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PREFACE

The essential theme of this book continues that of the earlier editions. It is

intended to be a presentation of several basic models in quantum mechanics

and to show their application to chemical and physical systems. Throughout

the development, emphasis is placed on showing sufficient mathematical

details for the reader to follow the derivations. With the understanding that

some readers may not have an extensive background in mathematics or per-

haps may not have used some of the techniques recently, several mathemat-

ical procedures have been explained in detail. These include the solution of

linear differential equations, the separation of variables, determinants, and

series solution of differential equations. Such tutorials enhance the applica-

tion of the book to self-study and review.

In this edition, there has been a major reordering of material so as to

make what the author believes is a more logical flow of topics from the basic

models to applications. Material from earlier chapters as well as several new

sections have been collected in two new chapters on spectroscopy. The

rationale for this change is that basic quantum mechanical models and the

description of bonding in molecules are essential for interpreting various

aspects of spectroscopy.

New sections appear in several chapters in order to illustrate the appli-

cations of quantummechanics. In addition to new sections on topics in spec-

troscopy, others include band theory of metals, three-center bonds, and heat

capacity of metals. Moreover, new problems have been included at the end

of the chapters, while the practice of the second edition to include answers to

some problems continues.

The appearance of the book has been improved by the inclusion of color

illustrations. The majority of them have been altered or redrawn, and many

additional illustrations have been included.

It is better to correct an oversight than to ignore it. Consequently, it is

with deep gratitude that the author wishes to pay tribute to two professors

whose efforts long ago made all editions of this book possible. The late Boris

Musulin and John Eisele, through superb teaching, provided the interest in

quantum mechanics that has lasted for so long. The background they gave

the author provided the ability and desire to produce this book. Although

both are long departed, their influence is still felt. In many ways, this book is

a tribute to their success.
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The author wishes to thank Academic Press/Elsevier and the editors for

permission to reproduce and modify illustrations from his earlier books.

Working with Amy Clark, John Fedor, and Katey Bircher has once again

been a pleasurable experience, one with which the author hopes to be

favored again. The loss of a computer at a most inopportune time made

it necessary to retype all equations and remake almost all illustrations. Con-

stant encouragement and understanding by these excellent editors helped to

make that situation a hurdle rather than a roadblock.

Finally, the author wishes to acknowledge formally the enormous assis-

tance of his wife, Kathleen A. House, in producing this edition. Her metic-
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invaluable, and she has provided encouragement at all stages of the work.
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CHAPTER 1

Origins of Quantum Theory

Quantummechanics is a branch of science that deals with atomic andmolec-

ular properties and behavior on a microscopic scale. Although thermody-

namics may be concerned with the heat capacity of a gaseous sample,

quantum mechanics is concerned with the specific changes in rotational

energy states of the molecules. Chemical kinetics may deal with the rate

of change of one substance into another, but quantum mechanics is con-

cerned with changes in vibrational states and structures of the reactant mol-

ecules as they are transformed. Quantum mechanics is also concerned with

the spinning of atomic nuclei and the populations of atoms in an excited

state. Spectroscopy is based on changes of quantized energy levels of several

types. Quantum mechanics is thus seen to merge with many other areas of

modern science.

An understanding of the main ideas and methods of quantum mechanics

is important for developing an understanding of various branches of science,

from nuclear physics to organic chemistry. This book attempts to develop

that familiarity across the sciences.

The modern applications of quantum mechanics have their roots in the

developments of physics around the end of the 19th and the early part of the

20th centuries. Some of the experiments, now a century or more old, still

provide the physical basis for interpretations of quantum mechanics. The

results of those experiments provide the foundations for “how we know

what we know” and for modern theories. The names associated with much

of this early work (Planck, Einstein, Bohr, de Broglie, et al.) are legendary in

the realm of physics. Their elegant experiments and theories now seem

almost commonplace to even beginning students, but these experiments

were at the forefront of scientific development at the time. Therefore, it

is appropriate for this book to begin with a brief review of a few of the more

important early studies.

1.1 BLACKBODY RADIATION

When an object is heated to incandescence, it emits electromagnetic

radiation. The nature of the object determines to some extent the type of

1
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radiation that is emitted, but in all cases a range or distribution of radiation is

produced. It is known that the best absorber of radiation is also the best emit-

ter of radiation. The best absorber is a so-called “blackbody,” which absorbs

all radiation and from which none is reflected. If this blackbody is heated to

incandescence, it will emit a whole range of electromagnetic radiations

whose energy distributions depend on the temperature to which the black-

body is heated. Early attempts to explain the distribution of radiation using

the laws of classical physics were not successful. In these attempts, it was

assumed that the radiation was emitted because of vibrations or oscillations

within the blackbody. These attempts failed to explain the position of the

maximum that occurs in the distribution of radiation and, in fact, they failed

to predict the maximum at all.

Because radiation with a range of frequencies (ν) is emitted from the

blackbody, theoreticians tried to obtain an expression that would predict

the relative intensity (amount of radiation) of each frequency. One of the

early attempts to explain blackbody radiation was made by Wilhelm Wien.

The general form of the equation that Wien obtained is

f vð Þ¼ v3g v=Tð Þ (1.1)

where f(ν) is the amount of energy of frequency ν emitted per unit volume of

the blackbody and g(ν/T) is some function of ν/T. This result is in fair agree-
ment with the observed energy distribution at longer wavelengths, but it did

not agree at all with the region of short wavelengths. In fact, this treatment

predicted that the intensity would become infinite for the radiation of a

shorter wavelength than visible light (the so-called “ultraviolet catastro-

phe”). Another relationship obtained by the use of classical mechanics is

the expression derived by Lord Rayleigh,

f υð Þ¼ 8πυ3

c3
kT (1.2)

where c is the velocity of light (3.00�108 m/s) and k is Boltzmann’s

constant, 1.38�10�16 erg/molecule.

Lord Rayleigh and Sir James Jeans found another expression that predicts

the shape of the energy distribution as a function of frequency, but only in

the region of short wavelength. The expression is

f υð Þ¼ 8πυ3

c3
kT

υ

� �
¼ 8πυ2kT

c3
(1.3)
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Therefore, theWien relationship predicted the intensity of radiation of high

ν (short wavelength), and the Rayleigh-Jeans law predicted the intensity of

low ν (long wavelength) radiation emitted from a blackbody. Neither of

these relationships predicted a distribution of radiation that goes through

a maximum at some frequency with smaller amounts emitted on either

end of the spectrum.

In 1900, the problem with the explanation of the features of blackbody

radiation was finally solved by Max Planck. Planck still assumed that the

absorption and emission of radiation arises from some sort of oscillators.

Planck made a fundamental assumption that only certain frequencies were

possible for the oscillators instead of the whole range of frequencies that

are predicted by classical mechanics. The permissible frequencies were pre-

sumed to be some multiple of a fundamental frequency of the oscillators ν0.
The allowed frequencies are then ν0‚ 2ν0, 3ν0,…. Planck also assumed that

energy is absorbed as the oscillator goes from one allowed frequency to

the next higher one and that energy is emitted as the frequency drops by

nν0. Planck’s explanation included the idea that the change in energy is

proportional to the fundamental frequency ν0. Introducing the constant

of proportionality, h,

E¼ hυ0 (1.4)

where h is Planck’s constant, 6.63�10�27 erg s or 6.63�10�34 J s. The

average energy per oscillator was found to be

Eh i¼ hυ0
ehυ0=kT �1

(1.5)

Planck showed that the emitted radiation has a distribution that is given by

f υð Þ¼ 8πυ30
c3

Eh i¼ 8πυ30
c3

hυ0
ehυ0=kT �1

(1.6)

This equation correctly predicted the observed relationship between the

frequencies of radiation emitted and the intensity.

The successful interpretation of blackbody radiation by Planck provided

the basis for energy being considered quantized, which is so fundamental to

our understanding of atomic and molecular structure and our experimental

methods for studying matter. Also, it established the familiar relationship

between the frequency of radiation and its energy,

E¼ hυ (1.7)
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These ideas will be seen many times as one studies quantum mechanics and

its application to physical problems.

1.2 THE LINE SPECTRUM OF ATOMIC HYDROGEN

When gaseous hydrogen is enclosed in a glass tube in such a way that a high

potential difference can be placed across the tube, the gas emits a brilliant

reddish-purple light. If this light is viewed through a spectroscope or a prism

(as shown in Fig. 1.1), the four major lines in the visible spectrum of

hydrogen are seen. There are other lines that occur in other regions of

the electromagnetic spectrum that are not visible to the eye.

In this visible part of the hydrogen emission spectrum the four lines have

the wavelengths:

Hα¼ 656:28nm ¼ 6562:8Å
Hβ ¼ 486:13nm ¼ 4861:3Å
Hγ¼ 434:05nm ¼ 4340:5Å
Hδ¼ 410:17nm ¼ 4101:7Å

As shown in Fig. 1.2, electromagnetic radiation is alternating electric (E) and

magnetic (H) fields that are perpendicular and in phase.

Emitted
light 

Source Prism

Hα= 656.28 nm

Hβ= 486.13 nm

Hγ= 486.13 nm

Hδ= 410.17 nm

Slit 

Fig. 1.1 Separating lines in the spectrum of atomic hydrogen.

E

H

Wave
direction

Fig. 1.2 Electromagnetic waves that are perpendicular and in phase. Areas that are
shaded lighter represent displacement in the negative directions of the E and H axes.
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Planck showed that the energy of electromagnetic radiation is propor-

tional to the frequency ν so that

E¼ hv (1.8)

where h is Planck’s constant. Because electromagnetic radiation is a trans-

verse wave, there is a relationship between the wavelength λ and the

frequency ν. Frequency is expressed in terms of cycles per unit time, but

a “cycle” is simply a count that carries no units. Therefore, the units of

frequency are “cycles”/time or 1/time. The wavelength is a distance, so

it has a dimension of length. The product of wavelength and frequency

can be written dimensionally as

λ�ν¼ distance� 1

time
¼ distance

time
¼ velocity¼ v (1.9)

In the case of electromagnetic radiation, the velocity of light is c, which is

3.00�1010 cm/s. Therefore, v¼ c and

E¼ hν¼ hc

λ
(1.10)

In 1885, Balmer discovered an empirical formula that would predict the

above wavelengths. Neither Balmer nor anyone else knew why this formula

worked, but it did predict the wavelengths of the lines accurately. Balmer’s

formula is

λ cmð Þ¼ 3645:6�10�8 n2

n2�22

� �
(1.11)

The constant 3645.6�10�8 has units of cm, and n represents a whole

number larger than 2. Using this formula, Balmer was able to predict

the existence of a fifth line, which was discovered at the boundary

between the visible and ultraviolet regions of the spectrum. The mea-

sured wavelength of this line agreed almost perfectly with Balmer’s

prediction.

Balmer’s empirical formula also predicted the existence of other lines in

the infrared and ultraviolet regions of the spectrum of hydrogen. These are as

follows (shown with year of discovery and spectral region):

LymanSeries : n2= n2� 12
� �

, where n¼ 2,3,… 1906�14, UVð Þ
Paschen Series : n2= n2� 32

� �
, where n¼ 4,5,… 1908, IRð Þ

Brackett Series : n2= n2� 42
� �

, where n¼ 5,6,… 1922, IRð Þ
PfundSeries : n2= n2� 52

� �
, where n¼ 6,7,… 1924, IRð Þ

5Origins of Quantum Theory



Balmer’s formula can be written in terms of 1/wavelength and it is usually

seen in this form. The equation becomes

1

λ
¼R

1

22
� 1

n2

� �
(1.12)

where R is a constant known as the Rydberg constant, which is

109,677.76 cm�1. The quantity 1/λ is called the wave number, and it is

expressed in units of centimeters�1 (cm�1). The empirical formulas can

be combined into a general form

�v¼ 1

λ
¼R

1

n21
� 1

n22

� �
(1.13)

When n1¼1 and n2¼2, 3, 4,…, the Lyman Series is predicted. For n1¼2

and n2¼3, 4, 5,…, the Balmer Series is predicted, etc. Other empirical for-

mulas were found that correlated lines in the spectra of other atoms, but the

same constant,R, occurred in these formulas. At the time, no one was able to

relate these formulas to classical electromagnetic theory.

Although the discussion up to this point has been concerned with the

line spectrum of atomic hydrogen, later sections of this book will deal with

the interactions of other types of electromagnetic energy with matter.

Spectroscopic techniques can make use of electromagnetic radiation of

these types, which are illustrated in Fig. 1.3, so it is appropriate to show their

relationship to energy.

1.3 ELECTRONS AND THE NUCLEUS

In 1911, Rutherford performed one of the revealing experiments in atomic

physics that is now known as the gold foil experiment. Some radioactive

10–12eV 10–9eV 10–6eV 10–3eV 1 eV 1 keV 1 MeV 1 GeV

Energy

γ -raysX-rays
Long wave

radio
Short wave

radio Infrared

Visible light
R O Y G B I V

R
a
d
i
o

Red Violet

UV

Fig. 1.3 The electromagnetic spectrum.
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heavy elements emit alpha particles (helium nuclei), and a beam of these

particles was directed at thin gold foil, as depicted in Fig. 1.4.

Following Thompson’s idea, it was believed at the time that atoms con-

sisted of positive and negative charges that were distributed throughout the

atom. Although most of the particles continued on their original paths, a

small fraction of the particles were deflected through large angles or even

reversed direction. However, when the results of the experiment were ana-

lyzed, it was concluded that some of the positive alpha particles must have

encountered a region of the target atoms from which they were strongly

repelled. That positive region occupied a small fraction of the volume of

the atom, and it is now known that atomic nuclei have radii that are on

the order of 10�13 cm. With radii of most atoms being in the range of

10�8 cm, it is seen that most of the volume of an atom is empty space, which

explains why the majority of the alpha particles were unimpeded as they

passed through the gold foil. The gold foil experiment provided our view

of atomic structure and was a pivotal point in the development of our

knowledge of atoms.

1.4 THE BOHR MODEL FOR THE HYDROGEN ATOM

It is not surprising that the spectrum of the hydrogen atom was the first to be

explained because it is simplest atom. Rutherford had shown in 1911 that

the model of the atom is one in which a small region of positive charge con-

taining most of the mass is located in the center of the atom and the negative

Fig. 1.4 A depiction of Rutherford’s experiment.
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region surrounds it. Applying this model to the hydrogen atom, the single

proton is positioned as the nucleus, whereas a single electron moves around

it. Bohr incorporated these ideas into the first dynamic model of the hydro-

gen atom in 1913, assuming the electron is governed by the laws of classical

or Newtonian physics. However, there were problems that could not be

answered by the laws of classical mechanics. For example, it was shown that

an accelerated electric charge radiates electromagnetic energy (as does an

antenna for the emission of radio frequency waves). To account for the fact

that an atom is a stable entity, it was observed that the electron must move

around the nucleus in such a way that the centrifugal force exactly balances

the electrostatic force of attraction between the proton and electron. As a

result of the electron moving in some kind of circular orbit, it must con-

stantly undergo acceleration and should radiate electromagnetic energy by

the laws of classical physics.

Because the Balmer Series of lines in the spectrum of atomic hydrogen

had been observed earlier, physicists attempted to use the laws of classical

physics to explain a possible structure of hydrogen that would give rise to

these lines. It was recognized from Rutherford’s work that the nucleus of

an atom is surrounded by electrons, whichmust always be in motion. In fact,

no system of electric charges can be in equilibrium at rest.

Although the electron in the hydrogen atom must be moving, there is a

major problem. If the electron circles the nucleus, it is undergoing a constant

change in direction, as shown in Fig. 1.5. Velocity is a vector quantity that

has both magnitude and direction. Changing direction constitutes a change in

velocity, and the change in velocity with time is acceleration. The laws of clas-

sical electromagnetic theory predict that an accelerated electric charge

should radiate electromagnetic energy. If the electron did emit electromag-

netic energy, it would lose part of its energy. As it did so, it would spiral into

the nucleus, and the atom would collapse. Also, electromagnetic energy of a

continuous nature would be emitted, rather than just a few lines.

e−

+

Fig. 1.5 The circular motion of an electron in a hydrogen atom.
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Bohr had to assume that there were certain orbits (the “allowed orbits”)

in which the electron could move without radiating electromagnetic

energy. These orbits were characterized by the relationship

mvr¼ n
h

2π
(1.14)

in which m is the mass of the electron, v is its velocity, r is the radius of the

orbit, h is Planck’s constant, and n is an integer, 1, 2, 3,…. As a result of n

being a whole number with only specific values, it is called a quantum number.

This enabled the problem to be solved, but it was not understood why this

worked. Bohr also assumed that the emitted spectral lines resulted from the

electron falling from an orbital of higher n to one of lower n. The physical

aspects of the electron moving in a hydrogen atom require an analysis of the

forces involved.

The physics of the hydrogen atom is based on mechanics and electrostat-

ics. Figure 1.6 shows the forces acting on the orbiting electron. The magni-

tudes of the centrifugal and centripetal forces must be equal for an electron to

be moving in a stable orbit, so

mv2

r
¼ e2

r2
(1.15)

Therefore, solving this equation for v gives

v¼
ffiffiffiffiffi
e2

mr

r
(1.16)

From the Bohr assumption regarding angular momentum represented by the

equation

mvr¼ n
h

2π
(1.17)

– mv2/r– e2/r2

e−

Fig. 1.6 The forces acting on an electron in a hydrogen atom.
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it can be seen that solving for v gives

v¼ nh

2πmr
(1.18)

Therefore, equating the two expressions for velocity givesffiffiffiffiffi
e2

mr

r
¼ nh

2πmr
(1.19)

Solving this equation for r gives the result

r ¼ n2h2

4π2me2
(1.20)

This relationship shows that the radii of the allowed orbits increase as n2

(h, m, and e are, of course, constants). Therefore, the orbit with n¼2 is four

times as large as the one with n¼1; the one with n¼3 is nine times as large as

the one with n¼1, etc. Figure 1.7 shows the first few allowed orbits drawn

approximately to scale.

The units on r can be found from the units on the constants, because e is

measured in electrostatic units (esu) and an esu is a g1/2 cm3/2 s�1. There-

fore, from Eq. (1.20), r has units that can be represented as

gcm2=s2ð Þs½ �2
g g1=2 cm3=2=sð Þ2

¼ cm

The total energy is the sum of the electrostatic energy (potential) and the

kinetic energy of the moving electron (total energy¼kinetic+potential).

This can be expressed by the equation

E¼ 1

2
mv2� e2

r
(1.21)

n = 4

n = 3

n = 2
n = 1

Fig. 1.7 The first four allowed orbits according to the Bohr model.
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By equating the magnitudes given by the expressions for centripetal and

centrifugal forces, it can be seen that

mv2

r
¼ e2

r2
(1.22)

and multiplying both sides of the equation by r gives

mv2¼ e2

r
(1.23)

If both sides of this equation are multiplied by 1/2, the result is

1

2
mv2¼ e2

2r
(1.24)

The left hand side of Eq. (1.24) is simply the kinetic energy of the electron,

and substituting this into Eq. (1.21) yields

E¼ 1

2
mv2� e2

r
¼ e2

2r
� e2

r
¼� e2

2r
(1.25)

It was shown earlier in Eq. (1.20) that

r ¼ n2h2

4π2me2

and if this result is substituted for r in Eq. (1.25), the result is

E¼� e2

2r
¼� e2

2
n2h2

4π2me

� �¼�2π2me4

n2h2
(1.26)

From this equation, it can be seen that the energy of the electrons in the

allowed orbits varies inversely as n2. Note also that the energy is negative

and gets less negative as n increases. At n¼∞ (i.e., the complete sepa-

ration of the proton and electron), E¼0, and there is no binding energy

of the electron to the nucleus. The units for E in the above equation

depend on the units used for the constants. If h is in erg s, the mass

of the electron is in grams and the charge on the electron e is in esu,

so the result is

E¼ g g1=2 cm3=2=s
� �4
gcm2=s2ð Þs½ �2 ¼ erg (1.27)

If the energy is obtained in ergs, the use of conversion factors makes it

possible to obtain the energy in any other desired units (J, cal, etc.).

11Origins of Quantum Theory



If the expression for energy of the electron is written in the form

E¼� 1

n2
2π2me4

h2
(1.28)

the resulting equation can be used to evaluate the collection of constants,

and when n¼1, the result is �2.17�10�11 erg. Assigning various values

for n makes it possible to evaluate the energies of the allowed orbits. The

results for several values of n are shown as follows:

n¼ 1, E¼�21:7�10�12 erg

n¼ 2, E¼�5:43�10�12 erg

n¼ 3, E¼�2:41�10�12 erg

n¼ 4, E¼�1:36�10�12 erg

n¼ 5, E¼�0:87�10�12 erg

n¼ 6, E¼�0:63�10�12 erg

n¼∞, E¼ 0

Figure 1.8 shows an energy level diagram in which the energies are shown

graphically to scale for these values of n. Note that the energy levels get closer

together (converge) as the value of n increases.

n = 1

n = 2

Lyman
Series

Balmer
Series

(visible)

Paschen
Series
(far IR)

Brackett
Series

n =¥

n = 3
n = 4
n = 5

(Uv)

(far IR or
microwave)

Fig. 1.8 An energy level diagram for the hydrogen atom indicating the various series in
the line spectrum.

12 Fundamentals of Quantum Mechanics



It requires energy for an electron to be moved to a higher energy level,

because the positive and negative charges are held together by a strong elec-

trostatic force. The amount of energy required for complete removal of the

electron is known as the ionization potential (or ionization energy) and cor-

responds to moving the electron to the orbital where n¼∞. The electron in

the lowest energy state is held with an energy of �21.7�10�12 erg, and at

n¼∞ the energy is 0. Therefore, the ionization potential for the hydrogen

atom is 21.7�10�12 erg.

By considering the energy difference between the n¼2 and n¼3 orbits,

it can be seen that the difference is 3.02�10�12 erg. The calculation of the

wavelength of light having this energy is achieved by the equation

E¼ hv¼ hc

λ
(1.29)

Solving for λ, it can be seen that

λ¼ hc

E
¼ 6:63�10�27 erg sð Þ� 3:00�1010cm=sð Þ

3:02�10�12 erg
¼ 6:59�10�5 cm

(1.30)

which matches the wavelength of one of the lines in the Balmer Series.

Using the energy difference between the n¼2 and n¼4 leads to a wave-

length of 4.89�10�5 cm, which matches the wavelength of another line

in the Balmer Series. Finally, the energy difference between the orbits for

which n¼2 and n¼∞ corresponds to a wavelength of 3.66�10�5 cm,

and this is the wavelength of the series limit of the Balmer Series. It should

be readily apparent that Balmer’s Series corresponds to light emitted as the

electron falls from initial states with n¼3, 4, 5,…, to the orbit with n¼2.

It is a simple matter to calculate the energies of lines emitted as the elec-

tron falls from orbits with n¼2, 3,…, to the orbital with n¼1.When that is

done, it is found that these energies match the lines in another observed

spectral series, the Lyman Series. In that case, the wavelengths of the spectral

lines are so short (i.e., they have higher energy) that the lines are no longer in

the visible region of the spectrum but rather they are in the ultraviolet

region. Other series of lines correspond to the transitions from higher n

values to n¼3 (Paschen Series, infrared), n¼4 (Brackett Series, infrared),

and n¼5 (Pfund Series, far infrared) as the lower n values.

The fact that the series limit for the Lyman Series represents the quantity

of energy that would be required to remove the electron (n¼1 to n¼∞)

suggests that this is one way to obtain the ionization potential for the hydrogen

atom. Note that energy is released (negative sign) when the electron falls from

13Origins of Quantum Theory



the orbital with n¼∞ to the one with n¼1 and that energy is absorbed

(positive sign) when the electron is excited from the orbital with n¼1 to

the one corresponding to n¼∞. Ionization energies represent the energies

required to remove electrons from atoms, and they are always positive.

1.5 THE PHOTOELECTRIC EFFECT

In 1887, H. R. Hertz observed that the gap between metal electrodes

became a better conductor when ultraviolet light was shined on the appa-

ratus. Soon after, W. Hallwachs observed that a negatively charged zinc

surface lost its negative charge when ultraviolet light was shined on it.

The negative charges that were lost were identified as electrons from their

behavior in a magnetic field. The phenomenon of an electric current

flowing when light was involved came to be known as the photoelectric effect.

The study of the photoelectric effect is made possible with an apparatus

like that shown schematically in Fig. 1.9. An evacuated tube is arranged so

that the highly polished metal that is to be illuminated, such as sodium,

potassium, or zinc, is made the cathode. When light shines on the metal

plate, electrons flow to the collecting plate (anode), and the ammeter placed

in the circuit indicates the amount of current flowing. Several observations

can be made as the frequency and intensity of the light varies:

1. The light must have some minimum or threshold frequency, ν0, in order
for the current to flow.

2. Different metals have different threshold frequencies.

3. If the light striking the metal surface has a frequency greater than ν0, the
electrons are ejected with a kinetic energy that increases with the

frequency of the light.

Light

Ejected electrons
+ −

Anode Cathode

Fig. 1.9 An illustration of the photoelectric effect.
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4. The number of electrons ejected depends on the intensity of the

light, but their kinetic energy depends only on the frequency of

the light.

An electron traveling toward the collector can be stopped if a negative volt-

age is applied to the collector. The voltage required to stop themotion of the

electrons, which is known as the stopping potential, V, and causes the current

to cease, depends on the frequency of the light that caused the electrons to be

ejected. In fact, it is the electrostatic energy of the repulsion between an elec-

tron and the collector that exactly equals the kinetic energy of the electron.

Therefore, the two energies can be equated to yield the relationship

Ve¼ 1

2
mv2 (1.31)

In 1905, Albert Einstein explained the major aspects of the photoelectric

effect. Einstein based his analysis on the relationship between the energy of

light and its frequency that Planck established in 1900. It was assumed that

the light behaved as a collection of particles (called photons) and the energy of

a particle of light was totally absorbed by its collision with an electron on the

metal surface. Electrons are bound to the surface of a metal with an energy

called the work function, w, which is different for each type of metal. When

the electron is ejected from the surface of the metal, it will have a kinetic

energy that represents the difference between the energy of the incident

photon and the work function of the metal. Therefore, the energies are

related by the equation

1

2
mv2 ¼ hv�w (1.32)

It can be seen that this is the equation of a straight line when the kinetic

energy of the electron is plotted against the frequency of the light. By vary-

ing the frequency of the light and determining the kinetic energy of the elec-

trons (from the stopping potential), a graph such as that shown in Fig. 1.10

can be prepared to show this relationship.

The intercept is ν0, which is the threshold frequency, and the slope is

Planck’s constant, h. One of the significant points in the interpretation of

the photoelectric effect is that light is considered to be particulate in nature.

In other experiments, such as the diffraction experiment of T. Young, it was

necessary to assume that light behaved like a wave. Many photovoltaic

devices in common use today (e.g., light meters, optical counters, etc.)

are based on the photoelectric effect.

15Origins of Quantum Theory



1.6 PARTICLE-WAVE DUALITY

Because light can behave as both waves (i.e., diffraction, as proved by Young

in 1803) and particles (i.e., the photoelectric effect shown by Einstein in

1905), the nature of light was debated for many years. Of course, light

has characteristics of both a wave and a particle, which is the so-called

particle-wave duality. In 1924, Louis de Broglie, a young French doctoral

student, investigated some of the consequences of relativity theory. For

electromagnetic radiation,

E¼ hv¼ hc

λ
(1.33)

in which c, v, and λ are the velocity, frequency, and wavelength, respec-

tively, for the radiation. The photon also has an energy given by the

relationship from relativity theory, which is

E¼mc2 (1.34)

A particular photon can have only one energy, so the energies expressed in

Eqs. (1.33) and (1.34) must be equal.

mc2¼ hc

λ
(1.35)

Solving this equation for λ gives the relationship

λ¼ h

mc
(1.36)

This does not mean that light has a mass; however, because mass and energy

can be interconverted, light has an energy that is equivalent to somemass. The

quantity represented as mass multiplied by velocity is the momentum, so

−w

n
n0

1/2 mv2

Slope = h

Fig. 1.10 The relationship between the kinetic energy of electrons ejected in the
photoelectric effect and frequency of the light.
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Eq. (1.36) predicts a wavelength that is Planck’s constant divided by the

momentum of the photon.

De Broglie reasoned that if a particle had a wave character, the wave-

length would be given by

λ¼ h

mv
(1.37)

where the velocity is written as v rather than c because the particle will not be

traveling at the speed of light. In 1927, C. J. Davisson and L. H. Germer,

who were then working at Bell Laboratories in Murray Hill, New Jersey,

verified this relationship experimentally. In their experiment, an electron

beam was directed at a metal crystal, and a diffraction pattern was observed.

As a result of diffraction being a property of waves, it was concluded that the

moving electrons were behaving as waves. The reason for using a metal crys-

tal is that in order to observe a diffraction pattern, the waves must pass

through openings about the same size as the wavelength, and that distance

corresponds to the distance separating atoms in a metal.

The de Broglie wavelength of moving particles (electrons in particular)

has been verified experimentally. That is, of course, important, but the real

value is that electron diffraction has now become a standard technique for

determining molecular structure.

In developing a model for the hydrogen atom, Bohr had to assume that

the stable orbits were those in which angular momentum was quantized:

mvr¼ n
h

2π
(1.38)

Because de Broglie showed that themoving electron should be considered as

a wave, that wave will be a stable one only if the wave joins smoothly onto

itself. This means that the circular orbit must contain a whole number of

wavelengths as illustrated in Fig. 1.11. This generates a standing wave that

does not undergo destructive interference.

The circumference of a circle, in terms of the radius r, is C¼2πr. There-
fore, a whole number of wavelengths n must be equal to the circumference

of the orbit, so that

2πr ¼ nλ (1.39)

However, the de Broglie wavelength, λ, is given by

λ¼ h

mv
(1.40)
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Therefore,

2πr ¼ n
h

mv

� �
(1.41)

and this equation can be rearranged to give

mvr¼ n
h

2π

� �
(1.42)

This is exactly the same as the equation that Bohr assumed in order to predict

which orbits were stable! We now see the connection between the wave

character of a particle and the Bohr model. Only two years later, Erwin

Schr€odinger used the model of a standing three-dimensional wave to rep-

resent the electron in the hydrogen atom and solved the resulting wave

equation. This highly significant beginning of wave mechanics will be

described later. Although the Bohr model explained the spectral properties

of the hydrogen atom, it did not do so for any other atoms. However, He+,

Li2+, and similar species containing one electron could be treated by the

same model by using an appropriate nuclear charge. Also, the model treated

the atom almost as if it were a mechanical device, but because the atom did

not continuously radiate energy, it violated laws of classical electricity and

magnetism.

1.7 THE HEISENBERG UNCERTAINTY PRINCIPLE

Aseriousproblemwith theBohrmodel stems fromthe fact that it is impossible

to know simultaneously the position andmomentum (or energy) of a particle.

Fig. 1.11 A standing wave that matches the circumference of a Bohr orbit.
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A rationale for this can be given as follows: Suppose you observe a ship and

determine its position. The visible light waves have a wavelength of about

3�10�5 to 8�10�5 cm (3�10�7 to 8�10�7 m) and very low energy.

The light strikes the ship and is reflected to your eyes, the detector. Because

of the very low energy of the light, the ship, weighing several thousand tons,

does not move as a result of the light striking it. Now, suppose you wish to

“see” a very small particle of perhaps 10�8 cm (10�10 m) diameter. In order

to locate the particle, you must use “light” having a wavelength about the

same length as the size of the particle.Radiation of a 10�8 cm (i.e., very short)

wavelength has very high energy, as shown by the relationship

E¼ hc

λ
(1.43)

Therefore, in the process of locating (observing) the particle with the use of

high-energy radiation, the particle has undergone a change inmomentum and

energy. Therefore, it is impossible to determine both the position and

momentum of a particle simultaneously to greater accuracy than some

fundamental quantity. That quantity is h and the relationship between the

uncertainty in position (distance) and in momentum (mass�distance/time) is

Δx �Δ mvð Þ� h (1.44)

This relationship, which is one form of the Heisenberg uncertainty princi-

ple, indicates that h is the fundamental quantum of action. It can be seen that

this equation is dimensionally correct, because the uncertainty in position

multiplied by the uncertainty in momentum has the dimensions of

Distance� mass�distance

time

� �

In cgs units,

cm� grams� cm

s

� �
¼ erg s

and the units of erg s match the units on h.

If the uncertainty in time is expressed in seconds and uncertainty in

energy is in ergs,

Δt �ΔE� h

so this equation is also dimensionally correct. Therefore, an equation of this

form can be written between any two variables for which the units reduce to

erg s or g cm2 s�1.
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It is implied by the Bohr model that it is possible to know the details of

the orbital motion of the electron and its energy at the same time. Having

now shown that is not true, our attention will now focus on the wave model

of the hydrogen atom.

PROBLEMS

1. A shortwave radio station in LakeOkeechobee, Florida, broadcasts on a

frequency of 6.065 megahertz (MHz). What is the wavelength of the

radio waves?

2. What would be the de Broglie wavelength of an electron moving at

2.00% of the speed of light?

3. An electron in the ground state of a hydrogen atom is struck by an

X-ray photon with a wavelength of 50.0 nm. A scattered photon with

a wavelength of 200 nm is observed after the collision. What will be the

velocity and de Broglie wavelength of the ejected electron?

4. The work function of a metal is the energy required to remove an elec-

tron from the metal. What wavelength of light will eject an electron

from a metal that has a work function of 2.60 electron volts (eV)

(1 eV¼1.60�10�12 erg)?

5. For Be3+, calculate the wavelength of the photons emitted as the

electron falls from n¼3 to n¼2 and from n¼4 to n¼3.

6. Lithium compounds containing Li+ ions impart a red color to a flame

due to light emitted that has a wavelength of 670.8 nm.

(a) What is the frequency of this spectral line?

(b) What is the wave number for the radiation?

(c) In kcal mol�1, what energy is associated with this spectral line?

7. The ionization potential for a certain atom is 350 kJ mol�1. If the elec-

tron is in the first excited state, the ionization potential is 105 kJ mol�1.

If the atom undergoes deexcitation, what would be the wavelength of

the photon emitted?

8. Thework function for barium is 2.48 eV. If light of 400 nm is shined on

a barium cathode, what is the maximum velocity of the ejected

electrons?

9. Creation of matter from electromagnetic radiation can occur if the radi-

ation has sufficient energy (pairproduction).What is theminimumenergy

of a photon that can produce an electron-positron (i.e., a positive

electron) pair?
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10. For a proton and an electron having kinetic energies of 2.0 eV

(1 eV¼1.6�10�12 erg), what would be the ratio of the de Broglie

wavelengths?

11. Neutrons having energies equivalent to the kinetic energy of gaseous

molecules at room temperature (kT) are called thermal neutrons. What

is the wavelength of a thermal neutron at 27 °C?
12. Suppose an electron remains in an excited state of an atom for 10�8 s.

What would be the minimum uncertainty of the energy of the photon

emitted as the electron falls to the ground state? To what uncertainty in

the wavelength of the photon does this correspond?

13. The ionization potential for unshared electrons in the water molecule is

12.6 eV. If a single X-ray photon having a wavelength of 0.300 nm

passes through water and is completely absorbed by ionizing water mol-

ecules, howmany molecules could the photon ionize? Explain why this

would not likely occur in practice.

14. For a gas, the root-mean-square velocity is given by

v¼ 3RT

M

� �1=2

whereM is the molecular weight, T is the temperature in Kelvin, andR

is the molar gas constant. Derive an expression for the de Broglie wave-

length of gaseous molecules at a temperature T. Use the expression to

determine the wavelength of moving helium atoms at a temperature of

300 K.

15. Repeat the procedure of Problem 14, but use the average velocity for

gaseous molecules:

va¼ 8RT

πM

� �1=2

After deriving the relationship, determine the de Broglie wavelength

for hydrogen molecules at 400 K.

16. Radon-212 emits an alpha particle (helium nucleus) having an energy

of 6.26 MeV. Determine the wavelength of the alpha particle. To a

good approximation, the radius of a nucleus (in centimeters) can be

expressed as R¼ r0A
1/3, where r0 is a constant with a value of

1.3�10�13 and A is the mass number. Compare the wavelength

of the alpha particle emitted from 212Rn with the diameter of the

nucleus.
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17. Show from the Bohr model that the ratio of the kinetic energy to the

potential energy is �½.

18. From the relationships used in the Bohr model, show that the velocity

of the electron in the first Bohr orbit is 1/137 of the velocity of light.

19. Show that the difference in energy between any two spectral lines in the

hydrogen atom is the energy corresponding to a third spectral line. This

phenomenon is known as the Ritz Principle.

20. One form of the Heisenberg Uncertainty Principle is ΔE�Δt�h,

where ΔE is the uncertainty in energy and Δt is the uncertainty in

the time. If it requires 10�8 s for an electron to fall from a higher orbital

to a lower one, what will be the width of the spectral line emitted?
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CHAPTER 2

The Methods of
Quantum Mechanics

There are several areas of chemistry that require an understanding of quan-

tum mechanics. Therefore, quantum mechanics at an elementary level is

covered in several physics and chemistry courses taken by undergraduates.

The discussion of quantum mechanics presented here will begin by intro-

ducing some of the procedures and terminology by stating the postulates

of quantum mechanics and showing some of their applications. The cover-

age here is meant to be an introduction to the field and is in no way adequate

for a complete understanding of this important field. For more complete

coverage of quantum mechanics and its applications, see the suggested

references listed at the end of the book. The presentation of quantum

mechanics begins with stating the four postulates and elucidating their

meanings.

2.1 THE POSTULATES

POSTULATE I. For any possible state of a system, there is a function Ψ of
the coordinates of the parts of the system and time that completely
describes the system.

For a single particle whose position is described byCartesian coordinates, the

wave function can be written as

Ψ ¼Ψ x, y, z, tð Þ (2.1)

For two particles, the coordinates of each particle must be specified so the

wave function requires two sets of coordinates. It can be written as

Ψ ¼Ψ x1, y1, z1, x2, y2, z2, tð Þ (2.2)

For a general system consisting of multiple particles, the wave function is

written in terms of the generalized coordinates qi:

Ψ ¼Ψ qi, tð Þ (2.3)
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Because the model is that of a wave,Ψ is called a wave function. The state of the

system that i describes is called the quantum state.

The wave function squared, Ψ 2, is proportional to a probability. Because

Ψ may be complex, the quantity that is of interest is Ψ*Ψ , where Ψ* is the
complex conjugate of Ψ . The complex conjugate of a function is the function

with i replaced by�i, where i¼ (�1)½. For example, if one squares the func-

tion (x+ ib), the result is

x+ ibð Þ x+ ibð Þ¼ x2 + 2ibx+ i2b2 ¼ x2 + 2ibx� b2 (2.4)

and the resulting function is still complex. However, if the function (x+ ib) is

multiplied by its complex conjugate (x� ib), the result is

x+ ibð Þ x� ibð Þ¼ x2� i2b2 ¼ x2 + b2 (2.5)

and the product is a real function.

The quantity Ψ*Ψ dτ is proportional to the probability of finding the

particles of the system in the volume element dτ¼dx dy dz. It is a require-

ment that the total probability be unity (1) so that the particle must be some-

where. That can be represented asð
all space

Ψ*Ψ dτ¼ 1 (2.6)

If this condition is met, then Ψ is normalized. In addition, Ψ must be finite,

single valued, and continuous. These conditions describe a “well-behaved”

wave function. The reasons for these requirements are as follows:

Finite: A probability of unity (exactly 1.00) denotes a “sure thing.”

A probability of 0 means that a certain event cannot happen. Therefore,

probability varies from 0 to unity. If Ψ could be infinite, the probability

would not be limited to a value of 1.

Single valued: In a given region of space, there is only one probability of

finding a particle. When this is interpreted in terms of a hydrogen atom, it

means there is a single probability of finding the electron at some specified

distance from the nucleus. Consequently, there are not two different pro-

babilities of finding the electron at some given distance from the nucleus.

Continuous: If there is a certain probability of finding an electron at a

given distance from the nucleus in a hydrogen atom, there will be a

slightly different probability if the distance from the nucleus is changed

slightly. The probability does not suddenly double if the distance is chan-

ged by 0.01%. The probability function does not have discontinuities, so

the wave function must be continuous.
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If two functions φ1 and φ2 have the property thatð
φ�
1φ2 dτ¼ 0 or

ð
φ1φ

�
2 dτ¼ 0 (2.7)

the functions are said to be orthogonal. Whether or not the integral is equal to

0 may depend on the limits of integration, and hence one speaks of orthog-

onality within a certain interval. Therefore, the limits of integration must be

clear. In the previous case, the integration is carried out over the possible

range of the coordinates included in the volume element dτ. If the coordi-
nates are x, y, and z, the limits are from �∞ to +∞ for each variable (all

space). If the coordinates are r, θ, and φ, the limits of integration are 0 to

∞, 0 to π, and 0 to 2π, respectively, for these coordinates. A more complete

discussion of orthogonal wave functions will be presented in later chapters.

2.2 THE WAVE EQUATION

In 1924, it was shown by de Broglie that a moving particle has a wave char-

acter. In 1927, Davisson and Germer verified this conclusion experimentally

when an electron beam was diffracted by a nickel crystal. Even before that

experimental verification of de Broglie’s hypothesis, Erwin Schr€odinger
adapted the wave model to the problem of electron motion in the hydrogen

atom. In that case, the model needs to describe a three-dimensional wave.

A problem in classical physics had dealt with such models in a conjecture

known as the flooded planet problem. This model considers the waveforms that

would result from a disturbance of a sphere that is covered with water. The

classical three-dimensional wave equation is

@2φ

@x2
+
@2φ

@y2
+
@2φ

@z2
¼ 1

v2
@2φ

@t2
(2.8)

in which φ is the amplitude function and v is the phase velocity of the wave.

For harmonic motion (as in the case of a sine wave), the amplitude as a func-

tion of time can be expressed by the equation

@2φ

@t2
¼�4π2v2φ (2.9)

in which ν is the frequency. The de Broglie relationship

λ¼ h

mv
(2.10)
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and the relationship between the frequency and the wavelength of a trans-

verse wave,

λ distanceð Þ�ν time�1
� �¼ v distance=timeð Þ,

give rise to the relationship for the frequency of the wave,

ν2¼m2v4

h2
(2.11)

Therefore, substituting this result in Eq. (2.9)

@2φ

@t2
¼�4π2

m2v4

h2

� �
φ (2.12)

Substituting this in the general three-dimensional wave Eq. (2.8), it becomes

@2φ

@x2
+
@2φ

@y2
+
@2φ

@z2
¼ 1

ν2

� � �4π2v4m2

h2

� �
φ (2.13)

The total energy will now be represented as E, the kinetic energy as T (the

energy of translation), and the potential energy as V. Therefore, the kinetic

energy is given by

T ¼mv2

2
¼E�V (2.14)

Solving this equation for v2 and substituting this result into Eq. (2.13) yields

the wave equation in the form

@2φ

@x2
+
@2φ

@y2
+
@2φ

@z2
¼ �4π2m2

h2

� �
2 E�Vð Þ

m

� �
φ (2.15)

This equation, which describes a three-dimensional wave, can be rearranged

and written in the form

@2φ

@x2
+
@2φ

@y2
+
@2φ

@z2
¼ �8π2m

h2

� �
E�Vð Þφ (2.16)

This is one form of the Schr€odinger wave equation. Solutions to this wave equa-
tion are known as wave functions. Solving wave equations involves the branch

of science known as wave mechanics, also known as quantum mechanics

because of the energies of such systems are quantized.

Theprecedingpresentation isnot aderivationof theSchr€odingerwaveequa-
tion in the usual sense.Rather, it is an adaptationof a classicalwave equation to a
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different type of system bymaking use of the de Broglie hypothesis. It is inter-

esting to note that Schr€odinger’s treatment of the hydrogen atom started with

an equation that was already known. As will be shown in Chapter 4, the solu-

tion of the wave equation for the hydrogen atom alsomakes use of mathemat-

ical techniques that were already in existence at the time. Whereas

Schr€odinger’s work was revolutionary for its time, it was carried out with

the understanding of what had been done before. In fact, his incorporation

of de Broglie’s hypothesis came only a couple of years after that idea became

known but before it had been experimentally verified.

2.3 OPERATORS

POSTULATE II. For every dynamical variable (classical observable) there is
a corresponding operator.

This postulate provides the connection between quantities that are classical

observables (quantities that can be measured) and the quantum mechanical

techniques for doing things. Dynamical variables are such quantities as

energy, momentum, angular momentum, and position coordinates. In

quantum mechanics, these are replaced by operators, which are symbols that

indicate that some mathematical operation is to be performed. Such symbols

include ( )2, d/dx, and
Ð
. Coordinates are identical in operator and classical

forms. For example, the coordinate x is simply used in operator form as x.

(This will be illustrated later.) Other classical observables are replaced by

their corresponding operators, as shown in Table 2.1. Additionally, as will

be illustrated later, other operators can be formed by combining those in the

table. For example, because the kinetic energy is mv2/2, it can be written in

terms of the momentum, p, as p2/2m.

The operators that are important in quantum mechanics have two

important characteristics: First, the operators are linear, meaning

α φ1 +φ2ð Þ¼ αφ1 + αφ2 (2.17)

in which α is the operator andφ1 andφ2 are the functions being operated on.

Also, when C is a constant, then

α Cφð Þ ¼C αφð Þ (2.18)

The linear character of the operator is related to the superposition of states

and waves reinforcing each other in the process. The second property of
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the operators is that they are Hermitian. This property can be illustrated as

follows: If two functions φ1 and φ2 are considered, the operator α is said

to be Hermitian if

ð
φ�
1αφ2dτ¼

ð
φ1α*φ

�
2dτ (2.19)

This requirement is necessary to ensure that the calculated quantities for

physical systems are real. In the following chapters, there will be several

opportunities to observe these types of behavior in the operators used.

2.4 EIGENVALUES

POSTULATE III. The permissible values that a dynamical variable may
have are those given by α φ¼a φ, where φ is the eigenfunction of
the operator α that corresponds to the observable whose permissible
values are a.

Table 2.1 Some common operators in quantum mechanics
Quantity Symbol used Operator form

Coordinates x, y, z, r x, y, z, r

Momentum

x px ћ
i

@

@x

y py ћ
i

@

@y

z pz ћ
i

@

@z

Kinetic energy p2

2m
� ћ2

2m

@2

@x2
+

@2

@y2
+

@2

@z2

� �

Kinetic energy T �ћ
i

@

@t

Potential energy V V(qi)

Angular momentum Lz (Cartesian) ћ
i

x
@

@y
� y

@

@x

� �

Lz (polar) ћ
i

@

@φ
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This postulate can be stated in the form of an equation as

α φ ¼ a φ
operator wave function constant eigenvalueð Þ wave function

(2.20)

If performing the operation α on the wave function yields the original func-

tion multiplied by a constant, then φ is said to be an eigenfunction of the oper-

ator α. The constant is called an eigenvalue. This can be illustrated by letting

φ¼e2x and the operator α¼d/dx. In this case, operating on the function

with the operator gives

dφ

dx
¼ 2e2x¼ constant � e2x (2.21)

Therefore, e2x is an eigenfunction of the operator αwith an eigenvalue of 2.
If the function used isφ¼e2x and the operator is ( )2, then performing the

operation gives

e2x
� �¼ e4x

which is not a constant times the original function. Therefore, e2x is not an

eigenfunction of the operator ( )2.

Theoperator for thez componentof angularmomentumcanbewritten as

L̂z¼ ћ
i

@

@φ
(2.22)

where ћ¼h/2π. Operating on the function einφ (where n is a constant) with

this operator gives

ћ
i

@

@φ
einφ
� �¼ in

ћ
i
einφ¼ nћ � einφ (2.23)

which shows that the result is a constant (nћ) times the original function.

Therefore, the eigenvalue is nћ.
For a given system, there may be multiple values of a parameter to be

calculated. Because most properties vary, such as the distance of an electron

from the nucleus in a hydrogen atom, it is often desirable to determine an

average or expectation value. Using the operator equation αφ¼aφ, where φ is

a wave function, both sides of the equation are multiplied by the complex

conjugate φ*:

φ*αφ¼φ*aφ (2.24)
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Note, however, that φ* α φ is not necessarily the same as φ α φ*. To obtain
the sum of the probability over all space, this is written in the form of the

integral equation ð
all space

φ*αφ dτ¼
ð
all space

φ*aφ dτ (2.25)

However, a is a constant and is not affected by the order of operations.

Removing it from the integral and solving for a yields

a¼

ð
φ*αφ dτð
φ*φ dτ

(2.26)

It should be remembered that because α is an operator, φ*α φ is not neces-

sarily the same as α φ φ*, so that the order φ* α φ must be preserved, and α
cannot be removed from the integral.

If φ is a normalized function, then by definition
Ð
ϕ* ϕ dτ¼1 and

�a¼ ah i¼
ð
φ*αφ dτ (2.27)

In this case, ā and<a> are the usual ways of indicating the average or expec-

tation value. If the explicit form of the wave function is known, then the-

oretically an expectation or average value can be calculated for a given

parameter by using the appropriate operator and the procedure shown

earlier.

Consider the following example, which illustrates the application of

these ideas. Suppose a problem requires one to calculate the radius of the

hydrogen atom in the 1s state. The normalized wave function ψ1s can be

written as

ψ1s ¼
1ffiffiffi
π

p
� �

1

a0

� �3=2

e�r=a0 ¼ψ�
1s (2.28)

in which a0 is the first Bohr radius. The equation to calculate the average

radius becomes

rh i¼
ð
ψ* operatorð Þψ dτ (2.29)

The operator in this case is simply r because position coordinates have the

same form in operator and classical form. When expressed in terms of polar
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coordinates, the volume element dτ¼ r2 sin θ dr dθ dφ. Therefore, the
problem now becomes

rh i¼
ð∞
0

ðπ
0

ð2π
0

1ffiffiffi
π

p 1

a0

� �3=2

e�r=a0 rð Þ 1ffiffiffi
π

p 1

a0

� �3=2

e�r=a0 r2 sinθ dr dθ dφ (2.30)

Although this may look rather formidable, it simplifies greatly because the

operator r becomes a multiplier and the functions involving r can be mul-

tiplied and collected. When this is done, the result is

rh i¼
ð∞
0

ðπ
0

ð2π
0

1

π a30

� �
e�2r=a0 r3 sinθ dr dθ dφ (2.31)

Using the technique from calculus that makes it possible to separate multiple

integrals of the typeð
f xð Þ g yð Þ dx dy ¼

ð
f xð Þ dx

ð
g yð Þ dy (2.32)

Eq. (2.31) can be written as

rh i¼ 1

π a30

ð∞
0

r3 e�2r=a0 dr

ðπ
0

ð2π
0

sinθ dθ dφ (2.33)

By making use of a table of integrals, it is easily verified that

ðπ

0

ð2π

0

sinθ dθ dφ ¼ 4π (2.34)

Moreover, an exponential integral of this form is a common occurrence in

quantum mechanics. It is easily evaluated using the formula

ð∞

0

xn e�bx dx¼ n!

bn+1
(2.35)

In this case, n¼3 and b¼2/a0. Therefore, the exponential integral can be

expressed as

ð∞

0

r3 e�2r=a0 dr ¼ 3!

2=a0ð Þ4 (2.36)

When this is simplified, the result is

31The Methods of Quantum Mechanics



rh i¼ 4π

πa30

3!

2=a0ð Þ4¼
3

2
a0 (2.37)

Thus, <r>1s¼ (3/2)a0, where a0¼0.529 Å.

The average distance of the electron from the nucleus in the 1s state of

hydrogen is 3/2 the radius of the first Bohr radius. However, the most prob-

able distance is that where the probability is highest and the same as the radius

of the first Bohr orbit. Average and most probable are not the same. The reason

for this is that the probability distribution is not symmetric, as is shown in

Fig. 2.1.

2.5 WAVE FUNCTIONS

POSTULATE IV. The state function ψ is given as a solution of

Ĥψ ¼ Eψ (2.38)

where Ĥ is the operator for total energy, the Hamiltonian operator.

This postulate provides a starting point for formulating a problem in quan-

tummechanical terms because the process is to determine a wave function to

describe the system being studied. TheHamiltonian function in classical phys-

ics is the total energy T+V, where T is the translational (kinetic) energy and

V is the potential energy. In operator form, this can be written as

Ĥ ¼ T̂ + V̂ (2.39)

P
ro

ba
bi

lit
y

Distance

Most probable

Average

a0 3/2 a0

Fig. 2.1 The probability of finding the electron in the 1s state as a function of distance
from the nucleus.
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in which T̂ is the operator for kinetic energy and V̂ is the operator for

potential energy. Written in terms of the generalized coordinates qi, and

time, the general wave equation becomes

ĤΨ qi, tð Þ¼�ћ
i

@Ψ qi, tð Þ
@t

(2.40)

When written in terms of the momentum, the kinetic energy can be

expressed as

T ¼mv2

2
¼ p2

2m
(2.41)

For the total kinetic energy, T can be written as the sum of the x, y, and z

components:

T ¼ p2x
2m

+
p2y

2m
+

p2z
2m

(2.42)

It is possible to put this in operator form by using the momentum operators

given earlier in Table 2.1. When this is done, the result is

T̂ ¼ 1

2m

ћ
i

@

@x

� �2

+
1

2m

ћ
i

@

@y

� �2

+
1

2m

ћ
i

@

@z

� �2

(2.43)

However, the square of the momentum operator for the x-direction can be

written as

ћ
i

@

@x

� �2

¼ ћ
i

@

@x

� �
ћ
i

@

@x

� �
¼ ћ2

i2
@2

@x2

� �
¼�ћ2

@2

@x2
(2.44)

When this is carried out for all three coordinates the result is

T̂ ¼� ћ2

2m

@2

@x2
+

@2

@y2
+

@2

@z2

� �
¼� ћ2

2m
r2 (2.45)

in whichr2 is known as the Laplacian operator, or simply the Laplacian. If the

potential energy can be expressed in terms of the general coordinates and

time, then the result is

V ¼V qi, tð Þ (2.46)

33The Methods of Quantum Mechanics



Therefore, the operator equation for total energy becomes

� ћ2

2m
r2 +V qi, tð Þ

� �
ψ qi, tð Þ¼�ћ

i

Ψ qi, tð Þ
@t

(2.47)

This equation is known as Schr€odinger’s time-dependent equation or

Schr€odinger’s second equation.
In most problems, the classical observables have values that do not

change with time, or at least their average values do not change with time.

In most cases, it would therefore be advantageous to simplify the problem by

removal of the dependence on time. The separation of variables technique is

now applied to see whether that dependence can be separated.

The separation of variables as a technique in solving differential equations

will be discussed in Chapters 3 and 4, and so it will be used it here with very

little explanation. First, it is assumed that ψ (qi, t) is the product of two func-

tions, one a function that contains only qi and another that contains only the

time, t. If this is done the result is

Ψ qi, tð Þ¼ψ qið Þ τ tð Þ (2.48)

Note that Ψ is used to denote the complete state (wave) function and the

lower case ψ is used to represent the state function with the time dependence

removed. Because the problems that will considered in this book are

time-independent ones, ψ will be used throughout. The Hamiltonian can

now be written in terms of the two functions ψ and τ as

ĤΨ qi, tð Þ¼ Ĥψ qið Þ τ tð Þ (2.49)

Therefore, because ψ (qi) is not a function of t, Eq. (2.49) can be written as

Ĥψ qið Þ τ tð Þ¼�ћ
i

@

@t
ψ qið Þ τ tð Þ¼�ћ

i
ψ qið Þ@τ tð Þ

@t
(2.50)

Dividing Eq. (2.50) by the product ψ(qi) τ(t),

Ĥψ qið Þ τ tð Þ
ψ qið Þ τ tð Þ ¼

�ћ
i
ψ qið Þ @τ tð Þ

@t

� �

ψ qið Þ τ tð Þ (2.51)

and the result can be written as

1

ψ qið ÞĤψ qið Þ¼�ћ
i

1

τ tð Þ
@τ tð Þ
@t

(2.52)
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Note that the factor ψ (qi) cannot be canceled on the left-hand side of

Eq. (2.52) because Ĥ ψ (qi) does not represent Ĥ times ψ (qi) but rather Ĥ
operating on ψ (qi). The left-hand side of the equation is a function of qi
and the right-hand side is a function of t, so each can be considered equal

to a constant with respect to changes in the values of the other variable. Both

sides can be set equal to some new parameter W so that

1

ψ qið ÞĤψ qið Þ¼W and �ћ
i

1

τ tð Þ
@τ tð Þ
@t

¼W (2.53)

Simplifying the first of these equations leads to

Ĥψ qið Þ¼W ψ qið Þ (2.54)

and the second gives the relationship

dτ tð Þ
dt

¼� i

ћ
W τ tð Þ (2.55)

The differential equation involving the time is of a common form and can be

solved readily to give

τ tð Þ¼ e� i=ћð ÞWt (2.56)

Substituting this result into Eq. (2.48), it is found that the total state function,

Ψ , is

Ψ qi, tð Þ¼ψ qið Þ e� i=ћð ÞWt (2.57)

Therefore, Eq. (2.50) can be written as

e� i=ћð ÞWtĤψ qið Þ¼ ћ
i

i

ћ
Wψ qið Þ e� i=ћð ÞWt (2.58)

or

e� i=ћð ÞWtĤψ qið Þ¼Wψ qið Þ e� i=ћð ÞWt (2.59)

The factor e�(i/ћ)Wt can be dropped from both sides of Eq. (2.59), which

results in

Ĥψ qið Þ¼Wψ qið Þ (2.60)

This equation shows that the time dependence has been separated from the

general equation.

In Eq. (2.60), neither the Hamiltonian operator nor the wave function is

time dependent. It is this form of the equation that will be used to solve
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problems discussed in this book. Therefore, the time-independent wave

function ψ will be indicated any time the general wave equation is written

as Ĥψ ¼Eψ .
For the hydrogen atom, the electrostatic potential energy is V¼�e2/r,

which remains unchanged in operator form because e is a constant (the

charge on the electron) and r represents a coordinate. Therefore, the

Hamiltonian operator can be written as

Ĥ ¼� ћ2

2m
r2� e2

r
(2.61)

Using this form of the operator, the equation Ĥψ¼Eψ leads to the wave

equation

Ĥψ ¼� ћ2

2m
r2ψ� e2

r
ψ (2.62)

Rearrangement of Eq. (2.62) gives a familiar form of the Schr€odinger wave
equation for the hydrogen atom most often written as

r2ψ +
2m

ћ2
E�Vð Þψ ¼ 0 (2.63)

Several relatively simple models are capable of being treated by the methods

of quantum mechanics, and much of the remainder of this introductory

book is the discussion of those important models. To treat these models,

the four postulates can be applied in a relatively straightforward manner.

However, for any of these models the starting point will be

Ĥψ ¼Eψ (2.64)

In applying this equation to problems of interest, it will be necessary to use

the appropriate expressions for the operators corresponding to the potential

and kinetic energies. In practice, it will be found that a rather limited num-

ber of potential functions are applicable, with the most common being a

Coulombic (electrostatic) potential.

In the following chapters, quantum mechanical models are presented

because they can be applied to several systems of chemical and physical inter-

est. For example, the barrier penetration phenomenon has application as a

model for nuclear decay and transition state theory in chemical kinetics. The

rigid rotor and harmonic oscillator models are useful as models in applying

rotational and vibrational spectroscopy. The particle in the box model has

some utility as an approximation in the treatment of electrons in metals
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or conjugated molecules. Given the utility of these models, some familiarity

with each of them is essential for all who would understand the application

of quantum mechanics to the problems of relevance to a wide range of sci-

ences. The next several chapters will deal with the basic models and their

applications.

PROBLEMS

1. The operator for the z component of angular momentum L̂z in polar

coordinates is (ћ/i) (@/@φ). Determine which of the following func-

tions are eigenfunctions of this operator and determine the eigenvalues

for those that are:

(a) sin φ eiφ,

(b) sinl φ eilφ (where l is an integer constant),

(c) sin φ e�iφ.

2. Calculate the expectation value for the z component of angular

momentum for functions (a) and (b) in Problem 1.

3. Normalize the following functions in the interval 0 to ∞
(a) e�5x, and

(b) e�bx (where b is a constant).

4. Show that the function (x+ iy)/r is an eigenfunction of the operator for

the z component of angular momentum (see Table 2.1).

5. Show that the 1s wave function for hydrogen,

ψ1s ¼
1ffiffiffi
π

p 1

a0

� �3=2

e�r=a0

is normalized.

6. Show that ψ¼ a e�bx (where a and b are constants) is an eigenfunction

of the operator d2/dx2.

7. Normalize the function φ¼a e�bx in the interval 0 to ∞.

8. Determine whether the function φ¼ sinx eax (where a is a constant) is

an eigenfunction of the operators d/dx and d2/dx2. If it is, determine

any eigenvalue(s).

9. Normalize the function ψ¼ sin(πx/L)+ i sin(2πx/L) in the interval 0 to
L. Determine the expectation values for the momentum, p, and the

kinetic energy, T.

10. Functions and operators are said to be symmetric if f (x)¼ f (�x). Deter-

mine whether the operator for kinetic energy is symmetric or

antisymmetric.
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CHAPTER 3

Particles in Boxes

As one begins the study of quantum mechanics, it is desirable to consider

some simple problems that can be solved exactly whether they represent

important models of nature or not. Such is the case with the models of

particles in boxes. Although they have some applicability as approximations

to real problems, such models are most useful in illustrating the methods of

formulating problems and applying quantum mechanical procedures. As a

result, almost every introductory book on quantum mechanics includes a

discussion on particles in boxes.

3.1 THE PARTICLE IN A ONE-DIMENSIONAL BOX

In this model, a particle is considered to have motion that is confined within

a box. In the first case, the box is assumed to be one dimensional for sim-

plicity, although a three-dimensional problem is not much more difficult,

and that problem will be considered next. To confine the particle absolutely

to the box, the walls of the box are considered to be infinitely high. Oth-

erwise, there is a small but finite probability that the particle can “leak” out

of the box by tunneling. The problem of tunneling through a potential

energy barrier will be discussed in a later chapter. The coordinate system

and energy parameters for this problem are shown in Fig. 3.1.

The Hamiltonian, H, is

H ¼T +V ¼ p2

2m
+V (3.1)

where p is the momentum,m is the mass of the particle, andV is the potential

energy. Outside the box, V¼∞, so

H ¼ p2

2m
+∞ (3.2)

which means that the Hamiltonian operator Ĥ is

Ĥ ¼� ћ2

2m

d2

dx2
+∞ (3.3)
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As a result, the wave equation can be written as

Ĥψ ¼Eψ ¼� ћ2

2m

d2

dx2
ψ +∞ψ (3.4)

Therefore, for the equation to be valid, ψ must be 0, which leads to the con-

clusion that the probability of finding the particle outside the box is zero.

Inside the box, the potential energy is zero (V¼0), so the wave equation

can be written as

Ĥψ ¼Eψ (3.5)

or

� ћ2

2m

d2ψ

dx2
¼Eψ (3.6)

This equation is of the form

d2ψ

dx2
+ k2ψ ¼ 0 (3.7)

where k2¼2 mE/ћ2. This is a linear differential equation with constant coef-
ficients, which is a standard type of equation having a solution of the form

ψ ¼A cos kx+B sin kx (3.8)

Actually, it is possible to guess a form of the solution in this case, because

Eq. (3.7) shows that the original function times a constant must be equal

and opposite in sign to the second derivative of the function. Very few com-

mon functions meet this requirement, but sin bx, cos bx, and an exponential

function eibx do have this property. This can be shown as follows:

d2

dx2
sin bxð Þ¼�b2 sin bx

d2

dx2
eibx¼�b2eibx

0 x a

V

Fig. 3.1 A particle in a one-dimensional box.
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In the solution shown in Eq. (3.8), A and B are constants and

k¼ 2mEð Þ1=2
ћ

The appearance of two constants in the solution is normal for a second order

differential equation. These constants must be evaluated using boundary con-

ditions, which are those requirements that must be met because of the phys-

ical limits of the system. In order for the probability of finding the particle to

vanish at the walls of the box, it is necessary that ψ be zero at the boundaries.

That is, ψ¼0 for x¼0 or x¼a. At x¼0 the solution can be written as

ψ ¼ 0¼A cos
2mEð Þ1=2

ћ
�0

" #
+B sin

2mEð Þ1=2
ћ

�0

" #
(3.9)

Now, sin 0¼0, so the last term is 0, and cos 0¼1, so ψ¼0¼A�1. This can

be true only for A¼0. Therefore, the constant A in the solution must be

0 and the wave function reduces to

ψ ¼B sin
2mEð Þ1=2

ћ
x

" #
(3.10)

However, the constant B must now be evaluated by making use of the

boundary conditions. Using the requirement that the wave function must

vanish at the boundary a so that ψ¼0 for x¼a, it can be seen that

ψ ¼ 0¼B sin
2mEð Þ1=2

ћ
a

" #
(3.11)

Now sin θ¼0 for θ¼0o, 180o, 360o, … , which represents θ¼nπ rad and

where n is an integer. Consequently, the condition

2mEð Þ1=2
ћ

a¼ nπ (3.12)

must be met in which n¼1, 2, 3, …. The value n¼0 would lead to ψ¼0,

which would give a probability of 0 for finding the particle inside the box.

Because the particle is required to be somewhere inside the box, the value of

n¼0 is rejected. Eq. (3.12) can now be solved to obtain the allowed energy

levels in terms of the quantum number n,

E¼ n2ћ2π2

2ma2
¼ n2h2

8ma2
(3.13)
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where n¼1, 2, 3,…, a quantum number. Note the requirement that the wave

function must vanish at the boundaries of the box (0 and a) leads to the quan-

tization of energy. This occurs because the trigonometric functions vanish only for

certain values of θ. Therefore, for a free particle, the energy levels are not quan-
tized, but rather they form a continuum. It is only for the bound (confined or

constrained) system that the energy levels are quantized. It would therefore

be expected that an electron bound in a hydrogen atom should exhibit dis-

crete energy levels. The diverging energy levels for the particle in a

one-dimensional box are shown in a graphical way in Fig. 3.2. In most sys-

tems of a chemical nature (recall the energy level diagram for the hydrogen

atom), the energy levels converge. Note also the energy of the lowest state is

not zero and the energy of the lowest state is h2/8ma2:

Although it has been possible to obtain values for the allowed energy

levels for the particle and the general form of the wave function, the wave

function has not been normalized. The wave function is normalized whenð
all space

ψ*ψ dt¼ 1 (3.14)

Therefore, for this problem the integration is over the interval in which x

can vary from 0 to a. If we let B be the normalization constant that is multiplied

by the wave function, the result isða
0

B *ψ *Bψ dτ¼ 1 (3.15)

As has been shown, ψ is given as

ψ ¼B sin
nπx

a

� �

∞ ∞
n=4 E4=16h2/8ma2

E3=9h2/8ma2

E2=4h2/8ma2

E1= h2/8ma2

V

n=3

n=2

n=1

0 x a

Fig. 3.2 Energy levels for a particle in a one-dimensional box.
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and B*¼B, so Eq. (3.15) can be written asða
0

B2 sin2 nπ=að Þ x dx¼ 1 (3.16)

This integral (where a is a constant) is a standard form given in tables of inte-

grals as ð
ð sin2axÞ dx¼ 1

2
x� 1

4a
sin 2ax (3.17)

After solving for B2 and evaluating the integral, the result is

B2¼ 1

x

2

sin 2πx=að Þ
4nπ=a

x¼a
x¼0

�� (3.18)

The denominator evaluates to a/2 so that B¼ (2/a)1/2. The complete nor-

malized wave function can be written as

ψ ¼ 2

a

� �1=2

sin
nπ

a

� �
x (3.19)

With this wave function, the average or expectation value of position or

momentum of the particle can be calculated using the results of Postulate

III shown in Chapter 2. Figure 3.3 shows the plots of ψ and ψ2 for the first

few values of n.

If a carbon chain such as

C¼C�C¼C�C (3.20)

is considered to be a “box” in which the π electrons can move along the

chain, the results of the particle in a one-dimensional box can be considered

as a model. If the average CdC bond length is 1.40 Å (140 pm), the entire

chain would be 5.60 Å (560 pm) in length. Therefore, the difference

between the n¼1 and the n¼2 states would be

E¼ 22h2

8ma2
� 12h2

8ma2
¼ 3h2

8ma2
(3.21)

E¼ 3 6:63�10�27 erg sð Þ2
8 9:10�10�28gð Þ� 5:60�10�8cmð Þ2

¼ 5:78�10�12 erg (3.22)

This corresponds to a photon having wavelength of 344 nm, and the actual

maximum in the absorption spectrum of 1,3-pentadiene is found at 224 nm.
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Although it is not in close agreement, the simple model does predict absorp-

tion in the ultraviolet region of the spectrum.

Although this model is of limited usefulness for representing physical sys-

tems, the methodology that it shows is valuable for illustrating the quantum

mechanical way of doing things. A few observations are in order here: First,

the energy of a confined particle is quantized. The application of the bound-

ary conditions leads to the quantization of energy, and the energy increases as

the square of the quantum number describing the state. Moreover, the

energy also increases as the mass of the particle decreases. This has implica-

tions for the confinement of a particle having the mass of an electron to a

region the size of an atomic nucleus (�10�13 cm). Therefore, the β� parti-

cles (electrons) emitted during beta decay could not exist in the nucleus prior

n = 4y y 2

n = 3
y

n = 2y 2

y 2

y

n = 1
y 2y

Fig. 3.3 Plots of the wave function (blue line) and the square of the wave function (red
line) for the first four states of the particle in a box.
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to the actual decay. For example, confining an electron this way would

require that the lowest state have an energy of

E¼ 12h2

8ma2
¼ 1 6:63�10�27 erg sð Þ2
8 9:10�10�28gð Þ� 10�13 cmð Þ2

¼ 0:604erg

Using the conversion factor 1 erg¼6.242�1011 eV, this amounts to

3.77�1011 eV or 3.77�105 MeV! For a reference, this energy can be com-

pared to the value of 13.6 eV for the ionization potential of the

hydrogen atom.

It is interesting to note that the energy, in addition to being quantized,

depends on the quantum number n, which cannot be zero. Therefore, there

is someenergy for theparticle (E¼h2/8ma2whenn¼1)even in the lowest state.

This is known as zero-point energy. As will be shown later, other systems (the

hydrogen atom, the harmonic oscillator, etc.) have a zero-point energy aswell.

The second important result that can be seen from the solution of the

particle in a box problem is that one quantum number arises from the solution

of an equation for a one-dimensional system. This quantum number arises as a

mathematical restriction or condition rather than as an assumption, as it

did in the case of the Bohr treatment of the hydrogen atom. It should

not be surprising when it turns out that a two-dimensional system gives rise

to two quantum numbers, three dimensions to three quantum numbers, and

so on. Also, it is apparent that the particle in the one-dimensional box can

serve as a useful first approximation for electrons moving along a conjugated

hydrocarbon chain. An extension of this problem is the “particle on a ring”

problem, in which the particle moves along a closed path.

3.2 SEPARATION OF VARIABLES

In this section. one of the techniques used to solve certain differential equa-

tions that arise in quantum mechanics will be illustrated. Suppose a differ-

ential equation can be written as

@2U

@x2
�@U

@y
¼ 0 (3.23)

The solution of the equation requires finding a solution that is a function of x

and y, which can be represented as U¼U(x, y). Let us now assume that a

solution exists such that

U x, yð Þ ¼X xð ÞY yð Þ
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in which X and Y are functions of x and y, respectively, so that U¼XY.

Substituting the product for U in Eq. (3.23) leads to

@XY

@y
¼ @2XY

@x2
(3.24)

Now X is not a function of y, and Y is not a function of x, so it is possible to

treat X and Y as constants to give

X @Y

@y
¼Y @2X

@x2
(3.25)

This equation can be rearranged to give

X 00

X
¼Y 0

Y
(3.26)

Each side of the equation is a constant with respect to the other, because one

is a function of x and the other is a function of y. Therefore, representing the

two sides as C gives two equations

X 00

X
¼C and

Y 0

Y
¼C (3.27)

Each differential equation can now be solved independently of the other to

obtain X(x) and Y(y). The desired solution is U(x, y)¼X(x)Y(y). The sep-

aration of the variables technique is commonly used in solving partial differ-

ential equations. In the next section the model known as a particle in a

three-dimensional box involves this technique. Solution of the wave

mechanical equation for the hydrogen atom also requires this technique,

as will be shown in the next chapter.

3.3 THE PARTICLE IN A THREE-DIMENSIONAL BOX

The particle in a three-dimensional box model illustrates additional aspects

of elementary quantum mechanical methods. In this problem, a particle is

contained in a box of dimensions a, b, and c in the x, y, and z directions,

respectively, as shown in Fig. 3.4.

