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Preface

This book is both apparently ambitious and modest in its aims. Ambitious, as it
attempts to achieve something that has been declared impossible by some of the
greatest physicists since the 1920s: making sense of what quantum mechanics really
means. But modest, because that goal was actually already attained many years ago
in the work of Louis de Broglie, David Bohm, and John Bell. I will simply try to
explain what they achieved.

This book is written especially for all those students who feel that they have not
understood the subject of quantum mechanics, not because they fail to master the
mathematics or because they cannot do the exercises, but because they do not see
what the theory means.

However, no prior knowledge of quantum mechanics is required. Most of the
technical parts have been put in appendices, which can be skipped if one is willing
to take certain results for granted.

Hopefully this book should also interest philosophers and historians of science,
in particular Chaps. 1, 3, 7, and 8.

The analysis presented here has benefited from such a large number of discus-
sions, seminars, and exchanges with so many people that thanking them all by name
would scarcely be possible.

However, I must stress that I learned most of what I know about the subject
through discussions with Detlef Diirr, Tim Maudlin, Nino Zanghi, and especially
with Sheldon Goldstein.

Many readers of parts of this book have made useful comments and corrections
and I wish to thank them: Xavier Bekaert, Serge Dendas, Lajos Diosi, Michel
Ghins, Michel Hellas, Dominique Lambert, Vincent Mathieu, Alexis Merlaud,
Amaury Mouchet, and Alan Sokal. My special thanks to Ward Struyve for helping
me with his great scientific expertise on the topic of this book. I thank also Stephen
Lyle for his careful reading of the manuscript and many clarifying exchanges.
Needless to say, all remaining errors are mine.
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I wish to thank Cathy Brichard warmly for her indispensable secretarial
help. And finally, heartfelt thanks to my editor Angela Lahee, without whom this
book would not have seen the light of day, for her encouragement and her patience.



Contents

1 Physicists in Wonderland . . . . ... ... ... ... ... ... .. L. 1

1.1 What This Book Is About. . . ........................ 1

1.2 BacktoCopenhagen .............. ... .. ... .u.... 4

1.3 What Do Physicists Say Now? . ...................... 8

1.4 But There has Never Been a Consensus . .. .............. 11

1.5 Why Bother?. . ... ... .. 14

1.6 Outlineofthe Book............................... 17

2 The First Mystery: Interference and Superpositions . .......... 21

2.1 The Spin. . . .. ... 21

2.2 The Mach—Zehnder Interferometer . . . .. ................ 24

2.3 The Quantum Formalism . .......................... 28

24 How Does It Work?. .. ... ... .. .. ... . ... .. .. ..., 32

2.5 What Is the Meaning of the Quantum State? . . ............ 33
2.5.1  The Measurement Process Within the Quantum

Formalism. .. ...... ... ... .. .. .. .. ... .... 36

2.5.2 The “Naive” Statistical Interpretation . . ........... 41

2.6 ConcluSions . .. ..... ...t 44

APPendiCes. . . . .. 45

3 “Philosophical” Intermezzo ............................. 73

3.1 Realismand Idealism.............................. 73

3.2 Scientific Realism . .............. ... .. .. ... .. ... 80

3.2.1 Underdetermination . ...................o.... 81

3.2.2  Incommensurability of “Paradigms” . ............. 83

3.2.3  The Status of “Unobservable Entities” . ........... 86

3.3 Realism and Quantum Mechanics ..................... 91

34 DeterminiSm . . ... v i e e 94

34.1 Definitions . ........... .. ... 94

3.4.2 Determinism and “Chaos Theory” . .............. 98

3.4.3 Probabilities in Classical Physics . . .............. 101

vii



viii

Contents
3.4.4 The Law of Large Numbers and Scientific
Explanations . . . ........ ... .. . 104
34.5 “Randomness” and Deterministic Dynamical
SYSEMS . . o oo 105
3.4.6  Quantum Mechanics and Determinism . ........... 106
AppendiX . . . ... 107
The Second Mystery: Nonlocality . . . ... ................... 111
4.1 Introduction. . ......... ... ... ... 111
42 FEinstein’s Boxes . ... ......... .. . 113
43  What Is Nonlocality? . . ......... ... .. .. .. .. .. ...... 115
44 A Simple Proof of Nonlocality ....................... 118
4.4.1  An Anthropomorphic Thought Experiment . . ... .. .. 118
442 A Real Quantum Situation . ................... 121
443 Conclusions. . . ....... ... 123
AppendiX . . . .. 127
The de Broglie-Bohm Theory. . . ... ... ... ... ... ... ...... 129
51 TheTheory........ ... .. .. 130
5.1.1  The Equations of the Theory. .. ................ 130
5.1.2  How Does the de Broglie-Bohm Dynamic Work? . ... 134
5.1.3  What About the Statistical Predictions of Quantum
Mechanics? . . ... ... 137
5.1.4  Measurements of “Observables” in the de Broglie—
Bohm Theory .. ...... ... .. .. ... ... ... .... 140
5.1.5 “Contextuality” and Naive Realism About
OPErators . . . v vt e e e e 151
5.1.6 What About the Collapse of the Quantum State? . . . . . 152
5.1.7  What Are the Meaning and the Origin of the Statistical
Assumptions on the Initial Conditions in the de
Broglie-Bohm Theory?. . .. ..... ... ... ... ..... 155
5.1.8  Heisenberg’s Relations and Absolute Uncertainty. . . . . 159
5.1.9  What Is the Relationship Between the de
Broglie-Bohm Theory and Ordinary Quantum
Mechanics? . . . ... ... 161
5.2 Some Natural Questions About the de Broglie-Bohm
Theory . . ..o 162
5.2.1 How Does the de Broglie—-Bohm Theory Account
for Nonlocality?. . .. ... .. .. ... ... ... . ... 162
5.2.2  What About Relativity? . ... ... ... ... ... ..... 169
5.2.3  What About the Classical Limit? . . ... ........... 173
53  Other Objections . . .. ... ...ttt 174
5.3.1 Isn’t This a Return to Classical Mechanics?. . .. ... .. 175

5.3.2  Isn’t the Theory Too Complicated? .............. 176



Contents

6

5.3.3  What About the Symmetry Between Position

and Momentum? . .. ................ ... .....
5.3.4  What About the No Hidden Variables Theorems? . . . .
5.3.5 If the Predictions of the de Broglie-Bohm Theory

Are the Same as Those of Quantum Mechanics,

What Is the Point of the de Broglie-Bohm Theory? . . .
5.3.6  Why Isn’t there an Action—Reaction Principle

54 ConcluSions . ... .. ...t e
5.4.1 Trouble in Paradise?. . ... ....................
5.4.2  The Merits of the de Broglie-Bohm Theory .. ... ...
APPeNdiCes. . . . .o

6.1  The Many-Worlds Interpretation . .....................
6.1.1 The Naive Many-Worlds Interpretation. ...........
6.1.2 A Precise Many-Worlds Interpretation ............
6.1.3  The Pure Wave Function Ontology ..............
6.2  The Spontaneous Collapse Theories . . . ... ..............
6.3  The Decoherent Histories Approach . . ... ...............

6.4 QBism .. ... ... .
6.5 Conclusions . ........... .
APPeNdiCes. . . . .. e

Revisiting the History of Quantum Mechanics. . .. ............
7.1  The Bohr-Einstein Debate. . . ... .....................
7.1.1  What Was the Debate Really About? . . ...........
7.1.2  The 1927 Solvay Conference. . . .. ..............
7.1.3  The Photon and the Box Experiment . ............
7.1.4  The Einstein—Podolsky—Rosen Argument . .........
7.1.5 Who Won the Bohr—Einstein Debate?. . . . .........
7.2 Bormmand Einstein . ........ ... .. .. ..
7.3  What Did Schrodinger Really Worry About?. .. ...........
7.4 The von Neumann No Hidden Variables Theorem. .........
7.5 Misunderstandings of Bell. . . .. ... ... ... ... .. ... ..
7.6  The Non-reception of de Broglie’s and Bohm’s Ideas. . . ... ..
7.6.1 Reactions to de Broglie. . . ....................
7.6.2 Reactionsto Bohm............ ... ... ... .....
7.7  Quantum Mechanics, “Philosophy”, and Politics . ..........
7.8  ConClusions . ... .. ... ...

Quantum Mechanics and Our “Culture”. . ... ...............
8.1  The Trouble with Quantum Mechanics. . ................
8.2 A Pleafor “Copenhagen” .. ............ .. ... ........

177
178



X Contents

83 But What About Now?. . ......... . ... . ... .. ...... 289
8.4  Understanding Quantum Mechanics: An Unfinished Story. . . . . 292
Glossary . . . ... . . 295
References . .. ..... ... . ... . . . ... 303
Author Index . .. ... ... ... ... 323

Subject Index . . . . ... ... .. e 327



Chapter 1
Physicists in Wonderland

1.1 What This Book Is About

According to the French newspaper Le Monde, a famous English rugby player,
Jonny Wilkinson, claims to have been “saved from depression” by studying quan-
tum physics [308]. The player even held a public conference with two well known
French physicists, Jean Iliopoulos and Etienne Klein, attended by 500 people, and
the conference was published (in French) under the title “Quantum Rugby” [519].
Interviewed by Le Monde, Etienne Klein says that the player did not really know
quantum physics, and mostly relied on metaphors, linked to his interest in Buddhism.

If what Wilkinson understood of quantum mechanics is uncertain, one can be
reasonably sure that nobody would claim to have been saved from a depression by
studying any physical theory other than quantum theory.

Since its beginnings in 1900, the quantum theory' has led to the most spectacularly
well confirmed predictions ever made in science (some experimental results agree
with the theoretical predictions up to one part in a billion), and it underpins all modern
electronics and telecommunications. It explains the stability of atoms and of stars,
and lies at the foundation of the whole of particle physics, but also solid state physics,
chemistry, and thus, in principle, biology. It is truly our most fundamental theory of
the world. Yet, to quote the famous American physicist Richard Feynman,” “nobody
understands quantum mechanics” [185].

I'Since this book deals mostly with non-relativistic quantum physics, we will use the expressions

“quantum mechanics”, “quantum physics”, or “quantum theory” interchangeably.

2Feynman was comparing the situation in quantum mechanics with the one in the theory of
relativity [185]: “There was a time when the newspapers said that only twelve men understood
the theory of relativity. I do not believe there ever was such a time. There might have been a time
when only one man did, because he was the only guy who caught on, before he wrote his paper.
But after people read the paper a lot of people understood the theory of relativity in some way or
other, certainly more than twelve. On the other hand, I think I can safely say that nobody understands

© Springer International Publishing Switzerland 2016 1
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2 1 Physicists in Wonderland

In a nutshell, the goal of this book is to explain, in the simplest possible terms,
what is so bizarre about quantum mechanics and, nevertheless, to try to show that
one can to some extent understand its mysteries in rational terms.? This is not a book
that will teach quantum mechanics in its technical aspects (there are plenty of good
books doing that*). It will deal only with the conceptual problems associated with
quantum mechanics.

“In the simplest possible terms” means with a minimum of mathematics, but
a minimum that is not zero: this is not a “popular” book. However, the level of
mathematics required is only what is typically taught in first or second year courses
of mathematics for scientists and engineers: elementary linear algebra, including
vector spaces and matrices, complex numbers, Fourier transforms, basic differential
equations and some classical mechanics; but even that will be largely discussed in
the appendices. Some technical aspects will be put in the footnotes (hoping that the
experts will not be too irritated by the simplifications introduced in the text), where
one will also find references to the more advanced literature.

In this introduction, we will discuss the mysteries of quantum mechanics, or at
least the way they are often presented to the public, in non-technical terms. It will
give a feel for what is so strange in quantum mechanics.

Let us start with excerpts from an article on the “queerness of quanta” in The
Economist [157] (quoted by Jeremy Bernstein in [56, p. 6]):

1. There are no such things as ‘things.” Objects are ghostly, with no definite properties

(such as position or mass) until they are measured. The properties exist in a twilight
state of ‘superposition’ until then.

2. All particles are waves, and waves are particles, appearing as one sort or another depend-
ing on what sort of measurement is being performed.

3. A particle moving between two points travels all possible paths between them simulta-
neously.

4. Particles that are millions of miles apart can affect each other instantaneously.

The queerness of quanta [157]

These sentences express the two main “mysteries” of quantum mechanics, as they
are usually presented, and which can be formulated as follows:

(Footnote 2 continued)

quantum mechanics.” Many people, including some famous physicists, claim that the difficulty
in understanding quantum mechanics is similar to that in understanding relativity, but this is just
not so.

3There is an enormous amount of pseudo-scientific literature claiming to base itself on quantum
mechanics. But we will not be concerned with that; given the way respectable scientists talk about
quantum mechanics, as we will see in this book, its exploitation by the pseudo-sciences, while
perfectly unfounded, may not be so surprising.

“In his critique of the standard discussions of the conceptual problems of quantum mechanics [46],
Bell mentions three good books: those by Dirac [137], Landau and Lifshitz [302], and Gottfried
[236], as well as an article by van Kampen [494]. These are classics and so is the one by Bohm
[61]. One might add to that list the more recent one by Shankar [447]. However, Bell shows in [46]
that even the good books do not deal in a satisfactory way with the conceptual problems.
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a. Quantum objects can possess mutually exclusive properties, like traveling along
different paths simultaneously. Further, quantum objects obtain definite proper-
ties when they are “measured”, and only then. Moreover, those properties depend
on which measurements we choose to make.

b. Particles can interact instantaneously even when they are arbitrarily far apart.

The last statement may sound violently counterintuitive, but it is not in principle
impossible, and in fact it is the only one of the two that is essentially true. However,
people who have “learned” from the special theory of relativity that “nothing goes
faster than light” may wonder how interactions can be both instantaneous and take
place between objects that are arbitrarily far apart. “Learned” here is put in scare
quotes, because, although the statement “nothing goes faster than light” is frequently
repeated, the actual implications of the theory of relativity are quite subtle, as we
will discuss later.

The statement about particles “traveling along different paths simultaneously”, on
the other hand, is obviously self-contradictory: by definition, a “particle” is something
localized in space (as opposed to a wave, for example); to say that it follows two
(or more) different paths at the same time makes no sense. How are we supposed
to understand that? As a metaphor? But a metaphor of what? Is the particle divided
into tiny parts, each of which follows a different path? Are we merely saying that we
have no way of knowing which path is being taken (which is a meaning sometimes
given to that statement)? In that case, the situation would be understandable, and not
terribly surprising (why would gross creatures such as ourselves be able to follow
the trajectories of tiny particles?), but admitting one’s ignorance through a self-
contradictory statement about the world is surely a rather strange way to express
oneself.

The statement that “quantum objects obtain definite properties only when they are
measured” may be the most fundamental and the most problematic. In almost all the
talk about quantum mechanics, we find words such as “observer”, “observation”, and
“measurement” playing a central role.® It is not just because observations are needed
to verify or confirm the theory—that is true of all scientific theories. One would never
hear a biologist speak of “observations” the way quantum physicists do, although
biology is also an empirical science and thus is also “based on observations”. For
example, if biologists speak of dinosaurs, they speak of animals that lived in the
past, not just of bones of dinosaurs, even though the bones are the only thing that we
directly observe. Biology claims to study the properties of living beings, even when
they are not observed, but the usual formulation of quantum mechanics speaks of
systems having definite properties only when they are observed.

One of the main critics of the dominant discourse about quantum mechanics, the
Irish physicist John Bell, raised the following objection:

5In Chap.4 and in Sect.5.2.2.

%The physical reasons for this emphasis on measurements or observations will be explained in
Chap.2.
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The problem of measurement and the observer is the problem of where the measurement
begins and ends, and where the observer begins and ends. Consider my spectacles, for
example: if I take them off now, how far away must I put them before they are part of the
objectrather than part of the observer? There are problems like this all the way from the retina
through the optic nerve to the brain and so on. I think, that—when you analyze this language
that the physicists have fallen into, that physics is about the results of observations—you
find that on analysis it evaporates, and nothing very clear is being said.

John S. Bell [107, p. 48].

There is another obvious objection, also raised by Bell [46, p. 34]: “What exactly
qualifies some physical systems to play this role of ‘measurer’?”” And what happened
before humans were around? Or maybe before modern laboratories were created?
And what about the vast parts of the universe where there are no observers? Do the
laws of physics cease to apply there or in the past? How can a physical theory, which
is the most fundamental of all, which deals with atoms and elementary particles, and
applies in principle to the entire universe, require for its very formulation something
so contingent as certain manipulations (“measurements’) done during the last 100
years by a few members of a particular species, Homo sapiens, living on a particular
planet somewhere in the cosmos?

Since the seventeenth century, science has decentered human beings; for instance,
by realizing that the Earth is not at the center of the universe and also by showing
that humans are not the object of a special act of creation, but rather the result of a
long and contingent evolution. Quantum mechanics seems to have put humans back
at the center of the picture: it is sometimes claimed that it abolishes the distinction
between subject and object or that it gives a special role, in the formulation of our
most fundamental physical theory, to human consciousness. If that were so, one might
wonder how humans got to be there in the first place: if it is through evolution, then
how is that supposed to work? Biology is based on chemistry, whose mechanisms
are explained through quantum mechanics. But what role did the human subject have
during this whole process, before the appearance of Homo sapiens?

To understand where all these strange-looking ideas came from, we must go back
to the beginning of quantum mechanics.

1.2 Back to Copenhagen

One may object that The Economist is not a scientific journal and that what is quoted
here is just due to the desire of popularizers to make spectacular statements. But
one finds similar statements coming from the founding fathers of quantum mechan-
ics, especially those associated with the “Copenhagen interpretation” of quantum
mechanics, including Niels Bohr, Max Born, Werner Heisenberg, Pascual Jordan,
Wolfgang Pauli, and later John von Neumann.” The name “Copenhagen” comes from

7One should add to this list of founding fathers precursors like Max Planck and Albert Einstein, but
also Louis de Broglie, Paul Dirac, and Erwin Schrodinger. However, Dirac was rather neutral on
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the city where the Danish physicist Bohr lived and worked. However, it is far from
clear that there is a unified doctrine, or even a well defined one, that can be sys-
tematically associated with the expression “Copenhagen interpretation” of quantum
mechanics, since, for example, Heisenberg and Bohr had divergent views on many
topics (see, e.g., [52, 275]). But there is a sort of vulgate in the popular literature, in
philosophical reflections on quantum mechanics, and also in the teaching of quantum
mechanics, whenever reference is made to “Copenhagen”, that stresses the central
role of observations in the very formulation of the theory.

Let us consider some of those associated with “Copenhagen”, whether rightly or
wrongly, and see what they said. Heisenberg,® for instance, wrote:

[...] the idea of an objective real world whose smallest parts exist objectively in the same
sense as stones or trees exist, independently of whether or not we observe them [...] is
impossible [...]

Werner Heisenberg [259, p. 129]

And again:

We can no longer speak of the behavior of the particle independently of the process of
observation. As a final consequence, the natural laws formulated mathematically in quantum
theory no longer deal with the elementary particles themselves but with our knowledge of
them. Nor is it any longer possible to ask whether or not these particles exist in space and
time objectively [...].

[...] Science no longer confronts nature as an objective observer, but sees itself as an actor in
this interplay between man and nature. The scientific method of analysing, explaining, and
classifying has become conscious of its limitations [...] method and object can no longer be
separated.

Werner Heisenberg [260, pp. 15, 29]
Here we encounter words such as “impossible”, “no longer”, etc., which are rather
common in the “Copenhagen” rhetoric and which the historian of quantum mechanics
Mara Beller calls the “rhetoric of inevitability” [52, Chap.9], or what one might
call the quantum mechanical version of Margaret Thatcher’s TINA (“there is no
alternative”).

But how do they know that something is impossible? The fact that a theory is
successful and that it does not permit us to answer certain questions or to think in
certain ways does not, by any means, prove that one can never answer such questions
or think otherwise in the future. To prove that something is impossible, one has to
give arguments beyond the mere limitations of present-day science. Such arguments
are sometimes given but, as we will see, they do not even begin to prove what is
claimed.

(Footnote 7 continued)
these conceptual issues, de Broglie changed his views more than once, and Einstein and Schrédinger
were strongly opposed to the Copenhagen interpretation.

8This is quoted and discussed by Sheldon Goldstein in [221].
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Turning to Niels Bohr, Aage Petersen, who was his assistant for many years,
characterized his views as follows®:

When asked whether the algorithm of quantum mechanics!? could be considered as somehow
mirroring an underlying quantum world, Bohr would answer: “There is no quantum world.
There is only an abstract physical description. It is wrong to think that the task of physics is
to find out how nature is. Physics concerns what we can say about nature.”

Aage Petersen [395, p. 12]

Claims that “quantum theory no longer deals with the elementary particles themselves
but with our knowledge of them” or that “physics concerns what we can say about
Nature” were often heard in physics courses when I was a student, but it didn’t make
any sense to me then (or now). Indeed, if we say something about Nature or if we
have knowledge of elementary particles, then we know something about the world,
not just about our knowledge.

Besides, nothing in physics discusses the biological, psychological, or sociologi-
cal factors that are usually associated with the acquisition of knowledge. So why this
emphasis on knowledge? Only because quantum mechanics refers to some abstract
“observer” which is a deus ex machina that gives definite properties to objects, but
without explaining how this happens.

Going even further, Pascual Jordan, who was a very important contributor in the
early days of quantum mechanics,!! wrote:

In a measurement of position, “the electron is forced to a decision. We compel it fo assume
a definite position; previously, it was, in general, neither here nor there; it had not yet made
its decision for a definite position [...] If, in another experiment, the velocity of the electron
is measured, this means: the electron is compelled to decide itself for some exactly defined
value of the velocity; and we observe which value it has chosen. In such a decision, the
decision made in the preceding experiment is completely obliterated.”

Pascual Jordan [285], quoted and translated by M. Jammer [281, p. 161] (original italics)

The defenders of the Copenhagen school sometimes present themselves as “hard-
nosed scientists”, whose views were driven by facts, while their opponents such
as Einstein and Schrodinger were unable to accept the deep lessons of quantum
mechanics because of their ideological and philosophical prejudices. For example,
Max Born wrote that Einstein “could no longer take in certain new ideas in physics
which contradicted his own firmly held philosophical convictions” [79, p. 72]. And
Werner Heisenberg wrote:

9See [396] for a detailed presentation of Bohr’s philosophy.
10This algorithm will be explained in Chap. 2. (Note by J.B.).

1 As Norton Wise has shown [520], Jordan had rather strange views on biology (vitalism), para-
psychology, and psychoanalysis and he was a committed member of the National Socialist party,
mixing up his views on quantum mechanics with his politics. The subject-centered aspect of quan-
tum mechanics was good news for him, since it put one more nail in the coffin of the Enlightenment.
After the war, Jordan reincarnated himself as a democratic cold warrior, arguing for the nuclear
armament of Germany, and denouncing the “naive illusions” of pacifist-minded people such as Max
Born. Concerning Jordan and his relationship with Bohr, see Heilbron [255].
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Most scientists are willing to accept new empirical data and to recognize new results, provided
they fit into their philosophical framework. But in the course of scientific progress it can
happen that a new range of empirical data can be completely understood only when the
enormous effort is made to enlarge this framework and to change the very structure of the
thought process. In the case of quantum mechanics, Einstein was apparently no longer willing
to take this step, or perhaps no longer able to do so.

Werner Heisenberg [79, p. X]

But the following quotes from Bohr, Pauli, and Born show that some of the founding
fathers were not hostile to linking quantum mechanics and non-scientific speculations
(to put it mildly)'?:

[...] this domain [psychology] [...] is distinguished by reciprocal relationships which depend
on the unity of our consciousness and which exhibit a striking similarity with the physical
consequences of the quantum of action. We are thinking here of well-known characteristics of
emotion and volition which are quite incapable of being represented by visualizable pictures.
In particular, the apparent contrast between the conscious onward flow of associative thinking
and the preservation of the unity of the personality exhibit a suggestive analogy with the
relation between the wave description of the motions of material particles, governed by the
superposition principle,'? and their indestructible individuality.

Niels Bohr [71, p. 99]

[...] science and religion must have something to do with each other. (I do not mean “religion
within physics”, nor do I mean “physics inside religion”, since either one would certainly be
“one-sided”, but rather I mean the placing of both of them within a whole.) I would like to
make an attempt to give a name to that which the new idea of reality brings to my mind: the
idea of reality of the symbol. [...] It contains something of the old concept of God as well as
the old concept of matter (an example from physics: the atom. The primary qualities of filling
space have been lost. If it were not a symbol how could it be “both wave and particle”?).
The symbol is symmetrical with respect to “this side’ and ‘beyond” [...]. The symbol is like
a god that exerts an influence on man but which also demands from man that he have a back
effect on him (the God symbol).

Wolfgang Pauli [375, pp. 193-194] (italics in the original)

This comes from a private letter, but the reader can find several favorable references
to Jungian psychoanalysis in Chaps. 17 and 21 of Pauli’s Writings on Physics and
Philosophy [382].'4

The thesis ‘light consists of particles’ and the antithesis ‘light consists of waves’ fought
with one another until they were united in the synthesis of quantum mechanics. [...] Only
why not apply it to the thesis Liberalism (or Capitalism), the antithesis Communism, and
expect a synthesis, instead of a complete and permanent victory for the antithesis? There

12The three quotes here come from Mara Beller’s article [51], which we will discuss in Chap. 8.
The quote from Pauli comes from a private letter.

13This principle will be explained in Chap. 2. (Note by I.B.).
14See also [306, 16] for Pauli’s views on religion and “deep psychology”.
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seems to be some inconsistency. But the idea of complementarity'> goes deeper. In fact,
this thesis and antithesis represent two psychological motives and economic forces, both
justified in themselves, but, in their extremes, mutually exclusive. [...] there must exist a
relation between the latitudes of freedom A f and of regulation Ar, of the type AfAr ~ p
which allows a reasonable compromise. But what is the ‘political constant’ p? I must leave
this to a future quantum theory of human affairs.

Max Born [78, pp. 107-108]

Finally, according to the Belgian physicist Léon Rosenfeld, a close friend of Bohr’s
and one of the most vehement defenders of the Copenhagen interpretation,'® Bohr
seems sometimes to have suffered from delusions of grandeur:

On one of those unforgettable strolls during which Bohr would so openly disclose his inner-
most thoughts, we came to consider that what many people nowadays sought in religion
was a guidance and consolation that science could not offer. Thereupon Bohr declared,
with intense conviction, that he saw the day when complementarity would be taught in the
schools and become part of general education; and better than any religion, he added, a sense
of complementarity would afford people the guidance they needed.

Léon Rosenfeld [422]. Reprinted in [424, p. 535]

1.3 What Do Physicists Say Now?

The reader might think that these quotes are old, going back to the very beginning of
quantum mechanics, and that the situation has been clarified since then. As we will see
in Chaps. 4 and 5, the situation was actually clarified, first in 1952 through the work
of David Bohm, and then in 1964 through that of John Bell, but few physicists have
paid much attention to those contributions. So what did the generations following
the founding fathers say, even long after 19647

John Archibald Wheeler, who studied with Bohr and is well known for his contri-
butions both to nuclear physics and to cosmology, is famous for saying [509, p. 192]:
“No elementary phenomenon is a phenomenon until it is a registered (observed) phe-
nomenon.” Wheeler linked that idea to what he called “the participatory principle’:

According to it we could not even imagine a universe that did not somewhere and for some
stretch of time contain observers because the very building materials of the universe are
these acts of observer-participancy. You wouldn’t have the stuff out of which to build the
universe otherwise.

John Archibald Wheeler [508]

Wheeler emphasized that this means that past events did not really occur until they
are recorded now:

15 A basic concept of Bohr, which will be discussed in Chap. 2, particularly in Appendix 2.C. (Note
by J.B.).
16 As we will see in Chap. 7.
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[...] we have to say that we ourselves have an undeniable part in shaping what we have
always called the past. The past is not really the past until it has been registered. Or put
another way, the past has no meaning or existence unless it exists as a record in the present.

John Archibald Wheeler [107, pp. 67-68]

Wheeler even wondered: “Are billions upon billions of acts of observer-participancy
the foundation of everything?” Without answering this question affirmatively, he
observed [509, p. 199]: “The very fact that we can ask such a strange question shows
how uncertain we are about the deeper foundations of the quantum and its ultimate
foundation.”

Eugene Wigner, co-recipient of the 1963 Nobel Prize in physics for his contribu-
tions to quantum and nuclear physics was quite explicit about the role of conscious-
ness in physics, supposedly revealed by the quantum revolution:

[...] It will remain remarkable, in whatever way our future concepts may develop, that
the very study of the external world led to the scientific conclusion that the content of the
consciousness is an ultimate reality.

[...] The preceding argument!” for the difference in the roles of inanimate observation

tools and observers with a consciousness—hence for a violation of physical laws where
consciousness plays a role—is entirely cogent so long as one accepts the tenets of orthodox
quantum mechanics in all their consequences.

Eugene Wigner [514]; reprinted in [510, pp. 169,178]

Wigner added that the “weakness” of this argument came from the “ephemeral
nature of physical theories” and because it relied on “the tenets of orthodox quantum
mechanics in all their consequences”. But he was absolutely convinced'® that it was
[510, p. 169] “not possible to formulate the laws of quantum mechanics in a fully
consistent way without reference to the consciousness.”

Rudolf Peierls, who studied with Heisenberg and Pauli, and was a major theoretical
physicist, both in quantum and statistical physics, wrote in 1979:

In recent years the debate on these ideas has reopened, and there are some who question

what they call “the Copenhagen interpretation of quantum mechanics—as if there existed
more than one possible interpretation of the theory.

Rudolf Peierls [388, p. 26]

Rudolf Peierls also declared in an interview published in 1993:

7The argument is based on the reduction or collapse of the quantum state, which will be defined
in Sect.2.3. (Note by J.B.).

8Here, Wigner refers in a footnote to some of the statements by Heisenberg quoted in Sect. 1.2.
According to Wigner, Heisenberg had “expressed this [idea] most poignantly”. He also refers to
London and Bauer [312] who wrote in 1939 a detailed theory of measurement in quantum mechanics,
which stressed “the essential role played by the consciousness of the observer” [510, p. 251]. To
be fair to Wigner, one must add that his ideas on the role of consciousness in quantum mechanics
changed over time (see Esfeld [177]).
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You see, the quantum mechanical description is in terms of knowledge. And knowledge
requires somebody who knows.

Rudolf Peierls [107, p. 74] (italics in the original)

Not surprisingly, when asked about the role of consciousness “in the nature of reality”,
Peierls answered [107, p. 74]: “I don’t know what reality is.”

In 1979, a well-known French theoretical physicist and philosopher of science,
Bernard d’Espagnat, wrote an article in Scientific American with the following title!®:

The doctrine that the world is made up of objects whose existence is independent of human
consciousness turns out to be in conflict with quantum mechanics and with facts established
by experiment.

Bernard d’Espagnat [124, p. 158]

D’Espagnat published another article, in the Guardian on 20 March 2009, with the
title [125]: “Quantum weirdness: What we call ‘reality’ is just a state of mind.”

The Cornell university physicist David Mermin, well known for his work in sta-
tistical and condensed matter physics and who also worked a lot on foundations of
quantum mechanics, wrote in 1981:

We now know that the moon is demonstrably not there when nobody looks.?°

David Mermin [331, p. 397]

In 2005, Anton Zeilinger, who has performed in Vienna some of the most remarkable
quantum experiments, wrote in Nature:

So, what is the message of the quantum? [...] I suggest that [...] the distinction between
reality and our knowledge of reality, between reality and information, cannot be made.

Anton Zeilinger [526, p. 743]

Finally, in the age of Twitter, Sean Carroll, theoretical physicist at Caltech, cosmol-
ogist and author of several popular books, considers that the best answer to “how to

19In 2009, D’Espagnat won the Templeton Prize, which rewards a person who “has made an
exceptional contribution to affirming life’s spiritual dimension, whether through insight, discovery,
or practical works”.

20This refers to the following remark by Abraham Pais about his conversations with Einstein who,
as we will see in the following section, was irritated by all the talk about “observations” [369,
p- 907]: “We often discussed his notions on objective reality. I recall that during one walk Einstein
suddenly stopped, turned to me and asked whether I really believed that the moon exists only when
Ilook at it.” Pais adds: “The rest of the walk was devoted to a discussion of what a physicist should
mean by the term ‘to exist’.” Of course, Mermin may not have meant literally what he said about
the moon. But what he really meant is not obvious. We will come back to that quote in Sect.3.3.
(Note by J.B.).
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summarize quantum mechanics in five words?”” comes from the physicist and science
writer Aatish Bhatia (@aatishb):

Quantum mechanics in 5 words. Don’t look: wave. Look: particle.

Sean Carroll [92, p. 35]

Of course, the statements quoted here do not reflect the views of most physicists
(indifference to such questions or some form of “pragmatism” being the view of
the majority), but their authors are certainly not marginal either and the statements
should be sufficiently surprising to make the reader wonder what is going on.
However, there have also been views explicitly opposed to those mentioned here.

1.4 But There has Never Been a Consensus

From the early days of quantum mechanics, people like de Broglie, Schrodinger, and
especially Einstein objected to the Copenhagen doctrine, but the dominant discourse
misunderstood or ignored those objections. We will see that in detail in Chap. 7, but
it is interesting to note the strength with which the opposition was expressed, at least
in private letters. For example, in 1928, Einstein wrote to Schrodinger:

The Heisenberg—Bohr tranquilizing philosophy—or religion?—is so delicately contrived
that, for the time being, it provides a gentle pillow for the true believer from which he cannot
very easily be aroused.

Albert Einstein [163]

In another letter to Schrodinger, Einstein referred to Bohr as the “Talmudic philoso-
pher” for whom “reality is a frightening creature of the naive mind” [165]. Einstein
also referred to Bohr as [167] “the mystic, who forbids, as being unscientific, an
enquiry about something that exists independently of whether or not it is observed,
i.e., the question as to whether the cat is alive?' at a particular instant before an
observation is made (Bohr).” Schrodinger was equally critical??:

Bohr’s [...] approach to atomic problems [...] is really remarkable. He is completely con-
vinced that any understanding in the usual sense of the word is impossible. Therefore the
conversation is almost immediately driven into philosophical questions, and soon you no
longer know whether you really take the position he is attacking, or whether you really must
attack the position he is defending.

Erwin Schrodinger [438]

2IHere Einstein is referring to a famous thought experiment due to Schrédinger in which, if one
follows the standard rules of quantum mechanics, a cat could be both alive and dead at the same
time, before one looks at it. See Sects. 2.5 and 7.3 for further discussion of this argument. (Note by
J.B)).

22S0me of the quotes below come from Goldstein [221] and are discussed there.
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And again:

With very few exceptions (such as Einstein and Laue), all the rest of the theoretical physicists
were unadulterated asses and I was the only sane person left.

[...]

If I were not thoroughly convinced that the man [Bohr] is honest and really believes in the
relevance of his—I do not say theory but—sounding word,? T would call it intellectually
wicked.

Erwin Schrodinger [444]

Schrodinger put his finger on one of the main problems of the “Copenhagen” view,
namely, the attempt to find an idealistic philosophical solution to the conceptual
problems of quantum mechanics, when he wrote?*:

[...] the reigning doctrine rescues itself or us by having recourse to epistemology. We are
told that no distinction is to be made between the state of a natural object and what I know
about it, or perhaps better, what I can know about it if I go to some trouble. Actually—so
they say—there is intrinsically only awareness, observation, measurement.

Erwin Schrodinger [441], reprinted in [510, p. 157]

Schrodinger did not even try to hide his feelings when he wrote to “the other side”,
for example, to Max Born:

Maxel, you know I love you and nothing can change that. But I do need to give you once
a thorough head washing. So stand still. The impudence with which you assert time and
again that the Copenhagen interpretation is practically universally accepted, assert it without
reservation, even before an audience of the laity—who are completely at your mercy—it’s
at the limit of the estimable [...]. Have you no anxiety about the verdict of history? Are you
so convinced that the human race will succumb before long to your folly?

Erwin Schrodinger [445]

In a more constructive mode, Einstein nicely summarized his position in 1949:

Iam, in fact, firmly convinced that the essentially statistical character of contemporary quan-
tum theory is solely to be ascribed to the fact that this (theory) operates with an incomplete
description of physical systems [...].”

Albert Einstein [170, p. 666]

23Schrodinger was referring to the word “complementarity”, which was the foundation of Bohr’s
approach and will be discussed in Appendix 2.C. (Note by J.B.).

