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Preface

We have not redefined quantum theory; we carry it to its logical conclusion. (. . . ) We learned
it second or third hand, as an established discipline whose rules and techniques we came to
feel as intuitive and natural, not as a peculiar displacement of classical: we found and find
it almost painful to do 19th century physics. The great Bohr-Einstein philosophical debates
which fascinate historians and the philosophers are to us a bit wrong-headed (...) [1]

A Few Words of Explanation

Nowadays, when there is a large number of books on quantum mechanics available,
some of them are indeed of high quality and rightfully regarded as the “classics” (e.g.
[4, 8] for the uninitiated, [7, 19, 24] for intermediate and [15] for advanced readers),
when other remarkable expositions appear (e.g. [25]), when there is a large number
of books on quantum electrodynamics and quantum field theory, some of them are
indeed excellent (ranging widely from easier pieces such as [3, 12, 18, 23, 26] to
more difficult ones such as [2, 5, 13, 21, 27]), and when almost any textbook ever
written can be found on the Internet, downloaded and printed, we feel a need to start
with an excuse, or at least with a few words of explanation, for coming up with yet
another book on quantum mechanics and electrodynamics.

1. Symmetries of a problem at hand (such as parity, angular momentum etc.)
and their application in the solutions of quantum mechanical problems (e.g.
the Wigner-Eckart theorem) are usually subject to such an abstract exposition
that an uninitiated reader, even if he understands the concept, does not see their
usefulness. For this reason, we have devoted considerable attention to finding the
solutions to the simplest, physically interesting problems that cannot be solved
exactly, such as the anharmonic oscillator and the helium atom. In contrast to
other textbooks, we carry out the solutions to their very end and provide more
than an outline of them. Today, when routines for the diagonalization of matrices
form a standard part of libraries of advanced programming languages such as
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Maple, Matlab, Mathematica, Octave, Scilab, Maxima etc., we want to show
the reader how such problems can be solved alone using a laptop.

Furthermore, we want to emphasize yet another aspect of the use of symmetry
in quantum mechanics: namely the advantage of an algebraic over an analytical
approach to both precisely solvable and insolvable problems. The algebraic
approach provides an elegant solution to the very few physically interesting
problems that can be solved exactly, such as the harmonic oscillator, angular
momentum, composition of angular momenta and hydrogen-like atoms. It enables
a complete solution to be constructed, including the pertinent wave functions
without knowledge of various orthogonal polynomials etc. Its advantage becomes
even more obvious when dealing with problems that cannot be solved exactly;
namely, the calculation of the Hamiltonian matrix elements for variational
calculation of anharmonic oscillators, helium and more complex atoms, the
inclusion of the continuous part of the spectra in the case of complex atoms
etc.

It is needless to emphasize that the problem of symmetries and their
applications in quantum mechanics is not a minor one, nor is it at all complicated.
Once the basic mathematical concepts have been absorbed that are needed
to understand quantum mechanics, such as the concept of an operator, a
commutator, eigenstates and eigenvalues, one is able to understand everything
about symmetries in addition to their applications, without any recourse to the
mathematical niceties of group theory.

. We wanted to explain relativistic quantum electrodynamics with minimal

necessary formalism and with an emphasis on its physical content and its
applications to atomic physics.

Modern expositions of quantum electrodynamics, such as [18,21, 27],' heavily
rely on either the Dyson-Wick expansion or path integrals, both of which are
undoubtedly very powerful tools. However, for an uninitiated reader, both the
physical content of the formalism and its connection to the usual formalism
of quantum mechanics are rather, if not completely, obscured. Moreover, the
applications are almost exclusively restricted to the high-energy scattering
processes.

Two conclusions could thus be drawn. First, it may appear that the “low-
energy” physicists do not need to possess any knowledge of quantum field theory.
Second, the usual formalism of quantum mechanics would have to be dismissed
at the very beginning and a completely new formalism of the quantum field
theory would have to be learnt. However, this task is clearly too difficult and
bearing in mind the first point, it is not worth the effort. Furthermore, when
dealing with the most important low-energy quantum electrodynamic processes,
such as spontaneous emission and atom-photon scattering, it suffices to consider
the non-relativistic theory, which is much more comprehensible.

'We find them excellent and strongly recommend them to the reader.



Preface vii

We do not share this view for a variety of reasons. First and foremost,
even experimenters could know the theoretical value contained in precise
measurements. In addition, once beyond the first approximation, even within
the non-relativistic theory, the so-called virtual processes are encountered.
However, these processes cannot be fully described within non-relativistic theory.
Therefore, this theory is clearly incomplete. Moreover, methods of quantum field
theory have proved to be of enormous use far beyond the application for which
they were primarily invented. For instance, they find their applications in both
classical and quantum many-body problems, see for example [16, 17, 27]. Finally,
we believe that quantum field theory—Ilike the general theory of relativity—is
part of the basic education of every physicist.

When dealing with relativistic quantum electrodynamics, we first proceed
within the framework of the ordinary quantum-mechanical formalism and only
then show how the mathematical description is simplified by adopting the
Feynman view of positrons as electrons running backwards in time. Although
this derivation is neither the shortest nor the most formally satisfying, it enables
one to determine the key steps in the transition from the non-relativistic to the
relativistic theory, to see where in the Feynman diagrams and rules the ordinary
perturbation method and Coulomb law are hidden etc. The approach adopted in
this book lies closest to that in the book [23].

We made a considerable effort to minimize the discussion of purely formal
aspects of problems on the one hand and to completely avoid the phrase “it can be
shown that” on the other hand. This means that we tried to carefully motivate
and derive everything within a physicist’s level of rigor. This also means that
a number of (important) topics are deliberately treated in a manner that can be
justifiably considered superficial. In particular, this applies to our treatment of the
spinors, adequate formalism of relativistic quantum field theory, renormalization, Lie
algebras etc. Even the discussion of Lorentz and gauge invariance does not go into
much depth. There are necessarily omissions in every book; a part of the process of
writing is to decide what should be omitted and what should be included. The choice
of the themes and their exposition in our work was dictated by our strong conviction
about what should be learnt in the first place. The purpose of every physical theory
worthy of that name is to “get the numbers out”. Despite the knowledge of deep
connections having its value, we believe that one should learn how the theory works
in the first place, i.e. how numbers can be obtained that experimenters can measure.

Regarding the level of rigor, we want to stress that the mathematical level of rigor
is completely alien to us. The art of approximation forms an integral part of “the art
of physics” and we strongly feel that concepts should be explained to others in a
way that is as close as possible to how we think about them ourselves.

If the reader is not satisfied either with our choice of the topics or with our
method of exposition, he is encouraged to consult other textbooks, for instance,
those mentioned at the beginning of this Preface. The books [15] and [2] are of an
encyclopaedic nature.
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Regarding the literature, we refer to a few basic books we consider to be generally
known and available. There is such a large number of books on quantum mechanics
that even a complete list of them exceeds our abilities. In the first three chapters,
where we introduce the fundamentals of quantum mechanics, we do not list our
inspirations. However, we try to do so in the advanced parts of this book. Note,
though, that the absence of a citation does not necessarily imply that our exposition
is original.

There are a number of exercises throughout the text. They are intended for the
reader to examine how much he understood. The exercises are, according to the
difficulty, denoted by a number of Aa. If the reader is able to complete only one
exercise, he is surely able to recognize whether a greater number of Aa marks a more
or less difficult exercise.

Finally, in this book we focus on the exposition of the “classics” within quantum
mechanics and electrodynamics. Note, though, that the word “classics” does not
imply that these topics ceased to be of interest. For instance, the Nobel prize of 2012
was awarded for experiments that manipulated the individual mesoscopic objects
and thus probed the boundary between the quantum and classical behaviour, see
for example [6]. In 2005, the Nobel prize was awarded for extremely accurate
spectroscopic measurements. When combined with the theoretical predictions based
on quantum electrodynamics, these measurements enable us to deduce the nuclear
properties, such as the proton size, with substantially better accuracy than by any
other means. This in turn leads to surprising findings, see for example [22]. Thus,
what follows are the “classics”; nevertheless, the classics are still alive! 2

Prerequisites

The following is mainly for autodidacts, who have our sympathies. Should this book
bring joy and not frustration, the following should hold.

1. The reader has a good command of single-variable calculus, complex numbers
and basic linear algebra.

2. The reader possesses some knowledge of multi-variable calculus and vector
analysis. The level of exposition in for example, Feynman’s freshman lectures
[9] should suffice.

3. For parts concerning quantum electrodynamics, namely Chapters 6 and 7, it is
necessary to know the complex analysis at the level of for example [10].

2We do not go as far as to try to explain the latest developments, such as the two mentioned above.
We believe that by mastering the content of this book, the reader will be able to catch up on them
on his own.
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4. Thereader should possess some knowledge of classical mechanics, electrodynam-
ics and special relativity. Again, knowledge at the level of [9] should suffice. Some
knowledge of the Hamilton formulation of classical mechanics would be useful,
though not crucial. The “classic” textbooks are [11, 14].
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Notation, Convention, Units, and Experimental

Data

Notation
a
a*
A
A
A AT At
1
diag {ay,...,a,}
A
A
A
[a,b] = ab —ba
{4,b} = ab + ba
[+)
=)
A
L g N
V:}: = Vl + 1V2
N
3
q=

d$2 = ded? sin v

Scalar quantity, components of vectors and their magnitudes

Complex conjugation

Three-dimensional vector

Four-dimensional vector (“four-vector™)
Matrix, its transposition and Hermitian conjugation
Unit matrix

Diagonal matrix determined by its eigenvalues
Scalar operator, component of a vector operator
Three-dimensional vector operator
Four-dimensional vector operator

Commutator

Anticommutator

Spin state }%, +1%)

Spin state |§, -1

Differential vector operator

Often-used combination of components of vector operator
Real part of a complex number

Imaginary part of a complex number

Time derivative

Differential of solid angle

XXi



xxii Notation, Convention, Units, and Experimental Data
The Summation Convention

* The scalar product is in both three- and four-dimensional spaces denoted by a
centered dot, i.e.,a-band a - b.

* The components of three-vectors carry a Latin index (i, j, k, . . . ); the components
of four-vectors are distinguished using Greek indices (u, v, ...).

* The Einstein summation convention is used throughout the book: if two same
indices appear, they are summed over; for instance,

aib; = a\by + arby + azbs,

or in the case of four-vectors, we always use the metric (41,—1,—1,—1) with
indices being always subscripts

Clﬂbﬂ = aobo — a1b1 — Clzbz — a3b3 .

The Component Formalism

The scalar product may be written in components by means of the abovementioned
Einstein summation convention as

0A; 9?
A-B =AB; = §;AB;, V-Azg, zzax-ax’
where the Kronecker symbol
fra=p,
i = C
0 (G#)).

The vector product may be written in components as

0A
(A X B),' = S[jkAjBk . (V X A), = Eijka_k .
Xj

where the Levi-Civita symbol

g3 = €31 =¢&32=1,

£13 = €132 = €321 = —1,
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and

gl'jk = O ’

when any two indices ij, jk, or ik take the same value.
All identities of vector algebra and analysis used in the text may be derived from
the identity

EijkEipg = jpOiq — Bjgkp -

The simplest way to prove it is by direct substitution of specific values.

Units

Unless stated otherwise, we use the so-called natural units where A = ¢ = g9 = 1.
The dimensions of a few basic physical quantities in this system of units are displayed
in Table 1.

We will encounter the transitions between the SI and natural system of units
only in very few cases. In Eq. (3.11), Sect. 3.2.3, we show the relation between a
frequency given in hertz and the corresponding energy difference in electronvolts,
and the other transitions for cross section, time, electric intensity, and magnetic
induction follow.

When converting units in Eq. (6.156), we proceed as follows. In natural units, the
electron mass equals [20]

m, = 0.5109989 MeV , (1
and the reduced Planck constant # and light velocity c are equal to one,
h=1={hTs, {h}=10545717 %107 )

Table 1 System of units used in the text

Dimension in the system of units

Quantity Symbol SI Natural
Energy E J eV
Mass m kg eV
Velocity v m/s 1

Time t S eV™!
Cross section o m? eV?
Electric intensity E V/m eV?
Magnetic induction B T eV?
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and
c=1={cIms", {c}=299792458 x 108, 3)

where the numbers in the curly brackets are values in SI units [20]. One electronvolt
equals’

leV=1lex1V={e}J, {e}=16021766x10"". )

Combining the last three equations, we find
h h
(1ev)™ = %—C§ (1m), {—C} — 1.9732696 x 1077 . (5)
e e

Substituting Eq. (1) for m and Eq. (5) into Eq. (6.156), we arrive at the displayed
value.

In Sects.4.4.7 and 4.5.3, we need to transform the intensities of magnetic and
electric fields from the SI units to atomic units. For intensity of the electric field, we
have

lilz %E} (eV)z;
m e

hence for yg, Eq. (4.73), we obtain

cE  {E}(eV)?
miad  miad

Ve = %@} ~ 1.945{E} x 10712, (6)
e

Likewise, for the intensity of the magnetic field, we have

% hc?
lex1T=122 = {i} V)2,
m m e
hence for yg, Eq. (4.57), we find
eB {B}(eV)? ( hc? —6
VB= s = > — ¢ >~ 4.254{B} x 107°. (7
m2o m2o e

Finally, in Sect. 6.2.6, we need to convert the lifetime of the excited states from
the natural to SI units. The combination of Eqgs. (2) and (4) yields

oL _|*
lev)™ = {e}lJ_{e}s

3In this book, the elementary charge is denoted by “e,” the Euler number by “e,” and one electronvolt
by “eV.”
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Thus, to express the lifetime in seconds, we use Eq. (6.99)

1 1
11:_{2} s (8)

e Z WI—F
m

where we evaluate the dimensionless quantity % from Eq. (6.97) and for m we
substitute m, from Eq. (1).

Fundamental Constants

Basic physical constants that must be taken from experiment are introduced in the
following sections:

¢ The fine structure constant « in 3.2.3

* The Rydberg constant multiplied by the speed of light Rsc in 3.2.3

» Theratios of electron to proton, electron to muon, and electron to deuteron masses
in 3.2.6

Experimental Data

Quantitative experimental data that will be compared with the theoretical predictions
may be found in the following sections:

* The transition 2s — 1s in hydrogen, deuterium, and muonium in 3.2.6

* The transition 1% — 1 in hydrogen and muonium in 3.3

* The transition 2p3/,> — 2py/, in hydrogenin 3.5.2

 The transitions 2% — 23, 2% — 23;, and 2% — 23, in positronium in 4.4.9

 The transition 2 'S — 1 'S in helium in 5.3.7

 The transition 1% — 1% in positronium and the lifetime of the state 1l of
positronium in 7.3.2

* The electron gyromagnetic ratio g, in 7.5.7

* The transition 2p; > — 2s in hydrogen, muonium, and muonic hydrogen in 7.6.6.

e The transition 2% — 13 in positronium in 7.8.5
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Chapter 1
Foundations of Quantum Mechanics

In this chapter, we introduce the fundamental principles of quantum mechanics.
We commence by discussing the famous Stern-Gerlach experiments for a particle
with the spin 1/2 as several key quantum mechanical phenomena may be well
understood thereof. Using these very experiments as an example, we then illustrate
how the basic principles are incorporated within the mathematical formalism of
quantum mechanics. Subsequently, we generalize this mathematical scheme for more
complicated systems. Finally, focusing on the harmonic oscillator as an example,
we show the relation between an abstract and a specific approach to the formalism.

1.1 Basic Principles

There is nothing mystical about quantum mechanics provided we are willing to
accept the following two principles. They comprise all of the unusual aspects of the
behavior of microscopic particles which, whether based on everyday experience
or from the point of view of classical physics, one may consider rather odd.
These principles cannot be logically derived; fathers of the quantum mechanics'
arrived at them from experimental results. On the other hand, supposing we accept
these principles, basically anything within quantum mechanics follows logically
therefrom. Shall quantum mechanics be altered one day, however improbable that
seems to the authors, alteration of the two following principles would be inevitable.

1. We are capable of only predicting the probability of processes.
Physicists encountered this fact for the first time during analysis of radioactive
processes and atomic radiation. As early as in 1905, Rutherford stated that the

I'Those are W. Heisenberg, E. Schrodinger, P. Dirac, and M. Born, with key contributions from M.
Planck, A. Einstein, N. Bohr, L. De Broglie, and W. Pauli.

© Springer International Publishing AG 2017 1
J. Zamastil, J. Benda, Quantum Mechanics and Electrodynamics,
DOI 10.1007/978-3-319-65780-6_1
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amount of nuclei N(f) which undergo radioactive decay within time period f is
given by the formula N(f) = N(t = 0)e™"’, where y represents a constant for
the particular nucleus (i.e., whether we are considering uranium, radium, or any
other nucleus). Only as the years passed, physicists came to the conclusion that
nothing better than a statistical law valid for great N can be derived. The reason
is, we do not know when a particular nucleus undergoes the decay. We can merely
predict the probability of decay of a typical nucleus at any moment, hence only
the mean number of particles decaying during a given time period.

In 1917, Einstein analyzed black-body radiation and reached the conclusion
that one may describe spontaneous emission in the same manner as the above-
discussed radioactive decay. An atom in an excited state emits a photon, after a
lapse of time, and thus relaxes into the ground state. However, for each individual
atom, we are able to determine the time lapse merely by statistical means. The
irony is that Einstein, who was most likely the very first person to realize the
necessity of probabilistic approach, in fact never accepted it.

The strict determinism is thus disrupted when it comes to the microscopic
world. That is, the same cause (such as an excited atom) leads to various results
(the atom emits a photon and relaxes to the ground state at different times, e.g.,
sometimes after 2 x 1077 s, other time after 5 x 1077 s, etc.).

What makes the behavior of microscopic particles so unusual is the way we
calculate the probabilities.

2. The probability of an event P is given by the square of the probability amplitude
A, A being generally a complex number, P = |A|> = AA*. Amplitudes of
independent processes multiply. In case a system can evolve from the initial to the
final state via two in principle indistinguishable ways, the respective amplitudes
add to each other.

This second principle is generally known as the principle of superposition.
The well-known double-slit experiment (Fig. 1.1) serves well for the illustration
of these principles. The probability that a particle, such as an electron, emitted
from the source Z is detected by the detector D is given—in accordance with the
above-stated principle—as

Fig. 1.1 Double-slit
experiment

1 i detector

L]
source
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P(Z — D) = |A(Z - 1)A(l — D) + A(Z — 2)AQ2 — D)|?
= |A(Z - DA(1 = D)|* + |A(Z = 2)A(2 — D)
+ 2R (A(Z > DA(1 - D)A*(Z — 2)A*(2 > D)).

The first term on the right-hand side (rhs) of the equation gives the probability
of a particle passing through the first slit, while the second term represents the
probability of a particle passing through the other slit. These probabilities are
given as products of the probabilities that a particle emitted from the source Z
reaches one of the slits and that the particle arrives at the detector D from the
slit. Since these two processes are independent of each other, the respective
probabilities multiply, which follows from the principle that amplitudes of
independent processes multiply. Such results answer to the common sense.
However, what turns out differently from what one could expect is the total
probability of a particle starting at the source and reaching the detector, as it
does not equal the sum of a particle passing through each of the slits. This is due
to a third, so-called interference, term. Considering a situation where particles
leave the source one at a time,” pass through the apparatus and are detected, and
inspecting the final distribution of the particles at the plane of the detector (such
as by using a photographic plate), we obtain a so-called interference pattern.
It consists of alternating bright and dark stripes as there is a large number of
impacting particles in case of the former and very few in case of the latter.

It is much easier to grasp the interference pattern if we perform the entire
experiment with waves, instead of particles. Waves exit the source and reach
the two slits which we can then consider as new sources, and waves from them
subsequently reach the plane of the detector. However, the individual waves
differ in phase which in turn depends on the place of impact. Some waves
arrive at the detector with the same phase, i.e., their “peaks” and “valleys” are
identical, while—at other locations—the waves meet with opposite phases, i.e.,
“peaks” of one wave match “valleys” of the other and vice versa. The former
then corresponds to the bright stripes with many impacting particles, while the
latter results in dark stripes with none.

Note though that we always detect electrons, protons, neutrons, etc. as
particles. That is, the process of detection is precisely located in space and time
(a particle hits the detector “here and now”).

Wave-particle duality is thus incorporated into quantum mechanics via the two
above-stated principles. We always determine the probability amplitudes according
to the second principle in order to accurately describe the behavior of electrons in
terms of waves, such as observed in the case of the double-slit experiment. However,
the fact that electron is detected as a particle then leads to probabilistic interpretation
of the square of the amplitudes. It shall be noted that the double-slit experiment was
relatively recently accomplished [14].

2It certainly is experimentally possible to arrange that only one particle passes through the slit.
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Another example of quantum mechanical interference is scattering of two
indistinguishable particles. In his famous experiment, Ernst Rutherford bombarded
heavy atoms with a-particles. This experiment lead Rutherford to an atomic model
which still holds—at least roughly—to present days. Due to significantly greater
mass of o-particles in comparison to that of electrons, it is possible to neglect the
influence of electrons on the motion of «-particles. The scattering probability of an
a-particle into solid angle d2 = sin #d¥d¢ per unit time divided by area density
of the incident a-particles is given according to the first principle as

d
= = o, (1.0

where o is called the cross-section and f(1}) the scattering amplitude. The axis from
which the angle ¥ is determined matches the initial direction of the impacting
a-particles, as depicted in Fig.1.2. Assuming the mutual interaction of the o-
particles and the nucleus to be purely electrostatic, Rutherford succeeded in deriving
a formula for the amplitude f(¢) (e.g., [7]) which agreed with the experimental
results. From a historical point of view, Rutherford was extremely lucky to have
bombarded heavy nuclei, since the electrostatic effect does not allow the «-particles
to come to close proximity of the nuclei. In case of lighter nuclei, the effects of
nuclear forces come into play. Rutherford was even more lucky that he did not study
scattering of a-particles by «-particles. Had he done so, he would have obtained
results incomprehensible at that time (1912). The problem is, it is impossible to tell
apart the process of an a-particle being scattered by the angle ¢ and the process
with the deflection angle equal to 7 — @ (Fig. 1.3) since the particles are in principle
indistinguishable. In this case, the angular distribution of deflected a-particles equals

2 =)+ - D). (12)

Fig. 1.2 Scattering of an
a-particle on a nucleus

a-particle 9

nucleus
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Fig. 1.3 Scattering of two indistinguishable particles

Fig. 1.4 Stern-Gerlach
apparatus

conductor

1.2 Mathematical Scheme of the Quantum Theory

1.2.1 Stern-Gerlach Experiments

In 1921, Otto Stern designed the first of the series of Stern-Gerlach experiments
and successfully realized it in collaboration with Walter Gerlach 1 year later. This
series of experiments focuses on measurements of the inner degree of freedom of
an electron—the spin, projection of which into any direction, i.e., the “state of
the system,” may acquire only two values. Mathematical apparatus of quantum
mechanics can be easily explained using this simple example, and subsequent
generalization for more complicated systems is then quite straightforward.

Electrons (in the original experiment silver atoms) are heated up in a cavity with
a tiny exit hole. A collimated beam constituted by the emitted electrons enters
inhomogeneous magnetic field, which is maintained by two opposite magnetic
poles, one of them having a sharp tip-shape, as depicted in Fig. 1.4. In an external
electromagnetic field, an electron behaves like an electric monopole and a magnetic
dipole. The magnitude of the magnetic dipole moment p is directly proportional to
the intrinsic mechanical angular momentum, the spin s,

n =Ks.
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The coefficient of proportionality is given as
K =ge/m,,

where g, is called the gyromagnetic ratio and equals approximately 1 for an electron,
see Eq. (3.51).% The classical energy of a magnetic dipole of the magnitude  in a
field with magnetic induction B = (0, 0, B) reads

E=-p-B=—Ks-B=—Ks.B. (1.3)

The force the magnetic field exerts on electrons is given as

oE 0B
p— S, —
0z “ 0z

We thus see that it is the field inhomogenity that plays the crucial role in splitting of
the beam on the basis of angular momentum, and not the magnitude of the magnetic
field.

It follows thereof that the force has a “downward” direction when acting on
electrons with s, < 0 and “upward” in case of electrons with s, > 0, and therefore
splitting of the electron beam occurs according to the values of s,. In the framework
of classical physics, there should be no prevailing value in the distribution of s, of the
detected particles and the distribution shall be continuous since the orientation of the
electrons leaving the heated cavity is utterly random. However, the reality differs.
There are merely two distinguishable electron beams coming from the apparatus—
that is, only two values s, = +1/2 occur. It seems natural to ask: is there something
that makes the z axis special? The answer is no, of course. Projection of the electron
spin along any direction acquires only two values.

We now consider a sequence of three pairs of magnets (a “modified” SG
experiment) which are placed as shown in Fig. 1.5. The electron beam enters the first
magnetic field and splits into two according to the spin orientation of the individual
electrons, where the probabilities of the spin being 1/2 or —1/2 are equal (we
restrict ourselves to the z-component of the spin). Both beams subsequently pass to
the second magnetic field. However, there is a screen blocking one of the beams
with a particular spin projection (along the z-axis), while the other beam proceeds
to the third magnetic field, which bends it into its original direction.

Figures 1.6 and 1.7 depict schematics for the modified Stern-Gerlach apparatus
that will be employed throughout the reading.

We will now describe several typical arrangements one may encounter in such
experiments.

3One may also encounter a different definition of gyromagnetic ratio K = (g./2)(e/m,).
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Fig. 1.5 A “modified” Stern-Gerlach apparatus with a shield allowing only one of the beams to

pass

Fig. 1.6 Schematics for
modified Stern-Gerlach
apparatus selecting the
electrons with the spin

pointing “upward,” s, = —i—%

Fig. 1.7 The same as in

Fig. 1.6, but now the electrons
leaving the apparatus have
spin pointing “downward,”

s, =—5

2

Fig. 1.8 Two successive
modified Stern-Gerlach
apparatuses selecting the
electrons with the spin
projections onto the same axis

1= FG

<:
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+

1)
T

1. (Fig. 1.8) Spin of all electrons exiting the first apparatus points “upwards.” What
is the probability of detecting an electron with its spins oriented “downwards”?
The answer is zero. This surely makes sense as we allowed only electrons with

the “upward” spin to leave the first apparatus.

2. (Fig. 1.9) The spin of all electrons exiting the first apparatus has an “upward”
orientation. What is the probability of detecting an electron with a spin oriented
to the “right” at the second apparatus, which was rotated by 90° with respect to
the first one? One half of the electrons leaving the first apparatus. However, for an



Fig. 1.9 The same as in

Fig. 1.8, but now the second
apparatus is rotated about the
angle 7t /2 with respect to the
first one

Fig. 1.10 Three successive
modified Stern-Gerlach
apparatuses. The second
apparatus is rotated about the
angle 7/2 with respect to the
first and the third

Fig. 1.11 The same as in
Fig. 1.10, but now with no
selection made in the second

1 Foundations of Quantum Mechanics

W
<=

+

apparatus
< >

individual electron, we cannot decide where it is deflected “left” or “right.” This
experiment thus illustrates the first principle, that is, we are capable of predicting
only the probability of individual processes.

. (Fig. 1.10) The spin of all electrons leaving the first apparatus is again oriented
“upwards.” After passing the second apparatus, the spin points “left.” What is
the probability of detecting an electron with a “downward” spin at the third
apparatus? One fourth of the electrons exiting the first apparatus. At first sight,
this may seem rather incomprehensible, as we allowed only electrons with an
“upward” spin to exit the first apparatus! Apparently, the information whether
a spin points “left” or “right” destroys the information of the spin pointing
“upwards” or “downwards.” This experiment well illustrates the multiplication
principle of independent processes. That is, the probability of an “upward” and
subsequently “left” spin equals one half, and likewise the probability of a “left”
spin then pointing “downwards” equals one half. It follows thereof, the probability
of a spin pointing “upwards, then left, and finally downwards” is one fourth.

. (Fig. 1.11) The spin of all electrons leaving the first apparatus points “upwards.”
The second apparatus now allows also all electrons with a “right” spin to
pass (unlike the previous case where these electrons were eliminated). What
is the probability of detecting an electron with a “downward” spin at the third
apparatus? Zero. Once again, this may appear rather odd. When we block one
of the two possible ways, one fourth of the electrons reaches the detector in the
third apparatus. Yet obstructing neither of the two beams results in no particles
impacting on the detector. This experiment likewise demonstrates the quantum



1.2 Mathematical Scheme of the Quantum Theory 9

mechanical interference, i.e., the second principle: we add the probability
amplitudes of indistinguishable process, not the probabilities themselves. This
fourth case apparently matches the first one since the second apparatus does not
change the electron beam at all. That is, we do not conduct any measurements,
hence do not affect the state of the system.

We make use of these four experimental setups to introduce mathematical methods
of describing physical phenomena. We describe the state of a system by a vector
from an abstract space of states.* We use a ket-vector to describe a system entering

the measuring apparatus
a
= 1.4
|¥) (b) (1.4)

and a bra-vector for a system exiting the apparatus’

(Y| = (a* b*), (1.5)

where a and b are generally complex numbers and their meaning will become clear
from the further text. The transition from a ket-vector to a bra-vector {(¥| = (Jy))™
is called Hermitian conjugation and corresponds, as we can see, to transposition and
complex conjugation. Scalar product of a vector (@],

(9] = (c* a*), (1.6)
and a vector |{/) equals
(#l¥) =c"a+d"b, (1.7)
and one can easily prove that
(Bly) = (Vi) (1.8)

The probability amplitude of a transition from one state into another is then given
by the scalar product of the corresponding state vectors. The following text will
clarify the necessity to identify scalar products with probability amplitudes and not
the probabilities themselves.

We now illustrate these general expressions on the SG experiments. The
probability of a particle passing through a specific SG setup equals the square
of the amplitude magnitude. For the first case (Fig. 1.8), the experiments dictate the
relations

4Mathematicians call it the Hilbert space.

SThese symbols, as well as the entire notation, comes from English physicist Paul Dirac. Scalar
product (¢| ¥) is a “bra-c-ket” in English, meaning (¢| is a “bra” and |¢') is a “ket.”
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P(tz,+2) = [(£z] £2)> =1,  P(+z, Fz2) = |(£z] F2)|* = 0. (1.9)

The simplest plausible choice of vectors |+z), |—z), (+z|, and {—z| meeting these
requirements reads

|+z>=((1)), |—Z>=((1))’ (el =(10), Hl:ml);l.m)

With this choice, the components a and b of a general vector ) given by Eq. (1.4)
satisfy

a=(+z|V), b= (—z|y),

which means @ and b are the probability amplitudes of a general state |y)
transforming into the states |+z) and |—z), respectively.
For the second case (Fig. 1.9), we have

P(4z,—x) = |{(+z]—x)|*,  P(%z, %x) = P(+z, Fx) = 1/2.
Most certainly the following must also hold (since nothing makes the z-axis special!)
P(£x, £x) = |(£x| £x) > =1, P(£x, Fx) = |[(£x| Fx)|* =0.  (1.11)

These conditions are satisfied for example by the following choice of vectors

[+x) = % G) |—x) = % (_11) (1.12a)

(+x] = (—x| = (1.12b)

%(1 1), %(1—1).

Having found possible forms of the vectors |£x), we can readily calculate the
probabilities for the third case (Fig. 1.10),°

1 2

PCtactncan -2 = Gl )kt -a = 10) o= (1) S5 0 (§)

and also for the fourth experimental setup. For this instance, however, we have to
pay attention to add the probability amplitudes of the individual processes, not the
probabilities themselves, such as for the double-slit experiment:

1

=7

®Taking into account {¢| ¥) = (| )™, see (1.8), hence | {¢| ¥}|> = |{¥| $)|?, it obviously makes
no difference whether we write the order of events from left to write, P = |{+z| +x) (+x| —z)|?,
or from right to left, P = |{—z| 4+x) (+x| +2)|*.
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P(4z, £x, £x,—2) = [{(+z| +x) {(+x| —2) + (42| —x) (—x| —2)|?

o)+ fva 1o ()

=0.

2

The hereby built-up formalism allows us to elucidate the meaning of the statement
“measuring affects the state of the system.” To do so, we now introduce a tensor

product
a\  « s _ [ac* ad*
el = (5) (e ay = (1o o)

We can thus regard the effect of the measuring device on the state of the system
as a projection operator (a matrix) acting on a vector. As an example, we take the
third SG experiment (Fig. 1.10). The state after the first filtration reads (+z|. After
passing the second SG filter, all particles are in the state (+z|+x)(+x|, which we
can understand as the original state (4z| modified by the operator

— ) (x| = G 1) .

The third experimental setup shows that the spin projection of the electrons that
passed through the second apparatus along the x-axis equals one half. This means
we have conducted a measurement, and thus altered the state of the system as the
electrons find themselves in different states prior to and after traveling through the
apparatus,

(+2flx = (2] +x) (+x] = (1 0) % (i i) = %(1 1) = %(—i—ﬂ.

On the other hand, the state of the system does not change for the fourth
arrangement (neither of the ways is blocked at the second apparatus). This agrees

with no measuring being performed:
1 —1
-1 1

=(10)1= (10) (+2].

| =

(+2](|+x) (2] + |—x) (—x]) = (1 0) [

It follows that a crucial operator equality

[42x) (x| + |2} (=2 = 1,
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that mathematicians call the completeness relation for the basis {|+x), |—x)} bears
a clear physical meaning: placing a device into the path of the studied system but
making no measurements leads to the same final state as placing there no measuring
device at all. In mathematical description, this corresponds to multiplication by a
unit matrix.

The physical interpretation of the other important relation for bases, the
orthonormality relation, see for example (1.9) or (1.11), should be clear too. Placing
the very same type of device into the path of the studied system does not produce
any new information. The reason is, the system maintains the selfsame state, as
demonstrated by the first experiment, Fig. 1.8.

From a practical point of view, the relations of completeness and orthonormality
show to be extremely useful, as they allow for calculations of transition amplitudes.
A scalar product of the completeness relation

|[+z)(+z] + |—2)(—z| =1

with the vector |) leads to decomposition of the vector |¢) into the basis of
eigenstates of the spin projection on the z-axis,

l¥) = 1Y) = |+2)(+2|¥) + |-2)(—zl ¥) = ((tzllﬁ))’
{(=zl¥)

where the last equation follows from Eq.(1.10). We can thus rewrite the scalar
product of two vectors as

(@lv) = (¢l +2) (+2|¥) + ($]—2)(—zl¥) = ((p]+2) ($]—2) (t;l :;)))

The left-hand side (lhs) of the equation comprises the vectors (¢| and |{) in an
abstract form, while on the rhs they acquire a specific form in the basis of eigenstates
of the spin projection along the z-axis.

If you deem such decompositions slightly odd (you should not), consider the
following analogy of the last three equations in an ordinary two-dimensional
Euclidean space:

1=-e.e, +epe,,
F=F-ee +F-ee =Fe +Fe,,
F-v=F-ee.-v+F-ee, -v=Fuv, + Fuv,.
The only difference is that there is no need to distinguish between a ket- and a
bra-vector in the Euclidean space with a real and orthogonal basis.
Note, though, that while vectors commonly used in classical mechanics (such as

a position vector, etc.) are vectors of the three-dimensional Euclidean space, which
is a direct abstraction of the space of our everyday experience, vectors employed in
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quantum mechanics belong to the abstract space which has no natural connection to
our three-dimensional space.

The projection of the spin on the y-axis naturally complies with the same rules as
the projection on the z and x axes (no coordinate may be preferred over the others).
This leads to the requirements:

(2] £9)[* = (2] Fy) > = (x| £2)* = [(£x| Fy) > = 1/2,
Nty )P =1, [y Fy*=0.

For the given choice of vectors |+z) and |%x), Egs.(1.10) and (1.12), these
conditions cannot be fulfilled for purely real components. However, considering also
complex numbers, we can easily prove that the following choice of vectors meets
the previously given requirements (mind the complex conjugation upon transition
from bra- to ket-vectors, see (1.5))

l+y) = %2 (1) |=y) = % (_ll) (1.13a)

(+yl = (—yl = % (11). (1.13b)

1 .
E(l —i),

1.2.2 Operators

For the purposes of the following chapters, we now introduce the notion of operators.
We have already encountered them in connection with the tensor product of two
vectors. A general operator A projects a vector |¢) onto a vector |{/),

Alg) = 1¥).
By Hermitian conjugation, we obtain
(V] = (plAT,

where At is the Hermitian conjugate to A. For a two-dimensional space (a physical

system with two possible states), the particular forms for ) = (Z;) L) = (bl)

by

A Ay AIZ)

and A = read
(Azl Axn

At A\ (b1 _ (& . ) _ (e (AL AT
(Azl Azz) (bz) N (az) ’ (al a2) = b2) (AELI A%)
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By writing the complex conjugate of the first equation and comparing it with the
other, we obtain

+_
A A;';,

that is, we apply transp0s1t10n and complex conjugation to find the Hermitian
conjugated matrix A* to the original matrix A.

1.2.3 Time Evolution in Quantum Theory

So far, we only dealt with a description of a state when a system either enters or exits
the apparatus. However, time elapses between these two events, which thus begs the
question of the time evolution of the system.

We denote two physical (experimentally feasible) states of a system at time #y by
the state vectors (@(fp)| and | (%)). At any moment later in time z, these systems
are described by the state vectors

W =0col@) md  (p0]=(060lww) = eI0*@o,
(1.14)

where O(Z, to) is called the evolution operator or the propagator. Provided the
dynamics of the system is invariant with respect to time displacement, the probability
of a system changing from the state (¢ ()| into the state | (7)) at the time #;, must
necessarily equal the probability of the system changing from the state (¢(f)| into
the state | (¢)) at the time z,

(@ (t0)| ¥ (@) = Hp@ ¥ O)* = ()| (1, 1)U(t, 10) ¥ (t0))
This implies the U be unitary
Ut 10)0(1, 1) = 1,
or equivalently
Ut(r,10) = 07 (¢, 10) = Ulto, 1) . (1.15)
Furthermore, the evolution operator must meet the decomposition requirement
U, 10) = 01, 7)0(7, 10) .

That is, evolution from the initial time #; to # must yield the same final state as starting
at fp and reaching ¢, and subsequently moving from # to ¢. Finally, we demand

U(t,t) =1.
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These requirements are met by the choice
U(t, to) = exp(—i|:|(t— 1)), (1.16)
where after substitution from Eq. (1.16) into Eq. (1.15) we obtain
A=ft

it follows thereof that H is a Hermitian (also self-adjoint) operator. Matrix elements
of a Hermitian operator then evidently comply with

Hy = H;,.

Mathematical properties and physical meaning of this Hermitian operator will be
discussed in more detail later in this section. Its significance follows from the so-
called time-dependent Schrodinger equation, named after Austrian physicist Erwin
Schrodinger. It describes the time evolution of a system

idwdy)) = id%U(t, 10) |V (10)) = HO(, 10)|v0) = Hw (1)), (1.17)

which we obtain by differentiation of Eq. (1.14) with respect to time.

1.2.4 Stationary States

To find the physical meaning of the operator H, we focus on cases when its action
on a vector reduces to a mere multiplication by a number, i.e.,

|wn(t)> = O(t’ fo)l%(fo)) = eiiﬂ(titowwn(m)) = eiiE”(tilO”wn(tO)) . (1.18)

The reason is that these states |1,,) differ from the others in one crucial property: if
a system is in such a state at time #, it stays so and we surely find it in this state at
any later time #:

(Wa(t0) | ¥ (D) = 1. (1.19)

Such states are called stationary. As there are many of such states |i,) and
corresponding numbers E,, for the operator I:I, we label them with a subscript 7.

