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Preface

The propagutor,'approach to a relativis\ic quant'um theory. pioneered

in rg+g by Feynman has provided a practical, as well as intuitively

appealing, formulation of quantum electrodynamics and a fertile

approaclt to a broad class of problems in the theory of elementary

putti"t".. The entire renormalization program, basic to the present

confidence of theorists in the predictions of quantum electrodynamics,

is in fact dependent on a Fe5rnman graph analysis, as is also con-

siderable progr"u. in the proofs of analytic properties required,to write

dispersion relations. Indeed, one may go so far as to adopt the

extreme view that the set of all Feynman graphs is the theory'

we do not advocate this view in this book nor in its companion
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volume, "Relativistic Quantum !'ields," nor indeed do we advocate
any single view to the exclusion of others. The unsatisfactory status
of present-day elementary particle theory does not allow one such a
luxury. In particular, we do not, wish to minimize the importance of
the progress achieved in formal quantum field theory nor the con-

siderable understanding of low-energy meson-nucleon processes given

by dispersion theory. However, we give first emphasis to the develop-
ment of the Feynman rules, proceeding directly from a particle wave
equation for the Dirac electron, integrated with hole-theory boundary
conditions.

Three main convictions guiding us in this approach were the
primary motivation for undertaking this book (later to become books):

1. The Feynman graphs and rules of calculation summarize
quantum field theory in a form in close contact with the experimental
numbers one wants to understand. Although the statement of the

theory in terms of graphs may imply perturbation theory, use of
graphical methods in the many-body problem shows that this formal-
ism is flexible enough to deal with phenomena of nonperturbative
character (for example, superconductivity and the hard-sphere Bose
gas) .

2. Some modification of the Feynnian rules of calculation may
well outlive the elaborate mathematical structure of local canonical
quantum field theory, based as it is on such idealizations as fields
defined at points in space-time. Therefore, let us develop these rules
first, independently of the field theory formalism which in time may
come to be viewed more as a superstructure than as a foundation.
' 3. Such a development, more direct and less formal-if less com-
pelling-than a deductive field theoretic approach, should bring
quantitative calculation, analysis, and understanding of Feynman
graphs into the bag of tricks of a much larger cornmunity of physicists
than the specialized narrow bne of second quantized theorists. In
particular, we have in mind our experimental colleagues and students
interested in particle physics. We believe this would be a healthy
development.

Our original idea of one book has grown in time to two volumes.
In the first book, "Relativistic Quantum Mechanics," we develop a
propagator theory of Dirac particles, photons, and Klein-Gordon
rnesons and perform a series of calculations designed to illustrate
various useful techniques and concepts in electrornagnetic, weak, and
strong interactions. These include defining and implementing the
renormalization program and evaluating effects of radiative correc-
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tions, such as the Lamb shift, in low-order calculations. The recessary
background for this book is provided by a course in nonrelativistic
quantum mechanics at the general level of schifl's text ,,euantum
Mechanics."

In the second book, ,,Relativistic 
euantum Fields,,, we develop

canonical field theory, and after constructing closed expressions for
propagators and for scattering amplitudes with the LSZ reduclion
technique, return to the Feynman graph expansion. The perturbation
expansion of the scattering amplitude constructed by canonical field
theory is shown to be identical with the Feynman rules in the first
book. with further graph analysis we study anaryticity properties of
Feynman amplitudes to arbitrary orders in the coupling parameter
and illustrate dispersion relation methods. Finally, we prove the
finiteness of renormalized quantum electrodynamics to each order of
the interaction.

Without dwelling further on what we do, we may list the major
topics we omit from discussion in these books. The development of
action principles and a formulation of quantum field theory from a
variational approach, spearheaded largely by schwinger, are on the
whole ignored. we refer to action variations only in search of sym-
metries. There is no detailed discussion of the powerful developments
in axiomatic field theory on the one hand and the purely g-matrix
approach, divorced from field theory, on the other. Aside from a
discussion of the Lamb shift and the hydrogen atom spectrum in the
first book, the bound-state problem is ignored. Dynamical applica-
tions of the dispersion relations are explored only minimaliy. A
formulation of a quantum field theory for massive vector mesonsls not
given-nor is a formulation of any quantum field theory with deriva-
tive couplings. Finally, we have not prepared a bibliography of all
the significant original papers underlying many of the developments
recorded in these books. Among the following recent excelleni books
or monographs is to be found the remedy for one or more of these
deficiencies:

Schweber, S.: "An Introduction to Relativistic euantum Field Theory,r' New
York, Harper & Row, Publishers, Inc., 1961.

Jauch, J. M., and F. Rohrlich: "The Theory of photons and Electrons." cam-
bridge, Mass., Addison-Wesley Publishing Company, Inc., 1g5b.

Bogoliubov, N. N., and D. v. shirkov: "Introduction to the Theory of euantized
Fields," New York, fnterscience publishers, Inc., Lg5g.

Akhiezer, A., and V. B. Bereztetski: .,euantum Electrodynamics,', 2d ed., New
York, John Wiley & Sons, Inc., 1g68.

umezawa, H.: "Quantum Field rheory," Amsterdam, North Hoiland pub\shing
Company, 1956.
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Eamilton, J.: "Theory of Elementary Particles," London, Oxford University
Press, 1959.

Mandl, F.: "Introduction to Quantum Field Theory," New York, Interscience
Publishers, Inc., 1960.

Roman, P.: "Theory of Elementary Particles," Amsterdam, North Holland
Publishing Company, 1960.

Wentzel, G.: "Quantum Theory of Field," New York, Interscience Publishers,
Inc., 1949.

Schwinger, S.: "Quantum Electrodynamics," New York, Dover Publications,
Inc., 1958.

Feynman, R. P.: "Quantum Electrodynamics," New York, W. A. Benjamin,
Inc., 1962.

Klein, L. (ed.): "Dispersion Relations and the Abstract Approach to Field Theory,"
New York, Gordon and Breach, Science Publishers, Inc., 1961.

Screaton, G. R. (ed.): "Dispersion Relations; Scottish Universities Summer
School," New York, Interscience Publishers, Inc., 1961.

Chew, G. F.: "S-Matrix Theory of Strong Interactions," New York, W. A'
Benjamin, Inc., 1962.

fn conclusion, we owe thanks to the many students and colleagues
who have been invaluable critics and sounding boards as our books
evolved from lectures into chapters, to Prof. Leonard I. Schiff for
important initial encouragement and support to undertake the writing
of these books, and to Rosemarie Stampfel and Ellen Mann for
marvelously cooperative secretarial help.

James D. Iljorken

Sid,ney D. Drell
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1.1 Forrnulation of a Relativistic Quanturn Theory

Since the principles of special relativity are generally accepted at this
time, a correct quantum theory should satisfy the requirement of
relativity: larvs of motion valid in one inertial system must be true in
all inertial systems. Stated mathematically, relativistic quantum
theory must be formulated in a Lorentz covariant form.

In making the transition from nonrelativistic to relativistic
quantum mechanics, we shall endeavor to retain the principles under-
lying the nonrelativistic theory. We revierv them briefly:t

1. For a given physical system there exists a state function 4 that
summarizes all that we can know about the system. fn our initial
development of the relativistic one-particle theory, we usually deal
directly with a coordinate realization of the state function, the wave
function {(clo ' '  ,s; , l). 9(q,s,t) is a complex function of all
the classical degrees of freedorn, Qr . . q,, of the time c and of any
additional degrees of freedorr, such as spin s;, which are intrinsically
quantum-mechanical. The wave function has no direct physical
interpretationl however, W(qt . . . Qn,st. s,, l)|, > 0 is inter-
preted as the probability of the systern having values (q, s")
at time l. llvidently this probability interpretation requires that
the sum of positive contributions l'/1, for all values of qr sa at
time d be finite for all physically acceptable wave functions ry'.

2. Every physical observable is represented by a linear hermitian
operator. In par:ticular, for the canonical momentum p; the operator
correspondence in a coordinate realization is

3. A phvsical system is in an eigenstate of the operator Q if

oo, : c,r,o, ( 1 . 1 )

where iD" is the nth eigenstate corresponding to the eigenvalue or,.
Ilor a hermitian operator, co, is real. In a coordinate realization the
equation conesponding to (1.1) is

Q(q,s,t){t 
"(q,s,t) 

: u ;!t "(q,s,t)
r See, for example, W. Pauli, "Handbuch der Physik," 2d ed., vol. 24, p. I,

J. Springer, Berlin, 1933. L. I. Schiff, "Quantum Mechanics," 2d ed., McGra'w-
HilI Book Company, fnc., New York, 1955. P. A. M. Dirac, "The Principles of
Quantum Mechanics," 4th ed., Oxford University Press, London, 1958.

2

f L 0
Q t +  = : -

x dq;
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4. The expansion postulate states that an arbitrary wave func-
tion, or state function, for a physical system ean be expanded in a
complete orthonormal set of eigenfunctions {, of a complete set, of
commuting operators (O"). We write, then,

r :1""r"

where the statement of orthonormalitv is

la,l2 records the probability that the system is in the zrth eigenstate.
5. The result of a measurement of a physical observable is any

one of its eigenvalues. In particular, for a physical system described
by the wave function * : Zan*n, with gry'" : an*n, measurement of
a physical observable Q results in the eigenvalue c,r, with a probability
la"lt. The average of n'rany measurements of the observable 0 on
identically prepared systenis is given by

fl r
( Q ) * =  )  I A * ( o '

L t J

6. The time development of a physical system is expressed by the
Schrcidinger equation

m!,: n*
where the hamiltonian ,FI is a linear hermitian operator. It has no
explicit time dependence for a closed physical system, that is,
AH/At: 0, in which case its eigenvalues are the possible stationary
states of the system. A superposition principle follows frorn the
Iinearity of 11 and a statement of conservation of probability from the
hermitian property of fI:

) : 'n) / tao' . - .) l(H,t)*,t, -,t*@,|,)l'  n L  J  ' -

: 0  ( 1 . 3 )

We strive to maintain these familiar six principles as under-
pinnings of a relativistic quantum theory.

,s ' ,t){*(qt , s  " , t ) : 6 n -

,s " ' ,t){19@, , s . . . , t ) ( d r l t . . . )

11
:  )  la^ lzao

/ 1  ,  . - ,

( r .2)

r i s  I-tt 
L I 'l'*{(dq'
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I .2 Early Atternpts

The simplest physical system is that of an isolated free particle, for
which the nonrelativistic hamiltonian is

(1 .4 )

The transition to quantum mechanics is achieved with the transcription

(1 .5)

which leads to the nonrelativistic Schrtidinger equation

, :  
{ ;

Equations (1.4) and (1.6) are noncovariant, and therefore unsatis-
factory. The left- and right-hand sides transform different'ly under
Lorentz transformations. Accot'ding to the theory of special rela-
tivity, the total energy E and momenta (p,,pu,p,) transform as com-
ponents of a contravariant four-vector

P' :  (PI,P',P2,?3)

of invariant length

ihl't't:iil : ff,tro,,)

+. E2
f n,nr = P,PP : 

7 
- 9' P : m2c2

p : o

H --' ih 
*

,--?,

: (+'P',P''P")

(1 .6)

(1.7)

ra is the rest mass of the particle and c the velocity of light in vacuo.
The covariant notation used throughout this book is discussed in more

detail iu Appendix A. Here we only note that the operator tran-
scription (1.5) is Lorentz covariant, since it is a cort'espondence
between two contravariant four-vectors' p'-, i'h 0/|tu.

Following this it is natural to take as the hamiltonian of a relativ-
istic free particle

H : \ / p r c ,  l m z c t

t We define stt : (ct,x) and VP = 0/0rp.

(1 .8 )
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where

and to write for a relativistic quantum analogue of (1.6)

i fdV 
/ - - - ' f f i

t ' 
4 

: \/ - ft'czYz * m2ca tlt

Immediately we are faced with the problem of interpreting the square-
root operator on the right in Eq. (1.9). If we expand it,, we obtain an
equation containing all powers of the derivative operator and thereby
a nonlocal theory. Such theories are very diffi.cult to handle and
present an unattractive version of the Schrodinger equation in which
the space and time coordinates appear in unsymmetrical forrn.

In the interest of mathematical simplicity (though perhaps with
a lack of complete physical cogency) we remove the square-root
operator in (1.9), writ ing

I J z : p 2 c 2 * m r c a (r .10)

Equivalently, iterating (1.9) and using the fact thatr if [,4,^B] : 0,
Atl, : B{ implies A2{/i :82ry', we have

-rr ,  * t  :  (- t rvrcz I  m2ca){t
d t o

This is recognized as the classical wave equation

f - '
L" -

n

/mc\'1 ,
l :  I  l V

\ n /  ) '
aa

6r , l yu

: 0

(1.e)

( 1 . 1 1 )

Before looking further into (1.11), we note first that in squaring
the energy relation lve have introduced an extraneous negative-energy
root

H : -Jp 'a+n ' ; ^

fn order to gain a simple equation, rve have sacrificed positive definite
energy and introduced the difiiculty of "extra" negative-energy
solutions. This diffrculty is eventually surmounted (as we shall study
in Chap. 5), and the negative-energy solutions prove capable of
physical interpretaticln. In particular, they are associated with
antiparticles. and the existence of antiparticles in nature lends strong
experimental support for this procedure. So let us for a moment con-
sider Eq. (1.10) and the inferred wave equation (1.11). Our first
task is to construct a conserved current, since (1.11) is a second-order

1 Tlrroughout, we use the notation [A,B]: AB * BA for commutaior
brackets and. {A,Bl : AB + BA fot anticommutator brackets.
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wave equetion and is altered from the Schrridinger form (1.2) upon
which the probability interpretation in the nonrelativistic theory
is based. This we do in analogy with the Schrddinger equation,
taking 'y'* times (1.11), i/ times the complex conjugate equation, and
subtractinE:

ot

a I ifL / .,,* ot
ulzmc'1' u

*. I o . (ry)']* - *[ o * (V)']** : o
V r ( r l , * V u { - { y , t * ) : 0

.  d /* \L .  r t- * -h 
)) 

* div ;ml{.(v,l,) 
- *(v/*)l : 0 (1 .12)

We would l ike to interpret ( ih/2mc,)(V.* -  * '#) u,  u' \ '  d t  d L /

probability density'p. However, this is impossible, since it is not a
positive definite expression. For this reason we follow the path of
historyl and temporarily d.iscard Eq. (1.11) in the hope of finding an
equation of first order in the time derivative which admits a straight-
forward probability interpretation as in the Schrodinger case. We
shall return to (1.11), however. Although we shall find a first-order
equation, it still proves impossible to retain a positive definite proba-
bility density for a single particle while at the same time providing a
physical interpretation of the negative-energy root of (1.10). There-
fore Eq. (1.11), also referred to frequently as the Klein-Gordon equa-
tion, remains an equally strong candidate for a relativistic quantum
mechanics as the one which we now discuss.

1.3 The Dirac Equation

We follow the historic path taken in 1928 by Dirac2 in seeking a
relativistically covariant, equation of the form (1.2) with positive
definite probability density. Since such an equation is linear in the
time derivative, it is natural to attempt to form a hamiltonian linear
in the space derivatives as well. Such an equation might, assume a
form

.. A{/ ltc / Att A& a'r,\i t  i  :  T(" '  f i ,+ " , ik+ ", ik1 + lmc,* = H* (1.18)
1E. Schr<idinger, Ann. Physi,k,81, 109 (1926); W. Gordon, Z. Physik, 40, LI7

(1926); O. Kleirr, Z. Physik, 4I, 407 (1927).
2P. A. M. Dirac, Proc. Roy. Soc. (London), A117, 610 (1928); ib.id., ALL9,

351 (1928); "The Prineiples of Quantum Mechanics," op. cit.
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The coefficients a; here cannot simply be numbers, since the equation
would 'ot be invariant even under a spatial rotation. Also, if we
wjsh to proceed at this point within the framework stated in Sec. 1.1,
the lvave function ry' cannot be a simple scalar. In fact, the proba-
bility density p : ,l'** should be the time component of a conserved
four-vector if its integral over all space, at fixed r, is to be an invariant.

To free (1.13) from these limitations, Dirac proposed that it be
considered as a matrix equation. The wave function ry', in analogy
with the spin wave functions of nonrelativistic quanturn mechanics,
is written as a column matrix with tr/ components

and the constant coeffi.cients o.i, p are N X N rnatrices. fn effect
then, Eq. (1.1:3) is replaced by /y' coupled first-order equations

.. d{,"xn -::
d t

,r]
*rr$  /  a  ,  a  d \  ,  ": 

+ ,L,("'#, 
* o' u*, 

-r o' drr)",*' * 
-Z,on',t lC2*'

N
s1
) II -^l/-

L

Hereafter we adopt matrix notation and drop summation indices,
in which case Eq. (1.14) appears as (1.13), to be now interpreted as
a matrix equation.

If this equation is to serve as a satisfactory point of departure,
first, it must give the correct energy-momentum relation

E z : p z " z * m r c "

for a free particle, second, it rnust allow a continuity equation and a
probability interpretation for the wave function ry', and third, it must
be Lorentz covariant. We norv discuss the first two of these
requirements.

In order that the correct energy-momentum relation emerge from
Eq. (1.13), each component ry'" of ry' must satisfy the Klein-Gordon
second-order equation, or

(1 .11)

-h' A# : (-lt2s2Y2 * m2ca)P" ( 1 . 1 5 )
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Iterating Eq. (1.13), we find

R elatiai sti c qu antu rn me ch anic s

|rd dri

(1 .16)

oqda + ordoq

2
0t*

(a;o * gd 
#,* 

g'm"cn*

W'e may resurrect (1.15) if the four matrices a;, p obey the algebra ;

apn *  axa t :  26* "

a l F  *  7 a t :  O

a l : B z : t

What other properties do we require of these four matrices a;, p, and
can we explicitly construct them? The a; and p must be hermitian
matrices in order that the hamiltonian Ho, in (1.1a) be a hermitian
operator as desired according to the postulates of Sec. 1.1. Since, by
(1.16),  a?:0'-  1,  the eigenvalues of a;  and B are *1. Also, i t
follows from their anticommutation properties that the trace, that is,
the sum of the diagonal elements, of each a; and p is zero. For example,

a; : - Ba;B

and by the cyclic property of the trace

one has
T rAB :T rBA

Tta;  :  *  Tr  A2at  :  f  Tr  Fa$ :  -  Trc;  :  g

Since the trace is just the sum of eigenvalues, the number of positive
and negative eigenvalues * 1 must be equal, and the a,; &nd p must
therefore be even-dimensional matrices. The smallest even dimen-
sion, N : 2, is ruled out, since it can accommodate only the three
mutually anticornmuting Pauli matrices o; plus a unit matrix. The
smallest dimension in which the a; and 0 can be realized is N : 4,
and that is the case we shall study. fn a particular explicit repre-
sentation the matrices are

3

)
LJ

i : L

, ltmcs
t -

x

"' 
: 

[:, ;,]
^ f ro lo :  Lo _1.1 ( 1 . 1 7 )

where the o; are the familiar 2 X 2 Pauli matrices and the unit entries

in B stand for 2 X 2 unit matrices.
To construct the differential law of current conservation, we fi.rst

introduce the hermitian conjugate wave functions ry'i : (ry'i ' ' 0i.',
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and left-multiply (1.13) bY fl:

. - . a {  t rS ,+  a  ,i t l , ! t#:; L * '"o iF* * mc2{'tBg (1.18)
k : l

I{ext we form the hermitian conjugate of (1.13) and right-multiply
bv /:

-,ou!;{ : -ry L 3#ar* * rncz*rp{
I t : 1

where oj : qt, PI : P. Subtracting (1.19) from (1.18), we find

^ 3

ih &{,t{ : >, T {-* {*,"r't)
k : l

OI

* r r *d i v j : o

where we make the identification of probability density

and of a probability current with three components

jh : c*tak* (1.22)

Integrating (1.20) over all space and using Green's tlreorem, we find

l r la,,*,,t,:o (1.2: l )

which encourages the tentative interpretation of p : *I* as a positive

definite probability density.
The notation (1.20) ant'icipates that the probability current'j forrns

a vector if (1.22) is to be invariant under three-dimensional space

rotations. We must actually show rnuch more than this' The

density and current in (1.20) must form a four-vector under Lorentz

transformations in order to ensure the covariance of the continuity

equation and of the probability interpretation. Also, the Dirac

equation (1.13) must be shown to be Lorentz covariant before we may

regard it as satisfactory.

(1 .1e)

(1.20)

( 1 . 2 1 )
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1.4 Nonrelativistic Correspondence

Before delving into the problem of establishing Lorentz invariance
of the Dirac theory, it is perhaps more urgent to see first that the
equation makes sense physically.

We may start simply by considering a free electron and counting
the number of solutions corresponding to an electron at rest. Equa-
tion (1.13) then reduces to

i hy :  gmc , *- "  
d t

since the de Broglie wavelength is infinitely large and the wave func-
tion is uniform over all space. In the specific representation of Eq.
(1.17) for B, we can write down by inspection four solutions;

t2 : e-(

0a : e+r

(r.24)

the first two of which correspond to positive energy, and the second
two to negative energy. The extraneous negative-energy solutions
which result from the quadratic form of H2 : p2c2 I ntzca ate a major
difliculty, but one for which the resolution leads to an important tri-
umph in the form of antiparticles. We come to this point in Chap. 5.
Here we confine ourselves to the "acceptable" positive-energy solu-
tions. In particular, we wish to show that they have a sensible
nonrelativistic reduction to the two-component Pauli spin theory.
To this end we introduce an interaction with an external electro-
magnetic field described by a four-potential

.4"; (iD,A)

The coupling is most simply introduced by means of the gauge-
invariant substitution

[01."'rrrrl I I
LOJ

l-01-."'rr,rl 
3 |

LTJ

[11
:  o - t t ^ " ' t n t t l 0  |"  l0 l

L0l

Iol
:  o+ t t ^C tn , t lO  I-  

t l t
LoJ

D p + T P - 9 A ,
c

(r.25)



The Dirac equation

made in classical relativistic mechanics to describe the interaction of a
point charge e with an applied field. In the present case

Itu ---> ik 0/6xu = p,

according to (1.5), and (1.25) takes the Dirac equation (1.13) to

n

(1.26)

Equation (1.26) expresses the "minimal" interaction of a Dirac
particle, considered'to be a point charge, with an applied electro-
magnetic field. To emphasize its classical parallel, we write in (1.20)
H : Ho f I/ ', with Ht : -eu.A * eO. The matrix co appears
here as the operator transcriptiorl of the velocity operator in the
classical expression for the interaction energy of a point charge:

E l r " , " i o , r  :  - : v . A * e o

This operator correspondence von : co is again evident in Bq. (1.22)
for the probability current. It, also follows if we make the relativistic
extension of the Ehrenfest relations:1

: C o = V o p

oo# :  ( , " . ( "  - :^)  *  omc, + ,o) , t ,

fi' : jIn,'t
and

with zs
momentum and

d . ._  r , t
dt "''
d
-  r - l

dt " ' '

(e/c)A lhe

: i;Ln,*t - i&o
:, [ t+ ju."xn]

l * -o*
c d t

operator corresponding to the

(1.27)

kinetic

E :_ and B : curlA

the field strengths. Equation (1.27) is the operator equation of
motion for a point charge e. More general couplings in (1.26) would
lead to specific dipole and higher multipole terms in analogy with the
classical development.

In taking the nonrelativistic limit of Eq. (1.26), it is convenient
to work in the specific representation of Eq. (1.17) and to express the

l Pauli, Schiff, and Dirac, op. cit.
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wave function in terms of two-component column matrices ,i and 7:

r:*l
We then obtain for (1.26)

- :,lfl: cd . x[;] .,- *li] t mc2 t:,1
In the nonrelativistic limit the rest energy mcz is the largest energy
in the problem and we write

tt] : u-'o*u'u"l*) (1.2e)

where now <p and y are relatively slowly varying functions of time
which are solutions of the coupled equations

ih:,1'1 : cd.*l" l  * "*l '1 
- z*",101 (1.80)

6t  Lx l  LeJ  Lx l  Lx l

The second of J!qs. (1.30) may be approximated, for kinetic energies
and field interaction energies small in comparison with mcz, Lo

d . e r
x : 2 r n " 9 ( 1 . 3 1 )

Equation (1.31) reveals 1 as the "small" components of the wave
function ry' in cornparison with the "large" components 9. Relative to
p,'X is reduced by - u/c {( 1 in the nonrelativistic approximation.
Inserting (1.31) into the first of Eqs. (1.30), rve obtain a two-component
spinor equation

rhisisrurther,."o,,"-:.il-5;=;*l;"),:.r,.ma'ices
d . a d . b : a . b * f o . a x b

or, here,
d . e c d . * : t r 2 * , i A . n X x

:  n2  -40 .u
c

Then we have

(1.28)

(1.32)

. - 0 p  I
L n - :  I

o L l

(1.33)

(1 .34)
(p - (e/c)A)'

2m *, .s + eof,c



The Dirac equation

rvhich is recognizedl as the Pauli equation. Equation (1.34) gives us

confidence that we are on the right track in accepting Ecls' (1.13) and
(1.26) as a starting point in constructing a relativistic electron theory.
The two components of 9 suffice to accommodate the two spin degrees

of freedom of a spin one-half electron; and the correct' magnetic

moment of the electron, corresponding to the gyromagnetic ratio I : 2,

automatically emerges. To see this explicitly, we reduce (1.34)

further, keeping only first-order terms in the interaction with a weak
uniform rnagnetic field B : curlA;A : liB xr

(1 .35)

Here  L : r xp  i s  t he  o rb i t a l  angu la r  momen tum,  S : r l hd  i s  t he

electron spin, "with eigenvalues -lhf 2, aind the coefficient of the inter-

action of the spin with B field gives the correct, magnetic moment

of the electron corresponding to a g value of 2.

Irortified by this successful nonrelativistic reduction of the

Dirac equation, we go on and establish the Lorentz covariance of the

Dilac theory, as required by special relativity. Next we must inves-

tigate further physical corlsequences of this theory; especially we

must interpret those "negative-energy" solutions.

Problems

I. write the Maxwell equations in l)irac form (1.13) in terms of a six-component
fiekl arnplitucle. what are the natr.ices corresponding to n and B? [see TI. Il.
Moses, Ph37s. Reu., tLB, 1670 (1959)'l

2. Verify that the matrices (1.17) satisfy the algebra of (1.16).

3. Verify (1.33).

4. ysllfv (1.22).

1 lbid.

l3

uoYu,: lX - -r*ae+ 2s).8] ,
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2.1 Covariant Forrn of the Dirac Equation

ft is necessary that the Dirac equation and the continuity equa-
tion upon which its physical interpretation rests be covariant under
Lorentz transformations. Let us first review what is meant by
a Lorentz transformation.r Two observers O and O' who are in
different inertial reference frames will describe the same physical
event with the different space-time coordinates. The rule which
relates the coordinates rp with whieh observer O describes the event
to the coordinates (rr)/ used by observer O' to describe the same
event is given by the Lorentz transformation betwcen the two sets of
coordinates:

( r ' ) t : l o ' u r u = a ' p t t
r l  :0

It is a linear homogeneous transformation, and the coefficients oolr
depend only upon the relative velocities and spatial orientations of
the two reference frames of O and O'. The basic invariant of the
Lorentz transformation is the proper tirne interval

d,sz : gp, dxP dx' : d,xP drp (2 2\

This is derived from the physical observation that the velocity of light
in vacuo is the same in all Lorentz frames. Equations (2.L) and, (2.2)
lead to the relation on the transformation coeffi.cients

au 'uuo  :  5 t o (2.3)

' Equations (2.1) and (2.3) serve as defining relations for both
proper and improper Lorentz transformations. In the former case the
determinant of the transformation coefficients satisfies the relation

det lol  :  +1

Proper Lorentz transformations can be built up by an infinite succes-
sion of infinitesimal transformations. They include transformations
to coordinates in relative motion along any spatial direction as well as
ordinary three-dimensional rotations. The improper Lorentz trans-
formations are the discrete transforrnations of space inversion and
of time inversion. They cannot be built up from a succession of
infinitesimal ones. Their transformation coefficients satisfy the

I W. Pauli, 'lTheory of llelativity," Pelgamon Press, New York, 1958.
"The Principle of Relativity," collected papers of H. A. Lorentz, A. Einstein,
H. Minkor,vski, and H. Weyl, Dover Publications, Inc., New York, 1923 reissue.

l6

(2 .1)
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" y o : 0  . y i : 0 a . ;  i : 1 , 2 , 8
This gives

^ l p . y , + ^ / y , y p - 2 g p v l

relation

det lol  :  -1
in both cases.

Our task is to construct a correspondence relating a given set
of observations of a Dirac particre made by observers o ino 0", in their
respective reference frames. rn other words, we seek a transformation
law relating the wave functions {,(n) and,p;(r,) used ny ots"rrru., O
and. o', respectively. This transformation law is a rule which allows
O' to compute r!,(r,) if given r/(r). According to the ,"qri.L_"rrt of
Lorenl,z covariance, this transformation law must lead to wave func_
tions which are solutions of Dirac equations of the same form in theprimed as well as unprimed reference frame. This forrn invariance
of the Dirac equation expresses the Lorentz invariance of the under_
lying energy-momentum connection

Pp?P : rn2c2

upon which the considerations of Chap. I were based.
. fn discussing covariance it is desirable to express the Dirac equa-

tion in a four-dimensional notation which preselves the symmetry
between ct and. ri. To this end we multiply (1.18) by B/c indintro_
duce the notation

t7

;n (t' #, * r, ft, + r, *, + ", #) r

,' : l-?, ;,] ", : fi _?]

- m a ! : g  ( 2 . 4 )

the

(2.5)

(2.6)

The new matrices 7r, provide an elegant restatement of
commutation relations (1. 16)

where I is the 4 X 4 unit matrix and hereafter will not be explicitly
indicated. rt is clear from their definition that the I ari anti-
hermitian, with (7)r: -1, and that.y0 is hermitian. In the repre_
sentation (1.17) they have the form

ft is convenient to introduce the Feynman dagger, or slash, notation:

A :  yAu :  gp, lpAo :  .yoAo -  t .  A
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and in particular

^ . \
Equation (2.4) then abbFeviates to

( i h Y - m c ) t ! : g

or, with ,' : if, 
*r,

Relatir:istic quantint' rnechan,ics

(2.7)

I

( p -mc )0 :o (2.8),

Add i t iono f thee lec t romagnet ic in te rac t ionaccord ing to the
"minimal" substitution (1.25) gives

v:t*":iff+' 'o

(,-4 - *"){: o
This in no way influences considerations of covariance' because

both pr and .4p, and hence their difference' are four-vect'ors'

2.2 proof of covariance 
,,rr

In order to establish Lorenlz covariance of the Dirac '' iiquation,

we must, satisfy two requirements. The first is that there must be an

explicit pr"*""iption which allows observer O', given the 9(r) of

observer-O, to compute lhe {t'(r') which describes to 0' the same

. phS,sical state. Second, according -to- the, relativity principle' f'(c')

will be a solution'of an equatiott *hi.h takes the form of (2J) in the

PrimedsYstem 

/ A \

\ouor f*, 
- *"),1'(n') : o

The ,yu satisfy the anticommutation relations (2.5); therefore fot - 'yo

and i;r : - io as required for a hermitian hamiltonian' ' .As may be

shown by a lengthy algebraic proof,l all such 4 X + matrices ir are

equivalent, up to a unitary transformation [/:

iu : (Jr^yr(J Ut : (J-1

lSee R. H' Good, Jr', Reu. Moil. Phys.,,2,|, L8,7 (1955), especially Sec. III,

p. 190.
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and so we drop the distinction between iu and 7r and write

(P'  -  mc)! ' ( r ' )  :0  (2.9)

with u' : ifn, fii
We ask that the transformation between { and ,y', be linear,

since both the Dirac equation and the Lorentz transformation (2.1) of
the coordinates are themselves linear. we introduce it in the form

*'(r') : {'(ar) : S(u),l,@) : S(a)*(o,-rr') (2.10)

where S(a) is a 4 X 4 matrix which operates upon the four-component
column vector ry'(c). It depends upon the relative velocities and
spatial orientations of o and o'. s must have an inverse, so that if o
knows ry''(r') which O' uses to describe his observations of a given
physical state, he may construct his own wave function {,(r)

{(r) : 3-r(q,),1/' (n') : S-r(a),!, (an)

We could equally well write, using (2.10),

{(r) : S(a-r)rlt'(ar)

which provides the identification

8(a-) : $-t(o)

The main problem is to find S.
If 8 exists, observer O', given ,lr(r)
(2.10).

By reexpressing the Dirac equation (2.2) of O in terrns of ry',(r,)
with the aid of (2.1I), O'could then check whether ry',(r,) satisfies
his own equation (2.9). He would find after left-multiplication by
s(a)

Using (2.1)

0  _ 0 r ' ,  0  : n ,  - L
}tt' o.tt' 0{, 

* , A*,,

the primed equation is found to be

f . - - . .  d  I

I 
lfiS(a)r"S-' (a)a,u 

;,, 
- *c 

),1,, 
(*,) : 0

This is form-invariant, that is, identical rvith (2.g), provided an S can

(2.rr)

ft must satisfy (2.10) and (2.11).
by O, may construct ry'l(o') using

frasloyr,"s-,ro) # - *"1*,@,) : o
to write
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be found which has the property

or equivalently

S(o)7"5-tio)&'u : ^t'

a'p7' : S-1(o)7'S(o) (2.r2)

Equation (2.12) is the fundamental relation determining S. fn seek-
ing S we are seeking a solution fo Q.l2). Once we show that (2.12)
has a solution and find it, the covariance of the Dirac equation is
established. By way of terrninology, a wave function transforming
according to (2.10) and (2.12) is a four-component Lorentz spinor.
We anticipate that S will present noyel features not found in tensor
calculus, since bilinear forms in ry' such as the probability current (1.20)
are expected to form four-vectors.

We first construct S for an infinitesimal proper Lorentz trans-
formation

with

& , p : g , p * A o t o p

A<o'P : - Aui{o

(2.L3a)

(2.13b)

1,
S - 1  : l * i a u o A u p u  ( 2 . I 4 )

+

according to Eq. (2.13) for an invariant proper tirne int'erval. Each
of the six independent nonvanishing {6t'll g€nor&tes an infinitesimal
Lor entz t ransf ormation.

Aarol : AB

for a transformation to a coordinate system moving with a velocity
c AB along the ;r direction,

A c o l r :  - A a 1 2 : A ,

for a rotation through an angle A9 about the e axis, and so forth.
Expanding S in powers of Au'p and keeping only the linear term

in the infinitesimal generators, we write

7

. q : 1 - 1 r . . . . \ r , f '  a n da  v L y  4 w

+

with 6 p u  :  - C v p

by (2.13b). Each of the six coefficients ou, is a 4 X 4 matrix, as are
the transformation S and the unit matrix 1. Inserting (2.13) and
(2.14) into (2.12) and keeping first-order terms in 46ro, we find

Ar,utu : - + (A,'.)"p(l,o*u - ooo^t')
T
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From the antisymmetry of the generators Acop, there follows

2ilg' 
"^y p - g' pr,l : l"y,,oopl (2.r5)

The problem of establishing proper Lorentz covariance of the
Dirac equation is now reduced to that of finding six matrices oog
which satisfy (2'15). The simplest guess to make is an antisvmmetric
product of two matrices, and directly we find, using (2.b), that

L l
op ,  :  

DLTpr^y , l (2.16)

is the desired matrix. According to (2.r4), s for an infinitesimar
Lorenl,z transformation is given by

S : 1 +f,[t,t,l A(tp, : 1 - 
;ou, Atot,, (2.r7)

We now complete our task by constructing the finite proper
transformations by a succession of infinitesimal ones. First, to build
up (2.1) from (2.13), we write

where Ac.r is the infinitesimal parameter, or "angle of rotation,, about
an axis in the direction labeled n, and 1, is the 4 X 4 (in space_time)
matrix of coeffcients for a unit Lorentz rotation about this axis.
v and pt label row and column respectively. Thus for a transformation
to a primed system in motion along the r axis with an infinitesimal
veloci ty cAcu: cA9

Aos', : Ao(1")'u (2.18)

(2.re)

so that

I o ,  :  | t o :  - 1 0 1  -  + / 1 0  -  - 1

Using the algebraic property of 1,r, that

[ roool
1, :19 1  0  0 l  ^ - r

l u  0  0  0 l  and  I 3 : * I

LooooJ
we can write the finite transformation for uniform relative r-axis
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motiof as

or

,o ' :  ( cosh r ) ( ro  -  t anhco r r )

rtr : (cosh r)(rt - tanh co ro) 
@.Zl)

'  f i 2 t : f r 2

xl t  :  x3

where tanh co : 0 and cosh o
\/l - p'

relate the Lorentz rotation angle co with the relative velocity cB.
This result, can be generalized to include motion along any direc-

tiqn or spatial rotation about any axis' The six matrices 1'u gener-

ating the six independent Lorentz rotations are the four-dimensional
geneializations of the three-dimensional space rotations familiar in

the nonrelativistic theory.
Turning now to the construction of a finite spinor transformation

S, we have from (2.14) and (2.18)

*'(r') : s9(r) : ri* (r - l!u,u,Iu*'\* '1''1*1
i v - - \  * t \  /

/ t \: exp 
\- i,"r,rx')*Al 

(2.22)

Specializing again to the transformation (2.19) we have

{'(*') : s-{i'tz)oau{/(s) (2'23)

where x' and r are related bv Q.zl).

o r '  

'  '  ' o *

ol [,'l
3 ll ;; I r,,0,
1l L''l

For the ind

"" :,111 (' * # t)"*, (n * # t)
: (e'r)'p,u

: (cosh col * sinh otl)'uru

: (1 - 12 + 12 cosh r,r * 1 sinh c,r

ividual components this gives

f *o'1 l- cosh c,r - sinh or 0
I rt' | | - sinh co cosh co 0

l * ' ' l : l  o o 1
L' ' , lLooo
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Similarly, for a rotation through an angle .p about the e axis,
I r 2 : _ 1 2 1  : _ l a n d

(2.24)
where

in the representation (1.17), with

f r  o l
" '  :  Lo -11

the Pauli 2 X 2 matrix. we recognize the similariry of (2.24) with the
form of rotation of a two-component Pauli spinor

9' (r ') : 
"1;tz>''d,P(r)

(2.25)

The covariant "angle" variables cop, in (2.18) are associated with the
Lorentz transformation in the same sense that the rotation angle and
direction in <o are for the three-dimensional rotation. The appearance
of half-angles in (2.24), as in (2.2b), is an expression of the double-
valuedness of the spinor law of rotationl it takes a rotation of 4n
radians to return rlt(r) to its original value. Because of this, physical
observables in the Dirac theory must be bilinear, or an even power in
{(r) .

For spatial rotations, S : Sn is unitary, since the oij are hermitian,
and

SL -  e-( t l t lo l t i . t i  :  e-Gl t )ot t . , i  :  8E1

This is not true for transformations to a moving coordinate system
S : Sr. For instance, for the transformation (2.28)

S" : g-Glz)"a'1 - g-(ul2)a' : Sl, # Si,

Ilowever, S, does have the property

St' : roS|70

found by expanding S, in a power series. Since [7e,oii] : 0, this can
be generalized to include rotations

s_I : Tosr?o (2.26)

The continuity equation is also covariant. The probability
current (1.21) and (L.22), in the notation of (2.4), is

*' (r1') : eol2) eot'z{/(n)

"" : [6' :,]

jr' (r) : alt (t) Toyurtt (n)
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and under (2.1) transforms to

jr't (rt) : sVtt (athoyu{lt (l.,t)

: 6!r (n)sr"/ots{(x)
: al/t(rhsS-ttS'lr@)
: 6qt",{/t(r)1yot,*@)

: a,u,j,(r) (2.27)

Evidently y'r(r) is a Lorentz four-vector and the continuity equation

t(r) : o
dxF

is invariant. Also, the probability density 70(a) : cp(r) transforms as
the time component of a conserved four-vector. This is the desired
result noted in Sec. 1.3 for an invariant probability.

Because the combination ry't7s in (2.27) occurs so often, it is

dignified by a new notation

(2.2e)

2.3 Space Reflection

we now expand our outlook to take into account the existence of

the improper Lorentz transformation of space reflection

x'  :  -x t '  :  t

Again covariance requires a solution of. (2'12), but in this case
we eannot, build it up from the infinitesimal transformations. How-
ever, it is easy enough to solve (2.12) directly. The transformation
matrix is

001
0  0 l

-1 o l :  n"
0  -11

Denoting S : P for the coordinate reflection, (2.12) becomes

{(r) : {t^ro

where fr(r) is known as the adjoint spinor.
property is given by

{'(r') : f,(r)s-t

P-\,P : go'^y'

P : eie'Yo

(2.28)

Its Lorentz transformation

(2.30)

(2.31)

(2.32)

l-t o
lo  -1

o,n :  
lo  o
L00

which is satisfied by



Lorentz coaariance of the Dirac equatkm

The phase factor is of no physical interest here and may be narrowed
down to the four choices !1, +i if we require that four reflections
return the spinor to itself in analogy with a rotation through 4zr
radians. P in (2.32) evidently is unitary, P-L : Pr, and satisfies
(2.26) as well. Equation (2.32) tells us that

*' (r ') : { '  (-x,t) : eieyo{/(x,t) (2.33)

In the nonrelativistic limit ry' approaches an eigenstate of P,
and by (1.24) and (2.6) the positive- and negative-energy states at rest
have opposite eigenvalu es, ovintri,ns'ic p aritie s.

The discussion of the other improper transformations, such as
time reversal, is more involved; it is given in Chap. 5.

Bilinear Covariants

By forming products of the 7 matrices it is possible to construct
16 linearly irrdependent 4 X 4 matrices lip which appear often in
applications of the Dirac theory. These are

25

I s :  1  f f :

lP : i"y||r^yr,Y, : ,Yu = (2.34)

By using the anticommutation relations (2.5) ihe I" are readily
established to be linearly independent by the following argument:

l. 1,'or each 1", (I9, : + 1.
2. l'or each I" except Is, there exists a I- such that

l* l^ :  _I1-I,

From this it follows that the trace of I" vanishes:

* Tr I ,  :  f1 fn(fa)z :  -  TI lmlr?Ir@ : - Tr I '"( I2)z :  0

3. Given I' and lb, a # b. there exists a T" + Is such that

Ir@fb - Irn

This follows by direct inspection of the I's.
4. Suppose there exist, numbers a, such that

la*1" 
: O

Then multiply by l^ * ls and take the trace; using (3), we find
a^ : 0. If l- : Is, we find a" : 0, and all coefficients vanish.

"Yp l?u, : oy

"t5 lf : tstu
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' This established the linear independence off the I',.' It follows
that any 4 X 4 matrix can be written in terms of the I".

We may now write down the Lorentz transformation properties
of the bilinear forms {,(r)l^t@) conStructed from the 16 I". W-e need
only the observation that

y p . t r * t q v : 0  . ( 2 . 3 5 )
and therefore 

brtou,r : o
or

lS,rul = 0 (2.,36)

for all proper Lorentz transformations. As a special case of (2;35)

P76:  *76P (2 .37)

Carrying out caleulations similar to (2.27) we find:

.{' (r')*' (r') = {'/(n){/@)

il' (a')trL' (a') : f,(r)S-'t$t@) : det lolfr(r)y &(a)
a pseudoscalar

{' (r')t'*' (r') : a' rV(n)tt @)
a vector

il,' (n' ) t rt' {' (o') : det lala' u{ @) 7 67 u rlt (r)
a pseudovector

i[tt (xt)ou'tltt (tt) : aloa'pilt(r)o"0r!(r)

r;s a second-rank tensor (2.38)

Problems . .

1. Verify (2.26).

2. Verify the transformation laws given in (2.38).

3. Given a free-particle spinor z(p), construct u(p l- q) for qu + 0, with p'q "-t 0,
in terms of u(p) by making a Lorentz transformation.

4. Show that there exist four 4 X 4 matricep Ip such that

R e r f u - 6

.  { ru , t , l  :29p ,

l ; " ,3  -^ ] , r rc t :o
L  d x p  l " '

that is, the Dirac equation is real.
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3.1 Plane-wave Solutions

We have seen that the Dirac theory meets the requirements of Lorentz
covariance and that the positive-energy solutions to the Dirac equa-
tion have a sensible nonrelativistic correspondence.

Further insight into the nature and interpretation of solutions of
the Dirac equation may be gained by considering the free-particle
equation. The four solutions corresponding to a free particle at
rest were siven in (1.24) and are written in the combined form

{,(r) :  u),(Q)s*(i , ,n"2th)t r  :  l ,  2, 3, 4

f  +1  r : r ,2
e r :  \

t - 1  r : 3 , 4

(3 . i )

with

The spinors are

u'(0) ?r3(0) : wn(0)

(3.2)

in this representation, Eq. (1.17), of the Dirac matrices. The first
two solutions desclibe the tr,vo spin degrees of freedorn of a Schrcidinger-
Pauli electron. The "negative-energy" solutions, r : 3 and 4,
remain to be interpreted. They are all eigenfunctions of oz - or2 with
eigenvalues *1 and -1. The Lorentz transformation (2.10) may
be used to build the fi'ee-particle solutions for an arbitrary velocity.
By transforming to a coordinate system moving with velocity - v
relative to that of the solutions at rest, we construct free-particle
wave functions for an electron with the observed velocity *v.

fn order to exhibit the general space-time coordinate variation,
we need only express the exponent in (3.1) in invariant form:

[]

[ol

l?l
Lol[i] ,,,,:[;]

"*o (**, # ,): exp (-*,  N#): exp (-*,r i , t )  (3.8)

Where cp' : gror,v and pt" : qu,,pv(o) : apofnl j our nOtatiOn thrOughOut
is such that p0 : E/, : + t/p, + mr* > a. The positive- and nega-
tive-energy solutions transform among themselves separately and do
not rnix with each other under proper Lorentz transformations, as well
as under spatial inversions. This is seen to follow frorn (3.3), since
the four-momentum of a free particle is time-like, pppt, : m2c2 ) 0.
Therefore. p, is within the light cones in p space. Under the trans-
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formations mentioned above, the future and past light cones, and hence
the positive- and negative-energy solutions, remain distinct.

We transform the spinors with

S : g-(i l2)oos, (3.4)

according Lo (2.23), where for simplicity we have specified the velocity
to lie along the r axis. The Lorentz angle <o in (3.4) is given by
<.r : tanh-r (-u/c) : - tanh-l (u/c) and differs by a minus sign from
(2.21), since we are transforming to a system moying in the r direc-
tion with velocity -v.

