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Preface

We have not redefined quantum theory; we carry it to its logical conclusion. (. . . ) We learned
it second or third hand, as an established discipline whose rules and techniques we came to
feel as intuitive and natural, not as a peculiar displacement of classical: we found and find
it almost painful to do 19th century physics. The great Bohr-Einstein philosophical debates
which fascinate historians and the philosophers are to us a bit wrong-headed (. . . ) [1]

A Few Words of Explanation

Nowadays, when there is a large number of books on quantum mechanics available,
some of them are indeed of high quality and rightfully regarded as the “classics” (e.g.
[4, 8] for the uninitiated, [7, 19, 24] for intermediate and [15] for advanced readers),
when other remarkable expositions appear (e.g. [25]), when there is a large number
of books on quantum electrodynamics and quantum field theory, some of them are
indeed excellent (ranging widely from easier pieces such as [3, 12, 18, 23, 26] to
more difficult ones such as [2, 5, 13, 21, 27]), and when almost any textbook ever
written can be found on the Internet, downloaded and printed, we feel a need to start
with an excuse, or at least with a few words of explanation, for coming up with yet
another book on quantum mechanics and electrodynamics.

1. Symmetries of a problem at hand (such as parity, angular momentum etc.)
and their application in the solutions of quantum mechanical problems (e.g.
the Wigner-Eckart theorem) are usually subject to such an abstract exposition
that an uninitiated reader, even if he understands the concept, does not see their
usefulness. For this reason, we have devoted considerable attention to finding the
solutions to the simplest, physically interesting problems that cannot be solved
exactly, such as the anharmonic oscillator and the helium atom. In contrast to
other textbooks, we carry out the solutions to their very end and provide more
than an outline of them. Today, when routines for the diagonalization of matrices
form a standard part of libraries of advanced programming languages such as
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vi Preface

Maple, Matlab, Mathematica, Octave, Scilab, Maxima etc., we want to show
the reader how such problems can be solved alone using a laptop.

Furthermore, we want to emphasize yet another aspect of the use of symmetry
in quantum mechanics: namely the advantage of an algebraic over an analytical
approach to both precisely solvable and insolvable problems. The algebraic
approach provides an elegant solution to the very few physically interesting
problems that can be solved exactly, such as the harmonic oscillator, angular
momentum, composition of angular momenta and hydrogen-like atoms. It enables
a complete solution to be constructed, including the pertinent wave functions
without knowledge of various orthogonal polynomials etc. Its advantage becomes
even more obvious when dealing with problems that cannot be solved exactly;
namely, the calculation of the Hamiltonian matrix elements for variational
calculation of anharmonic oscillators, helium and more complex atoms, the
inclusion of the continuous part of the spectra in the case of complex atoms
etc.

It is needless to emphasize that the problem of symmetries and their
applications in quantum mechanics is not a minor one, nor is it at all complicated.
Once the basic mathematical concepts have been absorbed that are needed
to understand quantum mechanics, such as the concept of an operator, a
commutator, eigenstates and eigenvalues, one is able to understand everything
about symmetries in addition to their applications, without any recourse to the
mathematical niceties of group theory.

2. We wanted to explain relativistic quantum electrodynamics with minimal
necessary formalism and with an emphasis on its physical content and its
applications to atomic physics.

Modern expositions of quantum electrodynamics, such as [18, 21, 27],1 heavily
rely on either the Dyson-Wick expansion or path integrals, both of which are
undoubtedly very powerful tools. However, for an uninitiated reader, both the
physical content of the formalism and its connection to the usual formalism
of quantum mechanics are rather, if not completely, obscured. Moreover, the
applications are almost exclusively restricted to the high-energy scattering
processes.

Two conclusions could thus be drawn. First, it may appear that the “low-
energy” physicists do not need to possess any knowledge of quantum field theory.
Second, the usual formalism of quantum mechanics would have to be dismissed
at the very beginning and a completely new formalism of the quantum field
theory would have to be learnt. However, this task is clearly too difficult and
bearing in mind the first point, it is not worth the effort. Furthermore, when
dealing with the most important low-energy quantum electrodynamic processes,
such as spontaneous emission and atom-photon scattering, it suffices to consider
the non-relativistic theory, which is much more comprehensible.

1We find them excellent and strongly recommend them to the reader.
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We do not share this view for a variety of reasons. First and foremost,
even experimenters could know the theoretical value contained in precise
measurements. In addition, once beyond the first approximation, even within
the non-relativistic theory, the so-called virtual processes are encountered.
However, these processes cannot be fully described within non-relativistic theory.
Therefore, this theory is clearly incomplete. Moreover, methods of quantum field
theory have proved to be of enormous use far beyond the application for which
they were primarily invented. For instance, they find their applications in both
classical and quantum many-body problems, see for example [16, 17, 27]. Finally,
we believe that quantum field theory—like the general theory of relativity—is
part of the basic education of every physicist.

When dealing with relativistic quantum electrodynamics, we first proceed
within the framework of the ordinary quantum-mechanical formalism and only
then show how the mathematical description is simplified by adopting the
Feynman view of positrons as electrons running backwards in time. Although
this derivation is neither the shortest nor the most formally satisfying, it enables
one to determine the key steps in the transition from the non-relativistic to the
relativistic theory, to see where in the Feynman diagrams and rules the ordinary
perturbation method and Coulomb law are hidden etc. The approach adopted in
this book lies closest to that in the book [23].

We made a considerable effort to minimize the discussion of purely formal
aspects of problems on the one hand and to completely avoid the phrase “it can be
shown that” on the other hand. This means that we tried to carefully motivate
and derive everything within a physicist’s level of rigor. This also means that
a number of (important) topics are deliberately treated in a manner that can be
justifiably considered superficial. In particular, this applies to our treatment of the
spinors, adequate formalism of relativistic quantum field theory, renormalization, Lie
algebras etc. Even the discussion of Lorentz and gauge invariance does not go into
much depth. There are necessarily omissions in every book; a part of the process of
writing is to decide what should be omitted and what should be included. The choice
of the themes and their exposition in our work was dictated by our strong conviction
about what should be learnt in the first place. The purpose of every physical theory
worthy of that name is to “get the numbers out”. Despite the knowledge of deep
connections having its value, we believe that one should learn how the theory works
in the first place, i.e. how numbers can be obtained that experimenters can measure.

Regarding the level of rigor, we want to stress that the mathematical level of rigor
is completely alien to us. The art of approximation forms an integral part of “the art
of physics” and we strongly feel that concepts should be explained to others in a
way that is as close as possible to how we think about them ourselves.

If the reader is not satisfied either with our choice of the topics or with our
method of exposition, he is encouraged to consult other textbooks, for instance,
those mentioned at the beginning of this Preface. The books [15] and [2] are of an
encyclopaedic nature.
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Regarding the literature, we refer to a few basic books we consider to be generally
known and available. There is such a large number of books on quantum mechanics
that even a complete list of them exceeds our abilities. In the first three chapters,
where we introduce the fundamentals of quantum mechanics, we do not list our
inspirations. However, we try to do so in the advanced parts of this book. Note,
though, that the absence of a citation does not necessarily imply that our exposition
is original.

There are a number of exercises throughout the text. They are intended for the
reader to examine how much he understood. The exercises are, according to the
difficulty, denoted by a number of . If the reader is able to complete only one
exercise, he is surely able to recognize whether a greater number of marks a more
or less difficult exercise.

Finally, in this book we focus on the exposition of the “classics” within quantum
mechanics and electrodynamics. Note, though, that the word “classics” does not
imply that these topics ceased to be of interest. For instance, the Nobel prize of 2012
was awarded for experiments that manipulated the individual mesoscopic objects
and thus probed the boundary between the quantum and classical behaviour, see
for example [6]. In 2005, the Nobel prize was awarded for extremely accurate
spectroscopic measurements. When combined with the theoretical predictions based
on quantum electrodynamics, these measurements enable us to deduce the nuclear
properties, such as the proton size, with substantially better accuracy than by any
other means. This in turn leads to surprising findings, see for example [22]. Thus,
what follows are the “classics”; nevertheless, the classics are still alive! 2

Prerequisites

The following is mainly for autodidacts, who have our sympathies. Should this book
bring joy and not frustration, the following should hold.

1. The reader has a good command of single-variable calculus, complex numbers
and basic linear algebra.

2. The reader possesses some knowledge of multi-variable calculus and vector
analysis. The level of exposition in for example, Feynman’s freshman lectures
[9] should suffice.

3. For parts concerning quantum electrodynamics, namely Chapters 6 and 7, it is
necessary to know the complex analysis at the level of for example [10].

2We do not go as far as to try to explain the latest developments, such as the two mentioned above.
We believe that by mastering the content of this book, the reader will be able to catch up on them
on his own.
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4. The reader should possess some knowledge of classical mechanics, electrodynam-
ics and special relativity. Again, knowledge at the level of [9] should suffice. Some
knowledge of the Hamilton formulation of classical mechanics would be useful,
though not crucial. The “classic” textbooks are [11, 14].
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Notation, Convention, Units, and Experimental
Data

Notation

a Scalar quantity, components of vectors and their magnitudes
a� Complex conjugation
A Three-dimensional vector
A Four-dimensional vector (“four-vector”)
A, A>, AC Matrix, its transposition and Hermitian conjugation
1 Unit matrix
diag fa1, : : : , ang Diagonal matrix determined by its eigenvalues
OA Scalar operator, component of a vector operator
OA Three-dimensional vector operator
OA Four-dimensional vector operator
Œ Oa, Ob� D Oa Ob � Ob Oa Commutator
f Oa, Obg D Oa ObC Ob Oa Anticommutator
jCi Spin state

ˇ
ˇ 1

2 ,C 1
2

˛

j�i Spin state
ˇ
ˇ 1

2 ,� 1
2

˛

ri D @
@xi

Differential vector operator
OV˙ D OV1 ˙ i OV2 Often-used combination of components of vector operator
< Real part of a complex number
= Imaginary part of a complex number
Pq D dq

dt Time derivative
d˝ D d'd# sin# Differential of solid angle

xxi
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The Summation Convention

• The scalar product is in both three- and four-dimensional spaces denoted by a
centered dot, i.e., a � b and a � b.

• The components of three-vectors carry a Latin index (i, j, k, . . . ); the components
of four-vectors are distinguished using Greek indices (�, �, . . . ).

• The Einstein summation convention is used throughout the book: if two same
indices appear, they are summed over; for instance,

aibi D a1b1 C a2b2 C a3b3 ,

or in the case of four-vectors, we always use the metric .C1,�1,�1,�1/ with
indices being always subscripts

a�b� D a0b0 � a1b1 � a2b2 � a3b3 .

The Component Formalism

The scalar product may be written in components by means of the abovementioned
Einstein summation convention as

A � B D AjBj D ıijAiBj , r � A D @Ai

@xi
, r2 D @2

@xi@xi
,

where the Kronecker symbol

ıij D
(

1 .i D j/ ,

0 .i ¤ j/ .

The vector product may be written in components as

.A � B/i D "ijkAjBk , .r � A/i D "ijk
@Ak

@xj
,

where the Levi-Civita symbol

"123 D "231 D "312 D 1 ,

"213 D "132 D "321 D �1,
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and

"ijk D 0 ,

when any two indices ij, jk, or ik take the same value.
All identities of vector algebra and analysis used in the text may be derived from

the identity

"ijk"ipq D ıjpıkq � ıjqıkp .

The simplest way to prove it is by direct substitution of specific values.

Units

Unless stated otherwise, we use the so-called natural units where „ D c D "0 D 1.
The dimensions of a few basic physical quantities in this system of units are displayed
in Table 1.

We will encounter the transitions between the SI and natural system of units
only in very few cases. In Eq. (3.11), Sect. 3.2.3, we show the relation between a
frequency given in hertz and the corresponding energy difference in electronvolts,
and the other transitions for cross section, time, electric intensity, and magnetic
induction follow.

When converting units in Eq. (6.156), we proceed as follows. In natural units, the
electron mass equals [20]

me D 0.5109989 MeV , (1)

and the reduced Planck constant „ and light velocity c are equal to one,

„ D 1 D f„g J s , f„g D 1.0545717 � 10�34 (2)

Table 1 System of units used in the text

Dimension in the system of units

Quantity Symbol SI Natural

Energy E J eV

Mass m kg eV

Velocity v m/s 1

Time t s eV�1

Cross section � m2 eV�2

Electric intensity E V/m eV2

Magnetic induction B T eV2
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and

c D 1 D fcgm s�1 , fcg D 2.99792458 � 108 , (3)

where the numbers in the curly brackets are values in SI units [20]. One electronvolt
equals3

1 eV D 1e � 1 V D feg J , feg D 1.6021766 � 10�19 . (4)

Combining the last three equations, we find

.1 eV/�1 D
� „c

e

�

.1 m/ ,

� „c
e

�

D 1.9732696 � 10�7 . (5)

Substituting Eq. (1) for m and Eq. (5) into Eq. (6.156), we arrive at the displayed
value.

In Sects. 4.4.7 and 4.5.3, we need to transform the intensities of magnetic and
electric fields from the SI units to atomic units. For intensity of the electric field, we
have

1
eV

m
D
� „c

e

�

.eV/2 ;

hence for �E, Eq. (4.73), we obtain

�E D eE

m2
e˛

3
D fEg.eV/2

m2
e˛

3

� „c
e

�

' 1.945fEg � 10�12 . (6)

Likewise, for the intensity of the magnetic field, we have

1e � 1T D 1
eV

m

s

m
D
� „c2

e

�

.eV/2 ;

hence for �B, Eq. (4.57), we find

�B D eB

m2
e˛

2
D fBg.eV/2

m2
e˛

2

� „c2

e

�

' 4.254fBg � 10�6 . (7)

Finally, in Sect. 6.2.6, we need to convert the lifetime of the excited states from
the natural to SI units. The combination of Eqs. (2) and (4) yields

1.eV/�1 D 1

feg1J
D
� „

e

�

s .

3In this book, the elementary charge is denoted by “e,” the Euler number by “e,” and one electronvolt
by “eV.”
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Thus, to express the lifetime in seconds, we use Eq. (6.99)

�I D 1

m

� „
e

�
1

P
wI!F
m

, (8)

where we evaluate the dimensionless quantity
P

wI!F
m from Eq. (6.97) and for m we

substitute me from Eq. (1).

Fundamental Constants

Basic physical constants that must be taken from experiment are introduced in the
following sections:

• The fine structure constant ˛ in 3.2.3
• The Rydberg constant multiplied by the speed of light R1c in 3.2.3
• The ratios of electron to proton, electron to muon, and electron to deuteron masses

in 3.2.6

Experimental Data

Quantitative experimental data that will be compared with the theoretical predictions
may be found in the following sections:

• The transition 2s � 1s in hydrogen, deuterium, and muonium in 3.2.6
• The transition 13s � 11s in hydrogen and muonium in 3.3
• The transition 2p3=2 � 2p1=2 in hydrogen in 3.5.2
• The transitions 23s � 23p0, 23s � 23p1, and 23s � 23p2 in positronium in 4.4.9
• The transition 2 1S � 1 1S in helium in 5.3.7
• The transition 13s � 11s in positronium and the lifetime of the state 11s of

positronium in 7.3.2
• The electron gyromagnetic ratio ge in 7.5.7
• The transition 2p1=2 � 2s in hydrogen, muonium, and muonic hydrogen in 7.6.6.
• The transition 23s � 13s in positronium in 7.8.5
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Chapter 1
Foundations of Quantum Mechanics

In this chapter, we introduce the fundamental principles of quantum mechanics.
We commence by discussing the famous Stern-Gerlach experiments for a particle
with the spin 1=2 as several key quantum mechanical phenomena may be well
understood thereof. Using these very experiments as an example, we then illustrate
how the basic principles are incorporated within the mathematical formalism of
quantum mechanics. Subsequently, we generalize this mathematical scheme for more
complicated systems. Finally, focusing on the harmonic oscillator as an example,
we show the relation between an abstract and a specific approach to the formalism.

1.1 Basic Principles

There is nothing mystical about quantum mechanics provided we are willing to
accept the following two principles. They comprise all of the unusual aspects of the
behavior of microscopic particles which, whether based on everyday experience
or from the point of view of classical physics, one may consider rather odd.
These principles cannot be logically derived; fathers of the quantum mechanics1

arrived at them from experimental results. On the other hand, supposing we accept
these principles, basically anything within quantum mechanics follows logically
therefrom. Shall quantum mechanics be altered one day, however improbable that
seems to the authors, alteration of the two following principles would be inevitable.

1. We are capable of only predicting the probability of processes.
Physicists encountered this fact for the first time during analysis of radioactive

processes and atomic radiation. As early as in 1905, Rutherford stated that the

1Those are W. Heisenberg, E. Schrödinger, P. Dirac, and M. Born, with key contributions from M.
Planck, A. Einstein, N. Bohr, L. De Broglie, and W. Pauli.
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2 1 Foundations of Quantum Mechanics

amount of nuclei N.t/ which undergo radioactive decay within time period t is
given by the formula N.t/ D N.t D 0/e�� t, where � represents a constant for
the particular nucleus (i.e., whether we are considering uranium, radium, or any
other nucleus). Only as the years passed, physicists came to the conclusion that
nothing better than a statistical law valid for great N can be derived. The reason
is, we do not know when a particular nucleus undergoes the decay. We can merely
predict the probability of decay of a typical nucleus at any moment, hence only
the mean number of particles decaying during a given time period.

In 1917, Einstein analyzed black-body radiation and reached the conclusion
that one may describe spontaneous emission in the same manner as the above-
discussed radioactive decay. An atom in an excited state emits a photon, after a
lapse of time, and thus relaxes into the ground state. However, for each individual
atom, we are able to determine the time lapse merely by statistical means. The
irony is that Einstein, who was most likely the very first person to realize the
necessity of probabilistic approach, in fact never accepted it.

The strict determinism is thus disrupted when it comes to the microscopic
world. That is, the same cause (such as an excited atom) leads to various results
(the atom emits a photon and relaxes to the ground state at different times, e.g.,
sometimes after 2 � 10�9 s, other time after 5 � 10�9 s, etc.).

What makes the behavior of microscopic particles so unusual is the way we
calculate the probabilities.

2. The probability of an event P is given by the square of the probability amplitude
A, A being generally a complex number, P D jAj2 D AA�. Amplitudes of
independent processes multiply. In case a system can evolve from the initial to the
final state via two in principle indistinguishable ways, the respective amplitudes
add to each other.

This second principle is generally known as the principle of superposition.
The well-known double-slit experiment (Fig. 1.1) serves well for the illustration
of these principles. The probability that a particle, such as an electron, emitted
from the source Z is detected by the detector D is given—in accordance with the
above-stated principle—as

Fig. 1.1 Double-slit
experiment

source

1

2

detector
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P.Z! D/ D jA.Z! 1/A.1! D/C A.Z! 2/A.2! D/j2

D jA.Z! 1/A.1! D/j2 C jA.Z! 2/A.2! D/j2

C 2< �A.Z! 1/A.1! D/A�.Z! 2/A�.2! D/
�

.

The first term on the right-hand side (rhs) of the equation gives the probability
of a particle passing through the first slit, while the second term represents the
probability of a particle passing through the other slit. These probabilities are
given as products of the probabilities that a particle emitted from the source Z
reaches one of the slits and that the particle arrives at the detector D from the
slit. Since these two processes are independent of each other, the respective
probabilities multiply, which follows from the principle that amplitudes of
independent processes multiply. Such results answer to the common sense.
However, what turns out differently from what one could expect is the total
probability of a particle starting at the source and reaching the detector, as it
does not equal the sum of a particle passing through each of the slits. This is due
to a third, so-called interference, term. Considering a situation where particles
leave the source one at a time,2 pass through the apparatus and are detected, and
inspecting the final distribution of the particles at the plane of the detector (such
as by using a photographic plate), we obtain a so-called interference pattern.
It consists of alternating bright and dark stripes as there is a large number of
impacting particles in case of the former and very few in case of the latter.

It is much easier to grasp the interference pattern if we perform the entire
experiment with waves, instead of particles. Waves exit the source and reach
the two slits which we can then consider as new sources, and waves from them
subsequently reach the plane of the detector. However, the individual waves
differ in phase which in turn depends on the place of impact. Some waves
arrive at the detector with the same phase, i.e., their “peaks” and “valleys” are
identical, while—at other locations—the waves meet with opposite phases, i.e.,
“peaks” of one wave match “valleys” of the other and vice versa. The former
then corresponds to the bright stripes with many impacting particles, while the
latter results in dark stripes with none.

Note though that we always detect electrons, protons, neutrons, etc. as
particles. That is, the process of detection is precisely located in space and time
(a particle hits the detector “here and now”).

Wave-particle duality is thus incorporated into quantum mechanics via the two
above-stated principles. We always determine the probability amplitudes according
to the second principle in order to accurately describe the behavior of electrons in
terms of waves, such as observed in the case of the double-slit experiment. However,
the fact that electron is detected as a particle then leads to probabilistic interpretation
of the square of the amplitudes. It shall be noted that the double-slit experiment was
relatively recently accomplished [14].

2It certainly is experimentally possible to arrange that only one particle passes through the slit.
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Another example of quantum mechanical interference is scattering of two
indistinguishable particles. In his famous experiment, Ernst Rutherford bombarded
heavy atoms with ˛-particles. This experiment lead Rutherford to an atomic model
which still holds—at least roughly—to present days. Due to significantly greater
mass of ˛-particles in comparison to that of electrons, it is possible to neglect the
influence of electrons on the motion of ˛-particles. The scattering probability of an
˛-particle into solid angle d˝ D sin#d#d' per unit time divided by area density
of the incident ˛-particles is given according to the first principle as

d�

d˝
D jf .#/j2 , (1.1)

where � is called the cross-section and f .#/ the scattering amplitude. The axis from
which the angle # is determined matches the initial direction of the impacting
˛-particles, as depicted in Fig. 1.2. Assuming the mutual interaction of the ˛-
particles and the nucleus to be purely electrostatic, Rutherford succeeded in deriving
a formula for the amplitude f .#/ (e.g., [7]) which agreed with the experimental
results. From a historical point of view, Rutherford was extremely lucky to have
bombarded heavy nuclei, since the electrostatic effect does not allow the ˛-particles
to come to close proximity of the nuclei. In case of lighter nuclei, the effects of
nuclear forces come into play. Rutherford was even more lucky that he did not study
scattering of ˛-particles by ˛-particles. Had he done so, he would have obtained
results incomprehensible at that time (1912). The problem is, it is impossible to tell
apart the process of an ˛-particle being scattered by the angle # and the process
with the deflection angle equal to � �# (Fig. 1.3) since the particles are in principle
indistinguishable. In this case, the angular distribution of deflected ˛-particles equals

d�

d˝
D jf .#/C f .� � #/j2 . (1.2)

Fig. 1.2 Scattering of an
˛-particle on a nucleus

nucleus
ϑα-particle
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Fig. 1.3 Scattering of two indistinguishable particles

Fig. 1.4 Stern-Gerlach
apparatus
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1.2 Mathematical Scheme of the Quantum Theory

1.2.1 Stern-Gerlach Experiments

In 1921, Otto Stern designed the first of the series of Stern-Gerlach experiments
and successfully realized it in collaboration with Walter Gerlach 1 year later. This
series of experiments focuses on measurements of the inner degree of freedom of
an electron—the spin, projection of which into any direction, i.e., the “state of
the system,” may acquire only two values. Mathematical apparatus of quantum
mechanics can be easily explained using this simple example, and subsequent
generalization for more complicated systems is then quite straightforward.

Electrons (in the original experiment silver atoms) are heated up in a cavity with
a tiny exit hole. A collimated beam constituted by the emitted electrons enters
inhomogeneous magnetic field, which is maintained by two opposite magnetic
poles, one of them having a sharp tip-shape, as depicted in Fig. 1.4. In an external
electromagnetic field, an electron behaves like an electric monopole and a magnetic
dipole. The magnitude of the magnetic dipole moment � is directly proportional to
the intrinsic mechanical angular momentum, the spin s,

� D Ks .
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The coefficient of proportionality is given as

K D gee=me ,

where ge is called the gyromagnetic ratio and equals approximately 1 for an electron,
see Eq. (3.51).3 The classical energy of a magnetic dipole of the magnitude � in a
field with magnetic induction B D .0, 0, B/ reads

E D �� � B D �Ks � B D �KszB . (1.3)

The force the magnetic field exerts on electrons is given as

Fz D �@E

@z
D Ksz

@B

@z
.

We thus see that it is the field inhomogenity that plays the crucial role in splitting of
the beam on the basis of angular momentum, and not the magnitude of the magnetic
field.

It follows thereof that the force has a “downward” direction when acting on
electrons with sz < 0 and “upward” in case of electrons with sz > 0, and therefore
splitting of the electron beam occurs according to the values of sz. In the framework
of classical physics, there should be no prevailing value in the distribution of sz of the
detected particles and the distribution shall be continuous since the orientation of the
electrons leaving the heated cavity is utterly random. However, the reality differs.
There are merely two distinguishable electron beams coming from the apparatus—
that is, only two values sz D ˙1=2 occur. It seems natural to ask: is there something
that makes the z axis special? The answer is no, of course. Projection of the electron
spin along any direction acquires only two values.

We now consider a sequence of three pairs of magnets (a “modified” SG
experiment) which are placed as shown in Fig. 1.5. The electron beam enters the first
magnetic field and splits into two according to the spin orientation of the individual
electrons, where the probabilities of the spin being 1=2 or �1=2 are equal (we
restrict ourselves to the z-component of the spin). Both beams subsequently pass to
the second magnetic field. However, there is a screen blocking one of the beams
with a particular spin projection (along the z-axis), while the other beam proceeds
to the third magnetic field, which bends it into its original direction.

Figures 1.6 and 1.7 depict schematics for the modified Stern-Gerlach apparatus
that will be employed throughout the reading.

We will now describe several typical arrangements one may encounter in such
experiments.

3One may also encounter a different definition of gyromagnetic ratio K D .ge=2/.e=me/.
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Fig. 1.5 A “modified” Stern-Gerlach apparatus with a shield allowing only one of the beams to
pass

Fig. 1.6 Schematics for
modified Stern-Gerlach
apparatus selecting the
electrons with the spin
pointing “upward,” sz D C 1

2

z

Fig. 1.7 The same as in
Fig. 1.6, but now the electrons
leaving the apparatus have
spin pointing “downward,”
sz D � 1

2

z

Fig. 1.8 Two successive
modified Stern-Gerlach
apparatuses selecting the
electrons with the spin
projections onto the same axis

z+ z+

?

1. (Fig. 1.8) Spin of all electrons exiting the first apparatus points “upwards.” What
is the probability of detecting an electron with its spins oriented “downwards”?
The answer is zero. This surely makes sense as we allowed only electrons with
the “upward” spin to leave the first apparatus.

2. (Fig. 1.9) The spin of all electrons exiting the first apparatus has an “upward”
orientation. What is the probability of detecting an electron with a spin oriented
to the “right” at the second apparatus, which was rotated by 90ı with respect to
the first one? One half of the electrons leaving the first apparatus. However, for an
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Fig. 1.9 The same as in
Fig. 1.8, but now the second
apparatus is rotated about the
angle �=2 with respect to the
first one

z+ x+

?

Fig. 1.10 Three successive
modified Stern-Gerlach
apparatuses. The second
apparatus is rotated about the
angle �=2 with respect to the
first and the third

z+ x+ z+

?

Fig. 1.11 The same as in
Fig. 1.10, but now with no
selection made in the second
apparatus

z+ x+ z+

?

individual electron, we cannot decide where it is deflected “left” or “right.” This
experiment thus illustrates the first principle, that is, we are capable of predicting
only the probability of individual processes.

3. (Fig. 1.10) The spin of all electrons leaving the first apparatus is again oriented
“upwards.” After passing the second apparatus, the spin points “left.” What is
the probability of detecting an electron with a “downward” spin at the third
apparatus? One fourth of the electrons exiting the first apparatus. At first sight,
this may seem rather incomprehensible, as we allowed only electrons with an
“upward” spin to exit the first apparatus! Apparently, the information whether
a spin points “left” or “right” destroys the information of the spin pointing
“upwards” or “downwards.” This experiment well illustrates the multiplication
principle of independent processes. That is, the probability of an “upward” and
subsequently “left” spin equals one half, and likewise the probability of a “left”
spin then pointing “downwards” equals one half. It follows thereof, the probability
of a spin pointing “upwards, then left, and finally downwards” is one fourth.

4. (Fig. 1.11) The spin of all electrons leaving the first apparatus points “upwards.”
The second apparatus now allows also all electrons with a “right” spin to
pass (unlike the previous case where these electrons were eliminated). What
is the probability of detecting an electron with a “downward” spin at the third
apparatus? Zero. Once again, this may appear rather odd. When we block one
of the two possible ways, one fourth of the electrons reaches the detector in the
third apparatus. Yet obstructing neither of the two beams results in no particles
impacting on the detector. This experiment likewise demonstrates the quantum
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mechanical interference, i.e., the second principle: we add the probability
amplitudes of indistinguishable process, not the probabilities themselves. This
fourth case apparently matches the first one since the second apparatus does not
change the electron beam at all. That is, we do not conduct any measurements,
hence do not affect the state of the system.

We make use of these four experimental setups to introduce mathematical methods
of describing physical phenomena. We describe the state of a system by a vector
from an abstract space of states.4 We use a ket-vector to describe a system entering
the measuring apparatus

j i D
�

a
b

�

(1.4)

and a bra-vector for a system exiting the apparatus5

h j D �a� b�
�

, (1.5)

where a and b are generally complex numbers and their meaning will become clear
from the further text. The transition from a ket-vector to a bra-vector h j D .j i/C
is called Hermitian conjugation and corresponds, as we can see, to transposition and
complex conjugation. Scalar product of a vector h	j,

h	j D �c� d�
�

, (1.6)

and a vector j i equals

h	j i D c�aC d�b , (1.7)

and one can easily prove that

h	j i D h j	i� . (1.8)

The probability amplitude of a transition from one state into another is then given
by the scalar product of the corresponding state vectors. The following text will
clarify the necessity to identify scalar products with probability amplitudes and not
the probabilities themselves.

We now illustrate these general expressions on the SG experiments. The
probability of a particle passing through a specific SG setup equals the square
of the amplitude magnitude. For the first case (Fig. 1.8), the experiments dictate the
relations

4Mathematicians call it the Hilbert space.
5These symbols, as well as the entire notation, comes from English physicist Paul Dirac. Scalar
product h	j i is a “bra-c-ket” in English, meaning h	j is a “bra” and j i is a “ket.”
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P.˙z,˙z/ D jh˙zj˙zij2 D 1 , P.˙z,�z/ D jh˙zj�zij2 D 0 . (1.9)

The simplest plausible choice of vectors jCzi, j�zi, hCzj, and h�zj meeting these
requirements reads

jCzi D
�

1
0

�

, j�zi D
�

0
1

�

, hCzj D �1 0
�

, h�zj D �0 1
�

.

(1.10)

With this choice, the components a and b of a general vector j i given by Eq. (1.4)
satisfy

a D hCzj i , b D h�zj i ,

which means a and b are the probability amplitudes of a general state j i
transforming into the states jCzi and j�zi, respectively.

For the second case (Fig. 1.9), we have

P.Cz,�x/ D jhCzj�xij2 , P.˙z,˙x/ D P.˙z,�x/ D 1=2 .

Most certainly the following must also hold (since nothing makes the z-axis special!)

P.˙x,˙x/ D jh˙xj˙xij2 D 1 , P.˙x,�x/ D jh˙xj�xij2 D 0 . (1.11)

These conditions are satisfied for example by the following choice of vectors

jCxi D 1p
2

�
1
1

�

, j�xi D 1p
2

�
1
�1

�

, (1.12a)

hCxj D 1p
2

�

1 1
�

, h�xj D 1p
2

�

1 �1
�

. (1.12b)

Having found possible forms of the vectors j˙xi, we can readily calculate the
probabilities for the third case (Fig. 1.10),6

P.Cz,Cx,Cx,�z/ D jhCzjCxihCxj�zij2 D
ˇ
ˇ
ˇ
ˇ

�

1 0
� 1p

2

�
1
1

�
1p
2

�

1 1
�
�

0
1

�ˇ
ˇ
ˇ
ˇ

2

D 1

4
,

and also for the fourth experimental setup. For this instance, however, we have to
pay attention to add the probability amplitudes of the individual processes, not the
probabilities themselves, such as for the double-slit experiment:

6Taking into account h	j i D h j	i�, see (1.8), hence jh	j ij2 D jh j	ij2, it obviously makes
no difference whether we write the order of events from left to write, P D jhCzjCxihCxj�zij2,
or from right to left, P D jh�zjCxihCxjCzij2.
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P.Cz,˙x,˙x,�z/ D jhCzjCxihCxj�zi C hCzj�xih�xj�zij2

D
ˇ
ˇ
ˇ
ˇ

1

2

�

1 0
�
�

1
1

�
�

1 1
�
�

0
1

�

C 1

2

�

1 0
�
�

1
�1

�
�

1 �1
�
�

0
1

�ˇ
ˇ
ˇ
ˇ

2

D 0 .

The hereby built-up formalism allows us to elucidate the meaning of the statement
“measuring affects the state of the system.” To do so, we now introduce a tensor
product

j ih	j D
�

a
b

�
�

c� d�
� D

�
ac� ad�
bc� bd�

�

.

We can thus regard the effect of the measuring device on the state of the system
as a projection operator (a matrix) acting on a vector. As an example, we take the
third SG experiment (Fig. 1.10). The state after the first filtration reads hCzj. After
passing the second SG filter, all particles are in the state hCzjCxihCxj, which we
can understand as the original state hCzj modified by the operator

OICx D jCxihCxj D 1

2

�
1 1
1 1

�

.

The third experimental setup shows that the spin projection of the electrons that
passed through the second apparatus along the x-axis equals one half. This means
we have conducted a measurement, and thus altered the state of the system as the
electrons find themselves in different states prior to and after traveling through the
apparatus,

hCzjOICx D hCzjCxihCxj D �1 0
� 1

2

�
1 1
1 1

�

D 1

2

�

1 1
� D 1p

2
hCxj .

On the other hand, the state of the system does not change for the fourth
arrangement (neither of the ways is blocked at the second apparatus). This agrees
with no measuring being performed:

hCzj.jCxihCxj C j�xih�xj/ D �1 0
�
�

1

2

�
1 1
1 1

�

C 1

2

�
1 �1
�1 1

�	

D �1 0
�

1 D �1 0
� D hCzj .

It follows that a crucial operator equality

jCxihCxj C j�xih�xj D 1 ,
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that mathematicians call the completeness relation for the basis fjCxi, j�xig bears
a clear physical meaning: placing a device into the path of the studied system but
making no measurements leads to the same final state as placing there no measuring
device at all. In mathematical description, this corresponds to multiplication by a
unit matrix.

The physical interpretation of the other important relation for bases, the
orthonormality relation, see for example (1.9) or (1.11), should be clear too. Placing
the very same type of device into the path of the studied system does not produce
any new information. The reason is, the system maintains the selfsame state, as
demonstrated by the first experiment, Fig. 1.8.

From a practical point of view, the relations of completeness and orthonormality
show to be extremely useful, as they allow for calculations of transition amplitudes.
A scalar product of the completeness relation

jCzihCzj C j�zih�zj D 1

with the vector j i leads to decomposition of the vector j i into the basis of
eigenstates of the spin projection on the z-axis,

j i D 1j i D jCzihCzj i C j�zih�zj i D
�hCzj i
h�zj i

�

,

where the last equation follows from Eq. (1.10). We can thus rewrite the scalar
product of two vectors as

h	j i D h	jCzihCzj i C h	j�zih�zj i D �h	jCzi h	j�zi�
�hCzj i
h�zj i

�

.

The left-hand side (lhs) of the equation comprises the vectors h	j and j i in an
abstract form, while on the rhs they acquire a specific form in the basis of eigenstates
of the spin projection along the z-axis.

If you deem such decompositions slightly odd (you should not), consider the
following analogy of the last three equations in an ordinary two-dimensional
Euclidean space:

1 D exex C eyey ,

F D F � exex C F � eyey D Fxex C Fyey ,

F � v D F � exex � vC F � eyey � v D Fxvx C Fyvy .

The only difference is that there is no need to distinguish between a ket- and a
bra-vector in the Euclidean space with a real and orthogonal basis.

Note, though, that while vectors commonly used in classical mechanics (such as
a position vector, etc.) are vectors of the three-dimensional Euclidean space, which
is a direct abstraction of the space of our everyday experience, vectors employed in
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quantum mechanics belong to the abstract space which has no natural connection to
our three-dimensional space.

The projection of the spin on the y-axis naturally complies with the same rules as
the projection on the z and x axes (no coordinate may be preferred over the others).
This leads to the requirements:

jh˙zj˙yij2 D jh˙zj�yij2 D jh˙xj˙yij2 D jh˙xj�yij2 D 1=2 ,

jh˙yj˙yij2 D 1 , jh˙yj�yij2 D 0 .

For the given choice of vectors j˙zi and j˙xi, Eqs. (1.10) and (1.12), these
conditions cannot be fulfilled for purely real components. However, considering also
complex numbers, we can easily prove that the following choice of vectors meets
the previously given requirements (mind the complex conjugation upon transition
from bra- to ket-vectors, see (1.5))

jCyi D 1p
2

�
1
i

�

, j�yi D 1p
2

�
1
�i

�

, (1.13a)

hCyj D 1p
2

�

1 �i
�

, h�yj D 1p
2

�

1 i
�

. (1.13b)

1.2.2 Operators

For the purposes of the following chapters, we now introduce the notion of operators.
We have already encountered them in connection with the tensor product of two
vectors. A general operator OA projects a vector j'i onto a vector j i,

OAj'i D j i .

By Hermitian conjugation, we obtain

h j D h'j OAC ,

where OAC is the Hermitian conjugate to OA. For a two-dimensional space (a physical

system with two possible states), the particular forms for j i D
�

a1

a2

�

, j'i D
�

b1

b2

�

and OA D
�

A11 A12

A21 A22

�

read

�
A11 A12

A21 A22

��
b1

b2

�

D
�

a1

a2

�

,
�

a�1 a�2
� D �b�1 b�2

�
�

AC11 AC12

AC21 AC22

�

.
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By writing the complex conjugate of the first equation and comparing it with the
other, we obtain

ACij D A�ji ,

that is, we apply transposition and complex conjugation to find the Hermitian
conjugated matrix OAC to the original matrix OA.

1.2.3 Time Evolution in Quantum Theory

So far, we only dealt with a description of a state when a system either enters or exits
the apparatus. However, time elapses between these two events, which thus begs the
question of the time evolution of the system.

We denote two physical (experimentally feasible) states of a system at time t0 by
the state vectors h'.t0/j and j .t0/i. At any moment later in time t, these systems
are described by the state vectors

j .t/iD OU.t, t0/j .t0/i and h'.t/jD

 OU.t, t0/j'.t0/i

�CDh'.t0/j OUC.t, t0/ ,

(1.14)

where OU.t, t0/ is called the evolution operator or the propagator. Provided the
dynamics of the system is invariant with respect to time displacement, the probability
of a system changing from the state h'.t0/j into the state j .t0/i at the time t0 must
necessarily equal the probability of the system changing from the state h'.t/j into
the state j .t/i at the time t,

jh'.t0/j .t0/ij2 D jh'.t/j .t/ij2 D jh'.t0/j OUC.t, t0/ OU.t, t0/j .t0/ij2 .

This implies the OU be unitary

OUC.t, t0/ OU.t, t0/ D 1 ,

or equivalently

OUC.t, t0/ D OU�1.t, t0/ D OU.t0, t/ . (1.15)

Furthermore, the evolution operator must meet the decomposition requirement

OU.t, t0/ D OU.t, t0/ OU.t0, t0/ .

That is, evolution from the initial time t0 to t must yield the same final state as starting
at t0 and reaching t0, and subsequently moving from t0 to t. Finally, we demand

OU.t, t/ D 1 .
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These requirements are met by the choice

OU.t, t0/ D exp.�i OH.t � t0// , (1.16)

where after substitution from Eq. (1.16) into Eq. (1.15) we obtain

OH D OHC ;

it follows thereof that OH is a Hermitian (also self-adjoint) operator. Matrix elements
of a Hermitian operator then evidently comply with

Hij D H�ji .

Mathematical properties and physical meaning of this Hermitian operator will be
discussed in more detail later in this section. Its significance follows from the so-
called time-dependent Schrödinger equation, named after Austrian physicist Erwin
Schrödinger. It describes the time evolution of a system

i
dj .t/i

dt
D i

d

dt
OU.t, t0/j .t0/i D OH OU.t, t0/j 0i D OHj .t/i , (1.17)

which we obtain by differentiation of Eq. (1.14) with respect to time.

1.2.4 Stationary States

To find the physical meaning of the operator OH, we focus on cases when its action
on a vector reduces to a mere multiplication by a number, i.e.,

j n.t/i D OU.t, t0/j n.t0/i D e�i OH.t�t0/j n.t0/i D e�iEn.t�t0/j n.t0/i . (1.18)

The reason is that these states j ni differ from the others in one crucial property: if
a system is in such a state at time t0, it stays so and we surely find it in this state at
any later time t:

jh n.t0/j n.t/ij2 D 1 . (1.19)

Such states are called stationary. As there are many of such states j ni and
corresponding numbers En for the operator OH, we label them with a subscript n.

It follows from Eqs. (1.18) and (1.19) that the numbers En describe a property
of a system which does not change with time, i.e., it is conserved throughout time.
From classical mechanics we know that such a quantity that is conserved due to the
system dynamics being invariant with respect to time displacement is energy. For
example, we have for a one-dimensional motion in a potential field
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m
d2x

dt2
D F D �dV

dx
.

Provided the dynamics is invariant with respect to time displacement, i.e., the
potential V is independent of time, V D V.x/, we may multiply the equation by
dx
dt , rearrange it and finally obtain the well-known law of conservation of energy

d

dt

 

m

2

�
dx

dt

�2

C V

!

D 0 .

Therefore, we interpret the numbers En as possible energy values of the system.
Inserting Eq. (1.18) into the Schrödinger equation (1.17) leads to

OHj ni D Enj ni , (1.20)

we thus see that En are the eigenvalues and j ni the eigenstates or eigenvectors of the
operator OH. We call this operator the Hamilton operator or simply the “Hamiltonian,”
and Eq. (1.20) is known as the time-independent Schrödinger equation, or as an
eigenproblem for the Hamilton operator.

We now return to the SG experiments to elucidate the time evolution and stationary
states in quantum theory. It follows from the discussion of the outcomes of the
experiment depicted in Fig. 1.8 that for a magnetic field oriented along the z axis,
the states j˙zi are stationary, hence eigenstates of the Hamiltonian. Equation (1.3),
E D �KBsz, shows that measuring energy corresponds to measuring the spin.
Accordingly, the Hamiltonian operator matches—but for a constant—the projection
operator of spin along the z axis. Thus the conserved property of the states j˙zi is the
value of the spin projection along the z axis, sz D ˙1=2. Therefore, the eigenvalues
of the Hamiltonian operator corresponding to the eigenvectors j˙zi equal, again
but for the constant .�KB/,˙1=2. Multiplying then the completeness relation

jCzihCzj C j�zih�zj D 1

by the operator OH=.�KB/ yields, see Eq. (1.10),

OH=.�KB/ D OSz D OSzjCzihCzj C OSzj�zih�zj

D 1

2
jCzihCzj � 1

2
j�zih�zj D 1

2

�
1 0
0 �1

�

. (1.21)

Equation OSz D 1
2 jCzihCzj � 1

2 j�zih�zj is called the spectral decomposition of the

operator OSz.
Analogously, we find that the states j˙xi (j˙yi) are stationary for a magnetic

field oriented along the x (y) axis and the conserved observable is the spin projection
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along the respective axis with the value ˙1=2. In these two cases, the operator OH
acquires the form, see Eqs. (1.12) and (1.13),

OH=.�KB/ D OSx D OSxjCxihCxj C OSxj�xih�xj

D 1

2
jCxihCxj � 1

2
j�xih�xj D 1

2

�
0 1
1 0

�

(1.22)

and

OH=.�KB/ D OSy D OSyjCyihCyj C OSyj�yih�yj

D 1

2
jCyihCyj � 1

2
j�yih�yj D 1

2

�
0 �i
i 0

�

. (1.23)

The spin operators introduced by these equations are usually written in the form

OS D 1

2
� , (1.24)

where the matrices � are called, after the Austrian physicists Wolfgang Pauli, Pauli
spin matrices and satisfy

�i�j D ıij C i"ijk�k , (1.25)

which may be proved best by direct substitution. It follows immediately from this
equation that the spin projection operators along each axis do not commute mutually

Œ OSi, OSj� D i"ijk
OSk , (1.26)

where commutator of any two operators is defined as

Œ OA, OB� D OA OB � OB OA .

This example illustrates a more general principle: observables that we cannot meas-
ure simultaneously correspond to non-commuting operators within the mathematical
scheme of quantum mechanics.

1.2.5 Properties of Hermitian Operators

All Hermitian operators comply with the following statements (and we will often
take advantage thereof throughout this book).
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1. Eigenvalues of a Hermitian operator are real.
Let jni be an eigenvector of a Hermitian operator OH corresponding to the

eigenvalue En:

OHjni D Enjni . (1.27)

After Hermitian conjugation of Eq. (1.27) we obtain

hnj OH D hnjE�n , (1.28)

which shows that hnj is likewise an eigenvector of the operator OH and corresponds
to the eigenvalue E�n . We now show that these two eigenvalues equal. Multiplying
Eq. (1.27) with a bra-vector hnj from left and Eq. (1.28) with a ket-vector jni from
right, and comparing these two equations with each other then yields

En D E�n , (1.29)

hence En 2 R. In contrast, eigenvalues of non-Hermitian operators may be both
complex and real. The following two operators are examples of non-Hermitian
operators with complex and real eigenvalues, respectively:

OA D
�

0 �1
1 0

�

, OB D
�

1 �i˛
�i˛ �1

�

,

where ˛ 2 .0, 1/.
2. Eigenvectors corresponding to two different eigenvalues are mutually orthogonal.

It follows from Eqs. (1.27), (1.28), and (1.29) that

OHjni D Enjni ,
hmj OH D Emhmj .

Multiplying the former with a bra-vector hmj and the latter with a ket-vector jni,
and taking their difference results in

0 D .En � Em/hmjni .

If En ¤ Em,

hmjni D 0 . (1.30)

Note (without proof herein) that in case of a degeneracy, i.e., there exist several
eigenvectors corresponding to the same eigenvalue, it is always possible to choose
the eigenvectors so that they are mutually orthogonal.
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3. The basis of eigenvectors jni is complete within the space upon which the
Hermitian operator OH acts. Meaning

NX

nD1

jnihnj D 1 , (1.31)

where N represents the number of degrees of freedom of the studied system,
i.e., the dimension of the abstract vector space upon which the operator OH
acts. We will not prove this statement herein in its most general sense. Note,
though, that aside from mathematical nuances related to the transition to infinite-
dimensional spaces, this statement is almost trivial. Every N-by-N-matrix has
N mutually orthogonal eigenvectors (as shown previously), therefore they must
form a complete basis in an N-dimensional space.

Despite the Hamiltonian being a Hermitian operator, it is often very convenient
to work with non-Hermitian operators. For instance, consider the eigenstates of the
spin projection along the z axis,

OSzj˙i D ˙1

2
j˙i , (1.32)

which we previously denoted as j˙zi and for the purpose of the following we will
henceforth denote merely as j˙i. Introducing the so-called ladder operators

OS˙ D OSx ˙ i OSy ,

and considering Eqs. (1.10), (1.22), and (1.23), we find for their acting on the states
j˙i that

OSCjCi D 0 , OSCj�i D jCi , (1.33)

OS�jCi D j�i , OS�j�i D 0 . (1.34)

These equations show that the operator OSC “raises” the spin projection along the z
axis and the operator OS� “lowers” the projection. This thus demonstrates that acting
of the non-Hermitian operators OS˙ on the eigenvectors of the operator OSz is simpler
than acting of the Hermitian operators OSx and OSy. Owing to the operator identity

OA � OB D 1

2
. OAC OB� C OA� OBC/C OAz

OBz , (1.35)

which holds for any two vector operators OA and OB, we may easily always replace
OAx and OAy with OAC and OA�.
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1.2.6 Ambiguity in the Determination of States

In the previous section, we derived the form of an operator knowing its eigenvectors
and eigenvalues, see Eqs. (1.21), (1.22) and (1.23). The usual case is the opposite,
though: we need to find the eigenvalues and eigenvectors of a given operator.
However, Eq. (1.27) does not define the eigenvectors unambiguously. For instance,
eigenvectors and eigenvalues of the operator OSz are given by the equation

OSzjSzi D SzjSzi .

Considering Eqs. (1.4) and (1.21), we obtain

�
1 0
0 �1

��
a
b

�

D 2Sz

�
a
b

�

, (1.36)

which is a system of two equations for two unknowns a and b with a parameter Sz.
Depending on the value of the parameter Sz, this system has either no solution at all
or infinitely many. Specifically for Sz D ˙1=2, the system (1.36) determines only
one of the two unknowns a and b. We obtain b D 0 and arbitrary a for Sz D 1=2, and
a D 0 and arbitrary b for Sz D �1=2. Similarly, writing equation for eigenvalues
and eigenvectors of the operator OSx yields

�
0 1
1 0

��
a
b

�

D 2Sx

�
a
b

�

. (1.37)

We obtain for Sx D 1=2 that

b D a (1.38)

and for Sx D �1=2

b D �a , (1.39)

however, a remains still completely undetermined. We may remove this freedom by
imposing a normalization requirement:

h j i D 1 ) jaj2 C jbj2 D 1 . (1.40)

Nevertheless, neither this condition defines the eigenvector unambiguously, as
Eqs. (1.36) and (1.40), or alternatively (1.37) and (1.40), still hold when we multiply
a and b with the same phase factor ei' . Furthermore, the probability of transition
from one state into another given as jh	j ij2 obviously maintains its validity upon
the substitution j i ! j iei'1 , h	j ! h	je�i'2 , where generally '1 ¤ '2.
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Thus we see that the herein developed formalism contains freedom in terms of
the total phase factor of the state vectors. The relative phase factors, on the other
hand, are well defined by the eigenproblem, see, e.g., Eqs. (1.38) and (1.39).

For a real Hamiltonian (which may not always be the case, see (1.23)), we usually
choose the total phase so that the corresponding eigenvectors are real as well.

S D 1=2

Consider an SG experiment where only electrons with their spin projection
+1/2 leave the apparatus. What is the probability of detecting the
projection of +1/2 at the second apparatus if it is rotated by an arbitrary
angle with respect to the first one? Hint: Using Eq. (1.35), find the
projection operator of spin along a general direction OSn D OS � n, where

n D .sin# cos', sin# sin', cos#/ .

Find a vector satisfying the equation OSnjCni D 1
2 jCni. The desired prob-

ability is then given as jhCzjCnij2.

Exercise 1: General Projection of the Spin S D 1=2

Note that this exercise is not listed here for the only purpose of practice. Vectors
j˙ni are called helicity spinors and play a crucial role at the frontier of modern
quantum field theory, see, e.g., [12, 13].

1.2.7 Rabi Method of Magnetic Moments

Isidor Rabi came with the brilliant idea of placing a coil with variable current at
the second magnet of the modified SG apparatus shown in Fig. 1.5. This current, as
it passes through the coil, creates a variable magnetic field in the xy plane which
is perpendicular to the permanent magnetic field. At a certain frequency ! of the
current, there is a very high probability of the electron spin flipping to the opposite
direction. In such a case, the third magnet further deflects the trajectory of the
electron, instead of unbending it back into the original direction, and thus the electron
disappears from the electron beam.

This method is applicable to any particle with spin 1/2 and a nonzero magnetic
moment, and allows for very accurate measurements of the constant K in Eq. (1.3). A
more detailed description of the Rabi method may be found in, e.g., [4, 5]. However,
a kind reader who comprehended everything so far is most certainly capable of
deriving the necessary theory for this experiment with the help of the following
notes.
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1. For the Hamiltonian operator in the Schrödinger equation (1.17), we substitute
from Eq. (1.3) where we substituted the vector S with a vector operator OS:

i
dj i

dt
D �K OS � Bj i . (1.41)

The vector of magnetic induction reads

B D .B1 cos!t, B1 sin!t, B0/ ,

where obviously B0 represents the intensity of the permanent (in time) field along
the z axis, and B1 stands for the intensity of the variable field.

2. We write the state vector j i in the basis of the eigenstates of the spin projection
along the z axis:

j .t/i D cC.t/jCi C c�.t/j�i . (1.42)

After its insertion into Eq. (1.41), we multiply this equation from left with hCj
and subsequently with h�j. We thus obtain a system of two differential equations
for two unknown functions c˙.t/:

iPcC D HCCcC C HC�c� , iPc� D H�CcC C H��c� , (1.43)

where H˙˙ and H˙� are the matrix elements of the Hamiltonian in the mentioned
basis

HCC D .�K/hCj OS � BjCi D .�KBz/hCj OSzjCi D �KB0=2 ,

HC� D .�K/hCj OS � Bj�i D .�KB�=2/hCj OSCj�i D �.KB1=2/e�i!t , etc.;

that is

OH D
�

HCC HC�
H�C H��

�

D �K

2

�
B0 B1e�i!t

B1eCi!t �B0

�

.

3. Assuming the system is in the state jCi at time t D 0, we have the initial condition
for Eq. (1.43):

cC.0/ D 1, c�.0/ D 0 . (1.44)

The probability of the system being in the state j�i at any later time t is given as

PC!� D jh�j .t/ij2 D jc�.t/j2 , (1.45)
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where we substituted from Eq. (1.42) and used the orthonormality equation,
Eq. (1.9).

This way, we transformed the problem into a mathematical one the reader shall
be able to solve on his own. All left to do is to solve Eq. (1.43) with the initial
conditions (1.44) and then insert the results into (1.45).

Find the time-dependence of the probability (1.45) and also its dependence
on the parameters K, B0, B1,!.

Exercise 2: Rabi Oscillations I

1.3 Systems with More Degrees of Freedom

In the previous sections, we developed mathematical formalism of quantum
mechanics: a system is described by a state vector from the abstract (Hilbert) space
of states, and the probability of its transition from one state into another is given
by the scalar product of the corresponding state vectors. Time evolution of the
system is determined by the Hamiltonian operator OH via the Schrödinger equation.
Eigenvalues of this operator correspond to the possible energy values of the system
that we can measure.7

It clearly follows from this brief summary that knowing the Hamiltonian of
the system allows for—at least in principle—prediction of anything that can be
discovered about the system. In case of the Stern-Gerlach experiments, we obtained
the Hamiltonian from analysis of the experiments. However, this method is generally
inapplicable to systems with an infinite number of degrees of freedom. Moreover,
shall quantum mechanics predict experimental results, such as what energy values
we will measure, we must know the Hamiltonian “in advance.” In the following
sections, we show how to find the Hamiltonian when the behavior of the system is
well known within classical physics.

1.3.1 Expected Values of Operators and Their Time Evolution

As we move from the macroscopic towards the microscopic world, i.e., to objects
of the size 10�10 m or less, description within the framework of classical mechanics

7To be more precise, the differences of the eigenvalues of the operator.
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fails. Quantum mechanics, which in contrast provides a correct description on this
scale, should nevertheless contain classical mechanics somehow. To elucidate the
connection, it is advantageous to introduce the notion of expectation value.

The expectation value of an observable described by the operator OA upon repeated
measurements of the state j i is given by the expression

h OAi D
NX

jD1

ajp.aj/ D
NX

jD1

h jaj
˛

aj
˝

aj

ˇ
ˇ i D h j OAj i . (1.46)

We used the definition of the mean value in the first equality, and the probability of the
system’s transition from the state h j into the state

ˇ
ˇaj
˛

, given as p.aj/ D jh jaj
˛j2, in

the second equality. Since Eq. (1.8) holds, we obtain p.aj/ D h jaj
˛˝

aj

ˇ
ˇ i. Finally,

the third step involved spectral decomposition of the operator OA

OA D
NX

jD1

aj

ˇ
ˇaj
˛˝

aj

ˇ
ˇ ,

where N represents the number of degrees of freedom of the studied system.
Specifically, if inner degrees of freedom of a particle with the spin 1/2 are of
interest, N D 2.

We now turn our attention to the time evolution of the expectation value h OAi, i.e.,
we examine the dependence

h OA.t/i D h .t/j OAj .t/i .

It follows from Eq. (1.14) that

h OA.t/i D h j OUC.t, t0/ OA OU.t, t0/j i .

We may regard this equation also in another way: time evolution of the expectation
value of the observable A is given by the expectation value of a time-dependent
operator

OA.t/ D OUC.t, t0/ OA OU.t, t0/ (1.47)

in a time-independent state j i.
We now adopt the latter approach, called the Heisenberg picture or also the

Heisenberg representation, after German physicist Werner Heisenberg, and inspect
the time evolution of the operator (1.47). Using the Schrödinger equation (1.16) and
definition (1.47), we obtain

d OA.t/
dt
D d OUC.t, t0/

dt
OA OU.t, t0/C OUC.t, t0/ OAd OU.t, t0/

dt
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D �i OUC.t, t0/Œ OA, OH� OU.t, t0/ D �iŒ OA.t/, OH.t/� , (1.48)

where we inserted 1 D OU.t, t0/ OUC.t, t0/ between OA and OH in the third equality. The
other approach, called the Schrödinger representation, places the time evolution into
the state vectors and regards operators representing observables as time-independent.
In most cases, we will employ this latter picture.

We now use Eq. (1.48) to describe a motion of a particle with the spin 1/2 in a
magnetic field, OA.t/ D OSi.t/, OH.t/ D �K OSj.t/Bj,

d OSi.t/

dt
D �iKBjŒ OSi.t/, OSj.t/� D �K"ijkBj

OSk.t/ ,

where we used Eq. (1.26) in the second equality. Rewriting the last equation in a
vector notation yields

d OS.t/
dt
D �KB � OS.t/ ,

which is the classical equation for the motion of a magnetic dipole in a magnetic
field. Its classical derivation can be found in, e.g., [6].

1.3.2 Canonical Quantization

In classical mechanics, the Hamiltonian function is a function of canonical
coordinates and momenta of particles. However, there are projections of the
position and momentum vectors onto the coordinate axes that we cannot measure
simultaneously.8 This situation quite resembles that of the spin projections onto
coordinate axes, and we have seen that within the mathematical formalism of
quantum mechanics, this fact is represented by the noncommutativity of the
corresponding operators. Furthermore, we have seen an analogy between the
classical and quantum-mechanical equations in Heisenberg representation for the
motion of a particle with the spin 1/2. Therefore, it is reasonable to demand that
equations determining the time evolution of the coordinates and momenta operators
have the same forms as the corresponding equations in classical theory. The exact

8We do not want to extensively discuss this matter here, as everyone has surely encountered it ample
times. Nevertheless we mention Heisenberg’s intuitive argument. We know from the Compton
experiment (see, e.g., [1]) that a photon with the wavelength 
 has the momentum p D 2�=
.
The more precisely we wish to locate a particle, the shorter the wavelength of the photon must be,
hence higher momenta. Thus reducing the uncertainty in the particle’s position results in higher
uncertainty of its momentum.
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forms of the commutation relations between the coordinates and momenta operators
then follow thereof.

We now consider a particle moving in a static potential given by the function
V.r/. Its classical Hamiltonian reads

H D p � p
2m
C V.r/ , (1.49)

and we will look for a quantum Hamiltonian of the form

OH D Op � Op
2m
C V.Or/ . (1.50)

Substituting OA in (1.48) for the position or momentum operator, respectively, yields

dOxi.t/

dt
D �i OUC.t, t0/ŒOxi, OH� OU.t, t0/ ,

d Opi.t/

dt
D �i OUC.t, t0/Œ Opi, OH� OU.t, t0/ .

(1.51)
The commutator of Oxi and OH reads

ŒOxi, OH� D 1

2m
ŒOxi, Op2�C ŒOxi, V.Ox/� D 1

2m

�

ŒOxi, Opj� Opj C OpjŒOxi, Opj�
�C 0 , (1.52)

since Oxi commutes with any function of itself.9 We now demand that Eq. (1.51)
acquires the same form as their analogs in classical mechanics. The first equation
then reads

dOxi.t/

dt
D Opi.t/

m
, (1.53)

hence

ŒOxi, Opj� D iıij . (1.54)

Similarly, the commutator of Opi and OH is

Œ Opi, OH� D 1

2m
Œ Opi, Op2�C Œ Opi, V.Or/� D Œ Opi, V.Or/� .

9The reason is, we can expand any “reasonable” function of Ox into a series in Ox. That Ox commutes
with any of its powers is obvious.
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Furthermore, as we will prove later, see Eq. (1.84),10

Œ Opi, V.Or/� D �i
@V.r/
@xi

ˇ
ˇ
ˇ
ˇ
rDOr

, (1.55)

hence

d Opi.t/

dt
D � @V.r/

@xi

ˇ
ˇ
ˇ
ˇ
rDOr.t/

. (1.56)

Equations (1.53) and (1.56) are the quantum-mechanical analogs of the Newton
equations of classical theory.

We can readily generalize our previous steps, and thus obtain a universal process
of transformation from classical to quantum theory called the canonical quantization.
First, we identify the Hamiltonian and canonically conjugated coordinates and
momenta, i.e., quantities satisfying the Hamilton equations

Pxj D @H

@pj
, Ppj D �@H

@xj
.

For example, we find for the Hamiltonian (1.49) that Pxj D @H
@pj
D pj

m and Ppj D � @H
@xj
D

� @V
@xj

, which is obviously equivalent to the Newton equation m d2xj

dt2
D � @V

@xj
. Next, we

postulate the so-called canonical commutation relations (1.54) for the canonically
conjugated coordinates and momenta, and substitute the classical quantities for
corresponding operators. This Hamiltonian, such as (1.50), is then the correct one
within quantum mechanics.

We thus see that dynamics is within the quantum and classical theory very
much alike. Kinematics, i.e., representation of states and of their changes, on the
other hand, acquires an absolutely new form. However, if the distances between
individual energy levels are small enough, see the discussion in the Sect. 6.2.7,
quantum mechanics blends with the classical. Note, though, that the classical limit
of quantum theory is not entirely trivial, see, e.g., [8, 9, 11].

1.3.3 Harmonic Oscillator

We now illustrate this general method on one of the most fundamental systems—on
the harmonic oscillator. Its importance stems from the fact that it belongs to the

10We briefly show that this relation holds for one-dimensional motion. We expand V.x/ in a Taylor
series V.x/ D V0 C V1x C V2x2 C : : : and using Eq. (1.54) we obtain ŒOp, V.Ox/� D V1ŒOp, Ox� C
V2ŒOp, Ox2�C : : : D �i.V1 C 2V2 OxC : : :/ D �i dV.x/

dx

ˇ
ˇ
ˇ
xDOx

.
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few physically interesting problems we are able to solve exactly, and that the free
electromagnetic field behaves as a set of mutually independent harmonic oscillators,
as we will see later in Sect. 6.1.6.

We can expand any potential energy V.Ox/ of a one-dimensional one-particle
Hamiltonian into a series in Ox

V.Ox/� V.x0/ D @V

@x

ˇ
ˇ
ˇ
ˇ
x0

.Ox� x0/C 1

2!

@2V

@x2

ˇ
ˇ
ˇ
ˇ
x0

.Ox� x0/
2C 1

3!

@3V

@x3

ˇ
ˇ
ˇ
ˇ
x0

.Ox� x0/
3C : : :
(1.57)

For a minimum of the potential at x0, the first derivative equals zero. Furthermore, we
neglect third and higher derivatives, i.e., keep only the second, place the minimum of
the potential to x0 D 0, and take the energy from the value V.x0/. Finally, following
the procedure of canonical quantization, we obtain the Hamiltonian of the harmonic
oscillator

OH D Op
2

2m
C 1

2
m!2 Ox2 , where Œ Op, Ox� D �i .

Had we included other terms in the expansion (1.57), the behavior of the system
would be much more complex and usually analytically insolvable. We show
how to deal with such cases in Chap. 2. It is generally desirable to reduce the
number of constants, therefore we will henceforth use dimensionless coordinates
and momentum. We accomplish that by the following scaling transformation11

Ox! 
Ox , Op! Op



,

which we insert into the Schrödinger equation

� Op2

2m
2
C 1

2
m!2
2 Ox2

	

j i D E j i ,

multiply with m
2 and finally set m2!2
4 D 1; we thus obtain

� Op2

2
C Ox

2

2

	

j i D m
2E j i D E

!
j i D Ej i , (1.58)

where E is a dimensionless energy.

11Upon this particular transformation, the canonical commutation relation ŒOp, Ox� D �i maintains
its form.
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1.3.4 Abstract Solution

Inspired by the formula a2 C b2 D .aC ib/.a � ib/, it seems reasonable to attempt
to decompose the operator on the lhs of Eq. (1.58) to the product. We therefore
introduce non-Hermitian operators

Oa D 1p
2
.OxC i Op/ , OaC D 1p

2
.Ox � i Op/ .

We can easily prove that the Hamiltonian OH D Op2

2 C Ox
2

2 acquires quite a simple form

OH D OaC OaC 1

2
(1.59)

when expressed in terms of the operators Oa and OaC. These two operators do not
mutually commute, precisely speaking their commutator equals one,

Œ Oa, OaC� D 1

2
ŒOxC i Op, Ox � i Op� D � i

2
ŒOx, Op�C i

2
Œ Op, Ox� D 1 .

An important property of the operators Oa and OaC follows from the last two equations:
together with the Hamiltonian OH, they form a algebra of three operators which is
closed with respect to the commutation operation,

Œ OH, Oa� D Œ OaC Oa, Oa� D Œ OaC, Oa� Oa D �Oa , (1.60)

Œ OH, OaC� D Œ OaC Oa, OaC� D OaCŒ Oa, OaC� D OaC . (1.61)

As we will shortly see, this property allows us to determine the spectrum of
eigenvalues of the Hamiltonian. Note also that we could have obtained the second
equation from the first one via Hermitian conjugation. We now write the equation
for eigenvalues and eigenvectors of the Hamiltonian

OHjni D Enjni , (1.62)

where n labels the individual eigenvalues, and n D 0 stands for the ground state,
n D 1 the first excited state, etc. Equations (1.60) and (1.61) are operator equalities,
meaning they hold whatever vector we act on with both sides of these equations. We
thus act with them on the eigenvectors of the Hamiltonian:

Œ OH, Oa�jni D �Oajni ) OH � Oajni� D Oa

 OHjni � jni

�

D .En � 1/
� Oajni� , (1.63)

Œ OH, OaC�jni D OaCjni ) OH � OaCjni� D OaC

 OHjni C jni

�

D .En C 1/
� OaCjni� ,

(1.64)
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where we expanded the commutator, used Eq. (1.62), and also made use of the fact
that the number En commutes with any operator, hence also with the operators Oa and
OaC.

We see that the state Oajni is an eigenstate of the Hamiltonian with the energy
En�1, and so is the state OaCjni an eigenstate of the same Hamiltonian with the energy
En C 1, compare Eq. (1.62) with Eqs. (1.63) and (1.64). Action of the operator Oa on
an eigenstate of the Hamiltonian thus yields an eigenstate with the corresponding
eigenvalue smaller by 1, and similarly the action of the operator OaC results in an
eigenstate with the eigenvalue greater by 1. However, a ground state of the system
must exist,12 so must thus be a state for which

Oaj0i D 0 .

This equation holds also when acting with the operator OaC,

OaC Oaj0i D
�

OH � 1

2

�

j0i D
�

E0 � 1

2

�

j0i D 0 ,

hence E0 D 1=2. Acting with the operator OaC on the state j0i, we obtain a state with
the eigenvalue E1 D 1=2 C 1 D 3=2, etc. The spectrum of the eigenvalues of the
Hamiltonian thus reads

En D nC 1=2 . (1.65)

Note that there are no other eigenvalues with corresponding eigenvectors of
the Hamiltonian, i.e., the basis fjnig is complete. Were there another eigenvector
between the n-th and .n C 1/-th state with the corresponding eigenvalue E0, we
could repetitively apply the operator Oa on this eigenvector and we would obtain
successively eigenvectors with eigenvalues E0 � 1, E0 � 2, etc. Upon sufficient
number of repetitions we would finally reach an eigenstate corresponding to the
eigenvalue smaller than 1=2, which contradicts the requirement 1=2 be the ground
state energy.

It follows from Eq. (1.65) that En˙1 D En˙1. Equation (1.62) for the eigenvalue
corresponding to the state jn˙ 1i reads then

OHjn˙ 1i D .En ˙ 1/jn˙ 1i .

12From a purely mathematical point of view, this requirement is excessive. The reason is that
the Hamiltonian has a below bounded spectrum since the operator OaC Oa is positive-definite as
h jOaC Oaj i D h�j�i � 0, where j�i D Oaj i and the inequality follows from (1.7). As physicists,
we engage only with Hamiltonians with a below bounded spectrum; see the interpretation of the
Dirac equation in Chap. 7.
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Comparison of this equation with Eqs. (1.63) and (1.64) leads to

Oajni D ˛�.n/jn � 1i , OaCjni D ˛C.n/jnC 1i , (1.66)

where ˛˙.n/ are constants we can usually choose to be real owing to the freedom in
the total phase of the eigenvectors. We now determine their values, which will later
prove to be indeed useful. We find the Hermitian conjugate of the first equation and
multiply it from right by the vector jn � 1i

hnj OaCjn � 1i D ˛�.n/hn � 1jn � 1i .

In the second of Eq. (1.66), we substitute n for n � 1 and multiply both sides from
left by the vector hnj,

hnj OaCjn � 1i D ˛C.n � 1/hnjni .

Under the normalization requirement for the eigenvectors, the constants must satisfy

˛C.n � 1/ D ˛�.n/ .

Furthermore, it must hold, see Eq. (1.66),

OaC Oajni D OaC˛�.n/jn � 1i D ˛C.n � 1/˛�.n/jni ,

and also, see Eq. (1.59),

OaC Oajni D
�

OH � 1

2

�

jni D njni . (1.67)

From the last three equations, we finally obtain

˛�.n/ D
p

n , ˛C.n/ D
p

nC 1 . (1.68)

1.3.5 Matrix Representation

We can easily give a specific form to the above-derived abstract solution by choosing
a particular representation of the vectors jni. For instance,
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j0i D

0

B
B
B
B
B
@

1
0
0
0
...

1

C
C
C
C
C
A

, j1i D

0

B
B
B
B
B
@

0
1
0
0
...

1

C
C
C
C
C
A

, j2i D

0

B
B
B
B
B
@

0
0
1
0
...

1

C
C
C
C
C
A

, : : :

By Hermitian conjugation we obtain

h0j D �1 0 0 0 : : :
�

,

h1j D �0 1 0 0 : : :
�

,

h2j D �0 0 1 0 : : :
�

,

: : :

Acting on the completeness relation

1X

nD0

jnihnj D 1 (1.69)

then leads to the matrix expression of the operators OH, Oa, and OaC:

OH D OH1 D
1X

nD0

Enjnihnj D diag

�
1

2
,

3

2
,

5

2
, : : :

�

,

Oa D Oa1 D
1X

nD0

˛�.n/jn � 1ihnj D

0

B
B
B
B
B
B
@

0 1 0 0 : : :

0 0
p

2 0 : : :

0 0 0
p

3 : : :

0 0 0 0
. . .

...
...

...
. . .

. . .

1

C
C
C
C
C
C
A

,

OaC D OaC1 D
1X

nD0

˛C.n/jnC 1ihnj D

0

B
B
B
B
B
B
@

0 0 0 0 : : :

1 0 0 0 : : :

0
p

2 0 0 : : :

0 0
p

3 0
. . .

...
...

...
. . .

. . .

1

C
C
C
C
C
C
A

.

We see that the Hamiltonian, as any operator in the basis of its eigenvectors, is
diagonal with eigenvalues placed along this diagonal. We could easily verify that in
the matrix representation
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Ox D 1p
2
. OaC OaC/ (1.70)

and also

Op D 1

i
p

2
. Oa � OaC/ (1.71)

are—unlike Oa and OaC—Hermitian operators and that the relation ŒOx, Op� D i holds.

1.3.6 Dirac ı-Function

In the next section, we will need to operate with the Dirac ı-function. From a
physical point of view, it is the best to regard the ı-function as a limit of functions,
for instance:

ı.x/ D lim
"!0C

1

�

"

x2 C "2
, (1.72)

that is

ı.x ¤ 0/ D 0 , ı.x D 0/ D1 .

From Eq. (1.72), we easily obtain the integral of the ı-function along the entire line13

Z 1

�1
ı.x/ dx D 1

�
lim
"!0C

Z 1

�1
"

x2 C "2
dx D lim

"!0C 1 D 1 , (1.73)

and also with the Fourier transform

ı.x/ D lim
"!0C

1

�
= 1

x � i"
D lim
"!0C

1

2i�

�
1

x � i"
� 1

xC i"

	

(1.74)

D lim
"!0C

1

2�

�Z 1

0
e�ik.x�i"/ dkC

Z 1

0
eik.xCi"/ dk

	

D lim
"!0C

1

2�

Z 1

�1
e�ikx�jkj" dk .

The integral of a product of the ı-function and an “ordinary” function complies
with

Z 1

�1
f .x/ı.x � a/ dx D f .a/ . (1.75)

13When solving such problems, we start with the definition of the ı-function (1.72) and leave the
limit "! 0C to the very end of our calculation.
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We can easily obtain this equation from the Taylor expansion of the function f .x/

f .x/ D f .a/C .x � a/f 0.a/C 1

2!
.x � a/2f 00.a/C : : : ,

from the normalization condition (1.73) and from the equation

Z

xnı.x/dx D 0 , n > 0 ,

that one can easily prove. We calculate the derivations of the ı-function by employing
the integration by parts

Z 1

�1
f .x/ı0.x � a/ dx D �f 0.a/ . (1.76)

1.3.7 Coordinate Representation

Were we able to solve all quantum-mechanical problems exactly, we could now
easily move from the harmonic oscillator to another problem. However, that is not
the case, and we will thus discuss additional specific realizations of the abstract
solution. Among the infinite amount of possible bases of the Hilbert space of states,
there is one that stands out from the others—the basis of the eigenstates of the
position operator,

Oxjxi D xjxi . (1.77)

As there exist uncountably many places where a particle may be located, the spectrum
of the position operator is uncountable. The completeness and orthonormality
relations then acquire the form

Z 1

�1
jxihxj dx D 1 , (1.78)

hxjx0˛ D ı.x � x0/ . (1.79)

The scalar product of two general states and the action of an operator OA on a state
are then given as

h 1j 2i D h 1j1j 2i D h 1j
�Z 1

�1
jxihxj dx

�

j 2i D
Z 1

�1
h 1jxihxj 2i dx ,

(1.80)



1.3 Systems with More Degrees of Freedom 35

hxj OAj i D
Z 1

�1
hxj OAˇˇx0˛˝x0ˇˇ i dx0 . (1.81)

The projection of a general state j i onto the coordinate basis hxj i corresponds
to a vector with uncountably many components; we call such vectors functions. For
historical reasons, we refer to the projection hxj i D  .x/ as a wave function.
The square of the absolute value of this function gives the probability density of
the particle to be found at the point x in the state j i, as follows from the general
physical interpretation of scalar products.

Once we know the matrix elements of the coordinate and momentum operators
between the vectors of coordinate basis, we can easily express any operator in this
basis. The coordinate operator acquires a diagonal form in its own basis, i.e., we find
from Eq. (1.77)

hxjOxj i D xhxj i D x .x/ . (1.82)

We obtain the matrix elements of the momentum operator from the canonical
commutation relation

Œ Op, Ox� D �i

by multiplying it with the coordinate eigenstates from both left and right

hxjŒ Op, Ox�ˇˇx0˛ D �ihxjx0˛ .

We now expand the commutator on the lhs and use Eq. (1.77)

hxjŒ Op, Ox�ˇˇx0˛ D hxj Opˇˇx0˛.x0 � x/ ,

and rearrange the rhs using Eq. (1.79). Finally, we multiply both sides of the equation
with hx0j i and integrate with respect to x0,

Z 1

�1
dx0hxj Opˇˇx0˛.x0 � x/ .x0/ D �i .x/ ,

where we also used Eq. (1.75) on the rhs. The last equation holds if, see Eq. (1.76),

hxj Opˇˇx0˛ D i
d

dx0
ı.x0 � x/ ,

hence

hxj Opj i D
Z 1

�1
dx0hxj Opˇˇx0˛˝x0ˇˇ i D �i

d

dx
 .x/ . (1.83)
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The commutator of Op and any function f .Ox/ satisfies

hxjŒ Op, f .Ox/�j i D
1Z

�1
dx0 hxjŒ Op, f .Ox/�ˇˇx0˛ .x0/ D

1Z

�1
dx0 .f .x0/ � f .x//hxj Opˇˇx0˛ .x0/

D �i
d

dx
.f .x/ .x//C if .x/

d .x/

dx
D�i

df .x/

dx
 .x/D�ihxjdf .x/

dx
j i .

This must hold for any state j i and any coordinate state hxj, therefore

Œ Op, f .Ox/� D �i
df .x/

dx

ˇ
ˇ
ˇ
ˇ
xDOx

, (1.84)

or equivalently

�
d

dx
, f .x/

	

D df .x/

dx
. (1.85)

Generalization for three dimensions then leads to Eq. (1.55).
Henceforth, we will often employ the following common notation: we replace

the  .x/ with merely  , and Eqs. (1.82) and (1.83) with

Ox .x/ D x .x/

and

Op .x/ D �i
d

dx
 .x/ .

In other words, we will not distinguish between the abstract and coordinate
representation of vectors and operators.

In the case of the harmonic oscillator, the Schrödinger equation (1.58) acquires
the form of a second-order differential equation in the coordinate representation

�

�1

2

d2

dx2
C 1

2
x2

�

 .x/ D E .x/. (1.86)

However, we do not have to directly solve this equation in order to determine the
forms of the wave functions. We rather project Eq. (1.66) onto the coordinate basis.
Introducing the notation hxjni D  n.x/ and using these equations for n D 0, n D 1,
etc. successively leads to

hxj Oaj0i D 1p
2
hxjOxC i Opj0i D 0) 1p

2

�

xC d

dx

�

 0.x/ D 0
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)  0.x/ D Ae�x2=2 , (1.87)

hxj OaCj0i D 1p
2
hxjOx � i Opj0i D hxj1i

)  1.x/ D 1p
2

�

x � d

dx

�

 0.x/ D A
p

2xe�x2=2 , (1.88)

hxj OaCj1i D 1p
2
hxjOx � i Opj1i D p2hxj2i

)  2.x/ D 1

2

�

x � d

dx

�

 1.x/ D Ap
2
.2x2 � 1/e�x2=2 , (1.89)

etc. We determine the constant A from the normalization requirement

h0j0i D
Z 1

�1
dx h0jxihxj0i D

Z 1

�1
dx j 0.x/j2 D

D
Z 1

�1
dx e�x2

A2 D 1) A D ��1=4 .

All the other functions then automatically comply with the correct normalization, as
one can verify. The kind reader easily verifies that the functions  0.x/,  1.x/, etc.
indeed obey the Schrödinger equation (1.86).

The set of the functions f n.x/g is orthonormal, see Eq. (1.30),

hmjni D
Z 1

�1
hmjxihxjni dx D

Z 1

�1
 m.x/

� n.x/ dx D ımn , (1.90)

and complete, see Eq. (1.69),

1X

nD0

hxjnihnjx0˛ D
1X

nD0

 n.x/ n.x
0/� D hxjx0˛ D ı.x � x0/ .

1.3.8 Momentum Representation

In many cases, such as we will see later in Sects. 7.3.2, 7.6, 7.7, and 7.8, it is
advantageous to operate within the momentum representation. In this representation,
the basis of the Hilbert space is given by the eigenvectors of the momentum operator,

Opjpi D pjpi . (1.91)
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The completeness and orthonormality relations for this basis read

Z 1

�1
jpihpj dp D 1 , (1.92)

hpjp0˛ D ı.p � p0/ . (1.93)

Starting from the canonical commutation relations, we have derived the action of
the operators Ox and Op on any state j i in the coordinate representation, namely
Eqs. (1.82) and (1.83). In an analogous way, we can easily find that these two
operators Ox and Op act on any state j i in the momentum representation as:

hpj Opj i D p .p/ , hpjOxj i D i
d

dp
 .p/ ,

where  .p/ D hpj i.
At this point we could ask for the connection between the wave functions in each

of the representations. Using the unity decomposition, Eqs. (1.78) and (1.92), we
obtain

hxj i D
Z 1

�1
hxjpihpj i dp , hpj i D

Z 1

�1
hpjxihxj i dx . (1.94)

We obviously need to find the scalar product of the eigenstates hxjpi. Therefore, we
project Eq. (1.91) onto the coordinate eigenstates

hxj Opjpi D phxjpi ) �i
dhxjpi

dx
D phxjpi ,

where we used Eq. (1.83). Inserting the unity decomposition (1.78) into the
orthonormality relation (1.93) yields

Z 1

�1
hpjxihxjp0˛ dx D ı.p � p0/.

The solution to the last two equations then reads

hxjpi D 1p
2�

eipx , (1.95)

where we used the relation for the Fourier transform of the ı-function, Eq. (1.74).
We now return again to the harmonic oscillator, this time to illustrate the method

of calculation of the ground state wave function in the momentum representation.
We can start from Eqs. (1.94) and (1.95) and readily find that

hpj0i D 1p
2�

Z 1

�1
e�ipxhxj0i dx D Ae�p2=2 ,
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where we considered the formula for the integral from the Gaussian function

Z 1

�1
e�au2�budu D eb2=.4a/

r
�

a
. (1.96)

and where hxj0i is given by Eq. (1.87). Alternatively, we can obtain the ground state
wave function directly by projecting Eq. (1.66) for n D 0 onto the momentum basis:

hpj Oaj0i D 1p
2
hpjOxC i Opj0i D 0)

�
d

dp
C p

�

 0.p/ D 0)  0.p/ D Ae�p2=2 .

(1.97)

Notice that Eq. (1.95) describes a plane wave. According to quantum mechanics
then, a particle with the momentum p is assigned wavelength 
 D 2�=p, usually
called the de Broglie wavelength. Generally speaking, we describe particles in terms
of quantum mechanics when the de Broglie wavelength is of large values, i.e., the
particle is light in mass and moves slowly, hence behaves like a wave. On the other
hand, classical approach suffices—at least roughly—when the particle is heavy or
moves quickly, i.e., the de Broglie wavelength acquires small values, and the particle
behaves like a tiny ball.

Finally, notice also that it follows from Eqs. (1.94) and (1.95) that the wave
function in the momentum representation is a Fourier transform of the wave function
in the coordinate representation,

 .p/ D 1p
2�

Z 1

�1
 .x/e�ipxdx , (1.98)

which will come in hand in the next section. By multiplying the coordinate x by a
constant a and employing the last equation, we obtain for the wave function in the
momentum representation

1p
2�

Z 1

�1
a1=2 .ax/e�ipxdx D 1p

2�a

Z 1

�1
 .x/e�i p

a xdx D 1

a1=2
 

p

a

�

,

(1.99)

where  .p/ is given by the previous Eq. (1.98). The factor a1=2 ensures correct
normalization of the wave function

Z 1

�1
dxja1=2 .ax/j2 D

Z 1

�1
dxj .x/j2 D 1 .

1.3.9 Gaussian Packet and the Uncertainty Principle

There are several quantities which characterize the statistical distribution of
measured values of an observable A: in particular, the expectation value h OAi we
have already encountered, see Eq. (1.46), and the square deviation
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D

.� OA/2
E

D
�
 OA � h OAi

�2



D
D OA2 � 2h OAi OAC h OAi2

E

D h OA2i � h OAi2 ,

where in the last step we used the fact that the expectation value is a number,
thus we can take it out from the scalar product. A question may arise: why to use
square deviation instead of its linear analog h OA � h OAii? The reason is, the latter
always equals zero. Square deviation, on the other hand, indicates the “spread” of
the expectation value, meaning to what extent the result of measuring the observable
A will differ from the expectation value h OAi. In other words, the square deviation
estimates the uncertainty of measuring the expectation value. We now consider the
Gaussian packet

 .x/ D
r

ap
�

e�.ax/2=2 , (1.100)

which differs from the ground-state wave function (1.87) merely in the substitution
x! xa. One can easily show that for this case, see Eqs. (1.46), (1.77), and (1.78),

hOxi D h jOxj i D
Z 1

�1
h jxihxjOxj i dx D

Z 1

�1
xj .x/j2 dx D 0 , (1.101a)

hOx2i D
Z 1

�1
x2j .x/j2 dx D 1

2a2
. (1.101b)

Using Eqs. (1.97), (1.99), and (1.100), one can also find that

 .p/ D
s

1

a
p
�

e�.p=a/2=2 .

It follows then from Eqs. (1.46), (1.91), and (1.92) that

h Opi D
Z 1

�1
pj .p/j2 dp D 0 , h Op2i D

Z 1

�1
p2j .p/j2 dp D a2

2
. (1.102)

These results illustrate the famous14 Heisenberg uncertainty principle. The uncer-
tainty in the expectation value of the coordinate or momentum depends on the
magnitude of a, but we can reduce each of them to any size. However, as we reduce
one of them, the other necessarily grows, and the product of these two uncertainties
remains constant

˝

.�Ox/2˛ ˝.� Op/2˛ D 1

4
.

14In this case, the glory indeed stretches well beyond the boundaries of the physicists’ world.
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In fact, we observe such behavior only for the ideal case. In general we find that

˝

.�Ox/2˛ ˝.� Op/2˛ � 1

4
.

Instead of a general proof which does not bring much of understanding anyway,
we rather illustrate this fact on an example. Envisage a particle (for instance an
electron) in a magnetic trap. In this trap, the particle is well described by the
wavefunction (1.100). We suppose that we switch off the magnetic field at the time
t D 0, i.e., the particle henceforth moves absolutely free. What is the time evolution
of its expectation values? Since the particle is free and we may choose suitable units
so that its mass is unity, the Hamiltonian reads OH D 1

2
Op2 and obviously we have

Œ Op, OH� D 0. It follows then from Eq. (1.56) that

d Op.t/
dt
D 0) Op.t/ D Op , Œ Op.t/�2 D Op2

and from Eq. (1.53) that

dOx.t/
dt
D Op.t/) Ox.t/ D OptC Ox , ŒOx.t/�2 D Op2t2 C . OpOxC Ox Op/tC Ox2 .

We thus find for the time evolution of the expectation values

˝ Op.t/˛ D ˝ Op˛ D 0 ,
˝

Œ Op.t/�2˛ D ˝ Op2
˛ D a2

2
,

˝Ox.t/˛ D ˝ OptC Ox˛ D 0 ,
˝

ŒOx.t/�2˛ D ˝ Op2t2 C . OpOxC Ox Op/tC Ox2
˛ D t2a2

2
C 1

2a2
,

where we used Eqs. (1.101) and (1.102). One can easily prove that we have
˝Ox OpC OpOx˛ D 0 for the state (1.100). Finally, we obtain for the product of the
uncertainties of the coordinate and momentum

˝

.�Ox.t//2˛ ˝.� Op.t//2˛ D 1

4
.1C a4t2/ .

We thus see there is only one sole condition for the product of the uncertainties to
grow: the particle stays free and time elapses.

This uncertainty principle played a crucial role in the understanding of quantum
mechanics. It allows us to comprehend why and how the classical physics must
necessarily fail when it comes to the microscopic scales. Moreover, it allows us to
calculate the failure.

Note though, that not everything is uncertain in quantum mechanics. For example,
quantum mechanics predicts exact values for energies of stationary states. The
probabilistic approach is a necessity only when studying transitions between these
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states. Nevertheless, even this uncertainty is often smaller than the uncertainty in the
actual realization of experiments, such as the uncertainty in the initial conditions,
and thus is not crucial.

1.4 Final Notes

Note that we did not discuss the “question of measuring” at all. This “problem,”
roughly speaking, comprises the question why we describe the measuring apparatus
in terms of classical mechanics, while the measured system with quantum mechanics,
and where the line between these two approaches lies. This question goes hand in
hand with the fact that we do not observe quantum-mechanical interference in our
everyday lives. Recently, physicists successfully performed remarkable experiments
that illustrate the disruption of the quantum-mechanical interference resulting from
an “uncontrollable” interaction between meso- and macroscopic systems with their
surroundings. One may find a more detailed description and elucidation of these
experiments in [2], a motivation in [15], and necessary theory in [3]. These
experiments furthermore show that under special circumstances when we manage
to control this “uncontrollable” interaction, we can actually observe the quantum-
mechanical interference for mesoscopic systems. However, as our control of the
interaction gradually weakens, the interference signal likewise fades away. As long
as the studied system requires a quantum-mechanical description, no difficulties but
one arise—the system cannot serve as a measuring system. This means, if we are
to acquire experimental data, the measuring system must be of a “sufficient size”
in order to describe it within the framework of classical mechanics. An interesting
if very unorthodox view of the “question of measuring” may be found in [10].
Although the authors do not share this view, it is definitely worth learning about it.

References

1. D.I. Blokhintsev, Quantum Mechanics (Reidel, Dordrecht, 1964)
2. M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996); S. Haroche, Rev. Mod. Phys. 85, 1083 (2013);

S. Haroche, M. Brune, J.M. Raimond, Phys. Today 66, 27 (2013); S. Haroche, J.M. Raimond,
Exploring the quantum, Atoms, Cavities, Photons (Oxford University Press, Oxford, 2006)

3. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Inter actions: Basic Processes
and Applications, Wiley Science Paperback Series (Wiley, London, 1992)

4. R.P. Feynman, R.B. Leighton, M. Sands, Feynman Lectures on Physics 1, 2 (Addison-Wesley,
Reading, 1977)

5. C.J. Foot, Atomic Physics, Oxford Master Series in Physics (Oxford University Press, Oxford,
2007)

6. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Elsevier/Butterworth-Heinemann,
Amsterdam/London, 1975)

7. L.D. Landau, E.M. Lifshitz, Mechanics (Elsevier/Butterworth-Heinemann, Amster-
dam/London, 1976)



References 43

8. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, Non-relativistic Theory
(Elsevier/Butterworth-Heinemann, Amsterdam/London, 1976)

9. A. Messiah, Quantum Mechanics (North Holland, Amsterdam, 1961)
10. R. Penrose, The Road to Reality: Complete Guide to the Laws of the Universe (Vintage, New

York, 2007)
11. J. Schwinger, Quantum Mechanics: Symbolism of Atomic Measurement (Springer, Berlin, 2003)
12. A. Zee, Quantum Field Theory in a Nutshell, 2nd edn. (Princeton University Press, Princeton,

2010)
13. A. Zee, Einstein Gravity in a Nutshell (Princeton University Press, Princeton, 2013)
14. A. Zeilinger et al., Rev. Mod. Phys. 60, 1067 (1988)
15. W. Zurek, Phys. Today 44, 36 (1991); W. Zurek, Phys. Today 67, 44 (2014); M. Schlosshauer,

Decoherence and the Quantum-to-Classical Transition (Springer, Berlin, 2007)



Chapter 2
Approximate Methods in Quantum Mechanics

However light and elegant the mathematical apparatus of quantum mechanics
appears, we can solve exactly only very few physically interesting problems with it.
Therefore, we need to opt for appropriate approximations when facing the remaining
vast majority of quantum-mechanical problems. In this chapter, we will introduce two
basic approaches—the variational and perturbation methods. Naturally, many others
exist (for example the semi-classical approximations). However, those usually focus
on a specific class of problems, while we can employ the variational and perturbative
methods when facing almost any problem. We will illustrate both methods on the
simplest problem one cannot solve analytically—the anharmonic oscillator.

We now return to the potential expansion (1.57) and consider more terms this
time. We cannot simply add the next—third-order—term, though. Depending on
the sign of the third derivative of the potential at the point where we carry out
the expansion, the asymptotic behavior of the third-order polynomial would be
either V.x ! �1/ ! �1, or V.x ! C1/ ! �1, in both cases without a
global minimum. This would result in the absence of any bound states; that is, all
particles, although initially contained within a local minimum of the potential, would
eventually tunnel through the barrier and escape for good, see Fig. 2.1. For detailed
discussion of tunneling see, e.g., [2]. It follows thereof the highest power of potential
must be even. Therefore, we include all terms up to the fourth order in x,

V.Ox/ D 1

2!
V.2/.0/ Ox2 C 1

3!
V.3/.0/ Ox3 C 1

4!
V.4/.0/ Ox4 .

As we aim to merely illustrate the method, we further simplify our problem by setting
V.3/.0/ D 0. The form of the resulting Schrödinger equation (after the removal of
constants via a scale transform) reads

� Op2

2
C Ox

2

2
C ı Ox4

	

 .x/ D E .x/ . (2.1)
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Fig. 2.1 A polynomial
potential with the highest
nonzero odd power does not
support the bound states

V
(x
)

x

tunnel

E<V(x)

E>V(x)

2.1 Variational Method

2.1.1 The Ritz Variational Principle

The variational method exploits an interesting observation we will now derive. We
have for an eigenstate of the Hamiltonian

OHj	ni D Enj	ni ) En D h	nj OHj	ni
h	nj	ni .

We take an arbitrary, “test,” vector j i and calculate

EvarŒ � D h j
OHj i

h j i , (2.2)

where we call Evar the variational energy. Obviously, it is not the energy of the
state j i since the energy of that state is not well defined as it is generally not an
eigenstate of the Hamiltonian. Were we to interpret this number, we would call it the
mean value of the energy after many repetitive measurements on the test state. We
now subtract the ground state energy from the variational energy,

EvarŒ � � E0 D h j
OHj i

h j i � E0 D h j.
OH � E0/j i
h j i .
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We use the spectral decomposition of the Hamiltonian and write E0 as a unity
operator expressed in the basis of the Hamiltonian eigenstates,

EvarŒ � � E0 D 1

h j i

 1X

nD0

Enh j	nih	nj i � E0

1X

nD0

h j	nih	nj i
!

D 1

h j i
1X

nD0

.En � E0/ jh j	nij2 � 0 .

The last equation represents the so-called Ritz variational principle. One can readily
see—for both the energy difference to the right and the squares of scalar products
are positive—that the difference between the variational energy and the energy of
the ground state is positive as well. Thus, the variational energy always acquires
larger values than the energy of the ground state! Owing to this fact, we are able
to calculate the ground state of a Hamiltonian and its energy using the variational
calculus, namely by searching for the extremum of the functional (2.2). For instance,
we can parametrize the state j i using a few variables and search for the extremum
of the functional (2.2) as a function of several variables.

2.1.2 Optimization of Nonlinear Parameters

We now demonstrate the above-presented approach on the case of the anharmonic
oscillator (2.1). One would expect that for small ı, it behaves very much like the
harmonic oscillator. For this reason we consider the test function of the ground state
in the form

 .x;˛/ D e�˛x2=2 ,

where ˛ represents a real parameter. The variational energy is then exactly as in
Eq. (2.2)1

Evar D
R1
�1 e�˛x2=2




� 1
2

d2

dx2 C x2

2 C ıx4
�

e�˛x2=2dx
R1
�1 e�˛x2 dx

D 1

4˛
C ˛

4
C 3

4
ı

1

˛2
. (2.3)

We now try to find the minimal energy such a guessed state allows for. The required
condition for a minimum of the function states the first derivative be equal to zero:

1Here we used Eq. (1.96) for b D 0. One can obtain the remaining integrals by differentiating the
integrals with respect to a parameter.



48 2 Approximate Methods in Quantum Mechanics

0 D @Evar

@˛
D � 1

4˛2
C 1

4
� 3

2

ı

˛3
.

After reordering it to ˛3 � ˛ � 6ı D 0, we readily see that there is a single real
root to this equation. We then obtain approximate energy of the ground state by its
substitution into Eq. (2.3).

2.1.3 Optimization of Linear Parameters

The previous section made use of the so-called nonlinear parameters. However,
another possibility exists: linear parametrization. In this case, we express the sought
ground state as a finite sum of reference states, for example of the stationary states
of the harmonic oscillator,

j i D
NX

jD1

cjjji . (2.4)

We can certainly use any other basis as well. The only restriction is the basis set fjjig
be complete in the limit N!1, so that we could express any vector j i as a linear
combination of the reference states. After substitution into Eq. (2.2) we arrive at

Evar D
PN

i,jD1 cicjhij OHjji
PN

i,jD1 cicjhij ji
D
PN

i,jD1 cicj. OH/ij
PN

i,jD1 cicjSij

. (2.5)

The numbers Sij are called the overlap matrix elements. As before, we differentiate
Eq. (2.5) with respect to all parameters ck and set these derivatives equal to zero,
that is @Evar

@ck
D 0; we thus have

0 D

 
NP

i,jD1



@ci
@ck

cj C ci
@cj

@ck

�

. OH/ij
!

 
NP

i,jD1
cicjSij

! �

 
NP

i,jD1
cicj. OH/ij

! 
NP

i,jD1



@ci
@ck

cj C ci
@cj

@ck

�

Sij

!

 
NP

i,jD1
cicjSij

!2 .

It follows from the independence of the parameters ck that @ci
@ck
D ıik. Therefore

the following equation must hold, bearing in mind Eq. (2.5),

NX

i,jD1

�

ıikcj C ciıjk
�

. OH/ij D Evar

NX

i,jD1

�

ıikcj C ciıjk
�

Sij .
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If we use real basis, both the Hamiltonian and overlap matrices are symmetric (for
they are Hermitian and real); hence

NX

jD1

cj. OH/ij D Evar

NX

jD1

cjSij ,

or in matrix notation

Hc D EvarSc . (2.6)

The optimization of the linear parameters thus results in searching for a solution to
a generalized eigenproblem (2.6).

Once again, we use the anharmonic oscillator (2.1) to illustrate this method. We
choose the eigenstates of the harmonic oscillator as basis states, the overlap matrix
elements Sij then being equal to ıij. We thus need to evaluate only the matrix elements
of the Hamiltonian matrix, . OH/ij D hij OHjji. After substituting for the Hamiltonian,
we obtain

hij OHjji D hij
� Op2

2
C Ox

2

2
C ı Ox4

�

jji D hij.Ej C ı Ox4/jji D ıij

�

jC 1

2

�

C ıhijOx4jji .
(2.7)

There are two possible ways of finding the numbers hijOx4jji. The first one,
straightforward though arduous and tedious, leads via the coordinate representation.
For instance, the first element is

h0jOx4j0i D
Z 1

�1
h0jxix4hxj0i dx D

Z 1

�1
1

4
p
�

e�x2=2x4 1
4
p
�

e�x2=2 dx D 3

4
,

where we used Eq. (1.87).
The other one is based on expressing Ox4 in terms of the ladder operators Oa and OaC

which “act nicely” on the eigenstates of the harmonic oscillator. We can thus find
the action of the Hamiltonian very easily. From Eq. (1.70) we have

Ox4 D
�

1p
2
. OaC OaC/

�4

D 1

4

� Oa4 C � Oa2 OaC OaC OaC Oa3 C Oa3 OaC C Oa OaC Oa2
�

C � Oa2. OaC/2 C . OaC/2 Oa2 C OaC Oa OaC OaC Oa OaC Oa OaC C OaC Oa Oa OaC C Oa OaC OaC Oa�

C �

. OaC/3 OaC OaC Oa. OaC/2 C . OaC/2 Oa OaC C Oa. OaC/3�C . OaC/4� .

Recalling that the operators Oa and OaC act according to Eqs. (1.66) and (1.68), Oajji Dp
jjj � 1i , OaCjji D pjC 1jjC 1i , and that for example

hij Oa4jji D
p

j.j � 1/.j � 2/.j � 3/hij j � 4i D
p

j.j � 1/.j � 2/.j � 3/ıi,j�4 ,
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where in the second equality we used the orthogonality equations for the eigenstates,
Eq. (1.30), we see that the terms in the expansion of Ox4 can shift the state jji only
to jj˙ 4i (if only one of the two operators Oa and OaC is present), to jj˙ 2i (one
of the operators occurs three times, the other only once) and to jji (both operators
occur twice). To further simplify our task, we substitute i ! i � 2 and i ! i � 4
in the calculated elements hijOx4jiC 2i and hijOx4jiC 4i, respectively, and obtain the
results also for hi � 2jOx4jii and hi � 4jOx4jii. Since the operator Ox4 is Hermitian, we
have hijOx4jji D hjjOx4jii� D hjjOx4jii where the last equality holds because eigenstates
of the harmonic oscillator form a real basis, see, e.g., Eqs. (1.87)–(1.89). For this
reason, we have hi � 2jOx4jii D hijOx4ji � 2i and hi � 4jOx4jii D hijOx4ji � 4i. Thus we
see that instead of a tiresome calculation of numerous integrals it suffices to calculate
three numbers algebraically,

hijOx4jiC 4i D 1

4
hij Oa4jiC 4i D 1

4

p

.iC 1/.iC 2/.iC 3/.iC 4/ ,

hijOx4jiC 2i D 1

4
hij � Oa2 OaC OaC OaC Oa3 C Oa3 OaC C Oa OaC Oa2

� jiC 2i

D 1

4


p

.iC 1/.iC 2/3 C
p

i2.iC 1/.iC 2/

C
p

.iC 1/.iC 2/.iC 3/2 C
p

.iC 1/3.iC 2/
�

D 1

4
.4iC 6/

p

.iC 2/.iC 1/ ,

hijOx4jii D 1

4
hij � Oa Oa OaC OaC C OaC OaC Oa OaC OaC Oa OaC Oa

C Oa OaC Oa OaC C OaC Oa Oa OaC C Oa OaC OaC Oa� jii

D 1

4


p

.iC 1/.iC 2/.iC 2/.iC 1/C
p

i.i � 1/2iC
p

i4

C
p

.iC 1/4 C
p

i2.iC 1/2 C
p

.iC 1/2i2
�

D 1

4
.6i2 C 6iC 3/ .

It follows from our previous considerations that

hijOx4ji � 2i D 1

4
.4i � 2/

p

i.i � 1/ ,

hijOx4ji � 4i D 1

4

p

i.i � 1/.i � 2/.i � 3/ .
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Owing to the symmetry mentioned earlier, we have thus all needed matrix elements,
and nothing hinders us now from substituting them into Eq. (2.7) and from
diagonalizing the Hamiltonian matrix.

It is worthwhile, though, to inspect its structure. It follows from Eq. (2.7) and from
the above calculated results that the Hamiltonian does not mix odd and even states.
That is, hij OHjji equals zero unless the states jii and jji are both even or both odd.
This is a deeper result associated with the notion of parity of a state,2 and is more
obvious if we use the coordinate representation. We readily see that the Hamiltonian
OH in Eq. (2.1) is invariant with respect to interchange Ox ! �Ox. Therefore, if  e.x/
is an even function and  o.x/ an odd one, the matrix element of OH between these
two states is zero,

h ej OHj oi D
Z 1

�1
 �e .x/ OH o.x/ D 0 ,

for an integral of an odd function over an interval that is symmetrical around the
origin always equals zero. We thus see that the class of odd states and that of even
states are completely separated worlds for our system. We can exploit this finding
when diagonalizing the Hamiltonian and reorder the matrix into a block-diagonal
form by renumbering the basis

OH D

0

B
B
B
B
B
B
B
B
B
B
@

0 2 4 � 1 3 5 �
0 � � � �
2 � � � �
4 � � � �
� � � � �
1 � � � �
3 � � � �
5 � � � �
� � � � �

1

C
C
C
C
C
C
C
C
C
C
A

.

This approach is often called the adaptation of the basis to the symmetry of the
system. The asterisks mark generally nonzero entries while the empty positions are
zero. For example, if we are interested in the ground state energy, we can remove all
rows and columns corresponding to odd states as the ground state is an even state.

Table 2.1 lists the results we would obtain considering N even states and setting
ı D 0.1, as the reader can (and should) easily verify.

Table 2.1 Variational energy
of the anharmonic oscillator

N 1 2 3 4 5

2Evar.N/ 1.15 1.1191 1.1188 1.1183 1.118293

2We will use it again later on, in more complex situations, see Sect. 5.3.8.
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Table 2.2 Comparison of
results of the nonlinear and
linear method

2ı 2Ennolin
var .˛/ 2Elin

var.N D 9/ 2E0

10�2 1.0073908 1.0073737 1.0073737

0.2 1.1206 1.11829 1.11829

1 1.4033 1.392355 1.392351

100 5.10 5.28 5.00

2000 13.66 44.79 13.39

40,000 37.0 830 36.3

One can also notice from this table how we usually, though non-rigorously,
estimate the error of the variational method. We consider the numbers that do not
change with an increasing basis set—are stabilized—as final and accurate.

The next table, Table 2.2, summarizes and compares the results obtained
employing both variational (linear and nonlinear) methods. One can readily see
from the table that the linear method is more accurate for smaller deviations from
harmonicity. The accuracy of the nonlinear method in the case ı 	 10,000 is
surprising as such a system has little in common with the harmonic oscillator. The
explanation lies in the following. If we opt for the linear method, we have N fixed
functions to compose the best fit to the correct function. In case of the nonlinear
method, on the other hand, we are able to obtain the parameter ˛ directly as a
function of the parameter ı. This means that at least for small jxj we are able to
adjust the wave function of the harmonic oscillator to the real ground state wave
function. The difference between the harmonic oscillator function and the exact
ground state function for large jxj does not cause much error. The reason is, both
functions decrease rapidly for large jxj and the area in turn contributes substantially
less to the integral (2.2) than the area of small jxj. In practice, one usually uses a
combination of the both, linear and nonlinear, methods, see Sect. 5.3.

Finally, we remark without a proof that also the energy estimates for higher
excited states calculated by the diagonalization of the Hamiltonian in a finite basis
lie above the exact values of these energies, as in the case of the ground state.

2.2 Perturbation Method

2.2.1 Isolated Levels

We consider, once again, the Hamiltonian of the anharmonic oscillator,

OH D 1

2

� Op2 C Ox2
�C ı Ox4 D OH0 C ı OH1 , (2.8)

this time as a sum of the Hamiltonian of the harmonic oscillator (eigenfunctions and
eigenvalues of which we know) and a small perturbation of the order ı. We write
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the sought eigenstate of the Hamiltonian (2.8) as a sum of the harmonic oscillator
eigenstate and a sequence of perturbations of increasing order in ı, and we perform
a similar expansion for the eigenvalue:

j i D j .0/i C ıj .1/i C ı2j .2/i C : : :
E D E.0/ C ıE.1/ C ı2E.2/ C : : : (2.9)

We substitute both these expansions into the Schrödinger equation OHj i D Ej i
and collect terms with the same power of ı:

. OH0 � E.0//j .0/i D 0 , (2.10)

. OH0 � E.0//j .1/i D �. OH1 � E.1//j .0/i , (2.11)

. OH0 � E.0//j .2/i D �. OH1 � E.1//j .1/i C E.2/j .0/i , (2.12)

and similarly for higher orders.
In the following text, one needs to carefully distinguish between the unrelated

upper and lower indices: the former stands for the order of the perturbation, while
the latter for the excitation level of the state under consideration. The equation for
the eigenstates and eigenvalues of OH0 reads:

. OH0 � E.0/n /jni D 0 , n D 0, : : : ,1 . (2.13)

By comparison with Eq. (2.10) we obtain E.0/ D E.0/N and j .0/i D jNi, where jNi is
the so-called reference state— the N-th excited state of the unperturbed system. Our
task now is to find the effect of the perturbation on this particular reference state.