As in the case of a particle in a one-dimensional box, the potential energy

inside the box is assumed to be zero, but outside the box it will be assumed

that V¼∞. Therefore, the total potential energy can be expressed in terms

of that for the three dimensions,
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Vtotal ¼Vx +Vy +Vz (3.28)

The boundary conditions are expressed as follows:

V ¼ 0 f or 0< x< a; 0< y< b; 0< z< c

and

V ¼∞ f or 0> x> a; 0> y> b; 0> z> c

For the particle inside the box, the Hamiltonian can now be written as

H ¼T +V ¼ p2

2m
+0 (3.29)

The Hamiltonian operator can be written using the kinetic energy expressed

in terms of the momentum, as shown in Chapter 2. The result is

� ћ2

2m

@2

@x2
+

@2

@y2
+

@2

@z2

� �
¼� ћ2

2m
r2 (3.30)

Therefore, the general equation

Ĥψ ¼Eψ

can be written as

� ћ2

2m
r2ψ ¼Eψ (3.31)

Rearranging this equation gives

r2ψ +
2m

ћ2
Eψ ¼ 0 (3.32)

z

a

b

c

x

y

Fig. 3.4 A particle in a three-dimensional box.
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This is a partial differential equation in three variables (x, y, and z). The

simplest method to solve such an equation and the one that should be tried

first is the separation of variables method described in Section 3.2. In the next

chapter, it will be shown that this is also the case in solving the wave equation

for the hydrogen atom. To separate the variables, it is assumed that the

desired solution ψ can be factored into three functions, each of which is

a function of one variable only. In mathematical form, it is assumed that

ψ x, y, zð Þ¼X xð ÞY yð ÞZ zð Þ (3.33)

This product of three functions is now written in place of ψ , but simplified

notation will be used so that X¼X(x), etc. The resulting equation is

@2XYZ

@x2
+
@2XYZ

@y2
+
@2XYZ

@z2
+
2m

ћ2
E XYZð Þ¼ 0 (3.34)

Because YZ is not a function of x, XZ is not a function of y, and XY is not a

function of z, they can be removed from the derivatives of the other vari-

ables to give

YZ
@2X

@x2
+XZ

@2Y

@y2
+XY

@2Z

@z2
+
2m

ћ2
E XYZð Þ¼ 0 (3.35)

If Eq. (3.35) is divided by XYZ, the result is

1

X

@2X

@x2
+

1

Y

@2Y

@y2
+

1

Z

@2Z

@z2
¼�2m

ћ2
E (3.36)

Because each term on the left-hand side of Eq. (3.36) is a function of only

one variable, each will be independent of any change in the other two vari-

ables. Therefore, each term can be considered to be equal to a constant,

which will be represented as �k2. Because there must be three such con-

stants (i.e., one for each variable), they will be represented as �kx
2, �ky

2,

and �kz
2 for the x, y, and z directions, respectively. The results are three

equations that can be written using ordinary derivatives as

1

X

@2X

@x2
¼�k2x (3.37)

1

Y

@2Y

@y2
¼�k2y (3.38)

1

Z

@2Z

@z2
¼�k2z (3.39)
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The sum of the three constants must be equal to the right-hand side of

Eq. (3.36), which is �2mE/ћ2. Therefore,

k2x + k2y + k2z ¼
2mE

ћ2
(3.40)

The total energy E is the sum of the contributions from each degree of

freedom in the x, y, and z coordinates, so it can be expressed as

E¼Ex +Ey +Ez (3.41)

Therefore, the following equation is obtained by substitution:

k2x + k2y + k2z ¼
2m

ћ2
Ex +Ey +Ez

� �
(3.42)

As a result of the energy associated with the degree of freedom in the x direc-

tion being independent of the y and z coordinates, it is possible to separate

Eq. (3.42) to give

k2x¼
2mEx

ћ2
; k2y ¼

2mEy

ћ2
; k2z¼

2mEz

ћ2
(3.43)

The first of the equations, Eq. (3.37), can be written as

@2X xð Þ
@x2

+ k2xX xð Þ¼ 0 (3.44)

This equation is of the same form as Eq. (3.7), so the solution can be written

directly as

X xð Þ¼
ffiffiffi
2

a

r
sin

nxπ

a
x (3.45)

Similarly, the other two equations yield solutions that can be written as

Y yð Þ¼
ffiffiffi
2

b

r
sin

nyπ

b
y (3.46)

and

Z zð Þ¼
ffiffiffi
2

c

r
sin

nzπ

c
z (3.47)

The general solution can be written as the product of the three partial

solutions (the assumption made earlier that permitted the separation of

variables)
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ψ x, y, zð Þ¼X xð ÞY yð ÞZ zð Þ (3.48)

and

ψ x, y, zð Þ¼
ffiffiffi
2

a

r
sin

nxπ

a
x �

ffiffiffi
2

b

r
sin

nyπ

b
y �

ffiffiffi
2

c

r
sin

nzπ

c
z (3.49)

in which nx, ny, and nz are the quantum numbers for the x, y, and z com-

ponents of energy, respectively. The general solution can be simplified

somewhat by combining constants to give

ψ x, y, zð Þ¼
ffiffiffiffiffiffi
8

abc

r
sin

nxπ

a
x sin

nyπ

b
y sin

nzπ

c
z (3.50)

It is now possible to draw some analogies to the particle in the

one-dimensional box. First, the results will be used to find expressions for

the energies using Eq. (3.43):

nxπ

a
¼ kx¼

ffiffiffiffiffiffiffiffiffiffiffi
2mEx

ћ2

r
(3.51)

Solving for Ex gives an expression for the energy levels based on the x com-

ponent that can be written as

Ex ¼ ћ2n2xπ
2

2ma2
¼ h2n2x
8ma2

(3.52)

The equivalent expressions for the energy in terms of the y and z directions

are

Ey ¼
ћ2n2yπ

2

2mb2
and Ez ¼ ћ2n2zπ

2

2mc2
(3.53)

The total energy E is the sum of the three components and is represented by

the equation

E¼Ex +Ey +Ez ¼ ћ2π2

2m

n2x
a2

+
n2y

b2
+
n2z
c2

 !
(3.54)

where nx¼1, 2, 3, … ; ny¼1, 2, 3, … ; and nz¼1, 2, 3 ….

It should be noted that one quantum number has been introduced for

each degree of freedom of the system, corresponding to the three coordi-

nates of the particle. Therefore, the energy is dependent on the quantum

numbers nx, ny, and nz. If it is assumed that the box is cubic, then a¼b¼ c.

Therefore, the denominators of the fractions in Eq. (3.54) would be
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identical, and the lowest energy will occur when the numerators have the

smallest values, which occurs when all of the quantum numbers are 1. This

state can be designated as the 111 state, where the digits indicate the values of

the quantum numbers nx, ny, and nz, respectively. The state of next lowest

energy would be with two of the quantum numbers being 1 and the other

being 2. One way that this could occur would be with nx¼2 and ny¼nz¼1.

In this case, the energy would be equal to 6 ћ2π2/2ma2 or 6 h2/8ma2 when

ћ¼h/2π is substituted. It should be apparent that this state, designated as the

211 state, has the same energy as the 121 and 112 states. Therefore, these

states are degenerate in the case where a¼b¼ c. However, if the dimensions

of the box are not equal, then the 211, 121, and 112 states are not degen-

erate. It is easy to see that if one of the dimensions is twice another (or in

some other appropriate relationship), the energies might still happen to

be degenerate simply because of the relationship of a, b, and c, as the quan-

tum numbers are assigned different values. Such a situation is known as acci-

dental degeneracy.

The energy level diagram that results when a¼b¼ c is shown in Fig. 3.5.

The states are indicated in terms of the quantum numbers nx, ny, and nz (e.g.,

112, 123, and 322), and the degeneracy is given after the combination of

quantum numbers.

When a 6¼b 6¼ c, the energies must be calculated using the actual dimen-

sions of the box. Choosing unequal values for a, b, and c and then using sev-

eral integers for nx, ny, and nz will quickly enable one to see the

nondegeneracy of the energy states.

3.4 F-CENTERS IN CRYSTALS

When potassium vapor is passed over a crystal of KCl, the crystal takes on a

color. It can be shown that as a result of the reaction

3,2,2 E=17h2/8ma2 (3)

E=14h2/8ma2 (6)
E=12h2/8ma2 (1)
E=11h2/8ma2 (3)
E=9h2/8ma2 (3)

E=6h2/8ma2 (3)

E=3h2/8ma2 (1)

3,2,1

E

2,2,2
3,1,1
2,2,1

1,1,2

1,1,1

Fig. 3.5 Energy levels for a particle in a three-dimensional cubic box.
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K vapð Þ!K+ crystalð Þ + e� anion siteð Þ (3.55)

the electrons occupy anion sites in the KCl lattice. In reality, the electrons

are distributed over the cations that surround the lattice site. The centers

where the electrons reside are responsible for the absorption of light, which

results in the crystal being colored. Such centers are called f-centers because of

the German word farbe, which means “color.” When other alkali metals are

added in the same way to the corresponding alkali halides, color centers are

also produced. As a very crude approximation, the electrons in anion sites

can be treated as particles in three-dimensional boxes. It is interesting to note

that the wavelength of the light absorbed depends on the nature of the crystal

lattice, and the maxima in the absorptions for several crystals are as follows:

Crystal Absorption maximum (erg)

LiCl 4.96�10�12

NaCl 4.32�10�12

KCl 3.52�10�12

RbCl 3.20�10�12

LiBr 4.32�10�12

NaBr 3.68�10�12

For a given chloride compound, the size of the anion site (where the

electron resides) is dependent on the size of the cation. Because the energies

for a particle in a three-dimensional box are inversely related to the size of

the box, it is to be expected that the greatest difference between energy

levels would be for LiCl. Accordingly, the absorption energy is highest

for LiCl, for which the anion site is smallest. In fact, the series from LiCl

to RbCl shows this trend clearly based on the size of the anion site. There-

fore, this phenomenon shows a correlation that would be predicted when

the particle in a three-dimensional box model is employed.

3.5 SOLVATED ELECTRONS

When alkali metals are dissolved in liquid ammonia, the dilute solutions have

a blue color. There have been many studies conducted on these solutions

and how their properties vary with concentration. Conductivity studies

have shown that the dilute solutions behave as 1:1 electrolytes with the

charged species consisting of Na+ and electrons. As a result of ammonia mol-

ecules being polar, it is believed that the electrons are solvated, probably

residing in some sort of solvent cage. It is of interest to note the same blue
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color results when any of the alkali metals are dissolved in liquid ammonia,

with the absorption reaching its maximum at �400 nm.

If the electron is presumed to reside in a cage formed by the bases of two

pyramidal ammonia molecules, the result might be represented as shown in

Fig. 3.6. For purposes of illustration, it will be assumed that the “box” in

which the electron resides is cubic with an edge length of 6 Å

(a¼b¼ c¼6�10�8 cm). Given the size of ammonia molecules and the fact

that the hydrogen atoms have partial positive charges, this distance of

approach may not be exactly correct, but it gives a starting point for the cal-

culation. The difference between the first two energy levels are given by

ΔE¼ h2

8m

22

a2
+
12

a2
+
12

a2

� �
� h2

8m

12

a2
+
12

a2
+
12

a2

� �
¼ 3h2

8ma2
(3.56)

When values are substituted in this equation for the constants, ΔE is

5.04�10�12 erg. This is equivalent to a photon with a wavelength of

395 nm or 3950 Å. Of course, this means that the dimension chosen for

the box was a very lucky guess, but the point is that even if the solvent cage

has somewhat different dimensions, treating the solvated electron as a

particle in a three-dimensional box is not totally unrealistic. Even very sim-

ple quantummechanical models are sometimes useful for approximating real

systems.

In this chapter, two simple quantum mechanical models have been con-

sidered. In the process of solving the wave equations for these models, sev-

eral of the important aspects of quantum mechanics have been illustrated.

Moreover, in each case, an application of the model to a physical system

e–

Fig. 3.6 A model to represent an electron in a “box” consisting of two ammonia
molecules.
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has been made. Therefore, the particle in one- and three-dimensional box

models serve as useful ways to illustrate quantum mechanical principles and

practices.

PROBLEMS

1. Solve the equation y+ay¼0 subject to the boundary conditions y(0)¼
y(π)¼0.

2. If a hexatriene molecule absorbs light of 2500 Å (250 nm) to move a π
electron from n¼1 to n¼2, what is the length of the molecule?

3. What would be the translational energies of the first two levels for a

hydrogen molecule confined to a length of 10 cm?

4. What would be the length of a one-dimensional box necessary for the

separation between the first two energy levels for a proton to be

2.00 eV?

5. Calculate the probability of finding the particle in a one-dimensional

box of length a in the interval 0.100a to 0.250a.

6. Planck’s constant is the fundamental quantum of action (energy� time).

Explain how the behavior of a particle in a box becomes classical as

the fundamental quantum of action approaches zero.

7. Calculate the average value of the x coordinate of a particle in a

one-dimensional box.

8. Consider an atomic nucleus to be a potential box 10�13 cm in diameter.

If a neutron falls from n¼2 to n¼1, what energy is released? If this

energy is emitted as a photon, what will be its wavelength? In what

region of the electromagnetic spectrum will it be observed?

9. Consider a particle of mass mmoving in a planar circular path of length

l. Assume that the potential for the particle along the path is zero,

whereas the potential for the particle to be out of the path is infinite

to confine the particle to the path

(a) Set up the wave equation for this model.

(b) Solve the wave equation to get a general form of the solution.

(c) Use the fact that the solution for any points x and (l + x) must be

equal to simplify the solution.

10. When sodium dissolves in liquid ammonia, some dissociation occurs:

Na!Na+ solvatedð Þ + e� solvatedð Þ
The solvated electron can be treated as a particle in a three dimen-

sional box. Assume that the box is cubic with an edge length of
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1.55�10�7 cm and suppose that excitation occurs in all directions

simultaneously from the lowest state to the first excited state. What

wavelength of radiation would the electron absorb?Would the solution

be colored?

11. What size would a one-dimensional box holding an electron have to be

in order for it to have the same energy as a hydrogen molecule would

have in a box of length 10 Å?

12. Suppose a helium atom is in a box of length 50 Å. Calculate the energy

at a few distances and sketch the energy as a function of box length.

13. Suppose a particle in a three-dimensional box has an energy of

14h2/8ma2. If a¼b¼ c for the box, what is the degeneracy of this state?

14. Show that the wave functions for the first two energy levels of a particle

in a one-dimensional box are orthogonal.

15. Consider an electron in the π bond in ethylene as a particle in a

one-dimensional box of length 133 pm. What is the energy difference

between the first two energy levels? In what region of the electromag-

netic spectrum would a photon emitted as the electron falls from the

first excited state to the ground state be observed?

16. An electron trapped in a three-dimensional lattice defect (vacant anion

site) of a crystal can be considered as a particle in a three-dimensional

box. If the length of the box in each dimension is 200 nm, what would

be the difference between the first two allowed states? What would be

the effect on the respective energies of the first two allowed states if the

defect site were 200 nm in length in the x and y directions but 250 nm

in the z direction?
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CHAPTER 4

The Hydrogen Atom

The work of de Broglie showed that a moving particle has a wave character.

InChapter 2, it was shown that this could lead to an adaptation of an equation

that is known to apply to vibrations in three dimensions, resulting in an equa-

tion that describes the electron in a hydrogen atom as a three-dimensional

wave. Although this was illustrated in the last chapter, we did not solve

the resulting equation. We now address that problem for which Erwin

Schr€odinger received the Nobel Prize: the solution of the wave equation

for the hydrogen atom. Therefore, it should be anticipated that the solution

is not a trivial problem!

4.1 SCHR€ODINGER’S SOLUTION TO THE HYDROGEN
ATOM PROBLEM

A hydrogen atom can be described in terms of polar coordinates, as shown in

Fig. 4.1. As the electron circles around the nucleus, the system (i.e., the pro-

ton and the electron) rotates around the center of gravity. For the rotating

system, we can write the reduced mass μ as

1

μ
¼ 1

me

+
1

mp

(4.1)

or, in solving for μ,

μ¼ memp

me +mp

(4.2)

Because the mass of the electron is so much less than that of the proton,

me+mp�mp and μ¼me. When we assume that the nucleus is stationary

and that the electron does all of the moving (known as the

Born-Oppenheimer approximation), it leads to the same result. Therefore,

we will assume that this approximation can be used, although μ is indicated.
As we saw in the last chapter, the Hamiltonian can be written as the sum of

the potential and kinetic energies

H ¼T +V (4.3)
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and T¼p2/2 μ. The potential energy V for the interaction of the electron

with the proton is �e2/r. Therefore, the Hamiltonian, H, for the hydrogen

atom is

H ¼ p2

2μ
� e2

r
(4.4)

In operator form, �e2/r is unchanged because e is a constant and r is a coordi-

nate. It has already been shown that the kinetic energy in operator form

(where ћ¼h/2π, usually called h-bar) can be written as

T̂ ¼� ћ2

2μ
r2 (4.5)

Therefore, the Hamiltonian operator Ĥ is

Ĥ ¼� ћ2

2μ
r2� e2

r

The general form of the wave equation is

Ĥψ ¼Eψ (4.6)

After substituting in this equation for the Hamiltonian operator Ĥ, the wave

equation is

� ћ2

2μ
r2ψ� e2

r
ψ ¼Eψ (4.8)

When the Laplacian operator r2 is written out in explicit form and the

equation is rearranged, the result is

r

x

y

z

f

q

e−

+

Fig. 4.1 Coordinate system for the hydrogen atom in polar coordinates.
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@2

@x2
+

@2

@y2
+

@2

@z2

� �
ψ +

2μ

ћ2
E�Vð Þψ ¼ 0 (4.9)

This is a partial differential equation in three variables, and one should

expect that the separation of variables technique must be applied to solve

it. However, the distance of the electron from the nucleus when expressed

in Cartesian coordinates is

r ¼ x2 + y2 + z2
� �1=2

Therefore, the variables cannot be separated. The difficult part now is to

change coordinate systems to get variables (coordinates) that can be sepa-

rated. The transformation made is to describe the hydrogen atom in terms

of polar coordinates. Figure 4.1 shows the coordinate system and the rela-

tionship between the Cartesian and the polar coordinates.

A tedious aspect of this problem now consists of transforming

@2

@x2
+

@2

@y2
+

@2

@z2
(4.10)

into a function of r, θ, and φ. That transformation is laborious, but the

result is

r2¼ 1

r2
@

@r
r2
@

@r

� �
+

1

r2 sinθ

@

@θ
sinθ

@

@θ

� �
+

1

r2 sin2θ

@2

@φ2
(4.11)

Now, the Schr€odinger equation becomes

1

r2
@

@r
r2

@

@r
ψ

� �
+

1

r2 sinθ

@

@θ
sinθ

@

@θ
ψ

� �
+

1

r2 sin2θ

@2

@φ2
ψ +

2μ

ћ2
e2

r
+E

� �
ψ ¼ 0

(4.12)

This equation contains only the variables r, θ, and φ.
In this case, it is assumed there is a solution of the form ψ (r, θ, φ)¼

R(r) Θ(θ) Φ(φ), which is substituted in Eq. (4.12). For simplicity, the par-

tial solutions will be written as R, Θ, and Φ without showing the func-

tionality, R(r), etc. The Schr€odinger equation can then be written as

1

r2
@

@r
r2
@RΘΦ

@r

� �
+

1

r2 sinθ

@

@θ
sinθ

@RΘΦ

@θ

� �

+
1

r2 sin2θ

@2RΘΦ

@φ2
+
2μ

ћ2
e2

r
+E

� �
RΘΦ¼ 0

(4.13)
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However, because Θ and Φ are not functions of r, they can be removed

(as constants) from the differentiation with respect to r. The same action

is possible in other terms of the equation involving the other variables. This

allows the wave equation to be written as

ΘΦ

r2
@

@r
r2
@R

@r

� �
+

RΦ

r2 sinθ

@

@θ
sinθ

@Θ

@θ

� �

+
RΘ

r2 sin2θ

@2Φ

@φ2
+
2μ

ћ2
e2

r
+E

� �
RΘΦ¼ 0

(4.14)

When both sides of Eq. (4.14) are divided by RΘΦ and multiplied by

r2 sin2 θ, the result is

sin2θ

R

@

@r
r2
@R

@r

� �
+

sinθ

Θ

@

@θ
sinθ

@Θ

@θ

� �
+

1

Φ

@2Φ

@φ2
+
2μr2 sin2θ

ћ2
e2

r
+E

� �
¼ 0

(4.15)

Inspection shows that for the four terms on the left-hand side of the equa-

tion, there is no functional dependence on φ except in the third term.

Therefore, with respect to the other variables, the third term can be treated

as a constant. For convenience, that constant will be represented as equal

to �m2. This m is not the same as the electron mass used in the expression

2 m/ћ2. Therefore, the term involving Φ leads to the equation

1

Φ

@2Φ

@φ2
¼�m2 (4.16)

which can be rearranged to give

@2Φ

@φ2
+m2Φ¼ 0 (4.17)

This equation is sometimes referred to as the “φ equation,” and this repre-

sents the first equation obtained from the separation of variables.

By making use of �m2 as a constant that represents the third term of

Eq. (4.15), the wave equation can now be written as

sin2θ

R

@

@r
r2
@R

@r

� �
+

sinθ

Θ

@

@θ
sinθ

@Θ

@θ

� �
�m2 +

2μr2 sin2θ

ћ2
e2

r
+E

� �
¼ 0

(4.18)

If this equation is divided by sin2θ and rearranged, the result can be

written as
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1

R

@

@r
r2
@R

@r

� �
+
2μr2

ћ2
e2

r
+E

� �
+

1

Θ sinθ

@

@θ
sinθ

@Θ

@θ

� �
� m2

sin2θ
¼ 0

(4.19)

Inspection of this equation shows that the first two terms contain the

functional dependence on r and the last two terms reflect the dependence

on θ. As was done earlier, the sum of two terms is set equal to a constant β,
such that

1

R

@

@r
r2
@R

@r

� �
+
2μr2

ћ2
e2

r
+E

� �
¼ β (4.20)

and

1

Θ sinθ

@

@θ
sinθ

@Θ

@θ

� �
� m2

sin2θ
¼�β (4.21)

If Eq. (4.20) is multiplied by R and Eq. (4.21) is multiplied by Θ, the results
are

@

@r
r2
@R

@r

� �
+
2μr2

ћ2
e2

r
+E

� �
R�Rβ¼ 0 (4.22)

and

1

sinθ

@

@θ
sinθ

@Θ

@θ

� �
� m2

sin2θ
Θ+ βΘ¼ 0 (4.23)

The equation containing the variables r, θ, and φ has now been separated.

The result is that the second-order partial differential equation in three vari-

ables has been transformed into three second-order differential equations,

each containing only one variable. Solving the three equations is now the

task. Only the equation involving φ is simple in its solution because it is

of the same form as the equation for the particle in a box problem. The solu-

tion of the “φ equation” can be written as

Φ φð Þ¼ 1ffiffiffi
2

p eimφ (4.24)

Therefore, the solution of the overall equation can be written as

ψ r, θ, φð Þ¼ 1ffiffiffiffiffi
2π

p eimφR rð ÞΘ θð Þ (4.25)

Having solved the first of the three separated equations, attention will now

be turned to the equation involving θ:
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1

sinθ

@

@θ
sinθ

@Θ

@θ

� �
� m2

sin2θ
Θ+ βΘ¼ 0 (4.26)

This equation can be put in the form

d

sinθ dθ

sin2θ dΘ

sinθ dθ

� �
� m2Θ

sin2θ
+ βΘ¼ 0 (4.27)

The standardmethod for solving this equation is to make the transformations

u¼ cosθ so that du¼� sinθ dθ

cos2θ¼ u2¼ 1� sin2θ

sin2θ¼ 1�u2

Substituting for sin2 θ and sin θ dθ in Eq. (4.27) leads to the equation

d

du

1�u2ð Þ
du

dΘ

� �
� m2Θ

1�u2
+ βΘ¼ 0 (4.28)

By rearrangement, this equation can be transformed into the form

1�u2
� �d2Θ

du2
�2u

dΘ

du
+ β� m2

1�u2ð Þ
� �

Θ¼ 0 (4.29)

This equation is similar in form to a well-known differential equation

encountered in advanced mathematics. That equation,

1�z2
� �d2P mj j

l zð Þ
dz2

�2z
dP

mj j
l zð Þ
dz

+ l l+1ð Þ� m2

1�z2
P

mj j
l zð Þ¼ 0 (4.30)

is known as Legendre’s equation, in which β in Eq. (4.29) is equivalent to

l (l+1) in Eq. (4.30). Solving equations of this type requires the use of

series, but rather than getting too involved with mathematics at this point,

the discussion of series solutions of differential equations will be delayed

until Chapter 6. The series solutions of Legendre’s equation are known

as the associated Legendre polynomials, and they can be written as

P
mj j
l cosθð Þ, where l¼ 0, 1, 2,…, andm¼ 0, �1, �2,…, � l

The first few associated Legendre polynomials are as follows:

l¼ 0, m¼ 0 : Θ θð Þ¼ 1=
ffiffiffi
2

p
¼Θ0,0

l¼ 1, m¼ 0 : Θ θð Þ¼
ffiffiffiffiffiffiffiffi
3=2

p
cos θ¼Θ1,0

l¼ 1, m¼�1 : Θ θð Þ¼
ffiffiffiffiffiffiffiffi
3=4

p
sin θ¼Θ1,�1

l¼ 2, m¼ 0 : Θ θð Þ¼
ffiffiffiffiffiffiffiffi
5=8

p
3 cos2θ�1
� �¼Θ2,0
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The equation that is a function of r is known as the radial equation, and it can

be put in the form

1

r2
d

dr
r2
dR

dr
+
2μ

ћ2
e2

r
+E

� �
R� l l+1ð Þ

r2
R¼ 0 (4.31)

This equation can be written in a general form that is shown as

xu00 + u0 2l+2ð Þ+ �l�1+ nð Þu¼ 0 (4.32)

This equation can be solved only when n � l+1. This equation is known

as Laguerre’s equation, and the solutions are the Laguerre polynomials. It

was shown earlier that l¼0, 1, 2, …, so it is apparent that n¼1, 2, 3, ….

For example, if n¼3, l can take on the values 0, 1, and 2. This gives rise

to the familiar restrictions on the quantum numbers that students learn in

general chemistry (see also Chapter 5):

n¼principal quantum number¼1, 2, 3,…

l¼orbital angular momentum quantum number¼0, 1, 2, …, (n�1)

m¼magnetic quantum number¼0,�1,�2, …,�l.

The spin quantum number, s, (equal to�(1/2)ћ) is a property of the electron
because it is a particle that has an intrinsic spin. It should be recalled from

previous chemistry courses that each value of m defines an orbital, so there

are 2 l+1 orbitals for each value of l. It should also be recalled that the des-

ignation of the types of orbitals is related to the l value by

l¼ 0 1 2 3

s p d f

The solutions of the equations involving φ and θ are combined by multipli-

cation to give the complete angular dependence of the wave functions.

These angular functions are known as the spherical harmonics, which are writ-

ten as Yl,m(θ, φ). Solutions of the equation involving r are called the radial

wave functions, Rn,l(r), and the overall solutions are Rn,l(r)Yl,m(θ, φ). Table 4.1
gives the wave functions for the hydrogen-like species. The hydrogen wave

functions are indicated when Z¼1.

4.2 INTERPRETING THE SOLUTIONS

In Chapter 2, the idea that ψ2 is related to the probability of finding a particle

described by the wave function ψ was discussed briefly. In classical physics,

the square of the amplitude gives the total energy of a vibrating system (e.g.,

a vibrating object on a spring or a vibrating string). Similarly, the square of
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the wave function for an electron is proportional to the amplitude function

squared, because in reality the electron has been represented as a de Broglie

wave by means of the Schr€odinger equation.
Solving a differential equation to obtain ψ does not uniquely determine

a probability, because solving such an equation leads to arbitrary constants.

Table 4.1 Complete wave functions for hydrogen-like speciesa

ψ1s ¼
1

π1=2
Z

a

� �3=2

e�Zr=a

ψ2s ¼
1

4 2πð Þ1=2
Z

a

� �3=2

2 �Zr

a

� �
e�Zr=2a

ψ2pz
¼ 1

4 2πð Þ1=2
Z

a

� �5=2

r e�Zr=2a cosθ

ψ2px
¼ 1

4 2πð Þ1=2
Z

a

� �5=2

r e�Zr=2a sinθcosφ

ψ2py
¼ 1

4 2πð Þ1=2
Z

a

� �5=2

r e�Zr=2a sinθ sinφ

ψ3s ¼
1

81 3πð Þ1=2
Z

a

� �3=2

27 � 18
Zr

a
+2

Z2r2

a2

� �
e�Zr=3a

ψ3pz
¼ 21=2

81π1=2
Z

a

� �5=2

6 � Zr

a

� �
r e�Zr=3a cosθ

ψ3px
¼ 21=2

81π1=2
Z

a

� �5=2

6 � Zr

a

� �
r e�Zr=3a sinθcosφ

ψ3py
¼ 21=2

81π1=2
Z

a

� �5=2

6 � Zr

a

� �
r e�Zr=3a sinθ sinφ

ψ3dxy
¼ 1

81 2πð Þ1=2
Z

a

� �7=2

r2 e�Zr=3a sin2θ sin2φ

ψ3dxz
¼ 21=2

81π1=2
Z

a

� �7=2

r2 e�Zr=3a sinθcosθcosφ

ψ3dyz
¼ 21=2

81π1=2
Z

a

� �7=2

r2 e�Zr=3a sinθcosθ sinφ

ψ3dx2�y2
¼ 1

81 2πð Þ1=2
Z

a

� �7=2

r2 e�Zr=3a sinθcos2θ

ψ3dz2
¼ 1

81 6πð Þ1=2
Z

a

� �7=2

r2 e�Zr=3a 3cos2θ�1
� �

aThe nuclear charge is given by Z, and a is the first Bohr radius 0.529 Å.
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In the case of the electron, the particle must be somewhere, so the probability

integral is written as ð
ψ2 dτ¼ 1 (4.33)

If this relationship does not hold, then the constants included in the wave

function are “adjusted” by introducing a constant N to make the integral

evaluate to 1: ð
Nψ∗ � Nψ dτ¼ 1 (4.34)

In this case, N is called a normalization constant. The value of ψ2 is positive

regardless of whether ψ is positive or negative, so the probability ranges from

0 to 1.

Another interpretation of the square of the wave function is not only

possible, but it also provides a very useful concept for describing certain

properties of electrons in atoms. The concept being described is that of

the density of the electron “cloud.” If flash photography could show the loca-

tion of an electron, and if the process could be repeated an enormous num-

ber of times, then a plot could be made to show the position of the electron

at the instant it appeared in a photograph. The result would appear as shown

in Fig. 4.2A.

The area in which the dots have the highest density represents the

regions in which the electron is found most of the time. If the dots represent

particles of a cloud, then the cloud has its highest density where the dots are

closest together. Obviously, a particle cannot be “smeared out” over space,

but it is a useful concept nonetheless. In fact, one qualitative definition of a

covalent bond is the increased probability for finding electrons between two

(A) (B)
Fig. 4.2 (A) Instantaneous positions of an electron in the 1s orbital and (B) the contour
surrounding the electron 95% of the time.
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atoms or the increased density of the electron cloud between two atoms.

Although the charge cloud does not represent the nature of particles, it pro-

vides a pictorial way to describe a probability.

Having plotted the position of the electron in the ground state of

a hydrogen atom, it is now possible to draw a surface to encompass the

positions where the electron was found a specified percentage (perhaps

95 percent) of the time. The surface is a sphere in the case of the electron

in a 1s orbital. Therefore, the 1s orbital is described as spherical or with spherical

symmetry (as shown in Fig. 4.2B), and the probability of finding the electron

depends on r. The quantum state in which the electron resides is referred to as

an orbital, but this word in no way indicates a path of the electron.

Finally, as it has already been discussed, the probability of finding the

electron in terms of three dimensions (its radial density) is given by

P rð Þ dr¼ R rð Þ½ �2 4πr2 dr (4.35)

Figure 2.1 shows a plot of the radial density that indicates the distance of

highest probability (most probable distance) is a0. This can be shownmathe-

matically as follows: After squaring the radial wave function, the result is

P rð Þ dr¼ 4π
1

a0

� �3

r2 e�2r=a0dr (4.36)

Differentiating this equation with respect to r and setting the derivative equal

to 0 gives

d P rð Þ
dr

¼ 0¼ 4πð Þ2r 1

a0

� �3

e�2r=a0 � 4πð Þ 2
a0
r2

1

a0

� �3

e�2r=a0 (4.37)

Therefore,

4πð Þ2r 1

a0

� �3

e�2r=a0 ¼ 4πð Þ 2
a0
r2

1

a0

� �3

e�2r=a0 (4.38)

After canceling like terms from both sides and simplifying, it leads to

1¼ r

a0
(4.39)

Therefore, the most probable radius is a0.

To this point, the discussion has dealt with properties of the 1s wave

function. If the 2swave function is considered, it is found that the radial den-

sity plot has a very different appearance. The 2swave function (whereZ¼1)

for the hydrogen atom is
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ψ2s ¼
1

4 2πð Þ1=2
Z

a

� �3=2

2�Zr

a

� �
e�Zr=2a (4.40)

From this equation, it can be seen that the probability of finding the electron

has a node where the probability goes to 0 at r¼2a0, which can be seen from

the 2� (r/a0) part of the wave function whenZ¼ 1. The 3swave function is

ψ3s¼
1

81 3πð Þ1=2
Z

a

� �3=2

27�18
Zr

a
+2

Z2r2

a2

� �
e�Zr=3a (4.41)

Because the only part of this wave function (and hence the square of ψ ) that
can go to 0 is the polynomial, it should be clear that at some value of r (in units

of a0),

27�18x+2x2¼ 0 (4.42)

where x¼ r/a0. When this quadratic equation is solved to determine x, it is

found that

x¼ 18�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
182�4 2ð Þ 27ð Þ

p
4

¼ 7:10 and 1:90 (4.43)

Therefore, the probability of finding the electron as a function of distance in

the 3s state goes to 0 at r¼1.90 a0 and r¼7.10 a0, so the 3swave function has

two nodes. In fact, it is easy to see that the probability has n�1 nodes, where

n is the principal quantum number. Figure 4.3 shows the probability density

as a function of r for the 2s and 3s states.

4.3 p AND d WAVE FUNCTIONS AND ORBITALS

It has already been explained that the swave functions give rise to a spherical

surface that encompasses the electron an arbitrary percentage of the time

(perhaps 90% or 95%). The surfaces that depict the probabilities of finding

the electron in the 2s and 3s states are also spherical, although they are larger

than the 1s surface. Consequently, the electron density is more diffuse when

the electron is in one of these states. This has implications for the strengths

of bonds formed using such orbitals. This point will be revisited in Chapter 8

in a discussion of bonds formed by the overlap of s orbitals. Surfaces that

correspond to the electron density in other states must also be shown.

The surfaces for the set of three p orbitals, for which l¼1, are shown in

Fig. 4.4. The appropriate mathematical signs of the wave functions are
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shown in the figures, and each p orbital has two lobes separated by a

nodal plane.

When considering the cases that arise when l¼2, it is found that there are

five orbitals of the d type, shown in Fig. 4.5. However, if the dxy, dyz, and dxz,

orbitals are rotated by 45°, this generates three new orbitals, dx2�y2, dy2�z2,

and dz2�x2, which have lobes lying along the axes. It can be shown that com-

bining these wave functions leads to the relationship

ψdx2�y2
+ψ dy2�z2

+ψdz2�x2
¼ 0 (4.44)

P
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bi
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y

P
ro

ba
bi
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y

4

2s

3s

0 2 6 8

0 2 4 6 8 10 12 14 16

r/ao

r/ao

Fig. 4.3 Radial probability plots for the 2s and 3s wave functions. Note the positions of
the minima, which indicate nodes.
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Fig. 4.4 A set of three p orbitals.
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Therefore, only two of the three orbitals are independent. In the usual case,

the dx2�y2 is chosen to represent one of the independent orbitals, which

leaves the other two to be combined to give the dz2 orbital, as shown in

Fig. 4.5. Thus, the dz2 orbital is usually shown as a combination of the other

two functions, dy2�z2 and dz2�x2. For our purposes, the usual diagrams shown

in Fig. 4.5 will suffice.

4.4 ORTHOGONALITY

Our ideas about bonding between atoms focus on the combination of

atomic orbitals (i.e., wave functions). One of the more important aspects

of orbital combination is that of orthogonality. For certain combinations of

wave functions, it is found thatð
ψ1 � ψ2 dτ¼ 0 (4.45)

This type of integral, known as an overlap integral, gives a measure of the

extent to which orbitals overlap in molecules (see Chapter 8). If the condi-

tion shown in Eq. (4.45) is met, then the wave functions are said to be orthog-

onal. This relationship shows that there is no effective overlap or congruency
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+

+
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−
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+

Fig. 4.5 A set of five d orbitals.
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of the wave functions. For example, the pz and px orbitals are perpendicular

to each other, and the overlap is 0. Although this is shown pictorially in

Fig. 4.6, it can also be shown mathematically as follows:

The wave functions corresponding to the px and pz wave functions are

pz¼ 1

4
ffiffiffiffiffi
2π

p 1

a0

� �5=2

r e�r=2a0 cosθ (4.46)

and

px¼ 1

4
ffiffiffiffiffi
2π

p 1

a0

� �5=2

r e�r=2a0 sinθcosφ (4.47)

Therefore, the integral ð
ψ∗ψdτ

can be written as

ð
ψ pz

ψpz
dτ¼ 1

32πa50

ð∞

0

ðπ

0

ð2π

0

r4e�r=a0 sin2θ cosθ cosφdr dθdφ (4.48)

¼ 1

32π a50

ð∞

0

r4e�r=a0dr

ðπ

0

sin2θ dθ

ð2π

0

cosφ dφ

The exponential integral is of a form discussed earlier, and it can be evaluated

immediately to give

ð∞

0

r4e�r=a0 dr¼ 4!

1=a0ð Þ5 (4.49)

z

x−

−

+

+

Fig. 4.6 The px and pz orbitals.
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The two integrals giving the angular dependence can be looked up in a table

of integrals because they are standard forms. It is found that

ð
cosax dx¼ 1

a
sinax (4.50)

ð
sin n ax cosax dx¼ 1

a n+1ð Þ sin
n+1ax (4.51)

For the integrals being considered, a¼1 and n¼2, so the evaluation is as

follows:

ð2π

0

cosφ dφ¼ sinφ 2π
0

�� ¼ sin2π� sin0¼ 0 (4.52)

ðπ

0

sin2θ cosθ dθ¼ 1

3
sin3θ π

0

�� ¼ 1

3
sin3π� sin30

� 	¼ 0 (4.53)

Therefore, it has been shown that

ð
ψ pz

ψ px
dτ¼ 0

The orbitals are shown to be orthogonal, as expected. Note that it is the

angular dependence that is different for the two orbitals, which results in their

being orthogonal.

The implications of the orthogonality of orbitals are of great importance.

For example, it can be seen immediately that any overlap between certain

types of orbitals will not occur; two of these are shown in Fig. 4.7. For a

given atom, it can be shown that if ψ1 and ψ2 are orbitals with different sym-

metry types, they must be orthogonal. However, the orbitals are orthogonal

+

−

+
−

+

+

+

−

(A) (B)
Fig. 4.7 Interaction of p and s orbitals (A) and d and s orbitals (B) to give no net overlap.
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(e.g. px, py, and pz) within the same type of orbital, as are the five orbitals

in a set of d orbitals. However, it can also be seen that numerous types of

overlaps, some of which are shown in Fig. 4.8, lead to favorable situations

(overlap integral>0). The discussion of the overlap of atomic orbitals will be

presented in more detail in Chapters 8 and 10.

4.5 APPROXIMATE WAVE FUNCTIONS AND THE
VARIATION METHOD

For many problems, it is not practical to obtain a wave function by the

exact solution of a wave equation that describes the system. It is still

possible to perform many types of calculations. One of the most useful

techniques is that known as the variation method. The procedure will be

illustrated by applying it to the solution of a simple problem. The variation

method will also be used in the next chapter in dealing with the problem

of the helium atom, as well as in Chapter 8 when dealing with diatomic

molecules.

s-s

+ +

p-p

+ +− −

s-p

+− +

d-dp-p d-p

− −

+ +

dd
−

+
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−
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+ −
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−

−

+ −

+
d p
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C

C
+

+

−

−
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+

π∗ d
−

+

π∗−d

Fig. 4.8 Favorable overlap of orbitals leading to S>0. (Reprinted with permission from
House, J. E. Inorganic Chemistry, 2nd ed.; Academic Press/Elsevier: Amsterdam, 2013.)
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By using the principles introduced in Section 2.4, the expectation value

for the energy of a system is given by

E¼

ð
ψ∗ Ĥ ψ dτð
ψ∗ψ dτ

(4.54)

If the exact form of the wave function is unknown, then the first step is to

assume some form of the wave function. It is frequently described as

“guessing” a trial wave function, but this is hardly the case. The general form

of the wave functions found from the solution of the hydrogen atom prob-

lem shows that they are exponential functions. Therefore, a function of that

general type is a good starting point (i.e., the initial “guess”).

The variation theorem provides the basis for the variationmethod. This the-

orem states that the correct energy is obtained from the use of Eq. (4.54) only

when the correct wave function is used. Any “incorrect” wave function will

give an energy that is higher than the actual energy. This premise is stated

without providing a proof at this point. If a trial wave function, ψ i, is chosen,

then the energy Ei calculated using it is greater than the correct energy E0, so

that for any incorrect wave function,Ei>E0. Generally, a trial wave function

is chosen that contains someadjustableparameter so that its value canbevaried

to “improve” thewave function.This “improved”wave function can thenbe

used to calculate an “improved” value for the energy, etc., and the process

repeated until a constant value is obtained.

A simple illustration of the variation method is provided by considering

the hydrogen atom in the 1s state. For this state, the trial wave function cho-

sen will be one having the form

ψ ¼ e�br (4.55)

In this case, b is a parameter whose actual value can be changed as infor-

mation about it is gained. For the hydrogen atom, the potential energy is

V¼�e2/r, so the Hamiltonian operator is

Ĥ ¼� ћ2

8π2m
r2� e2

r
(4.56)

The energy depends only on r for the 1s state of the hydrogen atom, so the

angular portion of the Laplacian can be omitted and replaced by the factor 4π
after integration. Therefore, it is not necessary to use the radial portion of

r2, and the required function is
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r2¼ 1

r2
@

@r
r2
@

@r

� �
(4.57)

When this operator is used with the trial wave function ψ , the result is

r2ψ ¼ 1

r2
@

@r
r2
@

@r

� �
e�br (4.58)

By taking the derivatives indicated and simplifying, the result is

r2ψ ¼ b2�2b

r

� �
e�br (4.59)

When this value forr2 is substituted in the Hamiltonian operator shown in

Eq. (4.56) and the result is substituted into Eq. (4.54), the expression for the

energy is

E¼

ð∞

0

e�br � h2

8π2m
r2� e2

r

� �
e�br 4π r2 dr

ð∞

0

e�br
� �

e�br
� �

4π r2 dr

(4.60)

The value of r2 shown in Eq. (4.59) is substituted in Eq. (4.60), and the

factor of 4π is canceled. The resulting equation can be written as

E¼

ð∞

0

e�br � h2

8π2m
b2�2b

r

� �
e�br � e2

r
e�br

� �
r2 dr

ð∞

0

e�2br
� �

r2 dr

(4.61)

After simplifying this equation by expanding the terms in the numerator by

multiplication, the result is

E¼

ð∞

0

� h2b2

8π2m
r2e�brdr +

ð∞

0

� 2h2b

8π2m
r e�2brdr�

ð∞

0

e2 re�2br dr

ð∞

0

e�2br
� �

r2dr

(4.62)
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Fortunately, each of the exponential integrals is of the easily recognized form

ð∞

0

xn e�ax dx¼ n!

an+1
(4.63)

Therefore, evaluating the integrals gives

E¼
� h2b2

8π2m

2

8b3
+

h2b

4π2m

1

b2
� e2

1

4b2

2

8b3

(4.64)

Finally, after simplifying this expression, the energy is represented as

E¼ h2b2

8π2m
� be2 (4.65)

This equation gives the energy in terms of fundamental constants and the

adjustable parameter b. It is necessary to find the value of b that will give

the minimum energy, and this is done by taking the derivative of E with

respect to b and setting the derivative equal to 0. The relationship that is

obtained can be written as

@E

@b
¼ 2h2b

8π2m
� e2 ¼ 0 (4.66)

Solving this equation for b gives

b¼ 4π2me2

h2
(4.67)

When this value for b is substituted into Eq. (4.65) for the energy, the result

after simplification is

E¼�2π2me4

h2
(4.68)

This expression for the energy of a hydrogen atom in the 1s state is exactly

the same as that found using the Bohr model (see Chapter 1). How was it

possible to obtain the correct energy in a single “improvement” of the wave

function? The answer is that the correct form of the wave function to use as

the trial was “guessed.” It was known in advance that an exponential func-

tion involving r was the form of the actual wave function, so the variation

method enabled us to evaluate the constant in a single calculation cycle.
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Of course, this is not always the case. The variation method will be used as

the basis for other types of calculations in later chapters.

PROBLEMS

1. Calculate the velocity of an electron in the n¼1 state of a

hydrogen atom.

2. Show that the de Broglie wavelength of an electron moving at the

velocity found in Problem 1 corresponds to the circumference of the

first Bohr orbit.

3. What is the total number of electrons that can be accommodated if

n¼5?

4. The potential energy for an electron attracted to a +1 nucleus is

V¼�e2/r. Using the variation method, determine <V> in this case.

5. Determine the value for <r> for an electron in the 2pz state of the

hydrogen atom.

6. Use the procedure described in the text to determine the probability

that the electron in the 1s state of hydrogen will be found outside a0.

7. Use the procedure described in the text to determine the probability

that the electron in a hydrogen atom will be found between a0 and 2 a0.

8. Calculate the average or expectation energy<E> for the electron in

the 1s state of the hydrogen atom.

9. It has been shown that the most probable radius of the hydrogen atom is

(3/2)a0. Consider the hydrogen atom as a particle in a one-dimensional

box (the electron can travel on either side of the nucleus) and calculate

the energy (in eV) of the electron in the state with n¼1.

10. If a sphere is to be drawn with the nucleus at the center, how large must

the sphere be to encompass the electron in a hydrogen atom 90 percent

of the time for the n¼1 state?

11. Show that the wave functions for the 1s and 2s states in the hydrogen

atom are orthogonal.
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CHAPTER 5

Structure and Properties
of More Complex Atoms

As will become apparent, wave equations cannot be solved exactly for com-

plex atoms. Although a rigorous quantum mechanical treatment cannot

result in a closed form solution to the wave equation for a complex atom,

such solutions are usually not necessary for an understanding of most aspects

of chemical bonding. At this point the approaches used to describe the

helium atom, as well as some of the empirical and experimental properties

of atoms, will be presented.

5.1 THE HELIUM ATOM

Although it is easy to formulate the wave equation for atoms that are more

complex than hydrogen, such equations cannot be solved exactly. A consi-

deration of the helium atom will show this is so. The helium atom can be

represented as shown in Fig. 5.1. From the figure, it can be seen that the

Hamiltonian must include the kinetic energy of each electron, the electro-

static attraction of the nucleus for each electron, and the repulsion of the two

electrons. Taking all of these energies into account with the distances shown

in Fig. 5.1, the Hamiltonian operator can be written as

Ĥ ¼� ћ2

2m
r2

1�
ћ2

2m
r2

2�
2e2

r1
�2e2

r2
+

e2

r12
(5.1)

From the general equation

Ĥψ ¼Eψ

this leads directly to the wave equation

� ћ2

2m
r2

1�
ћ2

2m
r2

2�
2e2

r1
�2e2

r2
+

e2

r12

� �
ψ ¼Eψ (5.2)

For the hydrogen atom, the Hamiltonian operator has only one term invol-

ving 1/r (where r is the distance of the electron from the nucleus), and the

difficulty this causes is avoided by the use of polar coordinates. In the case of
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the helium atom, even a change to polar coordinates does not help because

of the term containing 1/r12. Thus, when the term involving 1/r12 is

included, the variables cannot be separated. One approach to solving the

wave equation for the helium atom is by constructing a trial wave function

and using the variation method to optimize it. A trial wave function of the

following form can be assumed:

ψ ¼φ1φ2¼
Z 03

πa30
e�Z 0r1=a0e�Z 0 r2=a0 (5.3)

in which φ1 and φ2 are hydrogen-like wave functions. Z0 is an effective

nuclear charge that is less than the actual value of 2 because each electron

does not experience the full effect of a +2 nucleus due to the other electron.

The Hamiltonian operator can be written as

Ĥ ¼� ћ2

2m
r2

1 +r2
2

� ��Z 0 e2
1

r1
+

1

r2

� �
+

e2

r12
(5.4)

Therefore, the wave equation can be written as

Ĥψ ¼Eψ ¼ Ĥφ1φ2 ¼EHφ1φ2 (5.5)

In this equation, EH is the energy of the hydrogen atom in the 1s state. The

quantity Z0 EH is the energy that results when the Bohr model is applied to

a hydrogen-like species where the nuclear charge is not equal to 1.

Therefore,

Ĥφ1¼� ћ2

2m
r2

1φ1¼
Z 0 e2φ1

r1
�Z 02EHφ1 (5.6)

A similar equation can be written using the second atomic wave function φ2.

Therefore, the combination can be written as

+2

r1
r2

r12

z

y

x

e2

e1

Fig. 5.1 A coordinate system for the helium atom.
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Ĥφ1φ2¼
Z 0 e2

r2
φ1φ2�Z 02EHφ1φ2 +

Z 0 e2

r1
φ1φ2�Z 02EHφ1φ2

�Z 0e2
1

r1
+

1

r2

� �
φ1φ2 +

e2

r12
φ1φ2 (5.7)

By multiplying by φ1*φ2*, the result is

φ�
1φ

�
2Ĥφ1φ2 ¼ φ�

1φ
�
2

Z 0e2

r2
φ1φ2�φ�

1φ
�
2Z

02EHφ1φ2

+ φ�
1φ

�
2

Z 0e2

r1
φ1φ2�φ�

1φ
�
2Z

02EHφ1φ2

� φ�
1φ

�
2Z

0e2
1

r1
+

1

r2

� �
φ1φ2 +φ�

1φ
�
2

e2

r12
φ1φ2

(5.8)

After writing the terms in integral form, the total energy can be expressed as

E¼�2Z 02EH + Z 0 �Zð Þe2
ð
φ�
1φ

�
2

1

r1
+

1

r2

� �
φ1φ2dτ+

ð
φ�
1φ

�
2

e2

r12
φ1φ2dτ

(5.9)

The integral in middle term on the right-hand side of this equation can be

expanded to giveð
φ�
1

1

r1

� �
φ1dτ1

ð
φ�
2φ2dτ2 +

ð
φ�
2

1

r2

� �
φ2dτ2

ð
φ�
1φ1dτ1 (5.10)

When normalized atomic wave functions are used, two of the integrals are

equal to 1: ð
φ�
2φ2dτ2¼

ð
φ�
1φ1dτ1 ¼ 1 (5.11)

Therefore, the middle term on the right-hand side of Eq. (5.9) reduces to

Z 0 �Zð Þe22
ð
φ�
1

1

r1

� �
φ1dτ1¼ 4 Z 0 �Zð ÞZ 0 EH (5.12)

The energy can now be written from Eqs. (5.9) and (5.12) as

E¼�2Z 02EH + 4 Z 0 �Zð ÞZ 0 EH +
5

4
Z 0 EH (5.13)

E¼�2Z 02EH +4Z 02EH �4ZZ 0EH +
5

4
Z 0EH (5.14)

Having obtained an expression for the energy in terms of the effective

nuclear charge, Z0, it is necessary to determine the value of Z0 that results
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in the minimum energy, which is done by taking the derivative and setting

it equal to 0:

@E

@Z 0

� �
¼ 0¼�4Z 0EH +8Z 0EH�4ZEH +

5

4
EH (5.15)

Solving this expression for Z0, we find

Z 0 ¼Z� 5

16
(5.16)

Thus, each electron experiences an effective nuclear charge of 27/16 instead

of the nuclear charge of +2 as a result of screening by the other electron.

Having calculated that the effective nuclear charge in the helium atom is

27/16, it is possible to use that value in Eq. (5.14) to determine the total

binding energy for the two electrons. When the value for Z0 is substituted,
we find E¼+5.696 eV. As a result of the ionization potential for the hydro-

gen atom, EH, being 13.6 eV, the total ionization potential for the two elec-

trons in helium is calculated to be 77.5 eV. The experimental value is

approximately 79.0 eV, so the calculation using the variation method yields

a value that is in reasonable agreement with the observed value.

5.2 PERTURBATION METHOD

The discussion of the variation method presented in Section 4.5 and its

application to the calculation of the total electron binding energy in the

helium atom have shown that the variation method is an important tool

in quantum mechanics. Another such tool is the perturbation method. The

basic idea behind perturbation theory is that the system does not behave per-

fectly because of some “slight” deviation from a system that can be treated

exactly. In the orbits of planets, deviation from perfect orbits results from

gravitational forces, which become more important as the planets get closer

together in their orbits. In the harmonic oscillator model, the perturbation

might be a potential that is not expressed exactly by ½ kx2 (see Section 6.4).

In Eq. (5.2), it can be seen that the helium atom could be treated as the sum

of two hydrogen atomic problems, if the e2/r12 term that arises from repul-

sion of the electrons was not present in the Hamiltonian. Therefore, the

repulsion term is treated as a “slight” perturbation of an otherwise

“perfect” system that could be solved exactly. An overview of the general

principles of the perturbation method will be presented to show how the

method is approached and then show how it applies to the helium atom case.
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For an unperturbed system that can be treated exactly, the wave equation

can be written as

Ĥoψo ¼Eoψo (5.17)

The solutions are the wave functions ψo
0, ψ

o
1, ψ

o
2, … and the energy eigen-

values are Eo
0, E

o
1, E

o
2, …, etc. The Hamiltonian is that which is appropriate

for the particular system, but it has the form

Ĥ ¼� ћ2

2m
r2 +V (5.18)

If the system becomes slightly perturbed, that perturbation is represented by

a slight alteration in the potential term of the Hamiltonian. Therefore, the

Hamiltonian can be written as

Ĥ ¼ Ĥo + λĤ
0
+ λ2Ĥ

0
+⋯ (5.19)

in which λ is a parameter that expresses the extent of perturbation and Ĥ 0 is
the adjustment to the Hamiltonian. In performing the calculation of the

first-order perturbation, the terms beyond λĤ 0 in the series are ignored.

Because the perturbation energy is presumed to be small compared to the

total energy, the wave function for the kth state of the system is written as

ψk¼ψo
k + λψ 0

k (5.20)

and the corresponding energy of the state is given by

Ek¼Eo
k + λE0

k (5.21)

Using the expressions above and the fundamental relationship that

Ĥψ ¼Eψ

the first-order correction is obtained by omitting terms in λ2 (because λ is

small). Therefore, for the unperturbed kth state, the resulting relationship

can be shown as

Ĥoψo
k ¼Eψo

k (5.22)

For the first-order perturbation, the equation becomes

Ĥoψ 0
k + Ĥoψ o

k�Eo
kψ

0
k�E0

kψ
o
k ¼ 0 (5.23)

This equation can also be written as

Ĥo � Eo
k

� �
ψ 0
k¼ E0

k� Ĥ
0� �
ψo
k ¼ 0 (5.24)
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A linear combination of solutions is used to represent the wave function of

the perturbed kth state in terms of the wave functions for all of the i unper-

turbed states. This series is written as

ψ 0
k¼

X
i

aiψ
o
i (5.25)

From a combination of Eqs. (5.22) and (5.25), it is possible to obtain

Ĥoψ 0
k¼

X
i

aiĤ
oψ o

i ¼
X
i

aiE
o
i ψ

o
i (5.26)

Equation (5.26) can also be written asX
i

aiE
o
i ψ

o
i � aiE

o
kψ

o
i

� �¼E0
kψ

o
k � Ĥ

0
ψo
k (5.27)

Simplifying this equation givesX
i

ai E
o
i �Eo

k

� �
ψo
i ¼E0

kψ
o
k � Ĥ

0
ψo
k (5.28)

Bymultiplying both sides of this equation by ψk
o* (see Section 2.4) and inte-

grating over all space, the left-hand side of Eq. (5.28) can be written asð
ψo
k

X
ai E

o
i �Eo

k

� �
ψo
i dτ (5.29)

This expression can be greatly simplified because for orthogonal wave func-

tions, the integral ð
ψo
i *ψ

o
k dτ¼ 0 (5.30)

gives a value of 0 when i 6¼k, and a value of 1 when i¼k. When i¼k, it can

be seen that Eo
k¼Eo

i. so the entire integral vanishes, and the left-hand side of

Eq. (5.28) must equal 0. Therefore, because the right-hand side of Eq. (5.28)

must equal 0 ð
ψo�
k E0 � Ĥ

0� �
ψo
kdτ¼ 0 (5.31)

Separation of the integral can be performed, and because the perturbation

energy E0 is a constant and is removed from the integral, it is possible to write

E0
ð
ψo�
k ψo

kdτ�
ð
ψo�
k Ĥ

0
ψo
kdτ¼ 0 (5.32)

For normalized wave functions, the integral multiplied by E0 is equal to 1.

Therefore,
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E0 ¼
ð
ψo�
k Ĥ

0
ψo
kdτ (5.33)

This result shows that the perturbation energy correction to the kth state is the

familiar expectation value, with only the perturbation Hamiltonian being

used in the integration.AfterE0 is calculated, the total energyof the kth energy
level (the 1s state in helium is considered in this case) will be given as Eo+E0.
The application of the perturbation method to the helium atom involves

treating the term e2/r12 as the perturbation to an otherwise exactly solvable

system consisting of two hydrogen atoms. It is already known that the ioni-

zation potential of the hydrogen atom is 13.6 eV. From the exact solution of

the approximate equation obtained by neglecting the e2/r12 term in theHam-

iltonian, the energy for the 1s state in helium is

Eo¼�Z2EH �Z2EH ¼�2Z2EH : (5.34)

The perturbation term involving e2/r12 gives an energy E0, which can be

expressed as

E0 ¼
ðð

ψ* 1ð Þψ* 2ð Þ e2=r12
� �

ψ 1ð Þψ 2ð Þdτ1dτ2 (5.35)

where e2/r12 is the perturbation operator Ĥ . Of course, for the 1swave func-

tion, ψ*¼ψ . This integral must be evaluated to give the perturbation cor-

rection to the energy �2Z2EH, which was also obtained by neglecting the

repulsion between the two electrons. Each electron is represented as a spher-

ically symmetric charge field, and the integral representing their interaction

can be transformed to give

Z6

π2a6o

ð
exp �2Zr1=aoð Þexp �2Zr2=aoð Þ

r12
dV (5.36)

In this integral, the exponential functions are charge distributions of two

spherically symmetric electrostatic fields produced by the two electrons.

An evaluation of the integral (Pauling and Wilson, 1935) leads to a pertur-

bation energy of

E0 ¼ 5

4
ZEH (5.37)

Therefore, the total energy for the 1s level in the helium atom is

E¼�2Z2EH +
5

4
ZEH¼� 2Z2�5

4
Z

� 	
EH (5.38)
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Note that the perturbation caused by the repulsion of the two electrons raises

the energy (destabilization) of the 1s level so that the total binding energy of

the two electrons is not as great as it would be for a +2 nucleus with no repul-

sion between the two electrons. (See Chapter 6 of the book by Pauling and

Wilson (1935) for details.) By substituting Z¼2 and EH¼13.6 eV, it is

found that the binding energy is

E¼� 2 2ð Þ2�2
5

4

� �� 	
13:6ð Þ¼�5:50 13:6ð Þ¼�74:8 eV (5.39)

Therefore, the total ionization energy is 74.8 eV. As mentioned earlier, the

experimental value is approximately 79.0 eV. In this section, the applica-

tions of two of the very important approximation methods widely used

in quantum mechanical calculations have been shown.

Although two of the important approximation methods have been illus-

trated, other applications of the variation method to molecules will be

shown in Section 8.3. From the discussion presented in this section, it should

be clear why variation and perturbationmethods are among themost impor-

tant techniques used in quantum mechanical calculations.

Although the wave equation cannot be solved exactly in most cases

(even for the helium atom), it is possible to arrive at approximate solutions.

In this case, evaluating the total energy by the variation and perturbation

methods leads to values that are quite close to the actual binding energy

of the two electrons. It is a simple matter to write the wave equation for

complex atoms by writing the Hamiltonian in terms of the various attraction

and repulsion energies, but various approximation methods must be used to

solve the equations. In the next section, a different approach to obtaining

wave functions for complex atoms will be discussed.

5.3 SLATER WAVE FUNCTIONS

The exact solution of the Schr€odinger wave equation for complex atoms is

not possible. However, an examination of the form of the wave functions

obtained for the hydrogen atom suggests that approximate wave functions

might be obtained if wewere to take into account themutual electron repul-

sion. J. C. Slater devised such a procedure, and the resulting approximate

wave functions are known as Slater wave functions [or Slater-type orbitals

(STO)]. The wave functions are written in the form

ψn, l,m ¼Rn, l rð Þe�Zr=aon*Yl,m θ, φð Þ (5.40)

Specifically, the wave functions have the form
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ψn, l,m¼ rn*�1e� Z�sð Þr=aon*Yl,m θ, φð Þ (5.41)

in which s is the screening constant and n* is a parameter that varies with

the principal quantum number, n. For a rigorous presentation of the the-

ory of perturbation and variation methods, see the book by Pauling and

Wilson (1935).

The screening constant, s, for a given electron is determined by consi-

dering all of the contributions from all the populated orbitals in the atom.

The electrons are grouped according to the procedure that follows, and

the weightings from each group are determined according to the other rules:

1. The electrons are grouped in this manner:

1s 2sj j2p 3s3pj j3d 4s4pj j4d 4fj j5s5p 5dj j⋯
2. No contribution to the screening of an electron is considered to arise

from electrons in orbitals outside the orbital holding the electron for

which the wave function is being written.

3. For the 1s level, the contribution is 0.30, but for other groups, 0.35 is

added for each electron in that group.

4. For an electron in an s or p orbital, 0.85 is added for each other electron

when the principal quantum number is one less than that for the orbital

being written. For still lower levels, 1.00 is added for each electron.

5. For electrons in d and f orbitals, 1.00 is added for each electron residing

below the one for which the wave function is being written.

6. The value of n* varies with n as follows:

n¼1 2 3 4 5 6

n*¼1 2 3 3.7 4.0 4.2.

Suppose one needs to write the Slater wave function for an electron in a

2p orbital of oxygen (Z¼8). For that electron, n¼2 so n*¼2 also. The

screening constant for the fourth electron in the 2p level is determined as

follows: For the two electrons in the 1s level, 2(0.85)¼1.70. For the five

electrons in the 2s and 2p levels, 5(0.35)¼1.75. Summing these contri-

butions to the screening constant for the electron in question, it is found

that s¼3.45 and the effective nuclear charge is 8�3.45¼4.55, so that

(Z� s)/n*¼2.28. Therefore, the Slater wave function for an electron in

the 2p level of oxygen can be written as

ψ ¼ r1e�2:28r=aoY2,m θ, φð Þ (5.42)

The variation method was used earlier to determine the optimum

value of the nuclear charge for helium. Although the actual nuclear charge
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is 2, the variation method predicts a value of 27/16¼1.6875 as the effective

nuclear charge that each electron experiences. This difference is an obvi-

ous result of screening by the other electron. It is now possible to compare

the result from the variation method to the effect of screening in the

helium atom obtained using Slater’s rules. For an electron in the 1s level,

the only screening is that of the other electron, for which the value 0.30 is

used. The effective nuclear charge is (Z� s)/n*¼ (2�0.30)/1¼1.70,

which is in good agreement with the result obtained by the variation

method (1.6875).

Slater-type orbitals are frequently useful as a starting point in other cal-

culations. As has been shown earlier, an approximate wave function can give

useful results when used in the variation method. Also, some atomic wave

function must be used in the construction of wave functions for molecules.

Consequently, these approximate, semiempirical wave functions are espe-

cially useful, and molecular orbital calculations are frequently carried out

using a STO basis set. More discussion of this topic will appear in

Chapter 14.

5.4 ELECTRON CONFIGURATIONS

As has been shown, four quantum numbers are required to completely

describe an electron in an atom. There are certain restrictions on the

values that these quantum numbers can have. Thus, for n¼1, 2, 3,…,

the values for l are l¼0, 1, 2,…, (n�1). For a given value of n, the quan-

tum number l can have all integer values from 0 to (n�1). The quantum

number m can have the series of values +l, +(l�1),…, 0,…, �(l�1), �l.

Thus, there are (2l+1) values for m. The fourth quantum number, s, can

have values of �(½), with this being the spin angular momentum in units

of h/2π.
It is possible to write a set of four quantum numbers to describe each

electron in an atom. It is necessary to use the Pauli Exclusion Principle, which

states that no two electrons in the same atom can have the same set of four

quantum numbers. In the case of the hydrogen atom, states characterized by

lower n values represent those of lower energy. For the single electron in a

hydrogen atom, the four quantum numbers to describe the electron can be

written as n¼1, l¼0, m¼0, s¼+½, or s¼�½. The value chosen for s is

arbitrary. For helium, which has two electrons, the two sets of quantum

numbers are
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An atomic energy level is denoted by the n value followed by a letter (s, p,

d, or f to denote l¼0, 1, 2, or 3, respectively), and the ground state for

hydrogen is 1s1, whereas that for helium is 1s2. The two sets of quantum

numbers written above complete the sets that can be written for the first shell

with n¼1.

For n¼2, l can have the values of 0 and 1. In general, the levels increase

in energy as the sum (n+ l) increases. By taking the value of l¼0 first, the

state with n¼2 and l¼0 is designated as the 2s state. Like the 1s state, it

can hold two electrons:

These two sets of quantum numbers describe the electrons residing in the 2s

level. Now, by taking the value l¼1, we find that six sets of quantum num-

bers can be written:

These six sets of quantum numbers represent six electrons residing in the 2p

level, which consists of three orbitals, each holding two electrons. Each

value of m denotes an orbital that can hold two electrons with s¼+½

and s¼�½. This was shown to be the case for the 1s and 2s orbitals, but

in those cases, m was restricted to the value 0 because l¼0 for an s orbital.

Table 5.1 shows the types of atomic orbitals and the number of electrons that

can populate them.

Electron 1 Electron 2

n¼1 n¼1

l¼0 l¼0

m¼0 m¼0

s¼+½ s¼�½

Electron 1 Electron 2

n¼2 n¼2

l¼0 l¼0

m¼0 m¼0

s¼+½ s¼�½

Electron: 1 2 3 4 5 6

n¼2 n¼2 n¼2 n¼2 n¼2 n¼2

l¼1 l¼1 l¼1 l¼1 l¼1 l¼1

m¼+1 m¼0 m¼�1 m¼+1 m¼0 m¼�1

s¼+½ s¼+½ s¼+½ s¼�½ s¼�½ s¼�½
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For a given value of l, there are always as many orbitals as there are

m values, with each orbital capable of holding a pair of electrons. Thus,

for l¼3 (an f state), there are seven possible values for m (0, �1, �2, and

�3) so that such an f state can hold 14 electrons. For the various types of

orbitals, this information is summarized in Table 5.1.

For convenience, the practice will be followed that sets of quantum

numbers will be written by using the highest positive value of m first and

working down. Also, the positive value of s is used first. Thus, for Al, the

“last” electron is in the 3p level and it will be assigned the set of quantum

numbers n¼3, l¼1, m¼1, and s¼+½.

Except for minor variations, the order of increasing energy levels in an

atom is given by the sum (n+ l). The lowest value for (n+ l) occurs when

n¼1 and l¼0, which are the quantum numbers for the 1s state. The next

lowest sum of (n+ l) is 2, which occurs when n¼2 and l¼0. There will not

be a 1p state where n¼1 and l¼1 because of the restrictions on n and l that

arise from the solution of the wave equation. For (n+ l)¼3, the possible

combinations are n¼2 and l¼1 (2p) and n¼3 and l¼0 (3s). Although

the sum (n+ l) is the same in both cases, the level with n¼2 is filled first.

Therefore, it can be concluded that when two or more ways exist for the

same sum (n+ l) to arise, the level with the lower nwill usually fill first. Thus,

the approximate order of filling the energy states in atoms is shown in

Table 5.2.

The filling of energy states and the maximum occupancies of the orbitals

can be described by making use of the order shown in Tables 5.1 and 5.2.

The order in which orbitals are filled follows the pattern shown until Cr is

reached. There, it is predicted that the outer electrons would populate the

states to give 3d4 4s2, but instead they give 3d5 4s1. The reason for this is the

more favorable coupling of spin and orbital angular momenta that results for

the configuration 3d5 4s1, which has six unpaired electrons. Coupling of

angular momenta will be discussed in the next section.

Table 5.1 Maximum numbers of electrons that energy states can hold
l Value m Values State Maximum number of electrons

0 0 s 2

1 0, �1 p 6

2 0, �1, �2 d 10

3 0, �1, �2, �3 f 14

4 0, �1, �2, �3, �4 g 18
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The relationship of the electronic structure to the periodic table should

be readily apparent. Groups IA and IIA represent the groups where an s level

is being filled as the outer shell. The first, second, and third series of transition

elements are the groups where the 3d, 4d, and 5d levels are being filled. As a

result, such elements are frequently referred to as d group elements. The

main group elements to the right in the periodic table represent the periods

for which 2p, 3p, 4p, 5p, and 6p levels are the outside shells in the various

long periods. Finally, the rare earths and the actinides represent groups of

elements where the 4f and 5f levels are being filled.

The periodic table shows the similarities in electron configurations of

elements in the same group. For example, the alkali metals (Group IA) all

have an outside electron arrangement (valence shell) of ns1, where n¼2

for Li, n¼3 for Na, etc. Because the chemical properties of elements depend

on the outer shell electrons, it is apparent why elements in this group are

similar chemically. By adding one electron, the halogens (Group VIIA),

which have the configurations ns2 np5, are converted to the configuration

of the next noble gas, ns2 np6. It should be emphasized, however, that

although there are many similarities, numerous differences also exist between

elements in the same group. Thus, it should not be inferred that the same

electron configuration in the valence shell gives rise to the same chemical

properties for all members of the group.

Table 5.2 Energy states according to the (n+ l) suma

n l (n+ l) State

1 0 1 1s

2 0 2 2s

2 1 3 2p

3 0 3 3s

3 1 4 3p

4 0 4 4s

3 2 5 3d

4 1 5 4p

5 0 5 5s

4 2 6 4d

5 1 6 5p

6 0 6 6s

4 3 7 4f

5 2 7 5d

6 1 7 6p

7 0 7 7s

aEnergy of the states increases going down in the table.
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5.5 SPECTROSCOPIC STATES

After the overall electronic configuration of an atom has been determined,

there are still other factors that affect the energy state. For example, the elec-

tronic configuration of carbon is 1s2 2s2 2p2. The fact that two electrons are

indicated in the 2p state is insufficient for a complete description of the atom,

because there are several ways in which those electrons may be arranged.

However, this description does not take into account either electron repul-

sion or spin-orbit coupling, meaning the electronic configuration alone is

based only on the n and l quantum numbers. Therefore, within the 1s2 2s2

2p2 electron configuration, there are several different energy states possible.

The energy states arise because the orbital and spin angular momentum

vectors may couple to provide several states of different energy. Twoways in

which vector coupling can occur will be discussed. These represent limiting

cases, and intermediate coupling schemes are known. In the first coupling

scheme, the individual orbital moments (l) couple to give a resultant orbital

angular moment, L. Also, the individual spin moments (s) couple to produce

a total spin moment, S. The two vector quantities, L and S, then couple to

give the total angular momentum quantum number, J. This scheme is

known as Russell-Saunders or L�S coupling. In this case, the coupling

of individual spin moments and individual orbital moments is stronger than

is the coupling between individual spin and orbital moments. In the other

extreme, the individual spin and orbital moments for a given electron couple

to produce a resultant j for that electron. These j vectors then couple to

produce the resultant J, which is the overall angular momentum. Coupling

of this type is called j–j coupling.
For relatively light atoms, L–S coupling provides the more commonly

followed model. The j–j coupling scheme occurs for heavier atoms in the

lower part of the periodic table. For our purposes, the L–S coupling scheme

will suffice. This coupling of spin and orbital momenta according to the L–S
scheme will now be described.

An electron in an atom is characterized by a set of four quantum num-

bers. The orbital angular momentum quantum number l gives the length

of the orbital angular momentum vector in units of h/2π. The actual quan-
tum mechanical result is [l(l+1)]1/2 instead of l. This is because the quantity

l(l+1) is the square of the eigenvalue of the operator for the z component of

angular momentum. Although the correct value is [l(l+1)]1/2, l is commonly

used because a vector of length [l(l+1)]1/2 has exactly the same quantized

projections on the z-axis as a vector of l units in length.
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Because the overall angular momentum is produced by the coupling of

vectors, it is necessary to see how that coupling can occur. Figure 5.2 shows

the coupling of two vectors, l¼1 and l¼2, according to quantization. It is

readily apparent that for two vectors of lengths l¼1 and l¼2, the resultant L

can be formed according to quantum restrictions in three ways. Note that

the values of L are jl1+ l2j, jl1+ l2�1j, and jl1� l2j. It will be necessary to

make use of this quantum mechanical coupling of vectors in arriving at

the overall angular momentum state for an atom.

As was mentioned earlier, the quantum number m gives the projection of

the orbital angular momentum vector on the z-axis. This vector can undergo

precession around the z-axis, sweeping out cones of revolution around that

axis. This is shown in Fig. 5.3 for l¼2 (for which [l(l+1)]1/2¼ (6)1/2), which

has quantized projections on the z-axis of 0,�1, and�2. In the absence of an

externalmagnetic field, theseorientations aredegenerate. If spin-orbit coupling

occurs, it is not possible to say what the value of the orbital component will be

merely based on the orbital angularmomentumquantumnumber, because this

number can give only themaximum value of the projection on thez-axis. Con-

sequently, the microstates (detailed arrangements of the electrons in orbitals)

must be written in order to predict the spin-orbit coupling. However, this is

not necessary if only the lowest energy state (the ground state) is desired.

The essential aspect of spin-orbit coupling is that the spin angular

momenta for two or more unpaired electrons will couple to form a resultant

spin vector, S. For the configuration

0 -1+1m =

S¼ (1/2)+(1/2)¼1. The orbital angular momenta couple similarly in their

z projections. It is the sum of the m values that gives the maximum length of

L = 3 L = 2 L = 1

l = 2

l = 1

l = 2

l = 2
l = 2

l = 1

l = 1

Fig. 5.2 Quantized combinations of vectors l¼2 and l¼1.
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the L vector. These two resultant vectors, L and S, then couple to give a

third vector, J, which can have all integral values from jL+Sj to jL�Sj
(see Fig. 5.2). These rules can be summarized as follows:

L¼Σ li

S ¼Σ si

M ¼Σmi¼L,L�1,L�2,…,0,…, �L

After the values forM are obtained, it should be obvious which L projections

theM values represent. The L values 0, 1, 2, and 3, respectively, correspond

to the states designated as S, P,D, and F, in accord with the practice for elec-

tronic energy levels (s, p, d, f ).