24This was written after he introduced his famous “cat” in [441], which is supposed to be “both alive
and dead”. The idealism, implicit in the view that Schrodinger rejects, will be criticized in Chap. 3.
2He added [170, p. 672]: “In a complete physical description, the statistical quantum theory would
[...] take an approximately analogous position to the statistical mechanics within the framework
of classical mechanics.” This refers to an idea, developed at the end of the nineteenth century,
according to which the laws of thermodynamics could be derived from an application of statistical
reasoning to the motion of atoms, the latter giving a more complete description of matter than the
one given by thermodynamics or fluid mechanics.
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The root of the difference between Einstein and the Copenhagen school of thought
was exactly about this issue of completeness: Einstein thought that the existing
quantum mechanics was incomplete, i.e., that a more detailed description of the
microscopic world was possible and that such a description would eliminate the
need to refer to an observer.?® We will see in Chap. 5 that Einstein’s hope was not
only reasonable but was even realized during his lifetime, although in ways that he
did not like (for other reasons, that we will discuss in Sect.7.6.2).

But even putting that aside, which position is the more radical? Einstein’s hope
expressed here or Heisenberg’s view (shared by many physicists) that “we can no
longer speak of the behavior of the particle independently of the process of obser-
vation”, where “no longer” means that we will never be able to do so? Yet, most
contemporaries of Einstein thought that he was the unreasonable fellow, who had
become too old to appreciate the depth of the quantum revolution.

After World War 11, the critique of the mainstream view was taken up for the main
part by David Bohm and John Bell. We will discuss their objections in detail later (in
Chaps. 4 and 5), but one can get their flavor by reading the following answer given
by Bell in an interview with the BBC:

One wants to be able to take a realistic view of the world, to talk about the world as if it
is really there, even when it is not being observed. I certainly believe in a world that was
here before me, and will be here after me, and I believe that you are part of it! And I believe
that most physicists take this point of view when they are being pushed into a corner by
philosophers.

John Bell [107, p. 50]

Bell even met Bohr once. As he recalled later, in an interview, with the magazine
Omni:

I went up in a hotel lift with him. I didn’t have the nerve to say. ‘I think your Copenhagen
interpretation is lousy’. Besides the lift ride wasn’t very long. Now, if the lift had gotten
stuck between floors, that would have made my day! In which way, I don’t know.

John Bell [45, p. 85]

Note that the interviewers wrote [45, p. 86]: “We first asked Bell over the telephone
whether he himself felt he had demonstrated that ‘reality doesn’t exist’. He responded
by warning us that he is an impatient, irascible sort who tolerates no nonsense.”

Murray Gell-Mann, Nobel prizewinner and discoverer of quarks, said about find-
ing “an adequate philosophical presentation” of quantum mechanics:

Bohr brainwashed a whole generation of physicists into thinking that the job was done 50
years ago.

Murray Gell-Mann [200, p. 29]

26He probably also thought that this description would render the theory deterministic, but it is
doubtful that he was mainly concerned with determinism. We will discuss that in Sect.7.1.
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But the most emphatic reaction to the alleged need to put ourselves, the “observers”,
at the center of things is probably due to Bertrand Russell, who disliked nothing more
than anthropocentrism and subjectivism, and who wrote the following “pessimistic
meditation” about “Modern Physics™:

[...] Formerly, the cruelty, the meanness, the dusty fretful passion of human life seemed to
me a little thing, set, like some resolved discord in music, amid the splendour of the stars and
the stately procession of geological ages. What if the universe was to end in universal death?
It was none the less unruffled and magnificent. But now all this has shrunk to be no more
than my own reflection in the windows of the soul through which I look out upon the night
of nothingness. The revolutions of nebulae, the birth and death of stars, are no more than
convenient fictions in the trivial work of linking together my own sensations, and perhaps
those of other men not much better than myself. No dungeon was ever constructed so dark
and narrow as that in which the shadow physics of our time imprisons us, for every prisoner
has believed that outside his walls a free world existed; but now the prison has become the
whole universe. There is darkness without, and when I die there will be darkness within.
There is no splendour, no vastness, anywhere; only triviality for a moment, and then nothing.
Why live in such a world? Why even die?

Bertrand Russell [430, p. 374]

All this may look strange, but there is still a natural question to discuss.

1.5 Why Bother?

Most physicists are rather indifferent to the sort of issues discussed in this book,
regarding them as “metaphysical”. A good example of such a reaction is due to
Pauli:

As O. Stern said recently, one should no more rack one’s brain about the problem of whether
something one cannot know anything about exists all the same, than about the ancient
question of how many angels are able to sit on the point of a needle. But it seems to me that
Einstein’s questions are ultimately always of this kind.

Wolfang Pauli [79, p. 223]

Similarly, another founding father of quantum mechanics, the great British physicist
Paul Dirac distinguished between two kinds of difficulties with quantum theory?’:

The difficulties in quantum theory are of two kinds. I might call them Class One difficulties
and Class Two difficulties. Class One difficulties are the difficulties I have already mentioned:
How can one form a consistent picture behind the rules for the present quantum theory?
These Class One difficulties do not really worry the physicist. If the physicist knows how to
calculate results and compare them with experiment, he is quite happy if the results agree

27The Class Two difficulties, which he discusses in the rest of this article, are those related to the
mathematical formulation of quantum field theories.
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with his experiments, and that is all he needs. It is only the philosopher, wanting to have a
satisfying description of nature, who is bothered by Class One difficulties.

Paul Dirac [138]

Those physicists are both right and wrong. They are right in the sense that ordinary
quantum mechanics works perfectly FAPP, to use an acronym introduced by John
Bell, meaning “for all practical purposes” [46]. The theory, specially in quantum
electrodynamics, makes spectacularly precise predictions confirmed by experiment,
and nobody needs to understand quantum mechanics beyond what is in textbooks in
order to make computers and telecommunications work. Nothing that is written in this
book puts into question those facts. As an algorithm (described in Chap. 2) allowing us
to predict results of experiments, and to use various powerful technologies, quantum
mechanics is perfect.

But it is precisely because it works so well that trying to understand why it works
makes sense. Obviously if quantum mechanics worked half of the time, so to speak,
there would be no reason to try to understand it in depth. Many models in physics
are known to be applicable within certain limits and, once we know that, there are
no further questions to be raised about those models. But quantum mechanics works
on all known scales and is not contradicted by any experiment whatsoever.?® Isn’t it
worthwhile to ask why it works so well?

To that question, there are typically two different types of answers, one “official”
and one “implicit”. The official reply is that the goal of physics is to predict results
of experiments, or to account for what we see, or perceive, and nothing else (as
proposed by Dirac in the above quote). But this is inverting the means and the
goal. Experiments are needed to test our theories in order to avoid falling into idle
speculation or “metaphysics”, but our theories are about the world, not about the
experiments themselves. As Bell said:

But experiment is a tool. The aim remains: to understand the world. To restrict quantum

mechanics to be exclusively about piddling laboratory operations is to betray the great

enterprise. A serious formulation [of quantum mechanics] will not exclude the big world
outside the laboratory.

John Bell [46, p. 34]

Of course, it may be that it is simply impossible to understand the quantum world
and that we have to content ourselves with predicting results of experiments. After
all, who are we but somewhat evolved creatures and why should we expect to be able
to understand how the world is? Isn’t the fact that quantum mechanics looks weird
to us simply a consequence of the limitations of our minds? That may be the case,
but one needs some argument to show that and not simply rely on the “rhetoric of
inevitability”.

Besides, there is a serious issue of consistency raised by the notion that the only
goal of physics is to predict results of experiments. If indeed that was all there is to

28putting aside the problem of quantum gravity, which is indeed a difficult and unsolved problem,
but it cannot be considered as a refutation of quantum mechanics.
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physics, why do experiments in the first place? The need to finance costly experi-
ments is “sold” to politicians and the public by saying that we are discovering the
fundamental laws of Nature. But, if “it is wrong to think that the task of physics is to
find out how Nature is” (Bohr according to Petersen), or if, in quantum mechanics,
we “no longer deal with the elementary particles themselves but with our knowledge
of them” (Heisenberg), then how can we claim that we are trying to find the funda-
mental laws of Nature? What would the funders say if they read those statements?
Wouldn’t they at least be puzzled and ask for some clarification? Isn’t it therefore
simply a matter of intellectual honesty to ask ourselves how we would clarify those
statements?

On the other hand, most physicists probably do not really believe the official
answer. They do give some meaning to quantum mechanics beyond our “observa-
tions”. Physicists do speak of particles going this way or that way, having a certain
polarization or a “spin” or speed, or some other properties, even when those particles
are not observed. From that point of view, which I call the “implicit” one, there is no
problem about quantum mechanics and the centrality of “observations”. However,
the main defect of that “solution” is that it is never spelled out clearly: what exactly
can we say about the world out there?

Moreover, and that will be one of the main points emphasized in this book, the
sort of thing that people have in the back of their minds when they give a meaning
to quantum mechanics outside of “measurements” is sometimes inconsistent and
sometimes even in contradiction with the consequences of quantum mechanics.?’
This lack of clarity leads to a general uncertainty about what one is “allowed” to say
about the world (or about what is “speakable and unspeakable” to use John Bell’s
expression [49]) and that in turn induces many physicists to fall back on the standard
talk about measurements being all there is to physics, which they feel is safe, even
if it “betrays the great enterprise”.

What we need is a theory which tells a story about what is going on in the world,
even when we do not “observe” it, and which makes the same predictions as ordinary
quantum mechanics whenever we do make “observations” or experiments. If such
a theory existed, then all the confusing talk about the centrality of observations
would disappear and we could analyze that theory in order to see how it helps us to
understand the quantum world.

Amazingly, such a theory actually does exist, and has even existed, in some
preliminary form, since the beginning of quantum mechanics, i.e., since 1927; it
was proposed by Louis de Broglie at that time and developed by David Bohm in
1952. One of the main goals of this book is to make this theory better known.

Since this theory implies no practical change to what we do as physicists in our
daily lives when we use quantum mechanics, it should be good news to all those
who do not want to be bothered with “foundational” issues. It “simply” clarifies
what quantum mechanics is all about and allows us to get rid of entire libraries
of confused talk about the centrality of human observations in science. Of course,
whether that “simply” is important or not is a matter of taste.

2See Sect. 2.5, and especially the theorem at the end of that section.
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1.6 Outline of the Book

In this book, we will defend several theses. The first one is that there are genuine
conceptual problems within the usual quantum formalism: the latter does not allow us
to speak of the world beyond what happens in our laboratories and that is obviously
unsatisfactory. Next, we will argue that there is no philosophical solution to this
problem, contrary to the impression that one sometimes gets when one reads the
proponents of the Copenhagen school.

Moreover, we will explain that there exists a way to complete the quantum for-
malism so that this problem is eliminated, and the completion is, in some sense,
simpler to understand than the usual formalism. Finally, the refusal by a large part of
the physics community to face the difficulties intrinsic to the quantum formalism has
led it to ignore or misunderstand what is probably the main novel feature of quan-
tum mechanics, namely the existence of nonlocal actions, or “particles interacting
instantaneously even when they are arbitrarily far apart.”

Now, in more detail. The second chapter is devoted to the first mystery of quantum
mechanics: interference phenomena and the superposition principle, which lead to
statements such as “quantum objects can possess mutually exclusive properties, like
traveling along different paths simultaneously” and “quantum objects obtain definite
properties when they are ‘measured’, but only then, and those properties depend
on which measurements we choose to make”. We will have to distinguish carefully
between the phenomena to be explained, the quantum formalism that allows us
to predict them, and the commentaries or mental pictures which accompany the
formalism and which lead to the statements just mentioned.

This will do justice to the way physicists often speak about quantum phenomena.
The phenomena are strange and all the talk about observations affecting reality is
not based on pure prejudice, although it is not inevitable either.

In Sect. 2.5, we will define four possible reactions or attitudes with respect to that
“first mystery”” and to how one thinks of the quantum formalism. In the rest of the
book, we will try to connect the various questions that we deal with to those four
basic positions.

The third chapter can be skipped by those who are not interested in “philoso-
phy”. But for those with a philosophical background, the statements associated with
“Copenhagen” should remind them of the writings of Bishop Berkeley, Immanuel
Kant, Ernst Mach,?® or sometimes the logical positivists, even if the connection is

30Ernst Mach was an Austrian physicist and philosopher, active at the end of the 19th century and
the beginning of the 20th, whose views were somewhat similar to those of the Copenhagen school,
long before the advent of quantum mechanics. For example, in 1897, he wrote:

Bodies do not produce sensations, but complexes of elements (complexes of sensations) make
up bodies. If, to the physicist, bodies appear the real, abiding existences, whilst the “elements”
are regarded merely as their evanescent, transitory appearance, the physicist forgets, in the
assumption of such a view, that all bodies are but thought-symbols for complexes of elements
(complexes of sensations).

Ernst Mach [314, p. 29]
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not straightforward. In this chapter, we will try to clarify notions such as “realism”
or “determinism” which have the disadvantage of often being ill-defined and used in
ways that confuse rather than clarify the discussion.

For example, when the people who interviewed Bell for the magazine Omni [45]
asked him whether he felt that he had shown that “reality does not exist”, what could
they possibly have meant? After all, the telephone they used, Bell himself, and his
answers were all part of reality. And if Bell had thought that reality did not exist, he
would presumably have been a solipsist (meaning someone who thinks that only his
own mind exists and that everything else is some sort of dream going on in his mind)
and he would therefore have thought that the interviewers themselves did not exist
(outside of Bell’s mind). No wonder Bell replied that he “tolerates no nonsense”.

The fourth chapter deals with Bell’s result and the problem of nonlocal action,
which is the second mystery of quantum mechanics. There, we will explain the
meaning of the statement that “particles can interact instantaneously even when they
are arbitrarily far apart” and discuss the extent to which it is true.

The fifth chapter, which is the heart of this book, is about the de Broglie-Bohm
theory (nowadays also called Bohmian mechanics), first introduced by Louis de
Broglie before 1927, and then quickly abandoned by him; it was rediscovered and
developed by David Bohm in 1952, popularized by John Bell, and further developed
and defended by, among other people, David Albert, Chris Dewdney, Detlef Diirr,
Sheldon Goldstein, Basil Hiley, Peter Holland, Anastasios Kyprianidis, Tim Maudlin,
Nelson Pinto-Neto, Ward Struyve, Stefan Teufel, Roderich Tumulka, Antony Valen-
tini, Jean-Pierre Vigier, Nino Zanghi and their collaborators. In a nutshell, the de
Broglie-Bohm theory is a theory of matter in motion, just like any other physical
theory; but the motion is quite strange, as one would expect, given all the strange phe-
nomena that led to the discovery of quantum mechanics in the first place. However,
the strangeness does not come from putting the observer at the center of everything.

Indeed, the main virtue of the de Broglie—Bohm theory is that it is a clear theory
about what is going on in the world, whether we look at it or not. So the vagueness and
subjectivity of the notion of “observer” or of “measurement” simply disappear in this
theory. Of course, the theory does make empirical predictions, and the latter are the
same as those of ordinary quantum mechanics, but the de Broglie-Bohm theory and
ordinary quantum mechanics are not the same theory, because the de Broglie—Bohm
theory is a theory about microscopic reality, while ordinary quantum mechanics
is not: it is an algorithm for very accurately predicting results of experiments, an
algorithm that is, in fact, a consequence of the de Broglie-Bohm theory, as we will
see in Chap. 5.

Using the de Broglie—Bohm theory, one can easily explain why all the arguments
that are supposed to prove that such a theory is impossible are false. While determin-
istic, the de Broglie—Bohm theory also accounts naturally for the apparent indeter-

(Footnote 30 continued)

Mach always rejected the existence of atoms. His philosophy influenced the school of logical
positivism, which itself had an influence on the orthodox view of quantum mechanics. We will
discuss logical positivism and its influence in physics in Sect. 7.7 and in Chap. 8.
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minism of quantum phenomena. Finally, it explains the “active role” of measuring
devices (the apparent effects of observations on reality), so strongly emphasized by
the Copenhagen school, but by making it a consequence of the theory and not of
some a priori philosophical doctrine. It also explains the nonlocal actions inherent
in quantum phenomena.

What more could we ask for? As John Bell explained, after recalling the arguments
claiming to show that a theory such as de Broglie-Bohm theory is impossible:

But in 1952 I saw the impossible done. It was in papers by David Bohm. Bohm showed
explicitly how parameters could indeed be introduced, into nonrelativistic wave mechanics,
with the help of which the indeterministic description could be transformed into a deter-
ministic one. More importantly, in my opinion, the subjectivity of the orthodox version, the
necessary reference to the ‘observer’, could be eliminated. [...] Should it not be taught, not
as the only way, but as an antidote to the prevailing complacency? To show us that vagueness,
subjectivity, and indeterminism, are not forced on us by experimental facts, but by deliberate
theoretical choice?

John Bell [49, p. 160]

In the sixth chapter, we will consider the main theories, other than the de Broglie—
Bohm theory, that have been proposed in order to solve the conceptual problems of
quantum mechanics. Their clarity and consistency will be compared with those of
the de Broglie—-Bohm theory.

In the seventh chapter, we will address various historical misunderstandings
regarding Einstein, de Broglie, Schrodinger, Bohm, and Bell. All these authors,
whether in their critique of the usual interpretation of quantum mechanics or in
their attempt to complete it, have been ignored or misunderstood by the majority of
physicists of their time and often also of today.

The eighth chapter will outline some conjectural thoughts about the general
cultural impact of the various interpretations and misinterpretations of quantum
mechanics.

Many of the ideas defended here are heterodox and may even seem shocking.
However, the intention of this book is not to give final answers to the conceptual
problems of quantum mechanics, but rather to open the reader’s mind to the possibility
that answers can be given beyond what is taught in standard quantum mechanics
courses. The student I once was, who could not understand sentences such as “physics
does not deal with Nature, but with our knowledge of it”, would have been delighted
to read such a book.

It should nevertheless be emphasized that this book is written in the same spirit as
the following statement, where one could replace “philosophy” by “the conceptual
problems of quantum mechanics”:

Philosophy is to be studied, not for the sake of any definite answers to its questions since no
definite answers can, as a rule, be known to be true, but rather for the sake of the questions
themselves; because these questions enlarge our conception of what is possible, enrich our
intellectual imagination and diminish the dogmatic assurance which closes the mind against
speculation [...]

Bertrand Russell [425, pp. 249-250]



Chapter 2
The First Mystery: Interference
and Superpositions

2.1 The Spin

We will start with the simplest quantum mechanical situation, the one concerning
the “spin” of a particle.! Despite its simplicity, it will allow us to explain one of
the basic “mysteries” of quantum mechanics. Some particles, electrons for example,
possess a property called “spin”, which is a quantity that can be measured in different
directions and takes, in each direction, only two values, denoted up 1 and down | .
We will consider here only two directions in which the spin can be measured, denoted
1 and 2, so that we can have four possibilities: spins that are up 1 1 or down 1 |
in direction 1 and up 2 1 or down 2 | in direction 2. One should not confuse the
directions 1 or 2 in which the spin is measured and the values up or down that can
be the result of those measurements in each direction.

There is no need for the moment to try to understand what the property of “spin”
means. We will start from a completely “phenomenological” attitude about the spin,
namely, we will simply describe what happens in experiments that are “measuring”
the spin, without at first trying to explain how these experiments work.

We put scare quotes here around the word “measuring” because, as we will see in
Sect.2.5 (and this will be one of the most important themes of this book), the notion
that there is an intrinsic property of a particle corresponding to its spin in a given
direction and that is being measured when one “measures its spin” is untenable. We
will not put quotation marks everywhere, but it should be remembered that when we
use the word “measurement” we do not want to suggest that some intrinsic property
of a particle is being discovered.

The whole discussion using the spin may seem rather abstract, but it is easy to
analyze mathematically, as we will see in Sect. 2.3. There is another, similar example,

I'The first four sections of this chapter draw heavily on David Albert’s book Quantum Mechanics
and Experience. We emphasize that the “experiments” here are meant to illustrate the theory rather
than real experiments. The latter are generally carried out with photons, whose polarization plays a
role similar to the spin here. But all the experiments described below correspond to what quantum
mechanics predicts.
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Fig. 2.1 Measuring the spin
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the double-slit experiment, which may seem more familiar, but is less easy to analyze
and which will be discussed in Appendix 2.E.

Let us see what happens in the experiments described in Fig.2.1, where many
particles are sent, so that we get statistical results. Note also that here, as in every
experiment described in this book, particles are sent (in principle at least) one at a
time, so that there are no possible interactions between different particles that could
account for their strange behavior. So in Fig. 2.1, we have two devices that “measure
the spin” of the particle in two different directions (they are unrelated to each other).
The reader who wants a more realistic view of these experiments can look at Fig. 5.4.

If we send a particle through one such device, the particle comes out through one
of two holes, depending on the value of its spin, as shown in Fig. 2.1. We also suppose
that we can select particles having a given spin value, up or down, in either of the
two directions 1 or 2 (we will explain below how to do that). By “having a given
spin value”, we mean that if one measures, say, in direction 1 the spin of a particle
that is up in that direction 1, we will always get up.

First, we send particles that are down in direction 1 into a device that measures
the spin in direction 2 (Fig. 2.1 left); if we repeat that operation many times, we will
get 50% 2 1,50% 2 |. If we had started with particles that were up in direction 1,
we would have gotten the same result. Likewise, if we send particles that are up in
direction 2 into a device that measures the spin in direction 1 (Fig.2.1 right), we get
50% 1 1,50% 1 | and we would get the same results starting with particles that are
down in direction 2. So far, so good: there is no particular mystery here!

This explains also how one can select particles having a given spin value, up or
down, in either of the two directions 1 or 2: just take the particle exiting, say, the
device that measures the spin in direction 2 through the 2 1 hole and we will have
selected particles that have spin up in direction 2 (i.e. if we then send those particles
through a device that measures the spin in direction 2, they will always exit through
the 2 1 hole). And likewise for the other possibilities.

Now, we may ask: can we select particles that are, say, down in direction 1 and
up in direction 2? We might think that one way to do this, at least naively, is to send
particles that are up in direction 2 in a device that measures the spin in direction
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Fig. 2.2 Trying to measure A A
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1 and select those that are down in that direction. That way, the particle should be
down in direction 1 and up in direction 2 (see Fig. 2.2 left).

But if we want to check that we really have particles that are down in direction
1 and up in direction 2, we might measure the spin in direction 2 of those selected
particles (see Fig.2.2 right).> However, we find that the result is again 50% 2 %,
50% 2 |. This is our first surprise.

The same result would occur if we tried to have particles that are, say, down in
direction 2 and up in direction 1, or with any of the four possible combinations. It
seems that, by measuring in direction 1, the spin of a particle that is up in direction 2,
we “erase” the fact thatitis up in direction 2. Indeed, the results of a later measurement
of the spin in direction 2 of the particles which are up or down in direction 1 are just
what they would be for such particles, independently of the fact that they had a spin
up in direction 2, before the measurement in direction 1.

This is a simple example of the Heisenberg uncertainty relations or of what Bohr
called “complementarity”®: we cannot measure simultaneously the spin in two dif-
ferent directions, because they require different devices and, applying one device in
one spin direction and then a second one in another direction, destroys the result of
the first device. So, one could consider two different “complementary” pictures of
the particle: one describing the spin in direction 1, the other the spin in direction 2.
However, one should not try to combine the two pictures (spin in directions 1 and 2)

2In Fig.2.2 left, we put one hole to the right instead of downwards, because the particles exiting
through that hole go into the box on the right of the figure.

3This is discussed mathematically in more detail in Appendix 2.C. Bohr explained the “comple-
mentary, or reciprocal, mode of description” by emphasizing [71] “the relative meaning of every
concept, or rather of every word, the meaning depending upon our arbitrary choice of view point, but
also that we must, in general, be prepared to accept the fact that a complete elucidation of one and
the same object may require diverse points of view which defy a unique description. Indeed, strictly
speaking, the conscious analysis of any concept stands in a relation of exclusion to its immediate
application.” The reader may be forgiven for not understanding exactly what this means. We try here
to give a plausible interpretation of that idea. See [181] for a discussion of different interpretations
of Bohr’s thinking. We will return to a discussion of Bohr’s views, in relation to his debate with
Einstein in Sect.7.1.
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together, to get a more complete description of the particle. One should rather choose
to use one or the other picture but not both at the same time.*

As Bell stresses, the use of the word “complementary” by Bohr is not the usual
one: one might say that an elephant, from the front, is “head, trunk, and two legs”,
while, from the back, “she is bottom, tail, and two legs” and yet something else from
top or bottom. Bell adds: “These various views are complementary in the usual sense
of the word. They supplement one another, they are consistent with one another, and
they are all entailed by the unifying concept ‘elephant’.” But, for Bohr, according to
Bell, “complementarity” means rather the reverse of that common usage: it means
contradictariness, since the description of the spin in directions 1 and 2 exclude each
other [49, p. 190].

This seems somewhat surprising, and the uncommon use of the word “comple-
mentarity” to describe the situation does not help, but in actual fact it may not be that
surprising: one might think that these measuring devices, being big objects, neces-
sarily perturb the microscopic system, the electron, being observed. By measuring in
direction 1, we perturb the value of the spin in direction 2. If this view were tenable
(we will see in Sect.2.5 that it is not), there would be no big mystery in quantum
mechanics, although the uncertainty principle is sometimes presented as the main
new characteristic of the quantum world.

However, there is a far more perplexing situation to which we turn now.

2.2 The Mach-Zehnder Interferometer

Figure 2.3 describes an “interferometer”.> The box inside carrying the label 2 mea-
sures the spin in direction 2 with the 2 1 and 2 | particles exiting through different
holes. After passing through the box measuring the spin in direction 2, there are
two possible paths for the particle, one for 2 1, the other for 2 |. The particles are
reflected by mirrors and their paths join at the black arrow (whose functioning is not
described for the time being).

The reader may think, given what was said in Chap. 1, that in quantum mechanics
there is no such thing as the path of a particle. This will be discussed in detail in
Chap. 5, but let us now simply use the word “path” to mean that, if we try to detect
the particle along any one of those paths, we will always find it along one and only
one of them.

Let us start by sending particles that are 2 4 in the box with the label 2 (instead of
1 | asinFig.2.3). Then 100 % of the particles will follow one path (the one indicated
2 1). If, after the black arrow, one measures the spin in direction 1, one obtains 50 %
11,50% 1 | (unlike what is represented in Fig.2.3). If one sends particles that are
2 |, one gets a similar result (with the path 2 | being followed).

“Bohr did not use spin as an example, but rather the descriptions in terms of wave and particle,
which we will discuss in Appendix 2.E.

5See Greenberger [239] for a more detailed discussion.
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Fig. 2.4 Interference with a wall

Let us now send particles with the spin in direction 1 to be, say, down, as in
Fig.2.3. Then, 50 % follow one path (2 1), 50 % follow the other path (2 |). Since,
in the previous setup, we had 50% 1 1, 50% 1 |, for the particles that follow
either the path 2 1 or 2 |, one would expect to get 50% 1 1, 50% 1 | here too, if
one measures the spin in direction 1 after the black arrow. But one finds that, after
the black arrow, 100% are 1 |, so that, whichever path they follow, the particles
“remember” that they were 1 |, to start with. Of course, the same would happen if
we did the experiment with particles that are initially 1 4.

This result is surprising, since we just learned from trying to measure simulta-
neously the spin in the directions 1 and 2 that one aspect of quantum mechanics is
that measurements tend to erase the memory of past states. The first surprise is that
particles seem to have no memory, after a measurement, of their pre-measurement
state, but now they seem to remember it completely.

And there are more surprises. Suppose we add a wall along the path 2 |, as in
Fig.2.4. If the wall is inserted across the path, it blocks the particles taking that path.
What will we then observe after the black arrow?
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1. 50% fewer particles (which is to be expected since half of the particles follow
the path 2 | and are now blocked).

2. Without the wall, 100 % of those that take the path 2 4 are found to be 1 | after
the black arrow. The same is true for those that followed the path 2 |. If one
blocks the path 2 |, one would think that it should not affect the particles that
take the path 2 1. Thus, one should get 100% 1 | (of the remaining 50 % of
particles that reach the black arrow).

And here is the big surprise: one gets 25% 1 | and 25% 1 1 (that is, half of the
remaining 50 % for each possibility). Therefore, one acts in a certain way on the
particles that take the path 2 1 by blocking the path 2 | that they do not take!

This leads to an apparent dead end. Let us go back to the experiment without the
wall, sending particles that are 1 |. What does each particle do?

e Does it take path 2 1 ? No because if it did, one would have 25% 1 1,25% 1 |
at the black arrow, as one sees when one puts a wall blocking the path 2 |.

e The path 2 | ? No, for the same reason.

e Both paths? No, one always finds the particle along one of the paths if one tries to
measure it.

e Neither of the paths? No, if both paths are blocked, nothing happens at the black
arrow.

This phenomenon and other related phenomena are called inferference, because
whether one path is open or not seems to influence the behavior of the particles
following the other path. This is the essence of the first quantum mystery!

It should be remembered that, in principle, the experiment is done by sending
one particle at a time, so that no explanation can possibly be based on interactions
between particles.

The way this experiment is usually described is by saying that the particle “follows
both paths if they are both open” and only one path if one of them is blocked. But
how does the particle know ahead of time, whether both paths are open or not?

Indeed, one might do a “delayed choice” experiment,® that is, introducing the wall
after the passage of the particle through the first box measuring the spin in direction
2 (we can imagine both paths to be very long or put the wall just before the black
arrow).

Alternatively, one could remove the black arrow while the particle is in flight and
then, there would be no recombination of the paths and the particles would continue
their trajectory and pass each other (see Fig.2.5). Those following the path 2 4
continue downwards and those following the path 2 | continue upwards. If we then
measure the spin in direction 1, along any of these paths, we get25% 1 1,25% 1 |
in each case. Indeed, we have, along each path, particles that are only 2 1 or 2 |,
and are measured in direction 1; the result is then as in Fig. 2.1 (right) and also for
2 | instead of 2 1.

6See [507, 509] for the theoretical proposal of such experiments by Wheeler, and [280] for experi-
mental realizations.
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Fig. 2.5 No interference without the black arrow

This only deepens the mystery and is the basis of the claim by Wheeler, that “the
past [meaning here whether the particle “has chosen” to follow both paths or only
one] is not really the past until it has been registered” [107, p. 68]. Moreover, Wheeler
invented an ingenious scheme where such “experiments” would not take place in the
laboratory, but on a cosmic scale. If we accept his reasoning, this implies that we
could decide now, by choosing which experiment to perform on the light coming
from distant quasars, what happened billions of years ago’ [507].

Another paradoxical consequence of the experiment described here is the Elitzur—
Vaidman bomb-testing mechanism.® Suppose that we have a stock of bombs, some
of which are active and some of which are duds. We want to find out which is which,
but an active bomb will explode if it is hit by only one particle. On the other hand,
by definition, a dud is totally insensitive to being hit by one or more particles, so that
it does not affect those particles in any way. How could we tell, by classical means,
which bombs are active without exploding them? There seems to be no way to do
that.

But there is a trick, based on the Mach—Zehnder interferometer, that allows to
identify at least a fraction of the active bombs as being active without exploding
them. Let us replace the wall in Fig. 2.4 by a bomb. First, suppose that the bomb is
a dud. Then, since it is insensitive to the particles, it is as if we had done nothing,
i.e., as if we had not put a wall. The particle will behave as if there was no wall and
therefore its spin at the black arrow will always be 1 | if we measure the spin in
direction 1.

On the other hand, if the bomb is active and detects the particle, it explodes and
that’s it—it is lost. That happens half of the time if the bomb is active. But suppose
that the bomb is active and does not explode. This means that the particle took the
path 2 7; if we then measure the spin at the black arrow in direction 1, we will get

"This will be clarified in Sect. 5.1.2. See also [38], where Bell discusses the delayed-choice exper-
iment from the viewpoint of the de Broglie—Bohm theory.

8See [173] for the theory and [300] for experiments.
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1 | for half of those particles and 1 1 for the other half. If we get 1 |, we cannot
conclude anything since that would also happen if the bomb were a dud. But, if we
get 1 1, then we can be certain that the bomb was not a dud since that would never
happen if the active bomb is replaced by a dud. Since each result 1 |, 1 1 happens
half of the time (among the 50 % that have not exploded), we can identify 25 % of
our initial stock of active bombs as being active without exploding them.
Altogether, half of the active bombs explode and are lost, but a quarter are “saved”
(not exploded and known to be active). For the remaining quarter, we don’t know.
We can then repeat the operation (together with the duds, since we don’t know which
is which) and identify as active one quarter of that remaining quarter. Repeating the
operation many times, we can get as close as we like to a total of one third of the
initial stock of active bombs as being known to be active and not exploded,’ since

1/3=232,(/4H"

2.3 The Quantum Formalism

We now describe a mathematical algorithm that allows us to predict these surprising
results, without worrying yet about what it “means” physically.'?

We associate with each particle a “state”, which is simply a two-dimensional
vector. In principle, the vector is complex, i.e., the vector space is C2 rather than R2,
but this will not matter here. The association is as follows (there is of course some
arbitrariness in the way this association is made, but let us put that aside):

1
(O) , (2.3.1)

iy = ((1)) (2.3.2)

1)

1

en = (1) 233)
1 1

24y = ﬁ(—l)' (2.3.4)

°If one can modify the experiment so that a fraction p of particles follow the path 2 | and a
fraction 1 — p follow the path 2 4, then one can “save” a fraction (1 — p)/2 of the bombs in one
operation and, repeating this many times, one can eventually identify a fraction (1 — p)/(1 + p) =
Z,‘:; [(1 — p)/2]" of the active bombs, which is as close to 1 as one wants, for p small.

10For an elementary introduction to the quantum formalism, see also Susskind and Friedman [467].
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We have the obvious relations

1
2 = —(|1 1 235
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20 = (-1 (23.6)
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The states of the particles, i.e., the vectors, change according to the following rules:
1. When no measurements are made:

Istate(r)) = c1() [1 1) + () [1 L) =di(@®) 121) +da(0) [21]), (2.3.9)

where ¢ (1), c2(t), d(t), d»(t) are related by (2.3.7) and (2.3.8), and change con-

tinuously in time in such a way that, at all times, we have |c;(¢)|> + |c2()|> = 1

and |d, (D]* + |d2 (D] = 1.

This evolution is deterministic, i.e., if, at some time, say 0, we give ourselves a
state |state(0)), then this determines a unique state |state(¢)) for all times.

To say more precisely what this evolution is, one would have to write down a
differential equation for ¢;(z), d;(¢), i = 1, 2, which in more general situations
is called the Schrodinger equation.!! But we will not need to go into that for the
moment (the Schrodinger equation is discussed in Appendix 2.A).
This evolution is linear, i.e., if, at some time, say 0, we have

|state(0)) = c;|state; (0)) + c;|state,(0)) , (2.3.10)
for two states |state;) and |state,) and numbers ¢y, ¢;, then, at all times, we have

|state(t)) = cy|state; (t)) + cp|state (7)) . (2.3.11)

2. But if a measurement is performed, the rule of evolution changes. Suppose the
state is (2.3.9):

10y, to be precise, the Dirac or the Pauli equations in order to deal with spin.
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If one measures the spin in direction 1 at time t, one finds 1 with probability
|c1(t)|? and | with probability |c,(#)|?, bearing in mind that |c; (1)|?+|c2(£)|> = 1
so that the probabilities add up to 1.

If one measures the spin in direction 2, one finds 1 with probability |d; (¢)|* and
| with probability |d, ()|, where |d, (1)|* + |d2(t)|> = 1.

After the measurement in direction 1, if one “sees” the result 1, the state changes
and becomes |1 1), and if one “sees” |, the state changes and becomes |1 |).
The same thing holds for the spin in direction 2.

This second rule is called the “reduction”, or the “collapse” of the state.

Before proceeding, let us note that, a priori, the two rules are mutually incompatible:
onerule gives rise to a continuous in time, deterministic and linear evolution, the other
to a discontinuous in time, non-deterministic and nonlinear one. It is discontinuous
because, when the state is reduced, it “jumps” discontinuously to one state or the
other. It is non-deterministic because, in the operation of reduction, one only assigns
probabilities to each possible result. Finally, it is nonlinear because, if the state is
c1]1 1) +c2|1 ), and if one then measures the spin in direction 1 and the result is 1,
the state is reduced to |1 1), irrespective of the values of the coefficients ¢; and c5,
while if the operation were linear, the result should be a linear combination involving
¢y and c,. The coefficients ¢y, ¢, determine the probability of a given result, but do
not affect the resulting state after the collapse.