Equations (2.10)–(2.12) do not determine the perturbation functions j .j/i
unambiguously. One can easily verify that they are given but for an addition of
an arbitrary multiple of the reference state: j .j/i ! j .j/iC � j .0/i . This freedom
is related to the normalization of the exact solution j i. A common choice of the
normalization, called the intermediate normalization, is

h .0/j .j/i D ıj0 ) h .0/j i D 1 . (2.14)

The difficulty while solving the eigenproblem stems from the fact that we need to
simultaneously determine the eigenvalues and eigenvectors of the pertinent operator.
The advantage of the perturbation method lies in that we are able to “disconnect”
this problem. When we multiply Eqs. (2.11) and (2.12) by a bra-vector h .0/j, we
obtain

E.1/ D h .0/j OH1j .0/i , (2.15)

E.2/ D h .0/j. OH1 � E.1//j .1/i D h .0/j OH1j .1/i .
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This shows that we can always find the next energy perturbation with the mere
knowledge of the previous perturbed wave function. We can express the first energy
perturbation, E.1/, using the known reference state  .0/. If we then solve Eq. (2.11)
for j .1/i we are able to calculate E.2/, etc.

However, how does one solve Eq. (2.11)? For we generally know nothing about
the action of OH0 on the state j .1/i we expand the state j .1/i on the basis of the
eigenstates of the operator OH0,

j .1/i D
X

n¤N

c.1/n jni .

Substituting from Eq. (2.13) and multiplying Eq. (2.11) by a bra-vector hmj yield

hmj
X

n¤N

c.1/n .E
.0/
n � E.0/N /jni D hmj.E.1/ � OH1/jNi

) c.1/m .E
.0/
m � E.0/N / D E.1/ımN � hmj OH1jNi

) c.1/m D
�1

E.0/m � E.0/N

hmj OH1jNi , m ¤ N , c.1/N D 0 ,

where the last implication follows from Eq. (2.14). From the above expressions for
E.2/, j .1/i and c.1/n we finally obtain

E.2/ D �
X

n¤N

ˇ
ˇ
ˇhNj OH1jni

ˇ
ˇ
ˇ

2

E.0/n � E.0/N

. (2.16)

The estimate of the energy up to the second order of perturbation is then

E ' E.0/ C ıE.1/ C ı2E.2/ .

Using the perturbation method of the second order, estimate the ground

state energy of the system with the Hamiltonian OH D Op2

2 C Ox
2

2 C ı Ox4 for
2ı D 10�2. Compare the result with the variational estimate.

Exercise 3: Perturbation Method
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2.2.2 Degenerate Levels

In none of the one-dimensional systems examined up to now did we encounter
degeneracy, namely an existence of several (at least two) distinct levels with the
same energy. In fact, there is a rule stating that degeneracy occurs only in more than
one dimension. We now apply the perturbation method to a system that does contain
degeneracy, namely to two weakly coupled harmonic oscillators. The Hamiltonian
of such a system is of the form

OH D 1

2
. Op2

x C Ox2/C 1

2
. Op2

y C Oy2/C ı Ox2 Oy2 D OHŒx�
0 C OHŒy�

0 C ı OH1 D OH0 C ı OH1 .

The constant ı governs the magnitude of the interaction between the two oscillators.
Note that we know the eigenstates of the unperturbed problem given by Eq. (2.13);
we can arrive at them by a direct product of the eigenstates of the x-dependent and
y-dependent parts of the full Hamiltonian, denoted as OHŒx�

0 and OHŒy�
0 , respectively:

jiji D ji.x/ijj.y/i .

The corresponding eigenvalues are then

OH0jiji D

 OHŒx�

0 C OHŒy�
0

�

ji.x/ijj.y/i D
�

iC 1

2
C jC 1

2

�

ji.x/ijj.y/i D E0
ijjiji

) E0
ij D iC jC 1 .

By the notation OHŒx�
0 C OHŒy�

0 we mean OHosc˝1C1˝ OHosc, where OHosc is the Hamiltonian
of the one-dimensional linear harmonic oscillator. The action of such an operator
on a state ji.x/ijj.y/i can be then written as . OHosc ˝ 1 C 1 ˝ OHosc/ji.x/ijj.y/i D
. OHoscji.x/i/.1jj.y/i/C .1ji.x/i/. OHoscjj.y/i/. As long as we keep ı equal to zero, the
energy levels of the system are degenerate. It means that the states j10i and j01i
have the same energy E.0/ D 2, the states j20i, j11i and j02i have the same energy
E.0/ D 3, and so on.

The exact Hamiltonian OH is invariant with respect to the interchanges x ! �x
and y ! �y. This implies that there are four classes of states, i and j even, i and
j odd, i odd and j even, and i even and j odd, which are not mixed across by the
exact Hamiltonian. This means that in the perturbative as well as in the variational
calculation, we can restrict ourselves only to a single class of these states. For clarity,
Fig. 2.2 displays the lowest levels combined from even states of the oscillators only.

In the following we focus on searching how the energy of the states j02i D j0ij2i
and j20i D j2ij0i changes when perturbation is taken into account.

The application of the perturbation method is slightly more difficult for the
degenerate levels than for the isolated ones. The problem is we do not a priori know
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Fig. 2.2 Energy of the
degenerate levels
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|0〉 |0〉

E
(0)
ij

5

3

1

which unperturbed wave function to choose at the very beginning. For instance, for
E.0/ D 3 every linear combination of the form

j .0/i D c1j02i C c2j20i , (2.17)

where c1 D h02j .0/i and c2 D h20j .0/i obeys Eq. (2.10).
The coefficients c1 and c2, together with the first correction to energy E.1/

are determined as follows. We multiply Eq. (2.11), . OH0 � E.0//j .1/i D �. OH1 �
E.1//j .0/i, from left first by h02j and then by h20j. We obtain

h02j OH1j .0/i D E.1/h02j .0/i ,
h20j OH1j .0/i D E.1/h20j .0/i .

By substitution of the expansion (2.17) into the last two equations, and using the
orthonormality of the states j02i and j20i,3 we find

c1E.1/ D c1. OH1/11 C c2. OH1/12 and c2E.1/ D c1. OH1/21 C c2. OH1/22 .

This can be written in a matrix notation

E.1/
�

c1

c2

�

D
 

. OH1/11 . OH1/12

. OH1/21 . OH1/22

!�
c1

c2

�

.

One can easily recognize that the rank of the matrix always equals the degree of the
degeneracy of the inspected state. We now need to calculate the matrix elements of
the operator OH1

4:

3h02j20i D h0.x/j2.x/ih2.y/j0.y/i D 0, see Eqs. (1.30) and (1.90).
4The last step in this equation is best understandable in the coordinate representation:

h0.x/jh2.y/jOx2 Oy2j2.y/ij0.x/i D
Z

dx

Z

dy 0.x/ 2.y/x
2y2 2.y/ 0.x/

D
Z

dx 0.x/x
2 0.x/

Z

dy 2.y/y
2 2.y/ D h0jOx2j0ih2jOx2j2i .
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. OH1/11 D h02j OH1j02i D h0.x/jh2.y/jOx2 Oy2j2.y/ij0.x/i
D h0.x/jOx2j0.x/ih2.y/jOy2j2.y/i D h0jOx2j0ih2jOx2j2i .

We can rewrite these expressions, once again, in terms of the operators Oa and OaC,

h0jOx2j0i D 1

2
h0j � Oa OaC Oa OaC C OaC OaC OaC OaC� j0i D 1

2
,

h2jOx2j2i D 1

2
h2j � Oa OaC Oa OaC C OaC OaC OaC OaC� j2i D 5

2
,

hence . OH1/11 D 5
4 and similarly for the additional elements. We obtain the equation

E.1/
�

c1

c2

�

D 1

4

�
5 2
2 5

��
c1

c2

�

,

which has two solutions, E.1/ 2 f 3
4 , 7

4g. Therefore the sought energy of the first
excited state composed of even functions only, E ' .iŒx�CjŒy�C1/CıE.1/ D 3CıE.1/,
splits into two sublevels,

E D
�3C 7

4ı ,

3C 3
4ı .

In the first order of the perturbation method, determine the splitting of the
level E.0/ D 2 in a system with the Hamiltonian

OH D 1

2
. Op2

x C Ox2/C 1

2
. Op2

y C Oy2/C 
Ox3 Oy ,

where 
 D 1
100 .

Exercise 4: Degenerate Perturbation Method

2.2.3 Note on the Error of the Perturbation Method

With the exception of very simple systems, such as those we discussed, it is
practically impossible to calculate a large number of perturbation coefficients. This
leads to the question how large an error we create when we truncate the perturbation



58 2 Approximate Methods in Quantum Mechanics

series (2.9) after N terms, taking E.0/ as the zeroth term. For small magnitude of
the parameter ı, we can estimate that the inaccuracy will be of the order ıNC1. For
example, in the case of the anharmonic oscillator the series (2.9), terminated after the
second term, yields 2E D 1.0073687; the error being of the order of .2ı/3 D 10�6.
The exact value reads 2E D 1.0073737 and the second-order estimate is off by
5� 10�6, which agrees with the estimate of the error. For 2ı D 0.2, we obtain from
the second order perturbation method 2E D 1.0975. Comparing this with the exact
value 2E D 1.11829 confirms the error of 2� 10�2, which is, once again, very close
to the estimate .2ı/3 ' 10�2. Mathematicians call these series asymptotic, which
have, alas, little in common with the convergent series. A reader willing to discover
more on this fascinating topic within mathematical physics should be satisfied by
the captivating book [1].

References

1. C.M. Bender, S.A Orszag, Advanced Mathematical Methods for Scientists and Engineers
(McGraw-Hill, New York, 1978)

2. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, Non-relativistic Theory (Elsevier/Butterworth-
Heinemann, Amsterdam/London, 1976)



Chapter 3
The Hydrogen Atom and Structure of Its
Spectral Lines

In this chapter, we focus on hydrogen-like atoms1 and their spectral structure in
great depth. We show that the spectrum consists of a gross structure resulting from
the electrostatic interaction between an electron and the nucleus, a fine structure
arising from the spin-orbit interaction, and a hyperfine structure stemming from
the spin-spin interaction. These structures are not specific solely for the hydrogen-
like atoms though, we encounter them in any system which we can describe in the
first approximation within the framework of nonrelativistic quantum mechanics. As
we will shortly see, the spin-orbit interaction is an effect of relativistic kinematics
and the spin-spin interaction is nothing more than a quantum mechanical analogy
of the interaction of two magnetic dipoles. In the case of such systems, the
effects of relativistic kinematics are minor and likewise the magnetic interaction
is substantially smaller in comparison to the electrostatic interaction. Furthermore,
we focus on the problem of hydrogen-like atoms to illustrate several methods that
we will then systematically develop in the next chapter.

1A hydrogen-like atom is a bound state of two charged particles. The simplest example is hydrogen
atom consisting of an electron and a proton. The other examples discussed extensively in this
book are deuterium, where the proton is replaced by a deuteron, the bound state of a proton and
a neutron, muonium, where the proton is replaced by an antimuon, an electron’s heavier cousin
with the opposite charge, positronium, where the proton is replaced by a positron, electron’s
antiparticle, see Chap. 7, and muonic hydrogen, where the electron is replaced by a muon. Under
the term antiparticle we mean a particle with the same mass and spin as, but opposite charge to the
“original” particle. Although this definition is too narrow, it suffices well in this book.
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3.1 A Particle in an Electromagnetic Field

In this section, we make use of the following relations. Within the Hamiltonian
formalism, we substitute

E! E � e' , p! p � eA (3.1)

to obtain the energy and momentum of a particle in an electromagnetic field.
Assuming the Coulomb gauge r � A D 0, the vector and scalar electromagnetic
potentials, A and ', respectively, solve the equations

�
@2

@t2
� r2

�

A.r, t/ D j.r, t/ � r @'
@t
.r, t/ , �r2'.r, t/ D 
.r, t/ . (6.11)

We derive these relations later in Chap. 6, Sect. 6.1. At this point, a detailed discussion
would stray us too far from the topic, and a kind reader will surely believe the authors
that these relations indeed hold.

Furthermore, we neglect the time retardation at this point and keep only the
time-dependent source on the rhs, that is, we consider only

� r2A.r, t/ D j.r, t/ � r @'
@t
.r, t/ , �r2'.r, t/ D 
.r, t/ . (3.2)

instead of the entire Eq. (6.11). The operator on the lhs of Eq. (6.11) is responsible
for propagation of the EM waves, while the rhs represents local changes in the
charge distribution. We will show later, see Sect. 3.6.1, that the time derivative
on the rhs can be eliminated. Having neglected the retardation, we can treat the
electromagnetic field in terms of the classical theory. We may quantize only a physical
object which we may ascribe a canonical coordinate and a canonical momentum. A
static electromagnetic field does not carry any momentum, as we discuss in more
detail in Chap. 6.

3.2 The Gross Structure

3.2.1 The Problem of Two Particles

In the nonrelativistic description, the total energy of hydrogen-like atoms equals the
sum of the kinetic energy of the nucleus, the kinetic energy of the electron and the
potential energy arising from the mutual interaction of the electron and the nucleus
which depends only on the distance of the two mentioned particles. Having imposed
the commutation relations, the Hamiltonian operator describing the system reads

OH D Op2
1

2m1
C Op2

2

2m2
C V.jOr1 � Or2j/ . (3.3)
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One can easily verify that the operator of total linear momentum commutes with the
Hamiltonian

Œ Op1 C Op2, OH� D 0 .

As we will discuss in more detail later, the existence of operators that commute
with the Hamiltonian substantially simplifies the process of solving the Schrödinger
equation. In this case, for instance, it allows us to reduce the six-dimensional problem
to two three-dimensional ones.

Within the framework of classical mechanics, one may transform such a problem
of two particles to a one-particle problem by introducing the relative position of the
two particles and the position of their center of mass, called the Jacobi coordinates

rR D r1 � r2, rT D m1r1 C m2r2

m1 C m2
. (3.4)

We find the operator of the squared momentum in terms of the new coordinates with
the help of the chain rule for derivation of a composite function. We thus have for
two particles moving in one direction

Op2
1 D �

@2

@x2
1

D � m2
1

.m1 C m2/2
@2

@x2
T

� @2

@x2
R

D m2
1

.m1 C m2/2
Op2

T C Op2
R ,

and similarly for Op2
2

Op2
2 D

m2
2

.m1 C m2/2
Op2

T C Op2
R .

Here, OpT denotes the momentum of the center of mass and OpR the relative momentum
of the two particles. One can easily find that these relations between Op2

1, Op2
2 and Op2

T , Op2
R

hold also in three dimensions. Thus in terms of the new coordinates, the Hamiltonian
operator (3.3) acquires the form

OH D Op
2
T

2

�
1

m1

m2
1

M2
C 1

m2

m2
2

M2

�

C Op
2
R

2

�
1

m1
C 1

m2

�

CV.jOrRj/ D
Op2

T

2M
C Op

2
R

2mr
CV.jOrRj/ .

Here, we set M D m1 C m2 and call the quantity

mr D m1m2

m1 C m2
D m1

1C m1
m2

the reduced mass of the system. When one of the masses significantly exceeds the
other (such as in the case of an electron and a nucleus), mr nearly equals the mass of
the lighter constituent. Since the Hamiltonian is a sum of two mutually commuting

sets of terms, namely
Op2

T
2M and

Op2
R

2mr
C V.jOrRj/, in the Schrödinger equation
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OH .rT , rR/ D E .rT , rR/

we can separate the coordinate of the center of mass and the coordinate of the relative
motion

 .rT , rR/ D  .rT/ .rR/ .

Denoting the energy corresponding to the free motion of the center of mass as ET ,

Op2
T

2M
 .rT/ D ET .rT/ ,

we obtain

� Op2
R

2mr
C V.jrRj/

�

 .rR/ D .E � ET/ .rR/ . (3.5)

We see that—as in classical mechanics—we can transform the problem of two
particles, interaction of which depends only on their mutual distance, to a problem
of one particle of the reduced mass mr moving in an external potential field. The
obtained energies are then diminished by the kinetic energy of the center of mass.
In the next sections we will follow the common habit of expressing the energy of an
atom in the center-of-mass frame where ET D 0 as experimenters report their results
in this frame.

3.2.2 Electrostatic Potential

The electrostatic potential caused by the nucleus is a solution to the Poisson equation,
see Eq. (3.2),

� r2'.r/ D 
.r/ . (3.6)

In a very good approximation, one may consider the nucleus as a point—its size
is typically of the order of magnitude 10�15 m, while the size of the whole atom
reaches usually that of 10�10 m. With no loss of generality, we may place the origin,
from which we determine the position vector r of a point where we find the potential
'.r/, so that it matches the position of the nucleus


.r/ D Zeı.r/ , (3.7)

where e represents the elementary charge and Z the nuclear charge in the elementary
charge units. A field created by a point charge is spherically symmetric, '.r/ D '.r/.
If the function, upon which the Laplacian operator acts, depends only on the distance
from the nucleus, the Laplacian operator acquires the form (see Eq. (3.21) below)
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r2 ! d2

dr2
C 2

r

d

dr
.

We solve the equation

�
�

d2

dr2
C 2

r

d

dr

�

'.r/ D 0 ,

for r ¤ 0 with the initial guess '.r/ D Ar˛ . We obtain ˛ 2 f0,�1g. However, only
the latter satisfies Eq. (3.6) with the charge density given by Eq. (3.7). We find the
constant A from the original equation by integrating it over volume including the
central singularity,

Z

�r2' dV D
Z

Zeı.r/ dV D Ze .

We rewrite the volume integral on the lhs using the Gauss’s theorem (see, e.g., [1])
to a surface integral over the boundary of the considered volume. We further express
this boundary in terms of a solid angle dS D nr2d˝, and successively obtain

�
Z

r2' d3r D �
I

.r'/ � dS D �
Z

n � r'.r/r2 d˝ D
Z

A

r2
r2 d˝ D 4�A ,

where we substituted '.r/ D Ar�1 and r'.r/ D n @'
@r in the third step, see Eq. (3.15)

below. We thus have for the potential energy of the electrostatic interaction in the
Schrödinger equation (3.5)

V.r/ D e'.r/ D � Ze2

4�r
D �Z˛

r
. (3.8)

We call the corresponding potential' the Coulomb potential2 and we will extensively
focus on it in this book.

3.2.3 Units

The constant ˛ introduced in the last relation is termed the fine-structure constant. It
is a dimensionless number (thus independent of the choice of units) and its reciprocal
value equals (see [3])

˛�1 D 137.035999074.44/ ,

2The reason might probably be to stress that it is an electrostatic potential. Newton potential would
be a more convenient name, though.
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where the numbers in the parentheses indicate the uncertainty in determination of the
last two figures. In the center-of-mass frame with the potential (3.8), the Schrödinger
equation (3.5) acquires the form

� Op2

2mr
� Z˛

r

�

 D E .

As in the case of the harmonic oscillator, we once again transform the equation to
dimensionless (atomic) units by substituting r D �rA

� Op2
A

2mr�2
� Z˛

rA�

�

 D E )
� Op2

A

2
� Z˛mr�

rA

�

 D mr�
2E .

Now we exploit the freedom in the determination of � and set Z˛mr� D 1. We thus
obtain

� Op2
A

2
� 1

rA

�

 D EA . (3.9)

In the last equation, we have finally eliminated all of the constants, and so we have

E D me.Z˛/
2 mr

me
EA . (3.10)

In natural units, we obtain energy in electronvolts. Experimenters, though, prefer to
publish their data in terms of frequencies of transitions rather than of energies. The
frequencies are usually listed in hertz, and we will now show how to change from
electronvolts to hertz. Within the framework of SI units, we need to multiply the
rhs of Eq. (3.10) with c2 where c stands for the speed of light in vacuum. We thus
successively obtain

� D ESI

h
D mec2

2�„
mr

me
.Z˛/2EA D mec˛2

4�„ c
mr

me
2Z2EA D R1c

mr

me
2Z2EA . (3.11)

We call the constant R1 the Rydberg constant and its product with the speed of light
in vacuum equals [3]

R1c D 3.289841960364.17/ � 1015 Hz .

Comparing Eqs. (3.10) and (3.11), we readily see that the transition from
electronvolts to hertz

E.eV/! �.Hz/
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corresponds to the substitution

me ! 2R1c

˛2
. (3.12)

3.2.4 Spherical Coordinates

In case of an electron moving in a potential that depends only on the distance
between the particle and the source of the acting force, it is advantageous to solve
the Schrödinger equation in spherical coordinates. We write the transition from
Cartesian to spherical coordinates as

x D rn , (3.13)

where r is the distance between the particle and the origin of the acting force (e.g.,
the distance of an electron from the nucleus), and n is a unit vector pointing to any
direction in space,

n D .sin# cos', sin# sin', cos#/ . (3.14)

Using the chain rule for derivative of a composite function, we find the form of the
operator r in spherical coordinates

OpA ! �ir , rk D @

@xk
D nk

@

@r
C r

n
k

r
, (3.15)

where we introduced the angular differential operator rn

rn D
�

� sin'

sin#

@

@'
C cos' cos#

@

@#
,

cos'

sin#

@

@'
C sin' cos#

@

@#
,� sin#

@

@#

�

.

(3.16)

From Eqs. (3.14) and (3.16), we find the scalar product of the vector operators n and
rn

n � rn D 0 . (3.17)

The order of the operators matters since the components of n andrn do not mutually
commute. To find their commutation relation, we start with the commutation relation
(confront with Eq. (1.85))

Œrj, xk� D ıjk
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and substitute from Eqs. (3.15) and (3.13) for rj and xk, respectively. After
rearranging the terms, we get

�

nj
@

@r
C r

n
j

r
, rnk

	

D njnk

�
@

@r
, r

	

C Œrn
j , nk� D ıjk

)
h

rn
j , nk

i

D ıjk � nj nk . (3.18)

In the first equation, we exploited the fact that if one of any two operators acts
solely on the angular variable while the other only on the radial variable, these two
operators commute mutually, for instance Œ @

@r , nk� D 0, Œrn
j , r� D 0, etc. Setting j D k

in Eq. (3.18) (and keeping in mind we are using the Einstein summation convention),
we obtain

�rn
k , nk

� D 2 . (3.19)

It follows then from Eqs. (3.17) and (3.19) that

rn
k nk D 2 . (3.20)

Substituting for rk from Eq. (3.15) and considering Eqs. (3.17) and (3.20), we write
for the square of the momentum

Op2
A ! �r2, r2 D

�
@2

@r2
C 2

r

@

@r
C .rn/2

r2

�

. (3.21)

3.2.5 Solution for s-States

We now solve Eq. (3.9) for the special case of the so-called s-states, i.e., states
with no angular dependence. That is, the wave function depends only on the radial
variable r. Considering (3.21), we may then write Eq. (3.9) as (we use atomic units
in this section)

OHj i D � 1

2n2
j i , OH D Op

2
r

2
� 1
Or , (3.22)

where we introduced the operator of radial momentum Opr, which acquires the
following form in the coordinate representation3

3Note that one is prone to make a mistake when finding Op2
r :
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Opr D �i

�
@

@r
C 1

r

�

, Op2
r D �

�
@2

@r2
C 2

r

@

@r

�

(3.23)

and where, without loss of generality, we rewrote the energy of a bound state into
the form

EA D � 1

2n2
, (3.24)

where n represents a real number for now. We will later show that it is a natural
number.

We use several tricks to solve Eq. (3.22). First, we substitute r! nr and multiply
the whole equation by r so as to transform the original eigenvalue spectrum of
Hamiltonian operator to a spectrum of a different operator:

OT3j i D nj i , OT3 D
Or Op2

r

2
C Or

2
. (3.25)

We denoted this operator OT3 for reasons that will shortly follow.
The benefit of this trick lies in the following. Spectrum of the Hamiltonian

comprises a discrete (EA < 0) and a continuous (EA > 0) part. From a physical point
of view, it is absolutely acceptable for we are then able to describe processes such as
the photoelectric effect where an electron passes from the discrete to the continuous
part of the spectrum, see Sect. 6.3. However, from a mathematical point of view, this
implies that the discrete part of the spectrum of the Hamiltonian operator does not
constitute a complete set of functions. Yet we know from Chap. 2 that a complete set
of functions is requisite if we wish to determine energy levels of atoms with more than
one electron employing the variational method. As we will shortly see, the operator
OT3, unlike the Hamilton operator, has a complete discrete spectrum. Eigenstates of
this operator are thus more favorable than those of the Hamiltonian (3.22) when
searching for energy levels of many-electron atoms.

The second trick lies in noticing that the operators

OW1 D Or , OW2 D Or Opr , OW3 D Or Op2
r (3.26)

are closed with respect to commutation

�
@

@r
C 1

r

��
@

@r
C 1

r

�

D @2

@r2
C 1

r

@

@r
C @

@r

1

r
C 1

r2
;

now

@

@r

1

r
D 1

r

@

@r
C
�
@

@r
,

1

r

	

D 1

r

@

@r
� 1

r2
.
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Œ OW1, OW2� D i OW1 , Œ OW2, OW3� D i OW3 , Œ OW1, OW3� D 2i OW2 . (3.27)

Considering a linear combination of these operators

OT1 D 1

2
. OW3 � OW1/ , OT2 D OW2 , OT3 D 1

2
. OW3 C OW1/ , (3.28)

leads to commutation relations with a highly symmetric form

Œ OT1, OT2� D �i OT3 , Œ OT2, OT3� D i OT1 , Œ OT3, OT1� D i OT2 . (3.29)

If we now introduce the ladder operators

OT˙ D OT1 ˙ i OT2 , (3.30)

we obtain

Œ OT3, OT˙� D ˙OT˙ . (3.31)

Comparing the last equation with Eqs. (1.60) and (1.61), that is Œ OH, Oa� D �Oa and
Œ OH, OaC� D COaC, respectively, we see that we transformed the original problem into
that of a harmonic oscillator. The operator OT3 now takes on the role of the Hamiltonian
operator and likewise the operators OT˙ replace the non-Hermitian operators Oa and
OaC. The only difference is that instead of Eq. (1.59), OH D OaC Oa C 1

2 , we have the
equation (prove that it holds!)

OT2
3 � OT2

1 � OT2
2 D 0 . (3.32)

Hence instead of Eq. (1.67) we have

OTC OT�jni D . OT1 C i OT2/. OT1 � i OT2/jni. OT2
1 C OT2

2 � iŒ OT1, OT2�/jni
D . OT2

3 � OT3/jni D .n2 � n/jni , (3.33)

where we used Eqs. (3.29) and (3.32) in the third step and Eq. (3.25) in the fourth.
Now we may completely adopt the solution for the harmonic oscillator. Namely from
equations OT3. OT˙jni/ D .n˙1/. OT˙jni/, corresponding to Eqs. (1.63) and (1.64), we
find that the individual eigenvalues of the operator OT3 differ by unity. Once again,
we demand a ground state exists

OT�jnmini D 0

and thus we obtain from Eq. (3.33)

nmin.nmin � 1/ D 0 . (3.34)
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The solution nmin D 0 corresponds to infinite energy, see Eq. (3.24), hence is
nonphysical. Therefore we have nmin D 1. Taking into account that the individual
n differs by unity, we may conclude that the eigenvalues n are natural numbers
n D 1, 2, 3, : : :

By substituting into Eq. (3.22), one can easily verify that the normalized ground
state wave function is of the form

hrj1si D  1s.r/ D R1s.r/Y00.n/ , R1s.r/ D R1,0.r/ D 2e�r , Y00.n/ D 1p
4�

.

(3.35)

The wave function is normalized so that the probability of finding an electron in the
entire space equals unity, i.e.,

h1sj1si D
Z

d3rh1sjrihrj1si D
Z

d˝
1

4�

Z 1

0
drr2.2e�r/2 D 1 .

Y00.n/ captures the angular dependence of the s-states. However, there is none (from
the definition), and thus Y00.n/ is merely a constant given by normalization condition
R jY00j2 d˝ D 1. The probability of finding an electron in an s-state is thus the same
for all angles and the angular part of s-orbitals has a shape of a sphere.

3.2.6 Comparison with Experiment

For the energy of a transition 1s � ns we have

�EA D 1

2

�

1 � 1

n2

�

,

hence, see Eq. (3.11),

�1n D R1c � Z2

�

1 � 1

n2

�
1

1C me
mn

. (3.36)

Now we can compare the theoretical values of � with the experimental ones, namely
for the transition 1s � 2s. The Table 3.1 summarizes the results for hydrogen,

Table 3.1 Theoretical (3.36) and experimental values for the transition 1s� 2s

System Ratio me=mn �theo
12 [1015 Hz] �

exp
12 [1015 Hz]

pCe� 5.4461702178.22/ � 10�4 2.4660384 : : : 2.466061413187035.10/

pCn0e� 2.7244371095.11/ � 10�4 2.466709 : : : 2.466732407521641.35/

�Ce� 4.83633166.12/ � 10�3 2.4555058 : : : 2.455528941.10/
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deuterium, and muonium. The values of the mass ratios of the individual particles
are adopted from [3], the only exception being muonium coming from [2].

If we neglect the effect of the motion of the nucleus, namely set mr ' me 
 mn,
we obtain �theo

12 D 2.467381 � � � � 1015 Hz. We thus see that using the reduced mass
instead of only the electron mass significantly improves the final result. We further
see from the table that the agreement of the experimental and theoretical values
for deuterium is similar to that of the hydrogen atom, while it is slightly worse
for muonium. To elucidate this deviation, we need to study also other interactions
between the nucleus and the electron than only the Coulombic, and we should include
relativistic corrections as well. A long journey lies ahead of us. . .

3.3 The Hyperfine Structure

Apart from the electrostatic, we now include also the magnetic interaction in the
Hamiltonian of the system. The reason is, both the nucleus and the electron possess
an intrinsic magnetic moment and these moments act on each other via the magnetic
force. We begin by finding the magnetic field caused by the nucleus.

3.3.1 Magnetic Field of a Dipole

The magnetic field of a steady electric current is given by the vector Poisson equation,
see Eq. (3.2), where we neglect the time change of the gradient of the potential that
arises from the change in the charge density with respect to time

� r2A D j . (3.37)

Assuming we know the so-called Green function

� r2
r1

G.r1, r2/ D ı.r1 � r2/ , (3.38)

we can write the general solution to Eq. (3.37) as

A.r1/ D
Z

G.r1, r2/j.r2/ dV2 . (3.39)

One can easily verify this by acting with the operator �r2 on both sides of the last
equation and by considering the penultimate equation and Eq. (1.75). As we showed
above, see Eqs. (3.6)–(3.8), there is a simple solution to the Poisson equation for G



3.3 The Hyperfine Structure 71

G.r1, r2/ D 1

4�

1

r12
D 1

4�

1

Œ.r1 � r2/ � .r1 � r2/�1=2
. (3.40)

We now move the origin to approximately the center of the area where the current
density is located. Supposing this area is much smaller in size than the distance of
the point where we calculate the field generated by this area, namely r2 
 r1, we
may expand the Green function in Eq. (3.39) into a series of powers of r2=r1,

G.r1, r2/ D 1

4�

1

Œr2
1 � 2r1 � r2 C r2

2�
1=2
' 1

4�

�
1

r1
C r1 � r2

r3
1

C : : :
	

. (3.41)

This is the so-called multipole expansion to be discussed in more detail in Sects. 5.2.1
and 5.2.2. We have then

A.r1/ ' 1

4�

�
1

r1

Z

j.r2/dV2 C 1

r3
1

Z

.r1 � r2/ j.r2/dV2

	

. (3.42)

Acting with the divergence operator on both sides of Eq. (3.37) and recalling we are
using Coulomb gauge r �A D 0, we obtain the continuity equation for steady flow:

r � j D 0. (3.43)

We further obtain from the last equation the two identities

0 D
Z

xi.r � j/ dV D
Z �

@

@xk
.xijk/ � @xi

@xk
jk

	

dV

D
I

xijk dSk �
Z

ji dV D �
Z

ji dV (3.44)

and

0 D
Z

xlxi
@

@xk
jk dV D

Z �
@

@xk
.xlxijk/ � jk

@

@xk
.xlxi/

	

dV

D
I

xixljk dSk C
Z

Œxijl C xlji� dV D
Z

Œxijl C xlji� dV . (3.45)

In the second steps we integrated by parts, in the third we used the Gauss’s
theorem. Finally, we exploited the fact that the surface integrals vanish for currents
concentrated in a finite space.

We can thus rewrite the expression (3.42) for vector potential of a magnetic dipole
into the form
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Ak.r/ D xi

4�r3

Z

x0i jk dV0 D xi

8�r3

Z
�

.x0i jk C x0kji/C .x0i jk � x0k ji/
�

dV0

D xi

8�r3

Z

.x0i jk � x0k ji/ dV0 D xi

8�r3

Z

"ikp"pqrx
0
q jr dV0

D � 1

8�

�
r
r3
�
Z

.r2 � j.r2// dV2

	

k

D 1

4�

.� � r/k
r3

, (3.46)

where we considered Eqs. (3.44) and (3.45) in the first and third equality. In the
fourth, we used the identity "ijk"ipq D ıjpıkq � ıjqıkp. Finally, in the last step, we
introduced magnetic dipole moment

� D 1

2

Z

r � j.r/ dV .

We calculate the magnetic induction B D r � A as well:

Bk D "kpq
@

@xp
Aq D "kpq"qrs

@

@xp

�
1

4�

�rxs

r3

	

D �ıkrıps � ıksıpr
� 1

4�

��

np
@

@r
C r

n
p

r

�

,
�rns

r2

	

D �ıkrıps � ıksıpr
� �r

4�

�

npns

�

� 2

r3

�

C 1

r3

h

rn
p , ns

i�

,

where we substituted from Eq. (3.46) in the second step and from (3.15) and (1.85)
in the third. Using Eq. (3.18), Œr.n/p , ns� D ıps � npns, we further write

Bk D
�

ıkrıps � ıksıpr
� �r

4�

�
ıps � 3npns

r3

�

D �r

4�r3
.3nknr � ıkr/ , r ¤ 0 .

However, we could have performed this step only for r ¤ 0.4 To find the magnetic
induction at the point r D 0, we make a guess Bk D Akı.r/, where Ak is a constant
we wish to find. We thus have

4It might seem rather odd that we focus on the point r D 0 and yet we have kept only the leading
term when expanding the Coulomb potential, see Eq. (3.41). The expression (3.46) should thus
hold solely for large r, and we should take into consideration other terms of the expansion (3.41) to
accurately capture the situation for small r. Experiments show, though, that particles we consider
as elementary (such as electrons, muons, etc.) behave as electric monopoles and magnetic dipoles.
That is, the remaining terms of the expansion (3.41) are zero. Although in the case of a proton the
other terms are not null, the dipole term still prevails for r � .m˛/�1 � 10�10 m and an electron
practically does not approach the proton any closer. In other words, the probability of finding an
electron in the space between 0 and 10�1 atomic units from the proton is

R 0.1
0 drr2jR1s.r/j2 D

0.11 � 10�2, see Eq. (3.35). We thus see that one needs to distinguish between a physical and
mathematical zero!
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�

ıkrıps � ıksıpr
� @

@xp

1

4�

�rxs

r3
D Akı.r/ .

Now we integrate over the area comprising the point r D 0,

�r

4�

�

ıkrıps � ıksıpr
�
Z �

@

@xp

ns

r2

�

dV D Ak

Z

ı.r/dV ,

and use the Gauss’s theorem

Ak D �r

4�

�

ıkrıps � ıksıpr
�
I

ns

r2
dSp D �r

4�

�

ıkrıps � ıksıpr
�
Z

nsnp d˝ .

Since the following relation holds5

Z

nsnpd˝ D 4�

3
ısp , (3.47)

we obtain at last

Ak D 1

3
�r
�

ıkrıps � ıksıpr
�

ısp D 2

3
�k ) Bk D 2

3
�kı.r/ .

The final magnetic field of a dipole then reads

B D 1

4�

3nn � � � �

r3
C 2

3
�ı.r/ . (3.48)

3.3.2 Hamiltonian of a Particle with Spin in an External
Electromagnetic Field

The other part of the problem lies in determining how the magnetic dipole moment
reacts to the surrounding magnetic field. To do so, we need to know the Hamiltonian
of a particle with spin in an external electromagnetic field. Firstly, we consider
only a free particle. In nonrelativistic approximation, its energy equals the kinetic
energy of the particle E D p2=.2m/, irrespective of whether it possesses spin or not.
These should be the eigenvalues of the correct Hamiltonian for a free particle. The
operators

5The easiest way to obtain this equation goes as follows. An object with two indices appears
on the lhs, and the only plausible object with two indices on the rhs is the Kronecker delta, i.e.,
R

nsnpd˝ D Kısp. Setting now s D p and keeping in mind that we are using the Einstein summation
convention and n is a unity vector, we obtain 4� D 3K.
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OH D Op
2

2m

and

OH D � � Op � � Op
2m

(3.49)

obviously comply with this demand, see Eq. (1.25):

�i Opi�j Opj D .ıij C i"ijk�k/ Opi Opj D ıij Opi Opj D Op2 .

The former is a Hamiltonian operator of a scalar particle, while the latter, Eq. (3.49),
describes a particle with spin 1/2.

In case of a particle in an electromagnetic field, we substitute according to
Eq. (3.1), and obtain the Schrödinger equation for a particle with spin moving in
external electric and magnetic fields, termed the Pauli equation,

OH D E , OH D � � . Op � eA/ � � . Op � eA/
2m

C e' . (3.50)

In case of a free particle, the energy values do not differ whether the particle does or
does not have spin. However, as soon as we add the electromagnetic potentials into
the Hamiltonian operator, one has to proceed with more care:

�i�j. Opi � eAi/. Opj � eAj/ D .ıij C i"ijk�k/. Opi � eAi/. Opj � eAj/

D . Opi � eAi/. Opi � eAi/C i"ijk�k
1

2
Œ Opi � eAi, Opj � eAj�

D j Op � eAj2 � e� � B ,

where in the second step we used the fact that the product of two tensor quantities,
one of them being symmetric and the other antisymmetric with respect to the
interchange of two indices, equals zero. In the third step, we performed the following
rearrangement, see Eq. (1.84),

� ie

2
"ijk�k.Œ Opi, Aj�C ŒAi, Opj�/ D � e

2
"ijk�k

�
@Aj

@xi
� @Ai

@xj

�

D �e"ijk�k
@Aj

@xi
D �e�k .r � A/k .

The magnetic interaction is much weaker in comparison to the electrostatic, as
we will shortly see. It suffices thus to consider only the linear term of the vector
potential A,
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j Op � eAj2 D . Op � eA/ � . Op � eA/ ' Op2 � e.A � Op C Op � A/ D Op2 � 2eA � Op .

In the last step we used

Œ Opi, Ai� D �ir � A D 0 .

The first equality follows from Eq. (1.55), the second one from using Coulomb
gauge. We thus finally have the Pauli Hamiltonian in a simplified form

OH ' Op
2

2m
� e

m
A � Op � e

m
OS � BC e' . (3.51)

We now substitute into this Hamiltonian for the vector potential A, magnetic
induction B and scalar potential ' from Eqs. (3.46), (3.48), and (3.8), respectively:

OH D Op
2

2m
� Z˛

r
� e

m

� � OL
4�r3

� e

4�m

�

OS � �8�

3
ı.r/ � 1

r3


 OS � � � 3 n � OS n � �
��

.

(3.52)
In this equation, we introduced the so-called orbital angular momentum

OL D Or � Op , (3.53)

to which we will pay much attention in the next sections.
We now take a closer look on the derived expressions. The first two terms in

Eq. (3.52) describe motion of an electron in a central electrostatic field. From the
previous derivations, it should be evident that r denotes the relative distance of
the electron and the nucleus. One might also suggest we add the kinetic energy
of the nucleus Op2=.2mn/ to these two terms. However, within the center-of-mass
frame, it suffices to substitute mr for me to include the nuclear kinetic energy, as
we saw in Sect. 3.2.1. Therefore, setting m D mr in the first term results precisely
in a Hamiltonian of a system of two particles which are mutually bound by an
electrostatic force. The third term constitutes a scalar product of a nuclear magnetic
moment and an orbital angular momentum of an electron. That is, it characterizes
the interaction of the nuclear spin and orbital angular momentum of an electron,
commonly termed as the spin-other-orbit interaction. The last term—the whole
large parenthesis—describes a relatively complicated spin-spin interaction, as it
contains spins of both the electron and the nucleus.

For the sake of the following, we now introduce an operator of nuclear spin OSp

defined by the substitution

�! �gp
Ze

mp

OSp . (3.54)
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The numerical constant g is the gyromagnetic ratio, and for the instance of a proton,
the hydrogen nucleus, it equals gp D 2.792. In case of elementary particles (such as
an electron), we obtain g D 1 from the Pauli equation (3.50).6 As usual, we divide
the Hamiltonian into two parts: the first one, OH0, comprises the first two terms in
Eq. (3.52), while the other one, OH1, includes the remaining terms. After substituting
from Eq. (3.54) and changing to atomic units, r! rA=mrZ˛, we obtain

OH D OH0 C OH1 ,

OH0 D mr.Z˛/
2

� Op2
A

2
� 1

rA

�

,

OH1 D Z˛gp

memp
.mrZ˛/

3

�

OSp � OL 1

r3
A

C OSe � OSp
8�

3
ı.rA/ � 1

r3
A


 OSe � OSp � 3 n � OSe n � OSp

�	

.

One can readily see that OH0 is of the order of .Z˛/2 while OH1 of .Z˛/4, hence the use

of the perturbation method is justifiable. In addition, the ratio m3
r

memp
D me

me=mp

.1Cme=mp/3

further reduces the relative magnitude of OH1 in comparison to OH0 by a factor of 103,
see Table 3.1.

3.3.3 Hyperfine Splitting of the Hydrogen Ground State

Having laid foundations in general terms, we now illustrate the above presented
theory on an example. Namely, we will calculate the energy of splitting in a hydrogen
atom, i.e., we will consider nucleus as a single proton. Prior to including the magnetic
interactions, each state is at least quadruply degenerate since there are four different
ways of the electron and proton spins orientation. For instance, the ground state can
be any of the following:

j1iDj1sijpCijeCi, j2iDj1sijp�ijeCi, j3iDj1sijpCije�i, j4iDj1sijp�ije�i

or any linear combination thereof. As usual, we calculate the first-order perturbation
to energy as the eigenvalue of the perturbation Hamiltonian which we project into the
subspace of eigenvectors corresponding to the same eigenvalue of the unperturbed
Hamiltonian. Multiplying Eq. (2.11) by the vector h1sj, Eq. (3.35), leads to

Oh1

ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
,

1

2

�


D E1

ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
,

1

2

�


, Oh1 D h1sj OH1j1si . (3.55)

We will elucidate the way we denote the eigenvector of the operator Oh1 later in
Sect. 4.2. We find the operator Oh1 in the coordinate representation,

6The fact that the gyromagnetic ratios of a proton and a neutron do not equal one (or zero,
respectively) was one of the first clues that these two particles are not elementary.
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Oh1 D m3
r

memp
.Z˛/4gp

 

OSp �
Z

 1s

OL
r3
 1sdV C OSe � OSp

8�

3

Z

 1sı.r/ 1sdV

�
Z

 1s
1

r3


 OSe � OSp � 3 n � OSe n � OSp

�

 1sdV

�

. (3.56)

The first integral equals zero since the ground state of hydrogen-like atoms
possesses no angular momentum. In other words, the wave function  1s is
independent of angles (it depends merely on r), while the operator OL, as we will
see later in Eq. (3.74), comprises only differentiation by angles, hence OL 1s D 0.
It follows from the properties of the ı-function that the second integral equals
j 1s.0/j2 D 1=� , see Eq. (3.35). The third integral, sometimes called the mean
value of the tensor interaction, in the state 1s, is also zero due to the angular
integration

Z

 1s
1

r3


 OSe � OSp � 3 n � OSe n � OSp

�

 1s dV

D . OSe/i. OSp/j

Z

 1s.ıij � 3ninj/
1

r3
 1sr

2 dr d˝

D . OSe/i. OSp/j

Z

.ıij � 3ninj/ d˝
Z

j 1sj2 dr

r
D 0 ,

see Eq. (3.47). Substituting into Eq. (3.55) then results in a more appealing equation

� OSe � OSp

ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
,

1

2

�


D E1

ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
,

1

2

�


, (3.57)

where the constant � equals

� D me

me
mp




1C me
mp

�3

8

3
.Z˛/4gp , �SI D R1c

2

˛2

me
mp




1C me
mp

�3

8

3
.Z˛/4gp . (3.58)

The former follows from Eq. (3.56), the latter from Eq. (3.12).
We now commence solving Eq. (3.57). First of all, we find the action of the

operator Oh1 on the four basis states jpXijeYi:

Oh1j1i D � OSe � OSpjeCijpCi D �
�

1

2


 OSeC OSp� C OSe� OSp
C
�

C OSe
z
OSp

z

�

jeCijpCi

D �1

4
jeCijpCi D �1

4
j1i ,

Oh1j2i D � OSe � OSpjeCijp�i D �
�

1

2
je�ijpCi � 1

4
jeCijp�i

�

D �
�

1

2
j3i � 1

4
j2i
�

,

Oh1j3i D � OSe � OSpje�ijpCi D �
�

1

2
jeCijp�i � 1

4
je�ijpCi

�

D �
�

1

2
j2i � 1

4
j3i
�

,
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Oh1j4i D � OSe � OSpje�ijp�i D �1

4
je�ijp�i D �1

4
j4i ,

where we used the identity (1.35) and the action of electron and proton spin operators
is given by Eqs. (1.32), (1.33), and (1.34).

It follows from these equations that only the two states j1i and j4i are eigenstates
of the operator Oh1. The energy correction E1 to the states j2i and j3i, on the other
hand, is not well defined. However, we do not need to lose our heads. The operator
Oh1 mixes the two states j2i and j3iwith each other, therefore their linear combination
should be an eigenstate to this operator. Thus we now face the equation

Oh1.c2j2i C c3j3i/ D E1.c2j2i C c3j3i/ .

Acting with the operator on the states on the lhs and comparing the coefficients for
the individual vectors j2i, j3i, which are mutually orthogonal,7 leads to a system of
linear equations:

�

�

�c2
1

4
C c3

1

2

�

D c2E1 ,

�

�

c2
1

2
� c3

1

4

�

D c3E1 .

If we further require jc2j2 C jc3j2 D 1, the solutions read

c2 D c3 D 1p
2

, E.C/1 D 1

4
� and

c2 D �c3 D 1p
2

, E.�/1 D �3

4
� .

We thus conclude that the interactions of nuclear and electron spin splits the
groundstate energy into two sublevels separated by �. The experimental value
of this splitting was found to be [3]

�exp.p
Ce�/ D 1420.405751767.1/ MHz , (3.59)

which is about a million times smaller than the distance between the first and
second s-state of the hydrogen atom. Therefore, we refer to this effect as the
hyperfine splitting. The theoretical value given by Eq. (3.58) equals �theo D
1418.409 : : : MHz. For muonium, the experimental value reads

�exp.�
Ce�/ D 4463.30288.16/ MHz , (3.60)

7h2j3i D heCj e�ihp�jpCi D 0, see Eq. (1.9).
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while our theory predicts �theo D 4453.838 : : : MHz. Although these two values
do not match each other perfectly (we neglected relativistic corrections and other
details stemming from the nontrivial structure of the proton), their correspondence
is more than satisfactory given the amount of work done. The spectral line at this
frequency, which corresponds to the wavelength 21 cm, is generally known simply
as the hydrogen line, or HI-line. This radiation is highly characteristic of hydrogen,
and therefore many radiotelescopes focus on its presence.8

3.3.4 Classification of States Using the Integrals of Motion

The higher energy level, its energy being �=4, is triply degenerate (a so-called
triplet), while the lower one stands alone (a so-called singlet). Within the
spectroscopic notation, we denote these states as 13s and 11s, respectively.9

Why these very numbers and not any others? We will now discover the reason
and smoothly thus proceed to the next section devoted to the angular momentum.

We know from classical mechanics that certain quantities are the so-called
integrals of motion, that is, they are independent of time. In quantum mechanics,
the Hamiltonian operator determines the time evolution of a system. If we demand
the results of measuring an observable be independent of time, this observable must
necessarily commute with the Hamiltonian. To see this, we let Œ OA, OH� D 0 and
OAjAi D AjAi, and we demand the system be in the state jAi at time t D 0. Any later

in time, the system will be in the state e�i OHtjAi. Now we act with the operator OA
and successively obtain OAe�i OHtjAi D e�i OHt OAjAi D Ae�i OHtjAi. We thus see that the
observable A does not change in time, i.e., it is an integral of motion.

Integrals of motion are of great importance in both classical and quantum
mechanics, as they allow for solving problems that one can solve exactly and
facilitate to great extent those that one can solve only approximately. We have
already encountered both cases. For example, the fact that the operator of the total
linear momentum Op1C Op2 commutes with the Hamiltonian (3.3) enables us to reduce
the Schrödinger equation with this Hamiltonian (3.3) from a six-variable to only a
three-variable problem. In Chap. 2, we exploited the fact that the parity operator is
an integral of motion for the Hamiltonian OH D Op2=2C Ox2=2C ı Ox4. As you recall,
this markedly simplified the problem as one could restrict oneself to the class of
functions with the same parity when looking for eigenstates and eigenvalues. This

8For the very same reason, it was used as a unit of length and time on information plates for
extra-terrestrial civilizations on the probes Pioneer 10, 11 and Voyager 1, 2, and also the program
SETI (Search for Extra-Terrestrial Intelligence) operated on this frequency.
9In light of this finding, one may ask to which of the four 2s � 1s transitions the values in
Table 3.1 correspond. The numbers are spin-averaged values, meaning the spin-spin interaction
was subtracted. Due to the substantially smaller magnitude of the hyperfine splitting in comparison
to the 2s� 1s transition, one can perform that with sufficient precision.
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simplification, as we will see, bears substantially more significance in cases of more
complex problems, such as determining spectra of many-electron atoms.

From classical mechanics we know that the total momentum is an integral of
motion, i.e., is independent of time. It appears therefore reasonable to consider the
operator10

OS D OSe C OSp ,

and find the commutator Œ OS, Oh1�:

Œ OS, Oh1� D Œ OSe C OSp,� OSe � OSp� D Œ OSe
i C OSp

i ,� OSe
j
OSp

j � D �



Œ OSe
i , OSe

j �
OSp

j C OSe
j Œ
OSp

i , OSp
j �
�

D �i"ijk


 OSe
k
OSp

j C OSe
j
OSp

k

�

D �i"ijk


 OSe
k
OSp

j � OSe
k
OSp

j

�

D 0 .

We thus see that the operator of total spin for s-states commutes with the Hamiltonian
(in case of s-states, the spin-other-orbit interaction does not contribute). Obviously,
the operator of total spin commutes also with OH0 because the Hamiltonian contains
no spin-dependent terms. From the relations

Œ OSe
i , OSe

j � D i"ijk
OSe

k ,

Œ OSp
i , OSp

j � D i"ijk
OSp

k ,

Œ OSe
i , OSp

j � D 0

we easily find

Œ OSi, OSj� D i"ijk
OSk . (3.61)

It appears the relation (3.61) be characteristic for any spin. Moreover, as we will
see later, it does hold for any angular momentum. Furthermore, each of any three
operators OSi complying with the relation (3.61) commutes with the operator OS2 D
OS � OS:

Œ OS2, OSi� D Œ OSj
OSj, OSi� D OSjŒ OSj, OSi�C Œ OSj, OSi� OSj D OSji"jik

OSk C i"jik
OSk
OSj

D i"jik. OSj
OSk C OSk

OSj/ D i"jik. OSj
OSk � OSj

OSk/ D 0 , (3.62)

where we used nothing but the commutation relation (3.61).
We thus see that we are able to independently observe three quantities in the case

of our system with the Hamiltonian Oh1 D � OSe � OSp (and that they describe our system

10Precisely speaking, we consider OS D OSe ˝ 1p C 1e ˝ OSp
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to the utmost extent). The three observables are the energy, one of the components of
the angular momentum, and the magnitude of the angular momentum (or its square).
The set f Oh1, OS2, OSzg is commonly known as a complete set of commuting operators.

It follows from the discussion of the Stern-Gerlach experiments that if we can
simultaneously measure any two observables, measuring one of them after the other
cannot change the state of the system it is in after measuring the first one. This
is possible only if the corresponding operators possess common eigenvectors. The
mathematical proof reads as follows.

We assume that

Œ OA, OH� D 0 (3.63)

and that there is only one solution j i to the Schrödinger equation

OHj i D Ej i (3.64)

for a given E. Then acting of the operator equality (3.63) on the state j i and
considering Eq. (3.64) lead to

OH. OAj i/ D E. OAj i/ . (3.65)

It then follows from the comparison of Eqs. (3.64) and (3.65)

OAj i D Aj i ,

that is, the eigenstates of OH and OA must be the same.
In case of degenerate energy E, for instance doubly degenerate,

OHj 1i D Ej 1i , OHj 2i D Ej 2i , (3.66)

we obtain the following relations using the very same arguments as above

OH. OAj 1i/ D E. OAj 1i/ , OH. OAj 2i/ D E. OAj 2i/ . (3.67)

Comparison of Eqs. (3.66) and (3.67) then shows

OAj 1i D c11j 1i C c12j 2i , OAj 2i D c21j 1i C c22j 2i ,

that is, eigenstates of OH and OA can but need not to be necessarily the same. It
holds still, though, that at least their eigensubspaces match (i.e., sets of all linear
combinations of eigenstates corresponding to the same eigenvalue).

What is the eigenvalue of OS2? The following relation must hold
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OS2 D j OSe C OSpj2 D OS2
e C 2 OSe � OSp C OS2

p ,

thus we have

Oh1 D � OSe � OSp D �1

2


 OS2 � OS2
e � OS2

p

�

D �1

2

�

OS2 � 3

2

�

, (3.68)

where the last equality follows from the form of the spin operators (1.21), (1.22),
and (1.23). For reasons we will discuss later, we usually write the eigenvalues of
the operator OS2 in the form S.SC 1/. After substituting them into Eq. (3.68), these
eigenvalues must yield the eigenvalues �=4 and �3�=4, which is satisfied if S
equals 1 or 0, respectively. It further holds that the operator of the spin projection
along the z axis has the same eigenstates. One can verify this easily:

OSzjeCijpCi D . OSe
z C OSp

z /jeCijpCi D
1

2
jeCijpCi C 1

2
jeCijpCi D 1 � jeCijpCi,

OSz
1p
2
.jeCijp�i ˙ je�ijpCi/ D 0 � 1p

2
.jeCijp�i ˙ je�ijpCi/

and

OSzje�ijp�i D .�1/ � je�ijp�i .

We can thus construct a simple table with eigenvalues, see Table 3.2.
One can see that the triple degeneracy of the energy level with the energy deviation

�=4 from the unperturbed ground state is related to the three different values of the
total spin projection along the z axis. If we place the atom into a magnetic field, this
triplet further splits into three different levels (Fig. 3.1). This effect, i.e., splitting of
atom lines in an external magnetic field, is generally known as the Zeeman effect
and we will focus on it later in Sect. 4.4.7.

Fig. 3.1 Hyperfine splitting
and the Zeeman effect

|ψ1s〉

S(S+1)=0

E1=−3Λ/4

S(S+1)=2

E1=Λ/4

spin interactions
(hyperfine)

magnetic
field
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Table 3.2 Eigenvectors of
the square and the projection
onto one of the coordinate
axes of the total spin operator

Spin state Noted as S Sz

jeCijpCi j1, 1i 1 1
1

p

2
.jeCijp�iC je�ijpCi/ j1, 0i 1 0

je�ijp�i j1,�1i 1 �1
1

p

2
.jeCijp�i � je�ijpCi/ j0, 0i 0 0

One can readily see from the table above that we denote the spin states according
to the corresponding eigenvalues of the operators OS2 and OSz.11 That is for example

OSzj1, 1i D j1, 1i , OSzj1, 0i D 0 , OSzj1,�1i D �j1,�1i , (3.69)

OS2j1, mi D 1.1C 1/j1, mi , etc.

We thus showed that two particles with half-integer spins (the so-called fermions)
behave as particles with integer spin (the so-called bosons). This finding is of
tremendous importance and, as we will see later, it is a special case of a more
general rule which states that an even number of fermions behaves like a boson,
while an odd number of fermions like a fermion.

Knowing whether a particle is a fermion or a boson plays an important role in
statistical behavior of a great set of identical particles, as we will discuss later in
this book. Generally speaking, fermions obey the Pauli exclusion principle, hence
no two fermions may exist in the same state. This fact, for example, stands behind
the chemical properties of atoms. On the other hand, the Pauli exclusion principle
does not limit bosons in any way. At very low temperature, bosons exists in the same
quantum state, which in turn allows for phenomena such as superconductivity and
superfluidity.

We now introduce the ladder operators OS˙ D OSe˙ C OSp
˙, and easily find from

Table 3.2 and Eqs. (1.33) and (1.34) that

OSCj1, 1i D 0 , OSCj1, 0i D p2j1, 1i , OSCj1,�1i D p2j1, 0i , (3.70)

OS�j1,�1i D 0 , OS�j1, 0i D p2j1,�1i , OS�j1, 1i D p2j1, 0i . (3.71)

These relations prove indeed useful in the next chapter.

11A more accurate notation of these states would be
ˇ
ˇj, m,

�
1
2 , 1

2

�˛

where the halves stress that these
states stem from two particles with spin 1=2 each, see Sect. 4.2.
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S D 1

Consider the SG experiments for a beam of particles with spin 1. One
can easily see that magnetic field splits the particle beam into three
depending on their spin projection along the direction of the magnetic
field. We now ask the very same question as in Exercise 1: if we assume
only particles with spin projection +1 leave the first S-G apparatus, what
is the probability of finding projection +1 at the second apparatus which
is rotated by an arbitrary solid angle with respect to the first apparatus?

Exercise 5: Projection of Spin S D 1 I

To the surprise of the kind reader, we will encounter the solution to this problem
again later in Sect. 6.2.5.

S D 1

We now assume that only particles with spin projection 0 exit the first
apparatus. The second apparatus, rotated by 90ı with respect to the first
one, catches particles with spin projection 0 along the new direction.
What is the probability of detecting a particle with spin projection 0 at the
third apparatus, which is placed in the same direction as the first one?
Note: The probabilities of transitions of a system from a state with spin
projection 0 along the z-axis to a state with spin projection 1 along the x-
axis and from the same initial state to a state with spin projection 0 along
the x-axis do not equal. Hence neither do the corresponding amplitudes.

Exercise 6: Projection of Spin S D 1 II

3.4 Orbital Angular Momentum

3.4.1 Significance of Angular Momentum

We commence this chapter by revising our notation: OS represents the spin operator
and OL the orbital angular momentum operator (for example of an electron in an
atom), and we will use OJ for a general angular momentum operator.

Angular momentum is of great importance already in classical mechanics. Finding
the vector product of the Newton equation (we use atomic units in this section)

dp
dt
D �rV.r/ D �n

dV

dr
, p D dr

dt
, (3.72)
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with the position vectors r leads to

d

dt
L D 0 , L D r � p , (3.73)

where we use

r � dp
dt
D d

dt
.r � p/ and � r

dV

dr
n � n D 0 .

This conservation law allows us to transform the three-dimensional equation (3.72)
into a two-dimensional one. We assume that at the initial time t D 0 we have z D 0
and Pz D 0. It follows thereof Lx D .yPz� zPy/ D 0 and Ly D .zPx� xPz/ D 0. However,
both coordinates x and y and velocities Px and Py may acquire any value at arbitrary
times. Therefore, the components Lx and Ly are conserved only if we have z D Pz D 0
for all times.

In quantum mechanics one may thus expect the conserved components of angular
momentum (3.53)

OLi D "ijk Oxj Opk D �i"ijkxjrk D �i"ijkrnj

�

nk
d

dr
C r

n
k

r

�

D �i"ijknjrn
k (3.74)

to commute with any Hamiltonian operator with potential that depends only on the
distance from the source,

Œ OL, OH� D 0, OH D Op
2

2
C V.Or/ , (3.75)

and that it will be an indeed precious piece of information.
We see from Eq. (3.74) that the components of the angular momentum operator

depend only on angular variables. Substituting for Op2 from Eq. (3.21) into Eq. (3.75)
shows that the only angle-dependent operator in the Hamiltonian is the operator

� .rn/2 D OL � OL D OL2 , (3.76)

as follows from Eqs. (3.18) and (3.74). However, the components of the angular
momentum operator commute with this operator. Why? In Eq. (3.62) we showed
that any two operators complying with the commutation relation (3.61)

Œ OLi, OLj� D i"ijk
OLk , (3.77)

also satisfy

Œ OL, OL2� D 0 . (3.78)
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One can easily check the commutation relations (3.77) by substituting from the
definition (3.74) and using the canonical commutation relations (1.54).

We see from Eqs. (3.75) and (3.78) that components of angular momentum
commute with both the operator of the square of the angular momentum and the
Hamiltonian for a spherically symmetric potential. On the other hand, Eq. (3.77)
shows that the components do not commute mutually. This situation is analogous to
that of the hyperfine splitting discussed in the previous section. We can measure the
energy, the magnitude of angular momentum, and only one of the angular momentum
components. The operators f OH, OL2, OLzg form a complete set of commuting operators
for a spinless particle moving in a spherically symmetric potential. Instead of a
general spherically symmetric potential V.r/, we henceforth focus on the Coulomb
potential which is of a particular interest to us

V.r/ D �1

r
.

We have already discussed in the previous section that one can find common
eigenvectors for a complete set of commuting operators:

OHjn, l, mi D � 1

2n2
jn, l, mi , (3.79)

OL2jn, l, mi D l.lC 1/jn, l, mi (3.80)

and

OLzjn, l, mi D mjn, l, mi , (3.81)

where n, l, and m are called the principal, orbital, and magnetic quantum numbers,
respectively. We write eigenvalues of the energy operators and of the operator of
angular momentum magnitude in a form that will prove indeed useful, see the
discussion in Sect. 3.2.5. We may certainly do so for one can write any negative
real number as �.2n2/�1 where n is a real number, and any positive real number as
l.lC 1/, where l is a real number. We now rewrite these equations in the coordinate
representation. After substituting Eqs. (3.21) and (3.76) into the Hamiltonian (3.75),
we obtain from the first equation (3.79) the equation

"

�1

2

 

@2

@r2
C 2

r

@

@r
�
OL2

r2

!

� 1

r

#

 nlm D � 1

2n2
 nlm . (3.82)

In spherical coordinates, the operators OLz and OL2 are independent of the radial variable
r, see Eq. (3.74). Separating the radial and angular parts of the wave function

hrjn, l, mi D  nlm.r,# ,'/ D Rnl.r/Ylm.# ,'/ , (3.83)
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and using the fact that the operators OL2 a OLz act only on the angular part of the wave
function, the radial part drops out from Eqs. (3.80) and (3.81):

OL2Ylm D l.lC 1/Ylm (3.84)

and

OLzYlm D mYlm . (3.85)

The functions Ylm are commonly known as spherical harmonics. They are orthogonal
to each other as they are eigenfunctions of Hermitian operators:

hl, mj l0, m0
˛ D

Z

hl, mjnihnj l0, m0
˛

d˝ D
Z

Yl,m.n/�Yl0,m0.n/ d˝ D ıl,l0ım,m0 .

(3.86)

For historical reasons, we denote the states corresponding to the orbital quantum
number of values l D 0, 1, 2, 3, 4 as s, p, d, f , g.

After substitution of Eq. (3.84) into Eq. (3.82), integration over the angles and
use of the orthonormality of the spherical harmonics (3.86), we finally obtain

�

�1

2

�
d2

dr2
C 2

r

d

dr
� l.lC 1/

r2

�

� 1

r

	

Rnl D � 1

2n2
Rnl . (3.87)

We thus see that integrals of motion, namely components of angular momentum,
allow us to reformulate the three-dimensional problem (3.9) as three one-dimensional
ones: (3.84), (3.85) and (3.87).

3.4.2 Angular Dependence of p-States

We now find the components of angular momentum in the coordinate representation
and then derive thereof the shape of p-states using the relations (3.69), (3.70),
and (3.71). As we will see later in this book, see Sect. 4.1, the relations (3.69), (3.70),
and (3.71) hold for any type of angular momentum, irrespective of its origin.
However, for the purpose of this section, we will only assume it without proof.

By substituting Eqs. (3.14) and (3.16) in Eq. (3.74), we obtain

OLz D �i
@

@'

and

OL˙ D OLx ˙ i OLy D e˙i'

�

˙ @

@#
C i cotg#

@

@'

�

. (3.88)
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We have thus transformed the eigenvalue problem (3.85) into a differential equation
for Ylm,

OLzYlm D �i
@Ylm

@'
D mYlm ) Ylm.# ,'/ D Plm.#/e

im' . (3.89)

The wave function, directly proportional to Ylm, must be an unambiguous function of
space coordinates. Therefore, Ylm, as a function of angles # and ', must be invariant
with respect to the interchange ' ! ' C 2� , that is, to a rotation by a full circle:

Ylm.# ,'/ D Ylm.# ,' C 2�/ D Ylm.# ,'/e2� im . (3.90)

We thus see that m must be an integer so that the exponential equals one. Therefore,
in the case of orbital angular momentum, the magnetic quantum numbers m may
be only an integer. Later, see Sect. 4.1, we show that the same applies also to the
quantum numbers l.

We now determine the functions Plm.#/, and hence also the whole functions
Ylm.# ,'/ for l D 1 and successively for m D �1, 0, 1. To start with, according to
Eq. (3.71) we have

OL�j1,�1i D 0) OL�Y1,�1.# ,'/ D 0 .

Substitution for OL� from Eq. (3.88) and Y1,�1.# ,'/ D P1,�1.#/ei.�1/' results in a
differential equation for P1,�1

dP1,�1

d#
D cotg# P1,�1 ,

with the solution

P1,�1 D K sin# .

We find the normalization constant K from the normalization requirement

1 D h1,�1j1,�1i D
Z

Y�1,�1Y1,�1 d˝ D K2
Z

sin2 # d˝ D 8�

3
K2 ,

hence

Y1,�1.# ,'/ D
r

3

8�
sin# e�i' . (3.91)

We easily obtain other functions using Eq. (3.70):
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Y1,0 D 1p
2
OLCY1,�1 D 1p

2
ei'

�
@

@#
C i cotg#

@

@'

�r

3

8�
sin# e�i' D

r

3

4�
cos# ,

(3.92)

Y1,1 D 1p
2
OLCY1,0 D 1p

2
ei'

�
@

@#
C i cotg#

@

@'

�r

3

4�
cos# D �

r

3

8�
sin# ei' .

(3.93)

As physicists, we are satisfied. We have found the common eigenfunctions of the
operator of angular momentum magnitude and of its third components for spin 1 in
the coordinate representation. Absolute values of these functions then determine the
angular probability distribution of the electron occurrence in a p-state.

Chemists, on the other hand, seek a trial function that describes a molecule as a
linear combination of atomic functions. They give up the requirement these functions
be eigenfunctions of OLz in favor of a real basis

˚

px, py, pz
�

:

px D � 1p
2
.Y1,1 � Y1,�1/ D

r

3

4�
sin# cos' ,

py D 1

i
p

2
.Y1,1 C Y1,�1/ D

r

3

4�
sin# sin' ,

pz D Y1,0 D
r

3

4�
cos# .

There is a general symmetry, see, e.g., Eqs. (3.91) and (3.93),

Yl,�m D .�1/mY�l,m , (3.94)

therefore, one can always find a real basis for d, f and other orbitals. One can also
graph the angular distribution of the squares of the states px, py, pz and obtain polar
diagrams as in Fig. 3.2.

Fig. 3.2 Left to right: Graphs of p2
x , p2

y and p2
z
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3.4.3 Accidental Degeneracy

The energy of stationary states of any spherically symmetric potential is independent
of the magnetic number m, as one can see in Eq. (3.87). In case of the Coulomb
potential, we encounter another degeneracy, the so-called accidental degeneracy:
energy does not depend on the orbital quantum number l either. We will show the
reasons later in Chap. 4.

After direct substitution in Eq. (3.87) one can easily verify that for the first excited
state n D 2, there is a solution for the s-state (l D 0)

R20.r/ D R2s.r/ D 1p
2




1 � r

2

�

e�r=2 (3.95)

and also for the p-state (l D 1)

R21.r/ D R2p.r/ D 1

2
p

6
re�r=2 . (3.96)

However, we will leave a general solution of Eq. (3.87) for the next chapter.

3.5 Fine Structure

The sodium spectrum constitutes two very close yellow spectral lines at around
the wavelength 589 nm arising from the splitting of a single line of the transition
3p! 3s. This splitting stems from the splitting of the 3p energy level due to the so-
called spin-orbit interaction, that is, an interaction of the outer (orbital) and intrinsic
(spin) angular momentum of an electron. As we have already mentioned, an electron
behaves as an electric monopole and a magnetic dipole. Since an electron carries a
charge, its orbital motion around the nucleus gives rise to a magnetic field, which in
turn affects the magnetic dipole. This spin-orbital interaction is a relativistic effect,
hence we will derive it from the Dirac equation, a relativistic equation for a particle
with spin 1/2. However, instead of the splitting of sodium 3p level, we consider
rather splitting of the hydrogen 2p level.12

3.5.1 Relativistic Corrections

It has been already Schrödinger who attempted to incorporate relativistic ef-
fects into quantum mechanics. Moreover, he obtained the simplest relativistic

12One will be surely able to solve the sodium case after reading Chap. 5.
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quantum-mechanical equation, known as the Klein-Gordon equation, prior to the
“Schrödinger” equation. He started by writing the relation between energy and
momentum as E2 D m2 C p2, substituted Op for p and thus obtained

. Op2 C m2/j i D E2j i . (3.97)

However, this equation is inadequate for the description of a particle with spin one
half. The reason is, Eq. (3.97) does not include any spin-dependent term at all.

In order to introduce spin into Eq. (3.97), we use a similar trick as in Eq. (3.49).
We write

E � m D E2 � m2

EC m
D p2

EC m
D � � p 1

EC m
� � p ,

exactly as we did in Eq. (3.50). The relativistic equation for a free particle with spin
reads then

.E � m/ D
�

� � Op 1

EC m
� � Op

�

 .

We perform the substitution (3.1) for a particle in an external electromagnetic field
and thus obtain the Dirac equation for a two-component wave function of a particle
moving in and external electromagnetic field

.E � e' � m/ D
�

� � . Op � eA/
1

E � e' C m
� � . Op � eA/

	

 . (3.98)

The first and second components of the function  .r/ determine the amplitude of
the probability density that a particle is located the point r and the spin projection
along the z equals C 1

2 and � 1
2 , respectively. We call such wave functions spinors.

One usually encounters the Dirac equation in a somewhat different form, namely
for a four-component wave function. However, the above presented form serves
the purposes of this section much better. We will revisit the Dirac equation again
in Chap. 7 where we will use the more common form, see Eq. (7.19), and show its
connection to the form (3.98).

We denote�E D E�m, which represents the total energy without the rest mass,
that is, �E stands for the bond energy. We then obtain

.�E � e'/ D
�

� � . Op � eA/
1

�E � e' C 2m
� � . Op � eA/

	

 .

We use the identity

OA OC OA D 1

2
.f OA2, OCg � Œ OA, Œ OA, OC��/ (3.99)
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to rearrange the bracket. We thus have

2.�E � e'/ D
��

Œ� � . Op � eA/�2,
1

�E � e' C 2m

�

�
�

� � . Op � eA/,
�

� � . Op � eA/,
1

�E � e' C 2m

		�

 .

The curly brackets denote the so-called anticommutator of two operators OA and OB

f OA, OBg D OA OBC OB OA .

The rest energy of an electron m substantially exceeds the difference of its bond and
potential energy �E � e'. The ionization energy of the hydrogen atom in a ground
state amounts to 13.6 eV, while the rest mass of an electron equals 0.511 MeV, and
the mean potential energy is of the same order of magnitude as the bond energy.
This thus justifies the approximation

1

2mC�E � e'
' 1

2m

�

1 � �E � e'

2m

�

, (3.100)

where we considered the first two terms of the expansion of this fraction. We now
substitute this expansion into our equation. The first of the two terms disappears
within the commutator for it is a constant that commutes with both the momentum
and the Pauli matrices. Thus we have

�E D
�
Œ� � . Op � eA/�2

2m
C e' � 1

8m2

�˚

. Op � eA/2,�E � e'
�

C �

� � . Op � eA/,
�

� � . Op � eA/, e'
�� �

�

 . (3.101)

Keeping only the first two terms on the rhs of this equation, that is, we neglect the
terms proportional to m�2 and higher powers of m, we obtain the already discussed
Pauli equation (3.50)—the nonrelativistic equation for a particle with spin 1=2.

Since Eq. (3.101) is only approximate, see Eq. (3.100), there is no point in finding
its exact solution, hence we will seek its solution employing the perturbation method.
As has been already pointed out, the magnetic interactions are much smaller than
the electrostatic one. Thus, we consider further only the effect of the latter, i.e., we
set

A D 0 .

Furthermore, we write the last equation in a symbolic form

�E D . OH0 C 
 OH1/ ,
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where OH0 denotes the nonrelativistic Hamiltonian and OH1 the relativistic correction

OH0 D
Op2

2m
C e' , OH1 D � 1

8m2

�˚ Op2,�E � e'
� C �� � Op,

�

� � Op, e'
���

and 
 is a formal expansion parameter. We will see that for hydrogen-like atoms

 D .Z˛/2. Even for a hydrogen-like 91 times ionized uranium, Z D 92, the factor
equals .Z˛/2 ' 0.45. We now find the first-order corrections to the nonrelativistic
energies

�E ' �E0 C 
�E1 ,  '  0 C 
 1 ,

where �E0 and  0 stand for the nonrelativistic energies and wave functions

.�E0 � e'/ j 0i D
Op2

2
j 0i . (3.102)

The expression for first-order corrections, Eq. (2.11), reads

. OH0 ��E0/j 1i D .�E1 � OH1/j 0i .

Multiplying this equation with h 0j leads to

�E1 D h 0j OH1j 0i D h 0j OHrelj 0i , (3.103)

OHrel D �
Op4

8m3
� 1

8m2

�

� � Op,
�

� � Op, e'.r/
��

, (3.104)

where we substituted from Eq. (3.102) for �E0 � e'.
We would have obtained the first term also had we treated the Klein-Gordon

equation for a scalar particle in an external electromagnetic field with perturbation
method. This term expresses the dependence of the inertial mass of an electron on
its velocity. In the framework of classical physics, one can obtain this term from
the expansion of the expression

p

p2 C m2 ' mC p2=.2m/ � p4=.8m3/C : : :. The
second term captures the effect of spin. It is advantageous to further rearrange it

�

� � Op,
�

� � Op, V.r/
�� D �i�j

� Opi,
� Opj, V

��C ��i, �j
� � Opj, V

� Opi (3.105)

D � Opi,
� Opi, V

��C 2i"ijk�k
� Opj, V

� Opi

D �r2.V/ � 4i OS � �Œ Op, V� � Op� .

In the first equality, we used the identity

Œ OA OB, OC� D OAŒ OB, OC�C Œ OA, OC� OB ,
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where OA D � , OB D Op and OC contains the remaining terms. In the second step we
exploited the identity for the Pauli matrices (1.25) and in the third we used Eqs. (1.55)
and (1.24).

We now apply the foregoing considerations to the specific case of Coulomb
potential

e' D �Z˛

r
.

We make transition to atomic (dimensionless) units, namely set r D rA=Z˛m, Op D
OpAZ˛m. The expansion of the bond energy now takes the form

�E D m.Z˛/2" , " ' "0 C .Z˛/2"1 ,

where "0 is the nonrelativistic energy in the atomic units, Eq. (3.24). It follows for
the Coulomb potential from Eq. (3.105)

�

� � Op,

�

� � Op,�1

r

		

D �4�ı.r/ � 4
OS � OL
r3

, (3.106)

where we used Eqs. (3.6)–(3.8) in the first term and Eqs. (3.15) and (3.74) in the
second term. We substitute the last equation into Eq. (3.103) and from Eq. (3.102)
preferably use the term with energy rather than momentum. We thus have an
expression for the first-order corrections to hydrogen-like atoms given by relativistic
effects

"1 D 1

2
h 0j

 

�
�

"0 C 1

rA

�2

C �ı.rA/C
OS � OL
r3

A

!

j 0i . (3.107)

3.5.2 Fine Splitting of the Energy Level n D 2

When considering the hydrogen atom in the nonrelativistic approximation, the state
2p jn D 2, l D 1, mij˙i is hextuply degenerate: three times for the orbital angular
momentum projections (m D 1, 0, 1) and twice for the electron spin orientation.
For the purpose of this section, we neglect the effects of the nuclear spin, as they
are much smaller than the spin-orbit interaction, see Sect. 3.6. The first two terms
in OH1, see Eq. (3.107), act on all these degenerate levels equally. The only term
distinguishing between them is the last one. Since we are concerned only with the
splitting of the 2p state at this moment, we will calculate only the expression

h 0j
OS � OL
2r3
j 0i D 1

2

Z 1

0
r2R2

2p

1

r3
dr

�

j, m,

�
1

2
, 1

�ˇ
ˇ
ˇ
ˇ
OS � OL

ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
, 1

�
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D 1

48

�

j, m,

�
1

2
, 1

�ˇ
ˇ
ˇ
ˇ
OS � OL

ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
, 1

�


, (3.108)

where we separated the radial and spin-angular degrees of freedom

hrj 0i D R2p.r/

ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
, 1

�


.

The vector
ˇ
ˇj, m,

�
1
2 , 1
�˛

is an eigenvector of the operator OS � OL which we are now
about to find. We will explain the notation of this vector later in Sect. 4.2.

We use Eq. (1.35) to find how the operator OS � OL acts on the direct product of
the orbital j1, mi and spin j˙i states. To determine the action of spin operators, we
employ Eqs. (1.32), (1.33) and (1.34), and for orbital operators Eqs. (3.69), (3.70),
and (3.71), where we substitute OL for OS. We thus obtain the following relations:

jIi D j1, 1ijCi OS � OLjIi D 1

2
jIi ,

jIIi D j1, 1ij�i OS � OLjIIi D �1

2
jIIi C 1p

2
jIIIi ,

jIIIi D j1, 0ijCi OS � OLjIIIi D 1p
2
jIIi ,

jIVi D j1, 0ij�i OS � OLjIVi D 1p
2
jVi ,

jVi D j1,�1ijCi OS � OLjVi D �1

2
jVi C 1p

2
jIVi ,

jVIi D j1,�1ij�i OS � OLjVIi D 1

2
jVIi .

The states jIi and jVIi are eigenstates of this operator with the eigenvalue of 1
2 . The

other states mix only in pairs (jIIi with jIIIi and jIVi with jVi) so one can expect the
eigenvectors to be linear combinations of each of the pairs. We find the coefficients:

OS � OL .c2jIIi C c3jIIIi/ D 
 .c2jIIi C c3jIIIi/ ,

where on the lhs we insert from the above found expressions

c2

�
1p
2
jIIIi � 1

2
jIIi
�

C c3
1p
2
jIIi D c2
jIIi C c3
jIIIi .

We compare the coefficients for each of the orthogonal vectors and obtain the
eigenvalue problem:

 � 1
2

1p
2

1p
2

0

!�
c2

c3

�

D 

�

c2

c3

�

.
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Imposing the normalization requirement jc2j2 C jc3j2 D 1, the solutions read


 D 1

2
, c2 D 1p

3
, c3 D

r

2

3

and


 D �1 , c2 D
r

2

3
, c3 D � 1p

3
.

We thus have the eigenstates

ˇ
ˇII
˛ D 1p

3
jIIi C

r

2

3
jIIIi and

ˇ
ˇIII
˛ D

r

2

3
jIIi � 1p

3
jIIIi

with the eigenvalues 1
2 and �1, respectively. In a similar manner, we obtain

symmetric relations for the other pair

ˇ
ˇV
˛ D 1p

3
jVi C

r

2

3
jIVi and

ˇ
ˇIV
˛ D

r

2

3
jVi � 1p

3
jIVi ,

again with the eigenvalues 1
2 and �1, respectively.

We now revise our findings. The spin-orbital interaction splits the initially
hextuply degenerate state into a quadruply and a doubly degenerate states, commonly
referred to as a quadruplet and a doublet, respectively. The splitting of the energy
level amounts to "1 D 1

48

�
1
2 � .�1/

� D 1
32 in atomic units. We can easily find the

energy in electronvolts by returning to E, namely

�E D "1m.Z˛/4 .

The difference in terms of frequency equals, according to Eq. (3.12),

�� D R1c
�E

m ˛2

2

D R1c
Z4˛2

16
.

For the hydrogen atom (Z D 1) we find that ��theo D 10,949 MHz, while the
experimental value is [3]

��exp.2p3=2 � 2p1=2/ D 10,969.041475 .99/MHz (3.109)

Once again, we have arrived at a reasonable match. The wavelength of the radiation
that arises from the transition between these two states then equals approximately
2.7 cm.
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3.5.3 Classification of States Using the Integrals of Motion

As in the case of the spin-spin interaction, we can ask why one of the levels is
quadruply degenerate while the other only doubly. We introduce an operator of the
total angular momentum and its square

OJ D OS C OL , OJ2 D OL2 C OS2 C 2 OL � OS .

We then find that

OL � OS D 1

2


OJ2 � OL2 � OS2
�

. (3.110)

Since the orbital angular momentum of our system is l D 1, we have l.lC1/ D 1.1C
1/ D 2 and similarly for the square of the electron spin S.SC 1/ D 1

2

�
1
2 C 1

� D 3
4 .

We also know that OL � OS should equal one half in four cases and minus one in the
other two cases

OL � OS
ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
, 1

�


D 1

2

�

j.jC 1/ � 11

4

� ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
, 1

�


D
(

1=2

�1

ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
, 1

�


.

(3.111)

Therefore, the eigenvalue of the operator OJ2 must necessarily equal either

j.jC 1/ D 15

4
D 3

2

�
3

2
C 1

�

,

or

j.jC 1/ D 3

4
D 1

2

�
1

2
C 1

�

.

In other words, from an outside point of view, the system behaves either as a particle
with spin 3

2 or 1
2 . From the action of the operator OJz D OLz C OSz on the eigenvectors

of the operator OL � OS we easily find that the quadruple degeneracy of the higher
energy level arises from the existence of four states with four possible projections
� 3

2 ,� 1
2 , 1

2 , 3
2 of the total angular moment along the z-axis. The doubly degenerate

lower level, on the other hand, results from the existence of two states with two
possible projections � 1

2 , 1
2 along the z-axis. The spectroscopic notation of these

spectral lines is derived from it, namely 2p3=2 for the former and 2p1=2 for the
latter.
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Calculate the expression (3.107) for the states 2s1=2 and 2p1=2. Consider

hrj2s1=2
˛ D R20.r/Y00.n/jCi

for the former and

hrj2p1=2
˛ D R21.r/

"r

2

3
Y11.n/j�i � 1p

3
Y10.n/jCi

#

for the latter.

Exercise 7: Fine Splitting

3.6 Hamiltonian of Two Particles with Precision to ˛4

In this section, we summarize and complete individual corrections to the
Hamiltonian (3.3). We focus on those which we discussed in this chapter and which
contribute to the spacing of the energy levels of atoms in the order of ˛4.

We used hydrogen-like atoms as an example to illustrate how the nonrelativistic
Hamiltonian constituted by the sum of kinetic energy of particles and electrostatic
potential energy defines the gross structure of atomic spectra. The spacing of the
energy levels caused by this Hamiltonian is proportional to ˛2, see, e.g., Eq. (3.10).
To comprehend finer details of atomic spectra, one needs to take into consideration
magnetic interactions and effects of relativistic kinematics as well. The contribution
of these effects to the energy splitting of atomic energy levels is suppressed by
the factor of at least ˛2 in comparison to the nonrelativistic Hamiltonian. The
magnetic effects arising from the nuclear spin are further diminished by the ratio
of the electron and nuclear masses me=mp when compared to those of relativistic
kinematics. In the case of more complicated atoms, such as helium, the interaction of
an electron with spins of the other electrons reaches the same order as the effects of
relativistic kinematics. Therefore, both the interaction of electron spin with orbital
angular momentum and the spin-spin interaction among electrons determine the fine
structure of such atoms. For clarity, it is definitely worth listing all terms which
contribute to the energy spacing of atomic levels to the order of ˛4 in two-electron
atoms. One surely then manages oneself to generalize them for many-electron atoms.

Although we have already considered magnetic interactions, one needs to include
also quantum analogy of the interaction of two currents to achieve precision of the
order of ˛4. To do this properly, we need to consider a more accurate expression for
vector potential than Eq. (3.37) which we obtained in the steady flow approximation.
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We thus begin by finding the magnetic field of a moving charge and neglect the
retardation effect. Subsequently, we list all terms that contribute to the ˛4-order-
precise Hamiltonian for two electrons in an external electrostatic field.13 Finally, we
conclude this chapter by discussing the two most interesting cases, namely helium-
and hydrogen-like atoms.

3.6.1 Magnetic Field of a Moving Charge

To start with, we rewrite Eq. (3.2) for vector potential into a more convenient form.
Formally, one can solve the Poisson equation for electrostatic potential

' D �r�2
 .

Using the continuity equation for charge density

@


@t
Cr � j D 0 , (3.112)

we can write the time derivation of the gradient of the potential in the form

r @'
@t
D �r 1

r2

@


@t
D r 1

r2
r � j .

We then substitute this mysteriously looking set of triangles on the rhs of Eq. (3.2)
for vector potential

�r2A.x/ D j?.x/, j? D
�

1 � rr�r2

�

j .

Note that acting with the divergence operator on both sides of the last equation yields
automatically zeros on both sides. This is unlike Eq. (3.37) where the action of the
divergence operator resulted in a condition for the current (3.43).

We can express a general solution to the last equation in terms of a time-
independent Green function (3.40) as, see Eq. (3.39),

A.r1/ D
Z

d3r2G.r1, r2/j?.r2/ D
Z

d3r2G.r1, r2/

�

1 � r2r2�
r2

2

�

j.r2/ .

(3.113)

We now write the time-independent Green function using its Fourier transform

13A kind reader surely manages to generalize these findings for the case when an external magnetic
field is present.
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G.r1, r2/ D 1

4�jr1 � r2j D
1

.2�/3

Z
d3k
!2

eik�.r1�r2/ . (3.114)

One can easily verify that this equation holds by substituting the last equation and
the three-dimensional generalization of (1.74)

ı.r1 � r2/ D
Z

d3k
eik�.r1�r2/

.2�/3
(3.115)

into Eq. (3.38).
We now substitute for the current density j its Fourier transform

j.r/ D 1

.2�/3

Z

d3keik�rj.k/ (3.116)

and the second form of the Green function into Eq. (3.113):

A.r1/ D
Z

d3r2

Z
d3k1

.2�/3

Z
d3k2

.2�/3
eik1�.r1�r2/

!2
1

�

1 � k2k2�
!2

2

�

j.k2/e
ik2�r2 .

One readily sees that the Fourier transform of the mysteriously looking set of triangles
is a transverse projector. It isolates only the part of the wave function which changes
perpendicularly to the line of sight

�

1 � kk�
!2

�

k D 0. Therefore, one can detect only
the part of electromagnetic field which results from a charge accelerating in the plane
that is perpendicular to the direction connecting the positions of the charge and the
observer.

Integration over r2 yields a ı-function in momenta, see Eq. (3.115), therefore

A.r1/ D
Z

d3k
.2�/3

eik�r1

!2

�

1 � kk�
!2

�

j.k/ .

We assume the current is constituted merely by a point particle

j.r2/ D e2v2ı.r2 � q2/ .

Fourier transformation of the current caused by a point particle reads, see Eq. (3.115),

j.k/ D ev2e�ik�q2 .

After its substitution we find for the vector potential

A.r1/ D
Z

d3k
.2�/3

eik�r12

!2

�

1 � kk�
!2

�

e2v2 . (3.117)
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We have thus obtained a classical result for the vector potential caused by a moving
point particle where we neglected the time retardation.

We further rearrange this result. As one may notice, we need to find the integral
over wave vectors k:

Z
d3k

.2�/3!2
ei!rn���i�j D 1

4�r
.Aıij C Bninj/ . (3.118)

where we changed to spherical coordinates r D rn and k D !�, and A and
B are numbers we are about to find. We arrived at this equation employing the
following reasoning. There is an object with two Cartesian indices on the lhs which
is symmetrical therein. On the rhs, the simplest such object constituted by available
indexed objects is the Kronecker ıij and a direction vector ni. We find the factor 1

r

from the substitution ! ! !=r and for esthetic reasons we factor out 1
4� . We now

find the numbers A and B by calculating the integrals for two specific cases.
Firstly, if i D j (note we are using the Einstein summation convention!) then

3AC B D 1 .

Secondly, if i D j D 3 and n D .0, 0, 1/ then14

AC B D 0 .

The desired integral then equals

.3.118/ D 1

4�r

ıij � ninj

2
.

After substitution of this integral into the expression (3.117) we eventually obtain
the sought vector potential in the form

14In this case
Z

d3k
.2�/3!2

ei!r cos# cos2 # D 1

.2�/3r

Z 2�

0
d'

Z
1

0
d!

Z �

0
d# sin# ei! cos# cos2 #

D 1

.2�/2r

Z
1

0
d!

�

� d2

d!2

�Z �

0
d# sin# ei! cos#

D �2

.2�/2r

Z
1

0
d!

d2

d!2

sin!

!
D 0 .

The last equality holds since

�
d

d!

sin!

!

	
1

0
D 0 .



102 3 The Hydrogen Atom and Structure of Its Spectral Lines

A.r1/ D e2

4�

1

2r12
Œv2 C n12 n12 � v2� . (3.119)

Here, n12 represents a unit vector in the direction r12 D r1 � r2.

3.6.2 Hamiltonian of Two Particles in an External
Electromagnetic Field

If we consider both magnetic and relativistic effects, we obtain the Hamiltonian for
two particles moving in an external field in the form

OH D OH0 C OH1, OH1 D . OH1/mag C . OH1/rel .

Here, OH0 stands for the sum of kinetic energies of both particles and of the
electrostatic interaction which comprises both the mutual interaction of the two
particles and their interaction with an external field

OH0 D
Op2

1

2m1
C Op2

2

2m2
C e'.r1, r2, r12/ , (3.120)

where r12 D r1 � r2. The term . OH1/mag captures the most important magnetic
interactions. We find them by substitution into the Pauli Hamiltonian (3.51)

. OH1/mag D � e1

m1

h

A.r1/ � Op1 C g1
OS1 � B.r1/

i

,

for the vector potential from Eqs. (3.46) and (3.119) and by interchange (3.54) and
v2 ! Op2=m2

15

A.r1/! e2g2

4�m2

OS2 � r12

r3
12

C e2

4�m2

1

2r12

� Op2 C n12 n12 � Op2
�

.

and similarly by substitution for the magnetic induction from Eq. (3.48). A kind
reader surely noticed that we replace all of the ratios e=m, which appear in front
of spin operators, by eg=m so that the expression holds for nonelementary particles
as well.16 The term . OH1/rel comprises the most important effects of relativistic

15The placing of the operators Op1 and Op2 is arbitrary as both .Op1/i and .Op2/j commute with the
expression .ıij C .n12/i.n12/j/=2r12. The reason thereof is we use the gauge r � A D 0.
16We will show later in Chap. 7 that even when the particles indeed are elementary, the gyromagnetic
ratio g differs from 1 as a result of effects of quantum electrodynamics. The deviation is very small,
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kinematics which we can find by summing the Hamiltonians (3.104) for each particle.

The total Hamiltonian OH1 constitutes a sum of several terms

OH1 D . OH1/imvC. OH1/conC. OH1/soC. OH1/sscC. OH1/sstC. OH1/sooC. OH1/cc , (3.121)

where

. OH1/imv D �
Op4

1

8m3
1

� Op
4
2

8m3
2

(3.122)

results from the dependence of the inertial mass of the particle on its velocity,

. OH1/con D e1

8m2
1

r2
1' C

e2

8m2
2

r2
2'

is the spin-independent “contact” term, although stemming from the spin of a particle,

. OH1/so D i

2

�
e1

m2
1

OS1 � .Œ Op1,'� � Op1/C e2

m2
2

OS2 � .Œ Op2,'� � Op2/

�

(3.123)

is a term describing the spin-orbit interaction,

. OH1/ssc D �e1e2g1g2

m1m24�
OS1 � OS2

8�

3
ı.r12/ (3.124)

represents the “contact” part of the spin-spin interaction,

. OH1/sst D e1e2g1g2

m1m24�

1

r3
12


 OS1 � OS2 � 3n12 � OS1n12 � OS2

�

(3.125)

stands for the tensor part of the spin-spin interaction,

. OH1/soo D � e1e2

m1m24�

1

r3
12

h

g2
OS2 � .r12 � Op1/C g1

OS1 � .r21 � Op2/
i

(3.126)

describes the spin-other-orbit interaction, and finally

. OH1/cc D � e1e2

m1m24�

1

2r12

� Op1 � Op2 C n12 � Op1 n12 � Op2
�

(3.127)

captures the current-current interaction.

though, as it is proportional to ˛, see Eq. (7.204). Within our current precision, we can surely
neglect this minor deviation.
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We obtained the second term in Eq. (3.126) by swapping the roles of the first
and second particles: Hamiltonian . OH1/mag describes the reaction of the first particle
on the magnetic field caused by the other particle. Similarly, we could consider the
reaction of the second particle on the magnetic field stemming from the first particle.
In case of spin–spin and current–current interaction, this reasoning would result in
including the same interaction twice. In case of spin–other–orbit interaction, on the
other hand, one must consider both situations.

The total Hamiltonian OH1 discussed in this section is commonly termed as the
Breit Hamiltonian.

3.6.3 Helium-Like Atoms

We start with Hamiltonian of a helium-like atom in the nonrelativistic approximation

OH D Op2
n

2mn
C Op2

1

2me
C Op2

2

2me
� Z˛

jr1 � rnj �
Z˛

jr2 � rnj C
˛

jr1 � r2j . (3.128)

The quantities with the index n are related to the nucleus, the other numbered
quantities to the individual electrons. The last term in the potential energy captures
the electrostatic repulsion of electrons and the other two terms the electrostatic
attraction of the electrons to the nucleus.

The reader can check that the operator of the total linear momentum OpnC Op1C Op2

commutes with the Hamiltonian (3.128). Owing to existence of three operators
commuting with the Hamiltonian and with each other we can—as in the case of the
hydrogen-like atoms—decrease the dimension of the problem by three. When we
introduce the Jacobi coordinates

rR1 D r1� rn, rR2 D r2� rn, rT D 1

M
.mnrnCme.r1C r2//, M D mnC2me ,

we obtain the Hamiltonian in the form

OH D Op
2
T

2M
C 1

2mr
. Op2

R1 C Op2
R2/C

OpR1 � OpR2

mn
� Z˛

rR1
� Z˛

rR2
C ˛

jrR1 � rR2j ,

where Op2
T D �r2

T , Op2
R1 D �r2

R1, Op2
R2 D �r2

R2, and mr D me.1C me=mn/
�1 is the

reduced mass of the nucleus-electron system. Further, we change to the center-of-
mass system, pT D 0. Equation (3.120) now takes the form

OH0 D 1

2mr
. Op2

1 C Op2
2/C e'.r1, r2, r12/ , e'.r1, r2, r12/ D ˛

r12
� Z˛

r1
� Z˛

r2
,

(3.129)

in which we simplified the indices R1, R2 to 1, 2 and introduced r12 D jr1 � r2j.
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The fine structure and corrections to the gross structure are determined by all
terms in the Hamiltonian (3.121), where we set g1 D g2 D 1, plus the term

. OH1/nm D
Op1 � Op2

mn
, (3.130)

commonly known as the mass polarization operator. After transition to atomic
units, r ! rA=.mrZ˛/, we find that the contribution of this term is suppressed by
the factor of mr

mn
in comparison to the terms in Eq. (3.120). Calculation of the factors

for helium17 mr
mn
' 1.38 � 10�4 and .2˛/2 ' 2.13 � 10�4 shows that corrections

arising from the nuclear motion are of about the same importance as relativistic and
magnetic effects.

With potential given by Eq. (3.129) we can write the spin-orbit interaction (3.123)
as

. OH1/so D . OH1/son C . OH1/soe ,

where

. OH1/son D Z˛

2m2
e

" OS1 � .r1 � Op1/

r3
1

C
OS2 � .r2 � Op2/

r3
2

#

describes the interaction of electron spins with their orbital angular momenta with
respect to the nucleus, and

. OH1/soe D � ˛

2m2
e

" OS1 � .r12 � Op1/

r3
12

C
OS2 � .r21 � Op2/

r3
12

#

expresses the interaction of electron spins with their orbital angular momentum with
respect to each other.

3.6.4 Hydrogen-Like Atoms

In case of a hydrogen-like atom, we have r12 D r and Op2 D �Op1 D �Op in the
center-of-mass frame, and we further set e2 D �Ze1 D �Ze. The potential energy
of the electrostatic interaction equals e' D � Z˛

r . The spin-orbit interaction (3.123)
and the current-current interaction (3.127) then acquire the form

17The nucleus of helium is an ˛-particle, a bound-state of two protons and two neutrons.
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. OH1/so D Z˛

2r3
OL �
�

1

m2
1

OS1 C 1

m2
2

OS2

	

and

. OH1/cc D � Z˛

m1m2

1

2r

� Op2 C .n � Op/2� .

Calculate the total shift of the energy levels 1s, 2s, and 2p1=2 given by the

Breit Hamiltonian OH1 with precision to ˛4. Neglect the interaction of an
electron with the nuclear spin. Compare the calculated values with the
experimental ones in Table 3.1.
Hint: First of all, change to atomic units r D rA=.mrZ˛/.

Exercise 8: Correction to the Gross Structure I

A kind reader may easily verify that in case of “normal” hydrogen-like atoms,
where the mass of the nucleus markedly exceeds that of an electron, the fine structure
and corrections to the gross structure are predominantly given by relativistic effects
considered in Sect. 3.5.2, see, e.g., Eq. (3.107).

In the case of a positronium, where the nucleus is constituted by a positron, i.e.,
a particle with the same mass and spin as and opposite charge to an electron, hence
g1 D g2 D g, m1 D m2 D m, Z D 1, and e2 D �e1 D �e. Equation (3.120) now
takes the form

OH0 D m˛2

2

� Op2
A

2
� 1

rA

�

(3.131)

and all terms in Eq. (3.121) contribute equally. After the transition to atomic units
r! rA=.mr˛/, mr D m=2, the Breit Hamiltonian (3.121) takes the form

OH1 D m˛4

23

�

� Op
4
A

8
� 1

2rA

� Op2
A C .n � OpA/

2
�

C ı.rA/�

�

1C 8

3
g2 OSe � OSp C OS2

	

C 1

r3
A

�

OL � OS 1C 2g

2
� g2


 OSe � OSp � 3n � OSen � OSp

�	�

. (3.132)

Here we introduced the total spin operator

OS D OSe C OSp
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and added the effective interaction �˛
m2 ı.r/ OS2, caused by virtual electron-positron

annihilation. We will derive this interaction later on, see Sect. 7.3.2, Eq. (7.105). A
dear reader may take a look on the last diagram of Fig. 7.2 to get a feeling what the
term “virtual electron-positron annihilation” corresponds to.

3.6.5 Final Notes

As we have seen, as soon as we are forced to consider both the spin-spin and spin-
orbital interactions, calculation becomes substantially more complex. Therefore, to
determine the fine structure of the positronium spectral lines, not to mention more
complex atoms, one needs to opt for a systematic approach developed in the next
chapter.

There is no point in attempting to include the effect of OH1 beyond the first order
of the perturbation method. The reason is, new effects of quantum electrodynamics
come into play at the order of ˛5. In fact for positronium they enter already at the
order ˛4. We will focus in depth on the leading quantum-electrodynamical effects
in Chaps. 6 and 7.
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Chapter 4
Treasures Hidden in Commutators

In this chapter, we focus on a topic usually called the application of algebraic
methods or Lie algebras within quantum mechanics. We have already demonstrated
that one can determine very efficiently the spectrum of the harmonic oscillator
owing to the closure of the set of three operators, namely the Hamiltonian OH and the
ladder operators Oa and OaC, under the operation of commutation. We now show that
this method can be extended to the problem of angular momentum, the addition of
angular momenta, the hydrogen atom, and a free particle. We will further see that
the application of the algebraic method does not only represent a very elegant way
of solving the listed problems, it also directly leads to a variety of relations for radial
and angular parts of the hydrogen wave functions, which would be very laborious to
obtain otherwise. In the next chapter, we will subsequently demonstrate that these
relations prove to be indeed useful when determining the spectra of many-electron
atoms.

4.1 A General Solution To Angular Momentum

We now solve the problem of angular momentum in quantum mechanics “once and
for all.”1 The angular momentum is any observable complying with the commutation
relations

ŒOJi, OJj� D i"ijk
OJk , (4.1)

irrespective of its origin. We have already shown, see Eq. (1.26), that these relations
hold for both the intrinsic angular momentum of a particle with spin 1/2 and the
angular momentum of a particle orbiting around a center of attraction, see Eq. (3.77).

1This section and the next one present the very fundamentals of quantum mechanics. One may find
a different exposition of this topic in any other textbook, see for example [8, 10, 11].
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Moreover, as we also noted before, see Eq. (3.61), the total angular momentum
created as a sum of two independent angular momenta obeys Eq. (4.1).

One conclusion that can be drawn from the relation (4.1) is that one cannot
find common eigenvectors of the individual components of the angular momentum.
Therefore, we cannot measure them simultaneously. On the other hand, the square
of the magnitude of the angular momentum commutes with each of the components,
see Eq. (3.62),

ŒOJ2, OJk� D 0 , OJ2 D OJk
OJk , (4.2)

and therefore one can always measure the magnitude of the angular momentum and
a projection along one of the coordinate axes. A common convention chooses the
third axis;

OJ2jj, mi D j.jC 1/jj, mi , OJzjj, mi D mjj, mi . (4.3)

These equations define the eigenvectors jj, mi and the eigenvalues j.j C 1/ and
m. We have already encountered a few special cases of these eigenvectors and
eigenvalues: for j D 1

2 there are two projections m 2 f� 1
2 ,C 1

2g, for j D 1 there
are three projections m 2 f�1, 0,C1g, and for j D 3

2 there are four projections m 2
f� 3

2 ,� 1
2 ,C 1

2 ,C 3
2g. The states we previously labeled j˙i, e.g., in Eqs. (1.32), (1.33),

and (1.34), correspond to the states jCi D ˇ
ˇ 1

2 ,C 1
2

˛

and j�i D ˇ
ˇ 1

2 ,� 1
2

˛

in the new
notation.

We will now show that the information contained in the commutation relation (4.1)
and the definition (4.3) already suffices for the deduction that the eigenvalues m
increase by one from m D �j to m D Cj. This finding then immediately leads to the
conclusion that j can acquire only integer or half-integer values; the proof thereof is
left to the reader. Subsequently, we will find an expression for a general action of
the remaining angular momentum components OJx and OJy on the states jj, mi, namely
by generalizing the relations (1.33), (1.34), (3.70), and (3.71) to an arbitrary j.

As already discussed in the cases of j D 1
2 and j D 1, it is advantageous to define

the ladder operators

OJ˙ D OJx ˙ iOJy . (4.4)

Their commutator with the third component of the angular momentum is

ŒOJz, OJ˙� D ŒOJz, OJx�˙ iŒOJz, OJy� D iOJy ˙ OJx D ˙.OJx ˙ iOJy/ D ˙OJ˙ ,

and with the squared angular momentum

ŒOJ2, OJ˙� D ŒOJ2, OJx�˙ iŒOJ2, OJy� D 0 .
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It follows from the definitions (4.3) that the operators act on the common eigenstate
according to

ŒOJz, OJ˙�jj, mi D ˙OJ˙jj, mi ) OJz


OJ˙jj, mi
�

D .m˙ 1/

OJ˙jj, mi

�

,

and

ŒOJ2, OJ˙�jj, mi D 0) OJ2

OJ˙jj, mi

�

D j.jC 1/

OJ˙jj, mi

�

.

The logic is the same as in Eqs. (1.63) and (1.64). The role of OH is replaced by OJz,
and the role of Oa and OaC by OJ� and OJC, respectively. By comparison of the last two
equations with Eq. (4.3), we readily see that the state OJ˙jj, mi is again an eigenstate
of both the operators OJz and OJ2 with eigenvalues m˙ 1 and j.j C 1/, respectively;
thus

OJ˙jj, mi D ˛˙.j, m/jj, m˙ 1i . (4.5)

Finally, we determine the coefficients ˛ by the same procedure as in case of the
harmonic oscillator. Confront the following steps with those following Eq. (1.66).

Owing to the freedom in the phase of eigenvectors, we may choose ˛ such as it
is real. Next, we use the definition (4.4) of the ladder operators to find the action
of OJC OJ�

OJC OJ�jj, mi D .OJx C iOJy/.OJx � iOJy/jj, mi D

OJ2

x C OJ2
y � iŒOJx, OJy�

�

jj, mi

D

OJ2 � OJ2

z C OJz

�

jj, mi D .j.jC 1/ � m.m � 1//jj, mi ,

where we used Eq. (4.1) and the definition of the square of the angular momentum,
Eq. (4.2), in the third equality. In the fourth step we used Eq. (4.3). It holds as well
that, see Eq. (4.5),

OJC OJ�jj, mi D OJC˛�.j, m/jj, m � 1i D ˛C.j, m � 1/˛�.j, m/jj, mi .

By comparison of the last two equations, we obtain

˛C.j, m � 1/˛�.j, m/ D j.jC 1/ � m.m � 1/ .

One can readily see from the definition of the ladder operators that the operators OJC
and OJ� are Hermitian conjugates of each other; hence
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hj, mjOJCjj, m � 1i D hj, mj

OJCjj, m � 1i

�

D ˛C.j, m � 1/hj, mj j, mi

D



hj, mjOJC
�

jj, m � 1i D

OJ�jj, mi

�C jj, m � 1i
D ˛�.j, m/hj, m � 1j j, m � 1i .

Requiring further the vectors jj, mi be also orthonormal (and not only orthogonal)
leads to

hj, mj j0, m0
˛ D ıj,j0ım,m0 , (4.6)

then necessarily

˛�.j, m/ D ˛C.j, m � 1/ .

Hence, the coefficients ˛ acquire values

˛�.j, m/ D ˛C.j, m � 1/ D
p

j.jC 1/ � m.m � 1/ , (4.7)

and the action of the ladder operators can be written in a final, slightly reorganized
form as

OJ˙jj, mi D
p

.jC 1˙ m/.j� m/jj, m˙ 1i . (4.8)

For j D 1
2 and m 2 f� 1

2 ,C 1
2g, we obtain from the last equation the relations (1.33)

and (1.34), and for j D 1 and m 2 f�1, 0,C1gwe get the relations (3.70) and (3.71).
What values may m acquire? Since it is an eigenvalue which is to represent a

projection of the angular momentum of a finite magnitude j.jC 1/ along the z axis,
there must be a smallest (mmin) and largest (mmax) possible value. Furthermore, the
action of the ladder operators on the states with the extremal projections must not
lead to a state that would lie outside the interval bounded by mmin and mmax. Hence
we require

OJCjj, mmaxi D 0 and OJ�jj, mmini D 0 .

Comparison of the last equations and Eq. (4.8) yields two possible results, mmax 2
fj,�j � 1g and mmin 2 f�j, jC 1g, for the limiting values of the projections.
However, only the former is meaningful, as mmin has to be less than mmax, hence

mmin D �j, mmax D j .

Starting merely with the innocently looking commutation relation (4.1), we
reached very nontrivial conclusions: we were able to determine the allowed
projections of the angular momentum along a given axis, the values of the magnitude
of the angular momentum, and the action of all of the components of angular
momentum operator on the pertinent eigenstates. The commutators are indeed a
powerful tool, as we are to see many more times in the next sections.