It follows from Eqgs. (1.18) and (1.19) that the numbers E, describe a property
of a system which does not change with time, i.e., it is conserved throughout time.
From classical mechanics we know that such a quantity that is conserved due to the
system dynamics being invariant with respect to time displacement is energy. For
example, we have for a one-dimensional motion in a potential field
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d?x F dv
m— =F=—-——.
dr dx
Provided the dynamics is invariant with respect to time displacement, i.e., the
potential V is independent of time, V = V(x), we may multiply the equation by
rearrange it and finally obtain the well-known law of conservation of energy

d(m () Zo
dr\ 2 \dr o

Therefore, we interpret the numbers E, as possible energy values of the system.
Inserting Eq. (1.18) into the Schrédinger equation (1.17) leads to

dx
dr?

HIv.) = Evn) , (1.20)

we thus see that E,, are the eigenvalues and |,) the eigenstates or eigenvectors of the
operator H. We call this operator the Hamilton operator or simply the “Hamiltonian,”
and Eq. (1.20) is known as the time-independent Schrodinger equation, or as an
eigenproblem for the Hamilton operator.

We now return to the SG experiments to elucidate the time evolution and stationary
states in quantum theory. It follows from the discussion of the outcomes of the
experiment depicted in Fig. 1.8 that for a magnetic field oriented along the z axis,
the states |£z) are stationary, hence eigenstates of the Hamiltonian. Equation (1.3),
E = —KBs,, shows that measuring energy corresponds to measuring the spin.
Accordingly, the Hamiltonian operator matches—but for a constant—the projection
operator of spin along the z axis. Thus the conserved property of the states |z is the
value of the spin projection along the z axis, s, = 4=1/2. Therefore, the eigenvalues
of the Hamiltonian operator corresponding to the eigenvectors |£z) equal, again
but for the constant (—KB), +1/2. Multiplying then the completeness relation

|+2){(+2 + [-2) (=2l =1
by the operator H /(—KB) yields, see Eq. (1.10),

H/(—KB) = S, = S,|+2)(+2] + S.|-2) (|

1 1 1/(10
SlFatel = Sl=a{=l =5 (0 _1) - 1.21)

Equation S, = 3l42)(+z] — 5|—2)(—z| is called the spectral decomposition of the
operator S..

Analogously, we find that the states |+x) (]£y)) are stationary for a magnetic
field oriented along the x (y) axis and the conserved observable is the spin projection
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along the respective axis with the value +1/2. In these two cases, the operator H
acquires the form, see Eqs. (1.12) and (1.13),

H/(—KB) = S, = S.|4+x) (+x] + S —x) (—x|

1 1 1 /01

and

H/(—KB) = 8, = S,[+y) (] + S, |-y} {(—

1 1 10—
stnl- el =5 (05) a

The spin operators introduced by these equations are usually written in the form

é:%m (1.24)

where the matrices o are called, after the Austrian physicists Wolfgang Pauli, Pauli
spin matrices and satisfy

0,0; = 8 + igjoy, (1.25)

which may be proved best by direct substitution. It follows immediately from this
equation that the spin projection operators along each axis do not commute mutually

S., éj] = ib"ijkék , (1.26)

where commutator of any two operators is defined as

This example illustrates a more general principle: observables that we cannot meas-
ure simultaneously correspond to non-commuting operators within the mathematical
scheme of quantum mechanics.

1.2.5 Properties of Hermitian Operators

All Hermitian operators comply with the following statements (and we will often
take advantage thereof throughout this book).
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1. Eigenvalues of a Hermitian operator are real. .
Let |n) be an eigenvector of a Hermitian operator H corresponding to the
eigenvalue E,;:

A

H|n) = E,|n). (1.27)

After Hermitian conjugation of Eq. (1.27) we obtain

A~

(n|H = (n|E;,, (1.28)

which shows that (n| is likewise an eigenvector of the operator H and corresponds
to the eigenvalue E7;. We now show that these two eigenvalues equal. Multiplying
Eq. (1.27) with a bra-vector (n| from left and Eq. (1.28) with a ket-vector |n) from
right, and comparing these two equations with each other then yields

E, = E;

n

(1.29)
hence E, € R. In contrast, eigenvalues of non-Hermitian operators may be both

complex and real. The following two operators are examples of non-Hermitian
operators with complex and real eigenvalues, respectively:

A— 0-1 ,é: 1 —io ’
10 —iax —1
where a € (0, 1).

2. Eigenvectors corresponding to two different eigenvalues are mutually orthogonal.
It follows from Egs. (1.27), (1.28), and (1.29) that

Hin) = Eyln) .
(m|H = E,,(m|.

Multiplying the former with a bra-vector (m| and the latter with a ket-vector |n),
and taking their difference results in

0= (Ey — En)(m|n).
IfE, # E,,
(m|n) =0. (1.30)
Note (without proof herein) that in case of a degeneracy, i.e., there exist several

eigenvectors corresponding to the same eigenvalue, it is always possible to choose
the eigenvectors so that they are mutually orthogonal.
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3. The basis of eigenvectors |n) is complete within the space upon which the
Hermitian operator H acts. Meaning

> in)nl =1, (1.31)

where N represents the number of degrees of freedom of the studied system,
i.e., the dimension of the abstract vector space upon which the operator H
acts. We will not prove this statement herein in its most general sense. Note,
though, that aside from mathematical nuances related to the transition to infinite-
dimensional spaces, this statement is almost trivial. Every N-by-N-matrix has
N mutually orthogonal eigenvectors (as shown previously), therefore they must
form a complete basis in an N-dimensional space.

Despite the Hamiltonian being a Hermitian operator, it is often very convenient
to work with non-Hermitian operators. For instance, consider the eigenstates of the
spin projection along the z axis,

S,|+) = :l:%|:|:), (1.32)

which we previously denoted as |£z) and for the purpose of the following we will
henceforth denote merely as |1). Introducing the so-called ladder operators

A~

Sy = éx + iéy,

and considering Egs. (1.10), (1.22), and (1.23), we find for their acting on the states
|£) that

SilH) =0, Sil-) =1+, (1.33)
S_|4)=1|-), S_|-)=0. (1.34)

These equations show that the operator é+ “raises” the spin projection along the z
axis and the operator S_ “lowers” the projection. This thus demonstrates that acting
of the non-Hermitian operators Si on the elgenvectors of the operator S is simpler
than acting of the Hermitian operators S and S Owing to the operator identity

N

A oA 1 ~ & A A ~
A-B= §(A+B_ +A-By) +AB., (1.35)

which holds for any two vector operators A and B we may easily always replace
A, and A with A+ and A_.
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1.2.6 Ambiguity in the Determination of States

In the previous section, we derived the form of an operator knowing its eigenvectors
and eigenvalues, see Eqgs. (1.21), (1.22) and (1.23). The usual case is the opposite,
though: we need to find the eigenvalues and eigenvectors of a given operator.
However, Eq. (1.27) does not define the eigenvectors unambiguously. For instance,
eigenvectors and eigenvalues of the operator éz are given by the equation

ézlsz> = 5[S:) .

Considering Egs. (1.4) and (1.21), we obtain

(62)6) =) 130

which is a system of two equations for two unknowns a and b with a parameter S,.
Depending on the value of the parameter S_, this system has either no solution at all
or infinitely many. Specifically for S, = £1/2, the system (1.36) determines only
one of the two unknowns a and b. We obtain b = 0 and arbitrary a for S, = 1/2, and
a = 0 and arbitrary b for S, = —1/2. Similarly, writing equation for eigenvalues
and eigenvectors of the operator éx yields

((1) (1)) (Z) =2 (Z) : (1.37)

b=a (1.38)

We obtain for S, = 1/2 that

and for S, = —1/2
b= —a, (1.39)

however, a remains still completely undetermined. We may remove this freedom by
imposing a normalization requirement:

Wlv)y=1=la*+p*=1. (1.40)

Nevertheless, neither this condition defines the eigenvector unambiguously, as
Egs. (1.36) and (1.40), or alternatively (1.37) and (1.40), still hold when we multiply
a and b with the same phase factor e'. Furthermore, the probability of transition
from one state into another given as |{¢|)|* obviously maintains its validity upon
the substitution [) — |¥)e!, (¢| — (¢p|e %2, where generally ¢; # s.
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Thus we see that the herein developed formalism contains freedom in terms of
the fotal phase factor of the state vectors. The relative phase factors, on the other
hand, are well defined by the eigenproblem, see, e.g., Egs. (1.38) and (1.39).

For a real Hamiltonian (which may not always be the case, see (1.23)), we usually
choose the total phase so that the corresponding eigenvectors are real as well.

f[ Exercise 1: General Projection of the Spin S = 1/2 ]—@

Consider an SG experiment where only electrons with their spin projection
+1/2 leave the apparatus. What is the probability of detecting the
projection of +1/2 at the second apparatus if it is rotated by an arbitrary
angle with respect to the first one? Hint: Using Eq.(1.35), find the
projection operator of spin along a general direction én =S. n, where

n = (sin 9 cos ¢, sin ¥ sin ¢, cos V) .

Find avector satisfying the equation Sy |[+n) = 3|+n). The desired prob-
ability is then given as |(+z| +n)|>.

Note that this exercise is not listed here for the only purpose of practice. Vectors
|£n) are called helicity spinors and play a crucial role at the frontier of modern
quantum field theory, see, e.g., [12, 13].

1.2.7 Rabi Method of Magnetic Moments

Isidor Rabi came with the brilliant idea of placing a coil with variable current at
the second magnet of the modified SG apparatus shown in Fig. 1.5. This current, as
it passes through the coil, creates a variable magnetic field in the xy plane which
is perpendicular to the permanent magnetic field. At a certain frequency w of the
current, there is a very high probability of the electron spin flipping to the opposite
direction. In such a case, the third magnet further deflects the trajectory of the
electron, instead of unbending it back into the original direction, and thus the electron
disappears from the electron beam.

This method is applicable to any particle with spin 1/2 and a nonzero magnetic
moment, and allows for very accurate measurements of the constant K in Eq. (1.3). A
more detailed description of the Rabi method may be found in, e.g., [4, 5]. However,
a kind reader who comprehended everything so far is most certainly capable of
deriving the necessary theory for this experiment with the help of the following
notes.
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. For the Hamiltonian operator in the Schrodinger equation (1.17), we substitute
from Eq. (1.3) where we substituted the vector S with a vector operator S:

i% = —KS-B|y). (1.41)

The vector of magnetic induction reads

B = (B, cos wt, By sinwt, By) ,
where obviously By represents the intensity of the permanent (in time) field along
the z axis, and B; stands for the intensity of the variable field.

. We write the state vector |{) in the basis of the eigenstates of the spin projection
along the z axis:

[V (@) = c+ (Ol+) + c-(0]-). (1.42)
After its insertion into Eq. (1.41), we multiply this equation from left with (4|
and subsequently with (—|. We thus obtain a system of two differential equations
for two unknown functions c (¢):

ié‘+ = H++C+ + H+7C7 . ic_. = H7+C+ +H__c_ 5 (143)

where Hy + and H = are the matrix elements of the Hamiltonian in the mentioned
basis

Hit = (—K)(+|8-B|+) = (—=KB.)(+|S.|+) = —KBy/2,

Hy_ = (—K)(+|S - B|-) = (=KB_/2)(+|S4+|-) = —(KB;/2)e ™", etc.;

that is

g - (He+ Hio __K( B Be it
H_ H _ 2 \Bjeter —p, J°

. Assuming the system is in the state |+) at time r = 0, we have the initial condition
for Eq. (1.43):

c+(0) =1, ¢-(0)=0. (1.44)
The probability of the system being in the state |—) at any later time ¢ is given as

Prse = (=Y @) = le-) P, (145)
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where we substituted from Eq.(1.42) and used the orthonormality equation,
Eq. (1.9).

This way, we transformed the problem into a mathematical one the reader shall
be able to solve on his own. All left to do is to solve Eq.(1.43) with the initial
conditions (1.44) and then insert the results into (1.45).

Exercise 2: Rabi Oscillations I} A

Find the time-dependence of the probability (1.45) and also its dependence
on the parameters K, By, By, o.

1.3 Systems with More Degrees of Freedom

In the previous sections, we developed mathematical formalism of quantum
mechanics: a system is described by a state vector from the abstract (Hilbert) space
of states, and the probability of its transition from one state into another is given
by the scalar product of the corresponding state vectors. Time evolution of the
system is determined by the Hamiltonian operator H via the Schrédinger equation.
Eigenvalues of this operator correspond to the possible energy values of the system
that we can measure.’

It clearly follows from this brief summary that knowing the Hamiltonian of
the system allows for—at least in principle—prediction of anything that can be
discovered about the system. In case of the Stern-Gerlach experiments, we obtained
the Hamiltonian from analysis of the experiments. However, this method is generally
inapplicable to systems with an infinite number of degrees of freedom. Moreover,
shall quantum mechanics predict experimental results, such as what energy values
we will measure, we must know the Hamiltonian “in advance.” In the following
sections, we show how to find the Hamiltonian when the behavior of the system is
well known within classical physics.

1.3.1 Expected Values of Operators and Their Time Evolution

As we move from the macroscopic towards the microscopic world, i.e., to objects
of the size 1071 m or less, description within the framework of classical mechanics

7To be more precise, the differences of the eigenvalues of the operator.
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fails. Quantum mechanics, which in contrast provides a correct description on this
scale, should nevertheless contain classical mechanics somehow. To elucidate the
connection, it is advantageous to introduce the notion of expectation value.

The expectation value of an observable described by the operator A upon repeated
measurements of the state |/) is given by the expression

= Za,p(a]) = Z( |aj)ai{a;| v) = (VIAlY). (1.46)

j=1

We used the definition of the mean value in the first equality, and the probability of the
system’s transition from the state (/| into the state ‘aj), givenas p(a;) = || qj)|2, in
the second equality. Since Eq. (1.8) holds, we obtain p(a;) = (¥/|a;)(a;| ). Finally,

the third step involved spectral decomposition of the operator A

N

A=Y alalia],

J=1

where N represents the number of degrees of freedom of the studied system.
Specifically, if inner degrees of freedom of a particle with the spin 1/2 are of
interest, N = 2. )

We now turn our attention to the time evolution of the expectation value (A), i.e.,
we examine the dependence

(AM) = (vOIAIY (1)) .

It follows from Eq. (1.14) that

(A@) = (w|0* (¢, 10))AU(, 10) ) .

We may regard this equation also in another way: time evolution of the expectation
value of the observable A is given by the expectation value of a time-dependent
operator

A(r) = Ut (1, 10)AU(, 1) (1.47)

in a time-independent state |v/).

We now adopt the latter approach, called the Heisenberg picture or also the
Heisenberg representation, after German physicist Werner Heisenberg, and inspect
the time evolution of the operator (1.47). Using the Schrodinger equation (1.16) and
definition (1.47), we obtain

dA(t) U+(t f0)
dr

AU, 1) + 0 (o, tO)AdU(tt o)
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= —iU (1, 10)[A, FU(1, 10) = —ilAG), HOL, (1.48)

where we inserted 1 = U(t, t0)0+(t, ty) between A and H in the third equality. The
other approach, called the Schrodinger representation, places the time evolution into
the state vectors and regards operators representing observables as time-independent.
In most cases, we will employ this latter picture.

We now use Eq (1. 48) to describe a motion of a particle with the spin 1/2 in a
magnetic field, A(t) = S (0, H(t) = —KS (t)B;,

aSi() a4 ;
TR —iKB;[Si(1), S;(1)] = —KejuB;Si(1) ,

where we used Eq. (1.26) in the second equality. Rewriting the last equation in a

vector notation yields

ds(@)

P —KB x S(1),

which is the classical equation for the motion of a magnetic dipole in a magnetic
field. Its classical derivation can be found in, e.g., [6].

1.3.2 Canonical Quantization

In classical mechanics, the Hamiltonian function is a function of canonical
coordinates and momenta of particles. However, there are projections of the
position and momentum vectors onto the coordinate axes that we cannot measure
simultaneously.® This situation quite resembles that of the spin projections onto
coordinate axes, and we have seen that within the mathematical formalism of
quantum mechanics, this fact is represented by the noncommutativity of the
corresponding operators. Furthermore, we have seen an analogy between the
classical and quantum-mechanical equations in Heisenberg representation for the
motion of a particle with the spin 1/2. Therefore, it is reasonable to demand that
equations determining the time evolution of the coordinates and momenta operators
have the same forms as the corresponding equations in classical theory. The exact

8We do not want to extensively discuss this matter here, as everyone has surely encountered it ample
times. Nevertheless we mention Heisenberg’s intuitive argument. We know from the Compton
experiment (see, e.g., [1]) that a photon with the wavelength A has the momentum p = 27/A.
The more precisely we wish to locate a particle, the shorter the wavelength of the photon must be,
hence higher momenta. Thus reducing the uncertainty in the particle’s position results in higher
uncertainty of its momentum.
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forms of the commutation relations between the coordinates and momenta operators
then follow thereof.
We now consider a particle moving in a static potential given by the function
V(r). Its classical Hamiltonian reads
PP

H==—+V(r), (1.49)
2m

and we will look for a quantum Hamiltonian of the form

=5 4 v). (1.50)
m

Substituting Ain (1.48) for the position or momentum operator, respectively, yields

dx; N N A A dp; N oA
det) = _1U+(t, to)[xis H]U(ts tO) s in—t(t) = _1U+(t7 tO)[pl" H]U(ts to) .
. (1.51)
The commutator of X; and H reads
N | BN . . | A A n A
[xi,H] = %[Xi, Pl + X, V(X)] = m (%, B1P; + B;[%i, 1) + O, (1.52)

since X; commutes with any function of itself.” We now demand that Eq.(1.51)
acquires the same form as their analogs in classical mechanics. The first equation
then reads

dx;(1)  pi(1)
o m (1.53)

hence
[X:, f)j] =1id;. (1.54)

Similarly, the commutator of p; and H is

P | A R n R n
[pi, H] = %[pi,pz] + [pi, V(P)] = [pi, V(P)].

9The reason is, we can expand any “reasonable” function of X into a series in X. That X commutes
with any of its powers is obvious.
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Furthermore, as we will prove later, see Eq. (1.84),'°

R « . oV(r
[P, V(P)] = —i a() , (1.55)
Xi |r=}
hence
dp;(r) aV(r)
= - . 1.
dt 0x; r=F() (1.56)

Equations (1.53) and (1.56) are the quantum-mechanical analogs of the Newton
equations of classical theory.

We can readily generalize our previous steps, and thus obtain a universal process
of transformation from classical to quantum theory called the canonical quantization.
First, we identify the Hamiltonian and canonically conjugated coordinates and
momenta, i.e., quantities satisfying the Hamilton equations

oH . o0H
Xi = —, = ——
J ap] p] 8xj
For example, we find for the Hamiltonian (1.49) that x; = % = % and p; = —g% =

2,.
— 3V which is obviously equivalent to the Newton equation miy =

ol = —g—)‘; Next, we
postulate the so-called canonical commutation relations (1.54) for the canonically
conjugated coordinates and momenta, and substitute the classical quantities for
corresponding operators. This Hamiltonian, such as (1.50), is then the correct one
within quantum mechanics.

We thus see that dynamics is within the quantum and classical theory very
much alike. Kinematics, i.e., representation of states and of their changes, on the
other hand, acquires an absolutely new form. However, if the distances between
individual energy levels are small enough, see the discussion in the Sect.6.2.7,
quantum mechanics blends with the classical. Note, though, that the classical limit
of quantum theory is not entirely trivial, see, e.g., [8, 9, 11].

1.3.3 Harmonic Oscillator

We now illustrate this general method on one of the most fundamental systems—on
the harmonic oscillator. Its importance stems from the fact that it belongs to the

10We briefly show that this relation holds for one-dimensional motion. We expand V(x) in a Taylor
series V(x) = Vo + Vix + Vox? + ... and using Eq. (1.54) we obtain [p, V(X)] = Vi[p,X] +

Va[B, &3] + ... = —i(Vi +2VoR +..) = —i &2

x=X
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few physically interesting problems we are able to solve exactly, and that the free
electromagnetic field behaves as a set of mutually independent harmonic oscillators,
as we will see later in Sect. 6.1.6.

We can expand any potential energy V(X) of a one-dimensional one-particle
Hamiltonian into a series in X

N av A 1 0%V A 2 1 9’V N 3
V(X) — V(xg) = g O(X—XO)—FZWXO(X—X()) +§w X—x0)"+...
(1.57)

X X0

For aminimum of the potential at x, the first derivative equals zero. Furthermore, we
neglect third and higher derivatives, i.e., keep only the second, place the minimum of
the potential to xo = 0, and take the energy from the value V(xo). Finally, following
the procedure of canonical quantization, we obtain the Hamiltonian of the harmonic
oscillator
H= p? L 22 RS
= — + -mwX", where p,X] = —i.
2m 2

Had we included other terms in the expansion (1.57), the behavior of the system
would be much more complex and usually analytically insolvable. We show
how to deal with such cases in Chap.2. It is generally desirable to reduce the
number of constants, therefore we will henceforth use dimensionless coordinates
and momentum. We accomplish that by the following scaling transformation'!

>0

X—AX, p—

which we insert into the Schrédinger equation

p? L 500
W+§mwlx lv) =&Y,

multiply with mA? and finally set m*>w?A* = 1; we thus obtain
P

&
|5+ %5 [ =miey = Ziv) = 2, (158)

where E is a dimensionless energy.

"Upon this particular transformation, the canonical commutation relation [p,X] = —i maintains
its form.
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1.3.4 Abstract Solution

Inspired by the formula a®> + b*> = (a + ib)(a — ib), it seems reasonable to attempt
to decompose the operator on the lhs of Eq.(1.58) to the product. We therefore
introduce non-Hermitian operators

A | O R | O
a=—x+ip), at =-—=x-ip).
V2 P) oA
We can easily prove that the Hamiltonian H= %2 + % acquires quite a simple form
U |
H=a"a+ 3 (1.59)

when expressed in terms of the operators 4 and ™. These two operators do not
mutually commute, precisely speaking their commutator equals one,

A A

1 i i
+ _—A 'AA—'A :——AA —AA =
[8.87] = 5[k +ip.k—ip] = 3 [kl + 5 [0.5] = 1.

An important property of the operators 8 and &* follows from the last two equations:
together with the Hamiltonian H, they form a algebra of three operators which is
closed with respect to the commutation operation,

[,a] = [ata,4) = [at,8)a = -4, (1.60)

[H,at]=[ata,at|=at[aat|=a". (1.61)

As we will shortly see, this property allows us to determine the spectrum of
eigenvalues of the Hamiltonian. Note also that we could have obtained the second
equation from the first one via Hermitian conjugation. We now write the equation
for eigenvalues and eigenvectors of the Hamiltonian

Hin) = E,[n), (1.62)

where n labels the individual eigenvalues, and n = 0 stands for the ground state,
n = 1 the first excited state, etc. Equations (1.60) and (1.61) are operator equalities,
meaning they hold whatever vector we act on with both sides of these equations. We
thus act with them on the eigenvectors of the Hamiltonian:

A

[F,4][n) = —ajn) = A (a]n)) = & (Fun) - |n)) =(E, -1 @ER), 1.63)

A& ln) = &% 1n) = A (@F|m) = &% (Rin) + 1n)) = (E, + 1) (& In)).
(1.64)
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where we expanded the commutator, used Eq. (1.62), and also made use of the fact
that the number E, commutes with any operator, hence also with the operators & and
at.

We see that the state a|n) is an eigenstate of the Hamiltonian with the energy
E,—1,and sois the state 8™ |n) an eigenstate of the same Hamiltonian with the energy
E, + 1, compare Eq. (1.62) with Egs. (1.63) and (1.64). Action of the operator & on
an eigenstate of the Hamiltonian thus yields an eigenstate with the corresponding
eigenvalue smaller by 1, and similarly the action of the operator %1 results in an
eigenstate with the eigenvalue greater by 1. However, a ground state of the system
must exist,'2 so must thus be a state for which

4/0) = 0.

This equation holds also when acting with the operator a*,

ata|o) = (H - %) |0y = (Eo - %) 0y =0,

hence Ey = 1/2. Acting with the operator & on the state |0), we obtain a state with
the eigenvalue E; = 1/2 + 1 = 3/2, etc. The spectrum of the eigenvalues of the
Hamiltonian thus reads

E,=n+1/2. (1.65)

Note that there are no other eigenvalues with corresponding eigenvectors of
the Hamiltonian, i.e., the basis {|n)} is complete. Were there another eigenvector
between the n-th and (n + 1)-th state with the corresponding eigenvalue E', we
could repetitively apply the operator & on this eigenvector and we would obtain
successively eigenvectors with eigenvalues ' — 1, E' — 2, etc. Upon sufficient
number of repetitions we would finally reach an eigenstate corresponding to the
eigenvalue smaller than 1/2, which contradicts the requirement 1/2 be the ground
state energy.

It follows from Eq. (1.65) that E,, £ 1 = E,, 1. Equation (1.62) for the eigenvalue
corresponding to the state |n &= 1) reads then

Hn+1)=(E, £ )n+1).

2From a purely mathematical point of view, this requirement is excessive. The reason is that
the Hamiltonian has a below bounded spectrum since the operator 14 is positive-definite as
(v|ataly) = (x| x) = 0, where |y) = a|y) and the inequality follows from (1.7). As physicists,
we engage only with Hamiltonians with a below bounded spectrum; see the interpretation of the
Dirac equation in Chap. 7.



1.3 Systems with More Degrees of Freedom 31

Comparison of this equation with Egs. (1.63) and (1.64) leads to

an)=a_mn—1), atn) =armn+1), (1.66)
where a4 (n) are constants we can usually choose to be real owing to the freedom in
the total phase of the eigenvectors. We now determine their values, which will later
prove to be indeed useful. We find the Hermitian conjugate of the first equation and
multiply it from right by the vector |n — 1)

matin—1)=a_(mn—1/n—1).

In the second of Eq. (1.66), we substitute n for n — 1 and multiply both sides from
left by the vector (n|,

(nl@*n—1) = at(n = )(n|n).
Under the normalization requirement for the eigenvectors, the constants must satisfy
ar(n—1)=a—(n).
Furthermore, it must hold, see Eq. (1.66),
ataln) =ata_(m)n—1) = ay(n— Da_(n)|n),

and also, see Eq. (1.59),

Al A ~ 1
a‘tapn) = (H — 5) |n) = n|n) . (1.67)
From the last three equations, we finally obtain

a_(n)=+n, ar(n)=~n+1. (1.68)

1.3.5 Matrix Representation

We can easily give a specific form to the above-derived abstract solution by choosing
a particular representation of the vectors |n). For instance,
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1 0 0
0 1 0
0 =191, 1m=|%. 2=]1{.
0 0 0
By Hermitian conjugation we obtain
0/=(1000..),
(11=(0100...),
(2/=(010..),
Acting on the completeness relation
o0
D In)n =1 (1.69)
n=0

then leads to the matrix expression of the operators H, a,and at:

I > (135
H=H1= ) E,|n)(n| = diag 355
n=0

01 0 O
o 002 0 ...
é=él=2a_(n)|n—1)(n|= 00 0 3... ’
n=0 00 0 0 .
00 0 O0..
0o 1 0 0 0.
At =at1=Y st 1) = |OV2 0 0

We see that the Hamiltonian, as any operator in the basis of its eigenvectors, is
diagonal with eigenvalues placed along this diagonal. We could easily verify that in
the matrix representation



1.3 Systems with More Degrees of Freedom 33

o 1 . .
X=_—@a+at 1.70
ﬁ( ) (1.70)
and also
p= ! (a-ah (1.71)
_1\/§ .

are—unlike & and 8T —Hermitian operators and that the relation [X, p] = i holds.

1.3.6 Dirac §-Function

In the next section, we will need to operate with the Dirac §-function. From a
physical point of view, it is the best to regard the §-function as a limit of functions,
for instance:

§(x) = lim e (1.72)

that is
3(x#0)=0, dx=0)=o00

From Eq. (1.72), we easily obtain the integral of the §-function along the entire line'3

€ .
[ e [ e 1=t 47

and also with the Fourier transform

§(x) = lim LI 1, = lim L[ 1. - 1.] (1.74)

e=>0+ 7 x—ig >0+ 2im | x—1i8 x+1ie

1 0 . . S . 1 0 .
= lim — / e ik(—ie) qp 4 [ ektie) g 1= lim — e kv—lkle g
e—0+ 27T 0 0 e—0+ 27T

The integral of a product of the §-function and an “ordinary” function complies
with

/_ f@)é(x —a)dx = f(a). (1.75)

3When solving such problems, we start with the definition of the §-function (1.72) and leave the
limit & — 0+ to the very end of our calculation.
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We can easily obtain this equation from the Taylor expansion of the function f(x)

F0) = @) + (= @) @ + 5 (=@ @) + .

from the normalization condition (1.73) and from the equation
/x”S(x)dx =0, n>0,

that one can easily prove. We calculate the derivations of the §-function by employing
the integration by parts

/_ fx)8§ (x—a)dx = —f'(a). (1.76)

1.3.7 Coordinate Representation

Were we able to solve all quantum-mechanical problems exactly, we could now
easily move from the harmonic oscillator to another problem. However, that is not
the case, and we will thus discuss additional specific realizations of the abstract
solution. Among the infinite amount of possible bases of the Hilbert space of states,
there is one that stands out from the others—the basis of the eigenstates of the
position operator,

X|x) = x|x) . 1.77)
As there exist uncountably many places where a particle may be located, the spectrum

of the position operator is uncountable. The completeness and orthonormality
relations then acquire the form

/ T =1, (178)
(x|x) =8(x—x'). (1.79)

The scalar product of two general states and the action of an operator Aon a state
are then given as

<w1|wz>=<w1|1|w2>=<wl|(/_ |x)(x|dx)|1/f2)=/_ (W 1) (x] ¥) d.
(1.80)
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o0

x|Aly) = /_ (A |9y d’ (1.81)

(o]

The projection of a general state |1/) onto the coordinate basis (x| ) corresponds
to a vector with uncountably many components; we call such vectors functions. For
historical reasons, we refer to the projection (x| ¥) = ¥ (x) as a wave function.
The square of the absolute value of this function gives the probability density of
the particle to be found at the point x in the state |/}, as follows from the general
physical interpretation of scalar products.

Once we know the matrix elements of the coordinate and momentum operators
between the vectors of coordinate basis, we can easily express any operator in this
basis. The coordinate operator acquires a diagonal form in its own basis, i.e., we find
from Eq. (1.77)

(x[X[y) = x{x|¥) = xy (x). (1.82)

We obtain the matrix elements of the momentum operator from the canonical
commutation relation

[b.X] = —i
by multiplying it with the coordinate eigenstates from both left and right
{x|[p, )A(]‘x’) = —i(x[x').
We now expand the commutator on the lhs and use Eq. (1.77)
(P XI|¥) = (xIp') (' — ),

and rearrange the rhs using Eq. (1.79). Finally, we multiply both sides of the equation
with (x| ¥) and integrate with respect to x/,

o0
| attlpl) —09 ) = v,
—0o0
where we also used Eq. (1.75) on the rhs. The last equation holds if, see Eq. (1.76),
oy d S
(x|p}x) = 1@ ' —=x),
hence

. o N d
wlply) = [ av Bl v) = i v o). (1.83)
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The commutator of p and any function £(X) satisfies

([P, fNly) = [ dx’ (x| [B.f K] X' )y () = / dx' (F(x') = f () (xIp ¥ )y (x)
.d d
= i Gy @) + i D = Yy 2 g Ty
This must hold for any state |¢) and any coordinate state (x|, therefore
[0,/ (X)] = —i %(x) i (1.84)
or equivalently
d 1 &
[a, f(x)] - Y9 (1.85)

Generalization for three dimensions then leads to Eq. (1.55).
Henceforth, we will often employ the following common notation: we replace
the 1 (x) with merely v, and Egs. (1.82) and (1.83) with

Xy (x) = x(x)

and

pY ) = iy

In other words, we will not distinguish between the abstract and coordinate
representation of vectors and operators.

In the case of the harmonic oscillator, the Schrodinger equation (1.58) acquires
the form of a second-order differential equation in the coordinate representation

2
(_%% b 1o ) Y = Ev (). (1:86)

However, we do not have to directly solve this equation in order to determine the
forms of the wave functions. We rather project Eq. (1.66) onto the coordinate basis.
Introducing the notation (x| n) = v, (x) and using these equations forn = 0,n =1,
etc. successively leads to

(+/410) = 7 (% + ipJ0) = 0 = % (x+ )wom —0
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= Yolx) = Ae ™2, (1.87)

(at|o) = %(x&—imm Sy

= ) =

7 (x — d%) Vo(x) = Av2xe ™12, (1.88)

(a1 = %(xlﬁ—iml) = V20]2)

= 2 = 5 (3 37 ) v = 5

V2

etc. We determine the constant A from the normalization requirement

%% —1)e ™72, (1.89)

(0[0) =/_ dx (0]%) (x] ) =/_ dx [ Yoo =
Z/OO dre A2 =1=A=ng"4,

All the other functions then automatically comply with the correct normalization, as
one can verify. The kind reader easily verifies that the functions ¥(x), ¥ (x), etc.
indeed obey the Schrodinger equation (1.86).

The set of the functions {i,,(x)} is orthonormal, see Eq. (1.30),

(m|n) = / {m|x){x|n) dx = / Y () * Y, (x) dx = S (1.90)
and complete, see Eq. (1.69),

oo

(xln)(nl ) =D YY) = (x]x) = 8(x—x).

n=0 n=0

1.3.8 Momentum Representation

In many cases, such as we will see later in Sects.7.3.2, 7.6, 7.7, and 7.8, it is
advantageous to operate within the momentum representation. In this representation,
the basis of the Hilbert space is given by the eigenvectors of the momentum operator,

plp) = plp). (1.91)
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The completeness and orthonormality relations for this basis read

/_ Ip){pldp =1, (1.92)
plp)=8(p—p). (1.93)

Starting from the canonical commutation relations, we have derived the action of
the operators X and P on any state |) in the coordinate representation, namely
Egs. (1.82) and (1.83). In an analogous way, we can easily find that these two
operators X and P act on any state |) in the momentum representation as:

WIBI) = pv(p).  (pIRIY) = i%vf(p),

where ¥ (p) = (p| V).

At this point we could ask for the connection between the wave functions in each
of the representations. Using the unity decomposition, Egs. (1.78) and (1.92), we
obtain

<x|w>=[ () ol ) dp. <p|w>=[ Pl vy de.  (194)

—00

We obviously need to find the scalar product of the eigenstates (x| p). Therefore, we
project Eq. (1.91) onto the coordinate eigenstates

N d
(BIp) = plalp) =~ = i)

where we used Eq.(1.83). Inserting the unity decomposition (1.78) into the
orthonormality relation (1.93) yields

/_ (12} (xl p) dx = 8(p — ).

The solution to the last two equations then reads

(x|p) = mei'”‘, (1.95)

where we used the relation for the Fourier transform of the §-function, Eq. (1.74).

We now return again to the harmonic oscillator, this time to illustrate the method
of calculation of the ground state wave function in the momentum representation.
We can start from Eqs. (1.94) and (1.95) and readily find that

(p|0) = / e TP (x| 0) dx = Ae7"/2,
Nezs
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where we considered the formula for the integral from the Gaussian function

00 ) > T
/ eau —budu — eh /(4a) \/j (196)

and where (x| 0) is given by Eq. (1.87). Alternatively, we can obtain the ground state
wave function directly by projecting Eq. (1.66) for n = 0 onto the momentum basis:

%V’PA‘ +ipl0) =0 = (% +p) Yo(p) = 0 = Yo(p) = Ae /2.

(plalo) = 7
(1.97)

Notice that Eq. (1.95) describes a plane wave. According to quantum mechanics
then, a particle with the momentum p is assigned wavelength A = 27/p, usually
called the de Broglie wavelength. Generally speaking, we describe particles in terms
of quantum mechanics when the de Broglie wavelength is of large values, i.e., the
particle is light in mass and moves slowly, hence behaves like a wave. On the other
hand, classical approach suffices—at least roughly—when the particle is heavy or
moves quickly, i.e., the de Broglie wavelength acquires small values, and the particle
behaves like a tiny ball.

Finally, notice also that it follows from Egs.(1.94) and (1.95) that the wave
function in the momentum representation is a Fourier transform of the wave function
in the coordinate representation,

1 o0 .
o) = <= /_ V(e dr, (1.98)

which will come in hand in the next section. By multiplying the coordinate x by a
constant a and employing the last equation, we obtain for the wave function in the
momentum representation

. l R D 1
a2y (e dy = / yp@edr= v (2)
o0 a

1 o0
V2 f—oo N 2ma a
(1.99)

where v (p) is given by the previous Eq.(1.98). The factor a'/? ensures correct
normalization of the wave function

[ " drla 2y (@)’ = [ T P =1

1.3.9 Gaussian Packet and the Uncertainty Principle

There are several quantities which characterize the statistical distribution of
measured values of an observable A: in particular, the expectation value (A) we
have already encountered, see Eq. (1.46), and the square deviation
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((ahy) = <(A - <A>)2> = (A —2(A)A + (A)) = (A% — (A,

where in the last step we used the fact that the expectation value is a number,
thus we can take it out from the scalar product A questlon may arise: why to use
square deviation instead of its linear analog (A (A))" The reason is, the latter
always equals zero. Square deviation, on the other hand, indicates the “spread” of
the expectation value, meaning to what extent the result of measuring the observable
A will differ from the expectation value (A) In other words, the square deviation
estimates the uncertainty of measuring the expectation value. We now consider the

Gaussian packet
a 2
V) = |—=e @2, (1.100)
T

which differs from the ground-state wave function (1.87) merely in the substitution
x — xa. One can easily show that for this case, see Eqs. (1.46), (1.77), and (1.78),

<i>=<w|%|w>=/ <w|x><x|f<|w>dx=/_ PP dc=0,  (L101a)

(%) = /oo Y ()] dx = % (1.101b)
—oo a

Using Egs. (1.97), (1.99), and (1.100), one can also find that

I R LY
1//‘([7) - aﬁe .

It follows then from Eqgs. (1.46), (1.91), and (1.92) that

2

<f>>=/_ Pl dp =0, <f>2>=/_ PUEPp =% 110)

These results illustrate the famous'# Heisenberg uncertainty principle. The uncer-
tainty in the expectation value of the coordinate or momentum depends on the
magnitude of a, but we can reduce each of them to any size. However, as we reduce
one of them, the other necessarily grows, and the product of these two uncertainties
remains constant

((a%2)((46)") =

14In this case, the glory indeed stretches well beyond the boundaries of the physicists” world.
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In fact, we observe such behavior only for the ideal case. In general we find that

((4%?%){(4p)) =

Bl —

Instead of a general proof which does not bring much of understanding anyway,
we rather illustrate this fact on an example. Envisage a particle (for instance an
electron) in a magnetic trap. In this trap, the particle is well described by the
wavefunction (1.100). We suppose that we switch off the magnetic field at the time
t = 0, i.e., the particle henceforth moves absolutely free. What is the time evolution
of its expectation values? Since the particle is free and we may choose suitable units
so that its mass is unity, the Hamiltonian reads H= %[52 and obviously we have

[P, H] = 0. It follows then from Eq. (1.56) that

PO o= b= BOP =P’

and from Eq. (1.53) that

5 = PO = X0 =pr+Xx, X)) = p°F + (PX + Xp)r + X*.

We thus find for the time evolution of the expectation values

az
() =(p)=0. (BOF)=(F)=-,
2.2
(k@)= (pt+%X) =0, (XOP)=(p*7 + BX+ xP)t + X*) = ’T + %

where we used Eqgs.(1.101) and (1.102). One can easily prove that we have
(Xp + pX) = 0 for the state (1.100). Finally, we obtain for the product of the
uncertainties of the coordinate and momentum

(A% {(AD(O) = 10+ 7).

We thus see there is only one sole condition for the product of the uncertainties to
grow: the particle stays free and time elapses.

This uncertainty principle played a crucial role in the understanding of quantum
mechanics. It allows us to comprehend why and how the classical physics must
necessarily fail when it comes to the microscopic scales. Moreover, it allows us to
calculate the failure.