The multiplicity of a state is given by (2S+1), where S is the sum of the

spins. Thus, a single unpaired electron (as in Na, 3s1) gives rise to a doublet

[2(1/2)+1¼2]. A term symbol is written as (2S+1)LJ, which summarizes this

information and some examples are 2S0,
2P2, and

3D1. There are also three

rules that will make it possible to determine the relative energy of the terms

once they are obtained. These rules are known as Hund’s rules:

1. For equivalent electrons, the state with the highest multiplicity gives the

lowest energy.

-

-

-

-

z

2

0

-1

1

-2

Fig. 5.3 The projections on the z-axis of a vector that is [l(l+1)]1/2 units in length (for
l¼2). The angular momentum vector can precess around the z-axis and has
projections having lengths of +2, +1, 0, �1, and �2.

92 Fundamentals of Quantum Mechanics



2. Of those states having the highest multiplicity, the one with the highest

L is lowest in energy.

3. For shells that are less than half filled, the lowest J gives the state of lowest

energy; for shells more than half filled, the highest J gives the lowest

energy.

A few examples will be used to illustrate how the rules are applied:

Example 1

Consider first the case of a configuration ns1: S¼½ and L¼0, because the

m value for an s state is 0. Therefore, the state is designated as 2S in

accord with the rules. Only a single J value is possible, that being ½.

The resulting spectroscopic state (term) is 2S1/2. This is the only term pos-

sible for a configuration of ns1.

Example 2

Consider next the case of ns2. In this case, S¼0 because the two electrons

have opposite spins, and L¼0 because the electrons reside in an orbital

for which l¼0 (hence m¼0 and the sum of the mi¼0). The only pos-

sible value for J is 0, so the ground state term is 1S0. Actually, this must be

the result for any filled shell, p6, d10, etc. Because filled shells contribute

only 0 to the S and L values, we can ignore them when determining the

spectroscopic state and consider only the partially filled outer shell.

Example 3

Consider now the np1 configuration. In this case, there are three orbitals

with m values of +1, 0, and �1 in which the electron may be found.

These projections on the z-axis can arise only for a vector L¼1 because

L¼Σmi¼1. The ground state must be a P state (L¼1). For a single

unpaired electron, S¼½, so the multiplicity is equal to (2S+1)¼2.

For L¼1 and S¼½, two values are possible for the vector J. These

are j1+(½)j¼3/2 and j1� (½)j¼½. Therefore, the two spectroscopic

states that exist for the np1 configuration are 2P1/2 and 2P3/2, with
2P1/2 being lower in energy because the p shell is less than half filled.

For the boron atom, the 2P1/2 state lies 16 cm�1 lower than the 2P3/2
state, whereas for the aluminum atom, the difference between the same

states is 112 cm�1.

Example 4

An analysis of the spectroscopic states for the np2 configuration will

now be presented. The analysis will begin with writing the
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15 microstates (shown in Table 5.3) that are possible for this config-

uration. It is apparent that the highest value of L is 2. This occurs with

S¼0, but the vector L¼2 can have five projections on the z-axis.

These will be represented by the series of M values of 2, 1, 0, �1,

and �2, which are the states designated in the table by **. These five
states constitute a 1D term. Of the remaining microstates, the highest

M value is 1 and the highest S is 1. Therefore, the coupling of these

vectors must represent a 3P state. Because there exists the possible

combinations of M¼1, 0, and �1 with S¼1, 0, and �1, there are

a total of nine microstates corresponding to the 3P term. The resulting

J values are given by the series j1+1j, j1+1�1j, and j1�1j, so that

the J values are 2, 1, and 0. Thus, nine microstates designated by * in

the table have been used. One microstate remains, indicated by *** in

the table, which has M¼0 and S¼0, remains. This combination can

only correspond to the term 1S0.

The terms associated with the np2 configuration have been found to be 3P0,
3P1,

3P2,
1D2, and

1S0, with Hund’s rules predicting exactly that order of

increasing energy. The energies of the spectroscopic states relative to the
3P0 ground state for atoms having the np2 (where n¼2, 3, 4, 5, or 6) con-

figuration are shown in Table 5.4.

Table 5.3 The microstates arising from the np2 configuration

m = +1

1
1
1

−1
−1
1
0
0
0
0
0
0
0
0
0

1
0

−1
1
0

−1
1
0

−1
2
1
0

−1
−2
0

Labelm = 0 m = –1 S =    si L =    ml
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In the lighter elements, such as carbon and silicon, the coupling

scheme is of the L–S type. For elements as heavy as lead, the j–j coupling
scheme is followed. Note that while all of the elements have a ground

state of 3P0, the singlet terms are much higher in energy for the heavier

elements.

In many instances, only the ground state term must be determined. This

can be donewithout going through the complete procedure just outlined for

the np2 configuration. For example, Hund’s rules indicate that the state with

the highest multiplicity will be lowest in energy. Consequently, to deter-

mine the ground state term, it is necessary only to consider the states where

the sum of spins, S, is highest, a condition that results when the electrons are

unpaired and have the same spin. For the np2 configuration, the states are

those where S¼1 and L¼1. This corresponds to a 3P state, and the values

permissible for J can then be worked out. This amounts to simply placing

electrons in orbitals with the highestm values and working downwhile plac-

ing the electrons in the orbitals with the same spin. Therefore, for np2, the

microstate of lowest energy is

0 -1+1m =

It can be seen immediately that S¼1 and L¼1, which leads directly to a
multiplicity of 3, a P state, and J values of 2, 1, and 0. Thus, the ground state
3P0 has been found for the np2 configuration, but the states 3P1 and 3P2
also exist.

For the d1 configuration, S¼½ and the maximum M value is 2 because

l¼2 for a d state. Thus, the ground state termwill be a 2D termwith a J value

of 3/2. There are other terms corresponding to higher energies, but in this

way the ground state term can be found easily.

Table 5.4 Relative energy levels (in cm�1) for terms arising from the np2 configuration
Atom

State Carbon Silicon Germanium Tin Lead

3P0 0.0 0.0 0.0 0.0 0.0
3P1 16.4 77.2 557.1 1691.8 7819.4
3P2 43.5 223.3 1409.9 3427.7 10,650.5
1D2 10,193.7 6298.8 7125.3 8613.0 21,457.9
1S0 21,648.4 15,394.2 16,367.1 17,162.6 29,466.8
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Consider a d2 configuration, where two possible arrangements for the

electrons could be shown as follows:

0 -1 -2
L = 3, S = 1

+1+2m =

or

0 -1 -2
L = 4, S = 0

+1+2m =

Hund’s rules indicate that the first of these will lie lower in energy (i.e.,

higher multiplicity). Consequently, the maximum value of Σmi is 3 when

the electrons are unpaired, so in the ground state the L vector is three

units in length (L¼3 corresponds to an F state). Therefore, the term

lying lowest in energy is 3F with a J value of 2, so the ground state term

is 3F2.

One further point should bementioned: If a set of degenerate orbitals can

hold x electrons, the terms arising from (x�y) electrons in those orbitals are

exactly the same as the terms arising for y electrons in those orbitals. This

means that permuting a vacancy among the orbitals produces the same effect

as permuting an electron among the orbitals. Thus, a p4 configuration gives

rise to the same spectroscopic ground state as does the p2 configuration. Only

the order of J values is inverted for the shell that is greater than half filled.

Table 5.5 shows the terms arising from the various electron configurations,

and the significance of the energies represented by the various microstates is

shown in Fig. 5.4. The inclusion of electron repulsion separates the np2 state

into the various triplet and singlet states arising from that configuration.

Furthermore, the inclusion of spin-orbit interactions separates the 3P

state into as many components as there are J values. Finally, the applica-

tion of a magnetic field removes the degeneracy within the 3P2 and
3P1

states to produce multiplets that are represented by the different orienta-

tions that are possible for the J vector. Figure 5.4 shows a summary of

these states as separated by spin-orbit coupling and the effect of an exter-

nal magnetic field.

Although no attempt was made to solve Schr€odinger wave equations for
complex atoms, this chapter shows the approaches taken for the helium atom.
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Electronconfigurations of atomshavebeen shown, and thevectormodelof the

atom that leads to coupling of angular momenta has been explained. For the

reader interested in more details, this introduction should be supplemented

by consultation of the references listed at the end of the book.

Triplet

Singlet

M = 0

M = 0

M = 0

M = 1

M = 1

M = –1

M = –1

M = –1
M = –2

M = –2

M = 0

3P
3P1

3P0

3P2

1D0

1S0
1S

1D
M = 2

M = 2

M = 1

M = 0

Splitting in
a magnetic
field

Spin-orbit
coupling

Orbital
coupling

Spin
coupling

↑

↑ ↑

↓

Fig. 5.4 Splitting of states due to spin-orbit coupling. There are 2 J+1 states in a
magnetic field that correspond to projections of the J vector in the z direction.

Table 5.5 Spectroscopic terms arising for equivalent electronsa

Electron
configuration

Spectroscopic
states

Electron
configuration

Spectroscopic
states

s1 2S d2 3F, 3P, 1G,
1D, 1S

s2 1S d3 4F (ground state)

p1 2P d4 5D (ground

state)

p2 3P, 1D, 1S d5 6S (ground state)

p3 4S, 2D, 2P d6 5D (ground

state)

p4 3P, 1D, 1S d7 4F (ground state)

p5 2P d8 3F (ground state)

p6 1S d9 2D

d1 2D d10 1S

aThe j values have been omitted for simplicity.
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PROBLEMS

1. Determine bymeans of vector diagrams the possible values that the total

angular momentum can have for the following combinations:

(a) L¼3 and S¼5/2

(b) L¼2 and S¼5/2.

2. Use a vector diagram to show what total angular momenta that a single

electron in an f state can have.

3. For each of the following, determine the ground state spectroscopic

term and sketch the splitting pattern that would result for the atom

in a magnetic field:

(a) Al

(b) P

(c) Ca

(d) Ti

(e) Se

4. Write a set of four quantum numbers for the “last” electron in each of

the following:

(a) Sc

(b) Cl

(c) Sr

(d) V

(e) Co

5. Calculate the most probable radius of He+ using P(r)¼4πr [R(r)]2r2.
6. The ionization potential for the potassium atom is 4.341 eV. Estimate

the effective atomic number (nuclear charge) Z0 for the 4s electron in

potassium.

7. Using Slater’s rules, determine the effective nuclear charge for the fifth

electron in the 2p level of fluorine. Write the wave function for this

electron.

8. Determine the most probable distance for the electron in the 1s state of

Be3+.
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9. Determine the spectroscopic ground state term for the following:

(a) Ti3+

(b) Cr3+

(c) O2�

(d) Mn2+

(e) Ni2+

10. Calculate <r> for the electron in the 1s state of Li2+. Use the wave

function shown in Table 4.1.
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CHAPTER 6

Vibrations and the
Harmonic Oscillator

Most of what is known about the structure of atoms and molecules has been

obtained by studying the interaction of electromagnetic radiation with mat-

ter or its emission from matter. The vibrations in molecular systems consti-

tute one of the properties that provides a basis for studying molecular

structure by spectroscopic techniques. Infrared spectroscopy provides the

experimental technique for studying changes in vibrational states in mole-

cules, a technique that is familiar to chemistry students even at a low level.

However, molecular vibrations in gaseous molecules also involve changes in

rotational states, so changes in these types of energy levels are sometimes

considered together. In this chapter, some of the concepts required for an

interpretation of molecular vibrations will be developed, and the application

of spectroscopic experiments will be illustrated.

Thediscussion ofmolecular vibrationswill begin by considering anobject

vibrating on a spring to illustrate some of the physical concepts and mathe-

matical techniques. Solving problems related to vibrations requires the use

of differential equations, but some individuals studying quantum mechanics

for the first time may not yet have taken such a course or may need a review.

Consequently, this chapter also includes a very limited coverage of this area of

mathematics because it is so important in the physical sciences.

6.1 THE VIBRATING OBJECT

Some aspects of vibratorymotion can be illustrated utilizing a simple problem

in vibrational mechanics, illustrated by the arrangement shown in Fig. 6.1.

For an object attached to a spring, Eq. (6.1), which is known as Hooke’s

law, describes the system in terms of the force (F) on the object and the

displacement (x) from the equilibrium position:

F ¼�kx (6.1)

In this equation, x is the distance the object is displaced from its equilibrium

position, and k is known as the spring constant or force constant, which is
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expressed in dimensions of force/distance. Therefore, appropriate units for k

are dynes cm�1, N m�1, or, in the case of chemical bonds, millidynes

Angstrom�1 (mdyn Å�1). Both N m�1 and mdyn Å�1 are in common

use when describing force constants for chemical bonds. However, with

1 N being equal to 105 dyn, 1 m¼100 cm, and 1 Å being 10�8 cm, it works

out that 1 mdyn Å�1 is equal to 100 N m�1. Consequently, the force

constant for the bond in H2 is 5.75 mdyn Å�1 or 575 N m�1. An empirical

relationship between force constant and bond length is known as Badger’s

Rule (Badger, 1934).

The negative sign in Eq. (6.1) indicates that the restoring force (spring

tension) is in the direction opposite to the displacement. The energy (or

work) that is required to cause the displacement becomes the potential

energy given to the object. This amount of energy is expressed by the force

law integrated over the interval that the spring is stretched:

ðx
0

F xð Þdx¼
ðx
0

�kxdx¼ 1

2
kx2 (6.2)

If the mass m is displaced by a distance of x and then released, the object

vibrates in simple harmonic motion. The angular frequency of the vibration

ω will be given by

ω¼
ffiffiffiffi
k

m

r
(6.3)

whereas the classical or vibrational frequency ν is given by

ν¼ 1

2π

ffiffiffiffi
k

m

r
(6.4)

It should be clear from Eqs. (6.3) and (6.4) that ω¼ 2πν.

Fig. 6.1 An object vibrating on a spring.
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The maximum displacement from the equilibrium position is called the

amplitude, and the variation of the displacement with time is found by mak-

ing use of Newton’s Second Law of Motion, F ¼ma. Velocity is the first

derivative of distance with respect to time dx/dt, and acceleration is

the derivative of velocity with time d2x/dt2. Therefore, in differential form,

F ¼ma is equivalent to

m
d2x

dt2
¼�kx (6.5)

Rearrangement of this equation leads to

d2x

dt2
+

k

m
x¼ 0 (6.6)

which is a linear differential equation with constant coefficients. Before

progressing to the solution of this problem as it applies to vibrations, a brief

discussion of the type of differential equation involved in the analysis will be

presented.

6.2 LINEAR DIFFERENTIAL EQUATIONS WITH
CONSTANT COEFFICIENTS

Because differential equations are required when representing motion, some

familiarity with that branch of mathematics is beneficial when studying

quantum mechanics. This section provides a very brief introduction to

such mathematics. However, in this section, the results of several important

theorems in differential equations will be presented. Because of the nature of

this book, the theorems will be presented in an operational manner and used

without proof. The interested reader should consult a text on differential

equations for more details.

A linear differential equation with constant coefficients is an equation of

the form

an xð Þd
ny

dxn
+ an�1 xð Þd

n�1y

dxn�1
+⋯+ a1 xð Þdy

dx
+ a0 xð Þy¼F xð Þ (6.7)

in which the constants a0(x), a1(x),…, and F(x) have values that change only

with changes in x. A particularly important equation of this type is the

second-order case:

a2 xð Þd
2y

dx2
+ a1 xð Þdy

dx
+ a0 xð Þy¼F xð Þ (6.8)
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The differential operator D is defined as

D¼ d

dx
, D2¼ d2

dx2
, etc: (6.9)

When an operator meets the conditions represented as

D f + gð Þ¼Df +Dg (6.10)

and that which can be shown by the relationship

Dn f + gð Þ¼Dnf +Dng (6.11)

the operator is called a linear operator.

FromEq. (6.8), it can be seen that a second-order linear differential equa-

tion can be written in the operator notation as

a2D
2y+ a1Dy+ a0¼F xð Þ (6.12)

The solution of an equation of this form is obtained by considering an

auxiliary equation, which is obtained by writing an equation in the form

f Dð Þy¼ 0 (6.13)

when the general differential equation is written as

f Dð Þy¼F xð Þ (6.14)

The auxiliary equation is called the complementary equation, and its solution is

known as the complementary solution. The complete solution of the differential

equation is the sum of the particular and general solution of the complemen-

tary equation. These principles will be illustrated by working through the

following example:

Suppose it is necessary to find the general solution of

d2y

dx2
�5

dy

dx
+4y¼ 10x (6.15)

In operator form, this equation can be written as

D2�5D+4
� �

y¼ 10x (6.16)

A solution of this type of equation is frequently of the form

y¼C1e
ax +C2e

bx (6.17)
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in which a and b are to be determined by the solutions of the complementary

equation,

m2�5m+4¼ 0 (6.18)

Therefore, factoring the polynomial gives

m�4ð Þ m�1ð Þ¼ 0 (6.19)

fromwhich it can be seen thatm¼4 andm¼1. In this case, the general solu-

tion of Eq. (6.15) is

y¼C1e
x +C2e

4x (6.20)

It can easily be verified that this is the solution by using it in the complemen-

tary equation. If this is the solution, then

Dy¼ dy

dx
¼C1e

x +4C2e
4x

and the second derivative can be written as

D2y¼ d2y

dx2
¼C1e

x +16C2e
4x

Therefore, the auxiliary equation becomes

D2�5D+4
� �

y¼D2y�5Dy+4y¼ 0 (6.21)

By substituting for the first and second derivatives, it is found that

C1e
x +16C2e

4x�5 C1e
x +4C2e

4x
� �

+4 C1e
x +C2e

4x
� �¼ 0 (6.22)

By simplification, it can be seen that this equation reduces to 0¼0. How-

ever, it can also be shown that a particular solution is

y¼ 5

2
x+

25

8
(6.23)

It will now be shown that this particular solution also satisfies the general

equation. From Eq. (6.23) it is found that

Dy¼ dy

dx
¼ 5

2
and D2y¼ d2y

dx2
¼ 0 (6.24)

When these values are substituted in Eq. (6.15) the result is

�5
5

2

� �
+4

5x

2
+
25

8

� �
¼ 10x

10x¼ 10x
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Therefore, the complete solution of Eq. (6.15) is the sum of the two

expressions,

y¼C1e
x +C2e

4x +
5

2
x+

25

8
(6.25)

In most problems, it is sufficient to obtain a general solution, and “singular”

solutions that do not describe the physical behavior of the system are

ignored.

It must be mentioned that there are two arbitrary constants that charac-

terize the solution that was obtained. Of course, the solution of an nth order

equation would result in n constants. In quantummechanics, these constants

are determined by the physical constraints of the system (known as boundary

conditions), as was shown in Chapter 3.

The equation

D2y+ y¼ 0 (6.26)

has the auxiliary equation that can be written as

m2 + 1¼ 0 (6.27)

From this equation, it can be seen that m2¼�1 and m¼� i. Therefore, the

general solution is

y¼C1e
ix +C2e�e�ix (6.28)

At this point, it is useful to remember that

d

dx
sin xð Þ¼ cos x (6.29)

and

d

dx
cos xð Þ¼� sin x¼ d2

dx2
sin xð Þ (6.30)

From these relationships, it is evident that

d2

dx
sin xð Þ+ sin x¼ 0 (6.31)

and the solution y¼ sin x satisfies the equation. In fact, if it is assumed that a

solution to Eq. (6.26) is of the form

y¼A sin x+B cos x (6.32)
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then

Dy¼A cos x�B sin x (6.33)

and

D2y¼�A sin x�B cos x (6.34)

Therefore,

D2y+ y¼�A sin x�B cos x+A sin x+B cos x¼ 0 (6.35)

Therefore, Eq. (6.35) shows the solution represented by Eq. (6.32) satisfies

Eq. (6.26). A differential equation can have only one general solution, so the

solution shown in Eqs. (6.28) and (6.32) must be equal:

y¼C1e
ix +C2e

�ix ¼A sin x+B cos x (6.36)

It can be seen that when x¼0, C1+C2¼B. Differentiating Eq. (6.36) gives

dy

dx
¼C1ie

ix�C2ie
�ix ¼A cos x�B sin x (6.37)

However, when x¼0, sin x¼0. It is apparent, then, that

i C1�C2ð Þ¼A (6.38)

By substituting for A and B and simplifying, the result can be shown as

C1e
ix +C2e

�ix ¼C1 cos x+ i sin xð Þ+C2 cos x� i sin xð Þ (6.39)

If C2¼0 and C1¼1, then

eix¼ cos x+ i sin x (6.40)

Therefore, if C2¼1 and C1¼0, the result can be shown as

e�ix ¼ cos x� i sin x (6.41)

The relationships shown in Eqs. (6.40) and (6.41) are known as Euler’s

formulas.

Suppose it is necessary to solve the differential equation

y00 +2y0 +5y¼ 0 (6.42)

When written in operator form the result is

D2 + 2D+5
� �

y¼ 0 (6.43)

Therefore, the auxiliary equation is written as

m2 + 2m+5¼ 0 (6.44)
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and its roots are found by using the quadratic formula,

m¼�2� ffiffiffiffiffiffiffiffiffiffiffiffiffi
4�20

p

2
¼�1�2i (6.45)

Therefore, the solution of Eq. (6.42) is

y¼C1e
�1+ 2ið Þx +C2e

�1�2ið Þx (6.46)

By expanding the exponentials, this equation can also be written as

y¼C1e
�xe2ix +C2e

�xe�2ix ¼ e�x C1e
2ix +C2e

�2ix
� �

(6.47)

Using Euler’s formulas to express the exponential functions in terms of sin

and cos, the result is

y¼ e�x A sin 2x+B cos 2xð Þ (6.48)

In general, if the auxiliary equation has roots a�bi, the solution of the dif-

ferential equation has the form

y¼ eax A sin bx+B cos bxð Þ (6.49)

An equation having the form

y00 + a2y¼ 0 (6.50)

was obtained in solving the particle in the one-dimensional box problem in

quantum mechanics (see Chapter 3). The auxiliary equation is

m2 + a2¼ 0 (6.51)

and it has the solutions m¼ ia. Therefore, the solution of Eq. (6.50) can be

written as

y¼C1e
aix�C2e

�aix¼A cos ax+B sin ax (6.52)

This is exactly the form of the solution found when solving the particle in a

one-dimensional box. The boundary conditions of a particular system make

it possible to evaluate the constants in the solution, as was shown in

Chapter 3.

6.3 BACK TO THE VIBRATING OBJECT

The discussion will now return to the vibrating system described in

Section 6.1. Suppose a force of 6.0 N stretches the spring 0.375 m. It is

customary to take the displacement of the vibrating object be negative so

that the spring constant k can be represented as
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k¼� f

x
¼� 6:0N

�0:375m
¼ 16N=m (6.53)

For purposes of illustration, it will be assumed that the object has a mass of

4.00 kg, and it is raised 0.375 m above its equilibrium position and released,

as shown in Fig. 6.2. As shown earlier, the motion of the object is described

by the equation

d2x

dt2
+

k

m
x¼ 0 (6.54)

By using the data specified in this case and the condition x(0)¼0.375, the

equation of motion can be written as

d2x

dt2
+
16

4
x¼ 0 (6.55)

Therefore, the auxiliary equation can be written as

m2 + 4¼ 0 (6.56)

from which it apparent that m2¼�4 and m¼2i. Therefore, the general

solution of Eq. (6.54) can be written as

x¼C1e
2it +C2e

�2it ¼A sin 2t +B cos 2t (6.57)

At the beginning of the motion, t¼0 and x¼0.375 m, and the velocity of

the object is 0 or v¼ dx=dt¼ 0. Therefore, Eq. (6.57) can be written as

x¼A sin 2t+B cos 2t¼ 0:375m (6.58)

x

Fig. 6.2 An object vibrating after displacing it from its rest or equilibrium position (the
open circle).
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However, because sin 0¼0 and cos 0¼1, Eq. (6.58) reduces to

0:375¼B cos 0¼B (6.59)

Consequently, B¼0.375, and the partial solution is

x¼ 0:375 cos 2t +A sin 2t (6.60)

Taking the derivative dx/dt and setting it equal to 0 yields

dx

dt
¼�0:375 2ð Þ sin 2t +2A cos 2t¼ 0 (6.61)

At the time when t¼0, the sin θ term goes to 0 (sin 2t¼0), so the result is

2A cos 2t¼ 2A cos 0¼ 2A�1¼ 0 (6.62)

Therefore, Amust be equal to 0. The required solution giving the displace-

ment as a function of time is

x¼ 0:375 cos 2t (6.63)

Figure 6.3 shows the graphical nature of this solution with the displacement

of the object being 0.375 m at t¼0, then varying as a cosine function

thereafter.

The period of the vibration is the time necessary for one complete vibra-

tion (or “cycle”) whereas the frequency is given by

ν¼ 1

2π

ffiffiffiffi
k

m

r
¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 kgms�2ð Þ=m

4kg

s
¼ 1

π
s�1

–0.4
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Fig. 6.3 The variation of displacement for a vibrating object on a spring with time for a
complete cycle.
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The vibrating object treated by classical mechanics serves to introduce

the terminology and techniques used for the quantum mechanical oscilla-

tor. The latter is a much more complex problem, which will now be

considered.

6.4 THE QUANTUM MECHANICAL HARMONIC OSCILLATOR

One of the very useful models in quantum mechanics is that known as the

harmonic oscillator. This model provides the basis for discussing vibrating

chemical bonds (discussed further in Chapter 7), so it is a necessary part

of the discussion of spectroscopy. This section is devoted to discussing this

important quantum mechanical model.

Earlier, it was shown that for a vibrating object, the potential energy is

given by

V ¼ 1

2
kx2 (6.64)

but it can also be written as

V ¼ 1

2
mx2ω2 (6.65)

where ω is the angular frequency of vibration (k/m)1/2. The classical vibra-

tional frequency ν is (1/2π)(k/m)1/2. From these definitions, it can be seen

that ω¼ 2πν. The total energy of the oscillator is the sum of the potential

and kinetic energies. In order to write the Schr€odinger equation, it is nec-
essary to find the form of the Hamiltonian operator. The kinetic energy T

can be written in operator form as

T̂ ¼� ћ2

2m

d2

dx2
(6.66)

The potential energy is 2π2ν2mx2, so the Hamiltonian operator can be

written as

Ĥ ¼� ћ2

2m

d2

dx2
+ 2π2ν2mx2 (6.67)

If a substitution is made such that b ¼ 2πνm=ћ, then the general operator

equation

Ĥψ ¼Eψ
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can be written explicitly as

d2ψ

dx2
+

2mE

ћ2
� b2x2

� �
ψ ¼ 0 (6.68)

In this equation, the potential energy varies with x2, and because it is a

nonlinear function, this equation is much more complex than those that

describe the classical harmonic oscillator or the particle in the

one-dimensional box. Inspection of the wave equation shows that the solu-

tion must be a function such that its second derivative contains both the

original function and a factor of x2. A function such as exp(�bx2) satisfies

that requirement. In fact, it will be shown later that the solution can actually

be written as

ψ ¼ c exp �bx2
� �� �

(6.69)

where b and c are constants. Furthermore, it is possible to show that this solu-

tion satisfies Eq. (6.68). The solution of the equation by rigorous means

requires that it be solved by a method using an infinite series. Before apply-

ing this technique to an equation of the complexity of Eq. (6.68), the solu-

tion of differential equations by this technique will be illustrated for some

simple cases.

6.5 SERIES SOLUTIONS OF DIFFERENTIAL EQUATIONS

A large number of problems in science and engineering are formulated in

terms of differential equations that have variable coefficients. The quantum

mechanical treatment of the harmonic oscillator is one such problem, but

another such equation was encountered in the solution of the wave equation

for the hydrogen atom that was described in Chapter 4. At that time, the

solutions were simply stated without any indication of how such equations

must be solved. Some of the most famous equations of this type are shown in

Table 6.1. In these equations, n or v represents a constant.

The equations shown in Table 6.1 are differential equations for which

the solutions are given as infinite series or polynomial solutions, usually bear-

ing the name of the person who solved the problem. It is not intended to

solve all of these equations, but they are given to show some of the

“name” differential equations that will be encountered in a more advanced

study of quantum mechanics. They constitute some of the most important
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differential equations to be encountered in theoretical work. It should be

mentioned that these equations can be written in other forms, so they

may not be readily recognized. One of the commonly used techniques in

quantum mechanics is that of manipulating an equation to get it in a recog-

nizable form, as was done in Chapter 4.

Because the solution of the harmonic oscillator problem will be given in

somewhat greater detail than was given in treating the hydrogen atom prob-

lem in Chapter 4, the discussion will begin by illustrating the solution of

differential equations by means of a series. This is done for the reader whose

mathematics background includes calculus, but not differential equations.

For a more complete discussion of this technique, see the references at

the end of the book. Some of the differential equations that have already

been solved have had solutions that were trigonometric or exponential

functions. Because these functions can also be written as series, the solutions

of such equations could have been written in the form of series.

Consider the differential equation

dy

dx
¼ y (6.70)

with the boundary conditions such that y¼1 at x¼0. This equation can be

solved by inspection because the only function that equals its first derivative

is ex. Also, Eq. (6.70) can be written in the form

dy

dx
�y¼ 0 (6.71)

Table 6.1 Some important nonlinear differential equations that are solved
by a series technique
Name Equation Solutions

Hermite y00 �2xy0 +2ny¼ 0 Hermite polynomials

Bessel
y00 +

1

x
y0 + 1� v2

x2

� �
y¼ 0

Bessel functions

Legendre
y00 � 2x

1�x2
y0 +

v v+1ð Þ
1�x2

y¼ 0
Legendre polynomials

Chebyshev
y00 � x

1�x2
y0 +

n2

1�x2
y¼ 0

Chebyshev polynomials

Laguerre x2y00 + 1�xð Þy0 + ny¼ 0 Laguerre polynomials
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From Eq. (6.71) the auxiliary equation can be written as

m�1¼ 0 (6.72)

From this equation, it can be seen that m¼1, and by using the techniques

illustrated in Section 6.2, the solution can be written directly as ex.

Suppose the previous approaches were not taken but rather that a solu-

tion was assumed, such that it can be represented by the series

y¼ a0 + a1x+ a2x
2 + a3x

3 + a4x
4 +⋯ (6.73)

Substitution of this series for y in Eq. (6.70) gives

d

dx
a0 + a1x+ a2x

2 + a3x
3 +⋯

� �¼ a0 + a1x+ a2x
2 + a3x

3⋯ (6.74)

Therefore, by setting dy/dx¼y, it is possible to write

a1 + 2a2x+3a3x
2⋯¼ a0 + a1x+ a2x

2 + a3x
3 +⋯ (6.75)

which is true if coefficients of like powers of x are equal. Assuming that this

is so, the following relationships are generated:

a0¼ a1 a1¼ 2a2 a2¼ 3a3 a3¼ 4a4

a2¼ a1

2
¼ a0

2!
a3¼ a2

3
¼ a0

6
¼ a0

3!
a4¼ a3

4
¼ a0

4!

Therefore, because the assumed solution has the form

y¼ a0 + a1x+ a2x
2 + a3x

3 + a4x
4 +⋯ (6.76)

substituting the coefficients found earlier and factoring out a0 gives

y¼ a0 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+⋯

� �
(6.77)

From the initial condition that y¼1 when x¼0, it can be seen that

y¼a0¼1. Therefore, a0¼1 and the required solution is

y¼ 1+ x+
x2

2!
+
x3

3!
+
x4

4!
+⋯ (6.78)

It is interesting to note that when written in series form, ex is given by

ex ¼ 1+ x+
x2

2!
+
x3

3!
+
x4

4!
+⋯ (6.79)
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and this agrees with the solution given earlier. Of course, it is not always this

simple, but it is reassuring to see that the solution obtained from the series is

exactly the same as that already known from other methods.

In order to provide another less obvious illustration of the method, the

equation

dy

dx
¼ xy with y 0ð Þ¼ 2 (6.80)

will be solved by the series approach. Assuming as before that y can be

expressed by the series, the result is

y¼ a0 + a1x+ a2x
2 + a3x

3 + a4x
4 +⋯ (6.81)

Taking the derivative dy/dx gives

dy

dx
¼ a1 + 2a2x+3a3x

2 + 4a4x
3 + 5a5x

4 + 6a6x
5 + 7a7x

6 +⋯ (6.82)

The product xy can be written as

xy¼ a0x+ a1x
2 + a2x

3 + a3x
4 + a4x

5 + a5x
6 + 6a6x

7 +⋯ (6.83)

Therefore, from the original equation, Eq. (6.80), it can be seen that

a1 + 2a2x+3a3x
2 + 4a4x

3 +⋯¼ a0x+ a1x
2 + a2x

3 + a3x
4 + a4x

5 +⋯
(6.84)

By equating coefficients of like powers of x, the following relationships are

obtained:

2a2 ¼ a0 3a3¼ a1 4a4 ¼ a2 5a5 ¼ a3 6a6¼ a4

a2¼ a0

2
a3 ¼ 0 a4¼ a2

4
¼ a0

2 � 4 a5¼ 0 a6¼ a4

6
¼ a0

2 � 4 � 6¼
a0

23 � 3!
From the condition that y(0)¼2, it can be seen that a0¼2, and that a1 must

be 0 because there is no term with a corresponding power of x in Eq. (6.84).

Therefore, a3¼a5¼0 and substituting the preceding values for the coeffi-

cients gives

y¼ 2+ 0x+
a0

2
x2 + 0x3 +

a0

2 � 4x
4 + 0x5 +

a0

2 � 4 � 6x
6 +⋯ (6.85)

Because a0¼2, substituting for a0 and factoring out 2 gives

y¼ 2 1+
x2

2!
+
x4

23
+

x6

23 � 3! +⋯
� �

¼ 2 exp
x2

2

� �	 

(6.86)

115Vibrations and the Harmonic Oscillator



Theprecedingdiscussion is intended to showhowseries solutions areobtained

for relatively simple differential equations. The equations that arise in the

quantum mechanical treatment of problems are often more complex than

those used in the illustrations, but the brief introduction is sufficient to remove

some of the mystery of using series in this way. It is not expected that the

reader will know how to solve many of the complex equations of mathemat-

ical physics, but the approach will now be familiar, even if the details are not.

6.6 BACK TO THE HARMONIC OSCILLATOR

In the previous sections, illustrations have been given to show how to solve

some of the simple problems dealing with vibrations and the differential

equations that describe them. As will now be shown, the treatment of the

harmonic oscillator in quantum mechanics is a quite different problem.

As was shown earlier, the harmonic oscillator can be described in a relatively

simple fashion (see Fig. 6.4).

Using Hooke’s law, the restoring force is written as

F ¼�kx (6.87)

and the potential energy V is given by the relationship

V ¼ 1

2
kx2 (6.88)

x

E(x)

E

x0= A

T

V

0

Displacement

Fig. 6.4 A harmonic oscillator that follows Hooke’s law. The total energy E is constant,
but the potential and kinetic energies vary with displacement of the object from its
equilibrium position so that E¼T+V.
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The angular frequency of vibration is ω¼ (k/m)1/2, so k¼mω2. By substitu-

tion, it is found that

V ¼ 1

2
mω2x2 (6.89)

For this model, it is apparent that the total energy E is the sum of the kinetic

and potential energies:

E¼T +V (6.90)

At the equilibrium position of the vibration the spring is not stretched, so

V¼0 and T is a maximum, with the result being that the total energy is

E¼T. At the extremes of the vibration, the oscillator comes to rest for an

instant and the kinetic energy is 0 (T¼0) before it changes direction. There-

fore, at those positions the total energy is the potential energy, (E¼V). It is

near the extremes of the vibrationwhere the velocity is low that the oscillator

spends themajorityof its time.As a result, near the equilibriumpositionwhere

the velocity is the highest, the probability of finding the oscillator is lowest. As

will be discussed later, the probability of finding the oscillator at any point

along its motion is inversely proportional to the velocity at that point.

The total energy of the oscillator can be represented in terms of the

amplitude A by the relationship

E¼ 1

2
kA2 ¼ 1

2
mω2A2 (6.91)

The potential energy can be expressed as

V ¼ 1

2
mω2x2 (6.92)

As in the formulation of other problems in quantum mechanics, the

Schr€odinger equation can be written in general form as

Ĥψ ¼Eψ (6.93)

In this case, the Hamiltonian operator can be written as

Ĥ ¼� ћ2

2m

@2

@x2
+V ¼� ћ2

2m

@2

@x2
+
1

2
mω2x2 (6.94)

Therefore, substituting this result into Eq. (6.93) gives

� ћ2

2m

@2

@x2
+
1

2
mω2x2

� �
ψ ¼Eψ (6.95)
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Simplifying this equation by multiplying by �2m and then dividing by ћ2

gives

@2

@x2
�m2ω2x2

ћ2

� �
ψ ¼�2mE

ћ2
ψ (6.96)

A rearrangement of this equation leads to

@2ψ

@x2
¼� 2mE

ћ2
�m2ω2x2

ћ2

� �
ψ (6.97)

This is not a linear differential equation, and there will be greater difficulty

obtaining a solution. If it is assumed for the moment that the solution has

the form

ψ ¼ c exp �bx2
� �� �

(6.98)

where b and c are constants, this solution can be verified by substituting for ψ
in Eq. (6.97). This is accomplished by taking the required first and second

derivatives,

@ψ

@x
¼�2bxc exp �bx2

� �� �
(6.99)

@2ψ

@x2
¼�2bc exp �bx2

� �� �
+4b2cx2 exp �bx2

� �� �
(6.100)

By working with the right-hand side of Eq. (6.97), it is found that

� 2mE

ћ2
�m2ω2

ћ2
x2

� �
ψ ¼�2mE

ћ2
c exp �bx2

� �� �
+
m2ω2

ћ2
x2c exp �bx2

� �� �
(6.101)

It should be noted that both Eqs. (6.100) and (6.101) contain terms in x2 and

terms that do not contain x, except in the exponential. Therefore, the terms

that contain x2 can be set equal to give

m2ω2

ћ2
x2c exp �bx2

� �� �¼ 4b2cx2 exp �bx2
� �� �

(6.102)

By canceling factors that are common to both sides of this equation, the

result is

4b2¼m2ω2

ћ2
(6.103)
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Solving this equation for b gives

b¼mω

2ћ
(6.104)

By working with the terms that do not contain x as a factor, it is found that

E¼ b
ћ2

m
(6.105)

When the value of b shown in Eq. (6.104) is substituted in this result, the

result is

E¼ 1

2
ωћ (6.106)

Therefore, when b¼mω/2ћ and E¼ωћ/2, the function

ψ ¼ c exp �bx2
� �� �

(6.107)

satisfies the Schr€odinger equation for a harmonic oscillator. Using the value

obtained for b, the solution can be written as

ψ ¼ c exp
�mωx2

2ћ

� �	 

(6.108)

This is, in fact, the solution for the harmonic oscillator in its lowest energy

state. Although it has been assumed that the solution has this form, it is now

necessary to show how the problem is solved.

The solution of the harmonic oscillator problem will now be addressed,

starting with the wave equation, which can be written as

d2ψ

dx2
+
2m

ћ2
E�1

2
kx2

� �
ψ ¼ 0 (6.109)

Substitutions are now made such that

α¼ 2mE

ћ2
(6.110)

and

β¼ 2π mkð Þ1=2
h

(6.111)

Therefore, Eq. (6.109) can be written in the form

d2ψ

dx2
+ α�β2x2
� �

ψ ¼ 0 (6.112)
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The usual procedure employed at this point is to introduce a change in var-

iable such that

z¼
ffiffiffi
β

p
x (6.113)

After this is done, the second derivatives are related by the equation

d2

dx2
¼ β

d2

dz2
(6.114)

The wave equation can now be written as

β
d2ψ

dz2
+ α�β2x2
� �

ψ ¼ 0 (6.115)

and rearrangement leads to

d2ψ

dz2
+

α

β
�βx2

� �
ψ ¼ 0 (6.116)

Therefore, given that z2¼βx2, this leads to the equation

d2ψ

dz2
+

α

β
�z2

� �
ψ ¼ 0 (6.117)

If the solution is now expressed as a function of z, the result is

ψ zð Þ¼ u zð Þ exp �z2

2

� �
(6.118)

Using the simplified notation that ψ¼ψ (z) and u¼u(z), the necessary

derivatives are represented by the equations

ψ 0 ¼ u0 exp �z2

2

� �
�uz exp �z2

2

� �

and

ψ 00 ¼ u00 exp �z2

2

� �
�u0z exp �z2

2

� �
�u0z exp �z2

2

� �

�u exp �z2

2

� �
+ uz2 exp �z2

2

� �
(6.119)
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Simplifying Eq. (6.119) gives

ψ 00 ¼ u00 exp �z2

2

� �
�2u0z exp �z2

2

� �
�u exp �z2

2

� �
+ uz2 exp �z2

2

� �
(6.120)

By substituting Eqs. (6.118) and (6.120) in Eq. (6.117), the result is

d2u

dz2
�2z

du

dz
+

α

β
�1

� �
u¼ 0 (6.121)

If the factor [(α/β)�1] is represented as 2n, Eq. (6.121) becomes

d2u

dz2
�2z

du

dz
+2nu¼ 0 (6.122)

This equation has exactly the form of Hermite’s equation, as shown in

Table 6.1.

Before considering the solution of Eq. (6.122) by means of a series, the

energy levels for the harmonic oscillator will be illustrated. By making use of

the relationship

α

β
�1¼ 2n (6.123)

the expression for α/β can be shown as

α

β
¼ 2n+1 (6.124)

However, by making use of Eqs. (6.110) and (6.111) it can be shown that

α

β
¼ 8πmE

2h
ffiffiffiffiffiffi
mk

p ¼ 4πE
ffiffiffiffi
m

p

h
ffiffiffi
k

p (6.125)

Therefore, by equating the right hand sides of Eqs. (6.124) and (6.125), it can

be seen that

2n+1¼ 4πE
ffiffiffiffi
m

p

h
ffiffiffi
k

p (6.126)

Solving this equation for the energy, the result is

E¼ h

2π

ffiffiffiffi
k

m

r
n+

1

2

� �
¼ ћ

ffiffiffiffi
k

m

r
n+

1

2

� �
(6.127)
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Because the frequency of vibration is ν¼ (1/2π) (k/m)1/2 and ω¼2πν, it is
possible to express the energy as

E¼ ћω n+
1

2

� �
(6.128)

This equation is analogous to Eq. (6.106), which applied only to the ground

state. The fact that the energy levels of the harmonic oscillator are quantized

arises from the restrictions on the nature of Hermite’s equation.

Although the quantum number has been represented by the integer n,

the vibrational quantum number is usually designated as V. Therefore, the

vibrational energy levels of the harmonic oscillator can be expressed in terms

of the quantum number V by the equation

E¼ V +
1

2

� �
ћω (6.129)

Application of this equation results in a series of energy levels, as shown in

Fig. 6.5. The spacing between the energy levels is ћω, and there is a

zero-point energy at (1/2) ћω. In 1900, Planck’s treatment of blackbody

radiation (see Chapter 1) predicted the same arrangement of energy levels.

x

E(x)

0

Displacement

V = 0

V = 1

V = 2

V = 3

V = 4 

V = 5 

(3/2)

(5/2)

(1/2) w

w

w

w

w

w(7/2)

(9/2)

(11/2)

Fig. 6.5 The quantized energy levels of the harmonic oscillator. The energy when V¼0
is known as the zero-point energy.
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Almost 30 years later the quantum mechanical solution of the harmonic

oscillator problem gave rise to the same result.

The solution of Hermite’s equation by a polynomial series will now be

briefly addressed. Because of the nature of this equation and the complexity

of its solution, an outline of the methods used will be provided. An advanced

book on differential equations should be consulted for details of the solution

of this type of equation.

The Hermite equation is written as

d2u

dz2
�2z

du

dz
�2pz¼ 0 (6.130)

where p is an integer. It will be assumed that the solution can be expressed in

a series that can be written as

H zð Þ¼ a0 + a1z+ a2z
2 +⋯¼

X∞
p¼0

apz
p (6.131)

The required first and second derivatives are found to be

H 0 zð Þ¼ a1 + 2a2z+3a3z
2⋯¼

X∞
p¼0

papz
p�1 (6.132)

and

H 00 zð Þ¼ 2a2 + 6a3z+12a4z
2 +⋯¼

X∞
p¼0

p p�1ð Þapzp�2 (6.133)

The terms involving a0 and a1 do not occur in the summation forH00. There-
fore, the series can be written as

H 00 zð Þ¼
X∞
p¼0

p+1ð Þ p+2ð Þap+2z
p (6.134)

Using these results, the Hermite equation can now be written as

X∞
p¼0

p+1ð Þ p+2ð Þap+2 + 2n�2pð Þap
� �

zp¼ 0 (6.135)

For this equation to be true for all values of z, the function in brackets must

be zero:

p+1ð Þ p+2ð Þap+2 + 2n�2pð Þap
� �¼ 0 (6.136)
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Therefore, solving for ap+2 yields

ap+2¼ � 2n�2pð Þ
p+1ð Þ p+2ð Þap (6.137)

This is the recursion formula for the coefficients of the series to be calculated.

Using this formula, the following relationships are obtained.

f or p¼ 0, ap+2¼ a2¼�2 n�0ð Þ
1ð Þ 2ð Þ a0¼�na0

f or p¼ 1, ap+2¼ a3¼�n�1

3
a1

f or p¼ 2, ap+2 ¼ a4¼� 2n�2 2ð Þ½ �
3ð Þ 4ð Þ a2¼�n�2

6
a2¼ n n�2ð Þ

6
a0

f or p¼ 3, ap+2¼ a5¼�n�3

10
a0¼ n�1ð Þ n�3ð Þ

30
a1

Two constants, a0 and a1, are not given by the recursion relation. As seen

earlier, these are the two arbitrary constants that result from the solution

of a second-order differential equation.

The next step in the solution is to show that the series can be written in

terms of exp(�z2) and that appropriate values can be assigned to the con-

stants a0 and a1, resulting in a well-behaved wave function. The details of

that rather tedious process will not be shown because it is more appropriately

covered in advanced texts. However, the Hermite polynomials can be writ-

ten in general form as

Hn zð Þ¼ �1ð Þn exp z2
� � dn

dzn
exp �z2

� �
(6.138)

As a result, the first few Hermite polynomials can be written as

H0 zð Þ¼ 1

H1 zð Þ¼ 2z

H2 zð Þ¼ 4z2�2

H3 zð Þ¼ 8z3�12z

H4 zð Þ¼ 16z4�48z2 + 12

H5 zð Þ¼ 32z5�160z3 + 120z

(6.139)

The wave functions for the harmonic oscillator, ψ i, are written as a normal-

ization constant, Ni, times Hi(z) to give
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ψ0¼N0 exp �z2
� �

ψ1¼N1 2zð Þexp �z2
� �

ψ2¼N2 4z2�2
� �

exp �z2
� �

ψ3¼N3 8z3�12z
� �

exp �z2
� �

(6.140)

In this section, the mathematical procedures have been outlined that are

necessary in order to obtain the full solution of the harmonic oscillator

model using quantum mechanical methods. The details are not really

required for a discussion at this level, but the general approach should be

appreciated from the brief introduction to the solution of differential equa-

tions by series. Graphs of the first three wave functions and their squares are

shown in Fig. 6.6. The squares of the wave functions, which are propor-

tional to the probability density, show that the oscillator is not restricted

to the classical limits of the vibration. For example, the plot of ψ2 for the

V¼0 state shows that there is a slight but finite probability that the oscillator

can be found beyond the classical limit (represented on the graphs as�2), the

range of the vibration. For states with V>0, the probability of the oscillator

tunneling through the classical limit is even greater (see Chapter 13).

It is interesting to note that as the position of a classical oscillator changes,

its velocity continuously changes and reaches zero at the extremes of the

vibration. The velocity has a maximum value at the center of the vibration

(equilibrium position). Therefore, the time spent by the oscillator (and the

probability of finding it) varies with position and has a minimum at the equi-

librium distance.

The relationship between probability and displacement can be analyzed

for a classical oscillator in the following way. Reference to Fig. 6.4 shows

that the potential and kinetic energies vary during the oscillation whereas

the total energy is constant. The total energy is

E¼ 1

2
kx20 (6.141)

whereas the potential energy is

V ¼ 1

2
kx2 (6.142)

The kinetic energy, T, can be expressed as

T ¼E�V ¼ 1

2
kx20�

1

2
kx2 ¼ 1

2
k x20�x2
� �¼ 1

2
mv2 (6.143)
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Solving Eq. (6.143) for the velocity v gives

v¼
ffiffiffiffi
k

m

r
x20�x2
� �1=2

(6.144)

The probability of finding the oscillator at a given point is inversely propor-

tional to its velocity, which can be expressed by the relationship

–4 –2 –4 –20 2 4 0 2 4

y 2, V = 0

y 2, V = 1

y 2, V = 2y, V = 2

y, V = 1

y, V = 0

Fig. 6.6 The first three wave functions and their squares for the harmonic oscillator.
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P∝
1

v
∝

1

x20�x2ð Þ1=2
(6.145)

This equation as can also be written as

P∝
1

1� q2ð Þ1=2
(6.146)

where q¼x/x0. Using this function, a plot of the probability of finding the

oscillator as a function of q can be generated. Figure 6.7 shows this classical

probability of finding the oscillator. For the lowest energy state shown in

Fig. 6.6, the probability of finding the oscillator is given by the plot of

ψ2. This function is also shown in Fig. 6.7.

It is readily apparent that the probabilities obtained classically and by

means of quantum mechanics are greatly different. For the states of higher

energy, the probabilities become more similar, as they are in agreement with

the principle that the quantum behavior approaches classical behavior under

these conditions (referred to as the correspondence principle). According to the

classical view of the harmonic oscillator, the probability of finding the oscil-

lator is greatest near the limits of the vibration (represented as the vertical

lines), and there is no probability that the oscillator is beyond those limits.

According to quantum mechanics, the maximum probability density occurs

at the equilibrium position, and there is a small but finite probability of find-

ing the oscillator beyond the limits of the vibration.

In Fig. 6.5, the potential well for a harmonic oscillator is shown as a para-

bola, which is satisfactory for some purposes. However, such a relationship is

not strictly correct because the potential is not symmetrical. More correctly,

Quantum
mechanical
probability

Classical
probabillity

Fig. 6.7 Probability distribution for the harmonic oscillator in its lowest energy state.
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a diatomic molecule has some degree of anharmonicity to the vibration.

A better representation is provided by a relationship known as the Morse

potential V, which is expressed as

V ¼De 1�e�β r�reð Þ
� �2

(6.147)

In this equation,De is the bond dissociation energy and (r�re) is the distance

of displacement from the equilibrium position (degree of bond stretching).

β is a function of the reduced mass and De and represents the curvature near

the bottom of the potential, and it can be expressed as

β¼ 1:2177�10�7ωe

ffiffiffiffiffiffi
μ

De

r
(6.148)

In this relationship,De and ωe are given cm
�1 and μ is generally expressed in

atomic mass units. As a result, De is frequently on the order of

50–1000 kJ mol�1, 1–10 eV molecule�1 or 5000–50,000 cm�1, whereas

ωe is much smaller, usually 1000–5000 cm�1 for most molecules. The

energy of an anharmonic oscillator is given by

E¼ V +
1

2

� �
ωe� V +

1

2

� �2

ωexe (6.149)

in which xe represents a collection of constants that is given by ωe/4D0. For

example, for the H2 molecule, the values for ωe and ωexe are 4395.2 and

118.0 cm�1, respectively. The value of D0 is the bond dissociation energy

De minus the zero-point vibrational energy:

D0 ¼De�1

2
ћω¼D0�1

2
ν incm�1
� �

(6.150)

Values for all of these spectroscopic constants are determined from a detailed

analysis of spectra, and the harmonic oscillator andMorse potential are useful

models. More sophisticated approaches can be found in the references listed

at the end of this book.

6.7 POPULATION OF STATES

States of unequal energy are unequally populated. This principle is one of the

most important ones in dealing with systems consisting of atoms and mol-

ecules. Experience indicates that this conclusion is true in application to a

liquid and its vapor, to reactants and a transition state they form, or electrons
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populating orbitals in an atom. In its simplest form, the principle, known as

the Boltzmann distribution law, gives the relative populations of two states as

n1

n0
¼ e�ΔE=kT (6.151)

where n is a population, ΔE is the difference in energy between the two

states, k is Boltzmann’s constant, and T is the temperature (K). When the

energy is given on a molar basis, the equation becomes

n1

n0
¼ e�ΔE=RT (6.152)

Strictly speaking, this equation applies to situations where the states are sin-

gle. If either of the states consists of a set of energy levels, the degeneracies of

the states, g, are included to give an equation that can be written as

n1

n0
¼ g

1

g
0

e�ΔE=kT (6.153)

For a harmonic oscillator with energy states separated by 2000 cm�1

(4.0�10�13 erg), the population of the first excited state (n1) relative to

the ground state (n0) at 300 K is

n1

n0
¼ exp

�4:0�10�13 erg

1:38�10�16 erg=moleculeK � 300K

	 

¼ e�9:66 ¼ 6:4�10�5

At 600 K the relative population is only 7.0�10�3. It is clear that unless the

temperature is very high, a collection of a large number of such oscillators

will be found almost totally in the ground state if the energy difference is

rather large. If the oscillators represent vibrating molecules, then this has

some significant implications for spectroscopic studies on the molecules,

which will be discussed in Chapters 7, 11, and 12.

6.8 HEAT CAPACITY OF METALS

In Chapter 7, it will be shown that the heat capacity of a monatomic gas has a

value of 3⁄2 R as a result of three degrees of freedom, each of which contrib-

utes½ R to that value. It will also be shown that gases consisting of diatomic

molecules do not follow that pattern as a result of the absorption of energy by

changes in rotational and vibrational states. For a solid, there is some vibra-

tion of the lattice members about their equilibrium positions, and the

amplitude of the vibrations increases with increasing temperature. The lat-

tice structure of a metal consists of atoms in fixed positions, but they can
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increase in vibrational energy as the temperature increases. It follows that

with there being three directions of motion, each of those degrees of free-

dom should contribute to the heat capacity.When a mole of particles is con-

sidered, 3N�6�3N, so it would be expected that the heat capacity should

have a value close to 3R. With R having a value of 8.314 J mol�1 K�1, the

heat capacity would be approximately 25 J mol�1 K�1. The heat capacities

of several common metals are shown in Table 6.2. It is apparent that the

crude approximation gives values for heat capacities that are about correct.

However, this is true only at temperatures that are high enough so that lattice

vibrations are sufficiently activated.

The heat capacity on a molar basis is the specific heat (per gram) multi-

plied by the number of grams in a mole (the atomic weight for a metal). Thus

it follows that

Specific heat cal g�1 K�1
� ��Atomic weight g mol�1

� �¼Cp cal mol�1 K�1
� �

Specific heat�Atomic weight� 6 cal mol�1 deg�1� 25 Jmol�1 K�1

This two century old “rule” is known as the Law of Dulong and Petit,

and it shows that if the specific heat of a metal is determined experimentally

that the atomic weight can be approximated. However, for binary salts such

as LiF, NaCl, etc., one mole of solid consists of two moles of “particles” so

that on a molar basis, the heat capacity should be approximately twice that of a

solid consisting of atoms.

Vibrational energy levels are populated in a manner that depends on the

temperature. Therefore, the heat capacity of a solid, be it a metal or an ionic

solid, is a function of temperature. It is appropriate to provide some expla-

nation of this phenomenon on the basis of the harmonic oscillator model.

Approaches to this problem based on considering a solid as a collection of

harmonic oscillators were developed by Einstein and Debye. The following

discussion, attributable to Einstein in 1906, presents some of the salient fea-

tures of the method and results.

Table 6.2 Heat capacity of selected metals at room temperature
Metal Cp (J mol21 K21) Metal Cp (J mol21 K21)

Cu 24.5 Sb 25.1

Ni 25.8 Bi 25.6

Ag 25.8 Cd 25.8

Au 25.7 Sn 25.6

Pt 26.5 Pd 26.5
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Although the simple approach outlined above indicates that a metal

would have the heat capacity 3R, this is not the case at low temperature.

The heat capacity has a value of 0 at absolute zero, but it rises rapidly as

the temperature is increased. Figure 6.8 shows the heat capacity of copper

and aluminum as a function of temperature. A successful interpretation of

the variation in heat capacity with temperature must explain the general fea-

tures of such a graph.

The mean energy of a harmonic oscillator of frequency ν can be

expressed as

E¼ 1

2
hν+

X
n

nhν e�nhν=kT

X
n

hν e�nhν=kT
(6.154)

in which h and k are Planck’s and Boltzmann’s constants, respectively. This

expression can be simplified to yield

E¼ 1

2
hν+

hν

ehν=kT �1
(6.155)

The value of E in this equation represents (a) the average vibrational energy

of a specific atom or (b) the average vibrational energy of all atoms at a spe-

cific instant. The ½ hν represents the zero-point energy of the oscillator.
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Fig. 6.8 The heat capacities of copper and aluminum in the range 0–300 K show that
the value of approximately 25 J mol�1 K�1 is approached near ambient temperature.
The rapid increase in heat capacity at low temperature is approximately a function
of T3.
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If the temperature is very low, hν ≫kT with the result that the average

energy is just the zero-point energy, ½ hν. On the other hand, if the tem-

perature is high, then hν≪kT. In this case, the denominator in the second

term of Eq. (6.155) can be simplified by making use of the series represen-

tation of an exponential

ex¼ 1+ x+ 1⁄2x2 +⋯

Therefore,

E¼ 1

2
hν+

hν

ehν=kT �1
� 1

2
hν+

hν

1+
hν

kT
�1

� 1

2
hν+ kT (6.156)

At a sufficiently high temperature, the zero-point energy is negligible com-

pared to kT, so this reduces to the classical value.

E¼ 1

2
hν+ kT � kT (6.157)

This is the classical limit because the energy levels expressed in terms of hν
are much smaller than the average energy of the oscillator kT (or RT on a

molar basis).

It is a fact of life that limiting cases have their limits and do not represent

the intermediate cases. At intermediate temperatures, hν �kT, and lattice

vibrations have a frequency that is typically as high as 1013 Hz. Vibrational

levels are considered to have frequencies that are multiples of a fundamental

frequency, giving rise to energies that can be expressed as 0, hν, 2hν,
3hν, etc., with populations of the states being n0, n1, n2, etc. The popula-

tions will be determined by exponential distributions and will be in the

ratios 1: e�hν/kT: e�2hν/kT: e�3hν/kT, etc. For N atoms, there will be 3N

vibrational states. Based on the Boltzmann distribution law, the relationship

between the populations can be written as

n1¼ no e
�hν=kT ; n1¼ noe

�2hν=kT ; n1 ¼ noe
�3hν=kT ; etc (6.158)

It is now assumed that the total heat content of the crystalQ is the sum of the

energies of the oscillators. This is obtained by multiplying the number of

vibrators in each level by the energy of the level. The result is

Q¼ no hνe�hν=kT +2hνe�2hν=kT +3hνe�3hν=kT +⋯
h i

(6.159)
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The total number of vibrators N can be expressed as the sum of the popula-

tions of occupied states

N ¼ n0 + n1 + n2 + n3 +… (6.160)

Because there are three degrees of freedom, the simplified expression (in

which we now let N equal Avogadro’s number) giving the total internal

energy per mole can be written as

Q¼ 3Nhν

ehν=kT �1
(6.161)

The heat capacity at constant volume is the derivative of the internal energy

with respect to temperature

Cv ¼ @Q

@T

� �
V

¼ 3Nk
hν

kT

� �2
ehν=kT

ehν=kT �1ð Þ (6.162)

In the approach taken by Peter Debye (in whose honor the unit of dipole

moment is named), it was assumed that a distribution of vibrational frequencies

exists.Whenx¼hν/kT andθ (knownas theDebye characteristic temperature)

is defined so that kθ¼hνmax,where νmax is the frequencywith the highest pop-

ulation, it is possible to obtain the following expression for the total energy:

Q¼ 9NkT 4

θ3

ðxmax

0

x3

ex�1
dx (6.163)

Differentiating this expression with respect to temperature at constant vol-

ume gives the following expression for Cv

Cv ¼ 9R
T

θ

� �3 ðxmax

0

exx4

ex�1ð Þ2dx (6.164)

At temperatures where T≫θ and x≪1, the integral is simplified in the fol-

lowing way:

x4ex

ex�1ð Þ2
x4

ex�1ð Þ 1� exð Þ¼
x4

2 x2=2!+ x4=4!+⋯ð Þ (6.165)

If only the term in x2 in the denominator is used, the result is

Cv ¼ 9R
T

θ

� �ð∞
0

x2dx (6.166)
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This expression evaluates to 3R at high temperature in accord with the

Dulong and Petit rule. At low temperature, hν/kT¼x and its value is

replaced by ∞, as shown in Eq. (6.166). In that case, the integral evaluates

to (12/5) π4 R (T/θ)3. This shows that at low temperature the heat capacity

increases as T3, which agrees well with the experimental values for most

metals, as shown in Fig. 6.8. The Debye characteristic temperature varies

significantly for different metals. Table 6.3 shows the values for several

metals.

The harmonic oscillator is one of the important models that can be

treated by the methods of quantum mechanics. It is the most useful

model for describing vibrations in molecules, and as shown above, it is

the starting point for dealing with heat capacities of solids. Because of

the relationship between molecular vibrations and rotations, this applica-

tion of the harmonic oscillator will be deferred until the model for rotat-

ing molecules (known as the rigid rotor) has been described in the next

chapter. Both models will be proven to be essential in the discussion of

spectroscopy.
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PROBLEMS

1. Calculate the zero-point vibrational energies for dOdH and

dOdD bonds. If a reaction of these bonds involves breaking them,

what does this suggest about the relative rates of the reactions of

dOdH anddOdD bonds? What should be the ratio of the reaction

rates?

Table 6.3 Debye characteristic temperatures for selected metals
Metal θ (K) Metal θ (K)

Li 430 Be 980

Na 160 Mg 330

K 99 Ca 230

Au 170 Cr 405

Pb 86 Zn 240

Cd 165 Pt 225
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2. The OH stretching vibration in gaseous CH3OH is at 3687 cm�1.

Estimate the position of the OdD vibration in CH3OD.

3. If y¼ x2 + 5x+2ex, evaluate the following, where D¼ d=dx:
(a) D2 + 4D+2

� �
y

(b) D+4ð Þy
(c) 2D3 + 4D

� �
y

4. If y¼ sin 3x+4 cos 2x, evaluate the following:

(a) D2 + 3D+3
� �

y

(b) D+3ð Þy
(c) 2D2 + 3D

� �
y

5. Use the auxiliary equation method to solve the following:

(a)
d2y

dx2
+ 4

dy

dx
�5y¼ 0

(b) 4D2�36
� �

y¼ 0

(c)
d2y

dx2
� y¼ 0, y 0ð Þ¼�1, and y0 0ð Þ¼�3

(d) D2�3D+2
� �

y¼ 0, y 0ð Þ¼�1, and y 0ð Þ¼ 0

6. Use the series approach to solve the following:

(a) y+ y¼ 0, with y 0ð Þ¼ 1

(b)
dy

dx
�xy¼ 0, with y 0ð Þ¼ 2

(c)
d2y

dx2
+ y¼ 0

7. Wave functions for which ψ xð Þ¼ψ �xð Þ are symmetric, whereas those

for which ψ xð Þ¼�ψ �xð Þ are antisymmetric. Determine whether the

first four normalized wave functions for the harmonic oscillator are sym-

metric or antisymmetric.

8. Find the normalization constant for the wave function corresponding to

the lowest energy state of a harmonic oscillator ψ ¼N0 exp �bx2
� �

,

where b is a constant.

9. If a molecule has the lowest two vibrational states separated by

3000 cm�1, calculate the fraction of the molecules that will be in the

higher state at 300 K. If the total number of molecules is one mole,

how many molecules will populate the higher state? Now repeat the cal-

culations assuming that the temperature is 800 K. What do the results

indicate with respect to reaction rates?

135Vibrations and the Harmonic Oscillator



CHAPTER 7

Molecular Rotation and
Spectroscopy

Spectroscopic studies of molecules usually involve the electromagnetic radi-

ation that is absorbed or emitted as a result of changes in the energy levels

associated with vibration and rotation. In fact, much of what has been deter-

mined about the structure of atoms and molecules has been obtained by

studying the interaction of electromagnetic radiation with matter. In this

chapter, molecular spectra will be considered after a discussion of the quan-

tum mechanical problem of rotation and its combination with vibration. In

this chapter the solution of the rigid rotor quantummechanical model and its

application to rotational states of diatomic molecules will be illustrated. As

a preview of coming topics, the relationship of rotational energy states

to vibrational and electronic states will be depicted. After discussions of

bonding theories, the topic of molecular spectroscopy will be presented

in Chapters 11 and 12.

7.1 ROTATIONAL ENERGIES

To introduce the principles associated withmolecular rotation, the case of an

object of mass m rotating around a fixed center will be considered, as shown

in Fig. 7.1. In this case, it is simpler to consider the center of the rotation as

being stationary, but this is only for convenience. The moment of inertia, I,

in this case can be represented as

I ¼mr2 (7.1)

in which r is the radius of rotation and m is the mass of the object. The angu-

lar velocity, ω, is given as the change in angle φ, with time:

ω¼ dφ

dt
(7.2)

The kinetic energy of rotation, T, can be expressed as

T ¼ 1

2
I
d2φ

dt2
(7.3)
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Analogous to linear momentum, the angular momentum Pφ can be repre-

sented as

Pφ¼ I
dφ

dt
¼ Iω (7.4)

and the kinetic energy T is given as

T ¼P2
φ

2I
(7.5)

which is analogous to the expression T¼p2/2 m for linear momentum. In

polar coordinates, the operator for angular momentum can be written as

P̂φ ¼ ћ
I

@

@φ
(7.6)

and the operator for rotational kinetic energy can be expressed as

T̂ ¼� ћ
2I

@2

@φ2
(7.7)

Assuming that the potential energy of the object is 0,V¼0, the Hamiltonian

operator is

Ĥ ¼ T̂ + V̂ ¼ T̂ +0¼ T̂

and the Schr€odinger equation Ĥψ ¼Eψ can be written as

� ћ
2I

@2ψ

@φ2
¼Eψ (7.8)

Rearranging Eq. (7.8) leads to

@2ψ

@φ2
+
2I

ћ
Eψ ¼ 0 (7.9)

r

φ
m

Fig. 7.1 A rotating object of mass m.
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An equation of this form has been solved before in relation to the particle in a

one-dimensional box model. Therefore, the characteristic equation, where

k2¼2 IE, can be written as

m2 + k2¼ 0 (7.10)

from which it is found that

m¼�ik (7.11)

Therefore, the general form of the solution can be written as

ψ ¼C1e
ikϕ +C2e

�ikϕ (7.12)

Because φ is an angular measure, ψ (φ)¼ψ (φ+2π), where φ is in radians.

As a result of k2¼2 IE. It follows that

2IEð Þ1=2¼ J J ¼ 0, 1, 2,…ð Þ (7.13)

Solving for E leads to

E¼ J2

2I
(7.14)

If the assumption made by Bohr in regard to angular momentum being

quantized is followed,

mvr¼ nh=2π

and so the angular momentum Iω can be expressed as

Iω¼mvr¼ nh=2π

in which n is an integer. Using J as the quantum number, the result obtained

is

Iω¼ J
h

2π
(7.15)

Consequently,

ω¼ hJ

2πI
(7.16)

With Eqs. (7.3) and (7.4), it is found that the energy of rotation Erot is

Erot ¼ 1

2
Iω2¼ 1

2I
I2ω2
� �

(7.17)
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Therefore, by combining Eqs. (7.16) and (7.17), it can be seen that

Erot ¼ 1

2I

hJ

2π

� �2

¼ h2

8π2I
J2 (7.18)

This model is oversimplified in that it does not represent the rotation of

a diatomic molecule around a center of mass, as it is considered from the

quantummechanical point of view, so angular momentum has been assumed

to be quantized. The rotation of a diatomic molecule will be described in the

next section by using the principles of quantum mechanics.

7.2 QUANTUM MECHANICS OF ROTATION

In order to show the applicability of quantum mechanical methods to the

rigid rotor problem, a diatomic molecule, as shown in Fig. 7.2, will be con-

sidered. The bond in the molecule will be considered rigid so that molecular

dimensions remain unchanged during rotation. Because of the moments

around the center of gravity,

m1r1¼m2r2 (7.19)

where m is mass and r is the distance from the center of gravity. It should be

obvious that

R¼ r1 + r2 (7.20)

By substitution and solving for r1 and r2, it is found that

r1¼ m2R

m1 +m2

(7.21)

x

y

z

m2

m1

f

q

Fig. 7.2 The rigid rotor coordinate system.
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r2¼ m1R

m1 +m2

(7.22)

The moment of inertia, I, for this model can be described by the equation

I ¼m1r
2
1 +m2r

2
2 (7.23)

When the results obtained above for r1 and r2 are used, I can be written as

I ¼ μR2 (7.24)

in which μ is the reduced mass,

μ¼ m1m2

m1 +m2

For convenience, the center of gravity will be placed at the origin of the

coordinate system, as shown in Fig. 7.2. However, the solution of this prob-

lem usually comes from transforming the representation of the model into

polar coordinates (see Chapter 4). For each atom, the kinetic energy can be

written as

T ¼ 1

2
m

@x

@t

� �2

+
@y

@t

� �2

+
@z

@t

� �2
" #

(7.25)

In terms of polar coordinates, this becomes for m1

T1 ¼ 1

2
m1r

2
1

@θ

@t

� �2

+ sin2 θ
@φ

@t

� �2
" #

(7.26)

When both atoms are included, the kinetic energy is given by

T ¼ 1

2
m1r

2
1 +m2r

2
2

� � @θ

@t

� �2

+ sin2 θ
@φ

@t

� �2
" #

(7.27)

When this equation is modified to incorporate the moment of inertia, the

result is

T ¼ 1

2
I

@θ

@t

� �2

+ sin2 θ
@φ

@t

� �2
" #

(7.28)

The derivatives are found from the conversions from Cartesian to polar

coordinates. For example, the relationship for the x direction is

x¼ r sin θcosφ (7.29)
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so that

@x

@t
¼ r cosθ cosφð Þ@θ

@t
� r sinθ sinφð Þ@φ

@t
(7.30)

The derivatives for the other variables are found in a similar manner. Using

these results, it is possible to write the operator for the kinetic energy as

T̂ ¼� ћ2

2m

1

r2
@

@r
r2
@

@r
+

1

r2 sinθ

@

@θ
sinθ

@

@θ
+

1

r2 sin2θ

@

@φ2

� �
(7.31)

For a constant internuclear distance, the first term inside the brackets is 0,

because r does not change and its derivative is 0. Furthermore, the kinetic

energy must be described in terms of angular momenta in order to write

the Hamiltonian operator. When this is done, it is found that

T ¼ 1

2I
p2θ +

p2φ

sin2θ

" #
(7.32)

and the operators for the angular momenta are

p̂θ ¼
ћ
i

@

@θ
and p̂φ¼

ћ
i

@

@φ
(7.33)

However, to describe rotation for which the moment of inertia is used, it is

assumed that no forces are acting on the rotor so that the potential energy is

given by V¼0. Under these conditions, H¼T+V¼T and the Hamilto-

nian operator is

Ĥ ¼�ћ2

2I

1

sinθ

@

@θ
sinθ

@

@θ
+

1

sin2θ

@

@φ2

� �
(7.34)

The careful reader will observe that the form of the operator exactly repli-

cates the angular portion of the Hamiltonian shown for the hydrogen atom

in Eq. (4.11). Using this operator, the Schr€odinger equation Ĥψ ¼Eψ
becomes

�ћ2

2I

1

sinθ

@

@θ
sinθ

@

@θ
+

1

sin2θ

@

@φ2

� �
ψ ¼Eψ (7.35)

It should also come as no surprise that the technique used in solving the

equation is the separation of variables. Therefore, it is assumed that a solution

can be written as

ψ θ, φð Þ¼Y θ, φð Þ¼Θ θð ÞΦ φð Þ (7.36)
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This product of two functions can be substituted into Eq. (7.35), and by

dividing by the product, separating terms, and rearranging, it is found that

both factors of the assumed solution can be set equal to a constant, which

will be represented by �m2. The two equations that are obtained by this

separation are

d2Φ

dφ2
¼�m2Φ (7.37)

1

sinθ

@

@θ
sinθ

@Θ

@θ
� m2

sin2θ
Θ+

2IE

ћ2
Θ¼ 0 (7.38)

The equation in φ is of a form that has already been solved several times in

earlier chapters. The equation can be written as

d2Φ

dφ2
+m2Φ¼ 0 (7.39)

and the auxiliary equation can be written as

x2 +m2¼ 0 (7.40)

so that x¼ (�m2)1/2 and x¼ im. Therefore,

Φ¼ eimφ (7.41)

but after a complete rotation through 2π rad, the molecule has the same ori-

entation. Therefore, it can be seen that

eimφ¼ eim ϕ+2πð Þ (7.42)

This equation signifies that

eim2π ¼ 1 (7.43)

Using Euler’s formula,

eix¼ cosx+ i sinx (7.44)

it is found that

eim2π ¼ cos2πm+ i sin2πm (7.45)

The right-hand side of this equation must also be equal to 1, but this is true

only when m is an integer, which means that m¼0, �1, �2, …

The second equation obtained by the separation of variables is simplified

by letting 2 IE/ћ2 be equal to l(l+1).When this is done, the equation can be
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written in terms of ordinary derivatives because only one variable is present,

and the result is

1

sinθ

d

dθ
sinθ

d

dθ
Θ� m2

sin2θ
Θ+ l l +1ð ÞΘ¼ 0 (7.46)

A rearrangement of this equation, which by taking derivatives and collecting

terms, gives the equation

d2Θ

dθ2
+

cosθ

sinθ

dΘ

dθ
+ l l +1ð Þ� m2

sin2θ

� �
Θ¼ 0 (7.47)

A transformation of the variable from θ to x is accomplished by the following

changes:

x¼ cos θ (7.48)

sin2θ¼ 1�x2 (7.49)

dx

dθ
¼� sinθ (7.50)

d

dθ
¼ dθ

dx

d

dθ
¼� sinθ

d

dx
(7.51)

d2

dθ2
¼ d

dθ
� sinθ

d

dx

� �
¼ cosθ

d

dx
� sinθ

d

dθ

d

dx
(7.52)

Substituting for d/dθ, the last relationship gives

d2

dθ2
¼ sin2θ

d2

dx2
¼�cosθ

d

dx
(7.53)

Substituting these quantities into Eq. (7.47), it is found that

d2Θ θð Þ
dθ2

+
cosθ

sinθ

dΘ θð Þ
dθ

+ l l +1ð Þ� m2

1�x2

� �
Θ θð Þ¼ 0 (7.54)

This equation can also be written as

sin2θ
d2Θ xð Þ
dx2

� cosx
dΘ xð Þ
dx

+
cosθ

sinθ

dΘ θð Þ
dθ

l l+1ð Þ� m2

1�x2

� �
Θ xð Þ¼ 0

(7.55)

Now, by replacing dΘ(θ)/dθ with �sin θ dΘ(θ)/dx and sin2 θ with 1�x2,

Eq. (7.55) becomes
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1�x2
� � d2Θ xð Þ

dx2
�2x

dΘ xð Þ
dx

+ l l+1ð Þ� m2

1�x2

� �
Θ xð Þ¼ 0 (7.56)

This equation has the form shown in Table 6.1 for Legendre’s equation.