4.2 Addition of Angular Momenta 113

4.2 Addition of Angular Momenta

We now consider a system with angular momentum OJ arising from two distinct
contributions (such as two orbiting electrons in atom, two particles with spin, one
particle with spin and an orbital momentum, etc.) OJ1 and OJ2

2:

OJ D OJ1 C OJ2 . (4.9)

We can find common eigenstates for the complete set of commuting operators
fOJ2

1, OJ2
2, OJz, OJ2g,3 namely

OJ2jj, m, .j1, j2/i D j.jC 1/jj, m, .j1, j2/i , (4.10)

OJzjj, m, .j1, j2/i D mjj, m, .j1, j2/i , (4.11)

OJ2
1jj, m, .j1, j2/i D j1.j1 C 1/jj, m, .j1, j2/i , (4.12)

OJ2
2jj, m, .j1, j2/i D j2.j2 C 1/jj, m, .j1, j2/i . (4.13)

These states form a complete and orthonormal basis in the space spanned by possible
states of two “particles” with the angular momenta j1 and j2.4 We expect the set of
operators fOJ2

1, OJ2
2, OJz, OJ2g to act on the same abstract space as the set fOJ2

1, OJ2
2, OJ1z, OJ2zg,

with the same number of degrees of freedom. Therefore, it should be possible to
compose the new “two-particle” basis states jj, m, .j1, j2/i from products of the basis
states of the individual constituents of the system5:

jj1, m1, j2, m2i D jj1, m1ijj2, m2i , (4.14)

OJ2
1jj1, m1i D j1.j1 C 1/jj1, m1i , OJ1zjj1, m1i D m1jj1, m1i (4.15)

and

OJ2
2jj2, m2i D j2.j2 C 1/jj2, m2i , OJ2zjj2, m2i D m2jj2, m2i , (4.16)

2To be more precise, we should express the compound angular momentum OJ as a sum of tensor
products OJ D OJ1˝ 12C 11˝ OJ2 to avoid ambiguity when applying OJ on the state jj1, m1ijj2, m2i.
3The reader can easily prove by himself that they all commute with each other.
4We inserted the word particles into quotation marks since one can have in mind the spin and orbital
states of the same particle as well.
5There are .2j1 C 1/.2j2 C 1/ such products due to the restriction on the possible values of the
projections m1 and m2.
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see Eq. (4.3). Our task now consists of finding the connection between j, m and j1,
j2, m1, m2, and also of finding the relation between the basis states (4.10) and (4.14).
For the sake of definiteness, we consider j1 � j2 henceforth.

One of the tasks is trivial: when we act with the third component of the total
angular momentum on an arbitrary product jj1, m1ijj2, m2i, we obtain

OJzjj1, m1ijj2, m2i D .OJ1zjj1, m1i/jj2, m2i C jj1, m1i.OJ2zjj2, m2i/
D .m1 C m2/jj1, m1ijj2, m2i .

Therefore, considering the definition of the magnetic quantum number, we see that
m D m1Cm2, which also imposes a restriction on the values of m. As the values of
m1,2 lie between �j1,2 and Cj1,2, their sum must lie within the interval spanned by
�.j1 C j2/ andC.j1 C j2/.

It follows from the fact that the operators OJ2 and OJz commute with each other that
the operator OJ2 does not mix states with different eigenvalues of the operator OJz. This
means, if we express the states in (4.10) as linear combinations of the states (4.14),
we only need to sum over the states with m1 C m2 D m for a given m. That is,

jj, m, .j1, j2/i D
j1X

iD�j1

cijj1, i, j2, m � ii , (4.17)

where we have from the orthonormality of the states (4.14) that

ci D hj1, i, j2, m � ij j, m, .j1, j2/i.

The coefficients ci are most often written in the form

ci D .j1, i, j2, m � ijj, m/

and called the Clebsch-Gordan (CG) coefficients. As we know the allowed range of
values of m, we are able to construct a table of states, Table 4.1, with rows containing
the states that can be used in the summation (4.17) for a given m.

Table 4.1 Addition of angular momenta I

m States that can be used in composition For j1 D j2 D 1
2

j1 C j2 jj1, j1ijj2, j2i jCijCi
j1 C j2 � 1 jj1, j1 � 1ijj2, j2i jj1, j1ijj2, j2 � 1i j�ijCi jCij�i
j1 C j2 � 2 jj1, j1 � 2ijj2, j2i jj1, j1 � 1ijj2, j2 � 1i jj1, j1ijj2, j2 � 2i j�ij�i
...

...

�.j1 C j2/ jj1,�j1ijj2,�j2i j�ij�i
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Since m may acquire only values within the interval spanned by �j and Cj,
there is a limit on the maximum value of the total j, namely jmax D j1 C j2. It
follows from the general solution of the angular momentum that for a given j the
projection of the angular momentum along any axis may equal 2j C 1 different
values �j,�j C 1,�j C 2, : : : ,Cj � 1,Cj. Note that there are no other states but
those listed in Table 4.1, therefore we must be able to construct each of the eigenstates
of OJ2 corresponding to the eigenvalue jmax.jmaxC 1/ with the above listed 2jmaxC 1
projections using the states from the table. One can do so easily in case of the states
with the maximal and minimal projections; there is merely one state to use for each
of them, namely jj1, j1ijj2, j2i and jj1,�j1ijj2,�j2i, respectively. In all of the other
cases, we seek (and always find) linear combinations of the states listed in Table 4.1
which form eigenvectors of OJ2 pertaining to the eigenvalue jmax.jmaxC1/ for a given
projection m. That is, we search for a suitable linear combination of the two vectors
for m D j1 C j2 � 1, a combination of three for m D j1 C j2 � 2, and so on.

A linear combination of the two vectors displayed in Table 4.1 for m D j1C j2�1,
which is orthogonal to the linear combination constituting an eigenvector of OJ2 with
the eigenvalue jmax.jmax C 1/, must yield an eigenvector of OJ2 with the eigenvalue
.jmax� 1/jmax. Why? It follows from the general solution of angular momentum that
the projection m cannot be greater than j. Altogether, we have to find 2.jmax�1/C1
eigenvectors of OJ2 with the eigenvalue .jmax�1/jmax. For the instance of two particles
with spin 1=2, we have found jmax D 1. The three states corresponding to the
projections m D 1, 0,�1 have been found in the form j1, 1i D jCijCi, j1, 0i D
.jCij�i C j�ijCi/=p2 and j1,�1i D j�ij�i. Orthogonal linear combination to
the state with jmax D 1, m D 0, the combination j0, 0i D .jCij�i� j�ijCi/=p2, is
eigenstate of OJ2 with eigenvalues jmax � 1 D 0.

Linear combination of three vectors displayed in Table 4.1 for m D j1 C j2 � 2,
orthogonal to two linear combinations providing eigenvectors of OJ2 with eigenvalues
of jmax.jmax C 1/ and .jmax � 1/jmax, must yield eigenvector of OJ2 with eigenvalue
.jmax � 2/.jmax � 1/, and so on. For clarity, Table 4.2 lists all possible combined
angular states that can be constructed using the states in Table 4.1. In the second
table, we used a shorter notation jj, mi � jj, m, .j1, j2/i.

Table 4.2 Addition of angular momenta II

m States that can be composed For j1 D j2 D 1
2

j1 C j2 jj1 C j2, mi j1, 1i
j1 C j2 � 1 jj1 C j2, mi jj1 C j2 � 1, mi j1, 0i j0, 0i
j1 C j2 � 2 jj1 C j2, mi jj1 C j2 � 1, mi jj1 C j2 � 2, mi j1,�1i
...

...

�.j1 C j2/ jj1 C j2, mi j1,�1i
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What is the minimal j where the procedure terminates? Irrespective of whether
we describe the state space using the basis fjj1, m1ijj2, m2ig or fjj, m, .j1, j2/ig, it
must always maintain the same dimension. This means, for a given j1 and j2, there
is an equality between the dimensions of the first and the second basis

.2j1 C 1/.2j2 C 1/ D
jmaxX

jDjmin

.2jC 1/ , (4.18)

where jmax D j1 C j2. The sum on the rhs may be written as .jmax C 1/2 � j2
min, as

one can easily verify. We obtain thereof j2
min D .j1 � j2/2, and after imposing the

restriction on jmin � 0 we finally find jmin D jj1 � j2j.
We have thus arrived at a very important conclusion: When adding two angular

momenta with quantum numbers j1, m1 and j2, m2, the resulting j acquires values
jj1�j2j, jj1�j2jC1, : : : , j1Cj2�1, j1Cj2 and the resulting m is given by m D m1Cm2.
The restriction on j is widely known as the triangle inequality.

There is one last step left: to determine the value of the Clebsch-Gordan
coefficients in Eq. (4.17). One can do so by expressing Eq. (4.10) using the
vectors (4.14)

OJ2jj, m, .j1, j2/i D j.jC 1/jj, m, .j1, j2/i D j.jC 1/
j1X

iD�j1

cijj1, iijj2, m � ii.

At the same time, we can express OJ2 using the one-particle operators, see Eq. (4.9),

OJ2 D OJ2
1 C 2 OJ1 � OJ2 C OJ2

2 ;

then

OJ2jj, m, .j1, j2/i

D

OJ2

1 C OJ2
2 C OJ1C OJ2� C OJ1� OJ2C C 2OJ1z

OJ2z

� j1X

iD�j1

cijj1, iijj2, m � ii

D
j1X

iD�j1

ci .j1.j1 C 1/C j2.j2 C 1/C 2i.m � i// jj1, iijj2, m � ii

C
j1X

iD�j1

ci˛
C.j1, i/˛�.j2, m � i/jj1, iC 1ijj1, m � i � 1i

C
j1X

iD�j1

ci˛
�.j1, i/˛C.j2, m � i/jj1, i � 1ijj1, m � iC 1i . (4.19)
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We used the relations (4.15), (4.16), and (4.8) in the second equality. By shifting the
summation index (while requiring ci D 0 when the summation index is out of the
allowed range), we obtain

0 D
j1X

iD�j1

Œ.j1.j1 C 1/C j2.j2 C 1/ � j.jC 1/C 2i.m � i//ci

C ˛C.j1, i � 1/˛�.j2, m � iC 1/ci�1C
C ˛�.j1, iC 1/ ˛C.j2, m � i � 1/ciC1

� jj1, iijj2, m � ii .

Owing to the orthonormality of the states jj1, iijj2, m � ii, this produces a set of
2j1 C 1 equations for 2j1 C 1 coefficients ci

.j1.j1 C 1/C j2.j2 C 1/ � j.jC 1/C 2i.m � i//ci

C ˛C.j1, i � 1/˛�.j2, m � iC 1/ci�1

C ˛�.j1, iC 1/˛C.j2, m � i � 1/ciC1 D 0 , (4.20)

where ˛˙ are given by Eq. (4.7). However, these equations provide us with 2j1
coefficients ci only; the last equation does not offer any new piece of information.
Why is it so? The reason is we are searching for eigenvectors of an operator, OJ2 in
this case, see Eq. (4.10), and these are given but for the normalization. Therefore, we
need to consider an additional equation to the set (4.20), namely the normalization
condition

hj, m, .j1, j2/j j, m, .j1, j2/i D
X

i

X

k

c�i ckhj1, i, j2, m � ij j1, k, j2, m � ki

D
X

i

jcij2 D 1 , (4.21)

where the first equality follows from Eq. (4.17) and the second from Eq. (4.6). This
way, we obtain the final system of equations whose solution is unique but for a
complex phase which is commonly chosen so that the coefficients ci are real.

Example: Consider a system with j1 D j2 D 1, for example two electrons
in a p-state. For the sake of simplicity, we focus only on the states with
m D 0. The set of equations (4.20) for the CG coefficients simplifies after
the substitution of the particular values of j1, j2, and m to

i D �1 : .2 � j.jC 1//c�1 C 2c0 D 0 ,
i D 0 : .4 � j.jC 1//c0 C 2c�1 C 2cC1 D 0 ,

i D C1 : .2 � j.jC 1//cC1 C 2c0 D 0 .
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By substituting the three possible values of j, i.e., j D 0, 1, 2, and using
the normalization condition

c2�1 C c2
0 C c2

1 D 1

we find the three composed states

j0, 0, .1, 1/i D 1p
3
.j1,�1ij1, 1i � j1, 0ij1, 0i C j1, 1ij1,�1i/ ,

j1, 0, .1, 1/i D 1p
2
.j1,�1ij1, 1i � j1, 1ij1,�1i/ ,

j2, 0, .1, 1/i D 1p
6
.j1,�1ij1, 1i C 2j1, 0ij1, 0i C j1, 1ij1,�1i/ .

One can easily verify that these vectors are mutually orthogonal. They
must be since they are the eigenvectors of the Hermitian operator OJ2

corresponding to different eigenvalues j.jC 1/, where j D 0, 1, 2.

How does the inverse transformation

jj1, i, j2, m � ii D
j1Cj2X

jDjj1�j2j
djjj, m, .j1, j2/i (4.22)

read? This is not a purely academical question, we will need this formula later. It
follows from the orthonormality of the states jj, m, .j1, j2/i and the property ci 2 R

that

dj D hj, m, .j1, j2/j j1, i, j2, m � ii D .hj1, i, j2, m � ij j, m, .j1, j2/i/C D c�i D ci .

Example: The transform (4.17) is unitary. Moreover, since it is also real,
it is orthogonal. Therefore, when we rewrite the previous example into a
matrix notation,

0

@

j0, 0, .1, 1/i
j1, 0, .1, 1/i
j2, 0, .1, 1/i

1

A D

0

B
@

1p
3
�1p

3
1p
3

1p
2

0 �1p
2

1p
6

2p
6

1p
6

1

C
A

0

@

j1,�1ij1, 1i
j1, 0ij1, 0i
j1, 1ij1,�1i

1

A ,



4.2 Addition of Angular Momenta 119

the matrix of the transform is orthogonal. The inverse matrix to an
orthogonal matrix is its transpose:

0

@

j1,�1ij1, 1i
j1, 0ij1, 0i
j1, 1ij1,�1i

1

A D

0

B
@

1p
3

1p
2

1p
6�1p

3
0 2p

6
1p
3
�1p

2
1p
6

1

C
A

0

@

j0, 0, .1, 1/i
j1, 0, .1, 1/i
j2, 0, .1, 1/i

1

A .

However, when we compare Eqs. (4.17) and (4.22) it seems that the
matrices of the transforms should be the same. Is our result not a
contradiction? No, it is indeed not. We write the transforms (4.17)
and (4.22) in an abstract form

j ii D
X

j

Aij

ˇ
ˇ�j
˛

, Aij D
˝

�j

ˇ
ˇ ii (4.23)

and

ˇ
ˇ�j
˛ D

X

k

Bjkj ki ,

where

Bjk D h kj�j
˛ D ˝�j

ˇ
ˇ ki� D A�kj D Akj ,

hence

ˇ
ˇ�j
˛ D

X

k

Akjj ki . (4.24)

Recalling the definition of matrix multiplications (note that the order of
the indices is important!), we see that the matrix of the transform (4.24),
or (4.22), is the transposed matrix of the transform (4.23), or (4.17).

We have thus learned how to add two angular momenta. Needless to say, one
can follow a similar procedure to combine a greater number of angular momenta.
In brief, one starts by adding two of them and subsequently combines the obtained
result with the third angular momentum, etc. The reader is now able to prove all by
himself the statement under Fig. 3.1, which claims that an even number of fermions
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behaves as a boson and an odd number of fermions as a fermion. In other words,
if we add an even number of particles with half-integer j we obtain a compound
particle with an integer j, and if we add an odd number of particles with a half-integer
j we obtain a compound particle with half-integer j. For instance, the helium atom
4
2He constitutes two neutrons, two protons, and two electrons. Hence as a whole, it
is a boson. At a sufficiently low temperature, these atoms can transit to the same
quantum states which then macroscopically manifests as a superfluidity. In contrast,
the helium isotope 3

2He constitutes only one neutron, two protons, and two electrons.
It is thus a fermion and two such atoms may never populate the same quantum state.
This form of helium becomes superfluid, too, though only when the sufficiently
cooled atoms make pairs. These pairs then behave as bosons and can accumulate
in the same state. Similarly, two electrons in a superconductor form the so-called
Cooper pairs at low temperatures and behave as bosons.

Let us add one more remark here. In the literature and symbolic computer
programs, one can meet a slight variation of the Clebsch-Gordan coefficients, the
so-called Wigner 3j-symbols, which are defined in the following way:

�
j1 j2 j3
m1 m2 m3

�

D .�1/j1�j2�m3
.j1, m1, j2, m2jj3,�m3/p

2j3 C 1
.

4.3 The Runge-Lenz Vector

4.3.1 The Runge-Lenz Vector in Classical Mechanics

It belongs to common knowledge that the angular momentum conserves, see
Eq. (3.73), in every central field. However, in the special case of the Coulomb
field,

V.r/ D �Zr�1 ,

there exists another important conserved vector. If we take vector product of the
angular momentum and Eq. (3.72) we obtain

L � dp
dt
D �ZL � r

r3
. (4.25)

The rhs features a double cross product which can be simplified:

.L � r/i D ..r � p/ � r/i D "ijk"jrqxrpqxk D .�ıirıkq C ıiqıkr/xrpqxk

D �xipkxk C xkpixk D r2.�ninkpk C pi/ .
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One can express the momentum also in the following way6:

pi D dxi

dt
D d.rni/

dt
D dr

dt
ni C r

dni

dt
,

which in turn yields

.L � r/i D r2

�

�nink

�

nk
dr

dt
C r

dnk

dt

�

C dr

dt
ni C r

dni

dt

�

.

The first and the third terms cancel each other out. The second term is equal to zero
due to nk

dnk
dt D 1

2
d
dt nknk D 0 since nknk D 1. Therefore, we are left with

L � r D r3 dn
dt

.

If we return to Eq. (4.25) and realize that owing to Eq. (3.73) it must hold that
L � dp

dt D d
dt L � p, we arrive at

dX
dt
D 0 , X D L � pC Zn .

Namely, the vector X does not change with time, it is an integral of motion. This
vector is commonly referred to as the Runge-Lenz vector and its physical significance
is the following. First, its scalar product with the angular momentum equals zero:

L � X D L � .L � p/C ZL � n D 0C 0 .

We can readily see that the vector X lies in the orbiting plane of the body since
the angular momentum vector L is perpendicular to the orbiting plane of the body.
Second, the scalar product of the Runge-Lenz vector with the position vector reads

r � X D r � .L � p/C Zr D �L2 C Zr . (4.26)

Exploiting the freedom in the choice of a coordinate system, we can pick it so that
the angular momentum points in the direction of the axis z. The motion of the body
is then restricted to the plane xy. If we further place the axis x in the direction of the
vector X and introduce the polar coordinates

x D r cos' , y D r sin' , (4.27)

Eq. (4.26) acquires the form

rX cos' D Zr � L2 , (4.28)

6Recall, see Eq. (3.72), that we are considering particle of unit mass.
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Fig. 4.1 The ellipse and its prominent parameters

which is an equation of an ellipse. To prove this statement, we start with the equation
of an ellipse in the Cartesian coordinates, that is


 x

a

�2 C

 y

b

�2 D 1 , (4.29)

where a and b are called the semi-axes of the ellipse. In terms of geometry, an
ellipse is a set of points which have a constant sum of their respective distances from
the two focal points F1 D .�", 0/ and F2 D .", 0/. The parameter " is termed the
excentricity of the ellipse and it assesses the difference between the ellipse and a
perfect circle; that is, the value " D 0 corresponds to a circle. The reader can prove
on his or her own that the set of points .x, y/ satisfying Eq. (4.29) does comply with
this geometric interpretation. While doing so, the reader can also deduce that

"2 D a2 � b2, (4.30)

see Fig. 4.1.
We now move the coordinate origin into one of the focal points, x! x � ", and

introduce polar coordinates (4.27). Equation (4.29) can be then—with the aid of
algebraic operations and the formula (4.30)—manipulated to

.r" cos' C b2/2 D .ra/2 ) r" cos' D ra � b2 .

By comparison of the last equation with Eq. (4.28), we see that the magnitude of the
Runge-Lenz vector X is equal to the excentricity " of the ellipse with the semi-axes
of the magnitudes a D Z and b D L, respectively. The Runge-Lenz vector points
from the center of the ellipse to one of the focal points. The conservation of this
vector in time means that the classical motion in the Coulomb field takes place along
an ellipse and that this ellipse maintains its shape and orientation, i.e., it does not
rotate or deform. We thus derived the first Kepler law without solving the Newton
equations!
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4.3.2 The Runge-Lenz Vector in Quantum Mechanics

It is natural to expect that since the Runge-Lenz vector is an integral of motion for
the classical motion in the Coulomb field, the corresponding operator

OX D 1

2
. OL � Op � Op � OL/C On (4.31)

commutes with the Hamiltonian of the hydrogen atom,

Œ OX , OH� D 0 , OH D Op
2

2
� 1

r
. (4.32)

This expectation is rightful and its proof is left to the reader. The cross product OL� Op in
Eq. (4.31) is antisymmetrized in order to make the resulting operator Hermitian. The
reason is that in general, a product of two Hermitian operators needs not necessarily
yield a Hermitian operator: . OA OB/C D OBC OAC D OB OA, which is not the same as OA OB. On
the other hand, the antisymmetrized form produces: . OA OBC OB OA/C D OB OAC OA OB. The
symmetrization of the components of OL and Op corresponds to the antisymmetrization
of the cross product "ijk. OLj Opk C Opk

OLj/ D "ijk
OLj Opk � "ikj Opk

OLj D . OL � Op � Op � OL/i.
There is an important consequence arising from Eq. (4.32): the components of

the vector operator OX do not mix states with different energy values. Namely,

0 D Œ OX , OH� D ˝n0, l0, m0
ˇ
ˇŒ OX , OH�jn, l, mi D

�
1

2n02
� 1

2n2

�
˝

n0, l0, m0
ˇ
ˇ OX jn, l, mi .

(4.33)
Hence, we have hn0, l0, m0j OX jn, l, mi D 0 if n0 ¤ n.

In our further considerations it will prove advantageous to separate parts of the
operator OX acting on the angular and radial degrees of freedom. Therefore, we
substitute the expression for angular momentum (3.74) into Eq. (4.31),

OXs D 1

2

�

"siq"ijk Oxj Opk Opq � "siq"qjk Opi Oxj Opk
�C Ons

D 1

2

��.ısjıqk � ıskıqj/Oxj Opk Opq � .ısjıik � ıskıij/ Opi Oxj Opk
�C Ons

D 1

2
.�Oxs Op2 C Oxq Ops Opq � Opk Oxs Opk C Opj Oxj Ops/C Ons .

The third and the fourth term can be rewritten by swapping the leading two factors
and adding an appropriate commutator, so that we obtain

OXs D �Oxs Op2 C .Oxj Opj � i/ Ops C Ons .
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For the participating operators we have, in coordinate representation, Eqs. (3.13),
Oxk ! rnk, (3.15), Opk ! �i




nk
@
@r C

rn
k

r

�

, (3.21) and (3.76), Op2 !
�


@2

@r2 C 2
r
@
@r �

OL2

r2

�

, thus we can write

OX D n

 

@

@r
�
OL2

r
C 1

!

� rn @

@r
. (4.34)

Note that this operator is a first-order differential operator in r. We now find the
action of the components of the Runge-Lenz vector on the common eigenstates of
the operators OH, OL2, OLz, namely

OXjjn, l, mi D
X

l0,m0

d.j/l0,m0

ˇ
ˇn, l0, m0

˛

.

These equations will prove indeed valuable as they will provide first-order
differential relations for the radial functions. Extracting the radial functions
from these equations will be substantially easier than solving the Schrödinger
equation (3.87) directly.

4.4 Matrix Elements of Vector Operators

4.4.1 Motivation

Let us be a little more general and find matrix elements of the vector operators of
the type7

OV D n Ofn.r, OL2/Crn Ofr.r/ (4.35)

between spherical harmonics. Here, Ofn and Ofr can be arbitrary operators which
depend on the coordinate r or on the squared magnitude of the angular momentum
OL2, respectively. The Runge-Lenz vector is obviously a special case of such an
operator, see Eq. (4.34). The operators of the momentum and of the coordinate,
Op and Ox , are another special instances of this operator. As we will see later in
Chap. 6, the probability that an atom changes its state from the initial state jii to the
final state jf i and radiates a photon during that transition is proportional, in a good
approximation, to the squared magnitude of the matrix element

. Ox/if D hij Ox jf i D
Z 1

0
Rni,li rRnf ,lf r2dr

Z

Y�li,mi
nYlf ,mf d˝ . (4.36)

7The derivation in this section is inspired by that in [1].
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The knowledge of the matrix elements of the coordinate operator between the
spherical harmonics dictates which transitions are allowed and which forbidden.
The herein presented derivation may seem rather lengthy, therefore an impatient
reader can skip over to the final equations (4.50)–(4.52).

4.4.2 Commutation Relations

The sought matrix elements can be almost completely determined merely from the
commutation relations

Œ OLi, nj� D i"ijknk , Œ OLi,rn
j � D i"ijkrn

k , (4.37)

Œ OL2, nk� D 2.nk � rn
k / , Œ OL2,rn

k � D �2nk
OL2 . (4.38)

The first one can be verified easily (try the rest yourself!)

Œ OLi, nj� D Œ�i"ipqnprn
q , nj� D �i"ipqnpŒrn

q , nj�

D �i"ipq.ıqj � nqnj/np D i"ijpnp C i"ipqnpnqnj .

In the last term, we contracted an antisymmetric and a symmetric tensor, which
yields zero, hence leaving only the first term. For verification of the other relations,
it is useful to know the commutators of the components of the angular operator rn.
Employing Eqs. (3.15) and (3.18) leads to
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It follows thereof

Œrn
i ,rn

j � D nirn
j � njrn

i .

We thus learn from the relation (4.37) that every vector operator OV of the type (4.35)
satisfies

Œ OLi, OVj� D i"ijk
OVk . (4.39)

Next, we will show how this commutation relation leads to selection rules for the
magnetic quantum number m.

4.4.3 Selection Rules in m

Equation (4.39) yields for i D j D 3

Œ OL3, OV3� D 0 .

This operator equality holds true when we apply it on the eigenvectors of the
operators OL3 and OL2,

˝

l0, m0
ˇ
ˇŒ OL3, OV3�jl, mi D 0 .

From the definition (4.3), we obtain

.m0 � m/
˝

l0, m0
ˇ
ˇ OV3jl, mi D 0 .

In other words, if m0 ¤ m then necessarily hl0, m0j OV3jl, mi D 0. Next, let us inspect
the commutator

Œ OL3, OV˙� D Œ OL3, OV1�˙ iŒ OL3, OV2� D i OV2 ˙ i.�i OV1/ D ˙OV1 C i OV2 D ˙OV˙ ,

where in the second equality Eq. (4.39) was used. Based on the same arguments as
before, we obtain

˝

l0, m0
ˇ
ˇŒ OL3, OV˙�jl, mi D ˙˝l0, m0

ˇ
ˇ OV˙jl, mi

) .m0 � m/
˝

l0, m0
ˇ
ˇ OV˙jl, mi D ˙˝l0, m0

ˇ
ˇ OV˙jl, mi

) .m0 � m� 1/
˝

l0, m0
ˇ
ˇ OV˙jl, mi D 0 .

Therefore, we have hl0, m0j OV˙jl, mi D 0 whenever m0 differs from m˙ 1.
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4.4.4 Selection Rules in l

As our next step, we show how the selection rules for the orbital quantum number l
follow from the commutation relations (4.38). After applying the first equation (4.38)
on the eigenvectors of the operators OL3 and OL2, we obtain

˝

l0, m0
ˇ
ˇŒ OL2, nk�jl, mi D 2

˝

l0, m0
ˇ
ˇ.nk � rn

k /jl, mi ,

hence

�

l0.l0 C 1/ � l.lC 1/
� ˝

l0, m0
ˇ
ˇnkjl, mi D 2

˝

l0, m0
ˇ
ˇ.nk � rn

k /jl, mi ,

and we express the term with the angular nabla,

˝

l0, m0
ˇ
ˇrn

k jl, mi D 1

2

�

2C l.lC 1/ � l0.l0 C 1/
� ˝

l0, m0
ˇ
ˇnkjl, mi . (4.40)

Similarly, we obtain from the second equation (4.38)

˝

l0, m0
ˇ
ˇŒ OL2,rn

k �jl, mi D �2
˝

l0, m0
ˇ
ˇnk
OL2jl, mi .

Thus, after expanding the commutator we arrive at

�

l0.l0 C 1/ � l.lC 1/
� ˝

l0, m0
ˇ
ˇrn

k jl, mi D �2l.lC 1/
˝

l0, m0
ˇ
ˇnkjl, mi . (4.41)

Equations (4.40) and (4.41) can be further rearranged to yield a restriction on the
matrix elements of the operator nk in the form

˝

l0, m0
ˇ
ˇnkjl, mi.l0 C lC 2/.l0 C l/.l0 C 1 � l/.l0 � 1 � l/ D 0 .

Since l is always nonnegative, the first two brackets are always nonzero (except for
the trivial case l D l0 D 0). Thus, we reach the result: we have hl0, m0jnkjl, mi D 0
for l0 different from l˙1. In addition, it also follows from Eqs. (4.40) and (4.41) that
in such a case the element hl0, m0jrn

k jl, mi is equal to zero as well. In consequence,
all electromagnetic transitions other than between an s- and p-state, or p- and d-state,
etc., that is always by one angular degree, are forbidden.8

8This conclusion is true only for the so-called dipole radiation, see Sect. 6.2.4.



128 4 Treasures Hidden in Commutators

4.4.5 Nonzero Matrix Elements: Dependence on m

We will continue our analysis of the action of a general vector operator OV on spherical
harmonics. We managed to discover the selection rules so far; however, we desire to
find the complete expressions for the resulting vectors OV3jl, mi and OV˙jl, mi as well.
The reason is, their knowledge substantially simplifies the calculation of both the
radial and angular wave functions of the hydrogen atom. We begin by determining
the commutator Œ OLC, OVC� from Eq. (4.39),

Œ OLC, OVC� D Œ OL1 C i OL2, OV1 C i OV2� D iŒ OL1, OV2�C iŒ OL2, OV1� D i.i OV3/C i.�i OV3/ D 0 .

Subsequently, we apply this equation once again on the eigenstates of the operators
OL2 and OL3,

˝

l0, m0
ˇ
ˇŒ OLC, OVC�jl, mi D 0 . (4.42)

Using the Hermitian conjugate of Eq. (4.8) for OL˙,

hl, mj OL� D hl, m˙ 1j
p

.l� m/.lC 1˙ m/ , (4.43)

we obtain from Eq. (4.42)

0 D
p

.l0 C m0/.l0 C 1 � m0/
˝

l0, m0 � 1
ˇ
ˇ OVCjl, mi

�
p

.l � m/.lC 1C m/
˝

l0, m0
ˇ
ˇ OVCjl, mC 1i .

With the choice m0 D mC 2 and l0 D l � 1, the last equation takes on the form

0 D
p

.lC mC 1/.l � m � 2/hl � 1, mC 1j OVCjl, mi
�
p

.l � m/.lC 1C m/hl � 1, mC 2j OVCjl, mC 1i ;

therefore

hl � 1, mC 2j OVCjl, mC 1i
hl � 1, mC 1j OVCjl, mi D

r

l � m � 2

l � m
D
s

.l � m � 2/.l � m � 1/

.l � m � 1/.l � m/
.

On both sides of the last equation, there is a ratio of two expressions which differ
solely by the interchange m mC 1. Hence, the dependency of the matrix element
on m then must read

hl � 1, mC 1j OVCjl, mi D cl

p

.l � m � 1/.l � m/ , (4.44)

where cl depends on l and possibly also on other quantum numbers except for m. In
literature, the coefficients cl are frequently termed as the reduced matrix elements.
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We have thus successfully completed one sixth of our task. As our next step, we
find from Eq. (4.39),

Œ OL�, OVC� D Œ OL1, OV1�C iŒ OL1, OV2� � iŒ OL2, OV1�C Œ OL2, OV2� D �2 OV3 ,

that OV3 D �Œ OL�, OVC�=2. Using this operator equality on the eigenstates of the
operators OL2 and OL3, and employing Eqs. (4.8), (4.43), and (4.44) we successively
obtain

hl � 1, mj OV3jl, mi D hl � 1, mj
�

�1

2

�

Œ OL�, OVC�jl, mi

D �1

2
hl � 1, mj. OL� OVC � OVC OL�/jl, mi

D �1

2

p

.l � 1 � m/.l � 1C 1C m/hl � 1, mC 1j OVCjl, mi

C 1

2

p

.lC m/.lC 1 � m/hl � 1, mj OVCjl, m � 1i

D �1

2

p

.l � 1 � m/.lC m/cl

p

.l � m � 1/.l � m/C

C 1

2

p

.lC m/.lC 1 � m/cl

p

.l � m/.l � mC 1/

D cl

p

.l � m/.lC m/ . (4.45)

One can also easily derive from Eq. (4.39) that Œ OL�, OV3� D OV�. It thus follows (the
reader will be able to reproduce the missing steps on his or her own by now),

hl � 1, m � 1j OV�jl, mi D �cl

p

.lC m � 1/.lC m/ . (4.46)

We assume that the coefficients cl are real and will comment thereon in detail at the
end of this section. For OV3 is a Hermitian operator, the Hermitian conjugation of
Eq. (4.45) together with the interchange l! lC 1 lead to

hlC 1, mj OV3jl, mi D clC1

p

.lC 1 � m/.lC 1C m/ . (4.47)

We proceed in a similar manner in case of Eq. (4.44), with the exception of
performing a simultaneous replacement l! lC 1 and m! m � 1, and Hermitian
conjugation:

hlC 1, m � 1j OV�jl, mi D clC1

p

.l � mC 2/.l � mC 1/ . (4.48)

Finally, the replacements l! lC 1 and m! mC 1 and Hermitian conjugation lead
from Eq. (4.46) to
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hlC 1, mC 1j OVCjl, mi D �clC1

p

.lC mC 1/.lC mC 2/ . (4.49)

Recalling now the selection rules, these six elements from (4.44) to (4.49) are the
only matrix elements of the operators OV˙ and OV3 which do not necessarily vanish.
Therefore, we can write

OV3jl, mi D cl

p

.lC m/.l � m/jl � 1, mi
C clC1

p

.lC 1C m/.lC 1 � m/jlC 1, mi , (4.50)

OVCjl, mi D cl

p

.l � m � 1/.l � m/jl � 1, mC 1i
� clC1

p

.lC mC 2/.lC mC 1/jlC 1, mC 1i , (4.51)

OV�jl, mi D �cl

p

.lC m � 1/.lC m/jl � 1, m � 1i
C clC1

p

.l � mC 2/.l � mC 1/jlC 1, m � 1i . (4.52)

In case of Œ OV , OH� D 0, the operator OV does not mix quantum states with different n,
see for example Eq. (4.33), and we can write

OV3jn, l, mi D cl,n

p

.lC m/.l � m/jn, l � 1, mi
C clC1,n

p

.lC 1C m/.lC 1 � m/jn, lC 1, mi , (4.53)

where (in contrast to Eq. (4.50)) the coefficients c may depend on the principal
quantum number n as well.

Let us return to the assumption that the coefficients cl are real. We will see that
it does not lead to a contradiction in the case of a purely angular operator OV . The
operator OV , which comprises both radial and angular operators, such as the Runge-
Lenz vector, Eq. (4.34), acts on the states which may be expressed as products of
radial and angular parts. Choosing an appropriate complex phase of the radial part
of the wave function, we may require the coefficients cl,n be real. For instance, it
must be possible to choose the radial functions real since the radial Hamiltonian in
Eq. (3.87) is real. Therefore, the coefficients cl,n must be real as well. As we will see
later on in Sect. 4.5.2, this finding is of great importance.

4.4.6 Generalization

The above considerations may be generalized even further. An arbitrary vector
operator OV complying with

ŒOJi, OVj� D i"ijk
OVk , (4.54)
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where OJi are the components of an arbitrary angular momentum obeying the
commutation relations (4.1), also satisfies the identity

ŒOJ2, ŒOJ2, OV �� D 2.fOJ2, OV g � f OJ , OJ � OV g/ ,

the proof being straightforward, though laborious. From the last expression, we
obtain the following formula for the matrix elements of the operator OV between the
eigenstates of OJ2 and OJz

Œ.j0� j/2� 1�Œ.j0C jC 1/2� 1�
˝

j0, m0
ˇ
ˇ OV jj, mi D �2

˝

j0, m0
ˇ
ˇf OJ , OJ � OV gjj, mi , (4.55)

which can be found using similar consideration as in the previous section. From
Eq. (4.54), one can also easily deduce that

Œ OJ , OJ � OV � D 0 .

Considering Eq. (4.55) for j0 D j yields

˝

j, m0
ˇ
ˇ OV jj, mi D 1

j.jC 1/

˝

j, m0
ˇ
ˇ OJ OJ � OV jj, mi . (4.56)

This implies that when OJ � OV D 0 the matrix element hj, m0j OV jj, mi equals zero.
If j0 ¤ j then the rhs of Eq. (4.55) vanishes and then lhs has to vanish as well. This

is possible only if hj0, m0j OV jj, mi D 0 if j0 ¤ j˙ 1. To sum up, the matrix elements
hj0, m0j OV jj, mi vanish whenever j0 ¤ j ˙ 1 or j0 ¤ j. Equations (4.44)–(4.49) were
derived merely from the commutation relation (4.39). Therefore, they hold true for
a general operator OV obeying Eq. (4.54), with l replaced by j. The generalizations of
Eqs. (4.50)–(4.52) for an arbitrary operator obeying Eq. (4.54) then reads:

OV3jj, mi D cj

p

.jC m/.j � m/jj � 1, mi
C cjC1

p

.jC 1C m/.jC 1 � m/jjC 1, mi
C majjj, mi ,

OVCjj, mi D cj

p

.j � m � 1/.j � m/jj � 1, mC 1i
� cjC1

p

.jC mC 2/.jC mC 1/jjC 1, mC 1i
C
p

.j � m/.jC mC 1/ajjj, mC 1i ,
OV�jj, mi D �cj

p

.jC m � 1/.jC m/jj � 1, m � 1i
C cjC1

p

.j � mC 2/.j � mC 1/jjC 1, m � 1i
C
p

.jC m/.j � mC 1/ajjj, m � 1i ,
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where

aj D 1

j.jC 1/
hj, mj OJ � OV jj, mi .

4.4.7 The Zeeman Effect

The above presented generalization finds an indeed nice application in the so-called
anomalous Zeeman effect. This effect is nothing else but splitting of atomic spectral
lines arising from the combined influence of the spin-orbit interaction and the
interaction of the spin and orbital angular momenta of an electron with the external
magnetic field.9 With all the knowledge acquired so far, the reader will be able to
study this effect independently with the aid of the following instructions.

1. Apart from the kinetic and electrostatic potential energy, consider only the terms
describing the spin-orbit interaction on the rhs of Eq. (3.101)

OH D Œ� � . Op � eA/�2

2m
C e' � 1

8m2

�

�i, �j
� � Opj, e'

� Opi .

Further, consider a general electrostatic potential e', though spherically
symmetrical, ' D '.Or/.

2. As usually, neglect the term e2A � A. The Hamilton operator OH can then be cast
into the form

OH D OH0 C OH1, OH0 D
Op2

2m
C e' ,

OH1 D
OS � OL
2m2

1

r

d.e'/

dr
� e

m




A � Op C B � OS
�

.

3. Choose the z-axis in the direction of the magnetic field. Then

B D B.0, 0, 1/ , A D B

2
.�y, x, 0/ ,

where the vector potential A was chosen so that B D r�A and r �A D 0; hence

OH1 D
OS � OL
2m2

1

r

d.e'/

dr
� eB

2m


 OLz C 2 OSz

�

.

9The normal Zeeman effect occurs under the very same conditions with the only exception that the
spin-orbit interaction is negligible. The terminology, stemming from the historical development,
was coined somewhat unfortunately, though.
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4. Change to the atomic units r! rA=.mZ˛/ and introduce the notation

V.rA/ D
e'
� rA

mZ˛

�

m.Z˛/2

and

�B D eB

.m˛/2
. (4.57)

The Hamiltonian OH1, which comprises the spin-orbit interaction and the
interaction with the external magnetic field, then takes on the form

OH1

m.Z˛/2
D .Z˛/2

2
OS � OL 1

rA

dV.rA/

drA
� �B

2Z2


 OLz C 2 OSz

�

.

As shown in Eq. (0.7), the dimensionless strength equals �B ' 4.254 � 10�6

for the magnetic field of the intensity 1 T. To realize how strong the magnetic
field is, we can compare it to a few examples: the protons in the Large Hadron
Collider (LHC) are kept on their orbit by superconducting magnets maintaining
the field of about 8 T, and the highest recorded magnetic intensity ever reached
on Earth is 34 T. Considering that ˛2=2 ' 2.7 � 10�5, a situation when the two
interactions are of a comparable magnitude is certainly plausible. However, within
the conditions we commonly encounter on our Earth, the first-order perturbation
method suffices.

5. Choose the eigenvectors of OH0 in the form

�

r

ˇ
ˇ
ˇ
ˇ
n, j, m,

�
1

2
, l

�


D Rn,l.r/

ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
, l

�


, (4.58)

where the states
ˇ
ˇj, m,

�
1
2 , l
�˛

are called the spherical spinors. We already
encountered their simplest instance for l D 1 in Sect. 3.5.2. For the first-order
perturbation method, we will need the matrix elements

�

n, j, m,

�
1

2
, l

�ˇ
ˇ
ˇ
ˇ
OH1

ˇ
ˇ
ˇ
ˇ
n, j, m,

�
1

2
, l

�


D .Z˛/2

2

Z 1

0
drrR2

n,l.r/
dV

dr

�

j, m,

�
1

2
, l

�ˇ
ˇ
ˇ
ˇ
OS � OL

ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
, l

�


� �B

2Z2

�

j, m,

�
1

2
, l

�ˇ
ˇ
ˇ
ˇ


 OLz C 2 OSz

�
ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
, l

�


.
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With the aid of Eq. (3.110) and the defining formulas for
ˇ
ˇj, m,

�
1
2 , l
�˛

,
Eqs. (4.10), (4.12), and (4.13), the spin-orbit interaction matrix element equals

�

j, m,

�
1

2
, l

�ˇ
ˇ
ˇ
ˇ
OS � OL

ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
, l

�


D j.jC 1/ � l.lC 1/

2
� 3

8

6. Now the key point comes. We can write for the matrix elements of the angular
momentum projections along the direction of the magnetic field

�

j, m,

�
1

2
, l

�ˇ
ˇ
ˇ
ˇ


 OLz C 2 OSz

�
ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
, l

�


D mC
�

j, m,

�
1

2
, l

�ˇ
ˇ
ˇ
ˇ
OSz

ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
, l

�


,

where we used Eqs. (4.9) and (4.11). However, how to calculate the last matrix
element? We could use the expansion (4.17) in terms of orbital and spin states
as we have already determined the action of OSz on the spin state. Nevertheless,
there is a more elegant way. One can easily find that

ŒOJi, OSj� D Œ OLi C OSi, OSj� D Œ OSi, OSj� D i"ijk
OSk ,

thus OS behaves as a vector operator with respect to OJ! Owing to the relation

OS � OJ D 1

2
.OJ2 C OS2 � OL2/ ,

we have from Eq. (4.56)

�

j, m,

�
1

2
, l

�ˇ
ˇ
ˇ
ˇ
OSz

ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
, l

�


D j.jC 1/ � l.lC 1/C 3=4

2j.jC 1/
m .

Determine (numerically in hertz) the splitting of the 2p level of the
hydrogen atom when it is inserted into a magnetic field of intensity 0.5 T.

Exercise 9: The Zeeman Effect
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4.4.8 Nonzero Matrix Elements: Dependence on l and n

The only remaining task now is to determine the numbers cl,.n/. One can do so in the
following way. On one hand, we can calculate . OVC OV�C OV2

3/j.n/, l, mi directly from
Eqs. (4.50) to (4.52). After straightforward, though somewhat lengthy manipulations,
we arrive at

. OVC OV� C OV2
3/j.n/, l, mi

D



c2
l,.n/.2l � 1/.lC m/C c2

lC1,.n/.2lC 3/.lC 1 � m/
�

j.n/, l, mi . (4.59)

On the other hand, we can use the defining equations OV˙ D OV1 ˙ i OV2 and rewrite
the lhs of the last equation as

. OVC OV� C OV2
3/j.n/, l, mi D


 OV2
1 C OV2

2 C OV2
3 � iŒ OV1, OV2�

�

j.n/, l, mi

D

 OV2 � iŒ OV1, OV2�

�

j.n/, l, mi . (4.60)

Thus, in order to find the coefficients cl,.n/, we need to know the squared magnitude
of the vector operator and the commutator of the vector components with each
other. These commutation relations, however, depend on the specific form of every
individual operator OV. In other words, it depends on the particular form of operators
Ofn and Ofr appearing in Eq. (4.35).

4.4.9 Spherical Harmonics

If the vector operator of choice is the direction vector OV D n then obviously nini D 1,
Œni, nj� D 0. It follows then from Eqs. (4.59) and (4.60)

1 D c2
l .2l � 1/.lC m/C c2

lC1.lC 1 � m/.2lC 3/ . (4.61)

Since cl is independent of m, the same constant must appear in front of the same
powers of m on both sides of the last equation. Due to this requirement, we obtain
two equations: one for cl and one for clC1. These equations must be, and they are,
compatible;

1 D c2
l .2l � 1/lC c2

lC1.lC 1/.2lC 3/
0 D c2

l .2l � 1/ � c2
lC1.2lC 3/

�

) cl D 1
p

.2l � 1/.2lC 1/
.
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We can now express the action of the components of an arbitrarily oriented unit
vector on the spherical harmonics as

n3Ylm.n/ D
s

.l � m/.lC m/

.2l � 1/.2lC 1/
Yl�1,m.n/

C
s

.lC 1C m/.lC 1 � m/

.2lC 1/.2lC 3/
YlC1,m.n/ , (4.62)

nCYlm.n/ D
s

.l � m � 1/.l � m/

.2l � 1/.2lC 1/
Yl�1,mC1.n/

�
s

.lC mC 2/.lC mC 1/

.2lC 1/.2lC 3/
YlC1,mC1.n/ (4.63)

and

n�Ylm.n/ D �
s

.lC m � 1/.lC m/

.2l � 1/.2lC 1/
Yl�1,m�1.n/

C
s

.l � mC 2/.l � mC 1/

.2lC 1/.2lC 3/
YlC1,m�1.n/ . (4.64)

These formulas find a wide range of applications, such as in the determination
of the form of spherical harmonics. From Eqs. (4.62) to (4.64), one can calculate all
other Ylm if given the starting Y00, see Eq. (3.35), in an elegant way,

n3Y00.n/ D 1p
3

Y10.n/ ,

n3Y10.n/ D 1p
3

Y00.n/C 2p
3 � 5Y20.n/ , (4.65)

nCY00.n/ D �
r

2

3
Y11.n/ ,

n�Y00.n/ D
r

2

3
Y1,�1.n/

and so on, using neither differentiation nor integration. Compare the results with
Eqs. (3.91), (3.92), and (3.93).

One last comment: Once we know the matrix elements of the operator n (which
are easy to obtain), we can use Eq. (4.40) to calculate the matrix elements of the
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differential operator rn. To be more specific, we substitute l0 D lC 1 and l0 D l� 1
into Eq. (4.40) and obtain

˝

lC 1, m0
ˇ
ˇrn

k jl, mi D �l
˝

lC 1, m0
ˇ
ˇnkjl, mi (4.66)

and

˝

l � 1, m0
ˇ
ˇrn

k jl, mi D .lC 1/
˝

l � 1, m0
ˇ
ˇnkjl, mi . (4.67)

Even if that were the only application of the presented algebraic construction (which
is surely not), it did pay off. . .

Finally, we have all the requisite tools to tackle the fine-structure of positronium
spectral lines.

Consider the relativistic and magnetic corrections in positronium. Let
us recall that the Hamiltonian with accuracy up to ˛4 is given by the
nonrelativistic Hamiltonian OH0, Eq. (3.131), and the Breit Hamiltonian
OH1, Eq. (3.132). Verify that the total angular momentum

OJ D OLC OS , OS D OSe C OSp

commutes with the total Hamiltonian OH D OH0 C OH1. When considering
the degenerate level n D 2, there are four classes of states, namely 21s,
23s, 21p and 23p. Reflect that the matrix elements of the Hamiltonian OH1

between four classes of states 21s, 23s, 21p, and 23p vanish and we can thus
restrict our further considerations to only one of the classes of states. For
instance, for the projection of the total angular momentum m D 0, there
are three possible states 23p,

R2p.r/Y1,1.n/j1,�1i , j1,�1i D j�iej�ip ,

R2p.r/Y1,0.n/j1, 0i , j1, 0i D 1p
2
.jCiej�ip C j�iejCip/

and

R2p.r/Y1,�1.n/j1, 1i , j1, 1i D jCiejCip .

We can compose states with j D 0, 1, 2 from these three states, see
Sect. 4.2. Determine the splitting between the p-states with definite values
of j with accuracy up to ˛4, i.e., using the first order of the perturbation

Exercise 10: Structure of Positronium Spectral Lines
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method. Set the gyromagnetic ratio g to 1. Compare the results with the
experimental values [5]

�exp.2
3s � 23p0/ D 18,504.1 .10.0/MHz

�exp.2
3s � 23p1/ D 13,001.3 .3.9/MHz

and

�exp.2
3s � 23p2/ D 8619.6 .2.7/MHz .

The kind reader will surely be able to derive from these three numbers the
experimental values for the intervals 23p0 � 23p1 and 23p1 � 23p2.
Hint: the spin-dependent operators in OH1 can be rewritten as

OSe � OSp D 1

2
. OS2 � OS2

e � OS2
p/!

1

2

�

s.sC 1/ � 3

2

�

,

OS � OL D 1

2
.OJ2 � OS2 � OL2/! 1

2
Œj.jC 1/ � s.sC 1/ � l.lC 1/�

and

n � OSen � OSp D 1

2

h

.n � OS/2 � .n � OSe/
2 � .n � OSp/

2
i

D 1

2

�

.n � OS/2 � 1

2

	

.

To calculate the matrix elements of ninj between spherical harmonics, use
repeatedly Eqs. (4.62)–(4.64) and orthornormality relations for spherical
harmonics, Eq. (3.86).

For the spherical spinors introduced in Eq. (4.58), verify that

� � njj, mi˙ D �jj, mi� ,

where

jj, mi˙ D
ˇ
ˇ
ˇ
ˇ
j, m,

�
1

2
, j� 1

2

�


.

To prove this, use Eqs. (4.62), (4.63), (4.64), and (4.20).

Exercise 11: Spherical Spinors
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4.5 The Hydrogen Atom: A General Solution

Now it is finally the time to solve the problem of the hydrogen atom bound states in its
utmost generality. We will do so by finding the eigenvalues of the Hamiltonian (4.32),
OH D Op2

2 � 1
r . As we discussed in Sect. 3.4, the Hamiltonian OH, squared magnitude

of the angular momentum OL2, and the projection of the angular momentum along
one of the axes OLz form a complete set of commuting operators. In Sect. 3.4, we also
showed how to obtain the differential equation for the radial parts of the bound state
wave functions, Eq. (3.87). Here, we will explain how to avoid the direct solving of
this equation and how to find the energy eigenvalues and the corresponding wave
functions merely with the knowledge of the matrix elements of the Runge-Lenz
vector.

4.5.1 Matrix Elements of the Runge-Lenz Vector

When we substitute OV D OX into Eq. (4.53), where OX is the Runge-Lenz vector
operator (4.34), we obtain

OX3jn, l, mi D cl,n

p
l2 � m2jn, l � 1, mi C clC1,n

p

.lC 1/2 � m2jn, lC 1, mi .
(4.68)

Comparison of Eqs. (4.59) and (4.60) leads to the equation for the coefficients cl,n

Œc2
l,n.2l� 1/.lCm/C c2

lC1,n.lC 1�m/.2lC 3/�jn, l, mi D . OX2 � iŒ OX1, OX2�/jn, l, mi .
(4.69)

Since (prove by yourself!)

OX2 D 1C 2 OH. OL2 C 1/

and

Œ OX1, OX2� D �2 OHi OL3 ,

and also due to Eqs. (3.79), OHjn, l, mi D � 1
2n2 jn, l, mi, (3.80), OL2jn, l, mi D l.l C

1/jn, l, mi, and (3.81), OLzjn, l, mi D mjn, l, mi, the rhs of Eq. (4.69) can be simplified
to

. OX2 � iŒ OX1, OX2�/jn, l, mi D 1

n2
.n2 � l.lC 1/ � 1C m/jn, l, mi .
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When the last result is used on the rhs of Eq. (4.69), we obtain, invoking
the orthonormality of the eigenstates jn, l, mi, the following relation for the
coefficients cl,n

c2
l,n.2l � 1/.lC m/C c2

lC1,n.lC 1 � m/.2lC 3/ D 1

n2
.n2 � l.lC 1/ � 1C m/ .

In an analogical way to the consideration following Eq. (4.61), the above equation
breaks into two

0th degree in m c2
l,n.2l � 1/lC c2

lC1,n.lC 1/.2lC 3/ D 1

n2
.n2 � l.lC 1/ � 1/ ,

1st degree in m c2
l,n.2l � 1/C c2

lC1,n.�1/.2lC 3/ D 1

n2
;

their solution being

cl,n D ˙1

n

s

n2 � l2

.2lC 1/.2l � 1/
.

The sign of the coefficients is not uniquely determined as there is a freedom in the
choice of the phase factors of the radial hydrogen functions. We will opt for cl,n < 0
here; this choice is consistent with that of the phase in Eq. (4.94) below. When we
substitute the coefficients cl,n into Eq. (4.68), we obtain

OX3jn, l, mi D �1

n

p
n2 � l2bl,mjn, l � 1, mi � 1

n

p

n2 � .lC 1/2blC1,mjn, lC 1, mi ,
(4.70)

where we introduced the notation

bl,m D
s

l2 � m2

.2lC 1/.2l � 1/
. (4.71)

4.5.2 Energy Spectrum of the Hydrogen Atom

One can notice that the effect of the operator OX3 on the vector jn, l, mi is a mere
shift of the orbital number l. As discussed earlier, see the discussion at the end of
Sect. 4.4.5, we may require the coefficients cl,n be real. However, one cannot satisfy
this requirement for l > n � 1, see Eq. (4.70). Therefore, it must hold that

0 D
p

n2 � .lmax C 1/2 ) lmax D n � 1 . (4.72)

The square of the angular momentum must equal at least zero, hence lmin D 0. We
can conclude therefrom that l always acquires integer values from zero to n�1. This
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finding imposes a new requirement on the principal quantum number n: it must be
an integer as well. For the third time, realize that we have deduced all these results
using nothing but the simple commutators!

As we commented in Sect. 3.4.3, the energy levels of an electron in the Coulomb
potential are subject to the accidental degeneracy: the energy of the stationary
states depends on neither the magnetic nor the orbital quantum number. This name
might be misleading, though. As we have showed above, the degeneracy is in fact
not accidental at all. On the contrary, it is related to the existence of the vector
operator (4.31) which commutes with the Hamiltonian of the hydrogen atom. The
existence of this operator is then related to the fact that the classical motion of a
body in the Coulomb potential is restricted to an ellipse.

4.5.3 The Stark Effect

The Hamiltonian of a hydrogen-like atom placed in an external electric field of the
intensity E D .0, 0, E/ reads

OH D Op
2

2m
� Z˛
Or C eEOz D m.Z˛/2

h OH0 C �E

Z3
OzA

i

, OH0 D
Op2

A

2
� 1
OrA

,

where we used the atomic units, r! rA=.mZ˛/, and introduced the notation

�E D eE

m2˛3
. (4.73)

As we have shown in Eq. (0.6), a field of the intensity 1 V/m corresponds to
�E D 1.945 � 10�12. The highest intensity reached on Earth is approximately
107 V/m, therefore it suffices to use the first-order perturbation method for degenerate
levels when studying a system under terrestrial conditions. We thus need the matrix
elements

˝

n, l0, m0
ˇ
ˇOzAjn, l, mi .

There are a few tricks (we found them in [11]) allowing us to transform the calculation
of these matrix elements to the calculation of those of the Runge-Lenz vector.

The first trick lies in the identity (prove by yourself!)

OX D 1

2


 OL � Op � Op � OL
�

C On D � i

2

h OL � Ox � Ox � OL, OH0

i

C On .

It follows clearly thereof

˝

n, l0, m0
ˇ
ˇ OX jn, l, mi D ˝n, l0, m0

ˇ
ˇ Onjn, l, mi .
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The second trick constitutes the identities (prove by yourself!)

Oni D Oxi.�iŒOxj Opj, OH0� � 2 OH0/

and

2iOxiŒOxj Opj, OH0� D Œ2iOxi Oxj Opj � i Opi Oxj Oxj C 3Oxi, OH0�C Oni .

It follows from these two identities that

˝

n, l0, m0
ˇ
ˇ Onjn, l, mi D 2

3n2

˝

n, l0, m0
ˇ
ˇOr jn, l, mi .

Hence, the overall result reads

˝

n, l0, m0
ˇ
ˇOr jn, l, mi D 3n2

2

˝

n, l0, m0
ˇ
ˇ OX jn, l, mi .

Determine (numerically in hertz) the splitting of the state n D 3 of the
hydrogen atom when it is inserted into a homogeneous electric field of the
intensity 2.5 � 105 V/m.

Exercise 12: The Stark Effect

4.5.4 Radial Functions of the Hydrogen Atom

We now show how to determine the radial part of the hydrogen bound state
wave function, i.e., the function Rnl in Eq. (3.83), hrjn, l, mi D  nlm.r,# ,'/ D
Rnl.r/Ylm.# ,'/. We use the action of the third component of the Runge-Lenz vector,
Eq. (4.34), into which we substitute Eqs. (4.62), (4.66), (4.67), and (4.71). That is,

n3jl, mi D blmjl � 1, mi C blC1,mjlC 1, mi (4.74)

and

rn
3 jl, mi D .lC 1/blmjl � 1, mi � lblC1,mjlC 1, mi . (4.75)

Hence, on one hand, we have
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hrj OX3jn, l, mi D
�

On3

�
@

@r
� l.lC 1/

r
C 1

�

� rn
3
@

@r

�

Rnl.r/Ylm.n/

D
�

.blmYl�1,m C blC1,mYlC1,m/

�
@

@r
� l.lC 1/

r
C 1

�

� ..lC 1/blmYl�1,m � lblC1,mYlC1,m/
@

@r

�

Rnl .

On the other hand, we know from Eq. (4.70) that

hrj OX3jn, l, mi D �
p

n2 � l2

n
blmRn,l�1Yl�1,m �

p

n2 � .lC 1/2

n
blC1,mRn,lC1YlC1,m .

The spherical harmonics form an orthogonal basis set, thus we can compare the
coefficients in front of the same Ylm. This leads to a simple set of differential
equations for radial functions

�
d

dr
C .lC 1/

r
� 1

l

	

Rnl D
p

n2 � l2

nl
Rn,l�1 , (4.76)

�
d

dr
� l

r
C 1

lC 1

	

Rnl D �
p

n2 � .lC 1/2

n.lC 1/
Rn,lC1 . (4.77)

From these equations, one can derive the solution in a sequence of steps. First, we
set n D lC 1. It then follows from the second equation that

�
d

dr
� l

r
C 1

lC 1

	

RlC1,l D 0 .

One can employ the method of separation of the variables to solve this last equation:

RlC1,l.r/ D K.l/r
le�

r
lC1 , (4.78)

and find the integration constant from the normalization condition,

1 D
Z 1

0
R2

lC1,lr
2dr D K2

.l/

Z 1

0
r2lC2e�

2r
lC1 dr

D K2
.l/

�
lC 1

2

�2lC3 Z 1

0
t2lC2e�tdt D K2

.l/

�
lC 1

2

�2lC3

.2lC 2/!

) K.l/ D
�

2

lC 1

�lC3=2 1
p

.2lC 2/!
. (4.79)
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r

R10

R21

R32

Fig. 4.2 Radial functions with the maximal angular momentum (not to scale)

This way, one obtains the radial functions without nodes (i.e., without intersections
with the axis r), see Fig. 4.2. We have already encountered special cases of these
functions before, Eq. (3.35) for l D 0 and Eq. (3.96) for l D 1. We then use Eq. (4.76)
to express the other functions. For instance, for n D 2 and l D 1 we obtain

�

� d

dr
� 2

r
C 1

�

R21 D �
p

3

2
R20 ;

hence

R20 D � 2p
3

1

2
p

6

�

�3C 3r

2

�

e�r=2 D 1p
2




1 � r

2

�

e�r=2 ,

confront with Eq. (3.95). And so forth. . .
The relations (4.76) and (4.77) will come in hand in the next two chapters.

4.5.5 Parabolic Coordinates

Find the eigenstates of the operator OX3 in the subspace spanned by
the states n D 2 and m D 0; denote the eigenvalue as X3. Show that
hrj2X30i D f1.�/f2.�/, where the so-called parabolic coordinates � and
� are given by the expressions z D .� � �/=2 and r D .� C �/=2.

Exercise 13: Parabolic Coordinates and Hydrogen
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Exercise 13 relates to the following question: do we need to choose the particular
commuting set of the operators f OH, OL2, OLzg when considering the hydrogen atom?
Not at all, nothing prevents us from using a different complete set of commuting
operators, such as f OH, OXz, OLzg, which corresponds to the solution of the Schrödinger
equation in the parabolic coordinates, as illustrated in the exercise. Furthermore,
nothing prevents us from choosing even this complete set of commuting operators:
f OH, c1

OL2 C c2
OXz, OLzg, where c1 and c2 are arbitrary real numbers. Thus we see that

there is a rich variety of possible coordinate systems in which the Schrödinger
equation separates.

We will use the separation of the Schrödinger equation in the parabolic coordinates
later in Sects. 6.3.2–6.3.4 to obtain the wave function of an electron ejected from the
atom by a photon.

4.6 Decomposition of a Plane Wave into Spherical Waves

Finally, we focus on the simplest possible problem—a free particle,

OH D Op
2

2
.

On one hand, a free particle is a trivial example of a spherically symmetrical potential
and we can search for the common eigenvectors of the operators OH, OL2 and OL3,

OHj!, l, mi D !2

2
j!, l, mi . (4.80)

In the coordinate representation, we can subsequently split the wave function into
the radial and angular parts

hrj!, l, mi D Rl.!r/Yl,m.n/ . (4.81)

On the other hand, for this system, and only for this system, it is Œ Op, OH� D 0.
We see from Eq. (3.15) that the momentum operator is another example of the
vector operator OV , Eq. (4.35). Owing to Œ Op1, Op2� D 0 and Op2 D 2 OH, we obtain from
Eqs. (4.59), (4.60), and (4.80)

!2 D c2
l,!.2l�1/.lCm/C c2

lC1,!.lC1�m/.2lC3/) cl,! D !
p

.2l � 1/.2lC 1/
.

Analogously to Eq. (4.70), we find

Op3j!, l, mi D !Œbl,mj!, l � 1, mi C blC1,mj!, lC 1, mi� . (4.82)
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After the substitution of the separation (4.81) into the last equation, we obtain in the
coordinate representation

hrj Op3j!, l, mi D !Œbl,mRl�1.!r/Yl�1,m C blC1,mRlC1.!r/YlC1,m� .

However, through the direct application of the angular operators, we find from
Eqs. (3.15), (4.74), and (4.75) that

hrj Op3j!, l, mi D �i

�
d

dr
Rl.!r/.bl,mYl�1,m C blC1,mYlC1,m/

C 1

r
Rl.!r/..lC 1/bl,mYl�1,m � lblC1,mYlC1,m/

	

.

Comparing of the last two equations and following the same reasoning as the one
preceding Eqs. (4.76) and (4.77) lead to

� i

�
d

dr
C lC 1

r

�

Rl.!r/ D !Rl�1.!r/ (4.83)

and

� i

�
d

dr
� l

r

�

Rl.!r/ D !RlC1.!r/ . (4.84)

This pair of equations does not impose any restriction on l or !, though. The number
! can be an arbitrary real number. For a given ! the orbital quantum number l
may acquire any integer value from zero to infinity. However, if we find R0.!r/ by
solving directly the Schrödinger equation (4.80), we can use the last two equations
to determine all other Rl.!r/ for l > 0. With the aid of Eqs. (3.21) and (4.81), we
obtain from Eq. (4.80) for the radial functions with l D 0

�
�

d2

dr2
C 2

r

d

dr

	

R0.!r/ D !2R0.!r/ .

There are two solutions to this equation: the first one is a regular one which is finite
everywhere,

j0.!r/ D sin.!r/

!r
, (4.85)

and the second one is a singular one which diverges at the origin,

n0.!r/ D cos.!r/

!r
.
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By the substitution

Rl.!r/ D
(

iljl.!r/ ,

ilnl.!r/
(4.86)

into Eqs. (4.83) and (4.84), we can easily prove the functions jl.!r/ and nl.!r/ are
real. The functions jl.!r/ are commonly referred to as the spherical Bessel functions,
the functions nl.!r/ as the spherical Neumann functions, or the irregular spherical
Bessel functions.

Now we can ask the same question as in the case of the hydrogen atom: Do we need
to consider this particular set of the commuting operators, namely f OH, OL2, OL3g? Of
course not. Nothing prevents us from considering the complete set of the commuting
operators f OH, Op3, OL3g. We easily find in the Cartesian coordinates that the wave
function

hrj!, p3, 0i D ei!z D ei!r cos# (4.87)

is an eigenfunction of these operators. The solutions (4.81) and (4.87) are different
solutions to the same Eq. (4.80) and as such they need to be related to each other. In
other words, it must be possible to express the plane wave (4.87), which describes a
particle with the linear momentum p3 D !, as a linear combination of the spherical
waves (4.81),

j!, p3, 0i D
1X

lD0

dlj!, l, 0i . (4.88)

After application of the operator Op3 to both sides of the equation, we obtain, using
successively Eqs. (4.87), (4.88), and (4.82),

Op3j!, p3, 0i D !j!, p3, 0i D !
1X

lD0

dlj!, l, 0i

D !
1X

lD0

dl Œbl,0j!, l � 1, 0i C blC1,0j!, lC 1, 0i� .

By replacing l! lC 1 and l! l � 1 in the first and the second term, respectively,
on the rhs of the last equation, by comparing the last and second to last expressions
in this equation, and by invoking the orthogonality of the states j!, l, mi, we arrive
at the relation

dl � blC1,0dlC1 � bl,0dl�1 D 0 .
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Substituting for bl,0 from Eq. .4.71/ into the last equation leads to the solution

dl D d0

p
2lC 1 .

Since the plane wave (4.87) is finite everywhere, we opt for the regular solution
Rl.!r/ D iljl.!r/ as its radial part. The projection of Eq. (4.88) along the coordinate
basis then reads:

ei!z D ei!r cos# D d0

1X

lD0

p
2lC 1iljl.!r/Yl,0.#/ . (4.89)

Setting r D 0 and using the approximate asymptotic behavior of the Bessel function
near the origin jl.!r/ 	 rl imply

1 D d0Y0,0 ) d0 D
p

4� . (4.90)

The expansion of a plane wave into spherical waves, Eq. (4.89), finds a wide
application within the quantum scattering theory. One exploits it also in other parts
of physics for example in the analysis of the scattering of electromagnetic waves by
a conducting or dielectric sphere, see, e.g., [12]. We will return to Eq. (4.89) later on
and rewrite it into a more convenient form, see Eq. (5.30).

4.7 Algebra of Radial Operators

As mentioned above in Sect. 3.2.5, the eigenstates of the hydrogen atom do not
serve well when it comes to the variational calculation of more complex atoms. The
reason is that the spectrum of the Hamilton operator of the hydrogen atom comprises
both a discrete and a continuous part. However, we have shown for the s-states in
Sect. 3.2.5 that one can use a few simple tricks to transform the original search for
the eigenstates of the hydrogen atom into that for the eigenstates of the operator
OT3, the advantage being its purely discrete spectrum. All we need to do is thus to
generalize the procedure presented in Sect. 3.2.5 for the states with l D 0 to general
states.10

Instead of Eq. (3.22), we need to consider Eq. (3.87)

OHlj i D
� Op2

r

2
C l.lC 1/

2Or2
� 1
Or
�

j i D � 1

2n2
j i . (4.91)

10The presentation in this section is, as in the Sect. 3.2.5, inspired by the work [3].
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We substitute r! nr and multiply the whole equation by r to transform the search
for the spectrum of the Hamilton operator to that of the spectrum of the generalized
operator OT3, see Eq. (3.25),

OT3j i D nj i , OT3 D
Or Op2

r

2
C l.lC 1/

2Or C Or
2

.

If we change the operator OW3 in Eq. (3.26) to

OW3 D Or Op2
r C

l.lC 1/
Or

and leave the operators OW1 D Or and OW2 D Or Opr intact, the commutation
relations (3.27) do not change. It follows that neither Eqs. (3.28), (3.29), (3.30),
and (3.31) change; for instance

Œ OT1, OT2� D �i OT3 , Œ OT2, OT3� D i OT1 , Œ OT3, OT1� D i OT2 . (3.29)

Instead of Eq. (3.32), we now have (prove by yourself!)

OT2 D OT2
3 � OT2

1 � OT2
2 D l.lC 1/ . (4.92)

Apart from the single sign change in the first commutator, the commutation
relations (3.29) are identical to those for the angular momentum operators, Eq. (4.1).
The eigenvalues and eigenstates of the operators OT3 and OT2 can be determined in the
same way as those of the operators OJ3 and OJ2. In accordance with Eq. (4.3), we thus
write

OT2jn, li D l.lC 1/jn, li , OT3jn, li D njn, li . (4.93)

After the replacement of OJ by OT, we obtain the equation

OT˙jn, li D ˛˙.l, n/jn˙ 1, li , ˛˙.l, n/ D
p

.n� l/.n˙ .lC 1// , (4.94)

instead of Eq. (4.8). Imposing the requirement there be a lowest possible n, which
agrees with n dictating the energies in Eq. (4.91), it must hold that OT�jl, nmini D
0, hence nmin 2 f�l, l C 1g. Were we to set nmin D �l in ˛C.l, n/ we would
obtain an imaginary result, which contradicts the reality of the operator OT3 and its
eigenfunctions. Therefore, we will use nmin D lC 1 as the lowest state. This way,
we easily obtain the eigenvalues of the operator OT3 and derive for the second time
that the hydrogen spectrum acquires the form En D � 1

2n2 , where n D l C 1 C nr,
nr D 0, 1, 2, : : :.
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The projections of the eigenvectors of the operator OT3 onto the coordinate basis11

RM
n,l.r/ D hrjn, li

is almost identical to the eigenfunction of the hydrogen atom Rn,l.r/. The
eigenfunctions of the operator OT3 differ from those of the radial Hamiltonian (4.91)
only by the energy-dependent scaling of the radial coordinate r ! nr and by the
normalization. A slight difference lies also in the Hamiltonian (4.91) being Hermitian
with respect to the scalar product with the weight r2,

hn1, lj OHljn2, li D hn2, lj OHljn1, li

)
Z 1

0
r2 Rn1,l.r/ OHlRn2,l.r/ dr D

Z 1

0
r2 Rn2,l.r/ OHlRn1,l.r/ dr ,

as can be easily proven by integration by parts. On the other hand, the operator OT3

is Hermitian with respect to the scalar product with the weight r,

Z 1

0
r RM

n1,l.r/ OT3RM
n2,l.r/ dr D

Z 1

0
r RM

n2,l.r/ OT3RM
n1,l.r/ dr .

Hence the radial functions of the hydrogen atom form an orthonormal system with
respect to the scalar product with the weight r2,

hn1, ljn2, li D
Z 1

0
r2 Rn1,l.r/Rn2,l.r/ dr D ın1,n2 , (4.95)

whereas the eigenfunctions of the operator OT3 form an orthonormal system with
respect to the scalar product with weight r,

Z 1

0
r RM

n1,l.r/R
M
n2,l.r/ dr D ın1,n2 . (4.96)

For example, the eigenfunctions of the operator OT3 for n D lC1 read, compare with
Eqs. (4.78) and (4.79),

RM
lC1,l.r/ D

2
p

.2lC 1/!
.2r/le�r . (4.97)

11It is a common habit within literature to call these functions the Sturmian functions, or the
Sturmians, see for example [2].
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As we will see later, it is sometimes advantageous to introduce the screening
parameter �

RM
lC1,l.�, r/ D 2�

p

.2lC 1/!
.2�r/le��r . (4.98)

Apart from the substitution r ! �r, the function (4.98) differs from the
functions (4.97) also by the factor � which ensures correct normalization (4.96).

From the definition of the operators OT3 and OT1, see Eqs. (3.26) and (3.28), we find
Or D OT3 � OT1 D OT3 � 1

2 .
OTC C OT�/; hence

rRM
nl.r/ D

�

OT3 � 1

2
. OTC C OT�/

�

RM
nl.r/ (4.99)

D nRM
nl.r/ �

1

2

p

.n � l/.nC lC 1/RM
nC1,l.r/

� 1

2

p

.n � l � 1/.nC l/RM
n�1,l.r/ ,

where we used Eq. (4.94). We have thus found an equation for eigenfunctions of OT3

operator which will prove handy in the next chapter.
As we already pointed out above, the discrete basis functions RM

n,l.r/ differ from
the hydrogen functions Rn,l.r/ only by a scale factor and a normalization constant.
Let us now find the exact relation between these two functions:

Rn,l.r/ D K

n
RM

n,l.r=n/ .

The factor n�1 ensures the correct normalization of the functions RM
n,l.r=n/, see

Eq. (4.96),

Z 1

0
r
ˇ
ˇn�1RM

n,l.r=n/
ˇ
ˇ
2

dr D
Z 1

0
r
ˇ
ˇRM

n,l.r/
ˇ
ˇ
2

dr D 1 .

The factor K can be determined from the requirement of the proper normalization
of the functions Rn,l.r/, see Eq. (4.95),

Z 1

0
r2 jRn,l.r/j2 dr D K2

Z 1

0
r2
ˇ
ˇn�1RM

n,l.r=n/
ˇ
ˇ
2

dr

D K2n�2n3
Z 1

0
rRM

n,l.r/rRM
n,l.r/dr

D K2n�2n3n D 1) K D 1

n
.

The third equality follows from Eqs. (4.96) and (4.99).
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Substituting r D 0 and l D 0 into Eq. (4.99) yields

0 D nRM
n0.0/ �

1

2

p

n.nC 1/RM
nC1,0.0/ �

1

2

p

.n � 1/nRM
n�1,0.0/ . (4.100)

We solve these equations with the initial conditions RM
0,0.0/ D 0 and RM

1,0.0/ D 2.
The reader will easily verify that the solution to these equations reads

RM
n,0.0/ D 2n1=2 .

The above equations imply the following value of the hydrogen function at the origin

 n,l,m.r D 0/ D ıl,0
1p
4�

Rn,0.0/ , Rn,0.0/ D 2

n3=2
. (4.101)

This result will come in hand several times in Chaps. 6 and 7.

4.8 Final Notes

The application of the addition of the angular momentum, Clebsch-Gordan
coefficients, and selection rules of the vector operators is not restricted to atomic
physics and angular momentum itself, though. If the reader is interested in the
application of the presented mathematical apparatus to the internal symmetries of
the elementary particles, we refer him or her to, e.g., [4, 7, 9, 14]. An elaborate
theory of the composition of three and four angular momenta has been developed,
see for example [6, 13].
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Chapter 5
The Helium Atom

In the previous chapters, we thoroughly investigated the simplest atom of all—the
hydrogen atom. We have found that, owing to the existence of a sufficient number
of integrals of motion, one can solve its energy spectrum exactly. Unfortunately,
one cannot determine exactly the spectrum of helium nor of any of the heavier
atoms. Nevertheless, we know from Chap. 2 that by means of the variational method
we may approximate the solution to any desirable accuracy. We will show that the
antisymmetry of the wave function with respect to the exchange of the electrons leads
to a so-called exchange interaction. Accounting for this interaction subsequently
leads to a qualitatively correct result even when only one two-electron configuration
considered. This estimate can be further systematically improved by the inclusion
of additional electron configurations. We will see that the symmetries of the helium
atom, i.e., the existence of operators commuting with the Hamiltonian, substantially
decrease the amount of configurations one needs to include in the calculations.

We also show how the variational calculation can be carried out to the very
end. To do so, it will be necessary to calculate the matrix elements of the electron-
electron interaction which constitutes a six-dimensional integral. With the aid of the
multipole expansion, it is possible to separate the radial and angular coordinates of
the electrons. We will show how properties of the spherical harmonics enable us,
always in the case of atoms, to reduce the infinite multipole expansion to a finite
number of terms. Next, we will show how to use the recurrence relations for the
radial functions derived in the previous chapter for the calculation of integrals of
these functions. Thus we will further develop the theme initiated in the previous
chapter: the importance lies rather in the relations between the individual wave
functions than in their specific forms. These relations then imply relations between
the integrals of these functions. There are no three-particle forces acting between
the electrons. Therefore, once we are able to calculate the approximate spectrum of
helium, we are able to determine approximate spectra also of other more complicated
atoms. Despite it all, though, the principal reason why we discuss helium to such a
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154 5 The Helium Atom

great detail is that it is the simplest physical system which can serve as an illustrative
example of an efficient application of symmetries in finding approximate solution
of the Schrödinger equation.

5.1 Symmetry in the Helium Atom

In Eq. (3.129), we introduce dimensionless atomic units by substituting r !
r=.Z˛mr/ and factor out m.Z˛/2. The Hamiltonian then acquires the form

OH
Z2
D Oh0.1/C Oh0.2/C 1

Zr12
. (5.1)

where

Oh0.a/ D
Op2

a

2
� 1

ra
, a D 1, 2 . (5.2)

Our task is to find a solution to the Schrödinger equation

OH .1, 2/ D E .1, 2/ , (5.3)

where the numbers in the parentheses represent a short notation for the coordinates
of the respective electrons; we should have written r1, r2 instead of 1, 2 to be precise.

In the case of helium, Z D 2, the magnitude of the electrostatic electron-electron
interaction is far too large for a perturbative treatment. Moreover, the application of
the perturbation method is further hindered by the fact that a simple combination of
two one-electron hydrogen-like atom spectra comprises a discrete part, a continuous
part and a part where these two overlap. For this reason, we will opt for the variational
method to determine the energies of the stationary states.

5.1.1 The Total Spin and the Antisymmetry of the Wave
Function

The most straightforward choice of the test function would be a product of two
normalized “hydrogenic” wave functions

 .1, 2/ D  a.r1/ b.r2/ . (5.4)

One could certainly use this function in the calculations; however, we could expect
to obtain the better estimate of the stationary state energy the more properties the test
function has in common with the exact solution. In this case, the Hamiltonian (5.1)
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clearly does not notice the exchange of the electrons, while the wave function  in
Eq. (5.4) does. At the same time, we can easily see that if the wave function  .1, 2/
solves the Schrödinger equation (5.3), so does the function  .2, 1/,

OH .2, 1/ D E .2, 1/ . (5.5)

Since the particle exchange operator OP12 and the Hamiltonian OH commute with
each other, it must be possible to find their common eigenstates. What form do the
common eigenstates of OP12 and OH and the eigenvalues of OP12 take on?

Supposing that we already have such an eigenstate

OP12j i D 
j i ,

we apply the operator OP12 on both side of the last equation. Since OP12
OP12 D 1, we

have

1 D 
2 ) 
 D ˙1 .

We further add Eqs. (5.3) and (5.5) to each other, and also subtract one from
another,

OH. .1, 2/C  .2, 1// D E. .1, 2/C  .2, 1//
defD E S ,

OH. .1, 2/ �  .2, 1// D E. .1, 2/ �  .2, 1//
defD E A .

The states  S and  A are eigenstates of the Hamiltonian as well as eigenstates of
the particle exchange operator, the corresponding eigenvalues being C1 and �1,
respectively.

In the very beginning of this book, see Sect. 1.1, we mentioned that Eq. (1.2)
holds for the scattering of two indistinguishable ˛-particles, see Fig. 1.3. Namely, in
the case of ˛-particles, nature always picks the symmetrical possibility. Is this true
also for electrons?

At low velocities when we can neglect the relativistic effects such as the spin-
orbit interaction, the projection of the spin of an electron along an arbitrary axis is
an integral of motion. Thus, if the electrons differ in projections of their spins, they
are distinguishable and their scattering is given by Eq. (1.1). In the case of equal
orientation of the spin projections, the experiment shows that the angular distribution
of the scattered particles is given by the formula

d�

d˝
D jf .#/ � f .� � #/j2 . (5.6)

This means, nature selects the other, i.e., antisymmetrical, possibility when it comes
to electrons.
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The discussed situations of symmetrical and antisymmetrical wave functions
of electrons and ˛-particles, respectively, are specific examples of a more general
rule. This rule states that the wave function of identical particles with integer spins
(bosons) is totally symmetric with respect to the interchange of any two particles,
and that the wave function of identical particles with half-integer spins (fermions) is
totally antisymmetric with respect to the interchange of any two particles.

However, it is necessary that this antisymmetry includes all coordinates of the
electrons. We must therefore consider the spin of the electrons as well.1 When we
explicitly write the spin part of the wave functions, we are able to antisymmetrize
even the (spatial) function  S:

�S.1, 2/
defD 1p

2
. .1, 2/C  .2, 1//

1p
2
.jCi1j�i2 � j�i1jCi2/ , (5.7)

�A.1, 2/
defD 1p

2
. .1, 2/ �  .2, 1//

1p
2
.jCi1j�i2 C j�i1jCi2/ . (5.8)

Note that one can use any of the three triplet states in the case of �A.
We thus see that one needs to account for both possibilities after all. The energies

of states which differ only in the symmetry or antisymmetry of the spatial part of
the wave function will acquire different values. After substitution for  .1, 2/ from
Eq. (5.4), we obtain a variational estimate

Evar

Z2
D h�.1, 2/j OHj�.1, 2/i

D haj Oh0jai C hbj Oh0jbi C 1

Z

�hajhbjr�1
12 jaijbi ˙ hajhbjr�1

12 jbijai
�

. (5.9)

Expressing the first term in the parenthesis in the coordinate representation yields

hajhbjr�1
12 jaijbi D

Z Z

 �a .r1/ a.r1/
1

r12
 �b .r2/ b.r2/dV1dV2

D
Z Z

%a.r1/%b.r2/

jr1 � r2j dV1dV2 ,

which is obviously a classical mutual potential energy of two charge distributions.
We thus refer to this term as to the Coulomb term. The other term in the parenthesis
in Eq. (5.9),

hajhbjr�1
12 jbijai D

Z Z

 �a .r1/ b.r1/
1

r12
 �b .r2/ a.r2/dV1dV2, (5.10)

1Precisely speaking, we need to consider all other internal characteristics of the particle as well.
Although electrons possess no other internal properties but their spin, one would have to include
also the color when discussing quarks of a given flavor, for example.
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has no classical analogy and is commonly named the exchange term. With its aid,
one can explain various phenomena, such as the covalent bond or ferromagnetism.

We thus see that in our problem the exchange interaction will lead to splitting of
the singlet and triplet states. However, this splitting cannot be explained within the
framework of the classical theory, and it is also the reason why Bohr-Sommerfeld
theory could not elucidate spectra of many-electron atoms.

The Hamiltonian (5.1) does not depend on the spin, which might imply at first
glance that one does not need to consider the spin at all. Nevertheless, we have seen
that the requirement the total wave function be antisymmetric demands we include
the spin, too. In case of helium-like atoms, the value of the total spin determines
whether the spatial part of the wave function is symmetric or antisymmetric with
respect to the exchange of two electrons. This in turn then dictates the sign of the
exchange energy.

5.1.2 Where Does the Indistinguishability Come From?

One could intuitively argue for the indistinguishability of identical particles as
follows. We have seen on the example of the Gaussian wave packet, considered
back in Sect. 1.3.9, that the uncertainty in the determination of the position increases
over time; that is, the wave packet is diffusing. It is then understandable that when
we have two particles close to each other, after a very short time the uncertainty of
their positions grows to such a great magnitude that we are no longer able to tell
them apart.

In fact, this explanation is of greater significance that one would expect. We have
seen that the indistinguishability of particles leads to the exchange contribution to
energy. This exchange interaction depends on the product of the wave functions of
individual particles, see Eq. (5.10). If the overlap of the functions is negligible, then
also the exchange interaction does not need to be considered and the particles behave
as if they were distinguishable. If two atoms are sufficiently far from each other,
their electrons become practically distinguishable. However, as they come closer to
a distance of 1–2 atomic radii (approximately 10�10 m), the wave functions start to
overlap and the exchange interaction leads to the so-called covalent bond between
the atoms.

5.1.3 Additional Symmetries

The reader can verify that the operator of the total orbital angular momentum
commutes with the Hamiltonian (5.1),

OL D OL1 C OL2 , Œ OL, OH� D 0 ,
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where OL1 and OL2 represent the angular momenta of the first and second electron,
respectively. The eigenvalues of this angular momentum are 0, 1, 2, : : : and the
corresponding many-electron states are denoted by S, P, D, : : :2 Since OL is an
integral of motion, the Hamiltonian OH does not mix states which belong to different
eigenvalues of this operator. As we will demonstrate in the next text, this fact
considerably simplifies the variational calculation.

After the interchange r1 ! �r1 and r2 ! �r2, the Hamiltonian (5.1) maintains
its original form. Meaning, the Hamiltonian (5.1) does not mix states with different
parities. This further simplifies our calculation of the excited states, as we will
discuss in detail later, namely in Sect. 5.3.8.

5.1.4 Spectroscopic Notation

The set of the operators f OH, OL2, OS2, OΠ, OLz, OSzg, where OΠ is the above introduced
operator of parity, forms a complete set of commuting operators. The spectroscopic
notation of their common eigenstates reads for instance 1 1S, 2 1S, 2 1Po, 2 3Pe. The
first number from the left describes the level of excitation of the particular symmetry;
the singlet S-states are numbered from 1, the triplet S-states are numbered from 2, P-
states from 2, D-states from 3, etc. The first upper index denotes the spin multiplicity,
i.e., 1 for singlet and 3 for triplet states. The second upper index captures the parity,
i.e., o labels an odd-parity state and e an even parity state. The S-states are always
of even parity as we are to see later.

In summary, 1 1S marks the lowest singlet state with zero angular momentum,
2 1S the second lowest singlet state with zero angular momentum, 2 1Po the lowest
singlet state of odd parity with unit angular momentum, 2 3Pe the lowest triplet state
of even parity with unit angular momentum, etc.

5.2 Variational Method with the Hartree-Fock Function

When we consider the variational function in the form (5.7) and (5.8), where .1, 2/
is of the form (5.4), we refer to it as the Hartree-Fock function adapted to the spin
symmetry. In this section, we will use it to estimate the energy of the lowest levels
of the helium atom.

The ground state of the hydrogen-like atom is 1s-state. When searching for the
ground state of helium we put both electrons into 1s-orbital with opposite spins.
Recalling the addition of the angular momenta, we know that the addition of two
electrons both of which are in an S-state results in a combined state which is likewise
an S-state.

2As we demonstrated in the previous chapter, a sum of two integer angular momenta gives rise to
another integer angular momentum. We also showed there that both the magnetic quantum number
m and the orbital quantum number l can evaluate only to integer numbers.
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j1S.1, 2/i D j1si.1/j1si.2/ � 1p
2




jCi.1/j�i.2/ � j�i.1/jCi.2/
�

,

where

hrj1si D  1s.r;˛/ D 2˛3=2e�˛rY00.n/ . (5.11)

The screening parameter ˛ acquires the value ˛ D 1 in case of the hydrogen atom.
Note that in case of a triplet state, the two electrons cannot both populate the 1s state.
Here we thus see a link between the antisymmetry of the wave function and Pauli
exclusion principle. If we place both electrons into the same orbital 1s, it is then
the spin part of the total wave function that must be antisymmetric. It is therefore
not possible for the electrons to occupy the same orbital and have the same spin
projection at the same time. The antisymmetry of the total wave function necessarily
leads to the impossibility of describing such a state with a nontrivial wave function.
The fact that two electrons cannot populate a one-electron state characterized by
the same values of the quantum numbers is nothing else than the Pauli exclusion
principle.

It is instructive to calculate also the lowest P-state. We will estimate its wave
function as

j2P.1, 2/i D 1p
2




j1si.1/j2pi.2/ ˙ j2pi.1/j1si.2/
�

� 1p
2




jCi.1/j�i.2/ � j�i.1/jCi.2/
�

,

where

hrj2pi D  2p.r;ˇ/ D
s

ˇ5

4!
re�ˇr=2Y1M.n/ . (5.12)

As mentioned above, the Hamiltonian (5.1) ignores the spin states, thus we will not
explicitly write them henceforth. Equation (5.9) for energy can be written for both
considered situations separately,

E1S

Z2
D 2h1sj Oh0j1si C 1

Z
h1sjh1sj 1

r12
j1sij1si , (5.13)

E2P

Z2
D h1sj Oh0j1si C h2pj Oh0j2pi C 1

Z
h1sjh2pj 1

r12
.j1sij2pi ˙ j2pij1si/ . (5.14)

One can easily calculate the two simple matrix elements of the Hamiltonian Oh0,

h1sj Oh0j1si D ˛

˛

2
� 1

�

,

h2pj Oh0j2pi D ˇ

4

�
ˇ

2
� 1

�

.
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The remaining Coulomb and exchange terms are, on the other hand, slightly more
complicated,

h1sjh2pj 1

r12
.j1sij2pi ˙ j2pij1si/ D C˙ V ,

where

C D
Z Z

 �1s.r1/ 
�
2p.r2/

1

r12
 1s.r1/ 2p.r2/d

3r2d3r1 , (5.15)

V D
Z Z

 �1s.r1/ 
�
2p.r2/

1

r12
 2p.r1/ 1s.r2/d

3r2d3r1 (5.16)

and

1

r12
D 1
�

r2
1 � 2r1 � r2 C r2

2

�1=2
. (5.17)

5.2.1 Multipole Expansion

We concluded the previous section by writing down the Coulomb and exchange
integrals in a rather frightful form of six-dimensional integrals. We will now show
that to the utmost surprise of the reader, one can evaluate them exactly. Furthermore,
we will also demonstrate that the calculation itself is not in fact as difficult as one
might expect at the first glance.

The hydrogen-like wave functions, for instance,  1s and  2p, can be split into
a product of their angular and radial parts, see Eq. (3.83). One might therefore
attempt a similar angular-radial decomposition for the operator r�1

12 . We will now
demonstrate that one can indeed do so, though not for free. The price we have to
pay is that we will be able to express r�1

12 only as an infinite series of terms. It will
be possible, though, to reduce this infinite series to a finite number of terms owing
to the properties of the spherical harmonics Ylm.

We have already mentioned, see Sect. 3.3.1, that the Coulomb potential

G.r, r0/ D 1

4�jr � r0j (3.40)

is a solution to the equation

�r2G.r, r0/ D ı.r � r0/ . (3.38)
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By expressing the Coulomb potential with radial and angular variables split, we
obtain the solution to Eq. (3.38) in the spherical coordinates.3 Let us now consider
the expansion of the function G in a complete basis of the spherical harmonics with
respect to the angular variables of the position vector r,

G.r, r0/ D
X

l,m

flm.r, r0/Ylm.# ,'/ .

We consider the radial part flm.r, r0/ to be continuous. Later on, we show that this
does not lead to a contradiction and that the singularity of the expression (3.40) at
the point r D r0 does not originate in flm.r, r0/, but in the summation over l. From
Eqs. (3.21) and (3.76) and the definition of the ı-function in spherical coordinates4

we obtain

�
 

1

r2

@

@r

�

r2 @

@r

�

�
OL2

r2

!

G.r, r0/ D 1

r2
ı.r�r0/

1

sin#
ı.#�# 0/ı.'�'0/ . (5.18)

As our next step, we multiply the last equation by r2 and integrate over the interval
from r0 � " to r0 C "; we obtain

�
Z r0C"

r0�"
@

@r

�

r2 @G

@r

�

drC
X

l,m

l.lC 1/Ylm.# ,'/
Z r0C"

r0�"
flm.r, r0/dr

D
Z r0C"

r0�"
ı.r � r0/

1

sin#
ı.# � # 0/ı.' � '0/dr .

Owing to the assumed continuity of flm.r, r0/ in r, the second term on the lhs of the
last equation disappears in the limit "! 0. We can deduce from the remaining parts
of the equation that the function G has a jump on the spherical surface r D r0,

�
�

r2 @G

@r

	r0C"

r0�"
D 1

sin#
ı.# � # 0/ı.' � '0/ . (5.19)

The homogeneous solutions to Eq. (5.18) can be found with the aid of Eqs. (3.84)
and (3.86):

�
�

d2

dr2
C 2

r

d

dr
� l.lC 1/

r2

	

flm.r, r0/ D 0) flm.r, r0/ �
(

rl ,

r�l�1 .

3The derivation presented henceforth is inspired by the one in [7].
4It holds true for the ı-function that

R

ı.3/.r/d3r D 1. After transformation of the differential
to spherical coordinates, we have d3r D r2drd# sin#d'. Since we have

R

ı.x/dx D 1 for the
one-dimensional integrals, it must obviously be ı.3/.r/ D 1

r2 ı.r/
1

sin# ı.#/ı.'/.
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The first solution diverges for large r, while the other diverges for small r. Since we
are interested in a solution which is finite for all r, and because of, see Eq. (3.40),

G.r, r0/ D G.r0, r/ , (5.20)

we compose the Green function as

G.r, r0/
ˇ
ˇ
r>r0

D
X

l,m

Clmr0lr�l�1Ylm.# ,'/Y�lm.# 0,'0/ , (5.21)

G.r, r0/
ˇ
ˇ
r<r0

D
X

l,m

Clmrlr0�l�1Ylm.# ,'/Y�lm.# 0,'0/ . (5.22)

The complex conjugation of the spherical harmonics does not violate the
condition (5.20). Recalling Eq. (3.94) and realizing we are summing over all
magnetic numbers m, these formulations of the Green function are symmetrical
in the angular variables, even though it may not be obvious on the first sight.

Plugging Eqs. (5.21) and (5.22) into Eq. (5.19) yields

X

l,m

.2lC 1/ClmYlm.# ,'/Y�lm.# 0,'0/ D
1

sin#
ı.# � # 0/ı.' � '0/ .

A comparison of the last equation with the completeness relation for the spherical
harmonics

X

l,m

jl, mihl, mj D 1)
X

l,m

Ylm.# ,'/Y�lm.# 0,'0/ D
1

sin#
ı.# � # 0/ı.' � '0/

implies

Clm D 1

2lC 1
.

After substitution of the last equation into the two expansions of the function G.r, r0/,
Eqs. (5.22) and (5.21), and introduction of the notation r> D maxfr, r0g and r< D
minfr, r0g, we can write the resulting multipole expansion in a compact form

1

jr � r0j D
1X

lD0

4�

2lC 1

rl
<

rlC1
>

lX

mD�l

Y�lm.# 0,'0/Ylm.# ,'/ . (5.23)
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5.2.2 A Note on the Legendre Polynomials

The multipole expansion can be also derived in a more direct way. We factor out r>
from Eq. (5.17) and hence write

.1 � 2tzC t2/�1=2 D
1X

lD0

Pl.z/t
l , z D n1 � n2, t D r<

r>
, (5.24)

where Pl.z/ are the so-called Legendre polynomials. Setting t D 0 in the last equation
provides the first, trivial, polynomial

P0.z/ D 1 . (5.25)

We differentiate Eq. (5.24) with respect to t and obtain

.z � t/.1 � 2tzC t2/�3=2 D
1X

lD0

Pl.z/lt
l�1.

We multiply the last equation by the expression .1 � 2tzC t2/ and manipulate the
lhs and rhs into the forms

.z � t/.1 � 2tzC t2/�1=2 D
X

l

Pl.z/t
l.z � t/ D

X

l

ŒzPl.z/ � Pl�1.z/�t
l

and

X

l

Pl.z/lt
l�1.1 � 2tzC t2/ D

X

l

Œ.lC 1/PlC1.z/ � 2lzPl.z/C .l � 1/Pl�1.z/�t
l ,

respectively, where we used Eq. (5.24) and shifted the summation variable. Matching
now the terms with the same power of t on the rhs of the last two equations leads to
recurrence relations for the Legendre polynomials

.lC 1/PlC1.z/ � z.2lC 1/Pl.z/C lPl�1.z/ D 0 . (5.26)

Consequently, P1.z/ D z, P2.z/ D .�1 C 3z2/=2 and so on. When we compare
Eq. (5.26) to a similar relation (4.62) for the spherical harmonics Yl0, and the form
of Y00, (3.35), to P0, (5.25), we obtain

Yl,0.#/ D
r

2lC 1

4�
Pl.cos#/ . (5.27)

Comparison of Eqs. (5.24) and (5.23) now leads to the addition theorem for the
spherical harmonics

Pl.n � n0/ D 4�

2lC 1

lX

mD�l

Y�lm.# 0,'0/Ylm.# ,'/ . (5.28)
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Setting n D n0 results in

1 D 4�

2lC 1

lX

mD�l

jYlm.# ,'/j2 , (5.29)

where we used the equality

Pl.1/ D 1 ,

which follows from Eqs. (5.25) and (5.26).
If we set n D n0 in Eq. (5.23), we have then with the use of Eq. (5.29) for the

problematic point r! r0

lim
r!r0

1

jr � r0j D
1

r

1X

lD0

1 D C1 ,

in accordance with the comment preceding Eq. (5.18).
Next, after substituting Eq. (5.27) into Eq. (4.89), we arrive at the expansion of a

plane wave into spherical waves

ei!r cos# D
1X

lD0

.2lC 1/Pl.cos#/iljl.!r/ .

With the aid of Eq. (5.28) and the separation k D !�, the last equation can be cast
into the form

eik�r D
1X

lD0

.2lC 1/Pl.n ��/iljl.!r/ D 4�
1X

lD0

iljl.!r/
lX

mD�l

Y�lm.n/Ylm.�/ . (5.30)

On the rhs of this equation we have, finally, separated angular variables � and n. We
will take advantage of this decomposition later in Sects. 6.3.6 and 6.5.7.

5.2.3 Calculation of the Integrals

Now we are ready to calculate the integrals (5.15) and (5.16)! Inserting into them
the multipole expansion (5.23) and the form of the wave functions (5.11) and (5.12)
yields

C D
1X

lD0

4�

2lC 1

lX

mD�l

Z

Y�00.n1/Y
�
lm.n1/Y00.n1/d˝1

Z

Y�1M.n2/Ylm.n2/Y1M.n2/d˝2
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�
Z 1

0
r2

1

�Z 1

0
r2

2R1s.r1/R2p.r2/
rl
<

rlC1
>

R1s.r1/R2p.r2/dr2

�

dr1 ,

V D
1X

lD0

4�

2lC 1

lX

mD�l

Z

Y�00.n1/Y
�
lm.n1/Y1M.n1/d˝1

Z

Y�1M.n2/Ylm.n2/Y00.n2/d˝2

�
Z 1

0
r2

1

�Z 1

0
r2

2R1s.r1/R2p.r2/
rl
<

rlC1
>

R2p.r1/R1s.r2/dr2

�

dr1 .

Recall that Y�00 is a constant function, see Eq. (3.35), therefore we factor it out in
front of the angular integrals. It follows from the orthonormality of the spherical
harmonics, Eq. (3.86), that the infinite summations over l and m in the Coulomb
integral C reduce to a single contribution l D m D 0. Similarly, the infinite
summations over l and m in the exchange term V reduce to a single contribution
l D 1, m D M. We are thus left with merely the integration over the radial variables
in both integrals,

C D
Z 1

0
r2

1

�Z 1

0
r2

2R1s.r1/R2p.r2/
1

r>
R1s.r1/R2p.r2/dr2

�

dr1 , (5.31)

V D 1

3

Z 1

0
r2

1

�Z 1

0
r2

2R1s.r1/R2p.r2/
r<
r2
>

R2p.r1/R1s.r2/dr2

�

dr1 . (5.32)

Let us now show how one can evaluate the following general integral:

I.�, � , a, b, l/ D
Z 1

0

Z 1

0
ra

1rb
2e��r1 e��r2

rl
<

rlC1
>

dr2dr1 . (5.33)

First, we split the integration over r2 into two regions r1 > r2 and r1 < r2. In the
region r1 > r2 we obviously have r< D r2, r> D r1, while in the region r2 > r1 the
opposite is true, r< D r1, r> D r2:

I.�, � , a, b, l/ D
Z 1

0
ra

1e��r1

 
Z r1

0
rb

2e��r2
rl

2

rlC1
1

dr2

!

dr1

C
Z 1

0
ra

1e��r1

 
Z 1

r1

rb
2e��r2

rl
1

rlC1
2

dr2

!

dr1 .

These integrals can be most easily calculated by the differentiation of the integrals
with respect to a parameter:

I.�, � , a, b, l/ D .�1/aCb�1 @
a�l�1

@�a�l�1

@bCl

@�bCl

Z 1

0
e��r1

�Z r1

0
e��r2 dr2

�

dr1 (5.34)
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C .�1/aCb�1 @
aCl

@�aCl

@b�l�1

@�b�l�1

Z 1

0
e��r1

�Z 1

r1

e��r2 dr2

�

dr1

D .�1/aCb�1 @
a�l�1

@�a�l�1

@bCl

@�bCl

1

�.� C �/

C .�1/aCb�1 @
aCl

@�aCl

@b�l�1

@�b�l�1

1

�.� C �/
D J.�, � , a, b, l/C J.� , �, b, a, l/ ,

where

J.�, � , a, b, l/ D .a�l�1/!
a�l�1X

qD0

.bC lC q/!

q!
��.a�l�q/.�C�/�.bClCqC1/ . (5.35)

Substitution of Eqs. (5.34) and (5.35) into Eqs. (5.31) and (5.32) yields

C D 4˛3ˇ
5

4!
I.2˛,ˇ, 2, 4, 0/ D ˛ˇ.8˛4 C 20˛3ˇ C 20˛2ˇ2 C 10˛ˇ3 C ˇ4/

.2˛ C ˇ/5 ,

and

V D 4˛3ˇ
5

4!

1

3
I.˛ C ˇ=2,˛ C ˇ=2, 3, 3, 1/ D 112ˇ5˛3

3.2˛ C ˇ/7 .

Likewise, we find for the variational estimate of the ground state (5.13) that

E1S

Z2
D 2˛


˛

2
� 1

�

C 1

Z
.4˛3/2I.2˛, 2˛, 2, 2, 0/ D ˛2 � 2˛ C 1

Z

5

8
˛ .

5.2.4 Optimization of the Parameters

The value of the parameter ˛ can be retrieved from the condition @˛E D 0, which
reads

˛ D 1 � 1

Z

5

16
D 27

32

in the case of helium. Using this value of˛ in Eq. (5.13) leads to a prediction E1S.˛ D
27=32/ D �2.8476. Had we set ˛ D 1, the energy estimate would be E1S.˛ D
1/ D �2.75. The accurate nonrelativistic value in the approximation of an infinitely
heavy nucleus reads NE1S

.D �2.903724 [2]. We thus see that the optimization of the
parameter ˛ decreased the relative error of the variational calculation from 5 to 2%,
which is—given the simplicity of the calculation—very satisfying. In the next text,
we show how to achieve an even better match.
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In contrast to the case of the ground state, the solution satisfying the conditions
on the energy minimum (5.14) of the state �2P.1, 2/ is technically more involved.
Performing the differentiations, @˛E2P D 0 and @ˇE2P D 0, results in a set of
two nonlinear equations which cannot be solved analytically. Therefore, we use the
Newton-Raphson method to find a numerical solution. We deem this method to be
of enough importance as to briefly introduce it herein.

First, we will explain the method for an one-dimensional case. Suppose we look
for a root of equation f .x/ D 0 and let the value xk be an approximate solution. This
solution can be improved if we replace the function f .x/ in the vicinity of the point
xk by its Taylor expansion and keep only the first two terms,

f .xk/C .xkC1 � xk/
df

dx

ˇ
ˇ
ˇ
ˇ
xDxk

D 0 .

Let x0 be our estimated solution. From the last equation, we obtain a sequence
of successively refined estimates x1, x2, x3, : : : This sequence converges very fast
to the correct solution if we move along an almost linear section of the graph.
Unfortunately, the method performs much worse if the graph has large curvature.

A two-dimensional generalization of this method for the set of two nonlinear
equations f1 D @˛E2P.˛,ˇ/ D 0 and f2 D @ˇE2P.˛,ˇ/ D 0 is the set of two linear
recurrence relations

fj.˛k,ˇk/C .˛kC1 � ˛k/
@fj
@˛
.˛k,ˇk/C .ˇkC1 � ˇk/

@fj
@ˇ
.˛k,ˇk/ D 0 , j D 1, 2 .

The choice of the initial ˛ and ˇ is of great importance. The first guess could be
˛0 D ˇ0 D 1, that is, we would start with the hydrogen states. A more accurate
reasoning says that an electron in the state 2p feels the electrostatic field as if it were
generated by a single proton only as the inner 1s-electron shields one of the nuclear
charges. We therefore have for the Hamiltonian (5.1) (when Z D 2)

˛0 D 1 , ˇ0 D 1 � 1=Z D 1=2 .

When we carry out the numerical calculation with this initial condition, we find the
solutions for the singlet state (symmetrical in the spatial part) and the triplet state
(antisymmetrical in the spatial state) summarized in Table 5.1.

Table 5.1 Optimization of
the parameters for the state
2P

Singlet Triplet

˛ 1.0015 0.9955

ˇ 0.4823 0.5445

E2P �2.12239 �2.13069
NE2P �2.12384 �2.13316
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Table 5.2 Results of
Exercise 14

Singlet Triplet

˛ 1 1

ˇ 0.4998 0.5004

E3D �2.05555 �2.05557
NE3D �2.05562 �2.05564

The obtained variational energies in the table are therein compared with the exact
nonrelativistic values NE2P [2]. Note that the result from the approximate variational
method lies this time much closer to the exact value than in the case of the ground
state. This is a general and easily understandable phenomenon. In the case of the
same spatial distribution of electrons, as in the ground state, the electron-electron
correlation is much stronger than in the case of different spatial distributions.

The electron-electron correlation is mostly characterized by the correlation
energy. This energy is defined as a difference between the exact nonrelativistic
value and the variational value obtained from the Hartree-Fock function.

Consider the function

j3D.1, 2/i D 1p
2
.j1si1j3di2 ˙ j3di1j1si2/�

1p
2
.jCi1j�i2 � j�i1jCi2/ ,

where  1s is given by Eq. (5.11) and where  3d is given by

 3d.r;ˇ/ D
s
�

2

3

�7
ˇ7

6!
r2e�ˇr=3Y2M.n/ .

Estimate the energy of the singlet and triplet states. Your results should
match the numbers in Table 5.2.

Exercise 14: Nonlinear Variational Method I

One can readily see from Table 5.2 that the screening for D-states is even stronger
than that for the P-states, that the difference between the result of the singlet and
triplet state is smaller, and that the result from the single-configuration variational
calculation likewise lies closer to the exact value. These trends continue also for
other states with higher angular momenta.
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Consider the function

ˇ
ˇ2 3S.1, 2/

˛ D 1p
2
.j1si1j2si2 � j2si1j1si2/�

1p
2
.jCi1j�i2 C j�i1jCi2/ ,

where  1s is given by Eq. (5.11) and where  2s is given by

 2s.r;ˇ/ D .c0 C c1r/e�ˇr=2Y0,0.n/ . (5.36)

Determine the coefficients c0 and c1 using the equations

h1sj2si D 0 , h2sj2si D 1 .

Find the variational energy E2s as a function of ˛ and ˇ and evaluate it for
the values ˛ D 1,ˇ D 1 and ˛ D 1,ˇ D 0.5. Use the Newton-Raphson
method for the condition on minimum to find the optimal ˛ and ˇ and the
variational estimate of the energy. You should obtain the values listed in
Table 5.3.