Note though, that not everything is uncertain in quantum mechanics. For example,
quantum mechanics predicts exact values for energies of stationary states. The
probabilistic approach is a necessity only when studying transitions between these
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states. Nevertheless, even this uncertainty is often smaller than the uncertainty in the
actual realization of experiments, such as the uncertainty in the initial conditions,
and thus is not crucial.

1.4 Final Notes

Note that we did not discuss the “question of measuring” at all. This “problem,”
roughly speaking, comprises the question why we describe the measuring apparatus
in terms of classical mechanics, while the measured system with quantum mechanics,
and where the line between these two approaches lies. This question goes hand in
hand with the fact that we do not observe quantum-mechanical interference in our
everyday lives. Recently, physicists successfully performed remarkable experiments
that illustrate the disruption of the quantum-mechanical interference resulting from
an “uncontrollable” interaction between meso- and macroscopic systems with their
surroundings. One may find a more detailed description and elucidation of these
experiments in [2], a motivation in [15], and necessary theory in [3]. These
experiments furthermore show that under special circumstances when we manage
to control this “uncontrollable” interaction, we can actually observe the quantum-
mechanical interference for mesoscopic systems. However, as our control of the
interaction gradually weakens, the interference signal likewise fades away. As long
as the studied system requires a quantum-mechanical description, no difficulties but
one arise—the system cannot serve as a measuring system. This means, if we are
to acquire experimental data, the measuring system must be of a “sufficient size”
in order to describe it within the framework of classical mechanics. An interesting
if very unorthodox view of the “question of measuring” may be found in [10].
Although the authors do not share this view, it is definitely worth learning about it.
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Chapter 2
Approximate Methods in Quantum Mechanics

However light and elegant the mathematical apparatus of quantum mechanics
appears, we can solve exactly only very few physically interesting problems with it.
Therefore, we need to opt for appropriate approximations when facing the remaining
vast majority of quantum-mechanical problems. In this chapter, we will introduce two
basic approaches—the variational and perturbation methods. Naturally, many others
exist (for example the semi-classical approximations). However, those usually focus
on a specific class of problems, while we can employ the variational and perturbative
methods when facing almost any problem. We will illustrate both methods on the
simplest problem one cannot solve analytically—the anharmonic oscillator.

We now return to the potential expansion (1.57) and consider more terms this
time. We cannot simply add the next—third-order—term, though. Depending on
the sign of the third derivative of the potential at the point where we carry out
the expansion, the asymptotic behavior of the third-order polynomial would be
either V(x - —o0) — —o0, or V(x — 400) — —o0, in both cases without a
global minimum. This would result in the absence of any bound states; that is, all
particles, although initially contained within a local minimum of the potential, would
eventually tunnel through the barrier and escape for good, see Fig. 2.1. For detailed
discussion of tunneling see, e.g., [2]. It follows thereof the highest power of potential
must be even. Therefore, we include all terms up to the fourth order in x,

N 1 N 1 N 1 N
V(X) = EV(Z) 0) % + §v<3> 0)x* + EVW 0)X*.
As we aim to merely illustrate the method, we further simplify our problem by setting
V@3 (0) = 0. The form of the resulting Schrodinger equation (after the removal of
constants via a scale transform) reads

pr R 9
ST v =By, 2.1)
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Fig. 2.1 A polynomial
potential with the highest
nonzero odd power does not
support the bound states
E>V(x)
5
=
tunnel
E<V(z)

2.1 Variational Method

2.1.1 The Ritz Variational Principle

The variational method exploits an interesting observation we will now derive. We
have for an eigenstate of the Hamiltonian

- CALIED
H|¢,) = E,|¢n E =———.
) = Ealln) = B =g 1)
We take an arbitrary, “test,” vector |) and calculate
(v IHIY)
Evar = . > 2.2
(V] W) (2.2)

where we call Ey, the variational energy. Obviously, it is not the energy of the
state |y) since the energy of that state is not well defined as it is generally not an
eigenstate of the Hamiltonian. Were we to interpret this number, we would call it the
mean value of the energy after many repetitive measurements on the test state. We
now subtract the ground state energy from the variational energy,

L _WIHY) L (WIH=ElY)
Ball=E ="y ~B0= "0y
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We use the spectral decomposition of the Hamiltonian and write Ey as a unity
operator expressed in the basis of the Hamiltonian eigenstates,

Evnlt] — By = —— (S By 0 (601 9) — B0 3 (016) (6] 0)
Wi (&

n=0

= ZE — Eo) [(¥| ) > =

The last equation represents the so-called Ritz variational principle. One can readily
see—for both the energy difference to the right and the squares of scalar products
are positive—that the difference between the variational energy and the energy of
the ground state is positive as well. Thus, the variational energy always acquires
larger values than the energy of the ground state! Owing to this fact, we are able
to calculate the ground state of a Hamiltonian and its energy using the variational
calculus, namely by searching for the extremum of the functional (2.2). For instance,
we can parametrize the state |1/) using a few variables and search for the extremum
of the functional (2.2) as a function of several variables.

2.1.2 Optimization of Nonlinear Parameters

We now demonstrate the above-presented approach on the case of the anharmonic
oscillator (2.1). One would expect that for small §, it behaves very much like the
harmonic oscillator. For this reason we consider the test function of the ground state
in the form
o2
I//(X;Ol) — e X /2’

where o represents a real parameter. The variational energy is then exactly as in
Eq.(2.2)!

—0o0
Evw = = — - 4+26—. (23
iy [ e—edx de Ta T @Y

00 —ax? 1 —ax?
[ (G s st e e, g

We now try to find the minimal energy such a guessed state allows for. The required
condition for a minimum of the function states the first derivative be equal to zero:

"Here we used Eq. (1.96) for b = 0. One can obtain the remaining integrals by differentiating the
integrals with respect to a parameter.
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0. 1 1 38

b 42 3 2@

After reordering it to a?—a—68 =0, we readily see that there is a single real
root to this equation. We then obtain approximate energy of the ground state by its
substitution into Eq. (2.3).

2.1.3 Optimization of Linear Parameters

The previous section made use of the so-called nonlinear parameters. However,
another possibility exists: linear parametrization. In this case, we express the sought
ground state as a finite sum of reference states, for example of the stationary states
of the harmonic oscillator,

N
) = cli). (2.4)
j=1

We can certainly use any other basis as well. The only restriction is the basis set {|j) }
be complete in the limit N — o0, so that we could express any vector |/) as a linear
combination of the reference states. After substitution into Eq. (2.2) we arrive at

S aclilFl) XN Py
Evar == N . = ¥ ) (25)
> i cici{ilf) YN ciciS;

The numbers S;; are called the overlap matrix elements. As before, we differentiate
Eq. (2.5) with respect to all parameters c; and set these derivatives equal to zero,

that is aﬁf;‘ = (; we thus have
N ac; 3(7/‘ FI N |:| N dc; 8Cj
"21 (achj + Ci@) (H); .Zl cici(H);; “21 (@CJ’ + Ci@) Sij
ij= = L=
0= —

N N 2
2 ciciSi (Z c,-c,-S,»,)
ij=1 ij=1

It follows from the independence of the parameters ¢ that g—;’( = §;x. Therefore
the following equation must hold, bearing in mind Eq. (2.5),

N

N
> (Bucy + cidi) (A)g = Evar ) (Sicc; + cid) Sy

ij=1 ij=1
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If we use real basis, both the Hamiltonian and overlap matrices are symmetric (for
they are Hermitian and real); hence

N

N
Z CJ(F')IJ = Evar Z CjSij s

J=1 J=1

or in matrix notation
Hc = E,,Sc. (2.6)

The optimization of the linear parameters thus results in searching for a solution to
a generalized eigenproblem (2.6).

Once again, we use the anharmonic oscillator (2.1) to illustrate this method. We
choose the eigenstates of the harmonic oscillator as basis states, the overlap matrix
elements S;; then being equal to §;;. We thus need to evaluate only the matrix elements
of the Hamiltonian matrix, (I:I)ij = (t||:|[/) After substituting for the Hamiltonian,
we obtain

. o . 1 )
R = 1 (5 + 5+ 5% ) U = GG + 850 = 8 (4 5 ) + 805

2.7)

There are two possible ways of finding the numbers (i|X*|j). The first one,
straightforward though arduous and tedious, leads via the coordinate representation.
For instance, the first element is

(O|)"(4|0> — /00 (0|x)x4(x|0) dx = /oo Le—xz/2x4Le—x2/2dx — z
. o N 4’
where we used Eq. (1.87).
The other one is based on expressing X* in terms of the ladder operators & and a*
which “act nicely” on the eigenstates of the harmonic oscillator. We can thus find
the action of the Hamiltonian very easily. From Eq. (1.70) we have

1 Y
o4 AL A+ a4 1 (A324+4 4 A+43 1 A3A+ 4 Aat+a?
X' =|—=(@+a =—-J]a +(@a'a’ata’'a +aa +aa'a
(ﬁ ( )) & )
+ (&°@"T)* + (@*)’a’ + ataata+aataat +ataaat +aatata)
+ ((@*)Y’a+4ata@h)* + (@h)’aat +a@")’) + @h*] .
Recalling that the operators & and & act according to Eqs. (1.66) and (1.68), alj) =
Jili—1),at)j) = /j+ 1|j + 1), and that for example

{ia*l) = viG — DG —2)G=3)ilj—4) = Vi — DG —2)G —3)8;j—.
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where in the second equality we used the orthogonality equations for the eigenstates,
Eq. (1.30), we see that the terms in the expansion of X* can shift the state |j) only
to |j £4) (if only one of the two operators & and &* is present), to |j & 2) (one
of the operators occurs three times, the other only once) and to |j) (both operators
occur twice). To further simplify our task, we substitute i - i —2 andi — i — 4
in the calculated elements (i|X*|i 4+ 2) and (i|X*|i + 4), respectively, and obtain the
results also for (i —2|X*|i) and (i — 4|X*|i). Since the operator X* is Hermitian, we
have (i|X*|j) = (j|X*|i)* = (j|X*|i) where the last equality holds because eigenstates
of the harmonic oscillator form a real basis, see, e.g., Egs. (1.87)—(1.89). For this
reason, we have (i — 2|X*|i) = (i|Xx*|i — 2) and (i — 4|X*|i) = (i|X*|i — 4). Thus we
see that instead of a tiresome calculation of numerous integrals it suffices to calculate
three numbers algebraically,

({|Xi+4) = —(i|a*]i + 4) = —\/(H— DE+2)(+3)(E+4),

(ix*i +2) = —(i| (8*aTa+a*ta’ + a'at + aata?) i +2)

— R~ K=

=3 <\/(i TG +2)° + V2G+ )i +2)

+ i+ DG+2)G+3)2+ i+ D3+ 2))

_ LuiveJiToa+,

4
- 1 AAAd A A At AA  AdAAd4a
(i|1x*i) = Z(i| (aaa*tat +atataa+ataata

+ aataat +ataaat +aatata)li

) ‘l‘ (VE+DEH 2D + Vili— 1P+ V7

+Vi+ D+ VEG+ D2+ i+ 1)2i2)
= %(61‘2 +6i+3).
It follows from our previous considerations that
(i|%4i—2) = -(41 Vi — 1),
(i|x*i —4) = Z\/i(i —D(i—-2)i-3).
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Owing to the symmetry mentioned earlier, we have thus all needed matrix elements,
and nothing hinders us now from substituting them into Eq.(2.7) and from
diagonalizing the Hamiltonian matrix.

Itis worthwhile, though, to inspect its structure. It follows from Eq. (2.7) and from
the above calculated results that the Hamiltonian does not mix odd and even states.
That is, (i|H|j) equals zero unless the states |i) and |j) are both even or both odd.
This is a deeper result associated with the notion of parity of a state,” and is more
obvious if we use the coordinate representation. We readily see that the Hamiltonian
H in Eq. (2.1) is invariant with respect to interchange X — —X. Therefore, if 1/, (x)
is an even function and v,(x) an odd one, the matrix element of H between these
two states is zero,

(WelFllp) = /_ R, () = 0.

for an integral of an odd function over an interval that is symmetrical around the
origin always equals zero. We thus see that the class of odd states and that of even
states are completely separated worlds for our system. We can exploit this finding
when diagonalizing the Hamiltonian and reorder the matrix into a block-diagonal
form by renumbering the basis

0 2 4 1 3 5
0 /% *x *x x%
21« * *x x*
41 * * *x x
HZ-****
1 * ok k%
3 * ok x %
5 * ok x %
* % k%

This approach is often called the adaptation of the basis to the symmetry of the
system. The asterisks mark generally nonzero entries while the empty positions are
zero. For example, if we are interested in the ground state energy, we can remove all
rows and columns corresponding to odd states as the ground state is an even state.

Table 2.1 lists the results we would obtain considering N even states and setting
8 = 0.1, as the reader can (and should) easily verify.

Table 2.1 Variational energy N 1 2 3 4 5

f the anharmonic oscillat
oF e anfiarmonic osciiator 2E(N) | 115 | 1.1191 | 1.1188 | 1.1183 | 1.118293

2We will use it again later on, in more complex situations, see Sect.5.3.8.
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Table 2.2 Comparison of 28 2 fnnolin (Ol) 2 Elin (N = 9) 2E,
Its of the nonli d

restts OF e flominear an 1072 | 1.0073908 | 1.0073737 | 1.0073737

linear method
02 1.1206 1.11829 1.11829
1 1.4033 1.392355 1.392351
100 |5.10 5.8 5.00
2000 | 13.66 44.79 13.39
40,000 | 37.0 830 36.3

One can also notice from this table how we usually, though non-rigorously,
estimate the error of the variational method. We consider the numbers that do not
change with an increasing basis set—are stabilized—as final and accurate.

The next table, Table 2.2, summarizes and compares the results obtained
employing both variational (linear and nonlinear) methods. One can readily see
from the table that the linear method is more accurate for smaller deviations from
harmonicity. The accuracy of the nonlinear method in the case § ~ 10,000 is
surprising as such a system has little in common with the harmonic oscillator. The
explanation lies in the following. If we opt for the linear method, we have N fixed
functions to compose the best fit to the correct function. In case of the nonlinear
method, on the other hand, we are able to obtain the parameter o directly as a
function of the parameter §. This means that at least for small |x| we are able to
adjust the wave function of the harmonic oscillator to the real ground state wave
function. The difference between the harmonic oscillator function and the exact
ground state function for large |x| does not cause much error. The reason is, both
functions decrease rapidly for large |x| and the area in turn contributes substantially
less to the integral (2.2) than the area of small |x|. In practice, one usually uses a
combination of the both, linear and nonlinear, methods, see Sect. 5.3.

Finally, we remark without a proof that also the energy estimates for higher
excited states calculated by the diagonalization of the Hamiltonian in a finite basis
lie above the exact values of these energies, as in the case of the ground state.

2.2 Perturbation Method

2.2.1 Isolated Levels
We consider, once again, the Hamiltonian of the anharmonic oscillator,

H= - (p*+ %) + 6% = Hy + 6H,, 2.8)

| =

this time as a sum of the Hamiltonian of the harmonic oscillator (eigenfunctions and
eigenvalues of which we know) and a small perturbation of the order §. We write
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the sought eigenstate of the Hamiltonian (2.8) as a sum of the harmonic oscillator
eigenstate and a sequence of perturbations of increasing order in §, and we perform
a similar expansion for the eigenvalue:

) =¥ @) + 81y D) + Zy?) + ...
E=E9 4+ §gM 4+ §2E® 4 . (2.9)

We substitute both these expansions into the Schrodinger equation I:||w) = E|y)
and collect terms with the same power of §:

(Ho — EM)|y©) =0, (2.10)
(o = EOyV) = —(F — ED)|y ?). @.11)
(Ho — EO) |y @) = —(H; — EO) [y D) + EQ|y©), (2.12)

and similarly for higher orders.

In the following text, one needs to carefully distinguish between the unrelated
upper and lower indices: the former stands for the order of the perturbation, while
the latter for the excitation level of the state under consideration. The equation for
the eigenstates and eigenvalues of |:|0 reads:

(Ho—EMn)y=0, n=0,...,00. (2.13)

By comparison with Eq. (2.10) we obtain E©@ = E{ and |©) = |N), where |N) is
the so-called reference state— the N-th excited state of the unperturbed system. Our
task now is to find the effect of the perturbation on this particular reference state.

Equations (2.10)—(2.12) do not determine the perturbation functions |y®)
unambiguously. One can easily verify that they are given but for an addition of
an arbitrary multiple of the reference state: [y ) — |y @) 4+ |y @) . This freedom
is related to the normalization of the exact solution |). A common choice of the
normalization, called the intermediate normalization, is

WOl =8, = (YOy)=1. (2.14)

The difficulty while solving the eigenproblem stems from the fact that we need to
simultaneously determine the eigenvalues and eigenvectors of the pertinent operator.
The advantage of the perturbation method lies in that we are able to “disconnect”
this problem. When we multiply Egs. (2.11) and (2.12) by a bra-vector (|, we
obtain

EV = (yOIH, |y ©), (2.15)
E® = (yOIF — EDy ) = (y Oy ©).
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This shows that we can always find the next energy perturbation with the mere
knowledge of the previous perturbed wave function. We can express the first energy
perturbation, EV, using the known reference state (). If we then solve Eq. (2.11)
for | (V) we are able to calculate E?, etc.

However, how does one solve Eq. (2.11)? For we generally know nothing about
the action of Hy on the state [ (D) we expand the state [1/(1) on the basis of the
eigenstates of the operator |:|0,

)y =3 elln).

n#N

Substituting from Eq. (2.13) and multiplying Eq. (2.11) by a bra-vector (m| yield

(m] " D(ED — ED)|n) = (m|(EV — H))|N)
n#EN

= ny:)(E,S?) - E](\?)) = E(I)SmN - (m||:|1|N>

:>c,(nl)— m||:|1|N), m#N, c;,”zo,

EY —E\

where the last implication follows from Eq. (2.14). From the above expressions for

E® |y M) and cﬁ,l) we finally obtain
R 2
|v1Fi )|

(2.16)

E® — _ Z

(0) 0) -~
n#N E, _EN

The estimate of the energy up to the second order of perturbation is then

E~E9 4§D 4 §2E®

Exercise 3: Perturbation Method} A

Using the perturbation method of the second order, estimate the ground

. L 2, R s
state energy of the system with the Hamiltonian H = % + 5+ 8X* for
28 = 1072. Compare the result with the variational estimate.
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2.2.2 Degenerate Levels

In none of the one-dimensional systems examined up to now did we encounter
degeneracy, namely an existence of several (at least two) distinct levels with the
same energy. In fact, there is a rule stating that degeneracy occurs only in more than
one dimension. We now apply the perturbation method to a system that does contain
degeneracy, namely to two weakly coupled harmonic oscillators. The Hamiltonian
of such a system is of the form

A= 5(p,% +53) + 5(p§ +97) + 6529 = A + AN 4 sA, = Ay + 6H; .

The constant § governs the magnitude of the interaction between the two oscillators.
Note that we know the eigenstates of the unperturbed problem given by Eq. (2.13);
we can arrive at them by a direct product of the eigenstates of the x-dependent and

y-dependent parts of the full Hamiltonian, denoted as I:|g Jand Hg ], respectively:

l5j) = [i))i() -
The corresponding eigenvalues are then

Fold) = (7 + A1) ieonlion = (i-+ 5 5+ 5 ) linlion) = £

= E =i+j+1.

By the notation I:Igc ] + I:I([}] we mean I:I(,SC R1+1® HOSC, where I:IOSC is the Hamiltonian
of the one-dimensional linear harmonic oscillator. The action of such an operator
on a state |i(x))|j(y)) can be then written as (I:|0SC RI+1R I:|OSC)|i(x))[j(y)) =
(|:|OSC|i(x)))(1[/'(y))) + (1|i(x)))(|:|OSC /(). As long as we keep § equal to zero, the
energy levels of the system are degenerate. It means that the states |10) and |01)
have the same energy E©) = 2, the states |20), |11) and |02) have the same energy
E® =3 and so on. )

The exact Hamiltonian H is invariant with respect to the interchanges x — —x
and y — —y. This implies that there are four classes of states, i and j even, i and
j odd, i odd and j even, and i even and j odd, which are not mixed across by the
exact Hamiltonian. This means that in the perturbative as well as in the variational
calculation, we can restrict ourselves only to a single class of these states. For clarity,
Fig. 2.2 displays the lowest levels combined from even states of the oscillators only.

In the following we focus on searching how the energy of the states |02) = |0)|2)
and |20) = |2)]|0) changes when perturbation is taken into account.

The application of the perturbation method is slightly more difficult for the
degenerate levels than for the isolated ones. The problem is we do not a priori know
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Fig. 2.2 Energy of the (0)
degenerate levels EZJ
5
0)[4) [212)  4]0)
0)[2)  [2]0)
1
|0) 10)

which unperturbed wave function to choose at the very beginning. For instance, for
E© = 3 every linear combination of the form

[y @) = ¢1]02) + c2]20), 2.17)

where ¢; = (02| @) and ¢, = (20| ) obeys Eq. (2.10).

The coefficients ¢; and ¢, together with the first correction to energy E(
are determined as follows. We multiply Eq. (2.11), (Hy — EQ)|y D) = —(H, —
EW) |y @), from left first by (02| and then by (20|. We obtain

(02|F [y @) = ED(02]y @),
(20[A |y @) = ED 201y @) .

By substitution of the expansion (2.17) into the last two equations, and using the
orthonormality of the states |02) and |20),® we find

o EW = C|(|:|1)11 +02(|:|1)|2 and cEV = CI(HI)ZI +02(|:|1)22.

This can be written in a matrix notation

ED (Cl) _ (@1)11 (EII)IZ (01)
) (Hi)21 (H)2 ) \e2
One can easily recognize that the rank of the matrix always equals the degree of the
degeneracy of the inspected state. We now need to calculate the matrix elements of

the operator H*:

3(02]20) = (0(x)|2(x)) (2(»)] 0(»)) = 0, see Egs. (1.30) and (1.90).

“4The last step in this equation is best understandable in the coordinate representation:
(O 2E)FY20))10(x)) = f dr / dy Yo () Y2 ()XY Y2 () Yo ()

- / g ()2 Yo () / dygn )y va() = (01%210)(2IR22).
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(F)n = (02]H102) = (0)[(2()I29*12())|0(x)
= (0@)X*[0(0)) 2MIF*12(7)) = (0[%*[0)(2[%*|2) .

We can rewrite these expressions, once again, in terms of the operators aandat,

(01%*10) = = (0| (44 + aa* +ata+atat)|o) = -,

= N
| N~

21%*)2) = - (2| (¢4 + aa* +ata+atat)|2) =

s

hence (I:|1)1 1= % and similarly for the additional elements. We obtain the equation

E(l) C1 _ l 52 C1
(&) 4\25 C2 ’
which has two solutions, E(V) € {% 3—1} Therefore the sought energy of the first
excited state composed of even functions only, E ~ (iM 404 1)+8EV) = 34+§ED

splits into two sublevels,
3436,
E= 4 3
3+36.

f-[ Exercise 4: Degenerate Perturbation Method ]—@

In the first order of the perturbation method, determine the splitting of the
level E© = 2 in a system with the Hamiltonian

N 1 . N 1 . A A3 A
H= (0 +5) + 3B + ) + A%y,

— 1
where A = 5.

2.2.3 Note on the Error of the Perturbation Method

With the exception of very simple systems, such as those we discussed, it is
practically impossible to calculate a large number of perturbation coefficients. This
leads to the question how large an error we create when we truncate the perturbation
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series (2.9) after N terms, taking E© as the zeroth term. For small magnitude of
the parameter §, we can estimate that the inaccuracy will be of the order ¥ +!. For
example, in the case of the anharmonic oscillator the series (2.9), terminated after the
second term, yields 2E = 1.0073687; the error being of the order of (2§)° = 107°.
The exact value reads 2E = 1.0073737 and the second-order estimate is off by
5 x 107°, which agrees with the estimate of the error. For 2§ = 0.2, we obtain from
the second order perturbation method 2E = 1.0975. Comparing this with the exact
value 2E = 1.11829 confirms the error of 2 x 1072, which is, once again, very close
to the estimate (28)° ~ 1072, Mathematicians call these series asymptotic, which
have, alas, little in common with the convergent series. A reader willing to discover
more on this fascinating topic within mathematical physics should be satisfied by
the captivating book [1].
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Chapter 3
The Hydrogen Atom and Structure of Its
Spectral Lines

In this chapter, we focus on hydrogen-like atoms' and their spectral structure in
great depth. We show that the spectrum consists of a gross structure resulting from
the electrostatic interaction between an electron and the nucleus, a fine structure
arising from the spin-orbit interaction, and a hyperfine structure stemming from
the spin-spin interaction. These structures are not specific solely for the hydrogen-
like atoms though, we encounter them in any system which we can describe in the
first approximation within the framework of nonrelativistic quantum mechanics. As
we will shortly see, the spin-orbit interaction is an effect of relativistic kinematics
and the spin-spin interaction is nothing more than a quantum mechanical analogy
of the interaction of two magnetic dipoles. In the case of such systems, the
effects of relativistic kinematics are minor and likewise the magnetic interaction
is substantially smaller in comparison to the electrostatic interaction. Furthermore,
we focus on the problem of hydrogen-like atoms to illustrate several methods that
we will then systematically develop in the next chapter.

! A hydrogen-like atom is a bound state of two charged particles. The simplest example is hydrogen
atom consisting of an electron and a proton. The other examples discussed extensively in this
book are deuterium, where the proton is replaced by a deuteron, the bound state of a proton and
a neutron, muonium, where the proton is replaced by an antimuon, an electron’s heavier cousin
with the opposite charge, positronium, where the proton is replaced by a positron, electron’s
antiparticle, see Chap. 7, and muonic hydrogen, where the electron is replaced by a muon. Under
the term antiparticle we mean a particle with the same mass and spin as, but opposite charge to the
“original” particle. Although this definition is too narrow, it suffices well in this book.
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3.1 A Particle in an Electromagnetic Field

In this section, we make use of the following relations. Within the Hamiltonian
formalism, we substitute

E—>E—egp, p—op—c€A 3.1

to obtain the energy and momentum of a particle in an electromagnetic field.
Assuming the Coulomb gauge V - A = 0, the vector and scalar electromagnetic
potentials, A and ¢, respectively, solve the equations

9 2 dg 2
(ﬁ -V )A(r, 1) =j(r, 1) — Vﬁ(r, 1), —Vop(r,t) = p(r,1). (6.11)

We derive these relations later in Chap. 6, Sect. 6.1. At this point, a detailed discussion
would stray us too far from the topic, and a kind reader will surely believe the authors
that these relations indeed hold.

Furthermore, we neglect the time retardation at this point and keep only the
time-dependent source on the rhs, that is, we consider only

— V2A(r, 1) = j(r,1) — v%—‘f(r, 1, —V2p(r,1) = p(r,1). (3.2)

instead of the entire Eq. (6.11). The operator on the lhs of Eq. (6.11) is responsible
for propagation of the EM waves, while the rhs represents local changes in the
charge distribution. We will show later, see Sect.3.6.1, that the time derivative
on the rhs can be eliminated. Having neglected the retardation, we can treat the
electromagnetic field in terms of the classical theory. We may quantize only a physical
object which we may ascribe a canonical coordinate and a canonical momentum. A
static electromagnetic field does not carry any momentum, as we discuss in more
detail in Chap. 6.

3.2 The Gross Structure

3.2.1 The Problem of Two Particles

In the nonrelativistic description, the total energy of hydrogen-like atoms equals the
sum of the kinetic energy of the nucleus, the kinetic energy of the electron and the
potential energy arising from the mutual interaction of the electron and the nucleus
which depends only on the distance of the two mentioned particles. Having imposed
the commutation relations, the Hamiltonian operator describing the system reads

. p? p? A oA
H="1 4+ 2 4+ V(Kh—h. (3.3)
2m;  2my
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One can easily verify that the operator of total linear momentum commutes with the
Hamiltonian

[P+ P2, Hl = 0.

As we will discuss in more detail later, the existence of operators that commute
with the Hamiltonian substantially simplifies the process of solving the Schrodinger
equation. In this case, for instance, it allows us to reduce the six-dimensional problem
to two three-dimensional ones.

Within the framework of classical mechanics, one may transform such a problem
of two particles to a one-particle problem by introducing the relative position of the
two particles and the position of their center of mass, called the Jacobi coordinates

miry + mpr,
rg =r; —Iy, rr=— =, (3.4)
m; + my

We find the operator of the squared momentum in terms of the new coordinates with

the help of the chain rule for derivation of a composite function. We thus have for
two particles moving in one direction

S S SR S
: ox? (mi +mp)? 0x3  dxp  (mp+mp)> | TR

and similarly for p3

2

Y m Y
= ————P7 + Pk

(my +mp)2" " R
Here, pr denotes the momentum of the center of mass and Pg the relative momentum
of the two particles. One can easily find that these relations between p?, p3 and p7, px
hold also in three dimensions. Thus in terms of the new coordinates, the Hamiltonian
operator (3.3) acquires the form

N PR (1 mi 1 m3\ Pk 1 P7 . Pi
H‘?(m_lﬁ+m_zﬁ — m—+— VAR = LA 3 T+ Vi)

Here, we set M = m; + m; and call the quantity

mini m
mi+m 140

m, =

the reduced mass of the system. When one of the masses significantly exceeds the
other (such as in the case of an electron and a nucleus), m, nearly equals the mass of
the lighter constituent. Since the Hamiltonian is a sum of two mutually commuting

sets of terms, namely 5T b and pR - + V(|Fx]), in the Schrodinger equation
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HY (rr, 1) = EVY (rr, %)

we can separate the coordinate of the center of mass and the coordinate of the relative
motion

Y (rr, 1) = Y (rr) ¥ (rg) .

Denoting the energy corresponding to the free motion of the center of mass as Er,

FA)—%w(r)—E ¥ (rr)
oy V) = ErvirT),

we obtain

A2
(% + V(|rR|)) ¥ (rg) = (E—E) ¥ (rz) . (3.5)

We see that—as in classical mechanics—we can transform the problem of two
particles, interaction of which depends only on their mutual distance, to a problem
of one particle of the reduced mass m, moving in an external potential field. The
obtained energies are then diminished by the kinetic energy of the center of mass.
In the next sections we will follow the common habit of expressing the energy of an
atom in the center-of-mass frame where Er = 0 as experimenters report their results
in this frame.

3.2.2 Electrostatic Potential

The electrostatic potential caused by the nucleus is a solution to the Poisson equation,
see Eq. (3.2),

— VZo(r) = p(r). (3.6)

In a very good approximation, one may consider the nucleus as a point—its size
is typically of the order of magnitude 10~!> m, while the size of the whole atom
reaches usually that of 10~'® m. With no loss of generality, we may place the origin,
from which we determine the position vector r of a point where we find the potential
@(r), so that it matches the position of the nucleus

p(r) = Zeé(r), (3.7

where e represents the elementary charge and Z the nuclear charge in the elementary
charge units. A field created by a point charge is spherically symmetric, ¢(r) = ¢(r).
If the function, upon which the Laplacian operator acts, depends only on the distance
from the nucleus, the Laplacian operator acquires the form (see Eq. (3.21) below)
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2 2d

Vv? )
- dr? + rdr

We solve the equation

2
—(d +2d)<p(r)=0,

PR
for r # 0 with the initial guess ¢(r) = Ar*. We obtain « € {0, —1}. However, only
the latter satisfies Eq. (3.6) with the charge density given by Eq. (3.7). We find the

constant A from the original equation by integrating it over volume including the
central singularity,

/—V2<p dv = /ZeS(r) dV = Ze.

We rewrite the volume integral on the lhs using the Gauss’s theorem (see, e.g., [1])
to a surface integral over the boundary of the considered volume. We further express
this boundary in terms of a solid angle dS = nr?d£2, and successively obtain

—/v2<pd3r=—9§(v¢)-d5=—/n-v¢(r)r2dsz =/;4—2r2d9 = 47A,

where we substituted ¢(r) = Ar~! and Vo(r) = n%—‘f in the third step, see Eq. (3.15)
below. We thus have for the potential energy of the electrostatic interaction in the
Schrddinger equation (3.5)

Ze? Zi
V(r) = ep(r) = —4—; - —7“. (3.8)

We call the corresponding potential ¢ the Coulomb potential> and we will extensively
focus on it in this book.

3.2.3 Units

The constant « introduced in the last relation is termed the fine-structure constant. It
is a dimensionless number (thus independent of the choice of units) and its reciprocal
value equals (see [3])

o~ = 137.035999074(44) ,

2The reason might probably be to stress that it is an electrostatic potential. Newton potential would
be a more convenient name, though.
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where the numbers in the parentheses indicate the uncertainty in determination of the
last two figures. In the center-of-mass frame with the potential (3.8), the Schrédinger
equation (3.5) acquires the form

As in the case of the harmonic oscillator, we once again transform the equation to
dimensionless (afomic) units by substituting » = kry

) 52
(pA _Z_a)w:Ew = (p_A_ZOlmrK)w:m,/czEw.

2m,k2  rak 2 rA

Now we exploit the freedom in the determination of k and set Zam,x = 1. We thus
obtain

o
(p_A _ _) Y =Ey. (3.9)

2 ra

In the last equation, we have finally eliminated all of the constants, and so we have

E = m,(Za)* " E, . (3.10)
m

e

In natural units, we obtain energy in electronvolts. Experimenters, though, prefer to
publish their data in terms of frequencies of transitions rather than of energies. The
frequencies are usually listed in hertz, and we will now show how to change from
electronvolts to hertz. Within the framework of SI units, we need to multiply the
ths of Eq. (3.10) with ¢? where ¢ stands for the speed of light in vacuum. We thus
successively obtain

E 2 r 2 r r
S D T Za)Ey = 2 P02 Ey = Roocmt2Z2Ey . (3.11)
2mh m, 4nh  m, m,

We call the constant R, the Rydberg constant and its product with the speed of light
in vacuum equals [3]

Rooc = 3.289841960364(17) x 10"° Hz.

Comparing Egs.(3.10) and (3.11), we readily see that the transition from
electronvolts to hertz

E(eV) — v(Hz)
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corresponds to the substitution

(3.12)

3.2.4 Spherical Coordinates

In case of an electron moving in a potential that depends only on the distance
between the particle and the source of the acting force, it is advantageous to solve
the Schrodinger equation in spherical coordinates. We write the transition from
Cartesian to spherical coordinates as

X=rm, (3.13)
where r is the distance between the particle and the origin of the acting force (e.g.,
the distance of an electron from the nucleus), and n is a unit vector pointing to any
direction in space,

n = (sin ¥ cos ¢, sin ¥ sin ¢, cos V) . (3.14)

Using the chain rule for derivative of a composite function, we find the form of the
operator V in spherical coordinates

. . i a Vv
Pa — —-iV, Vi=—=mn— —, 3.15)
0xy ar r
where we introduced the angular differential operator V"
sing d d cosg 0 ) ad )
n — _ _ 29_’ _r - 19_’ _ 29_
( P A R P R TR
(3.16)

From Egs. (3.14) and (3.16), we find the scalar product of the vector operators n and
Vl‘l

n-vV'=0. 3.17)
The order of the operators matters since the components of n and V" do not mutually
commute. To find their commutation relation, we start with the commutation relation

(confront with Eq. (1.85))

(Vi xi] = 8
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and substitute from Eqgs.(3.15) and (3.13) for V; and x;, respectively. After
rearranging the terms, we get

), Y e =5
n—+ ——,rm | =nm | —,r L] = o;
Tor PR 7 or k i
= I:an,l’lk:l = Ojk — Nj N . (3.18)

In the first equation, we exploited the fact that if one of any two operators acts
solely on the angular variable while the other only on the radial variable, these two
operators commute mutually, for instance [3%, ng] = 0,[V!,r] = 0,etc. Settingj = k
in Eq. (3.18) (and keeping in mind we are using the Einstein summation convention),
we obtain

[V,’(’,nk] =2. (3.19)
It follows then from Eqgs. (3.17) and (3.19) that

Vim =2. (3.20)

Substituting for V; from Eq. (3.15) and considering Eqs. (3.17) and (3.20), we write
for the square of the momentum

+_

arr " ror r? (3:21)

2 ny2

3.2.5 Solution for s-States

We now solve Eq.(3.9) for the special case of the so-called s-states, i.e., states
with no angular dependence. That is, the wave function depends only on the radial
variable r. Considering (3.21), we may then write Eq. (3.9) as (we use atomic units
in this section)

1
2n?

ly), H= : (3.22)

Hiy) = -

SIS
—>| =

where we introduced the operator of radial momentum f),, which acquires the
following form in the coordinate representation’

3Note that one is prone to make a mistake when finding p2:
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. [0 1 - ? 29
r = - o I ) =\ - .2
P 1(8;’ + r) i (8r2 + r ar) (3:23)

and where, without loss of generality, we rewrote the energy of a bound state into
the form

1

Ba=ae

(3.24)
where n represents a real number for now. We will later show that it is a natural
number.

We use several tricks to solve Eq. (3.22). First, we substitute »r — nr and multiply
the whole equation by r so as to transform the original eigenvalue spectrum of
Hamiltonian operator to a spectrum of a different operator:

: L i
Lly) =nly)., Ts=—-F+

(3.25)

N =

We denoted this operator 'T'3 for reasons that will shortly follow.

The benefit of this trick lies in the following. Spectrum of the Hamiltonian
comprises a discrete (E4 < 0) and a continuous (E4 > 0) part. From a physical point
of view, it is absolutely acceptable for we are then able to describe processes such as
the photoelectric effect where an electron passes from the discrete to the continuous
part of the spectrum, see Sect. 6.3. However, from a mathematical point of view, this
implies that the discrete part of the spectrum of the Hamiltonian operator does not
constitute a complete set of functions. Yet we know from Chap. 2 that a complete set
of functions is requisite if we wish to determine energy levels of atoms with more than
one electron employing the variational method. As we will shortly see, the operator
'i'g, unlike the Hamilton operator, has a complete discrete spectrum. Eigenstates of
this operator are thus more favorable than those of the Hamiltonian (3.22) when
searching for energy levels of many-electron atoms.

The second trick lies in noticing that the operators

W, =%,  W,=1#p,, W;=0p’ (3.26)

are closed with respect to commutation

DA\ ( R 10 a1
or r o r) 0 ror orr 2’

now



68 3 The Hydrogen Atom and Structure of Its Spectral Lines

Wi, Wol = iW,,  [Wo,Ws] = iWs,  [W,,W5] = 2iW,. (3.27)
Considering a linear combination of these operators
T = %(VAV3 -Wy), T, =W,, T = %(VAV3 + W), (3.28)
leads to commutation relations with a highly symmetric form
Mo =—iTs,  MT=iT, [[Tl=il. (3.29)
If we now introduce the ladder operators
To=T+iT,, (3.30)
we obtain
T3, 72] = 4Ts. (3.31)

Comparing the last equation with Egs. (1.60) and (1.61), that is [H,4] = —4a and
[|:|, at)] = +a™, respectively, we see that we transformed the original problem into
that of a harmonic oscillator. The operator t now takes on the role of the Hamiltonian
operator and likewise the operators T, replace the non-Hermitian operators a and
at. The only difference is that instead of Eq.(1.59), H=ata + 5, we have the
equation (prove that it holds!)

T-T-T2=o0. (3.32)
Hence instead of Eq. (1.67) we have
T Ton) = (T +iTo) (T = iT)In) (T3 + T3 —i[T1. TaDIn)
= (M= Ty)ln) = (> —n)n), (3.33)

where we used Eqgs. (3.29) and (3.32) in the third step and Eq. (3.25) in the fourth.
Now we may completely adopt the solution for the harmonic oscillator. Namely from
equations Tg (Ti|n)) =t 1)(Ti|n)) correspondlng to Egs. (1.63) and (1.64), we
find that the individual eigenvalues of the operator T3 differ by unity. Once again,
we demand a ground state exists

A

T_|nmin) =0
and thus we obtain from Eq. (3.33)

Hmin(Bmin — 1) = 0. (3.34)
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The solution ny;, = 0 corresponds to infinite energy, see Eq.(3.24), hence is
nonphysical. Therefore we have np;, = 1. Taking into account that the individual
n differs by unity, we may conclude that the eigenvalues n are natural numbers
n=12,3,...

