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Preface

It is safe to say that nobody understands quantum mechanics.
Richard Feynman.

Those who are not shocked when they first come across quantum theory
cannot possibly have understood it.

Niels Bohr.

The more success the quantum theory has, the sillier it looks.
Albert Einstein.

When some of the scientific giants of the twentieth century express doubt about a
theory, e.g. referring to it as a “silly” or “shocking” theory, one might ask whether it
makes sense to use such a theory in practical applications. Well, it does – because
it works. Bohr, Einstein, and Feynman were reflecting on the exceptional nature
of quantum theory and how it differs so strongly from previous theories. They
did not question the success of the theory in describing the microscopic nature
of matter. Indeed, quantum theory may be the most successful and revolutionary
theory devised to date.

The theory of quantum mechanics provides a framework to accurately predict
the spatial and energetic distributions of electronic states and the concurrent
properties in atoms, molecules, clusters, nanostructures, and bulk liquids and
solids. As a specific example, consider the electrical conductivity of elemental
crystals. The ratio of the conductivities for a metal crystal such as silver to
an insulating crystal such as sulfur can exceed 24 orders of magnitude. A
comparable ratio is the size of our galaxy divided by the size of the head of a pin,
i.e. an astronomical difference! Classical physics provides no explanation for such
widely different conductivities; yet, quantum mechanics, specifically energy band
theory, does.

That is the good news. The bad news is that quantum theory can be
extraordinarily difficult to apply to real materials. There are a variety of reasons
for this. One notable characteristic of quantum theory is the wave –particle
duality of an electron, i.e. sometimes an electron behaves like a point particle,
other times it behaves like a wave. When asked if an electron is a particle
or a wave, an expert in quantum theory might respond with the seemingly
incongruous answer: yes.
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This is one reason why quantum theory seems so paradoxical and strange
within the framework of traditional physics. Using quantum mechanics,
we cannot ascertain the spatial characteristics of an electron by enumerat-
ing three spatial coordinates. Rather, quantum mechanics can only give us
information on where the electron is likely to be, not where it actually is.
The probabilistic nature of quantum theory adds many degrees of freedom
to the problem. We need to specify a probability for finding an electron at
every possible point in space. As a first pass, this issue alone would appear to
doom any quantitative approach to solving for the quantum behavior of an
electron.

Yet, the intellectual framework and the computational machinery have
developed in spurts over the last several decades, which makes practical
approaches to quantum mechanics feasible. Numerous textbooks often discuss
the machinery of how to apply quantum mechanics, but fail to give the reader
practical tools for accomplishing this goal. This is an odd situation whose origin
likely resides in intellectual “latency.” In the not too distant past, it would require
a huge and complex computer code, run on a large mainframe, to do quantum
mechanics for a relatively small molecule. This is no longer the case. A modest
amount of computing power, such as that available with a laptop computer or in
principle even a “smartphone,” is sufficient to allow one to implement quantum
theory for many systems of interest such as atoms, molecules, clusters, and other
nanosacle structures. The goal of this book is to illustrate how this framework
and machinery works. We will endeavor to give the reader a practical guide for
applying quantum mechanics to interesting problems.

Many people are owed thanks to this effort. Yousef Saad helped me frame many
of the electronic structure codes and gave guidance about algorithms for solv-
ing complex numerical problems. I also express a deep appreciation to a number
of mentors and friends, including Marvin Cohen, Jim Phillips, and Steve Louie.
Of course, I also thank my students and postdocs who did much of the heavy
lifting.

Austin, Texas James R. Chelikowsky
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1

Introduction

The great end of life is not knowledge but action.
– T. H. Huxley

1.1 Different Is Usually Controversial

Perhaps all breakthroughs in science are initially clouded with controversies.
Consider the discovery of gravity. Isaac Newton invoked the concept of “action
at a distance” when he developed his theory of gravity. Action at distance couples
the motion of objects; yet, the objects possess no clear physical connection.
Newton argued that the motion of an apple falling from a tree was similar to
the motion of the moon falling toward (and fortunately missing) the earth. The
source of the motion of both objects is consistent with an “action at a distance”
caused by the presence of the earth and its gravitational field.

We can contrast the trajectory of the moon with a simpler object such as a golf
ball. It is easy to understand that a golfer can make the ball move by striking it. A
ball struck just right will carry hundreds of yards (or meters). Residents of New-
ton’s time would be comfortable with this idea. The golf club directly contacts
the ball, albeit for a very short time. The physical connection to the ball is the
club swung by the golfer. But how can the earth change the moon’s trajectory?
The earth does not carry a big golf club to strike the moon. While the action at a
distance theory may not be apparent to a lay person, or even a good scientist in
Newton’s time, the laws of gravity predicted the behavior of astronomical bod-
ies such as the moon’s orbit incredibly well. Hardly anyone would argue that we
ignore the practical application of Newton’s theory until someone resolved this
action at distance business. For years, scientists argued the meaning of “action at
distance” and the nature of space itself. Eventually, scientists agreed that the con-
cept of Newtonian space was problematic. It was left to Einstein to straighten out
issues of space, time, and gravity. In some sense, it hardly mattered if you wanted
to predict planetary motion. A practical application of Newton’s theory accom-
plished that really well, save some relatively minor fixes from Einstein. (We are
not going to worry about issues such as worm holes or gravity waves.)

Introductory Quantum Mechanics with MATLAB® : For Atoms, Molecules, Clusters, and Nanocrystals,
First Edition. James R. Chelikowsky.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.



2 1 Introduction

Perhaps one should view the theory of quantum mechanics in the same man-
ner. The theory remains “mysterious” in some ways. Oddly, some of the central
components of the theory are understandable only because we can think about
them in classical terms. Still, quantum theory can be used to predict properties of
matter with unprecedented accuracy. Upon the invention of quantum mechanics,
the famous physicist Dirac wrote the following [1]:

The underlying physical laws necessary for the mathematical theory of a large part
of physics and the whole of chemistry are thus completely known, and the difficulty is
only that the exact application of these laws leads to equations much too complicated
to be soluble. It therefore becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which can lead to an explanation
of the main features of complex atomic systems with out much computation …

Dirac’s quote of nearly a century ago is correct and appropriate. In principle,
the underlying physical laws (of quantum mechanics) should allow one to pre-
dict “much of physics” (condensed matter physics as an example) and “the whole
of chemistry.” What stands in our way is a practical machinery to accomplish
this task. Computational physicists often refer to this task as addressing Dirac’s
Challenge.

Dirac’s warning about avoiding “too much computation” is an anachronism.
Dirac’s world of 1929 did not envision a computer capable of carrying out billions
or trillions of mathematical operations within a second. When we contemplate
the use of a modest computer, such as a laptop, for the work outlined in this book,
it is indeed “without too much computation.”

1.2 The Plan: Addressing Dirac’s Challenge

Dirac’s challenge for us is to develop “approximate practical methods of apply-
ing quantum mechanics.” The goal of this book is to address, or better start to
address, the challenge.

The book is roughly divided into three parts. The first part will focus on the
theory. We will use a minimum of theory to get to the “good part.” Our intent is
not to write a quantum mechanics textbook. Rather, our intent in this part of the
book is to review essential features. For example, we will consider the simplest
of all atoms, hydrogen, and we will start with the simplest of theories from Bohr.
We will then introduce the Schrödinger equation and briefly sketch out how to
solve the hydrogen atom problem analytically.

The hydrogen atom is one of the rarest of quantum systems – one where we can
do an analytical solution of the Schrödinger equation. The next several chapters
will involve introducing the real problem, one with more than a single electron.
A clear example of such a system is helium, where we have two electrons. Our
study of the helium atom will lead us to consider the Hartree and Hartree–Fock
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approximations. Our next objective will be to consider a practical method for
more than one or two electrons. A practical theory for this is based on “density
functional theory,” which focuses on how electrons are distributed in space.

A logical pathway to take us from Hartree–Fock theory to density functional
theory arises from a “free electron” model. We introduce this model using
concepts removed from the physics of an isolated atom. We will “backtrack” in
our discussions to consider some solid-state physics concepts. Theories based
on electron density will provide some key approximations. In particular, we
will begin with the Thomas–Fermi approximation, which can lead to contem-
porary density functional theories. This approach will allow us to consider a
“one-electron” Schrödinger equation to solve a many-electron problem.

The last chapter of this section will center on the “pseudopotential approxima-
tion.” This key approximation will allow us to fix the length and energy scales
of the many-electron problem by considering only the chemically relevant elec-
tronic states. The pseudopotential approximation treats an element such as lead
on an equal footing with an element such as carbon. Both lead and carbon have
the same configuration for the outermost, or valence, electrons. These chemically
active states provide the chemical bond or “electronic glue” that holds atoms,
clusters, molecules, and nanocrysals together.

The next part of the book illustrates numerical methods. Numerical methods
are important as there are few atomic systems that can be solved analytically,
save the aforementioned hydrogen atom. This is also true for classical systems
where analytically only the two-body system is solvable.

We initially consider an isolated, spherically symmetric atom. We introduce
the variational method and show how approximate wave functions can be used
to obtain accurate estimates for the exact solution. We also solve the problem by
integrating a one-dimensional equation.

We will consider solutions for many-electron atoms and molecules, using
a numerical basis. This is the standard method for most quantum chemistry
approaches to molecules and atoms, although it may not be the best method
for these systems, especially for pedagogical purposes. An alternate is to solve
the problem in real space on a grid. This approach is easy to implement and
understand. With either a basis or a grid approach, we solve an “eigenvalue
problem.” Iterative methods can solve such problems and we will illustrate this.

The last part of the book demonstrates the application of quantum theory to
atoms, molecules, and clusters using a common numerical method. Physical
concepts such as pseudopotentials, density functional theory, and a real-space
grid form the underpinnings for computing a solution of the electronic structure
problem. The pseudopotential model of solids is widely used as the standard
model for describing atomistic systems. The model divides electronic states into
those that are valence states (chemically active) and those that are core states
(chemically inert). For example, systems made up of silicon atoms have valence
states derived from the atomic 3s23p2 configuration. The valence states form
bonds by promoting a 3s electron to form sp3 bond. One can omit the core states
1s22s22p6 altogether in pseudopotential theory. As such, the energy and length
scales for determining a basis are set by the valence state.
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Density functional theory is perhaps the weakest approximation made in
our toolbox, but it is indispensable. Density functional theory allows us to
consider one electron at a time as it maps the difficult many-body problem to a
one-electron problem.

Our use of a real-space grid reflects the bias of the author. The use of a grid to
solve difficult differential equations is well known in the engineering community.
There are good reasons for its popularity. Grids are easy to implement and possess
a number of advantages for running on high-performance computers; e.g. they
can reduce the number of global communications.

Many of the numerical solutions in our book are based on computer codes
using MATLAB. The inventors of MATLAB claim: MATLAB is a high-level lan-
guage and interactive environment that enables you to perform computationally
intensive tasks faster than with traditional programming languages such as C,
C++, and Fortran. There is merit to this claim; MATLAB is easy to use and imple-
ment. A transcription of a “state of the art” research program forms the basis of
the codes in this book.

The application to atoms will focus on ionization energies, electron affinities,
and polarizabilities. We will examine some diatomic molecules along with some
organics such as methane and benzene. We will also examine solutions for chem-
ical trends, ionicities, energy levels, bond energies, vibrational levels, and bond
lengths. Clusters of atoms represent a “new” form of matter, i.e. a combination
of atoms that is stable only in isolation. Systems in isolation represent a seri-
ous challenge for experiment. The systems must be probed without any material
interactions. We can examine properties in clusters as for molecules, but we can
also examine other seminal properties such as the evolution of properties from
atoms to crystals. We will look at nanoscale structures such as nanocrystals. In
these systems, quantum confinement can play an important role in altering phys-
ical properties. An appendix at the end will give the reader access to the essential
codes.

Reference

1 Dirac, P.A.M. (1929). Proceedings of the Royal Society of London Series A 123:
714.
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2

The Hydrogen Atom

“…to understand hydrogen is to understand all of physics…”
— V. Weisskopf

2.1 The Bohr Model

Before the days of quantum theory, workers focused on the relationship of light
and matter. At the turn of the last century, Wilhelm Wein measured the intensity
distribution of light as a function of frequency for blackbody radiation. He postu-
lated a functional relationship for the intensity distribution; however, he provided
no theoretical guidance for this function. Nonetheless, his work was so important
that he won the 1911 Nobel Prize in physics.

The theoretical underpinning of Wien’s work was later explained by Planck and
Einstein. Planck postulated that the energy of light was quantized into discrete
energy units, which he called “energy elements” and were later called “photons.”
(Actually much later – in the 1920s by Gilbert N. Lewis.) The energy of a photon
is directly proportional to the frequency of the light:

E = Nhf = Nℏ𝜔 (2.1)

where h is Planck’s constant and f is the frequency of light (ℏ = h∕2π and 𝜔 is the
angular frequency). N is the number of quanta.

As usual, Einstein’s insights helped clarify the energy quanta of light. He
wrote:

According to the assumption to be contemplated here, when a light ray is spreading
from a point, the energy is not distributed continuously over ever-increasing spaces,
but consists of a finite number of energy quanta that are localized in points in space,
move without dividing, and can be absorbed or generated only as a whole.

Some observers believe this statement by Einstein constitutes one of the most
profound sentences written by a physicist in the last century [1, 2].

If light is quantized, what about matter? Are the properties of matter also
quantized? Can we distinguish the two? Niels Bohr partly addressed this question

Introductory Quantum Mechanics with MATLAB® : For Atoms, Molecules, Clusters, and Nanocrystals,
First Edition. James R. Chelikowsky.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.



6 2 The Hydrogen Atom

with a theory that accounted for the experimental spectrum of atomic hydrogen.
Bohr’s theory departed from the mainstream. Again, we remember that different
can be controversial! Fortunately, Bohr was a superb scientist with impeccable
credentials. A theory by a lesser scientist might receive ridicule instead of praise.
Apparently this occurred. Arthur Haas in 1909 made a number of proposals in
the field of atomic physics. One of his proposals anticipated Bohr’s theory of
the atom. However, prominent scientists of this era dismissed Haas’ work and
praised Bohr’s theory [3, 4].

According to Bohr’s theory of 1913, a hydrogen atom exists in a stationary
state unless light is absorbed or emitted. When the state of the atom changes,
the energy absorbed or emitted is quantized. We can reproduce Bohr’s theory
easily, albeit not exactly as he did. We will use some ideas developed some 10
years after Bohr’s original work.

We will start from the assumption that electrons possess wave-like properties.
Louis de Broglie developed this concept in 1922 [5]. He postulated that any par-
ticle moving has a wave length associated with its motion:

𝜆 = h
p

(2.2)

where 𝜆 is the wave length, h is Planck’s constant and p is the momentum of
the particle. de Broglie’s concept of a particle having a wave property is a central
concept of quantum theory. Macroscopic bodies in motion possess large, very
large, momenta. Their wavelengths are vanishingly small. We never associate a
wave-like property with, say, a 1000-kg car moving at 100 km h−1. The wavelength
of such an object is ∼ 10−38 m, which is decidedly not measurable or observable.
Particles at the microscopic scale are another story. Because their momenta can
be so small, they can have a measurable wave length.

Bohr’s theory postulated that an electron moves around the proton in circular
orbits like a planet orbiting the sun. These orbits are not arbitrary and can take on
only certain sizes. Suppose one assumes that such orbits exist when an integral
number of de Broglie wave lengths equals the length of the orbit:

n 𝜆 = 2πr (2.3)

where r is the orbital radius and n is an integer (n = 1, 2, 3,…). Intuitively, this
sounds right. It would be weird to have a characteristic wave length that was
unrelated to a characteristic orbital length. Using de Broglie’s wave length for-
mula gives the allowed orbital radii:

r = nℏ
p

(2.4)

The total energy of an electron in the hydrogen atom is the sum of the kinetic
and potential energies:

E =
p2

2m
− e2

r
(2.5)

e is the charge of the electron, and m is the electron mass. The kinetic energy
comes from the motion of the electron in orbit. The potential energy comes
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from the Coulomb energy of the positively charged proton interacting with the
negatively charged electron.

We do not consider the kinetic energy of the proton as its mass is 1836 times
that of the electron. As a first pass, we treat the proton’s mass as infinite. This is
a really good approximation. We rewrite this total energy expression by realizing
that the radius, or the momentum (take your pick), is quantized.

E = n2
ℏ

2

2mr2 − e2

r
(2.6)

The force, F , on the electron is given by the negative of the derivative of the total
energy with position (as from elementary mechanics). The force vanishes when a
particle is in equilibrium:

F = −dE
dr

= −n2
ℏ

2

mr3 + e2

r2 = 0 (2.7)

This condition determines the stationary state radii:

rn = n2
ℏ

2

me2 = 0.5292 n2 Å (2.8)

We can insert this value into Eq. (2.6) to get the allowed energies for an electron
in a hydrogen atom:

En = − me4

2ℏ2n2 = −13.606
n2 eV (2.9)

We find the allowed energy frequencies for light absorbed or omitted by a hydro-
gen atom using Planck’s criterion. Suppose that the hydrogen atom is initially in
state n1, and after absorbing the energy of a photon is in state n2. Energy conser-
vation yields the following:

ΔE = En2
− En1

= ℏ𝜔n1n2
= me4

2ℏ2

(
1
n2

1
− 1

n2
2

)
(2.10)

The spectral lines predicted by Eq. (2.10) are in perfect agreement with those
observed experimentally and validated Bohr’s theory. In Figure 2.1, we illustrate
the differences between the hydrogen energy levels. The lines are labeled by the
terminating level, e.g. the Lyman series all terminate in the lowest level (n1 = 1),
the Balmer series terminates in the second lowest level (n1 = 2), and the Paschen
series terminates in the third lowest level.

While the Bohr theory of the hydrogen atom dramatically systematized the
atomic spectra and explained the interaction of light with the quantized atom
states, the theory is woefully limited. First, it is only valid for atoms containing one
electron. This includes ionized atoms (He+, Li+2, Be+3, B+4

,…). Many-electron
atoms, that is, atoms with more than one electron, starting with helium are not
described by the Bohr theory. Second, the theory tells us about the energy levels,
but fails to mention anything about how to compute the intensity of the spec-
tral lines. As we shall see, the key to understanding this problem is symmetry.
Some scientists, most notably Arnold Sommerfeld, attempted a generalization of
Bohr’s atomic model, e.g. considering elliptical instead of circular orbits, without
much success.
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n =

6
5

4

3

2

1
Lyman series

Balmer series

Paschen series

E(eV) = –13.6/n2

0.0

–0.38
–0.54

–0.85

–1.51

–3.40

–13.6

∞

Figure 2.1 Atomic spectra of hydrogen atom illustrating the main transitions for three series.
The Lyman transitions are in the ultraviolet region of the spectra. The Paschen transitions
occur in the infrared. The levels are not to scale.

2.2 The Schrödinger Equation

Work by Erwin Schrödinger, Paul Dirac, and Werner Heisenberg ushered in the
modern theory of quantum mechanics by replacing Bohr’s theory with one capa-
ble of describing many-electron atoms. We will focus on Schrödinger’s equation.
Schrödinger’s papers on “wave mechanics,” written in 1926, resulted in quantum
mechanical equations for predicting the properties of electrons interacting with
nuclei [6]. A solution of his equation gives the correct energy levels for the hydro-
gen atom and much more. It yields an accurate description of many-electron
atoms, and accounts for both the energetic and spatial distributions of electrons.
Schrödinger’s paper is one of the notable scientific achievements of the twentieth
century.

For hydrogen, we can write the Schrödinger equation as[
−ℏ2∇2

2m
− e2

r

]
Ψn(r⃗) = EnΨn(r⃗) (2.11)

The proton is placed at the origin. Again, we take the mass of the proton as infinite
compared to the electron.

This Schrödinger equation constitutes an eigenvalue problem. We can label
eigenvalues and eigenstates with “quantum numbers.” We anticipate this by not-
ing that n may stand for a set of such numbers. The eigenvalues, En, correspond
to energy levels. The eigenstates provide us with a challenge. The physical inter-
pretation of the eigenstates, Ψn, is one of the issues in quantum theory.
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Some 80 years after Schrödinger wrote down this equation scientists still argue
about what Ψn represents. One traditional, and widely held, view centers on a
probabilistic interpretation. The eigenstates, or better the square of the eigen-
states, give a measure for the probability of finding an electron at a particular
point in space. Since the electron is somewhere, if we add up the probability of
finding an electron in all space, we may write

P(r⃗) = |Ψn(r⃗)|2
∫ ∫ ∫ P(r⃗) d3r = 1 (2.12)

where P is the probability of finding an electron in a volume element d3r. If we
add up this probability by integrating over all space, it must add up to unity. We
can always “normalize” the eigenstate so that the integral is one. This assumes
that the eigenstate is integrable. Since our efforts are focused in practical issues,
we are always going to assume that the eigenstates are well behaved, e.g. no dis-
continuities in the function or its derivatives, and no divergences or poles!

Eigenstates are often called “wave functions.” The Schrödinger equation is then
called a wave equation. We cannot measure wave functions as in the language of
quantum theory they are not “observables.” Observables are quantities that are
measurable, e.g. the energy of an electron. Quantum theorists often say that we
can kick an electron, but we cannot kick a wave function. The distinction between
an observable and an non-observable object or property is not something a clas-
sical physicist would make out, although it is not a completely alien concept.
Consider the concept of an imaginary number. We often use i =

√
−1 as a place

holder for some mathematical operation that will lead to a “real number,” but an
intermediate operation might not. Roughly speaking, we are doing the same thing
in quantum modeling. We might have a complex phase factor in our eigenstates
that can take on different values. But when we square the eigenvalue the phase
factor is not relevant; it is not an observable.

Einstein and others abhorred this situation with some variables being unob-
servables [7]. They also disliked a “probabilistic” interpretation of quantum
mechanics. In a famous exchange, Einstein claimed: “God does not roll dice. The
Lord is subtle, but not malicious.” Bohr rejoined “Don’t tell God what to do.”
(The quotes are probably not correct in detail, but they are right in spirit.) This is
an odd set of circumstance. Here is a theory with great predictive power; yet, the
interpretation of a central feature of the theory – the wave function – is opaque.

If we accept that the wave functions are related to probability, then we need
to think about statistics and measurements. If someone claims that a particular
event has a certain probability of happening, what does that mean? Traditionally,
such a claim would entail that one must repeat the event over and over, and assess
the various outcomes. For example, suppose we are given a coin and told that the
coin is fair. What does that mean in practice? If I flip a coin once, I know nothing
about whether the coin is fair. In contrast, if I flip the coin a thousand times and it
comes up heads half the time, I am reasonably sure the coin is fair. If heads come
up 90% of the time, I am very sure the coin is not fair. To assess this situation
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involves experiment (making a measurement) and recording the results (doing a
statistical analysis).

For the case at hand, if one finds a quantum mechanical solution where the wave
function localizes an electron within a given volume, this statement only makes
sense if you do a series of measurements to determine where the electron is, e.g.
by using X-rays. This relationship between measurement and the probabilistic
interpretation of the wave functions lies at the heart of what quantum mechanics
means.

This philosophical issue is vaguely similar to the question: Does a tree falling in
the woods make a sound if no one is around to hear it? One might argue that if
no one is around, the question is without meaning. The state of an electron is also
without meaning if no one makes a measurement. We obtain information about
reality only when we make a measurement or ask a question.

Heisenberg said: “What we observe is not nature itself, but nature exposed to
our method of questioning [8].” If we make no measurement (or raise no ques-
tion), we do not know about the sound of a falling tree, or the position of an
electron. This subject is becoming too philosophical and we take leave of it. Our
goal is more “practical.”

Next we attempt to solve the Schrödinger equation for one of the simplest of
systems. If we cannot solve this equation for a hydrogen atom, its interpretation
is irrelevant. Many textbooks do the solution of a hydrogen atom in some detail,
e.g. see Schiff [9]. Here we give a general outline of how it is done. A solution
involves a number of variable transformations and the procedure can be slightly
tedious.

The first step is to recognize that the potential energy for the electron–proton
is spherical. Spherical coordinates are illustrated in Figure 2.2:

x = r cos𝜙 sin 𝜃

y = r sin𝜙 sin 𝜃 (2.13)
z = r cos 𝜃

The wave function is separated into radial and angular components:

Ψ(r, 𝜃, 𝜙) = R(r)Y (𝜃, 𝜙) (2.14)

z

r

y

x

θ

ϕ

Figure 2.2 Spherical coordinates defined by
(r, 𝜃, 𝜙).
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When this wave function is inserted into Eq. (2.11) we get two equations.
One depends on the radial coordinates, the other on the angular coordinates.
This separation is possible because the potential is spherical. These equations
are given by

1
r2

d
dr

(
r2 dR

dr

)
+ 2m

ℏ2

(
E + e2

r

)
R − 𝜆

r2 R = 0 (2.15)

and
1

sin 𝜃

𝜕

𝜕𝜃

(
sin 𝜃

𝜕Y
𝜕𝜃

)
+ 1

sin2
𝜃

𝜕
2Y
𝜕𝜙2 + 𝜆Y = 0 (2.16)

where 𝜆 is a constant introduced to separate the radial equation from the angular
one. The equation for the angular part of the wave function is valid for any spher-
ical potential. We can solve this equation in a straightforward manner following a
prescription from nineteenth century mathematics [9]. The solution in spherical
harmonics is:

Ylm(𝜃, 𝜙) =

√
(2l + 1)!

4π
(l − m)!
(l + m)!

Pm
l (cos 𝜃) exp(im𝜙) (2.17)

The integers (l,m), may take on only certain values: l = 0, 1, 2,… and
m = −l,−l + 1,… ,−1, 0, 1,… , l − 1, l. The separation constant is given by
𝜆 = l(l + 1). The Pm

l are called associated Legendre polynomials:

Pm
l (x) =

(−1)m

2ll!
(1 − x2)m∕2 dl+m

dxl+m
(x2 − 1)l (2.18)

This expression is valid for m ≥ 0. The following holds for −m:

P−m
l (x) = (−1)m (l − m)!

(l + m)!
Pm

l (x)

Functions for the first few values of l are easy to list. We focus on angular func-
tions with l ≤ 2 as listed in Table 2.1.

The radial part of the wave function will depend on the nature of the potential.
We can write

u(r) = rR(r) (2.19)

We use this function in Eq. (2.15) to obtain

− ℏ
2

2m
d2u
dr2 + l(l + 1)ℏ2

2mr2 u − e2

r
u = E u (2.20)

We define dimensionless variables, which are given by

𝜌 =
√

8m|E|
ℏ

r 𝜂 =
√

m
2|E| e2

ℏ

(2.21)

The energy levels are bound in this analysis, so E = −|E|. We write Eq. (2.20) as

d2u
d𝜌2 − l(l + 1)

𝜌2 u +
(
𝜂

𝜌

− 1
4

)
u = 0 (2.22)
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Table 2.1 Spherical harmonics.

l ml Ylm

0 0 Y00 = 1√
4π

1 1 Y11 = −
√

3
8π

sin 𝜃 exp{(i𝜙)}

1 0 Y10 =
√

3
4π

cos 𝜃

1 −1 Y1,−1 =
√

3
8π

sin 𝜃 exp{(−i𝜙)}

2 2 Y22 =
√

15
32π

sin2
𝜃 exp{(2i𝜙)}

2 1 Y21 = −
√

15
8π

cos 𝜃 sin 𝜃 exp{(i𝜙)}

2 0 Y20 =
√

5
16π

(3cos2
𝜃 − 1)

2 −1 Y2,−1 =
√

15
8π

cos 𝜃 sin 𝜃 exp{(−i𝜙)}

2 −2 Y2,−2 =
√

15
32π

sin2
𝜃 exp{(−2i𝜙)}

This format allows us to establish the long range nature of the radial wave func-
tion. Consider 𝜌 → ∞.

d2u
d𝜌2 − 1

4
u = 0 (2.23)

The function u → exp(−𝜌∕2) in this limit. The sign of the exponential is obvious.
Without a minus sign, we could not normalize the wave function and insure that
the probability summed to unity. We build in the limiting case by writing

u = F(𝜌) exp(−𝜌∕2) (2.24)

Upon insertion into Eq. (2.22), we obtain an equation for F :

d2F
d𝜌2 − dF

d𝜌
+
[
𝜂

𝜌

− l(l + 1)
𝜌2

]
F = 0 (2.25)

We then express F as a polynomial as the asymptotic behavior is incorporated by
exp(−𝜌∕2) :

F(𝜌) = 𝜌
s

∞∑
k=0

ak𝜌
k = 𝜌

s(a0 + a1𝜌 + a2𝜌
2 + · · ·) (2.26)
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We will examine the long range and short range behavior of F to determine s and
the coefficients ak . We insert Eq. (2.26) into Eq. (2.25) and obtain:

∞∑
k=0

{
[(k + s)(k + s − 1) − l(l + 1)]𝜌k+s−2 − [(k + s) − 𝜂]𝜌k+s−1} ak = 0 (2.27)

Consider k = 0 and the limit as 𝜌 → 0:

{[s(s − 1) − l(l + 1)]}a0 = 0 (2.28)

For a non-zero value of a0, s(s − 1) = l(l + 1). A solution yields s = l + 1 or s = −l.
If R is finite as 𝜌 → 0 (or r → 0), we need s = l + 1.

We can now establish a relationship that will dictate the long range behavior of
F by considering equal powers of 𝜌:

∞∑
k=0

{
[(k + l + 1)(k + l) − l(l + 1)]𝜌k+l−1 − [(k + l + 1) − 𝜂]𝜌k+l} ak = 0

∞∑
k=0

{
[(k + l + 1)(k + l) − l(l + 1)]ak − [(k + l) − 𝜂]ak−1

}
𝜌

k+l−1 = 0 (2.29)

If this is to hold for arbitrary values of 𝜌, we have a relationship between ak and
ak−1:

ak

ak−1
= (k + l) − 𝜂

[(k + l + 1)(k + l) − l(l + 1)]
(2.30)

This expression has the following behavior for large k:

lim
k→∞

ak

ak−1
= lim

k→∞

(k + l) − 𝜂

[(k + l + 1)(k + l) − l(l + 1)]
→

1
k

(2.31)

We consider an expansion for exp(𝜌) in powers of 𝜌k :

exp(𝜌) =
∞∑

k=0

1
k!

𝜌
k =

∞∑
k=0

ak𝜌
k (2.32)

This gives values of ak for large k:

lim
k→∞

ak

ak−1
= lim

k→∞

(k − 1)!
k!

= 1
k

(2.33)

This behavior for exp(𝜌) is crucial to rendering a solution. The polynomial expan-
sion for F for large powers of k are the same as exp(𝜌) and since u = F exp(−𝜌∕2)
u diverges at large 𝜌 (or r). We cannot allow that and still be able to normalize the
wave function. The wave function must go to zero as 𝜌 → ∞. One way to resolve
this “bad behavior” is to make sure the series terminates. If F ∼ 𝜌

m where m is a
finite positive integer, then u = F(𝜌) exp(−𝜌∕2) → 0 as 𝜌 → ∞ and we are good.

The polynomial series for F (Eq. (2.30)) will terminate when

𝜂 = k + l = n; n = 1, 2,… (2.34)

Recalling the definition of 𝜂 yields the following:

En = − me4

2n2ℏ2 (2.35)
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The energy levels are the same as given by the Bohr model. (Bohr had the better
of it as he never even had to deal with a complex differential equation.)

Quantum numbers are used to label each electronic state. In our solution
for the hydrogen atom there are three integers called spatial quantum num-
bers: nlm. One quantum number exists for each spatial dimension, i.e. three
dimensional-space yields three quantum numbers. The energy levels of the
electron in a hydrogen atom depend only on n, the principal quantum number
because the potential is spherically symmetric or independent of the angular
coordinates. Besides using n, we label the electronic states by the angular
quantum number, l, and the azimuthal quantum number, m.

The lowest energy state occurs for n = 1 with l = m = 0. The radial part of the
solution is given by our expression for u and F (see Eqs. (2.19), (2.24), and (2.26)):

R10(r) =
2√
a3

0

exp(−r∕a0) (2.36)

where a0 is the Bohr unit (see the Appendix A and Eq. (2.8) where a0 = r1).
These radial functions involve associated Laguerre polynomials. We summarize

the radial functions for the first few values of the hydrogen quantum numbers in
Table 2.2. We generalized the functions for a “hydrogen-like” atom. We replace e2

by Ze2, where Z is the atomic number. This generalization allows us to consider
any “one-electron” atom using the Bohr model.

We can compose the total wave functions for any set of quantum numbers, nlm,
using Tables 2.1 and 2.2. The results are normalized so that the integrals over the
radial part and angular are both unity.

∫ ∫ ∫ |𝜓nlm(r⃗)|2 d3r = ∫ |Rnl(r⃗)|2 r2 dr ∫ ∫ |Ylm(𝜃, 𝜙)|2dΩ = 1 (2.37)

We depict the hydrogen wave functions (also known as orbitals) by construct-
ing isosurface plots as given by Figure 2.3. We show the first allowed state for each
value of l. The spatial configuration of these orbitals when combined with other
orbitals is related to the nature of the chemical bond.

Table 2.2 Radial part of the wave functions for hydrogen-like atoms
with Z protons in the nucleus.

n l Rnl

1 0 2
√
(Z∕a0)3 exp(−Zr∕a0)

2 0 2
√
(Z∕2a0)3 (1 − Zr∕2a0) exp(−Zr∕2a0)

2 1
√
(Z∕2a0)3 (Zr∕

√
3a0) exp(−Zr∕2a0)

3 0 2
√
(Z∕3a0)3 [1 − 2Zr∕3a0 + 2(Zr∕a0)2∕27] exp(−Zr∕3a0)

3 1
√
(Z∕3a0)3 (4

√
2Zr∕3a0) [1 − Zr∕6a0] exp(−Zr∕3a0)

3 2 (2∕27)
√

2∕5
√
(Z∕3a0)3 (Zr∕a0)2 exp(−Zr∕3a0)
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Figure 2.3 Spatial extent of the atomic wave functions for a hydrogen atom.

2.3 The Electronic Structure of Atoms and
the Periodic Table

The quantum description of the hydrogen atom offers an explanation not for the
structure of atoms, but more – the periodic table. One can construct the periodic
table by considering the following:

The Pauli exclusion principle. The Pauli exclusion principle states that one elec-
tron and one electron alone can have the same set of quantum numbers.

The independent electron approximation. This approximation assumes that each
electron can be discussed individually, e.g. each electron moves in an average
field of the other electrons. To the extent this approximation holds, we can
ascribe hydrogen atom characteristics to many-electron atoms. That we can
make such an assumption says something about electrons interacting among
themselves. We will shortly capitalize on this assumption.

The spin of the electron. Another quantum number is lurking out there – one that
has no analogy to the spatial quantum numbers. Given one quantum num-
ber per spatial degree of freedom, we cannot associate another number with
three-dimensional space. However, nature says otherwise. We can assign two
electrons with the same spatial quantum numbers (n, l,m). This violates the
Pauli exclusion principle, but not if we had another quantum number! Let us
assume we do. We assign this additional quantum number to electron “spin.”
We are not capricious in adding another quantum number, although maybe
nature is. We need to do so or we cannot organize electronic states.

We associate spin with a magnetic moment of the electron. The spin quantum
number of the electron was first detected by Gerlach and Stern using a strong,
inhomogeneous magnetic field [10]. They deflected a beam of electrons with such
a field and found the beam deflected up or down in equal proportions. They
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demonstrated that quantum angular momentum of any kind has a discrete spec-
trum. One could say they discovered that angular momentum is quantized. We
interpret their measurement as a demonstration of electron spin. The quantized
value of this spin, S⃗, is ±ℏ∕2. The magnetic moment associated with this spin is

𝜇s = −
gs𝜇B

ℏ

S⃗

where gs is the electron spin constant, gs ≈ 2.0023, 𝜇B is the Bohr magneton,
eℏ∕2mc, m is the electron, c is the speed of light, and e is the charge on the elec-
tron. This expression is in Gaussian CGS units (see the appendix for a discussion
of units.)

Does the magnetic moment of the electron arise from a “spinning electron,”
e.g. a charged spherical electron spinning on its axis? The answer is a negative.
Suppose we assign the size of the electron by re = e2∕mc2 = 2.818 × 10−13 cm,
which is termed the “classical electron radius,” and is also known as the “Lorentz
radius.”

Assume that an object of this size is spinning about some axis. While the idea
of the “self-rotation of the electron” naturally gives rise to an angular momentum
vector in addition to the one associated with orbital motion (quantum numbers
l,m), the electron, owing to its small size, must spin really, really fast. Really, really
fast implies its velocity at the equator (assuming a spherical electron) must exceed
the speed of light in order to generate the observed magnetic moment. This vio-
lates the cardinal rule that nothing moves faster than light, or better, nothing
transmits information faster than the speed of light. We will not consider whether
the rotation of an electron can transfer data. In any event, quantum theory does
not allow such a naive interpretation. For our purposes, we follow the field and
accept the existence of an additional quantum number, which is called – spin.

The labels used for quantum states in the hydrogen atom now include the
principal (n), orbital (l), azimuthal (m), and spin (ms) quantum numbers. The
principal quantum numbers take on values of n = 1, 2, 3,…. The orbital quantum
numbers take on values of l = 0, 1, 2,… , n − 1. Orbital notation using letters
(s, p, d, f , g, h,…) are often used instead of the numbers. The letter notation
comes from the associated spectral features called sharp (s or l = 0), principal
(p or l = 1), diffuse (d or l = 2), fundamental (f or l = 2). For l ≥ 3, the letters
are in alphabetical order, e.g. l = 3, 4, 5,… corresponds to g, h, i,….

We list the electronic configurations for atoms up to atomic number 56 in
Table 2.3. We base the configurations on the quantum numbers associated with
the hydrogen atom and fill up the levels with the Pauli principle.

The resulting configurations are often appropriate for atoms with more than
one electron. The configurations are given by the principal quantum number, the
orbital quantum number, and the occupancy of the state, e.g. we characterize
Li atom by two electrons with n = 1, l = 0 and one electron with n = 2, l = 0 or
1s22s1. As the number of electrons increase, we first consider the n = 1 shell, i.e.
filling all the states with this principal quantum number; then we fill the n = 2
shell and continue the process. We consider the shells up to n = 5 and start the
first two elements for n = 6.
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Table 2.3 Electronic configurations for atoms up to atomic number 56.

Atomic
number Element Configuration

Atomic
number Element Configuration

1 Hydrogen 1s1 30 Zinc [Ar + 3d10]4s2

2 Helium 1s2 31 Gallium [Ar + 3d10]4s24p1

3 Lithium [He] 2s1 32 Germanium [Ar + 3d10]4s24p2

4 Beryllium [He] 2s2 33 Arsenic [Ar + 3d10]4s24p3

5 Boron [He] 2s22p1 34 Selenium [Ar + 3d10]4s24p4

6 Carbon [He] 2s22p2 35 Bromine [Ar + 3d10]4s24p5

7 Nitrogen [He] 2s22p3 36 Krypton [Ar + 3d10]4s24p6

8 Oxygen [He] 2s22p4 37 Rubidium [Kr]5s1

9 Fluorine [He] 2s22p5 38 Strontium [Kr]5s2

10 Neon [He] 2s22p6 39 Yttrium [Kr]5s24d1

11 Sodium [Ne] 3s1 40 Zirconium [Kr]5s24d2

12 Magnesium [Ne] 3s2 41 Niobium [Kr]5s14d4

13 Aluminum [Ne] 3s23p1 42 Molybdenum [Kr]5s14d5

14 Silicon [Ne] 3s23p2 43 Technetium [Kr]5s14d6

15 Phosphorous [Ne] 3s23p3 44 Ruthenium [Kr]5s14d7

16 Sulfur [Ne] 3s23p4 45 Rhodium [Kr]5s14d8

17 Chlorine [Ne] 3s23p5 46 Palladium [Kr]4d10

18 Argon [Ne] 3s23p6 47 Silver [Kr]5s14d10

19 Potassium [Ar] 4s1 48 Cadmium [Kr + 4d10]5s2

20 Calcium [Ar] 4s2 49 Indium [Kr + 4d10]5s25p1

21 Scandium [Ar] 4s23d1 50 Tin [Kr + 4d10]5s25p2

22 Titanium [Ar] 4s2d2 51 Antimony [Kr + 4d10]5s25p3

23 Vanadium [Ar] 4s23d3 52 Tellurium [Kr + 4d10]5s25p4

24 Chromium [Ar] 4s13d5 53 Iodine [Kr + 4d10]5s25p5

25 Manganese [Ar] 4s24d5 54 Xenon [Kr + 4d10]5s25p6

26 Iron [Ar] 4s23d6 55 Cesium [Xe] 6s1

27 Cobalt [Ar] 4s23d7 56 Barium [Xe] 6s2

28 Nickel [Ar] 4s23d8

29 Copper [Ar] 4s13d10

The inner shells are indicated by the corresponding inert gas configuration.

The periodic table of the elements is based on the filling of these hydrogen-like
states. The elements are organized in groups based on the outermost states; e.g.
carbon, silicon, germanium, and tin all possess four outer electronic states: s2p2

and have similar elemental structures and chemical properties.
We are almost all right, but life or science is rarely this easy. Some anoma-

lies exist in Table 2.3 that reflect the deficiencies of applying hydrogenic
states to many-electron atoms. One of the most notable anomalies occurs
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for the potassium atom. One might guess that potassium has the electronic
configuration of the Ar atom and one outer electron in the d orbital: [Ar] 3d1.
That is what a hydrogen atom would do. Instead, nature gives potassium a
configuration of [Ar] 4s1, i.e., we find the s-shell fills before the 3d shell.

Other anomalies occur in the filling of the 3d states. The occupancy does not
begin with 3d1 and end with 3d10 by increasing the number of electrons in the
d states linearly with the increasing atomic number, e.g. we have vanadium with
a configuration of 4s23d3 and chromium with 4s13d5. A configuration of 4s23d4

never happens! This absence of the 4s23d4 configuration occurs because of the
special stability of half-filled shells. We will address some of these anomalies in
the next chapter when we consider many-electron atoms.
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3

Many-electron Atoms

Fools ignore complexity. Pragmatists suffer it. Some can avoid it. Geniuses
remove it.

— Alan J. Perlis

3.1 The Variational Principle

We need to adopt a strategy that will give us hope for solving one of life’s
most difficult problems – obtaining the electronic structure of a many-electron
atom! We establish a procedure for evaluating an approximate solution to the
Schrödinger equation.

Suppose we know the solution for an atom using the Schrödinger equation:

ℋΨn = EnΨn (3.1)

where the wave function corresponds to some quantum state and the energy cor-
responds to bound energy levels. Let us call the lowest energy state, E0. Notation
issue: we write E0 = −|E0|. We expect the energy of the state to be less than zero,
which corresponds to a “bound state.” If we know the wave functions correspond-
ing to this state, we can write

E0 = ∫ Ψ∗
nℋΨnd3r (3.2)

This expression could correspond to the solution of a hydrogen atom where the
wave function corresponds to a 1s state, and E0 = − 1 Ry = −13.6 eV. We will
assume that we have but one electron in our initial discussion.

Suppose we have an approximate wave function, Ψ, which is a guess at the low-
est energy level. We assume this approximate state is normalized, i.e. the state
is a run of the mill function with nothing pathological about it – no poles, no
discontinuities, integrable, … what have you. We write

Ê = ∫ Ψ∗ℋΨd3r (3.3)

The variational principle states that Ê ≥ E0, i.e. the approximate energy level is
higher in energy (less negative) than the true energy level.

Introductory Quantum Mechanics with MATLAB® : For Atoms, Molecules, Clusters, and Nanocrystals,
First Edition. James R. Chelikowsky.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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We can confirm this. We write the approximate wave function as

Ψ =
∑

n
anΨn (3.4)

This is a valid expression that holds for any approximate function, provided the
approximate function is well behaved as we have assumed. We plug this expan-
sion into Eq. (3.2) and obtain

Ê = ∫
∑

n
a∗

nΨ∗
n ℋ

∑
m

amΨm d3r =
∑
nm

a∗
namEm ∫ Ψ∗

nΨm d3r (3.5)

We permit the wave function to be complex and consider the complex conjugates
to find absolute values.

We now assume an orthogonality requirement for the wave functions:

∫ Ψ∗
nΨm d3r = 𝛿nm (3.6)

where 𝛿nm = 1 if m = n and is otherwise zero. Should the wave functions not be
orthogonal, we can always make them so. This allows us to write

Ê =
∑

n
|an|2En = |a0|2 E0 + |a1|2 E1 + |a2|2 E2 + · · · (3.7)

We can rewrite this as

Ê∕E0 = |a0|2 + |a1|2 E1∕E0 + |a2|2 E2∕E0 + · · · (3.8)

Now recall that the E0 eigenvalue is the largest one. As such, En∕E0 < 1.
If we normalize the approximate wave function, we can write

1 = |a0|2 + |a1|2 + |a2|2 + · · · (3.9)

and this implies

1 ≥ |a0|2 + |a1|2 E1∕E0 + |a2|2 E2∕E0 + · · · = Ê∕E0 (3.10)

as the En∕E0 factor reduces the size of each |an|2 term in the sum. Remembering
the sign convention (E0 = −|E0| and Ê = −|Ê|)

Ê ≥ E0 (3.11)

QED! Our approximate wave function will have a higher energy (again, a less neg-
ative energy) than the true one. As we improve the quality of our approximate
wave function, we will approach the true energy from above.

This is only a sketch of the variational principle as the full theory is more general
than we have indicated and holds for wave functions describing more than one
electron. We will test the outline of our derivation to get some confidence in how
well it works.
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3.1.1 Estimating the Energy of a Helium Atom

What is the simplest atom with more than one electron? Helium. Thus, we con-
sider a helium atom. We write down the Schrödinger equation for this atom as
follows:

ℋΨ =
[−ℏ2∇2

1

2m
+

−ℏ2∇2
2

2m
− 2e2

r1
− 2e2

r2
+ e2|r⃗1 − r⃗2|

]
Ψ = EΨ (3.12)

We illustrate the coordinate system for the helium atom in Figure 3.1. This atom
is more complex than hydrogen because it involves the coordinates of the two
electrons (r⃗1, r⃗2) and the Coulomb repulsion between the electrons. This latter
term is annoying as it couples the two coordinates. If we were to neglect this
term, we can write

ℋΨ =
[−ℏ2∇2

1

2m
+

−ℏ2∇2
2

2m
− 2e2

r1
− 2e2

r2

]
Ψ = EΨ (3.13)

This equation is easy to solve. We can take the wave function as Ψ(r⃗1, r⃗2) =
𝜓(r⃗1)𝜓(r⃗2) and solve one equation:

ℋ𝜓 =
[
−ℏ2∇2

2m
− 2e2

r

]
𝜓 = E𝜓 (3.14)

This is nothing more than our hydrogen atom with the nuclear charge changed
from one proton to two protons. We can immediately write down the energy of
this system (remembering that we have two electrons):

E = −m(2e2)2

2ℏ2 − m(2e2)2

2ℏ2 = −4me2

ℏ2 (3.15)

The two noninteracting electrons have an energy of −8 Ry or −108.8 eV.
We can establish what this energy should be from experiment. The ionization

energy, I, for a helium atom is measured to be 24.5 eV. This energy corresponds to
the difference between a neutral helium atom and an ionized atom: I = E(He+) −
E(He). We know the precise energy of an ionized helium atom from the Bohr
model or from the Schrödinger equation. The energy is that of a hydrogen atom
with a nuclear charge changed to two protons: E(He+) = −54.4 eV. As such, we
have E(He) = E(He+) − I = −54.4 − 24.5 = −78.9 eV. Our estimate of −108.8 eV
neglects electron–electron repulsion, so it fails to yield a reliable value, giving an
error of over 20%.

We can take a guess at what the interaction energy might be from a Bohr-like
atom. Suppose the electrons are opposite one another as they orbit the nucleus.

Figure 3.1 Atom coordinates for the helium atom.
Two protons exist in the nucleus with the net
charge being +2e.

r2 – r1

r2

r1

+2e

−e

−e
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This geometry would reduce the repulsive Coulomb energy between the elec-
trons, but maintain the attractive Coulomb energy between each electron and
the nucleus. If the electron separation maintains the Bohr radius given by 2a0, the
interaction energy is 1∕2a0 + 1∕2a0 = 1∕a0 or one Hartree (in atomic units – see
appendix for more on units). One Hartree is 27.2 eV and the total energy would
be −108.8 eV+ 27.2 eV= −81.6 eV versus the experimental value of −78.9 eV. Not
a bad guess! The error is only ∼3% and suggests we are on the right track.

We attempt to do better by estimating the repulsive energy with the variational
principle. Let us write an approximate wave function using the results from a
hydrogen-like atom from Tables 2.1 and 2.2:

Ψ(r⃗1, r⃗2) = 𝜓10(r1)𝜓10(r2)

= 1√
π

√
(2∕a0)3 exp(−2r1∕a0)

1√
π

√
(2∕a0)3 exp(−2r2∕a0) (3.16)

where a0 is the Bohr unit, a0 = ℏ
2∕me2 = 0.5292 Å. These wave functions yield

an estimate for the energy:

Ê = ∫ ∫ (8∕πa3
0) exp(−2(r1 + r2)∕a0)

×
[
−
ℏ

2∇2
1

2m
−

−ℏ2∇2
2

2m
− 2e2

r1
− 2e2

r2
+ e2|r⃗1 − r⃗2|

]
× (8∕πa3

0) exp(−2(r1 + r2)∕a0)d3r1d3r2 (3.17)

With the notable exception of that annoying Coulomb repulsion term, the inte-
grals are straightforward and yield the energy corresponding to hydrogenic atoms
as before. We can evaluate the repulsive term:

(8e∕πa3
0)

2 ∫ ∫
exp(−4(r1 + r2)∕a0)|r⃗1 − r⃗2| d3r1d3r2 = 5e2

4a0
= 34.0 eV (3.18)

Our estimate for the total electronic energy of a helium atom is now
E(He) < Ê = −108.8 + 34.0 = −74.8 eV. This estimate is too high by almost
4 eV or a ∼5% error. This is no better than our crude guess by maximizing the
electron–electron distance. At least it is a more rigorous estimate, and it is much
better than ignoring the electrostatic repulsion altogether. A better approxima-
tion for the wave functions will give us a more accurate value, as illustrated in
Chapter 7.