Exercise 15: Nonlinear Variational Method II

Table 5.3 Results of
Exercise 15

˛ ˇ E23S

1 1 �2.124

1 0.5 �2.157

1.0042 0.6945 �2.17195

The last row in Table 5.3 contains the optimized values. One can see that also in
this case, the electron in 2s “feels” the charge of the nucleus as if screened by the
electron in 1s. The agreement with the exact nonrelativistic value NE23S D �2.175229
[2] is again more than satisfying. One could have expected that, though, based on the
discussion of the states 2 P. In the state 2 3S, the Pauli exclusion principle forces the
electrons to occupy a different spatial distribution and the correlation energy thus
reaches substantially lower values than for the ground state.

5.3 Variational Method: Configuration Interaction

In the previous section, we showed that one can obtain a very good estimate of the
exact energies of the ground and excited states of helium already when using very
simple test functions. In this section, we will see how one can further systematically
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improve this estimate. We will demonstrate this method on the ground state where
the error of the calculation with a Hartree-Fock function does not go below 2%.

The substitution r! r� in Eq. (5.1) transforms the Schrödinger equation into the
form

�

�r
2
1

2
� �

r1
C 1

2
� r

2
2

2
� �

r2
C 1

2
C �

Zr12

�

 D �E�2

Z2
 , (5.37)

where � is a nonlinear variational parameter and �E the energy arising from the
interaction of electrons:

Evar.�/ D �2
Z2

2�2
C�E .

We now solve Eq. (5.37) by the optimization of the linear parameters. We expand
the sought wave function  into a complete basis, see Eq. (2.4). The optimization of
the expansion coefficients then leads to the generalized eigenvalue problem (2.6).

We can set the parameter � equal to one or—better— to an optimized value which
we find as follows. For a given value of the nonlinear parameter �, we optimize N
linear parameters ci. We thus find �E as well as the variational energy estimate
Evar.�/. Subsequently, we choose a different value of the parameter � D �0, run the
optimization process, and obtain a new energy estimate Evar.�

0/. This way, we find
the value of the parameter � which minimizes the variational energy for the given
number N of the basis functions. In the below calculation, we found the optimal
value of � by numerical means, see Exercise 16.

This method of solution, namely the decomposition of the sought many-particle
eigenstate into a many-particle complete basis, see Eq. (2.4), is commonly referred
to as the configuration interaction method.

5.3.1 Adaptation of the Basis to Symmetry

We can consider the basis functions jji in Eq. (2.4) in the form of antisymmetrized
products of the hydrogen-like wave functions (omitting the spin parts)

jji D ˇˇn1j, l1j, m1j
˛.1/ˇ
ˇn2j, l2j, m2j

˛.2/ ˙ ˇˇn2j, l2j, m2j
˛.1/ˇ
ˇn1j, l1j, m1j

˛.2/
.

We thus see that there is a set of six one-electron quantum numbers
n1j, l1j, m1j, n2j, l2j, m2j to describe every single electron configuration jji.
Unfortunately, even for small values of n1j and n2j, one needs to consider a
great number of such configurations. Recall that for a given principal quantum
number n the orbital quantum number l acquires the values l D 0, 1, : : : , n � 1, and
that for a given l the magnetic quantum number equals m D �l,�lC 1, : : : , l� 1, l.
One can thus readily imagine that this is definitely not a way to go, even with
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powerful computers at one’s disposal. As we demonstrate below, integrals of motion
substantially reduce the number of configurations that need to be considered. As in
the previous calculation with the Hartree-Fock function, we know that the ground
state is characterized by the total l D 0. From Sect. 4.2, we also know that to
compose l D 0 from l1 and l2, it must be jl1 � l2j � l D 0, hence l1 D l2. The basis
states adapted to the symmetry, from which we choose only those with their total
angular momentum equal to zero, are

jji D 1p
2

0

@
ˇ
ˇn1j, lj

˛.1/ˇ
ˇn2j, lj

˛.2/
lj
X

iD�lj

.lj, i, lj,�ij0, 0/
ˇ
ˇlj, i

˛.1/ˇ
ˇlj,�i

˛.2/
(5.38)

˙ˇˇn2j, lj
˛.1/ˇ
ˇn1j, lj

˛.2/
lj
X

iD�lj

.lj,�i, lj, ij0, 0/
ˇ
ˇlj,�i

˛.1/ˇ
ˇlj, i

˛.2/

1

A ,

where the one-particle states jn, li and jl, mi are given by Eqs. (4.93) and (4.3),
respectively. The plus and minus signs refer to singlets and triplets, respectively.
We thus see that, within the variational calculation of the ground state, only three
quantum numbers (as opposed to the initial six) determine unambiguously each of
the configurations adapted to the symmetry. Moreover, owing to the antisymmetry
of the full state, it suffices to consider merely the cases n1j � n2j. Setting j1 D lj,
j2 D lj, j D 0 and m D 0 in Eq. (4.20) results in a simple expression for the needed
Clebsch-Gordan coefficients, namely

.lj, i, lj,�ij0, 0/ D .�1/iClj
1

p
2lj C 1

,

which can be then used to simplify the basis functions (5.38) to

jji D 1p
2

lj
X

iD�lj

.�1/iClj
p

2lj C 1


ˇ
ˇn1j, lj, i

˛.1/ˇ
ˇn2j, lj,�i

˛.2/ ˙ ˇˇn2j, lj,�i
˛.1/ˇ
ˇn1j, lj, i

˛.2/
�

.

In the coordinate representation, the states jji acquire the form

hr1, r2j ji D 1p
2

lj
X

iD�lj

.�1/iClj
p

2lj C 1




'
.1/
1j '

.2/
2j ˙ '.1/2j '

.2/
1j

�

,

where

'1j.r/ D RM
n1j lj.r/Ylji.n/ , '2j.r/ D RM

n2j lj.r/Ylj ,�i.n/ , (5.39)
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'
.1/
1j D '1j.r1/ , '

.2/
1j D '1j.r2/ ,

and so on. Keep in mind that this basis is not orthonormal, therefore the overlap
matrix Skj D hkj ji is not diagonal.

We now need to find the matrix elements hkj OHjji, which consists of three steps:
calculation of two matrix elements of simple hydrogen Hamiltonians and then of the
matrix elements

hkj 1

r12
jji D 1

2

lkX

pD�lk

lj
X

iD�lj

.�1/iCljCpClk
p

.2lk C 1/.2lj C 1/

�
Z

1

Z

2




'
.1/�
1k '

.2/�
2k ˙ '.1/�2k '

.2/�
1k

� 1

r12




'
.1/
1j '

.2/
2j ˙ '.1/2j '

.2/
1j

�

d3 Or1 d3 Or2 .

After distribution of the parentheses, we obtain the integrand as

�

'
.1/�
1k '

.2/�
2k

1

r12
'
.1/
1j '

.2/
2j C '.1/�2k '

.2/�
1k

1

r12
'
.1/
2j '

.2/
1j

�

˙
�

'
.1/�
2k '

.2/�
1k

1

r12
'
.1/
1j '

.2/
2j C '.1/�1k '

.2/�
2k

1

r12
'
.1/
2j '

.2/
1j

�

,

which can be rearranged by changing the integration variables in the second term in
each of the parentheses (one can do so due to the symmetry in the variables r1 and
r2) to

2'.1/1j '
.2/
2j

1

r12




'
.1/�
1k '

.2/�
2k ˙ '.1/�2k '

.2/�
1k

�

.

Using the multipole expansion (5.23), changing to spherical coordinates in
integrations over r1 and r2, and substituting from Eq. (5.39) yield the final (for
the time being) form

hkj 1

r12
jji D

1X

lD0

lkX

pD�lk

lj
X

iD�lj

lX

mD�l

.�1/iCljCpClk
p

.2lk C 1/.2lj C 1/
(5.40)

�
Z Z

r2
1r2

2
rl
<

rlC1
>

RM.1/
n1j lj RM.2/

n2j lj




RM.1/
n1klk RM.2/

n2klk ˙ RM.1/
n2klk RM.2/

n1klk

�

dr1dr2

� 4�

2lC 1

Z

Y.1/�lm Y.1/�lk ,�pY.1/lj i d˝1

Z

Y.2/lm Y.2/�lkp Y.2/lj ,�id˝2 .
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5.3.2 Angular Integration: The Wigner-Eckart Theorem

Four summations, one of which is infinite, and three (though only) two-dimensional
integrals are still quite worrying. Fortunately, there is an interesting rule which
allows us to calculate the integrals from the properties of the spherical harmonics.
This rule is widely known as the Wigner-Eckart theorem,5 and states

Yl1,i.n/Yl2,m�i.n/ D
X

l

klYlm.n/ . (5.41)

In words: A product of two spherical harmonics can be expressed as a linear
combination of other spherical harmonics. The sought 3-Y integrals are then indeed
simple to evaluate,

Z

Y�l0mYl1,iYl2,m�id˝ D
X

l

kl

Z

Y�l0mYlmd˝ D
X

l

klıll0 D kl0 . (5.42)

We will take a minor detour to determine the coefficients kl. First, we find the
coefficients of the inverse problem

Ylm.n/ D
X

i

aiYl1,i.n/Yl2,m�i.n/ .

We apply the operator OL2 to this equation and obtain, according to the product rule
for differentiation,

OL2Ylm D l.lC 1/Ylm

D
X

i

ai

n

. OL2Yl1,i/Yl2,m�i C Yl1,i. OL2Yl2,m�i/C 2

 OLjYl1,i

� 
 OLjYl2,m�i

�o

.

By comparison of this equation to Eq. (4.19), one comes to the conclusion that
the equation for the coefficients ai is identical to Eq. (4.20) for the Clebsch-Gordan
coefficients ci! The coefficients ai and ci may still differ by a normalization condition,
though. (And they indeed do.) Therefore we write

Kl1,l2,lYlm.n/ D
X

i

.l1, i, l2, m � ijl, m/Yl1,i.n/Yl2,m�i.n/ , (5.43)

where K is a number that ensures the correct normalization. The spherical harmonics
are normalized by the condition (3.86), though there is no guarantee that the rhs will
have the same normalization.

5For a different presentation see for example [3, 4].
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Example: Consider l1 D l2 D 1, hence the integral (5.42) differs from
zero only for l D 0, 1, 2. According to the Wigner-Eckart theorem, it
should be

1p
3
.Y1,�1Y11 � Y10Y10 C Y11Y1,�1/ D �

p
3

4�
� Y00 D 1p

4�
,

1p
2
.Y1,�1Y11 � Y11Y1,�1/ D 0 � Y10 D

r

3

4�
cos# ,

1p
6
.Y1,�1Y11 C 2Y10Y10 C Y11Y1,�1/ D

p
6

8�
.3 cos2 # � 1/ � Y20

D �
r

5

16�
.1 � 3 cos2 #/ ,

where we substituted from Eqs. (3.91), (3.92) and (3.93) on the lhs, and
from Eqs. (3.35) and (4.65) on the rhs. In this case, the theorem seems to
hold.

Since the number K is independent of angles, we can calculate it for one particular
direction which simplifies the equation, for example # D 0. It holds that6

Ylm.# D 0,'/ D
r

2lC 1

4�
ım0 ,

therefore there will be only one term left from the sum on the rhs of Eq. (5.43),
resulting in

Kl1,l2,l

r

2lC 1

4�
D .l1, 0, l2, 0jl, 0/

r

2l1 C 1

4�

r

2l2 C 1

4�

) Kl1,l2,l D
s

.2l1 C 1/.2l2 C 1/

.2lC 1/4�
.l1, 0, l2, 0jl, 0/ .

We have shown before, see Sect. 4.2, that the transform via the CG coefficients is
orthogonal; therefore the inverse relation to Eq. (5.43), Eq. (5.41), can be written as7

Yl1,i.n/Yl2,m�i.n/ D
X

l

Kl1,l2,l.l1, i, l2, m � ijl, m/Ylm.n/ .

6This can be deduced from Eqs. (4.62), (4.63), (4.64).
7Confront with Eqs. (4.17) and (4.22).
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We find the value of the angular integral from the last two equations and the
orthonormality relations (3.86)

Z

Y�l,m.n/Yl1,i.n/Yl2,m�i.n/ d˝

D .l1, i, l2, m � ijl, m/.l1, 0, l2, 0jl, 0/
1p
4�

s

.2l1 C 1/.2l2 C 1/

2lC 1
. (5.44)

When dealing with the complex conjugation, we can use the even/odd property of
the spherical harmonics in m, Eq. (3.94), Yl,�m D .�1/mY�l,m.

Finally, the angular part of the matrix element hkjr�1
12 jji can be rewritten as

4�

2lC 1

lX

mD�l

lj
X

iD�lj

lkX

pD�lk

.�1/iCljClkCp

p

.2lj C 1/.2lk C 1/

� .�1/p
Z

Y�lmYljiYlkpd˝ � .�1/mCp
Z

Y�l,�mYlj ,�iYlk ,�pd˝

D 4�

2lC 1

lX

mD�l

lj
X

iD�lj

lkX

pD�lk

.�1/ljClk
p

.2lj C 1/.2lk C 1/

� ım,iCp
1

4�

.2lj C 1/.2lk C 1/

2lC 1
.lj, 0, lk, 0jl, 0/2

� .lj, i, lk, m � ijl, m/.lj,�i, lk,�mC ijl,�m/ .

The last two CG coefficients in the product are the same, hence the sum over i equals
1 due to the normalization of the coefficients, see Eq. (4.21). The Kronecker symbol
cancels the summation over p. There are no other terms dependent on m, therefore
the sum over m yields 2lC1. We can then write the integration over angular variables
in a very compact form

hkj 1

r12
jji D

ljClk
X

lDjlj�lkj
by two

p

.2lj C 1/.2lk C 1/

2lC 1
.�1/ljClk.lj, 0, lk, 0jl, 0/2 (5.45)

�
Z

1

Z

2
r2

1r2
2

rl
<

rlC1
>

RM.1/
n1j lj RM.2/

n2j lj




RM.1/
n1klk RM.2/

n2klk ˙ RM.1/
n2klk RM.2/

n1klk

�

dr1dr2 ,

which—to remind ourselves—holds true for S-states. We can follow the same steps
also for other states than the S-states, the resulting expression being then generally
more complicated, though. We have thus seen how powerful the Wigner-Eckart
theorem is: four summations in Eq. (5.40), one of them being infinite, are reduced
to merely one finite summation in Eq. (5.45). Moreover, it transforms the analytical
task of calculating integrals of three spherical harmonics to an algebraical task of
calculating the CG coefficients.
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5.3.3 Angular Integration: Calculation of Reduced Matrix
Elements

The only part of the angular integration we are still left to find is the so-called
reduced matrix elements

.l1, l2jjl/ D
Z

Yl,0.n/Yl1,0.n/Yl2,0.n/ d˝

D .l1, 0, l2, 0jl, 0/2
1p
4�

s

.2l1 C 1/.2l2 C 1/

2lC 1
.

In fact, there is nothing to calculate anymore as the needed CG coefficients can
be retrieved from the relation (4.20). However, for the fun of it and for better
understanding, we will now present a different way of calculating the coefficients
.l1, l2jjl/. It follows from Eq. (5.41)

Yl1,0.n/Yl2,0.n/ D
l1Cl2X

lDjl1�l2j
.l1, l2jjl/Yl,0.n/ . (5.46)

After applying the operator On3 to this equation, we have from Eq. (4.62)

 

l1
p

.2l1 � 1/.2l1 C 1/
Yl1�1,0 C l1 C 1

p

.2l1 C 1/.2l1 C 3/
Yl1C1,0

!

Yl2,0

D
l1Cl2X

lDjl1�l2j
.l1, l2jjl/

 

l
p

.2l � 1/.2lC 1/
Yl�1,0 C lC 1

p

.2lC 1/.2lC 3/
YlC1,0

!

.

Multiplying by Yl0,0 and integrating over d˝ lead together with the orthonormality
of the spherical harmonics, Eq. (3.86), to

l1 C 1
p

.2l1 C 1/.2l1 C 3/
.l1 C 1, l2jjl/ D � l1

p

.2l1 � 1/.2l1 C 1/
.l1 � 1, l2jjl/

(5.47)

C l
p

.2l � 1/.2lC 1/
.l1, l2jjl � 1/C lC 1

p

.2lC 1/.2lC 3/
.l1, l2jjlC 1/ .

These equations are solved with the condition

.l1, l2jjl/ D 0 ,
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when

l1 < 0, l2 < 0, l < 0, l < jl1 � l2j, l > l1 C l2 .

Exploiting Eq. (5.47), we lower l1 to zero. Subsequently, we swap l1 and l2 and lower
l2 to zero. The reader can calculate the matrix element .0, 0jjl/ on his or her own.
We thus see that one can use Eqs. (4.62)–(4.64) to calculate the CG coefficients! The
reader can easily verify from Eq. (5.47) that

.�1/l1Cl2Cl D �1) .l1, l2jjl/ D 0 . (5.48)

This is the reason the summation over l in Eq. (5.45) goes by two.

5.3.4 Calculation of the One-Electron Matrix Elements

The one-electron matrix elements in Eq. (5.37) can be calculated algebraically. For
instance,

hkj
�

�r
2
1

2
� �

r1
C 1

2

�

jji D 1

2

lkX

pD�lk

lj
X

iD�lj

.�1/iCljCpClk
p

.2lk C 1/.2lj C 1/

�
Z

1

Z

2




'
.1/�
1k '

.2/�
2k ˙ '.1/�2k '

.2/�
1k

��

�r
2
1

2
� �

r1
C 1

2

�




'
.1/
1j '

.2/
2j ˙ '.1/2j '

.2/
1j

�

d3r1d3r2 .

This expression has a structure of the type

.haj1hbj2 ˙ hbj1haj2/ OO1
OO2.jai1jbi2 ˙ jbi1jai2/

D haj OO1jaihbj OO2jbi C haj OO2jaihbj OO1jbi ˙ .hbj OO1jaihaj OO2jbi
C haj OO1jbihbj OO2jai/ ,

where the operators OO1 and OO2 act only on the state of the first and second electron,
respectively. For this reason, we analyze only the expression

lkX

pD�lk

lj
X

iD�lj

.�1/iCljCpClk
p

.2lkC1/.2ljC1/

Z

1

Z

2
'
.1/�
1k '

.2/�
2k

�

�r
2
1

2
� �

r1
C1

2

�

'
.1/
1j '

.2/
2j d3r1d3r2 .

Using Eq. (5.39), changing to the spherical coordinates and exploiting the
orthonormality of the spherical harmonics, Eq. (3.86), and the relation for the radial
functions, Eq. (4.99), the last integral can be cast into the form
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ılk ,lj

Z 1

0
rRM

n1k ,lk.r/

�
r

2

�

Op2
r C

l.lC 1/

r2
C 1

�

� �
�

RM
n1j ,lj.r/dr

�
Z 1

0
rRM

n2k ,lk.r/rRM
n2j ,lj.r/dr

D ılk ,lj

Z 1

0
rRM

n1k ,lk.r/

 OT3 � �

�

RM
n1j ,lj.r/dr

�
Z 1

0
rRM

n2k ,lk.r/

 OT3 � . OTC C OT�/=2

�

RM
n2j ,lj.r/dr

D ılk ,ljın1k ,n1j

�

n1j � �
�
�

ın2k ,n2j n2j

�
p

.n2j � lj/.n2j C lj C 1/

2
ın2k ,n2jC1

�
p

.n2j C lj/.n2j � lj � 1/

2
ın2k ,n2j�1

!

.

5.3.5 Radial Integrations

The calculation of the matrix elements of the last term in the Hamiltonian in Eq. (5.37)
is slightly more complicated. We introduce the following notation for the radial
integrals in Eq. (5.45)

.l4, l3, l2, l1/ D .l4, l3, l2, l1/
C C .l4, l3, l2, l1/

� ,

.l4, l3, l2, l1/
� defD

Z 1

0
dr1r2�l�1

1 RM
n4l4.�4, r1/R

M
n3l3.�3, r1/

�
Z r1

0
dr2r2Cl

2 RM
n2l2.�2, r2/R

M
n1l1.�1, r2/ (5.49)

and

.l4, l3, l2, l1/
C defD

Z 1

0
dr1r2Cl

1 RM
n4l4.�4, r1/R

M
n3l3.�3, r1/

�
Z 1

r1

dr2r2�l�1
2 RM

n2l2.�2, r2/R
M
n1l1.�1, r2/ . (5.50)

In the next text, we consider a general case with arbitrary screening parameters �1,
�2, �3, and �4, see Eq. (4.98). One can return back to the original integral (5.45) by
setting

�1 D �2 D �3 D �4 D 1 , l4 D l3 , l2 D l1 .
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We start from Eqs. (4.76) and (4.77) where we substitute r! n�r

d

dr
RM

n,l D
�

� lC 1

r
C n�

l

�

RM
n,l C

�
p

n2 � l2

l
RM

n,l�1 , (5.51)

d

dr
RM

n,l D �
�

� l

r
C n�

lC 1

�

RM
n,l �

�
p

n2 � .lC 1/2

lC 1
RM

n,lC1 . (5.52)

Subtracting the last two equations one from another yields

r�1RM
n,l D

�

l.lC 1/.2lC 1/

h

Cl
p

.nC lC 1/.n � l � 1/RM
n,lC1

C .lC 1/
p

.nC l/.n � l/RM
n,l�1 C .2lC 1/nRM

n,l

i

. (5.53)

The problem when evaluating the integrals (5.49) and (5.50) is that they generally
comprise the functions RM

nl which feature .n� l� 1/ nodes, i.e., they cross the r-axis
.n � l � 1/ times. From a numerical point of view, a straightforward calculation
of such integrals is troublesome since a frequent sign change results in subtracting
numbers of a comparable size, hence an operation leading to the so-called numerical
instabilities. These instabilities arise from the fact that we represent numbers using
a finite number of decimal (or binary) places in numerical calculations. When we,
for example, work within the single precision (8 decimal digits) and subtract two
numbers which do not differ before the twelfth decimal place, the result is due to the
rounding errors almost always completely off. Thus, our strategy will be as follows.
We know how to calculate the integrals (5.49) and (5.50) for l4 D n4�1, l3 D n3�1,
l2 D n2�1, and l1 D n1�1, see Eqs. (5.33), (5.34), and (5.35). We will subsequently
attempt to transform every radial function with n� l�1 nodes in the integrals (5.49)
and (5.50) to a function without any nodes by using Eqs. (5.51), (5.52), and (5.53).
So let us get started!

Multiplying Eq. (5.51) by the function RM
n0,l0 rpC2f , where f is an arbitrary function

of r, we obtain

��
p

n2 � l2

l
RM

n,l�1RM
n0,l0 rpC2f D � d

dr

�

RM
n,l

�

RM
n0,l0 rpC2f

C
�

� lC 1

r
C n�

l

�

RM
n,lR

M
n0,l0 rpC2f . (5.54)

From the Leibnitz rule for differentiation of a product, we have

d

dr

�

RM
n,l

�

RM
n0,l0 rpC2f D d

dr

�

RM
n,lR

M
n0,l0 rpC2f

�

� d

dr

�

RM
n0,l0

�

RM
n,lr

pC2f � d

dr

�

rpC2f
�

RM
n,lR

M
n0,l0 .
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We now substitute this equation into the previous one and use Eq. (5.52) with n D n0,
l D l0, � D �0 for the calculation of d

dr

�

RM
n0,l0

�

. We can eliminate the multiplication
by r�1 with the aid of Eq. (5.53). With a little effort, we then obtain from Eq. (5.54)
a new equation

� �
p

n2 � l2

l
RM

n,l�1RM
n0,l0 rpC2f

�

�1C lC 1 � l0 � p � 2

2lC 1

�

D d

dr

�

RM
n,lR

M
n0,l0 rpC2f

�

C
�
�0n0

l0 C 1
� �n

l
C �n.lC 1 � l0 � p � 2/

l.lC 1/

�

RM
n,lR

M
n0,l0 rpC2f

C �.lC 1 � l0 � p � 2/

2lC 1

p

n2 � .lC 1/2

lC 1
RM

n,lC1RM
n0,l0 rpC2f

C
�0

q

n2
0 � .l0 C 1/2

l0 C 1
RM

n,lR
M
n0,l0C1rpC2f � df

dr
RM

n,lR
M
n0,l0 rpC2 . (5.55)

We then substitute into the last equation

f D 1 , l D l2 , n D n2 , � D �2 , l0 D l1 ,

n0 D n1 , �0 D �1 , p D l˙ , r D r2 ,

where

lC D �l � 1 , l� D l ,

integrate the equation from r1 to1 for lC and from 0 do r1 for l� and finally multiply
both sides of the equation by

r
2�l

˙

1 RM
n4,l4.�4, r1/R

M
n3,l3.�3, r1/ .

We subsequently integrate over r1 from 0 to infinity to obtain recurrence relations
for the integrals .l4, l3, l2, l1/˙, which raise the quantum number l2,

� .l4, l3, l2 � 1, l1/
˙ �2

q

n2
2 � l22

l2

�

�1C l2 C 1 � l1 � 2 � l˙
2l2 C 1

�

D �Œl4, l3, l2, l1�C
�
�1n1

l1 C 1
� �2n2

l2
C �2n2.l2 C 1 � l1 � l˙ � 2/

l2.l2 C 1/

�

.l4, l3, l2, l1/
˙

C �2.l2 C 1 � l1 � l˙ � 2/

2l2 C 1

q

n2
2 � .l2 C 1/2

l2 C 1
.l4, l3, l2 C 1, l1/

˙
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C
�1

q

n2
1 � .l1 C 1/2

l1 C 1
.l4, l3, l2, l1 C 1/˙ , (5.56)

where

Œl4, l3, l2, l1�
defD

Z 1

0
r3RM

n4l4.�4, r/RM
n3l3.�3, r/RM

n2l2.�2, r/RM
n1l1.�1, r/ dr .

Substituting into Eq. (5.55) for

f .r1/ D
Z h˙

d
˙

r
2Cl

˙

2 RM
n2,l2.�2, r2/R

M
n1,l1.�1, r2/ dr2 ,

where

d˙ D
(

r1 ,

0 ,
h˙ D

(

1 ,

r1 ,

l D l4 , n D n4 , � D �4 , l0 D l3 , n0 D n3 , �0 D �3 , p D l� , r D r1 ,

and integrating over r1 from 0 to infinity yields recurrence relations for the integrals
.l4, l3, l2, l1/˙ which raise the quantum number l4:

� .l4 � 1, l3, l2, l1/
˙ �4

q

n2
4 � l24

l4

�

�1C l4 C 1 � l3 � 2 � l�
2l4 C 1

�

D ˙Œl4, l3, l2, l1�C
�
�3n3

l3 C 1
� �4n4

l4
C �4n4.l4 C 1 � l3 � l� � 2/

l4.l4 C 1/

�

.l4, l3, l2, l1/
˙

C �4.l4 C 1 � l3 � l� � 2/

2l4 C 1

q

n2
4 � .l4 C 1/2

l4 C 1
.l4 C 1, l3, l2, l1/

˙

C
�3

q

n2
3 � .l3 C 1/2

l3 C 1
.l4, l3 C 1, l2, l1/

˙ . (5.57)

Finally, we substitute into Eq. (5.55) for

f .r/ D RM
n2,l2.�2, r/RM

n1,l1.�1, r/ ,

l D l4 , n D n4 , � D �4 , l0 D l3 , n0 D n3 , �0 D �3 , p D 1

and integrate the whole equation over r from 0 to infinity, and thus obtain
recurrence relations for one-dimensional integrals Œl4, l3, l2, l1� which raise the
quantum number l4,
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� Œl4 � 1, l3, l2, l1�
�4

q

n2
4 � l24

l4

�

�1C l4 � l1 � l2 � l3 � 2

2l4 C 1

�

D
�
�3n3

l3 C 1
C �2n2

l2 C 1
C �1n1

l1 C 1
� �4n4

l4
C �4n4.l4 � l3 � l2 � l1 � 2/

l4.l4 C 1/

�

Œl4, l3, l2, l1�

C �4.l4 � l3 � l2 � l1 � 2/

2l4 C 1

q

n2
4 � .l4 C 1/2

l4 C 1
Œl4 C 1, l3, l2, l1�

C
�3

q

n2
3 � .l3 C 1/2

l3 C 1
Œl4, l3 C 1, l2, l1� �

�2

q

n2
2 � .l2 C 1/2

l2 C 1
Œl4, l3, l2 C 1, l1�

C
�1

q

n2
1 � .l1 C 1/2

l1 C 1
Œl4, l3, l2, l1 C 1� . (5.58)

Equations (5.56), (5.57), and (5.58) are solved with the condition

.l4, l3, l2, l1/
˙ D 0 , Œl4, l3, l2, l1� D 0 ,

when

l1 > n1 � 1 , l2 > n2 � 1 , l3 > n3 � 1 , l4 > n4 � 1 ,

l1 < 0 , l2 < 0 , l3 < 0 or l4 < 0 .

The algorithm for calculation of the integrals .l4, l3, l2, l1/˙ is the following. We raise
l2 to n2� 1 using Eq. (5.56), then swap l1 and l2 and raise l1 to n1� 1. Next, we raise
l4 to n4� 1 using Eq. (5.57), then swap l4 and l3 and raise l3 to n3� 1. Subsequently,
we raise l4 to n4 � 1 using Eq. (5.58), then swap l4 and l3 and raise l3 to n3 � 1, then
swap l3 and l2 and raise l2 to n2 � 1. Finally, we swap l2 and l1 and raise l1 to n1 � 1.
As noted above, the integrals .n4 � 1, n3 � 1, n2 � 1, n1 � 1/˙ are already given, see
Eq. (5.33), (5.34) and (5.35). The reader can calculate the one-dimensional integrals
Œn4 � 1, n3 � 1, n2 � 1, n1 � 1� by himself.

This procedure may appear much worse than it actually is. In fact, it is quite
simple8 to program the relations (5.56), (5.57), and (5.58) in a form of recursive
procedures.

8So simple that the even authors managed it.
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5.3.6 Convergence of the Variational Method

We have thus finally developed all of the required tools for the calculation of the
elements of the Hamiltonian and the overlap matrices. All that is still to be done is
to assign a set of three quantum numbers fn1i, n2i, lig to each of the basis states jii.
One may choose from several approaches, we will opt for the one listed in the table
below. We create state shells with n12 D n1i C n2i where n1i � n2i, and let li run
from 0 to n1i� 1 for every value of n1i and n2i. The obtained variational energies are
presented in Table 5.5. N denotes the total number of states used in the calculation,
see Eq. (2.4) and Table 5.4.

So far, we always restricted ourselves to finding the variational estimate of the
ground state of given symmetry. However, the method can be applied to excited
states of a given symmetry as well. If we are interested in the first excited singlet S-
state, we optimize the parameter � so as the energy of the second smallest eigenvalue
is as small as possible. The results are, again, summarized in Table 5.5. The exact
nonrelativistic values were adopted from [2].

Using a programming language of your choice, program the variational
calculation of the ground state of helium atom. Use built-in procedures
available in the chosen language to find the eigenvalues. You will do
fine already with a simple—non-generalized—eigenvalue problem as the
overlap matrix is invertible. For the optimization of the parameter �
search the internet (e.g.) for the method of golden section search.

Exercise 16: Helium Ground State

Table 5.4 Assignment of
quantum numbers to the basis
states

i n1i n2i li n12

1 1 1 0 2

2 1 2 0 3

3 1 3 0 4

4 2 2 0 4

5 2 2 1 4

6 1 4 0 5

7 2 3 0 5

8 2 3 1 5

9 1 5 0 6

10 2 4 0 6

11 2 4 1 6

12 3 3 0 6

13 3 3 1 6

14 3 3 2 6
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5.3.7 Comparison with the Experiment

To ascertain the difference of our calculations from the correct values as well as to
assess the therein neglected effects, namely the relativistic and magnetic effects and
nuclear motion discussed in Sects. 3.6.2 and 3.6.3, we compare the prediction for
the frequency corresponding to the transition between the lowest singlet S-states of
helium obtained from the variational calculation with 70 functions, see Table 5.5,

�var70.2
1S � 1 1S/ D 2R1c .2.903127 � 2.145694/ D 4.983670 � 1015Hz ,

and also from the exact nonrelativistic limit with nuclear motion neglected, i.e., from
the exact solution of the Schrödinger equation (5.3),

�nr.2
1S � 1 1S/ D 2R1c .2.903724 � 2.145974/ D 4.985755 � 1015Hz ,

with the experimental value [1]

�exp.2
1S � 1 1S/ D 4.984872315.48/ � 1015Hz .

It follows from this comparison that not only the fundamental principles, but also the
approximate methods of quantum mechanics are correct. In addition, one can notice
that a significant improvement of the variational calculation does not lead to a better
match to the experiment. The reason is obvious: the Schrödinger equation (5.3)
does not capture all phenomena occurring in the real helium atom. Note that the
relativistic and magnetic effects discussed in Sect. 3.6.2 lead to the fine structure of
the helium energy levels. For instance, the state 2 3Po splits into three 2 3Po

J , where
J D 0, 1, 2 denotes three possible total angular momenta of electrons which arise

Table 5.5 Variational
energies of the two lowest
singlet helium S-states

1 1S 2 1S

n12 N � Evar.�/ � Evar.�/

2 1 1.185 �2.847656

3 2 1.185 �2.847656 1.659 �1.452885

4 5 0.971 �2.895444 1.875 �2.031260

5 8 0.940 �2.897109 1.439 �2.049180

6 14 0.796 �2.900714 1.833 �2.134045

7 20 0.760 �2.901452 1.607 �2.134897

8 30 0.682 �2.902341 1.902 �2.144425

9 40 0.648 �2.902654 1.674 �2.144749

10 55 0.595 �2.902975 1.788 �2.145552

11 70 0.566 �2.903127 1.568 �2.145694

1 1 �2.903724 �2.145974
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from the composition of the total orbital angular momentum L D 1 of the electrons
and their total spin angular momentum S D 1.9

5.3.8 A Note on the Parity

One can follow the same reasoning for states of other symmetries as well. In case of
a general state with its total angular momentum l (and the total m D 0), we consider
the following symmetry-adapted basis states

jji D 1p
2

0

@
ˇ
ˇn1j, l1j

˛.1/ˇ
ˇn2j, l2j

˛.2/
l1j
X

iD�l1j

.l1j, i, l2j,�ijl, 0/
ˇ
ˇl1j, i

˛.1/ˇ
ˇl2j,�i

˛.2/
(5.59)

˙ˇˇn2j, l2j
˛.1/ˇ
ˇn1j, l1j

˛.2/
l1j
X

iD�l1j

.l2j,�i, l1j, ijl, 0/
ˇ
ˇl2j,�i

˛.1/ˇ
ˇl1j, i

˛.2/

1

A ,

instead of those given by Eq. (5.38). For example, for P-states, i.e., states with the
total angular momentum l D 1, we find from the condition jl1j � l2jj � 1 that either
l2j D l1j C 1, or l2j D l1j. Therefore, we compose the P-state from pairs of states in
Table 5.6.

From Eq. (5.44) and the condition (5.48), we derive that hjj OHjki D 0 when

.�1/l1jCl2j ¤ .�1/l1kCl2k .

In other words, the P-states with l2j D l1j C 1 and the P-states with l2j D l1j do
not interact with each other; the matrix elements between these two classes of states
equal zero.

This finding relates to the parity operator. It follows from Eqs. (4.62), (4.63),
and (4.64) that spherical harmonics obey the relation

Yl,m.�n/ D .�1/lYl,m.n/ . (5.60)

Table 5.6 One electron
orbital quantum numbers
used for composition of odd-
and even-parity P-states in
Eq. (5.59)

Even parity Odd parity

l1j l2j l1j l2j

0 1 1 1

1 2 2 2

2 3 3 3

Etc.

9Confront with the fine structure of positronium, see Exercise 10 in Sect. 4.4.9.
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When the coordinates are inverted, r1 ! �r1, r2 ! �r2, the basis states (5.59)
behave as

h�r1,�r2j ji D .�1/l1jCl2jhr1, r2j ji .

One can thus readily see that the P-states with l2j D l1j C 1 are of odd parity, while
the P-states with l2j D l1j of even parity. Owing to the fact that parity is an integral
of motion, matrix elements of the Hamiltonian between these two classes of states
equal zero.

5.3.9 A Note on Complex Atoms

Following the same procedure that led to the Hamiltonian (5.1), one can derive for
instance for the Hamiltonian of lithium-like atom in nonrelativistic approximation
with neglect of the nuclear motion

OH
Z2
D
�

1

2
Op2

1�
1

r1

�

C
�

1

2
Op2

2�
1

r2

�

C
�

1

2
Op2

3�
1

r3

�

C 1

Z

�
1

r12
C 1

r23
C 1

r31

�

. (5.61)

The variational calculation is then similar to the one for helium-like atoms. For
example, we opt for the ground-state test function in the form of a so-called Slater
determinant; that is, the determinant of the matrix

1p
3!

0

@

j1si.1/jCi.1/ j1si.1/j�i.1/ j2si.1/jCi.1/
j1si.2/jCi.2/ j1si.2/j�i.2/ j2si.2/jCi.2/
j1si.3/jCi.3/ j1si.3/j�i.3/ j2si.3/jCi.3/

1

A ,

where the one-electron orbitals hrj1si and hrj2si are given by Eqs. (5.11) and (5.36).
This choice ensures that the wave function is totally antisymmetric with respect to
the interchange of any two variables. The variational estimate can be systematically
improved by the expansion of the wave function into a linear combination of Slater
determinants, i.e., the determinants of matrices

1p
3!

0

@

j1ii.1/jCi.1/ j2ii.1/j�i.1/ j3ii.1/jCi.1/
j1ii.2/jCi.2/ j2ii.2/j�i.2/ j3ii.2/jCi.2/
j1ii.3/jCi.3/ j2ii.3/j�i.3/ j3ii.3/jCi.3/

1

A , (5.62)

where '1i D hrj1ii, etc., stand for one-electron orbitals (5.39). Unfortunately, these
basis states are generally not the eigenstates of the total OS2 nor of the total OL2. In
case we aim for the configuration interaction method, it proves advantageous to
find appropriate linear combinations of these states (5.62) so that they become the
eigenstates. However, it is anything but trivial to satisfy the requirement the basis
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states be both totally antisymmetric with respect to the interchange of an arbitrary
pair of electrons, and they be the eigenstates of the total OS2 and OL2. If the reader
is interested in such a procedure, we refer him or her to, e.g., [3]. Note also that it
shows advantageous to exploit the formalism of the second quantization, described
in Sect. 6.6, when calculating the matrix elements of the Hamiltonian (5.61) between
the states (5.62).

5.4 Final Notes

We have devoted considerable attention to the method of employing the variational
function constituted by one-electron functions when searching for a sufficiently
accurate energy estimate. Note, though, that generally for S-states and especially for
the ground state, one usually cannot obtain this way results with the relative error
being significantly smaller than one part in 105. The reason is that the wave function
in the form (5.38) does not accurately describe the behavior of the exact wave
function in the vicinity of the point where the inter-electron distance r12 approaches
zero. This point r12 D 0 as well as those r1 D 0 and r2 D 0 are of great importance,
though, since the potential energy diverges there, see Eq. (5.37). If the wave function
 is to be continuous everywhere and solve the Schrödinger equation, the kinetic
energy must diverge at these points as well, though with an opposite sign to cancel
out the potential term. To accurately capture the behavior of the wave function in
the vicinity of r12 D 0, one needs to switch to the collective coordinates of the
electrons. The reader can find a clear treatment of behavior of the wave function
in the vicinity of points with diverging potential, i.e., points r1 D 0, r2 D 0,
r12 D 0, and references to the literature that uses this wave function for construction
of the variational function in [5]. The wave functions dependent on the collective
coordinates of the electrons are termed as explicitly correlated functions. With a
suitable choice of these functions, one can reach estimates of a significantly greater
accuracy than one needs for the inclusion of the relativistic and other corrections,
and for comparison with experiment, see, e.g., [2].

The disadvantage of the collective electron coordinates is that their generalization
to more than two-electron atoms is very complicated, and to more than four-electron
atoms practically inapplicable. Moreover, the relative accuracy of 1 part in 105

suffices well for most applications. On the other hand, the method based on the
search for the wave function in the form of a linear combination of products of
one-electron functions allows for highly accurate calculations of atoms with a large
number of electrons. For instance, the accuracy reached for the cesium atom (55
electrons) amounts to less than 1% [6].

We have shown that from the relations for the radial functions, Eqs. (5.51)
and (5.52), obtained from the conservation of the Runge-Lenz vector, one can
derive relations for the integrals of these functions, Eqs. (5.56) and (5.57). The
relations (5.51) and (5.52) can be further combined with the relations for the radial
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functions arising from the algebra of the radial operators. From the relations for
radial functions built in this way, it is then possible to derive more relations for the
integrals (5.49) and (5.50). If the reader is interested therein, we refer him or her to [8].

References

1. S.D. Bergeson et al., Phys. Rev. Lett. 80, 3475 (1998)
2. G.W.F. Drake, ed., Springer Handbook of Atomic, Molecular and Optical Physics (Springer,

Berlin, 2006)
3. I. Lindgren, J. Morrison, Atomic Many-Body Theory (Springer, Berlin, 1982)
4. A. Messiah, Quantum Mechanics (North Holland, Amsterdam, 1961)
5. C.R. Myers et al., Phys. Rev. A 44, 5537 (1991)
6. S.G. Porsev et al., Phys. Rev. D 82, 036008 (2010)
7. J. Schwinger et al., Classical Electrodynamics (Perseus Books, Cambridge, 1998)
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Chapter 6
Dynamics: The Nonrelativistic Theory

In this chapter, we introduce the basic principles and applications of quantum
electrodynamics while describing the motion of a particle within the nonrelativistic
approximation. We start by showing how classical electrodynamics may be cast
into the Hamilton formalism, the subsequent transition from classical to quantum
electrodynamics being then straightforward. Next, we focus on the quantization of
a free electromagnetic field wherein the abstract solution for harmonic oscillator
based on the introduction of non-Hermitian ladder operators plays a decisive role.

The problem of mutual interaction of atoms and a quantized electromagnetic field
is complicated and in general unsolved. Owing to the fact that the coupling between
the charged particles and the quantized electromagnetic field is proportional to the
fine structure constant ˛ ' 1=137.036, for most, though not all, practical purposes
it is sufficient to consider this interaction in a perturbative manner. The first order of
the perturbation method suffices to describe spontaneous emission and photoelectric
effect, while the second order is needed to capture photon-atom scattering. At this
order, one obtains also the so-called virtual processes: processes when the radiated
photons are not registered in a detector, but absorbed by one of the involved particles
instead, i.e., either by the same particle that radiated them or by another charged
particle.

The exchange of one photon between two charged particles may be described with
sufficient accuracy within the nonrelativistic approximation. In case the retardation
is neglected, we arrive at the magnetic interactions discussed in Chap. 3. We will
show in the following text how to take into account the effect of retardation.

There are two additional virtual processes which are of the same importance as
the retardation effect in one-photon exchange, namely the self-energy effect and two-
photon exchange. The former comprises an emission and subsequent absorption of a
photon by the same particle and the latter is an exchange of two photons between two
charged particles. One can deal with these two processes within the nonrelativistic
approximation only in the region of low frequencies of virtual photons. In order
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to develop a more complete description of the phenomena, we need to include the
relativistic theory, as we will do in the next chapter.

To conclude this chapter, we will show that electrons can be viewed as quanta of
an electron field, and emphasize the advantages of such a view.

6.1 Quantization of the Electromagnetic Field

6.1.1 Why Quantize?

Until now, we considered the electromagnetic (EM) field as a static quantity without
its own dynamics, which is clearly an approximation. The EM field should be viewed
as a dynamic and evolving quantity with its own energy, momentum, and angular
momentum instead. The universality of the quantum-mechanical laws consequently
leads to the quantization of these characteristics. Furthermore, there is now a large
experimental evidence of the EM field behaving in accordance with quantum-
mechanical laws. The classical experiments include for instance the black-body
radiation, photoelectric effect, Raman and Compton scattering, and so on.

6.1.2 How to Quantize?

If we know the classical behavior of a given physical system, we find its quantum
behavior by the application of the procedure of canonical quantization, confront
with Sect. 1.3.2.1 First, we determine the classical Hamiltonian H and the canonical
coordinates qk and momenta pk, i.e., quantities obeying the Hamilton canonical
equations

@H

@qk
D �Ppk ,

@H

@pk
D Pqk . (6.1)

To obtain the quantum Hamiltonian, we substitute in the classical Hamiltonian for
the number-valued time-dependent functions qk.t/ and pk.t/ the time-independent
operators Oqk and Opk obeying the canonical commutation relation

Œ Opk, Oqj� D �iıkj . (6.2)

Once we have the Hamilton operator, the remaining task is “merely” to solve the
Schrödinger equation and to determine the observable consequences of the theory.

1The exposition given in this Sect. 6.1 is inspired by that given in [12].
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6.1.3 Classical Electrodynamics in Conventional Formalism

What is classical electrodynamics? It is a theory describing the interaction between
charged particles. This interaction is captured by two sets of equations.

The Maxwell equations constitute the first set. Given the densities of electrical
charge and current, these equations determine the electric and magnetic fields, E
and B,

r � EC @B
@t
D 0 , r � B D 0 , (6.3)

r � B � @E
@t
D j , r � E D 
 . (6.4)

The total densities of charge and current on the rhs of the equations are given as a
sum of the densities of charge and current of elementary particles which we deem
as structureless and dimensionless points,


.r, t/ D
NX

nD1

enı.r � q.n/.t// , j.r, t/ D
NX

nD1

en Pq.n/.t/ı.r � q.n/.t// . (6.5)

Here, N denotes the number of the charged particles “in the Universe” and en

represents their charges.
The Newton equation with the Lorentz force forms the second set. Given the

electric and magnetic fields, E and B, this equation determines the motion of charged
particles, namely their coordinates and momenta, q.n/ and Pq.n/, respectively,

m Rq.n/ D en.EC Pq.n/ � B/ , (6.6)

where E and B are evaluated at the point q.n/. Once the coordinates and momenta
of the particles are known, Eq. (6.5) yields charge and current densities.

Why do we describe the electromagnetic interaction in this very way, namely
via the electromagnetic field? Why do not we solve the Maxwell equations (6.3)
and (6.4) and insert for E and B into the Newton equation (6.6)? We would thus find
the action of a single charge, albeit with retardation, on another charge. Hence, one
would not need to consider the EM field at all. The reason why we bear the notion of
the EM field is that the EM field possesses its own energy, momentum, and angular
momentum. Were the notion of EM field eliminated and were we to keep track of
the motion of charged particles, energy, momentum, and angular momentum would
not be locally conserved quantities.

Within the classical theory, it is advantageous, although not at all necessary, to
introduce the scalar and vector electromagnetic potentials ' and A, respectively

E D �@A
@t
� r' , B D r � A . (6.7)
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Exploiting the identities of vector analysis, r � .r �A/ D 0 and r � .r'/ D 0, the
first pair of the Maxwell equations is solved regardless of the functional form of '
and A. If we insert (6.7) into the second pair (6.4), we obtain

�
@2

@t2
� r2

�

ACr
�

r � AC @'

@t

�

D j , �r2' � @

@t
r � A D 
 , (6.8)

where we used the identity r � .r � A/ D rr � A � r2A.
On the other hand, it is necessary to introduce these potentials upon transition

to the quantum theory. There are two reasons. Firstly, from a formal point of
view, their introduction is requisite for the Hamiltonian formulation of classical
electrodynamics. Secondly, from a physical point of view, the Bohm-Aharonov
experiment (see, e.g., [8]) shows that the potentials A and ' appear to be “more
fundamental” (in a sense discussed in [8]) than the electric and magnetic fields E
and B. Apparently, the Hamiltonian formalism must be the right one to proceed with
as it enforces the introduction of these potentials.

6.1.4 Gauge Invariance and Number of Degrees of Freedom

Equations (6.8) determine the electromagnetic potentials but for a gauge transform-
ation

A D A0 Cr� , ' D '0 � @�
@t

, (6.9)

where � is an arbitrary “reasonable” function of space and time. Likewise,
irrespective of whether the original or primed potentials are used, one obtains the
same electric and magnetic fields E and B from Eq. (6.7). This gauge invariance
results in a mismatch between the number of functions used for the mathematical
description of the EM field and the number of physical degrees of freedom of the
EM field. Namely, there are four functions (4=3+1, 3 components of the vector A +
1 scalar ') used for the mathematical description. On the other hand, as is widely
known, the EM field features only two polarizations. This is of an immediate concern
for us; only the dynamical, evolving part of the field is to be quantized. This part has
to be determined prior to the quantization, otherwise we would run into problems;
for the static part of the field the associated canonical momentum is identically zero.
Before we proceed further, we need to determine the dynamic and the static parts of
the field.
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6.1.5 Coulomb Gauge

The simplest way to determine the dynamic part of the field is to use the Coulomb
gauge2

r � A D 0 . (6.10)

In this gauge, the Maxwell equations (6.8) take the form

�
@2

@t2
� r2

�

A.r, t/ D j.r, t/ � r @'
@t
.r, t/ , �r2'.r, t/ D 
.r, t/ . (6.11)

The equation for the scalar potential has a character of a static problem, hence may
be solved “once and for all”:

'.r, t/ D 1

4�

Z

.r0, t/

jr � r0j d
3r0 D 1

4�

NX

nD1

en

jr � q.n/.t/j , (6.12)

where we used Eq. (6.5) in the second equality. This way, the scalar potential can be
completely eliminated from the theory. There is one constraint (6.10) for the three
remaining components of the vector potential, which yields the two independent
physical degrees of freedom mentioned above.

In order to better understand the static and the dynamic part of the field within
the Coulomb gauge, we now decompose the electric field into its longitudinal and
transverse parts:

E D Ejj C E? .

The longitudinal part has zero curl, while the transverse part has zero divergence,

r � Ejj D 0 , r � E? D 0 .

If we decompose the field into Fourier components

E.r, t/ D 1

.2�/3=2

Z

E.k, t/eik�r d3k ,

the above equations take the form

k � Ejj D 0 , k � E? D 0 .

2Mr. Coulomb died 25 years prior to the birth of Mr. Maxwell, but the reader will certainly not be
confused.
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Thus the assignments “longitudinal” and “transverse” should be clear. It should
be now also clear, see Eqs. (6.7) and (6.10), that the scalar potential ' describes
the longitudinal part, Ejj D �r', and the vector potential A the transverse part,
E? D � @A

@t . The magnetic field B is purely transverse, see Eq. (6.3). The longitudinal
part describes the instantaneous, electrostatic part of the interaction and carries no
momentum. See the second equation of (6.11): if this equation is satisfied at an initial
time t0, it is automatically satisfied at an arbitrary instant later. On the other hand,
the transverse part of the field describes the retarded part of the interaction which
carries momentum and thus has to be quantized.

This a posteriori justifies the way we have been proceeding so far. If we restrict
ourselves to the electrostatic part of the interaction, the scalar potential can be taken
in the same form as in classical electrodynamics. If the motion of the particles is
slow enough, contribution of the retarded part of the interaction is relatively small
in comparison with the instantaneous part, and hence can be neglected within the
first approximation; such is the case of light atoms as hydrogen, helium, and so on.

6.1.6 Hamiltonian of Free Electromagnetic Field

Let us first consider the case of a free field, 
 D 0, j D 0; then

' D 0 ,

�
@2

@t2
� r2

�

A D 0 , r � A D 0 . (6.13)

We decompose the vector potential into modes,

A.r, t/ D
X

�

q� .t/T� .r/ , (6.14)

where T� .r/ are real functions of spatial variables obeying equations

� r2T� D !2
�T� , r � T� D 0 ; (6.15)

q� .t/ are coefficients of the expansion of the vector potential into these functions for
given time t.

The summation in Eq. (6.14) runs over all solutions to Eq. (6.15), and changes into
an integral in the limit of infinite space. To avoid, at least for now, the integrations,
we assume that the field is periodic, with period L,

A.x, y, z, t/ D A.xC L, y, z, t/ D A.x, yC L, z, t/ D A.x, y, zC L, t/ . (6.16)

This means that we can restrict our further considerations to a box with dimensions
L � L � L. Once we complete the procedure of canonical quantization, we easily
take the limit L ! 1. The Laplace operator is Hermitian, hence the functions T�
are orthonormal:
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L=2Z

�L=2

dx

L=2Z

�L=2

dy

L=2Z

�L=2

dz T� � T� 0 D ı�� 0 . (6.17)

We insert Eqs. (6.14) and (6.15) into Eq. (6.13), take the scalar product of both
sides with T� 0 , and integrate over the whole space. Owing to the orthonormality
relations (6.17), we have for all �

Rq� C !2
� q� D 0 . (6.18)

We obtained an “equation of motion” for the coefficients of the expansion (6.14).
This equation matches that for the harmonic oscillator oscillating with frequency
!� . We know, though, how to express the dynamics of the harmonic oscillator in the
framework of the Hamilton formalism. The Hamiltonian of the harmonic oscillator
has the form (do you remember?)

H� D p2
�

2
C 1

2
!2
� q2
� , (6.19)

where q� and p� are canonical coordinates and momenta, respectively. From the
Hamilton canonical equations (6.1) (where we substitute the index � for the index
k), we obtain Eq. (6.18). To determine the dynamics of the complete field, we need
to sum H� into the Hamiltonian of a free EM field

HEM D
X

�

H� . (6.20)

6.1.7 Classical Electrodynamics in Hamiltonian Formalism

The Hamiltonian of N charged particles and an EM field comprises a sum of the
Hamiltonian of the EM field, HEM, the particle Hamiltonian and the interaction
Hamiltonian. The particle Hamiltonian consists of a sum of kinetic energies
P

j
Op.j/� Op.j/

2mj
and electrostatic potential energies 1

2

P

l¤j
1

4�
ejel

jq.j/�q.l/j . To obtain the
interaction between charged particles and EM field it suffices to replace

p.j/ ! p.j/ � ejA.j/ . (6.21)

Here, A.j/ D A.q.j// is the value of the vector potential at the location of the j-th
particle. Thus, the desired Hamiltonian has the form

H D HEMC
X

j

�

p.j/ � ejA.j/
� � �p.j/ � ejA.j/

�

2mj
C 1

2

X

l¤j

1

4�

ejel

jq.j/ � q.l/j . (6.22)
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Let us now show that this Hamiltonian contains classical electrodynamics. That is,
if we write the Hamilton canonical equations for the field coordinates and momenta

@H

@q�
D �Pp� ,

@H

@p�
D Pq� , (6.23)

we arrive at the Maxwell equations. Similarly, if we write the Hamilton canonical
equations for particle coordinates and momenta

@H

@q.j/k

D �Pp.j/k ,
@H

@p.j/k

D Pq.j/k , (6.24)

we obtain the Newton equation with the Lorentz force. The notation q.j/k means that
we have in mind the k-th component of the radius vector of the j-th particle and so
on.

Let us start with the second assertion and differentiate

Pq.j/k D
@H

@p.j/k

D p.j/k � ejA
.j/
k

mj
, (6.25)

Pp.j/k D �
@H

@q.j/k

D �p.j/n � ejA
.j/
n

mj
.�ej/

@A.j/n

@q.j/k

� ej
@'.j/

@q.j/k

, (6.26)

where the scalar potential acting on the j-th particle is a sum of electrostatic
interactions from other particles

'.j/ D
X

l¤j

1

4�

el

jq.j/ � q.l/j .

Substituting Eq. (6.25) for p
.j/
n �ejA

.j/
n

mj
on the rhs of Eq. (6.26), we obtain

Pp.j/k D ej

"

Pq.j/n

@A.j/n

@q.j/k

� @'
.j/

@q.j/k

#

. (6.27)

This equation does not resemble the Newton equation (6.6), yet. We need to recognize
that the lhs of the Newton equation features the time derivation of the physical
momentum m Pq. The relation between the physical (m Pq) and canonical (p) momenta is
given by Eq. (6.25). By differentiating Eq. (6.25) with respect to time and substituting

dA.j/k

dt
D @A.j/k

@t
C @A.j/k

@q.j/n

Pq.j/n
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for the total time derivative of the vector potential and Eq. (6.27) for Pp.j/k , we
obtain

mj Rq.j/k D Pp.j/k � ej
dA.j/k

dt
D ej

"

Pq.j/n

@A.j/n

@q.j/k

� Pq.j/n

@A.j/k

@q.j/n

� @A.j/k

@t
� @'

.j/

@q.j/k

#

.

Now, if we express the fields in the Newton equation (6.6) in terms of potentials via
Eq. (6.7), we arrive at the last equation.

One can prove the first assertion in a similar manner; first we differentiate

Pq� D @H

@p�
D p� ,

Pp� D Rq� D � @H

@q�
D �!2

� q� �
X

j

p.j/k � ejA
.j/
k

mj
.�ej/

@A.j/k

@q�
D �!2

� q� C
X

j

ej Pq.j/k T.j/�k

) Rq� C !2
� q� D

X

j

ej Pq.j/ � T.j/� , (6.28)

where in the last equality on the second row we inserted from Eqs. (6.14)
and (6.25). As our next step, we show that the last equation is the vector Maxwell
equation (6.11).We substitute Eq. (6.14) for the vector potential into the last
mentioned equation

X

� 0

�Rq� 0 C !2
� 0

q� 0

�

T� 0 D j � @r'
@t

.

We then take the scalar product of both sides with vector T� and integrate over the
box. Owing to the orthogonality of vectors T� , the sum on the lhs reduces to the one
term with � 0 D � ,

Rq� C !2
� q� D

R

j � T�d3r � R @r'
@t � T�d3r D R j � T�d3r � H @'

@t T� � dS

C R @'

@t r � T�d3r .

Let us analyze the above expressions from the end: the last integral vanishes because
of the condition (6.13) for basis vectors T� . The second to last integral may be written
in the form d

dt

H

'T� � dS. For a finite size of the box, this integral does not vanish
since we imposed periodic boundary conditions on the transverse part of the EM
field, but not on the longitudinal part. However, as we are about to show, it is
justifiable to neglect this integral in the limit of the infinite box. In this limit, we
have '.r/ D '.�r/ on the boundary of the box, and also T� .r/ D T� .�r/ as follows
from the periodicity of the vector potential on the boundary of the box. Thus, the
arguments of the integral at the points r a �r are identical, but the differential dS
differs in the sign at these points. Hence, the contribution from each of the pairs of
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points r and �r cancels out. If we substitute Eq. (6.5) for the charge density current
j in the first term on the rhs of the last equation, we finally arrive at Eq. (6.28).

Using Eqs. (6.3), (6.4) and (6.6), show that the expression

E D 1

2

Z

d3r .E � EC B � B/C 1

2

NX

jD1

mj Pq.j/ � Pq.j/

is the total energy of the system of N charged particles and an EM field,
i.e., dE

dt D 0. In addition, using Eqs. (6.7), (6.12), (6.14), and (6.25), show
that this expression matches the expression (6.22).

Exercise 17: Energy of EM Field and Charged Particles

6.1.8 Polarization

So far, we did not specify the functions T� introduced by Eq. (6.15) with the
condition (6.16). The simplest solution are standing waves

T� D
*

T�c D ".�/
q

2
L3 cos k� � r ,

T�s D ".�/
q

2
L3 sin k� � r ,

where ".�/ are the polarization vectors and k� the wave vectors which are given as

k� D 2�

L
n� , k� � k� D !2

� , (6.29)

where n� represent triples of integers, i.e., .n� /x,y,z D 0,˙1,˙2, : : : The functions
cos.k� �r/ and sin.k� �r/ are even and odd, respectively; the functions cos.�k� �r/ and
sin.�k� �r/ are thus linearly dependent thereon. Namely, the function T�� belonging
to the vector �k� is linearly dependent on the function T� belonging to vector k� .
Thus, one of them needs to be excluded in order to avoid overcompleteness.

With this choice of the functions T� , the condition r � T� D 0 leads to the
requirement

k� � ".�/ D 0 . (6.30)

In the coordinate system where

k� D .0, 0,!�/ , (6.31)
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the two linearly independent solutions to Eq. (6.30) are

".1/ D .1, 0, 0/ , ".2/ D .0, 1, 0/ .

In the following sections, we will often need the following summation over
polarizations

2X


D1

".
/i "
.
/
j D ıij � .k� /i.k� /j

!2
�

. (6.32)

The simplest way to check this identity is true is to opt for a coordinate system
where (6.31) holds. The rhs of Eq. (6.32) is a projector onto the plane perpendicular
to the vector k�

�

ıij � .k� /i.k� /j
!2
�

�

.k� /i D 0 , (6.33)

where we used the second equation in (6.29). As you may recall, we already
encountered this projector in the Sect. 3.6.1, see Eq. (3.117).

6.1.9 Quantized Electromagnetic Field

To proceed to quantum electrodynamics, we impose the canonical commutation
relations on the canonical coordinates and momenta of the EM field,

Œ Op� , Oq� 0 � D �iı�� 0 , (6.34)

and of particles

Œ Op.j/k , Oq.l/m � D �iıkmıjl . (6.35)

The Hamiltonian (6.22), where we substitute the corresponding operators for
canonical coordinates and momenta, is then the correct Hamiltonian of quantum
electrodynamics within the applicability of the nonrelativistic description on the
motion of particles.

As mentioned above, the Hamiltonian of a free EM field comprises a sum of
Hamiltonians of harmonic oscillators. In Sect. 1.3.3, we learned how to determine
the spectrum of a harmonic oscillator. The key step is to introduce the ladder operators

Oa� D 1p
2

�p
!� Oq� C i Op�p

!�

�

(6.36)
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and their Hermitian conjugates OaC� . It follows from Eqs. (6.34) and (6.36) that

Œ Oa� , OaC� 0

� D ı� ,� 0 . (6.37)

By inverting Eq. (6.36) and its Hermitian conjugate, we can express canonical
coordinates and momenta in terms of the ladder operators. Consequently, we are
able to express also the Hamiltonian, vector potential, electric and magnetic fields
in terms of these operators:

OHEM D
X

�

Op2
�

2
C 1

2
!2
�
Oq2
� D

X

�

!�

�

OaC� Oa� C
1

2

�

, (6.38)

OA D
X

�

Oq�T� D
X

�

1p
2!�

. Oa� C OaC� /T� , (6.39)

E? D � @
@t

A D �
X

�

dq�
dt

T� D �
X

�

p�T�

) OE? D �
X

�

Op�T� D i
X

�

r
!�

2
. Oa� � OaC� /T� , (6.40)

OB D r � OA D
X

�

Oq�r � T� D
X

�

1p
2!�

. Oa� C OaC� /r � T� . (6.41)

The ground state (vacuum) of EM field is determined by

Oa� j0i D 0 (6.42)

for all � . All possible excited states are then obtained by the action of the operators
OO D OaC�1

OaC�2
: : : OaC�n

, n 2 N, thereon.

6.1.10 Transition to the Complex Basis

Having derived Eqs. (6.38)–(6.41), we successfully solved the problem of quantizing
the EM field. However, for the purpose of the following calculations, it is more
advantageous to work with running waves rather than with the standing ones. Let us
therefore change to the complex basis

T� D ".�/p
L3

eik� �r D 1p
2
.T�c C iT�s/ . (6.43)
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After complex conjugation we obtain

T�� D T�� .

The orthonormality relations (6.17) now take the form

Z

T�� 0

.r/ � T� .r/ d3r D ı�� 0 . (6.44)

For now, we denote the operator annihilating odd (sin) states as Oa�s and similarly the
operator annihilating even (cos) states as Oa�c . We also rewrite Eq. (6.39) in a more
detailed form

OA D
X

�>0

1p
2!�

�

. Oa�c C OaC�c
/T�c C . Oa�s C OaC�s

/T�s

�

(6.45)

D
X

�>0

1p
2!�

�

T�
1p
2

� Oa�c � i Oa�s C . Oa�c C i Oa�s/
C�

CT��
1p
2

� Oa�c C i Oa�s C . Oa�c � i Oa�s/
C�
	

,

where we used Eq. (6.43). The restriction � > 0 means that half of the triples n� is
excluded in Eq. (6.45); namely those triples that one can obtain from the remaining
terms by the replacement n� ! �n� , see discussion below Eq. (6.29). We would
like to replace the operators creating and annihilating the standing waves by those
creating and annihilating the running waves. Considering the equations

h0j OA OaC�c
j0i D 1p

2!�
T�c , h0j OA OaC�s

j0i D 1p
2!�

T�s ,

and

h0j OA 1p
2
. OaC�c
˙ i OaC�s

/j0i D 1p
2!�

T˙� ,

it is obvious that the operators

OaC˙� D
1p
2
. OaC�c
˙ i OaC�s

/ , Oa˙� D 1p
2
. Oa�c � i Oa�s/ (6.46)

are the sought creation and annihilation operators for running waves. By substituting
these relations into Eq. (6.45), we arrive at

OA D
X

�>0

1p
2!�

Œ. Oa� C OaC�� /T� C . Oa�� C OaC� /T�� � D
X

�

1p
2!�

. Oa�T� C OaC� T�� / ,

(6.47)
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where � in the last expression runs without restriction, that is, n� in Eq. (6.29) are
now triples of integers without any restriction. Likewise, after inverting the relations
(6.46),

Oa�c D
1p
2
. Oa� C Oa�� / , Oa�s D

ip
2
. Oa� � Oa�� / ,

we find for the Hamilton operator from Eq. (6.38) that

OH D
X

�>0

!�

�

OaC�c
Oa�c C

1

2
C OaC�s

Oa�s C
1

2

�

(6.48)

D
X

�>0

!�

�

OaC� Oa� C
1

2
C OaC�� Oa�� C

1

2

�

D
X

�

!�

�

OaC� Oa� C
1

2

�

.

6.1.11 Transition to the Continuous Basis

Finally, let us take the limit L ! 1. The basis states T are then normalized to
the ı-function

T.
/k .r/ D ".
/
p

.2�/3
eik�r . (6.49)

This is, but for the unit polarization vector, a three-dimensional generalization
of (1.95). The Hamiltonian, vector potential, electric and magnetic fields con-
sequently take the final forms

OHEM D
Z 2X


D1

!

�

OaC.k,
/ Oa.k,
/C 1

2

�

d3k , (6.50)

OA D 1
p

.2�/3

Z
1p
2!

2X


D1

".
/
� Oa.k,
/eik�r C OaC.k,
/e�ik�r� d3k , (6.51)

OE? D i
p

.2�/3

Z r
!

2

2X


D1

".
/
� Oa.k,
/eik�r � OaC.k,
/e�ik�r� d3k (6.52)

and

OB D i
p

.2�/3

Z
1p
2!

2X


D1

.k�".
//
� Oa.k,
/eik�r � OaC.k,
/e�ik�r� d3k . (6.53)
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The continuous version of the commutation relations (6.37) then reads

Œ Oa.k0,
0/, OaC.k,
/� D ı.3/.k � k0/ı

0 . (6.54)

Finally, the continuous version of the summation over polarizations, Eq. (6.32), is
given as

2X


D1

".
/i "
.
/
j D ıij � �i�j D Pij , (6.55)

where � is a unit vector in the direction of the wave vector k

k D !� . (6.56)

6.1.12 States of the Field

The ground state (vacuum) is determined by the continuous version of Eq. (6.42),

Oa.k,
/j0i D 0 , (6.57)

which holds for all possible k and 
. To find the energy of the ground state, we act
on it with the Hamiltonian

OHEMj0i D
Z 2X


D1

!

�

OaC.k,
/ Oa.k,
/C 1

2

�

d3kj0i D
2X


D1

Z
!

2
d3k j0i defD E0j0i .

(6.58)
Likewise, we have for the energy of an excited state

OHC
EMOa.k

0,
0/j0i D
Z 2X


D1

!

�

OaC.k,
/ Oa.k,
/C 1

2

�

d3k OaC.k0,
0/j0i

D
Z 2X


D1

!

�

OaC.k,
/ı.k � k0/ı

0 C 1

2
OaC.k0,
0/

�

d3k j0i

D .E0 C !0/ OaC.k0,
0/j0i . (6.59)

Clearly, the energy is higher by !0—there is a photon there! Proceeding in the same
manner, we easily find

OHEM OaC.k0,
0/ OaC.k00,
00/j0i D .E0C!0C!00/ OaC.k0,
0/ OaC.k00,
00/j0i . (6.60)
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Up to now, the creation and annihilation operators OaC.k,
/ and Oa.k,
/ could have
been viewed merely as useful mathematical tools. However, they have now received
a clear physical meaning.3 The symbol OaC.k,
/ denotes the creation operator of
a photon with the wave vector k and polarization 
 and Oa.k,
/ represents the
corresponding annihilation operator.

One can readily see from Eq. (6.58) that the energy of the vacuum is infinite.
However, one can also notice from Eqs. (6.59) and (6.60) that all excited states are
shifted by this very energy. Since we can measure only energy differences,4 we
can subtract the vacuum energy from all of the states, and speak of the Hamilton
operator (6.50) as in the so-called normally ordered form

: OHEM :D OHEM � h0j OHEMj0i D
Z 2X


D1

! OaC.k,
/ Oa.k,
/d3k . (6.61)

One last note: owing to the commutation relation

Œ OaC.k0,
0/, OaC.k00,
00/� D 0 , (6.62)

interchange of the first and the second photon in Eq. (6.60) leads to the same state.
That is, quanta of EM field (i.e., photons) are bosons.

6.2 Spontaneous Emission

The quantum version of the Hamiltonian (6.22) can be easily brought into the form

OH D OH0 C OHint , OH0 D : OHEM :C OHat , (6.63)

OHat D
X

j

Op.j/ � Op.j/
2mj

C 1

4�

1

2

X

m¤n

emen

jOr .m/ � Or .n/j , (6.64)

OHint D e OH1 C e2 OH2 D
X

j

 

� ej

mj

OA.j/ � Op.j/ C e2
j

2mj

OA.j/ � OA.j/

!

, (6.65)

3One usually claims that the physical meaning is carried by the Hermitian operators, whereas the
non-Hermitian ones are merely useful mathematical tools. However, we see that in the case of the
quantized EM field, the situation is in fact the very opposite: while the canonical coordinates and
momenta bear no obvious physical meaning, their non-Hermitian combinations Oa and OaC do.
4Strictly speaking, this is true only if the gravitation is excluded. Let us also note that this energy
of the vacuum represents a part of the cosmological constant problem, see for instance [16].
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where we used the Coulomb gauge condition (6.10), Œ Opi, OAi� D �ir � OA D 0.
Unfortunately, we are not able to find the exact eigenvalues and eigenstates of
the complete Hamiltonian. Therefore, in the spirit of the perturbation method, we
have split the Hamiltonian into two parts: OH0 that we are able to solve exactly, and
OHint that we are unable to solve exactly, but which does not markedly influence
the solution obtained for OH0. In case of slowly moving particles, the electrostatic
interaction is so strong that one cannot treat it perturbatively and we have to include
it in the “free” Hamiltonian OH0. Therefore, we need to know the spectrum of the
atomic Hamiltonian (6.64), not of a free-particle Hamiltonian! However, for atoms
with more than one electron, we are not able to solve the spectrum of the atomic
Hamiltonian (6.64) exactly. Nevertheless, as we showed in Chap. 5, we are able to
approach the exact solution to any proximity, at least in principle. Note that the use
of the Coulomb gauge substantially simplifies this problem. In case of other than
Coulomb gauges the distinction between the electrostatic and delayed interaction is
obscured.

6.2.1 Interaction Representation

We have found the Hamilton operator; how do we relate it to what experimenters
measure?

Let us start with a general situation. We assume the system is in the initial state jIi
at the initial time t0. The probability of finding this system in the final state jFi any
later in time t is—according to the basic principles of quantum mechanics—given
by

PI!F D jhFj .t/ij2 . (6.66)

Here,  .t/ is a solution to the time-dependent Schrödinger equation

i
dj i

dt
D OHj i , (6.67)

with the initial condition

j .t D t0/i D jIi . (6.68)

We search for the solution to the Schrödinger equation in the form of a time-
dependent linear combination of the stationary states of the Hamiltonian OH0

j .t/i D
X

n

cn.t/jnie�iEnt , (6.69)
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where

OH0jni D Enjni . (6.70)

After insertion of Eq. (6.69) into Eq. (6.67), we obtain

X

n

.iPcn C Encn/jnie�iEnt D
X

n

. OH0 C OHint/cnjnie�iEnt .

We multiply this equation from the left by the bra-vector hFj and by the number eiEFt.
Owing to the orthonormality of the states jni and Eq. (6.70), we find the Schrödinger
equation in the interaction representation

iPcF D
X

n

. OHint/Fncnei!Fnt , (6.71)

where we introduced the transition frequency

!Fn D EF � En . (6.72)

We now solve Eq. (6.71) with the initial condition

cn.t0/ D ınI , (6.73)

which follows from Eqs. (6.68) and (6.69) and from the orthonormality of the states
jni. Insertion of Eq. (6.69) into Eq. (6.66) results in, again with the use of the
orthonormality of the states jni,

PI!F D jcF.t/j2 . (6.74)

6.2.2 Time-Dependent Perturbation Method and the Fermi
Golden Rule

Note that our considerations were exact so far.5 Now we use the perturbation method.
We consider the interaction Hamiltonian (6.65) as OHint. Since this Hamiltonian is
proportional to the elementary charge e, it is reasonable to expand the coefficients
cF into a series in e,

cF.t/ D c.0/F .t/C ec.1/F .t/C e2c.2/F .t/C : : : , (6.75)

5The only assumption we have made is that the initial and final states can be identified with
the eigenstates of the free Hamiltonian. This assumption holds approximately, not exactly, see
Sect. 6.5.3, and relates to the issue of a so-called “renormalization” which we will discuss in great
detail in Chap. 7.
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and substitute this expansion into Eq. (6.71). Comparison of the terms proportional
to e0 on both sides results in

Pc.0/F D 0 ) c.0/F D ıFI , (6.76)

where the implication follows from Eq. (6.73). Next, by comparing the terms
proportional to e1 on both sides, we find

Pc.1/F D �i
X

n

. OH1/Fnc.0/n ei!Fnt D �i. OH1/FIe
i!FIt ,

where we used Eq. (6.76) in the last step. Integration of the last equation together
with the initial condition c.1/F .t0/ D 0 yields

c.1/F D �i. OH1/FI

Z t

t0

ei!FIt0dt0 .

By inserting the expansion (6.75) into Eq. (6.74), we arrive at the first approximation
for F ¤ I

PI!F.t/ ' jec.1/F j2 D je. OH1/FIj2
ˇ
ˇ
ˇ
ˇ

Z t

t0

ei!FIt0dt0
ˇ
ˇ
ˇ
ˇ

2

. (6.77)

One can find that for large times it holds that

lim
t�t0!1

ˇ
ˇ
ˇ
ˇ

Z t

t0

ei!FIt0dt0
ˇ
ˇ
ˇ
ˇ

2

D lim
t�t0!1

2.1 � cos!FI.t � t0//

!2
FI

D 2�.t � t0/ı.!FI/ .

(6.78)
To accustom to this equation, it helps to draw a graph of the functional dependence
of the lhs on !FI for different values of the parameter .t� t0/ D 10�1, 1, 10, 102, and
so on. The factor 2�.t � t0/ on the rhs stems from the requirement that integration
over all possible values of !FI produces the same number on both sides

Z 1

�1
2.1 � cos!FI.t � t0//

!2
FI

d!FI D 2�.t � t0/ .

When studying decays, the experimenters do not measure directly the probability of
decay, but rather the probability of decay per unit time, called the transition rate wIF

wI!F
defD lim

t�t0!1
PI!F.t/

t � t0
D 2�ı.!FI/ je. OH1/FIj2 . (6.79)

Here, we used Eqs. (6.77) and (6.78). The last equation is called the Fermi golden
rule and bears the following meaning. Firstly, this rule states that in the limit of
infinite times, the energy of the final state equals exactly the energy of the initial
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state. For instance, we show in a moment that in case of spontaneous emission, the
ı-function is merely an expression of the Bohr quantization condition, namely that
the energy of the radiated photon equals the difference between the energies of the
initial and final atomic states. The Fermi rule thus determines the position of atomic
spectral lines. Secondly, the Fermi rule states that the probability of a given process,
for instance of the spontaneous emission, depends on the value of the squared matrix
element . OH1/FI. Thus, the Fermi rule determines the intensity of atomic spectral lines
as well.

There is no need to fear the formidably looking ı-function in Eq. (6.79), though.
Whenever we can make use of this equation, we necessarily integrate over a
continuous infinity of final states, as we will see later in the text.

6.2.3 Elimination of the Field Operators

We now focus on the process of spontaneous emission, that is, on the change of the
state of an atom accompanied by a radiation of a photon with the wave vector k and
polarization ".
/. The initial and final states are in this case

jIi D jIatij0i , jFi D jFati OaC.k,
/j0i . (6.80)

The eigenvalues of the Hamiltonian OH0, Eq. (6.63), are

OH0jIi D Eat
I jIi and OH0jFi D .Eat

F C !/jFi .

The difference between the energies of the initial and final states reads

!IF D Eat
I � Eat

F � ! .

There is a continuous infinity of the final photon states. Thus, we rewrite the Fermi
rule, Eq. (6.79), into the differential form

dwI!F D 2�ı.Eat
I � Eat

F � !/je. OH1/IFj2d3k . (6.81)

We need to calculate the matrix element of OH1. Therefore, we substitute for OH1 from
Eq. (6.65), where we substitute for the quantized field from Eq. (6.51), and arrive at

e. OH1/IF D �
X

j

ej

mj
h0jhIatj

 

1

.2�/3=2

Z 2X


0D1

".

0/



Oa.k0,
0/eik0�Or .j/

C OaC.k0,
0/e�ik0�Or .j/� d3k0p
2!0

�

� Op.j/ OaC.k,
/jFatij0i .



6.2 Spontaneous Emission 209

All expressions of the type h0j OaC OaCj0i vanish and only the first term in the bracket
contributes to the value. Using Eqs. (6.54) and (6.57), we find for the sought matrix
element that

e. OH1/IF D �
X

j

ej

mj
hIatj

 

1

.2�/3=2

Z 2X


0

D1

".

0/ı.k0 � k/ı
,
0 eik0

�Or .j/ d3k0

p
2!0

!

� Op.j/jFati

(6.82)

D � 1

.2�/3=2

X

j

ej

mj

".
/p
2!
� hIatjeik�Or .j/ Op.j/jFati .

As our next step, it is advantageous to change in Eq. (6.81) in the k-space from the
Cartesian to spherical coordinates, Eq. (6.56). We thus rewrite the differential d3k
in Eq. (6.81) as !2d!d˝k, in an analogy to d3r D r2drd˝ in the ordinary space.
Owing to the presence of the ı-function in Eq. (6.81), the integration over frequencies
of the radiated photon is trivial: its effect is to replace ! by Eat

I � Eat
F . Finally, we

may ignore the interaction of the EM field with the nucleus since the interaction
term contains the factor 1=mn and a typical nucleus is at least by three orders of
magnitude heavier than electrons. Thus, we can set mj D m, ej D �e, where m and
�e are the electron mass and charge. Insertion of Eq. (6.82) into Eq. (6.81) finally
yields

dwI!F D e22�
.Eat

I � Eat
F /

2

1

.2�/3
1

m2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

".
/ �
X

j

hIatjeik�Or .j/ Op.j/jFati
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

d˝k .

6.2.4 Electric Dipole Radiation

Let us make the transition to the dimensionless atomic units in the last equation by
substituting

Or D OrA

mZ˛
, Op D .mZ˛/ OpA (6.83)

and

Eat
I � Eat

F D m.Z˛/2!at
IF, k D m.Z˛/2kA, jkAj D !at

IF ; (6.84)

we obtain

dwI!F D ˛

2�
!at

IFm.Z˛/4

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

".
/ �
X

j

hIatjeZ˛ikA�Or .j/A Op.j/A jFati
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

d˝k . (6.85)
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The exponent Z˛kA �rA is a small number since all the quantities therein reach values
which are in atomic units of the order of unity and ˛ is significantly smaller than 1.
Therefore, the whole exponential function can be replaced by unity

eZ˛ikA�Or .j/A ' 1 . (6.86)

This approximation is commonly termed as the dipole approximation and is
appropriate in nonrelativistic calculations (such as those we are performing now),
since—as we know from Sect. 3.5—the ratio of the relativistic corrections to the
nonrelativistic energy is of the order .Z˛/2. Thus, the same conditions hold for the
validity of both the nonrelativistic and dipole approximations. The usual argument
for the validity of the dipole approximation is that the wavelength of the EM radiation
has to be substantially larger than the typical dimensions of the object the EM field
is interacting with. Although this argument is more general (except for the case of
atoms when both of them are the same), the one given here is somewhat cleaner and
makes the connection with the nonrelativistic approximation transparent.

Within this approximation, we can write Eq. (6.85) in a significantly simpler form

dwI!F D ˛

2�
!at

IFm.Z˛/4
ˇ
ˇ".
/ � � OpA

�

IF

ˇ
ˇ
2

d˝k . (6.87)

Here, we introduced the total linear momentum operator

Op D
X

j

Op.j/; (6.88)

where the sum over j runs over the electrons. We can further recast Eq. (6.87) into a
more commonly used form. The Hamiltonian (6.64) complies with the identity, see
Eqs. (1.52) and (1.54),

Opi D �imŒOxi, OHat� , (6.89)

where we introduced the total radius vector operator

Or D
X

j

Or .j/. (6.90)

Owing to Eq. (6.89), there is a simple relation between the matrix elements of the
total momentum and the matrix elements of the total radius vector, namely

. Op/IF D hIatj OpjFati D �imhIatjŒOr , OHat�jFati D im.Eat
I � Eat

F /.Or/IF . (6.91)

In atomic units, we easily derive from Eqs. (6.83), (6.84), and (6.91)

. OpA/IF D i!at
IF.OrA/IF .
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Thus, Eq. (6.87) can be rewritten as

dwI!F D ˛

2�
.!at

IF/
3m.Z˛/4

ˇ
ˇ".
/ � .OrA/IF

ˇ
ˇ
2

d˝k . (6.92)

The advantage of the latter form over the former lies in the calculation of the matrix
element of a coordinate, which is usually simpler than that of a momentum.

Alkali metal atoms feature only one valence electron, therefore it is a reasonable
approximation to assume that only this valence electron is responsible for the
transitions in such atoms corresponding to the radiation within the visible part
of the spectra. The electron moves in an effective potential which is to a satisfactory
approximation spherically symmetric. We can then assign the quantum numbers
nI, lI, mI and nF, lF, mF to the initial and final states of the atom, respectively. With the
exception of hydrogen, nI and nF are not natural numbers, however, it does not matter
for now. Recalling Chap. 4, relations (4.62), (4.63), and (4.64), we immediately see
that the matrix element .Or/IF vanishes unless lF D lI˙1 and mF D mI or mF D mI˙1.
In other words, or rather with more words, the electron in an s-state can relax only
to a p-state, from a p-state only to an s- or a d-state, and so on. These rules are called
the selection rules for dipole radiation.

6.2.5 Polarization and Angular Distribution of the Radiated
Photons

Let us now examine how the angular distribution of the circularly polarized radiated
photons varies with the magnetic quantum number of the valence electron. For this
purpose, we rewrite the scalar product of the polarization and radius vectors as

".
/ � .OrA/IF D 1

2
"
.
/
C .Ox�/IF C

1

2
".
/� .OxC/IF C ".
/3 .Ox3/IF (6.93)

and express vectors k, ".1/, and ".2/ in the spherical coordinates in the k space

k D !�, � D .sin# cos', sin# sin', cos#/ ,

".1/ D .cos# cos', cos# sin',� sin#/

and

".2/ D .sin',� cos ', 0/ .

One can easily verify that ".1/ � ".2/ D ".1/ � � D ".2/ � � D 0. A circularly polarized
wave (left- or right-handed) is given as the following combination of the linearly
polarized waves
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".L/ D 1p
2
.".1/ C i".2// , ".R/ D 1p

2
.".1/ � i".2// .

For definiteness, we henceforth consider the right-handed photon only. From the last
four equations, we derive

".R/ D 1p
2
.".1/� i".2// D 1p

2
.cos# cos'� i sin', cos# sin'C i cos',� sin#/ .

We now calculate the probability that an atom undergoes a transition from the state
with mI to the state mF D mI � 1 and radiates a right-handed photon with the wave
vector k D !�. By inserting the last equation into Eqs. (6.92) and (6.93), we obtain
by means of selection rules (4.62), (4.63), and (4.64)6

dwI!F D ˛

2�
m.Z˛/4.!at

IF/
3 1

4
jhIatjOxCjFatij2

ˇ
ˇ
ˇ
ˇ

cos# C 1

2

ˇ
ˇ
ˇ
ˇ

2

d˝k . (6.94)

What is the physical interpretation of this result? One can readily notice that the
probability of photon emission reaches its maximum for # D 0, that is, for the
direction of the z-axis. Recalling that the magnetic quantum number is the projection
of the electron angular momentum with respect to this axis, we readily see that in this
case, the photon carries away the amount of the angular momentum (with respect
to the z-axis) lost by the atom. On the other hand, the expression (6.94) vanishes
for # D � ; that is no photon can go in this direction when the atom undergoes the
transition from the state with mI to the state mI � 1. Why? The law of conservation
of angular momentum prohibits that. Bearing this in mind, we rewrite Eq. (6.94) as

dwI!F

d˝k
D jhatjC�ij2 D jhatjCzihCzjC�i C hatj�zih�zjC�ij2

D jhatjCzij2jhCzjC�ij2 .

Here, hatjC�i denotes the probability amplitude of the process when the atom
radiates a right-handed photon in the direction � and the atom angular momentum
with respect to the z-axis decreases by 1, hatjCzi denotes the amplitude that the
photon is radiated in the direction of the z-axis and so on. In the second equality, we
used the decomposition of unity in the photon spin states. The second term does not
contribute, though, since—as noted a few lines above—hatj�zi vanishes. Obviously,

jhCzjC�ij2 D
ˇ
ˇ
ˇ
ˇ

cos# C 1

2

ˇ
ˇ
ˇ
ˇ

2

and jhatjCzij2 is obtained by comparison of the last two equations with Eq. (6.94).

6Recall that jIati D jnI , lI , mIi and jFati D jnF, lF, mI � 1i.
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Fig. 6.1 Angular distribution of circularly polarized photons for the transition involving a decrease
in atom angular momentum with respect to the z-axis by 1: On the left for the right-handed photon
and on the right for the left-handed photon

Thus, the sought probability can be expressed as a product of the probability
that atom radiates a photon in the direction of z-axis (P1 D jhatjCzij2) and the
probability that a photon with the spin projection C1 along the z-axis will be found
with the spin projectionC1 into the direction of � (P2 D jhCzjC�ij2).

The aim of this discussion is to conclude that the angular distribution of the
emitted photons can be deduced from the conservation of angular momentum and
the result of Exercise 5. Polar radiation diagrams for the right- and left-handed
photons are shown in Fig. 6.1.

If we do not seek the polarizations of the photon and ask merely for their angular
distribution, we can sum over the polarizations. By means of Eq. (6.55), we obtain
from Eq. (6.92)

dwI!F D ˛

2�
.!at

IF/
3m.Z˛/4.ıij � �i�j/hFatjOxijIatihFatjOxjjIatid˝k . (6.95)

The reader will surely be able to sketch the corresponding polar diagram.

6.2.6 Lifetime of States

And if the angular distribution is of no interest to us and we merely seek the
probability of an atom radiating a photon? We then clearly need to integrate over all
directions. The only photon-direction-dependent variable in Eq. (6.95) is the vector
�. Therefore, by means of the integral, see Eq. (3.47),

Z

�i�jd˝k D 4

3
�ıij , (6.96)
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we find that

wI!F D 4

3
m˛.Z˛/4.!at

IF/
3jhIatjOrAjFatij2 D 4

3
m˛.Z˛/4.!at

IF/jhIatj OpAjFatij2 .

(6.97)
The total transition rate �I at a time t is given as the ratio of the rate of change in

the number of atoms N.t/ which are in the state Iat at the time t to this number N.t/

�
dN.t/

dt

N.t/
D �I ) N.t/ D N.t D 0/e��I t . (6.98)

As you may recall, this equation resembles the Rutherford formula for the radioactive
decay, see Sect. 1.1. Therefore, the lifetime �I of the initial atomic state equals the
inverse value of total transition rate �I. We can obtain the latter from Eq. (6.97) by
summing over all possible final atomic states

�I D � �1
I D

0

@
X

Eat
F<Eat

I

wI!F

1

A

�1

. (6.99)

Again, if we restrict ourselves to alkali metal atoms, we can use the rela-
tions (4.62), (4.63), and (4.64) in the calculation of the matrix element in Eq. (6.97),
and sum over all possible magnetic quantum numbers mF of the final atomic state.
We thus obtain after angular integration in Eq. (6.97) (check it!)

X

mF

hlI, mIjnijlF, mFihlF, mFjnijlI, mIi D ılF,lI�1
lI

2lI C 1
C ılF,lIC1

lI C 1

2lI C 1
.

(6.100)
Note that the result is independent of the initial quantum number mI; this should not
be surprising.

To convert the transition rate from electronvolts to hertz

w.eV/! w.Hz/ ,

it suffices to replace

m! 2R1c

˛2
2� . (6.101)

Had this reasoning been too fast, the reader can find another way of unit conversion
in Eq. (8).
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Table 6.1 Wavelengths
corresponding to colors of
visible light

Color Wavelength [nm]

Violet 380–435

Blue 435–500

Cyan 500–520

Green 520–565

Yellow 565–590

Orange 590–625

Red 625–740

By means of Table 6.17 and what he learned so far, the reader can attempt the
following exercise.

What colors can we observe in the hydrogen spectrum? What are the
corresponding transitions? What are the ratios of the intensities of the
individual lines?
Hint: Determine the principal and orbital quantum numbers of the initial
and final states. You easily find that for a given nI and nF, there are
more choices of lI. For the sake of simplicity, assume that for a given nI

there is a uniform distribution of the states with different lI and mI. When
calculating the ratio of intensities, calculate the ratios of expressions

w .nI ! nF/ D 1

n2
I

nI�1
X

lID0

.2lI C 1/w.nI, lI ! nF, lF/ .

The value of the speed of light can be found in Eq. (3). If the reader is
not in the mood to calculate the needed radial integrals, he can consult
Sect. 6.4.6.

Exercise 18: Hydrogen Spectral Lines

6.2.7 Circular States and Connection with Classical Theory

Now, we apply the results obtained so far to the so-called circular states, that is, states
with l D n�1. Little examination of Eqs. (4.62)–(4.64) together with Eq. (4.72) leads
to the conclusion that a circular state with lI D nI � 1 necessarily ends up in another

7The distinction between individual colors is not sharp, of course. Similarly, the exact wavelength
range for visible light is a subject to an endless debate. The reader should thus not be surprised to
find slightly different values in the literature.
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circular state lF D nF � 1 after a spontaneous emission. Inserting Eq. (6.100) into
Eq. (6.97) we obtain

� D 4

3
m˛.Z˛/4

1

23

�
1

l2
� 1

.lC 1/2

�3 l

2lC 1
jhl, l � 1jOrAjlC 1, lij2

D 2

3
m˛.Z˛/4

1

n5

�

1 � 1
n

�2n�2

�

1 � 1
2n

�4n�1 , (6.102)

where l D lI and n D l C 1, and where we used Eqs. (4.78) and (4.79) in the last
step.

It is highly instructive to compare this result with the quasi-classical one [3]. The
classical formula (due to Larmor) for the radiated power in the dipole approximation
reads (see, e.g., [13])

Pcl D 2

3
˛jaj2 . (6.103)

Now, we insert a for acceleration from the Newton equation

a D Z˛

m

�
1

r2




D m.Z˛/3
�

1

r2
A




. (6.104)

For average inverse distance squared hr�2
A i, we find for the circular states, see

Eqs. (4.78) and (4.79),

hr�2
A i D hn, n � 1jOr�2

A jn, n � 1i D 1

n3
�

n � 1
2

� . (6.105)

If we take the ratio of the radiated power (that is, the radiated energy per unit time)
to the radiated energy, we arrive at the classical prediction for the total transition
probability

�cl D Pcl

�E
,

where

�E D m.Z˛/2�" , �" D 1

2

�

� 1

n2
C 1

.n � 1/2

�

.

Last five equations yield

�cl D 2

3
m˛.Z˛/4

1

n5

�

1 � 1
n

�2

�

1 � 1
2n

�3 .
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Comparing Eq. (6.102) with the last one, we see that in the limit of large quantum
numbers n!1, quantum and quasi-classical predictions coincide.

The expressions (6.103) and (6.104) are usually regarded as a proof that classical
physics is incapable of explaining the stability of an atom. Within the framework
of classical physics, an electron must orbit the nucleus so that the centrifugal force
balances the attractive electrostatic force stemming from the nucleus. However, as
the electron orbits, it radiates EM waves, hence loses its energy and falls to the
nucleus.

However, the failure of classical physics to explain the stability of an atom is
somewhat more subtle. Classical physics cannot—not even qualitatively—elucidate
the stability of the ground state. On the other hand, it explains fairly well the
instability of states with nonzero angular momentum; moreover, within the limit
of large quantum numbers, the explanation is even quantitatively correct. Thus, it
is obvious that the spontaneous emission is nothing but a quantum counterpart of
the classical phenomenon that an accelerated charged particle emits EM waves.
From this point of view, one can also readily understand that the lifetime of circular
states increases with increasing l, see Eq. (6.102). The reason is: with increasing
angular momentum, their average distance from the nucleus increases as well,
see Eq. (6.105). However, as the distance grows, the electrostatic attraction weakens,
see Eq. (6.104). With a decrease of attraction, the acceleration decreases, too, and a
decrease in acceleration results in a decrease of the radiation of an EM wave.

To conclude this section, note that the validity of the expression (6.102) is not
restricted to hydrogen-like atoms only. There are states above the ground level which
one can describe within a reasonable approximation as one-electron excitations of
the ground-state configuration. For instance, we saw in the last chapter that the
helium ground-state configuration lies close to f1s, 1sg, i.e., both electrons are in
an s-state; the pertinent orbital being approximately hydrogen-like, see Eq. (5.11).
One-electron excitations with valence electrons in circular states are then f1s, 2pg,
f1s, 3dg and so on. If we follow these one-electron excitations high enough, they
begin to resemble those of hydrogen. Intuitively, if one electron is highly excited
while all of the other ones remains “as low as possible,” the excited electron is “far”
from the nucleus and hence feels a potential which is in a reasonable approximation
Coulombic with an effective charge close to one as the remaining Z � 1 “lower”
electrons screen the charge of the nucleus Z. One can notice this screening already in
case of the lowest P- and D-states in helium, see Sect. 5.2.4, and it further grows with
increasing angular momentum of the valence electron. Therefore, Eq. (6.102) holds
for circular states of an arbitrary atom if n is sufficiently large. Highly excited states
that we can describe well as one-electron excitations from the ground configuration
are commonly termed as the Rydberg states, and comprise highly excited states of
all atoms which lie below the ionization threshold. Above the ionization threshold,
one of the electrons lies in the continuous part of the spectrum; that is, the atom is
ionized. One could similarly consider excited states which are well describable as
two-electron excitations from the ground configuration. In case of helium, we find
such states already above the ionization threshold.
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6.2.8 Forbidden Transitions

It follows from the selection rules for dipole radiation that some of the transitions
are forbidden. The prime example is the process 2s! 1sC� in the hydrogen which
is forbidden in all orders of Z˛ for the interaction Hamiltonian (6.65). Let us now
show why. Note, though, that the proof applies to all transitions between arbitrary
s-states.

We let the initial and final states be s-states that is, jIati D jnI, 0, 0i and jFati D
jnF, 0, 0i. In case of hydrogen, Eq. (6.85) reduces to

dw

d˝
D m

˛

2�
.Z˛/4!at

IFjhFatjeiZ˛k�OrA OpA � "jIatij2 .

Firstly, recall Eq. (3.15), OpA ! �i
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the bracket on the s-states vanishes. Secondly, we expand the exponential

hFatjeiZ˛k�OrA OpA � "jIati D � i
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2
.Z˛/2r2kjklninjnl � i
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.Z˛/3r3kjklkmnjnlnm C : : :
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� n � " d˝

�

r2dr .

To proceed further, it suffices to calculate the integrals of the type

Z

ninj : : :
„ƒ‚…

N-times

d˝ .

These integrals vanish for N odd; for N even they are proportional to the products
of Kronecker symbols. For instance, Eq. (3.47) holds for N D 2,

Z

ninjnknld˝ D 4�

15
.ıijıkl C ıikıjl C ıilıjk/ (6.106)

for N D 4, and so on. Thus, upon integration over angles, the individual terms of the
expansion either vanish or the scalar product k � " appears. However, this product
vanishes as well, see Eq. (6.30).

The lifetime of the 2s-state is not infinite, of course. There are two additional
mechanisms how the transition may proceed if the interaction (6.65) “does not
work.” Either the magnetic interaction of the spin of the electron with the quantized
magnetic field operates, as we will show further, or the atom radiates two photons.
In the latter case, the atom and the EM field firstly “borrow energy from vacuum
for the moment”: the atom radiates photon and goes to a linear superposition of
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p-states, all of which lie higher than the initial s-state. Secondly, the atom and EM
field “return the energy back”: the atom radiates an additional photon and relaxes
from the superposition to the ground state. To describe this process, one needs to
opt for the second order of the perturbation method. We learn how to go beyond the
first order of the perturbation method later, see Sect. 6.4.

In case of hydrogen, the dominant mechanism of the 2s � 1s transition is a
two-photon radiation. The lifetime of the 2s-state equals, see, e.g., [5],

�2s ' 0.12 s .

For comparison, the lifetime of the 2p-state is �2p ' 0.16 � 10�8 s, see (6.102).
On the atomic scale, the lifetime of the 2s-state is enormous, hence these states are
called metastable.

In case of helium, the dominant mechanism is the interaction of the spin with the
magnetic field. Lifetime of the metastable 2 3S state is 7870 s (!), see [10].

6.2.9 Radiation Associated with a Change of Spin

In the nonrelativistic limit, the interaction of the electron with the EM field contains
the term � e

m
OS � B, see Eqs. (3.50) and (3.51). As the interaction Hamiltonian (6.65)

features no such term, we should add one into it:

OHmag
1 D �

X

j

ej

mj

OS.j/ � OB.j/
,

where OB is given by Eq. (6.53). If the selection rules for dipole radiation allow the
transition in question, one may neglect this spin interaction.

1 3s

Find the lifetime of the 1 3s state.
Hint: Write the Fermi golden rule (6.79) in the form

dwI!F D
X




2�ı.!IF/j. OHmag
1 /IFj2d3k,

and take

jIi D j1si 1p
2

�jCiej�ip C j�iejCip
� j0i

Exercise 19: Lifetime of the 1 3s State
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as the initial state,

jFi D j1si 1p
2

�jCiej�ip � j�iejCip
� OaC.k,
/j0i

as the final state, and

OHmag
1 ' � e

me

OSe � OB

as the interaction Hamiltonian. Clearly, !IF D Eat
I �Eat

F �!, where insert
from Eq. (3.58) for Eat

I �Eat
F . Invoke the dipole approximation, in this case

called the magnetic dipole approximation.

You should reach the value

�1 3s D 3.4 � 1014 s ' 107 years.

In this case, the lifetime is large not only on the atomic scales.

6.3 Photoelectric Effect

6.3.1 Introductory Notes

In case of photon absorption, the initial and final states read

jIi D jIati OaC.k,
/j0i , jFi D jFatij0i . (6.107)

Since we now must sum over all final atomic states, we write the Fermi golden
rule (6.79) in the form

wI!F D
X

at

2�ı.Eat
I � Eat

F C !/je. OH1/IFj2 . (6.108)

For instance in the case of hydrogen, we have

X

at

!
1X

lFD0

lFX

mFD�lF

0

@

1X

nFDlFC1

C
Z 1

0
dke

1

A .

One can readily recognize the necessity to distinguish between the “final” states
lying in the discrete part and those in the continuous part of the spectrum.
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If the atom goes to the discrete part of the spectrum, it sooner or later radiates a
photon and relaxes to a state of lower energy. In other words, the discrete excited
states of the atom are not the true final states; hence the Fermi golden rule (6.79)
cannot be directly applied to them. Nevertheless, we can use the Fermi rule provided
we seek the probability of a photon absorption succeeded by a photon emission. We
will return to this problem in the next section.

We will consider only the transition to the continuous part of the spectrum for
now. We write the Fermi golden rule in the differential form

dwI!F D
X

lF,mF

2�ı.Eat
I � Eat

F C !/je. OH1/IFj2dke . (6.109)

Owing to the ı-function, the integration over electron wave numbers ke is trivial.
The energy of the final atomic state is then given as a sum of the energies of the
incident photon and of the initial atomic state

Eat
F D ! C Eat

I ) m.Z˛/2
k2

e

2
D ! � m.Z˛/2

2
, (6.110)

which is exactly the Einstein equation for photoeffect. We restricted ourselves to the
case of hydrogen in the second equality, and we also assumed that the initial state is
the ground state.

Note that if the energy of the incident photon is too large, the energy of the
outgoing electron acquires large values as well, hence relativistic description may
be in place. For validity of the nonrelativistic approximation, the kinetic energy of
the outgoing electron must be significantly smaller than its rest energy

m.Z˛/2
k2

e

2

 m ) ke 
 .Z˛/�1 .

Insertion of this requirement into Eq. (6.110) then leads to the condition

! 
 m .

The rest mass of the electron is about 0.511 MeV while the ionization energy of
the hydrogen atom in its ground state equals approximately m.Z˛/2=2 ' 13.6 eV.
Hence, the theory we are about to outline holds for incident photon energies within
the range 101–105 eV.

The matrix element . OH1/FI enters Fermi rule only in the form j. OH1/FIj2. Equation
(6.82) can be thus used for the initial and final states (6.107) as well. After invoking
the dipole approximation,8 changing to the atomic units, restricting to the hydrogen-

8As already emphasized in the previous section, the dipole approximation can be used whenever
the nonrelativistic approximation has been invoked.
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like atoms and taking advantage of the fact that OpAjIati D i OnjIati for the ground state,
we arrive at the expression

je. OH1/FIj2 D .mZ˛/2e2

.2�/32!m2
j".
/ � hFatj OnjIatij2 . (6.111)

Equation (6.109) is the correct one for the transition rate from the initial atomic
state to the state when the atom is ionized and has definite value of the orbital and
angular quantum number. For example, the hydrogen atom initially in the ground
state ends up, owing to the selection rules for dipole radiation, in one of its p-states.

Note, though, that we have not described the photoeffect yet. What experimenters
detect is a current of outgoing electrons. However, states with a definite value of
angular momentum do not create a current one could register in the detector. Such
states describe an electron, whether in the discrete or in the continuous part of the
spectrum, which “circulates” around the nucleus, and thus the average distance of
the electron from the nucleus does not change. If we wish to describe the electrons
that are “going away” from the nucleus, we must require the electron be described
by a plane wave in the limit of large distances from the nucleus. Formally, the wave
function of the final atomic state  must comply with the Schrödinger equation

�

�r
2

2
� 1

r

	

 D k2
e

2
 (6.112)

with the boundary condition

 .r!1/ �! eike�r

.2�/3=2
. (6.113)

The above considerations can be formulated more precisely. We start from the time-
dependent Schrödinger equation for one particle moving under the influence of an
external potential V

i
@ 

@t
D
�

�r
2

2
C V.r/

	

 . (6.114)

We find the complex conjugate of the last equation and multiply it from the left by
 , and subsequently subtract therefrom equation Eq. (6.114) multiplied from the left
by  �. We thus obtain

i. �
@ 

@t
C  @ 

�

@t
/ D � �r

2

2
 C  r

2

2
 � .

Exploiting the knowledge of differentiating a product of functions, we manipulate
the last equation into the form
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i
@j j2
@t
D 1

2

@

@xi

�

 
@

@xi
 � �  � @

@xi
 

�

.

We now integrate over a space region and use Gauss’s theorem to obtain

� d

dt

Z

j j2 d3r D
I

1

2i

�

 �r �  r �� � dS . (6.115)

One can interpret this equation as a continuity equation for the probability density:
a decrease of probability per unit time inside the volume of the region, i.e., the lhs
of the equation, equals the probability current over the surface of the region, i.e., the
rhs of the equation. That is, shall the electrons “move away” from the nucleus, their
probability density inside a sphere centered at the nucleus and of radius which well
exceeds the “atomic radius” (that is, approaching infinity from the mathematical
point of view) must decrease. Hence, we must describe the electrons with such a
wave function that leads to a nonvanishing probability current density

j D 1

2i

�

 �r �  r �� (6.116)

through the surface of the sphere, radius of which goes to infinity. One can easily
see that should the wave function lead to nonvanishing current density at all, it
must be complex. Wave functions with a definite value of angular momentum are
complex only in the variable '; thus they lead to a nonvanishing current density in
the direction along the changing coordinate '. These states “circulate” around the
nucleus and their current density through the spherical surface vanishes. On the other
hand, the wave functions obeying condition (6.113) lead to nonvanishing current
density through the spherical surface in the direction of the vector ke. To see this,
insert Eq. (6.113) into Eq. (6.116).

The solution to Eq. (6.112) with the boundary condition (6.113) is most easily
found in the parabolic coordinates. However, prior to our turning to this, we find
a relation between such a solution and an experimentally measurable quantity. We
rewrite Eq. (6.108) into the differential form

dwI!F D 2�ı

�

�m.Z˛/2
1C k2

e

2
C !

�

je. OH1/IFj2d3ke , (6.117)

and then change to the spherical coordinates in the space of the electron final states;
consequently d3ke D k2

edked˝. The ı-function yields a condition for m.Z˛/2k2
e=2,

not for ke though. To turn it into the condition for the latter, we write

d

�
k2

e

2
m.Z˛/2

�

D
d



k2
e
2 m.Z˛/2

�

dke
dke D kem.Z˛/2dke .
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We then find from Eq. (6.117)

dwI!F

d˝
D 2�ke

m.Z˛/2
je. OH1/IFj2 , (6.118)

with ke given by Eq. (6.110).
The probability of the atom ionization depends on the intensity of the incident

radiation which can be freely tuned by the experimenter. To remove this freedom,
we divide the transition rate by the incident probability current density per unit area

�I!F D wI!F

jI
. (6.119)

The quantity � is called the cross-section of the reaction and depends only on the
“physics” of the scattering process, not on the “initial conditions.”

Check that the average of the energy density current of an EM field (i.e.,
the Poynting vector) in a one-photon state equals

h0j Oa.k,
/. OE � OB/ OaC.k,
/j0i D k
.2�/3

.

Hint: The operators OE and OB are given by Eqs. (6.52) and (6.53),
respectively.

Exercise 20: The Average of the Poynting Vector

The incident current density in the photoelectric experiment is given by the power
of incident radiation per unit area (i.e., the magnitude of the Poynting vector) divided
by the energy of the incident radiation. It follows from Exercise 20 that the incident
current density equals

jI D 1

.2�/3
. (6.120)

After inserting Eqs. (6.111) and (6.110) into Eq. (6.118) and inserting the resulting
equation together with Eq. (6.120) into Eq. (6.119), we obtain

d�

d˝
D ˛.2�/3

�.mZ˛/2
ke

k2
e C 1

j".
/ � hFatj OnjIatij2 . (6.121)

Once we find the wave function of the final state and calculate the corresponding
matrix element, this equation yields predictions about the outcome of the
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photoelectric experiment which go beyond the Einstein relation (6.110). For instance,
given the polarization and the wave vector of the incident photon, what is the angular
and energetic distribution of the outgoing electrons?

The following three sections are devoted to the calculation of the squared matrix
element j".
/ � hFatj OnjIatij2. An impatient reader may skip directly to the resulting
Eq. (6.152).

6.3.2 Parabolic Coordinates

As mentioned above, the solution to Eq. (6.112) with the boundary condition (6.113)
is relatively easy to find using the parabolic coordinates. Recall, see Sect. 4.5.5,
Exercise 13, that solving the Schrödinger equation (6.112) in parabolic coordinates
corresponds to searching for common eigenvectors of the operators OH, OXz and OLz.