By substituting into Eq. (3.22), one can easily verify that the normalized ground
state wave function is of the form

1

(r|Ls) = Yri5(r) = Ris(nYoo(m), Ri(r) = Rip(r) =2, Ypon) = —.
Ja

(3.35)

The wave function is normalized so that the probability of finding an electron in the
entire space equals unity, i.e.,

(1s] 1s) = [d3r(ls|r)(r| Is) = /dfzﬁ/w dr*(2e™)? =1.
0

Yg0(n) captures the angular dependence of the s-states. However, there is none (from
the definition), and thus Yy, (n) is merely a constant given by normalization condition
/ |Yo0|> d$2 = 1. The probability of finding an electron in an s-state is thus the same
for all angles and the angular part of s-orbitals has a shape of a sphere.

3.2.6 Comparison with Experiment
For the energy of a transition ls — ns we have

AE—1 1 !
A_2 ]’l2 ’

hence, see Eq. (3.11),

) 1y 1
Vip = Rooc x 22 (1 = — . (3.36)

n l—i-Z—:

Now we can compare the theoretical values of v with the experimental ones, namely
for the transition ls — 2s. The Table 3.1 summarizes the results for hydrogen,

Table 3.1 Theoretical (3.36) and experimental values for the transition ls — 2s

System Ratio m, /m, v [10'5 Hz] iy’ [10'° Hz]
pre 5.4461702178(22) x 10~* 2.4660384 . .. 2.466061413187035(10)
pTnle” 2.7244371095(11) x 10~* 2.466709. .. 2.466732407521641(35)

e 4.83633166(12) x 1073 2.4555058..... 2.455528941(10)
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deuterium, and muonium. The values of the mass ratios of the individual particles
are adopted from [3], the only exception being muonium coming from [2].

If we neglect the effect of the motion of the nucleus, namely set m, >~ m, < m,,
we obtain Vi = 2.467381--- x 10'> Hz. We thus see that using the reduced mass
instead of only the electron mass significantly improves the final result. We further
see from the table that the agreement of the experimental and theoretical values
for deuterium is similar to that of the hydrogen atom, while it is slightly worse
for muonium. To elucidate this deviation, we need to study also other interactions
between the nucleus and the electron than only the Coulombic, and we should include
relativistic corrections as well. A long journey lies ahead of us. . .

3.3 The Hyperfine Structure

Apart from the electrostatic, we now include also the magnetic interaction in the
Hamiltonian of the system. The reason is, both the nucleus and the electron possess
an intrinsic magnetic moment and these moments act on each other via the magnetic
force. We begin by finding the magnetic field caused by the nucleus.

3.3.1 Magnetic Field of a Dipole

The magnetic field of a steady electric current is given by the vector Poisson equation,
see Eq. (3.2), where we neglect the time change of the gradient of the potential that
arises from the change in the charge density with respect to time

—V?A =j. (3.37)
Assuming we know the so-called Green function

— Vi G(ri,ry) =8(r; — 1), (3.38)

we can write the general solution to Eq. (3.37) as
A@) = [ G av.. (339)

One can easily verify this by acting with the operator —V? on both sides of the last
equation and by considering the penultimate equation and Eq. (1.75). As we showed
above, see Eqs. (3.6)—(3.8), there is a simple solution to the Poisson equation for G



3.3 The Hyperfine Structure 71

1 1 1 1
G(ri,rp) = —

drrn AT =) — )] (3.40)

We now move the origin to approximately the center of the area where the current
density is located. Supposing this area is much smaller in size than the distance of
the point where we calculate the field generated by this area, namely r, < r;, we
may expand the Green function in Eq. (3.39) into a series of powers of r,/r,

Grrr) = ! ~ Lplpnn (3.41)
e RS S LR 2 R =T '

This is the so-called multipole expansion to be discussed in more detail in Sects. 5.2.1
and 5.2.2. We have then

1 1 1
Alry) >~ — [— /.i(l‘z)dvz + / (ry 'l‘z)j(l'z)de} . (3.42)
4 r st

Acting with the divergence operator on both sides of Eq. (3.37) and recalling we are
using Coulomb gauge V - A = 0, we obtain the continuity equation for steady flow:

V.j=0. (3.43)

We further obtain from the last equation the two identities
. 0 . d;
0= [wv-pav= [ | i - 5 |av
8xk 8xk

= 95&‘]'1( ds, — /ji dv = —/ji dv (3.44)

and

0 0 0
0= /xlxi_jk dv = / — (xgin) — jxem— () [ AV
Bxk 8xk Bxk

= ¢xixzik dsy + /[xijl + xji]dV = /[Xzfl + xj;]dV. (3.45)

In the second steps we integrated by parts, in the third we used the Gauss’s
theorem. Finally, we exploited the fact that the surface integrals vanish for currents
concentrated in a finite space.

We can thus rewrite the expression (3.42) for vector potential of a magnetic dipole
into the form
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Xi . Xi
w0 = g2 [ e = o

/ (O jk + 2) + (3 jx = 7)) 4V

Xi . . Xi .
= Flﬁ /(ijk —xj)dv = Snl,g /8ikp8qux;]r av’

i 1
= [V_‘; « / (rs xj(rz))dvz}k - E(":—f}", (3.46)

where we considered Egs. (3.44) and (3.45) in the first and third equality. In the

fourth, we used the identity ejr€ipg = 8;,0ky — 8j40kp. Finally, in the last step, we
introduced magnetic dipole moment

1
;L:E/rxj(r)dv.

We calculate the magnetic induction B = V x A as well:

0 0 1 s
B, = Ekpquq = Skpngr.vg E 3
P P

a Vn rfts
(8165 — Bisbr) [(npa_r + _v) o }

L

4 r 7

o 2\ 1o,
= (Skrgps — 8ks8pr) G (npns (—r—3) + r—3 I:Vp ns]) .

where we substituted from Eq. (3.46) in the second step and from (3.15) and (1.85)
in the third. Using Eq. (3.18), [V,S"), ng] = 8,5 — npng, we further write

r 1) s 3n n r
Bk = (Skrgpx - 8k38pr) :L_n ( L ;3 £ ) = 4Zr3 (3nknr - 8kr) , T 7é 0.

However, we could have performed this step only for r # 0.* To find the magnetic
induction at the point » = 0, we make a guess B, = A;8(r), where Ay is a constant
we wish to find. We thus have

“It might seem rather odd that we focus on the point r = 0 and yet we have kept only the leading
term when expanding the Coulomb potential, see Eq.(3.41). The expression (3.46) should thus
hold solely for large r, and we should take into consideration other terms of the expansion (3.41) to
accurately capture the situation for small r. Experiments show, though, that particles we consider
as elementary (such as electrons, muons, etc.) behave as electric monopoles and magnetic dipoles.
That is, the remaining terms of the expansion (3.41) are zero. Although in the case of a proton the
other terms are not null, the dipole term still prevails for r & (ma)™! ~ 107! m and an electron
practically does not approach the proton any closer. In other words, the probability of finding an
electron in the space between 0 and 10™! atomic units from the proton is foo‘l dr?|Ri;(n))? =
0.11 x 1072, see Eq.(3.35). We thus see that one needs to distinguish between a physical and
mathematical zero!
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0 1 px
ox, 4m 13

(Skr(gps - 5ksgpr) = Akg(r) .

Now we integrate over the area comprising the point r = 0,

Hr d ng
E (Skrgps_(gksgpr)/ (ax 2 )dv .Ak/S(I’)dV,

D

and use the Gauss’s theorem

Mr ng Hr
A = o (8kr8ps — Skspr) ¢ 2 s, = i (81rps — Srspr) / ngiy, dS2.

Since the following relation holds®
4
/ nynyd$2 = ?”83,,, , (3.47)
we obtain at last
1 2 2
A = gﬂr (8kr5ps - 8ks5pr) 8y = gﬂk = By = gﬂk(g(r) :

The final magnetic field of a dipole then reads

1 3nn- p, n
4r

B = + ,uS(r) (3.48)

3.3.2 Hamiltonian of a Particle with Spin in an External
Electromagnetic Field

The other part of the problem lies in determining how the magnetic dipole moment
reacts to the surrounding magnetic field. To do so, we need to know the Hamiltonian
of a particle with spin in an external electromagnetic field. Firstly, we consider
only a free particle. In nonrelativistic approximation, its energy equals the kinetic
energy of the particle E = p?/(2m), irrespective of whether it possesses spin or not.
These should be the eigenvalues of the correct Hamiltonian for a free particle. The
operators

5The easiest way to obtain this equation goes as follows. An object with two indices appears
on the lhs, and the only plausible object with two indices on the rhs is the Kronecker delta, i.e.,
[ nsnyd2 = K§p. Setting now s = p and keeping in mind that we are using the Einstein summation
convention and n is a unity vector, we obtain 47 = 3K.
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A2
A=
2m

and

g-po-p
2m

H= (3.49)

obviously comply with this demand, see Eq. (1.25):
0ipioiP; = (8 + iejuor)Pib; = 8;Pib; = P* .

The former is a Hamiltonian operator of a scalar particle, while the latter, Eq. (3.49),
describes a particle with spin 1/2.

In case of a particle in an electromagnetic field, we substitute according to
Eq.(3.1), and obtain the Schrodinger equation for a particle with spin moving in
external electric and magnetic fields, termed the Pauli equation,

o-(p—eA)a - (p—cA)
+ ep
2m

Hy =Ey, H=

(3.50)

In case of a free particle, the energy values do not differ whether the particle does or
does not have spin. However, as soon as we add the electromagnetic potentials into
the Hamiltonian operator, one has to proceed with more care:

0i0j(P; — eA}) (P — eAj) = (8 + ieior) (Pi — eA;) (P; — €A))
N N . 1 . N
= (pz — eAi)(p,- — eAi) + 18ijk0—k§[pi — eA;, pi— EAj]
= |b—€A|2 — eo0 'B,

where in the second step we used the fact that the product of two tensor quantities,
one of them being symmetric and the other antisymmetric with respect to the
interchange of two indices, equals zero. In the third step, we performed the following
rearrangement, see Eq. (1.84),

ie
——¢

A A~ e 0A; 8A,
> ko ([Pi- Aj] + [Ai, Pj]) = — = &0 ( ! —)

25\ 5 o

0A;
= —esijkak—J = —eor (VX A), .
8x,~
The magnetic interaction is much weaker in comparison to the electrostatic, as
we will shortly see. It suffices thus to consider only the linear term of the vector
potential A,
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P—eAl’ = (p—eA)- (P—eA) =P’ —c(A-P+P-A) =P —2eA-p.
In the last step we used
[pi,A]=—-iV-A=0.

The first equality follows from Eq.(1.55), the second one from using Coulomb
gauge. We thus finally have the Pauli Hamiltonian in a simplified form

A2
AP A p—28.Btep. 3.51)

2m  m m
We now substitute into this Hamiltonian for the vector potential A, magnetic
induction B and scalar potential ¢ from Egs. (3.46), (3.48), and (3.8), respectively:

~ 02> Z -L A 8 1 /4 A
3 3 3
(3.52)
In this equation, we introduced the so-called orbital angular momentum

A

L=#xp, (3.53)

to which we will pay much attention in the next sections.

We now take a closer look on the derived expressions. The first two terms in
Eq. (3.52) describe motion of an electron in a central electrostatic field. From the
previous derivations, it should be evident that r denotes the relative distance of
the electron and the nucleus. One might also suggest we add the kinetic energy
of the nucleus p?/(2m,) to these two terms. However, within the center-of-mass
frame, it suffices to substitute m, for m, to include the nuclear kinetic energy, as
we saw in Sect. 3.2.1. Therefore, setting m = m, in the first term results precisely
in a Hamiltonian of a system of two particles which are mutually bound by an
electrostatic force. The third term constitutes a scalar product of a nuclear magnetic
moment and an orbital angular momentum of an electron. That is, it characterizes
the interaction of the nuclear spin and orbital angular momentum of an electron,
commonly termed as the spin-other-orbit interaction. The last term—the whole
large parenthesis—describes a relatively complicated spin-spin interaction, as it
contains spins of both the electron and the nucleus.

For the sake of the following, we now introduce an operator of nuclear spin é,,
defined by the substitution

nw— —gpm—Sp. (3.54)
p
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The numerical constant g is the gyromagnetic ratio, and for the instance of a proton,
the hydrogen nucleus, it equals g, = 2.792. In case of elementary particles (such as
an electron), we obtain g = 1 from the Pauli equation (3.50).° As usual, we divide
the Hamiltonian into two parts: the first one, |:|0, comprises the first two terms in
Eq. (3.52), while the other one, H 1, includes the remaining terms. After substituting
from Eq. (3.54) and changing to atomic units, r — r4/m,Zo, we obtain

H = Hy + Hi,
~) 1
Ho = m,(Za)* (p—" —) :
2 raA
~ Zag, e 31 & a8® 1 fa o & &
lem(m,Za) |:SP~LE+Se-3p?5(rA)—FA(Se-Sp—3n'Sen~Sp) .

One can readily see that I:lo is of the order of (Zor)> while H | of (Za)*, hence the use

of the perturbation method is justifiable. In addition, the ratio —= e/

ety = Me (1+Wlf/mp)3
further reduces the relative magnitude of H; in comparison to Hy by a factor of 10°,
see Table 3.1.

3.3.3 Hyperfine Splitting of the Hydrogen Ground State

Having laid foundations in general terms, we now illustrate the above presented
theory on an example. Namely, we will calculate the energy of splitting in a hydrogen
atom, i.e., we will consider nucleus as a single proton. Prior to including the magnetic
interactions, each state is at least quadruply degenerate since there are four different
ways of the electron and proton spins orientation. For instance, the ground state can
be any of the following:

) =[1s)pt)let), [2)=[1s)lp=)let), [3)=I[ls)Ipt)le=), [4)=][ls)|p=)|e-)

or any linear combination thereof. As usual, we calculate the first-order perturbation
to energy as the eigenvalue of the perturbation Hamiltonian which we project into the
subspace of eigenvectors corresponding to the same eigenvalue of the unperturbed
Hamiltonian. Multiplying Eq. (2.11) by the vector (1s|, Eq. (3.35), leads to

hy lj, m, l,l =E,
2°2

We will elucidate the way we denote the eigenvector of the operator Fll later in
Sect. 4.2. We find the operator h; in the coordinate representation,

11 . R
j,m,(§,§)>, hy = (1s|H;|1s). (3.55)

5The fact that the gyromagnetic ratios of a proton and a neutron do not equal one (or zero,
respectively) was one of the first clues that these two particles are not elementary.
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o i o a8
hl = m (ZO{) 8p Sp‘/l//lsﬁl//lsdv“‘ S S ?/1//135(1')1/’1@‘/

eMp
1 /n o« . .
—/%ﬁ (5.-8-3n-8n-8,)yiav). (3.56)

The first integral equals zero since the ground state of hydrogen-like atoms
possesses no angular momentum. In other words, the wave function ¥, is
independent of angles (it depends merely on r), while the operator l:, as we will
see later in Eq. (3.74), comprises only differentiation by angles, hence IA.Wls = 0.
It follows from the properties of the §-function that the second integral equals
[¥15(0)|> = 1/m, see Eq.(3.35). The third integral, sometimes called the mean
value of the tensor interaction, in the state ls, is also zero due to the angular
integration

1 /o = N R
[%ﬁ (5.-8-3n-8n-8)yi,av
A 1
= (Se),(Sp)j/wh(&j - 3n,~nj)—31//lsr2 drd.Q
= &), [ 65— 3mmpa@ [P =0,
see Eq. (3.47). Substituting into Eq. (3.55) then results in a more appealing equation

~

AS,-S

; 11 : 11
o (3:3)) =2 (3:)) o

where the constant A equals

me e
my 8 2 my

— 4 —
A—me—mg(Za) &> ASI—RooC;—m?’
(1+2) (1)
P 'p
The former follows from Eq. (3.56), the latter from Eq. (3.12).

We now commence solving Eq. (3.57). First of all, we find the action of the
operator h; on the four basis states |pX)|eY):

(Za)'g,. (3.58)

~ ~ ~ 1 /~ - A A
Aill) = AS, - )let)lpt) = A (5 (8582 +8:8) + &8 ) le+) |p+)

1 1
= Az|€+)|l7+) = Az|1),

N A A 1 1
Ful2) = 48, Sylerp-) = 4 (31e)ipb) — gler)o)

1 1
A (5|3> - Z'2>) ,

A PN 1 1 1 1
Ru13) = 48, §lelp) = 4 (Sler)lo) - yledlpt) ) = 4 (5|2> -33).
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A A A l 1
hil4) = AS. - Sple-)lp-) = Ajle)lp-) = A 14),

where we used the identity (1.35) and the action of electron and proton spin operators
is given by Egs. (1.32), (1.33), and (1.34).

It follows from these equations that only the two states |1) and |4) are eigenstates
of the operator h,. The energy correction E; to the states |2) and |3), on the other
hand, is not well defined. However, we do not need to lose our heads. The operator
h; mixes the two states |2) and |3) with each other, therefore their linear combination
should be an eigenstate to this operator. Thus we now face the equation

hi(2]2) + e313)) = Er(ea]2) + e3]3)) -
Acting with the operator on the states on the lhs and comparing the coefficients for

the individual vectors |2), |3), which are mutually orthogonal,’ leads to a system of
linear equations:

4 72

1 1
A (CZE — 6‘32) = C3E1 .

If we further require |c;|> + |c3]? = 1, the solutions read

1 1
A (—CQ— + C3—) =k,

1

(+)

E"=-A d
1 ) an

Cy =C3 =

ol-

1 ) 3

C) = —C3 = —F—, E =——A.
V2 : 4

We thus conclude that the interactions of nuclear and electron spin splits the

groundstate energy into two sublevels separated by A. The experimental value
of this splitting was found to be [3]

Aexp(pTeT) = 1420.405751767(1) MHz, (3.59)

which is about a million times smaller than the distance between the first and
second s-state of the hydrogen atom. Therefore, we refer to this effect as the
hyperfine splitting. The theoretical value given by Eq.(3.58) equals Ageo =
1418.409 ... MHz. For muonium, the experimental value reads

Aexp(Fe™) = 4463.30288(16) MHz, (3.60)

(2]3) = (e+le=)(p—|p+) = 0, see Eq. (1.9).
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while our theory predicts Ay, = 4453.838... MHz. Although these two values
do not match each other perfectly (we neglected relativistic corrections and other
details stemming from the nontrivial structure of the proton), their correspondence
is more than satisfactory given the amount of work done. The spectral line at this
frequency, which corresponds to the wavelength 21 cm, is generally known simply
as the hydrogen line, or HI-line. This radiation is highly characteristic of hydrogen,
and therefore many radiotelescopes focus on its presence.®

3.3.4 Classification of States Using the Integrals of Motion

The higher energy level, its energy being A/4, is triply degenerate (a so-called
triplet), while the lower one stands alone (a so-called singlet). Within the
spectroscopic notation, we denote these states as 1% and 1's, respectively.’

Why these very numbers and not any others? We will now discover the reason
and smoothly thus proceed to the next section devoted to the angular momentum.

We know from classical mechanics that certain quantities are the so-called
integrals of motion, that is, they are independent of time. In quantum mechanics,
the Hamiltonian operator determines the time evolution of a system. If we demand
the results of measuring an observable be independent of time, this observable must
necessarily commute with the Hamiltonian. To see this, we let [A, I:l] = 0 and
A|A) AJA), and we demand the system be in the state |A) at time # = 0. Any later
in time, the system will be in the state e_‘H’|A) Now we act with the operator A

and successively obtain Ae™ —ifi |A) = e_‘H’AlA) = Ae—iH |A). We thus see that the
observable A does not change in time, i.e., it is an integral of motion.

Integrals of motion are of great importance in both classical and quantum
mechanics, as they allow for solving problems that one can solve exactly and
facilitate to great extent those that one can solve only approximately. We have
already encountered both cases. For example, the fact that the operator of the total
linear momentum P; + P, commutes with the Hamiltonian (3.3) enables us to reduce
the Schrédinger equation with this Hamiltonian (3.3) from a six-variable to only a
three-variable problem. In Chap. 2, we exploited the fact that the parity operator is
an integral of motion for the Hamiltonian H = p?/2 + X2/2 + 8%*. As you recall,
this markedly simplified the problem as one could restrict oneself to the class of
functions with the same parity when looking for eigenstates and eigenvalues. This

8For the very same reason, it was used as a unit of length and time on information plates for
extra-terrestrial civilizations on the probes Pioneer 10, 11 and Voyager 1, 2, and also the program
SETI (Search for Extra-Terrestrial Intelligence) operated on this frequency.

°In light of this finding, one may ask to which of the four 2s — ls transitions the values in
Table 3.1 correspond. The numbers are spin-averaged values, meaning the spin-spin interaction
was subtracted. Due to the substantially smaller magnitude of the hyperfine splitting in comparison
to the 2s — s transition, one can perform that with sufficient precision.
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simplification, as we will see, bears substantially more significance in cases of more
complex problems, such as determining spectra of many-electron atoms.

From classical mechanics we know that the total momentum is an integral of
motion, i.e., is independent of time. It appears therefore reasonable to consider the
operator!?

§-5+85,
and find the commutator [é, ﬁl]:

~ A

[8.0] = (8, + 8,48, §,] = 8 + 8. A&:8] = 4 (18:. 8718 + §;18. §]1)

A

= Aieg (88 + §:8)) = ien (58 - §:8) = 0.

We thus see that the operator of total spin for s-states commutes with the Hamiltonian
(in case of s-states, the spin-other-orbit interaction does not contribute). Obviously,
the operator of total spin commutes also with I:IO because the Hamiltonian contains
no spin-dependent terms. From the relations

[S¢, 861 = ieSs
[éf-’»éf] = ienS) .
[S:.81=0
we easily find
S., éj] = iSijkék . (3.61)

It appears the relation (3.61) be characteristic for any spin. Moreover, as we will
see later, it does hold for any angular momentum. Furthermore, each of any three
operators S complying with the relation (3.61) commutes with the operator S =

S.S:

62,81 =85.58] = §15,.51 + 15,518, = Sjicudi + ieuiS;
= iSjik(éjék + ékéj) = iSjik(éjék — éjék) =0, (3.62)

where we used nothing but the commutation relation (3.61).
We thus see that we are able to 1ndependently observe three quantities in the case
of our system with the Hamiltonian h1 = AS S (and that they describe our system

10Precisely speaking, we consider S= ée ®1,+1.® ép
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to the utmost extent). The three observables are the energy, one of the components of
the angular momentum, and the magnitude of the angular momentum (or its square).
The set { ﬁl, é2, éz} is commonly known as a complete set of commuting operators.

It follows from the discussion of the Stern-Gerlach experiments that if we can
simultaneously measure any two observables, measuring one of them after the other
cannot change the state of the system it is in after measuring the first one. This
is possible only if the corresponding operators possess common eigenvectors. The
mathematical proof reads as follows.

We assume that

[AH] =0 (3.63)
and that there is only one solution |y) to the Schrodinger equation
Hly) = Ely) (3.64)

for a given E. Then acting of the operator equality (3.63) on the state |) and
considering Eq. (3.64) lead to

HAly)) = EAly)). (3.65)
It then follows from the comparison of Egs. (3.64) and (3.65)
Aly) = Aly),

that is, the eigenstates of H and A must be the same.
In case of degenerate energy E, for instance doubly degenerate,

Alvi) = Elve).  Hivs) = Eln) (3.66)
we obtain the following relations using the very same arguments as above
HAl)) = EAly)),  HA:) = EAlY:)). (3.67)

Comparison of Egs. (3.66) and (3.67) then shows

Alyr) = enlvn) +enlva),  Alva) = eulyn) + enlvn),

that is, eigenstates of H and A can but need not to be necessarily the same. It
holds still, though, that at least their eigensubspaces match (i.e., sets of all linear
combinations of eigenstates corresponding to the same eigenvalue).

What is the eigenvalue of $2? The following relation must hold
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=[S +S,° :S§+ZSE-SP+S§,

thus we have

b= 45.-8,= AL (8-8-8) :Al(éz_é), (3.68)
2 I 2 2

where the last equality follows from the form of the spin operators (1.21), (1.22),
and (1.23). For reasons we will discuss later, we usually write the eigenvalues of
the operator 2 in the form § (S + 1). After substituting them into Eq. (3.68), these
eigenvalues must yield the eigenvalues A/4 and —3A/4, which is satisfied if S
equals 1 or 0, respectively. It further holds that the operator of the spin projection
along the z axis has the same eigenstates. One can verify this easily:

N N A 1 1
Silet)lpt) = (87 + S)let)pt) = Slet)pt) + Slet)lpt) = 1-let)lpt),

8L (len)lpm) = ) pt)) = 0- % (et = le) )

S

and

S.le)lp-) = (=1) - |e-)|p-) -

We can thus construct a simple table with eigenvalues, see Table 3.2.

One can see that the triple degeneracy of the energy level with the energy deviation
A /4 from the unperturbed ground state is related to the three different values of the
total spin projection along the z axis. If we place the atom into a magnetic field, this
triplet further splits into three different levels (Fig. 3.1). This effect, i.e., splitting of
atom lines in an external magnetic field, is generally known as the Zeeman effect
and we will focus on it later in Sect. 4.4.7.

Fig. 3.1 Hyperfine splitting
and the Zeeman effect

S(S+1)=2
[1s) Ei=A/4
magnetic
S(S+1)=0 field

spin interactions
(hyperfine)
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Table 3.2 Eigenvectqrs gf Spin state Notedas | S |S.
the square and the projection 1 17

onto one of the coordinate |e1+) lpt) I1,1)

axes of the total spin operator 2 (le+}p=) + le=)p+)) | 11,0) 0

1
le=)|p—) 1,-1) |1
ﬁ (le+)|p=) — le=)Ip+)) |10,0) 010

One can readily see from the table above that we denote the spin states according
to the corresponding eigenvalues of the operators S? and S_.!! That is for example

SL1)=1,1), S§.1,00=0, S.1,-1)=—[1,-1), (3.69)
S, m) = 1(1 + D|1L,m), etc.

We thus showed that two particles with half-integer spins (the so-called fermions)
behave as particles with integer spin (the so-called bosons). This finding is of
tremendous importance and, as we will see later, it is a special case of a more
general rule which states that an even number of fermions behaves like a boson,
while an odd number of fermions like a fermion.

Knowing whether a particle is a fermion or a boson plays an important role in
statistical behavior of a great set of identical particles, as we will discuss later in
this book. Generally speaking, fermions obey the Pauli exclusion principle, hence
no two fermions may exist in the same state. This fact, for example, stands behind
the chemical properties of atoms. On the other hand, the Pauli exclusion principle
does not limit bosons in any way. At very low temperature, bosons exists in the same
quantum state, which in turn allows for phenomena such as superconductivity and
superfluidity.

We now introduce the ladder operators éi = éit + s? , and easily find from
Table 3.2 and Egs. (1.33) and (1.34) that

Si1,1) =0, S41,0) =+2|1,1), Si[1,—1) = +/2[1,0), (3.70)
S_|1,-1) =0, S_|1,0) =~2[1,-1), S_|1,1) = +/2[1,0). 3.71)

These relations prove indeed useful in the next chapter.

1 A more accurate notation of these states would be [] m, % %)) where the halves stress that these
states stem from two particles with spin 1/2 each, see Sect. 4.2.
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,{ Exercise 5: Projection of SpinS =11 } A i-\

Consider the SG experiments for a beam of particles with spin 1. One
can easily see that magnetic field splits the particle beam into three
depending on their spin projection along the direction of the magnetic
field. We now ask the very same question as in Exercise 1: if we assume
only particles with spin projection +1 leave the first S-G apparatus, what
is the probability of finding projection +1 at the second apparatus which
is rotated by an arbitrary solid angle with respect to the first apparatus?

To the surprise of the kind reader, we will encounter the solution to this problem
again later in Sect. 6.2.5.

f[ Exercise 6: Projection of Spin S =1 Il ] A i'\

We now assume that only particles with spin projection 0 exit the first
apparatus. The second apparatus, rotated by 90° with respect to the first
one, catches particles with spin projection 0 along the new direction.
What is the probability of detecting a particle with spin projection 0 at the
third apparatus, which is placed in the same direction as the first one?

Note: The probabilities of transitions of a system from a state with spin
projection 0 along the z-axis to a state with spin projection I along the x-
axis and from the same initial state to a state with spin projection 0 along

the x-axis do not equal. Hence neither do the corresponding amplitudes.
L J

3.4 Orbital Angular Momentum

3.4.1 Significance of Angular Momentum

We commence this chapter by revising our notation: S represents the spin operator
and L the orbital angular momentum operator (for example of an electron in an
atom), and we will use J fora general angular momentum operator.

Angular momentum is of great importance already in classical mechanics. Finding
the vector product of the Newton equation (we use atomic units in this section)

d dav d
. =-VV@#r)=-n—, p= r

—, 3.72
dr dr dr ( )
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with the position vectors r leads to

d
—L=0, L= , 3.73
= rxp (3.73)
where we use
d d dv
rx—pz—(rxp) and —r—nxn=0.
dr dr dr

This conservation law allows us to transform the three-dimensional equation (3.72)
into a two-dimensional one. We assume that at the initial time t = 0 we have z = 0
and z = 0. It follows thereof L, = (yz—zy) = 0 and L, = (zk —xz) = 0. However,
both coordinates x and y and velocities x and y may acquire any value at arbitrary
times. Therefore, the components L, and L, are conserved only if we have z = 7 = 0
for all times.

In quantum mechanics one may thus expect the conserved components of angular
momentum (3.53)

- . . . d V¢ .
L, = EiikXiPx = —18,~jkijk = —1&jtn; (nka + Tk) = —ISijlejV]? (3.74)

to commute with any Hamiltonian operator with potential that depends only on the
distance from the source,

A2
LA =0 A= % V@), (3.75)

and that it will be an indeed precious piece of information.

We see from Eq. (3.74) that the components of the angular momentum operator
depend only on angular variables. Substituting for p? from Eq. (3.21) into Eq. (3.75)
shows that the only angle-dependent operator in the Hamiltonian is the operator

— (Vv =L-L=102, (3.76)
as follows from Egs. (3.18) and (3.74). However, the components of the angular
momentum operator commute with this operator. Why? In Eq. (3.62) we showed
that any two operators complying with the commutation relation (3.61)

L, I:j] = iSzj/‘kr-k, 3.77)

also satisfy

[L,*]=0. (3.78)
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One can easily check the commutation relations (3.77) by substituting from the
definition (3.74) and using the canonical commutation relations (1.54).

We see from Egs. (3.75) and (3.78) that components of angular momentum
commute with both the operator of the square of the angular momentum and the
Hamiltonian for a spherically symmetric potential. On the other hand, Eq. (3.77)
shows that the components do not commute mutually. This situation is analogous to
that of the hyperfine splitting discussed in the previous section. We can measure the
energy, the magnitude of angular momentum, and only one of the angular momentum
components. The operators {I:L L2, LZ} form a complete set of commuting operators
for a spinless particle moving in a spherically symmetric potential. Instead of a
general spherically symmetric potential V(r), we henceforth focus on the Coulomb
potential which is of a particular interest to us

V(r) = —% .

We have already discussed in the previous section that one can find common
eigenvectors for a complete set of commuting operators:

. 1
Hin,I,m) = _ﬁln’ lL,m), (3.79)
L2(n, 1,m) = 11 + 1)|n, I, m) (3.80)

and
Loln, I, m) = m|n, 1, m), (3.81)

where n, [, and m are called the principal, orbital, and magnetic quantum numbers,
respectively. We write eigenvalues of the energy operators and of the operator of
angular momentum magnitude in a form that will prove indeed useful, see the
discussion in Sect.3.2.5. We may certainly do so for one can write any negative
real number as —(2n%)~! where n is a real number, and any positive real number as
[(I + 1), where [ is a real number. We now rewrite these equations in the coordinate
representation. After substituting Eqgs. (3.21) and (3.76) into the Hamiltonian (3.75),
we obtain from the first equation (3.79) the equation

1 a2+2a 2\ 1 1 .
2 87‘2 ror r2 r vlnlm - 2]’[2 Wnlm . .

In spherical coordinates, the operators ﬁz and [2 are independent of the radial variable
r, see Eq. (3.74). Separating the radial and angular parts of the wave function

(I'| n, l’ m) = 1ﬂnlm(r’ 19’ (P) = Rnl(r)Ylm(ﬁ’ (/7) ’ (383)
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and using the fact that the operators [2a I:Z act only on the angular part of the wave
function, the radial part drops out from Eqgs. (3.80) and (3.81):

L2Y), = (L + 1)Yim (3.84)
and
LYy = mY,. (3.85)

The functions Y}, are commonly known as spherical harmonics. They are orthogonal
to each other as they are eigenfunctions of Hermitian operators:

(Lm|l',m) = / (L,m|n)(n|l',m’)d$2 :/Yl,m(n)*Yl’,m/(n) d$2 = 81 8mm -
(3.86)

For historical reasons, we denote the states corresponding to the orbital quantum
number of values [ = 0,1,2,3,4 as s,p,d.f, g.

After substitution of Eq. (3.84) into Eq. (3.82), integration over the angles and
use of the orthonormality of the spherical harmonics (3.86), we finally obtain

L(d 2d 4D 1], 1, 87
2 \ dr? 2 rlT T Tt '

We thus see that integrals of motion, namely components of angular momentum,
allow us to reformulate the three-dimensional problem (3.9) as three one-dimensional
ones: (3.84), (3.85) and (3.87).

3.4.2 Angular Dependence of p-States

We now find the components of angular momentum in the coordinate representation
and then derive thereof the shape of p-states using the relations (3.69), (3.70),
and (3.71). As we will see later in this book, see Sect. 4.1, the relations (3.69), (3.70),
and (3.71) hold for any type of angular momentum, irrespective of its origin.
However, for the purpose of this section, we will only assume it without proof.

By substituting Egs. (3.14) and (3.16) in Eq. (3.74), we obtain

~ 0

;=

—_—

dp
and

T T 2
Ly =L £il, = etie (:I:@ +i cotgﬁﬁ) . (3.88)
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We have thus transformed the eigenvalue problem (3.85) into a differential equation
for Ylmv

.8Ylm
1_

LY = — = mYpy = Yiu(D, ) = Ppu(9)e™ . (3.89)
@

The wave function, directly proportional to ¥}, must be an unambiguous function of
space coordinates. Therefore, Y, as a function of angles ¥ and ¢, must be invariant
with respect to the interchange ¢ — ¢ + 27, that is, to a rotation by a full circle:

Yin(D,¢) = Yiu (8, ¢ + 27) = Y3 (9, p)e*™ ™. (3.90)

We thus see that m must be an integer so that the exponential equals one. Therefore,
in the case of orbital angular momentum, the magnetic quantum numbers m may
be only an integer. Later, see Sect. 4.1, we show that the same applies also to the
quantum numbers /.

We now determine the functions Py, (1)), and hence also the whole functions
Y (9, @) for I = 1 and successively for m = —1,0, 1. To start with, according to
Eq. (3.71) we have

Lj1,-1)=0= L ¥,_1(9,9) = 0.

Substitution for L_ from Eq. (3.88) and Y, (¢, ¢) = P;_;(8)ei)? results in a
differential equation for Py

dP;

5 = cotg¥ Py,

with the solution
Pl,—l = Ksin?.

We find the normalization constant K from the normalization requirement

8
1= (1,-1]1,—1) :/Yﬁ_lyl,_ldsz = K2/sin219d9 = ?”KZ,

hence

3 .
Yi1(3,9) = ,/gsinﬁe_“p. (3.91)

We easily obtain other functions using Eq. (3.70):
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1 1, (0
Yio= —=LiVio = —=e | — tg ¥ — 1/_ 9 lw_/_ 9.
1,0 2 1,—1 \/ze (819 +1ico g ) sinv e Cos

(3.92)
LI A 3+tz9 ,/ z‘}—,/ Be? .
1,1 = \/E +110 = \/EC 819 1 colg COS SIH (&)
(3.93)

As physicists, we are satisfied. We have found the common eigenfunctions of the
operator of angular momentum magnitude and of its third components for spin 1 in
the coordinate representation. Absolute values of these functions then determine the
angular probability distribution of the electron occurrence in a p-state.

Chemists, on the other hand, seek a trial function that describes a molecule as a
linear combination of atomic functions. They give up the requirement these functions
be eigenfunctions of L, in favor of a real basis {2 Dy, D}

1 [3
Px = —E (Yl,l — Yl,—l) = E SiIl'L(}COSQD,
L v = Vin > sin
- ) = sin? sing,
Py 2 11 11 2
3
p. =Y o= 4/-—cos?.
4

There is a general symmetry, see, e.g., Egs. (3.91) and (3.93),
Yiem = (—1)’”YZ‘m, (3.94)
therefore, one can always find a real basis for d, f and other orbitals. One can also

graph the angular distribution of the squares of the states py, py, p, and obtain polar
diagrams as in Fig. 3.2.

Fig. 3.2 Left 10 right: Graphs of p?, p} and p?
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3.4.3 Accidental Degeneracy

The energy of stationary states of any spherically symmetric potential is independent
of the magnetic number m, as one can see in Eq. (3.87). In case of the Coulomb
potential, we encounter another degeneracy, the so-called accidental degeneracy:
energy does not depend on the orbital quantum number / either. We will show the
reasons later in Chap. 4.

After direct substitution in Eq. (3.87) one can easily verify that for the first excited
state n = 2, there is a solution for the s-state (I = 0)

1
Roo(r) = Rog(r) = 7 (1 - g) e "/? (3.95)

and also for the p-state (I = 1)

1
Ro1(r) = Rop(r) = 2\/6re_’/2. (3.96)

However, we will leave a general solution of Eq. (3.87) for the next chapter.

3.5 Fine Structure

The sodium spectrum constitutes two very close yellow spectral lines at around
the wavelength 589 nm arising from the splitting of a single line of the transition
3p — 3s. This splitting stems from the splitting of the 3p energy level due to the so-
called spin-orbit interaction, that is, an interaction of the outer (orbital) and intrinsic
(spin) angular momentum of an electron. As we have already mentioned, an electron
behaves as an electric monopole and a magnetic dipole. Since an electron carries a
charge, its orbital motion around the nucleus gives rise to a magnetic field, which in
turn affects the magnetic dipole. This spin-orbital interaction is a relativistic effect,
hence we will derive it from the Dirac equation, a relativistic equation for a particle
with spin 1/2. However, instead of the splitting of sodium 3p level, we consider
rather splitting of the hydrogen 2p level.!?

3.5.1 Relativistic Corrections

It has been already Schrodinger who attempted to incorporate relativistic ef-
fects into quantum mechanics. Moreover, he obtained the simplest relativistic

120ne will be surely able to solve the sodium case after reading Chap. 5.
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quantum-mechanical equation, known as the Klein-Gordon equation, prior to the
“Schrodinger” equation. He started by writing the relation between energy and
momentum as E> = m? + p?, substituted p for p and thus obtained

B>+ mH)|y) = E*|y). (3.97)

However, this equation is inadequate for the description of a particle with spin one
half. The reason is, Eq. (3.97) does not include any spin-dependent term at all.

In order to introduce spin into Eq. (3.97), we use a similar trick as in Eq. (3.49).
We write

E? — m? P’ 1
= :()'.p
E+m E+m E+m

o-p,

exactly as we did in Eq. (3.50). The relativistic equation for a free particle with spin
reads then

L1 .
E-—-my =|o- o- .
E-my = (a-p o b) v
We perform the substitution (3.1) for a particle in an external electromagnetic field
and thus obtain the Dirac equation for a two-component wave function of a particle
moving in and external electromagnetic field

. 1 .
(E—ep—m)y = [a -(p—eA)E_e—ma -(p—eA)i| /2 (3.98)

© +

The first and second components of the function 1 (r) determine the amplitude of
the probability density that a particle is located the point r and the spin projection
along the z equals +% and —%, respectively. We call such wave functions spinors.