3.2 The Hartree Approximation

While the He atom is of some import, it only contains two electrons. We need
to consider more complex systems to make progress for many-electron atoms.
Consider a general problem of N nucleons of charge Zn at positions {R⃗n} for
n = 1,… , N and M electrons at positions {r⃗i} for i = 1,… ,M. This is shown
schematically in Figure 3.2. The Hamiltonian for this system in its simplest
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Figure 3.2 Atomic and electronic
coordinates. The electrons are
illustrated by filled circles and the
nuclei by open circles.
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R2

r1

r3

r2

form is

ℋ
(

R⃗1, R⃗2, R⃗3,…; r⃗1, r⃗2, r⃗3,…
)
=

N∑
n=1

−ℏ2∇2
n

2ℳn
+ 1

2

N∑
n,m=1,n≠m

ZnZme2

|R⃗n − R⃗m|
+

M∑
i=1

−ℏ2∇2
i

2m
−

N∑
n=1

M∑
i=1

Zne2

|R⃗n − r⃗i| + 1
2

M∑
i,j=1,i≠j

e2|r⃗i − r⃗j| (3.19)

whereℳn is the mass of the nucleon, which we often taken to be infinite as we did
for the hydrogen and helium atoms. This expression omits some terms such as
those involving relativistic interactions, but captures the essential features. Using
the Hamiltonian in Eq. (3.19), we write the quantum mechanical equation for the
electronic structure of the system as follows:

ℋ
(

R⃗1, R⃗2, R⃗3,…; r⃗1, r⃗2, r⃗3,…
)
Ψ
(

R⃗1, R⃗2, R⃗3,…; r⃗1, r⃗2, r⃗3,…
)

= EΨ
(

R⃗1, R⃗2, R⃗3,…; r⃗1, r⃗2, r⃗3,…
)

(3.20)

We estimate the total energy using a generalization of the variational theorem,
provided we have a reliable wave function:

E =
∫ Ψ∗ℋΨ d3R1 d3R2 d3R3 … d3r1 d3r2 d3r3 …
∫ Ψ∗Ψ d3R1 d3R2 d3R3 … d3r1 d3r2 d3r3 …

(3.21)

Solving Eq. (3.20) for anything more complicated than a couple of particles
becomes problematic even with modern computers. We need to dramatically
simplify the problem. Fortunately, we can use some approximations to reduce the
complexity of solving for the ground-state energy. Our approximations remove
as many irrelevant degrees of freedom as possible.

One common approximation is to separate the nuclear and electronic degrees
of freedom. Since the nuclei are considerably more massive than the electrons, we
assume that the electrons will respond “instantaneously” to the nuclear coordi-
nates. This approximation is called the Born–Oppenheimer or adiabatic approxi-
mation. It allows one to treat the nuclear coordinates as classical parameters. For
most molecular systems, this assumption is highly accurate.

Another common approximation is to construct a specific form for the
many-body wave function. If one can obtain an accurate estimate for the wave
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function, then from the variational principle an accurate estimate for the energy
will emerge.

We can consider some simple examples to illustrate this approach. Suppose we
consider a solution for noninteracting electrons, i.e. in Eq. (3.19), by ignoring the
last term in the Hamiltonian. In this limit, one may write the many-body wave
function as a sum of independent Hamiltonians. Using the adiabatic approxima-
tion, the electronic part of the Hamiltonian becomes

ℋel
(
r⃗1, r⃗2, r⃗3,…

)
=

M∑
i=1

−ℏ2∇2
i

2m
−

N∑
n=1

M∑
i=1

Zne2

|R⃗n − r⃗i| (3.22)

Let us define a nuclear potential, VN, which the ith electron sees as

VN(r⃗i) = −
N∑

n=1

Zne2

|R⃗n − r⃗i| (3.23)

One can simplify the Schrödinger equation by writing

ℋel
(
r⃗1, r⃗2, r⃗3,…

)
𝜓

(
r⃗1, r⃗2, r⃗3,…

)
=

M∑
i=1

Hi
𝜓

(
r⃗1, r⃗2, r⃗3,…

)
(3.24)

where the electronic part of the Hamiltonian is now defined for the ith electron
as

Hi =
−ℏ2∇2

i

2m
+ VN(r⃗i) (3.25)

For this simple Hamiltonian, let us write the many-body wave function as

𝜓(r⃗1, r⃗2, r⃗3,…) = 𝜙1(r⃗1)𝜙2(r⃗2)𝜙3(r⃗3)… (3.26)

The 𝜙i(r⃗) orbitals are determined from a “one-electron” Hamiltonian

Hi
𝜙i(r⃗) =

(
−ℏ2∇2

2m
+ VN(r⃗)

)
𝜙i(r⃗)

= Ei𝜙i(r⃗)
(3.27)

The index i for the orbital 𝜙i(r⃗) is taken to include the spin of the electron plus
any other relevant quantum numbers. The index i runs over the number of
electrons, each electron being assigned a unique set of quantum numbers. This
form of the Schrödinger equation is easily solved, more or less. The many-body
wave function expressed in Eq. (3.26) is the Hartree wave function. The Hartree
Approximation, named for Douglas Hartree, uses this form of the wave function
to solve the Hamiltonian, including the electron–electron interactions [1].
By ignoring these interactions, the Hartree approximation assumes that the
electrons are moving independently. The sum of the eigenvalues, Ei, gives the
total energy of the system. If we wish to obtain a more realistic Hamiltonian, we
must include electron–electron interactions, Eq. (3.24):

ℋel(r⃗1, r⃗2, r⃗3,…)𝜓(r⃗1, r⃗2, r⃗3,…) =
M∑

i=1

(
Hi + 1

2

M∑
j=1,j≠i

e2|r⃗i − r⃗j|
)

𝜓(r⃗1, r⃗2, r⃗3,…)

(3.28)
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We determine the individual orbitals, 𝜙i(r⃗), by minimizing the total energy as per
(Eq. (3.21)) with a constraint that the wave functions are normalized. Standard
quantum mechanics books [2, 3] give the details of this procedure, which results
in the following Hartree equation:

Hi
𝜙i(r⃗) =

(
−ℏ2∇2

2m
+ VN (r⃗) +

M∑
j=1,j≠i

∫
e2 |𝜙j(r⃗ ′)|2|r⃗ − r⃗ ′| d3r ′

)
𝜙i(r⃗) = Ei𝜙i(r⃗)

(3.29)

Using the orbitals, 𝜙i(r⃗), from a solution of Eq. (3.29), we can construct a Hartree
many-body wave function and find the total energy determined from (Eq. (3.21)).

The Hartree approximation is useful as an illustrative tool, but is a poor approx-
imation to reality. It has a really significant flaw: The Hartree wave function fails
to reflect the antisymmetric nature of the ectronic states, which is consistent
with the Pauli Principle. Also, the Hartree equation is really difficult to solve. The
Hamiltonian is orbitally dependent because the summation in Eq. (3.29) excludes
the ith orbital. This means that if there are M electrons, then we need to solve the
problem for M different Hamiltonians.

3.3 The Hartree–Fock Approximation

The symmetric nature of Hartree approximation results in a severely flawed
many-body wave function. Owing to the work of John Slater, the antisymmetric
nature of the wave function can be explicitly incorporated resulting in the
Hartree–Fock approximation, named for the aforementioned Hartree and
Vladimir Fock.

Here we need to consider the spin coordinate of each electron. The coordi-
nates of an electron are specified by r⃗isi where si represents spin. Starting with
one-electron orbitals, 𝜙i(r⃗s), we write a many-electron wave function as follows:

𝜓

(
r⃗1s1, r⃗2s2, r⃗3s3,…

)
=

|||||||||||

𝜙1
(
r⃗1s1

)
𝜙1

(
r⃗2s2

)
· · · · · · 𝜙1

(
r⃗MsM

)
𝜙2

(
r⃗1s1

)
𝜙2

(
r⃗2s2

)
· · · · · · · · ·

· · · · · · · · · · · · · · ·
𝜙M

(
r⃗1s1

)
· · · · · · · · · 𝜙M

(
r⃗MsM

)
|||||||||||
(3.30)

This wave function as presented is called a Slater determinant. The determinant
reflects the proper symmetry of the wave function and the Pauli principle. If
two electrons occupy the same orbit, two rows of the determinant are identical,
which sets the determinant to zero, and the many-body wave function vanishes.
Likewise, the determinant will vanish if two electrons occupy the same point in
generalized space (i.e. r⃗isi = r⃗jsj) as two columns of the determinant are identi-
cal, again resulting in the determinant vanishing. If two electrons are exchanged,
this corresponds to exchanging two columns and results in a sign change of the
determinant. The Slater determinant is a very convenient representation as it
automatically keeps track of the antisymmetric nature of the wave function.
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If one uses a Slater determinant to evaluate the total electronic energy and
maintains the orbital normalization, we can obtain the orbitals from the following
Hartree–Fock equations:

Hi
𝜙i(r⃗) =

(
−ℏ2∇2

2m
+ VN (r⃗) +

M∑
j=1

∫
e2 |𝜙j(r⃗ ′)|2|r⃗ − r⃗ ′| d3r ′

)
𝜙i(r⃗)

−
M∑

j=1
∫

e2|r⃗ − r⃗ ′| 𝜙∗
j (r⃗

′)𝜙i(r⃗ ′) d3r ′
𝛿si,sj

𝜙j(r⃗) = Ei𝜙i(r⃗) (3.31)

It is customary to simplify this expression by defining an electronic charge
density, 𝜌:

𝜌(r⃗) =
M∑

j=1
|𝜙j(r⃗ )|2 (3.32)

and an orbitally dependent exchange-charge density, 𝜌HF
i for the ith orbital:

𝜌
HF
i

(
r⃗, r⃗ ′) = M∑

j=1

𝜙
∗
j (r⃗

′) 𝜙i(r⃗ ′) 𝜙∗
i (r⃗ ) 𝜙j(r⃗ )

𝜙
∗
i (r⃗ ) 𝜙i(r⃗ )

𝛿si,sj
(3.33)

The exchange-charge density couples only states (i, j) with the same spin coordi-
nates (si, sj) and is dependent on r⃗, r⃗ ′.

We can define the corresponding potential, the Coulomb or Hartree potential,
VH, by

VH(r⃗) = ∫ 𝜌(r⃗) e2|r⃗ − r⃗ ′| d3r′ (3.34)

The exchange potential is defined by

V i
x(r⃗) = −∫ 𝜌

HF
i (r⃗, r⃗ ′) e2|r⃗ − r⃗ ′| d3r′ (3.35)

This combination results in the following Hartree–Fock equation:(
−ℏ2∇2

2m
+ VN(r⃗) + VH(r⃗) + V i

x(r⃗)
)

𝜙i(r⃗) = Ei𝜙i(r⃗) (3.36)

Once the Hartree–Fock orbitals are obtained, the total Hartree–Fock electronic
energy of the system, EHF, is given by

EHF =
M∑
i

Ei −
1
2 ∫ 𝜌(r⃗)VH(r⃗) d3r − 1

2

M∑
i
∫ 𝜙

∗
i (r⃗ ) 𝜙i(r⃗ )V i

x(r⃗) d3r (3.37)

EHF is not a sum of the Hartree–Fock orbital energies, Ei. The factor of 1
2

in the
Electron–electron terms arises because the electron–electron interactions have
been double counted in the Coulomb and exchange potentials.

The Hartree–Fock Schrödinger equation is only slightly more complex than
the Hartree equation. The Hartree and Hartree–Fock equations are difficult to
solve because the exchange potential remains orbitally dependent, i.e. if we need
to solve for M orbitals, we have M equations to solve. However, there is one
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notable difference in the Hartree–Fock summations compared to the Hartree
summation. The Hartree–Fock sums include the i = j terms in Eq. (3.31). This
difference arises because the exchange term corresponding to i = j cancels
an equivalent term in the Coulomb summation. The i = j term in both the
Coulomb and exchange term is interpreted as a self-screening of the electron.
In the Hartree formalism the electron is explicitly excluded from the screening
potential and in the Hartree–Fock formalism the electron self-screening in
the Coulomb potential is exactly cancelled by the self-screening term in the
exchange potential. Without such an exact cancellation between the Coulomb
and exchange terms, a “self-energy” contribution to the total energy will occur.
Approximate forms of the exchange potential often do not have this property.
The total energy then contains a self-energy contribution that one needs to
remove to obtain a correct Hartree–Fock energy.

The Hartree–Fock wave functions are only approximations to the true
ground-state many-body wave functions. Energy contributions absent in the
Hartree–Fock approximation are referred to as correlation contributions. One
definition for the “correlation energy,” Ecorr, is to write it as the difference
between the correct total energy of the system and the Hartree–Fock energies:
Ecorr = Eexact − EHF. Feynman used a slightly less than “scientific” nomenclature
for the correlation energy. He referred to it as the “stupidity energy” because
it indicates how difficult it is to determine this quantity [4]. This is an accurate
characterization. While more accurate computations are available with con-
temporary high-performance computers, calculations for the stupidity energy
remain challenging.

To mitigate our “stupidity,” we consider free electrons moving within a box
where the electrons do not interact. We can solve this system “exactly” in the
next chapter.
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4

The Free Electron Gas

All that glisters may not be gold, but at least it contains free electrons.
[But consider the Golden Scarab Beetle which has a metallic luster without
metal.]

— John Desmond Bernal

4.1 Free Electrons

How should we think about the exchange potential? Can it be simplified to make
“practical computations”? Our goal in this chapter is to consider a picture where
we have hope of extracting the essential features of this potential without the
corresponding complications.

For the moment, we consider one electron contained in a box. The Schrödinger
equation for this system is similar to Eq. (2.11) with the potential set to zero.

−ℏ2∇2

2m
𝜙k⃗(r⃗) = Ek⃗ 𝜙k⃗(r⃗) (4.1)

Ignoring spin for the moment, the solution of Eq. (4.1) is

𝜙k⃗(r⃗) =
1√
Ω

exp(ik⃗ ⋅ r⃗) (4.2)

The energy is given by Ek⃗ = ℏ
2k2∕2m, where k⃗ is called a wave vector. Since the

quantum operator for momentum is p⃗ = −iℏ∇, the wave vector can be related
to the electron’s momentum by p⃗ = ℏk⃗. We can consider a Cartesian system and
write k⃗ = {kx, ky, kz}: k⃗ is a set of three quantum numbers. k⃗ is called a good quan-
tum number as one can label the wave functions by it. If we were to consider spin,
we would have four quantum numbers, which is the same number as that for the
hydrogen atom. We consider the wave function to exist over some volume, Ω, for
normalizing the wave function. Suppose we have a hydrogen atom and change
the proton’s Coulomb field, which binds the electron, to a box that contains the
electron. The quantum numbers for the hydrogen atom, n, l,ml,ms, will be“trans-
muted” to kx, ky, kz,ms. We normalize the wave function for our electron in a box
as follows:

∫Ω
𝜙
∗

k⃗(r⃗)𝜙k⃗(r⃗) d3r = 1
Ω∫Ω

exp(−ik⃗ ⋅ r⃗) exp(ik⃗ ⋅ r⃗) d3r = 1
Ω∫Ω

d3r = 1 (4.3)
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The integral is over the volume of the box and the normalization to unity means
that the electron exists somewhere in the box. The probability density or charge
density is given by 𝜌 = 𝜙

∗
k⃗
𝜙k⃗ = 1∕Ω, which means the electron is equally likely

to be anywhere within the containing box. Formally, this must be true if space is
isotropic – one point in space is as good as any.

This model for the electron is all right as is. Still, there is an annoying compli-
cation: A box has a surface or a boundary and we would like to avoid dealing with
this issue. Without loss of generality, we consider a cubic box of size L × L × L and
take the origin at (0,0,0). We impose an infinitely large potential that will confine
the electron to reside within the box. The wave function must vanish outside this
box. Otherwise, the electron would experience the infinite potential outside the
box and have infinite energy.

We rewrite the wave function to avoid such an event. Within the box we have
free electron solution:

𝜙k⃗(x, y, z) = A exp(ik⃗ ⋅ r⃗) + B exp(−ik⃗ ⋅ r⃗) (4.4)

and outside the box this wave function will vanish. Along the x-axis, 𝜙k⃗(0, y, z) =
0 and 𝜙k⃗(L, y, z) = 0; otherwise, our wave function would be discontinuous at the
boundary of the box. We can separate out the x-axis behavior:

𝜙k⃗(0, y, z) = A + B = 0 ; 𝜙k⃗(L, y, z) = A exp(ikxL) + B exp(−ikxL) = 0
(4.5)

The first condition demands A = −B, so we can express the second condition as

sin(kxL) = 0 kxL = π, 2π, 3π,… , nxπ,… (4.6)

where nx is a positive integer. Of course, we have the same condition for ky, kz and
this means that we can write the energy of the electron as

Ek⃗ =
ℏ

2(k2
x + k2

y + k2
z )

2m
= ℏ

2π2

2mL2 (n
2
x + n2

y + n2
z ) (4.7)

The boundary conditions require that k = |k⃗| assume discrete values. This is
expected for a quantum solution. However, unlike the case of a hydrogen atom,
where the discrete values of the energy can be separated by electronvolts, the sep-
aration in values here will scale as 1∕L2. We take L to a macroscopic size as we
do not want the surface to play a significant role, i.e. the surface to volume ratio
of the box will scale as 1∕L and we are considering the limit of large L, in prac-
tice L → ∞. To get a feel for the energy scales involved, we take L = 1 cm, then
E ∼ ℏ

2π2∕2mL2 is about 10−15 eV, which is a very, very small number! An electron
in such a huge box (relatively speaking) will not experience discrete energy levels,
at least not on a scale that can be measured.

The problem we face is to consider many electrons in our box. We make the
striking stipulation that the electrons do not interact. This system is called, logi-
cally, a free electron gas. This gas is unlike an ideal gas of atoms or molecules, e.g.
air molecules, as the electrons are quantum particles carrying spins, i.e. Fermions,
and they must obey the Pauli principle.



4.1 Free Electrons 31

Figure 4.1 Fermi surface for a free electron gas.
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How can we quantify the number and occupation of these states? Suppose we
put 1023 electrons in this box. We decidedly do not want to inventory them.
Instead, we can define a density of states that will tell us how many states exist
per energy interval and we then occupy the energy levels as per Pauli.

We define a density of states, D(E), as

D(E) = N(E + ΔE) − N(E)
ΔE

(4.8)

where N(E) gives all the states below an energy E. Here, we have so many states
that we can treat E as a continuous variable and take the limit of ΔE → 0. In this
case,

D(E) = dN
dE

(4.9)

Our next job is to quantify N for a free electron gas. Since Ek⃗ = E(|k⃗|), we ask
how many states are encompassed for a given k. We know that in {kx, ky, kz}, or
k⃗- space, a given value of k corresponds to a sphere as indicated in Figure 4.1. We
fill in the electronic states with the lowest energy states first. The highest filled
levels form a “Fermi surface,” which in our case is the surface of a sphere. For free
electrons, the relationship between E and k is trivial, Ek⃗ = ℏ

2k∕2m. For electrons
in real solids, this simple relationship may not hold as we will discuss later on.

How many states exist per unit volume? This is not a difficult question as each
axis has allowed points separated by π∕L. There is one allowed electron in a vol-
ume of (π∕L)3 as indicated in Figure 4.2. The total number of states, N , in the
spherical volume is given by the volume of a sphere of radius k, divided by the
volume per state:

N(k) = 2
volume of sphere
volume per state

= 2
4πk3∕3
8(π∕L)3 (4.10)

where we included a factor of 2 from spin; the factor of 8 comes the fact that
nx, ny, nz are positive integers so we only consider 1/8 of the sphere. We can find
N(E) by replacing k by k =

√
2mE∕ℏ2:

N(E) = 2
4π∕3

8(π∕L)3 (2mE∕ℏ2)3∕2 (4.11)
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Figure 4.2 Example of volume per allowed value of
(kx , ky , kz). There are eight allowed points in the figure,
but each point is shared by neighboring volumes. The
volume per point is (π∕L)3 as shown in the figure.

The derivative of this expression gives us the number of states per unit energy,
i.e. the density of states:

D(E) = L3

2π2 (2m∕ℏ2)3∕2
√

E (4.12)

We determine the energy of the highest occupied state, which is called the Fermi
energy, Ef :

𝒩 = L3

2π2 (2m∕ℏ2)3∕2 ∫
Ef

0

√
E dE = L3

3π2 (2m∕ℏ2)3∕2E3∕2
f (4.13)

where 𝒩 is the total number of electrons in the system. We can rewrite this
defining the electron density as n = 𝒩 ∕L3. We obtain the following:

Ef =
ℏ

2

2m
(3π2n)2∕3 =

ℏ
2k2

f

2m
(4.14)

where the Fermi wave vector, kf , is defined by kf = (3π2n)1∕3. Another useful rela-
tionship is

D(Ef) =
3𝒩
2Ef

(4.15)

Within a numerical factor of order unity, the number of states at the Fermi energy
is simply the total number of electrons in the box divided by the Fermi energy.

The density of states is used to find the total energy of the electrons, ET, in our
box:

ET = ∫
Ef

0
E D(E) dE = L3

2𝜋2 (2m∕ℏ2)3∕2 ∫
Ef

0
E3∕2 dE = 3

5
𝒩 Ef (4.16)

The average energy per electron is 3/5 times the Fermi energy.
Given the “free electron” nature of the system, does this description have physi-

cal meaning, or is this an “academic exercise”? For many simple metals, i.e. metals
with s and p valence states such as Na or Al, the theory works well, despite the
extreme simplicity of the model. This is not a purely academic issue. We can use
this model to compute several physical properties.

For example, one might argue that the increase in kinetic energy of the free
electron gas under pressure dominates the bulk moduli of simple metal solids.
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Table 4.1 Bulk moduli, B, for simple metals within the free electron model where
n is the electron density, and Ef is the Fermi energy.

B (theory) B (experiment)

Metal n (m−3 × 1028) Ef (eV) Ef (J×10−19) (N/m2 × 1011) (N/m2 × 1011)

Li 4.7 4.72 7.55 0.236 0.116
Na 2.65 3.23 5.17 0.091 0.068
K 1.4 2.12 3.40 0.032 0.032
Rb 1.15 1.85 2.96 0.023 0.031
Mg 8.60 7.13 11.4 0.654 0.354
Ca 4.60 4.68 7.51 0.230 0.152
Sr 3.56 3.95 6.33 0.150 0.116
Ba 3.20 3.65 5.85 0.125 0.103

Source: Experiment as compiled by Kittel [1].

This would be true for an ideal gas, but we are not dealing with an ideal gas.
Does it work for a free electron gas? We can compute the bulk modulus, B, from
B = −V (𝜕p∕𝜕V ), where p is the pressure and V is the volume. The pressure is
defined by p = −𝜕ET∕𝜕V . Putting this together with the Eqs. (4.14) and (4.16)
yields B = 10ET∕9V = 2nEf∕3 where n is the electron density. In Table 4.1, we
compare predicted and measured values of the bulk modules for some alkali and
alkaline earth metals [1].

The most notable errors occur for the light metals Li and Mg. The free elec-
tron gas model overestimates the bulk modulus by a factor of two. However, the
agreement is quite good for metals such as K and Sr. Overall, the trend of the bulk
modulus as a function of electron density replicates experiment and supports the
notion that under pressure the kinetic energy of the electrons is responsible for
the compressibilities of metals.

We illustrate another case where the free electron model does a reasonable
job in describing the physical properties of metals. Consider the contribution of
electrons to the heat capacity of a simple metal. Heat capacity relates the change
in the internal energy of material to a change in temperature. For a metal, the
internal energy change is related to the electronic states. Classically, we expect
each degree of freedom to possess an energy of kBT/2, where kB is the Boltzmann
constant. For a metal containing 𝒩 electrons, we would expect the heat capacity
to be 3𝒩kB/2. Classical physics gives this type of behavior, and it is all right for
many solids at high temperatures where the heat capacity goes to a constant value.
However, classical physics is clearly wrong for a free electron gas, especially at low
temperatures where the measured heat capacity of a simple metal vanishes.

As an aside, the change in entropy of a solid with temperature is related to the
heat capacity:

ΔS = ∫
T

0

C
T

dT (4.17)
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If C does not vanish as T → 0, the change in entropy is not defined. Suppose
C ≈ a0 + a1T .

ΔS ≈ a0 ln(T) + a1T − a0 ln(0) (4.18)

with ln(0) → −∞. The divergence of the entropy is unacceptable and a0 ≠ 0
is bad.

Quantum mechanics gives a different result and correctly accounts for heat
capacities at small temperatures. Einstein was the first to recognize this issue,
but not for a free electron gas. For metals, the argument goes like this.

If an electron changes its state because of thermal excitation, we expect it to
change its k⃗-state. For an electron near the Fermi energy, this is not an issue.
There are a number of empty states close in energy. However, consider an electron
whose kinetic energy is much below the Fermi level, say its kinetic energy is zero.
The Pauli principle prohibits the electron from occupying an already filled state.
The electron needs to be excited to an empty state above the Fermi level. The
energy required to move an electron in a simple metal such as potassium from a
zero energy state to above the Fermi energy is roughly 2 eV (see Table 4.1). This
is a lot of energy. It corresponds to a temperature of ∼23 000 K – hotter than the
surface of the sun and far above the melting point of K. That will not be the case
when the temperature approaches 0 K.

In general, an electron will only be excited if it is in kBT of the Fermi energy.
The number of electrons that can be excited at a temperature T can be estimated
as follows:

Δ𝒩 ≈ D(E) kBT = 3𝒩
2Ef

kBT (4.19)

This gives an electronic heat capacity, Celec, of the derivative of 3kBTΔ𝒩 ∕2

Celec =
dE
dT

≈ d
dT

3𝒩(kBT)2

4Ef
= 3

𝒩(kB)2T
2Ef

(4.20)

A more accurate treatment of the heat capacity yields

Celec =
dE
dT

= π2 𝒩(kB)2T
2Ef

= π2 𝒩kBT
2Tf

(4.21)

where Ef = kBTf . Pauli principle limitations on low-lying excitations as the tem-
perature approaches 0 K accounts for the difference between the classical and
quantum descriptions of the heat capacity.

In Table 4.2 we compile the heat capacity constant 𝛾 = π2 𝒩
⊣

kB

2Tf
for some sim-

ple metals where 𝒩
⊣

is Avogadro’s number. We note that the ratio: 𝛾meas∕𝛾free
exceeds unity. This ratio is often named the “thermal effective mass” to the elec-
tron mass, i.e. mth∕m = 𝛾meas∕𝛾free. The mass ratio deviates from unity owing to
several effects such as the interaction of electrons with true electronic poten-
tials of the metal and the interaction of the electrons among themselves and with
lattice vibrations.
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Table 4.2 Heat capacity constant, 𝛾 , for selected simple
metals compared to experiment. Units are in mJ mol−1 K−2.

Metal Free electron model Experiment

Li 0.75 1.63
Na 1.09 1.38
K 1.67 2.08
Rb 1.91 2.41
Mg 0.99 1.3
Ca 1.51 2.9
Sr 1.79 3.6
Ba 1.94 2.7

Source: Experiment is as compiled by Kittel [1].

4.2 Hartree–Fock Exchange in a Free Electron Gas

The simplicity of the free electron gas model allows one to predict physical prop-
erties such as the heat capacity and compressibility of metals. So perhaps it can
be used to yield insights on how electrons interact in “real materials.” We build
on this model to consider the “many-electron” problem. For example, it is possi-
ble to evaluate the Hartree–Fock exchange energy directly and analytically for a
free electron gas.

Suppose we construct a Slater determinant using free electron orbitals. We
label each orbital by k⃗ and include a spin index. The Coulomb potential for an
infinite free electron gas diverges, but this divergence can be removed by impos-
ing a compensating uniform positive charge. The combination of a free electron
gas supported by a uniform positive background is the simplest model for a metal
and is a called a “jellium model.”

The resulting Hartree–Fock eigenvalues can be found, again using standard
textbooks [2]:

Ek = ℏ
2k2

2m
− 1

L3

∑
k′<kf

4πe2

|k⃗ − k⃗′|2 (4.22)

where the summation is over occupied k⃗-states. In principle, this means summing
over (nx, ny, nz). However, it is possible to evaluate the summation by transform-
ing the summation into an integration. This transformation is easily performed if
we consider a continuum of states:

1
L3

∑
k′<kf

4πe2

|k⃗ − k⃗′|2 = 1
(2π)3 ∫k′<kf

4πe2

|k⃗ − k⃗′|2 d3k′ (4.23)

This integral can be solved analytically, although it looks difficult. The resulting
eigenvalues are given by

Ek = ℏ
2k2

2m
−

e2kf

π

(
1 +

1 − (k∕kf)2

2(k∕kf)
ln
||||k + kf

k − kf

||||
)

(4.24)
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Using the above expression and Eq. (3.37), the total electron energy, EFEG
HF , for a

free electron gas within the Hartree–Fock approximation is given by

EFEG
HF = 2

∑
k<kf

ℏ
2k2

2m
−

e2kf

π
∑
k<kf

(
1 +

1 − (k∕kf)2

2(k∕kf)
ln
||||k + kf

k − kf

||||
)

(4.25)

The factor of 2 in the first term comes from spin. In the exchange term, there is
no extra factor of 2 because one must substract off a “double counting term” (see
Eq. (3.37)). The summations can be executed as per Eq. (4.23) to yield

EFEG
HF ∕𝒩 = 3

5
Ef −

3e2

4π
kf (4.26)

The first term corresponds to the average energy per electron in a free electron
gas as we found earlier. The second term is new and corresponds to the exchange
energy per electron. The exchange energy is attractive. There is a physical argu-
ment for its sign. One can argue that the spin of electrons can act to reduce their
electronic energy. Consider two electrons with the same spin. Quantum theory
insists that such electrons not be at the same point in space. (Electrons cannot
have the same quantum number and be at the same point in space.) If that were
to happen, the Slater determinant for the electronic many-body wave function
would vanish. Even without a repulsive Coulomb interaction electrons with the
same spin will avoid each other. This additional “repulsion” reduces the Coulomb
interaction and makes the exchange interaction attractive.

The exchange energy term has a factor of kf , which scales as the cube root of
the free electron gas. Although our use of a free electron gas is slightly simplified,
the resulting form for the exchange potential provides a clue as to what form the
exchange energy might take in an interacting electron gas or nonuniform elec-
tron gas.
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5

Density Functional Theory

In general the many-electron wave function,Ψ(r1, r2,… , rn), for a system of
n electrons is not a legitimate scientific concept, when n exceeds ∼1,000.

— Walter Kohn

5.1 Thomas–Fermi Theory

Given the complexity of the many-electron problem, there have been a number
of attempts to simplify the problem and avoid a direct solution of the Schrödinger
equation. Thomas and Fermi independently proposed a procedure based on
the electronic charge density [1, 2]. They argued that knowing the electronic
density obviates the need to solve for wave functions. Their approach has great
merit. In quantum theory, we cannot directly measure wave functions as they
are not observable in quantum mechanics. Yes, this is an odd situation. One of
the chief components of quantum mechanics (the wave function) allows us to
predict where an electron is, but only if we consider its modulus square wherein
any phase dependence is removed. It is possible to detect relative differences of
the wave function phase, e.g. in quantum effects such as the Josephson effect
or in science fiction shows where universes differ by phase factors. This is an
area where no one need go. Rather, one can consider the spatial distribution of
electrons – the electron density – to be a fundamental quantity by itself and
focus on computing it.

Thomas and Fermi proposed that the total electronic energy of a system such
as an atom be written as

ET = 3
10

ℏ
2(3π2)2∕3

m ∫ [n(r⃗)]5∕3 d3r + ∫ Vext n(r⃗) d3r + ∫ n(r⃗)VH(r⃗) d3r

(5.1)

where n(r⃗) is the electron density, Vext is a fixed external potential (such as the
nuclear potential in an atom), and VH is the Hartree potential as defined ear-
lier. The first term in Eq. (5.1) is the kinetic energy; the second term corresponds
to the electronic interaction with an external potential, which does not depend on
the electronic density; and the third term is the electrostatic interaction, which

Introductory Quantum Mechanics with MATLAB® : For Atoms, Molecules, Clusters, and Nanocrystals,
First Edition. James R. Chelikowsky.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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does. We write the electrostatic potential with the Hartree potential:

VH(r⃗) = ∫
n(r⃗′)|r⃗ − r⃗′| d3r′ (5.2)

The total electronic energy is minimized to determine a solution with an obvi-
ous constraint: The number of electrons in the system is conserved.

𝒩 = ∫ n(r⃗)d3r (5.3)

where 𝒩 is the total number of electrons in the system. We can solve for the
density by finding the energy minimum, i.e. we find the best density by taking a
“functional derivative” of the energy with respect to the density. What is a func-
tional derivative? Here is an example. We write the electrostatic energy as follows:

EH[n] =
1
2 ∫ ∫

n(r⃗)n(r⃗′)|r⃗ − r⃗′| d3r d3r′ (5.4)

EH[n] is a functional of n. We put in a value of r⃗ and get n, which in turn gives
the value of EH. Suppose we vary the value of the function, n, and ask what the
functional derivative of EH is. The functional derivative can be extracted from

∫
𝛿EH

𝛿n
𝜙(r⃗) d3r = lim

𝜀→0

EH[n + 𝜀𝜙] − EH[n]
𝜀

(5.5)

where 𝛿EH∕𝛿n is the functional derivative that we want and𝜙 is an arbitrary func-
tion. Using our definition of EH we have

∫
𝛿EH

𝛿n
𝜙(r⃗) d3r =

[
d

d𝜀
1
2 ∫ ∫

[n(r⃗) + 𝜀𝜙(r⃗)][n(r⃗′) + 𝜀𝜙(r⃗′)]|r⃗ − r⃗′| d3r d3r′
]
𝜀→0
(5.6)

which can be written as

∫
𝛿EH

𝛿n
𝜙(r⃗) d3r = 1

2 ∫ ∫
n(r⃗′)𝜙(r⃗)|r⃗ − r⃗′| d3r d3r′ + 1

2 ∫ ∫
n(r⃗)𝜙(r⃗′)|r⃗ − r⃗′| d3r d3r′

(5.7)

The two integrals on the right-hand side of the equation are equal as r⃗ and r⃗′ can
be interchanged. This yields

∫
𝛿EH

𝛿n
𝜙(r⃗) d3r = ∫

(
∫

n(r⃗′)|r⃗ − r⃗′|d3r′
)

𝜙(r⃗) d3r (5.8)

We are done – the functional derivate is given by
𝛿EH

𝛿n
= ∫

n(r⃗′)|r⃗ − r⃗′|d3r′ = VH(r⃗) (5.9)

Note how the functional derivative of the energy turned into a potential. Consider
the following functional derivative:

𝛿

𝛿n

[
ET + 𝜆(𝒩 − ∫ n(r⃗)d3r)

]
= 0 (5.10)
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where 𝜆 is a Lagrange multiplier recognizing that we need to conserve the total
number of electrons. Before we do something so bold, let us consider a trivial
example. We ignore the Hartree potential and the external potential and assume
that we have a free electron gas. In this limiting case, we make use of

𝛿

𝛿n
3

10
ℏ

2(3π2)2∕3

m ∫ [n(r⃗)]5∕3 d3r = 1
2
ℏ

2(3π2)2∕3

m
[n(r⃗)]2∕3 (5.11)

which yields

ℏ
2(3π2)2∕3

2m
[n(r⃗)]2∕3 − 𝜆 = 0 (5.12)

We recognize this expression as

𝜆 = ℏ
2(3π2n)2∕3

2m
= Ef (5.13)

the Fermi energy for a free electron gas, i.e. the Lagrange multiplier is simply the
Fermi energy, and the electron density is a constant, i.e. n = 𝒩 ∕Ω where Ω is the
volume of the system. We can put this back into our total energy expression:

ET = 3
5

Ef ∫ n d3r = 3
5
𝒩 Ef (5.14)

and confirm that the total electronic energy is that of a free electron gas. Of
course, we cheated! The kinetic energy expression was specifically chosen to be
consistent with a free electron gas, but at least we verified it.

We should reinstate the external potential and the electrostatic potential, and
identify 𝜆 with Ef . We arrive at the following expression for the electron density:

ℏ
2(3π2)2∕3

2m
[n(r⃗)]2∕3 + Vext + ∫

n(r⃗′)|r⃗ − r⃗′| d3r′ = Ef (5.15)

where we wrote out the VH term to illustrate the presence of the electron den-
sity. This expression is decidedly easier to solve as compared to the Hartree–Fock
description, e.g. we have no eigenvalue problem to solve. Owing to the simplicity
of Thomas–Fermi theory, it led to the first quantitative attempt at describing the
electronic density of an atom and its corresponding energy.

As usual, there is good news and bad news. First, we give the good news. The
overall electronic density profile for an atom is reasonably well represented by
Thomas–Fermi theory when compared to a quantum mechanical solution. The
rest is all bad! There is no shell structure for a Thomas–Fermi atom as there
are no orbitals, i.e. no s-states or p-states or d-states. The situation gets worse
because there is also no bonding between Thomas–Fermi atoms! According to
the Thomas–Fermi theory, no molecules are allowed to form from atoms. This
was demonstrated by Teller [3].

Thomas–Fermi theory fails in part because the expression for the kinetic energy
is simply awful for real atoms. Also, there is no explicit treatment of the exclusion
principle in Thomas–Fermi theory as there are no orbitals. As such, the exchange
energy resulting from the exclusion principle is absent and does not provide the
attractive energy we found in the Hartree–Fock solution of free electrons.



40 5 Density Functional Theory

Given such deficiencies, one might have thought any interest in density func-
tional methods would be of academic interest. However, the lure of finding a
simpler, more direct solution of the electronic structure problem is seductive
and irresistible. And, progress was made by workers such as Slater and Gaspar
who successfully implemented density functional theories into a quantum for-
malism [4, 5]. They did not replace the kinetic energy by a functional of the charge
density, which we know is bad. Rather, they introduced an exchange term based
on the electron density. They were able to solve the electronic structure problem
for atoms, molecules, and solids with many notable successes.

Their approach did lack a fundamental theoretical framework and some leaders
in the field viewed their work with some skepticism to say the least. For example,
Ashcroft and Mermin wrote the following in their highly popular textbook [6]
on condensed matter: “This procedure [using a free electron expression for the
exchange energy] gross and ad hoc though it is, is actually followed in many band
structure computations.” [Emphasis added on “actually.”] In some sense, they are
correct. The method is and was overly simple. However, good science often starts
with simple approaches. Also, it is always better to take a complicated problem
and make it simpler, not more complicated. One wonders if Ashcroft and Mermin
would have written such a negative view of density functional theory had they
known this approach would eventually be honored with a Nobel Prize in 1998,
20 years after their textbook was published.

5.2 The Kohn–Sham Equation

In a set of seminal papers in the mid-1960s, Pierre Hohenberg, Walter Kohn, and
Lu Sham established the theoretical framework for justifying the replacement of
the many-body wavefunction by one-electron orbitals with the electron density
being a key quantity [7, 8]. Hohenberg and Kohn argued that the total electronic
energy of a system depended in a unique way on the electron density, with Sham
and Kohn providing a recipe for computing the requisite density. For this work,
Walter Kohn received the Chemistry Nobel Prize.

We outline some of the essential features in the Hohenberg–Kohn–Sham
theory. Recall from our earlier discussion that a key problem in solving the
Hartree–Fock equation(

−ℏ2∇2

2m
+ VN(r⃗) + VH(r⃗) + V i

x(r⃗)
)

𝜙i(r⃗) = Ei𝜙i(r⃗) (5.16)

is the orbital dependence on the exchange term. If we have five occupied orbitals,
then we would have five coupled Hamiltonians. Suppose for a moment that
the exchange potential did not depend on the orbital, i.e. suppose V i

x = Vx. The
removal of the orbital dependence results in an immediate simplification by
reducing the problem from five Hamiltonians to one. Kohn and Sham accom-
plished this simplification by the introduction of the local density approximation.
Within this approximation, one expresses the exchange energy of the system as

Ex[n(r⃗)] = ∫ n(r⃗) ℰx[n(r⃗)] d3r (5.17)
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whereℰx[n] is the “exchange energy density” for an electronic density of n. Within
the Kohn–Sham framework, the exchange potential is determined from the func-
tional derivative of Ex[n]:

Vx[n] =
𝛿Ex[n]
𝛿n

(5.18)

Of course, this is a formal discussion without a specification of ℰx[n], the
exchange energy density. How does one obtain this quantity? We considered a
limiting case – the free electron gas – in anticipation of this question. For a free
electron gas, we know the exchange energy per electron:

ℰx = −3e2

4π
kf = −3e2

4π
(3π2n)1∕3 (5.19)

Suppose we make a bold assumption. Namely, we assume that this is a universal
functional, which is generally applicable to all electronic structure prob-
lems – whether the density is uniform or not. Once we make this assumption,
we can write

Ex[𝜌] = −3e2

4π
(3π2)1∕3 ∫ [n(r⃗)]4∕3 d3r (5.20)

Taking the functional derivative, we obtain

Vx[n] = −e2

π
(3π2n(r⃗))1∕3 (5.21)

This expression differs by a factor of 2/3 from the one proposed by Slater some
15 years before the work of Kohn and Sham. (Slater did not minimize the energy
with respect to the free electron density; he did an averaging.) For a number of
years, some controversy existed as to whether the Kohn–Sham or Slater exchange
was more accurate for realistic systems [6].

Slater suggested an “engineering” solution to this issue. He introduced a
parameter that could be varied between the original Slater and Kohn–Sham
values [9]. The parameter, 𝛼, was often placed in front of the Slater exchange:
Vx𝛼 = 𝛼V Slater

x . The 𝛼 parameter was then chosen to replicate some known feature
of an exact Hartree–Fock calculation such as the total energy of an atom or ion.
Acceptable values of 𝛼 were viewed to range from 𝛼 = 2∕3 to 𝛼 = 1. Slater’s so
called “X

𝛼
” method was very successful in describing molecular systems.

Notable drawbacks of the X
𝛼

method center on its ad hoc nature through the
𝛼 parameter and the omission of an explicit treatment of correlation energies. In
contemporary theories, 𝛼 is taken to be 2/3, and correlation energies are explic-
itly included in the energy functionals. Numerical studies have been performed
on electron gases resulting in local density expressions of the form: Vxc[n(r⃗)] =
Vx[n(r⃗)] + Vc[n(r⃗)] where Vc represents contributions to the total energy beyond
the Hartree–Fock limit.

Local density functionals can also be improved by considering the role of spin.
Suppose we consider different components of the charge density: one for spin up
and one for spin down. We can write the total density as follows: 𝜌 = 𝜌↑ + 𝜌↓. This
approximation is called the local spin density approximation. Functionals using
this approximation treat “up” and “down” spins differently.
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Given a functional for exchange and correlation, we can solve the Kohn–Sham
equation for the electronic structure of matter:(

−ℏ2∇2

2m
+ VN(r⃗) + VH(r⃗) + Vxc[n(r⃗)]

)
𝜙i(r⃗) = Ei𝜙i(r⃗) (5.22)

This equation is solved “self-consistently.”
Here is how the method works: Initially, an approximate charge is assumed

to estimate the exchange–correlation potential and this charge is used to
determine the Hartree potential from Eq. (3.34). These approximate potentials
are inserted in the Kohn–Sham equation and the total charge density deter-
mined as in Eq. (3.32). The “output” charge density is used to construct new
exchange-correlation and Hartree potentials. The process is repeated until the
input and output potentials are identical to within some specified tolerance.

The generation of a self-consistent solution of the Kohn–Sham equation is not
quite as simple as it sounds. We need a reasonable charge density to initiate
the process. This is not difficult. We can solve the Kohn–Sham equation for an
isolated atom by assuming that the charge density of the atom is spherically sym-
metric. In this case, the problem becomes one dimensional and the resulting
Kohn–Sham problem can readily be solved. Programs using Slater’s theory for
solving for self-consistent atoms date back to the early 1960s with the invention
of digital computers.

Once a solution of the Kohn–Sham equation is obtained, the total energy can
be computed from

EKS =
M∑
i

Ei − 1∕2∫ 𝜌(r⃗)VH(r⃗) d3r + ∫ 𝜌(r⃗)(ℰxc[𝜌(r⃗)] − Vxc[𝜌(r⃗)]) d3r

(5.23)

The electronic energy as determined from EKS must be added to the ion–ion
interactions to obtain the structural energies. This is a straightforward calcula-
tion for confined systems. For extended systems such as crystals, the calculations
can be complex as individually the positive and negative charge distributions
have Coulombic energies that individually diverge. Such summations can be done
using Madelung techniques [6].

Owing to its ease of implementation and overall accuracy, local density approx-
imation is the current method of choice for describing the electronic structure of
condensed matter and is often implemented in the chemistry community. Thou-
sands of papers have been published with this technique and its use appears to
be increasing, despite some alternative approaches.

Some history: When first proposed, density functional theory was not widely
accepted in the chemistry or physics community. We noted this earlier by
quoting from the Aschroft and Mermin text. The theory is not “rigorous” in the
sense that it is not clear how the estimates for the ground-state energies can
be improved. For wave function based methods, one can include more Slater
determinants as in a configuration interaction approach. Given more degrees of
freedom, the trial wave functions improve the estimate for the electronic energy
via the variational theorem. In density functional theory, there is no analogous
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procedure. The Kohn–Sham equations are variational, but need not approach
the true ground-state energy as the functionals implemented to date are never
exact. Obtaining an incorrect value of the absolute electronic energy need not be
a problem, provided we are interested in relative energies, which we often are.
For example, we might take the energy of two different structures to see which
one is more stable. In such situations, the absolute energy is not of interest.
Moreover, inherent density functional errors can cancel in taking the difference.

Error cancellation is thought to account for the utility of density functional the-
ory. As an example, if the absolute energy of an atom is 1000 eV and the error in
determining the energy is 100 eV (a 10% error), then it might seem unreasonable
to compute a binding energy within 10 eV. However, if everything is consistently
off by 10%, getting a binding energy of 10 eV is doable. An outstanding fundamen-
tal issue of using density functional theory is obtaining a reliable estimate of the
cancellation of errors before doing the computation. To put it more succinctly,
how do we know if density functional theory will work?

In some sense, density functional theory is an a posteri theory although it is
often called an ab initio theory, i.e. a theory not dependent on experimental
input. Given the transference of the exchange-correlation energies from an
electron gas, it is not surprising that errors would arise in its implementation for
highly nonuniform electron gas systems as found in realistic systems. However,
the degree of error cancellations is rarely known a priori. The reliability of
density functional theory has only been established by numerous calculations
(literally thousands) for a wide variety of condensed matter and molecular
systems. In short, density functional theory has proved itself in “combat” to be a
practical approach for the quantum theory of materials.
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6

Pseudopotential Theory

The principles of an approximation method have been recently published by
the author for a system consisting of closed shells and of valence electrons.

— Hans Hellmann

6.1 The Pseudopotential Approximation

Not all electronic states are created equal. Consider the carbon atom. The elec-
tronic configuration is 1s22s22p2. The 1s state is very tightly bound and highly
localized around the nucleus. Within the Bohr model, the orbital size of an elec-
tron scales as ∼ 1∕Z where Z is the number of protons within the nucleus. For a
single electron orbiting the carbon nucleus, the Bohr model would give an orbital
radius for a 1s state about 1/6 times that of the hydrogen atom or roughly 0.1 Å. In
contrast, a carbon–carbon molecule has a bond length of roughly 1.5 Å, an order
of magnitude larger than the 1s radius. Similarly, the binding energy of an elec-
tron in the 1s state in a carbon atom is more than an order of magnitude larger
than that of a valence electron.

Moreover, the 1s state is not strongly altered when carbon atoms form bonds.
Rather, a combination of the 2s and 2p states is known to form a chemical bond.
For example, in the methane molecule, CH4, the 2s and 2p states of the C atom
hybridize to form a tetrahedral bonding configuration known as sp3 bonding.
Another example of the role of the valence electronic states occurs in simple
metals such as sodium, which has an atomic configuration of 1s22s22p63s1. The
1s22s22p6 electronic states are tightly bound and do not contribute to metal-
lic bonds in elemental solid sodium. Only the 3s1 electron moves through the
sodium crystal to carry current.

This dichotomy between tightly bound electronic states, called “core states,”
and the outermost, loosely bound electronic states, called “valence states,” is rec-
ognized in the periodic table. Elements are grouped in columns based on the
valence states, as shown in Figure 6.1.

Can one incorporate this physical idea of valence and core states into a work-
able approximation to help us solve the Kohn–Sham equation? Typically, the
best numerical algorithms for solving physical problems are based on physical
concepts.

Introductory Quantum Mechanics with MATLAB® : For Atoms, Molecules, Clusters, and Nanocrystals,
First Edition. James R. Chelikowsky.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 6.1 Periodic table.

Treating core and valence states differently is clearly a good idea. Although
the Kohn–Sham equation is much simpler than the Hartree–Fock description
of matter, the problem remains difficult. The disparate length and energy scales
between the valence and core states make it difficult to use simple functions to
describe the wave functions. Also, the number of electrons per atom in the peri-
odic table varies by two orders of magnitude. Suppose we want to describe a
molecule with both C and Pb atoms. Although the outer electronic configura-
tion is the same, Pb contains 82 electrons and C only 6. A typical solution of the
Kohn–Sham equation scales roughly as the cube of the number of electrons. As
such, one might expect a Pb atom to be (82/6)3 ≈ 2500 times more difficult to
solve than a C atom and that is just from the electron count. We have not consid-
ered the extra difficulties associated with the different energy and length scales.

This scaling factor can place a notable computational barrier on the types
of systems that can be studied using quantum mechanics. Properties of small
molecules with light elements are decidedly easier to compute than large
molecules with heavy elements.

One of the first workers to address this problem was Hellmann, who recognized
that without some approximations the chemical bond might never be understood
by direct calculations [1]. Hellmann suggested treating the electronic states in a
manner similar to the periodic table. He wrote the total energy of an atom as two
terms. The first term focused on the core states. He argued that one could take
the Thomas–Fermi kinetic energy of the core states and add to this the poten-
tial energy within the core region of the atom. This combination would result
in a weak potential, which the valence electrons would experience. This idea of
an effective core potential for the valence electrons was somewhat ad hoc, but
Hellmann’s ideas were to be justified by a number of workers. A picture of mat-
ter according to Hellmann’s ideas is shown in Figure 6.2 where valence electrons
interact to form bonds and core electrons remain inert.
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Figure 6.2 Pseudopotential model. The
outer electrons (valence electrons)
move in a fixed arrangement of
chemically inert ion cores. The ion cores
are composed of the nucleus and core
electrons.