The parabolic coordinates are defined by the relations

� D rC z , � D r� z , ' D arctg
y

x
, r D

p

x2 C y2 C z2 , (6.122)

where the ranges of the individual coordinates are

� 2 .0,1/ , � 2 .0,1/ , ' 2 .0, 2�/ . (6.123)

The inverse transformation has the form

x D
p

�� cos' , y D
p

�� sin' , z D 1

2
.� � �/ . (6.124)

Differential volume element is

dV D d3r D 1

4
.� C �/ d� d� d' . (6.125)

Laplace operator in parabolic coordinates takes the form

r2 D 4

� C �
�
@

@�

�

�
@

@�

�

C @

@�

�

�
@

@�

�	

C 1

��

@2

@'2
. (6.126)

The proofs of these statements are elementary, though a bit involved.
In the following text, we will need only an axially symmetric solution, i.e., one

which does not depend on the angle '. After substituting  D  .� , �/ into the

Schrödinger equation (6.112),
h

�r2

2 � 1
r

i

 D k2
e
2  , we obtain

�
@

@�

�

�
@

@�

�

C @

@�

�

�
@

@�

�

C 1

	

 D �� C �
4

k2
e . (6.127)
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6.3.3 Wave Functions of the Continuous Spectrum

For large distances from the nucleus, the wave function of the outgoing electron
has to obey the boundary condition (6.113). As the reader will shortly see, we can
substantially simplify our calculation if we place the z-axis in the direction of the
wave vector ke of the outgoing electron. The condition (6.113) then reads

 .r!C1/! eikez

.2�/3=2
D eike.���/=2

.2�/3=2
. (6.128)

For an electron leaving the atom along the positive direction of the z-axis, i.e., for
z!1, we easily find that r!1 and consequently � !1. On the other hand, the
coordinate � could still be finite in this limit, see Fig. 6.2. Therefore, shall Eq. (6.128)
hold, we need to search for a solution to Eq. (6.127) of the form

 D e�ike�=2

.2�/3=2
	.�/ . (6.129)

By inserting Eq. (6.129) into Eq. (6.127), we obtain an equation for the function
	.�/, namely

�
@

@�

�

�
@

@�

�

C 1 � ike

2
C k2

e

4
�

	

	 D 0 . (6.130)

Fig. 6.2 Parabolic
coordinates. The dashed lines
are the lines of constant � , the
continuous ones of constant �
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The corresponding boundary condition follows from the insertion of Eq. (6.129) into
Eq. (6.128)

	.� !C1/! eike�=2 . (6.131)

We thus search for a solution to Eq. (6.130) in the form

	.�/ D Cke e
ike�=2f .�ike�/ , (6.132)

where Cke is a normalization constant which we will determine so that it fulfills the
condition (6.128). By inserting Eq. (6.132) into Eq. (6.130), we arrive at equation
for the function f .z/

�

z
d2

dz2
C .b � z/

d

dz
� a

�

f .z/ D 0 , (6.133)

where

a D � i

ke
, b D 1 , z D �ike� . (6.134)

The least difficult way to find a solution to Eq. (6.133) is to opt for the method
of Laplace transform.9 We will now proceed by writing down a solution and
subsequently showing that it is indeed the solution10:

f .z/ D
Z

C

dt

2� i
etta�b.t � z/�a . (6.135)

We insert this function into Eq. (6.133) to find
Z

C

dt

2� i

d

dt
V.t/ D 0 , V.t/ D etta�bC1.t � z/�1�a .

Hence, C is an arbitrary curve in the complex t plane with the only restriction the
value of the function V.t/ in initial and final points be the same.

Let us define an analytic continuation of a real function  .t/ of a real variable t
to complex values of t on the principal branch of the Riemann surface as follows.
The functional relation  D  .t/maintains its form and the complex values of t are
given as

t D jtj expfi arg tg , arg t 2 .�� ,�/ . (6.136)

9The following exposition concerning the wave functions of the continuous part of the spectrum
and transitions from the discrete to continuous parts is inspired by the exposition given in [11].
10A mathematician would most certainly not proceed this way. However, for the purpose of this
book, we do not wish to systematically explain the method of solution of the second order linear
differential equations nor the method of the Laplace transform.
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Fig. 6.3 Integration contour
for the integral (6.135)

0

z = − ikeξ

Re t

Im t

Cz

C0

∞ ←

Fig. 6.4 The first two sheets of the Riemann surface of the integrand (6.135); the surface continues
above and below

When the negative real axis is approached from the upper half of the complex plane,
t D jtj expfi�g, we generally obtain different values of the function  from those
if the negative real axis is approached from the lower half of the complex plane,
t D jtj expf�i�g. That is, the function  has a discontinuity on the negative real
axis. We consider the function t1=2 for example: we obtain eitherCijtj1=2 or �ijtj1=2

for negative t. We term the point t D 0 as a branch point, and in general, there may
be more than one of such points.
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In case of the integrand of the function f , Eq. (6.135), there are two branch points
t D 0 and t D z D �ike� on the principal branch of the Riemannn surface. Therefore,
we want to choose the curve C in such a way that it does not leave the principal branch
of the Riemann surface. Hence we have to avoid the discontinuities stemming from
the points t D 0 and t D z D �ike� . One possible choice of the curve C is to compose
it from three connected parts: a part C0 where t 2 .�1�i", 0�i"/, then a semi-circle
around the origin with radius " and t 2 .0 C i",�1 C i"/, a part C1 connecting
the points �1C i" and �1C z � i" and a part Cz where t 2 .z �1� i", z � i"/,
then a semi-circle around z with radius " and t 2 .zC i", z �1C i"/; see Figs. 6.3
and 6.4. The contribution from the part C1 vanishes, hence

f .z/ D
Z

C0

C
Z

Cz

�
dt

2� i
etta�b.t � z/�a

	

.

Substitution t! tC z along the part Cz transforms the function f .z/ into the form

f .z/ D
Z

C0

dt

2� i

�

etta�b.t � z/�a C etCz.tC z/a�bt�a
�

.

For z!1, one has

f .z!1/! .�z/�a
Z

C0

dt

2� i
etta�b C ez.z/a�b

Z

C0

dt

2� i
ett�a .

By means of the formula for � function11

1

� .c/
D
Z

C0

dt

2� i
ett�c , (6.137)

we find that

f .z!1/! .�z/�a

� .b � a/
C ez.z/a�b

� .a/
. (6.138)

11This is because
Z

C0

dt

2� i
ett�c D 1

2� i

�Z
1

0
dxe�x.xe�i�/�c �

Z
1

0
dxe�x.xei�/�c

	

D 1

�

Z
1

0
dxe�xx�c ei�c � e�i�c

2i
D 1

�
� .1� c/ sin.�c/ D 1

� .c/
,

where we used the defining formula for � -function, � .z/ D R
1

0 dxe�xxz�1, and Eq. (6.155) in the
last two steps.
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After substituting into the last equation for z, a, and b, see Eq. (6.134), we have

f .� !C1/! .ike�/
i=ke

� .1C i=ke/
C e�ike� .�ike�/

�i=ke�1

� .�i=ke/
! .ike�/

i=ke

� .1C i=ke/
. (6.139)

The numerator can be rewritten as a product of an absolute value and a phase factor,

.ike�/
i=ke D ei Ln.ike�/=ke D e��=.2ke/eCi ln jke�j=ke ,

where we took the value of the logarithm on the principal branch of the Riemann
surface, Ln i D i�2 . For large � , ln jke�j=ke is negligible in comparison to ke�=2, thus
the function (6.132), obeying the condition (6.131), acquires the form

	.�/ D eike�=2e�=.2ke/� .1C i=ke/F.�i=ke, 1,�ike�/ . (6.140)

Here, F.a, 1, z/ is a special case of a confluent hypergeometric function

F.a, b, z/ D � .b/f .z/ D � .b/
Z

C0

dt

2� i
etta�b.t � z/�a , (6.141)

where the factor � .b/ is chosen so that, see Eq. (6.137),

F.a, b, 0/ D 1 .

By substituting the Taylor expansion of the function F.a, b, z/ around z D 0 into
Eq. (6.133), we easily find

F.a, b, z/ D 1C a

b
zC a.aC 1/

b.bC 1/

z2

2!
C a.aC 1/.aC 2/

b.bC 1/.bC 2/

z3

3!
C : : : (6.142)

6.3.4 Transition from the Discrete to Continuous Part of the
Spectrum I

Let us now calculate the following integral

Is D
Z

d3r
r
 �ke

.r/e�ik�r 0.�r/ , (6.143)

where

 0.�r/ D e��r

p
�
D e��.�C�/=2

p
�

(6.144)
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is for � D 1 the wave function of the hydrogen ground state and  ke is the wave
function of the outgoing electron obeying condition (6.113), explicit expression of
which we will write down in a moment. The sought matrix element in Eq. (6.121) is
obtained from this integral by differentiating with respect to the parameter k.

The integral (6.143) parametrically depends on the vectors k and ke. We place
the vector ke in the direction of z-axis and the vector k in the xz plane

ke D .0, 0, ke/ , k D .! sin# , 0,! cos#/ .

Here, # is the angle between the vectors k and ke:

ke � k D ke! cos# . (6.145)

With this choice of the vector ke, the function  ke appearing in Eq. (6.143) acquires
the following form in the parabolic coordinates12

 ke.� , �/ D e�=.2ke/� .1C i=ke/

.2�/3=2
eike.���/=2F.�i=ke, 1,�ike�/ , (6.146)

as follows from Eqs. (6.129) and (6.140). In literature, this form is commonly called
the Coulomb function.

Similarly, the plane wave appearing in Eq. (6.143) has the form

e�ik�r D e�iŒ! sin#.��/1=2 cos'C! cos#.���/=2� .

After substituting these functions, the differential (6.125) and the boundaries (6.123)
into the integral (6.143), we arrive at the expression

Is D 1

2

Z 1

0
d�
Z 1

0
d�
Z 2�

0
d'



e��.�C�/=2e�iŒ! sin#.��/1=2 cos'C! cos#.���/=2�

� e�ike.���/=2F.i=ke, 1, ike�/
�
�

e�=.2ke/� .1 � i=ke/

.2�/3=2
p
�

	

. (+)

12In literature, for example in the already mentioned course [11], one can find the notation  .�/

ke
for

this function. The sign is related to the choice of the boundary condition; here the outgoing plane
wave, see Eq. (6.113). The plane wave yields a positive value of the probability current J D H

j �dS,

where j is given by Eq. (6.116). Similarly, one can encounter the function  .C/

ke
with the boundary

condition of an ingoing plane wave. These functions are nearly identical; they differ here and there
merely by signs. For instance, it holds that  .�/

ke
D  

.C/�

�ke
.
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We firstly focus on the integration over the variables � and ':

1

2

Z 2�

0
d'
Z 1

0
d� exp

n

�Œ� � i.! cos# C ke/�
�

2
� i! sin# cos'.��/1=2

o

.

(6.147)
To calculate this integral, it is advantageous to substitute

u D p� cos', v D p� sin' ) dudv D 2�1d�d' . (6.148)

The integral then splits up into two one-dimensional integrals over u and v

(6.147) D
Z 1

�1
du exp

�

�Œ� � i.! cos# C ke/�
u2

2
� i! sin#�1=2u

�

�
Z 1

�1
dv exp

�

�Œ� � i.! cos# C ke/�
v2

2

�

D exp

(

� !2 sin2 #

� � i.! cos# C ke/

�

2

) �
2�

� � i.! cos# C ke/

	

, (++)

where we used formula (1.96) for integration of the Gauss function. The remaining
integral over � is calculated by means of the formula (as we will derive in a moment)

Z 1

0
e�
�F.i=ke, 1, ike�/ d� D 
i=ke�1.
 � ike/

�i=ke , (6.149)

where

2
 D !2 sin2 #

� � i.! cos# C ke/
C � C i.! cos# C ke/ D �2 C jke C kj2

� � i.ke C ! cos#/
.

In the last equality, we substituted from Eq. (6.145). After substituting for 
 and
performing several manipulations, we finally obtain

(6.149) D
"

2
� � i.ke C ! cos#/

jke C kj2 C �2

�
�2 C jke C kj2
!2 C .� � ike/2

�i=ke
#

. (+++)

The formula (6.149) is a special case of the formula

1

� .b/

Z 1

0
e�
zzb�1F.a, b, z/dz D

Z

C

dt

2� i
ta�b.t � 1/�a

�Z 1

0
e�.
�t/zdz

�

D
Z

C

dt

2� i
ta�b.t � 1/�a 1


 � t
D 
a�b.
 � 1/�a .

(6.150)
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Fig. 6.5 Integration contour
for the integral (6.150). The
continuous line denotes the
part of the integration contour
necessary for the definition of
the hypergeometric function.
The dashed line denotes the
part of the contour necessary
for the use of the residue
theorem. On this line, the
integrand asymptotically
vanishes

0 1

λ

Re t

Im t

∞→←∞

↑

↓

In the first equality, we substituted t ! tz to manipulate the function f .z/,
Eq. (6.135), into the form

f .z/ D z1�b
Z

C

dt

2� i
etzta�b.t � 1/�a ,

where the curve C now goes from �1 closely below the real axis, encircles the
point z D 1 and returns back to �1 tightly above the real axis. The discontinuities
from branch points z D 0 and z D 1 for negative z in this case cancel out each
other (owing to the opposite exponents) and only the cut between them remains, see
Fig. 6.5. The topology of the Riemann surface is displayed in Fig. 6.6. The second
equality in Eq. (6.150) follows from trivial integration over z. In the last equality in
Eq. (6.150), we used the residue theorem as follows. In the third form of Eq. (6.150),
the integrand behaves for large t as jtj�.bC1/. Thus for b � 1, the integral over a
large circle vanishes in the limit of an infinite radius. From the residue theorem,
the integral along the curve C consequently equals 2� i times the residue at the pole
t D 
.

After multiplying the expressions in the square brackets in Eqs. (+), (++), and
(+++), we finally obtain for the total integral Is, Eq. (6.143),

Is D e�=.2ke/� .1 � i=ke/21=2

�

1

jke C kj2 C �2

�
�2 C jke C kj2
!2 C .� � ike/2

�i=ke

. (6.151)

6.3.5 Angular and Energy Distribution of Outgoing Electrons

Returning now back to the photoelectric effect, we obtain the sought matrix element
in Eq. (6.121) from the last equation by differentiation with respect to a parameter
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Fig. 6.6 The first two sheets of the Riemann surface of the integrand (6.150). The surface continues
above and below
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ke
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ˇ

2

�2
.

(6.152)

Here, we introduced spherical coordinates for the electron wave vector

ke D ke� .

In the first equality, we inserted Eq. (6.146) for hrjFati D  ke.r/ and Eq. (6.144) for
hrj Iati D  0.r/. One can see from Eq. (6.152) that the most probable direction of
the outgoing electron matches that of the polarization vector of the incident photon.
However, we could have guessed this result beforehand, without any calculation,
couldn’t we?

After inserting Eq. (6.152) into Eq. (6.121), integrating over directions of
outgoing electrons, using Eq. (6.96) and relations

".
/ � ".
/ D 1
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and

ke

2�

�
1C ike

1 � ike

�2i=ke

e�=ke

ˇ
ˇ
ˇ
ˇ
�

�

1 � i

ke

�ˇ
ˇ
ˇ
ˇ

2

D e�
4
ke

arctan ke

1 � e�2�=ke
, (6.153)

we finally find the total cross-section for photoelectric effect

� D ˛

.mZ˛/2
29�2

3

1

.1C k2
e/

4

e�.4 arctan ke/=ke

1 � e�2�=ke
. (6.154)

In Eq. (6.153), we used the formulas for the � -function

� .z/� .1 � z/ D �

sin.�z/
, � .zC 1/ D z� .z/ . (6.155)

The expression (6.154) is given in terms of the magnitude of the electron wave
vector ke. This quantity is related to the frequency !, which experimenters tune, of
the incident photon via the Einstein equation (6.110).

The function on the rhs of Eq. (6.154) reaches its maximum for ke ! 0;
with increasing ke it plummets to zero. The probability of the photoeffect is the
largest if the frequency of the incident photons is slightly above the lowest possible
frequency necessary for the effect, i.e., slightly above the ionization threshold. For
this particular case, the expression (6.153) equals e�4; hence

�ke!0 ! ˛

.mZ˛/2
29�2

3e4
! 0.630 � 10�21 m2 , (6.156)

where the conversion from .eV/�2 to m2 was outlined in Eq. (5).
Note, though, that we could have expected this result (6.156) as well. The total

cross-section has the dimension of an area, therefore we can perceive it as an area
“seen” by the incident photon. The “atom radius,” called the Bohr radius, is given
as

a0 D 1

me˛
! 0.529 � 10�10 m , (6.157)

hence the magnitude of the “atom area” equals approximately 10�20 m2. We need to
multiply this area by the coupling between the electron and the photon,˛ ' 10�2. We
thus obtain the order estimate 10�22 m2 which lies close to the exact result (6.156).

With increasing ke, the wave function of continuous spectrum becomes more and
more oscillatory. Consecutively, the overlap integral between the wave functions of
the ground state and of the continuous spectrum approaches zero. For large ke, the
expression (6.153) approaches ke=.2�/; hence
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�ke!1 !
˛

.mZ˛/2
28�

3k7
e

D Z5 ˛

.m˛/2
28�

3

�
m˛2

2!

�7=2

, (6.158)

where we inserted ke ' .Z˛/�1.2!=m/1=2 in the last equality, as follows from
Einstein equation (6.110) for large ke. For larger frequencies of the incident photon,
the dependence of the photoeffect goes with the fifth power of the nuclear charge Z
(compare with the dependence Z�2 in Eq. (6.156)!), and with the 7=2-th power of
the ratio of the hydrogen ionization energy m˛2=2 and photon energy !.

6.3.6 Excitation of an Atom by an Electron Impact

We have already learned enough to be able to estimate the probability of an atom
excitation by an electron impact. For the sake of simplicity, we restrict ourselves to
the hydrogen atom. Subsequent generalization to more complex atoms is, at least in
principle, simple. We assume that the hydrogen initial state is its ground state and
that the energy of the incident electron falls within the range .10 � 105/ eV. On one
hand, this range allows the process of the atom excitation to happen at all, and on the
other hand, it allows us to treat the problem within the nonrelativistic approximation.
The overlap between the wave functions of the free and bound electron is small,
hence we will treat the electrons as distinguishable.13

As usual, we perform the calculation in the atomic units.

1. We split the Hamiltonian as follows:

OH D OH0 C OH1 , OH0 D OH.1/
0 C OH.2/

0 ,

OH.1/
0 D

Op2
1

2
� 1
Or1

, OH.2/
0 D

Op2
2

2
, OH1 D 1

Or12
� 1
Or2

.

Here, OH.1/
0 is the hydrogen Hamiltonian, OH.2/

0 is a Hamiltonian of a free electron
and OH1 describes their mutual electrostatic interaction.

2. After inserting these relations into the Fermi golden rule (6.79), we obtain14

dwI!F D 2�ı

�
k2

F � k2
I

2
� !at

IF

�
X

l,m

ˇ
ˇ
ˇ. OH1/IF

ˇ
ˇ
ˇ

2
d3kF , (6.159)

13De Broglie electron wavelength is related to the electron energy via the formula 
 D 2�=p D
2�=
p

2mE. By means of Eqs. (1) and (5), this translates to 
 � 10�9

E.eV/ Œm�. Since the “size” of an

atom is of the order 10�10 m, we see that the overlap is in fact negligible only for energies above
102 eV.
14The use of the Fermi golden rule for scattering problems is usually referred to as the first Born
approximation.
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where the initial and final states are

jIi D j1, 0, 0i1jkIi2 jFi D jn, l, mi1jkFi2
and !at

IF is the difference (6.84) between the atom final and initial energies (in
atomic units). To eliminate the ı-function, we write

d3kF D kFd

�
k2

F

2

�

d˝ . (6.160)

3. Substituting

hrjkIi D eikI �r

.2�/3=2

into Eq. (6.116) yields

jI D kI

.2�/3
. (6.161)

4. After substituting Eqs. (6.159), (6.160) and (6.161) into Eq. (6.119), we find

d�

d˝
D .2�/4 kF

kI

X

l,m

ˇ
ˇ
ˇ. OH1/IF

ˇ
ˇ
ˇ

2
. (6.162)

Here, kF is determined by the energy conservation following from the ı-function
in Eq. (6.159)

k2
F D k2

I C 2!at
IF .

5. To calculate . OH1/IF, we evaluate first

hkIj2
�

1
Or12
� 1
Or2

�

jkFi2 D
Z

ei.kF�kI/�r

.2�/3

�
1

jr � r1j �
1

r

�

d3r (6.163)

D 4�

.2�/3
1

q2

�

eiq�r1 � 1
�

,

where we used Eq. (3.114) and denoted

q D kF � kI . (6.164)

For obvious reasons, q is referred to as the exchanged momentum.
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6. What now remains to calculate is the matrix element

. OH1/IF D 4�

.2�/3
1

q2
h1, 0, 0j




eiq�Or � 1
�

jn, l, mi .

Owing to the orthogonality of the hydrogen states, the second term in the brackets
vanishes. We now use the decomposition of a plane wave into spherical waves,
Eq. (5.30). Owing to the orthogonality of the spherical harmonics, the angular
integration is trivial and we arrive at the expression

. OH1/IF D .4�/3=2

.2�/3
1

q2
Ylm.�/i

lh1, 0jjl.qOr/jn, li , (6.165)

where q D q�.
7. Substitution of the last equation into Eq. (6.162) leads to

lX

mD�l

jYlm.�/j2 D 2lC 1

4�
, (6.166)

where we used Eq. (5.29) for n D �,
8. The rhs of Eq. (6.162) now depends on the angle # between the directions of the

momentum of the ingoing and outgoing electrons. Squaring Eq. (6.164), we have

q2 D k2
I C k2

F � 2kIkF cos# .

We can now simplify our further calculation by the transformation of the integral
over the angle # to an integral over the magnitude of the exchanged momentum
q. We thus obtain from the last equation

d˝ D 2�d# sin# D 2�

kIkF
q dq . (6.167)

9. From Eqs. (6.162), (6.165), (6.166), and (6.167), we find for the total cross-section

� D 8�

k2
I

n�1X

lD0

.2lC 1/

kFCkIZ

jkF�kI j

ˇ
ˇh1, 0jjl.qOr/jn, liˇˇ2

q4
q dq . (6.168)

For excitation to 2s and 2p states, one can easily evaluate the remaining radial
integrals15

15Use Eqs. (3.35), (3.95), (3.96), (4.84), (4.85) and (4.86).
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Fig. 6.7 The bold lines denote the dependence of the total cross-section (6.168) on the incident
electron energy E D k2

I . The thin lines denote results of more accurate methods that solve the
Schrödinger equation non-perturbatively. The accurate data on the left and right panel are adopted
from [1] and [2], respectively. The value E D 1 Ry

.D 13.6 eV is the ionization threshold; i.e., it
is the minimal value necessary for the ionization of hydrogen by the incident electron. The region
directly below the ionization threshold is very difficult to calculate due to the large number of
closely lying hydrogen energy levels. The total cross-section is in the units of �a2

0, where a0 is the
Bohr radius (6.157)

jF1s2sj D
ˇ
ˇh1, 0jj0.qOr/j2, 0iˇˇ D 217=2q2

.4q2 C 9/3
,

jF1s2pj D
ˇ
ˇh1, 0jj1.qOr/j2, 1iˇˇ D 215=2

p
3q

.4q2 C 9/3
,

where the quantities F are called the form-factors. Finally, we integrate over q.
The result, however, cannot be cast into a well-arranged compact form, therefore
we rather display it graphically in Fig. 6.7.

In Fig. 6.7, we compare the results of our calculation (bold lines) with those of
more accurate ones to assess the use of the first order of the perturbation method.
One can readily see that we overshoot in the region of low energies and reach a
satisfactory agreement only in the region above approximately 20 eV of the incident
electron energy. In addition, the reader surely does not overlook that this approach
is not able to capture the resonances visible on the curves of the cross-section below
the ionization threshold. These resonances appear when an electron “does not simply
fly by” the hydrogen atom, but creates the unstable excited state of H� instead.16

One can also notice that the cross-section of the reaction 1s-2p is always higher than
that of the reaction 1s-2s.

16This kind of resonance is called the Feshbach resonance.



240 6 Dynamics: The Nonrelativistic Theory

Resonances in electron-atom scattering experiments are generally non-
perturbative phenomena and Lippmann-Schwinger equation is usually solved
for their theoretical description. In the next section, we will turn our attention to its
derivation.

6.4 Photon-Atom Scattering

Having discussed the spontaneous emission and the photoelectric effect, we now
turn our attention to the next simplest quantum electrodynamic process: photon-
atom scattering. At time t0, an experimenter sends a photon with a wave vector
k1 and polarization ".1/ towards an atom; the atom is in the ground state. In later
time t, the experimenter detects a photon with a wave vector k2 and polarization
".2/. This is, of course, an idealization of a real experiment. The real experiment
involves a very large number of photons and very large number of atoms. However,
unless special care is taken for collective effects to appear, such as lasers, slowing
the light and so on, our idealization is sufficient for the correct description of the
real situation.

Photons possess no charge; hence the interaction between a photon and an atom
takes place on the scale of an atom, i.e., 10�10 m, which is by ten orders of magnitude
smaller than the typical distance between the emission and absorption of photons by
the experimenter. Thus, the interaction time is about ten orders of magnitude smaller
than the typical time span between the emission and absorption of the photons.17

The expression (6.74), PI!F D jcF.t/j2, gives the probability that a system
prepared at time t0 in the state jIi, will be found at later time t in the state jFi. As
follows from our previous discussion, we are allowed to take the limit t � t0 !1.
We obtain the so-called S-matrix elements, see for instance [14],

PI!F D jSFIj2 D jcF.t � t0 !C1/j2 . (6.169)

17Strictly speaking, this is not entirely correct. Firstly, a photon with a definite wave vector k1

is completely delocalized in space and time. One thus cannot talk about the times of emission,
interaction and absorption. Nonetheless, taking the appropriate linear combination of states with
wave vectors close to k1, we can obtain a state localized in space and time. This also corresponds
to the photons the experimenter is able to create. Secondly, the interaction between the atom and
the EM field can never be “switched off,” see Sect. 6.5. Even if no photon is present, the atom
still interacts with fluctuations of the EM field. However, we ignore both reservations. The first
one is merely a technicality; when considering the appropriate linear combination, we arrive at the
very same result, but complicate the calculation leading to it. The second one leads only to a small
correction to the result, see the discussion in Sect. 6.4.3.
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Recall that the coefficients cF are a solution to Eq. (6.71) with the initial
condition (6.73), cn.t0/ D ınI. Thus, the initial state jIi enters into the coefficients
through the initial condition.

Now, recall that the Hamiltonian has the form OH D OH0C OHint, see Eq. (6.63), where
OH0 describes dynamics of a free EM field and a free atom, Eqs. (6.61) and (6.64), and
OHint describes the interaction of the atom and EM field, (6.65). The Hamiltonian does
not depend directly on time, therefore we attempt to eliminate the time dependence
completely. This approach is advantageous in nonrelativistic theory where the time
is the same in all inertial systems.

6.4.1 Lippmann-Schwinger Equation

Firstly, we transform the differential equation (6.71) with the initial condition (6.73)
to the integral equation

cq.t/ D ıqI � i
X

m

. OHint/qm

Z t

t0

ei!qmt0cm.t
0/ dt0 . (6.170)

Let us isolate the case of no scattering

SFI D ıFI C TFI (6.171)

from matrix SFI. For elements of the so-called T-matrix, see [14], we find after
inserting Eqs. (6.170) and (6.171) into Eq. (6.169)

TFI D �idF.t1 � t0 !1/ , (6.172)

where

dn D
X

q

. OHint/nq

Z t1

t0

ei!Fqt0cq.t
0/ dt0 . (6.173)

Note that for a general coefficient dn, !Fq D EF �Eq appears in the argument of the
exponential function, where EF denotes the energy of the final state. If we perform
the indicated limit t1 � t0 ! 1, we easily obtain in Eqs. (6.173) and (6.170) an
undefined integral of an infinitely oscillating exponential function. To avoid it, we
add an infinitesimal imaginary part to the transition frequencies

i!Fqt! i!Fqt � "jtj . (6.174)

Later on, in Sect. 7.4.1, we will analyze the physical significance of this replacement
in detail. In terms of mathematics, it is clear—for an arbitrarily small positive " we
transform the integral (6.173) to a convergent one.
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Let us now try to find an equation for the coefficients dn. We substitute the formula
(6.170) for cq on the rhs of Eq. (6.173); we find

dn D . OHint/nI

Z t1

t0

dt ei!FIt

� i
X

q

. OHint/nq

X

m

. OHint/qm

Z t1

t0

dt ei!Fqt
Z t

t0

dt0 ei!qmt0cm.t
0/ .

The last term features an integral of a two-dimensional function f .t, t0/ D
ei!Fqtei!qmt0cm.t0/ over the triangle t 2 .t0, t1/, t0 2 .t0, t/. The reader will be surely
able to sketch the corresponding picture. Owing to the replacement (6.174), the
function f .t, t0/ is damped when t or t0 approach ˙1. Hence we can exchange the
order of the integrations while preserving the integration region

Z t1

t0

dt ei!Fqt
Z t

t0

dt0 ei!qmt0cm.t
0/ D

Z t1

t0

dt0 ei!qmt0cm.t
0/
Z t1

t0
dt ei!Fqt

and subsequently shift the inner integration variable t! t0 C t:

Z t1

t0

dt0 ei!qmt0cm.t
0/
Z t1

t0
dt ei!Fqt D

Z t1

t0

dt0
Z t1�t0

0
dt ei!Fq.tCt0/ei!qmt0cm.t

0/ .

Now, bearing in mind the replacement (6.174), the region of very large t0 contributes
little, and we obtain appreciable contribution only for t0 
 C1. Consecutively, in
the limit t1 ! C1, we can replace in the upper limit of the inner integral t1 � t0
by t1. The double integral then factorizes into a product of two one-dimensional
integrals. By means of the definition (6.173) and the last three equations, we have

dn D . OHint/nI

Z t1

t0

dt ei!FIt � i
X

q

. OHint/nqdq

Z t1

0
dt ei.!FqCi"/t .

There is still a large number of unused letters, so let us pick one and denote

dn D
Z t1

t0

dt ei!FItbn . (6.175)

In the last term of the above expression, we perform integration over t for t1 !1.
For time-independent coefficients bF, we obtain using EI D EF (see below) the
Lippmann-Schwinger equation

bn D . OHint/nI �
X

q

. OHint/nqbq

!qI � i"
. (6.176)
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Let us emphasize once again that the summation over q has to be understood
symbolically; it is a “summation” over the complete spectrum of the operator OH0. For
the transition probability, we derive from Eqs. (6.169), (6.171), (6.172), and (6.175)

PI!F¤I D jTFIj2 D jbFj2 lim
t1�t0!1

ˇ
ˇ
ˇ
ˇ

Z t1

t0

dt ei!FIt

ˇ
ˇ
ˇ
ˇ

2

By means of Eq. (6.78), limt1�t0!1
ˇ
ˇ
ˇ

R t1
t0

ei!FIt0dt0
ˇ
ˇ
ˇ

2 D 2�.t1� t0/ı.!FI/, we obtain a

generalization of the Fermi golden rule, Eq. (6.79), for the transition rate in the form
of the non-perturbative expression

wI!F D 2�ı.!IF/jbFj2 , (6.177)

where the coefficients bF solve Eq. (6.176).

6.4.2 Elimination of Field Operators

As noted above, when considering the photon-atom scattering, the initial and final
states are

jIi D jIati OaC.k1,
1/j0i , jFi D jFati OaC.k2,
2/j0i ; (6.178)

with energies

OH0jIi D .Eat
I C !1/jIi , OH0jFi D .Eat

F C !2/jFi . (6.179)

In the first and second orders of e, we derive from Eqs. (6.176) and (6.65)

b.1/F D . OH1/FI , (6.180)

b.2/F D . OH2/FI �
X

n

. OH1/Fn
1

!nI
. OH1/nI . (6.181)

The matrix element . OH1/FI vanishes in this case

X

j

hFatjh0j Oa.k2,
2/

 

� 1

mj

Z
d3k

.2�/3=2

1p
2!

X




".
/ � Op.j/

�



Oa.k,
/eik�Or .j/ C OaC.k,
/e�ik�Or .j/�
!

OaC.k1,
1/j0ijIati D 0 .



244 6 Dynamics: The Nonrelativistic Theory

Obviously, the initial and final states are one-photon states, and the vector potential
OA is a linear combination of annihilation and creation operators. Within the first order

of the perturbation method, we are able to describe an emission or an absorption of a
photon, i.e., a creation or a destruction of a photon. However, to describe scattering,
we need to first annihilate the initial photon and subsequently create the final one, or
vice versa. In both cases, we thus need employ the second order of the perturbation
method.

Let us start with the first term on the rhs of Eq. (6.181), . OH2/FI, see Eqs. (6.51)
and (6.65),

. OH2/FI D
X

j

1

.2�/3
hFatjh0j Oa.k2,
2/

e2
j

2mj

Z
d3kp

2!

Z
d3k0p

2!0
X


,
0

".
/ � ".
0/

�



Oa.k,
/eik�Or .j/ C OaC.k,
/e�ik�Or .j/�

�



Oa.k0,
0/eik0�Or .j/ C OaC.k0,
0/e�ik0�Or .j/� OaC.k1 ,
1/j0ijIati . (6.182)

From the expression

h0j Oa.k2,
2/



Oa.k,
/eik�Or .j/ C OaC.k,
/e�ik�Or .j/�

�



Oa.k0,
0/eik0�Or .j/ C OaC.k0,
0/e�ik0�Or .j/� OaC.k1,
1/j0i ,

only the following commutators remain

Œ Oa.k2,
2/, OaC.k,
/�Œ Oa.k0,
0/, OaC.k1,
1/�e
�i.k�k0/�Or .j/ (6.183)

and

Œ Oa.k2,
2/, OaC.k0,
0/�Œ Oa.k,
/, OaC.k1,
1/�e
i.k�k0/�Or .j/ . (6.184)

Owing to the commutation relation (6.54), Œ Oa.k,
/, OaC.k0,
0/� D ı

0ı.k� k0/, the
integration over wave vectors is trivial

. OH2/FI D 1

.2�/3
X

j

hFatj
e2

j

2mj

Z
d3kp

2!

Z
d3k0p

2!0
X


,
0

".
/ � ".
0/

�



ı
,
2ı.k2 � k/ � ı
0,
1ı.k1 � k0/e�i.k�k0/�Or .j/

C ı
,
1ı.k � k1/ � ı
0,
2ı.k
0 � k2/e

i.k�k0/�Or .j/� jIati

D 1

.2�/3
X

j

e2
j

mj
".1/ � ".2/ 1

2
p
!1!2

hFatj exp
�

i.k1 � k2/ � Or .j/
� jIati .

(6.185)
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In our next step, we turn to the second term on the rhs of Eq. (6.181). Prior to any
manipulations, note that the sum over n can be rewritten in a more abstract way

X

n

. OH1/Fn
1

!nI
. OH1/nI D

X

n

hFj OH1

�

jni 1

En � EI
hnj
�

OH1jIi D hFj OH1
1

OH0 � EI

OH1jIi .

(6.186)

In the second equality, we used spectral decomposition of the operator . OH0 � EI/
�1.

We manipulate the second term from Eq. (6.181) as follows, see again Eqs. (6.51)
and (6.65),

X

n

. OH1/Fn
1

!np
. OH1/nI D

X

j,l

(

1

.2�/3
h0j Oa.k2,
2/hFatj

��ej

mj

�Z
d3kp

2!

X




".
/ � Op.j/

�



Oa.k,
/eik�Or .j/ C OaC.k,
/e�ik�Or .j/�

� 1
OHat C OHEM � EI

��el

ml

�Z
d3k0p

2!0
X


0

".

0/ � Op.l/

�



Oa.k0,
0/eik0�Or .l/COaC.k0,
0/e�ik0�Or .l/� jIati OaC.k1,
1/j0i
)

.

(6.187)

Nonvanishing contribution stems again only from the commutators (6.183)
and (6.184). Owing to the commutation relations (6.54), the integration over the
wave vectors is again trivial. To determine the action of . OHat C OHEM � EI/

�1 on the
intermediate states, we use Eqs. (6.58) and (6.60). From the last equation, we obtain

(6.187) D 1
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�
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��
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2 e�ik0�Or .l/
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0/ � Op.l/jIati D

X

j,l

�
ejel

.2�/3mjml

1
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!1!2

� hFatj
 

".2/ � Op.j/ e�ik2�Or .j/ 1
OHat � Eat

I � !1

".1/ � Op.l/ eik1�Or .l/

C ".1/ � Op.j/ eik1�Or .j/ 1
OHat C !2 � Eat

I

".2/ � Op.l/ e�ik2�Or .l/
!

jIati
)

,

(6.188)

where we substituted from Eq. (6.179) in the last equality.
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Fig. 6.8 Photon-atom
scattering is a sum of two
amplitudes. The left diagram
depicts an atom absorbing the
photon �1 first and then
radiating the photon �2. The
right diagram depicts an atom
radiating the photon �2 first
and then absorbing the
photon �1 A

B

γ1

γ2

e−

e−

A

B

γ2

γ1

e−

e−

We have thus obtained the scattering amplitude as a sum of two terms, and
Fig. 6.8 illustrates their meaning nicely. This figure is our first encounter with
Feynman diagrams. For now, we can view them simply as “pictures” illustrating
the physical situation in question. However, their significance goes far beyond that,
see Sect. 7.4.10.

The first one corresponds to the process when the atom absorbs the incident
photon and changes to a virtual state which comprises a linear combination of the
stationary states of the atom. This becomes obvious if we substitute the spectral
decomposition 1

OHat�Eat
I �!
D P

n jnati 1
Eat

n �Eat
I �! hnatj in the last equation. Once in the

virtual state, the atom emits the final photon and relaxes to its final state. The second
term, on the other hand, corresponds to the process when the atom first emits the
final photon, goes to the virtual state and subsequently absorbs the incident photon.
The principle of addition of amplitudes is again on the scene: we are not able
to distinguish whether the photon-atom scattering proceeds via the first or second
mechanism discussed above. Therefore, we must sum over the amplitudes of the
both possibilities.

It follows from this picture why the denominators of the individual terms differ:
in the first process, there is only the atom in the virtual state, hence the denominator
reads . OHat � EI/. In the second process, there are two photons and the atom in the
virtual state, hence the denominator is . OHat C !1 C !2 � EI/.

The total scattering amplitude is a sum of Eqs. (6.185) and (6.188). We invoke
the dipole approximation (6.86), neglect the interaction of the EM field with the
nucleus, i.e., set mj D m, and use the definition of the operator of total momentum,
Eq. (6.88), to obtain for the scattering amplitude

bF ' e2

m.2�/3
1

2
p
!1!2

".1/i "
.2/
j Mij (6.189)
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where we introduced the dimensionless amplitude

Mij D hFatj
 

ıij � 1

m

"

Opi
1

OHat � Eat
I � !1

Opj C Opj
1

OHat C !2 � Eat
I

Opi

#!

jIati .
(6.190)

For differential cross-section of the photon-atom scattering, we find from
Eqs. (6.177), (6.119), and (6.120)

d� D .2�/4ı.!2 � !1 C Eat
F � Eat

I /jbFj2d3k2 . (6.191)

After substituting for bF from Eq. (6.189), we have

d� D !2

!1


 ˛

m

�2 j".1/i Mij"
.2/
j j2d˝2 . (6.192)

In literature, one often encounters the last equation in a different form. It follows
from Eq. (6.89) that

hFatj Opi D �imhFatjOxi. OHat � Eat
F / , OpijIati D im. OHat � Eat

I /OxijIati .

By repetitive use of the last equality together with conservation of energy

!1 C Eat
I D !2 C Eat

F , (6.193)

we manipulate Eq. (6.190) as follows

hFatj
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Oxi
1

OHat � Eat
I � !1

Oxj C Oxj
1

OHat C !2 � Eat
I

Oxi

!#)

jIati .

After evaluating the commutators Œ Opi, Oxj� D �iıij and ŒOxi, Oxj� D 0 and substituting
the last equation into Eq. (6.192), we can write an alternative form of Eq. (6.191)

d� D ˛2!1!
3
2 j".1/i ˇij"

.2/
j j2d˝2 . (6.194)
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Here, ˇij equals

ˇij D hFatj
 

Oxi
1

OHat � Eat
I � !1

Oxj C Oxj
1

OHat C !2 � Eat
I

Oxi

!

jIati

D
X

n

�
.Oxi/Fn.Oxj/nI

Eat
n � Eat

I � !1
C .Oxj/Fn.Oxi/nI

Eat
n � Eat

I C !2

�

. (6.195)

The last equation can be cast into the form

ˇij D ˛ij.�!1/C ˛ij.!2/ ,

where

˛ij.!/ D
X

n

.Oxi/Fn.Oxj/nI

Eat
n � Eat

I C !
(6.196)

is called the atom polarizability tensor.

6.4.3 Rayleigh, Raman, and Resonance Scattering

The case of elastic scattering, i.e., !2 D !1, is referred to as the Rayleigh scattering.
As one can see from Eq. (6.194), the cross-section depends on the fourth power of
the frequency of the incident radiation. This dependence can explain why the sky
is blue and the sunset reddish. The higher the frequency, the greater the scattering;
thus out of the white light reaching the Earth from the Sun, the blue light features
the highest frequency, hence scatters the most. In the latter case, the sunlight that
reaches Earth in the evening is depleted of the scattered blue component, and thus
we observe the complementary colors, that is, red and yellow.

In classical electrodynamics, see, e.g., [8, 13], the Rayleigh scattering is explained
by a model where the electrons in the atoms behave as harmonic oscillators. Despite
this model not being qualitatively misleading, it still is only a model and there is
no classical theory that would be able to derive such a model. Thus the derivation
presented herein might well have been the first thorough one the reader encountered.

The case of inelastic scattering, i.e., !2 ¤ !1 is referred to as the Raman
scattering. This is a purely quantum effect with no classical analog.

The case when frequency of the incident radiation!1 lies close to one of the atomic
frequencies Eat

n �Eat
I is called the resonance scattering. As seen from Eq. (6.195), the

scattering amplitude diverges in this case. However, this divergence can be removed
if we recognize that the excited states are not the stationary states, see Sect. 6.2. This
means, the evolution of the excited “stationary” states

j n.t/i D j n.0/ie�iEnt,
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where En is real, is not entirely correct. A more accurate description is to add an
imaginary part to the energy,

En D <En � 1

2
i�n , (6.197)

where �n is given by Eq. (6.99). The lifetime of the state is then � D � �1
n ,

h n.t/j n.t/i D e��nt ,

compare with Eq. (6.98). If we make replacement (6.197) in Eq. (6.195) we find that
close to the resonance !1 	 Eat

n � Eat
I , the cross-section grows up, though remains

finite.
Are our considerations correct? We asked for the probability of the photon-atom

scattering and used the first two orders of the perturbation method to find an answer.
Yet once we have reached it, we were forced to further modify it by taking into
account that the lifetime of excited states is finite.

The perturbation method encounters difficulties every time two energies of the
unperturbed system lie close to each other. Formally, this occurs when one of the
frequencies !nI in the Lippmann-Schwinger equation (6.176) approaches zero. This
problem is not restricted to dynamics, though. The perturbation method for stationary

states runs into the very same difficulties if in Eq. (2.16), E.2/ D �Pn¤N
j. OH1/Nnj2
E
.0/
n �E

.0/
N

,

one of E.0/n is close to E.0/N . Fortunately, we know from Chap. 2 that on the subspace
of degenerate (or quasi-degenerate) energies we have to treat the perturbation
non-perturbatively. Bearing this in mind, we rewrite the Lippmann-Schwinger
equation (6.176) into a different form. If we continue in iterations (6.180) and (6.181),
and search for a solution to Eq. (6.176) in the form of the series

bn D
X

l

b.l/n ,

where individual terms are obtained by iterations of Eq. (6.176)

b.l/n D . OHint/nI �
X

q

. OHint/nqb.l�1/
q

!qI � i"
, b.0/n D 0 ,

we obtain the following series for the transition amplitude

bFD. OHint/FI �
X

q

. OHint/Fq. OHint/qI
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.!qI � i"/.!nI � i"/
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DhFj OHint� OHint
1

OH0 � EI � i"
OHintC OHint

1
OH0�EI � i"

OHint
1

OH0�EI � i"
OHintC: : : jIi.
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By means of the expansion

1
OA � OB D

1
OA C

1
OA
OB 1
OA C

1
OA
OB 1
OA
OB 1
OA C : : : , (6.198)

valid for two arbitrary invertible operators OA and OB, the Lippmann-Schwinger
equation can be manipulated into the form

bF D hFj
�

OHint � OHint
1

OH0 C OHint � EI � i"
OHint

	

jIi. (6.199)

In case of the resonance scattering, the discrete state jnatij0i lies inside the continuum
of the states jIati OaC.k,
/j0i, jkj 2 .0,1/, Eat

I < Eat
n . We show later in Sect. 6.5

that when taking into account the interaction between the discrete state jnatij0i and
continuum of the states jIati OaC.k,
/j0i, the real part of the energy Eat

n is slightly
shifted and the imaginary part �i�n=2 appears. The above replacement (6.197) is
thus equivalent to the approximation where 1

OH0COHint�EI�i"
in Eq. (6.199) is replaced

by
P

n
jnatihnatj

Eat
n �EI�i�n=2 .18

It follows from above discussion of the resonance scattering that in such a
case the following simplification holds. Firstly, it suffices to consider only
the mode corresponding to the frequency !c out of the infinite number of
modes of the EM field. Secondly, it suffices to consider merely the two
metastable states, j�i and jCi, of the infinite number of atom states,
which energy difference !a lies close to !c.
To be able to choose only one mode of the EM field, there must be a
countable number of them. In practice, this is achieved by confining the
EM field inside a cavity and requiring the EM field vanish on the boundary
of the cavity. Namely, we require A

�

x, y,� L
2

� D A
�

x, y, L
2

� D 0, instead
of (6.16), in the simplest instance. Furthermore, we demand the vector
k, (6.29), have nonzero the z-component only. A cavity constituted by
two mirrors with a very high reflectivity serves as an excellent example
of a cavity meeting these requirements [3], and highly excited circular

Exercise 21: Rabi Oscillation II

18Having developed our considerations to such an extent, we should also mention that for the very
same reason of interaction of the discrete state with continuum of the states, the physical initial and
final states do not match exactly the eigenstates (6.178) of the “free” Hamiltonian. If we take the
interaction into account, the energy of atom initial state Eat

I is also slightly shifted, see Sect. 6.5.
For a more systematic treatment, we refer the reader to [4].
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states of alkali-metal atoms, jCi D jlC 1, l, li a j�i D jl, l � 1, l � 1i,
where l ' 50, are excellent examples of metastable atomic states [3].
By adjusting the mirror distance L at the order of centimeters, the lowest
mode of EM field with nonzero energy will lie close to !a [3].
For individual terms of the total Hamiltonian (6.63)

OH D OHatC : OHEM : C OHint ,

we can write on such a restricted state space

OHat ' !a
OSz, : OHEM :' !c OaC Oa

and

OHint ' � e

m
OA.0/ � Op

' � e

m

1

.2�/3=2.2!c/1=2
. OaC OaC/

�
1

2
."C Op� C "� OpC/C "3 Op3

	

' � e

2m

1

.2�/3=2.2!c/1=2
. OaC OaC/. OpC C Op�/

! ˝. OaC C Oa/. OSC C OS�/

) OHint ' ˝. OaC OS� C Oa OSC/ .

How did the spin operators appear in OHat and OHint? Every two-level system
can be formally viewed as a spin 1/2 state, see, e.g., [7]. The eigenvalues
of the operator !a

OSz are ˙!a=2. This means that we only shifted the
energies of the atomic levels so as the zero-energy level lies in the middle
between the energies of the states jCi and j�i. Furthermore, we invoked
the dipole approximation in the above expression for OHint. For the sake of
simplicity, we assumed that the EM field is polarized in the x-direction,
i.e., " D .1, 0, 0/; hence "C D "� D 1 and "3 D 0. The replacement of
Op� and OpC by the spin operators OS� and OSC means that in the subspace
of states jlC 1, l, li and jl, l � 1, l � 1i, the operators Op� and OpC act
similarly as OS� and OSC on the spin states jCi and j�i. Finally, in the
last equality of the last equation, we invoked the so-called rotating wave
approximation. Within the second order of the perturbation method, this
approximation corresponds to neglecting the contribution of the second
process in Fig. 6.8 in comparison with the first one. It clearly follows
from Eq. (6.195) that this omission is justifiable in the case of resonance
scattering.
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Let the system be in the state j�ijnC 1i at time t D 0, where the vector
jnC 1i describes a state when nC 1 photons are present in the one mode
of EM field; that is : OHEM : jnC 1i D !c OaC OajnC 1i D !c.nC1/jnC 1i.
What is the probability that the system will be found in the state jCijni at
time t > 0?
Hint: Find the eigenvectors and eigenvalues of the Hamiltonian OH. Search
for the eigenvectors in the form

j i D c�j�ijnC 1i C cCjCijni .

6.4.4 Averaging and Summing over Polarizations and Angles

The expressions (6.192) and (6.194) contain more information than we sometimes
wish to exploit. Firstly, the polarization of neither the incident photon beams (which
are generally unpolarized) nor of the scattered photons are frequently of interest.
Secondly, the knowledge of the total cross-section often suffices and we take no
interest in the specific angular distribution of the scattered photons. Thirdly, the
atoms themselves are randomly oriented in the sample, hence we should average
over these orientations, which is equivalent to averaging over the directions of the
incident photons, though.

In case we do not measure the polarization of the scattered photons, the summation
over the polarizations of the scattered photons leads to the replacement, see (6.55),

".2/i "
.2/
j ! ıij � �.2/i �

.2/
j . (6.200)

In case the incident photons are unpolarized, averaging over the polarizations of the
incident photons results in replacing

"
.1/
k "

.1/
l !

1

2




ıkl � �
.1/
k �

.1/
l

�

. (6.201)

After inserting these replacements into Eq. (6.192), we obtain
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Averaging over the directions of the incident photon and integration over the
directions of the scattered photon leads to

� D 1
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where we once again used the formula (6.96). Furthermore, if the initial and final
states of the atom are spherically symmetric then19

Mik D ıikM,

where20

M D hFatj
 

1 � 1

3m
Opi

"

1
OHat � Eat

I � !1

C 1
OHat C !2 � Eat

I

#

Opi

!

jIati . (6.202)

For the total cross-section we thus have

� D !2

!1


 ˛

m

�2 jMj2 8�

3
. (6.203)

We show in the following text, at least for the simplest case of photon-hydrogen
scattering, how one can calculate such a type of expressions.

6.4.5 Calculation of Expressions Containing a Function of the
Hamilton Operator

In order to calculate the scattering amplitude (6.202) in the case of hydrogen, we
first make transition to the atomic units, (6.83),

OHat � Eat
I D m.Z˛/2. Oh0 � "0/ , Oh0 D

OpA � OpA

2
� 1
OrA

, "0 D � 1

2N2
.

(6.204)

19For instance for the hydrogen atom, if jIati D jnI , 0, 0i and jFati D jnF, 0, 0i this equality follows
from Eqs. (4.50)–(4.52).
20One third appears in Eq. (6.202) for the following reason. In Eq. (6.190), we have schematically

Mij D ıij � Qij .

Setting i D j in this equation leads to (note that the Einstein summation convention is used)

Mii D 3� Qii .

Setting i D k in Mik D ıikM leads to

Mii D 3M .

From the last two equations, we find

M D 1� 1

3
Qii .
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Using spectral decomposition of the hydrogen Hamiltonian (6.204), we have for a
general function f

˝

N0, L, M
ˇ
ˇ. OpA/if . Oh0 � "0/. OpA/ijN, L, Mi D

1X

lD0

lX

mD�l

(6.205)

�Z 1

0
dke
˝
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ˇ. OpA/ijke, l, mihke, l, mj. OpA/ijN, L, Mif

�

x D k2
e

2
C 1

2N2

�

C
1X

nDlC1

˝

N0, L, M
ˇ
ˇ. OpA/ijn, l, mihn, l, mj. OpA/ijN, L, Mif

�

x D 1

2N2
� 1

2n2

�)

.

Here, jN, L, Mi and jN0, L, Mi are the eigenvectors corresponding to the eigenvalues
�1=.2N/2 and�1=.2N0/2, respectively. The scattering amplitude (6.202) is a special
case of the last equation for

f .x/ D �1

3

�
1

x � k1=2
C 1

xC k2=2

�

, (6.206)

where

k1,2 D 2!1,2

m.Z˛/2
. (6.207)

For Rayleigh scattering N D N0 D 1, L D M D 0, k2 D k1; for Raman scattering,
where the final state is 2s, N D 1, L D M D 0, N0 D 2, k2 D k1 � 3=4. The last
equality follows from the conservation of energy (6.193).

Using Eqs. (3.15), (4.66), (4.67), (4.76), (4.77), and (6.100), we can perform
integrations over angular variables, summations over m and l, and the action of the
momentum operator:

1X

lD0

lX

mD�l

˝

N0, L, M
ˇ
ˇ. OpA/ijn, l, mihn, l, mj. OpA/ijN, L, Mi

D 1

2LC 1

� hN0, Ljn, L � 1ihn, L � 1jN, Li C c�

L

C hN
0, Ljn, LC 1ihn, LC 1jN, Li C cC

LC 1

�

, (6.208)
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where

cC D ın,N0
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N0, LC 1
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ˇN, Li

C ın,N

p
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ˇN, Li

C ın,N

p
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ˇ
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.

In the case L D 0, the first term on the rhs of Eq. (6.208) does not appear. Obviously,
for the continuous part of the spectrum, it is necessary only to replace n by ke; c˙
vanish in this case.

Note that only radial integrals appear on the rhs of Eq. (6.208). We show in the
next section how to calculate them.

6.4.6 Transition from the Discrete to the Continuous Part of
the Spectrum II

This section is a continuation of Sects. 6.3.3 and 6.3.4. If the reader skipped these
sections, he shall skip this one as well.

If the hydrogen atom is initially in the ground state, we need to know the radial
parts of the p-state wave functions for both the discrete and continuous parts of the
spectrum, see Eqs. (6.205) and (6.208). The high symmetry of the hydrogen atom
provides several simplifications, though. By means of Eq. (4.77) for the discrete part
and equation

�
d

dr
� l

r
C 1

lC 1

�

Rl.ke, r/ D �
p

1C k2
e.lC 1/2

.lC 1/
RlC1.ke, r/ (6.209)
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for the continuous part of the spectrum, the radial parts of the states with higher
angular momenta can be derived from the radial parts of the states of lower angular
momenta. Equation (6.209) is obtained from Eq. (4.77) by the replacement

n! �i=ke , (6.210)

compare Eqs. (3.82) and (6.112). In particular, one finds from Eq. (6.209) for l D 0

�
d

dr
C 1

�

R0.ke, r/ D �
q

1C k2
eR1.ke, r/ . (6.211)

The integrals appearing on the rhs of Eq. (6.208) are special cases of general
integrals of the type

Is
l,p.�, ke/ D

Z 1

0
drr2Cpe��rRl.ke, r/ , Id

l,p.�, n/ D
Z 1

0
drr2Cpe��rRnl.r/ ,

(6.212)
for instance,

h1, 0jke, 1i D 2Is
1,0.1, ke/ , h2, 0jke, 1i D 1p

2
Is
1,0

�
1

2
, ke

�

.

In the second equation, we exploited the orthogonality of p-states and the fact
that the radial function of the 2s-state can be written, see Eq. (3.95), as R2s.r/ D

1p
2
e�r=2 �p3R2p.r/.
After inserting Eq. (6.211) into the integral (6.212) for l D 1 and p D 0 and

integrating by parts, we obtain

Is
1,0 D

1
p

1C k2
e

�

2C .� C 1/
@

@�

	

Is
0,�1 . (6.213)

This equation transforms the integration of the p-states to the integration of the
s-states.

One can obtain the Schrödinger equation for the continuous spectrum of the
s-state from Eq. (3.22) by replacement (6.210)

�

�1

2

�
d2

dr2
C 2

r

d

dr

�

� 1

r

	

R0.ke, r/ D k2
e

2
R0.ke, r/ . (6.214)

Substitution

R0.ke, r/ D Cke e
�ikerf .2iker/ (6.215)
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transforms Eq. (6.214) into Eq. (6.133) for the function f .z/,



z d2

dz2 C .b � z/ d
dz � a

�

f .z/ D 0, where now

a D i

ke
C 1 , b D 2 , z D 2iker . (6.216)

Hence we know, see Eq. (6.135), f .z/ D R

C
dt

2� i e
tta�b.t � z/�a, that the solu-

tion (6.215) to Eq. (6.214) takes the form

R0.ke, r/ D Cke e
�iker

Z

C

dt

2� i
etti=ke�1.t � 2iker/�i=ke�1

D Cke e
�ikerF

�
i

ke
C 1, 2, 2iker

�

, (6.217)

where the normalization constant

Cke D
r

2

�
e�=.2ke/

ˇ
ˇ
ˇ
ˇ
�

�

1 � i

ke

�ˇ
ˇ
ˇ
ˇ
ke (6.218)

was determined from the form of the asymptotic behavior of the wave function for
large distances from the nucleus,

R0.ke, r/! Cke e
��=.2ke/

kerj� .1 � i=ke/j sin

�

kerC ln.2ker/

ke
C arg�

�

1 � i

ke

�	

,

obtained from substituting Eq. (6.216) into Eq. (6.138), f .z ! 1/ ! .�z/�a

� .b�a/ C
ez.z/a�b

� .a/ , and the requirement the function R0.ke, r/ approach the wave function of a
free particle in the s-state, Eq. (4.85), for large r,

R0.ke, r/!
r

2

�

sin.ker/

r
. (6.219)

Factor
p

2=� on the rhs guarantees the correct normalization of the radial wave
function:
Z 1

0
drr2R0.ke, r/R0.k

0
e, r/ D 2

�

Z 1

0
dr sin.ker/ sin.k0er/ D ı.ke � k0e/ . (6.220)

Since the norm of the function R0.ke, r/ is infinite, its different behavior from the
free-particle solution for small r is inessential for its normalization.
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The solution for the discrete spectrum

Rn,0.r/ D Cne�r=n
Z

C

dt

2� i
ett�n�1

�

t � 2r

n

�n�1

D Cne�r=nF .�nC 1, 2, 2r=n/

(6.221)
is obtained from the solution for the continuous spectrum by the replacement inverse
to (6.210), namely

ke ! �i=n . (6.222)

Contrary to the continuum states, the discrete states can be normalized to unity.
Hence, it is not possible to find the normalization constant Cn from the normalization
constant Cke by the substitution (6.222). We do not have to calculate the normalization
integral, though. One can obtain the correct normalization from the requirement
Rn,0.0/ D 2=n3=2, see Eq. (4.101). Obviously, see Eqs. (6.141), (6.142), and (6.221),

Cn D 2

n3=2
. (6.223)

From Eqs. (6.150), 1
� .b/

R1
0 e�
zzb�1F.a, b, z/dz D 
a�b.
 � 1/�a, and (6.216), we

have

Is
0,�1.�, ke/ D Cke

�2 C k2
e

�
� C ike

� � ike

�i=ke

. (6.224)

By inserting this expression into Eq. (6.213), we find the sought integrals

Is
1,0.�, ke/ D 2

p

1C k2
e

.�2 C k2
e/

2

�
� C ike

� � ike

�i=ke

Cke . (6.225)

By replacement (6.222), we obtain from the last equation

Id
1,0.�, n/ D

2
q

1 � 1
n2

.�2 � 1=n2/
2

�
� C 1=n

� � 1=n

��n

Cn . (6.226)

6.4.7 Photon-Hydrogen Scattering

By inserting Eqs. (6.225), (6.226), and (6.208) into Eq. (6.205) for the func-
tion (6.206), we obtain the results for Rayleigh and Raman photon-hydrogen
scattering. In particular, for Rayleigh scattering we find
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, (6.227)

where the function f is taken in the form

f .x/ D 1 � 1

3

�
1

x � k1=2
C 1

xC k2=2

�

.

We added unity from Eq. (6.202) to the expression (6.206), which is justifiable since
the summation rule

˝

. OpA/i. OpA/i
˛ D ˝ Oni Oni

˛ D 1 (6.228)

holds for the ground state. This rule follows from the decomposition of unity and
the form of the wave function for the ground state, Eq. (3.35).

Expression (6.227) has to be calculated numerically. The reader will not be
surprised to learn that the part containing the contribution of the continuous part
of the spectrum could have been obtained from Eq. (6.152) by the replacement
ˇ
ˇ".�/ � �ˇˇ2 ! 1. The differential of the integration over all states is in this case
d3ke D dkek2

ed˝. Integration over angles is trivial and produces the factor 4� .
The results for the Rayleigh and Raman scattering are listed in Tables 6.2 and 6.3.
There are a few features worth of attention in these tables. For low frequencies,

i.e., low in comparison with the differences of atomic energy levels, the cross-
section of the Rayleigh scattering indeed goes with fourth power of frequency of
incident photon. For low frequencies, we can thus neglect !1 in comparison with
Eat

n �Eat
I in Eq. (6.195). The polarizability tensor (6.196) is consequently frequency-

independent and equals the static polarizability tensor ˛ij.! D 0/. Furthermore, the
contribution of the continuous part increases for low frequencies and nearly cancels
the contribution of the discrete part of the hydrogen spectrum. This cancellation
further increases with the decreasing frequency of the incident photon.

Furthermore, these tables nicely illustrate when one should talk in terms of
scattering and when in terms of absorption and subsequent emission. If the frequency
of the incident photon approaches one of the atomic characteristic frequencies, for
instance if k1 approaches 3/4 = 0.75 or 8/9

.D 0.8888. . . , the contribution of the states
n D 2 or n D 3 greatly exceeds those of the other virtual states. One can thus see that
close to the resonance, it is reasonable to consider only one of the infinitely many
virtual states. In such a case, use of the terms absorption and subsequent emission is
more appropriate.
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Table 6.2 Rayleigh scattering on hydrogen

k1 n D 2 n D 3 n � 4 ke 2 R
C M �Œm2�

0.01 �0.182 �0.026 �0.020 0.228 �0.0001 0.843� 10�36

0.1 �0.190 �0.027 �0.020 0.226 �0.0114 0.869� 10�32

0.745 �31.085 �0.213 �0.126 0.038 �31.386 0.656� 10�25

0.749 �155.944 �0.220 �0.129 0.034 �156.259 0.162� 10�23

0.751 156.204 �0.224 �0.131 0.033 155.882 0.162� 10�23

0.755 31.345 �0.231 �0.134 0.029 31.009 0.641� 10�25

0.82 2.364 �0.478 �0.213 �0.044 1.629 0.177� 10�27

0.883 1.312 �5.937 �0.436 �0.158 �5.219 0.181� 10�26

0.887 1.278 �18.579 �0.466 �0.168 �17.935 0.214� 10�25

0.889 1.262 316.439 �0.483 �0.173 317.045 0.670� 10�23

0.893 1.231 8.585 �0.520 �0.183 9.112 0.553� 10�26

The first column displays the energy values of the incident photon in units of the Rydberg constant,
see Eq. (6.207). The second column presents the contribution to the amplitude M, Eq. (6.202), from
the virtual state n D 2, the third column shows the contribution from the virtual state n D 3, the
fourth column displays the contribution from other discrete states, and the fifth column gives the
contribution of the continuum spectrum. The sixth column indicates the total amplitude M, and
finally the seventh column displays total cross-section (6.203)

Table 6.3 Raman scattering 1s! 2s on hydrogen

k1 n D 3 n � 4 ke 2 R
C M �Œm2�

0.751 �0.273 �0.160 �0.408 �0.841 0.627� 10�31

0.755 �0.280 �0.163 �0.410 �0.852 0.321� 10�30

0.82 �0.507 �0.226 �0.456 �1.188 0.803� 10�29

0.883 �5.565 �0.409 �0.530 �6.504 0.424� 10�27

0.887 �17.282 �0.434 �0.537 �18.252 0.343� 10�26

0.889 293.220 �0.447 �0.540 292.232 0.890� 10�24

0.893 7.894 �0.478 �0.547 6.869 0.503� 10�27

In contrast to the Rayleigh scattering, there is no contribution from the virtual state n D 2 in the
case of the Raman scattering

Finally, let us note that the Raman scattering is typically by an order of magnitude
smaller in comparison to the Rayleigh scattering, including when in the vicinity of
resonance.

In a programming language of your choice, though with a built-in
procedure for numerical integration, write the formula (6.227) for the
function (6.206). You can cope with the infinite summation in the following

Exercise 22: Photon-Hydrogen Scattering
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way. To n D 200, for instance, you sum the series exactly. For n from 201
to infinity, use (an indeed nice example of the usefulness of calculus of
limits!)

82

n3

1
�

1 � 1
n2

�3

 

1 � 1
n

1C 1
n

!2n

f

�

x D n2 � 1

2n2

�

' 64e�4f .x D 1=2/

n3
.1CO.1=n//.

Using programming languages such as Maple or Mathematica, you
easily find that the sum

P1
n0

n�3 can be expressed in terms of special
functions.
Try to reproduce the numbers displayed in Table 6.2, as well as those in
Table 6.3. When facing the latter, use Eqs. (6.205), (6.206), (6.208), (6.225),
and (6.226).

6.4.8 Thomson Scattering

Prior to our conclusion of this section, we consider the case of the photon scattering
on a free electron. We change to the coordinate system where the electron is at rest,
Eat

I D 0. The action of the momentum operator Op on jIati thus yields zero and merely
the first term in the expression (6.190) remains. For a long-wave EM radiation (and
only for such Eq. (6.190) is valid at all), we can neglect the change in electron energy
resulting from the scattering, i.e., Eat

F ' 0. Then from Eq. (6.193), we have !2 ' !1.
Insertion of Eq. (6.189) into Eq. (6.192) leads to

d� D
�
˛

me

�2

j".1/ � ".2/j2d˝2 . (6.229)

Substitution of the replacements (6.200) and (6.201) into Eq. (6.229) yields

d� D
�
˛

me

�2 1

2
.1C cos2 #/ sin#d#d' , (6.230)

where cos# D �.1/ � �.2/ and where we have chosen the z-axis in the direction of
the incident photon. Finally, we integrate over the directions of the scattered photon.
We thus find for the total cross-section

� D
�
˛

me

�2 8�

3
! 0.665 � 10�28 m2 . (6.231)
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The last three equations were derived at the turn of the twentieth century, long time
prior to the discovery of quantum electrodynamics by J.J. Thomson. The classical
derivation of these formulas can be found in, e.g., [13]. The quantity

r0 D ˛

me
! 2.82 � 10�15 m (6.232)

is called the classical electron radius, the only reason being it appears in
formula (6.231). The large difference between the photoelectric cross-section (6.156)
and the Thomson cross-section (6.231) stems from the large difference between the
Bohr radius (6.157) and the classical electron radius (6.232). The reader should be
warned, though. As it is clear from above discussion of the resonance scattering, the
cross-section does not necessarily correspond to the radius of the target particle.

It is worth noting that the Thomson scattering finds its place in the latest
development of cosmology. Once the temperature of our Universe fell below
109 K, there was not enough energy for the creation of electron-positron pairs.
The temperature further decreased and as it dropped below 103 K, the EM radiation
ceased to scatter on the matter. Between these two moments, the Universe was
composed of merely four components: photons, neutrinos, dark matter and baryon
plasma which constituted free electrons, positive ions and a small number of light
atoms. The photon-electron scattering during this time period, Eq. (6.229) serving
well for its description, changed the photon polarization, which we can measure
today in the fluctuations of the cosmic microwave background. The reader can learn
more about this interesting subject in e.g. [15].

6.5 Virtual Processes

6.5.1 Introductory Notes

The nonrelativistic approximation to quantum electrodynamics has, not surprisingly,
a limited domain of validity. As already mentioned, the error caused by its use is of
the order of Z.˛/2 as we do not consider the spin-orbit interaction and additional
relativistic corrections. The interpretation of this restriction is clear: the charge of the
nucleus Z must be sufficiently small for the use of the nonrelativistic approximation.
Roughly speaking, in case of light atoms, the “speed of the orbiting” electron must
be much smaller in comparison with the speed of light.

However, nonrelativistic quantum electrodynamics fails to describe correctly
even the light atoms, including hydrogen, once we take into account the so-called
virtual processes. So far, we always tacitly assumed that a photon radiated by an
electron will be registered in a detector. However, quantum electrodynamics, even
in its nonrelativistic approximation, predicts the possibility that the electron absorbs
the radiated photon back, see Fig. 6.9!
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Fig. 6.9 Electron acting on
itself

e−

γ

As we will show in a moment, quantum mechanics forces us to integrate over all
possible wave vectors of the virtual photon. The recoil momentum is imparted on
the electron, but there is no bound on the momentum of virtual photon, hence
there is a contribution from the electron states with very high momenta. The
nonrelativistic approximation is clearly inapplicable to these states. Hence, if we
wish to understand the spectra of even the lightest atoms, we need to learn relativistic
quantum electrodynamics first. We emphasize that this self-energy effect is relatively
small, though not too much. We will show later in the text that the absolute value
of this effect in case of hydrogen is by merely an order of magnitude smaller than
the most important relativistic corrections, and is in fact greater than the spin-spin
interaction.

6.5.2 Lamb-Retherford Experiment

There are two vector operators, namely the angular momentum and the Runge-
Lenz vector, commuting with the nonrelativistic hydrogen Hamiltonian. Thus the
hydrogen energy spectrum depends merely on the principal quantum number n,
as we already analyzed in depth in Chap. 4. The reader convinced himself in
Exercises 7 and 8 on the particular example of the states with n D 2 that
the relativistic corrections remove this degeneracy, although only partially. Once
relativistic corrections are taken into account, the energy depends also on the total
angular momentum j. However, for a fixed j, it does not depend on the orbital angular
momentum l. In particular, the states 2p1=2 and 2p3=2 are split by the relativistic
corrections, but the degeneracy of the states 2p1=2 and 2s persists.

In 1947, Willis Lamb and Robert Retherford performed a beautiful experiment
and showed that the states 2p1=2 and 2s are in fact split apart as well, the measured
difference being about 1058 MHz. Victor Weisskopf and Julian S. Schwinger
suggested immediately that this splitting stems from the self-energy effect. From
that time on, the difference between the prediction given by the Dirac equation and
the real experiment is referred to as the Lamb shift.
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electrons
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(1s → 2s)
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(2s → 2p1/2)

(2p1/2 → 1s)

detector

spontaneous emission spontaneous emission

Fig. 6.10 A schematic setup of the Lamb-Retherford experiment

The Lamb-Retherford experiment is based on knowledge we have already
adopted, thus its brief description is in place. Figure 6.10 captures the experimental
setup. Atomic hydrogen is sent to the apparatus where it is first irradiated by electrons.
This in turn leads to the excitation of the atoms to the states with n D 2, the number
of s- and p-states being similar, see Fig. 6.7. As we already know, the lifetime of
the 2s-state is enormous in comparison to that of the 2p-state. Hence, after having
covered a certain distance, all excited atoms are in the 2s-state. Subsequently, the
atoms are irradiated by EM radio waves and finally they impact on the electrode.
In case the atoms remain in the 2s-state after being irradiated, they possess enough
energy when they hit the electrode to produce a secondary current. In case the radio
waves are tuned to the energy difference between the 2s and 2p1=2 levels, the atoms
make transition to the 2p1=2 state and subsequently relax to the ground state by
spontaneous emission prior to hitting the electrode. Thus no secondary current is
produced. Therefore, the correct frequency is determined by a sudden decrease of
the secondary current, see Fig. 6.11. The ingenious principles of this experiment are
still used these days.

6.5.3 Self-energy: Bethe Estimate

Prior to our dive into the relativistic theory, we attempt to make an estimate of the
effect within the nonrelativistic approximation that is able to describe correctly the
part of the effect related to the emission and absorption of long-wavelength photons.
As we will see, this turns out to be the most significant part of the effect. We will
follow the steps of Hans Bethe who managed to do it back in 1947.

As it is clear from Fig. 6.9, the atom interacts twice with the EM field. Let us thus
apply the perturbation method to the second order in e2,
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Fig. 6.11 Record of the secondary current in the Lamb-Retherford experiment
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where OH0 is given as the sum of Eqs. (6.61) and (6.64), and OH1 by Eq. (6.65). The
first term on the rhs is not necessary to consider as it only shifts all energy levels
by the same infinite value. The reference state j 0i D

ˇ
ˇ 0

at

˛j0i describes the atom
in one of its stationary states and the EM field in its ground state. Substitution of
Eq. (6.51) for the vector potential into Eq. (6.65) for the interaction Hamiltonian OH1

leads to
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Elimination of the field operators produces as usually ı.k � k0/ı

0 . This in turn
eliminates the integration over wave vectors k0 and summation over polarizations

0. Next, we invoke the dipole approximation exp.ik � r/ ' 1, as we are interested
in the long-wavelength photons only; we obtain
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We write the wave vector in spherical coordinates in the k-space, d3k D !2d!d˝,
and restrict the integration to the domain ! < � ' m where the nonrelativistic and
dipole approximations hold. We then sum over the polarizations, Eq. (6.55):
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m2
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2
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ˇ 0
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˛

.

We have already performed the integration over angles several times, see Eq. (6.96).
Finally, we integrate over the frequencies of the virtual photon (we add and subtract
OHat � E0 in the numerator),
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,

(6.233)
where in the upper bound of the integration, we neglected . OHat � E0/ in comparison
with �.

We now focus on the result of the last equation for the specific case of a free
electron. The momentum and Hamilton operators commute, hence j ati D jpi, and
the second term with the logarithm yields zero; then

E.2/EM D �
2

3

˛

�

p2

m2
� . (6.234)

What is the physical meaning of this correction to the energy of a free particle? It
has to be a correction to the inertial mass of the particle. We express the observable
mass mexp of the electron as a sum of the mass m of “bare” electron and of the
electromagnetic mass �m

mexp D mC�m , m
 �m . (6.235)

The “bare” electron is a hypothetical electron which is not surrounded by an EM field.
The electromagnetic mass is the part of the mass corresponding to the energy (6.234).

We substitute the last equation into the Hamilton operator for the bare electron

OHat D
Op2

2m
D Op2

2.mexp ��m/
' Op2

2mexp
C Op2

2m2
exp

�m .

The observable part of the self-energy effect is the sum of Eq. (6.233) and the
change of the energy due to the electromagnetic mass, i.e., the second term in the
last equation,

E.2/exp D E.2/ C ˝ 0
at

ˇ
ˇ
Op2

2m2
exp

ˇ
ˇ 0

at

˛

�m . (6.236)
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In case of a free electron, there should be no observable consequence, E.2/exp D 0;
hence

E.2/EM C
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�m D 0 .

After substituting from Eq. (6.234) for the first term, we obtain
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In the second equality we substituted from Eq. (6.235) and in the last one we
neglected �m

m with respect to 1 since �m is proportional to ˛.
Having determined �m in this way, the first term in Eq. (6.233) cancels with the

second term in Eq. (6.236) for bound electron by construction. The observable part
of the effect is determined by the second term in Eq. (6.233). Henceforth, m will
denote the observable mass mexp. We take the estimate� ' m seriously; then Bethe
estimate for the energy shift read

E.2/exp D m
˛.Z˛/4

�n3
Fn , (6.237)
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Here, we made the transition from the natural to atomic units, Eqs. (6.83) and (6.204),
where Eat

I D E0.
The above performed procedure is commonly called the mass renormalization

and is of key importance in the relativistic theory. Only a careful distinction between
the observable and the bare electron provides a way to obtain numbers from the
theory which are to be compared with the experiment. The observable electron is
an electron surrounded by EM field which in turn acts back on its own source. The
bare electron, on the other hand, is not surrounded by any EM field; it is a mere
theoretical construction, though very useful.

In the relativistic theory, the problem is much more fundamental. We emphasized
at the very beginning that the nonrelativistic approximation is applicable only for
low frequencies of the virtual photon. Therefore, the unfavorable behavior of the
expression (6.233) in the limit � ! 1 is not bothersome at all since such a limit
is evidently nonphysical. The problem lies in the self-energy of the electron being
infinite in the relativistic theory as well. In such a case, we do not have an a priori
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reason to expect the limit �!1 to be unphysical! We will return to this issue in
the following chapter.

For now, we finish the evaluation of Eq. (6.237). For evaluation of the first term,
we use identity (3.99) and definition of the reference state . Oh0 � "0/

ˇ
ˇ 0

at

˛ D 0,

˝

 0
at

ˇ
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ˇ
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at

˛ D �1

2

˝

 0
at

ˇ
ˇ

h
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ˇ 0
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 0
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ˇ
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˛ D 1
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˝

 0
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ˇ
ˇ4�ı.r/

ˇ
ˇ 0
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˛

D 1

2
4�j 0

at.0/j2 D
1

2

4

n3
ıl,0 , (6.238)

where we used Eq. (4.101) in the last step. The second term in the expression for E.2/exp

is called the Bethe logarithm and its evaluation is more involved. Fortunately, we
have already developed all that is needed for its calculation: it suffices to insert
f .x/ D x ln x for the function f into Eq. (6.205). The contribution of the continuous
part of the spectrum is of crucial importance as it yields 96% of the effect. The shift
of the 2p1=2 level is negligible in the first approximation, see the next section. For
the difference between energy levels of 2s and 2p1=2 states, we obtain

.�E/2s � .�E/2p1=2

.D 1047.42 MHz .

Bearing in mind all of the approximations we invoked, this result lies surprisingly
close to the measured value 1058 MHz. However, there are several unclarities. For
instance, it is not clear why � should equal exactly m and not 2m or generally Km,
with K of the order of unity, instead. The logarithm is a slowly varying function,
though, and the result is not overly sensitive to the precise value of K. Furthermore,
it is not a priori clear, why the contribution of the short-wavelength photons yields
only a relatively small correction to the contribution of the long-wavelength photons.
Given the fact that the Bethe estimate and the experiment lie so close to each other, the
meaning of the Bethe estimate is clear. The dominant contribution to the self-energy
of the bound electron stems from the emission and absorption of long-wavelength
photons. This will be an important clue for an accurate evaluation of the self-energy
of the bound electron within the exact relativistic theory in the following chapter.

Finally, if the reference state 0
at is the excited state, the energy has a nonvanishing

imaginary part. With the use of the spectral decomposition of Oh0, we find

. Oh0 � "0/ ln. Oh0 � "0/ D
X

n

jni
�

1

2N2
� 1

2n2

�

ln

�
1

2N2
� 1

2n2

�

hnj C : : : ,

where the contribution of the continuous part is not displayed explicitly. For n < N
we have ln

�
1

2N2 � 1
2n2

� D ln.�1/ C ln
�

1
2n2 � 1

2N2

�

. If we take the branch of the
logarithm corresponding to ln.�1/ D �i� , we obtain from Eq. (6.237)



6.5 Virtual Processes 269

=
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E.2/exp

i
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3
m˛.Z˛/4
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˝

 0
at

ˇ
ˇ Opijni

�
1

2N2
� 1

2n2

�

hnj Opi

ˇ
ˇ 0

at

˛

in agreement with Eqs. (6.97), (6.99) and (6.197). The imaginary part of the energy
shift corresponds to the possibility that the electron does not manage to absorb the
emitted photon and falls down to a state of lower energy.

6.5.4 Improved Bethe Estimate

The relativistic theory we will deal with in the next chapter yields the Lamb shift
as a sum of high- and low-energy parts, which are determined by contributions of
short- and long-wavelength photons, respectively. For the low-energy part, we will
derive in Sect. 7.5.5 the formula

Flow D
˝

 0
at

ˇ
ˇ. OpA/if . Oh0 � "0/. OpA/i

ˇ
ˇ 0

at

˛

, f .x/ D n3x
Z 1

0
dy
Z 1

0
dw

1 � 2w.1 � w/

yC 2w.Z˛/2x
.

(6.239)

If the function f .x/ is expanded in series in x, one obtains for the leading order

f . Oh0 � "0/ ' n3. Oh0 � "0/

�
13

18
� 2

3
ln.2/ � 2

3
ln
h

.Z˛/2. Oh0 � "0/
i

C : : :
�

.

(6.240)

The last showed term is the Bethe nonrelativistic estimate (6.237). To derive
expression (6.239), we need the relativistic theory. However, we do not need the
relativistic theory at all to evaluate it, thus we will do so now. Recall that we
have already learned how to calculate expressions of this type, see Eqs. (6.205)
and (6.227).

To assess the accuracy of the numerical calculation, we use the summation rules
for the ground state; namely Eq. (6.228) for f D 1 and

h. OpA/i. Oh0 � "0/. OpA/ii D 2 (6.241)

for f D Oh0 � "0, where the latter follows from Eq. (6.238). For Z D 1, the numerical
calculation yields

Flow.1s/ D 10.6360506 . (6.242)

In case of the excited states, one proceeds in the same way. The calculation of the
overlap integrals between the reference and virtual states is slightly more complex,
though. For Z D 1, the numerical calculation yields

Flow.2s/ D 10.8658433 , Flow.2p/ D 0.0400340 . (6.243)
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If we use the expansion (6.240) and Eq. (6.238), we find

Flow ' ıl,0
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ˇ 0
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˛C: : : ,

(6.244)
where for three lowest hydrogen states, the Bethe logarithm equals

1

2
h1sj. OpA/i. Oh0 � "0/ ln

h

2. Oh0 � "0/
i

. OpA/ij1si D 2.984128555 : : : , (6.245)

23

2
h2sj. OpA/i. Oh0 � "0/ ln

h

2. Oh0 � "0/
i

. OpA/ij2si D 2.811769893 : : : (6.246)

and

23

2
h2pj. OpA/i. Oh0 � "0/ ln

h

2. Oh0 � "0/
i

. OpA/ij2pi D �0.030016709 : : : (6.247)

It is more accurate and simpler21 to calculate the improved Bethe estimate (6.239)
than the Bethe logarithm (6.244). Nevertheless, we will use the Bethe logarithm
later in Sect. 6.5.6.

In a programming language with a built-in procedure for numerical
integration, write Eq. (6.227) for the function (6.239). Check the accuracy
of the summation rules (6.228) and (6.241). Try to reproduce the
result (6.242) as well as the results (6.243), (6.245), (6.246) and (6.247).
The formulas (6.225) and (6.226) will be of great help to you.

Hint: in Eq. (6.239), integrate analytically over y and w prior to any
numerical calculations.

Exercise 23: The Improved Bethe Estimate

21In case of the calculation of (6.239), we numerically integrate an expression which behaves
for the s-states for large ke as k�4

e ln.ke/. On the other hand, in case of (6.244), we integrate an
expression which behaves for the s-states for large ke as k�2

e ln.ke/, and thus is on the very border
of convergence. These statement will become clear to the reader once he attempts the following
exercise.
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Fig. 6.12 One-photon
exchange between two
charged particles

6.5.5 One-Photon Exchange: Instantaneous Interaction

Let us now turn our attention to the last second-order process—one-photon exchange
between two charged particles, see Fig. 6.12. We consider the effect of the interaction
Hamiltonian (6.65) to the second order of the perturbation method

�Ecc D � e1e2

m1m2

˝

 0
at

ˇ
ˇh0j

�

OA.r1/ � Op1
1

: OHEM : C OHat � E0
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C OA.r2/ � Op2
1

: OHEM : C OHat � E0

OA.r1/ � Op1

�

j0iˇˇ 0
at

˛

.

Compare this equation with the first two equations in Sect. 6.5.3. The atomic
Hamiltonian OHat is given by Eq. (6.64).

The reader will already manage to eliminate the field operators on his or her own
and obtain

�Ecc D � e1e2

m1m2.2�/3

Z
d3k
2!

�

ıij � �i�j
�

� ˝ 0
at

ˇ
ˇ

�

. Op1/ie
ik�Or1
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! C OHat � E0

e�ik�Or2. Op2/j

C . Op2/je
�ik�Or2

1

! C OHat � E0

eik�Or1. Op1/i

�
ˇ
ˇ 0

at

˛

.

In the second term, we substituted k ! �k to convert the expression into a more
symmetric form. We now rewrite the denominators as

1

! C OHat � E0

D 1

!
�

OHat � E0

!.! C OHat � E0/
.

Consecutively, the one-photon exchange can be written as a sum of an instantaneous
and a retarded interaction

�Ecc D �Ecc,i C�Ecc,r ,
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where

�Ecc,i D � e1e2

m1m2.2�/3
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� ˝

 0
at
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ˇ 0
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(6.248)

and

�Ecc,r D e1e2
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. (6.249)

How do we know that this separation corresponds to the separation of the
instantaneous and retarded interaction? If we perform the integration over k, see
Sect. 3.6.1, we obtain expression (6.248) in the form

�Ecc,i D
˝

 0
at

ˇ
ˇ. OH1/cc

ˇ
ˇ 0

at

˛

,

where . OH1/cc is the interaction Hamiltonian introduced in Eq. (3.127):

. OH1/cc D � e1e2

m1m24�

1

2r12

� Op1 � Op2 C n12 � Op1 n12 � Op2
�

. (3.127)

This expression was derived in Sect. 3.6.1 from the classical equation (3.2) for vector
potential where the retardation effect was neglected.

Show that the effect of the spin-spin and the spin-other-orbit interactions
on atomic energies can be obtained in two ways. Firstly,

�Ess D
˝

 0
at

ˇ
ˇ.. OH1/sst C . OH1/ssc/

ˇ
ˇ 0

at

˛

,

�Esoo D
˝

 0
at

ˇ
ˇ. OH1/soo

ˇ
ˇ 0

at

˛

,

where the interaction Hamiltonians . OH1/sst, . OH1/ssc and . OH1/soo are given
by Eqs. (3.125), (3.124) and (3.126), respectively. Secondly,

Exercise 24: One-Photon Exchange
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�Ess D � e1e2
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where the effect of retardation has been neglected; in the denominators
. OHat � E0/ was neglected in comparison with : OHEM :.

6.5.6 One-Photon Exchange: Effect of Retardation

We now show how to further deal with the retarded part in Eq. (6.249). This part
shifts the atomic energies at the order of ˛5. Therefore, within accuracy to this order,
we can express the term as a sum of two

�Ecc,r ' �Ecc,r1 C�Ecc,r2 .

We now invoke the dipole approximation in the first part
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In the second part, we again neglect the term OHat � E0 in the denominator with
respect to !:
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Integration over the wave vectors in the first part yields the Bethe logarithm, see
Eq. (6.237),

�Ecc,r1 D e1e2

3m1m2�2

˝

 0
at

ˇ
ˇ. Op1/i. OHat � E0/ ln

�
�

OHat � E0

�

. Op2/i
ˇ
ˇ 0

at

˛

.

Here, the upper bound of the integration was stopped at �, and we neglected
. OHat � E0/ in comparison with �. For hydrogen-like atoms in the center of mass
frame, it holds that e2 D �Ze1 D �Ze, Op2 D �Op1 and r12 D r. The last equation
then simplifies to, see Eq. (6.204), where m is replaced by mr,
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(6.250)
The second part, �Ecc,r2, is arranged by means of the operator identity22

OA OB OCC OC OB OA D OA OC OBC OB OC OA � Œ OA, Œ OC, OB��

and the definition of the reference state, . OHat � E0/
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22Clearly, OA D Op1ieik�r1 , OB D Op2je�ik�r2 and OC D OHat � E0. In addition, Opi and eik�r can be freely
commuted. Their commutator is kieik�r, but the whole expression is multiplied by the projector Pij

and hence the commutator vanishes, see Eq. (6.33). This can be traced back to the Coulomb gauge
r � OA D 0.
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We already calculated the commutator in Sect. 3.3.1
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.

This expression is multiplied by .eik�r12 �1/, see the penultimate equation. Thus, the
contribution of the first term on the rhs of the last equation vanishes. Multiplication
of the second term by the projector Pij yields

�

ıij � �i�j
� �

ıij � 3ninj
� D �1C 3.� � n/2.

Identifying the z-axis with the direction of the vector n, the integration over the
directions of the virtual photon is easily accomplished
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For hydrogen-like atoms in the center of mass frame, we obtain from the last four
equations and substitutions r! r=.mrZ˛/ and ! ! !.mrZ˛/,

�Ecc,r2 D � .Z˛/
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(6.251)

It is advantageous to write the energy shift for a general s-state as a sum of state-
dependent and state-independent parts

�En D �En ��E1

n3
C �E1

n3
.

The numerator of the first term, the “normalized” or “weighted” difference, behaves
similar to the contribution of the p-states. For normalized difference of the s-
states and for p-states, each of the expressions Ecc,r1 and Ecc, r2 is finite. The Bethe
estimate (6.237) is in this case finite, too. As one can see from Eq. (6.237), and as
we will see in the next section, the inadequacy of the nonrelativistic approximation
appears at the order ˛5 only for the state-independent part of the s-states. The
advantage of the separation should be clear now. The state-dependent part of the
energy shift of the s-states behaves much better than the complete energy shift. All
the difficulties can be then reduced to the calculation of the ground state. Let us use
this observation and split our further calculation into those for the ground state and
those for the excited states.
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• Ground state
Integration over frequencies yields
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By means of this equation and of Eqs. (3.35), (4.101), and (6.238), we find for the
total contribution of the retardation effect, i.e., the sum of Eqs. (6.250) and (6.251),
for the state-independent part of the s-states that
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. (6.252)

Note that the dependence on the upper bound of the integration � cancels out.
• Excited states

Integration over the frequencies in Eq. (6.251) can now be extended to infinity:
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For the state-dependent part of the s-states Œn3�E.ns/ ��E.1s/�=n3 and for the
non-s-states, we obtain from Eqs. (6.250) and (6.251) the following expression
for the energy shift
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where we introduced the notation

DD OO
EE

D ıl,0
n3hn, 0, 0j OOjn, 0, 0i � h1, 0, 0j OOj1, 0, 0i

n3
C .1� ıl,0/hn, l, mj OOjn, l, mi

for a general operator OO. For the non-s-states, the meaning of the two brackets
is clearly the same as merely one bracket: the average of the operator OO for a
given atomic state. The Bethe logarithm of the three lowest hydrogen states was
already given in Eqs. (6.245), (6.246), and (6.247). Furthermore, one can easily
find, see Eqs. (3.95) and (3.96),
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Comparison of Eqs. (6.252), (6.253), and (6.237) shows that the retardation effect
shifts the atomic energy levels at the same order of ˛ as the self-energy effect.
In contrast to it, though, it depends on the ratio of particle masses m1=m2. This
means that in case of the “ordinary” hydrogen-like atoms, this shift is very small.
However, from helium on, the retardation effect of the one-photon exchange between
two electrons is of the same order of magnitude as the self-energy effects of the
individual electrons. In the next chapter, in Sect. 7.8.5, we use the formula (6.252)
for an accurate determination of the spectral lines of positronium, in which case the
mass ratio m1=m2 equals 1.

It clearly follows from Eqs. (6.237) and (6.252) that once the retardation is not
neglected, it is not possible to write down the EM interaction between the charged
particles in the form of the Schrödinger equation with a prescribed potential.

6.5.7 Two-Photon Exchange: Low Energies

Unlike the one-photon exchange, which we can describe using the nonrelativistic
approximation with accuracy up to ˛5, one needs to consider the relativistic theory
when it comes to the two-photon exchange. The physical reason is similar to that
in case of the self-energy problem: the contribution of the virtual states, where
the relativistic description is necessary, is not negligible. Nevertheless, there is
a part of the two-photon exchange which we can treat within the nonrelativistic
approximation.

In case of the one-photon exchange, particles do not manage to cross the
boundaries of the nonrelativistic regime. In the two-photon exchange, such a part is

given by the second order correction due to the interaction e2 OA2
, see Fig. 6.13,
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Provided the typical momenta of the particles which enter the process are small,
how do we recognize which part of the effect can be treated nonrelativistically
and which not? Roughly speaking, the nonrelativistic description is appropriate
when the particles are on the outer lines on the corresponding diagram. If they
are on the inner lines, as in the case of the self-energy effect, see Fig. 6.9, the
relativistic approach is needed. The relativistic description is necessary if there is
a mechanism creating, at least temporarily, particles with large momenta. In case
of particles bound in light atoms, the only contributing mechanism is quantum
mechanics: it enforces integration over all possible momenta on the inner lines of
the corresponding diagrams, see discussion in Sect. 6.5.1.
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Fig. 6.13 Part of the
two-photon exchange
between charged particles
amenable to nonrelativistic
treatment

Obviously, from all possible processes contributing at the order .e1e2/
2, the one

considered above is the only one with particles exclusively on outer lines, see

Fig. 6.13. We consider the interaction e2 OA2
in the normally ordered form so that its

vacuum expectation value vanishes. The reason is, we wish to describe the two-
photon exchange between two particles, not two self-energy effects. The elimination
of the field operators leads to the expression

�E2pl D � e2
1e2

2

m1m2

Z

!1<�

d3k1

.2�/32!1
P.1/ij

Z

!2<�

d3k2

.2�/32!2
P.2/ij

˝

 0
at

ˇ
ˇei.k1Ck2/�.r1�r2/

ˇ
ˇ 0

at

˛

!1 C !2
,

(6.255)
where the projectors Pij are given by Eq. (6.55). Their product reads

P.1/ij P.2/ij D 1C Œ�.1/ � �.2/�2 .

For the sake of simplicity, we restrict our further considerations to the hydrogen-
like atoms in the center of mass frame; that is, we set r12 D r and e1e2 D �Ze2.
Furthermore, we change to the atomic units r D rA=.mrZ˛/ and substitute k1,2 !
k1,2.mrZ˛/.

Once again, we split the calculation into two parts: the ground and the excited
states.

• Ground state
For s-states, the angular integration is trivial

˝

 0
at

ˇ
ˇeiq�rA

ˇ
ˇ 0

at

˛ D 1

q

Z 1

0
drrj .0/

at .r/j2 sin.qr/, q D k1 C k2 .

The integral over radial variable can be calculated by means of the formula

1

q

Z 1

0
drre��r sin.qr/ D 2�

.�2 C q2/2
.

Obviously, the integrand (6.255) is symmetric with respect to the replacement
of !1 and !2. Consecutively, the double integral over square !1 2 .0,�/, !2 2
.0,�/ can be expressed as a double of the integral over the triangle !1 2 .0,�/,
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!2 2 .0,!1/. Integral (6.255) then diverges in the upper bound of the integration
over !1. Let us therefore subtract and add the divergent part. Substitution of the
last three equations into Eq. (6.255) leads to

�E2pl D �8.Z˛/5m3
r

�2m1m2

"

˚.2/C �

4

Z �=.mrZ˛/

0
d!1

!1

1C !2
1

#

,

where

˚.�/D
1Z

0

d!1

2

4

!1Z

0

d!2
!1!2

!1C!2

�Z

0

�.1Ccos2 #/ sin#d#

.�2 C !2
1C!2

2 C 2!1!2 cos#/2
��

4

!1

1C !2
1

3

5.

The first integral over !1, i.e., the integral from the expression inside the square
brackets, is finite and can be evaluated numerically. The second integral diverges,
however, it can be calculated analytically. The situation is in fact even better since
the first integral can be calculated analytically as well. After simple integration
over the angle # , there are more involved integrations over !2 and !1 and an
ambitious reader can test his abilities. The less ambitious one23 can integrate over
!1 numerically. For the state-independent part of the s-states, we find from the
above equations and Eq. (3.35)

�E2pl.1s/

n3
D .Z˛/5m3

r

m1m2�n3

�
14

3
� 8

3
ln 2 � 2 ln

�
�

mrZ˛

�	

. (6.256)

To eliminate the dependence on �, we have to use the relativistic theory, as we
will do in Sect. 7.7.

• Excited states
Integration over the frequencies of the virtual photons can be, in this case,
extended to infinity; plane-wave decomposition into spherical waves, Eq. (5.30),
knowledge of the spherical harmonics up to l D 2, the orthonormality of the
spherical harmonics and integration over the frequencies !1 and !2 lead to

Z
d3k1

!1

Z
d3k2

!2

˚

1C Œ�.1/ � �.2/�2� ei.k1Ck2/�rA

!1 C !2
D .2�/3

r3
A

.

The energy shift of the state-dependent part of the s-states Œn3�E.ns/��E.1s/�=n3

and non-s-states caused by the two-photon exchange is given by the last equation
and Eq. (6.255)

� .Z˛/
5m3

r

m1m22�

��
1

r3
A





. (6.257)

23Of course, an impatient reader will not worry at all.
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The energy shift caused by one- and two-photon exchanges at the order ˛5 for
the state-dependent part of the s-states Œn3�E.ns/ ��E.1s/�=n3 and non-s-states is
given by Eqs. (6.253) and (6.257)

� .Z˛/
5m3

r

m1m2�

��
4

3
. OpA/i. Oh0 � "0/ ln

h Oh0 � "0

i

. OpA/i C 7

6

1

r3
A





. (6.258)

The formula (6.256) will be used later in Sect. 7.7, and the formula (6.258) in
Sect. 7.8.5 for a precise determination of the positronium spectral lines.

6.6 Formalism of the Second Quantization

Young man, in mathematics you don’t understand things. You just get used to them.John
von Neumann

So far, we regarded electrons as particles. However, we will see that unification of
quantum mechanics and the special theory of relativity forces us to view electrons as
quanta of an electron-positron field. Even within the nonrelativistic theory, one can
perceive electrons as quanta of an electron field. Such a view has two advantages: one
conceptual and one technical. We may ask why all electrons are indistinguishable, of
the same mass, spin and charge? Because all of them are excitation of the same one
electron field! In addition, while the wave function of two, three, and more electrons
is a wave function in six-, nine-, and more dimensional spaces, the electron field is
a field in an ordinary three-dimensional space, regardless of the number of quanta
present. Later in the text, we shall see that already the analysis of the problem of
three electrons which interact mutually and with the nucleus by the electrostatic
interaction is much more easily penetrable via the field, rather than the particle,
approach.

6.6.1 Quantization of Free Fields

Let us first summarize how we proceeded when quantizing the EM field. Quantization
of the electron field will follow the same steps.

1. Write an equation for the classical field. In the Coulomb gauge, the classical
equation for dynamical quantity, the vector potential, is of the form of Eq. (6.13),


@2

@t2
� r2

�

A D 0.

2. Expand the classical field into suitable modes; see Eq. (6.14), A.r, t/ D
P

� q� .t/T� .r/, and Eq. (6.15), �r2T� D !2
�T� .

3. Determine the evolution equations for the coefficients of field decomposition into
modes; see Eq. (6.18), Rq� C !2

� q� D 0.
4. Determine the canonical coordinates, the momenta, and the Hamiltonian for the

classical theory.
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The classical equation (6.18) is equivalent to the Hamilton canonical
equations (6.23), if the Hamiltonian is of the form (6.19) and (6.20), HEM D
P

�
p2
�

2 C 1
2!

2
� q2
� .

5. Impose the canonical commutation relations on the classical coordinates and
momenta. Insert the corresponding operators for the coordinates and momenta
into the classical Hamiltonian to obtain the quantum Hamiltonian. Canonical
commutation relations are of the form (6.34), Œ Op� , Oq� 0 � D �iı�� 0 , and the quantum

Hamiltonian is of the form (6.38), OHEM DP�

Op2
�

2 C 1
2!

2
�
Oq2
� .

However, the canonical coordinates and momenta are not determined uniquely,
and the last two steps can be thus slightly modified. With this change, the similarity
between quantization of the EM and electron fields will be more transparent.

4. Already in the classical theory, we can introduce suitable linear combinations of
q� and p�

a� D 1p
2!�

.!�q� C ip� / ,

aC� D
1p
2!�

.!�q� � ip� / .

These relations can be inverted, i.e., we can express q� and p� as functions of a�
and aC� , and subsequently substituted into the Hamiltonian (6.20) to produce

HEM D
X

�

!�a
C
� a� . (6.259)

The Hamilton equations (6.23) yield the time derivative of a�

d

dt
a� D 1p

2!�

�

!�
d

dt
q� C i

d

dt
p�

�

D 1p
2!�

�

!�
@H

@p�
� i

@H

@q�

�

D 1p
2!�

.!�p� � i!2
� q� / D �i!�a� ;

likewise,

d

dt
aC� D i!�a

C
� .

These equations can be obtained directly from the Hamiltonian (6.259), if a�
is regarded as the canonical coordinate and iaC� as the canonically conjugated
momentum:

Pa� D @HEM

@.iaC� /
D �i!�a� , iPaC� D �

@HEM

@a�
D �!�aC� .
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5. We change to the quantum theory by imposing canonical commutation relations

Œ Oa� , i OaC
� 0

� D iı� ,� 0 . (6.260)

The Hamiltonian of the quantum theory then reads

OHEM D
X

�

!� OaC� Oa� .

Let us add one last step:

6. Define the vacuum state. The ground state of the EM field is determined by the
requirement that it is annihilated by all annihilation operators:

Oa� j0i D 0 .

Now we turn to the quantization of the electron field and follow the very same
steps.

1. Write an equation for the classical field. Let us consider the Schrödinger equation
for the wave function of one particle

�

i
@

@t
� Oh

�

 D 0 , (6.261)

where Oh is a one-particle Hamiltonian. For instance, we could think of

Oh0 D �r
2

2
� 1

r
, (6.262)

however, it is better to regard Oh as an arbitrary effective one-particle operator.
The wave function  is regarded as the classical field.

2. Expand the field into suitable modes. Suitable modes are the eigenstates of the
Hamiltonian

OhU� .r/ D E�U� .r/ . (6.263)

Eigenstates of Oh form a complete one-particle basis. Thus, we can write

 .t, r/ D
X

�

b� .t/U� .r/ . (6.264)

3. Determine the evolution equations for the coefficients of the field decomposition
into modes. After inserting the decomposition (6.264) into the Schrödinger
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equation (6.261), we find by means of orthonormality of the eigenstates of Oh
that

�

i
d

dt
� E�

�

b� .t/ D 0 . (6.265)

Hermitian conjugation of the last equation yields

�

�i
d

dt
� E�

�

bC� .t/ D 0 . (6.266)

4. Determine the canonical coordinates, the momenta and the Hamiltonian for the
classical theory. The Hamilton operator of the “classical” theory has the form

He D
X

E�bC� b� . (6.267)

We derive the “classical” equations of motion, (6.265) and (6.266), from the
Hamilton canonical equations if we regard b� as the canonical coordinate and
ibC� as the canonically conjugate momentum.

5. Impose canonical anticommutation relations on the classical coordinates and
momenta. Insert the corresponding operators for coordinates and momenta into
the classical Hamiltonian to find the quantum Hamiltonian. Here, we come to
the only, though essential, difference between the quantization of the EM and
electron fields. Quanta of the EM field behave as particles with spin 1, hence
bosons. Owing to the commutativity of photon creation operators, the two-photon
state is symmetric with respect to the interchange of the first and second photon,
see discussion in Sect. 6.1.12. On the other hand, electrons, quanta of the electron
field, are particles with spin 1

2 , hence fermions. The two-electron state must be
antisymmetric with respect to the interchange of the first and second electron,
see discussion in Sect. 5.1.1. Therefore, the electron creation operators must
anticommute

f ObC� , ObC
� 0

g D 0 . (6.268)

We will shortly clarify a connection between this requirement and the
antisymmetry of the two-electron state. Hermitian conjugation of the last equation
yields

f Ob� , Ob� 0g D 0 . (6.269)

We will also shortly clarify that these relations enforce a replacement of the
canonical commutation relation (6.260) by the anticommutation relation

f Ob� , i ObC
� 0

g D iı�� 0 . (6.270)
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The Hamilton operator of a free quantized electron field thus has the form

OHe D
X

E� ObC� Ob� . (6.271)

The quantized electron field is represented by the operator

O .r/ D
X

�

Ob�U� .r/ . (6.272)

Obviously, this operator has been obtained from the decomposition (6.264) where
the canonical coordinates b� .t/were replaced by the corresponding operators Ob� .

6. Define vacuum. The vacuum state of the electron field is determined by equation

Ob� j0i D 0 (6.273)

valid for all modes � .

6.6.2 States of a Free Electron Field

As follows from the last two equations, the lowest eigenvalue of OHe is the vacuum
state j0i,

OHej0i D 0j0i .

A state with one electron in the spin-orbital 1 is ObC1 j0i and has energy E1

OHe
ObC1 j0i D E1

ObC1 j0i .

A state when two electrons are present, one in the spin-orbital 1, second in the
spin-orbital 2, is ObC2 ObC1 j0i and has the energy E1 C E2

OHe
ObC2 ObC1 j0i D .E1 C E2/ ObC2 ObC1 j0i . (6.274)

The last three equations were obtained by applying Eqs. (6.270)–(6.273). Owing to
the anticommutation relation (6.268), equality

ObC2 ObC1 j0i D �ObC1 ObC2 j0i (6.275)
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holds. That is, the two-electron state is antisymmetric with respect to the interchange
of the first and second electrons. After multiplying Eq. (6.274) from the left by
h0j Ob1

Ob2, we obtain

X

E� h0j Ob1
Ob2
ObC� Ob� ObC2 ObC1 j0i D E1 C E2.

The reader will easily convince himself that had we kept the anticommutation
relations (6.268) and insisted on the commutation relations Œ Ob� , i ObC

� 0

� D iı�� 0 , the
expression on the lhs of the last equation would automatically vanish.

If both electrons occupy the same spin-orbital 1, it follows from Eq. (6.275) that
ObC1 ObC1 j0i D �ObC1 ObC1 j0i; hence

ObC1 ObC1 j0i D 0 .

As we already pointed out in Chap. 5, the Pauli exclusion principle follows from the
antisymmetry of the wave function of two particles with spin 1=2, having taken this
antisymmetry as an empirical fact. With the derivations above, we tried to point out
that should this empirical fact hold, the operators creating electrons from the vacuum
must obey anticommutation relations. In fact, the logic is quite the opposite. Pauli
was the first who proved that—roughly speaking—should dynamics of quantized
fields satisfy requirements of the special theory of relativity and should the state with
the lowest energy exist, the operators creating particles with half-integer spin out of
the vacuum must anticommute. Thus, the antisymmetry of the two-electron wave
function does not need to be considered as an empirical fact, but rather something
following from deeper principles. We shall touch this point later in Sect. 7.2.1. For
history and review of proofs of the spin-statistics connection, the reader is referred
to [6].

6.6.3 Self-interacting Electron Field

The Hamiltonian of an electron field evolving in the background Coulomb field of
a nucleus is obtained as an average value of the one-particle Hamiltonian Oh0 in the
state  , where  is replaced by the operator (6.272)

OH0 D
Z

O C Oh0 O d3r D
X

� ,


ObC� Ob
"�
 . (6.276)
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Here, "�
 stands for

"�
 D
Z

UC� .r/ Oh0U
.r/ d3r . (6.277)

In case Oh is taken to be equal to Oh0, (6.262), then Eq. (6.263) and orthonormality of
eigenfunctions U

Z

UC� .r/U� 0.r/ d3r D ı�� 0 (6.278)

yield

"�
 D E�ı�
 .

Equation (6.276) consequently reduces to Eq. (6.271).
The classical expression for energy of a charged cloud individual components of

which are mutually interacting via electrostatic force reads

1

2

Z

d3r
Z

d3r0

.r/
.r0/
jr � r0j .

