. However, we can
still consider that each electron is confined in a volume v = 2V/(NZ) (the
factor 2 is due to the spin degeneracy), and we can take

〈p2〉 � π2h̄2

v2/3
. (19.18)

For an ideal Fermi gas, the total kinetic energy derived within this approx-
imation coincides with the exact result to within 10%,6 in the two limits of
nonrelativistic and ultrarelativistic systems.

The radius R of the star and the average squared momentum 〈p2〉 are
now obtained by minimizing the total energy Ep + Ek, taking into account
the constraint (19.18) relating these two quantities. A calculation using 〈p2〉
as a variational parameter and very similar to that of Sect. 19.2.3 leads to

〈p2〉
〈p2〉 + m2

ec
2

=
(

M

MCh

)4/3

, (19.19)

where we have introduced the Chandrasekhar mass MCh:

MCh ∼ 4

α
3/2
G

Z2

A2
mp . (19.20)

We notice that (19.19) has a solution only if the mass M is smaller than the
Chandrasekhar mass. For A = 2Z (which holds for carbon and oxygen), the
Chandrasekhar mass is MCh ∼ 3.8 × 1030 kg, i. e. 1.9 times the mass of the
sun. For masses larger than the Chandrasekhar mass, the Fermi pressure of
the electron gas cannot compete with the gravitational pressure: the system
is unstable and it undergoes a gravitational collapse.
5 Concerning the use and properties of the operator

√
p2c2 + m2c4 in the

Schrödinger equation, see J.L. Basdevant and S. Boukraa, Z. Phys. C28, 413
(1985); Z. Phys. C30, 103 (1986) and references therein.

6 See, e. g., K. Huang, Statistical Mechanics, Chap. 11, Wiley, New York (1963).
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The collapse arises from a simple property of degenerate Fermi gases. In the non-
relativistic regime, the pressure P of a Fermi gas is related to the density ρ by
P ∝ ρ5/3. This can always balance the gravitational inward pressure Pgrav ∝ ρ4/3,
provided the density is large enough. If the conditions are such that the Fermi gas
is relativistic, then its pressure is related to the density by P ∝ ρ4/3, and there is
a value of the mass such that the gravitational pressure prevails and the system
collapses.

For a mass lower than the Chandrasekhar mass, the equilibrium radius is
given in our model by

R = RCh

(
MCh

M

)1/3
(

1 −
(

M

MCh

)4/3
)1/2

, (19.21)

where

RCh ∼ 2.5
Z

A

1√
αG

h̄

mec
(∼ 6300 km for A = 2Z) .

This result is in good agreement with predictions obtained from more elab-
orate treatments. The value of MCh predicted by such treatments is 1.4 M�.
For a relatively low mass (M � MCh), we recover the scaling law R ∝ N−1/3

of the nonrelativistic treatment of Sect. 19.2.3:

R ∼ 7800 km ×
(

M�
M

)−1/3

for A = 2Z. (19.22)

Consider for instance von Maanen’s star, which was one of the first white
dwarfs to be discovered. Its radius is ∼ 8900 km (78 times smaller than the
radius of the sun) and its mass is 0.68M�, in good agreement with (19.22).

The equilibrium radius (19.21) is a decreasing function of the mass of
the white dwarf, and, owing to relativistic effects, it shrinks to zero as the
mass approaches the Chandrasekhar mass. Therefore, the most massive white
dwarfs correspond to ultrarelativistic electrons and they all have the same
mass MCh.

19.3.2 Neutron Stars

At higher densities, it become energetically favorable for protons to capture
electrons according to an inverse β process: p + e− → n + ν. The neutrinos
escape from the star, which forms a neutron star.

Neutron stars were discovered in the mid 1960s as pulsars. They are gi-
gantic nuclei, in the sense of nuclear physics. They are made of neutrons
(electrically neutral) bound by the gravitational force, and packed together
at nuclear distances ∼ 10−15 m. The size of such objects is of the order of 10
km, their mass is of the order of a few solar masses M� and their density is
of the order of 1014 to 1015 g cm−3.
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Following a procedure very similar to that of Sect. 19.3.1, we shall as-
sume that the dominant terms in the energy of a neutron star containing N
neutrons are:

a. The potential energy Ep, dominated by the gravitational attraction. As-
suming for simplicity a uniform distribution of the N neutrons, we take
as before

Ep = −3
5

GN2m2
p

R
.

b. The relativistic kinetic energy of the neutrons:

Ek =
N∑

i=1

√
p2

i c
2 + m2

pc4 ⇒ 〈Ek〉 ∼ Nc
√
〈p2〉 + m2

pc2 .

We now minimize the total energy Ep + Ek. Since neutrons are fermions,
(19.18), which relates 〈p2〉 and R, still holds. Taking 〈p2〉 as a variational
parameter, we find that the minimum energy is obtained for

〈p2〉
〈p2〉 + m2

pc2
=
(

N

N1

)4/3

, where N1 ∼ 4

α
3/2
G

∼ 9 × 1057 .

As for the case of a white dwarf star, this equation has a solution only if
the number of neutrons is below a critical number N1. In this case, the radius
of the star is given by

R = R1

(
N1

N

)1/3
(

1 −
(

N

N1

)4/3
)1/2

,

where

R1 ∼ 2.5
h̄

mpc

1√
αG

∼ 7 km .

Because the neutrons have an average velocity close to c, the mass Ms

of the star differs from the mass Nmp of its constituents. The mass Ms is
obtained using the total energy (Ep + Ek = Msc

2), which yields

Ms = Nmp

(
1 −
(

N

N1

)4/3
)1/2

.

The mass is maximum when N ∼ 0.7N1; the value of this maximum mass is

Mmax
s ∼ 6.5 × 1030 kg ∼ 3M� , (19.23)

corresponding to a radius ∼ 5 km.
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Beyond the critical number N1, a gravitational catastrophe happens: the
nonsaturation (or the additivity) of gravitational forces leads to a binding
energy larger in absolute value than the mass energy of the particles. If,
in its complicated evolution, which we shall not describe (neutronization of
matter by absorption of the electrons by the protons), the system can lose
energy by radiating neutrinos, it can fall into a “catastrophic” ground state
where a new kind of physics applies, and it becomes a black hole.

One can refine this extremely simple model, in particular by taking into
account the inhomogeneous density profile in the neutron star. The theory,
due to Landau, Oppenheimer and Volkov, leads to a critical mass very similar
to (19.23).

Further Reading
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physics”, Science 187, 605 (1975).

• E. Salpeter, “Dimensionless ratios and stellar structure”, in Perspectives in
Modern Physics, edited by R.E. Marshak, Wiley, New York (1966); “New
views on neutron stars”, Phys. Today, February 1999, p. 40.

• C. Kittel, Introduction to Solid State Physics, Wiley, New York (1966).
• S. Weinberg, Gravitation and Cosmology, Wiley, New York (1972).



20. Early History of Quantum Mechanics

Horresco referens
(I shiver when I recall it).

Virgil, The Aeneid

20.1 The Origin of Quantum Concepts

The first encounter of physics with the quantum world could have occurred
in one of many problems, for instance, in attempting to understand atomic
structure or the properties of solid-state matter. Historically, it just hap-
pens that it occurred in connection with a phenomenon which may seem less
fundamental: the spectrum of radiation inside a hot oven, also called the
black-body radiation spectrum.

20.1.1 Planck’s Radiation Law

The problem was the following. Consider an isothermal enclosure at tem-
perature T ; how can one determine the frequency distribution u(ν, T ) of the
energy density of radiation inside this enclosure? It was one of the most re-
markable results of Kirchhoff that, as a consequence of the second law of
thermodynamics, u(ν, T ) does not depend on the chemical nature or size of
the enclosure, and that it is a universal function.

In 1900, Lord Rayleigh showed that in classical physics one necessarily ob-
tains u(ν, T ) = 8πν2 kBT/c3. This result demonstrates a severe inconsistency
of classical physics, since the total radiation energy

∫
u dν would be infinite

if it were correct. Experimentally, it is observed that Rayleigh’s expression is
well satisfied at low frequencies, but that at high frequencies the distribution
obeys the law obtained by Paschen and Wien, u = αν3 e−γ ν/T , where α and
γ are constants.

In 1900, Max Planck discovered empirically an interpolating formula be-
tween these two regimes. In Planck’s formula,

uν =
8πν2

c3

hν

ehν/kBT − 1
, (20.1)
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there occurs a fundamental constant h. This formula is in excellent agreement
with experimental observations. Planck succeeded in giving it an explanation
within statistical thermodynamics, by assuming that matter behaves as a
collection of perfect harmonic oscillators and that the energy absorbed or
emitted by an oscillator of frequency ν is, at any time, an integer multiple
of an “energy quantum” hν. This was the first occurrence of “quantization”,
although its meaning remained obscure.

20.1.2 Photons

In 1905, Einstein performed a critical analysis of Planck’s argument, in par-
ticular concerning the absorption and emission of light. In order for the ar-
gument to be consistent, Einstein realized that the quantum aspects must be
present in the radiation itself, and he introduced the concept of the photon.
This also led to an explanation of the photoelectric effect. With Einstein’s
photons, one could find a much clearer raison d’être for Planck’s law. Ein-
stein also had a premonition of the double manifestations of the properties
of light, which are both wave-like and particle-like.

20.2 The Atomic Spectrum

The next step in the development of quantum physics was an investigation
of a much more fundamental nature. This concerned the interpretation of
atomic spectra.

20.2.1 Empirical Regularities of Atomic Spectra

After a series of intense experimental analyses, spectroscopists had been led,
between 1885 and 1908, to a set of empirical results concerning the distribu-
tion of spectral lines. These conclusions can be summarized as follows.

a. The emission and absorption eigenfrequencies of atoms are differences
between “spectral terms”:

νm,n = Am − An (20.2)

(Rydberg and Ritz), where An is a function of an integer n, called a
quantum number (the first use of this term).

b. In the case of hydrogen-like atoms, one has An = K/n2 (Balmer, 1885).
Other empirical formulas, similar but not so simple, had been found by
Rydberg for alkali atoms.
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20.2.2 The Structure of Atoms

In 1903, J.J. Thomson had constructed a so-called “plum-pudding” model
of atomic structure. He assumed that, within an extended spherical, contin-
uous distribution of positive charge, elastically bound electrons radiated or
absorbed light at characteristic frequencies.

However, in 1908, Marsden and Geiger, by directing 4 MeV α particles
from a radioactive source onto gold atoms, observed that some of the particles
were scattered backward at large angles, up to 150 degrees. This observation
was in opposition to Thomson’s theory, which only allowed small scattering
angles. Rutherford understood that these experimental observations could
be explained by a model in complete opposition to J.J. Thomson’s ideas.
Rutherford proposed a “planetary” model consisting of a central positively
charged nucleus, containing most of the atomic mass, surrounded by electrons
orbiting under the Coulomb attraction.

20.2.3 The Bohr Atom

In 1913, a decisive step forward was made by Niels Bohr when he visited
Rutherford in Manchester. Bohr postulated that there exist discrete energy
levels where the electrons can remain without radiating. Radiation occurs
suddenly, when an electron makes a transition between a stationary level of
energy En to another stationary level of energy Em by emitting a photon.
Owing to energy conservation, the photon energy hν is

hν = En − Em . (20.3)

In order to calculate the energies En, Bohr assumed there were “quantum
restrictions” on the classical trajectories. These restrictions consisted of as-
suming that the action along a trajectory is an integer multiple of h, in other
words

∮
p ·dr = nh. By applying this condition to circular trajectories in the

case of the hydrogen atom, Bohr obtained the celebrated formula

En = −EI

n2
, where EI =

2π2meq
4

(4πε0)2h2
, (20.4)

in remarkable agreement with experiment. This expression has the same form
as Balmer’s empirical formula, but, quite remarkably, the constant, known
as Rydberg’s constant, is expressed only in terms of fundamental physical
constants (q and me, the charge and mass of the electron, and h).

In fact, both physics and Niels Bohr were quite lucky. We now know that his
argument can only determine the values En for large values of n (in which case
the trajectory becomes semiclassical). The miracle is that, in the case of hydrogen,
the formula remains valid for small values of n. It is only the Schrödinger equation
which, later on, accounted for that fact. One may wonder what the history of
quantum mechanics would have been without this happy coincidence.
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The validity of (20.4) was confirmed when Bohr identified some lines in the
spectrum of the star ζ Puppis, which had first been attributed to hydrogen, as
belonging to the spectrum of ionized helium. However, it was the experiments
of Franck and Hertz (1914–1919) which confirmed the most revolutionary
aspect of Bohr’s theory, i. e. the existence of discrete stationary states.

20.2.4 The Old Theory of Quanta

Arnold Sommerfeld was one of the main theorists who developed Bohr’s dis-
covery into the form of what is now called the Bohr–Sommerfeld old theory
of quanta. This was a very sophisticated theory, in the sense that it used all
techniques of analytical mechanics, the basic assumption being that, for any
pair of Lagrange conjugate variables p and q, one assumes the quantization
of the integral

∮
p dq = nh. However, it turned out that it was impossible

to repeat Bohr’s original success. In 1925, the “quantum theory” was, from
the methodological point of view, an inextricable list of hypotheses, princi-
ples, theorems and ad hoc recipes which reflected more a scholarly form of
ignorance than a theory.

20.3 Spin

The rule for quantizing angular momentum had been discovered empirically
by Ehrenfest in June 1913, before Bohr’s model. Ehrenfest managed to im-
prove considerably the theory of Einstein and Stern of the specific heats of
diatomic gases, especially their temperature dependence, by assuming that
the rotation energies of these molecules are quantized in a similar way to
Planck’s oscillators: Erot = I(2πνn)2/2 = nhνn/2, where n is an integer and
I is the moment of inertia of the molecule. This formula can be written in
the equivalent forms νn = nh̄/(2πI) (quantization of the rotation frequency)
and Erot = n2h̄2/(2I), which displays the quantization of the square of the
angular momentum. In July 1913, Bohr, in his celebrated paper on the hy-
drogen atom, was led to a similar result concerning the square of the angular
momentum. Within the Bohr–Sommerfeld theory, it appeared that the pro-
jection of the angular momentum along a given axis z had values equal to
Lz = mh̄, where m is an integer between −� and +�, the value of � being a
characteristic of the atomic level.

In order to test this peculiar prediction, Otto Stern engaged in a series
of experiments which ended, in 1921, with the Stern–Gerlach experiment
(Chap. 8). The observation that a beam of silver atoms could be split into
two outgoing beams appeared to be the first experimental evidence in favor
of the suggestion that quantization could apply to trajectories of particles.
This appeared to be a triumph of the Bohr–Sommerfeld theory.

Needless to say, things were more subtle. The discovery of spin was one
of the most breathtaking and fascinating steps of quantum theory. The first
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decisive step was made by Pauli. The problem he addressed was to understand
why the electrons of a complex atom fill “shells” rather than all being in the
same ground state, which would minimize the energy. In 1924, Pauli proposed
an “exclusion principle”. The electronic states in an atom are characterized
not by three quantum numbers (n, �, m) but by four (n, �, m, ms), where
the fourth one, ms = ±1, is “by essence a quantum quantity which has no
classical analogue”. The exclusion principle states that there can be at most
one electron in a state of given quantum numbers.

The correct interpretation of this new quantum number was given in 1925
by Uhlenbeck and Goudsmit. They postulated that the electron possesses an
intrinsic angular momentum, to which there corresponds an intrinsic mag-
netic moment. The only two possible values for the projection of this angular
momentum on any axis are ±h̄/2. The only two possible values for the pro-
jection of the associated magnetic moment on any axis are ±qh̄/2me. This
theory gave, in particular, an explanation for the “anomalous” Zeeman effect,
which had been for 25 years a genuine challenge to the scientific community.

20.4 Heisenberg’s Matrices

In the same year, 1925, the Bohr–Sommerfeld theory was replaced by quan-
tum mechanics. The starting point of Heisenberg (in 1924) was to reject the
classical notions of position and momentum for a particle, which no experi-
ment could measure at that time, in favor of observable quantities, i. e. the
positions and intensities of spectral lines. The problem Heisenberg faced was
no longer to guess the quantum answer to a classical question, but to find
the mathematical structure which governs quantum phenomena.

His first analysis concerned quantum kinematics, or, in other words, the
mathematical nature of quantum quantities. In classical physics, the posi-
tion X(t) of a particle performing a periodic motion of frequency ν0 can be
expanded in a Fourier series as

X(t) =
∑

Xn e−2πi nν0t . (20.5)

However, as Heisenberg noted, one observes quantum frequencies of the form

hνnm = En − Em , (20.6)

which depend on two integers, and are more complicated than the Fourier fre-
quencies nν0. Heisenberg therefore postulated that, since two indices (n, m)
are necessary in order to characterize quantum frequencies, the set of num-
bers which generalizes the Fourier coefficients of a physical quantity in the
quantum case is a two-dimensional array Xnm(t), whose time-dependence1

1 Here we work in the Heisenberg representation (see exercise 5.3). In this rep-
resentation, which is related to the Schrödinger picture used in this book by
a unitary transformation, states are time independent whereas observables are
time dependent.
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is given by

Xnm(t) = Xnm e2πi νnmt . (20.7)

In order to find the mathematical relations, i. e. the algebra, between these
quantities, Heisenberg relied on (20.6). In fact, if we associate with the phys-
ical quantity X2 the generalized Fourier coefficients (X2)nm, then, in order
for the relation (20.7) to be satisfied, one must assume the “symbolic multi-
plication rule”

(X2)nm =
∑

q

XnqXqm , (20.8)

in which case one obtains

(X2)nm(t) =
∑

q

Xnq(t) Xqm(t)

=
∑

q

eit(En−Eq+Eq−Em)/h̄ Xnq Xqn

= e2πiνnmt (X2)nm .

Max Born remarked that this symbolic multiplication was nothing but matrix
multiplication, and that the Xnm were matrices. Very rapidly, Born discov-
ered the fundamental commutation relation between the matrices X and P
of the elements Xnm and Pnm:

XP − PX = i
h

2π
I , (20.9)

where I is the identity matrix. Born called this relation the fundamental
equation of Quanten Mechanik, i. e. a mechanics pertaining to quantum phe-
nomena.

Matrix Mechanics. The new quantum mechanics, or matrix mechanics,
was presented in 1925 by Born, Heisenberg and Jordan. The theory consists in
postulating that the fundamental physical quantities are matrices of the type
X = {Xnm}. The position and momentum matrices satisfy, by definition, the
fundamental commutation relation (20.9). The energy of a quantum system
has the same formal expression as in classical mechanics, but it must be
interpreted as a relation between matrices. Furthermore, the time derivative
of any matrix A is given by the fundamental hypothesis of quantum dynamics:

Ȧ = − i
h̄

(AH − HA) . (20.10)

Consider a particle of mass M in a potential V (X). Taking the time derivative of
(20.7), we obtain

(Ẋ)nm(t) = −2πi

h
(En − Em) Xnm e2πiνnmt .
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Since the energy H = P 2/2M +V is time independent, it must be represented by a
diagonal matrix (H)nm = Enδnm, from which one can deduce the relation between
matrices

P

M
≡ Ẋ = − i

h̄
(XH − HX)

as a particular case of (20.10).

In October 1925, starting from these well-defined assumptions, Pauli suc-
ceeded in showing that this formalism leads to the observed energy levels of
the hydrogen atom (i. e. that the corresponding matrix H has the correct
eigenvalues En), including the case where an external static electric field is
applied to the atom (the Stark effect). He was also able to give the solu-
tions to problems which had remained unsolved in the context of the Bohr–
Sommerfeld theory, such as the motion of a particle in crossed electric and
magnetic fields.

Dirac’s Genius. In July 1925, Heisenberg delivered a lecture on his work
at Cambridge. Fowler asked his most brilliant student, the young Dirac, to
read and study Heisenberg’s papers. At first, Dirac was skeptical because
of the awkward mathematical formulation used by Heisenberg. Two weeks
later, however, he dropped into Fowler’s office and said that the key point
of quantum theory was contained in Heisenberg’s work. Dirac knew of the
existence of noncommutative algebras, and he recognized that noncommuta-
tivity was the essential point of Heisenberg’s theory. Since no fundamental
principle dictates that physical quantities should commute, Dirac worked to
incorporate the fundamental property of noncommutativity into the classi-
cal equations of analytical mechanics. In a few months, he constructed his
own version of quantum mechanics based on “q-numbers” (instead of classical
“c-numbers”), independently of the Göttingen group. In particular, he under-
stood the relationship between the quantum commutators and the classical
Poisson brackets.

In 1927, Darwin and Pauli showed independently how the electron spin
could be incorporated into the formalism. In 1928, Dirac published his rela-
tivistic equation, which gives a natural account of the electron spin.

20.5 Wave Mechanics

The de Broglie Hypothesis (1923). At the same time as the matrix
approach, wave mechanics developed. In 1923, shortly after Compton proved
that Einstein’s photons of energy E = hν also possessed a momentum p =
h̄k, Louis de Broglie proposed a systematic association of waves and particles.
He wrote down the fundamental relation between the momentum and the
wave vector for any material particle, k = p/h̄. Louis de Broglie believed
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that the quantization of energies could emerge as the result of a stationary-
wave problem.

The Schrödinger Equation (1926). The chemist Victor Henri gave the
work of Louis de Broglie to Schrödinger in 1925. Schrödinger, who was skep-
tical at first, was encouraged by Einstein’s enthusiasm. After some unsuccess-
ful attempts with a relativistic wave equation (now called the Klein–Gordon
equation), which he found more reasonable, Schrödinger found his celebrated
equation in a nonrelativistic limit (which he said he didn’t understand). In
an impressive series of articles, published in 1926, he solved many problems,
including the calculation of the energy levels of hydrogen as an eigenvalue
problem, perturbation theory, the Stark effect, etc. He also proved the equiv-
alence of matrix mechanics and wave mechanics by expanding the equations
of wave mechanics in the eigenbasis of energy states.

The Experimental Confirmation. In 1927, Davisson and Germer, at the
end of a long series of experimental investigations started by Davisson in
1919, demonstrated the diffraction of electrons by a crystal, in agreement
with de Broglie’s formula. The same year, G.P. Thomson, the son of J.J.
Thomson, obtained a similar result with a different experimental technique.

20.6 The Mathematical Formalization

1926 In order to interpret electron collision experiments, Max Born suggests
that |Ψ(r)|2 d3r is a probability. He therefore understands the proba-
bilistic interpretation of the coefficients cn in the expansion of the wave
function ψ(r) =

∑
cn fn(r) in a complete basis of orthonormal func-

tions.
Dirac deepens the structure of the theory and introduces the δ “func-
tion”.

1927 Hilbert and Nordheim clarify the mathematical foundations of quan-
tum theory. They introduce Hilbert space and give a general theory of
operators.
Von Neumann gives a rigorous formulation of the continuous spectrum
of an operator which avoids using the δ function, but which has the dis-
advantage of being cumbersome. He introduces the density operator.

With these latter developments, the axioms of quantum theory were estab-
lished. Quantum mechanics had become a consistent and predictive theory.
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20.7 Some Important Steps in More Recent Years

We restrict ourselves to discoveries which are directly related to the quantum
phenomena studied in this book.

1927 Dirac quantizes the electromagnetic field and explains completely the
emission and absorption of photons by atoms.

1928 Dirac proposes the relativistic theory of the electron and predicts the
existence of the antielectron, or positron.
Bloch develops the quantum theory of electric conduction in metals.
Gamow, Gurney and Condon explain α decay by quantum tunneling.

1930 Invention of magnetic resonance by Rabi.
1931 Wigner applies group theory to quantum mechanics and clarifies the

notions of spin, parity and time reversal.
1932 Anderson discovers the positron in cosmic rays.
1938 Kapitza discovers the superfluidity of helium. London relates this

macroscopic quantum phenomenon to Bose–Einstein condensation.
1941 Landau theory of superfluidity.
1945 Bloch and Purcell independently discover nuclear magnetic resonance.
1946 Theory of semiconductors and invention of the transistor (Bardeen,

Brattain and Shockley).
Tomonaga proposes a covariant relativistic mathematical formalism of
quantum field theory.

1947 Measurement of the Lamb shift of the 2s1/2 and 2p1/2 levels of hydro-
gen, which was not predicted by Dirac’s equation.

1948 Kusch measures the magnetic moment of the electron accurately and
finds a value slightly different from the prediction of the Dirac equation.

1949 Theory of quantum electrodynamics which explains all electromagnetic
phenomena (Feynman, Schwinger and Tomonaga). Accurate calcula-
tions of the effects found by Lamb and Kusch.

1950 Kastler and Brossel invent the optical pumping technique.
1956 Lee and Yang suggest that parity is not conserved in weak interactions.
1957 A fundamental problem of solid state physics, superconductivity, is

solved by Bardeen, Cooper and Schrieffer.
1958 Townes and Schawlow invent the laser.
1962 Discovery of the Josephson effect in superconductors.
1965 Time-reversal invariance is slightly violated in weak interactions (Fitch

and Cronin).
Bell proves his celebrated inequalities.

1977–1987 Experimental proofs of the violation of Bell’s inequalities and of
the validity of quantum mechanics in that respect.

1985 Invention of the tunneling-effect microscope by Binnig and Rohrer.
1995 Observation of the Bose–Einstein condensation of atomic gases at tem-

peratures below 1 microkelvin (Nobel prize 2001 awarded to Cornell,
Ketterle and Wieman).
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1997 The Nobel prize is awarded to Chu, Cohen-Tannoudji and Phillips for
the development of methods for cooling and trapping atoms with light.

Further Reading

• M. Jammer, The Conceptual Development of Quantum Mechanics, McGraw-
Hill, New York (1966).

• B.L. Van Der Waerden, Sources of Quantum Mechanics, North-Holland,
Amsterdam (1967).

• J. Mehra and H. Rechenberg, The Historical Development of Quantum
Theory, Springer, New York (1982).



Appendix A. Concepts of Probability Theory

One is always forced to let
something to chance.

Napoleon Bonaparte

1 Fundamental Concepts

Consider a set of phenomena of the same nature on which we repeatedly
make the same observation or measurement. For instance, we might play
dice, deal shuffled cards, measure an outside temperature or an economic
parameter, etc. Each observation belongs to some set Ω of possibilities. This
set can be discrete (the numbers on a die), continuous (the set of observable
temperatures) or a more complicated object such as a set of functions (such
as curves of noise intensities between t0 and t1).

The set Ω is the set of a priori possible outcomes of the experiment. One
also speaks of events: “the number obtained in a spin of the roulette wheel
is even”, “the observed temperature is between T0 and T1”, etc. Each event
is therefore defined by a set of possible outcomes (a part of Ω).

We can introduce the notion of frequency. Suppose we repeat an exper-
iment a large number of times N , Ω being the set of possible outcomes.
Consider a specific event α and suppose that Nα is the number of times, out
of a total of N , that α happens. The observed number Nα obviously depends
on the specific sequence of experiments. The ratio

fα(N) = Nα/N

is called the empirical frequency of the event α in this sequence of exper-
iments. A fundamental empirical observation is the following: when N be-
comes large, if the successive repetitions of the experiment are performed in-
dependently (the result of an experiment has no a priori influence on the con-
ditions under which the other experiments are done), the frequencies fα(N)
tend, for each event α, to a well defined limit. This leads us to suppose that
to each event α there corresponds a number P (α), called the probability of
event α, which is related to the empirical frequency by the relation
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P (α) = lim
N→∞

fα(N) .

Clearly, P (α) ≥ 0, P (Ω) = 1, P (∅) = 0 and, if (Ai)i∈I is a finite family of
disjoint events,

P

(⋃
i∈I

Ai

)
=
∑
i∈I

P (Ai) .

As a mathematical theory, probability theory assumes a priori the existence
of probabilities. A sequence of experiments constitutes a more complicated
event. One can then prove a theorem of the following form:

The probability that the frequency fα(N) differs from P (α) by more than ε
tends to zero as N tends to infinity.

This type of convergence, which is of a quite particular form, is called sto-
chastic (from the Greek word stokhastikos, meaning “conjectural”).

2 Examples of Probability Laws

2.1 Discrete Laws

The Simple Alternative. In this example, there are only two possible
outcomes, α = 1 or 2 (for example, heads or tails). We denote the probability
of outcome 1 by p and that of outcome 2 by q. We obviously have p + q = 1.