One usually encounters the Dirac equation in a somewhat different form, namely
for a four-component wave function. However, the above presented form serves
the purposes of this section much better. We will revisit the Dirac equation again
in Chap. 7 where we will use the more common form, see Eq. (7.19), and show its
connection to the form (3.98).

We denote AE = E — m, which represents the total energy without the rest mass,
that is, AE stands for the bond energy. We then obtain

(AE—ew)W=[0-(i7—eA)AE or-(i’—eA)]I/f-

—ep +2m

We use the identity

ACA = %({AZ,C} — A JAC]) (3.99)
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to rearrange the bracket. We thus have

. 1
2(AE - ep)y = ({ o (B = A e o }

,\ A 1
_ |:a.(p—eA), I:U‘(P_eA)’MjH) v

The curly brackets denote the so-called anticommutator of two operators Aand B

The rest energy of an electron m substantially exceeds the difference of its bond and
potential energy AE — e@. The ionization energy of the hydrogen atom in a ground
state amounts to 13.6 eV, while the rest mass of an electron equals 0.511 MeV, and
the mean potential energy is of the same order of magnitude as the bond energy.
This thus justifies the approximation

1 1 AE — e@
—_— > — |- — ], (3.100)
2m+ AE—ep  2m 2m

where we considered the first two terms of the expansion of this fraction. We now
substitute this expansion into our equation. The first of the two terms disappears
within the commutator for it is a constant that commutes with both the momentum
and the Pauli matrices. Thus we have

(D — 2
AEY = (% +ep — # ({(p—eA)*, AE — ep}
+ [0+ (P —eA), [a-(ia—eA),ego]])) V. (3.101)

Keeping only the first two terms on the rhs of this equation, that is, we neglect the
terms proportional to m~2 and higher powers of m, we obtain the already discussed
Pauli equation (3.50)—the nonrelativistic equation for a particle with spin 1/2.

Since Eq. (3.101) is only approximate, see Eq. (3.100), there is no point in finding
its exact solution, hence we will seek its solution employing the perturbation method.
As has been already pointed out, the magnetic interactions are much smaller than
the electrostatic one. Thus, we consider further only the effect of the latter, i.e., we
set

A=0.
Furthermore, we write the last equation in a symbolic form

AEY = (Hy + AH) Y,
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where Hj denotes the nonrelativistic Hamiltonian and H; the relativistic correction

. P W oo §
HO = % + e, Hl = _W ({pz,AE—e(p} + [G P, [U p’e(p]])

and A is a formal expansion parameter. We will see that for hydrogen-like atoms
A = (Zo)?. Even for a hydrogen-like 91 times ionized uranium, Z = 92, the factor
equals (Za)> ~ 0.45. We now find the first-order corrections to the nonrelativistic
energies

AE >~ AEy + AAE], WZwO‘l‘Av/l»

where AE and v stand for the nonrelativistic energies and wave functions
p>
(AEy — eg) [Yo) = ?Wo) : (3.102)

The expression for first-order corrections, Eq. (2.11), reads

(Ho — AEy)|yn) = (AE, — H))|y) .

Multiplying this equation with (1| leads to

AE; = (ol [¥0) = (ol Fatl Vo) » (3.103)
~ p* 1 . .
P = —gor ~ g Lo P[0 - Pee®)]] (3.104

where we substituted from Eq. (3.102) for AEy — eg.

We would have obtained the first term also had we treated the Klein-Gordon
equation for a scalar particle in an external electromagnetic field with perturbation
method. This term expresses the dependence of the inertial mass of an electron on
its velocity. In the framework of classical physics, one can obtain this term from
the expansion of the expression v/p? + m? ~ m + p>/(2m) — p*/(8m>) + .. .. The
second term captures the effect of spin. It is advantageous to further rearrange it

[o-b.[0 - b.VO]] = 0, [p0 [0 V] + [00] [0 V18 (3109

[P, [Pi, V]] + 2iegwox [P, V] Pi
—V(V) —4i8- ([P, V] x P) .

In the first equality, we used the identity

[AB,C] = A[B,C] + [A,C]B,
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where A = 0, B = p and C contains the remaining terms. In the second step we
exploited the identity for the Pauli matrices (1.25) and in the third we used Egs. (1.55)
and (1.24).

We now apply the foregoing considerations to the specific case of Coulomb
potential

Zo
ey = —T

We make transition to atomic (dimensionless) units, namely set r = ry/Zam, P =
P4Zam. The expansion of the bond energy now takes the form

AE = m(Za)’e, e~ gy + (Za)’e,

where ¢ is the nonrelativistic energy in the atomic units, Eq. (3.24). It follows for
the Coulomb potential from Eq. (3.105)

. L1 S.L
[a-p, [o'p,—;ﬂ =—4n5(r)—4sr3 , (3.106)

where we used Egs. (3.6)—(3.8) in the first term and Egs. (3.15) and (3.74) in the
second term. We substitute the last equation into Eq. (3.103) and from Eq. (3.102)
preferably use the term with energy rather than momentum. We thus have an
expression for the first-order corrections to hydrogen-like atoms given by relativistic
effects

1 1\? S L
= §(¢o| (— (80 + —) + wé(ra) + — ) [¥0) . (3.107)
ra r

A

3.5.2 Fine Splitting of the Energy Level n = 2

When considering the hydrogen atom in the nonrelativistic approximation, the state
2p |n = 2,1 = 1,m)|%) is hextuply degenerate: three times for the orbital angular
momentum projections (m = 1,0, 1) and twice for the electron spin orientation.
For the purpose of this section, we neglect the effects of the nuclear spin, as they
are much smaller than the spin-orbit interaction, see Sect. 3.6. The first two terms
in I:Il, see Eq.(3.107), act on all these degenerate levels equally. The only term
distinguishing between them is the last one. Since we are concerned only with the
splitting of the 2p state at this moment, we will calculate only the expression

1 1
(W0| h”() / rZRZp ,;d}"<J, (E’ 1) j7m’ (5’ 1)>

S-L
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_ L Ly j Ly (3.108)
- 48 J, M, 2’ /> m, 2’ ) .

where we separated the radial and spin-angular degrees of freedom

o ()

The vector |j, m, (%, 1)) is an eigenvector of the operator é . L which we are now
about to find. We will explain the notation of this vector later in Sect. 4.2.

We use Eq.(1.35) to find how the operator S L acts on the direct product of
the orbital |1, m) and spin |£) states. To determine the action of spin operators, we
employ Eqgs. (1.32), (1.33) and (1 34), and for orbital operators Egs. (3.69), (3.70),
and (3.71), where we substitute L for S. We thus obtain the following relations:

S-L

(rl¥0) = Rayp(r)

D= &Ln=gm,
P 1 1
i =,1-) &L= —%|11> gl
1Ty = |1,0)|+) S Ly = —\m,
oY
M=ol 8-Lm) =,
M=) 8L = =3+ v,

. 1
\VI) = |1, —1)|—) §-Livny=3vi).

The states |I) and | VI) are eigenstates of this operator with the eigenvalue of % The
other states mix only in pairs (|/I) with |III) and |IV) with |V)) so one can expect the
eigenvectors to be linear combinations of each of the pairs. We find the coefficients:

S L(ca|Il) + c3|IID) = A (co|IT) + c3|HD)),

where on the lhs we insert from the above found expressions

1 1
— 1) - E|11>) ey II) = eHA|II) + esA|IH) .

Cz(fz f

We compare the coefficients for each of the orthogonal vectors and obtain the
eigenvalue problem:
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Imposing the normalization requirement |c,|? + |c3]> = 1, the solutions read

L] 1 2
_2’ CZ_\/g’ 3 = 3
and
2 1
A=l =/, S——
(&) 3 C3 \/g

We thus have the eigenstates

1 2 — 2 1
1) = %m) + \/;111) and |II) = \/;11) -k

with the eigenvalues % and —1, respectively. In a similar manner, we obtain

symmetric relations for the other pair

— 1
]V)zEIV)—i—\/»UV and |IV) = [IV |IV

again with the eigenvalues % and —1, respectively.

We now revise our findings. The spin-orbital interaction splits the initially
hextuply degenerate state into a quadruply and a doubly degenerate states, commonly
referred to as a quadruplet and a doublet, respectively The splitting of the energy
level amounts to &; = ( — (- 1)) 3; in atomic units. We can easily find the
energy in electronvolts by returning to E, namely

AE = gym(Za)* .
The difference in terms of frequency equals, according to Eq. (3.12),

AE _R Z4a?
mZ 716

Av = RooC

For the hydrogen atom (Z = 1) we find that Avge, = 10,949 MHz, while the
experimental value is [3]

Avep (2p3/2 — 2p12) = 10,969.041475 (99) MHz (3.109)

Once again, we have arrived at a reasonable match. The wavelength of the radiation

that arises from the transition between these two states then equals approximately
2.7cm.
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3.5.3 Classification of States Using the Integrals of Motion

As in the case of the spin-spin interaction, we can ask why one of the levels is
quadruply degenerate while the other only doubly. We introduce an operator of the
total angular momentum and its square

J=8S+L, FP=02+8428.

We then find that

A A

L-S:—(Jz—f_z—éz). (3.110)

1
2
Since the orbital angular momentum of our systemis/ = 1, wehave [(I+1) = 1(1+
1) = 2 and similarly for the square of the electron spin S(S+ 1) = 1 (3 + 1) = 3.

We also know that L - S should equal one half in four cases and minus one in the

other two cases
) 1 ]
, M, o .
/1 5

coal 1\ 1 | (1 \\_ {172
G.111)

Therefore, the eigenvalue of the operator J? must necessarily equal either

j(j+1)=9=§(§+1),

4 2\2

or

.. _3_ 11

In other words, from an outside point of view, the system behaves either as a particle
with spin % or % From the action of the operator J, = L, + S, on the eigenvectors

of the operator L-Swe easily find that the quadruple degeneracy of the higher
energy level arises from the existence of four states with four possible projections

—%, —%, %, % of the total angular moment along the z-axis. The doubly degenerate
lower level, on the other hand, results from the existence of two states with two
possible projections —%% along the z-axis. The spectroscopic notation of these
spectral lines is derived from it, namely 2p3/, for the former and 2p;/, for the

latter.
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,{ Exercise 7: Fine Splitting} A i-\

Calculate the expression (3.107) for the states 25, and 2p 2. Consider

(r|2s1/2) = Rao(r)Yoo(m)|+)

for the former and

(£12p12) = R () \EYH(nn—) - %no(n)m

for the latter.

3.6 Hamiltonian of Two Particles with Precision to o*

In this section, we summarize and complete individual corrections to the
Hamiltonian (3.3). We focus on those which we discussed in this chapter and which
contribute to the spacing of the energy levels of atoms in the order of a*.

We used hydrogen-like atoms as an example to illustrate how the nonrelativistic
Hamiltonian constituted by the sum of kinetic energy of particles and electrostatic
potential energy defines the gross structure of atomic spectra. The spacing of the
energy levels caused by this Hamiltonian is proportional to o2, see, e.g., Eq. (3.10).
To comprehend finer details of atomic spectra, one needs to take into consideration
magnetic interactions and effects of relativistic kinematics as well. The contribution
of these effects to the energy splitting of atomic energy levels is suppressed by
the factor of at least o® in comparison to the nonrelativistic Hamiltonian. The
magnetic effects arising from the nuclear spin are further diminished by the ratio
of the electron and nuclear masses m,/m, when compared to those of relativistic
kinematics. In the case of more complicated atoms, such as helium, the interaction of
an electron with spins of the other electrons reaches the same order as the effects of
relativistic kinematics. Therefore, both the interaction of electron spin with orbital
angular momentum and the spin-spin interaction among electrons determine the fine
structure of such atoms. For clarity, it is definitely worth listing all terms which
contribute to the energy spacing of atomic levels to the order of a* in two-electron
atoms. One surely then manages oneself to generalize them for many-electron atoms.

Although we have already considered magnetic interactions, one needs to include
also quantum analogy of the interaction of two currents to achieve precision of the
order of a*. To do this properly, we need to consider a more accurate expression for
vector potential than Eq. (3.37) which we obtained in the steady flow approximation.
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We thus begin by finding the magnetic field of a moving charge and neglect the
retardation effect. Subsequently, we list all terms that contribute to the o*-order-
precise Hamiltonian for two electrons in an external electrostatic field.'* Finally, we
conclude this chapter by discussing the two most interesting cases, namely helium-
and hydrogen-like atoms.

3.6.1 Magnetic Field of a Moving Charge

To start with, we rewrite Eq. (3.2) for vector potential into a more convenient form.
Formally, one can solve the Poisson equation for electrostatic potential

¢=-Vp.
Using the continuity equation for charge density

ap
—+V.j=0, 3.112
9 J ( )

we can write the time derivation of the gradient of the potential in the form

dp Ldp 1 v.i
o~ vear v )

We then substitute this mysteriously looking set of triangles on the rhs of Eq. (3.2)
for vector potential

VV.
-VA®) =j (), jL= (1 - W)J

Note that acting with the divergence operator on both sides of the last equation yields
automatically zeros on both sides. This is unlike Eq. (3.37) where the action of the
divergence operator resulted in a condition for the current (3.43).

We can express a general solution to the last equation in terms of a time-
independent Green function (3.40) as, see Eq. (3.39),

V,V,:
A(ry) = /d3l‘2G(l‘1,l’2)j¢(l'2) = /d3r2G(r1,r2) (1 - 2V22 )j(l‘z)-
? (3.113)

We now write the time-independent Green function using its Fourier transform

13 A kind reader surely manages to generalize these findings for the case when an external magnetic
field is present.
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| 1 [k
G(ry, 1)) = = —elk(mr) 3.114
(L r) = e =l (2]1)3/ w2 G.114)

One can easily verify that this equation holds by substituting the last equation and
the three-dimensional generalization of (1.74)

3 eik~(r1—r2)
ori—nr) = | k—— 3.115
(ri —r2) / ) (3.115)
into Eq. (3.38).
We now substitute for the current density j its Fourier transform
j(r) = ! / d’kel*Tj(Kk) (3.116)
(2m)? '

and the second form of the Green function into Eq. (3.113):

d’k d’k, e Kok
A(rl):/d3r2 : 2 ¢ ( — 272

i(ky)eor |
enp ) Gy o 2 )J( 2

Onereadily sees that the Fourier transform of the mysteriously looking set of triangles
is a transverse projector. It isolates only the part of the wave function which changes
perpendicularly to the line of sight (1 — ';—kz) k = 0. Therefore, one can detect only
the part of electromagnetic field which results from a charge accelerating in the plane
that is perpendicular to the direction connecting the positions of the charge and the
observer.

Integration over r, yields a §-function in momenta, see Eq. (3.115), therefore

d’k el Kk
A(ry) = @y ot (1 - F)‘](k)'

We assume the current is constituted merely by a point particle
i) = e2v28(r2 — qp) -
Fourier transformation of the current caused by a point particle reads, see Eq. (3.115),
j(K) = evpe e

After its substitution we find for the vector potential

Pk el kk-
A(ry) = / : (1 - —2) ev;. (3.117)
@

Qr) »?
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We have thus obtained a classical result for the vector potential caused by a moving
point particle where we neglected the time retardation.

We further rearrange this result. As one may notice, we need to find the integral
over wave vectors k:

d3k iom-y 1
(271)30)26 nin; = m(ASij + Bnny) . (3.118)

where we changed to spherical coordinates r = rn and k = wp, and A and
B are numbers we are about to find. We arrived at this equation employing the
following reasoning. There is an object with two Cartesian indices on the lhs which
is symmetrical therein. On the rhs, the simplest such object constituted by available
indexed objects is the Kronecker ; and a direction vector n;. We find the factor %
from the substitution @ — w/r and for esthetic reasons we factor out é. We now
find the numbers A and B by calculating the integrals for two specific cases.
Firstly, if i = j (note we are using the Einstein summation convention!) then

3A+B=1.
Secondly, if i = j = 3 and n = (0,0, 1) then'*

A+B=0.
The desired integral then equals

1 (Sl] — I’ll‘l’lj

3.118) =
( ) dr 2

After substitution of this integral into the expression (3.117) we eventually obtain
the sought vector potential in the form

14Tn this case

&’k
(2n)3w?

. 1 2 [ee] b4 .
e 0og? p = ——— / do / dow / do sin 9 €7 cos? ¥
(2m)*r Jo 0 0

1 oo d2 bg X
= —[ do (——)/ dd sin O e@cos?
Q2m)2r Jo dw? ) Jo

=2 [ood Lzsinw_
T em)2r o Y

The last equality holds since

. [oe)
[ismw] —0.

do o g
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e 1
Ar) = = —[va+npnp-vy . (3.119)
47'[ 2}’12

Here, nj, represents a unit vector in the direction ri = r; — r.

3.6.2 Hamiltonian of Two Particles in an External
Electromagnetic Field

If we consider both magnetic and relativistic effects, we obtain the Hamiltonian for
two particles moving in an external field in the form

A~ A

|:| = H0+Hl, Hl = (Hl)mag+(|:|l)rel-

Here, I:|0 stands for the sum of kinetic energies of both particles and of the
electrostatic interaction which comprises both the mutual interaction of the two
particles and their interaction with an external field
A2 A2
O = P1 P>

0= + —= +ep(ri,r,r2), (3.120)
2my 2my

where rj; = r; — r;. The term (I:II)mag captures the most important magnetic
interactions. We find them by substitution into the Pauli Hamiltonian (3.51)

(Hl)mag = [A(l'l) P+ 215 'B(l'l)] ,

€l

my
for the vector potential from Eqs. (3.46) and (3.119) and by interchange (3.54) and
Vo = Po/my P

€282 éz X Ty (] 1 ~ A
A(r)) — — npng - .
(r1) drm, 1 + P [Pz +npngp P2]

and similarly by substitution for the magnetic induction from Eq. (3.48). A kind
reader surely noticed that we replace all of the ratios e/m, which appear in front
of spin operators, by eg/m so that the expression holds for nonelementary particles
as well.!® The term (I:h)re] comprises the most important effects of relativistic

5The placing of the operators p; and P, is arbitrary as both (P1); and (P2); commute with the
expression (8;; + (n12)i(n12);)/2r12. The reason thereof is we use the gauge V- A = 0.

16We will show later in Chap. 7 that even when the particles indeed are elementary, the gyromagnetic
ratio g differs from 1 as a result of effects of quantum electrodynamics. The deviation is very small,
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kinematics which we can find by summing the Hamiltonians (3.104) for each particle.

The total Hamiltonian H; constitutes a sum of several terms

= (Hl)imv+(Hl)con+(ﬂl)so+(|:ll)ssc+(Hl)sst+(ﬂl)soo+(ﬂl)cc >

where

O f’] ﬁz
Hiim = — o — =%
(H) 8m1 8m2

(3.121)

(3.122)

results from the dependence of the inertial mass of the particle on its velocity,

€l
Vip+ =V

(Hl)con = 8_111% Sm 2

is the spin-independent “contact” term, although stemming from the spin of a particle,

(Ao = 5 31 ([Pr. ¢l x 1) + —Sz (2. ¢] x P2)

is a term describing the spin-orbit interaction,

(Fl)ge = — 2281825 &—wum

mymodn

represents the “contact” part of the spin-spin interaction,

~ ele 1 /0 =& ~ N
(H)sst = freadigs (Sl -8 —3n;2-Sinypy - Sz)

3
mymod i,
stands for the tensor part of the spin-spin interaction,

€1e2

(Hl)soo =- [8252 (ria x pr) + glsl (ra1 X Pz)]

mymy4n r12
describes the spin-other-orbit interaction, and finally

A ele 1 N N N
(HD)ee = — — — [P P2+ np2-Ping - Po

m1m24n 21’12

captures the current-current interaction.

(3.123)

(3.124)

(3.125)

(3.126)

(3.127)

though, as it is proportional to «, see Eq.(7.204). Within our current precision, we can surely

neglect this minor deviation.



104 3 The Hydrogen Atom and Structure of Its Spectral Lines

We obtained the second term in Eq. (3.126) by swapping the roles of the first
and second particles: Hamiltonian (Fll)mag describes the reaction of the first particle
on the magnetic field caused by the other particle. Similarly, we could consider the
reaction of the second particle on the magnetic field stemming from the first particle.
In case of spin—spin and current—current interaction, this reasoning would result in
including the same interaction twice. In case of spin—other—orbit interaction, on the
other hand, one must consiger both situations.

The total Hamiltonian H; discussed in this section is commonly termed as the
Breit Hamiltonian.

3.6.3 Helium-Like Atoms

We start with Hamiltonian of a helium-like atom in the nonrelativistic approximation

p2 N p? p3 Za Zo o

H= — - + :
2m,, 2m, 2m, [ry — 1, [ry — 1] [r; — 12|

(3.128)

The quantities with the index n are related to the nucleus, the other numbered
quantities to the individual electrons. The last term in the potential energy captures
the electrostatic repulsion of electrons and the other two terms the electrostatic
attraction of the electrons to the nucleus.

The reader can check that the operator of the total linear momentum p, + p; + p»
commutes with the Hamiltonian (3.128). Owing to existence of three operators
commuting with the Hamiltonian and with each other we can—as in the case of the
hydrogen-like atoms—decrease the dimension of the problem by three. When we
introduce the Jacobi coordinates

1
Iri =r —I,, TIrpp=I-—I,;, Ir= A—/I(mnl‘n‘l'me(rl +1r2)), M=m,+2m,,

we obtain the Hamiltonian in the form

~ P} L A Pri-Pre Zo Zo o
H=_—+_—@+Pp)+ —/m  — — — + ————,
XM 2m, RV TR my, 'Rl TRz |TR1 — TR
where p3 = —V3, p3 = —V3,, p%, = —V32,, and m, = m,(1 + m,/m,)”" is the

reduced mass of the nucleus-electron system. Further, we change to the center-of-
mass system, pr = 0. Equation (3.120) now takes the form

I, .
07 +P3) + ep(ri,r,r2),  ep(ri,r,rp) = — — — — —

Ay =
2m, o

in which we simplified the indices R1, R2 to 1, 2 and introduced rj, = |r; — r3|.



3.6 Hamiltonian of Two Particles with Precision to o* 105

The fine structure and corrections to the gross structure are determined by all
terms in the Hamiltonian (3.121), where we set g; = g» = 1, plus the term
- bih
Hi)oum = , (3.130)

n

commonly known as the mass polarization operator. After transition to atomic
units, r — r4/(m,Zo), we find that the contribution of this term is suppressed by
the factor of 2 in comparison to the terms in Eq. (3.120). Calculation of the factors
for helium!'’ Zl’” ~ 1.38 x 107 and (2)> ~ 2.13 x 10™* shows that corrections
arising from the nuclear motion are of about the same importance as relativistic and
magnetic effects.

With potential given by Eq. (3.129) we can write the spin-orbit interaction (3.123)
as

(ﬂl)so = (l:'l)son + (Hl)soe s

where

(ﬂl)son =

Za | Si-(r1xp) | S (raxp)
2 + 3

2m2 r r

describes the interaction of electron spins with their orbital angular momenta with
respect to the nucleus, and

a [ 8- (@nxp) n S, - (ry1 X )

(Hl)soe =~ 5
2m; ”?2 ':152

expresses the interaction of electron spins with their orbital angular momentum with
respect to each other.

3.6.4 Hydrogen-Like Atoms

In case of a hydrogen-like atom, we have rj; = r and P, = —p; = —p in the
center-of-mass frame, and we further set e; = —Ze; = —Ze. The potential energy
of the electrostatic interaction equals e = —ZT“. The spin-orbit interaction (3.123)

and the current-current interaction (3.127) then acquire the form

7The nucleus of helium is an a-particle, a bound-state of two protons and two neutrons.
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N Zo 1 - 1 -
(Hl)so = L [%Sl + _282:|

—L.
2r 1 m;

and

(Hl)cc = _Z_ai [ﬁz + (n- IA?)Z] .

mymy 2r

F[ Exercise 8: Correction to the Gross Structure I]—E}\

Calculate the total shift of the energy levels 1s, 2s, and 2py, given by the
Breit Hamiltonian |:|1 with precision to a*. Neglect the interaction of an
electron with the nuclear spin. Compare the calculated values with the
experimental ones in Table 3.1.

Hint: First of all, change to atomic units r = ry [ (m,Za).

A kind reader may easily verify that in case of “normal” hydrogen-like atoms,
where the mass of the nucleus markedly exceeds that of an electron, the fine structure
and corrections to the gross structure are predominantly given by relativistic effects
considered in Sect. 3.5.2, see, e.g., Eq. (3.107).

In the case of a positronium, where the nucleus is constituted by a positron, i.e.,
a particle with the same mass and spin as and opposite charge to an electron, hence
g1 =g =g m =m =m,Z = 1,and e, = —e; = —e. Equation (3.120) now
takes the form

~ ma? (P31
Ho= — (2 - — 3.131
0 > (2 rA) ( )

and all terms in Eq. (3.121) contribute equally. After the transition to atomic units
r — ra/(m,a), m, = m/2, the Breit Hamiltonian (3.121) takes the form

mo? {

+i3|:l:-é¥—g2 (ée-é,,—3n-é€n-é,,)]} . (3.132)
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and added the effective interaction 736 (r)éz, caused by virtual electron-positron
annihilation. We will derive this interaction later on, see Sect.7.3.2, Eq.(7.105). A
dear reader may take a look on the last diagram of Fig. 7.2 to get a feeling what the
term “virtual electron-positron annihilation” corresponds to.

3.6.5 Final Notes

As we have seen, as soon as we are forced to consider both the spin-spin and spin-
orbital interactions, calculation becomes substantially more complex. Therefore, to
determine the fine structure of the positronium spectral lines, not to mention more
complex atoms, one needs to opt for a systematic approach developed in the next
chapter.

There is no point in attempting to include the effect of I:Il beyond the first order
of the perturbation method. The reason is, new effects of quantum electrodynamics
come into play at the order of . In fact for positronium they enter already at the
order a*. We will focus in depth on the leading quantum-electrodynamical effects
in Chaps. 6 and 7.
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Chapter 4
Treasures Hidden in Commutators

In this chapter, we focus on a topic usually called the application of algebraic
methods or Lie algebras within quantum mechanics. We have already demonstrated
that one can determine very efficiently the spectrum of the harmonic oscillator
owing to the closure of the set of three operators, namely the Hamiltonian H and the
ladder operators a and &, under the operation of commutation. We now show that
this method can be extended to the problem of angular momentum, the addition of
angular momenta, the hydrogen atom, and a free particle. We will further see that
the application of the algebraic method does not only represent a very elegant way
of solving the listed problems, it also directly leads to a variety of relations for radial
and angular parts of the hydrogen wave functions, which would be very laborious to
obtain otherwise. In the next chapter, we will subsequently demonstrate that these
relations prove to be indeed useful when determining the spectra of many-electron
atoms.

4.1 A General Solution To Angular Momentum

We now solve the problem of angular momentum in quantum mechanics “once and
for all.”! The angular momentum is any observable complying with the commutation
relations

[ di] = ieds 4.1

irrespective of its origin. We have already shown, see Eq. (1.26), that these relations
hold for both the intrinsic angular momentum of a particle with spin 1/2 and the
angular momentum of a particle orbiting around a center of attraction, see Eq. (3.77).

I'This section and the next one present the very fundamentals of quantum mechanics. One may find
a different exposition of this topic in any other textbook, see for example [8, 10, 11].
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Moreover, as we also noted before, see Eq.(3.61), the total angular momentum
created as a sum of two independent angular momenta obeys Eq. (4.1).

One conclusion that can be drawn from the relation (4.1) is that one cannot
find common eigenvectors of the individual components of the angular momentum.
Therefore, we cannot measure them simultaneously. On the other hand, the square
of the magnitude of the angular momentum commutes with each of the components,
see Eq. (3.62),

[2J] =0, J32=J3J, 4.2)

and therefore one can always measure the magnitude of the angular momentum and
a projection along one of the coordinate axes. A common convention chooses the
third axis;

Pliym) = jGi + Dliym),  Jljiym) = mlj,m). (4.3)

These equations define the eigenvectors |j,m) and the eigenvalues j(j + 1) and
m. We have already encountered a few special cases of these eigenvectors and
eigenvalues: for j = % there are two projections m € {—%, +%}, for j = 1 there
are three projections m € {—1,0,+1}, and forj = 3 there are four projections m €

{——, -5 —}—2, +3 } The states we previously labeled |£),e.g.,in Eqs (1.32), (1.33),
and (1. 34) correspond to the states |+) = 2, +2) and |-) = |3, —%) in the new
notation.

We will now show that the information contained in the commutation relation (4.1)
and the definition (4.3) already suffices for the deduction that the eigenvalues m
increase by one from m = —j to m = -+j. This finding then immediately leads to the
conclusion that j can acquire only integer or half-integer values; the proof thereof is
left to the reader. Subsequently, we will find an expressmn for a general action of
the remaining angular momentum components J and J on the states |j, m), namely
by generalizing the relations (1.33), (1.34), (3.70), and (3 71) to an arbitrary j.

As already discussed in the cases of j = % and j = 1, it is advantageous to define
the ladder operators

~

Ji=Jd, i, (4.4)
Their commutator with the third component of the angular momentum is
[0 ds] = [0, £i[d.,dy] =idy £ J, = +(J, +idy) = +J4,
and with the squared angular momentum

02,05 = Q200 £l ] = 0.
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It follows from the definitions (4.3) that the operators act on the common eigenstate
according to

Qe delliom) = £deljom) = I (Jeliom)) = (m £ 1) (deliom) )
and
92, 3u]ljm) = 0 = 3 (Jeljm)) =G + D) (3xljom)) -

The logic is the same as in Eqgs. (1.63) and (1.64). The role of H is replaced by :J
and the role of 4 and a* by J_ and J.;, respectively. By comparison of the last two
equations with Eq. (4.3), we readily see that the state :Ji |j, m) is again an eigenstate
of both the operators :lz and J? with eigenvalues m £ 1 and j(j + 1), respectively;
thus

Jiliom) = aF (G, m)lj,m £ 1). (4.5)
Finally, we determine the coefficients o by the same procedure as in case of the
harmonic oscillator. Confront the following steps with those following Eq. (1.66).
Owing to the freedom in the phase of eigenvectors, we may choose « such as it
is real. Next, we use the definition (4.4) of the ladder operators to find the action
of J+J_
I3 tom) = G, +13,) 0y — i)l m) = (33 +3 -l CJ),]) i, m)
= (2 =2+3) lim) = GG+ 1) =mOn = D)),
where we used Eq. (4.1) and the definition of the square of the angular momentum,

Eq. (4.2), in the third equality. In the fourth step we used Eq. (4.3). It holds as well
that, see Eq. (4.5),

I ljm) =dpaGom)jym—1) = aT(G,m— Do~ (G, m)|j,m) .
By comparison of the last two equations, we obtain
at(,m— Do~ (,m) =jG+ 1) —m@m—1).

One can readily see from the definition of the ladder operators that the operators J+
and J_ are Hermitian conjugates of each other; hence
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Gomldljom = 1) = Goml (Jsliom = 1)) = o* Gom = 1)G.mljom)
= (Gomlds) vom =1 = (3m) " Gim = 1)
=a (f,m){j,m—1|j,m—1).

Requiring further the vectors |j, m) be also orthonormal (and not only orthogonal)
leads to

(i,m|j/9 m/) = SjJ’(gm,m/ ) (46)
then necessarily
a (G,m)=at(,m—1).

Hence, the coefficients « acquire values

a (Gom) =at(Gm—1)=jG+1)—mm—1), (4.7)

and the action of the ladder operators can be written in a final, slightly reorganized
form as

Jelim) = VGi+ 1 EmGFmljm*1). 4.8)

Forj = % and m € {—%, +%}, we obtain from the last equation the relations (1.33)
and (1.34), and forj = 1 and m € {—1,0, 41} we get the relations (3.70) and (3.71).

What values may m acquire? Since it is an eigenvalue which is to represent a
projection of the angular momentum of a finite magnitude j(j + 1) along the z axis,
there must be a smallest (mp;,) and largest (my,x) possible value. Furthermore, the
action of the ladder operators on the states with the extremal projections must not
lead to a state that would lie outside the interval bounded by mp;, and my,«. Hence
we require

Jiljsmmax) =0 and  J_Lj, mmin) = 0.

Comparison of the last equations and Eq. (4.8) yields two possible results, #mx €
{j,—j— 1} and my, € {—j,j+ 1}, for the limiting values of the projections.
However, only the former is meaningful, as mp;, has to be less than m,,y, hence

Mpmin = —J,  Mmax = J -

Starting merely with the innocently looking commutation relation (4.1), we
reached very nontrivial conclusions: we were able to determine the allowed
projections of the angular momentum along a given axis, the values of the magnitude
of the angular momentum, and the action of all of the components of angular
momentum operator on the pertinent eigenstates. The commutators are indeed a
powerful tool, as we are to see many more times in the next sections.
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4.2 Addition of Angular Momenta

We now consider a system with angular momentum J arising from two distinct
contributions (such as two orbiting electrons in atom, two particles with spin, one
particle with spin and an orbital momentum, etc.) J; and J»:

J=J + . (4.9)

We can find common eigenstates for the complete set of commuting operators
{J2, J%, J;,J?},? namely

Bljm, G1.j2)) = JG + Dljom, Gr.2)) (4.10)

Jolj.m, Gr.j2)) = mlj.m. (1. j2)) (4.11)
Blim. Gr.j2)) = irGir + Dlim. Gir.2)) - (4.12)
Blj.m. G1.2)) = jaGa + Dljam, Gr.j2)) - (4.13)

These states form a complete and orthonormal basis in the space spanned by possible
states of two “particles” with the angular momenta j; and j,.* We expect the set of
operators {32 :J% :JZ, :12} to act on the same abstract space as the set {:J2 :l% :le, :Jzz},
with the same number of degrees of freedom. Therefore, it should be possible to
compose the new “two-particle” basis states |}, m, (j1,/2)) from products of the basis
states of the individual constituents of the system®:

U1, mi,j2, ma) = |j1, mi)lj2, ma) (4.14)
Bljiomi) = j1Gr+ Dliomy) . diclivomy) = maljy,my) (4.15)

and
J%Uz,mz) = j2(jo + Dlj2, m2) , Jazlins ma) = myljn, ma) (4.16)

2To be more precise, we should express the compound angular momentum J as a sum of tensor
products J=J®1+1,®dJ toavoid ambiguity when applying J on the state L1, m1) |j2, ma).
3The reader can easily prove by himself that they all commute with each other.

“We inserted the word particles into quotation marks since one can have in mind the spin and orbital
states of the same particle as well.

SThere are (2j; + 1)(2j> + 1) such products due to the restriction on the possible values of the
projections m; and m;.
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see Eq. (4.3). Our task now consists of finding the connection between j, m and jj,
J2, my, my, and also of finding the relation between the basis states (4.10) and (4.14).
For the sake of definiteness, we consider j; < j, henceforth.

One of the tasks is trivial: when we act with the third component of the total
angular momentum on an arbitrary product |j;, m;)|j2, m;), we obtain

Joljv,mi)ljasma) = Qroljnsm) iz, ma) + jr,my) Qaeliz, ma))

= (my + ma)|jr, mi)lj2, ma) .

Therefore, considering the definition of the magnetic quantum number, we see that
m = my + my, which also imposes a restriction on the values of m. As the values of
my lie between —j; » and ) », their sum must lie within the interval spanned by
—(1 +J2) and +(j1 + j2). . )

It follows from the fact that the operators J?> and J, commute with each other that
the operator J? does not mix states with different eigenvalues of the operator J .. This
means, if we express the states in (4.10) as linear combinations of the states (4.14),
we only need to sum over the states with m; + m, = m for a given m. That is,

Jj1
im, (o)) = Y eilitsisjo,m =), (4.17)
i=—ji
where we have from the orthonormality of the states (4.14) that
ci = (1, b ja,m =il j,m, (j1,)2)).-
The coefficients ¢; are most often written in the form
ci = (1,1, j2,m — i|j, m)
and called the Clebsch-Gordan (CG) coefficients. As we know the allowed range of

values of m, we are able to construct a table of states, Table 4.1, with rows containing
the states that can be used in the summation (4.17) for a given m.

Table 4.1 Addition of angular momenta I

m States that can be used in composition Forj, =j, = %

S+ 1,71} L2, 2) [+)+)

st =1 i — Dlzj2)  lj) g — 1) [=Y+) +)-)
I—-)

Ji 2 =2 i —22.2) b — Dlizsja — 1) Ui lzsja —2) | 1=)

=G1+72) | U=, =) [=)=)



4.2 Addition of Angular Momenta 115

Since m may acquire only values within the interval spanned by —j and 4,
there is a limit on the maximum value of the total j, namely jnox = j1 + j2. It
follows from the general solution of the angular momentum that for a given j the
projection of the angular momentum along any axis may equal 2j + 1 different
values —j,—j + 1,—j + 2,...,+j — 1, +j. Note that there are no other states but
those listed in Table 4.1, therefore we must be able to construct each of the eigenstates
of J2 corresponding to the eigenvalue ji.x (jmax + 1) With the above listed 2jp., + 1
projections using the states from the table. One can do so easily in case of the states
with the maximal and minimal projections; there is merely one state to use for each
of them, namely |j,/1)|j2,/2) and |j1, —j1)|j2, —j2), respectively. In all of the other
cases, we seek (and always find) linear combinations of the states listed in Table 4.1
which form eigenvectors of J? pertaining to the eigenvalue jmax (jmax + 1) for a given
projection m. That is, we search for a suitable linear combination of the two vectors
for m = j; 4+ j» — 1, a combination of three for m = j; + j, — 2, and so on.

A linear combination of the two vectors displayed in Table 4.1 form = j; +j, —1,
which is orthogonal to the linear combination constituting an eigenvector of J? with
the eigenvalue jp.x(fmax + 1), must yield an eigenvector of J? with the eigenvalue
(Jmax — D)jmax- Why? It follows from the general solution of angular momentum that
the projection m cannot be greater than j. Altogether, we have to find 2(jm.x — 1) + 1
eigenvectors of J2 with the ei genvalue (jmax — 1)jmax- For the instance of two particles
with spin 1/2, we have found jm,x = 1. The three states corresponding to the
projections m = 1,0, —1 have been found in the form |1,1) = |+)|+), |1,0) =
(+)|=) + [-)|+))/~/2 and [1,—1) = |=)]—). Orthogonal linear combination to
the state with jna = 1, m = 0, the combination |0,0) = (|4)|=) — |=)[+))/~/2, is
eigenstate of J? with eigenvalues jy,, — 1 = 0.

Linear combination of three vectors displayed in Table 4.1 for m = j; + j,» — 2,
orthogonal to two linear combinations providing eigenvectors of J? with eigenvalues
Of jimax fmax + 1) and (jmax — 1)jmax, must yield eigenvector of J2 with eigenvalue
(Jmax — 2)(max — 1), and so on. For clarity, Table 4.2 lists all possible combined
angular states that can be constructed using the states in Table4.1. In the second
table, we used a shorter notation |j, m) = |j, m, (j1,j2))-

Table 4.2 Addition of angular momenta II

m States that can be composed Forj, =j, = %
Jitp Uit + j2,m) [1,1)
Ji+j—1 Ui +j2.m) iy +j2 — 1,m) [1,0) 10,0)

Jitja2—2 Uy +jo.m) i +jo—1,m) i) +j2—2,m) [1,—1)

—(j1 +j2) lj1 + ja,m) [1,—1)
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What is the minimal j where the procedure terminates? Irrespective of whether
we describe the state space using the basis {|ji,m1)|j2, m2)} or {|j,m, (j1,j2))}, it
must always maintain the same dimension. This means, for a given j; and j,, there
is an equality between the dimensions of the first and the second basis

Jmax

Qi+ D2+ D= > 2i+1, (4.18)

J=Jmin

where jmax = ji + j2. The sum on the ths may be written as (jmax + 1)> — j2;, as
one can easily verify. We obtain thereof jrznin = (j; — j»)?, and after imposing the
restriction on jy,;, > 0 we finally find j,i, = |j1 — j2)-

We have thus arrived at a very important conclusion: When adding two angular
momenta with quantum numbers j;,m; and j,,m,, the resulting j acquires values
Vi—j2l, U1—j21+1,...,j1+j2—1,j1 +j2 and the resulting m is given by m = m; +m,.
The restriction on j is widely known as the triangle inequality.