If we insert for charge density 
 D  C and further replace  by the
operator (6.272), we obtain the interaction Hamiltonian of the self-interacting
electron field

OH1 D 1

2

Z

d3r
Z

d3r0
O C.r/ O .r/ O C.r0/ O .r0/

jr � r0j D 1

2

X ObC� Ob
 ObC� 0

Ob
0v�
,� 0
0 ,

(6.279)
where

v�
,� 0
0 D
Z

d3r
Z

d3r0
UC� .r/U
.r/UC� 0

.r0/U
0.r0/
jr � r0j . (6.280)

Let us arrange the interaction Hamiltonian (6.279) into the normally ordered form,
where the creation operators stand to the left of the annihilation operators, plus the
“remainder”

OH1 D : OH1 :C OH11 , (6.281)

where

: OH1 : D �1

2

X ObC� ObC� 0

Ob
 Ob
0v�
,� 0
0 (6.282)
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and the “remainder” reads

OH11 D 1

2

X ObC� Ob
0v�
,

0 . (6.283)

OH11 is obviously an one-particle operator. It describes the electrostatic interaction of
an electron with itself and causes an infinite shift of the energy levels. However, the
shift is state-independent:

X




v�
,

0 D
Z

d3r
Z

d3r0
UC� .r/U
.r/UC
 .r0/U
0.r0/

jr � r0j

D
X




4�

.2�/3

Z
d3k
!2

Z

d3r
Z

d3r0UC� .r/eik�rU
.r/UC
 .r0/e�ik�r0

U
0.r0/

D 4�

.2�/3

Z
d3k
!2
ı� ,
0 .

Here, we used the Fourier transformation of the Coulomb potential, see Eq. (3.114),
the completeness

X




U
.r/UC
 .r0/ D ı.3/.r � r0/

and the orthonormality (6.278) of the eigenfunctions U. Clearly, the term OH11 bears
no observable consequences, since only the differences of the energy levels are
observable. We will thus ignore the term henceforth.

Let us consider an electron in the spin-orbital 1 (for instance, the orbital 1s, with
spin projection along the z-axis + 1

2 ). The average value of the Hamilton operator

OH
Z2
D OH0 C : OH1 :

Z

in this state is

E

Z2
D h0j Ob1

 

OH0 C : OH1 :

Z

!

ObC1 j0i D "11 . (6.284)

Let us now consider two electrons; one in the spin-orbital 1 and the other in the
spin-orbital 2. The average value of the Hamilton operator H in this state is

E

Z2
D h0j Ob1

Ob2

 

OH0 C : OH1 :

Z

!

ObC2 ObC1 j0i D "11 C "22 C 1

Z
.v11,22 � v12,21/ .

(6.285)
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Clearly, the expression for the electrostatic self-interaction of the electron field
automatically includes Coulomb and exchange interaction between the electrons.
Recalling present notation, see Eqs. (6.277) and (6.280), the last expression is nearly
identical with the expression (5.9), the only difference being that orbitals a and b
appear in the expression (5.9) and that the spin part is an eigenstate of the total spin
operator. On the other hand, spin-orbitals 1 and 2 appear in expression (6.285), and
the state ObC2 ObC1 j0i is generally not an eigenstate of the total spin operator.

The reader can convince himself that the average value of the Hamilton operator
OH in three-particle state is

E

Z2
D h0j Ob1

Ob2
Ob3

 

OH0 C : OH1 :

Z

!

ObC3 ObC2 ObC1 j0i

D "11 C "22 C "33 C 1

Z
.v11,22 � v12,21 C v11,33 � v13,31 C v22,33 � v23,32/ .

Once we consider more than two particles, the advantage of the field approach
becomes obvious. Try to merely imagine what it would mean to calculate the last
expression within the particle viewpoint. We would have to calculate the average
value of Hamilton operator (5.61) between the Slater determinants (5.62). This
amounts to calculation of averages of 6 operators between 36 products of wave
functions, altogether 216 terms. After some thinking, you would find that most of
the terms vanish and finally arrive at the last equation. The field viewpoint bears the
advantage that the need to think is substantially decreased. Briefly, this formalism
is much more suitable for these and more complex calculations than the formalism
based on the Slater determinants.

6.7 Final Notes

We did not get, with exception of Exercise 21, to the exposition of some important
non-perturbative aspects of nonrelativistic quantum electrodynamics. Exercise 21
nicely illustrates the fact that the Fermi golden rule and its generalization, see
Eqs. (6.79) and (6.177), are applicable only if there is an infinite amount of final states.
Systems with a finite number of energy levels are oscillating and the perturbation
method is unable to capture these oscillations. If the perturbation series is truncated
after a finite number of terms, then in a finite time the perturbation solution will
diverge from the exact solution. On the other hand, in real world, Rabi oscillations
are often damped, as the finite lifetime of atomic states is often shorter than the
duration of the EM pulses. For a qualitatively correct picture of what happens to
an atom exposed to a strong EM field, it suffices, as in Exercise 21, to consider the
atom as a two-level system and to consider only one mode of the external EM field.
However, it is necessary, aside from the interaction of the atom with the one mode
of the external EM field, to take into account also the interaction of the atom with
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an infinite number of other modes leading to spontaneous emission. Practical way
how to do this is to solve the Bloch equations. For their exposition and their further
application, e.g., for atomic cooling, we refer the reader to the excellent textbooks
[4, 9]. If the reader managed to get this far in this textbook, he or she will encounter
no difficulties when reading these textbooks.

We barely touched general features of the quantum-mechanical scattering theory.
For an in-depth and still remarkably comprehensible treatment, we refer the reader
to [14].
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Chapter 7
Dynamics: The Relativistic Theory

Relativistic quantum electrodynamics, QED, is a theory unifying quantum mechan-
ics, special theory of relativity, and classical electrodynamics. In this chapter, we
will focus on the following topics:

• What essentially new is brought by the unification of quantum mechanics
and special theory of relativity. We show that although one can write the
Schrödinger equation for an electron, i.e., the Dirac equation, to formally fulfill the
requirements of the Lorentz invariance, difficulties associated with the existence
of negative-energy solutions appear. These difficulties point to the existence of
a positron, an antiparticle to the electron, and force us to regard electrons and
positrons as quanta of an electron-positron field.

• Motion of an electron bound in an atom is affected by fluctuations of the
electromagnetic and electron-positron fields. Despite the “normal” atoms, such
as hydrogen, helium, and so on, being composed of merely nuclei and electrons,
antiparticles still influence the positions of atomic spectral lines, as they appear in
“virtual” states. We do not need to go to very high energies to see the relativistic
quantum theory at work: its effects are observed for low energies if we are able
to push the theory and experiment to sufficient accuracy. In particular, while the
nonrelativistic Hamiltonian determines the differences of the energy levels at
the order ˛2 and the relativistic and magnetic effects make their appearance at
the order ˛4, the effects of relativistic quantum electrodynamics emerge at the
order ˛5. We will be concerned how to arrive at the most suitable mathematical
formulation of these effects. While doing so, we will use a substantial amount of
ingenious physical reasoning developed by Feynman.

• The expressions for the fluctuations diverge when integrating over very large
momenta of virtual particles. Moreover, these expressions sometimes diverge
also when integrating over very low momenta of virtual particles. However, the
latter divergence is a mere consequence of extending the approximations beyond
their realm of validity. The former divergence, on the other hand, is an inherent
feature of the perturbation formulation of the theory. We will show how to tackle
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the infinities and how to obtain unambiguous numbers from the theory which we
can in turn compare with the experiment.

• QED predicts the existence and properties of positronium, an electron-positron
bound state.

Of all the QED processes, we will predominantly focus on the electron and
photon self-energies. These two processes nearly completely determine the Lamb
shift in “ordinary” hydrogen-like atoms mentioned already in the previous chapter.
Calculation of these processes brings together everything that is conceptually new
in QED; everything that distinguishes QED from the theories QED unifies.

Secondly, we will analyze positronium, the QED system par excellence, in
considerable detail. For here, in contrast to the “ordinary” hydrogen-like atoms,
additional QED effects are clearly visible; namely the nucleus recoil and virtual
electron-positron annihilation.

As already mentioned in the Foreword, in contrast to the usual expositions of
QED, we minimize discussion of purely formal aspects of QED. We rather try
to convince the reader why some formal aspects of QED are of utmost practical
importance. For instance, we will emphasize the role of the manifest Lorentz
invariance for practical feasibility of the calculations, as well as for unambiguous
predictions of the theory. We will discuss charge conjugation symmetry of QED
as it leads to the correct form of the interaction Hamiltonian, to the positron wave
function and so on. If a new formalism is introduced, such as the time-dependent
Green functions, we will try to show the reader the necessity of such a step.

7.1 Relativistic Equation for an Electron

7.1.1 Relativistic Notation

For this chapter, it is necessary to introduce the relativistic notation. We assume that
the reader is familiar with notions of rotational and Lorentz invariance. If not, the
following is not likely to be comprehensible. In such a case, we recommend, e.g.,
[8, 43, 44] to the reader to acquire the requisite knowledge. A point in the space-time
is represented by the four-vector

x D .t, r/ . (7.1)

A proper (no reflections) homogeneous (no translations) Lorentz transformation
consists of rotations and transitions to coordinate systems moving with respect to
the original system by constant velocities

x0� D ���x� . (7.2)
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Rotations are special cases of Lorentz transformations involving only space
components of the four-vector (7.1),

x0j D Rjkxk .

If coordinate axes transform in this way, components of a three-vector A transform
according to

A0j D RjkAk .

Likewise, in case of the Lorentz transformation, components of a four-vector
transform according to

A0� D ���A� . (7.3)

Useful examples of four-vectors are the four-momentum

p D .E, p/ ,

the four-potential

A D .', A/

and the four-current

j D .
, j/ .

The scalar product of three-vectors produces a number invariant with respect to
the rotation of coordinate axes

A0 � B0 D A0jB0j D RjkRjlAkBl D AkBk D A � B . (7.4)

Here, we used the fact that the rotation matrix R is orthogonal. That is, the inverse
matrix equals the transpose matrix, R�1 D R>; in components

RjkRjl D R>kj Rjl D ıkl . (7.5)

Likewise, the scalar product of four-vectors produces a number invariant with
respect to the Lorentz transformations

A0 � B0 D A0�B0� D �����
A�B
 D A�B� D A � B . (7.6)

The Lorentz transformation (7.2) is a linear transformation of coordinates (one time
and three space) conserving the infinitesimal interval
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dt2 � dr � dr D dt02 � dr0 � dr0 .

This is a mathematical expression of the requirement the speed of light be the same
for all observers in inertial systems—if this interval vanishes in the original system,
it vanishes in the primed system as well. The minus sign in the last equation enforces
a definition of the scalar product of four-vectors as

A � B D A�B� D A0B0 � A � B .

Should Eq. (7.6) hold, the summation over arbitrary two indices has to be understood
in the same way, for instance

�>����
 D �>�0�0
 ��>� j�j
 .

Then the four-dimensional generalization of Eq. (7.5)

�����
 D �>����
 D ��
 )
�

��1
�

��
D ��� , (7.7)

used already in Eq. (7.6), indeed holds. In the last equation, we introduced the metric
tensor �

� D diagf1,�1,�1,�1g . (7.8)

The four-gradient reads

@ D
�
@

@t
,�r

�

. (7.9)

The gauge transformation (6.9) can then be compactly written as

A� D A0� � @�� (7.10)

and similarly the charge conservation law, Eq. (3.112), reads

@�j� D 0 . (7.11)

Within this notation, the Maxwell equations (6.8) can be written as

@�@�A� � @�@�A� D j� . (7.12)

A word about the terminology. A vector transforming according to Eq. (7.3) is said
to be covariant with respect to the Lorentz transformation or covariant for short. For
instance the Maxwell equations (7.12) are covariant. On the other hand, as already
mentioned, the magnitude of four-vectors, e.g.
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p � p D E2 � p � p D m2 (7.13)

or equations such as the charge conservation law, Eq. (7.11), are said to be Lorentz
invariant.

7.1.2 Klein-Gordon Equation

Let us repeat the arguments that led us to the Klein-Gordon equation (3.97) and
again, this time in depth, summarize the difficulties associated with this equation.

To obtain a relativistic equation for a free particle, one only needs to replace the
four-vector p by the four-vector operator Op in Eq. (7.13)

ŒOp � Op � m2�j i D 0 . (7.14)

Changing to the momentum representation, we obtain Eq. (7.13). Going to the
coordinate representation Op! i@, we find

��@ � @ � m2
�

 .x/ D 0 . (7.15)

As we already mentioned in Sect. 3.5.1, the Klein-Gordon equation was in
fact discovered by Schrödinger. Moreover, he discovered this equation prior to
its nonrelativistic approximation. Why did he abandon the relativistic theory and
restricted himself merely to the nonrelativistic approximation of it?

• If we express the energy E from Eq. (7.13), the solutions are E D ˙pm2 C jpj2.
The energy spectrum of a free particle consists of two sheets .�1,�mi [
hm,C1/. If we consider the Klein-Gordon equation for stationary states in the
Coulomb field

n�

E � e'.Or/�2 � Op � Op � m2
o

j i D 0

where e'.r/ D �Z˛=r, the continuous part of the energy spectrum is the same1 as
for the free particle and there will be bound states in the interval .0, m/. Obviously,
such a spectrum is nonphysical since we already know that if an atom is in an
excited state, spontaneous emission drives it to the ground state. However, there
is no state of the lowest energy now. If we simply throw away the negative energy

1We have seen in the nonrelativistic theory that the presence of the Coulomb potential does not
alter the eigenvalues of the continuous spectrum. The eigenfunctions are, of course, different. One
can show this explicitly since the last equation can be solved exactly. However, such a solution is
of minimal practical value, so we will not bother with it.
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states as nonphysical, the positive energy states do not form a complete basis of
states and we find sooner or later that the probability is not conserved.

• As we already mentioned in Sect. 3.5.1, the Klein-Gordon equation (7.14) does
not contain anything connected with inner degrees of freedom such as spin. It is
an equation for a spinless particle.

• Finally, Eq. (7.15) is of the second order in time. Therefore to know the time
evolution, we need to know not only the wave function, but also its time derivative
at a given time instant. However, this is in disagreement with the basic principle
of quantum mechanics that the wave function, or more generally the state vector,
fully describes the state of the system.

We will see that the first feature of the Klein-Gordon equation, in contrast to
the other two, is shared by the Dirac equation as well. Moreover, this feature is
inherent to all relativistic wave equations for massive particles. Today’s view of the
Klein-Gordon equation is very similar to that of the Maxwell equations: it is an
equation for a classical massive scalar field. This field can be quantized much in the
same way as the EM field. There are merely two differences: firstly, it has only one
component, and secondly, it is massive. In the quantization procedure described in
Chap. 6, this brings one single change: Eq. (6.15) is replaced by the equation

��r2 C m2
�

T� D !2
�T� .

Excitations of this field are massive scalar particles, the only candidate for such a
particle among the known elementary particles being presently (2017) the Higgs
boson. For an electron, we need to find something different.

7.1.3 Dirac Equation

The relation (7.13) has to hold for any massive free particle regardless of its spin
and so has Eq. (7.14). However, as noted by Dirac, these equations can hold even if
the fundamental equation is of the first order in time

.� � Op � m/j i D 0 . (7.16)

This equation is commonly known as the Dirac equation.2 Here, �s are matrices
independent of space-time coordinates to be specified below. Multiplying this

2In literature, one encounters the so-called Feynman slash notation

=a D � � a D ��a� ,

where a is an arbitrary four-vector. Since the advantage of this notation is minimal in the following
calculations, we will not use it in this book.
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equation by .� � OpCm/ from the left and using commutativity of the components of
� and Op, we obtain

�

���� Op� Op� � m2
� j i D 0 .

However, this must be equivalent to the Klein-Gordon equation (7.14). Decomposing
the product of momenta into symmetric and antisymmetric parts, Op� Op� D
1
2

˚ Op� , Op�
� C 1

2

� Op� , Op�
�

, the latter part vanishes. Hence the product ���� can be
replaced by its symmetric part

�
1

2

˚

�� , ��
� Op� Op� � m2

�

j i D 0 .

This equation is equivalent to Eq. (7.14) if

˚

��, ��
� D 2��� . (7.17)

This requirement states that the square of one particular component is one, �2
� D 1,

and different components of � anticommute

���� D ����� .� ¤ �/ .

We easily find that if one particular set of � -matrices obeys Eq. (7.17), so does another
set � 0 D UC�U where U is a unitary matrix. Hence, there is an infinite number of
realizations of the relations (7.17), related mutually by unitary transformations.
Which particular choice is the most suitable one depends on the situation. For
transition to the nonrelativistic limit, the most convenient one is the standard or
Dirac realization,

�0 D
�

1 0
0 �1

�

, � D
�

0 �

�� 0

�

, (7.18)

where �i are Pauli matrices obeying the relations (1.25). All � -matrices are square
matrices 4�4 constituted by blocks 2�2. The wave function has four components:
it is a bispinor, i.e., composed of two two-component spinors. Why are � -matrices
of the order 4 � 4? There are no 4 matrices � different from the unit matrix of the
order 2 � 2 which obey (7.17). We will see later in Sect. 7.2.3 that there are other
suitable choices of the � -matrices.

7.1.4 External EM Field

In case of an electron moving under the influence of an external time-independent
EM field described by the four-potential A.r/, we perform the usual substitution
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Op! Ŏ D Op � eA.Or/, see Eq. (3.1).3 The Dirac equation thus has the form

.�� OΠ� � m/ at D 0) .��.i@ � eA/� � m/ at.x/ D 0 . (7.19)

After multiplying this equation by �0 from the left and restricting ourselves to the
stationary states  at.r, t/ D e�iEt at.r/, we obtain

�

�0� � . Op � eA.Or//C �0mC e'.Or/� at.r/ D E at.r/ . (7.20)

In the matrix form, using Eq. (7.18) and writing  at D
�
 C
 �

�

, the last equation

reads

�
E � e'.Or/ 0

0 E � e'.Or/
��

 C
 �

�

D
�

m � � . Op � eA.Or//
� � . Op � eA.Or// �m

��
 C
 �

�

.

(7.21)
If we express the lower components of the wave function from the latter equation

 � D 1

EC m � e'
� � . Op � eA/ C ,

and substitute them into the former equation for the upper components of the wave
function,  C, we find

�

E � m � e'.Or/� C D � � . Op � eA.Or// 1

EC m � e'.Or/� � . Op � eA.Or// C .

This equation is exactly Eq. (3.98) which was the starting point of our discussion of
the fine structure of atomic spectra back in Sect. 3.5.

It follows from this discussion and the penultimate equation that the nonrelativ-
istic limit of the Dirac wave function reads4

 at '
 

1
� �. Op�eA/

2m

!

 0
at , (7.22)

where  0
at is the Pauli wave function obeying

3The vector and scalar potentials of the classical EM field will be denoted as A.Ox/. A is a number-
valued function of x and an operator, though only in the sense of the “first” quantization: ŒOpi, Aj.Or/� D
�i@iAj. The vector potential of the quantized EM field will be denoted OA.Ox/ or OA for short.
4The exact solution of the Dirac equation in the Coulomb field is of greater practical value than in
the case of the Klein-Gordon equation. However, we will not need it here either. The reader can
find one particularly elegant solution by doing Exercise 25.
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�
Œ� � . Op � eA/�2

2m
C e'

�

 0
at D .E � m/ 0

at (7.23)

and the operator on the lhs is the Pauli Hamiltonian (3.50).
Another way to find the nonrelativistic limit is to multiply the Dirac equa-

tion (7.19) by .� � Ŏ C m/ from the left

OH  at D 0 , OH D .� � Ŏ �m/.� � Ŏ Cm/ D Ŏ � Ŏ �m2C 1

4
Œ OΠ�, OΠ��Œ��, ��� ,

(7.24)
where OH is usually referred to as the second order Dirac Hamiltonian and we will
encounter it quite often in the following text. In case of the external Coulomb field

Ŏ D
�

EC Z˛
Or , Op

�

, (7.25)

the nonrelativistic limit of this operator reads

OH ' 2m

�

OΠ0 � m � Op
2

2m

�

D �2.mZ˛/2. Oh0 � "0/ , (7.26)

where we used Eq. (6.204) in the second equality.

1. Show that the second order Dirac Hamiltonian OH , Eq. (7.24), takes
for the potential (7.25) the form

OH D
�

EC Z˛

r

�2

� Op2 � m2 C �0� �
�

Op,
Z˛

r

	

(7.27)

D E2 � m2 C 2
EZ˛

r
�
 

Op2
r C
OΓ. OΓ � 1/

r2

!

,

where the radial momentum operator Opr is given by Eq. (3.23) and the
“relativistic orbital momentum” operator OΓ reads

OΓ D �0


 OKC i.Z˛/� � n
�

,

where the “relativistic parity” operator OK reads

OK D �0




˙ � OLC 1
�

.

Exercise 25: Exact Relativistic Solution of Hydrogen
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The symbol ˙ stands for

˙ D
�

� 0
0 �

�

(7.28)

and OL is the angular momentum operator.
2. Show that the set of the operators f OH , OJ2, OJz, OK, OΓg form a complete set

of commuting operators. Here, OJ is total angular momentum operator

OJ D OLC 1

2
˙ .

3. Show that

OK2 D OJ2 C 1

4

and

OΓ2 D OK2 � .Z˛/2 .

The eigenvalues of the operators OK and OΓ are then

K D ˙.jC 1=2/

and

� D ˙
p

.jC 1=2/2 � .Z˛/2 ,

where as usually j.jC 1/ denotes eigenvalue of OJ2.
4. Introduce the effective orbital quantum number l�

l� .l� C 1/ D � .� � 1/ (7.29)

and make substitution

r D rA

EZ˛
.

This transforms the radial part of the Dirac second order Hamilto-
nian (7.27) to the form, that is, up to additive and multiplicative
constants, formally identical to the radial part of the nonrelativistic
radial Hamiltonian
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OH D E2 � m2 � 2.EZ˛/2
�

1

2

�
� Op2

r

�

A C
l� .l� C 1/
Or2
A

�

� 1
OrA

	

.

(7.30)
In order to have normalizable wave function, not diverging too strongly
at the origin, the physical solution of Eq. (7.29) is

l� D � � 1 , .� > 0/, l� D �� , .� < 0/ .

Comparison of Eqs. (4.91), (7.24), and (7.30) finally yields equation
for the energy E of the stationary state

E2 � m2 C .EZ˛/2

N2
D 0 ,

where

N D nr C l� C 1 , nr D 0, 1, 2, : : :

7.1.5 Difficulties Associated with the Interpretation of the
Dirac Equation and Their Resolution

The Dirac equation leads to the correct nonrelativistic limit, namely the Pauli
equation. The first correction to this limit yields results which are in better agreement
with experiment than the limit itself, see Sect. 3.5.2. On the other hand, the Dirac
equation does not solve the problem of negative energies any better than the Klein-
Gordon equation. The energy spectrum is the same for a free particle and qualitatively
the same for a particle in the Coulomb field of a nucleus. There are bound states for
0 < E < m, the energy spectrum is continuous for E > m and E < �m, and there
is no state of the lowest energy. Therefore, atoms and matter should be in general
unstable according to relativistic quantum mechanics. However, this is clearly a
nonsense as our very existence proves. For the final resolution of this problem, we
are indebted to the physicist Paul Dirac, the same man who discovered Eq. (7.16)
bearing his name. According to Dirac, matter is stable since all the states with
negative energy are occupied. The Pauli exclusion principle forbidding two particles
with half-integral spin exist in the same state guarantees that the electron in the state
with the lowest positive energy cannot go into a state with negative energy. It can
happen that two5 photons with their total energy larger than 2me expel an electron
from this Dirac sea to real particles with positive energy. In the sea, there will be now
a hole with the same properties as an electron but for the opposite sign of charge.

5For kinematical reasons there must be two and not only one.
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Fig. 7.1 Vacuum
polarization

γ

e−

e+

With this idea, Dirac not only reconciled the relativistic quantum theory with the
stability of matter, he achieved much more: he predicted the existence of a positron,
an antiparticle to the electron. He predicted processes such as a pair creation

� C � ! eC C e� , (7.31)

pair annihilation, “an electron falls into a hole,”

eC C e� ! � C � , (7.32)

vacuum polarization, where pairs virtually appear and disappear, see Fig. 7.1,

� ! eC C e� ! � , (7.33)

and so on. At this point, it is important to recognize that a correct interpretation of
the one-particle relativistic wave equation requires an addition of infinitely many
other particles, namely the Dirac sea of electrons occupying infinite number of
negative energy states. It begs the question then: should we not regard electrons and
positrons as quanta of an electron-positron field, much in the same way we regard
photons as quanta of an EM field? If the particles do not appear or disappear, i.e.,
if they simply exist, it makes sense to perceive them as particles. That is, to assign
a wave function to them. However, once we do so, we are not able to describe the
creation or annihilation of the particles. Once we describe a particle with a wave
function, there is a continuity equation for the probability density, see Eq. (6.115).
To allow for the possibility of particle creation and annihilation, it is better to view
particles as quanta of a field. We have never introduced a photon wave function
since photon is too easily created or annihilated, emitted or absorbed. Likewise, in
the presence of positrons or strong EM fields, an electron can be easily created or
annihilated.6 When energies of the involved particles are of small magnitude and
there are no positrons present, reactions such as (7.31) and (7.32) do not occur. Thus

6Let us emphasize that the electric charge is strictly locally conserved, meaning the creation and
annihilation of electrons is always (at least when neglecting the weak interactions) accompanied by
creation and annihilation of positrons, see Eqs. (7.31) and (7.32). It holds even for virtual processes,
see Eq. (7.33), and it led Feynman to another view of positrons, see Sect. 7.4.
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the nonrelativistic description of matter is appropriate. However, in the relativistic
theory, we deal with multi-particle states and transitions between them. The simplest
way how to go from one-particle to many-particle theory represents the formalism of
the second quantization introduced in Sect. 6.6. We will now turn to the application
of this procedure to the Dirac field.

7.2 Hamiltonian of Relativistic Quantum Electrodynamics

7.2.1 Quantization of the Electron-Positron Field

Let us now extend the individual steps made in Sect. 6.6 to the relativistic case. In
comparison with the procedure outlined in Sect. 6.6, there will be solely one, though
essential, change concerning the definition of the vacuum state.

1. We multiply the Dirac equation (7.19) by the matrix �0 from the left and obtain
Eq. (6.261), .i @

@t � OhD/ D 0, for the “classical” Dirac field  . The one-particle

Hamiltonian OhD reads, see Eq. (7.20),

OhD D �0� � Œ Op � eA.Or/�C �0mC e'.Or/ , (7.34)

where we recall that ' and A are potentials of a time-independent external field.
2. There are two kinds of eigenstates of the Dirac one-particle Hamiltonian OhD—

with positive and negative energies. Thus, Eq. (7.20), OhDX� D E�X� , represents
in fact two sets of equations

OhDX�C D E�CX�C , OhDX�� D E��X�� ,

where clearly

E�C > 0, E�� < 0 .

The expansion of the field into modes is then

 D
X

�

c�X� D
X

�C
c�CX�C C

X

��
c��X�� . (7.35)

3. By inserting Eq. (7.35) into Eq. (6.261) we obtain Eqs. (6.265) and (6.266), where
we merely replace the coefficients b� by the coefficients c� ,

�

i
d

dt
� E�

�

c� .t/ D 0 ,

�

�i
d

dt
� E�

�

cC� .t/ D 0 .
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4. The Hamiltonian of the “classical” theory is then given by Eq. (6.267), where b�
is again replaced by c� , HD DP� E�cC� c� . Canonical coordinates and momenta
are c� and icC� , respectively.

5. Quantum anticommutation relations acquire the forms

fOc� , OcC
� 0

g D ı� ,� 0 (7.36)

and

fOc� , Oc� 0g D 0 . (7.37)

The Hamilton operator of a free quantized relativistic electron field reads

OHD D
X

E� OcC� Oc� . (7.38)

6. Here, we come to the key step of the procedure. How do we define the vacuum?
We could write

Oc�Cj0i D 0 , Oc��j0i D 0 , (7.39)

however, we would consequently encounter the same troubles as in the one-
particle case: there would be no state of the lowest energy of the field
Hamiltonian (7.38). Here, it is necessary to emphasize that the difficulties in the
interpretation of the Dirac equation are not solved by simply regarding electrons
as quanta of the electron field; it is merely a different view of the same reality, a
suitable formalism, nothing more. The difficulties with the interpretation of the
Dirac equation are associated with the existence of negative energy states and
are solved by the presence of the Dirac sea of occupied negative energy states.
Thus there is an obvious requirement on the vacuum state, namely, “one cannot
take out of the vacuum the particle with positive energy,” as the first condition
in Eq. (7.39) expresses. When all of the negative energy states are occupied, the
second requirement imposed on the vacuum state must be: “one cannot create
a particle with negative energy out of the vacuum” since all negative energy
states are already occupied. However, the second condition in Eq. (7.39) does not
correspond to this demand. The correct definition of the vacuum state reads

Oc�Cj0i D OcC��j0i D 0 . (7.40)

The operator Oc�� annihilates an electron in a negative energy state, hence creates
a hole in the Dirac sea, i.e., a positron. To comply with a general convention, we
will modify our notation and terminology. Annihilation operators of the positive
and negative energy states will be henceforth termed as electron annihilation
operators and positron creation operators, respectively:

Ob� D Oc�C , OdC� D Oc�� .
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The vacuum definition (7.40) consequently reads in this new notation

Ob� j0i D Od� j0i D 0 .

The expansion of the quantized Dirac field O has the form, see Eq. (7.35),

O D
X

�

Oc�X� D
X

�


 Ob�U� C OdC� V�
�

. (7.41)

Once again, in agreement with the usual convention, we introduced the notation

X�C D U� , X�� D V� .

Using this notation and exploiting the anticommutation relations (7.36), the
Hamiltonian (7.38) can be brought to the form

OHD D
X

�




E�C ObC� Ob� � E�� OdC� Od�
�

C
X

�

E�� .

The last term is a constant independent of the state involved and corresponds
to the infinite energy of the Dirac sea, that is, of the occupied negative energy
states. But for the case of the gravity, one does not need to worry about additive
constants in a Hamiltonian. We can thus write the Hamiltonian in a normally
ordered form (creation operators to the left, annihilation to the right)

: OHD : D
X

�




E�C ObC� Ob� � E�� OdC� Od�
�

. (7.42)

Since by definition E�� < 0, the last Hamiltonian is a positive definite operator,
its energy spectrum being bounded from below. Finally!

The reader can easily verify that had the creation and annihilation operators
of the electron-positron field obeyed commutation relations, the operator : OHD :
would not be positive definite. As already mentioned in Sect. 6.6, this shows that
in the framework of the relativistic theory, the anticommutation relations (7.37)
are a consequence of inner consistency of the theory.

7.2.2 Interaction Hamiltonian

In the nonrelativistic theory, we introduced interaction of a particle with a quantized
EM field by the replacement

Op! Op � e OA ,
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where OA represents an operator of the vector potential of the quantized EM field.
We will assume that the same prescription holds in the relativistic theory too, see
the discussion in Sect. 7.5.3 regarding this point. Let us consider the interaction of
the “classical” Dirac field, that is one Dirac particle, with an EM field first. Clearly,
the Hamiltonian has the form7

OH D : OHEM :C �0� � . Op � e OA� eA/C �0mC e' D : OHEM :C OhD C e Oh1 . (7.43)

Here, OhD is obviously the one-particle Dirac Hamiltonian (7.34) and already includes
the interaction of an electron with an external time-independent EM field. The
interaction Hamiltonian Oh1 has the form

e Oh1 D �
Z

j.r/ � OA.r/ d3r , (7.44)

where the charge current density reads

j D eı.r/�0� .

Analogously, the Hamiltonian of an interacting EM and the electron-positron fields
reads

OH D : OHEM :C : OHD :C OH1 , (7.45)

OH1 D 1

2

Z Z O
.r/ O
.r0/
4�jr � r0j d3r0d3r �

Z

Oj � OA d3r , (7.46)

where the operators of charge density and charge current density for the Dirac field
have the form

O
 D e O C O , Oj D e O C�0� O .

Since �2
0 D 1, the last two relations can be written compactly using the four-

dimensional notation

Oj� D e O �� O , (7.47)

where

O D O C�0 (7.48)

is usually referred to as Dirac conjugation.

7Recall that the term .�e/�0� � A describes the interaction between an electron and an external
magnetic field, such as the magnetic field created by nucleus. On the other hand, the term .�e/�0� � OA
captures the interaction between an electron and a quantized EM field.
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The first term in Eq. (7.46) corresponds to the electrostatic interaction of the Dirac
field with itself, the second term corresponds to the interaction of electric current
density of the Dirac field with the transverse part of the EM field.

Calculation of the vacuum charge density should yield a zero as there are no
charges in the vacuum. Does it? Let us calculate

h Oj�i D h0jOj�j0i D eh0j
X

�





UC� ObC� C VC� Od�
�

�0��




U

Ob
 C V
 OdC


�

j0i

D e
X

�


VC� �0��V
ı�
 .

Taking the zeroth component, we find

hO
.r/i D e
X

�

jV� .r/j2 ) Q0 D
Z

hO
.r/i d3r D e
X

��
1 .

This expression clearly does not equal zero. Is it surprising? We were guided by
the picture of the Dirac sea of occupied negative energy states and the above result
corresponds to its total (infinite) charge. While the energy of the Dirac sea is not
of concern (unless one deals with problems on cosmological scales), the nonzero
vacuum charge density is not to be readily dismissed. Nonzero vacuum charge
density creates an electrostatic field which in turn acts on the “real” electron bound
in an atom. This has observable consequences, as we will see later.

Heisenberg was the first one to notice that if an antisymmetrized expression is
used instead of (7.47)

Oj� D e

2

h O C, �0�� O 
i

D e

2

X

�


XC� �0��X
ŒOcC� , Oc
� , (7.49)

one obtains (check it!)

h Oj�i D � e

2

X

�

�

UC� �0��U� � VC� �0��V�
�

. (7.50)

This expression yields vacuum charge density

h O
.r/i D � e

2

X

�

�jU� .r/j2 � jV� .r/j2
�

.

For the vacuum charge, we find

Q0 D
Z

h O
.r/i d3r D � e

2

 
X

�C
1 �

X

��
1

!

D 0 .
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The last equality holds for an electron-positron field in a free space. In case of
an electron-positron field existing on the background of an electrostatic field of a
nucleus, charge asymmetry appears as the electrons are attracted to the nucleus while
the positrons are repelled. Consequently, the vacuum charge density is nonzero. We
will see later in the text that this effect bears observable consequences.

We can manipulate the charge density four-vector into the normally ordered form
so that its vacuum expectation value vanishes. The original operator is a sum of the
normally ordered operator and the vacuum expectation value:

Oj� D :Oj� :C hOj�i .

We insert this decomposition into Eq. (7.46) to obtain the following form of the
interaction Hamiltonian

OH1 D �
Z

h Oj i � OA d3r �
Z

: Oj : � OA d3rC 1

2

1

4�

Z
: O
.r/ :: O
.r0/ :
jr � r0j d3r d3r0

C 2
1

2

1

4�

Z h O
.r/i : O
.r0/ :
jr � r0j d3r d3r0 C 1

2

1

4�

Z h O
.r/i h O
.r0/i
jr � r0j d3r d3r0 .

(7.51)

The last term captures the electrostatic interaction of the vacuum charge density with
itself. It merely shifts the atomic energy levels by the same infinite number and thus
will not be considered henceforth.

7.2.3 Note on Charge Symmetry

There is another argument, apart from the one already given, why the expres-
sion (7.49) is better than (7.47). This argument is related to charge symmetry.8 In
classical electrodynamics, the equality jc D �j holds. Here, j and jc are four-currents
created by charge clouds differing merely by their signs. We will see that if we insist
the same relation holds in quantum theory, we will find that the four-current density
has to be of the form (7.49), instead of (7.47). To prove this assertion, we need to
elucidate on the change of charge sign for the case of the Dirac field.

We begin with the change of charge sign for the Dirac wave function. Let us
therefore consider the Dirac equation (7.19) for an electron in an external EM field

Œ� � .i@ � eA/ � m�  D 0 . (7.52)

8In fact, it is the same argument as the first one, but in disguise.
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Is there a way to obtain the positron wave function  c from the electron wave
function  

Œ� � .i@C eA/ � m�  c D 0 ?

For sure, there is. It suffices to take the complex conjugate of Eq. (7.52):

���� � .i@C eA/ � m
�

 � D 0 (7.53)

and exploit the advantage of the freedom in choosing a specific form of the � -
matrices. We perform a unitary transformation of the wave function

 D U M (7.54)

in the Dirac equation (7.52) and multiply Eq. (7.52) from the left by the inverse
matrix UC; we thus find

�

�M � .i@ � eA/ � m
�

 M D 0 ,

where9

�M
� D UC��U.

If we opt for

U D 1p
2

�
1 �2

��2 1

�

, (7.55)

we obtain Majorana realization of the Dirac � -matrices

�M
0 D

�
0 �2

�2 0

�

, �M
1 D

��i�3 0
0 �i�3

�

, (7.56a)

�M
2 D

�
0 �2

��2 0

�

, �M
3 D

�
i�1 0
0 i�1

�

. (7.56b)

The advantage of this particular choice is that the � -matrices are purely imaginary

�M D �.�M/� (7.57)

9In more detail, .�M
� /ab D .UC/ac.��/cdUdb. These are four matrix equations for � running from

0 to 3, and a, b, c, d are spinor indices running from 1 to 4.
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and the positron wave function is obtained from electron wave function by complex
conjugation, see Eq. (7.53),

. M/c D . M/� . (7.58)

It follows from Eq. (7.54) that the relation between the electron and positron wave
functions in the standard Dirac realization reads

 c D U. M/c D U. M/� D U.UC/� � D �2 
� , (7.59)

where we used the explicit form of the U-matrix, Eq. (7.55), in the last equality. We
will use this relation later in Sect. 7.3.2.

Now to the change of the charge sign for Dirac field. Rewriting Eq. (7.52) into
the Hamiltonian form

�

i
@

@t
� OhD.e/

�

 M D 0 ,

where OhD.e/ is given by Eq. (7.34), and taking the complex conjugate we obtain

�

i
@

@t
C Oh�D.e/

�

. M/� D 0 )
�

i
@

@t
� OhD.�e/

�

. M/� D 0 .

Applying now the procedure of canonical quantization to the field  M we find that
the quantized field O M annihilates electrons and creates positrons

O M D
X

�

Oc�XM
� D

X

�


 Ob�UM
� C OdC� VM

�

�

.

Likewise, applying the canonical quantization to the charge conjugated field . M/�
we find that the quantized field O M

c annihilates positrons and creates electrons

O M
c D

X

�

OcC� .XM
� /
� D

X

�


 ObC� .UM
� /
� C Od� .VM

� /
�� .

Now we are sufficiently armed to tackle the question raised in the beginning of
this section, namely the validity of the equality

.Oj�/c D �Oj� . (7.60)

Considering the four-current created by the charge conjugated field we obtain
successively
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.Oj�/c D e

2

h

. O M
c /
C, �M

0 �
M
�
O M

c

i

D e

2

X

� ,


.XM
� /
>�M

0 �
M
� .X

M

 /
�ŒOc� , OcC
 � D

D e

2

X

� ,


.XM

 /
C�M

0 �
M
� XM

� ŒOc� , OcC
 � D �
e

2

X

� ,


.XM

 /
C�M

0 �
M
� XM

� ŒOcC
 , Oc� � D �Oj� ,

where in the third equality we used

.XM
� /
>�M

0 �
M
� .X

M

 /
� D .XM


 /
C.�M

� /
C.�M

0 /
CXM

� D .XM

 /
C�M

0 �
M
� XM

� .

Here, in the first equality we used the rule for transposing the matrix product,
.AB/> D B>A>, in Majorana representation .�M

0 �
M
� /
> D .�M

� /
C.�M

0 /
C, and the

fact that the expression is a number, in the second equality we used the identity
�C� �C0 D �0�� which follows from the standard convention

�C� D �0���0 , (7.61)

confront with Eqs. (7.18) and (7.56).
It is not difficult to convince oneself about the following. Firstly, had we chosen

the four-current operator in the form (7.47), the relation (7.60) would not follow
thereof. Secondly, the expressions (7.47) and (7.49) differ only by their vacuum
expectation values, their normally ordered form is the same.

7.2.4 Note on Gauge Invariance

We have already mentioned earlier that the four-potential A is determined but for the
gauge transformation (7.10). However, this freedom is canceled by another freedom
at our disposal: the freedom in the overall phase of the wave function. If the gauge
transformation

A�.x/! A�.x/C @��.x/

is accompanied by the phase transformation

 .x/! e�ei�.x/ .x/ ,

Eq. (7.19) remains unchanged. One crucial note follows from this observation: the
form of the Hamilton operator (7.45) is not unique. When opting for a different gauge
than the Coulomb one, the Hamiltonian acquires a different form. Nevertheless,
physical predictions, such as the differences between eigenvalues of the Hamiltonian,
must be independent of the choice of gauge. They indeed are, despite it being far
from obvious now. Later on, we will return to this point, see Sects. 7.4.10, 7.6.2
and 7.7.4. For an in-depth treatment, we refer the reader to, e.g., [30, 42].
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7.3 Ordinary Perturbation Method

Now that we have found the Hamiltonian for relativistic quantum electrodynamics,
Eq. (7.45), we have all we need, don’t we? Once we determine the Hamiltonian,
it only remains to find its eigenvalues and eigenvectors. Recall that the relativistic
Hamiltonian consists of three subHamiltonians: the Hamiltonian of a free EM field,
given by Eq. (6.61), the Hamiltonian of a free electron-positron field, given by
Eq. (7.42), and the interaction Hamiltonian, given by Eq. (7.51). We do not need
to search for the exact solution of the eigenvalue problem, though. Nobody has
found it, anyway. Perturbation treatment suffices. It will shortly become clear that
the corrections to the energies of the “free” Hamiltonian

OH0 D : OHEM :C : OHD :

due to the interaction Hamiltonian are proportional to the square of the elementary
charge, or—in the “correct,” “natural” units—to the fine structure constant ˛ '
1=137.036. We will henceforth denote the successive terms of the interaction
Hamiltonian (7.51) as . OH1/

VA? , . OH1/
NO? , . OH1/

NO
jj , and . OH1/

VA
jj . The symbols VA and

NO stand for the interaction of the vacuum expectation value and the normally
ordered form of the four-current created by the Dirac field, respectively. From a
physics point of view, this separation corresponds to splitting of the four-current into
a part which is present even if there are no excitations of the Dirac field (labeled
herein as VA) and into a part which is created by the excitations of the field (denoted
herein as NO). The symbols? and jj indicate whether the four-current interacts with
the transverse (dynamical) or the longitudinal (static) parts of EM field, respectively.

Note that the individual terms are of different orders of magnitude. To obtain
contribution of all of the terms at the order e2, we need to take the transverse parts
to the second order, while the longitudinal ones only to the first order.

Let us first introduce a few abbreviations, to save ink:

. OH1/
NO? D �

Z

: Oj : � OA d3r

D �e
X

�� 0�




w��
0

�
Oa� . ObC� Ob� 0 � OdC

� 0

Od� C ObC� OdC� 0

C Od� Ob� 0/

C w��
0

�� OaC� . ObC� Ob� 0 � OdC
� 0

Od� C ObC� OdC� 0

C Od� Ob� 0/
�

, (7.62)

where we inserted for Oj from Eq. (7.49) and for OA from Eq. (6.47) and denoted

w��
0

� D
Z

.XC� /a.�0�/ab � T� .X� 0/b
d3rp
2!�

. (7.63)



7.3 Ordinary Perturbation Method 313

Obviously, the index � runs over modes of the EM field, indices � and � 0 over
modes of the Dirac field, and a and b are spinor indices. Modes of the Dirac field
corresponding to positive or negative energies will be distinguished by the signs C
or �, respectively. For instance,10

wC� ,�� 0

� D
Z

.UC� /a.�0�/ab � T� .V� 0/b
d3rp
2!�

. (7.64)

Similarly, we rewrite the contribution of the longitudinal part of the interaction,

. OH1/
NO
jj D

Z
1

2

1

4�

: O
.r/ :: O
.r0/ :
jr � r0j d3rd3r0 (7.65)

D e2

2

X

�� 0

0

v�� 0,

0. ObC� Ob� 0 � OdC
� 0

Od� C ObC� OdC� 0

C Od� Ob� 0/

. ObC
 Ob
0 � OdC

0

Od
 C ObC
 OdC
0

C Od
 Ob
0/ ,

where we inserted for O
 from Eq. (7.49) and denoted

v�� 0,

0 D 1

4�

Z XC� .r/X� 0.r/XC
 .r0/X
0.r0/
jr � r0j d3rd3r0 . (7.66)

If we further denote

ew00
� D

Z

h Oj i � T� d3rp
2!�

(7.67)

and

ev�� 0,00 D 1

4�

Z
XC� .r/X� 0.r/ hO
.r0/i

jr � r0j d3rd3r0 , (7.68)

we can write

. OH1/
VA
jj D C 2

1

2

1

4�

Z h O
.r/i : O
.r0/ :
jr � r0j d3rd3r0 (7.69)

D e2
X

� ,� 0

v�� 0,00. ObC� Ob� 0 � OdC
� 0

Od� C ObC� OdC� 0

C Od� Ob� 0/

10To save ink, the notation is slightly inaccurate. We should also distinguish positive and
negative modes in the indices w in Eq. (7.62) and other expressions; for instance, we should
write

P

�� 0
wC� ,C� 0

� Oa� Ob� Ob� 0 instead of
P

�� 0
w� ,� 0

� Oa� Ob� Ob� 0 , and
P

�� 0
w�� ,C� 0

� Oa� Od� Ob� 0 instead of
P

�� 0
w� ,� 0

� Oa� Od� Ob� 0 .
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and

. OH1/
VA? D �

Z

h Oj i � A d3r D �e
X

�

�

w00
�
Oa� C w00�� OaC�

�

. (7.70)

7.3.1 Interaction of a Bound Electron with Fluctuations
of Fields

In this section, we commence a seemingly modest project: calculation of the effect of
the interaction Hamiltonian (7.51) on the positions of spectral lines of hydrogen-like
atoms. Let us recall that the electrostatic interaction between a proton (or a nucleus
in general) and an electron is already included in the Hamiltonian of a free Dirac field
: OHD :. Energies of one-particle states of this field are solutions of the one-particle
Dirac equation, and within the nonrelativistic limit, they become solutions of the
Pauli equation. Let us consider a hydrogen-like atom in one of its stationary states,
calling it 1, and the quantized electromagnetic field in the ground state. In the first,
and already satisfying, approximation, such a state is an eigenstate of OH0

j 0i D ObC1 j0i (7.71)

with energy

E0 D E1C .

The state j0i denotes the common vacuum state of both the electromagnetic and
electron-positron fields. Clearly, the state 1 is one of the solutions of the Dirac
equation (7.20) with positive energy. For instance, in the nonrelativistic limit, this
could be the state where the electron is in the orbital 1s with its spin projection
C 1

2 along the z-axis. However, the electron interacts with fluctuations of the
electromagnetic and electron-positron fields, and thus the energy E0 is slightly
shifted. Let us calculate to what extent. We will see that our seemingly modest
project turns out to be a very ambitious one. We will have to master a number of
new skills, at both technical and conceptual levels, to complete it successfully.

We calculate the effect of OH1 on the energy levels of OH0 to the second order of
the perturbation method. At the first sight, the following calculations may appear
slightly frightening. However, we would like to stress that they are in fact simple
in terms of concepts. Besides the above discussed interaction Hamiltonian, we have
already developed all of the requisite tools, namely the formulas for the first and
second order energies, Eqs. (2.15), (2.16), and (6.186)

E1 D h 0j OH1j 0i , E2 D �h 0j OH1
1

OH0 � E0

OH1j 0i ,
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the (anti)commutation relations for creation and annihilation operators, Eqs. (6.37)
and (7.36), and the definition of the vacuum, Eqs. (6.42) and (7.40).

We begin by evaluating the contribution of the longitudinal part of the EM field
to the electron self-energy. In the first order of the perturbation method, we have

.E1/
SE
jj D h 0j. OH1/

NO
jj j 0i D h0j Ob1. OH1/

NO
jj ObC1 j0i . (7.72)

The method of calculating expressions of this type is universal and we have already
used it in the last chapter. We know that the annihilation operators acting on
the “right” vacuum, j0i, and creation operators acting on the “left” vacuum, h0j,
yield zero. Hence all monomials of the ladder operators that either start with a
creation operator or end with an annihilation operator vanish. In case of monomials
comprising an annihilation operator on the left and a creation operator on the right,
we use (anti)commutation relations to move the last annihilation operator to the
very right and the first creation operator to the very left. In this way, strings of
operators will be successively replaced by strings of (anti)commutators. However,
those are numbers and can be taken out of the scalar product. Finally, we exploit the
normalization of the vacuum state, h0j0i D 1. For instance, we insert Eq. (7.65) into
Eq. (7.72) and we face the expression

.E1/
SE
jj D

e2

2

X

�� 0

0

v�� 0,

0h0j Ob1. ObC� Ob� 0 � OdC
� 0

Od� C ObC� OdC� 0

C Od� Ob� 0/

� . ObC
 Ob
0 � OdC

0

Od
 C ObC
 OdC
0

C Od
 Ob
0/ ObC1 j0i ,

which may appear frightening. However, we recognize that only monomials
constituted by the same number of creation and annihilation operators, both electron
and positron, can yield nonvanishing contribution

.E1/
SE
jj D

e2

2

X

�� 0

0

v�� 0,

0h0j Ob1. ObC� Ob� 0

ObC
 Ob
0 C Od� Ob� 0

ObC
 OdC
0

/ ObC1 j0i .

Using now the anticommutation relations (7.36), we easily obtain

.E1/
SE
jj D

e2

2

X

�� 0

0

v�� 0,

0

�

ı1,�ı� 0C,
Cı
0,1 � ı1,� 0ı��,
0�ı
,1
�

D e2

2

X




.v1
C,
C1 � v
�1,1
�/ , (7.73)

where we omitted the term e2 P v�� 0,

0ı� 0C,
Cı��,
0�=2, which emerges from the
second term in the previous equation. It does not depend on the reference state 1; it
is a constant which disappears when considering a difference of energy levels.



316 7 Dynamics: The Relativistic Theory

In a similar way, we calculate the contribution of the transverse part of the EM
field to the electron self-energy. The only difference is that we now add the creation
and annihilation of a virtual photon.

.E2/
SE? D �h0j Ob1. OH1/

NO?
1

OH0 � E0

. OH1/
NO? ObC1 j0i (7.74)

D .�e2/
X

��� 0

0

w��
0

� w


0

�� h0j Ob1

�

ObC� Ob� 0

1

: OHD : C!� � E0

ObC
 Ob
0

COd� Ob� 0

1

: OHD : C!� � E0

ObC
 OdC
0

�

ObC1 j0i

D .�e2/
X

��� 0

0

w��
0

� w


0

��
�
ı1,�ı� 0C,
Cı
0,1

E
C C !� � E0
� ı1,� 0ı��,
0�ı
,1

E
C � E
0� C E0 C !� � E0

�

D .�e2/
X

�


 

w1,
C
� w
C,1��

!� C E
C � E0
� w
�,1

� w1,
���
!� C E0 � E
�

!

,

where we again omitted the constant term

.�e2/
X

��� 0

0

w��
0

� w


0

��
.!� C E
C � E
0�/

ı� 0C,
Cı��,
0� .

The calculation of the vacuum polarization effect is even easier, as the vacuum
expectation values of charge and current densities are merely numbers, unlike the
operators in the previous expressions:

.E1/
VP
jj D h0j Ob1. OH1/

VA
jj ObC1 j0i D e2

X

� ,� 0

v�� 000h0j Ob1
ObC� Ob� 0

ObC1 j0i D e2v1100 ,

(7.75)
and

.E2/
VP? D �h0j Ob1

�

. OH1/
VA?

1

: OHEM :C : OHD : � E0

. OH1/
NO?

C . OH1/
NO?

1

: OHEM :C : OHD : � E0

. OH1/
VA?
�

ObC1 j0i

D �e2
X

w00
� 0

w��
0

� h0j Ob1

�

Oa� 1

: OHEM :C : OHD : � E0

OaC
� 0

ObC� Ob� 0

C Oa� 0

ObC� Ob� 0

1

: OHEM :C : OHD : � E0

OaC�
�

ObC1 j0i

D �2e2
X

�

w00
� w11��
!�

. (7.76)
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Again, we skipped the constant term �h 0j. OH1/
VA?

1
OH0�E0

. OH1/
VA? j 0i which merely

shifts all the atomic energy levels by the same value.
We have thus almost reached the end; it now remains only to insert into the last

two equations from Eqs. (7.63), (7.67) and (7.68) for v and w, and to make transition
from discrete to continuous modes of the EM field T� .r/ ! .2�/�3=2".
/eik�r, see
Eq. (6.49). We thus obtain

.E1/
VP
jj D

e

4�

Z Z

UC1 .r/U1.r/
1

jr � r0j
˝ O
.r0/˛ d3r d3r0

and

.E2/
VP? D�2e

Z

d3rd3r0
Z

d3k
.2�/3

1

2!2

X




UC1 .r/e
ik�r�0� �".
/U1.r/h Oj.r0/i�".
/e�ik�r0

.

By inserting the Fourier transform of the Coulomb potential (3.114) and summing
over polarizations (6.55), the last two equations can be united to one

.�E/VP D � e

.2�/3

Z
d3k
!2

Z

d3r UC1 .r/�0��eik�rU1.r/P��

Z

d3r0h Oj�.r0/ie�ik�r0

,

(7.77)
where

P�� D ���� C k�k�
k2

, (7.78)

k D .0, k/ , k2 D �!2 . (7.79)

We can further manipulate Eq. (7.50) for vacuum four-current density into the form

h Oj�.r/i D e

2

X

�

h�

V�a .r/
�C
.�0��/abV�b .r/ �

�

U�
a .r/

�C
.�0��/abU�

b .r/
i

(7.80)

D e

2
.�0��/ab

X

�

hrj
h OP�� � OP�C

i

ba
jri ,

where the projection operators onto the subspaces of positive and negative energy
states were introduced

P
Cba .r, r0/ D U


b.r/.U


a/
C.r0/ , P
�ba .r, r0/ D V
b .r/.V



a /
C.r0/ . (7.81)

Likewise, by inserting for v from Eq. (7.66), and the Fourier transform of the
Coulomb potential, Eq. (3.114), Eq. (7.73) can be brought into the form

.E1/
SE
jj D e2

Z
d3k
.2�/3

Z Z

d3r d3r0Mjj.k, r, r0/ , (7.82a)
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Mjj.k, r, r0/ D 1

2!2

X




UC1 .r/e
ik�r �P
C.r, r0/ � P
�.r, r0/

�

e�ik�rU1.r0/ .

(7.82b)

Finally, by inserting for w Eq. (7.63), changing from discrete to continuous number
of modes of the EM field, Eq. (6.49), and summing over polarizations, Eq. (6.55),
we can rewrite Eq. (7.74) as

.E2/
SE? D .�e2/

Z
d3k
.2�/3

Z Z

d3r d3r0M?.k, r, r0/ , (7.83a)

M?.k, r, r0/ D Pij

2!

X




UC1 .r/�0�ie
ik�r
�

P
C.r, r0/
! C E
C � E0

� P
�.r, r0/
! � E
� C E0

�

e�ik�r0

�0�jU1.r0/ . (7.83b)

We thus see that by means of the “good old” perturbation method, we were able to
derive all of the leading QED corrections to the atomic energy levels. From this point
of view, the only conceptually new step involved in transition from the nonrelativistic
to relativistic quantum theory is to tackle the problem of negative energy states of
one-particle Dirac equation by a convenient definition of the vacuum state, see
Eq. (7.40). All other aspects of the formalism have been already discussed earlier.

Although the above viewpoint is possible, it is rather unsuitable for the following
reasons:

• The summations in Eqs. (7.80), (7.82), and (7.83) over the modes of the Dirac
field, that is over the solutions of the one-particle Dirac equation (7.20), have
to be understood symbolically. In fact, it is a summation and integration over
the discrete and continuous parts of the hydrogen spectrum, respectively. The
presence of the positive and negative energy projectors in Eqs. (7.80), (7.82),
and (7.83) makes the calculation of the integrals exceedingly difficult, as becomes
clear almost immediately once one tries to evaluate these expression any further.
The negative energy states remain to be troublemakers.

• The Lorentz invariance of the theory, hidden already in the starting Hamilto-
nian (7.45), is further obscured by the necessity to distinguish between the
positive- and negative-energy virtual states together with the necessity to
distinguish between the transverse and longitudinal parts of the EM field. The
notion of the positive and negative energy states, and for that matter, the notion of
the longitudinal and transverse parts of EM field as well, are not Lorentz-invariant
notions. A positive energy state in one inertial frame is a mixture of positive and
negative energy states in a different inertial frame. Likewise, a transverse part of
the EM field in one inertial frame is a mixture of transverse and longitudinal parts
of the EM field in a different inertial frame. We emphasize that the lack of the
manifest Lorentz invariance is not a mere formal insufficiency. It is closely related
to the previous point, namely the difficulty of performing actual calculations.
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• Last and worst: the corrections to the energy levels expected to be small because
of the small value of the fine-structure constant ˛ turn out to be infinite! We
already encountered this in Sect. 6.5 and showed there that a careful distinction
between a theoretical construction and actual measured value removes the
worst divergences. One could therefore expect a similar approach could solve
the problem within the relativistic theory too. In fact, the situation is even
better in this case: the so-called renormalization makes the relativistic quantum
electrodynamics finite. However, to tackle the infinities unambiguously, the
manifest Lorentz invariance is again of key importance.

In summary, one could build up the relativistic quantum theory as closely
as possible to the nonrelativistic theory. However, that is certainly not the best
choice. Such approach lacks an essential insight how to derive expressions for the
mutual interaction of the electromagnetic and electron-positron fields in a manifestly
Lorentz-invariant form. The therein absent insight was provided by an American
physicist Richard P. Feynman.

7.3.2 Positronium I

Prior to the exposition of the Feynman approach, we make a small digression. Despite
having emphasized in length that the usual formalism of quantum mechanics, with
its separation of time and space variables, is generally not suitable for calculations
of relativistic processes, there are a few simple problems where the application of
this formalism is not so unfavorable. It is always worth realizing what one can and
cannot do with the so far acquired knowledge. For instance, were we to calculate
the Lamb shift of atomic energy levels, we would need to master additional skills.
However, our present knowledge suffices to explain the most important features of
positronium, a bound state of an electron and a positron.

The ground state of the positronium lives about 10�10 s, then vanishes with a
flash of two photons, see the first two diagrams in Fig. 7.2. The gross structure of
positronium is within a reasonable approximation given by Eq. (3.36), where we
insert Z D 1, mj D me to obtain �12 D R1c � 3

8 ' 1,233,690 GHz which is in

Fig. 7.2 Real and virtual annihilation of an electron-positron pair



320 7 Dynamics: The Relativistic Theory

a good agreement with the experiment. However, the fine splitting of the ground
state is not given by Eq. (3.58). There is another effect responsible for it, namely
the virtual positronium annihilation, see the third diagram in Fig. 7.2. We now show
how to calculate the lifetime and fine-splitting of the positronium ground state.

1. Relation of bound- and free-state wave functions
When we were considering interaction of a bound electron with fluctuations of
the fields, we expanded the electron-positron field into the eigenstates of the
Dirac Hamiltonian (7.34) and neglected the proton motion. Since a proton is
about 2000 times more massive than an electron, it is clearly not a bad first
approximation for which we shall correct in due time. However, in case of
positronium, the situation is completely different as one must treat the positron
in the same way as an electron. For our current purposes, it suffices to express
the bound state as a linear combination of free states

 0
at.r/ D

Z

d3p 0
at.p/

eip�r

.2�/3=2
D
Z

d3p 0
at.p/

eip�.r1�r2/

.2�/3=2
. (7.84)

Here, we used the expansion of the wave function in the coordinate represent-
ation into the momentum representation, a three-dimensional generalization of
Eqs. (1.94) and (1.95), and we subsequently returned to the original coordinates
of the electron and positron, see Eq. (3.4). We took the bound-state wave function
in the nonrelativistic approximation which well suffices for the accuracy we aim
for. The last equation can be rewritten in the Dirac notation as

hr1, r2j 0
at

˛ D .2�/3=2
Z

d3p 0
at.p/hr1jpihr2j�pi . (7.85)

We make one more step in abstraction and leave out the projection onto the
coordinate eigenstates:

ˇ
ˇ 0

at

˛ D .2�/3=2
Z

d3p 0
at.p/jpi1j�pi2 (7.86)

We express the one-particle electron and positron states in terms of action of
the corresponding operators on the vacuum

ˇ
ˇ 0

at

˛ D
X

p

 0
at.p/ ObCp OdC�pj0i . (7.87)

To avoid complications stemming from continuum of the states, we assumed, as
in the case of EM field, that the electron-positron field is periodic with period L
and we will take the continuum limit L!1 at the end of our derivations. The
factor .2�/3=2 disappeared upon transition from continuum to discrete basis.
The state (7.87) is now normalized to unity, in the same way as the state (7.84)
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we started with11:

˝

 0
at

ˇ
ˇ 0

at

˛ D
X

p

X

p0

Œ 0
at.p

0/�� 0
at.p/h0j Od�p0

Obp0

ObC

p
OdC

�pj0i D
X

p

j 0
at.p/j2

D
X

p

˝

 0
at

ˇ
ˇpihpj 0

at

˛ D ˝ 0
at

ˇ
ˇ 0

at

˛ D
Z

d3r
˝

 0
at

ˇ
ˇrihrj 0

at

˛ D
Z

d3rj 0
at.r/j2 D 1 .

In the second equality, we used the anticommutation relations (7.36), and in
the fourth equality, we used the discrete three-dimensional generalization of the
completeness relation (1.92)

X

p

jpihpj D 1 . (7.88)

The most important contribution to the processes of the real and virtual
annihilation comes from the states of the expansion (7.87) which do not move
at all

ˇ
ˇ 0

at

˛ '
X

p

 0
at.p/ ObC0 OdC0 j0i . (7.89)

Again, this approximation suffices for our purposes.
We now decompose the electron-positron field into the eigenstates of the free

Dirac Hamiltonian. Namely, we follow the procedure outlined in Sect. 7.2.1 with
the only exception of setting A D ' D 0 in Eq. (7.34).

2. Interaction Hamiltonian
Only the part (7.62) of the interaction Hamiltonian (7.51) is of interest now; the
other terms do not contribute to the process in question. Let us examine it:

. OH1/
NO? D . OH1/ee C . OH1/pp C . OH1/ep,0 C . OH1/0,ep,

where

. OH1/ee D �e
X

�� 0

u� ,� 0 ObC� Ob� 0 , . OH1/pp D �e
X

�� 0

u� ,� 0

.�1/ OdC
� 0

Od� ,

(7.90)
. OH1/ep,0 D �e

X

�� 0

u� ,� 0 ObC� OdC� 0

, . OH1/0,ep D �e
X

�� 0

u� ,� 0 Od� Ob� 0

11On the other hand, the norm of the states (7.86) and (7.85) is infinite. How is it possible? Upon
transition from Eqs. (7.84) to (7.85), we tacitly moved from a function of one variable to a function
of two variables. As a function of one variable r D r1 � r2, the bound state function is normalized
to unity, while as a function of two variables, r1, r2, it is normalized to the ı-function.
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and where we introduced the abbreviations

u� ,� 0 D
X

�




w��
0

�
Oa� C w��

0

�� OaC�
�

.

The term . OH1/ee annihilates an electron and creates another one, the term . OH1/pp

annihilates a positron and creates another one, the term . OH1/ep,0 creates an
electron-positron pair out of vacuum, and the term . OH1/0,ep annihilates an
electron-positron pair.

3. Second order of the perturbation method—virtual annihilation
The energy shift of positronium caused by its virtual annihilation reads, see
Eqs. (2.16) and (6.186),

E2 D �
˝

 0
at

ˇ
ˇ

�

. OH1/0,ep
1

: OHD : C : OHEM : �E0

. OH1/ep,0

C . OH1/ep,0
1

: OHD : C : OHEM : �E0

. OH1/0,ep

	
ˇ
ˇ 0

at

˛

. (7.91)

At the second order of perturbation method, there is also contribution from

˝

 0
at

ˇ
ˇ

�

. OH1/ee
1

: OHD : C : OHEM : �E0

. OH1/pp

C . OH1/pp
1

: OHD : C : OHEM : �E0

. OH1/ee

	
ˇ
ˇ 0

at

˛

.

These terms represent one-photon exchange between the electron and positron
and a part of the electron and positron self-energies. The one-photon exchange
was already analyzed in Sects. 6.5.5 and 6.5.6, the self-energy effect was
discussed in the previous Sect. 7.3.1. For now, we ignore these terms and focus
solely on the calculation of Eq. (7.91); by means of Eqs. (7.89) and (7.90) one
obtains

E2 D �e2

ˇ
ˇ
ˇ
ˇ
ˇ

X

p

 0
at.p/

ˇ
ˇ
ˇ
ˇ
ˇ

2
X

�

�
w�0,C0
� wC0,�0��
! C E0

C wC0,�0
� w�0,C0��
! � E0

	

D �e2

ˇ
ˇ
ˇ
ˇ
ˇ

X

p

 0
at.p/

ˇ
ˇ
ˇ
ˇ
ˇ

2

L3UC0 �0�iV0VC0 �0�iU0 lim
!!0

1

2!

�
1

! C E0
C 1

! � E0

�

D e2

4m2

ˇ
ˇ
ˇ
ˇ
ˇ

X

p

 0
at.p/

ˇ
ˇ
ˇ
ˇ
ˇ

2

L3UC0 �0�iV0VC0 �0�iU0 . (7.92)

In the second equality, we substituted, see Eqs. (6.43), (6.44), and (7.64),



7.3 Ordinary Perturbation Method 323

w�0,C0
� D 1p

2!�

Z

d3rVC0 �0� � T� .r/U0 D ık� ,0
1p
2!�

VC0 �0� � ".�/U0L3=2 ,

and in the third equality we also substituted

E0 D EC0 � E�0 D m � .�m/ D 2m. (7.93)

Clearly, only the zeroth mode of the EM field k� D 0 contributes! Therefore,
there is a limit ! ! 0 in the second row of Eq. (7.92). Since the zeroth mode
possesses no direction, only the first term ıij in the projector (6.32) contributes.

Let us recall that U0 and V0 describe the electron and positron at rest,
respectively. These states depend only on the spin, they are space-independent,
therefore they are to be regarded as constants when integrating over r. Note that
we omitted additional terms originating from Eq. (7.91). These terms correspond
either to (1) virtual creation and annihilation of electron-positron pair and
photon, or (2) another part of electron and positron self-energies. The former is
state-independent and bears no observable consequences, and we omit the latter
now.

4. Second order of the perturbation method—real annihilation
For the probability amplitude of the positronium real annihilation, we find from
Eqs. (6.181), (7.89), and (7.90)

b2 D �e2h0j Oa1 Oa2. OH1/0,ep
1

: OHD : C : OHEM : �E0

h

. OH1/ee C . OH1/pp

i ˇ
ˇ 0

at

˛

D �e2
X

p

 0
at.p/

X

�

"

w�0,C�
1 wC� ,C0

2

�E�0 C EC� C !2 � .EC0 � E�0/

� w�� ,C0
2 w�0,��

1

EC0 � E�� C !1 � .EC0 � E�0/
C w�0,C�

2 wC� ,C0
1

�E�0 C EC� C !1 � .EC0 � E�0/

� w�� ,C0
1 w�0,��

2

EC0 � E�� C !2 � .EC0 � E�0/

#

. (7.94)

The four terms present multiplication of two possibilities, the “first” photon
is radiated by either electron or positron, by two other possibilities, either the
“first” photon has frequency !1 and the “second” !2 or vice versa.

We can manipulate this expression into more a suitable form. Each of the
two pairs of fractions in the square brackets can be rearranged by means of the
conservation of energy, see Eq. (6.177),

EC0 � E�0 D !1 C !2

in such a way that only one of the frequencies !1 or !2 will be present. For
instance, we substitute for w from the definition (7.64) and find for the first pair
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of fractions in the square brackets in Eq. (7.94)

X

�

 

w�0,C�
1 wC� ,C0

2

�E�0 C EC� C !2 � .EC0 � E�0/

� w�� ,C0
2 w�0,��

1

EC0 � E�� C !1 � .EC0 � E�0/

!

D 1
p

.2!1/.2!2/

Z

d3rd3r0VC0 �0� � T1.r/
X

�

�
U� .r/UC� .r0/

EC� C !2 � EC0

C V� .r/VC� .r0/
E�� C !2 � EC0

�

�0� � T2.r0/U0 .

The reader now surely recognizes the spectral decomposition of the Dirac
Hamiltonian (7.34) with A D ' D 0 in the bracketed expression in the last
equation

X

�

�
U� .r/UC� .r0/

EC� C !2 � EC0
C V� .r/VC� .r0/

E�� C !2 � EC0
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D hrj 1
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ˇr0
˛

D hrj 1
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D
X

p

hrjpi 1

!2 � EC0 C �0� � pC �0m
hpjr0˛

D
X

p

hrjpi!2 � EC0 � �0� � p � �0m

.!2 � EC0/2 � p � p � m2
hpjr0˛ . (7.95)

In the equality between the second and the third row, we used the completeness
relation (7.88). When going from the third to the fourth row, both the numerator
and denominator were multiplied by!2�EC0��0� �p��0m. After substituting
the last equation into the penultimate one, the integration over the space variables
yields momentum conservation when going from “real” to “virtual” states and
back, see Eqs. (6.43) and (6.44):

Z

d3rT1.r/hrjpi D ".1/
Z

d3r
eik1�r

L3=2

eip�r

L3=2
D ".1/ı�p,k1 ,

Z

d3rT2.r/hpjri D ".2/ıp,k2 .

It follows from the last two equations that p � p D !2
1 D !2

2 . If we further recall
Eq. (7.93), the denominator in Eq. (7.95) equals

.!2 � EC0/
2 � p � p � m2 D �2!2m .



7.3 Ordinary Perturbation Method 325

By substituting these partial results into Eq. (7.94), we obtain

b2 D �e2
X

p

 0
at.p/

p

.2!1/.2!2/
VC

0

�

�0� � ".1/ !2 � m � �0� � k2 � �0m

�2!2m
�0� � ".2/

C �0� � ".2/ !1 � m � �0� � k1 � �0m

�2!1m
�0� � ".1/

	

U0ık1,�k2 . (7.96)

5. Relation between the positron and electron states
Before we proceed further, we need to ascertain the form of the positron state V0.
The state of an electron at rest is formally a solution to the Dirac equation (7.16)

j .t/i D e�imtjU0i , .�0 � 1/jU0i D 0 ,

and depends only on the electron spin state

jU0i D 1

L3=2

�jSie
0

�

, (7.97)

where jSi D j˙i denotes the state vector describing the electron states with
positive or negative spin projections along the z-axis. It follows from Eq. (7.59)

jV0i D �2
1

L3=2

 

jSi�p
0

!

D 1

L3=2

 

0
��2jSi�p

!

. (7.98)

In the following text, we will consider only real spinors jSip, thus we will omit
the star. Why not to take for V0 an arbitrary solution to Eq. (7.16) corresponding
to the rest state of a positron,

j .t/i D eCimtjV0i , .�0 C 1/jV0i D 0 ?

In other words, why do we need to consider

 

0
��2jSi�p

!

instead of

 

0
jSip

!

?

The reason is we need to compare electron and positron spins in the same
coordinate system. The solution for the positron rest state differs from the
solution for the electron rest state by the replacement t ! �t. In the positron
rest frame, the time flows in the opposite direction than in the electron rest
frame. In a frame where the time flows in the opposite direction, spin will be
reversed. But for the phase factor, this corresponds to the replacement j˙i !
�ij�i D ��2j˙i.
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6. Calculation of matrix elements
After substituting Eqs. (7.97) and (7.98) into Eq. (7.92) and using the identities12

.�i/ab.�i/dc D �1

2
.�i/ac.�i/db C 3

2
ıacıdb

and

.�2�i�2/
T D ��i , �2

2 D 1 ,

we rearrange Eq. (7.92) into the form of the matrix element of spin operators
between the initial and final positronium spin states

E2 D e2

2m2

ˇ
ˇ
ˇ
ˇ
ˇ

X

p

 0
at.p/

L3=2

ˇ
ˇ
ˇ
ˇ
ˇ

2

hSjehSjp
�

OSe � OSp C 3

4

�

jSiejSip . (7.99)

After inserting Eqs. (7.97) and (7.98) into Eq. (7.96) and performing several
straightforward algebraic manipulations involving the property (1.25) of Pauli
spin matrices, we obtain

jb2j D e2

m

X

p

j 0
at.p/j
L3

ık1,�k2
p

.2!1/.2!2/
j�1 � .".1/�".2//jjhSjp�2jSiej . (7.100)

As usual, �1 denotes the direction of the k1-vector, k1 D !1�1.
Positronium annihilation rate is given by the Fermi golden rule (6.177)

w D 2�

2

X

k1,k2,".1/,".2/

ı.E0 � !1 � !2/jb2j2 , (7.101)

where the factor one half comes from indistinguishability of photons and the
summation runs over all possible photon wave and polarization vectors.

7. Transition to continuous basis
We now take the limit L!1, which produces the following changes:

X

p

 0
at.p/

L3=2
!
Z

d3p
 0

at.p/
.2�/3=2

D  0
at.r D 0/ , (7.102)

12The first identity is most easily proved by means of Eq. (1.35) and the explicit
form of the spin matrices, Eqs. (1.21), (1.22) and (1.23). For instance, the lhs equals
1
2

�

.�
C

/ab.��

/dc C .��

/ab.�C

/dc

�C .�3/ab.�3/dc. Further, .�
C

/ab D 2ıa1ıb2, .�
�

/ab D 2ıa2ıb1

and .�3/ab D ıa1ıb1 � ıa2ıb2. Indices a, b, c, d equal only 1 or 2, therefore, for instance,
ıac D ıa1ıc1 C ıa2ıc2.
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where we used Eq. (7.84) in the last step, and

X

k1,k2

ık1,�k2

L3
!
Z

d3k1d3k2ı.k1 C k2/
1

.2�/3
. (7.103)

8. Integration over the wave vectors
After inserting the replacements (7.103) and Eq. (7.100) into Eq. (7.101), we
integrate over the “phase space of the photon final states”13

1

2

Z

d3k1d3k2ı.k1 C k2/
1

.2�/3
1

2!12!2
2�ı.E0 � !1 � !2/f .�1/ (7.104)

D 1

2

Z

d3k1
1

22.2�/2!2
1

ı.E0 � 2!1/f .�1/ D
Z

d˝1

64�2
f .�1/ ,

where in the last equation we introduced spherical coordinates in the wave
vector space.

9. Virtual annihilation—the final result
After substitution of Eq. (7.102) into Eq. (7.99), we find

E2 D �˛

m2
j 0

at.r D 0/j2
D OS2

E

, (7.105)

where we introduced total positronium spin operator OS D OSe C OSp. Transition
to the atomic units r D rA=mr˛, mr D m=2, and value of the positronium wave
function at the origin, see Eq. (4.101),

j 0
at.r D 0/j2 D .mr˛/

3j 0
at.rA D 0/j2 D


m˛

2

�3 1

4�

4

n3
ıl,0 (7.106)

lead to the fine-splitting between the singlet and triplet positronium ground
states

�theo.1
3s � 11s/ D 2R1c˛2

8

�
8

3
C 2

�

D R1c˛2 7

6
D 204.4 GHz , (7.107)

where 8=3 in the bracket stems from the spin-spin interaction, Eq. (3.58), and
the number 2 from the virtual annihilation, Eq. (7.105). In the last equality, we
used Eq. (3.12). Our theoretical prediction is in a satisfying agreement with the
experimental value [25]

�exp.1
3s � 11s/ D 203.3875.16/GHz . (7.108)

13Note that
R

d!1ı.E0 � 2!1/ D 1=2.
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It is worth noting the difference between this splitting in positronium and the
one in hydrogen, Eq. (3.59), namely notice the substantially greater value in
case of the former. Why is it so?

10. Real annihilation—final result
By substituting Eqs. (7.100), (7.102), (7.103), and (7.104) into Eq. (7.101), we
obtain for the positronium annihilation rate

w D e4

16�m2
j 0

at.r D 0/j2
Z

d˝1

4�

X

".1/,".2/

j�1 � .".1/ � ".2//j2jhSjp�2jSiej2 .

(7.109)
To perform the summation over polarization, we note that the expression �1 �
.".1/ � ".2// is a number independent of the coordinate system. Therefore, we
evaluate it in the frame (6.31), �1 D .0, 0, 1/. In case the first photon is polarized
along the x-axis, ".1/ D .1, 0, 0/, the second photon must be polarized along the
y-axis, ".2/ D .0, 1, 0/, and vice versa. We sum over both possibilities to find

X

".1/,".2/

j�1 � .".1/ � ".2//j2 D 2 . (7.110)

We should be more specific regarding the spin dependence of the positronium
state. Instead of the state (7.87), where the spin part was completely unspecified,
we should write the singlet positronium state in the form

ˇ
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˛ D
X

p

 0
at.p/

1p
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 ObCp,C OdC�p,� � ObCp,� OdC�p,C
�

j0i ,

where the additional signs specify the spin orientations with respect to the z-axis.
Calculation is then identical to the one outlined above but for the replacement

ˇ
ˇhSjp�2jSie
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ˇ
ˇ

1p
2
.h�j�2jCi � hCj�2j�i/
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ˇ
ˇ
ˇ

2

D 2 . (7.111)

The reader can easily convince himself that for an arbitrary triplet state,
the probability of two-photon annihilation vanishes and this statement holds
regardless of approximations made. For a general proof, see, e.g., [15].14 By

14The general proof is based on the recognition that the electromagnetic interactions are invariant
with respect to the replacement of particles by antiparticles. Hence, if the weak force is omitted, the
determination of positive and negative charge is purely a matter of convention, like the notion of
the left and right-hand side. Analogously to the conservation of “normal” parity, the conservation of
“charge” parity holds. The two-photon state is of even charge parity, while the triplet positronium
s-state is of odd charge parity. With an even charge parity Hamiltonian, the latter cannot make
transition to the former and vice versa. In more detail, a general singlet and triplet positronium
states can be written in a good approximation in the form
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substituting Eqs. (7.106), (7.110), and (7.111) into Eq. (7.109), we find the
lifetime of the positronium ground state

�theo.1
1s/ D 2

m˛5
! 1

2R1c˛3�
D 1.245 � 10�10 s ,

where the replacement (6.101) was made. This value is in a good agreement
with the experimental value [1]

�exp.1
1s/ D 1.251.2/ � 10�10 s .

The triplet state 13s annihilates into three photons; to describe this process, one
has to reach for the third order of the perturbation method, see e.g. [2, 15].
Lifetime of the lowest triplet state is approximately 10�7 s.

X

p

 0
at.p/

1p
2


ObC

p,C
OdC

�p,� � ObC

p,�
OdC

�p,C

�

j0i

and
X

p

 0
at.p/ObC

p
OdC

�pj0i ,

respectively. Charge conjugation swaps electron states to positronium states and vice versa

X

p

 0
at.p/

1p
2


OdC

p,C
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�p,� � OdC

p,�
ObC

�p,C

�

j0i

DX
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 0
at.�p/
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�p,� � ObC

p,�
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�p,C

�

j0i

and
X

p

 0
at.p/OdC

p
ObC

�pj0i D �
X

p

 0
at.�p/ObC

p
OdC

�pj0i ,

where we used the anticommutativity of ObC and OdC operators and made the replacement p!�p.
The reader will easily convince himself that if the wave function is even/odd in the coordinate
representation, it is even/odd in momentum representation as well. Hence it should be clear, see
Eq. (5.60), that the charge parity of positronium is

.�1/˘C D .�1/lCs,

where l and s are the total orbital and spin angular momenta. The charge parity of the vector
potential and consequently of the one-photon state is odd; a change of the charge sign, e! �e,
leads to a change of the potential sign, OA ! � OA, see the Maxwell equations (6.11). The charge
parity of the n-photon state is

.�1/˘C D .�1/n .

Since .Oj/c D �Oj , see Eq. (7.60), the interaction Hamiltonian (7.62) is of even charge parity.
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7.4 Feynman Space-Time Approach

7.4.1 Electron in an External EM Field

Feynman’s starting point was to turn away from the notion of a quantized Dirac
field.15 Instead, he created his own approach based on one-particle interpretation
of the Dirac equation.16 We have already seen that this interpretation encounters
difficulties when it comes to negative energies, see Sect. 7.1.5. However, note that
this problem arises merely from the separation of the space and time variables.
Therefore, if we follow the electron evolution in the whole space-time, we might
better understand what negative energies correspond to and how to interpret them
properly. Let us thus consider electron motion in an external, generally time-
dependent, EM field, see Eq. (7.44),

i
d

dt
j i D . OH0 C e OH1/j i , (7.112)

OH0 D �0� � Op C �0m , OH1 D ��0� � A.t, Or/ ,

where OH0 is the free-electron Hamiltonian and OH1 describes interaction of the electron
with the external classical EM field.17

A particle state at time t is determined by the action of an evolution operator,
propagator OU, on the particle state at time t0, see Eq. (1.14),

j .t/i D OU.t, t0/j .t0/i . (7.113)

After substituting Eq. (7.113) into Eq. (7.112), we obtain a differential equation for
the propagator18

�

i
d

dt
� OH0

�

OU.t, t0/ D e OH1.t/ OU.t, t0/ (7.114)

15See [35, p. 456].
16Other expositions of the Feynman approach we are aware of can be found either from the “master
himself” [7] or in [3, 11, 33].
17Let us emphasize once again that the components of A are operators, but solely in the sense of the
“first” quantization. The vector potential is a function of particle coordinates A D A.t, Or/, which
are represented by operators and do not generally commute with the components of the momentum
operator. Hence the components of Op and A generally do not commute with each other. In the next
Sect. 7.4.2 we show that the interaction of the electron with the quantized EM field can be brought
to the form very similar to Eq. (7.112).
18We should write OH1 D OH1.t, Or/, but let us omit the space dependence for now.
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and solve it by the method of Green functions.19 We attempt to find a function
obeying the equation

�

i
d

dt
� OH0

�

OG0.t, t0/ D ı.t � t0/ . (7.115)

Once we have OG0, the solution to Eq. (7.114) is obtained by integration

OU.t, t0/ D OU0.t, t0/C e
Z 1

t0

OG0.t, t0/ OH1.t
0/ OU.t0, t0/dt0 , (7.116)

where OU0 is an evolution operator of a free particle

�

i
d

dt
� OH0

�

OU0.t, t0/ D 0 , OU0.t0, t0/ D 1 . (7.117)

To verify that the expression (7.116) indeed solves Eq. (7.114), we act with the

operator



i d
dt � OH0

�

on both sides of Eq. (7.116)

�

i
d

dt
� OH0

�

OU.t, t0/D
�

i
d

dt
� OH0

�

OU0.t, t0/
„ ƒ‚ …

0

Ce
Z 1

t0

�

i
d

dt
� OH0

�

OG0.t, t0/
„ ƒ‚ …

ı.t�t0/

OH1.t
0/ OU.t0, t0/dt0De OH1.t/ OU.t, t0/.

How are OG0.t, t0/ and OU.t, t0/ related to each other? There are two basic possibilities20

OG.˙/
0 .t, t0/ D �i�.˙t� t0/ OU0.t, t0/ , (7.118)

as can be easily verified by substituting directly into Eq. (7.115) and using
Eq. (7.117). These two basic cases are referred to as retarded and advanced Green
functions.

Equation (7.116) can be solved iteratively: we substitute OU0 for OU on the rhs and
denote the result as OU1,

OU1.t, t0/ D e
Z 1

t0

OG0.t, t0/ OH1.t
0/ OU0.t

0, t0/dt0 ,

19In the following text, we will not distinguish between the Green function and Green operator. We
will deal mainly with the Green operator, however, we will often refer to it as the Green function.
20The Heaviside step-function is defined as �.x/ D 1 for x > 0 and �.x/ D 0 for x < 0.
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and again substitute on the rhs (7.116) and denote the result as OU2,

OU2.t, t0/ D e
Z 1

t0

OG0.t, t00/ OH1.t
00/ OU1.t

00, t0/dt00

D e2
Z 1

t0

Z 1

t0

OG0.t, t00/ OH1.t
00/ OG0.t

00, t0/ OH1.t
0/ OU0.t

0, t0/dt0dt00 (7.119)

and so on. Subsequently, we use spectral decomposition of the interaction
Hamiltonian OH1,

OH1.t
0/ D

Z

H1.t
0, r/jrihrj d3r ,

and insert it into Eq. (7.119). We project this equation onto coordinate eigenstates:

U2.x, x0/ D �e2
Z Z

d4x0d4x00G0.x, x00/H1.x00/G0.x00, x0/H1.x0/U0.x0, x0/ ,

(7.120)
where

U2.x, x0/ D hrj OU2.t, t0/jr0i

and

G0.x, x0/ D hrj OG0.t, t0/jr0i , U0.x, x0/ D hrj OU0.t, t0/jr0i .

If we use the retarded Green operator, insertion of Eq. (7.118) into Eq. (7.120) yields

U2.x, x0/ D �e2

tZ

t0

dt0
t0Z

t0

dt00
Z

d3r0
Z

d3r00U0.x, x00/H1.x00/U0.x00, x0/H1.x0/U0.x0, x0/ .

The last equation allows for a simple physical interpretation, see the left diagram of
Fig. 7.3. It is the probability amplitude that a particle originally at time t0 at the point
r0 will be found at later time t at the point r. Between these two events, the particle
interacts twice with the external EM field: firstly at .t0, r0/, secondly at .t00, r00/, t00 > t0.
These two events can occur anytime between t0 and t and anywhere in space. Thus,
one has to integrate over all possibilities, which brings surprising consequences.

The inequality t0 < t00 stemming from the choice of the retarded Green function
enforces definite ordering of events, which in turn restricts the integration over t.
The integration itself does not give rise to any problems, but quantum mechanics
forces us to integrate over all possible space coordinates r0 and r00. Consequently,
a possibility arises that the event at .t00, r00/ will be located out of the light cone
outgoing from .t0, r0/. In the special-relativistic jargon, the events will be space-like
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Fig. 7.3 Second order propagator

separated. One can then find an inertial frame where the time ordering of the events
will be opposite, t0 > t00!21 However, this means that an observer in such an inertial
frame will see the particle moving backwards in time! How does such a particle
look like? The answer is very simple: the only difference with respect to a particle
moving forward in time is the sign of the charge current. There are two ways how
one can perform the change of the current sign: we change either the charge sign or
the time flow:

I D dQ

dt
) dQ

d.�t/
D �I D d.�Q/

dt
.

Hence a particle moving backward in time with charge Q can be interpreted as a
particle moving forward in time with charge �Q, that is, as an antiparticle! Note
that this new route, due to Feynman, leads to the existence of antiparticles as well
and yet it follows solely from the basic principles of quantum mechanics and the
special theory of relativity. According to the latter, a massive particle can move
only inside its light cone. However, the very notion of the light cone assumes that
one is able to specify exactly the particle’s coordinate and velocity at a given time
instant. Quantum mechanics forbids that, though: the light cone is always slightly
“blurred.” Hence there is a small but nonvanishing probability that a particle in a
virtual state leaves the light cone. According to special theory of relativity then,
there is an inertial frame where the particle moves backward in time. Thus to every
massive particle, there is an antiparticle—a particle with the same mass, spin, etc.
and opposite charge.

21See literature on the special theory of relativity, for instance [39].
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Now, roughly speaking, if observers in different inertial frames should agree on
what they see,22 one needs to choose the Green function in such a way that it leads
to the following physical picture. The transition amplitude for a particle evolving
from the initial incidence x0 to the final incidence x and interacting twice with the
external EM field is a sum of two amplitudes. The first amplitude corresponds to the
process where the particle interacts with the EM field firstly at time t0, then moves
forward in time and in later time t00 interacts with EM field for the second time.
The second amplitude corresponds to a process with the opposite time ordering: the
particle moves between events x0 and x00 backward in time, see the right diagram
of Fig. 7.3. One can interpret this second process that a particle-antiparticle pair
is created at time t00, the antiparticle then annihilates the “original” particle at time
t0, while the particle born at time t00 replaces the “original” particle. However, the
choice of the retarded Green function does not lead to this picture; it enforces the
particular time ordering t00 > t0. Note that if we do not choose in Eq. (7.120) the time
direction by the specific choice of the retarded Green function, Eq. (7.120) allows
for both time orderings, t00 > t0 as well as t00 < t0. What Green function should we
then opt for?

Feynman suggested the following solution. The positive energy states correspond
to particle states and particles move forward in time. Now, we recall Sect. 7.2.3: in
the Majorana representation of the � -matrices, the interchange of a charge sign for
free particle corresponds to the interchange of the energy sign. To see this it suffices
to take complex conjugate to

E M D Œ�i�M
0 �M � r C �M

0 m� M ;

in Majorana representation �M
0 �M is real; thus

�E. M/� D Œ�i�M
0 �M � r C �M

0 m�. M/� .

Hence, the negative energy states correspond to antiparticle states and antiparticles
move backward in time. In summary, we are to consider the retarded Green function
for positive energy solutions and the advanced Green function for negative energy
solutions. We will now show how to do so in detail.

We start with Eq. (7.115) and insert the Fourier transforms

OG0.t, t0/ D 1

2�

Z

OG0.E/e
�iE.t�t0/dE , ı.t � t0/ D 1

2�

Z

e�iE.t�t0/dE

therein. For the Fourier transform of the Green operator, we find

OG0.E/ D 1

E � OH0

.

22More precisely, if one shall arrive at a Lorentz-invariant transition amplitude between two events.
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Using spectral decomposition of the Hamiltonian OH0, the Green operator reads

OG0.t, t0/ D 1

2�

Z

dE
X

n

jnie
�iE.t�t0/

E � En
hnj , (7.121)

where OH0jni D Enjni. For the moment, we assume that appropriate boundary
conditions are adjusted in such a way that the spectrum of OH0 is countable. The
integral over the energies hits a large number of poles and its result depends on
the way we encircle the poles: the Green operator is not determined uniquely by
Eq. (7.121), as we already know, see Eq. (7.118) and the discussion concerning it. In
order to determine uniquely how to encircle the poles, we add positive or negative
infinitesimal imaginary parts to the poles, En ! En � i". As we will shortly show,
the choice of infinitesimal negative or positive imaginary parts leads to the choice
of retarded or advanced Green operator! The uniquely determined Green operator
has the form

OG.˙/
0 .t, t0/ D 1

2�
lim
"!0C

Z

dE
X

n

jni e�iE.t�t0/

E � .En � i"/
hnj . (7.122)

To be specific, we now consider the case of the upper sign. If we integrate along the
real axis and close the contour by a semi-circle in the upper half of the complex plane
E 2 C, =E > 0, the integral is convergent for t < t0 and its value vanishes owing to
the residue theorem as there are no singularities inside the integration contour. On
the other hand, if we calculate the integral for t > t0, we have to close the integration
contour in the lower half of the complex plane where =E < 0, see the upper diagram
of Fig. 7.4. There are now many poles inside the integration contour, their positions
being En � i", and the residue of the integrated function in each of the poles equals
e�iEn.t�t0/. Thus by virtue of the residue theorem

I

f .z/dz D 2� i
X

i

Reszi f , (7.123)

we find from Eq. (7.122) the following expression for the Green functions

OG.C/
0 .t, t0/ D

(

0 t < t0,
P

n e�iEn.t�t0/.�i/jnihnj t > t0
(7.124)

and

OG.�/
0 .t, t0/ D

(P

n e�iEn.t�t0/.Ci/jnihnj t < t0,

0 t > t0.
(7.125)
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Fig. 7.4 Integration contours
for the Green functions
(retarded and Feynman,
respectively)

Re E

Im E

Re E

Im E

The negative sign of OG.C/
0 originates from the direction of the integration contour.

When applying the residue theorem, Eq. (7.123), we set the counterclockwise
direction as positive. Hence for OG.C/

0 we close the contour along the real axis
from the right to the left. The advanced Green operator is tackled similarly, the only
difference is the poles are moved into the upper half of the complex plane now, which
enforces the opposite direction of the time flow. Notice that Eqs. (7.124) and (7.125)
are the same as Eq. (7.118).

We have not discussed the sign of the energies of the Hamiltonian OH0 yet. If the
energy spectrum is positive, nothing needs to be added. If OH0 is the one-particle Dirac
Hamiltonian (7.34), states with positive energies correspond to a particle moving
forward in time and we add infinitesimal negative imaginary part to the poles lying on
the positive real axis. States with negative energies correspond to a particle moving
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backward in time and we add infinitesimal positive imaginary part to the poles lying
on the negative real axis. We thus arrive at the Feynman form of the electron Green
function

OG.F/
0 .t, t0/ D 1

2�

Z
e�iE.t�t0/

E � OH0

dE (7.126)

D 1

2�
lim
"!0C

Z

dE
X

n

 OPnC

E � .EnC � i"/
C

OPn�

E � .En� C i"/

!

e�iE.t�t0/ .

Recall that OPn˙ are projectors onto the n-th eigenstate of OH0 with positive or negative
energy, see Eq. (7.81). According to the sign of t � t0, we integrate over upper or
lower semicircle on the lower diagram of Fig. 7.4. We integrate over E to obtain
from Eq. (7.126)

OG.F/
0 .t, t0/ D �i

"

�.t � t0/
X

nC
e�iEnC

.t�t0/ OPnC � �.t0 � t/
X

n�
e�iEn�

.t�t0/ OPn�
#

.

(7.127)

We will show that this choice of the one-particle Green operator produces the same
results as the theory based on the quantized Dirac field with the ground state (7.40)
determined in accordance with the hole picture of positrons.

To sum up the foregoing considerations, the Feynman solution of the negative
energy problem is as follows. The key idea is not to separate space and time in
our considerations. If we follow the particle track in space-time, the positive-energy
solutions of the Dirac equation are moving forward in time, while the negative-
energy solutions backward in time. In terms of mathematics, this corresponds to the
introduction of a new integration variable E and shifting the energies to the complex
plane appropriately, see Eq. (7.126). Until integration over E is performed, the time
flow between two virtual processes remains undetermined and we can treat both
processes depicted in Fig. 7.3 in a unified manner.

In the next sections, we show how this point of view leads to a manifestly
Lorentz-invariant expression for the process of emission and absorption of a virtual
photon.

7.4.2 Electron Interacting with Its Own EM Field

With Feynman’s interpretation of positrons as electrons moving backward in time,
one can keep the one-particle interpretation of the Dirac equation. Let us now
consider the Hamiltonian describing the electron interaction with a quantized EM
field, Eq. (7.43). To apply the above introduced formalism of the Green functions to
it, we need to eliminate the term corresponding to the energy of the EM field : OHEM :
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from the free Hamiltonian. This can be achieved by a unitary transformation of the
state vector

j i D ei OSˇˇ 0
˛

,

where OS is a hermitian operator to be determined in a moment. Differentiating j i
with respect to time yields

i
d

dt
j i D i

"

i
d OS
dt

ei OSˇˇ 0
˛C ei OS d

dt

ˇ
ˇ 0
˛

#

.

At the same time, the state vector describing the electron and EM field evolves
according to the Schrödinger equation

i
d

dt
j i D . OhD C : OHEM :C e OH1/j i .

If we now choose i OS D �i: OHEM :.t � t0/, we find

i
d

dt

ˇ
ˇ 0
˛ D . OhD C e OH1.t//

ˇ
ˇ 0
˛

, (7.128)

where

OH1.t/ D e�i OS OH1ei OS D exp.Ci: OHEM :.t � t0// OH1 exp.�i: OHEM :.t � t0// . (7.129)

Equation (7.128) now formally matches Eq. (7.112) and the introduced Green
function formalism can be readily applied to it.

We consider the amplitude of the following process. The initial state j atij0i,
describing an electron in a spin-orbital j ati and the EM field in the ground state j0i,
evolves in time as the electron interacts twice with the transverse EM field and ends
up in the original state. This amplitude is given by projection of Eq. (7.119) onto the
initial and final states,

A?'e2

1Z

t0

1Z

t0

h0jh at.t/j OG.F/
0 .t, t00/ OH1.t

00/ OG.F/
0 .t00, t0/ OH1.t

0/ OU0.t
0, t0/j at.t0/ij0idt0dt00,

(7.130)
where OH1.t/ is given by Eqs. (7.129) and (7.44):

e OH1.t/ D �e�0� �
Z

d3rjri OA.t, r/hrj , OA.t, r/ D eCi: OHEM:.t�t0/ OA.r/e�i: OHEM:.t�t0/ .

(7.131)

For OG0 we take the Feynman form of the Green operator (7.126) where for OH0 we
consider the one-particle Dirac Hamiltonian OhD, Eq. (7.34).
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Try to rederive Eq. (7.96) using the Feynman space-time approach.

Exercise 26: Pair Annihilation à la Feynman

7.4.3 Photon Propagator and Time Ordered Operator Product

Now we have to recognize that we integrate over all possible times t0 and t00 in
Eq. (7.130). Therefore, when eliminating operators of the EM field, we have to
distinguish between two situations: if t00 > t0 the operator OH1.t0/ acts first and then
the operator OH1.t00/, otherwise, i.e., if t00 < t0, the action of the operators is reversed.
This means that after we substitute into Eq. (7.130) from Eq. (7.131), it is necessary
to consider a time ordered product of two operators

Dij.x00 � x0/ D h0jT

 OAi.t

00, r00/ OAj.t
0, r0/

�

j0i

D �.t00 � t0/h0j OAi.t
00, r00/ OAj.t

0, r0/j0i
C �.t0 � t00/h0j OAj.t

0, r0/ OAi.t
00, r00/j0i , (7.132)

instead of a plain product of the two operators, h0j

 OAi.t00, r00/ OAj.t0, r0/

�

j0i. The

physical reasoning behind this step is as follows. In an analogy to the amplitude of
the process where an electron interacts twice with an external EM field, the amplitude
of the process where an electron interacts twice with its own EM field is in fact a sum
of two amplitudes. The corresponding processes are depicted in Fig. 7.5. The first
amplitude corresponds to the process when an electron at time t0 emits a photon, both
the electron and the photon move forward in time, and at later time t00 the electron
absorbs the photon back. The second amplitude corresponds to the process when the
time ordering of the events is opposite: an electron emits a photon at time t0, both
the electron and photon move backward in time and at earlier time t00 the electron
absorbs the photon back. This implies that once we consider the advanced solution
for the electron, we have to consider the advanced solution for the photon as well!
The second process may be “conventionally” interpreted that at time t00 the system
of electromagnetic and electron-positron fields “borrows” energy out of nothing:
an electron-positron pair and a photon are created from vacuum. The system then
“returns” the energy back at later time t0 as the photon is absorbed back and the
positron annihilates the “original” electron. In this view, the backward propagation
of the electron between the times t0 and t00 is realized by a forward propagation of a
positron between the times t00 and t0. The electron born at the time t00 then plays the
role of the “original” electron. Looking now at the time ordered product (7.132), we
see that in the first case the creation operator acts on the vacuum at time t0 and the
annihilation operator at time t00. In the second case, the creation operator acts at the
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Fig. 7.5 Space-time ordering of emission and absorption of a photon by an electron

time t00 and the annihilation operator at time t0. Clearly, the expression (7.132) does
correspond to the above-described physical picture.

Since : OHEM :j0i D 0, then also e�i: OHEM:.t�t0/j0i D j0i. Hence Eq. (7.132) can be
simplified to

Dij.x00 � x0/ D �.t00 � t0/h0j OAi.r00/e�i: OHEM:.t00�t0/ OAj.r0/j0i
C �.t0 � t00/h0j OAj.r0/e�i: OHEM:.t0�t00/ OAi.r00/j0i .

If we now use the expansion (6.47), OA.r/ D P

�
1p
2!�

� Oa�T� .r/C OaC� T�� .r/
�

, we
finally obtain

Dij.x00 � x0/ D �.t00 � t0/
X

�

1

2!�
T�i.r

00/T��j.r
0/e�i!� .t00�t0/

C �.t0 � t00/
X

�

1

2!�
T�j.r

0/T��i.r
00/eCi!� .t00�t0/ .

Now we take the continuous limit: we replace the summation over the mode index �
by an integral over the momenta k and the summation over polarizations, Eq. (6.55);
since we integrate over all directions we can replace k! �k in the second term,

Dij.x00 � x0/ D
Z

1

2!
Pij




�.t00 � t0/e�i!.t00�t0/

C �.t0 � t00/ei!.t00�t0/
�

e�ik�.r0�r00/ d3k
.2�/3

. (7.133)
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Introducing now an additional integration variable, namely the time component k0

of a four-vector k, we can achieve, as in the case of electron, that both retarded and
advanced waves are contained in only one expression:

lim
"!0C i

Z
e�ik0.t00�t0/

.k0 � ! C i"/.k0 C ! � i"/

dk0

2�

D 1

2!




�.t00 � t0/e�i!.t00�t0/ C �.t0 � t00/ei!.t00�t0/
�

.

Analogously to the electron case, we added infinitesimal negative and positive
imaginary parts to positive and negative energies, respectively. For the vacuum
expectation value of a time ordered product of vector potential components,
commonly known as the photon propagator in the Coulomb gauge, we find

Dij.x00 � x0/ D h0jT �

Ai.t
00, r00/Aj.t

0, r0/
� j0i D i

Z

Pij
e�ik�.x00�x0/

k2

d4k
.2�/4

.

(7.134)
Here, k D .k0, k/ stands for a wave four-vector, the magnitude of its space component
being jkj D !. Notice that the last expression is identical with the Green function
of the vector Maxwell equation (6.11).

7.4.4 Electron Self-energy via Green Functions

After substituting the interaction Hamiltonian, Eq. (7.131), and the photon propag-
ator, Eq. (7.134), into Eq. (7.130), we arrive at

A? ' e2
Z Z

d4x00d4x0Dij.x00 � x0/h at.t/j OG.F/
0 .t, t00/

ˇ
ˇr00
˛

�0�j

� ˝r00ˇˇ OG.F/
0

ˇ
ˇr0
˛

�0�i
˝

r0
ˇ
ˇ OU0.t

0, t0/j at.t0/i . (7.135)

The action of the propagators OG.F/
0 and OU0 on  at is found easily, see Eq. (7.126),

h at.t/j OG.F/
0 .t, t00/ D h at.t/j

Z
e�iE.t�t00/

E � OhD

dE

2�

D h at.t/j
Z

e�iE.t�t00/

E � E0 C i"

dE

2�
D �i�.t � t00/

˝

 at.t
00/
ˇ
ˇ (7.136)

and Eq. (7.113)

OU0.t
0, t0/j at.t0/i D

ˇ
ˇ at.t

0/
˛

, (7.137)

respectively. After substituting the last two equations into Eq. (7.135), we obtain
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A? ' �ie2
Z Z

d4x00d4x0�.t � t00/Dij.x00 � x0/ Cat .x
00/�0�iG

.F/
0 .x00, x0/�0�j at.x0/ .

(7.138)
Now we come to the decisive point. We could distinguish the temporal ordering
of the events at x0 and x00. In such a case, we would insert the expressions (7.133)
and (7.127) for the photon and electron propagators, respectively, into the last
equation. It is not difficult to see then that, after integrating over the time variables
t0 and t00, we would arrive at an expression that matches the expression (7.83) but
for an inessential multiplicative constant. We would thus reach the same dead end
as earlier.

We do not have to distinguish the temporal ordering of the events at x0 and x00,
though. We can insert the expressions (7.134) and (7.126) into the last equation for
the photon and electron propagators, respectively, where the temporal ordering of
the virtual events is hidden in the way we integrate over k0 and E, respectively. Thus
we see that the crucial point is merely not to hurry with these integrations.

We insert  at.x/ D  .r/e�iE0t into Eq. (7.138) and factor out the time
dependences coming from the initial and final state vectors and from the Green
functions. At the limit t0 ! �1, we obtain

Z 1

�1
ei.k0CE�E0/t0dt0 D 2�ı.k0 C E � E0/ .

The integration over E is now trivial; the presence of the ı-function leads to the
condition k0 C E � E0 D 0, which is the law of conservation of “energy” in virtual
process. The electron “energy” E in virtual state is given by the difference between
the initial electron energy E0 and the virtual photon “energy” k0. The integration
over the second time variable t00 yields by the virtue of the previous equation23

Z t

t0

e�i.k0CE�E0/t00dt00 D t � t0 D T .

Hence the trivial integrations over t0, t00, and E in Eq. (7.138) result in

lim
t0!�1A? D Te2

Z
d4k
.2�/4

1

k2 Pijh atj�0�ie
ik�Or 1

E0 � OhD � k0

e�ik�Or�0�jj ati .

(7.139)
We have thus made a huge step in our striving for a manifestly Lorentz-invariant
formulation of the perturbation method. In the last equation, we managed to find
a unified expression for the both positive and negative energy modes, confront
with Eq. (7.83). However, the way we reached the desired result goes against
all our previous experience. We already knew that the use of symmetry always

23The reader may ask why we do not take the limit t0 ! �1 in the integration over t00 as well.
The reason is we want to avoid the infinity at this stage of calculation. This is justifiable as we will
see later on, see Eq. (7.142), since this number drops out from the expression for the energy shift
that is of physical relevance.
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leads to a simplification of the problem at hand. However, until now, this use of
symmetry resulted in a reduction of the dimensionality. In this case, by contrast,
the simplification appears by an increase in the dimensionality. We avoided
the separation of positive and negative energy modes by adding time into our
considerations. By introducing additional integration variables E and k0, we managed
to keep the electron and photon propagators in the past-future symmetric forms.

7.4.5 Integration over k0

Note that Eq. (7.139) contains no longer any time-dependent variables. However,
we emphasized above that the way of encircling the poles in the complex plane
is determined by the temporal ordering of the events. How do we proceed now
when all of the time variables were integrated out? Everything is now hidden in the
integration over k0! Let us thus show now how it works. In Eq. (7.139), we encounter
the integral

i

2�

Z
dk0

.k2
0 � !2/.k0 � E0 C OhD/

. (7.140)

This integral is determined uniquely by an infinitesimal shift of the poles from the
real axis to the complex plane. We argued before that the poles on the positive
and negative real axis correspond to states moving forward and backward in
time, respectively. Therefore, we add an infinitesimally small negative and positive
imaginary parts, respectively, to them. For the moment, we assume that the energy
E0 is the lowest state with positive energy. Consequently, we have E0�EnC < 0 for
the positive energy eigenstates of the Hamiltonian OhD. Hence these states lie on the
negative real axis of k0. Similarly, the negative energy eigenstates of OhD lie on the
positive real axis of k0:

1

k0 � E0 C OhD

D
X

n

 OPnC

k0 � .E0 � EnC C i"/
C

OPn�

k0 � .E0 � En� � i"/

!

and

1

k2
0 � !2

D 1

.k0 � .! � i"//.k0 � .�! C i"//
.

To isolate the contributions of the individual poles, we decompose the integrand into
partial fractions:

1

k2
0 � !2

1

k0 �� D �
1

2!.� � !/
1

k0 � ! C
1

2!.�C !/
1

k0 C !

C 1

.� � !/.�C !/
1

k0 �� .
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We close the integration path in the lower half of the complex plane. Hence the poles
shifted into the upper half of the complex plane do not contribute. Contribution of
poles from the lower half of the complex plane equals �2� i times the residue

� i

2�

Z
dk0

.k2
0 � !2/.E0 � OhD � k0/

D 1

2!

X

n

 OPnC

EnC � E0 C ! C
OPn�

En� � E0 � !

!

.

Comparison of Eq. (7.139) and the last equation with Eq. (7.83) shows that the latter
can be rewritten into the form (hrj ati D U1.r/)

.E2/
SE? D ie2

Z
d4k
.2�/4

1

k2

�

h atj�0�ie
ik�Or 1

E0 � OhD � k0

�0�ie
�ik�Or j ati (7.141)

� 1

!2
h atj�0� � k eik�Or 1

E0 � OhD � k0

�0� � k e�ik�Or j ati
�

.