The Generalized Alternative. In this case there are n possible outcomes
α = 1, 2 . . . , n. For instance, one can place m1 balls marked 1, m2 balls
marked 2, . . . in an urn. If the process of drawing a ball does not distinguish
between the balls, the probability law is specified by the set of numbers p1,
p2, . . . , pn such that

pα =
mα∑n

β=1 mβ
, where

n∑
α=1

pα = 1 .

2.2 Continuous Probability Laws in One or Several Variables

A probability law P on one (R) or n (Rn) continuous real variables is said to
be of density p, p being a positive integrable function such that

∫ +∞
−∞ p(x) dx =

1 or
∫

Rn p(x) dnx = 1, respectively, if, for any interval or any volume I,

P (I) =
∫

I

p(x) dx .

Mathematically, it is useful to treat the discrete and continuous cases in the
same formalism by working with the distribution function

F (t) = P (] −∞, t]) .



3 Random Variables 409

A probability law on R is entirely determined by the values it takes for the
events ] −∞, t] for all t.

Examples.

a. Exponential law:

p(x) =
{

λe−λx if x ≥ 0 (λ > 0)
0 if x < 0 ,

which yields

F (t) =
∫ t

−∞
p(x) dx =

{
0 if t < 0
1 − e−λt if t > 0 .

b. Gaussian law, with parameters µ, σ (Fig. A.1):

p(x) =
1

σ
√

2π
exp− (x − µ)2

2σ2
, where µ ∈ R, σ ∈ R∗ . (A.1)
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Fig. A.1. The Gaussian probability law for µ = 0 and σ = 1

3 Random Variables

3.1 Definition

Consider the example of a game with n possible outcomes α1, . . . , αn of
respective probabilities p1, . . . , pn. If, in this game, we win some amount of
money xα when the outcome is α, the number xα, which is a function of the
(random) outcome of the experiment, is called a random variable.

In the above example, the set of the {xα} is discrete. A random variable x
is called a discrete random variable if there is a set of numbers xα (which may
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be positive, negative or complex) each of which is associated with a possible
outcome of a discrete random event. The pairs {xα, pα} define the probability
law of the random variable x.

In the same way, one can consider continuous random variables. Let x
be a random variable which takes values in an interval [a, b]. The probability
density p(x) (positive or zero) defines the probability law of this random
variable if the probability of finding, in an experiment, a value between x

and x + dx is p(x) dx. We obviously have
∫ b

a
p(x) dx = 1. The generalization

to n dimensions is straightforward.

3.2 Conditional Probabilities

Consider two types of events [A] and [B]. We are led to defining the condi-
tional probability of the event B if we know that the event A has happened,
denoted by P (B/A), as

P (B/A) =
P (B ∩ A)

P (A)
as long as P (A) > 0 .

If X is a discrete random variable, we can define the conditional probability
P (B|X = x) of the event B when X = x, i. e. knowing that the event {X = x}
has happened.

Example: the Exponential Decay Law. If a radioactive particle exists at
time t, its probability of decaying in the time interval ]t, t+∆t] is independent
of its past history. Therefore the conditional probability that the time X at
which the particle decays is between t and t + ∆t, knowing that {X > t}, is
independent of t and equal to P{0 < X ≤ ∆t}:

P{0 < X ≤ ∆t} =
P{t < X ≤ t + ∆t}

P{X > t} .

If F is the distribution function of X, we obtain the functional relation

F (∆t) =
F (t + ∆t) − F (t)

1 − F (t)
.

The function F therefore satisfies the differential equation

F ′(t) = F ′(0) [1 − F (t)] .

Therefore, setting λ = p(0) = F ′(0) (where λ is a decay rate), we obtain
F (t) = 1 − e−λt. The density of the probability law for X is then

p(x) =
{

λe−λx for x ≥ 0
0 for x < 0 .

Since λ has the dimensions of the inverse of a time, we can denote it by 1/τ ,
where τ is the lifetime (or mean life). This exponential law is met with in
many practical applications (physics, pharmacology, reliability, etc.).
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3.3 Independent Random Variables

Consider two discrete random variables X and Y with values in E1 and
E2, respectively. One says that X and Y are two independent variables if an
observation of X does not give any information on Y , and vice versa. In other
words, the conditional probability of finding x if one knows y is independent
of y (and vice versa).

This can be expressed in a symmetric form in x and y as the product

P ({X = x, Y = y}) = P ({X = x}) P ({Y = y}) .

The variables X and Y are independent if and only if the law for the pair
(X, Y ) is the product of the laws for X and Y .

This condition can easily be extended to real variables. If X and Y are
real independent variables of respective densities p1 and p2, the law for the
pair {X,Y } is p(x, y) = p1(x) p2(y) .

3.4 Binomial Law and the Gaussian Approximation

Consider an experiment that consists of repeating an experiment with two
possible outcomes (for instance heads and tails) N times, independently. The
first possible outcome, denoted by 1, has a probability p of happening, and
the second, denoted by 0, has a probability q = 1 − p of happening. Such a
sequence of experiments is called a Bernoulli sequence.

Since the successive partial experiments are assumed to be independent,
the probability of a given sequence (x1, . . . , xN ) is given by

P (x1, . . . , xN ) = P [X1 = x1] . . . P [XN = xN ] = pk qN−k ,

where k is the number of 1’s in the sequence (x1, . . . , xN ). We now consider
the random variable X = X1 + . . . + XN representing the number of times 1
appears in the N successive draws:

P [X = k] =
(

N
k

)
pkqN−k ≡ b(k;N, p) .

This law b(k;N, p) is called the binomial law, with parameters N and p.

Normal Approximation to the Binomial Law. Using Stirling’s formula,
n! ∼ √

2πn nn e−n, we obtain, for n � 1:

b(k; n, p) ∼
√

1
2πnpq

exp
(
− (k − np)2

2npq

)
,

i. e. a Gaussian law for k, with µ = np and σ =
√

npq.
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4 Moments of Probability Distributions

4.1 Mean Value or Expectation Value

Consider a function ϕ(x) of a random variable x (ϕ(x) is a new random
variable). We define its mean value, or expectation value, 〈ϕ〉 as

〈ϕ〉 =
{∑

α ϕ(xα) pα discrete case∫ b

a
ϕ(x) p(x) dx continuous case (a < x < b)

.

We denote by 〈x〉 the mean value of the variable x itself:

〈x〉 =
∫

x p(x) dx .

This quantity is also called the mathematical expectation or the expectation
value: if we gain an amount xα when the result is α, then we expect to gain
〈x〉 on average.

Expectation Values of Some Common Laws

a. The simple alternative: 〈X〉 = p.
b. Binomial law b(k;n, p): 〈k〉 = np.
c. Geometric law P{X = k} = (1 − p)pk (k ≥ 0) : 〈X〉 = p/(1 − p).
d. Poisson law P{X = k} = e−λ λk/k! (k ≥ 0): 〈X〉 = λ.

Example. In the exponential decay above, the mean time that the particle
spends before it decays, or the expectation value of its lifetime, is

〈t〉 =
∫ ∞

0

t

τ
e−t/τdt = τ .

4.2 Variance and Mean Square Deviation

Consider a real random variable x whose expectation value is 〈x〉 = m. The
root mean square deviation of x, denoted by σ or ∆x, is defined by

(∆x)2 = σ2 = 〈(x − 〈x〉)2〉 ;

σ2 is also called the variance of the probability law. One can readily check,
by expanding the squared term, that

σ2 = 〈x2〉 − 2〈x〉〈x〉 + 〈x〉2 = 〈x2〉 − 〈x〉2 .

The smaller σ is, the more probable it is to find a value of x close to the
mean value. The quantity σ measures the deviation from the mean value.
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Variance of Some Common Laws.

a. The simple alternative: σ2 = p(1 − p).
b. Binomial law: σ2 = np(1 − p). Note that the relative dispersion σ/〈X〉

tends to zero as n−1/2 when n → ∞.
c. Gaussian law: the variance coincides with the parameter σ2 of (A.1).
d. Geometric law: σ2 = p/(1 − p)2.
e. Poisson law of parameter λ: σ2 = λ.

4.3 Bienaymé–Tchebycheff Inequality

We denote the mean value of the discrete real variable X by m and its variance
by σ2. It can be shown that

P ({|X − m| ≥ τσ}) ≤ 1/τ2 , (A.2)

which proves that for a small variance, there is a small probability of finding
X far from its expectation value.

Error Function. In the particular case of the Gaussian law (m, σ), the
quantity P ({|X − m| ≤ τσ}) is called the error function Φ(τ). We have

Φ(τ) =
∫ +τσ

τσ

1
σ
√

2π
e−x2/2σ2

dx .

Some values of Φ(τ) are the following:

τ 1 2 3

Φ(τ) 0.68 0.95 0.99

Example. Suppose one tosses a coin 106 times (n = 106, p = q = 1/2).
The expectation value is obvious: m = 5 × 105. The mean square deviation
is not so obvious: σ = 500. Using the Bienaymé–Tchebycheff theorem, we
see that the probability for finding, in 106 draws, a number k outside the
interval m±2σ is smaller than 25%. This probability is actually 5% (this can
be obtained from the Gaussian approximation of the binomial law).

4.4 Experimental Verification of a Probability Law

Quantum mechanics predicts probability laws. How can one verify such pre-
dictions experimentally, to a given accuracy?

Consider a specific example. It is predicted that the decay law of an
elementary particle is of the form e−t/τ dt/τ . We study the decay of a large
number n of particles, and we count the number of decays that occur in the
time interval between t and t + ∆t. Each decay is an independent event. We
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therefore want to know how many times the outcome 1 (a decay between t
and t + ∆t) happens. The theoretical probability is

p =
∫ t+∆t

t

e−t/τdt/τ = e−t/τ (1 − exp[−∆t/τ)] .

We choose n sufficiently large and ∆t not too small compared with τ so that
np is large. We are then in the case where the binomial law reduces to a
Gaussian. The probability law for observing a number k of decays during
the time interval ∆t is a Gaussian with an expectation value np and a mean
square deviation σ =

√
np(1 − p). Given the values of the error function Φ,

we expect a probability of 95% that k is inside the interval np ± 2
√

np(1 − p),
and 99% that it is in the interval np± 3

√
np(1 − p), if the predicted value of

p is correct.
This determines the order of magnitude of the experimental effort required

to achieve a given accuracy. We know that the observed frequency f = k/n
tends to p. In order to verify the probability law p up to an accuracy of δp
with a 95% confidence level, we must perform a number of observations such
that

δp ≥ 2
√

p(1 − p)/n, i. e. n ≥ 4p(1 − p)/(δp)2 .

Conversely, if we do not have a theoretical prediction for p, then if we measure
an experimental frequency f = k/n, we can claim with a confidence level Φ(τ)
that

p = f ± τ
√

f(1 − f)/n .

Note that the “errors” which appear here have a probabilistic character. They
are called statistical errors, as opposed to systematic errors, which originate
from the fact that one is actually measuring a phenomenon slightly different
from the desired one (because of the influence of the operator or of an external
influence on the measured system).

Exercises

A.1. Distribution of impacts. We observe some impacts on a target in the
xy plane. The observable is assumed to obey a probability law with a density
p(x, y) = (2πσ2)−1 exp[−ρ2/(2σ2)], where ρ = (x2 + y2)1/2 is the distance of
the impact point from the origin. What is the probability law for ρ?

A.2. Is is a fair game? Suppose that someone offers you the following
game: Bet one euro and throw three dice. If the number 6 (or any number
you choose in advance) does not show up, you lose your bet; you get paid 2
euros if this number shows up on one dice, 3 euros if it shows up on two dice,
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and 6 euros if it shows up on all three of them. Calculate the expectation
value of what you gain (which is negative if you lose) and find out if it is
reasonable to play.

A.3. Spatial distribution of the molecules in a gas. Consider N mole-
cules (6×1023, for instance) in a volume V (22.4 liters, for instance). Suppose
that a part of this volume, of volume v (10−3 cm−3), is enclosed. How many
molecules are there on average in v? What are the fluctuations of this num-
ber?



Appendix B. Dirac Distribution,
Fourier Transformation

Under King Louis XVIII,
there was, at the Academy of Sciences,

a famous Fourier that posterity has forgotten.

Victor Hugo, Les Misérables

1 Dirac Distribution, or δ “Function”

We often refer to point-like objects in physics. The mass density ρ(r) (or the
charge density) of such an object is not a function in the usual sense, since
it is everywhere zero except at a point r0, but its “integral” is finite:∫

ρ(r) d3r = m .

The δ “function”, introduced by Paul Dirac, can describe such a density.
Its mathematical definition was developed by the mathematician Laurent
Schwartz in the framework of distribution theory, which we shall briefly de-
scribe in the next section.

1.1 Definition of δ(x)

In this section we present the (mathematically improper) names and formal-
ism used by physicists. For a real variable x, the “function” δ(x) has the
following properties:

δ(x) = 0 for x �= 0 and
∫ +∞

−∞
δ(x) dx = 1. (B.1)

For any function F (x) that is regular at x = 0, we have, by definition,∫
F (x) δ(x) dx = F (0) . (B.2)

By a change of variables, we can define the function δ(x − x0), for which
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∫
F (x) δ(x − x0) dx = F (x0) . (B.3)

The generalization to several dimensions is straightforward. Consider, for
instance r = (x, y, z). We then have

δ(r − r0) = δ(x − x0) δ(y − y0) δ(z − z0) , (B.4)

that is to say,∫
F (r) δ(r − r0) d3r = F (r0) .

1.2 Examples of Functions Which Tend to δ(x)

One can construct distributions which are nearly point-like, using functions
concentrated in the vicinity of a point x0 (Fig. B.1). In order to do so, we
consider sequences of functions depending on a parameter which determines
their width (yε(x) and gσ(x) in the first two of the following examples).
Although these functions have no limit in the usual sense when their width
goes to zero, the integral of their product with any function F that is regular
at x = x0 remains well defined and tends to the limit F (x0). The following
are examples of sequences of functions of this kind.

a. Consider the sequence of functions yε(x) (Fig. B.1a) defined by

yε =
{

1/ε for |x| ≤ ε/2
0 for |x| > ε/2 . (B.5)

Then∫ +∞

−∞
F (x) yε(x) dx =

1
ε

∫ ε/2

−ε/2

F (x) dx = F (θε/2) ,

where −1 ≤ θ ≤ 1. In the limit ε → 0, yε(x) “tends” to δ(x).

(a) (b) (c) (d)

1

ε

ε

1

2σ π

σ≈

Y

π

/Yπ≈

Y

π

/Yπ≈

Fig. B.1a–d. Examples of functions concentrated in the vicinity of a point, whose
limit, in the sense of distributions, is equal to δ(x)
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b. Gaussian function (Fig. B.1b):

gσ(x) =
1√
2πσ

exp(−x2/2σ2) .

By the change of variables y = x/σ, we obtain∫ +∞

−∞
F (x) gσ(x) dx =

1√
2π

∫ +∞

−∞
e−y2/2 F (σy) dy .

In the limit σ → 0, the above integral remains well defined and gives the
result F (0). As σ → 0, gσ(x) “tends” to δ(x).

c. Square of a “sine cardinal” function (Fig. B.1c): sin2(xY )/(πx2Y ), where
Y → ∞. Since∫ +∞

−∞

sin2 x

x2
dx = π ,

we have∫ +∞

−∞

sin2 xY

πx2Y
dx = 1 .

d. “Sine cardinal” function (Fig. B.1d): sin(xY )/(πx), where Y → ∞.
Since∫ +∞

−∞

sinx

x
dx = π ,

we have, for all Y ,∫ +∞

−∞

sinxY

πx
dx = 1 .

The last case differs from the previous examples in the sense that for x �= 0,
the function sin(xY )/(πx) does not tend to zero in the sense of a function
as Y → ∞. Instead, it oscillates more and more rapidly. It is only “on the
average” that it vanishes.

1.3 Properties of δ(x)

a. δ(x) is an even function: δ(x − x0) = δ(x0 − x) (just make a change of
variables in (B.3)).

b. We have δ(ax) =
1
|a|δ(x) (a real). Indeed, we find, for a > 0,

∫ +∞

−∞
F (x) δ(ax) dx =

∫ +∞

−∞
F (u/a) δ(u)

du

a
=

1
a
F (0) .

For a < 0, we use the fact that δ is even.
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2 Distributions

The ideas outlined above can be formalized rigorously using distribution the-
ory. We sketch this theory in order to extract some useful results.

2.1 The Space S

We shall consider the vector space S whose elements are complex valued func-
tions ϕ(x) of one (or several) real variables x and which satisfy the following
conditions: the functions ϕ(x) are infinitely differentiable and, as x tends to
infinity, they and all their derivatives tend to zero, more rapidly than any
power of 1/|x|. For example, the functions e−x2

and xne−x2
are elements of S.

2.2 Linear Functionals

A continuous linear functional f on the space S is a mapping of S onto
the complex numbers (f : S → C), such that to each ϕ in S, there corre-
sponds a complex number, denoted by (f, ϕ). This mapping has the following
properties:

a. Linearity:

(f, α1ϕ1 + α2ϕ2) = α1(f, ϕ1) + α2(f, ϕ2) , (B.6)

whatever the complex numbers α1 and α2 and the functions ϕ1 and ϕ2

belonging to S.
b. Continuity: if the sequence of functions ϕ1, ϕ2, . . . , ϕn in S tends to

zero, the sequence of numbers (f, ϕ1), (f, ϕ2), . . . , (f, ϕn) tends to zero.
N.B. We say that the sequence ϕn tends to zero if xk(d/dx)k′

ϕn tends
to zero uniformly in x whatever the integers k and k′, provided that they
are positive or zero.

These functionals are called tempered distributions and their set is called S′.

Examples

a. Let f(x) be a locally integrable function which remains bounded by a
power of |x| as |x| → ∞. We can associate with it a functional, also
denoted by f , using the formula

(f, ϕ) =
∫

f(x)ϕ(x) dx for any ϕ in S . (B.7)

b. The Dirac δ distribution is the functional which associates the number
ϕ(0) with any function ϕ(x) in S. This is written as

(δ, ϕ) = ϕ(0) . (B.8)
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It is convenient for physicists (but improper) to write∫
δ(x) ϕ(x) dx = ϕ(0) .

In the examples in the previous section, the statement that yε or gσ tends
to δ is incorrect. However, the statement

(gσ, ϕ) →
σ→0

(δ, ϕ) for any ϕ in S (B.9)

is perfectly correct. We say that gσ (or yε, . . . ) tends to δ in the sense of
distributions.

2.3 Derivative of a Distribution

When the distribution is associated with a differentiable function f(x), as in
(B.7), we can write the following, all operations being legitimate:

(f ′, ϕ) =
∫ +∞

−∞

df(x)
dx

ϕ(x) dx = −
∫ +∞

−∞
f(x)

dϕ

dx
dx = −(f, ϕ′) .

We define the derivative df/dx, or f ′ of an arbitrary linear functional f in
the set of tempered distributions by the relation(

df

dx
, ϕ

)
= −

(
f,

dϕ

dx

)
. (B.10)

Examples

a. Derivative δ′ of δ:

(δ′, ϕ) = −(δ, ϕ′) = −ϕ′(0) , (B.11)

which physicists write as
∫

δ′(x)ϕ(x) dx = −ϕ′(0).
b. Consider the step function (Heaviside function) defined by

Θ(x) =
{

0 x < 0
1 x ≥ 0 . (B.12)

This function is locally integrable, and Θ belongs to the space of tempered
distributions. We can calculate its derivative:

(Θ′, ϕ) = −(Θ, ϕ′) = −
∫ +∞

−∞
Θ(x) ϕ′(x) dx = −

∫ +∞

0

ϕ′(x) dx = ϕ(0) ,

and hence the remarkable equality (in the sense of distributions)

dΘ(x)
dx

= δ(x) . (B.13)

c. In three dimensions, we have (see exercise B.1):

∆(1/r) = −4πδ(r) . (B.14)
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2.4 Convolution Product

The convolution product of two integrable functions f and g is the function

h(x) =
∫

f(y) g(x − y) dy ; (B.15)

this can be written h = f ∗ g. By making the change of variables u = x − y,
we obviously obtain f ∗ g = g ∗ f : the convolution product is commutative.

The natural framework for the convolution product is the space of dis-
tributions. A distribution h is associated with the function h(x) above such
that

(h, ϕ) =
∫

h(x)ϕ(x) dx =
∫∫

f(y) g(z)ϕ(y + z) dy dz .

We define the convolution product f ∗ g of two distributions f and g by

(f ∗ g, ϕ) = (f(x)g(y), ϕ(x + y)) . (B.16)

With this definition, one can check that the Dirac distribution is the identity
in the convolution algebra: δ ∗ f = f .

3 Fourier Transformation

We state here a few properties of the Fourier transformation, which is an
essential tool both in physics and mathematics.

3.1 Definition

Consider a function f(k) in the above space S. We call the function g(x)
defined by the integral

g(x) =
1√
2π

∫ +∞

−∞
f(k) eikx dk (B.17)

the Fourier transform of the function f(k). From the definition of S, this inte-
gral exists and is infinitely differentiable with respect to x. The generalization
to several variables x = (x1, . . . , xn), k = (k1, . . . , kn) is obvious:

g(x) =
1(√
2π
)n ∫ f(k) eik·x dnk . (B.18)
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3.2 Fourier Transform of a Gaussian

Consider the particular case of a Gaussian function:

f(k) =
e−k2/(2σ2)

σ
√

2π
⇒ g(x) =

1√
2π

∫ +∞

−∞

e−k2/(2σ2)

σ
√

2π
eikx dk . (B.19)

This integral can be calculated in several ways. For instance, we can note
that g(x) satisfies the differential equation

g′(x) + xσ2g(x) = 0

and that g(0) = 1/
√

2π, and therefore

g(x) =
e−x2σ2/2

√
2π

. (B.20)

The Fourier transform of a Gaussian is also a Gaussian. We notice that

1√
2π

∫
e−ikx g(x) dx =

1√
2π

∫
e−ikx e−x2σ2/2

√
2π

dx =
e−k2/(2σ2)

σ
√

2π
= f(k) .

(B.21)

3.3 Inversion of the Fourier Transformation

The Fourier transformation f(k) → g(x) is a mapping of S(k) in S(x). This
transformation can be inverted as follows:

f(k) =
1√
2π

∫ +∞

−∞
e−ikx g(x) dx . (B.22)

In order to demonstrate this result, we consider the integral

hσ(k) =
1√
2π

∫ +∞

−∞
e−ikx e−x2σ2/2 g(x) dx

=
1√
2π

∫ +∞

−∞
e−ikx e−x2σ2/2

√
2π

(∫ +∞

−∞
eixk′

f(k′) dk′
)

dx .

In the limit σ → 0 we recover the right-hand side of (B.22); furthermore, in
the double integral above, for σ �= 0, all integrals are absolutely convergent
and we can interchange the integrations. After integrating over x and using
the result (B.21), we obtain

hσ(k) =
1

σ
√

2π

∫ +∞

−∞
e−(k′−k)2/2σ2

f(k′) dk′ .

By a change of variable y = (k′ − k)/σ, we obtain
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hσ(k) =
1√
2π

∫ +∞

−∞
e−y2/2f(k + σy) dy .

In the limit σ → 0, we obtain the desired result:

lim
σ→0

hσ(k) =
1√
2π

∫ +∞

−∞
e−y2/2 f(k) dy = f(k) .

Therefore the Fourier transformation is a reciprocal transformation:

f(k) =
1√
2π

∫ +∞

−∞
e−ikx g(x) dx ←→ g(x) =

1√
2π

∫ +∞

−∞
eikx f(k) dk .

(B.23)

For this reason, we can say indiscriminately that f(k) and g(x) are Fourier
transforms of one another.

3.4 Parseval–Plancherel Theorem

Consider two functions f1(k) and f2(k) in S, and their Fourier transforms
g1(x) and g2(x). A fundamental property of the Fourier transformation is the
Parseval–Plancherel theorem:∫

f∗
1 (k) f2(k) dk =

∫
g∗1(x) g2(x) dx . (B.24)

Using the definition of g2(x), we obtain∫
g∗1(x) g2(x) dx =

1√
2π

∫
g∗1(x)

(∫
eikx f2(k) dk

)
dx

=
1√
2π

∫∫
eikx g∗1(x) f2(k) dk dx .

On the other hand, from the definition of f1(k) (and therefore of f∗
1 , which

is its complex conjugate), we find∫
f∗
1 (k) f2(k) dk =

1√
2π

∫ (∫
eikx g∗1(x) dx

)
f2(k) dk

=
1√
2π

∫∫
eikx g∗1(x) f2(k) dk dx ,

which proves the result.
We can introduce, in the space S, a scalar product defined by

〈f1, f2〉 =
∫ +∞

−∞
f∗
1 (k) f2(k) dk , (B.25)

with which we associate the norm ‖f‖ =
√〈f, f〉. This scalar product is

invariant under a Fourier transformation (i. e. 〈f1, f2〉 = 〈g1, g2〉), which is
called an isometric transformation.
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3.5 Fourier Transform of a Distribution

One can extend the definition of the Fourier transformation to the space S′

of distributions. We note here a particularly useful formula, which allows us
to recover quickly all the important results, such as (B.22) and (B.24). If, in
(B.19), we let σ tend to zero, the function f(k) tends, as we have seen, to
the Dirac distribution δ(k). Therefore we find, in this limit,

δ(k) =
1
2π

∫ +∞

−∞
e−ikx dx . (B.26)

In the calculation of the inverse Fourier transform (B.22), we actually used
this limit. The Dirac distribution δ(x) is the Fourier transform of the constant
(2π)−1/2. We can recover, using another limiting procedure, the result of
Sect. 1.2, example 4:

δ(x) = lim
Y →∞

1
2π

∫ +Y

−Y

e+ikx dk = lim
Y →∞

sin(xY )
πx

.

Some one-dimensional Fourier transforms are given in Table B.1.

Table B.1. Fourier transforms of some commonly encountered functions

function or distribution f(k) Fourier transform g(x)

(d/dk)n f(k) (−ix)ng(x)

knf(k) [−i(d/dx)]n g(x)

f(ak) (1/|a|)g(x/a)

eix0kf(k) g(x + x0)

f(k + k0) e−ik0xg(x)

δ(k) 1/
√

2π

1
√

2π δ(x)

e−k2/(2σ2) σ e−x2σ2/2

We also see that the Fourier transform of a product of two functions
f1(k)f2(k) is proportional to the convolution product of the Fourier trans-
forms g1(x) and g2(x):

f1(k) f2(k) ←−F.T.−→ 1√
2π

∫
g1(x′) g2(x − x′) dx′ =

1√
2π

g1 ∗ g2 .

This can be proved using (B.26).
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3.6 Uncertainty Relation

Consider a function f(k) and assume that |f(k)|2 is the probability law for
the random variable k. The function is therefore normalized as follows:∫

|f(k)|2 dk = 1 . (B.27)

With this probability law, we can define the expectation value 〈k〉 of k. By
a change of variable k = 〈k〉 + q, we can shift to the centered variable q,
with zero expectation value. We assume this has been done and refer to the
centered variable as k in the following treatment. The rms deviation ∆k of k
is therefore given by

(∆k)2 =
∫

k2 |f(k)|2 dk . (B.28)

Because of the isometry, the Fourier transform g(x) of f(k) satisfies∫ |g(x)|2 dx = 1. The function |g(x)|2 can be considered as the proba-
bility law for the random variable x. This variable will be centered if
〈x〉 =

∫
x |g(x)|2 dx = 0. If this is not the case, we can, by a change of

variables, switch to a centered variable (a translation in x does not affect
|f(k)|2.) The rms deviation ∆x of x is given by

(∆x)2 =
∫

x2 |g(x)|2 dx . (B.29)

We have the following theorem:

Whatever the function f , we have the inequality

∆x ∆k ≥ 1/2 . (B.30)

The equality occurs only for Gaussian functions.

Proof. Consider the integral I(λ) =
∫ |kf(k) + λ(dfdk)|2 dk, where λ is a

real number. We have

I(λ) =
∫

k2 |f(k)|2 dk + λ

∫
k

(
f∗ df

dk
+

df∗

dk
f

)
dk + λ2

∫ ∣∣∣∣df

dk

∣∣∣∣2 dk .

The first term is equal to (∆k)2. The second term, after integration by parts,
gives∫ +∞

−∞
k

d|f |2
dk

dk = −
∫ +∞

−∞
|f |2 dk = −1 .

As for the third term, we notice that df/dk is the Fourier transform of
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−ixg(x). Owing to (B.24), we therefore have∫ ∣∣∣∣df

dk

∣∣∣∣2 dk =
∫

x2|g(x)|2 dx = (∆x)2 .