Nucleus
Core electrons
Valence electrons

6.1.1 Phillips–Kleinman Cancellation Theorem

In the late 1950’s, James Phillips and Leonard Kleinman observed that the strong
ion core potential could be replaced by a weak pseudopotential [2]. Morrel
Cohen and Volker Heine cast the Phillips-Kleinman findings as a cancellation
theorem [3].

We outline this theorem by considering a single atom with one valence elec-
tron, sodium being the prime example. We write an approximation for the valence
state, 𝜙v:

𝜓v(r) = 𝜙p(r) +
∑

c
bc𝜙c(r) (6.1)

where 𝜙p is the pseudopotential wave function for the valence state and 𝜙c is a
core state for the atom.

The more physics we can build into this wave function, the more accurate we
expect it to be. We know several things about this wave function: (i) Away from
the core region where the potential varies slowly, the wave function will also be
slowly varying and easily represented by a simple plane wave or perhaps a Gaus-
sian function. (ii) Near the nucleus of the atom 𝜙v will be “core like” and include
core-like components. Incorporating 𝜙c in the wave function should satisfy this
expectation. (iii) Valence states should be orthogonal to the core states.

The orthogonality condition is easy to show. We consider two wave functions,
(𝜙i, 𝜙j), which are solutions to the Schrödinger equation:ℋ𝜙i = Ei𝜙i andℋ𝜙j =
Ej𝜙j. If this is true, then the following must also be the case:

∫ 𝜙
∗
j H𝜙id3r = Ei ∫ 𝜙

∗
j 𝜙id3r

∫ 𝜙
∗
j H𝜙id3r = ∫ (H𝜙

∗
j )𝜙id3r = Ej ∫ 𝜙

∗
j 𝜙id3r (6.2)
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We have used a trick in the second equation. Namely, we used ℋ to operate on
the wave function on the left of this operator. This is a valid operation provided
the wave functions vanish at infinity, which they clearly do for a single atom. We
also assume the eigenvalues are real, which they must be for a physical solution.

If all this is correct, we have

Ei ∫ 𝜙
∗
j 𝜙j d3r = Ej ∫ 𝜙

∗
j 𝜙i d3r (6.3)

or

(Ei − Ej)∫ 𝜙
∗
j 𝜙i d3r = 0 (6.4)

Assuming Ei ≠ Ej, it must follow that

∫ 𝜙
∗
j 𝜙i d3r = 0 (6.5)

i.e. the states are orthogonal. Clearly, this will be the case for valence and core
states, as Ev ≠ Ec.

The sum in Eq. (6.1) includes all core states in the atom. In the case of sodium,
this sum includes the 1s, 2s, 2p states. The coefficients, bt, are chosen so that the
valence state is orthogonal to the core states, i.e. we have the following condition:

∫ 𝜙
∗
c 𝜓v d3r = 0 (6.6)

The orthogonality condition for the valence to core states yields

∫ 𝜙
∗
c′ (r)𝜓v(r) d3r = ∫ 𝜙

∗
c′ (r)𝜙p(r)d3r +

∑
c

bc ∫ 𝜙
∗
c′ (r)𝜙c(r) d3r (6.7)

This determines bc:

bc = −∫ 𝜙
∗
c′ (r)𝜙p(r)d3r = −⟨c|p⟩ (6.8)

where we will use the compact notation ⟨c|p⟩ for the integral. Using this value for
bc, we can use the orthogonalized wave function to write

ℋ𝜓v = Ev𝜓v

ℋ [𝜙p(r) −
∑

c
⟨c|p⟩ 𝜙c(r)] = Ev[𝜙p(r) −

∑
c
⟨c|p⟩ 𝜙c(r)] (6.9)

We note that ℋ𝜙c = Ec𝜙 and rearrange the terms:

ℋ [𝜙p(r) +
∑

c
(Ev − Ec)⟨c|p⟩ 𝜙c(r)] = Ev𝜙p(r) (6.10)

We define a pseudopotential Hamiltonian, ℋp, such that

ℋp = ℋ +𝒱R

𝒱R 𝜙p =
∑

c
(Ev − Ec)⟨c|p⟩ 𝜙c(r) (6.11)
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Figure 6.3 Schematic
pseudopotential in real space.
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and a pseudopotential, Vp,

Vp𝜙p = (V +𝒱R)𝜙p (6.12)

where V is the “all-electron” or “real” potential. The repulsive potential, 𝒱R, can-
cels the strong Coulombic potential within the core region and results in a “weak”
pseudopotential. This is illustrated schematically in Figure 6.3.

We are left with a “harmless” looking equation:

ℋp𝜙p = Ev𝜙p (6.13)

In order to extract the pseudo wave function, we solve a Schrödinger equation
that has the correct valence energy. What has changed is the Hamiltonian,
which is now a pseudo-Hamiltonian containing not the real potential, but a
pseudopotential. This pseudopotential, unlike Eq. (6.13), looks really obnoxious
for several reasons. The chief problem is the 𝒱R part of the potential. This
term is not a simple potential. Rather, it is a “nonlocal” operator that acts on
the pseudo wave function and replaces it with a sum over the core states.
Each core state is weighted by factor of ⟨c|p⟩, which is called a projection
of the core state on the pseudo wave function. Even worse, the operator 𝒱R
depends on the valence energy, Ev. This implies that we must solve a problem
with an energy-dependent Hamiltonian. It does not get much worse from a
computational perspective.

To summarize, Phillips and Kleinman transformed the all-electron problem
to a pseudopotential problem, which only includes the valence electrons. In the
all-electron problem, the Hamiltonian contains a strong potential that binds all
the electrons; however, this potential is a simple function of position, which is
good. But the bad features of the all-electron electron potential can be notable.
The energy scale for the eigenvalues of the all-electron Hamiltonian can span
orders of magnitude, and the wave functions must accurately describe the dis-
parate length scales of the core and valence states. In the pseudopotential prob-
lem, the pseudo Hamiltonian contains a complicated nonlocal, energy-dependent
operator, which is the difficult part. However, the pseudopotential is weak and
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the pseudo wave functions are simple. Roughly speaking, we have transformed
the problem where the difficulty is focused on getting an accurate wave function
to one where we now worry about getting an accurate pseudopotential.

In practice, no one uses (or almost no one uses) the pseudopotential as cast
by Phillips and Kleinman. The chief accomplishment of their work was to show a
prescription for separating the core and valence states, and to gain a better under-
standing of the electronic structure problem. For example, their work helps one
understand why carbon and silicon are so different. Carbon lacks a p-state in the
core. Therefore, there is no orthogonality condition on the 2p valence state. This
is not the case for silicon where there exists a p-state in the core regime. In car-
bon, there is no 𝒱R term that results in a weak pseudopotential for the p valence
states. There is such a potential for silicon. As such, the s and p valence states in
carbon behave differently than those in silicon.

The pseudopotential theory has direct consequences in the chemistry of
carbon versus that of silicon. Carbon exists in a variety of elemental structures
ranging from graphene to graphite to diamond to fullerenes. The multiple
structures of carbon reflect the ease of mixing s and p states, which can be
traced to the energy required to promote an electron from the 2s-state to the
2p-state. Since the carbon 2p-states see no repulsive term from an orthogonality
condition, the 2p-states are closer in energy to the 2s-state than is the case for
the silicon 3s and 3p-states. Consequently, it is more difficult to form double
and triple bonds in silicon when compared to carbon, e.g. carbon readily forms
acetylene H—C≡C—H whereas H—Si≡Si—H (disilyne) is known to be unstable.
One could argue that the Phillips–Kleinman cancellation theorem clarified the
difference between biology (carbon chemistry) and geology (silicon chemistry).
This is not a small feat for a relatively simple theorem.

6.2 Pseudopotentials Within Density Functional Theory

Although the Phillips–Kleinman cancellation theorem did not offer us a workable
pseudopotential, it set the stage for later work. Contemporary approaches to the
electronic structure problem are based on pseudopotentials constructed from
the Kohn–Sham equation [4]. In this construction, one starts from the electronic
structure of an atom. This is an easy problem to solve using the Kohn–Sham
equation. The atom is taken to be spherically symmetric and the problem reduces
to solving a one-dimensional equation. It is possible to solve the Kohn–Sham
equation for a heavy element such as lead in a matter of seconds on a laptop com-
puter. Molecules and clusters are another matter owing to the loss of spherical
symmetry. For such systems, we definitely need pseudopotentials.

Consider a sodium atom for the purpose of designing a pseudopoten-
tial within the density functional theory. We know the eigenvalue, E3s, and
the corresponding wave function, 𝜓3s(r), for the valence electron from an
atomic computation. We use this information as the starting point for the
pseudopotential construction.



6.2 Pseudopotentials Within Density Functional Theory 51

Good pseudopotentials must meet the following requirements: (i) The pseu-
dopotential should bind only the valence electron: the 3s-electron for the case
of the sodium atom. (ii) The eigenvalue of the corresponding valence electron
should be identical to the full potential eigenvalue. (The full potential is also called
the all-electron potential.) (iii) The pseudo wave function should be nodeless and
identical to the “all-electron” wave function outside the core region.

For example, when a sodium pseudo wave function is constructed, 𝜙3s(r),
it should have the following properties. It should be equal to the all-electron
wave function, 𝜓3s(r), away from the core region. We can write this condition as
𝜙3s(r) = 𝜓3s(r) for r > rc where rc defines the size spanned by the ion core, i.e.
the nucleus and core electrons. Typically, rc is taken to be less than the distance
corresponding to the maximum of the valence wave function, but greater than
the distance of the outermost node.

The all electron wave functions and the pseudopotential wave functions for a
Na atom are given in Figure 6.4.

In choosing the pseudo wave function within the core region, the integral of
the pseudo charge density, i.e. square of the wave function, |𝜙p(r)|2, within the
core should be equal to the integral of the all-electron charge density. Without
this condition, the pseudo wave function can be severely flawed. It can differ by a
scaling factor from the all-electron wave function, that is, 𝜙p(r) = C × 𝜓AE(r) for
r > rc, where the constant, C, may differ from unity. This can be seen from the
following:

1 = ∫
∞

0
|𝜓AE(r)|2 d3r = ∫

rc

0
|𝜓AE(r)|2 d3r + ∫

∞

rc

|𝜓AE(r)|2 d3r (6.14)
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Figure 6.4 Pseudopotential wave functions compared to all-electron wave functions for the
sodium atom. The all-electron wave functions are indicated by the dashed lines.
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We can also write

1 = ∫
∞

0
|𝜙p(r)|2 d3r = ∫

rc

0
|𝜙p(r)|2 d3r + ∫

∞

rc

|𝜙p(r)|2 d3r (6.15)

or if we take 𝜙p(r) = C × 𝜓AE(r),

1 = ∫
∞

0
|𝜙p(r)|2 d3r = ∫

rc

0
|𝜙p(r)|2 d3r + C ∫

∞

rc

|𝜓AE(r)|2 d3r (6.16)

Combining Eqs. (6.14) and (6.16), we can write

∫
rc

0
|𝜙p(r)|2 d3r − ∫

rc

0
|𝜓AE(r)|2 d3r = (1 − C)∫

∞

rc

|𝜓AE(r)|2 d3r (6.17)

C ≠ 1 is bad. This will not occur if the left-hand side of Eq. (6.17) vanishes. This
puts a constraint on the pseudo wave functions:

∫
rc

0
|𝜙p(r)|2 d3r = ∫

rc

0
|𝜓AE(r)|2 d3r (6.18)

The condition, C = 1, guarantees that any overlap of the pseudo wave function
will be the same as for the all-electron wave functions. Pseudopotentials that
reflect C = 1 are called “norm conserving.” This nomenclature is a bit odd in that
wave functions are always normalized, but here it means something different,
i.e. the normalized pseudo wave function and the normalized all-electron wave
functions are identical outside the core region.

There are many recipes for constructing pseudopotentials. We will focus on
methods that are easy to understand and implement. In 1980, Kerker [5] pro-
posed a straightforward method for constructing local density pseudopotentials
that retained the norm-conserving criterion. He suggested that the pseudo wave
function has the following form:

𝜙p(r) = rl exp(p(r)) for r < rc (6.19)

where p(r) is a simple polynomial: p(r) = −a0r4 − a1r3 − a2r2 − a3 and

𝜙p(r) = 𝜓AE(r) for r > rc (6.20)

This form of the pseudo wave function for 𝜙p assures us that the function will be
nodeless and have the correct behavior at large r. Kerker proposed the following
criteria for fixing the parameters (a0, a1, a2, and a3):

1. The pseudo wave function should be norm conserving.
2. The all-electron and pseudo wave functions should have the same valence

eigenvalue.
3. The pseudopotential wave function should be nodeless and be identical to the

all-electron wave function for r > rc.
4. The pseudo wave function must be continuous as well as the first and second

derivatives of the wave function at rc.

As indicated, there is some flexibility in constructing pseudopotentials within
the core region (r < rc). The non-uniqueness of the pseudo wave function was
recognized early in its inception. This attribute can be exploited to optimize the
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convergence of the pseudopotentials for the basis of interest. Much effort has
been made to construct pseudopotentials that require a minimum number of
basis set functions, e.g. plane waves, to achieve a converged solution. Typically,
shallow or “soft” pseudopotentials are characterized by a large core radius. As the
core size is increased, the convergence between the all-electron and pseudo wave
functions is postponed to larger distances; the quality of the pseudo wave func-
tions will deteriorate and the the transferability of the pseudopotential between
the atom and molecular environments becomes limited.

One straightforward approach to optimizing a pseudopotential is to build addi-
tional constraints into the polynomial given in Eq. (6.19). For example, suppose
we write

p(r) = co +
N∑

n=1
cnrn (6.21)

In Kerker’s scheme, N = 4. However, there is no compelling reason for demand-
ing that the series terminate at this particular point. If we extend the expansion,
we may impose additional constraints. For example, we might try to constrain
the reciprocal space expansion of the pseudo wave function so that beyond some
momentum cutoff the function vanishes.

Troullier and Martins developed a very popular scheme by adding some phys-
ically motived constraints [6]. They wrote Eq. (6.21) as

p(r) = co +
6∑

n=1
c2nr2n (6.22)

As usual, they constrained the coefficients to be norm conserving. In addition,
they demanded continuity of the pseudo wave functions and the first four deriva-
tives at rc. They added a new type of constraint by demanding zero curvature of
the pseudopotential at the origin. These potentials tend to be quite smooth and
converge rapidly in reciprocal space.

Once the pseudo wave function is defined as in Eqs. (6.19) and (6.20) we can
“invert” the Kohn–Sham equation and solve for the ion core pseudopotential,
Vion,p:

V n
ion,p(r⃗) = En − VH(r⃗) − Vxc[r⃗, 𝜌(r⃗)] +

ℏ
2∇2

𝜙p,n

2m𝜙p,n
(6.23)

This potential, when self-consistently screened by the pseudo charge density

𝜌(r⃗) = −e
∑

n,occup
|𝜙p,n(r⃗)|2 (6.24)

will yield an eigenvalue of En and a pseudo wave function 𝜙p,n. By construction,
the pseudo wave function will agree with the all-electron wave function away
from the core.

There are some important issues to consider about the details of this recipe.
First, the potential is state dependent as written in Eq. (6.23), i.e. the pseu-
dopotential is dependent on the quantum state n. This issue can be handled by
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recognizing the nonlocality of the pseudopotential, i.e., the potential is not a sim-
ple function. The potential is different for an s-, p-, or d-electron. The nonlocality
appears in the angular dependence of the potential, but not in the radial coordi-
nate. Sometimes the pseudopotential is called “semi-local” instead of “nonlocal.”

A related issue is whether the potential is highly dependent on the state energy,
e.g. if the potential is fixed to replicate the 3s state in Na, will it also do well for
the higher s states, i.e. 4s, 5s, 6s, …? Of course, one could also question how
dependent the pseudopotential is on the atomic state used for its construction.
For example, would a Na potential be very different for a 3s13p0 versus a
3s1∕23p1∕2 configuration or a 3s03p1 configuration? Finally, how important are
“loosely bound” core states in defining the potential? For example, can one treat
the 3d states in copper as part of the core and get good results? Or, do we need
to consider it part of the valence shell?

Each of these issues has been carefully addressed in the literature [4]. We con-
sider the last point first. In many cases, the separation between the core states
and the valence states is clear. For example, in Si there is no issue that the core
is composed of the 1s22s2p6 states. However, the core in Cu could be considered
to be the 1s22s2p63s23p63d10 configuration with the valence shell consisting of
the 4s1 state. Or, one could consider the core to be the 1s22s2p63s23p6 configu-
ration with the valence shell composed of the 3d104s1 states. On computational
grounds, it would be much, much better to consider the correct Cu configura-
tion as 1s22s2p63s23p63d10. The number of valence states is just 1 instead of 11.
Later, we will show that computationally the scaling of this problem goes as the
cube of the number of states. So, carrying the d-states could result in an order of
magnitude increase in the computational load. We are not that lucky. We must
carry the d states as Cu is not at all like K, e.g. Cu does not burst into flames when
dropped into water – K does. It is the outer 3d shell that distinguishes Cu from K.

Such issues are traditionally considered on a case by case basis. Fortunately,
we can assess the matter in a straightforward manner. We can construct dif-
ferent pseudopotentials for all possible core–valence dichotomies and solve the
Kohn–Sham equation. In the case of Cu, we would find that a pseudopotential
constructed with the 3d10 state in the core yields poor results compared to an
all-electron potential.

A related aspect of deciding how best to construct the core configuration is
the issue of “core–valence” exchange-correlation interactions. In the all-electron
exchange-correlation potential, the charge density is composed of the core and
valence states; in the pseudopotential treatment only the valence electrons are
included. This separation neglects terms that may arise between the overlap of
the valence and core states.

There are well-defined procedures for including these overlap terms. It is possi-
ble to include a fixed charge density from the core and allow the valence overlap
to be explicitly included. This procedure is referred to as a partial core correc-
tion [7]. This correction is especially important for divalent elements such as Zn,
Cd, and Hg where the outermost filled d-shell can make some contribution to
chemical bonding. But, in contrast to Cu, the contributions are not large and can
be treated in an approximate manner without loss of accuracy. The importance
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of this correction can be tested by performing calculations with and without the
partial core.

One might argue that the most accurate approach would be to include any
“loosely bound” core states as valence states. This approach is often not com-
putationally attractive in that it would increase the number of valence states, but
there are other reasons. For example, the Zn core without the 3d states results in
an ion core that must bind a dozen electrons, not just two electrons, i.e. the ion
core pseudopotential corresponds to Zn+12. A pseudopotential binding a dozen
valence electrons is strong and deep compared to one binding only two valence
electrons. We want pseudopotentials to be “weak and shallow,” if possible.

In contrast, problems associated with the state dependence of the pseudopo-
tential construction can be overcome with little computational effort. If the core
electrons are tightly bound, the ion core potential is highly localized and often not
sensitive to the ground state configuration used to compute the pseudopotential.
There are well-defined tests for assessing the accuracy of the pseudopotential,
especially in terms of the phase shifts. Also, it should be noted that higher excited
states sample the tail of the pseudopotential in a region where there is no differ-
ence between the all-electron potential and the pseudopotential. As an example,
the Na pseudopotential is usually converged to the all-electron potential by ∼ 3
a.u. The 4s state of Na has a maximum near 10 a.u. and effectively samples only
an all-electron-type potential. The details of the 4s state is largely unaffected by
the details of a pseudopotential constructed by 3s state properties.

We need to make note of a problem with the local density approximation that
is often conflated with the pseudopotential approximation. Consider moving an
electron from the atom off to infinity. Classically, there is net residual charge on
the atom of+e when the electron is removed. We should have an attractive poten-
tial energy of −e2∕r between the atom and the electron at a large separation. That
does not happen in the local density approximation.

The local density approximation in its simplest form scales as 𝜌
1∕3. This

form does not yield a Coulomb-like interaction at large distances. Rather, the
exchange-correlation potential will scale exponentially at large distances. This
flaw comes from using an approximate density functional theory and not the
pseudopotential. This issue appears when we deal with localized systems or with
surfaces. While the electronic potential can be incorrect away from an atom,
the total energy of the system does not suffer as much as one might think. Most
of the electronic energy occurs from short range interactions where the local
density approximation works better.

The chief complexity of pseudopotentials centers on nonlocality, which is often
treated in Fourier space, but may also be expressed in real space. The interactions
between valence electrons and pseudo-ionic cores may be separated into a local
potential and a Kleinman and Bylander form [8] in real space:

V p
ion(r⃗)𝜙n(r⃗) =

∑
a

Vloc(|r⃗a|)𝜙n(r⃗) +
∑

a, n,lm
Ga

n,lmulm(r⃗a)ΔVl(ra), (6.25)

Ga
n,lm = 1

< ΔV a
lm > ∫ ulm(r⃗a)ΔVl(ra)𝜓n(r⃗)d3r, (6.26)
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and < ΔV a
lm > is the normalization factor,

< ΔV a
lm >= ∫ ulm(r⃗a)ΔVl(ra)ulm(r⃗a)d3r (6.27)

where r⃗a = r⃗ − R⃗a, and the ulm are the atomic pseudopotential wave functions of
angular momentum quantum numbers (l,m) from which the l-dependent ionic
pseudopotential, Vl(r), is generated. ΔVl(r) = Vl(r) − Vloc(r) is the difference
between the l component of the ionic pseudopotential and the local ionic
potential.

As a specific example, in the case of Na, we might choose the local part of the
potential to replicate only the l = 0 component as defined by the 3s state. The
nonlocal parts of the potential would then contain only the l = 1 and l = 2 com-
ponents. In many cases, particularly when dealing with electronic materials such
as Si and GaAs, the angular momentum for higher components than l > 2 are not
significant in the ground state. In these systems, one can treat the summation over
l = 0, 1, 2 to be complete.

The choice of which angular component is chosen for the local part of the
potential can be arbitrary. It is often convenient to choose the local potential to
correspond to the highest l-component of interest. This simplifies the projection
operators, which become more complex with higher angular momentum. Again,
these issues can be tested by choosing different components for the local potential
and assessing the resulting solutions.

In Figure 6.5, the ion core pseudopotential for Na is presented using the
Troullier–Martins formalism for creating pseudopotentials. The nonlocality
of the potential is evident from the existence of three pseudopotentials cor-
responding to the s-, p-, and d-states. This is a typical result for simple metal
atoms. The depth of the pseudopotential increases with the angular momentum
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Figure 6.5 Nonlocal pseudopotential components compared to an all-electron potential for
the sodium atom. The all-electron potential is indicated by the dashed lines.
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component, i.e. the potential minimum for the d component is more attractive
than for the s component.
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7

Methods for Atoms

A numerical goal without a method is nonsense.
— W. E. Deming

We have a formalism to describe the electronic structure of matter, but we have
not outlined the methods to determine a numerical solution. For atoms, there
are two methods often employed: one based on the variational method, the other
based on direct numerical integrations.

7.1 The Variational Approach

We outlined in Chapter 3 a method for estimating the lowest energy state solution
for a given Hamiltonian. If we have an approximate wave function, Ψ, we can
estimate the energy of this state from

Ê = ∫ Ψ∗ℋΨd3r (7.1)

where we have assumed that the wave function is normalized. The variational
principle states that Ê ≥ E0, i.e. the approximate energy level is higher in energy
(less negative) than the true energy level.

We might write a wave function with a few parameters, say Ψ(𝛼, 𝛽, 𝛾), and then
find the energy, E(𝛼, 𝛽, 𝛾). By minimizing the energy with respect to these param-
eters, we can often get a good estimate of the energy.

7.1.1 Estimating the Energy of the Helium Atom.

We will illustrate this procedure, by returning to the simplest “many electron”
atom – helium. Previously, we estimated the total energy by considering the
hydrogen-like solution for a nucleus with a charge of Z = 2. This would be
the solution for a helium atom if the electrons did not interact with each
other. But, electrons do interact with each other. In order to account for the
electron–electron interaction, we modify the wave function with this in mind.
Again, the more we can build into a “trial” wave function based on physics, the
better will be our estimate for the energy.

Introductory Quantum Mechanics with MATLAB® : For Atoms, Molecules, Clusters, and Nanocrystals,
First Edition. James R. Chelikowsky.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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For example, we know that the presence of one electron can effectively “screen”
the nucleus from the other electron. To account for this, we replace Z in the wave
function by Z = 2 − 𝜎. This is often done in textbook examples for helium [1]. If
𝜎 = 0, we expect no screening as the electron would see the full nuclear charge.
At the other extreme, if the electron completely screened the charge, then we
expect 𝜎 = 1.

We evaluate the total energy of the helium atom using the following approxi-
mate wave function:

Ψ =
√
((2 − 𝜎)∕πa0)3 exp(−(2 − 𝜎)r∕a0) (7.2)

These wave functions yield an estimate for the energy:

Ê(𝜎) =∫ ∫ ((2 − 𝜎)3∕πa3
0) exp(−(2 − 𝜎)(r1 + r2)∕a0)

×
[
−
ℏ

2∇2
1

2m
−

−ℏ2∇2
2

2m
− 2e2

r1
− 2e2

r2
+ e2|r⃗1 − r⃗2|

]
× ((2 − 𝜎)3∕πa3

0) exp(−(2 − 𝜎)(r1 + r2)∕a0)d3r1d3r2

(7.3)

The resulting integrals are straightforward, albeit a bit tedious. The total elec-
tronic energy is given by

Ê(𝜎) = − e2

a0
(4 − (5∕8 − 5∕8𝜎 − 𝜎

2)) (7.4)

We find the optimal value of 𝜎 by minimizing the total energy, i.e. we find Ê by
setting dÊ∕d𝜎 = 0. As expected, the optimal value of 𝜎 = 5∕16 resides between
the expected limits of 0 (no screening) and 1 (perfect screening.) This value of 𝜎
gives a total energy of

Ê(𝜎) = −729
256

e2

a0
= −77.5 eV (7.5)

Recall that the correct value from experiment is E(He) = E(He+) − I =
−54.4 eV − 24.5 eV = −78.9 eV; the error in the calculated value is our best
estimate – less than a 2% error.

The value from our simple variational estimate of −77.5 eV is notably better
than the previous estimate of −74.8 eV using hydrogen-like wave functions.
Sophisticated trial wave functions have been employed and yield a value that is
essentially in exact agreement with experiment. This finding not only reinforces
the validity of the variational principle, but also validates quantum theory.

Example 7.1 Using Density Functional Theory to Find the Ionization Energy
of a Helium Atom We can also illustrate the variational theorem using density
functional theory. In the previous example, we examined the binding energy of
an electron to helium atom. In doing so, we made no serious approximations to
Schrödinger’s equation; the answer is “exact,” save some small corrections, e.g. we
ignored the finite mass of the helium nucleus and maybe some relativistic issues.
We can do this for a system such as helium, which has only two electrons. The
issue is much worse when we deal with atoms with more than a few electrons.
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In such a situation, it not only makes more sense to consider an approximate
solution but it is also our only hope.

We mentioned several such approximations, Hartree–Fock and those based on
density functional theory. Here, we show how these approximations can be used
to estimate the ionization energy of a helium atom. Within density functional
theory, we can write the total energy of the helium atom as

E = 2∫ 𝜓
∗(r)[− ℏ

2

2m
∇2 − 2e2

r
]𝜓(r)d3r

+ 1
2 ∫ ∫ d3rd3r′ 𝜌(r)𝜌(r

′)|r⃗ − r⃗′| − 3e2∕3

4π
(3π2)1∕3 ∫ d3r[𝜌(r)]4∕3 (7.6)

The first term corresponds to a hydrogen-like atom with a nuclear charge of
+2e; we have two electrons contributing to this term. The second term is the clas-
sical electrostatic term, or Hartree potential. The remaining term corresponds to
the exchange energy. For simplicity, we ignore any attempt at including correla-
tion. The charge density is given by

𝜌(r) = −e
∑

occup
|𝜓(r)|2 = −2e|𝜓(r)|2 (7.7)

Again, there is a factor of two corresponding to one electron with spin up and
one with spin down.

The simplest approach here is to assume a hydrogen-like atom again:

𝜓(r) =
√
(𝛽3∕π) exp(−𝛽r) (7.8)

The prefactor of the exponential assures us that the wave function is normalized:

4π∫
∞

0
|𝜓(r)|2r2dr = 4𝛽3 ∫

∞

0
exp(−2𝛽r)r2dr = 1 (7.9)

Inserting this trial wave function in the total energy expression and evaluating
some integrals yields the following:

Ê(𝛽) = ℏ
2
𝛽

2

m
− 4e2

𝛽 + 5e2
𝛽∕4 − 81e2

𝛽

128

( 6
π2

)1∕3
𝛽 (7.10)

We can rewrite this numerically as

Ê(𝛽) = ℏ
2
𝛽

2

m
− 3.286e2

𝛽 (7.11)

This yields a value of 𝛽 as

𝛽 = 1.643e2m
ℏ2 = 1.643∕a0 (7.12)

Recall from our variational approach for the “real” Hamiltonian that we had taken
a similar expression for the wave function. We can identify (2 − 𝜎)∕a0 with 𝛽.
From density functional theory, we predict a value of 𝜎 ≈ 2 − 1.643 = 0.357 com-
pared to 𝜎 = 5∕16 = 0.3125. This is not too bad, but the total energies are a differ-
ent matter. Density functional theory as we have implemented yields an estimate
for the total energy of

Ê(𝛽) = e2a0𝛽
2 − 3.286e2

𝛽 = −2.699e2∕a0 = −73.4 eV (7.13)
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This value can be compared with our estimate using variational theory using
the “real Hamiltonian,” which yielded −77.5 eV and to the experimental value
of −78.9 eV. In fact, our simple estimate with unaltered hydrogen-like wave func-
tions was −74.8 eV.

This looks bad for density functional theory. However, the situation is not as
bad as it might appear. As noted earlier, we typically have no interest in “abso-
lute energies.” We are interested in “relative energies.” The situation is similar to
thermodynamics. In thermodynamics, one is always interested in the change in
the energy, or perhaps the free energy. As an example, suppose we are interested
in calculating the binding energy of a molecule composed of elements A and B.
We could find the energy of the molecule, E(AB), but by itself this would tell us
nothing. We would rather know what the energy was compared to the individual
constituents, E(A) and E(B). The difference would tell us whether A and B might
react to form the molecule AB. What we need to do is to calculate the quantity
E(AB) − E(A) − E(B). If we made an error in all these quantities, e.g. by a com-
mon factor of 5%, our net error would not be 5% of the absolute energy, but of
the relative energies. Again, this is a crucial issue in applying approximate density
functional theory.

We attempt the following: We will calculate the ionization of helium by calcu-
lating: I = E(He+) − E(He). You might argue that we already know the He+ energy
as it is a hydrogen-like atom. We pretend not to know any better. We use the same
expression as for E(He), save the obvious change–we remove an electron. This
removal reduces the first two terms in Eq. (7.10), the kinetic and potentials ener-
gies, by a factor of two as they scale linearly with the number of electrons. The
next term, the Hartree energy, is reduced by a factor four as the charge appears
squared; the final term, the exchange energy, is reduced by a factor of 24∕3 as the
charge appears to the 4/3 power. The resulting expression for the total energy of
He+ is

Etotal = 𝛽
2 − 4𝛽 + 5𝛽∕4 − 81

128

( 6
𝜋2

)1∕3
𝛽 (7.14)

Again, we combine terms by evaluating the various factors and find

Etotal = 𝛽
2∕2 − 1.6866𝛽 (7.15)

The lowest energy for He+ occurs for

𝛽min = 1.900 a.u. Emin = −1.805 a.u.. = −49.10 eV (7.16)

The net ionization energy is now

I = E(He+) − E(He) = (−49.10) − (−73.4) eV = 24.3 eV (7.17)

The experimental value is 24.6 eV. The error is ∼ 1%. This is better than using the
variational principle with a hydrogen-like wave function.

Our result surely must be counterintuitive. The “exact” Hamiltonian yields a
less accurate value with the same form of the basis. The secret to our success is
clearly error cancellation. We know that the exact energy for a He+ ion is−2.0 a.u.
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or −54.4 eV. This is not in agreement with our simplified density functional the-
ory, which yields an energy for a He+ ion of −1.80 a.u. or −49.1 eV. Density func-
tional theory makes an error of about 5 eV (too small) for both the ionized and
neutral states of He.

Of course, we should remember that this example took the same, very simple
basis for both the exact and approximate Hamiltonian. For the exact Hamiltonian,
we know that our answer will approach the measured ionization energy as we
continually improve the basis. It has to do so according to the variational theorem.
For an approximate Hamiltonian, we have no such guarantee.

Maybe we were just lucky in getting such a good number for helium with our
simple basis. We are not guaranteed that a better basis (one with more parameters
to optimize) will work as well. We could test this issue by making sure our energies
are converged to the lowest values for the helium atom and for the helium ion.
If our converged energies differ from experiment, that would indicate a failure of
the functional.

One could argue that we just need to improve the functional. Well and good to
say this, but how to do it is an ongoing research problem.

7.2 Direct Integration

Example 7.2 The Hydrogen Atom Free atoms possess a property that con-
siderably helps in solving for the electronic structure problem. We take an iso-
lated atom to be spherically symmetric. In this case, the problem resembles that
of a hydrogen atom. If the potential is spherical, i.e. V (r) = V (|r⃗|), we solve a
Schrödinger equation of the form similar to that of Eq. (2.20).

− ℏ
2

2m
d2u
dr2 + l(l + 1)ℏ2

2mr2 u + V (r) u = E u (7.18)

We can integrate this one-dimensional equation directly. We outline some
essential features of numerical methods based on Taylor series expansions. This
is standard fare as outlined in textbooks on numerical methods [2].

We consider a first-order dimensional equation:
df
dx

= g( f , x); f (0) = f0 (7.19)

We need to have a boundary condition; we assume some value, f0, at x = 0. Con-
sider a function, f (x), where we expand around a point x:

f (x + 𝛿x) = f (x) +
df
dx

𝛿x + · · · (7.20)

We can make use of the differential equation, to write

f (x + 𝛿x) = f (x) + g( f , x) 𝛿x (7.21)

Provided we take a sufficiently small value of 𝛿x, the equal sign is justified. We
can step the function as follows:

f (𝛿x) = f (0) + g( f (0), 0) 𝛿x = f0 + g(f0, 0) 𝛿x (7.22)
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We know all the terms on the right-hand side of this function. We know f (0) from
our boundary condition. We know g(f0, 0) from the given differential equation
and we specify a value for 𝛿x to step the function. Of course, 𝛿x needs to be suf-
ficiently small to make this numerical method work. We do not want f (𝛿x) to
change much from f (0) or our truncated Taylor series is not likely to be correct.

We can try to step this function again:

f (2𝛿x) = f (𝛿x) + g( f (𝛿x), 𝛿x) 𝛿x (7.23)

Again, we know all the terms on the right-hand side using our solution for f (𝛿x)
so we now know f (2𝛿x). We can continue to execute this algorithm and find f (x)
as far as we are willing to step out the function. This procedure is known as the
explicit Euler method [2].

The explicit Euler method works fine if 𝛿x is made sufficiently small, which can
be an issue if the function g( f , x) is difficult to evaluate. We can make a sim-
ple improvement on explicit Euler by recognizing that the key assumption in the
Euler method is a linear step. Suppose we consider starting at the point f (x + 𝛿x)
and going backward to find f (x):

f (x) = f (x + 𝛿x) − g( f (x + 𝛿x, x + 𝛿x) 𝛿x (7.24)

We can rewrite this as

f (x + 𝛿x) = f (x) + g( f (x + 𝛿x), x + 𝛿x) 𝛿x (7.25)

This looks very much like Eq. (7.21), save that the value of the function g is
now evaluated at f (x + 𝛿x) and is called the implicit Euler method. We combine
Eqs. (7.21) and (7.25).

f (x + 𝛿x) = f (x) + 1
2
[g( f (𝛿x), 𝛿x) + g( f (x + 𝛿x), x + 𝛿x)] 𝛿x (7.26)

This expression is easy to understand. The value of the function at x + 𝛿x is the
average of the slope at x and at x + 𝛿x times 𝛿x. This is a better estimate than just
considering the slope at x. There remains a problem, which is a major drawback
of the implicit Euler method. Namely, how does one calculate the value of the
function g( f (x + 𝛿x), x + 𝛿x) when f (x + 𝛿x) is unknown?

We can implement an iterative procedure that works very well and makes a
reasonable estimate for f (x + 𝛿x). We proceed in two steps. First, we employ the
explicit Euler step to estimate the value of f (𝛿x):

fee(𝛿x) = f0 + g(f0, 0) 𝛿x (7.27)

where fee is the explicit Euler estimate. We can use fee to improve on this estimate:

f (𝛿x) = f0 +
1
2
[g(f0, 0) + g(fee(𝛿x), 𝛿x)] 𝛿x (7.28)

We can generalize this as follows for a point x in general.

fee(x + 𝛿x) = f (x) + g( f (x), x) 𝛿x

f (x + 𝛿x) = f (x) + 1
2
[g( f (x), x) + g(fee(x + 𝛿x), x + 𝛿x)] 𝛿x (7.29)
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We use the values of the function f (x) and explicit Euler to get an estimate of
the function f (x + 𝛿x) given by fee(x + 𝛿x), which is then used to find an average
slope and obtain a better estimate of f (x + 𝛿x). This procedure is called the “Heun
method” or the second-order “Runge-Kutta method” [2].

While we now have an iterative method for solving a first-order differential
equation, the problem that we want to solve is second order. We can still use
the method. For simplicity, let us take l = 0 in Eq. (7.18) and use atomic units
(e = ℏ = m = 1) along with the potential for hydrogen:

d2u
dr2 = 2

(
−1

r
− E

)
u (7.30)

We define a new variable as v = du∕dr and we now have a set of coupled
first-order differential equations to solve instead of one second-order equation:

du
dr

= v

dv
dr

= 2(V − E) u = −2
(1

r
+ E

)
u (7.31)

We expand the functions around r = 0. It is easy to show that within this limit

v = 1 − 2r + · · ·
u = r − r2 + · · · (7.32)

This gives us initial conditions for integrating the Schrödinger equation: u(0) = 0
and v(0) = 1.

There remain some issues here. For example, we can use the Heun method to
integrate the set of radial equations for (u, v), but we have to be careful near r = 0
owing to the divergence of the Coulomb potential. Also, what do we use for 𝛿x
(or better 𝛿r) in Eq. (7.29)? For that matter, what value do we use for E?

The issue about the singularity can be handled by not starting exactly at r = 0;
after all, we know from the boundary conditions how the functions behave at the
origin (Eq. (7.32)). We can try a large value of 𝛿r and keep decreasing it until the
solutions converge. A value of 𝛿r = 0.001 a.u. works well. This is a small value,
but using a computer we can do many, many steps in a very, very short time.

We need to consider a value for E. We use the limiting behavior of the wave
function. We know when r → ∞ that we must have R → 0. If this condition is
not met, we cannot normalize the wave function.

This behavior is illustrated in Figure 7.1. We know that for the 1s state, the
energy of the hydrogen atom is E1s = −0.5 a.u. If we guess this value, the wave
function is well behaved and goes to zero as r increases. Suppose we assume a
value of E1s = −0.499 a.u., it would seem to be a pretty good guess. However,
it is not as good as one might think. The value of the radial wave function
starts to diverge markedly from the exact solution by r ≈ 7 a.u. A guess of
E1s = −0.501 a.u. is equally bad, save the divergence changes sign. By examining
the value of the wave function for large values of r, it is possible to obtain a
very accurate value for the energy levels in question. We know that the true
energy level must reside between E1s = −0.499 a.u. (negative divergence) and
E1s = −0.501 a.u. (positive divergence).
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Figure 7.1 Integration of the Schrödinger equation for the hydrogen atom. The 1s state for r
times the radial function R(r) is shown. In the top panel a guess for the energy of the 1s state is
taken to be E1s = −0.501 a.u. In the middle panel the guess is E1s = −0.500 a.u. In the bottom
panel the guess is E1s = −0.499 a.u. The exact solution for the 1s state is shown by a solid line.
The integrated solutions are shown by a dashed line. For the correct guess of E1s = −0.500 a.u.
there is no difference discernible between the numerical integration and the exact solution.

We find other energy levels by making different guesses for the energy. For
example, if we wanted the energy for the 2s level we can take a guess near
E2s= −0.125 a.u. This is shown in Figure 7.2 where again we take guesses near
the exact value. Of course, this exercise supposes that we know what reasonable
guesses make sense. This is not a severe limitation as the computer time to
integrate the one-dimensional radial equation is almost “nothing.” While we did
these examples with l = 0, it is not much more difficult to consider high values
of l.

The direct numerical integration works very well for systems with spherical
symmetry. It is fast and easy to implement. It is the method of choice, even for
atoms that have more than one electron.
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Figure 7.2 Integration of the
Schrödinger equation for the
hydrogen atom. The 2s state
for r times the radial function
R(r) is shown. In the top panel
a guess for the energy of the
2s state is taken to be
E2s = −0.126 a.u. In the
middle panel the guess is
E2s = −0.125 a.u. In the
bottom panel the guess is
E2s = −0.124 a.u. The exact
solution for the 2s state is
shown by a solid line. The
integrated solutions are
shown by a dashed line. For
the correct guess of
E1s = −0.125 a.u. there is no
difference discernible
between the numerical
integration and the exact
solution.
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7.2.1 Many-electron Atoms Using Density Functional Theory

Calculations for many-electron atoms can be implemented within the framework
of density functional theory. For an atom with an atomic number, Z, we need to
solve the following equation:(

−ℏ2∇2

2m
− −Ze2

r
+ VH(r⃗) + Vxc[n(r⃗)]

)
𝜙i(r⃗) = Ei𝜙i(r⃗) (7.33)

Since the potential between the nucleus and an electron is spherically sym-
metric, the equation is one dimensional in the radial coordinate. However, the
problem is more complex owing to the many-electron terms. The Hartree and
exchange-correlation potentials require knowledge of the electronic charge
density as noted in Chapter 5. The Hartree potential, VH, can be calculated from

∇2VH(r) = −4πe𝜌(r)
𝜌(r) = e

∑
i,occup

|𝜙(r)|2 (7.34)
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where the charge density, 𝜌, is given by summing over the square of the occupied
states. The exchange correlation potential, Vxc, is a functional of the charge den-
sity: Vxc = Vxc[𝜌]. This presents an annoying issue. To find the density we need to
know the wave functions from the Kohn–Sham equation, but this equation can-
not be solved unless we know the potentials from the density, or unless we know
the wave functions. This conundrum can be resolved by finding a self-consistent
solution.

An initial guess is made for the density, sometimes using Thomas–Fermi
theory as outlined in Chapter 5. Or, one can start from scratch by assuming a
bare nucleus and solving for the 1s state, and then using its density as a starting
point, solve for the 2s state and keep marching along until all the states are
known.

Given that an “input” density allows one to solve for the Hartree and
exchange-correlation potentials. Using these “input” potentials, the Kohn–Sham
equation can be solved by direct integration using a methodology similar to that
outlined in the previous section The resulting wave functions are then used to
find a new “output” density. In the case of an atom, it is often feasible to use
this “output” density to create new “input” potentials directly. However, often
a combination of the “input” and “output” potentials is used. The process is
continued until the input and output potentials (or densities) are the same within
some specified tolerance. The self-consistent process is illustrated in Figure 7.3.

Codes for the electronic structure of atoms are fairly routine and very efficient.
Even for the heavy atoms, e.g. a gold or a lead atom, the Kohn–Sham equations
can be solved self-consistently within a few seconds on a laptop computer.

Select initial potential

Solve:

Find the charge density from the basis:

Solve for VH and compute Vxc:

Construct Hamiltonian:

Hψn = Enψn

∇2VH = –4πρ Vxc = Vxc [ρ]

ρ = ∑ │ψn│2

n,occup

H = – ∇2

2
– + VH + Vxcr

Z

Figure 7.3 Schematic for creating a
self-consistent field solution of the
Kohn–Sham equation for an atom. Z is the
atomic number of the atom. Atomic units
(e = m = ℏ = 1) are used in the equations.
The cycle is repeated until the input and
output potentials (or charge density) are
equal within some tolerance.
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8

Methods for Molecules, Clusters, and Nanocrystals

In so far as quantum mechanics is correct, chemical questions are problems
in applied mathematics.

— Henry Eyring

Isolated atoms are special. If we assume space is isotropic, which is likely going
to be the case save near blackholes, atoms are spherically symmetric. We can
obtain a solution of the electronic structure problem for these systems by solving
a one-dimensional problem. Even for heavy elements such as uranium or gold,
where the length and energy scales between the tightly bound core states and
valence states are quite disparate, a solution to the numerical problem can readily
be had by employing a nonuniform grid.

Interacting atoms are a different story. The moment we start dealing with
three-dimensional objects, the problem becomes much more difficult. The angu-
lar and radial coordinates can no longer be separated. The quantum numbers
used to label atoms, (n, l, m, ms), no longer work, save in an approximate sense.

8.1 The H2 Molecule: Heitler–London Theory

Before we consider solutions for complex systems such as large molecules or clus-
ters, we review one of the first approaches to the quantum theory of molecules.
The theory is from Walter Heitler and Fritz London, who demonstrated that
quantum methods predict the formation of a molecule when hydrogen atoms
interact.

We write the Hamiltonian for a hydrogen molecule as follows:

H = −
ℏ

2∇2
1

2m
−

ℏ
2∇2

2

2m
− e2

r1
− e2

r2

+ e2

|r⃗2 − r⃗1 + R⃗| − e2

|r⃗1 − R⃗| − e2

|r⃗2 + R⃗| + e2

R
(8.1)

where the geometry is as defined in Figure 8.1. The coordinates of the two elec-
trons are given in terms of (r⃗1, r⃗2). We take the distance between the two protons
as R⃗. We use the Born–Oppenheimer approximation to separate the proton coor-
dinates from the electron coordinates, and treat the protons as classical objects.

Introductory Quantum Mechanics with MATLAB® : For Atoms, Molecules, Clusters, and Nanocrystals,
First Edition. James R. Chelikowsky.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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p2

r2

Rp1

r1

e1

e2 Figure 8.1 Coordinates for molecular hydrogen.

We also assume infinite masses for the protons, which is not a stretch as they are
1836 times more massive than an electron.

The first line in Eq. (8.1) for the Hamiltonian represents isolated hydrogen
atoms labeled by (1,2). We consider this explicitly and write

H = H(H1) + H(H2) +
e2

|r⃗2 − r⃗1 + R⃗| − e2

|r⃗1 − R⃗| − e2

|r⃗2 + R⃗| + e2

R
(8.2)

where H(H1),H(H2) represent isolated H atoms that are labeled #1 and #2. The
remaining terms can be considered a “perturbation” on the hydrogen atoms. The
electron–electron repulsion term is the usual “difficult” term as it couples the
coordinates for the two electrons. Otherwise, we could try a wave function with
separable coordinates for the two hydrogen atoms.

Following Heitler and London [1], we construct a trial wave function to esti-
mate the binding energy and the bond length of a hydrogen molecule. An obvious
and natural choice is to take wave functions from the hydrogen atom. In the limit
of weakly interacting H atoms, this will surely be correct. Such wave functions
are solutions if we consider only the first two terms in Eq. (8.2). Of course, there
is no reason to believe that such wave functions will be highly accurate when the
atoms form a bond.

For notation purposes, we will define the following:

a(1) = 1√
π

exp(−r1)

b(1) = 1√
π

exp(−|r⃗1 + R⃗|)
a(2) = 1√

π
exp(−|r⃗2 − R⃗|)

b(2) = 1√
π

exp(−r2) (8.3)

where the distance is measured in atomic units (see the appendix on units).
This basis has the following interpretation. The orbital for electron #1 can
be localized on either proton, so we consider two orbitals, a(1) and b(1); the
former is an atomic function localized on proton #1 and the latter is localized
on proton #2. We use the same convention for electron #2. This is appropriate
because we must allow for the possibility of an electron being localized on either
proton. Heitler–London proposed the following wave function for the hydrogen
molecule:

𝜓(r⃗1, r⃗2) = A × [a(1)b(2) + a(2)b(1)] (8.4)
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The constant A is the normalization factor. The wave function 𝜓 allows us to
consider the possibility of electron #1 being on proton #1 and electron #2 being
on proton #2, or vice versa.

At first glance, this wave function appears to violate the Pauli principle. When
we discussed Hartree–Fock, we insisted on writing a many-electron wave func-
tion so that it was antisymmetric: 𝜓(r⃗1, r⃗2) = −𝜓(r⃗2, r⃗1). In Eq. (8.4), this is not
the case as

𝜓(r⃗2, r⃗1) = A × [a(2)b(1) + a(1)b(2)] = 𝜓(r⃗1, r⃗2) (8.5)

Have we made a mistake? No, but this equation is incomplete. We left out spin.
If we write down a wave function for the spin states, we can fix the problem:

𝜒(1, 2) = [𝜒1(↑)𝜒2(↓) − 𝜒1(↓)𝜒2(↑)] (8.6)

The spin states can be up (↑) or down (↓). Here we take a combination that puts
the electrons in opposite spin states. Now the wave function behaves properly as

𝜒(2, 1) = [𝜒2(↑)𝜒1(↓) − 𝜒2(↓)𝜒1(↑)] = −𝜒(1, 2) (8.7)

We form a wave function with both spatial and spin coordinates: Ψ(r⃗1, r⃗2) =
𝜓(r⃗1, r⃗2)𝜒(1, 2) where clearly Ψ(r⃗1, r⃗2) = −Ψ(r⃗2, r⃗1). One could argue that a wave
function could also be written with the spatial part being antisymmetric and the
spin part being symmetric. The arbiter of the two choices is the total energy of
the system. The lower energy state will correspond to the ground state. We shall
see that an antisymmetric spatial part is not energetically favorable.