Once again, it has been possible to reduce a problem in quantum mechanics

to one of the famous differential equations shown in Table 6.1. For example,

the solution of the equation for the radial portion of the hydrogen atom

problem was equivalent to solving Laguerre’s equation. The angular portion

of the hydrogen atom problem involved Legendre’s equation, and the solu-

tion of the harmonic oscillator problem required the solution of Hermite’s

equation.

A series solution for Legendre’s equation is well known and requires the

series of polynomials known as theLegendre polynomials, which can bewritten as

P
mj j
l cosθð Þ (7.57)

Therefore, the wave functions obtained by solving the wave equation for the

rigid rotor are written as

ψ l,m θ, φð Þ¼N P
mj j
l cosθð Þ eimφ (7.58)

whereN is a normalization constant. The solutions ψ l,m (θ, φ) are known as
the spherical harmonics that were first encountered in this book in the solution

of the wave equation for the hydrogen atom. It can be shown that the nor-

malization constant can be written as functions of l and m that are described

by the equation

N ¼ 2l+1ð Þ l�jmjð Þ!
4π l+ jmjð Þ!

� �1=2
(7.59)

Therefore, the complete solutions can be written as

ψ l,m¼
2l+1ð Þ l �jmjð Þ!
4π l + jmjð Þ!

� �1=2
P

mj j
l cosθð Þ eimφ (7.60)

As illustrated, the solution of several quantummechanical problems involves

a rather heavy investment in mathematics, especially the solution of several

famous differential equations. Although the complete details have not been

presented in this book, the procedures have been outlined in sufficient detail

so that the reader has an appreciation of the methods adequate for quantum

mechanics at this level. The references at the end of this book should be con-

sulted for more detailed treatment of the problems.
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By making a comparison of Eqs. (7.38) and (7.46), it can be seen that

2IE

ћ2
¼ l l+1ð Þ (7.61)

Although it will not be proven here, the restrictions on the values of m and l

imposed by the Legendre polynomials require that l be a nonnegative inte-

ger, and in this case, l¼0, 1, 2, … . For a rotating diatomic molecule, the

rotational quantum number is usually expressed as J, so the energy levels are

given in terms of that quantum number as

E¼ ћ2

2I
J J +1ð Þ (7.62)

Therefore, the allowed rotational energies are

E0 ¼ 0; E1¼ 2
ћ2

2I
; E2¼ 6

ћ2

2I
; E3 ¼ 12

ћ2

2I
; etc:

Figure 7.3 shows the first few rotational energy levels.

7.3 HEAT CAPACITIES OF GASES

When gaseous molecules absorb heat, they undergo changes in rotational

energies. Therefore, studying the thermal behavior of gases provides infor-

mation on rotational states of molecules. It can be shown that for an ideal gas,

J = 0

J = 5

J = 4

J = 3

J = 2

J = 1

Energy

30 (  2/2I)

20 (  2/2I)

12 (  2/2I)

6 (  2/2I)

2 (  2/2I)

0 (  2/2I)

Fig. 7.3 Rotational energies for a diatomic molecule (drawn to scale).
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PV ¼ nRT ¼ 2

3

� �
E (7.63)

where E is the total kinetic energy and P, V, and R have their usual mean-

ings. Therefore, this equation can be put in the form

E

T
¼ 3

2
nR (7.64)

If n is 1 mol and the temperature of the gas is changed by 1 K, there will be a

corresponding change in E, which can be represented as ΔE. Therefore,

ΔE

ΔT
¼ 3

2
R (7.65)

The amount of heat needed to raise the temperature of 1 g of some material

by one degree is the specific heat of the material. The molar quantity is

called the heat capacity and is measured in J mol�1 K�1 or cal mol�1 K�1.

Equation (7.65) shows that the heat capacity of an ideal gas should be

(3/2)R, which is 12.47 J mol�1 K�1 or 2.98 cal mol�1 K�1. Table 7.1

shows the heat capacities of several gases at constant volume. There are

two different heat capacities in use:Cv is the heat capacity at constant volume,

and Cp is the heat capacity at constant pressure. It can be concluded that

Cp¼Cv+R. If the gas is at constant pressure, heating the gas to change

the temperature by 1K causes an expansion of the gas, which requires work

to push back the surroundings of the gas. Therefore, the heat capacity at con-

stant pressure is greater than the heat capacity at constant volume, where the

absorbed heat changes only the kinetic energy of the gas.

The experimental heat capacities for helium and argon are identical to

those predicted by the ideal gas equation (12.5 J mol�1 K�1). However,

for all of the other gases listed in the table, the values do not agree with

the heat capacity for an ideal gas. At first glance, it appears that the

Table 7.1 Molar heat capacities of gases at 25°C.
Gas Cv (cal mol21 deg21) Cv (J mol21 deg21)

Helium 2.98 12.5

Argon 2.98 12.5

Hydrogen 4.91 20.5

Oxygen 5.05 21.1

Nitrogen 4.95 20.7

Chlorine 6.14 25.7

Ethane 10.65 44.6
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monatomic gases have heat capacities that agree with the simple model based

on increasing the kinetic energy of the molecules, whereas gases consisting

of diatomic and polyatomic molecules do not.

The motion of gaseous molecules through space is described in terms of

motion in three directions. Because the absorbed heat increases the kinetic

energy in three directions, on average, the same amount of heat goes into

increasing the energy in each direction. That is, (3/2)R¼3(1/2)R, with

(1/2)R going to increase kinetic energy in each direction. Each direction

is called a degree of freedom, and the overall kinetic energy is the sum of

the energy in each direction. However, this is not the only way in which

the heat is absorbed by molecules if they consist of more than one atom.

There are other degrees of freedom in addition to linear motion through

space (translation). The other ways in which molecules absorb heat are by

changing rotational and vibrational energies.

A principle known as the law of equipartition of energy can be stated

quite simply as follows: If a molecule can absorb energy in more than one way,

it can absorb equal amounts in each way. This is also true for translation, where

(1/2)R absorbed goes toward increasing the kinetic energy in each of the

three directions. In order to use this principle, it is necessary to know the

number of “ways” (i.e., degrees of freedom) a molecule can rotate and

vibrate. As will be shown later, for a diatomic molecule (which is linear),

there are only two degrees of rotational freedom, and it can be inferred that

this would also be true for other linear molecules. In the case of linear mol-

ecules for which absorbed heat can change their rotational energy, there will

be 2(1/2)R absorbed. The total heat absorbed for a mole of a gas composed

of linear molecules will be

3
1

2

� �
R¼ 3

2

� �
R¼ 12:5 J mol�1K�1 translationð Þ

2
1

2

� �
R¼R¼ 8:3 J mol�1K�1 rotationð Þ

Thus, the total heat capacity is 20.8 J mol�1 K�1, which is equal to (5/2)

R. Note that this value is very close to the actual heat capacities shown in

Table 7.1 for H2, O2, and N2. It is reasonable to conclude that for these

diatomic molecules, absorbed heat is changing only their translational

and rotational energies. It should be noted that for nonlinear molecules,

there are three degrees of rotational freedom, each of which can absorb

(1/2)R.
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Although the value of (5/2)R for the heat capacity of diatomic molecules

at 25°C has been rationalized, it should be noted that at very high temper-

atures (1500 K), the heat capacity of hydrogen is about 29.2 J mol�1 K�1.

This shows that at high temperature, the H2 molecule can absorb energy

in some way other than by changing only its translational and rotational

energies. The additional way in which H2 molecules can absorb energy is

by changing vibrational energy. A chemical bond is not totally rigid, and

in a diatomic molecule the bond can be represented as a spring (see

Fig. 7.4). However, the vibrational energy (as well as the rotational energy)

is quantized (see Sections 6.6 and 7.2). Because the observed heat capacity of

H2 at 25°C can be accounted for in terms of changes in only translational and

rotational energies, it can be concluded that the molecules cannot change

vibrational energy at this low temperature. Therefore, it should be apparent

that the rotational energy states must be separated by an energy smaller than

that which separates vibrational energy levels. The discussion will now be

turned to a more detailed description of the nature of rotational and vibra-

tional energy states for gaseous diatomic molecules.

7.4 ENERGY LEVELS IN GASEOUS ATOMS AND MOLECULES

Emission spectra for atoms appear as a series of lines, because electrons fall

from higher energy states to lower ones and emit energy as electromagnetic

radiation. The reader should recall the line spectrum of hydrogen (see

Compressed

Equilibrium

Stretched

Fig. 7.4 Motion of a diatomic molecule during vibration.
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Chapter 1) and the fact that the Lyman series is in the ultraviolet (UV)

region, whereas the Balmer series is in the visible region. Consequently,

spectroscopy that is carried out to observe the transitions between the elec-

tronic energy levels often involves radiation in the visible and UV regions of

the electromagnetic spectrum.

For a spectral line of 6000 Å (600 nm), which is in the visible light region

of the electromagnetic spectrum, the corresponding energy is

E¼ hν¼ hc

λ
¼ 6:63�10�27 erg sð Þ� 3:00�1010cm=sð Þ

6:00�10�5 cm
¼ 3:3�10�12 erg

The conversion of this energy to a molar quantity by multiplying by

Avogadro’s number gives 2.0�1012 erg mol�1. Converting this value to

kilojoules per mole gives an energy of about 200 kJ mol�1:

E¼ 3:3�10�12 erg s=moleculeð Þ� 6:02�1023molecules=molð Þ
1010erg=kJ

¼ 200kJ=mol

This is within the typical range of energies separating electronic states, which

is about 200–400 kJ mol�1.

Although the discussion has concerned electronic energy levels in

atoms, the electronic states in molecules are usually separated by similar

energies. In general, the electromagnetic radiation emitted from atoms is

usually studied, but it is the radiation absorbed by molecules that is usually

examined by UV/visible spectroscopy. In addition to electronic energy

levels, molecules also have vibrational and rotational energy states. As

shown in Fig. 7.4, the atoms in a diatomic molecule can be viewed as

though held together by bonds that have some stretching and bending

(vibrational) capability, and the whole molecule can rotate as a unit.

Figure 7.5 shows the relationship between the bond length and the poten-

tial energy for a vibrating molecule. The bottom of the potential well is

rather closely approximated by a parabolic potential (see Chapter 6).

The difference in energy between adjacent vibrational levels ranges from

about 10 to 40 kJ mol�1. Consequently, the differences in energy between

two vibrational levels correspond to radiation in the infrared region of the

spectrum. Rotational energies of molecules are also quantized, but the dif-

ference between adjacent levels is typically only about 10–40 J mol�1. These

small energy differences correspond to electromagnetic radiation in the far

infrared (or in some cases the microwave) region of the spectrum.

150 Fundamentals of Quantum Mechanics



Therefore, an infrared spectrometer is needed to study changes in vibrational

or rotational states in molecules.

The experimental technique known as infrared spectroscopy is con-

cerned with changes in vibrational and rotational energy levels in molecules.

Figure 7.6 shows the relationship between the electronic, vibrational, and

rotational energy levels for molecules and the approximate range of energy

for each type of level.

In the study of heat capacities of gases, it was shown how the existence of

rotational states affects the heat capacity. For He the heat capacity is (3/2)R;

the heat capacity for H2 is (5/2)R at room temperature, but it approaches

(7/2)R at high temperatures. The reason is that for H2, the absorbed energy

will not only change the kinetic energies (translation) of the molecules, but it

will also change their rotational energies. At quite high temperatures, the

vibrational energies of the molecules can also change. The law of equiparti-

tion of energy states that if a molecule can absorb energy in more than one

way, it can absorb equal amounts in each way. As a result of there being three

degrees of translational freedom (x, y, and z to velocity or kinetic energy),

each degree of freedom can absorb (1/2)R as the molecules change their

kinetic energies. Because H2 (and all other diatomic molecules) are linear,

there are only two degrees of rotational freedom, as shown in Fig. 7.7.

If the possibility of rotation around the z-axis (the internuclear axis) is con-

sidered, it is found that the moment of inertia is extremely small and results in

no change in the positions of the atoms. Using a nuclear radius of 10�13 cm,

the value for I is several orders of magnitude larger for rotation around the

x- and y-axes because the bond length is generally on the order of 10�8 cm.
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Fig. 7.5 Potential energy versus bond length for a diatomic molecule.
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The energy of rotation is given by

E¼ ћ2

2I
(7.66)

so by making use of this equation, it is possible to calculate the difference in

energy between two adjacent rotational levels (J¼0 to J¼1), which can be

expressed as

E¼ h2

8π2I
(7.67)

As a result of the very small value for I around the z-axis, the energy is very

large for rotation around that axis. Therefore, an increase in rotational

energy around the internuclear axis for linear molecules (the z-axis because

that is the axis of highest symmetry) is not observed and linear molecules

have only two degrees of rotational freedom.

There is only one degree of vibrational freedom, but it counts double

[2(1/2)R] because an increase in both kinetic and potential energy is

involved. Therefore, when H2 is absorbing heat in all possible ways, the heat

capacity is given as the sum

3=2ð ÞR+ 2=2ð ÞR+ 2=2ð ÞR¼ 7=2ð ÞR
At a very high temperature, the heat capacity will approach this value.

At room temperature (about 300 K), RT is the thermal energy available,

which can be calculated as (8.3144 J mol�1 K�1)� (300 K)¼2500 J mol�1.

Therefore, the very large separation between electronic states (typically

100–300 kJ mol�1) means that only the lowest electronic state will be pop-

ulated. Likewise, for most molecules, the usual difference of 10–40 kJ mol�1

between vibrational states means that only the lowest vibrational state will be

populated at low temperatures. The relatively small differences between

rotational states make it possible for several rotational states to be populated

(although unequally) even at room temperature.

7.5 ROTATIONAL SPECTRA OF DIATOMIC MOLECULES

At this point the types of energy levels for molecules have been described,

and the differences between these states have been shown to correspond to

different regions of the electromagnetic spectrum. Electronic energy levels

are usually separated by sufficient energy to correspond to radiation in the

visible and UV regions of the spectrum. Vibrations have energies of such

magnitudes that the changes in energy levels are associated with the infrared
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region of the spectrum. Therefore, infrared spectroscopy deals primarily

with the changes in vibrational energy levels in molecules. The energy level

diagram shown in Fig. 7.6 reflects the fact that the rotational energy levels

are muchmore closely spaced than are the vibrational energy levels. Accord-

ingly, it is easy to produce a change in the rotational state of a small molecule

as the vibrational energy changes. In fact, for some molecules, there is a

restriction (known as a selection rule) that permits the vibrational state of

the molecule to change only if the rotational state is changed as well, and such

a molecule is HCl. Therefore, if one studies the infrared spectrum of gaseous

HCl, a series of peaks is seen that corresponds to the absorption of the infra-

red radiation as the rotational energy level changes at the same time as the

vibrational state changes. There is not one single absorption peak due to the

change in vibrational state, but rather there is a series of peaks as the vibra-

tional state and rotational states change. Figure 7.8 shows how these transi-

tions are related. As shown in Fig. 7.8, the quantized vibrational states are

characterized by the quantum number V, whereas the rotational states

are identified by the quantum number J.

For a diatomic molecule, the rotational energies are determined by the

masses of the atoms and the distance of their separation, which is the bond

length. Therefore, from the experimentally determined energies separating

the rotational states, it is possible to calculate the distance of separation of the
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Fig. 7.8 Changes in energy as molecules are excited from the lowest vibrational state to
the next higher one. All of the molecules are increasing in vibrational energy, but when
ΔJ¼+1, the molecules are increasing in rotational energy and when ΔJ¼�1, the
molecules are decreasing in rotational energy.
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atoms if their masses are known. However, if a molecule rotates with a higher

rotational energy, the bond length will be slightly longer because of the cen-

trifugal force caused by the rotation. As a result, the spacing between rotational

energy states for J¼1 and J¼2 is slightly different than it is for J¼4 and J¼5.

Figure 7.8 shows this effect graphically in which the difference between

adjacent rotational states increases slightly at higher J values.

As molecules change in vibrational energy states, the selection rule spec-

ifies that they must also change their rotational state. However, because sev-

eral rotational states are populated, some of the molecules will increase in

rotational energy, whereas some will decrease in rotational energy as all

of the molecules increase in vibrational energy. The rotational states are desig-

nated by a quantum number J so that the levels are described by J0, J1, J2,…,

and the vibrational energy states are denoted by the vibrational quantum

numbers, V0, V1, V2, etc. For the transition in which the vibrational energy

is increasing fromV¼0 toV¼1, (ΔV¼+1), it is possible forΔJ to be +1 or
�1, depending on whether the molecules are increasing in rotational energy

(ΔJ¼+1) or decreasing in rotational energy (ΔJ¼�1). These types of tran-

sitions are illustrated in Fig. 7.8.

Figure 7.9 shows the vibration-rotation spectrum obtained by the

author in 1969 for gaseous HCl under moderately high resolution using a
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Fig. 7.9 The vibration-rotation spectrum of gaseous HCl. The spacing between adjacent
peaks is about 20.7 cm�1.
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Beckman IR8 infrared spectrophotometer. The spectrum shows a series of

sharp peaks appearing in two portions. All of the molecules are increasing in

vibrational energy, but some are increasing in rotational energy and some are

decreasing in rotational energy. Note that there appears to be a “gap” in the

middle of the spectrum where a peak is missing. The missing peak would

represent the transition between the first two vibrational states with no

change in rotational state. That peak is missing as a result of this type of tran-

sition being prohibited for the HCl molecule.

If a photograph is taken using a camera with a poor lens, details of the

subject are not visible. Closely spaced lines appear as a blur. The same subject

photographed with a camera having a lens of high quality will show much

better resolution so that small details are visible. A similar situation exists

with spectra. If a spectrometer having poor resolution is used to record

the spectrum of gaseous HCl, the individual sharp peaks are not resolved,

and only two large peaks are observed. With a better spectrometer, all of

the peaks are resolved (as shown in Fig. 7.9), and the two series of sharp peaks

are observed. A spectrum such as that in Fig. 7.9 showing the absorption of

infrared radiation as the molecules change vibrational and rotational state is

said to show rotational fine structure. If the instrument is capable of ultrahigh

resolution, the individual sharp peaks are seen to split into two smaller peaks.

The reason for this is that chlorine exists as a mixture of 35Cl and 37Cl, and

the rotational energy of HCl depends on the masses of the atoms. Therefore,

H35C1 and H37C1 have slightly different rotational energies, which causes

each peak to be split into two closely spaced peaks. Figure 7.10 shows how

the peaks split for gaseous DBr. The reason for the peaks splitting in this case

is that bromine occurs naturally as two isotopes, 79Br (mass 78.92) and 81Br

(mass 80.92). Therefore, the moments of inertia are slightly different for

D79Br and D81Br, resulting in rotational states that are also slightly different.

In this case, the splitting of the peaks due to isotopes of bromine is suffi-

ciently large for even an instrument like the Beckman IR 8 to show some

resolution of peak splitting that results from different isotopic masses.

In this chapter the solution of the problem known as the quantum

mechanical rigid rotor was carried out. Along with the model systems dis-

cussed in earlier chapters, this model and the harmonic oscillator are basic

tools for understanding rotations and vibrations of molecules. Additional

aspects of spectroscopy will treated in greater detail in Chapters 11 and

12. It is interesting to note, however, that the existence of rotational and

vibrational levels in molecules is indicated by the study of a topic as basic

as the heat capacities of gases.
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PROBLEMS

1. The force constant for the CdH radical is 4.09�105 dyn cm�1. What

would be the wave number for the fundamental stretching vibration?

2. For HI, the bond length is about 1.60 Å or 160 pm.What would be the

spacing between the consecutive rotational bands in the IR spectrum

of HI?

3. For CO, the change in rotational state from J¼0 to J¼1 gives rise to an

absorption band at 0.261 cm, and that for J¼1 to J¼2 is associated with

an absorption band at 0.522 cm. Use this information to determine the

bond length of the CO molecule.

4. The vibrational-rotational spectrum shown in Fig. 7.9 was obtained

using an infrared spectrometer of limited resolution. Therefore, the

bands do not show the separation that actually exists due to H35Cl

and H37Cl. What degree of resolution would the spectrometer need

in order to show that separation? Assume that the bond lengths of

the molecules are the same: 127.5 pm.

5. Figure 7.10 shows the vibration-rotation spectrum of DBr with the

splitting caused by 79Br and 81Br. What would be the splitting of the
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Fig. 7.10 The vibration-rotation spectrum of gaseous DBr.
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peaks caused by the difference in isotopic masses in D35C1 and D37Cl

when measured in cm�1?

6. The spacing between vibrational levels for HCl is about 2890 cm�1,

which is where the missing peak would be in the spectrum shown in

Fig. 7.9. Calculate the force constant for the HdCl bond in

(a) dyn cm�1

(b) mdyn Å�1

(c) N m�1

7. The spacing between rotational levels for HCl is about 20.7 cm�1. Use

this value to calculate the bond length in HCl.

8. For a rigid rotor, the rotational energy can be written as L2/2I, where

I is the moment of inertia and L is the angular momentum whose oper-

ator is

L¼ ћ
i

@

@φ

Obtain the operator for rotational energy.Write the Schr€odinger equa-
tion, and from the form of the equation, tell what functions could give

acceptable solutions. Use the functions to evaluate the energy levels for

rotation.

9. For CO, the bond length is 113 pm for both 12C16O and 14C16O.

(a) Determine the moments of inertia for the two molecules.

(b) Determine the difference in the energy between the J¼1 and J¼2

states for 12C16O and 14C16O.

10. Calculate the energy of the first three rotational states H35Cl andH37Cl.

Assume that the bond length is 129 pm.

11. Calculate the reduced mass for (a) LiH and (b) CO molecules.

12. By referring to Fig. 7.9, the vibrational-rotational spectrum for gaseous

HCl, and Fig. 7.8, it is evident that numerous rotational states must be

populated even at room temperature. How can you account for that?

Why is the most highly populated state not the one with the lowest

J value?

13. Explain why a change in vibrational energy for the hydrogen molecule

is not observable in an infrared spectrometer.
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CHAPTER 8

Bonding and Properties
of Diatomic Molecules

In describing the characteristics ofmatter bymeans of quantummechanics, the

presentation has progressed from the behavior of particles in boxes to atoms.

Subsequent chapters will deal with applications of quantum mechanics to

molecules. As will be seen, there are two major approaches to the application

of quantum mechanics to the description of molecules. These are the valence

bond approach developed by Heitler, London, Slater, and Pauling, and the

molecular orbital (MO) approach developed primarily by Robert Mulliken.

Most of what will be covered in this chapter deals with the molecular orbital

approach because it is much simpler to use from a computational standpoint.

8.1 AN ELEMENTARY LOOK AT COVALENT BONDS

To begin the task of describing how molecules exist, it is useful to look first

at a very simple picture. Consider the formation of the H2 molecule as two

hydrogen atoms are brought together from a very large distance, as shown in

Fig. 8.1. As the atoms get closer together, the interaction between them

increases until a covalent bond forms. Each atom is considered complete

in itself, but an additional interaction occurs as the atoms get closer together,

until the molecule can be represented as shown in Fig. 8.1C. The question

should now be asked, “What do we know about this system?”

First, the interaction energy between a hydrogen nucleus and its electron

is �13.6 eV, the binding energy of an electron in a hydrogen atom. The

hydrogen molecule has a bond energy (BE) of 4.51 eV, which is required

to break the bond or �4.51 eV when the bond forms. If the H2 molecule

is represented as shown in Fig. 8.1C, it becomes clear that the molecule differs

from two atoms by the lines connecting each electron to both nuclei as well

as the repulsion of the two nuclei and the two electrons. The dashed lines

represent the interactions of the electron (1) with the nucleus (2) and the

electron (2) with the nucleus (1). Despite the repulsions between the nuclei

and between the electrons, the bond energy for the hydrogen molecule is

4.51 eV bond�1 (432 kJ mol�1). Therefore, the attractions between the
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nuclei and the electrons more than offset the repulsions of like charged par-

ticles at the normal bond length of 0.76 Å (76 pm).

After the quantum mechanical treatment of the models shown in earlier

chapters, it should not be expected that the quantum mechanical treatment

of even diatomic molecules will be simple. The preceding discussion was

intended to show that some of the basic parameters are intuitively known,

so a great deal is already known about diatomic molecules. Some reference

points are provided by the energies of electrons in atoms and the bond ener-

gies of the molecules.

The energies of chemical bonds are usually expressed as positive numbers

that represent the energy required to break the bond:

A :B!A+B, ΔH ¼ bond enthalpy positiveð Þ (8.1)

When the bond forms, the same quantity of energy is involved, but the

energy is liberated (this is the negative of the bond enthalpy).

8.2 SOME SIMPLE RELATIONSHIPS FOR BONDS

It should be expected that some of the simplest diatomic molecules are those

in which only one type of atomic orbital is utilized. Therefore, the discus-

sion will begin by considering several molecules that are relatively simple

from the standpoint of the orbitals used. Because s orbitals are singly degen-

erate and spherically symmetric, the simplest bonds between atoms are those

in which only s orbitals are used. Fortunately, there is a rather wide range of

molecules to consider. These include H2, Li2 … Cs2, LiH … CsH, NaLi,
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Fig. 8.1 The formation of the bond in H2 as two H atoms approach from a long distance
(A), at an intermediate distance (B), and at the equilibrium distance (C).
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KNa, and RbNa, all bound with single bonds. Searching for relationships

between properties of molecules has long been an honorable activity for

persons seeking to understand chemical bonding, and the literature contains

an enormous number of such relationships. Moreover, many of these rela-

tionships, whether empirical, semiempirical, or theoretical, are of great

heuristic value. Before engaging the gears of the quantummachinery, a little

chemical intuition will be applied.

Based on the simplest of assumptions, it would be expected that if

everything else is equal, the longer a bond, the weaker it is likely to be. This

is to be expected because even the most naive view of orbital interaction

(overlap) would lead to the conclusion that the larger, more diffuse orbitals

do not interact (overlap) as well as smaller, more compact ones. For the first

attempt at verifying our intuition, a graph will be made showing bond

energy versus bond length for the molecules previously listed. Table 8.1

shows the pertinent data for the atoms considered, and the graph that results

is shown in Fig. 8.2. Although the study has been simplified by considering

only those molecules using s orbitals in bonding, it is obvious that there is, as

expected, a reasonably good relationship between bond energy and bond

length for such cases. A relationship like that shown in Fig. 8.2 confirms that

some of the elementary ideas about chemical bonds are correct. It would

now be possible to find the equation for the line to obtain an empirical alge-

braic relationship.

Table 8.1 Properties of molecules bonded by s orbitals

Molecule
Bond length
(pm)

Bond energy
Average IPa

(kJ mol21)(kJ mol21) (eV bond21)

H2 74 432 4.48 1312

Li2 267 105 1.09 520

Na2 308 72.4 0.750 496

K2 392 49.4 0.512 419

Rb2 422 45.2 0.468 403

Cs2 450 43.5 0.451 376

LiH 160 234 2.43 826

NaH 189 202 2.09 807

KH 224 180 1.87 741

RbH 237 163 1.69 727

CsH 249 176 1.82 702

NaLi 281 88.1 0.913 508

NaK 347 63.6 0.659 456

NaRb 359 60.2 0.624 447

aThe ionization potentials (IPs) for H, Li, Na, K, Rb, and Cs atoms are the same as the average values for
the diatomic molecules.
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Having “discovered” one relationship that fits bonds between atoms

using s orbitals, a different approach will now be taken. It is known that

metals, particularly those in Group IA, have low ionization potentials

(IP), and therefore, do not have great attraction for electrons. If two alkali

metals form a bond, it would be expected that the bond should be weak.

However, the discussion will not be limited to alkali metals themselves,

but rather include all the molecules for which data are shown in Table 8.1.

As a first and very crude approximation, it can be considered that an elec-

tron pair bond between atoms A and B results from a mutual attraction of

these atoms for the pair of electrons. It is logical to assume that the attraction

of an atom A for its outer electron can be approximated from its ionization

potential. The same situation exists for atom B. Because the strength of the

bond between atoms A and B reflects their mutual attraction for the electron

pair, one might guess that the electron pair would be attracted by the two

atoms with an energy that is related to the average of the ionization poten-

tials of atoms A and B. Like most things in life, the behavior of atoms is not

usually this simple, so it is to be hoped that the bond energy will be related to

the average ionization in some simple way.

The first problem to be confronted is how to calculate the “average” ion-

ization potential of two atoms. The two approaches to getting a mean value

for the two parameters x1 and x2 are the arithmetic mean, which is (x1+x2)/2,

and the geometric mean, which is (x1x2)
1/2. When the two quantities whose

average value is to be determined are of similar magnitudes, the ways of
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getting an average value give about the same result. In fact, if x1¼x2, the aver-

ages are identical. On the other hand, if one of the quantities is zero (x2¼0),

the arithmetic mean is x1
1/2, but the geometric mean is zero. Because bonds

between atoms having greatly differing ionization potentials are to be consid-

ered, the geometric mean of the ionization potentials will be used. Figure 8.3

shows a graph of the average ionization potential versus bond energy for a

series of diatomic molecules in which only s orbitals are used in bonding.

In this case, the relationship is indeed very good. Linear regression

applied to the data gives the equation

IPav kJ mol�1
� �¼ 2:357E kJ mol�1

� �
+301:98 r¼ 0:993ð Þ (8.2)

Not only is the intuitive approach correct, but also a relationship has been

obtained that can be used for predictive purposes. For example, francium is a

radioactive element for which a relatively small amount of data exists. The

ionization potential for francium is about 3.83 eV or 369 kJ mol�1. Using

the relationship shown in Eq. (8.2), a bond energy of only 28.5 kJ mol�1

(6.81 kcal mol�1 or 0.295 eV bond�1) would be predicted for the Fr2 mol-

ecule. In a similar manner, the equation could estimate the bond energies of

CsK, CsLi, etc.

It is interesting to speculate on what the intercept of 302.2 kJ mol�1

means. One interpretation is that the intercept, which corresponds to a

hypothetical bond energy of 0, occurs when two atoms have such a low

average ionization potential (302.2 kJ mol�1) that they have no residual

y = 2.357 x + 301.98
R2 = 0.993
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Fig. 8.3 The relationship between the average ionization potential (IP) (geometric
mean) and the bond energy for molecules having overlap of s orbitals.
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attraction for other electrons. The atom having the lowest ionization poten-

tial is Fr (369 kJ mol�1), and the Fr2 bond is very weak. If there were two

atoms having an average ionization energy of 302.2 kJ mol�1, their attrac-

tion for a bonding pair of electrons would be so slight that they should form

no bond between them. Of course, this assumes that the relationship is valid

outside the range for which data are available to test it.

In this instance, our intuition that the ionization potentials of the atoms

forming the bonds ought to be related to the bond energy is completely jus-

tified. Of course, the analysis was restricted tomolecules using only s orbitals,

but the results are still gratifying. Any relationship between bond energies

and atomic properties that gives a correlation coefficient of 0.993 is interest-

ing. Throughout the study of the chemical bond, many workers have sought

to correlate bond energy with such properties as the difference in electro-

negativity between the atoms and force constants for bond stretching. In

most cases, a rather restricted list of molecules must be considered if a rea-

sonably good relationship is expected. The discussion will now turn to a

quantum mechanical description of diatomic molecules.

8.3 THE LCAO-MO METHOD

The linear combination of the atomic orbitals-molecular orbital

(LCAO-MO) method is based on the idea that a wave function for a mol-

ecule (ψ) can be written as a linear combination of atomic wave functions (φi).

This can be expressed by the equation

ψ ¼Σaiφi (8.3)

For a diatomic molecule, this relationship reduces to

ψ ¼ a1φ1 + a2φ2 (8.4)

where φ is a wave function for an atomic orbital and a is a weighting or mix-

ing coefficient. As will also be shown, a1φ1�a2φ2 is also a possible linear

combination. The values of the coefficients must be determined, and they

are treated as parameters to be obtained by the optimization of the molecular

wave function using the variation method (see Section 4.5). In applying the

variation method, the first step is representing the value of the energy using

E¼

ð
ψ*Ĥψdτð
ψ*ψdτ

(8.5)
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Substituting the trial wave function for ψ gives

E¼

ð
a1φ1*+ a2φ2*ð ÞĤ a1φ1 + a2φ2ð Þdτð
a1φ1*+ a2φ2*ð Þ a1φ1 + a2φ2ð Þdτ

(8.6)

Expansion of the binomials leads to

E¼
a1

2

ð
φ1*Ĥφ1dτ+2a1a2

ð
φ1*Ĥφ2dτ+ a2

2

ð
φ2*Ĥφ2dτ

a12
ð
φ1*φ1dτ+2a1a2

ð
φ1*φ2dτ+ a2

2

ð
φ2*φ2dτ

(8.7)

In writing this equation in this form, it has already been assumed that

ð
φ1*Ĥφ2dτ¼

ð
φ2*Ĥφ1dτ (8.8)

and that

ð
φ1*φ2dτ¼

ð
φ2*φ1dτ (8.9)

In other words, the discussion has been restricted to a homonuclear diatomic

molecule. By an inspection of Eq. (8.8), it is apparent that it will be necessary

to deal with integrals that have the forms

H11¼
ð
φ1*Ĥφ1dτ (8.10)

and

H12¼
ð
φ1*Ĥφ2dτ (8.11)

These integrals are frequently represented in a kind of shorthand notation as

φ1*jĤjφ1

� �
and φ1* jĤ jφ2

� �
Similarly, the expansion of the denominator of Eq. (8.7) leads to integrals of

the type

S11¼
ð
φ1*φ1dτ (8.12)

165Bonding and Properties of Diatomic Molecules



and

S12¼
ð
φ1*φ2dτ (8.13)

These integrals are represented in shorthand notation as

φ1* jφ1h i and φ1*jφ2h i
respectively. An explanation of the meaning of integrals of these types will

now be given.

The integrals represented as H11 and H22 represent the energies with

which an electron is held in atoms 1 and 2, respectively. This is known

because these integrals contain the wave function for an electron in

each atom, and the Hamiltonian operator is the operator for total energy.

Moreover, the binding energy of an electron in an atom is simply

the reverse of its ionization potential, which is positive because it requires

work to remove an electron from an atom. Therefore, these binding ener-

gies are negative, with their magnitudes being determined from the valence

state ionization potential (VSIP), an application of Koopmans’ theorem that

states the ionization potential is equal in magnitude to the orbital energy.

These integrals represent the Coulombic attraction for an electron in an

atom and are accordingly called Coulomb integrals.

In a very loose way, the integrals represented as H12 and H21 are indic-

ative of the attraction that nucleus 1 has for electron 2 and vice versa. These

integrals are called the exchange integrals because they represent types of

“exchange” attractions between the two atoms. It will be shown later that

these integrals are of paramount importance in determining the bond energy

for a molecule. Determining the magnitude of the exchange integrals rep-

resents a considerable part of the challenge of finding a quantum mechanical

approach to bonding. It should be apparent that the values of H12 and H21

are related in someway to the bond length. It follows that if the two atoms are

pulled completely apart, the nucleus of atom 1would not attract the electron

from atom 2 and vice versa.

The type of integral represented as S11 and S22 is called an overlap integral.

These integrals give a view of how effectively the orbitals on the two atoms

overlap. It should be clear that if the atomic wave functions are normalized,

then

S11¼ S22¼
ð
φ1*φ1dτ¼

ð
φ2*φ2dτ¼ 1 (8.14)
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Therefore, these integrals do not present a difficulty, but those of the type

S21¼
ð
φ2*φ1dτ (8.15)

S12¼
ð
φ1*φ2dτ (8.16)

do pose a problem. It should be inferred that these integrals represent the

overlap of the wave function of the orbital from atom 1 with that of an

orbital from atom 2 and vice versa. Also, it is no surprise that the values

of these integrals depend on the internuclear distance. If the two atoms were

pushed closer and closer together until the two nuclei were at the same

point, then the overlap would be complete, and the integrals S12 and S21
would be equal to 1. On the other hand, if the nuclei are pulled farther

and farther apart to a distance of infinity, there would be no overlap of

the atomic orbitals from atoms 1 and 2; therefore, S12 and S21 would be

equal to 0. Thus, the overlap integral must vary from 0 to 1, and its value

must be a function of the distance between the two atoms. Furthermore,

because the values of integrals of the type H12, etc., are also determined

by bond length, it is apparent that it should be possible to find a relationship

between H12 and S12. As will be shown, this is precisely the case.

Making the substitutions for the integrals that appear in Eq. (8.7) leads to

E¼ a1
2H11 + 2a1a2H12 + a2

2H22

a12 + 2a1a2S12 + a22
(8.17)

Note that S11 and S22 have been omitted from the denominator in

Eq. (8.17), their values being 1 if the atomic wave functions are normalized.

It must be kept in mind that it is necessary to find the values for the weight-

ing parameters a1 and a2 introduced in Eq. (8.4) that make the energy a min-

imum. This is done by taking the derivative of Eq. (8.17) with respect to a1
and a2 and setting them equal to 0:

@E

@a1

� �
a2

¼ 0 and
@E

@a2

� �
a1

¼ 0 (8.18)

Differentiating Eq. (8.17) with respect to a1 and simplifying gives Eq. (8.19).

Repeating the differentiation with respect to a2 gives Eq. (8.20):

a1 H11�Eð Þ+ a2 H12�S12Eð Þ¼ 0 (8.19)

a1 H21�S21Eð Þ+ a2 H22�Eð Þ¼ 0 (8.20)
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Equations (8.19) and (8.20), known as the secular equations, constitute a pair

of linear equations that can be represented by the general forms

ax+ by¼ 0

cx+ dy¼ 0 (8.21)

Of course, it is obvious that the equations are satisfied if all of the coefficients

are 0 (the so-called trivial solution). A theorem of algebra, stated here without

proof, requires that for a nontrivial solution, the determinant of the coeffi-

cients must be 0. Therefore,

a b

c d

����
����¼ 0 (8.22)

In the secular equations, the values of a1 and a2 are the unknown quantities

that need to be evaluated. Therefore, the determinant of the coefficients can

be written as

H11�E H12�S12E

H21�S21E H22�E

����
����¼ 0 (8.23)

This determinant is known as the secular determinant.

If the two atoms are identical (a homonuclear diatomic molecule), it is

apparent that H11¼H22 and H12¼H21. Although it may not be quite as

obvious, S12¼S21 also, and both of these integrals will be represented simply

as S at this time. Therefore, expanding the determinant yields

H11�Eð Þ2� H12�SEð Þ2¼ 0 (8.24)

or

H11�Eð Þ2 ¼ H12�SEð Þ2 (8.25)

Taking the square root of both sides of Eq. (8.25) gives

H11�E¼� H12�SEð Þ (8.26)

Solving this equation for E gives the values

Eb¼H11 +H12

1 + S
and Ea¼H11�H12

1�S
(8.27)

For these two energy states, Eb is referred to as the symmetric or bonding state,

and Ea is called the asymmetric or antibonding state. The combinations of the

wave functions are shown graphically in Fig. 8.4.

For the moment, it will be assumed that the molecule being considered is

the simplest molecule, H2
+. The integralH11 represents the binding energy
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of the electron in the 1s state to nucleus 1 andH12 the additional attraction of

the second nucleus to this negative charge. The integralH12 is the expression

for the energy that results from the fact that the electron can also reside in the

1s state of the second hydrogen atom. As such, it is often called an exchange

integral, and it also represents a negative energy or a binding energy.

Consequently, the energy denoted as Eb represents the lower energy, and

the state is referred to as the bonding state (where electrons reside). The state

of higher energy Ea is called the antibonding state. The orbitals used in H2 are

identical to those used in H2
+, although the energies are obviously different.

Figure 8.5 shows the molecular orbital diagram for the H2 molecule.

Nodal plane

H atom 1 H atom 2

H2

+

+–
(B)

(A)

s ∗

s

+ +

Fig. 8.4 Electron density contours for the bonding (A) and antibonding (B) σ orbitals
formed from a linear combination of two s wave functions. (Reproduced with
permission from House, J. E. Inorganic Chemistry. 2nd ed.; Academic Press/Elsevier:
Amsterdam, 2013.)
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Fig. 8.5 The molecular orbital (MO) diagram for a hydrogen molecule.
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Substituting the values for the energies shown in Eq. (8.27) into

Eqs. (8.19) and (8.20) yields

a1¼ a2 symmetric stateð Þ (8.28)

a1¼�a2 antisymmetric stateð Þ (8.29)

Consequently, the wave functions corresponding to the energy states Eb and

Ea can be written as (in which S is used in place of both S12 and S 21):

ψ b¼ a1φ1 + a2φ2¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2+ 2Sð Þp φ1 +φ2ð Þ (8.30)

ψ a¼ a1φ1� a2φ2¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�2Sð Þp φ1�φ2ð Þ (8.31)

The normalization constants represented as A are obtained as follows:

1¼
ð
A2 φ1 +φ2ð Þ2dτ¼A2

ð
φ2
1dτ+

ð
φ2
2dτ+2

ð
φ1φ2dτ


 �
(8.32)

If the atomic wave functions φ1 and φ2 are normalized, thenð
φ1 φ1dτ¼ 1 and

ð
φ2φ2dτ¼ 1

so that

1¼A2 1 + 1+ 2S½ �
Solving for A gives the normalization constant:

A¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2+ 2Sð Þp (8.33)

The combination of two 2s orbitals leads to the same type of molecular wave

functions that we have already shown. Therefore, the molecular orbital dia-

gram for Li2, shown in Fig. 8.6, has the same appearance as that for H2,

except that the energies of the atomic orbitals and the molecular orbitals

are quite different because the binding energy of the 2s electron in lithium

is quite low. Information about the energies of molecular orbitals is obtained

from photoelectron spectroscopy (House, 2013).

8.4 DIATOMIC MOLECULES OF THE SECOND PERIOD

In considering molecules composed of second-row atoms, it is necessary to

include the combination of the p orbitals in forming MOs. In accord with

the convention regarding symmetry (see Chapter 10), the direction lying
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along the bond is taken to be the z-axis. Therefore, when the 2pz orbitals

overlap (i.e., the wave functions are combined), a σ bond is formed that is

symmetric around the internuclear axis. The wave functions produced by

the combination of two 2pz wave functions can be written as

ψ pzð Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2+ 2S

p φ z1ð Þ+φ z2ð Þ½ � (8.34)

ψ* pzð Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2S

p φ z1ð Þ�φ z2ð Þ½ � (8.35)

A pictorial representation of the bonding and antibonding orbitals is shown

in Fig. 8.7

After the pz orbitals have formed a σ bond, the px and py orbitals can

form π bonds. The molecular orbital produced by the combination of

two py orbitals produces a node in the xz plane, and the combination of

the px orbitals produces a node in the yz plane. The combinations of atomic

wave functions have the same form as those shown in Eqs. (8.34) and (8.35),

Nodal plane

−

− − ++

−+

Fig. 8.7 The bonding (top) and antibonding (bottom) orbitals that result from
combining two 2pz orbitals.

2s 2s

s ∗

s -572
-520

0
Energy
(kJ/mol)

Fig. 8.6 The molecular orbital diagram for the lithium molecule, Li2.
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except for the designation of the atomic orbitals. The electron density

contours for these orbitals are symmetric on either side of the internuclear

axis and represent π bonds. The electron density plots for the two π orbitals

are shown in Fig. 8.8.

The combination of the 2py wave functions also produces π and π*
orbitals, so the combination of two sets of three p orbitals form six molecular

orbitals, showing the number of molecular orbitals produced is equal to the

number of atomic orbitals combined. The antibonding states lie higher in

energy, but there is still a problem in ordering the energies of the σ and two

π bonding molecular orbitals. For some molecules, the σ orbital lies below

the twodegenerateπ orbitals,whereas in other cases the twoπ orbitals lie lower
in energy than the σ orbital. The reason for this is that for atoms early in the

period (e.g., B and C), the 2s and 2p atomic orbitals are not greatly different

in energy. This allows for partial “mixing” (or hybridization) of the atomic

states before the molecular orbitals form. In this case, the π orbitals are stabi-

lized whereas the σ orbital is destabilized with the result that the two π orbitals
lie lower in energy. For atoms later in the period (e.g., O and F), the higher

nuclear charge causes the 2s orbital to have an energy well below that of

the 2p orbitals so that there is no effective mixing of the atomic states. In these

cases, the σ orbital lies lower in energy than the two π orbitals.
For the nitrogen molecule, some uncertainty might be expected in

regard to the relative energies of the σ and π orbitals. However, the exper-

imental evidence from photoelectron spectroscopy indicates that when an

electron is removed, it is from a molecular orbital having σ character rather

than one of the π orbitals. Therefore, it is believed that the π orbitals in N2

have lower energy than that of the σ orbital.

+

+

+
+

+

+

− −

−

−

−

p∗

p

Nodal plane

Fig. 8.8 Electron density contours for bonding and antibonding π orbitals.
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Figure 8.9 shows the molecular orbital diagrams for the diatomic mol-

ecules of the second period that involve 2s and 2p atomic orbitals to

form molecular orbitals.

Now that the order of orbitals with respect to increasing energy has been

determined, it can also be shown how the orbitals are occupied with the

appropriate number of electrons according to Hund’s rule. Figure 8.9 also

includes data for the diatomic molecules that provide information regarding

the population of the molecular orbitals. For example, the fact that the B2

molecule has two unpaired electrons clearly indicates that the degenerate π
orbitals lie below the σ orbital. If the σ orbital were lower in energy, it would
contain a pair of electrons, and the molecule would be diamagnetic. The C2

molecule is diamagnetic, but if the σ orbital were lower in energy than the

two π orbitals, that orbital would be filled, and the two π orbitals would hold
one electron each. Therefore, in the C2 molecule, the π orbitals have lower
energy than the σ orbital. Moreover, the O2 molecule has two unpaired

electrons in the two π* orbitals and it is paramagnetic. Figure 8.9 also gives

values for the bond order (B), which is defined as

B¼Nb�Na

2
(8.36)

whereNb is the number of electrons in bonding orbitals andNa is the num-

ber of electrons in antibonding orbitals. Also shown in Fig. 8.9 are the bond

energies for the molecules, from which it is clear that the bond energy
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Fig. 8.9 Molecular orbital diagrams for second-row homonuclear diatomic molecules.
(Reproduced with permission from House, J. E. Inorganic Chemistry. 2nd ed.; Academic
Press/Elsevier: Amsterdam, 2013.)
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increases roughly with bond order. This is an expected result because the

greater the number of electrons involved in bond formation, the stronger

the bond between the two atoms.

Several important heteronuclear diatomic species are derived from the

atoms of the second period. These include heteronuclear molecules like

CO and NO, for which the molecular orbital diagrams are shown in

Fig. 8.10. Moreover, there are well-characterized chemical species that

are derived from the O2 molecule by either the loss or gain of electrons.

Such species include O2
+ (dioxygenyl ion) and O2

� (superoxide ion), for

which molecular orbital diagrams are also shown in Fig. 8.10. For example,

the O2
+ ion is generated by reaction of oxygen with PtF6:

O2 +PtF6 !O2
+ +PtF6

� (8.37)

Potassium reacts with oxygen to form O2
�:

K+O2!KO2 (8.38)

The electron lost fromO2 to produce the O2
+ ion comes from an antibond-

ing orbital, which results in an increase in the bond order from 2 to 2.5. By

the addition of two electrons to the O2 molecule, the peroxide ion O2
2� is

produced. As a result of the peroxide ion having a bond order of 1, it would

be expected that it would not be a very stable species. In agreement with

that prediction, the bond strength is weak and some peroxides are not very
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Fig. 8.10 Molecular orbital diagrams for diatomic ions and heteronuclear molecules of
second-row elements. (Reproduced with permission from House, J. E. Inorganic Chemistry.
2nd ed.; Academic Press/Elsevier: Amsterdam, 2013.)
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stable chemical species. All of these oxygen-containing species are important

in the chemistry of oxygen.

Another interesting diatomic species is the NO molecule, which has a

single electron in a π* orbital. In this case, the molecule can be ionized rather

easily, and the resulting NO+ is then isoelectronic with CN� and CO.

Therefore, in some metal complexes, NO behaves as a three-electron

donor, with one electron donated by way of ionization of NO and an elec-

tron pair donated in the usual coordinate bond formation. The properties of

many diatomic molecules are presented in Table 8.2.

Table 8.2 Properties for diatomic molecules and ions
Species Nb Na Ba R (pm) DEb (eV)

H2
+ 1 0 0.5 106 2.65

H2 2 0 1 74 4.75

He2
+ 2 1 0.5 108 3.1

Li2 2 0 1 262 1.03

B2 4 2 1 159 3.0

C2 6 2 2 131 5.9

N2 8 2 3 109 9.76

O2 8 4 2 121 5.08

F2 8 6 1 142 1.6

Na2 2 0 1 308 0.75

Rb2 2 0 1 – 0.49

S2 8 4 2 189 4.37

Se2 8 4 2 217 3.37

Te2 8 4 2 256 2.70

N2
+ 7 2 2.5 112 8.67

O2
+ 8 3 2.5 112 6.46

BN 6 2 2 128 4.0

BO 7 2 2.5 120 8.0

CN 7 2 2.5 118 8.15

CO 8 2 3 113 11.1

NO 8 3 2.5 115 7.02

NO+ 8 2 3 106 –
SO 8 4 2 149 5.16

PN 8 2 3 149 5.98

SiO 8 2 3 151 8.02

LiH 2 0 1 160 2.5

NaH 2 0 1 189 2.0

PO 8 3 2.5 145 5.42

aB is the bond order, (Na–Nb)/2.
bDE is the dissociation energy (1 eV¼96.48 kJ mol�1).
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8.5 OVERLAP AND EXCHANGE INTEGRALS

By now it should be apparent that the values of overlap integrals must be

available if the energies ofMOs are to be calculated. Over 60 years ago,Mul-

liken and colleagues evaluated the overlap integrals for a large number of

cases using the Slater-type orbitals described in Chapter 5 (Mulliken

et al., 1949). Because orbital overlap is crucial to describing covalent bonds,

a convenient system of adjustable parameters was developed for determining

overlap integrals, which depend on the type of orbitals and the nature of the

atoms bonded. Two parameters, designated as p and t, are used in the Mul-

liken tables (Mulliken et al., 1949). These values are determined by the value

of μ in the Slater wave functions written in the form

ϕ¼Nnl r
n�1 e�μr=a0 (8.39)

as well as the internuclear distance R. For two atoms denoted by i and j, the

parameters are defined as

p¼ 0:946R μi + μj

� 

(8.40)

t¼
μi�μj

� 


μi + μj

� 
 (8.41)

In these equations, R is the internuclear distance expressed in Angstroms,

and μ is the quantity (Z�S)/n from the Slater wave functions:

ψ ¼ Rn, l rð Þ½ � exp � Z�Sð Þr=a0n*½ �Y θ, φð Þ (8.42)

When the spherical harmonics are combined with the radial function

R rð Þ¼ rn*�1, the resulting wave function is written as

ψ ¼Nrn*�1 exp �μr=a0ð Þ (8.43)

where N is the normalization constant.

For atoms having n�3, n¼n*, as was shown in the list of rules in

Chapter 5 for constructing Slater wave functions. A brief list of μ values

is shown in Table 8.3.

Table 8.3 Some values for μ for use in calculating overlap integrals

H 1.00 Li 0.65 Be 0.975

B 1.30 C 1.625 B 1.95

O 2.275 D 2.60 Na 0.733
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If the calculations are for twoorbitals on atoms that have different n values,

the subscript i represents the orbital of smaller n. For cases where the orbitals

have the samen, the i subscript represents the larger tvalue.Thepublicationby

Mulliken et al. includes extensive tables of values for the overlap integrals

(Mulliken et al., 1949). The tables include the values for orbital integrals

for orbital combinations of 1s, 1s; 1s, 2s; 2s, 2s; etc., with the integral being

evaluated over a wide range of p and t values that cover a wide range of inter-

nuclear distances and types of atoms.These tables should be consulted if values

for specific overlap integrals are needed. For a simple case such as H2, the μ
values are identical (each is 1.00), so t¼0. Because the internuclear distance

is 0.74 Å, the value for p is calculated to be 1.40. Consulting the appropriate

table for 1s�1s orbital overlap shows a value of 0.753, which indicates very

effective overlap of the 1s orbitals.

As shown earlier the energy of the bonding molecular orbital can be

written as

Eb ¼H11 +H12

1 + S
(8.44)

The value of H11 is obtained from the VSIP for the atom. If the molecular

orbital holds two electrons, the bond energy is the difference between the

energy of two electrons in the bonding state and their energy in the valence

shells of the separated atoms. Therefore,

BE¼ 2H11�2
H11 +H12

1 + S

� �
(8.45)

Therefore, the energy of the bondwill be approximately�2H12= 1+ Sð Þ, but
it is necessary tohavevalues forH12 andS.Asdiscussedearlier, the integralH12

represents the exchange integral and is a negative quantity. The interaction

that gives rise to this integral disappears at an infinite internuclear distance,

so H12 ¼ 0 at R¼∞. However, it is also apparent that the overlap of

the orbitals also becomes 0 when the atoms are separated by an infinite

distance. Thus, there are two quantities that have values of 0 at infinity,

but, S becomes larger as the atoms get closer together, whereasH12 becomes

more negative under these conditions.What is needed is a way to expressH12

as a function of the overlap integral. However, one might also suspect that

the exchange integral should be related to the energies with which electrons

are bonded to atoms 1 and 2. These energies are the electron binding energies

H11 and H22. Three ways of connecting these properties are commonly

encountered in describing bonds.

177Bonding and Properties of Diatomic Molecules



In a first attempt, the value ofH12 will be expressed in terms of S and the

average of H11 and H22. As a result of greater binding energies, one could

assume that increasing the average of H11 and H22 should also increase

H12. By taking these factors into consideration, Mulliken assumed many

years ago that the so-called off-diagonal elements (H12) should be propor-

tional to the overlap integral (Mulliken et al., 1949). The function that

results can be written as

H12¼�KS
H11 +H22

1 + S

� �
(8.46)

where K is a proportionality constant that has a numerical value of about

1.75 (a rather wide range of values has been used). This relationship is known

as the Wolfsberg-Helmholtz approximation and is one of the most widely used

approximations for the exchange integrals in molecular orbital calculations

(Wolfsberg and Helmholtz, 1952). Unfortunately, there is no clear agree-

ment on the value to be used for K. Roald Hoffmann has given a detailed

analysis of the factors involved in the choice of K value (Hoffmann, 1963).

Because atoms with considerably different ionization potentials must fre-

quently be considered, the arithmeticmean used in theWolfsberg-Helmholtz

approximation may not be the best way to calculate an average. As was

shown in Section 8.2, the geometric mean is preferable in some instances.

Therefore, the exchange integral can be represented using the geometricmean

of the ionization potentials to give

H12¼�KS H11H22ð Þ1⁄2
(8.47)

This relationship is known as the Ballhausen-Gray approximation (Ballhausen

andGray,1962). Itwaspreviouslymentioned that thebondenergycanbewrit-

ten as �2H12= 1+ Sð Þ, so suddenly it can be seen why the relationship given

in Eq. (8.2), which gives the bond energy in terms of the geometric mean of

the ionization potential, works so well! The intuitive approach used earlier is

equivalent to theBallhausen-Grayapproximation (BallhausenandGray,1962).

A chemical bond between two atoms has an energy related to the bond

length by a potential energy curve like that shown in Fig. 8.1. There is a

minimum energy at the equilibrium distance. Neither of the expressions

shown in Eqs. (8.46) and (8.47) goes through a minimum when the bond

length varies. The value ofH12 simply gets more negative as the bond length

decreases because the value of S increases as the bond gets shorter. An

approximation for H12 that does show a minimum as internuclear distance

changes is that given by Cusachs (1965),

H12¼ 1⁄2S K�jSjð Þ H11 +H22ð Þ (8.48)
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This function passes through a minimum with respect to bond length

because S is a function of bond length, and this function is a quadratic in

S. As a result, the Cusachs approximation to H12 is the most nearly correct

of the three presented. However, the Wolfsberg-Helmholtz and

Ballhausen-Gray approximations are still widely used.

8.6 HETERONUCLEAR DIATOMIC MOLECULES

In the case of homonuclear diatomic molecules, the wave functions for the

bonding and antibonding states were shown to be expressed as

ψ b¼
1ffiffiffi
2

p φ1 +φ2ð Þ (8.49)

and

ψ a¼
1ffiffiffi
2

p φ1�φ2ð Þ (8.50)

The electron density contours of these MOs were found to be symmetrical

about the center of the internuclear axis. In the case of heteronuclear

diatomic molecules, this is not true because the bulk of the bonding orbital

lies toward the atom having the higher electronegativity. Thus, the form of

the molecular wave functions are changed by including a weighting factor

to take this difference into account. Accordingly, the wave functions are

written as

ψ b¼φ1 + λφ2 (8.51)

ψ a¼φ1� λφ2 (8.52)

in which the parameter λ takes into account the difference in electronega-

tivity of the two atoms.

The extent to which the atomic orbitals of two atoms will combine to

produce molecular orbitals depends upon the relative energies of the

orbitals. The closer the energies of the orbitals on the two atoms, the more

complete the “mixing” and the atomic orbitals lose their individuality more

completely.

In considering the bonding in diatomic molecules composed of atoms of

different types, there is an additional factor that must be kept in mind. This

additional factor arises from the fact that more than one Lewis structure can

be drawn for the molecule. In valence bond terms, when more than one

acceptable structure can be drawn for a molecule or ion, the structures
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are called resonance structures, and the actual structure is said to be a reso-

nance hybrid of all the structures with appropriate weightings for each. As

will soon be described, the weighting coefficient λ takes into account the

contribution of the ionic structure to the wave function. Thus, the adjust-

able coefficients in a wave function serve the same purpose as being able to

draw more than one valence bond structure for the molecule.

For a molecule AB, the possible structures can be shown as

A�B
I

$A+⋯B�
II

$A�⋯B+

III

Even for nonpolar molecules like H2, the ionic structures contribute a sub-

stantial amount to the overall stability of the molecule. It can be shown that

the added stability in the case of H2 amounts to about 0.24 eV molecule�1

(23 kJ mol�1). For the AB molecule described by the structures above, a

wave function can be written to take the three structures into account.

The result is

ψmolecule ¼ aψ I + bψ II + cψ III (8.53)

where a, b, and c are constants and ψ I, ψ II, and ψ III represent wave functions

corresponding to resonance structures I, II, and III, respectively. For a mol-

ecule such as H2, two ionic structures contribute equally, but they contrib-

ute much less than does the covalent structure. so the coefficients in the wave

function are related by a ≫b¼ c. In the case of a heteronuclear molecule,

one of the ionic structures is usually insignificant because it is unrealistic

to expect the atom having the higher electronegativity to assume a positive

charge and the atom having the lower electronegativity to assume a negative

charge. For example, in HF the structures H-F and H+F� would contribute

roughly equally, but the structure H�F+ is unrealistic owing to the much

higher electronegativity of fluorine. Accordingly, it is often possible to

neglect one of the structures of the most heteronuclear diatomic molecules

and write the wave function as

ψmolecule¼ψ covalent + λψ ionic (8.54)

In this case ψ ionic corresponds to the ionic structure having the negative

charge on the element of higher electronegativity. It is now important to

obtain the relative weightings of the covalent and ionic portions of the wave

function for the molecule. A procedure that makes use of dipole moments

provides the means to do so.

A purely covalent structure with equal sharing of the bonding electron

pair would result in a dipole moment of 0 for the molecule. Likewise, a
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completely ionic structure in which an electron is transferred would result in

a dipole moment μ equal to e • r, where e is the charge on the electron and r is
the internuclear distance. The ratio of the observed dipole moment to that

calculated for a completely ionic structure gives the relative ionic character

of the bond (i.e., the percent ionic character). Consider the data shown in

Table 8.4 for the hydrogen halides. The percent ionic character is given as

%ioniccharacter¼ 100μobs=μionic (8.55)

It should be recalled at this point that it is the square of the wave function that

is related to the weighting given to the structure described by the wave func-

tion. Consequently, λ2 represents the weighting given to the ionic structure

and 1+λ2 gives the weighting of the contribution from both the covalent

and the ionic structures. Therefore, the ratio of the weighting of the ionic

structure to the total is λ2/(1+λ2). Thus,

%ioniccharacter¼ 100λ2

1 + λ2
� � (8.56)

from which it can be seen that

λ2

1 + λ2
� �¼ μobs

μionic
(8.57)

For HF, the ratio of the observed dipole moment (1.91 D) to that for the

assumed ionic structure (4.41 D) is 0.43. Therefore,

0:43¼ λ2

1 + λ2
� � (8.58)

From this equation, the value of λ can be found, and the result is λ¼0.87.

Therefore, for HF, the molecular wave function can be written as

ψmolecule ¼ψ covalent + 0:87ψ ionic (8.59)

Table 8.4 Some data for HX molecules (X¼a halogen)

Molecule r, pm μobs, D μionic, D

% Ionic character

100μobs/μionic χX2χH

HF 92 1.91 4.41 43 1.9

HCl 128 1.03 6.07 17 0.9

HBr 143 0.78 6.82 11 0.7

HI 162 0.38 7.74 5 0.4

1 Debye 10�18 esu cm. The electronegativities of atoms H and X are χH and χX.
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Based on this model, HF appears to be 43% ionic, so the actual structure can

be considered a hybrid consisting of 57% of the covalent structure and 43%

of the ionic structure. This statement should not be taken too literally, but it

does give an approach to the problem of wave functions for polar molecules.

A similar procedure shows that HCl is 17% ionic with λ¼0.45, HBr is 11%

ionic with λ¼0.36, and HI is 5% ionic with λ¼0.23, according to this

model. It was mentioned earlier that including the ionic structures H+H�

and H�H+ for H2 results in increased stability of the molecule. This effect

is also manifested for molecules like HF, as will now be described.

The difference between the actual bond dissociation energy and that

predicted for the purely covalent bond provides a measure of this resonance

stabilization energy, which is the “extra” energy provided as a result of the

contribution from the ionic structure. Although the purely covalent bond

does not exist, there are two commonly used methods of estimating its

energy that were proposed by Linus Pauling. The first of these methods

makes use of the postulate of the arithmetic mean, in which the energy

of the hypothetical covalent bond between atoms A and B is taken as

(DAA+DBB)/2, where DAA and DBB are the bond dissociation energies

of the molecules A2 and B2, respectively. Thus, the difference between

the actual bond energy DAB and (DAA+DBB)/2 is the added stability of

the bond Δ that results from the ionic resonance structure. Thus,

Δ¼DAB� DAA +DBBð Þ=2 (8.60)

The quantity Δ, which is the resonance energy, is always positive because

the actual bond energy is greater than predicted for the purely covalent bond

alone.1 Pauling realized that the extent to which an ionic structure stabilizes

a diatomicmolecule is related to a fundamental difference in the ability of the

atoms to attract electrons. He therefore related Δ to the difference in this

property, which is now recognized as the electronegativity χ. Pauling’s rela-
tionship can be shown as (Pauling, 1960)

Δ¼ 23:06jχA�χBj2 kcalmol�1Þ¼ 96:48jχA�χBj2 kJmol�1
� ��

(8.61)

The values ofΔ can now be considered as experimentally determined quan-

tities from which the electronegativities of A and Bmust be determined, but

only the difference is known from Eq. (8.61). Obviously, the differences

1 (Strictly, this is not entirely true. Pauling presents a discussion of cases like LiH, NaH, etc., for whichΔ
is negative (Pauling (1960), p. 82). However, such cases need not concern us now.)
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100�99 and 3�2 are exactly the same. Pauling assigned the value for fluo-

rine as 4.0 so that all other atoms had electronegativities between 0 and 4.0.

The constant 23.06 merely converts eV atom�1 to kcal mol�1, because

1 eV molecule�1 is equivalent to 23.06 kcal mol�1. Table 8.5 summarizes

the results of similar calculations for all of the hydrogen halides.

Earlier in this chapter, the postulate of the geometric mean was used to

determine the average ionization potential for two atoms. Pauling found also

that the geometric mean gave better correlations of electronegativity and

bond energy in cases where the atoms have considerably different electro-

negativities. In using the geometric mean, the bond energy for the hypothet-

ical purely covalent structure DAB was taken as (DAA • DBB)
1/2. Using this

approximation, the ionic stabilization Δ0 is given by

Δ0 ¼DAB� DAA •DBBð Þ1=2 (8.62)

The values of Δ0 are not linearly related to differences in electronegativity,

but (Δ0)½ is approximately a linear function of jχA�χBj. Table 8.6 shows the
resonance stabilization for the hydrogen halides obtained using the geomet-

ric mean approximation.

There are several other equations that are sometimes used to estimate

the percent ionic character of bonds in heteronuclear molecules. These

Table 8.5 Resonance energies for hydrogen halides when the arithmetic mean is used
to estimate the energy of the covalent AB bond

HF HCl HBr HI

DHX (kJ mol�1) 563 431 366 299

(DHH+DXX)/2 (kJ mol�1) 295 339 316 295

Δ (kJ mol�1) 268 92 50 4

Electronegativity difference 1.9 0.9 0.7 0.4

Note: The bond energies used are H2, 436; F2, 153; Cl2, 243; Br2, 193; and I2, 151 kJ mol�1.

Table 8.6 Resonance energies for hydrogen halides obtained using the geometric
mean for calculating DHX

HF HCl HBr HI

DHX (kJ mol�1) 563 431 366 299

(DHH • DXX)
1/2 (kJ mol�1) 259 326 290 257

Δ0 (kJ mol�1) 304 106 76 42

√Δ0 17.4 10.3 8.7 6.5

Electronegativity difference 1.9 0.9 0.7 0.4

Note: The bond energies used are the same as those in Table 8.5.
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are semiempirical equations that relate the percent ionic character to the

difference in electronegativity for the atoms. Two of these equations are

%ionic character¼ 16j χA�χBj+3:5j χA�χBj2 (8.63)

%ionic character¼ 18j χA�χBj1:4 (8.64)

Although these equations appear quite different, the predicted percentage

of ionic character is approximately the same when jχA�χBj is in the range

of 1–2. Using these equations in combination with Eq. (8.56) enables an

estimate of the weighting constant λ to be made if the electronegativities

of the atoms are known.

Not only is there a contribution of the ionic structure to the bond

energy, but it also leads to a shortening of the bond. For diatomic molecules,

the bond length is usually given as the sum of the covalent radii of the atoms.

However, if the atoms have different electronegativities, the sum of the

covalent radii does not accurately give the observed internuclear distance

because of the contribution of the ionic structure. A more accurate value

for the bond length of a molecule AB that has some ionic character is given

by the Shoemaker-Stevenson equation,

rAB¼ rA + rB�9:0j χA�χBj (8.65)

where rA and rB are the covalent radii of atomsA andB, respectively, and χA and
χB are their electronegativities. In themoleculeClF, the observed bond length is

163 pm. The covalent radii for Cl and F are 99 and 72 pm, respectively, which

leads to an expected bond length of 171 pm for ClF. As a result of the electro-

negativities ofCl andFbeing 3.0 and4.0, respectively, Eq. (8.65) predicts a bond

length of 162 pm for ClF, in excellent agreement with the experimental value.

The experimental bond energy for ClF is 253 kJ mol�1, which is considerably

greater than the covalent value of 198 kJ mol�1 predicted from the arithmetic

mean or 193 kJ mol�1 predicted using the geometric mean.

Combinations of atomic orbitals from atoms having different electroneg-

ativities (and hence different valence orbital energies) produce molecular

orbitals that have energies closer to that of the atomic orbital of lower

energy. In fact, the greater the electronegativity difference between the

atoms, the closer the bond comes to being ionic. The bonding molecular

orbital in that case represents an atomic orbital on the atom having the higher

electronegativity to which the electron is transferred. That is, the bond is

essentially ionic. Figure 8.11 shows the change in energies of molecular

orbitals from equal sharing to electron transfer as the difference in electro-

negativity between the two atoms increases.
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The concept of electronegativity provides one of the most useful prin-

ciples available when it comes to dealing with chemical bonding. It provides

a measure of the ability of an atom in a molecule to attract electrons to itself.

Therefore, it is possible to predict bondpolarities inmost cases, although a few

(e.g., CO) seem contradictory at first. However, there are several electroneg-

ativity scaleswith approximate values.Therefore, there are somedifference in

the values reported in different publications. Table 8.7 shows the electroneg-

ativities for atoms of the main group elements.

Because thebasic idea regardingelectrondistribution in abond is souseful,

there have been numerous attempts to establish electronegativity scales based

on atomic properties rather thanonbondenergies, as in the caseof thePauling

scale.One such scale is theMulliken scale, which predicts the electronegativ-

ity of an atom from its ionization potential and electron affinity. Both of these

properties are measures of the ability of an atom to attract an electron, so it is

natural to base electronegativity on them. Using this approach, the electro-

negativity, EN, is represented as

EN¼ IP+EAð Þ=2 (8.66)

inwhichIP is the ionizationpotential andEAis theelectronaffinityof theatom.

The values for these properties are often expressed in electron volts, whereas

bond energies are typically expressed as kcal mol�1 or kJ mol�1. To convert

theMulliken electronegativity values to the equivalent Pauling values, the for-

mer are divided by 3.17. There have been numerous other scales devised to

represent the electronegativities of atoms, but the Pauling scale is still the most

widely used.

E

A AA A A AB B A AB B

(A) (B) (C)
Fig. 8.11 Molecular orbital diagrams showing the effects of differences in
electronegativity. (A) The two atoms have the same electronegativity. (B) Atom B has
higher electronegativity. The molecular orbital has more of the character of an
orbital of atom B (similar energy). (C) The difference in electronegativity is large
enough so that the electron pair essentially resides in an orbital on atom B (ionic bond).
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8.7 SYMMETRY OF MOLECULAR ORBITALS

The formation of the H2 molecule, which has a center of symmetry,

gives rise to the combinations of atomic orbitals that can be written as

φ1+φ2 and φ1�φ2. The topic of symmetry will be discussed in greater

detail in Chapter 10. However, a center of symmetry is simply a point

through which each atom can be moved to give the same orientation

of themolecule. For a diatomicmolecule likeH2, that point is themidpoint

of the bond between the two atoms. It is equally valid to speak of a center of

symmetry for wave functions. The first of the combinations of wave func-

tions (as shown in Fig. 8.4A) possesses a center of symmetry, whereas

the second does not. Therefore, the φ1+φ2 molecular wave function

corresponds to the orbital written as σg, whereas the φ1�φ2 combination

corresponds toσu*. In these designations, “g” refers to the fact that thewave

function retains the same sign when inflected through the center of sym-

metry, and “u” indicates that the wave function changes sign when it is

inflected through the center of symmetry. It said that the bonding orbital

is symmetric and antibonding orbital is antisymmetric. However, for π and
π* orbitals, g and u refer to symmetry with respect to a plane that contains

the internuclear axis (see Fig. 8.8).

For diatomic molecules, the order of filling of molecular orbitals is σ, σ*,
(π, π), σ, (π*, π*), σ* for the early part of the first long period and σ, σ*, σ, (π,
π), (π*, π*),σ* for the latter part of the first long series. The designations (π, π)

Table 8.7 Electronegativities of atoms

H

2.2

Li

1.0

Be

1.6

B

2.0

C

2.6

N

3.0

O

3.4

F

4.0

Na

1.0

Mg

1.3

Al

1.6

Si

1.9

P

2.2

S

2.6

Cl

3.2

K

0.8

Ca

1.0

Sc

1.2

….

….

Zn

1.7

Ga

1.8

Ge

2.0

As

2.2

Se

2.6

Br

3.0

Rb

0.8

Sr

0.9

Y

1.1

….

….

Cd

1.5

In

1.8

Sn

2.0

Sb

2.1

Te

2.1

I

2.7

Cs

0.8

Ba

0.9

La

1.1

….

….

Hg

1.5

Tl

1.4

Pb

1.6

Bi

1.7

Po

1.8

At

2.0
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and (π*, π*) indicate pairs of degeneratemolecular orbitals. For the hydrogen

molecule, the electron configuration can be shown as (σg)2, whereas that for
the C2 molecule is designated as (σg)2 (σ*u)2 (πu)2 (πu)2 (see Fig. 8.9).