Moreover, the theory does not tell us what a measurement is. In practice, one
knows what it is, and therefore there are no practical problems here, but there is a
serious problem of principle: what are the exact physical properties that define what
a “measurement” is and why do we have to use one rule “between measurements”,
and another “during measurements”? It is of course because of this second rule that
“measurements” play a central role in the quantum theory and this explains to some
extent the strange statements quoted in Chap. 1.

Note that there are other quantities to which this algorithm can be applied. In
classical physics, one introduces the momentum, the energy, the angular momentum,
etc. and there are quantum analogue of these variables. In Appendix 2.B we give the
definition of the quantum state, and explain its time evolution and the collapse rule
when one “measures” those quantities.

What we have described here is the “spin” part of the quantum state. But there
is also a position part, namely a function W (x, ¢) called the wave function, where
x € R is a variable like the spin above, but taking continuous rather than discrete
values. |W(x, 1)|? is then the probability density for finding the particle at x at time
t if one “measures” its position.

The wave function W (x, r) varies with time. The time evolution is governed by
a differential equation, the Schrodinger equation (see Appendix 2.A), which is such
that, if one has [ |W(x, 0)[*dx = 1 at the initial time, then [ |W(x,7)]*dx = 1 at
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all times.!? This is analogous to the constraint |c(¢)|> 4 |c2(¢)|> = 1 above. The
evolution is continuous in time, deterministic and linear: if the initial wave function
at time 0, ¥(x,0) = ;¥ (x, 0) + ¢ W, (x, 0), with ¢y, ¢, complex numbers, then
for all times,

VUx,t) =cVi(x,t) +crWa(x, 1),

with all three terms solving the Schrodinger equation.

What happens to W(x, ) if we measure the position of the particle? Suppose
that we have a wave function W(x, t) = ¢; W (x, 1) + ;W) (x, t), where Wy (x, 1)
and W, (x, t) have disjoint support,'> meaning that W, (x, #) = 0 for all x such that
W, (x, 1) # Oandvice-versa. Supposealsothat [ |W;(x, 1)[*dx = [ [Wa(x,1)|*dx =
1, and |c; |2 + ¢ |2 = 1 which implies, since the supports of W and W, are disjoint,
f|\Il(x,t)|2dx = |cl|2f|\1’1(x,t)|2dx + |cz|2f|\112(x,t)|2dx = 1. Then, we will
find the particle in the region where W, (x, t) # 0 with probability |c|?, and in the one
where W, (x, ) # 0 with probability |c,|2. After the measurement, the wave function
“collapses” to either W (x, t) or W, (x, t), depending on the result. This change “after
a measurement”, like the one for the spin measurement, is also incompatible with
the continuous in time, deterministic and linear evolution given by the Schrédinger
equation.

The problem posed by this duality of rules is expressed ironically by Bell:

Was the wavefunction of the world waiting to jump for thousands of millions of years until
a single-celled living creature appeared? Or did it have to wait a little longer, for some better
qualified system ...with a PhD?

John S. Bell [46, p. 34]

However, we will put such questions aside for the time being and show how this
formalism can predict the strange experimental results described in the previous
section. Let us first introduce the following terminology:

1. We will call the function W (x, t) the wave function of the particle. We will extend
this notion to a system comprising several particles at the end of Appendix 2.A
and also in Chaps.4 and 5.

2. We will call a product of the form W (x, 7)|1 1), or a linear combination of such
products, e.g., W' (x, 1)1 1) + W¥(x,1)[1 |) or the corresponding expression
with |2 1), |2 |), the quantum state [see (2.4.2) below for an example of such
state]. It combines both the spatial and the spin parts discussed above. We will
sometimes use the notation W without the arguments (x, ) to denote the quantum
state.

12Since W(x,t) is in general a complex number, | (x, D> = W(x, )*W(x, ), where z* is the
complex conjugate of z € C.
13The support of a function is the closure of the set on which it is nonzero.
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2.4 How Does It Work?

Let us first show how this formalism accounts for the fact that one cannot have
particles with a well defined spin in directions 1 and 2 simultaneously. Indeed, if we
measure the spin in direction 1 of a particle with its spin up in direction 2, as in Fig. 2.2
(left), we get either the state |1 1) or the state |1 | ), because of the collapse rule, and
each of these states is a superposition of |2 1) and |2 | ) with equal coefficients [see
(2.3.5) and (2.3.6)]. Hence, if we measure the spin in direction 2 for the particles
that are now in the state |1 |) (see Fig.2.2 right), we will get 50% |2 |) and 50 %
|2 1). The “memory” of the particle being |2 1) to start with is lost. So we see here
that the collapse erases the memory.

Let us now go back to the data of Sect.2.2 and consider Fig.2.3. At time #;, the

state is [see (2.3.8)]
1

)y =—=(21-121). (2.4.1)

S

2

At times 1, and t3, we have

1
5 (2 Dlpath2 1) =12 Dipath 2 1)) (2.4.2)

where |path 2 1) and |path 2 |) are the spatial parts of the quantum state W (x, 1),
which propagate more or less along the paths indicated 2 1 and 2 | (meaning that,
if we detect where the particle is, we will always find it along one of those paths).
Let us assume that, at time 74, the black arrow is a device that is able to recombine
the paths of the two particles and send them in the direction —. Then the state
becomes 1
V2

Since the spin part of the state is now |1 | ), we will get 100 % “down” results if we
measure the spin in direction 1 after the black arrow.

If we now put a wall on the path 2 | (see Fig.2.4), this means that we perform
a measurement, since it allows us to know which path the particle follows'*: if the
particle is blocked by the wall, it means that it took the path [path 2 |), but if the
particle is not blocked, its path must be |path 2 1). So if the particle is not blocked,
the state “collapses” and becomes

(121) = 12 4))Ipath —) = |1 |)|path —) . (2.4.3)

|state) —> |2 1)|path2 1), (2.4.4)

which becomes at time 74, at the “black arrow”,

14The same is true if one puts an active bomb (as opposed to a dud, which is the same as not putting
anything), along the path 2 |. Depending on whether the bomb explodes or not, one knows which
path the particle took.
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1
E(|1 ) 411 1)) |path —) . (2.4.5)

Thus, if we then measure the spin in direction 1, we will get25% 1 1 and25% 1 |.

Here, the strange role of “measurements” cannot be explained away by appealing
to local disturbances caused by the measuring device (as we did in Sect.2.1 when
discussing the impossibility of simultaneous measurement of the spin in two different
directions), since the wall has an effect on the particle even when it follows a path
on which the wall is not inserted. Moreover, those two paths can in principle be
arbitrarily far from each other, and the size of the separation has no effect on the final
statistics (which always remain 25% 1 P and 25% 1 ).

Finally, note that if we remove the black arrow (say, while the particles are moving
past the first box, so that we are dealing with a “delayed choice” experiment), as in
Fig.2.5, there would be no recombination of the paths and the state would remain in
the form

%(I2 Mlpath 2 1) — 12 {)[path 2 |)) .

The parts |2 1)|path 2 1) and |2 | )|path 2 |) then continue along their trajectories
and pass each other: the part |2 1)|path 2 1) continues downwards and the part
|2 |)|path 2 |) continues upwards. If we then measure the spin in direction 1, along
either of these paths, we will get 25% 1 1 and 25% 1 | in each case, since this is
what is predicted by both the states

R R
V2 V2

So it looks as though we could affect the past behavior of the particle (whether it
follows “both paths at once” or only one path) by inserting or not the black arrow,
after they have already started their trip.

As we see, the mysterious behavior described in Sects.2.1 and 2.2 can easily be
predicted by the quantum formalism which, at least in this special case, is not math-
ematically complicated. However, a natural question arises: how are we supposed
to understand all this talk about vectors or wave functions, and also, of course, this
duality of rules?

21)=—7=(11+I1}) and 24)=—7=(11)—I1])).

2.5 What Is the Meaning of the Quantum State?

To me it seems like “quantum theory” is in a sense like a traditional herbal medicine used by
“witch doctors”. We don’t REALLY understand what is happening, what the ultimate truth
really is, but we have a “cook book™ of procedures and rituals that can be used to obtain
useful and practical calculations (independent of fundamental truth).

John Nash [347, p. 4]
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There are several possible reactions to what has been described in the previous
sections.

A first reaction is to claim that one cannot understand the microscopic world and
that one must content oneself with predicting the results of measurements, which are
necessarily macroscopic, and are thus described in a “classical” (i.e., understandable)
language. For example, one could say that, if one prepares the particle in state |1 1),
say, it will have such and such probability of ending up in a given state if we do this
or that experiment. The final state is described by the result of measurement and can
be described in terms of where the particle goes (through which hole it leaves our
measuring device of Fig.2.1, for example). Since we know which hole the particle
goes through by detecting it, and since the detection leads to a direct observation by
us, humans, one can understand why human beings seem to be put at the center of a
physical theory.

Those who do not like this return to anthropocentrism may of course claim that
human beings are not essential here: all that matters is a macroscopic trace left on the
measuring device, which could be seen by us, but which is there whether we look at
it or not. This is certainly a possible understanding of the “orthodox” view. Landau
and Lifshitz wrote in their standard textbook:

[...] we emphasize that, in speaking of ‘performing a measurement’, we refer to the interac-

tion of an electron with a classical ‘apparatus’, which in no way presupposes the presence
of an external observer.

Lev Landau and Evgeny Lifshitz [302, p. 2], quoted in [46, p. 35]

A second reaction follows naturally from this idea, and consists in the hope that, by
analyzing the measurement process in more detail, as a purely physical process (with
no reference whatsoever to an outside “observer”), one may arrive at an understanding
of what is going on.

A third reaction is to view the quantum state as representing, not an individual
system, but an ensemble of systems and having thus a role similar to probabilities in
classical physics,16 with |c; ()|, |d; ()%, i = 1,2, in (2.3.9) being the probabilities
of the spin being either up or down in directions 1 and 2. According to this view, the
quantum state provides us with incomplete information on individual microscopic
systems. The latter do have properties such as a given spin value in all directions, or a
position and a velocity, but the quantum state itself does not contain that information.
We may not know how to prepare an individual system with those given properties,
but they nevertheless exist. When we produce several particles in a given quantum
state, we actually produce particles with different individual properties, whose sta-
tistics are encoded in the quantum state. This approach may be called the statistical
interpretation of quantum mechanics (see, e.g., Ballentine [27], Blokhintsev [59], or
Taylor [468] for a defense of this viewpoint).

A fourth reaction (sometimes motivated by the third) is to propose a more complete
theory than quantum mechanics. One would not simply say, as in the third reaction,

I5This section is in part an extension of [81].
16The latter are discussed in Sect.3.4.3.
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that particles do have properties not described by the quantum state, but one would
try to say what these properties are and how they evolve in time. Einstein’s reaction
(which we will discuss in Chap. 7) was basically the third one, but he also hoped for
a more complete theory.'’

The first reaction is associated with the Copenhagen interpretation and is basically
what was called the “official” position in Chap. 1. It was criticized there and will be
discussed further in Chap. 3. The fourth reaction will be the topic of Chap.5. The de
Broglie-Bohm theory is a subtle form of the statistical interpretation, but based on a
more complete theory than ordinary quantum mechanics.

We now discuss the second and the third reactions, one of which probably lies in
the back of the minds of most physicists who don’t see any problem with quantum
mechanics. Of course, if one of those positions were tenable, they would be right not
to worry, but, as we will try to show, neither of these “ways out” is compatible with
either the quantum formalism (for the second reaction) or with experimental facts
(for the third one).

These two reactions are different answers to the same question: does the mea-
surement somehow create the result that is being observed or does it simply reveal
some pre-existing property of the system? The word “measurement” suggests the
latter meaning: if I measure the length of a table, I assume that the table has a certain
length before I measure it. The same thing holds for more indirect measurements,
like the distance between the Earth and the Sun. This view leads us to the statistical
interpretation (since the quantum state does not assign a fixed value to the quantities
being measured) and we will return to it in Sect.2.5.2.

One natural objection to the idea that the quantum state is just like a classical
probability comes from the bizarre interference effects described above (which have
no equivalent in classical probabilities). In the Mach—Zehnder interferometer, if we
assign a probability 1/2 to the event “the particle follows the path 2 1 and 1/2 to the
event “the particle follows the path 2 |”” when both paths are open, and a probability
1 to the event “the particle follows the path 2 1 when the path 2 | is blocked, why
do we get different results in those two situations if we measure the spin in direction
1 at the black arrow?'8 If probabilities reflect our ignorance (of the path being taken),
simply knowing which path is taken should not have any physical effect. Does this
not show that the quantum state is a physical quantity rather than a pure expression
of our ignorance?

But if the quantum state is physical, should one not think that the measurement,
viewed as a physical process, perturbs the quantum state in such a way as to “create”

17Tn [43], Bell considers six “possible worlds of quantum mechanics”, i.e., six possible reactions
with respect to the problems discussed here: the pragmatic attitude, the Bohr approach, introducing
the mind into physics, the many-worlds interpretation, spontaneous collapse theories, and the de
Broglie-Bohm theory. The last three theories pertain to what we call the fourth reaction and will
be discussed in Chaps. 5 and 6. The pragmatic attitude and the Bohr approach both exemplify what
we call the first reaction, while introducing the mind into physics could be considered as part of the
fourth reaction, but we will not discuss it beyond a few words in Chap. 3.

I8 As se saw in Sect. 2.2, we get 100% 1 |, if we measure the spin after the black arrow in direction
1 when both paths are open, and 25% 1 1,25% 1 |, when path 2 | is blocked.
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the result? There is nothing a priori irrational or even strange about this idea: the
measuring device is necessarily macroscopic (otherwise we would not be able to see
the result) and the object being measured is microscopic. The huge difference in size
between the measuring device and the system being “measured” leaves ample room
for the macroscopic object to affect the microscopic one.

One could of course declare a priori that the measuring device, being macroscopic,
“collapses” the quantum state during a measurement, and that view is also some-
times associated with the Copenhagen interpretation. The two basic rules of the time
evolution of a quantum state would then simply reflect the micro/macro distinction:
a microstate evolves according to the Schrodinger equation, except when it interacts
with a macroscopic object, in which case it may be reduced or collapsed.'® How-
ever, that view assumes that there is a sharp distinction between microscopic and
macroscopic; but if the Schrédinger evolution applies to one particle, two particles,
ten particles, and so on, where should we stop?

A way out of this problem would exist if one could treat the measuring device
in a quantum mechanical way and obtain those reduced states for the microscopic
systems at the end of a measurement.”’ We begin by considering this possibility.

2.5.1 The Measurement Process Within the Quantum
Formalism

Let us see what happens if we analyze the measurement process within the quantum
formalism, an analysis that goes back to von Neumann [496]. We want to see if,
within the quantum formalism, one can avoid the dual nature of the evolution law
for the quantum state.

We consider a very simplified measurement process. Let

w=ao o (y)+e(Y)]

which describes the original state of a particle whose spin is going to be measured,

viz.,
1 0

and the state ¢y (z) of the measuring device. Here z is a macroscopic variable, indi-
cating the position of the measuring device (for example, the position of its center of

19This would make the collapse rule somewhat analogous to the phenomenon of entropy increase
in statistical mechanics. We will discuss this analogy further in Sect.5.1.7.

20We will see in Sect. 5.1.6 that this is, in a sense, what happens in the de Broglie—-Bohm theory; but
it only works because, in that theory, one has a more complete description of the quantum system
than the one in ordinary quantum mechanics.
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Fig. 2.6 Evolution of the
pointer during a
measurement z=0

upward

downward

mass along the vertical axis), and ¢y (z) is centered at z = 0, meaning that the pointer
is as in the first picture in Fig.2.6. To simplify matters, we do not include here the
wave function of the particle whose spin is being measured, considering only the
“spin” part of its quantum state.

One might question the assignment of a quantum state to a macroscopic object.
But this is exactly what we mean by “working within the quantum formalism”. In that
formalism, by assumption, every object is describable by such a state. Of course, the
pointer is composed of a great number of particles, not just the variable z introduced
here. However, if we measured the positions of all the particles composing the pointer
(which is of course impossible in practice, but we can at least imagine doing that),
we would also know the value of z, so that one may consider that variable as being
determined by all the other variables. Note that we say “if we measured” the positions.
We do not assume that particles have positions independently of whether we measure
them or not. The same holds of course for the value of z.

As we show in Appendix 2.D, the state resulting after the measurement is

¢ (é)w(zwcz (?)wz), (2.5.1.1)

where ¢ (z) and ¢* (z) correspond to the last two pictures in Fig. 2.6, i.e., the pointer
pointing upward or downward. Thus, the system is in a superposition of two macro-
scopically distinct states: one in which the pointer is pointing upward and one in
which it is pointing downward. The problem is that we never see the pointer in such
a superposed state: we see it either up or down, but not both. The ordinary quantum
formalism does not correctly predict the state of the measuring device at the end
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Fig. 2.7 The cat which is
both alive and dead. By

Dhatfield (own work) [CC

BY-SA 3.0 (http:/ m.
creativecommons.org/ e
licenses/by-sa/3.0)], via { h /
Wikimedia Commons T / ‘\ 2

of the experiment, since it unambiguously predicts a superposed state, and this is
simply not what is observed.

Note that here we assume, somewhat naively, that we can identify a macroscopic
quantum state with a physical situation in the three-dimensional world, such as
the state ¢'(z) and a pointer pointing up. This is often implicitly assumed in all
discussions about macroscopic superpositions, but we will see in Sect. 6.1 that this
assumption, far from being obvious, is in fact hard to justify.?!

But since the situation is now macroscopic, one may just look at the result. If

the pointer points upward, we take the state to be ( (1)) @' (). If the pointer points

| @* (). One thus reduces the quantum state, which

now describes a macroscopic object, just by looking at it.

One may also replace the pointer by a cat, as in Schrodinger’s famous thought
experiment [441]: suppose a cat is in a sealed box and there is a purely classical
mechanism linking the pointer above to a hammer that will break a bottle containing
some deadly poison if the pointer is up, but not if it is down. If the poison is released,
it kills the cat (see Fig.2.7). Then, following the same reasoning as above, including
now the state of the cat, we get after the measurement:

0
downward, the state becomes (

C1 ((1)) @T(Z)|Cat dead) + (o) ((1)) (pL(Z)ICat alive) )

The natural interpretation of the state of the cat is that it is “both alive and dead”.
Of course, we never see a cat in such a state. We do not even know what that
could mean. But the cat example just dramatizes a problem that occurs already with
the pointer, namely the fact that ordinary quantum mechanics predicts macroscopic
superpositions that are simply not observed and that are even hard to conceive.

To better illustrate the problem, consider a coin. Once it has been thrown and has
fallen on one of its sides, it is either heads or tails. If we do not look at the result,
we may attribute probability one-half to each of these possibilities, but it would be

21See Maudlin [325] for a detailed discussion.
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silly to say that these probabilities give a complete description of the state of the
coin. The latter is heads or tails, not both, and our assignment of probabilities simply
reflects our ignorance. Saying that the quantum mechanical description is complete
is similar to saying that the probabilistic description of the coin is complete. While
we may not know whether this is true or not for microscopic systems (about which
we have no direct experience), it is manifestly absurd for a pointer or a cat.

Sometimes people seem to think that quantum mechanics has proven that the
unfortunate cat is both alive and dead before anybody looks. But that was certainly
not Schrodinger’s idea when he introduced the cat example, which he called “quite
ridiculous”, as a reductio ad absurdum of the quantum formalism [441]. More pre-
cisely, Schrodinger wanted to show that the quantum formalism does not provide a
complete description of at least some systems, because, at least in the case of the cat,
we know that the latter is either alive or dead, and not both.

In order to turn Schrodinger’s reasoning around and produce an argument in favor
of the existence of macroscopic superpositions, one has to assume that the quantum
formalism is absolutely true and applies to all objects, irrespective of their size. But
there has never been any observable consequence of such an extension of the quantum
formalism to macroscopic objects.?”

One possible answer to this problem is to say that looking at the pointer or the cat
changes its state and thus collapses its quantum state. But what does “looking” mean?
There are many different ways to look at an object. With the help of binoculars, or
with a telescope, one could look from far away. One could peek through a small
hole made in the box where the cat is, etc. None of this changes anything regarding
the result of course: the pointer is always up or down, the cat is alive and dead.
Since all the different physical ways of looking do not make any difference, isn’t
it reasonable to think that looking does not have any physical effect on the system
itself and that by “looking” we simply learn something about the state of the system,
without changing it? In other words, this situation would be analogous to throwing a
coin and first hiding the result; then when we later look at the coin, we see whether
it is heads or tails, but of course the coin was heads or tails before we looked. This
analogy is the common-sensical solution to the cat problem, and it is the one that
Schrodinger had in mind.

Of course, one may also hold the view that, as long as “looking” is described in
physical terms, with eyes, brains, etc., it only produces more macroscopic superpo-
sitions: in the end, the whole universe has a quantum state like (2.5.1.1), with ¢ (2)
and @' (z) corresponding to the pointer being up or down and the observer (at least as
long as it is considered to be a physical object) seeing it up or down, and everything
linked to the observer being in such a superposed state. Then one arrives at a sort
of infinite regress (everything physical being in a superposed state) and one has to
appeal to a nonphysical consciousness to collapse the quantum state. But even if we
accept the existence of a conscious mind entirely independent of the laws of physics,

220f course, there are macroscopic phenomena like superconductivity or superfluidity whose
explanations appeal directly to quantum mechanics, but these are different from the examples
of the cat or the pointer.
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which consciousness should it be? Mine when I observe, someone else’s when I tell
them the results, a universal mind? This leads us to “theories” that are very poorly
defined, assuming that they make any sense at all.??

Another line of thought is to say that the quantum state never collapses and that
the two terms in (2.5.1.1) simply correspond to two different universes. This is called
the “many-worlds interpretation” and will be discussed in Sect. 6.1. But in any case,
it can be considered as part of the fourth reaction, since it modifies ordinary quantum
mechanics, in which the collapse is part of the theory.

It is sometimes suggested that decoherence solves the cat problem: decoherence
means that it is, in practice, impossible to produce interference effects between the
states of the live and the dead cat or between the states of the upward and downward
pointers, as was done for a single particle in the interferometer described in Sect. 2.2,
between the state of the particle following one path and the state following the other
path.?* This is due to the large number particles composing a pointer or a cat.?

Therefore, we don’t see, for cats or pointers, the strange effects that were seen in
that experiment. This is something on which all sides agree: indeed, if it wasn’t so,
the macroscopic world would look very different from what it does, because if the
cat is alive, its future behavior could interfere with the state of the dead cat, as the
states following the two different paths in the Mach—Zehnder interferometer do, and
that could lead to strange behavior for the live cat.

But decoherence does not change the fact that one needs to look at the result,
and then “collapse” the state according to what we see in order for the formalism to
work. Therefore, it does not remove the centrality of observations in the quantum
theory. In [46], John Bell analyzes the books by Dirac [137], Landau and Lifshitz
[302], Gottfried [236], and an article by van Kampen [494] and shows that in each
case there is a subtle but unacknowledged transition between and and or: quantum
mechanics predicts unambiguously that the cat is alive and dead, while we always see
it either alive or dead. It is only by switching from and to or that one can “eliminate”
that problem.

What decoherence does show is that there are no empirical consequences of
quantum mechanics for macroscopic objects, at least in situations such as those
described here. So for the pointer, the most natural interpretation of the state (2.5.1.1)
is that of a classical probability: the pointer is up or down and the state simply reflects
our ignorance: hence we say that it is up with probability one-half and down with

23This should not be confused with the familiar “mind—body” problem: how can the material body
produce mental states, and in particular, conscious ones (see [345] for a good explanation of the
problem)? Even those, like Colin McGinn [329], who regard the link between the body or the brain
and the qualitative aspects of consciousness (e.g., pain) as being an unsolvable mystery, given the
limitations of the human mind, admit that they can be caused by, or at least correlated with, physical
events in the brain. But here, when we consider the possibility that the mind collapses the quantum
state, we are envisaging a direct action of the mind on matter, and this entails a radical form of
dualism, since the mind would then act totally independently of the brain!.

24See the double-slit experiment described in Appendix 2.E for another example of interference
between states of one particle.

25This notion of decoherence will be explained in more detail in Sect.5.1.6 and Appendix 5.E.
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the same probability. This is just like a coin which is heads or tails before we look at
it and where we simply learn which of the two is the case when we do actually look
at it.

But this means that, for macroscopic objects, the quantum state is not a complete
description of the physical situation. There is no way within the quantum formalism
to make a definite macroscopic state emerge as result of a measurement, because of
the linearity of the Schrodinger equation. So that the idea, implicit in the statement
of Landau and Lifshitz quoted at the beginning of this section and in many others
analyzed by Bell in [46], that the interaction with a macroscopic device creates the
results of measurements is simply untenable if we stick to the existing quantum
formalism.

On the other hand, if we give a classical probabilistic interpretation to the state
(2.5.1.1), why not do the same for microscopic objects described by quantum states
like those in Sects. 2.3 and 2.4? All this leads us naturally to the third reaction, namely
the ensemble or statistical interpretation of quantum mechanics.

2.5.2 The “Naive” Statistical Interpretation

The statistical approach assumes that systems of all sizes have properties, such as
the spin being up or down, before they are measured and that a measurement simply
reveals something pre-existing (as the word “measurement” suggests). Of course,
that does not mean that we have a theory about those properties or that we can
predict or control them. It simply means that we can think of them as existing prior
to our measurements and as being revealed by them.

If one adopts that view, probabilities in quantum mechanics are not very different
from classical probabilities: they just reflect our ignorance, and so does the quantum
state. When we measure a certain physical quantity, we simply learn something about
the system, and we thus modify our state (or our probabilities) accordingly. This view
means that quantum mechanics is incomplete; the very definition of incomplete is
that each individual system is characterized by variables other than the quantum state
and that the latter has only a statistical meaning. To come back to the analogy with a
coin, if we learn that it is heads or tails (a property that the coin had before looking at
it), we change our probabilities for heads and tails from (1/2, 1/2) (before looking)
to (1, 0) or (0, 1), depending on the result. The collapse of the quantum state would
be similar to that adjustment of probabilities.

This is the basic idea behind what are called “hidden variables”. They would be
variables that characterize an individual system and whose statistical distribution
would be determined by the quantum state. For example, if we prepare particles in a
state such as (2.3.9), the assumption of hidden variables means that a fraction |c; (¢)|?
of such particles have spin up in direction 1 and a fraction |c,(¢)|* of such particles
have spin down in direction 1, and similarly for direction 2, with |¢; ()| replaced by
\d; (1)1
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Of course, the time evolution of the quantum state, which allows for the interfer-
ence effects, is very different from the one encountered in the application of prob-
ability theory to classical physics. But the time evolution of the state and its status
are two separate issues and there is nothing a priori inconsistent in thinking that the
spin is up or down before we measure it or that the particle goes through one slit or
the other in the double-slit experiment (see Appendix 2.E). We simply have to take
into account the fact that the behavior of the particle after passing through one slit is
affected by whether the other slit is open or not, and likewise, in the interferometer
experiment, whether the other path is blocked or not.

The uneasiness in treating the quantum state as a classical probability also follows
from the fact that one cannot simultaneously measure the spin in two different direc-
tions, or the position and the velocity. But if we think that the measurement disturbs
the system being measured, then there is nothing a priori implausible in the statis-
tical interpretation. Note, however, that this “perturbation” view of measurements
cannot be incorporated within ordinary quantum mechanics, as we just saw above,
simply by analyzing measurements within quantum mechanics. But since assuming
the existence of variables other than the quantum state means going beyond quantum
mechanics, it is perfectly logical to assume that measurements affect those vari-
ables in ways that are not covered by the ordinary quantum theory. Then, of course,
affecting those variables would modify the state and we would have to change our
probabilities accordingly (and this would then be the reason behind the collapse rule).

Consider, for example, what Heisenberg wrote in his famous paper on the uncer-
tainty relations:

At the instant of time when the position is determined — therefore, at the moment when
the photon is scattered by the electron — the electron undergoes a discontinuous change in
momentum. This change is the greater the smaller the wavelength of the light employed —
that is, the more exact the determination of the position. At the instant at which the position
of the electron is known, its momentum therefore can be known only up to magnitudes which
correspond to that discontinuous change; thus, the more precisely the position is determined,
the less precisely the momentum is known, and conversely.

Werner Heisenberg [510, p. 64]. Originally published in [256]

This quote clearly expresses a “perturbation” view of measurements: if I want to mea-
sure the position of the electron, then I must perturb it in such a way that its momentum
is affected. Therefore, I cannot measure both its position and the momentum it had
when I did that measurement. But this statement certainly suggests that the electron
has both a position and a momentum.

However, there is a serious problem for the statistical interpretation, namely that
it is inconsistent. To see how this comes about, let us define the idea of “hidden
variables” more precisely. There are many physical quantities besides spin that can
in principle be measured: for example, the angular momentum, the energy, and the
momentum.”® The statistical interpretation means that, in each individual system,

20These quantities are called observables and are represented mathematically by matrices or
operators acting on the quantum states. The eigenvalues of these operators are the possible results of
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each of these quantities will have a well defined value, which may be unknown or
even unknowable, and uncontrollable, but which nevertheless exists.

Let us denote by A a physical quantity and by v(A) the value that this quantity
has for a particular system, which of course varies from system to system, but in
such a way that the quantum state gives the statistical distribution of those values:
going back to the examples of Sect.2.3, a state like (2.3.9) would mean that, if we
prepare a large number of particles with that same state, then a fraction |c;|? of them
will have the value v(spin in direction 1) =% and a fraction |c2]? of them will have
the value v(spin in direction 1) =, and similarly for direction 2 (the situation with
more general quantities is discussed in Appendix 2.B).

To make the statistical interpretation interesting, we have to assume that v(A)
exists for more than one A. For example, it would be quite arbitrary to assume that
the spin values exist, but only in one direction, since our definition of directions is
completely conventional. Now, if we assume that v(A) exists for a reasonable class
of quantities A, and that those values agree with quantum mechanical predictions,
we can derive a contradiction:

Theorem 2.5.1 No Hidden Variables Theorem?’

(1) There does not exist a function v : O — R where O is a collection of quantities
relatedto “spin”, suchthatV A € O, v(A) agrees withthe predictions of quantum
mechanics.

(2) There does not exist a function v : O — R where O is the set of functions of
the four quantities representing the positions and the momenta of two particles
moving on aline, suchthatVA € O, v(A) agrees with the predictions of quantum
mechanics.

It is important to stress that the requirement of “agreeing with the predictions of
quantum mechanics” means only that certain constraints, inherent to the quantum
algorithm for predicting results of measurements and discussed in Appendix 2.F,
have to be satisfied. This requirement is thus totally independent of any quantum
state or of the need to reproduce any particular quantum statistics.

A possible, but misleading, reaction to this theorem is to say that there is nothing
new here, since it is well known that there is no quantum state that assigns a given

(Footnote 26 continued)
the measurement of these observables, but we do not need these notions here. They are explained
in Appendix 2.B.

2TWe refer to Appendices 2.B, 2.C and 2. F for a more precise formulation of this theorem in terms
of “observables” and “operators”, and for a definition of the sets O. The original version of this
theorem is due to Bell [36] and to Kochen and Specker [291] for the first part (the proofs were based
on a theorem of Gleason [215]), and to Clifton [98] for the second part. The version given here is
simpler than the original ones and is due to Mermin (see [335] and reference therein) and Perez [392,
393] for the first part and to Myrvold for the second [344]. The proofs are given in Appendix 2.F.
We will discuss another no hidden variables theorem in connection with nonlocality in Chap.4.
We will discuss other variants of this theorem in Sect. 5.3.4 and in Sect. 6.3 and Appendix 6.C. We
will also discuss the famous but misleading no hidden variables theorem due to von Neumann in
Sect.7.4.
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value to all the spin variables simultaneously or to both position and momentum,
as we saw, at least for the spin (for the position and momentum, this is discussed
in Appendix 2.C). But that misses the point: the theorem considers the possibility
that there be other variables characterizing an individual system than its quantum
state (in other words, that the quantum description is incomplete), variables whose
values would be revealed by proper measurements. The theorem shows that, at least
if the class of those variables is large enough, merely assuming the existence of those
variables is impossible. Note that we are not assuming that there exists a theory about
those “hidden” variables, telling us how they evolve in time for example, but merely
that these variables exist and that their values agree with the quantum mechanical
predictions.

Of course, this result does not mean that a theory introducing hidden variables
cannot exist (we will discuss such a theory in Chap.5), but it does mean that one
cannot introduce such variables for all the “observables” or at least for a sufficiently
large class of them at once. If we want to express precisely what the statistical inter-
pretation of quantum mechanics means, we have to assume that individual systems
possess values corresponding to a physical property A, which we denote v(A), before
being measured, and that a measurement simply reveals that value v(A). But that
leads to contradictions and therefore the “naive” statistical view is untenable.

2.6 Conclusions

As we already said (and it would be interesting to make a sociological study of this
issue), it is probable that the creation of a definite quantum state by the interaction
with a macroscopic apparatus, or the statistical interpretation, lies in the back of the
mind of many physicists who are not bothered by the problems raised by quantum
mechanics. It is unlikely that most physicists literally believe that the cat suddenly
becomes alive or dead, simply because we look at it, especially if “looking” refers
to the action of a mind independent of all physical laws.

But now we face a serious conundrum. There are two positions that would nat-
urally justify the “no worry” attitude with respect to the meaning of the quantum
state: either a proper quantum treatment of the measurement process would lead to
a collapsed state and the need for two different laws of evolution would be elimi-
nated, or the quantum state does not represent a single system but an ensemble of
systems, each having its own individual properties that a measurement would simply
reveal. But neither of these positions are defensible, either because the linearity of the
Schrodinger equation leads necessarily to macroscopic superpositions, or because
of the no hidden variables theorems.

We are left with the first and the fourth reactions. We will deal with the last one,
i.e., look for a more complete theory than ordinary quantum mechanics, in Chap. 5.
But before doing that, we have to discuss a host of philosophical arguments trying to
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present the first reaction as not simply making the best of a bad deal, but as a necessity,
independently of quantum mechanics, or even as a positive development. In the next
chapter, we will examine those arguments.

Appendices

2.A The Wave Function and the Schrodinger Equation

In this appendix, we will describe some of the mathematical properties of
Schrodinger’s equation, without discussing in detail its physical meaning, something
already done in the main text of this chapter and in Chaps.4 and 5.

2.A.1 Linear Differential Equations

Let us start with the simplest differential equation®®:

% =az(t), (2.A.1.1)

where r € R, z : R — R, and @ € R. By definition, a solution of this equation is a
function satisfying it for all 7. It is easy to see that all solutions are of the form

2(t) = Ae (2.A.1.2)

for some constant A.

We obtain a unique solution if we fix some initial condition, that is, if we fix the
value of z(¢) at a given time 7. To simplify the notation, let # = 0 and let us look for
a solution such that z(0) = zo. Then we obtain a unique solution:

z2(t) = zpe™ . (2.A.1.3)
In this simple example, we see that (2.A.1.1) has a class of solutions (2.A.1.2) and

a unique solution (2.A.1.3) once an initial condition is fixed. This is true for more
general equations of the type

dz(t)
=G0, 2.A.1.4)

28For an introduction to differential equations, see, e.g., [18, 267].
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for fairly general functions f : R — R, at least for short intervals of time®® (but we
will not use those more general equations here).

Equation(2.A.1.1) is said to be linear because, if z;(¢) and z,(f) are solutions
of (2.A.1.1), then the function z(¢) = c;z1(t) + c2z2(t), with ¢, ¢, € R, is also a
solution.

‘We now generalize this simple example. First, we could replace z(#) by a complex-
valued function: z : R — C, with a € Cin (2.A.1.1). Nothing changes except that
A and zg in (2.A.1.2) and (2.A.1.3) are also complex.