The energy of the electronic state can be estimated from

EH2
(R) =

∫∫ 𝜓
∗(r⃗1, r⃗2)H(r⃗1, r⃗2)𝜓(r⃗1, r⃗2) d3r1 d3r2

∫∫ 𝜓∗(r⃗1, r⃗2)𝜓(r⃗1, r⃗2) d3r1 d3r2
(8.8)

Since the Hamiltonian does not contain a spin dependence, the spin-dependent
orbitals can be integrated out immediately. While the evaluation of the remain-
ing spatial part of the integral is straightforward, it is surely tedious. We have
normalized the orbitals to unity, so that the integral in the denominator can be
expressed as

∫ ∫ 𝜓
∗(r⃗1, r⃗2)𝜓(r⃗1, r⃗2) d3r1 d3r2 = 2 + 2S2

S = ∫ a(1)b(1) d3r1 = ∫ a(2)b(2) d3r2 (8.9)

The integral, S, is termed an “overlap” matrix as the hydrogen orbitals within the
integral are localized on different sites. It can be written as an integral over the
spherical coordinates (r, 𝜃, 𝜙):

S = 1
π ∫

2𝜋

0
d𝜙∫

𝜋

0
sin(𝜃)d𝜃 ∫

∞

0
r2dr exp(−r) exp

(
−
√

r2 + R2 + 2rR cos(𝜃)
)

(8.10)

This has a solution:

S = exp(−R) (1 + R + R3∕3) (8.11)
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We now have an expression for the wave function as

𝜓(r⃗2, r⃗1) =
[a(2)b(1) + a(1)b(2)]√

2(1 + S2)
(8.12)

The total energy, EH2
, can be expressed as the following integral:

EH2
(R) = 1

2(1 + S2) ∫ ∫ (a(1)b(2) + a(2)b(1))
(

HH1
+ HH2

+ 1
R

− 1|r⃗1 − R⃗| − 1|r⃗2 + R⃗| + 1|r⃗2 + R⃗ − r⃗1|
)
(a(1)b(2) + a(2)b(1)) d3r1d3r2

(8.13)

Before we proceed to address this “messy” integral, we can test the limit
R → ∞. In this limit, S → 0 and a(2)b(1) → 0, i.e. the overlap between the
orbitals vanishes. This leaves

EH2
(R → ∞) = ∫ ∫ (a(1)b(2))

(
HH1

+ HH2

)
(a(1)b(2)) d3r1d3r2 (8.14)

which can easily be rewritten as

EH2
(R → ∞) = ∫ a(1)

(
HH1

)
a(1)d3r1 + ∫ b(2)

(
HH2

)
b(2)d3r2

EH2
(R → ∞) = EH + EH = −1 a.u. (8.15)

The limit is correct. At infinite separation, we obtain the energy of two hydrogen
atoms. This energy limit will serve as our reference energy. The integral for finite
R is really unpleasant. The analytic solution can be written as

EH2
(R) = −1 +

H0 + H1

1 + S2 (8.16)

The first term reflects the energy of the isolated hydrogen atoms. H0 and H1 are
given by

H0 = ∫ ∫ a2(1)b2(2)

(
1
R
− 1|r⃗1 − R⃗| − 1|r⃗2 + R⃗| + 1|r⃗2 + R⃗ − r⃗1|

)
d3r1d3r2

H1 = ∫ ∫ a(1)b(1)a(2)b(2)

(
1
R
− 1|r⃗1 − R⃗| − 1|r⃗2 + R⃗| + 1|r⃗2 + R⃗ − r⃗1|

)
d3r1d3r2

(8.17)

H0 is the Hartree or Coulomb integral as we can consider the charge density of
electron to be given by (a2(1), b2(2)) for electrons (1,2), respectively. H1 is the
exchange integral. The Coulomb and exchange integrals can be evaluated in a
straightforward manner to yield

H0 = 2J + J ′ + 1
R

H1 = 2KS + K ′ + S2

R
(8.18)
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where the following definitions hold:

J = − 1
R
+ exp(−2R)

(
1 + 1

R

)
J ′ = 1

R
− exp(−2R)

( 1
R
+ 11

8
+ 3

4
R + 1

6
R2
)

K = − exp(−R)(1 + R)

K ′ = − exp(−2R)
(
−25

8
+ 23

4
R + 3R2 + 1

3
R3
)
+ 6

R
(S2(𝛾 + ln R)

+ S′2Ei(−4R) − 2SS′Ei(−2R)) (8.19)

and

S′ = exp(R)
(

1 − R + 1
3

R2
)

𝛾 =∫
1

0

1 − exp(−t)
t

dt − ∫
∞

1

exp(−t)
t

dt = 0.577215665…

Ei(x) = − ∫
∞

−x

exp(−t)
t

dt (8.20)

where 𝛾 is the Euler constant and Ei is the exponential integral function. It is
defined by taking the principal value of the integral.

The Heitler–London choice of the wave function results in a bound molecule
as illustrated in Figure 8.2. The Heitler–London binding energy of 3.16 eV per
molecule is too small when compared to a highly accurate calculation of 4.75 eV.
The Heitler–London bond length is also too large, as one might have expected,
given that their computed binding energy is too weak. The computed H—H
bond length is 1.6 bohr units or about 0.85 Å compared to an accurate value of
0.74 Å [1].

Despite errors in the binding energy and bond length, Heitler and London’s
model was a notable success. They showed that quantum mechanics could
account for the formation of a H2 molecule. To do better, they needed better
wave functions. As a simple example instead of assuming a wave function of the
form 𝜓 = exp(−r), they could have taken 𝜓 = exp(−𝛼r) and then found E(𝛼,R).
At each value of R, an optimal value for 𝛼 could be chosen. This improves the
agreement notably. Using this approach, the binding energy increases to about
3.78 eV, a bit too low, but clearly better. The bond length is also improved. It
decreases to 0.75 Å, essentially in exact agreement with the known value [2].

Earlier, we stated that the lowest energy state for the hydrogen molecule
corresponded to a symmetric spatial function times an antisymmetric spin
function. What about using an antisymmetric function for the spatial part and a
symmetric spin function? Such a combination is also antisymmetric overall and
obeys the Pauli principle. We use the following for the spatial part:

𝜓(r⃗2, r⃗1) =
[a(2)b(1) − a(1)b(2)]√

2(1 + S2)
(8.21)
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and a symmetric state for the spin. There are several ways of writing the spin state:

𝜒(1, 2) = 𝜒1(↑)𝜒2(↑)
𝜒(1, 2) = [𝜒1(↑)𝜒2(↓) + 𝜒1(↓)𝜒2(↑)]
𝜒(1, 2) = 𝜒1(↓)𝜒2(↓) (8.22)

Since the Hamiltonian we are considering has no spin, the energy of these three
states is the same and corresponds to spin states with the total spin equal to −1,
0, or +1. In principle, there can be spin in the Hamiltonian, e.g. the electron spin
can interact with a nuclear spin. We will not consider such situations.

It is easy figure out the energy of this triply degenerate state. (The nomenclature
“degenerate” is odd. It means “equal” in physics and does not speak to the moral
quality of the state, and it is never used as verb in this context.) All we need to do
is change the “plus” sign in Eq. (8.16) to a minus sign:

E∗
H2
(R) = −1 +

H0 − H1

1 − S2 (8.23)

where we label the high-energy state by E∗
H2

. In Figure 8.2, we display the ener-
gies for the molecule using the spatial orbitals with symmetric and antisymmetric
behavior. The “antisymmetric” energy, E∗

H2
, is less favorable than the “symmetric”

energy, EH2
, independent of the proton separation, R. An alternative nomencla-

ture (which is widely used) is to refer to these states as antibonding and bonding,
respectively.

8.2 General Basis

Even for the simplest molecule, an analytical solution for the Schrödinger
equation is messy and only possible under special circumstances as with the
Heitler–London choice of wave functions. Most approaches to solving the
electronic structure problem are based on expressing the wave function as a sum
of orbitals or basis functions. We outline the general strategy by considering a
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wave function within a one-electron picture. Our wave function is assumed to
be composed of n basis functions:

𝜓(r⃗) =
n∑

i=1
𝛼i 𝜙i(r⃗) (8.24)

We insert this expression into the Schrödinger, or the Kohn–Sham, equation
where for the moment we do not specify the details of the Hamiltonian:

H𝜓(r⃗) =
n∑

i=1
𝛼i H 𝜙i(r⃗) = E𝜓(r⃗) = E

n∑
i=1

𝛼i 𝜙i(r⃗) (8.25)

Suppose the basis functions form an orthonormal set of functions. If they do not,
we can usually make them so.

∫ 𝜙
∗
i (r⃗)𝜙j(r⃗) d3r = 𝛿ij (8.26)

Now we multiply both sides of Eq. (8.25) by 𝜙
∗
j and integrate:

n∑
i=1

𝛼i ∫ 𝜙
∗
j (r⃗)H 𝜙i(r⃗) d3r = E

n∑
i=1

𝛼i ∫ 𝜙
∗
j (r⃗)𝜙i(r⃗) d3r = E𝛼j (8.27)

We can make this equation simpler by using the following notation:

Hj,i = ∫ 𝜙
∗
j (r⃗)H 𝜙j(r⃗) d3r (8.28)

We note Hij = Hij, which is true if the matrix is real. If not, the matrix can be
made so, at least for molecules. Using this notation, we can write

n∑
i=1

(Hij − E𝛿i,j)𝛼i = 0 (8.29)

We have n such equations as we can take j = 1, 2,… , n. For the sake of illustration,
we take n = 2, which leaves us with two equations for the energy levels, E:

(H11 − E)𝛼1 + H21𝛼2 = 0 j = 1
H12𝛼1 + (H22 − E)𝛼2 = 0 j = 2 (8.30)

This set of equations will only have a solution if the determinant of the coefficients
vanishes; this is the condition for a “nontrivial” solution. A trivial solution would
be 𝛼1 = 𝛼2 = 0, but this is not helpful as our wave function would be identical
to zero! A “zero” wave function clearly cannot be normalized, so we discard that
possibility forthwith.

We solve this equation for a nontrivial solution:

det
||||H11 − E H12

H21 H22 − E
|||| = 0 (8.31)

We consider the simplest case first; we take H11 = H22 = H0 and H12 = H21 = H1.
This yields

E± = H0 ± H1 (8.32)



78 8 Methods for Molecules, Clusters, and Nanocrystals

The respective wave functions correspond to

𝜓± = 1√
2
(𝜙1 ± 𝜙2) (8.33)

This may seem like a very simplified example, but there is some “chemistry” here.
Two orbitals interact and we obtain as many eigenvalues as we have orbitals. (This
will always be true, i.e. we do not lose states. So the number of eigenvalues will be
equal to the number of states in the basis.) One of the solutions involves a sum of
the two orbitals, the other a difference between the two orbitals. This resembles
a solution for the hydrogen molecule where we had “bonding” and “antibonding”
states.

Suppose we are interested in a diatomic molecule with different atomic con-
stituents (A,B) such as an AB diatomic molecule. We can easily accommodate
this situation. We consider and use the following notation: HA = H11, HB = H22,
and HAB = H1. This notation is clear in that if the atoms do not interact, then
HAB = 0 and we obtain the energy solution of E = HA, E = HB, the energy levels
of the isolated atoms. We solve this equation for a nontrivial solution when the
atoms interact:

det
||||HA − E HAB

HAB HB − E
|||| = 0 (8.34)

The solution is obtained by solving the binomial equation in E:

E = E ± ΔEAB (8.35)

where E is the average of the isolated energy levels of the isolated atoms:

E = 1
2
(HA + HB) (8.36)

The interaction of the atoms leads to an energy difference between the lowest and
the highest energy levels of

Ediff = 2ΔEAB = 2 ×
√

(HA − HB)2

4
+ H2

AB (8.37)

Even though it is a simple model, we can use this formula to estimate the
“ionicity” of the chemical bond. Suppose we take an energy scale such that our
zero of energy is E, in which case, HA = −HB. If we have a homopolar molecule,
then HA = HB, which means in this energy scale HA = HB = 0. In contrast, if
the molecule is heteropolar, then we can write ΔH = HA − HB, where ΔH is a
measure of the difference between the energy levels of the atoms A and B and
can be used to define an ionic contribution. Using this notation,

Ediff = 2ΔEAB = 2 ×
√

(ΔH)2

4
+ H2

AB (8.38)

In the limit where ΔH ≫ HAB, Ediff ≈ ΔH , i.e. the difference between the iso-
lated energy levels. This limit corresponds to a molecule with very different con-
stituents. In contrast, if ΔH ≪ HAB, then we have the case where the constituent
atoms are very similar, at least in terms of the isolated energy levels and Ediff ≈
2|HAB|.
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In the case of solids made of two constituent atoms, AB, where the sum of
the valance electrons is 8, e.g. GaAs, ZnSe, and NaCl, this general description
has been used to construct an ionicity scale by considering contributions to the
energy gap between filled and empty states arising from homopolar (covalent)
and heteropolar (ionic) contributions [3].

For a more realistic description, we need to consider the nature of the basis
functions in Eq. (8.24). Standard descriptions of basis or orbital functions center
on analytical functions such as Gaussians, exponentials, and plane waves. Gaus-
sian and plane waves are popular choices as the matrix elements can often be
analytically expressed. One might argue that Gaussian orbitals are more appro-
priate for molecules or clusters as they are localized whereas plane waves are
infinite in extent and more sensible for crystals. Of course, one can take sums and
differences of plane waves to produce a “localized” wave function. This requires
a large number of plane waves, which can result in a computationally difficult
problem. This complication is offset by the simplicity of plane waves and the cor-
responding ease in doing integrals.

8.2.1 Plane Wave Basis

A plane wave basis is a popular choice for crystalline systems. In crystalline mat-
ter, the atoms are periodically arranged. Consider a one-dimensional array of
atoms, each atom the same and separated by a distance a. In this case, the poten-
tial also has a periodic behavior: V (x + a) = V (x). The charge density of this sys-
tem will reflect this symmetry. If 𝜌(x) is the charge density of this system, then
𝜌(x + a) = 𝜌(x). This symmetry enormously simplifies the problem as knowing
the density in a part of the array allows us to know the charge density everywhere.
The relevant part of the array is called a unit cell. In this very elementary example,
the unit cell consists of the space defined within a distance of±a∕2 about an atom.

Quantum mechanics is strange as we know. Quantum solutions associate a
phase with the wave function; this is not a classical concept. Specifically, one
might assume that a periodic wave function, i.e. 𝜓(x + a) = 𝜓(x) , also yields a
charge density: 𝜌(x + a) = |𝜓(x + a)|2 = |𝜓(x)|2 = 𝜌(x) with the correct symme-
try. This form seems a satisfactory choice for a wave function.

However, consider a different choice, exp(i𝜆) 𝜓(x), where 𝜆 is a real number.
This wave function yields exactly the same density, 𝜌(x) = | exp(i𝜆) 𝜓(x)|2 =|𝜓(x)|2, as | exp(i𝜆)|2 = 1 as multiplying a wave function by a phase factor such
as exp(i𝜆) does not change the charge density. As we have noted before, in
quantum mechanics some properties such as the phase of a wave function are
deemed not observable, i.e. they cannot be quantified or measured. “Relative
phases” can be measured and are important in some quantum phenomena, but
this topic is beyond the scope of this discussion. The charge density is a different
matter – unlike a wave function, charge density can be measured and observed.

There is a theorem by Felix Bloch that can handle situations where the potential
is periodic. According to Bloch’s theorem, in a one-dimensional periodic system
the wave function can be assumed to change phase when translated by a distance
a:

𝜓(x + a) = exp(ika)𝜓(x) (8.39)
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The phase factor is now specified by a quantity ka. It is also possible to write
Bloch’s theorem in a different form:

𝜓(x) = exp(ikx) u(x) (8.40)

where there is no phase factor associated with a periodic function: u(x + a) =
u(x). This allows us to write

𝜓(x + a) = exp(ik(x + a))u(x + a) = exp(ika) exp(ikx)u(x + a)
= exp(ika) [exp(ikx) u(x)] = exp(ika)𝜓(x) (8.41)

While one-dimensional periodic systems are useful as a teaching device,
three-dimensional systems are more in tune with real physical systems. It
is straightforward to generalize Bloch’s theorem in one dimension to three
dimensions. We take a potential that is periodic such that V (r⃗ + R⃗) = V (r⃗)
where {R⃗} are lattice vectors. A lattice vector connects two equivalent points in
a crystal. Lattice vectors can be defined as

R⃗ = n1a⃗ + n2b⃗ + n3c⃗ (8.42)

where (a⃗, b⃗, c⃗) define a unit cell, i.e. the parallelepipeds formed by the basis vec-
tors, (n1, n2, n3), are integers. For example, a cubic lattice (or periodic array of
points) would have

a⃗ = ax̂ b⃗ = aŷ c⃗ = aẑ (8.43)

where (x̂, ŷ, ẑ) are unit vectors and a is the spacing between lattice points. Bloch’s
theorem in three dimensions takes the form:

𝜓k⃗(r⃗ + R⃗) = exp(ik⃗ ⋅ R⃗) 𝜓k⃗(r⃗) (8.44)

The wave vector, k⃗, labels each state. This is analogous to the case of a hydro-
gen atom. The spatial wave function of the atom is labeled by quantum numbers:
(n, l,m). Here, the states are labeled by (kx, ky, kz). The wave vector is related to
momentum in the limit of a free electron.

Suppose we want to expand a wave function for a crystal in plane waves within
Bloch’s theory. Entire textbooks are written on this topic [4]. Here, we will sketch
out the main issues.

For the moment, we consider a set of plane wave vectors with an unspecified
set of plane waves: {G⃗}:

𝜓k⃗(r⃗) = exp(ik⃗ ⋅ r⃗)
∑

G⃗

𝛼(k⃗, G⃗) exp(iG⃗ ⋅ r⃗) (8.45)

where the sum is over this set of vectors, {G⃗}, and 𝛼(k⃗, G⃗) are coefficients for the
plane wave basis. This will work if Bloch’s theorem holds:

𝜓k⃗(r⃗ + R⃗) = exp(ik⃗ ⋅ R⃗) 𝜓k⃗(r⃗) (8.46)

Or, better if the following holds:∑
G⃗

𝛼(k⃗, G⃗) exp
(

iG⃗ ⋅ (r⃗ + R⃗)
)
=
∑

G⃗

𝛼(k⃗, G⃗) exp(iG⃗ ⋅ r⃗) (8.47)
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This clearly will hold for

exp(iG⃗ ⋅ R⃗) = 1 (8.48)

This condition defines the set of vectors {G⃗}, which are known as reciprocal lat-
tice vectors. One can define a set of reciprocal vectors given by

G⃗ = m1A⃗ + m2B⃗ + m3C⃗ (8.49)

where the set (A⃗, B⃗, C⃗) generates a lattice in reciprocal space. These vectors are
defined by

A⃗ = 2𝜋
Ω

b⃗ × c⃗ B⃗ = 2𝜋
Ω

c⃗ × b⃗ C⃗ = 2𝜋
Ω

a⃗ × b⃗ (8.50)

where Ω is the unit cell volume. Note that Ω = |a⃗ ⋅ b⃗ × c⃗| from elementary vector
analysis. It is easy to show that

A⃗ ⋅ a⃗ = 2π A⃗ ⋅ b⃗ = 0 A⃗ ⋅ c⃗ = 0

B⃗ ⋅ a⃗ = 0 B⃗ ⋅ b⃗ = 2π B⃗ ⋅ c⃗ = 0

C⃗ ⋅ a⃗ = 0 C⃗ ⋅ b⃗ = 0 C⃗ ⋅ c⃗ = 2π (8.51)

By construction, these vectors have the property:

G⃗ ⋅ R⃗ = 2π(n1m1 + n2m2 + n3m3) (8.52)

and

exp(G⃗ ⋅ R⃗) = exp(2π(n1m1 + n2m2 + n3m3)) = 1 (8.53)

as we desired. For a cubic lattice in real space, the reciprocal lattice vectors are

A⃗ = 2π
a

x̂ B⃗ = 2π
a

ŷ C⃗ = 2π
a

ẑ (8.54)

We can use reciprocal lattice vectors to directly express any periodic function.
For example, we can write the potential as follows:

V (r⃗) =
∑

G⃗

V (G⃗) exp(ir⃗ ⋅ G⃗) (8.55)

where the Fourier coefficients, V (G⃗), can be determined by

V (G⃗) = 1
Ω ∫ V (r⃗) exp(−ir⃗ ⋅ G⃗)d3r (8.56)

This can be considered a Fourier series in three dimensions. The periodicity is
evident by recognizing

V (r⃗ + R⃗) =
∑

G⃗

V (G⃗) exp(i(r⃗ + R⃗) ⋅ G⃗)

V (r⃗ + R⃗) =
∑

G⃗

V (G⃗) exp(ir⃗ ⋅ G⃗) exp(iR⃗ ⋅ G⃗) = V (r⃗) (8.57)

Suppose we place some atoms in our unit cell. The unit cell is specified by the
lattice vectors {R⃗} and the atoms within the unit cell by a basis. In general, crystal



82 8 Methods for Molecules, Clusters, and Nanocrystals

structures are defined by (i) a unit cell and (ii) a basis. One considers a periodic
array of lattice points and associates some atomic configuration with each lattice
point. We can assign the atomic positions by considering a set of atoms specified
by a set of vectors: {𝜏}.

Let us consider an elemental crystal where at each atomic site we place a poten-
tial, Va(r⃗). The crystalline potential for such a crystal is given by

V (r⃗) =
∑
R⃗,𝜏

Va(r⃗ − R⃗ − 𝜏) (8.58)

Using the definition given in Eq. (8.56), it is really easy to show that we can write
this as

V (r⃗) =
∑

G⃗

S(G⃗)Va(G) exp(iG⃗ ⋅ r⃗) (8.59)

where S(G⃗) is called the structure factor and Va(G) is called the form factor. The
structure factor is given by

S(G⃗) = 1
Na

∑
𝜏

exp(iG⃗ ⋅ 𝜏) (8.60)

where Na is the number of atoms in the cell. The form factors are given by

V (G) = 1
Ωa ∫ Va(r⃗) exp(ir⃗ ⋅ G⃗)d3r (8.61)

where Ωa is the atomic volume, i.e. Ω = NaΩa. We have made an additional
assumption here. The atomic potential is taken to be spherically symmetric:
Va(r⃗) = Va(r). For many systems, this assumption is not a bad approximation.
As a consequence, we can write Va(G⃗) = Va(G).

Example 8.1 The Empirical Pseudopotential Method Applied to Diamond
Structure Semiconductors We can illustrate a simplified approach using pseu-
dopotentials. This approach is called the “empirical pseudopotential method” or
EPM. The EPM provided the first realistic description of energy bands for semi-
conducting crystals and stands as a remarkable advance in understanding the
electronic and optical properties of semiconductors [5, 6]. The method works
very well for several reasons. First, the crystals in question are highly symmetric.
This attribute reduces the number of degrees of freedom. In some cases, symme-
try considerations result in a structure factor that vanishes, so the form factor is
irrelevant since it is multiplied by zero. Second, pseudopotentials often quickly
converge in reciprocal space. This allows us to terminate the sum over recipro-
cal vectors with a manageable number of terms. For elemental crystals such as
silicon, the number can be just three.

Elements such as carbon, silicon, and germanium form in the diamond struc-
ture. The diamond structure is illustrated in Figure 8.3. Each atom is fourfold
coordinated, i.e. each atom has four neighbors. The low coordination of such a
structure is a “signature of quantum mechanics” as pair-wise forces cannot repli-
cate such a structure, at least not physically “sensible” pairwise potentials. The
forces holding the diamond crystal together are covalent bonds. One covalent
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Figure 8.3 Structure of a diamond crystal.

bond holds two electrons and there are two bonds per atom (or four bonds per
atom – with each bond shared by two atoms).

The structure of the diamond crystal can be constructed using unit cells that
are either “conventional” or “primitive.” The conventional unit cell of the diamond
structure is cubic with the length of the edge given by the lattice parameter, a.
Eight atoms are contained within the cell. The reciprocal lattice vectors are easy
to represent because they form an orthogonal set. The “primitive cell” contains
only two atoms, and would seem like a better choice, but the cell is not cubic.
Nonetheless, it is the one commonly used in calculations as the number of states
per cell is reduced by a factor of 4 and the computation load is notably reduced.

For a primitive unit cell, the lattice vectors are the same as for a face-centered
cubic crystal.

a⃗ = a(ŷ + ẑ)∕2 b⃗ = a(x̂ + ẑ)∕2 c⃗ = a(x̂ + ŷ)∕2 (8.62)

If we look at the lattice points so generated and place an atom on each point, we
would replicate the face-centered cubic crystal. The diamond crystal possesses
the same lattice points, but associates two atoms with each lattice point. The basis
for the diamond crystal can be chosen as

𝜏1 = −a(1, 1, 1)∕8 𝜏2 = a(1, 1, 1)∕8 (8.63)

The combination of a lattice and a basis define a crystal structure.
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We can generate the reciprocal lattice vectors for diamond using the formulae
in Eq. (8.50). This yields the following:

A⃗ = 2π
a
(−x̂ + ŷ + ẑ) B⃗ = 2π

a
(x̂ − ŷ + ẑ) C⃗ = 2π

a
(x̂ + ŷ − ẑ) (8.64)

This nonorthogonal triad of vectors complicates the description of reciprocal
space. If we form reciprocal lattice vectors from

G⃗ = n1A⃗ + n2B⃗ + n3C⃗ (8.65)

we write the reciprocal lattice vectors, G⃗, for the diamond structure in Cartesian
coordinates as

G⃗ = 2π
a
(n, l,m) (8.66)

where unlike a simple cubic crystal the indices (n, l,m) are not arbitrary integers.
There are rules to be obeyed! It is easy to show that the integers must be either all
odd or all even, e.g. G⃗ = 2π

a
(1, 1, 0) is not allowed, but G⃗ = 2π

a
(2, 0, 0) is permitted.

It is convenient to organize the G⃗-vectors for the diamond crystal by their mag-
nitude squared in units of (2π∕a)2. In this scheme,

G2 = (2π∕a)2[0, 3, 4, 8, 11, 12,…] (8.67)

are allowed magnitudes for the smallest vectors. Sometimes workers in the field
just write G2 = 0, 3, 4, 8,… understanding that there is an implicit prefactor of
(2π∕a)2. To be specific, the smallest allowed value for G2, which is not zero, comes
from G⃗ = 2π

a
(1, 1, 1) and all sign permutations as the system is cubic.

The G⃗-space sets up the symmetry of the crystal in reciprocal space accom-
panied by the form factor, S(G⃗). The structure factor for the diamond structure
is

S(G⃗) = cos
(

G⃗ ⋅ 𝜏
)
= cos

(π
4
(l + m + n)

)
(8.68)

For some values of G, this structure factor vanishes, e.g. if G⃗ = (2π∕a)(2, 0, 0),
then G⃗ ⋅ 𝜏 = π∕2 and S(G⃗) = 0. If the structure factor vanishes, the corresponding
form factor, V (G), does not matter. Physically, contributions of these plane waves
cancel out and cannot contribute to electronic potentials. In the case of diamond
structure, this eliminates the G2 = 4, 12 form factors. Also, the G2 = 0 factor is
not important for spectroscopy as V (0) corresponds to the average potential and
serves only to shift all the energy bands by a constant energy. For cohesive ener-
gies or ionization energies where an absolute reference is required, the shift is
important.

The rapid convergence of the pseudopotential in Fourier space coupled with
the vanishing of the structure factor for certain G⃗s means that only three form
factors are required to fix the energy bands for diamond semiconductors such
as Si and Ge: V a

p (G2 = 3), V a
p (G2 = 8), and V a

p (G2 = 11). These form factors are
treated as adjustable parameters and can be fixed by comparisons to reflectivity
measurements or photoemission experiments [5]. In Table 8.1, we list empirical
pseudopotential form factors for silicon and germanium.
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Table 8.1 Empirical potentials.

Potentials (Ry)

Elements Lattice constant (Å) V(3) V(8) V(11)

Si 5.43 −0.21 0.04 0.08

Ge 5.66 −0.23 0.01 0.06

We can use these parameters to solve for the electronic structure of Si and Ge
crystals by solving an eigenvalue problem. We write(

−ℏ2

2m
+ Vp(r⃗)

)
𝜓nk⃗(r⃗) = En(k⃗) 𝜓nk⃗(r⃗) (8.69)

where Vp is the pseudopotential expressed as in Eq. (8.59). We use the same
approach as for the general basis problem. We expand the wave functions in
a basis and utilize the orthonormal character of the basis to set up a secular
equation. We write

𝜓k⃗(r⃗) = exp(ik⃗ ⋅ r⃗)
∑

G⃗

𝛼(k⃗, G⃗) exp(iG⃗ ⋅ r⃗) (8.70)

and choose an element of the basis: exp(−iG⃗′ ⋅ r⃗) and make use of orthonormality:

1
Ω ∫ exp(i(G⃗ − G⃗′) ⋅ r⃗) d3r = 𝛿G⃗,G⃗′ (8.71)

where Ω is the crystal volume. We use a plane wave basis in Eq. (8.69), multiply
both sides of the equation by exp(−iG⃗′ ⋅ r⃗), and integrate. The result is a secular
equation of the form:

det
|||||
(

ℏ
2

2m

(
k⃗ + G⃗

)2
− E

)
𝛿G⃗,G⃗′ + S(G⃗ − G⃗′)Va

(
G⃗ − G⃗′

)||||| = 0 (8.72)

There are standard methods for determining the eigenvalues or energy levels for
this determinant. We will not discuss them here, but in the following section.

There is one subtle point. Namely, the set of {G⃗} is terminated by the matrix
size so that |k⃗ + G⃗|2 is less than some specified cutoff: Qmax. This cutoff defines
the overall accuracy of the solution. For a material such as Si or Ge, the pseu-
dopotential form factors decay rapidly and one can use Qmax ≈ (2π∕a) × 4 and
calculate an accurate energy band structure.

The solution of Eq. (8.72) yields the eigenvalues for any given k⃗-point. These
eigenvalues are commonly labeled by an index n where n = 1, 2, 3,… and the
k⃗, i.e. the eigenvalues are labeled En(k⃗). Since these eigenvalues as a function
of k⃗ form continuous levels, they are called energy bands, where n is called
the band index. Owing to the three-dimensional character of En(k⃗), display-
ing the bands becomes problematic. Typically one chooses high symmetry
directions and plots the corresponding bands. The energy band structure
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Figure 8.4 Energy band
structure for the Ge crystal.
The energy zero is taken to
be the valence band
maximum. Only the bands
near the band gap are
shown.

for germanium is shown in Figure 8.4. The discrete nature of the calculated
eigenvalues is shown by the dots. If we take more wave vectors along the
symmetry directions, these dots would eventually merge to form an energy
band.

In Figure 8.4, several directions for k⃗ are shown along high symme-
try directions. For historical reasons, Greek and Roman letters are used
to mark high symmetry points for k⃗. The point k⃗ = 0 is called “Γ,” the
k⃗ = (2π∕a)(1∕2, 1∕2, 1∕2) point is called “L,” the k⃗ = (2π∕a)(1, 1, 1) point is
called “X,” and the k⃗ = (2π∕a)(3∕4, 3∕4, 0) point is called K . Thus, points from
Γ to L are along the (111) direction and points from Γ to X are along the (100)
direction.

The electronic structure of a solid such as germanium is very different than a
germanium atom in which discrete levels occur. In crystalline germanium, there
are energy levels for a given k⃗. These levels will vary with the wave vector as shown
in the figure. Each eigenvalue solution can hold two electrons. There are a total of
eight electrons in the unit cell and four occupied eigenstates or energy bands. In
Ge, there are four filled energy bands, an energy gap, and then empty bands. The
filled or occupied bands are called valence bands and the empty states are called
conduction bands.

Insulators or semiconductors have an energy gap between the valence and con-
duction bands called the “band gap.” The size of the band gap determines whether
a crystal is an insulator or a semiconductor. If the band gap is small, typically less
than a few electronvolts, the crystal is a semiconductor; otherwise, the crystal is
an insulator. For example, germanium has a band gap of approximately 0.7 eV, so
it is a semiconductor. Since most of the interesting optical and transport proper-
ties occur near the top of the valence band and bottom of the conduction band,
often the energy bands are shown in more detail near the gap. This is illustrated
in Figure 8.5.
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Figure 8.5 Energy band
structure for the Ge crystal.
The energy zero is taken to
be the valence band
maximum. Only the bands
near the band gap are
shown.
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An insulator such as quartz (silicon dioxide) has a band gap of over 8 eV. Owing
to the large band gap quartz is transparent. Visible light is composed of photons
with roughly 1.5–3 eV. The absorption of a photon from visible light is not suf-
ficient to excite an electron from an occupied state to an empty state and the
photon passes unabated through the quartz crystal. In contrast, a similar photon
will be absorbed by a germanium crystal. Germanium crystals are opaque and
appear as metallic gray.

Accurate calculations of energy band structure for crystals are very useful
guides for understanding optical and dielectric properties, especially for elec-
tronic materials. The success of the EPM is remarkable and stands as one of the
notable achievements in the study of condensed matter. Without the EPM, our
understanding of semiconducting materials would be likely to be set back by
a generation. However, our focus here is not on the energy bands of solids per
se. There are superb references in the literature for energy bands, especially for
semiconductors [6].

8.2.2 Plane Waves Applied to Localized Systems

Plane wave based methods for energy bands of electronic materials such as sili-
con and germanium are easy to implement and widely applicable. Coupled to the
EPM, they lead to the realistic energy band structures for semiconductors and
simple metals, and can even be applied to transition metals. However, there are
issues with plane waves for systems that lack periodicity. The simplicity of Bloch’s
theorem no longer holds, and k⃗ is no longer a good quantum number. Moreover,
a basis of plane waves is infinite in extent and appears to be a poor choice to
describe a finite or localized system such as a molecule or a cluster of atoms. So
one might ask, why did we choose to emphasize this approach?

Fortunately, there is a workaround that allows one to continue using plane
waves to form a basis [7]. Suppose we are interested in a small cluster of silicon, i.e.
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Figure 8.6 Supercell
geometry for an atomic
cluster.

several atoms of silicon acting in isolation. We place this cluster in a large cell (a
“supercell”) and surround it by vacuum. We then periodically repeat the cell and
fill up all space. We now have a periodic array of clusters. Even though the peri-
odicity is an artifact, we can now use the same tools as for a crystal. A schematic
of this geometric construction is presented in Figure 8.6. If the vacuum region
is sufficiently large, the clusters will not interact with each other. A solution to
this set of problems corresponds to a periodic array of isolated clusters and the
electronic structure of this system will correspond to that of an isolated cluster.
Bloch’s theorem will hold, although the wave vector k⃗ will no longer have any
meaning.

There are some notable advantages to this method. All the tools developed for
solving for the electronic structure of a crystal are at our disposal and the method
is easy to implement. We just have to be careful to leave enough empty space
around the system of interest.

There are a few drawbacks in using this method. If the empty space or selvage
region between the molecules or clusters is not sufficiently large, there will be
an interaction between neighboring cells. This results in the energy levels for
the molecule or cluster having dispersion, i.e., the energy levels become energy
“bands.” This can always be tested by examining the energy levels at different k⃗
points. If the dispersion is too large, the cells can be made larger. Of course, a
larger cell requires more plane waves to converge. This is wasteful as the extra
plane waves are only used to describe the free space. There is another subtle
reason for not wanting to use supercells. Suppose we want to charge the isolate
system; e.g. suppose we want to compute the electron affinity of the molecule by
adding an extra electron. If the supercell is not a neutral object, the electrostatic
interactions of the cell with other cells will diverge. There are prescriptions for
removing the divergences, but it is better to avoid them from the start. A technical
drawback also exists. When we solve the electronic structure with plane waves,
various matrix elements are required. These elements often represent the Fourier
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transform of a wave function or potential term. Fast Fourier transforms can be
used to evaluate the wave function or potential. One might think that such trans-
forms are “fast” as the name implies. This need not be true. Modern computers
are slowed down by “global” communications that occur with plane waves.

8.3 Solving the Eigenvalue Problem

In our previous examples, we solved an “eigenvalue” problem. These problems
can be written as

ℋ𝜓n = En𝜓n (8.73)

There are several ways to solve eigenvalue problems. We consider the following
procedure. Suppose we could expand the eigenvalues as follows:

𝜓n =
N∑

j=1
an,j𝜙j (8.74)

where 𝜙j is a “basis,” e.g. a set of Gaussians or plane waves. Let us assume (yet
again) the following:

∫ 𝜙
∗
i 𝜙j d3r = 𝛿ij (8.75)

This is usually the case. Assuming that the functions are normalizable, we can
always make them so. We can also make sure that they are orthogonal using stan-
dard methods. We used a similar procedure to illustrate the variational theorem.
Using the wave functions in Eq. (8.73), we have the following:

ℋ
N∑

j=1
an,j𝜙j = En

N∑
j=1

an,j𝜙j (8.76)

We now multiply both sides by 𝜙
∗
k and integrate. We get the following:

N∑
j=1

an,jℋkj = En an,k (8.77)

where

ℋkj = ∫ 𝜙
∗
kℋ𝜙j d3r (8.78)

and we have made use of the orthogonality of the wave function basis. Eq. (8.77)
can be recast as a matrix equation:

HΨ = ΨΛ (8.79)

The matrix elements of the Hamiltonian matrix, H , are such that Hij = H∗
ji , i.e. the

complex conjugate of the transposed matrix element is invariant. Such matrices
are called “Hermitian” and this property ensures that the eigenvalues En are real
(this is not hard to prove). In most cases, we will have matrix elements that are
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real, which implies that the matrix is symmetric. For the wave function matrix,
Ψ, we have

Ψ =
⎛⎜⎜⎜⎝

a11 a21 … aN1
a12 a22 · · · ⋮
⋮ ⋮ ⋱ ⋮

a1N · · · · · · aNN

⎞⎟⎟⎟⎠ (8.80)

Each column represents the coefficients for a given eigenvalue where the matrix
Λ represents a diagonal matrix containing the corresponding eigenvalues:

Λ =
⎛⎜⎜⎜⎝
E1 0 … 0
0 E2 · · · ⋮
⋮ ⋮ ⋱ ⋮
0 · · · · · · EN

⎞⎟⎟⎟⎠ (8.81)

The size of the matrix, N × N , is determined by the number of eigenvalues. For
example, if we expand the wave function in 100 plane waves, the matrix would be
100×100.

There are several ways to solve such a matrix equation. Let us consider the case
for a two by two matrix, i.e. one in which there are only two eigenvalues.(

H11 H12
H21 H22

)(
a11 a21
a12 a22

)
=
(

a11 a21
a12 a22

)(
E1 0
0 E2

)
(8.82)

This can be split into two equations:(
H11 H12
H21 H22

)(
a11
a12

)
= E1

(
a11
a12

)
(8.83)

and (
H11 H12
H21 H22

)(
a21
a22

)
= E2

(
a21
a22

)
(8.84)

We have handled this before in Eq. (8.38). For a nontrivial solution we need to
have the following determinant vanish:

det
||||H11 − E H12

H21 H22 − E
|||| = 0 (8.85)

This will yield two roots corresponding to E1 and E2. Once we know the roots we
can solve for the coefficients, aij. For example, if we know E1, then

a11 =
−H12

H11 − E1
a12

This condition, plus a normalization condition, a2
11 + a2

12 = 1, is sufficient to
determine the expansion coefficients.

For a general case, the eigenvalue problem may involve matrices of notable size,
e.g. if we want to know the eigenvalues for a 10 000 atom cluster of silicon, we
might need to find 20 000 eigenvalues. Here we illustrate the essential features of
a powerful method, called the “power method,” to solve for the eigenvalues.

Suppose we knew the eigenfunctions; we label them as 𝜓j and consider an
approximate solution for the largest eigenvalue, E1. We will assume bound states
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so that the magnitude of E1 is the largest (negative) eigenvalue we seek. We
expand the corresponding wave function 𝜙1 as follows:

𝜙1 =
N∑

j=1
cj𝜓j (8.86)

We operate on this state with the Hamiltonian matrix:

H𝜙1 =
N∑

j=1
cj H 𝜓j =

N∑
j=1

cj Ej 𝜓j (8.87)

where we have used H𝜓n = En𝜓n. We factor out the largest eigenvalue:

H𝜙1 = E1

(
c1𝜓1 +

N∑
j=2

cj (Ej∕E1)𝜓j

)
(8.88)

Suppose we define a new eigenvector:

𝜙
(1)
1 =

(
c1𝜓1 +

N∑
j=2

cj (Ej∕E1)𝜓j

)
(8.89)

We can repeat this operation again using the new eigenvector:

H𝜙
(1)
1 = E1

(
c1𝜓1 +

N∑
j=2

cj (Ej∕E1)2
𝜓j

)
(8.90)

Suppose we keep repeating this operation using an updated eigenvector and we
do the operation k times:

H𝜙
(k)
1 = E1

(
c1𝜓1 +

N∑
j=2

cj (Ej∕E1)k
𝜓j

)
(8.91)

Since E1 is the largest eigenvalue Ej∕E1 < 1 and (Ej∕E1)k → 0 for all j ≠ 1 in the
limit of large values of k. In this limit, we have

H𝜙
(k)
1 = E1𝜙

(k)
1 (8.92)

In short, if we keep applying H to an approximate eigenvector, we can eventually
extract the largest eigenvalue. This method is known as the “power method.” It is
a practical approach to finding eigenvalues.

This is all well and good, provided we only want the largest eigenvalue. How-
ever, in general we want more, a lot more. We can use a simple operation for
doing this. Suppose we wish to compute the second largest eigenvalue, which we
will label E2. We can do the following. We orthogonalize our approximate wave
function to the lowest one. Let us take

𝜙2 =
N∑

j=1
bj𝜓j (8.93)

However, we now orthogonalize this eigenfunction so that

�̃�2 = 𝜙2 − (𝜓T
1 𝜙2)𝜓1 (8.94)
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We operate with H on this eigenstate to obtain

H�̃�2 = H𝜙2 − (𝜓T
1 𝜙2)H𝜓1 =

N∑
j=1

bjEj𝜓j −

(
𝜓

T
1

N∑
j=1

bj𝜓j

)
E1𝜓1 (8.95)

which can be arranged to yield

H�̃�2 = b1E1𝜓1 +
N∑

j=2
bjEj𝜓j − b1E1𝜓1 = E2

(
b2𝜓2 +

N∑
j=3

bj(Ej∕E2)𝜓j

)
(8.96)

We have made use of (𝜓T
1 𝜓j) = 0 . We illustrated the orthogonality in Chapter 6;

see Eq. (6.5). If the eigenstates are degenerate, they can also be made orthogonal
to each other. As before, if we apply H to generate new eigenstates k times, then
we get the following:

H�̃�2 = E2

(
b2𝜓2 +

N∑
j=3

bj(Ej∕E2)k
𝜓j

)
(8.97)

Since the sum starts with j = 3, we have (Ej∕E2)k → 0 for large k as before. In this
case,

H�̃�2 = E2�̃�2 (8.98)

We can keep doing this operation until we have as many eigenstates as we want,
i.e. we keep orthogonalizing the state of interest to the lower energy state and
operate on the state until the desired eigenvalue is obtained.

8.3.1 An Example Using the Power Method

We can illustrate the operation here with an example. We take the following
problem:

H =
⎛⎜⎜⎝
−6 1 0
1 −4 1
0 1 −4

⎞⎟⎟⎠
We choose a “random” initial state:

𝜙1 =
⎛⎜⎜⎝
1
1
1

⎞⎟⎟⎠
We then take the product of H𝜙1:

𝜙
(1)
1

=
⎛⎜⎜⎝
−5
−2
−3

⎞⎟⎟⎠
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We note that if 𝜙i is an eigenstate, then c𝜙1 is also one. It makes it easy to read off
the eigenvalue by always normalizing the first element to unity. We do this to get

𝜙
(1)
1

=
⎛⎜⎜⎝

1
2∕5
3∕5

⎞⎟⎟⎠
and find H𝜙

(1)
1 :

𝜙
(2)
1

=
⎛⎜⎜⎝
−18∕5

0
−2

⎞⎟⎟⎠
Again, we normalize the next eigenstate so that

𝜙
(2)
1

=
⎛⎜⎜⎝

1
0

5∕14

⎞⎟⎟⎠
Operating by H yields

𝜙
(3)
1

=
⎛⎜⎜⎝

−6
19∕14
−10∕7

⎞⎟⎟⎠
To summarize, the first operation of H produced −5 and the second operation

produced −5 3
5

and the third yielded −6. We can keep this up, but the fractions
start getting messy. After about ten applications, we get E1 ≈ −6.47. The exact
value is E1 = −6.48. The convergence is not very rapid in this case, but the
operations are easy to compute. Once we know the eigenvalue, we can find the
eigenstate. After a number of iterations, we would find

𝜙1 =
⎛⎜⎜⎝

1
−0.4811
0.1939

⎞⎟⎟⎠
We can now use this state to find the next eigenvalue, E2. We orthogonalize our

initial guess to this state:

�̃�2 = 𝜙2 − (𝜙T
1𝜙2)𝜙1

When we do this operation, we need to make sure that (𝜙T
1𝜙1) = 1. We renormal-

ize 𝜙1:

𝜙1 =
⎛⎜⎜⎝

0.8877
−0.4271
0.1721

⎞⎟⎟⎠
We can use the same initial guess for 𝜙2 as before. But we can choose a different
state if we like. We take

𝜙2 =
⎛⎜⎜⎝

0
1
−1

⎞⎟⎟⎠
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We do this so that our guess is orthogonal to our original guess, but this is not
necessary. Any guess will do as long as the guess does not correspond to 𝜙1! We
find our �̃�2 from

�̃�2 =
⎛⎜⎜⎝

0
1
−1

⎞⎟⎟⎠ −
(
0.8877 −0.4271 0.1721

) ⎛⎜⎜⎝
0
1
−1

⎞⎟⎟⎠
⎛⎜⎜⎝

0.8877
−0.4271
0.1721

⎞⎟⎟⎠ =
⎛⎜⎜⎝

0.5319
0.7441
−0.8969

⎞⎟⎟⎠
We renormalize this (yet again) so that the lead term is unity:

�̃�2 =
⎛⎜⎜⎝

1
1.3989
−1.6862

⎞⎟⎟⎠
We then form H�̃�

(1)
2 to get

H�̃�
(2)
2 =

⎛⎜⎜⎝
−4.6012
−6.2818
8.1436

⎞⎟⎟⎠
We then normalize this function to

�̃�
(3)
2 =

⎛⎜⎜⎝
1

1.3653
−1.7699

⎞⎟⎟⎠
This update is still orthogonal to the known solution 𝜙1. Again we form the prod-
uct, H�̃�

(3)
2 , to get

H�̃�
(3)
2 =

⎛⎜⎜⎝
−4.6347
−6.2309
8.4448

⎞⎟⎟⎠
After repeating this operation and checking the orthogonalization, the eigenvalue
for E2 will converge to −4.69. This is a slow operation. Our first estimates for E2
were −4.60 and −4.63. The correct and normalized value for 𝜙2 is

𝜙2 =
⎛⎜⎜⎝
−0.3971
−0.5207
0.7558

⎞⎟⎟⎠
We perform one more operation to estimate E3. For �̃�3, we want to make sure

our initial guess is orthogonal to 𝜙1 and 𝜙2. This way, the power method will not
converge to either of the first two eigenvalues. We again take an initial guess for
𝜙3 and perform the following operation:

�̃�3 = 𝜙3 − (𝜙T
1𝜙3)𝜙1 − (𝜙T

2𝜙3)𝜙2

We take our initial guess to be

𝜙1 =
⎛⎜⎜⎝
1
0
0

⎞⎟⎟⎠
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This yields our first attempt for 𝜙(1)
3 (after normalizing the first element to unity

as before):

𝜙
(1)
3 =

⎛⎜⎜⎝
1

3.1708
2.7100

⎞⎟⎟⎠
Forming the product H𝜙

(1)
3 yields

H𝜙
(1)
3 =

⎛⎜⎜⎝
−2.8296
−8.9730
−7.6693

⎞⎟⎟⎠
Our first estimate for E3 is −2.83. The correct value is −2.93. The reader can guess
why this might be so. We only have so many degrees of freedom and by insisting
the eignvector 𝜙3 be orthogonal to 𝜙1 and 𝜙2 we use them up!

The power method lies at the heart of most modern electronic structure codes.
The repeated application of H on an eigenstate is a standard operation, which is
easily implemented on modern computational platforms.

Of course, the method is not as easy as we have implied. In our example, the
largest eigenvalue was the most negative. Suppose we had a system where the
largest eigenvalue is not the one we want; e.g. suppose we consider a system
where a large positive eigenvalue exists. There are methods for finding such
eigenvalues. Most use a method related to the power method illustrated here [8].
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9

Engineering Quantum Mechanics

I’ll bet any quantum mechanic in the service would give the rest of his life to
fool around with this gadget.

— Chief Engineer Quinn in the Forbidden Planet

Understanding and designing structural materials is based on Newton’s laws.
These laws concern the study of statics – forces, constraints, equilibria, bridge
building – and are standard fare for mechanical engineers. Likewise, designing
electronic applications and devices is largely based on Maxwell’s equations. These
questions cover the study of electronics – conduction, transport, electronic
motors, and switches – and are standard fare for electrical engineers. However,
the engineering of materials based on quantum mechanics is different. Typically,
universities do not have Departments of Quantum Mechanical Engineering as
they have Departments of Mechanical Engineering or Departments of Electric
Engineering. This situation is largely because scientists and engineers have yet
to fully address Dirac’s challenge so that they can routinely apply “practical
methods of quantum mechanics” to design new materials and applications
thereof.

In this chapter, we introduce a “practical” method for applying quantum
mechanics to localized systems such as atoms, molecules, clusters, and nanopar-
ticles. These practical methods are not at the level of those developed for, say,
mechanical engineering. Yet, the pathway is at least partially illuminated for
progress in this area. Our focus will be on methods that can be implemented
using simple computational algorithms that can be executed using modest
computational means, e.g. a laptop computer.

9.1 Computational Considerations

We have stressed that the combination of pseudopotentials and density func-
tional theory offers a workable methodology for computing the electronic struc-
ture and energetics of materials.