Applying the transformation (3.a) to the spinors (8.2), we find

w,(p) : ,-(iut2)oot6r(0) : (ro.h 2, - orsinh fi) u'(0)
\  "  . /

w'(0)

-tanhg, 0 0 I

(3.5)

tr'rom the form (3.2) for tr'(0), it is clear that the rth column of this
transformation matrix is identically the column spinor corresponding
to to'(p). We may reexpress it in terms of the energy and momentum
of the particle by using the trigonometric identities,

- tanh co u/c

0 - tanhi

- tanhi o
, 0 ,: cosn 

t

1

- tanhi

- tanh fi 1+vI - ta ;E%
@

cosh 2 :

1 a 1/I=-@!g
: p c

E l m c z

and (,J .O)

Also, we may generalize (3.5) to the case of arbitrary direction of
the velocity v. In this case the matrix l in (2.19) is replaced by

T  0  - c o s a  - c o s B  - c o s 7 l

1":l-:::; 3 3 Sl
l _ - c o s 7  0  0  0  J

where cos a, cos B, and cos ? are the direction cosines of the velocity
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v, and in the transformation matrix

ou, I l '  :2(os1 cos a *  oozcos g *  o6s cos ] )

This gives, with the aid of (3.6),

^  /  < , r  c ' V \,5 : exp 
\- z r;r/

P"C P-c

^ . c ' v
:  - Z L -

lv l

lE + *"': 
\ z*"t

I

0

P"c
E * m c z

?+c

0

I

p_c
E t m c 2

- P"c

E * m c z  E t m c z

?+c - ?uc
E * m c z  E * m c 2

10

E * m c z  E l m c z

where pa = p,'f 'ips. The general form of a free-particle solution is

,lr,@) : y;r(p)e-ic,(rw$th) (3.8)

where the rth column of (3.7) gives the corresponding spinor tu'(p)
in the representation of the ? matrices given by Eq. (1.17).

The 'u'(p) satisfy the following useful relations:

(P - e,mc)w'(P) : 0 u'(P)(F - e,mc) : g

tb'(P)w' '(P) :  6,r 'er

st

I e,wi@)t:i(p) : 6"p

Equation (3.9o), obtained by applying the Dirac operator
(i9 - m) to (3.8), states the Dirac equation for a free particle in
momentum space. For r : I or2, e, : {1 and (p - mc)w'(p) : O.
This is the equation for the two positive-energy solutions given by the
first trvo columns of (3.7). In this representation their third and
fourth components are the "srnall components" in a nonrelativistic
approximation, and they reduce to Eqs. (1.29) and (1.31) in the
absence of external fields. tr'or the negative-energy solutions the
t'large" and t'small" components are interchanged in (3.7). We also
introduce the adjoint spinor according to the definition in (2.28):

rr"(p) = w'I(p)to. It satisfies the adjoint wave equation

(3.7)

(3.9o)

(3.eb)

(3.ec)

n ' ( p ) ( p - e , m c ) : g (3.10)
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which is obtained by taking the hermitian conjugate of (8.9o) and
multiplying from the right by 70 with the aid of the identities
(yo)'  :  *1 and ,01*t7o : yrt.

Equation (3.9b) is a covariant normalization statement. The
bilinear form 6,(p)w"(p) is a Lorenlz scalar as discussed in the pre-
ceding chapter [see Eq. (2.38)], and so we verify (3.9b) simply by
returning to the rest solutions (3.2). The probability density
w,t(p)w,(p) will not be an invariant but transforms as the fourth
component of a vector according to (2.27). Calculating from the
columns of (3.7) we find

w,t (e,p)w,' (e,,p) : 
fl' A,,, (3 .1  1 )

This shows that the probability density acquires the correct factor
Ef mcz to compensate the Lorentz contraction of the volume element
along the direction of motion and to preserve thereby the normaliza-
tion of the inVariant probability. Notice that (3.9b) isan orthogonality
statement between a spinor and its adjoint of the same momentum
p, whereas in (3.11) the positive-energy spinor is orthogonal to its
hermitian conjugate spinor of negative energy and reversed momentunr.
Thus two plane-wave solutions of the same spatial momentum p but
of opposite energy are orthogonal in the sense that {t,t (r)r!t 

'(r) : 0
i f  r  : 1 , 2  a n d r '  : 3 , 4 ,  o r  v i c e  v e r s a .

Equation (3.9c) is a completeness statement applying to the four
Dirac spinors for a given momentum. It is clearly true for a free
particle at rest. To prove it, for an arbitrary momentum, we can
make an appropriate Lorentz transformation to the rest system and
then use (3.2) to find

$ .  -$ .  (  p \
lr,,wL1p1a3(p) - 

!r.,uo,\- 
-E/ arl(0)ui(0)S"-'(- #)

: S"?6?rs;pr : DoB

That ur and not a-lt appears in the completeness relation is due to the
relation Sr : ?05-1?0 derived in (2.26) and again reflects the fact that
the Lorentz transformation is not unitary.

By using the rotation operators

,$ -  g( i /2)vo.s

upon the solutions (3.2) for the electron at rest and polarized in the
a direction, it is possible to form states which are polarized in any
arbitrary direction s. In particular, the defining relation for such
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states is
d . s w :  w

if the spinor ?, corresponds to a particle polarized along direction of
the unit vector s. The specific form of these solutions is similar to
that of the two-component Pauli theory owing to the structure of d
in (2.2D.

In this description it is convenient to introduce a different nota-
tion. Let u(p,s) denote the spinor which is a positive-energy solution
of the Dirac equation with momentum pt' and spin sr,. Thus r,l(p,s)
satisfies the equation

( p - m c ) " s u e ( p , s ) : 0 (3.r2)

The spin vector sp is defined in terms of the polarization vector 3 in
the rest frame by stt : su,{', where 3, : (0,3) and the o"t'v are the trans-
formation coefficients to the rest frame, that is, pl : qu,Pv, where

F' : (m,0). Notice that susr, : -l and that PuKu: 0 and therefore

?Psp : 0. In the rest frame a satisfies

o. Bz(f,,5) : u(F,{)

Similarly let a(p,s) denote a negative-energy solution

( f l * m c ) u ( p , s ) : 0

with polarization - 5 in the rest frame, that is,

o '  5u(f , , {)  :  *u(F,$

The a(p,s) and a(p,s) are related to the to'(p) by

tot(p) : u(p,u")

w'(p) : u(p,-u")

u'(p) :  u(p,-u")

wn(p) : u(p,u")

(3.16)

wrth ui a four-vector, which in the rest frame takes the form

t i ! : ( O , i " ) : ( 0 , 0 , 0 , 1 )

An arbitrary spinor is thus specified by the momentum p, Lhe
sign of the energy, and the polarization in the rest frame 5u.

3.2 Projection Operators for Energy and Spin

fn practical calculations, it, is often convenient to have operators
which project out a spinor of given sign of energy and polarization.

(3.13)

(3.14)

(3.15)
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These projection operators are the four-dimensional analogues of the
nonrelativistic two-component operators

which project out of an arbitrary state the spin-up or spin-down
amplitude.

For the Dirac equation, we search for four operators which project
from a given plane-wave solution of momentum p the four independent
solutions corresponding to positive and negative energy and to spin up
and spin down along a given direction. We would like these operators
in a covariant form so that we may transform with ease among
different Lorentz systems, as will prove useful in practical calculations,

The four projection operators are denoted by P,(p) = P(pu,u",e)
and are definbd to satisfy the following properties:

P,(p)w'' (p) : 6,,,w,' (p)
or equivalently (3.17)

P,(p)P,,(p) : 6.,,P,(p)

An operator which projects out positive- or negative-energy
eigenstates for a given p may be found directly from (B.go), already in
covariant form. We denote it bv

r,(p) : fl*y
or, alternatively,

A+(p): ## (3.18)

By direct calculation, usingpp : p2 : rn2c2,we verify that

L,(p)tr,,(p) - m'c'(l * 
""') ! Jncp(c' * 

"') : (l +-""') o"(o)
4m2c2 /

that is,
Al(p) : A+(p)

Arso notice that 
a"(P)a-(P) : g

l \ + ( p ) * a - ( p ) : t

To exhibit the analogous operator for the spin, we go to the
rest frame, where the spin is most easily described, and try to find a
projection operator which may be cast into covaiiant form. The
natural candidate for a spin-up particle is (L * o")/2. In the same

D  _ l  *  o u' + - - - 2
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way as the two-component nonrelativistic spin projection opelator is

liberated from explicit dependence upon the a direction by rewriting

0l  o") /2 as a sc&lar ,

we try to write the Dirac spin projection operator in scalar form by

using the four-vector r7!, that is

| + o: : | * tutrtil^yo : | * Yu,l""Yo- 2 -  
2  2

This may now be cast into eovariant form by eliminating the 7e'
Because we are in the rest frame, 76 acting upon the Dirac spinor

becomes * 1. With the conventions established in (3.14) and (3.15)'

the covariant Dirac spin projection operator is finally

2(u"):ry-!#

or for a general spin vector 5r', with su?, : 0,

> ( s ) : 1 * - z u o  ( 8 . 1 9 )

Thus in the rest frame

>('ri,)to'(0) - 
r *J'ttr '  ?r1(0) : ! l :" ,., ' I(0) : pr16; (3.20)

2 ' - ' , 2 '

and 2(- i l " )w' (0)  -  t r ' (O)

Similarly, for the negative-energy spinors

>(-ri")w,(o) : t - 
;'r' u'(0) - | I !'&4: w'(o)

: +tul(o) : p,1s; (3.21)

and >Qi")*^(o): u'(o)

In terms of the definitions (3.16) of the spinors u andu, these are

2(u")u(p,u") : u(P,u")

2(u")u(P,u") : u(P,u.)

2(- u")u(P,u") :  2(- t t ' " )u(P,u") :  O

Because of the covariant form of the projection operator ), we may

1  +  d . i ,
2
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write for any polarization vector sr(srpu: 0) that

2(s)u(p,s) : u(p,s)

2(s)a(p,o) : u(p,s)

2(-s)z(p,s) :  >(-s)a(p,s) :  0

(3.22)

With the four projection operators A+(p) and )(+s) we can now
completely specify free-particle motion in terms of four-momentum p,
sign of energy e, and polarization sp with sppt, : 0. In particular,
we construct from (3.18) and (3.19) the four projeetion operators

P'(p) : L+(p)>(u")

P,(p) :  L*(p)>(-u")

P'(p) : L-(p)>(-u")
p,(p) : ^-(p)>(u")

l{otice that [)(s), A+(p)] : 0 for all vectors satisfying Sp?p : 0,
since p anticommutes with both .y5 and ,t. From this it follows that
these P,(p) satisfy the defining relations (3.17).

We shall rely upon these projection operators very frequently
in developing rapid and efficient calculational techniques. They per-
mit us to use closure methods, thus avoiding the necessity of writing
out matrices and spinor solutions component by component.

.In order to achieve an invariant formulation, we have introduced
negative-energy solutions of momentum p which, according to (3.8),
are eigenfunctions of the momenturn- operator p with eigenvalue -p.
Similarly, according to (3.19) and (3.21), the negative-energy solutions
representing spin-up and spin-down states reduce in their rest frames
to eigenfunctions of o, with eigenvalues -1 and f 1, respectively.
The physical motivation for this apparently backward association of
eigenvalues for the negative-energy solutions will appear when we
come to the hole theory in Chap. 5.

Physical Interpretation of Free-particle
Solutions and Packets

We may now superpose the plane-wave solutions at our disposal
to construct localized packets. These packets are still solutions of the
free Dirac equation, as required by the superposition principle, since
the Dirac equation is linear. We study them to gain further insight
into the interpretation of the free-particle solutions.

35
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we form a packet by superposing positive-energy

(3.24)

To begin,
solutions only:

gr+r(x,t) : 
I #.rtrLb(p,s)u(p,s)e-dppx,'th, 

(3.23)

To normalize the expansion coeffici"rri. ,,o,n to unit.probability, we
call on the spinor, orthogonality relations (3.11) and find1

[ ,tr*n(*.t\,t(+)(x.t) ds 
| '^ nt'cz sl

r  
r : J d ' p ;  

L b * ( p , s ' ) b ( p , s ) u t ( p , s ' ) u ( p , s )
t s , j s '

:  Io ' r ) lb1p,s)1, : r
* e

The average current for such a packet is given by the expectation
value of the velocity operator

J(+) : Igft>rco{//$) d|fr (3.25)

fn evaluating this rse use the following important relation between
the three four-vectors that can be formed from free-particle solutions:

For 9r(r) and, {2(r) any two solutions to the Dirac equation,
( p - m c ) { ( n ) : 0 ,

1
cilz'rp|t : 

fit\rt*, 
- (pulr)Lrl - ,kp,({zou'*) (3.26)

To prove (3.26), we observe that if ap and bp are two arbitrary four-
vectors

6b : aub,ll4(t,'y' + t't,) * 9/z1rt' - t't')l
: Apbrn - iapb,orn, (3.27)

r We sollect here familiar properties of the Dirac D function used in deriving
(3.24):

a /!\ : trtarrr lct + o
\c,/

The 6 function is mathematically respectable in the sense of distribution theory;
see, for instance, M. J. Lighthill, "Introduction to Fourier Analysis and General-
ized Functions." Cambridge University Press, London, 1958.

I dt e;<.-d), : 2r6(s - o)

f a, u(, - o)/(s) : /(a)
J

Jinterval I
lincluding s = al

if /(s) has no singularities in the interval of integration;
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Then with the Dirac equation we construct

0 : {rGi - mc)d{t+ {,rd,6 - mc){r

: -2mci[,2fr{, -t {rlq], - io,$,ou, -*/ou * ,fga,or,]g,
+

(0p : pu{tu)

and (3.26) emerges as the coeffi.cient of an arbitrary vector or,.
This identity is known as the Gordon decomposition.l It ex-

presses the Dirac current as the sum of a convection current similar
to the nonrelativistic one, and a spin current.

With the help of (3.26) for the special case ry'2 : tr : r/ and (3.23),
we now find for the current (3.25)

r ," r d,n dsp, 
T", ) b*h,,s,)b(p,s)si(o,_dtLarthr:- t  -  

J o"* J @7ff i  *L u,b*\?"
1

x -L^'E(p',s')I@i * d * ia" (p', - p,)lu(p,t)

: I o'o# >,lb(p,s)l'
f e

(3.28)

According to the normalization (3.24), the current can be written

J(+) - (ca)* : (#). : (voo)+ (3.2e)

where ( )+ denotes expectation value with respect tp a positive-energy
packet. Thus the average current for an arbitrary packet formed of
positive-energy solutions is just the classical group velocity. The
corresponding statement is familiar in the nonrelativistic Schr6dinger
theory.

Now we come to an important difference in the relativistic theory.
In the Schrddinger theory the velocity operator appearing in the
current is just p/mand, is a constant of the motion for free particles.
The current is not, however, proportional to the momentum in the
Dirac theory, and whereas the Ehrenfest relation (1.27) has shown that
d.
ge : 0 for free-particle motion, the velocity operator ca is not

constant, since [a,I/] # 0. Indeed in constructing eigenfunctions of
ca we have to include both positive- and negative-energy solutions,
since the eigenvalues of cai are 4c whereas l(cot)*l ( c, according
to (3.29).

1W. Gordon, Z. Phgsik,50, 630 (1928).
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Let us now enlarge our considerations to include the negative-

as well as positive-energy solutions in forming a packet from the

complete set of free-particle solutions. We generalize (3'23) to

r dzn lrr*l r^
*(x,t) : J fhff"{" I 

[b(p,s)z(p,s) "-i'oPapth
* d* (p,s)u (P,s)e+ioq"rth1 (3.30)

again normalized to unit probability. A short calculation gives for

the probability
r  f  S 1  - . -  .

J a'r,1,t1t,t1*6,t) : I a'o L |b(p,s)l'* ld(p,s)l'1 : t
t s

and for the current for such a packetl

r  l n  n | r 2
J '  :  I  d,p lLl lb(p, ' ) l '*  ld(p,s)PlT

r  l ?' t a

+ i 
I 

b* (- p,s')d'* (p,s)e'i 'onoth6(- p,s')okou(p,s)

* ! , t s '  
I

-  i  )  b ( -p ,s ' )d . (p ,s )e-2 i "oooth6(p ,s ' )o f t0u( -p ,s ) [  (3 '31)
L I

t r , t s '

In addition to the time-independent group velocity there now appear

cross terms between the positive- and negative-energy solutions which

oscillate rapidly in time with frequencies

'# r+-* :2 x 102, sec-l

This rapid oscillation, or zitterbeweTung,2 is proportional to the ampli-

tude of the negative-energy solutions in the packet' We have as

yet no physicai interpretation of these solutions, but we may ask

when to expect them to be present in the packet with appreciable

amplitude. The general form of a free-particle solution (3'30) shows

"*p1i.igy 
by the time independence of b(p,s) that a packet initially

formed with positive-energy solutions only does not develop negative-

energy components in the absence of forces. However, a packet

formed to represent an electron somehow localized initially in a region

1 Despite a certain inconsistency, r'e denote hereafter

"<{p '  
+ * , -p,s)  = u(-P,s)

with similar conventions for expansion coefficients b, da, etc'

z E. Schrddinger, sitzber. Preuss. Akad,. wiss, Physih-Math., 24' 418 (1930).
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of finite extent generally includes solutions of both signs of energy.
Consider, for example, the solution

ry'(r,0,s) :  (od') l ie- l ' t r '? td'w1 (0) (3.32)

which corresponds to a Gaussian density distribution of half-width -d
about the origin at time t - 0. At a later time f it can be expressed
as a packet (3.30) with the coefficients b and d* fixed by the initial
conditions, viz., at, t : 0

f  d"p l*r '  )  , , ,
J fi,"iltt 1 

-n 
L lb (p,s) u(p,s) B;p'r I h r' d* (p,s)u (p,s) s- io'r t hl
t s

: (tr flz)- 3'4 g- lstz I az rt rn,

Taking the lrourier transform and using

f a
I _* Ot, e-r2l2d2eil'rlh : (2vf,,2)3,1g-t/4t'a'z1hz

we find

lT A[b(p,s')u(p,s') 
+ d*1-r,s')a(-p,s')] : (f") ' ,-!6n'd'th1qst(Q)

The orthogonality relation (3.11) gives

d* (- p,s) : 
lry e)" 

e-p2d2 t2tl2ut(-p,s)ur1(0)
( D . D D , , |

Thus the amplitude d* of the negative-energy solutions in the packet
(3.32) is nonzero. Relative to the positive-energy components [r it is
reduced by the ratio of the upper, or small, components of u to the
Lrpper, or large, components of u, that is, by -pcf (E * mcz). This
shows that the negative-energy amplitudes are appreciable for
momenta -nrc. We also see in (3.33), however', that the packet is
composed predominantly of momenta p 3tt,/d,. Therefore, this
packet must be localized in a region of space comparable with the elec-
tron Compton wavelength, that is, with d - h,/mc, before the negative-
energy solutions enter appreciably.l

1 For a discussion of the position coordinate of a positive-energy Diracelectron
see T.  D.  Newton and E.  P.  Wigner,  Reu, Mod. Phg1s. ,2t ,400 (1949).
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F'ig. 3-1 Potential barrier confining electron of energy
.0 in region I to the left.

This result can be equally well inferred on dimensional groups

using Ap An - fi without reference to the particular gaussian shape.
fn discussing problems and interactions in which the electron is

"spread out" over distances large compared with its Compton wave-
length, we may simply ignore the existence of the uninterpreted
negative-energy solutions and hope to obtain physically sensible and
accurate results. This will not work, however', in situations which find
electrons localized to distances comparable withh'/mc' The negative-
frequency amplitudes will then be appreciable, the zitterbewegung
terms in the current, important,, and indeed we shall find ourselves
beset by paradoxes and dilemmas which defy interpretation within
the framework so far developed by the Dirac theory of an electron.
A celebrated example of these difiiculties is the Klein paradox,l
illustrated by the following example.

fn order to localize electrons, we must introduce strong external
forces confining them to the desired region. Suppose, for example, we
want to confine a free electron of energy E to region 1 to the left of
the origin a : 0 in the one-dimensional potential diagram of Fig' 3.1.
If the electron is not to be found more than a distance d to the right
of z :0, in region II, then tr/ must rise sharply within an interval
z I d' to a height Vo ) E so that the solution in II falls off with a

characteristic width ld. This is as in the Schriidinger theory, until
the confining length d shrinks to -ft,/mc and I/o - E increases beyond
rncz. To see what happens, let us consider an electrostatic potential

with a sharp boundary as in Fig. 3.2 and calculate the reflected and
transmitted current for an electron of wave number k incident from
the left with spin up along the e direction' The positive-energy
solutions for the incident and reflected waves in region I may be

1O. Klein, Z. Ph11sih,63, 157 (1929).
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written

(3.34)

l -o l
l l l
l0 l
I ck'lr' I
LE * mcz)

ns of the Dirac equa-
ntial eiD : tr/0. These
by the substitution

V r ) ( E + m c z - V o )

ftive energy -E ) 0 as

ol
1 l
o |  (3.35)

- cltkz I
- Vo + ncr)

.ity of the solution at

til
* io.: aeikx I ckit I

l*y)
ttl

*, . t :be- io , ,  l  ck r t t  l+b , r - l r , "

l-'{*)
For the transmitted wave we need the solutior
tion in the presence of a constant external poter
differ from the free-particle solutions only
ps : (l/c)(E - Vo), so that in region II

I t z k z z c 2 :  ( E  -  V o ) ' -  n ' 1 2 c 4 :  ( E  -  m c 2  -  )

We therefore write the transmitted wave of pos

l-1l l-lolr
*t "n" 

: d,eih,"l cltkz l + d'r'0,'1

lE-v,+*el l_
L O - I L E

The amplitudes d and d' are fixed by continu

Fig.3-2 Il!ectrostatic potential idealized with a sharp botrnd-
ary, with an incident free electron wave of energy -E moving t<r
the right in region I. For IZe > E I mc2 the reflected cur-
rerrt from the potential exceeds the incident one: this is an
example of the Klein paradox.
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the potential boundary as required by current conservation:

o * b : d

a-b:*,TZ+#-ad,=rd, (3.36)

bt : d,' : O (there is no sPin fliP)

If. Vo ) 0 and lE - Vol (rrlCz, the wave number is imaginary'

;r:-+ilkrl, and the solution in region II is a decaying exponential

corresponding to damping in a distance d ) h'/mc' However, as we

increase the height of thu barrier beyond Vo: E * mc'in order to

further confine the electron, the transmitted wave becomes oscillatory.

The transmitted and reflected currents may be computed, and we find

.?rru." 4r
j ino ( l  + r) '

1* :  ! l  ; ' l l  :1-rT"r  (8.87)
Jin ( f  + r ) '  J inc

whereas the form of these results reminds us of the analogous pre-

dictions of the Schriidinger theory, we must' now observe that' by

(3.36) and the above 
"orrditioo 

Vo) E * mc', r ( 0' S9 Y" find in

ia.SZj u result contradicting our ordinary reasoning by indicating a

irgoia" transmitted .rrrr"rrt and a reflected current erceeding the

incident one. What is the source of a current in region II moving left

in Fig. 3.2 into region I in this case of V o ) E { mcz? 
'We 

increased

the p"otential height I/6 beyond E * mc2 in attempting to localize the

soluiioo within one Compton wavelengt'h h'f mc, but ended up with

undamped oscillatory sJutions instead' How do we understand

this? bnly by understanding and interpreting the negative-energy

solutions. It is clear from the packet discussion that they enter

prominently in solutions localized wilhin lt'/mc' It is equally. clear

irom the uLorru calculation of the currents that our physical picture

of what is going on also fails at these distances'
We sniil tackle and resolve these questions starting in Chap. 5.

Before doing this let us look in the vast, if limited, domain of physical

problems *il.r" the applied forces are weak and smoothly varying on

a scale whose 
"n"rgy 

unit is mcz and' whose distance :unlt is h'f mc'

Here we may expect to find fertile fields for application of the Dirac

equation and theory for positive-energy electrons'

Problerns

1. Derive (3.11) in a representation-free way directly flem ffus Dirac

eouation.
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2..Prove that (3.9c) is independent of the specific representation.of the Diraa
spinors.

3. Derive (3.31) for the current in a general packet (3.30).

4. Verify (3.36) as the conditions for current eonservation.

5. Find the energy levels of a Dirac partiele in a onedimension&l box of depth
/o and width a.

6. Verify the completeness relation

4
s1 n
), 

w 
"' 

(e'p)wp't (e?) : =* U*

t - l



4
The

Foldy-\lltrouthuysen

Transformation



4.1 Introduction

Aside from the negative-energy problem, the Dirac equation appears
to provide a suitable description of the electron. It has a sensible
nonrelativistic limit, and it automatically yields the correct magnetic
moment. We now investigate the interaction of the Dirac electron
with prescribed external potentials. In particular, we shall be pri-
marily interested in low-energv properties, avoiding the difficulties
associated with the as yet uninterpreted negative-energy solutions,
which are an essentially relativistic feature. We anticipate from our
discussions of the packet in the preceding chapter that in practice
they play a very minor role in a problern such as the hydrogen atom,
which finds the electron localized in Bohr orbits of radiusl l/amt) L/m.

We shall see, in fact, that the stationary energy levels deduced
from the Dirac equation for the hydrogen atom are in exceedingly
close agreement with the observed eigenvalues. However, before
indicating the solution to the eigenvalue problem in the Coulomb
potential, it is instructive to cast the Dirac theory in a form which
displays the different interaction ternrs bet.ween the electron and an
applied field in a nonrelativistic and easily interpretable form.

We consider, then, a systematic procedure developed by Foldy
and Wouthuysen,2 namel.y, a canonical transformation which decouples
the Dirac equation into two two-component equations: one reduces to
the Pauli description in the nonrelativistic limit; the other describes
the negative-energy states.

Free-particle Transforrnatioh

As a first illustration of the Foldy-Wouthuysen transformation we con-
sider the Dirac equation for a free particle, most conveniently-for
this purpose-written in hamiltonian form and with the a matrices in
the representation introduced in Eq. (1.17). We search for a unitary
transformation U e which will remove from the equation all operators
such as a which couple the large to the small components. We call

l Henceforth we set 7r. : c : 1. The Compton lvavelength of the electron is
l/m : 3.86 X 10-tt cm, and the rest energy ?Z : 0.511 MeV. The dimensionless
fine-strncture constant is a : e2/4r = 124y.

0.b11 MeV : j9* 
"*-' 

: 
ffi sec-' : rz

in these units.
,L. L. Foldy and S. A. Wouthuysen, Phgs. Reu.,78, 29 (1950).
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any.such operator "odd"; operators which do not couple large and
small components are t 'even";thus a, .(r16 ebc., are odd, and 1, B, d,
ete. ,  are even.

Writing U p : s+is with S hermitian and not explicitly time-
dependent, the unitary transformation is

tlt : g+tsq

: e+isH* - e+isHe is*t : Ht{l

47

. a0,
- d t

If is to contain no odd operators by construction.
Since f I  :  c.p * 0m with {o,g} :0,  our problem is quite

analogous to that of attempting to find a unitarv transformation
'lvhich changes a two-component spin hamiltonian K : o,B, * o"B"
into a form which contains only even operators (that is, I and a,).
Such a transformation is simply a rotation about the y axig and the
operator ig BrQl2)o,9n: stl1a"c,9n, with tan 0o: B,/8". This suggests
that a good operator to try in our case rvould be

pis -  ssa.ee(p)  -  cos lp lO f  €9: ,  ,P. i r ,  1o1B
lp l

where the right-hand side is established by expansion of the exponential
in powers of d.
With this choice f1' becomes:

/  q c . p  , , - . . \  /  . .H' - 
(cos lpla(p) * " i ;" 

sin lpla(p)) (" .p * Bm) (cos lpld

- 
if 

sin lPle)

: ( .r .p t  Fm) (co= ;p1 o -  \ ;e sin lpla) '
\  l p l  " ' /

:  (c .  p * 0m) exp (-2Ba .p0)

:  cy .p(cos 2lplo -  
f f i  

s in zlplo) *  A@ cos 2lpl0 * lp l  s in 2lpla)

ln order to eliminate the odd operator, we choose

tan2lplo : E
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and the transformed hamiltonian is

H ' :g \ /n ,+F (4.1)

as may be verified with the aid of the triangle construction of Fig. 4.1.
The new hamiltonian is just the one rejected in Chap. 1, with the
important change that now the negative energies are also accepted.
The negative energies and four-component wave functions are the
price we must pay in order to have a factorizalion of .Il' in (4.1) into a
linear Dirac equation.

4.3 The General Transforrnation

We turn now to the more general case of an electron in a prescribed
external electromagnetic field and search for the corresponding trans-
formation S. 'Ihe hamiltonian is

H : s . . ( p -€A )+Amlee
:B rn+ t9 *e  @2)

with 9 :  * .  (p -  eA) and 6:  eQ; as before,  p0 :  -gg and

BI : +68

The fields appearing in (a.\ and hence the hamiltonian itself
may be time-dependent. In the general case the transformation S is
also time-dependent and it is not possible to construct an I which
removes the odd operators ftom H' to all orders, as was achieved in
(4.1). Therefore, we content ourselves with a nonrelativistic expansion
of the transformed hamiltonian in a power series in If m,keeping terms
only through order (kinetic energyfm)3 and (kinetic energy)(field
energy) /m2.

Fig. 4-I Foldy-Wouthrysen triangle construction.
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(4.3)

We require that the odd term in (a.3) vanish;and taking our cue from
the behavior in the free-particle case, we choose S: -igo/2m.

I This may be verified by considering

F(r) : e'\sl?e-itrs : ) { f9g)
Qon! \dx", l \-o

It follows that
AF:: : €ilsi[S,]?le-ils

and thus
d"F
ffi 

: e;rs;"1s,[s, . . .,[s,Hl .]le-;rrs

from which the identity follo'ws upon setting I : I in (a).
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Again we introduce the transformation by

{t : sisP

finding

a / A J / \ / a \
i f ie- tsg,  :  H* :  He- is t ,  -  e- is \ r ; ) *  (o ; , - ts) { ,

Thus

io! : :1, , ' (u -  c*) , - , ,1*, :  H,o,' a t  
L  \  d t /  l '

Since S is expanded in powers of l/m and is therefore "slnall" in the
nonrelativistic limit, we expand the quantity in brackets in a series
of multiple commutators, using the relationt

e+iBHe-iB : H + i[s,H] + g:[s,[s,fl]l + . . .

+g [S, [S,  . . . , [s , I I ]  . . .1  + . . .I  
n l  

t - ' L - '

Since S : O(l/m), to the desired order of accuracy we have

H' : H + iIS,Hl- j tr,lr,"il - ; [s,[s,[s,t1]ll

+ fi ts,ts,fs,ls,orz]ll - s - j ts,St + f ts,ls,Sll

To start constructing S, we consider just the terms through order
unity:

H' : 0m + E + o I ilS,glm
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We then find, to the order of accuracy desired,

i ls,Hl : -o + firu,t1+ loo,
; 2  

H t t : - B o ' -  1 -  1

; [s,[s,-- , ,  2nt g., [0,[0,6]l  - 
2*--, ut

;B {q3 Ii . l l  [S,[S, lS,Hl l l  :  
# 

-  
6mt?on

;4 R rqa

4l [s,[s,[s,[s,H))]l : 
;;,

-s: +t#

- jLs,sr :-f i , tu,bl

Collecting everything together,

/  n 2  o 4 \  IH' : al* * i^- ;;,)+ s - rf, tu,tu,.11 - ffito,ot

+ f i to,at - #+H: omtE'+ o' (4.4)

The odd terms now appear in (4,a) only in order Ifm. To reduce
thern further, we apply a second Foldy-Wouthuysen transformation
using the same prescription:

c , , : - _ i P  
^ ' o / a  

- 0 3 * 4 9 \- - 
2m o' : 

*,r---!! (# tu,.t 3m2 , 2m/

Under this transformation we find

gr r  -  , is , ( r ,  - .  j , )o  . " ,  :  Bm I  , ,  *  f , * rc , ,8 ,1+i .#
\  d /

:Bm_ f t , +0 , ,

where g" is now O(l/m'). Finally, by a third canonical transformation

- i?g", \ " : -'' 
2nr,
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this term may also be eliminated in the same way, the end result beinq

. Ht,, _ e,is,, (n,, _; $) r_,*, : Bm { t,
\ dt/

:s (*+g- i i \ *8 I  i
\ t  

*  T*-  s* ' )+ 6 -  
* '  [o ' [o 'e l l  -  

,*r l 'o,b]
Evaluating the operator products to the desired order of accuracy, we
nno

o ,  _ ( a . ( p - e A ) ) z  _ ( p - r 4 ) r _  a  ,  o
, n x -  

- -  
2 t n - :  

- r * -  -  
2 * d ' 1 3

I

, *  t t . r ,s l  + ?o) :  f f i f -n.vo -  ia.A) :  #," . ,
f ^  i e  - l  i e

Lu '  t f r  c 'EJ  :  g* t "  'P 'o 'E l

z e  s  /  . a B j \  c:  
8* r  4 " , " t \ -u :u* ) *  +*J* ro .E  x  p

:  - rhd ivE  *  #d 'cu r lE  +  wo .E  xp

and thus the reduced hamiltonig,n is to this order

H" ' -P ( ^+ (P  -eA ) ' 9 -4 \ *  -  I
\  

---t" '2 - - 
i=*')* eQ - e '- ra'B

-  
#0.  cur t  

"  
-  

n#0.  E x  e  -  
r *9- ,a iun (4 .5)

The individual terms in (a.b) have a direct physical interpreta-
tion. The terms in the first bracket give the exparrsion of

t/6-;6rap
to the desired ord-er, showing the relativistic mass increase. The
second and third terms are the electrostatic and magnetic dipole
energies. The next pair of terms which taken togeth"r ure hermitiarr
comprise the spin-orbit energy, and they have a very familiar form
in a spherically symmetric static potential. In this case curl E : 0.

o .Ex l {u; r . rxp: - }#0."
and this term reduces to

r t  e  l T V
r T s p i n - o r b i t : 4 f r ;  

U d ' L  
( 4 . 6 )
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Equation (a.6) is in agreement with the classical result obtained by

considering the magnetic field B/ : -v 1 E experienced by the mov

ing electron. The interaction energy one would expect is thus

J -  o . B '  :  : . o .  ( p  x  E )
znx zrn'

However, this is reduced by a factor of 2 owing to the Thomas pre-

cession effect and indicates that the orbital moment of the electron

has the standard gyromagnetic ratio of g" : l.
The last, term-known as the Darwin term-may be attributed to

the zitterbewegung. Because the electron coordinate fluctuates over

distances 6r -!/m, it sees a somewhat smeared out Coulornb poten-

tial; the correction is

/ -  d V  1 \ . ^  ^  A ' t r l \
(61/) : (y(r * Dr)) - (Y(r)) : 

\6'' * t + 
art 6ri -6r;6,,l

o I ar, v2v : uhvu (4.7)

in qualitative accord with the sign, form, and magnitude of the Darwin

term.

4.4 The Hydrogen Atornl

we turn to a cliscussion of the bound-state solutions of the Dirac

equation, considering in particular the energy levels of the electron

in a Coulomb field. For this problem the Dirac equation is

H* : 1". p * Am * V(r)),! : E,l' (4.8)

with I/ : -Za/r. In order to separate variables, we take advantage

of the fact that the angular momentum of a particle in a central field

is conserved. Evident ly J:L + S: r  xp * l la commutes with

the hamiltonian (4.8) and therefore we may construct simultaneous

eigenfunctions of -[1, J2, and J"' To do this, we call on experience

wiln tne pauli matrices, observing that in the representation of

1 The eigensolutions in the coulomb potential s'ere first, given by c" G.

Darwin, Proi. Roy. Soc. (London), A118, 654 (1928), and W. Gordon, Z' Physilt,

4g, 11 (1928). For a complete discussion and references of the atomic applications

of the birac equation see H. A. Bethe and E. ll. Salpeter, "Quantum Mechanics

of One- and Two-elect'ron Atoms," Academic Press Inc', New York, 1957, and

M. E. Rose, "Relativistic Electron Theory," John Wiley & Sons, Inc', New York,

1961.



The Fo ldy - Wouthury sen transJor tnation

Chap. 3

(+ )
Yi'n

tr'or7 : I - %

is diagonal in terms of. 2 X 2 pauli spin matrices. Therefore, if we
construct ry' in terms of two-component spinors

't' : l*1
LXJ

the angular separation for the sorutions of <p and 1 is precisery that
of the Pauli two-component theory. The two_component angular
solutions are eigenfunctions of. J2, J), Lz, and. 52 and are of two types:
For i : l+%

53

.-[3 3]

,,r: f_

(a.ea)

(4.eb)

The spherical harmonics here are written with the convention
Yf,^ =-(-)^Yr,-*, and the solution p(-) exists only for I > 0. The
two solutions aboye satisfy the eigenvalue equations

and

with

J 'e j f i i : iU+t l r , ^

L. aej*' : (Jz - 12 - 24)er*,
: - (1  +n)q j * ,

" * l  
-0+t)  :  -U+r/ )  i : t *16n: l  

+t :+( i+%) j : t - )4
For a given j th"y are of opposite parity, since their I values differ
by 1, and can be formed from each other by a scalar operator of odd
parity. This operator will be a linear combination of yi(0,e) since
it must change the I value by 1, and is therefore proportiorrul to r.
Dotting with o, the only pseudovector at our disposal, we form the
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pseudoscalar d. tfr and find with the above sign convention

(4.10)

The general solution to the central field problem for a given 7za is

. t , .
Y in  

-

We may finally break this down into two solutions each of definite
parity. Since Z(r) is invariant under reflection of coordinates, we
know that the energy eigenfunctions can be classified into parity
eigenstates along with (i,m); and therefore we form the even and
odd solutions, which have the property under the transformation
x ' : - x

t '@ ' ) :N ,@) :+ { ( r ' ) (4.11)
These are given by

(4.r2)

where as a common notation we have introduced

G:;..*+;)

*,,: {f, 
',-:',!7, F'z,:

r,^:lT:; I
l;; 'kJ

lot
Ir,-

+%
-%

,  [ * l -  i : t
* J * : \ * ^  j : t

:T(+':,*ia't)*.:^

: l!,#,+ - i(l + .),+)(+),,

i : t *%
j : t -%

and have made use of (4.10). The parity of these solutions is (-)'

by the convention (4.11). With the aid of the following identities we

can now find the radial equations following from (4'8):

{ ( r \  d . r  . f ( r )6.  e ' t  e l^ :  :  
r ,  (o . r  o .d" i  v '1*
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The radial equations are then

DO

(u  -  *+4 ! \G, , ( r \ :  -d 'F , , ( r \  !
\  r /  ; ; r+ |F" ( ' )
/
l E  +  * + 2 . 9 \ F 1 ; ( r ) :  * d G t i | )  t ! n . r - t  

( 4 ' 1 3 )

\ '  r  f ' u t ' ) - ' r - n r  f V t t t i \ r )

The bound-state solutions of these equations may be found by standard
methods;1 we quote only some of the results.

The energy eigenvalues are

Eo :m, l t+ (  z "  \ ' l - ) t
L ' \n  ) ]  

(4 ' t4 )

where the quantum number h : L, 2, . ., 6 is a positive integer
and the angular-momentum eigenvalues range from 0 to f- * r/z I n,
with the restriction 0 < r < n - L. Expanding @Ja) in poriers of
(za)z, we see that z corresponds to the principaf quantum number of
the nonrelativistic theory

En=*LI t -1z4 l r * (za) ' (  I  3 \ l  I'  
t -  2  n2 [ '  

* ; -  
\ f f  X-  T i ) ]+  o( (za)E) l

(4.15)
The ground-state energy is, with n : I, j : rh,

Eo : m \/1 - Zr;, - p -)lZzazrn - l(Zaaam+ . . .

The corresponding spin-up and spin-down normalized eigenfunctions
are

{n:i,1:r,,r, t (r,0,Q)

_( .2mZa)", ' ,  1 t+",
\ /G \2r(r  +2.y)

9n:7,i : !6, t(r,0,P)

(2mz ar),-,s-^,,,1'+."*, I
t%.,u;,0,0')

: ry#:'.lg (2mz ar),-,s--'",-K_..l,'*,',,-,"1
t=*.*o-l

tDarwin, Gordon, Bethe and Salpeter, and Rose, op. cfl.
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with ,: lT- ZU'z. In the nonrelativistic limit ?---+ 1 and
(L - i/Zq+0, and they reduce to the Schrodinger wave functions
multiplied by two-component Pauli spinors. In the relativistic
case lve see that as r -+ 0, ry' exhibits a mild singularity of order
(2mZar)-{z'"'rlz which becomes important only at distances

1
' - 

r;zoe-ztz2dz

For fla ) l, "y is imaginary and the solutions exhibit an oscillatory

hehavior reminiscent of that found in the Klein paradox. In this

case there is no longer a gap between the positive- and negative-energy

spectra, and again we lack a physical interpretation of the solution.

In classifying the energy levels (4.14) it is customary to denote

thern by their nonrelativistic labels, that is, by the orbital angular

momentum I appearing in {l^ and by the total 7. In the following

table we list a few of the first terms:

ISr,n

28Ya

2Pn

2Ps,6

lr5

r.6,

,6 "'ai1 11/ r  -  zu '

32  
; \ /4  

-  z ' " '

The 2S,,6 and 2P y,, states are degenerate, being the two eigenstates

of opposite parity corresponding to the same lc and j. The 2Pv,

state is higher in energy than the 2Py sLale; the energy difference,

lm(Za)a/321(I * 0(Za)'z+ '), is the fine-structure splitt ing due to

the spin-orbit interaction, (4.6). In general, the state of larger i,
for a given n, lies higher in energy according to (4.15).

How do these predictions agree with observations for the H atom?

Prior to 1947 lhe agreement was completely satisfactory after the

above predictions were modified to t'ake into account the hyperfine

splitting of each level due to coupling between the electron and proton
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:3D5ft
^-t/z 3Pot' :  --^l tz
i i :  - : 1 r ,

L Nearly equat (sptit by Lamb shift)

,p3/2 -

,al/z - 
-T

I Fine structure (spin.orbit coupling)

'Lamb shift

,ot/2 g- (trinlet) -1
to :T 

/^i^-r^.\___-f 
Hvnerfine sPlitting

L (stngtel)

Fig. 4-2 LowJying energy levels of atomic hydrogen. The diagram is
not drawn to scale.

spins. In 1947 the Lamb-Retherford measurementsl of the H-atom
fine structure confirmed an earlier suspicion of a shift of the 2s1a levels
upward relative to the 2P,,,, Iines. This ,,Lamb shift,', breaking the
degeneracy of levels with the same ?? and j but differing l, arises
from the interaction of the electrons with the fluctuations of the
quantized radiation field. Both the hyperfine structure splitting
and t'he Lamb shift have been measured and calculated to a very high
precision with good agreement.2

The hyperfine structure results from the interaction of the proton
with the electron magnetic mome't.B This has the effect of splitting
all lines into doublets corresponding to the two possible states of
total angular momentum compounded from the 7 of the electron

rW. E. Lamb, Jr., and R. C. Retherford, phgs. I ieu.,72,24l (IgbT). For
references to subsequent work see Bethe and salpeter, op. cit.; see also w. E.
Lamb, Jr., Repts. Progr. Phys., L4, 19 (19b1).

2 For a revielv of the c'rrent situation, see R,. p. Feynma', proc. rg6l soluarl
Con;f .,Interscience, New York, 1g62.

3E. Fermi, Z. Phgsik,60, 320 (1g30); see also Bethe and Salpeter, op. cit.,
p. 163.
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Bystem and the half-integer spin of the proton' Let us compute the

magnitude of this effect for s states. tr'or our purpose a nonrelativistic

desiription of the electron suffices. The interaction is of the form

H ' : * l 9 I o . S' zrl

and , : ,:";, I arr, p1r,1v x (I x 
") G+?l

Here I is the proton spin operator (1" : tll) and p(r') is the mag-

netic moment density of the proton, owing to the fact it is not a

point particle. Using the relations V x (I x v) : 1yz - (I'V)V

arra tating the angular average for spherically symmetric wave func-

tions so that
V;V; + l66oiY'

we find

2 .  c  r  . /  i  \  2  e  Y  / - ^ \
B  :  

;  s , 2 ; , t ,  J  
d 3 /  o \ r ' ) r o ' \ n n - , r - - l t )  :  

J s o  2 A n L p \ r )

The energy shift is then given, in nonrelativistic theory, by

AE^:  (Q,H' , \ , )  :?#*o. t  I  d l r t I | )pQ), l "Q)

L gor'=  
6#M,d . I l * " (0 ) | ' ?
f  - i 4  Z T a ' z / m \ -  - l:  )ma, l io," *r (r4/ , . , l

with

6'r  -  I  + '6 tr iPlet states
' ' : \ - %  

s i n g l e t s t a t e

The splitting 6, of the rzth s-state level is thus

i  i  . f8  
" " ' (y \ f,^  :  Zm""  l : iQt  
-nz- \ l r , i  

I
and is reduced by the mass ratio m/M, relative to the fine structure'

Weltonl has given a simple qualitative description of the Lamb

shift by considering the interaction of an electron, treated nonrela-

tivisticlily, with the vacuum fluctuations of the electromagnetic field.

since the dynamics of a normal mode of the electromagnetic field is

equivalent io that of a harmonic oscillator, each mode upon quantiza-

tion acquires a zero-point energy of a/2. As a result of this quantum

I T.  A.  Wel ton,  Phys '  Reu. ,74 '  1157 (1948) '
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effect there are now fluctuating electromagnetic fieids even .\4rhen no
external fields are applied. Although the average field strengths
are zero, their mean-square values are nonva,nishing, and this leads to a
mean-square fluctuation in the electron's position coordinate due to its
coupling with the field. It is the amplitude of this jiggling of a bound
electron in the hydrogen atom that we estimate. It implies; as we
saw in our discussion of the origin of the Darwin term, (4.2), an
additional interaction energy r7((6r)r)VrV from the smearing out of
the Coulomb potential 7(r) seen by the electron. To lowest order,
the change in the energy level for the electron due to this is then

AE"(Lamb) : Lz6(Gr),) I{IVLV (r)Q" d,3r

:! z"q1a4,)1,/,(o)1, (4.16)

To estimate ((6r)r), we treat the electron classically and non-
relativistically as a charged particle. Its equation of motion for

oscillation about its equilibrium coordinate in the atom is 6i : 3mE,

where E is the fluctuating electromagnetic field. For the coth Fourier
amplitude we have

^ eE'''
dr. : _ 

ma2

and hence for its mean-square amplitude

( (ar  )z \  :4g t ) ' ), \ v t @ )  /  -  
n n % 4

( (0,) ,) :#lb,oKr,),) (4.r7)and

To calculate the mean-square field strength, we consider the total
vacuum field energy

where the two values of tr refer to the two states of transverse porariza-
tion and the sum extends over all modes in a laree box of volume

L I o'. (8, + B,) : >, L;,

L 3 ,  
f  - ^: 
J ,t"*

Since / d,3r E2 : I d\r 82 and a :

l- ,*-ru I o''

lkl for free electromagnetic waves,
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the mean-square field strength in vacuo is

(r,) : h I u' d:r : 2* t d'k;: *" I *0, : I d@<E',>

fnserting in (4.17), we find

((d,')):#"1+ (4.18)

where the frequency integral extends from 0 to m ' Because of the

crudity of our approximate treatment of the electron, the integral

diverges at both ends. This is not the case for an accurate relativistic

treatment of the electron localized in a hydrogen atom. wavelengths

larger than the Bohr radius -(zam)-t will not be effective, since there

*rr.t b" a minimum flequency for the induced oscillations correspond-

ing to this typical atomic size;therefor€, cr)6;a - mZa' There is also a

high-frequency cutoff at distances - the electron Compton wave-

length lf m coming from the relativistic stmcture of the electron.