Next, we replace z(¢) by an n-component complex vector:

z1(1)
z:R—-C", z(t) = : , zim)eC, i=1,...,n.
Zn(t)
Equation (2.A.1.1) is replaced by
dz(t
Z(t) = Az(1) , (2.A.1.5)

where A is an n x n complex matrix. The general solution is of the form

z(t) = eMA | (2.A.1.6)
where A € C",
o0
A"
At
Al = Z(; - (2.A.1.7)

and A" denotes the n th product of .4 with itself. Equation (2.A.1.5) is again linear.
If we fix an initial condition z(0) = z, € C", we get a unique solution:

Alzo (2.A.1.8)

z(t) = e
When A possesses a basis of eigenvectors, i.e.,

.Ae,' = )L,'e,' s (2A19)

where (e;)}_, is an orthonormal basis of C", the solution (2.A.1.8) can be written
more explicitly. Indeed, (2.A.1.9) and (2.A.1.7) imply that

eMe = etile; (2.A.1.10)

and if we expand z in the basis (e;)"_,, i.e.,

i=1

28ee, e.g., [267, Chap. 7] for more details.
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n

2= cei, Q2.A.L11)

i=1

where
¢ = (€;]zo) , (2.A.1.12)

and (-|-) is the scalar product in C"((z1|z2) = z)’;’:l Z3},22n), we find by linearity
that (2.A.1.8) can be written as

2(t) = D ciele; . (2.A.1.13)
i=1

So the “recipe” for solving (2.A.1.5) is to solve the eigenvalue/eigenvector problem
for A (assuming that A has a basis of eigenvectors), compute the coefficients using
(2.A.1.12), and insert the result in (2.A.1.13).

2.A.2 The Schrodinger Equation

Let us start with the equation for one particle in three-dimensional space:
o d
zha\ll(x, t)=HWV(x,1), (2.A2.1)

wheret e R,x e R3 andh=h /27, with h the Planck constant. The unknown here
is W, which is a complex-valued function of x and ¢.

One can think of W as playing therole of zin (2.A.1.5), with theindexi = 1,...,n
being replaced by a continuous variable x. The factor i = +/—1, while essential for
the physics of (2.A.2.1), does not make much difference at this stage with respect
to (2.A.1.5), since W, like z, is complex anyway. H plays the role of .4 in (2.A.1.5)
and is a linear operator: it transforms a given function W(x, ¢) into a new function
(HWY)(x,t) and does it in a linear way:

H(ay + Byn) =aHYy + BHY, , (2.A22)

which implies that a linear combination of solutions of (2.A.2.1) is again a solution
of (2.A.2.1).

The detailed form of H or the justification of (2.A.2.1) will not matter very much
and they can be found in any textbook on quantum mechanics,* but for one particle
of mass m moving in R, the operator H has the form

30For a discussion close to our point of view, see [152, Chap. 7].
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hz d2 d2 d2
- (= _ = _ = Vx), 2.A23
2m ( dx} dx3 dx%) Ve ( )

where x = (x1, X2, x3) and V (x) is simply the classical potential [so that the force
F (x) in classical mechanics equals F'(x) = —VV (x), V denoting the gradient]. The

first term, viz.,
n? d? d? d?
m (—d— “ad d—) :

is the kinetic energy term. To simplify notation, we will often consider the situation
in one spatial dimension, where H is given by:

2 d2
H=———-+4+YV , 2.A24
o dx2 + V) ( )
with x € R. Classically, the Hamiltonian is (again, in one dimension)

2
H=2 +vw),
2m

and corresponds to the energy of an isolated system. The quantum version (2.A.2.4)
is obtained by replacing the momentum variable p (equal to the mass times the
velocity) in the classical Hamiltonian by the operator’! P = —ihd/dx and the
variable x by the operator Q of multiplication by x [and hence V (x) by the operator of
multiplication by V (x)]. We will not justify this replacement now, but we will explain
why the statistical distribution of results of measurements of momenta is related to
the operator P in Appendices 2.A.3 and 2.B. For the variable x, we have already said
that | W (x, ¢)|? is the probability density of the results of position measurements.

In the rest of these appendices, we will choose units in which & = 1. Then, given
an initial condition ¥ (x,0) = Wy(x), the solution of (2.A.2.1) is (remember that
1/i = —i):

W(x, 1) = (e "H1uy)(x) , (2.A.2.5)
where the operator e~*f/* can be defined through a power series as in (2.A.1.7) when
the series converge, and in more subtle ways otherwise.>> We will give concrete
examples of what this solution looks like below, and also in Appendix 2.D and
Chap. 5.

An important property of (2.A.2.5) is

W (x, 1)|?dx = / |Wo(x)|*dx , (2.A.2.6)
R3 R3

3lOperators are linear functions that map “ordinary” functions into other functions. The space of
functions on which they act is infinite dimensional. We will not give a rigorous or detailed treatment
of these operators; see, e.g., [152, Chaps. 13—15] or [412, Chaps. 7 and 8] for such a treatment.

32See, for example, [412, 413] and [152, Chap.14].
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for all ¢, which allows us to consider | W (x, )|? as the probability density of finding
the particle at x if one measures its position at time ¢, provided one normalizes
Jio IWo(0) Pdx = 1.

What about A having a basis of eigenvectors? For that to make sense, we have
to define a space of functions W and explain what a basis in that space means, but
a simple example is provided by Fourier series.> Let f(x), x € R, be a complex-
valued integrable periodic function of period 27 :

f(x+27) = f(x), VxeR. (2.A.2.7)

Then f(x) can be written as

+00 inx
e

X) = Cp—, (2.A.2.8)

f@) n:Z_joo =

with
1 : inxq (2.A.2.9)
Cp = —— (x)e "™ dx ,
V2 Jo !

at least when the series converge, which happens, in different senses, given certain
properties of f(x). If f(x) is square integrable over [0, 27 ], i.e., f02” | f(x)|?dx <

00, then
2 n=N einx 2
lim / (x) — ¢,——| dx =0 (2.A.2.10)
N—o0 Jo f n;N «/E
and e
> el <00, (2.A.2.11)

which means, by definition, that the family of functions (e /+/27);2° ., is a basis
of the space®* of square integrable functions over [0, 27].

These relations are similar to those in spaces of N dimensions (with N < 00), the
main difference being that in (2.A.2.8), (2.A.2.10), and (2.A.2.11) one has to take a
limit N — oo and not simply write algebraic identities.

Now if H has a basis of eigenvectors, viz.,

Hlen(x» = )\nlgn(x» s (2A212)

33See, for example, Dym and McKean [155] for the properties of Fourier series and integrals used
here.

34This space, denoted L2([0, 27], dx), is a Hilbert space and the family (e"* )/ 271’)2—2 o 18 a
Hilbert basis, but we will not need any detailed property of such spaces in this book. The basis here

is orthonormal, which will be implicit when we use the word basis.
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with n € N (in general, the family of eigenvectors will be infinite but countable, as
in the example of the Fourier series, so that it can be indexed by N), then one can
apply the same recipe that led to (2.A.1.13). We thus write

W(x,0) = Wo(x) = D culen(x)) | (2.A.2.13)
n=0

and the solution of (2.A.2.1) is

o0
W(x, 1) = D cpexp(—ityt)les(x)) . (2.A.2.14)
n=0
Since |e~'| = 1, one can show that the solution converges for all times, pro-

vided that we have fR3 [Wo(x)|>dx < oo (which implies, as for the Fourier series,
> lenl? < 00).

To illustrate what precedes with a simple example, consider a free particle, i.e.,
with V(x) = 0in (2.A.2.4), on a circle of radius 1. This means that we take W (x, t)
to be periodic of period 27 in x € R [see (2.A.2.7)], for all z. The operator H being
givenby H = —(1/2m)d? /dx?, the eigenvalue/eigenvector problem is easy to solve.
We have the following periodic eigenvectors:

einx 1 d2 einx 1 5 einx

P e S ’
2 2m dx? 2 2m 27

and, applying what we just said about Fourier series (2.A.2.7) and using (2.A.2.13)
and (2.A.2.14), we get

(2.A.2.15)

W(x, 1) io e p( inzt) e (2.A.2.16)
X, 1) = cpexpl —— ) — A2,
n=—0oo 2m 27T

where the coefficients ¢, come from (2.A.2.8) for f(x) = ¥ (x, 0).

Sometimes the operator H does not have a basis of eigenvectors but the
Schrodinger equation nevertheless has a more or less explicit solution. One example
that we will refer to is given by a free particle [V (x) = 0 in (2.A.2.3)] in the whole
d-dimensional space R, instead of the circle (but we will set d = 1 for simplicity).
We want to solve the Schrodinger equation (2.A.2.1), with H = —(1/2m)d*/dx?,

SO we want to solve: 5

'dxy( 1) = L d W(x, 1) (2.A2.17)
ldl xX,t) = o a2 X, 1) .

It is convenient to introduce the Fourier transform of ¥ (x, t):

~ 1 .
b(p,1) = W/R\y(x,t)e—'”dx. (2.A.2.18)
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This is an invertible operation (for suitable functions W(x, ¢), for example those
satisfying [; [W(x, 1)]?dx < 00):

1 ~ .
W(x,1) = W/R\v(p,t)e’f“dp. (2.A.2.19)

This last formula defines the inverse Fourier transform. Inserting (2.A.2.19) into
(2.A.2.17), we see that W (p, t) satisfies the equation

L. pzxiJ( ) (2.A.2.20)
i— ) = — 1), A2,
ar P m P

whose solution is W(p, ) = exp(—itp?/2m)W(p, 0). So the solution of (2.A.2.17)
is

1 itp*\ - ipx
U(x,t) = W/RCXP (_E) ‘-IJ(p, 0)e dp y (2.A.2.21)

where W ( p, 0) is given in terms of the initial wave function by

\ 1 —ipx
‘I’(P,O)=W/R\I'(x,0)e PXdx .

To see what happens in a concrete example, let us start with a Gaussian wave
function, ind = 1:

1 x2
Yo(x) =¥ (x,0) = mexp -5 )

which is normalized so that fR [Wo(x)|?dx = 1. Then one easily computes that

. 1 p?
lI/(p,O)zmexp -5 )

Inserting this in (2.A.2.21), one gets

1 1 itp? p? ipx
\Il(x, l) = WWAGXP (—W) exp (—7 e dp s (2A222)

and the integral can again be computed to yield

1 1 x2
W(x,t) = AT i1/ 2l exp [——2(1 n it/m)] . (2.A.2.23)
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The important property of W (x, t) is its spreading:

W (x,1)]* = (2.A.2.24)

JT[I +(t/m)2] 1+(t/m)2

Note that we have fR |W(x,t)|> = 1, in conformity with (2.A.2.6).

This means that the variance® of the Gaussian | W (x, 7)|> which was equal to 1/2
att = 0, becomes equal to [1+ (t/m)?]/2 as time goes by. So the Gaussian becomes
more and more “flat”, which means that, if |W(x, )|> represents the probability
density of finding the particle in some region of space, then that probability becomes
less and less localized as time increases, and in a sense more and more “uncertain’.

We will end this appendix with a remark which, although well known, is at the root
of the most revolutionary aspect of quantum mechanics, as we will see in Chap. 4.

Suppose we have a system of N particles, each of them in R3. Then the wave
function® is a function W(x, ..., x3y, ) of R3 x R with values in C. Tt still
satisfies the Schrodinger equation (2.A.2.1), but H now has the form

H lﬁl LA+ v( ) (2.A.2.25)
= —= — A X1y ooy X , s VN
zl,:lmi 1 N

where
d? d? d?

A= o
dxi2 dx? dx?
1 5] 3

(2.A.2.26)

m; is the mass of the i th particle, and V is again the classical potential. What is
“revolutionary” or at least has revolutionary consequences, is that W is defined on
what is called the configuration space of the system, i.e., the set of all possible
positions of all the N particles, where N is arbitrary and could in principle include
all the particles in the universe.

So there is a sense (although not very precise at this stage) in which all the particles
of the universe are linked with one another. What this implies will be clarified in
Chaps.4 and 5.

2.A.3 The Probability Distribution for Results of Momentum
Measurements

We want to show here that the results of measurements of the momentum p (which
classically is just the mass times the velocity of the particle) are distributed with a

35See the definition of variance in Appendix 2.C, (2.C.1.1)-(2.C.1.3).
36Ignoring here the issue of symmetry or antisymmetry, for bosons and fermions.
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probability density given by |‘i’( p)|%, where U is the Fourier transform of W, defined
by (2.A.2.18) (without the time variable).
More precisely,

/ ¥ (p)I*dp (2.A3.1)
A

is the probability that the value obtained by a measurement of momentum will belong
to A C R.

In order to prove (2.A.3.1), we will measure p by measuring x (¢) at time ¢, using
p = mx(t)/t, since p is the mass times the velocity. Since we want the result to
be independent of ¢, we will consider the asymptotic position, which means letting
t — o0o. We will set m = 1 here and consider one dimension for simplicity.

We already know that the probability density of finding x(¢) = x, when one
measures the position at time 7, is given by |W(x, £)|?. Then, the probability of the
momentum being observed to belong to a subset A C R is f A 1P (x, )|?dx. Now,
by a change of variable x = pt, we get

/ |\ll(x,t)|2dx=t/ W (pt,1)>dp . (2.A3.2)
At A

Suppose that we have an initial wave function Wy(x) = W(x,0) supported in a
bounded region B C R. We will prove that, VA C R,

llimt/ |\Il(pt,t)|2dp=/ |U(p,0)|%dp . (2.A.3.3)

Combining with (2.A.3.2), this means that, if we measure the asymptotic position x
as t — 0o, we will obtain the quantum mechanical predictions (2.A.3.1).

To prove37 (2.A.3.3), we consider the free evolution, which should hold for # large,
and use (2.A.2.21). Since the inverse Fourier transform of a product of functions is
the convolution of their inverse Fourier transforms, divided by V27 , we get

1\ 0
\U(x,t)z(ﬁ) Aexp[%}‘l’(yﬂ)dy, (2.A3.4)

using the fact that /T/ifexp(ix?/2t) is the inverse Fourier transform of
exp(—itp?/2). Set x = pt in (2.A.3.4) and write it as

LY (P LY
Y(pt, t) = o exp — /exp —lpy—i—lz Y(y,0)dy .
R

(2.A.3.5)

37We follow here [268, Sect. 8.6] and proceed informally; for a more rigorous treatment, see [152,
pp- 306-310].
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Since W(y,0) vanishes outside a bounded region B, we have, Vy € B, tlim
—00

exp(iy?/2t) = 1, which implies

. L\ 12 . iy? 1\ 12 .
Jim (E) /BeXP(—lperZ)\I’(y,O)dy:(E) /ReXP(—tpy)‘l’(y,O)dy
(2.A.3.6)
=T(p.0),

where, in the last equality, we use the fact that W (y, 0) is supported in B. Obviously,

2
1\ ip’t -
1

Inserting (2.A.3.5)—(2.A.3.7) in the left-hand side of (2.A.3.3) proves (2.A.3.3).

2.B Quantum States, ‘“Observables” and the “Collapse’ Rule

We have already encountered in Sect. 2.3 the special role of measurements within the
quantum formalism. As we saw, we can have two different bases in C2, (|1 1), |1 }))
or (]2 1),12 |)), and using (2.3.5)—(2.3.8), we can write any given state in terms
of those different bases. A measurement of the spin in direction 1 or 2 is associated
with a given basis, and after a measurement, the state collapses onto one vector of the
basis, depending on the result. Let us explain now the general quantum formalism.

In quantum mechanics, the space of states is a complex vector space, of finite
dimension, CV, or of infinite dimension (we will discuss that situation below). The
finite dimensional case generalizes the states associated with spin of Sect.2.3. The
state is endowed with a scalar product (z;]z2) = Zflvzl Z{,22n, Where, for z € C, z*
denotes its complex conjugate.

The state is also endowed with a norm associated with that scalar product: ||z||> =
(z|z). The quantum state |state (t)) is a vector in that space and evolves in time, when
no measurements are made, according to a deterministic equation: a given state at
time 0, |state (0)), determines a unique state at time ¢, |state (t)), for all times. This
evolution is continuous in time and linear, see (2.3.10), (2.3.11). The norm of that
vector | state (t))]| is constant in time.

In classical physics, one introduces various physical quantities such as angular
momentum, energy, etc. (all of which are functions of the positions and the veloci-
ties). In quantum mechanics, one associates with each such physical quantity a basis
of vectors (|e,)) of the state space and a set of numbers (%,), where n runs over
{1,..., N}. The choice of these numbers A, is conventional. When there is a mea-
surement of the quantity associated with those vectors and numbers at a certain time
t, one writes the state as a linear combination of the basis vectors:
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N
|state (1)) = Zc,,(t)|en) , (2.B.1)
n=1

where ¢, (1) = (e,|state (t)).

The recipe for computing probabilities of results of measurements, which gener-
alizes what we discussed in Sect. 2.3, is that a measurement at time ¢ yields a value A
with probability | (r)|2. Since [|state (1)) [|> = 3N, |¢,(7)|? is constant in time,
if we normalize ||state (0))|| = 1, we have Zflv:l lc, (t)]*> = 1 for all times, so that
the sum of the probabilities of all the results equals 1.

This assignment of probabilities to results of measurements is called Born’s
rule. Moreover, after the measurement, the quantum state collapses to |e;). As we
explained in Sect. 2.3, that collapse is neither continuous in time, nor deterministic
nor linear, contrary to the time evolution when no measurements are made.

To simplify matters, we assume here that each eigenvalue is non-degenerate, i.e.,
it corresponds to a unique eigenvector. In general, if there are several eigenvectors
with the same eigenvalue X, the collapsed state is the projection of the original state
on the subspace spanned by those eigenvectors, and the probability of occurrence of
A is the norm of that projected vector.

A correspondence can be made with the example of the spin measurement by
associating A = +1 with the up result and A = —1 with the down result, but other
conventions could be chosen.

The more advanced reader may find the above presentation somewhat unusual.
Indeed, the standard approach is to associate a matrix with any physical quantity
when N is finite, these having a basis of eigenvectors, viz.,

Alen) = Anlen) s (2.B.2)

where the A, are real.* But this is just a way to repeat what we said above: what
matters is the basis of vectors (|e,,)), while the choice of the numbers A, as the real
eigenvalues of a self-adjoint matrix A is a matter of convenience.*’

In the spin example, for direction 1, we could introduce the matrix*!

38That last formula comes from:

N N
lIstate () [|* = (state (t)[state (0) = D" ci)cn@)lenlen) = D lea®),
n,m=1 n=I1
since, by orthonormality of the basis vectors, {e¢,|e,,) = 0 if n # m and equals 1 if n = m.
39This is automatic if we assume that A is self-adjoint. For matrices, this means that its matrix
elements satisfy A;; = Aj‘i‘
40There is a more general notion associated with measurements, namely, the positive operator-
valued measure (POVM), discussed further in [147] and [152, Chap. 12].

. . . 0 —i
41 These are the usual Pauli matrices: o] = 0z, 02 = 0y, while 0, = (i 0 ) .
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o) = ((1) _01) (2.B.3)

0y = ((1) (1)) . (2.B.4)

It is easy to check, using the definitions (2.3.1)—(2.3.4), that

and for direction 2 the matrix

ol )y =1[11), olll)=—I11), w21)=121), 02])=-2]),
(2.B.5)
so that our basis vectors are indeed eigenvectors of the corresponding matrices with
eigenvalues +1 and — 1. But all that we really need conceptually are the eigenvectors
and the associated numbers, even though the language of operators is very useful in
practice.

Now we must also consider the spaces of wave functions, that are infinite dimen-
sional.*> One introduces (let’s say for a physical system consisting of one particle
in one dimension)* the space of complex-valued functions W : R — C that are
square-integrable: fR |W (x)|2dx < oo.

One can define a scalar product on that space: (V|d) = fR U*(x)®(x)dx, and,
therefore, one can also define the notion of orthonormal sets of vectors and a norm
associated to the scalar product: [|W||* = (W|W) = [, |W(x)|*dx.

The wave function is a vector in that space that depends on time, W (x, ). When no
measurements are made, that vector evolves according to a deterministic equation,
like Schrodinger’s equation, the evolution is continuous in time and linear. Moreover,
[W())* = [ |¥(x, 1)|*dx is constant in time, as in (2.A.2.6).

Again, one associates to physical quantities linear operators (see (2.A.2.2)) that act
on functions, like matrices act on vectors.** If a quantity is associated to an operator
A satisfying (2.B.2), with n running now over N, we have the same rule as above
when one measures A, except that the sum (2.B.1) has to be replaced by a limit, as
in (2.A.2.10). We have again f]R W (x, 1)|*dx = D nen len(®) |2, and if we normalize
[WO)* = [ W(x,0)*dx =1, we have >, _ |c,(1)|* = 1 for all times.

For example, suppose that we measure the quantity associated with H, defined
in (2.A.2.3), (2.A.2.4) (this quantity corresponds classically to the energy). Suppose
also that H has a basis of eigenvectors, see (2.A.2.12), and that the state is of the form

42This fact is intuitively understandable since a set of functions defined on R cannot be characterized
by a finite set of parameters, which would be the case if the space was finite dimensional (the
parameters would be the coefficients of the expansion of a function in a basis of the space).

43The extension to more dimensions or more particles is straightforward: for M particles in a
physical space of k dimensions, the wave functions are functions ¥ : RN — C, where N = kM,
and the integrals are over RV .

44we proceed formally here; see, e.g., [152, Chap. 15] or [412] for more details on the definition of
operators.
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(2.A.2.14). Then we get the result A; with probability |c;|?, and after the measurement
the wave function becomes |e; (x)).*?

We will also need, but only in Appendix 2.F, operators that do not have a basis of
eigenvectors. We introduced these operators Q and P in Appendix 2.A. The operator
Q is called the position operator, and acts as

OV(x) =xW¥(x), (2.B.6)
and its eigenvectors are formally Dirac delta functions §(g — x).** We have
03(qg —x) =qé(q —x) , (2.B.7)

with eigenvalue ¢g. If we write ¥ (x, t) = f 8(q —x)¥(q, t)dq, we can see this as a
sort of continuous version of (2.B.1), and the interpretation of |c;|? as the probability
of finding the eigenvalue A; upon measurement of A, translates here into considering
|W(q, t)|? as the probability density of finding the particle at ¢, upon measurement
of its position.

The momentum operator P is defined by:

d
PY(x)=—-i—W¥(x), (2.B.8)
dx
and we have the eigenvectors*’

o )1/2 exp(ipx) ,

with eigenvalue p. Indeed, one checks that

exp(ipx) = exp(ipx) . (2.B.9)

1 1
(2 )1/2 (2 )1/2
It we consider the inverse Fourier transform formula (2.A.2.19), we can see it as
the continuous version of (2.B.1), with eigenvectors [1/(27)!/?] exp(ipx), and the
interpretation of |c¢|? as the probability of finding the eigenvalue A; upon measure-
ment of A, translates here into considering |\il( p. 1)|? as the probability density of

#In the concrete example (2.A.2.15), (2.A.2.16), we get the result k*/2m with probability |c¢|?
and, after the measurement, the wave function becomes e’** //27 (the factor of 1/+/27 coming

from the requirement that ]02 T |W(x, t)|2dx = 1 at all times).

46These are not real functions but can be thought as limits of functions whose integrals are always
2

equal to one and that tend to O forall x # ¢, for example the sequence f;, (x) = ,/ 7= exp(— @),

as n — o0. In that limit, the function becomes more and more concentrated on x = ¢, and tends to
0 elsewhere. This explains Eq.(2.B.7) below.

4TThe factor 1/(27)'/? plays the role of a normalization factor.
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finding the value p upon measurement of its momentum, see (2.A.3.1), derived in
Appendix 2.A.3.

We see that, for both Q and P, the set of possible results of measurements is the
set R of real numbers. This set plays the same role here as the one played by the
eigenvalues for matrices.*®

The “collapse rule” in the case of measurements of O and P works as follows:
since a measurement whose result can be any real number is never infinitely pre-
cise, but is rather an interval of real numbers, the collapsed wave function will
be the original wave function restricted to that interval and normalized so that
Jg 1 (x, 1)[*dx = 1 holds after the collapse.

All this may sound terribly abstract and “unphysical”, but the goal of this presen-
tation is precisely to emphasize how much the quantum algorithm is an unambiguous
method for accurately predicting results of measurements, and nothing else. In par-
ticular, it should not be associated with any mental picture of what is “really”” going
on. The main issue of course is whether one should consider this algorithm as satis-
factory or as being, in some sense, the “end of physics”, or whether one should try
to go beyond it.

2.C “Uncertainty” Relations and ‘“Complementarity”

An easy remark about the uncertainty relations is that there is a great deal of uncer-
tainty about what exactly they mean: indeed, are they uncertainty relations or inde-
terminacy relations, and what are the differences between these two terms?

The first derivation of these relations by Heisenberg [256], which was more a
heuristic argument than a real derivation,*” was entirely compatible with a disturbance
view of measurement, as expressed, for example, in the statement by Heisenberg
[256] quoted in Sect.2.5.2. This way of speaking assumes that electrons have a
position and a velocity, even when they are not measured. It only shows that there
are limits to how much we can know about one of these quantities without disturbing
the other.

However, more radical conclusions are sometimes drawn, namely, that those
uncertainty relations are really indeterminacy relations, i.e., that the positions and
the velocities are indeterminate or do not exist before we measure them, or even
that it does not make sense to speak of quantities that we cannot measure simultane-
ously. Here, we will leave aside these issues, which ultimately depend on our views
about the meaning of the quantum state, discussed in Sect. 2.5, and simply give some
precise versions of those relations.

“8The set R is called the spectrum of the operators Q and P and is also called “continuous”. See,
e.g., [152, Chap. 15] or [412] for more details on the spectra of operators.

49The first real derivation is due to Kennard [287], see, e. g., [266] for the history of the uncertainty
principle.
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2.C.1 A Statistical Relation

Consider a random variable x that can take values ay, . . ., a, with respective proba-
bilities p;, i = 1, ..., n. The variance of x, Var(x), is a way to measure how much
the distribution of x is spread around its mean. For f : {ay, ..., a,} = R, we define

the mean or the average of f(x) by

(fO)) =D flap; . Q2.C.1.1)
i=1
Then Var(x) is defined as
Var(x) = (x?) — (x)? = ((x — (x))?), (2.C.1.2)

where the second equality is checked by expanding the binomial. The quantity |x —
(x)| expresses the deviation of the variable x from its mean, so (2.C.1.2) gives a
measure of the size of that deviation.

If x is a continuous random variable on R (we work in one dimension for sim-
plicity), with probability density p(x), then the definition (2.C.1.2) is still valid, with
(2.C.1.1) replaced by

(f(x) = /R f)px)dx . (2.C.1.3)

A precise statement of the uncertainty relations is as follows. Given a wave func-
tion W (x), we know that the probability distribution density of results of measure-
ments of the position x is | W (x)|?, meaning that fA |W (x)|?dx is the probability that,
when the position of the particle is measured, the result belongs to A C R. We also
showed in Appendix 2.A.3 that the results of measurements of the momentum p
(which classically is just the mass times the velocity of the particle) are distributed
with a probability density given by |W(p)|2, where W is the Fourier transform of W,
defined by (2.A.2.18) (without the time variable), see (2.A.3.1).

We note that, since [, |W(x)|*dx = 1, then by Plancherel’s theorem [, U (p)2
dp=1.

Given this, we have a variance Var(x) for the distribution of x and a variance
Var(p) for the distribution of p. Their product satisfies a lower bound:

Var(x)Var(p) > % , 2.C.1.4)

bearing in mind that we choose units where » = 1. The bound (2.C.1.4) is a rather
simple mathematical relation between a function and its Fourier transform and its
proof can be found in many textbooks on Fourier transforms (see, e.g., [155]), as
well as those on quantum mechanics.
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One can give a concrete example of Heisenberg’s inequality (2.C.1.4) by con-
sidering Gaussian wave functions. For d = 1, let ¥ (x) = (a/rr)l/4 exp(—axz/Z),
which is normalized so that fR |W(x)|?dx = 1. Then, using (2.A.2.18), it is easy to

show that
V()= — P
=——expl—=—]) .
p (ra)l/* P 2a

If one computes the respective variances, one obtains: Var(x) = 1/2a, Var(p) = a/2,
whose product is 1/4, namely the lower bound in (2.C.1.4).

This illustrates the impossibility of “measuring both the position and the momen-
tum” simultaneously with arbitrary precision. Indeed, assume that, after a posi-
tion measurement, the “collapsed” wave function is a “narrow” one (assumed to
be Gaussian for simplicity), U(x) = (a/m)"/* exp(—ax?/2), with a large, which
means that the position measurement is precise, since Var(x) = 1/2a is small. Then,
the variance of the distribution of future measurements of momenta, Var(p) = a/2,
will necessarily be large.

Since (2.C.1.4) is alower bound on variances of results of measurement, it implies
nothing whatsoever about the intrinsic properties of quantum particles. One could
perfectly think, in accordance with the statistical interpretation, that each individual
particle has a well-defined position and momentum; but, when we prepare a large
number of particles having the same quantum state, then the positions and momenta of
those particles vary and have certain statistical distributions whose variances satisfy
(2.C.1.4).

This statistical view is untenable, but not because of the uncertainty relations. The
problem for that view comes, as we saw in Sect.2.5.2, from the no hidden variables
theorems.

However there is another, more qualitative, version of “uncertainty” in quantum
mechanics.

2.C.2 A Qualitative Argument and Its Relation to
“Complementarity”

Let us consider finite-dimensional systems for simplicity. As we saw in Appen-
dix 2.B, a physical quantity (such as the spin) is associated with a self-adjoint matrix.
Consider two such matrices A and B. Let us define their commutator:

[A,B]=AB — BA, (2.C.2.1)
where A B is the matrix product. Suppose [A, B] = 0. If |e) is an eigenvector of A,
ie.,

Ale) = Ale) ,

then it is easy to see that Ble) is also an eigenvector of A, with the same eigenvalue:



Appendices 61
ABle) = BAle) = ABle) . (2.C2.2)

This holds also if we exchange A and B. Using this remark, one shows that, if
[A, B] = 0, then A and B have a common basis of eigenvectors (with different
eigenvalues).”

Conversely, if A and B have a common basis of eigenvectors, then [A, B] = 0.
Since the only physically meaningful quantity are the basis vectors (and the associated
numbers) corresponding to a physical quantity, if [A, B] = 0, A and B just associate
different numbers to the same basis.

Measuring A will reduce the quantum state to one of the eigenvectors of A. But if
we then measure B, we will reduce the state to one of the eigenvectors of B, which
is also an eigenvector of A if A and B commute. Hence, if we remeasure A after
having measured B, the result will be with certainty the same eigenvalue of A as
before and the state will not change, unlike when one tries to measure the spin in
two different directions (see Fig.2.2). It is in this sense that, if [A, B] = 0, one can
measure A and B simultaneously (and also the products AB or BA).

Butif [A, B] # 0, there will be some eigenvector of A that is not an eigenvector
of B. Suppose that one measures A when the state is an eigenvector of B with
eigenvalue b. If, after the measurement of A, the state is an eigenvector of A that is
not an eigenvector of B, then the result of a later measurement of B will not give
back the original value b, since the state produced by the measurement of A is no
longer an eigenvector of B.

This is what happened with the spin in directions 1 and 2, as was observed phe-
nomenologically in Sect. 2.1 and described by the quantum formalism in Sect. 2.3. If
we start with an eigenstate of the spin in direction 1 and then measure it in direction
2, we “lose” the memory of what value the spin had in direction 1, since the result
of the spin measurement in direction 2 is an eigenvector of the matrix o, (2.B.4) and
hence a superposition of states in direction 1 [see (2.3.5) and (2.3.6)].

This is one possible meaning of the word “complementarity” which was so funda-
mental to Niels Bohr. The measurement of A or B gives us a “classical” description
of reality where “classical” does not refer to classical physics but means “express-
ible in ordinary language” or “representable” or “macroscopic”. But since the two
quantities cannot be measured simultaneously (i.e., without the measurement of one
quantity disturbing the measurement of the other), one cannot “combine” the picture
coming from the measurement of A and the one coming from the measurement of
B into a coherent picture.

One can check that the operators Q and P, introduced in Appendices 2.A.2 and
2.B, do not commute:

(POW)(x)

.d | a o d
] = =i x| £ i)

(QPY)(x).

30Typically, some of these eigenvalues will be degenerate for A or B (or both).
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This can then be interpreted in terms of “complementarity” between a “picture”
based on positions and one based on momenta. But what this means depends on how
we understand (2.C.1.4), and therefore how we understand the quantum formalism.
The non-commutation of Q and P does not have an obvious meaning.

Let us remark finally that there is also a generalization of (2.C.1.4) that expresses
quantitively this incompatibility between A and B. Given a quantum state W, one
obtains a probability distribution for the results of the measurements of A and of B
(described in Appendix 2.B: an eigenvalue A; occurs with probability |c;|?). Thus
we can define the variances Vary (A), Vary(B), associated with those probability
distributions. The generalization of (2.C.1.4) is®!

Vary (A)Vary (B) > %’(\IN[A, B]\IJ)‘Z , (2.C.2.3)

which is similar to (2.C.1.4).52

2.D The Quantum Mechanical Description of Measurements

Let us consider a very simple measurement of the spin.’> We start with a quantum
state for the combined system composed of the particle and the measuring device:

Yo = ¢o(2) [Cl ((1))4-62 ((l))] , (2.D.1)

where z denotes a macroscopic variable, namely the position of the center of mass
of the measuring device, and ¢y (z) is centered at z = 0, meaning that the pointer is
as in the first picture of Fig.2.6. We leave aside here the spatial part of the quantum
state of the particle, since we are only interested in what happens to the measuring
device.

Let the Hamiltonian be

.0 10
H_—laa—z, where 0_(0—1)’

which corresponds to the introduction of an inhomogeneous magnetic field. One
neglects here the kinetic energy term (corresponding to the free evolution) — (1/2m)d?
W (z, t)/dz>. With these simplifications, the Schrodinger equation is

Slfor a proof, see, e.g., [236, Sect. 24] or [447, Chap.9].

52Note that, for states that are eigenstates of A or of B, both sides of (2.C.2.3) vanish [in contrast
to (2.C.1.4)], but the impossibility of a simultaneous measurement of A and B holds nevertheless.

53We follow here Bell [49, p- 130]. See also Bohm and Hiley [70, Chap. 6].
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) .0
I—V¥ =—jo—V,
ot 9z

and one can easily check that its solution is

¢ ((l))mz Nt (?) oz +1) . (2.D.2)

Since ¢(z) is centered at z = 0, ¢y(z £ 1) is centered at z = ¢, corresponding to
the last two pictures in Fig.2.6 (for a suitable 7), which is the result mentioned in
Sect.2.5.1, where we wrote ¢ (z) for ¢y(z — 1) and ¢* () for ¢o(z + 1).

We can discuss the Mach—Zehnder interferometer in the presence of a wall in a
similar way. Once the wall is inserted as in Fig.2.4 and the state of the particle is
(2.4.2), we get, for the combined system particle plus wall, the state

L
V2

where ¢ (z) denotes the wave function of the wall not having absorbed the particle
and @) (z) that of the wall having absorbed the particle. If we replace the wall by an
active bomb, as in the Elitzur—Vaidman bomb testing mechanism, ¢y (z) will be the
wave function of the unexploded bomb and ¢ (z) that of the bomb having exploded.
In both cases, we have a macroscopic object (the wall or the bomb) that plays the
same role as the pointer in (2.D.2).

Consider now the more general situation described in Appendix 2.B, where the
operator A is associated with a given physical quantity having a basis of eigenvectors:

[12) Ipath2 1)go(2) = 2 4) Ipath2 D 9] . 2.D3)

Ale,) = Aalen) , (2.D.4)

and the state of the system to be measured is

Istate) = D culen) . (2.D.5)

where n runs over a finite set or over N. Consider a quantum state for the combined
system plus measuring device:

Wy = 0(z) D calen) , (2.D.6)

where z and ¢((z) are as above, i.e., ¢y(z) is localized around O.

Introducing a coupling between the system and the measuring device of the form
H = —iA0d/9dz (A being the matrix o in the example of the spin measurement above),
one gets, neglecting again the kinetic energy term, the Schrodinger equation
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.0 .0
i —V¥ =—A—V 2.D.7)
at 0z
whose solution is
> cupo(z — Aat)len) . 2.D.8)

which generalizes (2.D.2), with ¢y (z — A, 1) having macroscopically disjoint supports
for different A,, when ¢ is not too small, since ¢ (z) is localized around 0. One obtains
a situation similar to the pointer in the last two pictures in Fig. 2.6, but now with more
possible positions [one for each 7 in the sum (2.D.8)].