We focus on engineering methods to solve the Kohn–Sham equation:(
−ℏ2∇2

2m
+ V ion

p (r⃗) + VH(r⃗) + Vxc[n(r⃗)]
)

𝜙i(r⃗) = Ei𝜙i(r⃗) (9.1)

Introductory Quantum Mechanics with MATLAB® : For Atoms, Molecules, Clusters, and Nanocrystals,
First Edition. James R. Chelikowsky.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.



98 9 Engineering Quantum Mechanics

where the notation is the same as in Eq. (7.33), except that we have replaced the
nuclear potential with the ionic pseudopotential. The Kohn–Sham equation is
solved by a self-consistent cycle as illustrated in Figure 7.3. The only difference
here is that the nuclear potential is now an ionic pseudopotential.

We have indicated in previous chapters how this equation might be solved for
a crystal. We could expand the wave functions in a basis, e.g. plane waves, set
up a secular equation, and solve the resulting eigenvalue problem. For crystalline
matter, this makes good sense as we illustrated in Chapter 8 (see Figure 8.5) as
the periodic nature of signs and cosines can be used to reflect the translational
symmetry of a crystal.

For non-crystalline matter such as a cluster, the use of plane waves is more
problematic. While plane waves are easy to implement, which is a great asset, the
basis is infinite in extent whereas a cluster is finite. This is an inherent mismatch
in length scales, which has some notable negative consequences such as requiring
the use of many plane waves to describe the potential in a vacuum region.

Still, one can use plane waves for a cluster or some other finite system. We indi-
cated a viable approach by placing the cluster of interest in a large supercell, which
retains periodicity albeit in an artificial way. This approach, while simple, has sev-
eral physical downsides as in having spurious interactions between neighboring
cells (see Section 8.2.2). One notable downside is “computational.” Consider a
large cluster. Suppose we modify the position of an atom on the exterior of a
nanostructure. A plane wave description of this modification would require us to
consider modifications in the basis over the entire system as the basis is infinite
in extent. Global communications can notably reduce computational efficiency
in contemporary computers.

Localized bases are more efficient as they reduce communications. The basis
around a particular atom can be modified without changing the basis on distant,
noninteracting atoms. However, localized bases have their drawbacks. They are
often difficult to implement. When an atom is moved, the localized basis moves
with the atom. Forces due to changes in the convergence as the atoms are moved
are called Pulay forces [1]. The basis needs to be rechecked for convergence every
time the structure is altered, although in practice this is rarely done. While local-
ized bases result in smaller matrices, the matrix elements can be complicated to
compute and the resulting matrix, while small, is dense.

We focus on real-space methods for these reasons. Real-space methods do not
require the need for global communications, similar to a plane wave basis. In
real-space methods, the “basis” is not infinite in extent and does not require the
use of supercells, i.e. charged clusters can be examined without the use of a com-
pensating background.

However, the matrix is large in real-space methods. Suppose we consider a cube
and take 100 divisions along each side. We have 1 000 000 subdivisions. If we char-
acterize each division by a grid point in its center, we would have to solve a matrix
that is 1 000 000 by 1 000 000. This sounds bad, but it is not! The matrix is extraor-
dinarily sparse and is never fully stored – only the nonzero matrix elements are.

Real-space solutions of the Kohn–Sham equation can be accomplished using
standard methods such as “finite difference” [2], or “finite element” solutions
[3]. Finite element methods are often used for situations where the boundary
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conditions are complex; however, they tend to be more difficult to implement
than high-order finite difference methods. “High-order” finite difference meth-
ods are well suited for our applications owing to their ease of implementation and
simplicity. Our boundary conditions are not complex in most cases. The wave
function in question either vanishes or is periodic at the boundary.

9.2 Finite Difference Methods

Suppose we have knowledge of a function on a grid. We consider a
one-dimensional grid where we know the value a function, f (xj), on a set
of grid points, {xi}, which are uniformly spaced, h = xj+1 − xj, for all values of j. If
the function is well behaved in the usual sense – no poles and no discontinuities
(a kind and gentle function wherein a Taylor series would work) – then we make
a standard approximation for its second derivative:(

d2f
dx2

)
xi

≈
f (xi+1) + f (xi−1) − 2f (xi)

h2

The error we make in this expression scales as 𝒪(h2). We can do better by includ-
ing more points:(

d2f
dx2

)
xi

≈
−f (xi+2) + 16f (xi+1) − 30f (xi) + 16f (xi−1) − f (xi−2)

12h2

This expression is accurate to 𝒪(h4).
In general, we can write(

d2f
dx2

)
xi

≈ 1
h2

N∑
n=−N

Cn f (xi + nh)

which is accurate to 𝒪(h2N ). Coefficients up to 2N are given in Table 9.1.
One can increase the order and get better expressions, but the increase in accu-

racy comes at the cost of knowing the wave functions at more points. The accu-
racy of the finite order expression is ultimately limited by the number of digits
carried by the computational platform of interest, e.g. anything above N ≈ 12 is
apt to suffer from round off errors.

Table 9.1 Expansion coefficients for higher order finite difference expressions [4].

Order 𝓞(h2N) C0 C±1 C±2 C±3 C±4 C±5 C±6

N = 1 −2 1
N = 2 −5/2 4/3 −1/12
N = 3 −49/18 3/2 −3/20 1/90
N = 4 −205/72 8/5 −1/5 8/315 −1/560
N = 5 −5269/1800 5/3 −5/21 5/126 −5/1008 1/3150
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Higher order difference methods are particularly well suited for the problem
at hand, particularly when using pseudopotential methods. The pseudopotential
wave functions in the case of an atom are nodeless and “smoothly” varying. Unlike
the all-electron potential, the pseudopotential has no singularity at the nuclear
site and the wave function lacks a cusp at the nuclear site.

We can discretize the Kohn–Sham equation in three-dimensional Cartesian
coordinates:

− ℏ
2

2m

[ M∑
n1=−M

Cn1
𝜓n(xi + n1h, yj, zk) +

M∑
n2=−M

Cn2
𝜓n(xi, yj + n2h, zk)

+
M∑

n3=−M
Cn3

𝜓n(xi, yj, zk + n3h)

]
+

[ ∑
lmn,NL

V p
ion(xl, ym, zn)

+VH(xi, yj, zk) + Vxc(xi, yj, zk)
]
𝜓n(xi, yj, zk) = En 𝜓n(xi, yj, zk), (9.2)

where the variable of interest is the wave function, 𝜓n(xi, yj, zk), at a grid point
(xi, yj, zk). In this example, we have taken the grid points to be uniformly spaced.
Uniformly spaced points are not mandatory, but to do otherwise enormously
complicates the problem. We avoid them even when they may offer some reduc-
tion in computational time.

A typical geometry for a cluster is illustrated in Figure 9.1. The Kohn–Sham
wave functions are defined within the domain and taken to be zero outside of the
domain. This simple boundary condition can be checked by changing the domain
size to ensure that the results are not altered.

An obvious point concerns an interplay between the grid spacing, h, and the
order of the finite differencing, M. A finer grid with a low-order finite differ-
ence can give similar accuracy to a coarser grid with a higher order finite dif-
ference. Communications are an issue again. A smaller value of M means fewer
communication steps. However, the number of grid points grows as the value of

Z

X Y

Ψ = 0

Ψxyz

Figure 9.1 Example of a
domain for finite
differencing. Outside a
sphere, the wave function is
set to zero. The finite
difference solution yields the
value of the wave function at
a grid point labeled by
(xi, yj, zk).
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h3, so it is often best to choose a modest size value for M and take a coarser grid
spacing.

Nonlocality in ionic pseudopotential, V p
ion, deserves special mention.

Pseudopotentials come at a price. We omit superfluous degrees of freedom
associated with core states when we use pseudopotentials, but in doing
so we introduce a nonlocal operator, i.e. the potential at a point (xi, yj, zk)
depends on the value of the pseudopotential at neighboring points. Recall from
Chapter 6 that nonlocality in the pseudopotential can be expressed in real space
as an operator.

Nonlocality in the pseudopotential is localized to the core region and com-
poses a very small fraction of the nonzero matrix elements in the Hamiltonian,
but presents “communication” issues in handling the matrix operations. The addi-
tional computational load is more than compensated by the advantages of the
pseudopotential for reasons pointed out earlier – the reduction in the number of
states to only the valence states, which fixes the energy and length scales to the
most weakly bound and extended states.

9.2.1 Special Diagonalization Methods: Subspace Filtering

A traditional method for finding eigenvalues finds the lowest one, then the next
one, and so on. However, it is not necessary to proceed in such a manner. In
the self-consistent loop (see Figure 7.3), our goal is to find the ground state den-
sity. The pathway we take to achieve this goal need not entail an eigenvalue by
eigenvalue algorithm.

Consider a set of wave functions or orbitals that we know to be the correct
solutions of the Kohn–Sham equation:

Φ =

⎡⎢⎢⎢⎢⎣

𝜓1(r1) 𝜓2(r1) · · · · · · 𝜓m(r1)
𝜓1(r2) 𝜓2(r2) · · · · · · 𝜓m(r2)
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

𝜓1(rN ) 𝜓2(rN ) · · · · · · 𝜓m(rN )

⎤⎥⎥⎥⎥⎦
where the 𝜓j(rk) represents the Kohn–Sham orbital for the j-th eigenvalue at the
grid point rk . We assume there are m orbitals spanning N grid points. We can
form a “density matrix,” P, by taking P = ΦΦT where ΦT is the transpose of Φ.
As before, we are going to assume that the matrix elements are real. The size of
the diagonal of the matrix P is given by the number of grid points, ri, so that
each diagonal element gives the charge density, 𝜌(ri), at the grid point in question
ri is given by 𝜌(ri) = 𝜓1(ri)2 + 𝜓2(ri)2 …+ 𝜓m(ri)2. To get the diagonal elements,
we need not have the matrix Φ; any rotation of this matrix will do. Suppose we
construct a matrix U where UUT = I, with I being the identity matrix. Then we
could write

P = ΦΦT = ΦUUTΦT = (ΦU)(UT
𝜙

T ) = (ΦU)(ΦU)T (9.3)

where we use the matrix identity: (AB)T = BT AT . In short, either Φ or ΦU will
serve our purpose.
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Can we devise an efficient way of getting ΦU? Suppose we consider a Hamil-
tonian of the form:

𝒫 (H) =
M∑

n=1
anHn (9.4)

That is, we express the Hamiltonian in terms of a polynomial up to order M. We
note that H𝜓j(r) = Ej𝜓j(r) and consider a general function of the form:

𝜓 =
m∑

n=1
cn𝜓n (9.5)

This assumes that we can express a physically meaningful wave function by sum-
ming over the set {𝜓n}. We generate a new wave function by performing the
following operation:

�̂� = 𝒫 (H)𝜓 = 𝒫 (H)
m∑

n=1
cn𝜓n =

m∑
n=1

𝒫 (En)cn𝜓n (9.6)

The wave function �̂� will contain a sum over the m orbitals. The sum also contains
a factor 𝒫 (En). Suppose this factor is zero for any eigenvalue greater than the
Fermi energy, Ef . If this is the case,

�̂� =
∑

occup
bn𝜓n (9.7)

We created a wave function that contains only components for the occupied
orbitals. We “filtered out” components that contain empty states. If we continue
to perform such an operation, we effectively find states that correspond to {ΦU},
from which we can extract the self-consistent charge density.

A key aspect of filtering is to construct a polynomial, 𝒫, that enhances the
components in an energy region of interest and suppresses them elsewhere. An
example is given in Figure 9.2. To the uninitiated, there are some “arcane” issues
with this process. One issue is where to place the filter. If the eigenvalue spectrum
is unknown, the energetics of the filter is unknown.

There are several ways to address this issue. Often, the spectrum is approxi-
mately known, e.g. the band width of a silicon nanostructure is usually not too
different from that of bulk silicon so that one can make a reasonable guess as to
the distribution of eigenvalues. Another option is to use an approximate method
to assess the energy spectrum. As the computation proceeds, the filter can be
reset.

Another issue is the nature of the polynomial itself. Any polynomial that has
the behavior shown in Figure 9.2 will do. One common approach is to use Cheby-
shev polynomials. These polynomials are defined over the interval |x| ≤ 1 where
P0(x) = 1,P1(x) = x. A recursion relation exists for these polynomials: Pn+1(x) =
2xPn(x) − Pn−1(x). The polynomials are simple and the recursion relation expe-
dites creating higher order polynomials. These attributes are what we want: sim-
plicity and ease of implementation. Details of this method can be found in the
literature [5–8].
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Enhanced Suppressed

Wanted Unwanted
λ

P( λ )

Figure 9.2 Schematic of a filtering polynomial. The polynomial 𝒫 is large where we want to
enhance the wave function components and small where we do not.

We can construct a filtering polynomial used in Figure 9.2 by an affine transfor-
mation of the Chebyshev polynomial. Filtering can dramatically speed up solu-
tions to the Kohn–Sham equation. The self-consistent loop in Figure 7.3 is only
slightly modified. Instead of a solution to the eigenvalue problem using standard
diagonalization methods, the wave functions are filtered through a multiplica-
tion of the wave functions by a Chebyshev polynomial, 𝒫. In Table 9.2, we give
numbers. The speed up can be an order of magnitude faster compared to popular
codes such as ARPACK, and there is no loss of accuracy.

We illustrate the use of this method by finding the eigenvalues for a large sys-
tem. A convenient test case is a large nanocrystal of silicon. (We will discuss this
system in more detail in Chapter 13.) We know the distribution of eigenvalues,
the density of states, for crystalline silicon and can use this as a guide to whether
our system is working. We take a fragment of bulk silicon and cap off any dangling
bonds with hydrogen atoms. The resulting nanocrystal has a chemical formula of
Si20389H3076. There are 84 632 valence electrons in this system. Without a pseu-
dopotential, this system would contain 288 522. By any measure, at least using
computers at the beginning of the twenty-first century, this is a very large number

Table 9.2 Run times to solve the Kohn–Sham problem for a nanocrystal of
Si (Si525H276). ARPACK [9] and TRLan [10] are common public domain eigensolvers.

Method Computation time (s) Total nergy (ev/atom)

Chebyshev filtering 5947 −77.3168
ARPACK 62026 −77.3168
TRLan 26853 −77.3168
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Figure 9.3 Density of states for a large nanocrystal of silicon.

of electrons. Putting two electrons in each state means we have 42 316 eigenvalues
to solve.

It makes no sense to list such eigenvalues one by one, but we can make a
histogram and illustrate the distribution of these states. The distribution of the
states as a function of energy is effectively the density of states we discussed for
a free electron gas (see, Eq. 4.9 and the related discussion). In Figure 9.3, the
eigenvalues for the Si20389H3076 nanocrystal are displayed. We defer a detailed
discussion of the results, save to make a few observations on the evolution of
the electronic structure. The energy width of the occupied states spans ∼12 eV.
The top of the valence band is taken to be the zero energy reference. The gap
between the highest occupied state and the lowest empty state is roughly 0.6 eV.
These features agree with energy band computations for crystalline silicon. In
general, the density of states of a nanocrystal assumes a crystalline silicon con-
figuration with several thousand atoms. Obtaining a bulk-like density of states
for large nanocrystals is a good test for any algorithm and the corresponding
implementation. This calculation represents a “proof in principle” for large-scale
computations.
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10

Atoms

A physicist is just an atom’s way of looking at itself.
— Niels Bohr

If, in some cataclysm, all of scientific knowledge were to be destroyed, and
only one sentence passed on to the next generation of creatures, what state-
ment would contain the most information in the fewest words? I believe it
is the atomic hypothesis (or the atomic fact, or whatever you wish to call it)
that all things are made of atoms …

— Richard Feynman

10.1 Energy Levels

The key to understanding the properties of an atom resides in the spatial and ener-
getic distributions of the electrons that surround the nucleus. These distributions
can be determined by a solution of the Kohn–Sham equation, which can quickly
be solved for a spherical symmetric atom – as only one dimension is involved.
The only limitation in this approach is the inherent accuracy or lack thereof in
density functional theory.

In Figures 10.1 and 10.2, we show the Kohn–Sham energy levels for the outer-
most s and p states. We can use these levels to examine how the shells of an atom
fill up. Qualitatively the s and p levels behave in a similar manner. As the shells
fill, the energy levels monotonically decrease in energy until the shell is filled.
When the next shell starts to fill, the energy levels experience a significant jump
in energy. This shell structure reflects the orbital nature of the atomic wave func-
tions. “Orbital-free” methods as in Thomas–Fermi theory do not produce shell
structures, which is a serious deficiency.

The physical meaning of the Kohn–Sham levels is not particularly transparent.
One might naively believe that the energy to remove an electron from an atom is
the energy of the highest occupied energy level relative to the vacuum. Often this
is not a bad estimate. However, within density functional theory, the levels cannot
be directly associated with quantities related to observables, i.e. a quantity such

Introductory Quantum Mechanics with MATLAB® : For Atoms, Molecules, Clusters, and Nanocrystals,
First Edition. James R. Chelikowsky.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 10.1 Energy levels for the s states for atoms in the first two rows of the periodic table.
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Figure 10.2 Energy levels
for the p states for atoms in
the first two rows of the
periodic table.

as the energy to remove an electron. Nonetheless, the levels do follow the same
trends expected for the energy involved in ionizing an atom.

10.2 Ionization Energies

The ionization energy of an atom may be determined by differencing the total
energies of a neutral and an ionized atom:

I = Etotal[n − 1] − Etotal[n] (10.1)
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where Etotal is the total electronic energy for a neutral atom with n electrons. The
sign convention is chosen so that the resulting ionization energy is positive. The
second ionization energy can be determined from

I2 = Etotal[n − 2] − Etotal[n − 1] (10.2)

This is the energy to remove an electron from an ionized atom. The energy to
remove two electrons is given by adding the first and second ionization energies:
I + I2

Within the framework of pseudopotential – density functional theory – H, Li,
and Na are among the most problematic atoms when computing ionization ener-
gies. These atoms have only one valence electron as the corresponding atomic
pseudopotential does not bind the inert core electrons.

When we form the Hartree and exchange-correlation potentials in density
functional theory this valence electron may “screen itself,” which is not a
physically acceptable result. When we discussed the Hartree–Fock method,
we noted that the self-interaction energy explicitly cancelled when combining
the exchange and Hartree potentials. However, in density functional theory, as
implemented in its simplest version, this might not happen and self-interaction
or self-energy errors are created.

For one electron, we could circumvent this problem by ignoring the inter-
action of the electron with itself, i.e. we could take the unscreened ionic
pseudopotential and not bother forming a Hartree and exchange potential
(or an exchange-correlation potential). There is some logic to doing that, but
this procedure is not the way to go. We need to be consistent in dealing with
many-electron problems. We do not want to treat some atoms following one
rule and others following a different rule. We mentioned this when we used
density functional theory for estimating the ionization energy of the helium
atom (see Chapter 7). There, we found that cancellation of errors resulted in a
more accurate answer. In short, although approximations to the “true” density
functional may not completely account for the self-interaction, the problem is
often mitigated by error cancellation.

The first ionization energies are presented in Figure 10.3, and the ionization
energies to remove two electrons are depicted in Figure 10.4. The calculations
shown here were done using pseudopotentials within the local density approx-
imation. These are simple computations that can be done with the computing
power of a smart calculator, more or less. It is surprising how well theory and
experiment agree, if we are willing to accept errors that are typically less than a
few percent of the ionization energies.

We note one exception to the overall accuracy. Density functional theory
predicts a monotonic increase in the ionization energy as the p-shell is filled.
This does not agree with experiment, i.e. the ionization energy for the N–O–F
sequence shows a minimum at O (this is also true to a lesser extent for P–S–Cl).
We should not be surprised by this exception. In our quest for simplicity, we
assumed “spinless” electrons. This assumption is not a good one when we have
open shells as discussed in the following section.
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Figure 10.3 Ionization energies for atoms. Experiment is from the database at NIST
(http://physics.nist.gov/PhysRefData/ASD/ionEnergy.html).
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Figure 10.4 Energy to doubly ionize an atom. Experiment is from the database at NIST
(http://physics.nist.gov/PhysRefData/ASD/ionEnergy.html).

10.3 Hund’s Rules

Spin interactions can lower the energy of an atomic state. We need to consider
such interactions. We describe some “rules” named after a German physi-
cist – Friedrich Hund [1]. Hund recognized that angular moment is associated
with the spin of the electron and with the motion of the electron. As a simple
example, consider Bohr’s model for the hydrogen atom. An electron moving in
a circular path around the proton has angular momentum associated with its

http://physics.nist.gov/PhysRefData/ASD/ionEnergy.html
http://physics.nist.gov/PhysRefData/ASD/ionEnergy.html
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orbital motion. Classically, the angular momentum is given by L = mvr, which in
the Bohr model is L = (nℏ∕r)r = nℏ from Eq. (2.4). The orbital momentum can
be characterized by a vector, L⃗. An electron also carries spin and this contributes
to the angular momentum too. We denote the spin angular momentum by S⃗.
The total angular momentum is given by J⃗ = L⃗ + S⃗. For many-electron atoms,
determining the possible angular momentum components can be messy, but the
rules given by Hund are not.

Hund’s rules for the ground-state configuration for a given shell of an atom are
as follows.
• First, occupy the orbitals so that the total spin, S, is maximized.
• Second, maximize the value of the orbital angular momentum, L, consistent

with the value of S.
• Third, the value of the total angular momentum, J , is |L − S| when the shell is

less than half full and equal to L + S when the shell is more than half full.
Implicit in these rules are that one must observe the Pauli exclusion principle

once Hund’s rules have been executed. We can express the resulting ground state
in “term symbol” notation. The term symbol is given by

2S+1LJ

We list the term symbols in Table 10.1 for the first two rows of the periodic table
using Hund’s rules.

We consider some examples to make clear how Hund’s rules work. Consider
the carbon atom. The outer shell has a configuration of 2s22p2. The 2s orbital is
filled and need not enter our consideration. The maximum value of S occurs when
we place the 2p electrons in different p states, e.g. px and pz, with parallel spins.
In this case S =

∑
nsn=1 in units of ℏ. As is customary, we do not explicitly carry

the ℏ symbol.
Next, we deal with L. The maximum value of L occurs when we put one electron

in an ml = 1 and another in ml = 0: L =
∑

n(ml)n = 1. For J , we recognize that the
shell is less than half full so we take J = |L − S| = 0.

We now have sufficient information to label the ground-state term symbol; we
characterize the total angular momentum L = 0, 1, 2,… by the letters S,P,D,….
It is unfortunate that the total spin is also labeled by S, but we are stuck with it. In
the example for carbon, 2S + 1=3, L = 1, and J = 0, which results in the following
notation for carbon:

3P0

Another example to be considered is the nitrogen atom. The outer shell has
the configuration 2s22p3. The maximum value of S is to fill the px, py, pz orbitals
with one electron each. This gives S = 3∕2. The orbital momentum, L, vanishes
as L =

∑
n(ml)n = 0, which leaves J = S = 3∕2, and the term symbol is

4S3∕2

The reader may complain, and rightfully so, that we are just labeling term val-
ues according to the lowest energy state, but we are not computing the energies
involved. While it is possible to account for the different spectroscopic terms
using density functional theory, we will not pursue this here. It is just too com-
plicated and beyond the scope of this book.
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Table 10.1 Ground-state term values and ionization energies
for the atoms in first two rows of the period table.

Ground-state Term Ionization
Element shell structure symbol energy (eV)

Hydrogen 1s1 2S1∕2 13.60
Helium 1s2 1S0 24.59
Lithium 1s22s 2S1∕2 5.39
Beryllium 1s22s2 1S0 9.32
Boron 1s22s22p 2P1∕2 8.30
Carbon 1s22s22p2 3P0 11.26
Nitrogen 1s22s22p3 4S3∕2 14.53
Oxygen 1s22s22p4 3P2 13.63
Fluorine 1s22s22p5 2P3∕2 17.42
Neon 1s22s22p6 1S0 21.56
Sodium [Ne] 3p 2S1∕2 5.14
Magnesium [Ne] 3s2 1S0 7.65
Aluminum [Ne] 3s23p 2P1∕2 5.99
Silicon [Ne] 3s23p2 3P0 8.15
Phosphorus [Ne] 3s23p3 4S3∕2 10.49
Sulfur [Ne] 3s23p4 3P2 10.36
Chlorine [Ne] 3s23p5 2P3∕2 12.97
Argon [Ne] 3s23p6 1S0 15.76

Why do Hund’s rules work?
The first rule can be rationalized from the Pauli exclusion principle. The exclu-

sion principle mandates that two electrons cannot possess the same set of quan-
tum numbers. For an open shell, the quantum numbers for an electron can differ
in spin. Consider a silicon atom; the outermost shell is the 3p2. We could put two
electrons with opposite spins in a state with l = 1,ml = 0, or we could put two
electrons with parallel spins in two spatially different states l = 1,ml = −1 and
l = 1,ml = 0. In the latter case, the electrons on average are in spatially distinct
orbitals. Electrons in singly occupied orbitals are less effectively screened from
the nuclear charge and the electron–nuclear attraction energy is increased. This
explanation is different from the “traditional one.” Tradition holds that electrons
in distinct orbitals experience a reduced electron–electron coulomb repulsion as
on average they are further apart. Accurate quantum calculations do not support
this explanation [2].

The second rule can be understood from a really simple picture of electrons
moving in classical orbits. In this picture, atoms with higher orbital angular
momentum contain more electrons moving in the same direction. Specifically,
consider two electrons at the opposite ends of a circular orbit. Assume that
they are moving in the same direction at the same rate. Compare this to a
similar circular orbit in which the two electrons move in opposite directions
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at the same rate. In the latter case, the net angular momentum vanishes and
the electrons will often approach each other. In the former case, the angular
momentum is larger and the separation between the electrons is constant and at
a maximum for a given orbit. Since the higher angular momentum case reduces
the electron–electron repulsion, it will possess a lower energy.

The third rule results from considering spin–orbit interactions. A classical
orbiting electron can generate a magnetic moment just like a current-carrying
circular loop. This orbitally generated moment can then interact with the
magnetic moment associated with the spin of the electron. For a single electron
the energy of this interaction is lowest when the electron spin is opposite to
the orbital angular momentum. As we fill a shell with additional electrons, we
are restricted to choose states where the angular momentum is opposite to the
spin; the low energy pairs of (ml, ms) are progressively used up. By the exclusion
principle, when the shell is more than half full the state of the lowest energy
necessarily has the spin parallel to the orbital moment. In this case, the sign of
the energy is reversed. So we want J = L + S instead of J = |L − S|. For those
familiar with solid-state physics, a shell missing one electron can be thought of
as a filled shell containing a “hole” state wherein the hole has an opposite sign
from the electron.

10.4 Excited State Energies and Optical Absorption

When atoms are placed in a radiative field, they can gain energy by absorbing a
photon (or lose energy by emitting a photon). There are two general rules based
on fundamental laws of physics that govern the absorption or emission of a pho-
ton. The rules are based on (i) energy conservation and (ii) symmetry considera-
tions. We will use a simple, but essentially correct, model that is often presented
in textbooks [3].

Consider an isolated atom in the absence of any external fields. We assume the
atom has one valence electron. We examine the behavior of the corresponding
wave function, which could be a function of space and time. The solution of the
time-dependent Schrödinger equation is given by

ℋΨ = iℏ 𝜕Ψ
𝜕t

(10.3)

If ℋ is time independent, label it as ℋ0. A solution for Ψ given ℋ0 is

Ψ = exp(−i𝜔n)𝜙n (10.4)

where 𝜙n is the time-independent solution:

ℋ0Ψn = ℋ0 exp(−i𝜔n)𝜙n = iℏ
𝜕 exp(−i𝜔n)𝜙n

𝜕t
= ℏ𝜔n exp(−i𝜔n)𝜙n

(10.5)

which can be rewritten as

ℋ0𝜙n = ℏ𝜔n𝜙n = En𝜙n (10.6)
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Simple enough. Note that the charge density from Eq. (10.4), i.e. |Ψ|2, is inde-
pendent of time. Only the phase changes with time and phase plays no role in
the charge density. Again, it is the “weird” nature of quantum mechanics that
distinguishes “observables” from “nonobservables.”

How does a radiation field change the wave function as a function of time and
space? We take the field to be a homogeneous electrical field. (Atoms can couple
to magnetic fields, but the coupling is much less important.)

Assuming a homogeneous field is reasonable. The spatial variation of light is on
a much larger length scale when compared to the size on an atom. The wavelength
for visible light varies from 400 to 700 nm and is considerably larger than the size
of an atom whose size might be 0.1 nm. We consider a uniform sinusoidal varia-
tion of the light, which we can always generalize to more complex wave forms by
superposing different variations.

The potential an electron experiences in such a field is given by

Φ(z, t) = −ℰ0{exp(i𝜔t) + exp(−i𝜔t)}z (10.7)

The time dependence of the potential is given by a frequency 𝜔. The potential is
real as {exp(i𝜔t) + exp(−i𝜔t)} = 2 cos(𝜔t). This potential corresponds to a uni-
form field of magnitudeℰ0. The field is polarized in the z-direction as determined
by the gradient operator:

ℰ⃗ = −∇Φ(z, t) = ℰ0{exp(i𝜔t) + exp(−i𝜔t)}ẑ (10.8)

We can replicate this field as a potential energy:

V (z, t) = −eΦ(z, t) = eℰ0{exp(i𝜔t) + exp(−i𝜔t)}z (10.9)

The total Hamiltonian is formed by adding the time-independent potential to
the time-dependent one: ℋ = ℋ0 + V (z, t). The time-dependent Schrödinger
equation can now be written as

ℋΨ = [ℋ0 + V (z, t)]Ψ = iℏ 𝜕Ψ
𝜕t

(10.10)

We will consider V (z, t) to be a small perturbation to ℋ0.
Suppose we do the following. We consider our single electron to be initially in

the state 𝜙0 and ask – what is the possibility it absorbs a photon and makes a
transition to an excited state? For simplicity, we assume there is an empty state,
𝜙1, and no other states nearby. To approximate the excited state, we write

Ψ = 𝜙0 exp(−i𝜔0t) + a(t)𝜙1 exp(−i𝜔1t) (10.11)

At t = 0, we take a = 0. At later times a(t) is a measure of the transition probabil-
ity that the atom is excited to the 𝜙1 state. Since the effect of the field is small, the
change in the Hamiltonian and the change in the time-independent states should
both be small. From Eq. (10.10), we have

[ℋ0 + V (z, t)][𝜙0 exp(−i𝜔0t) + a(t)𝜙1 exp(−i𝜔1t)] =

iℏ 𝜕

𝜕t
[𝜙0 exp(−i𝜔0t) + a(t)𝜙1 exp(−i𝜔1t)] (10.12)
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At this point, we use a “standard operating procedure.” We multiply both sides
of Eq. (10.12) by 𝜙

∗
1 and integrate over all space. We make use of the fact that

H0𝜙n = En𝜙n and that the time-independent wave functions obey

∫ 𝜙
∗
i 𝜙j d3r = 𝛿ij (10.13)

We neglect the product of the small perturbing potential with the excited state
coefficient. The term containing the product “a(t)V (z, t)” involves the product of
two “smallish” quantities, which we set to zero. By neglecting such terms we apply
first-order perturbation theory [3].

This yields

iℏda
dt

= ℰ0{exp(i𝜔t) + exp(−i𝜔t)} exp(i𝜔10t) z10 (10.14)

where 𝜔10 = 𝜔1 − 𝜔0 and we define z10 as

z10 ≡ ∫ 𝜙
∗
1 z 𝜙0 d3r (10.15)

To solve for a(t) we do the integral:

a(t) = e
iℏ
ℰ0 z10 ∫

t

0
{exp(i𝜔t) + exp(−i𝜔t)} exp(i𝜔10t) dt (10.16)

which yields

a(t) = e ℰ0 z10

{1 − exp(i(𝜔 + 𝜔10)t)
ℏ(𝜔 + 𝜔10)

−
1 − exp(−i(𝜔 − 𝜔10)t)

ℏ(𝜔 − 𝜔10)

}
(10.17)

This determines the time-dependent wave function. Once we have the wave func-
tion, we evaluate the resulting time-dependent dipole:

e𝒵 (𝜔, t) = e ∫ z |Ψ(r⃗, t)|2 d3r (10.18)

If we keep only terms linear in a(t), then

e𝒵 (𝜔, t) = e2
ℏ {a(t) z01 exp(−i𝜔10t) + a(t)∗ z10 exp(i𝜔10t)} (10.19)

Neglecting some time-dependent terms that are not commensurate with the
external electric field (they average to zero anyway), we get the following:

e𝒵 (𝜔, t) =
e2 |z10|2

ℏ

{
2𝜔10

𝜔
2
10 − 𝜔2

}
ℰ0(exp(i𝜔t) + exp(−i𝜔t)) (10.20)

where we have explicitly written the cosine as a sum of exponents. Our work here
is done.

In our simple model, the applied electric field induces a dipole, which couples
to the applied field. We will not go into the details of radiation theory, save to say
that the largest interaction between the atom and the field occurs by an induced
dipole. The size of the induced dipole depends on the magnitude of |z10|2.

This is easy to interpret. If the excited state has the same symmetry as the initial
state, then a linear combination of these states will not have any dipole compo-
nents. (As an example, suppose 𝜙0 and 𝜙1 are both even functions such as the 1s
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and 2s states in hydrogen.) The electric field will not couple to these states, i.e.
the atom will not absorb or emit dipole radiation between these states.

The other notable factor in Eq. (10.20) is the pole or singularity that exists when
𝜔10 = 𝜔. This pole indicates a resonance between the time dependence of the field
and the response of the atom. A classic example of resonance occurs when one
pumps energy into a spring by applying a time-dependent force that compresses
and expands the spring. If the frequency of the applied force is commensurate
with the characteristic vibration of the spring, resonance will occur. In the quan-
tum case, resonance means that energy from the applied field can be absorbed by
the atom. The resonance occurs when energy is conserved; the energy of photon
equals the energy to promote an electron: ℏ𝜔 = E1 − E0 = ℏ𝜔10.

Our expression can be generalized to additional energy levels, corresponding
to additional excited states, as follows:

e 𝒵 (𝜔, t) =
∑

j

e2 |zj0|2
ℏ

{
2𝜔j0

𝜔
2
j0 − 𝜔2

}
ℰ0(exp(i𝜔t) + exp(−i𝜔t))

(10.21)

This is a straightforward procedure. We add excited states to Eq. (10.11) and
“repeat” the derivation.

We can define an “oscillator strength,” which is a measure of the transition
probability, as follows:

fj ≡ 2m
ℏ2 ℏ𝜔j0|z10|2 (10.22)

It is easy to show that the oscillator strengths obey the so-called Thomas–Reiche–
Kuhn sum rule [3]:∑

j
fj = 1 (10.23)

We can use the definition of the oscillator strength to write

e 𝒵 (𝜔, t) = e2

m
∑

j

{
fi

𝜔
2
j0 − 𝜔2

}
ℰ0(exp(i𝜔t) + exp(−i𝜔t)) (10.24)

This expression can be recast by defining an atomic polarizability, 𝛼(𝜔), so that

e 𝒵 (𝜔, t) = 𝛼(𝜔) ℰ0(exp(i𝜔t) + exp(−i𝜔t)) = 𝛼(𝜔)ℰ (𝜔, t) (10.25)

where

𝛼(𝜔) = e2

m
∑

j

fi

𝜔
2
j0 − 𝜔2

(10.26)

This quantity defines how the charge density of the atom is altered by an electric
field and is called a “response function.” Since we only include linear powers of
the electric field, this is also called a “linear response” function.

There are some subtle issues with Eq. (10.26). We should always worry about
a pole in a physical quantity. Rarely do physical quantities diverge. Textbooks
often invoke ad hoc explanations such as defects or impurities, friction or heat
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loss, or some other factors that we left out to explain why we do not get a real
divergence [4].

There is a clear, but maybe not obvious, reason for existence of the pole. We
recall that the perturbing field is of the form:

ℰ = ℰo cos(𝜔t)

Think about time in this expression. When was the field applied? There is no
beginning or end to the field. The field exists unchanged a long, long time ago
and unchanged far, far into the distant future. Physically, this means that the
sinusoidal behavior of the field is known with “infinite” precision as one could
measure it for infinite time. Clearly, this situation is unphysical compared to an
experiment done over some finite time span.

Specifically, what happens if the field is slowly turned on? Suppose the sinu-
soidal function turns on such that ℰ = ℰ′ exp(𝛾t) exp(i𝜔t). For t → −∞ the field
would be zero. Suppose for t > 0 we take 𝛾 = 0. This field slowly turns on and
then oscillates with a constant amplitude. The derivation we used would be simi-
lar. However, we add an imaginary part to the frequency: 𝜔 → 𝜔 + i𝛾 . We remove
the pole by writing

𝛼(𝜔) = e2

m
∑

j

fi

𝜔
2
j0 − 𝜔2 − i𝛾𝜔

(10.27)

Our polarization function is now complex, but well behaved. We separate out
the real and imaginary parts. We also convert the polarization function to a more
commonly used “dielectric function.” The dielectric function relates the applied
electric field and the response of the system to the field. It is easily generalized to
condensed matter systems.

The polarizability of an atom is related to the electric field by p = 𝛼ℰ where p
is the induced dipole. The electric polarizability of a weakly interacting ensemble
of atoms can be written as P = N𝛼p = 𝜒E where 𝜒 is the electrical susceptibility.
The combination of the applied field and the polarizability is given by an elexctric
displacement vector: D = E + 4πP = (1 + 4π𝛼)E = 𝜀E. 𝜀 is the dielectric function,
which we often want to know. It can be related to a variety of optical properties
such as a complex index of refraction and the reflectivity of an object.

The real and imaginary parts of the dielectric function are often denoted as

𝜀 = 𝜀1 + i𝜀2

Using this notation, we have

𝜀1(𝜔) = 1 +
∑

j

fi 𝜔
2
p(𝜔2

j0 − 𝜔
2)

(𝜔2
j0 − 𝜔2)2 + 𝛾2𝜔2

(10.28)

and

𝜀2(𝜔) =
∑

j

fi 𝜔
2
p𝛾𝜔

(𝜔2
j0 − 𝜔2)2 + 𝛾2𝜔2

(10.29)
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Figure 10.5 Schematic of dielectric response functions. A sharp resonance occurs at 4 eV.

where we have defined a new frequency, the plasma frequency: 𝜔2
p = 4πNe2∕m,

where N is the number of electrons per unit volume. The plasma frequency corre-
sponds to a resonant frequency of uniform electron density when displaced from
a uniform positive background of the same charge density.

With the notable exception of the oscillator strength in Eq. (10.28), this expres-
sion is what we would expect for a damped harmonic oscillator. Some elementary
books [4] introduce optical excitations by considering an electron attached to an
atom by a spring in a viscous medium (to account for the damping.)

In Figure 10.5, we illustrate the essential features of a dielectric function for an
ensemble of atoms where one transition dominates the spectrum. The resonant
behavior illustrated is quite common for many spectral features. It qualitatively
resembles the absorption in a simple semiconductor such as silicon or germa-
nium, although the width of the absorption line is wrong because in solids there
are energy bands and not energy levels as in an atom. The width of the imaginary
dielectric function is dependent on 𝛾 . In the figure, 𝛾 is taken to be small. In the
limit of 𝛾 → 0, the width of the absorption line becomes vanishingly small and
the line corresponds to a “delta function.” A small line width would imply a long
measurement of the absorption process, at least with respect to 1∕𝛾 .

Example 10.1 Time Evolution of Atomic Wave Functions We just discussed
the interaction of light with an atom by using perturbation theory. We found
the probability of an atom making an electronic transition by absorbing light
using the unperturbed wave functions. There is a more direct way of solving the
problem by directly computing the time evolution of a wave function in the pres-
ence of an electric field. We illustrate the essential features of this approach for a
sodium atom.

We can write down a Kohn–Sham time-dependent equation:

ℋ𝜙i =
−ℏ2∇2

𝜙i

2m
+ Vext𝜙i + VH𝜙i + Vxc𝜙i = iℏ 𝜕

𝜕t
𝜙i (10.30)

where the external potential can be time dependent, e.g. it could include the ionic
pseudopotential and an external field. This equation resembles what one might
have guessed for a time-dependent Schrödinger equation in density functional
theory.
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This simplicity is deceiving! The equation has a number of assumptions in
it. Specifically, the derivation of this equation assumes that the response of the
system is local both in “time” and in “space.” The history of the system does not
enter our discussion as the system is local in time. The behavior of one part of
the system interaction with the field does not affect other parts of the system as
the system is local in space. It is hard to decide without doing a computation if
the assumption of spatial and temporal locality is a bad one.

We dealt with locality in space in earlier chapters. For example, the local density
approximation assumes that the spatial dependence of the exchange-correlation
potential depends only on the point in question. For many systems, this is all right
and works pretty well. The locality of time means that the potential responds
instantaneously to any change in an applied field. This assumption is more com-
plicated, both conceptually and computationally. We will need to test it. With
these assumptions, the only explicit time dependence resides within the charge
density. We assume the functional itself is not a function of time: Vxc = Vxc[𝜌(t)].

We can solve Eq. (10.30) in a formal sense by writing

𝜙i(r, t) = exp
{

1
ih ∫

t

0
ℋ (r, t′)dt′

}
𝜙i(r, 0) (10.31)

This an odd equation as ℋ, which is an operator, resides in an exponential. The
equation has meaning only in terms of a Taylor series. Suppose we consider a
short time interval, Δt, and we know the solution at t = 0. We assume the Hamil-
tonian ℋ does not change appreciably over this interval. A solution for 𝜙i can
then be written as follows:

𝜙(r, t + Δt) =
∞∑

k=0

1
k!

[ΔtH
iℏ

]k
𝜙i(r, t) (10.32)

Clearly, this solution is correct in the limit of Δt = 0. This relation allows us to
“step” the equation out by first computing 𝜙(r,Δt) from 𝜙i(r, 0) and then repeat-
ing, e.g. knowing 𝜙(r,Δt) we can find 𝜙(r, 2Δt).

We now consider an isolated sodium atom. Suppose we know the solution for
this atom with no applied field:ℋ 0

𝜙
0
0(r) = E0𝜙

0
0(r). The various zero superscripts

mean we are considering an atom in the absence of any applied fields. Since
sodium has only one valence electron, we label the ground state also by a zero
subscript. Also, we are going to assume that the Hamiltonian does not change
in time as the ion core is unaffected by the applied field and for this particular
example we will not screen the valence electron by its own charge.

Next, we apply a uniform electric field, ℰ, to the atom. We do this for an
infinitesimal amount of time. As an analogy, consider striking a bell with a
hammer. The bell will ring in respond to the strike and the audio signal can be
broken down into some fundamental resonances of the bell. Here, we hit the
atom with this uniform field and then analyze how the atom “rings.”

Suppose we take

Vext(r, t) = −eℰz𝛿(t) (10.33)
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At t = 0 we write our Hamiltonian as

ℋ (t = 0) = ℋ 0(t = 0) − eℰz
Δt

(10.34)

where the delta function is replaced by 1∕Δt. Our initial wave function has the
form:

𝜙0(r, t = 0+) = exp(ikz)𝜙0
0(r) (10.35)

This is not hard to see. Consider Eq. (10.31). The integral over the delta function
integral yields

∫
o+

0−
ℋ (r, t′)dt′ = −eℰz (10.36)

which gives k = eℰz∕ℏ in Eq. (10.35). It is relatively easy to propagate the initial
state in time:

𝜙0(r,Δt) = (1 + iℋ 0Δt∕ℏ − (ℋ 0Δt∕ℏ)2∕2 + · · ·) exp(ikz)𝜙0
0(r) (10.37)

We know the solution𝜙
0
0 without the field and the Hamiltonian,ℋ 0, so this oper-

ation is straightforward. The propagation step can be accelerated by taking more
terms in the expansion or by using different algorithms for stepping the wave
function. Of course, either way the problem is more difficult. Often simplicity is
a better option. We let the computer handle the increased workload.

If the wave function is known as a function of time, then the charge density
is also known as a function of time. This is easy for a one-electron atom such as
sodium. We just square the occupied orbital:

𝜌(r, t) = −e|𝜙0(r, t)|2 (10.38)

The next step is to find the dipole induced by the electric field. This follows from
the charge density:

z(t) = ∫ z 𝜌(r, t) d3r (10.39)

In Figure 10.6, we plot the induced dipole as a function of time. A harmonic
oscillation is present, but what is the frequency of this oscillation? We find the
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frequency as previously. We compute a power spectrum by taking an integral of
the form:

I(𝜔) ∝
||||∫

∞

0
z(t) exp(−i𝜔t) dt

||||
2

(10.40)

We expect I(𝜔) to be a delta function response for a dipole with a pure har-
monic oscillation. Performing the integral presents a few obstacles. For starters,
does one really have to integrate over all time? The answer depends on the desired
resolution. The longer we can observe the dipole, the better the resolution. We
have previously addressed this problem. Suppose we assume a pure harmonic
response: z(t) = z0 exp(−i𝜔0t). Then, assuming a proportionality constant, I0, we
write

I(𝜔) = I0
||||∫

∞

0
exp(−i(𝜔 − 𝜔0)t) dt

||||
2

(10.41)

We easily evaluate this integral, save for the limit at infinity. We address this limit
by assuming a damping term: z(t) = z0 exp(−𝛾t) exp(−i𝜔0t) and consider 𝛾 → 0.
Mathematically this is not proper, but the physics is all right. Now our integral
becomes

I(𝜔) = I0
||||∫

∞

0
exp(−i(𝜔 − 𝜔0 + i𝛾)t) dt

||||
2

(10.42)

which yields

I(𝜔) =
I0

(𝜔 − 𝜔o)2 + 𝛾2 (10.43)

This functional form of I(𝜔) is well known and is called a “Lorentzian” function
or line shape. In Figure 10.7, we illustrate a Lorentzian function as determined
from the calculated dipole in Figure 10.6. This plot uses a fairly large value of 𝛾
so the width is much larger than the experimental one as shown in Figure 10.8.
The experimental peak occurs at about 590 nm, or about 2.1 eV. This value agrees
with our computation to within a few percent.

The approach we illustrated for the sodium atom works well, but it is highly
simplified. In a real system, as the wave functions change with time, we need to
update the Hartree and exchange-correlation potentials. For sodium, we did not
screen the electron. So these potentials were taken to be zero. Our Hamiltonian,

Figure 10.7 Power spectrum corresponding
to the absorption spectrum for a sodium
atom.
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Figure 10.8 Experimental absorption spectrum from https://commons.wikimedia.org/
wiki/File:Low-pressure_sodium_lamp_spectrum.svg.

ℋ0, contains only the ionic pseudopotential, which is time independent as it did
not change with the valence wave function. In a real system, ℋ0 is updated after
each time step reflecting changes in the charge density with time. The computa-
tions can be time consuming.

The theory illustrated in our example is called “time-dependent density
functional theory,” abbreviated as TDDFT. TDDFT works pretty well for simple
systems such as a sodium atom and small metal clusters. However, the “local”
approximations in time and space assumed in TDDFT may not be very accurate
for all systems. Such approximations are the topics of current research [5, 6].

10.5 Polarizability

Here, we consider some general procedures for computing induced dipoles in the
static limit. We could obtain this quantity by taking the static limit of Eq. (10.27)
where we generalized the case to include all possible transitions, n:

𝛼(𝜔 = 0) = e2

m
∑

n

fn

𝜔
2
n

(10.44)

This is a useful expression that can readily be computed, provided one does
not need many empty states to converge the sum. The number of states required
is related to the distortion in the ground-state charge density as a function of
the applied field. If there is a large distortion in the density, then more states are
needed to replicate the changes in the ground-state density. This can be a limiting
factor in any computations.

A more general way of computing this quantity is to include the static field
directly in the Hamiltonian:[

−ℏ2∇2

2m
+ Veff(r⃗) − eℰ⃗ ⋅ r⃗

]
𝜓(r⃗)i = Ei𝜓(r⃗)i (10.45)

https://commons.wikimedia.org/wiki/File:Low-pressure_sodium_lamp_spectrum.svg
https://commons.wikimedia.org/wiki/File:Low-pressure_sodium_lamp_spectrum.svg
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where Veff contains the ionic pseudopotential, the Hartree potential, and the
exchange-correlation potential, and ℰ is the uniform electric field. To determine
the polarizability, we solve Eq. (10.45) in the presence of the electric field and
find the induced dipole, 𝜇, given by

𝜇 = ∫ r⃗ 𝜌(r⃗) dr⃗

In the case of a spherically symmetric atom the polarizability is independent of
direction and the average dipole is a constant: ⟨𝜇⟩ = 𝜇. The polarizability is given
by 𝛼 = d𝜇∕dℰ where the derivative can be computed using finite differencing.

Does the result depend on the size of the applied field? Well it could, but in
practice it need not. In the limit of a vanishingly small field, there can be numer-
ical issues, i.e. the wave functions with and without field cannot be accurately
computed. In the opposite limit, the field can be so large as to ionize the atom!
Clearly, we need something within these limits. This can be determined by plot-
ting the polarizability of the atom as a function of the applied field. Stable values
for the polarizability can often be obtained, even when the applied field changes
by an order of magnitude or more. Typical values for applied fields range from
10−4 to 10−3 a.u. If properly done, either method, perturbation theory or finite
fields, should yield the same results. We will discuss this further in Chapter 11.

In Table 10.2, computations for the polarizability of noble gas atoms are
given [8]. There are two notable trends. Theory predicts larger values than
experiment and the relative difference decreases for the heavier atoms, i.e. the
polarization for He is larger by about 20% whereas this difference is only about
5% for Xe. The source of this discrepancy is thought to arise from a flaw in the
exchange-correlation potential as defined with density functional theory. If we
remove an electron from an atom, we expect the potential at large distances
to decay as 1∕r. Simple electrostatics predicts this. However, most functionals
yield a potential that decays exponentially. Numerical studies show that ad hoc
asymptotically corrected functionals can do much better [8].

Table 10.2 Static electric dipole polarizabilities
of noble gas atoms calculated using the
finite-field methods. Experiment is from Ref. [7].

Polarizability (Å
3

)

Atom Theory Experiment

He 0.246 0.205
Ne 0.452 0.396
Ar 1.785 1.641
Kr 2.682 2.484
Xe 4.264 4.044
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11

Molecules

Life … is a relationship between molecules.
—Linus Pauling

11.1 Interacting Atoms

In Section 8.1 we focused on numerical approaches to interacting atoms, and dis-
cussed how quantum mechanics could account for the binding of two hydrogen
atoms. We employed a theory by Heitler and London. The overall success of their
theory is a significant result in understanding the chemical bond. Suppose their
theory had failed? Such a failure would cast suspicions on quantum theory for all
chemical interactions. Of course, that did not happen and we need not deal with
alternate histories. Rather, we are confident that quantum theory works.