There is one last step left: to determine the value of the Clebsch-Gordan
coefficients in Eq.(4.17). One can do so by expressing Eq.(4.10) using the

vectors (4.14)

J1
Pljom. G1.j2)) = jG + Dlim. Gr.j2)) = jG + 1) > cilirs iz m — ).

i==ji
At the same time, we can express J? using the one-particle operators, see Eq. (4.9),
=1 4+2d-dh + 03
then

Pljim, Gr.j2))
. N o o o J1
= (J% +J3 +dipdos +diday + 2J11J2z) Z ciljt, i ja, m — i)
|
J1
Y cGili + 1) 420z + 1)+ 2i(m = ) ljr, i) iz, m — i)

==i

J1
+ Z Cia+(jlsi)a_(j2’m_ l)l]lal + 1)U19m_ i— 1)

=—ji

J1
+ Y ce G at Gam =i — 1)]jm—i+1). (4.19)

==
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We used the relations (4.15), (4.16), and (4.8) in the second equality. By shifting the
summation index (while requiring ¢; = 0 when the summation index is out of the
allowed range), we obtain

J1
0= [GiGi + D +j202+ 1) —jG + 1) + 2i(m — i))c;

==
+ o (i — D (oom—i+ Deimy +
+ o Gri+ D) at(o,m—i—1)cipr] 1. i), m — i) .
Owing to the orthonormality of the states |jj,)|j>, m — i), this produces a set of
2j1 + 1 equations for 2j; + 1 coefficients c;
GiGr + D+ 00+ 1D —jG+ 1)+ 2i(m—i)e;
+ at (i — Da~ (o, m—i+ Decimy
+ o (,i+ Dat(p,m—i—1)ciy =0, (4.20)

where ot are given by Eq.(4.7). However, these equations provide us with 2j;
coefficients c¢; only; the last equation does not offer any new piece of information.
Why is it so? The reason is we are searching for eigenvectors of an operator, J% in
this case, see Eq. (4.10), and these are given but for the normalization. Therefore, we
need to consider an additional equation to the set (4.20), namely the normalization

condition

Gom, Groj)lism, Gr)) = Y cfeljiaisjo.m = il ji k.jo,m — k)
i k
=Y e’ =1, (4.21)

where the first equality follows from Eq. (4.17) and the second from Eq. (4.6). This
way, we obtain the final system of equations whose solution is unique but for a
complex phase which is commonly chosen so that the coefficients c; are real.

4 R
Example: Consider a system with j; = j, = 1, for example two electrons

in a p-state. For the sake of simplicity, we focus only on the states with
m = 0. The set of equations (4.20) for the CG coefficients simplifies after
the substitution of the particular values of jj, j», and m to

i=—1:Q2—jG+ 1))c—1 +2¢o =0,
i=0: (4—](]+ 1))6’0+26'_1 +2C+1 =0,
1= +1 . (2—](]+1))C+1 +2C() =0
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By substituting the three possible values of j, i.e., j = 0, 1,2, and using
the normalization condition

2 2, 2
¢ +egter=1

we find the three composed states

|0’0’(171)> = %('1’_1”1’1) - |1’O)|1’0) + |1’1)|15_1))7
|1’O’(171)> = E(“’_l)u’l) - |1’1)|17_1))7
12,0, (1,1)) = L(|1,—1)|1,1) +2|1,0)|1,0) + |1, 1)|1,—1)).

«l

6

One can easily verify that these vectors are mutually orthogonal. They
must be since they are the eigenvectors of the Hermitian operator J?
corresponding to different eigenvalues j(j 4+ 1), where j = 0, 1, 2.

How does the inverse transformation
Jitiz
i, isjom—i)y = Y dilj,m, (r.j2)) (4.22)
j=li=pl
read? This is not a purely academical question, we will need this formula later. It

follows from the orthonormality of the states |j, m, (ji,j>)) and the property ¢; € R
that

d = (j.m, Gr.j)|jrs injosm — i) = (s injosm — il jom, G jp))* = ¢f =¢;.

N
Example: The transform (4.17) is unitary. Moreover, since it is also real,

it is orthogonal. Therefore, when we rewrite the previous example into a
matrix notation,

1 =1 1
[1,0,(1, 1) | = e (2) 7 |1,0)[1,0) |,
o))\ = 2 -
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the matrix of the transform is orthogonal. The inverse matrix to an
orthogonal matrix is its transpose:

1 1 1
ooy | =12 0 | [moan
— 1 =1 1

However, when we compare Eqgs. (4.17) and (4.22) it seems that the
matrices of the transforms should be the same. Is our result not a
contradiction? No, it is indeed not. We write the transforms (4.17)
and (4.22) in an abstract form

Vi) = ZAU|XJ')» Ay = (x| vi) (4.23)
j
and
1) = Zk:Bjkak)s
where
By = (Yl 1j) = (1] v)" = Af = Ay
hence

)= Aglva) . (4.24)
k

Recalling the definition of matrix multiplications (note that the order of
the indices is important!), we see that the matrix of the transform (4.24),
or (4.22), is the transposed matrix of the transform (4.23), or (4.17).

We have thus learned how to add two angular momenta. Needless to say, one
can follow a similar procedure to combine a greater number of angular momenta.
In brief, one starts by adding two of them and subsequently combines the obtained
result with the third angular momentum, etc. The reader is now able to prove all by
himself the statement under Fig. 3.1, which claims that an even number of fermions
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behaves as a boson and an odd number of fermions as a fermion. In other words,
if we add an even number of particles with half-integer j we obtain a compound
particle with an integer j, and if we add an odd number of particles with a half-integer
j we obtain a compound particle with half-integer j. For instance, the helium atom
‘Z‘He constitutes two neutrons, two protons, and two electrons. Hence as a whole, it
is a boson. At a sufficiently low temperature, these atoms can transit to the same
quantum states which then macroscopically manifests as a superfluidity. In contrast,
the helium isotope gHe constitutes only one neutron, two protons, and two electrons.
It is thus a fermion and two such atoms may never populate the same quantum state.
This form of helium becomes superfluid, too, though only when the sufficiently
cooled atoms make pairs. These pairs then behave as bosons and can accumulate
in the same state. Similarly, two electrons in a superconductor form the so-called
Cooper pairs at low temperatures and behave as bosons.

Let us add one more remark here. In the literature and symbolic computer
programs, one can meet a slight variation of the Clebsch-Gordan coefficients, the
so-called Wigner 3j-symbols, which are defined in the following way:

(jl j2 ]3) — (-1)’17j27m3 (jlam17j27m2[j3v_m3)
my mp ms3 V23 + 1

4.3 The Runge-Lenz Vector

4.3.1 The Runge-Lenz Vector in Classical Mechanics

It belongs to common knowledge that the angular momentum conserves, see
Eq.(3.73), in every central field. However, in the special case of the Coulomb
field,

V(r) = —zr 1,

there exists another important conserved vector. If we take vector product of the
angular momentum and Eq. (3.72) we obtain

dp ZL xr
X_—_

L =
dr r

. (4.25)
The rhs features a double cross product which can be simplified:

(L X r)i = ((I‘ X p) X r)i = EjjkEjrgXrPgXk = (_SiVSkq + 8iq8kr)xrpqu

= —xipeXx + xpixe = rH(—mmpr + pi) -
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One can express the momentum also in the following way®:

dx; d(rnl) dr dn;

r—,
dt Cdr dt dt

Pi= —(

which in turn yields

(L xr), =r | —nn nkdr+r% —i—d ,—i-r%
' dr dt dr dt

The first and the third terms cancel each other out. The second term is equal to zero

due to ny dgf = ; gtnknk = 0 since nyn; = 1. Therefore, we are left with

d
L><r=r3—n.
dr

If we return to Eq.(4.25) and realize that owing to Eq.(3.73) it must hold that
L x dp = dL X p, we arrive at

dX

—:O’ X=Lx /n.
dr p+sn

Namely, the vector X does not change with time, it is an integral of motion. This
vector is commonly referred to as the Runge-Lenz vector and its physical significance
is the following. First, its scalar product with the angular momentum equals zero:

L-X=L-Lxp)+ZL-n=0+0.
We can readily see that the vector X lies in the orbiting plane of the body since
the angular momentum vector L is perpendicular to the orbiting plane of the body.
Second, the scalar product of the Runge-Lenz vector with the position vector reads

r-X=r-(Lxp)+2Zr=-L*+7Zr. (4.26)
Exploiting the freedom in the choice of a coordinate system, we can pick it so that
the angular momentum points in the direction of the axis z. The motion of the body
is then restricted to the plane xy. If we further place the axis x in the direction of the
vector X and introduce the polar coordinates

X=rcosg, y=rsing, 4.27)

Eq. (4.26) acquires the form

rXcosg = Zr—L?, (4.28)

Recall, see Eq. (3.72), that we are considering particle of unit mass.
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Fig. 4.1 The ellipse and its prominent parameters

which is an equation of an ellipse. To prove this statement, we start with the equation
of an ellipse in the Cartesian coordinates, that is

(2)2 n (%)2 —1. (4.29)

where a and b are called the semi-axes of the ellipse. In terms of geometry, an
ellipse is a set of points which have a constant sum of their respective distances from
the two focal points F; = (—¢,0) and F, = (g,0). The parameter ¢ is termed the
excentricity of the ellipse and it assesses the difference between the ellipse and a
perfect circle; that is, the value ¢ = 0 corresponds to a circle. The reader can prove
on his or her own that the set of points (x, y) satisfying Eq. (4.29) does comply with
this geometric interpretation. While doing so, the reader can also deduce that

&2 =d*— b, (4.30)

see Fig.4.1.

We now move the coordinate origin into one of the focal points, x — x — ¢, and
introduce polar coordinates (4.27). Equation (4.29) can be then—with the aid of
algebraic operations and the formula (4.30)—manipulated to

(recos ¢ + b*)? = (ra)> = recosg = ra—b*.

By comparison of the last equation with Eq. (4.28), we see that the magnitude of the
Runge-Lenz vector X is equal to the excentricity ¢ of the ellipse with the semi-axes
of the magnitudes a = Z and b = L, respectively. The Runge-Lenz vector points
from the center of the ellipse to one of the focal points. The conservation of this
vector in time means that the classical motion in the Coulomb field takes place along
an ellipse and that this ellipse maintains its shape and orientation, i.e., it does not
rotate or deform. We thus derived the first Kepler law without solving the Newton
equations!
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4.3.2 The Runge-Lenz Vector in Quantum Mechanics

It is natural to expect that since the Runge-Lenz vector is an integral of motion for
the classical motion in the Coulomb field, the corresponding operator

X=-(Lxp-pxL)+n 4.31)

[X,A]=0, H= % . (4.32)
This expectation is rightful and its proof is left to the reader. The cross product Lx pin
Eq. (4.31) is antisymmetrized in order to make the resulting operator Hermitian. The
reason is that in general, a product of two Hermitian operators needs not necessarily
yield a Hermitian operator: (AB)* = BTA+ = BA, which is not the same as AB. On
the other hand, the antisymmetrized form produces (Aé + éA)"r = BA + AB. The
symmetrization of the components of Land p corresponds to the antlsymmetrlzatlon
of the cross product e,jk(Ljpk + pkL) = s,]kL Pr — ,kjpkL = (L X Pp—px L),

There is an important consequence arising from Eq. (4.32): the components of
the vector operator X do not mix states with different energy values. Namely,

N N 1 1 R
= [X,H] = (n/,l’,m’|[X, H]|n,,m) = (W — ﬁ) (n/,l’,m’|X|n, L,m).
. (4.33)
Hence, we have (n/,',m’|X|n,l,m) = 0if n’ # n.
In our further considerations it will prove advantageous to separate parts of the
operator X acting on the angular and radial degrees of freedom. Therefore, we
substitute the expression for angular momentum (3.74) into Eq. (4.31),

Xs [Sstqsykx pkpq - 8stq8q]kpzxjpk] + ns

[—(8,8gk — 8.484))XiPiPy — (88 — 848i)PiX;iPx ] + Ay

l\JI'—‘ N = N —

(—X,P* + X,PsPy — PiXsPr + PiXiPs) + N

The third and the fourth term can be rewritten by swapping the leading two factors
and adding an appropriate commutator, so that we obtain

A

X.v = _5\(‘?62 + (),ij)j - l)f)v + ﬁs .
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For the participating operators we have, in coordinate representation, Eqgs. (3.13),

A

% = e (G15), P — i (nka%Jrﬂ), (3.21) and (3.76), P> —

r

_ (% +28 ';—j), thus we can write
N 9 L2 9
X=n|_—-——+1|-V'—. (4.34)
ar r or

Note that this operator is a first-order differential operator in r. We now find the
action of the components of the Runge-Lenz vector on the common eigenstates of
the operators H, L% L,, namely

)A(j|n, I,m) = Z dl(f’)m,

U'.m'

n, l/,m/).

These equations will prove indeed valuable as they will provide first-order
differential relations for the radial functions. Extracting the radial functions
from these equations will be substantially easier than solving the Schrodinger
equation (3.87) directly.

4.4 Matrix Elements of Vector Operators

4.4.1 Motivation

Let us be a little more general and find matrix elements of the vector operators of
the type’

V =nf, 2 + v'iv(r) (4.35)

between spherical harmonics. Here, fn and fv can be arbitrary operators which
depend on the coordinate r or on the squared magnitude of the angular momentum
L2, respectively. The Runge-Lenz vector is obviously a special case of such an
operator, see Eq.(4.34). The operators of the momentum and of the coordinate,
P and X, are another special instances of this operator. As we will see later in
Chap. 6, the probability that an atom changes its state from the initial state |i) to the
final state |f) and radiates a photon during that transition is proportional, in a good
approximation, to the squared magnitude of the matrix element

o0
X)ir = (i|X|f) = / Ry, ;7 Ry r*dr / Yy, Y, de2. (4.36)
0 J S .

"The derivation in this section is inspired by that in [1].



4.4 Matrix Elements of Vector Operators 125

The knowledge of the matrix elements of the coordinate operator between the
spherical harmonics dictates which transitions are allowed and which forbidden.
The herein presented derivation may seem rather lengthy, therefore an impatient
reader can skip over to the final equations (4.50)—(4.52).

4.4.2 Commutation Relations

The sought matrix elements can be almost completely determined merely from the
commutation relations

(L] = e, [Li V)] = ie V), (4.37)
o] =20 — V), [ V] =—2ml2. (4.38)
The first one can be verified easily (try the rest yourself!)
[Li, ] = [—ieipgn, Vi, mi] = —igipgny [V, njl
= —ieipg(8gj — ngnp)ny = ieypny + i€ipgnpngn; .
In the last term, we contracted an antisymmetric and a symmetric tensor, which
yields zero, hence leaving only the first term. For verification of the other relations,

it is useful to know the commutators of the components of the angular operator V”.
Employing Egs. (3.15) and (3.18) leads to

o 2 27 ‘a+v;1
o aw | |"or

RRRAN
- ”’ar’ r r’njar
/AR IR/
- +Mor r "oy

1 n n 19 n n 1
= —ﬁ(n,»Vj — njVi ) — ;5(811 — l’ljl’li — 8lj + l’lil’lj) + I:V V ] r

AR |

1 1
= ) —n V) + [v" v"]

[ J
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It follows thereof
[V, V] = n,-Vj” —nVi.

1 J

We thus learn from the relation (4.37) that every vector operator V of the type (4.35)
satisfies

L, \7j] = isijkvk . (4.39)

Next, we will show how this commutation relation leads to selection rules for the
magnetic quantum number m.

4.4.3 Selection Rules in m

Equation (4.39) yields fori =j =3
(L3, V3] = 0.

This operator equality holds true when we apply it on the eigenvectors of the
operators L3 and L2,

(1, m'|[La, V5] ), m) = 0.
From the definition (4.3), we obtain
(m' — m)(l’,m’|\73|l,m) =0.

In other words, if m’ # m then necessarily (7', m’ |\73|l, m) = 0. Next, let us inspect
the commutator

L3, V] = [L3, Vo] £i[Ls, Vo] = iVh £ i(=iV)) = £V, + iV, = +Vy

where in the second equality Eq. (4.39) was used. Based on the same arguments as
before, we obtain

('m0 |IC5, V]|, m) = {1, m' | |1, m)
= (m — m)(l’,m’|\7i|l, m) = :I:(l’,m”\A/iU, m)

=m -m¥F 1)(1/,m’|\7i|l,m) =0.

Therefore, we have (I',m’|VL|l,m) = 0 whenever m’ differs from m = 1.
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4.4.4 Selection Rules inl

As our next step, we show how the selection rules for the orbital quantum number /
follow from the commutation relations (4. 38) After applying the first equation (4.38)
on the eigenvectors of the operators L'; and [2 , we obtain

(' ,m |[|-2 ml|l,m)y = 2(U',m’ |(n — V) |L,m)
hence
(I + 1) =1+ D) m |l m) = 2(U,m | (e — V)|, m)
and we express the term with the angular nabla,
(. m' |V m) = % 241+ 1) =0T+ D), m |ng|lm) . (4.40)
Similarly, we obtain from the second equation (4.38)
(1, m'|[C2, VL, mYy = —2(1',m | L]0, m) .

Thus, after expanding the commutator we arrive at

(I + 1) =14+ D) m' | VL m) = =210+ D(I', m |n |1, m) . (4.41)

Equations (4.40) and (4.41) can be further rearranged to yield a restriction on the
matrix elements of the operator ny in the form

(0w | lm)(' + 1+ 2" + D'+ 1=D(' —1-1) =0.

Since [ is always nonnegative, the first two brackets are always nonzero (except for
the trivial case [ = I/ = 0). Thus, we reach the result: we have (I, m’|ni|l,m) = 0
for I’ different from [ & 1. In addition, it also follows from Egs. (4.40) and (4.41) that
in such a case the element (I, m’|V}!|l,m) is equal to zero as well. In consequence,
all electromagnetic transitions other than between an s- and p-state, or p- and d-state,
etc., that is always by one angular degree, are forbidden.®

8This conclusion is true only for the so-called dipole radiation, see Sect. 6.2.4.



128 4 Treasures Hidden in Commutators

4.4.5 Nonzero Matrix Elements: Dependence on m

We will continue our analysis of the action of a general vector operator Von spherical
harmonics. We managed to discover the selection rules so far; however, we desire to
find the complete expressions for the resulting vectors Vs |l,m) and Vs |/, m) as well.
The reason is, their knowledge substantially simplifies the calculation of both the
radial and angular wave functions of the hydrogen atom. We begin by determining
the commutator [|:+, \7+] from Eq. (4.39),

Lo Vil = [0 4ils, Vi + Vo] = [l Va] +i[ls, V1] = i(iV3) + i(—iV3) = 0.

Subsequently, we apply this equation once again on the eigenstates of the operators
IA_2 and |:3,

(,m[[L4, Vi]llm) = 0. (4.42)

Using the Hermitian conjugate of Eq. (4.8) for I:i,

mls = @Lm+1)VIFm(I+1£m), (4.43)

we obtain from Eq. (4.42)

0=V +m)YV +1—m){l,m' —1Ny|l,m)

— VU=m)(+ 1T+ m)l,m Vg |lym +1).

With the choice m’ = m + 2 and I’ = [ — 1, the last equation takes on the form

0=I+m+D)(I—m—2){I—1,m+ 1|Vy|l,m)

— VU=my I+ 1T +m(l—1,m+2NVp|lm+1);

therefore

((—Lm+2Nylm+1)  [[-=m=2  [(—m=2)(—m—1)
(I—1,m+ 1|V |l,m) (I=m—=1)(1—m)
On both sides of the last equation, there is a ratio of two expressions which differ

solely by the interchange m <— m + 1. Hence, the dependency of the matrix element
on m then must read

(I—1Lm+ 1Ny |Lm) = c/(I=m—1)(I—m), (4.44)

where ¢; depends on / and possibly also on other quantum numbers except for m. In
literature, the coefficients ¢; are frequently termed as the reduced matrix elements.
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We have thus successfully completed one sixth of our task. As our next step, we
find from Eq. (4.39),

(L. Vi] = (L V] 4l Vol — [, Vi) + (Lo, Vo] = -2V,
that V3 = —[L_,V+] /2. Using this operator equality on the eigenstates of the

operators L2 and L3, and employing Eqs. (4.8), (4.43), and (4.44) we successively
obtain

(1=1,m|\Vs|L,m) = (I—1,m| (—%) (L, V]| m)

1 A
5= Lml(LVy = VL)L m)

1 .
= —5\/(1— L—m)(—14+14+m){l—1,m+ 1|Vy|l,m)

1 .
+ 5\/(l—|—m)(l+ 1—m)(l—1,m|N ¢ |l,m—1)

= —%\/(1— 1—m)(I + m)c;/(L—m—1)(1 —m)+

+ %\/(z +m)(I 4+ 1 —m)c;y/(I —m)(I —m + 1)
=c(I—m)(+ m). (4.45)

One can also easily derive from Eq. (4.39) that [L_, V3] = V_. It thus follows (the
reader will be able to reproduce the missing steps on his or her own by now),

(I—1,m—1\N_|lm) = —c;/(L+m—1)(I+m). (4.46)

We assume that the coefficients ¢; are real and will comment thereon in detail at the
end of this section. For V3 is a Hermitian operator, the Hermitian conjugation of
Eq. (4.45) together with the interchange / — [ + 1 lead to

I+ LmVsll,m) = Vi + L—m)(I+ 1 +m). (4.47)

We proceed in a similar manner in case of Eq.(4.44), with the exception of
performing a simultaneous replacement  — [ 4+ 1 and m — m — 1, and Hermitian
conjugation:

(4 Lm=1NV_|lm)=c/I—m+2)(—m+1). (4.48)

Finally, the replacements / — /4 1 and m — m + 1 and Hermitian conjugation lead
from Eq. (4.46) to
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(4 1L,m+ 1NV4|Lm) = - VI +m+ DI+ m+2). (4.49)

Recalling now the selection rules, these six elements from (4.44) to (4.49) are the
only matrix elements of the operators V1 and V3 which do not necessarily vanish.
Therefore, we can write

\73|l,m) =c(I+m)(—m)|l—1,m)
+ VU +1T+m+1—m)l+1,m), (4.50)
Villbm) = c/(l—m—1)(I—m)|l—1,m+ 1)

— A+ m+2)((+m+ DI+ 1,m+1), 4.51)
V_ll,m) = —c/(+m—D)({I+m)l—1,m—1)
+ i VJl—m+2)(—m+ D[l +1,m—1). (4.52)

In case of [\7, |:|] = 0, the operator V does not mix quantum states with different n,
see for example Eq. (4.33), and we can write

Vs, I,m) = cio/(L+ m)(l — m)|n, 1 — 1,m)

+ cpinV A+ 1 +m(I+1—m)|n, 1+ 1,m), (4.53)

where (in contrast to Eq. (4.50)) the coefficients ¢ may depend on the principal
quantum number n as well.

Let us return to the assumption that the coefficients ¢; are real. We will see that
it does not lead to a contradiction in the case of a purely angular operator V. The
operator V, which comprises both radial and angular operators, such as the Runge-
Lenz vector, Eq. (4.34), acts on the states which may be expressed as products of
radial and angular parts. Choosing an appropriate complex phase of the radial part
of the wave function, we may require the coefficients c;, be real. For instance, it
must be possible to choose the radial functions real since the radial Hamiltonian in
Eq. (3.87) is real. Therefore, the coefficients ¢, must be real as well. As we will see
later on in Sect. 4.5.2, this finding is of great importance.

4.4.6 Generalization

The above considerations may be generalized even further. An arbitrary vector
operator V complying with

[0, V)] = iV, (4.54)
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where J,- are the components of an arbitrary angular momentum obeying the
commutation relations (4.1), also satisfies the identity

[ [, V] = 2({%, V} — (4, - V}),

the proof being straightforward, though laborious. From the last expression, we
obtain the following formula for the matrix elements of the operator V between the
eigenstates of J? and J,

[ =) = 1[G +j+ D> =10, | Viym) = =2, [{d, - V}|j,m),  (4.55)

which can be found using similar consideration as in the previous section. From
Eq. (4.54), one can also easily deduce that

[J,J-V]=0.

Considering Eq. (4.55) forj’ = j yields

ot

~ 1
1

Vij,m) = T )(j, m'|Jd - V]j,m) . (4.56)

This implies that when J - V = 0 the matrix element (j, m’| \7[1 m) equals zero.

Ifj/ # j then the rhs of Eq. (4.55) vanishes and then lhs has to vanish as well. This
is possible only if (j/, | V|j,m) = 0if j/ # j £ 1. To sum up, the matrix elements
(i',m’|V|j,m) vanish whenever j/ # j + 1 orj/ # j. Equations (4.44)—(4.49) were
derived merely from the commutation relation (4.39). Therefore, they hold true for
a general operator v obeying Eq. (4.54), with [ replaced by j. The generalizations of
Egs. (4.50)—(4.52) for an arbitrary operator obeying Eq. (4.54) then reads:

Vsljm) = c;v/( + m) G — m)lj — 1,m)
+ i Vi+1+mG+1—m)lj+ 1,m)
+ majlj,m),
Vilism) = ¢;/G—m—=1)G—m)j—1,m+ 1)
— V(i +m+2)(G+m+ D+ Lm+1)

+ VG —m)G+m+ Dalj,m+ 1),
V_lim) = —¢;/G+m— DG +m)i—1,m—1)
+ iV i—m+2)(—m+ D]+ 1Lm—1)

+ VG+mG—m+ Dagljm—1),
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where

aj=m<;,m|3-f/u,m).

4.4.7 The Zeeman Effect

The above presented generalization finds an indeed nice application in the so-called
anomalous Zeeman effect. This effect is nothing else but splitting of atomic spectral
lines arising from the combined influence of the spin-orbit interaction and the
interaction of the spin and orbital angular momenta of an electron with the external
magnetic field.” With all the knowledge acquired so far, the reader will be able to
study this effect independently with the aid of the following instructions.

1. Apart from the kinetic and electrostatic potential energy, consider only the terms
describing the spin-orbit interaction on the rhs of Eq. (3.101)

[o - (B —eA)? 1

om +ep — ) [Gi’aj] [ﬁj’e‘/’] p; .

f—

Further, consider a general electrostatic potential eg, though spherically
symmetrical, ¢ = ¢(f).
2. As usually, neglect the term e?A - A. The Hamilton operator H can then be cast
into the form
A=Ho+H. Fo= 4o,
2m
~  S.Lid . 2
A, = —-@—E(A-HB-S).
2m? r dr m

3. Choose the z-axis in the direction of the magnetic field. Then
B
B =B(0,0,1), A= 5(—y,x,0),

where the vector potential A was chosen so that B = V x A and VA = 0; hence

S-Li d(ep) eB
2m? r dr 2m

I

1= (lA_Z + 2éz) .

9The normal Zeeman effect occurs under the very same conditions with the only exception that the
spin-orbit interaction is negligible. The terminology, stemming from the historical development,
was coined somewhat unfortunately, though.
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4. Change to the atomic units » — r4/(mZa) and introduce the notation

_ v (5)
V(rA) - m(Za)z
and
__°B 4.57)
VB )t 4.

The Hamiltonian |:|1, which comprises the spin-orbit interaction and the
interaction with the external magnetic field, then takes on the form

M Zoyg j 1dVoW s (L. +28.).

m(Zot )2 2 ra dr, ‘A 272
As shown in Eq. (0.7), the dimensionless strength equals yz ~ 4.254 x 107°
for the magnetic field of the intensity 1T. To realize how strong the magnetic
field is, we can compare it to a few examples: the protons in the Large Hadron
Collider (LHC) are kept on their orbit by superconducting magnets maintaining
the field of about 8 T, and the highest recorded magnetic intensity ever reached
on Earth is 34 T. Considering that «?/2 ~ 2.7 x 107>, a situation when the two
interactions are of a comparable magnitude is certainly plausible. However, within
the conditions we commonly encounter on our Earth, the first-order perturbation
method suffices. A

5. Choose the eigenvectors of Hy in the form

<r n,j,m, (%,l)> = Ry (r) L', m, (%,l)>, (4.58)

where the states |j,m, (% l)) are called the spherical spinors. We already
encountered their simplest instance for / = 1 in Sect. 3.5.2. For the first-order
perturbation method, we will need the matrix elements

) 1 / ) 1 /
n,j,m, |\ —, n,j,m,{ —,
SR ) R )
(Za)? /°° 5 dv/. 1
= d R - \J/> > _7l
> ), R g m |

(3] (1)

Ay
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With the aid of Eq.(3.110) and the defining formulas for L/ m, (%1))
Egs. (4.10), (4.12), and (4.13), the spin-orbit interaction matrix element equals

<j,m, (%1) é-i_pm, (1,1)> _jG+D -+ 3

2 2 8
6. Now the key point comes. We can write for the matrix elements of the angular
momentum projections along the direction of the magnetic field

o) 28 o ()
(L) (1)

where we used Eqgs. (4.9) and (4.11). However, how to calculate the last matrix
element? We could use the expansion (4.17) in terms of orbital and spin states
as we have already determined the action of é on the spin state. Nevertheless,
there is a more elegant way. One can easily find that

~

S:

[ji, Sj] = [|:l + éi, éj] = [éi, éj] = ié‘,’jkék s
thus S behaves as a vector operator with respect to J! Owing to the relation
& _Llm,a

we have from Eq. (4.56)

o (el (L)) Z G D 1 D) +3/4
o (o (1)) -,

Exercise 9: The Zeeman Effect} A

Determine (numerically in hertz) the splitting of the 2p level of the
hydrogen atom when it is inserted into a magnetic field of intensity 0.5 T.
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4.4.8 Nonzero Matrix Elements: Dependence on l and n

The only remaining task now is to determine the numbers c;,). One can do so in the

following way. On one hand, we can calculate (\7+ Vo + \7%) |(n), I, m) directly from
Egs. (4.50) to (4.52). After straightforward, though somewhat lengthy manipulations,
we arrive at

VoV + ) (), 1,m)

- (ci(n) Q= D)+ m) + oy 2L+ 3+ 1 — m)) (), m).  (4.59)

On the other hand, we can use the defining equations \7:]: = \71 + 1\72 and rewrite
the lhs of the last equation as

(Ve V + VD)), 1) = (V3 4 V3 4 V2 =iV, Vol ) ), £.m)
— (\72 —i[\71,\72]) |(n), 1, m) . (4.60)

Thus, in order to find the coefficients c;,), we need to know the squared magnitude
of the vector operator and the commutator of the vector components with each
other. These commutation relations, however, depend on the specific form of every
individual operator V. In other words, it depends on the particular form of operators
fn and fv appearing in Eq. (4.35).

4.4.9 Spherical Harmonics

If the vector operator of choice is the direction vector V = nthen obviously n;n; = 1,
[n:,nj] = 0. It follows then from Egs. (4.59) and (4.60)

1=ci@l— D) +m)+ci (I+1—m)2l+3). 4.61)

Since ¢; is independent of m, the same constant must appear in front of the same
powers of m on both sides of the last equation. Due to this requirement, we obtain
two equations: one for ¢; and one for ¢;+1. These equations must be, and they are,
compatible;

1= Q=D+, (+ 1) +3) B 1

0= d@-H-&,@+3) |9 Ja-hain
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We can now express the action of the components of an arbitrarily oriented unit
vector on the spherical harmonics as

| U=m)(+m)
Y™ =\ G @y ™

Yit1m(m), (4.62)

(+1+m(+1—m)
Q1+ 1)(2l + 3)

[l—m—1(—
nyYp,(m) = \/((ZZT 1)(;l(+ 1’;1) Yi i1 ()

Yii1my1(m) (4.63)

_UEm+)+m+ D)
Q1+ 1)(2l + 3)

and

I -1
1 Yin(n) = —\/ o it o)

QT D@t e, (4.64)

¢U—m+DU—m+D

These formulas find a wide range of applications, such as in the determination

of the form of spherical harmonics. From Eqgs. (4.62) to (4.64), one can calculate all
other Y}, if given the starting Yy, see Eq. (3.35), in an elegant way,

1
n3Yoo(n) = —=Yio(n),

V3

1 2
n3Yjp(n) = —=Ypo(n) + —="Y2(n), (4.65)

V3 V3.5

I’l+Y0()(Il) = —\/ngl(n) P
2
I’l_Y()()(I'l) = \/;Yl,—l(n)

and so on, using neither differentiation nor integration. Compare the results with
Egs. (3.91), (3.92), and (3.93).

One last comment: Once we know the matrix elements of the operator n (which
are easy to obtain), we can use Eq. (4.40) to calculate the matrix elements of the
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differential operator V". To be more specific, we substitute =+ land? =1—1
into Eq. (4.40) and obtain

{1+ 1,m' |Vl m) = =L + 1,m'|ng |1, m) (4.66)
and
(1= 1w |ViLm) = (L4 Dl — 1,m |ne|1,m) . (4.67)
Even if that were the only application of the presented algebraic construction (which
is surely not), it did pay off. . .

Finally, we have all the requisite tools to tackle the fine-structure of positronium
spectral lines.

f-[ Exercise 10: Structure of Positronium Spectral Lines ]—[ A ]-\

Consider the relativistic and magnetic corrections in positronium. Let
us recall that the Hamiltonian with accuracy up to ot is given by the
}Zonrelativistic Hamiltonian Hy, Eq. (3.131), and the Breit Hamiltonian
Hy, Eq. (3.132). Verify that the total angular momentum

Joi+8 §-8+8

commutes with the total Hamiltonian H = I:Io + H 1. When considering
the degenerate level n = 2, there are four classes of states, namely 2Als,
2%, 2'p and 2°p. Reflect that the matrix elements of the Hamiltonian H;
between four classes of states 2's, 2%, 2'p, and 2% vanish and we can thus
restrict our further considerations to only one of the classes of states. For
instance, for the projection of the total angular momentum m = 0, there
are three possible states 2°p,

Royp(NYii(m)[l, =1}, [1,=1) = |=),[=),,
1

Ry, (r)Y10(m)[1,0), |1,0)=\/§

(IH)el=)p + =)l +))
and
Roypy(NY1—1(m)|1, 1), |1, 1) = [+),[+),.
We can compose states with j = 0,1,2 from these three states, see

Sect. 4.2. Determine the splitting between the p-states with definite values
of j with accuracy up to o*, i.e., using the first order of the perturbation
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method. Set the gyromagnetic ratio g to 1. Compare the results with the
experimental values [5]

Vexp(2%s — 23pg) = 18,504.1 (10.0)MHz
Vexp(2% — 2%p1) = 13,001.3 (3.9)MHz

and
Vexp(2%s — 2p2) = 8619.6 (2.7)MHz.

The kind reader will surely be able to derive from these three numbers the
experimental values for the intervals 23PO — 2%, and 2%, — 2%,.
Hint: the spin-dependent operators in Hy can be rewritten as

ée-ép=%(é2—é5—é§)—>%(s(s—i—l)—;) ,

~

§. L= 3-8 -1 S+ 156+ D)1+ 1]

and

A

miw%=§kmé%wmiﬂ4m$ﬂ=%km§ké]

To calculate the matrix elements of nyn; between spherical harmonics, use
repeatedly Egs. (4.62)—(4.64) and orthornormality relations for spherical
harmonics, Eq. (3.86).

,{ Exercise 11: Spherical Spinors} N i-\

For the spherical spinors introduced in Eq. (4.58), verify that

o-njim*=—imT,

. 1 ':Fl
m, | =, A .
P2 T

To prove this, use Egs. (4.62), (4.63), (4.64), and (4.20).

where

lj,m)* =
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4.5 The Hydrogen Atom: A General Solution

Now itis finally the time to solve the problem of the hydrogen atom bound states in its
utmost generahty We will do so by finding the eigenvalues of the Hamiltonian (4.32),

H = 72 — 1 As we discussed in Sect. 3.4, the Hamiltonian H, squared magnitude
of the angular momentum L2, and the projection of the angular momentum along
one of the axes l: form a complete set of commuting operators. In Sect. 3.4, we also
showed how to obtain the differential equation for the radial parts of the bound state
wave functions, Eq. (3.87). Here, we will explain how to avoid the direct solving of
this equation and how to find the energy eigenvalues and the corresponding wave
functions merely with the knowledge of the matrix elements of the Runge-Lenz
vector.

4.5.1 Matrix Elements of the Runge-Lenz Vector

When we substitute V = X into Eq. (4.53), where X is the Runge-Lenz vector
operator (4.34), we obtain

)A(3|n, Lm) = ciy,VE —m?n,l —1,m) + crp10vV (L + )2 —m2n, 1+ 1,m) .
(4.68)
Comparison of Egs. (4.59) and (4.60) leads to the equation for the coefficients c;,

[c2, 21— D)l +m) + (L 1 —m) 2L+ 3)]n, Lm) = (X2 —i[X1, Xa])|n, I,m) .
(4.69)
Since (prove by yourself!)

X2=1+2A0+1)
and
(X1, X,] = —2HiL;,

and also due to Egs. (3.79), Hln,l,m) = —3L|n,1,m), (3.80), L*|n, L, m) = I(I +

1)|n,1,m), and (3.81), I:Z|n, [,m) = m|n, 1, m), the rhs of Eq. (4.69) can be simplified
to

. © e 1
X —i[X;, Xo])|n, Lm) = = (0> =1L+ 1) = 1 + m)|n, 1, m) .
n
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When the last result is used on the rhs of Eq.(4.69), we obtain, invoking

the orthonormality of the eigenstates |n,l,m), the following relation for the
coefficients c;,

1
1 2L= DI+ m) + iy, (L + 1 —m)(21 +3) = ;(ﬁ —I(l+1)—14+m).

In an analogical way to the consideration following Eq. (4.61), the above equation
breaks into two

1
Othdegreeinm ¢, (21— DI+ iy, (1 + QL +3) = s =1+ 1) - 1),
’ ? n

1
Istdegreeinm  ¢j,(21— 1) + ¢y ,(~1)(21+3) = =
, : "

j:1 nz—P
Cipn=F*—/ —m—mm.
b n\ QI+ 1)@EI-1)

The sign of the coefficients is not uniquely determined as there is a freedom in the
choice of the phase factors of the radial hydrogen functions. We will opt for ¢;,, < 0
here; this choice is consistent with that of the phase in Eq. (4.94) below. When we
substitute the coefficients c;, into Eq. (4.68), we obtain

their solution being

A 1 1
Xsln, L,m) = ——~/'n% — Pbyln, I — 1,m) — —y/n? — (I + 1)2bjg 1 m|n, 1 + 1,m),
n n
4.70)
where we introduced the notation

2 —m2

b =\ r @i

“4.71)

4.5.2 Energy Spectrum of the Hydrogen Atom

One can notice that the effect of the operator )A(3 on the vector |n,[,m) is a mere
shift of the orbital number /. As discussed earlier, see the discussion at the end of
Sect. 4.4.5, we may require the coefficients c;, be real. However, one cannot satisfy
this requirement for / > n — 1, see Eq. (4.70). Therefore, it must hold that

0=V —(Upx+1)? = Ilpx=n-1. 4.72)

The square of the angular momentum must equal at least zero, hence [, = 0. We
can conclude therefrom that / always acquires integer values from zero to n— 1. This
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finding imposes a new requirement on the principal quantum number #: it must be
an integer as well. For the third time, realize that we have deduced all these results
using nothing but the simple commutators!