We obtain, finally, I(λ) = (∆k)2 − λ + λ2(∆x)2. But I(λ) is positive for all
λ, which is possible only if 1 − 4(∆x)2(∆k)2 ≤ 0. This is nothing but the
inequality (B.30).

The inequality (B.30), called an uncertainty relation, shows that when the
“width” of a function is large, the “width” of its Fourier transform is narrow.
It can be shown that in the case of a Gaussian, and only in that case, we
obtain saturation of the inequality, i. e. ∆x ∆k = 1/2.

Exercises

B.1. Laplacian operator in three dimensions. By applying (B.10), show
that, in three dimensions, ∆(1/r) = −4πδ(r).

B.2. Fourier transform and complex conjugation. We choose a func-
tion f(k) in the space S and denote its Fourier transform by g(x). Determine
the Fourier transform of f∗(k). Characterize the properties of g(x) when f(k)
is real and symmetric (i. e. f(k) = f(−k)).



Appendix C. Operators
in Infinite-Dimensional Spaces

It is not wise for everyone to read the following pages.
Only a few will safely enjoy these bitter fruits.

Lautréamont

1 Matrix Elements of an Operator

Here, we extend to infinite-dimensional spaces the concept of “associativity”,
which we have already established for finite-dimensional spaces:

〈φ|Â|ψ〉 = 〈φ|
(
Â|ψ〉

)
=
(
〈φ|Â

)
|ψ〉 .

We first define the action of Â on a bra 〈φ|. In order to do this, we remark
that the mapping

|ψ〉 −→ 〈φ|
(
Â|ψ〉)

)
is a linear form. Therefore there exists a ket |χ〉 and its associated bra 〈χ|
which correspond to this linear form:

〈χ|ψ〉 = 〈φ|
(
Â|ψ〉)

)
for any |ψ〉 in EH . (C.1)

This enables us to define the action of Â on the bra 〈φ|. We set, by definition,

〈χ| = (〈φ|Â) .

We now obtain the desired associativity since (C.1) can be written as(
〈φ|Â

)
|ψ〉 = 〈φ|

(
Â|ψ〉

)
. (C.2)

We therefore write this expression as 〈φ|Â|ψ〉, as in the finite-dimensional
case.
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Examples. Consider the following operators in the space L2(R):

• Â = x̂: Position operator along x.
Equation (C.2) can then be written very simply:∫

[xφ(x)]∗ ψ(x) dx =
∫

[φ(x)]∗[xψ(x)] dx ,

which just means that the action of x̂ on the bra 〈φ| is also a multiplication
of the wave function by x.

• Â = p̂x: Momentum operator along x.
Integrating by parts, we find∫ (

h̄

i
dφ

dx

)∗
ψ(x) dx =

∫
φ∗(x)

(
h̄

i
dψ

dx

)
dx ,

which means that the action of p̂x on the bra 〈φ| corresponds to h̄/i times
the operation of differentiation with respect to x.

These two examples show the limitations of Dirac’s notation and of the asso-
ciativity described above in infinite-dimensional spaces. For instance, in the
second case, nothing guarantees that it is legitimate to integrate by parts
and that the integrals converge. It may happen that the derivative of ψ(x)
exists but not that of φ(x). In that case, the right-hand side of (C.2) is mean-
ingful, but not the left-hand side. These problems arise because, in infinite-
dimensional spaces, even operators as trivial as x or ∂/∂x are not defined on
all the space EH.

2 Continuous Bases

In an infinite-dimensional Hilbert space, it happens that, for some operators
Â, the eigenvalue problem Â|α〉 = aα|α〉 has no solutions, because no vector
of the space EH can satisfy this equation. For instance, in the space L2, this
is the case for the following operators:

a. The momentum operator px = −ih̄(∂ / ∂x). The solution of

p̂xψp0(x) = p0ψp0(x) ,

where the eigenvalue p0 is any real number, is a plane wave,

ψp0(x) = A exp(ip0x/h̄) , (C.3)

which is not square integrable.
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b. The position operator. This operator corresponds to multiplying the wave
function ψ(x) by x. The eigenvalue equation is

x ψx0(x) = x0 ψx0(x) ,

where the eigenvalue x0 is any real number. This equation cannot be
satisfied by a square-integrable function, but it is satisfied by a Dirac
distribution,

ψx0(x) = B δ(x − x0) . (C.4)

It is therefore necessary to generalize the eigenvalue problem to vectors
which do not belong to the Hilbert space. Physicists retain the same language,
although it is mathematically incorrect. A rigorous mathematical formulation
would be very heavy. It is convenient, at our level, to continue using the
improper language. This does not mean that mathematical rigor is useless,
but simply that the cases we shall consider are not too pathological.

We shall call α an eigenvalue of Â if it is such that Â|vα〉 = α|vα〉, even
if |vα〉 does not belong to the space EH, provided that∫

C(α)|vα〉dα belongs to EH if
∫

|C(α)|2 dα < ∞ .

In the two examples above, this condition is fulfilled. Indeed, any square-
integrable function ψ(x) can be written as

ψ(x) =
∫

eip0x/h̄ ϕ(p0) dp0 (Fourier transformation),

ψ(x) =
∫

δ(x − x0)ψ(x0) dx0 (definition of Dirac distribution).

Consider the operator Ẑ = p̂x̂3 + x̂3p̂, which is apparently symmetric, and would
be Hermitian if x̂ and p̂ were finite-dimensional matrices. Inserting the expres-
sion p̂ = −ih̄(d/dx), one can check that the square-integrable function φ(x) =

λx−3/2 exp(−a2/4x2), where a is real and λ is a normalization constant, satisfies

the eigenvalue equation for Ẑ with a pure imaginary eigenvalue z0 = −4ia2/h̄. The
operators x̂ and p̂ are “good” self-adjoint operators, in the sense that their domain
(i. e. the functions they may be applied to, the results belonging to EH) is dense in

EH, which is not the case for the operator Ẑ above.

The orthogonality relation of two such “eigenvectors” |vα〉 and |vα′〉 be-
comes (up to a normalization constant)

〈vα|vα′〉 = δ(α − α′) . (C.5)

The vectors |vα〉 belong to spaces larger than L2; they are eigendistributions
and not eigenfunctions.

Let us come back to the specific case of position and momentum operators.
We denote by |p〉 the eigenvector of p̂x corresponding to the eigenvalue p (p
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real) and denote by |x〉 the eigenvector of x̂ corresponding to the eigenvalue
x (x real). From (C.5), we have

〈p0|p1〉 = δ(p0 − p1) , 〈x0|x1〉 = δ(x0 − x1) .

We can check these results directly, by returning to the results (C.3) and
(C.4). If we choose A = 1/

√
2πh̄ and B = 1, we have

〈x0|x1〉 =
∫

ψ∗
x0

(x)ψx1(x) dx =
∫

δ(x − x0) δ(x − x1) dx = δ(x0 − x1) ,

〈p0|p1〉 =
∫

ψ∗
p0

(x)ψp1(x) dx =
1

2πh̄

∫
ei(p1−p0)x/h̄ dx = δ(p0 − p1) .

Consider now a vector |ψ〉 of L2. We calculate the scalar products 〈x0|ψ〉 and
〈p0|ψ〉,

〈x0|ψ〉 =
∫

ψ∗
x0

(x)ψ(x) dx =
∫

δ(x − x0) ψ(x) dx ,

〈p0|ψ〉 =
∫

ψ∗
p0

(x) ψ(x) dx =
∫

1√
2πh̄

e−ip0x/h̄ ψ(x) dx ,

and obtain the very simple result

〈x0|ψ〉 = ψ(x0) , (C.6)
〈p0|ψ〉 = ϕ(p0) , (C.7)

where ϕ(p) is the Fourier transform of ψ(x).
We take now the operator Ô =

∫ |x〉〈x| dx. For two vectors |ψ〉 and |χ〉
of EH, we consider the quantity 〈ψ|Ô|χ〉. Using (C.6), we find

〈ψ|Ô|χ〉 =
∫

〈ψ|x〉〈x|χ〉 dx =
∫

ψ∗(x)χ(x) dx = 〈ψ|χ〉 .

This relation, valid for any pair |ψ〉, |χ〉, yields the result Ô = IH. Therefore,
the closure relation in the continuous basis {|x〉} can be written as∫

|x〉〈x| dx = IH .

Similarly, for the continuous basis {|p〉}, we obtain∫
|p〉〈p| dp = IH .

These two identities replace the relation (5.25) that we had in the case of
countable bases.

Similarly, the results

|ψ〉 =
∫

|x〉〈x|ψ〉 dx =
∫

ψ(x) |x〉 dx

=
∫

|p〉〈p|ψ〉 dp =
∫

ϕ(p) |p〉 dp
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generalize the decomposition

|ψ〉 =
∑

n

Cn|n〉 , Cn = 〈n|ψ〉 .

The numbers ψ(x) and ϕ(p) can be interpreted as the components of the
vector |ψ〉 in the continuous bases |x〉 and |p〉.
In this book we call the quantity ψ(x) the wave function. It is now clear that this
is just one particular representation of the state vector |ψ〉, which has no more
intrinsic value than any other (for instance ϕ(p) or Cn). The function ψ(x) is more
convenient for describing the position in space of the particle; similarly, ϕ(p) is
more convenient for describing its momentum. It follows that one frequently calls
any representation of the state vector |ψ〉 the wave function. However, in order to
avoid any confusion, in this book we give the name “wave function” only to the
representation ψ(x) associated with the position basis.

Finally, the transformation matrix from the x basis to the p basis is given by

〈x0|p0〉 =
∫

ψ∗
x0

(x)ψp0(x) dx =
∫

δ(x − x0)
1√
2πh̄

eip0x/h̄ dx ;

in other words,

〈x0|p0〉 =
1√
2πh̄

eip0x0/h̄ .

Remarks

a. In the above notation, the Fourier transformation appears as a change of
basis:

ψ(x) = 〈x|ψ〉 =
∫
〈x|p〉〈p|ψ〉 dp =

∫
1√
2πh̄

eipx/h̄ϕ(p) dx ,

ϕ(p) = 〈p|ψ〉 =
∫

dx 〈p|x〉〈x|ψ〉 =
∫

1√
2πh̄

e−ipx/h̄ψ(x) dx .

b. The position and momentum operators are written, in this language, as

x̂ =
∫

x |x〉〈x| dx , p̂ =
∫

p |p〉〈p| dp .
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Alas! I only found a dreadful mixture.

Jean Racine, Athalie

The formulation of quantum mechanics that we have used in this book relies
implicitly on the principle that one can prepare a system in a well defined
state vector |ψ〉 of the Hilbert space. Knowing |ψ〉 we can then calculate
the probabilities for all possible results of a given measurement. Such states
are called pure states. However, in many physical situations one cannot or
does not have such a complete knowledge of the state of the system under
consideration. The two following examples illustrate this point.

The first one deals with the Stern–Gerlach experiment. The silver atoms
emerging from the oven are unpolarized. By this, we mean that whatever the
orientation of the magnetic field gradient, we always observe two spots of
equal intensities on the detecting plate. How can we describe the magnetic
or spin state of a silver atom in this situation? Following the line of thought
developed for pure states, we could attempt to use a state of the type

|ψ〉 =
1√
2
(|+〉 + eiφ|−〉) . (D.1)

With such a state, one can indeed account for the probability 1/2 of finding
±µ0 in a measurement of µ̂z, whatever the value of the phase φ. However,
(D.1) cannot account for the observations. In fact, a Stern–Gerlach apparatus
oriented in the direction u = cos φ ex + sin φ ey will yield, with probability
1, the sole result +µ0. This contradicts the observation that any orientation
of the magnetic gradient yields ±µ0 with equal probabilities.

The second example concerns an incomplete measurement. Consider an
isotropic harmonic oscillator in two dimensions x and y, with an angular
frequency ω. Suppose that we perform a measurement of its energy and find
the result 2 h̄ω. What is the state of the system after this measurement?
There is no unique answer to this question, since |nx = 1, ny = 0〉, |nx = 0,
ny = 1〉 and any linear superposition of these two states are all acceptable
choices.

Consequently, it is not always possible to define in an unambiguous man-
ner the state vector of a quantum system. We have to replace this notion by a
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more general one which can deal with systems that are not well prepared, i. e.
for which all the physical quantities associated with a CSCO have not been
measured. In order to do so, we shall reformulate the principles of quantum
mechanics presented in Chap. 5, in terms of what is called the density oper-
ator. We shall do so first in cases where the system can indeed be described
by a state vector. In such cases, the system is said to be in a pure state. We
shall then turn to the general situation, corresponding to the two examples
presented above, for which the description in terms of a state vector fails.
We shall show that the description in terms of a density operator is indeed
suitable for such cases, which are referred to as impure states or statistical
mixtures. We shall then give a few examples of applications of the density op-
erator, such as the Wigner distribution and the description of measurements
on systems consisting of entangled states of two subsystems.

1 Pure States

We first give the density operator formalism for pure states that we have
dealt with throughout this book.

1.1 A Mathematical Tool: the Trace of an Operator

Consider a Hilbert space with an orthonormal basis {|n〉} and an operator Â
acting in this space. The trace of Â is defined as

Tr(Â) =
∑

n

〈n|Â|n〉 . (D.2)

The quantity Tr(Â) does not depend on the particular choice of the basis
{|n〉}. If we consider another orthonormal basis {|n̄〉}, we have∑

n

〈n|Â|n〉 =
∑

n,n̄,m̄

〈n|n̄〉 〈n̄|Â|m̄〉 〈m̄|n〉

=
∑
n̄,m̄

〈n̄|Â|m̄〉
(∑

n

〈n|n̄〉 〈m̄|n〉
)

=
∑
n̄,m̄

〈n̄|Â|m̄〉 δn̄,m̄ =
∑

n̄

〈n̄|Â|n̄〉 ,

where we have used the closure relations
∑

n |n〉〈n| =
∑

n̄ |n̄〉〈n̄| = 1̂.
An important property of the trace is that Tr(ÂB̂) = Tr(B̂Â) for any

pair of operators Â and B̂, whether or not they commute:
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Tr(Â B̂) =
∑

n

〈n|Â B̂|n〉 =
∑
n,m

〈n|Â|m〉 〈m|B̂|n〉 =
∑
m

〈m|B̂ Â|m〉 ,

= Tr(B̂ Â) , (D.3)

where we have again used the closure relation.
In the following we shall consider particular operators such as Â = |ψ〉〈φ|,

where |ψ〉 and |φ〉 are two states of the Hilbert space. In such a case, we obtain
the matrix element of B̂:

Tr(Â B̂) =
∑

n

〈n| (|ψ〉〈φ|) B̂ |n〉 =
∑

n

〈n|ψ〉 〈φ|B̂|n〉 = 〈φ|B̂|ψ〉 . (D.4)

In particular, if we take B̂ = 1̂ and |ψ〉 = |φ〉, where |ψ〉 is a vector of norm
1, we have

Tr(|ψ〉〈ψ|) = 〈ψ|ψ〉 = 1 .

1.2 The Density Operator of Pure States

Consider a system in the state |ψ(t)〉. We define the density operator ρ̂(t) as

ρ̂(t) = |ψ(t)〉〈ψ(t)| . (D.5)

The operator ρ̂ is Hermitian and is the projection operator on the state |ψ〉.
From the principles of quantum mechanics presented in Chap. 5, we deduce
the following properties:

(1) If we perform a measurement of a physical quantity A, corresponding to
the observable Â, the probability of finding the eigenvalue aα is

P(aα) = ||P̂α|ψ〉||2 = 〈ψ|P̂α|ψ〉 ,

where P̂α is the projector on the eigensubspace of Â corresponding to the
eigenvalue aα. This can also be written

P(aα) = Tr
(
P̂αρ̂
)

. (D.6)

In particular, the expectation value 〈a〉 = 〈ψ|Â|ψ〉 is equal to

〈a〉 = Tr
(
Â ρ̂
)

. (D.7)

(2) Immediately after a measurement yielding the value aα, the state of
the system is |ψ′〉 = P̂α|ψ〉/||P̂α|ψ〉||. The corresponding density operator is
therefore

ρ̂′ =
P̂α ρ̂ P̂α

P(aα)
. (D.8)



438 Appendix D. The Density Operator

(3) Let Ĥ(t) be the Hamiltonian of the system. As long as this system does
not undergo any observation, the evolution of the system is given by the
Schrödinger equation. Therefore the density operator evolves as

ih̄
dρ̂

dt
= ih̄

d|ψ(t)〉
dt

〈ψ(t)| + ih̄|ψ(t)〉d〈ψ(t)|
dt

= Ĥ|ψ(t)〉〈ψ(t)| − |ψ(t)〉〈ψ(t)|Ĥ ,

which is nothing but

ih̄
dρ̂

dt
=
[
Ĥ(t), ρ̂(t)

]
. (D.9)

1.3 Alternative Formulation of Quantum Mechanics
for Pure States

We can reformulate the principles of quantum mechanics state in Chap. 5 in
terms of the density operator instead of the state vector:

Principle 1 (Alternative Formulation)
With each physical system one can associate an appropriate Hilbert space
EH. At each time t, the state of the system is completely determined by
a density operator ρ̂(t). This operator is Hermitian and satisfies the nor-
malization condition Tr(ρ̂(t)) = 1.

Particular Case
If the system is in a pure state, ρ̂(t) has one eigenvalue equal to 1 and all
the other eigenvalues are zero.

Principles 2 and 3
The equations concerning the measurement of physical quantities and the
time evolution (5.40), (5.41) and (5.48) are replaced by (D.6), (D.8) and
(D.9).

Notice that the assumption concerning the eigenvalues of ρ̂(t) is equivalent
to the formulation in terms of a state vector |ψ〉. Indeed ρ̂ can be diagonalized
since it is a Hermitian operator. The condition Tr(ρ̂) = 1 implies that∑

n

Πn = 1 ,

where the Πn are the eigenvalues of ρ̂. By assumption, all eigenvalues of ρ̂
but one are zero. We denote by Π1 = 1 the nonzero eigenvalue, and denote
the corresponding eigenvector by |ψ〉. We have, by construction, ρ̂ = |ψ〉〈ψ|.

At this stage, all we have done is to slightly complicate the principles of
Chap. 5. However, we shall show in the next section that this allows us to
describe more general situations corresponding to the incompletely prepared
systems mentioned in the introduction.
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2 Statistical Mixtures

We now turn to the general situation of statistical mixtures or impure states.

2.1 A Particular Case: an Unpolarized Spin-1/2 System

Consider the unpolarized atoms emerging from the oven in a Stern–Gerlach
apparatus. As mentioned above, the probabilities for finding ±h̄/2 in the
measurement of Ŝu = Ŝ · u are equal to 1/2 for any orientation u of the
magnet. We have already explained that there is no state vector |ψ〉 which
can account for that result. In contrast, it is easy to find the corresponding
density operator, assuming that (D.7) still holds:

ρ̂unpol. =
1
2

(
1 0
0 1

)
=

1
2

1̂ (D.10)

(which obviously keeps the same form in any basis). Indeed, one finds in this
case Tr(Ŝuρ̂unpol.) = (1/2) Tr(Ŝu) = 0, since the traces of all three Pauli
matrices are zero.

The physical meaning of (D.10) is the following. In the eigenbasis |±〉 of
Ŝz, the density operator ρ̂ can be written

ρ̂ =
1
2
|+〉〈+| +

1
2
|−〉〈−| .

We can describe the calculation of the expectation value of any operator Â
as follows.

a. Assume that the system is in the state |+〉 and calculate the correspond-
ing expectation value:

〈a〉(+) = 〈+|Â|+〉 = Tr(Â |+〉〈+|) .

b. Similarly, assume that the system is in the state |−〉 and calculate 〈a〉(−).
c. Average the two results with equal weights:

Tr(Âρ̂unpol) =
1
2
〈a〉(+) +

1
2
〈a〉(−) .

This procedure is very different from the one we would follow if the system
was in the pure state |+〉x = (|+〉 + |−〉)/√2, for example. In the pure-state
case, we work with probability amplitudes, and interference phenomena arise
from the fact that we are dealing with a coherent superposition of the |+〉
and |−〉 states. In contrast, for an unpolarized spin-1/2 system, we simply
average the results associated with the two possible states |±〉, as one would
do in a classical probabilistic description. The situation described by (D.10)
is often referred to as an incoherent mixture, in contrast to the coherent
superposition |+〉x, for which the density operator reads

ρ̂pol. along x =
1
2

(
1 1
1 1

)
. (D.11)
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2.2 The Density Operator for Statistical Mixtures

We can generalize to any quantum system what we have seen for an unpo-
larized spin-1/2. We assume that the most general density operator ρ̂ for a
quantum system has the following properties:

Principle 1 (Continued)
General Case
The density operator is Hermitian and satisfies the normalization condition
Tr(ρ̂(t)) = 1. All eigenvalues Πi of ρ̂ satisfy

0 ≤ Πi ≤ 1 . (D.12)

Principles 2 and 3 are still described mathematically by (D.6)–(D.9).

The physical interpretation of this definition is as follows. Considering an
eigenbasis {|ψi〉} of ρ̂, we have, by definition,

ρ̂ =
∑

i

Πi |ψi〉〈ψi| .

The set of positive numbers Πi can be interpreted as a probability distribution
since Tr(ρ̂) =

∑
i Πi = 1. The calculation of the expectation value of any

physical quantity A can be written as

〈a〉 = Tr(Âρ̂) =
∑

i

Πi 〈ψi|Â|ψi〉 .

Therefore one can first calculate the various expectation values 〈a〉(i) assum-
ing that the system is the pure state |ψi〉, and then average over the various
〈a〉(i) with the statistical weights Πi.

Suppose we perform an experiment with one system (e. g. one atom in a
Stern–Gerlach experiment) whose state corresponds to a statistical mixture
ρ̂ =

∑
i Πi|ψi〉〈ψi|. Everything happens as if we were dealing with a state

|ψj〉 chosen at random by some “external actor” out of the collection of
available states {|ψi〉}. The probability that this actor chooses |ψj〉 is Πj . The
whole experimental sequence of measurements (e. g. a series of Stern–Gerlach
magnets) on this particular system must be analyzed as if the initial state
were the pure state |ψj〉, and no other. Next, the same experiment performed
a second time (e. g. with another atom) will correspond to some other state
|ψk〉, also picked at random out of the collection {|ψi〉} of eigenstates of ρ̂,
and so on.

The statistical mixture is completely different from the pure-state situa-
tion, where the system is prepared in a coherent superposition, for instance
|ψ〉 =

∑
i

√
Πi|ψi〉. In this latter case, if we perform the same sequence of

measurement on many systems all prepared in the state |ψ〉, the experiment
can reveal interferences between the various probability amplitudes

√
Πi.
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3 Examples of Density Operators

There are numerous applications of the density operator formalism. We have
chosen a few interesting cases.

3.1 The Micro-Canonical and Canonical Ensembles

Consider a system for which the only available information is the following:

The system is with certainty (i. e. with probability 1) is a given subspace F
of the total Hilbert space E .

For instance, the state of the harmonic oscillator mentioned in the intro-
duction is in the two-dimensional subspace spanned by {|nx = 1, ny = 0〉,
|nx = 0, ny = 1〉} if a measurement of its energy has yielded the result 2 h̄ω.

If the dimension d of F is strictly larger than 1, the system is not in a
pure state, and it has to be described by a density operator. We postulate
that this operator is

ρ̂ =
1
d
P̂F , (D.13)

where P̂F is the projector on this subspace. If we introduce a orthonormal
basis set |ψi〉 (i = 1, . . . , d) of F , the density operator reads

ρ̂ =
1
d

d∑
i=1

|ψi〉〈ψi| . (D.14)

This choice, called the microcanonical density operator, is rather intuitive.
Since we have no information whatsoever concerning the particular state
which is occupied within F , we attribute to all possible states of this subspace
equal probabilities. It is a direct generalization of what we did in (D.10) for
an unpolarized spin-1/2 particle.

This principle is the basis of quantum statistical physics. Using this prin-
ciple, one can construct, for instance, the canonical ensemble, corresponding
to the description of a system S interacting very weakly with a large energy
reservoir. The density operator of S is then

ρ̂ =
e−βĤ

Tr(e−βĤ)
, (D.15)

where β is related to the temperature T of the reservoir (β = (kBT )−1) and
where Ĥ is the Hamiltonian of S, in absence of coupling to the reservoir.

From (D.15), we can deduce Boltzmann’s law. Consider two energies En

and Em, which are nondegenerate eigenvalues of Ĥ. In an energy measure-
ment, the respective probabilities Pn and Pm of finding the results En and
Em are such that Pn/Pm = exp[−(En − Em)/kBT ].
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3.2 The Wigner Distribution of a Spinless Point Particle

Consider a point particle of mass m and spin zero. The density operator ρ̂
describing the state of this particle can be expanded in the continuous basis
|r〉 associated with the position operator. We set

ρ(r, r′) = 〈r|ρ̂|r′〉 ,

which is a complex function of r and r′. From the principles outlined above,
we deduce that the quantity ρ(r, r) is positive, and that it gives the proba-
bility of finding the particle at r (within d3r) as

d3P = ρ(r, r) d3r , and
∫

ρ(r, r) d3r = 1 .

The Wigner representation w(r,p) of the density operator ρ̂ is defined as

w(r, p) =
1

(2πh̄)3

∫
ρ
(
r − u

2
, r +

u

2

)
eiu·p/h̄ d3u , (D.16)

where p has the dimensions of a linear momentum. Since ρ(r, r′) = ρ∗(r′, r),
this quantity satisfies

w(r, p) real,
∫∫

w(r, p) d3r d3p = 1 . (D.17)

The expectation value of a physical quantity depending only on position,
A(r), or on momentum, B(p), has a very simple expression in terms of the
Wigner distribution:

〈a〉 = Tr (A(r̂) ρ̂) =
∫∫

A(r) w(r,p) d3r d3p , (D.18)

〈b〉 = Tr (B(p̂) ρ̂) =
∫∫

B(p) w(r,p) d3r d3p . (D.19)

From (D.17)–(D.19), it would be tempting to infer that w(r,p) is the phase
space density for the particle, i. e. that w(r,p) d3r d3p gives the probability
of finding the particle at position r (within d3r) and with momentum p
(within d3p). This is of course wrong, since such a statement is manifestly
meaningless in quantum mechanics if d3r d3p is smaller than h̄3. Besides,
nothing guarantees that w(r,p) is a positive quantity: actually, one can easily
find situations where w(r,p) is locally negative in some regions of phase
space.

Suppose that the particle is moving in the potential V (r), so that the
Hamiltonian is Ĥ = p̂2/2m + V (r̂). We leave it as a simple exercise to the
reader to show that the equation of motion of w(r,p, t) deduced from (D.9)
can be cast into the form

∂w

∂t
+

p

m
· ∇rw = K[w] , (D.20)
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where

K[w] =
∫

N (r, q) w(r,p − q, t) d3q (D.21)

and

N (r, q) =
1
ih̄

1
(2πh̄)3

∫ [
V
(
r − u

2

)
− V

(
r +

u

2

)]
eiu·q/h̄ d3u . (D.22)

The integro-differential equation of motion (D.20), (D.21) for w is more com-
plicated than the classical equivalent for the evolution of the phase-space
density. In the classical case, we have the Liouville equation, which has the
same structure as (D.20) but where (D.21) is replaced by

K[w]class. = ∇rV · ∇pw . (D.23)

The fact that the classical equation, which is local in r and p, is replaced in
the quantum world by a nonlocal integro-differential equation is a direct man-
ifestation of the quantum properties that we have investigated throughout
this book. For instance, in the double-well problem, because of the nonlocal-
ity of (D.22) with respect to V (r), a particle initially located in the left-hand
well can “feel” the existence of the right-hand well and eventually reach it
after some finite amount of time.

There are two cases where the classical and quantum evolutions coincide,
at least approximately:

(1) If the potential V (r) varies linearly or quadratically with position, then
(D.21) and (D.23) are identical. Take, for instance, an isotropic harmonic
potential V (r) = mω2r2/2. The kernel N (r, q) is in this case

N (r, q) = mω2r · ∇qδ(q) ,

where we have used δ(q) = (2πh̄)−3
∫

eiu·q/h̄ d3u. An integration by parts in
(D.21) then yields K[w] = mω2r·∇pw = K[w]class.. The equivalence between
the evolutions of the classical phase space density and of w(r,p) for a har-
monic oscillator generalizes the result of Sect. 7.3.2, where we demonstrated
that the evolutions of 〈x〉 and 〈p〉 coincide with the classical prediction in
this case.