Molecules represent stable interactions between atoms. In contrast to “atomic
clusters,” which are also made from interacting atoms, molecules can be con-
densed into solids where the molecular unit has meaning. The simplest molecules
are diatomics, such as H2, O2, Cl2, N2, NO, and CO.

Some of these diatomics are notably important to our very existence. The
diatomic gases O2 and N2 make up over 99% of the earth’s atmosphere.
Understanding the properties of these elemental gases tells us much about the
atmospheric ocean that shelters us from the vacuum of space.

We begin by focusing on the properties of several of these diatomics. We indi-
cate how quantum theory can be used to compute the binding energy, the equi-
librium bond length, and vibrational modes of diatomics. We will also consider
interactions of the molecules with light and electric fields. We consider some
more complex molecules for show.

11.2 Molecular Orbitals: Simplified

An orbital description of diatomic molecules is a good starting point. We label
the two atoms by “A” and “B.” The wave function for the diatomic are given as

Introductory Quantum Mechanics with MATLAB® : For Atoms, Molecules, Clusters, and Nanocrystals,
First Edition. James R. Chelikowsky.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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follows:

ΨAB =
∑

i,j
𝛼i,j 𝜙

i
j (11.1)

The sum i runs over the types of atoms; in this case, i = A or B. The sum j runs
over the orbital character, e.g. j = s, p, d, ….

We can be more specific. Suppose we consider a C2 molecule, we might write
ΨC2

= 𝛼A,s𝜙
A
s + 𝛼A,px

𝜙
A
px
+ 𝛼A,py

𝜙
A
py
+ 𝛼A,pz

𝜙
A
pz

+𝛼B,s𝜙
B
s + 𝛼B,px

𝜙
B
px
+ 𝛼2,py

𝜙
B
py
+ 𝛼B,pz

𝜙
B
pz

(11.2)

Some clarification is in order. There are two carbon atoms. We label one of the
atoms A and the other B as they exist on different sites. We consider s, px, py, pz
orbitals on each atom. As one might guess, keeping track of the various indices
for large systems means being a good bookkeeper.

As is “standard practice,” we solve the following eigenvalue problem

ℋΨC2
= E ΨC2

(11.3)

by multiplying both sides by 𝜙
∗i′
j′ and integrating over all space. This procedure

yields a secular equation with matrix elements of the form

∫ 𝜙
∗i′
j′ ℋ 𝜙

i
j d3r and ∫ 𝜙

∗i′
j′ 𝜙

i
j d3r (11.4)

We consider an orthonormal set of basis functions:

∫ 𝜙
∗i′
j′ 𝜙

i
jd

3r = 𝛿ii′,jj′ (11.5)

When i = i′ and the orbitals are on the same site, there are two cases of merit.
If the orbitals are simply atomic orbitals, which is a common procedure, the
“usual rules apply.” If j = j′ we take the orbitals to be normalized to unity. If j ≠ j′,
we take the orbitals to be orthogonal and the matrix element vanishes. When
i ≠ i′, the sites are different. We could assume the matrix element vanishes as the
orbitals are not on the same atom and separated by a bond length. Clearly, this will
be the case if the orbitals are strongly localized on each atom. Neglecting these
matrix elements simplifies the problem enormously. If one does not make this
approximation, there are “overlap” matrix elements between the orbitals. There
are ways to handle such matrix elements, but for the sake of simplicity we will
assume that the overlap matrix elements vanish.

Matrix elements involving the Hamiltonian can be handled in a similar manner.
If the orbitals are on the same site i = i′, we have two cases. If j is an s-state and
j′ is an s state, then we have

∫ 𝜙
∗i
j′ ℋ𝜙

i
j d3r = Es j = j′ = s (11.6)

and if j is a p-state and j′ is a similar p state, e.g. both are px states then,

∫ 𝜙
∗i
j′ ℋ𝜙

i
j d3r = Ep j = j′ = px, py, or pz (11.7)

Otherwise, this matrix element vanishes.
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A complex situation occurs for i ≠ i′, i.e. when one orbital is on atom A and the
other orbital is on atom B. For simplicity, we wish to keep the most significant
terms. What constitutes a “significant term?” It is hard to answer this without
some experience. Fortunately, this experience exists.

Here is the story. An s orbital on atom A and an s orbital on atom B yield a
significant matrix element:

∫ (𝜙A
s )∗ℋ𝜙

B
s d3r = sAsB (11.8)

For s orbitals interacting with p, the matrix element can be neglected.
For the p states, we consider the following. Suppose the diatomic molecule is

oriented along the x-axis. Then we take

∫ (𝜙pA
x
)∗ℋ𝜙

B
x d3r = pA

x pB
x (11.9)

We also allow p states in the direction perpendicular to interact, and we have this
matrix element to consider:

∫ 𝜙
∗i′
j′ ℋ𝜙

i
j d3r = pyp′

yor pzp′
z j = py, pz j′ = py, pz i ≠ i′

(11.10)

The notation means that this integral is not zero if the orbitals at different sites
are the same p states, e.g. py on site 1 with py on site 2. We neglect matrix ele-
ments where this is not the case, i.e. we neglect the matrix element with py on site
A and pz on site B. Quantum chemists often neglect such matrix elements and
characterize the neglect of such elements as “zero differential overlap.”

We organize our secular equation in a matrix format.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Es sAsB 0 0 0 0 0 0
sAsB Es 0 0 0 0 0 0

0 0 Ep pA
x pB

x 0 0 0 0
0 0 pA

x pB
x Ep 0 0 0 0

0 0 0 0 Ep pA
y pB

y 0 0
0 0 0 0 pA

y pB
y Ep 0 0

0 0 0 0 0 0 Ep pA
z pB

z

0 0 0 0 0 0 pA
z pB

z Ep

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛼
A
s

𝛼
B
s

𝛼
A
px

𝛼
B
px

𝛼
A
py

𝛼
B
py

𝛼
A
pz

𝛼
B
pz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= E

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛼
A
s

𝛼
B
s

𝛼
A
px

𝛼
B
px

𝛼
A
py

𝛼
B
py

𝛼
A
pz

𝛼
B
pz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Solving this eigenvalue problem gives the simplest orbital energy description.
Note how we chose to order the orbitals. With this choice, the matrix decomposes
into four 2 × 2 eigenvalue problems, which can easily be solved. For example, we
have (

Es sAsB

sAsB Es

)(
𝛼

A
s

𝛼
B
s

)
= E

(
𝛼

A
s

𝛼
B
s

)
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Figure 11.1 Bonding and antibonding states
involve atomic s orbitals: 𝜎s and 𝜎

∗
s states,

respectively.

Our solution for the eigenvalues cannot be much easier: E = Es ± sAsB. We
define the energy Es − sAsB to be 𝜎s and the energy Es + sAsB to be 𝜎

∗
s . In

Figure 11.1, we illustrate the splitting of the 2s states.
If we were to think about He2 instead of C2, we could immediately see why a He2

molecule cannot form a stable diatomic molecule. Each orbital can only hold two
electrons; one with spin up, the other with spin down as illustrated in Figure 11.1
(in the figure replace 2s by 1s to go from C to He). For He2, the change in the
sum of the eigenvalues vanishes: 𝜎∗

s + 𝜎s − 2Es = Es + sAsB + Es − sAsB − 2Es = 0.
Within this simple picture, the electronic energy contribution cancels out. This is
not a definitive argument as we made some highly simplified assumptions such as
neglecting a number of matrix elements and we took the electronic energy as the
sum of one-electron energies, which we know is not rigorous. Still, this argument
holds and it explains why He2 molecules do not form.

We can do the same for the pA
x pB

x matrix elements.(
Ep pA

x pB
x

pA
x pB

x Ep

)(
𝛼pA

x

𝛼pB
x

)
= E

(
𝛼pA

x

𝛼pB
x

)
Again, we generate a simple solution for the eigenvalues: E = Ep ± pA

x pB
x . We

define the energy Ep − pA
x pB

x to be 𝜎p and the energy Ep + pA
x pB

x to be 𝜎
∗
p . The two

remaining 2 × 2 blocks yield Ep ± pA
y pB

y and Ep ± pA
z pB

z . The energy of these states
is degenerate. We label Ep − pA

y pB
y by πp and Ep + pA

y pB
y by π∗p.

In Figure 11.2, we illustrate the energy states for the p-state interactions. A few
comments are in order. First, this diagram is schematic. We assumed that the πp
level is below the 𝜎p state. This order is not obvious by anything we have said
or written. The level order is important in the sense that if the πp level is filled,
then the dimer cannot have a net magnetic moment. If the 𝜎p level is lower than
the πp, then this level is filled, and the πp is only half full. From Hund’s rules,
we expect the two πp electrons to have parallel spins, which would produce a
magnetic molecule.

2 p2 p

σp

πp

π
⁎

p

σ
⁎

p

Figure 11.2 Schematic energy levels for 𝜎p, 𝜎∗
p, πp,

and π∗p orbitals.
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Figure 11.3 Schematic
molecular orbital for interacting
s states illustrating the origin of
the bonding 𝜎s orbital and the
antibonding 𝜎

∗
s .

s

Noninteracing
atoms

σ*s state

σs state

s

The spatial configuration of the molecular orbitals can be understood in a
schematic sense. For C2 molecule, the s and p orbitals are notably removed in
energy. We can discuss their interactions separately.

In Figure 11.3, we consider two s-like orbitals that interact, e.g. consider the
2s states of a carbon atom. There are two orbital configurations from combining
s states: One where the states are added together corresponding to the bonding
molecular orbital (𝜎s) and one where the states are differenced corresponding to
the antibonding molecular orbital (𝜎∗

s ). A key difference between the 𝜎s and 𝜎
∗
s

orbitals is the presence of a nodal plane in the antibonding orbital.
As one might expect, the p states are more complex because these states have

directional axes associated with the orbital. We can think about this as follows.
Assume the C2 molecule is aligned along the x-axis. The px states on each C atom
are aligned on the axis joining the two atoms. The py and pz orbitals are perpen-
dicular to the x-axis. By symmetry the interactions with py, pz are identical. Again,
we do not consider s–p interactions and we neglect differential interactions such
as px with py, or py with pz, i.e. we assume zero differential overlap.

In Figure 11.4, we illustrate the spatial extent of the px orbitals. The 𝜎p orbital is
easy to understand as coming from the overlap of px-states, which are directed at
one another. The πp orbital is more subtle. The overlap comes from the py orbitals
(or pz orbitals) that are perpendicular to the molecular axis. This orbital possesses
a node running down the axis. A schematic of this bonding configuration is given
in Figure 11.5.

Figure 11.4 Schematic molecular orbital for
interacting px states illustrating the origin of the
bonding 𝜎p orbital and the and antibonding 𝜎

∗
p. px px

Antibonding

Bonding

σ*p

σp
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py py

Antibonding

Bonding

π*p

πp

Figure 11.5 Schematic molecular orbital for
interacting py states illustrating the origin of the
bonding πp orbital and the and antibonding π∗p.

11.3 Molecular Orbitals: Not Simplified

Computational methods can be used to assess whether our simplified picture is
too simple. We take heed of Einstein’s admonition: “Make things as simple as
possible, but not simpler.”

In this section, we illustrate a more realistic (not so simplified) description of
the electronic structure of a diatomic molecule. As outlined in Chapter 9, we
can apply practical quantum methods to molecular system using pseudopoten-
tials coupled to density functional theory. Specifically, we calculate the spatial and
energetic distributions of molecular orbitals.

Our spotlight will again be on the carbon dimer. A short overview of the C2
molecule (or “dicarbon”) can be found in the literature [1]. The molecule is not
stable like O2 or N2, but it is easily produced in arc experiments, just as C60 is. C2
is also found in comets and is responsible for the blue light we see in flames.

Although only two atoms are involved, dicarbon is a “tough” case to compute
as the πp and 𝜎p orbitals are nearly equal in energy. As usual, we need to fill each
orbital starting from the lowest energy ones. If the πp orbitals reside below the 𝜎p
orbital, we can fully occupy the πp orbitals, which can accommodate four elec-
trons. The 𝜎p orbital is empty. Conversely, if the 𝜎p state is lower in energy, it will
be fully occupied and the πp states will be half occupied. As we noted before, this
filling order will result in “magnetic” carbon according to Hund’s rules.

Self-consistent field calculations can be difficult to converge in such situations
as “level flipping” occurs. Here is what we mean. Initially, the πp state might be
lower in energy than the 𝜎p state. We occupy the πp state with four valence elec-
trons and leave the 𝜎p empty. In the next iteration, suppose the energy of the πp
state increases and the energy of the 𝜎p state decreases such that the levels “flip.”
In this scenario, the πp state is now partially filled and the 𝜎p state completely
filled. The two states can oscillate in energy as a self-consistent cycle is performed
without a stable solution being found.

We need to come up with a workaround to get a solution. Fortunately, an
answer exists within density functional theory. Density functional theory does
not mandate that each state be integrally occupied. One can fractionally occupy
a state. The incorporation of a “fractional” electron occupying a given orbital is
not really a flaw of density functional theory. The total density of a molecule is
an observable, but not the wave functions, or the individual orbitals.

The occupancy numbers can then be varied until the lowest energy solution
is obtained. For example, we could constrain the occupation with “half an
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electron” in one orbital and half an electron in another, independent of the
orbital energies. Using this constrained occupation, we iterate until the system
is self-consistent. We then evaluate the total energy. Now suppose we change
the constrained occupation. For example, suppose we occupy one orbital by
three quarters of an electron and the other by one quarter of an electron. We
again iterate to self-consistency with the new occupation and compute the total
energy. By exploring the occupancy fractions and evaluating the total energy
for every possible occupancy, or at least some subset around the usual integral
occupancy prescription, we can find the lowest energy occupation. This is the
“correct” solution within density functional theory.

While it seems natural for us to treat the Kohn–Sham orbitals and energy lev-
els in density functional as representing the spatial arrangement and energy of
individual electrons, this is not justified by the physics. Nonetheless, the orbitals
and energy levels can give us clues as to what to expect for the actual solution.

Consider again the carbon dimer. If the 𝜎p state is lower in energy than the
πp state, we would expect the molecule to have unpaired spins and from Hund’s
rules, we might expect the ground state of the molecule to be a spin triplet (or
a 3Π state). In contrast, if the 𝜎p state is above the πp state, then πp state will be
filled and the molecule will not possess a net spin. It will be in a singlet state (or
a 1Σ state). Theoretically, this is difficult to predict. Experimentally, the ground
state of the carbon dimer does not carry a spin and is in the 1Σ state with the 3Π
state only slightly higher in energy [2].

In Figure 11.6, we present contour maps for the molecular orbitals and the
total charge density of the carbon dimer. The resulting orbitals bear a remark-
able resemblance to the schematic orbitals in Figures 11.3–11.5. The simplified

σs

πp σp

ρTotal
π
⁎

p

σ⁎s

Figure 11.6 Molecular orbitals for the carbon dimer. Negative contours are indicated by
dashed lines. The positive/negative phase choice is arbitrary. The positions of the carbon
atoms are indicated by black dots.
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Figure 11.7 Molecular orbital energy levels
for the carbon dimer. The πp and π∗p states
are doubly degenerate. For this
configuration, the πp states are fully
occupied and the 𝜎p state is empty.

picture is at least qualitatively correct compared to more realistic calculations
and helps us interpret them.

Our simple picture is less “simple” when the molecular orbital descriptions
include d or f states. There can be mixing between the atomic states, and it can
be difficult to interpret the contour maps.

Although the energy levels from density functional theory may not be “phys-
ical,” they can often be associated with real energy levels. For example, if one
looks at photoemission spectra using the energy levels as a measure of the
binding energy of an electron, the results are often qualitatively correct, if not
quantitatively close, to the energies predicted by the Kohn–Sham eigenvalues. In
Figure 11.7, the energy levels for the carbon dimer are illustrated. The πp orbital
is doubly occupied, resulting in a closed shell configuration, i.e. all the occupied
orbitals are completely filled as expected from experiment.

11.4 Total Energy of a Molecule from the Kohn–Sham
Equations

Once the Kohn–Sham energy levels and wave functions are known, one can com-
pute the total electronic energy of the molecule. For the example at hand, it is
relatively easy to compute the total energy as a function of the C—C bond length
to determine the vibrational frequency of the C—C stretch mode, the equilibrium
bond length, and the cohesive energy of the molecule.

We add up the total electronic energy from

E(R) =
Z2

ione2

R
+
∑

i
Ei −

1
2 ∫ VH 𝜌 d3r + ∫ [Exc − Vxc] 𝜌 d3r (11.11)

where Zion is the ionic charge on the C atom (in this case Zion = 4), R is the dis-
tance between the carbon nuclei, the sum is over the occupied states, Ei are the
Kohn–Sham energy levels, VH is the Hartree potential, 𝜌 is the charge density, Exc
is the exchange–correlation density, and Vxc is the exchange–correlation effective
potential.
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Figure 11.8 Total electronic energy
of the carbon dimer per atom as a
function of the bond length, R. The
plot is in atomic units and the energy
referenced to the total energy of the
molecule.
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In Figure 11.8, we plot E(R) vs R for regularly spaced points. Here we consider
six points around the lowest energy of the molecule and fit a polynomial to the
calculated points. It is often easiest to do this in atomic units (length in Bohr radii,
energy in Hartrees – e = ℏ = m = 1) and then convert to the desired units at the
end of the computation. In atomic units, the fit is given by

E(R) = 4.0829 − 4.7034R + 1.7882R2 − 0.022393R3 (11.12)

The energy is per atom. The order of the polynomial is usually taken to be cubic,
which allows for some anharmonicity. To find the equilibrium point R0, one finds
the point where dE∕dR = 0. This also allows one to find the equilibrium energy,
which is referenced to zero in the figure. In pseudopotential calculations, such
as this one, the absolute energy of the “pseudoatom” has no meaning. Only rel-
ative energies have meaning. The vibrational mode of the molecule can readily
be found, assuming that near the equilibrium point, the molecule behaves as a
harmonic oscillator. The energy of the oscillator can be written as

E(R) = 1
2
𝜇v2 + 1

2
kR2 (11.13)

where𝜇 is the reduced mass of the dimer, v is the velocity, and k is the “spring con-
stant” of the molecule. The spring constant can be determined by finding d2E∕dR2

at the equilibrium bond length.
In Table 11.1, we summarize the calculated molecular properties compared to

experiment. We provide these numbers to illustrate the accuracy of pseudopo-
tentials constructed within density functional theory. Density functional theory
is not perfect. Typically, the bond lengths are off by 1–2%, as is the case here. The
cohesive energy is the most problematic quantity and bears special mention. The
total energy of our carbon pseudoatom is about−145.5 eV, and again, depends on
the pseudopotential and the functional. The energy per atom of the carbon dimer
is about −150.3 eV. This leaves us with a value of 4.8 eV per atom or 9.6 eV for the
cohesive energy of the molecule. The error, if we stopped at this point, would be
almost 50%.
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Table 11.1 Properties of the carbon dimer; experiment
compared to theory.

Property Experiment Theory

Bond length (Å) 1.242 1.25
Cohesive energy (eV) 6.31 6.9
Vibrational energy (cm−1) 1854.7 1839

However, we have underestimated the energy of the pseudoatom by using a
functional based on local density functional that does not account for the spin
states of the atom. The carbon atom has a net spin in the ground state. Recall from
Hund’s rule (in Chapter 10) that the carbon should have a net spin. This additional
degree of freedom lowers the energy of the atom by almost 1.3eV. Since we have
two atoms, the cohesive energy is reduced to about 7.0 eV. We can improve on
this by considering the zero point motion of the molecule. This is not a large
correction, but it helps move the theoretical values toward experiment.

Recall that the vibrational modes of a harmonic oscillator are quantized:

En = (n + 1
2
)ℏ𝜔 (11.14)

where n = 0, 1, 2,…. Since E0 = ℏ𝜔∕2, the energy of the molecule should be
raised above the minimum shown in Figure 11.8, even at absolute zero. The
vibrational energy of 1839 cm−1 is about 0.2 eV (see Appendix A for energy
units) and reduces the cohesive energy to roughly 6.9 eV. An error of about 10%
for the cohesive energy is actually not that bad. Often, the errors within the local
density approximation are notably larger than this error. For this reason, more
advanced functionals have been developed such as the generalized gradient
approximation, which notably improves the cohesive energy errors of density
functional [3].

Example 11.1 Water For a diatomic molecule, there is only one vibrational
mode: stretching the bond length. However, if we have a more complex molecule,
there can be numerous degrees of freedom. The number of degrees of freedom
can be determined by some simple counting arguments. Suppose we have N
atoms in a molecule. If N = 2, we would have 3N = 6 = 3 + 2 + 1 degrees of free-
dom. Three degrees of freedom can be associated with the center of mass motion.
There are two degrees of freedom associated with the rotational modes of the
molecule (two perpendicular to a line connecting the atoms) and one degree of
freedom for vibrational modes. If N > 2 and the molecule is not linear, we can
write 3N = 3 + 3 + (3N − 6) – again, three degrees of freedom for the center of
mass, three degrees for freedom for rotational modes, and 3N − 6 for vibrational
modes.

We can illustrate this by considering a water molecule. Water is a nonlinear
molecule. From our counting argument, we should have three vibrational “nor-
mal modes.” These normal modes can be found if the potential energy surface of
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the molecule is known. Here we denote the potential energy surface by U . (U is
the total electronic energy plus the Coulomb repulsion from the ion cores. Before
we called this E(R) for the dimer.) We can generally write the following expansion:

U(s1 … , sn) = U(s0
1,… , s0

n) +
n∑

j=1

3∑
𝛼=1

(
𝜕U
𝜕sj,𝛼

)
0

(
sj,𝛼 − s0

j,𝛼

)
+ 1

2

n∑
j,k=1

3∑
𝛼,𝛽=1

(
𝜕

2U
𝜕sj,𝛼𝜕sk,𝛽

)
0

(
sj,𝛼 − s0

j,𝛼

)(
sk,𝛽 − s0

k,𝛽

)
+ · · ·

(11.15)
A word about notation: Here s is a vector: s = (x, y, z), so the jth particle would
have sj = (x1, y1, z1) with the (x, y, z) components labeled by 𝛼, e.g. sj,𝛼=1 = xj. We
choose the equilibrium point to be labeled by s0

j . At this point the value of U is

a minimum and no forces exist on the atoms. In this case,
(

𝜕U
𝜕sj,𝛼

)
0
= 0 and if we

ignore higher order terms we have the equation for a simple harmonic oscillator.
Suppose we assume solutions of the form

sj =
1√
Mj

s0
j exp(i𝜔t)

where the mass of the jth atom is given by Mj. From Newton’s laws, this results
in an eigenvalue problem of the form

𝜔
2 s0

j𝛼 =
n∑

j′=1

3∑
𝛼′=1

1√
MjMj′

(
𝜕

2U
𝜕sj,𝛼𝜕sj′ ,𝛼′

)
0

s0
j′𝛼′ (11.16)

In our example, water has three atoms so we have to diagonalize a 9 × 9 matrix,
called the dynamical matrix. From this diagonalization, one can guess there
must be some degeneracies as we know that we only get three normal vibrational
modes.

The potential energy surface is the key ingredient from which we can compute
the normal modes. We can proceed in several ways.

We could systematically move the atoms in the molecule to map out a potential
energy surface and find the derivatives of U . For our water molecule example, we
can use standard finite difference methods to extract the needed derivatives. If
we want to find 𝜕

2U∕𝜕x2, we can use a formula such as
𝜕

2U(x, y)
𝜕x2 =

U(x + Δx, y) − 2U(x, y) + U(x − Δx, y)
Δx2 (11.17)

or with a mixed derivative
𝜕

2U(x, y)
𝜕x𝜕y

=
U(x + Δx, y + Δy) − U(x + Δx, y − Δy) − U(x − Δx, y + Δy) + U(x − Δx, y − Δy)

ΔxΔy
(11.18)

For a water molecule, we can focus on an interatomic potential with only two
coordinates, e.g. U(x, y), as the three atoms in water form a plane. We need to
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Figure 11.9 Model of a water molecule characterized by
two bond lengths, (d1, d2) and the H—O—H bond angle, 𝜃.

compute a 6 × 6 matrix as we have three atoms and find derivatives such as
𝜕

2U∕𝜕x1𝜕x2 and 𝜕
2U∕𝜕x1𝜕y1.

One could make a case for extracting these derivatives by taking finite differ-
ences of the forces as determined from the Hellmann–Feynman theorem. How-
ever, it is often easier to implement the energy differences rather than compute
forces. The computation can be simplified by considering symmetry and if the
degrees of freedom are not too many, one can plot the potential energy surfaces,
fit analytical functions, and take derivatives.

This procedure is perfectly acceptable. Nonetheless, it is easier to examine
coordinates tailored for the problem at hand as shown in Figure 11.9. In particu-
lar, the H—O—H bond angle, 𝜃, and two H—O bond lengths (d1, d2) can be used
to define the structure of a water molecule. Using these “collective coordinates”
is more physical than using x1, y1, z1, x2, y2,….

Still, even this problem requires some work, as it is hard to depict a three vari-
able function, U = U(d1, d2, 𝜃), in two-dimensional plots. We resolve this issue
by fixing one bond length, say d2, at its equilibrium value and plotting U as we
move away from the equilibrium values of d1 and 𝜃. In Figure 11.10, we show the
potential energy surface for such a construction.

As one might guess, the energy change for a 2% change in the bond length is
larger than a 2% change in the bond angle. Qualitatively, this is a reflection of
bond angles being softer, i.e. easier to deform than bond lengths. Also, it takes
more energy to compress a bond length by 2% than to stretch it by 2%, which
means the H—O bond length should increase with increasing temperature.

A solution of the dynamical matrix eigenvalue problem for the water molecule
yields three normal modes. Sometimes it is easy to guess at these modes; the key
attribute of the motion in these modes are that the center of mass does not move.
The atomic motion of these modes is illustrated in Figure 11.11.

Computed and measured frequencies for these vibrational modes are given in
Table 11.2. The level of accuracy is typical for local density approximation calcu-
lations. The computed bond length and vibrational modes are off by a few percent
from experiment. Since the energy calculations for these modes involve energies
for similarly coordinated species, error cancelation is quite good.

The general approach illustrated for the water molecule can be extended in a
straightforward manner to more complex systems. However, as the number of
atoms increase, so do the number of degrees of freedom. For a system with hun-
dreds of atoms, the vibrational spectra can be quite complex and computationally
intensive to compute.
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Figure 11.10 Ground-state potential energy surface for water as a function of one bond
length and angle, with the second bond length held constant. The calculated equilibrium
bond length is 1.81 a.u. and the angle is 104.5∘. The corresponding experimental values are
1.81 a.u. and 104.2∘ [4].

Figure 11.11 Three normal vibrational modes for a
water molecule. The motions shown by the arrow
should preserve the center of mass of the
molecule.

Symmetric stretching

Asymmetric stretching

Bending

Table 11.2 Properties of the water molecule – experiment compared to theory.

Vibrational modes

Bond length Bond angle Symmetric Asymmetric Bending

Experiment 1.81 104.5 3657.0 3755.7 1594.7
Theory 1.84 104 3667 3811 1606

The bond lengths are in a.u. and the bond angles are in degrees. The vibrational modes
are in cm−1. Experiment is from Ref. [4] and theory from Ref. [5].

11.5 Optical Excitations

The “secret” to understanding the electronic and structural properties of
molecules is “light.” As in the case of atoms, we know more about molecular
properties by analyzing optical spectra than by other means. We focus on
electronic excitations in this section as the electronic excitations of molecules
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often fall in the visible spectrum, although it is possible to use photons to excite
vibrational or rotational modes.

We can employ theoretical approaches similar to those used for atoms to
estimate the excitation energies in molecules. There is one patently obvious
difference in molecules when compared to atoms. Molecules possess an atomic
structure that can change during an electronic excitation. As a simple example,
consider a diatomic molecule. If we remove an electron from a ground-state
orbital and place it in an excited-state orbital, the bond is weakened and the
bond length of the diatomic molecule will usually expand if the electron remains
in the excited state. (Dicarbon is a notable exception to this rule [1].)

The absorption of a photon by a molecule raises a number of fundamental
questions. Some of them include: What exactly happens as the molecule absorbs
the photon? Does our molecule exist as the superposition of several states when
excited, which can only be determined if we attempt to make some sort of mea-
surement? (This is similar to the Schrödinger cat problem.)

We will not address such questions here, save to say the transition can be
really fast. The “Franck–Condon” principle captures this temporal disparity. The
classical version of this principle states that the rearrangement of the electronic
charge is much quicker than the lumbering motion of the nuclei, similar to
the Born–Oppenheimer approximation. As such, the nuclear positions do
not significantly change while the electron is being absorbed. If we fix the
molecular structure, we can determine the electronic energy levels and use these
levels to find the excitation energies. Just for the atom, a formalism such as
time-dependent density functional theory can be used to find the excited-state
energy levels.

11.5.1 Time-dependent Density Functional Theory

In Chapter 10, we used time-dependent perturbation theory to describe the elec-
tronic excitations of an atom. We can build on this approach by considering the
time evolution of electronic excitations in a molecule. The starting point of such
a calculation is a conventional ground-state density functional. The total energy
of the molecule is computed, E0, as well as the Kohn–Sham wave functions and
energy levels (𝜓l(r⃗), 𝜀l).

Within linear response theory, i.e. we proceed as we did for computing the
dielectric response of an atom, the optical excitations can be found from the fol-
lowing eigenvalue problem:

QFI = Ω2
I FI (11.19)

where the Ith excitation energy is given byΩI . The matrix elements of Q are given
by

Qij,kl = 𝛿i,k𝛿j,l𝜔
2
kl + 2

√
𝜆ij𝜔ij Kij,kl

√
𝜆kl𝜔kl (11.20)

where we have dropped some spin indices for simplicity. 𝜆ij = nj − ni is the
difference between the occupation numbers of the i and j Kohn–Sham states.
𝜔ij = 𝜀i − 𝜀j is the energy difference between the i and j Kohn–Sham eigenvalues.
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(We are usingℏ = m = e = 1, i.e. atomic units – see Appendix A.) K is a “coupling
matrix,” whose elements are given by

Kij,kl = 2∫ ∫ 𝜓
∗
i (r)𝜓j(r)

(
1|r− r′| + 𝛿

2Exc[𝜌]
𝛿𝜌(r)𝛿𝜌(r′)

)
𝜓k(r′)𝜓∗

l (r
′)drdr′

(11.21)

where Exc is the exchange–correlation energy, which is a functional of the
charge density, 𝜌. Eq. (11.19) is the Casida equation and this approach is called
“time-dependent density functional theory.”

The expressions for implementing time-dependent density functional theory
look “complicated,” and they are. However, it could be worse. A number of sim-
plifying assumptions were employed to get to this point. The most notable is that
we assume that the effective exchange–correlation energy is local in both space
and time. We did this previously in Chapter 10. Also, we consider the perturbing
field to be uniform in space; the length scale of any variation of the external field
exceeds that of the molecule of interest.

A solution of Eq. (11.19) yields both eigenvalues, ΩI , and the corresponding
eigenvectors, FI. The eigenvectors can be related to the transition probability and
the relative contributions of each Kohn–Sham orbital.

Example 11.2 Excitations in the CO Molecule Consider a simple diatomic
molecule such as CO. If we solve the Kohn–Sham equation for the equilibrium
bond length, we can find the first excited level by solving the Casida equation. This
is illustrated in Figure 11.12 where we solve for the excitation energy as a function
of the bond length. The excited-state curve is found from E1(R) = E0(R) + Ω1(R)
where E0 is the ground-state energy, and Ω1 is the lowest excitation energy. E1(R)
is the total energy of the CO molecule as a function of the bond length. The spec-
troscopic notation for the ground state is X1Σ1 and for the first singlet excitation
energy A1Π. The force on the atom in the excited state can be found from

F1 = −
𝜕E0

𝜕R
−

Ω1

𝜕R
(11.22)

The value at which F1 vanishes determines the bond length for the excited state.

Figure 11.12 Electronic excitation energy for a
CO molecule. The ground-state energy for the
X1Σ1 state was computed from a local density
approximation. The excited-state energy A1Π was
computed from the time-dependent local density
approximation. The absorption energy is
computed using the Frank–Condon principle, i.e.
the energy is computed at the ground-state
equilibrium bond length. The excited-state bond
length is also shown.
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The bond lengths and excitation energy for the CO molecule are well
described by the local density approximation when compared to experiment [6].
The ground-state bond length is calculated to be 1.15 Å, while experiment gives
a value of 1.13 Å. The calculated excitation energy and bond length are 7.9 eV
and 1.25 Å, compared to experimental values of 8.1 eV and 1.24 Å, respectively.
For more complex molecules, the agreement need not be this good. For example,
we could get level crossings, i.e. the order of the levels might change with the
bond length. If that happens, we cannot compute the force by looking at a single
level important interactions.

11.6 Polarizability

Finding the polarizability for atoms is easier than for molecules. The atomic struc-
ture of a molecule rules out a one-dimensional description of the electronic struc-
ture problem. We need to make sure we have the correct ground-state molecular
structure before applying an external electric field. Since we cannot assume an
isotropic response, we define a polarizability tensor to account for directional
issues:

𝛼ij =
𝜕𝜇i

𝜕ℰj
= − 𝜕

2E
𝜕ℰi𝜕ℰj

(11.23)

where 𝜇i is the dipole along the i-axis (i = {x, y, z}), ℰi is the field applied along
the same axis, and E is the total electronic energy of the system. This expression
allows for the real possibility that a field applied in, say, the x-direction can induce
a dipole component in the y-direction.

Experimental values are often measured for molecules in the gas phase, so one
measures an average over all directions. This average is given by the trace of the
polarizability tensor:

⟨𝛼⟩ = 1
3

tr⟨𝛼ij⟩ = 𝛼xx + 𝛼yy + 𝛼zz

3
(11.24)

A common practice, as for the case of atoms, is to consider a finite field applied
to a molecule and find the diagonal elements by finite differencing:

𝛼ii =
𝜇i(ℰi) − 𝜇i(−ℰi)

2ℰi
(11.25)

where a small applied field, ℰi, is applied along and against the i-axis.
Results for a selected set of diatomic molecules and hydrocarbons are given

in Tables 11.3 and 11.4, respectively. The calculated values exceed the measured
ones as we found earlier for noble gas atoms. In general, the polarizabilities for the
larger molecules tend to be in better agreement than those for the smaller ones.

11.7 The Vibrational Stark Effect in Molecules

The traditional Stark effect occurs when energy levels are modified by the pres-
ence of an applied electric field. For example, degenerate energy levels may be
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Table 11.3 Static electric dipole polarizabilities of selected
diatomic molecules calculated using the finite-field methods.

Polarizability (Å
3

)

Molecule Theory Experiment

H2 0.91 0.80
O2 1.64 1.58
NO 1.83 1.70
N2 1.82 1.74
CO 2.03 1.95
HCl 2.77 2.63
HBr 3.77 3.61
Cl2 4.73 4.61

Experimental values are taken from several sources: [7]–[10].

Table 11.4 Average static electric dipole polarizabilities of
selected hydrocarbons calculated using the finite-field
methods

Polarizability (Å
3

)

Molecule Theory Experiment

Methane (CH4) 2.65 2.59
Acetylene (C2H2) 3.53 3.33
Benzene (C6H6) 10.33 10.32
Toluene (C7H8) 12.50 11.8

Experimental values are taken from several sources: [10]–[12].

split by the field. Traditionally the Stark effect focuses on electronic energy lev-
els, but vibrational modes can also be altered resulting in an effect in which both
electronic levels and vibrational modes are altered by the applied field.

The vibrational Stark effect is an important tool for understanding electrostatic
environments at the molecular level. The Stark tuning rate describes how much
an applied electric field will shift the vibrational frequencies of a molecule. Know-
ing the tuning rate for a probe molecule then allows one to use spectroscopy to
determine the local electric fields the probe is subjected to, which might oth-
erwise not be measurable. In biological systems, this technique is being used
to measure the fields generated inside of proteins and nucleic acids by incor-
porating nitrile probes. In interface science, surface enhanced spectroscopy of
self-assembled monolayers on electrodes sheds light on the interfacial potential
distribution where local fields may reach 107 V cm−1.

In general, we write the tuning rate as

hcΔ�̃�obs = −Δ𝜇probe ⋅ Fenvironment (11.26)
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where Δ�̃�obs is the change in frequency, Δ𝜇probe is the tuning rate for a given
molecule and vibrational mode, and Fenvironment is the electric field. h and c are
Planck’s constant and the speed of light respectively.

Quantitatively accurate ab initio calculations of the Stark tuning rate are chal-
lenging. One problem is simply the scale of the effect. A typical probe molecule
might have a stretching frequency of roughly 2000 cm−1, which density functional
theory can calculate with errors of a few percent. An applied field of 1 MV cm−1

would perturb this frequency by less than 1 cm−1. Numerical solutions must be
controlled very carefully to detect any frequency shifts.

On a theoretical level, a naive analysis of the vibrational modes might underes-
timate the size of the tuning rate by an order of magnitude. For example, consider
a diatomic molecule such as CO; the vibrational potential, U(q), is perturbed by
the product of the dipole moment and the field 𝜇(q) ⋅ F⃗ where q is a position coor-
dinate, in this case the bond length. Assume the vibrational potential is quadratic
in coordinate q. In a Taylor expansion of the dipole moment, the constant term
𝜇(0) only changes the total energy. The linear term 𝜕𝜇∕𝜕q shifts the equilibrium
bond length, but not the frequency. The quadratic term 𝜕

2
𝜇∕𝜕q2 does change the

effective spring constant and hence causes a frequency shift, but this explains less
than 10% of the tuning rate. When anharmonic effects are considered, the linear
term 𝜕𝜇∕𝜕q is responsible for the majority of the change in frequency.

Example 11.3 Numerical Computations of the Vibrational Stark Shift We
illustrate computational methods to compute accurate vibrational Stark shifts for
molecules such as CO and benzonitrile (C6H5CN). Our focus will be on stretch-
ing modes for the C—O or C—N bonds. Our goal is to determine how the stretch-
ing modes of these bonds change with an applied field.

We examine three approaches to this problem: (i) a finite field approach, (ii)
perturbation theory, and (iii) molecular dynamics simulation.

Finite Field Approach

We have discussed finite fields before to calculate induced dipoles and polariz-
abilities. The chief difference here is make sure the computations are exception-
ally well converged. We need highly accurate computations for the ground-state
structure and for the vibrational modes with and without an applied electric field.

To find a particular stretching mode, we begin by constructing the dynamical
matrix as in the last chapter:

DIi,Jj =
1√

MIMJ

𝜕FIi

𝜕RJj
(11.27)

where indices I and J run across all atoms, and indices i and j run across the x,
y, and z axes. FIi is the force on the Ith atom in the i direction, and RJj is the jth
Cartesian coordinate of the Jth atom.

Once the dynamical matrix is found, the vibrational modes can be found by
diagonalizing the matrix. While the vibrational frequencies can be taken directly
from the matrix eigenvalues, these frequencies lack any anharmonic corrections.
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Instead, we take the selected eigenmode u⃗, which is expressed in mass weighted
coordinates, and use it to find the atomic displacements q⃗ for the pertinent
stretching mode.

qn
Ii =

1√
MI

un
Ii (11.28)

This allows us to find the one-dimensional vibrational potential U(q) as a
function of the total electronic energy of the system for finite displacements
along the mode E(R⃗eq + q⃗). As U(q) is a one-dimensional slice of the full potential
energy surface E(R⃗), it picks up the anharmonic components relevant to that
mode. To explicitly find the anharmonic vibrational energy levels we construct a
1D Schrödinger equation for this system.

−
d2
𝜓n

dq2 + U(q)𝜓n = ℰn𝜓n (11.29)

Bound states of this system are readily found by numerical integration as illus-
trated in Chapter 7. The frequency of note is given by the fundamental transition
from the ground state to the first excited vibrational state (ℰ1 −ℰ0)∕hc.

To determine the dependency of this frequency on the electric field, a new
vibrational potential UF(q) is found by repeating the total energy calculations
in the presence of a finite field. Again, the vibrational energy levels of this new
potential are found by direct integration, and the frequency as a function of field
strength is generated. Figure 11.13 illustrates the perturbation of the energy sur-
face and associated vibrational states with an enhanced field to exaggerate the
differences. In Figure 11.14, we illustrate how the frequency of the C—O stretch
changes as a function of applied field. The tuning rate Δ𝜇 is then found by fitting
the frequency �̃�(F) to the quadratic expression �̃�0 + Δ𝜇F + 1

2
𝛼F2.
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Figure 11.13 Original (solid line) and perturbed potential energy surface (dashed line) under
an exaggerated electric field. Shifts in the wave functions and energy levels to the first and
second vibrational modes can be observed. This shift as function of the field can be used to
compute the tuning rate for the vibrational Stark shift.
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Figure 11.14 Variation of vibrational frequency for the CO molecule as a function of applied
field.

Perturbation Theory

Since the tuning rate is defined in the limit of infinitesimal fields, it is natural
to also consider a perturbative approach. As before, we construct the dynamical
matrix and diagonalize it. We then select the pertinent mode and consider the
electronic energy for displacements along this mode E(R⃗eq + xq⃗) to reduce the
problem to a single dimension. In the limit of infinitesimal fields, corrections to
this total energy are given by first-order perturbation theory:

ΔE = −∫ r⃗ ⋅ F⃗ 𝜌(r⃗) dr⃗ (11.30)

Since the applied field is assumed constant this simplifies to

ΔE = −∫ r⃗ ⋅ F⃗ 𝜌(r⃗) dr⃗ = −F⃗ ⋅ ∫ r⃗𝜌(r⃗) dr⃗ = −F⃗ ⋅ 𝜇 (11.31)

where 𝜇 is the dipole moment. The simplest theoretical model for including
anharmonic corrections is to consider the harmonic oscillator perturbed by a
cubic term.

With this model, “textbook” ladder operators and second-order perturbation
theory can be used to find the perturbed energy levels [13, 14]. This approach
makes it easy to evaluate “messy” integrals and avoid solving differential
equations. The procedure was first developed by Dirac.

Our starting point is the harmonic oscillator Hamiltonian:

H(q) =
p2

2M
+ M𝜔

2

2
q2 (11.32)
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Recall that in quantum mechanics commutation makes a difference. Consider the
following commutation with position and momentum. We focus on one dimen-
sion:

[p, q] = pq − qp (11.33)

Classically [p, q] = 0, but not quantum mechanically, as p is an operator. The com-
mutation operations have meaning when applied to a wave function:

[p, q]Ψ = (pq − qp)Ψ = −iℏ
𝜕(qΨ)
𝜕q

+ iℏx𝜕(Ψ)
𝜕q

= −iℏΨ (11.34)

We write the expression with the wave function implicit:

[p, q] = −iℏ (11.35)

Using this definition, we introduce some useful operators of the form:

a =
√

M𝜔

2ℏ

(
q + i

p
M𝜔

)
a† =

√
M𝜔

2ℏ

(
q − i

p
M𝜔

)
(11.36)

This may look strange, but it allows us to write the following relationships involv-
ing a and a† based on knowing [p, q]:

[a, a†] = 1 (11.37)

Suppose we have a solution for the harmonic oscillator where the quantum num-
ber is given by n. We introduce the bracket notation and can show the following:

a†|n⟩ = √
n + 1|n + 1⟩

a|n⟩ = √
n|n − 1⟩ (11.38)

We define more operations. Consider the following:

N = a†a

N|n⟩ = a†a|n⟩ = a†
√

n|n − 1⟩ = a†
√

n|n − 1⟩ = √
na†|n − 1⟩ = n|n⟩

(11.39)

The operator N allows us to write down the solution for the harmonic oscillator
as

H|n⟩ = (
N + 1

2

)
ℏ𝜔|n⟩ = (

n + 1
2

)
ℏ𝜔|n⟩ (11.40)

This yields the well-known energy levels for the oscillator:

E(n) =
(

N + 1
2

)
ℏ𝜔 (11.41)

We apply this framework to examine the effect of an anharmonic potential
U(q). We modify the Hamiltonian:

Hanh(q) = H(q) + Aq3 (11.42)
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Writing in terms of ladder operators gives us the following:

Hanh(q) =
(

N + 1
2

)
ℏ𝜔 + A

(
ℏ

2M𝜔

) 3
2 (a† + a)3 (11.43)

The second term is the anharmonic perturbation to the harmonic Hamiltonian.
For notation purposes let us define the anharmonic contribution as V . Using per-
turbation theory we can write

E(1)
n = ⟨n|V |n⟩ = A

(
ℏ

2M𝜔

) 3
2 ⟨n|(a† + a)3|n⟩ (11.44)

E(2)
n =

∑
m≠n

|⟨m|V |n⟩|2
E(0)

n − E(0)
m

= A2
(

ℏ

2M𝜔

)3 ∑
m≠n

|⟨m|(a† + a)3|n⟩|2
E(0)

n − E(0)
m

(11.45)

The first-order perturbation term, E(1)
n , vanishes. We know this because the

unperturbed harmonic wave functions are either even or odd wave functions.
The integrand is therefore odd (since q3 is odd) and vanishes when integrated
over all space. The second order perturbation term, E(2)

n , need not vanish as it
can couple two states, one even and one odd, to construct an even integrand.

We are interested in the n = 0 and n = 1 states as transitions between these
two states have the lowest excitation. The second-order term yields the following
energies:

E0 + E(2)
0 = ℏ𝜔

2
− 11A2

ℏ
2

8M3𝜔4 (11.46)

E1 + E(2)
1 = 3ℏ𝜔

2
− 71A2

ℏ
2

8M3𝜔4 (11.47)

As the observable quantity is the energy difference between states, we subtract
Eq. (11.46) from Eq. (11.47) to find the fundamental transition energy of

𝜈 = ℏ𝜔 − 15A2
ℏ

2∕2M3
𝜔

4 (11.48)

This expression allows us to assess the role of a small anharmonic terms on the
vibrational modes of a harmonic oscillator. In practice, we do numerical compu-
tations to evaluate U(q) and then fit a cubic curve to the results. This fixes the
value of A in Eq. (11.42).

We include the effect of the field in terms of the Taylor expansion of the F⃗ ⋅ 𝜇(q)
term to generate a new Hamiltonian, HF. This expansion can be determined by
numerical computations of the dipole in Eq. (11.31).

HF (q) =
p2

2M
+ M𝜔

2

2
q2 + Aq3 + F 𝜕𝜇

𝜕q
q + 1

2
F 𝜕

2
𝜇

𝜕q2 q2 (11.49)

With a change of variables, this Hamiltonian can be recast in the same form as
Eq. (11.42), with a modified 𝜔F being given by the following:

𝜔F =

√√√√ F
M

𝜕2𝜇

𝜕q2 +

√(
𝜔2 + F

M
𝜕2𝜇

𝜕q2

)2

− 12A
M2 F 𝜕𝜇

𝜕q
(11.50)

The frequency in the presence of the field is now given by

𝜈F = ℏ𝜔F − 15A2
ℏ

2∕2M3
𝜔

4
F (11.51)
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Taking the linear dependence on F yields the tuning rate:

Δ𝜇 = − 90A3
ℏ

2 + 3AℏM3
𝜔

5

M5𝜔8
𝜕𝜇

𝜕q

+ 30A2
ℏ

2 + ℏM3
𝜔

5

2M4𝜔6
𝜕

2
𝜇

𝜕q2 (11.52)

A simple cubic perturbation may not characterize the anharmonicity entirely.
Thanks to the machinery of ladder operators, introducing higher order correc-
tions such as a q4 or q5 term is possible, although algebraically tedious. The higher
order corrections can be found in the literature [15].

Molecular Dynamics

While the perturbative method outlined above provides an additional check on
the finite field method, it explicitly depends on the vibrational modes determined
by the dynamical matrix. Vibrational frequencies can also be calculated using
molecular dynamics. This is an attractive option because at no stage must one
assume the vibrations are harmonic or that the initial structure is fully relaxed.

Molecular dynamics in its simplest form allows one to follow the trajectories
of an atom in a force field. While the forces may be computed from quantum
mechanical approaches, the atomic positions are taken as classical coordinates.
This works well for the applications here. It does not work so well where quantum
effects are present, e.g. at low temperatures.

The trajectory of an atom with an applied force is given by Newton:

Mi
d2R⃗i

dt2 = F⃗i (11.53)

Our goal is to find the time evolution of the atom’s position: R⃗i(t) We have
looked at a very similar math problem in a different context – when we solved for
the hydrogen atom wave function by direction integration (see Section 7.2).

Consider a simple approach. Again, we split the second-order equation into
two first-order equations and solve for the x-component of the atom:

dXi

dt
= Vx,i

dVx,i

dt
= Fx,i∕Mi (11.54)

We can solve for the position using the explicit Euler method (see Eq. (7.23)) by
stepping the time by Δt. Let us consider the motion of an atom. We will suppress
the atomic index in the following.

X(Δt) = X(0) + Vx(0) Δt
Vx(Δt) = Vx(0) + (Fx(0)∕M)Δt
X(2Δt) = X(Δt) + Vx(Δt) Δt

Vx(2Δt) = Vx(Δt) + (Fx(Δt)∕M)Δt
· · ·

X((n + 1)Δt) = X(nΔt) + Vx(nΔt) Δt
Vx((n + 1)Δt) = Vx(nΔt) + (Fx(nΔt)∕M)nΔt (11.55)
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Computers are really good at stepping through such equations. We need ini-
tial coordinates and velocities for each atom, along with the force for each, i.e.
we need X(0), Vx(0) and Fx(0). From the initial conditions, we can find X(Δt),
Vx(Δt). Using the coordinates atΔt, we can find Fx(Δ) and proceed to find X(2Δt),
Vx(2Δt).

This procedure will work, but it is tedious and can be computationally challeng-
ing even for a computer if the time step is small. The validity of the procedure can
be checked by examining whether energy is conserved, i.e. the total energy of the
atomic motion, including the kinetic and potential energy of the atoms.