As we commented in Sect. 3.4.3, the energy levels of an electron in the Coulomb
potential are subject to the accidental degeneracy: the energy of the stationary
states depends on neither the magnetic nor the orbital quantum number. This name
might be misleading, though. As we have showed above, the degeneracy is in fact
not accidental at all. On the contrary, it is related to the existence of the vector
operator (4.31) which commutes with the Hamiltonian of the hydrogen atom. The
existence of this operator is then related to the fact that the classical motion of a
body in the Coulomb potential is restricted to an ellipse.

4.5.3 The Stark Effect

The Hamiltonian of a hydrogen-like atom placed in an external electric field of the
intensity E = (0,0, E) reads

. P> Za 5 2[p VE 5 " pi 1
H=——T EZ= Z I:H —Z], H=——,\—,
2m r te m(Ze) 0+Z3A 0 2 T

where we used the atomic units, r — r4/(mZa), and introduced the notation

eE
YE =

m2a3

(4.73)

As we have shown in Eq.(0.6), a field of the intensity 1 V/m corresponds to
yg = 1.945 x 107'2. The highest intensity reached on Earth is approximately
107 V/m, therefore it suffices to use the first-order perturbation method for degenerate
levels when studying a system under terrestrial conditions. We thus need the matrix
elements

(n, r, m’|2A|n, I,m) .
There are a few tricks (we found them in [11]) allowing us to transform the calculation

of these matrix elements to the calculation of those of the Runge-Lenz vector.
The first trick lies in the identity (prove by yourself!)

It follows clearly thereof

<n, l’,m")A(|n, Im) = (n, l’,m’}ﬁ|n, I,m).
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The second trick constitutes the identities (prove by yourself!)
A = Xi(—i[X;p;, Hol — 2Ho)
and
2i%,[%:;, o] = [2iX:%;P; — ipi%i%; + 3%:, Fo] + f; .
It follows from these two identities that

(n, l/,m/}f‘l|n, Im) = 3—22(11, l’,m’|i‘|n, I,m).
n

Hence, the overall result reads

2 A
(n, l’,m’mn, I,m) = 3%(n, l/,m/’X|n, I,m).

Exercise 12: The Stark Effect} A

Determine (numerically in hertz) the splitting of the state n = 3 of the
hydrogen atom when it is inserted into a homogeneous electric field of the
intensity 2.5 x 10° V/m.

4.5.4 Radial Functions of the Hydrogen Atom

We now show how to determine the radial part of the hydrogen bound state
wave function, i.e., the function R,; in Eq.(3.83), (r|n,l,m) = Yu,(r, 0, ¢) =
Ru(r) Y, (9, ). We use the action of the third component of the Runge-Lenz vector,
Eq. (4.34), into which we substitute Egs. (4.62), (4.66), (4.67), and (4.71). That is,

n3|l,m) =blm|l—1,m) +b1+1,m|l+ l,m) “4.74)
and

Villm) = (1 + Dbyl = 1,m) — by mll + 1,m) . (4.75)

Hence, on one hand, we have
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(I'|)A(3|I’l, l,m) = (ﬁ’% (3 - l(l i 1) + 1) - Vi 9 )Rnl(r)ylm(n)

or r 3or

i—l(l—l_l)—i-])
or r

= ((meYI—l,m + bivimYirim) (

d
— ((U+ Dby Yi—1m — by mYig1m) 5) Ry

On the other hand, we know from Eq. (4.70) that

. I_p [ — (I +1)2
(r|Xs|n, I,m) = vy &
n

blmRn,l—l Yl—l,m - n bl+1,mRn,l+] YH—l,m .
The spherical harmonics form an orthogonal basis set, thus we can compare the
coefficients in front of the same Yj,. This leads to a simple set of differential
equations for radial functions

d (+1) 1 JE- P
[ LUt )__]Rn,z—” Ruic. (4.76)

dr r l nl

d [ 1 2—(1+1)2
[___ + _}Rn, __ V-1
ro l+1

Ryist. 477
dr n(+ 1) i .77

From these equations, one can derive the solution in a sequence of steps. First, we
set n = [ + 1. It then follows from the second equation that

d l+ ! R =0
dr r [+1 =

One can employ the method of separation of the variables to solve this last equation:
Ri1(r) = Koyr'e ™7, (4.78)

and find the integration constant from the normalization condition,

o0 o0 o
1= /0 R\, Pdr = K2, /O P2 gy

l+ 1 2143 (e’ l+ 1 2143
=K>— A2 't = K2 | —— 20 + 2)!
(1)( ) ) /0 e O3 (21+2)

2 )l+3/2 1

N

(4.79)
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R32

r

Fig. 4.2 Radial functions with the maximal angular momentum (not to scale)

This way, one obtains the radial functions without nodes (i.e., without intersections
with the axis r), see Fig.4.2. We have already encountered special cases of these
functions before, Eq. (3.35) for / = 0 and Eq. (3.96) for [ = 1. We then use Eq. (4.76)
to express the other functions. For instance, for n = 2 and [ = 1 we obtain

hence

2 1 3r 1 r
Rypy=—— [34+ 2 )e?=—(1-2)e"?,
» ﬁm( z) ﬁ< z)

confront with Eq. (3.95). And so forth. . .
The relations (4.76) and (4.77) will come in hand in the next two chapters.

4.5.5 Parabolic Coordinates

Exercise 13: Parabolic Coordinates and Hydrogen ]—[ A

Find the eigenstates of the operator 5(3 in the subspace spanned by
the states n = 2 and m = 0; denote the eigenvalue as X3. Show that
(r|2X50) = f1(€)f2(n), where the so-called parabolic coordinates & and
n are given by the expressions z = (§ —n)/2 and r = (§ + 1)/2.
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Exercise 13 relates to the following question: do we need to choose the particular
commuting set of the operators {|:| L2, I:z} when considering the hydrogen atom?
Not at all, nothing prevents us from using a different complete set of commuting
operators, such as {I:l, )A(z, I:Z}, which corresponds to the solution of the Schrédinger
equation in the parabolic coordinates, as illustrated in the exercise. Furthermore,
nothing prevents us from choosing even this complete set of commuting operators:
{I:I, Cl L2 + cz)A(z, I:Z}, where ¢ and c; are arbitrary real numbers. Thus we see that
there is a rich variety of possible coordinate systems in which the Schrodinger
equation separates.

We will use the separation of the Schrodinger equation in the parabolic coordinates
later in Sects. 6.3.2—6.3.4 to obtain the wave function of an electron ejected from the
atom by a photon.

4.6 Decomposition of a Plane Wave into Spherical Waves

Finally, we focus on the simplest possible problem—a free particle,

b=

N|'O,3

On one hand, a free particle is a trivial example of a spherically symmetrlcal potent1al
and we can search for the common eigenvectors of the operators H, (2 and L3,

N a)z
Hlw,l,m) = 7|a),l, m) . (4.80)

In the coordinate representation, we can subsequently split the wave function into
the radial and angular parts

(rlw,l,m) = Ri(wr)Y;,u(n). (4.81)

On the other hand, for this system, and only for this system, it is [P, H A] 0.
We see from Eq (3.15) that the momentum operator is another example of the
vector operator v, Eq. (4.35). Owing to [Py, 2] = 0 and p*> = = 2H, we obtain from
Egs. (4.59), (4.60), and (4.80)

w

JeI=DH2i+ 1)

w® =}, QI=D)(I+m)+ iy ,(+1-m)Q2l+3) = 1 =

Analogously to Eq. (4.70), we find

Pslw,l,m) = o[bylw, 1 — 1,m) + biyi o, 1+ 1,m)]. (4.82)
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After the substitution of the separation (4.81) into the last equation, we obtain in the
coordinate representation

(rlpslw, L, m) = w[bywRi—1(@r)Yim1m + bisimRis1(@r) Yigrm] -

However, through the direct application of the angular operators, we find from
Eqgs. (3.15), (4.74), and (4.75) that

~ !
<r|p3|60, l, m) = -1 [aRl(wr)(bl,mYl—l,m + bl+l,mYl+l,m)

1
+ ;Rz(wr)((l-i- Dby Yi—im — lbz+1,mYz+|,m)] :

Comparing of the last two equations and following the same reasoning as the one
preceding Eqs. (4.76) and (4.77) lead to

—1 (i + ﬂ) R](Q)r) = a)Rl_l(a)r) (483)
dr r
and
S d
—1 (— — —) Rl(a)r) = U)R1+1((1)l’) . (484)
dr r

This pair of equations does not impose any restriction on / or @, though. The number
 can be an arbitrary real number. For a given @ the orbital quantum number /
may acquire any integer value from zero to infinity. However, if we find Ry(wr) by
solving directly the Schrodinger equation (4.80), we can use the last two equations
to determine all other R;(wr) for [ > 0. With the aid of Egs. (3.21) and (4.81), we
obtain from Eq. (4.80) for the radial functions with / = 0

& 2d )
— [@ + ;5] Ro(wr) = w”Ro(wr) .

There are two solutions to this equation: the first one is a regular one which is finite
everywhere,

Jo(wr) = sin(er) , (4.85)

wr

and the second one is a singular one which diverges at the origin,

no(wr) = cos(,iiur) .
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By the substitution

.
Riwr) = ) 71@0 (4.86)

ilnl(a)r)

into Eqgs. (4.83) and (4.84), we can easily prove the functions j;(wr) and n;(wr) are
real. The functions j;(wr) are commonly referred to as the spherical Bessel functions,
the functions n;(wr) as the spherical Neumann functions, or the irregular spherical
Bessel functions.

Now we can ask the same question as in the case of the hydrogen atom: Do we need
to consider this particular set of the commuting operators, namely {I:I, L2, I:3}? of
course not. Nothing prevents us from considering the complete set of the commuting
operators {I:L D3, I:3}. We easily find in the Cartesian coordinates that the wave
function

(rlw,p3,0) = e@? = elerees? (4.87)

is an eigenfunction of these operators. The solutions (4.81) and (4.87) are different
solutions to the same Eq. (4.80) and as such they need to be related to each other. In
other words, it must be possible to express the plane wave (4.87), which describes a
particle with the linear momentum p3; = w, as a linear combination of the spherical
waves (4.81),

o0
|,p3,0) = Y di|,1,0). (4.88)
=0

After application of the operator Ps to both sides of the equation, we obtain, using
successively Eqgs. (4.87), (4.88), and (4.82),

o0
Bslw.p3.0) = 0w, ps.0) =0 Y _ dj|w,1,0)
=0

o0
= Y _di[biglw.l—1,0) + by1olw. 1+ 1,0)] .
=0

By replacing I — [ 4+ 1 and [ — [ — 1 in the first and the second term, respectively,
on the rhs of the last equation, by comparing the last and second to last expressions
in this equation, and by invoking the orthogonality of the states |w, [, m), we arrive
at the relation

di — bi+10d1+1 — biod—1 = 0.



148 4 Treasures Hidden in Commutators

Substituting for by from Eq. (4.71) into the last equation leads to the solution
dy=dyv20+1.

Since the plane wave (4.87) is finite everywhere, we opt for the regular solution
R/(wr) = i'j/(wr) as its radial part. The projection of Eq. (4.88) along the coordinate
basis then reads:

o0
et = = dy Y 21+ 1ili(wr)Yie(9). (4.89)
=0

Setting » = 0 and using the approximate asymptotic behavior of the Bessel function
near the origin j;(wr) ~ r' imply

1= d()Y()’o = dy=V4n. (4.90)

The expansion of a plane wave into spherical waves, Eq. (4.89), finds a wide
application within the quantum scattering theory. One exploits it also in other parts
of physics for example in the analysis of the scattering of electromagnetic waves by
a conducting or dielectric sphere, see, e.g., [12]. We will return to Eq. (4.89) later on
and rewrite it into a more convenient form, see Eq. (5.30).

4.7 Algebra of Radial Operators

As mentioned above in Sect.3.2.5, the eigenstates of the hydrogen atom do not
serve well when it comes to the variational calculation of more complex atoms. The
reason is that the spectrum of the Hamilton operator of the hydrogen atom comprises
both a discrete and a continuous part. However, we have shown for the s-states in
Sect. 3.2.5 that one can use a few simple tricks to transform the original search for
the eigenstates of the hydrogen atom into that for the eigenstates of the operator
'i'g, the advantage being its purely discrete spectrum. All we need to do is thus to
generalize the procedure presented in Sect. 3.2.5 for the states with [ = 0 to general
states. '
Instead of Eq. (3.22), we need to consider Eq. (3.87)

2 7w F ~ T

~ 02 I(l
Aily) = (&+ +1) _ 1) W) =~ [y, 4.91)

19The presentation in this section is, as in the Sect. 3.2.5, inspired by the work [3].
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We substitute » — nr and multiply the whole equation by r to transform the search
for the spectrum of the Hamilton operator to that of the spectrum of the generalized
operator T3, see Eq. (3.25),

. ~ P2 Il+1) F
T = N T = _V' ~ — .
W)y =nly), Ts=—2r+———+3
If we change the operator W3 in Eq. (3.26) to
A an I(l+1
W = rpf + ( _A: )
and leave the operators W, = f and W, = 7P, intact, the commutation

relations (3.27) do not change. It follows that neither Egs. (3.28), (3.29), (3.30),
and (3.31) change; for instance

[T, T = —iT;, [Tl =iTy, [T3Ti]=iT,. (3.29)
Instead of Eq. (3.32), we now have (prove by yourself!)

TP=T-T-Ti=10+1). (4.92)

Apart from the single sign change in the first commutator, the commutation
relations (3.29) are identical to those for the angular momentum operators, Eq. (4.1).
The eigenvalues and eigenstates of the operators 'i'g and T2 can be determined in the
same way as those of the operators :13 and J2. In accordance with Eq. (4.3), we thus
write

Ty =1L+ Dndy,  Tslnd) =nln,1). (4.93)

After the replacement of J by 'i', we obtain the equation

Tin ) = (Un)n+1,0), aFln)=VaFhn+x(+1), (4.94)

instead of Eq. (4.8). Imposing the requirement there be a lowest possible n, which
agrees with n dictating the energies in Eq.(4.91), it must hold that 'i',|l, Amin) =
0, hence nyy, € {—1 1+ 1}. Were we to set np, = —I in a¥(l,n) we would
obtain an imaginary result, which contradicts the reality of the operator T; and its
eigenfunctions. Therefore, we will use nyi;, = [ + 1 as the lowest state. This way,
we easily obtain the eigenvalues of the operator 'i'3 and derive for the second time
that the hydrogen spectrum acquires the form E, = —#, where n = [+ 1 + n,,
n.=0,1,2,....
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The projections of the eigenvectors of the operator 'T'3 onto the coordinate basis'!
R = (rln.1)
is almost identical to the eigenfunction of the hydrogen atom R, ;(r). The
eigenfunctions of the operator T3 differ from those of the radial Hamiltonian (4.91)
only by the energy-dependent scaling of the radial coordinate » — nr and by the
normalization. A slight difference lies also in the Hamiltonian (4.91) being Hermitian
with respect to the scalar product with the weight 2,

(ny, \Fina, 1) = (na, 1|Fy|ny, 1)

o0 o0
N / P Ry (PR () dr = / P Ry (FURy, ()
0 0

as can be easily proven by integration by parts. On the other hand, the operator 'T'3
is Hermitian with respect to the scalar product with the weight r,

oo oo
](; rR%J(r)TgR%J(r) dr =/0 arMz’,(r)T3Ran’,(r) dr.

Hence the radial functions of the hydrogen atom form an orthonormal system with
respect to the scalar product with the weight 72,

o0
1, s 1) = / P Ry ()Rt (F) dr = 831 (4.95)
0

whereas the eigenfunctions of the operator 'i'3 form an orthonormal system with
respect to the scalar product with weight r,

ny,l

oo
/ rRY (DR (r) dr = 8,y - (4.96)
0

For example, the eigenfunctions of the operator 'i'g for n = [+ 1 read, compare with
Egs. (4.78) and (4.79),

2 —r
R, () = m(Zr)le ) (4.97)

1Tt is a common habit within literature to call these functions the Sturmian functions, or the
Sturmians, see for example [2].
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As we will see later, it is sometimes advantageous to introduce the screening
parameter 1)

2n

W Qnr)le™ . (4.98)

R 1,(0.1) =

Apart from the substitution r — nr, the function (4.98) differs from the
functions (4.97) also by the factor n which ensures correct normalization (4.96).

From the deﬁmtlon of the operators T3 and T1, see Egs. (3.26) and (3.28), we find
F=T-T = (T+ + T_); hence

rRM(r) = (?3 - %(h + ?_)) RM(r) (4.99)

= nRY(r) — —\/(n —Dn+1+ l)Rn+1 /(r)

— —\/(i’l_l_ 1)(n+l)Rn ll(r)’

where we used Eq. (4.94). We have thus found an equation for eigenfunctions of 'i'g
operator which will prove handy in the next chapter.

As we already pointed out above, the discrete basis functions RY,(r) differ from
the hydrogen functions R, ;(r) only by a scale factor and a normahzatlon constant.
Let us now find the exact relation between these two functions:

Rui(r) = —Rn w(r/n).

The factor n~!

Eq. (4.96),

ensures the correct normalization of the functions RY 1(r/n), see

oor er r = r r =
fo I~ R (r/m) | d / rIRY()[Pdr=1.

The factor K can be determined from the requirement of the proper normalization
of the functions R, (r), see Eq. (4.95),

o0 o0 2
/ Ry (r)|* dr = K? f 7 |n ' R, (r/) | dr
0 0
= K2n_2n3/ rRM,(r)rR ,(r)dr
0
1
=Knwn=1=>K=-.

n

The third equality follows from Egs. (4.96) and (4.99).
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Substituting r = 0 and / = 0 into Eq. (4.99) yields

0 = nRM(0) — %,/n(n + DRY, | ,(0) — %\/(n — DnRY, (0). (4.100)

We solve these equations with the initial conditions R’O"{O (0) = 0 and R%(O) = 2.
The reader will easily verify that the solution to these equations reads

R, (0) = 2n'/2.

The above equations imply the following value of the hydrogen function at the origin

1 2
Ynam(r = 0) = ;9 ﬁRn,O(O)a R,0(0) = e (4.101)

This result will come in hand several times in Chaps. 6 and 7.

4.8 Final Notes

The application of the addition of the angular momentum, Clebsch-Gordan
coefficients, and selection rules of the vector operators is not restricted to atomic
physics and angular momentum itself, though. If the reader is interested in the
application of the presented mathematical apparatus to the internal symmetries of
the elementary particles, we refer him or her to, e.g., [4, 7, 9, 14]. An elaborate
theory of the composition of three and four angular momenta has been developed,
see for example [6, 13].
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Chapter 5
The Helium Atom

In the previous chapters, we thoroughly investigated the simplest atom of all—the
hydrogen atom. We have found that, owing to the existence of a sufficient number
of integrals of motion, one can solve its energy spectrum exactly. Unfortunately,
one cannot determine exactly the spectrum of helium nor of any of the heavier
atoms. Nevertheless, we know from Chap. 2 that by means of the variational method
we may approximate the solution to any desirable accuracy. We will show that the
antisymmetry of the wave function with respect to the exchange of the electrons leads
to a so-called exchange interaction. Accounting for this interaction subsequently
leads to a qualitatively correct result even when only one two-electron configuration
considered. This estimate can be further systematically improved by the inclusion
of additional electron configurations. We will see that the symmetries of the helium
atom, i.e., the existence of operators commuting with the Hamiltonian, substantially
decrease the amount of configurations one needs to include in the calculations.

We also show how the variational calculation can be carried out to the very
end. To do so, it will be necessary to calculate the matrix elements of the electron-
electron interaction which constitutes a six-dimensional integral. With the aid of the
multipole expansion, it is possible to separate the radial and angular coordinates of
the electrons. We will show how properties of the spherical harmonics enable us,
always in the case of atoms, to reduce the infinite multipole expansion to a finite
number of terms. Next, we will show how to use the recurrence relations for the
radial functions derived in the previous chapter for the calculation of integrals of
these functions. Thus we will further develop the theme initiated in the previous
chapter: the importance lies rather in the relations between the individual wave
functions than in their specific forms. These relations then imply relations between
the integrals of these functions. There are no three-particle forces acting between
the electrons. Therefore, once we are able to calculate the approximate spectrum of
helium, we are able to determine approximate spectra also of other more complicated
atoms. Despite it all, though, the principal reason why we discuss helium to such a
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154 5 The Helium Atom

great detail is that it is the simplest physical system which can serve as an illustrative
example of an efficient application of symmetries in finding approximate solution
of the Schrodinger equation.

5.1 Symmetry in the Helium Atom

In Eq.(3.129), we introduce dimensionless atomic units by substituting r —
r/(Zam,) and factor out m(Zo)?. The Hamiltonian then acquires the form

H . . 1
— = hy(1 ho(2 —— 1
72 = Do(1) +ho() + (5.1
where
A 02 1
ho@=Pa— 2 a=12. (5.2)
2 Ty

Our task is to find a solution to the Schrodinger equation

Ay (1,2) = Ey(1,2), (5.3)

where the numbers in the parentheses represent a short notation for the coordinates
of the respective electrons; we should have written ry, r, instead of 1, 2 to be precise.

In the case of helium, Z = 2, the magnitude of the electrostatic electron-electron
interaction is far too large for a perturbative treatment. Moreover, the application of
the perturbation method is further hindered by the fact that a simple combination of
two one-electron hydrogen-like atom spectra comprises a discrete part, a continuous
part and a part where these two overlap. For this reason, we will opt for the variational
method to determine the energies of the stationary states.

5.1.1 The Total Spin and the Antisymmetry of the Wave
Function

The most straightforward choice of the test function would be a product of two
normalized “hydrogenic” wave functions

Y (1,2) = Ya(r)¥p(rs) . (5.4)

One could certainly use this function in the calculations; however, we could expect
to obtain the better estimate of the stationary state energy the more properties the test
function has in common with the exact solution. In this case, the Hamiltonian (5.1)
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clearly does not notice the exchange of the electrons, while the wave function ¥ in
Eq. (5.4) does. At the same time, we can easily see that if the wave function ¥ (1, 2)
solves the Schrodinger equation (5.3), so does the function (2, 1),

Hy(2,1) = Ey(2,1). (5.5)

Since the particle exchange operator lslz and the Hamiltonian H commute with
each other, it must be possible to find their common eigenstates. What form do the
common eigenstates of |512 and H and the eigenvalues of |312 take on?

Supposing that we already have such an eigenstate

Pily) = Aly),

we apply the operator |512 on both side of the last equation. Since Islzlslz =1, we
have

We further add Eqgs. (5.3) and (5.5) to each other, and also subtract one from
another,

def

Hw(1,2) + v (2,1)) = EW(1,2) + (2, 1)) = Eys,

def

HWy(1,2) =y (2, 1)) = EW(1,2) —¢(2,1) = Eya.

The states yrg and ¥4 are eigenstates of the Hamiltonian as well as eigenstates of
the particle exchange operator, the corresponding eigenvalues being +1 and —1,
respectively.

In the very beginning of this book, see Sect. 1.1, we mentioned that Eq.(1.2)
holds for the scattering of two indistinguishable «-particles, see Fig. 1.3. Namely, in
the case of a-particles, nature always picks the symmetrical possibility. Is this true
also for electrons?

At low velocities when we can neglect the relativistic effects such as the spin-
orbit interaction, the projection of the spin of an electron along an arbitrary axis is
an integral of motion. Thus, if the electrons differ in projections of their spins, they
are distinguishable and their scattering is given by Eq. (1.1). In the case of equal
orientation of the spin projections, the experiment shows that the angular distribution
of the scattered particles is given by the formula

do
— = |[f(}) —f(x — D). 5.6
o = @) —fr = )| (5.6)
This means, nature selects the other, i.e., antisymmetrical, possibility when it comes
to electrons.
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The discussed situations of symmetrical and antisymmetrical wave functions
of electrons and a-particles, respectively, are specific examples of a more general
rule. This rule states that the wave function of identical particles with integer spins
(bosons) is totally symmetric with respect to the interchange of any two particles,
and that the wave function of identical particles with half-integer spins (fermions) is
totally antisymmetric with respect to the interchange of any two particles.

However, it is necessary that this antisymmetry includes all coordinates of the
electrons. We must therefore consider the spin of the electrons as well.! When we
explicitly write the spin part of the wave functions, we are able to antisymmetrize
even the (spatial) function vg:

wg(1,2) € 7(‘”(1 ,2) + ¥(2,1))

e 1
va(1,2) = ﬁ(llf(l,Z) v, 1))\/—

Note that one can use any of the three triplet states in the case of Wy.

We thus see that one needs to account for both possibilities after all. The energies
of states which differ only in the symmetry or antisymmetry of the spatial part of
the wave function will acquire different values. After substitution for ¥ (1,2) from
Eq. (5.4), we obtain a variational estimate

f(|+>| 2= 1=hl+)), (5.7

()1 l=)2 + [=hlH)) - (5.8)

Evar

— = (Y(LYH¥(1,2))

N A 1
= {alhola) + (blholb) + ({al(blriyla)|b) £ (al{plriy [b)a) . (5.9)

Expressing the first term in the parenthesis in the coordinate representation yields
lelrlale) = [ [ vz @vae)—v; wwsaviav;

// Qa(r1)on(r2) 0ar)or(r2) 4y

[ri — 15

which is obviously a classical mutual potential energy of two charge distributions.
We thus refer to this term as to the Coulomb term. The other term in the parenthesis
in Eq. (5.9),

(al (bl b)) = / / v (n)%(rl)—w,, () Var)dVidVe,  (5.10)

"Precisely speaking, we need to consider all other internal characteristics of the particle as well.
Although electrons possess no other internal properties but their spin, one would have to include
also the color when discussing quarks of a given flavor, for example.
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has no classical analogy and is commonly named the exchange term. With its aid,
one can explain various phenomena, such as the covalent bond or ferromagnetism.

We thus see that in our problem the exchange interaction will lead to splitting of
the singlet and triplet states. However, this splitting cannot be explained within the
framework of the classical theory, and it is also the reason why Bohr-Sommerfeld
theory could not elucidate spectra of many-electron atoms.

The Hamiltonian (5.1) does not depend on the spin, which might imply at first
glance that one does not need to consider the spin at all. Nevertheless, we have seen
that the requirement the total wave function be antisymmetric demands we include
the spin, too. In case of helium-like atoms, the value of the total spin determines
whether the spatial part of the wave function is symmetric or antisymmetric with
respect to the exchange of two electrons. This in turn then dictates the sign of the
exchange energy.

5.1.2 Where Does the Indistinguishability Come From?

One could intuitively argue for the indistinguishability of identical particles as
follows. We have seen on the example of the Gaussian wave packet, considered
back in Sect. 1.3.9, that the uncertainty in the determination of the position increases
over time; that is, the wave packet is diffusing. It is then understandable that when
we have two particles close to each other, after a very short time the uncertainty of
their positions grows to such a great magnitude that we are no longer able to tell
them apart.

In fact, this explanation is of greater significance that one would expect. We have
seen that the indistinguishability of particles leads to the exchange contribution to
energy. This exchange interaction depends on the product of the wave functions of
individual particles, see Eq. (5.10). If the overlap of the functions is negligible, then
also the exchange interaction does not need to be considered and the particles behave
as if they were distinguishable. If two atoms are sufficiently far from each other,
their electrons become practically distinguishable. However, as they come closer to
a distance of 1-2 atomic radii (approximately 107!° m), the wave functions start to
overlap and the exchange interaction leads to the so-called covalent bond between
the atoms.

5.1.3 Additional Symmetries

The reader can verify that the operator of the total orbital angular momentum
commutes with the Hamiltonian (5.1),

L=L,+L,, [LH=0,
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where l:l and l:z represent the angular momenta of the first and second electron,
respectively. The eigenvalues of this angular momentum are 0,1,2,... and the
corresponding many-electron states are denoted by S,P,D,...> Since L is an
integral of motion, the Hamiltonian H does not mix states which belong to different
eigenvalues of this operator. As we will demonstrate in the next text, this fact
considerably simplifies the variational calculation.

After the interchange r; — —r; and r, — —r, the Hamiltonian (5.1) maintains
its original form. Meaning, the Hamiltonian (5.1) does not mix states with different
parities. This further simplifies our calculation of the excited states, as we will
discuss in detail later, namely in Sect. 5.3.8.

5.1.4 Spectroscopic Notation

The set of the operators {I:L ﬁz, éz’ ﬁ, I:Z, éz}, where [1 is the above introduced
operator of parity, forms a complete set of commuting operators. The spectroscopic
notation of their common eigenstates reads for instance 1, 2'S, 2'P°, 23P¢. The
first number from the left describes the level of excitation of the particular symmetry;
the singlet S-states are numbered from 1, the triplet S-states are numbered from 2, P-
states from 2, D-states from 3, etc. The first upper index denotes the spin multiplicity,
i.e., 1 for singlet and 3 for triplet states. The second upper index captures the parity,
i.e., o labels an odd-parity state and e an even parity state. The S-states are always
of even parity as we are to see later.

In summary, 1 'S marks the lowest singlet state with zero angular momentum,
21S the second lowest singlet state with zero angular momentum, 2 'P° the lowest
singlet state of odd parity with unit angular momentum, 2 *P¢ the lowest triplet state
of even parity with unit angular momentum, etc.

5.2 Variational Method with the Hartree-Fock Function

When we consider the variational function in the form (5.7) and (5.8), where ¥ (1, 2)
is of the form (5.4), we refer to it as the Hartree-Fock function adapted to the spin
symmetry. In this section, we will use it to estimate the energy of the lowest levels
of the helium atom.

The ground state of the hydrogen-like atom is 1s-state. When searching for the
ground state of helium we put both electrons into 1s-orbital with opposite spins.
Recalling the addition of the angular momenta, we know that the addition of two
electrons both of which are in an S-state results in a combined state which is likewise
an S-state.

2As we demonstrated in the previous chapter, a sum of two integer angular momenta gives rise to
another integer angular momentum. We also showed there that both the magnetic quantum number
m and the orbital quantum number / can evaluate only to integer numbers.
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115(1,2)) = |15) V)19 - — (|+>“>| - = O

&I

where
(r| 1s) = Yi5(r; o) = 207%™ Ypo(m) . (5.11)

The screening parameter o acquires the value ¢ = 1 in case of the hydrogen atom.
Note that in case of a triplet state, the two electrons cannot both populate the 1s state.
Here we thus see a link between the antisymmetry of the wave function and Pauli
exclusion principle. If we place both electrons into the same orbital 1s, it is then
the spin part of the total wave function that must be antisymmetric. It is therefore
not possible for the electrons to occupy the same orbital and have the same spin
projection at the same time. The antisymmetry of the total wave function necessarily
leads to the impossibility of describing such a state with a nontrivial wave function.
The fact that two electrons cannot populate a one-electron state characterized by
the same values of the quantum numbers is nothing else than the Pauli exclusion
principle.

It is instructive to calculate also the lowest P-state. We will estimate its wave
function as

2p(1,2)) = —= (190120 £ 20) V1)) = (141 F [-) V)@,

&
Sl-

where

5
(r|2p) = Yo, (r; B) = \/’? re P 2Y (m) . (5.12)

As mentioned above, the Hamiltonian (5.1) ignores the spin states, thus we will not
explicitly write them henceforth. Equation (5.9) for energy can be written for both
considered situations separately,

Eis . 1 1
- = 2(1s|ho|1s) + Z(1s|(1s|r12 |1s)|1s) , (5.13)
Exp ~ ~ 1 1
— = (Islho[Ls) + (2plhol2p) + - (1s|(2p]-— (|15)[2p) £ [2p)l1s5) . (5.14)
r2

One can easily calculate the two simple matrix elements of the Hamiltonian ﬁo,

(1P| 1s) = « (% - 1) ,

el = (5-1).
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The remaining Coulomb and exchange terms are, on the other hand, slightly more
complicated,

<1sl<2pli (15)12p) = [2p)]1s)) = C % V.,

where
1
c= / / VECDVE (E2) () () ad . (5.15)
1
V=// Wf}(l‘l)lﬁz*p(l'z)Elﬁzp(l‘l)lﬂ1s(rz)d3l‘zd3l‘1 (5.16)
and
1 1
= (5.17)

r2 [r%—2r1-r2+r§]]/2‘

5.2.1 Multipole Expansion

We concluded the previous section by writing down the Coulomb and exchange
integrals in a rather frightful form of six-dimensional integrals. We will now show
that to the utmost surprise of the reader, one can evaluate them exactly. Furthermore,
we will also demonstrate that the calculation itself is not in fact as difficult as one
might expect at the first glance.

The hydrogen-like wave functions, for instance, v, and v,,, can be split into
a product of their angular and radial parts, see Eq.(3.83). One might therefore
attempt a similar angular-radial decomposition for the operator rl_zl. We will now
demonstrate that one can indeed do so, though not for free. The price we have to
pay is that we will be able to express ”1_21 only as an infinite series of terms. It will
be possible, though, to reduce this infinite series to a finite number of terms owing
to the properties of the spherical harmonics Yj,,.

We have already mentioned, see Sect. 3.3.1, that the Coulomb potential

1
G(r, I',) = m (340)

is a solution to the equation

—V2G(r,¥) = 8(r—r). (3.38)
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By expressing the Coulomb potential with radial and angular variables split, we
obtain the solution to Eq. (3.38) in the spherical coordinates.® Let us now consider
the expansion of the function G in a complete basis of the spherical harmonics with
respect to the angular variables of the position vector r,

Gr,x) =) fin(r )Y (D, 9).
Lm

We consider the radial part f;,,(r, 1) to be continuous. Later on, we show that this
does not lead to a contradiction and that the singularity of the expression (3.40) at
the point r = r’ does not originate in fj,,(r, '), but in the summation over [. From
Egs. (3.21) and (3.76) and the definition of the §-function in spherical coordinates*
we obtain

19,0\ [
_<r_za_r(rza_r) )G(rr)——8(r ke

As our next step, we multiply the last equation by r* and integrate over the interval
from ¥ — & to ¥ + &; we obtain

5(19 ¥)é(p—¢").  (5.18)

¥ +e

¥ +e 9 9G
_/r, ar (r a_) dr Zl(l + DY@, 0) [ fin(r.x)dr

—g r—e

Y +e
=/ 5(r—r) 8(19 ?)8(p — @')dr.
r/

—&

Owing to the assumed continuity of f;,,(r,1’) in r, the second term on the lhs of the
last equation disappears in the limit ¢ — 0. We can deduce from the remaining parts
of the equation that the function G has a jump on the spherical surface r = ~/,

¥ +e
_ [,23_6;} =L s 90—, (5.19)
or|._, sin?d

The homogeneous solutions to Eq. (5.18) can be found with the aid of Egs. (3.84)
and (3.86):

a2 " rdr

d2 2d (l+1
_[_ d (“}ﬁm( ) =0 = fntrx) ~ 4

3The derivation presented henceforth is inspired by the one in [7].

*1t holds true for the §-function that [§® (r)d¥ = 1. After transformation of the differential
to spherical coordinates, we have d¥r = 2drdd sin ¥de. Smce we have [ §(x)dx = 1 for the
one-dimensional integrals, it must obviously be §®)(r) = £8(r) 515 8(8)8(¢).
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The first solution diverges for large r, while the other diverges for small r. Since we
are interested in a solution which is finite for all r, and because of, see Eq. (3.40),

G(r,r') = G(r,r), (5.20)

we compose the Green function as

Gr.x)|_ =Y Cr Y@, )Y, (. ). (5.21)
Im

Gr.v)|,_, =Y Cu? " V(@ )V (¥ ). (5.22)
Lm

The complex conjugation of the spherical harmonics does not violate the

condition (5.20). Recalling Eq.(3.94) and realizing we are summing over all

magnetic numbers m, these formulations of the Green function are symmetrical

in the angular variables, even though it may not be obvious on the first sight.
Plugging Eqs. (5.21) and (5.22) into Eq. (5.19) yields

. 1
@I+ DY @)}, ¢) = —=80 =98l — ).

lm

A comparison of the last equation with the completeness relation for the spherical
harmonics

* / 1A 1 1A A
Dolbmy(Lml =1= 3 Yin(@,0)Y;,(0',¢) = 8 —9)8(p — ¢')

Lm lm
implies

1

T2+

Im

After substitution of the last equation into the two expansions of the function G(r, '),
Eqgs. (5.22) and (5.21), and introduction of the notation r~ = max{r,7'} and r. =
min{r, '}, we can write the resulting multipole expansion in a compact form

oo

1 dr L !
—_— = PR - Y* 19/’ / Ym 19’ ] 523
|r—r/| ; 20+ 1 rl>+1 - lm( (/)) l ( (p) ( )

m=
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5.2.2 A Note on the Legendre Polynomials

The multipole expansion can be also derived in a more direct way. We factor out r-.
from Eq. (5.17) and hence write

(=2 + )"V = ZP,(Z)I Z=nm, =S, (5.24)

rs

where P;(z) are the so-called Legendre polynomials. Setting t = 0 in the last equation
provides the first, trivial, polynomial

Py(z) = 1. (5.25)

We differentiate Eq. (5.24) with respect to # and obtain

=01 =21z + )7 = ZP,(Z)M L
=0

We multiply the last equation by the expression (1 — 2tz + ¢*) and manipulate the
lhs and rhs into the forms

=D —2z+ )7 = ZPI(Z)I @—1) =Y [Pi(2) — Pa(@)!

I
and

D PRI (1 =2+ ) = [(1+ DP () — 2Pi(z) + (L= DP Q)]
! 1

respectively, where we used Eq. (5.24) and shifted the summation variable. Matching
now the terms with the same power of ¢ on the rhs of the last two equations leads to
recurrence relations for the Legendre polynomials

(I + DPr1(2) — 221 + DPi(z) + IP1—1(z) = 0. (5.26)

Consequently, Pi(z) = z, P2(z) = (=1 + 3z%)/2 and so on. When we compare
Eq. (5.26) to a similar relation (4.62) for the spherical harmonics Y, and the form
of Yy, (3.35), to Py, (5.25), we obtain

Yio(®) = ,/M%P,(cos 9). (5.27)

Comparison of Egs. (5.24) and (5.23) now leads to the addition theorem for the
spherical harmonics

4 ,
P(n-n') = 21—4—1 zm(l(} @)Y (0, 9). (5.28)
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Setting n = n’ results in

1

> @0, (5.29)

m=—1

. 47
T2A+1

where we used the equality
pP(1) =1,

which follows from Egs. (5.25) and (5.26).
If we set n = n’ in Eq. (5.23), we have then with the use of Eq. (5.29) for the
problematic point r — #/

lim—— =-Y 1= +o0,
r—>r/|l‘—1‘/| Z +

in accordance with the comment preceding Eq. (5.18).
Next, after substituting Eq. (5.27) into Eq. (4.89), we arrive at the expansion of a
plane wave into spherical waves

oo

glorcos? _ 2(21 + 1)P(cos B)i'ji(wr) .
1=0

With the aid of Eq. (5.28) and the separation k = w#y, the last equation can be cast
into the form

e’} o] 1
Mt ="+ DPm-p)ii(wr) =47 Y ilwr) Y Ve @Yu@) .  (5.30)

=0 =0 m=—I

On the rhs of this equation we have, finally, separated angular variables n and n. We
will take advantage of this decomposition later in Sects. 6.3.6 and 6.5.7.