This structure corresponding to the zitterbewegung amplitude suggests

that frequencies higher than c'r''n* - ru will not be eflective in jiggling

the electron. Hence we approximate J da/u -Ln (l/Zq) and find

for the mean-square amplitude of the oscillations in the vacuum field,

by (4.18) ,
/ ,^,  , \ r1\ '  (4.1e)((Dr ) ' )  :  ( ;  , "  

^ ) \ * /

The resulting energy shift is by (a.16)

aD", : y! (!), r,, ! tp,e)r
,t \m /  Lot

f  8  Z a a s  / ,  1 \ l  , , ,:  | ;
Li=; (u' %/l 

(r7/2a2m) f in

-r 1,000 mc/sec for n' : 2, Z : 1, I : 0

This accounts for most of the measured shift of lhe2s,a level in the

hydrogen atom; for the 7t a:nd higher I states the shifts are not pre-

ciselv zero but are much smaller because the wave functions at the

origin are zero. By way of comparison with the ordinary fine stmc-

ture we see by looking back at the hamiltonian (4.5) that the ratio of

the Lamb term to the Darwin term is (8a/3zr')[ln (l/zot)] corresponding

to the ratio of the mean-square fluctuation ampiitude (4.19) to the

zitterbewegung structure -(l / m)'.
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Problerns

1. Derive (4.10).

2. The Dirac equation describing the interaction of a proton or neutron with an
applied electromagnetic field'will have an additionaj magnetic moment interaction
representing their observed anomalous magnetic mornents:

(tv - ""+
where

represents the field strengths as defined in Appendix 1.
a. For the proton, i  :  p, er: ]e]; for the neutron i  :  n, e.,  :0. Verify that the
choice of Kp : 1.79 and ro : - 1.g1 corresponds to the observed magnetic moments
and check that the additional interaction does not disturb the Lorentz covariance
of the equation. check also that the Dirac hamiltonian is hermitian and that,
probability is conserved in the presence of the additional interaction.
lr. Make a Foldy-Wouthuysen transformation for the neutron, keeping terms to
the accuracy of (4.5), and give a physical interpretation of the indiviclual terms.
calculate tlie cross section for the scattering of a slow neutron by an appliecl
electrostatic field. How might this be measured? [See L. L. Foldy, Reu. Mod.
Phys., 30,471 (1958).1

3. solve for the exact energy eigenvalues and eigenfunctions of a Dirac electron in
a uniform static magnetic field. [See L. D. Huff, phys. Ileu., g8, b01 (1981);
M. H. Johnson and B. A. Lipprnan, Phys. Reu., 77,202 (1950).1

4. calculate to lowest order in a2 the first-order zeeman effect for an electron in a
hydrogen atom. If the electron gyromagnetic ratio differs from 9 : 2, how are the
Zeeman levels altered (to first order in the dilTerence g - 2)?

5. Discuss the precession of the spin of a charged Dirac particle rvith an anomalous
magnetic moment r in an applied static magnetic field. show in particular that
the difference in the spin and orbital precession frequencies is proportional to
g - 2, or r. How does it depend upon the mass of the particle? See:

H. A. Tolhoek and S. R. de Groot, Phgsica, 1?, 17 (1951).
K. M. Case, Phys. Beu., 106, 173L (1957).
H. Mendlowitz and, K. M. Case, Phys. Reu., g?, BB (19b5).
1\{. Carrassi, Nuouo Ci.mento,7, 524 (1g58).
V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Reu. Letters, Z,4Bb (lg5g).
Louisell, Pidd, and Crane, Phys. Reu., g4, Z (19b4).
Schupp, Pidd, and Crane, Phys. Reu., !2!,1 (1961).
Charpak, Farley, Garnin, Muller, Sens, Telegdi, and Zichichi, phys. Reu.Letters,6,
128 (1961. )
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6. Construct an additional interaction term to represent a possible anomalous elec-
tric dipole moment of a Dirac particle. What happens to the parity transforma-
tion? What is the effect of such a term on the hydrcgen-atom energy levels?

lsee G. Feinberg, Phgs. Rat., LLz, 1637 (1958); E. E. Salpeter, Phgs. Reu., !L2,
1642 (1950).1

7. Owing to meson effects (discussed in Chap. 10), the proton charge is distributed
over a small region of spatial extent N10-14 cm. ^Compute the effect ori the
hydrogen-atom energy levels of such a charge distribution with mean square
radius r ^r 0.8 X 10-14 cm. Compare the result with the Lamb shift.
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5.1 The Problerrr of Negative-energy Solutions

The negative-energy solutions of the Dirac equation have been
touched on in some of our earlier discussions, and their presence in the
construction of a localized packet, for example, has been computed.
However, we have so far managed to avoid coming to grips with the
problems of interpreting them and of understanding their implica-
tions.l Let us now face up to these questions.

By their very existence the negative-energy solutions require a
massive reinterpretation of the Dirac theory in order to prevent atomic
electrons from making radiative transitions into negative-energy
states and cascading down to oblivion. This is no problem if we com-
pletely neglect interaction of the electrons with the radiation field.
We may then calculate stationary solutions as in the preceding chapter
and find energy eigenvalues and transition amplitudes which agree in
general very well with experiment. However, the problem of keeping
the electron from tumbling into a negative-energy state exists in
principle, as well as in practice, if we wish to calculate atomic properties
to such great accuracy as requires inclusion of the radiation interaction.
The transition rate for an electron in the ground state of a hydrogen
atom to fall into a negative-energy state may be calculated by apply-
ing semiclassical radiation theory and using the wave functions found
in Chap. 4. The rate for the electron to make a transition into the
energy interval -mcz to -2mc2 is

2a6 tt'tc2- ; i - t 0 8 s e c - l

and it blows up if all the negative-energy states are included. This is
clearly nonsense!

We must find some treatment of the negative=energy states other
than that suggested by the one-particle Schrcidinger theory if the Dirac
equation is to survive. Dirac did this for us in 1930. He formulated
the "hole theory," which resolves the dilemma posed by the negative-
energy solutions simply by filling up the negative-energy levels with
electrons, in accord with the Pauli exclusion principle. The vacuum
state is then one with all negative-energy electron levels filled and all
positive-energy levels empty. The stability of the hydrogen-atom
ground state, for example, is now assured, since no more electrons can
be accommodated in the negative-energy sea by the Pauli principle.

There are many consequences of this new assumption of a filled
t P. A. M. Dirac, Proc. Roy. Soc. (London), 4126,360 (1930). See also J. R.

Oppenheimer, Phys. Reu., 36, 939 (1930).
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Fi,g. 6-1 Pair production: a negative-
energy electron is excited to a positive-
energy state by radiation.

Fig. 5-2 Pair annihilation: a positive-
energy electron falls into a negative-energy
hole emitting radiation.

sea of negative-energy electrons. It is possible for a negative-energ),
electro. to absorb radiation and be excited into a po;itive-energy
state, as shown schematically in Fig. b.r. If this occurs, we observe
an electron of charge -lel and energy lE and, in addition a hole in
the negative-energy sea. The hole registers the absence of an electron
of charge - lel and energy -E andwould be interpreted by an observer
relative to the vacuum as the presence of a particle of charge *lel and
energy *z;that is, the positron. This is the basis of the Lole-iheory
interpretation of pair production. correspondingly, a hole in the
negative*energy sea, or a positron, is a trap for a positive-energy
electron and leads to electron-position pair annihilation with emission
of radiation, as shown in Fig. 5.2.

We recognize that with the hole theory we transit to a many-
particle theory des*ibing particles of both signs of charge. No longer
does the wave function have the simple probability interpretation of
the one-particle theory, since it must now also record the production
or annihilation of electron-positron pairs.

Recall, however, that the Klein-Gordon equation was discarded
and the development of the Dirac equation was motivated by the

65
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desire to establish a one-particle theory. Therefore, we may ask,
why not abandon the Dirac equation too? Wo are reluctant to
discard it for the simple reason that by now we have uncovered an
impressive body of "truth" in the Dirac equation-it predicts the
correct hydrogen-atom energy spectrum and g value of the electron to
high accuracy. Moreover, positrons as first predicted, by the theory
have been observed.

Thus the historical path of reasoning mapped out originally by
Dirac has led to the desired equation for an electron, though we have
now reinterpreted the theory and thereby renounced the motivation
that started the development. The history of physics has numerous
other examples of this pattem of progress. Therefore, we shall retain
the Dirac equation and the hole-theory interpretation and reject
instead the one-particle probability interpretation which we originally
set out to achieve. We note here that it should also be possible to
return to the second-order Klein.Gordon equation and rescue it by a
suitable reinterpretation of the wave function there too.

The advantage of the Dirac over the Klein-Gordon equation is
that it correctly describes electrons of spin fu wifh g : 2. The Klein-
Gordon equation applies for spinless particles such as pions, as will be
discussed in Chap. 9. Ifor both equations we have the invariant,
quadratic energy-momentum relation for free particles ?p?p : m2.
In both cases we must, reinterpret the negative-energy solutions in
order to secure stable ground states, and this leads unavoidably to
the existence of antiparticles as well as particles. The particles are
described by positive-energy solutions-for the Dirac equation, elec-
trons'of mass ?? and charge -lel;the antiparticles are described by
the reinterpreted negative-energy solutions and, in the present
instance, are positrons of mass m, and. charge f lel.

Charge Conjugation

There thus emerges from the hole theory a fundamental new sym-
metry in nature: to each particle there is an antiparticle and, in par-
ticular, the existence of electrons implies the existence of positrons.
We seek now a formal expression of this symmetry which we use to
form directly the wave function of a positron from that of the missing
negative-energy electron to which it corresponds.

By our physical picture a hole in the negative-energy sea record-
ing the absence of an energy -E(E ) 0), and the absence of a charge e
(for an electron e ( 0), is equivalent to the presence of a positron of

5 .2
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positive energy *z and charge -e. we thus have a one-to-one
correspondence between the negative-energy solutions of the Dirac
eouation

( i V - e / " - r n ) { : o (5 .1 )

and the positron eigenfunctions. since by their interpretation
positrons appear as positively charged electrons, the positron wave
function 'y', will be a positive-energy solution of the equation

conversely and with historical hindsight we could equally well
start with the Dirac equation (5.2) for positrons. Nowhere in our con-
siderations has the sign of the charge e played an essential role. Elec-
trons will then emerge from the hole theory reinterpretation as the
absence of the negative-energy solutions of (b.2). we have thereby
a one-to-one correspondence between solutions of (b.1) and (b.2) for
both signs of cha,rge and are led to construct an operato'transforming
the two equations into each other.

First we observe that it is necessary to change the relative sign
between the two terms iv and I in transforming irom (b.1) to (b.2).
we accomplish this most readily simply by taking the comprex
conjugate: i0/0ru : -(i|/lru)x and A,: +Atr. Upon doing [his,
we find that (5.1) becomes

(iV 4- eA - rn)*" : 0 (5.2)

: 0 (5.3)

rf we can now find a nonsingular matrix, denoted c70, with the alEebra

(Cyo)7t.(C7o)-r : -.yr

we shall have the desired form

(5.4)

with

(iV -t e4. - m)(Cyo{tx) : g

C t o { * : C { : * " (o .o )

the positron wave function. That there exists such a matrix c may be
verified by explicit construction. Let us exhibit it in our representa-
tion of (2.6), according to which Toru*ro : ?p? so that (b.a) becomes
CTurQ-r - -7t", Ot

C-IYC : -7*r

In this representation C must commute with 71 and ?a and anti-

l ( '*+,d,)r + *],r,.
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commute with,ys and y2, and a suitable choice is

c :  i tztD :  -c-r  :  -cI  :  -cr (5.6)

It suffices to be able to construct a matrix C in any given representa-
tion; the unitary transformation to any other one when applied to this
C will give a matrix appropriate to the new representation. We note
also that there is a phase arbitrariness in our definition of C in (5.6);
the similar circumstance for the parity transformation was discussed
earlier. In the present considerations the phase of a wave function is
of no physical interest and we do not pursue this question.

Let us examine in detail what the transformation ry', : C{' : it'!*
does to a negative-energy free-particle eigenfunction. For a negative-
enorgy electron at rest with spin down we have the wave function

[01
I  l n l

{o : -12n1",t1 
6lr*o-'

LrJ
The corresponding positron solution is then

l -o  o o- i l [o l
I  g  o  i  o l l o l  L  o_ i * rh 'e": i l  o i  o ol lo l lz*1"r-* '
L- i  o  o  o lLU

[11
1  l o l

Q"Y' l "o l ' -o^ '  
:  f '  (5 '7)

Lol
That is, the absence of a spin-down negative-energy electron at rest is
equivalent to the presence of a spin-up positive-energy positron at rest.
In the field-free case there is no difference between an electron and
positron, and we see by (5.7) that the transformation (5.5) has formed
just another electron solution.

Applying the same transformation to an arbitrary spin-momen-
tum eigenstate, we find, using lC,yui):0 and 7fl : tr: tt,

*" : c{r : ct,Q* : cro(!+:\. /1 * r 's\* 
"1*- r o y  -  v r u \  

Z *  )  \ - T )  
,

: a ({-+ *\ (r - to$"\ ^. ,1,x: ' \  
2 ? ? ?  ) \  2  ) " '

: (-_:E_+ *\ /r * ruo\.,.
\ ,*-)\ ' f)r" (5'8)
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Again we see that the operation of (take the complex conjugate) X
(matrix multiplication with Cyo : a72) has yielded from a nlgative_
energy solution described by four-momentum pr and, polarization s, a
positive-energy solution described by the same pp and sr. rn terms of
free-particle spinors, (b.5) reads

ei6(p,n u (,p,s) : c ilr (p,s)

ei6(e'iu(p,s) : Car (p,s)

showing that u(p,s) and u,(p,s) are charge-conjugate spinors, within a
phase factor 6(p,s).

Recall that the solutions were constructed such that

P o : * \ / p ' + i n ' : - B ) 0

Also notice that s does not change sign under charge conjugation but
the spin does revorse as we saw in (b.z). As discussed in sec. 3.2, this
di{lelence lies in the fact that the spin-projection operator has the form
(1 * "yo tt . s/2) in tl ie rest system where sp : (0,s), andthesignchange
comes from the 76 rnatrix.

The operator in (5.5) explicitly constructs the wave function of a
positron. 

'we 
may develop fi'om it an invariance operation for the

Dirac equation by defining the additional operator *hi.n changes the
sign of the electromagnetic field. Then the sequence of instructions
(1) take complex conjugate, (2) multiply by Cyo, and (3) replace all
Auby -4, is a formal symmetry opelation of the Dirac theory. It
transforms Eq. (5.1) [(5.2)] for the electron [positron] into the same
equation for the positron [electron] and is called the charge conjuga-
tion transformation, denoted by €. The physical content of the
transformation of charge conjugation is that for each physically
realizable state containing an electron in a potential Au@) th"." .or-
responds a physically realizable state of a positron in the potential
-Ar(r). Thus € changes spin-up electrons of positive eirergy to
spin-up positrons of positive energy by transforming a positiv"-".r"rgy
solution of (5.1) to a negative-energy sorution of the same equation,
that is, to a positron according to the hole theory.

That the dynamics of a positron in a field -,4, is exacti), the
same as that of an electron in a field f ,4u is not at ali surprising to us
from classical considerations. The surprising and new rezult to which
we have been led by the hole theory is that if there exist electrons of
mass ???. and charge e, there necessarilg must also exist positrons of the
same mass m but of opposite charge -e.
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It is indeed one of the strongest votes of confidence in at least
the partial validity of relativistic quantum theory that electrons of
both signs of charge and of the same mass are observed in nature.

Yacuurn Polarization

The hole theory, while removing the negative-energy difficulty, leads
to new fundamental barriers to be surmounted and new physical
predictions to be verified by experiment. For example, consider the
influence of the vacuum on the definition of the charge of the electron
and upon the interaction between two charges. A positive-energy
electron electrostatically repels the electrons in the negative-energy
sea. It thereby polarizes the vacuum in its vicinity, and the charge
density of the electron, oo(r), plus polarized vacuum, po(r), measured
relative to the vacuum, is schematically shown in Fig. 5.3. The
charge of the electron as seen by a macroscopic applied field, or by a
test charge at a large distance, is J dsrlpo(r) * pr(r)] : e, the "physi-
cal" charge. However, for a test charge probing at distances ro I R,
the apparent charge is more negative until, as ?.0 + 0, the charge
becomes J clsr ps(r) - e6, the "bare" charge, with leol > lel. This
phenomenon is observed in the hydrogen-atom spectrum. The elec-
tronic s levels are lowered relative to those with angular momentum
I # 0, since the I : 0 wave functions bring electrons close to the
protons. This effect of vacuum polarization, calculated in Chap. 8,
reduces the Lamb shift slightly. We also take up there the question
of how to connect the "bare" charge of an isolated electron with its
observed value at large distances.

Fig. 6'3 Effect of vacuum polarization orr the electron's charge
density. po is the charge density of the "bate" electron and po that
of the induced polarization "cloud" of virtual electron-positron pairs.

5 .3
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Pr!(x,t) : t! '(x',t) : e;,c7or!.,(x,t) for x, : -x (5.e)

Po(x,l) : Q'(x',t) : A(x,t)

PA(x,t) : A'(x',t) : -A(x,t) for x, : -x
(5.10)

leaves the Dirac equation and all physical observables unchanged.
The physical content of the parity invariance of the Dirac theory
rnay be expressed simply in terms of a set of observations on a state
described by a wave function *(x,t). we record these observations
on motion-picture film, aiming our camera at a plane mirror forming
an irlage of the expei'imental setup. We say that the dynamics
unde'lying our obse.vations is invariant under parity if the movie we
make of the mirror image describes a sequence of physically realizable
observations, that is, if we cannot tell from the sequence of events
observed in the film whether we are looking at a mirror image or not.
For this purpose a mirro. image is all that need be considered, although

l This question is discussed again in J. D. Bjorken and S. D. L)rell, ,,Relativis_
tic Quantum Fields," McGraw-Hill Book Company, Inc., in press.

7t

Another question arises from the hole theory: what is the mean-
ing of the infinite negative totar charge in the vacuum as we have
defined it? For the present we sidestep this question, rena'king that
there is no preferred direction in which an erectric field from such a
distribution could point. only inhomogeneities in this distributio'
due to vacuum polarization are obseryable.l

5.4 Tirne Reversal and Other Syrnrnetries

Let us turn now to the parity and the time-reversal transformations.
These are symmetry operations which are not incruded in the discus-
sion of proper l:orentz invariance of the theory. The adclitional sym-
metrv of electromagnetic gauge inva.iance is evident from the fo'm
of the coupling, pp - aAp, as remarked in Chap. 1. It is verified in
just the same way as in the Schrridinger theory.

Recall that the parity, or space reflection, transformation was
found in Sec. 2.3 to be expressed by

*'(x' ,t) is readily interp.eted as the space-reflected solution. I,'or
plane-wave solutions the parity transformation (5.9) inverts the
momenta and leaves the spins unchanged as we classically expect.'rhis transforrnation on the wave function coupied with the familiar
one for the vector potentials, expressing their scalar and vector nature
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it is not identical with spatial reflection. A mirror inverts only the
coordinates normal to its plane; this must be followed by a rotation
through zr about the normal for the parity transformation. Such a
rotation is already included, however, in our discussion of proper
Lorentz invariance.

Turning next to time-reversal invariance, its physical content
may be illustrated again in terms of the motion-picture film which we
use to record a set of observations on a state described by r/(r). Let
us now run the movie backward. We say that the dynamics under-
lying the set of observations is invariant under time reversal if the
backward-run movie desciibes a set of physically realizable observa-
tions. This invariance will be guaranteed if we may change I to
tt : -t and carrv out a transformation which reproduces the form of
the Dirac equation with the same rules for its interpretation' The
transformed wave function will describe the original electron running
backward in time and will be physically realizable, since it satisfies the
Dirac equation.

To construct the desired time-reversal transformation, we write
the Dirac equation in hamiltonian form

'Er!(x, t)  :  H{,  :  [c.(- iv -  eA) + Bm * ea]{(x, t)  (b.11)'L -6t- - rt

and define the transformation J such that if t' : -t, rl,'(t') :5,1r(t).

Then (5.11) becomest

f, 6n-\,t' (t') : -tHs-'|' (t') (5,r2)

and time-reversal invariance requires that either JH (t)l-L : - H (t') , or

5i5-1 : -i

To investigate the behavior of f/ under 5, we must specify the behavior

of the electromagnetic potentials,4, when we Let tt : -L Since A

is generated by currents which rever.se sign when the sense of tirne is

reversed, we require

Similarly,
A'(t') : -A(0

o/(l /) :  fo(l) (5.13)

since it is generated by charges; also v' : *V, sincex' : *x. To

restore (5.12) to the original form, it is clear then that transformations

with 5 J-1 must change i to -i; hence, 5 may be written in the

1 The inessential dependence on x is suppressed here.
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form (take complex conjugate)
constant matrix 7):

{ '(t ')

73

X (multiply afterward by a 4 X 4

: T,lr*(t) (5.14)
This gives

A . l , t ( + t \

i ry  :  {  (_ T"*T-.) .1(_ivt  _ eA, ( t , ) ) l
dt'

+ (TB*T-t1m * ea,e,) l* ,( t ' )

rn our usual representation (l.lz), this means ? must commute with
a2 and B and anticommute'with ar &nd ar; thus

T :  _ , i a t c - a :  * i l t l , (5.15)

is satisfactoryi the phase factor is again arbitrary.
To show that the transforrnation J corresponds to what we mean

classically by tirne reversal, we apply (b.14) and (b.15) to a plane-wave
solution for a free particle of positive energy:

1(p ! *\ /t 1',*) pr*,a- \ 2 m  
/ \  2  /

:, ('. #) r-,,(*#) r-\t, (x,t )
/p' + *\ /r * rus,\:  
\ ' ' *  ) \ - /  

* ' (x ' t ' )  (5 '16)

where. p' : (po,-p) and s' : (so,-s) project a free-particle solution
with reversed direction of space momentum p and spin s. This opera-
tion, known as the wigner time reversal, was first introduced. in 1g82.1

since the space and time coordinate inversions p and J are invari-
ance operations of the theory, we may just as well include them, if we
wish, in constructing the positron wave function. combining (5.g),
(5.14), and (5.15) with (b.b), we find a simple correspondence between
a positron wave function

*ecr(r') : Pho(l',1,(r))* : PeJ{,(r) : .iste"/ ill/(r)

with r', - -np (5.17)

and an electron wave function multipliedby ieieyu and moving back-
ward in space-time. l-or a free-particle spin-momentum eigenstate
{(r) characterized by (pr,su) and e : - 1, we see that

1 E. P. Wigner, G\ttinger Nachr., g1, b46 (1932).
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/  _a *  * \  ( t  *  ruo\ . , . r .
*pcr(x,) :  iei,"ys\- ,* )\- i-  )*al

:(t#)(=-) *.cr(r ') (5.18)

Equation (5.18) ditrers from (5.8) only in the direction of spin and
tells us, therefore, that we may picture a positron wave function of
positive energy as a negative-energy electron wave function multiplied
by ,ieteyu and moving backward in space-time.

For an arbitrary solution in the presence of electromagnetic forces
we may explicitly verify this interpretation by returning to the nega-
tive-energy eigenvalue equation

lc . (-iv - eA) + Am * eo]tt! - -E{) (5.19)

and carrying out the transformation (5.17). Evidently, by (5.10)
and (5.13), A', (*') : tAr(r) under space-time coordinate inversion,
r'r: -ru; then (5.19) takes the desired form

lrr. (-i.v' * eA'(r')) * gm - eQ' (r'))Lpm(r') : lEtpcr(t')

The interpretation of positrons as negat'ive-energy electrons running
backward in space-time forms the basis of the Stiickelberg*tr'eynman
form of positron theory.r We shall use it often in the following chap-
ters in developing scattering theory, and we shall find that it offers
great advantages there.

In conclusion, we must notice that the structure of the interaction
of electrons with the electromagnetic field was dictated by experience
with both the classical and the nonrelativistic limit of the electro-
dynamics of electrons. The existences of the symmetries we have
discussed are dependent upon the form of interaction. For instance,
an anomalous moment interaction of the type discussed in the problems
for Chap. 4 for protons and neutrons adds a term of the form ou,Fr',! I'o
the Dirac equation. Its presence affects none of the above sym-
metries. In extending the Dirac theory to other particles of spin Lf ,
such as /, meson or nucleons, and to other familiar interactions, it is
very natural to assume that these symmetries of. 3, e, P are still
preserved.

It was the great contribution of Lee and Yang2 to realize that
this is really an assumption to be verified by experiment and to suggest
that interactions such as B decay violate the symmetries of P and e.

I E. C. G. Stiickelberg, Helu. Phys. Acta, !4,32L, 588 (1941); R. P. Feynman,

Phys. Reu., 76, 749, 769 (1949).
T. D. Lee and C. N. \ang, Phys. Reu., L06, 1671 (1957).
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However, the symmetry under the operation J€p is guaranteed by
the much weaker assumptions of proper Lorcnlz invariance and the
usual connection between spin and statistics.

Problerns

1. show that the rate for an electron in the hydrogen-atom ground state to radiate
and fall into empty negative-energy states (treated in Born approximation) in
the energy interval -mc2 to -2mc2 is approximately 2a6mc2/rh = lQe gss-r.

2. Reinterpret and resolve the Klein paradox of chap. 3 by using hole-theory
ideas.

3. show that if 7, and' 7, are two representations cf the 7 matrices related by a
unitary transformation U so that 1r: tlti,U-1, then C, : (U\-ICU, where C
and c' are the corresponding matrices of the charge-ccnjugaticn transformation.
Are relations (5.6) valid for C'?

In a similar way, free (5.15) frcm the represer.tat icn (1.17) cf the 7 matrices.

4. In order that J be a symmetry operation of the Dirac theory, the rules of
interpretation of the wave function ry'l(J') must be the same as those of. {,(t). This
means that observables composed of forms bilinear in ry', and /,r must have the
same interpretation (within a sign, appropriate to the observable) as those of ry'.
a. Verify that this is so for the current:

and also

b. Repeat these calculations for the charge-conjugation transformation c. rn
particular' show 

{"@)tp{"(n) = +p@),pv@)

and interpret using the hole theory.



6
Propagator

Theory



6.1 fntroduction

YVe turn to a general discussion of scattering processes. Our aim is
to be able to calculate transition rates and cross sections with the
Dirac theory of electrons and positrons-in principle, exactly; in
practice, to low orders of expansion in the interaction parameters.
The possibility of altering the numbers of particles in such processes as
electron-positron pair production or annihilation carries us beyond
the scope of the discussions in nonrelativistic theory. However, we
shall delay as long as possible the enormous task of developing the
formalism of quantized field theory in order to accommodate this
production and annihilation of particles.

To this end we follow Feynmanl in developing the propagator
approach. The scattering process is described in terms of integral
equations. The boundary conditions for their solutions incorporate
the Stiickelberg-Feynman physical interpretation of positrons as
negative-energy electrons running backward in time. From this
formulation a working theory with unambiguous rules of calculation
for all physical processes emerges.2 To begin, we review the propaga-
tor approach to the nonrelatiyistic Schr<idinger equation.

6.2 The Nonrelativistic Propagator

fn scattering problems our attention is focused upon wave solutions
which develop in time from irritial conditions imposed in the remote
pa3t rather than on stationary energy eigerrfunctions, that is, standing
waves. Characteristically, givcn a wave packet which in the remote
past represents a particle approaching a potential, one asks what the
wave will look like in the remote future.

We turn to Huygens' principle for a convenient way of viewing
this process. If the wave function rlt(x,t) is known at one particular
time l, it may be found al any later time C' by considering at time I each
point of space x as a source of spherical waves which propagate outward
from x. The strength of the wave amplitude arriving at point x' at
time C' from the point x will be proportional to the original wave
amplitude *(x,t). If we denote the constant of proportionality by
iG(x',t '1x,t), the total wave arriving at the point x'at t ime C'wil l, by

I R. P. Feynman, Phgs. Reo.,76,749,769 (L949).
2 The quantum field theoretic basis for these rules is provided in J. D. Bjorken

and S. D. DreII, "Relativistic Quantum Fields," McGrarv-Hill-Book Company,
Inc., in press.
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Huygens' principle, bel

' l ' (x ' , t ' ) :  i l  dsrG(x ' , t ' ;x , t ) ' t t (x , t )  t '>  t

79

(6 .1 )

G(x',t';x,t) is knorvn as the Green's function or propagator, and it
describes to us according to Huygens' principle the influence upon

{(x' ,t') of the magnitude of t! at x at time t. , Knowledge of G enables
us to construct the physical state which develops in time from any
given initial state, and thus is equivalent to a complete solution of the
Schrcidinger equation.

We must, still give a complete formal definition of G. So far
we have only claimed its existence on the basis of physical arguments.
Let us pursue these arguments further in order to develop a better
understanding of the propagator approach. Consider first a free-wave
solution. The motion of a free particle is completely known, and it
should not come as a surprise that the corresponding free-particle
Green's function Go can be constructed explicitly. If we norv intro-
duce a potential, Go will be modified. Let tr/(x1,11) represent an inter-
action potential which is "turned on" for a very brief interval of time
Adr about fr. For times earlier than C1, the wave function will be
that of a free waye g, and the corresponding propagator will be Go.
However, V(h,t) acts as a source of new waves according to the
Schrodinger equation

(6.2)

The rightiand side differs from zero in the interval Alr. It
produces an additional change in ry' during Al1 above that taking place
in the absence of 

'[/. 
This additional wave N!(xt/) is found by inte-

grating (6.2) to first order in ACr.

Ary'(x1,/1) : *'iV (xt,tt)9(x1,t) At1 (6.3)

This added wave, by Huygens' principle and (6.1), leads at a
future tinre l' to a new contribution to rlt(x',t'), which is

Nt(xt,t ') : I d,|aGn(x',t '  ;x1,t1)V (x1,t1),p(xr,t) Lh (6.4)

Thus the wave ry' deveioping from an arbitrary packet ,p in the remote
past is

,1,(x',t') : 9(x',t') I I dxa Gs(x',t' ;x1,ty)V (xyt),p(xt,tt) Atr

: il dar fGs(x',t' ;x,t)

* [ d,3u Lt1 G n(x',t '  ;xt,t) V (xr,t)G n(4,t ;x,t)],p (x,t) (6.5)
l The applicability of Huygens' principle without Kirchhofi's modification

is due to the fact that the Schrddinger equation is first-order in the time derivative.

(, #, 
- to) r(*,,,,) : v (xutr),t,(xutr)
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Comparing with (6.1), we see that the Green's function here is given by

G(x',t'1x,t) - Qo(x' ,tt;x,t)

* I dtrt ahGo(x',t' ;xr,t)V (xr,t)G6(x1,t1;x,f) (6.6)

It may be illustrated by the space-time diagram shown in Fig. 6.1.
The first term (Fig.'6.1o) represents the propagation from (x,f) to
(x',1') as a free particle; Fig. 6.1b represents free propagation from
(x,l) to (xr,lr), a scattering at (x1,f1), and free propagation from (x1,11)

to (x' ,t ').
If we turn on another potential V (x2,t2) for an interval Atz at'

time lz ) t1, the additional contribution to {t(x',t') for l' ) 12 is, in

analogy to (6.4),

A{ (r') : I d,|rz G o(r' ;2)V (2)!/(2) At,

: i l dsr dsrz atzGs(r' ;2)V(2)

x lGo(2;r)  a I  d,slr^hGo(2;t)V(r)Go(r;r)1e@) (6'7)

in an abbreviated notation whose meaning should be clear. The first
term is illustrated in the diagram (Fig. 6.1c) and represents single

Fig. 6-1 Space-time diagrams for propagation from (x,l) to (x',r') as (a)

a free particle, (b) with one scattering by potential V(xr,t) at (xr,Jt), (c)

with single scattering at (xz,tz), and (d) with double scattering.
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scattering at tz; trhe second
illustrated in Fie. 6.1d.

The total wave arriving at (x',tt) is then built up by inserting
(6.5) for t!(2) in the right-hand side of (6.7) and adding the resulting
Arl to (6.5):

*(r') : q(r') * [ d,3q At1 Go(r, ;I)V(t),p(t)
| [ d.|rz AtzGo(r';2)V(2)ee)

t J' drx, at,t d,srz atzGo(r, ;2)v(2)Go(2;L)V(L)eG) (6.8)

without further ado, if there are n such time intervals when the
potential I/ is turned on, the wave arrivin g at, (x,,t,) will be

*(r') : q(r,) * 
| I o'., attGo(r, ;r,i)v(ro),p(ro)

\i1 t
+ L J dTu at'; d,\ri LtiGo(r,';ri)V(rt)Go(r,;;r)V(ri)p@i)

i.i
(t;)t;)

f1 t

+  L  J  dsuAt ;dar iA t idsu ,Atn
i,jk

\hlt i)t*)

X Go(r',r)V(r)Go(u;r)V(r)Go(q;rn)V(rt),p(r*) + . . . (6.9)

By comparison with (6.b) and (6.6) the corresponding expression for
the Green's function G will be

G(r' ;r) : Go(r' ;n) * 2 I dsrt atr Go(r, ;xo,t.,)V (x;,t1)Gs(xa,t;;r)
1

X G s(x;,t;;xi,t)V (x1,t1)G o(x1,fi ;r) { (6.10)

We may lift the time-ordering restrictions t; ) b, etc., if we define
Gs(x',t'1x,t): 0 for t' < t. with this boundary condition of prop-
agating waves forward in time only, G6 is known as the retarded
propagator. Physically this just means that no Huygens wavelets Ary'
from the eth iteration (at time fo) appear until after L.

rn the limit of a continuous interaction the sums over time inter-
vals may be replaced by integrals over d,t with the result
G(r';r) : Go(a';r) -f I d,nr,Go(r,;rr)V(r)Go(rtr)

* [ darrdnrzGo(x, ;xr)V(x)Go(rtrz)V(rz)Go(rzia) * . . . (6.11)

BI

term is a double scattering correction

\i1 |
+ L J d'u At;dsq AtiGo(r';x,i,t;)V(x;,t;)

tj
(t i ) t t )

where dar : dsn dro - 4z* 4,
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This multiple scattering series (6.11) is assumed to convergel
and may be summed formally to yield

G(r' ;s) : Go(r' ;a) * [ danrGn(n' ;r1)v(r)G(rtr) (6.12)

We notice that not only Gy(r';r) but also G(r';r) vanishes for
t' I t, as demanded by our elementary concept of causality.

Equation (6.11) gives us an iteration procedure for finding G
in terms of 7 and Go and hence for constructing the wave function
*(r',t') if it is known at an earlier time. fn particular, to solve the
scattering problem, we must know the waye in the remote future,
given a wave packet, g(x,t) representing a particle in the remote past
approaching the interaction region. fn order to define properly the
scattering problem, there should be no interaction at this initial time,
so that 9 is a solution of the free-particle equation which incorporates
the required initial conditions.

A mathematically convenient way of accomplishing this is to
localize the interaction in time2 by adiabatically turning off Z(x,l)
as I -+ - oo ; the exaet solution ry' then approaches ,p in the remote past
and there is no scattered wave. In the future the wave ry'(x',t') is
given by (6.1)

{(x',t') : ,]i1:1 
i! d,r G(x',t';x,t)e(x,t)

Expressing G in terms of Go by (6.12), we see

{(x',t') : ,Ia 
i,[ dIr lGs(x',t';x,t)

(6.13)

1 [ d,Ar t G o(x"t ', ;1)V (1)C(1 ;x,t)]e$,t)
:,p(x,,t,) -l I dnrrGo(x,,t ' ;xy,t1)V(xr,t)rlr(xr,t) (6.14)

We have really not solved anything, since the unknown ry' appears
under the integral on the right. However, we do have a formulation
which includes the desired boundary conditions and which affords
an immediate approximation procedure if the perturbing potential 7
is weak.

We are primarily interested in the form of the scattered wave as
t' ---> o. In this limit the particle emerges from the interaction region
and again ty' becomes a solution of the free-particle equation. As
before, we adiabatically turn off the interaction as t' ---+ f oo in order
to ensure this condition. All information about the scattered wave

1 We ignore here the possibility of bound states in the potential Ir.
2 We might equally well build wave packets localized in space and initially

remote from the interaction region.
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may be obtained from the probability amplitudes for the particle to
arrive in various final free states 91

w(x',t') : 
& 

eik,x'-ia't, (6.15)

as d'---+ * * from a given incident wave e;i in particular, we m&y
work with plane waves.l The probability amplitude for a given pair
(/,i) is an element of the 8, or scattering, matrix and is given by

Sro : 
,l* [ vl (x' ,t'7,1,;t) 1x' ,t'7 d'y'

- 
,1,11 ! 

d,\r' el(x',t')[e6(x',t')

+ I dn* Gs(x' ,t' ;x,t)V (x,t),l,:+) (x,t)j
: 63(ki - k) + .li* .f d\r' d,ar ef (x',t')Gs(x',t';x,t)

X V(x,t),1,1+) (x,t) (6.16)

where *l*'(x,t) is that solution of the wave equation (6.14) which
reduces to a plane wave of momentum ka as I -) - co. By the short-
hand I -+ * oo we mean I -+ any large finite time for which the par-
ticles are not in the interaction region (or alternatively when Z is
turned off) ; in particular, t --+ * - m&y mean the times when the
particle is produced and detected.

We may expand /(+) in a multiple scattering series by iteration
of (6.14) and thus express the s matrix in a multiple scattering series,
the terms of which correspond to the diagrams of Fig. 6.1.

6.3 Forrnal Definitions and Properties of Greenrs Functions

We have unearthed the physical ingredients for solving a scattering
problem. We now build the formal mathematical machinery tomanu-
facture these solutions. our goal is to investigate the differential
equation which defines G, and in particular to solve for Go explicitly,

1 The plane-wave solutions are normalized in the continuum language in
(6.15). Alternatively, the box normalization convention may be used, with

(2n1-"'t t Y-Yu

where z is the volume of the box in which the physical interaction is confined.
with the box convention the Dirac 6 function in (6.16) is replaced by a Kronecker
d function

"  l l  i f k r : k i
ok , .k .  :  I

[ 0  l l k t  * k i
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'- 

t)'tt(r') : i l d\tG(r';t)' l '@)

0(t' - t) is the unit step function defined by

( r  {> t
0 ( t ' - t ) : l

t o  t '< t
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so that the expansion of G we have outlined can be explicitly carried

out. We start with trq. (6.1), valid for tt ) l, and rewrite it in a form

valid for all t'imes:

(6.17)

(6.18)

Fig. 6-2 Contour in the complex o planefor
integrating the unit step function d(r).

and has the following very useful integral representation:

i ' '  "  
- l  r -  ' 1 ? 9 :  ( 6 . 1 9 )1\r)  :  

l }m l_* ,  + t ,  \

ft is evaluated as a contour integral in the complex c,r plane as shown

in Fig. 6.2. tr'or z ) 0 the contour may be closed along an infinite

semicircle below the real axis in order to ensure exponential damping of

the integrand, and the value of the integral is 1 by Cauchy's theorem'

For r ( 0, the contour is closed above and the integral vanishes

because the pole al -ie now lies outside the contour. Since d(z)

takes a unit jump atr :0, its derivative is a 6 function:

dI ( r )  _  s ,_\  _ 7 [ -  grr , . ,-d ;  :  o(7/  :  
2"  J-*

(6.20)

We now attempt to find the equation and formal properties of

G(r';n) frorn (6.17). We know only that 9(r') satisfies the Schrodinger

equation; we are therefore led to apply 
l, # 

- H@)to (6.17) :

F a l
I t - * -  H ( * ' ) l g ( t ' -  t ) r l t ( r ' ) :  i 6 ( t ' -  t ) * ( r ' )
L O b  J

: t I a,*lo * - n@)1G@';x),!t(r) (6.21)
r  L o L '  I
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and hence f"or a I pr/2m

G ( r ' ; r ) : g  f . o r t ' < t

85

since (6.21) is valid for all solutions ry' we can extract from it the
Green's function equation of the Schrddinger theory

F r l

l ; *  -  n @ ) l G @ , ; r ) :  5 r ( x /  -  x )  d ( t , - , )  :  6 a ( a ,  -  r )  ( 6 . 2 2 )L  o t ,  ' l

Together with the boundary condition of a forward propagation in
time, that is,

F,q. (6.22) defines the retarded Green's function or propagator appro-
priate for (6.17).

we can solve explicitly for the free-particle propagator when
1

Ho(r') : - 
2*v'-'. In this caseGo(r';r) can depend only upon the

difference of the coordinates (x',c') and (x,f). This is because the
waye at (x',f') emerging from a unit source at x which is turned on at f
depends only on the interval (x, - x, t, - t), andGo(r,;r) is precisely
the amplitude of this wave. we consider its Fourier transform

Gs(t';t) : Go(x' - r)

r dan du: 
J 6 

eip.(x'-x)e-i@(t,-r)Go(p,r)

fn terms of Gs(p,ro), (6.22) is

*o'') G o@' ;a) : I W (, - 
#) G s(p,(,,) e-i" (t-')+dp.(x,-r)

: 
I W 

e-l@(t'-t)+i,.'(x'-')

('#*

(6.23)

(6.24)

(6.25)Go(p, r ) : ; j f f i

A rule for handling the singularity in the denominator is necessary to
complete the expression in (6.2b). This is determined by the retarded
boundary condition (6.28). Recalling the discussion of the 0 function
(6.19), we add a positive infinitesimal imaginary part to the denomina-
tor and carry out the ar integration in (6.24) first. The sinqularitv
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Fig. 6-3 Singularity in Go(p,co).

then lies below the real axis as indicated in Fig. 6.3, and we obtain

Go(r, - r) : [ ffi"*',''-', I:-*-##Ti
, f  d tp  ^ ip . (x ' - { - iAr *V- t )0 ( t ,_  t )- "  
J  6""

I

: -i7(t' - t) 
J 

d,'p eo(xt,t'),pf,(x,t) (6-26)

where the last form uses the notation of (6.15). It is-for the special
case of plane waves-an example of a useful expression for the Green's
function as a sum over a complete set of eigenfunctions of the cor-
responding differential equation.l In general, if we can construct a
complete set of normalized solutions to the Schrddinger equation
which satisfy a completeness statement of the form

l''lr"{x',t)l!rl(x,c) 
: 5a1v - x/)

where ) is a generalized sum and integral over the spectrum of quan-

turn numbers n, then, as is readily verified,

G(r' ;r) : -io(t' - t) 
l*"(r')*1,(r)

satisfies (6.22) with the desired boundary condition. The special

case (6.26) for Go is established by the connection >- I d3p when
n

integrating over the continuous momentum spectrum'

1 The free-particle Green's function in (6.26) may be expressed in closed form

Gn(x,,t';x,t) : -r(r-#-r)n'{".o 
l 'H=y1\ o<r - tt

This is reminiscent of an expression in the theory of brownian motion for the
probability that a particle which was at position x at time I and which moves under

the influence of random disturbances will arrive at x' aL time d'. Indeed, the only

change that needs to be made is the replacement of (t,t') by (-it,-it'). This

same change transforms the Schriidinger equation into the diffusion equation.

(6.27)

(6.28)
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From the form of (6.2.6) and (6.28) it follows that the same Green's
funcbion which propagates a solution of the schrddinger equation
lorward in time propagates its comprex conjugate backward in time.
Multiplying (6.28) by *^(r), integrating over all x, and invoking
orthogonality and normalization of the eigenfunction., *u reproduce
(6.17)

't 
J A'"cG(.r';r),1,^(x) : g(t,- 0L*,@,) | a'*,1,y1*1,1,^1r1

: o(t' - Ar!"*(*,)

Repeating this operation, only multiplying instead by {,,1(x,) and
integrating over all x', we obtain the indicated result:

i! dtat rl,fr@')G(r';r) : 0(t, - t){i"@) (6.2e)

we now use these relations to construct various useful forms for the
S matrix.

From (6.17) and the defining equation (6.f 6) we can write a com-
pact form for the s-matrix elements in terms of the exact propagator:

Sio : i,,ljT,la / d,\r' c|sr of(r,)G(r, ;r)ei(r) (6.30)

This is not yet useful because in general we cannot solve directly
for the exact propagator. As is evident in (6.2g) there is an enorrnous
amount of inforrnation contained in G(r';r). AII the solutions of the
schrcidinger equation, including the bound states as required in the
conrpleteness relation (6.27), appear with equal weight. It is no
wonder lhat, G is difficult to comnute.

we proceed, as in our earrier intuitive considerations leading to
(6.11), by constructing an iteration procedure startins with the free_
particle Green's function.

Regrouping terms in (6.22), we write, with 11 : Ho * V,

: 5t(r' - n) + V(r')G(r,;r)l'$ 
- Ho(r')fe6'.*7

r
: 

J 
dart' 6n(r' - r")l6t(x" - d + V(x,')G(r,,;r)l (6.81)

where we have expressed the interaction term on the right-hand side
as a superposition of D-function sources. The integral of (6.31) with
the desired boundary conditions is just the corresponding.np"rposition
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of free propagators:

G(n' ;x) : I ilartt Go(r' ;r")l6a(r" - r) * V(r")G(r" ;r)l

: Go(r';n) ! ! dartt Go(r';n")V(r")G(r";t) (6.32)

which agrees with (6.i2). Inserting (6.32) into (6.30) and making use

of (6.17) and (6.29) for free particles, we arrive at

Si, : J d,\r,ptr@),p.t(r) +,lii I dart d\r el@L)V (r)G(r';r)p{a)

: 6, - i , [  darlgiG)V(t)*o(D - i , l  darldar2eIQ)V(t)

X Go(1,2)V(2),p{2) -  i [  d,au1dar2 dan3,piG)VQ)

X Go(1 ,2)V(2)G0(2 ,3)V(3)eo(3)  + '  "  (6 .33)

This multiple-scattering series coincides term by term with that devel-
oped from (6.16). It may also be finally summed up in terms of a
solution of the exact Schrddinger equation as in (6.16). To do this, we
note in the first line of (6.33) that we can write

lim / d\r G (r" ;n)Eo(r) : lirn J d\n G(r" ;x)tl,;@)

: -i '{{r")

if we refer to (6.17) and turn o{T 7 as we did earlier. Equation (6.33)

becomes
S1; : 61r - i! dar" el@")V(r")rlr'n*'@") (6.34)

where the superscript (*) is now appended to r/ to indicate a solution
which reduces to a free wave as t,'---+ - oo [see (6.14)]

*l*r(*,,) : pn(x,,) * IGo(r";r)V(n),lrf'(r) d4n

Equation (6.3a) with expansion (6.14) and (6'30) with (6'32) are
equivalent forms for the S matrix; both lead to the multiple-scattering
series (6.311).

In practice we shall usually calculate only the first ot' first two
nonvanishing contributions to the S matrix for a given interaction in
(6.33). The validity of this procedure depends on the weakness of
the interaction 7 and the rapid convergence of this series in powers of
the interaction strength.