2.E The Double-Slit Experiment

A standard way to introduce interference effects in quantum mechanics, such as the
ones we saw in the Mach—Zehnder interferometer, is via the double-slit experiment
[184]: particles are sent (one by one) through slits in a wall and the pictures below
show how the particles are distributed when they are detected on another wall some-
where behind the slits. If only one slit is open, one gets the curves (a) and (b) of
Fig.2.8, representing the densities of particles being detected behind the slits (which
is not surprising), while if both slits are open, one gets the interference effects shown
in the last picture (c). One might expect that, with both slits open, the distribution
of the particles would be the sum of those detected when only one slit is open. But
instead we get the wavy line of Fig.2.8c, with fewer particles at some places than
there would be with only one slit open. So opening or closing one slit seems to influ-

(a) (b) (c)

I SHe 5
s i} S
) I =)

Fig. 2.8 The double-slit experiment. In all three figures, there is a source of particles going towards
a screen in which one or two slits are open. There is second screen behind the first one on which
particles are detected. In a the curve represents the density of particles detected on the second screen
when one slit is open, and in b likewise, when the other slit is open. ¢ The result when both slits are
open. This is clearly not the sum of the first two results



Appendices 65

ence the particles going through the other slit. And this remains true, qualitatively,
even if the open slit is very far from the closed one.

This experiment illustrates once again the role of measurements in quantum
mechanics: it is often described by saying that, if we close one slit, then we know
which slit the particle went through, hence its behavior will be affected by our mea-
surement. The same phenomenon (suppression of interference) would occur if we
put a small light behind one of the slits that would allow us to detect the slit the
particle went through.

This double-slit experiment is similar to the experiment with the Mach—Zehnder
interferometer described in Sect. 2.2, but in the latter we dealt with sharper figures
(100 % vs. 50 %) rather than the interference patterns. The calculus with spin (i.e.,
vectors in two dimensions) is also easier than it would be for the double-slit exper-
iment, where one would have to solve the Schrodinger equation with initial condi-
tions located around each of the slits in order to deduce the interference pattern of
Fig.2.8c. Figure 5.1 in Chap. 5 shows a numerical solution yielding the interference
pattern (within the de Broglie—Bohm theory).

This experiment is often considered as the essence of the quantum mechanical
mystery. On the basis of this experiment, one often denies that it makes sense to
speak of particles going through one slit or the other. One also sometimes says that,
if both slits are open, quantum objects behave as waves, and if only one slit is open,
they behave as particles, which is another instance of Bohr’s “complementarity”: one
can have a “wave picture” or a “particle picture”, but not both simultaneously.

After describing the double-slit phenomenon, Feynman wrote:

Nobody knows any machinery. Nobody can give you a deeper explanation of this phenom-
enon than I have given; that is, a description of it.

Richard Feynman, [185, p. 145]

And in a well known classical textbook on quantum mechanics, Landau and Lifshitz
said:
It is clear that [the results of the double-slit experiment] can in no way be reconciled with

the idea that electrons move in paths. [...] In quantum mechanics there is no such concept
as the path of a particle.

Lev Landau and Evgeny Lifshitz [302, p. 2]

We will discuss these statements in Chap.5 in the light of the de Broglie-Bohm
theory.

2.F Proof of the No Hidden Variables Theorem

We will now state more precisely and prove the theorem given at the the end of
Sect.2.5. The theorem is divided into two parts, and so are the proofs, which are
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similar, but using different background notions. We first state each part of the theorem
precisely and then give its proof.

Precise Statement of Part 1
Let O be the set of self-adjoint matrices on a complex vector space of dimension
four. Then, there does not exist a function v :

v:0—>R (2.E1)
such that:
(1)
VA e O, v(A) € {eigenvalues of A} , (2.E2)
(2)

VA,Be O, with[A, Bl=AB—BA =0, v(AB) = v(A)v(B). (2.F3)

Remarks

We use here the formulation of quantum mechanical “measurements” in terms of
matrices and eigenvalues, see Appendix 2.B. The first condition is natural if a mea-
surement is supposed to reveal a pre-existing value corresponding to the quantity A.
However, it should be stressed that we do not use the first condition very much in
the proof. In fact, we only use it for A = —1, 1 being the unit matrix, in the form
v(=1) = —1.

The second condition is necessary if the values v(A) are supposed to be in agree-
ment with the quantum predictions, since, when A and B commute (i.e., when
AB — BA = 0), it is in principle possible to measure A, B, and AB simultane-
ously, and the product of the results of the first two measurements must be equal
to the result of the last one, i.e., they must satisfy (2.F.3) (see Appendix 2.C.2).>*
This condition, unlike the first one, will be used repeatedly in the proof. Indeed, by
choosing suitable pairs of commuting matrices, and applying (2.F.3) to each pair, we
will derive a contradiction.

There are similar no hidden variables theorems in any space of dimension at least
3, see Bell [36], Kochen and Specker [291], and Mermin [335], but the proof given
here works only in a four dimensional space (or in any space whose dimension is a
multiple of four, by considering matrices that are direct sums of copies of the matrices
used here).

It should be emphasized that, even though the set O contains matrices that do not
commute with each other, we use relation (2.F.3) only for commuting matrices, so
that the only assumptions of the theorem are the quantum mechanical predictions for
the results of possible measurements.

54 As Mermin suggests [335, pp. 811], if the eigenvalues of the matrices were all O or 1 (unlike
the situation here, but one could easily adapt the argument), then measuring the “observable”
A 4 2B + 4AB alone would give the values of all three quantities, A, B, and A B, and they would
have to satisfy v(AB) = v(A)v(B).
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Sometimes people think that this theorem rules out only “non-contextual”” hidden
variables: what this means is that, if we consider three matrices, A, B and C, where
A commutes with B and C, but B and C do not commute, then we are assuming
that the result of measuring A does not depend on whether we choose to measure B
or C simultaneously with A.%° To be precise, we could write v(AB) = v(A)v(B)
or v(AC) = v(A)v(C), since A commutes with both B and C, and we assume here
that one has the same value v(A) in both equations.

Hidden variables would be called contextual if they depended on that choice (so,
here, the hidden variables are non-contextual). But this is not a way to “save” the
possibility of hidden variables, at least those considered here: if measuring A is sup-
posed to reveal an intrinsic property of the particle pre-existing to the measurement
(and this is what is meant here by hidden variables), then it cannot possibly depend
on whether I choose to measure B or C simultaneously with A, since I could mea-
sure A and nothing else. If someone has an age, a height and a weight (those being
intrinsic properties of that person), then how could the result of measuring one of
those properties depend on whether I measure or not another property together with
that one, or on which property I would choose to measure?

The second condition (2.F.3) is necessary to derive a proof of the Theorem, but it
does not affect its meaning.>®

Proof
We use the standard Pauli matrices o, [equal to o3 in (2.B.4)], 0,, and o, [equal to
o1 in (2.B.4)]:

(01 (0 (10
“=\10)> =\io) %“=\o-1)"

We consider a couple of each of those matrices, o;, cryi, i = 1,2, where tensor
products are implicit: 0! = 0! ® 1,02 = 1® 02, etc., with 1 the unit matrix. These
operators act on C*. The following identities are well known and easy to check:
@) . ‘ .
(0))° = (o))’ =(0))* =1, (2.F4)
fori =1, 2.
(i) Different Pauli matrices anticommute:

040 = —040, . (2.E5)

33This is discussed by Bell [49, pp. 8-9] and Mermin [335, pp. 811-812].

50To avoid creating some later confusion in the reader’s mind, we should already mention here that
the de Broglie-Bohm theory, discussed in Chap. 5, is, in some sense, a “‘contextual” hidden variables
theory. This is explained in Sects.5.1.4, 5.1.5 and 5.3.4. But in that theory, one does not introduce
the hidden variables ruled out by the no hidden variables theorems (otherwise the theory would be
inconsistent!).
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fori =1,2,and o, B = x, y, Z, « # B. And they have the following commu-
tation relations: o .
[0g, 0] = 2i0y, , (2.E6)

fori = 1,2, and «, B, y acyclic permutation of x, y, z.
(iii) Finally,
[o O'ﬂ] =o0 aﬂ O'ﬁO' =0, 2.E7)

where o, B = x, y, z and 0 is the matrix with all entries equal to zero.
Consider now the identity

2 10_2

olojolololololor =1, (2.F.8)

which follows, using first (ii) and (iii) above to move oxl in the product from the first
place (starting from the left) to the fourth place, a move that involves one anticom-
mutation (2.F.5) and two commutations (2.F.7), viz.,

1.2 _

121 2 1 2
0,0,0,0,0,0,0,0, =

2 1 2

—o;0)0}0)0l00)0) (2.F.9)
and then using (i) repeatedly, to see that the right-hand side of (2.F.9) equals —1.
We now define the operators

A=olo;, B=ojo;, C=olo;, D=oj0;, X=AB, Y=CD.

Using (ii) and (iii), we observe:

(@) [A,B]=0
() [C,D]=0
() [X,Y]=0

The identity (2.F.9) can be rewritten as
XY =-1. (2.F.10)

But, using (2.F.3), («), (B8), (¥), and (2.E.7), we get:

() v(XY) = v(X)v(Y) = v(AB)v(CD)
(b) v(AB) = v(A)v(B)
(©) v(CD) = v(C)v(D)
(d) v(A) = v(o)v(o?)
(e) v(B) = v(o))v(0})
() v(C) = v(oHv(o?)
(g) v(D) = v(o))v(o})

Since the only eigenvalue of the matrix —1 is —1, by combining (2.F.10) with (2.F.2)
in the theorem and (a)—(g), we get
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V(XY) = —1 =v(0))v(o,)v(0))v(0)v(e)v(e))v(o)u(0y)) . (2FI1D)

where the right-hand side equals v(a,))*v(07)?v(0})*v(0})?, since all the factors in
the product appear twice. But this last expression, being the square of a real number,
is positive, and so cannot equal —1. |

Part (2) of the Theorem

The proof of part (2) of the theorem is very similar to the proof of part (1) and is
taken from a paper by Wayne Myrvold [344], which is a simplified version of a result
due to Robert Clifton [98]. We need to introduce here operators Q;, Q> that act as

multiplication on functions’’:

QijV(x1,x) =x;W(x1,x2), j=12, (2.F.12)

and operators P;, P, that act by differentiation:

0
lell(xl,xz)z—ia—\ll(xl,xz), J: 1,2 (2F13)
Xj

We already mentioned these operators, for one variable, in our discussion of
Schrodinger’s equation in Appendices 2.A.2 and 2.B.

We will also need the operators U;(b) = exp(—ibQ;), V;(c) = exp(—icP;),
with Q;, P; defined by (2.F.12), (2.F.13), and b, ¢ € R. They act as

Uj(b)W(x1, x2) = exp(—ibxj))W(x1,x2), j=12, (2.E.14)
which follows trivially from (2.F.12), and
Vi)W (xy, x2) = W(x) — ¢, x2) , (2.E15)

and similarly for V,(c). Equation (2.F.15) follows from (2.F.13) by expanding both
sides in a Taylor series, for functions W such that the series converge, and by extending
the unitary operator V,(b) to more general functions W (see, e.g., [412, Chap. 8] for
an explanation of that extension).

Precise Statement of Part 2
Let O be the set of functions of the operators Q;, Q», P;, or P,. Then, there does
not exist a function

v:0—->R (2.F.16)

5T This proof is the only place in this book where we use operators that act on an infinite-dimensional
space of functions and that are not simply reduced to matrices. See, e.g., [152, Chaps. 13—15] or
[412, Chaps. 7 and 8] for a rigorous treatment of operators.
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such that

(1)
VA € O, v(A) € {eigenvalues of A} , 2.F.17)

2)
VA,B € O, with [A,B]=AB—-BA =0, v(AB) =v(A)v(B),
(2.F.18)
where A B is the operator product.

Remark

Since, for A € O, the set of possible results of measurements of A is R and the
function v : O — R, we do not need to specify a condition like (2.F.2) in part 1
of the theorem for all A € O (that is why the condition only refers to eigenvalues).
And, as in the proof of the first part of the theorem, the first condition (2.F.17) is only
used for A = —1, 1 being the unit operator, in the form v(—1) = —1.

Proof
We choose the following functions of the operators Q;, P; :

7TP1 7TP2
Ay =cos(aQ), A,=cos(aQ;), B;y=cos— , By =cos—,
a a

where a is an arbitrary constant, and the functions are defined by (2.F.14), (2.F.15),
and the Euler relations:

exp(iaQ;) +exp(—iaQ;)

cos(@Q;) = ,
TP exolmP: /)2 b (2.F.19)
g p(im P;/a) + exp(—im P;/a)
cos —= = )
a 2

for j = 1, 2. By applying (2.F.18) several times to pairs of commuting operators, we
will derive a contradiction.
We have the relations
[A1, A2l = [B1, B2] = [A1, B2l = [A2, B1]1 =0, (2.F.20)
since these operators act on different variables, and
AlBl = _BlAl s Asz = _B2A2 . (2F21)
To prove (2.F.21), note that, from (2.F.14) and (2.F.15), one gets

U;(b)V;(c) = exp(—ibc)Vi(c)U;(b) , (2.F22)

for j = 1, 2, which, for bc = £+, means
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Ujb)Vi(c) ==V;(c)U;() . (2.F.23)

Now use (2.F.19) to expand the product cos(aQ ;) cos(r Pj/a) into a sum of four

terms; each term will have the form of the left-hand side of (2.F.22) with b = +a,

¢ = £m/a, whence bc = £m. Then applying (2.F.23) to each term proves (2.F.21).
The relations (2.F.20) and (2.F.21) imply

A1AyB By, = BIBrA Ay, A ByAyB) = AyB1AB; . (2.F24)

Let v(Q1) = g1, v(Q2) = q2, v(P1) = pi1, and v(P2) = p». Since the functions Aj,
As, By, and B, can be defined by their Taylor series and we have v(Q7) = v(Q1)" =
qy by (2.E18) (Q commutes with itself), and similarly for Q,, P, P, it follows
that

mpy )
v(Ay) =cos(aqy) , v(Az) =cos(aqy) , v(By) =cos—, v(Bp)=cos—.
a

GF25)
Since A and A, commute, we get from (2.F.18),

v(A1A2) = v(Av(A2) ,
and similarly,
v(B1By) = v(B)v(By), v(A1By) =v(ADv(By), v(A2B1) = v(Ax)v(By) .
(2.F.26)
Consider now the operators X = A|A,B 1B, and Y = A B,A,B,. Using B,A; =
— A, By, from (2.F.21), we get
X=-Y. (2.E27)

On the other hand, since by (2.F.24) A} A, commutes with B;B,, we have from
(2.F.18),

v(X) = v(A1A2 B By) = v(A1A2)v(BBy) = v(ADv(A2)v(B)v(By) , (2F28)

where, in the last equality, we use (2.F.26). Similarly, since by (2.F.24) A; B, com-
mutes with A, By,

v(Y) = v(A1B)v(A2B2) = v(Av(B2)v(A2)v(By) . (2.F.29)
Comparing (2.F.28) and (2.F.29), we see that

v(X) =v(),
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while (2.F.27) implies v(X) = v(=Y) = v(=1Y) = v(=1)v(Y) = —v(Y). This
means that v(X) = v(Y) = 0 and hence that one of the four quantities v(A;), v(A>),
v(B}), or v(B,) vanishes, and this obviously cannot hold for all values of a in (2.F.25)
and given values of g1, g2, p1, p2. |



Chapter 3
“Philosophical’’ Intermezzo

This chapter is something of a digression in this book. Indeed, it does not deal with
physics, and one of the main ideas defended here is that the conceptual problems
of quantum mechanics are internal to the physical theory itself and do not have a
“philosophical” solution. However, there is an enormous literature arguing that the
“lesson” of quantum mechanics, or its “main innovation” in the history of science
is that we must abandon realism or determinism or both. It may therefore be useful
to discuss these ideas, to define them precisely, and to see what arguments one can
give for and against them, both independently of quantum mechanics and by taking
it into account.

3.1 Realism and Idealism

I still hold that any proposition other than a tautology, if it is true, is true in virtue of a relation
to fact, and that facts in general are independent of experience. I see nothing impossible in
a universe devoid of experience. On the contrary, I think that experience is a very restricted
and cosmically trivial aspect of a very tiny portion of the universe.

Bertrand Russell [429, pp. 49-50]

First of all, the words realism and idealism are meant here as attitudes with respect to
knowledge, or epistemology, not in their moral or political sense. We will not discuss
metaphysics very much either, for example, the question as to whether the world is
fundamentally made of matter or contains also some non-material entities.

Realism is both the attitude of common sense and of most scientists (in fact, of
almost all scientists, except sometimes those involved in discussions about quantum

© Springer International Publishing Switzerland 2016 73
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mechanics).! What is meant here by realism is the following combination of ideas:

e There exists a world independent of human consciousness and this world is struc-
tured; it has its own properties. Even idealist philosophers know (or should at least
admit) that, if they were born, it is because they had parents and that the process
of childbirth requires the existence of highly structured organisms.

e A proposition is true or false depending on whether it reflects or not the properties
of that world. This means in particular that the truth or falsehood of a proposition
is independent of the person who expresses it, or of the group to which he/she
“belongs”.

e We can know true propositions about the world, for example, through our sensory
experiences. Everyday life is full of such experiences that tell us how the world is
(to some extent, of course).

e However, our senses can deceive us; therefore, we can never be absolutely certain
that our knowledge is true and even the most common experiences could be illusory.
I see myself typing on a computer, but I could, in principle, be dreaming.

e Our knowledge is human. It is the result of a specific interaction between “us” and
the world; that interaction depends on our biology, but also on our history and our
culture. Other species have other types of interactions, with the same world. Other
cultures or people living in other historical periods will have a different knowledge
from ours of the same world. The fact that our knowledge is human implies also
that our knowledge can have limits, just as our means of perception or our physical
abilities have limits: we see only a small part of the electromagnetic spectrum and
nobody is ever going to run a kilometer in less than one second.

However, even if realism, with these caveats, may seem obvious to many, realism has
been challenged in several ways throughout history. There is, first of all, an idealist
challenge to realism; then there are problems related to scientific realism, i.e., realism
about scientific theories, in particular the issue of “underdetermination of theories
by data”, of “incommensurability of paradigms”, and of the status of “unobservable
entities” (we will explain those expressions below). Let us discuss these topics one
by one.

Idealism can stem from a critical reflection on realism; it may start with the
following (obvious) observations:

e In order to observe the world, we need our senses.
e In order to talk about it, we need our languages.
e In order to name things, we need concepts.

e In order to have theories about the world, we need conceptual schemes.

'For defences of realism more or less related to the content of this section, see, €. 2., Boghossian [60],
Devitt [126], Ghins [207], Haack [251], Maudlin [324], Psillos [408], Sankey [431], and Stove [461,
462]. In [354], Norris defends realism in quantum mechanics from a philosophical perspective.
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The next step is to ask whether what we call the “structure of the world” isn’t in
reality an effect produced by our senses, languages, or concepts? Thus, when we talk
about “the world”, aren’t we in reality talking only about our senses, languages, or
concepts?? Are our discourses about the “outside world” or are they rather reflecting
the “inside world” (what is in our minds)?

The following quotes,’ three from philosophers, one from a mathematician, all
very famous, illustrate that last idea:

The mind [...] is deluded to think it can and does conceive of bodies existing unthought of,
or without the mind, though at the same time they are apprehended by, or exist in, itself.

George Berkeley [53, p. 270]

Are the perceptions of the senses produced by external objects that resemble them? This is
a question of fact. Where shall we look for an answer to it? To experience, surely, as we do
with all other questions of that kind. But here experience is and must be entirely silent. The
mind never has anything present to it except the perceptions, and can’t possibly experience
their connection with objects.

David Hume [278, p. 80]

If we treat outer objects as things in themselves, it is quite impossible to understand how we
could arrive at a knowledge of their reality outside of us, since we have to rely merely on
the representation which is in us. For we cannot be sentient [of what is] outside ourselves,
but only [of what is] in us, and the whole of our self-consciousness therefore yields nothing
save merely our own determinations.

Immanuel Kant [286, p. 351]

All that is not thought is pure nothingness; since we can think only thought and all the words
we use to speak of things can express only thoughts, to say that there is something other than
thought, is therefore an affirmation which can have no meaning.

Henri Poincaré [403, p. 355] (original [402])

The gist of those arguments is always the same: we have direct access only to our
perceptions, not to perceptions of things but to perceptions fout court. Nothing guar-
antees that those perceptions correspond to or are produced by outer objects.

In his polemical but trenchant critique of idealism The Plato Cult and Other
Philosophical Follies, the Australian philosopher David Stove characterizes these
arguments, which he calls the gem of idealism, as being always a non sequitur of the
following form:

2In [396], the assistant of Bohr, Aage Petersen stresses the role of language in Bohr’s approach
to the problems of quantum mechanics. For Bohr, we are “suspended” in language. For example,
Petersen quotes Bohr as saying: “We are suspended in language in such a way that we cannot say
what is up and what is down.” [396, p. 188].

3The ones from Berkeley, Kant, and Poincaré are quoted by David Stove [462]. We refer to his work
for a further discussion of these statements. We do not want here to discuss the whole philosophy
of these authors, but only to examine those statements critically.
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You cannot have trees-without-the-mind in mind, without having them in mind. Therefore,
you cannot have trees-without-the-mind in mind.

David Stove [462, p. 139]

By “trees-without-the-mind”, Stove means what we ordinarily call trees, namely
things that exist “out there”, independently of our minds.

A gem starts from a true but tautological premise, “You cannot have trees-without-
the-mind in mind, without having them in mind”, and “arrives” at an interesting, in
fact radical, but false and unwarranted conclusion: “Therefore, you cannot have trees-
without-the-mind in mind.” In other words, to see a tree outside of my mind, I need
my eyes and my brain, so the tree must be represented in my brain; but that does not
imply that there is no tree nor that I cannot think about it as existing outside of my
mind.

Consider the quote from Poincaré that we just gave: he starts from a tautology,
“We can think only thought and all the words we use to speak of things can express
only thoughts”, which is similar to ““You cannot have trees-without-the-mind in mind,
without having them in mind”, and “arrives” at a radical conclusion: “To say that
there is something other than thought, is therefore an affirmation which can have no
meaning”, which is similar to: “Therefore, you cannot have trees-without-the-mind
in mind.” But where is the logic? Why can’t I think about things that are not thought?*

A colleague of David Stove, Alan Olding, has put the matter even more bluntly
[363]: “We have eyes, therefore we cannot see.”

Here is another example of a gem, coming from a famous contemporary physicist,
Anton Zeilinger, whom we already quoted in Chap. 1:

[...] the distinction between reality and our knowledge of reality, between reality and infor-
mation, cannot be made.

And why is that? Because:

There is no way to refer to reality without using the information we have about it.

Anton Zeilinger [526]

In a critique of that reasoning, almost identical to Stove’s critique of idealism, one
reads:

In other words, what we can say about reality, or better what we can know about reality,
must correspond to our information about reality. In other words, what we know about reality
must conform to what we know about reality. Does Zeilinger really believe that a tautology
such as this can have interesting consequences?

Martin Daumer, Detlef Diirr, Sheldon Goldstein, Tim Maudlin, Roderich Tumulka, Nino
Zanghi [106]

“4The reader is invited to re-read the other quotes above and to verify that they all have the form of
a gem.
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The issue of idealism is of course an old one. Here is how another famous mathe-
matician reacted to it:

Thus when my brain excites in my soul the sensation of a tree or of a house I pronounce
without hesitation that a tree or a house really exists out of me of which I know the place,
the size and other properties. Accordingly we find neither man nor beast who calls this truth
in question. If a peasant should take it into his head to conceive such a doubt, and should
say, for example, he does not believe that his bailiff exists, though he stands in his presence,
he would be taken for a madman and with good reason; but when a philosopher advances
such sentiments, he expects we should admire his knowledge and sagacity, which infinitely
surpass the apprehensions of the vulgar.

Leonard Euler [178, pp. 428-429]

The French philosopher Denis Diderot was equally dismissive:

Those philosophers, madam, are termed idealists who, conscious only of their own existence
and of a succession of internal sensations, do not admit anything else; an extravagant system
which should to my thinking have been the offspring of blindness itself; and yet, to the
disgrace of the human mind and philosophy, it is the most difficult to combat though the
most absurd.

Denis Diderot [133, p. 104]

In a more humoristic version, the French philosopher (by training) and journalist
Jean-Francois Revel, remembers an exercise he had to do while studying philosophy,
namely answering the following questions:

Given that a rock is a creation of my understanding, how is it possible that I might be killed
by a falling rock, since in that case I would be smashed by one of my own notions? Can one
commit suicide with the help of one’s own concepts? Or be surprised and assassinated by it?

Jean-Francois Revel [415, p. 513]

And Revel adds [415, p. 513]: “A problem to be urgently solved, as everyone can
see.”

This may sound ridiculous, but the logic of idealism leads to such “problems”.
There are however several caveats to be made about idealism. One is that a radical
version of it, namely solipsism, the idea that everything is an illusion, that there is
nothing outside my mind (not even my body) and that there is a sort of movie going
on in my mind corresponding to my “experiences”, cannot be refuted. But of course,
it is not clear that solipsism can be formulated coherently—why assume that my
mind existed a year ago or 5min ago, rather than thinking that my memories (about
my past “experiences”) are also an illusion? Maybe only solipsism of the instant
(the only thing that exists is my mind right now) is really consistent. But who cares?
Nobody really believes this sort of thing. As Bell says:
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Solipsism cannot be refuted. But if such a theory were taken seriously it would hardly be
possible to take anything else seriously. So much for the social implications. It is always
interesting to find that solipsists and positivists,’ when they have children, have life insurance.

John Bell [49, p. 136]

One can invent many variants of solipsism. For example, “I”” could be simply a “brain
in a vat”, that is, “I” could be reduced to my brain, which would be manipulated from
the outside by some ingenious scientist who has “wired up” my brain and sends me
just the right electrical signals to ensure that I have all the sensations that I actually
have. But, in reality, it is all an illusion.® The movie The Matrix has popularized this
idea.

Another irrefutable idea is radical skepticism: maybe there is something outside
of my mind, but I cannot obtain any reliable information about it. Taken literally,
radical skepticism would imply that we have no reason to look left or right when
crossing a street (one could not even invoke a “habit”, since knowledge of the habit
would already be knowledge of something and moreover, there is nothing that would
justify the habit, if we accept radical skepticism). Hume adequately characterized
this skepticism:

Sceptical principles may flourish and triumph in the philosophy lecture-room, where it is
indeed hard if not impossible to refute them. But as soon as they come out of the shadows,
are confronted by the real things that our beliefs and emotions are addressed to, and thereby
come into conflict with the more powerful principles of our nature, sceptical principles vanish
like smoke and leave the most determined sceptic in the same believing condition as other
mortals.

David Hume [278, p. 83]

Idealism often presents itself as a sort of third way between realism (labelled naive)
and solipsism or radical skepticism. The (recurring) idea is that it is maybe more
careful or more rigorous or more “scientific” to speak only of our perceptions and
not of what is “out there”, since we have only “direct” access to our perceptions. But
there is no way to escape the following dilemma: either we think that some of our
perceptions are perceptions of something existing outside of our minds and we agree
with realism or we don’t and we are solipsists or radical skeptics. Idealism is not
a well defined doctrine, but rather a rhetoric of the “middle ground”, in a situation
where there is no middle ground.

This rhetoric is also at the basis of the idea that the goal of science is to “save
the phenomena”, that is, to limit ourselves to accounting for the latter or for our
“observations” or our “experiments”. But the easiest way to save the phenomena is
to have a minimum number of them; close your eyes and block your ears. Then any

SHere Bell refers to some versions of logical positivism (or of the Vienna circle) that were trying
to reduce the outside world to a series of impressions of the senses. Positivism will be discussed
further in Sect.7.7 and in Chap. 8. (Note by J.B.).

OThis argument can be expressed in many different ways. Descartes already suggested that we might
be manipulated by an evil demon [123]. For a modern discussion, see Putnam [409, Chap. 1].
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theory will “save the phenomena”. Of course, that is not what scientists do. There
is no way to explain why one makes new experiments all the time if one does not
accept the idea that the goal of science is to find out how the world really is and
that, in order to do so, one tries to invent ways to test those theories, and to test hem
as severely as possible. Experiments are not given to us, like everyday experience
might be, they are constructed to check that our theories about the world are true.

However, idealism is related to a serious question: how does the cognitive inter-
action between ourselves and the world work? How do we form representations?
Where do concepts come from? And, ultimately, how do conscious sensations arise?
All these questions are difficult.” But parts of them can be investigated scientifically,
through cognitive science or neurophysiology.

It is important to stress that any study of our means of acquiring knowledge,
whether that study refers to biology, psychology, sociology, or history, presupposes
the truth of realism. We have to assume, for example, that there are biological or
psychological facts that are independent of us and that explain how we perceive
things.

Idealists often suggest that we have to analyze our means of interactions with the
world in order to better understand it—for example, that the problems of quantum
mechanics are caused by our “language” or our concepts, and that we have to better
analyze them in order to solve those problems. Of course, it is sometimes useful
to reflect on one’s concepts or one’s language, but this is only part of the general
investigation of how the world is. In particular, it is difficult to define a priori what are
the mental categories that are “necessary” for science to work, because, as science
evolves, we tend to revise those supposedly necessary categories.®

In any case, it is an empirical question to know how our minds work, what cate-
gories they use, and what limits those categories may impose on our ability to know
the world. Therefore, when one investigates such questions, one is in the same boat as
the physicist: one has to assume that one can get reliable information about the world
(say, in biology), and there is no reason to think that such an enquiry can be carried
out a priori, nor that it should be a presupposition (or a “condition of possibility”) of
other empirical studies.

The mistake that idealism commits is to jump from the fact that our ways to
acquire knowledge are to some extent mysterious, to doubting that we are able to
acquire knowledge. Stove draws a parallel with “gastronomical idealism”:

We can eat oysters only insofar as they are brought under the physiological and chemical
conditions which are the presuppositions of the possibility of being eaten. Therefore, we
cannot eat oysters as they are in themselves.

David Stove [462, p. 161]

7 And the last one, called the mind—body problem, may lie beyond the reach of our understanding.
8Euclidean geometry being probably the most famous example of this process, since it was thought
to be a necessary truth before the invention of non-Euclidean geometries in the 19th century; and the
latter even became relevant to physics because of their role in Einstein’s general theory of relativity.
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Obviously nobody is a gastronomical idealist, even if one had no idea whatsoever
about how digestion works.

Our knowledge of mid-size objects in the “outside” world is a brute fact that
science takes for granted. A mistake sometimes made is to think that physics predicts
our experiences or that it deals somehow with our knowledge of the world. But
physics is entirely silent about our cognitive processes. As Einstein explained in a
letter to Maurice Solovine [171], physics starts from “axioms”, as he called it, or what
one might call laws of Nature, that are the results of “free creations of the human
mind” as he says elsewhere [166]. This means that they cannot be inferred from
data either inductively or deductively. Then, one deduces mathematically empirical
“observable” consequences of those laws.

For example, Newton’s laws of motion predict the motion of projectiles, satellites
and planets. Other parts of physics may predict where needles end up on a screen
or traces of ink on a computer printout. But the next and last step, where humans
acquire knowledge of these observable consequences is not explained by physics;
it is presupposed by it. As Einstein emphasized, if this last step were not reliable
(even in the absence of a theory explaining why it is reliable), then nothing would
be.? Physicists have no alternative but to accept that we can reliably know, by direct
observation, certain facts about the world, at least the macroscopic data that are the
results of experiments.

It is of some importance to realize this, because it shows that all the loose talk
about physics not dealing with the world but with our knowledge of it cannot be
taken literally. Maybe physics deals only with meter readings, positions of needles
on a screen etc., i.e., “results of experiments”, but these are nevertheless objective
facts about the world that have nothing to do with our knowledge of them (we will
return to that question in Sect. 3.3).

Of course, the arguments given here deal only with what one might call common
sense or everyday life realism: there really are tables and chairs and people and
computers, etc.'? But it says nothing about the realism of scientific theories, about
which other objections can be raised.

3.2 Scientific Realism

Let us admit that there are objective facts about the world, such as those discussed
above. But what about scientific theories?'! Should they be understood realistically
and if so how? The “naive” view is that we can have empirical data that support our
theories and, if there are enough data and if they are sufficiently impressive, then

9See the discussion by Maudlin in [325] of Einstein’s 1952 letter to Maurice Solovine [171].

107t is sometimes argued that tables and the like do not really exist because they are just an assembly
of atoms. That will be discussed at the end of Sect.3.2.

This section is in part already in [82, 454]; see also [453, Chap.4].
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the theory is probably approximately true. Moreover, as time progresses, we obtain
theories that are closer and closer to the truth.

There are a priori and a posteriori challenges to those ideas. The a posteriori ones
are based on the study of the history of science. The a priori ones rely on the idea
that theories are underdetermined by data. Let us start with the latter.

3.2.1 Underdetermination

In its most common formulation, the underdetermination thesis says that, for any
finite, or even infinite, set of data, there are infinitely many mutually incompatible
theories that are “compatible” with those data.'? Here is how Quine stated his thesis:

Any statement can be held true come what may, if we make drastic enough adjustments
elsewhere in the system. Even a statement very close to the periphery [i.e., close to direct
experience] can be held true in the face of recalcitrant experience by pleading hallucination
or by amending certain statements of the kind called logical laws.

Willard Van Orman Quine [411, p. 43]

This thesis, if not properly understood, can easily lead to radical conclusions. The
scientist who believes that a disease is caused by a virus presumably does so on the
basis of some “evidence” or some “data”. Saying that a “disease is caused by a virus”
presumably counts as a “theory” (e.g., it involves, implicitly, lots of counterfactual
statements'?). But if one is able to convince the scientist that there are infinitely many
distinct theories that are compatible with those “data”, he or she may well wonder
on what basis one can rationally choose between those theories.

In order to clarify the situation, it is important to understand how the underde-
termination thesis is established; then, its meaning and its limitations become much
clearer. Here are some examples of how underdetermination works. One may claim
that:

e The past did not exist: the universe was created 5 min ago with all the documents
and all our memories referring to the past in the state they were 5 min ago. Alter-
natively, it could have been created 100 or 1000 years ago.

e The stars do not exist: instead, there are spots on a distant sky that emit exactly
the same signals as those we receive.

12This is often called the Duhem—Quine thesis. In what follows, we will use Quine’s version, which
is more radical than Duhem’s. The latter emphasized the theory dependence of observations or, as
Einstein said to Heisenberg [261, p. 63]: “It is the theory which decides what we can observe.” For
Duhem’s views, see [139]. We will return to the discussion between Einstein and Heisenberg in
Sect.3.2.3.

13This means statements that depend on premises that are not realized. For example, one could say:
“if that population had been infected by the virus, many people would have been sick.” This can be
considered as a true statement, even if the population in question has not been infected.
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e All criminals ever put in jail were innocent: take any given criminal, explain away
all testimonies by deliberate desire to harm the accused, declare that all evidence
was planted by the police and all confessions were obtained by force.

Of course, all these “theses” may have to be elaborated, but the basic idea is clear:
given any set of facts, just make up a story, no matter how implausible, to “account”
for them without running into contradictions.'* Quine would just say that these claims
amount to making “drastic enough adjustments elsewhere in the system”.

It is important to realize that this is all there is to the underdetermination thesis.
This thesis is not very different from the observation that radical skepticism or even
solipsism cannot be refuted: all our knowledge about the world is based on some sort
of inference from observations, and no such inference can be justified by deductive
logic alone. However, it is clear that, in practice, nobody ever takes seriously “the-
ories” such as those mentioned above. Let us call them “crazy theories”, or, as the
physicist David Mermin would say, “Duhem—Quine monstrosities” [337]. Note that
those theories require no work. They can be formulated entirely a priori.

On the other hand, the difficult problem is, given a set of data, to find even one
non-crazy theory that accounts for them. Consider for example a police enquiry
about some crime: it is easy enough to make up a story that “accounts for the facts”
in an ad hoc fashion (sometimes, lawyers do just that), but it is hard to discover
who actually committed the crime and to obtain evidence showing that “beyond
reasonable doubt”.!> Reflecting on this elementary example clarifies the meaning of
the underdetermination thesis. It may be that there is a unique “theory” (i.e., a unique
story about who committed the crime) that is plausible and compatible with the facts;
in that case, one will say that the criminal has been discovered, even though one can
always freely make up theories that will reach different conclusions.

The same is true for scientific theories: in many instances, there is a unique theory
that predicts the relevant data. If it predicts new data, as is often the case, then there
are even more reasons to believe in that theory. This is sometimes called the “no
miracle argument” (in favor of realism): it would be a miracle if theories that have
many empirical successes (as the best scientific theories do) were not approximately
true.