(2) Suppose that w(r,p − q) varies smoothly with q in the integral (D.21).
We can then set

w(r, p − q) � w(r,p) − (q · ∇p)w .

Using
∫ N (r, q) d3q = 0 and

∫
q N (r, q) d3q = −∇rV , we obtain

K[w] � K[w]class.. For this approximation to be valid, the width in q of N
must be much smaller than the momentum scale ∆p over which w(r,p) varies
appreciably. The q variation of N is directly related to the Fourier transform
of the potential V (r). Therefore, if we denote by r0 the typical scale of varia-
tion of V (r), this approximation is valid if r0 � h̄ / ∆p. This generalizes the
discussion of the validity of the Ehrenfest theorem (Sect. 7.3.2).
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4 Entangled Systems

Entanglement is at the heart of the debates concerning the interpretation of
quantum mechanics. The density operator formalism allows for a quantita-
tive description of entangled states, in particular as far as individual mea-
surements are performed.

4.1 Reduced Density Operator

Consider a quantum system S formed from two subsystems A and B. The
Hilbert space associated with S is EA⊗EB . We denote a basis of EA by {|ψn〉}
and a basis of EB by {|φm〉}.

For a given density operator ρ̂ of the whole system, we define the reduced
density operators ρ̂A and ρ̂B , acting in EA and EB , respectively, as follows:

〈ψn|ρ̂A|ψn′〉 =
∑
m

〈ψn;φm|ρ̂|ψn′ ;φm〉 (D.24)

〈φm|ρ̂B |φm′〉 =
∑

n

〈ψn;φm|ρ̂|ψn; φm′〉 . (D.25)

These reduced density operators are also called “partial traces” of ρ̂ over B
and A and are denoted by ρ̂A = TrB(ρ̂) and ρ̂B = TrA(ρ̂).

It is straightforward to check that ρ̂A and ρ̂B satisfy the properties of
density operators in EA and EB , respectively. They are both Hermitian and
their traces are equal to 1, since Tr(ρ̂) = 1. In addition, for any projector P̂A

on a subspace of EA, we have

Tr
(
P̂A ρ̂A

)
= Tr

(
(P̂A ⊗ 1̂B) ρ̂

)
≥ 0 ,

where the last inequality holds because all eigenvalues of ρ̂ are positive. We
deduce that all eigenvalues of ρ̂A are positive (and similarly for ρ̂B).

The relevance of ρ̂A and ρ̂B appears if when we want to measure a physical
quantity associated with only one of the two subsystems. Suppose for instance
that the observable of interest is Â ⊗ 1̂B . The probability of finding the
eigenvalue aα of Â is (cf. (D.6))

P(aα) = Tr
(
(Pα ⊗ 1̂B) ρ̂

)
= Tr (Pα ρ̂A) .

In particular, the expectation value of A is 〈a〉 = Tr(Â ρ̂A).
To summarize, when a measurement is performed on only the subsystem

A, all predictions concerning this measurement can be made by using the
reduced density operator ρ̂A.

4.2 Evolution of a Reduced Density Operator

Suppose that the system S is isolated and that the subsystems A and B
do not interact with one another. The total Hamiltonian Ĥ therefore has
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the form Ĥ = ĤA + ĤB , where ĤA = ĤA ⊗ 1̂B and ĤB = 1̂A ⊗ ĤB are the
Hamiltonians of the systems A and B, respectively. Using the general formula
(D.9) for the evolution of the density operator, we readily obtain

ih̄
dρ̂A

dt
= [ĤA, ρ̂A] , ih̄

dρ̂B

dt
= [ĤB , ρ̂B ] . (D.26)

If the two subsystems do not interact, each reduced density operator ρ̂A or
ρ̂B evolves under the action of the Hamiltonian of the subsystem ĤA or ĤB ,
respectively, only.

4.3 Entanglement and Measurement

In general, the density operator ρ̂ of the combined system differs from the ten-
sor product ρ̂A⊗ ρ̂B . Consider for instance a system S consisting of two spin-
1/2 systems, prepared in the singlet state: |Ψ〉 = (|+ ; −〉 − |− ; +〉) /

√
2.

The reduced density operators are easily calculated: ρ̂A = 1̂A/2 and ρ̂B =
1̂B/2. This implies that in a measurement performed on A only (or B only),
everything happens as if the spin A (or B) were unpolarized. In this partic-
ular case, we obtain ρ̂A ⊗ ρ̂B = (1/4)1̂S �= |Ψ〉〈Ψ|. Physically, the difference
between ρ̂ and ρ̂A ⊗ ρ̂B means that one can infer the initial state |Ψ〉 of the
total system only if one correlates the results of measurements on A and on
B.

Finally, let us show that a measurement performed by Bob on the subsys-
tem B, and the ensuing “reduction of the wave packet”, has no influence1 on
the expectation value of any possible measurement performed by Alice on the
subsystem A. First if Alice measures a physical quantity A on the subsystem
A when Bob has not done anything yet, the expectation value of the result is
〈a〉 = Tr(Â ρ̂). Suppose now that Bob performs a measurement of a physical
quantity B on the subsystem B before Alice measures A. The question is the
following: does Bob’s measurement change the expectation value of Alice’s
measurement?

After the measurement of the quantity B on the system B, which has
yielded the result bβ , the new density operator of the whole system is (cf.
(D.8)

ρ̂′(bβ) =
(1̂A ⊗ P̂β) ρ̂ (1̂A ⊗ P̂β)

P(bβ)
. (D.27)

For a given outcome bβ of the measurement of B, the expectation value of
the physical quantity A is 〈a〉bβ

= Tr(Â ρ̂′(bβ)). In general, this depends on
the result bβ found by Bob, since there may exist correlations between the
two subsystems A and B.
1 This guarantees that there is no instantaneous transmission of information in an

EPR-type experiment, such as the one discussed in Chap. 14.
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Suppose that Alice knows that Bob has performed a measurement of B,
but she does not know the result bβ . In order to calculate the expectation
value of her own measurement, she must average over the possible results of
Bob:

〈a〉 =
∑
bβ

P(bβ) 〈a〉bβ
=
∑
bβ

Tr
(
(Â ⊗ Pβ) ρ̂

)
= Tr

(
(Â ⊗ 1̂B) ρ̂

)
.

This coincides with the prediction for the expectation value of A when Bob
has not made any measurement. Therefore, Alice, by measuring a quantity
connected only with A, cannot infer whether or not Bob has made a mea-
surement on B.

To summarize the results of this section, when a system A is isolated
during a time interval (ti, tf ), we may calculate the physical properties of
this system (probabilities of the outcomes of a measurement on A) using
only the reduced density operator of this system at the initial time ti and the
corresponding evolution of ρ̂A given by (D.26). This is valid even if A has
interacted with another system B (or several others) before time ti and if the
total system A + B is in an entangled state at time ti. In contrast, it is only
by using the total density operator ρ̂ (and not ρ̂A ⊗ ρ̂B) that the correlations
between measurements on A and B can be accounted for correctly.
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• General properties of ρ̂: U. Fano, Rev. Mod. Phys. 29, 74 (1957); D. Ter
Haar, Rep. Prog. Phys. 24, 304 (1961).

• Concerning the Wigner distribution: E.P. Wigner, Phys. Rev. 40, 749
(1932); T. Takabayasi, Prog. Theor. Phys. 11, 341 (1954); S.R. De Groot
and L. G. Suttorp, Foundations of Electrodynamics, North-Holland, Ams-
terdam (1972).

• For recent developments concerning the experimental measurement of the
Wigner distribution of material particles, see M. Freyberger et al., “The
art of measuring quantum states”, Phys. World, November 1997, p. 41; D.
Leibfried, T. Pfau and C. Monroe, “Shadows and mirrors: reconstructing
quantum states of atomic motion”, Phys. Today, April 1998, p. 22.

Exercises

D.1. Trace of ρ̂2. Show that Tr(ρ̂2) ≤ 1, and that Tr(ρ̂2) = 1 only for a
pure state.

D.2. Evolution of a pure state. Using the result of the above exercise
and the evolution equation (D.9), show that a pure state remains a pure
state during its time evolution.
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D.3. Inequalities related to ρ. Show that |〈ψ|ρ̂|φ〉|2 ≤ 〈ψ|ρ̂|ψ〉〈φ|ρ̂|φ〉 for
any pair of states |ψ〉, |φ〉.

D.4. Density operator of a spin-1/2 system. Show that the density
operator of a spin-1/2 system can always be written ρ̂ =

(
a01̂ + a · σ̂) /2,

where the σi’s (i = x, y, z) are the Pauli matrices and the four numbers a0,
ai (i = x, y, z) are real. Give the constraints on these four numbers. Calculate
the average spin 〈S〉 for this density operator, and identify the two limiting
cases of a completely polarized and a completely unpolarized spin.



Solutions to the Exercises

If there is no solution,
then there is no problem.

Fourth Shadok principle

Chapter 1

1.1. Photoelectric effect in metals. a. h = 4.1 × 10−15 eV s.
b. E = 1.74 eV. c. λ = 0.71 µm.

1.2. Photon fluxes. a. N ∼ 1.5 × 1030. b. N ∼ 5000 for a pupil of
surface area 12 mm2.

1.3. Orders of magnitude for de Broglie wavelengths. (a) λ =
0.124 nm; (b) for E = 0.025 eV, λ = 0.18 nm. Both wavelengths are of the
order of atomic sizes or spacings, and can be used in diffraction experiments
on crystals or molecules.

1.4. De Broglie relation in the relativistic domain. Such electrons are
ultrarelativistic (E � pc) and we obtain λ � hc/E ∼ 10−17 m. In order to
probe matter at distances smaller than one fermi (10−15 m), wavelengths
smaller than this value are necessary.

Chapter 2

2.1. Phase velocity and group velocity.

a. ω2 = k2c2 + m2c4/h̄2. The frequency ω must be larger than a cutoff
frequency, |ω| > ω0 = mc2/h̄. Below that frequency, free waves cannot
propagate.

b. Owing to the relation E =
√

p2c2 + m2c4, one recovers the relation
E = h̄ω, and the cutoff frequency simply corresponds to the condition
E ≥ mc2.

c. vg = dω/dk = kc2/ω ≤ c and vϕ = ω/k ≥ c; therefore vgvϕ = c2.
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2.2. Spreading of a wave packet of a free particle.

a. Using a procedure similar to that of (2.26), we obtain from the Schrödinger
equation

d〈x2〉t
dt

=
ih̄
m

∫
x

(
ψ

∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
dx .

b. The Schrödinger equation gives

dA

dt
=

h̄2

2m2

∫
x

(
ψ

∂3ψ∗

∂x3
− ∂2ψ

∂x2

∂ψ∗

∂x

)
dx + c.c. .

Using

ψ
∂3ψ∗

∂x3
− ∂2ψ

∂x2

∂ψ∗

∂x
+ c.c. =

∂

∂x

(
ψ

∂2ψ∗

∂x2
+ ψ∗ ∂2ψ

∂x2
− 2

∂ψ

∂x

∂ψ∗

∂x

)
and integration by parts, we obtain

dA

dt
= − h̄2

2m2

∫ (
ψ

∂2ψ∗

∂x2
+ ψ∗ ∂2ψ

∂x2

)
dx +

h̄2

m2

∫
∂ψ

∂x

∂ψ∗

∂x
dx ,

and a second integration by parts of the first term on the right-hand side
yields the result for B(t).

c. Using the Schrödinger equation again, we obtain

dB

dt
=

ih̄3

m3

∫ (
∂3ψ

∂x3

∂ψ∗

∂x
− ∂ψ

∂x

∂3ψ∗

∂x3

)
dx ,

and integration by parts shows that this is zero. The coefficient B is
a constant, and we take B = 2v2

1 in the following, where v1 has the
dimensions of a velocity.

d. Integration of the equation of evolution for A(t) yields A(t) = 2v2
1t + ξ0

and 〈x2〉t = 〈x2〉0 + ξ0t + v2
1t2.

e. Using 〈x〉t = 〈x0〉0 + v0t, we obtain, for ∆x2
t = 〈x2〉t − 〈x〉2t , the result

(2.29).

Note that these results can be recovered in a simple way using Ehrenfest’s
theorem (Chap. 7).

2.3. The Gaussian wave packet.

a. For t = 0, we obtain

ψ(x, 0) =
(
σ2/π

)1/4
eip0x/h̄ e−x2σ2/2

and

〈x〉0 = 0 , 〈p〉0 = p0 , ∆x0 =
1

σ
√

2
, ∆p0 =

σh̄√
2

.

Hence the result ∆x0 ∆p0 = h̄/2. The Heisenberg inequality is saturated
in the case of a Gaussian wave packet.



Exercises of Chapter 3 451

b. At time t, the wave function ψ(x, t) is the Fourier transform of
e−ip2t/(2mh̄) ϕ(p), which is still an exponential function of a second order
polynomial in the variable p (with complex coefficients). The general re-
sults concerning the Fourier transform of Gaussian functions apply and
one obtains, after a rather tedious calculation,

|ψ(x, t)|2 =
1

∆x(t)
√

2π
exp

(
−
(

x − p0t

m

)2 1
2∆x2(t)

)
,

where ∆x2(t) is given by (2.46). We recover in this particular case the
general results of Chap. 2 and of the previous exercise: propagation of the
center of the wave packet at a velocity 〈p〉0/m and quadratic variation
of the variance of the wave packet.

2.4. Characteristic size and energy in a linear or quadratic poten-
tial. For a quadratic potential, the relation (2.38) with γ = 1 yields the
following typical energy E for the ground state:

E =
h̄2

2m ∆x2
+

1
2
mω2 ∆x2 ,

which is minimum for ∆x =
√

h̄/mω; E = h̄ω in this case. This is indeed
the correct order of magnitude for the spatial extension and the energy of
the ground state: the exact result for the energy is h̄ω/2 (Chap. 4).
For a linear potential α|x|, the order of magnitude of the energy of the ground
state is obtained as the minimum of

E =
h̄2

2m ∆x2
+ α∆x

as the extension ∆x varies. This minimum corresponds to ∆x =
(
h̄2/mα

)1/3
,

and the corresponding energy is (3/2)
(
h̄2α2/m

)1/3
.

Chapter 3

3.1. Expectation values and variances. 〈x〉=a/2, ∆x=a
√

1/12−1/2π2,
〈p〉 = 0, ∆p = πh̄/a and therefore

∆x ∆p = h̄π
√

1/12 − 1/2π2 ∼ 0.57h̄ .

3.2. The mean kinetic energy is positive. Using integration by parts,
we find

〈p2
x〉 = −h̄2

∫
ψ∗(x)

∂2ψ

∂x2
dx = h̄2

∫ ∣∣∣∣∂ψ

∂x

∣∣∣∣2 dx ≥ 0 .
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3.3. Real wave functions. If ψ is real, we have

〈p〉 =
h̄

i

∫ +∞

−∞
ψ(x)

∂ψ

∂x
dx =

h̄

2i

[
ψ2
]+∞

−∞
= 0

since ψ2 vanishes at infinity for a physical state.

3.4. Translation in momentum space. Using the general properties of
the Fourier transform, we obtain 〈p〉 = p0 + q and ∆p = σ.

3.5. The first Hermite function. We use

d
dx

(
e−x2/2

)
= −xe−x2/2 and

d2

dx2

(
e−x2/2

)
= (x2 − 1) e−x2/2 ,

and hence obtain the result.

3.6. Ramsauer effect.

a. The continuity equations at x = −a are

e−ika + Ae+ika = Be−iqa + Ceiqa ,

ik(e−ika − Aeika) = iq(Be−iqa − Ceiqa) ,

and at x = +a, they are

Beiqa + Ce−iqa = Deika and iq(Beiqa − Ce−iqa) = ik Deika .

b. Setting ∆ = (q + k)2 − e4iqa(q − k)2, we obtain

D =
4kq

∆
e−2i(k−q)a , A =

(k2 − q2)
∆

e−2ika (1 − e4iqa) .

We have |∆|2 = 16k2q2 + 4(k2 − q2)2 sin2 2qa and

R = |A|2 =
4(k2 − q2)2

|∆|2 sin2 2qa , T = |D|2 =
16k2q2

|∆|2 ,

where R + T = 1.
c. For all values of q such that sin 2qa = 0, i. e. qa = nπ/2, the transmission

probability is equal to 1, and there is no reflection; T = 1, R = 0.
This happens when the size of the well 2a is a multiple of λ/2, where
λ = 2π/q is the de Broglie wavelength of the particle inside the potential
well. All the reflected waves interfere destructively and the well becomes
transparent to the incident wave (more precisely, the wave reflected at
x = −a, which does not enter the well, interferes destructively in the
backward direction with the sum of all the waves undergoing multiple
reflections in the well).
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d. The corresponding energies are

En =
n2π2h̄2

8ma2
− V0 .

Choosing n = 1 and E = 0.7 eV, we obtain V0 = 9.4 − 0.7 = 8.7 eV.
e. When E tends to 0, k also tends to 0 and the transmission probability

vanishes. The incident particle is reflected by the potential well. The
sticking of hydrogen atoms on a liquid-helium surface occurs when the
hydrogen atoms enter the potential well in the vicinity of the surface. In
this well, a hydrogen atom may lose energy via the emission of a wave
propagating on the surface of the liquid (a ripplon): after such a process,
the energy of the hydrogen atom is too low to exit the well, and the atom
is trapped at the surface of the liquid. At very low incident energies,
incoming hydrogen atoms have a vanishing probability of entering the
well, and hence the absorption probability tends to zero.

Chapter 4

4.1. Uncertainty relation for the harmonic oscillator. The functions
ψn(x) are either odd or even, so that the probability density |ψn(x)|2 is even,
and hence 〈x〉 = 0. From this well-defined parity of the ψn’s, we also deduce
〈p〉 = 0, since the operator ∂/∂x changes the parity of the function. We have

〈x2〉 = ∆x2 =
∫ +∞

−∞
ψ∗

n(x) x2 ψn(x) dx .

Therefore, by applying (4.18), we obtain 〈x2〉 = ∆x2 = (n + 1/2) h̄/(mω).
In order to calculate 〈p2〉, we can just refer to the initial eigenvalue equation
(4.10) and notice that 〈p2〉/2m + mω2〈x2〉/2 = En, and therefore 〈p2〉 =
∆p2 = (n+1/2) mh̄ω. Altogether, we find that in the eigenstate n, ∆x∆p =
(n+1/2)h̄. For n = 0, ∆x∆p = h̄/2: the eigenfunction is a Gaussian and the
Heisenberg inequality is saturated.

4.2. Time evolution of a one-dimensional harmonic oscillator. The
initial wave function of the system is given as a linear combination of the
eigenfunctions of the Hamiltonian, which makes the calculations quite simple.

a. The wave function at time t is

ψ(x, t) = cos θ φ0(x) e−iωt/2 + sin θ φ1(x) e−3iωt/2 .

b. We can deduce the expectation values

〈E〉 = (cos2 θ + 3 sin2 θ) h̄ω/2 , 〈E2〉 = (cos2 θ + 9 sin2 θ) h̄2ω2/4 ,

and the variance ∆E2 = sin2(2θ)h̄2ω2/4. The expectation values of func-
tions of the energy are all time independent as a consequence of energy
conservation (Ehrenfest’s theorem; see Chap. 7).
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c. For the position distribution, we obtain

〈x〉 =

√
h̄

2mω
cos ωt sin 2θ , 〈x2〉 =

h̄

2mω
(1 + 2 sin2 θ) .

4.3. Three-dimensional harmonic oscillator.

a. The reasoning is similar to that for the three-dimensional square well,
and we obtain

En1,n2,n3 = (n1 + n2 + n3 + 3/2) h̄ω ,

where the ni’s are nonnegative integers. The eigenenergies can therefore
be written En = (n + 3/2) h̄ω, where n is a nonnegative integer. The
degeneracy gn of the level En is the number of triplets (n1, n2, n3) whose
sum n1 + n2 + n3 is equal to n; we find that gn = (n + 1)(n + 2)/2.
If the φn’s are the eigenfunctions of the one-dimensional harmonic oscil-
lator with angular frequency ω, we have

Φn1,n2,n3(r) = φn1(x) φn2(y) φn3(z) .

b. If the oscillator is not isotropic, the energy levels read

En1,n2,n3 = (n1 + 1/2) h̄ω1 + (n2 + 1/2) h̄ω2 + (n3 + 1/2)h̄ω3 ,

and the corresponding wave functions are

Φn1,n2,n3(r) = φ(1)
n1

(x) φ(2)
n2

(y) φ(3)
n3

(z) ,

where φ
(i)
n represents the nth eigenstate in a potential of frequency ωi.

These energy levels are generally not degenerate, except when the ratio
of two frequencies ωi and ωj is a rational number.

4.4. One-dimensional infinite potential well.

a. For symmetry reasons, we obtain 〈x〉 = a/2. For 〈x2〉, we find

〈x2〉 =
2
a

∫ a

0

x2 sin
nπx

a
dx = a2

(
1
3
− 1

2n2π2

)
,

and therefore

∆x2 =
a2

12

(
1 − 6

n2π2

)
.
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b. We first normalize the wave function ψ(x) = Ax(a − x):∫ a

0

|ψ|2 dx = |A|2
∫ a

0

x2(a − x)2 dx = |A|2 a5

30
,

and hence |A|2 = 30/a5. The probabilities are pn = |αn|2, where

αn = A

√
2
a

∫ a

0

x(a − x) sin
nπx

a
dx =

4
√

15
n3π3

[1 − (−1)n] .

For symmetry reasons, αn = 0 if n is even. We find
∞∑

n=1

pn =
960
π6

∞∑
k=0

1
(2k + 1)6

= 1 ,

〈E〉 =
∑

Enpn =
h̄2π2

2ma2

960
π6

∑ 1
(2k + 1)4

=
5h̄2

ma2
,

〈E2〉 =
∑

E2
npn =

h̄4π4

4m2a4

960
π6

∑ 1
(2k + 1)2

=
30h̄4

m2a4
,

∆E =
√

5h̄2

ma2
.

c. We can calculate directly the average value and the variance of the
kinetic-energy operator. For the average value, we recover the result ob-
tained above:

〈E〉 = − h̄2

2m

∫ a

0

ψ(x)
d2ψ

dx2
dx =

h̄2a

m
|A|2

∫ a

0

x(a − x) dx =
5h̄2

ma2
.

In calculating 〈E2〉, one meets with a difficulty since, in the sense of
functions (but not of distributions), d4ψ/dx4 = 0. This would lead to
the absurd result 〈E2〉 = 0 and to a negative variance σ2 = 〈E2〉 − 〈E〉2.

In fact, in this problem, the Hilbert space is defined as the C∞ periodic
functions, of period a, which vanish at x = 0 and x = a. For such
functions, we have∫ a

0

φ1(x)
d4φ2

dx4
dx =

∫ a

0

d2φ1

dx2

d2φ2

dx2
dx

for all pairs of functions φ1(x), φ2(x). This relation can serve as a def-
inition of the operator Ĥ2 in this problem. With this prescription, we
obtain

〈E2〉 =
h̄4

4m2

∫ a

0

(
∂2ψ

∂x2

)2

dx =
A2h̄4a

m2
=

30h̄4

m2a4
.

Actually, the correct general definition of the operator Ê2
K uses the spec-

tral representation Ê2
Kψ(x) ≡ ∫ K(x, y) ψ(y) dy, where the kernel K is

defined as
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K(x, y) =
2
a

∞∑
n=1

E2
n sin(nπx/a) sin(nπy/a) .

This amounts to using the probabilities pn as above in the calculation of
the expectation values of powers of the energy 〈Eq〉.

4.5. Isotropic states of the hydrogen atom.

a. The Schrödinger equation is

− h̄2

2m
ψ′′ − A

x
ψ = Eψ .

Therefore

− h̄2

2m

(
−2

a
+

x

a2

)
e−x/a − Ae−x/a = Exe−x/a .

Equating the terms in e−x/a, we obtain

A = h̄2/ma , i. e. a = h̄2/mA = h̄/mcα .

The terms in xe−x/a then give E = −h̄2/2ma2, i. e. E = −mc2α2/2.
b. E = −13.6 eV, a = 5.3 × 10−2 nm.
c. The condition

∫∞
0

ψ2 dx = 1 implies C2a3/4 = 1, i. e. C = 2/a3/2.
d. We find 〈1/x〉 = C2

∫∞
0

xe−2x/a dx = 1/a, and therefore

〈V 〉 = −A

〈
1
x

〉
= −mc2α2 = 2E .

The expectation value 〈p2/2m〉 can be calculated directly by noticing
that in the state under consideration,

E =
〈

p2

2m

〉
−
〈

A

x

〉
and therefore

〈
p2

2m

〉
=

1
2
mc2α2 = −E .

We obtain the relation 2〈p2/2m〉 = +〈A/x〉, which is also true in classical
mechanics if the averaging is performed over a closed orbit (the virial
theorem).

4.6. δ-function potentials.

a. (i) We obtain lim
ε→0

[ψ′(+ε) − ψ′(−ε)] = (2mα/h̄2)ψ(0).

(ii) There is only one bound state, with ψ(x) = λ
−1/2
0 e−|x|/λ0 . We have

Kλ0 = 1 and E = −h̄2/(2mλ2
0).
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b. The wave function can be written

ψ(x) = BeK(x+d/2) for x < −d/2 ,

ψ(x) = Ce−K(x+d/2) + C ′eK(x−d/2) for − d/2 ≤ x ≤ +d/2 ,

ψ(x) = B′e−K(x−d/2) for x > d/2 .

The solutions can be classified in terms of their symmetry with respect
to x = 0:
• symmetric solution ψS : B = B′ , C = C ′;
• antisymmetric solution ψA : B = −B′ , C = −C ′ .
The quantization condition is (Kλ0 − 1)2 = (e−Kd)2.

The energy levels E± = −h̄2K2/2m are therefore obtained by solving
the equation Kλ0 = 1 ± e−Kd (with E+ < E− < 0). E+ corresponds to
ψS and E− to ψA. If λ0 > d, there is only one bound state, ψS; if λ0 < d,
there are two bound states, ψS and ψA. One can compare this with the
model of the ammonia molecule, in particular if Kd � 1.

4.7. Localization of internal atomic electrons. Following the same
procedure as in Sect. 4.6, we find K =

√
2m|E0|/h̄ ∼ 1.6 × 1011 m, i. e.

e−K∆ ∼ 10−14 for ∆ = 2 Å. The tunneling time is ∼ 10−4 s, which is very
long on the microscopic scale. We can therefore consider that the internal
electrons are well localized, even for atoms inside condensed matter.

Chapter 5

5.1. Translation and rotation operators.

a. The proof is straightforward. We have

p̂ =
h̄

i
d
dx

⇒ T̂ (x0) = e−x0(d/dx) .

Therefore

T̂ (x0) ψ(x) =
∞∑

n=0

(−x0)n

n!

(
d
dx

)n

ψ(x) ,

which is simply the Taylor expansion of ψ(x − x0) around the point x.
b. Similarly, we find

R̂(ϕ) ψ(r, θ) =
∞∑

n=0

(−ϕ)n

n!

(
∂

∂θ

)n

ψ(r, θ) ,

where we recognize the Taylor expansion of ψ(r, θ − ϕ).
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5.2. The evolution operator. The formula giving the derivative of the ex-
ponential of a function remains valid for the operator Û since the Hamiltonian
is time independent. Hence Û(τ) and Ĥ commute. We have, therefore,

d
dt

Û(t − t0) = − i
h̄

Ĥ Û(t − t0) .

This implies that |ψ(t)〉 = Û(t − t0) |ψ(t0)〉 is a solution of the Schrödinger
equation with the appropriate initial condition since Û(0) = 1̂. The unitarity
of Û is a direct consequence of the fact that Ĥ is Hermitian:

Û†(τ) = eiĤτ/h̄ = Û(−τ) = Û−1(τ) .

5.3. Heisenberg representation. We have, by definition,

a(t) = 〈ψ(t)|Â|ψ(t)〉 = 〈ψ(0)|Û†(t)ÂÛ(t)|ψ(0)〉 .

We can define Â(t) = Û†(t)ÂÛ(t), i. e.