A general property of the S matrix which results from the con-
servation of probability is the property of unitarity. We recall from
the introductory remarks of Chap. 1 that hermiticity of the hamilto-
nian implies conservation of probability and thereby the result that the
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inner product of two solutions is independent of time. we can write.
therefore,

J d\a,l,l+)* (r)tj*'(*) : lim [ flir {lt*(x)gj*r(r)

: 
i=. I ctsr el@)e1(a) : 6io (6.35)

In the particular example of a plane-wave representation

6 r ; : 6 3 ( k ; - k )

we may also project this inner product into the remote future in which
case, by (6.16) and the completeness relation (6.27) for the s's, we can
expand the solutions '7,!+) into plane-wave states with the S-matrix
elements as the expansion coefficients:

, , !7-*:* ' {* ' ) :XP^(r ')s ' ;  (6'36)

/F1 |

U 
: 

/ d3p fora plane-wave representation.)
n

fnserting (6.36) into the left-hand side of (6.8b), we find

: 6r', (6.37)

or in rnatrix notation StS : l. If the r/i+), like the 9,, in (6.36), forrn
a complete set, st : ,s-1 and we conclude that s is a unitarv matrix.r

6.4 The Propagator in Positron Theory

we generalize our propagator deveropment of the nonrelativistic
theory and apply it to the relativistic electron theor.y. our starting
point is provided by the picture of the nonrelativistic G(r';r) as the
probability amplitude for a particle w&ve originating at x to propagate
to r'. This amplitude, give'in (6.11), is a sum of ampliiudes, the
nth such term being a p'oduct of factors corresponding to the diagram
of Fig. 6.4. Each line in Fig. 6.4 represents the amplitude Go(e,:;r;_r)
that a particle wave originating at n;_1 propagates freely to o;. At the
point r; (represented by a .) it is scattered with probability a'-rplitude
per unit space-time volume v(rt) to a new wave propagating forward
in time with amplitude G6(r;a1p,a) to the next interaction. This
amplitude is then summed over all space-time points in which the

1 If bound states occur, the completeness sum in (6.22) must also inclucle the
bound-state spectrum. This does not alter the proof of unitarity.
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Fig. 6-/* nth order contribution to G(r,a').

interactions can occur. One may say the interaction at the zth
point, or vertex, destroys the particle propagating up to ri and creates
a particle which propagates on to r;.,1 with l,+r ) 1,..

It is this picture which we will keep in the Dirac hole theory.
It is well suited to a relativistic theory because of its emphasis on
the overall space-time view of the scattering process, in contrast to
a hamiltonian formalism with its emphasis upon the time. The aim is
to construct by analogy with the nonrelativistic propagator theory
rules for calculating scattering processes in Dirac hole theory. How-
ever, the existence of pair production and annihilation processes,
which we must also describe, complicates matters. The ground rules
which we shall adopt in deaiing with this situation are simply that the
instructions for calculating with the propagator must be consistent
with the dynamics of the Dirac equation and with the general postu-
lates pronounced in Chap. 1 and amended by our discussion of posi-
trons in Chap. 5. We shall lean heavily on intuitive arguments at
the expense of rigor in our developments in this and the following
chapters. I

Let us look at pictures of typical processes which must be
described in positlon theory. There not only are scattering plocesses
of the type illustrated in Fig. 6.4 but also the pair production and
annihilation processes illustrated in Fig. 6.5. Diagram 6.5o shows the
production of an electron-positron pair by a potential acting at point 1;
the two particles of the pair then propagate to points r and r', respec-

1 These rules find their justification in the systematic but painful formal
exposition of quantum 6eld theory given in Bjorken and, Drell, op. cit.



Propagator theory 9l

tively. Diagram 6.5b shows an electron originating at r and ending
tp at a'. Along the way, a pair is produced by a potential acting at 1;
the positron of the pair annihilates the initial electron in the field at 3;
the electron of the pair propagates up to point 2, where it is destroyed
by the potential. This potential aL 2 creates the electron which
propagates to r'. Diagram 6.5c shows a pair produced at 1, prop-
agating up to 3, and being destroyed in the field there.

We see from these diagrams that we need not only the amplitude
for an electron to be created, say, at 1, to propagate from 1 to 2, and
to be destroyed at 2 as in the nonrelativistic case, but also the ampli-
tude for a positron to be created, to propagate, and to be destroyed.
If this positron amplitude is found, we may then attempt to associate
a probability amplitude with each process of the type illustrated in
Fig. 6.5 and to construct the total amplitude for any particular process'
by summing, or integrating, over all intermediate paths which can
contribute to the process. Thus for a scattering event paths of both
types shown in Fig. 6.4 and Fig. 6.5b occur.

We must determine the positron amplitude in accordance with
the hole theory formulated in the preceding chapter. Since the
existence of a positron is associated with the absence of a negative-

(c)

Fig. 6-6 Examples of space-time diagrams in positron theory for (a)
pair production, (b) scattering, and (c) a closed loop.
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energy electron from the filled sea, we m&y view the destruction of a
positron at 3 in Fig. 6.5 as equivalent to the creation of a negative-
energy electron there. This suggests the possibility that the ampli-
tude for creating the positron at I and destroying it at 3 is related to
the amplitude for creating a negative-energy electron at 3 and destroy-
ing it at 1. The diagrams of Fig. 6.5 would be interpreted in terms of
electrons propagating forward in time with positive energy and back-
ward in time with negative energy. Diagram 6.5o, which describes
pair production, may be considered in terms of a negative-energy
electron originating at r/, propagating backward in time to l, where it is
destroyed, and a positive-energy electron propagating forward to
space-time point r. fn a scattering process the electron propagating
up to point 3 has the option of being scattered by the potential for-
ward in space-time as in Irig. 6.4 and propagating on with positive
energy or of scattering backward to I as in Fig. 6.5b with negative
energy.

In addition to electron paths which zigzag forward and backward
in time, there is also the possibility of closed loops as illustrated in
Fig. 6.5c. In hole theory one says the potential at 1 scatters an
electron in the sea into a positive-energy state; it then scatters back
into the sea at 3. In propagator language, the electron created at I
is scattered back in time from 3 to destroy itself at 1. Processes such
as these may not simply be ignored. The formalism requires them,
and, as we shall also see, experiment verifies their existence.

As the first step in our program we construct a Green's function to
describe the propagation of electrons and positrons. We shall be
guided by the discussion of positron theory in Chap. 5 and by the
preceding discussion of propagators in the nonrelativistic theory.

The relativistic propagaLor, S'r(r';r), is defined to satisfy a
Green's function equation in analogy with the nonrelativistic definition
(6.22):

4 r / ^

)  f " ,  (u*  -  r , t ,1* '1 \ -  * f  s i . ^ ( - r ' , r )  :6 "pda(x ' - . r )  (G.ss)
,?rL  \  d / ;  /  J " \  

' rB '

As defined here, the propagator is a 4 X 4 matrix corresponding to the
dimensionality of the 7 matrices. In matrix notation with indices
suppressed, (6.38) becomes

(iV' - ed' - m)S'r(r ',r) : [n(7' - r)

Another change from (6.22) is that the operator i0/0t' -

multiplied by .y0 in (6.38) in order to form the covariant
( i .V ' - eA ' - nx ) .

(6.3e)
H(*') is
operator



Propagator theory

We can compute the free-particle propagator

(iV' - m)Sr(r',r) : 6a(r' - r) (6.40)
by Fourier transforming to momentum space. As in the nonrela_
tivistic case (6.24), Sr(x',r) depends only on the interval (ri _ *),so thatr

S r ( r ' , x ) : S r ( r ' - r ) :  t pJ (ZzrY'-tp't' '- ')sr(P) (6'41)

Inserting into (6.40) gives
4

I r r ,  
-  - ) "^S"^p(?) :6"p

Solving for the Fourier amplitude Sr(p) and reverting to matrix
shorthand, we find

Ba(p) : 
#+# = 

,:-a ror pz # m2

93

Instructions on how to handle the singularities at pz : m2,that is, at
?o: X \/Fq"p : IE, are ,reedfd to complete the definition.
As we recall from the nonrelativistic theory, the answer to this qu"rtio'
comes from the boundary conditions put on Sr(a, * r) in integrating(6.41).

_ The interpretation given to the Green,s function Bp(r, _ c) is
that it represents the wave produced at the point r, by a unit source
Iocated at the point r. The Fourier components of such a rocarized.point source contain many momenta larger ih an m,rher..ip.o.riot trr"
electron compton wavelength, and we expect that positrons as weil as
electrons may be created at' r by the source. However, a necessary
physical requirement of hole theory is that the wave proprgu-U-rrg t"o_
r into the future consist only of positive-ene"gy 

"leciror 
uid piit.o^

components' since positive-energy positrons and electrons are repre-
sented by wave functions with positive frequency time behavior rforexample,

(6.42)

(6.43)

are (unnormalized) wave functions of positrons and erectrons, respec-
tively, of momentum pr pi11, po > 0] So(r, _ r) can contain in the
future, r'o ) ro, only positiue-friquency com,ponents.

I Henceforth, we employ the four-dimensional notation

{l*' (*) : Ca(,p)re-ie'x

gt+t (r) : u(.p) s-i,l'.x

p.r  = p$xp :  pot  _ p.  a
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In order to accomplish this, we return to the Fourier expansion of
Sr(r' - r) in (6.41) and (6.42) and perform the dpo integration along
the contour in the complex po plane shown in Fig. 6.6. For d' ) l,
the contour is closed in the lower half-plane and includes the positive-
frequency pole at po : * l/e + * : E only. This gives

d / .t \ f ctrp pip.e,-x) [ 
r]po e-ieo "-tt,5r(r ' - *) : 

J d:zo.' Jc 2tr p2 _ *r(P * *)

'  I  q t l -e ip ' (1, -x)e- ;Et t ' -uElo -  
! :^ t  

- f  *  
t ,  >  t:  - x  

J  (2vye ' ' ' '  2E
(6.44)

so that the wave at (x',t') contains positive-fi'equency components
only. For l' ( d, the contour can be closed above, including the pole
at po : - \/p'i + m'z. This gives

So(r'- r) : - i 
I ff isip'(l-x)'t in(,-q(-E'vo2E

-P" r+ rn )

t' < t (6.45)

showing the propagator to consist of negative-frequency waves for
t ' < t .

These negative-energy waves, absent in the nonrelativistic
theory, are unavoidable here. Any other choice of contour C in
(6.44) leads to negative-energy waves propagating into the future or
positive-energy waves into the past. Moreover, these negative-
energy waves propagating into the past are welcome; they are the
positive-energy positrons, &s we discussed in the preceding section.
This will become more apparent when we apply the propagator formal-
ism to scattering problems. The origin of the negative-energy waves
is the pole a,t ps : - \//F a *2, which was not present in the non-
relativistic theory.

Fig. d-o Singularities of an integration contour for Sy@).
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0(t' - t lg<+>(r') : i [Sr(t ' - y)y'{tt+t(r) dar (6.4e)
0(t - t '){/(-)(r ') : - i[Sp(r' - r)1$l/a(n) d,3n (0.b0)

Sr(x' - r) as defined here is known as the Feynman propagator.
ft was first introduced into positron theory in tg42 by Stiickelberg
and independently in 1948 by Feynman, who applied it extensively to
physical calculations.

From the free propagator Sp(r/ - u) we may formally construct
the complete Green's function and the S-matrix elements, that is, the
amplitudes for various scattering processes of electrons and positrons
in the presence of force fields. To accomplish this, we paraphrase the
nonrelativistic treatment.

The exact Feynman propagator S'o(r,;r) satisfies (6.3g) and, in
parallel with (6.31) and (6.32), can be expressed in terms of a super-

The choice of the contour C is summarized by adding a small posi_
tive imaginary part to the denominator in (6.42), or simply taking
rnz '--> 'ft12 - ie, where the limit € --+ 0+ is understood:

Se ( r ' - r \ :  I  dq 'P  e - iP ' ( x ' - z )x)  :  J  O+d _*+a@ +,n) (6.46)

The forms (6.44) and (6.45) are combined by introducing projection
operators (3.18) and changing p to -p in the negative-frequency part:

s"(r' - r) : -i f #k(i\rn.rrl"-io.t, '-,t611, - 17
J  \ z 7 r ) "  \ D  /

* .[_(p)ean.r",_,)0(t _ t,)] (6.42)

with po : ,E > 0. Equivalently, writing

*tr@) : 
l# rrr-",r(p)s-t+n'r

for normalized plane-wave solutions, we find

2

So(r' - r) : -i,o(t' - D J a3e | *[(r,) 0[@)
r : 1

4

+ i//(t - t) | #e > {[Q)ili@) (6.48)

and verify with the aid of (3.1f ) that So(*, - c) carries the posi-
tive-energy solutions *(+) forward in time and the negative-energy ones
f (-) backward:
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position of free Feynman propagators; that is

( i .V" , -  m)S' r ( r ' ; r ) :  I  dnA 6n(n '  -  i l [6 ' (u -  n)  + e{" ( i l8 'u(u; r ) ]

which integrates to

8'r(r ' ,r):  8r(r '-  r) + e! dag Sr(r '  - i lA@)S'r(a,r) (6.51)

fn analogy with (6.14), the exact solution of the l)irac equation

(iV"- m)V(r) : e/(r)Y(r) (6.52)

with the Feynman boundary conditions, is

\rr(r) : {(x) * el dnu S,(r - ilA@v(il (6.53)

The scattered wave in (6.53) contains only positive frequencies in the
future and negative frequencies in the past according to (6.48);

r -  3  ry(r) -  *(r)-  J d'p L.{ i@t-ie J d,u{ ' ,Q)A(i lv( i l ]

as I --+ $ oo (6.54)

r  - ^  
L

v(r) - *(r)- J o" .Z"*i@)l*ie I o^rp;tn{@)w(i l1

as I ---+ - co (6.55)

We thus have a formulation of the scattering problem in (6.5a) which is
in accord with the requirement from hole theory that electrons cannot
fall into the negative-energy sea after scattering by an applied field
Au(il; only the unfilled positive-energy states are available. Equation
(6.55) shows that the waves scattered backward to earlier times have
negative energies.

From (6.54) and (6.55) we identify the S-matrix elements as the
coefficients of the free-wave solutions ry''(r), that is,

s1; : D1; - i,eey[ d^a {/il{@)'Fn(a) (6.56)

where *r(il 1s the final free wave emerging with quantum numbers /
and with e1 : f 1 for positive-frequency solutions in the future and
-1 for negative-frequency ones in the past, respectively; Pr(y) is
the incident wave which reduces al yo--+ - .o to an incident positive-

frequency wave tl,,{A) with quantum numbers i or aL !/o'--+ *.o to an
incident negative-frequency wave propagating into the past, according
to the Feynman boundary condition on the solution (6.53).

Equations (6.56) and (6.53) contain the rules for calculating the
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pair production and annihilation amplitudes, shown in Fig. 6.5, as well
as for the "ordinary" scattering process of Fig. 6.4.

Consider first the ordinary process of electron scattering. For
this process lz;(y) reduces to an incident plane wave of positive energy
*l*'@) at yn--+ - oo and the nth order contribution to (6.56) is

-ie"! J dna, . . . d,na, 0l+' (a)A(a)s"(a^ - u,)d(u,-)
X sr(az - a)A(il*l*'(a) (6.b7)

Graphs such as Fig. 6.4 as well as Fig. 6.5b are contained in the series
(6.57).

To calculate pair production, we insert for Y6(y) in (6.56) a solu-
tion which reduces as , -) * .o to a free plane wave of negative energy.
Specifically, for production of an electron-positron pair with quantum
numbers (p-,r-) and (pa,s1), respectively (where pos ) 0), we insert
for V;(D in (6.56) the solution of (6.53), which reduces as l--+ **
to a negative-energy plane wave with quantum numbers (*p+,*s+,
€  :  - l ) ; i . e . ,

#) @) : 4#. 
(%r)-%u (pa,s,,) e'tio*''

For 'y'1 we take a positive-energy solution labeled by (p-, s-, e : 1).
By the ground rules of our discussion of hole theory, it is the absence of
a negative-energy electron with four-momentum -p+ and spin -sa
that we record as the presence of a positron with four-momentum pa
and polarization s1. In the propagator formulation we have identified
the 

'amplitude 
for producing the positron al n and propagating it for-

ward in space-time out of the interaction volume and into a given
plane-wave state (p1,s1) at r'with the amplitude for a negative-energy
electron with four-momentum *pa artd spin -s.. to propagate from
r' back into the interaction volume and be destroyed at r. We thus
associate a transition amplitude with the pair-production process by
tracing the path of a negative-energy electron backward in time into
the interaction region where it scatters in the field and emerges in a
positive-energy st'ate propagating forward in time. The two lowest-
order Feynman diagrams are shown in Fig. 6.7, and the second-order
amplitude is further decomposed by time ordering of the two scatter-
ings as indicated.

In a similar way, to calculate the pair annihilation amplitude,
we insert for Y;(y) a solution of (6.53) which reduces to r1,l+'(y) at
a ---> - @ . This positive-energy electron propagates forward in time
into the interaction to be scattered backward in time and emerge in a

97
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Fig. 6-? Space-time Feynman diagrams of pair production to first and

second orders. The second-order contribution is further decomposed by

time ordering of the two scatterings.

negative-energy state. The nth-order amplitude that the electron
scatters into a given "final" state r/i ) labeled by quantum numbers
(p*, t* ,u :  -1) is

ie*[ d,ayt . dnan{f'(u)A(a")Sr(u, - y^-) ' '

x A@){l*'(a1) (6.58)

In hole-theory language this is the nth-order amplitude that
an electron scatters into a negative-energy state of momentum - ?+
and spin -s1. This state at C : - m must have been empty;
that is, there must have been a hole, or positron, present with four-
momentum pa and spin, or polarization, sa.

l'inally, in order to describe positron scattering, the "incident"
positive-frequency wave in (6.56) and (6.58) is replaced by a negative-
frequency solution with quantum numbers (pi,si,.: -1). This
represents the outgoing positron with momentum and spin (pi,si)'

Problerns

1, Show tlnat St(r',r) reduces to the free-particle retarded propagator for the

Schrddinger equation in the nonrelativistic limit.

2. Verify (6.48) explicitly.

3. Verify (6.49) and (6.50) and derive analogous relations for the adjoint solutions

{/$) a1d 0e\,

4. Calculate Sp(e) explicitly. Ilow does it behave as , + € , as r - 0, and on the

l ight cone?

5. Suppose in our formalism we replace the vacuum by a Fermi gas with Fermi

momentum /rp. How is the Feynman propagator modified? Compute the change

in Sr in the lo'n-density limit,
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7.1 Coulomb Scattering of Electrons

In this chapter we apply the propagator formalism just developed to
various practical calculations. As we gain experience with these
propagator amplitudes we shall extend them in a natural and plausible
fashion to include interactions between several particles. Our pro-
gram is the same as that of the original Feynman papers:1 to establish
rules for calculating transition rates and cross sections for general
processes of physical interest before resorting to the formal manip-
ulations of quantum field theory.

We shall begin with Rutherford scattering of an electron from a
fixed Coulomb potential. The transition matrix element for this
process, as given by (6.56),

Sya: -ie[ d,%{y@)5"@)V.t(n) (I # i) (7.1)

must now be translated into plain English; here e ( 0 is the electron
charge. fn lowest order F;(c) reduces to the incident plane wave
9r(r) describing an electron of momentum p,; and spin s;:

Wr) : u(Pa,sa)s-dnta (7.2)

where we normalize 0@) to unit probability in a box of volume 7.
In the same way

Vr@) : d(p1,sy)eior' (7.3)

ln
\E-t

ln\lw
. The Coulomb potential is given by

a ,@) : ;7 :  A(a)  :0
+1rlxl

for a point charge -Ze ) 0; thus

. iZez \ l-* -, 
,rn) [ * ei(pr-pt\.a (2.4)bn : 4tr V r,lnrZru\P1,s7)7"u\Pi. .. J lxl

The integration over the time coordinate yields 2z'6(E 1 - Ea) and
expresses energy conservation between initial and final states in a
static potential. The space integral is the Fourier transform of the
Coulomb potential, well known to be

[#r- 'n ' ' : !J  lx l  "  Iq l '
1R. P. Feynman, Phgs. Rea.,76,749,765 (1949).
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where { : pr - pr. Our S-matrix element becomes

t0l

8r; :,izez + l#,@t#@9 2n6(87 _ E) (7.5)

The number of final states in momentum interval d,spy is
V d,3p1/(2r)3, and thus the transition probability per particle into
these states is

B,,p V. dt.pr _ Z2(4tra)2m2 la(p#)fu(pl,s)12 dtpr
tpr.t (2zr7t 

- ---fifr- ----|sl=-- 
@tr,

X.1216(81 - E;)l' (7.6)

The square of the 6 function requires some explanation. were we to
consider transitions in a given time interval (-T/2,7/2), the energy
d function would be smeared out; that is

2r6(Ey - po) * l1'],ror"*'t-E;)t:rYg#fffi e.z)
From (7.7) we see that for large but finite f,

l?,7r6(Et - Eo)l' - nsin' (rTz)(EJ,; E)- (Et - E)2

considered as a function of. Ey, the area under such a curve is12rT,
so that we may identify

l2tr6(81 - Eo)|, : l?n6(0)l2rt(Er - E) : 2trT6(Er - Er) (7.8)

or simplyr

216(0) : T

A heuristic way of seeing this is from the definition

(7.e)

2'T6(Et - Et) [ 
''^t 

at si(E;E;)t
( T + o ) J  

- T / 2 '

hence

2rD(0) [''*' at : r
(?+o.1  J  -T /2  -

I rf packets are constructed to represent the incident and emerging particles,
poorly defined mathematical expressions in which there appear squares of E
functions are avoided. The identification (z.g) can be made on a sound basis.
See F, Low, Brand,eis Uniu. Sum'mer School. lgb}.
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Returning to (7.6) and dividing out the time, we find the number

R of transitions per unit time into momentum interval dapl to be

o:nq:;,{'Wsr#@ff 'rcr - n,)

A cross section is defined as the transition rate R divided by the flux

of incident particles, J!..: {o(r)1"*a(n), where o denotes the vector

component along the incident velocity v' : p;/Et. With the nor-

malization adopted in (7.2) the flux is l,.Ii""l : l"l/V. Thus the dif-

ferential cross section d,a per unit solid angle dO is

do : [ !Z'!'yla(pr,s)fu(pr,s)12 frjU 6@r - Et) (7.10)
dtt- J liIE; lqln Ev -\-r

Using the identity

Pr dw : Er d'Er

we finally obtain

do 4Z2a2m2 , -,
rc, : 

- l;14 lu\Ptsr)'Y"u\Pi,st)l '
q t e  l Y l

which agrees with Rutherford in the nonrelativistic limit'

In general one does not observe the polarization of the final

particle and one does not know the initial polarizations. If the

incident beam has net polarization, there is usually a good reason

why; and the experimentalist eventually will discover it, as in the

case of polarized electrons from B decay. In the absence of such

information one assigns equal a priori probabilities to the different

initial polarization states. This means that the actual cross section

observed will be a sum of (7.11) over final spin states and an aYelage

over initial states, that is,

da  4Z2a2m2 \ .  , - ,

act: 
Yffif 

'l la(nrs)tou(Pt's;)l'
=  s J , r i

This spin sum can be rewritten as follows:

I il.(p 1,s ) 7 lBu e (p,i,s.i,) ul(p'i,s) "l,ll'v Sju" (pi, si)
t  s / , $ i

fl

L tr " (p y,s ) 1 f; pu s(p r,s ) fr, a (p t,s o) t 3"u " 
(p # r)

t st.sr

(7 .11)

(7.t2)
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with, as usual, sums over repeated indices iinplied. This is a"special
of the general form which we shall often,encounter:

la(f)tu(i)l' : [a(f)ru(i)lla(i,)ruf)] (7.13)

where f : 7ofi7o, and in particular,

^/tt : ^Ytt

iyr : ';'s

l f i  :7*1r
and

W"p:p" 'dvd '
The spin sums can. now be reduced to traces if we use the energy
projection operators from (3.18):

) 'uB''- '\ '- '.. -' S .wh(p)1n\(pt)P.+:\
L 

wp\p;,8;)us\pt,8t) :  
. / ,c, \  z.rrL / tx_  r = l

: (p,!=*\ : [a+(pn)]pr
\ 2 *  / p

The spin sum in (7;12) becomes

\ \ - ,  , / ^ t u *m  " \
| /, ,I"(ntrr) 

\r'T 
"yo 

)"uua(p6y)a'E tar 

: ) rr, 
poJ rn no\ (fu:,*\

# \ '  2m  ' / " u  
\  2m  /u "

where again we use the same technique. This last expression is the
trace, that is, the sum of the diagonal elements, of the matfix

^ ,^(p;*  m)  ̂ ,  @r *  m)'ro -- 
2nx- 

'Io 
2,trl

Therefore, (7.L2) may be written as

#:4ffitm"@#"@# Qr4)

7.2 Sorne Trace Theorerns; the Spin-averaged Coulorrb
Cross Seetion

We must now digress and establish useful properties of traces of Dirac
matrices. These properties will allow us to calculate cross sections
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without ever looking directly at a Dirac matrix. They are derived
from the commutation algebra of the 7's and are valid independently
of the choice of representations for the 7's. We summarize these
properties in a series of theorems:

Theorerr I

The trace of an odd number of a matrices is zero.

Proof. For n odd

T r  d r ' ' '  1 , ,  : . l r  d t ' ' '  f u n ^ t s ^ t s  :  T r  " y s d r '  d * " y a

where we have used the cyclic property of the trace, namely
Tr AB : Tr BA. Moving the first ?r to the right, we pick up zr,
minus signs from yp'yr * "y{yp : 0 and obtain

T , f r t ' ' ' d " :  ( - ) 'T r f r t ' '  '  f r , " y *yn :0  (7 .15)
for ro odd.

Theorem 2

T r l : 4

r, M 
:T.:u* 

: 26rr (turl * Uil : o'b rr 1 (7.16)

Theorern 3

T , d t ' '  f r , :  a r a z T r d t '  "  d n -  a t a t T r d r i l n ' '  d , "

+ ' ' '  *  a f aoT r f r r '  f r n+  Q . I? )
In particular

Tt ilrfrrdtdn : 4faraz a*at * erat az'e,s - a;as a2'aal

Proof . IJsing fifl2 : - drfr, ! 2aya2, we move dt to the right of
fu2, lhal' is,

T r  d r d t '  d ' "  :  2 a t a z T ,  d t ' '  d ' "  -  T r  f r r d r f r t ' '  f r "

Continuing the process, we obtain

T, d, ' fu" : 2a;a2Tr fru ' ' ' d'" -

* 2ara,Tr d, ' dn: - T" d, ' ' ' fr"fr,

Finally, we use the cyclic property of the trace to get /1 back on the
left of the other 7 matrices; the theorern then follows.
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This last theorem is exceedingly useful in order to reduce & com-
plicated trace, although for any n ) 6 it pays if possible to use some
subtlety to avoid an avalanche of terms.

Theorern 4

T r Y u :  I

Tr 76fi11 : g

Tr "yuil,Vdd, : {'i6osr6aab0ctd,a

(7.r8)

where eop75 is *1 for (o,9,^r,6), an even permutation of (0,1,2,3); is
-1 for an odd permutation; and is 0 if two indices are the same.

Proof . Since ryr : i7o"yt^t''yt, the first two identities are immedi-
ate. The third follows by looking at the components. For a non-
vanishing contribution all components of a, b, c, d must be different
and the total contribution is the sum of the various combinations of
components multiplied by the sign of the permutation. To fix the
overall sign take

Tr .yr7o"lr"tz"l3aogrs2fls : ieonaa\brczds Tt ,y2n

: 4ieotzsaobrczdg

Theorem 5

'yfyp : 4

trfrlr : -2d
'YufrUt' : Aa'b

trfrbd'Y' : -2lbfr

tutuudh, : 2ldd.vd + iud,il,l
Although this is not strictly a trace theorem, it is often used in con-
junction with trace calculations, and it is included here for convenience.
The proof is a straightforward exercise.

Theorern 6

Tr drd, ' dt^ : Tr furo ' " fr, (7.20)

Proof. From the charge conjugation discussion of Chap. 5,
recall that there exists a matrix C such thab CyuC-r : -'ti,. Then

T, dt ' dr" : Tr CdlC-LCfrzC-r ' Cfrz,C-L
: (-)2n T, frTd$ ' ' ' il,L
: Trldr, ' ' ' drl' : Tr frr" ' ' ' @t

(7.le)
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Returning to our problem of Coulomb scattering, and using
Theorem L, (7.14) becomes

d a  v 2 ^ 2

fr 
: 

ffilrr fP;tovt ! m2 Tt (10)21

Using Theorem 3 and Theorem 2, the final answer is obtained:

da Z2oz - -

Afr: ,W(8uflr 
- 4PuPr I 4m2) (7'2r)

The differential cross section can be put in terms of the scattering
energy E : Et : Er and scattering angle 0, using the kinematical
relations

Iql' : 4P'sin'{,p2 cos g : m2 * 28282 sinz f, u"a

da Z2az /

n:  W11,;o,fqn (1 - o'sin:

P,t'Pr : E2 -

We find

This is the Mott cross sectionl; it reduces to the
as 6 --+ 0.

(7.22)

therford formula

7.3 Coulornb Scattering of Positrons

Turning next to the scattering of positrons in a Coulomb field, we
note that to lowest order in a the cross section is identical to electron
scattering. This is most simply seen by writing down the matrix
element. From (6.,56) and the discussion following it,

S p : i,e j dar {,1@) /,(r)Vl-' (*) (7.23)

Here the incoming state is in the future and is to be interpreteci as a
negat'ive-energy electron of four-momentum -p1 running backward in
time as drawn in Fig. 7.1. Putting in plane waves to lowest order, the
wave function is

Wr) : l#, 
u (p 1,sy) e+iot', (7.24)

Similarly, the outgoing state in (7.23) is the negative-energy electron
running backward into the past,. Its wave function is

* r @) : l r-, u (pt,s ;) e+i n'''

1N. F. Mott, Proc. Roy. Soc. (Lonilon), A124, 425 (1929).

t)
Ru

(7.25)
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Fig.7-1 Coulomb scattering of positrons.

representing the incident positron with momentum p; and polarization
sr before the scattering. Introducing (7.24) and (7.25) into the
S matrix, we have

^ iZez I  |F - ,  .  ^ .  
r .sr)  [  

d,n! 
"orr ,_rr . ,

D1;:  -  
4* V"r ln4rD\p4s;)1!u\p..  . .  ,  lx l

in analogy with (7.a).
Because of charge conjugation invariance, we could equally well

write for (7.23) to this order in e

516 : tie[ d4r {,";(x)f,ltu@)
: - ie I dar {tar (u)C-' AC{T @)
: * iel d,ar 0 r@) A.{tt(r)

which leads to the same results as before. In this picture the positron
runs forward in time and{,"y@): Cf*l(r) is the wave function of
the initial positron.

By the same calculation as leading to (7 .12) we find the differential
cross section

1au\ 2Z2a2nL2 \l ,_,
\a-n/,. ),.,1D(no'sn)tou(P#)l' (7 '26)

Again the spin sum may be reduced to a trace, using the relation
for positron spinors [see (3.9)]

\ , , ' /  
/ - P ; l n r ' \

/u"\pi,st)ap(po,sr) 
: - 

\- ,* /"st t

so that
( d u \  z ' a ' ^
\dal,. 

: 
it*Tt to(P' - m)to(Mt - m)

This is the same as (7.14) with rz replaced by -m. Since our ans\trer
for electron scattering was even in rz, this confirms that the positron
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Fig.7-2 Coulomb scattering of electrons.

scattering cross section is equal to the electron scattering cross section
in lowest order of a. We could have anticipated this result from
charge conjugation invariance. We saw in Chap. 5 that to each
solution of an electron in a potential A, there is a corresponding solu-
tion of the positron in the potential - Ar,lhal is, the scattering of an
electron from the potential -ef 4trr is the same as that of a positron
from potential {e/4trr; however, since the calculated cross section
depends only on ea, Lhe sign of ,4.p does not matter. This is not true
for the eo corrections which come from the product of the first- and
second-order scattering amplitudes in Fig. 7.2 and, which have opposite
signs for electrons and positrons.'W'e 

may also observe that the positron cross section is obtained
from that of the electron by replacing p1 <-' * py; this is a general feature
of positron theory called the "substitution rule," which is closely
related to the propagator picture we have developed. We shall see
more examples of this rule as we go along.

Electron Scattering frorn a Dirac Proton

Ir[ow suppose that we consider electron scattering from a free, live
proton instead of from a fixed Coulomb field. (Temporarily we shall
treat the proton as a structureless Dirac particle.) How would our
result be modified?

ff we know the current of the proton Jr(r),we can calculate by
Maxwell's equations the field it generates. The S matrix (7.1) gives
the amplitude for scattering of the electron in this field and leads to
the transition rate and scattering cross section to lowest, order in cv
if we follow the discussion of the preceding example.

Our first step is to find the electromagnetic field produced by the

7.4
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J D r ( r - A ) : 6 n ( * - A )

and has the l'ourier represcrrtation

D,(r - il : J 'f;fi ,-"''"-otD,(q')

- 1
Do(q') : 

F;d

proton. The potential is calculated from

JAU(g) :  Jp(r,) /,  qt7\

where for convenience we have chosen to work in the Lorentz gauge.

In order to integrate (7.27) for Au(*), we introduce a Green's function,

or propagator, just as in the case of the electron. The propagator

Dr@ - E) is defined by the equation

(7.28)

where Dr(q') : -t/U'for c12 * 0.
As in the Fermion case, we must decide what happens at the pole

in De at e2 :0. In analogy with the discussion of the Dirac propa-

gator in Chap. 6 we append an infinitesimally small positive imaginary
part to q2; this is equivalent to adding a small negative imaginary mass

as done in (6.46):

(7.2s)

This prescription for handling the pole ensures only positive-frequency,

or -energy, radiation propagating forward in time. When we consider

the scattering of radiation by matter, perhaps the refraction of light in
passing through a bubble chamber, we must make certain that positive-

frequency waves-representing positive-energy quanta-emerge unac-

companied by negative frequencies. The l-eynman propagator for

electromagnetic radiation is then given by

D,(r - a) : I ffi "-*'"-" (+, *,'.)
and the solution for the potential aecording to (7.27) is

Ar'(r) : ! dag Dp(r - U)Jr(a)

Introducing this into the S-matrix element (7.1) along with
wave electron solutions gives

Sn: *il dard,ayle{,y@)"r*!n(r)lDr(r - v)Ju(v) (7.32)

Our problem now is to decide what to choose for the proton cur-
rent Jp(A). A physically appealing choice suggested by the cor-
respondence principle is the transition matrix element of the current

(7.30)

(7.31)

plane-

Ju(il : e,{7(dy,{?(a) (7.33)
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where ep : - e ) 0 is the proton charge and {/?(il and {t!(y) represent
initial and final plane-wave solutions for free protons. They are of the
same form as (7.2) and (7,3), differing only in the substitution of
Pr and P1 for the initial and final proton four-momenta and, of M
for its mass. With this choice the current is

J,(y) : - 
l:#,| 

e|,,,-,,>'o il(p 1s)(uu(p,,&) (2.84)

Equations (7.31) and (7.33) define what is usually referred to as the
Mlller potentiall of a Dirac proton. In the nonrelativistic approxima-
tion, this choice of the transition matrix element of the current as the
source of Ap(r) was adopted by Heisenberg and applied to the electron
transitions in his calculations of radiation from atoms with matrix
mechanics.z Introducing (7.34) into (7.32) and using (7.80), we
readily compute the integrals, and the S-matrix element is

sr, : # (%r)aba(Py - P; * pr - p;) l f f ir l#,
X ['e (p r,s r) t uu (p,;,s o)1 -----l- W 1P r,S 1) 7 ru(Pn, &) ] (7. 35)-o ' - ' / r  

(pJ  -  p ) '  *  i r '

The symmetric form of this result in electron and proton variables
bolsters our faith in the choice (7.33). Had we started this calculation
by applying (7.1) for the scattering amplitude of a proton in the field
generated by the electron current and making the guess (Z.BB) for the
electron current, we should have come to the same result.

. Comparison with (7.5) shows that the difference between scatter-
ing an electron from a Coulomb field and from a proton is contained in
replacement of the factors Zf /lSl, by

/  - r  \  fnr
tu \q+7, ) | #t 

il(P h s) z, (Pr&)

and 7 by

(%r)363(P1- P; * pr - pr)

expressing momentum conservation.
Equation (7.35) gives the electron-proton scattering amplitude

to lowest order in a I higher-order interaction efiects which distort
the plane waves that were inserted in the currents have been ignored.

r C. Mpller, Ann. Phgs., 14, 531 (1932).
z See, for example, W. Pauli in S. Fliigge (ed.), Hand,buch ilcr Physilc, vol. \,

part 1, Springer-Verlag, Berlin, 1958; L. I. Schiff, ,,Quantum Mechanics,,, 2d
ed., McGraw-Eill Book Company, Inc,, New York, lgd5.
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We may conveniently represent this expression by a Feynman graph,
Fig. 7.3. A solid line with an arrow pointing toward positive time
represents the electron and a double line the proton. The wavy line
represents the influence of the electromagnetic interaction, which is
expressed in the matrix element by the reciprocal of the square of the
momentum transfer, or the inverse of the d'Alembertian of (7.27) in
momentum space. We refer to this line as representing a "virtual
photon" exchanging four-momentum q : pt - ?; : Pt, - Py between
the electron and proton. The amplitude for the virtual photon to
propagate between the two currents is - (q' * ze)-1. At the points-
or vertices-on which the photon lands there operate factors e7r'
sandwiched between spinors {m/ n u(p,s) representing the free, real
incident and outgoing particles. !'or each line and intersection of
the graph there corresponds a unique factor in the S matrix. In
addition, 51; always contains a four-dimensional 6 function expressing
overall energy-momentum conservation.

Returning to Fig. 7.3 and Eq. (7.35) to calculate a cross section,
we first form a transition rate per unit volume by dividing lSr,;l' by
the time interval of observation 7 and by the spatial volume of the
interaction reqion. This eives

*r, : W 
: (2r)464(pr * pr - pr - pr)

" +^#,ff vn,t,
where

ffi ,n : la (p 1,s y) 7 ru (n,, r;)1 
Vft 1, P7 (P y,S 1) 7 u u(P,, &) l

(7.36)

is a Lorentz invariant matrix element and will be called the invariant
amplitude. fn forming wy from (7.35) we have extended the treat-

Fig. 7-3 Electron-proton scattering
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ment of the square of a 6 function given below lsee (2.6)] to include
the space as well as time interval:

[(2r)464(Pf * pr - Pt - po)\,

: (2,r)464(0)(2r)ada(Py -l pr - P,r - p;) --+

x vT(2r)a6n(Pr * Pr - Pt - pa) (7.37)

Next we divide the transition rate per unit volume by the flux of
incident particles lJt""l and by the number of target particles per unit
volume, which is just | /V according to the normalization used in (7 .2).
Finally, to get a physical cross section, we must sum over a given
group of final states of the electron and proton corresponding to
laboratory conditions for observing the process. The number of
final states of a specified spin in the mornentum interval d\pydBPl is

V#i'Vffi (7.38)

and so the cross section for transitions to final states in interval r is

,  f  , , "  da t t ,  dsP,  Vao : J, ' ' (f"l '(r"FWJ'"

: t tLLtlt *AmM (2n)a6a(Pr I tu - Pi - pi) 1*".1,
l.  (2r)3 (2r)3 Eftr Eft i  lJn. lV 

tr^r1l

(7.3e)

W'e may still sum this over spin states of the final particles and
average over the initial spins fclr unpolarized cross sections.

At this stage we can identify some features which will be common
to all scattering processes. The physics lies in lDTnlr, tlne square of
the invariant amplitude. There is a factor m/E for each external
fermion line, that is, for each Dirac particle incident upon or emerging
from the interaction. The phase-space factor for each firral particle
is dspl/(2r)3. We observe, then, that each final particle gives riseto
the factor (m/D)[d3p/(2r)3). This forms aLorentz invariant volume
element in momentum space, as we see with the following identity:

Io' 
Oro d(prp, - mr) a', : 

I__rlnp 
6(pup, - mr)O(po) (7.40)

,  f  I  f o r p o ) 0
d ( P o l : l o  

f o r p s 4 Q

dgp :
2E
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is the step function introduced in (6.18) and is Lorentz invariant pro-
vided p, is timeJike, as is the case here. Overall energy-momentum
conservation in the interaction comes from the factor (2r)a6a(p1 |
pr - Pr - ?). Finally, there appears the factor I/VlJnl; l,/i,"|,
the flux, is for collinear beams the number of particles per unit area
which run by each other per unit time, that is

t r  ,  l v "  - V . l
l . /  lnc l  :

when I,1./i""1 is cornbined with the normalization factor for the two
incident particles it forms a Lorentz invariant expression:

E#3q:w#F.'.u,':va#m (74'\)
This shows that the total cross section is invariant under Lorenrz
transformation along the direction of motion of the incident bearns.
Equation (7.39) may now be written in the invariant form

d,o : Pn*  p r  -  p )

u m dtpr M dsPr /* w!*-eiltr (7.42)

These factors are of very general origin; hereafter we shall omit details
of how they appear. The box normalization volume Z has now dis-
appeared from our final result, which indeed could also be obtained
from other normalization conventions not involving Z.

under circumstances not involving collinear beams it is more
convenient to consider directly the number of events per unit time
dN /dt, which is found from (7.36) to be

#: I a\ p"(x,t)po(*,r) 
IHgtt.;1,(2tr)a6a(pr 

- po* pr - p,)

u mdtpr M dlP(^ 
{zo7O @rE,

l'he p,(x,l) and po(x,t) are the number of electrons and protons per
unit volume, respectively, and they replace the two factors (l/V)
which normalized (7.36) to one per volume Z.

As written, the cross section Q.a\ is for a transition from given
initial spins to final spins of the electron and proton. rf the porariza-
tions are not observed, we must average over initial and sum over

l t3

lllt1l'(2zr)a6a(P1 -
mM

'P;)2 - y12fu2{(pnI.
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final spins; then

lsirnl' : 
I "I la@61)7ru(n,,rn) t'\ry ,,i l(P1s1)7uu("n,so)l'

S1,  S . ,  s7 ,  s ;

r  ^ (pf + m) .u(p, + *) . , , lr(Pr t.M) 1,.,(Pt t M) ,_:L*:  
4 t r .  2 *  ,  2 m  ,  t t ' - - 2 M  1 r - -  2 M  , ,  ( q r y

The calculation of the first trace usinq the trace theorems of Sec.
7.2 yields

.p,(Fr I  m) (n'  r  m\ I
2m ,'o# Y : 

+***rTr 
(PlPPt' I m27u''t")

: \rrioi * pip'r - gu'(pr'pt - nx'))
n'12 

'

The sec,lnd trace is of the same form and the final answer boils down

after some algebra to

lff i,, lz : -^ -4^u [€ r'pr)(P *,) i (P rp,)(P;pr) - m2(P1P;)t ' rvr t t  zm2M " \q ' ) '  
-  Mr(w.pr)  - l  2Mzmzl  (7.4g)

For the unpolarized cross section we insert this into (7 '42).

For a useful result rve evaluate do in the laboratory frame of

refereuce in which the initial proton is at rest and rve let' py : (E',P'),

pr : (E ,p) , and -1'.i : (XI ,0) . It is convenient to apply (7.a0) in carry-

ing out the phase-space integrals for the differential cross section for

the electron to emerge into a given solid angle d0' about an angle d.

Writing dsp' : p'2 dp' d{-l' : p'E' dE' dQ', we have

tr : Z f *'IAe_,!L lfll1,l, dopr 6(p,t _ ar\,,ej)
dtr' lpl J (2")' 

X 64(p/ I p, _ p; _ p)

: 
t,# | n, an,l-D?r,l,a((p, _ pr _ p), _ xr,)

X | (P l+E-E ' )
mzM f  u+a:'#+e 

J;-" P' dE' lffi1l'6(2m2 - 2(E'

: *'M { lffinl'
4 r 2  p M + E - ( p E ' / p ' ) c o s 0

- E)A[ - zE',E

{ 2ppt cos 0)

(7.44)

where the requirement of energy conservation coming from the D func-

tion is
E'(M + E) -  p 'pcos0 :  EM * m' (7.45)
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and in obtaining the final form we used J d,r 6(f(r)) : ld,f(r)/drl-r.
For electrons of energy E {1 M, the proton rest energy, we resur-

rect our earlier result of scattering in a static Coulomb field by neg-
lecting E/M <<1. In this limit (7.4a) reduces to the Mott cross
section (7.21), since

dd : *' tffi-.t, E
dQ, 4.n2 td' .r l t  M 

<<l

with E' : E from (7.45). From (7.43)

lffirnP :ffi fzn, + nxz - pr.p,i)

When the proton recoil becomes important, the electron may be
treated as extreme relativistic and correction terms proportional to the
electron mass neglected. As is apparent from (7.43) and (7.44), lherc
are no linear (or odd) terms in mf E, so that the correction terms are of
order (m/E)z:

d6 : mz E,/E 
191,5, Aurr,

dQ' 4trz | * (28 /M) sin' (0/2)

fn computing lffirol' from (7.43) it is convenient to reexpress P1 in
terms of the electron recoil using energy-momentum conservation
Pr : Pn -f pn - pr. Doing this gives

lffi,)" : 
8:Y^[2pt'pr pflt * pflr(prp; - p;.?r - Mr))t - " ta t  

fn2MZO4

: ffiGH#!#@Dl, + r.i"'i ( - r#,- ')]
: 

n 'o,  (  ^^^"  0 n2 n\  m- ffiEE-w@tr) (cos, i 
- 

fustn, r) 
'E rrr

wherewerecall rl' : (pr - po)' : -4EE'sinz (0/2). Thedifferential
cross section is thus

da a2 cos, (0/2) - (Or/ZAr7 ,in\il4 T << t ft.46)A { / : 4 E r  E < < r  (

where use is made of (7.a5) in the limit, zia2 --+ 0:

E'E(I - cos 0) : M(E - E')

Equation (7.46) was derived under the assumption that the proton
behaves just like a heavy electron of mass M. This description is
incomplete, however, since it fails to take into account the proton
structure and anomalous magnetic moment. which are of mesonic

fl,,,
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origin. A complete description of the proton leads to modifications in
(7.46) which are important at large energies exceeding several hundred
MeV. We shall return to this point in a later discussion (see Chap. 10).

7.5 Higher-order Corrections to Electron-Proton Scattering

The calculation of electron-proton scattering we have carrried out thus

far is valid only to the lowest nonvanishing order in e2' To obtain

the next higher order corrections in e we tnust return to (6.57) and

consider the amplitude for second-order interactions between the

electron arrd proton. This is given by

sl?' : -,ie2! d,ardaa{,/n)/.(r)s"(r - dAfu)*o@) 9.47)

where the electromagnetic potential is again to be generated by the
current, of the proton. To determine the form of this current, we look
at the form of the second-order electron current, interacting with
,4,(r) and A,(g) in (7.47). As in the first-order calculation (7'35),
S!l) should be symmetric in form betrveen this second-order electron
current,

i{'/n)l,}r(r - ilt,Qn(il : {,r(t)"y, I D 0(ro - ao){"(r)Q,(u)

t''lrr, - no)0,(x){,(u)l t,{"(u)
nipo<o

and the proton current. The factor i is necessary to make the current

a superposition of products of two transition currents. This suggests

w-z) Fig. 7-4 Contribution to fourth-order electron-
proton scattering.