This common sense idea has also been challenged by philosophers—indeed it does
not literally prove anything (and if we admit that radical skepticism is irrefutable, it
could not prove anything). But if I have a leak in my bathroom, a plumber comes,
and the leak disappears, it is natural to assume that he has fixed the leak. Of course,
it is always conceivable that the plumber did nothing and that the leak disappeared

14In his famous paper quoted here, Quine allows himself even to “plead hallucination” or to change
the rules of logic, in order to show that any statement can be held true, “come what may” [411]. Of
course, if one is willing to change the rules of logic then, “proving” underdetermination of theories
by data becomes even easier. On the other hand, Quine said that he did not want to encourage radical
relativism, although this is what a “naive” reading of what he wrote leads to.

15This expression shows that people who use it are aware of the fact that, by making enough ad hoc
assumptions, one could always reject the evidence no matter how strong it is.
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by accident. But conceivable does not mean reasonable and objections to the “no
miracle argument” are of the same level as what we just said.

A thesis close to the underdetermination thesis concerns the “theory dependence
of observations” and the related fact that one cannot check scientific statements one
by one. If I want, for example, to verify Newton’s theory of gravitation, I may need
a telescope to see where the planets are, but the functioning of the telescope depends
on other principles than those of the theory of gravitation. Therefore, if one found
a discrepancy between some theory and observations, it could be due to different
factors, including the possibility that the means used in that observation (telescope
or microscope, for example) do not work as advertised.

Once again, Quine formulated a radical version of the idea that observations are
theory dependent:

[O]ur statements about the external world face the tribunal of sense experience not individ-
ually but only as a corporate body. [...] The unit of empirical significance is the whole of
science.

Willard Van Orman Quine [411]

The philosopher Thomas Nagel offers a rather amusing reply:

Suppose I have the theory that a diet of hot fudge sundaes will enable me to lose a pound a
day. If T eat only hot fudge sundaes and weigh myself every morning, my interpretation of the
numbers on the scale is certainly dependent on a theory of mechanics that explains how the
scale will respond when objects of different weights are placed on it. But it is not dependent
on my dietary theories. If I concluded from the fact that the numbers keep getting higher that
my intake of ice cream must be altering the laws of mechanics in my bathroom, it would
be philosophical idiocy to defend the inference by appealing to Quine’s dictum that all our
statements about the external world face experience as a corporate body, rather than one by
one. Certain revisions in response to the evidence are reasonable; others are pathological.

Thomas Nagel [346]

Again, either the idea “theory dependence of observations™ is yet another formulation
of radical skepticism and we can treat it with “neglect and inattention” (Hume) or it
is a reminder of the fact, well-known to scientists, that observations are never pure
and can be contaminated in various ways. After all, why do we do double blind
experiments in medicine, or use controls in experiments, duplicate them, etc., if not
to try to avoid such problems?

3.2.2 Incommensurability of “Paradigms”

Another attack on scientific realism comes from the study of the history of science,
mostly the one inspired by Thomas Kuhn and his extremely influential book The
Structure of Scientific Revolutions [298]. The basic idea of Kuhn is that science
changes through revolutions, each one introducing its own paradigm, which defines
a certain framework through which we think about the world and which is incom-
mensurable with the previous ones. Now, what incommensurable means has been the
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subject of intense discussions. In [320] Maudlin distinguishes between a “moderate”
and an “immoderate” Kuhn. The moderate Kuhn simply observes that, when a “rev-
olution” occurs, the evidence that forces scientists to change may not be compelling,
but he does not deny that we now have good evidence to justify the changes that took
place.

It is the immoderate or radical Kuhn that we will discuss here, the one for whom
“incommensurable” means that the different frameworks through which we look at
the world cannot be directly compared because they define in different ways what
counts as evidence or observations.'® Since observations are (in the sense discussed
in Sect.3.2.1) “theory dependent”, there is no way to appeal to pure or naked obser-
vations to discriminate between different theories. Here is an example of Kuhn in
the radical mode, speaking of the introduction of atoms by John Dalton in the early
19th century:

Chemists could not, therefore, simply accept Dalton’s theory on the evidence, for much
of that was still negative. Instead, even after accepting the theory, they had still to beat
nature into line, a process which, in the event, took almost another generation. When it was
done, even the percentage composition of well- known compounds was different. The data
themselves had changed. That is the last of the senses in which we may want to say that after
a revolution scientists work in a different world.

There is, I think, no theory-independent way to reconstruct phrases like “really there”; the
notion of a match between the ontology of a theory and its “real” counterpart in Nature
now strikes me as illusive in principle. Besides, as a historian, I am impressed with the
implausibility of the view.

Thomas Kuhn [298]

This seems to suggest that atoms (even atoms!) are not “really there”, but are the
results of a certain way of looking at the world (or of creating a “different world”).!”
But this is hard to take seriously: even assuming that atoms were introduced at
the time of Dalton on the basis of insufficient evidence, we now possess so many
different and independent sources of evidence for the existence of atoms that it would
be highly irrational to deny their existence. The same is true for many other scientific
discoveries, like Newton’s laws, Maxwell’s equations, the theory of evolution, etc.

One must therefore distinguish two different questions: one is purely historical
and is to see whether the evidence was rationally compelling at the time when a new
“paradigm” (if one wants to use this word) like the atomic theory or heliocentrism
was introduced; the other is to see whether the evidence that we now have in support
of those ideas is compelling, and these are totally different issues. It might be that a
theory was introduced initially for the wrong reasons (or for not totally good ones),
yet that it is objectively correct.

16The adjectives “moderate” and “immoderate” may refer to different ways to read Kuhn, the
immoderate one having become popular among some sociologists of science. What the real Kuhn
thought is a separate question.

17See Krivine and Grossman [297] for a critique of relativism based on the history of the atomic
theory.
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An easy objection to the radical version of Kuhn’s ideas, the one that conflicts
with realism, is that, if physicists cannot establish objective theories about the world,
why should one believe that historians can?'® After all, history is also an empirical
investigation, and if physicists just move from one paradigm to the next, without ever
knowing what is “really there”, why believe that historians don’t suffer the same fate?

Tim Maudlin has a nice way to refute the “radical” Kuhn'®:

Perhaps evidence is never “decisive” in the sense of showing how the world actually is.
If so, then our earlier claim that the disputes between Ptolemy and Copernicus, Galen and
Harvey, etc., were rightly decided could be brought into question. The Copernicans, it might
be argued, having accepted the new paradigm came to live in a Copernican world, but
Ptolemaic astronomers would never have experienced the supposedly decisive evidence.
Similarly, Aristotle could not have experienced the world as refuting his cosmology until
he had already accepted a new paradigm, but at that point the choice would already have
been made, and so could not be induced by the evidence available given the new paradigm.
The obvious objection to this strong reading of the third form of incommensurability’
is that it is silly. If presented with a moon rock, Aristotle would experience it as a rock,
and as an object with a tendency to fall. He could not fail to conclude that the material of
which the moon is made is not fundamentally different from terrestrial material with respect
to its natural motion. Similarly, ever better telescopes revealed more clearly the phases of
Venus, irrespective of one’s preferred cosmology, and even Ptolemy would have remarked the
apparent rotation of a Foucault pendulum. The sense in which one’s paradigm may influence
one’s experience of the world cannot be so strong as to guarantee that one’s experience will
always accord with one’s theories, else the need to revise theories would never arise.

[...]

Perhaps the appearance of the success and progress of science is only an illusion, the ultimate
propaganda produced by the winner. Of course the successful paradigm will regard itself as
being right, will proclaim to the world that it tells the truth, will manufacture “evidence” of
its correctness — but perhaps this is merely the will of the stronger, not the voice of nature.
But no acceptable argument could possibly lead us to such a conclusion. After all, we have
much stronger, direct, irrefutable evidence that the Earth rotates, that the blood circulates,
that matter is made of atoms than we have grounds to believe any epistemology or account
of scientific practice. Like Euripides in The Frogs, the social constructivist can pile all his
works in one pan of the balance, and climb in with his family and friends as well, while
Foucault or Harvey or Cavendish outweighs him on the other side with a scrap of paper from
a laboratory journal.

Tim Maudlin [320]

18We raised the same objection above, when discussing idealism. It applies to all skeptical arguments
based on empirical statements, as opposed to a priori reasonings.

19The article from which this quote is taken was only published in a French translation [320].
We thank Tim Maudlin for providing us with the original English version and for giving us the
permission to quote it.

201 [320], Maudlin distinguishes three different senses of the word “incommensurability”, which
is the fundamental Kuhnian concept applied to the relations between “paradigms”: “differences
over which problems a theory must solve and over the standards of solution; the unnoticed shifts
in meaning that occur when a new theory takes over the vocabulary of an old one; and changes
in one’s fundamental perception of the world that come from accepting a new paradigm.” It is the
“changes in one’s fundamental perception of the world that come from accepting a new paradigm”
that characterizes the radical Kuhn and that is discussed here. (Note by J.B.).
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The problem with Kuhn’s views is that their radical version has been taken to new
extremes by a certain number of sociologists of science as well as philosophers
of science (see [461] for a good critique of that trend), leading to the idea that
all our scientific knowledge is “socially constructed” or even that reality itself is
“constructed”. Kuhn is not responsible for the radicalization of his views, but it
cannot be denied that his ambiguities made his views both “interesting”, because of
their implications for the (im)possibility of discovering objective truths (the moderate
Kuhn would have been of interest only to historians) and exploitable by others exactly
in the way that they have been exploited.

Social constructivism applied to all our forms of knowledge can be considered as a
sort of socialization of idealism, since it is our social environment (classes, historical
periods, etc.), rather than some abstract human mind, that determines our way of
“looking” at the world and therefore our “knowledge” of it. Classical idealists and
social constructivists have many disagreements, but, in both cases, the link is severed
between our representations of the world and the world itself, and our “knowledge”
reflects something inside us (the mind or societies) rather than outside.

3.2.3 The Status of “Unobservable Entities”

There is a further problem for realism, namely the status of “unobservable entities”,
such as the gravitational force, for example. When Newton introduced his theory, he
assumed that there were forces attracting bodies towards each other, even if the latter
were far apart, while ignoring the ultimate cause that produced these forces.

Ever since that discovery, people have wondered whether these forces are “real”
or at least in what sense one should consider them real. After all, nobody sees these
forces, one only sees their consequences through the motion of bodies. And they
are not comparable to contact forces (like one body colliding with another). In fact,
Newton was accused by his critics of having reintroduced medieval “occult qualities”
into science. He himself did not “feign hypotheses” on the ultimate nature of those
forces, and simply observed that they allowed him to deduce the visible motion of
bodies:

I have not as yet been able to discover the reason for these properties of gravity from
phenomena, and I do not feign hypotheses. For whatever is not deduced from the phenomena
must be called a hypothesis; and hypotheses, whether metaphysical or physical, or based on
occult qualities, or mechanical, have no place in experimental philosophy. In this philosophy
particular propositions are inferred from the phenomena, and afterwards rendered general
by induction.

Isaac Newton [351, p. 943]

After Newton, physicists have introduced other unobservable quantities like electro-
magnetic fields “propagating in vacuum” or curved spacetime in general relativity.
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The argument in favor of the existence of those unobservable entities is rather
straightforward: we cannot formulate our theories without postulating those enti-
ties?! and the evidence for the truth of the theory counts therefore as evidence for
the existence of those unobservable entities. After all, we have never directly seen
dinosaurs, distant galaxies, or the inside of the Sun. Yet, we infer the existence and
properties of those objects from more direct observations, so why not do the same
with forces and other unobservable entities?

Of course, this argument works only for entities that are postulated by sufficiently
successful scientific theories; otherwise, we might have to believe in the phlogis-
ton, a substance that was thought to be released during combustion, before modern
chemistry was developed, and in many similar substances. The fact that one used to
believe in the existence of things like the phlogiston, that were later abandoned, is the
basis of the argument by the philosopher Larry Laudan [305] in favor of inductive
pessimism: since we were wrong in the past about those objects, how can we be
so sure about the reality of objects, like atoms, that are postulated by our current
scientific theories? The answer is that it is a question of degree: of course, we might
be wrong even about the existence of atoms (we know that already from the Duhem—
Quine thesis or from the irrefutability of radical skepticism), but the evidence for the
existence of atoms is vastly greater than any evidence that we ever had in favor of
the existence of the phlogiston or other discarded substances.??

However, the real problem is not whether those unobservable quantities exist
but rather, what do we mean when we use those words? They are unanschaulich
(not representable) to use a German word often used in the early discussions about
quantum mechanics. We can visualize dinosaurs but how to visualize forces acting
at a distance? As noted by the philosopher of science Bas van Fraassen, realists tend
to use arguments involving mid-size objects, while instrumentalists (meaning people
who want to reduce scientific statements to be only about measurements or results of
experiments) tend to argue their case by focusing on fundamental entities like forces
or fields [493, p. 268]. But this is connected with the problem of meaning: if we
say “X exists”, we must know what “X”” means. And since we can form pictures of
mid-size objects like dinosaurs, the meaning of the words referring to them is pretty
clear intuitively, whereas this is not necessarily the case for the unobservable entities
introduced in physics.

It is important to note that, although many debates on quantum mechanics were
centered on the non-representability of Nature according to that theory, the problem
did occur long before its discovery, since it goes back to Newton. The supposed
novelty in the case of quantum mechanics is that, if particles have no position and
no trajectory and, in general, if they don’t have any definite properties (like energy
or speed of rotation), then nothing is representable, while in classical physics, the

210ne might argue that one could replace forces, for example, by potentials or by Hamiltonians,
but that would just introduce other unobservable entities. We will not enter into this rather technical
discussion.

22See [207, 408, 431] for more critical discussions of Laudan’s pessimistic induction.
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motion of bodies was representable, even if what causes those motions, the forces,
were not.”?

One common temptation, in order to solve this problem, is to give a purely oper-
ationalist or instrumentalist meaning to the words referring to unobservable entities:
let us forget completely about those “metaphysical” entities, and let us formulate our
physical theories solely in terms of “observable” quantities.

The first problem with that idea is that the notion of “observable” is not clear at
all, as we already mentioned in Chap.2. Surely, there are observations made with
our unaided senses, but should one limit oneself to those? Can one use eyeglasses,
magnifying glasses, telescopes, or (electronic) microscopes?

The second, deeper problem, is that the meaning of the words used by scientists
goes far beyond what is “observable”. To take a simple example, should paleontol-
ogists be allowed to speak about dinosaurs? Presumably, yes. But in what sense are
they “observable”? After all, everything we know about them is inferred from fossil
data, which are the only quantities ever directly “observed”. Of course, all those
inferences are based on some kind of evidence, but the point is that the evidence is
evidence for something other than itself, e.g., bones of dinosaurs are evidence for
the existence of dinosaurs, but the latter are not made only of their bones, and the
meaning of the word “dinosaur” is not easily expressible in a language that would
refer only to their bones.

Besides, we cannot say that if an instrument measures an electric current, the
meaning of the word “electric current” is given by the fact that the instrument readings
are what they are, because those readings could be due to other causes, for example
to a malfunctioning of the instrument. This shows that what we mean by “electric
current”, even if it is not entirely clear, is not reducible to a meter reading.24

It is because we have a theory of electric currents that we can predict that certain
observations will be made, with adequate instruments. Those observations do of
course count as evidence in favor of the theory, but they do not replace it. If we did

23We will see in Chap.5 that the de Broglie-Bohm theory has, from this point of view, a status
comparable to that of classical mechanics: particles have “representable” trajectories, but they are
guided by a much less representable wave function.

24This point is also made by Feynman in his Lectures on Physics. Referring to a lady who is given
a ticket for speeding, he wrote:

Many physicists think that measurement is the only definition of anything. Obviously, then,
we should use the instrument that measures the speed — the speedometer — and say, “Look,
lady, your speedometer reads 60.” So she says, “My speedometer is broken and didn’t read
at all.” Does that mean the car is standing still? We believe that there is something to measure
before we build the speedometer. Only then can we say, for example, “The speedometer
isn’t working right,” or “the speedometer is broken.” That would be a meaningless sentence
if the velocity had no meaning independent of the speedometer. So we have in our minds,
obviously, an idea that is independent of the speedometer, and the speedometer is meant
only to measure this idea.

Richard Feynman [183, Sect. 8.2]
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not have the theory first, with its unobservable entities, there would be no meaning
assigned to the observations in the first place.

This point was stressed by Einstein when he met Heisenberg for the first time in
1926. Einstein started by asking Heisenberg if he seriously believed “that none but
observable magnitudes must go in a physical theory”. Heisenberg replied that this is
what Einstein had done with relativity: “that it is impermissible to speak of absolute

time, simply because absolute time cannot be observed”. Although Einstein admitted

that he “did use this kind of reasoning”, he said that “it is nonsense all the same”.%>

He then explained “more diplomatically”:

[...]itis quite wrong to try founding a theory on observable magnitudes alone. In reality the
very opposite happens. It is the theory which decides what we can observe. You must appre-
ciate that observation is a very complicated process. The phenomenon under observation
produces certain events in our measuring apparatus. As a result, further processes take place
in the apparatus, which eventually and by complicated paths produce sense impressions and
help us to fix the effects in our consciousness. Along this whole path [...] we must be able
to tell how Nature functions [...] before we can claim to have observed anything at all. Only
theory, that is, knowledge of natural laws, enables us to deduce the underlying phenomena
from our sense impressions. When we claim that we can observe something new, [...] we
nevertheless assume that the existing laws — covering the whole path from the phenomenon
to our consciousness — function in such a way that we can rely upon them and hence speak
of ‘observations’.

When it comes to observation, you behave as if everything can be left as it was, that is, as
if you could use the old descriptive language.?% In that case, however, you will also have to
say: in a cloud chamber we can observe the path of an electron. At the same time, you claim
that there are no electron paths inside the atom. This is obvious nonsense [...].

Albert Einstein speaking to Werner Heisenberg [261, pp. 63, 65]

Einstein came back to this theme much later, in his 1949 Reply to criticisms. After
mentioning that “the quantum theorist” would object to postulating “something not
observable as ‘real”’, Einstein writes:

‘What I dislike in this kind of argumentation is the basic positivistic attitude, which from my
point of view is untenable, and which seems to me to come to the same thing as Berkeley’s
principle, esse est percipi.?’ “Being” is always something which is mentally constructed by

25Heisenberg says [261, p. 64]: “I was completely taken aback by Einstein’s attitude, though I found
his arguments convincing.” However, it is not clear that Heisenberg really incorporated Einstein’s
attitude in his views on quantum mechanics.

26This “old descriptive language” is at the basis of the idea, in quantum mechanics, that a “measure-
ment” measures some real property of the quantum system. As we emphasized in Sect. 2.5, this is
untenable; we will come back to this question in Sect. 5.1, where we will explain what measurements
really are, in the framework of the de Broglie-Bohm theory. (Note by J.B.).

27«To be is to be perceived”, which is a standard motto of idealism, as we saw in Sect.3.1. The
science writer John Horgan quotes John Wheeler as saying [273]: “[...] quantum phenomena are
neither waves nor particles but are intrinsically undefined until the moment they are measured. In
a sense the British philosopher Bishop Berkeley was right when he asserted two centuries ago that
‘to be is to be perceived’.” This is a surprising position to hold for a physicist, but maybe not that
surprising, given Wheeler’s views on quantum mechanics, and in particular on the delayed choice
experiment, discussed in Chaps. 1 and 2. (Note by J.B.).
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us, that is, something which we freely posit (in the logical sense). The justification of such
constructs does not lie in their derivation from what is given by the senses. Such a type of
derivation (in the sense of logical deducibility) is nowhere to be had, not even in the domain
of pre-scientific thinking. The justification of the constructs, which represent “reality” for us,
lies alone in their quality of making intelligible what is sensorily given (the vague character
of this expression is here forced upon me by my striving for brevity).

Albert Einstein [170, p. 669]

For Einstein, observations were always “dependent on theories”, in some sense;
which does not mean that they are arbitrarily “constructed” by us (socially or other-
wise), but that we cannot use the concept “observation” as a fundamental, unprob-
lematic concept on which to base our scientific theories.

Maybe a hint of the solution to our problems is provided by the following comment
by Einstein:

Science without epistemology is — insofar as it is thinkable at all — primitive and muddled.
However, no sooner has the epistemologist, who is seeking a clear system, fought his way
through such a system, than he is inclined to interpret the thought-content of science in the
sense of his system and to reject whatever does not fit into his system. The scientist, however,
cannot afford to carry his striving for epistemological systematic that far. [...] He therefore
must appear to the systematic epistemologist as an unscrupulous opportunist.

Albert Einstein [170, p. 684]

Opportunism in epistemology would mean that we try to give meaning to the unob-
servable entities by combining rather than opposing the various tools that we have
to grasp them: they are partly defined mathematically, partly defined by our indirect
observations, and partly by the imperfect pictures that we can make of them. None
of these tools is perfect and even when they are combined, we do not reach an under-
standing of unobservable entities similar to what we can do with mid-size objects,
but there is nothing better that we can do, given our means of perception and the
constitution of our minds. However, there is no reason, as instrumentalists tend to
do, to restrict ourselves to using only one tool, i.e., direct macroscopic observations.

Returning to the unobservable entities, it is useful to keep in mind the following
picture, which is basic to most thinking in modern physics,?® and which allows us to
make rather precise the idea of one theory being an approximation of another. In this
view, reality is composed of a hierarchy of “scales”, ranging from quarks to galaxies,
and going through atoms, fluids, gases, and so on. The theory on one scale emerges
from the one on a finer scale, by ignoring some of the (irrelevant) details of the
latter. All our present theories are approximations to more basic theories: continuum
and fluid mechanics are approximations to classical particle mechanics; classical
physics is an approximation to non-relativistic quantum mechanics, which is itself
an approximation to quantum field theories. Whether this process stops somewhere

280ne might call this the “renormalization group view of the world”, after the work in statistical
mechanics and quantum field theory carried out during the 1970s (but too technical to be explained
in detail here).
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at some fundamental “final theory”, or whether there are theories “all the way down”,
no one knows.2? In each of those theories, the existence of some basic “unobservable”
entities (forces, fields, etc.) is postulated. But all of these are supposed to be higher-
level effects caused by the basic entities of a more fundamental theory (for example,
classical forces do not enter in quantum field theories, and should be thought of as
emerging from them as some sort of approximations). Since none of those theories is
(yet) final, there is no reason to consider them as literally true or to worry too much
whether the entities they postulate “really exist”. In summary, all physical theories
have to refer to some basic “unobservable” ontology, but there is some unavoidable
vagueness in what that fundamental ontology consists of.

On the other hand, since we do not know what the ultimate entities are, it makes
little sense to think that objects on a higher scale, like tables and chairs, are not real,
because they are just, say, assemblies of atoms. If one reasons like this, atoms are
not real either because they are made of nuclei and electrons and one can continue
like that, from one scale to the next, without knowing whether this will ever stop. It
is more reasonable to consider that objects on all scales exist, provided that we have
good evidence for their existence.

Moreover, and this is also an important point, since we know that, for example,
classical mechanics is only an approximation, we can expect it to live forever (with
that status). There are no examples in the history of science of a theory that has
been abandoned after it has been so well studied that its status has become one
of approximate truth. For example, most of ballistics and celestial mechanics use
the “approximately true” Newtonian mechanics. And the 19th century equations
which approximately govern the motion of fluids have largely survived the quantum
revolution.

As pointed out by Weinberg in his very interesting critique of Kuhn:

If you have bought one of those T-shirts with Maxwell’s equations® on the front, you may

have to worry about its going out of style, but not about its becoming false. We will go on
teaching Maxwellian electrodynamics as long as there are scientists.

Steven Weinberg [506]

3.3 Realism and Quantum Mechanics

Sometimes idealism seems to be supported by arguments based on quantum mechan-
ics. We quoted already in Sect. 1.3 some statements illustrating this line of thought,
for example:

We now know that the moon is demonstrably not there when nobody looks.

David Mermin [331]

29See Weinberg [504] and Bohm [68, Chap.5] for in-depth discussions of this issue, reaching
different conclusions.

30These equations govern the motion of electromagnetic waves. (Note by J.B.).
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But if someone asserts that quantum mechanics should lead us to doubt the existence
of ordinary macroscopic objects, like the moon, why believe quantum mechanics
in the first place? As every scientific theory, quantum mechanics is justified by
“experiments” or “observations”, and the latter presuppose that objects (at least
laboratory instruments) exist independently of human consciousness and of whether
we look at them or not. Of course, one could argue that a scientific theory shows that
some objects or properties do not exist in themselves, but are somehow produced by
a specific interaction with our senses (optical illusions would be an example). But
that sort of statement becomes self-refuting when it applies to the entire “outside
world”.

David Stove has a particularly ironical, but entirely suitable reaction to the state-
ment from Mermin quoted above:

[...]if it is true, then it would be irrational to believe these physicist’s best theories. Fun-
damental physical theories never say anything about a particular macroscopic object, such
as the moon; but if they did say something about the moon, then they would say the same
thing about all macroscopic physical objects, hence about all land mammals, hence about
the particular land mammal, Professor N. D. Mermin, who wrote the sentence I have just
quoted. [...] [Mammals] depend for their existence on a great many things; but somebody’s
looking at them is not among those things and everyone knows this.

David Stove [462, pp. 99-100]

Considering what precedes, one may well ask: What do people mean when they say
that quantum mechanics forces us to abandon realism? Which kind of realism? The
one about ordinary objects? Should we believe that Schrodinger’s cat is both alive
and dead before we look? If a measurement is made in a laboratory and the result
is recorded by a computer, does the record only appear when someone looks at it?
It is hard to think that anybody could take such proposals seriously, despite all the
statements suggesting that one does.

But then, what can the expression “abandoning realism” possibly mean? Maybe it
refers to scientific realism: quantum mechanics would not be a theory about the micro-
scopic world, but only about the effects that the latter has on the macroscopic world
(i.e., on measurements), and no reality can be attached to the quantum description of
the microscopic world. That is of course a possibility and it is a coherent position,
but it is hardly a satisfactory one. There is no way to make a distinction, in prin-
ciple, between the macroscopic world and the microscopic one. More importantly,
macroscopic objects are constituted by microscopic ones—atoms for example. If the
latter have no objective properties whatsoever (no position, no velocity, no angular
momentum, etc.), how come that macroscopic objects do have such properties? It is
sometimes thought that a classical description emerges from a quantum one, when
some limit is taken—for example, if the mass or the number of particles of the quan-
tum system increases. But nothing emerges out of nothing, just because some limit
is taken in an equation. If there is nothing real on the microscopic scale, then there
is nothing real on the macroscopic one either.*!

31See the example of Einstein’s boxes in Sect. 4.2 for a further discussion of this problem.
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One could of course reply that what happens on the micro scale is unknowable
and that only the macroscopic manifestations of what happens on that scale can be
known. But some argument must be given for that view and the fact that ordinary
quantum mechanics does not give us a description of what happens on the micro
scale does not prove that such a description is impossible.

Sometimes, when arguments are given, they rely on the no hidden variables theo-
rems,>? and the ones discussed in Sect.2.5 do prove that one cannot attribute a value
independently of “measurements” to certain classes of “observables”. That means of
course that one should not be realist with respect to those values. But this has nothing
to do with realism understood as a general or philosophical concept. After all, we
know that colors are not “real”, in the sense that they are the result of certain inter-
actions between light of a given wavelength and our brains and that there is nothing
really red or green in Nature. But there is nevertheless something real, namely the
light rays and their interaction with matter.

What a realist wants is a theory describing what happens at the micro scale that
accounts for the predictions made at the macro scale. As we will see in Chap. 5,
such a theory actually exists. But even if it didn’t, the mere fact, implied by the
no hidden variables theorems, that one cannot attribute a reality to the values of all
“observables” implies absolutely nothing whatsoever as far as a realist viewpoint is
concerned.

However, the sort of antirealism discussed here is probably not what is in the mind
of most physicists, who are of course realists with respect to ordinary objects, but
also often have an “implicitly” realistic picture of the micro world, either because
they think that the quantum state spontaneously collapses or because they have, in
the back of their minds, a statistical interpretation of quantum mechanics (both of
these views have been discussed in Sect. 2.5 and were shown there to be untenable).

It should be stressed that, among those who have held orthodox “Copenhagen”
views, there has sometimes been an explicit rejection of the sort of idealism that we
find in Mermin. In Chap. 2, we quoted Landau and Lifshitz, who were very explicit:

[...] we emphasize that, in speaking of ‘performing a measurement’, we refer to the interac-
tion of an electron with a classical ‘apparatus’, which in no way presupposes the presence
of an external observer.

Lev Landau and Evgeny Lifshitz [302, p. 2], quoted in [46, p. 35]

Besides, Bohr himself, according to Rosenfeld, rejected the accusation of “posi-
tivism” that was leveled against him by some Soviet Marxists.*3 Bohr is quoted by
Rosenfeld as saying:

32Some no hidden variables theorems do not prove what they actually claim. This holds, in particular,
for the most famous of them, the one due to von Neumann [496], which will be discussed in Sect. 7.4.
3In Sect.7.7, we will discuss further the relationship between Marxist philosophy and various
views of quantum mechanics. For the relationship between Bohr and positivism, see also Beller
[50] and Howard [275].
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“Why are those Russians dissatisfied?”” And I [Rosenfeld] tried to explain, “They accuse you
of being a positivist,” and so on. Then he said, “Is that it? But those things are so trivial; they
are not of interest to physicists. Physicists are beyond that point and that is not the thing that
we are interested in. We are struggling with real problems, not with those trivial statements
about our living in an external world.”

Thomas S. Kuhn and J.L. Heilbron, interview with Léon Rosenfeld [299]

However, given their realist statements, it is not clear what Landau, Lifshitz, and
Bohr thought about the objective properties of the microscopic world.

3.4 Determinism

Like realism, determinism is one of those words that leads to endless discussions,
partly because it is not precisely defined. Hence, it is often unclear what the discus-
sion is about.>* We will first propose two definitions. According to one definition,
determinism is trivially false. According to the other, it is very probably true. How-
ever, both definitions are rather uninteresting, and it is not clear how to formulate the
issue of determinism so that the question becomes interesting. We will then discuss
the status of probabilities in the framework of deterministic laws and how the law of
large numbers connects probabilities and physics.®

3.4.1 Definitions

In his famous essay on probability, Laplace expressed the idea of universal deter-
minism in a particularly clear way:

Given for one instant an intelligence which could comprehend all the forces by which nature
is animated and the respective situation of the beings who compose it — an intelligence
sufficiently vast to submit these data to analysis — it would embrace in the same formula
the movements of the greatest bodies of the universe and those of the lightest atom; for it,
nothing would be uncertain and the future, as the past, would be present to its eyes.’°

Pierre Simon Laplace, [303, p. 4]

Laplace immediately added that we shall “always remain infinitely removed” from
this imaginary “intelligence” and its ideal knowledge of the “respective situation
of the beings who compose” the natural world; that is, in modern language, ideal

34See Earman [156] for a detailed discussion of determinism, in particular in physics. His views do
not exactly coincide with those defended here, at least about quantum mechanics.

35The content of this section comes partly from [83].
36 This intelligence is often referred to as the “Laplacian demon”. (Note of J.B.).
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knowledge of the precise initial conditions of all the particles.’” He distinguished
clearly between what Nature does and the knowledge we have of it. Moreover, he
stated this principle at the beginning of an essay on probability. But, as we will discuss
below, probability for Laplace is nothing but a method that allows us to reason
in situations of partial ignorance. The meaning of Laplace’s quote is completely
misrepresented if one imagines that se hoped that one could arrive someday at a
perfect knowledge and a universal predictability, for the aim of his essay was precisely
to explain how to proceed in the absence of such a perfect knowledge.

However, determinism is often confused with predictability. So, according to that
view, a process is deterministic if we, humans, can predict it, or, maybe, if we, humans,
will be able to predict it in the future. For example, in an often quoted lecture® to
the Royal Society, on the three hundredth anniversary of Newton’s Principia, the
distinguished British mathematician Sir James Lighthill gave a perfect example of
how to confuse predictability and determinism:

We are all deeply conscious today that the enthusiasm of our forebears for the marvelous
achievements of Newtonian mechanics led them to make generalizations in this area of
predictability which, indeed, we may have generally tended to believe before 1960, but
which we now recognize were false. We collectively wish to apologize for having misled
the general educated public by spreading ideas about determinism of systems satisfying
Newton’s laws of motion that, after 1960, were to be proved incorrect | ... ].

James Lighthill, [310] (italics added by J.B.)

Of course, nobody who has ever defended universal determinism (in particular
Laplace) meant it to be equated with predictability. Everybody agrees that not every-
thing in the world is predictable, and it is somewhat surprising to see how many
people present that truism as if it was a recent discovery.

To illustrate the problem posed by the conflation of the two terms, consider, for
example, a perfectly regular, deterministic and in principle predictable mechanism,
like a clock, but put it on the top of a mountain, or in a locked drawer, so that its state
(its initial conditions) become inaccessible to us. This renders the system trivially
unpredictable, yet it seems difficult to claim that it becomes non-deterministic.

So one has to admit that some physical phenomena could obey deterministic laws
and yet are not predictable, possibly for “accidental” reasons. But, once this is admit-
ted, how does one show that any unpredictable system is truly non-deterministic, and
that the lack of predictability is not merely due to some limitation of our knowledge
or of our abilities? We cannot infer indeterminism from ignorance alone. One needs
other arguments.

3TLaplace was expressing in words the fact that differential equations have a unique solution for
given initial conditions. This was discussed in Appendix 2.A for /inear differential equations. Here
he is referring to the more general case of (2.A.1.4), where conditions have to be imposed on f for
the existence and the uniqueness of the solution.

38Quoted, e.g., by Reichl [414, p. 3] and by Prigogine and Stengers [405, pp. 93-94] and [406,
pp. 41-42].
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Confusing determinism and predictability is an instance of what the physicist E.T.
Jaynes calls the mind projection fallacy™:

‘We are all under an ego-driven temptation to project our private thoughts out onto the real
world, by supposing that the creations of one’s own imagination are real properties of Nature,
or that one’s own ignorance signifies some kind of indecision on the part of Nature.

Edwin T. Jaynes [283, p. 7]

This brings us to a second definition of determinism, one which tries to be independent
of human abilities. Consider a physical system whose state is characterized by some
numbers that change over time. Let us say that it is deterministic if there exists a
function F that maps the values taken by that set of variables at a given instant, say
11, to those obtained at a later time, say f,; and, then, the latter to those at a later time,
13, and so on.*’ This corresponds pretty much to Laplace’s conception,*! namely to
the idea of predictability, but “in principle”, i.e., putting aside limitations imposed
by human abilities. The word “exist” should be taken here in a “Platonic” sense:
it does not refer to our knowledge; the function in question may be unknown, or
unknowable, or so complicated that, even if it were known, it would in practice be
impossible to use it in order to make predictions.

Now, is determinism understood in this sense true? Well, let us suppose that the
system happens to be in exactly the same state twice, at different times, say at times
t; and ¢;, and at times ;41 and ¢; is in different states. Then, the function F does
not exist, since, by definition, it is supposed to associate to each set of values of the
variables another set in a unique way. To see how this problem may occur, consider
a simple example, say the production of grain in a given country, counted yearly and
in millions of tons. This is a single number and it is quite possible that it may take
the same value, say in 1984 and 1993, but different values in 1985 and 1994. In that
case, one should say that this system is not deterministic, according to the above
definition. But suppose we were to count the amount of grain, not in millions of tons,
but in grams. Or suppose we consider a larger set of data, say, the quantities of all
items produced in that given country. Then, it becomes very unlikely that this set of
data would ever take exactly the same values twice at given times and, moreover,
two different sets of values at later times.*? And, if that were the case, we could
always include more data, say the amount of rainfall, the results of elections, etc., in
order to avoid that situation. But then, how can the mere existence of the function F
be refuted? In fact, its existence is trivial: take any finite sequence of sets of numbers

39Which is related to idealism, since the latter tends to identify what exists and what is in our mind.
40This idea is essentially the one proposed by Bertrand Russell in [426]; see [156] for a discussion.
41Except that he was speaking in terms of “continuous time”, i.e., of differential equations, rather
than “discrete time”, which is chosen here because it is more intuitive.

421n fact, one never observes a sufficiently large set of data taking twice the same values, so that the
condition that this set of data take two different sets of values at a later time is not really necessary;
it is added only because of the theoretical possibility of “eternal return”. But, even if that were true,
it would not refute the existence of our function F, since the complete state of the world would then
simply be a periodic function of time.
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that has the property of never being in exactly the same state at different times, #; and
t;, and in different states, at times #;; and #;,;. One can always find one function,
in fact many functions that map each set of numbers into the next one.