Â(t) = eiĤt/h̄Âe−iĤt/h̄ ,

which is indeed a solution of the differential equation given in the exercise
and is such that a(t) = 〈ψ(0)|Â(t)|ψ(0)〉.
5.4. Dirac formalism with a two-state problem.

a. 〈ψ2|Ĥ|ψ1〉 = E1〈ψ2|ψ1〉 = E2〈ψ2|ψ1〉, and therefore (E1−E2)〈ψ2|ψ1〉 = 0
and 〈ψ2|ψ1〉 = 0.

b. 〈E〉 = (E1 + E2)/2, ∆E2 = [(E1 − E2)/2]2, ∆E = h̄ω/2.
c. |ψ(t)〉 =

(
e−iE1t/h̄|ψ1〉 − e−iE2t/h̄|ψ2〉

)
/
√

2.
d. a = ±1.
e. |ψ±〉 = (|ψ1〉 ± |ψ2〉) /

√
2.

f. p = |〈ψ−|ψ(t)〉|2 = cos2(ωt/2).

5.5. Successive measurements and the principle of wave packet re-
duction.

1. a. The probability of finding αi at time t = 0 is |〈ai|ψ0〉|2 part (c) of
the Second Principle.

b. (i) Just after the measurement, the state of the system is |ψ(0+)〉 =
|ai〉 part (d) of the Second Principle.

(ii) The Hamiltonian evolution between t = 0 and t leads to the state
vector |ψ(t)〉 = e−iĤSt/h̄|ai〉.

(iii) The probability of finding βj in a measurement of B at time t is:

|〈bj |ψ(t)〉|2 =
∣∣∣〈bj |e−iĤSt/h̄|ai〉

∣∣∣2 .
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c. From the definition of a conditional probability, the desired proba-
bility is simply:

P (αi, 0;βj , t) = |〈ai|ψ0〉|2
∣∣∣〈bj |e−iĤSt/h̄|ai〉

∣∣∣2 .

2. a. We expand the vector |ψ0〉 on the basis |ai〉: |ψ0〉 =
∑

i µi|ai〉 with
µi = 〈ai|ψ0〉, i. e. |Ψ0〉 =

∑
i µi|ai〉 ⊗ |A0〉 ⊗ |B0〉. From linearity we

then obtain |Ψ(0+)〉 =
∑

i µi|ai〉 ⊗ |Ai〉 ⊗ |B0〉.
b. Since ĤS , ĤA and ĤB commute, we have

e−iĤt/h̄ = e−iĤSt/h̄ e−iĤAt/h̄ e−iĤBt/h̄, which leads to:

|Ψ(t)〉 =
∑

i

µi e−i(Ai+B0)t/h̄
(
e−iĤSt/h̄|ai〉

)
⊗ |Ai〉 ⊗ |B0〉 .

c. We expand the vector e−iĤSt/h̄|ai〉 on the basis {|bj〉}:
e−iĤSt/h̄|ai〉 =

∑
j γij |bj〉 with γij = 〈bj |e−iĤSt/h̄|ai〉, which leads to

|Ψ(t)〉 =
∑

i,j µi e−i(Ai+B0)t/h̄γij |bj〉 ⊗ |Ai〉 ⊗ |B0〉. By linearity, we
find:

|Ψ(t+)〉 =
∑
i,j

µi e−i(Ai+B0)t/h̄γij |bj〉 ⊗ |Ai〉 ⊗ |Bj〉 .

d. The probability of finding the detector A in the state |Ai〉, corre-
sponding to the result ai at time t = 0, and the detector B in the
state |Bj〉, corresponding to the result bj at time t, is obtained by
squaring the modulus of the coefficient of |Ai〉⊗|Bj〉 in this expansion
part (c) of the Second Principle:

P (αi, 0;βj , t) = |µi|2|γij |2 = |〈ai|ψ0〉|2
∣∣∣〈bj |e−iĤSt/h̄|ai〉

∣∣∣2 .

This result coincides with what we found in the first question.
3. As a matter of principle, there is a great difference between the two

approaches envisaged above. In the first approach, the application of
part (d) of the Second Principle leads to an irreversible evolution dur-
ing the first measurement, and it is impossible to recover the state |ψ0〉
after the measurement has been performed. In the second approach, no
irreversibility is introduced a priori and nothing forbids us to imagine
a new interaction between S and the two detectors which could allow
us to restore the state |ψ0〉 we began with, by “erasing” the informa-
tion registered on A and B. However, from a practical point of view,
the two descriptions are equivalent as soon as we deal with macroscopic
detectors. Indeed, owing to the coupling of the two detectors with the
outside environment, the coherent superposition |Ψ(t+)〉 is very rapidly
transformed into an incoherent mixture (see Appendix Appendix D for a
precise definition of this terminology) and the reconstruction of the state
|ψ0〉 becomes impossible.
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Chapter 6

6.1. Linear three-atom molecule.

a. The three energy levels and the corresponding eigenstates are

E1 = E0 , |ψ0〉 =
1√
2

⎛
⎝ 1

0
−1

⎞
⎠

and

E± = E0 ± a
√

2 , |ψ±〉 =
1
2

⎛
⎝ 1
∓√

2
1

⎞
⎠ .

b. The probabilities are PL = PR = 1/4 and PC = 1/2.
c. We have

|ψL〉 =
1√
2
|ψ0〉 +

1
2
|ψ+〉 +

1
2
|ψ−〉

and hence 〈E〉 = E0 and ∆E = a.

6.2. Crystallized violet and malachite green.

a. The Hamiltonian is

Ĥ =

⎛
⎝ 0 −A −A

−A 0 −A
−A −A 0

⎞
⎠ .

As in the case of NH3, the off-diagonal elements of the matrix H written
in the basis of classical configurations represent the quantum effects, i. e.,
passage from one configuration to another one by tunneling.

b. 〈E〉1 = 〈φ1|Ĥ|φ1〉 = −2A, 〈E2〉1 = 4A2, and therefore ∆E2 = 0 in the
state |φ1〉. Similarly, 〈E〉2 = 〈φ2|Ĥ|φ2〉 = +A, 〈E2〉2 = A2, and therefore
∆E2 = 0 in the state |φ2〉.

Consequently, these two states are energy eigenstates, with eigenval-
ues −2A and +A, respectively. Naturally, this can be seen directly by
letting Ĥ act on these two states.

c. Knowing two eigenvectors of Ĥ, it suffices to look for a vector orthogonal
to both of them. We find |φ3〉 = (2|1〉 − |2〉 − |3〉)/√6. Altogether, we
obtain
eigenvalue λ = −2A, eigenvector |φ1〉 = (|1〉 + |2〉 + |3〉)/√3;
eigenvalue λ = +A, eigenvector |φ2〉 = (|2〉 − |3〉)/√2;
eigenvalue λ = +A, eigenvector |φ3〉 = (2|1〉 − |2〉 − |3〉)/√6.
The eigenvalue λ = A has a degeneracy equal to 2. This eigenbasis is not
unique.
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d. Absorption of light occurs at ∆E = 3A = 2.25 eV, in the yellow part of
the spectrum. The ion therefore has the complementary color, i. e. violet.

e. The Hamiltonian is now

Ĥ =

⎛
⎝ ∆ −A −A

−A 0 −A
−A −A 0

⎞
⎠

and the eigenvalue equation can be written

det(Ĥ − λÎ) = −(λ − A)
(
λ2 + (A − ∆)λ − A(∆ + 2A)

)
.

Hence the eigenvalues are

E0 = A , E± =
(
(∆ − A) ±

√
(∆ + A)2 + 8A2

)
/2 .

• If ∆ � A : E0 = A, E+ ∼ A + 2∆/3, E− ∼ −2A + ∆/3.
• If ∆ � A : E0 = A, E+ ∼ ∆, E− ∼ −A.

f. There are two possible transitions from the ground state E−. One of
them corresponds to

hν1 = hc/λ1 = hc/(450 nm) ∼ 2.75 eV =
√

(∆ + A)2 + 8A2 ,

which corresponds to ∆ = 1 eV and absorption in the violet part of the
spectrum. With this value of ∆, we obtain

hν2 = E0 − E− = (3A − ∆)/2 + 1/2
√

(∆ + A)2 + 8A2 = 2 eV .

This corresponds to absorption in the red–orange part of the spectrum
and to a wavelength λ2 = hc/hν2 = 620 nm, in good agreement with
experimental observation.

Chapter 7

7.1. Commutator algebra. The first relation is immediate. To prove the
second relation, one can start with

ÂB̂n − B̂nÂ = ÂB̂n − B̂ÂB̂n−1

+ B̂ÂB̂n−1 − B̂2ÂB̂n−2

+ B̂2ÂB̂n−2 − . . .

+ B̂n−1ÂB̂ − B̂nÂ ,

and each line of the right-hand side can be written as B̂s[Â, B̂]B̂n−s−1 with
s = 0, . . . , n− 1, and hence the result. Finally, the Jacobi identity is derived
by expanding all commutators, and checking that the twelve terms which
appear cancel each other.
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7.2. Glauber’s formula. The derivative of F̂ = etÂ etB̂ with respect to t is

dF̂

dt
= Â F̂ + F̂ B̂ .

The second term on the right-hand side can be written

etÂetB̂B̂ = etÂB̂etB̂ = BetÂ etB̂ +
∞∑

n=0

tn

n!
[Ân, B̂]etB̂ .

Since Â commutes with the commutator [Â, B̂], the result of the previous
exercise gives

[Ân, B̂] = n [Â, B̂] Ân−1 ,

from which we deduce the desired differential equation. This equation can be
solved as a standard differential equation, and it yields

F (t) = exp
(

t(Â + B̂) +
t2

2
[Â, B̂]

)
,

since the two operators Â + B̂ and [Â, B̂] commute. By choosing t = 1, we
obtain Glauber’s formula, from which we deduce

ex̂/x0ep̂/p0 = ex̂/x0+p̂/p0eih̄/(2x0p0) eλâeµâ†
= eλâ+µâ†

eλµ/2 .

7.3. Classical equations of motion for the harmonic oscillator. For
the harmonic oscillator, the Ehrenfest theorem gives

d〈x〉
dt

=
〈p〉
m

,
d〈p〉
dt

= −mω2〈x〉 ,

and hence the result d2〈x〉/dt2 + ω2〈x〉 = 0.

7.4. Conservation law. For a system of n interacting particles, the total
Hamiltonian reads

Ĥ =
n∑

i=1

p̂2
i

2mi
+

1
2

∑
i

∑
j �=i

V (r̂i − r̂j) .

The total momentum of the system is P̂ =
∑

i p̂i. This operator commutes
both with the kinetic-energy term of the Hamiltonian and with the interaction
term:

[P̂x, V (r̂i − r̂j)] = [px,i, V (r̂i − r̂j)] + [px,j , V (r̂i − r̂j)]

=
h̄

i
∂V

∂x
(r̂i − r̂j) − h̄

i
∂V

∂x
(r̂i − r̂j) = 0 .

Therefore 〈P 〉 is a constant of motion.
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7.5. Hermite functions. The expressions for the position and momentum
operators in terms of the creation and annihilation operators are

x̂ =

√
h̄

2mω

(
â + â†) , p̂ = i

√
mh̄ω/2

(
â† − â

)
,

and hence we obtain the result.

7.6. Generalized uncertainty relations.

a. Applying the commutator to any function Ψ(r), we obtain the following
for all Ψ:

[p̂x, f̂ ] Ψ(r) =
h̄

i

(
∂

∂x
(fΨ) − f

∂Ψ
∂x

)
= −ih̄

x

r
f ′(r) Ψ(r) ,

and hence the relation [p̂x, f̂ ] = −ih̄(x̂/r̂) f ′(r̂).
b. • The square of the norm of Âx|ψ〉 is

‖ Âx|ψ〉 ‖2 = 〈ψ|(p̂x + iλx̂f̂)(p̂x − iλx̂f̂ |ψ〉
= 〈ψ|p̂2

x + λ2x̂2f̂2 − iλ[p̂x, x̂f̂ ]|ψ〉 .

By direct calculation, we obtain [p̂x, x̂f̂ ] = −ih̄(f + (x2/r)f ′), and
therefore

‖ Âx|ψ〉 ‖2= 〈p2
x〉 + λ2〈x2f2〉 − h̄λ

〈
f +

x2

r
f ′
〉

.

• Adding the analogous relations for Ây and Âz, we obtain for any state
|ψ〉,

〈p2〉 + λ2〈r2f2〉 − h̄λ〈3f + rf ′〉 ≥ 0 .

This second degree trinomial in λ must be nonnegative for all λ. There-
fore, the discriminant is negative or zero, i. e.

4〈p2〉〈r2f2〉 ≥ h̄2〈3f + rf ′〉2 .

c. For f = 1, we obtain 〈p2〉 〈r2〉 ≥ (9/4)h̄2; for f = 1/r, 〈p2〉 ≥ h̄2〈r−1〉2;
for f = 1/r2, 〈p2〉 ≥ (h̄2/4) 〈r−2〉.

d. Harmonic oscillator. For any state |ψ〉, we have 〈E〉 ≥ 9h̄2/(8m〈r2〉) +
mω2 〈r2〉/2. Minimizing with respect to 〈r2〉, we find the lower bound
〈E〉 ≥ (3/2)h̄ω for the energy of the oscillator. Since there is a value of
λ and a corresponding value of 〈r2〉 for which the trinomial has a double
root and vanishes, this means that there exists a state for which this
lower bound is attained. This state is therefore the ground state since no
state can have a lower energy than the ground state. We have Âx|φ〉 =
0 → (p̂x + iλx̂)|φ〉 = 0. In terms of wave functions, this corresponds to(

h̄
∂

∂x
+ λx

)
φ(r) = 0 ,
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and similar equations for y and z. The solution of this set of three equa-
tions is

φ(r) = N exp(−λr2) = N exp(−3r2/4r2
0) ,

where 〈r2〉 = r2
0, N−1 = (2πr2

0/3)3/4 and λ = 3h̄/4r2
0.

e. Hydrogen atom.
• Similarly, the lower bound for the energy of the hydrogen atom is

Emin = −mee
4/(2h̄2) and this bound is attained; therefore it is the

ground-state energy.
• The equation Âx|ψ〉 = 0 leads to the differential equation

h̄
∂ψ

∂x
+ λ

x

r
ψ(r) = 0

and similar equations for y and z. The solution of this set of equations
is ψ(r) = N exp (−r/r0), where N = 1/

√
πr3

0, 〈r−1〉 = 1/r0 and λ =
1/r0. This is indeed the ground state of the hydrogen atom.

7.7. Quasi-classical states of the harmonic oscillator.

a. By definition, we have

â|α〉 =
∞∑

n=1

Cn

√
n |n − 1〉 = α

∞∑
n=0

Cn |n〉 .

The ensuing recursion relation Cn
√

n = αCn−1 allows us to calculate the
coefficients Cn in terms of C0 and α, whatever the value of the complex
number α:

Cn =
αn

√
n!

C0 .

For any α, we therefore obtain

|α〉 = C0

∞∑
n=0

αn

√
n !

|n〉

and, by normalizing the result,

〈α|α〉 = |C0|2
∞∑

n=0

|α|2n

n!
= e|α|2 |C0|2 ⇒ C0 = e−|α|2/2

up to an arbitrary phase factor.
The probability p(En) of finding En is

p(En) = |〈n|α〉|2 = e−|α|2 |α|2n/n! ,

which is a Poisson distribution.
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b. The expectation value of the energy is obtained by using

〈E〉 = 〈α|Ĥ|α〉 = h̄ω〈α|(â†â + 1/2)|α〉 = (|α|2 + 1/2)h̄ω ,

〈E2〉 = h̄2ω2〈α|[(â†â)2 + â†â + 1/4]|α〉 .

We have [â, â†] = 1, and therefore

(â†â)2 = â†ââ†â = â†â†ââ + â†â .

Hence

〈E2〉 = h̄2ω2(|α|4 + 2|α|2 + 1/4)

and the variance is given by

∆E2 = 〈E2〉 − 〈E〉2 = h̄2ω2|α|2 , ∆E = h̄ω|α| ,

or, equivalently, ∆E/〈E〉 = |α|/(|α|2 + 1/2) ∼ 1/|α| for |α| � 1. The
relative dispersion of the energy ∆E/〈E〉 goes to zero as |α| increases.

c. The calculation of these expectation values yields

〈X〉 = 〈α|(â + â†)/
√

2|α〉 = (α + α∗)/
√

2 ,

〈P 〉 = 〈α|(â − â†)/(i
√

2)|α〉 = i(α∗ − α)/
√

2 ,

〈X2〉 = 〈α|(â2 + â+2 + ââ† + â†â)|α〉/2
=
(
α2 + α∗2 + 2|α|2 + 1

)
,

∆X2 = 〈X2〉 − 〈X〉2 = 1/2 ,

and therefore

∆x =
√

h̄/2mω and 〈x〉 = (α + α∗)
√

h̄/2mω .

Similarly, we obtain

∆p =
√

mh̄ω/2 and 〈p〉 = i(α∗ − α)
√

mh̄ω/2 ,

and, for all α,

∆x ∆p = h̄/2 .

Since the lower bound of the Heisenberg inequality is attained whatever
the value of α, the X or P representation of |α〉 is a Gaussian function of
X or P . We shall check this explicitly in the following. We remark that
〈x〉 and 〈p〉 can be as large as we want if we increase |α|, whereas ∆x
and ∆p remain constant (and of course compatible with the uncertainty
relations). Like the energy, the position and momentum become well
defined in relative terms as |α| becomes large.
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d. Time evolution: we start with |ψ(0)〉 = |α〉, and hence

|ψ(t)〉 = e−|α|2/2
∞∑

n=0

αn

n !
e−i(n+1/2)ωt|α〉 = e−iωt/2|αe−iωt〉 .

Therefore |ψ(t)〉 is an eigenstate of â with the eigenvalue β = αe−iωt.
From the result of exercise 7.3, we obtain

〈X〉t = (αe−iωt + α∗eiωt)/
√

2 , 〈P 〉t = i(α∗eiωt − αe−iωt)/
√

2 .

Setting α = α0eiϕ with α0 > 0, we obtain

〈x〉t = α0

√
2h̄

mω
cos(ωt − ϕ) = x0 cos(ωt − ϕ) ,

〈p〉t = −α0

√
2mh̄ω sin(ωt − ϕ) = −p0 sin(ωt − ϕ) ,

and, naturally, ∆xt ∆pt = h̄/2. The time evolution of 〈x〉t and 〈p〉t is the
same as for a classical oscillator (exercise 7.3).

e. We have

P̂ =
p̂√

mh̄ω
= −i

√
h̄

mω

∂

∂x
= −i

∂

∂X

and, similarly,

X̂ =
√

mω

h̄
x̂ = i

√
mh̄ω

∂

∂p
= i

∂

∂P
.

In terms of the variable X, we find

1√
2

(
X +

∂

∂X

)
ψα(X) = αψα(X) ,

whose solution is ψα(X) = C exp
[−(X − α

√
2)2/2

]
. In terms of the vari-

able P , we have

i√
2

(
P +

∂

∂P

)
ϕα(P ) = αϕα(P )

and the solution is ϕα(P ) = C ′ exp
[−(P + iα

√
2)2/2

]
.

The wave function is a real Gaussian centered at 〈X〉, multiplied by
a plane wave of wave vector 〈P 〉. This wave function is called a minimal
wave packet because the probability distribution is the same as for the
ground state of the oscillator, except that it is shifted by X0 = Re(α

√
2).

In particular the Heisenberg inequality is saturated at all times. The time
evolution consists in replacing α by α exp(−iωt). The oscillation of the
center of the wave function is the same as that of a classical oscillator.
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The states α are genuine quantum states in the sense that they satisfy
all conditions of quantum mechanics. However, the physical properties of an
oscillator prepared in the state |α〉, with |α| � 1, are very similar to those
of a classical oscillator. Traditionally, these states are called “quasi-classical”
or “coherent” states of the harmonic oscillator, and they play a key role in
the quantum theory of radiation.

7.8. Time–energy uncertainty relation. The uncertainty relations give
∆a∆E ≥ |〈ψ|[Â, Ĥ]|ψ〉|/2. The Ehrenfest theorem gives

d〈a〉/dt = (1/ih̄)〈ψ|[Â, Ĥ]|ψ〉 ,

and hence the inequality and the result.

7.9. Virial theorem.

a. We have

[Ĥ, x̂p̂] = [Ĥ, x̂]p̂ + x̂[Ĥ, p̂] = ih̄

(
− p̂2

m
+ x̂

∂V

∂x

)

and, for the potential under consideration

[Ĥ, x̂p̂] = ih̄
(
− p̂2

m
+ nV (x̂)

)
.

b. For an eigenstate |ψα〉 of Ĥ, we have 〈ψα|[Ĥ, x̂p̂]|ψα〉 = 0. Hence

〈ψα| − p̂2

m
+ nV (x̂)|ψα〉 = 0 ⇒ 2〈T 〉 = n〈V 〉 .

The harmonic oscillator corresponds to the case n = 2: the average ki-
netic and potential energies are equal when the system is prepared in an
eigenstate |n〉 of the Hamiltonian.

c. We obtain, in three dimensions,

[Ĥ, r · p] = ih̄

(
−p2

m
+ r · ∇V (r)

)

and therefore 2〈T 〉 = n〈V 〉 as obtained previously. This applies to the
Coulomb problem (V (r) = −e2/r). In this case, n = −1 and we have
2〈T 〉 = −〈V 〉. For the harmonic oscillator, we have 〈T 〉 = 〈V 〉.

d. From the equation obtained above, we have, for a central potential V (r),

r̂ · ∇V (r) = r
∂V

∂r
, and hence 2〈T 〉 = 〈r ∂V

∂r
〉 .
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7.10. Benzene and cyclo-octatetraene molecules.

a. Obviously, R̂6 = Î. Therefore λ6
k = 1 and λk = e2ikπ/6, k = 1, . . . , 6.

b. The definition R̂|φk〉 = e2ikπ/6|φk〉 gives the recursion relation

e2ikπ/6ck,p = ck,p−1 .

Therefore we have, up to an arbitrary phase factor, ck,p = e−2ikpπ/6/
√

6.
c. We have 〈φk|φk′〉 = (1/6)

∑
p e−2i(k′−k)pπ/6 = δk,k′ .

d. A direct calculation gives R̂−1|φk〉 = e−2ikπ/6|φk〉. The eigenvalues of
R̂−1 = R̂† are λ−1

k = λ∗
k.

e. A direct calculation gives Ŵ R̂|ξk〉 = |ξk〉 + |ξk+2〉 = R̂Ŵ |ξk〉. There-
fore Ŵ and R̂, which are Hermitian and unitary operators, respectively,
commute and possess a common eigenbasis.

f. We have Ŵ = −A(R̂ + R̂−1). The eigenvectors of Ŵ are therefore

|φk〉 =
1√
6

6∑
p=1

e−2ikpπ/6|ξp〉 , k = 1, . . . , 6 ,

with eigenvalues Ek = −2A cos(2kπ/6). The ground state E6 = −2A is
nondegenerate, the levels E5 = E1 = −A and E4 = E2 = A are twofold
degenerate and the level E3 = 2A is nondegenerate.

g. (i) Using a method similar to the preceding one, we obtain the following
eight energy levels:
• E8 = −2A is the ground state (nondegenerate),
• E7 = E1 = −A

√
2 (twofold degenerate),

• E6 = E2 = 0 (twofold degenerate),
• E5 = E3 = A

√
2 (twofold degenerate),

• E4 = 2A (nondegenerate).
(ii) Using 〈φk|ξ1〉 = eikπ/4/

√
8, we write

|ψ(t = 0)〉 = |ξ1〉 =
1√
8

8∑
k=1

eikπ/4|φk〉

and, therefore

|ψ(t)〉 =
1√
8

8∑
k=1

eikπ/4 e−iEkt/h̄ |φk〉 .

The probability of finding the electron again on the site n = 1 is
p1(t) = |〈ξ1|ψ(t)〉|2, i. e. p1(t) = |(1/8)

∑
k e−iEkt/h̄|2. This yields,

putting ω = A/h̄,

p1(t) =

∣∣∣∣∣18
8∑

k=1

e−iEkt/h̄

∣∣∣∣∣
2

=
∣∣∣∣14
(
1 + 2 cos(ωt

√
2) + cos(2ωt)

)∣∣∣∣2 .
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(iii) We find, of course, p1(0) = 1. To obtain p1(t) = 1 at a later time,
one would need to find a time t �= 0 such that cos(ωt

√
2) = 1 and

cos(2ωt) = 1. This would mean that ωt
√

2 = 2Nπ and 2ωt = 2N ′π
with N and N ′ integer. Taking the ratio of these two quantities, we
see that this would require

√
2 = N ′/N , i. e. that

√
2 is rational!

Consequently, the particle never reaches its initial state on site 1
again, and the evolution of the state of the system is not periodic.
However, it can be shown that the system comes back as close to the
initial state as one wishes if one waits for a long enough time. This
type of time evolution is said to be quasi-periodic.

h. These results can be readily extended to N centers. The levels are
En = −2A cos(2nπ/N) which are all twofold degenerate except the
ground state n = N and the highest level n = N/2 if N is even.
These levels populate an energy band of fixed width 4A, which becomes
a continuum in the limit N → ∞. The eigenstates are of the form
|φn〉 = (1/

√
N)
∑N

p=1 e−2inpπ/N |ξp〉.

Chapter 8

8.1. Determination of the magnetic state of a silver atom.

a. It is always possible to write the coefficients α and β as α = cos(θ/2),
β = eiϕ sin(θ/2) (if necessary, one can multiply the state (8.67) by a
global phase factor in order to obtain a real value for α). Consider now
a Stern–Gerlach magnet oriented along the unit vector u, defined by the
polar angles θ, ϕ:

u = sin θ cos ϕ ex + sin θ sinϕ ey + cos θ ez .

This gives

u · µ̂ = µ0

(
cos θ e−iϕ sin θ
eiϕ sin θ cos θ

)
.

One can check easily that cos(θ/2)|+〉 + eiϕ sin(θ/2)|−〉 is an eigenstate
of u · µ̂ with eigenvalue +µ0.

b. Bob has to choose an axis u′ for his Stern–Gerlach measurement, but he
does not know the value of u. His measurement yields a binary answer
±µ0, and the state of the system is then |±〉u′ . This state is different
from the initial state and subsequent measurements will not supply any
new information on the state, sent by Alice. Consequently, Bob cannot
determine the initial state from a measurement performed on a single
magnetic moment. The only certainty that Bob can have when he obtains
the result +µ0 or −µ0 in his measurement using the u′ axis is that
the initial state was not |−〉u′ or |+〉u′ , respectively, which is very poor
information.
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c. If Alice sends a large number N of magnetic moments, all prepared in
the same unknown state (8.67), Bob can split this ensemble into three
sets. For the first N/3 magnetic moments, he measures µz. From the
relative intensity of the two spots µz = ±µ0, he deduces |α|2 and |β|2. For
the second set of N/3 magnetic moments, he measures µx. The relative
intensities of the two spots corresponding to µx = ±µ0 yield |α ± β|2.
Finally Bob measures µy for the last set of N/3 magnetic moments,
which yields |α ± iβ|2. From these three sets of results, Bob deduces α
and β, within a global phase factor which is unimportant. Of course, this
determination of α and β is only approximate and the relative statistical
error is N−1/2.

8.2. Results of repeated measurements: quantum Zeno paradox.

a. The energy levels of Ĥ are E± = ±h̄ω/2.
b. The state |ψ(0)〉 is an eigenstate of µ̂x with eigenvalues +µ0. Therefore,

one obtains +µ0 with probability 1 in a measurement of µx.
c. The evolution of the state under consideration is

|ψ(T )〉 = (|+〉e−iωT/2 + |−〉eiωT/2)/
√

2 .

d. The corresponding probability is

P (T ) = |x〈+|ψ(T )〉|2 = |〈ψ(0)|ψ(T )〉|2 = cos2
ωT

2
.

e. After a measurement giving the result µx = +µ0, the system is again in
the same state as initially, i. e. |ψ(0)〉 = (|+〉+ |−〉)/√2. The probability
for all the N successive measurements to give the same result +µ0 is
therefore PN(T ) = cos2N (ωT/2N).

f. In the (mathematical) limit N → ∞, we obtain

PN = exp
{

N ln
[
cos2

(
ωT

2N

)]}

∼ exp
[
2N ln

(
1 − ω2T 2

8N2

)]
∼ exp

(
−ω2T 2

4N

)
→ 1 .