In case the reference state at is an excited state, the part of the positive energy states
lying below the reference state has to be shifted into the lower half of the complex
plane. That is, we need to treat them as negative-energy states.

By comparing now Eq. (7.139) with the last equation, we find an important
relation between the probability amplitude A that a system evolves under the
influence of a perturbation for a time interval T back into the initial state and
the energy shift of the system �E caused by the perturbation:

A D �iT�E , (7.142)

which is a general relation and will be used in Sects. 7.7 and 7.8. This relation should
be not at all surprising: the probability amplitude that a stationary state evolves in
time T D t � t0 again to the stationary state equals, see Eq. (1.18),

h at.t/je�iE0.t�t0/j at.t0/i D 1 ,

where clearly E0 represents the energy of the stationary state. If this stationary state
is under the influence of a perturbation, but remains approximately a stationary state,
the action of the perturbation merely shifts the state phase:

h at.t/je�iE.t�t0/j at.t0/i ' 1 � i.E � E0/.t � t0/ ,

where the second term on the rhs corresponds to the rhs of Eq. (7.142).
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7.4.6 Electron Self-energy: Cancellation of the Non-covariant
Terms

I was very surprised to discover that it was not known at that time that every one of the
formulas that had been worked out so patiently by separating longitudinal and transverse
waves could be obtained from the formula for the transverse waves alone if instead of
summing over only the two perpendicular polarization directions you would sum over all
four possible directions of polarization.R.P. Feynman [35]

We are nearly at the end of our way to the relativistic perturbation method. The last
piece to show is that the non-covariant parts of electron interaction with transverse
and longitudinal parts of EM field cancel out. For an arbitrary “reasonable” function
f , the relation

eik�Or f . Op/e�ik�Or D f . Op � k/ , (7.143)

holds. We use this equality in the expression (7.141) with the Hamiltonian (7.34)
and obtain

eik�Or . OhD � E0 C k0/
�1e�ik�Or D . OhD � E0 C k0 � �0� � k/�1 .

The second expression in the curly brackets in Eq. (7.141) now takes the form

1

!2
h atj�0� � k 1

E0 � OhD � k0 C �0� � k�0� � k j ati . (7.144)

Action of the Hamiltonian on the reference state  at is from its very definition
.E0 � OhD/ at D 0; hence

h atj�0� � k 1

E0 � OhD � k0 C �0� � k�0� � k j ati

D h atj



�0� � kC E0 � OhD � k0 C k0

� 1

E0 � OhD � k0 C �0� � k�0� � k j ati

D h atj�0� � kj ati C k0h atj 1

E0 � OhD � k0 C �0� � k�0� � kj ati .

After inserting the last equation into Eq. (7.141), we easily find that the first term
vanishes as we integrate an odd function over a symmetric interval. In case of the
second term, we use the same trick:
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k0h atj 1

E0 � OhD � k0 C �0� � k�0� � k j ati

D k0h atj 1

E0 � OhD � k0 C �0� � k .�0� � kC E0 � OhD � k0 C k0/j ati

D k0 C k2
0h atj 1

E0 � OhD � k0 C �0� � k j ati ;

application of these rearrangements results in

(7.144) D k2
0

!2
h atj 1

E0 � OhD � k0 C �0� � k j ati � k0

!2
.

After substituting the last equation into Eq. (7.141) and using the identity

k2
0

k2!2
D 1

k2 C
1

!2
,

where we used the relation k2 D k2
0 � !2, we arrive at

.E2/
SE? D .�E/SE C .E2/

SE? � .�E/SE . (7.145)

In the first part, a Lorentz-invariant combination of time and space components of
� -matrices appears

.�E/SE D �ie2
Z

d4k

.2�/4k2 h atj�0��
1

E0 � OhD � k0 C �0� � k�0��j ati .
(7.146)

The second part contains non-covariant terms

.E2/
SE? �.�E/SE D �ie2

Z
d4k
.2�/4

1

!2

�
k0

k2 � h atjeik�Or 1

�E0 C OhD C k0

e�ik�Or j ati
�

.

(7.147)
Notice, though, that this non-covariant piece exactly cancels out with the contribution
of the longitudinal part .E1/

SE
jj , Eq. (7.82). To show that this is true, we integrate in

Eq. (7.147) over k0. We split the first integral into two and use the residue theorem:

ie2

2�

Z
dk0.k0 � ! C !/

k2
0 � !2

D ie2

2�

�Z
dk0

k0 C ! � i"
C!

Z
dk0

.k0 � ! C i"/.k0 C ! � i"/

	

D ie2

2�

�

�!2� i � 1

2!

	

D e2

2
,



7.4 Feynman Space-Time Approach 347

where the integration path leads, as usual, along the real axis and is closed in the
lower half of the complex plane. The first integral in this expression does not decrease
rapidly enough to zero for large k0, though. However, the contribution of the lower
semicircle of this expression cancels out with the contribution of lower semicircle
of the second term in Eq. (7.147). Now, using the decomposition of unity

1 D h atjeik�Or X

n


 OPnC C OPn�� e�ik�Or j ati ,

we obtain the first integral in Eq. (7.147) in the desired form

�ie2
Z

k0d4k

k2!2.2�/4
D �e2

Z
d3k

2!2.2�/3
h atjeik�Or X

n


 OPnC C OPn�� e�ik�Or j ati .

The second integral in Eq. (7.147) is calculated again by the residue theorem:

ie2

2�

Z
dk0

k0 C OhD � E0

D ie2

2�

Z

dk0

X

n

 OPnC

k0 � .�EnC C E0 C i"/

C
OPn�

k0 � .�En� C E0 � i"/

!

De2
X

n

OPn�.

Equation (7.147) then becomes

.E2/
SE? � .�E/SE D �e2

Z
d3k

2!2.2�/3
h atjeik�Or X

n


 OPnC � OPn�� e�ik�Or j ati ,

which matches but for the opposite sign Eq. (7.82) for the contribution of longitudinal
part of EM field:

.E2/
SE? � .�E/SE C .E1/

SE
jj D 0 .

Finally, we rearrange the integral (7.146). By means of the identity A�1B�1 D
.BA/�1, valid for two arbitrary matrices A and B, for which it makes sense, the
second �0-matrix can be moved to the denominator. The denominator then takes the
form

�0

h

E0 � OhD � k0 C �0� � k
i

D �0.E0 � e'/ � � � . Op � eA/ � m � �0k0 C � � k

D ��. OΠ � k/� � m D � � . Ŏ � k/ � m ,
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where in the first equality we recalled Eq. (7.34). We arrive at the final form of the
shift of the atomic energy levels due to the self-energy effect

.�E/SE D �ie2
Z

d4k
.2�/4k2

˝

 at

ˇ
ˇ��

1

� � . Ŏ � k/ � m
��j ati , (7.148)

where we used the Dirac conjugation introduced in Eq. (7.48).

7.4.7 Vacuum Polarization: Covariant Formulation

Much less effort is needed to manipulate Eq. (7.80),

h Oj�.r/i D e

2
.�0��/ab

X

�

hrj
h OP�� � OP�C

i

ba
jri , (7.80)

for the vacuum expectation value of the four-current created by the Dirac field, into
a manifestly Lorentz-covariant form. By comparing Eq. (7.126),

OG.F/
0 .t, t0/ D 1

2�

Z
e�iE.t�t0/

E � OH0

dE (7.126)

D 1

2�
lim
"!0C

Z

dE
X

n

 OPnC

E � .EnC � i"/
C

OPn�

E � .En� C i"/

!

e�iE.t�t0/ ,

and (7.127),

OG.F/
0 .t, t0/ D �i

"

�.t � t0/
X

nC
e�iEnC

.t�t0/ OPnC � �.t0 � t/
X

n�
e�iEn�

.t�t0/ OPn�
#

,

(7.127)
for the Green function of the Dirac equation with Eq. (7.80), we see that

h Oj�.r/i D � ie

2
.�0��/abhrj

�

lim
t!t0�

OGF
0 .t, t0/C lim

t!t0C
OGF

0 .t, t0/

�

ba

jri

D �ie
Z

�

dE

2�
Tr hrj�0��

1

E � OhD

jri .

The integration along the path � denotes the average between closing the integration
along the real axis over the upper and lower semicircles, see the lower part of Fig. 7.4.
Owing to the cyclicity of the trace Tr AB D Tr BA, �0-matrix can be again moved
to the denominator

h Oj�.r/i D �ie
Z

�

dE

2�
Tr hrj�� 1

� � Ŏ � m
jri . (7.149)
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7.4.8 Discussion of the Lorentz Invariance

Are the expressions (7.77), (7.148), and (7.149) invariant with respect to
Lorentz transformations? If not, what part thereof causes it? By comparing the
expressions (7.77), (7.148) and (7.149) with the Dirac equations (7.16) or (7.19), we
readily see that at least part of the expressions (7.77), (7.148), and (7.149) is Lorentz
invariant provided the Dirac equations (7.16) or (7.19) are invariant as well. Are
they? The rest mass m is Lorentz invariant, hence obviously the product � � Op must be
invariant as well. When considering the Lorentz transformation (7.2), x0� D ���x� ,
the four-momentum Op clearly transforms as a four-vector

Op0� D �i
@

@x0�
D �i

@x

@x0�

@

@x

D .��1/
�.�i/

@

@x

D ��
 Op
 , (7.150)

where we used Eq. (7.7) in the last equality. Thus the matrices � have to transform
as components of a four-vector as well. Do they?

Now, we have to recognize that when going from one inertial system to another,
one needs to transform both the coordinates and the wave function. In a primed
inertial system, the Dirac equation (7.16) takes the form

.� 0� Op0� � m/ 0.x0/ D 0 . (7.151)

Hence, should the Dirac equation be invariant with respect to Lorentz transform-
ations, it has to be possible to find an invertible matrix S transforming the wave
function

 0.x0/ D S .x/ . (7.152)

By inserting the last equation into Eq. (7.151) and multiplying the obtained equation
by the inverse matrix S�1 from the left, we find

.S�1� 0�S Op0� � m/ .x/ D 0

and see that this expression matches Eq. (7.16) if

S�1� 0�S Op0� D �
 Op
 . (7.153)

Using Eq. (7.150)

S�1� 0�S Op0� D ��
S�1� 0�S Op
 ,

and comparing the rhs of the last two equations, we arrive at the requirement

�
 D ��
S�1� 0�S) � 0� D ��
S�
S�1 . (7.154)
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What is the relation between the matrices � 0 and �? The relation between the
four-momentum and the rest mass must hold in the primed system

. Op0� Op0� � m2/ 0.x0/ D 0

as well as in original system, Eq. (7.14). That is, from comparison of Eq. (7.151)
with the last equation, we find that in the primed system the anticommutation
relation (7.17) for � -matrices has to hold as well

n

� 0�, � 0�
o

D 2��� .

However, up to a unitary transformation � 0� D UC��U, the � -matrices are
determined by the anticommutation relation (7.17) uniquely. Hence, should the Dirac
equation be invariant with respect to Lorentz transformation, it must be possible to
find a matrix S obeying

UC��U D ��
S�
S�1 .

Such a matrix S indeed exists.24 The knowledge of the existence of the matrix
S suffices for our purposes, we will not need its explicit form. There is only one
property to remember: in the sense of Eq. (7.154), the Dirac � -matrices behave with
respect to Lorentz transformations as components of a four-vector.

Clearly, see Eq. (7.18), the � -matrices are not hermitian. The hermitian conjugated
� -matrices are related to the original matrices via Eq. (7.61), �C� D �0���0. An
interesting question arises: what is the Lorentz invariant form of the Dirac equation
for Hermite conjugated wave function  C?

Hermitian conjugation of Eq. (7.16) together with Eq. (7.61) yield

 C.�C� Op� � m/ D  C.�0���0 Op� � m/ D  .�� Op� � m/�0 D 0 , (7.155)

where  D  C�0 is the Dirac conjugated function, see Eq. (7.48). Its meaning
should be now clear: the Lorentz invariant equation

 .�� Op� � m/ D 0 (7.156)

is obtained for the Dirac conjugated function N , not for the Hermite conjugated
function  C.

There is one more point worth attention prior to leaving this formal analysis of
the Dirac equation. In a primed inertial system, Eq. (7.156) takes the form

 0C.x0/� 00.� 0� Op0� � m/ D  C.x/SC� 00S.�� Op� � m/S�1 D 0 ,

24We do not even need to exploit the freedom in the unitary transformation; that is, we can set U to
a unit matrix. For the precise form of matrix S see, e.g., [30, 33, 38].
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where we used Eqs. (7.152) and (7.153). Comparison of the last two equations
yields

SC� 00S D �0 ) S�1 D �0SC� 00 , (7.157)

hence the matrix S is not unitary. That is, when going from one inertial system to
another it is not the scalar product  C' of the bispinors  and ' that is preserved,
but

 0'0 D  0C� 00'0 D  CSC� 00S' D  C�0�0SC� 00S' D  C�0' D  ' .

Now, it should be clear that the only non-covariant parts of Eq. (7.148) are
the three-dimensional integrations d3r and d3r0: recall that h j OOj i stands for
R R

d3rd3r0 C.r/hrj OOjr0i .r0/. Lorentz covariant is a four-dimensional integration
d4x, not the three-dimensional one. Similarly, in Eq. (7.77) there are non-covariant
three dimensional integrations d3r, d3r0 and d3k, while the rest is covariant. However,
this is not a problem: we calculate the energy shift which is clearly not a Lorentz-
invariant quantity. We will exploit the knowledge of Lorentz-invariant parts of the
expressions (7.148) and (7.77) later in Sect. 7.8.

7.4.9 What View of Positrons Is the Correct One?

Did I speak of an electron going backward in time? Did I mumble something about a sea
of negative energy electrons? This metaphorical language (. . . ) confused generations of
physics students and physicists. The presentation given here is in the modern spirit, which
seeks to avoid these potentially confusing metaphors. A. Zee [42]

I may be old-fashioned, but I still regard the “hole theory” as a good way of describing
positron theory. It seems to contain much of the essence of the situation (. . . ). Of course
one realizes that the picture is symmetric and one could just as easily take the electron as
a hole in the sea of positrons with negative energy. (. . . ) The consistency of the alternative
way of looking at the situation always seemed to me to come out by a miracle, unless one
knew it was equivalent to the “hole” description. But of course it is a matter of taste, since
the two ways of looking at the problem are equivalent. R. Peierls [35]

On looking back over the work, I can only feel a kind of regret for the enormous amount
of physical reasoning and mathematical re-expression which ends by merely re-expressing
what was previously known, although in a form which is much more efficient for the
calculation of specific problems. R.P. Feynman [35]

Dirac’s picture of an occupied sea of negative energy levels naturally leads to
the determination of the correct ground state (7.40) and to the expressions for the
quantized Dirac field (7.41) and the Hamiltonian of the Dirac field (7.42). However,
one can avoid this insight and arrive at these equations by imposing a formal
requirement of positive definiteness of the Hamilton operator of the quantized Dirac
field.
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Feynman’s picture of positrons moving backward in time naturally leads to the
view that the process A when an electron radiates a photon at x0 and absorbs it back
at x00 and the process B when a photon and an electron-positron pair are created at x0
and annihilated at x00 differ merely in the temporal ordering of the events at x0 and
at x00. This in turn leads to the use of Green functions where the temporal ordering
of the events is hidden in the way the poles are encircled in the complex plane. This
further leads to a manifest Lorentz invariance of the pertinent expressions. However,
one can avoid this insight as well. Freeman Dyson, inspired by Feynman’s work,
showed how to maintain the manifest Lorentz invariance within the framework of the
ordinary quantum field theory when electrons and positrons are regarded as quanta
of an electron-positron field. To do so, the perturbation method is reformulated in
time-dependent and time-symmetric ways, see e.g., [2, 15, 24, 30, 33].25

It is worth recalling that the Dirac equation was published in 1928, but Dirac’s
prediction of positron came out only in 1931. Similarly, quantum electrodynamics
was formulated by Heisenberg and Pauli in 1929, but the expressions derived in this
book appeared for the first time in Feynman’s papers published in 1949. In both
cases, the formal derivation appeared only after an intuitive one, although in both
cases there was plenty of time for anyone to do so. This clearly shows that it was
impossible to arrive at the heart of the matter without Dirac’s and Feynman’s insights.
Therefore, we decided not to hide them as is the case of all modern expositions of
this subject. We are led to this by the recognition that, at least in our case, an intuitive
approach leads to significantly less confusion than a purely formal one. The pictures,
not necessarily regarded as poetic, enable us to understand “where all the formalism
comes from,” or “why the things are done in the way they are.”

The usual argument against the hole picture, namely that it does not hold for
bosons, is somewhat misleading. The reason is bosons differ from fermions at the
very fundamental level. When quantizing EM field, or for that matter any other boson
field, one does not encounter the question of positive definiteness of the quantum
Hamiltonian at all. It merely follows from the canonical quantization procedure and
masslessness of the EM field does not play any role therein. On the other hand, when
quantizing a fermion field, positive definiteness of the quantum Hamiltonian has to
be imposed. The Dirac sea is a physical illustration of what a formal requirement of
a positive definite Hamiltonian means. Once we accustom to it, we can move away
from the illustrative picture.

To conclude, positrons are best regarded as quanta of an electron-positron field.
However, it is worth keeping other views in mind as well. They are not likely, at
least in our view, to lead to confusion any more than any other concept one is to
accept.

25There are also other ways of arriving at the manifest Lorentz invariance of amplitudes for
relativistic processes. The most popular one reformulates quantum theory via path integrals first
and only then uses the perturbation method, see, e.g., [4, 30, 42]. This was, in principle, also
Feynman’s original approach; however, details of the original Feynman’s and modern derivations
differ.
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7.4.10 Note on the Feynman Diagrams and Feynman Rules

Here there is a most curious situation: the resulting machinery is far better than originating
theory.[38]

It follows from discussions in Sects. 7.4.5 and 7.4.6 that if we add a similar
amplitude for the electron interaction with the longitudinal part of EM field to the
amplitude (7.138) for the electron interaction with the transverse part of EM field,
we arrive at a Lorentz invariant amplitude

lim
t!C1
t0!�1

A ' �ie2
Z Z

d4x00d4x0D��.x00 � x0/ at.x
00/��G.F/

0 .x00, x0/�0�� at.x0/ ,

(7.158)
where the Feynman form of the photon Green function reads

D��.x00 � x0/ D �i���

Z
e�ik�.x00�x0/

k2

d4k
.2�/4

. (7.159)

If we look at Fig. 7.6, we see that Eq. (7.158) could have been guessed from
Fig. 7.6 had we made the following correspondence between mathematical symbols
and elements of Fig. 7.6.

1. Assign the state vectors of initial and final states, j ati and
˝

 at

ˇ
ˇ, respectively, to

the external electron lines.
2. Assign ie� to the interaction vertices.
3. Assign the propagator iG.F/

0 .x00, x0/�0 to the internal electron line.
4. Assign the propagator D��.x00 � x0/ to the internal photon line.
5. Integrate over all space-time coordinates of the interaction events.

Fig. 7.6 Correspondence
between mathematical
symbols and elements of
Feynman diagram in
coordinate space

〈
ψat

∣
∣

ieγμ

ieγν

iGF
0 (x′′,x ′)γ0

Dμν (x′′ − x′)

|ψat〉
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This correspondence between the “pictures” illustrating the processes and the
mathematical expressions providing the transition amplitudes for these processes
is called Feynman rules in coordinate space and the corresponding pictures are
referred to as Feynman diagrams. We did not try at all to systematically derive
this correspondence and neither will we formulate it in a systematic and exhaustive
manner since we will not need it in this book. (It is definitely worth knowing about
it nevertheless.) For a systematic treatment of the Feynman rules in both coordinate
and momentum space for scattering problems, we refer the reader to any modern
quantum field theory textbook, such as [2, 15, 24, 30].

Feynman diagrams have several important features; we will mention the two of
them which we consider the most important. Firstly, they elucidate the physical
meaning of the expressions to be calculated. Secondly, they form an indispensable
tool for organizing calculations in higher orders of the perturbation method.
Especially the latter property makes them a ubiquitous tool in various areas of
physics, well beyond the borders of relativistic quantum electrodynamics they were
originally invented for, see, e.g., [22].

Diagrams containing closed loops, such as those in Fig. 6.9 or in Fig. 7.1, are
referred to as loop diagrams. If the diagrams do not comprise closed loops, such as
those in Fig. 7.2, they are referred to as tree diagrams.

Note that the photon propagator (7.159) corresponds to the Green function of
the Maxwell equations in the Lorenz gauge @�A� D 0. Although we have been
working in the Coulomb gauge the whole time, we do not recognize it from
expressions (7.148) nor (7.158)! This thus gives us a hint on the gauge invariance
of the physical predictions of quantum electrodynamics mentioned in Sect. 7.2.4.

Our starting points, the Maxwell equations (6.3) and (6.4) and the Dirac
equation (7.16), are manifestly invariant with respect to the Lorentz and gauge
transformations. The Feynman diagrams and rules yield expressions for transition
amplitudes manifestly invariant with respect to the Lorentz and gauge transforma-
tions as well. It should be clear, though, that our starting and ending points feature
properties superior to those of any of the in between steps.

To quantize the EM field, we had to eliminate the gauge freedom by choosing
one particular gauge; we opted for the Coulomb gauge. We emphasized in Chap. 6
that this gauge is suitable especially for the study of atom-photon interactions, and
at the same time we mentioned in Sect. 7.3.1 that this gauge is not Lorentz invariant.
However, although the Lorenz gauge does not feature this particular drawback,
it does possess other deficiencies, see, e.g., [15, 24]. In addition, the choice of
the Lorenz gauge leads to essential complications in the most of the calculations
performed so far as well as in some of those to be performed, see Sect. 7.7.

Furthermore, the whole procedure of the canonical quantization is, in its orthodox
form as outlined herein, alien to the “relativistic spirit.” The classical Hamiltonian
corresponds to the total energy of a system which is not a Lorentz invariant quantity.
Canonical coordinates and momenta are determined for a fixed time instant, hence
canonical commutation relations are clearly not Lorentz invariant either. When
quantizing the electron-positron field, we had to distinguish between stationary
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solutions of the Dirac equation with positive and negative energies, yet the notion of
positive or negative energy state is, as already mentioned in Sect. 7.3.1, not Lorentz
invariant.

Despite all the listed shortcomings, we have seen that in fact none of them
matter. The loss of the manifest26 Lorentz and gauge invariance, enforced by the
canonical quantization procedure, is reversible! To conclude this section, we wish to
note that the common statement “the Coulomb law (6.12) conflicts with the special
theory of relativity since it assumes action at a distance” is somewhat misleading.
We derived this law back in Sect. 6.1.3 from the Maxwell equations which are
manifestly invariant with respect to the Lorentz transformation, see Eq. (7.12). As
we stressed in Sects. 6.1.5 and 6.5.5, a part of the EM interaction between the charged
particles is instantaneous and only the retarded part of the interaction is mediated
by the EM field carrying momentum and thus being experimentally detectable. The
gauge invariance is the very reason responsible for the fact that the separation of the
EM interaction into instantaneous and retarded parts does not conflict with special
theory of relativity. It is the mismatch between the number of mathematical quantities
needed for the correct description of the EM field, namely four, and the measurable
internal degrees of freedom of the EM field, namely two, as mentioned already in
Sects. 6.1.4 and 6.1.5, that at the end of the day reconciles the relativity with the
action-at-distance.

7.5 Electron Self-energy: Calculation

To evaluate the expression (7.148) it is advantageous, for reason we will give in
a moment, to multiply the electron propagator from the right by .� � . Ŏ � k/ C
m/�1.� � . Ŏ � k/C m/,

1

� � . Ŏ � k/ � m
D 1

k2 � 2k � Ŏ C OH .� � . Ŏ � k/C m/ , (7.160)

where the operator OH is given by Eq. (7.24).
By substituting Eq. (7.160) into Eq. (7.148) we find the operator .� � . Ŏ � k/C

m/ acting on ��j ati. By means of the anticommutation relations for the Dirac
matrices (7.17) and the Dirac equation (7.19), we are able to simplify this action to

.� �. Ŏ �k/Cm/��j atiD.2 OΠ�C��.�� � Ŏ Cm/�� �k��/j atiD.2 OΠ��� �k��/j ati.
(7.161)

26Note that this word is crucial. We have shown that the expressions derived in Sect. 7.3.1 are
equivalent to the manifestly Lorentz and gauge invariant expressions. Hence the expressions
derived in Sect. 7.3.1 have to be Lorentz and gauge invariant as well. However, this invariance is
completely obscured, it is not manifest.
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7.5.1 Regularization

The integral over the photon four-momenta in Eq. (7.148) is divergent (in common,
not especially appealing, jargon called ultraviolet divergent) as we will shortly show,
and the treatment thereof will be a subject to further considerations. Usually, one
begins by regularizing the expression (7.148) to transform it into a well-defined
mathematical object. There are, of course, various ways how one can obtain such
a form. We will opt for the one suggested by Feynman: the photon propagator in
momentum space k�2 is replaced by

1

k2 !
1

k2 �
1

k2 ��2
D �

Z �2

0

d


.k2 � 
/2 . (7.162)

Using this replacement and the above Eqs. (7.160) and (7.161), in Eq. (7.148), we
find

.�E/SE D ˛

�

Z �2

0
d

Z

d4kF

.k2 � 
/2
˝

 at

ˇ
ˇ��

1

k2 � 2 Ŏ � kC OH .2 OΠ� �� � k��/j ati ,
(7.163)

where we introduced the notation

d4kF D i
d4k
.2�/2

.

Obviously, the original expression (7.148) can be obtained from the regularized one,
Eq. (7.163), in the limit �!1.

From a physical point of view, the regularization (7.162) represents an electron
interacting with—apart from the massless photons—also “massive photons” of
mass �, the electron couplings to the massless and massive photons featuring
opposite signs. Since � acquires large values, the interaction with massive photons
is significant only at very small distances. The origin of this idea could be traced
back to Poincare’s attempts to solve the self-energy problem in the framework
of classical electrodynamics.27 It should be pointed out, however, that the idea to
“repair” electrodynamics on the classical level and only then proceed to the quantum
theory has never been successful and this result is not likely to change. For, even if the
electron self-energy is solved in this way, we are still left with the photon self-energy,
Eq. (7.149), which is a purely quantum effect with no classical analog.28 A modern

27See, e.g., [8, 32] where other attempts to solve the self-energy problem within classical
electrodynamics are summarized as well.
28Furthermore, a photon always interacts virtually with bosons W˙, mediating thus weak
interactions, see, e.g., [13], and with quark-antiquark pairs which interact with each other also
via strong force. When calculating shifts of the atomic energy levels, these virtual interactions are
utterly negligible. However, they are present and they do contribute to the electron inertial mass.
Therefore, any attempt to solve the origin of the electron mass is necessarily incomplete within the
framework of the electromagnetic theory.
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view of the regularization (7.162) is of a purely formal nature. Its only purpose is to
transform the integral over the four-momenta of the virtual photon into a convergent
one in a way that preserves the Lorentz invariance. A large, though finite, value of�
suppresses contributions from the region of very large k2. Unfortunately, we possess
no experimental information about this region and hence do not know what happens
there. Apparently, we cannot assume that everything remains the same. The theory
itself points out to its own limitations.

Clearly, the regularization itself does not solve anything even if we knew the
magnitude of �, which we do not. The divergence is unambiguously removed by
renormalization which we will focus on in a moment. Prior to coming to it, we need
to turn our attention to the evaluation of the expression (7.163).

7.5.2 Integration over the Four-Momenta of the Virtual Photon

The compact notation hides the actual complexity of the expression (7.163). What
we are to calculate is an 11-dimensional integral: 4 integrations over the photon
momenta, 3+3 integrations over the electron variables when calculating the matrix
elements of �� and .2 OΠ� � k � ���/ between the reference and virtual atomic states,
and one integration plus one summation over the continuous and discrete parts of
the atomic virtual states, respectively. In addition, as mentioned above, the whole
expression diverges in the limit �!1 and we need to find a way how to arrive at
a finite expression. The last and worst, for the most interesting case of an external
Coulomb field, Eq. (7.25), the expression (7.163) cannot be calculated exactly and
we need to rely on a perturbation expansion. However, the whole expression contains
not only one, but many significant regions. On one hand, we need to describe well
the region of large frequencies ! of the virtual photon as this region causes the
aforementioned ultraviolet divergences. On the other hand, Bethe showed with his
simple estimate, see Sect. 6.5.3, that the dominant contribution to the whole effect
comes from the region of low frequencies ! of the virtual photon. Moreover, the
electron momentum in virtual states can acquire both large and small values and we
need to find out which one will be of greater importance. All of the listed problems
can be solved [41]. In this book, we will restrict ourselves to the leading order
estimate of the effect, when a number of simplifications appears.

To find the perturbation expansion of the electron propagator .k2�2k� Ŏ C OH /�1,
that yields a sufficiently accurate estimate of the effect after considering the first few
terms, it suffices to make a single assumption. Namely, we assume that the electron
four-momentum Ŏ is dominated by the four-momentum " of the electron at rest,

" D .m, 0/ .

For instance, after changing to atomic units, we find for the external Coulomb field
that

Ŏ � " D
�

E � mC m.Z˛/2

OrA
, .mZ˛/ OpA

�

.
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Hence time and space components of Ŏ � " are suppressed by the factors .Z˛/2

and .Z˛/ with respect to the rest mass m. However, we are to integrate over all
possible wave numbers ke of the electron in virtual states. The suppression of the
momentum components Op with respect to the rest mass m clearly fails for electron
virtual states with the wave numbers ke larger than .Z˛/�1. Nevertheless, we have
seen in the case of the photoelectric effect, see Sect. 6.3.5, that within the dipole
approximation, the overlap between the ground and continuum states is the largest
for the states lying closely above the ionization threshold and rapidly decreases
with increasing wave numbers ke. This means that of all the continuum states, those
lying closely above the ionization threshold, i.e., the ones with ke � 1, jpj � mZ˛,
dominate. The dipole approximation corresponds here to the negligence of the term
2k � Op in the electron propagator, see Eqs. (7.143) and (7.163), which is the space
part of 2k � . Ŏ � "/. We can expect the dipole approximation to apply as the
nonrelativistic Bethe estimate discussed in Sect. 6.5.3 lies close to the experimental
value. In summary, the contribution of the states ke > .Z˛/�1 is indeed suppressed
with respect to the contribution of the states ke ' 1 and the expansion of electron
propagator in powers of 2k � . Ŏ � "/ will be appropriate.29

As follows from the foregoing considerations, we expand the electron propagator
as:

1

k2 � 2 Ŏ � kC OH D 1

k2 � 2" � kC OH
C 1
OZ01

2k � . Ŏ � "/1
1
OZ12

C 1
OZ01

2k � . Ŏ � "/1
1
OZ12

2k � . Ŏ � "/2
1
OZ23

C : : : ,

(7.164)

where

OZmn D k2 � 2" � kC OHmn

and we used Eq. (6.198). The components of the operator OΠ commute neither
mutually nor with the operator OH ; therefore we attach subscripts to the operators OΠ
and OH to keep the order of their action. Once we do so, we can treat the operators OΠ
and OH as numbers! Clearly, the double subscripts of OH are given by the subscripts
of two adjacent operators OΠ. It is convenient to introduce the notation

29Had we aimed at great precision, we would have to pay special attention to the states of the
continuum part of the spectrum with very large wave numbers. The contribution of these states to
the self-energy is not described well by the proposed expansion. If the reader wishes to learn how
to do so, we refer him to [41].
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D1

h

f . OH /
i

D 1
OH12 � OH01

f . OH12/

C 1
OH01 � OH12

f . OH01/ , (7.165)

D2

h

f . OH /
i

D 1

. OH01 � OH12/. OH01 � OH23/
f . OH01/

C 1

. OH12 � OH01/. OH12 � OH23/
f . OH12/

C 1

. OH23 � OH01/. OH23 � OH12/
f . OH23/ . (7.166)

and so on. We apply it to Eq. (7.164) to obtain

1

k2 � 2 Ŏ � kC OH D 1

k2 � 2k � "C OH
C 2k � . Ŏ � "/1D1

�

� 1

k2 � 2k � "C OH

	

C 2k � . Ŏ � "/12k � . Ŏ � "/2D2

�
1

k2 � 2k � "C OH

	

C : : :

Notice that we succeeded in writing the original fractions as a sum of simpler
fractions. However, a problem seems to appear as the number of components of
k in the numerator increases with the increasing order of the expansion, while the
powers of k in the denominators do not change! Thus the integrals over k seem to
be becoming more rapidly divergent as the order of the expansion grows. Recall,
though, that if we return to the original form of the expansion, Eq. (7.164), it becomes
obvious that if the first term of the expansion leads to a convergent integral, so do the
other terms. Thus the above mentioned difficulty can be avoided by differentiating
the individual terms on the rhs of the last equation with respect to OH and integrating
back30

30If the reader is scared to differentiate and integrate with respect to the operator OH , the use of its
spectral decomposition could return his courage:

1

k2 � 2k � "C OH DX

n

j nih nj
k2 � 2k � "C En

.

Here, En and  n are eigenvalues and eigenstates of OH . Differentiation and integration with respect
to OH then clearly means differentiation and integration of the n-th term on the rhs with respect to
En.
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1

k2 � 2k � "C OH D
Z OH

0

d

dw1

1

k2 � 2k � "C w1
dw1

D
Z OH

0

Z w2

0

d2

dw2
1

1

k2 � 2k � "C w1
dw1dw2

D
Z OH

0
. OH � w/

d2

dw2

1

k2 � 2k � "C w
dw

D 1

.n � 1/!

Z OH

0
. OH � w/n�1 dn

dwn

1

k2 � 2k � "C w
dw

and so on, where we used the formula for iterated integration

Z a

0
dwk : : :

Z w3

0
dw2

Z w2

0
dw1f .w1/ D 1

.k � 1/!

Z a

0
dw.a � w/.k�1/f .w/ .

The components of k in the numerators, k˛ , k˛kˇ , etc., can now be eliminated via
parametric differentiation:

@

@"


1

k2 � 2k � "C w
D � d

dw

2k

k2 � 2k � "C w

,

@2

@"˛@"ˇ

1

k2 � 2k � "C w
D d2

dw2

2k˛2kˇ
k2 � 2k � "C w

and so on. Here we used the identity following from the definition of the four-
dimensional gradient (7.9)

@"�

@"�
D ��� .

Collecting all the parts together, we have

� 2k


k2 � 2k � "C OH D @

@"


Z OH

0

dw

k2 � 2k � "C w
,

2k
2k


k2 � 2k � "C OH D @2

@"
@"


Z OH

0

dw. OH � w/

k2 � 2k � "C w

and so on. The expansion (7.164) of the electron propagator can be thus written in a
concise form
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1

k2 � 2k � Ŏ C OH D 1

k2 � 2k � "C OH C. Ŏ � "/1

@

@"

D1

"
Z OH

0

dw

k2 � 2k � "C w

#

C. Ŏ � "/1
. Ŏ � "/2

@2

@"
@"

D2

"
Z OH

0

dw. OH � w/

k2 � 2k � "C w

#

C : : :

We substitute this expression into Eq. (7.163) and see that the only integrals over the
four-momentum k to be explicitly performed are only the following two: (we write
them compactly as one, using vector notation)

Z �2

0
d

Z

d4kF.1, k�/

.k2 � 
/2
1

.n � 1/!

Z OH

0
dw

. OH � w/n�1

k2 � 2k � "C w
. (7.167)

These integrals are most easily calculated by the method of Feynman parameters.
When integrating over the four-momentum of the virtual photon k, it is more
advantageous to deal with only one fraction rather than a product of two. Why?
Recall that when integrating over k0 we need to calculate the residues of poles,
see Sect. 7.4.5. Feynman, inspired by earlier Schwinger’s work, realized that by the
introduction of an additional integration variable, the product of two fractions can
be reduced to one fraction

1

ab
D
Z 1

0

dy

.ayC b.1 � y//2

and similarly for higher powers, for instance

1

ab2
D � @

@b

1

ab
D
Z 1

0

2.1 � y/dy

.ayC b.1 � y//3
.

The integration variable y is usually called the Feynman parameter.
The integrals (7.167) can be rearranged by means of the last equation and

substitution k! kC "y

Z
d4kF.1, k�/

.k2 � 
/2.k2 � 2k � "C w/
D

1Z

0

dy2.1�y/
Z

d4kF
.1, k� C "�y/

.k2 � "2y2 C wy � 
.1 � y//3
.

The only integrals over the four-momenta of the virtual photon to be explicitly
performed are the integrals

Z
d4kF.1, k�/

.k2 � L/3
D .1, 0/

8L
. (7.168)
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The first integral is calculated as follows: we add infinitesimal negative and positive
imaginary parts to the poles lying on the positive and negative real axis, respectively.
We integrate over a closed curve composed of the real axis and a semicircle in the
lower half of the complex plane, see Sect. 7.4.5. The result of the integration over
k0 reads �2� i times the residues in the poles lying in the lower half of the complex
plane

Z
d4kF

.k2 � L/3
D i

2�

Z
d3k
2�

Z 1

�1
dk0

.k2
0 � !2 � L/3

,

Resk0D
p
!2CL

�
1

.k2
0 � !2 � L/3

�

D 6

.2
p
!2 C L/5

.

For the integration over d3k, we introduce spherical coordinates and obtain

Z
d4kF

.k2 � L/3
D 3

8

Z 1

0

!2d!

.!2 C L/5=2
D 1

8L
.

The reader can easily verify that the result is the same if we close the integration
path in the upper half of the complex plane. The second integral in (7.168) is odd in
the components of k� , hence vanishes.

Note that we managed to perform the integration over the four-momenta of
the virtual photon without separating the Dirac Hamiltonian into positive and
negative energy modes! Owing to the rearrangement (7.160), we obtain the Dirac
second order Hamiltonian OH in the denominator. This Hamiltonian is negative
definite if the reference state is the ground state, as one can see from the following
reasoning. The Dirac second order Hamiltonian in the nonrelativistic limit (7.26)31

has the eigenvalues �.Z˛m/2
�

k2
e C 1

N2

�

and �.Z˛m/2
�� 1

n2 C 1
N2

�

for continuous
and discrete parts of the spectrum, respectively. If the reference state is the ground
state, then necessarily n � N. If the reference state is an excited state, a part of the
discrete spectrum eigenvalues, n < N, is positive. This breakdown of the negative
definiteness leads to nonzero imaginary parts of the excited state energies discussed
in Sect. 6.5.3.

Owing to the negative definiteness of the operator OH , we will not encounter the
separation of the positive and negative energies any further. From a computational
point of view, this point is of key importance, although usually not emphasized at all.
The introduction of a fourth integration variable, for instance k0, proves practically
indeed advantageous only as one eliminates the first order Dirac Hamiltonian OhD

in favor of the second order Dirac Hamiltonian OH in the denominators of the
integrands of the integrals over the four-momenta of the virtual particles.

31We will need the spectral decomposition of OH only at this limit. For a more complete treatment,
see [41].
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7.5.3 Mass Renormalization

After substituting Eq. (7.168) into Eq. (7.167) we find

Z �2

0
d

Z

d4kF.1, k�/

.k2 � 
/2.k2 � 2k � "C w/

D
Z �2

0
d

Z 1

0
dy

1

4
.1 � y/

.1, "�y/

"2y2 � wyC 
.1 � y/

D 1

4

Z 1

0
dy.1, "�y/ ln

�2.1 � y/

"2y2 � wy
C O.1=�2/ . (7.169)

These integrals clearly diverge (logarithmically) in the limit � ! 1, which we
need to tackle somehow.32 Let us start by considering Eq. (7.163) for a free electron.
What is the effect of the interaction of the free electron with its own EM field? There
is only one possibility: this interaction adds the “electromagnetic mass” to the mass
m of the “bare” electron, i.e., a hypothetical electron which is not surrounded by any
EM field. The electromagnetic mass is the part of the electron mass which arises
from the interaction of a real electron with other charged particles via the EM field.
This EM field carries energy and hence, according to the special relativity, mass. The
observable electron mass mexp is a sum of the “bare” and “electromagnetic” masses

mexp D mC�m . (7.170)

The energy of free particle equals E D p

p2 C m2. Differentiation of this equality
with respect to m for a fixed p yields

.�E/SE
0 D

m

E
�m . (7.171)

We clearly have Ŏ D Op for a free particle. Consequently, the second order
Hamiltonian OH D Op2 � m2 commutes with the � -matrices and the electron
propagator .k2 � 2k � Op C OH /�1 in Eq. (7.163) acts directly on the free-particle
reference state which we will denote as jpi. We find from the definition of the

reference state that OH jpi D



Op2 � m2
�

jpi D �p2 � m2
� jpi D 0, hence

1

k2 � 2k � OpC OH jpi D
1

k2 � 2k � p jpi .

32The reader surely notices that the following consideration resembles the one made in Sect. 6.5.
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Here, p is obviously the four-momentum of the reference state p2 D m2. It follows
from the last two relations and Eq. (7.169) that in case of a free particle the integration
over the four-momentum k of the virtual photon yields

Z �

0
d

Z

d4kF

.k2 � 
/2
.1, k�/

k2 � 2k � p D
1

4

Z 1

0
dy.1, p�y/ ln

�2.1 � y/

m2y2
.

The expression (7.163) in the case of a free particle leads to

.�E/SE
0 D

˛

2�

Z 1

0
dy ln

�2.1 � y/

m2y2
hpj��




Op� � y

2
Op�����

�

jpi (7.172)

D ˛

2�
m
Z 1

0
dy.1C y/ ln

�2.1 � y/

m2y2
hpjpi ,

where we used the Dirac equation for a free particle, Eq. (7.16), � � Opjpi D mjpi,
and the identity for the Dirac matrices

������ D �2�� (7.173)

which follows from the anticommutation relations (7.17). The reader can easily
show from the solution of the Dirac equation (7.16) that the relation

hpjpi D m

E
(7.174)

holds for a free particle. By comparing Eqs. (7.172) and (7.174) with Eq. (7.171),
we obtain for the electromagnetic electron mass

�m D ˛

2�
m
Z 1

0
.1C y/ ln

�2.1 � y/

m2y2
dy , (7.175)

which is clearly invariant with respect to Lorentz transformations.
In Eq. (7.169), we now separate the part present also for a free electron and the

part present only for a bound electron. Since a logarithm of a product is a sum of
logarithms, we have

(7.169) D 1

4

Z 1

0
dy.1, "�y/ ln

�2.1 � y/

m2y2
� 1

4

Z 1

0
dy.1, "�y/ ln

"2y2 � wy

m2y2
.

We write the result of the integration in Eq. (7.163) in the form

.�E/SE D .�E/SE
EM C .�E/SE

exp , (7.176)
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where

.�E/SE
EM D

˛

2�

Z 1

0
dy ln

�2.1 � y/

m2y2

� ˝ at

ˇ
ˇ��

 

OΠ� � 1

2
y

 

"�C. Ŏ � "/1

@

@"

D1

"

"�

Z OH

0
dw

#!

����

!

j ati

D ˛

2�

Z 1

0
dy ln

�2.1 � y/

m2y2

˝

 at

ˇ
ˇ��


 OΠ� � y

2
OΠ�����

�

j ati

D ˛

2�

Z 1

0
dy.1C y/ ln

�2.1 � y/

m2y2

˝

 at

ˇ
ˇ ati D �m

˝

 at

ˇ
ˇ ati .

(7.177)

In the second equality, we used the identity

D1ŒH � D
OH01

OH01 � OH12

C
OH12

OH12 � OH01

D 1

and in the third equality we used the Dirac equation (7.19), � � Ŏ j ati D mj ati.
Now we insert into the Hamiltonian (7.34) of a Dirac particle in an external EM

field from Eq. (7.170),

OhD.m/ D �0� � . Op � eA.Or//C e'.Or/C �0m D OhD.mexp/ � �0�m ,

where the last term is of the first order in ˛, see Eq. (7.175), and should be treated
perturbatively. Its effect on the bound state energies evaluated in the first order of
the perturbation method is clearly

�˝ at

ˇ
ˇ ati�m ,

which matches but for the opposite sign Eq. (7.177).
The observable part of the effect of the electron interaction with its own EM

field is given by the second term in Eq. (7.176), where the replacement m ! mexp

has to be made. This term is independent of the cutoff � and clearly finite. Notice
that an unambiguous determination of which part of the self-energy effect can be
ascribed to the electron electromagnetic mass and which one is the observable part
is substantially simplified by the Lorentz invariance of the self-energy operator and
the Lorentz invariant regularization (7.162). Early efforts aiming at this distinction
within the framework of the ordinary perturbation method and using a Lorentz non-
invariant regularization led to considerable confusion, see [35]. We emphasize that
it is not true that the “renormalization consists of throwing away the infinite terms.”
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The reader can perform the integration in Eq. (7.172) to easily find that the electron
electromagnetic mass comprises also terms which are finite in the limit � ! 1.
We will see in Sect. 7.6 that the preservation of the manifest gauge invariance of
the regularized expression is by no means a lesser issue than the preservation of the
Lorentz invariance.

The removal of the infinite “small correction” �m to the mass of a particle,
as we made above, is a procedure ubiquitous in all field theories. It is termed the
renormalization, here in particular the mass renormalization. Usually, there is more
than one parameter to be renormalized; there is usually more than one loop diagram
yielding an infinite result. For instance, in quantum electrodynamics there is also a
charge renormalization which stems from the need to make the contributions from
the diagrams with a closed fermion loop finite, see the next Sect. 7.6. In general,
quantum field theories involving a finite number of parameters to be renormalized
are called renormalizable. Such theories form only a minor subset of all conceivable
relativistic quantum field theories as the requirement of renormalizability imposes
severe restrictions on the form of the interaction Hamiltonian. For instance, the basic
principles of quantum mechanics and special relativity do not provide any reason
why the interaction Hamiltonian of QED should not, besides the term

R Oj� OA�d3r,
contain also the term

R Om��.@� OA� � @� OA�/d3r, where Om�� is a magnetic moment
created by the Dirac field, or other interaction terms containing even more space-time
derivatives of EM potentials for that matter. The only theoretical reason to exclude
these terms is the loss of renormalizability of the theory.

It is worth emphasizing that the requirement of renormalizability, together with
the obvious requirement the theory reproduce known experimental facts, was up to
now the only reliable clue33 for the construction of quantum field theories describing
weak and strong interactions that are in agreement with new experimental facts. To
be more precise, the requirement of renormalizability applies only when one deals
with elementary fields. An effort to create a renormalizable theory of the strong
interactions where the basic fields are proton and neutron fields exchanging �-
mesons proved to be a dead end. In the modern renormalizable theory of strong
interactions, namely in quantum chromodynamics, the basic fields are quark fields
exchanging gluons.

The requirement of renormalizability leads to theories which are in an excellent
agreement with the experiment within the energy range going from 10�9 to
10�12 eV (details of the fine and hyperfine structures of atomic spectral lines)
up to 1012 � 1013 eV (collider experiments on LHC in CERN). All of this is more
remarkable given that the renormalization procedure has been regarded as “necessary
evil” from its very inception. American physicist Kenneth Wilson was the first
one to show that given the interaction Hamiltonian containing both renormalizable
and non-renormalizable terms and integrating successively high energy degrees of
freedom, the renormalizable terms dominate over non-renormalizable ones at low
energies, see, e.g., [30]. Since then, renormalizable quantum field theories started to

33Freeman Dyson was the first one to propose that we take this clue seriously.
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be regarded not as fundamental theories but rather as an effective description valid
at low energies.34 The LHC discovery of Higgs boson (and only of Higgs boson)
points out, however, that our successful renormalizable theories of electromagnetic,
weak and strong interactions are somewhat more fundamental and less effective than
we had thought.

7.5.4 Calculation of the Observable Part of the Effect

As already pointed out above, the observable part of the energy shift is given by the
second term in Eq. (7.176). The treatment of this term aiming at obtaining a number
involves lengthy algebraic manipulations. Thus this and the following two sections
were written for an indeed devoted reader. If desired, one may skip this derivation.

We show in this section that the observable part of .�E/SE can be expressed
as a sum of low- and high-energy parts of the effect and discuss each of the two
parts in Sect. 7.5.5 (the end result being Eq. (7.198)) and 7.5.6 (the end result being
Eq. (7.202)), respectively. The two sections following these sections focus on the
evaluation of this effect in the most interesting cases of purely magnetic (Sect. 7.5.7)
and Coulomb (Sect. 7.5.8) external fields. In case of the former, the self-energy effect
leads to the anomalous magnetic moment of the electron and in the latter case to
the Lamb shift of spectral lines discussed already in Sect. 6.5. Vacuum polarization
contributes to the Lamb shift in hydrogen-like atoms as well and we will evaluate its
effect in Sect. 7.6. At the end of this section, we compare the theory and experiment.
An impatient reader can now proceed directly to Sect. 7.5.7. A devoted reader may
continue reading further!

As follows from previous two sections, the observable part of Eq. (7.163) is given
by

.�E/SE
exp D �

˛

2�

�

��

�

OG4 OΠ� � 1

2
OG � ���

�


, (7.178)

where for an arbitrary operator OO we introduced the notation

D OO
E

D ˝ at

ˇ
ˇ OOj ati (7.179)

and

OG4 D
Z 1

0

 

L.m2, OH /C . Ŏ � "/1

@

@"

D1

"
Z OH

0
L."2, w/dw

#

C : : :
!

dy ,

(7.180)

34What is regarded as “low energy” depends of course on the cultural and historical situation, see
also [42]. For a brief yet incisive exposition of the effective field theories see [21].
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OG� D
Z 1

0

(

"�L.m
2, OH /C . Ŏ � "/1


@

@"

D1

"

"�

Z OH

0
L."2, w/dw

#

C : : :
)

y dy .

(7.181)

Here, symbol L."2, w/ represents

L."2, w/ D ln
"2y � w

m2y

and by m stands for mexp.
Let us proceed with the calculation. We need to perform differentiations of

L."2, w/ with respect to the components of ":

@

@"

L D @"2

@"


@

@."2/
L D 2"
L0 ,

@2

@"
@"

L D @

@"


�

2"
L0
� D 2�

L

0 C 4"
"
L
00 ,

@3

@"
@"
@"�
L D 4.�

"� C �
�"
 C ��
"
/L00 C 8"
"
"�L000 ,

@4

@"
@"
@"�@"�
L D 4.�

��� C �
��
� C ��
�
�/L00 C : : :

and so on where the primes denote differentiation with respect to "2. We also need
to differentiate the product "�L:

@

@"

."�L/ D ��
LC 2"�"
L0 ,

@2

@"
@"

."�L/ D 2.��
"
 C ��
"
 C �

"�/L0 C 4"�"
"
L

00 ,

@3

@"
@"
@"�
."�L/ D 2.��
�
� C ��
�
� C �

��� /L0 C : : :

Inserting these relations into G4 and G� we arrive at formidably looking expressions

OG4 D
Z 1

0
dy

(

L.m2, OH /C . Ŏ � "/1
"
D1

"

2
Z OH

0
L0dw

#

C . Ŏ � "/1
. Ŏ � "/2
D2

"

2
Z OH

0
. OH � w/L0dw

#
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C . Ŏ � "/1
. Ŏ � "/2
"
"
D2

"

4
Z OH

0
. OH � w/L00dw
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C . Ŏ � "/1
. Ŏ � "/2
. Ŏ � "/3� ."
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� C "��

 C "
�
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C . Ŏ � "/1
"
"�D1

"

2
Z OH

0
L0dw

#
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We regroup the terms into the form

OG4 D 	0 C . Ŏ � "/1
"
D1Œ	
0
2�C . Ŏ � "/1
. Ŏ � "/2
D2Œ	2�

C . Ŏ � "/1
. Ŏ � "/2
D2Œ	
00
4 �

C . Ŏ � "/1
. Ŏ � "/2
. Ŏ � "/3� .�

"� C �
�"
 C ��
"
/D3Œ	
0
4�

C . Ŏ � "/1
. Ŏ � "/2
. Ŏ � "/3� . Ŏ � "/4�

� .�

��� C �
��
� C ��
�
�/D4Œ	4�C : : : , (7.182)
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OG� D "�	01 C . Ŏ � "/1
D1Œ	1�C . Ŏ � "/1
"
"�D1Œ	
00
3 �

C . Ŏ � "/1
. Ŏ � "/2
.��
"
 C ��
"
 C �

"�/D2Œ	
0
3�

C . Ŏ � "/1
. Ŏ � "/2
. Ŏ � "/3�

� .��
�
� C ��
�
� C �

��� /D3Œ	3�C : : : , (7.183)

where

	0 D
Z 1

0
ln

m2y � OH
m2y

dy , (7.184)

	2n D
Z 1

0

Z OH

0

. OH � w/2n�1

.2n � 1/!
2n @n

@."2/n
ln."2y � w/

ˇ
ˇ
ˇ
ˇ
"2Dm2

dw dy (7.185)

and

	1 D
Z 1

0
y
Z OH

0
ln

m2y � w

m2y
dw dy ,

	2nC1 D
Z 1

0
y
Z OH

0

. OH � w/2n

.2n/!
2n @n

@."2/n
ln."2y � w/

ˇ
ˇ
ˇ
ˇ
"2Dm2

dw dy .

The integrals 	n are calculated easily and neither is it difficult to calculate, at
least in the case of the Coulomb external field, the expressions of the form . Ŏ �
"/1 : : : . Ŏ � "/iDiŒ	� appearing in Eqs. (7.182) and (7.183). The whole calculation
thus can be performed without invoking any further approximation. Recall that
the only approximation made so far is the expansion of the electron propagator in
the series (7.164). However, as we noted before, we will restrict ourselves to the
calculation of the leading part of the effect. This allows for additional approximations
which in turn lead to substantial simplifications. The calculation remains difficult
enough nevertheless. Shall the reader be interested in a more accurate calculation,
we refer him to [41].

After calculation of the functions 	 we discover that they can be expanded
in a series in OH . In case of the Coulomb external field (7.25), the operator OH is
proportional to .Z˛/2, see Eq. (7.26). The series constitutes, apart from the increasing
powers of OH , also a term proportional to ln. OH /multiplied by a power of OH . As we
will see shortly, calculations involving powers of OH can be performed analytically
to the very end, in contrast to the calculation of the terms involving logarithms of
OH . We expand the functions 	 in the powers of OH up to the logarithmic term. It

turns out that the calculation is both simpler and more accurate if the remaining part
of the function 	 is not expanded any further:

	2 D
OH 2

m2
C Q	2 , (7.186)
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	1 ' �
OH 2

2m2
, (7.187)

	3 '
OH 3

6m2
C

OH 4

12m4
, 	4 ' �

OH 4

6m4
, 	5 ' �

OH 5

60m4
.

To calculate the terms with powers of OH , we exploit the identities

D1Œa� D a
OH01 � OH12

C a
OH12 � OH01

D 0 , D1ŒH � D 1 ,

D1ŒH
2� D

OH 2
01

OH01 � OH12

C
OH 2
12

OH12 � OH01

D OH01 C OH12 ,

D2Œa� D D2Œ OH � D 0 ,

D2Œ OH 2� D
OH 2
01

. OH01 � OH12/. OH01 � OH23/
C

OH 2
12

. OH12 � OH01/. OH12 � OH23/

C
OH 2
23

. OH23 � OH01/. OH23 � OH12/
D 1 ,

D2Œ OH 3� D
OH 3
01

. OH01 � OH12/. OH01 � OH23/
C

OH 3
12

. OH12 � OH01/. OH12 � OH23/

C
OH 3
23

. OH23 � OH01/. OH23 � OH12/

D OH01 C OH12 C OH23 ,

and so on. Consequently, the expressions in Eqs. (7.182) and (7.183) simplify
substantially. For instance, if we insert the first term on the rhs of Eq. (7.186) into
the second and third terms on the rhs of Eq. (7.182), we find

. Ŏ � "/1
"
D1Œ2 OH �C . Ŏ � "/1
. Ŏ � "/2
D2Œ OH 2� D Ŏ � Ŏ � m2 D Q̆ 2 .

Likewise, insertion of Eq. (7.187) into the first and second terms on the rhs of
Eq. (7.183) leads to

"�2 OH C . Ŏ � "/1
D1Œ OH 2� D f OΠ� , OH g

and so on.
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With this approximation, Eqs. (7.182) and (7.183) simplify to

OG4 '
Q̆ 2

m2
�
Q̆ 4

6m4
C 	0 C . Ŏ � "/1
"
D1Œ Q	02�C . Ŏ � "/1
. Ŏ � "/2
D2Œ Q	2� ,

(7.188)

OG� ' � 1

2m2
f OΠ� , OH g C 1

6m2
Q̆ 2 OΠ� C 1

12m2
Q̆ 2 OΠ� OH � 1

60m4
Q̆ 4 OΠ� , (7.189)

where the bar over the product of the operators denotes a sum of all possible
orderings; for instance

Q̆ 2 OΠ� D Q̆� Q̆� OΠ� C Q̆� OΠ� Q̆� C OΠ� Q̆� Q̆�
or

Q̆ 4 D Q̆� Q̆� Q̆ � Q̆ � C Q̆� Q̆ � Q̆� Q̆ � C Q̆� Q̆ � Q̆ � Q̆� .

Thus, the symbol Q̆ 2 OΠ� OH represents a sum of 12 terms. Substituting for OG4 and OG�

from Eqs. (7.188) and (7.189), respectively, into Eq. (7.178) we obtain a manageable
expression. We can further rearrange it by means of the Dirac equation (7.19) to

D

�� OG4 OΠ�
E

D 1

2

D

�� OG4 OΠ� C OΠ� OG4��

E

D m
D OG4

E

� 1

2

D

Œ OΠ�, Œ��, OG4��
E

(7.190)

and

� 1

2

D

�� OG � ���
E

D �1

4

D

��f OG� , ��g��
E

D 1

2

D

f OG� , ��g
E

� 1

8

D

f�� , Œ��, Œ��, OG���g
E

.

(7.191)
For the Coulomb external field, the second terms on the rhs of the last two equation
are smaller than the first terms by the factor Z˛.

We split the expression for the energy shift into two parts: the low-energy one
containing the logarithmic terms in OH coming from 	0 and Q	2, and the high-energy
one coming from additional power terms,

.�E/SE
exp D .�E/SE

low C .�E/SE
high .

The nomenclature high- and low-energy parts stems from the integration over
the high and low energies of virtual photons, respectively. This is hidden in the
integration over the parameter y where the regions y! 1 and y! 0 correspond to
high- and low-energy regions, respectively.
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7.5.5 Low-Energy Part of the Effect

After inserting the last three terms in Eq. (7.188) into Eq. (7.178), we obtain

.�E/SE
lowD�

˛

2�

D

��




	0C. Ŏ � "/1
"
D1
� Q	02
�C. Ŏ �"/1
. Ŏ �"/2
D2

� Q	2
�� OΠ�

E

.

(7.192)
We further simplify this expression. By means of the identities

Œ��, OH � D 2Œ OΠ�, OΠ
��
 , (7.193)

	. OH / D .� � Ŏ � m/
	. OH /

OH .� � Ŏ C m/ ,

following from Eqs. (7.17) and (7.24), we can write
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OΠ�



(7.194)

and

D OΠ�	0 OΠ�
E

D
*
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	0. OH /
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��
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C
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�
Œ OΠ�, OΠ
� 	0

OH ��Œ OΠ�, OΠ��



. (7.195)

We used the second order Dirac equation (7.24) in the first equality in Eq. (7.194)
and the first order Dirac equation (7.19) in the second equality in Eq. (7.195). The
second term on the rhs of the last equation is by a factor of Z˛ smaller than the first
one. When we neglect it and combine Eqs. (7.194) and (7.195), we obtain

D

��	0 OΠ�
E

' 1

m

D OΠ�	0 OΠ�
E

. (7.196)

By means of Eq. (7.190) we can write, neglecting again the terms suppressed by the
additional factor of Z˛,

D
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OΠ�
+

,

(7.197)

where we used the identities

D2Œ Q	2� OH01D OH23D0 D
Q	2. OH12/

OH 2
12

, D1Œ Q	02� OH01D OH12D0 D 0 ,
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which follow from the definitions (7.165), (7.166) and Q	2.H ! 0/ ! H 3, see
Eqs. (7.185) and (7.186). After inserting Eqs. (7.196) and (7.197) into Eq. (7.192),
we have

.�E/SE
low ' �
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C m
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Q	2

OH 2

!
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+

(7.198)

D m˛

�n3
.Z˛/4Flow ,

where in the second equality we neglected the contribution of the time components
of Ŏ with respect to the contribution of space components as it is again suppressed
by an additional factor of Z˛. In the last equality, we made transition to the atomic
units, (6.83),

Flow D
D

. OpA/if . OH /. OpA/i
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From the definition of the functions 	0 and Q	2, see Eqs. (7.184), (7.185), and (7.186),
we can write
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After substituting the last two equations into Eq. (7.199) we have
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. (7.200)

The expression (7.199) could be calculated as it is. However, it suffices for our
purposes to make a nonrelativistic approximation. In this approximation  at '  0

at,

see Eqs. (7.22)–(7.23), and � OH
m2 ' 2.Z˛/2. Oh0 � "0/, see Eq. (7.26). We thus finally

obtain Eq. (6.239) from Eqs. (7.199) and (7.200)
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.

(6.239)
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7.5.6 High-Energy Part of the Effect

After inserting the first two terms in Eq. (7.188) and all of the terms in Eq. (7.189)
into Eq. (7.178), using Eqs. (7.190) and (7.191), and neglecting again the terms
suppressed by an additional power of Z˛, we obtain
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We calculate the contribution of the individual terms in Eq. (7.201) by means of the
operator identity (3.99) and the Dirac equations (7.19) and (7.24). For instance,
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where we used the Dirac equation (7.24),
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where we successively used the identity (3.99), the Dirac equations (7.19) and (7.24).
We further have
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and

� 1

60m5

D Q̆ 4 OΠ���
E

' � 1

12m4

D Q̆ 4
E

,

where we used Eq. (7.193) in the first two equations and neglected again the terms
suppressed by an additional factor of Z˛ in the last three equations. Considering
Eqs. (7.24) and (7.19) and neglecting the terms suppressed by an additional factor
of Z˛, we have

D

Œ OΠ� , Œ OΠ� , OH ��
E

' 2m
D

Œ OΠ� , Œ OΠ� , OΠ
���

E

.

Finally, we collect all the parts to obtain
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7.5.7 Electron Anomalous Magnetic Moment

In this section, we derive the most cited consequence of the quantum-electrodynamic
corrections from the last equation (7.202). Consider the case of an external magnetic
field

Ŏ D �E, Op � eA.Or/� ;

then

D
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D h4e˙ � Bi ,

where we used the formula for the Dirac � -matrices, see Eqs. (7.18) and (7.28),

Œ�i, �j� D �2i"ijk˙k , (7.203)

and, see Sect. 3.3.2,

Œ OΠi, OΠj� D ie
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�

.

In the nonrelativistic limit  at '  0
at, we obtain from the first term of Eq. (7.202)

�E D � e

m

D OS � B
E ˛

2�
,
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which is the celebrated35 “anomalous” correction to the electron gyromagnetic ratio.
This correction was for the first time calculated by American physicist Julian S.
Schwinger in 1947 within the framework of the old-fashioned formalism [35] (with
the separation of the contributions from the positive and negative energies in virtual
states, transverse and longitudinal parts of the EM field) nearly immediately after
it was measured by Isidor Rabi and his coworkers using the method explained in
Sect. 1.2.7.

It follows from the Dirac equation that the ratio of the electron magnetic and
mechanical moments equals e=me, see Sects. 3.3.2 and 3.5.1. By taking into account
the electron interaction with its own EM field, we find

.ge/theo D
�

S
e

me

D 1C ˛

2�
C : : : ' 1.001161. (7.204)

The most accurate experimental value at present is [27]

.ge/exp D 1.00115965218085.76/ , (7.205)

with the relative error of the measurement of 6.6� 10�10! It is worth noting that the
theoretical value has been calculated up to the order of ˛4! Presently, the comparison
of the theory and experiment in this case yields the most accurate determination of
the fine structure constant ˛. For our “modest” accuracy, i.e., for the comparison
of Eqs. (7.204) and (7.205), it suffices to take the fine-structure constant ˛ from the
measurement of the quantum Hall effect, see, e.g., [19].

In Sect. 3.3.3, we derived an expression for the hyperfine splitting of the hydrogen
ground state, see Eq. (3.58),

�theo.1
3s � 11s/ D 8

3

me

mp

2R1c˛2




1C me
mp

�3 gpge . (7.206)

If we insert 1 for ge, the last equation yields 1418.4 MHz. If we insert for ge from
Eq. (7.204), the last equation produces the result 1420.1 MHz which agrees better
with the experimental value 1420.4 MHz, see Eq. (3.59). We achieve an even more
impressive improvement of the theoretical prediction if we replace the proton by a
muon. If we insert gp D ge D 1 and the appropriate mass ratio, Eq. (7.206) yields
4453.8 MHz. If we insert for both gp and ge from Eq. (7.204), Eq. (7.206) yields
4464.2 MHz in much better agreement with the experimental value 4463.3 MHz,
see Eq. (3.60).

35More precisely, celebrated among those interested physics; even more precisely, celebrated among
those captivated by the quantum field theory.
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7.5.8 Lamb Shift

Considering the nonrelativistic limit of the Dirac wave function, Eq. (7.22), and the
definitions (7.48) and (7.179), we find for the Coulomb potential (7.25)
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,

where we used Eq. (3.106) in the last equality. After inserting Eqs. (7.207) and (7.208)
into Eq. (7.202), we obtain
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where, see Eq. (6.238),
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The final result for the shift of the hydrogen-like energy levels caused by the emission
and absorption of a virtual photon reads36

.�E/SE
exp D
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�n3
.Z˛/4F.Z˛, n, l, j/ , F D Fhigh C Flow , (7.209)

where the expression for Flow was already given in Eq. (6.239),
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(6.239)

From the above equations we have for Fhigh
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36The first correct expression for the energy shift of hydrogen-like atoms with accuracy up to
˛.Z˛/4 was for the first time published [20] in the framework of the old-fashioned formalism of
Sect. 7.3.1.
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Comparing Eqs. (6.242), (6.243), (7.210), (3.108) and (3.111), we see that the total
energy shift is for the s-states by two orders of magnitude greater than for the
p-states. For s-states, the dominant contribution is given by the low-energy part,
while the high-energy part contributes the most in case of p-states. We postpone the
comparison with the experiment until we have calculated the second contribution
of quantum electrodynamics to the shift of the hydrogen-like energy levels, namely
vacuum polarization.

7.5.9 Nuclear Motion Effect

So far, we considered an electron moving in an external EM field and neglected the
nuclear motion. To take it into account it suffices, see Sect. 3.2.1, to replace m by mr

in the kinetic term Op2

2m in Eq. (7.26) and to do the same when changing to the atomic
units, Eq. (6.83); then

� OH
m2
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where
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m
.

The function f .x/ in Eq. (6.239) consequently changes to
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By means of the expansion (6.240) we can write with sufficient accuracy
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Equation (7.209) then changes to
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where the multiplicative factor .mr=m/3 stems from the transition to the atomic units
with reduced mass, r D rA=.mrZ˛/, and
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If we take the nuclear motion into account, we should also in Eq. (3.126), in the
term describing electron spin interaction with orbital motion of the nucleus, consider
the Schwinger correction to the gyromagnetic ratio (7.204). The high-energy part
Fhigh is then modified to

Fhigh
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. (7.213)

Consider the interaction of the electron spin with the proton orbit and
the effect of the electron self-energy on the spin-orbital interaction,
Eq. (7.213). How does it change the theoretical prediction of the interval
2p3=2 � 2p1=2? We estimated this interval back in Sect. 3.5.2. Compare
the result with the experimental value (3.109). Do the same for muonium
where the “official” value [28] for this interval reads 10,922 MHz.

Exercise 27: Hydrogen Fine Structure

7.6 Vacuum Polarization: Calculation

7.6.1 Propagator Expansion

We now turn our attention to the second quantum electrodynamic process that
contributes to the Lamb shift in hydrogen-like atoms—vacuum polarization. We
begin by recalling the relations we have already derived. The shift of the atomic
energy levels caused by vacuum polarization is

.�E/VP D � e
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Z
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e�ik�r0

, (7.77)

where the vacuum expectation value of the four-current reads

˝

j�.r/
˛ D �ie

Z

�

dE

2�
Tr hrj�� 1
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jri . (7.149)

It follows from Eq. (7.77) that we need to calculate the Fourier transform of
Eq. (7.149). For the sake of simplicity, we will try to calculate it approximately:
we expand the electron propagator in the powers of the potential of the external EM
field. The physical momentum is Ŏ D Op � eA.Or/, hence in the spirit of Eq. (6.198)
we write
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= + + ...

Fig. 7.7 Potential expansion of current density
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Inserting this expansion into Eq. (7.149) leads to
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where obviously

V D eA . (7.215)

The expansion is schematically depicted in Fig. 7.7. The first term, called the
“tadpole,” vanishes identically and so do all the other terms with an odd number of
adjacent photon lines. Let us show where this rule, commonly termed as the Furry
theorem, stems from. We extend the fraction, analogously to Eq. (7.160),

1

� � Op � m
D � � OpC m

Op2 � m2
. (7.216)

The charge current created by the virtual creation and annihilation of a free electron-
positron pair is given as

˝

j�.r/
˛

0 D �
ie
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Op2 � m2
jri dE . (7.217)

The mass term is proportional to Tr ��, hence vanishes. To prove this in such a
way that it can be easily generalized to an arbitrary odd number of � -matrices,
we introduce a fifth Dirac matrix �5, defined by the requirements �2

5 D 1 and
f��, �5g D 0. The reader can easily verify that in the Dirac realization one can opt
for instance for

�5 D
�

0 1
1 0

�

. (7.218)
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Consequently we find

Tr �� D Tr ���
2
5 D

(

Tr �5���5 (cyclicity of trace) ,

�Tr �5���5 (anticommutator) ,

hence indeed Tr �� D 0 and by the same token Tr �����
 D 0 and so on. To
calculate the trace of an even number of � -matrices, we again use the cyclicity of
the trace and the anticommutation relations for the � -matrices (7.17). Recalling also
that � -matrices are matrices 4 � 4, we easily find

Tr 1 D 4 ,

Tr �� D 0 ,

Tr ���� D 4��� ,

Tr �����
 D 0 ,

Tr �����
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��� C �����
/ .

In Eq. (7.217), we use these traces to obtain
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Now, using the spectral decomposition of the momentum operator, the last equation
reads
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where the last integral is odd in p, hence vanishes, see Eq. (7.168). The first
nonvanishing contribution to the Fourier transform of

˝

j�.r/
˛

comes from the second
term in Eq. (7.214). By inserting twice the completeness relation in the basis of the
momentum eigenstates, we find
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. (7.219)

The integral over the coordinate r yields a ı-function ı.3/.p1 � k � p2/, which
represents the momentum conservation at the interaction vertex, see Fig. 7.8. By
means of the spectral decomposition of the potential operator
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kk

p1

p1−k

Fig. 7.8 Feynman diagram for the vacuum polarization in the momentum space. Conservation
of the momentum holds in the interaction vertices, thus what “flows” inside equals what “flows”
outside. Note that the previous Feynman diagram for the self-energy effect, Fig. 7.6, is in the
coordinate space

V�.Or/ D
Z

d3rjrihrjV�.r/ ,

we easily find that the matrix elements of the potential components between the
momentum eigenstates equal the Fourier transform of the potential components
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From Eqs. (7.214), (7.219), and (7.220), we then find a simple expression of the
Fourier transform of the four-current density vacuum expectation value

Z
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where ˘��.k/ is a vacuum polarization tensor
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and corresponds to the Feynman diagram in Fig. 7.8. Here, we used the aforeintro-
duced notation

k D .0, k/ , k2 D �!2 . (7.79)

Having introduced the vacuum polarization tensor, the energy shift (7.77) can now
be written as
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Let us now calculate the tensor ˘��
37:
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. (7.223)

With the use of the traces of the � -matrices listed above, the numerator equals

Tr ��.� �pCm/��.� �.p�k/Cm/ D 4Œp�.p�k/�Cp�.p�k/�����p�.p�k/�C4m2��� .

We combine the denominators by means of the Feynman parameter
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.

After substituting these rearrangements into Eq. (7.223), we make the substitution
p ! p C ky.38 The vacuum polarization tensor then can be manipulated into the
form

˘�� D .k2��� � k�k�/˘.k2/C��� ,

where
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2p�p�

.p2 � m2 C k2y.1 � y//2
� ���

p2 � m2 C k2y.1 � y/

�

and the terms odd in p vanish.
The integrals over the four-momenta p in the last two equations are divergent. To

regularize them, we differentiate them with respect to the parameter m2. By means
of Eq. (7.168) we obtain

37Calculation of the vacuum polarization tensor can be found in any quantum field theory textbook,
see, e.g., [2, 4, 15, 30, 33, 42].
38Here we are somewhat careless as the substitution is allowed only for a convergent integral.
We should regularize the expression (7.223) first and only then make the substitution. Although
the final result is the same in this particular case, the order of the regularization and substitution
could generally matter and proceeding with care is appropriate. The noncommutativity of the
regularization and substitution leads to the so-called axial anomaly, see e.g. [13, 30, 42], which is
an indeed interesting effect. It shows, among others, that infinities appearing in the calculations are
not a mere trouble we wish to dispose of, but rather very useful features! For further elaboration of
this statement see, e.g., [14].



7.6 Vacuum Polarization: Calculation 385

@˘.k2/

@m2
D 16i

Z
d4p
.2�/4

Z 1

0
dy

y.1 � y/

.p2 � m2 C k2y.1 � y//3

D 2

.2�/2

Z 1

0
dy

y.1 � y/

m2 � k2y.1 � y/
(7.225)
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where the last equality follows from Eq. (7.168) and
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This equality is obtained by differentiating Eq. (7.168)

Z
p�d4pF

..p � k/2 � L/3
D k�

8L

with respect to k� and setting k� D 0.
When integrating over p0 in Eqs. (7.225) and (7.226), we considered the note

following Eq. (7.168). Namely, when evaluating integrals of the type (7.168), it
plays no role whether the integration path in the complex k0 or p0 plane lies in
the upper or lower half of the complex plane. This means we once again avoid the
separation of the contributions from the positive and negative energy modes. This
separation was present in Eq. (7.80); however, we transformed it in Eq. (7.149) to
different integration paths in the complex plane. By the extension (7.216), used in
Eq. (7.223), the integrals over these different paths yield the same result.

7.6.2 Gauge Invariance and Degree of Divergence

Integrating back the expression (7.225) with respect to m2, where we insert the
square of the electron mass m2 for the upper bound and �2 for lower bound, we
obtain

˘.k2/ D 2

.2�/2

Z 1

0
dy y.1 � y/ ln

m2 � k2y.1 � y/

�2
C O.1=�2/ . (7.228)
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Here, we assumed �2 
 k2, hence ln.�2 � k2y.1 � y// ' ln�2. Setting the lower
bound of the integration to �2 is equivalent to the replacement

1

� � p � m
D lim

�!1

�
1

� � p � m
� 1

� � p ��
�

of the electron propagator in the loop. Thus, one can readily see that from a
physical point of view, the introduction of the finite � represents virtual creation
and annihilation of another fermion pair with mass � which is much greater than
the electron mass. The sign of the coupling of this heavy fermion to the EM field is
opposite to that of electron. However, as in the case of self-energy regularization,
nobody takes this interpretation seriously; the regulator � is viewed as a formal
parameter which only purpose is to define well the pertinent integrals.

In the case of the electron self-energy, we showed that the dependence on the
regulating parameter �2 disappears once we realize what the measurable electron
mass is. Likewise, we will show in a moment that in the case of vacuum polarization,
the dependence on �2 disappears once we realize what the measurable electron
charge is. For now, however, we consider only the fact that the remaining dependence
on �2 in Eq. (7.228) is only logarithmic and that the quadratic dependence in the
integral (7.223) is removed by the regularization, see Eq. (7.226). We thus arrive at

˘��.k/ D .k2��� � k�k�/˘.k2/ . (7.229)

Is it a pure coincidence, or is there a deeper explanation? When we return to
the expressions (7.221) and (7.222), we find that we could have expected this
result. The expression (7.221) was derived for a static external field. For a time-
dependent external field, the result is the same with the only exception that there
is a four-dimensional Fourier transform of the vacuum expectation value on the lhs
of Eq. (7.221) and the four-vector k on the rhs has a generally nonzero temporal
component. Furthermore, V.k/ is a four-dimensional Fourier transform of the
potential. Let us consider this more general case for a moment. The potential of
the external EM field is determined up to the gauge transformation

V�.x/! V�.x/C @��.x/ .

In terms of the Fourier transform, it reads

V�.k/! V�.k/ � ik��.k/ .

The tensor part of the rhs of Eq. (7.229) is proportional to the projector P�� ,
Eq. (7.78), to the (hyper)plane perpendicular to the vector k. This guarantees that
the expression (7.222) is invariant with respect to a gauge transformation. There we
have to find the cause leading to the cancellation of the worst divergences: the gauge
invariance!
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The connection between the gauge invariance and the renormalizability is
remarkable. Its universality was for the first time proved by Netherlander physicist
Gerardus ’t Hooft: a theory based on a very general notion of gauge invariance
is renormalizable. This general “lightness” of a gauge theory bears a generally
undesired consequence: the bosons mediating the interaction have to be massless;
see for instance the following note about a massive vector field. In the framework
of electrodynamics, this drawback causes no problems at all as the EM interaction
has an infinite range as we have known for a long time. However, the range of the
weak interaction is very short, about 10�18 m. As we show in the next section, the
short range of a field is related to very large masses of the one-particle excitations
of the field. Hence bosons W˙ and Z0, which mediate weak interactions, are very
massive, about 80 and 91 GeV, respectively. Roughly speaking, to preserve the gauge
invariance it is necessary to add to them a massive scalar field whose one-particle
excitations are called Higgs bosons. We will not explore this part of physics any
further in this book and we refer the reader to a number of excellent textbooks, e.g.,
[13, 24, 30, 42].

7.6.3 Note on a Massive Vector Field

If we add a mass term to the Maxwell equations (7.12), we obtain

.@�@� C m2/A� � @�@�A� D j� . (7.230)

It is not difficult to see that the gauge invariance of the theory, i.e., the invariance of
the field equations with respect to the gauge transformation (7.10), A� D A0� � @��,
is lost.

Acting on both sides of Eq. (7.230) with the operator of four-divergence and
recalling the charge conservation law, Eq. (7.11), @�j� D 0, one obtains

@�A� D 0 . (7.231)

Equation (7.230) consequently simplifies to

.@�@� C m2/A� D j� . (7.232)

We consider the case of a free field, j� D 0, first. If we search for a solution to
Eq. (7.232) in the form of a plane wave

A� D "�eik�x , (7.233)

we obtain

k2 D m2 . (7.234)
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This implies that, in contrast to the massless case, we get a nontrivial solution
if we change to a frame connected with the particle, i.e., k D 0. There are 4
equations (7.232) and one constraint (7.231) for the 4 components of the potential
A. Therefore, the massive vector field features three independent components. It
follows from Eqs. (7.231) and (7.233) that

k�"� D 0 . (7.235)

In the frame connected with the particle, one finds from Eqs. (7.234) and (7.235)

"0 D 0 .

In this frame, the three independent components are the space components and
correspond to the three possible projections of spin of a particle with spin 1.

Now we consider the case of a static field, that is j D 0, 
 D 
.r/. Consequently,
A D 0 and the temporal component of the four-potential A0 D ' obeys the equation

��r2 C m2
�

' D 
 .

In case of a point charge, 
 D eı.r/, the solution takes the form

' D e

.2�/3

Z

d3k
eik�r

jkj2 C m2
D e

4�

e�mr

r
. (7.236)

This form is widely know as the Yukawa potential in honor of Japanese physicist
Hideki Yukawa who was the first one to realize that there is a connection between
the mass and range of a field, as one can easily see from the expression. The
shorter the range of the field, the more massive are its quanta and vice versa. The
second equality in the last equation follows either from direct integration and use
of the residue theorem, or from showing that both expressions of ' satisfy the same
differential equation.

7.6.4 Charge Renormalization

Choosing the gauge k
V
.k/ D 0, Eqs. (7.78), (7.222) and (7.229) yield

.�E/VP D
Z

d3k
˝

 at

ˇ
ˇ��eik�Or j atiV�.k/e2˘.k2/ . (7.237)

Since the expression for ˘.k2/ is infinite in the limit � ! 1, see Eq. (7.228),
the last expression is infinite in this limit as well. As in the case of the electron
self-energy, we now need to determine what is the measurable electron charge and
what is the measurable energy shift. In the case of the self-energy, we succeeded
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in localizing the divergence into the electron mass. In a similar manner, we now
attempt to localize the divergence into the electron charge.

The potential of an external EM field A appearing in the Dirac equation (7.19) is
proportional to the elementary charge e creating the potential,

A D ea .

For instance, we have V0 D eA0 D �Z˛=r for the Coulomb external field, hence
a0 D �Z=.4�r/. The Dirac equation (7.19) for an electron in an external EM field
can be rewritten as

�

� � .Op � e2a.Or// � m
�

 at D 0 . (7.238)

So far, we always identified the bare electron charge e, which characterizes the
coupling between the electron and the “bare” EM field, with the measured charge
eexp. However, this matching is not correct.

Photon exchange between particles, which leads to an observable interaction
between them that is proportional to e2

exp, constitutes an infinite sum of the processes
depicted in Fig. 7.9. The resulting square of the electric charge e2

exp differs from
the square of the “bare” charge e2. The latter is given by the exchange of a “bare”
photon, i.e., a photon which does not undergo virtual decay to an electron-positron
pair. It corresponds to the first diagram in Fig. 7.9. The “bare” photon is a mere
theoretical construction; we observe effects of the EM field which are caused by a
so-called “dressed” field which comprises an infinite sum of the processes showed
in Fig. 7.9. We thus write

e2 D e2
exp C .e2 � e2

exp/ .

We insert this decomposition into the Dirac equation (7.238) and treat the term
.e2 � e2

exp/� � a as a perturbation. A measurable correction to the atomic energy
levels due to the vacuum polarization effect reads then

+ + ...

Fig. 7.9 The first three terms of the infinite series for the “dressed,” observable charge. The cross
denotes a nucleus and the double line an electron bound to the nucleus
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.�E/VP
exp D .�E/VP C .e2 � e2

exp/
˝

 at

ˇ
ˇ� � a.Or/j ati

D
Z

d3k
˝

 at

ˇ
ˇ��eik�Or j atia�.k/

h

e2.e2˘.k2/C 1/ � e2
exp

i

, (7.239)

where in the second equality we inserted from Eq. (7.237). The last equation states
that the strength of the EM interaction depends on the exchanged momentum. The
quantity

e2.k2/ D e2.e2˘.k2/C 1/ (7.240)

can be thus understood as the square of an effective charge. In that case, what
is the value of the exchanged momentum for the fine structure constant ˛ to
equal e2

exp=.4�/ D 1=137.036 : : :? It is the one measured for processes where the
exchanged momentum approaches zero:

4�˛ D e2
exp D e2Œ1C e2˘.0/�) e2 ' e2

exp.1 � e2
exp˘.0// . (7.241)

We insert the last equation into Eq. (7.239) and neglect higher order terms in ˛ to
obtain

.�E/VP
exp D

˝

 at

ˇ
ˇ

Z

d3k eik�Or � � V.k/4�˛.˘.k2/ �˘.0//j ati , (7.242)

where we substituted e2a D V. It follows from Eq. (7.228) that the expression on
the rhs of the last equation

˘.k2/ �˘.0/ D 2

.2�/2

Z 1

0
dy y.1 � y/ ln

 

1 � k2

m2
y.1 � y/

!

(7.243)

is now a finite number! The above-outlined procedure is called the charge
renormalization. In an analogy to the self-energy case, we discovered that if we
carefully distinguish between a theoretical construction and a measurable quantity,
the resulting expression is finite and independent of the value of the regulating
parameter�. Note that Eqs. (7.224) and (7.240) are manifestly invariant with respect
to Lorentz transformations. Hence, the assignment (7.241) is invariant as well.

In summary, the vacuum polarization effect changes the strength of the EM
interaction between two charged particles as follows:

4�˛ ! 4�˛
˚

1C 4�˛Œ˘.k2/ �˘.0/�� , (7.244)

where Œ˘.k2/�˘.0/� is given by Eq. (7.243). One can readily see from this equation
that with the increasing square of the exchanged momentum �k2, the square of the
effective charge increases as well.



7.6 Vacuum Polarization: Calculation 391

7.6.5 Calculation of the Observable Part of the Effect

Integrating over y by parts and recalling Eq. (7.79), we can transform Eq. (7.243)
into the form

˘.k2/ �˘.0/ D � 2

.2�/2
!2

m2

Z 1

0
dy

�
y2

2
� y3

3

�

.1 � 2y/
1

1C !2

m2 y.1 � y/
.

(7.245)
Going back to Eq. (7.242) we see that we need to calculate the expression, called the
Uehling potential [37]39

VU
� .r/ D

Z

d3k eik�rV�.k/4�˛.˘.k2/ �˘.0// . (7.246)

The Fourier transform of the Coulomb potential, V�.r/ D ��0
�� Z˛

r

�

, which
appears on the rhs of Eq. (7.246), reads, see Eqs. (7.220) and (3.114),

V0.k/ D � Z˛

2�2

1

!2
. (7.247)

Substituting Eqs. (7.245) and (7.247) into Eq. (7.246) we find

VU
0 .r/ D

˛.Z˛/

�3

Z 1

0
dy



y2

2 � y3

3

�

.1 � 2y/

y.1 � y/

Z

d3k
eik�r

m2

y.1�y/ C !2
(7.248)

D 2˛.Z˛/

�

Z 1

0
dy



y2

2 � y3

3

�

.1 � 2y/

y.1 � y/

e
� mV

p

y.1�y/
r

r
,

where in the last equality we used Eq. (7.236) and replaced m by mV to emphasize
that it is the mass of the “virtual” particle. The virtual particle “in the loop” does not
have to be identical with the particle bound in the atom. Next, we make transition to
atomic units

r D rA

mRZ˛
,

where we replaced m by mR to emphasize that it is the mass of the “real” particle, i.e.,
the one bound in an atom. After substituting Eq. (7.248) into Eq. (7.242), we obtain
the following expression for the atomic energy shift due to vacuum polarization in
the Coulomb field of the nucleus

39This potential was derived for the first time in the framework of the ordinary perturbation method.
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.�E/VP
exp D

2˛.Z˛/2mR

�

Z 1

0
dy



y2

2 � y3

3

�

.1 � 2y/

y.1 � y/

Z

d3r j at.r/j2 e
� mV

mRZ˛
p

y.1�y/
r

r
.

(7.249)
For the purpose of further calculation, it is convenient to substitute

r! r
p

y.1 � y/Z˛
mR

mV
;

thus we have

.�E/VP
exp D mR

�
mR

mV

�2 2˛.Z˛/4

�

Z 1

0
dy

�
y2

2
� y3

3

�

.1 � 2y/

�
Z

d3r

ˇ
ˇ
ˇ
ˇ
ˇ
 at

 

r
p

y.1 � y/Z˛mR

mV

!ˇ
ˇ
ˇ
ˇ
ˇ

2
e�r

r
.

In the last equation, we can replace the Dirac wave function  at by the Schrödinger
one,  0

at. If the inequality Z˛ mR
mV

 1 holds, the dependence of the wave function

 0
at on the distance r can be obviously neglected. Consequently, the wave function

can be replaced by its value at the origin

.�E/VP
exp ' mR

�
mR

mV

�2 2˛.Z˛/4

�

Z 1

0
dy

�
y2

2
� y3

3

�

.1 � 2y/j 0
at.0/j2

Z

d3r
e�r

r
(7.250)

D mR
˛

�n3
ıl0

�
mR

mV

�2

.Z˛/4
�

� 4

15

�

,

where in the last equality we used Eq. (4.101). Had we made the approximation

ln



1 � k2

m2 y.1 � y/
�

' � k2

m2 y.1 � y/ in Eq. (7.243), we would have arrived at the

last formula somewhat faster.

7.6.6 Comparison with Experiment

How could one seriously believe that the electron really cared about my calculation, one
way or the other? And yet the experiments (. . . ) showed that it did care. Somehow or other,
all this complicated mathematics I was scribbling established rules that the electron (. . . )
was bound to follow.[5]

First, somewhat trivial, observation is that vacuum polarization at the leading
order of Z˛ influences only s-states. For “ordinary” hydrogen-like atoms, we have
mR D mr and mV D me. Adding contributions from Eqs. (6.243), (7.211), and (7.250)
yields for Z D 1
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.�E/2s D me˛
5

�23

1



1C me
mp

�3

�

10.8658433 � 4

3
ln

�

1C me

mp

�

� 1

3
� 4

15

�

and

.�E/2p1=2 D
me˛

5

�23

1



1C me
mp

�3

 

0.0400340 �
1C me

mp

6

!

,

where in the last equation we substituted from Eqs. (3.108) and (3.111). After the
replacement according to Eq. (3.12), me ! 2R

1

c
˛2 , we obtain for Lamb shift in the

hydrogen atom

�theo.2s � 2p1=2/ D 1055.61 MHz

which is in a very good agreement with the experimental value [26]

�exp.2s � 2p1=2/ D 1057.845.9/MHz .

Figure 7.10 summarizes the structure of the lowest hydrogen levels. For muonium
one obtains

�theo.2s � 2p1=2/ D 1042.79 MHz

E

−0.5

−0.125

−0.111
0

ödingerSchr
equation
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2s, 2p

3s, 3p, 3d
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2.923 PHz

2p3/2

2s1/2, 2p1/2
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structure
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49

MHz
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7 MHz

∼ 44
GHz

2s1/2

2p1/2

Self
energy

108
4.4
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107
1.5

MHz

Vacuum
polarization

27.
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Fig. 7.10 The structure of the lowest hydrogen levels after taking into account relativistic and
QED corrections. The displayed numbers are calculated in infinite nuclear mass limit. The columns,
except for the first one, do not scale accordingly to the energy scale on the lhs. The symbol “PHz”
stands for petaherz, 1015 Hz
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which is in an even better agreement with the last experimental value [40]

�exp.2s � 2p1=2/ D 1042.23/MHz .

However, measurement of this interval in muonium is significantly less accurate than
in case of the hydrogen atom; the previous muonium experiment [28] established
1070(15) MHz.

Needless to say that our calculations remain still approximate. The most
significant neglected contributions are: higher orders in˛2, i.e., two-loop corrections,
higher orders in Z˛, one- and two-photon exchanges between the electron and the
nucleus, nonzero proton radius and so on. The relative error of our calculation caused
by these omissions does not exceed approximately .1 � 5/ � 10�3. Contribution of
photon exchanges, which we started discussing in Sects. 6.5.6 and 6.5.7 and we will
continue this discussion in the next Sect. 7.7 as well, is suppressed with respect to
the electron and photon self-energies by the ratio of the electron to nuclear masses.
This ratio is smaller than ˛ for both hydrogen and muonium; thus there is no point
considering it unless higher-order corrections in ˛ are taken into account as well.

As one can see from Eq. (7.250), the mass of the virtual particles appears in the
denominator; therefore light particles, namely the electron-positron pair, affect the
energy levels due to vacuum polarization the most. On the other hand, the mass
of the bound particle appears in the numerator. Thus muonic hydrogen, where an
electron is replaced by a muon, serves better for the study of the discussed quantum
electrodynamic effects rather than the ordinary hydrogen atom.

Continue Exercise 8. That is, calculate the theoretical prediction for the
2s � 1s interval in hydrogen-like atoms with accuracy up to the order of
˛5. Compare the result with the experimental values listed in Table 3.1.

Exercise 28: Corrections to the Gross Structure II

In case of muonic hydrogen, we insert the electron mass, mV D me, and
the reduced mass of the muon-proton complex, mR D m�mp

m�Cmp
, for the

masses of the virtual and real particles in Eq. (7.249), respectively. Thus

we find mR
mV
D

m�
me

1C m�
mp

D 185.840834, where the mass ratios were taken

from Sect. 3.2.6. The ratio mR
mV

Z˛ D 1.356146 is clearly not significantly
smaller than 1 and the integrals in Eq. (7.249) have to be calculated
exactly. Determine the theoretical prediction for the 2s � 2p1=2 splitting

Exercise 29: Lamb Shift in Muonic Hydrogen
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and compare it with the experimental value [31]

�exp.2s � 2p1=2/ D �49,881.88.70/GHz.

The virtual electron-positron pair bears very real consequences!
Hint: For the atomic wave function, take successively  at.r/ '
R20.r/Y00.n/ and at.r/ ' R21.r/Y10.n/, where you insert for R20 and R21

from Eqs. (3.95) and (3.96), respectively. Perform the analytic integration
over r first and then the numerical integration over y.

7.7 Two-Photon Exchange at High Energies

We now turn our attention to the two-photon exchange between charged particles.
We have already dealt with this process in Sect. 6.5.7 where we described the low-
energy region. Now we focus on the high-energy region where antiparticles appear
in virtual states.40

As has been already shown in Sects. 6.5.6 and 6.5.7, one- and two-photon
exchanges between charged particles shift the atomic energy levels at the order
of ˛5. At this order, the “radiative corrections,” that is, electron self-energy and
vacuum polarization, contribute as well. As has already been pointed out, in case of
the “ordinary” hydrogen-like atoms, photon exchanges are suppressed with respect
to the radiative corrections by the electron to nucleus mass ratio me=mp. In case of
more complex atoms such as helium, photon exchanges between two electrons are
of the same order of magnitude as the radiative corrections. Thus we see that the
“ordinary” hydrogen-like atoms are somewhat special in this respect.

For the description of a two-photon exchange with accuracy to ˛5, it suffices
to invoke the same approximations as in Sect. 7.3.2: we write the atomic state in a
similar manner as in Eq. (7.89)

ˇ
ˇ 0

at

˛ '
X

p

 0
at.p/jU0.1/ijU0.2/i , (7.251)

where jU0i describes the state of the particle at rest, see Eq. (7.97). We will henceforth
focus on the high-energy part of the effect, the low-energy part has already been
analyzed in Sect. 6.5.7. Hence, it suffices to treat particles in virtual states as free.

40The results derived in this section were for the first time derived in [10, 34]; see also [12, 29].
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7.7.1 Longitudinal Photons

For the purpose of the following consideration, it is advantageous to introduce
“quantized” scalar potential:

O'.r/ D
Z

d3k
.2�/3=2!

� Oa.k/eik�r C OaC.k/e�ik�r� , (7.252)

where we stipulate the commutation relations

Oa.k/j0i D 0 , Œ Oa.k/, OaC.k0/� D ı.k � k0/ .

Vacuum expectation value of the product of two such operators is the Coulomb
potential

h0j O'.r1/ O'.r2/j0i D
Z

d3k
.2�/3!2

eik�.r1�r2/ D 1

4�

1

r12
. (7.253)

Needless to say that this is a purely formal invention, its only purpose being
to simplify our following considerations. We have already emphasized that the
Coulomb interaction between particles is instantaneous and carries no momentum.
All experimentally detectable quanta of an EM field are polarized perpendicularly to
the direction of propagation. Our above steps do not contradict it: the quantized scalar
potential will appear only in the interaction Hamiltonian, see Eq. (7.254) below. This
leads to the same results as if we treated the Coulomb interaction classically.

The advantage of introducing a quantized scalar potential is that we obtain the
longitudinal part of the interaction between two particles in the same order of e as the
transverse part. When we considered the interaction of an electron with fluctuations
of the EM field, we found the contribution of the longitudinal and transverse parts
of the interaction in the first and second orders of the perturbation method, see
Eqs. (7.73) and (7.74), respectively. When we deal with the two-photon exchange,
we would need to consider the second, third, and fourth order of the perturbation
method to find everything we need. However, with the introduction of the quantized
scalar potential, we find all of the desired parts at the fourth order of the method.

7.7.2 Two-Photon Exchange in Feynman Approach

For the transition amplitude that a particle finds itself in the same states after
interacting twice with a quantized EM field, we derived Eq. (7.130),

e2
Z 1

t0

Z 1

t0

h0jh at.t/j OG.F/
0 .t, t00/ OH1.t

00/ OG.F/
0 .t00, t0/ OH1.t

0/ OU0.t
0, t0/j at.t0/ij0idt0dt00 .

(7.130)
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Recall that we considered only the interaction with the transverse part of the EM
field, Eq. (7.131). Generalization to the case when the particle interacts with the
longitudinal part of the field as well is straightforward

OH1.t/ D e�0

Z

d3rjrihrjŒ�0 O'.r/ � � � OA.t, r/�. (7.254)

This form of the interaction Hamiltonian is obtained when one makes the usual
replacement Op! Op� e OA in the Dirac equation �0.� � Op�m/ D 0, see Eqs. (7.19)

and (7.34), and separates the time differentiation i @
@t D �0

h

� � Op C mC e OA � �
i

 .

The transition amplitudes for the individual particles are independent of each
other. Hence, according to the basic principles of quantum mechanics, we need
to multiply them with each other. Thus, the transition amplitude that two particles
find themselves in the same state and each of them interacts twice with the EM field
is the product of the one-particle amplitudes:

A D e2
1e2

2

Z Z Z Z

h0jh 1.t/j OG.F/
0 .t, t2/ OH1.t2/ OG.F/

0 .t2, t1/ OH1.t1/ OU0.t1, t0/j 1.t0/i

� h 2.t/j OG.F/
0 .t, t4/ OH1.t4/ OG.F/

0 .t4, t3/ OH1.t3/ OU0.t3, t0/j 2.t0/ij0idt1dt2dt3dt4 .

After substituting from Eqs. (7.136) and (7.137),

h at.t/j OG.F/
0 .t, t00/ D �i�.t � t00/

˝

 at.t
00/
ˇ
ˇ (7.136)

and

OU0.t
0, t0/j at.t0/i D

ˇ
ˇ at.t

0/
˛

(7.137)

respectively, we arrive at

A D �e2
1e2

2

Z Z Z Z

h0jh 1.t2/j OH1.t2/ OG.F/
0 .t2, t1/ OH1.t1/j 1.t1/i (7.255)

�h 2.t4/j OH1.t4/ OG.F/
0 .t4, t3/ OH1.t3/j 2.t3/ij0idt1dt2dt3dt4 .

7.7.3 Photon Propagator and Time Ordered Operator Product

We integrate over all possible times t1, t2, t3, and t4 in Eq. (7.255). When evaluating
the products of the quantized EM potentials, we need to consider all of the possible
time orderings,

h0jT
h OA.x4/ OA.x3/ OA.x2/ OA.x1/

i

j0i

D �.t4 � t3/�.t3 � t2/�.t2 � t1/h0j OA.x4/ OA.x3/ OA.x2/ OA.x1/j0i C : : : ,
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where the dots stand for the remaining 23 possible orderings.41 The vacuum
expectation value of the product of four operators is a product of the vacuum
expectation values of two operators where we sum over all pairs

h0j OA.x4/ OA.x3/ OA.x2/ OA.x1/j0i D h0j OA.x4/ OA.x3/j0ih0j OA.x2/ OA.x1/j0i
C h0j OA.x4/ OA.x2/j0ih0j OA.x3/ OA.x1/j0i C h0j OA.x4/ OA.x1/j0ih0j OA.x3/ OA.x2/j0i ,

as the reader can easily verify from the expansion of the potentials in terms of creation
and annihilation operators, see Eqs. (6.51) and (7.252). The reader can convince
himself as well that the same statement holds also for the vacuum expectation value
of the time ordered product of four operators

h0jT
h OA.x4/ OA.x3/ OA.x2/ OA.x1/

i

j0i

Dh0jT
h OA.x4/ OA.x3/

i

j0ih0jT
h OA.x2/ OA.x1/

i

j0i

C h0jT
h OA.x4/ OA.x2/

i

j0ih0jT
h OA.x3/ OA.x1/

i

j0i

C h0jT
h OA.x4/ OA.x1/

i

j0ih0jT
h OA.x3/ OA.x2/

i

j0i .

We define the vacuum expectation value of a time ordered product of two time-
independent operators as

D00.x00 � x0/ D h0jT � O'.r00/ O'.r0/� j0i D iı.t00 � t0/h0j O'.r00/ O'.r0/j0i , (7.256)

and use Eq. (7.253) to evaluate the last expression. The factor i appears therein so that
the longitudinal and transverse parts of the EM field combine to a Lorentz invariant
photon propagator, see Sect. 7.7.4 below. Bearing in mind the two above equations,
it is not necessary to discuss the instantaneous and delayed parts of the interaction
separately. The advantage of the introduction of the quantized scalar potential thus
becomes obvious.

Furthermore, one discovers the advantage of the Feynman space-time approach
in its full extent when he considers a two-photon exchange. The reader can easily
find out that the use of the ordinary perturbation method leads nowhere in this case.

After substituting the interaction Hamiltonian (7.254) and the last above equation
into Eq. (7.255), we find

A D �e2
1e2

2

Z

d4x1

Z

d4x2

Z

d4x3

Z

d4x4

� h 1.t2/jr2i�0�� OG.F/
0 .x2, x1/�0��hr1j 1.t1/i

41The reader surely excuses us for not explicitly writing down all of them.
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Fig. 7.11 Two-photon exchanges

� h 2.t4/jr4i�0�
 OG.F/
0 .x4, x3/�0�� hr3j 2.t3/i

� �D�
.x2 � x4/D�� .x1 � x3/C D�� .x2 � x3/D�
.x1 � x4/
�

. (7.257)

The two possibilities corresponding to the two terms in the last equation are illustrated
in Fig. 7.11. Note that had we assigned the same expressions to the elements of the
Feynman diagram in Fig. 7.11 as to the elements of the Feynman diagram in Fig. 7.6,
the last equation could have be obtained somewhat faster. The first and second
diagrams in Fig. 7.11 are usually referred to as the ladder and crossed diagrams,
respectively. We omitted the term D��.x2 � x1/D
� .x4 � x3/ as it corresponds to
self-energy effect for each of the particles separately and hence is of no interest to
us presently. The expression for the photon propagator is given by a generalization
of Eq. (7.134)

D�
.x2 � x1/ D h0jT
�

A�.x2/A
.x1/
� j0i D �i

Z
d4k
.2�/4

e�ik�.x2�x1/D�
.k/ ,

(7.258)
where the Fourier transform of the photon propagator in the Coulomb gauge reads,
see Eqs. (7.134), (7.253), and (7.256),

D00 D � 1

!2
, Dij D � ıij

k2 C
kikj

k2!2
, Di0 D D0i D 0 . (7.259)

The electron propagator is given by Eq. (7.126)

OG.F/
0 .x2, x1/�0 D hr2j 1

2�

Z

dE
e�iE.t2�t1/

E � OhD

jr1i�0 D
Z

d4p
.2�/4

e�ip�.x2�x1/

� � p � m
.

(7.260)
We consider the free-particle Hamiltonian for the one-particle Dirac Hamiltonian,

1

E � OhD

D
Z

d3p
jpihpj

E � �0� � p � �0m
,

and the states (7.97) for the initial and final particle states,

j .t/i D e�imtjU0i . (7.261)
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Fig. 7.12 Feynman diagrams for two-photon exchange in momentum space

After substituting the photon propagator (7.258), electron propagator (7.260) and
initial and final states (7.261) into Eq. (7.257), the four integrations over four space-
time variables x1-x4 yield four four-dimensional ı-functions. From a physical point
of view, it corresponds to four-momentum conservations in the interaction vertices,
see Fig. 7.12. The three of these four ı-functions cancel the three integrations over
the four-momentum. The fourth one yields no new result, though. We are thus left
with one integration over the four-momenta and the expression .2�/4ı.4/.0/ which
we replace by L3T:

A D e2
1e2

2L3T
Z

d4k
.2�/4

˝

U0.1/
ˇ
ˇ��

1

� � ."1 � k/ � m1
�� jU0.1/i (7.262)

� ˝U0.2/
ˇ
ˇ

�

�

1

� � ."2 C k/ � m2
�� C �� 1

� � ."2 � k/ � m2
�


	

� jU0.2/iD�
.k/D�� .k/ ,

where

"1 D .m1, 0/, "2 D .m2, 0/ .

We find for the shift of atomic energy level due to two-photon exchange from
Eqs. (7.142) and (7.251)

�E D i
A

T

ˇ
ˇ
ˇ
ˇ
ˇ

X

p

 0
at.p/

ˇ
ˇ
ˇ
ˇ
ˇ

2

, (7.263)

where the amplitude A is given by Eq. (7.262).
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7.7.4 Note on Gauge Invariance

In an analogy to the expression for the electron self-energy, Eq. (7.148), the
expression for the two-photon exchange, Eq. (7.262), is gauge invariant. Although
we derived it in the Coulomb gauge, it is equivalent to the expressions one would
derive in any other gauge. In this case, one means by the gauge invariance

k

˝

U0.2/
ˇ
ˇ

�

�

1

� � ."2 C k/ � m2
�� C �� 1

� � ."2 � k/ � m2
�


	

jU0.2/i

D ˝U0.2/
ˇ
ˇ

�

.� � .kC "2/ � m2/
1

� � ."2 C k/ � m2
��

C �� 1

� � ."2 � k/ � m2
.� � .k � "2/C m2/

	

jU0.2/i D 0 , (7.264)

where we used the Dirac equation .� � "2 � m2/jU0.2/i D 0. It follows that we can
add an arbitrary multiple of k to the photon propagators. If we subtract the expression
k�k

k2!2 , from D�
.k/, we get from the form of the photon propagator in the Coulomb
gauge, Eqs. (7.258) and (7.259), to the form of the photon propagator (7.159) in
the Lorenz gauge. We could elaborate a bit on the last statement. Writing Eq. (7.262)
symbolically as

A D G�
D�
.k/

we are free to change it to

A D G�


�

D�
.k/ � k�k

k2!2

	

.

Writing it explicitly in the space-time components, we have

A D G00

�

D00.k/ � k0k0

k2!2

	

� G0i

�

D0i.k/ � k0ki

k2!2

	

� Gi0

�

Di0.k/ � kik0

k2!2

	

C Gij

�

Dij.k/ � kikj

k2!2

	

.

Now, Eq. (7.264) yields

G�
k
 D 0) G0iki D G00k0 , Gi0ki D G00k0 .

Taking into account the explicit form of D�
.k/, Eq. (7.259), we finally arrive at

A D G00

�

� 1

!2
C k0k0

k2!2

	

� Gij
ıij

k2 D G�


��


k2 .
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Clearly, ��
k�2 is the Fourier transform of the photon propagator in the Lorenz
gauge. In fact, we already went through similar exercise when discussing the self-
energy problem, see Sect. 7.4.6.

In the following text, we will retain the Coulomb gauge. The reason is, the
integration over the four-momentum k of virtual photons in Eq. (7.262) leads to a
divergent integral at low frequencies of virtual photons, while the integration over
high frequencies causes no problems at all in this case. In contrast to the so-called
ultraviolet divergences, i.e., divergences at the upper bound of the integration which
are inherent to the theory, the so-called infrared divergences, i.e., divergences at
the lower bound of the integration, are a mere consequence of the invalidity of the
chosen approximation at low energies of virtual particles. While the manifest Lorentz
invariance is of greatest importance when dealing with ultraviolet divergences, it
is inessential or even leads to undesirable problems when tackling the infrared
divergences. We need to distinguish between the longitudinal and transverse parts
of the interaction. The Coulomb part of the interaction in Eq. (7.262) has to be
“renormalized” as it contains Coulomb interaction in the nonrelativistic limit and
this interaction must be removed, see the next section. The transverse part of the
interaction has to be regularized. Regularization, in this case, means only to stop
the integration over the frequencies at the lower bound �. As we will see further,
the dependence on the regulating parameter � vanishes if we add Eqs. (7.263)
and (6.256) together. In the Lorenz gauge, the distinction between the longitudinal
and transverse parts of the interaction is obscured.