So let us propose the following definition: a physical system is deterministic if
there exists a function F', as described here, whenever we describe it in sufficient
detail. The important words here are “in sufficient detail”, or what physicists call a
fine-grained description, as opposed to a coarse-grained one (e.g., counting grains
in grams is fine grained, but counting in tons is coarse grained). It is quite simple to
see that any system that is deterministic can become non-deterministic if one coarse-
grains it. For example, consider a deterministic system with two variables, x and
v, both taking only the values 0 and 1. Suppose that the dynamics changes the pair
(0, 0) into (1, 0) and the pair (0, 1) into (0, 0) (and any other rule for the two other
pairs). Then if we look only at the variable x, which is a form of coarse graining,
the system becomes non-deterministic, since x = 0 can be mapped onto x = 0 or
x = 1, depending on the value of y.

But what is the point of this exercise? Simply to show that, if the idea of deter-
minism is phrased in terms similar to those of Laplace, and not confused with the
notion of predictability, then it is indeed hard to see how it could be refuted.*’

Of course, the notion of determinism introduced here has very little to do with the
goals of science, which are not simply to find a function like F. In a sense, scientists do
look for such functions, but with extra properties: simplicity, explanatory power, and,
of course, the possibility, using F, of making at least some predictions. So in a sense,
the question of the existence of F is “metaphysical” and of no scientific interest.
But so is the question of “determinism”: either it is identified with predictability by
us, humans, and determinism is trivially false, or it is defined as above, and it is
most likely true, but uninteresting. It is difficult to see how to formulate the issue of
“determinism” in a sense that makes it both interesting and decidable.

It is likely that the hostility to determinism comes from a desire to “save free
will”. Namely, to find a description of the physical universe that can be reconciled
with our deep feeling that, at least on some occasions, “we” choose to do X and not
Y. That is, that Y was possible, but did not happen because of our free choice. But,
if everything is caused by anterior events, ultimately going back to the Big Bang, Y
was not really possible (it only appeared to be so because of our ignorance) and free
will is an illusion. Since most of our moral, legal, and political philosophies assume
some kind of free will, a lot appears to be at stake.

But the problem is: what is the alternative to determinism within physics? Nothing
has ever been proposed except pure randomness!** Or, in other words, events with no

431n [214], Nicolas Gisin thinks that he has shown that quantum mechanics offers an example of
true randomness. But his example, based on the nonlocal effects to be discussed in Chap.4, does
not prove this claim, as we will see in Sect.5.2.1.

“1n classical physics, non-deterministic processes are often modeled by Markov chains or more
general stochastic processes in which an element of pure chance always enters. Of course, if one
thinks of these models as describing non-isolated systems, then that chance may simply model
the effect of unknown outside forces. But if we were to look for a fundamental theory using the same
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cause. But that will not give us a picture of the world in which free will exists either.
Our feeling of free will is not that there is some intrinsically random process at work
in our minds, but that conscious choices are made. And that is simply something that
no known physical theory accounts for. Our feeling of free will implies that there is a
causal agent in the world, the “T”, that is simply “above” all physical laws. It suggests
a dualistic view of the world, which itself meets great difficulties. One solution is,
as mentioned above, to declare that free will is an illusion. But if that is the case,
it is a “necessary illusion” in the sense that we cannot live without, in some sense,
believing in it, unlike, say, believing in the dogma of the Immaculate Conception. It
is not clear what could constitute a solution to that problem,45 but one should avoid
using this problem to create within physics a prejudice in favor of indeterminism,
since neither determinism nor indeterminism in physics can “save” free will.

As Bertrand Russell observed, scientists should look for deterministic laws like
mushroom seekers should look for mushrooms. Deterministic laws are preferable to
non-deterministic ones because they give both a way to control things more efficiently
(at least in principle) and because they give more satisfactory explanations of why
things are the way they are. Looking for deterministic laws behind the apparent
disorder of things is at the heart of the scientific enterprise. Whether we succeed
or not depends in a complicated way both on the structure of the world and on the
structure of our minds. But the opposition to determinism tends to make people feel
that the project itself is doomed to fail. And that state of mind does run counter to
the scientific spirit.

3.4.2 Determinism and “Chaos Theory”

Since the 1960s there has been a renewed interest in the theory of dynamical systems,
that is, systems evolving in time according to deterministic laws, but laws that may
be more general than Newton’s (this theory was initiated at the end of the 19th
century by Henri Poincaré [400]). One basic notion that emerged from those studies
is popularly known as “chaos”.

Here is a simple example. Consider the set on which the dynamics takes place to
be simply the interval I = [0, 1[. And take as (discrete time) dynamics the function
f :x — 10x mod 1. This means, we take a number between 0 and 1, multiply it by
10, write the result as an integer plus a number between 0 and 1 and take the latter
as the result, i.e., f(x). This gives another number between 0 and 1, and we can
repeat the operation. Upon iteration, we obtain the orbit of x; x itself is the initial
condition. To describe the latter concretely, one uses the decimal expansion. Any
number in / can be written as x = 0.a;azas ..., where a; equals 0, 1,2, ...,9.Itis

(Footnote 44 continued)

mathematics (like the spontaneous collapse theories discussed in Sect.6.2), then that pure chance
would be postulated to be just there, with no further justification.

43The philosopher Colin McGinn has developed the interesting idea that the problem of “free will”
may lie beyond the limits of human understanding [329].
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easy to see that f(x) = 0.apas . ... This is a perfect example of a deterministic but
unpredictable system. Given the state x at some initial time, one has a rule giving
the state of the system for arbitrary times. Moreover, for any fixed time, one can, in
principle, find the state after that time, with any desired accuracy, given a sufficiently
precise characterization of the initial state. This expresses the deterministic aspect.
Unpredictability comes from the fact that, if we take two initial conditions at a
distance less than 107", which can be as small as one wants for n large, then the
corresponding orbits could differ by, say, 1/2, after n steps, because the difference
will be determined by the (n + 1)th decimal.*®

This means that two systems obeying the same law may, at some moment in time,
be in very similar (but not identical) states and yet, after some time, find themselves
in very different states. This phenomenon is expressed figuratively by saying that a
butterfly flapping its wings today in Brazil could provoke a hurricane three weeks
from now in Texas. Of course, the butterfly by itself doesn’t do much. But if one
compares the two systems constituted by the Earth’s atmosphere, described in every
possible detail, but one system with the flap of the butterfly’s wings and the other
without it, the result three weeks from now may be very different (a hurricane or not).
One practical consequence of this is that we do not expect to be able to predict the
weather more than a few weeks ahead of time. Indeed, one would have to take into
account such a vast quantity of data, and with such accuracy, that even the largest
conceivable computers could not begin to cope with them.

However, the idea that this “butterfly effect” may occur is not so new. In fact, even
as early as 1909, Henri Poincaré wrote:

Why have the meteorologists such difficulty in predicting the weather with any certainty?
Why do the rains, the tempests themselves seem to us to come by chance, so that many
persons find it quite natural to pray for rain or shine, when they would think it ridiculous to
pray for an eclipse? We see that great perturbations generally happen in regions where the
atmosphere is in unstable equilibrium. The meteorologists are aware that this equilibrium
is unstable, that a cyclone is arising somewhere; but where they can not tell; one-tenth of a
degree more or less at any point, and the cyclone bursts here and not there, and spreads its
ravages over countries it would have spared. This we could have foreseen if we had known
that tenth of a degree, but the observations were neither sufficiently close nor sufficiently
precise, and for this reason all seems due to the agency of chance. Here again we find the
same contrast between a very slight cause, unappreciable to the observer, and important
effects, which are sometimes tremendous disasters.

Henri Poincaré [403 p. 398] (original [401])

However, the presentation given here, which is rather common in the popular liter-
ature, is not precise enough. Indeed, almost all processes have the property that “an
arbitrarily small error in the initial conditions makes itself felt after a long enough
time”. Take a pendulum, or even a more modern clock; eventually, it will indicate the

4oWrite f(”)(x) for the n th iterate of f applied to x. Then, if x = 0.q1a2a3 . ..apayy1an42 - . .,
we have f(”)(x) = 0.ap+1an42 - ... So if we take, say, x = 0.a1aza3 ...apay41ap42 ... and y =
0.a1a2a3 . .. ybpt1@p12 - . ., then |x — y| < 107", while | f® (x) — f® ()| = |an41 — but11/10
which, by suitable choice of b,,t1, given a,41, can be greater than or equal to 1/2.
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wrong time. In fact, for any system, whose initial state is imperfectly known (which
is always the case in practice), an imprecision in the initial data will be reflected in
the quality of the predictions we are able to make about the system’s future state. In
general, the predictions will become more inexact as time goes by. But the manner
in which the imprecision increases differs from one system to another: in some sys-
tems it will increase slowly, in others very quickly. More precisely, in the first case
the imprecision increases linearly or polynomially with time, i.e., as n* for some k,
where 7 is the (discrete) time, and in the second case exponentially, i.e., as exp(an)
for some a > 0. An example of the latter is given by the function f : x — 10x
mod 1 since there, at each time, the imprecision in the initial data is multiplied by
10, until it becomes of order unity.

To explain what this implies, let us imagine that we want to reach a certain specified
precision in our final predictions, and let us ask ourselves how long our predictions
will remain sufficiently accurate. Let us suppose, moreover, that a technical improve-
ment has allowed us to reduce by half the imprecision of our knowledge of the initial
state. For the first type of system (where the imprecision increases slowly, let us say
like n* with k = 1), the technical improvement will permit us to double the length
of time during which we can predict the state of the system with the desired preci-
sion. But for the second type of system (where the imprecision increases quickly),
it will allow us to increase our “window of predictability” by only a fixed amount:
for example, by one additional hour or one additional week (how much depends on
the circumstances).*” Simplifying somewhat, we shall call systems of the first kind
non-chaotic and systems of the second kind chaotic or sensitive to initial conditions.
Chaotic systems are therefore characterized by the fact that their predictability is
sharply limited, because even a spectacular improvement in the precision of the ini-
tial data (for example, by a factor of 1000 ~ 2'°) leads only to a rather mediocre
increase in the duration over which the predictions remain valid.*®

The real discovery in the theory of dynamical systems is not that a very complex
system, such as the Earth’s atmosphere, is difficult to predict, but rather that a sys-
tem describable by a small number of variables and obeying simple deterministic
equations—for example, a pair of pendulums attached together—may nevertheless
exhibit very complex behavior and an extreme sensitivity to initial conditions.

However, the discovery of “chaos” has repeatedly led people to consider it as an
argument against determinism (in fact, this is the idea behind the Lighthill quote men-
tioned above); but it can only be considered as such if one confuses determinism with

4TTo be precise, that window increases only logarithmically with the improvement in the precision
of the initial data. Indeed, if the uncertainty grows like exp(an), then, if the precision in the initial
data increases by a factor of, say, 1000 ~ 2!0, the additional time over which our predictability
remains the same as before is given by exp(an) = 1000, i.e., n = (1/a) In 1000 ~ (10/a) In 2.
481t is important to add one qualification: for some chaotic systems, the fixed amount that one
gains when doubling the precision in the initial measurements can be very long, which means
that in practice these systems can be predictable much longer than most non-chaotic systems. For
example, one knows that the orbits of some planets have a chaotic behavior, but the “fixed amount”
is here of the order of several million years [304].



3.4 Determinism 101

predictability. Actually, the existence of chaotic dynamical systems supports univer-
sal determinism rather than contradicts it. Indeed, suppose for a moment that no
classical mechanical system behaves chaotically. That is, suppose that there exists
a theorem proving that any such system must eventually behave in a non-chaotic
fashion. It is not completely obvious what the conclusion would be, but certainly
that would be an embarrassment for the classical deterministic world view. Indeed,
so many physical systems (like the weather) seem to exhibit sensitivity to initial
conditions that one would be tempted to conclude that classical mechanics cannot
adequately describe those systems. One might suggest that there must be an inher-
ent indeterminism in the basic laws of Nature. Deterministic chaos increases the
explanatory power of deterministic assumptions, and therefore, according to normal
scientific reasoning, strengthens those assumptions.

Moreover, empirical tests have been designed to check whether a series of num-
bers is “random”. But some deterministic chaotic systems (such as the function
f :x — 10x mod 1) produce sequences of numbers that can pass all these tests.
This is a very strong argument against the idea that one can ever prove that some
phenomenon is “intrinsically random”, in the sense that there does not exist a deter-
ministic mechanism underlying and explaining its behavior. So the recent discoveries
about chaos do not force us to change a single word of what Laplace wrote and, in
fact, they support his position.

3.4.3 Probabilities in Classical Physics

Since the notion of probability appears to lie at the heart of quantum mechanics, it
might be useful to explain first what probability means in classical physics.

There are at least two different meanings given to the word “probability” in the
natural sciences. The first notion is the so-called “objective” or “statistical” one, i.e.,
the view of probability as something like a “theoretical frequency”: if one says that
the probability of the event E under condition X, Y, Z equals p, one means that if
one reproduces the conditions X, Y, Z sufficiently often, the event E will appear
with frequency p.

In the example of coin tossing, this means that, if one throws a “fair” coin in an
“unbiased” way sufficiently often, it will land approximately the same number of
times heads or tails. Of course, “sufficiently often” is vague and this is the source
of much criticism of this notion of probability. But putting that objection aside for
a moment and assuming that “sufficiently often” can be given a precise meaning in
concrete circumstances, probabilistic statements are, according to this view, factual
statements that can be confirmed or refuted by observations or experiments.

By contrast, the “subjective” or Bayesian use of the word probability refers to
a form of reasoning, and not (at least not directly) to a factual statement. Used in
that sense, assigning a probability to an event expresses a (rational) judgment on the
likelihood of that single event, based on the information available at that moment.
Note that one is interested here in the probability of a single event, and not in what
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happens when one reproduces many times the “same” event, as in the objective
approach. This is of course very important in practice: when I wonder whether I
need to take my umbrella because it might rain, or whether the stock market will
crash next week, I am not so much interested in the frequencies with which such
events occur as in what will happen here and now. Of course, these frequencies may
be part of the information that is used in arriving at a rational judgment, but they are
typically not the only information available.

How does one assign subjective probabilities to an event? In elementary textbooks,
a probability is defined as the ratio between the number of favorable outcomes and the
number of “possible” ones. While the notion of favorable outcomes is easy to define,
that of possible outcomes is much harder. Indeed, for a Laplacian demon, nothing
is uncertain and the only possible outcome is the actual one; hence, all probabilities
are equal to 0 or 1. But we are not Laplacian demons*’ and it is here that ignorance
enters. We try to reduce things to a series of cases about which we are “equally
ignorant”, i.e., the information that we do have does not allow us to favor one case
over the other, and that defines the number of “possible” outcomes. The standard
examples include the throwing of a dice or of a coin, where the counting is easy, but
that is often not the case.

At the time of Laplace, this method was called the “principle of indifference”.
The modern version of that principle, which we will not discuss in detail, is the
maximum entropy principle. One starts by identifying a space of states in which the
system under consideration can find itself. If there are N possibilities, one assigns to
each probability distribution p = (p;)"_, its Shannon (or Gibbs) entropy, given by

N
S(p)=-> pilnp;. (3.43.1)

i=1

One then chooses the probability distribution that has the maximum entropy, among
those that satisfy certain constraints that incorporate the information that we have
about the system. This probability distribution is then updated when new information,
i.e., new constraints, become available.>®

In the example of coin tossing, one might start with a probability of one half
for heads and one half for tails (which just reflects our ignorance, and maximizes
the entropy). But if the coin lands regularly heads more often than tails, one would
suppose that the coin is biased and one would update the probability to take this bias
into account, thereby making better predictions for the future.

The rationale, as for the indifference principle, is not to introduce bias in our
judgments, namely information that we do not have (like people who believe in lucky
numbers). And one can reasonably argue that maximizing the Shannon entropy is

49This was of course Laplace’s main point, as discussed in Sect.3.4.1.
30For a good exposition of Bayesian reasoning, see, e.g., [282, 284].
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indeed the best way to formalize that notion. Without giving a complete argument,’!
we note (as one can easily check) that the maximum value of S(p) is reached when
pi =1/N,Vi =1,..., N, and then equals In N. The minimal value is 0, which is
reached for the distribution p; = 1, for some i and p; = 0, Vj # i. So, the most
uniform distribution or the most uncertain one has the highest entropy and the one
where one event is certain and the others are impossible has the lowest entropy.

Note that probabilistic statements, understood subjectively, are forms of reason-
ing, although not deductive ones. Therefore, one cannot check them empirically. If
someones says: Socrates is an angel; all angels are immortal; therefore Socrates is
immortal, this is valid (deductive) reasoning. Likewise, if I say that all I know about
acoin is that it has two faces and that it looks symmetric, therefore the probability of
“heads” is one half, this is valid probabilistic reasoning. Throwing the coin a thou-
sand times with a result that is always tails would not disprove the reasoning; it would
only indicate that the initial assumption (of symmetry) was probably wrong (just as
seeing Socrates dead would lead one to reconsider the notion that he is an angel or
that the latter are immortal). The main point of Bayesian ideas is to give rules that
allow one to update one’s probabilistic estimates, given previous observations.

Some people think that a Bayesian or subjective view of probabilities presupposes
some form of idealism, meant as a doctrine in philosophy or philosophy of science
(discussed in Sect. 3.1). To make matters worse, Bayesians sometimes talk as if all of
science was about “information” and never about facts or laws. Moreover, Bayesians
often stress the idea that probabilities reflect our ignorance or quantify our ignorance
and that makes some physicists uneasy: putting aside parapsychology, our knowledge
or our ignorance do not play a causal role in the physical world, so why should they
enter in a fundamental way in our physical theories?

But there is no logical connection here: a subjectivist about probabilities may
very well claim that there are objective facts in the world and laws governing them,
and consider probabilities as being a tool used in situations where our knowledge
of those facts and those laws is incomplete. In fact, one could argue that, if there
is any connection between Bayesian ideas and philosophical idealism, it goes in
the opposite direction; a Bayesian should naturally think that one and only one
among the “possible” states is actually realized, and that there is a difference between
what really happens in the world and what we know about it. But the philosophical
idealist position often starts by confusing the world and our knowledge of it (for
example, much loose talk about everything being information often ignores the fact
that “information” is ultimately information about something which itself is not
information). Thus, Bayesians should not be thought of as natural fellow-travellers
of philosophical idealists.

Besides, even though ignorance does enter into computations of probabilities, we
will see in the next section that this does not mean that either knowledge or ignorance
are assumed to play a fundamental role in physics.

A related objection raised against the Bayesian view of probability is: what is the
physical meaning when we say there is a probability of one half for a single event?

51 See, e.g., Jaynes [284] for detailed arguments.
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Bayesian thinking may be useful in bets or in various practical situations where
decisions have to be made, but what role could it have in physical theories, which
are supposed to describe the world as it is and not to deal with problems of practical
rationality? We will now answer that question.

3.4.4 The Law of Large Numbers and Scientific Explanations

The law of large numbers allows us to give an empirical meaning to Bayesian prob-
ability statements: the calculus of probabilities—viewed now as part of deductive
reasoning—Ileads one to ascribe subjective probabilities close to one for certain events
that are precisely those that the objective approach deals with, namely the frequen-
cies with which some events occur when we repeat the “same” experiment many
times.>?

To explain the law of large numbers, consider the simple example of coin tossing.
Let 0 denote heads and 1, tails. The “space” of results of any single flip, viz., {0, 1},
will be called the physical space while the space of all possible results of N flips,
viz., {0, 1}V, will be called the phase space. The variables Ny, N; that count the
number of heads (0) or tails (1) will be called macroscopic (to use the terminology
from statistical mechanics). Here we introduce an essential distinction between the
macroscopic variables, or the macrostate, and the microstate. The microstate, for N
flips, is the sequence of results for all the flips, while the macrostate simply specifies
the values of Ny and N;.

Now fix a small number € > 0 and call a configuration such that |[No/N —1/2| < €
typical, for that given €, and atypical otherwise. In other words, a configuration is
typical if the coin falls heads (and tails) approximately one-half of the time. Then (a
weak form of) the law of large numbers>? states that Ve > 0, Py (T (N, €)) — 1 as
N — oo, where T' (N, €) is the set of typical configurations and Py the probability
distribution that assigns independent probabilities 1/2 to each outcome of each flip.
A more intuitive way to say the same thing is that, if we simply count the number of
microstates that are typical, we find that they form a fraction of the total number of
microstates close to 1, for N large.

This law allows us to make a link between probabilities and scientific explanations.
A first form of scientific explanation is given by laws. If state A produces determin-
istically state B, then the occurrence of B can be explained by the occurrence of A.
If A is prepared in the laboratory, this kind of explanation is rather satisfactory. Of
course, if B is some natural phenomena, then A itself has to be explained, and that
leads to a potentially infinite regress, or at least a regress going back to the origin of
the universe.

320f course, when we say that we repeat the “same” experiment, or that the results of different
experiments are “independent” of each other, we also try to quantify the knowledge that we have,
i.e., the fact that we do not see any differences or any causal connections between those experiments.

33See Appendix 3.A for a proof and more general statements.
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However, in many situations, we do not have strict knowledge of those laws or
of the initial conditions, e.g., in coin tossing, and thus we have to see what role
probabilities play in our notion of explanation. Observe first that, if we toss a coin
many times and we find approximately half heads and half tails, we do not feel that
there is anything special to be explained. If, however, the result deviates strongly from
that average, we’ll look for an explanation (e.g., by saying that the coin is biased).
This leads to the following suggestion. First, as discussed above, probabilities enter
situations where our knowledge is incomplete and Bayesian methods allow us to make
the most rational predictions in those situations. Now, suppose we want to explain
some phenomenon when our knowledge of the past is such that this phenomenon
could not have been predicted with certainty.

We suggest that our knowledge, although partial, is sufficient to “explain” that
phenomenon if we would have predicted it using Bayesian computations and the
information we had about the past. That notion of “explanation” incorporates, of
course, as a special case, the notion of explanation based on laws. It also fits with
our intuition concerning the coin-tossing situation discussed above: being ignorant
of any properties of the coin leads us to predict a fraction of heads or tails around
one-half. Hence, such a result is not surprising or, in other words, does not “need to
be explained”, while a deviation from it requires an explanation.

A basically similar form of explanation is used in macroscopic physics, for exam-
ple, when one wants to account for the second law of thermodynamics, the law of
increase of entropy.™* We do not know all the microstates of, say, a gas; nor do we
know their evolution. But we can assign, in a Bayesian way, a probability distribu-
tion on microstates, given some information that we have on the initial macrostate
of the system, which may be a non-equlilibrium or low entropy state. Since for
each microstate the deterministic evolution leads to a well-defined evolution of the
macrostate, we can, in principle, compute the future probability, relative to our initial
distribution on the microstates, of a given macrostate. If it happens that the one which
is predicted on that basis coincides with the one which is observed at a later time,
then one can say that the latter has indeed been accounted for by what we knew about
the initial macrostate and by the above reasoning. In fact, one can generalize this
kind of reasoning to establish a link between deterministic systems and statistical
predictions.

3.4.5 “Randomness” and Deterministic Dynamical Systems

It will be important, when we discuss the de Broglie-Bohm theory in Chap.5, to
understand how a deterministic system can give rise to statistical predictions. Obvi-
ously, if the system is deterministic, any “randomness”” must come from randomness
in initial conditions. But what does that mean? Consider a set of states of a system
and a deterministic dynamics on that set: each initial condition therefore gives rise to

34See, e.g., [80, 225, 307] for more details.
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a trajectory, i.e., a continuous or discrete family of states evolving in time. One may
then introduce a probability distribution on the initial conditions of the system.>
Then every trajectory of the deterministic dynamics has a probability given by the
probability of the initial condition that produces that trajectory. And, ata given time ¢,
the probability of a given state is the probability of the trajectory (or the trajectories)
arriving at that state at time .

But in order for that idea to lead to statistical predictions, we need a large number
of identical subsystems that can be considered independent of each other, like many
coins or many dice, although we are interested in more “physical” systems, like
many electrons, many atoms, many photons, etc. Then, the probability distribution
on the initial conditions of those subsystems leads to a probability distribution on
their states at a later time (now, for example) and, through the law of large numbers,
to definite empirical predictions, that can be compared with results of experiments.
This is how a deterministic dynamics may produce statistical predictions that could
be interpreted (if we didn’t know the laws of the dynamics) as the effect of some
intrinsic randomness in the system.

Of course, the extent to which this scheme can be considered an explanation of
those apparently random results depends on how natural the probability distribution
on the initial conditions of the subsystems is. This question will be important when
we discuss the origin of “randomness” in the de Broglie—-Bohm theory (in Sect.5.1.7).

3.4.6 Quantum Mechanics and Determinism

There are two questions that can be asked about the relationship between quantum
mechanics, determinism, and probability:

1. To what extent does quantum mechanics prove indeterminism, or to what extent
are probabilities in quantum mechanics irreducible, or to what extent are quantum
events truly or intrinsically random? (These are reformulations of the same basic
idea.)

2. How do we understand the fact that the quantum state, whose meaning is purely
probabilistic, nevertheless evolves according to a physical law?

For the first question, as we said above, it is very difficult to prove that a phenomenon
is genuinely random, in the sense that one cannot give any deterministic description
of it. The mere fact that quantum mechanics is extremely successful and is formu-
lated in probabilistic terms does not in the least rule out a priori the possibility of a
deterministic theory underlying the apparent randomness of quantum mechanics. Of
course, such a theory would require a more detailed description of physical systems,
or, to use the standard terminology, the introduction of some “hidden variables”.

331t may be easier to think of the set of states as being countable. Otherwise, one has to introduce
a probability density.
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For the second question, the problem is that probabilities, understood in Bayesian
terms, do not evolve according to a physical law, but depend on our information. If
we throw a coin but don’t look at the result after it has fallen on one of its faces,
the probabilities of heads and tails will be (1/2, 1/2), but if we look, they will jump
to 0 or 1, depending on which is the case, while nothing changes in the state of the
coin. But the quantum state has a probabilistic meaning and yet evolves, between
measurements at least, according to a physical law (the Schrodinger equation).>

In ordinary quantum mechanics, there is no clear answer to that question because
of the fundamental lack of clarity regarding the status of the quantum state, as we
discussed in Sect.2.5: is it a physical object or a mere reflection of our knowledge?
One view leads to the problem of macroscopic superpositions and the other view to
the difficulty posed by the no hidden variables theorem.

These questions can only be answered within a more complete theory than ordi-
nary quantum mechanics, and we will answer them within the de Broglie-Bohm
theory in Chap. 5. But before doing that, we must first consider another “mystery”
of quantum mechanics, far more surprising than anything we have discussed so far.

Appendix
3.A The Law of Large Numbers

Consider first a finite set of real numbers £ = {a;};_, and a random variable w
taking values in E, with probability distribution P(w = a;) = px, k = 1,...,n,
with py > 0, >°/_, px = 1. Then, take N independent variables w;,i = 1,..., N,
with the same distribution as w, and define the frequency py (€2, k) with which the
variables 2 = (wy, ..., wy) take the value a; by

Hi =1,...,N|w; =ak}} _ ZlN:l O(w; = ay)

Q. k) = ,
pN (82, k) N N

(B.A.1)

where |E| is the number of elements of the set £ and § the Kronecker delta. The
set of frequencies {pn (€2, k)};_, is called the empirical distribution of the variables

wi, i = 1,..., N. In the language of Sect.3.4.4, and of statistical mechanics, the
variables {py (€2, k)};;_, define the macrostate of the system, while the variables 2 =
(wy, - .., wy) define its microstate. In the example of coin tossing in that subsection,

wehaven =2,a; =0,a, = 1 and py(2, 1) = No/N, pn(2,2) = N;/N.

36There is a school of thought, called QBism, that tries to give a purely Bayesian interpretation of
the quantum state. That will be discussed in Sect. 6.4.
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Let Py be the joint probability distribution of the variables w;,i =1, ..., N:

Pvwi =ai.....wy =ay) =[] p:- (3.A.2)

i=1
Then, the law of large numbers says that, Ve > 0,

11m PN( max lpN (2, k) — px]l =€) =0. (3.A.3)

.....

To prove (3.A.3), let Ay = {QIpn (22, k) — p| > €}, and write

n

Py( max |py(Q.K) = pil = ) < Py(UiL A < D Pulon(@.6) = pul = o),
= (3.A.4)

then use Chebyshev’s inequality to get

n

ZPN(IPN(Q k) — pil =€) < n max Prnpn (82, k) — prl =€)
k=1

1
=nz max Ey(lpn (@0 = pl?),  (BAS)

where Ey is the expectation with respect to Py. Using (3.A.1), we get
N
Enlion(@.0) = piT’) = 13 Z_ v (0w = adw; = @) = pt], BA6)

where we used Ey (5(wi = ak)) = px-
Now insert Ey ((w; = ax)?) = En(6(wi = a)) = prand En ((wi = ax)d(w; =
ar)) = pj fori # jin (3.A.6). Since p; — pf < 1, we get

En(lon(Q. k) — pil?) < v
Inserting this in (3.A.5), and combining (3.A.5) and (3.A.4), we get (3.A.3).

Thus, the law of large numbers says that, for N large, the empirical distribution
{pn (2, k)};_, of the variables w;, i = 1,..., N is almost equal to the numbers
(pr)i—,> with a probability close to 1. This gives a physical meaning to the probabil-
ities (py);_,. For a single event, the probability of an outcome can be any number
between 0 and 1, since it reflects partly our knowledge and partly our ignorance. But
when we have N copies of the same random event, we can make statements about
empirical distributions whose probabilities are close to 1, for N large, and which
thus become near certainties.
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One can even prove a stronger result (the strong law of large numbers): the
probability distribution (3.A.2) can be extended’’ to infinite sequences Q = (w,
wy, w3, . . .) and, for that probability distribution, denoted P, there is a set of prob-
ability equal to 1 on which limy_.c pn(R2n, k) = pi, Vk = 1, ..., n, where Qy
denotes the first N elements of 2.

Let us define a sequence of events Q = (wy, wy, ws,...) to be typical if, for
every k = 1,...,n, limy_o pny(Q2xy, k) = pr. Then, the set of typical sequences
has P-probability 1.

Consider now a continuous variable w € R with a probability density p(x): for
BCR,P(weB)= fB p(x)dx.Let Q = (w,-)f\’:, be N independent variables with
identical distribution whose density is p(x). We define the empirical distribution of
those N variables, for any (Borel) subset B C R:

l{i=1,....,Nlw € B}l DY 1p(w)

Q,B) = , 3.A.7
pn( ) N N ( )
where 1 3 is the indicator function of the set B.

Let Py be the joint probability distribution of the variables w;, i = 1,..., N,
whose density in RV is Py (x1, ..., xy) = HlNzl p(x;). Then the law of large num-
bers says that, for any set B, and Ve > 0,

Jim Py (Iow (€. B) = Pyl = ¢) =0, (3.A.8)
—> 00

where Pgp = f p P(x)dx. To prove this result, one argues as in (3.A.4)—(3.A.6), using
the fact that SN(RZB(LU[)) = 5]\/(]13(0),‘)) = PB and EN(IIB(wi)]lg(wj)) = Pé for
i #j.

For continuous variables, it is the family of functions py (€2, B) which is the
empirical distribution of the variables 2 = (w;);_, and which defines the macrostate
of the system, while its microstate is given by Q = (w,-)lN: 1

One can again strengthen this result by extending, as in the discrete case, the
probability distribution Py to a probability P defined on infinite sequences Q2 =
(w1, w2, w3, ...) and then considering the family of sets B of the form | — oo, z],
for z € R. There is a set of probability P equal to 1 on which limy_.« pn(Qy, ] —
00,z]) = Pj—wz, Yz € R, where Qy denotes the first N elements of €2. The
convergence is even uniform in z, by the Glivenko—Cantelli theorem (see, e.g., [490,
p- 266]).

Since Pj_oo ;] = f:oo p(x)dx, one can consider p(x) as the empirical density
distribution of the variables Q2 = (w;, wy, w3, ...). One can also define a sequence of
events Q2 = (wi, wy, w3, ...) tobe typical if limy_, o0 pn (R2n, ] =00, 2]) = Pl—co.z]»
Vz € R. Then the set of typical sequences has P-probability 1. So, just as in the

570ne assigns to “cylinder sets” of the formw| = ay, ..., wy = ay,w; € E,i > N the probability
(3.A.2) and then it is standard to extend this probability to the sigma-algebra generated by the
cylinder sets.
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discrete case, the empirical distribution py (€2, B), for B an interval, is, for typical
configurations of many variables, close to the probability Pp of a single variable

belonging to B.



Chapter 4
The Second Mystery: Nonlocality

4.1 Introduction

As we saw in Chaps. 1 and 2, Einstein held a heterodox and minority view during the
debates around the “Copenhagen” interpretation of quantum mechanics. He main-
tained that the quantum state is not a complete description of physical reality and that
particles have properties beyond what is included in their quantum state (the values
corresponding to these properties being called “hidden variables”). In other words,
he thought that quantum mechanics provides a very accurate statistical description
of quantum systems, but not a complete physical description of individual systems.

Einstein gave several indirect arguments in which he attempted to prove that quan-
tum mechanics is incomplete,' and in 1935, together with Podolsky and Rosen [164],
he produced the following reasoning: suppose there is a quantity I can measure on
one system and which, thanks to conservation laws such as conservation of momen-
tum, immediately tells me the value of the corresponding quantity for another system
which is far away. Then, if we assume that the measurement on the first system does
not affect the physical state of the second system, because of their spatial separation,
the second system must have had that property all along. But assuming that this
property exists means that there are “hidden variables” that complete the quantum
description given by the quantum state.

The Einstein, Podolsky, and Rosen (or EPR) argument was based on a thought
experiment, but similar experiments were actually performed later. Contrary to a
popular misconception, the EPR argument was not faulty, at least if it is stated
as follows: if a certain assumption of locality or of no “action at a distance” is
granted, then quantum mechanics is incomplete in the sense introduced here, and
there necessarily exist hidden variables? that are not specified by the quantum state.

'We will discuss some of them, as well as the historical controversies and misunderstandings about
Einstein, Podolsky, and Rosen in Sect.7.1.

2Such as the value of the momentum in the example given above, or the value of the spin in
the examples discussed in Sect.4.4. Of course, we know, because of the theorem in Sect. 2.5 that it is
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Einstein, Podolsky, and Rosen did not state their result like that, because for them
the locality assumption was too obvious to be stated explicitly as an assumption.
Moreover, the EPR argument was generally ignored or misrepresented (except mainly
by Schrodinger [441]), and most physicists thought that it had been countered by
Bohr (although Bohr’s argument is far less clear than the EPR paper, as we will show
in Sect.7.1.4).

Almost thirty years later (in 1964), Bell showed that, in the context of the EPR
experiment, if we assume the existence of the hidden variables that are necessary
if we accept the locality assumption, then we obtain a contradiction with quantum
mechanical predictions [35]. And these predictions were later verified experimen-
tally.’

Unfortunately, Bell assumed at the beginning of his own reasoning that the EPR
argument was well known.* But since most people had forgotten or misunderstood
the EPR paper, Bell’s argument was taken to be just one more proof that quantum
mechanics is complete in the sense that no other variables, that would complete the
quantum description, can be introduced without contradicting quantum mechanical
predictions.

Of course, that was the opposite of what Bell showed, and the opposite of what he
explicitly said: the conclusion of his argument, combined with the EPR argument,
is rather that there are nonlocal physical effects (and not just correlations between
distant events) in Nature.’

We will start by a little known, but very simple, thought experiment, known
as Einstein’s boxes. This example will allow us to raise and explain the issue of

(Footnote 2 continued)
not easy to introduce hidden variables. But we will re-examine here the issue of hidden variables
from a different perspective to the one in Chap. 2.

30ur goal in this book is to present ideas in their simplest form, and we will do that also in this
chapter. But there are several caveats to be made: first, while we discuss below particles with
spin, actual experiments are made with photons, with their polarization playing the role of spin.
Moreover, we will base our arguments in Sect. 4.4 on some perfect correlations predicted by quantum
mechanics. But the actual experiments do not test those correlations directly. Instead, they are based
on the Clauser—Horne—Shimony—Holt (CHSH) inequality [95]. We refer to [229] for a discussion
of various forms of the Bell and CHSH theorems and the relation between them. In any case, the
logic of our arguments always takes for granted the empirical correctness of quantum mechanical
predictions, which have been verified to great accuracy in all experiments, even if the tests were
made in somewhat different circumstances than the ones considered here. See [19-21] for some
of the original experiments and [229] for references to later ones. Several possible loopholes are
closed in [262].