This result may seem paradoxical: observing the system prevents it from
evolving! Some people claim that watching water prevents it from boiling.
However, the solution of the “quantum Zeno paradox” lies in the fact
that any measurement has a finite extension both in space and in time.
In practice, one cannot divide T into infinitely small parts except by
interacting permanently with the system, which is another problem.
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Chapter 9

9.1. Perturbed harmonic oscillator. The sum (9.21) involves two terms,
those with k = n ± 2. The matrix element 〈k|x̂2|n〉 can be calculated us-
ing the expression for the position operator as a function of â and â†,
x̂ = [h̄/(2mω)]1/2(â + â†), so that

〈n + 2|x̂2|n〉 =
h̄

2mω

√
(n + 1)(n + 2) , 〈n − 2|x̂2|n〉 =

h̄

2mω

√
n(n − 1) .

The energy denominator is ∓2h̄ω for k = n ± 2, and hence the result

∆E(2)
n = −λ2

8
h̄ω(n + 1/2) .

This result coincides with the second-order term of the expansion in λ of
h̄ω(n + 1/2)

√
1 + λ.

9.2. Comparison of the ground states of two potentials. We denote
by |ψi〉 (i = 1, 2) the ground state of the Hamiltonian Ĥ = p̂2/2m + Vi(r),
with energy Ei. Since V2(r) > V1(r) for any r, we have

〈ψ2|V2(r̂)|ψ2〉 > 〈ψ2|V1(r̂)|ψ2〉
⇒ E2 = 〈ψ2| p̂2

2m
+ V2(r̂)|ψ2〉 > 〈ψ2| p̂2

2m
+ V1(r̂)|ψ2〉 .

The second step of the reasoning consists of noticing that, because of the
theorem on which the variational method is based, we have

〈ψ2| p̂2

2m
+ V1(r̂)|ψ2〉 ≥ E1 = 〈ψ1| p̂2

2m
+ V1(r̂)|ψ1〉 ,

and hence the result.

9.3. Existence of a bound state in a potential well. To show the exis-
tence of a bound state in a one-dimensional potential V (x) which is negative
everywhere and tends to zero at ±∞, we use the variational method with
Gaussian trial functions,

ψσ(x) = [σ2/(2π)]1/4 exp(−σ2x2/4) .

The mean kinetic energy is Tσ = h̄2σ2/(8m). This positive quantity tends to
zero quadratically as σ tends to zero. The mean potential energy is

〈V 〉σ =
σ√
2π

∫
V (x) e−σ2x2/2 dx .

By assumption this quantity is negative. As σ tends to zero, 〈V 〉σ tends to
zero linearly with σ if the integral

∫∞
−∞ V (x) dx converges, or it may even
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diverge if the integral is itself divergent. In any case, there exists a range of
value for the variable σ such that |〈V 〉σ| > Tσ. For these values of σ, the
total mean energy Eσ = Tσ + 〈V 〉σ is negative. The ground-state energy is
necessarily lower than Eσ and is also negative: the corresponding state is a
bound state.

This demonstration cannot be extended to three dimensions. If we still
take Gaussian functions e−σ2r2/4 as a trial set, the kinetic energy varies as
σ2 as before, while the negative potential-energy term now scales as σ3. As
σ tends to zero, the potential energy tends to zero faster than the kinetic
energy, and the total energy may be always positive, so that one cannot infer
the existence of a bound state.

Indeed, there are simple three-dimensional potentials that are negative or
zero everywhere and have no bound state. Consider for instance an isotropic
square potential well, V (r) = −V0 for r < r0 (with V0 > 0) and V (r) = 0
otherwise. We find that there is no bound state if V0 < h̄2π2/(8mr2

0). (To
show this result, first consider states with zero angular momentum, and then
generalize to arbitrary angular momenta using the result of the previous
exercise).

9.4. Generalized Heisenberg inequalities. For any state |ψ〉, we have

1
2m

〈p2〉 + g〈rα〉 − ε0 g2/(α+2)

(
h̄2

2m

)α/(α+2)

≥ 0 .

Minimizing with respect to g, we obtain the result given in the exercise (it
is safe to treat separately the case α > 0, g > 0, in which case ε0 > 0, and
the case α < 0, g < 0, in which case ε0 < 0). We recover the usual results
for α = 2 and α = −1. For the linear potential, α = 1, we have ε0 = 2.33811
and hence the uncertainty relation

〈p2〉〈r〉2 ≥ 4
27

ε3
0 h̄2 ∼ 1.894 h̄2 .

Chapter 10

10.1. Operator invariant under rotation. [Â, L̂x] = 0 and [Â, L̂y] =
0 ⇒ [Â, [L̂x, L̂y]] = ih̄[Â, L̂z] = 0.

10.2. Commutation relations for r̂ and p̂. A straightforward calculation
gives

[L̂z, x̂] = −ŷ[p̂x, x̂] = ih̄ŷ , [L̂z, ŷ] = x̂[p̂y, ŷ] = −ih̄x̂ , [L̂z, ẑ] = 0 ,

[L̂z, p̂x] = p̂y[x̂, p̂x] = ih̄p̂y , [L̂z, p̂y] = −p̂x[ŷ, p̂y] = −ih̄p̂x ,

[L̂z, p̂z] = 0 .

Therefore, since [Â, B̂2] = [Â, B̂]B̂ + B̂[Â, B̂], we obtain [L̂, p̂2] = [L̂, r̂2] = 0.
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10.3. Rotation-invariant potential. If V (r) depends only on r = |r|, then
Ĥ = p̂2/2m + V (r̂) (which is rotation invariant) commutes with the angular
momentum L̂, which is a constant of the motion (Ehrenfest theorem).

[Ĥ, L̂] = 0 ⇒ d〈L〉
dt

= 0 .

This is not true if V (r) depends not only on r but also on θ and ϕ.

10.4. Unit angular momentum.

a. The action of L̂z on the basis set |� = 1, m〉 is given by L̂z|1, m〉 =
mh̄ |1, m〉, i. e.

L̂z = h̄

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ .

The actions of L̂x and L̂y are obtained using the operators L̂+ and L̂−,
whose matrix elements are deduced from the recursion relation (10.17):

L̂+|1, 1〉 = 0 , L̂+|1, 0〉 = h̄
√

2 |1, 1〉 ,

L̂+|1,−1〉 = h̄
√

2 |1, 0〉 ,

L̂−|1, 1〉 =
√

2 |1, 0〉 , L̂−|1, 0〉 = h̄
√

2 |1,−1〉 ,

L̂−|1,−1〉 = 0

Hence the matrices of L̂x = (L̂+ + L̂−)/2 and L̂y = i(L̂− − L̂+)/2 are

L̂x =
h̄√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ , L̂y =

h̄√
2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ .

b. The eigenvectors of L̂x are

|1,±1〉x =
1
2

(
|1, 1〉 ±

√
2|1, 0〉 + |1,−1〉

)
, eigenvalues ± h̄

|1, 0〉x =
1√
2

(|1, 1〉 − |1,−1〉) , eigenvalue 0 .

The eigenfunction corresponding to mx = +1 is

ψ(θ, ϕ) =
1
2
[Y 1

1 (θ, ϕ) + Y −1
1 (θ, ϕ)] +

1√
2
Y 0

1 (θ, ϕ)

=

√
3
8π

(cos θ − i sin θ sinϕ) .

Therefore

I(θ, ϕ) = |ψ(θ, ϕ)|2 =
3
8π

(1 − sin2 θ cos2 ϕ) .
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10.5. Commutation relations for Ĵ2
x, Ĵ2

y and Ĵ2
z .

a. Since [Ĵ2, Ĵz] = 0, we have also [Ĵ2, Ĵ2
z ] = 0. Hence [Ĵ2

x + Ĵ2
y , Ĵ2

z ] = 0,
and therefore [Ĵ2

z , Ĵ2
x ] = [Ĵ2

y , Ĵ2
z ]. The third equality is obtained using a

circular permutation of x, y and z.
One can also calculate these commutators explicitly:

[Ĵ2
x , Ĵ2

y ] = ih̄{Ĵx, {Ĵy, Ĵz}}
=

ih̄
3

({Ĵx, {Ĵy, Ĵz}} + {Ĵy, {Ĵz, Ĵx}} + {Ĵz, {Ĵx, Ĵy}}) .

where we have set {Â, B̂} = ÂB̂ + B̂Â.
b. For j = 0 the result is obvious since |0, 0〉 is an eigenstate of all compo-

nents with eigenvalue zero.
For j = 1/2, Ĵ2

x , Ĵ2
y and Ĵ2

z are proportional to the unit 2× 2 matrix,
with eigenvalue +h̄2/4. They obviously commute.

c. For j = 1, we consider the matrix elements

〈1, m2|[Ĵ2
x , Ĵ2

z ]|1, m1〉 = (m2
1 − m2

2)〈1, m2|Ĵ2
x |1, m1〉 .

For m2
1 = m2

2, this is obviously zero. We only have to consider the cases
m1 = 0, m2 = ±1. Since Ĵx|1, 0〉 ∝ (|1, 1〉 + |1,−1〉) and Ĵx|1,±1〉 ∝
|1, 0〉 the corresponding scalar products, i. e. the matrix elements under
consideration, vanish.

Owing to the (x, y, z) symmetry, the common eigenbasis is {|j =
1, mx = 0〉, |j = 1, my = 0〉, |j = 1, mz = 0〉}, where |j = 1, mi = 0〉 is
the eigenvector of Ĵi (i = x, y, z) associated with the eigenvalue 0:

|j = 1, mx = 0〉 =
1√
2

(|1, 1〉 − |1,−1〉) ,

|j = 1, my = 0〉 =
1√
2

(|1, 1〉 + |1,−1〉) ,

|j = 1, mz = 0〉 = |1, 0〉 .

In spherical coordinates, the corresponding (angular) wave functions are
x/r, y/r and z/r, with a normalization coefficient (4π/3)−1/2.

Chapter 11

11.1. Expectation value of r for the Coulomb problem.

a. Using
∫∞
0

|un,�(ρ)|2dρ = 1 and ε = 1/n2, we obtain the first identity.
b. To show the second identity, we use∫

u′
n,� un,� dρ = 0 ,

∫
ρ2u′

n,�u
′′
n,� dρ =

∫
ρun,�u

′′
n,� dρ ,∫

ρu′
n,�un,� dρ = −1/2

∫
ρ2u′

n,�un,� dρ = −〈ρ〉 ,
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which can be shown by integrating by parts.
c. Summing the two equations derived in the previous parts of the exercise,

we obtain the desired expression for 〈ρ〉.

11.2. Three-dimensional harmonic oscillator in spherical coordi-
nates.

a. The radial equation is(
− h̄2

2m

1
r

d2

dr2
r +

1
2
mω2r2 +

�(� + 1)
2mr2

h̄2 − En,�

)
Rn,�(r) = 0 .

We set ρ = r
√

mω/h̄ and ε = E/h̄ω and obtain (11.30).
b. The energy levels are indeed of the form

En = (n + 3/2)h̄ω , where n = 2n′ + � ,

and the corresponding eigenstates can be labeled as |n, �, m〉. There exists
a degeneracy with respect to �, but it is different from the case of the
hydrogen atom. For a given value of the energy, i. e. of n, � has the same
parity as n. Therefore the successive levels correspond alternately to even
and odd angular momenta:

n = 0 , E = 3h̄ω/2 , � = 0 ;
n = 1 , E = 5h̄ω/2 , � = 1 ;
n = 2 , E = 7h̄ω/2 , � = 0, 2 ;
n = 3 , E = 9h̄ω/2 , � = 1, 3 ; etc.

For a given value of n, the (n + 1)(n + 2)/2 states |n, �, m〉 with � =
0, 2 . . . n or � = 1, 3 . . . n are linear combinations of the (n + 1)(n + 2)/2
states |n1;n2; n3〉 with n1 + n2 + n3 = n.

c. For n = 1, three orthogonal wave functions are

ϕ100(r) = Cxe−αr2/2 , ϕ010(r) = Cye−αr2/2 , ϕ001(r) = Cze−αr2/2

where C is a normalization constant. We therefore obtain, by expressing
x, y, z in terms of r and Y1,m(θ, ϕ) (see (10.30)–(10.32))

|n = 1, � = 1, m = 0〉 = |n1 = 0; n2 = 0; n3 = 1〉 ,

|n = 1, � = 1, m = ±1〉
= ∓ 1√

2
|n1 = 1; n2 = 0; n3 = 0〉 − i√

2
|n1 = 0; n2 = 1; n3 = 0〉 .
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11.3. Relation between the Coulomb problem and the harmonic
oscillator.

a. The change of variable ρ → x and of the unknown function u(ρ) → f(x)
leads to the following equation for the Coulomb problem:

d2f

dx2
+

2α − 1
x

df

dx
+
(

α(α − 2) − 4�(� + 1)
x2

+8Z+
4E

EI
x2

)
f(x)=0 .

The choice α = 1/2 eliminates the term df/dx and leads to an equation
with the same structure as the radial equation for the harmonic oscillator:(

d2

dx2
− (2� + 1/2)(2� + 3/2)

x2
+ 8Z +

4E

EI
x2

)
f(x) = 0 .

b. The correspondence between the parameters of the harmonic oscillator
and the Coulomb problem is

�harm. ↔ (2�coul. + 1/2) , K2 ↔ −4Ecoul./EI , Eharm./h̄ω ↔ 4Z .

In other words, the roles of the coupling constant and of the energy eigen-
value are interchanged! The shift in � ensures the proper � degeneracy of
the hydrogen levels.

c. From the result of exercise 11.2, we know that the eigenvalues for the
energy are

Eharm = K (2n′ + �harm + 3/2) h̄ω .

Using the correspondence that we have just found, this yields

4Z =
√−4Ecoul.

EI
(2n′ + 2�coul. + 2) ,

which can also be written Ecoul. = −Z2EI/(n′ + �coul. + 1)2. We recover
indeed the energy levels of the Coulomb problem (cf. (11.28)). Notice
that this provides an expression for the Laguerre polynomials in terms
for the Hermite polynomials.

11.4. Confirm or invalidate the following assertions.

a. True. In fact, if [Ĥ, L̂] = 0 we have [Ĥ, L̂z] = 0 and [Ĥ, L̂2] = 0. We
consider an eigenbasis common to Ĥ, L̂2 and L̂z, |E�,m, �, m〉. Since
[Ĥ, L̂] = 0 implies that [Ĥ, L̂±] = 0, we obtain

L̂±Ĥ|E�,m, �, m〉 = E�,mL̂±|E�,m, �, m〉 = ĤL̂±|E�,m, �, m〉 .

We know that L̂±|E�,m, �, m〉 is an eigenstate of L̂z with eigenvalue (m+
1)h̄. Therefore the set of states {|E�,m, �, m〉, m = −� . . . �} are eigenstates
of Ĥ with the same eigenvalue E�,m ≡ E�.
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b. Wrong. The square of the angular momentum commutes with the Hamil-
tonian and the energy levels can be labeled by �. It is only the Coulomb
and harmonic potentials, which have special symmetry properties, which
produce degeneracies with respect to �.

11.5. Centrifugal-barrier effects. Consider the Hamiltonians

Ĥ� =
p̂2

r

2m
+

�(� + 1)h̄2

2mr2
+ V (r) , where p̂2

r = −h̄2

(
1
r

∂

∂r
r

)2

,

which act only on the variable r. The state |n′ = 0, �, m〉 ≡ |ψ�〉, which is an
eigenstate of

Ĥ =
p̂2

r

2m
+

L̂2

2mr2
+ V (r) ,

is an eigenstate of Ĥ� with eigenvalue E�, which is the smallest eigenvalue of
Ĥ�. We obviously have

Ĥ�+1 = H� +
(� + 1)h̄2

mr2
.

Taking the expectation value of this expression for the state |ψ�+1〉 = |n′ =
0, � + 1, m〉, we obtain

E�+1 = 〈ψ�+1|Ĥ�|ψ�+1〉 +
〈

(� + 1)h̄2

mr2

〉
.

We have 〈ψ|Ĥ�|ψ〉 ≥ E� for all ψ, and (�+1)h̄2/mr2 is a positive operator: its
expectation value for any state is positive. Therefore E�+1 ≥ E� and, more
quantitatively,

E�+1 − E� ≥ (� + 1)h̄2

m
〈ψ�+1| 1

r2
|ψ�+1〉 .

11.6. Algebraic method for the hydrogen atom.

a. The expression for A−
� A+

� is

A−
� A+

� =
d2

dρ2
− �(� + 1)

ρ2
+

2
ρ
− 1

(� + 1)2
.

Therefore the radial equation can be written as

(
A−

� A+
�

)
u� =

(
ε − 1

(� + 1)2

)
u� .



478 Solutions to the Exercises

b. We find, for A+
� A−

� ,

A+
� A−

� =
d2

dρ2
− (� + 1)(� + 2)

ρ2
+

2
ρ
− 1

(� + 1)2
.

By multiplying (11.33) by A+
� , we obtain

(
A+

� A−
�

)
A+

� u� =
(

ε − 1
(� + 1)2

)
A+

� u� ,

which can also be written(
d2

dρ2
− (� + 1)(� + 2)

ρ2
+

2
ρ

)
A+

� u�(ρ) = ε A+
� u�(ρ) .

Therefore, A+
� u�(ρ) satisfies the radial equation with the same eigenvalue

ε but with an angular momentum �′ = � + 1.
c. Similarly, we can write the equation for the angular momentum � as(

A+
�−1A

−
�−1

)
u� =

(
ε − 1

�2

)
u� .

We then obtain the result that A−
�−1u�(ρ) satisfies the radial equation

with the same eigenvalue ε but with an angular momentum �′ = � − 1.
d. By multiplying (11.33) by u∗

� and integrating over ρ, we find∫ ∞

0

u∗
� (ρ)

(
A−

� A+
� u�(ρ)

)
dρ =

(
ε� − 1

(� + 1)2

)∫ ∞

0

|u�(ρ)|2dρ .

We integrate the left-hand side of this equation by parts and obtain∫ ∞

0

u∗
� (ρ)

(
A−

� A+
� u�(ρ)

)
dρ = −

∫ ∞

0

|A+
� u�(ρ)|2dρ .

We deduce that the quantity ε − 1/(� + 1)2 is necessarily negative, and
hence

ε ≤ 1
(� + 1)2

.

e. The argument is then analogous to the case of the harmonic oscillator or
to the quantization of angular momentum. By repeatedly applying A+

� ,
one can increase the value of � by an integer. This is limited from above
since ε� ≤ 1/(� + 1)2, and there is a maximum value �max of � such that

ε =
1

(�max + 1)2
≡ 1

n2
.

The function A+
�max

u�max(ρ) is identically zero. Therefore, u�max satisfies(
d
dρ

− n

ρ
+

1
n

)
u�max(ρ) = 0 .
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f. The energy levels are En = −EI/n2. The solution of the above equation
is u�max(ρ) ∝ ρne−ρ/n, up to a normalization factor. Coming back to the
function R�, we recover (11.22) for � = n − 1 (i. e. n′ = 0): R�max(ρ) ∝
ρn−1e−ρ

√
ε. By repeatedly applying A−

�−1, we obtain the other solutions
of the same energy ε = 1/n2 for � = n − 2, n − 3, . . . , 0.

11.7. Molecular potential.

a. The radial equation is(
− h̄2

2me

1
r

d2

dr2
r +

�(� + 1)h̄2 + 2meA

2mer2
− B

r

)
R(r) = ER(r) .

b. We define S as a positive real number such that S(S + 1) = �(� + 1) +
2meA/h̄2, i. e.

S = −1
2

+
1
2

√
(2� + 1)2 + 8meA/h̄2 .

Note that S is generally not an integer. We set, as usual, a1 = h̄2/Bme,
E = −εmB2/2h̄2 and r = ρa1. The radial equation becomes(

1
ρ

d2

dρ2
ρ − S(S + 1)

ρ2
+

2
ρ
− ε

)
R(ρ) = 0 .

c. As in the case of hydrogen, the normalizable solutions can be labeled
by an integer n′ ≥ 0 and are of the form R(ρ) = e−ρ

√
ερSPn′,�(ρ), where

Pn′,�(ρ) is a polynomial of degree n′, and we must have ε = (n′+S+1)−2.
The energies are then

En′,� = −B2me

2h̄2

1
(n′ + S + 1)2

.

Note that this potential is quantitatively very different from a molecular
potential even though it has the same global features (attractive at long
distances and repulsive at short distances). The long range attractive force
in a molecule is not a Coulomb force and the repulsion at short distances is
much stronger than an r−2 potential.

Chapter 12

12.1. Products of Pauli matrices. We first check that σ̂2
j = 1. For j �= k,

a direct calculation yields the result (12.38).

12.2. Algebra with Pauli matrices. We first evaluate the products (σ ·
A)(σ ·B) =

∑
jk σjσkAjBk. The result (12.38) of the previous exercise then

yields the desired formula.
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12.3. Spin and orbital angular momentum.

a. We must have
∫∞
0

|R(r)|2r2 dr = 1/2, since the Y m
� ’s are orthonormal

and
∫

(|ψ+|2 + |ψ−|2) d3r = 1.
b. We find p(+h̄/2) = 2/3, p(−h̄/2) = 1/3 for Sz, and p(+h̄/2) = 1/3,

p(−h̄/2) = 2/3 for Sx.
c. Lz = h̄ and Lz = 0 with p(+h̄) = 1/6, p(0) = 5/6.

12.4. Geometric origin of the commutation relations of Ĵ .

a. (i) The second-order terms in dα are, a priori, unchanged if β = 0.
However, for dβ = 0, the composition of the four operations reduces
obviously to the identity. Therefore the second-order terms in dα
vanish, and so do the terms in dβ2 (and, of course the first order
terms in dα and dβ).

(ii) By applying successively the four infinitesimal rotations:
V −→ V 1 = V + dα ex × V ,

V 1 −→ V 2 = V 1 + dβ ey × V 1 ,

V 2 −→ V 3 = V 2 − dα ex × V 2 ,

V 3 −→ V 4 = V 3 − dβ ey × V 3 ,

we find with no difficulty that the resulting transformation is, to
second order in dα and dβ,

V −→ V 4 = V − dα dβ uz × V .

(iii) This transformation V → V 4 corresponds indeed to a rotation by
an angle −dα dβ around the z axis.

b. (i) The transformation of the state vector is |ψ〉 → |ψ4〉, where

|ψ4〉 =
(

1 +
idβ

h̄
Ĵy + . . .

) (
1 +

idα

h̄
Ĵx + . . .

)

×
(

1 − idβ

h̄
Ĵy + . . .

) (
1 − idα

h̄
Ĵx + . . .

)
|ψ〉 .

To second order in dα and dβ, we remark as above that the terms in
dα2 and dβ2 do not contribute, and we obtain

|ψ4〉 =
(

1 +
dα dβ

h̄2 [Ĵx, Ĵy]
)

|ψ〉 .

(ii) We know that the composition of the four rotations corresponds geo-
metrically to a rotation by an angle −dα dβ around the z axis. There-
fore we are led to the set [Ĵx, Ĵy] = ih̄Ĵz in order to have

|ψ4〉 =
(

1 +
i dα dβ

h̄
Ĵz

)
|ψ〉 .

This commutation relation thus has a simple geometric origin, in the
noncommutativity of the three-dimensional rotation group.
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c. (i) For a spin-1/2 system, we obtain the following in a rotation of dϕ
around z:(

α
β

)
→
(

(1 − i dϕ/2) α
(1 + i dϕ/2) β

)
.

(ii) This equation can be integrated for an arbitrary rotation of angle ϕ
to obtain(

α
β

)
→
(

e−iϕ/2 α
eiϕ/2 β

)
.

(iii) In the Larmor precession, the transformation of the state vector be-
tween times 0 and t corresponds to a rotation of angle ω0t.

Chapter 13

13.1. Permutation operator. We use the eigenbasis of Ŝ1z and Ŝ2z. In
this basis, we find

(σ̂1xσ̂2x + σ̂1yσ̂2y) |σ;σ〉 = 0 ,

(σ̂1xσ̂2x + σ̂1yσ̂2y) |σ;−σ〉 = 2| − σ;σ〉 ,

(1 + σ̂1zσ̂2z) |σ;σ〉 = 2|σ;σ〉 ,

(1 + σ̂1zσ̂2z) |σ;−σ〉 = 0 ,

where σ = ±1. Hence the result

1
2

(1 + σ̂1σ̂2) |σ;σ〉 = |σ; σ〉 ,
1
2

(1 + σ̂1σ̂2) |σ;−σ〉 = | − σ;σ〉 .

13.2. The singlet state. This invariance of the decomposition of the sin-
glet state when u varies comes from the fact that the state is of angular
momentum zero, and therefore that it is rotation invariant.

13.3. Spin and magnetic moment of the deuteron.

a. The eigenvalues of K̂2 are K(K + 1)h̄2, where

K = J + I, J + I − 1, J + I − 2, . . . , |J − I| .

b. We have Ŵ = AĴ · Î/h̄2, where A = agIgJµBµN. We obtain Ĵ · Î =
(K̂

2 − Ĵ
2 − Î

2
)/2, and hence the expression for W .

EI,J,K = EI + EJ + A [K(K + 1) − J(J + 1) − I(I + 1)] /2.
c. EI,J,K − EI,J,(K−1) = AK.
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d. The electron has a total angular momentum of 1/2, its spin. The possible
values of K are therefore I ± 1/2. One of the levels is split into 4 sub-
levels (angular momentum 3/2), while the other is split into two (angular
momentum 1/2). Therefore I = 1.

e. Triplet state (S = 1).
f. We obtain the following value for the hyperfine splitting in deuterium:

∆E =
3A

2
=

1.72
1836

α4mec
2 ∼ 1.36 10−6 eV .

Hence the wavelength and frequency of the emitted radiation are

λ ∼ 91 cm , ν ∼ 328 MHz .

The experimental value is λ = 91.5720 cm. In a more accurate calculation,
one must incorporate a more accurate value of gI (0.8574) and take into
account reduced mass effects and relativistic effects.

13.4. Determination of the Clebsch–Gordan coefficients.

a. Multiplying the relation Ĵz = Ĵ1z + Ĵ2z on the left by 〈j1, m1; j2, m2| and
on the right by |j1, j2; j, m〉, we find

h̄ (m1 + m2 − m) Cj,m
j1,m1;j2,m2

= 0 ,

which means that the Clebsch–Gordan coefficient is zero if m �= m1+m2.
b. We have

〈j1, m1; j2, m2|Ĵ1+ =√
j1(j1 + 1) − m1(m1 − 1) 〈j1, m1 − 1; j2, m2| ,

〈j1, m1; j2, m2|Ĵ2+ =√
j2(j2 + 1) − m2(m2 − 1) 〈j1, m1; j2, m2 − 1| ,

Ĵ+|j1, j2; j, m〉 =√
j(j + 1) − m(m + 1) |j1, j2; j, m + 1〉 .

Multiplying the relation Ĵ+ = Ĵ1+ + Ĵ2+ on the left by 〈j1, m1; j2, m2|
and on the right by |j1, j2; j, m〉, we find the relation given in the exercise.
For m = j, the recursion relation simplifies and reduces to

Cj,j
j1,m1−1;j2,m2

= −
√

j2(j2 + 1) − m2(m2 − 1)
j1(j1 + 1) − m1(m1 − 1)

Cj,j
j1,m1;j2,m2−1 .

It therefore suffices to know one coefficient, for instance Cj,j
j1,j1;j2,j−j1

, in
order to determine all those of the form Cj,j

j1,m1;j2,m2
. Since the vectors

|j1, j2; j, j〉 and |j1, m1; j2, m2〉 are normalized, we obtain the relation
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∑
m1

∣∣∣Cj,j
j1,m1;j2,j−m1

∣∣∣2 = 1 ,

which allows us to determine these coefficients up to a global phase factor.
c. Imposing the requirement that the coefficient Cj,j

j1,j1;j2,j−j1
is real and

positive removes the ambiguity in the phase and determines completely
the coefficients Cj,j

j1,m1;j2,m2
.

d. This recursion relation can be deduced by taking the matrix element of
Ĵ− = Ĵ1− + Ĵ2−. Knowing all the coefficients of the type Cj,j

j1,m1;j2,m2
,

one can then deduce all the coefficients of the type Cj,j−1
j1,m1;j2,m2

, then
Cj,j−2

j1,m1;j2,m2
and so on.

13.5. Scalar operators.

a. Taking the matrix element of [Ĵz, Ô] between 〈α, j, m| and |β, j′, m′〉, we
find

h̄ (m − m′) 〈α, j, m|Ô|β, j′, m′〉 = 0 .