7.7.5 Longitudinal Part of the Interaction

After substituting Eq. (7.262) into Eq. (7.263), setting � D � D 
 D � D 0 and
substituting k! �k, the atomic energy shift due to the exchange of two longitudinal
photons reads

�Ejj D i

ˇ
ˇ
ˇ
ˇ
ˇ

X

p

 0
at.p/

ˇ
ˇ
ˇ
ˇ
ˇ

2

L3e2
1e2

2

Z
d4k

.2�/4!4
hU0.1/j 1

k0 C m1 � h1
jU0.1/i

(7.265)

� hU0.2/j
"

� 1

k0 � m2 C h�2
C 1

k0 C m2 � hC2

#

jU0.2/i ,

where

h1 D �0� � kC �0m1 h2̇ D ˙�0� � kC �0m2 . (7.266)
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Spectral decomposition of the free particle propagator reads

1

zC h
D PC

zC E
C P�

z � E
, E D

p

!2 C m2 (7.267)

where P˙ represent positive and negative energy projectors for a free particle and
are special cases of the general case introduced in Eq. (7.81). The projectors obey
equations

PC C P� D 1

and

.CE/PC C .�E/P� D h ,

where the last equation is a spectral decomposition of the Hamiltonian h. From these
two equations we can easily find

P˙ D E˙ h
2E

. (7.268)

Recalling that the integration contour is closed in the lower half of the complex
plane, the integration over k0 by means of the residue theorem yields important
equalities

Z
dk0

2� i

1

.k0 � a˙ i"/.k0 � b˙ i"/
D0,

Z
dk0

2� i

1

.k0 � a˙ i"/.k0 � b� i"/
D ˙1

b � a
.

The integration over k0 in Eq. (7.265) then yields

Z
dk0

2� i

1

.k0 C m1 � h1/.k0 � m2 C h2/

D
Z

dk0

2� i

 

PC1
k0 C m1 � E1 C i"

C P�1
k0 C m1 C E1 � i"

!

�
 

PC2
k0 � m2 C E2 � i"

C P�2
k0 � m2 � E2 C i"

!

D PC1 PC2
m1 C m2 � E1 � E2

� P�1 P�2
m1 C m2 C E1 C E2

(7.269)
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Fig. 7.13 Spacetime diagram of Coulomb interaction between charged particles

and

�
Z

dk0

2� i

1

.k0 C m1 � h1/.k0 C m2 � h2/

D PC1 P�2
�m1 C m2 C E1 C E2

� P�1 PC2
m2 � m1 � E1 � E2

. (7.270)

The last two equations are equations for a product of two one-particle propagators
in the momentum space. As should be clear now, the positive and negative energy
projectors correspond to virtual particles and antiparticles, respectively, see Fig. 7.13.
Hence, Eq. (7.265) contains four types of virtual states. If the particles are an electron
and a antimuon, we find the following particles in virtual states: an electron and an
antimuon, a positron and a muon (both possibilities are contained in Eq. (7.269))
and a positron and an antimuon, an electron and a muon (both possibilities are
contained in Eq. (7.270)). Comparison of Figs. 7.11 and 7.13 reveals that real space-
time ordering of events can be very different from the impression one may get from
the Feynman diagrams.

As already mentioned in previous section, one has to subtract the superfluous
part from Eq. (7.265). However, which one is it? We have already considered the
Coulomb interaction between two particles before, see, e.g., Eq. (3.9). We have thus
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clearly taken into account a part of the Coulomb interaction in the Schrödinger
equation to which we are now trying to calculate a correction!

After substituting from Eqs. (7.267), (7.268), and

hU0jhjU0i D m

L3
(7.271)

we obtain for the average of the first term on the rhs of Eq. (7.269)

hU0.1/jhU0.2/j PC1 PC2
m1 C m2 � E1 � E2

jU0.1/ijU0.2/i (7.272)

D 1

4L6

�

1C m1p
m2

1C!2

��

1C m2p
m2

2C!2

�

m1 C m2 �
q

m2
1 C !2 �

q

m2
2 C !2

.

We now substitute the expansion

p

m2 C !2 ' mC !2

2m
� !4

8m3

into the last above equation, and expand further all the terms in Eq. (7.272) in the
powers of !. The first two terms of this expansion read

� 1

L6

�
2mr

!2
� 1

2.m1 C m2/

�

,

where mr is the reduced mass. The first term in this expression is, but for an irrelevant
normalization constant, the eigenvalue of Green operator .E0� OH0/

�1, where E0 D 0
and OH0 D Op2=.2mr/. The first term in the expression

�
ˇ
ˇ
ˇ
ˇ
ˇ

X

p

 0
at.p/

ˇ
ˇ
ˇ
ˇ
ˇ

2

L�3e2
1e2

2

Z
d3k

.2�/3!4

�
2mr

!2
� 1

2.m1 C m2/

�

, (7.273)

thus represents the part of the expression (7.265) corresponding to the double count
of the Coulomb interaction between two particles which are initially and finally at
rest and even in virtual states move slowly. If we count this interaction infinitely
many times, we obtain bound state energy. The second term of the last expression
represents a relativistic correction due to the dependence of the inertial mass on
velocity. However, we have already calculated both of these contributions before.
We obtained the former by directly solving the Schrödinger equation (3.9) and we
considered the latter back in Sect. 3.6.2, see Eq. (3.122). Therefore, we need to
subtract both of them from Eq. (7.265). Using Eqs. (7.269) and (7.270), where we
insert from Eq. (7.268) for the projectors P1̇,2 and subsequently use Eq. (7.271), we
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derive the following expression for the energy shift due to Coulomb interaction
between charged particles present neither in the Schrödinger equation nor in the
Breit correction given in Sect. 3.6.2,

�Ejj,exp D (7.265)–(7.273)

D �
ˇ
ˇ
ˇ

P

p  
0
at.p/

ˇ
ˇ
ˇ

2

L3
e2

1e2
2

Z
d3k

.2�/3!4

1

4E1E2

�

� .E1 C m1/.E2 � m2/

E1 C E2 � m1 C m2

C .E1 � m1/.E2 C m2/

�E1 � E2 � m1 C m2
C .E1 � m1/.E2 � m2/

E1 C E2 C m1 C m2

� .E1 C m1/.E2 C m2/

m1 C m2 � E1 � E2
� 4E1E2

m2 C m1

�
2m1m2

!2
� 1

2

�	

.

Recall that, see Eq. (7.267), E1,2 D
q

!2 C m2
1,2. The integral over the frequencies in

the last equation is now finite and the integral over the angles trivial. If we evaluate
these integrals and insert from Eq. (7.102), we arrive at the final result

�Ejj,exp D � e2
1e2

2

.4�/2

ˇ
ˇ
ˇ 

.0/
at .r12 D 0/

ˇ
ˇ
ˇ

2 4

3m1m2
. (7.274)

7.7.6 The Remaining Part of the Interaction

Calculation of the remaining part of the interaction contained in Eq. (7.262)
requires calculational prowess, but no new ideas. After substituting Eq. (7.262)
into Eq. (7.263) and setting � D i, � D k, 
 D j, and � D l one obtains

.�E/? D i

ˇ
ˇ
ˇ
ˇ
ˇ

X

p

 0
at.p/

ˇ
ˇ
ˇ
ˇ
ˇ

2

L3e2
1e2

2

Z
d4k

.2�/4.k2/2

�

ıij � �i�j
�

.ıkl � �k�l/

� ˝U0.1/
ˇ
ˇ�i
�0.m1 � k0/C m1

.m1 � k0/2 � E2
1

�kjU0.1/i

� ˝U0.2/
ˇ
ˇ

�

�j
�0.m2 C k0/C m2

.m2 C k0/2 � E2
2

�l C �l
�0.m2 � k0/C m2

.m2 � k0/2 � E2
2

�j

	

jU0.2/i

D e2
1e2

2

.4�/2

ˇ
ˇ
ˇ 

.0/
at .r12 D 0/

ˇ
ˇ
ˇ

2 2

m1m2

�

ln

�
2�

m1m2

�

C m2
1 ln m1 � m2

2 ln m2

m2
1 � m2

2

C 4m1m2

3.m2
1 � m2

2/
ln

�
m1

m2

� D OS1 � OS2

E	

. (7.275)
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The integration over k0 was performed via partial fraction decomposition,42

summation of residua in poles and multiplication by .�2� i/.43 When integrating
over angles, we used Eqs. (3.47) and (6.106). Calculation of the spinorial part was
performed using the properties of the Pauli matrices, see Eq. (1.25). As alluded to
above, one of the integrations over the frequencies was stopped at the lower bound�.

In a similar way, we find for the mixed contribution of the longitudinal and
transverse parts

.�E/?,jj D i

ˇ
ˇ
ˇ
ˇ
ˇ

X

p

 0
at.p/

ˇ
ˇ
ˇ
ˇ
ˇ

2

L3e2
1e2

2

Z
d4k

.2�/4k2!2

�

ıij � �i�j
�

�
�
˝

U0.1/
ˇ
ˇ�0

� � k
.m1 � k0/2 � E2

1

�ijU0.1/i

� ˝U0.2/
ˇ
ˇ

�

�0
�� � k

.m2 C k0/2 � E2
2

�j C �j
� � k

.m2 � k0/2 � E2
2

�0jU0.2/i
	

C ˝
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ˇ�i

� � k
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1
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ˇ

�
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�� � k

.m2 C k0/2 � E2
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�0 C �0
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�
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� D OS1 � OS2

E

. (7.276)

7.7.7 Comparison with Experiment

The atomic energy shift �E12p due to the one- and two-photon exchanges
is for the state-independent part of the s-states given by the sum of
Eqs. (6.252), (6.256), (7.274), (7.275), and (7.276):

�E12p.1s/

n3
D m3

r .Z˛/
5

m1m2�n3

�

�4

3
h1sj. OpA/i. Oh0 � "0/ ln

h

2. Oh0 � "0/
i

. OpA/ij1si

C 62

9
� 2

3
ln Z˛ C 8

3
ln 2C 2

�

ln
2

m1 C m2
C m2

1 ln m1 � m2
2 ln m2

m2
1 � m2

2

	

�8
m1m2

m2
1 � m2

2

ln
m1

m2

D OS1 � OS2

E�

. (7.277)

42It was accomplished by means of Maple.
43Recall that the integration over the time components of the four-vectors is always closed in the
lower half of the complex plane.
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Note that the dependence on the regulating parameter � disappears. Consequent
generalization of the results for photon exchanges and radiative corrections derived
here to helium-like atoms is relatively straightforward, see [29].44 One can readily
see from the last equation that the photons exchange is suppressed with respect to
radiative correction by the electron to nucleus mass ratio me=mp for the spin-spin
interaction, but it is also slightly amplified by the logarithm of the ratio. If we add
the spin dependent terms from the last equation to Eq. (7.206), our final result for
the muonium hyperfine splitting reads

�theo.1
3s � 11s/ D 8

3

me

mp

2R1c˛2




1C me
mp

�3

2

6
41C ˛

�
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' 4463.388 MHz .

In comparison with the theoretical prediction 4464.2 MHz made in Sect. 7.5.7, our
estimate agrees with the experimental value 4463.303 MHz, Eq. (3.60) by another
order of magnitude. We will use the entire equation (7.277) in Sect. 7.8.5 for a precise
determination of positronium spectral lines.

7.8 Positronium II

As has been repeatedly pointed out, in case of “ordinary” hydrogen-like atoms, the
photon exchanges are suppressed with respect to the radiative corrections by the
electron to nucleus mass ratio me=mp. In case of positronium, this ratio equals 1 but
the situation is complicated by virtual annihilation, as discussed in Sect. 7.3.2 where
we showed that it contributes at the order ˛4. Therefore at the order ˛5, one needs to
consider corrections to it, as we will do in this section. There is another interesting
aspect of these corrections: all one-loop QED corrections considered so far were
for space-like momentum exchanges, while now we enter the realm of time-like
momentum exchanges which brings a few new features. We commence by returning
to the leading part in the virtual annihilation effect in the Feynman approach. We then
successively discuss three corrections to this process: vacuum polarization, photon
exchange between an electron and a positron in initial and final states (which is
the most complicated and the most interesting part), and finally virtual two-photon
annihilation. To conclude this section we summarize all the contributions to the
ground state positronium fine splitting up to the order ˛5 and compare their sum
with the experimental value.45

44To be more precise, one can easily see what expressions are to be evaluated.
45The theoretical results were first derived in [16].
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7.8.1 Virtual Positronium Annihilation in Feynman Approach

For the purpose of our further considerations, it is now very useful (and enjoyable)
to return to the virtual positronium annihilation. We analyzed it in Sect. 7.3.2 in
the framework of the time-independent perturbation method; now we will adopt the
Feynman approach.

The transition amplitude for the annihilation of an electron-positron pair and
the creation of a photon succeeded by photon annihilation and creation of “another”
electron-positron pair is in the Feynman view a product of two transition amplitudes.
The first one corresponds to an electron evolving from an initial positive energy state
at initial time t0 to a later time t1 when it emits or absorbs a photon, and then evolves
back in time to a negative energy state. The second one corresponds to “another”
electron evolving from an initial negative energy state at initial time t3 to an earlier
time t2 when it emits or absorbs a photon, and then evolves forward in time to a
positive energy state. The amplitude reads

A D
Z 1

�1
dt1

Z 1

�1
dt2h0jh c.t0/j OG.F/

0 .t0, t1/ OH1.t1/ OU0.t1, t0/j .t0/i

� h .t3/j OG.F/
0 .t3, t2/ OH1.t2/ OU0.t2, t3/j c.t3/ij0i ,

where we integrate over all possible interaction times t1 and t2. The interaction
Hamiltonian is given by Eq. (7.131) and the action of the propagators on the wave
functions by Eqs. (7.136), (7.137), and

h c.t0/j OG.F/
0 .t0, t1/ D i�.t1 � t0/h c.t1/j D i�.t1 � t0/e

�imt1hV0j , (7.278)

OU0.t2, t3/j c.t3/i D j c.t2/i .

The states U0 and V0 are given by Eqs. (7.97) and (7.98), respectively. After
substituting all of these expressions into the previous equation for the transition
amplitude A , we obtain

A D e2
Z

d4x1

Z

d4x2Dij.x2 � x1/e
�2im.t1�t2/UC0 �0�iV0VC0 �0�jU0 , (7.279)

where we again introduced the time ordered product of the operators, Eq. (7.132).
From a physical point of view, it corresponds to the necessity to consider both of
the possible time orderings. Either t2 > t1: the “original” pair is annihilated and a
photon created first and then the photon is annihilated and “another” pair created,
or t1 > t2: “another” pair and a photon are created first and then the photon and the
“original” pair annihilated. It is worth noticing the connection between the left and
right diagrams in Fig. 7.14 and the first and second terms in Eqs. (7.91), or (7.92).
The time-independent perturbation method operates on the (hyper)plane of constant
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space

time

space

time

Fig. 7.14 A virtual photon “rests at one place” in space and moves forward (left picture) or
backward (right picture) in time. An electron and a positron at initial and final states are also at
rest. The dashed line denotes the (hyper)plane of constant time, that is the “operating place” of
the time-independent perturbation method. The reader shall be warned that strictly speaking all
space-time pictures drawn in this book are somewhat misleading as they originate from the classical
view. A particle with a definite, albeit zero, momentum is completely delocalized and drawing its
trace in space-time bears a very restricted meaning

time. Hence, “it sees” only one photon in the virtual state in the first case, whereas
“it sees” one photon and two electron-positron pairs in the virtual state in the second
case. As one can readily see, the two denominators in the first form of Eq. (7.92)
corresponds to it. Recall that within the time-independent perturbation method, we
subtract the energy of the initial state from the energy of the virtual state. Hence, the
first denominator reads!�2m and the second!C4m�2m D !C2m. In the Feynman
space-time approach, these two possibilities correspond to a virtual photon evolving
either forward or backward in time. If we now insert for the photon propagator from
Eq. (7.134) and perform integrations over the space-time coordinates, we obtain

A D iL3Te2
Z

d4k

.2�/4k2 2�ı.k0 � 2m/.2�/3ı.k/UC0 �0�iV0VC0 �0�iU0 , (7.280)

where we again replaced .2�/4ı.4/.0/ by L3T. After performing trivial integration

over the photon four-momentum, multiplying the result by
ˇ
ˇ
ˇ

P

p  
0
at.p/

ˇ
ˇ
ˇ

2
, and

dividing it by iT, we arrive at Eq. (7.92),

E2 D e2

4m2

ˇ
ˇ
ˇ
ˇ
ˇ

X

p

 0
at.p/

ˇ
ˇ
ˇ
ˇ
ˇ

2

L3UC0 �0�iV0VC0 �0�iU0 . (7.92)

The relation between the amplitude and energy has, in this case, the opposite sign
to that in Eq. (7.142). This minor discrepancy can be traced back to the opposite
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sign in Eq. (7.278) with respect to Eq. (7.136) and is a consequence of the electron
moving now in the “final” state backward in time.

Henceforth, it should be clear that the time-like momentum exchanges are
associated with pair creation and annihilation. As one can notice from Fig. 7.14, a
photon in a virtual state whose only nonvanishing component of the four-momentum
is the time component “rests at one place,” see Eq. (7.280).

7.8.2 Vacuum Polarization Correction

We begin our calculations of the corrections to the virtual annihilation by the simplest
of them, namely the one stemming from virtual decay of a virtual photon into an
electron-positron pair, see Fig. 7.15.

We derived back in Sect. 7.6 that in case of a photon with four-momentum k,
the vacuum polarization effect changes the strength of the interaction between the
particles exchanging the photon according to the equation

4�˛ ! 4�˛
˚

1C 4�˛Œ˘.k2/ �˘.0/�� . (7.244)

Although we derived this replacement for vacuum polarization in a static EM field,
it is clearly Lorentz invariant. Hence, we can extend its validity to an arbitrary
four-momentum k. In a static EM field, the four-momentum of the Fourier transform
of a four-potential is purely spatial, see Eq. (7.79). For virtual photon considered
in the previous section, the four-momentum is purely temporal, k D .2m, 0/. Thus
vacuum polarization of a virtual photon with a zero three-momentum leads to the
multiplication of Eq. (7.105) by the factor

�

1C 4�˛
�

˘.4m2/ �˘.0/�� D
�

1 � 8˛

9�

�

. (7.281)

Fig. 7.15 Feynman diagram
for virtual decay of a virtual
photon into an
electron-positron pair
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Fig. 7.16 Feynman diagrams for photon exchange between “initial” and “final” electron-positron
pairs

7.8.3 Photon Exchange Correction

Another correction to the virtual annihilation originates in the photon exchange
between either “initial” or “final” electron-positron pairs, see Fig. 7.16.

We have shown above that the electron-positron annihilation can be viewed as an
electron going forward and backward in time. Hence, the photon exchange between
an electron-positron pair is nothing but an interaction of an electron with its own EM
field already thoroughly analyzed in Sect. 7.5. The situation under consideration now
differs from that considered back in Sect. 7.5, nevertheless. In case of an electron
described in its initial and final states by a bound state function, it suffices to consider
the region where the momentum imparted on the electron by an external EM field is
small in comparison with the electron rest mass m, i.e., of the order mZ˛. On the other
hand, in case of an electron moving in the final state backward in time, the exchanged
momentum between the initial and final states is 2m, which is certainly not small in
comparison with m. However, a crucial simplification appears now: in contrast to the
“ordinary” self-energy effect, the photon exchange between an electron-positron pair
is a “high-energy” effect. Meaning, the contribution of the long-wavelength photons
is in this case completely negligible. Hence, it suffices to consider the influence of
the “external” EM field in the first order. In other words, it suffices to consider the
correction due to emission and absorption of a photon in electron-photon scattering,
where the electron is treated as free. We assume that the electron in the initial and
final states carries four-momentum p1 and p2, respectively, and p2

1 D p2
2 D m2.

The difference of these four-momenta equals the four-momentum q imparted on the
electron by an “external” EM field

q D p2 � p1 , q2 D 2.m2 � p1 � p2/ . (7.282)
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In the case of the electron-positron annihilation, this “external” EM field is
constituted by a virtual photon with purely temporal four-momentum. At the end of
calculation we set, see Eqs. (7.89) and (7.251),

p1 D .m, 0/ , p2 D .�m, 0/ .

1. Expansion and rearrangement of the self-energy operator
Back in Sect. 7.4, we derived an expression for the Lorentz invariant self-energy
operator, Eq. (7.148), which takes the following form after regularization (7.162)

OM D ˛

�

Z �2

�2
d

Z

d4kF

.k2 � 
/2 ��
1

� � . Ŏ � k/ � m
�� ,

where we introduced the mass of long-wavelength photons �. This is, once
again, a purely formal step to avoid infrared divergence in our following
calculation and does not contradict our above considerations. While the
contribution of the long-wavelength photons is negligible for time-like photon
exchanges of the order 2m, one cannot neglect it for small space-like exchanges.
As we are now considering all possible exchanges, the long-wavelength region
needs to be cut off. The physical cause of the infrared divergence will be
discussed later.

We derived the self-energy operator for an electron moving in a static EM
field. However, owing to the manifest Lorentz transformation of the operator
OM, it holds for an electron moving in an arbitrary EM field.

We use the rearrangement (7.160), now in a symmetric form

1

� � . Ŏ � k/ � m
D 1

2

�
1

k2 � 2k � Ŏ C OH , .� � . Ŏ � k/C m/

�

.

Using the explicit form of the second order Dirac Hamiltonian, Eq. (7.24), we
expand the self-energy operator to the first order in the potential of “external”
EM field using Eq. (6.198), see Fig. 7.17, OM ' OM0 C OM1 C : : :.

Here, OM0 is the self-energy operator of a free particle, which is of no interest
for now, and

OM1 D ˛

2�

Z �2

�2
d

Z

d4kF

.k2 � 
/2 ��
�

�
�

� � V.Ox/, 1
OD0

�

C
�

� � .Op � k/C m,
1
OD0

OD1
1
OD0

��

�� ,

(7.283)
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= +

p2 p1

k

q

+ ...

Fig. 7.17 The first two terms of the expansion of the self-energy operator for an electron moving
in an external EM field in number of the interactions of the electron with the field. The first term
corresponds to no scattering at all, the second term is referred to as one-potential scattering

where V D eA, see Eq. (7.215), and we introduced the notation

1
OD0

D 1

k2 � 2k � OpC Op2 � m2
, OD1 D �2k � V.Ox/C f� � Op, � � V.Ox/g ,

f� � Op, � � V.Ox/g D Op � V.Ox/C V.Ox/ � Op � OHS , OHS D 1

4
Œ OΠ�, OΠ��Œ��, ��� .

(7.284)
In case of positronium, the photon acting on the electron at the event x1 is
created by the current e2imt2 VC0 �0�jU0 at the event x2, see Eq. (7.279),

.V/0.x1/ D 0

.V/i.x1/ D e2
Z

d4x2Dij.x2 � x1/e
2imt2 VC0 �0�jU0 D e2i

ei2mt1

.2m/2
VC0 �0�iU0 ,

(7.285)

where we used Eq. (7.134) in the last step. Let us consider the matrix element of
OM1 between two states of a free particle with definite values of its four-momenta

p1 and p2. The states obey the Dirac equation

.� � Op � m/
ˇ
ˇp1,2

˛ D �� � p1,2 � m
� ˇ
ˇp1,2

˛ D 0 . (7.286)

By means of Eq. (7.173) we find for the first term in the parenthesis on the rhs
of Eq. (7.283)

�1

2
��

�

� � V.Ox/, 1
OD0

�

�� D
�

� � V.Ox/, 1
OD0

�

.
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Furthermore, Eqs. (7.17) and (7.286) yield, compare with Eq. (7.161),

1

2
hp2j��

�

.� � OpC m/ ,
1
OD0

OD1
1
OD0

�

��jp1iDhp2j Op�
1
OD0

OD1
1
OD0

��C�� 1
OD0

OD1
1
OD0

Op�jp1i.

Using the last two equations and Eqs. (7.190) and (7.191), we arrive at

hp2j OM1jp1i D
2˛

�

Z �2

�2
d

Z

d4kF

.k2 � 
/2 hp2j
�

1

2

�

� � V.Ox/, 1
OD0

�

C 1

2

�

mC � � k,
1
OD0

OD1
1
OD0

�

� 1

2

�

Op�,

�

��,
1
OD0

OD1
1
OD0

		

�1

8

�

� � k,

�

��,

�

��,
1
OD0

OD1
1
OD0

		��

jp1i .

Proceeding with rearrangements, Eq. (7.193) yields

�1

2
Œ Op�, Œ��, OD1�� D Œ Op�, Œ OΠ�, OΠ
���
 and � 1

8
Œ��, Œ��, OD1�� D OHS .

Furthermore, Eq. (7.286) yields

1
OD0

ˇ
ˇp1,2

˛ D 1

k2 � 2k � p1,2

ˇ
ˇp1,2

˛

and

hp2jŒ Op�, Œ OΠ�, OΠ
���
jp1i D �q2hp2j� � V.Ox/jp1i ,

where the four-momentum q imparted on the electron by the EM field described
by the four-potential V obeys Eq. (7.282). These rearrangements bring the matrix
element into the form

hp2j OM1jp1i D
2˛

�

Z �2

�2
d

Z

d4kF

.k2 � 
/2 hp2j
�

1

2
� � V.Ox/

�
�

1

k2 � 2k � p1

C 1

k2 � 2k � p2

�

C ��2mk � V.Ox/C .2m2 � q2/� � V.Ox/

C 1

2

n

� � k,�2k � V.Ox/C Op � V.Ox/C V.Ox/ � OpC OHS

o�

� 1

k2 � 2k � p1

1

k2 � 2k � p2

	

jp1i .
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2. Introduction of form-factors
Our next calculations, once again, involve somewhat extended algebraic
manipulations. Therefore, prior to tackling them, we reflect where they will
lead us.

On the basis of now familiar considerations, we know that the transition
amplitude for an electron with the initial four-momentum p1 to be scattered by
a photon with the four-momentum q and thus acquiring the final momentum p2,
reads

A1 D i.2�/4ı.p2 � p1 � q/hp2j� � V.Ox/jp1i .

Likewise, the transition amplitude of the same process but now accompanied
by emission and subsequent absorption of a virtual photon reads

A3 D i.2�/4ı.p2 � p1 � q/hp2j OM1jp1i .

We can express the sum of these amplitudes as

hp2j OM1 C � � V.Ox/jp1i D hp2j� � V.Ox/F1.q2/ �
OHS

2m
F2.q2/jp1i , (7.287)

where F1 and F2 measure the electron responses to the external EM field and are
called electric and magnetic electron form-factors, respectively. If the emission
and absorption of the virtual photon are not considered, then clearly F1 D 1 and
F2 D 0. This corresponds to the fact, mentioned back in Chaps. 1 and 3, that
a “bare” electron behaves as an electric monopole and a magnetic dipole with
the gyromagnetic ratio ge D 1. We have already seen back in Sect. 7.5 that the
self-energy effect changes this simple picture.

3. Renormalization
Consider the four-potential V.Ox/ in the last equation to have nonvanishing only
the temporal component, the momentum exchange q to be purely spatial, q2 D
�q2, and take the nonrelativistic limit of the Dirac wave function, Eq. (7.22)
with A D 0; one then finds

(7.287) '
D

p.0/2

ˇ
ˇ
ˇV0.Or/

ˇ
ˇ
ˇp.0/1

E �

F1.q2/ � q2

4m2
F2.q2/

	

C : : : ,

where the states hrjp.0/1,2

E

D eip1,2�r=.2�/3=2 are the nonrelativistic limits of the

states
ˇ
ˇp1,2

˛

. Hence, e times the square bracket on the rhs of the last equation
corresponds to the Fourier transform of the charge density, i.e.46

46Notice that the form-factor in the nonrelativistic limit appeared already in Eq. (6.168). The angular
part is already integrated out there, though.
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e

�

F1.q2/ � q2

4m2
F2.q2/

	

D
Z

d3r
.r/eiq�r.

For a point charge, 
.r/ D eı.r/, clearly F1 D 1 and F2 D 0. Measurement
of the proton form-factor in low energy electron-proton scattering experiments
was one of the very first indications that the proton is not a point particle.

An electron, on the other hand, is indeed a point particle. Is it not in
disagreement with the fact that the self-energy effect leads to the electron
form-factor different from 1? It is not. We will see further that the self-energy
effect does not lead to an unambiguous determination of the function F1.q2/.
As we have already discussed in Sect. 7.6, the electric charge value yielding
e2=.4�/ ' 1=137.036 is measured in processes when the exchanged squared
four-momentum q2 approaches zero:

F1.0/ D 1. (7.288)

As we will see further, this requirement determines the function F1.q2/ uniquely.
It will also be clear that the electric form-factor differs from 1 for nonzero values
of the square of the exchanged four-momentum.

4. Integration over the four-momentum of a virtual photon
In order to convert the needed integrals over the four-momentum k of a virtual
photon to known integrals, Eq. (7.169), we use the Feynman parameters and
differentiate with respect to a parameter

1

k2 � 2k � p1

1

k2 � 2k � p2

D � @

@�

Z 1

0
dx

1

k2 � 2k � px C�
ˇ
ˇ
ˇ
ˇ
�D0

and

2k�
k2 � 2k � p1

1

k2 � 2k � p2

D @

@.px/�

Z 1

0
dx

1

k2 � 2k � px C�
ˇ
ˇ
ˇ
ˇ
�D0

,

where

px D p1xC p2.1 � x/ . (7.289)

Consequently, the sought integrals over k can be again reduced to a basic
integral, see Eq. (7.169),

Z
d4kF.1, k�/

.k2 � 
/2.k2 � 2k � px C�/
D
Z 1

0
dy

1

4
.1 � y/

.1, .px/�y/

.px/
2y2 ��yC 
.1 � y/

,
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The last four equations yield

hp2j OM1jp1i D
˛

2�

Z �2

�2
d

Z 1

0
dy.1 � y/

Z 1

0
dxhp2j

�
� � V.Ox/

m2y2 C 
.1 � y/

�
�

m OV� @

@.px/�
C .2m2 � q2/� � V.Ox/ @

@�

C y

2

�

�� , OV� @

@.px/�
C .Op � V.Ox/C V.Ox/ � OpC OHS/

@

@�

�

.px/�

�

� 1

.px/
2y2 ��yC 
.1 � y/

ˇ
ˇ
ˇ
ˇ
�D0

	

jp1i .

Next, we convert the parametric differentiations with respect to � and .px/� to
parametric differentiations with respect to 
:

� @

@�

.1, .px/�/

.px/
2y2 ��yC 
.1 � y/

ˇ
ˇ
ˇ
ˇ
�D0

D y

1 � y

@

@


.1, .px/�/

.px/
2y2 C 
.1 � y/

and

@

@.px/�

.1, .px/�/

.px/
2y2 C 
.1 � y/

D .0, ��� /

.px/
2y2 C 
.1 � y/

C 2y2

1 � y

@

@


.px/� .1, .px/�/

.px/
2y2 C 
.1 � y/

.

This brings the matrix element to the form

hp2j OM1jp1i D
˛

2�

Z 1

0
dx
Z 1

0
dyhp2j� � V.Ox/

�
�

.1 � y/ ln

�
�2.1 � y/

m2y2

�

C y ln

�
.px/

2

m2

�	

C ��2mypx � V.Ox/C .2m2 � q2/� � V.Ox/

C 1

2

n

� � pxy,�2ypx � V.Ox/C Op � V.Ox/C V.Ox/ � OpC OHS

o�

� �y

.px/
2y2 C �2.1 � y/

jp1i . (7.290)

5. Further rearrangements
As we have already discussed in Sect. 7.4.10, the expressions corresponding
to the Feynman diagrams are independent of the chosen gauge. Thus, we can
assume that the four-potential of the EM field obeys the condition

@ OV�
@x�
D 0) q � hp2jV.Ox/jp1i D 0 , (7.291)
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known as the Lorenz gauge. For the case which is presently of our greatest
interest, namely Eq. (7.285), this condition is clearly satisfied. Owing to the
relation, see Eq. (7.289),

px D p1 C q.1 � x/ D p2 � qx ,

one obtains, using Eqs. (7.284), (7.286) and (7.291)

hp2j2px � V.Ox/jp1i D hp2jp � V.Ox/C V � Opjp1i D hp2j2m� � V.Ox/C OHSjp1i .

Furthermore, it follows from Eq. (7.286)

hp2j� � qjp1i D 0 ;

hence

1

2
hp2j

n

� � pxy,�2ypx � V.Ox/C Op � V.Ox/C V.Ox/ � OpC OHS

o

jp1i

D y

2
hp2j2m.1 � y/.Op � V.Ox/C V.Ox/ � Op/C 2m OHS � xŒq � � , OHS�jp1i

D yhp2j.2m2.1 � y/C xq2/� � V.Ox/C m.2 � y/ OHSjp1i .

In the first equality we used the symmetry of the integrand with respect to the
replacement x! 1 � x. In the second equality we used the identity

hp2jŒq � � , OHS�jp1i D �2q2hp2j� � V.Ox/jp1i .

6. The resulting formula for the form-factors
After substituting the above rearrangements into Eq. (7.290) and comparing the
resulting equation with Eq. (7.287), we obtain for the electric and magnetic
form-factors

F1.q2/ D 1C ˛

2�

Z 1

0
dx
Z 1

0
dy

�

.1 � y/ ln

�
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�
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C
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.px/
2

3

5

�
Z 1

0
dy.1 � y/ ln

�
�2.1 � y/

m2y2

�
9

=

;
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and

F2.q2/ D m2 ˛

2�

Z 1

0

dx

.px/
2

.

The electric form-factor F1 was (re)normalized by Eq. (7.288). By virtue of the
identity, see Eqs. (7.282) and (7.289),

.px/
2 D m2 � q2x.1 � x/ (7.292)

we have for the nonzero values of the exchanged four-momentum

F1.q2/ � F1.0/ D � ˛

2�

Z 1

0
dx

�

�1

2
ln

�
.px/

2

m2

�

C m2

.px/
2

�

ln

�
.px/

2

�2

�

� 1

	

�
�

ln

�
m2

�2

�

� 1

	

� q2

.px/
2

�
1

2
ln

�
.px/

2

�2

�

� x

	�

.

By means of the identity

m2

.px/
2
D 1C q2x.1 � x/

.px/
2

following from Eq. (7.292), and integration by parts

Z 1

0
dx ln

�
.px/

2

m2

�

D q2
Z 1

0
dx

x.1 � 2x/

.px/
2

we finally arrive at

F1.q2/ � F1.0/ D � ˛

4�
q2
Z 1

0
dx

xC Œ2x.1 � x/ � 1� ln


.px/

2

�2

�

.px/
2

.

Substitution x D .1� t/=2 converts the form-factors into a form convenient for
our purposes

F1.q2/ � F1.0/ D � ˛

2�

q2

4m2

Z 1

0
dt

1 � .1C t2/ ln



m2

�2

h

1 � q2

4m2 .1 � t2/
i�

1 � q2

4m2 .1 � t2/
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and 47

F2.q2/ D ˛

2�

Z 1

0
dt

1

1 � q2

4m2 .1 � t2/
.

7. Application to positronium
The last two equations yield the electric and magnetic form-factors as functions
of the exchanged four-momentum. We now express them as functions of relative
electron-positron velocity. To do so, we insert into Eq. (7.282) for the initial and
final electron four-momentum

p1 D .E, p/ p2 D .�E, p/ .

By means of the relativistic relations between energy and velocity, E2 D m2=.1�
v2/, we express the square of the exchanged momentum as

q2 D .p2 � p1/
2 D 4E2 D 4m2

1 � v2
.

An electron with the four-momentum p2 D .�E, p/ is a positron with the four-
momentum p2 D .E,�p/. To see this, it suffices to insert  M � eip�x into
Eq. (7.58); then . M/C � e�ip�x. Hence, 2p is the relative electron-positron
momentum in the center of mass frame. Recalling the relativistic relation
between energy and momentum p � p D E2 � m2 D m2v2=.1 � v2/, clearly
2v is the relative electron-positron velocity in the center of mass frame. The
last equation expresses the square of the exchanged momentum q2 through the
relative velocity.

We are interested in the limit where the relative velocity approaches zero.
However, as will be clear later, it is better to take the limit at the very end. By
means of the last equation we have for the form-factors

47No quantum field theory textbook fails to note that in the limit of zero momentum transfer we
have F2.0/ D ˛

2� . For purely spatial components of V.Ox/ and purely spatial momentum exchanges
q2 D �q2, we obtain in the limit q2 ! 0

(7.287) ' �ge
e

m
OS � BC : : : ,

where B is the Fourier transform of magnetic induction, B D
D

p.0/2

ˇ
ˇ
ˇr � A.Or/

ˇ
ˇ
ˇp.0/1

E

, and the

gyromagnetic ratio reads ge D ŒF1.0/C F2.0/� D 1 C ˛
2� . This corresponds to the Schwinger

correction to the electron gyromagnetic ratio which we derived already in Sect. 7.5. Thus it certainly
suffices to comment on it in a footnote. As should be clear now, the magnetic form-factor is not
affected by any divergence. Therefore, it cannot—at least at the leading order of ˛—confirm the
validity of the renormalization procedure.
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F1

�
4m2

1 � v2

�

� F1.0/ D � ˛

2�

Z 1

0
dt

1 � .1C t2/ ln



m2

�2
t2�v2

1�v2

�

t2 � v2

and

F2

�
4m2

1 � v2

�

D ˛

2�
.1 � v2/

Z 1

0
dt

1

t2 � v2
.

For real v 2 .0, 1/, the integrals exist only in the sense of the Cauchy principal
value48 and have nonvanishing imaginary part. We saw back in Sect. 6.5.3 that
this imaginary part is associated with the possibility that one of the particles
“detaches” from the rest and becomes real. We consequently calculate the decay
probability, instead of the energy shift. This is presently of no interest to us as
we wish to calculate the energy shift. In the limit v ! 0 one has

<
Z 1

0

dt

t2 � v2
! �1)<

Z 1

0
dt
.1C t2/

t2 � v2
ln

�
m2

�2.1 � v2/

�

! 0

and

<
Z 1

0
dt
.1C t2/ ln.t2 � v2/

t2 � v2
! �4C �2

2v
.

48For instance, consider the integral

Z 1

0

dt

t2 � v2
D 1

2v

Z 1

0
dt

�
1

t� v �
1

tC v
	

.

The second integral is well defined. To define the first one, we move the pole, as usually, into the
lower half of the complex plane

1

t� v !
1

t� vC i"
D t� v
.t� v/2 C "2

� i
"

.t� v/2 C "2
.

Recalling now Eq. (1.72), clearly

lim
"!0C

=
�

1

t� vC i"

	

D ��ı.t� v/ .

The real part of the integral reads

lim
"!0C

Z 1

0
dt

t� v
.t� v/2 C "2

D lim
"!0C

1

2
ln

�
"2 C .1� v/2
"2 C v2

�

D ln

�
1� v
v

�

.

The integral defined in this way is what is usually called the Cauchy principal value. Returning
now back to the original integral we have for the real part

<
�Z 1

0

dt

t2 � v2

	

D 1

2v
ln

�
1� v
1C v

�

.
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Hence, it follows that

F1
�

4m2
� � F1.0/ D lim

v!0
� ˛

2�

�

3 � �
2

2v

�

and

F2.4m2/ D � ˛

2�
.

For the case in question, the four-potential V of a virtual photon is purely spatial
and the exchanged momentum q purely temporal, see Eq. (7.285). Then we have
� ¤ � in the expression for the spin part of the Hamiltonian, OHS, Eq. (7.284),
and � -matrices anticommute:

hp2j OHSjp1i D �hp2j.p2�p1/��� �V.Ox/jp1i D �2mhp2j� �V.Ox/jp1i . (7.293)

After substitution of the last three equations into Eq. (7.287), we find that the
photon exchange between an electron and a positron in initial and final states
leads to the multiplication of Eq. (7.105) by the factor

1C 2
�

F1.4m2/ � F1.0/C F2.4m2/
� D lim

v!0

�

1C ˛�

2v
� 4˛

�

	

. (7.294)

8. Yet another “renormalization”
As mentioned above, the whole process of a photon exchange between an
electron and a positron in initial and final states of virtual electron-positron
annihilation is a “high-energy” process, i.e., involving short-wavelength
photons. In the limit where the relative velocity of the electron and positron
vanishes, the dependence on the regulating parameter � vanishes as well.
However, a glance over the last equation reveals another problem: the calculated
correction diverges in the limit when the relative electron-positron velocity
vanishes. We can guess where the problem stems from if we recognize that
the photon exchange between an electron and a positron includes a complete
electromagnetic interaction between the electron and the positron. However,
owing to the Coulomb interaction, the electron and positron form a bound state
at all. Clearly, this part of the interaction has already been taken into account
in the Schrödinger equation! Obviously, we encounter here the same problem
as in the two-photon exchange analyzed in the last section. We need to subtract
the part of the photon exchange already contained in the Schrödinger equation
from the last equation. To determine which part it is, one needs to recognize
that the last equation matches that of the correction due to the photon exchange
to the probability that the electron “touches down” on the positron when both
of them are moving freely. Intuitively, it should be clear that should the electron
and positron annihilate, the electron has to “touch down” on the positron. In
other words, the transition amplitude for the electron-positron annihilation is
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always proportional to the transition amplitude that the electron and positron
world-lines meet somewhere in the space-time. Since we are considering a
photon exchange between the both initial and final electron-positron pairs, the
amplitude for pair annihilation and subsequent pair creation is proportional to
the absolute value of the square of the transition amplitude. However, that is the
transition probability. The probability that the electron “touches down” on the
positron, if we take into account the Coulomb interaction between the electron
and positron, relative to the probability that this happens if the electron and
positron are moving freely equals the ratio between the square of the absolute
value of the Coulomb function, Eq. (6.146), at the origin and the square of the
absolute value of the plane wave at the origin

j ke.r D 0/j2
1

.2�/3
D je�=.2ke/� .1C i=ke/j2 D

2�
ke

1 � e�
2�
ke

, (7.295)

where in the last equality we used the relations for the � -function, Eq. (6.155).
Recall that r denotes the difference between the electron and positron radius
vectors in the center of mass frame. We then substitute

ke D 2v

˛
,

which corresponds to the transformation of the electron-positron relative velo-
city from the atomic to natural units. If we now expand the expression (7.295)
into the first order in ˛ (we can do that irrespective of the magnitude of v), we
obtain

j ke.r D 0/j2
1

.2�/3
' 1C �˛

2v
C : : : .

The second term on the rhs clearly matches the troublesome term in Eq. (7.294).
As follows from the above considerations, this term should be subtracted from
Eq. (7.294).49

9. The final result
The final expression for the correction to the virtual annihilation, Eq. (7.105),
stemming from the photon exchange between an electron and a positron in the
initial and final states reads

�

1 � 4˛

�

�

. (7.296)

49As far as we know this resolution of divergence at small velocities is due to J. Schwinger [36].
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10. Note on the infrared divergence
The divergence of the form-factor F1.q2/ for a general value of the square of
the exchanged momentum q2 originates in the region of long wavelengths of
the virtual photon. The physical reason behind it is the following. When the
free electron is scattered by the EM field, its initial and final momenta differ.
Obviously, the electron is accelerated or, for that matter, decelerated. However,
an accelerated charged particle radiates EM waves. If we add the amplitude
of the process when the electron is scattered by the EM field and radiates and
absorbs back a virtual photon, and the process when the electron is scattered by
the EM field and radiates the photons away (they can be registered in a detector),
then the dependence on the regulating parameter � disappears and the whole
expression is finite. For an explicit calculation see, e.g., [30].

7.8.4 Virtual Two-Photon Annihilation

Finally, we consider the possibility that the pair annihilates into two virtual photons
which subsequently annihilate into “another” pair, see Fig. 7.18.

The positronium energy shift due to this process equals, compare with Eqs. (7.262)
and (7.263),50

�E D
ˇ
ˇ
ˇ
ˇ
ˇ

X

p

 0
at.p/

ˇ
ˇ
ˇ
ˇ
ˇ

2

L3 e4

.2�/2

Z
d4kF

k2.k � 2"/2

˝

V0

ˇ
ˇ��

1

� � ." � k/ � m
��jU0i

� ˝U0

ˇ
ˇ

�

��
1

� � .�"C k/ � m
�� C �� 1

� � ." � k/ � m
��

	

jV0i .
(7.297)

ε −ε

ε

kk −

−ε −ε

2ε

−ε + k

ε − k

ε −ε

ε

kk − 2ε

ε − k

ε − k

Fig. 7.18 Feynman diagram for two-photon virtual annihilation in momentum space

50The reader surely recalls that in the case the electron is moving backward in the final state. The
relation between the amplitude and energy is the opposite to the one in Eq. (7.263), see the note
below Eq. (7.280).
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The reader can easily verify the validity of the equations51

˝

V0

ˇ
ˇ��Œ� � ." � k/C m���jU0i

� ˝U0

ˇ
ˇ
�

��Œ� � .�"C k/C m��� C ��Œ� � ." � k/ � m���
� jV0i

D �kmkl

8

˝

V0

ˇ
ˇ
˚

�l, Œ�j, �i�
� jU0i

˝

U0

ˇ
ˇ
˚

�m, Œ�j, �i�
� jV0i D 1

L6
4kmklımljhSjp�2jSiej2

and, see Eq. (7.227),

Z
d4kkmkl

k2.k � 2"/2.k2 � 2k � "/2 D �
ıml

8m2

Z 1

0
dx
Z 1

0
dy

y.1 � y/

1 � 2yC y2.1 � 2x/2

D � ıml

8m2

1 � ln 2

3
.

One has to consider the last integral again in the sense of the Cauchy principal value
and take only the real part. After substituting the last three equations into Eq. (7.297)
we obtain for the energy shift

�E D � e4

.2�/2m2

ˇ
ˇ 0

at.r D 0/
ˇ
ˇ
2 jhSjp�2jSiej2

1 � ln 2

2

D � ˛
2

m2

ˇ
ˇ 0

at.r D 0/
ˇ
ˇ
2

2.1 � ln 2/
D

2 � OS2
E

, (7.298)

where in the second equality we used Eq. (7.111).

7.8.5 Comparison with Experiment

Summarizing now all the terms contributing to the singlet-triplet splitting of the
positronium s-states with accuracy up to the order of ˛5, one obtains

�Espin D ˛�

m2

ˇ
ˇ 0

at.r D 0/
ˇ
ˇ
2
�

8

3

D OSe � OSp

E �

1C ˛

�

�

1 � 3

2

�	

C
D OS2

E �

1C ˛

�

�

�4 � 8

9

�	

�
D

2 � OS2
E ˛

�
2.1 � ln 2/

�

. (7.299)

The first term comes from the magnetic interaction between two dipoles, Eq. (3.124).
Corrections to this term originate either from the sum of the Schwinger corrections
to the gyromagnetic ratio, Eq. (7.204), for both the electron and positron, or from the

51In the second equality use Eq. (7.203) and �0f�l,˙kg D 2ıl,k�5, see Eq. (7.218).
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two-photon exchange between the electron and positron, Eqs. (7.275) and (7.276).
Here, we take the limit

lim
m2!m1

m1m2

m2
1 � m2

2

ln
m1

m2
D 1

2
. (7.300)

The second term stems from the virtual one-photon annihilation of positronium,
Eq. (7.105), and corrections to it come either from the photon exchange between
the electron and positron in the initial and final states, Eq. (7.296), or from the self-
energy of the virtual photon, Eq. (7.281). The third term appears from the virtual
two-photon annihilation of positronium, Eq. (7.298).

By inserting Eqs. (7.106) and (3.12) into Eq. (7.299), we find for the splitting
between the ground singlet and triplet states of positronium

�theo.1
3s � 11s/ D 2R1c˛2

8

�
8

3

�

1C ˛

�

�

1 � 3

2

�	

C 2

�

1C ˛

�

�

�4 � 8

9

�	

C 2
˛

�
2.1 � ln 2/

�

D R1c˛2

�
7

6
� ˛
�

�
16

9
C ln 2

��

D 203.38113 GHz .

Back in Sect. 7.3.2, when we considered only the leading term, we obtained the
value 204.4 GHz, see Eq. (7.107). One thus sees that all of the above considered
corrections of the order ˛ to this result significantly improve the agreement with the
experimental value 203.3875.16/GHz, see Eq. (7.108). Clearly, the singlet-triplet
splitting of the positronium s-states is a “high-energy” effect as the atomic structure
enters here only through the absolute value of the square of the wave function at the
origin.

To conclude, we summarize all of the terms contributing to the differences
between arbitrary two positronium energy levels at the order of ˛5.

1. Electron and positron self-energies: From Eqs. (7.211), (7.212), (7.210), (3.132),
and (7.204) we find for the energy shift

�ESE
exp D

me˛
5

�.2n/3
.Flow C Fhigh C Fanom/,

where

Flow D 2

�

(6.239)C ıl,0
4

3
ln 2

	

,

Fhigh D �2

3
ıl,0 C n3

* OS � OL
2r3

A

+
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and

Fanom D n3

*

ı.rA/�
8

3
OSe � OSp C 1

r3
A

" OS � OL
2
�

 OSe � OSp � 3n � OSen � OSp

�
#+

,

where OS D OSe C OSp is the total spin operator. In contrast to it, in Eq. (7.210)
OS stands for a one-particle operator, either OSe or OSp. The average is taken with

respect to Pauli wave function. The last term Fanom was obtained by substituting
Eq. (7.204) for g into Eq. (3.132).

2. Vacuum polarization: Equation (7.250) where we substitute mR D me=2 and
mV D me yields

�EVP
exp D

me˛
5

�.2n/3
ıl,0

�

� 4

15

�

,

3. One- and two-photon exchanges: The energy shift is given by Eqs. (6.245), (6.246),
(6.247), (6.254), (6.258), and (7.277), where one takes the limit (7.300) and

lim
m2!m1

m2
1 ln m1 � m2

2 ln m2

m2
1 � m2

2

D 1

2
C ln m1 .

4. Correction to virtual annihilation: Here, the situation for an arbitrary positronium
state is the same as for the s-states, see Eq. (7.299),

�Ean D me˛
5

�.2n/3
ıl,0

�

OS2

�

�4 � 8

9

�

�



2 � OS2
�

2.1 � ln 2/




Determine the magnitude of the 23s � 13s interval in positronium with
accuracy up to ˛5 and compare your result with the experimental value
[6]

�exp.2
3s � 13s/ D 1,233,607,216.4 .3.2/MHz .

Exercise 30: Positronium Gross Structure
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7.9 Final Notes

In this and previous chapter we analyzed merely the basic quantum electrodynamic
processes. There is, of course, a great number of other indeed interesting processes
which we did not discuss at all. We refer an interested reader to the classics [2, 15]
for a more complete picture.

The view of the renormalization adopted herein suffices well for low-energy QED
processes. However, when dealing with second-order phase transitions as well as
strong interactions at high energies, one needs a somewhat deeper view based on the
renormalization group, see, e.g., [23, 30].

For an in-depth treatment of spinors see, e.g., [4, 42, 44].
Throughout this book, we treated nuclei as point-like. For the calculation of

finite-size corrections to the hyperfine and fine structure see [9, 45].
As repeatedly pointed out, QED needs some input, namely we need to take the

mass of the electron or better the Rydberg constant, the charge of the electron or
better the fine-structure constant, electron-muon, electron-proton, etc. ratios from
experiment. For an up-to-date review of how this is done see [26]. For a reflection
on and survey of the tests of QED see, e.g., [17, 18].
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Introduction to Electroweak Unification: Standard Model from Tree Unitarity (World Scientific,
Singapore, 1994)

14. R. Jackiw, What good are quantum field theory infinities? arXiv:hep-th/9911071 (1999)
15. J.M. Jauch, F. Rohrlich, The Theory of Photons and Electrons: The Relativistic Quantum Field

Theory of Charged Particles with Spin One-Half (Addisson Wesley, Reading, 1955)
16. R. Karplus, A. Klein, Phys. Rev. 87, 848 (1952)
17. S.G. Karshenboim, Phys. Rep. 422, 1 (1995)
18. T. Kinoshita, Quantum Electrodynamics (World Scientific, Singapore, 1990)
19. T. Kinoshita, Rep. Prog. Phys. 59, 1459 (1996)
20. N.M. Kroll, W.E. Lamb, Phys. Rev. 75, 388 (1949); J.B. French, V.F. Weisskopf, Phys. Rev.

75, 1240 (1949)



430 7 Dynamics: The Relativistic Theory

21. G.P. Lepage, What is Renormalization? arXiv:hep-ph/0506330 (2005); G.P. Lepage, How to
renormalize Schrödinger equation. arXiv:nucl-th/9706029 (1997)

22. I. Lindgren, J. Morrison, Atomic Many-Body Theory (Springer, Berlin, 1982)
23. S.-K. Ma, Modern Theory of Critical Phenomena (Westview Press, Boulder, 2000)
24. F. Mandl, G. Shaw, Quantum Field Theory (Wiley, New York, 1993)
25. A.P. Mils Jr., G.H. Bearman, Phys. Rev. Lett. 34, 246 (1975)
26. P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 84, 1527 (2012)
27. B. Odom et al., Phys. Rev. Lett. 97, 030801 (2006)
28. C.J. Oram et al., Phys. Rev. Lett. 52, 910 (1984)
29. K. Pachucki, J. Phys. B 31, 5123 (1998)
30. M. Peskin, D. Schroeder, An Introduction to Quantum Field Theory (Westview Press, Boulder,

1995)
31. R. Pohl et al., Nature 466, 213 (2010)
32. F. Rohrlich, Classical Charged Particles, 3rd edn. (World Scientific Publishing, 2007)
33. J.J. Sakurai, Advanced Quantum Mechanics (Addison Wesley, Reading, 1967)
34. E.E. Salpeter, Phys. Rev. 87, 328 (1952)
35. S.S. Schweber, QED and the Man Who Made It: Dyson, Feynman, Schwinger Tomonaga

(Princeton University Press, Princeton, 1994)
36. J. Schwinger, Particles, Sources and Fields, Volume II (Addison-Wesley, New York, 1973)
37. E.A. Uehling, Phys. Rev. 48, 55 (1935)
38. M. Veltman, Diagrammatica: The Path to Feynman Diagrams (Cambridge University Press,

Cambridge, 1994)
39. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory

of Relativity (Wiley, New York, 1972)
40. K.A. Woodle et al., Phys. Rev. A 41, 93 (1990)
41. J. Zamastil, V. Patkóš, Phys. Rev. A 88, 032501 (2013); J. Zamastil, V. Patkóš, Phys. Rev. A
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Closing Remarks

It is as if, in order to carry the quantum theory to its logical conclusion, a new breed of
people had to be created: the theory was so great that it could stand the strain going farther,
but its creators could not. If Albert Einstein could not be happy with the quantum theory,
who could expect any mortal to do better? [2]

From its very inception, quantum mechanics (QM) was looked upon with
suspicion and this somehow still persists to the present day. All the worse for QED,
or for the quantum field theory (QFT) in general. It is quite amazing to observe how
often and forcefully QFT was regarded as something to be discarded and replaced
with something better: in the 1930s QFT was thought not to be able to describe EM
interactions, in the 1950s and 1960s to describe strong interactions, and so on and
so forth. And yet to this day, QED and its generalization, the electroweak theory,
passed every decisive test with flying colors. Ingenious thought experiments devised
by Einstein, Schrödinger, and other great minds to show that QM cannot be taken
seriously to its full extent have been eventually technically realized and showed that
at least Nature herself follows QM to the letter. Although one always has to keep
open mind to the possibility that there could indeed be something better that would
replace QM and QFT one day, one should acknowledge at the same time how these
schemes survived the stringent scientific scrutiny to this day.

Time to time, one can hear about scientific revolutions—there is even an entire
book devoted to their structure—but between us friends, there has been solely one
revolution in the history of modern physics (since the Galileo times), namely the
discovery of QM. It is quite remarkable that from that time on, all successful solutions
of new problems were conservative: of all the more or less revolutionary ideas, so
far only those preserving the original structure of QM and QFT proved to be the
correct ones. Is there a lesson to be taken here?

What makes the physics so fascinating is that it combines very precise thinking
and very precise experiments. One has to acknowledge that unless the both are
present, much of the fascination disappears. Only ingeniously devised and carefully
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432 Closing Remarks

executed experiments enforced theorists to come up with such a strange scheme as
QM. It is then quite remarkable how this scheme is able to deal with new phenomena,
completely unknown at the time of its invention. Look how the basic principle
of quantum mechanics, i.e., the principle of superposition, enters the electroweak
theory, Eq. (E.26) of Epilogue. It enforces us to extend the notion of a particle to an
object without definite mass, see Eq. (E.52) of Epilogue. The strangest features of
QM are the most useful ones. Also, as peripherally mentioned in Sects. 7.5 and 7.6,
the infinities appearing in successful QFTs are not something to dispose of as early
as possible. In a way, at least in our present state of understanding, they should be
there.

At the same time, one must acknowledge that there is no such a thing as an
absolutely accurate experiment or an absolutely accurate calculation. We have to
think in terms of clearly defined concepts; yet again there is no such thing as an
absolute clarity of thinking. In other words, we make approximations all the time.
Thus in the future we will know more, and there is still a lot to be learned, for sure.
Maybe some of the readers of this book will take us further one day.



Epilogue: Electrodynamics as a Part
of a Greater Structure

This Epilogue lies somewhat out of the scope of this book and also the style of
the exposition differs from the rest: we do not work out everything as in detail as
previously. We rather want to wet the reader’s appetite to study further and show
him or her one of many possible ways one can follow further. Last but not least, we
want to demonstrate how atomic physics manages after all these years to stay at the
frontier of our exploration of the fundamental physical laws.

We will give an exposition of those elements of the theory of electroweak
interactions that are of relevance at low energies. That is, we will focus on ˇ-
decay and electron-nucleus electroweak interactions in atoms. We restrict ourselves
to a world (in fact not much different from the one we inhabit) comprising only one
generation of leptons and quarks: electron, its neutrino, and up and down quarks, and
consider neutrinos strictly massless. Clearly, what follows is only a tiny bit of the
whole theory. Our aim is to show the reader why the calculation and measurement of
atomic electroweak interactions form such an interesting topic, and at the same time
spare him or her the necessity to learn the whole theory with all its complications.
This final part of the text requires no more knowledge of elementary particles than
the quark composition of nucleons, i.e., of protons or neutrons.

ˇ-decay and Its Problems

In his experiments, Rutherford subjected radioactively emitted particles to an
external magnetic field. From the results, he deduced the electric charge and mass
of the emitted particles and distinguished three types of radioactivity:

1. ˛-decay: The nucleus emits ˛-particles (helium nuclei). This decay was explained
by Russian physicist Georgij Gamow as a consequence of the quantum-
mechanical tunneling effect.
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434 Epilogue: Electrodynamics as a Part of a Greater Structure

2. ˇ-decay: The nucleus emits electrons.
3. � -decay: The nucleus emits photons. It is a spontaneous emission, but the initial

and final states are nuclear energy levels.

In case of ˇ-decay the nucleus emits electrons, hence it seems reasonable to
assume that nuclei comprise protons and electrons. However, experiments contradict
this assumption. Let us elucidate using deuteron as an example. Its mass is about
twice the proton’s and its charge is the same as proton’s. Therefore in order to
yield the correct charge and a reasonable value of mass, the deuteron would have
to constitute two protons and one electron. These three particles of spin 1=2 would
then combine to a half-integer spin, yet we know from the experiment that deuteron
has an integer spin.

These problems were resolved after the discovery of neutron by British physicist
James Chadwick in 1932. Only then did it become clear that nuclei are constituted
by neutrons and protons. Comparing the mass and charge of nuclei prior and after
ˇ-decay, one can deduce that the masses are about the same and that the charge
is increased by one elementary unit. Gradually, but by no means easily, it was
established that the energy spectrum of the emitted electrons is continuous.1 This
means that either ˇ-decay does not conserve energy or that there must be another
neutral and very light particle that is emitted along with the electron but escapes the
detection. The latter, first proposed by Pauli, turned out to be the correct explanation.
Thus it gradually became clear that ˇ-decay is nothing but disintegration of neutron
into proton, electron, and antineutrino. There is also inverse ˇ-decay when an
electron in the atomic s-state is captured by the proton in the nucleus and produces
a neutron and a neutrino. But how are these reactions possible at all?

This question was answered by Italian physicist Enrico Fermi who noticed a
similarity between ˇ-decay and spontaneous emission. A photon is not present in
the atom prior its radiation and it is not a particle, but a quantum of EM field instead.
The interaction Hamiltonian (6.65) includes the vector potential of the quantized
EM field, which in turn comprises photon creation and annihilation operators, see
Eq. (6.39). This Hamiltonian capturing the interaction of an atom and EM field then
allows for transition between the vacuum and one-photon states. Likewise, neutron,
proton, electron, and antineutrino are not particles, but quanta of neutron, proton,
electron, and neutrino fields. The problem thus reduces to the construction of the
interaction Hamiltonian that allows for a transition between the initial and final states
of ˇ-decay.

1If the reader is interested in the fascinating history of scientific endeavor that lead to this picture,
we refer him to [6].
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Fermi Theory

He [Oppenheimer] often presented physics in rather abstract terms which contrasted, at
least in my mind, with the simple, direct approach to which Fermi had accustomed me.
I remember a remark that Fermi made in 1940 at the time of his visit to Berkley for the
Hitchcock lecture. After attending a seminar given by one of Oppenheimer’s pupils on
Fermi’s beta-ray theory, Fermi met me and said: “Emilio, I am getting rusty and old. I
cannot follow the highbrow theory developed by Oppenheimer’s pupils any more. I went to
their seminar and was depressed by my inability to understand them. Only the last sentence
cheered me up; it was: ‘And this is Fermi’s theory of beta decay.’.” [13]

Weak interactions are indeed weak; thus within our focus on low-energy (the so-
called “table-top”) experiments it perfectly suffices to consider only the first-order of
the perturbation method. Fermi was well aware of the Fermi golden rule, Eq. (6.79),
which for ˇ-decay takes the form

dwI!F D 2�ı.!FI/ j. OHˇ/IFj2d3ppd3ped3p� , (E.1)

where

. OHˇ/IF D h0j Obn
OHˇ
ObCp ObCe OdC� j0i .

Clearly, in order for . OHˇ/IF to be nonzero, OHˇ must constitute a neutron creation
operator, a proton annihilation operator, an electron annihilation operator, and an
antineutrino annihilation operator. Recalling the decomposition of the Dirac field
into modes, Eq. (7.41),

O D
X

�


 Ob�U� C OdC� V�
�

, (7.41)

we see that the simplest possible choice of the interaction Hamiltonian is

OHˇ D Gˇp
2

Z

d3r. O Cn O p O C� O e/.r/) . OHˇ/IF D Gˇp
2

Z

d3r.UCn UpVC� Ue/.r/ .

(E.2)
The constant Gˇ is called the Fermi coupling constant for ˇ-decay and the factor
2�1=2 appears there for historical reasons. Believe it or not, this is the correct form
of the interaction Hamiltonian in the limit when the proton recoil can be neglected
and the transition preserves the nucleus spin (i.e., the spins of the neutron and proton
are the same). To find the correct Hamiltonian also for other cases we will follow
the similarity between the EM and weak interactions.

Recall Eq. (7.230) for a massive vector field:

.@�@� C m2/A� � @�@�A� D j� . (7.230)
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On the scales r
 m�1 and t 
 m�1, the spatial and temporal changes of the field
can be safely neglected and we can write

A ' j
m2

Inserting this expression into the interaction Hamiltonian we find the effective
current-current interaction

OHint D
Z

d3rj � A ' 1

m2

Z

d3rj � j . (E.3)

Assuming now that weak interactions are mediated by very massive vector bosons
we can write

OHˇ D Gˇ

21=2

Z

d3rOjN � Ojl
, (E.4)

where

OjN D O n�� O p , Ojl D O ��� O e .

The interaction (E.2) is then the temporal component of the complete interac-
tion (E.4), proposed by Fermi as early as in 1934, and Gˇ2�1=2 D m�2. The
form (E.4) is almost, but not completely, correct. The correct one was determined 24
years later only after it became clear that weak interactions do not preserve parity.
To elucidate the connection we have to turn our attention to the solution of the Dirac
equation in the massless limit.

Weyl Representation

To investigate such a limit, it is useful to introduce yet another representation of
the � -matrices. We once again perform a unitary transformation, confront with
Eq. (7.54),

 D U W

this time choosing the matrix

U D 1p
2

�
1 1
�1 1

�

.
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Substitution of the last expression into �W
� D UC��U leads to the Weyl or chiral

realization of the � -matrices

�W D
�

0 � W

� 0

�

, �W
5 D

��1 0
0 1

�

,

where

� W D �1, � W
�

� D �1,�� W
�

.

Defining now the left- and right-handed components of the fermion fields

 L D 1 � �5

2
  R D 1C �5

2
 , (E.5)

where the nomenclature becomes clear in a moment, the Dirac wave function of a
free particle can be written as

 W D
�
 L

 R

�

.

Taking the Hermitian conjugate of Eq. (E.5) and multiplying it by �W
0 we obtain

 
L D  1C �5

2
 

R D  1 � �5

2
. (E.6)

We consider only the states with a definite value of helicity, i.e., the states with a
given projection of spin along the direction of motion. Writing the momentum of
the particle as

p D p�

the helicity spinors are defined as

OS � �jhi D h

2
jhi , OS D � W

2
, h D ˙1 . (E.7)

These states are the same states as those encountered in Exercise 1: The states
denoted here by jhi correspond to the states denoted as jh�i in the exercise.
Helicity is an integral of motion. To see this, it suffices to solve the Dirac equation
�

�W � p � m
�

 W D 0 in the form

ˇ
ˇ W

h

˛ D j�hijhi (E.8)
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and use Eq. (E.7); one thus obtains

� �m E � hp
EC hp �m

��
�L

h

�R
h

�

D 0 . (E.9)

Writing now

E D m cosh� , p D m sinh� , (E.10)

where the parameter � is called the rapidity, Eq. (E.9) takes the form

��1 e�h�

eh� �1

��
�L

h

�R
h

�

D 0 .

The solution to this equation reads

j�hi D N

�
e�h�=2

eh�=2

�

, N2 D 1

e�� C e�
. (E.11)

The reader can easily verify2 that the charge conjugated solution is

ˇ
ˇ W

˛

c D �2j�hijhi� D �ihN

�
eh�=2

�e�h�=2

�

j�hi� (E.12)

It follows from Eq. (E.10) that in the massless limit the rapidity approaches infinity.
A general solution, Eqs. (E.8) and (E.11), consequently reduces to

�!1 :
ˇ
ˇ WC

˛ D
�

0
1

�

jCi , ˇ
ˇ W�

˛ D
�

1
0

�

j�i . (E.13)

It should be clear from the last equation that in the massless limit the left- and right-
handed fermions have negative and positive values of the spin projection along the
direction of motion, respectively. The charge conjugated solution, Eq. (E.12), then
reduces to

�!1 :
ˇ
ˇ WC

˛

c D �i

�
1
0

�

j�i� ˇ
ˇ W�

˛

c D �i

�
0
1

�

jCi� . (E.14)

In the limit where the particle is at rest, the general solution (E.11) reduces to

�! 0 : j�˙i D 1p
2

�
1
1

�

. (E.15)

2One only needs to work out the transition between the Weyl and Majorana realizations and use
the result of Exercise 1.
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Feynman – Gell-Mann Theory

In the massless limit, the Dirac equation for the four-component bispinor decouples
into two equations for two-component spinors. It then suggests that neutrino, a
massless 1/2-spin particle, should be described by only one of the two equations,
i.e., neutrino would be either left-handed or right-handed. This idea was put forward
first by German mathematician Hermann Weyl as early as in 1929. However, it
was rejected immediately by physicists on the grounds that the two-component
equation for neutrino violates the parity. Indeed, upon inversion of the direction of
coordinate axes, the direction of the particle motion reverses, �! ��, but not the
particle spin, OS ! OS. In common jargon it is said that the momentum is a polar
vector, while angular momentum is an axial vector, or a pseudovector. Thus by
inversion of the direction of the coordinate axes, the state of the positive helicity
is transformed into a state of negative helicity and vice versa. In addition, the two-
component equation for neutrino itself violates the charge parity. It follows from the
comparison of Eqs. (E.13) and (E.14) that upon charge conjugation the left-handed
neutrino transforms into the right-handed antineutrino and vice versa. Nevertheless,
the idea of the two-component neutrino was rescued immediately after it had become
clear that weak interactions violate parity. Then, in a beautiful experiment, see, e.g.,
[8], M. Goldhaber et al. found out that neutrino produced in an inverse ˇ-decay is
left-handed. This discovery led American physicists Richard Feynman and Murray
Gell-Mann (and also George Sudarshan and Robert Marshak) to a bold suggestion
(which turned out to be correct) that the weak interaction acts only on the left-handed
parts of the fermions. Thus, the only part that needs to be modified in the Fermi form
of the interaction Hamiltonian (E.4) is the definition of the hadronic and leptonic
currents to3

OjN D 2. O n/L��. O p/L D O n��.1 � �5/ O p (E.16)

and

Ojl D 2. O �/L��. O e/L D O ���.1 � �5/ O e , (E.17)

where in the second equalities we used Eqs. (E.5) and (E.6). In fact, the form of the
hadronic current (E.16) is not entirely correct. The correct one reads

OjN D O n��.1 � gA�5/ O p , (E.18)

3In fact, Lorentz invariance together with the assumption that only the left-handed parts of the
fermion fields enter the interaction Hamiltonian determines uniquely the form (E.4) with the
currents given by Eqs. (E.16) and (E.17), see, e.g., [4].
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where gA ' 1.27 [7]. This value is determined from nucleus-spin-changing ˇ-decay.
It originates in the fact that proton and neutron are not elementary particles, but bound
states of quarks. On the quark level, a down quark changes into an up quark in the
ˇ-decay and the corresponding current is given by

Ojq D O d��.1 � �5/ O u .

Thus it is not surprising that the strong interaction enters the scene. What surprising
is that it enters the scene in an indeed innocent way: the fact that the vector part
O n�� O p is not at all influenced by the strong interaction will come in hand later.

From the known value of the lifetime of a free neutron, �n D 880 s [7],
determine the Fermi coupling constant for ˇ-decay. Compare your result
with the official value Gˇ ' 1.0 � 10�5 m�2

p , where mp stands for the
proton mass mp ' 0.938 GeV. Hints:

• Kinematics: Write U D L�3=2eip�ru, V D L�3=2eip�rv; then

. OHˇ/IF D Gˇp
2

1

L3

Z

d3re�i.pn�pp�p��pe/�r.hˇ/IF ,

where

.hˇ/IF D hunj��.1 � gA�5/
ˇ
ˇup
˛hv� j��.1 � �5/juei .

Integration over the space yields momentum conservation

Z

d3re�i.pn�pp�p��pe/�r D ıpn,ppCp�Cpe
.

This cancels the integration over the proton momentum. Next change
to the neutron rest frame and neglect the proton recoil, i.e., set Ep '
mp. After squaring the matrix element take a continuous limit; then
L�6 ! .2�/�6. Equation (E.1) then takes the form

dwI!F D 2�ı.� � Ee � p�/
G2
ˇ

2
j.hˇ/IFj2 d3pe

.2�/3
d3p�
.2�/3

,

Exercise 31: Neutron Lifetime
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where [7]

� D mn � mp ' 1.29 MeV .

Write for the differentials d3p D dpp2d˝, dpepe D dEeEe. The ı-
function cancels the integration over the magnitude of the neutrino
momentum, thus one should end up with

dwI!F D
G2
ˇ

4�3
j.hˇ/IFj2 d˝e

4�

d˝�

4�

q

E2
e � m2

e.� � Ee/
2EedEe .

• Reduction to spinors: Insert into .hˇ/IF for electron, antineutrino,
and nucleon wave functions from Eqs. (E.11), (E.14), and (E.15),
respectively. You should arrive at

hunj��.1 � gA�5/
ˇ
ˇup
˛ D hhnj.ı�,0 � gAı�,i�i

ˇ
ˇhp
˛

and

hv� j��.1 � �5/juei D 2Nee�he�e=2ih�� j���jhei .

• Averaging over the directions of the emitted electrons and neutrinos
and over nucleons polarizations: Use the result of Exercise 1 to show

1

2

X

hnD˙1

X

hpD˙1

Z
d˝e

4�

Z
d˝�

4�
j.hˇ/IFj2 D 2N2

e e�he�e .

It follows from the last equation and Eq. (E.10) that

N� � NC
N� C NC

D tanh�e D pe

Ee

where N� and NC are the total numbers of emitted electrons with
helicities �1 and C1, respectively. This is the experimental measure
of the parity violation.

• Summing now over the electron helicities we finally obtain

wI!F D
G2
ˇ

�3

1C 3g2
A

2

Z �

me

q

E2
e � m2

e.� � Ee/
2EedEe ,

where the last integral has to be calculated numerically.
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Conserved Lepton Number and Generalization of
Electrodynamics

We now assume the weak interaction is indeed mediated by vector bosons and try
to develop this idea further. We begin by considering a world where masses of all
the particles vanish, which is clearly a very high-energy limit of our world. The
reason is that at sufficiently high energies all the masses become (at least in the first
approximation) unimportant. Despite it not being true even for the energies reached
at LHC, in theory one can consider such a limit very easily.

Experiments show that weak interactions preserve electron lepton number l. That
is, if we assign l D 1 to the neutrino, l D �1 to the antineutrino, l D 1 to the
electron, and l D �1 to the positron, the values of l prior and after any reaction
have to be the same. This suggests that from the point of view of weak interactions,
electron and neutrino are merely different quanta of the same underlying field

 l D
�
 L
�

 L
e

�

. (E.19)

Henceforth,  will generally stand for the classical Dirac field. This field is to be
eventually quantized applying the procedure outlined in Sect. 7.2.1. In an analogy
to the spin states, we may regard neutrino and electron as the “spin up” and “spin
down” states, respectively. These “spin” states are usually referred to as the weak
isospin states; neutrino and electron have weak isospin 1=2 and �1=2, respectively.

Even if we knew nothing about classical electrodynamics, we could stipulate the
Hamiltonian describing the interaction of the spin with an external magnetic field
to be of the form OH D �K OS � B, see Eq. (1.41), on the grounds that this is the only
reasonable scalar constructed of the two available vectors OS and B.4 In a similar
manner, we stipulate that the interaction Hamiltonian of the isospin field interacting
with the vector bosons behaves as a scalar, but this time as a scalar with respect to
rotations in the isospin space

Œ� � .i@C gWaSa/�  l D 0 (E.20)

where

Sa D �a

2
, WaSa D 1p

2

�

WCS� CW�SC
�CW3S3

and

W˙ D 1p
2
.W1 ˙ iW2/ .

4A scalar of the type OS � OS does not seem reasonable as it clearly does not describe the interaction
between the spin and the magnetic field.
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Here �a, a D 1, 2, 3, are the Pauli spin matrices, but now acting in the isospin space,
and we used Eq. (1.35).

First we verify that Eq. (E.20) preserves the electron lepton number. Multiplying
this equation by the Dirac conjugated wave function from the left

 l

�

� � .i@! C gWaSa/
�

 l D 0

and considering the equation for the Dirac conjugated wave function and multiplying
it by the wave function from the right

 l

�

� � .i@ C gWaSa/
�

 l D 0

and subtracting the two equations, we arrive at the continuity equation

@�j� D 0, j� D  l�� l .

Integrating now over the whole space we obtain

d

dt
Ql D

I

jl � dS , Ql D
Z

dVj lj2 D
Z

dV.j L
� j2 C j L

e j2/ ,

where clearly Ql is the total electron lepton number.
From Eq. (E.20) we can deduce the form of the interaction Hamiltonian

Hint D
Z

d3rHint , Hint D gja �Wa , ja D  CSa� , (E.21)

where Hint is called the Hamiltonian interaction density and ja the isotopic currents.
The last equation is a straightforward generalization of the interaction Hamiltonian
of quantum electrodynamics Hint D

R

d3rj � A, confront with Eq. (7.46).
What form does the law of conservation of isotopic currents take on? To find it,

we multiply Eq. (E.20) by  lSa from the left

 lSa
�

� � .i@! C gWbSb/
�

 l D 0 .

We consider once again the Dirac conjugate of Eq. (E.20) and multiply it this time
by Sa l from the right

 l

�

� � .�i@ C gWbSb/
�

Sa l D 0 .

Subtracting the last two equations we find

 l� �
˚

Sai.@! C @ /C gWbŒSa, Sb�
�

 l D 0 .
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Recalling now the definition of the isotopic currents, Eq. (E.21), and the commutation
relation for the Pauli spin matrices, ŒSa, Sb� D i"abcSc, we arrive at

@�ja
� C g"abcWb

�jc
� D 0 . (E.22)

One can immediately see that Eq. (7.230) has to be modified to

@�@�Wa
� � @�@�Wa

� D gja
� C g2Na

� , (E.23)

where Na
� is a nonlinear function of the field Wa

� determined from the requirement
Eq. (E.22) be satisfied. We will not try to find its form and restrict ourselves to a
few comments. First, the nonlinearity of the classical equation for the field W means
that after quantization the quanta of W-field interact among themselves. Although
the existence of this self-interaction will be important in our next considerations,
its precise form will not since this self-interaction is perfectly negligible at low
energies.5 One way to deduce the precise form of the classical equation obeyed by
the W-field is to notice that Eq. (E.22) follows from the requirement the W-field be
determined up to a generalized gauge transformation

Wa
� ! Wa

� C @��a C g"abcWb
��

c . (E.24)

Indeed, if we require the integral of the interaction Hamiltonian density over the
whole space-time be not changed by this gauge transformation

Z

d4xHint D g
Z

d4xWa
�ja
� D g

Z

d4x.Wa
� C @��a C g"abcWb

��
c/ja

�

and integrate by parts, we obtain Eq. (E.22). Thus, the usual way of determining
the nonlinear terms in Eq. (E.23) starts from the requirement the theory be invariant
with respect to a generalized gauge transformation (E.24).

Glashow Theory of Electroweak Interactions

Bosons W˙, “carriers” of the weak force, are charged. Thus they must exchange
photons between one another. Hence we stand no chance of creating a consistent
theory of the weak interaction with intermediate carriers of the weak force unless we
consider EM interactions as well.6 One can easily trace the origin of this problem

5However, this is not the case of high energies. In fact, there is now an experimental proof of this
self-interaction, see Figs. 14 and 15 in [11].
6However, note that we do not face this problem the other way around! Quantum electrodynamics
is “sufficiently” consistent without taking into account the weak interaction.
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back to the fact that the currents (E.16) and (E.17) are charged (neutron changes into
proton, antineutrino into electron).

The boson W3 is electrically neutral. Is it a photon? Were that the case, it would
be really beautiful as the above-mentioned self-interactions of the W-field, necessary
for the inner consistency of the theory, would be the so needed EM interactions of
bosons W˙! In such a case, we would really have a unified theory of EM and weak
interactions, as was the original theory of J. Schwinger from 1957. Unfortunately,
it does not work. The reason is simple: the weak interaction acts only on the left-
handed components of the fermions while the EM interaction on both. In other
words, the weak interaction violates the parity, while the EM interaction preserves
it. The correct theory was found in 1961 by Schwinger’s student Sheldon Glashow:
we need to introduce an additional carrier of force. Instead of Eq. (E.20), we need to
consider the equations

�

� � .i@C gWaSa C g0XYL/
�

 l D 0

and

�

� � .i@C g0XYR/
�

 R
e D 0 ,

where obviously  R
e stands for the right-handed component of the electron field

and the number Y, to be determined later, is called the hypercharge. The interaction
Hamiltonian density then has the form

Hint D CgWa �  lSa� l C g0X �



 l� lYL C  R
e � R

e YR

�

(E.25)

D



 
L
� 

L
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�

� �
0

@
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2 C g0XYL, g W�p
2

gWCp
2

, �g W3

2 C g0XYL

1

A

�
 L
�

 L
e

�

C g0 R
e � � X R

e YR .

Now we come to the key step: the electrically neutral fields X and W3 are a linear
combination of the fields A and Z, where A is the vector potential of EM field well
known to the reader from the previous chapters:

�
X

W3

�

D
�

cos# , � sin#
sin# , cos#

��
A
Z

�

. (E.26)

The angle # is called the weak mixing angle.7 After substituting Eq. (E.26) into
Eq. (E.25) we obtain for the interaction Hamiltonian density

7It is very often called the Weinberg angle, but this makes little sense since Mr. Glashow introduced
it 6 years before Mr. Weinberg.
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Hint D C
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2
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2 cos# � g0 sin#YL
�

!�
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 L
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�

(E.27)

C g0.� sin#/ 
R
e � � Z R

e YR CHEM .

Thus, the Glashow theory leads to the following interactions:

Hint DHEM CHCC CHNC , (E.28)

where

HEM D JEM � A,

stands for EM interactions,

HCC D JC �W� C J� �WC , (E.29)

stands for weak interactions, and finally

HNC D Z � JZ , (E.30)

stands for electroweak interactions. The currents participating in these interactions
can be found from Eq. (E.27):

1. Weak charged currents:

JlC D
g

2
p

2
 ��.1 � �5/ e, Jl� D

g

2
p

2
 e�.1 � �5/ � , (E.31)

2. EM currents:

Jl
EM D




 
L
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L
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�

�

 
g sin#

2 C g0 cos#YL, 0
0, � g sin#

2 C g0 cos#YL

!�
 L
�

 L
e

�

C  R
e � R

e g0 cos#YR

(E.32)

D �e e� e ,

where e is the elementary electric charge. Recall that neutrino is electrically
neutral, hence does not couple with the EM field. It follows from the last equation
that

g sin#

2
C g0 cos#YL D 0

�g sin#

2
C g0 cos#YL D �e

g0 cos#YR D �e .
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These equations determine the product YLg0. Once we choose a specific value
of YL, by convention YL D �1=2, the quantities YR, g, and g0 are determined
unambiguously

YL D �1

2
, YR D �1, (E.33)

g D e

sin#
, g0 D e

cos#
. (E.34)

3. Electroweak neutral currents:

Jl
Z D

g

2 cos#

�

 ��

�
1

2
� �5

2

	

 � C  e�

�

�1

2
C 2 sin2 # C �5

2

	

 e

�

,

(E.35)
where we used Eqs. (E.33) and (E.34). The last equation may be rewritten into a
concise form

Jl
Z D

g

2 cos#
 l��3 l � tan#Jl

EM . (E.36)

We thus see that for the charged currents we obtain what we should: JlC has
the form of the current (E.17) entering the Fermi interaction Hamiltonian for ˇ-
decay and Jl� is necessary for the description of the inverse ˇ-decay. We know very
well from the previous chapters what we should obtain for EM currents. This thus
allows us to express the coupling constants g and g0 in terms of the elementary
electric charge and weak mixing angle. What is novel in the Glashow theory is the
prediction of the electroweak neutral current JZ. It does so by introducing a single
new parameter, namely the weak mixing angle.

Extension to Quarks

Now we extend the Glashow theory to hadrons. We do so by appealing to an
apparently correct common belief that weak and EM interactions for lepton and
quarks have the same form. Instead of the lepton doublet, Eq. (E.19), we consider
now the quark doublet

 q D
�
 L

u

 L
d

�

(E.37)

and instead of the Hamilton interaction density (E.25) we consider

Hint D gWa � qSa� qCg0X �



 q� qYq
L C  R

u � R
u Yu

R C  R
d � R

d Yd
R

�

. (E.38)
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The difference is brought by the fact that we have to consider the right-handed fields
for both quarks. In the real world, none of the quarks is massless. Insertion of the
transformation (E.26) into the last equation leads to, instead of Eq. (E.27),
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We can again write the same form of the interaction Hamiltonian density,
Eq. (E.28), as for leptons where now the currents entering the interaction take the
following forms:

1. Weak charged currents:
Instead of Eq. (E.31) we now obtain

Jq
C D

g

2
p

2
 u�.1 � �5/ d, Jq� D

g

2
p

2
 d�.1 � �5/ u , (E.40)

where Jq� and Jq
C enter the Fermi interaction Hamiltonian for the description of

ˇ-decay and inverse ˇ-decay at the quark level.
2. EM currents:

Instead of Eq. (E.32) we now have

Jq
EM D




 
L
u 

L
d

�

�

 
g sin#

2 C g0 cos#Yq
L, 0

0, � g sin#
2 C g0 cos#Yq

L

!�
 L

u

 L
d

�

(E.41)

C g0 cos#



 
R
u � R

u Yu
R C  R

d � R
d Yd

R

�

D 2e

3
 u� u � e

3
 d� d .

The last equality holds because we know the charges of up and down quarks
are 2=3 and �1=3 multiples of the elementary charge, respectively. It follows
from the last equation, using Eq. (E.34), that the values of the quark hypercharges
are

Yq
L D

1

6
, Yu

R D
2

3
, Yd

R D �
1

3
. (E.42)

3. Electroweak neutral currents:
Instead of Eq. (E.35) we now have
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(E.43)

One may write the last equation again in a concise form, confront with Eq. (E.36),

Jq
Z D

g

2 cos#
 q��3 q � tan#Jq

EM .
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Extension to Nucleons

So far so good, but for the fact that at low energies we do not observe free quarks but
bound states of quarks instead. However, the precise form of the above currents for
nucleons at low energies is a very difficult and still unresolved problem. We know
only for sure that these currents depend on the exchanged momentum. In view of the
foregoing discussion, see Sect. 7.8, this should not be surprising. We can therefore
appeal to our knowledge of weak and EM interactions for vanishing momentum
transfers to deduce the form of the electroweak interactions at this zero-momentum
limit.

1. Weak charged currents:
Instead of Eq. (E.40) we now have, confront with Eq. (E.18),

JNC D
g

2
p

2
 p�.1 � gA�5/ n, JN� D

g

2
p

2
 n�.1 � gA�5/ p . (E.44)

2. EM currents:
We know that proton and neutron are constituted by two up and one down quarks
and two down and one up quarks, respectively. Therefore using Eq. (E.41) and
assuming the strong interaction does not enter, we write

JN
EM D  p� p

�

2
2e

3
� e

3

�

C  n� n

�
2e

3
� 2

e

3

�

D e p� p . (E.45)

However, this expression is not completely correct. If it were, the gyromagnetic
ratio of proton would be 1C˛=.2�/ and that of neutron 0, see Sects. 7.5.7 and 7.8.
Yet we know from experiment that these ratios equal approximately 2.79 and
�1.86, respectively. The strong interaction causes the EM current of nucleons
not to be purely vectorial, even at zero momentum transfer. Nevertheless, the
strong interactions leave the vector part of the EM current intact, similar to the
weak charged currents (E.44).

3. Electroweak neutral currents:
Given the structure of the electroweak theory and knowing that strong interactions
leave purely vector part of the currents intact, recalling the composition of
nucleons in terms of quarks and using Eq. (E.43), it is reasonable to guess that
the electroweak neutral current for nucleons takes the form
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(E.46)
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Effective Interactions at Low Energies

In the real world, the masses of the vector bosons are not zero; bosons are in fact very
heavy. Due to the very high masses of the W and Z bosons, the interactions (E.29)
and (E.30) reduce to, confront with Eq. (E.3),

HCC ! 1

m2
W

JC � J� D g2

8m2
W

jC � j� , (E.47)

where

J˙ D g

23=2
j˙

and

HNC ! 1

m2
Z

JZ � JZ D g2

16m2
Z cos2 #

jZ � jZ , (E.48)

where

JZ D g

4 cos#
jZ .

Here the currents are sums of leptonic and nucleonic currents

j D jl C jN .

If we insert the last equation into Eqs. (E.47) and (E.48), we find that Eq. (E.47)
includes the Fermi Hamiltonian for ˇ-decay, (E.4),

Hˇ D g2

8m2
W

jNC � jl� (E.49)

and Eq. (E.48) features parity violating interaction arising from a Z-boson exchange
between the nucleus and electrons

HANC D g2

16m2
Z cos2 #

jN
Z � je

Z . (E.50)

The interaction arising from the Z-boson exchange between electrons is too small to
be detectable. The Z-boson exchange between nucleons leads to the parity violating
nuclear forces.
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Masses of Intermediate Bosons

Comparison of Eqs. (E.4) and (E.49) yields an important relation

Gˇp
2
D g2

8m2
W

. (E.51)

Recalling further the relations (E.34) we see that the mass of the W bosons can
be expressed by means of the Fermi coupling constant, fine structure constant, and
weak mixing angle; that is, no new parameter is introduced by giving mass to the W
bosons. However, we know nothing about the mass of Z boson so far. This absence
of knowledge hinders the predictive power of the Glashow theory as the strength of
the electroweak interaction, Eq. (E.48), depends on it.

Abdus Salam and Steven Weinberg substantially improved the predictive power
of the Glashow theory by assuming that the three W bosons, the charged W˙ and the
neutral W3 possess the same mass.8 However, the W3 boson is not a particle with a
definite mass. Its mass term in the Hamiltonian density has to be considered together
with the X boson and is represented by the mass matrix




W3
�, X�

��m2
W , m2

XW

m2
XW , m2

X

� 

W3
�

X�

!

. (E.52)

This means that, for instance, the W3 boson can be converted by a mere time evolution
into the X boson and vice versa. That is, these states are not stationary even when
the particles are free. On the other hand, the Z boson and photon are particles of
definite mass, hence their mass matrix takes the form

�

Z�, A�
�
�

m2
Z, 0

0, 0

��
Z�
A�

�

.

Inserting now the relation (E.26) between W3, X and Z, A fields into Eq. (E.52) and
comparing the last two equations we arrive at a very important relation connecting
the masses of the W˙ and Z bosons

m2
W D m2

Z cos2 # . (E.53)

8This is not the way Salam and Weinberg contribution is usually presented. The argument given
here is taken from [8].
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Using now Eqs. (E.51) and (E.53) we find that the strength of the electroweak
interactions is governed by the Fermi coupling constant for ˇ-decay

g2

16m2
Z cos2 #

D Gˇ

23=2
. (E.54)

To conclude, the Glashow-Salam-Weinberg theory predicts electroweak interactions
of neutral currents, Eqs. (E.48) and (E.54). The measurement of this interaction, e.g.,
in atomic experiments, yields the value of the weak mixing angle. With the Salam-
Weinberg improvement, this weak mixing angle remains the only new free parameter
of the theory even after finite masses are assigned to the W and Z bosons.

Electroweak Neutral Currents in Atoms

In atoms, electroweak interaction (E.50) is dominated by the temporal component
of the vector part of the nucleonic current

HANC,NSI D Gˇ

23=2

W 

C
e �5 e , 
W D  Cp  p.1 � 4 sin2 #/ �  Cn  n .

The nucleus is placed at rest, with utterly negligible intrinsic dynamics. The nucleon
fields may be thus considered classically. The “weak charge density” 
W is then
given in terms of the proton and neutron densities, 
p and 
n, respectively, as


W.r/ D 
p.r/.1 � 4 sin2 #/ � 
n.r/ .

What remains is the one-particle operator written in terms of the electron field
 e. However, this is merely a complicated way of saying that what remains is the
following addition to the potential energy of the one-particle Dirac Hamiltonian

OhANC,NSI D Gˇ

23=2

W.r/�5 . (E.55)

In contrast to the nuclear spin-dependent part which is further complicated by the
parity-violating part of the nuclear forces, the nuclear spin-independent part arising
from the electroweak force is nearly free of uncertainities of nuclear physics. In the
first approximation, one can consider the nucleus to be point-like


.r/ D QWı.r/ , QW D Z.1 � 4 sin2 #/ � N ,

where clearly Z is the charge of the nucleus and N the number of the neutrons. QW

is commonly termed the weak charge of the nucleus.
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Let us summarize the main features of the interaction (E.55). First, it is parity
violating (also called parity-odd). That is, it mixes states of different parity. To see
the mixing, it suffices to consider the matrix elements of (E.55) between an s-state
and a p1=2 state

˝

n0p1=2

ˇ
ˇ�5ı.rA/jnsi ' Z˛

2

˝

n0p1=2

ˇ
ˇ
0

˚

ı.r/, � � Op� jnsi0 ,

where we inserted Eq. (7.22) with A D 0 and (7.218), and the state vectors with the
subscripts 0 are the Pauli spinors, Eq. (4.58).

Second, the interaction (E.55) is really weak. Changing to atomic units, r D
rA=.meZ˛/, we find that the interaction (E.55) is proportional to

QWGˇm3
e.Z˛/

4 ' me.Z˛/
2

"

10�5

�
me

mp

�2

˛2

#

QWZ2 ,

where we substituted Gˇ ' 1 � 10�5m�2
p . The factor in the square brackets on the

rhs is of the order 10�15. However, given that QW 	 Z, we see that for heavy atoms
there is an enhancement of the interaction strength by the factor Z3.

The interaction (E.55) was measured on several atomic transitions in heavy atoms,
the most accurate being the 6S1=2� 7S1=2 transition in 133Cs (the superscript denotes
the total number of nucleons in nucleus). Due to the weakness of the electroweak
interaction, the measurements rely on the interference of parity violating transition
amplitude with forbidden EM transition amplitude. For a recent review of the current
status of both the theory and experiment see [12]. The value cited there obtained
from the comparison of the theory and experiment for parity violating transition
amplitude in the cesium atom reads

sin2 # D 0.2356.20/ .

This is the “weighting” of the W and Z bosons. From Eqs. (E.34) and (E.51) we
obtain

mW D
s

˛�p
2Gˇ sin2 #

' 79 GeV .

The experimentally determined mass of the W boson is mW ' 80 GeV. If we
substitute the experimentally determined masses of the W and Z bosons, mZ '
91 GeV, into the Salam-Weinberg formula (E.53), we find sin2 # ' 0.23. The theory
thus seems to be on the right track. The masses of the W and Z bosons are determined
from the position of resonances in high-energy electron-positron annihilation [11].
In fact, the above calculation of the masses of the W and Z bosons produces values
in better agreement with the experiment than one would (rightfully) expect. The
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reason is that various effects arising from the presence of additional two fermion
generations (which we neglected) cancel each other.

Show that for the hydrogenic wave functions

˝

np1=2

ˇ
ˇ
0

˚

ı.rA/, � � OpA
� jnsi0 D �i

s

n2 � 1

n2

4

n3
.

Hint: Use the results of Ex. 11 and Eqs. (4.76) and (4.101).

Exercise 32: Parity Violating Interaction

Final Notes

In our discussion of electroweak interactions we completely avoided the problem
associated with particle masses at high energies and its solution via the Higgs
mechanism. We barely mentioned the generalization of the gauge invariance and
associated nonlinear interactions between the quanta of the gauge fields. For a first
encounter with these topics we refer the reader to, e.g., [1, 4, 5, 10], for a more
advanced treatment see, e.g., [9], and for a thorough discussion of both the theory
and experiment see [3].

References

1. I.J.R. Aitchinson, A.J.G. Hey, Gauge Theories in Particle Physics (IOP Publishing Ltd, Bristol,
1989)

2. P.W. Anderson, More and Different: Notes From a Thoughtful Curmudgeon (World Scientific,
Singapore, 2011)

3. E.D. Commins, P.H. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge
University Press, Cambridge, 1983)
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amplitudes
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angular distribution
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axial anomaly, 384
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Bethe estimate, 267

and validity of dipole approximation, 358

Bethe logarithm, 268
of the lowest states of hydrogen, 270

bispinor, 297
Born approximation, 236
boson

W˙ and Z, 387
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bosons, 83
commutation relations for operators, 283
symmetry of the wave function, 156
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canonical quantization, 27, 190

of free fields, 280
of the electron-positron field, 303
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common eigenvectors, 81
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conjugation
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constant
fine structure, 63
Rydberg, 64
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D
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density
interaction Hamiltonian, 443
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dipole approximation, 210
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effect
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Zeeman, 82, 132

eigenproblem, 16
generalized, 49

eigenvalue, 16
eigenvector, 16
electromagnetic mass, 266, 363
electromagnetic potentials, 60, 191
electron

configuration, 170
magnetic dipole moment, 5
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spontaneous, 2, 208

energy, 15
classical of a magnetic dipole in a magnetic

field, 6
correlation, 168
imaginary part, 249, 269, 422
ionization of hydrogen, 92, 221
law of conservation, 16

in virtual process, 342
of an EM field and N charged

particles, 198
of vacuum, 203
variational, 46

equation
Dirac, 296

for a particle in an EM field, 298
for a two-component function, 91

Einstein for photoeffect, 221
for eigenfunctions of OT3 operator, 151
for free particle radial functions, 146
for hydrogen radial functions, 143
Hamilton canonical, 27, 190

and Maxwell equations, 196
and Newton equation with Lorentz

force, 196
Klein-Gordon, 90, 295
Lippmann-Schwinger, 242
Maxwell, 191
Newton, 27

quantum-mechanical analogy, 27
with Lorentz force, 191

of an ellipse, 122
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of continuity, 223
and impossibility for particle creation or

annihilation, 302
for charge density, 99

Pauli, 74
Poisson, 62
Schrödinger

for anharmonic oscillator, 45
for harmonic oscillator, 28, 36
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for hydrogen, 64
for two-body problem, 61
time-dependent, 15
time-independent, 16
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time-like, 408
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perturbation, 53
potential, 28
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time evolution, 24
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Fermi coupling constant for ˇ-decay, 435
fermions, 83
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antisymmetry of the wave function, 156
Feynman diagrams, 354
Feynman parameters, 361
Feynman rules, 354
Feynman slash notation, 296
field

electromagnetic (EM), 190
degrees of freedom, 193
longitudinal and transverse parts, 194

electron, 282
advantage over particle viewpoint, 288

electron-positron, 303
periodic, 194

scalar, 296
vector massive, 388

form-factor, 239, 416
four-vector, 292
free particle, 62, 145
function

confluent hypergeometric, 230
Coulomb, 231

pair annihilation, 424
Dirac ı, 33
Dirac wave, non-relativistic limit, 298
explicitly correlated, 187
Green

advanced, 331
Feynman form for electron, 337
Feynman form for photon, 353
retarded, 331
time-dependent, 331
time-independent, 70, 99, 162

Hartree-Fock, 158
Heaviside step, 331
spherical Bessel, 147
spherical Neumann, 147
Sturmian, 150
wave, 35

1s, 69
hydrogen radial, 144
positron, 308
unambiguity of, 88

Furry theorem, 381

G
gauge

Coulomb, 193
advantage of, 205, 402

Lorenz, 354, 419
gauge invariance, 192

and action at a distance, 355
and cancellation of divergences, 386
and Feynman diagrams, 354
and two-photon exchange, 401
generalized, 444
loose of, 387
of Dirac equation, 311

ground state (vacuum)
of electron field, 284
of electron-positron field, 304
of EM field, 200, 282

continuous version, 203
gyromagnetic ratio, 6

for proton, 76
Schwinger correction, 377



460 Index

H
Hamiltonian

atomic, 205
Dirac

one-particle, 303
second order, 299

free Dirac field, 305
in non-relativistic approximation, 60, 104,

186
interaction

Breit, 104
EM and electron-positron fields, 306
of particles and EM field, 205
of self-interacting electron field, 286

magnetic correction, 102
of free EM field, 195
of harmonic oscilator, 195
relativistic correction, 93, 103

helium
calculation

configuration interaction, 169
with Hartree-Fock function, 158

comparison of theory and experiment, 184
effect of finite nuclear mass, 105
effect of screening, 217
importance of

photon exchanges, 395
retardation effects, 277
spin-spin interaction, 98

superfluidity, 120
hydrogen, 59

-photon scattering, 258
bound states, general solution, 139
colors and intensities of spectral

lines, 215
different sets of commuting operators, 145
excitation by an electron impact, 236
forbidden transitions, 218
Lamb shift, 393
transition from the discrete to the

continuous part of the spectrum,
230, 255

Zeeman effect, 134
hydrogen-like atoms, 59
hypercharge, 445

I
impossibility to represent retarded interaction

by potential, 277
inadequacy of the time-independent formalism,

318, 398
indistinguishability of identical particles, 4,

155, 157

instability
numerical, 179
of the atom according to classical physics,

217
integral from the Gaussian function, 39
integrals of motion, 79

and classification of states, 97
application in classical mechanics, 87
application in variational calculation, 171

interaction
current-current, 103
electron-electron

Coulomb, 156
exchange, 157

electrostatic, 4, 63
magnetic, 70
spin-orbit, 90, 103

and anomalous Zeeman effect, 132
in helium, 105

spin-other-orbit, 75, 103
spin-quantized magnetic field, 219
spin-spin, 75, 103
tensor, 77, 103
uncontrollable, 42

intermediate normalization, 53
invariance

with respect to Lorentz transformations,
293, 349

lack of manifest form, 319
with respect to time displacement, 14

ionization threshold, 217, 239
dominance of the states above it, 235, 358

isotopic currents, 443

L
Lamb shift, 263
Legendre polynomials, 163
lifetime of the state, 214
line

hydrogen, 79
spectral, 208, 215

M
magnetic dipole

classical equation of motion, 25
magnetic induction of, 73
moment, 72
reaction to an external magnetic

field, 73
mass

electron, 92, 221
reduced, 61, 104
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renormalization
in non-relativistic theory, 267
in relativistic theory, 366

matrix
�

Dirac realization, 297
Majorana realization, 309
Weyl realization, 437

mass, 451
overlap, 48
Pauli, 17
scattering (S), 240
transition (T), 241

measurement “problem”, 42
measuring affects the state of the system, 11
method

configuration interaction, 170
Newton-Raphson, 167
perturbation

difficulties, 249
estimate of error, 57
first order, 53
for degenerate levels, 55
for isolated levels, 52
second order, 54

variational, 46, 158
estimate of error, 52

modes
of Dirac one-particle Hamiltonian, 303
of Hamilton operator, 282
of Laplace operator, 194

muonic hydrogen, 59, 394
muonium, 59

fine splitting, 380
Lamb shift, 393

N
negative energy states

difficulties associated with, 296, 301, 318
Feynman resolution, 337

non-relativistic approximation
limited domain of validity, 262, 277

normal ordering
charge density four-current, 308
free electron-positron field, 305
free EM field, 204
interaction Hamiltonian, 286

normalized difference, 275
notation

Dirac, 9
of composed spin states, 82
relativistic, 292
spectroscopic, 79, 97, 158

O
operator
OT3, 67, 148
angular differential (r.n/), 65
angular momentum, 109
charged four-current, 306
evolution, 14
Hamilton, 16

block-diagonal form, 51
Hermitian

introduction of, 15
properties, 17

Hermitian conjugation, 13
introduction of, 13
ladder

angular momentum, 110
EM field, 199
harmonic oscillator, 29
hydrogen, 68
spin 1=2, 19
spin 1, 83

Laplace, 194
mass polarization, 105
particle exchange, 155
projection, 11

onto positive and negative energy states,
317

radial momentum (Opr), 66
relativistic orbital momentum, 299
relativistic parity, 299
Runge-Lenz, 123
total angular momentum, 300
total linear momentum, 61, 104, 210
total orbital angular momentum, 157
total radius vector, 210
total spin, 80
unitary, 14

oscillator
anharmonic, 45
harmonic, 28

and free EM field, 195

P
P-states, 158
p-states, 87

real combination of, 89
parity, 51, 80, 158, 185

charge, 328
violation, 439

violation, 439
phase factor

relative, 21
total, 21
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phase space of photon final states, 327
photoelectric effect, 67, 220
photon propagator in Coulomb gauge, 341
photons, 204
point charge, 62
polarization, 198
positron, 59, 291, 302

as electron moving backward in time, 333
heuristic value, 351
pair annihilation, 412

positronium, 59, 106
potential

Coulomb, 63
Uehling, 391
Yukawa, 388

principal branch of Riemann surface, 227
principle

Heisenberg uncertainty, 40
of superposition, 2
Pauli exclusion, 83

and correlation energy, 169
and Dirac sea, 301
and the antisymmetry of the wave

function, 159
Ritz variational, 47

probability, necessary restriction for its
calculation, 1, 8

product
direct, 55
of two Hermitian operators, 123
operator, time ordered, 339
scalar

in coordinate representation, 35
of four-vectors, 294
of state vectors, 9

tensor, 11
propagator, 14, 330

Q
quadruplet, 96
quantum numbers, 86

assignment, 183

R
radius

Bohr, 235
electron classical, 262

reduced matrix element, 128, 176
regularization, 356, 384
relation

between bound- and free-state wave
functions, 320

anticommutation, 284, 304
between positron and electron wave

functions, 325
between probability amplitude and energy

shift, 344
between the wave function in coordinate

and momentum representation, 38
commutation

and incompatibility of measurements,
17, 26

and quantization of EM field, 281
and transition from classical to quantum

electrodynamics, 199
canonical, 27
for OT-operators, 68, 149
for angular momentum, 85, 109
for spin operators, 17
vector operator, 125

completeness, 12, 67
for coordinate basis, 34
for harmonic oscillator eigenstates, 30,

37
for momentum basis, 38, 321
for spherical harmonics, 162
in variational calculation, 48

orthonormality, 12
for coordinate basis, 34
for eigenfunctions of OT3 operator, 150
for harmonic oscillator eigenstates, 37
for momentum basis, 38
for radial hydrogen functions, 150
for spherical harmonics, 87, 138

relativistic quantum electrodynamics (QED),
291

limited domain of validity, 357
renormalizable theories, 366
representation

coordinate, 34
Heisenberg, 24
interaction, 206
matrix, 31
momentum, 37
Schrödinger, 25

resonances, 239
rotating wave approximation, 251
rule

Fermi golden, 207, 243
selection, 126

for dipole radiation, 127, 211

S
S-states, 158
s-states, 66, 87
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scattering
electron on atom, 236
photon-atom, 240
Rayleigh, Raman and resonance, 248
Thomson, 261

scattering amplitude, 4
screening, 168
screening parameter, 151, 159, 178
self-energy effect, 263
simplification achieved by increasing

dimensionality, 343
singlet, 79, 158
Slater determinant, 186
spectral decomposition of an operator, 16
spectral lines

fine structure, 90
gross structure, 60, 98

spherical harmonics, 87, 136
spin, 5
spin operators, 17
spinor, 91, 297

helicity, 21
spherical, 133, 138

splitting
fine

in hydrogen, 94
in positronium, 137, 327
in positronium, final result, 427
in sodium, 90

hyperfine
in hydrogen, 76
in hydrogen, improved result, 377
in muonium, 78
in muonium, final result, 408
in muonium, improved result, 377

in an external electric field (Stark effect),
142

in an external magnetic field (Zeeman
effect), 82

singlet-triplet in helium, 157
square deviation, 39
state

circular, 215
eigen-

ambiguity of, 20
introduction of, 16
normalization of, 20, 37

metastable, 219
of the system, 5
Rydberg, 217

stationary, 15
virtual, 246, 260

outside of the light cone, 333
state vector

abstractness of, 13
introduction of, 9
of the particle with spin pointing along the

x-axis, 10
of the particle with spin pointing along the

y-axis, 13
of the particle with spin pointing along the

z-axis, 10
Sturmians, 150
summation over polarizations, 199

continuous version, 203

T
tadpole, 381
tensor

metric, 294
polarizability, 248
vacuum polarization, 383

theorem
addition for spherical harmonics, 163
Wigner-Eckart, 173

transformation
gauge, 192
Laplace, 227
Lorentz, 293, 349

transition rate, 207
transverse projector, 100, 199
triangle inequality, 116
triplet, 79, 156, 158

U
units

atomic, 64
conversion of, 64
natural, 64
SI, 64

V
vacuum polarization, 302
vector

axial (pseudovector), 439
bra-, 9
ket-, 9
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vector (Cont.)
of polarization, 198
potential, 60

of magnetic dipole, 71
of moving charge, 101

Runge-Lenz
definition, 121
matrix elements, 139

unit, pointing to any
direction (n), 65

vector operator, 124, 130, 134
virtual process, 262

W
wave

circularly polarized, 211
running, 200
standing, 198

wave-particle duality, 3
weak charge, 452
weak charge density, 452
weak isospin, 442
weak mixing angle, 445
Wigner 3j symbols, 120
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