4We note that Bell made no assumption whatsoever about “realism” or “determinism”. We mention
this here because there is an enormous amount of confusion in the literature based on the supposition
that Bell makes such assumptions. The reader unfamiliar with the literature on Bell’s theorem may
simply ignore this remark. Besides, those confusions will be discussed later, in Sect.7.5.

SFor discussions of Bell’s results similar to the one in this chapter, see, e.g., [10, 211, 229, 319,
327, 355-358, 459, 460, 478].
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Fig. 4.1 Einstein’s boxes.
Reproduced with permission .
from T. Norsen: Einstein’s B
boxes, American Journal of
Physics 73, 164-176 (2005).
Copyright 2005 American
Association of Physics
Teachers

locality. Then we will define precisely what we mean by nonlocality and give a simple
derivation of Bell’s argument (due to [149]), combined with the EPR argument. That
is the simplest and clearest way to arrive at the main conclusion, namely that the
world is nonlocal in a sense made explicit in Sect.4.3.

4.2 Einstein’s Boxes

Consider the following thought experiment.® There is a single particle in a box B
(see Fig.4.1), and its quantum state is |state) = | B), meaning that its quantum state
is distributed’ over B. One cuts the box into two half-boxes, B, and B, and the two
half-boxes are then separated and sent as far apart as one wants.

According to ordinary quantum mechanics, the state becomes

1
(IB1) +1B2)) .

S

2

SWe base ourselves in this section on [355], where the description of the experiment is due to de
Broglie [118, 119]. Einstein’s original idea was expressed in a letter to Schrodinger, written on 19
June 1935, soon after the EPR paper was published [186, p. 35]. However, Einstein formulated his
“boxes” argument in terms of macroscopic objects (small balls) and then gave a slightly different
and genuinely quantum mechanical example, but illustrating the same point as the one made here.
Figure4.1 is taken from [355]. The “boxes” argument is also mentioned by Deltete and Guy [120]
in a discussion of Einstein’s objections to the quantum orthodoxy. A somewhat similar experiment
to the one with the boxes was done by A. Adém, L. Janossy, P. Varga, in 1955 [1]; we will return
to it in Sect.7.1.5.

"The precise distribution does not matter, provided it is spread over B| and B, defined below; it

could be distributed according to the square of the ground state wave function of a particle in the
box B.
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where the state | B;) means that the particle “is” in box B;, i = 1, 2 (and again, each
state B; is distributed in the corresponding box).® Here, we put scare quotes around
the verb “is” because of the ambiguity inherent in the meaning of the quantum state”:
if it reflects our knowledge of the system, then the particle is in one of the boxes B;,
without quotation marks. But if one thinks of the quantum state as being physical
and of the position of the particle as being created or realized only when someone
measures it, then the quotation marks are necessary and “is” means: “would be found
in box B; after measurement”.

Now, if one opens one of the boxes (say B;) and one does not find the particle
in it, one knows that it is in B,. Therefore, the state “collapses” instantaneously: it
becomes | B,) (and if one opens box B,, one will find the particle in it!).

Since B; and B, are spatially separated (and as far apart as we wish), if we reject
the notion of action at a distance, then it follows that acting on B;, namely opening
that box, cannot have any physical effect whatsoever on B,. However, if opening box
B leads to the collapse of the quantum state into one where the particle is necessarily
in B,, it must be that the particle was in B, all along. That is, of course, the common
sense view and also the one that we would reach if the particle was replaced by any
large enough object.

But in the situation of the particle in the box, if we reject action at a distance, then
we must admit that quantum mechanics is not complete, in the sense that Einstein
gave to that word: there exist other variables than the quantum state that describe the
system, since the quantum state does not tell us which box the particle is in and we
just showed, assuming no action at a distance, that the particle is in one of the two
boxes, before one opens either of them.

In any case, with this argument, Einstein had already proven the following
dilemma: either there exists some action at a distance in Nature (opening box B
changes the physical situation in B;) or quantum mechanics is incomplete. Since
action at a distance was anathema to him (and probably to everybody else at that
time), he thought that he had shown that quantum mechanics is incomplete.

There are many examples at a macroscopic level that would raise a similar dilemma
and where one would side with Einstein in making assumptions, even very unnatural
ones, that would preserve locality. Suppose that two people are located far apart,
and each tosses coins with results that are always either heads or tails, randomly,
but always the same for both throwers. Or suppose that in two casinos, far away

8This is of course a thought experiment. We assume that we can cut the box in two without affecting
the particle. But similar experiments have been made with photons and were already suggested by
Heisenberg in 1929 (see Sect.7.1.5).

9Tf we refer to the four possible positions mentioned in Sect. 2.5 concerning the status of the quantum
state, then viewing the quantum state as reflecting our knowledge of the system is part of the third
reaction, while thinking of the quantum state as being physical and of the position of the particle as
being created when one measures it is part of the second reaction. In Chap. 2, we showed that the
third reaction is untenable if it applies to all “observables”, but not necessarily if it applies only to
particle positions (in Chap. 5, we will see how a position can be attributed to particles independently
of measurements and in a consistent way). We also showed that the second reaction is untenable
because of the linearity of Schrodinger’s equation, unless one appeals to a non-physical agent.
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from each other, the roulette always ends up on the red or black color, randomly,
but always the same in both casinos. Or imagine twins far apart that behave exactly
in the same fashion.!” In all these examples (and in many others that are easy to
imagine), one would naturally assume (even if it sounded very surprising) that the
two coin throwers or the casino owners were able to manipulate their apparently
random results and coordinate them in advance or, for the twins, one would appeal
to a strong form of genetic determinism. Who would suppose that one coin tosser
immediately affects the result of the other one, far away, or that the spinning of the
ball in one casino affects the motion of the other ball, or that the action of one twin
affects the behavior of the other twin? In all these cases, one would assume a locality
hypothesis; denying it would sound even more surprising than whatever one would
have to assume to explain those odd correlations.

But one thing should be a truism, namely that those correlations pose a dilemma:
the results are either coordinated in advance or there exists a form of action at a
distance. Note, however, that Einstein’s assumption in the case of the boxes (incom-
pleteness of quantum mechanics), which is similar to the assumptions we made here
about coin throwers, casinos, and twins, was actually very natural.

As an aside, let us mention that the example of the boxes also raises a serious
question about the transition from quantum to classical physics. Indeed, if the quan-
tum particle is replaced by a “classical” one, meaning a large enough object, nobody
denies that the particle is in one of the boxes before one opens either. But where
is the dividing line between the quantum realm and the classical one? The transi-
tion from quantum to classical physics is usually thought of as some kind of limit,
like considering large masses or large energies (compared to the ones on the atomic
scale); but a limit is something that one gets closer and closer to when a parameter
varies. Here, we are supposed to go from the statement “the particle is in neither of
the boxes” to “the particle is in one of them, but we do not know which one”. This
is an ontological jump and not the sort of continuous change that can be expressed
by the notion of limit.

However, Bell’s arguments prove the existence of nonlocal effects in Nature,
independently of whether one considers quantum mechanics complete or not. Before
showing that, we must define more precisely what we mean by nonlocality.'!

4.3 What Is Nonlocality?

Let us consider what kind of nonlocality or actions at a distance would be necessary,
in the example of the boxes, in order to deny Einstein’s conclusion about the incom-
pleteness of quantum mechanics. So assume that the particle is in neither box, before

10This example is given by Bell in his interview with Jeremy Bernstein [56, p. 63].

11 We should stress (for the experts) that our notion of locality is not the same as what is sometimes
called locality or local commutativity in quantum field theory. See [48, 229] for a discussion of this
point.
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one opens one of them (which is what quantum mechanics being complete means).
Then opening one box, say By, creates the particle, either in B; or in B,, and consider
the latter possibility here. This would nonlocally create a particle in the unopened

box B,, and that action at a distance would have the following properties'?:

1. That action should be instantaneous': the particle has to be entirely in box B,
at the same time as we open box Bj.
2a. The action extends arbitrarily far: the fact that the particle is entirely in box B,
once we open box Bj, does not change with the distance between the boxes.
2b. The effect of that action does not decrease with the distance: the effect is the
creation of the particle in box B, and that effect is the same irrespective of the
distance between the boxes.

3. This effect is individuated: suppose we have a thousand boxes, each containing
one particle, and that we cut each of them into two half-boxes, then send both
half-boxes far apart from each other. Then, opening one half-box will affect the
state in the other half-box (coming from the cutting in two of the same box) but
not in any other half-box.

4. That action cannot be used to transmit messages: if we open box Bj, we learn
what the state becomes in box B;, but we cannot use that to transmit a message
from the place where Bj is to the one where B, is. Indeed, if one repeats the
experiment many times with several boxes, one obtains that the particles are
sometimes in Bj, sometimes in By, in an apparently random fashion. Since we
have no way, by acting on one box, to choose in which of the two boxes the
particle will be, it is impossible to use that experiment to send messages.

The impossibility of sending messages is sometimes taken to mean that there is noth-
ing nonlocal going on. But nonlocality refers here to causal interactions as described
(in principle) by physical theories. Messages are far more anthropocentric than that,
and require that humans be able to control these interactions in order to communi-
cate. As remarked by Maudlin, the Big Bang and earthquakes cannot be used to send
messages, but they have causal effects nevertheless [319, pp. 136-137].

Let us compare this kind of nonlocality with the nonlocality in Newtonian gravity.
The latter also allows actions at a distance: since the gravitational force depends on
the distribution of matter in the universe, changing that distribution, say by moving
my body, instantaneously affects all other bodies in the universe. That action at a
distance has properties 1 and 2a, but not the others. Of course, its effect decreases
with the distance, because of the inverse square law, and it affects all bodies at a
given distance equally (it is not individuated). On the other hand, it can in principle
be used to transmit messages: if I decide to choose, at every minute, to wave my arm

128ee Sect. 6.2 for examples of theories, different from the de Broglie-Bohm theory, in which there
is indeed such a nonlocal creation of particles.

BOf course, instantaneity is not a relativistic notion, so let us say, instantaneous in the reference
frame where both boxes are at rest. We will discuss relativity in Sect.5.2.2 (when we speak of
relativity in this book, we always refer to the special theory, unless we mention the general one).
For the conflict between relativity and ordinary quantum mechanics in the example of the boxes,
see [355, Note 58].
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or not to wave it, then one can use that choice of movements to encode a sequence
of zeros and ones and, assuming that the gravitational effect can be detected, one
can therefore transmit a message instantaneously and arbitrarily far (but the further
away one tries to transmit it, the harder the detection). Of course, all this refers to
Newton’s theory. There have been no experiments performed in this framework that
could prove that gravitational forces really act instantaneously or at least at speeds
faster than the speed of light (and, as we shall see, this is a major difference with the
situation in quantum mechanics).

It is well known that Newton did not like this aspect of his own theory.!* In a
letter to the theologian Richard Bentley, he wrote:

[...] that one body may act upon another at a distance through a vacuum without the mediation
of any thing else [...] is to me so great an absurdity that I believe no man who has in
philosophical matters any competent faculty of thinking can ever fall into it.

Isaac Newton [330, 350]

Not surprisingly, Einstein also firmly rejected the idea of action at a distance. In his
discussions with Max Born, he wrote:

When a system in physics extends over the parts of space A and B, then that which exists in
B should somehow exist independently of that which exists in A. That which really exists in
B should therefore not depend on what kind of measurement is carried out in part of space
A; it should also be independent of whether or not any measurement at all is carried out in
space A.

Albert Einstein [79, p. 164]

In the example of the boxes, this means that opening one half-box cannot possibly
influence the physical situation in the other half-box.

The Dutch physicist Hendrik Casimir underlined the fundamental problem with
nonlocal actions:

If the results of experiments on free fall here in Amsterdam depended appreciably on the
temperature of Mont Blanc, on the height of the Seine below Paris, and on the position of
the planets, one would not get very far.

Hendrik Casimir [93], quoted in [48]

If everything is connected with everything through nonlocal actions, then science
becomes impossible, because, in order to test scientific theories, one always needs
to assume that one can isolate some systems or some variables. However, luckily,
the nonlocality in quantum mechanics does not go so far as to make isolated systems
impossible to realize in practice.'”

14Newton thought that gravitation was mediated by particles moving at a finite speed, so that the
effect of gravitation could not be instantaneous. See [327] for more details.

15This is related to the phenomenon of decoherence, to be discussed in Sect. 5.1.6.



118 4 The Second Mystery: Nonlocality

However, because of the problems linked with nonlocality, post-Newtonian
physics has tried to eliminate property 1, while classical electromagnetism or the
general theory of relativity have kept only property 2a and the negation of 4. And,
due to special relativity, the combination of 1 and the negation of 4 allows in principle
the sending of messages into one’s own past,'6 so that, if 1 holds, 4 must also hold.

One may ask whether quantum mechanics proves that there are physical effects
displaying properties 1-4. The example of Einstein’s boxes does not allow that con-
clusion, because one can consistently think that the quantum description is not com-
plete and that the particle is always in one of the boxes. Indeed, that is exactly what
happens in the de Broglie-Bohm theory (explained in Chap.5). In order to prove
nonlocality in the sense introduced here, i.e., a phenomenon having properties 1-4
above, we have to turn to a more sophisticated situation.

4.4 A Simple Proof of Nonlocality

4.4.1 An Anthropomorphic Thought Experiment

Let us start with an anthropomorphic thought experiment, but which is completely
analogous to what happens in real experiments and could even, in principle, be
realized in the anthropomorphic form presented here.!” Two people, A (for Alice)
and B (for Bob) are together in the middle of a room and go towards two different
doors, located at X and Y. At the doors, each of them is given a number, 1, 2, 3 (let’s
call them “questions”, although they do not have any particular meaning) and has to
say “Yes” or “No” (the reason why we introduce 3 questions will be clear in the next
section). This experiment is repeated many times, with A and B meeting together
each time in the middle of the room, and the questions and answers vary apparently at
random (Fig.4.2). When A and B are together in the room, they can decide to follow
whatever “strategy” they want in order to answer the questions, but the statistics of
their answers, although they look random, must nevertheless satisfy two properties.
We impose these properties because they are analogous to what happens in real
experiments with photons, but translating the experiments into an anthropomorphic
language may help us see how paradoxical our final conclusions are.

The first property is that, when the same question is asked at X and Y, one always
gets the same answer. How can that be realized? One obvious possibility is that A
and B agree upon which answers they will give before moving toward the doors.
They may decide, for example, that they will both say “Yes” if the question is 1, “No”

16 At Jeast, according to the usual understanding of relativity. We will return to this question in
Sects.5.2.1 and 5.2.2. See [48, 319] for a more detailed discussion.

17Readers who prefer to see the real physical situation directly can proceed to the next section.
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Fig. 4.2 The
anthropomorphic experiment

X — — Y

A B
3 questions 1,2,3

2 answers Yes/No

if itis 2 and “Yes” if it is 3. They can choose different strategies at each repetition
of the experiment and choose those strategies “at random” so that the answers will
look random.

Another possibility is that, when A reaches door X, she calls B and tells him
which question was asked and the answer she gave. Then, of course, B can just give
the same answer as A if he is asked the same question and any other answer if the
question is different.

But let us assume that the answers are given simultaneously,'® so that the second
possibility is ruled out unless there exists some superluminal action at a distance
between A at X and B at Y. Maybe A and B communicate by telepathy! Of course,
this is not to be taken seriously, but that is the sort of interaction that Einstein had in
mind when he spoke of “spooky actions at a distance” [79, p. 158].

The question that the reader should ask at this point is whether there is any other
possibility: either the answers are predetermined or (assuming simultaneity of the
answers) there is a “spooky action at a distance”, namely a communication of some
sort takes place between A and B when they are asked the questions.'” This is similar
to the dilemma about the boxes: either the particle is in one of the boxes or there is
some physical action between the two boxes.

Note that, to raise this dilemma, one question suffices instead of three: if the
answers on both sides are always the same, then they must be predetermined if no

131n the reference frame in which the experiment takes place.

19Someone who certainly thinks that the answers are predetermined is Robert Griffiths, who offers
the following analogy to illustrate the situation described here:

Colored slips of paper, one red and one green, are placed in two opaque envelopes, which
are then mailed to scientists in Atlanta and Boston. The scientist who opens the envelope in
Atlanta and finds a red slip of paper can immediately infer, given the experimental protocol,
the color of the slip of paper contained in the envelope in Boston, whether or not it has
already been opened.

Robert B. Griffiths [249]

We will discuss Griffiths’ views about quantum mechanics in Sect. 6.3.
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communication is possible between the two sides.?’ This dilemma can be called the
EPR part of our argument, although Einstein, Podolsky, and Rosen used variables
taking continuous values (position and momentum) instead of discrete ones as here
(Yes/No). The reason we need three possible questions is that there is a second
property of the statistics of the answers: when the two questions addressed to A and
B are different, then the answers must be the same in only a quarter of the cases. And
this property, combined with the idea that the properties are predetermined, leads
to a contradiction. The whole argument provides a (very simple) version of Bell’s
theorem.”!

Theorem (Bell) We cannot have these two properties together:

1 The answers are determined before the questions are asked and are the same on
both sides.

2 The frequency of having the same answers on both sides when the questions are
different is 1/4.

Proof. There are three questions numbered 1, 2, and 3, and two answers Yes and No.
If the answers are given in advance, there are 23 =38 possibilities:

222NN~ ~=
ZzRNZZR~<D
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In each case there are at least two questions with the same answer. Therefore,

200ne of the weaknesses of the original EPR paper was that they considered two quantities, position
and momentum, instead of one, which would have been sufficient for their argument to work: if one
can predict the momentum of particle A by measuring that of particle B, far away from A, and if that
measurement does not affect particle A (by assumption of locality), then particle A must have had
a well defined momentum all along. The same argument holds for the position: if the two particles
have opposite momenta and start from the same place, then measuring the position of one particle
allows us to infer the position of the other and therefore, assuming once again no effect on A from
the measurement on B, this means that particle A had a position all along. But by considering both
position and momentum, Einstein, Podolsky, and Rosen may have given the impression that they
were trying to prove that one could measure these two quantities simultaneously, which was not
their point, at least not Einstein’s point. We will discuss this further in Sect.7.1.

21The argument given here is taken from [149]. In the original paper by Bell [35], the proof, although
fundamentally the same, was more complicated. There has also been quite some discussion in the
literature about the difference between outcome independence and parameter independence, but
our approach bypasses that distinction (see [229, 319] for a critical discussion of these notions).
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Frequency (answer to 1 = answer to 2)
+ Frequency (answer to 2 = answer to 3)

+ Frequency (answer to 3 = answerto 1) > 1.
But if

Frequency (answer to 1 = answer to 2)
= Frequency (answer to 2 = answer to 3)

= Frequency (answer to 3 = answer to 1) = 1/4,

we get 3/4 > 1, which is a contradiction. |

The inequality above, with the sum of the frequencies greater than or equal to 1, is an
example of a Bell inequality, i.e., an inequality which is a logical consequence of the
assumption of pre-existing values, and which is violated by quantum predictions.??
But before drawing conclusions from this theorem, let us see how the two people
described here could realize these “impossible” statistics.

4.4.2 A Real Quantum Situation

Let us first describe the situation in the previous section in a non-anthropomorphic
manner.”> A and B are replaced by particles with spin 1/2, and there are pieces
of apparatus at X and Y that “measure the spin” along some direction, these being
similar to the boxes discussed in Chap. 2. The “questions” 1, 2, and 3 are three possible
directions for that “measurement” (we put scare quotes here because, as we shall
see, no pre-existing value is measured in these experiments). The answers Yes/No
correspond to results Up/Down for the spin (we will define this correspondence more
precisely below).

The particles are sent towards the pieces of apparatus and the initial quantum state
of the two particles is

|v) = (IA INBLY)—[AT)IB1Y)
(IA 2MIB2)—1A2])B2 1)

(|A 3MNIB3L) —1A31)IB31), (4.4.2.1)

Sl- 6= 6l

221 [332], Mermin provides nice idealized illustrations of possible results of experiments showing
the violation of Bell’s inequality, in the version given here.

23This formulation of the EPR argument, with spin variables instead of position and momentum,
is due to Bohm [61] and was used by Bell in [35] and later. However, there exists an unpublished
note by Einstein discussing the problem in terms of spin variables [432].
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where we use a similar notation to the one in Chap. 2, so that |A 1 1) is the state in
which particle A has its spin up in direction 1 (meaning that a particle in that state
will have its spin up with certainty after a spin measurement in direction 1, or in other
words, this state is the “up” eigenstate of the spin operator in direction 1),* and the
other symbols are defined analogously. We leave aside the issue of how to create such
a state in practice and note only that it can be done. We also accept without proof the
fact that this state has three similar representations25 in each of the directions 1, 2, or
3. We also leave aside the “spatial” part of that quantum state: we assume implicitly
that the state |A 1 1) is coupled to a wave function moving towards the apparatus
located at X, while the state |B 1 |) is coupled to a wave function moving towards
the apparatus located at Y, and similarly for the other parts of the state |W).

Consider now the standard quantum mechanical description of a measurement of
the spin of A at X in direction 1, without measuring anything on particle B for the
moment. If one sees 1, the state becomes |A 1 1)|B 1 ) (by the collapse rule). If
one sees |, the state becomes |[A 1 |)|B 1 1). And, of course, we get similar results
if we measure the spin of A in directions 2 or 3.

But then the state changes nonlocally for particle B, because, if one sees 1, the
state “collapses”, i.e., becomes |A 1 1)|B 1 |), while the part |[A 1 )|B 1 1) of
the state is suppressed by the collapse. Another way to say this is that, after the
measurement of A at X, any measurement of B at Y is guaranteed to yield the
opposite result to what was found for A, while, before the measurement of A, the
result for B was undetermined, since in the state (4.4.2.1), the result of measuring
the spin at B could be either up or down. This gives rise to the same dilemma as for
Einstein’s boxes: either the measurement on A affects the physical situation of B, or
the particle B had its spin determined in advance, and anticorrelated with the spin
of A. Since we could measure the spin of B first and then the spin of A, the same
reasoning implies that the spin at A is also predetermined. And this argument works
for each of the three directions. One is therefore led to the following dilemma:

e cither the spin values, up or down, were predetermined before the measurement,
and in all three directions, because the same reasoning applies to each one of them,

e or there is some form of action at a distance between X and Y, even if X and Y
are located arbitrarily far apart.

But the first assumption leads to a contradiction with observations made when the
directions in which the spin is “measured” are different for A and B. To see this,
denote by v4(a), vg(a) the pre-existing values of the results of measurements on A
and B (assuming that they exist), where a denotes a unit vector in one of the directions
1, 2, 3 (to be specified later) in which the spin is measured at X or Y. We make the
following conventions at X and Y : v4(a) = +1 means that the answer is “Yes” and
va(a) = —1 means that the answer is “No”, but vg(a) = +1 means that the answer
is “No” and vg(a) = —1 means that the answer is “Yes”. With that convention, we

24See also Appendix 2.B for more details.
25This follows from the rotational invariance of the state (4.4.2.1) in spin space.
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see that we always get the same answer when the same questions are asked on both
sides. The contradiction comes from the fact that we get the same answer only 1/4
of the time when we ask different questions at X and Y, and the theorem of the
previous section shows that this is impossible. We explain in Appendix 4.A how to
obtain the number 1/4 for the frequency of answers to different questions, for an
appropriate choice of the directions 1, 2, 3 (this is just a standard quantum mechanical
calculation).

Finally, if we wish to reproduce the anthropomorphic experiment described in the
previous section, we simply send the particles toward the two doors, once Alice (A)
and Bob (B) have reached them. At each door, there is an instrument with which
Alice and Bob “measure the spin” along the directions corresponding to the numbers
given to them. They then answer the “questions” according to the results of their
“measurements”. In that way the “impossible” statistics mentioned in the theorem
of the previous section can also be reproduced by human beings.

Of course, one has to run the experiment many times in order to get the “impos-
sible” statistics (impossible without accepting the existence of action at a distance).
But there are variants of Bell’s argument (with three particles instead of two) that do
not require any statistics: assuming locality implies the existence of “hidden” spin
values and this leads directly to a contradiction.?

Before drawing conclusions from what has been proven, let us stress that the non-
locality proven by Bell does indeed have the properties 1-4 discussed in Sect.4.3.
The effect is in principle instantaneous, but one cannot check instantaneity experi-
mentally. However, it can at least propagate at speeds far greater than the speed of
light, something that can be checked experimentally. The effect does not decrease
with the distance between X and Y and is individuated, since it depends on a pair of
particles being in the state (4.4.2.1): acting on one particle in the pair will affect the
other particle in that pair, but no other particle. Finally, this effect cannot be used to
send messages from X to Y. The reason for this impossibility is similar to the one
applying in the case of Einstein’s boxes. Each side sees a perfectly random sequence
of results “spin up” or “spin down”. Since there is no mechanism that allows, given
the initial quantum state (4.4.2.1), to control or affect that result by acting on one side
of the experiment, there is no way to send a message from one side to the other.?’

4.4.3 Conclusions

Taken by itself and forgetting about the EPR argument, Bell’s result can be stated as
a “no hidden variables theorem”, similar to the one in Sect.2.5. Indeed, Bell showed
that the mere supposition that the values of the spin pre-exist their “measurement”,

26This is somewhat similar, but not identical, to the contradiction derived in Appendix 2.F. See
[240], [335, Sect. VIII], or [70, p. 146], for more details.

2TFor a general proof of the impossibility of using EPR-type experiments to send messages, see
[37, 158, 208], [70, p. 139], or [319, Chap.4].
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combined with the perfect anticorrelation when the axes along which measurements
are made are the same, and the 1/4 result for the frequencies of correlations when
measurements are made along different axes, leads to a contradiction. Since the last
two claims are empirical predictions of quantum mechanics that have been amply
verified (in a somewhat different form), this means that these hidden variables or
pre-existing values cannot exist.

But Bell, of course, always presented his result in combination with the EPR
argument, which shows that the mere assumption of locality, combined with the
perfect correlation when the directions of measurement (or questions) are the same,
implies the existence of those hidden variables that are “impossible”. So for Bell, his
result, combined with the EPR argument, was not a “no hidden variables theorem”,
but a nonlocality theorem, the result about the impossibility of hidden variables being
only one step in a two-step argument.

To repeat, the EPR part of the argument shows that, if there are no pre-existing
values, then the perfect correlations when the directions are the same imply some
action at a distance. The Bell part of the argument, i.e., the theorem of the previous
section, shows that the mere assumption that there are pre-existing values leads to a
contradiction when one takes into account the statistics of the results when the direc-
tions are different. That is why we used scare quotes on the word “measurement’:
there is no real property of the particle that is being “measured”, since no spin values
exist before the interaction with the “measuring” device (why this is so will become
clearer in Sect.5.1.4).

But what does this mean? In fact, it means that some action at a distance does
exist in Nature, but it does not tell us what this action consists of. And we cannot
answer that question without having a theory that goes beyond ordinary quantum
mechanics. In ordinary quantum mechanics, what is nonlocal is the collapse of the
quantum state, as we see in the transformation of (4.4.2.1) into |A 1 1)|B 1 |) or
|[A1 |)|B11),depending on the result of a measurement at A. This affects the state
at B, since the second part of |\) has now been suppressed.

Since the meaning of the quantum state and its collapse is ambiguous in ordinary
quantum mechanics, it is not clear that this is a real physical effect. But, as we have
emphasized, if there is no physical effect whatsoever or, if one interprets the collapse
of the quantum state as a mere gain of information, then this means that we must
have those predetermined values that lead to a contradiction. In Sect.5.2.1, we will
explain what nonlocality means in a concrete theory going beyond ordinary quantum
mechanics, namely de Broglie-Bohm’s theory.

Given the radical nature of the conclusions of the EPR-Bell argument, many
attempts have been made to avoid them, i.e., to claim that the world is local after all.
One such strategy is to maintain that the perfect correlations between the answers
when the same questions are asked is simply a coincidence that does not need to be
explained (see for example [187, 492]). In the same vein, one sometimes claims that
science limits itself to predictions of empirical correlations, not to explanations.
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But the whole of science can be seen as an attempt to account for correlations
or empirical regularities: the theory of gravitation, for example, accounts for the
regularities in the motion of planets, moons, satellites, etc. The atomic theory of
matter accounts for the proportions of elements in chemical reactions. The effects of
medicines account for the cure of diseases, etc. To refuse to account for correlations,
without giving any particular reason for doing so, is in general a very unscientific
attitude. As Bell puts it:

You might shrug your shoulders and say ‘coincidences happen all the time’, or ‘that’s life’.
Such an attitude is indeed sometimes advocated by otherwise serious people in the context of
quantum philosophy. But outside that peculiar context, such an attitude would be dismissed
as unscientific. The scientific attitude is that correlations cry out for explanation.

John Bell [49, p. 152]

Another variant of the “shrugging one’s shoulders” argument, is to invoke a sort of
“conspiracy”’: for example, that each person has an answer to only one question but
that, each time, and no matter how many times the experiment is repeated, that hap-
pens to be the question that is being asked to him or her. If we make that assumption,
then our theorem cannot be derived (for the proof of the theorem to work, we need
to assume pre-existing answers for three questions).?8

That move can be considered as an instance of the Duhem—Quine thesis; no matter
what the data are, one can always save one’s favorite theory (here it would be rejection
of nonlocality) if one is willing to make sufficiently ad hoc assumptions. But, again,
“outside that peculiar context, such an attitude would be dismissed as unscientific”.
As the authors of [229] observe, “if you are performing a drug versus placebo clinical
trial, then you have to select some group of patients to get the drug and some group of
patients to get the placebo.” But for that to work, you have to assume “that the method
of selection is independent of whatever characteristics those patients might have that
might influence how they react to the drug” [229, Note 17]. If, by accident, the people
to whom the placebo is given were exactly those that are cured spontaneously, while
those to whom the drug is given are so sick that the drug has little effect on them,
then of course the study would be biased. And no matter how “random” the chosen
sample is, this will always remain a logical possibility.

In any case, refusing to face a problem is not the same thing as solving it.”’ In
Chap. 6, we will see other attempts to “save locality”, in certain interpretations of

28 Another suggestion sometimes made is that the ordinary rules of probability do not apply in the
EPR-Bell situation. But, as pointed out by Tumulka [478], since the reasoning here relies only on
frequencies of results of experiments, and since the latter obviously do satisfy the ordinary rules
of probability, this attempt to “save locality”, by trying to deny the implications of the EPR-Bell
argument, does not work.

29 Another reaction which, in a sense, also avoids the problem, is the one proposed by Gisin in
[214]: he does emphasize that Nature is nonlocal, but he attributes the nonlocal correlations to
“pure chance” and thinks that this proves the non-deterministic nature of the Universe. But since
there exists a nonlocal deterministic theory, the de Broglie-Bohm theory, that accounts for these
nonlocal effects, one cannot use them to prove that a deterministic account is impossible (see Chap. 5
and [313].). One may “like” the de Broglie-Bohm theory or not, but one cannot deny its existence.
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quantum mechanics. But these attempts also consist in refusing to face the dilemma
that the perfect correlations pose. One thing is certain: nobody has yet proposed a
local explanation for those perfect correlations, and indeed nobody could do so, since
Bell has shown that it is impossible.

It is, however, important to realize that one cannot use this nonlocal effect to send
messages, as we explained at the end of the last section. This contradicts all the
pseudo-scientific uses of Bell’s result: there is no telepathy of any sort that can be
based on that result.

But if Alice and Bob tell each other which “measurements” have been made (1, 2,
or 3), without telling the results, they both know which result has been obtained on the
other side when the same measurement is made on both sides. Then they both share
a common sequence of Yes/No or up/down, which is a form of “information”. This
information was not transmitted explicitly, by hypothesis, and it cannot come from
the source (the one that has emitted the two particles), because of the non-existence
of the pre-existing spin values. Thus, some nonlocal transfer of information must
have taken place.>°

Once Alice and Bob share a common sequence of Yes/No, known only to them-
selves, they can use that to encrypt messages. These will be transmitted at sublu-
minal speeds, but they will be undecipherable by a third party.’! This is one of the
foundations of the field of “quantum information”,* and in particular of “quantum
cryptography”, whose development will hopefully will lead to a better appreciation
of the radical consequences of Bell’s discovery (although, as we will see in Chap. 7,
this appreciation is far from being realized at the present time).

Finally, one should emphasize that Einstein’s speculations, which looked purely
philosophical or even “metaphysical” to many,** have led to what is probably “the
most profound discovery of science”, to use Henri Stapp’s apt phrase [458, p. 271],
namely the existence of nonlocal effects in the world. And the EPR and Bell papers
laid the foundation for the quantum information revolution. This should be a lesson
for “pragmatists”.

On the other hand, it is ironical that this result refutes Einstein’s most basic
assumption about Nature. As Bell said, the question raised by EPR was answered in
a way that Einstein would probably “have liked least”, by showing that the “obvious”
assumption of locality made by EPR is actually false [36, p. 11].

30See the book on relativity and nonlocality by Maudlin [319] for a detailed discussion of the differ-
ences between messages and information and of what exactly is compatible or not with relativity.
310ne can show that if a spy tries to intercept the particles being transmitted from the source to Alice
and Bob, in order to know which results Alice and Bob will get when they do their measurements,
then because of the collapse rule, that interception will necessarily have effects on those results
such that Alice and Bob can detect the presence of the spy. In that sense, quantum cryptography is
foolproof.

328ee, e.g., Nielsen and Chuang [352] or Preskill [404].

33See, for example, the quote by Pauli in Sect. 1.5.
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Appendix
4.A The Frequency of “Answers” to Different ‘““Questions”

Here we derive the number 1/4 for the frequency of answers to different questions, for
an appropriate choice of the directions 1, 2, 3. Compute first E, p, = (V|02 ® o | W),
where a, b are unit vectors in the directions (1, 2, or 3, specified below) in which the
spin is measured at A or B, and a;“ ® a,f is a tensor product of matrices, each one
acting on the A or B part of the quantum state (with o, = a;0, + a0, + azos, where,
fori =1, 2, 3, a; are the components of a and o; the usual Pauli matrices introduced
in Appendix 2.F). The quantity E, j, is bilinear in a, b and rotation invariant, so it
must be of the form Aa - b, for some \ € R.

For a = b, the result must be —1, because of the anti-correlations (if the spin is
up at A, it must be down at B and vice versa). So A = —1, and thus E, , = — cos 6,
where 6 is the angle between the directions a and b. We know that v, (a), vg(b) = +£1.
Thus,

E.p = P(va(@) = vp(h)) — P(va(a) = —vp(b)) = 1 —2P(va(a) = —vp(b)) ,

and

1-E 1+ cosf
P(va(a) = —vp(b)) = —2 = :
2 2
One then chooses the directions
1 «<— 0 degree,

2 <— 120 degree,

3 «<— 240 degree .
Since cos 120 = cos 240 = —1/2, weget P (v4(a) = —vg(b)) = 1/4. Thus we have
perfect anticorrelations only 1/4 of the time when a and b are different. With our con-

vention, this means that one gets the same answer when one asks different questions
on both sides only 1/4 of the time.



Chapter 5
The de Broglie-Bohm Theory

In this chapter, we will outline a theory of “hidden variables” (although they are
not really hidden) that accounts for all the phenomena predicted by ordinary (non-
relativistic)! quantum mechanics, is not contradicted by the no hidden variables
theorems, explains why measurements do not in general measure pre-existing prop-
erties of a system (in other words, it explains why measuring devices have an “active
role”), and incorporates and to some extent explains the nonlocality implied by Bell’s
theorem. It would seem that, given all the claims to the effect that such a theory is
impossible,2 its mere existence should be a subject of considerable interest, but this
is not the case. Although interest in the de Broglie-Bohm theory is probably increas-
ing, it is still widely ignored or misrepresented, even by experts on foundations of
quantum mechanics.

The theory was introduced at approximately the same time as the Copenhagen
interpretation, in 1927, by Louis de Broglie, but it was rejected at the time by a
large majority of physicists, and ignored even by critics of the Copenhagen school,
like Einstein and Schrodinger. The theory was even abandoned by its founder, only
to be rediscovered and completed by David Bohm in 1952, then further developed
and advertised by John Bell. Our presentation will very much rely on the work of
Detlef Diirr, Sheldon Goldstein, and Nino Zhangi, and several of their collaborators
[152, 153].

Since many expositions of the de Broglie-Bohm theory are now available,® we
will simply explain the 