The molecular orbitals can be identified by applying labels that show the

atomic orbitals that were combined to produce them. For example, the

orbital of lowest energy is 1s σg or σg 1s. In this way, other orbitals would

have designations like 2pxπu, 2pyπ*g, etc.
As a result of orbital mixing, a σmolecular orbital may not arise from the

combination of pure s atomic orbitals. For example, it was shown in Sec-

tion 8.4 that there is substantial mixing of 2s and 2p orbitals in molecules

like B2 and C2. Therefore, labels like 2s σg and 2s σ*u may not be strictly

correct. Because of this, the molecular orbitals are frequently designated

as 1σg, 1σu, 2σg, 2σu, 3σu, 1πu, 1πg, ….

In these designations, the leading digit refers to the order in which an

orbital having that designation is encountered as the orbitals are filled.

For example, 1σg denotes the first σ orbital having g symmetry (a bonding

orbital), 3σu means the third σ orbital having u symmetry (an antibonding

orbital), etc. The asterisks on antibonding orbitals are not really needed since

a σ orbital having u symmetry is an antibonding orbital, and it is the anti-

bonding π orbital that has g symmetry. Therefore, the g and u designations

alone are sufficient to denote a bonding or antibonding character. These

ideas elaborate on those discussed in Section 8.4.

8.8 ORBITAL SYMMETRY AND REACTIVITY

Formany years, it has been recognized that symmetry plays a significant role in

the reactions between chemical species. In simple terms,many reactions occur

because electron density is transferred (or shared) between the reacting species

as the transition state forms. Inorder to interact favorably (i.e., togiveanoverlap

integral greater than 0), it is necessary for the interacting orbitals to have the

same symmetry (see Section 4.4).Otherwise, orthogonal orbitals give an over-

lap integral equal to 0. The orbitals involved in the interactions of reacting spe-

cies are those of higher energy, the so-called frontier orbitals. These are the

highest occupied molecular orbital (HOMO) and the lowest unoccupied

molecular orbital (LUMO).As the species interact, electron density flows from

theHOMOonone species to the LUMOon the other. Inmore precise terms,

it can be stated that theorbitalsmust belong to the same symmetry typeor point

group for the orbitals to overlap with an overlap integral greater than 0.
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As was described earlier in this chapter, orbitals of similar energy interact

(overlap) best. Therefore, it is necessary that the energy difference between

the HOMO on one reactant and the LUMO on the other be less than some

threshold value for effective overlap to occur. As a reaction takes place, a

bond in one reactant molecule is broken as another is being formed. When

both of the orbitals are bonding orbitals, the bond being broken (i.e., electron

density has been donated from it) is the one representing the HOMO in one

reactant and the bond being formed is represented by the LUMO in the

other (which is empty and receives electron density as the molecules inter-

act). When the frontier orbitals are antibonding in character, the LUMO in

one reactant molecule corresponds to the bond broken, while the HOMO

corresponds to the bond formed.

Consider the N2 and O2 molecules: The HOMOs of the N2 molecule

are πu orbitals, which are antisymmetric, whereas the LUMOs of O2 are half

filled πg (or πg*). Therefore, interaction between the frontier orbitals of these
two molecules is forbidden by symmetry. Electron density could flow from

the HOMO (having “g” symmetry) of the O2 molecule to the πg orbital on
N2, except for the fact that oxygen has a higher electronegativity than nitro-

gen. Therefore, transfer of electron density fromO2 toN2 is excluded on the

basis of their chemical properties. As a result, the reaction

N2 gð Þ+O2 gð Þ! 2NO gð Þ (8.67)

is accompanied by a high activation energy and, in accordance with these

observations, the reaction does not take place readily. This is fortunate,

because a reacting atmosphere could be a serious environmental issue.

In the reaction

H2 gð Þ+ I2 gð Þ! 2HI gð Þ (8.68)

one would normally expect to find that electron density is transferred from

hydrogen to iodine because of the difference in their electronegativities.

However, the LUMO of I2 is an antibonding orbital designated as σu
(or σu*), whereas the HOMO for H2 is bonding and is designated as σg.
Consequently, the overlap is zero for the HOMO of an H2 molecule with

the LUMO of an I2 molecule, and the expected interaction is symmetry

forbidden as shown in Fig. 8.12.

The transfer of electron density from filled molecular orbitals on I2 to an

empty molecular orbital on H2 is not symmetry forbidden, but it is contrary

to the difference in electronegativity. In view of these principles, it is not sur-

prising that the reactionbetweenH2 and I2 does not takeplaceby a bimolecular
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process involving molecules, although it was thought to do so for many years.

A transition state such as

H

I

H

I

where the dots indicate breaking and forming bonds, is forbidden on the basis

of the chemical nature of both the reactants and symmetry. This reaction ac-

tually occurs by the reaction of two iodine atoms with a hydrogen molecule,

which is not symmetry forbidden. Sullivan showed that a mixture of hy-

drogen and iodine that was irradiated with 5780 Å light reacted with a rate

that was proportional to the square of the concentration of iodine atoms

(Sullivan, 1967).

8.9 TERM SYMBOLS

In Chapter 5, the spectroscopic states of atoms that result from the coupling

of spin and orbital angular momenta were discussed. An analogous coupling

of angular momenta occurs in molecules, and for diatomic molecules the

coupling is similar to the Russell-Saunders scheme.

For a diatomic molecule, the internuclear axis is defined as the z-axis

(this will be discussed in greater detail in Chapter 10). In the case of atoms,

it was seen that the m value gave the projection of the l vector on the z-axis.

Also, the value of s gives the spin angular momentum in units of ћ. To deter-
mine the spectroscopic ground state (indicated by a term symbol) for an atom,

the sum of the spin angular momenta gave a value S and the sum of the

orbital contributions gave the value of L.

In a molecule, each electron has its own component of spin angular

momentum and orbital angular momentum along the z-axis. These angular

momenta couple as they do in atoms, and the resultants determine the

H
+ 

I I + –

H

Fig. 8.12 The interaction of hydrogen Tg and iodine Tu orbitals to form a bimolecular
complex is symmetry forbidden.
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molecular term symbol. However, to represent the angular momenta of elec-

trons in molecules, different symbols are used. The orbital angular momen-

tum for an electron in a molecule is designated as λ. Also, the atomic orbitals

combined to produce a molecular orbital then have the same value for the z

component of angular momentum. If the molecular orbital is a σ orbital, the
orbital angular momentum quantum number is 0, so λmust equal 0 because

that is the only projection on the z-axis that a vector 0 units long can have.

This means that for an electron residing in a σ orbital, the only m value pos-

sible is 0. For an electron in a π orbital, m can have values of +1 and �1,

which are both projections of a vector l having one unit in length. There-

fore, if the molecular orbital is a π orbital, the λ value is 1. The total orbital
angular momentum, which is 2, is then determined. For a molecule, the sum

of the λ values is designated as Λ. The resultant spin angular momentum is

given by the sum of the electron spins, as in the case of atoms. For atoms, the

values L¼0, 1, and 2 give rise to spectroscopic states designated as S, P, and

D, respectively. For molecules, the values Λ¼0, 1, and 2 give rise to spec-

troscopic states designated as Σ, Π, and Δ, respectively. Thus, coupling pro-
cedures for atoms andmolecules are analogous, except for the fact that Greek

letters are used to denote molecular term symbols. The term symbol for a

molecule is expressed as 2S+1Λ.
After the resultant spin and orbital angular moment vectors have been

determined, these vectors can couple to give a total angular momentum.

For atoms, the vector was designated as J, but for molecules, it is usually des-

ignated asΩ, which has the possible values 0, 1, 2,…. As in the case of atoms,

all filled shells have a total spin of 0 and the sumof them values is also 0.There-

fore, all of the lower-lying filled shells can be ignored in determining the

ground term symbol for a diatomic molecule. In Section 8.8, it was shown

that the molecular orbitals for homonuclear diatomic molecules are desig-

nated as g or u, depending on whether they are symmetric or antisymmetric

with respect to a center of symmetry.Of course, heteronuclear diatomicmol-

ecules do not possess a center of symmetry. The overall g or u character for

more than one occupied orbital can be determined by using g to represent

a+sign and u to represent a� sign. Then the g or u character of each orbital

is multiplied by that of each other orbital. As a result, g� g¼ g, g�u¼u, and

u�u¼ g. The σ states are also designated as Σ+ or Σ� based on whether the

wave function that represents the molecular orbital is symmetric or antisym-

metric,with respect to reflection in anyplane that contains themolecular axis.

For the H2 molecule, the two electrons reside in the 1σg molecular

orbital and the configuration is (1σg)2. For a σ orbital, λ¼0 so the sum of

the values for the two electrons is 0, which is the value for Λ. Therefore,
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the ground state is a Σ state and with the two electrons being paired, the sum

of the spins is 0. As a result, the multiplicity, which is 2S+1, equals 1 so the

ground state is 1Σ. Moreover, two electrons reside in the 1σg molecular

orbital, and the product of g� g gives an overall symmetry of g. The molec-

ular orbital wave function is symmetric with respect to a plane that contains

the internuclear axis, so the superscript+ is appropriate. For the H2 mole-

cule, the correct term symbol is 1Σg
+, which expresses all of the information

for the spectroscopic state.

When deriving the term symbol for the O2molecule, the starting point is

the electron configuration (1σg)2 (1σu)2 (2σg)2 (1πu)4 (1πg)2, and the outer

two electrons are unpaired in degenerate 1πg orbitals. The sum of spins could

be either 1 or 0, depending on whether the spins are aligned or opposed.

The first of these values would give 2S+1¼3, whereas the latter would

give 2S+1¼1. As seen for atomic term symbols, the states of highest mul-

tiplicity correspond to the lowest energy. This would occur when one

electron resides in each 1πg orbital, with the two having parallel spins. How-

ever, this occurs when one electron is in each orbital so m(1)¼+1 and

m(2)¼�1, so the sum is 0 and results in a Σ term. Therefore, the triplet state

is a 3Σg because both electrons reside in orbitals with g symmetry. Finally, the

orbitals are symmetric with respect to a plane containing the internuclear

axis, so the superscript+ is added to give 3Σg
+ as the term symbol for the

O2 molecule. By drawing all of the microstates as was illustrated in Sec-

tion 5.4, we find that other terms exist, though they do not represent the

ground state.

Removal of an electron from the O2 molecule to produce O2
+ (the

dioxygenyl ion) leaves one electron in a 1πg orbital. In this case, S¼½

and Λ¼1 and the molecular orbital has g symmetry, so the term symbol

is 2Πg. The cases that have been worked out here illustrate the procedures

involved in finding the term of lowest energy for a particular configuration.

However, as in the case of atoms, other terms are possible when all permis-

sible microstates are considered.
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PROBLEMS

1. For a molecule XY, a molecular wave function can be written as

Ψmolecule¼Ψ covalent + 0:50Ψ ionic.Calculate the percent ionic character of

theXdYbond. If the bond length is 1.50 Å, what is the dipolemoment?

2. For a homonuclear diatomic molecule,H11¼H22 and H12¼H21. This

is not true for a heteronuclear molecule. Derive the expressions for the

bonding and antibonding states for a heteronuclear diatomic molecule.

You may still assume that S12¼S21.

3. Suppose that the bond energies for A2 andX2 are 209 and 360 kJ mol�1,

respectively. If atoms A and X have electronegativities of 2.0 and 3.0,

what will be the strength of the AdX bond? What will be the dipole

moment if the internuclear distance is 1.25 Å?

4. Suppose that a diatomic molecule XZ contains a single σ bond.

The binding energy of an electron in the valence shell of atom

X is �10.0 eV. Spectroscopically, it is observed that the promotion

of an electron to the antibonding state leads to an absorption band at

16,100 cm�1. Using a value of 0.10 for the overlap integral, determine

the value of the exchange integral. Sketch the energy level diagram and

determine the actual energies of the bonding and antibonding states.

What is the bond energy?

5. For the molecule ICl, the wave function can be written as

Ψ ICl¼Ψ covalent + 0:33Ψ ionic. If the dipole moment for ICl is 0.65 D,

what is the internuclear distance?

6. Write molecular orbital descriptions for NO, NO+, and NO�. Predict
the relative bond energies of these species and account for any that are

paramagnetic.

7. The covalent radii of F and Cl are 0.72 and 0.99 Å, respectively. Given

that the electronegativities are 4.0 and 3.0, what would be the expected

bond distance for ClF?

8. TheHdS bondmoment is 0.68 D and the bond length is 1.34 Å.What

is the percent ionic character of the HdS bond?

192 Fundamentals of Quantum Mechanics

http://refhub.elsevier.com/B978-0-12-809242-2.00008-5/rf0015
http://refhub.elsevier.com/B978-0-12-809242-2.00008-5/rf0015
http://refhub.elsevier.com/B978-0-12-809242-2.00008-5/rf0040
http://refhub.elsevier.com/B978-0-12-809242-2.00008-5/rf0040
http://refhub.elsevier.com/B978-0-12-809242-2.00008-5/rf0045
http://refhub.elsevier.com/B978-0-12-809242-2.00008-5/rf0045
http://refhub.elsevier.com/B978-0-12-809242-2.00008-5/rf0020
http://refhub.elsevier.com/B978-0-12-809242-2.00008-5/rf0020
http://refhub.elsevier.com/B978-0-12-809242-2.00008-5/rf0020
http://refhub.elsevier.com/B978-0-12-809242-2.00008-5/rf0020
http://refhub.elsevier.com/B978-0-12-809242-2.00008-5/rf0020


9. Write the molecular orbital configurations for the following: (a) CO+,

(b) C2
�, and (c) BO. Determine the bond order for these species.

10. Write out the molecular orbital configurations for Na2 and Si2 (omit the

n¼1 and n¼2 states and represent them only as KK and LL). Give the

bond order for each molecule. Describe the stabilities of these mole-

cules when they are excited to the first excited state.

11. Calculate the percent ionic character for the following bonds: (a) HCl,

(b) HC, (c) NH, and (d) LiH.

12. Give the term symbols for the boron atom in its ground electronic state,

and arrange them in the order of increasing energy. What would be the

spectroscopic state for boron in the first excited state?

13. A heteronuclear diatomic species has the molecular orbital electron

configuration 1σg2 1σu2 2σg2 2σu2 1πu3.
(a) What is the bond order for the species?

(b) Would the dissociation energy for the molecule be higher or lower

if an electron is removed from the 1πu orbital? Explain.
(c) Would you expect this species to form a stable �1 ion?

14. What would be the symmetry designation (including g or u, as appro-

priate) for the following atomic orbitals with respect to the z-axis?

(a) 2s, (b) 2pz, (c) 2py, and (d) 3dz2 .

15. Determine the ground state term symbol for the following:

(a) Li2, (b) C2, (c) O2
�, and (d) B2

+

16. One term symbol for N2
+ is 2Σ+

g . From which orbital was the electron

removed?

17. Explain the difference between the reactions

N2!N2
+ + e� 2Σ+

g

N2!N2
+ + e� 2Πu

18. The bond energy in C2
� is 2.2 eV greater than that of C2, but the

bond energy of O2
� is 1.1 eV less than that of O2. Explain this

difference.

19. Explain why the bond length in F2 is 142 pmwhile that of F2
+ is 132 pm.

20. The ground state term for B2 is
3Σg

�. Explain how this fact gives infor-

mation about the order of filling the molecular orbitals for diatomic mol-

ecules of the second-row elements.

21. For the O2molecule, draw all of the microstates that could result for the

1πg1 1πg1 configuration. Determine which term each belongs to. What is

the ground state term?
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22. Write out the molecular orbital populations for NO+, F2, and O2
+,

then determine their spectroscopic ground states.

23. What would be the effect on the molecular orbital diagram be if a deu-

terium atom were substituted for a hydrogen atom in H3
+? Why?

24. Oxygen molecules have an intense absorption at 1800 Å. Calculate the

energy associated with this band in eV molecule�1 and kJ mol�1. What

transition could this correspond to?

25. By means of the molecular orbital energy level diagrams, arrange the

following in the order of increasing force constant: (a) NO, (b) O2,

(c) N2, and (d) B2.

26. The force constant for bond stretching in the superoxide ion O2
� is

only about half that in the O2 molecule, whereas that of the dioxygenyl

cation O2
+ is about 1.5 times that of O2. Explain these observations.

27. For the NOmolecule, the internuclear distance is 1.15 Å (115 pm) and

the stretching force constant is 15.95 mdyn Å�1 (1595 N m�1). Give

estimates of these parameters for the NO+ ion and explain the basis

for your answers.

28. The oxygen molecule has a ground state configuration of (πu)4 (πg)2.
What is the spectroscopic state for this configuration?

29. Although the oxygen molecule has an electronic ground state config-

uration of (πu)4 (πg)2, the excited state having the configuration (πu)3

(πg)3 lies 35,700 cm�1 higher in energy. What wave length of radiation

would be necessary to cause a transition to the excited state? In what

region of the spectrum would this absorption be observed?
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CHAPTER 9

The H€uckel Molecular
Orbital Method

When the phrase “molecular orbital calculations” is first encountered, the

mental imagemaywell be one of hopelessly complicatedmathematics and piles

upon piles of computer output. It is interesting to note, however, that some-

times a relatively simple calculationmay provide useful information that corre-

lates well with experimental observations. Such is the case with the method

known as the H€uckel molecular orbital (HMO) calculation. This method

was developed in 1931 by German physicist Erich H€uckel, who was trying

to understand the concept of aromaticity in benzene. Almost 50 years ago,

the method was described in these words: “In spite of its approximate nature,

H€uckel molecular orbital (HMO) theory has proved itself extremely useful

in elucidating problems concerned with electronic structures of π-electron
systems” (Purins and Karplus, 1968). The method still has value, even though

the procedures for performing the calculations are relatively simple and have

becomeknownas the“backof an envelope” calculations. In fact, a verypopular

book in the early 1960s describing suchmethodswas JohnD.Roberts’Notes on

Molecular Orbital Calculations (Roberts, 1962). That book didmuch to popular-

ize the application of the H€uckel method in organic chemistry. Arno Liberles’

book, Introduction toMolecular-Orbital Theory, also provides a good introduction

to H€uckel methods (Liberles, 1966). The extended H€uckel method (EHMO)

will be described briefly, and the more sophisticated methods for dealing with

the structure of molecules will be treated in Chapter 14.

9.1 THE H€UCKEL METHOD

In the H€uckel method, the assumption is made that the σ and π parts of the
bonding in molecules can be separated. Also, the overlap of orbitals on non-

adjacent atoms is assumed to be zero. Additionally, the interaction energy

between nonadjacent atoms is assumed to be zero. The energies to be con-

sidered are represented as Hii, the valence state ionization potential (VSIP)

for atom i, and Hij, the exchange energy between atoms i and j. In the

H€uckel treatment, it is assumed that Hij¼0 when ji� jj¼2 (nonadjacent

atoms). When the overlap is not included in the calculations, it is assumed
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that S12¼S21¼0. The H€uckel method will be illustrated by treating the

π bond in the C2H4 molecule, which is shown in Fig. 9.1.

In the case of ethylene, it will be assumed that the carbon atoms use sp2

hybrid orbitals to form the three σ bonds, and the pz orbitals (which are

perpendicular to the plane of the molecule) are left to form the π bonds.

The wave functions for the bonding orbitals can be written as

ψCH σð Þ ¼ a1φ 1sð Þ + a2φ sp2
� �

(9.1)

ψCC σð Þ ¼ a1φ sp2
� �

+ a2φ sp2
� �

(9.2)

ψCC πð Þ ¼ a1φ p1ð Þ + a2φ p2ð Þ, (9.3)

where ψCC(σ) corresponds to the σ bond between two carbon atoms, etc.

Using the procedure developed earlier (see Chapter 8), we can write the

secular determinant as

H11�E H12�S12E

H21�S21E H22�E

����
����¼ 0 (9.4)

The parameters representing energies are denoted as

α¼H11 ¼H22¼H33¼⋯¼Hii ¼Hjj ¼ the Coulomb integral

and

β¼H12¼H21¼H23¼H32¼⋯¼Hij ¼ the exchange integral

Therefore, the secular determinant can be written as

α�E β
β α�E

����
����¼ 0 (9.5)

If each element in the determinant is divided by β, the result is

α�E

β
1

1
α�E

β

�������

�������
¼ 0 (9.6)

H

H

C

H

H

C

− −

+ +

Fig. 9.1 The ethylene (ethene) molecule showing the p orbitals used in π bonding.
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It is customary to now let x¼ (α�E)/β, which allows the determinant to be

written as

x 1

1 x

����
����¼ 0 (9.7)

Expansion of this determinant gives

x2�1 ¼ 0 (9.8)

The roots of this equation are x¼�1 and x¼+1. Therefore, we can write

α�E

β
¼�1 (9.9)

so that E¼α+β, and

α�E

β
¼ 1 (9.10)

so that E¼α�β.
When we recall that both α and β are negative energies, it can be seen

that E¼α+β corresponds to the state having lower energy. An energy level

diagram showing the states can be constructed, as shown in Fig. 9.2.

In ethylene, each carbon atom contributes one electron to the π bond so
that the lowest level is filled with two electrons. If the two electrons were on

isolated carbon atoms, their binding energies would be 2α. Therefore, the
energy for the two electrons in the molecular orbital, as opposed to what the

energy would be for two isolated atoms, is

C C

C C π

π∗

π∗π

E

− +

−

− −

+

+ +

a−b

a+b

Fig. 9.2 Energy level diagram for ethylene. (Modified with permission from House, J. E.
Inorganic Chemistry, 2nd ed.; Academic Press/Elsevier: Amsterdam, 2013.)
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2 α+ βð Þ� 2α¼ 2β: (9.11)

The fact that themolecular orbital encompasses the complete carbon structure

whereas the atomicorbitals do not leads to the descriptionof themolecular orbital

as being delocalized. The energy 2β is called the delocalization or resonance energy.
An average energy for a typical CdC bond is about 335–355 kJ mol�1,

whereas that for a typical C]C bond is about 600 kJ mol�1. Therefore,

the π bond adds about 250 kJ mol�1, which means that this is the appro-

ximate value of 2β, so β is approximately 125 kJ mol�1. The energies of

the two molecular orbitals (bonding and antibonding) have been obtained,

but a major objective of the calculations is to be able to obtain useful informa-

tion from the wave functions. In order to do this, it is necessary to deter-

mine the values of the constants a1 and a2. These constants determine the

weighting given to the atomicwave functions and thereby determine electron

density, etc. The wave function for the bonding orbital in ethylene can be

written as

ψ b¼ a1φ1 + a2φ2, (9.12)

and we know that for the normalized wave function,ð
ψ2
b dτ¼ 1¼

ð
a1φ1 + a2φ2ð Þ2 dτ (9.13)

By expansion of the integral and letting S11, S22, and S12 represent the over-

lap integrals, we obtain

a1
2S11 + a2

2S22 + 2a1a2S12¼ 1 (9.14)

If we let S11¼S22¼1 and neglect the overlap between adjacent atoms by

letting S12¼S21¼0, then

a1
2 + a2

2 ¼ 1 (9.15)

The secular equations can be written in terms of α and β as

a1 α�Eð Þ+ a2β¼ 0 (9.16)

a1β+ a2 a�Eð Þ¼ 0 (9.17)

Dividing both equations by β and letting x¼ (α�E)/β, we find that

a1x+ a2¼ 0 (9.18)

a1 + a2x¼ 0 (9.19)

For the bonding state, we saw that x¼�1, so it follows that a1
2¼ a2

2.

Therefore, we can write
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a1
2 + a1

2 ¼ 1 ¼ 2a1
2 (9.20)

From this equation, the values of a1 and a2 can be found:

a1¼ 1ffiffiffi
2

p ¼ 0:707¼ a2

The wave function for the bonding state can be written in terms of the

atomic wave functions as

ψ b¼ 0:707ϕ1 + 0:707ϕ2 (9.21)

For an atom in a molecule, it is the square of the coefficient of the atomic wave

function in the molecular wave function that gives the probability (density) of

finding an electronon that atom.Therefore, a1
2 ¼ a2

2¼ 1⁄2, so½of the electrons

should be on each atom. Because there are two electrons in the bonding orbital,

the electron density (ED) is 2(1/2)¼1 and one electron resides on each atom.

As expected, electrons are not transferred from one carbon atom to the other.

Another useful property for describing bonding in the molecule is the

bond order, B. This quantity gives an electron population in terms of the

number of π bonds between two bonded atoms. In this case, it is the product

of the coefficients on the atomic wave functions that gives the electron density

of the bond between them.However, wemust also take into account the total

number of electrons in the occupiedmolecular orbital(s). Therefore, the bond

order between atoms X and Y can be written as BXY, which is given by

BXY¼
Xn
i¼1

aXaYpi (9.22)

where a is the weighting coefficient, n is the number of populated orbitals,

and p is the population (number of electrons) in that orbital. For the case of

ethylene, there is only one orbital, and it is populated with two electrons, so

we find that

BCC¼ 2 0:707ð Þ 0:707ð Þ ¼ 1 (9.23)

which indicates that there is one π bond between the carbon atoms. Before

considering larger molecules, we will show some of the mathematics

necessary for the application of the H€uckel method.

9.2 DETERMINANTS

From the example in the previous section, it should be apparent that formu-

lating a problem using the HMOmethod to describe a molecule results in a
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determinant. A determinant represents a function in the form of an array that

contains elements in rows and columns. A secular determinant was also encoun-

tered in dealing with diatomic molecules earlier (see Section 8.3). The num-

ber of rows or columns (they are equal) is called the rank (or order) of the

determinant. Determinants are essential in the H€uckel method, so we need

to show how they are manipulated.

A determinant can be reduced to an equation known as the characteristic

equation. Suppose we consider the 2�2 determinant,

a b

c d

����
����¼ 0 (9.24)

Simplifying this determinant to obtain the characteristic equation involves

multiplying along one diagonal and subtracting the product obtained by

multiplying along the other diagonal. This rule applied to the preceding

determinant gives

a b

c d

����
����¼ ad� bc¼ 0 (9.25)

If a determinant can be written as

x 1

1 x

����
����¼ 0 (9.26)

then expanding the determinant gives the characteristic equation

x2�1 ¼ 0 (9.27)

which is the equation that arises from the treatment of the π bond in ethylene
(see Section 9.1).

If the molecule under consideration contains three atoms, we will obtain

a 3�3 determinant such as

a b c

d e f

g h i

�������

�������
¼ 0 (9.28)

Expansion of a 3�3 determinant is somewhat more elaborate than that of a

2�2 determinant. One method can be illustrated as follows: Initially,

extend the determinant by writing the first two columns again to the right

of the determinant:
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a b c

d e f

g h i

�������

�������
a

d

g

b

e

h

We now perform the multiplication along each of the three-membered

diagonals, with multiplication to the right resulting in products that are

positive, and multiplication to the left resulting in products that are negative.

Therefore, in this case, we obtain the characteristic equation

aei+ bfg+ cdh� ceg� afh� bdi¼ 0 (9.29)

If the determinant under consideration is

x 1 0

1 x 1

0 1 x

�������

�������
¼ 0 (9.30)

then we expand the determinant as follows:

x 1 0

1 x 1

0 1 x

�������

�������
x

1

0

1

x

1

This method results in the characteristic equation that reduces to

x3�2x¼ 0, (9.31)

and the roots are x¼0, �(2)1/2, and+(2)1/2. However, this expansion

method using diagonals works only for 2�2 and 3�3 determinants, so

we need a more general method for the expansion of higher-order

determinants.

Consider the 4�4 determinant:

a b c d

e f g h

i j k l

m n o p

���������

���������
¼ 0 (9.32)

Expansion of this determinant is accomplished by a procedure known as the

method of cofactors. In this method, we begin with element a and remove

the row and column that contain a. Then the rest of the determinant is

multiplied by a to obtain
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a

f g h

j k l

n o p

������

������
The portion of the determinant that is multiplied by a is called a minor and

will have a rank (n�1), where n is the rank of the original determinant. We

now repeat this process, except that b is removed, the sign preceding this

term is negative, and so on. Therefore,

a b c d

e f g h

i j k l

m n o p

��������

��������
¼ a

f g h

j k l

n o p

������

������� b

e g h

i k l

m o p

������

������+ c

e f h

i j l

m n p

������

�������d

e f g

i j k

m n o

������

������ (9.33)

Expansion of each 3�3 determinant can now be continued as previously

illustrated.

The cofactors are designated as Cij and their general formula is

Cij ¼ �1ð Þi+ j
Mij (9.34)

where Mij is the minor having rank (n�1). For the determinant

x 1 0 0

1 x 1 0

0 1 x 1

0 0 1 x

��������

��������
¼ 0 (9.35)

we can show the expansion to find the characteristic equation as

x 1 0 0

1 x 1 0

0 1 x 1

0 0 1 x

���������

���������
¼ x

x 1 0

1 x 1

0 1 x

������

�������1

1 1 0

0 x 1

0 1 x

������

������+0

1 x 0

0 1 1

0 0 x

������

�������0

1 x 1

0 1 x

0 0 1

������

������ (9.36)

As a result of the last two terms being 0, the characteristic equation can be

written as

x4�3x2 + 1 ¼ 0 (9.37)

Another useful property of determinants is illustrated by Laplace’s Expansion

Theorem, which relates to the expansion of a determinant in terms of smaller

units or subdeterminants. Due to the symmetry of the determinant, it is

sometimes possible to simplify the determinant, as illustrated by the

following example.
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Consider the determinant

x2 4 0 0

x 3 0 0

0 0 12 2x

0 0 5x 2

��������

��������
¼ f xð Þ (9.38)

In this case, the function represented can be written as

x2 4

x 3

����
���� � 12 2x

5x 2

����
���� ¼ f xð Þ (9.39)

Expanding each of the 2�2 determinants is carried out as illustrated earlier

to give the characteristic equation

f xð Þ¼ 3x2�4x
� �

24�10x2
� �

(9.40)

f xð Þ¼�30x4 + 40x3 + 72x2�96x

This technique is useful in simplifying the secular determinants that arise for

some organic molecules having certain structures. Because only interactions

between adjacent atoms are considered, several elements in the secular

determinant can be set equal to 0.

Determinants also have other useful and interesting properties that will

be only listed here. For a complete discussion of the mathematics of

determinants, see the references listed at the end of this book.

1. Interchanging two rows (or columns) of a determinant produces a

determinant that is the negative of the original.

2. If each element in a row (or column) of a determinant is multiplied by a

constant, the result is the constant times the original determinant.

If we consider the determinant

D¼ a b

c d

����
���� (9.41)

it is possible now to multiply each member of the second column by k to

obtain

D¼ a kb

c kc

����
���� (9.42)

Expansion of this determinant gives

adk� bck¼ k ad� bcð Þ¼ k
a b

c d

����
����
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which shows that the result is indeed the constant times the determinant.

3. If two rows (or columns) in a determinant are identical, the determinant

has the value of 0. For example,

a a b

c c d

e e f

������

������¼ acf + ade+ bce� bce� ade� acf ¼ 0 (9.43)

4. If a determinant has one row (or column) where each element is zero, the

determinant evaluates to 0. This is very easy to verify, so an example will

not be provided here. As we shall see later in this chapter, the evaluation

of determinants is an integral part of the HMO method.

9.3 SOLVING POLYNOMIAL EQUATIONS

It has just been shown that the expansion of determinants leads to polyno-

mial equations that we will need to solve. Before the widespread availability

of sophisticated calculators and computers, such equations were solved

graphically (Roberts, 1962).

The roots of the polynomial equations can often be found by graphing

the functions if they cannot be factored directly. As we shall see, the equation

x4�3x2 + 1 ¼ 0 (9.44)

arises from the expansion of the secular determinant for butadiene. To find

the values of x where this function y¼ f (x) crosses the x-axis, we let

y¼ x4�3x2 + 1 ¼ 0 (9.45)

and we make the graph by assigning values to x. It is possible to get a rough

estimate of the range of x values to consider by realizing that for large values

of x, x4, and 3x2 are both much greater than 1. Therefore, for y to have a

value near 0, the terms x4 and 3x2 must be approximately equal:

x4 � 3x2

x2� 3

x� � ffiffiffi
3

p

Therefore, it is appropriate to choose the range of values 2>x>�2,

which should encompass the roots. The values of ywhen x is assigned values

in this range are shown as follows:
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The graph of these values is shown in Fig. 9.3. It is apparent from the data

or the graph that the four roots are approximately 0.6 and 1.6. In this case,

the actual roots of Eq. (9.45) are x¼�1.62, �0.618, +0.618, and +1.62.

The advent of the graphing calculator has made this a very rapid proce-

dure to carry out. In many situations, calculus is now taught in such a way as

to require students to use these electronic marvels. Solving the polynomial

equations resulting from H€uckel MO calculations is indeed very easy. Also,

many calculators that are not graphing ones have a built in “solve” function.

This lets the user enter the expression to be solved and obtain the roots of

polynomial equations in a convenient manner. Most of these “hardwired”

root finding capabilities make use of the Newton-Raphson or secant methods

that are standard techniques in numerical analysis. For details of how these

methods work, see the references on numerical analysis listed at the end of

this book. Electronic calculators and computer software have made possible

the routine use of sophisticated numerical analysis procedures.

Another numerical technique useful in certain types of problems is

iteration. In an iterative technique, some operation is used repetitively in

order to solve a problem. A programmable calculator or computer is ideally

x y x y

�2.0 5.0 0.4 0.546

�1.6 �0.126 0.8 �0.510

�1.2 �1.254 1.2 �1.254

�0.8 �0.510 1.6 �0.126

�0.4 0.546 2.0 5.0

0.0 1.000

−2

−1

0

1

2

3

4

5

6

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

x

y

Fig. 9.3 A graph of the data shown in the text for y¼x4�3x2+1.
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suited to this type of calculation. Finding the roots of polynomial equations,

like those arising from H€uckel calculations, is essentially finding the zeros of
functions (values of x where y¼0). The roots are the values of x that satisfy

the equation

anx
n + an�1x

n�1 +⋯+ a1x+ a0¼ 0 (9.46)

From the quadratic formula, an equation that can be written

ax2 + bx+ c¼ 0 (9.47)

has the roots

x¼�b� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

p

2a
(9.48)

If b2�4ac (called the discriminant) is negative, the roots of the equation are

complex. If b2�4ac is positive, the roots of the equation will be real. Most

polynomial equations arising from secular determinants will be higher than

second order, so an analytical method for their solution is not nearly as sim-

ple as it is for a quadratic equation. Suppose we wish to solve the equation

x2 + 3:6x�16:4 ¼ 0 (9.49)

By applying the quadratic formula, we obtain

x¼�3:6�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:62�4 �16:4ð Þ

p
2

¼ +2:63, �6:23 (9.50)

After writing Eq. (9.49) as x(x+3.6)�16.4, x can be written as

x¼ 16:4

x+3:6
(9.51)

Suppose we call x¼2 a “first guess” at a solution, so we let it equal x0. The

next value, which is x1, can be written in terms of x0 as

x1¼ 16:4

x0 + 3:6
¼ 16:4

2+ 3:6
¼ 2:93 (9.52)

We will now use this value as an “improved” guess and calculate a new

value x2:

x2¼ 16:4

x1 + 3:6
¼ 16:4

2:93+ 3:6
¼ 2:51

Repeating the process with each new value of xn+1, being given in terms of xn,
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x3¼ 16:4

x2 + 3:6
¼ 16:4

2:51+ 3:6
¼ 2:68

x4¼ 16:4

x3 + 3:6
¼ 16:4

2:68+ 3:6
¼ 2:61

x5¼ 16:4

x2 + 3:6
¼ 16:4

2:61+ 3:6
¼ 2:64, etc:

In this process, we are using the formula (known as a recursion formula)

xn+1¼ 16:4

xn +3:6
(9.53)

As was illustrated by Eq. (9.50), one root is x¼2.63, so it is apparent that this

iterative process is converging to a correct root.

If we write Eq. (9.53) in a general form as

x¼ f xð Þ (9.54)

it can be shown that the iterative process will converge if jf 0(x)j<1. In the

preceding case,

f xð Þ¼ 16:4

x+3:6
(9.55)

and taking the derivative gives

f 0 xð Þ¼ �16:4

x+3:6ð Þ2 (9.56)

For the root where x¼2.63, jf 0(x)j¼0.423, which is less than 1 and con-

vergence is thereby achieved. In the general case using the equation

x2 + bx+ c¼ 0

x¼ �c

x+ b
(9.57)

and

f 0 xð Þ¼ c

x+ bð Þ2 (9.58)

If j(x+b)2j� c, convergence will be slow. Verify that this is indeed true using

the equation

x2�4x+ 3:99 ¼ 0 (9.59)
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For an equation such as

x2�5:0x+ 7:5 ¼ 0 (9.60)

the roots are complex because b2�4ac is negative, and the iterative method

does not work. Iterative methods are well suited to solving equations like

x� 1 + cos xð Þ1=2¼ 0 (9.61)

It is easy to see that for some value of x, the two sides of the equation must be

equal:

x¼ 1 + cos xð Þ1=2 when x is in radiansð Þ (9.62)

A graph showing y¼ f(x) can now be prepared for each of the two sides of

the equation (Fig. 9.4). From the graphs we can see that x is approximately 1,

so we can begin an iterative process using a trial value of x0¼1. Then

x1¼ 1 + cos 1ð Þ1=2 ¼ 1:241

x2¼ 1 + cos 1:241ð Þ1=2¼ 1:151

x3¼ 1 + cos 1:151ð Þ1=2¼ 1:187

x4¼ 1 + cos 1:187ð Þ1=2¼ 1:173

x5¼ 1 + cos 1:173ð Þ1=2¼ 1:178

x6¼ 1 + cos 1:178ð Þ1=2¼ 1:176

x7¼ 1 + cos 1:176ð Þ1=2¼ 1:177

x8¼ 1 + cos 1:177ð Þ1=2¼ 1:1764:

Therefore, the root of Eq. (9.61) is 1.176.

0.00
0.00 0.50

y = x

y

x

y = (1 + cos x)0.5

1.00 1.50 2.00

0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

Fig. 9.4 The graphs showing y¼x and y¼ (1+cos x)1/2.
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Sometimes, problems in the sciences and engineering may lead to some

very interesting equations in order to be solved. Although such transcenden-

tal equations as those just solved do not arise very often, it is useful to know

that a procedure for solving them easily exists.

9.4 H€UCKEL CALCULATIONS FOR LARGER MOLECULES

The system containing three carbon atoms in a chain shown in Fig. 9.5 is

that of the allyl species, which includes the neutral radical as well as the

carbocation and the anion. The combination of atomic wave functions

will be constructed using 2p wave functions from the carbon atoms. In this

case, the Coulomb integrals will be equal, so H11¼H22¼H33, and the

exchange integrals between adjacent atoms will be set equal, as

H12¼H21¼H23¼H32. However, in this approximate method, interactions

between nonadjacent atoms are ignored. Thus, H13¼H31¼0. All overlap

integrals of the type Sii are set equal to 1 and all overlap between adjacent

atoms is neglected (Sij¼0). The secular determinant is written as follows

when the usual substitutions are made:

H11�E H12 0

H21 H22�E H23

0 H32 H33�E

������

������¼
α�E β 0

β α�E β
0 β α�E

������

������¼
x 1 0

1 x 1

0 1 x

������

������¼ 0

(9.63)

By utilizing the techniques shown in Section 9.2, the characteristic equation

can be written as

x3�2x¼ 0, (9.64)

which has the roots x¼0, �(2)1/2, and (2)1/2. Therefore, we obtain the

energies of the molecular orbitals from these roots as

α�E

β
¼�

ffiffiffiffi
2

p α�E

β
¼ 0

α�E

β
¼

ffiffiffi
2

p

C1 C2 C3

Fig. 9.5 The structure of the allyl group.
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E¼ α+
ffiffiffi
2

p
β E¼ α E¼ α�

ffiffiffi
2

p
β

Both α and β are negative quantities, so the lowest energy is E¼α+(2)1/2 β.
Figure 9.6 shows the molecular orbitals and energy levels for this system.

The molecular orbital diagram for the neutral, positive, and negative allyl

species can be shown, as in Fig. 9.7. The electrons have been placed in the

orbitals to show the radical, the cation, and the anion. It is now possible to

evaluate the coefficients, the electron densities, and the bond orders. The

elements in the secular determinant represent the coefficients in secular

equations. Therefore, the determinant of the coefficients can be written

directly:

a1x a2 0

a1 a2x a3
0 a2 a3x

������

������¼ 0 (9.65)

From Eq. (9.65), we see that the three equations are represented as

a1x+ a2¼ 0 (9.66)

a1 + a2x+ a3 ¼ 0 (9.67)

+

+ +

+

+

−

− −

−

+

a − 21/2 b

a

−

+

CC

C C C

C

π∗

node

n

+

a + 21/2 bC C C π

− − −

Fig. 9.6 The allyl model showing the p orbitals used in π bonding. (Modified with
permission from House, J. E. Inorganic Chemistry, 2nd ed.; Academic Press/Elsevier:
Amsterdam, 2013.)
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a2 + a3x¼ 0 (9.68)

Taking first the root x¼�(2)1/2, which corresponds to the molecular orbital

of lowest energy, substitution of that value in the equations above gives

�a1
ffiffiffi
2

p
+ a2¼ 0 (9.69)

a1� a2
ffiffiffi
2

p
+ a3¼ 0 (9.70)

a2� a3
ffiffiffi
2

p
¼ 0 (9.71)

From Eq. (9.69) it can be seen that a2¼ (2)1/2a1, and from Eq. (9.71), it can

be seen that a2¼ (2)1/2a3. Therefore, it is clear that a1¼a3, and substituting

this value in Eq. (9.70) gives

a1� a2
ffiffiffi
2

p
+ a1¼ 0 (9.72)

Solving this equation for a2, we find that a2¼ (2)1/2a1. We now make use of

the normalization requirement that

a21 + a22 + a23¼ 1 (9.73)

and by substitution in terms of a1,

a21 + 2a21 + a21¼ 4a21¼ 1 (9.74)

It is therefore found that a1¼0.5¼a3 and a2¼ (2)1/2/2¼0.707.

Using these coefficients for the atomic orbitals in the expression for the

molecular wave function gives

ψ1¼ 0:500φ1 + 0:707φ2 + 0:500φ3 (9.75)

Next we use the root x¼0 with the secular equations, which leads to

0a1 + a2 + 0 ¼ 0 (9.76)

a− 21/2 b

a+ 21/2 b

a

E

Cation Radical Anion

Fig. 9.7 Energy level diagram for the allyl cation, radical, and anion.

211The H€uckel Molecular Orbital Method



a1 + 0a2 + a3¼ 0 (9.77)

0 + a2 + 0a3¼ 0 (9.78)

From these equations, it is easy to verify that a2¼0 and a1+a3¼0, so

a1¼�a3. Therefore, the requirement that the sum of the squares of the coef-

ficients is equal to 1 gives

a21 + a23¼ 1¼ 2a21 (9.79)

from which we find a1¼1/(2)1/2 and a3¼�1/(2)1/2. These coefficients

obtained from the x¼0 root lead to the wave function

ψ2¼ 0:707φ1�0:707φ3: (9.80)

When the root x¼ (2)1/2 is used to evaluate the constants by the procedures

above, the wave function obtained can be written as

ψ3¼ 0:500φ1�0:707φ2 + 0:500φ3 (9.81)

However, this orbital remains unpopulated regardless of whether the radical,

the cation, or the anion is considered (see Fig. 9.7). It is now possible to

calculate the electron densities and bond orders in the cation, radical, and

anion species. For the allyl radical, there are three electrons in the π system

with only one electron in the state having E¼α. Because the square of the
coefficients of the atomic wave functions multiplied by the occupancy of the

orbitals gives the ED, we see that

ED atC1¼ 2 0:500ð Þ2 + 1 0:707ð Þ2¼ 1:00
EDatC2¼ 2 0:707ð Þ2 + 1 0ð Þ2¼ 1:00
EDatC3¼ 2 0:500ð Þ2 + 1 �0:707ð Þ2 ¼ 1:00

As expected, the three electrons are distributed equally on the three

carbon atoms. The allyl carbocation has only the orbital of lowest energy

(E¼α +
ffiffiffi
2

p
β) populated with two electrons, so the electron densities are

EDatC1¼ 2 0:500ð Þ2 ¼ 0:50
EDatC2¼ 2 0:707ð Þ2 ¼ 1:00
EDatC3¼ 2 0:500ð Þ2 ¼ 0:50:

For the anion, the twomolecular orbitals of lowest energy are occupied with

two electrons in each and the electron densities are

EDatC1¼ 2 0:500ð Þ2 + 2 0:707ð Þ2 ¼ 1:50
EDatC2¼ 2 0:707ð Þ2 + 2 0ð Þ2¼ 1:00
EDatC3¼ 2 0:500ð Þ2 + 2 �0:707ð Þ2¼ 1:50:
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From these results, we see that the additional electron that the anion contains

compared to the radical resides in a molecular orbital centered on the ter-

minal carbon atoms. It is to be expected that the negative regions would

be separated in this way.

The bond orders can now be obtained, and in this case the two ends are

identical for the three species, so we expect to find B12¼B23. Using the

populations of the orbitals shown in Fig. 9.7 and the coefficients of the wave

functions, we find π bond orders as

Cation B12¼B23ð Þ : 2 0:500ð Þ 0:707ð Þ ¼ 0:707

Radical B12¼B23ð Þ : 2 0:500ð Þ 0:707ð Þ + 1 0ð Þ 0:707ð Þ ¼ 0:707

Anion B12¼B23ð Þ : 2 0:500ð Þ 0:707ð Þ + 2 0ð Þ 0:707ð Þ ¼ 0:707:

Because the difference in electron populations for the three species involves

an orbital of energy α, it is an orbital having the same energy as the atomic

orbital and it is therefore nonbonding. Thus, the number of electrons in this

orbital (0, 1, or 2 for the cation, radical, or anion, respectively) does not

affect the bond orders of the species. The bond orders are determined by

the population of the bonding orbital, which has E¼α+
ffiffiffi
2

p
β.

If the structures

C C C C C C• • • • • •and

are considered, we find that the first structure has one π bond between adja-
cent carbon atoms, as did ethylene. If it is assumed that the bond is localized,

then the orbital energy for two electrons would be 2(α+β), as it was for the
ethylene case. For the second structure, the energy that we found for the

orbital having the lowest energy is that for the bonding orbital in the allyl

system. Therefore, for two electrons populating that orbital, the energy

would be 2[α+
ffiffiffi
2

p
β]. The difference between these energies is known as

the delocalization or resonance energy and amounts to �0.828β. Therefore,
the structure showing the delocalized π bond represents a lower energy.

If three carbon atoms are placed in a ring structure, carbon atom 1 is bonded

to carbon atom 3 and the secular determinant must be modified to take into

account that bond:

C1

C3

C2

Therefore, the elementsH13 andH31, rather than being zero, are set equal to

β, and the secular determinant is written as
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x 1 1

1 x 1

1 1 x

������

������¼ 0 (9.82)

Therefore, expansion of the determinant leads to the characteristic

equation

x3�3x+ 2 ¼ 0 (9.83)

The roots of this equation are x¼�2, 1, and 1, which correspond to the

energies E¼α+2β and E¼α�β (twice). The result is the molecular orbital

diagram can be represented as in Fig. 9.8. The coefficients of the wave func-

tions, electron densities, and bond orders can be calculated by the procedures

employed for the allyl system. However, we will leave that as an exercise

and progress directly to the determination of the resonance energy. For

the cation, two electrons populate the lowest state with a total energy of

E¼2(α+2β), compared with two electrons in an ethylene (localized) bond

that have an energy of E¼2(α+β). Therefore, the resonance energy is�2β.
For the anion, the two degenerate orbitals having an energy of α�β are sin-
gly occupied, and the total energy for four electrons is E¼2(α+2β)
+2(α�β). For one localized bond as in ethylene and two single electrons

on carbon atoms (E¼α), the total energy would be E¼2(α+β)+2α.
Therefore, the resonance energy for the anion would be 0. It is correctly

predicted that the cyclopropenyl cation (resonance energy of 2β) would
be more stable than the anion.

Having solved the problems of three carbon atoms in a chain or

ring structure, we could use the same methods to examine a totally dif-

ferent chemical system. Suppose a simple calculation is carried out for

the H3
+ species to determine which of the following structures is more

stable.

a−b

a+ 2b

E

Cation Radical Anion

Fig. 9.8 Energy level diagrams for cyclopropenyl species.
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or

(A) (B)

H2 H3]+[H1
H1

H3

H2

+

It is still possible to use α as the binding energy of an electron in an atom, but

it represents the binding energy of an electron in a hydrogen atom rather than

a carbon atom. Therefore, the secular determinants for the two cases will

look exactly as they did for the allyl and cyclopropene systems. For structure

A, the roots of the secular determinant lead to E¼α+(2)1/2 β, E¼α, and
E¼α�21/2 β. For structure B, the roots of the secular determinant lead to

the energies E¼α+2β, E¼α�β, and E¼α�β. Therefore, with two elec-
trons to place in the sets of molecular orbitals, we place them in the lowest

energy level. For the ring structure that corresponds to E¼2(α+2β), but for
the linear structure the energy would be E¼2[α+21/2 β]. The energy is

more favorable for the ring structure, and we predict that it would be more

stable by �1.2β.
As an additional example of the use of the H€uckel method, the calcula-

tion will be performed for 1,3-butadiene. The H€uckel calculation for

butadiene begins with the determinant

α�E β 0 0

β α�E β 0

0 β α�E β
0 0 β α�E

��������

��������
¼

x 1 0 0

1 x 1 0

0 1 x 1

0 0 1 x

��������

��������
¼ 0 (9.84)

which results in the characteristic equation

x4� 3x2 + 1 ¼ 0 (9.85)

The roots of this equation are �1.62 and �0.62, giving energies of

E1¼α+1.62β, E2¼α+0.62 β, E3¼α�0.62 β, and E4¼α�1.62β. With

there being only four electrons in the π system, only the first two energy

levels are populated. Therefore, the resonance energy amounts to 0.48β
in magnitude.

Following the procedures illustrated earlier, it is possible to obtain the

explicit form of the four wave functions, which can now be written as

ψ1 ¼ 0:372ϕ1 + 0:602ϕ2 + 0:602ϕ3 + 0:372ϕ4

ψ2 ¼ 0:602ϕ1 + 0:372ϕ2� 0:372ϕ3� 0:602ϕ4

ψ3 ¼ 0:602ϕ1� 0:372ϕ2� 0:372ϕ3 + 0:602ϕ4

ψ4 ¼ 0:372ϕ1� 0:602ϕ2 + 0:602ϕ3� 0:372ϕ4
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in which ϕ indicates a carbon p wave function. The graphs of the four wave

functions and the orbital diagrams for butadiene are shown in Fig. 9.9.

H€uckel calculations can be performed on cyclic systems with the only

modification being that the secular determinant has an element equal to

one in the top right and bottom left positions where the atoms that would

be in terminal positions bond to each other. Thus, for cyclobutadiene, the

secular determinant would be

α�E β 0 β
β α�E β 0

0 β α�E β
β 0 β α�E

��������

��������
¼

x 1 0 1

1 x 1 0

0 1 x 1

1 0 1 x

��������

��������
¼ 0 (9.86)

y4

y3

y2

y
1

Fig. 9.9 The orbitals and wave function plots for butadiene. As in numerous previous
cases, green is used to indicate the lobes have a positive mathematical sign, whereas
the lobes shaded yellow have a negative sign.
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which leads to the characteristic equation x4–4x2¼0. Solving this equation

leads to the energy levels α+2β, α, α, and α�2β.
Many years ago, a useful mnemonic was developed by Frost andMusulin

to illustrate the results for cyclic systems (Frost and Musulin, 1953). This

device is shown in Fig. 9.10, along with the actual energies of the levels.

Figure 9.10 makes it simple to see the energy levels that result from H€uckel
calculations for cyclic systems. However, the numerical results of such

calculations for cyclic molecules are also shown in Table 9.1.

9.5 CALCULATIONS INCLUDING HETEROATOMS

In the treatment of organic molecules by the H€uckel method, the two

energy parameters areH11 or α andH12 or β. These energies refer to carbon
atoms and specifically to the p orbitals of the carbon atom. If atoms other

than carbon are present, the H€uckel method can still be used, but the energy

parameters must be adjusted to reflect the fact that an atom other than carbon

has a different binding energy for its electron. Pauling and Wheland devel-

oped a procedure to adjust for the heteroatom by relating the α and β param-

eters for that atom to those for carbon. For example, if a nitrogen atom is

a − 1.802b

a − 0.246b

a − 1.618b

a + 0.618b

a + 2b

a + 2b

a −b

a + 1.246b

a + 2b

a − 2b
a − 1.414b

a −b

a +b

a + 2b

a − 2b

a + 2b

a

a + 1.414b

a

a + 2b

a− 2b

Fig. 9.10 A Frost-Musulin diagram for cyclic hydrocarbons (Frost and Musulin, 1953).
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present and donates one electron to the π system, the atom is represented in

the secular determinant by αN1¼α+0.5β, where α and β are the values used
for a carbon atom, and the subscript “1” indicates the number of electrons

used in π bonding. When an atom like nitrogen or oxygen donates more

than one electron to the π system, the parameters are adjusted to reflect this

difference. A series of values have been adopted for various atoms other than

carbon and their adjusted values are shown in Table 9.2.

Calculations carried out for the pyrrole molecule lead to electron

densities on the atoms that can be shown as

C C

C C

N

H

1.141.14

1.05 1.05

1.63

The electron densities are in accordance with the fact that nitrogen has an

electronegativity of 3.0, whereas that of carbon is 2.5. However, the chem-

ical behavior of pyrrole with regard to substitution reactions does not always

agree with the predicted electron densities, so mixtures of products are often

obtained.

Table 9.1 Energy levels for cyclic systems
Orbital energies

No. of
Atoms 5 3 4 5 6 7 8

E8 – – – – – α�2β
E7 – – – – α�1.802β α �1.414β
E6 – – – α�2β α�1.802β α �1.414β
E5 – – α�1.618β α�β α�0.246β α
E4 – α�2β α�1.618β α�β α�0.246β α
E3 α�β α α+0.618β α+β α+1.246β α+1.414β
E2 α�β α α+0.618β α+β α+1.246β α+1.414β
E1 α+2β α+2β α+2β α+2β α+2β α+2β

Table 9.2 Values of coulomb and exchange integrals for heteroatoms

αN1 ¼ α+0:5β
αN2 ¼ α+1:5β
αO1 ¼ α+1:5β
αO2 ¼ α+2:5β
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9.6 SOME TRIATOMIC INORGANIC MOLECULES

Studies dealing with matter in interstellar space and as transient mole-

cules in irradiated matrices have resulted in a great deal of interest in spe-

cies such as CCN, CNC, NNC, NCN, and several others. It would be

interesting to determine what a H€uckel calculation on some of these spe-

cies might reveal. Accordingly, such calculations will be illustrated in this

section.

Earlier, a discussion of the allyl system was presented as an example of a

molecule containing three atoms. To illustrate the type of calculation pos-

sible for systems containing atoms other than carbon, the N–C–Nmolecule

will be considered, in which it is assumed that each atom contributes one

electron to the π system. In this case, the value for αN1 will be taken as

α+0.5β, and without introducing any other changes, the secular determi-

nant can be written as

α+0:5β�E β 0

β α�E β
0 α+0:5β�E

������

������¼ 0 (9.87)

As before, each element will be divided by β and we will let x¼ (α�E)/β.
The secular determinant then becomes

x+0:5 1 0

1 x 1

0 1 x+0:5

������

������¼ 0 (9.88)

This determinant can be expanded to give the polynomial equation

x x+ 0:5ð Þ2� x+ 0:5ð Þ� x+ 0:5ð Þ ¼ 0 (9.89)

or

x3 + x2�1:75x�1 ¼ 0 (9.90)

The roots of this equation are x¼�1.686,�0.500, and 1.186, which lead to

the energy levels shown in Fig. 9.11.

The coefficients in the wave functions can be evaluated in the usual way

because from the secular determinant we can write the equations

a1 x+ 0:5ð Þ + a2 ¼ 0 (9.91)

a1 + a2x+ a3¼ 0 (9.92)

a2 + a3 x+ 0:5ð Þ ¼ 0 (9.93)
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From Eqs. (9.91) and (9.93), it can be seen that a1¼a3. Starting with the root

x¼�1.686, we find that x+0.5¼�1.186 and after substituting a1¼a3, the

equations become

�1:186a1 + a2 ¼ 0 (9.94)

a1�1:686a2 + a1¼ 0 (9.95)

a2�1:186a1¼ 0 (9.96)

From these equations, it is easy to see that a2¼1.186a1¼1.186a3, and from

the normalization condition, it is found that

a21 + a22 + a23¼ 1¼ a21 + 1:186a1ð Þ2 + a21 (9.97)

Therefore, it is found that a1¼ (1/3.41)1/2¼0.542¼a3, which results in

a2¼1.186a1¼0.643. Accordingly, the wave function that corresponds to

the root x¼�1.686 is

ψ1¼ 0:542φ1 + 0:643φ2 + 0:542φ3 (9.98)

Using the x¼�0.500 root in an analogous procedure leads to the wave

function

ψ2¼ 0:707φ1�0:707φ3 (9.99)

As a result of these two orbitals for which we have obtained wave functions

being able to hold the three electrons in the π system, it is not necessary to

determine the coefficients for the third molecular orbital.

A convenient way to determine whether the calculated energy expres-

sions are correct is to substitute the wave function in the equation

E¼
ð
ψ*
1 Ĥ ψ1 dτ (9.100)

If the calculations are correct, the integral must evaluate to the energy that

was obtained for that orbital, which is E¼α+0.5 β. Substituting the wave
function ψ2 into this expression gives

a + 1.686b

a + 0.500b

a − 1.186b
E

Fig. 9.11 Energy level diagram for the NCN molecule, assuming that each nitrogen
atom donates one electron.

220 Fundamentals of Quantum Mechanics



E¼ a21 α+0:5βð Þ+ a22α+ a23 α+0:5βð Þ+2a1a2β+2a2a3β (9.101a)

In this expression the last two terms will be equal to zero because a2 is zero.

E¼ 0:7072 α+0:5βð Þ+ �0:707ð Þ2 α+0:5βð Þ (9.101b)

Simplifying Eq. (9.101b) gives E2¼1.00α+0.5β, which is the energy cal-

culated earlier for the second energy state. Therefore, the calculated energy

is correct. It is also possible to verify the value of E1 by a similar procedure.

The electron densities for N1–C2–N3, where subscripts indicate atomic

positions in the chain, are

EDatN1¼ 2 0:542ð Þ2 + 1 0:707ð Þ2¼ 1:09

EDatC2¼ 2 0:643ð Þ2¼ 0:827

EDatN3¼ 2 0:542ð Þ2 + 1 �0:707ð Þ2¼ 1:09:

Note that within the round-off errors encountered, the sum of the electron

densities is 3.0. As expected based on the relative electronegativities of nitro-

gen and carbon, it is found that the ED is higher on the nitrogen atoms than

it is on the carbon atoms. The bond orders B12¼B23 can be calculated as

illustrated earlier:

B12 ¼B23 ¼ 2 0:542ð Þ 0:643ð Þ + 1 0:707ð Þ 0ð Þ ¼ 0:697 (9.102)

If it is assumed that the nitrogen atoms each donate two electrons to the π
system, the value αN2¼α+1.5β is used. After making the usual substitu-

tions, the secular determinant can be written as

x+1:5 1 0

1 x 1

0 1 x+1:5

�������

�������
(9.103)

This results in the characteristic equation

x x+ 1:5ð Þ2� x+ 1:5ð Þ� x+ 1:5ð Þ ¼ 0 (9.104)

This equation has the roots x¼�2.35, �1.50, and +0.85. These roots are

then set equal to (α�E)/β, and the calculated energies lead to the molecular

orbital diagram shown in Fig. 9.12.

Using the procedures developed earlier, we find the coefficients to be

a1¼0.606, a2¼0.515, and a3¼0.606, when the root x¼�2.35 (corre-

sponding to the lowest energy) is used. Therefore, the lowest lying molec-

ular orbital has the wave function
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ψ1¼ 0:606φ1 + 0:515φ2 + 0:606φ3:

From the root x¼�1.50, we find the coefficients a1¼0.707, a2¼0, and

a3¼�0.707, which lead to the wave function

ψ2¼ 0:707φ1�0:707φ3:

The coefficients a1¼0.365, a2¼�0.857, and a3¼0.365 are found from the

root x¼0.85. That root gives rise to the wave function

ψ3¼ 0:365φ1�0:857φ2 + 0:365φ3,

which corresponds to the orbital of highest energy and is populated by only

one electron. When the coefficients of the three wave functions are used to

calculate the electron densities on the atoms, the results are

EDatN1¼ 2 0:606ð Þ2 + 2 0:707ð Þ2 + 1 0:365ð Þ2¼ 1:87
EDatC2 ¼ 2 0:515ð Þ2 + 2 0ð Þ2 + 1 0:857ð Þ2¼ 1:26
EDatN3¼ 2 0:606ð Þ2 + 2 �0:707ð Þ2 + 1 0:365ð Þ2¼ 1:87:

As expected, the total electron density is equivalent to a total of five elec-

trons, and the electron density is higher on the nitrogen atoms than it is

on the carbon atom. In fact, the values obtained are of reasonable magnitude

based on the electronegativities of the atoms. These calculations are quali-

tative, of course, but the results are in agreement with expectations based on

electronegativities.

It should be mentioned that the cyanamide ion, CN2
2�, has the structure

N¼C¼N and constitutes a logical extension of the preceding problem. It is

thus apparent that possibilities exist for using the HMO calculations for inor-

ganic species as well. The main use of this method has, of course, been in the

area of organic chemistry.

9.7 KERNELS, REPULSION, AND STABILITY

As a result of their presence in interstellar matter, numerous small molecules

have been identified spectroscopically. For example, species such as C2N

a + 2.35b

a + 1.50b

a− 0.85b
E

Fig. 9.12 Energy level diagram for the NCN molecule, assuming that each nitrogen
atom donates two electrons.
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and CN2 have been the subject of a great deal of study, both experimentally

and theoretically (Martin et al., 1994; Hensel and Brown, 1996; Curtis et al.,

1988; Mebel and Kaiser, 2002). Calculations show that the structure CNN

has an energy that is approximately 31 kcal mol�1 higher than that of the

NCN structure. This obeys the general rule that in triatomic molecules,

the atom having lowest electronegativity usually occupies the middle posi-

tion. One of the most familiar molecules that illustrates this principle is

nitrous oxide, N2O for which the structure is NNO rather than NON.

Although experimental evidence makes this clear now, that was not the

case when Pauling and Hendricks predicted the correct structure in 1926

(Pauling and Hendricks, 1926).

A simple and interesting approach to stability of such species described by

Pauling (1975) as “… a simple of way of remembering which structure is to

be assigned to the more stable isomer,” was to consider the core 1s2 electrons

and the nucleus as constituting a kernel, with a residual positive charge of

(N–2). In this way, the structure is determined by the minimum repulsion

of the kernels in the structure. For example, when considering the structures

of cyanate (NCO�) and fulminate (CNO�), the following situation results.

C4+------N5+------O6+ N5+------C4+------O6+

Theactualbond lengths in these structuresdonotvarygreatly, so itwas assumed

that a bond length of 1.15 Å (115 pm) could be assumed without invalidating

the method. In this way, the repulsions can be expressed in terms of e2/r.

The energies due to repulsion of the kernels can be summarized as follows:

C4+⋯⋯⋯N5+⋯⋯⋯O6+

20e2=r + 30e2=r
+24e2=2r

N5+⋯⋯⋯C4+⋯⋯⋯O6+

20e2=r + 24e2=r
+30e2=2r

In these structures, the lower quantity represents the repulsion of the terminal

kernels at a distance of 2r. The difference is 3e2/r with the cyanate structure

having the lower energy. The valence shell electrons are distributed so as to

reduce the repulsion. However, when the difference of 3e2/r is converted to

an equivalent on a molar basis, it amounts to approximately 3600 kJ mol�1.

On the basis of the heat of the reaction of N2O with CO, Pauling estimated

that the effect produced by the electrons reduced this by about 90%, but the

difference shows that the fulminate ion is considerably less stable than is the

cyanate ion.This is in accordwith the chemical of these classes of compounds.

The same approach can be taken with the C2N, with the results as

follows:
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C4+⋯⋯⋯C4+⋯⋯⋯N5+

16e2=r + 20e2=r
+20e2=2r

C4+⋯⋯⋯N5+⋯⋯⋯C4+

20e2=r + 20e2=r
+16e2=2r

It can be seen that there is a difference in the kernel repulsion of 2e2/r, with

the CCN structure having lower repulsion, which amounts to approxi-

mately 2400 kJ mol�1. This does not take into account the “cushioning”

effect of the valence shell electrons, but as in the case of the fulminate

and cyanate ions, it is unlikely that the kernel repulsion is negated.

For the CN2 molecule, the repulsion of the kernels can be represented as

follows:

N5+⋯⋯⋯C4+⋯⋯⋯N5+

20e2=r + 20e2=r
+25e2=2r

N5+⋯⋯⋯N5+⋯⋯⋯C4+

25e2=r + 20e2=r
+20e2=2r

It can be seen that the NCN structure has 2.5e2/r lower repulsion than of

that the CNN structure.

There are numerous triatomic molecules that have been either identified

or suspected of interstellar existence. Several such species include those hav-

ing 13, 14, or 15 valence shell electrons. Among the most extensively stud-

ied, both experimentally and theoretically, are those containing carbon and

nitrogen atoms. Some of the most interesting are those that are isomers of

C2N and CN2. On the basis of ab initio calculations, Martin et al. (1994) con-

cluded that the CNN isomer (in the 3Π state, which does not have a center

of symmetry) is higher in energy than the NCN isomer (in its 3Πg state,

which has a center of symmetry) by approximately 31.5 kcal mol�1. It thus

appears that a simple approach developed by Pauling many years ago leads to

correct conclusions, at least on a qualitative basis, regarding the stability of

molecules unknown at the time and the subject of a great deal of study

currently.

The values for heat of atomization for CN2 and C2N were reported to

be 288.6 and 294.1 kcal mol�1, respectively (Martin et al., 1994), which

indicates that C2N is more stable than CN2, which would be expected.

Mebel and Kaiser have reported the vibrational frequencies for the C2N

molecules (Mebel and Kaiser, 2002). The CNC structure has a ground state

of 2Πg, whereas that of the CCN is 2Π (there is no center of symmetry).

Each of these molecules gives rise to three infrared active vibrations

(see Chapter 11). From these and other studies, it is apparent that the

isomeric species of C2N and CN2 have been extensively studied.
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9.8 BAND THEORY OF METALS

One view of a solid metal is that it is composed of a collection of ions having

positive charges around which is the collection of mobile electrons. When

viewed in this way, the properties of electrical conductivity and malleability

of metals follow logically. Alloys consist of solid solutions of two or more

metals, so substitution of one type of ion for another would result in an alloy.

It is well known that when metals are combined with hydrogen (hydrides),

oxygen (oxides), nitrogen (nitrides), or carbon (carbides), the metallic prop-

erties mentioned above are greatly diminished.

Even though some electrons may be mobile, it is largely those in the

valence shell that are capable of being moved. The most common structures

of metal lattices are cubic closest packed and hexagonal closest packed. In

these structures, each metal atom (except those on a surface or edge) has

12 nearest neighbors. Bonding between metal atoms consists of a sharing

of the electrons, which are mobile as a result of their being held in conduction

bands. The result is that although metals are malleable, there is generally a

high cohesion and strength of the lattices.

Even though metal atoms may not move through a solid lattice, there is

motion within the lattice. There is some vibration of the lattice members

about the average positions. The resistivity of a metal results from the fact

that metal atoms hinders the motion of the electrons through the lattice.

When a solid is heated, the vibration of the metal atoms becomes more

extensive. This increase in vibrational amplitude leads to greater impedance

to the flow of electrons, so the resistivity of the metal increases with tem-

perature. Conductivity is the reciprocal of resistivity, so the conductivity

of the metal decreases with an increase in temperature.

The molecular orbital approach is a suitable way to describe bonding in

many systems. When applied to bonding in a metal, it is assumed that the

atomic orbitals of metal atoms combine to form molecular orbitals that

extend over a larger number of atoms. At least for atoms in the interior

of the metal, each atom can be presumed to contribute an orbital for the

combinations. As shown in Section 9.1, when two atomic orbitals combine,

then twomolecular orbitals result, with one designated as a bonding orbital and

the other an antibonding orbital. The interaction of three atoms leads to the

formation of three molecular orbitals (see Section 9.4). From the molecular

orbital energy diagrams shown earlier for ethylene, allyl, and butadiene mol-

ecules, the calculations described for those molecules indicate that as the

number of molecular orbitals increases, the difference in energy between
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them decreases. Figure 9.13 illustrates this principle as the number of atoms

increases to Avogadro’s number N.

In the H€uckel approach, the difference in energy between adjacent

molecular orbitals decreases as the number of orbitals increases to the point

where the term band is applied. Thermal energy as a function of temperature

can be represented by kT, where k is Boltzmann’s constant and T is the tem-

perature (K). For a collection of molecular orbitals that contains a large num-

ber of atoms, the separation between adjacent orbitals is smaller than kT. As a

result, numerous closely spaced molecular orbitals may be populated to form

a conduction band. Because vibrations of metal atoms in a lattice increase

with temperature, the conductivity of metals decreases as the temperature

increases as a result of reduced electron mobility.

For a set of molecular orbitals in the H€uckel approximation, the energy

of the nth orbital is given by

E¼ α+2βcos
nπ

N +1
(9.105)

In this equation, α represents a Coulomb integral (Hii), β is a resonance inte-
gral (Hij), and N approaches infinity for a metal. As a result, there are

N energy levels that comprise an energy bandwith an overall width approach-

ing 4β. Within this band, the difference in energy between n and n+1 levels

approaches zero and N increases. This description of the energy levels in a

metal gives rise to the band theory descriptor, which is illustrated in Fig. 9.13.

NaxNa2Na Na3 Na6Na4 NaN

Fig. 9.13 An illustration of the combination of 3s orbitals for sodium atoms. Note that
the combination of two atomic orbitals gives rise to the same type of energy level
diagram that applied to ethylene. Note also that as the number of atomic orbitals
increases, the molecular orbitals get closer together in energy. When x atoms (where
x is a large number) combine, the energy levels become very close together and if a
very large number of atoms, one mole of atoms (N) combine, the levels essentially
form a continuum or band.
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If the metal being considered is presumed to be sodium (as is the case

shown in Fig. 9.13), the electron configuration is 3s1, so the set of bonding

orbitals constructed from these orbitals is only half filled. It is sometimes con-

sidered that all of the sodium orbitals can form bands, but the gaps between

the bands limit electrical conductance to the upper band. For purposes of

illustration, it will be assumed that the core electrons that reside in the 1s

and 2s orbitals are not involved in bonding. The resulting band structure

can be illustrated, as shown in Fig. 9.14.WhenN atoms are considered, elec-

tron population of the bands can be expressed as 2(2 l+1)N, in which l is the

orbital quantum number. Both the 2p and 3s orbitals interact to form bands

because both types of orbitals are occupied, and therefore a band is formed

from the combination of each type of orbital.

For sodium, the band of highest energy is only half filled because each

sodium atom has a single electron in the 3s orbital. As a result, it is possible

for electrons to enter and leave the band. This action can be caused by light

in the visible region, which gives rise to an absorption and emission process

at the surface of the metal. This process causes the metal to have the shiny

appearance known as metallic luster. With electrons being able to move in a

partially filled band, the metal is a good conductor of electricity.

Materials that behave as semiconductors or insulators have greater energy

differences between the bands (sometimes referred to as the band gap). In the

caseof insulators, themovementof electrons requires energies that areof amag-

nitude similar to the binding energies of electrons in atoms (up to 10–12 eV).
Semiconductors have band gaps that typically range from1–2.5 eV. For exam-

ple, some representative values are as follows: Ge, 0.67; Si, 1.14; and CdS,

2.42 eV (Serway and Jewett, 2014). At room temperature, thermal energy

per mole is RT or about 2.49 kJ mol�1¼596 cal mol�1¼0.596 kcal mol�1.

2p, 6N

3p, 6N

3s, N

E 

Fig. 9.14 Bands formed by the combination of orbitals on sodium atoms. A green color
signifies that a band or portion of the band is filled, whereas a red color signifies a
portion of the band that is empty. The band arising from the 3s orbitals is only half
filled, because there is only one electron in the 3s state of each sodium atom. The
band from combination of 3p states is empty. (Modified with permission from
House, J. E. Inorganic Chemistry, 2nd ed.; Academic Press/Elsevier: Amsterdam, 2013.)
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This is equivalent to 0.026 eV molecule�1 so increasing the temperature

increases the number of electrons that can populate orbitals of higher

energy, as is the case with a semiconductor (see Section 6.7). For a muchmore

complete discussion of semiconductors, see the books of Serway and Jewett

(2014) and Blinder (2004).

The HMO theory is adequate to deal with many significant problems in

molecular structure and reactivity. In view of its gross approximations and

very simplistic approach, it is surprising how many qualitative aspects of

molecular structure and reactivity can be dealt with using the H€uckel
approach. For a more complete discussion of this topic, consult the refer-

ences listed at the end of this book. As was stated at the beginning of this

chapter “In spite of its approximate nature, H€uckel molecular orbital

(HMO) theory has proved itself extremely useful in elucidating problems

concerned with electronic structures of π-electron systems” (Purins and

Karplus, 1968). It is still true.
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PROBLEMS

1. Find the roots of these equations using graphical or numerical methods:

(a) x3�2x2�2x+3¼0

(b) x4�5x2+2x�5¼0

(c) x3+2x2�6x�8¼0

(d) x6�6x4+9x2�4¼0.

2. Find the solution to ex+cos x¼0, where x is in radians.

3. Solve exp(�x2)� sin x¼0 if x is in radians.

4. Find two roots for the equation e2t�2 cos 2 t¼0.

5. In the text, the HMO calculations were carried out for H3
+. Perform a

similar analysis for H3
�.

6. Two possible structures of I3
+ are

orI I I
I I

I

Use a HMO calculation to determine which structure is more likely.