If m �= m′, the matrix element therefore vanishes.
b. Taking the matrix element of Ĵ+Ô = ÔĴ+ between 〈α, j, m + 1| and

|β, j′, m〉, we find√
j(j + 1) − m(m + 1) 〈α, j, m|Ô|β, j′, m〉

=
√

j′(j′ + 1) − m(m + 1) 〈α, j, m + 1|Ô|β, j′, m + 1〉 ,

which is identical to the first relation in the exercise. Similarly, taking
the matrix element of Ĵ−Ô = ÔĴ− between 〈α, j, m| and |β, j′, m + 1〉,
we find the second relation in the exercise.

c. If Om and Om+1 are nonzero, the product of the two relations above
yields j = j′ and their ratio gives O2

m = O2
m+1, i. e. Om = Om+1 since the

two coefficients Om and Om+1 have the same sign, given their recursion
relation.

13.6. Vector operators and the Wigner–Eckart theorem.

a. It is straightforward to check the property. Consider for instance V̂ = r̂,
and j = x, k = y:

[L̂x, ŷ] = [ŷp̂z − ẑp̂y, ŷ] = ih̄ẑ .

Here, we have assumed Ĵ = L̂, but the incorporation of the spin of the
particle would not change anything, since spin observables commute with
r̂.
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b. Again the verification is simple. Consider, for instance,[
Ĵ±, V̂+1

]
=

−1√
2

[
Ĵx ± iĴy, V̂x + iV̂y

]
=

−1√
2

(
i
[
Ĵx, V̂y

]
± i
[
Ĵy, V̂x

])
=

−h̄√
2

(
−V̂z ± V̂z

)
.

This is equal to h̄
√

2 V̂0 for Ĵ− and zero for Ĵ+.
c. (i) Multiplying the relation [Ĵz, V̂q] = h̄qV̂q on the left by 〈α, j, m| and

on the right by |β, j′, m′〉, we find

h̄ (m − m′ − q) 〈α, j, m|V̂q|β, j′, m′〉 = 0 ,

which yields the result that 〈α, j, m|V̂q|β, j′, m′〉 vanishes if m �= m′+
q.

(ii) Multiplying the relation

Ĵ±V̂q = V̂qĴ± + h̄
√

2 − q(q ± 1) V̂q

on the left by 〈α, j, m| and on the right by |β, j′, m′〉, we find√
j(j + 1) − m(m ∓ 1) 〈α, j, m ∓ 1|V̂q|β, j′, m′〉
=
√

j′(j′ + 1) − m(m ± 1) 〈α, j, m|V̂q|β, j′, m′ ± 1〉
+
√

2 − q(q ± 1) 〈α, j, m|V̂q±1|β, j′, m′〉 .
If we make the identifications (j1, m1) ↔ (j′, m′), (j2, m2) ↔ (1, q)
and

Cj,m
j′,m′;1,q ↔ 〈α, j, m|V̂q|β, j′, m′〉 ,

we observe that the required matrix elements satisfy the same recur-
sion relations (13.34) and (13.35) as do the Clebsch–Gordan coeffi-
cients Cj,m

j′,m′;1,q.
(iii) The relations (13.34) and (13.35) completely define the Clebsch–

Gordan coefficients up to a multiplicative factor, fixed by the normal-
ization of the states |j1, j2; j, m〉. We therefore conclude that the ma-
trix elements under consideration are proportional to those Clebsch–
Gordan coefficients.

(iv) If |j−j′| > 1, the Clebsch–Gordan coefficients Cj,m
j′,m′;1,q vanish what-

ever m, m′ and q are. The same holds for the matrix elements of V̂q,
as can be shown directly. Suppose, for instance, that j > j′ + 1. Us-
ing the recursion relation of question c(i), we first deduce that the
matrix elements 〈α, j, j|Vq|β, j′, m′〉 vanish for all values of m′ and q
between −j′ and j′ and between −1 and 1, respectively. Using then
the relation proven in c(ii), one can prove that the matrix elements
〈α, j, j − 1|Vq|β, j′, m′〉 are also all zero, and so on.
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Chapter 14

14.1. Bell measurement.

a. One can find (+h̄/2,+h̄/2) with probability |α|2, (+h̄/2,−h̄/2) with
probability |β|2, etc.

b. The operator associated with the occupation of a given state |Ψ〉 is the
projector PΨ = |Ψ〉〈Ψ|. The eigenvalues of this operator are 0 and 1. We
have the following:

State |Ψ+〉 occupied: probability |α + δ|2/2 ;
State |Ψ−〉 occupied: probability |α − δ|2/2 ;
State |Φ+〉 occupied: probability |β + γ|2/2 ;
State |Φ−〉 occupied: probability |β − γ|2/2 .

The Bell basis is an orthonormal basis and the sum of these four proba-
bilities is equal to 1.

14.2. Quantum teleportation of a spin state.

a. The three-spin state is

|Ψ〉= α√
2
|+; +;−; 〉+ β√

2
|−; +;−; 〉− α√

2
|+;−; +; 〉− β√

2
|−;−; +; 〉 .

This state can be written in the basis of the three-particle states formed
by (i) the Bell basis for the subsystem A + B multiplied by (ii) the basis
|±〉 for C:

|Ψ〉 =
1
2
|Ψ+〉 ⊗ (α|−〉 − β|+〉) +

1
2
|Ψ−〉 ⊗ (α|−〉 + β|+〉)

− 1
2
|Φ+〉 ⊗ (α|+〉 − β|−〉) − 1

2
|Φ−〉 ⊗ (α|+〉 + β|−〉) .

The probability of finding the pair AB in any particular Bell state is thus
(|α|2 + |β|2)/4 = 1/4.

b. After a measurement which yields the result “the pair AB is in the state
|Φ−〉”, the state of the spin of C is α|+〉 + β|−〉.

c. In order to teleport the unknown state α|+〉 + β|−〉 from particle A to
particle C, Alice must not try to measure this state. She has “only” to
perform a Bell measurement on the pair AB and then transmit her result
to Bob. If Alice finds the pair AB in the state |Φ−〉 (this happens with
a probability 1/4), Bob has nothing to do: the state of the spin of C
after Alice’s measurement is equal to the state of the spin of A before
this measurement. In the remaining cases, Bob can reconstruct the initial
spin state of A using a simple transformation. For instance, if Alice finds
the pair AB in the Bell state |Φ+〉, the state of the spin of C after the
measurement is α|+〉 − β|−〉, and Bob can convert it back to the initial
state α|+〉+β|−〉 using a rotation by an angle π around the z axis of the
spin of C.
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d. One cannot use this idea to transmit information faster than with a
classical channel. As long as Alice has not told Bob the result of her Bell
measurement, Bob has no valuable information. The density operator
associated with his spin is simply (1/2)1̂ (see Appendix Appendix D). It
is only after he has learned about Alice’s result, and after he has rejected
or reconstructed the fraction (3/4) of the experimental runs which did not
yield |Φ−〉, that Bob can benefit from this teleportation of the quantum
state of particle A.

Chapter 15

15.1. The Lorentz force in quantum mechanics.

a. One can check easily that ∇ × A = B.
b. The classical equations of motion mr̈ = f and ṙ = v give r̈ = (q/m)ṙ ×

B. The Lorentz force does not do any work. The energy boils down to
the kinetic energy E = mv2/2, which is a constant of the motion.

The longitudinal velocity, parallel to B, is constant. The transverse
velocity, perpendicular to B, rotates around B with an angular velocity
ω = −qB/m. The trajectory is a helix with its axis: parallel to the z axis:
the motion along z is uniform and the motion in the xy plane is circular.

c. We have Âx = −Bŷ/2, Ây = Bx̂/2, Âz = 0. Therefore

[p̂x, Âx] = [p̂y, Ây] = [p̂z, Âz] = 0 ⇒ p̂ · Â = Â · p̂ .

The commutation relations between the components of û are

[ûx, ûy] = [p̂x − qÂx, p̂y − qÂy] = −q[p̂x, Ây] − q[Âx, p̂y] = ih̄qB

and [ûx, ûz] = [ûy, ûz] = 0.
d. We have [B̂, Ĉ2] = [B̂, Ĉ]Ĉ + Ĉ[B̂, Ĉ]. Therefore

[r̂, Ĥ] =
ih̄
m

(p̂ − qÂ) =
ih̄
m

û ,

and, by applying the Ehrenfest theorem,

d
dt

〈r〉 =
1
ih̄
〈ψ|[r̂, Ĥ]|ψ〉 =

〈u〉
m

.

On the other hand, we calculate the following commutators:

[ûx, Ĥ] =
1

2m
[ûx, û2

y] = ih̄
qB

m
ûy ,

[ûy, Ĥ] =
1

2m
[ûy, û2

x] = −ih̄
qB

m
ûx ,
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and [ûz, Ĥ] = 0. In other words,

[û, Ĥ] = i
h̄q

m
û × B ⇒ d

dt
〈u〉 =

q

m
〈u〉 × B .

Altogether, we obtain

d2

dt2
〈r〉 =

q

m

d
dt

〈r〉 × B ,

which is identical to the classical equations of motion. Note that we
recover the classical equations of motion identically, not approximately,
because the Hamiltonian is a second-degree polynomial in the dynamical
variables.

e. If we set v̂ = û/m, the observable v̂ corresponds to the velocity operator.
In terms of that observable, the Hamiltonian can be written as Ĥ =
mv̂2/2, which is the indeed the kinetic energy. Therefore, in a magnetic
field, the linear momentum mv̂ does not coincide with the conjugate
momentum p̂. These quantities are related by mv̂ = p̂ − qÂ, which
corresponds to the classical relation (15.28).

f. The commutation relations between the components of û show that in
the presence of a magnetic field, the various components of the veloc-
ity cannot be defined simultaneously. One can define simultaneously the
longitudinal component and one of the transverse components. The two
transverse components satisfy the uncertainty relation

∆vx ∆vy ≥ h̄

2
|qB|
m2

.

15.2. Landau levels.

a. The eigenvalue equation for the energy reads

−h̄2

2m

(
∂2

∂x2
+
(

∂

∂y
− i

qB

h̄
x

)2

+
∂2

∂z2

)
Ψ(x, y, z) = Etot Ψ(x, y, z) .

b. This eigenvalue equation is separable and one can check immediately that
the functions Ψ(x, y, z) = eikzz ψ(x, y), where ψ(x, y) satisfies (15.36)
with E = Etot − h̄2k2

z/2m, are eigenfunctions of the energy. As in the
classical case, the motion along z is linear and uniform.

c. (i) The substitution ψ(x, y) = eikyy χ(x) leads to the following equation
for χ(x):

− h̄2

2m

d2χ

dx2
+

1
2
mω2

c (x − xc)
2
χ = Eχ ,

where we have set xc = h̄ky/(qB). This is the Schrödinger equa-
tion for a one-dimensional harmonic oscillator of frequency ωc/2π,
centered at xc.



488 Solutions to the Exercises

(ii) The energy eigenvalues are E = (n + 1/2) h̄ωc, where n is a nonneg-
ative integer. These eigenvalues do not depend on ky.

d. (i) The periodic boundary conditions for the y axis imply eikyY = 1, i. e.
ky = 2πj/Y , where j is an integer, which can a priori be positive or
negative.

(ii) In order for us to have a wave function localized in the desired rec-
tangle, the center of the oscillator corresponding to the motion along
the x axis has to be between 0 and X:

0 < xc < X ⇒ 0 < j < jmax =
qBXY

2πh̄
.

Since the extension of the wave function along x is of the order of
a few times a0 for the first Landau levels, the hypothesis a0 � X
implies that the particle is indeed localized, with a probability close
to 1, in the rectangle X × Y .

(iii) The number of independent states corresponding to a given Lan-
dau level is jmax = Φ/Φ0, where we have set Φ = BXY and
Φ0 = 2πh̄/q. This is the degeneracy of the level. The functions
ψn(x, y) = eikyyχn(x) constitute a basis for this level. Another pos-
sible basis is obtained by exchanging the roles of x and y, using the
gauge A(r) = −By ux. A third possible gauge choice is the symmet-
ric gauge, studied in the next exercise, which leads to a third possible
basis for each of the Landau levels (for simplicity, the next exercise
is actually restricted to the lowest Landau level).

15.3. The lowest Landau level (LLL).

a. For the gauge chosen in the exercise, the eigenvalue equation for the
motion in the xy plane is[−h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
− ωc

2
L̂z +

1
8
mω2

c

(
x2 + y2

)]
Ψ(x, y)

= E Ψ(x, y) .

b. We introduce the polar coordinates ρ, θ in the xy plane. The functions
ψ�(x, y) = (x + iy)�e−(x2+y2)/(2 a2

0) = ρ�ei�θe−ρ2/(2a2
0) are eigenstates of

L̂z = −ih̄ ∂/∂θ, with eigenvalue �h̄. Inserting this result into the above
eigenvalue equation, we reach the desired result, after a relatively long
but straightforward calculation.

c. The state ψ�(x, y) is relevant if this wave function is essentially local-
ized inside the disk of radius R. The probability density |ψ�(x, y)|2 ∝
ρ2�e−ρ2/a2

0 has a maximum located at a distance �1/2 a0 from the origin,
with a width �1/4a0 (for � � 1). Therefore the quantum numbers � must
be between 0 and �max = R2/a2

0, which can also be written �max = Φ/Φ0,
where Φ0 = 2πh̄/q and Φ = πR2B represents the field flux across the ac-
cessible surface. We indeed recover the degeneracy found in the previous
exercise.
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15.4. The Aharonov–Bohm effect.

a. We denote the distances OBC and OB′C by D and D′, respectively. If
the vector potential is zero, the classical action corresponds to a uniform
motion at velocity D/∆t (or D′/∆t) between O and B (or B′) and then
between B (or B′) and C:

S0 =
mD2

2 ∆t
, S′

0 =
mD′2

2 ∆t
,

where ∆t = t2− t1. For a point C located at a distance x from the center
of the screen O′, we find D2 −D′2 � 2D0ax/L, where D0 represents the
distance OBO′ = OB′O′, a is the distance between the holes and L is the
distance between the plane pierced by the two holes and the detection
screen (we assume x � L). The quantity D0/∆t represents the average
velocity v of the particles, and we set λ = h/(mv). We find

|A(C)|2 ∝
∣∣∣eiS0/h̄ + eiS′

0/h̄
∣∣∣2 ∝ 1 + cos [(S0 − S′

0)/h̄]

= 1 + cos(2πx/xs) ,

which corresponds to the usual signal found in a Young double slit ex-
periment, with a fringe spacing xs = λL/a.

b. When a current flows in the solenoid, the vector potential is not zero
anymore, and the classical action is changed because of the term qṙ ·A(r)
in the Lagrangian (15.27). The classical trajectories are not modified,
since no force acts on the particle. We have thus

S = S0 +
∫

OBC

q ṙ · A(r) dt , S′ = S′
0 +
∫

OB′C
q ṙ · A(r) dt ,

and the intensity at C is

|A(C)|2 ∝ 1 + cos [(S0 − S′
0)/h̄ + ϕ] ,

where the phase ϕ reads

ϕ =
q

h̄

(∫
OBC

ṙ · A(r) dt −
∫

OB′C
ṙ · A(r) dt

)

=
q

h̄

(∫
OBC

A(r) · dr −
∫

OB′C
A(r) · dr

)
=

q

h̄

∮
A(r) · dr .

The last integral is calculated along the closed contour OBCB′O. Its
value does not depend on the position of C. This integral is equal to the
flux of the magnetic field inside the contour, i. e. Φ = πr2B. Therefore the
current induces a global shift of the interference pattern, corresponding
to a phase change ϕ = 2πΦ/Φ0.
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Chapter 16

16.1. Identical particles incident on a beam splitter.

a. The final wave packet must be normalized: |α|2 + |β|2 = 1. In addition
the two final states [φ3(r) + φ4(r)] /

√
2 and αφ3(r) + βφ4(r) must be

orthogonal since the two initial states φ1(r) and φ2(r) are orthogonal.
This implies that α + β = 0. We shall take α = −β = 1/

√
2 in the

following.
b. The initial state for two fermions reads

|Ψ(ti)〉 =
1√
2

(|1 : φ1 ; 2 : φ2〉 − |1 : φ2 ; 2 : φ1〉) .

We neglect the interaction between the fermions when they pass through
the beam splitter. The final state is then obtained by linearity:

|Ψ(tf)〉 =
1

2
√

2
(|1 : φ3〉 + |1 : φ4〉) ⊗ (|2 : φ3〉 − |2 : φ4〉)

− 1
2
√

2
(|1 : φ3〉 − |1 : φ4〉) ⊗ (|2 : φ3〉 + |2 : φ4〉) .

This state can also be written

|Ψ(tf)〉 =
1√
2

(|1 : φ4 ; 2 : φ3〉 − |1 : φ3 ; 2 : φ4〉) .

The two fermions never come out on the same side of the beam splitter,
this is a direct consequence of the exclusion principle.

c. The initial state for two bosons is

|Ψ(ti)〉 =
1√
2

(|1 : φ1 ; 2 : φ2〉 + |1 : φ2 ; 2 : φ1〉) ,

and hence the final state is

|Ψ(tf)〉 =
1

2
√

2
(|1 : φ3〉 + |1 : φ4〉) ⊗ (|2 : φ3〉 − |2 : φ4〉)

+
1

2
√

2
(|1 : φ3〉 − |1 : φ4〉) ⊗ (|2 : φ3〉 + |2 : φ4〉)

=
1√
2

(|1 : φ3 ; 2 : φ3〉 − |1 : φ4 ; 2 : φ4〉) .

The two bosons are always detected on the same side of the beam split-
ter. This surprising conclusion results from the destructive interference
between the two quantum paths{

φ1 → φ3

φ2 → φ4
and

{
φ1 → φ4

φ2 → φ3
,

which would both lead to the final state (|1 : φ3 ; 2 : φ4〉 + |1 : φ4 ; 2 :
φ3〉)/

√
2, corresponding to one boson in each output port.
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16.2. Bose–Einstein condensation in a harmonic trap.

a. The population of each energy level must be positive, in particular that
of the ground state, of energy E0. This implies µ < E0 = (3/2) h̄ω.

b. The number of particles not in the ground state is

N ′ =
∞∑

n=1

gn

e(En−µ)/kBT − 1
.

Since µ is smaller than E0, we obtain

N ′ <

∞∑
n=1

gn

e(En−E0)/kBT − 1
= F (ξ) .

c. For ξ � 1, we can replace the sum defining F (ξ) by an integral, and we
find

F (ξ) =
1

2ξ3

∫ ∞

0

(x + ξ)(x + 2ξ)
eξ − 1

dx .

To lowest order in ξ, we can replace the numerator by x2. In addition,
using:

1
eξ − 1

=
e−ξ

1 − e−ξ
= e−ξ

∞∑
n=0

e−nξ

and
∫∞
0

x2e−nx dx = 2n−3, we reach the desired result for N ′
max.

d. At a given temperature, for a small number N of particles, the distribu-
tion of the bosons in the various energy levels is close to the Boltzmann
distribution. When N increases and becomes of the order of N ′

max, the
distribution becomes quite different from Boltzmann’s law. When N be-
comes larger than N ′

max, the population of the excited states (n > 0)
saturates at its maximal value N ′

max, and the N −N ′
max remaining atoms

accumulate in the ground state n = 0. This is the Bose–Einstein con-
densation phenomenon. For the values given in the text of the exercise,
Bose–Einstein condensation occurs for T � 0.45 µK.

16.3. Fermions in a square well.

a. The energy levels for the one-body Hamiltonian are En = n2E1, where
E1 = π2h̄2/(2mL2). The four lowest levels correspond to
• the state |1+, 1−〉, of energy 2E1;
• the four states |1±, 2±〉, of energy 5E1;
• the state |2+, 2−〉, of energy 8E1;
• the four states |1±, 3±〉, of energy 10E1.
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b. We must diagonalize the restriction of the potential to each of the eigen-
subspaces found above. For the nondegenerate subspaces, we just need
to calculate the matrix element V1 = 〈α+, α−|V̂ |α+, α−〉, which gives,
after simple algebra, V1 = 3g/(2L). Each level |α+, α−〉 is displaced by
this amount.

The case of the eigensubspaces Eα,β , spanned by the four vectors
|α±, β±〉 with α �= β, is more subtle. The problem can be simplified by
noticing that V̂ does not affect the spin variables. The diagonalization of
V̂ inside Eα,β then amounts to three distinct eigenvalue problems:

• The dimension-1 subspace corresponding to |α+, β+〉 is not coupled
to the other vectors of Eα,β . A simple calculation yields

〈α+, β+|V̂ |α+, β+〉 = 0 .

This energy level is not displaced by V̂ .
• The same conclusion is reached for |α−, β−〉.
• The restriction of V̂ to the two dimensional subspace spanned by
|α+, β−〉 and |α−, β+〉 reads:

g

L

(
1 −1
−1 1

)
,

whose eigenvalues are 2g/L and 0.
To summarize, an energy level corresponding to a four-dimensional eigen-
subspace is split into two sublevels: one sublevel is threefold degenerate
and is not shifted by V̂ , and the other level is not degenerate and its shift
is 2g/L.

16.4. Heisenberg–Pauli inequality (continuation).

a. Let k be the quantum number of the Fermi level. We have

N =
k∑

n=1

(2s + 1)n2 , E0 = −
k∑

n=1

(2s + 1)n2 EI

n2
,

i. e., replacing the sum over n by an integral (for large N),

N � (2s + 1)
k3

3
, E0 � −(2s + 1)EIk .

b. One can eliminate k in these two equations to obtain the desired relation
between N and E0.

c. For any state |Ψ〉, we have E0 ≤ 〈Ψ|Ĥ|Ψ〉. This inequality leads to a
trinomial with respect to the variable e2, which must always be positive.
The discriminant of the trinomial has to be negative, which leads to the
desired result.
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Chapter 17

17.1. Excitation of an atom with broadband light.

a. The state vector of an atom reads, at time t, α(t)|a〉+β(t)e−iω0t |b〉. The
evolutions of α and β are given by

α̇ = −iΩ1 f(t) cos(ωt) e−iω0t β(t) � −i
Ω1

2
f(t) eiδt β(t) ,

β̇ = −iΩ1 f(t) cos(ωt) eiω0t α(t) � −i
Ω1

2
f(t) e−iδt α(t) ,

where we have neglected the nonresonant terms and have defined δ =
ω−ω0. The initial conditions are α(0) = 1, β(0) = 0. The solution of the
second equation is, to lowest order in Ω1,

β(τ) = −i
Ω1

2

∫ τ

−τ

f(t) e−iδt dt .

The bounds of the integral can be extended to ±∞ since f(t) is zero
outside the interval [−τ, τ ]. This gives

nb = n|β(τ)|2 = n
π

2
Ω2

1 |g(−δ)|2 .

b. We generalize the preceding calculation and obtain

nb = n
π

2
Ω2

1 |g(−δ)|2
∣∣∣∣∣

�∑
p=1

eiω0tp

∣∣∣∣∣
2

.

c. We calculate the statistical average of
∣∣∣∑�

p=1 eiω0tp

∣∣∣2 as follows. First,

∣∣∣∣∣
�∑

p=1

eiω0tp

∣∣∣∣∣
2

=
�∑

p=1

�∑
p′=1

eiω0(tp−t′p) .

Since the various times tp are uncorrelated, the statistical average of
eiω0(tp−t′p) is zero unless p = p′, in which case this term is equal to 1.
Therefore there are � ∼ γT nonzero terms in this sum, and we obtain

n̄b(T ) = n
π

2
Ω2

1 |g(−δ)|2 γT .

The average number of atoms in state b increases linearly with time and
we can define a transition rate from a to b,

Γa→b =
π

2
Ω2

1 |g(−δ)|2 γ .
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d. The energy contained in a wave packet is (ε0c/2)E2
0

∫
f2(t) dt, and the

mean energy flux reads

Φ =
ε0c

2
E2

0γ

∫
f2(t) dt =

ε0c

2
E2

0γ

∫
|g(Ω)|2 dΩ =

∫
w(ω + Ω) dΩ ,

where we have used the Parseval–Plancherel equality. The function w(ω)
is the spectral density of the energy. This function is related to Γa→b by

Γa→b =
πd2

h̄2ε0c3
w(ω0) .

e. The preceding reasoning can be transposed to the case where the atoms
are initially in the state b. In this way we can define a transition rate
from b to a, and obtain Γb→a = Γa→b.

f. For this incoherent excitation, the evolution of the atom numbers na and
nb is obtained by simply adding the two transition rates that we have just
found (this can be proven rigorously using the density operator formalism
in Appendix Appendix D):

ṅa = −Γa→bna + Γb→anb , ṅb = Γa→bna − Γb→anb .

The steady state is simply na = nb = n/2, since Γb→a = Γa→b.

17.2. Atoms in equilibrium with black-body radiation. Within the
framework of the previous exercise, we predict that the atom numbers
na and nb are equal. In contrast, statistical physics requires the result
nb/na = exp(−h̄ω0/kBT ). Indeed, we know that a system (here the atomic
assembly) in contact with a heat reservoir at temperature T (the black-body
radiation) must reach a thermodynamic equilibrium characterized by the
same temperature T .

Einstein’s hypothesis consists of adding a second decay process from level
b to level a, which creates an asymmetry between the populations of these
levels. Suppose that this second process is characterized by the rate Γ′

b→a.
The evolutions of the atom numbers na and nb are now

ṅa = −Γa→bna + (Γb→a + Γ′
b→a)nb ,

ṅb = Γa→bna − (Γb→a + Γ′
b→a)nb ,

and the equilibrium state is

nb

na
=

Γa→b

Γb→a + Γ′
b→a

, where Γa→b = Γb→a .

Let us impose the value exp(−h̄ω0/kBT ) on this ratio. This leads to the value
of the rate Γ′

b→a:

Γ′
b→a = Γb→a

(
eh̄ω0/kBT − 1

)
.
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We have obtained in the previous exercise the relation between Γb→a and the
spectral density of the energy w(ω). In the case of black body radiation, this
relation implies that

Γ′
b→a =

πd2

h̄2ε0c3
w(ω0)

(
eh̄ω0/kBT − 1

)
= µ

πd2

h̄2ε0c3
.

We find that the rate Γ′
b→a is independent of temperature, and hence of the

state of the electromagnetic field. This rate corresponds to the spontaneous
emission process described qualitatively in Sect. 17.3. Einstein’s reasoning
gives an account of two important characteristics of the spontaneous emission
rate. This rate is proportional to the square of the average dipole moment d
of the transition, and it varies as the cube of the Bohr frequency ω0 of the
transition (see (17.24)).

17.3. Ramsey fringes. The state vector of the neutron is γ+(t) e−iω0t/2 |+〉+
γ−(t) eiω0t/2 |−〉. Inside the cavities, the evolutions of the coefficients γ± are
given by

iγ̇+ =
ω1

2
ei(ω0−ω)t γ−(t) , iγ̇− =

ω1

2
ei(ω−ω0)t γ+(t) .

At the entrance of the first cavity, we have γ+(0) = 1 and γ−(0) = 0. At the
exit of the first cavity (t1 = L/v), γ−(t1) is given by

γ−(t1) =
ω1

2(ω − ω0)

(
1 − ei(ω−ω0)t1

)
,

where we restrict ourselves to the first-order term in B1. The coefficient γ−
does not evolve anymore until the neutron enters the second cavity at time
T = D/v. The evolution equation of γ− during the crossing of the second
cavity can be integrated similarly, and we finally obtain:

γ−(T + t1) =
ω1

2(ω − ω0)

(
1 − ei(ω−ω0)t1

)(
1 + ei(ω−ω0)T

)
,

and hence the spin flip probability is

P+→− =
ω2

1

(ω − ω0)2
sin2[(ω − ω0)t1/2] cos2[(ω − ω0)T/2] .

When one varies ω around the resonance frequency ω0, one obtains a res-
onance with a width ∼ π/T . This is much narrower than the width that
one would obtain with a single cavity (∼ π/t1). This setup, which allows
one to accurately measure the resonance frequency ω0, is currently used in
metrology and high-resolution spectroscopy.
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17.4. Damping of a quantum oscillator.

a. We obtain

dâ

dt
= −iωâ −

∑
λ

igλ

h̄
b̂λ ,

db̂λ

dt
= −iωλb̂λ − igλ

h̄
â .

b. The equation for b̂λ can be integrated into

b̂λ(t) = b̂λ(0) e−iωλt − igλ

h̄

∫ t

0

e−iωλ(t−t′) âλ(t′) dt′ .