Dr(r-w)

-v)
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Fig. 7-6 Contribution to fourth-order
electron-proton scattering.

that we write, following (7.81),

A,(x)A,(y) : ,', I d,aw d,az Dr(r - w)De(a - z)p?@)tu

,. { ) o(wo - zo)*i@){fl(a)
niPo>0

I oe, - wo)gr@)ilHe)l ^r,g?e)
n;p010

. "  f: iei J d,aw d,az Dt(r - w)Dv(y - z)

X {?@)'y,$fr(w - z)t,t!@) (7.48)

The factors Dr(r - w)De(A - z) arc the treynman propagators for
the two internal photon lines in Fig. 2.4. They propagut. b"t*".r,
the electron and proton vertices, represented as dots, which contribute
€11 a,nd ed.yd, respectively. The internal electron and proton lines
bave the fermion propagators Su(r - y) and, Ser(w - z). These
factors are an example of the correspondence between Feynman graphs
and s matrix elements written in coordinate space. To complete the
expression for s|'zn), another term must be added to the proton current,
expressing the indistinguishability of the two photons. The electron
does not know whether the photon interacting at r originated, aL w or
at a, and the possibility illustrated in Fig. z.b must be incruded along
with that corresponding to Fig. 2.4. The Feynman propagators for
the photons assure that positive frequencies only u"" propuguted for-
ward in time. However, all relative time orderings of the four points
&, Ut wt and e occur in the interaction and the photon at tp could be
equally well the first or second one emitted or absorbed by the elec-
tron. rn order to symmetrize the variables of the two indistinguish-
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able exchanged photons, we add to (7.a8) the term

ie'rl dnw daz Dy(n - z)D*(u - w){?(wh,Sor(w - ?)"y,'Vl@)

This gives in Q.a7)

Sfr\ : e'e'o[ dar day daz daw {r1@)yuSr(r - ilt,*n(y)

X lDiln - w)Dr(u - z){'7(w77'Sor(w - z)t '*?(a)

* Dr(r - z)Dr(a - w)07@)t'S',(w - z)t '{ l(z) } (7.49)

Both terms of (7.a9) satisfy the same rules for writing down S-matrix

elements from corresponding Feynman diagrams in coordinate space.

Notice that as yet our rules are somerrhat unclear with regard to

factorsl of i. We associated an overall factor (-o) with the S matrix

and then a factor f.S? with t'he proton propagator. In higher orders all

the prot,on plopagators Seo' will be accompanied by an i f.or the same

re&son as in our present example. We may make the rule regarding

fermion propagators uniform if we write zSr also for each electron

line and associate with each f a faclor -f, that is,

- i e l . sFe /sF  .  -  e / '  :  ( - t e / ) i s r ( - i eL )  " '  ( - i eL )

The overall (-a) is absorbed into the extrafact'or of f . Thus to each

7u in the electron line we associate a fac\or -i. We can also associate

a - z with each proton vertex 7, if we compensate by rvriting an i in

front of each photon propagator I)p. Then we obtain a uniforrn rule

for factors of i: - 'i f.or each vertex and i f or each line in the graph. We

shall hereafter assume this rule.
For practical calculations it is useful to go over into momentum

space, and so we Fourier-transform everything in sight in (7'a9)' The

wave functions of the external particles (that is, the incident and final

electron and proton) are presumed to be plane waves as in (7.2),

(7.3), and (7 .34) . Then the first term of. (7 .49), for instance, becomcs
-l!: 

l!!' ann' ann,!i$'P
E t E, "l Efti (2r) a (2r) a (2r) a (2zr) a#, I o^. d,av d,ae d,aw

C - i t ! r t r - u \  O - ; q r . t g - z t  f  g - i p ' ( t - u )  . - . . , - l
x -E+ '; e "rE le;t"''n(p1's7)tu , - * a 6r"Y'u(pt's;)e-'nt'u f

f  p - i P - ( w - z \

X.  
Ic 'P ' ' * t i t t ' r , , \1) 'yp e:_ 77 a7,y 'u(P; ,S,)e- iP ' ' '  )  

(7 .50)

Carrying orrt the integrations over all coordinates yields a factor of

(2zr)a times a four-dimensional D function for energy-momentum con-
1 By r.orking out Prob. 7.2 one may dispel possible doubts with regard to

overall factors of 2.
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servation at the vertex associated with each coordinete. The momen-
tum integrals may now be done; (7.50) then reduces to

!  l@-  Wro* :n^n rD . ) - ^  -D  ^ \
w1EE,1/* tzz't"dn(Pr * tu - P; - P;)

u f d o q '  I  I^ I 6|ETT,@=7J'TT,
l -  .  |  . tX | &(p6)t" ------------=--t,u(pr,s;) |
L  " " ' F t - 4 t - r n * z e  - '  

l
t -  I -_ . tX 
Lt(P/,si)'vt'F, a uft n4 q 6r7'u(P;,5;) I 

(7.51)

where e = pt - pi as earlier. Notice the appearance of the overall
energy-momentum conserving 6 function arrd of the integral over the
four-momentum qr running around the closed loop in the momentum
space Feynman diagram shown in Fig. 7.6. There has been a sys-
tematic cancellation of factors of. (Zr)a except for the (2n)a we associate
with the 6a and the compensating (2n1-a that goes with the integral
over daqt. Other factors in (7.51) may be associated with the
Feynman diagram in the same way as done for the lowest order cal-
culation in f ig. 7.3. Each vertex contributes a factor -iey, and
each external particle a factor \/*IE. The new feature here is the
factor iW - m * iel-r, which is inserted in matrix order between
vertices, coming frorn the propagator for the virtual intermediate
fermion line.'With 

the aid of a little experience it is possible to associate
forms such as (7.51) with given Feynman diagrams by inspection.
The Feynman graph of Fig. 7.7 in momentum space couesponds to

Pt'st

Fig. 7-6 Contribution to fourth-order electron-
proton scattering.

Pf+q,

Pi 's ,
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(7.52)

Pf ,Sf

p, -q, Fig. 7-7 Contribution to fourth-order electron-proton
scattering.

4,s;

Fig. 7.5, and the amplitude differs from (7.51) only in the replacement,
of the proton spin factor there by

fi(PlSy)7'

The rest of the evaluation of (7.51) and (7.52) is nontrivial;it
involves a difficult four-dimensional integratiorr. For the static limit

of the proton as a point Coulomb source it has been calculated by

I)alitz.l Special difficulties arise in this example from the infinite

range of the Coulomb interaction. We shall not carry this calculation
further here.

7.6 Brernsstrahlung

It is quite possible that one of the two quanta exchanged in Figs. 7.6

and 7'7'wil l satisfy the Einstein condition Q2:0' In this case it

might escape in transit between the electron and proton and emerge

as free radiation, or bremsstrahlung. To study the effect of this

interaction with the radiation fieid on the scattering process' we again

turn to heuristic argurnents similar to those used by Schiff'2 These
yield with relatively little labor useful experimental results which

coincide with answers obtained on the basis of a strict quantum

treatrnent of the radiation as discussed in the companion volume.3
I R. H. Dblitz, Proc. RoE. Soc. (I'ondon), A206, 509 (1951).
2 Pauii, Schiff, op. cil.
3J. D. Bjorken and S. D. l)rell, Belatiuisti'c Quantum fields, McGraw-Hill

Book Company, Nell York, in press.
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The four-vector potential of a "photon" with rrromentum ku
and polarization er is written as a plane wave

(7.53)

with kukt' : 0. ep is the unit polarization vector and satisfies the
transversality condition

erltr' : O (7.54)

as required by the nature of the radiation field. In a special Lorentz
frame er is pure space-l ike, that is,  er, :  (0,e),  with e.e:1; in an
arbitrary Lorentz frame ep is space-like and normalized to

ereu : -L (7.55)

The normalizalion constants in (7.53) are so chosen that the energy
in the wave Ap is just u : lco : lkl as desired. 'Io verify this, we
compute

U : ,61 d,3u (82 + B'?) : I d}r,Bz
Since

B :  c u r l  A :  i \ / E E V k x . 1 u - 0 n . ,  -  s i k . a ) :  , / Z V V  f <  X " s i n h . r

and, according to (7.54) and (7.55),

k  x r . k  x r  :  € . €  -  ( t . " ; ,  :  D . a  -  ( . 0 ) ,  :  + 1

we have

U : k . x ) : k : a

We consider the scattering amplitude describing the radiation
of such a "photon" during a scattering event. For simplicity we
return to the static approximation, replacing the proton by a static
Coulomb field as in (7.4), and calculate 51; to lowest nonvanishing
order in e. The Feynman diagrams for this process, shown in Fig. 7.8,
correspond to a second-order process with one vertex for the interac-
tion of the electron with the Coulomb field and one for the emission of
the bremsstrahlung quanturn. l'here can be no first-order emission
of radiation by a free electron in the absence of the external field.
This is kinematically forbidden, since it is impossible to conserve
energy and momentum: k2 :0 *  (pt  -  p , ) ,  <0.

T I o'"sin2 (c.,r -
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Fig. 7-S Bremsstrahlung cf an electron in a Coulomb field.

The second-order S-matrix element is

&t :  e2J d,ar day h@)l- iA(r;h) i91,@ - i le i .yo)A";" ' (a)

* (- i,f) A"o'"'(r)fsr(r - ilt- i,A@ ;k)ll{,(il (7.56)

where ,43'"'(r) : 
-#,

and the two terms correspond to the two orderings of the vertices
shown in Fig. 7.8.

As usual, it is convenient to transform (7.56) to momentutn
space by Fourier-expanding all factors and carrying out the coordinate
integrations. The result of this by-now-routine operation is

-ZcB -,  1 l -* ,  1sn : -ft  216(81+ ft - uu 
7*ln,z,n,

X d(p1,s) f t-od il++ - -Gito)
1 .  ,  . . - |  /

*  ( - iYo) 
w -Ln - *ei i  Ju(Pi,s;)  

(7 '57)

where q : pr * h - p.. There is an additional contribution coming
from the first term in (7.53) for which the energy 6 function is
6(En * k - St). This term describes absorption of energy in the
scattering process and does not contribute to the process of interest
here, in which the incident electron gives up energy to the radiation
field and emerges with E1 : E; - lc I E;. We note the new feature in
(7.57) which is to be added to our growing lore in Feynman amplitudes:
the factor ( -ir) appears at the vertex where a free photon of polariza-
tion eu is emitted, and | / l2W appears as the norm alizalion factor for
a photon "wave function."

, *q :P ,  * k
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The bremsstrahlung cross section can now be calculated from the
S matrix (7.57). We limit the derivation to k-+0, that is, to the
emission of a very soft photon. The more general result, known as
the Bethe-Heitler formula, appears in many texts. In this limit the
factor within the brackets in (7.57) can be approximated as follows:

. - ,  , l  ( P t + k + m ) t o ,  ( P , - t t ' * * ) t-xu\py,s1) 
lt ffia 672 _ *, 

-r 70 
@t _ k), _ rn,

u"l
)elt

1
I

= -ia(p61) 
{

m)t
- 1 n

m)e

: -in(p7,s)7su(p;,st) 
(* 

- 
**,)

u(P,,s)

0

(7.58)

where we have dropped a factor fu ---+ 0 in the numerator and, in the
last step, used the properties (3.9) of Dirac spinors. The brems-
strahlung matrix element in the Ic "-> 0 limit is just a multiple of the
elastic scattering amplitude. Proceeding to the cross section, we
squal'e Sr; of (7.57) and (7.58), divide by the flux lvl/V and by 2n'D(0)
to form a rate, and sum over final states (trZ2 d,3ltd,3p)/(%r')o in the
observed intelval of phase space. (1|or a cross section for unpolarized
electrons'lve should also sum over final and averaqe over initial electron
spin states.) We obtain

l2r'pr - (fu -

lu (p r,s r) t ou (p ;,s ") l '
l q l n

X 2n6(Et I k

2k'pr

,  yo l2e 'p i  -  e ( fu  -  * ) l l  . . /_  ̂ \i -  -21 tu ,  lu \P ; ' s ; )

o':#ffi,1(#,-#,)'
,n \ dslt dapl

-  u i )  
/9*M
\ a n  )

Identifying terms with the elastic scattering cross section in (7.11),
we find

do

dgr
: ()",^", ,"2-Lr,1zn7,k2 dQk dk (#, - 

iS,)' ug' - rn - rr,r.u,

This is the cross section for the electron to be observed in a solid angle
dQ1 and. for a photon of polarization e to emerge with k in the interval
d9* dls. Thus in the limit of soft-photon ernission we can express
the inelastic cross section as a multiple of the elastic cross section
at the same energy and angle of scattered electron.

We observe in (7.59) that the photon energy spectrum behaves
as dk/k and therefore the probability to emit a zero-energy photon
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- Fig. 7-9 Radiative corrections to
? Coulomb scattering.

is infinite. This is the "infrared catastrophe." ft requires a careful
ana,lysis of actual experimental conditions for observing brernsstrah-
lung in order to remedy the difficulty presented by this infinity. The
crucial point is that every detecting apparatus has a finite energy
resolution; and if it, accepts inelastically scattered electrons in a finite
energy interval including k : O, it also accepts the elastically scattered
ones, For a consistent comparison with experiment we must there-
fore include both elastic and inelastic cross sections calculated to the
same order in e2. Since the bremsstrahlung contribution (7.59) is of
order e2 relative to the elastic scattering, we must also include radia-
tive corrections to (dofdV).1*1i" to the same order e2. These arise
from two types of terms. There are those illustrated in Figs. 7.4
and 7.5 corresponding to a second-order scattering of the electron
in the Coulomb field. In addition, we must take into account the
interaction of the electron with itself via the radiation field. The
Feynman graphs for these contributions in Fig. 7.9 show a virtual
photon originating on the electron and boomeranging back instead
of landing at the Coulomb source (or proton) as in Fig. 7.4. The
amplitude coming from these graphs contains a divergent, term which
precisely cancels the divergence in (7.5$ af k: O. We shall arm
ourselves with more training and experience before undertaking the
delicate task of calculating it.

Before leaving (7 .59), however, we shall evaluate the cross section
for emission of soft bremsstrahlung in an interval A-E which excludes
the elastic limit. We begin by summing over photon polarizations
by using a very convenient technique due to Feynman.l Notice
that the exact scattering matrix element in (7.57) vanishes if we replace
the photon polarization eu by its four-momentum /tp. This property
is also valid for the soft-photon approximation to the cross section
(7.59). It is a consequence of current conservation |ju@)/|rr: O
which has as its momentum space analogue h;r'(k) : g. It is required

1 R. P. Feynman, Phys. Reu., 761 769 (1949).
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euerJ r " : (7.60)

and orient the coordinates such trhat kp: (k0,k1,0,0), where kr : ko : k.
since (7.60) is a scalar, we can evalua,te it in an arbitrary Lorentz
frame; in particular, we choose one in which the scalar potential
vanishes, a,(r) :0 in (7.53). rn this system A(z) is transverse
and the two independent transverse porbrizations may be specified in
accord with (7.5a) and (7.5b) by

e(r) : (0,0,1,0)

and e(2) : (0,0,0,1)

Summing (7.60) over polarizations gives

of a gauge invariant calculation in electrodynamics, since the momen-
tum space analogue of a change of gauge is ,4u(&) -, Au(k) + kr!(k)
and the added factor proportional to kp must not change the final
answer.

To take advantage of this result, we write

Since /c""It, - fu,Jw: 0, a,s observed above, it follows lhal Jo, : Jrv,
Jto : Jtr, and therefor€./00 : Jlr; hence

lere,J" 
- -JPr

where we again revert to the summation convention. The polariza-
tion sum has now been replaced by a manifestly covariant expression
which carries a quite general instruction based only upon current
conservation: the result of performin g a polarization sum is

(#,- #,)'

l,ere,Jr '  :  J22 + J*s -  Joo- 7r,  -  $ .7ut ,  -  l t
P e r  c  = o

I I, r(k) a, (k)!le, (k) b, (k)l
pol

:  -  q,.b (7.61)

provided ap and b" are conseryed currents; that is, k.a(h) : k.b(k) : O.
Applying (7.61) gives the bremsstrahlung cross section (7.b9)

summed over polarizations. rntegrating this over all photon emission
angles and energies in the interval 0 ( ft*io < k < ft*u* ( Er, we
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write

f* : (#i)",".,," h I ̂ -:: k dh J *-l#ffi , - **o - t**l
: (#) l ' 'F " f + f,. '( ' - s'' st

\-"r /erast ic  "  k^ in "  J  at r  lQ -  f . .  gr ) ( t  -  t .  g t )

rlz - n't'2- 
1 o.urlrilr - i<a; 

- 
EXr:f *t1 

t

where gr and $1 are the initial and final electron velocities, respectively,
with B, : Ar = B in the soft-photon limit and g;. g, : B2 cos d1 for
scattering angle 07. fntegration of the last two terms in (7.62) is
elementary.

t d Q *  r n z  m 2 f t l ,  I
I  4" E6: w6l,: tr, I  -,2o'p-1 - Bzy: r

The first integral is readily evaluated with the aid of yet another trick
introduced and exploited by Feynman.l This consists of combining
the two denominators with a parameter integral

I  f t  d , r
- :  t

ab lo  [ar  *  b( l  -  r ) ] ,

Applied here it gives

n  f  d 0 ' r  1 - 9 r ' g o'14"ff i

:  2(r-  Sr.g;) Ir '  *  I  *
:2n -8 , . 8 , )  f t d *  |

_ \ -  y J  y t . J o  
W

: 2(r - O' cos il [oL[1  -p ' ,+ 462 s in2 (0/2)r ( l  -  r ) )

B<<1

m 2
+<<1q"

q r :  (p r  -  p t ) r+  -+Ers r r , r t

(7.63)

t l - t . ( g r r *gn ( l - r ) ) l '

= 1 
r(' *tu,.t",;) + o(p,)

l,^(#)-''(#)
t lbid.
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The soft bremsstrahlung cross section is then

k * p r : k ' * ? r

(7.64)
where the two forms apply in the nonrerativistic (NR) and extreme
relativistic limit (ER) of electron energies. we must loin 1z.o+) onto
the radiative corrections to (d.c/d,{t)eretic irr order to obtain a finite
result when ft-i. --+ 0.

7.7 Compton Scattering

we may now include second-order interactions with plane-wave
fields (7.53). Let (7.b8) represent an incident photon which is
absorbed by an electron at one vertex and

A!(r' ;k') : 
J# 

e!(e-er,",' + eik"a')

# :(#)","",," T^*lio,"^',!+ 
o(B') NR

*''" (,, '(#)- 1 + ,(#) ER

t27

(7.65)

(7.66)

a final photon emitted at the second vertex. This process, known as
comptorr scattering, conserves energy and momentum in scattering
from a free electron according to thg relation

The second-order compton amplitude differs from (7.b6) by the sub-
stitution of. TuAr'(eJc,) for ro,At "t(a). fnserting qZ.Sb; anO iZ.OS; lrrtothe second-order s matrix and carrying out the Fourier transforma-
tion to momentum space gives

g tcomp ton ) -  €2  
@ 

1Dii--''*"' : 
V,!EE,l*t^, (2r)a6a(py + k' - ?; - k)

X ti(pr,s)lt-oo,l 
*a 1r! _ ^r-rel

| /-r  \ -zt)  
e=Zr= *(- ie ' )  ]u(pn,t ,)  

(7.67)

corresponding to the Feynman graphs of Fig. 2.10. Three additionar
terms with changed signs of k und/or ft, have been dropped from (2,62).
Two of these vanish, since they lead to 6a functioo. .or.".porrding to



r2B Rela tiai s ti c qu an tu rn nre chani c s

pr,r t Pf, t t

p.*h:pr*h' nr-h':Pr-h

Pi ' t P . t 8 .
t z

F'ig. 7-10 Compton scattering.

the energy-momentum conditions

p t : p r+k+k '  and P r : F ' i + l t + k '

which are impossible to satisfy. These conditions correspond to the
process of a free electron decaying to a final state of one free electron
plus two photons, rvhich is kinematically forbidden. A third term
with the two photons fu and /c/ interchanged leads to the condition
It' * k : k + pr corresponding to scattering of an incident photon
with /c' to a final one with k. The kinematical constraint cannot be
satisfied simultaneously with (7.06), which describes our present
conditions, and so can be dropped. The term retained in (7.67) comes
from the first term of (7.53), t-tto',, which corresponds to absorption
at r of. a photon of four-momentum /cp from the radiation field, and
from the second term of (7.65), stik"a', representing emission al x' of. a
photon with four-momentum k'.

Notice that Sf9"-nt"") in (7.67) is symmetric under the substitution

I{re <-+ -li're'

This is known as crossing symrnetry, and it persists as an exact sym-
metry in all higher orders of interaction.l It plays an important role
in particle physics.

Calculation of the Compton scattering cross section proceeds
along the lines developed earlierl it is only the spinor algebra that
presents a somewhat more formidable hurdle. We forrn the cross
section do by squaring the amplitude of (7.67), dividing by (2r)a6a(0)
to form a rate, dividing by an incident, flux lvl/V and by the number
of target particles per unit volume llV, and summing over the phase

I See the companion volume, Bjorken and, Drell, op. cit.
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space lvz / (%r)61 dspl dslt' :

t29

a":6ffig1
r l  /  -  1  t  \  1 2x J 1a(n6) \/ p,Ti-k _ ne + t *j _ *r' )u(pn,'o) |

X dn(pr + ti' - pt -krt#f# 0.68)

The factor m/hUrlvl id)ust (l/k) rt we work in the laboratory frame
in which the initial electron is at rest; and the integral over all recoil
electrons and over photons scattered into a solid angle dO*, about a
laboratory angle d gives, with the aid of (7.40),

d{rH I W I t# 6o(pt * k, - p, - h)

:  m i l \ n , [ ^ ' k , dk ,o ( t f t  +  p , t , - k )2  - ^z1e (k *m-k )"  J o

: md,eH 
|or*^ 

*' dk' 6l2m(h ti') - 2kk'(r - cos 0)l

: ffi aao'
where ft' and ft are related by the Compton condition according to the
6 function in (7.69):

L'' - k 
--- +--=_'r'="r=- ft.70).h ; :W:W(

Equation (7.68) reduces now to

d o  " / l c ' \ ' l - ,  , / ,  1  1  , \
de: 

o" 
\E/ I  

u\Pr '$t)  
\ t  r ;7V - * t  + t  

^ -  y -  *s '  )

u(p6si) l' <z.zt1
I

which desmibes the differential cross section for eleetrons and photons
polarized initially and finally. We can further simplify the spinor
matrix element considerably by choosing the special gauge in which
both the initial and final photon are transversely polbrized in the
laboratory frame of reference; that is, we choose

(7.6e)

el : (0,e) with e. k : 0

.r' : (0,e') with e, . lt' : 0
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It follows from this that e.p,i,: e'.po:0 and the spinor factors col-
laose to

d(pr,sr) (rr#it u + uW u')u@0,,0)

:  -u (p r , t  '  /  f ' / k  ,  # ' k ' \  ,'n 
\,;iA+ ffi)u(p;,si)

where we anticommuted spin matrices and used the property of the
Dirac spinors as before: (pt* m)gu(plsr)  :  t (- fu1m)u(pr,s;)  :0.
fnserting this result into (7.71) and taking the sum over final spins s7
and the average over initial spins s1 for an unpolarized electron cross
section, we find, with the aid of (7.13),

d a  1 \  d , a
d{t 2 k,"rd?

: ", (t!\, a,Fr * m ( e,sk J_
2 \k  /  

- ^  
2m \2k .p ,  

'

Y (W* 'k ' . - ' e \  (t (16; + ,w'r:,1 Q'72)

which presents us with traces containing up to eight "y matrices.
There are three distinct traces to be evaluated; the two cross terms
with the denominator factor (k.p6)(k'.p;) are identical according to
trace theorem 6 and the cyclic properties of traces. fn reducing such
complicated traces which contain the same vector more than once
it .is usually desirable to anticomrnute factors until the identical
vectors are alongside each other; then the identity dd : a, removes
two 7 matrices. Applying this technique here, we reduce the above
traces as follows:

Tr:  Tr ( fu I  *) t ' tk(p * m)k* '
: Tr pyg'fup&ff' terms proportional to rn2 vanishing because

k 2 : o
: Tr 2lc'prF#'/k#' : 2h'kTr p1g'kj'
: gfu'p;(lc'p1 ! 2k.e' py.e') according to Theorem 3
: 8k'pilk'.p * 2(k.e')21

where we have used energy-momentum conservation lt t pt : h, I ?r,
so that

f f 'k ' \ fu I  m
,F'p,)- 2'n

k' 'p : lt 'pt and e' 'pr  :  e ' 'k  (7.7: l )
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In the same wey we evalua,te

Tz : Tr (fu -l m)g'k,(p, + m)k,t,f

which difiers from ?1 only in the substitution e, lt+-e,, -ft,, so that

T z : 8la,.prfk.pn - 2(kt.e1z1

For the last, trace we find, by the various tricks indicated,

?a : Tr (pr I m)e'ek:(p; * n)k't't
: Tr (fu * m)e'slr(p; * m)k,t,t * Tr (ic -.kt)tr,skgak,g,g

: Tr (fu * m)k(p * m)k'e'#'s t 2k.etTr (- r)kpikt/
- Zlt'.e T" (- l)gkp"k'

- 2lc.p,tTr prk'f'#'/ - 8(k.e'12 k,,p,i * 8(k,.e)z k.pi
: 8(k.p,)(k'.p6)12(e'.e)2 - 1l - 8(tt.e'12 h,.pn + g(k,.e)z k.p;

Putting the traces all together in (7.72) we find the Klein-Nishinal
formula for Compton scattering

d a  a 2 f k \ 2 f k , , k ,  r
m: i* , , ' ( ; /  L; 

+T + ak' 'e1z - 21 Q'74)

where h' and ft are related through the scattering angle according to
(7 .70). In the low-energ;' limit of & .-+ 0 this reduces to the classical
Thomson scattering

/ d,u\ _ e2 ,- . , , , ,
\ilo/o*o 

: 
nlz \e'e )'

where
n 0 2

; :  f f i :  2 '8  x  lo - rs  cm

is the classical electron radius. As the scattering angle g -+ 0, k --+' k,
and we find the Thomson cross section to be valid for all energies
in the foiward direction. Finally, we c&n sum over final photon
polarizations e' and average over initial e for the unpolarized cross
section. The procedure is just the same one used in classical electro-
dynamics for scattering of light, and we borrow the result:

da az /k,\z /k, ft \

f f i : #,(;) (; + ;, - sin'zo)
1 O; Kleia and Y. Nishina, Z. Phgsik,62, 853 (1929).
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Fdg. 7-11 Pair annihilation.

This is readily integrated over the photon solid angle to a total cross
section. Introducing a : cos 0 and using (7.70)

* : nd ' f ' s , t  1  - L  1- n1.z J _t*" llr * (k/m)(l _ a)l' , [1 + (k/m)(r _ z))

l - 2 2  |  , - - . ,- 
trT6M( - il,i (/''ol

The Thomson cross section again emerges at low energies:

u : * *  fo r4 - *o
6 m" n1,

At high energies the total cross section is

u  =*^ ,  
f  , rb  1  /m,  f t \ ' l

f f iyr";+;+o(;^ilJ
with the dominant logarithm coming from the second term in (7.75).

Pair Annihilation into Garrma Rays

If we turn the Feynman diagrams for Compton scattering on their
sides as in Fig. 7.11, we come upon another process of considerable
physical interest. This is the annihilation of an, electron-positron
pair into two photons. The relevant S-matrix element in momentum
space, with kinematics as shown in the figure, is

e2 I nx'
,Sleui'r - 

V tlniifefrr(2r)a}a(h * kz - p+ - p-)D(p+,s+)

. l .  i  i  . 'x 
L(-,;r ')  ,_ L, _ ,.(- id t (- ir) 

e_i, _ neif,) J
X u(p-,s-) (7.76)
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and is symmetric under the interchange of the two photons as required
by the Bose statistics. According to our description with Feynman
propagators, this process corresponds to the picture of an electron
produced in the past scattering into a state of negative energy -p+
and propagating back into the past. Along the way it produces two
photons, that is, it gives up energy twice to the radiation field. This
is the lowest order in e2 in which this process can occur, since pair
annihilation to a single photon cannot conserve energy and momentum.
Both graphs must be included in order to ensure the reouired svm-
metry of Sj?'t"' under interchange of the two photons.

Looking back at the Compton scattering amplitude, we notice a
very strong similarity between (2.26) and (2.62). Indeed, the
substitutions

e, lt ++ er, -hL

e', lc' <-+ ez, +kz

P": 8t e ?-t 8-

P t , f y < - l . - p + , + s +

(7.77)

transform the two amplitudes into each other. This is an exampre of a
general substitution rulel which is valid to arbitrary orders and which
relates processes of the type

A + n - - - + C * D

for instance, to the processes

A+C-B+D
where -B denotes the antiparticle to B, etc. Another example of this
substitution rule applies to the relation of the bremsstrahlung ampri-
tude (7.56) corresponding to the graph of I,'ig. 2.8 with the amplitude
of pair production in a Coulomb field as shown in }.ig. 2.12.

By familiar steps we proceed from the matrix element (2.76)
to a differential cross section. For an unpolarized positron incident
on an unpolarized electron at rest in the laboratory frame the result is
.  ea  r  m ( - l )  

r "  m -  p*  ( l lg  _  e f tz fz \p -  *  mou: ,r;1, J E*p*'+ ' ' '-# 
\zA= + ffi)T

u (  r ' r k r l r ,  . , kz t t \  d t k ,  d r k ,  . ^ , ,x 
\ffi 

+ ;;i) N tti 6o(k' * kz - P-'- P) Q'78)

where 0+ : ?+/E+ is the incident positron velocity, lhe factor tl
comes from the spin average over initial states of both the electron and

1A proof to all orders is given in Bjorken and Drell, op. cit.
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Fig. 7-12 Pair production in a Coulomb field.

positron, and the (potentially treacherous!) minus sign comes from our
normalization of positron spinors [see Eq. (3.9)]. The simplified form
of the matrix element is due to the choice of transverse gauge

e t ? - : e z ' ? - : 0

for the laboratory frame of reference and is the same gauge, according
to the substitution rule, as was applied to the Compton scattering
calculation. It has the virtue here that we can obtain the trace
directly from (7.72) and (7.73), with the substitutions (7.77). The
only task remaining is to reduce the D functions for laboratory
kinematics:

I  d l k r d 3 k 2  ̂ , , ,
J 

-zn,-2kr 6o{k' * k'  - ?+ - P-)

r a 1:  
Jo ;hdktdar,  d[(p1 * p-) ,  -  2kr(p+ * p-) ]0(E+ + E- -  k)

d'Qu f E+tm ,: 
; l, lqdlt4 612m2 * 2mE+ - 2k{m I E+ - pl cos d)l

:1_  * ( *  *  E* )  ,n ,
4[m * E+ - p+ cos d]:  

- ' " ' t

:  -  - - - ! ! !+ n)  - -  |  -y  - !  + 4( , , . , , ) ,  -  2]
8p*[* * E+ - p", cos 0]'z I kr k2 I

_ _{!m 1- E*)
Sp+(m I E+ - pa cos 0)2

(7.7e)

Collecting the above trace and phase-space results in (7.78), we
find the following result for the pair annihilation cross section in terms
of laboratory energies and angles:

da
dQo,

2 - 4(e;e2)21 t.tol- l D ,  
- p 1  c o s 0 ,  m  I^ L  

m  
- E : - p n c o s d -
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where

and

t " _tul -
m(m * Ea)

lc, : m * E* - t, : !tj99l!t,

according to the kinematic constraints in (7.78) and (7.79).
For a total cross section we sum clof dQ1,, over final photon polar-

izations and integrate over the solid angle dQ7,,. This latter step
requires care, since the final state contains two identical particles.
Equation (7.80) iells us that one of the photons emerges in d0p,;
because of their indistinguishability, this can be either of the two
photons. If we were to integrate dofdgo, over the entire 4z' solid
angle, we would be counting each distinguishable state exactly twice,
that is, we would evidently be counting luo photons per scattering
event. We should therefore take one-half of this integral in forming
a total cross section

o : (7.81)

The low- and high-energy approximations for the total cross section are
now readily obtained from (7.81) and (7.80): as pa --+ 0, kr -+ -kz and
the polarization average of (er.ez)2 n 1t6; hencel

u : *.- tt + o(Bi)l g+ ( r
I'-ftu" 

'

In the extreme relativistic limit we find

m * E + - p a c o s d

ra' f , 2E*
6 : : l l n  -

mtli+ L m,

f, | -f;,u,.r

t  + o(X.^*).  )
where the first two terms of (7.80) contribute equally to the leading
order contribution and the sum of the last two terms there is smaller
by a factor m/ E+. These results were first obtained in 1930 by Dirac.2

7.9 Electron-Electron and Electron-Positron Scattering

Electron-electron scattering is handled in a manner very similar to
electron-proton scattering. However, there is an additional graph

I This is a poor approximation to a for 0+ - 0. Ooulomb wave functions
should replace the plane u'aves of the electron and positron.

e P.  A.  N{.  I ) i rac,  Proc.  Cambridge Phi l .  5oc. ,26,  361 (1930).
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Fig. 7-19 Electron-electron scattering.

which arises because of the identity of the electrons. The two graphs
for this process are shown in Fig. 7.13, which also defines the relevant
kinematics. The corresponding scattering amplitude is, with spin
labels suppressed and with factors as in (7.35) for the electron-proton
amplitude,

,q r4-  
-e21n2 

l .a (p) ( - i t )u (p)u(pDGhr)u(pz)-rL 
V, \ /ErE;EWrl,  (p,  _ p),

, a(p'r) (- it u)u(pr)*(p'r) (- iy\u(p )l- '--------6 - ptf-- l
)( (%r)ada(pi * pL - Pr - Pz) 0.82)

The relative minus sign between the direct and exchange terms is due
to the Fermi statistics, which requires the amplitude to be antisym-
metric under interchange of the two final electrons. It is also anti-
symmetric under interchange of the two initial electrons as required
by the statistics. By a similar argument the scattering amplitude
to or from a state containing two identical Bose particles must be
symmetric under their interchange. We observed this to be the case
in the amplitude (7.76) tor the pair annihilation process of !'ig. 7.11.

No additional normalization factors, such as L/{2 or 2, were intro-
duced into (7.82) when the exchange term was added. The rules for
constructing differential cross sectioms from 51, &te not altered by the
presence of identical particles in the initial or final states. We must
only take care that the factor tz6 of (7.8I) is included in integrating
for a total cross section when trvo identical particles appear in the
final state. No special factors appear for identical particles in the
initial state, since the incident flux is unchanged. Electron-electron
scattering provides a clear and simple example of the correctness of
this rule. The second, or exchange, term in (7.82) can be neglected
for scattering in the forward direction with a small momentum trans-
fer (h - p'r)'. In this limit the scattering reduces to the correct
Coulomb amplitude, a result which is independent of statistics.
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An expression for the differential cross section for scattering of

unpolarized electrons can be constructed from (7.82) in the usual way.

In the center-of-mass frame it is

-  e a m 4  r I l  1da : Qr')'E\w) I + \157= o;1'

xrr(pj i : r , , ,F'  j  *  o.\  r ,  (4: * ruV,^* * r , \" - ' \  2 m  I p  2 m  " , / ^ ^ \  2 m  ' .  2 m  ' , /

1- 
6l-W6l- eI 'z

xrrl4i^t * r"F,^t * r,9*@ ru(F,=* m) ,"1
" - - L  2 m  I P  2 m  t v  2 r n  '  2 m  ' J

* (pi  *  ni) l  a^6i  *  pL -  ?r -  pz) d 'p 'rd 'p ' ,  (7.83)

where E is the center-of-mass energy of each electron and g its velocity'
Notice the factor 20 for the relative velocity of the two initial electrons
in the center-of-mass system. For relativistic energies this approaches
twice the speed of light. There is no contradiction here with special
relativity, and indeed the velocity of one electron viewed from the
other never exceeds that of light. The symbol (p't * p'r) above stands
for the two additional terms that are obtained from the first two in da
by interchanging pi and p'r.

The interference terrn in (7.83) between direct and exchange
scattering contains only one very long trace. A pictorial way of
representing the squares of matrix elements in terms of closed loops
as in Fig. 7.14 shows the difference of the direct term with two loops
and two traces and the interference term with one. These diagrams
are useful at, times for keeping the order of indices 1t', v and of spinor
factors straight. The circle on the line is a reminder that no denom-
inator (pz - rL2)-r appears.

Fig. 7-14 Graphical representation of the squares of matrix elemente for

electron-electron scattering. The circle on the line indich,tes that no factor

oI ( 'pz - ni 2)-r appears.
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Evaluation of the traces in (7.83) can be carried out by applying
the trace theorems following (7 .14). In particular, 'Iheorem 5 is very
useful in reducing the trace of eight y matrices in the interference term.
Simplifying the result to relativistic energies E >> m and neglecting
terms proportional to m2, we find for example

Tt (p'rtuprt,PitrPzy') : -2Tr (pitrpflzt,p'r) : -8pr.pzT, prp',

: -\2(pr'pr)(p'r 'p'r)

In terms of center-of-mass energy E and scattering angle 0 the differ-
ential cross section is

(#). a'? fl * cosa (0/2) , 2- 8W L--snFOnl 
-r 

sin, @/D cos'rem

+l *s i nn (o /2 )1
"ot\Uzj- ) 

(/ '641

where the first and third terms are the squares of the matrix elements
for the two graphs of Fig. 7.13, and the second term is the interference
contribution. In obtaining this result we used the kinenr.atical iden-
tities pr'pz : p'r'p!, : 282; pLpi : p!r.p, : 2H2 cosz (0/2); and,

Pt'P't : Pr'P!, : 27'zsin'f,

which are valid when terms in mz are neglected. Equation (7.84) is
the high-energy limit of the Mlller formulal in the center-of-mass
frame.

Turning next to electron-positron scattering, we invoke the sub-
stitution rule as in (7.77) to obtain the cross section from the M/ller
formula. The Feynman diagrams for this process, known as Bhabha
scattering,2 are shown in Fig. 7.15. With the substitutions

? r e P t
t l

P r e P r
T

P z €  - Q r

P ' " *  -q r "

I C. Mll ler, Ann. Phys., 14, 531 (1932).
I II. J. Bhabha, Proc. Roy. Soc. (Lond,on), A164, 195 (1935).

(7.85)
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Fig. 7-16 Electron-positron scattering.

and upon changing the overall sign in
find the Bhabha amplitude

139

-qi

(o )  ( b )

accordance with (6.56), we

-o
' 1

e2m2
s?t :  -w /-;:-; -- -

1/ .t' o,lJ o,'.11 n,l! n,'

* [ ,
a(p'r)  (-  iy,)u(p)D(q)(-  h,)u(si)

@' - Pi)'

- o a(il e h )4s}lq! ! - h\u(e ) 
f

X (2r)aaa(pt' * si - pr - e) (7.86)

The first term represents direct electron-positron scattering in analogy
rvith the first scattering term in the electron-electron amplitude (7 .82).
'Ihe annihilation term corresponds to the second or exchange scattering
terrn there. The relative minus sign between these two terms cotnes
from applying the substitution rule to (7.82). The antisymmetry of
(7.82) under the interchange of the two final, or initial, electrons
becomes in (7.86) an antisymmetry between an incoming positive-

energy electron (p1) and an "incoming" negative-energy electron (-qi)

running backward in time, or between outgoing electrons p', and - qt.

To understand this antisymmetry in the language of hole theory, we
note that at a time prior to the interaction the initial state contains
an electron pr of positive energy and, in addition, a negative-energv
sea filled except for the hole in the negative-energy state -qr. In
particular, a negative-energy electron is present in the state -qi and
therefore, by the lrermi statistics, the initial state must be antisym-
metric under the interchange of. p1<-> -si; a similar argument applies
tcl the final state. Antisyrnn-retrization is also required with respect
to all other particles in the sea, but these do not appear in (7.86) and
therefore do not change its form.

In order to obtain the cross section for electron-positron scattering
in the center-of-mass system, we apply the substitution rules (7.85)

Pt*Q t
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(7.e0)

Aecording to (7.15) and (7.18), the additional trace involving the spin
vector vanishes and we return once again to the Mott formula (7.22).
Our result that the differential cross section is the same for a polarized

l One can, of course, introduce 2(s) twice, both into the rnatrix element and
its adjoint, but this is unnecessary.

7.10 Polarizatiolrt in Electron Scatterins

As a practical application of the spin projeetion operators developed
in Chap. 3 we return to the Mott cross section in Sec. 7 .2 and consider
the calculation for an incident beam of polarized electrons. As will be
discussed in Chap. 10, the decay electrons fron p mesons are polarized
with their spins pointing antiparallel to their direction of motion.

The Coulomb scattering of an electron incident with momentum
p; and spin s;, where si?t : 0, and summed over final spin states * s1
is given by [see Eq. (7.11)]

to (7.83) and carry out the traces as for Mlller scattering. This
gives for the extreme relativistic limit

( au\ t | 1 -t cosa (0/2) _ z_:t"'142 * (1 * cos2 0)1 ,., u^
\dQ/B 8U'' L sina (0/2) sin' (0/2) ' 2 J "'"' '

Y3l;i 
l, l* tn,,',), o u (p # t) 12 (7.88)

fn order to take advantage of trace techniques in evaluating (7.88),
we introduce the spin projection operator, using (3.19) and (3.22):

2(s;) : 
1 *-ryrer

2(sr)u(p;,sr) : u(pi,ro) 0'89)

2(s)u(p6-s) :  0

Repeating the development indicated between (7.13) and (7.14), rve
havel

do _ 4Z2a2m2 1
. to  

-  
r ; r4  / .  la (py ,s )762(s ) 'u (p ; ,q ) l l& (p , i , s ) tou(pr ,s r ) l
l Y l

:3 " r ,3 i

: ?r'::t, r, (b#4) ** r, @#

d,o
d,a
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and

where

and

sr'P.i : 0 or

0 ;=

s t o : s ; ' g r

l4l

as for an unpolarized incident beam is a special consequence of the use
of lowest order perturbation theory only and is not true generally.i

In order to illustrate an observable effect of spin polarization, we
again consider an incident electron with spin lined up along its direction
of motion and compute the polarization of the scattered electron as a
function of the scattering angle. The initial polarization vector s.i
satisfies

s? :  -1  :  (s l ) '  -  S,  .s ,

9;
n-'.

(7 .e1)

(7.e2)

Combining (7.91) and (7.92) gives

(7.e3)

where 3; is a unit vector along sa. For the electron spin polarization
lined up along gr, denoting a right-handed electron with polarization
8;s. ,  w€ have $, 'Srn :  B, ,  and

l" , l  :  1
'-1 

/r --G".3#

|  &  n  ^ r  Ir c . - r  :  s i R : p r l s i R llvrr l  
{ l  -  Bl rr"

(7.94)

Similarly, for the spin polarization antiparallel to 9.', denoted a left-
handed electron with s;r- : -s;R, we have

0 n ' S , "  :  - A o

r r E , ;
lSrr. l  :  -

mi
s,'0" : -0ols;ll

Similar formulas apply to the scattered electron with the index i
replaced everywhete by /. The right- and left-handed vectors
sr;n : -.s;r form a particularly convenient basis for describing electron
polarizations to lvhich we shall frequerrtly refer. The eigenstates of

>(s) in (7.89) with .s: *sn: Tsr. are known as positive- and
negative-helicity eigenstates. 2

The polarization of the scattered electrons is measured by

P : Nn - ly'r, (7.e5)
Nn * l/"

1N. F. Mott and IL S. W. Massey, "The Theory of Atomic Collisions," 2d
ed. chap. IX, Oxford University Press, New York, 1949. L. Wolfenstein, Ann-
Bat., NucI. Phys., 6,43 (1956). H. A. Tolhoek, Reu. )l[od.. Phys., 28,277 (1956).

2 M. Jacob and G. C. Wick, Ann. Phss. (nf.y.), 7, 404 (1959).
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' where lln denotes the number emerging with positive hericity (or
polarized right-handed) and Nr the number with negative helicity
(left-handed). ly'n, try'r,, and P are generaily functions of the scattering
energy and angle. The polarization for Coulomb scattering of a
right-handed electron is given according to (7.11) and (7.9.5) by

p * : ffndzll @zu*')-l' - ld(pl.s.,)v ry(Pr,s,*) |z
1 u \p y, I 1 11 ) f nu(p,A; il r@

{" [.,,,9.1#td
@!JJL) -,, (1 * zesrn) @ + mll

2m22n l

_ 
t, 

lt oy uqo @*P t oy ut," @#l

,rlW
The subscript appended to Pn denotes the polarizationfor an incident
bearn that is cornpletely right-handed. All terrns linear in s;p or
srn vanish as in (7.90). The denominator trace in (7.96) has already
been computed in (7.21) and the numerator is reduced by anticommut-
ing the two ?s, matrices together and applying (7.17). The result
after a short calculation and insertion of (7.94) is

O" : t - [ 2m2 sinz (0/2)

(7.e6)

(7.e7)
E2 cos2 (0/2) + m2 sinz (0/2)

In the relativistic limit, m/E ->0, or 0---1, r,r'e find Ps---+ 1,
indicating no depolarization of the incident electrons in the high-
energy limit of Coulomb scattering.

Ilor an incident electron beam that is not completely but only
partially polarized along its direction of motion, we expect Lhat (Z.gZ)
is modified to

P : pPn (7.98)

Here p denotes the polarization of the incident electrons, that is,

' P : p R - p L

where pp is the fraction with positive helicity and pr : 1 - pn is the
fraction with negative helicity. To verify (7.98), it is only necessary
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to return to (7.96) and observe that the expression for the polarization
is linear in the initial spin projection operator. Therefore, with the
aid of the identity

I * ' v s $ i n ,  1 - ? s s ; n
P *  Z  

- t P t  
2

in (7.96) we have the desired result:

r * pru$nn

"  
_  o  [ , ' ( 0 / 2 )

(0/2)
m2 sin

ln '

+E2 cos2

2m2 s

@m
-l

(7.ee)

A special case of (7.99) for p : 0 shows that an initially unpolarized
beam of electrons remains unpolarized in Coulomb scattering.

For a geometric picture to associate with these polarization results
we define the angle between the spin of a moving electron with spinor
wave function u(p,s) and an arbitrary direction along the unit vector
2r : (0,n) by

cosd = (d.n):4qP++4+g
u,\p,s)u\p,8)

: {t - Bz i l(p,s)75nu(p,s) (7.100)

where 0 = p/8.
Again introducing projection operators and resorting to trace

techniques to evaluate the matrix element in (7.100) we find, with the
aid of (7.93),

cos d :  \ / r  -  P'  
"  

( '  ** \(L{E) t ,"
\  z r n  / \  z  /

l l  -  9 2 s . n

:fffi,,u" s'lor)
According to this, lcos al < l/t - U' for S perpendicular to $ and the
expectation value of spin given in (7.100) for a state with its spin axis
perpendicular to the velocity direction vanishes as B --+ 1. On the
other hand, if the spin s is taken along the velocity axis, that, is, for
helicity states,

c o s 4 : s . n (7.r02)

and the spin projection is * 1 along a direction n parallel or antiparallel

to s. In this case we call a : 0 and

..espectively.
cos  6  :  t l (7.103)
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The average value of cos o for a beam of scattered electrons is
given by

(cos a) - 
) co(s,p) cos a
1 s

where co(s,p) is the transition probability to a given finar state with
momentum p and spin s. The sum in (7.10a) is most conveniently
taken over the two helicity states. For the spin projection arong the
direction of motion we find from (7.108), (7.104), and (2.95)

(cos 6) : u(sn,p) - w(sr,p) : p (7.105)

that is, the polarization represents the cosine of the angre between
spin and momentum vectors. For coulomb scattering of an initially
polarized beam of electrons with p : l, (7.10b) and (7.99) tell us
that at high energies E )) zra or small scattering angles 0 << 1,

<u) -#u (7.106)

that is, the angle between the spin and momentum vectors of the
emerging electrons is m/E times the scattering angle.l

The relativistic limit of polarization calculations is most simply
achieved by directly reducing the polarization projection operators for
m/E --+ Q. In this limit the spin projection operators for longitudi-
nally polarized electrons with s parallel to p can be further reduced.
By (7.93) and (7.94) we write

,, : -1^ ,, - {- g' 
nuo-  

m B '  B

-, Pu as B ---+ 1

and find in this limit

/ f+:+t (p + *1_ /r r vs\ (p + -1
\ z- )\--In )- \ 

-T 
)\-tn )

Similarly,

/t t "'fr\ 
(m - F\- (r +-1,\ /- - p\ /.7

\  3  ) \ -n i ' l - \ - r ' " ) \d )  Q1o7)

Since the spin projection operators stand next to energy projection
operators in the cross-section calculations, the sirnplifications in
(7.L07) can be made in the relativistic limit. The result of (2.99),

I S. M. Berman, private communication.