7. The tri-iodide ion I3
� forms when I2 reacts with I� in aqueous solu-

tions of KI. Perform the same calculations from Problem 6 for the

I3
� to determine the preferred structure.

8. Perform HMO calculations for the molecules N–C–C and C–N–C.
In each case, assume that the nitrogen atom is a two-electron donor

to the π system. Determine the energy levels, the coefficients for the

wave functions, and the charge densities on the atoms.

9. Perform HMO calculations for bicyclobutadiene,

C

C

C

C

10. Carry out aHMOcalculation for 1,3-butadiene,CH2¼CH�CH¼CH2.

Determine the energy levels, the coefficients of the wave functions,

the bond orders, and the electron density at each carbon atom.

11. Using the HMO approach, determine the resonance or delocalization

energy for cyclobutadiene, Complete the calculations by determining

the coefficients of the wave functions, the electron density on each

atom, and the bond orders.
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C C

C C

12. Repeat the calculations of Problem 11 for the ring structure in which

each nitrogen atom is assumed to contribute one electron to the

π system.

C N

N N

13. Repeat the calculations of Problem 11 for a ring structure like that

shown below, assuming that each nitrogen atom contributes one elec-

tron to the π system.

N N

C C

14. Consider the molecule

C C

C C

C

C

Show how the symmetry of this molecule could be used to simplify the

H€uckel calculations.
15. Assume that a linear structure having a �1 charge is composed of one

atom of I, one of Cl, and one of Br. Based on the chemical nature of

the atoms, what should be the arrangement of atoms in the structure?

Consider only the p orbitals and assume that the same α value can be

used for each of these atoms (a very crude approximation). Perform

H€uckel calculations to determine the electron density at each atom

and the bond orders.

16. Because Cl, Br, and I atoms have different electronegativities and elec-

tron binding energies (ionization potentials), the same value for α
should not be used for each atom. Use the values α for I, α+0.2β
for Br, and α+0.4β for Cl to compensate for the difference in proper-

ties of the atoms. PerformH€uckel calculations for the three possible lin-
ear arrangements of atoms and calculate the electron densities on the

atoms for each structure. Explain how the results of the calculations

support or contradict the structure that you would expect based on

the chemical nature of the atoms.
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CHAPTER 10

Molecular Structure
and Symmetry

In Chapter 3, it was shown that the symmetry (dimensions) of a box can

affect the nature of the energy level diagram for a particle in a

three-dimensional box model. Symmetry is, in fact, one of the most impor-

tant and universal aspects of structures of all types. In chemistry and physics,

symmetry and its application through group theory have a direct relationship

to structures of molecules, combinations of atomic orbitals that form molec-

ular orbitals, the types of vibrations possible for molecules, and several other

facets of the chemical sciences. For this reason, it is imperative that a brief

introduction to symmetry and its relationship to quantum mechanics is

presented at an early stage in the study of molecules.

10.1 VALENCE BOND DESCRIPTION OF
MOLECULAR STRUCTURE

In earlier chapters, it has been shown that the wave equation for the hydro-

gen atom can be solved to obtain wave functions. These functions describe

regions of probability (in one interpretation of quantum mechanics) in

which the electron may be found. Geometrical descriptions of the regions

were shown, the same orbital features were applied to other atoms, and the

directional attributes of the wave functions were also shown. However, due

to the fact that the water molecule has a bond angle of 104.5 degrees, it can

be inferred that the orbitals used by oxygen are not 2p orbitals, which are

directed at 90 degrees from each other. The bonding orbitals involved must

be different from p orbitals, despite the fact that the oxygen atom has a

valence shell configuration of 2s2 2p4. Moreover, carbon has a valence shell

configuration of 2s2 2p2, but methane (CH4) has a regular tetrahedral

structure.

The issue of molecular structure based on atomic orbitals leads to the con-

clusion that something must change the nature of the latter when a molecule

is formed. The valence bond approach to describing molecular structure

resulted from the explanation of this issue. In the valence bond description,
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atomic orbitals are somehow “mixed” to produce a new set of bonding

orbitals that differ in directional properties and size. As a result, overlap of

such orbitals can lead to stronger bonds and less repulsion of peripheral

atoms. The interpretation of the overlap integral for two atomic orbitals

φ1 and φ2,

S12 ¼
ð
φ1∗φ2dτ (10.1)

is based on the effectiveness of the overlap. In simplest terms, the orbitals

describe probability regions, and the overlap of atomic orbitals leads to

the reinforcement or cancelation of the probability. One of the basic ideas

regarding hybrid orbitals is that the combination of atomic orbitals leads to the

same number of hybrid orbitals, with each being able to hold a pair of

electrons.

The simplest combination of atomic orbitals is that of one s orbital and

one p orbital to yield two sp hybrid orbitals. Combining the two atomic

wave functions leads to two wave functions for the hybrid orbitals. The

combinations can be shown as

ψ 1ð Þ ¼
1ffiffiffi
2

p φs +φpz

� �
and ψ 2ð Þ ¼

1ffiffiffi
2

p φs�φpz

� �
(10.2)

The reason for choosing the pz orbital, as shown later in this chapter, is

the axis of highest symmetry is designated as the z-axis. For a linear

molecule, that axis is coincident with the internuclear axis. The combina-

tion of one s and one p orbital can be shown graphically as illustrated in

Fig. 10.1. As a result of the two sp hybrid orbitals situated at 180 degrees

to each other, a molecule that involves such orbitals should be linear. This

is the case for BeH2.

The most common halides of boron have the formula BX3, and they

have trigonal planar structures. With boron having a 2s2 2p1 electron con-

figuration, the s and p orbitals must combine to produce a set of hybrid

orbitals that have the appropriate directional characteristics. Although the

mathematical details will not be illustrated, the resulting combinations of

wave functions can be shown as follows:

s pz sp

Fig. 10.1 The formation sp hybrid orbitals.
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ψ 1ð Þ ¼
1ffiffiffi
3

p φs +

ffiffiffi
2

3

r
φpx

(10.3)

ψ 2ð Þ ¼
1ffiffiffi
3

p φs�
1ffiffiffi
6

p φpx
+

1ffiffiffi
2

p φpy
(10.4)

ψ 3ð Þ ¼
1ffiffiffi
3

p φs�
1ffiffiffi
6

p φpx
� 1ffiffiffi

2
p φpy

(10.5)

It can be shown mathematically that the resulting three orbitals are directed

toward the corners of an equilateral triangle. Pictorially, the combination of

orbitals to produce sp2 hybrids is shown in Fig. 10.2.

The structure of the methane molecule (CH4) is tetrahedral, so there

must be hybrid orbitals that have lobes pointing toward the corners of that

structure. A combination of atomic orbitals that does is composed of one s

orbital and three p orbitals to give a set of four sp3 hybrids. The combinations

of wave functions are as follows:

ψ 1ð Þ ¼
1

2
φs +φpx

+φpy
+φpz

� �
(10.6)

ψ 2ð Þ ¼
1

2
φs +φpx

�φpy
�φpz

� �
(10.7)

ψ 3ð Þ ¼
1

2
φs�φpx

+φpy
�φpz

� �
(10.8)

ψ 4ð Þ ¼
1

2
φs�φpx

� φpy
+ φpz

� �
(10.9)

A pictorial representation of a set of four sp3 orbitals is shown in Fig. 10.3.

s px py sp2

Fig. 10.2 The formation of a set of sp2 hybrid orbitals.

s
px py

pz sp3

Fig. 10.3 The formation of a set of sp3 hybrid orbitals.
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Molecules such as PF5 have a structure that is described as a trigonal

bipyramid,

158 pm

153 pm

90°

120°

F

F

F

F

F

P

so a hybridization scheme must product five orbitals directed with three in a

plane, as well as one directed above and one below that are perpendicular to

the plane. Such a set of orbitals is the dsp3 or sp3d combination that in reality,

can be described more accurately as (sp2+dp). As shown later, three sp2

orbitals are utilized in forming the three bonds in the plane (called the equa-

torial positions), and the linear dp orbitals form bonds to the atoms in axial

positions. The two sets of orbitals have been shaded differently to illustrate

that they are not identical.

sp3d

Note that the PF5 molecule has two different bond lengths, with those in the

plane being shorter than those in the axial positions. This is evidence that

there are two types of hybrid orbitals used to form bonds in such a molecule.

There are numerous molecules in which six groups are bonded to a cen-

tral atom in an octahedral arrangement. Although such a molecule is SF6,

there are also numerous ions, such as PF6
�, SbF6�, and SnF6

2�
, that have

octahedral structures. The hybrid orbital type is either sp3d2 or d2sp3,

depending on the nature of the species. All of the orbitals are equivalent

in this case, so the structure is a regular octahedron. The lobes are shaded

different colors to emphasize the geometry, but they are equivalent with

respect to bonding.
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sp3d2

A large number of species have structures in which the central atom utilizes

hybrid orbitals. Of course, in some cases (e.g., H2O, NH3, SF4, etc.), there are

one or more unshared pairs of electrons (sometimes called lone pairs). These

electrons exert an effect that alters the structure of such molecules as a result of

differences in repulsion. For example, an unshared pair of electrons is bound to

only one atom, whereas a shared pair is more or less localized between the two

atoms sharing them. The result is that bond angles are altered. For example,

CH4 has bond angles of 109.5 degrees, but the bond angles in NH3 are

approximately 107.5 degrees because the repulsion between a shared pair

and an unshared pair is greater than that between two shared pairs, which

are more localized. This rationale is the basis for the valence shell electron pair

repulsion (VSEPR) theory, and invoking it makes it possible to rationalize

why bond angles frequently deviate from those predicted for the various types

of hybrid orbitals (House, 2013). Table 10.1 illustrates the structures of many

species that involve the hybrid orbitals described earlier. The symmetry labels

will be explained in later sections of this chapter.

10.2 WHAT SYMMETRY MEANS

One of the most efficient ways to describe the spatial arrangement of atoms

in a molecule is to describe the symmetry of the molecule. The symmetry of

a molecule is denoted by a symbol that succinctly conveys the necessary

information about how the atoms are arranged. The symbol used describes

the point group to which the molecule belongs. Thus, the symbol Oh is used

to describe a molecule like SF6 having octahedral symmetry. However, C2v

is used to describe a bent molecule like H2O. These symbols indicate the

structures of the molecules having these symmetries. When they are

encountered, these symbols denote to the reader a particular arrangement

of atoms. For example, H2O can have two orientations, as shown in

Fig. 10.4. One orientation can be changed to the other by rotation of the

molecule by 180 degrees.
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On the other hand, the molecule HCl can have the two orientations shown

in Fig. 10.5. However, a rotation of the HCl molecule by 180 degrees

around the axis shown in the figure does not lead to an orientation that is

indistinguishable from the original, as it does in the case of H2O. Thus,

H2O and HCl do not have the same symmetry. The details of the structure

Table 10.1 A summary of molecular structures

Number of pairs
on central atom
and hybrid type 20 1 3

3
sp2

4
sp3

5
sp3d

6
sp3d2

Trig. planar
BCl3

Bent
SnCl2

Bent
H2O

Tetrahedral
CH4

Trig. pyramid
NH3

Sq. base bipyr.
IF5

Octahedral
SF6

Trig. bipyramid
PCl5

"T" shaped
ClF3

2
sp

Linear
BeCl2

D3h

D4hC4v

D�h

D�h

D3h

Td

C2v

C2vC3v

C2v

Oh

C2v

Number of unshared pairs on the central atom

Irreg. tetrahred.
TeCl4

Linear
ICl2

−

Square planar
ICl4

−

(Modified with permission from House, J. E. Inorganic Chemistry, 2nd ed.; Academic Press/Elsevier:
Amsterdam, 2013.)

H' H''

O

H'' H'

O

Fig. 10.4 Two orientations of the watermolecule. The oval is used to indicate rotation of
the molecule by a half circle or 180 degrees.
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of a molecule can be adequately described if the symmetry properties are

known and vice versa. The rules by which symmetry operations are applied

and interpreted (group theory) give certain useful results for considering

combinations of atomic wave functions as well.

The rules of group theory govern the permissible ways in which the

wave functions can be combined. Thus, some knowledge of molecular sym-

metry and group theory is essential in order to understand molecular struc-

ture and molecular orbital theory. The discussion provided in this chapter

will serve as only a brief introduction to the subject, and the references at

the end of the book should be consulted for a more exhaustive treatment.

As we have seen, a molecule may have two or more orientations in space

that are indistinguishable from each other. Certain parts of the molecule

can be interchanged in position by performing some operation that changes

the relative positions of atoms. Such operations are called symmetry operations,

and they include rotations about axes and reflections through planes. The

imaginary axes about which the rotations are carried out are called rotation

axes. The planes through which reflections of atoms occur are called mirror

planes. Symmetry elements are the lines, planes, and points that relate the

objects in the structure spatially. A symmetry operation is performed by mak-

ing use of a symmetry element. Thus, symmetry elements and operations are

not the same, but a rotation axis will be indicated by the symbol C and the

operation of actually rotating the molecule around this axis by the same sym-

bol. As a result, the axis is the C axis and the rotation about that axis is the C

operation.

10.3 SYMMETRY ELEMENTS

Center of Symmetry or Inversion Center (i)
If the inversion of each atom through this point results in an identical

arrangement of atoms, then a molecule possesses a center of symmetry.

Thus, in XeF4, which has a square planar structure, there is a center of

symmetry:

H Cl HCl

Fig. 10.5 Two orientations of the HCl molecule.

237Molecular Structure and Symmetry



F

F

F Xe

F

Of course, each atom must be moved through the center the same dis-

tance that it was initially situated from the center. The Xe atom is at the cen-

ter of symmetry, and inversion of each fluorine atom through the Xe gives

exactly the same arrangement as the original. However, for a tetrahedral

CH4 molecule, inversion through the geometric center of the molecule gives

a different result.

C

H

H

H

H

C

H

H

H

H

Thus, the geometric center (i.e., where the C atom is located) is not a center of

symmetry. Similarly, the linear CO2 molecule has a center of symmetry,

whereas the bent SO2 molecule does not:

O C O O

S

O

The (Proper) Rotation Axis (Cn)
If a molecule can be rotated around an imaginary axis to produce an equiv-

alent orientation, the molecule possesses a proper rotation axis. There is also a

symmetry element known as an improper rotation axis, which is designated

as Sn and will be described later. Consider the boron trifluoride molecule

BF3, as shown in Fig. 10.6.
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It can be seen that rotation around the z-axis, which passes through

the boron atom and is perpendicular to the plane of the molecule, pro-

duces an indistinguishable structure when the angle of rotation is 120

degrees. In this case, the rotations producing indistinguishable orienta-

tions are 120 degrees, or 360 degrees/3, so that the rotation axis is a

threefold or C3 axis. Three such rotations return the fluorine atoms in

the molecule to their original positions. For a Cn axis, the n value is

determined by dividing 360 degrees by the angle through which the mol-

ecule must be rotated to give an equivalent orientation. For the BF3 mol-

ecule, there are three other axes about which the molecule can be rotated

by 180 degrees to arrive at the same orientation. These axes are shown in

Fig. 10.7, and they lie along the BdF bonds. Therefore, there are three

C2 axes (one lying along each BdF bond) in addition to the C3 axis that

are perpendicular to the C3 axis.

Although there are threeC2 axes, theC3 axis is designated as the principal

axis. The principal axis is designated as the axis of highest-fold rotation (the

axis about which the smallest rotation produces an indistinguishable orien-

tation of the molecule). This provides the customary way of assigning the

z axis, which is the axis of highest symmetry, in setting up an internal coor-

dinate system for a molecule.

Multiple rotations are indicated asC3
2, which means two rotations of 120

degrees around the C3 axis. This clockwise rotation of 240 degrees produces

the same orientation as a counterclockwise rotation of 120 degrees. Such a

BB

C3 C3 C3

BF3

F3

F3

F1

F1

F1

F2
F2

F2

Fig. 10.6 Rotation of a BF3 molecule around the C3 axis. Note that a triangle is used on
the axis of rotation to indicate a rotation by one-third of a revolution.

B F
F

F

C2

C2

C2

Fig. 10.7 The trigonal planar BF3 molecule showing the rotation axes and planes of
symmetry.
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rotation in the opposite direction is sometimes indicated as C3
�1. It is readily

apparent that the same orientation of BF3 results from C3
2 andC3

�1.

Certain other “rules” can be seen when considering a square structure

such as that of the XeF4 molecule, which has four identical groups at its cor-

ners, as shown in Fig. 10.8. Through the center of the xenon atom, there is a

C4 axis perpendicular to the plane generated by the four fluorine atoms.

If we perform four C4 rotations, we arrive at a structure identical to the ini-

tial structure. Thus, Cn
n produces the identity, a structure indistinguishable

from the original. The operation for the identity is designated as E, so

Cn
n ¼E. It is also readily apparent that two rotations of 90 degrees produce

the same result as a single rotation of 180 degrees, so C4
2¼C2.

Mirror Plane (Plane of Symmetry) (σ)
If a molecule has a plane that divides it into two halves that are mirror

images, the plane is known as a mirror plane (plane of symmetry). Consider

the H2O molecule shown in Fig. 10.9: There are two mirror planes in this

case, the xz and the yz planes. Reflection of the hydrogen atoms through the

yz plane interchanges the locations of H0 and H00. Reflection through the yz

plane simply interchanges the halves of the hydrogen atoms that are bisected

by the xz plane. Both planes are designated as vertical planes because they

encompass the z-axis, which is taken to be the vertical axis.

O 
H' 

x H" 

sxz

y 

C2

syz

Fig. 10.9 The water molecule showing two mirror planes (outlined in blue and red) with
the two hydrogen atoms lying in the σxz plane (blue). The intersection of these two
planes generates a C2 axis.

Xe

F1

F2 F3

F4

C4
2 or C2

C4 C4 C4

C2 C2Xe Xe

F1 F1F2

F2F4

F4

C2

F3 F3

Fig. 10.8 Rotation of a square planar molecule XeF4 around a C4 axis.
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Improper Rotation Axis (Sn)
An improper rotation axis is an axis about which rotation followed by reflec-

tion through a plane perpendicular to the rotation axis produces an indistin-

guishable orientation. For example, the symbol S6 means rotating the

structure clockwise by 60 degrees and reflecting each atom through a plane

perpendicular to the S6 axis of rotation. This can be illustrated with an exam-

ple: Suppose we consider the six objects illustrated on the coordinate system

shown in Fig. 10.10. A red circle indicates a point below the xy plane,

whereas a blue circle indicates a point lying above that plane (i.e., the plane

of the page). The S6 axis lies along the z-axis, which is perpendicular to the

x- and y-axes at the point of intersection.

Rotation of the structure around the z-axis by 60 degrees followed by

reflection through the xy plane moves the object at position 1 to position

2. Likewise, the object at position 2 moves to position 3, etc. Therefore,

performing an S6 operation has converted the original structure to another

having the same orientation.

It should be apparent that the zigzag or puckered structure shown in

Fig. 10.10 is the same as that of cyclohexane in the “chair” configuration.

The S6 axis is also a C3 axis in this case because rotation by 120 degrees

around the z-axis gives the same configuration:

From Fig. 10.10, it can be seen that the following relationships exist for sym-

metry operations for this structure:

S6
2¼C6 �σh �C6 �σh¼C6

2 �σh2 ¼C6 �E¼C3

y

16

x
5

2

4 3

Fig. 10.10 A structure possessing an S6 (and C3) axis perpendicular to the plane of
the page.
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and that

S6
4¼C6 �σh �C6 �σh �C6 �σh �C6 �σh¼C6

4 �E¼C3
2

Consider a tetrahedral molecule as represented in Fig. 10.11. In this

case, it can be seen that rotation of the molecule by 90 degrees around

the z-axis followed by reflection of each atom through the xy plane pro-

duces the structure in an unchanged orientation. The z-axis is thus an S4
axis for this molecule. It is easily seen that both the x- and the y-axes are S4
axes also, so a tetrahedral molecule has three S4 axes as part of its symmetry

elements.

The Identity (E)
The identity operation can be carried out for all molecules of all symmetries,

because it leaves the orientation of themolecule unchanged. It is necessary to

have the identity operation because an operation like Cn
n returns the mol-

ecule to its original orientation. Thus,

Cn
n¼E:

Any symmetry operation (B) of the point group has an inverse operation

(B�1), such that

B �B�1¼B�1 �B¼E:

The importance of the identity operation will be considered in Section 10.4

when elementary group theory is considered.

z

y

x

Fig. 10.11 A tetrahedral molecule. Each of the x-, y-, and z-axes are both S4 and C2 axes.
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The assignment of a molecule to a specific symmetry type (also called the

point group) requires the various symmetry elements present to be recog-

nized. This may not always be obvious, but with practice most molecules

can readily be assigned to a symmetry type.

10.4 WHAT POINT GROUP IS IT?

Determining the symmetry elements present in a molecule and then

deducing the point group to which the molecule belongs begins with

drawing the correct structure. For example, H2O is sometimes shown on

printed pages as

H O H

whereas the correct angular or bent structure is

H' H"

O

The incorrect linear structure appears to have a C∞ axis, because rota-

tion of the molecule by any angle around a line along the bonds produces

the same orientation. Also, a linear structure would possess a center of

symmetry located at the center of the oxygen atom. Moreover, any line

passing through the center of the oxygen atom and perpendicular to the

C∞ axis would be a C2 axis. A plane perpendicular to the C∞ axis cutting

the oxygen atom in half would leave one hydrogen atom on either side

and would be a mirror plane. Finally, a linear structure would have an

infinite number of planes that bisect the molecule into equal fragments

by cutting each atom in half, and the planes would intersect along the

C∞ axis. A molecule possessing all these elements of symmetry is desig-

nated as having D∞h symmetry or belonging to the D∞h point group.

It is easily seen from Fig. 10.9 that the correct structure (bent or angular)

has a C2 axis and two mirror (vertical) planes that intersect along it, which

are the only symmetry elements present. A molecule that has precisely

these symmetry elements is called a C2v molecule and belongs to the

C2v point group.
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Methane (CH4) is sometimes shown on printed pages as

H

H

HH C

This structure would have a C4 axis perpendicular to the plane of the page

through the carbon atom, with four vertical planes intersecting along it.

Moreover, it would have a horizontal plane of symmetry, a center of sym-

metry, and four C2 axes perpendicular to the C4 axis. The point group for

such a structure isD4h. This is the correct structure for the planar XeF4 mol-

ecule. Methane is actually tetrahedral,

C

H

H

H

H

and there are four C3 axes and six mirror planes (not 12, because each plane

cleaves the molecule along two bonds). It has already been illustrated that

this molecule has three S4 axes (see Fig. 10.11). The point group for such

a tetrahedral molecule is designated as Td.

Table 10.1 summarizes the most common point groups of molecules and

provides drawings showing the structures of the various types. Also, the

molecular geometry is related to the hybrid orbital type of the central atom

and the number of unshared pairs of electrons, if any. Table 10.2 provides a

complete listing of the symmetry elements present in most of the commonly

encountered point groups. Studying the structures in Table 10.1 shown ear-

lier in this chapter and the listing of symmetry elements in Table 10.2 should

make it easy to assign the point group for most molecules, assuming that the

structure if the molecule has been drawn correctly!
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10.5 GROUP THEORY

The mathematical apparatus for treating combinations of symmetry opera-

tions lies in the branch of mathematics known as group theory. A group is a

set of elements and corresponding operations that obey the following rules:

(1) The combination of any two members of a group must yield another

member of the group (closure).

(2) The group contains the identity, E, multiplication by which com-

mutes with all other members of the group (EA¼AE) (identity).

Table 10.2 Common point groups and their symmetry elements
Point
group Structure Symmetry elements Examples

C1 – None CHFClBr

Cs – One plane ONCl, OSCl2
C2 – One C2 axis H2O2

C2v Bent AB2 or

planar

XAB2

One C2 axis and two σv
planes at 90 degrees

NO2, H2CO

C3v Pyramidal

AB3

One C3 axis and three

σv planes
NH3, SO3

2�, PH3

Cnv – One Cn axis and n σv
planes

BrF5 (C4v)

C∞v Linear ABC One C∞ axis and ∞ σv
planes

OCS, HCN, HCCH

D2h Planar Three C2 axes, one σh,
two σv planes, and i

C2H4, N2O4

D3h Planar AB3

or AB5

trig. bipy.

One C3 axis, three C2

axes, three σv, and
one σh

BF3, NO3
�, CO3

2�, PCl5

D4h Planar AB4 One C4 axis, four C2

axes, four σv, one σh,
and i

XeF4, IF4
�, PtCl42

�

D∞h Linear AB2 OneC∞ axis, one σh,∞
σv planes, and i

CO2,XeF2,NO2
+

Td Tetrahedral

AB4

Four C3, three C2,

three S4, and six σv
planes

CH4, BF4
�, NH4

+

Oh Octahedral

AB6

Three C4, four C3, six

C2, four S6 axes, nine

σv and i

SF6, PF6
�, Cr COð Þ6

Ih Icosohedral Six C5, 10 C3, 15 C2,

20 S6 axes, and

15 planes

B12, B12H12
2�
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(3) The associative law of multiplication must hold so that (AB)

C¼A(BC)¼ (AC)B (associative).

(4) Every member of the group has a reciprocal such that

B �B�1¼B�1 �B¼E, where the reciprocal is also amember of the group

(inverse).

The illustration of these rules will be initiated by considering the structure of

the water molecule shown earlier in Fig. 10.9. First, it should be apparent that

reflection of the hydrogen atoms through the yz plane, indicated by σyz, trans-
forms H0 into H00. More precisely, it is appropriate to say that H0 and H00 are
interchanged by a reflection through the yz plane. Because the z-axis coincides

with a C2 rotation axis, rotation by 180 degrees about the z-axis of the mol-

ecule will takeH0 intoH00 andH00 intoH0, but with the “halves” of each inter-
changed with respect to the xz plane. The same result would follow from a

reflection of the hydrogen atoms through the xz plane followed by reflection

through the yz plane. Therefore, in terms of operations

σxz �σyz¼C2¼ σyz �σxz,
where C2 is rotation around the z-axis by 360 degrees/2. This establishes

that σxz and σyz are both members of the symmetry group for this molecule.

Thus, it is illustrated that in accordance with Rule 1, the combination of

two members of the group has produced another member of the group,

which is C2. If reflection through the xz plane is followed by repeating that

operation, the molecule ends up with the arrangement shown in Fig. 10.9.

Symbolically,

σxz �σxz¼E:

Also, it is easy to see from Fig. 10.9 that

σyz �σyz¼E

and

C2 �C2¼E:

Further examination of Fig. 10.9 shows that a reflection of the molecule

through the xz plane, σxz, will cause the “halves” of the H0 and H00 atoms

lying on either side of the xz plane to be interchanged. If that operation is

performed and the molecule is then rotated by 360 degrees/2 around theC2

axis, the result obtained is exactly the same as that produced by reflection

through the yz plane. This can be expressed as

σxz �C2¼ σyz¼C2 �σxz:
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In a similar way, it is can be seen that a reflection through the yz plane fol-

lowed by a C2 operation gives the same result as that performed by the σxz
operation. Finally, it can be seen from Fig. 10.9 that reflections through σxz
and σyz in either order give the same orientation as results from theC2 oper-

ation. Therefore, these operations can be summarized as

σxz �σyz ¼C2¼ σyz �σxz:

The associative law, Rule 3, has also been demonstrated in these oper-

ations. Additional relationships are provided by

E �E¼E

C2 �E¼C2 ¼E �C2

σyz �E¼ σyz¼E �σyz, etc:

All of these combinations of operations can be summarized in a group mul-

tiplication table.

The multiplication table, shown in Table 10.3 for the C2v group, is con-

structed so that the combination of operations follows the four rules pre-

sented at the beginning of this section. Obviously, a molecule having a

structure other than C2v (symmetry elements and operations) would require

a different table.

To provide further illustration, of the use of symmetry elements and

operations, the ammonia molecule NH3, which has the structure shown

in Fig. 10.12 will be considered. Figure 10.12 shows that the NH3 mole-

cule has a C3 axis passing through the nitrogen atom and the three

reflection planes containing that C3 axis. The identity operation, E, and

the C3
2 complete the list of symmetry operations for the NH3 molecule.

Table 10.3 Multiplication of symmetry operations for H2O (C2v)
E C2 σxz σyz

E E C2 σxz σyz
C2 C2 E σyz σxz
σxz σxz σyz E C2

σyz σyz σxz C2 E

To use this table, start with the operation in the left-hand column and proceed to the desired operation at
the top of a column. Then, read down that column to obtain the desired product.
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Using the procedures illustrated above, the following relationships are now

established:

C3 �C3¼C3
2

C3
2 �C3¼C3 �C3

2¼E

σ1 �σ1¼E¼ σ2 �σ2 ¼ σ3 �σ3:
A reflection through σ2 does not change H00, but it does interchange H0 and
H000. Reflection through σ1 leaves H

0 in the same position but interchanges

H00 and H000. We can summarize these operations as

H0$σ2 H000

H000$σ1 H00

However, operation C3
2 would move H0 to H000, H00 to H0, and H000 to H00,

which is exactly the same orientation as that produced when σ2 is followed
by σ1. It follows, therefore, that

σ2 �σ1¼C3
2:

This process could be continued so that all the combinations of sym-

metry operations would be worked out. Table 10.4 shows the resulting

N

H

H

H

C3

H'

H'''

H''

N

s3

s2 s1

Fig. 10.12 The pyramidal ammonia (C3v) molecule. In the right-hand structure, the C3
axis is perpendicular to the page at the nitrogen atom.

Table 10.4 The multiplication table for the C3v point group
E C3 C3

2 σ1 σ2 σ3

E E C3 C3
2 σ1 σ2 σ3

C3 C3 C3 E σ3 σ1 σ2
C3

2 C3
2 E C3 σ2 σ3 σ1

σ1 σ1 σ2 σ3 E C3 C3
2

σ2 σ2 σ3 σ1 C3
2 E C3

σ3 σ3 σ1 σ2 C3 C3
2 E
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multiplication table for the C3v point group, which is the point group to

which a pyramidal molecule like NH3 belongs.

Multiplication tables can be constructed for a combination of symmetry

operations for a large number of other point groups. However, it is not the

multiplication table as such that is of interest. Let us return to the multipli-

cation table for the C2v point group given in Table 10.3. The symbols at the

left in Table 10.5 give the symmetry properties of the irreducible representa-

tion of theC2v group. Themeaning of these symbols will now be discussed in

an elementary way.

Suppose a vector of unit length is lying coincident with the x-axis, as

shown in Fig. 10.13. The identity operation does not change the orientation

of the vector. A reflection in the xz plane leaves the vector unchanged, but a

reflection through the yz plane changes it to a unit vector in the�x direction.

Likewise, theC2 operation around the z-axis changes the vector so it points in

the negative direction. Therefore, the vector is said to transform as +1 for the

operationsE and σxz, but it will transform as�1 for the operationsC2 and σyz.
Table 10.5 shows the row containing the numbers +1,�1,+1, and�1 under

the operationsE,C2, σxz, and σyz, respectively, labeled asB1. It is easy to show

how the numbers in the other rows can be obtained in a similar manner. The

four representations, A1, A2, B1, and B2, are known as the irreducible represen-

tations of the C2v group. It can be shown that these four irreducible represen-

tations cannot be separated or decomposed into other representations.

Table 10.5 Character table for the C2v point group
E C2 σxz σyz

A1 1 1 1 1

A2 1 1 �1 �1

B1 1 �1 1 �1

B2 1 �1 �1 1

1
x

y

z

Fig. 10.13 A unit vector lying on the x axis.
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For a given molecule belonging to a particular point group, it is possible

to consider the A1, A2, B1, and B2 symmetry species as indicating the

behavior of the molecule under symmetry operations. As will be shown

later, similar species also determine the ways in which the atomic orbitals

can combine to produce molecular orbitals because the combinations of

atomic orbitals must satisfy the character table of the group. We need to

give some meaning that is based on the molecular structure for the species

A1, B2, etc.

The following conventions are used to label species in the character

tables corresponding to the various point groups:

(1) The symbol A is used to designate a nondegenerate species symmetric

about the principle axis.

(2) The symbol B is used to designate a nondegenerate species antisym-

metric about the principle axis.

(3) The symbols E and T represent doubly and triply degenerate species,

respectively.

(4) If a molecule possesses a center of symmetry, the letter g indicates sym-

metry with respect to that center (gerade), and the letter u indicates anti-

symmetry with respect to that center of symmetry (ungerade).

(5) For a molecule that has a rotation axis other than the principal one,

symmetry or antisymmetry with respect to that axis is indicated by

a subscript 1 or 2, respectively. When no rotation axis other than

the principal one is present, these subscripts are sometimes used

to indicate symmetry or antisymmetry with respect to a vertical

plane σh.
(6) Themarks “and” are sometimes used to indicate symmetry or antisym-

metry with respect to a horizontal plane σh.
It should now be apparent how the species A1, A2, B1, and B2 arise. Char-

acter tables have been worked out and are tabulated for all of the common

point groups. Presenting all the tables here would go beyond the scope of

this introductory book.

We have barely scratched the surface of the important topic of symmetry.

However, a brief discussion such as that presented here serves to introduce

the concepts and nomenclature, as well as making one able to recognize the

more important point groups. Thus, a symbol such as Td or D4h takes on

precise meaning in the language of group theory. The applications of group

theory include, among others, coordinate transformations, analysis of

molecular vibrations, and the construction of molecular orbitals. Only the

last of these uses will be illustrated here.
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10.6 SYMMETRY OF MOLECULAR ORBITALS

The formation of the H2 molecule, which has a center of symmetry, gives

rise to the combinations of atomic orbitals that can be written as φ1+φ2 and

φ1�φ2. The types of symmetry elements were discussed earlier in this chap-

ter, and they also apply in a general way to orbitals. A center of symmetry is

simply a point through which each atom can be moved to give the same

orientation of the molecule. For a diatomic molecule like H2, that point

is the midpoint of the bond between the two atoms. It is equally valid to

speak of a center of symmetry for wave functions. The first of the combi-

nations of wave functions (as shown in Fig. 8.4) possesses a center of sym-

metry, whereas the second does not. Therefore, the φ1+φ2 molecular wave

function corresponds to the orbital written as σg, whereas the combination

φ1�φ2 combination corresponds to σu*. In these designations, “g” refers to
the fact that the wave function retains the same sign when inflected through

the center of symmetry, and “u” indicates that the wave function changes

sign when it is inflected through the center of symmetry. It is generally stated

that the bonding orbital is symmetric and antibonding orbital is antisymmetric.

However, for π and π* orbitals, g and u refer to symmetry with respect to a

plane that contains the internuclear axis (see Fig. 9.6).

For diatomic molecules, the order of filling of molecular orbitals is σ, σ*,
(π, π), σ, (π*, π*), σ* for the early part of the first long period and σ, σ*, σ,
(π, π), (π*, π*), σ* for the latter part of the first long series. The designations

(π, π) and (π*, π*) indicate pairs of degenerate molecular orbitals. For the

hydrogen molecule, the electron configuration can be shown as (σg)2,
whereas that for the C2 molecule is designated as (σg)2 (σ*u)2 (πu)2 (πu)2

(see Fig. 8.9).

The molecular orbitals can be identified by applying labels that show the

atomic orbitals that were combined to produce them. For example, the

orbital of lowest energy is 1s σg or σg 1s. In this way, other orbitals would

have designations like 2px πu, 2py πg*, etc.
As a result of orbital mixing, a σmolecular orbital may not arise from the

combination of pure s atomic orbitals. For example, it was described in

Section 8.4 that there is substantial mixing of 2s and 2p orbitals in molecules

like B2 and C2. Therefore, labels like 2s σg and 2s σ*u may not be strictly

correct. Because of this, the molecular orbitals are frequently designated

as 1σg, 1σu, 2σg, 2σu, 3σu, 1πu, 1πg,….

In these designations, the leading digit refers to the order in which an

orbital having that designation is encountered as the orbitals are filled.
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For example, 1σg denotes the first σ orbital having g symmetry (a bonding

orbital), 3σu means the third σ orbital having u symmetry (an antibonding

orbital), etc. The asterisks on antibonding orbitals are not really needed,

because a σ orbital having u symmetry is an antibonding orbital, and it is

the antibonding π orbital that has g symmetry. Therefore, the g and u des-

ignations alone are sufficient to denote bonding or antibonding character.

These ideas elaborate on those discussed in Section 8.4.

10.7 MOLECULAR ORBITAL DIAGRAMS

The application of symmetry concepts and group theory greatly simplifies

the construction of molecular wave functions from atomic wave functions.

For example, it can be shown that the combination of two hydrogen 1swave

functions (φ1s(1)+φ1s(2)) transforms as A1 (sometimes written as a1 when

orbitals are considered), and the combination (φ1s(1)�φ1s(2)) transforms

as B1 (sometimes written as b1). According to the description of species given

above, we see that theA1 combination is a singly degenerate state symmetric

about the internuclear axis. Also, the B1 combination represents a singly

degenerate state that is antisymmetric about the internuclear axis. The states

represented by the combinations (φ1s(1)+φ1s(2)) and (φ1s(1)�φ1s(2))

describe the bonding (A1) and antibonding (B1) molecular states, respec-

tively, as shown in Fig. 10.14, where a1 and b1 are used to denote the orbitals.

It can be shown that for any group, the irreducible representations must

be orthogonal. Therefore, only interactions (combinations) of orbitals hav-

ing the same irreducible representations lead to nonzero elements in the

secular determinant. It remains, then, to determine how the various orbitals

transform under different symmetry groups. For the H2O molecule, the

Ea

Eb

E

1 + S

H11 + H12

H11= H22

H11 – H12

1 – S

a1

b1

j1s1
j1s2

Fig. 10.14 Two combinations of 1swave functions giving molecular orbitals of different
symmetry. See Section 8.3 for a discussion of the energies of the states.
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coordinate systemwas shown earlier in Fig. 10.9. Performing any of the four

operations possible for the C2v group (E, C2, σxz, and σyz) leaves the 2s

orbital unchanged. Therefore, that orbital transforms as A1 (values of +1,

+1, +1, and +1). Likewise, the px orbital does not change sign under E

or σxz operations, but it does change signs underC2 and σyz operations. This
orbital thus transforms as B1 (+1,�1, +1, and�1). In a like manner, we find

that pz transforms asA2 (does not change signs underC2, E, σxz, or σyz oper-
ations). Although it may not be readily apparent, the py orbital transforms as

B2. Using the four symmetry operations for the C2v point group, we find

that the valence shell orbitals of oxygen behave as follows:

Orbital Summary

2s A1

2pz A2

2px B1

2py B2

The possible wave functions constructed for the molecular orbitals in

molecules are those constructed from the irreducible representations of

the groups giving the symmetry of the molecule. These are readily found

in the character table for the appropriate point group for the molecule.

For the water molecule, which has the point group C2v, the character table

(see Table 10.5) shows that onlyA1,A2, B1, and B2 representations occur for

a molecule havingC2v symmetry.We can use this information to construct a

qualitative molecular orbital scheme for the H2O molecule, as shown in

Fig. 10.15.

In constructing the molecular orbital diagram, it must be recognized that

there are two hydrogen 1s orbitals, and the orbitals from the oxygen atom

must interact with both of them. Therefore, it is not each hydrogen 1s orbital

individually that is used, but rather a combination of the two. These combi-

nations of atomic orbitals are called group orbitals, and in this case the linear

combinations of atomic wave functions can be written as (φ1s(1)+φ1s(2))

and (φ1s(1)�φ1s(2)). The 2s and 2pz orbitals having A1 symmetry mix with

the combination of hydrogen 1s orbitals, which have A1 symmetry to

produce three molecular orbitals having A1 symmetry (one bonding, one

nonbonding, and one antibonding). The 2px orbital having B1 symmetry

combines with the combination of hydrogen orbitals having same symme-

try, and that combination can be written as (φ1s(1)�φ1s(2)). The 2py orbital,

which has B2 symmetry, remains as a π orbital, but it does not have the

correct symmetry to interact with either of the combinations of hydrogen
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orbitals. In the case of the H2Omolecule, the four molecular orbitals of low-

est energy will be populated because the atoms have a total of eight valence

shell electrons. Therefore, the bonding in the H2O molecule can be repre-

sented as

a1ð Þ2 b1ð Þ2 a1
nð Þ2 b2ð Þ2:

As in the case of atomic orbitals and spectroscopic states (see Chapter 5), we

use lower case letters to denote orbitals or configurations and upper case letters to indi-

cate states.

Having considered the case of the C2v water molecule, we would like to

be able to use the same procedures to construct the qualitative molecular

orbital diagrams for molecules having other structures. To do this requires

that we know how the orbitals of the central atom transform when the sym-

metry of the molecule may have any one of the common symmetry desig-

nations. Table 10.6 shows how the s and p orbitals are transformed in several

common point groups, and more extensive tables can be found in the com-

prehensive books listed at the end of this book.

If we now consider a trigonal planar molecule such as BF3 (D3h symme-

try), the z axis is defined as theC3 axis. One of the BdF bonds lies along the

x-axis, as shown in Fig. 10.16, and theC3 axis passes through the boron atom

perpendicular to the plane of the molecule. The symmetry elements present

for this molecule include the C3 axis, three C2 axes (coincident with the

BdF bonds), three mirror planes each containing a C2 axis and a C3 axis,

E b1*

a1*

b1

an
1

b2

a1

b2 

a1

a1

b1

a1

b1

px py

pz

2s

Oxygen orbitals Hydrogen group orbitalsMolecular orbitals

j1s1
–j1s2

j1s1
+j1s2

Fig. 10.15 The molecular orbital diagram for the water molecule.
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and the identity. Thus, there are 12 symmetry operations that can be

performed with this molecule. It can be shown that the px and py orbitals

both transform as E0, and the pz orbital transforms as A2
00. The s orbital is

A1
0 (the prime indicating symmetry with respect to σh). Similarly, it can

be shown that the fluorine pz orbitals are A1, E1, and E1 for the three atoms.

The qualitative molecular orbital diagram can then be constructed as shown

in Fig. 10.17.

It is readily apparent from the molecular orbital diagram that the bonding

molecular orbitals are capable of holding the six bonding electrons (in three

σ bonds) in this molecule. The possibility of some π bonding can be illus-

trated in the molecular orbital diagram due to the presence of the a2
00 orbital

that is not part of the σ bonding scheme, and in fact, there is some evidence

for this type of interaction. The sum of the covalent radii of boron and fluo-

rine atoms is about 1.52 Å (152 pm), but the experimental BdF bond dis-

tance in BF3 is about 1.295 Å (129.5 pm). Part of this “bond shortening”

may be due to partial double bonds that result from the π bonding. In

valence bond terms, there is overlap between the empty p orbital that is

not used in forming a set of sp2 hybrids and the filled p orbitals on the fluorine

Table 10.6 Central atom s and p orbital transformations under different symmetries

Point group Structure

Orbital

s px py pz

C2v Bent triatomic A1 B1 B2 A1

C3v Pyramidal A1 E E A1

D3h Trigonal planar A0
1 E0 E0 A00

2

C4v Pyramidal A1 E E A1

D4h Square plane A0
1 Eu Eu A2u

Td Tetrahedral A1 T2 T2 T2

Oh Octahedral A1 T1u T1u T1u

D∞h Linear Σg Σu Σu Σg
+

F

F

FB

z

x

y

Fig. 10.16 The coordinate system for BF3.
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atoms. Showing how the double bonds arise leads to three resonance struc-

tures of the valence bond type that can be shown as in Fig. 10.18. From these

resonance structures, which show one π bond spread in three directions

toward the fluorine atoms, a bond order of 1.33 would result. This partial

multiple bonding would predict that the observed bond length should be

shorter than expected for a single bond. However, as discussed in

Chapter 8, partial ionic character of the BdH bonds can also be invoked

to explain the bond lengths.

Having seen the development of the molecular orbital diagrams for AB2

and AB3 molecules, we will now consider tetrahedral molecules like CH4,

SiH4, or SiF4. In this symmetry, the valence shell s orbital on the central

atom transforms as A1, while the px, py, and pz orbitals transform as T2

(see Table 10.6). For the methane molecule, a linear combination of hydro-

gen orbitals (sometimes referred to as group orbitals) that transforms as A1 is

F

F
F

–

B

++
F

F
FB

+

+

F

F
FB

+
+

–
–

– –

Fig. 10.18 The pz orbital on boron forms a π bond with p orbitals on all three
fluorine atoms. (Modified with permission from House, J. E. Inorganic Chemistry, 2nd
ed.; Academic Press/Elsevier: Amsterdam, 2013.)

E

a1*

a2''
a1'

2 s

Boron orbitals Fluorine orbitalsMolecular orbitals

2 p

a1'

e'

e'

e' *

a2''

e'

a1'

Fig. 10.17 A molecular orbital diagram for the BF3 molecule.
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φ1s 1ð Þ+φ1s 2ð Þ+φ1s 3ð Þ+φ1s 4ð Þ,
and the combination transforming as T2 is

φ1s 1ð Þ+φ1s 2ð Þ�φ1s 3ð Þ�φ1s 4ð Þ,
where the coordinate system is as shown in Fig. 10.19. Using the orbitals on

the carbon atom and combining them with the group orbitals from the four

hydrogen atoms (the linear combination of atomic orbitals having appropri-

ate symmetry tomatch those of the orbitals on the carbon atom), it is possible

to arrive at the molecular orbital diagram shown in Fig. 10.20. The hydro-

gen group orbitals are referred to as symmetry adjusted linear combinations

(SALC) because they have symmetry that matches the orbitals of the carbon

atom. The molecular orbital diagrams for other tetrahedral molecules are

similar to that for CH4.

For an octahedral AB6 molecule of which SF6 is an example,

S

F

F

F

F

F

F

the valence shell orbitals of the central atom are considered to be the s, p, and d

orbitals. The spatial orientations of the d orbitals are shown in Fig. 10.21.

z

y

x

Fig. 10.19 Coordinate system for the tetrahedral CH4 molecule.
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+

x
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dxz

−
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+

y
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dyz

−
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+

dz2

y

x

z

dx2– y2

x

z

− +

+ y

−

+

−
−

+

Fig. 10.21 The spatial orientation of the d orbitals used in bonding in octahedral
molecules such as SF6. Note that the dz2 and dx2–y2 orbitals have lobes lying along the
axes, whereas lobes of the dxy, dyz, and dxz orbitals lie between the axes. Thus, it is
the dz2 and dx2–y2 orbitals that are used in forming bonding orbitals.

Hydrogen group orbitals

E

Carbon orbitals

2 p
t2

2 s
a1

1s
t2a1

Molecular orbitals

a1*

t2*

a1

t2

Fig. 10.20 A molecular orbital diagram for CH4. Four pairs of electrons can be
accommodated in the bonding orbitals.
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It is easy to see that a regular octahedron has a center of symmetry so that

“g” and “u” designations must be used as part of the symmetry label to des-

ignate symmetry or asymmetry with respect to that center. It is clear that the

s orbital transforms as A1g. The three p orbitals, being directed toward the

corners of the octahedron, are degenerate and change sign upon reflection

through the center of symmetry. Thus, they constitute a set of three orbitals

that can be designated asT1u. Of the set of d orbitals, the dz2 and dx2–y2 orbitals

are directed toward the corners of the octahedron, and they do not change

sign upon inversion through the center of symmetry. Therefore these

orbitals are designated as Eg. The remaining dxy, dyz, and dxz orbitals form

a triply degenerate set designated as T2g.

If only σ bonding is considered, it is found that T1u, Eg, and A1g orbitals

are used in bonding to the six groups attached. The resulting energy level

diagram is shown in Fig. 10.22.

10.8 THE THREE-CENTER BOND

WhenMg3N2 reacts with water, NH3 is produced. However, whenMg3B2

reacts with water, the product is not BH3 (borane), but rather B2H6 (dibor-

ane). If BH3 were to form, its structure would be planar, with boron

utilizing three sp2 hybrid orbitals.

E

s
a1g

a1g

d
t 2g eg

p
t1u

t n
2g

a*1g

eg t1u

eg* 

eg

t*1u

t1u

a1g 

Fig. 10.22 Molecular orbital diagram for an octahedral molecule. Note that there are six
bonding orbitals that can accommodate six pairs of electrons.
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H

B

H

H

A structure of this type would leave the boron atom surrounded by only

six valence shell electrons, making it an electron deficient molecule. Boron

halides are also electron deficient, and as a result they behave as Lewis acids

(electron pair acceptors) to form many complexes with electron pair donors

(Lewis bases).

Bonding in B2H6 involves bonds that are not all of the usual shared elec-

tron pair types. Instead, each boron atom is surrounded by four hydrogen

atoms that are located at the corners of an irregular tetrahedron. Four of

the hydrogen atoms are in terminal positions and lie in the same plane as

the boron atoms. However, the other two hydrogen atoms form bridges

between the boron atoms. The structure of diborane is shown in Fig. 10.23.

The structure of diborane contains two bonds that are referred to as

three-center bonds as a result of one pair of electrons being shared by three

atoms that reside in an orbital that involves the simultaneous overlap of three

atomic orbitals. This can be shown using a valence bond structure as follows:

1s

sp3sp3

BB

From the standpoint of molecular orbitals, a rationalization for a

three-center bond can be provided by considering the boron atoms to utilize

hybrid orbitals that combine with the hydrogen 1s orbital. Although the

H

B B

H

H

H

H

H

Fig. 10.23 The structure of diborane.
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bond angles deviate considerably from those expected for complete sp3

hybridization, it is convenient to consider them as such. In that way, the

two boron wave functions combine to form two new wave functions that

have symmetric and antisymmetric character. Those wave functions then

combine with a hydrogen 1s wave function to produce two molecular

orbitals, one bonding and the other antibonding. The result is illustrated

by the molecular orbital diagram shown in Fig. 10.24. Essentially, the bond-

ing molecular orbital is distributed over both of the boron atoms and the

hydrogen atom, forming the bridge between them.

BB

H

10.9 ORBITAL SYMMETRY AND REACTIVITY

For over half a century, it has been recognized that symmetry plays a signif-

icant role in the reactions between chemical species. In simple terms, many

reactions occur because electron density is transferred (or shared) between

the reacting species as the transition state forms. In order to interact favorably

(to give an overlap integral greater than 0), it is necessary for the interacting

orbitals to have the same symmetry (see Section 4.3). Otherwise, orthogonal

orbitals give an overlap integral equal to 0. The orbitals involved in the inter-

actions of reacting species are those of higher energy, the so-called frontier

orbitals. These are the highest occupied molecular orbital (HOMO) and

the lowest unoccupied molecular orbital (LUMO). As the species interact,

electron density flows from the HOMO on one species to the LUMO on

E

Boron B2
orbitals 

Hydrogen 

y1

y1–y2

y1+y2 y1s

y2

Fig. 10.24 A simple molecular orbital diagram for a three-center bond holding two
electrons.
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the other. Inmore precise terms, it can be stated that the orbitals must belong

to the same symmetry type or point group for the orbitals to overlap to give

an overlap integral greater than 0.

As has been described earlier, orbitals of similar energy interact (overlap)

best. Therefore, it is necessary that the energy difference between the

HOMO on one reactant and the LUMO on the other be less than some

threshold value for effective overlap to occur. As a reaction takes place, a

bond in one reactant molecule is broken as another is being formed. When

both of the orbitals are bonding orbitals, the bond being broken (electron

density is being donated from it) is the one representing the HOMO in

one reactant and the bond being formed is represented by the LUMO in

the other (which is empty and receives electron density as the molecules

interact). When the frontier orbitals are antibonding in character, the

LUMO in one reactant molecule corresponds to the bond broken and

the HOMO to the bond formed.

In Chapter 8, the applications of orbital symmetry to the formation of

transition states that form between reacting diatomic molecules were

described. Having now shown in Chapter 9 the applications of H€uckel
molecular orbital theory to the structures of organic molecules, it is now

possible to apply some of the principles to reactions of organic compounds.

One type of reaction that can be described in terms of orbital symmetry is the

ring-closing reaction of cis-1,3-butadiene to produce cyclobutene. This type

of reaction is known as an electrocyclic reaction, and it could conceivably take

place by two different pathways, which are shown in Fig. 10.25. In the first

mechanism, known as disrotatory, the two CH2 groups rotate in opposite

directions. In the second mechanism, known as conrotatory, the terminal

CH2 groups rotate in the same direction. However, the stereochemistry

of the product will be different for the two mechanisms.

If the reaction follows a disrotatory pathway, the rotation of terminal

CH2 groups is as shown in Fig. 10.25A, whereas that for the conrotatory

pathway is shown in Fig. 10.25B. In order to show the stereochemistry

of the product for each of the two pathways, one hydrogen atom on each

terminal CH2 group is labeled as H0. It is clear that the hydrogen atoms

labeled as H0 would be on the same side of the ring in a conrotatory process

and on opposite sides of the ring in a disrotatory pathway. Let us now show

how orbital symmetry can be used to predict which transition state will

be formed.

A pictorial representation of the HOMO for butadiene is shown in

Fig. 10.26. From this figure, due to the orientation of the lobes having
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Fig. 10.25 An illustration of (A) disrotation and (B) conrotation of terminal methylene
groups. (Modified with permission from House, J. E. Principles of Chemical Kinetics, 2nd
ed.; Academic Press/Elsevier: Amsterdam, 2007 (chapter 9).)
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positive sign, it can be seen that the rotation of the CH2 groups in a con-

rotatory pathway leads to the overlap of orbitals having the same symme-

try (bond formation). Also, the product formed has the H0 atoms on

opposite sides of the ring. In the disrotatory process, the overlap of orbitals

of opposite symmetry results, which gives an overlap of 0. In accordance

with these observations, the product of the electrocyclic reaction that

results when 1,3-butadiene is heated consists of 100% of that in which

the H0 atoms are on opposite sides of the ring. Of course, the reaction

can also be studied when one of the hydrogen atoms on the terminal

CH2 groups is replaced by a different atom. In that case, the substituted

atoms are found on opposite sides of the ring in the cyclobutene

produced.

When 1,3-butadiene is excited photochemically, an electron is moved

from the HOMO to the LUMO, which has different symmetry (see

Fig. 10.27). Therefore, it is the disrotatory motion that brings orbital lobes

having the same symmetry (sign) in contact as the bond forms during the

cyclization reaction of the excited state of 1,3-butadiene. As a result, the

DisrotationConrotation
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+

C

C

+

C

+ +

+– –

–

C

+
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+

+
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+
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+
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+

C

+

+
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+

C

+

–

–
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–
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–
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–

Fig. 10.26 Symmetry of the highest occupied molecular orbital (HOMO) of 1,3-
butadiene showing changes in orbital orientation during conrotation and disrotation.
(Modified with permission from House, J. E. Principles of Chemical Kinetics, 2nd ed.;
Academic Press/Elsevier: Amsterdam, 2007 (chapter 9).)
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product of this reaction of excited 1,3-butadiene is found to have the H0

atoms on the same side of the ring.

The electrocyclic ring closure of cis-1,3,5-hexatriene leads to the forma-

tion of 1,3-cyclohexadiene. Although the hexatriene molecule is planar, the

cyclic product has two CH2 groups in which the four hydrogen atoms are

found with two of the atoms above the ring and two of the atoms below the

ring. Therefore, in the transition state, the terminal CH2 groups undergo a

rotation that could be either conrotatory or disrotatory, as shown in

Fig. 10.28. The rotations require breaking of a π bond formed from p orbitals

on two carbon atoms to form a σ bond. In order to give a positive overlap to

form the σ bond, the orbitals must match in symmetry, which is provided by

the disrotatory pathway. Therefore, in disrotatory motion, the rotation of

the terminal CH2 groups leads to the formation of a bond between the

two carbon atoms resulting in ring closure. In the conrotatory motion of

the CH2 groups, the resulting orbital overlap would be zero.

A guiding principle that can be used to predict how electrocyclic reac-

tions take place was provided byR. B.Woodward andR.Hoffmann (1970).

This rule is based on the number of electrons in the π bonding system of the

molecule. The number of electrons in the π bonding system can be
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Fig. 10.27 Symmetry of the lowest unoccupied molecular orbital (LUMO) of 1,3-
butadiene showing changes in orbital orientation during conrotation and disrotation.
(Modified with permission from House, J. E. Principles of Chemical Kinetics, 2nd ed.;
Academic Press/Elsevier: Amsterdam, 2007 (chapter 9).)
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expressed as 4n or 4n+2, where n¼0, 1, 2,…. The rule predicts the mech-

anism of electrocyclization as

4n¼ 4, 8, 12, : : : , thermal mechanism is conrotatory:

4n+2¼ 2, 6, 10, : : : , thermal mechanism is disrotatory:

It can be seen that the electrocyclization reactions of 1,3-butadiene

(which has four electrons residing in π orbitals) and 1,3,5-hexatriene (which
has six electrons residing in π orbitals) discussed earlier give products in

accordance with these rules. However, it must be mentioned that the pre-

dictions given above are for the reactions that are thermally induced. If the

reactions are carried out photochemically where excited states are produced,

the predictions are reversed.

The discussion presented here has provided only an introduction to how

symmetry of molecular orbitals can be used to predict reaction mechanisms.

It should be apparent the requirement that the transition state involves inter-

action of orbitals of like symmetry is a powerful tool for predicting reaction

pathways. Chemists doing synthetic work as well as theoretical chemists

need to be familiar with these aspects of molecular orbital theory. However,

the knowledge of only H€uckel molecular orbital theory is required in order
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Fig. 10.28 Disrotation and conrotation of terminal methylene groups in 1,3,5-
hexatriene. The remainder of the molecule is indicated by lines. (Modified with
permission from House, J. E. Principles of Chemical Kinetics, 2nd ed.; Academic Press/
Elsevier: Amsterdam, 2007 (chapter 9).)
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to deal with many significant problems in molecular structure and reactivity.

In view of its gross approximations and very simplistic approach, it is surpris-

ing howmany qualitative aspects of molecular structure and reactivity can be

dealt with using the H€uckel approach. For a more complete discussion of

this topic, consult the book by J. P. Lowe cited in the suggested readings

listed at the end of the book.

In this chapter, it has been shown how symmetry considerations are used

to arrive at qualitative molecular orbital diagrams for molecules having sev-

eral common structural types. The number of molecules and ions that have

C2v,C3v,Td, andOh symmetry is indeed large. Energy level diagrams such as

those shown in this chapter are widely used to describe structural, spectro-

scopic, and other properties of molecules. There has been no attempt, how-

ever, to set about calculating anything. In Chapter 9, we presented an

overview of one of the simplest types of molecular orbital calculations that

can be carried out easily for some simple systems. However, the more

sophisticated mathematical treatments of molecular orbital calculations

and the accompanying energy level diagrams are beyond the intended scope

of this introductory book.
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PROBLEMS

1. Make sketches of the listed species showing approximately correct

geometry and all valence shell electrons. Identify all symmetry elements

present and determine the point group for the species.

(a) OCN�

(b) IF+

(c) ICl�

(d) SO3
2�

(e) SF6
(f ) IF5
(g) CIF3
(h) SO3
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(i) ClO�

(j) NSF

2. Make sketches of the listed species showing approximately correct

geometry and all valence shell electrons. Identify all symmetry elements

present and determine the point group for the species.

(a) CN2
2�

(b) PH3

(c) PO3
�

(d) B3N3H6

(e) SF2
(f ) ClO3

�

(g) SF4
(h) C3O2

(i) AlF6
3�

(j) F2O.

3. Consider the molecule AX3Y2, which has no unshared electron pairs

on the central atom. Sketch the structures for all possible isomers of

this compound and determine the point group to which each belongs.

4. Use the symmetry of the valence shell atomic orbitals of the central

atom to construct (using appropriate hydrogen group orbitals) the

molecular orbital diagrams for the following:

(a) BeH2

(b) HF2
�

(c) CH2

(d) H2S

5. Use the symmetry of the valence shell atomic orbitals of the central

atom to construct (using appropriate group orbitals of terminal atoms)

the molecular orbital diagrams for the following:

(a) AlF3
(b) BH4

�

(c) SF6
(d) NF3

6. Consider the molecule Cl2BdBCl2:

(a) If the structure is planar, what is the point group of the molecule?

(b) Draw a structure for Cl2BdBCl2 that would have an S4 axis.

7. Use the procedure outlined in the text to obtain the multiplication table

for the C4v point group.

8. Follow the procedure used in the text in obtaining the character table

for the C2v point group and develop the character table for the C3v

point group.
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9. Determine all of the symmetry elements possessed by the CH4 mole-

cule and give the point group for this molecule. In succession, replace

hydrogen atoms with fluorine, chlorine, and bromine and determine

what symmetry elements are present for each and determine the point

group to which each product belongs.

10. There are three isomers possible for the N2O molecule. Draw their

structures, then determine the point group to which each structure

belongs. The most stable of the isomers has an energy far below that

of the other two. Which isomer is it? Explain your answer.
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CHAPTER 11

Molecular Spectroscopy

Most of what we know about the structure of atoms and molecules has been

obtained from studies involving their interactions with electromagnetic

radiation. The general term applied to such studies is spectroscopy, and these

studies involve changes in energy levels. Because different regions of the

electromagnetic spectrum may be utilized in spectroscopic studies, it is

not surprising that terms are used to describe the type of radiation interacting

with the sample. Thus, types of spectroscopy include visible, ultraviolet,

infrared, microwave, etc. In most cases, a different instrument is employed

to carry out each type of spectroscopic study. In general, studies involving

visible spectroscopy give information about the differences in electronic

energy levels in the sample. Energy differences between vibrational states

generally correspond to energies in the infrared region of the spectrum.

In this chapter, some types of molecular spectroscopy will be described

utilizing the quantum mechanical principles described in earlier chapters.

11.1 VISIBLE AND ULTRAVIOLET SPECTROSCOPY

In Chapters 6 and 7 the nature of molecular vibrations and rotations was dis-

cussed based on the harmonic oscillator and rigid rotor models. Although

the discussion at that point did not include broad application of the results

to molecular spectra, additional details will be presented later in this chapter.

Before we progress to a discussion of additional details of infrared spectra,

attention will be given to applications of visible and ultraviolet spectroscopy.

The basis for absorption of electromagnetic radiation in the visible and

ultraviolet regions of the spectrum lies in electronic transitions (see Fig. 7.6).

In general, a spectrophotometer that utilizes these regions of the spectrum is

employed in studying electronic transitions. A schematic diagram of such a

spectrophotometer is shown in Fig. 11.1.

As the wavelength of the radiation is continuously varied, the instrument

measures the absorbance of the sample and a spectrum is recorded. The

amount of radiation absorbed (the absorbance) is plotted versus wavelength

to generate the spectrum. A sample absorbs radiation to give an absorbance

271
Fundamentals of Quantum Mechanics © 2018 Elsevier Inc.
http://dx.doi.org/10.1016/B978-0-12-809242-2.00011-5 All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-809242-2.00011-5


(A) that depends on three quantities that are related by a rule known as Beer’s

Law (sometimes Lambert-Beer Law),

A¼ ε l c (11.1)

In this relationship, c is the concentration of the solute in the sample, l is the

path length (thickness of the sample), and ε is a quantity that depends on

the inherent nature of the sample to absorb radiation. It is sometimes called

the extinction coefficient, but if the concentration of the sample is in mole

per liters and the path length in centimeters, ε has the units of liters per mole

per centimeter. The termmolar absorptivity is often used to define ε. As can be
seen from Eq. (11.1), a plot of absorbance versus concentration should be

linear, and if the path length (l) is known, the value of ε can be determined.

Measuring the absorbance of a sample has long been used to determine

its concentration when the relationship given by Beer’s law has been

established.

11.2 ELECTRONIC TRANSITIONS IN MOLECULES

In many cases, it is possible to examine the molecular orbital diagram for a

molecule and predict the type of electronic transition(s) that will occur. For

example, it was shown in Chapter 9 that the orbital arrangement for the

ethene molecule can be illustrated as

Mirror 

Mirror 

Sample

Reference 

Filter 

Beam
splitter

Photo
diode

Photo
diode

Source Source 

Wavelength (nm) 

A
bs

.

Analyzer 

Fig. 11.1 A schematic diagram of a double-beam spectrophotometer. The sources used
are most often a deuterium or xenon arc or a tungsten lamp. The reference cell often
contains just the solvent. Note that by the use of two beams, the solvent is utilized as a
reference and makes it possible to subtract the absorbance of the solvent, thus
simplifying interpretation of the spectrum.

272 Fundamentals of Quantum Mechanics



Therefore, it is easy to see that the electronic transition will be of the

π!π* type. As the H€uckel calculation showed, the difference between

the energy levels is 2β. Ethene, C2H4, shows an absorption band in the ultra-

violet region at 165 nm, which corresponds to an energy of 173 kcal mol�1.

Therefore, the value of β is �85 kcal mol�1, a value that is at least somewhat

realistic.

It is interesting to note that the orbital energies in 1,3-butadiene are

E1¼α+1.62β, E2¼α+0.62β, E3¼α�0.62β, and E4¼α�1.62β. With

there being only four electrons in the π system, only the lowest two levels

are occupied. Note that the difference in energy between these levels and

the third level is only 1.24β. In accord with this observation, the band in

the ultraviolet spectrum corresponding to excitation of an electron from

the highest occupied molecular orbital (HOMO) to the lowest unoccupied

molecular orbital (LUMO) occurs at a wave length of 254 nm. As expected,

this is a longer wavelength (lower energy) than in the case of ethene. Thus,

although the H€uckel molecular orbital method cannot be considered quan-

titative, it is “…useful in elucidating problems concerned with the electronic

structure of π-electron systems” (Purins and Karplus, 1968).

It is interesting to note that for molecules that have cyclic structures, the

excitation of an electron occurs at a longer wavelength (lower energy) the

greater the number of atoms in the ring. Figure 9.10 shows the mnemonic of

Frost and Musulin, which illustrates this graphically (Frost and Musulin,

1953; Baker and Baker, 1984). As a result of the number of vertices of

the polygon increasing with the number of carbon atoms, the vertices are

closer together, and thus the energy levels are closer together.

Some of the most common types of electronic transitions in molecules

are summarized in Fig. 11.2. However, transitions between states having π
and σ designations are symmetry forbidden.

π

π∗

π∗π

a−b

a+b
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Many functional groups give rise to absorption bands for which the posi-

tions do not change greatly regardless of the structure of the rest of the mol-

ecule. For example, the C]O group in ketones has nonbonding electrons

on the oxygen atom that can be promoted to the next higher unoccupied

level, so the n!π* transition results in an absorption at�280 nm. Similarly,

the dN¼Nd group gives an absorption at �340 nm as a result of the

n!π* transition. As a result, it is sometimes possible to employ electronic

spectroscopy in the ultraviolet/visible region in much the same way as will

be described in Section 11.6 for infrared spectroscopy.

11.3 PHOTOELECTRON SPECTROSCOPY

Spectroscopic studies of several types have provided the basis for much of the

knowledge of atomic andmolecular structure that is now considered so basic

that it is taught in general chemistry courses. Consequently, it is virtually

impossible to overemphasize the importance of spectroscopic methods.

As has been shown in Chapters 6 and 7, spectroscopy, in which molecular

vibrations and rotations are studied, has resulted in an understanding of

molecular structure, bond lengths, and the types of bonds present in mole-

cules. Electronic transitions give rise to absorptions primarily in the visible

and ultraviolet regions of the spectrum, and the analysis of such spectra has

revealed the nature of the energy levels in which electrons reside. One tech-

nique, known as photoelectron spectroscopy (PES), has been particularly

important in elucidating electronic energy states in molecules.

Photoelectron spectroscopy has as its basis the analysis of the energies

of electrons that are ejected by high-energy photons. One source of

E σ*

n

π*

π

σ

Fig. 11.2 Some types of electronic transitions that occur in molecules or functional
groups.
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high-energy photons is that produced when He(I) (a helium atom) emits

electromagnetic energy as an electron falls from the 2s1 2p1 to the ground

state (1s2 ground state). For many molecules the first ionization potential

is comparable to that of atoms. For example, the ionization potentials of

O2, NO, (CH3)2CO, and SO2 are 12.06, 9.23, 9.69, and 11.7 eV, respec-

tively. The hydrogen atom has an ionization potential of 13.6 eV, whereas

that of the H2 molecule is 15.43 eV.

Photoelectron spectroscopy is a type of emission spectroscopy the basis

for which is the relaxation that occurs when electrons fall from high-energy

states to those having lower energy. The excitation source most often used is

He(I) (which is the spectroscopic designation of the helium atom) that emits

photons of high energy, 21.22 eV. Such high-energy photos eject electrons

from the target. The electron will leave with a kinetic energy of

1⁄2mv2¼ hν� I (11.2)

in which I is the ionization potential. Electrons having different energies are

detected by using an analyzer that can employ varying voltages. As a result

of counting electrons that have different energies, a spectrum can be produced.

Ejection of electrons occurs on a rapid time scale, andmost diatomic molecules

are in their lowest vibrational state (see Chapters 6 and 7). However, if a series

of vibrational states are populated, the spectrum will exhibit a series of closely

spaced peaks. The absorption that corresponds to both the initial and ionized

states of themolecule involving no change in vibrational level (V¼0 toV 0 ¼0)

is known as an adiabatic transition (see Fig. 7.6). When the ground and ionized

states of the molecule have the same bond length, the transition is referred to as

a vertical ionization. As can be seen in Fig. 7.6, this type of transition will result in

the ionized molecule having excited vibrational states populated.

It is through the use of PES that a great deal of what we know about

energy levels in molecules has been obtained. For diatomic molecules of

the second row elements, combination of the 2p orbitals leads to a σ2p
and two π2p orbitals. It was shown in Chapter 8 that the molecular orbital

configuration of the O2 molecule results in the σ orbital lying lower in

energy that the two degenerate π orbitals. On the other hand, it is known

that the reverse is true for the N2 molecule and others comprised of atoms

early in the second period. These possibilities are shown in Fig. 11.3.

The ionization process can be illustrated as

hν+M !M+ +e� (11.3)

To illustrate a simple case in which PES has proven useful, the oxygen mol-

ecule will be considered. The σ2p orbital in O2 is filled with two electrons
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(having spins of +½ and �½), and the two π* orbitals of higher energy

contain one electron each that has a spin of +½.When an electron is ejected

from the σ orbital, the remaining electron has a spin that is the opposite of

that of the ejected electron. Suppose that the ejected electron has a spin of

�½. The two electrons in the π* orbitals also have spins of +½, so there is an
interaction with the electron remaining in the σ orbital. One way of show-

ing the orbital populations is

O2
+ σð Þ2 σ*ð Þ2 σð Þ1 +1⁄2ð Þ πð Þ2 πð Þ2 π*ð Þ1 +1⁄2ð Þ π*ð Þ1 +1⁄2ð Þ

in which the symbol (σ)1(+1/2) indicates that the single electron remaining in

the σ orbital has a spin of +½. Therefore, all of the electrons in the half-filled
σ and half-filled π* orbitals have spins of +½. However, if the electron

ejected from the σ orbital has a spin of +½, the resulting orbital populations

of the O2
+ ion can be shown as

O2
+ σð Þ2 σ*ð Þ2 σð Þ1 �1⁄2ð Þ πð Þ2 πð Þ2 π*ð Þ1 +1⁄2ð Þ π*ð Þ1 +1⁄2ð Þ

In this arrangement, the electron remaining in the σ orbital has a spin of�½,

and its interaction with the electrons that have +½ spins in the π orbitals is

slightly different. As a result of spin-orbital coupling, the final energies of the

two arrangements for the O2
+ ion are not identical so that when an electron

is ejected, two absorption bands of slightly different energy are observed

in the PES spectrum. It is this type of result that makes PES a valuable

technique for studying energy levels in molecules.

σ*

σ*

π*

σ

σ

π

pp

s s

σ*

σ*

π*

π

σ

σ

pp

s s

Atom 2Atom 1 Atom 1 Atom 2

Fig. 11.3 The arrangements of σ and π orbitals for second row diatomic molecules
with the boxed orbitals showing the differences in orbital energies that lead to
differences in spectra obtained by PES.
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11.4 DETERMINING BOND LENGTHS
IN DIATOMIC MOLECULES

In order to demonstrate one way in which a vibration-rotation spectrum

can be utilized, the spectrum for gaseous HCl shown in Fig. 7.9 will now

be analyzed to obtain the bond length for the molecule. The spectrum

shown in Fig. 7.9 represents the transition of HCl molecules from the low-

est vibrational state to the first excited vibrational state with the rotational

fine structure exhibited. Although the transition corresponding to V¼0 to

V¼1 with ΔJ¼0 is missing, it would occur at about 2885 cm�1. Analysis

of the spectrum makes it possible to determine the force constant for the

HdCl bond. The frequency is related to the force constant by

ν¼ 1

2π

ffiffiffi
k

μ

s
(11.4)

and the frequency is related to wave number ν by ν¼ c=λ¼ c ν. The reduced
mass, μ, is given by

μ¼ mHmCl

mH +mCl

¼ 1:63�10�24g (11.5)

Therefore,

k¼ μ 2πcνð Þ2¼ 4:82�105dyn cm�1 (11.6)

A more commonly used unit for the force constant is mdyn Å�1. Because

1 dyn¼103 mdyn and 1 cm¼108 Å, the force constant in these units is

4.82 mdyn Å�1. The unit N m�1 is also commonly used to describe force

constants, and the conversion of units shows that 1 mdyn Å�1 is equivalent

to 100 N m�1. The force constant for the HF bond is thus 9.66 mdyn Å�1

or 966 N m�1.

Correlations that involve molecular properties have been attempted for

many years. Such correlations provide useful estimates of properties for

which it may not be convenient to make measurements in order to obtain

experimental values. From an intuitive point of view, it might be expected

that there should be some relationship between the force constant, k, for

stretching a bond and its equilibrium length, Re. Although literally dozens

of such relationships have been published, probably the most widely known

is that published in 1934 by R.M. Badger (Badger, 1934). This “rule,”

known as Badger’s rule, is usually written in the forms
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k¼A Re�Bð Þ1=3 (11.7)

k0 Re� dij
� �3¼ 1:86�105 (11.8)

The constant in Badger’s rule depends on the rows occupied (i and j) in the

periodic table. Although Badger’s rule is of a semiempirical nature, it cor-

relates bond lengths and force constants sufficiently well for many purposes,

but some of the more recent versions do not fit the data much better. There

have also been attempts to extend it to correlations involving polyatomic

molecules.