5.2.3 Calculation of the Integrals

Now we are ready to calculate the integrals (5.15) and (5.16)! Inserting into them
the multipole expansion (5.23) and the form of the wave functions (5.11) and (5.12)
yields

C= Yoo ()Y, (n))Yoo(m)ds2, | Yi,(m2) Yy, (n2) Y14 (n2)dS2
IZ(;ZH_IZ/mlllool1/M2121M22
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0 o0 ’,1
X /(; I’% (/(; r%Rls(rl)RZp(rZ)rl__ilRls(rl)R2p(r2)dr2) d'7‘1 P

4

(o] 1
V= ZZI—H Z /Ygo(nl)Y;n(nl)YlM(nl)dgl/YTM(HZ)Ylm(HZ)YOO(nz)d-QZ
1=0 p—

X/ rn (/ V%Rls(rl)RZp(VZ)iRZp(rl)Rls(rZ)er) dr;.
0 0

’,H-l
>

Recall that Y, is a constant function, see Eq. (3.35), therefore we factor it out in
front of the angular integrals. It follows from the orthonormality of the spherical
harmonics, Eq. (3.86), that the infinite summations over / and m in the Coulomb
integral C reduce to a single contribution / = m = 0. Similarly, the infinite
summations over / and m in the exchange term V reduce to a single contribution
Il =1, m = M. We are thus left with merely the integration over the radial variables
in both integrals,

oo 00 |
C= /0 r% (/0 F%Rls(rl)RZP(VZ)r_Rlx(rl)Rzp(l"z)dl"z) dry, (5.3

Vo /0 ” ( /0 rgRls(n)Rz,,(m)%Rz,,(n)Rls(rz)drz) dr. (5.32)

Let us now show how one can evaluate the following general integral:

oo OO rl
I(n,§,a,b,]) = / / Firse e o= drdry . (5.33)
0 0 VI>

First, we split the integration over r, into two regions r; > r, and r; < rp. In the
region r; > r, we obviously have r- = ry, r~ = ry, while in the region r, > r; the
opposite is true, r« = ry, r= = r3:

[oe] r rl
I(n,€,a,b,1) =f re ™M / rge_grzrzldrz dr
0 0 r

e} 0o ,1
+ /(; r?e_"" [ rge_é’z #drz dr1 .
r 2

These integrals can be most easily calculated by the differentiation of the integrals
with respect to a parameter:

et 8a7171 8b+l 00 B | -
I(n,€,a,b,1) = (=1) 877“"*@/0 e M (/O e Zdrz) dry  (5.34)
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+( l)a-i-b . gatl gb—i—1 /oo - (/oo e_Emd )d
— r r
a aoatl 8&'}’ -1 0 "

aa—l—l ab+l 1
Inet=t 9gb+ n(& + 1)
8a+l ab—l—l 1
anett 9EP—=1 E(E + 1)
=J(n, & a,b,1) +J(E,n,b,a,l),

— (_1)a+b—1

+ (_ 1)a+b—1

where

a—I—1
b+1+
J(n.6.a.b,1) = (a—I1-1)! ) —( Dt )= (5.35)
q=0

Substitution of Egs. (5.34) and (5.35) into Eqgs. (5.31) and (5.32) yields

af(B8at + 200 B + 2002 B% + 100> + B*)
(2o + B)’ ’

5
C = 4a3%1(2a,ﬂ,2, 4,0) =

and

1128%3
3Qa + B)7

V= 3ﬁ5 I(a+,3/2a+ﬂ/2331)—

Likewise, we find for the variational estimate of the ground state (5.13) that

E 15
Z‘j—z (2 )+ Z(4e)120,20,2.2,0) = & ~ 2 + 20t

5.2.4 Optimization of the Parameters

The value of the parameter @ can be retrieved from the condition d,E = 0, which
reads

15 27

Z16 32

in the case of helium. Using this value of @ in Eq. (5.13) leads to a prediction E;s (o =
27/32) = —2.8476. Had we set « = 1, the energy estimate would be Es(e =
1) = —2.75. The accurate nonrelativistic value in the approximation of an infinitely
heavy nucleus reads Els = —2.903724 [2]. We thus see that the optimization of the
parameter « decreased the relative error of the variational calculation from 5 to 2%,
which is—given the simplicity of the calculation—very satisfying. In the next text,
we show how to achieve an even better match.
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In contrast to the case of the ground state, the solution satisfying the conditions
on the energy minimum (5.14) of the state ¥,p(1,2) is technically more involved.
Performing the differentiations, doE>p = 0 and dgE>p = 0, results in a set of
two nonlinear equations which cannot be solved analytically. Therefore, we use the
Newton-Raphson method to find a numerical solution. We deem this method to be
of enough importance as to briefly introduce it herein.

First, we will explain the method for an one-dimensional case. Suppose we look
for a root of equation f(x) = 0 and let the value x; be an approximate solution. This
solution can be improved if we replace the function f(x) in the vicinity of the point
xx by its Taylor expansion and keep only the first two terms,

FOa) + okt —xx) % =0.

X=X|

Let xy be our estimated solution. From the last equation, we obtain a sequence
of successively refined estimates xp, x», x3, ... This sequence converges very fast
to the correct solution if we move along an almost linear section of the graph.
Unfortunately, the method performs much worse if the graph has large curvature.

A two-dimensional generalization of this method for the set of two nonlinear
equations f; = 0oErp(a, B) = 0 and f, = dgEsrp(a, B) = 0 is the set of two linear
recurrence relations

of; of;
filaw, Br) + (o1 — ak)%(ak’ﬁk) + (Br+1 — ﬁk)a—]l;](ak,ﬁk) =0, Jj=12.

The choice of the initial o and B is of great importance. The first guess could be
ap = Bo = 1, that is, we would start with the hydrogen states. A more accurate
reasoning says that an electron in the state 2p feels the electrostatic field as if it were
generated by a single proton only as the inner 1s-electron shields one of the nuclear
charges. We therefore have for the Hamiltonian (5.1) (when Z = 2)

o =1, ,30:1—1/Z:1/2

When we carry out the numerical calculation with this initial condition, we find the
solutions for the singlet state (symmetrical in the spatial part) and the triplet state
(antisymmetrical in the spatial state) summarized in Table 5.1.

Table 5.1 Optimization of

0 for th Singlet Triplet
t t t tat
2;parameers or the state a L0015 0.9955

B 0.4823 0.5445
Ep | —2.12239 | —2.13069
E»p | —2.12384 | —2.13316
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Table 5.2 Results of

Singlet Triplet
Exercise 14 g P

o 1 1

B 0.4998 0.5004
E3p | —2.05555 | —2.05557
Esp | —2.05562 | —2.05564

The obtained variational energies in the table are therein compared with the exact
nonrelativistic values E»p [2]. Note that the result from the approximate variational
method lies this time much closer to the exact value than in the case of the ground
state. This is a general and easily understandable phenomenon. In the case of the
same spatial distribution of electrons, as in the ground state, the electron-electron
correlation is much stronger than in the case of different spatial distributions.

The electron-electron correlation is mostly characterized by the correlation
energy. This energy is defined as a difference between the exact nonrelativistic
value and the variational value obtained from the Hartree-Fock function.

F[ Exercise 14: Nonlinear Variational Method | ]—@

Consider the function

1 1
V2 V2

where V1 is given by Eq. (5.11) and where 34 is given by

[3D(1,2)) = (I15);13d), £ [3d),|15))- (0= F I=hl+)).

7 87
Y3a(r; B) = (%) %Vze_ﬂr/3Y2M(n)~

Estimate the energy of the singlet and triplet states. Your results should
L match the numbers in Table 5.2.

One can readily see from Table 5.2 that the screening for D-states is even stronger
than that for the P-states, that the difference between the result of the singlet and
triplet state is smaller, and that the result from the single-configuration variational
calculation likewise lies closer to the exact value. These trends continue also for
other states with higher angular momenta.
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r{ Exercise 15: Nonlinear Variational Method Il J—@-\

Consider the function

1 1
V2 V2

where r\ is given by Eq. (5.11) and where Y, is given by

1235(1,2)) = —= (I15),125), — [28),115)2)-—= (|+)1 =2 + =) 1+))

Va(rs ) = (co + c1r)e Yo o(m) . (5.36)
Determine the coefficients cy and ¢y using the equations
(1s]2s) =0, (2s]2s) = 1.

Find the variational energy E as a function of o and B and evaluate it for
the values ¢ = 1,8 = 1 and a = 1,8 = 0.5. Use the Newton-Raphson
method for the condition on minimum to find the optimal a and 8 and the
variational estimate of the energy. You should obtain the values listed in

Table 5.3.
L J
]’Iz‘able. 5.31 5Results of o B Enysg
xercise 1 1 —2.124
1 0.5 —2.157

1.0042 | 0.6945 | —2.17195

The last row in Table 5.3 contains the optimized values. One can see that also in
this case, the electron in 2s “feels” the charge of the nucleus as if screened by the
electron in 1s. The agreement with the exact nonrelativistic value E = —2.175229
[2] is again more than satisfying. One could have expected that, though, based on the
discussion of the states 2 P. In the state 23S, the Pauli exclusion principle forces the
electrons to occupy a different spatial distribution and the correlation energy thus
reaches substantially lower values than for the ground state.

5.3 Variational Method: Configuration Interaction

In the previous section, we showed that one can obtain a very good estimate of the
exact energies of the ground and excited states of helium already when using very
simple test functions. In this section, we will see how one can further systematically
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improve this estimate. We will demonstrate this method on the ground state where
the error of the calculation with a Hartree-Fock function does not go below 2%.

The substitution » — r7 in Eq. (5.1) transforms the Schrédinger equation into the
form

(_v_12_£+1 sz 1_’_14_ r’)w:Aan

2 2 2 n 2 Zm Z

v, (5.37)
where 7 is a nonlinear variational parameter and AE the energy arising from the
interaction of electrons:

ZZ
Evar(n) = _zﬁ + AE.

We now solve Eq. (5.37) by the optimization of the linear parameters. We expand
the sought wave function v into a complete basis, see Eq. (2.4). The optimization of
the expansion coefficients then leads to the generalized eigenvalue problem (2.6).

We can set the parameter 7 equal to one or—better— to an optimized value which
we find as follows. For a given value of the nonlinear parameter 1, we optimize N
linear parameters ¢;. We thus find AE as well as the variational energy estimate
Ey.r(1). Subsequently, we choose a different value of the parameter = 7', run the
optimization process, and obtain a new energy estimate Ey,.(7'). This way, we find
the value of the parameter n which minimizes the variational energy for the given
number N of the basis functions. In the below calculation, we found the optimal
value of 1 by numerical means, see Exercise 16.

This method of solution, namely the decomposition of the sought many-particle
eigenstate into a many-particle complete basis, see Eq. (2.4), is commonly referred
to as the configuration interaction method.

5.3.1 Adaptation of the Basis to Symmetry

We can consider the basis functions |j) in Eq. (2.4) in the form of antisymmetrized
products of the hydrogen-like wave functions (omitting the spin parts)

) = |nu»llj,mu)(l)|n2j,lzj’ m2j)(2) + |y, by, mzj)“)‘n,_,-,l,_,-,m,_,-)(z)

We thus see that there is a set of six one-electron quantum numbers
nij, lij, myj, noj, by, my; to describe every single electron configuration |j).
Unfortunately, even for small values of nj; and nj;, one needs to consider a
great number of such configurations. Recall that for a given principal quantum
number # the orbital quantum number / acquires the values / = 0,1,...,n — 1, and
that for a given / the magnetic quantum number equals m = —[, -+ 1,...,/— 1,1
One can thus readily imagine that this is definitely not a way to go, even with
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powerful computers at one’s disposal. As we demonstrate below, integrals of motion
substantially reduce the number of configurations that need to be considered. As in
the previous calculation with the Hartree-Fock function, we know that the ground
state is characterized by the total / = 0. From Sect. 4.2, we also know that to
compose [ = 0 from /; and ,, it must be |/} — | <[ = 0, hence /; = [,. The basis
states adapted to the symmetry, from which we choose only those with their total
angular momentum equal to zero, are

|nlj, <(1)|nzj, @ Z(l i,1;,—il0,0)

==}

,—i)? (5.38)

5]

M 2
) 1G)

[;

]

>

:|:|nzj, )|nlj, 2)2:(1, —i,

i=—I;

where the one-particle states |n,/) and |/,m) are given by Egs.(4.93) and (4.3),
respectively. The plus and minus signs refer to singlets and triplets, respectively.
We thus see that, within the variational calculation of the ground state, only three
quantum numbers (as opposed to the initial six) determine unambiguously each of
the configurations adapted to the symmetry. Moreover, owing to the antisymmetry
of the full state, it suffices to consider merely the cases ny; < ny;. Setting j; = [,
J2 = 1;,j = 0and m = 0 in Eq. (4.20) results in a simple expression for the needed
Clebsch-Gordan coefficients, namely

(4, 1,1;,—il0,0) = (=)t

1
V2L + 17

which can be then used to simplify the basis functions (5.38) to

_1)l+/
21 +

Z

z—l

A(D) A(2) A(D) A(2)
(|n1,-, i) [ b =1) 7 2 [, i =i) 7 |y 1y ) ) :
In the coordinate representation, the states |j) acquire the form

1)*h e

;
@1 (2
(ri,malj) = 7 Z ST (‘/’1, Py £ 0y @y ) ’

where

o) = Ry (DY), @y(r) = Ry (DY —i(n), (5.39)
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1 2
o = o). e =eyr).

and so on. Keep in mind that this basis is not orthonormal, therefore the overlap
matrix S; = (k) is not diagonal.

We now need to find the matrix elements (k||:|[/) which consists of three steps:
calculation of two matrix elements of simple hydrogen Hamiltonians and then of the
matrix elements

b (=1)iFhtrti

L1
(k|—1j) = > Z Z V@i + )2+ 1)

-
12 =tk i=—,

1

Drol D* 2 n (2 H @ L s
X /1/; (‘P{k)*q)ék)* + (pék)*(p{k)*) E ((Pf,-)@éj) + ¢§j)¢1(j)> d3l’1 d3l‘2 .
After distribution of the parentheses, we obtain the integrand as

mx @« Loy @, o« o« L 1) @
((plk Dok Eq)lj T 2T 2 E¢2j 901]')

mx o« Loy @ o« o« 1L 1)
+ (‘sz P1x E‘Pu P T P P E%j (plj)’

which can be rearranged by changing the integration variables in the second term in
each of the parentheses (one can do so due to the symmetry in the variables r; and
) to

W@ L (mx @ @
2015 ¢y r_lz((plk P EPu P )

Using the multipole expansion (5.23), changing to spherical coordinates in
integrations over r; and rp, and substituting from Eq.(5.39) yield the final (for
the time being) form

o L ! (—1)itlitric

1
Kb = 2222 JCh+ D@+ 1) S

1=0 p=—Ily i=—lj m=—I

« / [ EE. o RMOD R @) (RM(l)RM(z) n RM“)RM(”) drydry

r’+1 nyjli “nojl; ikl nokli okl " ikl
>

4r
et [ e [
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5.3.2 Angular Integration: The Wigner-Eckart Theorem

Four summations, one of which is infinite, and three (though only) two-dimensional
integrals are still quite worrying. Fortunately, there is an interesting rule which
allows us to calculate the integrals from the properties of the spherical harmonics.
This rule is widely known as the Wigner-Eckart theorem,’ and states

Yll ,i(n) Yl2,m—i(n) = Z lelm(n) . (541)
1

In words: A product of two spherical harmonics can be expressed as a linear
combination of other spherical harmonics. The sought 3-Y integrals are then indeed
simple to evaluate,

/ Yo YiiYim—id2 = Zk; / Yy, Yind2 = Zkl&p =ky. (5.42)
1 1

We will take a minor detour to determine the coefficients k;. First, we find the
coefficients of the inverse problem

Y)(n) = Zainl,i(n)le,m—i(n)'

We apply the operator L2 to this equation and obtain, according to the product rule
for differentiation,

I:2Ylm = l(l + 1)Ylm
= Z a; {(I:2Yll,i)le,m—i + Y1 (LY i) + 2 (I:lel,i) (I:lez,m—i)} :
By comparison of this equation to Eq.(4.19), one comes to the conclusion that
the equation for the coefficients a; is identical to Eq. (4.20) for the Clebsch-Gordan

coefficients c;! The coefficients a; and ¢; may still differ by a normalization condition,
though. (And they indeed do.) Therefore we write

Kl] ,lz,lYlm(n) = 2(113 i9 12’ m — l|l7 m)Yl| ,i(n)le,mfi(n) s (543)

where K is a number that ensures the correct normalization. The spherical harmonics
are normalized by the condition (3.86), though there is no guarantee that the rhs will
have the same normalization.

SFor a different presentation see for example [3, 4].
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( Example: Consider [; = I, = 1, hence the integral (5.42) differs from )
zero only for [ = 0,1,2. According to the Wigner-Eckart theorem, it

should be
1 V3 1
%(Yl,—lYll —YioYio+YuYi—1) = g Yoo = \/T_n’

1 [3
— Y11 Y1 Y1) =0~Y0=4/— 7,
ﬁ( 1Y —YuYi 1) 10 2 <08

1 6
%(Yl,—lyll +2Y10Y0 + YuYi—1) = ;/—;(3005219 — 1)~ Ty

[ 3 2
=— E(l—Scos ),

where we substituted from Eqgs. (3.91), (3.92) and (3.93) on the lhs, and

from Eqgs. (3.35) and (4.65) on the rhs. In this case, the theorem seems to
hold.

|\

Since the number K is independent of angles, we can calculate it for one particular
direction which simplifies the equation, for example ¥ = 0. It holds that®

20+ 1
4

therefore there will be only one term left from the sum on the rhs of Eq. (5.43),

resulting in
2141 \/211+1 20, + 1
K — = (41,0,1,,0|,0
R (41,0,2, 011, 0) 4r 47

QL+ 1D)@2L+1)
K= 11,0, 15,0]1,0).
I \/ QI+ Din (11,0,1,,011,0)

Ylm(l9 =0, (P) = 8m0 >

We have shown before, see Sect. 4.2, that the transform via the CG coefficients is
orthogonal; therefore the inverse relation to Eq. (5.43), Eq. (5.41), can be written as’

Yy i)Yy i) = Y Ky (i loom — il m) Yy ().
I

This can be deduced from Egs. (4.62), (4.63), (4.64).
"Confront with Egs. (4.17) and (4.22).
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We find the value of the angular integral from the last two equations and the
orthonormality relations (3.86)

/ Y2, (1)1 (0) Vi) A2

. . 1 200 + 12 + 1
=(ll,z,zz,m—zll,m)(ll,o,zz,ou,O)m\/( D@L 54

2[+1

When dealing with the complex conjugation, we can use the even/odd property of
the spherical harmonics in m, Eq. (3.94), Y} —,, = (=1)"Y7,.
Finally, the angular part of the matrix element (k|r}; |j) can be rewritten as

b b (—1)iFli+i+p

47 !
21+ 1 Z Z Z V@I + 1)L+ 1)

m=—li=—l; p=—Ij

X (—I)IJ/Y;nYltilkde . (—])m+1?/ YZ—mYIj,—ink,_l’d‘Q
4 bk L+l
abEspIPIPIT =
20+ 1 J+ D2k + 1)

m=—I[ i=—lj p=—l

1 @G+ D@+ 1)
4 21+ 1

x (L, i, L, m —i|l,m)(l;, =i, I, —m + i|l, —m) .

X Smitp (1;,0, 1, 0]1,0)*

The last two CG coefficients in the product are the same, hence the sum over i equals
1 due to the normalization of the coefficients, see Eq. (4.21). The Kronecker symbol
cancels the summation over p. There are no other terms dependent on m, therefore
the sum over m yields 2/+ 1. We can then write the integration over angular variables
in a very compact form

i+l

1 VeL+ DL +1)

kl—1i) = —1D)iT(1, 0,1, 0|1, 0)? (5.45)
(k1) I_UZ_M T CD.0..011,0)

S

by two

rl
2.2 (1) pM(2) ( pM(1) pM(2) M(1) pM(2)
X /1/2r1r2r1-i<-1RZjlj R"Zjlj (RnlklkR"Zklk iRﬂZklkRnlklk)drldrz’

which—to remind ourselves—holds true for S-states. We can follow the same steps
also for other states than the S-states, the resulting expression being then generally
more complicated, though. We have thus seen how powerful the Wigner-Eckart
theorem is: four summations in Eq. (5.40), one of them being infinite, are reduced
to merely one finite summation in Eq. (5.45). Moreover, it transforms the analytical
task of calculating integrals of three spherical harmonics to an algebraical task of
calculating the CG coefficients.
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5.3.3 Angular Integration: Calculation of Reduced Matrix
Elements

The only part of the angular integration we are still left to find is the so-called
reduced matrix elements

(ULl = / Y10(0) s 0(0) Y o () A2

000 @i DCE+ D
1’ b 27 b \/E 21+1 .

In fact, there is nothing to calculate anymore as the needed CG coefficients can
be retrieved from the relation (4.20). However, for the fun of it and for better
understanding, we will now present a different way of calculating the coefficients
(11, 1||1). 1t follows from Eq. (5.41)

Li+Dh

Yy 0m)Ysom) = Y (h,L[IDYiem). (5.46)
I=|l—D)|

After applying the operator Nj to this equation, we have from Eq. (4.62)

I L+ 1
Y10+ Y, Y,
(\/(211—1)(211+1) T e+ D@ 1 3) ]‘“’0) 20

= lilz (. L[ : Yoo+ I+1 y
I=|l—b| 1542 P OES)) I~1,0 TERIES) +10 | -

Multiplying by Yr ¢ and integrating over dS2 lead together with the orthonormality
of the spherical harmonics, Eq. (3.86), to

L +1 I
L+ Lbl) = — bl
V@l +1)2 +3)(1+ 2|10) N 1)(1 >[1D)
(5.47)
! I+1
I, LII—1 LI+ 1).
+ (21_1)(21+1)(1 Rl =1) + (2l+1)(21+3)(1 L[|+ 1)

These equations are solved with the condition

(I, L|I) =0,



5.3 Variational Method: Configuration Interaction 177

when
1 <0,l,b<0,l<0,l< |l] —lg|,l >+ 1.
Exploiting Eq. (5.47), we lower /; to zero. Subsequently, we swap /; and [, and lower
I, to zero. The reader can calculate the matrix element (0, 0||/) on his or her own.
We thus see that one can use Eqgs. (4.62)—(4.64) to calculate the CG coefficients! The
reader can easily verify from Eq. (5.47) that
(—D) et = 1 = (1, L) = 0. (5.48)

This is the reason the summation over / in Eq. (5.45) goes by two.

5.3.4 Calculation of the One-Electron Matrix Elements

The one-electron matrix elements in Eq. (5.37) can be calculated algebraically. For
instance,

( 1)i+lj+p+lk

V12 n i l _
(k' (_7_71 ) Z 2 VL + DL+ 1)

p— I i=—1;

\%, 1
(D)% (2)* (D*(2)* 1 n
// i P TPy Pix )(‘7‘;"‘5)

1 1 2
((pfj)€02j) :l: (pé/)(pij)> d3r1d3r2 -

This expression has a structure of the type
((a]' (b]* + (b]' (a>)010,(|a) ' |b)* + |b)'|a)?)
= (a|O:]a)(b|O2|b) + (a|Osla) (b0 |b) % ((b]O:]a)(a|O2|b)
+ (a|0, |b) (p] 01 a)) ,

where the operators O; and O, act only on the state of the first and second electron,
respectively. For this reason, we analyze only the expression

L i+ pH i
) i * \Y 1

E § : (=1)™% // (1) (2)* (_ 1_£+ ) (1) (2)d31‘1d3r2
p=—l i=—1; QL+ 2L+1) 213

Using Eq.(5.39), changing to the spherical coordinates and exploiting the
orthonormality of the spherical harmonics, Eq. (3.86), and the relation for the radial
functions, Eq. (4.99), the last integral can be cast into the form
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° rfa I(l+1)
81,“1}./0 rR%k’lk(r) (5 (p% + — + 1) — 7]) R%j!lj(r)dr

I%

00
x/(; rR%k’,k(r)rR%j,lj(r)dr
oo
= 81,“1]. /(; rRﬁ"lllk,lk (r) (‘fg — 7)) R%/_J/_ (r)dr
00
X /0 erka’lk (r) ('i'g - ('T'_;_ + 'T'_)/Z) Ranij (r)dr

= 8lkslj(snlk,”lj (nlj - '7) (5nzk,n2;n2.i

=)y + G+ 1)

2 8"2k noi+1
V0 + [y == 1) )
- ) nok,n2i—1

5.3.5 Radial Integrations

The calculation of the matrix elements of the last term in the Hamiltonian in Eq. (5.37)
is slightly more complicated. We introduce the following notation for the radial
integrals in Eq. (5.45)

(las B3y 1o, 1) = (g, By b, )Y + (s 13, b, 1) 7

o0
(4 13,1, 1)~ d=ef/0 drli’%_l_lR%u(&,rl)R%h(&,rl)

r
X/ dray T 'RY (&2, )R (§1.12) (5.49)
0

and

o0
def
(14713,12,11)+=/ driy PRY (Ea, rD)RY (83, 71)
0
o
X / drars 'R (&2, )R, (§1,72) - (5.50)
r

In the next text, we consider a general case with arbitrary screening parameters &,
&, &, and &4, see Eq. (4.98). One can return back to the original integral (5.45) by
setting

Ei=b=58=4=1, Iy =13, L=1.
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We start from Egs. (4.76) and (4.77) where we substitute r — n&r

d I+1 nt EnE— 2

d—er,{l = (_ — + T) R + fRfj,_l, (5.51)
d l né Ey/n?— 1+ 1)2
== (o oy ) R T TR (52

Subtracting the last two equations one from another yields

—1pM __ S M
R = T DEET [+l\/(n FI+ D—I— DRY,,
+ U+ DY+ D —DRY_, + 21+ 1)nRﬁ;{,] : (5.53)

The problem when evaluating the integrals (5.49) and (5.50) is that they generally
comprise the functions R which feature (n — [ — 1) nodes, i.e., they cross the r-axis
(n — 1 — 1) times. From a numerical point of view, a straightforward calculation
of such integrals is troublesome since a frequent sign change results in subtracting
numbers of a comparable size, hence an operation leading to the so-called numerical
instabilities. These instabilities arise from the fact that we represent numbers using
a finite number of decimal (or binary) places in numerical calculations. When we,
for example, work within the single precision (8 decimal digits) and subtract two
numbers which do not differ before the twelfth decimal place, the result is due to the
rounding errors almost always completely off. Thus, our strategy will be as follows.
We know how to calculate the integrals (5.49) and (5.50) forly = ny— 1,13 = n3—1,
Iy =nmy—1,and !} = n;—1, see Egs. (5.33), (5.34), and (5.35). We will subsequently
attempt to transform every radial function with n —/ — 1 nodes in the integrals (5.49)
and (5.50) to a function without any nodes by using Egs. (5.51), (5.52), and (5.53).
So let us get started!

Multiplying Eq. (5.51) by the function RY | "*2f, where f is an arbitrary function
of r, we obtain

EVIE =P oy o o d ohy M p2
_fRn,l—lRm),lorp f = _(;' (Rn,l) Rn(),l()ru f
I+1 n
+ (— —+ 75) RIRY 7. (5.54)

From the Leibnitz rule for differentiation of a product, we have

d d
a' (R%) RnMo,I()rp+2 = E, (R%R"M()Jorp—i—zf)
d
- E, (RHM()JO

nl" no,lo *

)Ry]rﬂ‘i‘Zf _ % (}"p+2f) RMRM
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We now substitute this equation into the previous one and use Eq. (5.52) with n = ny,
I =1y, &€ = & for the calculation of d% (RnMo,zo)- We can eliminate the multiplication

by ! with the aid of Eq. (5.53). With a little effort, we then obtain from Eq. (5.54)
anew equation

no-do 20+ 1 dr ro-lo
( fong  kn En(l+1 —lo—P—2))RA{ZRM +2f

no.lo

b+l 1 0+ 1)
(l+1—lo—P—2)v”2—(l+1)2RM RM  pt2f

20+ 1 I+ 1 ol

§oy/ng — (lo + 1)? dar
2
+ RyGR 17 — d_rRZIRM

Ih+1 noslo

NS I+1—Ily—p—2 d
_Elr—wHW;“VGL%+ 0o—"p )z_@mMW?ﬂ

£

axs (5.55)

We then substitute into the last equation
=1, I=hb, n=m, §=%§&, b=,
n=n, =%, p=le, r=n,
where
Iy =—-1-1, —=1,

integrate the equation from r; to oo for /4 and from O do r; for /_ and finally multiply
both sides of the equation by

21
r R (€ r)RY (83,

n4,ly

We subsequently integrate over r; from 0 to infinity to obtain recurrence relations
for the integrals (I4, 13, 1, [ )i, which raise the quantum number /;,

E2y/m =1 L+1—10—2—1
— (g 13, — 1,1)* 2 (—1+ 2+ ! jE)

b 2l + 1

i by bm(b+1-6L—-11-2)
L+1 b bk +1)

= Flla, 3, b, L] + ( ) (L4, b3, b, 1) E
B+ 11— —lp -2 yB—B+1)

I, ls, 1 + 1,1)*
2+ 1 L+l (s, 3, L+ 1,1))
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N Eryn — (L +1)?

L +1

(L, I3, b, I + 1)E, (5.56)
where

o0
[149 b3, b, ll] déf /(; V3R%l4 (%'4» r)R%h (53’ r)Ranlz (52’ r)R%h (El’ r) dr.

Substituting into Eq. (5.55) for

hi
241
) = / AHERM (6 )R, (61, m) dr
dy

where

dy = r, hy = oo,
0, ,
l=1, n=ny, §=8&, =5, n=n, §=%§&., p=lx, r=rn,

and integrating over ;| from O to infinity yields recurrence relations for the integrals
(I4, 03,1, 14 )jE which raise the quantum number I4:

/g — 1§ L+1—l—2—1
_(14_1’13912’ll)i ! ! (_1+ 4+ 3 ?)

n 214 + 1
&ng  Gang Eang(b +1 -1 — I — 2)) +
= (4, 13,1, 1] + - la, 3,0, 1
(4, 13,12, 1] (13—|—1 A Lt D) (la, 3,12, 11)

2 2
L+1—lL—lg—2)yu— U+
all ol =2 (s + 113, b, 1)*

20 + 1 I+ 1
E\/n3 — (b +1)? .
+ (L, 3+ 1,L, )™ (5.57)
5 +1

Finally, we substitute into Eq. (5.55) for
f(r) = R%,lz (52’ r)R%,ll (Sl’ r) >
I=1ly, n=n, §=&, b=k, nn=m, §=&, p=1

and integrate the whole equation over r from O to infinity, and thus obtain
recurrence relations for one-dimensional integrals [l4,ls3,1,[;] which raise the
quantum number Iy,
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54\/113—13( 1+14—1,—12—13—2)
I

- [l4 - 1’13’12»11]

4 2+ 1
&3n3 &ny Einy Eny Eng(y—L—bL—1 —2)
— _ [147 l39l2a ll]
IZ+1 L+1 L +1 Iy Ll +1)
2 2
Li—l—bL—1 —2)ym— U+ 1)
iz bohh=2) [ls+ 1,15, 1, 1]

20y + 1 I +1

g3 — (I + 1)? £\ — (b + 1)?

+ l4,l +1,l,l - l4,l,l +l,l
+ s L3512, 1 . .

Equations (5.56), (5.57), and (5.58) are solved with the condition
(s 15, L. 1) =0, [lh,b. 1] =0,
when

ll>n1—l, 12>n2—1, l3>n3—1, l4>n4—l,

11<0, 12<0, l3<0 or l4<0.

The algorithm for calculation of the integrals (I4, /3, I, 1)jE is the following. We raise
I, to np — 1 using Eq. (5.56), then swap /; and /, and raise /; to n; — 1. Next, we raise
l4 to ng — 1 using Eq. (5.57), then swap l4 and /3 and raise /3 to n3 — 1. Subsequently,
we raise Iy to ny — 1 using Eq. (5.58), then swap /4 and /3 and raise /3 to n3 — 1, then
swap I3 and /, and raise I, to n, — 1. Finally, we swap /, and /; and raise /; ton; — 1.
As noted above, the integrals (ny — 1,n3 — 1,ny, — 1,n; — 1)jE are already given, see
Eq. (5.33), (5.34) and (5.35). The reader can calculate the one-dimensional integrals
[y — 1,n3 — 1,n, — 1,n; — 1] by himself.

This procedure may appear much worse than it actually is. In fact, it is quite
simple® to program the relations (5.56), (5.57), and (5.58) in a form of recursive
procedures.

8So simple that the even authors managed it.
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5.3.6 Convergence of the Variational Method

We have thus finally developed all of the required tools for the calculation of the
elements of the Hamiltonian and the overlap matrices. All that is still to be done is
to assign a set of three quantum numbers {ny;, ny;, [;} to each of the basis states |i).
One may choose from several approaches, we will opt for the one listed in the table
below. We create state shells with n;, = n;; + ny; where ny; < ny;, and let /; run
from O to ny; — 1 for every value of n}; and n,;. The obtained variational energies are
presented in Table 5.5. N denotes the total number of states used in the calculation,
see Eq. (2.4) and Table 5.4.

So far, we always restricted ourselves to finding the variational estimate of the
ground state of given symmetry. However, the method can be applied to excited
states of a given symmetry as well. If we are interested in the first excited singlet S-
state, we optimize the parameter 7 so as the energy of the second smallest eigenvalue
is as small as possible. The results are, again, summarized in Table 5.5. The exact
nonrelativistic values were adopted from [2].

r'[ Exercise 16: Helium Ground State} Aaba b I-\

Using a programming language of your choice, program the variational
calculation of the ground state of helium atom. Use built-in procedures
available in the chosen language to find the eigenvalues. You will do
fine already with a simple—non-generalized—eigenvalue problem as the
overlap matrix is invertible. For the optimization of the parameter 1)
search the internet (e.g.) for the method of golden section search.

Table 5.4 Assignment of

quantum numbers to the basis ll rllli Vllzi g ;12

states
2 |1 |2 |03
3 /1 |3 |0 4
4 12 |2 |0 |4
5 12 |2 |1 |4
6 |1 |4 |0 |5
7 |2 |3 |0 |5
&8 12 |3 1|5
9 |1 |5 |0 |6
10 |2 |4 |0 |6
11 |2 |4 |1 |6
12 /3 |3 |0 |6
13 /3 |3 |1 |6
14 /3 |3 |26
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5.3.7 Comparison with the Experiment

To ascertain the difference of our calculations from the correct values as well as to
assess the therein neglected effects, namely the relativistic and magnetic effects and
nuclear motion discussed in Sects. 3.6.2 and 3.6.3, we compare the prediction for
the frequency corresponding to the transition between the lowest singlet S-states of
helium obtained from the variational calculation with 70 functions, see Table 5.5,

Vear70(21S — 115) = 2R (2.903127 — 2.145694) = 4.983670 x 10'°Hz,

and also from the exact nonrelativistic limit with nuclear motion neglected, i.e., from
the exact solution of the Schrodinger equation (5.3),

V(2 — 118) = 2R (2.903724 — 2.145974) = 4.985755 x 10"°Hz,
with the experimental value [1]
Vexp(2'S — 1'S) = 4.984872315(48) x 10"°Hz.

It follows from this comparison that not only the fundamental principles, but also the
approximate methods of quantum mechanics are correct. In addition, one can notice
that a significant improvement of the variational calculation does not lead to a better
match to the experiment. The reason is obvious: the Schrodinger equation (5.3)
does not capture all phenomena occurring in the real helium atom. Note that the
relativistic and magnetic effects discussed in Sect. 3.6.2 lead to the fine structure of
the helium energy levels. For instance, the state 2°P° splits into three 2 P9, where
J = 0,1,2 denotes three possible total angular momenta of electrons which arise

Table 5.5 Variational 1ls 2 1g

e e N B o B
2 1 1.185 | —2.847656
3 2 1.185 | —2.847656 | 1.659 | —1.452885
4 5 10971 | —2.895444 | 1.875 | —2.031260
5 8 10.940 | —2.897109 |1.439 | —2.049180
6 14 10.796 | —2.900714 |1.833 | —2.134045
7 20 1 0.760 | —2.901452 | 1.607 | —2.134897
8 30 1 0.682 | —2.902341 |1.902 | —2.144425
9 40 10.648 | —2.902654 | 1.674 | —2.144749
10 |55 |0.595 | —2.902975 | 1.788 | —2.145552
11 |70 |0.566 | —2.903127 | 1.568 | —2.145694
oo |00 —2.903724 —2.145974
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from the composition of the total orbital angular momentum L = 1 of the electrons
and their total spin angular momentum § = 1.°

5.3.8 A Note on the Parity

One can follow the same reasoning for states of other symmetries as well. In case of
a general state with its total angular momentum / (and the total m = 0), we consider
the following symmetry-adapted basis states

Ly

1
=17 g 1) g ) ™D (s =il 0) 1y 1)y, =i

(559

i=—l|j

llj
S O ) R ) Sl SR (R TR0 [ L Tl I

i=—11j

instead of those given by Eq. (5.38). For example, for P-states, i.e., states with the
total angular momentum / = 1, we find from the condition |/;; — l»j| < I that either
Lj = ljj + 1, or l; = I;;. Therefore, we compose the P-state from pairs of states in
Table 5.6. .

From Eq. (5.44) and the condition (5.48), we derive that (j|H|k) = O when

(_1)11j+lz,' 7& (_1)11k+12k.

In other words, the P-states with l; = [j; + 1 and the P-states with l; = [;; do
not interact with each other; the matrix elements between these two classes of states
equal zero.

This finding relates to the parity operator. It follows from Egs. (4.62), (4.63),
and (4.64) that spherical harmonics obey the relation

Yiu(—m) = (=1)'¥;,(m). (5.60)

Table 5.6 One electron

Even parity | Odd parit
orbital quantum numbers Pty Pty

used for composition of odd- lj | by hi | by

and even-parity P-states in 0 |1 11

Eq.(5.59) 1 2 2 |2
2 |3 3 3
Etc.

Confront with the fine structure of positronium, see Exercise 10 in Sect. 4.4.9.
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When the coordinates are inverted, r; — —r|, r, — —r», the basis states (5.59)
behave as

(—r1,—12lj) = (=) (r, 2] ) .

One can thus readily see that the P-states with l,; = /;; 4+ 1 are of odd parity, while
the P-states with lo; = I;; of even parity. Owing to the fact that parity is an integral
of motion, matrix elements of the Hamiltonian between these two classes of states
equal zero.

5.3.9 A Note on Complex Atoms

Following the same procedure that led to the Hamiltonian (5.1), one can derive for
instance for the Hamiltonian of lithium-like atom in nonrelativistic approximation
with neglect of the nuclear motion

H (1., 1 AT A AT VA R 561
72 2p1 12 2p2 r Zp3 r3 Z\ra r3 )’ .
The variational calculation is then similar to the one for helium-like atoms. For

example, we opt for the ground-state test function in the form of a so-called Slater
determinant; that is, the determinant of the matrix

[15) V1) D [15) 21 =) (25) ]
75 | 10212 11921 [26) |4
AT 19019 294)0

where the one-electron orbitals (r| 1s) and (r| 2s) are given by Egs. (5.11) and (5.36).
This choice ensures that the wave function is totally antisymmetric with respect to
the interchange of any two variables. The variational estimate can be systematically
improved by the expansion of the wave function into a linear combination of Slater
determinants, i.e., the determinants of matrices

1214 120) V=) 130) V)
Z5 |12 201 3014 ) (5.62)
AP 20 3+

where ¢|; = (r| 1i), etc., stand for one-electron orbitals (5.39). Unfortunately, these
basis states are generally not the eigenstates of the total 82 nor of the total [2. In
case we aim for the configuration interaction method, it proves advantageous to
find appropriate linear combinations of these states (5.62) so that they become the
eigenstates. However, it is anything but trivial to satisfy the requirement the basis
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states be both totally antisymmetric with respect to the interchange of an arbitrary
pair of electrons, and they be the eigenstates of the total S and [2. If the reader
is interested in such a procedure, we refer him or her to, e.g., [3]. Note also that it
shows advantageous to exploit the formalism of the second quantization, described
in Sect. 6.6, when calculating the matrix elements of the Hamiltonian (5.61) between
the states (5.62).

5.4 Final Notes

We have devoted considerable attention to the method of employing the variational
function constituted by one-electron functions when searching for a sufficiently