This type of molecular dynamics uses the Born–Oppenheimer approximation.
For each time step, the electrons respond instantaneously to the positions of the
atoms, or better the ion cores.

Operationally, we fix the structure, solve the electronic structure problem,
extract the forces, and move the atoms from the equations of motion over a time
span, Δt. Take the new structure and repeat (and repeat)!

To start the process, we can assign zero initial velocity to the atoms. The initial
stretch would then be a turning point. Or we could imagine some initial velocity
set by a specified temperature. This is usually not a crucial issue. Although explicit
Euler is not the best way to solve for the equations of motion (other stepping
algorithms are more accurate), it is simple and easy to implement.

To excite the relevant modes, we can stretch the bond length of interest and
initiate the simulation. For example, suppose we want to follow the C—O bond.
We might stretch it along the bond axis by some small fraction of the bond
length, say a few percent. We then evolve the system in time using the equations
of motion.

A word about time – one atomic unit of time is 0.024 fs. This is the time required
for a Bohr electron to travel a distance of one Bohr a0=0.529 Å, at the velocity of
an electron in the lowest state, v = e2∕ℏ = (e2∕ℏc)c = c∕137.04, where we noted
e2∕ℏc = 1/ 137.04 is the fine structure constant. The Bohr electron is not moving
near relativistic speeds.

A time step for a typical molecular dynamics simulation is about 10 times this.
We want the time to be as large as possible to save computer time, but much
less than a vibrational mode of the molecule. Otherwise, the simulation would be
inaccurate.

In Figure 11.15, we plot the total energy and potential energy of a benzoni-
trile molecule (C6H5CN), where the C≡N bond is stretched. The total energy as
a function of time should be a constant. However, the total energy exhibits some
very small fluctuations owing to numerical errors. The important issue is that
there is no net drift of the energy that would indicate significant errors in the
forces and a violation of energy conservation.

Once we initiate motion in the molecule for some given bond length distor-
tion, we record the motion of the atoms involved with and without an applied
electric field. In Figure 11.16, the C≡N bond length is plotted as a function of
time. Although the difference with and without the field is small and does not
show up for several time steps, it is discernible in the plot.

The frequency shift was recovered from the simulation by taking the power
spectrum of the C≡N bond length as a function of time and plotting the intensity.
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Figure 11.15 Variation of potential and total energy as a function of time for benzonitrile.
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Figure 11.16 Change in the C≡N bond length of benzonitrile as a function of time using a
molecular dynamics simulation. Two simulations are shown: one with an applied field (dashed
line) and one without (solid line). Differences in the motion, albeit quite small, are clearly
altered by the presence of the field.

We use the power spectrum computed earlier to find the dominant frequencies
(see Eq. (10.40)). With a minor modification from the previous version of this
equation, we can write

P(𝜔) = 1
T ∫

T

0
d(t) exp(−i𝜔t) dt (11.56)

where T represents the run time of the simulation. The bond length of interest
is given by d(t). Suppose we have a “pure” frequency in the bond length fre-
quency: d = d0 exp(i𝜔0t). It is clear that P(𝜔0) = d0. What about P(𝜔 ≠ 𝜔0)? In
the limit of T → ∞, P(𝜔 ≠ 𝜔0) → 0, although the integrand is not well defined,
we know that it is bounded. Calculating the power allows us to determine what
frequencies are present in a straightforward manner. However, the procedure is
not flawless. Long run times are required to unambiguously resolve two almost
equal frequencies, which is of course our situation as the change in frequencies
with and without the field is small. Typically, thousands of time steps are run and
a very large electric field is used to exaggerate the differences.

Table 11.5 illustrates computations for the three approaches for the two
molecules, CO and benzonitrile, corresponding to the C≡O and C≡N bond
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Table 11.5 Comparison of finite field, perturbative, and MD calculations of the tuning rate

Molecule 𝚫𝝁 Finite field 𝚫𝝁 Perturbation 𝚫𝝁 Molecular dynamics Experiment

CO 0.46 0.44 0.52 0.4–0.67
Benzonitrile 0.33 0.28 0.34 0.6

Units are in cm−1/(MV/cm−1). Experiment is from [16] and references therein.

stretching modes, respectively. The different approaches agree to within ∼ 10%,
which is an important conclusion as it confirms the different computational
methods. Experimental values can vary notably and often reflect the presence of
local fields as when the molecule resides in a liquid.
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12

Atomic Clusters

In physics, the term “clusters” denotes small, multiatom particles. As a rule of
thumb, any particle of somewhere between 3 and 3×107 atoms is considered
a cluster. Two-atom particles are sometimes considered clusters as well.

Wikipedia

12.1 Defining a Cluster

The Wikipedia definition of a cluster is wrong or at least misleading. Not all
multiatom particles are clusters; some are molecules. Consider the following
example. Suppose one takes benzene gas molecules (C6H6) and condenses the
gas into a crystalline state. The crystal structure can be characterized by the
arrangement of the molecules, each acting as a C6H6 identifiable unit. In contrast,
suppose we consider an ensemble of silicon clusters, say Si12, in the gas phase
and condense this gas into a crystalline phase. In the ground state of the crystal,
we know that the silicon atoms will organize into a diamond crystal. However,
within the diamond crystal there is nothing to indicate that a distinct unit of
Si12, which existed in the gas, resides within the crystal. One can argue that
the different behavior of C6H6 and Si12 constitutes the fundamental difference
between a molecule and a cluster. C6H6 is a molecule and Si12 is a cluster. Our
definition of a cluster: A cluster is an assemblage of atoms that is stable only in
isolation. This definition properly distinguishes between a molecule and a cluster.

Experiments on clusters are difficult as one might expect. Measurements on
these “fragile objects” must be done when they are in isolation. Two techniques
of accomplishing isolation are often employed. One is to embed the cluster in an
inert medium, e.g. a condensed inert gas. Since the medium is inert, it fixes the
cluster for study, but does not significantly interact with it. Another is to employ
“beams” of clusters in which the clusters are kept apart.

Both these experimental techniques possess drawbacks. The inert media tech-
nique may not be truly “inert” and might affect the properties of the cluster even
in the absence of any chemical bonds being formed. For beam techniques to be
effective, the density of clusters must be sufficiently low to prevent collisions or
aggregation. Yet, the density of the clusters must be sufficient to allow experi-
mental detection.

Introductory Quantum Mechanics with MATLAB® : For Atoms, Molecules, Clusters, and Nanocrystals,
First Edition. James R. Chelikowsky.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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12.2 The Structure of a Cluster

The difference between a cluster and a molecule becomes quite apparent when
one attempts to quantify the structure of each. In our example with silicon clus-
ters and benzene molecules, we could condense benzene into a crystal and use
X-rays to determine the crystal structure. Most molecular structures are deter-
mined this way. If one can condense the molecule of interest into a crystalline
state, one is in business. This is not the case for a cluster. In our example of Si12
clusters, we could condense the clusters into a crystal, but any given cluster would
lose its identity once condensed.

The lack of an experimental means to measure the structure of a cluster is a
serious matter. And, computational techniques are of limited help. How might
one determine the structure of a simple cluster? Suppose we make it relatively
easy. We consider a very small cluster, say just a few atoms in size.

We could enumerate all topologically distinct clusters. Given a reliable theoret-
ical means for determining the energy of a given geometry, we could compute the
structural energy for each and every cluster geometry and find the one with the
lowest energy. The key wording is “a very small cluster.” A cluster with, say, three
or four atoms is one thing. It is not hard to enumerate the distinct geometries. The
structure of a five-atom cluster starts to become an issue when one considers the
enumeration of all geometries. Enumerating all possible structures of a 10-atom
cluster starts to be a formidable problem. Enumerating all possible structures of
a 100-atom cluster is beyond being hopeless.

The structural problem centers on the exponential-like growth of possi-
ble structures. Some quantities that scale poorly remain “computable.” The
“pre-factor” is small and the “time to solution” is still a reasonable number. That
is not the case here. One might be able to compute the structural energy for a
100-atom cluster on a laptop, but the number of topologically distinct clusters
increases astronomically once one exceeds a dozen or so atoms. Even if we did
not do quantum calculations for the clusters, the current computational load to
find the lowest energy structure is beyond our means.

Enumerating all structures without regard to energetics does not make sense
on another level. Some potential structures are sufficiently unfavorable in terms
of the total energy that they can be tossed out from the beginning. But, typically
a vast number of structures exist that possess nearly degenerate energies. The
means to pick the lowest energy one is problematic at best.

In short, with the notable exception of trivially small clusters, no method can
guarantee that the structure found is in the ground state. Our best hope is to
obtain a set of “reasonable structures.”

At this point, one could ask: Does it really matter whether we have the definitive
ground state or not? Probably not. For many situations, clusters do not exist in a
state where we have a definitive, isolated, distinct, ground-state structure. Rather,
we might consider some set of low energy clusters. For example, suppose we knew
most of the structures within ∼0.01 eV/atom of the definitive ground-state prop-
erties. For many purposes, this is good enough to provide a decent representation
of characteristic structures, i.e. a decent ensemble.
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In practice, our goal of searching for reasonable structures is to find a subset
of low-energy clusters. In carrying out a search for such structures, we want to
avoid being trapped in local minima, to proceed in an unbiased manner and to
carry out the search in a computationally efficient manner, where one does not
spend a great deal of time looking at topologically similar structures.

12.2.1 Using Simulated Annealing for Structural Properties

One of the most annoying issues in a structural search (besides dealing with a
large number of topologically distinct clusters) is the possibility of getting local-
ized in an energetically unfavorable, but locally stable, structure. In this situation,
one relaxes a potential structure wherein no residual forces exist, but the struc-
ture is not in the true ground state. Most search methods center on avoiding this
situation.

One attractive method to determine the structure of moderate-sized clusters
is simulated annealing. This method is analogous to an annealing process that
occurs in nature. Consider a solid that is formed by cooling the melt. At temper-
atures well above the melting point, atoms in the melt will sample a large number
of configurations. Bonds are continually being broken and reformed. As the liq-
uid is cooled, unfavorable configurations become less likely and the atoms start to
assume a structure closer to the solid state. If one cools very slowly, energetically
favorable micro-structures are common and the atoms eventually organize into
a crystalline state.

The key issue in simulated annealing is the cooling process. If one does not
cool slowly, one might “freeze in” an unfavorable structure. For example, a quickly
cooled liquid may not crystallize properly – it may form an amorphous solid with
no long-range order, or it may form a crystalline structure with many defects.
Physically, this can happen when cooling a real liquid.

The goal of a simulated anneal for cluster formation is similar to that of cooling
a liquid. We begin by considering a “random” assemblage of atoms. This initial
geometry is maintained at a high temperature by a heat bath and slowly cooled.

At first, energetically unfavorable structures can be accessed as the hot atoms
move stochastically, e.g. they execute Brownian motion with random collisions.
Only when the temperature of the heat bath is cooled will the clusters be con-
strained to more favorable structures by forming chemical bonds.

If one cools too quickly, a structure may be overlooked; if one cools too slowly,
the same structures can be probed over and over again with no new information
obtained. In this sense, simulated annealing is often more of an art than a science.
Often one attempts to adjust the temperature so that a number of energetically
unfavorable structures are kept in the mix as long as it is computationally possible
to do so. If the anneal is done slowly enough, one hopes that the procedure will
quench out reasonable candidates for the ground-state structures, but there is no
absolute guarantee.

Langevin molecular dynamics is well suited for simulated annealing meth-
ods [1], [2]. The French physicist Paul Langevin developed a method that
uses stochastic differential equations to model a particle moving in a medium
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characterized by a temperature and a viscosity. In Langevin dynamics, the
atomic positions, Rj, evolve according to

Mj R̈j = F({Rj}) − 𝛾Mj Ṙj + Gj (12.1)

where F({Rj}) is the interatomic force on the jth particle, and {Mj} are the atomic
masses. The last two terms on the right-hand side of Eq. (12.1) are dissipation
and fluctuation forces, respectively. The dissipative forces are defined by the vis-
cosity coefficient, 𝛾 . The fluctuation forces are defined from a random Gaussian
distribution, {Gi}, with a white noise spectrum:

⟨G𝛼

i (t)⟩ = 0 and ⟨G𝛼

i (t)G
𝛼

j (t
′)⟩ = 2𝛾 Mi kB T 𝛿ij 𝛿(t − t′) (12.2)

where t denotes time, the angular brackets denote ensemble or time averages,
𝛼 stands for the Cartesian component, T is the temperature, and kB is the Boltz-
mann constant. The coefficient of T on the right-hand side of Eq. 12.2 insures that
the fluctuation-dissipation theorem is obeyed, i.e. the work done on the system is
dissipated by the viscous medium. The interatomic forces can be obtained from
interatomic potentials or from quantum calculations. Quantum-derived forces
are always better as they can accurately replicate charge transfer and hybridiza-
tion changes as bonds form and break in the anneal process.

Choosing an initial atomic configuration for the annealing simulation takes
some care. If the atoms are too far apart, they will exhibit Brownian motion, which
is appropriate for Langevin dynamics with the interatomic forces zeroed out. In
this case, the atoms will not form a stable cluster. As the simulation proceeds,
since there is nothing to bind them together, they will simply execute a random
walk and disperse. Conversely, if the atoms are too close together, they can imme-
diately form bonds and potentially lock in an unfavorable configuration from the
beginning, i.e. they may form a metastable cluster from which the ground state
may be kinetically inaccessible even at the initial hot temperature. This brings
up another issue. What is a “hot temperature”? In an engineering sense, we want
the initial temperature of the heat bath to be sufficiently hot to break and reform
bonds. Otherwise, the bonds will form and never break again.

A related and fundamental question centers on the meaning of temperature.
Defining the temperature of a cluster is clearly not a straightforward matter. Tem-
perature is usually defined as an average over some macroscopic ensemble and
not by summing over a few dozen atoms.

We can circumvent this issue by placing the cluster in a heat bath as defined
by Langevin dynamics. There are other techniques for controlling temperatures,
e.g. by rescaling the velocities of the atoms in the cluster to agree with some pre-
scribed value. Specifically, the kinetic energy of a cluster can be used as a measure
of the temperature. From the equipartition theorem, each degree of freedom can
be assigned a value of kBT∕2 where kB is the Boltzmann constant and T is the
temperature.

We make the usual assumption that the atoms in the simulation can be treated
as classical objections. This assumption makes sense as long as we do not enter
regimes where quantum mechanics starts to play a role such as might be the case
for very low temperatures.
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The kinetic energy, K , per atom for a cluster would be 3kBT∕2. There are sev-
eral mechanisms for creating an ensemble with a given temperature that reflect
the equipartition theorem. A common procedure is to use Langevin dynamics,
which controls the temperature by the heat bath. Another common procedure is
to assign random velocities to the atoms such that the root mean square velocity
is given by vrms =

√
3KBT∕M where for case at hand, M, is the mass of the atom.

As long as energy is conversed the cluster will maintain this temperature.
Often, the initial cluster geometry is formed by a random placement of the

atoms with some constraints. The constraints reflect our desire to have the atoms
interact, but not so strongly that they form “unbreakable” bonds in the simula-
tion. For example, we might require for a given atom that at least one other atom
must reside within, say, 1.05–1.3 times the bond length, where the bond length
is defined from experiment or from atomic radii. This constraint means that the
atoms are initially weakly interacting and should not drift apart. Another trick is
to place the atoms in a spherical domain such that as the atoms move toward the
domain boundary a fictitious force appears that drives them toward the center of
the domain. This is a reasonable approach as one never loses an atom by diffusion.

There are different ways to integrate an equation of motion. Suppose we con-
sider a Taylor series for the position of an atom, which for simplicity we write in
one dimension:

x(t + Δt) = x(t) + dx
dt

Δt + d2x
dt2 Δt2 (12.3)

where the velocity of the particle is given by v = dx
dt

and the acceleration by
a = d2xdt2, with the derivative evaluated at the time, t. If the force on the atom,
F , is a simple function of position, then we can use Newton’s law (F=Ma) to write

x(t + Δt) = x(t) + v(t)Δt + a(t)Δt2 (12.4)

We need to know how to advance the velocity. A common approach is to write

v(t + Δt) = v(t) + (a(t) + a(t + Δt)
2

Δt (12.5)

Note how the acceleration is computed as an average from the initial time and
the advanced time.

How does this work in practice? Suppose we know the initial positions and
velocities of all the atoms of interest. (Since we are dealing with a second-order
equation we need to know both.) The initial positions are usually known or
assumed. The velocities can be arbitrarily assigned at random, but constrained
so that the kinetic energy is consistent with the desired temperature.

One can step the position of the atom over an interval Δt. The position of the
given atom i at xi at time Δt can be taken as

xi(Δt) = xi(0) + vi(0)Δt + ai(0)Δt2 (12.6)

where xi(0) is the initial position and vi(0) is the initial velocity. If we know the
initial positions of all the other atoms, xj(0) (j ≠ i), then we know the force on the
atom of interest. If we have a classical force field, this is easy to compute. If we have
a quantum system, we can use the Hellmann–Feynman theorem. This is not so
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easy, but given some computing power it is doable. This gives us the acceleration
from ai(0) = Fi(0)∕Mi. We now know xi(Δt) for all the atoms. To find xi(2Δ), we
have an issue. We need to know vi(Δt), which we can find from

vi(Δt) = vi(0) +
(ai(0) + ai(Δt)

2
Δt (12.7)

How do we know ai(Δt)? Well, if we have the positions of the atoms that were
moved to xi(Δt) for all i, we can find the force Fi(Δt) and the acceleration from
ai(Δt) = Fi(Δt)∕Mi. We keep repeating this process. The “secret” is in choosing
Δt such that the positions and forces are accurately computed just as we did in
simulating the vibrational Stark shift. Again, one checks this by making sure that
energy is conserved as the atoms move.

Langevin dynamics is not very easy to implement. A problem arises because
the forces are not determined by the positions of the atoms alone. They depend
on the velocity of the atom owing to the dissipative force. We can illustrate this
algorithm by considering a particular atom, i, at xi(t). The position of the atom at
time t + Δt is given by

xi(t + Δt) = xi(t) + vi(t)Δt +
4ai(t) − ai(t − Δt)

6
Δt2 (12.8)

where vi is the velocity and ai is the acceleration for the ith atom. ai is given by

ai(t + Δt) = 1
Mi

{Fi(t + Δt) − 𝛾Miui(t + Δt) + Gi(t + Δt)} (12.9)

where ui(t + Δt) is an “intermediate velocity” given by

ui(t + Δt) = vi(t) +
3ai(t) − ai(t − Δt)

2
Δt (12.10)

with the actual velocity given by

vi(t + Δt) =
{

xi(t + Δt) − x(t) +
2ai(t + Δt) + ai(t)

6
Δt2

}
∕Δt (12.11)

The interatomic forces, Fi, are straightforward given the atomic positions. Since
the net force depends on the velocity, it is a bit tricky to extract the velocity. For
this reason, we introduced an “intermediate” velocity U . Most standard algo-
rithms for integrating the equation of motion do not admit the possibility of
having dissipative forces. The random forces, Gi, also require some special atten-
tion. The force Gi(t + Δt) is not correlated with the force Gi(t). The fluctuating
forces are taken as Gaussian random variables such that the probability, P(G), of
the atom experiencing a force G is given by

P(G) = 1√
2𝜋𝜎2

exp
(
− G2

2𝜎2

)
(12.12)

where the width of the Gaussian is given by

𝜎 =
√

2𝛾MkBT∕Δt (12.13)

There is yet another annoying aspect of Langevin dynamics. How do we start
the process? The time step at t + Δt requires that we know what went on at t
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Figure 12.1 Binding energy of Na5 cluster during a Langevin simulation.

and t − Δt, at least for the acceleration term. To start the process at t = Δt, we
need to know what goes on at t = 0 and t = −Δt. There are workarounds for this,
such as starting the process without the dissipative and random forces, e.g. as
we could use Newtonian dynamics and a standard velocity algorithm (known as
a velocity Verlet algorithm [3]) for a few time steps and then turn on the heat
bath. The key is to run the simulation for a sufficient time such that the initial
conditions do not matter. One also has to experiment with the time step such
that the system replicates Brownian motion at some temperature in the absence
of any interatomic forces.

In Figure 12.1, we illustrate the simulated anneal schedule for a simple cluster:
a five-atom sodium cluster. Some of the Na atoms in the early stage of the anneal
are one- or twofold coordinated. In the final structure, no Na atom is less than
threefold coordinated.

In Figures 12.2 and 12.3, we present the lowest energy structures for Nan for
9 ≤ n ≤ 20 as determined within simulated annealing. For these modest-sized
clusters, we have a decent chance of getting the geometries correct or close to cor-
rect, say within ∼10 meV/atom. Many studies of Na clusters have shown similar
results. Na is a difficult case in that the Na—Na bonds are not highly directional
and little energy is lost in changing the bond angle. This is in contrast to covalent
systems where sp3-bonds assume a distinct tetrahedral orientation [4].

12.2.2 Genetic Algorithms

The simulated annealing approach to structure is a very physical approach and
works all right for small or medium-sized clusters. However, this approach
requires some insight, or many trial and error runs, for larger clusters. The
method often wastes time by revisiting the same structures over and over.
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Figure 12.2 Ground-state geometries and some low-energy isomers of Nan clusters, n ≤ 14.
The energy of the lower lying clusters is given in millielectron volts per atom relative to the
likely ground-state geometry.

Genetic algorithms can overcome some of these deficiencies [5]. This algorithm
is also based on a physical process related to evolution, i.e. the “survival of the
fittest cluster” or better the “survival of the most energetically favorable cluster.”
Actually, that is still not quite right. It could be that the most energetically favor-
able cluster is hard to find and the algorithm might miss it.

Here is how the algorithm works. Consider a couple of candidate clusters
chosen by physical intuition, by a simulated anneal run, or perhaps by simply
taking a bulk fragment. Imagine that we cut one of these clusters in two, e.g.
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Figure 12.3 Ground-state geometries and some low-energy isomers of Nan clusters, n ≤ 20.
The energy of the lower lying clusters is given in millielectron volts per atom relative to the
likely ground-state geometry.

we might pass a plane through the center of mass of the cluster and create two
“half-clusters” with equal number of atoms. We do this again for a different
cluster. Taking two “half-clusters,” we form new candidate clusters, or in a
genetic sense we could call these new candidates: children clusters.

One can see some pesky operational issues with this method. For example, how
do we join the half-clusters together? We could orient the half-clusters so that
the new arrangement has some reasonable bond lengths (or possibly not) with
the hopes of sampling some new geometry regardless of whether the energy is
reasonable. Suppose we did this operation in some sensible manner, e.g. we might
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do some annealing, to create a number of children clusters. We then assess the
best ones. “Best” here means the most energetically favorable ones. “Best” in a
biological system might mean the one most adapted to reproduce successfully.
The analogy to biology is less than perfect.

To be more specific, let us assume we started with four candidate clusters
and generated two children clusters from each set of parent clusters. It is not
as though our clusters have gender. We could pair a cluster with itself. So each
cluster could be paired with itself and three other clusters. Pairing one cluster
with another cluster number can result in different geometries as the cutting
plane is random; i.e. it need not generate the same half-clusters. We could
generate 32 children clusters in this way. From this generation, we could pick
the four best and generate 32 more children. We keep doing this generation
after generation. We could even choose a less favorable offspring every once in a
while to introduce some variety in the process, similar to introducing a mutation
in the biological sense.

Some of this is an “art” as there are no strict rules or “guidelines.” Many
decisions are typically handled by “trial and error.” For example, how many
children do we need to create from a set of parent clusters? We could take only
a few children and do many generations, or take many children and do fewer
generations. Also, like simulated annealing there is no well-defined “stopping
point.” What one typically does is to keep generating offspring and select the
ones with the most favorable trait, i.e. the most favorable energy, until one runs
out of patience, or computer time, or the structure is so highly symmetric it just
looks right! An example follows.

Let us consider 60 carbon atoms and do a genetic algorithm. The generation
of possible structures is shown in Figure 12.4. Here 5000 generations were
considered starting from a “random” cluster of 60 carbon atoms. After this
evolution, a special cluster appeared: a so-called fullerene or “buckyball.” The
buckyball is special from the viewpoint of its symmetry. Intuitively, it seems
doubtful that another more symmetric cluster would exist and support the
graphite-like features of the buckyball.

However, one cannot be sure. Suppose we had declared it quits after 4000 gen-
erations? We might have missed the special structure altogether. However, given
that the buckyball structure exists with defects in earlier generations, one might
cut to the chase and remove the defects by hand. One can always look at the
total energy for any structure, be it from genetic algorithm or by chance. If the
structure is lower in energy, then it is a clear “winner.”

An historical note: The discovery of the buckyball, as a new form of carbon, was
first inferred by mass spectroscopy experiments in 1985. The structure was later
confirmed by crystallization of C60 molecules and recognized by a Nobel Prize in
Chemistry in 1996. The buckyball is not a cluster that uses our definition. The fact
that it can be crystallized into a buckyball solid speaks for its molecular nature.
See Appendix B for more on the buckyball.

12.2.3 Other Methods for Determining Structural Properties

“Basin hopping,” “big bang,” and “particle swarm” methods are also used for
doing structural searches.
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Figure 12.4 Generation of the C60 molecule, starting from random coordinates, using the
genetic algorithm described in the text with four initial candidates and no mutations. The
energy per atom is plotted for the lowest energy (solid line) and highest energy (dashed line)
candidate structure as a function of the number of genetic mating operations that have been
applied. Several of the intermediate structures that contain defects are illustrated at the top:
(a) contains one 12-membered ring and two 7-membered rings, (b) contains a 7-membered
ring, and (c) contains the correct distribution of pentagons and hexagons, but two pentagons
are adjacent. The ideal icosahedral buckyball structure is achieved shortly after 5000 genetic
operations. Source: Figure from Deaven and Ho [5].

Basin hopping centers on running a number of different starting points to avoid
being caught in a local minimum [6]. In this scenario, one considers a number
of different structures and relaxes each one to a lowest energy structure. If a
sufficient number of structures are relaxed one hopes to find the ground state
minimum. The probability of finding the ground state structure is proportional
to the size of the catchment basin of the “global minimum” compared to the size of
other local minimum structures. For some systems, the effective size of the global
minimum is sufficient so that only a few random structures might be required,
but without some “insider” information one cannot know this.

Another method of note rests on considering a random and highly compressed
initial state of atoms [7]. The energy of such a state is very unfavorable relative to
the bond energy per atom in the ground state. From such a starting point the
atoms would quickly expand, hence the name “big bang.” In this method, the
atoms are relaxed from this starting point so as not to allow them to expand into
empty space and be lost forever. The advantage of this method is that the atoms
are highly interacting so that all structures are in principle accessible. As usual,
a key to the success of this method is to consider a very large number of starting
points so that a large phase space is considered.

The particle swarm method is another intriguing approach [8], [9]. If we
construct a random set of clusters, there is no guarantee that the set includes a
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representative distribution of possible starting points. For example, there is noth-
ing to insure that a number of randomly chosen clusters are of diverse symmetry.
This is wasteful. We will not learn new information in relaxing similar structures.
We want some “diversity.” The swarm method considers “families” or “swarms”
of similar structures. Each swarm is then optimized independently of the other.

No matter what the method is, it always pays to explore structural energies as
quickly as possible. Some workers expedite the search by considering less accu-
rate methods than “standard” density functional methods for candidate struc-
tures. For example, suppose one knows the bond length of a particular atomic
species from bulk crystals. One could argue that any structure with a bond length
shorter than 5% or longer than 10% is not reasonable. One promptly dismisses
candidate structures with such anomalous bonds.

A more quantitative procedure is to use a tight binding model wherein the
structural energies are “semi-quantitative.” Using this approach, one might col-
lect candidate structures within some prescribed energy. For example, suppose
that the lowest observed cluster has a binding energy of 5 eV/atom. One might
consider all the candidate structures with an energy of, say, 4.5–5 eV/atom. With
this inventory, one could then apply a more rigorous method based on density
functional theory. The hope is that the ground state structure, albeit with an
incorrect total energy, is still captured by the approximate method.

Once the structure of a cluster is known, or reasonably well approximated, elec-
tronic and optical properties can be determined.

12.3 Electronic Properties of a Cluster

We can determine the electronic properties of clusters using the same tools we
outlined for atoms and molecules. Given a structure, we solve for the spatial and
energetic distributions of electrons in a cluster. This solution is used to determine
the response of a cluster to electronic or magnetic fields.

12.3.1 The Electronic Polarizability of Clusters

One of the few cluster properties that can be measured with relative ease and
accuracy is the static polarizability. 𝛼ij is defined as before in Eq. 11.23:

𝛼ij =
𝜕𝜇i

𝜕ℰj
= − 𝜕

2E
𝜕ℰj𝜕ℰj

; i, j = {x, y, z} (12.14)

A convenient approach for computing the polarization of confined systems,
such as clusters, is to include the external electric field directly in the Hamil-
tonian. We did this before for molecules in Section 11.7.1 and briefly review the
procedure for clusters. The external ionic potential Vion(r⃗) experienced by the
electrons is modified to have an additional term given by −eℰ⃗ ⋅ r⃗, where ℰ⃗ is the
electric field vector.

The Kohn–Sham equation is solved using the full external potential:
Vion(r) − eℰ⃗ ⋅ r⃗. For quantities such as polarizability, which are derivatives of the
total energy, one can compute the energy at a few field values and differentiate
numerically. Real-space methods are suitable for these calculations, since the
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position operator r⃗ for a confined system such as a cluster is not ill-defined, as
would be the case for a crystal.

Determining the polarizability of a cluster (or molecule) remains difficult owing
to the need for a complete basis in the presence of an electric field. To be more
precise, if we optimize a basis for Vion(r⃗), will the basis also be optimized in the
presence of an electric field: Vion(r) − eℰ⃗ ⋅ r⃗? Possibly not, and certainly not for a
larger field. The basis in the presence of a field is sometimes augmented by “polar-
ization functions.” Augmenting the basis can significantly complicate the process.
We really want to avoid optimizing the basis each time we apply a different exter-
nal field or make a change in the structure of the cluster.

Real-space and plane wave methods are not biased as are localized bases and
they do not depend on atomic positions. The absence of a “bias” means that
angular components of the wave functions are on equal footing. A real-space
method implemented with a uniform grid possesses an “isotropic” environment
with respect to the applied field. Moreover, the convergence of an electronic prop-
erty can be easily checked by changing the grid size, especially for a cubic system
where only one parameter characterizes the grid.

Example 12.1 Polarizabilities in Sodium Clusters To illustrate this proce-
dure, we consider the polarizability of sodium clusters, which serve as archetypal
simple metal clusters. Measurements for Na cluster polarizabilities as a function
of cluster size are illustrated in Figure 12.5 [10]. Three main features are present in
the experimental data: (i) Overall, the polarizability per atom gradually decreases
from its atomic value toward its bulk value. (ii) This gradual decrease is punctu-
ated by significant “dips” at “magic” atom numbers of 2, 8, and 18, corresponding
to closed electronic shells of s-, p-, and d-like orbital character, respectively. (iii)
Some residual oscillations occur. Such fluctuations are attributed to small energy
differences between nearly isomeric structures.

Early calculations consistently underestimated the experimentally observed
value by ∼15–20% [11]. Some initially attributed this discrepancy to a failure of
density functional theory, which is a disconcerting conclusion as Na is probably
the element closest to replicating a homogeneous electron gas.

There is a clue in Figure 12.5 as to where the problem might reside and it is
not related to density functional theory. We note that the polarizability of the
atom agrees pretty well with experiment. This suggests that density functional
theory is not the problem. So, why would the polarizability of the atom, but
not a cluster, be correctly predicted by density functional theory? The atom is
special in that it lacks any atomic structure. This observation led investigators
to ask why the atomic structure is important and why it might not be correctly
described in the computations.

An obvious issue, especially one in retrospect, concerns the role of temperature.
The experimental values were not measured at absolute zero. Rather, the clusters
were “hot,” with an effective temperature near the melting point.

Suppose the clusters experience a thermal expansion, which might be impor-
tant in determining the structure of a cluster. Classically, the polarizability of a
sphere scales as the volume of the sphere. Consequently, a thermal expansion
of ∼ 5% would account for the difference between theory and experiment. In
Figure 12.5, calculations for the polarizability of Na clusters are illustrated with
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Figure 12.5 Polarizability of Na clusters. The experiment is from Knight and coworker [10].
Two theoretical simulations [4] are illustrated. One is at T = 0K , and the other is at a high
temperature, T = 750K , as indicated. GGA refers to the type of density functional theory used
in the computation.

and without temperature. The zero temperature results were calculated based on
the low-energy structures of Figures 12.2 and 12.3.

The high-temperature results were obtained by averaging over geometries
obtained by molecular dynamics with a heat bath temperature fixed at 750 K.

A molecular dynamics simulation within Langevin dynamics can be performed
to generate ensemble averages for a cluster within the heat bath. This can be jus-
tified by considering a cluster within a buffer gas. The atoms in the clusters would
receive random “kicks” by atoms in the buffer gas, which might be similar to what
one would expect from Langevin dynamics. Of course, a real buffer gas might not
have the detailed characteristics of the heat bath.

The zero temperature polarizabilities mimic the general shape of the experi-
mental curve, but they are consistently lower than the experimental values. If
temperature is included, the theoretical polarizabilities increase due to cluster
expansion and distortion, and can be brought into registry with experiment with
a suitable choice of temperature. The inclusion of thermal expansion reconciles
the discrepancy attributed to the failure of density functional theory.

12.3.2 The Optical Properties of Clusters

We know that the interaction of light with clusters is a useful tool for exploring
the electronic and structural properties of clusters. It can be used to distinguish
one possible structure from another.
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Understanding the interaction of light with clusters can be handled in a manner
similar to that for molecules, e.g. using time-dependent density functional theory
as in Section 11.5.1. The only complication for clusters centers on an issue of
structure, which is almost always known for molecules.

We again consider sodium clusters. The optical properties of these clusters
have been calculated with time-dependent density functional theory. Na clusters
should be good candidates for this method, given their “free electron” nature.

Time-dependent density functional theory often works well for simple metals.
Accurate experimental measurements of the absorption spectra for Na clusters
are available, and some of these measurements date back to the first half of the
twentieth century. As for the case of molecules, the the unoccupied electron
states of clusters can be very sensitive to the boundary conditions as they are
often quite extended. For real-space calculations, this situation requires calcu-
lations that are performed within a relatively large boundary domain. One can
assess the situation by changing the domain size and repeating the calculation.

The calculated absorption spectrum for some small closed shell Na clusters is
shown in Figure 12.6 along with experiment. In addition, we illustrate the spec-
trum generated by considering transitions between the Kohn–Sham eigenvalues.
The agreement between the spectra calculated from the time-dependent local
density approximation and the measured spectra is remarkable, especially when
contrasted with the Kohn–Sham spectra.

The time-dependent local density approximation correctly reproduces the
experimental spectral shape, and the calculated peak positions agree with
experiment within 0.1−0.2 eV. One of the most intriguing differences between
the calculated spectra is the collective nature of the time-dependent local
density approximation. A simple shift of the Kohn–Sham spectra would not
reproduce the experimental spectra. This is particularly the case for Na4 where
distinct new spectral features occur. As one might expect, the accuracy of the
time-dependent local density approximation for the Na clusters is not “typical.”
While the approximation works well here, it does not work so well for clusters in
general, especially as the size of the system increases.

The time-dependent local density approximation cannot be better than the
underlying theory. In particular, since density functional theory often fails to
localize the electron–hole pair created by an optical excitation, the method
becomes flawed for large clusters, especially when the electron–hole pair
interactions are large. For small systems, the physical size of the system confines
the interactions, and the results are better.

12.4 The Role of Temperature on Excited-state
Properties

Size is not the only characteristic that can have a strong effect on the properties of
a cluster. As we found for polarizabilities, temperature can also play an important
role in interpreting optical spectra.

As an example, we focus again on Na clusters. The optical absorption of such
clusters can exhibit an unexpectedly large temperature dependence. How does
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one account for this? Temperature effects are often simulated by finite broaden-
ing of the optical absorption spectra by Gaussians or similar functions such as
Lorentzian (see Eq. 10.43). This is the case in Figure 12.6 where we broadened
the lines by convoluting the spectra with a Gaussian function.

Is there a justification for broadening the line shape? Often a simple broadening
of the spectrum appears consistent with experiment. The spectral line shape, even
for a well-defined transition, is never an infinitely sharp line.

There are several reasons for this. We discussed one of them earlier. For a line
to be infinitely narrow, we have to make the measurement over an infinite time.
In general, that is not the problem. Even if an infinitely narrow spectral line were
incident on a spectrometer, the measured line would not be infinitely narrow as
spectrometers do not have infinite resolution.

Still, one would like to have a better understanding of temperature and how it
might broaden the spectrum by incorporating it into calculations for the absorp-
tion spectra. In principle, this could be done by considering a finite temperature
simulation and observing its effect on the optical spectra of clusters. For example,
one could put a molecule in a heat bath at some given temperature and collect
an ensemble average. By changing the temperature of the heat bath, it should be
possible to monitor the role of the temperature.

There are notable issues with this procedure. In particular, suppose we
compute excited-state spectra using time-dependent density functional theory
for each step in a molecular dynamics simulation. This will work. However,
time-dependent density functional calculations are not cheap. One would like to
sample hundreds if not thousands of spectra on a large ensemble of molecules.
This process is tough, but it is not beyond the pale of modern computers. Pro-
vided the calculations can be done quickly a decent-sized sample can be obtained.
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Figure 12.6 Calculated [12] and experimental [13], [14] absorption spectra for Na2, Na4, and
Na8. The top panel shows a local density approximation to the spectrum using Kohn–Sham
eigenvalues. The middle panel shows a time-dependent local density approximation
calculation. The bottom panel shows experiment.
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We illustrate this technique by comparing to experimental work performed on
small sodium clusters, which have been ionized and mass selected [15].

Example 12.2 Finite Temperature Simulations for the Optical Properties of
Sodium Clusters We place a sodium cluster in a thermal bath and run numer-
ical experiments. Initially the cluster is allowed to thermalize with the heat bath.
Then samples are taken at given time intervals. An ensemble average of the optical
spectra will usually converge fairly quickly for these clusters and a large number
of sampled points are not needed. In Figure 12.7, we illustrate results for a Na+7
cluster.

Two temperature regimes are illustrated. At a low temperature, T = 35 K, a
Gaussian is used to broaden the spectrum so that it agrees with experiment. This
broadening is assumed to be instrument dependent and not temperature depen-
dent. The line shape, which arises from the instrument, need not be Lorentzian.
At the high temperature, T = 650 K, we keep this broadening, but add in thermal
broadening. In this way the broadening of the spectra from the low temperature
to the high temperature calculation is due only to the time-averaging of different
configurations in the simulation. This simple approach works reasonably well,
and the broadened spectra are consistent with experiment. However, this proce-
dure remains computationally intensive.

12.4.1 Magnetic Clusters of Iron

So far, our work on clusters has focused on non-magnetic systems. Magnetic clus-
ters can be handled within pseudopotential-density functional theory, although
the computations are more difficult as a new degree of freedom is introduced.

The existence of spontaneous magnetization in metallic systems is an intriguing
problem because of the extensive technological applications of magnetic phe-
nomena and the incomplete theory of its fundamental mechanisms.

Figure 12.7 Absorption spectra for Na+
7

clusters at 35 and 650 K. The solid lines are
calculated spectra [15] while the dashed
curves are from experiment [16].
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We focus on the quintessential magnetic clusters – clusters of iron atoms.
Spontaneous magnetization is one of the most remarkable properties of iron
and materials containing iron, so much that it gave a name to this specific type
of magnetization: ferromagnetism from the Latin word for iron (ferrum). One
of the more intriguing questions about iron clusters is how they evolve into
magnetic crystals – the emergence of magnetism.

At the atomic level, ferromagnetism is associated with partially filled 3d
orbitals. In solids, ferromagnetism may be understood in terms of the itinerant
electron model, which assumes partial delocalization of the 3d orbitals. In
clusters of iron atoms, delocalization is weaker owing to the presence of a
surface, whose shape affects the magnetic properties of the cluster. And, because
of their small size, iron clusters containing a few tens to hundreds of atoms
are superparamagnetic: the entire cluster serves as a single magnetic domain,
with no internal grain boundaries. Consequently, small iron clusters have strong
magnetic moments, but exhibit no hysteresis.

One difficulty with computing the properties of iron clusters is our old neme-
sis: The structure of iron clusters is simply not well known. First-principles and
model calculations imply that clusters with up to about 20 atoms assume a variety
of distinct shapes in their lowest energy configuration [17], [18]. For larger clus-
ters, there is indication in experiment for a stable body-centered cubic structure,
which is identical to ferromagnetic bulk iron [19].

The evolution of magnetic moment as a function of cluster size has attracted
considerable attention from researchers in the field. A key question to be resolved
is, what drives the suppression of magnetic moment as clusters grow in size?

In an iron atom, the permanent magnetic moment arises from the exchange
splitting: the 3d↑ orbitals (majority spin) are lower in energy and so completely
occupied with five electrons. The 3d↓ orbitals (minority spin) are partially occu-
pied with one electron, resulting in a magnetic moment of 4𝜇B, 𝜇B being the Bohr
magneton. (Recall from Section 2.3:𝜇B = eℏ∕2mc.)

When atoms assemble in a crystal, their atomic orbitals hybridize and form
energy bands: the 4s hybridized orbitals create a wide band that remains partially
filled, in contrast with the completely filled 4s orbital in the atom. The 3d↓ and
3d↑ orbitals create narrower bands. Orbital hybridization together with the dif-
ferent bandwidths of the various 3d and 4s bands result in weaker magnetization,
equivalent to 2.2 𝜇B∕atom in bulk iron.

In atomic clusters, orbital hybridization is not as strong because atoms on the
surface of the cluster have fewer neighbors. A theoretical analysis in clusters
and thin slabs indicates that the dependence of the magnetic moment with
the effective coordination number is approximately linear and increases with
coordination [20].

The suppression of the magnetic moment from orbital hybridization is not
isotropic, if we consider a layer of atoms. For instance, the 3d orbitals oriented
in the plane of atoms will hybridize more effectively than orbitals oriented nor-
mal to the plane. As a consequence, clusters with faceted surfaces are expected to
have magnetic properties different from clusters with irregular surfaces, even if
they have the same effective coordination number. This effect is likely responsible
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for a non-monotonic suppression of magnetic moment as a function of cluster
size.

Example 12.3 Evolution of Magnetism in Iron Clusters Suppose we exam-
ine iron clusters containing up to several hundred atoms. Can we replicate the
evolution of magnetism in iron clusters?

An accurate description of the electronic and magnetic structure of iron clus-
ters is more difficult to compute than for simple metal clusters. The existence of
a magnetic moment means that an additional degree of freedom enters the prob-
lem. If we take the coordinates of an electron plus an up or down spin, we double
the size of the problem. Since our machinery for solving the electronic structure
problem does not scale linearly but rather as the cube of the matrix size, doubling
the matrix size roughly means an order of magnitude increase in terms of com-
putational operations. Also, we should consider “non-collinear magnetism” and
associate a magnetic vector at every point in space, which makes the problem
even worse. Fortunately, a collinear description is all right for the case at hand
owing to the high symmetry of the clusters considered.

Another complicating issue is the relatively localized nature of the 3d electronic
states, which requires a fine grid to obtain a fully converged solution. For iron the
grid spacing might be less than half of that for silicon, i.e. 0.3 a.u. (Fe) versus 0.7
a.u. (Si). A fine grid results in a much larger Hamiltonian matrix and a corre-
sponding increase in the computational load. While we can accurately compute
the properties of nanocrystals of silicon with over thousands of atoms, nanocrys-
tals of iron of this size are problematic without additional computing power.

Things could get much worse. The geometry of the iron clusters introduces a
number of degrees of freedom, as we have stated numerous times. It is not cur-
rently possible to determine the definitive ground state for systems with dozens
of atoms. However, in many cases it is not necessary to know the ground state.
We are more interested in determining what structures are “reasonable” and rep-
resentative of the observed ensemble, i.e. if two structures are within a few milli-
electron volts, they are not distinguishable.

In our example, we build topologically distinct clusters, e.g. clusters of both
icosahedral and body-centered cubic symmetry. To investigate the role of surface
faceting, we constructed clusters with faceted and non-faceted surfaces. Faceted
clusters are constructed by adding successive atomic layers around a nucleation
point. Small faceted icosahedral clusters exist with special sizes: 13, 55, 147, and
309 [20]. Faceted body-centered clusters are constructed with the same local
coordination as the bulk crystal.

Suppose we consider two families of cubic clusters: “atom centered” or “bridge
centered.” These terms mean what they imply. An atom-centered cluster has a
nucleation point at an atom site. A bridge-centered cluster has a nucleation point
between two neighboring atoms. Non-faceted clusters are built by adding shells
of atoms around a nucleation point so that their distance to the nucleation point
is less than a specified value. Non-faceted clusters usually have narrow steps over
otherwise planar surfaces and the overall shape is almost spherical. By construc-
tion, non-faceted clusters have well-defined symmetries. Clusters constructed
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in this manner show low tension on the surface, making surface reconstruction
less likely.

As clusters grow in size, their properties approach the properties of bulk iron
as is apparent in Figure 12.8. Here we display the density of states for Fe388,
which assumes body-centered cubic-like coordination. If we compare the bulk
iron density of states to the cluster, the results are quite similar. In addition,
the cohesive energy in this computation is only 77 meV/atom lower than in the
bulk [20]. Such computations suggest that quantum confinement effects will be
predominantly observed in clusters smaller than Fe388.

Figure 12.9 shows the density of states for Fe393, which belongs to the icosa-
hedral family. This cluster has a “nondescript” density of states, i.e. one without
much structure. One can attribute this difference to the icosahedral-like arrange-
ment of atoms. The overall dispersion of the 3d peak ( 4 eV for 3d↑ and 6 eV for
ed↓) is similar in both density of states.

The key issue for the example at hand is to determine how the magnetic
moments for iron clusters evolve. The magnetic moment is calculated as the
expectation value of the total angular momentum:

M =
𝜇B

ℏ

[gs⟨Sz⟩ + ⟨Lz⟩] = 𝜇B

[gs

2
(n↑ − n↓) +

1
ℏ

⟨Lz⟩] (12.15)

where gs = 2 is the electron gyromagnetic ratio. Figure 12.10 illustrates the
approximately linear dependence between the magnetic moment and spin
moment, ⟨Sz⟩, throughout the whole size range.
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Figure 12.10 Magnetic moment versus spin
moment calculated for the atom-centered
body-centered cubic (“plus” signs) and
bridge-centered body-centered cubic
(crosses) iron clusters. The approximate ratio
is M∕⟨Sz⟩ = geff = 2.04𝜇B∕ℏ.
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Figure 12.11 Calculated magnetic moments for clusters in a body-centered-like structure.
Some of the faceted and non-faceted clusters are depicted next to their corresponding data
points. The dashed line indicates the value of magnetic moment per atom in bulk iron.

This results in an effective gyromagnetic ratio geff = 2.04𝜇B∕ℏ, which is
somewhat smaller than the gyromagnetic ratio in bulk body-centered cubic iron,
2.09𝜇B∕ℏ. This is most likely due to an underestimation of the orbital contribu-
tion, ⟨Lz⟩. In the absence of an external magnetic field, orbital magnetization
arises from the spin–orbit interaction, which is included in the theory as a model
potential [21]:

Vso = −𝜉L ⋅ S (12.16)

where 𝜉 = 80 meV/ℏ2.
Figure 12.11 shows the magnetic moment of some body-centered cubic gener-

ated clusters. Figure 12.12 shows the moments of some icosahedral like clusters.
Experimental data [19] are also shown in both figures. The suppression of
magnetic moment as a function of size is readily observed. Also, clusters with
faceted surfaces are predicted to have magnetic moments lower than other
clusters with similar sizes. This is attributed to more effective hybridization of d
orbitals along the plane of the facets.
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Figure 12.12 Calculated magnetic moments for clusters in an icosahedral-like structure. Some
of the faceted and non-faceted clusters are depicted next to their corresponding data points.
The dashed line indicates the value of magnetic moment per atom in bulk iron.

The non-monotonic behavior of the measured magnetic moment with size
cluster can be attributed to the shape of the surface. Under this assump-
tion, islands of low magnetic moment are associated to clusters with faceted
surfaces.
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13

Nanocrystals

When we get to the very, very small world – say circuits of seven atoms – we
have a lot of new things that would happen that represent completely new
opportunities for design. Atoms on a small scale behave like nothing on a
large scale, for they satisfy the laws of quantum mechanics. So, as we go
down and fiddle around with the atoms down there, we are working with
different laws, and we can expect to do different things. We can manufacture
in different ways. We can use, not just circuits, but some system involving the
quantized energy levels, or the interactions of quantized spins, etc.

Richard Feynman

Richard Feynman made the comments cited above in 1959 at Caltech.
His lecture was entitled “There is Plenty of Room at the Bottom.” Feynman
speculated that atomic manipulation would lead to efficient computers and
information storage devices. Some claim that Feynman’s remarks inspired
much of the nanoscience and nanotechnology work performed today. However,
this claim is not substantiated by a study of the literature [1]. To the contrary,
Feynman’s lecture did not have a great impact at the time or in the immediate
following years. Nonetheless, his talk was prescient.

In Chapter 12, we defined what a cluster is. We do the same for a “nanocrystal.”
A nanocrystal is not really the same as a “big” cluster with a crystalline structure.
An operational definition for a “nanocrystal” can be constructed by considering
how properties change with size. Consider a macroscopic piece of silicon, say,
something you could hold in your hand. Suppose we examine the optical prop-
erties of this piece of silicon. Cutting the piece in two does nothing to change it
optical characteristics. For example, a 10 cm3 sample is no different in its opti-
cal properties from a 10 mm3 sample. Both look like silicon. Properties that do
not change with size or mass are called “intensive.” An optical gap is an inten-
sive property as is the density of the material. Now suppose we keep cutting the
original piece of silicon into smaller and smaller size. As we go to smaller and
smaller length scales, e.g. sizes below 100 nm, something unusual happens. The
optical properties begin to change with size and cease to be intensive. At this
point, we have a “nanocrystal.” A working definition of a nanocrystal might be
a crystalline fragment at a length scale wherein bulk intensive properties are no
longer independent of size.