The spacing between rotational bands is �20.7 cm�1, and from that

value it is possible to determine the internuclear distance for HCl. The

rotational energy can be represented as

E¼ ћ2

2 I
J J +1ð Þ¼ h2

8π2 I
J J +1ð Þ (11.9)

Therefore, for the transition J¼0 to J¼1,

ΔE¼E1�E0¼ h2

4π2 I
¼ 20:7cm�1 (11.10)

This energy can be converted into erg s as follows:

ΔE ¼ hν¼ hc

λ
¼ hcν¼ 6:63�10�27 erg s

� �� 3:00�1010cms�1
� ��20:7cm�1

ΔE¼ 4:12�10�15 erg

(11.11)

Therefore, the moment of inertia is

I ¼ h2

4π2 ΔEð Þ¼ 2:70�10�40gcm2 (11.12)

Because the moment of inertia is given by

I ¼ μR2 (11.13)

it is possible to solve for the internuclear distance R, which has the value of

1.29�10�8 cm¼1.29 Å¼129 pm. These simple applications show the

utility of infrared spectroscopy in determining molecular parameters.

It is convenient to show how the common units (cm�1) are used in the

following way. It should be remembered that E¼hν and λν¼ c. Therefore,

E¼ hν¼ hc

λ
(11.14)
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If the quantity 1/λ is represented as ν, then

E¼ hcν (11.15)

The energy units for a single molecule work out to be:

erg sð Þ� cms�1
� �� 1 cm�1

� �¼ erg

By the use of conversion factors, the energy can then be converted from

erg molecule�1 to kJ mol�1 or kcal mol�1.

11.5 STRUCTURE DETERMINATION

For the simplest type of molecule, the diatomic molecule, there is only one

vibration possible, the stretching of the chemical bond. That bond has an

energy that is related to the distance between the atoms. Figure 8.1 shows

that type of relationship in which there is a lowest energy (De), and it occurs

at the normal bond distance r0. If the bond is either longer or shorter than this

distance, the energy is higher and the bond is less stable.

In the case of more complicated polyatomic molecules, there is a poten-

tial energy curve for each type of bond between atoms in the molecule.

Therefore, changes in the vibrational levels of these bonds result in absorp-

tions in the spectrum characteristic of the types of bonds present. It is thus

possible in many cases to attribute absorption bands in the infrared spectrum

to the types of bonds present in the molecule, as well as to determine a great

deal about how the atoms are arranged. This application of infrared spectros-

copy is of tremendous importance to the practicing chemist. With an

elemental analysis to determine the ratio of atoms present (the empirical for-

mula), a molecular weight to determine the actual numbers of atoms present,

and an infrared spectrum to identify the kinds of bonds present, a chemist is

well on his or her way toward identifying a compound.

For relatively simple molecules, it is possible to determine the structure

by infrared spectroscopy. The total number of fundamental vibrations for a

molecule that consists of N atoms is 3N�5 if the molecule is linear and

3N�6 if the molecule is nonlinear. Thus, for a diatomic molecule, the total

number of vibrations is 3N�5¼3�2�5¼1. For a triatomic molecule,

there will be 3N�6¼3�3�6¼3 vibrations for an angular or bent struc-

ture and 3N�5¼3�3�5¼4 vibrations if the structure is linear. For

molecules consisting of three atoms, it is possible to determine the molecular

structure on the basis of the number of vibrations that lead to the absorption

of energy.
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For the molecule SF6,N¼7, so there will be 3�7�6¼15 fundamental

vibrations. Each vibration has a set of vibrational energy levels similar to

those shown in Fig. 7.6. Consequently, the changes in vibrational energy

for each type of vibration will take place with different energies, and the

bands can sometimes be resolved and assigned. However, not all of these

vibrations lead to absorption of infrared (IR) radiation. There are also other

bands called overtones and combination bands. Therefore, the total number

of vibrations is large, and it is not likely that the molecular structure for a

molecule as complex as SF6 could be determined solely on the basis of

the number of absorption bands seen in the IR spectrum.

For a change in vibrational energy of a molecule to be observed as an

absorption of electromagnetic radiation (called an IR active change), the

vibrational energy change must result in a change in dipole moment. This

is because electromagnetic radiation consists of an oscillating electric and

magnetic field (see Chapter 1). Therefore, an electric dipole can interact

with the radiation and absorb energy to produce changes in the molecule.

If HCl is considered as an example, there is a single vibration, which is the

stretching of the HdCl bond. For a molecule, the dipole moment (μ) can
be expressed as the product of the amount of charge separated (q) and the

distance of separation (r):

μ¼ q � r (11.16)

When HCl is excited from the lowest vibrational energy to the next higher

one, its average bond length, r, increases slightly. Because the dipole

moment depends on r, the dipole moment of HCl is slightly different when

the molecule is in the two vibrational states. Therefore, it is possible to

observe the change in vibrational states for HCl as an absorption of infrared

radiation. For the hydrogen molecule, HdH, there is no charge separation,

so μ¼0. Increasing the bond length does not change the dipole moment, so

a change in vibrational energy of H2 cannot be seen as an absorption of

infrared radiation. This called an IR inactive vibrational change.

As an illustration of these factors, the CO2 molecule will now be con-

sidered. It is reasonable to assume that the atoms are arranged in either a

linear or a bent (angular) structure. Figure 11.4 shows the types of vibrations

that would be possible for each of these two structures.

Because the two bending modes of the linear structure are identical except

for being perpendicular to each other, they involve the same energy. Accord-

ingly, only one vibrational absorption band should be seen in the IR spectrum

for bending in either of the two directions. If CO2 is linear, a change in the
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symmetric stretching vibration would not cause a change in the dipole

moment, because the effects on each CdO bond would exactly cancel.

Changing the energy level for the asymmetrical stretching vibration does cause

a change in dipole moment (the effects in opposite directions do not cancel),

and one vibrational band is seen corresponding to asymmetric stretching.

Therefore, if CO2 is linear, there would be two fundamental vibrational bands

in the infrared spectrum. However, if CO2 were to have an angular structure,

both of the stretching vibrations (i.e., symmetric and asymmetric) would cause

a change in dipolemoment because the effects on theCdObonds do not can-

cel. Thus, the changes in both the symmetric and the asymmetric stretching

vibrations would be IR active. The bending vibration for the angular structure

would also cause a change in dipolemoment, because theCdObonds are not

directlyopposingeachother.Consequently, if the structurewere angular, there

would be three bands in the vibrational region of the infrared spectrum. The

actual spectrumofCO2 shows twobands for infrared activevibrational changes

at 2350 and 667 cm�1. Therefore, the structure of CO2 must be linear. The

symmetric stretching vibrations are infrared inactive, but they show up in

the Raman spectrum at 1388 cm�1. On the other hand, all three vibrations

of the NO2 molecule are infrared active, and the spectrum shows bands at

1616, 1323, and750 cm�1, indicating that it has a bent structure. Formolecules

that contain a large number of atoms, itmay becomedifficult, if not impossible,

to sort out the bands to establish structure on this basis alone. The techniques

that have been discussed illustrate part of the basis for how it is known that

some of the molecular structures described in chemistry textbooks are correct.

+ +−

Bending, two modes,
change in dipole
moment, IR active

Symmetric stretch,
no change in dipole
moment, IR inactive

Asymmetric stretch,
change in dipole
moment, IR active

Symmetric stretch,
change in dipole
moment, IR active

Asymmetric stretch,
change in dipole
moment, IR active

Bending, one mode,
change in dipole
moment, IR active

Fig. 11.4 Vibrations possible for assumed linear and bent structures for the carbon
dioxide molecule. Note. The + and � signs on the CO2 structures are used to denote
motion perpendicular to the plane of the page.

281Molecular Spectroscopy



11.6 TYPES OF BONDS PRESENT

One of the convenient aspects of vibrational changes in chemical bonds is that,

for a particular typeof bond, the remainderof themoleculeoftenhas a relatively

small effect on thevibrational energy levels. For example, the change in stretch-

ing vibrational energy of thedOdH bond requires about the same energy,

regardlessofwhat is bondedon theother sideof theoxygen atom.Accordingly,

H3CdOdH (usually written as CH3OH) and C2H5dOdH give absorp-

tions of energy in the same region of the electromagnetic spectrum, at about

3600 cm�1 or at a wavelength of 2780 nm (2.78�10�4 cm), which results

from the OdH changing vibrational energy levels. Therefore, if the infrared

spectrum of a compound exhibits an absorption band at this position, it is rea-

sonably certain that the sample is composed of molecules that contain OdH

bonds. Absorption bands in an infrared spectrum provide a useful diagnostic

tool for quickly identifying the types of bonds present in molecules in the

sample. Although extensive tables are available (e.g., in the CRC Handbook

of Chemistry and Physics) a few common types of bonds and the typical regions

where they absorb energy as they change stretching vibrations are given in

Table 11.1.

It should be mentioned that in addition to the bands arising from bond

stretching, there are numerous cases in which the bands arising from bending

vibrations are also of importance. For example, in saturated hydrocarbons

the characteristic CdH stretching bands are present in the 2900 cm�1

region, but there are also bands around 1375–1425 cm�1 that correspond

to the HdCdHbending vibrations. The band in the infrared spectrum that

corresponds to the bending vibration of the dOdH bond occurs in the

region of 1200–1400 cm�1.

Table 11.1 Common types of bonds and typical energies they absorb
Bond Approximate absorption region (cm21)

OdH 3500–3600
NdH 3300–3400
CdH 2900–3000
C]O 1700–1750
CdCl 700–800
C]N 1800–2100
PdH 2350–2400
SidH 2100–2300
C]C 1625–1675
C^C 2050–2250
C^N 2200–2400
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11.7 SOLVATOCHROMISM

Solventmolecules surrounding themolecules or ions of a solute create a sheath

or layer (solvation sphere) that canaffectmanyproperties, including theabsorp-

tionof electromagnetic energy. If a solutioncontaininga specific solute exhibits

colors that differ because of the nature of the solvent, the phenomenon is

referred to as solvatochromism. There are also cases that have been studied in

which the color of the solution depends on the applied pressure, giving rise

to the phenomenon known as piezochromism. When a sample exhibits a color

change in different solvents, it is the result of light absorption having a different

distribution of wavelengths. This in turn is the result of the solvent interacting

with the energy states of the solute molecules to alter their energies. Several

types of carbonyl compounds are known to exhibit solvatochromism.

One of the most familiar cases of solvatochromism is that involving

iodine. For many years, it has been known that a solution of iodine in a sol-

vent such as carbon tetrachloride or a hydrocarbon (often referred to as an

inert solvent) has a purple color. However, when iodine is dissolved in

benzene, the solution has a brown or amber color. The maxima in the

absorption bands of iodine appear at different positions as illustrated by

the following (band maxima in nm): cyclohexane, 522; benzene, 500; ace-

tonitrile, 455; and methanol, 445 (Costello et al., 2013). Although hydro-

carbons may behave as “inert” solvents, the others do not. As a result, there

are molecular complexes formed between iodine and the other solvents.

A molecular orbital description of the bonding in the I2 molecule indi-

cates that the orbitals of highest energy are the π* and the σ*. The spectrum
of iodine vapor exhibits an absorption band at 538 nm, which gives rise to

the dark violet color of the vapor. This absorption band results from a

π*!σ* transition, which is due to the electronic transition from the

HOMO to the LUMO. In solvents that do not interact strongly with these

orbitals, the color of a solution containing iodine is also purple. If the solvent

consists of molecules that are capable of functioning as donors of electron

density, the color of the iodine solution will be brown, and the absorption

maximum will be shifted to lower wavelengths, as illustrated by the data

shown earlier. This shift of the position of the band maximum is believed

to be the result of electron density being shifted to the σ* molecular orbital

from molecules of the solvent. Additional electron density placed in an anti-

bonding orbital causes a slight decrease in the energy difference between the

orbitals, and as a result causes the absorption band to be shifted to a lower

wavelength.
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Although the case of iodine was used to introduce the topic of solvato-

chromism, it should be mentioned that many other compounds exhibit this

phenomenon. For example, many types of organic molecules show solvato-

chromism. Among them are numerous compounds that contain a carbonyl

(C]O) group, including ketones, acids, acid halides, and acid amides.

Solvatochromism is only one of the manifestations of a broad range of

changes that result from solvent effects. Rates of reactions carried out in

solutions often show great differences depending on the solvent. In some

cases, the nature of the solvent is such that it solvates one or more of the

reacting species so strongly that they cannot rapidly form the transition state.

In other cases, the solvent may favor the formation of a transition state as a

result of its high internal pressure. As a general rule, the formation of a tran-

sition state in which a separation of charge occurs is favored by a solvent hav-

ing a high polarity and dielectric constant. Reactions in which the formation

of the transition state involves a cancelation or dispersion of charge are gen-

erally favored by solvents that have low polarity and dielectric constant (for a

general discussion see Reichardt and Welton, 2010).

Solvatochromism is also exhibited by coordination compounds. For

example, molybdenum complexes having structures similar to those shown

in Fig. 11.5 exhibit solvatochromism (Burgess et al., 1998). As in the case of

iodine, there is a slight change in energy levels that can cause a change in the

position of a charge transfer band. That band involves a shift of electron den-

sity from the metal to the ligand (M!L) in a charge transfer transition. The

important lesson to be learned is that the solvent is not an innocent bystander

in many types of studies, including spectroscopy.

11.8 THE HYDROGEN BOND

All atoms except hydrogen have more than one electron in their valence

shells. When hydrogen forms a single covalent bond, as it usually does,

N

N R1

R1

R2

R2

CH3

CH3

Mo

C
O

O C

O C

O
C

N

N

Mo

C
O

O C

O C

O
C

Fig. 11.5 Some molybdenum complexes that exhibit solvatochromism.
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the nucleus is essentially bare on the side away from the bond. Therefore, the

positive charge of the hydrogen nucleus can be attracted to a pair of electrons

on another atom. The result is the formation of a weak bond that is usually

referred to as a hydrogen bond or hydrogen bridge. Although not a chemical

bond in the usual sense, the weak attraction between molecules produces

great effects on chemical properties. The strength of hydrogen bonds is

related in a general way to the polarity of the HdX bond, with the strongest

being when X¼F. The fact that water has a boiling point of 100°Cwhereas

H2S boils at –61°C, is a frequently cited example of this effect. A hydrogen

bond can be represented as

X�H⋯⋯ :Y

in which X is an atom having an electronegativity higher than that of hydro-

gen (usually O, F, N, or Cl) and Y is an atom having an unshared pair of

electrons to which H is attracted.

It has been shown earlier that there is a potential energy curve that rep-

resents the bond energy as a function of internuclear distance. In the case of

the hydrogen bond, the curve has two minima, one representing the cova-

lent bond between X and H, and the other the weak bond between H and

Y. Such a relationship is shown in Fig. 11.6.

Although there have been many attempts to treat hydrogen bonding by

using quantum mechanical methods, a completely satisfactory approach

remains elusive. The fact that the hydrogen bond has considerable electro-

static character has prompted many attempts to develop a model based on

various potential functions. In general, such approaches are based on atomic

properties of the electron pair donor atom, the charge on the hydrogen atom

(resulting from bond polarity), bond lengths, etc. Such treatments of

X − H

H ••• Y

0

E

Fig. 11.6 The potential energy of a hydrogen bonded system.

285Molecular Spectroscopy



hydrogen bonds attempt to correlate and explain bond strengths, bond

lengths, and force constants for both the hydrogen bond itself, as well as

the XdH bond. In most cases the parameters considered are illustrated as

shown in Fig. 11.7, in which R and r represent distances and k represents

the indicated force constant. However, the hydrogen bond is not always lin-

ear, and models have been developed to incorporate angular character.

Lippincott and Schroder described one of the most familiar potential func-

tion models (Lippincott and Schroeder, 1955; Schroeder and Lippincott,

1957; Finch and Lippincott, 1957). In this model, the hydrogen-bonded sys-

tem is represented by a potential function that consists of several terms that

represent the various energies. These can be represented as follows:

V1¼D 1� e� nΔr2=2rð Þ
� �

(11.17)

V2¼�D* e�n* R�r�r*oð Þ=2 R�rð Þ
� �

(11.18)

V3 ¼Ae�bR (11.19)

V4¼�B=Rm (11.20)

The various distances expressed in these functions are related to the model

shown in Fig. 11.7, and n is a function of the force constant for the bond. It is

expressed as n¼koro/D, in which D is the bond dissociation energy. The

bond between hydrogen and the atom to which it is covalently bonded is

considered to be a slightly stretched hydrogen bond with the extent of

the stretching represented as R–r–ro*, where ro* is the length of the unper-

turbed hydrogen bond. All of these expressions can be evaluated, and it is

possible to adapt the calculations to include spectroscopic parameters and

force constants (Park, 1993).

There have beenmany attempts to improve the potential functionmodel

for hydrogen bonds. In one case, an improved model was applied to the

study of hydrogen bonds in proteins (Fabiola et al., 2002). Spencer et al.

(1974) adapted the potential functionmodel in a treatment of the HX2
� spe-

cies, in which X¼F, Cl, Br, or I. In addition to these studies, there have

BX  −  H
rXH

kXH kHB

rHB

RXB

Fig. 11.7 A model of a hydrogen-bonded system showing distances and force
constants.
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been others that demonstrate that the potential function models, although

semiempirical in nature, are useful.

L.C. Allen described another of the models for hydrogen bonding

(Allen, 1975). This model can be represented by the relationship

EH¼KμA�HΔI=R (11.21)

in whichR is the distance X⋯B,ΔI is the difference in the ionization poten-
tial of the electron pair donor atom and the noble gas having the correspond-

ing electron configuration, and K is an energy scaling factor. It was found to

be an approximately linear relationship between the distance, l, that encom-

passes 98% of the unshared pair of the donor atom and ΔI, so the energy

relationship can also be expressed in terms of l� l0. It is found that

l0¼0.91 and 1.44 Å for second and third row atoms, respectively.

Allen’s model also provides a simple treatment of force constants of

hydrogen-bonded systems. It begins with the fact that Badger’s rule (see

Section 11.4), which applies to normal covalent bonds, is applicable to

hydrogen bonding situations. For such systems, the rule is expressed as

kAB R�dABð Þ3 ¼ 1:86 (11.22)

This approach is possible because it is found that the distance dAB is

approximately constant regardless of the row of the periodic table in

which the atoms reside. It is found to depend on the group in which

A and B reside with the values 1.00, 0.80, and 0.55 being values for

Groups V, VI, and VII, respectively. The model is also based on the fact

that kAB is determined by the value of l, which has an average value that

is has about the same relationship to R for both second and third row

atoms. The force constant for the XdH bond kXH is also explained

by the Allen model. In the hydrogen-bonded complex, the force con-

stant kXH is inversely proportional to the value of ΔI. A large value

for ΔI contributes to interactions that lead to smaller values for kXH.

The successes of the Allen model are remarkable considering the rela-

tively simplicity of the approach.

The strongest hydrogen bonds are those in the species H2F
�, the bifluor-

ide ion. This ion arises from the interaction of F� with an HF molecule, so

it can be considered as a solvated anion in liquid HF solutions. Although

hydrogen bonds normally have energies of 10–40 kJ mol�1

(3–10 kcal mol�1), in the symmetrical HF2
� ion, [F⋯H⋯F]�, each hydro-

gen bond has an energy of �140 kJ mol�1. The bonding in H2F
� can be

considered from the point of view of a valence bond picture involving
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overlap of the hydrogen 1s orbital with two p orbitals on F� ions. This can be

represented as shown in Fig. 11.8.

From the point of view of a molecular orbital approach, the combination

of the hydrogen 1swave function with two 2pwave functions from fluorine

atoms produces three molecular orbitals that can be written as follows:

ψ σð Þ¼C1φ pz1ð Þ+C2φ pz2ð Þ+C3φ 1sð Þ (11.23)

ψ nð Þ¼C4φ pz1ð Þ�C5φ pz2ð Þ (11.24)

ψ σ*ð Þ¼C6φ pz1ð Þ+C7φ pz2ð Þ�C8φ 1sð Þ (11.25)

These wave functions describe one bonding orbital (σ), one nonbonding

orbital (n), and one antibonding orbital (σ*). The molecular orbital diagram

that results from these wave functions is shown in Fig. 11.9. Note that one of

the fluorine atoms is considered as F�, which contributes two electrons to

the structure as a result of HF2
� being formed from HF+F�.

Hydrogen bonding occurs in many types of systems in which hydrogen

atoms are bonded to atoms of high electronegativity, such as F, O, N, and

Cl, as well as to some slight extent S and Br. The bonds may be between two

σ*

1s

n
2pz 2pz

σ

H FHF− F− F

Fig. 11.9 A molecular orbital diagram for the HF2� ion. Filled 2p orbitals constitute π
orbitals that are nonbonding, and they do not have the correct symmetry to bond to
the hydrogen 1s orbital. Therefore, they are not shown on the diagram.

+ ++− −

Fig. 11.8 A diagram representing HF2� in a valence bond model with orbital overlap.
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separate molecules (intermolecular hydrogen bonds) or within a specific

molecule (intramolecular hydrogen bonds).

O H

R

NR3

Intermolecular

Cl

O
H

Intramolecular

Hydrogen bonding also occurs in numerous types of solids, such as NH4Cl,

NaHCO3, NH4HF2, and ice.

Liquids in which there is extensive hydrogen bonding between mole-

cules typically have higher boiling points than do molecules of similar

atomic composition. For example, ethanol (C2H5OH) boils at 78.4°C,
whereas dimethyl ether (CH3OCH3) has a boiling point of �24°C, even
though they both have the same empirical formula, which is C2H6O. In

some cases, the hydrogen bonding is so strong that it is maintained even

in the vapor phase. For example, acetic acid exists in the vapor phase

largely as the dimer.

CH3  C C – CH3

O H 

H O O 

O 

In the case of alcohols, a rather complex equilibrium exists between sev-

eral aggregates of molecules. There are presumably both chains and ring

structures involved, and in the vapor phase a tetramer of methanol, which

is (CH3OH)4,

O O

R R

O 

H

O

H

R

H

R

H

has been identified, for which the heat of association has been found to be

94.4 kJ mol�1. It appears in this case that each hydrogen bond has an energy

of 23.6 kJ mol�1.

289Molecular Spectroscopy



11.9 EFFECTS OF HYDROGEN BONDING ON SPECTRA

Although hydrogen bonding manifests itself with regard to properties, such

as heat of vaporization, solubility, and several types of chemical behavior, it

also produces dramatic effects on spectra.With much of this chapter devoted

to the analysis of spectra, it is that aspect of hydrogen bonding that needs to

be discussed. In fact, spectroscopy is one of the most frequently used tech-

niques employed in the study of hydrogen bonding.

When a hydrogen atom attached to an atom of high electronegativity by a

polar covalent bond becomes attracted to a pair of electrons on a donor atom,

there are several changes produced. First, the covalent bond is lengthened and

weakened slightly, which results in a shift in the position of theXdHstretching

band. The position of the peak corresponding to stretching the XdH bond is

shifted to a lower wave number in the infrared spectrum by as much as

200–400 cm�1, depending on the strength of the hydrogen bond. As might be

expected, there is a general correlation between the magnitude of the shift and

the base strength of the electron pair donor, as long as bases of the same general

type are considered.

When the hydrogen atom becomes attached to a pair of electrons in a

donor atom in another molecule, bending vibrations, such as that of the

dXdHfragment, becomehindered.Therefore, there is a shift tohigherwave

number in the position of the peak corresponding to this vibration.However,

there may be two types of bending vibrations, that which corresponds to the

in plane motion of the XdH moiety and that which is bending out of the

plane. Both types of vibrations become hindered if the hydrogen atoms are

attached to a donor atom so they are shifted to higher wavenumbers.

Table 11.2 Effects produced by hydrogen bonding on infrared spectra
Vibration Assignment Spectral region (cm–1)

X⎯H B νs, the XdH stretch 3500–2500

X⎯H B
/ 

νb, the in-plane bend
a 1700–1000

⊕
B

/       ⊕
X⎯H νt, the out-of-plane bend

b
400–300

H B
/ 
X⎯ νσ, the H⋯B stretchc 200–100

aBending in the plane of the page. Hydrogen bonding causes higher νb.
bBending perpendicular to the plane of the page (torsion). Hydrogen bonding causes higher νt.
cStretching of the hydrogen bond to the donor atom. It increases with hydrogen bond strength.
Reproduced with permission from House, J. E. Inorganic Chemistry, 2nd ed.; Academic Press/Elsevier:
Amsterdam, 2013.
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The very weak hydrogen bond itself is subject to stretching vibrational

changes, and these give rise to peaks in the far infrared region of the spectrum

(usually 100–200 cm�1). Table 11.2 shows the spectral characteristics that

result from hydrogen bonding.

Species present in chemical systems in equilibrium in solution depend on

the nature of the solvent. If a solvent interacts strongly with the monomer,

aggregation will be hindered. Because of this, solvents that can hydrogen

bond to alcohols hinder the formation of aggregates. As a result of molecular

association by hydrogen bonding, the positions of OdH stretching bands

are not the same as for “free” OdH stretching. As will be discussed later,

even the position of band attributable to the “free” OdH stretching is

solvent dependent.

In “inert” solvents such as alkanes and CCl4, alcohols form aggregates in

solution even at very low concentrations. It is generally assumed that the

process can be represented by the equation

nCH3OH ⇆ CH3OHð Þn (11.26)

At a very low concentration in CCl4 as the solvent, the equilibrium lies far to

the left, and the spectrum shows a peak at 3642 cm�1 corresponding to

OdH stretching in the monomer. At higher concentrations, other bands

appear that reflect the intermolecular hydrogen bonding, which causes

the stretching frequency to be lower. Figure 11.10 shows the spectra obtai-

ned for solutions of methanol in carbon tetrachloride (House, 2013).

Although the peak corresponding to the monomer is present in all cases,

it is interesting to note the broad, shifted bands that result from molecular

aggregation as a result of hydrogen bonding.

%
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m
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cm−1

3640 3500 3350

0.05 M

0.15 M

0.25 M

Fig. 11.10 Infrared spectra obtained for solutions of CH3OH in CCl4. (Modified from
House, J. E. Inorganic Chemistry, 2nd ed.; Academic Press/Elsevier: Amsterdam, 2013.)
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The spectrawill not be shown, butwhen spectra similar to those shown in

Fig. 11.10 are obtained using solutions at higher temperatures, the peaks

attributable to aggregates diminish greatly in intensity as a result of dissoci-

ation of the clusters. It is believed that some hydrogen bonding betweenmol-

ecules of alcohols exists even when the concentration in an inert solvent is as

low as 0.01 M, but it certainly depends on the temperature of the solutions.

In addition to the cyclic tetramer, the structure of which was shown

earlier, some of the species present in solutions of alcohols in solvents such

as heptane or carbon tetrachloride, are believed to have the structures
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H
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In thevaporphase, the absorptionband for theOdHstretchingvibration is

observed at 3687 cm�1.However,whenmethanol is dissolved in solvents such

as n-C7H16, CCl4, and CS2, the OdH stretching band is observed at 3649,

3642, and 3626 cm�1, respectively (House andCook, 1969). However, when

the solvent is benzene, the bandposition is 3607 cm�1. It canbe seen that in this

case, as in many others involving spectroscopy, the positions of bands may be

shifted by interactionswith the solvent. A shift to lower frequency is knows as a

red or bathochromic shift.When the absorption is shifted to higher frequency, it is

known as a blue or hypsochromic shift. In some cases, a solvent can also cause an

increase or decrease in band intensity (known as hyperchromic and hypochromic

effects).

It is interesting to note that there is a shift to higher wave numbers of the

position of the band for hydrogen-bonded OdH groups in alcohols that

occurs at �3300–3350 cm�1. Finch and Lippincott explained this in terms

of the increase in basicity of the alcohols with chain length (Finch and

Lippincott, 1957). From other studies, it is known that the basicity of alco-

hols increases slightly with chain length, and as the temperature increases,

there is a slight increase in the electron density on the oxygen atoms that

function as the electron pair donors. In the temperature range of

200–300 K, the shift amounts to 30–50 cm�1 depending on the chain length

of the alcohol, with the shift being lowest for methanol and highest for
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hexanol. This feature of infrared spectra of alcohols was interpreted from the

potential function model (Finch and Lippincott, 1957).

Theoretical treatment of the solvent effect on the position of the OdH

stretching band was carried out many years ago by assuming that an oscil-

lating electric dipole interacts with solvent having a dielectric constant, ε.
The relationship obtained can be written as

vg� vs

vg
¼C

ε�1

2ε+1
(11.27)

in which νg and νs are the stretching frequencies in the gas phase and in the

solvent, respectively, andC is a constant.Whenmeasured at high frequency,

the dielectric constant is often represented as the square of the index of

refraction, n2. The difference between the stretching frequencies in the

gas phase and in the solution can be written as Δν¼ (νg�νs), so that

Eq. (11.27) becomes

Δv
vg

¼C
n2�1

2n2 + 1
(11.28)

This relationship is known as the Kirkwood-Bauer-Magat equation.

Figure 11.11 shows a Kirkwood-Bauer-Magat plot constructed using index

of refraction values for the solvents indicated on the figure and the positions

of the OdH stretching bands in methanol. From the points on the figure, it

is clear that benzene behaves in a different way toward solvating OdH
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Fig. 11.11 A Kirkwood-Bauer-Magat plot showing solvent effects on the OdH
stretching band of methanol. (Modified with permission from House, J. E. Inorganic
Chemistry, 2nd ed.; Academic Press/Elsevier: Amsterdam, 2013.)
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bonds than do the other solvents considered. This is not surprising because

the pi electron system in benzene and other aromatic molecules have con-

siderable electron donating ability and even form Lewis acid-base adducts.

However, it should be mentioned that studies to explain solvent effects

on reactions, spectra, and other properties have been carried out for many

years. The Kirkwood-Bauer-Magat approach represents only one type of

explanation. The interested reader should consult the book by Reichardt

and Welton for a more comprehensive treatment of solvent effects

(Reichardt and Welton, 2010).

Hydrogen bonding occurs in virtually all areas of chemistry and affects

many properties of materials. As a result, a discussion of its nature and effects

has been presented to show some of the experimental and theoretical aspects

of this type of bond. The discussion presented shows that hydrogen bonding

is a complicated feature when it comes to interpreting infrared spectra.

However, hydrogen bonding provides an interesting and fruitful area for

the study of suitable systems by means of molecular spectroscopy.

After obtaining an infrared spectrum of a sample, using an extensive table

of stretching frequencies frequently makes it possible to match the positions

of observed peaks in an infrared spectrum to known values for the various

types of bonds, thereby determining the types of bonds present in the com-

pound. This information, along with percent composition and molecular

weight, is sometimes sufficient to identify the compound. Thus, as has been

described in Chapter 7, infrared spectroscopy can be used in certain circum-

stances to determine bond lengths, the types of bonds present in molecules,

and molecular structure. These applications of infrared spectroscopy make it

one of the most useful tools for the study of materials by chemists, although

many other experimental techniques [X-ray diffraction, nuclear magnetic

resonance (NMR), electron spin resonance (ESR), etc.] are required for

the complete study of matter.
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PROBLEMS

1. The N2O molecule is linear (see Section 9.7). How many vibrational

modes are there for this molecule? How many (and which ones) would

lead to absorption bands in an infrared spectrum?

2. The SO2 molecule shows absorption bands at 1381, 1151, and

519 cm�1. Sketch the molecule and indicate on the sketches the pos-

sible vibrations for this molecule. To which vibration does the absorp-

tion at 219 cm�1 correspond?

3. Explain why p-hydroxybenzoic acid is a stronger acid and more soluble

in water than is o-hydroxybenzoic acid.

4. When a small amount of triethylamine, (C2H5)3N, is added to a dilute

solution of methanol in carbon tetrachloride, the OH stretching band is

shifted. How would this differ if triethylphosphine (C2H5)3P were

added instead? Explain your answer.

5. There are three possible isomers of N2O. Draw the structures for the

isomers and explain how infrared spectroscopy could be used to distin-

guish between these structures.

6. If the difference between the J¼1 and J¼2 peaks in the rotational spec-

trum of CO are separated by 7.7 cm�1, what is the bond length in CO?
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7. Explain why the hydrogen bonds in HCl2
� are much weaker than

those in HF2
�.

8. By referring to Fig. 11.11, where do you think that a point for aceto-

nitrile (CH3CN) would be on the line. Discuss molecular structure in

explaining your answer.

9. Alkyl cyanates (ROCN) and isocyanates (RNCO) are well known

compounds. Discuss the difference in their interaction with an alcohol,

such as methanol, when the solvent is CCl4.

10. The photoelectron spectrum of F2 shows a peak corresponding to an

energy of 15.7 eV.

(a) Draw the molecular orbital energy diagram for the F2 molecule

and write the electron configuration.

(b) Determine the spectroscopic ground state term for the F2
molecule.

(c) The peak in the photoelectron spectrum corresponds to ionization

of the F2 molecule. Consider the ion and determine the spectro-

scopic state for the species.

(d) The ion exhibits a splitting of energy levels. Explain its origin using

spectroscopic states.
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CHAPTER 12

Spectroscopy of Metal Complexes

One of the significant areas in which spectroscopic techniques have been of

great importance is in the study of transition metals complexes. These studies

have elucidated areas such as the geometric structure, the nature of the metal

to ligand bonds, and the mode of ligand bonding to the metal. Although it is

not possible to present an exhaustive treatment of this broad field, it is appro-

priate to discuss some of its general aspects.

12.1 THE EFFECT OF LIGANDS ON d ORBITALS

Many coordination compounds of metals are brightly colored, which indi-

cates that there is absorption of electromagnetic energy in the visible region

of the spectrum. The origin of that absorption comes from energy levels

in the structures that are separated by energies comparable to that of photons

in the visible region. Therefore, to interpret the spectra, it is necessary to

have an understanding of what those levels are. As a result, it will be shown

how the presence of the ligands (electron pair donors) affects the energies of

the d orbitals. To begin, the relationship of the d orbitals to the positions of

ligands in an octahedral complex will be illustrated, as shown in Fig. 12.1.

The principles related to the splitting of the d orbital energies was orig-

inally applied to the metal ions surrounded by anions in a crystal. As a result,

the term crystal field splitting has also been applied to complexes, even though

the ligands may be neutral molecules. A more descriptive term is ligand field

theory, which is generally used when discussing complexes.

As shown in Fig. 12.1, the lobes of the dxy, dyz, and dxz orbitals point

between ligands, and as a result experience less repulsion (because the ligands

are electron pair donors) than do the dx2�y2 and dz2 orbitals. The result is that

in an octahedral complex, the five d orbitals of a transition metal are no lon-

ger degenerate, but are separated into two sets of orbitals, with the difference

in energy between the sets equivalent to that of visible light. The three

orbitals of lower energy are called the t2g orbitals, and the two of higher

energy are denoted as the eg set. These energy levels are identified in the

molecular orbital diagram shown in Fig. 10.22.
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The perturbation affects all of the d orbitals, and all are raised in energy

compared to their energies in a free, gaseous ion. The d orbitals with lobes

that lie along the axes are affected to a greater extent than are those with lobes

between the axes. While all of the d orbitals are raised in energy, the dz2 and

dx2�y2 orbitals are raised to a greater extent than the dxy, dyz, and dxz orbitals.

Thus, in an octahedral complex the five d orbitals constitute two sets of

orbitals of different energy, as shown in Fig. 12.2.

E

Ion in a spherical field

Free gaseous ion

eg

t2g

eg

t2g

6 Dq = (3/5) Δo

4 Dq = (2/5) Δo

Ion in an
octahedral field

dxy, dyz, dxz

dx2– y2, dz2

Fig. 12.2 A representation of the d orbitals in a transitionmetal ion and in an octahedral
complex. Adapted with permission from House, J. E. Inorganic Chemistry, 2nd ed.;
Academic Press/Elsevier: Amsterdam, 2013 (chapters 16–18).

dxy dxz dyz

dz2 dx2– y2

xy

z

x

y

z

x

y

z

x

y

z

xy

z

Fig. 12.1 The arrangement of d orbitals in an octahedral complex. Note that the lobes of
the dxy, dyz, and dxz orbitals point between ligands, whereas those of the dx2�y2 and dz2
point directly toward ligands.
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The difference in energy between the t2g and eg orbitals is defined as

10 Dq units, in which the value of Dq depends on the nature of the metal

ion, its charge, and the nature of the ligands. Because an octahedral complex

is being considered, the energy difference is also described as Δo. However,

the “center of gravity” with respect to energy must be maintained, so the

three orbitals in the t2g set are lowered from that center by 4 Dq, whereas

the two orbitals in the eg set are raised by 6 Dq.

The simplest type of visible spectrum for a coordination compound

results when there is a single electron excited from a t2g to one of the eg
orbitals. As has been discussed earlier in this book, transitions between elec-

tronic levels in atoms result in spectral lines (i.e., light having specific ener-

gies). However, when the spectrum of a solution containing [Ti(H2O)6]
3+ is

examined, it is found that there is a single, broad absorption band that has a

maximum at 20,300 cm�1 (243 kJ mol�1). If the spectrum corresponded

only to a transition of the single electron in the 3d level from the t2g set

to the eg set, one might expect the transition to give rise to an absorption

line, but this is not the case.

The case of [Ti(H2O)6]
3+ is simpler than that of complexes containing

most transition metals, owing to the fact that the Ti3+ ion contains only one

electron in the 3d orbitals. When multiple electrons are present in the 3d

orbitals, the situation is more complicated because of the effects of

spin-orbit coupling. However, taking repulsion and spin-orbit coupling into

account to provide a complete explanation of the spectra of coordination

compounds is outside the subject matter of this book, but explanations

can be found in the references at the end of this book.

The magnitude of the ligand field splitting in a complex depends on

several factors, one of which is the nature of the ligands. To assess this

effect, a series of complexes, such as TiL6
z�, can be studied, and it is found

that the ability to split the d orbital energies is approximately in the follow-

ing order:

CO>CN�
Strongfield

>NO2
�> en>NH3� py>NCS� >H2O> ox>OH�

> F�>Cl�> SCN�>Br� > I�
Weakfield

Because the magnitude of the difference in energy between the t2g and the eg
sets is obtained by the analysis of spectra, the series listed above is known as the

spectrochemical series.

For a complex of a metal ion that contains at least four electrons in the d

states, there are two possible arrangements of the electrons. If the metal ion is
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Mn3+, there are four electrons in the d orbitals, and the way in which they

can be arranged in an octahedral complex is shown as follows:

t2g

P > Δo

eg

t2g

eg

P < Δo

High spin Low spin

Thus, there will be two series of complexes of Mn3+, with the number of

unpaired electrons depending on the strength of the ligand field produced by

the ligands. For complexes of Mn3+, it is possible to determine the electron

population of the orbitals by determining the magnetic moment. In the

high-spin complexes, the magnetic moment is approximately 4.8 D indicat-

ing four unpaired electrons whereas for a low-spin complex it is approxi-

mately 2.8 D, a value corresponding to two unpaired electrons.

As shown in Fig. 12.3, the situation is quite different when tetrahedral

complexes are considered. The lobes of the dz2 orbital, shown in Fig. 12.3,

are directed toward the midpoint of a diagonal, which is a point lying

(2½/2)e from two of the ligands, whereas the dxy, dyz, and dxz orbitals have

lobes pointing at the midpoint of an edge of the cube, which is e/2 from

the ligands. As a result, there is a difference in repulsion that causes the dxy,

+

+

+

+

y

z

x

dz2

dx2−y2

e

Fig. 12.3 A tetrahedral complex with only two lobes of the dx2�y2 orbital (along the
x-axis) and the lobes of the dz2 orbital lying along the z-axis shown. This illustrates
that none of the d orbitals point directly at the ligands.
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dyz, and dxz orbitals to have higher energy than the dx2�y2 and dz2 orbitals.

Therefore, in a tetrahedral complex the energies of the d orbitals can be shown

as they are in Fig. 12.4.

Although the d orbitals are split in energy in a tetrahedral field, the split-

ting is much smaller than in an octahedral field, even if the same metal ion

and ligands are involved. Whereas six ligands surround the metal ion in an

octahedral complex, there are only four ligands in a tetrahedral complex, so

the electrostatic field produced is smaller. Also, the ligands lie on the axes in

an octahedral complex, which causes the energy of orbitals having lobes that

lie along the axes to have higher energy than do the orbitals whose lobes are

directed between the ligands. If tetrahedral and octahedral complexes of the

same metal and ligands are considered, it is possible to show that

Δt¼ (4/9)Δo. A ligand field splitting of this magnitude is not sufficient to

cause electron pairing and as a result, tetrahedral complexes are high-spin.

As in the case of octahedral complexes, the analysis of spectra depends on

the transitions that occur between energy states in the ligand field. A brief

description of the basic principles will be presented in Section 12.3, but an

explanation of why there are spectral bands will be presented in the next

section.

12.2 BANDS IN ELECTRONIC SPECTRA OF COMPLEXES

Although electronic transitions in atoms generally give rise to spectral lines,

that is not the case with complexes of metals. Therefore, it is appropriate to

describe the factors that are responsible for this difference. Electronic tran-

sitions occur on a time scale that is extremely short compared to that of

molecular vibrations. As a result, vibrations in which ligands-metal bonds

are changing distances create a ligand field that is not static. Therefore, elec-

tronic transitions take place with a ligand field that varies, which causes a

dxy, dyz, dxz

dx2− y2, dz2

t2

e

6 Dq = (3/5) Δ

4 Dq = (2/5) Δ

Δt

Fig. 12.4 The splitting of d orbital energies in a tetrahedral field.
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range of energies to be absorbed. This results in a band of absorbed energies

rather than discrete frequencies, as is the case with atomic line spectra. The

transitions described for coordination compounds are normally obtained for

solutions of the compounds. The effect of a solvent shell surrounding the

complex prevents observing transitions that involve differences between dis-

crete vibrational levels.

Transitions that involve electrons moving between energy states that

arise from d orbitals are called electric dipole transitions. However, transitions

between states that have different multiplicities are generally forbidden,

though they may be observed with low intensity. The classic example of this

type involves the Fe3+ ion (d5) for which the ground state is 6S. All excited

states have different multiplicities from the ground state, so there are no

spin-allowed transitions. The intensity of an absorption band depends on

the value of the overlap integralð
ψ1r ψ2dτ

in which ψ1 and ψ2 are the wave functions for the orbitals representing the

ground and excited states, respectively. This integral is required to have a

nonzero value for the transition to be allowed. The d orbitals in an octahe-

dral field are designated as “g” states. For transitions between such states, the

integral would have a value of zero. A selection rule known as the Laporte

Rule applies in such cases, and it allows transitions only between states that

have different symmetry. Transitions of the d-d type are forbidden in a ligand

field having g symmetry. Although they generally have low intensities,

forbidden transitions are sometimes observed.

As shown in Chapter 5, a particular bond has an equilibrium internuclear

distanceR0, which has a specific value when the lowest electronic and vibra-

tional states are occupied. When energy is absorbed to change the electronic

state to an excited level, the transition occurs on a time scale that is orders of

magnitude smaller than that required for the nuclei to change equilibrium

positions. In other words, the nuclei are essentially considered to be station-

ary, with only the electrons being moved. This means that the molecule in

the excited state has a vibrational energy that is not characteristic of the

electronic energy because in the excited state, the average internuclear

distance is not the same as in the electronic ground state. This is known

as the Franck-Condon principle.

Potential energy of a bond in either the ground or excited state can be

represented by a potential energy curve that shows energy as a function of
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bond length. Within both the ground and excited electronic states, vibra-

tional energy levels exist. Figure 12.5 shows such relationships for the elec-

tronic ground state and the first excited state. For both electronic states,

several vibrational states are shown.

Electronic transitions occur so rapidly that the nuclei are assumed to be

stationary. Therefore, a transition from the electronic ground state to the

first excited state is called a vertical transition, in which R0 is maintained

between the nuclei. As a result, there is a high probability of a transition

between the lowest vibrational energy level in the electronic ground state

to a higher vibrational level in the excited electronic state. Such transitions

that involve both electronic and vibrational transitions are sometimes

referred to as vibronic transitions. This type of transition is a manifestation

of the Franck-Condon principle and is illustrated in Fig. 12.5. Overlap inte-

grals may not be equal to zero for transitions between several vibrational

levels, resulting in absorption of energies that constitute a band.

A temporary change in the structure of a complex from one having “g”

symmetry makes it possible for electric dipole types of transitions to occur.

Coupling of electronic and vibrational wave functions, described as vibronic

coupling, is the result of vibrational energy changes. Some vibrations result in

E
ne

rg
y

Excited
electronic
state

Ground
electronic
state

Internuclear distance

Ro R*

V = 0
V = 1

V = 2
V = 3

V = 4

V' = 0
V' = 1
V' = 2

V' = 3
V' = 4

Fig. 12.5 An illustration of the Franck-Condon principle (R0 is the equilibrium
internuclear distance in the ground state, and R* is that distance for the excited
state). In this case, the transition is from V¼0 in the electronic ground state to the
state with V 0 ¼3 in the excited electronic state.
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a change in symmetry of the structure, so that the “g” designation no longer

applies, which makes possible some electronic transitions. With the change

in symmetry, the Laporte selection rule is no longer applicable, and some

transitions are allowed. Unlike the sharply separated rotation and vibration

energy changes for a diatomic molecule such as HCl, the absorption of

energy results in spectral bands for metal complexes in solution.

12.3 INTERPRETING ELECTRONIC SPECTRA OF COMPLEXES

In order to interpret spectra of complexes, it is necessary to understand how

the ligand field affects the spectroscopic states of the metal ion. Therefore,

the spectroscopic states for gaseous metal ions that contain various numbers

of electrons in d orbitals are shown in Table 12.1.

The spectroscopic terms shown in Table 12.1 are those for gaseous ions

having degenerate d orbitals. This is not the situation when the metal ion is

surrounded by six ligands in an octahedral arrangement. In that case, the

orbitals are the t2g and eg orbitals and the spectroscopic states are not those

of the free ion. For example, the single electron in the Ti3+ ion resides in

a t2g orbital, and the corresponding spectroscopic state is
2T2g. If the electron

is excited to an eg orbital, the spectroscopic state is designated as 2Eg, so the

transition can be designated as 2T2g! 2Eg. Electronic transitions between

states of the same multiplicity are allowed, and in this case both the initial

and final states are doublets. Accordingly, the transition is allowed, and it

occurs with high intensity. As in the case of atoms, orbitals have lower case

designations, whereas spectroscopic states are denoted by capital letters.

All of the ligand field spectroscopic states that arise from the effect of

ligand field splitting of the spectroscopic ground states of the gaseous ions

are shown in Table 12.2. It is important to remember that although

Table 12.2 lists all spectroscopic states that arise from a given dn configura-

tion, there is a very important selection rule that states:

Table 12.1 Spectroscopic states for gaseous ions of transition metals
Ion Spectroscopic states

d1, d9 2D

d2, d8 3F, 3P, 1G, 1D, 1S

d3, d7 4F, 4P, 2H, 2G, 2F, 22D, 2P

d4, d6 5D, 3H, 3G, 23F, 3D, 23P, 1I, 21G, 1F, 21D, 21S

d5 6S, 4G, 4F, 4D, 4P, 2I, 2H, 22G, 22F, 32G, 32D, 2P, 2S

The ground state term is listed first. A coefficient of 2 means that two different identical terms exist.
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Transitions between spectroscopic states having different multiplicities are spin

forbidden. Therefore, with regard to spectral transitions, it is necessary to

consider only those states that arise from the ground spectroscopic state. The

reason for this is Hund’s first rule that declares that states of maximum multi-

plicity lie lowest in energy (see Section 5.4). As a result, the energies of those

states in terms of the ligand field splitting (Δo or Dq) are shown in Table 12.3.

Although the spectroscopic states that exist in an octahedral field and their

energies are listed inTable 12.3, it must be remembered that the actual energies

depend on the magnitude of the ligand field splitting. Therefore, the difference

Table 12.3 Energies of states in an octahedral ligand field in terms of Δo

Ion
Ground
state

Octahedral field
states Energies in terms of Δo and Dq

d1 2D 2T2g+
2Eg �(2/5)Δo¼�4 Dq+(3/5)Δo¼+6 Dq

d2 3F 3T1g+
3T2g+

3A2g �(3/5)Δo¼�6 Dq+(1/5)Δo

¼+2 Dq+(6/5)Δo¼+12 Dq

d3 4F 4A2g+
4T2g+

4T1g �(6/5)Δo¼�12 Dq� (1/5)Δo

¼�2 Dq+(3/5)Δo¼6 Dq

d4 5D 5Eg+
5T2g �(3/5)Δo¼�6 Dq+(2/5)Δo¼+4 Dq

d5 6S 6A1g 0

d6 5D 5T2g+
5Eg �(2/5)Δo¼�4 Dq+(3/5)Δo¼+6 Dq

d7 4F 4T1g+
4T2g+

2A2g �(3/5)Δo¼�6 Dq+(1/5)Δo

¼+2 Dq+(6/5)Δo¼+12 Dq

d8 3F 3A2g+
3T2g+

3T1g �(6/5)Δo¼�12 Dq� (1/5)Δo

¼�2 Dq+(3/5)Δo¼+6 Dq

d9 2D 2Eg+
2T2g �(3/5)Δo¼�6 Dq+(2/5)Δo¼+4 Dq

d10 1S 1Ag 0

Ligand field states are listed in order of increasing energy and the energies are listed in the same order.

Table 12.2 Spectroscopic states in an octahedral ligand fielda

Gaseous ion spectroscopic
ground state

Components in an
octahedral field

Sum of
degeneraciesb

S A1g 1

P T1g 3

D Eg+ t2g 5

F A2g+T1g+T2g 7

G A1g+Eg+T1g+T2g 9

H Eg+
2T1g+T2g 11

I A1g+A2g+Eg+T1g+
2T2g 13

aLigand field states have the same multiplicity as the spectroscopic state from which they arise.
bReflects the fact that A is singly degenerate, E is doubly degenerate, T is triply degenerate, etc.
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in energy between any states depends on the actual complex being considered.

Note, however, that if the energy of the states for any given ion is considered

the net energy is zero. For example, a d1 ion has a ground state of 2D, which is

split into 2T2g and
2Eg in an octahedral field. These states have energies of

�4 Dq and +6 Dq, respectively. Thus it can be seen that

3 �4Dqð Þ+2 +6Dqð Þ¼ 0

so the net change in energy is zero and the center of gravity (barycenter) of

the orbitals in maintained. For a d2 ion, the ground state is 3F so the ligand

field states are 3T1g+
3T2g+

3A2g that have energies of �6 Dq, +2 Dq, and

+12 Dq, respectively. Taking into account these energies and the multiplic-

ities of the states gives

3 �6Dqð Þ
Tð Þ

+3 +2Dqð Þ
Tð Þ

+1 +12Dqð Þ
Að Þ

¼ 0

It should be noted from Table 12.3, that all dn configurations except d5

and d10 give rise to ground states that are eitherD or F in designation. For d5

and d10 ions, the ground state term is an S term and the ligand field term is an

A term for which there are no higher energy states having the same multi-

plicity. Thus, there are no spin-allowed transitions for d5 or d10 ions in octa-

hedral complexes. A well-known illustration of this is that complexes

containing Fe3+ or Zn2+ are almost colorless in aqueous solutions. The

information shown in Table 12.3 can be summarized in graphical form in

what are known as Orgel diagrams (Orgel, 1955). Simplified diagrams of this

type in which only the states of maximum multiplicity are considered are

shown in Figs. 12.6 and 12.7.

An octahedral complexwith six identical ligands has a center of symmetry.

Therefore, the ligand field states have the subscript “g” to denote this.

A tetrahedral structure does not have a center of symmetry, so the g subscript

is not appropriate. With both sides of the diagrams applying equally to tetra-

hedral and octahedral complexes, g is included on one side, but not the other.

Because the d energy states are inverted in the tetrahedral field so are the

spectroscopic states. Moreover, the spectroscopic terms that arise for a d1

configuration are identical to those from a d9 case, those for d2 and d8 are

identical, etc. Likewise, the states arising for a d1 tetrahedral field are the same

as those for a d4 ion in an octahedral field. The Orgel diagrams are con-

structed in such a way to represent all of the states. One side applies to octa-

hedral d1and d6 cases, whereas the other represents d4 and d9 cases. Because of

the inversion of the energy levels and the resulting ligand states, the two
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halves of the diagram are reversed with respect to tetrahedral complexes.

Thus, the diagrams represent all of the dn cases for both tetrahedral and octa-

hedral complexes. Note that the multiplicity is not indicated because it is

dependent on the number of electrons.

d1 and d6 tetrahedral

d4 and d9 octahedral

T2

T2g

Eg

E

d1 and d6 octahedral

d4 and d9 tetrahedral

D

Δ
0

Fig. 12.6 An Orgel diagram for metal ions that have D spectroscopic ground states. The
multiplicity of the D state of the free ion is not specified because it is determined by the
number of electrons in the d orbitals of the metal ion.

T2

T2g

A2g

A2

d3 and d8 octahedral

d2 and d7 tetrahedral

d2 and d6 octahedral

d3 and d8 tetrahedralΔ
0

F

P

T1g(F)

T1g(P)

T1(P)

T1(F)

Fig. 12.7 An Orgel diagram that shows the states for metal complexes with F ground
states. The multiplicity depends on the specific metal ion and is not specified, but the P
state has the same multiplicity. Note that the difference between the energy of the
T1g(F) and T1g(P) states gets greater as the value of Δ increases, and so states of
identical designation do not cross. This is known as the noncrossing rule.
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TheOrgel diagrams can be considered as energy level diagrams that show

the energies as the value of Δ increases as it goes in either direction from the

center. Because all of the states have the same multiplicity, the allowed tran-

sitions are those between the states that are encountered when an appropri-

ate value of Δ is known and one progresses vertically. Note that for ions

having anA or F ground state, it is expected that the spectrumwould consist

of three bands. Table 12.4 shows the transitions that would be allowed in

both octahedral and tetrahedral fields.

Although the interpretation of spectra of complexes with regard to the

types of transitions has been shown, there is more to the analysis of such

spectra. One of the objectives is to determine the value of the ligand field

splitting Δ. It is from the analysis of spectra that this parameter is obtained.

Another issue with regard to the effects of ligands on the distribution of elec-

trons in complexes is that the field generated by the ligands changes spectro-

scopic parameters. For example, the difference between the 3P and 3F states

in a d2 metal ion is defined in terms of a quantity known as B, which is an

energy integral. By definition, that energy difference is 15B, and the value of

B can be determined from atomic spectra. Some metal ions that have a d2

configuration are Ti2+, V3+, and Cr4+ and the energies of the spectroscopic

states are shown in Table 12.5.

Table 12.5 Energies of spectroscopic terms for gaseous d2 ions
Energies of states in cm21

Term Ti2+ V3+ Cr4+

3F 0 0 0
1D 8473 10,540 13,200
3P 10,420 12,925 15,500
1G 14,398 17,967 22,000

The ground state is 3F and 349.8 cm�1¼1 kcal mol�1¼4.184 kJ mol�1.

Table 12.4 Transitions allowed for complexes with metals having F ground states
Octahedral field Tetrahedral field

For A ground states For T ground states For A ground states For T ground states

ν1 A2g!T2g ν1 T1g!T2g ν1 A2!T2 ν1 T1!T2

ν2 A2g!T1g ν2 T1g!A2g ν2 A2!T1 ν2 T1!A2

ν3 A2g!T1g(P) ν3 T1g!T1g(P) ν3 A2!T1(P) ν3 T1!T1(P)
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From the data shown in Table 12.5, it can be seen that the value ofB varies

with the charge on the ion and has values that range from approximately 600

to 1000 cm�1. It is usually found that for a specific metal ion, the value of B in

complexes is approximately 70–75% of its value for the gaseous ion. This is the

result of an expansion of the electron cloud of the metal ion and is called the

nephelauxetic effect. It is also possible to determine the value of B that is appro-

priate for a given complex from an analysis of the spectrum, but such work is

beyond the scope of this book. There are several procedures for performing

the analysis (House, 2013; Dou, 1990). Themost comprehensive reference on

the subject is that by Lever (Lever, 1984).

It was stated earlier in this chapter that except for a d1 metal ion, the inter-

pretation of spectra for complexes is complicated by spin-orbit coupling.

Moreover, the magnitude of the effects is dependent on the strength of the

ligand field, and thus parameters such as the energy needed to force pairing

of electrons in metal ions depends on the environment. All of these compli-

cations can be dealt with, though, and the spectra can be analyzed to obtain the

value of the ligand field splitting and other parameters (House, 2013).

12.4 CHARGE TRANSFER ABSORPTION

The discussion of spectra of complexes has dealt with the electronic absorp-

tions that involve transitions between the various spectroscopic states that

arise from the d orbitals in a ligand field environment. However, for com-

plexes that contain appropriate combinations of metal ions and ligands, there

are other types of transitions. The metal may have some of the eg or t2g
orbitals that are nonbonding in character, but which may be only partially

filled. For some ligands, bonding to the metal is the result of their donation

of a pair of electrons, but the ligands may have additional electrons that can

be donated to empty orbitals on the metal. Perhaps a more common situa-

tion is that ligands such as CO, CN�, or ethylene have empty antibonding

orbitals that are able to accept electron density from populated metal non-

bonding orbitals. The shifting of electron density by either of these processes

is referred to as charge transfer, and the spectral bands that are the result of these

transitions are called charge transfer (CT) bands.

Bands that arise fromcharge transfer transitions arenormally observed in the

high-energy region of the spectrum. As a result, these bands are found in the

ultraviolet regionor thehigh-frequency range of the visible region.The charge

transfer bands are normally broad andmay overlap with bands that accompany
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the d-d transitions in complexes. In most cases, transitions that involve charge

transfer are not spin forbidden, so they give rise those bands that are intense.

The type of charge transfer that occurs depends on factors such as the

oxidation state of the metal and/or the availability of low energy orbitals

on the ligands that can accept electron density from the metal. In a complex

in which the metal ion is in a low oxidation state and another higher oxi-

dation state exists, it is possible for electron density to move from the metal

to the ligands. Such a transition is designated as aM!L type, with the arrow

indicating the direction of electron movement. Transitions of this type do

not normally occur in complexes containing Cr3+, Co3+, or Fe3+.

One complex in which the M!L transition does occurs is chromium

hexacarbonyl Cr(CO)6, in which the Cr is in the zero oxidation state. As

a result of having accepted six pairs of electrons from the six CO ligands,

it is rather easy to have some electron density transferred to the empty π*
orbitals on the CO ligands. Because the transition involves electrons in

t2g orbitals on the metal, the transition is sometimes labeled as a t2g!π*
transition. Another type of charge transfer transition involves the transfer

of electrons in eg* orbitals on the metal being transferred to the π* orbitals

on the ligands.

InMnO4
�, manganese is in the +7 oxidation state. As a result, the charge

transfer band that is observed in the spectrum for MnO4
� involves electron

density being transferred to Mn from filled p orbitals on the oxygen atoms in

an L!M transition. This results in an intense band centered at approxi-

mately 18,000 cm�1, and it is this band that is responsible for the deep purple

color of solutions containing permanganate ion.

With regard to charge transfer transitions, it is generally observed that:

1. A charge transfer of the type M!L will occur if the metal is in an oxi-

dation state that enables it to be easily oxidized.

2. A charge transfer of the type L!M will occur if the metal is in an oxi-

dation state that enables it to be easily reduced.

In addition to these considerations regarding the nature of the metal, it is also

important to note that the ease with which electrons can be moved to or

from the ligands (i.e., reduction or oxidation) is a factor. Transitions of

the first type are indicated on the molecular orbital diagram for an octahedral

complex shown in Fig. 12.8.

12.5 BACK DONATION

When ligands donate pairs of electrons to metal atoms or ions, the metal

acquires a negative formal charge. For example, if a +3metal accepts six pairs
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of electrons, it acquires a�3 formal charge. A metal ion having a +2 charge

would acquire a �4 formal charge by accepting six pairs of electrons when

forming a complex with six ligands. In most cases, there are some electrons

in the nonbonding dxy, dxz, and dyz orbitals. In order to relieve part of the

negative charge that accumulates on the metal, there may be some shift of

electron density from the metal to the ligand. This phenomenon is known as

back donation (also sometimes called back bonding) However, the ligand

must have orbitals of suitable symmetry to interact with the dxy, dxz, and

dyz orbitals on the metal, and many do.

The molecular orbitals that result from the combination of p orbitals on

diatomic species such as CO, CN�, and NO+ are shown in Fig. 12.9.

Ligand orbitals

E

Metal orbitals Molecular orbitals

a*
1g

eg
*

eg

t1u

t1u

a1g

a1g+ eg+ t2g

t2
n
g

a1g

t1u

eg+ t2g

s LGO

4p

4s

3d
p

p*
π*

Fig. 12.8 Interpretation of M!L charge transfer absorption in an octahedral complex
using a modified molecular orbital diagram. The transitions are from eg* or t2g orbitals
on the metal to π* orbitals on the ligands.

2p 2p

π π

π* π*

σ

σ*

Fig. 12.9 The arrangement of molecular orbitals in species such as CO, CN�, and NO+.
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Although the π and σ orbitals are filled, the π* orbitals are empty. In

order to see how the π* orbitals might interact with the dxy, dxz, and dyz
orbitals on the metal, it is essential to understand the orientation of the

π* orbitals. Although the cyanide ion is shown, the π* orbitals illustrated

in Fig. 12.10 are identical for isoelectronic species such as CO, CN�, and
NO+.

The nature of the interaction of such antibonding orbitals with non-

bonding d orbitals on the metal is illustrated in Fig. 12.11. It can be seen that

the symmetry of the orbitals allows for effective overlap, which makes back

donation possible.

From the molecular orbital diagram shown in Fig. 12.9, it can be seen

that the electron density flowing from the metal to the CN� ligand must

enter the π* orbitals. The result is that the bond order of the C^N bond

is reduced slightly. The bond order is given by

Bond order¼ Nb�Na

2
(12.1)

As a result, any population in the antibonding orbitals reduces the bond

order. This weakening of the bond in the cyanide ion causes its stretching

M

e−

e−

C N

−

−

+ +

+ +

−

−

Fig. 12.11 The dxz orbital and its overlap with the π* orbital on CN�.

+

+

−

−

C N

Fig. 12.10 The orientation of a π* orbital on CN�.
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frequency to be shifted to slightly lower wave numbers with the magnitude

of the shift related to the extent of back donation. As a result of the metal

acquiring a higher negative formal charge in [Fe(CN)6]
4� than in

[Fe(CN)6]
3�, it would be expected that the C^N stretching band would

occur at a lower wave number. This is in fact observed, and the positions

of the stretching bands are 2098 and 2135 cm�1, respectively. A similar sit-

uation is found with the metal carbonyls. The greater the number of CO

groups attached, the greater the negative formal charge on the metal and

the greater the extent of back donation. For carbonyls of some first transition

series metals, the CO stretching bands are as follows in cm�1: Ni(CO)4,

2057; Fe(CO)5, 2034; and Cr(CO)6, 1981.

Back donation also occurs with ligands such as olefins that have anti-

bonding orbitals that match the symmetry of the nonbonding d orbitals of

transition metals. One of the most familiar cases is that of the compound

known as Zeise’s salt, which is K[Pt(C2H4)Cl3]. The anion contains an

ethylene molecule that is perpendicular to the plane containing the platinum

and chloride ions. In that case, the back donation can be shown as in

Fig. 12.12.

Gaseous ethylene has the C]C stretching band at 1623 cm�1, whereas

the corresponding band in Zeise’s salt is found at 1526 cm�1. This is a reflec-

tion of the decrease in bond order and strength of the C]C bond. There are

numerous other ligands that can accept electron density from nonbonding

metal orbitals. For example phosphines (PR3) have vacant d orbitals on the

phosphorus atom that can interact with d orbitals on metals.

Although considerable information is obtained from studying the visible

spectra of metal complexes, many fruitful studies have been carried out for

which the object was to study vibrations of the ligands. In this way, it is

sometimes possible to deduce the bonding mode of a ligand such as

CN�, which might bond through either the carbon or nitrogen atom. It

is also possible to study many types of metal-ligand bonds by means of infra-

red spectroscopy. Truly, it can be said that most of what we know about the

Pt

C

C

d π*

− −

− −

+

+

+

+

Fig. 12.12 The back donation from a d orbital on platinum to the π* orbital on ethylene.
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structure of atoms and molecules has been obtained by studying their inter-

action with electromagnetic radiation.
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PROBLEMS

1. Values of B for the metal ions Cr3+, V2+, and Mn4+ are 918, 1064, and

766 cm�1. Assign the values to the correct ions and explain your

decisions.

2. Bymaking use of the Orgel diagrams, tell what spectral transitions would

be possible for the following complexes: (a) [Ni(NH3)6]
2+; (b) [CrCl6]

3�;
(c) [TiF6]

3�; (d) [FeF6]
4�; (e) [Co(NH3)4]

2+.

3. Consider the complexes [Fe(CN)6]
4� and [Co(CN)6]

3�. Explain how

you could distinguish between them on the basis of an infrared spectrum.

4. For which of the following would it be likely that an absorption due to

charge transfer could be observed? Explain your answer. (a) [Co

(NH3)6]
3+; (b) [FeF6]

4�; (c) [Co(CO)3NO].

5. If the complex [Ti(H2O)4]
3+ could be studied, what spectroscopic

transition(s) would be observed? What would be the approximate value

for Dq?

6. The complex [Zn(NH3)4]
2+ is diamagnetic, but [Ni(NH3)4]

2+ is not.

Explain this difference by means of orbital energy diagrams.

7. Solid AgCN shows a band for the C^N stretching at 2170 cm�1,

whereas in the complex [Ag(CN)2]
�, it is found at 2135 cm�1. Explain

this difference. Where would the CN stretching absorption likely be

observed for the complex [Ag(CN)3]
2�? Explain your answer.

8. Explain why NO+ is a better acceptor of back donation than is the iso-

electronic N2 molecule.

9. Determine the spectroscopic ground state for the Ni2+ ion. What

spectral transitions would an octahedral complex of this ion exhibit?

What transitions would be possible in a tetrahedral complex of this ion?
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CHAPTER 13

Barrier Penetration

In the previous chapters, the application of quantum mechanics to some

fundamental aspects of the behavior of particles, atoms, and molecules have

been shown. Although these models are important in their own right, they

also form the basis for the extension of quantummechanics to more complex

systems. Another of the basic applications of quantum mechanics involves

barrier penetration. This model shows how certain changes occur, even

if the system does not have sufficient energy to cause the changes to take

place. Known as barrier penetration or tunneling, this application of quan-

tum mechanics is relevant to several aspects of both chemistry and physics.

Consequently, this chapter is devoted to the barrier penetration model and

its applications.

13.1 THE PHENOMENON OF BARRIER PENETRATION

One of the most interesting differences between classical and quantum

descriptions of the behavior of systems concerns the phenomenon of barrier

penetration or tunneling. To introduce the model, consider a particle

approaching a barrier of height U0, as shown in Fig. 13.1. Suppose the par-

ticle has an energy E and the height of the barrier U0 is such that U0>E.

From the point of view of classical physics, the particle cannot penetrate

the barrier, nor does it have enough energy to get over the barrier. Therefore,

if the particle has an energy less than U0, it will be reflected by the barrier. If

the particle has an energy greater than the height of the barrier, it can simply

pass over the barrier unimpeded. Because the particle with E<U0 cannot

get over the barrier and or penetrate it, the regions inside the barrier and

to the right of it are forbidden to the particle in the classical sense.

According to quantum mechanics, the particle (behaving as a wave) is

not only able to penetrate the barrier, it can also pass through it and appear

on the other side. As a result of the moving particle having a wave character,

it must have an amplitude that is nonzero. The probability of finding the

particle is proportional to the square of the amplitude function. Therefore,

all regions are accessible to the particle, even though the probability of it
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being in a given region may be very low. This is the result of the wave func-

tion for the moving particle not going to 0 at the boundary.

13.2 THE WAVE EQUATIONS

In treating the barrier penetration problem by quantum mechanics, it must

be recognized that the entire area surrounding the barrier is accessible to the

particle. Because there are three regions (inside the barrier and to the left and

right of it), there will be three wave equations to solve.

It is natural to try to determine the connection between the wave inside

the barrier and on either side of it. The connection must be a smooth, con-

tinuous one given by the restrictions on the wave function and its first deriv-

ative (see Chapter 2). The general form of the function can be determined by

analogy to a simple example. Suppose light is shined into a solution, which

absorbs it in direct proportion to the intensity of the light (see Fig. 13.2).

Then, using k as the proportionality constant, the change in intensity (I)

of the light with the distance it travels in the solution (x) is given by

� dI

dx
¼ kI (13.1)

Rearrangement of Eq. (13.1) gives

�dI

I
¼ kdx (13.2)

This equation can be integrated between limits of I0 (the intensity of the inci-

dent beam) at distance 0 to some other intensity, I, after traveling a distance of

x in the solution:

ln
I0

I
¼ kx (13.3)

X

U

U0

Fig. 13.1 A particle with energy E colliding with an energy barrier of height U0>E.
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By taking the antilogarithm of both sides of the equation, it can be written as

I ¼ I0e
�kx (13.4)

From this equation, it can be seen that the beam decreases in intensity in an

exponential way with the distance it has penetrated in the solution. This is,

in fact, a form of Beer’s law for absorption of light by solutions (see

Chapter 11).

If a particle is treated as a wave that penetrates an energy barrier, it would

naturally be expected that the “intensity” of the wave or probability of find-

ing the particle at different distances into the barrier would vary with the

distance of penetration in the barrier. Moreover, it should be expected that

a smooth exponential decrease in the wave function should occur within the

barrier, which is, in fact, the case. It should also be expected that the intensity

of the wave (amplitude) would be greater before the particle penetrates the

barrier than it would be after penetration. These aspects are shown in

Fig. 13.3, which shows the barrier and defines the parameters used in solving

the problem of barrier penetration. The book by Fermi shows a treatment of

this problem that is similar to that presented here (Fermi, 1950).

There are three regions in which the particle may exist. The first task is to

determine the wave function for the particle in each of those regions. The

probability of finding the particle in a specific region is directly related to ψ2

for the wave in that region. Because the wave function in region III is not

I

x
0

I0

Fig. 13.2 Variation of beam intensity with penetration depth.
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zero, there is a finite probability that the particle will be in that region after

tunneling through the barrier. In treating the barrier penetration problem,

the terminology used is very similar to that which describes absorbance of

light by a solution. For example, it is common to speak of the intensity of

the incident particle-wave in region I, as well as the intensity of the trans-

mitted particle-wave in region III. In region II, there is some intensity of the

penetrating particle-wave that decreases with distance. In this case, one does

not speak of the “particle” penetrating the barrier. It is only because of the

particle-wave duality as expressed by the de Broglie relationship (i.e., the

wave character of a moving particle) that the penetration occurs. The

particle cannot exist within the barrier in the classical sense.

Although a wave equation will be written for the particle in each region,

it will not be necessary to solve all three of them in detail. It will be sufficient

to write the solutions by comparing the equations to those that have already

been considered.

In region I, the particle moving toward the barrier can be described by a

wave equation similar to that presented earlier for the particle in a box.

Therefore, the wave equation can be written as

d2ψ I

dx2
+
2m

ћ2
Eψ I¼ 0 (13.5)

Replacing 2 mE/ћ2 by k2, the solution can be written directly as

ψ I¼Aeikx (13.6)

However, part of the particle-wave will be reflected by the barrier, so it is

necessary to add a correction term to the wave function to account for this

reflection. The form of that term will be similar to that already written,

U

x
0

U0

I II III

Fig. 13.3 A particle with energy E penetrating a potential energy barrier.
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except for the coefficient and the sign of the exponent. Therefore, the final

form of the wave function for the particle in region I is

ψ I¼Aeikx +Be�ikx (13.7)

in which A and B are the amplitudes of the incident and reflected waves,

respectively. If A and B are real, B2/A2 gives the fraction of the particles

(or fraction of the wave) that will be reflected by the barrier. If A and B

are complex, B*B/A*A gives the fraction of the particles or wave reflected.

In region III, the wave equation can be written in the same form as that for

the particle-wave in region I:

d2ψ III

dx2
+
2m

ћ2
Eψ III¼ 0 (13.8)

The solution for this equation can be written as

ψ III¼ Jeikx (13.9)

in which J is the amplitude of the wave in region III. Inside the barrier,

region II, the wave equation can be written as

d2ψ II

dx2
+
2m

ћ2
E U0�Eð Þψ II¼ 0 (13.10)

There are two components to ψ II because the wave not only penetrates the

left-hand side of the barrier, but it is also partially reflected by the right-hand

surface of the barrier. Therefore, in region II, the wave function can be writ-

ten as

ψ II ¼K exp
2m

ћ2
U0�Eð Þ

� �1=2

x

" #
+L exp � 2m

ћ2
U0�Eð Þ

� �1=2

x

" #

(13.11)

This equation can be simplified by letting

j¼ 2m U0�Eð Þ=ћ2� �1=2
After this the wave function has the form

ψ II¼K eijx +Le�ijx (13.12)

The various constants are determined from the behavior of the wave func-

tion at the boundaries. At the boundaries x¼0 and x¼a, both ψ and dψ/dx
are continuous and have the same value because the wave functions for the
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particle-wave in adjacent regions must join smoothly. Therefore, this can be

shown as

ψ I 0ð Þ¼ψ II 0ð Þ (13.13)

This condition leads to the result that

A+B¼K +L (13.14)

The equality of the derivatives of ψ1 and ψ2 at x¼0 is expressed by the

equation

dψ I 0ð Þ
dx

¼ dψ II 0ð Þ
dx

(13.15)

Although the details will not be presented, it can be shown that

ikA� ikB¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m U0�Eð Þ

ћ2

r
K�Lð Þ (13.16)

At the boundary a,

ψ I að Þ¼ψ II að Þ (13.17)

from which it possible to show that

K exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m U0�Eð Þ

ћ2

r
a+L exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m U0�Eð Þ

ћ2

r
a¼ J eika (13.18)

Finally, because the derivatives of the wave functions must be equal,

dψ II að Þ
dx

¼ dψ III að Þ
dx

(13.19)

it can be shown thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m U0�Eð Þ

ћ2

r
K exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m U0�Eð Þ

ћ2

r !
�L exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m U0�Eð Þ

ћ2

r !" #

¼ ikJ eika

(13.20)

Although the detailed steps will not be shown here, it is possible from these

relationships to evaluate the constants.