We insert this result in the equation of evolution for â and obtain

dâ

dt
= −iωâ − e−iωt

∫ t

0

N (t′′) eiω(t−t′′) â(t − t′′) dt′′ + F̂ (t) ,

where F̂ (t) = −i
∑

λ gλb̂λ(0) e−iωλt.
c. If the bath of oscillators is initially in its ground state, the term F (t)

plays the role of a “fluctuating force” whose average value is zero, like
the Langevin force in the theory of Brownian motion. Using the fact that
the times t′′ which contribute significantly to this integral are close to 0
and that the quantity 〈eiω(t−t′′) â(t − t′′)〉 does not evolve much on this
timescale, we obtain the following approximate evolution equations for
〈â〉 and 〈â†〉:

d〈â〉
dt

= −
(

i(ω + δω) +
1
2τ

)
〈â〉 ,

d〈â†〉
dt

=
(

i(ω + δω) − 1
2τ

)
〈â†〉 ,

where we set, as in (17.41),∫ ∞

0

N (t′′) dt′′ = iδω +
1
2τ

.

This shows that the average position of the oscillator is damped in a time
of the order of τ , whatever its initial state is.

This model, and its generalization to nonharmonic systems, is frequently used
for the study of dissipation in quantum mechanics (see, e. g., R.P. Feynman
and F.L. Vernon, Ann. Phys. 24, 118 (1963); A.O. Caldeira and A.J. Leggett,
Ann. Phys. 149, 374 (1983)).
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Chapter 18

18.1. Scattering length for a hard-sphere potential.

a. We solve (18.53) for a square barrier. The boundary condition is u(0) = 0,
and the solution between 0 and b reads u(r) = C ′ sinh(Kr) where K =√

2mV0/h̄. For r > b, we look for a solution varying as u(r) = C (r− as),
as indicated in Sect. 18.5.2. The continuity of u and u′ at r = b implies

as = b − tanhKb

K
.

The scattering length is always positive and smaller than b. If V0 is small,
more precisely if Kb � 1, we have tanh(Kb) � Kb − (Kb)3/3, and the
scattering length is given by as = K2b3/3. This result coincides with the
result derived in the Born approximation (18.52):

Kb � 1 ⇒ as =
m

2πh̄2

4π

3
V0b

3 =
K2b3

3
.

b. The scattering length is an increasing function of V0. When V0 tends to
infinity, as tends to b. In the limiting case of a hard-sphere potential, the
scattering length is equal to the radius of the sphere. The collision cross
section is then 4πb2.

c. If we let V0 tend to +∞ and b tend to 0 while keeping a constant product
V0b

3, we necessarily leave the range of validity of the Born approximation
since Kb tends to infinity. We have to use the exact result, which gives
as → 0: there is no scattering for a δ(r) potential, contrary to what the
Born approximation suggests.

18.2. Scattering length for a square well.

a. The mathematical formalism presented in the previous exercise remains
valid, even though the conclusions are very different. We find

as = b − tanKb

K
,

where K =
√

2m |V0|/h̄. The scattering length exhibits a series of res-
onances for Kb = π/2 + nπ (n integer), where it becomes infinite.
Each of these resonances corresponds to the appearance of a new bound
state in the potential well. This can be checked using the argument of
Sect. 4.3.2, and restricting consideration to the eigenstates such that
ψ(0) = 0 (corresponding to the boundary condition u(0) = 0). These
peaks in the variation of as and of the total cross section σ = 4πa2

s are
zero-energy bound states (they are also called zero-energy resonances).
Such states have wave functions which extend to infinity (the limit of
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e−κr when κ =
√

2m|E|/h̄ → 0). In other words, although the range of
the potential is finite, its depth can be such that, owing to constructive
interference, its effect remains important even at very large distances.
The corresponding scattering length is anomalously large and negative if
Kb = π/2−ε (modulo π), and large and positive if Kb = π/2+ε (modulo
π).

These zero-energy bound states or resonances also appear for poten-
tials other than the square well considered here.2 When one studies the
variation of as as a function of a parameter defining the potential (depth,
size, etc.), these resonances always occur at values of the parameter cor-
responding to the appearance of a new bound state in the potential well
(Levinson’s theorem3).

b. For small values of V0 (Kb � 1), we recover the result of the Born
approximation:

Kb � 1 ⇒ as =
m

2πh̄2

4π

3
V0b

3 = −K2b3

3
(as < 0) .

For a purely attractive potential treated in the Born approximation, the
scattering length is negative. This is not true anymore outside the range
of validity of the Born approximation (for Kb = π, the exact result is
as = b > 0). Notice that the validity criterion for the Born approximation
(Kb � 1) requires that no bound state exists in the potential well.

18.3. The pseudopotential.

a. We calculate the action of Ĥ = p̂2/2m + V̂ on the wave function ψ(r).
For a plane wave eik·r, the calculation is very simple and yields

Ĥeik·r =
h̄2k2

2m
eik·r + gδ(r) ,

where we have used the fact that δ(r)f(r) = δ(r)f(0) if f(r) is a regular
function of r. The action of Ĥ on the spherical wave eikr/r is more subtle
since the expression (10.22) for the Laplacian operator is only valid for
regular functions and cannot be applied in this case. To progress further,
we write

eikr

r
=

1
r

+
eikr − 1

r
.

We know that ∆(1/r) = −4πδ(r) (see (B.14) in Appendix B). The func-
tion (eikr −1)/r is regular at r = 0 and we can use (10.22). The action of

2 Such a zero-energy resonance occurs, for instance, in collisions of ultracold cesium
atoms (M. Arndt et al., Phys. Rev. Lett. 79, 625 (1997)).

3 N. Levinson, Danske Videnskab. Selskab. Mat.-Fys. Medd. 25, 9 (1949).
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L̂2 is simple in this case since we are dealing with an isotropic function,
corresponding to zero angular momentum. We thus obtain

Ĥψ(r) =
h̄2k2

2m
ψ(r) + δ(r)

1
1 + ika

(
g − 2πh̄2a

m

)
.

It is then straightforward to see that, if we set a = mg/(2πh̄2), the
states (18.50) are eigenstates of Hamiltonian with eigenvalue h̄2k2/(2m).
Consequently, for each wave vector k, we have found a scattering state
ψk(r).

b. The limit k → 0 is simple and yields as = a = mg/(2πh̄2).
c. The scattering is always isotropic since the scattering amplitude f(k) =

−a/(1 + ika) does not depend on the angles θ and ϕ.
d. The total cross section is σ = 4πa2/(1 + k2a2). It tends to 4πa2 at low

energy (ka � 1) and varies as 4π/k2 at high energy.

Appendix A

A.1. Distribution of impacts. Going to polar coordinates gives

f(ρ) =
1
σ2

ρ e−ρ2/2σ2
(ρ ≥ 0) .

One can check that
∫ +∞
0

f(ρ) dρ = 1.

A.2. Is is a fair game? The probability that 6 does not appear is (5/6)3;
that it appears once, 3×(5/6)2×(1/6); that it appears twice, 3×(5/6)×(1/6)2;
and it appears three times, (1/6)3. The respective gains are −1, 1, 2, 5. The
expectation value of the gain is therefore

1
63

(−53 + 3 × 52 + 2 × 3 × 5 + 5
)

= − 15
216

.

Don’t play! In order for the game to be fair, the third gain would need to be
20 euros!

A.3. Spatial distribution of the molecules in a gas. We start with
the simple alternative: either a molecule is inside v (p = v/V ) or it is not
(q = 1 − v/V ). The probability of finding k molecules in v is therefore

PN(k) =
(

N
k

)( v

V

)k (
1 − v

V

)N−k

.

The expectation value is 〈k〉 = Np = Nv/V , and the dispersion is σ =√
Npq ∼ √Nv/V =

√〈k〉. In our numerical example 〈k〉 ∼ 3 × 1016, and
therefore σ ∼ 1.7×108. The relative dispersion σ/〈k〉 is very small (∼ 10−8).
The probability of finding a number of molecules outside the interval 〈k〉±2σ
is 5% (Gaussian law).
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Appendix B

B.1. Laplacian operator in three dimensions. We notice that for r �= 0,
∆(1/r) = 0. Using integration by parts, we find, for any ϕ in S,∫

∆
(

1
r

)
ϕ(r) d3r = −

∫
∇
(

1
r

)
· ∇ϕ(r) r2 dr d2Ω

= +
∫

d2Ω
∫ ∞

0

1
r2

(
∂

∂r
ϕ(r)

)
r2 dr

= −
∫

d2Ω ϕ(0) = −4π ϕ(0) ,

which demonstrates the very useful identity ∆(1/r) = −4πδ(r).

B.2. Fourier transform and complex conjugation. The Fourier trans-
form of f∗(k) is g∗(−x). If f(k) is real, then g∗(−x) = g(x). If f(k) is even,
then g(x) is also even. We can then conclude:

f(k) real and even ←→ g(x) real and even.

Appendix D

D.1. Trace of ρ̂2. The eigenvalues of ρ̂2 are the Π2
i and we have

Tr ρ̂2 =
∑

i

Π2
i ≤

(∑
i

Πi

)2

= 1 .

This inequality turns into an equality if and only if all the eigenvalues Πi are
equal to 0 but one, which is equal to 1. In this case the system is in a pure
state.

D.2. Evolution of a pure state. We have

d
dt

Tr ρ̂2 = Tr
(

ρ̂
dρ̂

dt
+

dρ̂

dt
ρ̂

)
=

1
ih̄

Tr
(
ρ̂ [Ĥ, ρ̂] + [Ĥ, ρ̂] ρ̂

)
= 0 ,

where we have used the invariance of the trace in a circular permutation. A
system which is initially in a pure state (Tr(ρ̂2) = 1) will thus remain in a
pure state in a Hamiltonian evolution.

D.3. Inequalities related to ρ. We set 〈φ|ρ̂|ψ〉 = 〈ψ|ρ̂|φ〉∗ = α eiβ with
α positive, and we introduce the vector |χθ〉 = cos θ |ψ〉 + eiβ sin θ |φ〉. The
probability of finding the system in the state |χθ〉 is P (θ)=Tr(ρ̂ |χθ〉〈χθ|),
which can also be written

P (θ) = 〈χθ|ρ̂|χθ〉 = cos2 θ
(
t2〈φ|ρ̂|φ〉 + 2tα + 〈ψ|ρ̂|ψ〉) ,

where we have set t = tan θ. This quantity must be positive for any θ, which
means that the discriminant of the trinomial in the variable t must be nega-
tive. This provides the desired inequality.
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D.4. Density operator of a spin-1/2 system. The density operator of a
spin-1/2 system is a 2×2 Hermitian matrix, which can be written as a linear
combination of the three Pauli matrices and the identity operator, with real
coefficients. We can thus set ρ̂ =

(
a01̂ + a · σ̂) /2, where the ai’s (i = x, y, z)

and a0 are real.
We now have to express the fact that the eigenvalues of ρ̂ are two positive

numbers whose sum is 1. This can be expressed simply in terms of the trace
and of the determinant of ρ̂. We have Tr(ρ̂) = a0 = 1 and

det(ρ̂) =
1
4

[(a0 + az) (a0 − az) − (ax + iay) (ax − iay)]

=
1
4
(
a2
0 − a2

) ≥ 0 ,

i. e. a2 ≤ 1. The expectation value of the spin operator is

〈S〉 = Tr
(
ρ̂ Ŝ
)

=
h̄

4
Tr
(
(1̂ + a · σ̂) σ̂

)
=

h̄

2
a .

The spin is completely polarized if a2 = 1. In this case the spin is in a pure
state corresponding to the eigenstate of a · Ŝ associated with the eigenvalue
+h̄/2. The opposite case a = 0 corresponds to an unpolarized spin.
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constant of motion 140, 297
constant perturbation 334
contact interaction 262
contact potential 329
continuous basis 430
continuous spectrum 102
continuum of final states 343, 363
convolution product 422
Cooper L. 405
Copernicus 296
Cornell E. 405
correspondence principle 44, 167,

300
Coulomb interaction 215
Coulomb scattering 360, 365
creation operator 148, 230
Cronin J.W. 405
cross section 358
– Rutherford 360, 365
– total 359, 361
cryptography 282
crystal 10
crystal (quasi) 14
CSCO 142
current
– probability 50

d’Alembert 293, 296
Darwin C.G. 403
Darwin term 260
Davisson and Germer 5, 10, 12
Davisson C. 404
de Broglie
– wave 21
– wavelength 2, 382
de Broglie L. 2, 5, 20, 301, 403
Debye–Scherrer diffraction 13
decay 343
decoherence 110, 290
degenerate (eigenvalue) 97
density of states 77, 344, 363
– photon 345
density operator 435
– reduced 444
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Descartes R. 296
destruction operator 148, 230
deuterium 269
diamagnetic term 305
differential cross section 358
diffraction
– electrons 12
– neutrons 14
dipole force 342
dipole moment 124
dipole potential 342
Dirac
– equation 260
– function 417, 431
– notations 90
Dirac P. 3, 90, 135, 293, 300, 314, 403,

405
dispersion 43
– relation 28
distribution
– Wigner 442
distribution theory 420
Doppler effect 341
double well 78
dye molecule 133, 460

effect
– Doppler 341
– photoelectric 398
– Ramsauer 60, 452
– recoil 341
– Stark 404
– Zeeman (anomalous) 237, 260
Ehrenfest
– theorem 138, 172, 174, 203, 298,

300
Ehrenfest P. 161, 232, 400
eigenfunction 45
eigenvalue 45, 94, 99, 101, 431
eigenvector 94, 431
Einstein A. 1, 161, 274, 336, 352–354,

398, 400
electric dipole approximation 336
electric dipole moment 124
electric dipole transition 213, 266
– selection rule 339
electric field 124
electrical conduction 147
electro-weak interactions 227
electromagnetic
– interaction 381
– radiation 70
– transition 336

electron XVII
electron
– classical radius 232
– diffraction 12
– gas 320
– interferences 12
– magnetic moment 238
– spin 232
electronic configuration 325
electrostatic interaction 386
emission 398, 405
– spontaneous 336, 339
– stimulated (or induced) 322, 336
energy 44, 297
– band 147
– conservation 351
– eigenstate 103
– Fermi 319
– level 50, 64
– magnetic 170
– quantum 398
– width of a level 349
– zero point 68
entangled state 273
EPR paradox 274
equation
– canonical 298
– Klein–Gordon 32, 37, 404
– Lagrange 295
– Schrödinger 31, 58, 103, 438
equilibrium
– thermodynamic 328, 354, 441,

494
error function 413
Euler 293, 296
even function 68, 73
evolution 50
evolution operator 111, 458
exchange force 318
exchange operator 312
exclusion principle 315
expectation value 20, 42, 93, 102

Fermat 294, 296
Fermi
– energy 319
– golden rule 345
– hyperfine structure 264
Fermi E. 314
fermion 314
ferromagnetism 318
Feynman
– path integrals 308
Feynman R. 405
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fine structure
– constant XVII, 215, 261, 347, 381
– monovalent atom 258
first order perturbation theory 179
Fitch V. 405
flux 52, 358, 363
flux quantum 308
forbidden band 147
force
– dipole 342
– exchange 318
– Lorentz 301
– radiation pressure 341
form factor 367
Fourier transformation 24, 422, 432
Fowler R. 403
Franck and Hertz 3, 400
Fry E. 281
function
– Dirac 417
– Heaviside 421

Galileo 296
Gamow G. 405
gap 147
gauge invariance 303
Gaussian law (probability) 411
Gaussian wave packet 38
Geiger H. 399
geometric law (probability) 412
Germer L.H. 404
Glauber R. 152, 462
Goudsmit S. 232, 401
Grassmann 300
gravitational
– catastrophe 392
– interaction 381, 386
Green function 374
ground state 73, 153, 183
group velocity 26
Gurney R. 405
gyromagnetic ratio 159, 237

Hall effect (quantum) 307
Hamilton 293, 300
Hamilton–Jacobi 298
Hamiltonian 44, 103, 298
hard sphere (scattering) 360, 378, 497
hardness of a solid 385
harmonic oscillator 66, 148
– coupling to a bath 355, 496
– quasi-classical state 153, 464
– three dimensional 87, 228, 454, 475

– two dimensional 142, 145
harmonic potential 66, 443
Hartree method 325
Heaviside function 421
height (of mountains) 390
Heisenberg
– inequality 28, 137, 186, 187, 472
– representation 111, 355, 401
Heisenberg W. 3, 135, 323, 401, 402
helium atom 208, 318
Hermite functions 67, 152
Hermitian operator 93
Hermitian scalar product 90
Hermitian space 91
hidden variable 278
Hilbert
– space 90, 101
Hilbert D. 3, 89, 404
Hilbertian basis 95
Huggins 220
hydrogen atom 88, 153, 215, 383
– spectrum 219
hydrogen maser 264
hydrogen-like atom 224
hyperfine structure 261

identical particles 309
impact parameter 359
incoherent field 353, 493
indeterminism 275
index of refraction (neutron) 377
induced emission 336
inequality (Heisenberg) 28, 186
integral equation
– scattering 374
interaction
– contact 262
– electromagnetic 381
– electrostatic 386
– gravitational 381, 386
– hyperfine 261
– spin-orbit 259
– van der Waals 385
interferences
– atoms 7
– electrons 12
– neutrons 14
– Young experiment 6
interstellar medium 266
intrinsic angular momentum 231
invariance
– gauge 303
– rotation 141, 145, 205, 211, 473
– translation 141, 210
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inversion (ammonia molecule) 82
issues 40

Jacobi identity 152
Jordan P. 135, 402
Josephson B. 405

Kapitza P. 405
Kastler A. 405
kets 90
Ketterle W. 405
Klein F. 301
Klein–Gordon equation 32, 37, 404
Kusch 405

Lagrange 180, 293, 294, 296
– equation 295
Lagrangian 294
Laguerre 216
Lamb shift 260, 349, 405
Landau L. 351, 396, 405
Landau level 306, 487
Langevin force 496
Laplace P. 180
Laplacian 197, 421, 498
Larmor precession 159, 172, 203, 239
laser 322
laser cooling of atoms 342, 353
least action principle 294
Lee T.D. 405
Leibniz 294, 311
LEP 226
Levinson theorem 498
Lie group 190, 218, 246
lifetime 343
– atomic level 340
light force 341
limit
– classical 443
line (21 cm) 261
linear momentum 302
Lippman–Schwinger equation 363
logical gate (quantum) 289
London F. 405
Lorentz 232
Lorentz force 301
Lorentzian line shape 349
low energy scattering 375
Lyman series 219

magnetic dipole transition 266
magnetic energy 170
magnetic moment 157, 201
– electron 238

– neutron 238
– proton 238
– spin 236
magnetic resonance 239
– nuclear 243
magneton
– Bohr 161, 202, 238
– nuclear 238
Malus law 118
many-world interpretation 109
Marsden E. 399
maser 123, 131
– hydrogen 264
mass
– Chandrasekhar 392
– neutron star 395
– reduced 209, 358
matrix
– density 435
– – reduced 444
– element 92
– – reduced 272
– mechanics 402
– Pauli 234
– representation 97
Maupertuis 294, 296
mean field approximation 325
mean square deviation 20, 412
measurement 40, 101, 107, 174
– repeated 176, 470
Mendeleev table 260, 324, 326
metal 320
micro-canonical ensemble 441
microscope
– tunnel effect 57
mixed representation 169
molecule 5, 69, 133, 384, 460, 479
– benzene 155
– rotation 200
momentum 43, 98
– conjugate 297, 302
– conservation 210
– linear 302
mountain height 390
muon 224
muonic atom 224

neutrino 224, 343, 396
neutron XVII, 377
– diffraction 14
– interferences 14
– magnetic moment 238
neutron star 394
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Newton I. 18, 294, 296
Nordheim L. 404
norm 91
– conservation 103
nuclear
– interaction 33
– magneton XVII, 238
nuclear magnetic resonance 243
nucleus 33, 371
– unstable 343, 347

observable 42, 58, 101
– energy 44
– momentum 43
– position 43
odd or even (function) 68, 73, 145
operator 58, 92
– annihilation (or destruction) 148,

230
– creation 148, 230
– density 435
– energy 44
– exchange 312
– infinite dimension 429
– Laplacian 197, 421, 498
– momentum 43
– parity 145
– position 43
– rotation 111, 156, 246, 457
– scalar 270
– trace of 436
– translation 111, 457
– unitary 146, 246
– vector 271
Oppenheimer 396
optical isomers 86
optical molasses 342
orbital angular momentum 196
oscillator 132
– anharmonic 182, 187
– harmonic 148

paradox (EPR) 274
paramagnetic term 305
parameter
– impact 359
parity operator 145
parity violation 227
Parseval–Plancherel (theorem) 424
partial trace 444
particle 18
– confined 382
– in a box 74

– spin-1/2 235
Paschen F. 397
Pauli
– Hamiltonian 305
– matrices 116, 165, 234
– principle 309
Pauli W. 3, 232, 261, 314, 401, 403
Peierls R. 351
Penning trap 70
Penzias and Wilson 131
periodic boundary conditions 75,

362
permutation 316
perturbation
– constant 334
– sinusoidal 335
– time dependent 332
– time independent 177
phase space 78, 442
Phillips W.D. 406
phonon 70
photoelectric effect 1, 338, 398
photon 1, 70, 322, 338, 398
– density of states 345
physical quantity 17, 42
physical system 17
Planck constant XVII
Planck M. 1, 69, 397
plane wave 20, 52, 362, 373
Podolsky B. (EPR paradox) 274
Poisson 180
Poisson bracket 299, 403
Poisson distribution 464
Poisson law (probability) 412
polarizability 126
polarization of a spin-1/2 447,

501
polarization of light 116
population inversion 128
position 43, 98
positron 405
positronium 262
potential
– anharmonic 182, 187, 471,

477
– barrier 52
– central 210
– centrifugal 212
– contact 329
– Coulomb 360
– delta function 88, 456
– dipole 342
– hard sphere 360, 378, 497
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– harmonic 66, 87, 148, 443
– linear 38, 451
– pseudo 379, 498
– range 366
– scalar 301, 337
– spatially periodic 146
– square 70, 379, 497
– step 54
– van der Waals 377
– vector 301, 306, 337
– Yukawa 365
precession (Larmor) 159, 203,

239
pressure (quantum) 382
principal quantum number

213
principle
– correspondence 44, 167, 300
– exclusion 315
– Pauli 309
– symmetrization 316
principles (quantum mechanics)

100, 440
probabilistic description 20
probabilities (notions on) 407
probability
– amplitude 10, 15
– current 50, 373
– density 408
– transition 362
projective representation 246
projector 96
proton XVII
– magnetic moment 238
Purcell E. 243, 405
pure state 436

quantization
– of a field 70
– principle 102
– rule 300
quantum
– number 398
– – principal 213
– – radial 212
– of action 1
quantum bit (or q-bit) 287
quantum computer 287
quantum correlations 273
quantum Hall effect 307
quantum of energy 398
quantum well 71

quark 226
quasi-classical state 153, 464
quasi-crystal 14
quaternions 300

Rabi
– experiment 242
– formula 130, 241
– oscillation 241
Rabi I. 226, 405
radial equation 211
radial quantum number 212
radial wave function 211
radiation 336
– black body 1, 69, 397
radiation pressure 341
radioactivity 343
radius
– Bohr XVII, 216
Ramsauer effect 60, 452
Ramsey fringes 354, 495
random variable 409
range of a potential 366
Rayleigh 397
recoil effect 341
recoil velocity 341
reduced density operator 444
reduced mass 209, 358
reduced matrix element 272
reduced wave function 211
reduction of the wave packet 46, 102,

107
reflection coefficient 56
refraction index (neutron) 377
relative motion 208, 357
relativistic effect 259, 264
representation
– Heisenberg 355
– mixed 169
resonance
– magnetic 239
restriction of an operator 180
Riemann (function) 329
rigid rotator 201
Ritz W. 398
Rohrer H. 405
Rosen N. (EPR paradox) 274
rotating field 240
rotation
– group 246
– invariance 141, 145, 211
– molecule 200
– operator 156, 246
rotation operator 111, 457
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ruby maser 131
Rutherford 220, 399
– cross section 360, 365
Rydberg 220, 398
Rydberg constant XVII

scalar operator 270
scalar potential 301, 337
scalar product 90
scattering 357
– amplitude 363, 373
– coherent 370
– Coulomb 360, 365
– cross section (Born approximation)

364
– hard sphere 360, 378, 497
– integral equation 374
– length 375
– low energy 375
– nucleus 371
– of a bound state 367, 368
– state 63, 372
Schrieffer J.R. 405
Schrödinger
– cat 108, 111
– equation 31, 58, 103, 438
Schrödinger E. 3, 17, 32, 404
Schwinger J. 405
screening 386
second order perturbation theory 181
secular equations 180
selection rule 213, 272, 339
self-adjoint operator 93
Shockley W. B. 405
singlet state 254, 276, 313, 326
sinusoidal perturbation 335
Slater determinant 317
Snell’s laws 296
SO(3) group 246
sodium
– spectrum 213
– yellow line 258
solid 384
– energy band 147
Sommerfeld A. 208, 400
space
– curved 296
spatially periodic potential 146
spectral decomposition 97
– principle 102
spectral theorem 95
spectroscopic notation 213
spectrum

– atom 398
– vibration 5, 69
spherical coordinates 197, 210
spherical harmonics 198
spin 204, 231, 400, 439
– observable 233
– spin-statistic connection 315
– total 252
spin-1/2 305
– polarization 447, 501
spin–orbit interaction 259
spinor 170, 246
spontaneous emission 130, 336, 339
– atom 346
– nucleus 347
square potential 70
square well 71
stability of matter 33
star
– neutron 394
– white dwarf 392
Stark effect 404
state 17
– antisymmetric 317
– asymptotic 361
– bound 63
– coherent (or quasi-classical) 153,

464
– entangled 273
– scattering 63, 372
– singlet 254, 276, 313, 326
– stationary 48, 350
– symmetric 316
– triplet 254, 313
– unstable 343
– vector 90
state variable 294
stationary state 48, 59, 350
statistical errors 413
statistical mixture 439
Stern and Gerlach 157, 204, 236, 400
Stern O. 243, 400
stimulated emission 130, 322, 336
strange quark 226
structure
– fine 258
– hyperfine 261
Sturm and Liouville 73
SU(2) group 246
superposition principle 21, 101
symmetric state 316
symmetrization principle 316
symmetry of the Hamiltonian 145
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teleportation 291, 485
tensor product 104, 168, 251
theorem
– Bloch 146
– Ehrenfest 138, 172, 174, 203, 298,

300
– Levinson 498
– non cloning 285
– Parseval–Plancherel 424
– Sturm and Liouville 73
– virial 155
– Wigner–Eckart 271
thermodynamic equilibrium 328, 354,

441, 494
Thomas precession 261
Thomson G.P. 404
Thomson J.J. 399
three-dimensional harmonic oscillator

87, 454
time dependent perturbation 332
time-energy uncertainty relation 155,

350
Tomonaga S. 405
top quark 226
total spin 252
Townes C. 131, 405
trace 436
– partial 444
transition
– electric dipole 213, 266
– electromagnetic 336
– magnetic dipole 266
transition probability 322, 332, 362
translation invariance 141, 210
translation operator 111, 457
transmission coefficient 56
triplet state 254, 313
tunnel effect 56, 82
– microscope 57
two state system 115
two-component wave function 170

Uhlenbeck G. 232, 401
uncertainty relation 28, 32, 137, 186
– fermions 323
– time-energy 155, 350
unitary operator 111, 146, 246
unpolarized spin 439
unstable state 343

vacuum polarization 264
van der Waals interaction 377, 385
variable
– random 409
variance 412
variational method 183
vector operator 271
vector potential 301, 306, 337
velocity
– recoil 341
vibration spectrum 5, 69
virial theorem 155
Volkov 396
von Neumann J. 3, 89, 404
von Neumann detector 107

wave function 18, 57
– radial 211
– reduced 211
– two component 170
wave packet 24, 362
– broadening 27
– Gaussian 38
– spreading 34, 37
wave-like behaviour 15
wave–particle duality 2
wavelength
– Compton XVII, 216
– de Broglie 2, 382
white dwarf 392
Wieman C. 405
Wien W. 397
Wigner distribution 442
Wigner E. 405
Wigner–Eckart theorem 271
Wigner–Weisskopf approximation

347

Yang C.N. 405
Young (interferences) 6, 304, 308
Yukawa potential 365

Zeeman effect 203, 265, 269
– anomalous 237, 260, 401
Zeno paradox 176, 470
zero energy resonance 498
zero point energy 68, 87
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