Introductory Quantum Mechanics with MATLAB® : For Atoms, Molecules, Clusters, and Nanocrystals,
First Edition. James R. Chelikowsky.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.



178 13 Nanocrystals

A key aspect of nano-related phenomena is the role of “quantum confinement.”
At small length scales, quantum mechanical properties become important as
Feynman suggested. We can use elementary arguments to determine at what
length scale quantum mechanics becomes important.

We start with the uncertainty principle. This principle states that the uncer-
tainty of a particle’s momentum,Δp, and its position,Δx, must be such that at best
ΔpΔx ∼ ℏ, where h is Planck’s constant divided by 2π. Suppose we consider one
dimension and put a particle in a box of size Δx. We know then that the momen-
tum must be p ∼ Δp = ℏ∕Δx. The kinetic energy of a particle in this box should
scale as ∼ 1∕Δx2 and we expect that the kinetic energy will rapidly increase for
small values ofΔx. In a real particle, a three-dimensional one, the idea is the same.
Confining an electron to a small physical volume requires energy.

If the confinement energy becomes comparable to the characteristic energy
of the crystal such as its band gap, then its physical properties will change. In
general, once the confining dimension approaches the delocalization length of
an electron in a solid, quantum phenomena will happen. The delocalization
length can vary from solid to solid and is correlated with the wave properties of
the electron. For example, the de Broglie wavelength of an electron is given by
𝜆 = h∕p. If 𝜆 is on the order of Δx, then we expect confinement and quantum
effects to become important.

For a simple metal, we can estimate the momentum from a free electron gas:
p = ℏkf . kf is the wave vector such that the Fermi energy, Ef = ℏ

2k2
f ∕2m. This

yields kf = (3π2n)1∕3 where n is the electron density. The value of kf for a typical
simple metal such as Na is ∼1010m−1. This would give a value of 𝜆 = h∕p = 2π∕kf
or roughly ∼1 nm. This characteristic “nano” scale gives its name to nanostruc-
tures or nanocrystals for the case at hand.

To observe the role of quantum confinement in real materials, scientists
and engineers need to construct materials routinely on the nanometer scale.
Nanocrystals of many materials can be made, although sometimes it is difficult
to determine whether they are crystalline. Nanocrystals provide science a unique
opportunity to study the properties at nanometer scales and to reveal the funda-
mental physics (read – “quantum effects”) occurring at reduced dimensionality.
From a “technological” point of view, nanostructures are currently the building
blocks in electronic devices, e.g. the smallest nominal length scale in a modern
CPU chip is less than 100 nm. As this size shrinks, electronic device engineers
are becoming “quantum” mechanics.

At such sufficiently small length scales, the band structure of a material may
no longer appear to be quasi-continuous. Instead of a “band,” the electronic
energy levels are quantum energy levels, which change with the size of the
system. A deeper understanding of the physics of confinement is necessary
to exploit these new laws for the development of nano optical, magnetic, and
electronic device applications. This understanding can be obtained by utilizing
the same approaches as in the previous chapters for clusters or molecules. But,
the problem is now harder, much harder. In an odd twist of terminology, nano
scale problems involve “large-scale” computations. A nanocrystal can often
contain thousands, if not millions, of atoms – much more computationally
intensive than clusters containing a few dozen atoms.
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13.1 Semiconductor Nanocrystals: Silicon

Our nanocrystal discussion begins with silicon, which, along with sodium, is one
of the usual suspects in condensed matter. Just as atomic physicists often consider
a hydrogen atom as a testbed, solid-state physicists use silicon [2].

Why silicon? The answer is simple: silicon is the most important technological
material of our time. Scientists and engineers have performed numerous
measurements on its chemical and physical properties. The number of scientific
papers on silicon exceeds several hundred thousands. The vastness of the silicon
literature makes it appealing as a testbed for new theory and experiment.

13.1.1 Intrinsic Properties

13.1.1.1 Electronic Properties
If we wish to examine the intrinsic properties of silicon nanocrystal, we need
to deal with how to terminate the nanocrystal. How do we handle the surface,
which at the nanoscale becomes increasingly important? If one were to construct
a nanocrystal by simply extracting a bulk fragment, atoms at the surface will
be under-coordinated. In the case of silicon, unsaturated bonds will result in
defect states. The existence of such states complicates things. They will produce
energy levels within the band gap and the nanocrystal will become a metal. This
is not what we want to study theoretically nor do we want this if we were doing
experiments. In experiment, the dangling bonds in a nanocrystal are saturated
or passivated, i.e. rendered chemically inert. Passivation can be accomplished by
coating the surface with polymers, surfactants, or hydrogen atoms. Passivation
can also be accomplished by embedding the nanocrystal in a medium. Ideally, a
passivated nanocrystal should not exhibit extrinsic states in the band gap, and
ideally maintain a bulk-like structure right up to the surface.

Perhaps the easiest passivation mechanism for computational studies is to
cap surface dangling bonds with hydrogen-like atoms. The only purpose of
these capping atoms is to terminate the nanostructure in a gentle manner, both
structurally and electronically. Hydrogen atoms on a silicon nanocrystal, i.e. a
small crystal of silicon, form Si—H bonds. The energy levels corresponding to
these Si—H states do not reside with the silicon band gap, but rather a few volts
below the gap. Moreover, the Si—H bonds and surrounding Si—Si bonds can be
structurally relaxed so that the surface is not under strain.

A simple model for constructing a silicon nanocrystal is to consider all the
atoms within a given radius of a particular atom. Hydrogen atoms at the surface
are then used to saturate any broken bonds.

Nanocrystals with several thousands of atoms can be examined using the
algorithms outlined in Chapter 9. Computational issues center on solving the
Kohn–Sham problem for a large number of electronic states. The problem can
be made somewhat simpler by using symmetry and by the use of algorithms
that allow an eigenvalue spectrum to be solved with a specified energy window.
The problem remains difficult and not many calculations are done at this time
for systems with more than tens of thousands of atoms. As computing power
increases, the number of atoms will also increase. (Not too many years ago a
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hundred atoms of silicon was considered a large system. So, one can expect that
nanocrystals with hundreds of thousands of atoms are not out of the question in
the near future.)

As an example, we will focus on Si9041H1860. This nanocrystal is larger than
the smallest Si nanocrystal made in the laboratory. Since the inception of
nanoscience, experimentalists have worked to synthesize and characterize
smaller and smaller nanostructures while theorists have worked to compute
properties for larger and larger nanostructures. Experimentalists initially could
not control the synthesis of nanocrystals smaller than a few thousand atoms
and theorists initially could not compute properties for nanocrystals larger than
about a hundred atoms. Sometime in the early part of the twentieth century,
the two endeavors succeeded in describing the same-sized nanostructures, after
which direct comparisons between experiment and theory became feasible.

A ball and stick model of a typical nanocrystal is shown in Figure 13.1.
A solution of the Kohn–Sham equations yields the distribution of eigenvalues.
For sufficiently large nanocrystals, one expects the distribution to approach that
of crystalline silicon, i.e. the distribution of states should approach that of the
crystalline “density of states.” Is a 7 nm nanocrystal of Si of sufficient size to have
a spectrum that looks like bulk silicon? The answer is “yes.” A comparison is
made in Figure 13.2. The “density of states” for the eigenvalue spectrum for the
nanocrystal shares a similar structure as the crystalline density of state.

The only notable differences between the crystal and nanocrystal densities of
states occur with the presence of the Si—H bonds. These states occur about 6 eV
below the highest occupied states (taken as our zero reference). Another differ-
ence not particularly evident in the figure is the discrete nature of the eigenvalue
spectrum for the nanocrystal. We have 38 024 electrons in our nanocrystal, which
occupy 19 012 states. The energy of the occupied eigenvalues span about 12 eV.
If uniformly distributed, we would have an average spacing of 0.006 eV, which is
below the energy associated with room temperature (0.025 eV). Eigenvalues so
distributed are quasi-continuous.

Figure 13.1 A ball and stick model of a
hydrogenated silicon nanocrystal. The
interior consists of a diamond
fragment. The surface of the fragment
is capped with hydrogen atoms.
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Figure 13.2 The eigenvalue
density of states for the
Si9041H1860 nanocrystal (top
panel) and the electronic density
of states for crystalline silicon
(bottom panel). Only occupied
states are considered. The
highest occupied state in both
panels is taken to be the zero
energy reference.
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How far is our nanocrystal from the bulk limit? We can try another test. We
examine how the energy gap in silicon evolves with size. (We will use “energy gap”
and “band gap” interchangeably as the energy gap in a nanocrystal should evolve
to a band gap for a sufficiently large nanocrystal.) We keep in mind that the size of
a band gap is not likely to be correct when computed within the density functional
theory, which is a ground-state theory. While trends in gaps are often correctly
given by density functional theory, absolute values are often off by a factor of two
or more. Here are some examples. The measured band gap of crystalline silicon
is 1.1 eV; the calculated gap is 0.6 eV. The measured gap in silica is roughly 10 eV;
the calculated gap is about 5 eV.

There is a bit of mystery here. In Chapter 10, we noted that the ionization energy
calculated for atoms was not bad, save a few anomalies associated with spin. In
this case, density functional theory worked well.

Why does it fail for large or extended systems? A possible explanation cen-
ters on the failure of density functional theory to produce localized excitations.
When light is absorbed in a semiconductor or insulator, an electron–hole pair is
created. In silicon, the excitation is localized to roughly 5 nm. Density functional
theory may not include the correct interactions of the electron–hole pair and the
excitation is not properly localized. Accordingly, the electron–hole pair can be
localized by the physical size of the system, e.g. the electron–hole excitation in
an atom is localized by the physical size of the atom.

Within density functional theory, one can construct a well-defined measure for
creating a non-interacting electron–hole pair. First, we find the energy to remove
an electron from the system and create a hole. For a semiconductor, this means
we remove an electron from the highest occupied state and move it to the vacuum
level. This energy is called the ionization potential (IP), I. The energy to add an
electron to the lowest unoccupied state is called the electron affinity (EA), A.
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These energies are defined as follows.

I = E(N − 1) − E(N)
A = E(N) − E(N + 1) (13.1)

where N is the total number of electrons in the system. In principle, the affinity
and ionization energies are ground-state properties and, if the correct functional
were known, these quantities would be accurately predicted by density functional
theory.

We examine the scaling of the IP and the EA by assuming a simple power law
behavior and fitting such a form to the calculated values (shown in Figure 13.3):

I(D) = I∞ + A∕D𝛼

A(D) = A∞ + B∕D𝛽 (13.2)

where D is the dot diameter. A fit of these quantities results in
I∞ = 4.5 eV, A∞ = 3.9 eV, 𝛼 = 1.1, and 𝛽 = 1.08. The fit gives a quasi-particle
gap of Eqp(D → ∞) = I∞ − A∞= 0.6 eV in the limit of an infinitely large dot.
This value is in good agreement with the gap found for crystalline silicon using
the local density approximation [3]. The gap is not in good agreement with
experiment owing to the failure of the local density approximation to describe
band gaps of bulk semiconductors in general. We learned something interesting
here. Even though I and A were computed from ground-state properties for
a large system, they do not yield correct properties for the ground state. This
situation reflects some fundamental flaw in our choice of functionals, which is
not surprising as no functional to date is “perfect.”

A key aspect of this example is to show the scaling of the IP and EA for
nanocrystals ranging from silane (SiH4) to hydrogenated silicon systems
containing thousands of atoms. We not only verify the limiting value of the
quasi-particle gap, we can also ascertain how this limit is reached, i.e. how the
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Figure 13.3 Evolution of the
ionization potential (IP) and
electron affinity (EA) with
quantum dot size. Also shown are
the eigenvalue levels for the
highest occupied molecular orbital
(HOMO) and the lowest
unoccupied molecular orbital
(LUMO).
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IP and EA scale with the size of the dot and what the relationship is between
these quantities and the highest occupied and lowest empty energy levels. In
our example, we effectively have gone from the molecular limit to the crystalline
limit. We have spanned the entire nanocrystal regime, at least for silicon.

Since values of I and A as calculated from density functional theory are
reasonably accurate for atoms and molecules, one can ask how the size of the
nanocrystal affects the accuracy of such calculations. Unfortunately, experimen-
tal values for the IPs and electron affinities are not known for hydrogenated
silicon clusters and nanocrystals, a notable exception being silane, where the EA
is negative, which means an electron added to the nanocluster is unbound – not
a typical situation [4].

The difference between the IP and the EA can be associated with an energy gap
known as the quasi-particle gap: Eqp = I − A. Formally, this is the energy required
to create a non-interacting electron–hole pair.

Some terminology: If the electron and hole are bound together, the excitation
is said to form an exciton. The concept of an exciton corrects for the failure of a
one-electron picture. If we had a full many-electron treatment, there would be
no need for these terms.

In crystalline materials, one can make a crude estimate of the exciton energy.
Suppose we consider the Coulomb interaction of the electron–hole pair. Recall
that a “hole” is a partially filled bond. In crystalline silicon, each atom has four
bonds, each shared by its four nearest neighbors. (A technical point: The number
of bonds per atom is two, not four, as each bond is shared by a neighboring atom.)
If we remove an electron from one of the bonds, there is a charge imbalance with
a net charge of +1. An electron will be attracted to this region. If the electron
is not too close to the hole, we can treat the interaction as between two point
charges. We can write the electron–hole potential as

V (reh) =
−e2

reh
(13.3)

where reh is the distance between the electron and the hole.
We can solve for the quantum mechanical energy using this potential as if it

were a hydrogen atom. As written, we would make a really big error! Why? First,
and foremost, the electron and hole are not in a vacuum. Within the silicon crys-
tal, a point charge is screened by the response of the other electrons. To the lowest
order, the electrostatic interactions are screened by a static dielectric constant, 𝜀.
Typically, 𝜀 ∼ 10 for a semiconductor such as silicon. Consequently, the screened
potential is reduced by an order of magnitude from the “bare” potential.

We can derive an expression for dielectric constant using a harmonic oscillator
description (see Chapter 10 and the discussion following Eq. (10.29)) and show
that this is a reasonable number. A simple expression for the dielectric constant
is 𝜀 = 1 + 4π𝛼, where 𝛼 is the atomic polarizability. This can be generalized to a
crystal such as silicon. One finds that

𝜀(𝜔 = 0) = 1 +
𝜔

2
p

𝜔
2
0

(13.4)
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𝜔p is called the plasmon frequency and 𝜔0 represents the resonant frequency of
a harmonic oscillator. In a semiconductor, the energy ℏ𝜔p is called the Penn gap.
Roughly speaking, it corresponds to the average energy difference between the
highest valence band and the lowest conduction band. In semiconductors such
as silicon, the plasmon energy, given by ℏ𝜔p, is about 15 eV and the Penn gap is
about 5 eV. This yields 𝜀 ≈ 10.

13.1.1.2 Effective Mass Theory
There is another correction to the electron and hole interaction based on this
hydrogenic model. While we now have a rough idea of the potential energy term,
what about the kinetic energy? This may seem like an odd question, but holes
and electrons are not independent particles and do not behave as such. In par-
ticular, what about the “effective masses” of the electron and hole that appear
different in solids, or in this case – nanocrystals. The electron and hole move
through the crystal as if they had a mass different from each other and from the
free electron mass.

To show this result, we can dabble in solid-state physics. It is worth doing as
the results are amazing. We consider only one energy band in our model, but
we could do more if needed. To further simplify the problem, we will assume a
one-dimensional problem where the band energy is given by E(k = |k⃗|). The crys-
talline potential that generates this band is given by V (x), where V (x) = V (x + a)
is periodic.{

−ℏ2

2m
d2

dx2 + V (x)
}

𝜓k(x) = E(k)𝜓k(x) (13.5)

We define the crystalline Hamiltonian as

H0 = −ℏ2

2m
d2

dx2 + V (x) (13.6)

and will use the fact that H0𝜓k = E(k)𝜓k .
In the presence of an electron–hole interaction, we modify the crystalline

potential and seek a solution for the problem:{
−ℏ2

2m
d2

dx2 + V (x) + Veh(x)
}

𝜓(x) = E𝜓k(x) (13.7)

where Veh represents the potential for the electron–hole interaction, i.e. the
Coulomb potential screened by the dielectric constant. The electron–hole
potential breaks the translational symmetry of the crystal. The resulting loss
of symmetry means Bloch’s theorem no longer holds. Before addressing this
matter, we need to be creative and exploit the properties of the system without
the perturbing potential.

We observe the following:

E(k) =
∑

n
E(n) exp(ikna) (13.8)

Where did this come from? Recall that E(k) is a periodic function such that
E(k + 2π∕a) = E(k). We are simply expanding E(k) as a Fourier series.
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We define an operator by replacing k in E(k) by a derivative −id∕dx. We
consider the action of this operator on 𝜓k :

E
(
−i d

dx

)
𝜓k(x) =

∑
n

E(n) exp
(

na d
dx

)
𝜓k(x) (13.9)

How do we interpret this? We have an exponential of an operator. The exponential
form makes sense only in terms of an expansion:

E
(

i d
dx

)
𝜓k(x) =

∑
n

E(n)

[
1 + na d

dx
+ (na)2

2

(
d

dx

)2

+ · · ·

]
𝜓k(x)

(13.10)

This is a Taylor series expanding around x:[
1 + na d

dx
+ (na)2

2

(
d

dx

)2

+ · · ·

]
𝜓k(x) = 𝜓k(x + na) = exp(ikna) 𝜓k(x)

(13.11)

where we used Bloch’s theorem: 𝜓k(x + a) = exp(ika) 𝜓k(x). We rewrite

E
(

i d
dx

)
𝜓k(x) =

∑
n

E(n)

[
1 + na d

dx
+ (na)2

2

(
d

dx

)2

+ · · ·

]
𝜓k(x) = E(k)𝜓k(x)

(13.12)

We have just demonstrated that 𝜓k is an eigenfunction of E(i d
dx
) with an eigen-

value of E(k).
We can now reexamine the problem with the electron–hole interaction:

{H0 + Veh(x)}𝜓(x) = E𝜓(x) (13.13)

by writing

𝜓(x) =
∑

k
c(k)𝜓k(x) (13.14)

This equation allow us to use 𝜓k as a basis to find E. Plugging this in and carrying
out some simple substitutions gives us the following:∑

k
c(k)

{
H0 + Veh(x)

}
𝜓k = E 𝜓(x)∑

k
c(k)

{
E(k) + Veh(x)

}
𝜓k = E 𝜓(x)

∑
k

c(k){E
(
−i d

dx

)
+ Veh(x)} 𝜓k = E 𝜓(x)

{E(−i d
dx

) + Veh(x)} 𝜓 = E 𝜓(x)

We are almost done.
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We finish up by making use of the following. Suppose we are near a band edge;
we can expand E(k) around this edge:

E(k) = Ec +
ℏ

2k2

2m∗ (13.15)

where Ec is the conduction band edge and m∗ is an effective mass determined
by the curvature of the energy band. We now make the usual substitution
k → −id∕dx and we have the following:{

− ℏ
2

2m∗
d2

dx2 + Veh(x)
}

𝜓(x) = (E − Ec) 𝜓(x) (13.16)

where we included the electron–hole Coulomb term. In three dimensions, we
would get a similar result:{

−ℏ
2∇2

2m∗ − e2

reh

}
𝜓(r⃗) = (E − Ec) 𝜓(r⃗) (13.17)

What happened here? The problem looks like a Schrödinger equation for a
hydrogen atom, but it is different. The Coulomb term is screened by 𝜀 and the
real electron mass is replaced by an effective mass, m∗. Also, we now measure the
energy from the conduction band edge Ec. The role of the crystalline host is to
make the mass of the electron look different. This is an amazing result. The elec-
tron in the host can still be treated as an electron, but its mass appears different. If
we did this for the hole too, we find the effective mass to be 1∕m∗ = 1∕me + 1∕mh.
Not surprisingly, this approach is called effective mass theory.

If we are given the parameters (𝜀, m∗, Ec), we can readily write down the answer
for the hydrogen-like atom:

E = Ec −
m∗e4

2𝜀2ℏ2 = Ec − 13.6eV m∗

m𝜀2 (13.18)

We take the energy of the atom to be in the lowest energy state. Typically, m∗∕m
is about 0.1 and 𝜀 ≈ 10. The correction to the band edge energy is only about
0.01 eV.

We learn more using effective mass theory. The orbital radii of the
electron–hole pair is changed to the following:

aB = 𝜀h2

m∗e2 = 0.529Å m∗
𝜀

m
(13.19)

Roughly speaking, this sets the length scale for an excitation.
For silicon nanocrystals, 𝜀 decreases in size from the bulk value. Crudely

speaking the dielectric constant decreases as the gap increases. As a conse-
quence of this scaling, small silicon nanocrystals, which have small dielectric
constants, possess larger interactions between the electron and hole as the
orbital size is reduced. The exciton energy is believed to be on the order of ∼1 eV
for nanocrystals of less than ∼1 nm. So, we cannot compare the quasi-particle
gap as computed from the EA and IP directly with experiment and expect to
have a quantitative agreement. The quasi-particle gap ignores the electron–hole
interaction, which could be large for nanocrystals [5].
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13.1.1.3 Vibrational Properties
If we accurately compute the electronic energy as a function of position, we

can predict the role of quantum confinement on the vibrational properties of
nanocrystals. We expect vibrational properties as a function of size to converge
quickly to the bulk values. This reflects the more localized nature of a vibrational
mode. Methods such as density functional theory tend to be quite accurate for
vibrational modes, which can be computed from small changes in energy with
atomic position.

Vibrational modes in nanocrystals can play an important role within the
context of the photovoltaic applications. In particular, vibrational properties are
directly related to the phonon-assisted optical transitions. This is an important
consideration for silicon. In the bulk limit, the lowest optical transition in a
silicon crystal is “indirect.” The momentum state of the highest occupied state
and the lowest empty state in the crystal are not the same. This situation is
peculiar to several elementary semiconducting crystals such as carbon, silicon,
and germanium, and compound semiconductors such as gallium phosphide.

Since a photon carries little momentum, the momentum created by the pro-
duction of an electron–hole pair should also be negligible, should we wish to
conserve momentum. In indirect semiconductors such as silicon, the hole is not
the issue as it carries almost no momentum. The problem is with the excited elec-
tron, which carries momentum. We cannot make an optical excitation in silicon
at the indirect gap unless we invoke a new source of momentum to “cancel” out
the excess momentum from the electron. Where can we find a low-energy par-
ticle that carries momentum? We can find it in “phonons,” or quantized lattice
vibrations.

Intuitively, indirect gap materials are not good optical materials as there are
four particles involved: a photon, a phonon, an electron, and a hole. The phonon
can either be absorbed along with a photon or be emitted with the electron or
hole. In any event, to get both momentum and energy conserved means a cooper-
ative effect with an additional particle. The probability of this occurring is notably
lower than “direct” transitions.

Owing to the localized nature of nanocrystals, it is feasible to predict vibra-
tional modes calculations by the direct force-constant method. We briefly
touched on defining a dynamical matrix for vibrations modes in molecules in
Chapter 11. Here we outline the procedure in more detail for nanocrystals. The
dynamical matrix of the system is constructed by displacing atoms one by one
from their equilibrium positions along the Cartesian directions and finding the
forces induced on the other atoms of the nanocrystal. We determine the forces
using the Hellmann–Feynman theorem in real space and employ a symmetrized
form of the dynamical matrix expression. The elements of the dynamical matrix,
D𝛼𝛽

ij , are given by

D𝛼𝛽

ij = −1
2

⎡⎢⎢⎢⎣
F𝛼

i

(
{R⃗} + d𝛽

j

)
− F𝛼

i

(
{R⃗} − d𝛽

j

)
2d𝛽

j

+
F𝛽

j

(
{R⃗} + d𝛼

i

)
− F𝛽

j

(
{R⃗} − d𝛼

i

)
2d𝛼

i

⎤⎥⎥⎥⎦
(13.20)
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where F𝛼

j is the force on atom 𝛼 in the direction i and {R⃗} + d𝛽

j is the atomic
configuration where the atom 𝛽 is displaced along j from its equilibrium position.
The value of displacement is taken to be small so that we are in the harmonic limit,
e.g. it might be 1% of the equilibrium bond length.

The vibrational modes frequencies and corresponding eigenvectors can be
obtained from the dynamical equation:∑

𝛽,k

[
𝜔

2
𝛿
𝛼𝛽
𝛿ik −

D𝛼𝛽

ik√
M

𝛼
M

𝛽

]
A𝛽

k = 0 (13.21)

where M
𝛼

is the mass of the atom labeled by 𝛼.

13.1.1.4 Example of Vibrational Modes for Si Nanocrystals
We apply this procedure to several Si nanocrystals: Si87H76, Si147H100, and
Si281H172. The interior of these nanocrystals is a bulk-like structure with the sur-
face passivated by hydrogen atoms. The structures are illustrated in Figure 13.4.

In Figure 13.5, we plot the calculated Si vibrational density of states for each
nanocrystal. Vibrational density of states contributions from passivating H
atoms are excluded as they serve only to terminate the nanocrystal surface in a
“gentle” manner. The vibrational density of states of the nanocrystals is compared
to the bulk crystal. There are two prominent peaks in the Si vibrational density
of states, a low frequency acoustic peak centered in the range of 100–150 cm−1

and a higher frequency optical peak in the vicinity of 480 cm−1. “Acoustic” and
“optical” refer to the vibrational mode. As one might guess, acoutic modes can

Si87H76 (1.4 nm) Si147H100 (1.7 nm) Si281H172 (2.2 nm)

Figure 13.4 Relaxed structures of silicon nanocrystals used for computing vibrational modes.
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Figure 13.5 The vibrational
density of states for
nanocrystals in Figure 13.4
and for crystalline silicon.



13.1 Semiconductor Nanocrystals: Silicon 189

Figure 13.6 Partial
vibrational density of states
for shells of Si atoms in
Si281H172 at various distances
from nanocrystal center.

0

0.04

0

0.02

100 200
Frequency (cm–1)

5.9Å layer

7.6Å layer

8.9Å layer

S
he

ll 
V

D
O

S
 p

er
 a

to
m

 (
a.

u.
)

300 400 500

propagate sound and optical modes can interact with light. As the nanocrystal
decreases in size, the acoustic peak is red-shifted and the amplitude of the
high-frequency optical peak is decreased. Both these observations point toward
a shift of vibrational density of states to lower frequencies with decreasing
nanocrystal size. Why does this happen?

One might suspect the bond lengths in a nanocrystal to be compressed.
This often happens when an atom is under-coordinated such as those near the
surface of a nanocrystal. Similar bond contractions have also been observed
in H-passivated Si (111) surfaces, and these were shown to originate from an
electronic charge transfer that tends to reduce the surface dipole moment.
Shorter interatomic distances result in stronger Si—Si bonds and larger Si force
constants near the nanocrystal surface [6].

Another important effect of confinement on nanocrystal vibrations originates
from the effective under-coordination of surface Si atoms. Owing to their small
mass, passivating H atoms provide little resistance to the motion of surface Si
atoms at frequencies characteristic of Si vibrations, as H atoms follow closely the
motion of the Si atoms they are bonded to. This lowering of coordination number
leads to a softening of nanocrystal vibrational modes relative to the correspond-
ing modes in bulk.

The total shift in vibrational density of states frequencies is due to the compet-
ing influences of surface atom under-coordination and bond length contraction,
and their combined effect can be seen by plotting the partial vibrational density
of states of shells of Si atoms at various distances from the nanocrystal center,
shown in Figure 13.6 for the Si281H172 nanocrystal.

Example 13.1 Raman Spectra of Silicon Nanostructures Raman spec-
troscopy is a powerful tool for “finger printing” the nature of chemical bonds in
materials or molecules. The process involves inelastic scattering of light, usually
laser light, which interacts with vibrational modes with the incident light being
shifted up or down in energy. In Figure 13.7 the Raman process is illustrated.
Raman scattering will result in the scattered light being lower in energy (Stokes
Raman scattering) or higher in energy (Anti-Stokes Raman scattering). Rayleigh
scattering does not change the photon energy [7].

Raman spectroscopy is based on an interaction between the electron structure
of a material and the external electrical field of light, which can create an induced
dipole moment within the material based on its polarizability. The details of this
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Rayleigh
scattering

Vibrational
states

Electronic
states

Stokes
Raman
scattering

Anti-stokes
Raman
scattering

Figure 13.7 Schematic energy
levels for Raman spectroscopy. The
absorption or emission of
vibrational energy distinguishes
Stokes from Anti-Stokes scattering.

interaction are complex and beyond the scope of this text. For our purposes, we
need only know that the vibrational modes of a nanocrystal are important in
determining the energy differences in Raman along with the details of the chem-
ical bond.

Experimental studies based on Raman spectroscopy have been performed to
study the vibrational properties of Si nanocrystals [8]. The main optical Raman
peak is found to be increasingly red-shifted and broadened as the nanocrystal
size decreases. These models center on confinement effects and a relaxation of
the wave-vector selection rule. Selection rules exist when a crystal has transla-
tional symmetry. These rules become inoperative in a nanocrystal, which lacks
such symmetry. With the ability to compute the electronic and vibrational prop-
erties of nanocrystals, it is not necessary to rely on phenomenological theories
that often transfer parameters from the bulk crystal to a nanocrystal.

Figure 13.8 illustrates the Raman spectra for the nanocrystals illustrated
in Figure 13.4. The major bulk Raman peak is shown at 522 cm−1. This peak
red-shifts from the largest nanocrystal (Si281H172) at 513 cm−1 to the smallest
nanocrystal (Si87H76) at 503 cm−1. We attribute the shift to the vibrational modes
weakening near the surface of the nanocrystal in Figure 13.6. These modes tend
to be the dominant ones when one includes the interaction of light with the
polarizability modes.

13.1.2 Extrinsic Properties of Silicon Nanocrystals

Doping a small percentage of foreign atoms in bulk semiconductors can
profoundly change their electronic properties. Phosphorus-doped crystalline
Si introduces defect energy states close to the conduction band [9]. Here
“close” means on the order of the thermal energy associated with the room
temperatures, i.e. ∼0.025 eV. For such “shallow” donors, electrons can be easily
thermally excited, thereby greatly enhancing the conductivity of the original pure
semiconductor, often by orders of magnitude at room temperature. Doping with
boron also introduces defect levels. However, unlike phosphorus, boron results
in undersaturated bonds, which create hole states near the top of the valence
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Figure 13.8 Calculated Raman cross
sections for Si nanocrystals. The
dotted line represents the frequency
of Raman peak position for bulk-Si.
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band. Managing the doping properties of defects plays a vital role in designing
modern electronic devices. The design of electronic devices, each smaller than
the previous generation, advances the performance of electronic circuits.

As this is written, device miniaturization is approaching the nanometer-scale,
if not the sub-nanometer scale. As a consequence, it is important that one under-
stands how doping operates at the nanoscale where confinement is expected to
modify the current laws of device design – particularly, at what length scale device
design based on macroscopic laws will be altered by quantum theory as noted in
the quote by Feynman.

13.1.2.1 Example of Phosphorus-Doped Silicon Nanocrystals
Phosphorus-doped silicon nanocrystals represent the stereotypical system for
studying impurities in nanocrystals. Unfortunately, theoretical studies of shal-
low impurities in nanocrystals are computationally challenging. Only within the
last few years have computations been practical for Si nanocrsytals that are com-
parable in size to experiment.

Suppose we wish to substitute a P atom for a Si atom in a nanocrystal. In bulk
Si, the solubility limit is a few atomic percent of P. This suggests that for very small
nanocrystals, e.g. a hundred Si atoms, we might start to approach the limit. Of
course, there are issues in assuming that the nanocrystal will behave like the bulk
phase. Still, if we assume that this limit holds at the nano scale, one might have
difficulty doping nanocrystals. Some have postulated that nanocrystals might
self-purify by expelling dopants under such circumstances [10]. A dopant in a
crystal might hop to a different site, but even if the dopant hops hundreds or
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Figure 13.9 Schematic example of the self-purification process in doped Si nanocrystal. By a
few diffusion hops the impurity in the interior of the nanocrystal can migrate to the surface,
leaving the interior free of any defects.

Figure 13.10 A perspective view of a Si
nanocrystal. The lightly shaded atoms
correspond to Si atoms, and the small
atoms on the surface of the nanocrystal are
H atoms. The heavily shaded atoms
correspond to the Si atoms that will be
substituted by P. The numbers measure the
distance away from the origin in the unit of
Si bond length.

thousands of times it would not reach the surface of a crystal unless it were in the
vicinity. In a nanocrystal, this is not the case. If the nanocrystal is small, any atom
in the interior might reach the surface in a few hops. This process is illustrated in
Figure 13.9.

We illustrate this issue by considering the binding energy of the dopant atom as
a function of the P atom in the nanocrystal. In Figure 13.10, we label some atomic
sites starting in the center and move out along a bond length to one removed by
five bond lengths along the [100] direction.

To be cautious about the nature of the nanocrystal surface, we do not replace
Si atoms residing on the surface of the nanocrystal by P. These atoms are pas-
sivated by H atoms and we do wish to consider details of the surface structure.
For P atoms in the interior, we relax the atoms in the nanocrystal to find the low-
est energy structure. Our results for five small nanocrystals of increasing size are
shown in Figure 13.11. For Si nanocrystals with a diameter smaller than ∼2 nm
(the number of Si atoms less than 100), P tends to substitute Si near the sur-
face, e.g. P in Si70H84; the energy is lowered monotonically toward the surface
of the nanocrystal. Otherwise, the center of the nanocrystal is the energetically
most favorable position. This suggests that a “critical size” exists for nanocrystals.
Below this size, P atoms will be energetically expelled toward the surface.

Since the substituted P atom creates strain within the Si nanocrystal, expelling
the P atom toward the surface will reduce the strain energy. One might also argue
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Figure 13.11 Difference in energy(left) and HFS(right) as the P atom moves away from the
center of the Si nanocrystal. The energies are with respect to the energy of the Si nanocrystal
with P at the center. The x-axis measures the distance of P atom away from the origin as
illustrated in Figure 13.10.

that if the P atom is not at the center of the nanocrystal, the defect wave function
is distorted around P, leading to a loss in Coulomb energy between the P ion
and the defect electron. For a “sufficiently large” nanocrystal the P atom will be
energetically stable in the interior. Sufficiently large can be defined on the basis
of our computations. For nanocrystals containing more than a hundred Si atoms
or so, a basin exists at the center of the nanocrystal. This basin spanning several
bond lengths provides a local, if not absolute, minimum for the P atom near the
center of the nanocrystal. While our focus is on P in Si nanocrystals, these trends
appear similar for other dopants such as B in Si.

The position of dopant levels is another difficult problem. In principle, excited
states can be computed with some accuracy using approaches beyond density
functional theory, albeit with some effort. Still, one can get an idea of how dopant
levels change from small nanocrystals to larger ones by computing the energy to
excite electrons with density functional theory.
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Consider the following: We have a P defect level that resides in the energy gap
of a nanocrystal. The ionization energy of the P-Si nanocrystal, I(P-Si nc), rep-
resents the energy required to remove a donor electron from this level to the
vacuum. Now consider the energy to add an electron to the system for an intrinsic
Si nanocrystal. We label this as the EA of the Si nanocrystal: A(Si nc). The differ-
ence between I and A yields an estimate of the binding energy of the P electron:

Eb = I(P-Si nc) − A(Si nc) (13.22)

The formula is flawed in simple density functional theory, e.g. there is inter-
action between the excited electron and the hole. Nonetheless, the trends are
interesting.

In Figure 13.12, we plot the ionization energy for the doped nanocrystal and
the EA for the intrinsic nanocrystal. The electron affinity of pure Si nanocrystal
increases with the size of the nanocrystal. We might guess that adding an elec-
tron to a small nanocrystal costs more energy owing to localizing an electrostatic
charge. The ionization energy of the P electron depends weakly on nanocrystal
size, i.e. it is effectively pinned close to the work function of bulk silicon (∼4 eV).
Perhaps this is not surprising as the P electron is fairly localized and does not
change that much with the size of the nanocrystal.

In Figure 13.13, we illustrate the size dependence of the binding energy Eb of
P-doped Si nanocrystal. In small nanocrystals, the defect electron is found to be
more tightly bound as nanocrystal size decreases. This is largely due to the weak
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Figure 13.12 Ionization energy of
P-doped Si nanocrystal and electron
affinity of pure Si nanocrystal plotted as
a function of nanocrystal radius.

0.8
0

1

2

3

4

1.2 1.6

Radius (nm)

E
ne

rg
y 

(e
V

)

2 2.4 2.8

Figure 13.13 The size dependence of
the binding energy Eb of P-doped Si
nanocrystal.
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Figure 13.14 The vibrational density of
states Si87H76 and Si86H76P nanocrystals
with P dopant near the surface and at
the center positions.
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screening in nanocrystals. For nanocrystals up to ∼6 nm in diameter, the binding
energy remains significantly larger than kT , which implies that the dopant is not
“shallow.” A fit to the calculated binding energy Eb scales as R−1.1. By extrapolating
Eb to a large radius, EB tends to a limiting “bulk” value of ∼0.06 eV. Given the
simplicity of the computations, this value is pretty close to the experimental value
of 0.044 eV for bulk silicon.

Earlier, we demonstrated how Raman spectroscopy can be used to quantify
the role of quantum confinement on vibrational modes in silicon nanocrystals.
What about the role of dopant atoms? Can we use Raman to analyze dopants,
and maybe even determine where dopants reside?

Suppose we replace a Si atom by a P in a silicon nanocrystal. We can compute
the dynamical matrix for different sites. In Figure 13.14, we illustrate the results
for the Si87H76 nanocrystal. At first, the results seem odd as nothing of note hap-
pens. Most of the vibrational modes remain unchanged. We can compute the
force constants for P and Si atoms in equivalent sites and verify that this is the
case. For the center atom of the nanocrystal, the force constant associated with
an infinitesimal displacement of a Si atom and a P atom are listed in Table 13.1,
along with the corresponding atomic masses.

The force constants are very similar for both atoms. The constant for P is
smaller and we expect that. First, the mass of the atom is slightly higher than
that of Si. Second, P has an extra electron. There is no place for the extra P
electron – all the bonds are saturated. This weakens the bonds between the P
atom and neighboring Si atoms. This can indeed be verified on close inspection
of the peaks at 100 and 480 cm−1 in Figure 13.14, with the curves for doped
nanocrystals peaking at slightly lower frequencies than that of the undoped
case. One disappointing finding is that if move the P atom from the center

Table 13.1 Force constants and atomic masses of the Si and
P atoms at the center of the Si87H76 and Si86H76P nanocrystals.

Force constant (eV Å
−2

) Atomic Mass (amu)

Si 14.3 28.1
P 12.9 31.0
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Figure 13.15 Raman cross section for
Si87H76 and Si86H76P nanoclusters with P
dopant at center and near the surface.

of the nanocrystal to the surface, again we do not find significant differences
(Figure 13.14). This means that the vibrational modes do not offer a means to
either detect or locate the P atom.

This is not the situation for the Raman spectra [11]. In Figure 13.15, the Raman
spectra are illustrated with and without a P dopant. Two dopant cases are pre-
sented, with the P atom at the center of the nanocrystal and near the surface.

The Raman spectrum for the undoped case is dominated by a single promi-
nent peak at 503 cm−1 originating from the so-called Γ-point optical mode. (The
Γ-point notation means the vibration mode carries no vibrational momentum.)
This frequency is slightly red-shifted relative to the bulk-Si value of 522 cm−1

owing to vibration softening and selection rule effects in a finite system.
The introduction of a P dopant leads to qualitative changes in the calcu-

lated Raman spectra. The number as well as positions of the peaks are changed
depending on the position of the dopant in the nanocrystal. For the center-doped
nanocrystal, the main feature in the spectrum is a peak at about 400 cm−1. For
the surface-doped case, there are multiple peaks appearing at the frequencies
70, 320, 380, 450, and 480 cm−1.

In Figure 13.14, we established that the vibrational modes are little influenced
by the introduction of dopants. The large changes in the Raman spectra must
come from changes to the electronic properties. We will not go into the detail of
this process. They can be found elsewhere. In brief, the derivative of the elec-
tric susceptibility with respect to nuclear coordinates plays an important role
in Raman. This assumption is consistent with the increase in magnitude of the
Raman spectra, as we expect P doping to increase the responsiveness of Si to
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external electric fields. What is important is that Raman can be used as a tool to
predict where dopants may reside whereas the vibrational modes cannot.
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Appendix A

Units

Units should be a trivial part of any problem. Also, they should expedite an under-
standing of the magnitude of the property and ease a comparison with experi-
ment.

We will use atomic units (a.u.) from time to time and almost exclusively in
MATLAB codes. Atomic units are “sensible” ones for systems within the micro-
scopic or atomistic regime.

Consider the following example. Suppose we want to know the Coulombic
energy between two electrons that are separated by 1 Å. In the standard SI (or
MKS) units, we could calculate this energy from

E = − e2

4𝜋𝜖0r
(A.1)

where e is the charge on the electron in Coulombs (C), 𝜖0 is the permittivity of
free space in Farads per meter (F m−1), and r is the separation of the electrons in
meters m. We need to know the following:

e =1.60 × 10−19 C
𝜖0 =8.85 × 10−12 F m−1

1Å =1 × 10−10 m

The energy in question in Joules (J) is

E = − (1.60 × 10−19)2

4 × 3.142 × 8.85 × 10−12 × 10−10 J = 2.30 × 10−18 J (A.2)

This is a perfectly acceptable result, but it can be hard to make comparisons. We
could try to make a comparison with a macroscopic situation. We can consider
the change in potential energy for a mass of 1 kg dropped from a height of 1 m.
This energy is given as E = mgh = 1 kg × 9.8 m s2 × 1 m = 9.8 J. The potential
energy for this change differs for two electrons separated by 1 Å by almost 20
orders of magnitude. Such a difference is not within the normal human expe-
rience. All we really know from this comparison is that the energy of the two
electrons is extremely small compared to the potential energy change of the 1 kg
mass. If we are interested in getting a better physical understanding of the elec-
tronic energy, we should not use units appropriate for macroscopic objects.
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Better suited units involve some “standard” at the atomic scale. Suppose we
consider a set of units appropriate for atoms. We can use atomic units where we
take the following:

The charge on the electron = e = 1

Planck’s constant divided by 2π = ℏ = 1

Mass of the electron = m = 1

In this set of units, energy is measured in Hartrees (Eh), which is 4.36 × 10−18 J,
and distance is measured in Bohr units (a0), which is 0.5292 Å or 5.292 × 10−11 m.

We will also use CGS formulae as the starting point for any electrostatic or
magnetic interaction energies. This choice avoids considering the permittivity
of free space for electrostatic interactions or the permeability of free space for
magnetic interactions.

For the problem at hand, we can write the Coulombic interaction without the
permittivity factor and we need only convert 1 Å to 1.890 a0. We write

E = −e2

r
= −1

r
= − 1

1.890
= −0.5292Eh (A.3)

This number is the result of a much simpler calculation and has a simpler inter-
pretation. Atomic units are based on the hydrogen atom. In Chapter 2, we showed
that the potential energy of the hydrogen atom is 1 a.u. in the ground state. This
gives us our reference. For the example at hand, the electronic potential energy
is 0.529 times that of the potential energy for the electron-potential interaction
within a hydrogen atom.

Below we summarize some useful values and conversion factors (Tables A.1
and A.2).

Table A.1 Table of values.

Quantity SI units CGS units Atomic units

Charge on the electron (e) 1.602 × 10−19 C 4.803 × 10−10 1
Electron rest mass (m) 9.110 × 10−31 kg 9.110 × 10−28 g 1
Planck’s constant (ℏ) 1.055 × 10−34 J s 1.055 × 10−27 erg s 1
Speed of light (c) 2.998 × 108 m 2.998 × 1010 cm 137.04
Rydberg constant (me4∕2ℏ2) 2.180 × 10−18 J 2.180 × 10−11 ergs 0.5
Bohr radius (ℏ2∕me2) 5.292 × 10−11 m 5.292 × 10−9 cm 1
1 electronvolt (eV) 1.602 × 10−19 J 1.602 × 10−12 erg 0.03675
Boltzmann constant (kB) 1.381 × 10−23 JK−1 1.381 × 10−16 erg K−1 3.167 × 10−6 K−1
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Table A.2 Conservation factors.

Quantity Equivalent

1 Hartree (Eh) 27.212 eV
1 kcal mol−1 0.04336 eV
1 K 8.616975 × 10−5 eV
1 cm−1 1.239 × 10−4 eV
1 kJ mol−1 0.01036 eV
1 eV 8,065 cm−1

1 eV 96.49 kJ mol−1

1 eV 23.06 kcal mol−1
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Appendix B

A Working Electronic Structure Code

Many of the computations illustrated in this text were not done with an elaborate
electronic structure code. Such codes can run in thousands of lines, if not tens
of thousands of lines. The codes are not easy for a novice to learn. Instead, many
of the computations were run with an abbreviated MATLAB code. MATLAB is
a nice coding language. One can write sophisticated codes to address complex
problems. Also, MATLAB commands are easy to learn and the user often gets
“tips” when running the code as to where a mistake might have been made.

To facilitate the use of this approach, we removed many of the bells and whistles
of a sophisticated research code to offer the reader a code that allows one to do
reasonable computations, and yet, retain a decent level of accuracy.

The general setup is outlined in Chapter 9. The Kohn–Sham equations are
solved self-consistently on a real-space grid within a specified domain. The code
is fashioned to avoid having the user set a number of internal parameters or con-
struct pseudopotentials, i.e. the code is preloaded with pseudopotentials for the
first two rows of the periodic table.

The MATLAB code and details on how to run it are available on github:

https://github.com/jchelikowsky/Matlab_Real_Space

Example B.1 The C60 Molecule Richard Smalley, Robert Curl, and Harold
Kroto won the 1996 Nobel Prize in Chemistry for the discovery of a new form of
carbon. The molecule reminds one of a soccer ball with combinations of five- and
six-fold rings. The simplicity of the molecule is striking; yet, this object remained
undiscovered until the latter half of the twentieth century. One wonders what
other molecules might exist in nature that remain unknown.

At the time of the discovery in 1985, computing the electronic structure of this
molecule was a challenge. Solving the Kohn–Sham equations could be done with
some effort. In contrast, the problem is not difficult to solve using new algorithms
available to us as outlined in our text. The required computational platform is a
laptop.
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Table B.1 Coordinates for the C60 molecule in atomic units.

Atom x y z Atom x y z

1 0.00 −1.36 −6.81 31 1.33 6.60 −0.04
2 0.00 1.36 −6.81 32 −1.33 6.60 −0.04
3 −2.25 −2.74 −5.90 33 6.60 0.00 1.29
4 2.25 −2.73 −5.89 34 −4.93 4.38 1.34
5 −2.25 2.73 −5.89 35 4.93 4.38 1.34
6 2.25 2.73 −5.89 36 −4.93 −4.38 1.34
7 4.39 1.38 −5.00 37 4.93 −4.38 1.34
8 −4.39 1.38 −5.00 38 2.70 5.76 2.20
9 −4.39 −1.38 −5.00 39 −2.70 5.76 2.20
10 4.39 −1.38 −5.00 40 −2.70 −5.76 2.20
11 −1.38 −4.94 −4.45 41 2.70 −5.76 2.20
12 1.38 −4.93 −4.45 42 −5.76 −2.23 2.68
13 −1.38 4.93 −4.45 43 5.76 −2.23 2.68
14 1.38 4.93 −4.45 44 5.76 2.23 2.68
15 5.74 2.22 −2.75 45 −5.76 2.23 2.68
16 −5.74 2.22 −2.75 46 −1.38 −4.94 4.36
17 −5.74 −2.22 −2.75 47 1.38 −4.94 4.36
18 5.74 −2.22 −2.75 48 −1.38 4.94 4.36
19 −2.70 5.74 −2.27 49 1.38 4.94 4.34
20 2.70 5.74 −2.27 50 4.38 1.38 4.92
21 −2.70 −5.74 −2.27 51 −4.38 1.38 4.92
22 2.70 −5.74 −2.27 52 −4.38 −1.38 4.92
23 −4.92 −4.38 −1.41 53 4.38 −1.38 4.92
24 4.92 −4.38 −1.41 54 −2.23 −2.71 5.74
25 −4.92 4.38 −1.41 55 2.23 −2.71 5.74
26 4.92 4.38 −1.41 56 −2.23 2.71 5.74
27 6.58 0.00 −1.36 57 2.23 2.71 5.74
28 −6.58 0.00 −1.36 58 0.00 −1.34 6.60
29 −1.33 −6.60 −0.04 59 0.00 1.34 6.60
30 1.33 −6.60 −0.04 60 −6.60 0.00 1.29

The first step is to input the structure of the C60 molecule for each carbon atom.
The atomic coordinates are given in Table B.1 in Bohr units (1 a.u. =0.5292 Å).
The MATLAB code will automatically extract the correct pseudopotential at each
site, set up the grid based on the atom present, and set up the domain.

The code utilizes filtering to solve the eigenvalue problem using the techniques
outlined in Chapter 9. Some of the key references involved in the construction of
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Figure B.1 Energy levels of C60. The left panel
shows results from the Quantum ESSPRESSO
code, and the right panel from our MATLAB
code.
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this code are listed in Refs. [1–4]. After the initial solution, new wave functions
are created. The resulting charge density is used to create new potentials and the
process iterated until self-consistent. At this point, we quit and declare a solu-
tion. Our goal is to extract a “reasonable” description of the spatial and energetic
distribution of the electronic states without the use of a full research code.

How do we know our simple code works? We assess the matter by using a dif-
ferent code with a different approach and comparing the two results. We do not
expect perfect agreement as the MATLAB code runs quickly on a laptop ver-
sus a full-blown research code. Nonetheless, our results compare favorably in
Figure B.1 to a state of the art code called “Quantum ESPRESSO” [5]. The energy
gap and band width agree to within ∼ 0.1 eV over a 25 eV span. The MATLAB
code is not guaranteed to yield correct symmetry until fully self-consistent. Thus,
there are some small shifts for degenerate states.

Once the Kohn–Sham wave functions are known, we plot the charge density of
the C60 molecule. The charge density is a three-dimensional function. The tran-
scription to a two-dimensional plot can be difficult. In Figure B.2, we plot the
charge density as a surface of constant density, mostly for show. However, one
can distinguish the difference between single and double bonds.
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Figure B.2 Isosurface plot of the C60
molecular charge density.
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