The transparency of the barrier is given by the probability density in region

III (J2) divided by that in region I (A2),

T ¼ J2

A2
¼ exp �2a 2m U0�Eð Þ=ћ2� �1=2�

(13.21)
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If the barrier is not rectangular, the barrier height, U, must be expressed as a

function of distance x. Then the probability of barrier penetration is written

in terms of the energy function U(x) as

T ffi exp �2
ffiffiffiffiffiffi
2m

p

ћ

ða
0

U xð Þ�E½ Þ1=2 dx
� �

(13.22)

In this expression, the integral represents howmuch of the barrier lies higher

than the energy of the particle.

Several conclusions can be reached immediately from the form of

Eqs. (13.21) and (13.22). First, the transparency decreases as the thickness

of the barrier a increases. Second, the transparency also decreases as the diff-

erence between the energy of the particle and the height of the barrier

increases; that is, the transparency decreases when more of the barrier lies

above the energy of the particle. When the energy of the particle is equal

to the height of the barrier, the exponent becomes zero and the transparency

is equal to 1, and all of the particles can pass over the barrier in classical

behavior. Finally, it should also be clear that the transparency of the barrier

decreases with increasing massm of the particle. It should also be pointed out

that if h¼0 (which indicates that energy is not quantized, but is rather clas-

sical in behavior), the exponent becomes 0, and there is no possibility of the

particle getting past the barrier. Therefore, as stated earlier, tunneling is a

quantum mechanical phenomenon. Tunneling is much more significant

for light particles, and the later sections of this chapter show applications

of the barrier penetration model to cases involving electron tunneling. It

should now be clear why the walls of the one-dimensional box (see

Chapter 3) had to be made infinitely high in order to confine the particle

to the box 100% of the time.

13.3 ALPHA DECAY

In 1926, Schr€odinger’s solution of the wave equation made it possible

to exploit other applications of wave mechanics. For example, nuclear phy-

sicists had known that α decay occurs with the emitted α particle having an

energy that is typically in the range 2–9 MeV (1 eV¼1.6�10�12 erg;

1 MeV¼106 eV). However, inside the nucleus the α particle (a helium

nucleus) is held in a potential energy well caused by it being bound to

other nuclear particles. Further, in order to cause an α particle to penetrate

the nucleus from the outside, the α particle would need to overcome the

Coulomb repulsion. For a heavy nucleus (Z¼80), the Coulomb barrier
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would be approximately 25 MeV in height. Therefore, in order for an α
particle inside the nucleus to escape, it would need to have an energy of

at least that magnitude. However, for many cases, the α particles have ener-

gies of only 5–6 MeV. Figure 13.4 shows the energy relationships and

parameters needed for a discussion of this problem. The simple question

is, how can the α particle be emitted with an energy of 5–6 MeV through

a barrier that is as great as 25 MeV?

In 1928, only two years after Schr€odinger’s solution of the hydrogen

atom problem, the problem of α decay was solved by Gurney and Condon

(1928) and independently by Gamow (1928). It was assumed that the α par-

ticle (two protons and two neutrons) moves inside the nucleus, but is con-

strained by the potential barrier. Quantum mechanically, ψ*ψ predicts that

there is some probability of finding the α particle on the outside of the barrier.
Because the particle does not have sufficient energy to go over the barrier, it

must escape by tunneling through the barrier.

The rate of decay of a nucleus can be expressed by the first-order rate

equation

�dN

dt
¼ kN (13.23)

in which k is the decay constant and N is the number of nuclei. The rate of

the decay process is reflected by the magnitude of k, which in turn is

related to the transparency of the barrier. Therefore, the problem of

explaining the observed decay constants for α decay can be solved if

U

r

0

U0

Center
of

nucleus

E

B

U(r)

d1 d2

Fig. 13.4 The nuclear energy well and Coulomb barrier for alpha decay.
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the transparency for the Coulomb barrier produced by the nucleus can be

calculated.

Treating the problem of α decay involves using an appropriate expression
for U(r) in Eq. (13.22). If the potential well inside the nucleus is assumed to

have a square-bottom and the shape of the barrier is given by a Coulomb

potential outside the nucleus U(r)¼Zze2/r (where Z is the charge of the

daughter nucleus and z is the charge on the α particle), the integral, shown

in Eq. (13.24) as I, becomes

I ¼
ðd2
d1

Zze2�Er
� 	1=2 dr

r1=2
(13.24)

After a change of variables, by letting x¼ r1/2 and q2¼Zze2/E, the result is

that r¼x2 and dr¼2x dx. Also, the integral can also be simplified by realizing

that

Zze2�Er
� 	1=2¼ Zze2E

E
�Er

� �1=2

¼E1=2 Zze2

E
� r

� �1=2

(13.25)

Now Eq. (13.24) can be written as

I ¼ 2
ffiffiffiffi
E

p ðd2
d1

q2�x2
� 	1=2

dx (13.26)

This integral is of a form that can be found in tables of integrals and its eval-

uation leads toð
a2�x2
� 	1=2

dx¼ 1

2
x a2�x2
� 	1=2

+ a2 sin�1 x

z

� 
h i
(13.27)

Therefore, the integral shown in Eq. (13.26) becomes

I ¼ ffiffiffiffi
E

p
x q2�x2
� 	1=2

+ q2 sin�1 x

q

� �� �d2
d1

(13.28)

The values for d1 and d2 are related to the charges and energies by Coulomb’s

law so that

E¼Zze2

d2
and B¼Zze2

d1
(13.29)

It is not necessary to show the complete derivation here, but it is possible to

obtain an expression for the decay constant, k, which can be written as
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k¼ ћ
2md21

exp �8πZze2

hv
cos�1 E

B

� �1=2

� E

B

� �1=2

1�E

B

� �1=2
 !" #

(13.30)

The symbols in this equation have already been explained except for v, the

velocity of the α particle in the nucleus. This quantity comes into consi-

deration because the number of times the particle moves back and forth

in the nucleus and comes in contact with the barrier is related to the prob-

ability that it will eventually penetrate the barrier. Using appropriate expres-

sions for the values of the parameters, the calculated decay constants are

generally in excellent agreement with those observed experimentally. For

example, the calculated and experimental values of k (in s�1) for a few

emitters of α particles are as follows: for 148Gd, kcalc¼2.6�10�10,

kexp¼2.2�10�10; for 214Po, kcalc¼4.9�103, kexp¼4.23�103; and for
230Th, kcalc¼1.7�10�13, kexp¼2.09�10�13. As is apparent from the data,

the application of the barrier penetration model to α decay has been quite

successful.

13.4 TUNNELING AND SUPERCONDUCTIVITY

Although the model of tunneling of particles through barriers has been

successfully applied to several phenomena, it is perhaps in the area of

superconductivity that tunneling is most important. Certainly this is so

in regard to technology, and a description of how this application of bar-

rier penetration is so important will be presented. However, the discus-

sion here will include only the rudiments of this important and timely

topic. For a more complete discussion of superconductivity, consult the

references at the end of this book, especially the works of Kittel (2005) and

Serway and Jewett (2014).

If two metal strips are separated by an insulator, no electric current

passes through the system in normal circumstances. The insulator acts as

a barrier to the particles (electrons) in a manner analogous to that discussed

in Sections 13.1 and 13.2. Often the barrier is an oxide layer on the surface

of one of the metals. If the insulator is made sufficiently thin (1–2 nm), it is

possible for electrons to tunnel through the barrier from one metal to the

other. For metals not behaving as superconductors, the conductivity

through the barrier follows Ohm’s law, which indicates that the current

is directly proportional to the voltage. This type of tunneling by electrons

is known as single-particle tunneling.
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In 1908, Dutch physicist Heike Kamerlingh Onnes liquefied helium

(bp 4.2 K). This was an important event because the first superconductors

studied did not become “super” conducting except at very low tempera-

tures. Superconductivity was discovered in 1911 by Onnes. After studying

the resistivity of platinum, mercury was studied because it could be obtained

in very high purity. It was found that at 4.15 K (the temperature at which

mercury becomes superconducting, TC) the resistivity of mercury dropped

to 0. In 1933, Walther Meissner and Ochsenfeld found that when certain

types of superconductors were kept below their critical temperatures in a

magnetic field, the magnetic flux was expelled from the interior of the super-

conductor. This behavior is known as the Meissner effect.

In 1957, Bardeen, Cooper, and Schrieffer developed a theory of supercon-

ductivity that is nowknownas theBCStheory (Bardeenet al., 1957).According

to this theory, electrons are coupled to give pairs having a resultant angular

momentum of 0. These electron pairs are known asCooper pairs, and it is their

characteristics that are responsible for some of the important properties of

superconductors. In 1962, Josephson predicted that two superconductors

separated by a barrier consisting of a thin insulator should be able to allow an

electric current to pass between them due to tunneling of Cooper pairs. This

phenomenon is known as the Josephson effect or Josephson tunneling. The exis-

tence of superconductors that have TC values higher than the boiling point

of liquid nitrogen is enormously important because liquid helium, which is

much less readily available and expensive, is not required for cooling them.

The migration of electrons through a solid is impeded by motion of the

lattice members as they vibrate about their equilibrium positions. In the case

of a metal, the lattice sites are occupied by metal ions with electrons passing

between them. In Chapter 6, it was shown that the frequency of vibrations is

given by

ν¼ 1

2π

ffiffiffiffi
k

m

r
(13.31)

in which k is the force constant or spring constant and m is the mass. Assuming

that the passage of electrons through the metal is impeded by the vibra-

tional motion of the metal ions, it would be expected for a given metal

that the TC would vary with 1/m1/2, as is the case with classical conduc-

tivity. The lighter the atom, the greater the vibrational frequency and the

greater the extent to which the motion of the electron would also be hin-

dered. Experimental measurements of the TC have been carried out for
199Hg, 200Hg, and 204Hg, for which the TC values are 4.161, 4.153,

and 4.126 K, respectively. Figure 13.5 shows that a graph of TC versus
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m1/2 is linear, but it is the inverse of the expected relationship based on

atomic mass. If it is presumed that a metal atom has a diameter that is

on the order of approximately 10�8 cm in diameter and that the electron

is moving with a linear velocity of about 108 cm s�1, the electron will be

in the proximity of the metal atom for about (10�8 cm)/(108 cm s�1), or a

time on the order of 10�16 s. For many solids, the frequency of lattice

vibrations is on the order of 1012 s�1 or the oscillation time is on the order

of 10�12 s. Therefore, the time for lattice reorientation (based on mass

number) is very long compared to the time it takes for the electron to pass

a particular site in the lattice.

A very elementary view of a metal consists of metal ions at lattice sites

with mobile electrons moving through the solid in conduction bands.

The motion of Cooper pairs through a metal lattice is thought to be linked

to the lattice motion just described. One view is that as one electron passes

between two metal ions, the ions move slightly inward from their respective

lattice sites. Thus, this region has an instantaneous increase in positive

charge. This analogy is very similar to that of instantaneous dipoles in helium

atoms, when the two electrons are found at some instant on the same side of

the atom, thus giving rise to London dispersion forces. The increased positive

region exerts an attractive force on a second electron, which follows the first

through the opening between the metal sites before lattice reorganization

occurs. The effect is that two electrons behave as a pair (the Cooper pair)

having opposing spins, but exists as an entity having a resultant spin angular

momentum of 0.
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Fig. 13.5 The relationship between the TC and isotopic mass for isotopes of mercury.
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Tunneling in superconductors involves the behavior of Cooper pairs,

which behave as bosons because of their resulting zero spin. Thus, unlike

fermions, Cooper pairs are not required to obey the Pauli exclusion princi-

ple, and any number of Cooper pairs can populate the same state. The BCS

theory incorporates the idea that all of the electrons form a ground state con-

sisting of Cooper pairs. In the conductivity of normal metals, the lattice

vibration of the atoms reduces the mobility of the electrons, thereby reduc-

ing conductivity. In the case of Cooper pairs, reducing the momentum of

one pair requires the reduction of momentum for all the pairs in the ground

state. Because this does not occur, lattice vibrations do not reduce the con-

ductivity that occurs by motion of Cooper pairs. For normal conduction in

metals, lattice vibrations decrease conductivity. For superconductivity, the

lattice motion is responsible for the formation of Cooper pairs, which gives

rise to superconductivity.

As a part of his description of Cooper pairs, Josephson predicted that two

superconductors separated by a thin insulating barrier could experience pair

tunneling. One result of this phenomenon would be that the pairs could tun-

nel without resistance, yielding a direct current with no applied electric or

magnetic field. This is known as the dc Josephson Effect. Figure 13.6 shows the

arrangement known as a Josephson junction that leads to the dc Josephson Effect.

Cooper pairs in one of the superconductors are described by the wave

function ψ1, and those in the other are described by the wave function

ψ2. The appropriate Hamiltonian can be written as

�ћ
i

@

@t
ψ ¼ Ĥψ (13.32)

so that when both superconductors are considered,

�ћ
i

@ψ1

@t
¼ ћTψ2 and �ћ

i

@ψ2

@t
¼ ћTψ1 (13.33)

where T is the rate of current flow across the junction from each of the

superconductors. If the insulator is too thick for tunneling to occur, then

T¼0. It is possible to show that

Superconductor
(1)

Superconductor
(2)

Oxide 
layer

Fig. 13.6 A schematic diagram of a Josephson junction.
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I ¼ Im sin φ2�φ1ð Þ¼ Im sinδ (13.34)

where Im is the maximum current across the junction when there is no

applied voltage. In Eq. (13.34), φ is the phase of the pair, and all pairs in a

given superconductor have the same phase.When the applied voltage is zero,

the current varies from Im to�Im, depending on the phase difference for the

two superconductors. The dc Josephson Effect is one of the results of pair

tunneling. If a dc voltage is applied across the junction between two super-

conductors, an alternating current oscillates across the junction. It can be

shown (Serway and Jewett, 2014) that the oscillating current I is expressed by

I ¼ Im sin φ 0ð Þ�2eVt

ћ

� �
(13.35)

whereφ (0) is a constant, the phase at time zero,V is the voltage, t is the time,

and e is the electron charge. This phenomenon is referred to as ac Josephson

tunneling.

When dc tunneling occurs in the presence of an external magnetic field, a

periodic tunneling process occurs. Linking two of the Josephson junctions

together in parallel allows an interference effect to be observed that is very

sensitive to the magnetic field experienced by the system. Such a system is

known as a superconductivity quantum interference device (SQUID), and

such devices are used to detect very weak magnetic fields. For instance, such

devices have been used to study the fields produced by neuron currents in

the human brain.

Tunneling by Cooper pairs plays an important role in the behavior of

superconductors. As superconductors having higher and higher TC values

are obtained, it is likely that this tunneling behavior will be exploited in

technological advances.

13.5 THE SCANNING TUNNELING MICROSCOPE

An important application of tunneling involves the scanning tunneling micro-

scope (STM) invented by Binnig, Rohrer and coworkers in 1981 (Binnig

et al., 1981). In this case, electrons tunnel between the surface of a solid,

and the tip of a probe maintained at a very short distance from the surface.

A typical gap of a few angstroms is maintained by a feedback loop that main-

tains a constant current flow between the solid surface and the tip of the

movable probe by adjusting the distance between them (i.e., the height

of the barrier). A simple schematic diagram of a STM is shown in

Fig. 13.7. The tunneling occurs because the wave functions for electrons
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in the solid do not end abruptly at the surface of the solid, but rather extend

into the space above the surface of the solid. This behavior is similar to that of

the harmonic oscillator, in which the wave functions do not end at the clas-

sical boundaries of the oscillation. Moreover, a particle in a one-dimensional

box would not give wave functions that terminate at the walls of the box if

the walls were not infinitely high.

As the tip of the probe moves across the surface of the solid, its vertical

motion gives a plot of the surface features in the form of a contour map. The

resolutions of features are on the order of 2 Å, but surface height differences

of about 0.01 Å can be detected. Because the electron wave functions

extend into space above the solid, the STM can literally map the wave func-

tions of surface atoms and “see” individual atoms. Therefore, the STM can

be used to locate the active sites on catalyst surfaces, and it has enabled sur-

faces of materials ranging from metals to viruses to be mapped.

13.6 SPIN TUNNELING

Another observation of tunneling involves that of the tunneling of electron

spins through the potential barrier that separates one spin orientation from

the other. In this case, a solid complex compound of manganese having the

complete formula [Mn12(CH3COO)16(H2O)4O10]�2CH3COOH�4H2O

was studied in a magnetic field at low temperature (Swarzchild, 1997;

Thomas et al., 1996). The molecule has a total spin state of 10 that is spread

over the 12 manganese ions. In the absence of a magnetic field, there are two

sets of energy levels that involve the orientations from +10 to �10. There

are a total of 21 different possible orientations, 0,�1,… ,�10, and the crys-

tal of the compound is not isotropic in its magnetization. Thus, the energies

Sample

Probe

Fig. 13.7 Schematic diagram of a scanning tunneling microscope.
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associated with the orientations of the spin vectors have different values and

constitute two identical sets of levels, as shown in Fig. 13.8.When the crystal

is placed in amagnetic field that is applied in the positive direction (parallel to

the+crystal axis direction), the states in the parallel direction decrease in

energy, whereas those in the opposite direction increase in energy (see

Fig. 13.8).

Tunneling of spins between the two sets of levels occurs at very low

temperatures (2�3 K) as resonant tunneling, under the conditions where

the states are at the same energy (no magnetic field applied). If the magnetic

field is applied, it is possible to cause the energy levels to change so that some

of the states are again at the same energy (a sort of accidental degeneracy,

but one that depends on an external field). The states that are at the same

energy under these conditions do not have the same numerical value of

the spin quantum number. For example, the +3 state may reside at the same

energy as the �4 state, as shown in Fig. 13.8.

If all the spins are forced to the �10 state by applying an external field,

decreasing the field will allow resonant tunneling at some specific magnitude
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Fig. 13.8 Spin states in the solid manganese-acetate complex in the absence (A) and
presence (B) of a magnetic field.
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of the applied field as some of the levels are again brought to the same

energy. Therefore, when the property of magnetization is studied at various

values of the applied external field, the hysteresis loop, unlike the classical

plot of magnetization versus applied field, shows a series of steps. These steps

are observed because quantum mechanical tunneling is occurring. A temp-

erature effect of this phenomenon indicates that the spins must be populating

states of about m¼3 by thermal energy. Otherwise, the tunneling times

from a potential well as deep as those of them¼10 states would be extremely

long as a result of transition probabilities that are very low. The steps in the

hysteresis plot clearly show that quantum mechanical tunneling occurs as

electrons go from one spin state to another without passing over the barrier

between them. At higher temperatures, the electrons can pass over the bar-

rier without tunneling being necessary.

13.7 TUNNELING IN AMMONIA INVERSION

The pyramidal ammonia molecule has associated with it a vibration in which

the molecule is “turned inside out.” This vibration, known as inversion, is

shown in Fig. 13.9, and it has a frequency on the order of 1010 s�1.

Excitation of the vibration from the first to the second vibrational energy

level gives rise to an absorption at 950 cm�1, and the barrier height is

2076 cm�1. According to the Boltzmann distribution law, the ratio of popu-

lation of the molecules in the lowest two levels (n0 and n1) should be given by

950 cm–1 2076 cm–1

C3v C3vD3h
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V3
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H
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Fig. 13.9 The inversion of the ammonia molecule.
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n1

n0
¼ e�ΔE=RT (13.36)

where ΔE is the difference in energy between the two states, T is the temp-

erature (K), and R is the molar gas constant. In this case,

E¼ hcν¼ 6:63�10�27ergs
� 	� 3:00�1010cms�1

� 	� 950cm�1
� 	

¼ 1:89�10�13erg

This energy per molecule can be converted to J mol�1 by multiplying by

Avogadro’s number and dividing by 107 erg J�1. In this case, the energy

is 11,400 J mol�1. Therefore, at room temperature (taken to be 300 K),

n2

n0
¼ e �11,400J=molð Þ= 8:3144J=molKð Þ� 300Kð Þ½ � ¼ 0:0105 (13.37)

Consequently, almost all of the molecules would be expected to be in the

lowest vibrational level. Because inversion is rapid even though the barrier

height is 2076 cm�1, the molecules must invert by tunneling through the

relatively low and “thin” barrier that will be somewhat transparent.

Although it will not be discussed here, it is interesting to note that the inver-

sion of phosphine, PH3, is not rapid.

The de Broglie hypothesis regarding the wave nature of a moving electron

was applied to the hydrogen atom by Schr€odinger in 1926, and the diffraction
of an electron beam was demonstrated experimentally in 1927. Very soon

thereafter, various applications of quantum mechanics were explored, and

tunnelingwas used as amodel for alpha decay byGurney andCondon and also

by Gamow in 1928. Consequently, tunneling has been a viable and important

model for quantum phenomena almost since the beginning of the application

of quantummechanics to atomic physics. A somewhat unique demonstration

of this type of behavior is the tunneling between spin states first described in

1996. From these and other applications, it should be apparent that tunneling

needs to be discussed alongwith the harmonic oscillator, rigid rotor, particle in

a box, and other topics in the study of quantum mechanical models.
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PROBLEMS

1. Suppose a rectangular potential barrier of height 2.0 eV and thickness

10�8 cm has an electron approach it. If the electron has an energy of

0.25 eV, what is the transmission coefficient? If the electron has an

energy of 0.50 or 0.75 eV, what are the transmission coefficients?

2. Repeat Problem 1 for a neutron approaching the barrier.

3. Repeat Problem 1 for a helium atom approaching the barrier.

4. If an electron having a kinetic energy of 25 eV approaches a rectangular

barrier that is 10�8 cm thick and has a height of 35 eV, what is the prob-

ability that the electron will penetrate the barrier?What will be the prob-

ability of the electron penetrating the barrier if the thickness is 10�7 cm?

5. Repeat the calculations in Problem 4 if a proton with an energy of 25 eV

approaches the barrier.

6. Suppose that an electron with an energy of 10 eV approaches a rectan-

gular barrier of 10�8 cm thickness. If the transmission coefficient is

0.050, how high is the barrier?

7. Consider a potential barrier represented as follows:

U = x

U

0 a
x

Determine the transmission coefficient as a function of particle energy.

8. An electronwith an energy of 15 eV impinges on a barrier 25 eV in height.

(a) Determine the probability of the electron tunneling through the

barrier if the barrier is 1.20 nm thick.
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(b) What will be the probability that the electron will tunnel through

the barrier if its it is 0.120 nm thick?

9. Suppose a proton is bound in a nucleus in a potential that is approximately

a square well with walls that are infinitely high. Calculate the wavelength

and energy for the emitted photon when the proton falls from n¼3 to the

n¼2 state, if the nucleus has a diameter of 1.50�10�13 cm.
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CHAPTER 14

Comments on Computational
Methods

In any area of science in which the results are important, there will be a great

deal of original thinking and research. Such is the case for molecular orbital

calculations. As a result, a large number of approaches to performing molec-

ular orbital calculations exist. Moreover, they change rapidly as new algo-

rithms (and sophisticated computers) become available, so a decade is more

like two or three generations with regard to the complexity of the calcula-

tions. These are known by various acronyms that may be unintelligible to

all except those who have devoted serious study to the field. It is not possible

in one small book (or even one large one, for thatmatter) to present the details

of this enormous body of knowledge. Consequently, in this chapter the

attemptwill be topresent anoverviewof the language andaqualitativeunder-

standing of some of the most important techniques in this important field.

Although the simpleH€uckelmolecularorbitalmethod (HMO)described in

the previous chapter is useful for some purposes, that type of calculation is quite

limited and ismost applicable to organicmolecules.More sophisticated types of

calculations require enormouslymore complexcomputational techniques.As a

result, the developments in the field of molecular orbital calculations have par-

alleled the developments in computers. Computer software is now routinely

available from several sources, enabling persons who do not necessarily under-

stand all of the theory or computational techniques to use the software and be

guided through the process of performing high-level molecular orbital calcu-

lations that would have represented the frontier of the field notmany years ago.

Because of the computer system requirements, specific instructions depend on

the typeof computer equipmentonwhich the calculations are tobeperformed.

In view of these aspects of molecular orbital methods, the discussion in this

chapter will be limited to presenting basic principles and nomenclature.

14.1 THE FUNDAMENTAL PROBLEM

When dealing with a system consisting of many particles, the Schr€odinger
equation in operator form
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Fundamentals of Quantum Mechanics © 2018 Elsevier Inc.
http://dx.doi.org/10.1016/B978-0-12-809242-2.00014-0 All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-809242-2.00014-0


Ĥψ ¼Eψ (14.1)
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Even for the two-electron helium atom, exact solution of the Schr€odinger
equation was not possible, so it should be clear that exact solutions for multi-

electron atoms or polyatomic molecules will be likewise prohibited.

Accordingly, the various (and numerous) types of molecular orbital calcu-

lation are based on approximations. One of the approaches to this com-

monly occurring problem in science and engineering involves replacing

part of the equation with an approximation so that an exact solution can

be obtained for the approximate equation. The other approach is to write

an equation that can be solved exactly, though it represents the true nature

of the system only approximately.

14.2 THE BASIS SET

Most of the many molecular orbital calculations make use of some type of

atomic wave functions that generally describe a single electron as a starting

point. The basis set is the set of one-electron wave functions that are some-

how combined to give the molecular wave functions. The minimal basis set

is the set that incorporates only the orbitals actually populated by electrons.

One of the most widely used basis sets consists of Slater-type orbitals (STO)

having the form

ψ rð Þ¼ rn�1e� Z�sð Þr=n (14.3)

where s is a screening constant, n is a number that varies with the type of

orbital, and Z is the nuclear charge. The value of n is determined according

to procedures described in Section 5.3. Using one STO wave function for

each nucleus and constructing molecular wave functions by taking linear

combinations of the atomic orbitals, the molecular calculation is referred

to as the minimal basis set calculation. The quantity (Z� s) is replaced by ζ
(zeta) to give functions written in the form

ψ rð Þ¼ rn�1e�ζr=n (14.4)

Thewave functions of this type are referred to as single-ζ STO functions. An

additional modification involves representing each atomic wave function by
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two STO wave functions. In this case, the wave functions are referred to as

double-ζ functions. Within the framework of double-ζ wave functions,

there are several variations that result from the parameterizations that have

been developed.

Another type of function used to represent atomic wave functions is

known as a Gaussian. Gaussian functions have the general form

ψ rð Þ¼ e�αr2 (14.5)

in which α is an adjustable (or “best-fit”) parameter. These functions are

combined as linear combinations in order to approximate the STO func-

tions. The motivation for this is that computations of the integrals involved

in the quantum mechanical calculations are greatly facilitated. The linear

combination of Gaussian functions is referred to as a contracted Gaussian func-

tion or Gaussian-type orbitals (GTO). All of these manipulations of STO and

GTO are carried out to provide approximations to the radial portions of the

atomic wave functions, and the complete wave functions are obtained by

making use of the spherical harmonics, Yl,m(θ,φ), to provide the angular

dependence. When each STO is represented by a linear combination of

three Gaussian functions, the result is known as STO-3G. Other combina-

tions of wave functions lead to the 6-31G designation, in which each STO is

represented as a linear combination of six Gaussian functions. Further, each

STO representing valence shell orbitals is a double-ζ function, with the

inner part represented by a linear combination of three Gaussian functions

and the outer part by one such function. Although the description of the

types of functions present is by no means complete, it does show that many

creative mathematical approaches have been utilized.

14.3 THE EXTENDED H€UCKEL METHOD

In Chapter 9, we illustrated the application of the H€uckel method to a vari-

ety of problems. In 1963, Roald Hoffmann (Nobel prize, 1981) devised a

molecular orbital method that has come to be known as the extendedH€uckel
molecular orbital method (EHMO) (Hoffmann, 1963). This method has

several differences from the basic H€uckel method. For organic molecules,

the basis set of carbon 2s and 2p and hydrogen 1s orbitals is used in the cal-

culations. Although, the overlap was neglected in the H€uckel method, it is

explicitly included in the EHMOprocedure. All overlap integrals Sijmust be

calculated (see Section 8.5). Because the atomic wave functions are
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normalized, the Sii integrals are equal to 1. The values of the overlap integrals

depend on bond distances and bond angles. Therefore, the relative positions

of the atoms must be known before the overlap integrals can be evaluated. In

other words, the results of the calculation will depend on the molecular

geometry. If one wishes to determine the effect of changing bond angles

or distances, these parameters can be changed and the calculation repeated.

The choice of a coordinate system must be made so that the positions of the

atoms can be calculated. For example, if a calculation were to be performed

for the trigonal planar BH3 molecule, the coordinates might be set up so that

the boron atom is at the origin, one hydrogen atom lies on the x-axis, and

the other two hydrogen atoms lie in the xy plane between the x- and y-axes.

After the coordinates of the atoms are determined, the overlap integrals can

be evaluated (see Section 8.5).

In a calculation for an organic molecule, the basis set consists of 1s wave

functions for the hydrogen atoms and the 2s and 2p wave functions for the

carbon atoms. Thus, for CnHm, the basis set consists of m hydrogen 1s wave

functions and n 2s and 3n 2p carbon orbitals. STO are most commonly cho-

sen, with the exponents determined as outlined in Section 5.3. The proce-

dures lead to a value of 1.625 for carbon orbitals and 1.75 for hydrogen

orbitals, although the values may actually vary somewhat. In the original

work, Hoffmann used a value of 1.75, but other workers have suggested

a value of 1.2 may be more appropriate. With the form of the atomic wave

functions having been deduced, the values for the overlap integrals can now

be computed. This produces the values that make up the overlap matrix.

The Coulomb integrals,Hii, are approximated as the valence state ionization

potentials for removal of an electron from the orbital being considered. For

the hydrogen atom the ionization potential is 13.6 eV, so the binding energy

for an electron in a hydrogen atom is taken as �13.6 eV. For organic mol-

ecules, which were the subject of Hoffmann’s original work, the choice of

ionization potentials is not so obvious. In many organic molecules, the car-

bon is hybridized sp2 or sp3, so the loss of an electron from a carbon 2s or 2p

orbital does not correspond exactly to the binding energy of an electron in a

carbon atom in a molecule. Therefore, there is some choice to be made as to

the value used for the ionization potential.

It was shown in Chapter 11 that the Hij integrals can be set equal to

0 when ji� j j>1. In other words, only interactions between adjacent atoms

were included. Unlike the simple H€uckel method, the off-diagonal elements

of the Hamiltonian matrix, the Hij, are not omitted in the EHMO method

regardless of the positions in the molecule. The Wolfsberg-Helmholtz

approximation
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Hij ¼KSij
Hii +Hjj

2
(14.6)

is frequently used to compute the values of the integrals. (Wolfsberg and

Helmholtz, 1952).

Having determined the values for the Hii and Hij integrals, a matrix that

gives the values for the energy integrals is constructed. As in the case of the

overlap matrix, the dimension of the energy matrix is equal to the total num-

ber of atomic orbitals included in the basis set. After the overlap and Ham-

iltonian matrices (represented as S and H, respectively) are obtained, the

equation to be solved in matrix form is HC5SCE, where E is the energy

eigenvalue. These are computations performed by a computer using widely

distributed software. Although the EHMO method is not equivalent to

self-consistent field (SCF) calculations, it is still a useful method for certain

types of problems. For example, calculated energy barriers for rotation, such

as the difference between the staggered and eclipsed conformations of eth-

ane, agree reasonably well with experimental values. The EHMO method

has also proved useful for calculations on extended arrays, as in the case of

solids and semiconductors. As was shown in Chapter 9, the HMO method

can give insight into the behavior of organic molecules and metals. The

EHMO method is even better, although it does require expending greater

computational effort.

14.4 THE HARTREE-FOCK SELF-CONSISTENT
FIELD APPROACH

In Chapter 5, the helium atom was the subject of two approximation

methods of great importance when treating problems that cannot be solved

exactly. The difficulty was the 1/rij term in the Hamiltonian, which arises

because of repulsion between electrons and which prevented the separation

of variables. When the variation method was applied, it was found that

repulsion between the two electrons in the helium atom caused them to

“see” a nuclear charge smaller than +2 with the effective nuclear charge

being 27/16. Using that value, the calculated ground state energy was rather

close to the experimental value.

In the second approach, the presence of a second electron was considered

as a perturbation on the behavior of the other. In that case, the calculated

perturbation energy was (5/4)Z EH, which leads to a ground state energy

that is also rather close to the experimental value. Although the variation

and perturbation methods are manageable for an atom that has two
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electrons, the approach becomes exceedingly complex when the atom being

studied has a sizable number of electrons because of the large number of

terms involving 1/rij when all of the interactions are included.

A method for dealing with such complex calculations was developed by

D.R. Hartree, who expanded the procedures of V. Fock. The result is a type

of calculation known as theHartree-Fock or SCF calculation. In principle, the

SCF approach to calculations on atoms is rather straightforward. In the case

of the helium atom, it was assumed that each electron moved around the

nucleus in much the same way as the electron does in a hydrogen atom.

In the SCF approach, each electron is assumed to move in a spherical central

electrostatic field generated by all of the other electrons and the nucleus.

Filled shells do, in fact, generate a spherically symmetric field, and the nature

of the calculation averages somewhat the effects of fields that deviate from

spherical character. The calculation is carried out for the electron being

considered as it is acted on by the field generated by the nucleus and other

electrons. The hydrogen-like wave functions (the STO and GTO wave

functions are often used) are utilized in calculating the spatial distribution

of the field. Carrying out the calculation for each electron, the behavior

of the electrons generating the field leads to a new, calculated charge distri-

bution. The calculated field is then used as the basis for a new calculation of

the behavior of each electron to produce a second charge distribution or

field. This is then used to calculate the behavior of each electron in the field,

which leads to a new charge distribution. The process can be carried out

until the calculated charge distribution in the field after the nth step is iden-

tical with that from the (n�1)th step. At that point, additional calculations

do not lead to an improved “field,” which is said to be “self-consistent.” The

SCF method utilizes iterative calculations, as was illustrated in Chapter 9

using an elementary case, but the evaluation of the integrals is vastly more

complicated.

The essence of the SCF method is that the calculations take into account

electrons that move independently under the effect of an average potential

produced by Coulomb interactions. Pauling has shown that if the trial wave

function is a product of atomic functions, the results of the SCF and variation

methods are equivalent (Pauling, 1935).

For a calculation based on the helium atom, the procedure considers

electron 1 to be moving in a field determined by the nucleus surrounded

by the negative charge cloud produced by electron 2. The result is that elec-

tron 1 will not move in the same pattern it normally would if electron 2 were

absent, so the calculated wave function for electron 1 will be somewhat
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different in coefficient and exponent than it would be for a strictly

hydrogen-like wave function. With the new parameters determined, the

effect on electron 2 can be treated in a similar fashion with the improved

wave function. The process is repeated until there is no improvement in

the wave functions and the field is considered to be self-consistent.

Unlike the H€uckel method described in Chapter 9, SCF calculations

involve the evaluation of all integrals and are, therefore, known as

ab initio calculations. In SCF calculations, the results obtained will be some-

what dependent on the basis set used. Any basis set chosen is a set of approx-

imate wave functions, so the calculated energy will be higher than the true

energy (see Section 4.5). After a SCF calculation is performed, the results can

be used to expand the basis set, which will enable an improved calculation to

be made. Further changes can be made in the basis set, and the calculation

can be repeated. At some point, the calculated energy will approach a min-

imum value such that changes in the basis set do not result in a lower value

for the calculated energy. The lowest energy calculated is known as the

Hartree-Fock energy for that system.

According to the variation theorem, theHartree-Fock energy will still be

higher than the true energy. In the SCFmethod, it is assumed that each elec-

tron moves in a spherically symmetric field generated by the presence of

other electrons in the proximity. This means that an electron moves in a

symbiotic way with other electrons. Therefore, the motion of the electrons

are said to be correlated. Because this type of interaction is not accounted for

in a Hartree-Fock type of calculation, the actual energy will be lower than

what was calculated because the electrons moving in correlated ways lowers

the energy of the system. A procedure known as configuration interaction

has been developed to include the effects of electron correlation. The essen-

tial idea behind the method is that a linear combination of wave functions is

used so that each determinant represents a wave function that incorporates

electron permutations. This means that for a simple molecule like H2, elec-

tron 1 can be found near nucleus 1 with a spin α, electron 2 can be found

near nucleus 2 with a spin β, electron 2 can be found near nucleus 1 with a

spin β, etc. The wave function for the ground state (1σ2g) of the H2molecule

can be written in determinant form as

ψ ¼ 1

21=2
1s 1ð Þα 1ð Þ 1s 1ð Þβ 1ð Þ
1s 2ð Þα 2ð Þ 1s 2ð Þβ 2ð Þ
����

���� (14.7)

This type of wave function written as a determinant is known as a Slater deter-

minant. The inclusion of other determinant wave functions as linear
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combinations leads to an improved basis set. This procedure specifically

allows the contributions from excited states to be included. Just as including

resonance structures that make even minor contributions to the true struc-

ture improves our representation of the structure of a molecule, the inclu-

sion of wave functions that describe small contributions from excited states

leads to an improvement in the energies that result from SCF calculations.

For a more complete discussion of configuration interaction and other

refinements to the Hartree-Fock SCF calculations, consult the references

listed at the end of this book (especially the book by Lowe).

One of the problems associated with ab initio calculations is that the

number of integrals that must be evaluated is very large. In order to provide

methods that require calculations on a smaller scale, approaches that ignore

certain of the integrals have been developed. In Chapter 5, we saw that one

approach to the problem of the helium atom was to ignore the 1/r12 term

in the Hamiltonian. In an analogous way, the interactions between two

electrons located in different regions of the molecule are small. Stated

another way, this means the overlap of wave functions for the two elec-

trons is essentially zero. Approximate methods that neglect some overlap

integrals are based on the zero differential overlap (ZDO) assumption.

The basis for this assumption is that wave functions are exponential func-

tions (see Section 4.2) that approach a value of 0 at an infinite distance.

However, they may have small values, so it may be assumed that the over-

lap is approximately zero for some orbitals on nonadjacent atoms. Because of

the number of ways in which decisions are made to exclude certain overlap

integrals from the calculations, there are several types of approximate MO

calculations. Complete neglect of differential overlap, CNDO (of which there

are several versions), is one of the early types of approximate computational

procedures. Intermediate neglect of differential overlap (INDO) is a computa-

tional method that includes overlap of wave functions on the same atom.

Other methods neglect the overlap only when the wave functions are for

electrons on different atoms. Approximate methods of these types are

widely used because they require only limited computing resources and

frequently yield results that are useful for interpreting chemical properties

and behavior. In the hierarchy of computational quantum chemistry, they

lie somewhere between the H€uckel methods on the one hand and the

ab initio methods on the other.

Computational methods based on the SCF approach include a veritable

alphabet soup. There are approaches known as complete active space

self-consistent field (CASSF), multireference configuration interaction
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(MRCI), coupled clusters singles, doubles, triples (CCSD(T)), etc. Each of

these is essentially based on the SCF approach with added features included

to take into account some interaction within the system being studied.

Another type of calculation makes use of what is known as Becke’s method,

which makes use of a 6-311G** basis set. Some of these methods require a

lot of computing time. In many cases, complete algorithms are available and

they are, therefore, used in the same way as any other electronic tool

might be.

Although it is not appropriate to even try to give complete details,

descriptions will be given of a few studies using such methods and to illus-

trate the types of information obtained. As an example, in an ab initio study of

C2N isomers, part of the calculations was carried out using two such pro-

grams, GAUSSIAN 98 andMOLPRO 98 (Mebel and Kaiser, 2002). In that

study, the calculations showed that the reaction between HCN and carbon

atoms (3P spectroscopic state) could involve a carbon atom interacting with a

π bond in HCN. The unstable HC2N molecule can either lose hydrogen to

produce C2N or undergo rearrangement. There are three isomers of C2N

(CCN, CNC, and cyclo-C2N), and the results of the calculations showed

that these molecules result from reactions that are endothermic.

In an ab initio study byMartin et al. (1994) that used several SCFmethods

(complete active space SCF (CASSCF), CCSD(T), and MRCI), the C2N

and CN2 molecules were studied. One of the parameters calculated was

the heat of atomization, and it was reported that the values were 288.6

and 294 kcal mol�1 for CN2 andC2N, respectively. The heat of atomization

represents the heat necessary to break all bonds in a molecule to produce

only atoms. Therefore, it gives a measure of the stability of the molecule.

Although the difference is not great, it can be seen that the C2N is slightly

more stable. It was also reported that for the isomers of C2N, the CNC and

CCN structures are about equally stable. However, for the CN2 isomers, the

calculations showed that NCN is approximately 30 kcal mol�1 more stable

than is the CNN arrangement.

The studies summarized above are included to show the type of infor-

mation that is obtainable from calculations and to provide real examples for

the interested reader. The number of studies based on SCF methods that

have been carried out over many years is enormous. Such studies have

become routine, and the results have been of great importance. It should

be remembered that one does not have to understand electronic circuitry

in order to use a spectrometer, and significant quantum mechanical calcu-

lations can now be carried out almost anywhere by nonspecialists.
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14.5 DENSITY FUNCTIONAL THEORY

The quest for quantummechanical computing techniques that are robust yet

efficient in terms of computing power has progressed for many years. One of

the techniques that has been exploited recently is known as density functional

theory (DFT) (Hohenberg and Kohn, 1964; Kohn and Sham, 1965). An

excellent survey of DFT is available in the book by Blinder (2004). This

method is based on the “density” of the electron charge field that is expressed

as χ(r). Fortunately, the electron density is somewhat related to chemical

properties that include the charge-to-size ratio of atoms and ions, Lewis

acid-base character, etc.Moreover, if a wave function is known, the electron

density is related to the square of the wave function that completely describes

the system (see Section 2.1). Thus, the problem is in essence one of deter-

mining the electron density.

If a function is determined by another (as in a probability function being

dependent on an electron density function), then it is referred to as a func-

tional. In the DFT approach, it is assumed that the energy can be expressed in

terms of a functional represented by the energy functional E[χ]:

E χ½ � ¼Vee χ½ �+Vext χ½ �+T χ½ � (14.8)

Here, Vee represents the electronic energy, Vext represents the potential of

interaction with any external field (which is zero in many cases), and T is

the total kinetic energy. In practice, a fourth term is need to represent

the exchange energy between electrons, and the resulting equation can

be written as

E χ½ � ¼Vee χ½ �+Vext χ½ �+Vexch χ½ �+T χ½ � (14.9)

Theelectron-electronpotential energycanbe representedby the second term

inside the parentheses in Eq. (14.2). The other terms in Eq. (14.9), including

the interaction of nuclei and their attraction for electrons, can be represented

as functions that can be approximated as in Eq. (14.2). Then, by much com-

plex computation, the density function is obtained from which properties of

the system can be obtained. In many cases, calculations are carried out by

hybrid methods that begin with results obtained by SCF calculations (some

of which were listed in Section 14.4), then by applying DFT methods.

The explicit computation methodology is beyond the scope of this book,

but it is sufficient to state that the DFTmethod has become a routinemethod

in quantum mechanics.
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An interesting example is supplied by the study in which Wang and

Harcourt studied the possible structures of N2O (Wang and Harcourt, 2000).

Oneaspectof the studyemployedandcompared theresultsofno less than12cal-

culation methods. These included those mentioned earlier and a few others, as

well as DFT. Using the CCSD(T) procedure, the energies of the possible iso-

mers were calculated to be as follows: N¼N¼O, the ground state; the ring

structure, 2.81 eV above the ground state, and N¼O¼N, 4.80 eV above

the ground state. These results are in accord with the structure described in

Chapter 9. Many (make that verymany) other illustrations that focus on DFT

can be found in the literature.

Although a brief description of some of the molecular orbital methods

has been presented in this chapter, further coverage is outside the scope

of a book devoted to the fundamentals of quantum mechanics. For more

complete discussions of quantum mechanical computational procedures

for molecular systems, consult the references listed at the end of this book.

14.6 EPILOGUE

It is indisputable that chemistry and physics have undergone enormous

change in recent years. Some quotes from the author’s collection of older

chemistry books show the progression from the observational science to a

more modern view. The first of these quotes comes from a very early

writer, J. L. Comstock, M.D., who had this to say about chemistry:

“Thus all knowledge of this science is obtained by experiment.” J. L.

Comstock, Elements of Chemistry, Robinson, Pratt, & Co., New York,

1836, p. 9.

Chemistry was regarded as involving either combining or decomposing

materials, and the following view expressed by E. L. Youmans, M.D. was

also expressed in other early writings.

“The breaking up of a molecule into its component atoms is analysis; the

binding together of atoms to form molecules is synthesis;…”,

AClass-book of Chemistry, E. L. Youmans, D. Appleton and Company,

New York, 1876.

It is interesting to note that in the fly leaf of Youmans’ book, there appeared

beautiful line spectra of stars, the sun, and some elements. Although the con-

cept of atoms appears throughout the 19th century, the understanding was

vague, as illustrated by this statement by W. R. Nichols, a professor at the

Massachusetts Institute of Technology:
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“It must be distinctly borne in mind, that as to the absolute size of the

atoms we know nothing; the same thing is true with regard to their abso-

lute weight.” W. R. Nichols, An Elementary Manual of Chemistry,

Ivson, Blakeman, Taylor and Company, New York, 1873.

Finally, a view of the atom that was held for many years was expressed by J.

H. Appleton, a chemistry professor at Brown University:

“Now at last the atom has been reached. It is that portion of any kind of

matter that is to human being … indivisible in fact.” J. H. Appleton,

Beginners’ Handbook of Chemistry, Chautauqua Press, New York,

1888, p. 38

From their early stages as observational sciences, chemistry and physics have

emerged and are heading in a most theoretical direction. The application of

the techniques summarized in this chapter will no doubt eliminate the need

for a great deal of experimentation and observation. It is indeed an exciting

time in both chemistry and physics, and the field of quantum mechanics has

played a great role in their evolution to this stage.
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PROBLEM

Find a paper in one of the research journals that publishes work dealing with

molecular orbital calculations. Some suggested journals are the Journal of

Chemical Physics, Computational and Theoretical Chemistry (formerly known

as Journal of Molecular Structure: THEOCHEM), Journal of Computational

Chemistry, Journal of Physical Chemistry, etc. Try to find an article in which
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as much detail as possible is given about the calculations (not always easy to

do). Study the paper thoroughly to determine such things as which basis set

to choose, how the molecular coordinates are set up, the type of computer

output obtained, how the results were interpreted, etc. After studying the

paper carefully, write a summary of appropriate length (a sort of expanded

abstract) giving an overview of the work. Try to include as many of the

salient items as possible that were described in this and earlier chapters.

A good approach would be to prepare your paper as if it were being com-

municated to a peer or professor.
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ANSWERSTOSELECTEDPROBLEMS

CHAPTER 1 ORIGINS OF QUANTUM THEORY

1. 49.5 m

2. 1.21�10�8 cm

5. n¼3 to n¼4, 41.0 nm; n¼4 to n¼1, 17 nm

7. 490 nm

9. 1.64�10�6 erg

11. 1.71�10�8 cm

13. 328. It will be less because ejected electrons carry some kinetic energy.

CHAPTER 2 METHODS OF QUANTUM MECHANICS

1. All are; eigenvalues are (a) ћ; (b) lћ;�ћ.
3. (a) 101/2 e�5x; (b) b1/2 e�bx

7.
2bð Þ1=2
a

" #
e�2bx

8. Yes for d2/dx2.

CHAPTER 3 PARTICLES IN BOXES

1. y¼A sin a1/2 x+B cos a1/2 x. Boundary conditions give y¼A sin a1/2 x.

2. 477 pm, assuming the electron behaves as a particle in a box.

3. 1.65�10�32 erg; 6.58�10�32 erg

10. 879 nm; such solutions are usually colored blue.

13. 6

CHAPTER 4 THE HYDROGEN ATOM

1. 2.19�108 cm/s
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CHAPTER 5 STRUCTURE AND PROPERTIES OF MORE
COMPLEX ATOMS

1. (a)
11

2
,
9

2
, ⋯,

1

2
; (b)

7

2
,
5

2
,
3

r
,
1

2

3. (a) 2P0; (b)
4S5/2; (c)

1S0; (d)
3F2; (e)

2D3/2

7. Zeff¼5.20; (Z – s)/n*¼2.60; ψ¼ r e2.60 r/a Y2,m (θ, ϕ)
9. (a) 2D3/2; (b)

4F3/2; (c)
1S0; (d)

6S5/2; (e)
3F4

CHAPTER 6 VIBRATIONS AND THE HARMONIC
OSCILLATOR

5. y¼ c1 e
x+ c2 e�x; (c) y¼�ex

2
+
5

2
e�x; (d) y¼e2x – 2 ex

6. (a) y¼1 – x+x2/2! – x3/3!+ ���¼e�x

(b) y¼2(1+x2/2+x4/222!+x6/233!+ ���)¼2 exp(x2/2)

(c) y¼ c1 cos x+ c2 sin x

CHAPTER 7 MOLECULAR ROTATION AND SPECTROSCOPY

1. 8.2�1013 sec�1

3. 113 pm

6. 4.82�105 dyne cm�1; 4.82 m dyne Å�1; 4.82�102 N m�1

7. 129 pm

9. 7.67 cm�1 for 12C16O and 7.04 cm�1 for 14C16O

CHAPTER 8 BONDING AND PROPERTIES OF DIATOMIC
MOLECULES

1. 1.44 D

3. 1.17 D

5. 138 pm

7. 162 pm

9. (a) KK 1σg2 1σu2 1πu4 2σg1 and B.O.¼2.5

(b) KK 1σg2 1σu2 1πu4 and B.O.¼2

(c) KK LL 1σg2 and B.O.¼1

(d) KK LL 1σg2 1σu2 2σg2 1πu4 1πg2 and B.O.¼2

12. (a) 1.5

(b) 1πu is a bonding orbital, so dissociation energy decreases.

(c) Yes. Adding one electronwould complete the 1πu4 and increase B.O.

14. (a) 1Σg
+; (b) 1Σg

+; (c) 2Πg; (d)
2Πu
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16. In the first case the electron was removed from 2σg, but in the second it
came from 1πu.

19. A triplet state indicates that degenerate πu orbitals have one electron in

each. Therefore they must be lower in energy than the 2σg.

CHAPTER 9 H€UCKEL MOLECULAR ORBITAL CALCULATIONS

5. For the linear structure the energy levels are α+21/2 β, α, and α�21/2 β.
For the ring structure the energy levels are α+2 β, α�β, and α�β. The
linear structure is the more stable form H3

+.

7. The results are analogous to those in Problem 5.

9. The bond “across” the ring connects carbon atoms C2 and C4. The

energy levels are found to be E1¼α+2.56 β; E2¼α; E3¼α�β;
E4¼α�1.56 β. The wave functions are

ψ1¼0.435ϕ1+0.557ϕ2+0.435ϕ3+0.557ϕ4

ψ2¼0.707ϕ1–0.707ϕ3

ψ3¼0.707ϕ2–0.707ϕ4

ψ4¼0.557ϕ1�0.435ϕ2+0.557ϕ3�0.435ϕ4.

The charges on atoms are q1¼q3¼�0.379 and q2¼q4¼0.379.

CHAPTER 10 MOLECULAR STRUCTURE AND SYMMETRY

1. (a) C∞v; (b) C2v; (c) D4h: (d) C3v; (e) Oh; (f ) C2v; (g) C2v; (h) D3h;

(i) C2v; ( j) Cs

CHAPTER 11 MOLECULAR SPECTROSCOPY

2. The bands correspond to the symmetric stretch, asymmetric stretch, and

bending modes. The bending mode requires much less energy to change

states, so the peak at 519 cm�1 corresponds to bending.

3. There is intramolecular hydrogen bonding in o-hydroxybenzoic acid,

which makes the OH group less accessible for interacting with a solvent,

therefore hindering the loss of H+.

6. 1.13 Å (113 pm).

9. The nitrogen atom is normally a better electron pair donor than the

oxygen atom.
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CHAPTER 12 MOLECULAR SPECTROSCOPY

3. Back donation (which reduces the bond order in the CN ligands) is

greater when the metal ion has a greater negative formal charge. This will

be greater in [Fe(CN)6]
4� than in [Co(CN)6]

3� because of charges on

the metal ions. Therefore the CN stretching band will be found at a

lower wave number in [Fe(CN)6]
4�.

4. Although cobalt has a +3 charge in [Co(NH3)6]
3+, there are no empty

orbitals on NH3, and there are no other electrons except the donated

pair. This situation is similar in [FeF6]
4�. However, in [Co(CO)3NO],

the NO behaves as a three-electron donor, so the cobalt has a charge of

�1 and a high negative formal charge. The NO has empty π* orbitals, so
back donation will be extensive.

5. For a given metal ion the value of Dq in a tetrahedral complex is usually

about half of what it is in an octahedral field generated by the same

ligands.

7. In the complex [Ag(CN)3]
2� the silver has a higher negative formal

charge as a result of having three cyanide ions attached. The back dona-

tion to the empty π* orbitals on CN will be more extensive, so the

stretching band would be found at lower than 2135 cm�1. In [Ag

(CN)3]
2� the CN stretching band is observed at 2105 cm�1, as would

be expected.

CHAPTER 13 BARRIER PENETRATION

1. (a) 0.259; (b) 0.286; (c) 0.319

3. (a) 4.78�10�51; (b) 2.58�10�47; (c) 2.96�10�43

5. (a) 7.18�10�61; (b) approximately 0

8. (a) 9.1�10�15; (b) 0.021
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Note: Page numbers followed by f indicate figures and t indicate tables.

A
ab initio calculations, 224, 341–342
Accidental degeneracy, 50–51
ac Josephson tunneling, 327–328
Adiabatic transition, 275

Allen’s model, 287

Allyl group

energy level diagram, 211f

HMO method calculations, 209–217
π bond in, 210f

structure, 209f

wave functions, 211–213, 215–216
Alpha decay

Coulomb potential, 323–324
first-order rate equation, 322–323
nuclear energy well and Coulomb barrier,

321–322, 322f
Amplitude function, 103

Angular frequency, 102

Angular momentum

lowest energy, 91

maximum value, 91

molecular rotation, 137–140
spin-orbit coupling, 91–92
z projections, 91–92, 92f

Approximate wave functions, 72–76
Atomic orbitals

combinations, 232–233, 232–233f
overlap integral for, 231–232

Auxiliary equation, 104

Avogadro’s number, 132–134, 150,
225–226, 331–332

B
Back bonding, 310–311
Back donation, 310–314
Badger’s rule, 277–278, 287
Ballhausen–Gray approximation, 178

Band gap, 227–228
Band theory of metals, 225–228, 227f
Barrier penetration

alpha decay, 321–324

ammonia inversion, 329–331
description, 315

phenomenon of, 315–316
scanning tunneling microscope,

328–329
spin tunneling, 329–331
and superconductivity

BCS theory, 325

Cooper pairs, 327–328
dc tunneling, 328

Josephson junction, 327, 327f

Ohm’s law, 324

Pauli exclusion principle, 327

single-particle tunneling, 324

wave equations, 316–321
Basis set

Gaussian functions, 337

minimal basis set, 336–337
BCS theory, 325, 327

Binding energy, 81–84
Blackbody radiation, 1–4
Bohr model, 77–80
Boltzmann distribution law, 128–129
Boltzmann’s constants, 2, 128–129,

131, 226

Bond dissociation energy, 127–128,
182–183, 286

Bond energy (BE), 159–160, 162
vs. bond length, 161, 162f

Bonding orbitals, 262

and antibonding, 170–171, 171f
electron density, 171–172, 172f

Born–Oppenheimer approximation,

57–59
Boron trifluoride (BF3)

coordinate system for, 254–255, 255f
molecular orbital diagram for, 254–255,

256f

planes of symmetry, 239, 239f

rotation around C3 axis, 238, 239f

rotation axes, 239, 239f

Broglie’s hypothesis, 25–26
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Butadiene, 262–264, 264f
orbitals/wave function plots for,

215–216, 216f

C
Carbon dioxide molecule, vibration types,

280, 281f

Cartesian coordinates, 23, 57–59
Center of symmetry, 237–238
Charge transfer (CT), 309

absorption, 309–310
bands, 309–310

Complementary solution, 104

Complete neglect of differential overlap

(CNDO), 342

Complex atoms

electron configurations, 86–89
helium, 77–80, 78f
perturbation method, 80–84
slater wave functions, 84–86
spectroscopic states, 90–97

Computational methods, 337–339
basis set, 336–337
density functional theory (DFT), 344–345
extended H€uckel method, 337–339
fundamental problem, 335–336
Hartree–Fock calculation, 340

(see also Self-consistent field (SCF)

approach)

Contracted Gaussian function. SeeGaussian-

type orbitals (GTO)

Cooper pairs, 325

Coulomb integrals, 166

Crystals, F-centers in, 51–52
Cyclobutadiene, secular determinant for,

216–217
Cyclohexane, 241

Cyclopropenyl cation, 214f

D
dc Josephson Effect, 327

Debye characteristic temperature, 132–134,
134t

Delocalization/resonance energy, 197–199,
213–214

Density functional theory (DFT), 344–345
Diatomic molecules

in bond lengths, 277–279
covalent bonds, 159–160, 160f
energy levels, 151, 152f

heteronuclear diatomic molecules,

179–185, 181t, 183t, 185f
LCAO-MO method, 164–170, 169f
MOS symmetry, 186–187
motion during vibration, 149f

orbital symmetry and reactivity, 187–189,
189f

overlap and exchange integrals, 176–179,
176t

potential energy vs. bond length, 151f

properties for, 175t

relationships for bonds, 160–164, 161t,
162–163f

rotational degrees of freedom, 151, 152f

rotational spectra, 153–156
of second period, 170–175, 171–174f,

175t

term symbols, 189–191
Diborane, 260, 260f

structure of, 260, 260f

Differential equations, 112–116, 113t
Differential operator, 103–104
Disrotatory pathway, 262, 263f, 264–265
Diverging energy, 39–42
Dulong and Petit rule, 132–134

E
eg orbitals, 297

Eigenvalues, 28–32
Electric dipole transitions, 302

Electrocyclic reaction, 262

Electron density (ED), 197–199, 211–213,
221–222

Electronegativity, 179–180, 185, 185f,
186t

Electronic transitions, 272–274
Electrons, 6–7
Equatorial positions, 234

Ethylene

energy level diagram for, 197, 197f

π bond in, 196f

wave functions for bonding orbitals,

197–199
Euler’s formulas, 106–108
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Exchange integrals, 166–169, 176t
molecular orbitals, 176

Slater-type orbitals, 176

Extended H€uckel molecular orbital method

(EHMO), 195, 337–339
Extinction coefficient, 271–272

F
Flooded planet problem, 25–26
Franck–Condon principle, 302, 303f

Frontier orbitals, 187–188, 261–262
Frost–Musulin diagram, 217, 217f

G
Gaseous molecules

molar heat capacities, 146–147, 147t
motion of, 148–149, 149f

Gaussian functions, 337

Gaussian-type orbitals (GTO), 337

Geometric center, 238

Group orbitals, 253–254, 256–257
Group theory

applications, 250

conventions, 250

C2v point group, character table, 249, 249t

C3v point group, multiplication table,

247–249, 248t
H2O (C2v), symmetry operations for, 247,

247t

irreducible representations, 249

pyramidal ammonia (C3v) molecule,

247–249, 248f
rules, 245–246
unit vector, 249, 249f

H
Hamiltonian function, 32

Hamiltonian operator, 77–80, 111
for hydrogen atom, 57–59, 73–80
kinetic energy, 46–50

Harmonic oscillator, 116–128
Hartree–Fock calculation, 340.

See also Self-consistent field (SCF)

approach

Hartree–Fock energy, 341

HCl orientations, 236–237, 237f
Heat capacity, 129–134, 130t, 146–147
gases, 146–149

Heisenberg uncertainty principle, 18–20

Helium atom, 77–80
Bohr model, 77–80
coordinate system, 78f

Hamiltonian operator, 77–80
trial wave function, 77–80

Hermite’s equation, 119–124
Heteroatoms, 217–218, 218t
Heteronuclear diatomic molecules,

174–175, 193
bond dissociation energy, 182–183
bonding and antibonding states, 179

electronegativity, 179–180, 185, 185f
hydrogen halides, 182–183, 183t
ionic character, 180–182
resonance structures, 179–180

Highest occupied molecular orbital

(HOMO), 187–188, 261–262, 264f
H2 molecule formation, 159, 160f

HMO method. See H€uckel molecular

orbital (HMO) method

H2O

molecular orbital diagram for, 253, 254f

orientations, 235, 236f

point group, 243, 243f

two mirror planes, 240, 240f

Hooke’s law, 101–102, 116–117, 116f
H€uckel molecular orbital (HMO) method,

195–204, 266–267
band theory of metals, 225–228, 227f
calculations for larger molecules, 209–217
determinants, 199–204
heteroatoms, 217–218, 218t
polynomial equations, 204–209
repulsion kernels, 222–224
stability, 222–224
triatomic inorganic molecules, 219–222

Hund’s rule, 92–94, 96, 173–174
Hybrid orbitals, 231–232
Hydrogen atom

approximate wave functions, 72–76
Bohr model, 7–14
circular motion, 8f

energy level diagram, 12f

interpreting, 63–67
ionization potential, 13–14
mechanics and electrostatics, 9–10
orbitals, 67–69, 68–69f
orthogonality, 69–72
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Hydrogen atom (Continued)

p and d wave functions, 67–69, 68f
polar coordinates, 57–59, 58f
Schr€odinger’s solution, 57–63
variation method, 72–76

Hydrogen bond

Allen model, 286

description, 284–285
inter/intramolecular, 288–289
in liquids, 288–289
potential energy, 285, 285f

potential function models, 286

in solids, 288–289
spectral effects, 290–294

Hyperchromic effects, 292

Hypochromic effects, 292

Hypsochromic shift, 292

I
Identity operation (E), 242–243, 242f
Improper rotation axis (Sn), 241–242
Inter/intramolecular hydrogen bonds,

288–289
Intermediate neglect of differential overlap

(INDO), 342

Interpreting, 63–67
Inversion, 331

ammonia molecule, 331–332
Ionization energy, 81–84
Ionization potentials, 161t, 162

bond energy for molecules, 163f

Iterative process, 205–207

J
Josephson tunneling, 325

K
Kernel repulsion, 222–224
Kirkwood–Bauer–Magat equation,

293–294
Koopmans’ theorem, 166

L
Laguerre’s equation, 60–63
Laplace’s Expansion Theorem, 202

Laplacian operator, 32

Laporte Rule, 302

Law of equipartition of energy, 148

Legendre polynomials, 60–63, 145
Legendre’s equation, 60–63
Linear combination of the atomic orbitals-

molecular orbital (LCAO-MO)

method

asymmetric/antibonding state, 168, 169f

Coulomb integrals, 166

exchange integrals, 166, 168–169
homonuclear diatomic molecule,

164–166, 168
linear combination, 164–166
MO diagram, 170, 171f

overlap integral, 166–167
symmetric/bonding state, 168, 169f

variation method, 164–166
VSIP, 166

Linear differential equations, 103–108
Linear operator, 103–104
London dispersion forces, 326

Lowest unoccupied molecular orbital

(LUMO), 187–188

M
Meissner effect, 325

Methane (CH4)

molecular orbital diagram for, 256–257,
258f

point group, 244, 244f

Minimal basis set, 336–337
Mirror planes, 237, 240

Molar absorptivity, 271–272
Molecular orbitals (MO), 159

diagrams, 252–259
diatomic molecules, 173, 173–174f
electron density, 188–189
electronegativity, 185, 185f

homonuclear diatomic molecules, 190

overlap and exchange integrals, 176

symmetry of, 186–187, 251–252
Molecular rotation

diatomic molecular spectra

gaseous DBr, 156, 157f

gaseous HCl, 153–156, 155f
selection rule, 153–154

gaseous atoms and molecules, 149–153
heat capacity, gases, 146–149
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quantum mechanics, 140–146
rotational energies, 137–140

Molecular structure

group theory, 245–250
molecular orbital diagrams, 252–259
orbital symmetry and reactivity, 261–267
point group, 243–244, 245t
and symmetry

center of symmetry/inversion center

(i), 237–238
identity (E), 242–243
improper rotation axis (Sn), 241–242
mirror plane (plane of symmetry) (σ),

240

of molecular orbitals, 251–252
proper rotation axis (Cn), 238–240

three-center bond, 259–261
valence bond description, 231–235

Molecular vibrations

differential equations, 112–116, 113t
harmonic oscillator

Hermite’s equation, 119–124
Hooke’s law, 116–117, 116f
mathematical procedures, 124–125
Morse potential, 127–128
Planck’s and Boltzmann’s constants,

131

population, of states, 128–129
potential and kinetic energies, 125–127
potential energy, 117–119
probability distribution, 127, 127f

quantum mechanical, 111–112,
124–125

recursion formula, 123–124
Schr€odinger equation, 117–119
vibrational quantum number,

122–123
wave equation, 119–121
wave functions, 124–125, 126f
zero-point energy, 122–123, 122f

heat capacity, 129–134, 130t
infrared spectroscopy, 101

linear differential equations, 103–108
structure of, 101

vibrating object, 101–103, 102f, 108–111,
109f

Moment of inertia, 137–140

N
Nephelauxetic effect, 309

Newton–Raphson methods, 205

Newton’s Second Law of Motion, 103

Nucleus, 6–7

O
Octahedralmolecule, molecular orbital

diagram, 259, 259f

Ohm’s law, 324

One-dimensional box model, 39–45
1s wave functions, 252, 252f

Operators, 27–28
eigenfunction, 28

Hermitian, 27–28
linear, 27–28
quantum mechanics, 27–28, 28t

Orbitals, 67–69, 68–69f
angular dependence, 70–71
interaction of, 71f

orthogonality, 69–70
overlap integral, 69–70
t2g and eg, 297

Orbital symmetry and reactivity, 187–189,
189f

butadiene, 262–264, 264f
conrotatory pathway, 262, 263f

disrotatory pathway, 262, 263f, 264–265
electrocyclic reaction, 262

frontier orbitals, 261–262
highest occupied molecular orbital

(HOMO), 261–262, 264f
H€uckel molecular orbital theory,

266–267
unoccupied molecular orbital (LUMO),

261–262, 265f
Orgel diagrams, 306, 307f, 308

Orthogonality, 69–72
Overlap integrals, 69–70, 166–167, 176t

molecular orbitals, 176

Slater-type orbitals, 176

P
p and d wave functions, 67–69, 68f
Particles, in boxes

crystals, F-centers in, 51–52
one-dimensional, 39–45
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Particles, in boxes (Continued)

solvated electrons, 52–54
three-dimensional, 46–51
variable separations, 45–46

Particle-wave duality, 16–18
Pauli exclusion principle, 86–87, 327
Perturbation method, 80–84

application of, 81–84
binding energy, 81–84

PF5 molecule, 234

Photoelectric effect, 14–15
electrostatic energy, 15

illustration of, 14f

kinetic energy, 15, 16f

stopping potential, 15

work function, 15

Photoelectron spectroscopy, 172

description, 274

high-energy photons, 274–275
ionization process, 275–276
orbital energy differences, 276f

orbital populations, 276f

Piezochromism, 283

π bond

allyl group, 210f

ethylene, 196f

Planck’s constants, 3, 5, 9, 15, 131

Point group, 235

C2v molecule, 243

H2O, 243, 243f

linear structure, 243

methane (CH4), 244, 244f

s and p orbitals transformations,

254, 255t

symmetry elements, 244, 245t

Polynomial equations, HMO method,

204–209
Principal axis, 239

Probability, 65–66
Proper rotation axis (Cn), 238–240

boron trifluoride (BF3)

planes of symmetry, 239, 239f

rotation around C3 axis, 238, 239f

rotation axes, 239, 239f

XeF4 molecule

rotation around C4 axis, 240,

240f

Q
Quadratic equation, 205–207
Quantum mechanical harmonic oscillator,

111–112
Quantum mechanics

eigenvalues, 28–32
molecular rotation, 140–146
operators, 27–28
postulates, 23–25
wave equation, 25–27
wave functions, 32–37

Quantum number

accidental degeneracy, 50–51
energy level diagram, 51

one-dimensional system, 45

Quantum theory

atomic hydrogen, line spectrum, 4–6
blackbody radiation, 1–4
electrons, 6–7
Heisenberg uncertainty principle, 18–20
hydrogen atom, Bohr model, 7–14
nucleus, 6–7
particle-wave duality, 16–18
photoelectric effect, 14–15

R
Radial equation, 60–63
Radial wave functions, 63

Rayleigh–Jeans law, 2–3
Recursion formula, 123–124
Red/bathochromic shift, 292

Rigid rotor, 134, 140f

Rotational energies

diatomic molecule, 146, 146f

gaseous atoms and molecules, 153

molecules, 137–140
Rotational kinetic energy, 137–140
Rotation axes, 237

Russell–Saunders/L-S coupling, 90

Rutherford’s experiment, 6–7, 7f
Rydberg constant, 5–6

S
Scanning tunneling microscope (STM),

328–329
Schr€odinger’sequation,59–60,63–64,117–119

molecular rotation, 137–140
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Schr€odinger’s time-dependent equation, 32

Schr€odinger wave equations, 25–26, 36,
96–97

Secant methods, 205

Second-order differential equations, 60–63
Secular determinant, 196–197, 199–200,

217–220
allyl system, 219

for cyclobutadiene, 216–217
polynomial equations from, 205–207
roots of, 214–215
triatomic molecules, 221

Secular equations, 167–168
Selection rule, 153–154
Self-consistent field (SCF) approach

ab initio calculations, 341

Becke’s method, 342–343
configuration interaction, 341–342
description, 340

essence of, 340

GAUSSIAN 98 and MOLPRO 98, 343

Slater determinant, 341–342
veritable alphabet soup, 342–343

Single-particle tunneling, 324

Single-ζ STO functions, 336–337
Slater determinant, 341–342
Slater’s rules, 85–86
Slater-type orbitals (STO), 336–337
Slater wave functions, 84–86
Solvatochromism

description, 283

molybdenum complexes, 284, 284f

Spectrochemical series, 299

Spectrophotometer, 271, 272f

Spectroscopic states, 90–97
Spectroscopy, 271

bond lengths determinination, 277–279
bond types, 282

electronic transitions, 272–274
hydrogen bond, 284–289
hydrogen bonding, effects of, 290–294
metal complexes (see Transition metals

complexes)

molecular rotation (see Molecular

rotation)

photoelectron, 274–276
solvatochromism, 283–284

structure determination, 279–281
visible and ultraviolet, 271–272

Spherical harmonics, 63, 145

Spherical symmetry, 66

Spin-orbit coupling, 96, 97f

Spin tunneling, 329–331
Spring constant/force constant, 101–102,

102f

STO-3G, 337

Superconductivity, 325

Superconductivity quantum interference

device (SQUID), 328

Symmetry adjusted linear combinations

(SALC), 256–257
Symmetry elements

center of symmetry/inversion center (i),

237–238
identity (E), 242–243
improper rotation axis (Sn), 241–242
mirror plane (plane of symmetry) (σ),

240

of molecular orbitals, 251–252
proper rotation axis (Cn), 238–240

Symmetry operations, 237

T
Tetrahedral CH4 molecule, coordinate

system for, 256–257, 257f
Tetrahedral molecule, 242, 242f

t2g orbitals, 297

Three-center bond, 259–261
molecular orbital diagram for, 260–261,

261f

Three-dimensional box model, 46–51,
47f, 51f

Transition metals complexes

back donation, 310–314
charge transfer absorption, 309–310
d orbitals, ligand effect

octahedral complex, 297, 298f

perturbation affects, 298

spectrochemical series, 299

splitting, 301f

tetrahedral complex, 300–301, 300f
t2g and eg, 297

transitionmetal ion and octahedral

complex, 298, 298f
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Transition metals complexes (Continued)

electronic spectra interpretation, 304–309
gaseous ions, 304, 304–305t
Orgel diagrams, 306, 307f, 308

spectral transitions, 305

electronic transitions, 301–304
Trial wave function, 73

Triatomic molecules, 219–222
Tunneling. See Barrier penetration

U
Unoccupied molecular orbital (LUMO),

261–262, 265f

V
Valence bond approach, 159, 231–235
Valence shell electron pair repulsion

(VSEPR) theory, 235

Valence state ionization potential (VSIP),

166, 177, 195–196
Variation method, 72–76
Velocity, 8

Vertical ionization, 275

Vertical transition, 303

Vibrating object, 101–103, 102f, 108–111,
109f

Vibration-rotation spectrum

gaseous DBr, 156, 157f

gaseous HCl, 155–156, 155f
Vibronic coupling, 303–304
Vibronic transitions, 303

Visible and ultraviolet spectroscopy,

271–272

W
Wave equation, 25–27, 316–321
adaptation of, 26–27
barrier penetration, 316–321
flooded planet problem, 25–26
rigid rotor, 145

Schr€odinger, 25–26
Wave functions, 32–37, 221–222, 231
allyl model, 211–213, 215–216
atomic, 197–199, 209–210
average/expectation value, 30

for bonding orbitals, 196–199
for butadiene, 215–216, 216f
Cartesian coordinates, 23

Hamiltonian, 32

molecular, 197–199, 211–213
normalization constant, 42–43
normalized, 30–32
p and d, 67–69, 68f
plots of, 42–43, 44f
quantum number, 39–42
secular determinant, 219–220

Wave mechanics, 25–26
Wave number, 5–6
Wolfsberg–Helmholtz approximation, 178

Z
Zeise’s salt, 313

Zero-point energy, 45
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