(7.r04)
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that Coulomb-scattered electrons are not depolarized f.or mf E ---> 0,
is seen immediately in this limit. The matrix element for a rieht-
handed relativistic electron

(1 -l- v")
u(pi,s;) u(pt,si)

to scatter to a left-handed one

u(pr,sr): + u(?r,sr)

with interaction 7p is proportional to

n(p1,s1)7uu(p;,s;) : il(pr,E) (t+_!) 
", 

(+rr) u(p;,st)
/ \

_ / _  _ \  / t - y , \ / t + z u \: u\Pr,sr )'Y p t 
-t- 

/ t 
-o- 

| u(p;rsi)
/ \

- 0

Problerns

1. Show that the plane-wave solutions normalized as in (7.2) and (7.8) have the
desired Lorentz transformation properties. In particular, include the effect of a
Lorentz transformation on the box volume I/ to show tha| p(r){(r) is a scalar and
that {,t(n),/,(r) is the time component of a vector, as desired.

2. Construct the scattering amplitude for the exchange of two photons between
an electron and proton corresponding to the two graphs in Figs. 2.6 and Z.Z.
Show that the static limit, for infinite proton mass, agrees with the amplitude in
second Born approximation for electron scattering in a Coulomb potential, as in
Fig. 7.2.

3. construct the amplitude for bremsstrahlung in electron-proton scattering and
show that the static lirnit reduces to (7.57) for bremsstrahlung in a coulomb field.
show that there is the same correspondence in factors between these two cases as
was found in (7.5) and (7.35) for elastic scattering.

4. Derive the Bethe-Heitler cross section for bremsstrahlung of photons of arbi-
trary energy. (See W. Ileitler, "'Ilie Quantum Theory of Radiation," 3d ed.,
oxford university Press, London, 1954, for discussions of this and related processes.)

5. Derive the Bethe-Heitler cross section for production of an electron-positron
pair by an incident photon in a Coulomb field. Show that the amplitude for this
is related to the bremsstrahlung amplitude (7.57) bV the substitution rule.

6. Calculate from (7.80) the total cross section for pair annihilation into two
photons, e+ * e- + I * ^y, for all energies and show that your answer agrees
with the two lo'lv- and high-energy limits given in the text for (7.81).
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Z. Construct the differential cross section for electron-electron scattering in lowest

order Born approximation in terms of laboratory energies and scattering angles.

g. calculate the cross section for the absorption of light by a bound electron in

an atom with low atomic number Z, stch that Za : Z /137 (( 1 and 86io61," {1mcz'

Assume also that the fr-equency of the light is such tha!, hu )) Z61o6io*' Making

these simplifying assumptions calculate difierential and total cross sections for

the two limiting cases:
o. Zuioaioe {1ho 11mc2 nonrelativistic
b. ha )) mc2 ultrarelativistic

9. Spin polarization sums haYe been carried out in (7.99) and (7'105) by adding

contiibutions from positive- and negative-helicity states. Equally well we could

use any two independent spin states as our basis for the expansion. Show that

the final results are independent of choice of the basis.

10. Verify Eq. (7.97) for the polarization in Mott scattering.
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B.l Electron-Positron Scatterine in Fourth Order

The rules for writing S-matrix elements which have been developed
in the preceding examples can be extended to higher orders in the
coupling constant, although there are new problems to be faced.
Consider, for exarnple, the ea contributions to electron-positron scatter-
ing. In order to construct such an amplitude, we draw all possible

Feynman graphs with four electrornagnetic vertices which correspond
to this scattering process. Then, following the rules given by the
examples discussed so far, we write down the desired matrix elements.

Several of the graphs contributing to this calculation (there are
18 altogether) are shown in Fig. 8.1. Graph (o) shows a two-photon
exchange between electron and positron and contributes an amplitude
analogous to Q.a7) and (7.48) for electron-proton scattering:

Srl"' : - (- t 1n1 daw dar d:g daz l{l+'(r)t uts r(, - ilt,{l*'(il1
X iDr.(r - w)iDp(y - z)l{t l; '(z)l, iSr(z - w)tp*'/ '(w)l (8.1)

Fi,g. 8-1 Some fourth-order graphs
scattering.

l48

for electron-nositron
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Fig. 8-2 Origin of the relative minus sign between
graphs (o) and (c) due to Fermi statistics.

where i and f, i' and f', are the quantum numbers of the electron
and positron, respectively. Graph (b) is an annihilation term and
contributes a minus sign relative to (8.1)

Slit : *(-ie)ol daw d,ar d,ay d}a[il]+,(r)tutSo(r - y)t,{,|,@)I

X iDp(x - w)iDp(y - z)[{,1, >(a)y,iSp(z - w)y,gl+\(w)l (8.2)

The origin of the relative minus sign between the two amplitudes is
the same as in the lower-order calculation (2.82); it comes from anti-
symmetrization of the wave functions for the initial positive- and
negative-energy electron state.

The amplitude for graph (c) corresponds to a process in which the
pair produced frorn the annihilation photon scatters before emerging
into the final state. According to our by-now-familiar rures of writing
-ieyu and. the invariant volume integral I d,ar at each vertex, a
Feynman propagator i9e(r - y) for each internal line, and wave
functions for free incident and emerging particles, the amplitude for
this process is

S.11"' : +(-tr|nJ d,aw dar d,ay d,aziDp(n - w)iDp(y - z)
X llf' @) t,iS e (r - a) t,iS e (a - w) vt{j;' (w)l[{,1;\ (a) 7,g[+, (a)) (8. B)

Only the choice of overall sign in (8.8) requires comment. ft comes
from the requirement of Fermi-Dirac statistics that two electron states
must be antisymmetric under interchange of the electrons. one of the
possible time orderings of the four vertices in (o) is drawn in Fig. 8.2,
together with a corresponding one from diagram (c). These two
graphs differ by the exchange of the two electron lines labeled r and rr.

t49
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The relative minus sign between (8.1) and (8.3) assures the required
antisymmetry of the total S-matrix element under the exchange of two
similar ferrnions. The sign of (8.3) is the same as that of the lowest
order contribution of the annihilation diagram, lrig. 7.15b, to the
second term of (7.86).

A graph of type (d) must also be included when we sEmmetriee
the amplitude under the interchange of the two photons; that is, the
photons arriving at vertices w and y in Fig. 8.1c may have equally
well originated from ? or r, respectively. This leads to a contribution
to the fourth-order S matrix of the form

SlXo' : *(-ie)nl d,aw d}r day daziDr(r - il iDr(w - a)

x Wl*' (r) t uiS r (r - 11 r'iS r (u - w)7,,!,(l (w))10',;' @)t'*'o*' Q)l (8.4)

and with the same sign as (8.3).
The amplitude for graph (e) of Fig. 8.1 corresponds to a process

in which the pair produced from the annihilation photon interacts,
again via annihilation, before emerging into the final state. Above
the vertex at y, graphs (c) and (e) of Fig.8.1 are related in the same
way as the two second-order processes of electron-positron scattering
in Fig. 7.15, and we expect to find, as in (7.86), that their contributions
to the S matrix are of opposite sign. This leads to the result

Sl1" : - (- l,rln I daw dar day daa l0l*' 1w17 r,1,,;;) (w)1i,D r(w - r)

X W'.piSr(y - r)Bxtf,,iSr(r - a),"liDo(a - z)

X I0l;\ (z)t,,tl*' (r)l (8.b)

The overall sign in (8.5) can be independently verified by constructing
an appropriate time-ordered sequence as in l'ig. 8.2.

The symmetry and antisymmetry requirements that have carried
us this far lead to one additional class of graphs as illustrated by
Fig. 8.3. This arises from symmetrizing the two photons in Fig.
8.1e; the photon arriving at w can equally well originate from z or r.
All such disconnected graphs, that is, graphs containing a completely
isolated part into or out of which none of the initial or final particles
emerge, are properly ignored in all calculations. Figure 8.3 shows
an electron propagating to r; there it emits a photon and scatters
backward to g, where it destroys itself and the photon. In the
language of hole theory this is a fluctuation effect in which an electron
jumps out of the negative-energy sea into an empty positive-energy
state with virtual photon emission and then drops back into the nega-
tive-energy sea upon reabsorbing the photon. Sueh fluctuations are
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\ /

Y^
Fig.8-s Exampre or a disconnected graph. 

i" 0

, , / \  

v

taking place all the time; and to find the scattering amplitude relative
to what happens in the vacuum, we divide out, the contribrrtion of all
disconnected bubbles, which evidently provides a multiplicative factor
on the connected graphs of interest.'We 

may summarize the rules for constructing the amplitudes
for higher-order processes as follows:

1. Draw all connected graphs.
2. Associate with each graph an amplitude with a factor

-ieyrf dar

at each vertex.
3. Include a propagator iSr(r - a) or iDp(r - y) for each line

representing a fermion or photon which terminates at vertices r and y
-this is an internal line. l,'or photons insert an additional factor
g* lo tie together the -yp and 7, at the vertices conneeted by the photon
line.

4. fntroduce a wave function for each external line, that is, a
line representing an incident or scattered particle.

These rules are as developed in the low-order examples, with
the new condition that only connected graphs are to be calculated.
Finally, we add the sign conditions:

5. There must be a relative minus sign between two terms which
differ by the exchange of identical fermions, as in (7.82) and Fig. 7.13
for two positive-energy electrons and in (7.86) and Fig. 7.1b for one
positive- and one negative-energy electron. In the amplitude (8.b),
for Fig.8.1e, this led to the introduction of an additional minus
sign with the closed electron loop. As a general rule a factor of ( - 1)
is included with each closed Fermion loop, as in Fig. 8.le, in construct-
ing the amplitude for a given Feynman diagram.

t5 l
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{r
FO
t5

(d) (e) '

Fig. 8-4 Feynman graphs illustrating (c) vertex
corrections, (d) electron self-mass, and (e) vacuum
polarization.

6. fn accordance with (6.56) there is an overallfactor (-)t, where
r? is the number of positrons appearing in the initial state.

The big question remaining is how to compute the integrals,
in particular for the fourth-order interactions, and obtain numbers for
comparison with experiments. Diagrams (o) and (b) of Fig. 8.1,
along with the two crisscrossing photon lines obtained by interchang-
ing r and y, present a formidable four-dimensional integral of the

type given by (7.51) for the similar contribution to electron-proton
scattering, and they will not be computed here.

ft is convenient in discussing diagrams (c) to (e) of Fig.8.1
to go into momentum space and relate them to the similar lowest
order graph, Fig. 7.15b, which contributes the second term of (7.86).

Making the-by now familiar-expansions in momentum space, we
find that Sli") differs from the second term of (7.86) by the replacement
of the current

'a(p1)et,u(qi)'- a(p;) t C;#,F**eiry") /,
L

- k - m * i e

i
X , t ,4=i_ * + tr(- i 'ev ')a(q' ' )  

(8.6)

S|ld) ditrers by the insertion for the final electron wave function

- '  ' \  - ,  , ,  f  dak  - i  /  :  \il\pl - fi\p) J 
-@tY 

h, + ie\-rc"v")

x ------f-- - (-ie^r'\'-'-+.-- -- (s'7)
"  p i -  k  -  m *  i e '  " - "  P i -  m *  i e
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and .qtl") differs by the insertion into the photon propagator

6##+-.-+ (-'r [rffi;-.]'
" I #^rr (- ie1u) E=#To(-iet) T:

r53

L

P r - 4 t - m * i e

( - i )
(8.8)(p t+ ,  q r ) '+  i ,

The portions of the graphs contributing here are shown in Fig. g.4.
All of the remaining fourth-order graphs give rise to insertions

of these same three types. rt is unfortunate that these closed-roop
contributions diverge for k -> .o. We discuss and compute them in
order.

8.2 Vacuurn Polarization

The most severe divergence is that in (8.8) corresponding to the
closed electron loop of Fig. 8.4e. we refer to this contribution as
the second-order photon self-energy part. The integrar contains two
electron propagators and therefore, with only two powers of /c in the
denonr.inator, diverges quadratically. The quadratic divergence may
be argued away with a certain amount of plausibility by appealing
to the condition of gauge invariance as discussed above (2.60). A
gauge chan3e Au@) - AuQ) * qu|b) must not alter final results
of a calculation of physical amplitudes. This requirement has the
following significance for (8.8). Let the photon in Fig. g.4e be a real
physical photon with q2 : 0 according to the Einstein condition, such
as occurs in the bremsstrahlung or compton process. As illustrated

Fig. 8-5 Vacuum polarization cotr€c-
tion to an electromagnetic process.

/ - \
|  - 1 1

=  .  - ,  _  f  I , r r ] - q )
( p '  *  q t ) ' *  i r ' ' " '
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in Fig. 8.5, the electron loop gives an e2 correction to the current flow-
ing through the question box with which ,Au(q) interacts. The gauge
requirement is that qu times the current vanish, which in terms of (8.8)
means

qul u,(q) : 0

Q 2 : 0

(8.e)
when

This may be rewritten as

qu I u "(q) 
: - e2 r, | #^ a V _L* a ;, t, 

------J-k _ q _,m + ie

: -e2" I #)^T= r!-+r,l(k 
- m t ie)

: -e2 I ,#r^"'(z-

- ( k - q -

1

1
r n t L e ) l k _ l n T i e ' Y ,

t \'  l ^ ,  / e 1 0 )
k - m * i . e f  

' v  \ v ' r 'q - m l i e

If the integral were finite, we could let ll : k - q in the first term and
thus obtain zero. The fact that the integral is not finite is unavoid-
able, and consequently (8.10) remains ambiguous. fn order to pro-
ceed, we cut off (8.8) at high frequencies, making the replacementl'2

(8 .11)

where the Mi are large masses and the Ct are chosen such that the
integrals converge. This cutoff procedure is not unique and is adopted
only to define the mathematics. If physically measurable quantities
depend upon any cutoff parameters, the theory fails. fn any case
the existence of divergent quantities leads one to suspect trouble
in the theory at large momenta or, equivalently, small distances.

Notice that the method of cutoff in (8.11) has the virtue of pre-

1W. Pauli and F. Villars, Reu. Moil. Phgs.,ZLr 434 (1949). An alternative
procedure for handling these divergent integrals which first led to a gauge invariant
result was given by J. Schwinger, Phys. Reu.,74, 1439 (1948).

2 R, Feynman, Phgs, Reu,, ?6, 769 (1949).

Ir,(q,*') - Iu,k) : 1,,(q,m2) +, Cc@)Iu,Q,Ml)'?

= \cJu'Q'ml)
i
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serving the gauge condition (8.9). were the individual propagarcrs
to be cut off, we would not be able to maintain gauge invariance.

The calculation of fr,(q) subject to the condition (g.9) is most
readily done by elevating the propagator denominators into expo-
nential factors by the identity

i  : - j ( k l @ - - t l , ,  ' / ' . "
t r  -  nx + k:  1tz -  *z 4;- :  \ l r  + rn) 

Jo d?eiz(k2-m2+i ' )  (8 '12)

This gives

Iu,(q) : -4(-ie1z 
fo' dr, [o- dz, I #,

X lkp(h - q), + k:;,(lt, - e), - gr,(ht - k.q * mz11
X exp \iz1[lt2 - ntz * i,e] * izzl(k - S), - m2 * iel] (8.18)

where the trace has been carried out and orders of integration inverted.
completing the square in the exponential by changing the integration
variable to

t : k -  q l '  : f r -  o+  a l '
4 t z z  -  ? r t z z

(8.14)

we perform the momentum integrals, using the identitiesl

I a+rlr,tp,tul,l rit2(21*22) : ,ffiiT6,ft,o, ,6ffi1 rr.trl

with the result

1, ,  :  - , i  )  , ,3 [ '  d, .  [  -  dz"-  
4 " ' z r  J o  * "  

J o  G , + Z *
L

x  (u*n { , l t f fa-  @! -  ie)(21*.r ] } )
?Gz |  -  |  - j -  

-  .  qzz+z . .  +  - .? f lx  
l2(su,q,  

-  QpQ) f f iu+ s, ,LT,+ 
" , )  (zr*  zr ) , ,  ,1 ,

(8.16)

The terms proportional to (gu,qz - QuQ) automatically satisfy the
gauge condition (8.9), whereas the last three terms proportional to

1 These are best evaluated in rectangular coordinates. Each integral, with
a rotation of contour of 45o, becomes a gaussian integral, for example,

t *  & o r r o r q o * n , ) :  " o n l n
J - n 2 r -  2 \ / T o
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gp, do not. However, we may show that these vanish, that is,

[ *  [ -  - ! " d "  \ ,  
t  ;  q 2 z L z z  1

Jo lo (2, I zz), 4 
t 'L*? - 

Cr;A 
- -@t 

! z,)z I
1

x 
{"*n 

tlu ,, * re-n r,- (*? - i.e)(21*',,1}

f -  [ *  o r ro r r r r \  r r l * l  _  _ - J_  _ ,  q2zpz . ^ ]: 
Jo Jo G, + "rt- I L ,r(zr * ez) 

- 
12, a zr)'l

x {",.p alu,f?,,- (*? - ie)(21*,,,]}

' .  A  f  ' f  *  d z t d z z: tn dX- Jo Jo ^A, +W

* 
I, ,"*o {r^ l f*,* *- (m? - ie)(2,* 'u]} (8 rz)

where we have let ?;--+ \ar in the second step. Upon letting )va--+ p.
in the integrand, we see that the integral is independent of tr; hence
(8.17) is identically zero.

The remaining contribution to .Zu" is evaluated with the aid of the
same scaling trick. Using the identity

r :  [ - * u / r _ a r * a r \  /
ru  ^  \  - )  

(8 '18)

i  / - \  2 i a , -  
" ,  f  *  f  -  l * d ) \ d z r d h z p zru,\Q) : ; \ara" - qwQ") 

Jo Jo Jo \CF;t4

x a(r -"+',)" 
I,,**o {,1#{:,- (m?-r.)(,,+,r]}

:2f  {0,0,  -  g,Q\ I r -  I r -  dztdzzzp26( l  -  21- d I r -  +

* 
) 

r' expfi\,(q2zpz - m? -t ie)J (8.19)

where we have again scaled ?r---+ )vr.
The integral over tr, unhappily, diverges logarithmically, and we

evaluate it with the aid of the cutoff procedure. Choosing, in (8.11),
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:  0( i  > l ) ,  we f ind

_ 1",(M2)

, - 8p,Q2) lot 
aa r0 - a) log

- i g u "  
t  ( i )  t  ( ^ \  ( - i )

q2  
'  

q '  
' p v \Y /  

q2

t57

- Tu,Q')

ffi - e [o' az,{r - al ros (r

C r :  - 1 ,  C r  '

Iu , :  Iu , (mz)
t ;^

N. __:: 
kuq

7 t  
- '

: * k"o,
, J 7 1  

- '

r
X  l l o g

L

M2
m 2 - q 2 z ( l - z )

-#, , ' - , , ) ]  (820)

To understand the physical significance of (8.20), we consider, as rn
Fig. 8.1e, the contribution of the closed loop to the scattering. Add-
ing it to the second-order amplitude in (7.86) gives, according to (8.8),
a photon propagator which can be written as the sum of two terms

(8.21)

fnserting (S.20) and dropping the terms proportional lo qu and q,,
which vanish by current conservation at the electron vertices, we find

- i T " " f  .  o t ,  M 2- F - l r - 3 r t o g m 2

2 o  r t  / -  o , e ( l  -  e ) \ l
+;  J,-  dz z( t  - , )  log (1 

-  
"d _;  ) l  

(8.22)

This is the photon propagator including corrections of order a. In

any I'eynman graph the effect of an electron loop on the amplitude
for the exchange of a photon between two conserved currents is given

by (8.22). In the limit q2 --+ 0, the propagator is changed only by the

multiplicative factor 23, defined by

z t= l  -  ?nrY
J?T 'ITL-

(8.23)

and therefore, for example, the Coulomb scattering amplitude for
small momentum transfers becomes

iezulou ___+;rz!1ou (t  _ *ron 4' \  iez*uvsu / ,
q"" q' \ d?r *+ ) 

(8'24)

We conclude that the parameter e2 appearing in the Dirac equa-
tion is not 4tr/137 but something larger, since it is e! rvhich is measured
Lo be 4tr/137. ea is called the renormalized charge and e the bare
cbarge. fn any process where a photon is exchanged, this multiplica-
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(8.25)

tive factor will be present

a 2 n =  Z r e z -  r ' ( t  -  * l  
M ' \

\ Jr 
toc 

nx')

*,ry(t - * tosW*,-##,)=*nfflt

independently of momentum transfer. Consequently, there will also
be the same renormalization of the electron charge arising from the
static polarizability of the vacuum. Therefore, the divergence in the
calculation, to order e2, disappears if we rewrite cross sections in
terms of the observed charges e|. The observable, momentum-
dependent corrections come from the second term of (8.22), which
vanishes in the static limit q2 -+ 0. Its contribution is finite and
independent of the cutoff procedure adopted in the calculation. Only
the relation between bare and physical charge is cutoff-dependent.
In the limit of low momentum transfe, lqr/mrl<< 1, it alters, for
instance, the Coulomb scattering amplitude (8.2a) by the factor

- #ffi+ ro,;l
(8.26)

This can be expressed as an additional interaction in coordinate space
of the form

( ,  -  . : *  ^ v? ) , ' i _  : 9  +  
aneza  s ' rR ' ] ' 7 - ' \  t

y tormz " )ffi 
: 

4io, r ffi, 
at"{*) (8'27)

It leads to a first-order change AE,r in the atomic energy levels in
hydrogenJike atoms of charge Z

7e2.a- ,  ,  8Z2alAE4: ff i l**(0)1, : -(lz,d2m)ffir6n (8.28)

F o r z r : 2 ,  l : 0 , a n d , Z : l

AEy : 
i 

: -27 megacycles per second

The signs of the contribution (8.26) and (8.27) are what the
discussion in Chap. 5 leads us to expect. For an electron scattering
with low momentum transfer lqrl << ̂ , corresponding to a large
impact parameter, the interaction is proportional to the total charge.
For scatterings with small impact parameters and large momentum
transfers q2 : - lqlr, the electron penetrates the polarization cloud
and the interaction strength increases. The resulting modification of
Coulomb's law, as first calculated by Uehlingl in 1g35, was the object

1E. A. Uehling, PhEs. Reu.,48,55 (1935); R. Serber, Phys. Reu.,48, 49 (1935).
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of the original measurements of the 2Sea - 2Pru Lamb shift splitting in
the hydrogen atom. Instead of -27 mc/sec a shift of - * 1,000 mc,/
sec was discovered rn 1947; this was due primarily to the vacuum
fluctuations of the radiation field as discussed in Chap. 4. Very
precise measurements and calculations during the last decade agree
to within 0.2 mcf sec for the Lamb shift of the za : 2 levels in hydrogen
and therefore confirm to high accuracy the presence of the -27 mc/sec
of vacuum polarization. This is an impressive vote of support both
for the hole theory of the Dirac equation, which has given rise to
the closedJoop contributions, and for the simple form of point coupling
used in describing the interaction of electrons with photons. It still
remains for experiments probing the theory for large q2, corresponding
to interactions at small distances, to demonstrate the need for any
modifications. For large momentum transfer scattering with

lq2 l :  _qz) )mz

the correction in (8.22) increases logarithmically and the photon
propagator, to first order in the unrenormalized charge a, is

(8.2e)

When the momentum transfer reaches the cutoff value M2, the correc-
tion compensates the charge renormalization factor and suggests that
in the limit of infinite energies the interaction is measured by the
strength of the bare point charge of Fig. 5.3. This is an interesting
but unproved conjecture.l'flhenever 

the virtual photon momentum q is timeJike and q2
exceeds 4m2, as in the pair production diagram of Fig. 8.1e, the correc-
tion to the propagator in (8.22) becomes complex, with an imaginary

4;('* ustogHX' - #^r#)

part given by2

ryH fo'azz0 - z)hrol,rt - o
, ( '

I See remarks in Sec. 5.3. For extensive discussion of motivation and impli-
cations of this interpretation see L. Landau, A. Abrikosov, and I. Khalatnikov,
Dokl. Akad. Nauh 9SR, 95, 773 (1954). L. Landau in W. Pauli, V. Weisskopf,
and L. Rosenfeld, "Niels Bohr and the Development of Physics," McGraw-Ilill
Book Company, Inc., New York, 1955. M. Gell-Mann and F. Low, Phys. Reu.,
96, 1300 (1954). N. N. Bogoliubov and D. V. Shirkov, "fntroduction to the
Theory of Quantized Fields," Interscience Publishers, Inc., New York, 1959.

2R. Feynman, Phys. Reu.,76, 769 (1949).

-9 (8.80): + #'#('.'#)
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To understand the origin of this imaginary part, we recall from
Chap. 6 and the discussion of scattering in the nonrelativistic prop-
agator theory that the S matrix in the Schriidinger theory is unitary.
The condition of unitarity

s ts :1
that is,

(8.31)
: 6r;

ensures the probability interpretation of the scattering solutions
according to which the sum of all transition probabilities for a given
initial state must add up to unity. In the positron theory, particles
are produced and destroyed and the sum over states rz must include
all electron, positron, and photon final states to which a given initial
state can scatter. One finds that (8.31) retains its interpretation
as a sta,tement of probability conservation. Since it is an identity
in e, each order in an expansion of S in powers of the interaction con-
stant must satisfy (8.31). If we expand

) s*,s";

Sr t  :  6 r i *  t i ; '  +  s t i '  + ' ' '

the unitarity condition becomes

(8.32)

(8.33o)

(8.33b)

(8.33c)

s!,r + s$'*
st?'+ s;?'*

st? + s|j'*

s'1'+ sl;'*

: 0

: - 
; 

sfl-si'l

: - 
ltsf/-si'/ + si'l*si?l

: - ) tsi?-sl"' + st'l-si"' + si?*sgl (s.33d)

tr'or a representing an initial free electron-positron state, S|]) : 0;
the reaction e- | s+ ---+ 1? is forbidden by energy-momentutn con-
servation. Relation (8.33b) is satisfied by (7.86), which is anti-
hermitian as required. Relation (8.33d) gives a nonvanishing her-
mitian part of the fourth-order amplitude in terms of the second-order
contributions. Equation (8.30) represents just this fourth-order con-
tribution; it is real and therefore gives a hermitian contribution to the
S rnatrix (8.5) as required. The threshold function 0(l - 4m'/q')
indicates ihat (8.30) is present only for momenta which could lead
to a final real pair state in addition to the virtual pairs in the closed
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Fig. 8-6 Exchange of a "real" photon
between two currents macroscopically
separated in space.

Distant source

electron loop.l The proof that the S matrix is unitary in any order
is best carried out within the framework of field theorv.z

8.3 Renorrnalization of External Photon Lines

The contribution of (8.8) has been discussed so far for the propagator
of a virtual photon. Closed electron loops will also correct, the
contributions of external photon lines. Here the photon may be
visualized as in l'ig. 8.6 as having been produced by some distant
source. If the vacuum polarization bubble is incorporated into the
system of interest, it provides a multiplicative factor of. Za lo the
uncorrected matrix element, according to (8.23) and (8.24). How-
ever, the source current then remains unrenormalized. If a factor
{ n i, associated with the source and the ofher 1/ Z, with the sys-
tem of interest, the bare charge e at each vertex will be replaced by
1/Zse: en. Thus a working rule for dealing with real external
photons is to ignore corrections to all external lines and replace eby ea
at each external vertex. This is equivalent to calculating all graphs,
including vacuum polarization bubbles on external lines, and then
dividing bv {n for each external photon line.

Hereafter we shall assume, when writing equations, that charge
renormalization has been carried out. ezf 4zr denoles l{zt, and the
bare charge, whenever needed, will be denoted by eo.

1 The imaginary part, (8.30), is just right to make the total transition proba-
bility ont of the initial-state unity to order a2. See R. H. Dalitz, Proc. Ro11. Soc.
(Lond,on), A206, 521 (1951).

For the proof see J. D. Bjorken and S. D. Drell, "Relafivistic Quantum
Fields," McGraw-Hill Book Company, Inc., ,in press.

r6l
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8.4 Self-rnass of the Electron

The amplitude for the graph of Fig. 8.4d-known as the electron
proper self .energy part to order e2-is given by the integral in (8.2),
namely,

-i>(p) : (-ie)' I A*,F#-*t,,p -# m + t;t, (8.84)

Equation (8.34) diverges, since there are only three powers of k
in the denominator, two coming from the photon and one from the
electron propagator. ), is a small photon mass inserted to protect
us from infrared divergences which will appear.

fntroducing (8.12) and taking the analogous steps to (8.16), we
come to

s / - - \  a  [ .  f  .  de rd , zz  f r *  y :L ]z\P) :  6 J, Jo Q, fd, lr* 
-  

i+ , ,1

X e x P | t ( " " " '  ' "  \ l
'  

L \er T;,-  
rru2zz- x 'a) l  (8 '35)

>(p) in (8.35) applies both for internal electron lines with arbitrary
p2 and I in a Feynman graph and for external lines. In the latter case
p2 : mz and p stands next to a free-particle spinor as in (8.7). The
Dirac equation may then be used to se!, p : *. As in vacuum
polarization, we use (8.18) and let z;---+ 7z;, obtaining

a  f  L ,  , ^  -  t . d , ,2 (p )  :  *  l r 'd r l2m 
-  p ( I  - , ) l  

Jo  T"o  l i y [p2z( r  -  z )

- n1,2? - Ir(1 - z) * iell (8.36)

The integral

J(p,m,)t) : [^- ! "*o liyfprz(L - z) - n'L2z - trr(1 - z) ]- i,rll
Jo ^t " '

diverges logarithmically; we cut it off by subtracting off J(p,m,L)
w i thAa iargemass.

Using the identity

( ' "- : )ff *(s;o' 
- eibz) : (8.37)
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we find for the propagator, after cutoff,

< ,  \  a  f  I>(P) : z* J" drL2m - P(r - z)l
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' " r

o t  r L  - . _  a / 1  . . \ r r _  L 2 ( l - e ): 
U lo d? Lznx - p(r - e)l log -#

+ # Ir' d,z[2m - pG - z)]

,'"fmffi
- \am r ^o4 l  -  e  r ^  . - - r , ^ -  a ':  4 r  " * f r -  G \P  

-  m)  $$  "

+#fo 'ar lz*-p( t -z) l

x].g% (8.38)" m'z t  I ' ( l  -  z) -  Pze(l  -  z)

All the cutoff.dependence lies in the first two terms, which will be
disposed of by the renormalization procedure.r rhe integral is readily
evaluated f.or p2 - m2) m,\,; one obtains

or f r , ,^ , n't2a
zo lo drLzm _ pQ _ e)l log 

7 _ /, t11 _ a
am /m2 - L*\ 6n!t_t:;\--z / -

a /,t-!\1, n (* ' t ,o'\rog*'_,p' l  tr.rnl-  
a*F\T )Lt  *  ( -c rnz J .

Near the "mass shell," that is,,when,p2 x,'mz (but ?z * mz)nztr),
and when ) stands next to a free-particle spinor (p : *),

=. . _. Ba . A2 d . . /. n, + nu,sry) fr.nolz\P) = 
Gnx 

rcg 
tn, 

- 
G lP - m) 

\,o* * nlz /

Notice the logarithmic singularity as p2 ---+ m2. For pz ) m2, 2
becomes complex, corresponding to the existence of the process of
virtual electron decaying into electron and photon, in analogy to what
happened to the photon propagator. For p2 - m2 {{mX the last

1 The finite term separated off in (8.38) is fixed uniquely by requiring it to
vanish identically for the electron on the mass shelI, nz : mz,



L64 Relati oi s tic qudntum mechanics

logarithm in (8.a0) is replaced by log (X/m). This may be verified
by a direct calculationr of the integral in (8.38) in the limit p2 ---+ n1,2.

8.5 Renorrnalization of the Electron Propagator

The modification of the electron propagator thus far has been the
replacement, according to (8.34),

x i -) + . 1- (-i>h\\ L
P - n x  P - n x  p - n x '  - - \ r / ' ' p - 7 n

P - n x - >@ * 01"';  (8.41)

From (8.40), we write

(8.42)
with

and

Z r ' - L

mlr 1(p2 - m2 1<mz

C(p) is chosen such that at p : m, C(p) : 0; it thus contains no
dependence upon the cutoff A. At p : za this becomes

2, ,  -  r :  #( r " r#-  zrog$)  (s .48)
+ 7 I \  "  L ' /

Using (8.42) we may now rewrite (8.41) as follows:
' iz'

P - nx - >(P) (P - m)lL * ZzC(p)) - Zz 6m

: ,  
i .Z ' ,o ,  

,  ^ r - - r r*  0(a ' )  (8.44)
( p - * - 6 r u ) [ l - l c ( p ) ]  '  - \ - /  \

We identify ffiph : m t 6m as the physicai mass of the electron;
the parameter m in the Dirac equation is, like the bare charge, another
unmeasured number. The necessity of mass renormalization already
occurs in classical electrodynamicsl experiments on a free electron

I For the complete second-order contribution to the electron self-energy part
see R. Karplus and N. M. Kroll, Phgs. Reu.,77, 536 (1950). See also J. M. Jauch
and F. Rohrlich "The Theory of Photons and Electrons," Addison-Wesley Pub-
lishing Company, Inc., Reading, Mass., 1g55.

>(p) : 6m - [Z;t - 1 + C(p)](p - m)

^  \ a m ,  A 2
0n1, : _;_ log _ 

"+7r

* c(p) - i (bs,{ + n lo* -' I P'\
- 

+7t \ 
- 

??'1" /
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Fig. 8-7 $ime orderings for the secontl-order
self-mass correction.

measure m, the parameter in the Lorentz force law, plus the iner-
tia of the electron's self-field.l 1,'or a classical electron of radius
-a, the electromagnetic self-energy is -a/a and the observed mass
is -(m I a/a) : ffioh. For a point charge, a--) 0 and the correc-
tion to the mass becomes infinite. This is true also in Dirac theory;
however, here it diverges logarithmically with the cutoff in contrast
to the classical self-energy correction, which is linearly divergent
as the charge radius o -+ 0. This weakening of the divergence is a
consequence of hole theory. As first studied by Weisskopf,z the
virtual pairs in the time-ordered graph of lrig. 8.Za cancel the leading
divergence in l,'ig. 8.7b.

Although forrnally infinite, the mass correction is small for cutoff
masses L<<rne2rtld e lQtoo*. On the other hand, the mass of the
universe is estimated3 to be -1080m.

A systernatic way of carrying out mass renormalization is to
rewrite the Dirac equation in terms of the physical mass and treat
the difference as an additional interaction term. That is, we write

( i V  - m e h ) { / :  e A { *  @ - m o o ) * :  e l g  -  a m 4 ,  ( 8 . 4 b )

The additional interaction term is represented by the graph in Fig. 8.8.
This term just cancels out the first terni in (8.40), and the propagator
reduces to a multiple of the free propagator as p -+ ,trlph.

We shall hereafter suppose mass renormalization to be carried
out, that is, the graphs of lrig. 8.8 to be included; we shall let na denote
the physical mass of the electron.

The rest of the correction to the propagator lies in 22 and the
function C(p), chosen such that at F : rm, C(p) : O. Thus, for

t H. A. Lorentz, "The Theory of Eiectrons,,' B. G. Teubner \rerlagsgesell-
schaft, mbl[, Stuttgart, 1916.

, V. F. Weisskopf, Phgs. Reu., 66,72 (1939).
3 C. W'. Allen, "Astrophysical Quantities," University of London press, Ltcl.,

London. 1955.
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Fi,g. 8-8 NIass renormalization counterterm.

(8.46)

P = m the propagator is given by

i _-. iz,
p - rn  p -nx

that is, it is modified by a multiplicative factor. 22 is analogous in
this sense to the Zs faclor encountered in the photon propagator.
Here also this factor may be absorbed into the charge e0 appearing
at the vertices at either end of the electron line; however, this is
unnecessary, since \Me shall see that the correction to the vertex
will cancel the Zz. We cannot expect Zz to contain much physics,
since it depends upon the photon mass according to (8.43).

One must be careful not to correct external lines twice; the
situation here is similar to that encountered for the photons. The
propagator is an expression bilinear in the field amplitudes, as seen,
for example, in (6.48). Hor,vever, an external line represents a field
amplitude; hence it is renormalized b.y the factor 1/Zr. Thus if all
graphs giving corrections to external lines are included in the calcula-
tion, the result must be divided bV l/Uor each external electron line.

A familiar exarnple of this effect is found in nonrelativistic pertur-
bation theory, where

(8.47)

(8.48)

Again, the Z factor is computed essentially from the Green's function
and the wave function is renormalized by 1/2".

8.6 The Vertex Correction

There remains oniy the graph of Fig. 8.4c, which shows the correction
due to a photon bridging the vertex 7r. This contribution is referred
to as the second-order vertex part. In order to compute its contribu-
tion to physical processes, we study the integral

. . ^  f  t l 4 b  ( - ; \
tru(p',p) : (-,tt1' J en^d X;'+ irr, r, - k - m l i e

X ^tp ,p - k - rn + ier' 
(8'49)
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where p/ denotes the momentum of the electron and -p the momen-
tum of the physical positron created by the virtual photon in Fig. 8.4c.
Equally rvell, (8.49) represerrts a radiative correction due to an electron
scattering from some external potential, as illustrated in Fig. 8.g.
In this case, p' is again the mon-ientum of the final electron but p is
now the momentum of the initial electron. Thus the same function
(8.49) describes corrections to different physical processes.

The arnplitude (8.a9) diverges, since the integral contains only
four powers of ft in the denorninator. In addition, .we shall encounter
an infrared divergence and again assign the photon a small mass tr
to cut off the contribution of very soft photons. We identify the
infinite part to be separated out by considering L,(p,,p) for

q : p ' - p ' - - + o

and for free-particle momenta for the initial and final electron, that is,
P :  r n , P '  :  m .

fn this case

u(p).tru(p,p)u(p) : (Z r' - l)a(p)t,u(p) (8.50)

where Zris a constant depending upon the masses 1n2 : ?2, tr2, and
the cutoff needed to make it finite. Equation (8.b0) is general, since
the only other four-vector, p,, is the same as rnyy when sandwiched
between spinors u(p) and u(p) in (8.50).

It is not necessary to calculate Zr, because a direct comparison
of (8.a9) for p' : p and of the propagator >(p) in (8.34) shows that

t67

, d)(r)

Here the important #t|l 

: - 
W

l 1
p -m ' ' p - *

is usedl it says that differentiation of a free propagator with respect
to momentum is equivalent to the insertion of a zero-energy photon

Fig. 8-9 Vertex correction to scattering in an external
electromagnetic potential.

d L
ap 'e  -  ^

(8.51)

(8.52)
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irr the line. d>(p)/Ap, may be computed directly from (8.42). and
we find

u(p) hu(p,p)u(p) : (Z;' - r)n(p)y ru(p)
or by (8.50)

Z t :  Z z
to order e2.

To this order, the vertex correction is then

Iyu(p ' ,p)  :  (Zr t  -  t )yu* LL@,,p)

All the cutoff dependence is contained in 21. lrL(p',p) is finite pro-
vided we avoid the infrared catastroplie by keeping the photon mass
X > 0. It is also unique, satisfyirrg the condition

u(p)tri(p,p)u(p) : 0 (8.56)

We now may either regard 21 as renormalizing the charge e
at the vertex or observe that it just cancels fhe t/Zz wave function
renormalization of the external lines. Tliis is best seen by looking
at all the graphs to order e2 for the forward scattering of an electron
from a potential. These are shown in f ig. 8.10.

(8.53)

(8.54)

(8.55)

\*il\*\*/ Y /#
(a) (b) (c)

\ \

h^^- }.^^-

/ /
(d)

Fig. 8-10 Second-order radiative
ternal electromagnetic potential.

corrections to scattering in an ex-
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The contributions of these graphs in the limit q + 0 are listed
below:

(a) -ie"yu

(b) -iey,(Z7L - t)

( c )  *6m- - I  -  ( - i n t , )  -  (Z t ' -  l ) ( - i e1 , )
p - m . '

(d) - 6m -J- (- ietu)p - m '

,  c Y  ,  A 2
(e) -  (- ietu).3o: log ;F 

:  -  ietu(Zt -  1)

According to our previous discussion, we also divide bV {7,
for each external electron line and t/Zt tor the photon line; the sum
of all these contributions is, to order e2,

1
;:-_ (-iet)lI * (Zt' - 1) - 2(Z;' - l) + (Zs - l)l
Zz  \ /  Lz

169

(8.57)

-l (z' - t)l

:  - i eZ I lZz l /Z t l ,

:  - . ienyp (8.58)

where (8.25) and (8.54) are used in the last step. Between the
vertex part and the propagator the Zz reoormalization is completely
removgd. The vacuum polarization is entirely responsible for the
charge renormalization.

The rather elaborate notation ernployed in arriving at (8,58)
is used with an eye to dealing with higher orders. In particular,
(8.51) and the relation Zt : Zz in (8.5a) are true to all orders (Ward's
identity) as is the result that all divergent integrals can be absorbed
into the renormalization eonstants Zy 22, and Zz.L

We have already found a physically observable effect in the finite
part of the vacuum polarization graph. Looking into the finite part
of the vertex and electron self-energy contributions, we also uncoyer
predictions of great physical interest.

Turning to the vertex Lr(p' ,?), a somewhat lengthy calculation
is required to reduce the integrals in (8.49). IVe first rationalize
electron propagators and combine denominators, using either expo-

1 This is discussed in detail in Bjorken aro'd Drell, op. cit.
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nentiation of the propagator denominators (8.12) followed by the
scaling trick (8.f8) or, more directly, the formulal

I  :  * - l ) r  f -
a r " ' Q "  J o

d a r '  , d z , , a ( I  -

( \ a n  n ) '
(8.5e)

One finds, after the four-dimensional k integration (and using a cutoff
A2 on the divergent integral)

^ f ^ 2  I
1 , , , (p ' ,p )  : } . tu  I  log= +  0( l )  |+jr L

+ #r, I '  Io" Io* or,dz2d,zsu (t -

xt"cffi(:*s"r";*#* _.
3

4 t r J o  J o  t o  \  
, : i

u 'y" Ip ' ( l  -  er )  -  Fzt  *  ml tu lp\  -  ? i  -  F 'ez*  ml t 'x ::1-)_'-;;11--;Jf 
i i)i- ,1,,i,;-_i;,-' 

::J'- (8.60)

At this stage it is convenient to reduce the numerator of the last
term by anticommuting p and p' to lhe sides, where they may act

t With the aid of this Feynman integral lPhEs. Reu.,76,679 (1949)l we bring
the denominators to a quadratic form and then complete the square by shifting
the origin of the ft integrations, viz.

r a  I  1  1
J - .4 ' r IQt )  t - - i ,  a  110 '  -  1 r1z ' -  m,  + , rd -E{ -  * ,  +  i "

f @ f a f @
:  t  

Jo  Jo  l ,  
dz rdz tdze  6(1  -  ? r  -  zz  -  z )

2,,)

3

2,,)

x [ --o 116z - 2lr.p'22 - Zlc.pzs - )r'zt * (p', - rnz)zz + (p, - mz)zz * ie73

d4h J&)

: '  
Io-  Io-  Io '  

dzrdztdzsa( l  -  zr  -  z t  -  , , )  [ '  
( lakJ( la I  p 'z t  *  pz)

J - -  ( k 2 - c l i , e ) 3

with c - (p'zz * pzz)'(p'zz + pzs) + \2zr - (pt2 - mr)2, - 1rz - 1nz)zs

:  - p ' 2zz ( I  -  z r )  -  pzzy (L  -  z3 )  l 2p .p t z2za*mz ( l  -  z )  * \ z z t
:  - (p ' ,  -  m2)zz( l  -  zr)  -  (pz -  m2)23(L -  za)  -  qzzzzt

*  m2 (L  -  z )2  *  \ 2z r

We now perform Lhe I d4k by contour methods, carrying out the 
/i_ 

,*, *ttn
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upon electron spinors betu'een which we tacitly assume Au to be
sandwiched. The Gordon reduction (3.26) helps here; the numerator
of the last term becomes

-7ul2m2(L - 4ar l z1) + zqz(t - ,r)(l - z")l - Zmzp2lq,yul (8.61)

The integration over the e's is in general a mess, although an
analytic result has been obtained and is quoted in many places.l
We restrict ourselves here to the trvo l imits lql '?(nrz and lq'l>>m'.
In the fi.rst case the integrations are straightforward and yield, to
order 92,

+ ff iIuti (8.62)

For lq'l ) m2 we obtain the X-dependent terms only and find

l7l

ru t tri(p',p) 3 ru [t * # #(^rT 
- 

3)]

rut  L i (p ' ,p)  ztu{t  -  
; r "sf  [ r"s 

lo l  - '  . '(#)]| r' u'r
Adding these results to the contribution frorn the yacuurn polar-

ization (8.26) gives the radiative correction to order a for an electron
scattering in an external field which supplies a virtual photon q.
Itrom (8.26) we find that the vacuum polarization adds a constant
-r/b to the - fu h (8.62) in the low momentum transfer limit and
has no effect on the infrared or magnetic moment terms in (8.62) and
(8.63).

The last term of (8.62) adds a magnetic moment of af2tr to an
electron, since it modifies the static limit of the interaction of an

the contour displaced from the poles at f Vlkll + c by lie as indicated:
k 2  - c * i e :  ( k o -  t / g a  * i e ) ( f t 0  +  \ / W 4 "  - i , ) .  T h i s g i v e s

f  a  I  12

J  - - o ' n  ( k ,  -  c  +  i e y :  2 i c

The results for arbitrary powers of the denominator, n ) 3, are obtained by
differentiating with respect to c. Because of the symmetry of the denominator,
which is a function of /c2 only in the above expression, numerator factors are also
easily reduced: odd powers of /cu + g

krlt,, + )fgp,k2 elc.

I See Feynman, Phgs. Reu.,76, 769 (1949), For the vertex when the electron
lines are not on the mass shell ar'd p2 * m', p'' I m2, see Karplus and Kroll,
op. cit.
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electron with an external field to

/  i - n  n , \- ied(p,)  ( ,y" *  ;_": :  l " (p)A,(s)
\  

L i l  A t I v  
/

:  - i s1 (n , \ l  ( n  *  P ' ) ,  *  ( ,  '  q \ i ou ,q ' lt rP')L + 
\1 

+ *)-r; ;  l "(p)A'(q) 
(8'64)

This correction factor of (1 * a/2r) for the electron magnetic moment
was first derived by Schwingerl in 1948 and has since been confirmed
experimentally.2

The experiments have become sufficiently accurate to study the
a2 correction to the magnetic moment. This has been calculated by
Sommerfeld and Petermann;3 their result of -(ar/n)(0.828) is in
agreement with present experimental limits.a The result is obtained
by considering all vertex graphs involving the exchange of two virtual
photons.

The other terms of (8.62) and (8.63) lead to infrared divergent
contributions to electron scattering. These, however, disappearwhen
the contribution from bremsstrahlung of soft photons is included in
the cross section. Any experimental apparatus has finite resolution;
if electrons are detected with a given energy resolution AE , the number
of observed events corresponds to the elastic cross section plus the
bremsstrahlung cross section leading to electrons whose energy is
within AE of the elastic value.

We verify to order e2 thaL this sum of elastic plus inelastic cross
sections is finite and free of the infrared difficulty by comparin g (Z .6a)
aud (8.62) and (8.63). The infrared part of the elastic cross section
to order e2 is

with x@') :

2a,  n 'L ,  " .  I
7 rog I x(S') 

I
- r "<< t

1  -  { r r t

(#):̂ (#),[' -

| -!#,
lnu?tl -

(8.65)

(8.66)

1J. Schwinger, Phgs. Rat.,78,416L (1948).
2If.  M. Foley and P. Kusch, Phys. Rea.,73, 4t2L (1948).
3C. Sommerfeld, Phgs. Reu., L07,328 (1957), and. Ann. phys. (N.y.), 6,

20 (1958); A. Petermann, Helu. Phys. Acta,30, 407 (1987).
aThe latest erperimental. value has been reported as p - t * a/2r -

10.327 t0.0051a2/vz by D. T. Wilkinson and II. R. Crane, Phys.Rat., 130,852
(1963) .
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(cta/d;l)o is the lowest order contribution to the elastic scattering cross

section. The bremsstrahlung cross section is given by (7.6a)

(8.67)

We cannot, directly add these last two equations together because we
have cut off the low-frequency photons differently in the two cases.

To overcome this problem, we have the choice of rederiving the
bremsstrahlung cross section with photons of finite mass or of recom-
puting the vertex corrections assuming that emission of photons of
energy less than /r*i. is suppressed. We choose the latter alternative
in order to avoid the intricacies due to real longitudinal quanta,

absent when tr : 0. Since the introduction of the photon cutoff fr*i.
is a noncovariant procedure, identification of the renormalization
parts in the vertex correction becomes very delicate. This is why
the development was given first in terms of the invariant photon
mass tr. Furthermore, we choose k-i' )) X to ease the mathematics'
Therefore, we must now return to (8.49) and modify the photon
propagator by suppressing the k 1k^io amplitude.

This means that De(r * g, X) in the photon propagator (7.30)

is modified from

(i;),,"- : (#;),'i ^rffi x(a')

Dr(r - u. tr) : i  [,r-!t"n^-- e,q'(x-,v)-i1qo11ca-volu r \ a  a , " /  " I 1 2 r 1 a 2 1 0 4 "

f doq e- iq ' ( t -a)

I (2r)a (q2 - )r2 I ie)
(8.68)

to

=  Dr ( r  -  a , \ )  -  i '

-  De ( r  -  A , \ )

,  I  d t q  f -- f  
I  T f "Y l - -

lql<&- i ,  
'

so  -  {s '+  \ '

f  - l tq -  p iq.( r -y)- i lqo '  l ro-sol

,n 
l o_.^ 

(2zr)l2laol "

d,eo o-;q.1,-0 I
2tr 

- 
,z * Sz {6 

(8'69)

k-i. )) x (8.70)

Dilx - U,k^i^) :  ' i  [  - !&'",-eiq'(x-v)*i lql  lzo-aor

,n'J*-" 
(2")'2lul "

where

The regions of momentum space in which the two propagators are

modified are shown in Fig. 8.11. The change 6ttu(p',p) in the vertex
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(8.49) is then

6ltu(p' ,p) : Iru(p',p,\) - Lr(p' ,p,k^rn)
f d|lt, f - d,kn:  - ' tc '  

, . ,1.  <z. , ' l - " ;lkl<e_,"

v  t , ( P ' - k + m ) t u ( F - k * m ) t '  , ,x 1ft, - 1' a i,1iir (8'71)

This expression is free from ultraviolet divergence, since the range of
integration is limited.

To compute (8.71), we do the ko integration first by performing
a contour integral in the ko plane and using Cauchy's theorem. Three
simple poles are enclosed, as indicated in Fig. 8.12. In the limit
fr*i" (( m, only the residue from the pole at ko : \/yz 4 1z survives
in 6hr(p' ,p), which simplifies to

(8.72)

where we anticipate sandwiching DA, between free electron spinors.
The renormalization is now delicate because the introduction

Fig. 8-11 Regions of mornentum space
modified bv infrared cutoffs.
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Re &o

Fig. 8-12 Singularities in the /ro plane encountered in computing
6Lv(P' ,P)'

of the photon cutoff is a noncovariant operation. Since (8.51) is
still valid, we may use our previous conclusion (21 : Zz) that no
renormalization of rlu is necessary, provided the self-energy parts are
included properly. However, 2 changes because of the changes in the
photon propagatorl indeed

S)(p) : >(p,I) - 2(p,lt^,")
r d|h f - d,ko I ,, I:  - ie2 

I  6t  J-. ;  tu p -  1,  -  *  t ,  ; r^tu k,  -  \+ ic
lk l i&-h 

'

(8.73)

This must be computed through order p2 - n1'2, since the modification

in the renormalization constanl Zzis what is needed here (6nr, is free

of infrared divergence).
We integrate orrer ks first, as for the vertex, and obtain, through

first orderl in p2 - m2,

dtk tu(p I m)Y
62(P) : -sz
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* O(/c^i")

(8.74)= * ez t -__g!-- :"', ^ @ - *): | 1 
,n,.{-,. i2o)t zt/w + xt (k'P)"'

I The term 0(/c-io) changes 6rir by a negiigible amount.

f - -  / ' x
Vk'+\' J-po+JGff;*"
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The complete change of the vertex due to modification of the
photon propagator is then

d^, + ; a>(p') 
{tr, + ;r, e ! *Dz(p)

7  - a p 2  [  
d t h

'"" 
,n,./*-," (2r)32\/F +*

xl.!L - -X-- - 4,,1 (s.7b)" l(P'k)(P' 'h) 2(P'k) '  2(P' ' lct-  t
where we must remember to take only half the contribution of the self-
energy bubbles of Fig. 8.10c and d, since it is the external wave func-
t ions that are being corrected by the factor {n=1+r4(Zr- 1).

Evaluating (8.75) in the nonrelativistic limit lqz/m2l << 1 gives

6ti,(p',p) :.y,##(^r+ - il (8.76)

and thus, from (8.62) and (8.71),

Lf,(p"p,k^i,) : #l'x *?#"" (to* #,^*: - 3)] @.77)
For lq2/m'l) 1 one finds for the infrared divergent terms

6Li(p' ,p) :  - .yp# 
[,"* (#)- ' ] ( '*T - '**) (8 78)

and consequently, from (8.63) and (8.71),

A;(p,,p,k^i^) - -r,.; r"* 
* [r* (#) - t] (8.7e)

We see that in terms of the /c-io cutoff the infrared part of the elastic
scattering is given, instead of (8.6,5), by

(8.80)

Adding on the bremsstrahlung cross section (8.67) gives the infrared
part of the scattering cross section, including emission of photons
of energy Iess than /c*u*:

/ d o \  / d " \ 1 .  2 a ,  E  , " , 1
\ i i / ," , .^*o 

:  ( tn/ 'Lt -  
; loc/c*-x(c') l  (8'81)

It is completely independentr of /c^r" and tr.
1 J. Schwinger, Phys. Reu.,76, 651;76, 790 (1949). For a recent review and

discussion of the entire infrared question see D. Il. Yennie, S. C. Frautschi, and
H. Suura, Ann. Phys. (N.y.) 13, 379 (1961).
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8.7 The Larnb Shilt

The scattering correction (8.77) may be considered to be due to an
additional "effective potential" which acts between the electron and
the source of photons, which we take here to be a nucreus of charge ze.
The change in the atomic energy levels due to this added interaction
is the Lamb shift, which we are now able to discuss in more detail
than in the physical argument of Chap. 4.

The effective interaction in momentum space between the electron
and a current source eA,(q) is given by (s.27) plus the vacuum polar-
ization contribution (8.26),

t  r  , q r / , ^ ^ . n ' :  , 5  B  1 \ l  ,  i a  ) . .n(p) 12" lt + # # 1t"* ,it"^+; - ; - ;)l+ r;Ao,,q,l "(p)
X eA,(il (8.82)

Equation (8.82) contains the corrections of order a to the electron's
current operator, E(p')yru(p), due to photons of momentum greater
than k*i,, and it is valid for small momentum transfers ep : pL - po,
that is, for lq2/m2l {{ l. The current source is eAr(d - - (Zer/lqrl,O)
for an electron in the coulomb field of a nucleus of charge ze, and
(8.82) becomes

-ui(p,) lffij - ##:('* #^*Z-3-*)l
,  a  |  , .+ Gnr tl u(p) (8.83)

The first term is spin-independent and is the Fourier transform of an
effective interaction potential of the form

_ Z _ g + 4 a Z a / ,  m  1 1  1 \ " , , .
,  z  *  \ 'o *  zh^^+ 2a-  5 )4"v1

In hydrogenJike atoms this leads to an energy shift due to photons
of momentum ) k^i* which is found from a first-order nerturbation
calculation to be

AD: :4:  Zo /  ,n 11 1\-un  g  *z  l , l , ,m(o) l ' \ log  , r ^^+  i -  ; )  
(s .84)

To this must be joined the contribution from soft photons of momen-
tum less than k*i".

One expects a natural cutoff of order ft-io I (Za)m, that is, for
photon wavelengths large compared to the size of the atom. Indeed,
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fr6ia c&nrot, be chosen arbitrarily small, because the propagator of
a bound electron is modified from the free-narticle form for values
of p' - ynz - (Za)2m2. In the atom

,pu - (rn * Z, p)

lr - (Za)2m and lpl - Zom

and in our previous calculation of the self-energy part >(p) as well
as the vertex Au [see (8.74)] we assumed

k'p = kminfrl)) p' - ryz - (Za)2m2

For photons of momenta less than /c*1,, relativistic corrections should
be small, that is, involve higher powers of Za, and one uses a com-
pletely nonrelativistic calculation, first carried out by Bethe.l tr'rom
old-fashioned second-order perturbation theory, the energy shift due to
emission and reabsorption of a photon by an electron in state za is

. r? - | k^i, dsk s' (n lc . " 
,;u' ' lm) (mla. e r-iu't ln)AE; :  " '  Jo f f i ,  ) ." f f i -  (8.8b)

where the sum is over transverse photon polarizations and all electron
states. trVe now choose /cmin such that

(Za)2m ( k*i, K, (Za)m

[for instance let /c,,i, = (Za)""m] and make the dipole approximation,
admittedly a somewhat questionable procedure. Because the electron
states are nonrelativistic, c may be replaced by v : p/m, The
integrations over /c may then be done, yielding

AE;< :

with

'll -*^,^qn1u,1ny
o?r L

,  1r D- -  8, ,  lE- -  E^ * /c- i^ l
' L  m 2  l E * - E " l

l<,lpl-)1,] (8.86)

We now must carry out the mass renormalization for this part,

of the calculation. Since the electromagnetic mass 6na of the electron
is already contained in its experimental mass ?r, there will be a mass
counter term of the form

p '  _ p '
2(m - 6m) 2m

=L(*)'u*
1 fI. A. Bethe, Phgs. Rea.,72,339 (1947).
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(8.8e)

,E has been evaluated by Bethel et al. and found to be S.ga2na in
hydrogen in agreement with our anticipations. To (8.8g) must still
be added the contribution of the anomalous magnetic moment term in
(8.83) in order to complete the Lamb shift to order a(Za)a.

The reader may understandably be unhappy with this treatment,
in particular with regard to the dipole approximation and the treat-
ment of ft*io. To the devoted student we recommend the recent
treatment of Ericksen and Yennie,2 which avoids the division into
soft and hard photons.

1I{. A. Bethe, L. M. Brown, and J. R. Stehn, pDgs. Beu., 77,820 (1950).
More recent improvements are due to c. L. schwartz and J. J. Tiemann, Ann.
Phys .  (N.Y. ) ,6 ,  178 (1958) .

2 G. Ericksen, unpublished doctoral dissertation, University of Minnesota,
1959.

r79

in the hamiltonian. This leads to an energy shift.

68, :  171 6m (nlv ' ln l

which is just the structure of the first term of (g.g6). rt therefore
is absorbed into the mass renormalization. Since fr*i, >> E, _ E^
- (Za)zm, the nonrelativistic part of the Lamb shift is given by

A E | ; : j : f  ( D * - . 8 , ) l o g ' = / ' ' ' n  , , . . ,  ,  \ , 'dun 
BrmL , - t  

1o"  _  n^ l  l \np l ru ) f

: #*Zru* - E,)t"* 9 l@tpt*tt' (8.87)

which serves to define Z, expected 1s lg -(Za)zm. The sum over
states can now be performed with some commutator algebra

f1

L @* - E,)(nlplm)' : 126@llIp,Hl,pllnl
ri

yielding

. n( ot /t*i" (nlvzvln) :4!") k'.,^At! . ; ;  :  g**zlos'U g*z- lol f  l**^(0)1, (8.88)

Joining onto (8.84) gives the energy shift to order a(Za)a for s states
in hydrogen-like atoms:

^E; :ry#$r#*,;-!,)-



r80 Relutiaistic quanturr,, m,echanics

In this chapter we have shown how to extend the rules for writing
S-matrix elements by one power of a beyond the lowest order ampli-
tudes' The divergence difficulties which were encountered in this
development were surmounted by showing that the infinite expressions
could all be isolated in a well-defined way and included in constants
which renormalize the charge and mass of the electron and the wave
functions describing the propagation of the electron and photon.
The need for such renormalizations is clear on physical grounds. To
the mass parameter in the Dirac equation, the electromagnetic mass
must be added, sirrce this is already contained in the experimental
mass. AIso, the charge must be renormalized to include the effect
of the static polarizability of the vacuum. Finally, the wave func-
tion must be renormalized, as in ordinary nonrelativistic perturbation
theory illustrated by (8.a7) and (8.48), to correct for the amplitude
of observing an electron in the presence of the fluctuations induced
by the interaction.

Delicate care in carrying out the renormalization program has
been demanded by the unfortunate fact that the Zr, Zr, 23, and 6m
diverge. However, we have seen that the remaining physical effects
are finite and independent of our cutoff. Moreover, they agree with
experiment, as, for example, in the Lamb shift and anomalous mag-
netic moment observations.l

It is natural to ask at this point what new problems we face
as we push on further to higher orders in a. The answer is none
beyond the demand of added computational la,bor. We have already
introduced all the renormalizations required. The ideas and pro-
cedures introduced in this chapter suffice to carry us in a well-defined
way to unique, finite, and cutoff-independent answers to all physical
amplitudes in a calculation of the S matrix to any (finite) order in a.2

Problerns

1. check unitarity of the electron-proton scattering amplitude through order ea.
Do this by computing the absorptive part of (7.b1), which corresponds to the
intermediate electron and proton propagating on their mass shells, and showing
by (8'33) that this equals the appropriate product of second-order amplifudes.
Show also that no other absorptive parts arise from Fig. 7.6 and Fig. Z.Z.

l For the most recent review of this situation see R. p. Feynman, Rept.
SoluaE Congr., Brussels, Interscience, New york, 1g61; also S. D. Drell, ,4nn,.
Phys. (N -Y.),  4, 75 (1958).

2 The sufficiency of these ideas and procedures is discussed in Bjorken and
Drell, o7t. cit.



Higher-order corrections to the scal,tering matrix

2. check unitarity of the scattering amplitude to order eB by relating the imagi-
nary part of the vertex correction (8.60) to the appropriate product of the second-
order electron positron scattering amplitude and the vertex e7p.

3. Show that the self-mass computed from (8.3b) for a cutoff ,it, such that L {{ m,
increases linearly with a and corresponds to the classical self-energy for a charge
distribution of radius a - t/L.

4. Complete the calculation of the Lamb shift to order a(Za)a by adding the
anomalous magnetic moment term in Eqs. (8.88) to (8.89) and computing fhe
contribution to both s and p states.

5. construct the photon-photon scattering amplitude to order ea and show that
it is gauge-invariant and finite.

6' Prove Furry's theorem lPhys. Rea., 61, rz1 (1987)l which states that a closed
loop, from which an odd number of photon lines emerge, vanishes. It folrows
from this that scattering of light in an external field (Delbriick scattering) is
quadratic in the strength of the field in lowest order.

7. Verify Zr : Z, to second order by explicit calculation. Cut off lhe photon
propagator to mainta,in gauge invariance.

8. Prove (8.59).

9. Verify (8.76) and (8.78).

10. compute the radiative corrections to electron scattering from a coulomb
potential at high energies and momentum transfers q to order alog (qz/mz\ and
alog (E/k^i").

r8l
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9.1 fntroduction

The propagator formalism may be used and techniques of calcula-
tion may be developed for processes involving particles of zero spin.
'We 

attempt to describe these particles by a scalar wave function
,p(r) with only one single component, and consequently we are led
back to the Klein-Gordon equation

( J lm ' )e ( r ) : o (e. r;
for the free particle.

Such an equation was abandoned in Chap. 1 because of the
impossibility of defining a conserved positive definite probability.
However, this original motivation for rejecting (9.1) has by now dis-
appeared and we reexamine it in the light of the Feynman interpre-
tation of the negative-energy states propagating backward in time.
The spin of the particle does not enter crucially into such an interpreta-
tion which we shall find to be applicable to spin-zero particles as well
as to electrons. As in the case of the electron, we shall again be led
to this picture: along with a zr+ rneson, for instance, which is described
by a positive-energy solution of the Klein-Gordon equation, there
emerges its antiparticle, the 7r- meson, which is interpreted as a z'+
meson of negative energy propagating backward in time.

Let us consider for a moment for which particles in nature one
would hope to use the Klein-Gordon equation. There are no known
stable elementary particles of spin zerol however, the r mesons and
K mesons are nearly stable candidates. They are experimentally
foundl to be copiously created and destroyed one at a time, for exam-
ple; in reactions (p : proton, tu z neutron, A0 = neutral lambda
particle, 7+ = positively charged 7r meson, etc.)

p + p - + p + n l v +
- - p + p * o o

- + P + A o + K +

r - * ? - + A o f K o

K - + p - - + A o f z ' o
r > - I - +

t r l

(e.2)

Therefore the wave equation for these spin-zero mesons must take
into account their possible production and annihilation. One cannot

1See, for. example, M. Gell-Mann and A. H. Rosenfeld, Ann. Reu. Nucl.
9ci.,7,407 (1957); J. D. Jackson, "The Physics of Elementary Particles," Prince-
ton University Press, Princeton, N.J., 1958; W. S. C. Williams (ed.), "An Intro-
duction to Elementary Particles," Academic Press Inc., New York, 1961.
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Fig.9-1 Contribution to the electro-
magnetic structure of a r meson.

- _ _ > _

follow the world lines of these particles throughout a scattering process
as was possible in our discussion of the electron world lines interacting
with photons. This is also true if we consider just the interactions of
charged r and K mesons with photons, since graphs such as Fig. 9.1
contribute.

This possibility of creation and destruction of single spinless
particles as confirmed by experimental observation requires that a
theory of their interactions be a many-particle theory. The quantum
field theory formalism is best suited to a discussion of this problem,
but again, as with the electrons and photons, we shall find it possible
to understand and calculate a great deal by extending our propagator
approach to a study of the mesons coupled to source terms added to the
right-hand side of (9.1).

ff we include the 'i.veak interactions, the spin-zero rnesons are
also destroyedl by reactions of the type, for example (p = rnu meson
and y = neutrino),

T ' -  l t '  t  v

K+ _-+ o+ l_ v+ { r- (e.3)
- - - o o *  p + * v

Because of the exceedingly small magnitude of these weak decay inter-
actions (9.3), the charged zr and K mesons have very long half-lives
r - 10-8 sec, which greatly exceed the natural unit of time formed
from /t, c, and the r- or K-meson masses, ltfmc2 ( 10-23 sec. To
first order in an expansion in a perturbation series in powers of the
weak interaction constant we may therefore ignore the decays (9.3)
and the finite lifetimes r N 10-8 sec in discussing strong interaction
amplitudes such as (9.2). In this approximation the zr and K'mesons
are treated as stable particles and are represented by initial or final
free wave functions.

The neutral zr0 and K0 mesons which \ve also wish to include
in these discussions have shorter half-lives, their predominant decay

t GelLMann and Rosenfeld, Jackson, and Williams, op. cit.
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modes beingl

zro --+ .y I "y zoo - 10-16 sec

go -a v+ { zr- zro - 10-10 sec

However, these decay rates are still very long compared with the
characteristic period of 10-23 sec, and the interactions responsible for
them need be included in lowest order only. The zr0 and K0 will
therefore also be treated as stable in strong reactions as in (g.2).

In addition to the interactions of the spin-zero particles illus-
trated by (9.2) and (9.3), the charged zr and K mesons interact with
photons and with external electromagnetic fields. fn order to empha-
size first the similarity to the electrodynamics of a Dirac electron,
we shall limit the discussions of this chapter to the electrodynamic
interactions of charged spin-zero particles. The propagator develop-
ment follows the physical lines given for the electron theory. In
order to discuss the low-energy properties of mesons in external fi.elds,
for example, the bound states of the r-mesic atoms. we also make a
systematic nonrelativistic reduction and interpretation of the Klein-
Gordon equation. More general weak decay and strong nuclear
couplings are discussed in the following chapter.

The Propagator for Iflein-Gordon Particles

Solutions of the Klein-Gordon equation satisfy a continuity equation,
as derived in (1.12):

By the divergence theorem, the integral

W:*(*.ffr-u',4):'

A : t d,sr js(r) : i[ d}r q{iop (e.4)

where aiob =

is a useful shorthand, is conserved for solutions of (9.1).
The plane-wave solutions of the Klein-Gordon equation with

both positive and negative frequencies form a complete set. Normal-
I Gell-Mann and Roeenfeld, J&ckson, and TV'illiams, op. cit.

.(#) - (#),
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ized in a box of volume I/. the solutions are

l8?

o4iIt'x

.f li'(x)
1/2ooV

with ro, : ?o ) 0 and ?2 : mz according to the Einstein condition.
In the continuum normalization language we write

,otxt(r) : sTip'x -:- (g.b)
t/ (2r)s2an

for the positive- and negative-frequency solutions, respectively. They
satisfy the orthogonality and normalization relations

I dsnfbx\*(dff,fr*,(r): *6,(p - p,)

! d,\rfff)*(r;;fiy;+r1r; : 0
Notice that Q is positive for a superposition of positive-frequency
solutions' that is' to' 

,r*rrr, : I drp a+(dr!"*r(n)
(e.7)

g : i t  dsr e<r*(r)vsp*)(r): +/ d'pla+(p)|,

and ror negative_rreTJi;":"ffi 
ffi;rtive, 

thar is, ror

(s.8)
Q : il 6tr r<-t*@fiope(a) : _l d'pla--(p)|,

Herein lies the difficulty for a probability interpretation for the solu-
tions of the Klein-Gordon equation, since @ may take on negative as
well as positive values for a general superposition of plane-wave
solutions.

To construct the Feynman propagator for the Klein-Gordon
equation, we want to find a solution of

(n,,+ m')ar(r '  -  r)  :  -5a(st -  r) (e.e)
which propagates positive-frequency parts of waves forward in time
and negative-frequency ones backward in time. Proceeding in
analogy with the Dirac theory, (6.40) to (6.46), we Fourier-transform
to momentum space in which Ap has the representation

A /  ̂ t  - - \  t  dn? -- ;^ . t  - , - - \n r ( f  - r ) :  
J  ( 2 o 1 a e - ' o ' * - ' ,

(e.6)

p 2 - m 2  l i e
(e.10)

The small negative imaginary part added to the mass in (9.10) assures
that (9.10) meets the desired boundary condition of propagating only
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the positive frequencies forward in time and the negative frequencies
backward. As discussed in Chap. 6, there is no other choice of inte-
gration contour in (9.10) which accomplishes this.

We may verify that (9.10) is the correct choice of contour by
integrating over dpo to obtain, with the use of the Cauchy theorem,

Ar(r' - r) : -i, 
f ^k='e-l@pv_.tleip'(l-x)

r  \ a n  )  2 w p

- i  
I a'e 6*t(r,)ff)*(r)o(t, - t)

- t I a'p ffi(s,)f[->*(r)o(t - t) (9.11)

By direct computation we find from (9.6) and (9.11) that Ae(nt - r)
propagates only the positive-frequency part of a general wave

e @ ) : r r + t ( r ) * p ( - ) ( x ) (e.r2)

as formed in (9.7) and (9.8), forward in time,

-'i l(t ' - 1)e{r(x',t ') : I rlsn Ap(r' - r)iisel(x,t) (9.13)

and the negative-frequency part backward

-il(t - tr')e{-)(xt,t'): -/ d,ar Ap(x, - effie<-t(x,t) (9.14)

Equations (9.13) and (9.14) are analogous to (6.a9) and (6,50) for the
Dirac equation.

9.3 fntroduction of Electromagnetic Potentials

Interaction of a charged spin-zero meson with the electromagnetic
field is introduced bv the minimal substitution

pp-+ pp _ eAr(r) (9.1b)

as for the Dirac equation. We first consider 1r(r) as an applied
external potential. fntroducing (9.15) into (9.1), we obtain

l ( ,*- ,a,) ' -* ,16*) :o (e.16)
L \ d r u  /  l

Equation (9.16) still has a conserved current which we find, as in
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(1.12),  to be

r89

i* : o*@) [(tt* 
- 'e'at) o@tl

-  d ( r )  
[ ( t *  

+  ed '@) ) t . t , ) ] (e.17)

The corresponding conserved charge is

a : I  d,% 6*@)[Eo * 2eAo(r)16@) (e. l  8)

A plane wave representing a fi'ee incident charged meson will
scatter in this potential, with the amplitude given by the solution of
(9.16). Adopting the Feynman boundary condition that scattered
wayes of positive frequency only are to propagate forward in time
and negative-frequency waves backward, we integrate (9.16) with the
l eynman propagator (9.10) :

( t r"  + m2)Q(x,t)  :  - ie(* nr + A, *)  e * e2AuAtE
\dtr' dft*)

6G, t )  :  p(x , t )  *  !  day ap(r  -  i lV( i l f ( i l  (9 .19)
/ a  a \

w i th  V( i l  :  ie ( *  Ap(u \  *  A , (u \  i l  -  e '?A, (y )A, (y )
r d Y u  

' " ' d A u /

Equation (9.19) is the analogue of (6.53) for Dirac particles, and the
physical interpretation of the solution is again very similar to that
given for the electron. In order to ensure that only positive-frequency
waves, representing positive-energy particles, emerge into the future
after a scattering, we have integrated with the Feynman propagator in
(9.19). This leads by (9.11) to

d(x,t) : p(x,t) - i[ ffpff\(u)! day 0(t - uo)f'o+\*16v(il6(a)
- il atr,S;-t@)l dna o(uo - t)fF'.(ilv(il0(il (e.20)

which also contains negative-frequency waves propagating backward
to earlier times. However, from the point of view of an observer
watching his instrurnents, the absorption in the past of a negative-
energy particle of charge e is equivalent to the emission of a positive-

energy one of charge -e. In this way we are led to the fundamental
and experimentally verified prediction that there exists an oppositely
charged antiparticle for each particle in nature.

A particle may have no charge, in which case it may be identical
with its antiparticle. Such a particle is found in nature, the neutral

spin-zero r meson, rr0. Though it does not share in the electromagnetic
couplings introduced in (9.15), the propagator for free zr0 mesons can
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(a) (b) (c) @)

Fig. 9-2 Diagrams for particle and antiparticle scattering and for pair
production and annihilation.

be developed in complete analogy with Sec. 9.2. Since the cunent and
charge (9.4) vanish for it, the r0 will be represented in absence of inter-
actions by a real solution I : p* of the free Klein-Gordon equation.
The Feynman propagator (9.11) will then propagate the positive-fre-
quency parts of p forward and the negative-frequency parts backward
in time as for the charged mesons.

9.4 Scattering Arnplitudes

By moving the world lines around-as in Fig. 9.2-so that they
move both backward and forward in time, we include in our scattering
formalism for mesons, as for electrons, the amplitudes for production
and annihilation of particle-antiparticle pairs along with the direct
scattering amplitudes.

fn order to compute a scattering or transition amplitude, (9.19)
is iterated until d is evaluated to the desired accuracy. The free
solution 9 in (9.19) represents the normalized free-particle wave
in the absence of scattering. The transition amplitude to a particle
state of given momentum, say, pi is found by projecting the scattered
wave emerging from the interaction onto a normalized free wave of
momentum p!. The transition probability is then given by the abso-
lute square of this amplitude, or by the intensity of the projection of
the scattered wave.

For ordinary scattering of mesons (Fig. 9.2a), positive-frequency
waves emerge after the scattering as , ---) .o with a scattering amplitude
that is calculated by projecting out the positive-frequency part of the
scattered wave (9.20):

Sr,',on : lim I dax 6+;*ioo6@)

: a'(pl - p+) - if dty 1;+1*1ilv(OO(0 (e.21)
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where O(y) is given by (9.19), with {])(y) representing the incident
meson wave of positive frequency. The transition probability is then
lSr*,,r*lt. For pair production (Fig. 9.2d), we again project out the
positive-frequency waves as in (9.21), but now d(y) represents a
scattered wave deyeloping from an incident negative-frequency wave
fr-'(il in (9.19). According to (9.14), the negative-frequency wave
is "incident" al go-+ * €, since Ap(r - y) propagates it backward
in time only. fn complete analogy with the ground rules developed in
Chap. 6 for positron theory, we associate the backward propagation
of the negative-frequency solution with quantum numbers p- with
the emergence of the antimeson-say, the zr- meson-of positive
energy and four-momentum p-.

For the pair annihilation amplitude, Fig. 9.2c, we project out the
negative-frequency part of the scattered wave (9.20) as t---+ - a:

So-,o* : - lim ! d,sr f[-'*({fir|@)

: -il d,ay f[--t*(y)V(il0(a)

Here g(s) is given by (9.19) with fli'}(s) representing the incident
r*-meson wave of positive frequency with four-momentum pa. As
usual, the incident ?r- meson with positive energy and four-momentum
p- is represented by a negative-frequency wave fl_)*(y) propagating
backward into the past out of the interaction I/(y). Finally, the
n- (or anti-) meson scattering, Fig. 9.2b, is given by (9.22), where
O(y) is still determined by (9.19). However, the ('incident" zrt meson
wave of negative frequency is now given by fL)@, representing the
final r- emerging with positive energy and four-momentum p'- after
the scattering, that is,

se_,e: :6'(p_ - p!_) - i[ dnaIL_'*(dv(il0@) (9.23)

Comparison with the propagator formulation of positron theory
in Chap. 6 shows that the S-matrix rules discussed here have the
same physical origin and interpretation as discussed there.

The practical rules for calculation of transition rates for spin-zero
mesons under electromagnetic interactions can be developed by
calculating several simple examples as was done for the electron in
Chap. 7.

9.5 Low-order Scattering Processes

As a first example we consider the Coulomb scattering of. a r+ meson
to lowest order in e. The ezAuAl term in the interaction (9.19) does

l9r

(e.22)



L92 Relatiaistic quantu fi,, mechanics

not contribute to this order and may be neglected. The transition
amplitude corresponding to the graph, Fig. 9.3, is found from (g.21)
with 6(fi = fLi'(il. For q = ?r - ?r I O the D-function term van-
ishes, so that

,q.. : -+, I a^y -]: ein'o(pr + p)uat,(a)Pp! 'p '  -  
(n ) t  I  

* '  
\ /2ur .2o , "

: -  i e ( P r + P ) u . 7 u 1 , , ,

\2o)3 \ /W'2@i--  
' " '

Ar(q) = 
| 

d,fu era,u Ar1y7

The form of the current in (9.24) is reminiscent of the spin-independent
term in the Gordon decomposition of the electron current. fnserting
Ap(q) in (9.24) for a static Coulomb potential

A , ( ( t )  :  - ( { , z "a t ,  - , , ) s ,o

we obtain the cross section by the usual procedure of squaring, sum-
ming over final states, and dividing by the incident flux. fn analogy
with (7.10), rve find

a, : ff d,a p 1 21 6 (u 1 -,0) . 
l##*, ^#,)'

where

(e.24)

(9.2s)

4 \, \

I

(e.26)
and

do
d-o 4p282 sina (0/2)

22a2

which lacks the factor 1 - p, sin2 (0/2) found for the electron in
(7.22) and associated with the spin.

A similar result is obtained for the Coulomb scattering of zr-
mesons. From (9.24), withff)*(y) representing the zr- with momen-
tum p- before the scattering and 6(il = 1f)(il, the final r- emerging

\ z e
) /1.^\^.nr!x Fig. 9-3 Coulomb scattering ol a r+ meson.
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Fig. 9-4 Coulomb scattering of a o- meson.
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\ - p t

I

\r ze
n/L /A.n,^x

(e.27)

(e.28)

r
./_D

after the scattering, as in Fig. 9.4, we find

^s^ - ,  :  * ie(P-*  P ' - ) ,AP(q)-P-'P- 
(2"), \/r;dd

with q = p!- - p- again representing the momentum transfer. Equa-
tions (9.24) and (9.27) differ in sign only, corresponding to the change
in sign of the zr+ and ?.- charge, and lead to identical cross sections
(e.26).

The lesson we learn from this calculation is that to the ,r-meson
vertex we attach a factor e(p*+ pi) instead of. e.yrasfor the electron.
The wave function normalization factor is l/l/Za, which replaces the
\/*fE for the electron, and of course there are no spinors.

To obtain the rules for the e2AuAu term in Z of (9.19), we turn
to Compton scattering of a charged meson. The ,,external potential',
in this example consists of the absorbed and emitted photons described
"in continuum normalization" by the two terms, respectively [see
(7.53)l

where l, ), refer to the momentum and polarization. Since the lowest
order Compton arnplitude is proportional to e2, the terms in Z linear
in e must be iterated once. The S matrix to order e2, corresponding
to the Feynman graphs of Fig. 9.5, is then

s, r :  ( - iQ,  I d,au d,azfftxla)tlL A,@) * o,frS fn]
- 

"Nl*,A,(,) + o,(d *,frl+,@)X ia7'(y

I ie2 | dna fff,*(ilA,(ilA,(ilfL,(il (9.29)
J  " "



r94 Relatiai s tic qu an tu n1, me chanic s

Inserting /.u from (9.28) and keeping only the cross terms between

e,re-ik.r

\/(6qil
describing absorption of a photon with (k,),), and

et'e;'k' 'x

\/@q"il

for the emission of one with (/c',tr/), we find after performing the
coordinate integrations

sr; : ( -  ie) '
(2r)6 .v/r;.raek' ek ( % r ) a 6 a ( p + k - p ' - k ' )

t .  i  . . ^ .x 
l((2e 

+ k) 
G+1il, - *e''(2P' ! tc')

* e'(2p' - k) ----*--.--.---- e'.(2p - k') - 2ir.r'l (9.30)' - '  (p -  k ' ) '  -  m,2'  '  I

I.lotice in particular the factor of 2 appearing with the ,4u.4r term.
This occurs because there are two ways of associating absorbed and
emitted photons with the two factors of. Ar(r) and is easy to forget.
As a useful check on (9.30), we may apply the test of gauge invariance
as applied to the electron amplitudes in Chap. 7. Thus Sr; is invari-
ant, as is readily checked, under a transformation of the gauge

et" -1 ep * tr/Cp (e.31)
employed for the initial photon, as well as under a, gauge change

,I-t ,L + \'k'-
for the final one.

A convenient gauge choice to make in (9.30) is

e ' p t : 6 t ' p : I

corresponding to transversely polarized photons in the
frame, in which the meson is initially at rest, p : (m,O),

(e.32)

laboratory
Then only

t, )\  h' , \ ' tn
?^^t '

9 c J
-r-5-r-JY+---
p  p+k  p '

[,r k"]r!-I-r 
P

h^f
__/3*_.
p p-k '  p '

Fig. 9-6 Compton scattering of a r meson.
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Fig. 9-6 Vertex graph representing the interac-
tion eg*(p' 1- p)ppAv.

the ArAu term survives in (9.30), since e'k : e''h' : O. Proceeding
to a cross section in the by-now-familiar manner, we find, upon
squaring (9.30), dividing out one power of (2r)a6a(p + h - p' - h'),
multiplying by the final-state phase-space factor

6aOt d,altl

and by the reciprocal of the incident flux in the laboratory, (2r)3, as
well as the reciprocal of the density of target particles, (2zr)3,

( dt \  _ otL (u 'u ' ) '

\do/'"o 
- 

frF + @,,r[i - cos o)P

This reduces to the classical Thomson limit in the limit of low photon
energy lc ---+ O. Summing over final photon polarizations e' and averag-
ing over the incident e for unpolarized light, we obtain

(s
rab 2m2ll I (k/m)(l - cos o)1'z

o ' (1 + cos2 8) (e.33)

9.6 Fligher-order Processes

We may continue to imitate the development of propagator theory
for the electron and infer the rules of computation for higher-order
graphs from the preceding examples. The major changes from the

electron rulcs are:

1. At a vertex scattering a meson from pu to p'r, as illustrated
in Fig. 9.6, for any directions of the lines forward or backward in

time we replace
eTP -) e(,pt' I pu') (e.34)

2. The additional A,At" interaction term in (9.19) contributes
with a factorl

2'ie2gw

t There is one exception to this. See Prob. 9.11.

195

.-'-*' 
..--.5 .rt9'"

I

(e.35)
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as illustrated in the amplitude (9.30). The factor e appears because
the expansion parameter for this term is e2. Therefore, to order e"
there appears the factor (-z)" from rz iterations of (9.19) when we
calculate the contributions of (9.3a) to this order. A factor of
(-i7"-*1-l)^ : (-i)"-2n(,i)n arises if the ArAu term appears ra times
in the calculationl hence the factor of i in (9.35). Ihroughout we
must remernber that the expansion parameter is e and not the order
of interaction. The factor 2 in (9.35) appears because there are aiways
two ways of associating the factors ArAt with the quanta to be
destroyed, created, or scattered in the vertex (fig. 9.7). The test
of gauge invariance may be applied to the interaction amplitude
representing the sum of all graphs which contribute to any given
order of e. As in (9.30) to (9.32), this provides a very simple and
useful check in the relative factors coming from the p.A + A.p and,
the A'A terms in (9.19).

3. For the propagator of an internal line of momentum p, we
replace

i
p - m l i e

i(p + nx) i
F-*+t -7-w+7e

f f i1
XE "rPt 

' 
t/n

(e.36)

that is, the factor F * m---+ l.
4. Ifor the normalizalion of the external lines we replace the

electron spinors

(e.37)

All other factors of a and 2r are precisely the same as for the
electron. Only a question of relative minus signs remains. For
electrons we were led by the Pauli principle to antisymmetrize the
interchange of two identical particles. On the other hand, experi-
mental evidence indicates lhat r mesons are bosons, that is, they
satisfy the symmetric statistics of Bose-Einstein. In particular, in

,)r'
f,

/ /  k t , e t
Fig. 9-7 Graph representing the interaction eeAuArg*g.
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\

\
'*

Fig. 9-8 n* - r* Coulomb scattering.

the reaction
K + - r + * r + * r -

the two zr* rnesons are emitted in a relative s state. In addition,
there are strong theoretical reasons, given originally by Pauli, for
a connection between spin and statistics, with particles of half-integer
spin obeying the exclusion principle (fermions) and integer-spin
particles symmetrized as bosons. These argurnents are best discussed
within the framework of field theory.l Here we shall simply assume
that the spin-zero particles being described are bosons obeying sym-
metric statistics. This means that there must be a relative plus,
instead of a minus, sign between graphs differing only by the inter-
change of bosons.

There are no longer factors of (-1) appearing with closed loops
or between scattering and annihilation graphs. These were introduced
in the electron graphs, as in the amplitudes (8.2) and (8.5) for the
processes in Figs. 8.1b and 8.1e, by applying the Pauli principle
to the states of hole theory. For bosons we have no filled negative-
energy sea and must argue for relative signs in a different way. In
the Coulomb scattering of like bosons, the relative sign between the
amplitudes for the two graphs in Irig. 9.8 is plus. We obtain frorn
this the arnplitude for boson-antiboson scattering by changing the
sign of energy of two of the lines; for example, by the substitution

Q z  e  - P z (e.38)

we obtain the amplitudes for the graphs illustrated in Fig. 9.9. The
relative sign between the two amplitudes corresponding to the graphs
of Fig. 9.9 remains positive if the substitution (9.38) is the only

1 W. Pauli, Phys. Reu.,68, 716 (19a0); W. Pauli, V. Weisskopf, and L. Rosen-
feld, "Niels Bohr and the Development of Physics," McGraw-Hill Book Company,
Inc., New York, 1955. For the discussion of the argument, see J. D. Bjorken and
S. D. Drell, "Relativistic Quantum Fields," McGraw-Hill Book Company, Inc.,
in press.
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Fig.9-9 r1 - r- Coulomb scattering.

change in going from the scattering graphs 9.8 to the graphs 9.9.
Equation (9.38) is an example of the substitution rule already encoun-
tered for electron processes in (7.85) and extended now to boson
amplitudes. It leads to relative plus signs for all three amplitudes
shown in Fig. 9.10. Graphs 9.10a and 9.10b are identical below vertex
y and therefore have a relative plus sign between them. Since no
minus sign accompanies the introduction of the additional scattering
interaction between u and, u in graph 9.10o relative to 9.10c, we con-
clude that no factor of (-1) appears along with the closed loop in
Fig. 9.10b, as stated at the beginning of the paragraph.

Higher-order calculations of the electromagnetic interactions
of the spin-zero bosons such as zr and K mesons showing also the
renormalization effects can be pursued in complete analogy with the
considerations of the preceding chapter. We do not go into these in
detail here because the much stronger interactions of the zr and K
mesons with themselves and with nucleons must also be included
before comparison with physical observations is possible. A discus-
sion of these nonelectromagnetic couplings is introduced in the follow-
ing chapter.

9.7 Nonrelativistic Reduetion and Interpretation of the
Klein-Gordon Equation

There exist physical situations in which an approximate description
of zr mesons in terms of ordinary one-particle quantum mechanics with
a probability interpretation is very desirable. For instance, the
interactions of charged 7r mesons with atomic electric and magnetic
fields in matter or with applied external fields, as well as the properties
of zr-mesic atoms, may be studied from this point of view.

"\ ,'"o'

I
)

r / \
,/4'

\
tio'/

/0,
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FiS. 9-10 Fourth-order contributions to r*-r'
Coulomb scattering.

These are similar to the situations in which the one-particle
Dirac electron theory is successfully applied and interpreted. fn these
cases we would like to exhibit a nonrelativistic reduction to the
Schrddinger equation as well as a classical correspondence limit.

In the face of the impossibility of constructing an eract one-
particle quantum mechanics with a probability interpretation we
were led to abandon the second-order Klein-Gordon equation at the
very beginning in Chap. 1. We did so in favor of the Dirac equation
which was first order in the time derivative, as in the nonrelativistic
Schrddinger theory. By now, however, lre have amply seen that the
one*particle picture of the Dirac equation survives only in limited
circumstances such as weak, slowly varying fields in which there still
remains a broad Eap -2mc2 between the positive- and negative-energy
spectra. It is to such physical situations that we now turn in search
of. an approximate one-particle quantum mechanics of the Klein-
Gordon equation.

Our first step to bring the Klein-Gordon equation to Schr<idinger
form containing only first-order time derivatives is to rewrite (g.1)
as a pair of first-order equations.l Defining

(e.3e)

I Here we follow the discussion of H. Feshbach and F. M. H. Villars, Rau.
Mod. Phys., 30, 24 (1958). See N. Kemmer, Proc. Roy. 9oc. (Lonilon), AlZg,
91 (1939); Sakata and Taketani, Proc. Math.-Phgs. Soc. Japan,22,757 g9a0;
and W. Heitler, Proc. Roy. Irish Acad,, Sec. A,49, 1 (1943).
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and rewriting (9.1) as

t - d $ t : ( y 2 - m z ) e

and, in this limit,
Q : g e g - i ' n t  X : 0

For the negative-energy, or antiparticle, solution

d : 0  a n d  X : p a s t i m t

ReIa tiai sti c quat,.tum mec h ani c s

(e.40)

(e.42)

(e.43)

(9.44)

(e.46)

(e.47)

we accomplish this goal. ft is convenient to introduce the two linear
combinations

1 /  i . \  r /  i . \, : ; ( ,+;b)  x : ;1 ._; r )  (e41)

which have sirnple nonrelativistic limits. lior a free particle of posi-
tive energy at rest

< P e e - ' i ' n t : ' A'  r n '

in this limit. Thus 0 plays the role analogous to the large components,
and 1 to the small components, of the Dirac spinor. fn terrns of d and
x the Klein-Gordon equation now reads

. a 0  v 2 . ^
, u : - 2 * Q * i l 1 m , 0

(e.45)
i9 ! :+Yru+"t-T 

2m \u -T x,l - ntx

We introduce the more compact two-component notation

and write

' :  
[ ; ]

rffi : n,o
with the free-particle hamiltonian operator .I/6 given by

H.:-f l  1l r*f '  0.1
L- r  -1J2m'Lo  - r l *  (e '48 )

Although it is in Schriidinger form, (9.47), in analogy to (9.1), does not
Iead to a conserved positive definite probability, because flil is not a

hermitian operator. The non-hermitian ,"urrt. 
[_l _l] t ,n.
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kinetic-energy term couples the "larget' and t'small" components
together.

Neglecting the V2 to lowest order for a slowly moving particle,
we reduce to a Schrddinger equation and to the solutions (9.43) and
(9.4a) in the two cases of positive and negative frequency. By
borrowing the Foldy-Wouthysen technique directiy from the Dirac
theory, Chap. 4, we can systematically incorporate the corrections

from the kinetic-enersy term. Flere the matrix r: 
[-? i] * tn"

non-hermitian analogue of a and , = 
l; -?l tr the analogue of B in

the reduction of the Dirac equation. 
-Using 

the arguments leading to
(4.1), we let

(e.4e)

(e.50)

and find that the odd operators p are removed from the hamiltoman
when

Q' : ,tsg

s : ape(p) : 
[? i] er,rwith

we have

with

i
0 ( o )  :  - ; t a n h - '

z
p'/2m

m I p2/2m
(e.111)

unitary

to a new

(e.52)

I
with p = ; V. The transformation (9.49) to (9.51) is not

0

and leads from a hamiltonian (9.48) which is not hermitian
one which is;

H 'o=  e i sHoe- ' s :  n \ / f r  +F

In this form the positive- and negative-energy solutions are completely
decoupled and the energy-momentum relation is the same as for
free electrons. The only difference of (9.52) from (4.1) is that there is
now no doubling of the solutions for the spin degree of freedom. Since
I/l is hermitian, we are free to give a probability interpretation to the
solutions @' in this representation. For positive-frequency solutions

O,<+)(x) (e.53)

(e.54)

(e.55)

: s-ia., 
[l] 

,",o,

\/'nx" + e' o1+l(x) : 6nat+)(a)

P(x)  :  la<+r(x) lz
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representing the probability density and

o4 : [Q,<+t*(r)H'o$)O'<+t(r) d\r

the energy. For negative-frequency solutions we write

fn l
O'<-)(x) : siaot 

li.l 
,*,1*1

The energy eigenvalue equation is similar to (g.54)

t/*\ P' ot-r(x) : ,ar6{-)(x)

and the probability may be defined as by (9.55):

(e.56)

(e.57)

(e.58)

(e.5e)P(*) : lot-r(x)lz

Now, however, the expectation value of the hamiltonian is the nega-
tive of the energy eigenvalue due to the 4 in (9.52):

uo : - !@,()*(oHto@)@t{)(r) dlr (e.60)

W'e associat€ O/(-r* with the antiparticle wave function because
H'o : Ht* by (9.52) for a free particle and, according to the propagator
picture [(9.11), (9.10), and (9.5)], it is the complex conjugate of a neg-
ative energy solution that propagates forward in time.

In the presence of external electromagnetic fields we can no
longer, in general, diagonalize the Klein-Gordon equation into separate
positive- and negative-frequency parts. Proceeding in analogy with
(a.2) to (4.4), however, we can achieve an approximate diagonalization
in the presence of weak, slowly varying fields. If we again introduce
the field interaction by the minimal prescription

pt,+ pp - eAu

(9.1), the Klein-Gordon equation in the two-component language
(9.48) becomes

ln

of

o'e#: {t_l _l] #,.1; _0,]*tea(gl*,o
where n: p - eA. @ is defined as in (9.46) and (9.41), with

t :
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replacing (9.39). Identifying in @2)
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^ f ro- lo : , t : lo  _11
*2  |  o  11 ' "2u  :  o  z* :  L -  |  o )2nx

(e.61)

- 2

6 : e Q + r *

we arrive at (4.4), with B replaced by 4. In the special case of static
external fields we find the approximate Schrtidinger equation, through
terms of order l/ma:

: H'Q' Qt : g;'sq

with

. ao'
1 , -

o t

H' :n(**#- ;+ )  
+,a + ; , , : [ r2 , [n2,ero] l  *

tn.ri

The first term is the binomial expansion of t/m' + n'showing the
correct relativistic mass increase as in the Dirac theory. fn an
applied magnetic fietd it reduces the orbital g factor by mf E, aswe
saw for a Dirac particle. The last term of (9.62) is the Darwin term,
correcting the classical electrostatic interaction of a point charge,
eO(x), in analogy to the zitterbewegung correction of the Dirac
theory. Here, however, it, first appears in order \/ma in contrast
wiih (a.5) and (4.7).

As long as we limit ourselves to physical problems for which the
Foldy-Wouthysen procedure converges and, with a few terms of the
series (4.4) or (9.62), leads to a good approximation to the exact
description, we can discuss meson interactions as in nonrelativistic
quantum mechanics. To the accuracy of the terms retained in f/',
the positive- and negative-frequency solutions are decoupled in this
representation and the hamiltonian is hermitian, and we can make
the conventional nonrelativistic quantum-mechanical probability
interpretation according to the postulates given in Chap. 1.

Taking (9.62) as an example and writing for positive-frequency
solutions in this representation, in analogy with (9.53),

: s-nE^'| 
[l] '*'t.'o"|*r(") (e.63)
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n 4 \ l l-  
;"f i+ )-|  

eo * ,=Lr*[n', ln,,eol l  
.  .  . ] , t ' ,"* '{")

: E"QL+',j1^) (9.64)

@'.1-'@) : s|-iE,,t 
[?] ,f'O,

we have

l /  n 2

l \**m

The probability density is given by

P(r) : lo'l*,@)P : l,l,f,$)r (e.65)

and the energy eigenvalue Z, coincides with the expectation value
of f l as in (9.56):

E, : [{',n' " (x) II' (x,e)rltf' (x7 dt"y (e.66)

where H'(x,e) is the operator on the left-hand side of (9.6a):

/ R 2 n 4 \ tH ' (x,e):  ( r r  + * , -  f* ,+ )*  
ea *  , f*o[* , ,1n' , re] l

+ . . . (e .67)

For negative-frequency solutions we write as in (9.57)

and find from (9.62),

(e.68)

(e.6e)H' (x, - e)* r!,1,-' (*) : E 
"rlrf,' 

(x)

Again it is the complex conjugate of the negative-energy solution
which we associate with the antiparticle, since 'y'f;)*(x) satisfies

H' (x, - e){1,-' * tx) : E,rlr|* k)

which differs frorn (9.64) only by the sign of e. The probability den-
sity is

P(r) : lot- ' @)P : l*f '(x)|, (e.70)

and the expectation value of the hamiltonian is again the negative of
the energy eigenvalue as found in (9.60):

E " 
: - IO';-\* 1r1H'O7" (x1 drs (e.71)

Since the positive- and negative-frequency solutions differ only
by the sign of charge in (9.6a) and (9.69), it is attractive for us to
redefine the probability and energy expectation values in this Foldy-
Wouthysen transformed representation by inserting the diagonal
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(e.72)

(e.73)

matrix , : 
[l -?] t"*"u"ced earlier:

This redefinition does not alter (9.65) and (9.66) for the positive-
frequency solutions, but it changes the signs in (9.70) and (9.71)
for the negative-frequency ones. 'Ihe energy eigenvalue coincides
with the expectation value of .I1 which is now positive for both positive-
and negative-frequency solutions as for standard quantum mechan-
ics. However, 0(r) is now )0 for the posit'ive-frequency and (0

for the negative-frequerrcy solutions and is interpreted as the charge
densi,ty for the particle and antiparticle, respectively.

We can proceed further in the tr'oldy-Wouthysen representation
which, to the approximation that the terms are retained in H' and
the series in powers of l/m converges, is the same formalism as
standard quantum mechanics. Energy levels and transition rates
for zr-mesic atoms can be computed from (9.62) with the relativistic
mass and Darwin corrections to the Schrridinger theory, for example.
Also, a classical correspondence can be established and Ehrenfest
relations derived fronr

Q^(r) = o'f (r)q(P',(r)

E" : IA': (r)r1H'Q',(r) d\r

jr<o> : i<tH,ot>. (#) (9.74)

The one-particle probability interpretation is limited only to
those cases where the positive- and negative-frequency solutions can
be decoupled by the Foldy-Wouthysen procedure. It will not apply
to physical problems with strong or rapidly varying fields for which
one must take into account the existence of zr+zr* pairs. With the
unsa,tz that the definitions (9.72) and (9.73) shall apply in the general
case as rvell, we can return to the original representation and study
the structure of these inner products by undoing t'he transformation
according to

@ : s-lsPt (e.75)

We must proceed with some care here because the transformation
connecting the two representations is not unitary. Equations (9.50)
and (9.51) show that for the free-particle case

N  :  - ^ 5 ' (e.76)
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For the energy we find, since 45 : -.9?,

ao : [@,f,(r)r\H[@,o@) d.Bn

: I AI @) e-dsI nH'seis @ r(r) d}x

: I Ol (r)qe'is H [eis@ n(r) d,Bx

: [@i@)qHs@,(r) d\r

which has the same form. Similarly, for the charge we
(9.46)  and (9.41) ,

f  f  , .

J a@ d'* : J -@'](x)ne'oe) 
dT.r

I:  
J oIj)r@,(t) dat

: 
I  du, l0*(r)0(r) - x*@)x(r) l
i . r e

:  
, *  I  

dar ,p* ( t )00 ,p(x )

which (times 2m) was already identified as a conserved charge in (g.a).
Similar results are obtained when interactions are present. The

Foldy-Wouthysen transformation then has the form

@ ' : . .  e i s " e ' i s t e d s p

as in Chap. 4, with each ,S(') satisfying

s(/)r  :  _s(/)  s(/)? :  _4srr l

as in (9.76). Therefore, the charge density defined with the q present
as in (9.78) again takes a simple form in the original representation
and coincides with (9.17) for the charge density. Similarly, for the
energy levels of a zr* or rr- meson in static external fields we have

g : [@t*(r)qH'(x)@'(r) dta : JOx(rhtH(x)A@) d}r (9.29)

This simple correspondence of expectation values between the

two representations suggests that we insert the matrix, : 
[l _?]

in the general definition of expectation values so that

(O') = fQ,*(r)qo,(r)e,(x) dsn
: I@*@)nO(r)(D(r) dsr
: (o) (e.80)

with Ot(r) : eiso(r)e-is. Without the matrix n we obtain no such
simplicity of correspondence of forms between the two representations.

(e.77)

find, using

(e.78)
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The physical effect of introducing 4 into the definition (g.80) is to
multiply the expectation values of the physical observables for the
system in a state of negative frequency by -1. This is connected
with the requirement that negative-frequency solutions propagate
backward in time, thus reversing the role of emission and absorption
and associating physical observables with minus the parameters of
these negative-energy solutions. In positron theory, the boundary
condition of backward propagation for negative frequencies was
ensured by hole theory; for bosons, there is no hole theory and one
must be content with the arguments of propagator theory or turn to
the formalism of quantum-field theory.

In concluding, we recall that we have now given a probability
interpretation to solutions of physical problems for bosons for which
the Foldy-Wouthysen procedure converges. In particular, for free
particles we constructed the exact transformation decoupling the
positive- and negative-frequency, or particle and antiparticle, solu-
tions. This justifies our interpretation in (9.21), (9.22), and (9.24) of
the S matrix as a probability amplitude.

The charge that distinguishes the boson from the antiboson
need not be electric but may be of an entirely different character.
fn nature there occurs, for example, the Ke and Ko, which are elec-
trically neutral and are each other's antiparticle differing by the
sign of their "strangeness charge."l Also, the boson may bear no
charge whatever, in which case it coincides with its own antiparticle;
the zr0 is such an example. In this case the wavq function is real and
Q@) = o.

Problems

1. Calculate in first Born approximation the differential cross section in the
laboratory system for Coulomb scattering of a r+ meson by a K- meson.

2. Calculate the differential scattering cross section o! a r+ meson by a r* meson
in the center-of-mass system and compare with Eq. (7.84) for electron-electron
scattering.

3. Calculate the differential cross sections for bremsstrahlung by a r+ in a Cou-
lomb field and for r+n- pair production, and compare with the Bethe-Heitler
formulas.

4. Calculate the total n+r- pait production cross section in the extreme relativistic
limit Z )) mc2 and, compare with the analogous result for electron-positron pairs.

l This is discussed in Bjorken and,Dtell, op. cit.
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5. Compute the contribution of r+r- pairs to the vacuum polarization and irter-
pret the sign of the result.

6. Compute the electromagnetic self-energy of a r* meson and compare with that
of the electron.

7. Verify that the wave function and vertex renormalization constants are equal to
second order in es for charged r mesons, that is Z r : Z z and, /tr(p,p) : - A> (p) / App
as in Eqs. (8.51) and (8.54) for electrons.

8. Solve for the energy levels of a r- meson bound in a Coulomb field.

9. Establish a classical correspondence for the r-meson Schr6dinger equation by
deriving the^Ehrenfest relations from Eq. (9.74).

10. Construct the Feynman propagator for vector mesons satisfying the free-
wave equation

I , - ' " .  d  d )
t 
(n + mz)gp, _ 

ar, a*,1 6v : o

11. Give arguments for rule 4, "Electrodynamics of a Spin-zero Boson," Appendix
B. Then show that this rule leads to a unitary zr+-rr- elastic scattering a,mplitude
through order ea.
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l0.l Introduction

Armed with a propagator theory developed for their electromagnetic
interactions, we attack the other known interactions of "elementary"
particles of spin 0 and t7/2. These interactions are divided into three
distinct classes. - The first is the gravitational interaction, which at,
customary laboratory energies is characterized by an extremely small
dimensionless coupling constant of (MtMzG/hc) = 10-a0 and which
we shall neglect. The second class is the weak interactions, which lead
to transmutations between particles such as in B decay and the decay
of r, K, and pr mesons lsee (9.3)]. These are characterized in the
region of low and moderate energies ( 11 BeY) by a dimensionless
coupling constant of = 10*6 to 10-6. Finally, there exist the strong
interactions, characterized by coupling constants )1, which are
responsible for the forces which bind nuclei and which provide the
mechanism for producing T, K, A, ), and E particles in reactions sucli
as (9.2).

The understanding of the weak and the strong interactions
has not progressed to such a degree that their effects can be derived
from a general principle such as the equivalence principle and general
covariance in gravitational theory or the principle of "minimal
electromagnetic interaction" which instructs the introduction of
electrodynamic couplings with the substitutionl pu ---> pu - eAu. In
the absence of such a lofty starting point it is necessary to appeal
directly to the available experimental evidence along with symmetry
principles, notably Lorentrz invariance, to limit the possible forms
of the interactiorr.

"What are the vertices?" is the central question in discussing
the weak and the strong interactions, and to this we now turn. We
proceed within the framework of the propagator approach and limit
ourselves to lowest order calculations in the coupling parameters.
From the point of view of detailed experimental comparison this is a
very severe limitation. For the strong interactions, the expansion
parameter exceeds unity; for the weak interaction theory in its present
primitive form, higher-order diagrams are dependent on the cutoff
in the closed-loop momentum integrals in an unpleasant way which
does not permit the divergences to be isolated into renormalization
constants as illustrated in the electrodynamic calculations in Chap. 8.

1 M. Gell-Mann, Nuouo Cimento Suppl.2,4, 848 (1956).
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FiC. 10-1 Nucleon*nucleon interaction
with single ro exchange.

\ / '

7---r---('
A\

(10.1)

2 l l

10.2 Strong Interactions

In 1935, Yukawal made an analogy between the strong, short-ranged
nuclear force and the electromagnetic force between particles. rf the
Coulomb force is due to the exchange of a virtual quantum, or photon,
perhaps the nuclear force is likewise due to a virtual particre, neces-
sarily of integral spin, exchanged between nucleons. For a particre
of spin zero and mass p we may use the Klein-Gordon propagator
(9'36) in writing the first-order scattering amplitude corresponding
to  F ig .  10 .1 :

sflt - ,qi
Q 2 - t t 2 * i e

In writing (10.1) we have suppressed all factors coming frorn the ver-
tices at which the particle, represented by the dashed line, is absorbed
or emitted by the two nucleons, d'awn as solid lines with initial and
final momenta pt, pz and p'r, p!, respectively. The invariant momen-
tum transfer q2 = (n, - pi\, : @', - pz)z js space-like (s, < 0). In
the nonrelativistic limit in which the recoil kinetic energies of the
nucleons are neglected relative to their rest energies, e2 = -lql, and
we may approximate (10.1) to

srn - -93
lq l ' +  p ' (10.2)

Fourier-transforming to coordinate space, we see that lll corresponds
to the Born approximation amplitude for scattering in a yukawa
potential

v(r) - sZ+
t H. Yukawa, Proc. Phgs.-Math. Soc., Japan, !7,48 (1935).
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Since the range of nuclear forces extends to -10-t, cm, roughly
one-third the classical electron ladius, the particie being exchanged
should have a mass

I t r N - 200 NIeV

A stlong candidate for this particle, the zr meson of mass -140

MeV, was eventually found in 1947; indeed there are nowl known to
exist three such particles, the Tt , T*, and zr0 of approximately the same
mass. These three ?r-mesons of charge *e, -e, and 0, respectively,
are believed to be the major contributols to the nuclear force at large
distances, although heavier particles such as the K meson may also
play a role for small impact parameter collisions 'lvith large q2.

It has been determined experimentally that the spins of the zr
mesons are zero but that their "intrinsic parity" is odd. Iror the
charged zr mesons application of detailed balance to the reactions

6171"-;

gives the spin as zero,
the two directions is
"intrinsic parity" was
from the K shell in a

, r + i d e + p + p

since the ratio of these processes proceeding in
determined by the statistical weights. The
determined by observation of capture of a r-

deuterium atom, leading to two neLltrons:

r - * d - - + n + n

The only state of J : I that can be formed by two neutrons is the 3Pr

according to the exclusion principle and has parity -1. If parity
conseryation is to apply in this strong reaction, the zr- must also have
odd parity. In this assignment of parity we follow the usual con-
vention of choosing proton and neutron to have the same intrilsic
parity * 1 ; that is, the same phase p - 0 is assigned to their wave
functions under the spatial reflection (2.3i3) so thattlt'(x' ,t) : *lorl'(x,t)
for x' : -x. Since the zr- is captured from a spherically symmetric
s orbit, the parity - I assigned to its wave function is referred to as its
"intrinsic parity." The properties of zero spin and negative intrinsic
parity are shared by both zr+ and zr- mesons which-as interpreted in
Chap. 9-are each other's antiparticle. For the zr0-meson observa-

1 H. A. Bethe and F. de Hoffmann, "Mesons and Fields," vol. II, Harper &
Row, Publishers, Ne'rv York, 1955. J. D. Jackson, "The Physics of Elementary
Particles," Princeton University Press, Princeton, N.J., 1958. M. Gell-Mann
and A. H. Rosenfeld, Ann. Reu. Nucl. Sci.,7, 407 (L957).
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tion of the two-photon decay

r o - + " y * " y

coupled rvith the observation of the correlation in the planes of polar-
izationt of the "Dalitz pairs"

ro --+ (s+ f ,-) + (e+ * e-)

determines the spin to be zero and parity to be - 1.
with this information we continue to model the nuclear force

discussion along the lines of electrodynamics, starting with a more
detailed discussion of proton-proton scattering due to the exchange
of a single zr0, as in Fig. 10.1. Consider, for instance, that proton 1
is scattered in a ((zr-meson field,' which is produced by protorr 2,
in analogy with the electromagnetic potentiar Ar(r) in the discussion
of electron-proton scattering, Ilq. (7.81).

'Io describe this process, we write a tentative Dirac equation,
analogous to (6.52), which will be of the form

(iV - M e)l/o@) : goWo@)<po(r) (10.3)

where go is the analogue of e and I is a Dirac matrix to be determined.
The proposed equation for the meson field ,pe, analogous to (2.22) and,
(7.33), wil l then be, within a sign 4o : +1to be determined,

(tr * pi)eo(a) : -80{e@)rL,@)n() (10.4)

Parity2 is observed to be conserved to high accuracy for nuclear forces,
and we consequently dernand that (10.8) and (10.4) conserve parity as
well as be Lorentz covariant. It is then necessary to choose T : itslo
make the right-hand side of (10.4) transform &s a real pseudoscalar, as
does the left-hand side.

We may also verify that there is a charge conjugation trans-
formation which leaves (10.3) invariant so that we can carry over
directly the hole-theory discussions of chap. b and reinterpret the
negative-energy solutions as antiprotons. The antiproton wave func-
tion is formed as in (5.5) by

*n :  C{T
lPlano, Prodell, Samios, Schwartz, and Steinberger, phys. Reu. Letters, g,

525 (1959).
2 G. C. Wick, Ann. Rev. Nucl. Ph11s.,8, 1 (19b9).

2t3
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Fig. 10-2 Pauli exchange graph for two protons.

and satisfies the same Dirac equation as (10.3) if the r0 field is identical
with the charge conjugate field, that is,

( p o ) " :  * p o

This simple form of the interaction is in all likelihood incorrect
or at best incomplete. The analogy with electrodynamic interactions,
together with simplicity, was our sole motivation in writing (10.3)
and (10.4). We have, for example, arbitrarily excluded the possibility
of interaction terms containing derivatives of the fields, although we
have already encountered such terms in the preceding chapter in
discussing the electrodynamic couplings of charged 7r mesons. We
should therefore regard (10.3) and (10.4) as no more than a rough,
simple model, since nature undoubtedly has more imagination than is
exhibited in those equations. The virtue of the model is that it
permits discussion of general features of the nuclear interaction which
survive in a more general treatment.

Now that there is a candidate for the zro*p vertex, we may com-
pute the amplitude for the graph of Fig. 10.1. From (10.4), the first-
order zr0 field produced by the "transitiou current" of particle 2,

- g on o{ o,, (r) i.'y bV p"(x)

is

po(r) : - ' igol d4!L' iAp(r - r ') i{t,,,,(/)i.7u{n"(r') l no (10.5)

This produces a change in the wave function of proton 1, according
to (10.3) ,

t l 'r,(r) : I dar't S"(/ - n")[go,ituto,(1x")e0(fr")] (10.6)

and thus the scattering amplitude, by (6.53) and (6.56), is

gyi : (-i,go)2! d,art dnr" [{o,,(r")i."yil1,r,(r")] iA,p(r" - r ')no

X [0o,,@' )it r{,,(x')l (10.7)
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Comparing (10.7) with the analogous (7.32) and (7.88), we con-
clude that the rules for graphs are modified by replacement of the
vertex e7u in electrodynamics by igotr and of the photon propagator
igu,Dr(r - r') by J*iAe(r - r')qo for the zr0.

To (10.7) we must add the exchange contribution corresponding
to Fig. 10.2 Lhat is due to the identity of the two protons. The ampli-
tude for this is

si; : - (-iso)rl d,ar' dar" [ilo,,,(r,,)hu{o,(r,,|l iar(r,, - r,)qo

X [iln,,@')itu{o,(r')l (10.8)

and differs from (10.7) by the interchange of final proton wave func-
tions {to,,@) * {o,,@) as'well as by the important minus sign which,
as in electron-electron scattering (7.82), assures antisymmetry of the
initial and final proton wave functions under interchange of the two
protons.

Neutron-neutron scattering is described in a similar fashion.
We must write a wave equation for a neutron which includes an inter-
action term with the r0. In addition, we add to (10.a) a neutron
source term for the :r0. fmportant experimental guidance here
comes from the observed equality of p-p and. n-n forces within correc-
tions due to electromagnetic interactions, such as the Coulomb force
between protons.l This suggests that, within a sign eo: *1 stitl
to be determined, the coupling between neutrons and the zr0 be the
same as for protons. We therefore write for the neutron wave
functions

(iV - M 
"),t, "@) 

: - goeoi,^y il!,(n)eo(n) (10.e)
and we replace (10.a) bV

(! * p3)eo(r) : -so[Pn@)iy6'!,o@) - es{/^(r)i.ys*,(r)]no (10.10)

The small mass difference between neutrons and protons ,M, - M o
x 0.002M e, is attributed to electromagnetic effects due to the proton
charge and is neglected in this approximation along with all the other
electromagnetic interactions. Equations (10.9) and (10.10) lead to
an n-n, scattering amplitude which is identical to the p-p amplitude
(10.7) and (10.8), since el : +1.

We must also take into account the coupling to charged zr+ and
r- mesons when we come to lhe p-n scattering. In the lowest order
approximation of including only one meson exchange in the scattering

lDavid Wong and If. Pierre Noyes, Pftys. Rat., LZB, 1866 (1962); G. Breit,
Reu. Mod. Phys., 34, 766 (1962); H. Pierre Noyes, Pftgrs. Reu., L90,202b (1969);
M. M. Ldvy, Phys. Reu., 88,725 (1952).
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(a) (6)

Fig . 1 0-3 Noncharge-exchange and charge-exchange diagrams
Ior n-p scattering.

amplitude these give rise to diagrams (Fig. 10.8b) of the charge
exchange type in addition to the noncharge exchange scattering (Fig.
10.3a). In writing a wave ,equation for the zrr we are again guided
by the observed equality of the n-p force to the p-p force, *itnn
electromagnetic corrections, in the states available to the p-p system.

In analogy with (10.10) for the zr0, we write for the zr+

(Z * pi)e+@) : - g+n+{"(r)i,ts*o@) ( 1 0 . 1 1 )

where the sign r+: * 1 and the coupling constant ga will be deter-
mined relative to go and 4e later. The right-hand side of (10.11)
gives rise to vertices (Fig. 10.a) from which a r+ emerges in the
transmutation of a proton to a neutron. The rr+ may then propagate
forward or backward in time. If backward, as discussed in the
propagator theory for zr+ mesons in the preceding chapter, it is inter-
preted as a zr- coming forward in time with positive energy to be
absorbed at the vertex as in Fig. 10.4b.

The complex conjugate of (10.11) gives the equation for the
charge-conjugate particle, the zr- :

(n * pi)ei(o) : (I * p?ie_@) : -s|q+pp(r)i.y*lt,(r) (10.12)

The right-hand side of (10.12) provides the vertices of Fig. 10.5.

q

VO

''\( 
,r(

(a) (b)

Fig. 10-d Vertices for p + n,
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Fi,s. 1o-5 verrices ror n+ p. 

\\(,,*,(

we must now modify the wave equations for the neutron and
proton with additional terms allowing for the transitions in Figs. 10.4
and 10.5. Comparing (10.11) and (10.12) with (10.8), 1t0.5;, anA
(10'10), we aie led to write for the complete wave equations for
protons and neutrons, .

(iV - M )'l/ r(r) : goi.y ill/e@) ey(r) * SIi,y u,,|,,(r) p*(r)
(iV - M,),t,,(r) : *g0eoi^r'Vn(r)eo(r) * gaeaiTs,!tn@)e-(r) 

(10'13)

where an additional sign e,. : f 1 remains to be determined.
rn order to limit the constants remaining in the wave equations,

we consider n-p scattering and write the amplitudes associaied with
the two lowest order graphs, Fig. 10.8. considering the incident
neutron (pt) to scatter in the meson fierd produced by the incident
proton (pr), w" find as before

Sy6 : (-igs)t(-ro)rtol d4rt d'r, Wo,,(r,)iyu{o,@t)li,Lp(r, _ /,)

X IQ o,, (r" ) iy u{ r,(r" )]
+ ( - ig +) ( - iSI) n + [ da r, d,ar,, [i!, o,, (r, ) i.7 s,l, o,(r, )']i A e (a, _ r,, )

x [po,, @")iy u*o,(r,,)] (10. 14)
Had we instead considered the incident proton to scatter in the fierd
produced by the incident neutron, (10.14) wourd be modified bv the
replacement

2t7

Hence we set
T+ - rl+e+

€ + : l (10 .15)
since the only change has been our point of view.

In order to determine the relative magnitudes of ga and, gs,
we again appeal to the observed approximate equality of the n-p force
to the p-p force in the states arowed for the p-p system by the e*clusion
principle. Let us then compare p-p and. p_n scattering for the two
particles in antisymmetric states. To do this, we tempora rily imagine
the neutron to be identicar to the proton but stil coupled to chargerJ
as well as neutral mesons, and we compute its scattering by adding



2t8

P

Re latiai s ti c qu an tu m nte cha,nics

Fig. 10-6 Sum of graphs for p-rz scattering with
including Pauli- and charge-exchange contributions.

(d)

one pion exchange

exchange graphs, with'the appropriate minus sign, to assure anti-
symmetric states. Figure 10.6 shows the two diagrams of Fig. 10.3
plus their exchange parts, with the momenta and coupling as indicated;
diagram (c) is the exchange of (o) and (d) of (b). The sum of these
four contributions to the scattering amplitude, S1;, constructed as if
n and p were identical and obeyed the exclusion principle is

S.r, : - (-i)'[noros'o * q+ls+l')

X I d4/ dar" \[{ o,, (r' ) iy 6rl, n,@' )li A, (*' - r" )[{t n,, (r" ) i"r ut o,(t" )l
- [0 o.t @' ) i"r *1, o,@' ))i, L p (r' - r" )W o,, @" ) il brl, o,@" )]l ( 1 0. 1 6)

Comparing (10.16) with the sum of (10.7) and (10.8) shows that
the condition on the coupling constants for equal n-p and p-p inter-
actions in the antisymmetrical states available to the p-p system is

QZno: - lg* l 'q*- glqo,o

{F
\ / ,

)-r'-":.1
/ \

(o)

p.

This has two solutions

and

l g * l ' :  o  . o :  - 1

lS* l '  :  ZSt  e6 :  f1  qo:  - r r+

(10.17)

(10.18)

(10 .1e)

The first, (10.18), corresponds to the exchange of only neutral mesons,
which clearly leads to eqlual n-p and p-p forces in corresponding states.
Since the zr+ and ?r- mesons exist and reactions are observed with
vertices of the types in Figs. 10.4 and 10.5 at which single zr+ or z'-
mesons are produced, for example, 

'i

' Y + P ' - - + n * r +

we are led to choose the second solution (10.19). There might, of
course, be additional single neutral mesons contributing to the nuclear
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force; but since no clear candidatel exists, we ignore this possibility
here.

According to (10.19) the coupling of charged mesons to a (p-n)
vertex is greater bV {2 than the zr0 coupling Io a (p-p) vertex. Since
only the absolute square lg1l, appears in the scattering amplitude, we
may choose g*real for convenience, so that

g+ : t/2 so (10.20)

We find it convenient to replace the condition 4+ - -qo in
(10.19) by an additional rule in writing Feynman amplitudes. We
write

1+ :  *no (r0.2r)
and introduce the following additional rule for writing the amplitudes
for each graph: Multiply by -1 if an odd number of charged mesons
are exchanged by the nucleons in the graph. This rule may be shown
to be equivalent to the rule to antisymmetrize not only with respect
to interchange of n-n and p-p lines in a graph but also to zl-p lines.
This is because any graph with a charged pion exchange can be
related to a graph with a neutral pion exchange by interchange of
n and p lines (and the relative minus sign comes from the opposite
signs 46 and q1 associated with the pion propagator). This evidently
is the case in lowest orderl compare Figs. 10.6o and b.

In general, there are two cases to consider in making the anti-
symmetrization prescription well-defined. The first, illustrated in
Fig. 10.7o, occurs when the zr+ is exchanged between two different
nucleon lines. This case is similar to that encountered above in lowest
order.

If the zr is emitted by a nucleon and reabsorbed by the same
nucleon, a little care must be taken. Consider, for instance Fig. 10.7b,
for which one time ordering is shown in Fig. 10.7c. To relate this to a
graph with a signature we know (that is, not involving the zr+ line), we
interchange with appropriate minus sign the neutron and proton I and
II and obtain graph 10.7d. Graph 10.7d has the same signature
as graph 10.7e, whose signature is opposite that of graph 10.7f , obtained
by interchange of lines I and II in (e). Collecting the mipus signs
(there are two), we see that if the zr+ is emitted and reabsorbdU on the
same nucleon line, one may set 4* : 46 and give the graph the same
signature as the graph obtained by replacing the zr+ by a zr0.

It must be emphasized that all we are doing here is making a
purely formal extension, by construction, of the antisymmetrization

1A possible candidate found reeently is the 40 meson with mass -550 MeV.
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v 0

Fig. 10-7 Rule antisymmetrizing ,?-p exchanges.
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rule from Lhe p-p scattering case, rvhere it has a physical basis in the
exclusion principle. As applied to the n-p scattering case for which
the particles are different, distinguishable, and can scatter in sym-
metric tSr, tPr, 3Dz,r,o, etc., states, it is no more than a convenient rule
for bookkeeping on the signs, in the approximation of "charge inde-
pendence," that is, of equal p-pt fr-%t and n-7t forces in corresponding
states.

Our reason for introducing this forrnal and seemingly complicated
generalization of the exclusion principle will be seen in the next section,
where we develop a simple unified description of the prot'on and
neutron as two aspects of the same particle, the nucleon. According
to this rule we introduce a relative minus sign into a p-rz scattering
amplitude when we interchange the final p and zz, as in Figs. 10.3o
and 10.31r, in the same way as we introduce a - 1 betrveen the ampli-
tudes for Figs. 10.1 and 10.2 in pt-p scattering as required by the
exclusion principle for two identical fermions.l

At this stage we have determined all pararneters except 46;
€0 : €+ : f 1 and rt+ : no with the additional convention that graphs
differing by exchange of an n and p line be antisymmetrized. To
obtain T0, we observe that, according to the interactions in (10.13), as
illustrated by l'igs. 10.4 and 10.5, a proton is not always a proton, but
is sometirnes a neutron and a zr+1 hence the electric charge is carried
mutually by the zr+ and the proton. l'his has the consequence that
neither the electromagnetic current of the ploton nor that of the
ur+ is separately conserved, as is seen by computing these currents
(normalized to unit charge) from the above wave equations:

.  d  . - /  \  d  / a  '  \  * t  .i fr;i,'@) 
: i a.h(ilotr*) 

: sl{oiva{"p+ - s+0^'i^vt*oe-

, , ( * )  :

* q+g+Q"'itu*rp- (r0.22)

There exists, however, a differential current, conservation law
for the sum of the proton and zr+ currents:

d \  I
ar ') '*  l

.  a  | .  - / ;'  d4 Lzr+ \a.r,
- rt+gl{r,it s{"E+

. d'u r tu

(10.23)

1 The convention (10.21) together with the antisymmetrization ruie applies to
oll processes, including self-energy insertions a,s well as r exchanges between nucleon
lines.

f l1 i " {*7r iu".@)l :11
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provided we choose
r r + : f l  ( 1 0 . 2 4 )

in the zr+ equation (10.11). We make this choice in order to rule out
the unobserved possibility of local sources and sinks of electric charge.
It follows from (10.21) that

no  :  n+ :  +1 (10.25)

10.3 Isotopic Spin Forrnalisrn

Gathering together the rules (10.15), (10.19) to (10.21), and (10.25),
as determined by the requirernent of equal n-n, n-p, and p-p scattering
amplitudes in corresponding states, we can write the wave equations
(10.10) to (10.13) in terms of one real unknown coupling constant, as
summarized below:

(iV - M ;{,o : goi'ts(Qo,po t t/2 {"p*)
(iV - Il,t"),,t,^ : g0.i-yb(-{,po * f2{re-) (10.26)

(I * pi)eo : *go(Loitu,t,o - {,huL,)
(n * pl)e+.:  -Qot/2{"hu, l 'o 00.27)
(D * pi)e- :  (n + pi)eI:  -so\/2{oiryu*^

The similarity in the forms of the proton and neutron equations
suggests that we introduce one nucleon wave function

t,r, I
v :11 ' l

l t f " f
(10.28)

to describe them. The nucleon wave function is represented by an
eight-component spinor, the top four components for the proton spinor
and the lower four for the neutron. The free Dirac equation is
diagonal with no coupling between the p and z componentsl and in
the "charge independentt' approximation, 'lvith Mo = Mn = M, tt' is
simply

( i v -M)v :o

For the interaction terms in (10.26) we must introduce nondiagonal
matrices mixing the n and p wave functions. As a notation for this
mixing it is convenient to introduce the three Pauli matrices

" ': [? l] .,:l? l] ",: [; -?] (102e)
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with each entry understood to operate on all four components of r!, or
t!" in (10.28), for example,

F.r .  I
'rO :,1:lr;l

We label the matrices here by r in order to distinguish them fronr the
Pauli matrices d, which operate on the spin components of the neutron
and proton. Equations (10.26) may now be combined and rewritten
AS

(iV * M)V : Qo'irs(rl!^po + \/2rt'Ve+ + \/2r-Vp*) (10.30)

where ra = l l(r1+ 0,,) :  
[3 ;]  

(10.31)

and r- = !i,(rt - 0,,) : 
ll S]

are the charge t'raising" and "lorvering" operators, respectively. We
further reduce this to a very compact form if we introduce a "vector"
S with the three comnonents

where

1
9t = -ta 

\P+ j P-)
v z

This gives

b :  (pupupa)

i
e r =  

1 / 2 @ +  
-  e - )

(10.32)

g a =  9 o

( iV -  M)v :  ss i ,ys(r .$)e (10.33)

In the same way, with neglect of the small zr+ - r0 mass difference,
po = rt+ = ,u, Eqs. (10.27) may be combined into an approximate
equation for the zr mesonsl

( t r * r , r ' ) 0 : - gsv i y r rg (10.34)

This compact "isotopic spin" notation for ?r mesons and nucleons
represents purely formal progress and has been accompanied by no new
physical input. fn terms of a fictitious "isotopic space" we may sup-
pose that V transforms as a spinor and $ as a vector. Then the wave
equations (10.33) and (10.34) are both covariant under rotations in
isotopic space. This covariance is a consequence of limiting the forms
of the coupling terms so that protons and neutrons and charged and
neutral zr mesons share identical interactions and are therefore equiv-
alent in the absence of electrornagnetic effects. Conversely, we may
turn the rvhole procedure around and show that for any set of such
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wave equations which are invariant under rotations in isotopic space
the n-n, n-p, ?-? forces in corresponding states are equal.l

It was with this aim of constructing a compact language in
which the proton and neutron appear as two components of the nucleon
wave function v that we tailored our rules for Feynman amplitudes in
the preceding section.

The isotopic spin formalism is mathematically identicar to the
three-dimensional angular-momentum formalism. In the same way
that the law of angular-momentum conservation foilows from the
covariance of the wave equation under rotations in ordinary three-
dimensional space, a law oT isotopic spin conservation emerges from
the covariance of (10.33) and (10.84) in isotopic space. However,
the isotopic spin conservation is only an approximate law, since the
symmetry of the equations is valid only with the neglect of electro-
magnetic couplings and of mass differences between p and n and" rr
and zr0' In this approximation the states of systems of mesons and
nucleons may be diagonalized with respect to the square of the total
isotopic spin 12 and, say, the third component, of isotopic spin 1'3,
which is related to the total charge of the system. The nucreon wave
function (10.28) rotates in isotopic space as a two-component, spinor;
the nucleon is thus assigned one-half unit of isotopic spin -r, with the
component along the three-axis being rh for the proton and -L7$
for the neutron. The meson wave function (10.82) rotates as a vector,
with a three-axis projection of 0 for th.e zr0. The meson thus carries
one unit 1 : 1 of isotopic spin.

Meson-nucleon scattering may be discussed in terms of the two
isotopic channels of I : )l and I : ,6 through which a meson and
nucleon may couple according to the familiar rules of angular-momen-
tum combination. rn nucleon-nucleon scattering onry one isotopic
channel 1 : 1 is available for p-p and n-n scattering in the charge-
independent approximation. For the p-n system 1s : 0, and the
scattering may be via both the 1 : 0 and 1 : 1 channels. We shall
discuss these examples in the isotopic spin language shortly.

To summarize, we list the rules for writing amplitudes correspond-
ing to graphs in this model with the charge-independent interactions
of (10.33) and (10.34) (compare Sec. 8.1):

1. Draw all connected graphs.
2. Associate with each graph an amplitude with a factor

at each vertex.
rWick, op. cit.

- igo(iysr")J dar
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3. Include a propagator iSr(r - ilL, with tr the unit matrix in
the 2 X 2 dimensional space of the nucleon isotopic spinors, for
each internal nucleon line terminating at r and y. For each internal
meson line include a propagator iAp(r - A)6"8, rvith D"B a 3 X B unit
matrix tying together the r" and rB operators at the vertices connected
by the meson.

4. Introduce a wave function for each external line. For the
nucleon line the projection operators rr6G I z3) and ,6e - 13) for

proton and neutron, with isotopic wave functions 1, : fll ,"4

i o l  
l u l

x" : 
Lllr 

respectively, are useful. The wave function for a,n incident

neutron with quantum numbers (p,s), for example, is

I  F  - i ^ . - ,  .  1  F  _  - ,  , / t - " , \ [ o ]
€"sx trOe-'p*u(p's)x^ 

: (nyu l4ruio''u(p,s) \-'/ Lil
(10.35)

For the meson line the wave function has the isotopic factor $, where
$ is a unit vector in the three-dimensional isotopic spin spaci of the
?r mesons, In terms of the states of mesons with charge *, -, and
0, $ has the components, by (10.82):

6*: Se,t,o)
6- : Jt( l ,- i ,o)
0o :  (0,0,1)

(10.36)

Thus at the vertex on which an incident rr* meson is absorbed, or a
final z-- is emittcd, corlcsponding to an incident zr+ of rregative energy
propagating backrvard in time, there appears the isotopic factor

" 
' 0* : -. 

ra (r, * ir2) : \/zra as in (10.30). Fol ernission of a fina.l
\ / z

rr+ (or absorption of an incident zr-) the factor is r . $f : {2 r_.
5. Because of the convention rnade at the end of Sec. 10.2, there

must be a relative minus sign between two terms corresponding to
graphs which differ topologically only by the interchange of two
nucleon lines. There is also a factor - I for each closed nucleon loop
and a factor (-l)", where zt is the number of antiparticles in the
init ial state [see (6.56)1.
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We have slavishly imitated electrodynamics in formulating this
model. General features such as the isotopic spin conservation for the
?r-nucleon interactions are generally valid to all orders in their coupling,
in the approximation of neglecting small mass differences and electro-
magnetic effects. However, perturbation expansions of the inter-
action into a power series in po are not generally useful, since gf,/ tr
appears to be =14 and is not small as is its electromagnetic analogue
a-Lzlsz. fnstead of converging, a power series expansion leads to
a diverging perturbation series.

10.4 Conserved Currents

In the isotopic notation (10.28) and (10.32) the differential law of
current conservation (10.23) takes the form

# l'(tt'u;",*+(ox do\  I
) rP / t )

:  0 (10.37)

where vector notation applies to the isotopic space. The conserved
total electric charge, found by integrating the time component, F : 0,
over all space is

a : rd', fvt (=r)v + (o 
" d,,] (10.88)

The conservation law emerging directly from (10.33) is

#,', : *r,* - a
d̂ltt

({o^v,{o * p"tr,l'") : 0 (10.39)

This is identified as the conservation of nucleonic charEe. The
total nucleonic charge is given by

tvr : Jvrir d'r: I@IQ\* *I*) d.'r (10.40)

and is a constant in this model, since the total number of nucleons
(protons f neutrons) minus the total number of antinucleons is con-
served. This is seen to follow from the graphs in Figs. 10.4 and 10.5,
since a continuous nucleon line propagates through each vertex with
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all possible time orderings. Introducing (10.40) into (10.38) gives

a:
where

(10.41)

(r0.42)

227

(10.43)

(r0.44)

N*  r "
2  '  - "

Iz : I d}xftl*rrse + (0 x 6),1
is identified as the third component of the ,,isotopic spin.,, From the
invariance of Eqs. (10.33) and (10.34) under rotations in isotopic space
we suspect that not only 13, but all three components of the isotopie
spin should be conserved. By construction we indeed find this to be
true. The conserved isotopic current is

Ju :L /29 t , *V+0X iE' 
6rP

and the constant total isotopic spin is

I : J d\x [r/zvtlv + (0 x 0)]
conservation of electric and nucleonic charge and of isotopic

spin are general features of a theory based on Eqs. (10.38) and (10.84).
Both Q and ly' are observedr to be rigorously conserved in nature;
isotopic spin 1, on the other hand, is conserved only to the approxima-
tion of neglecting electromagnetic and rveak interactious. These
couplings destroy the charge independence of the strong interactions
which led to the symmetric forrn of (10.88) and (10.84), and thence to
(10.43) and (10.44), leaving only the third componerrt ,f3 as rigorously
conserved according to (10.41). The usefulness of the isotopic spin
formalism has been evident in this discussion of conservation laws in
permitting us to t'see" better what the equations sav.

10.5 Approxirnate Calculationsl Nucleon-Nucleon Scattering

To illustrate both applications of the isotopic formalism and some of the
general physical features of the ?r-neson and nucleon interactions, we
consider briefly two examples: the one z--meson exchange contribu-
tion to the nucleon-nucleon interaction, and zr-nucleon scattering.

The nucleon-nucleon scattering graphs which .lve considered.
l ' igs. 10.1 to 10.3, may now all be combined into a compact form.
Following our rules and going as usual into momentum space gives for

1 N must be generalized to mean the number of baryons (N,t\,2,8, etc.) minus
antibaryons when strange particles are taken into account. It is then known as
baryon number, denoted by B in the companion volume, J. D. Bjorken and S. D.
Dreil, "Relativistic Quantum Fields," McGraw-Hill Book Company, Inc., ,in press.
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the scattering amplitude

Srn
(  - i . n " \ 2M2

@'J;i7'A(2r)a6a(p1-l 
p',  - pi - pl)

x hxl,arp:lt- i
t  

Yaq(P)xt l

- txl,a(pL)t7*u(p,)*,1 
W - .oJ, - fr. txl,a(p');taeu(p,1r,11,

(10.45)

Comparison of (10.45) with (7.82) for electron-electron scattering
shows the correspondence of faotors

eIp + igo^Yst

gu,Dr(k') - Ar(fr')

according to our rules. The substitution of (2zr)6 for tr/2 comee from
the transition to continuum normalization of the external lines. For
p-p scallefing the isotopic factors become

Qlnx)'(xlox) : (xl'x)(xb,x) : I (r0.46)

and the two terms in (10.a5) correspond to the direct and exchange
scattering of the tu'o identical fermions, as in (10.7) and (10.8);
similarly for n-n scattering. For p-n scattering the isotopic factors are

QLnx) 'QLax) :  -r

. 
for the first term, and

Ql"nx)'QLox) : *2

for the exchange term, and the scattering amplitude differs from that
for p-p and n-n scattering, If, however, we ask for scattering into the
symrnetric isotopic state with 1 : 1 and Is : 0,

1

;)EIx,}x,Q) + x,(2)yoQ)l G0.47)v .
formed by the proton and neutron the isotopic factors in (10.a5)
become, both for the first term and the second term,

l  r t  i  ,  +  +  .  1  I  ,

,72Qi "x ;x^ax"*  
x )Fxp 'xpax , )  :  

JZ( -1+ 
2)  :72  (10 .48)

The scattering amplitude equals I/\/2 times that for p-p and. n-n
scattering and is antisymmetric under interchange of their space
variables.
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For scattering into an antisymmetric isotopic state with
1 r : 0

I-':
\/2

[x,0)x"(2) - x"(2)x,( l)]

the isotopic factors in (10.45) are

I

\/2
(xlo xo' yf,oy,, - x!,rxn. xlo x,)

for the first term and *3/{2 for the second term. Hence the scarrer_
ing amplitude is symmetric under the interchange of the p and n space
(coordinate and spin) variables when antisymmetric under interchange
of their isotopic variables.

These examples show how the generalized exclusion principle
applies irr i/-l/ scattering. They interact only in states antisyLmetric
urrder interchange of both their isotopic and space variabies. The
charge-independe't approximation equates the [-p and. n-n scattering
amplitudes to the amplitude for a p-n system in a symmetric isotopic
state (10.47) and hence interacting in an antisymmetric space state.
This eq'ality follows from (10.4,5), (10.46), and (t0.agi rvhen we
recall that the total p-p and z-?? cross sections are integrated only
over one-half the phase space as in (7.g1) in order not to count the
protons or neutrons twice; thus 17/ compensates the (I/{2)2 from
(10.48).

In the nonrelativistic limit the spinor matrix elements in (10.45)
simplify to

'fr(pi,,s'r)yuu(pr,8r) ry ,'1r'S 9'JJt -d) ,(rr) (10.50)

where u(s1) stands for a two-compone't pauli spinor; (10.50) is readily
verified by writing out the spinors in the nonrelativistic limit. rn
this limit the meson propagators reduce to the Fourier transform of a
Yukawa potential

1  - l  1  r  o -p r

@ -nJ"= p, 
= 

1p1- n,;, .r- ur 
: - 

i; J 
d3r e;(pFp"t't " -

and (10'45) is seen to be the scattering which to order gl results from
a potential

r r /  ,  f 2  c - l l l t : - r 2 lv l r ' , r 2 ) :  
E (  

-  P " " ) ( r ' . ' r ) ( 0 , . v , ) ( d , . o , )  
#_  r ;  ( 10 .51 )

229

I : 0 ,

(10.4e)

3:  _ . -
\/2
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where

and P"* is the operator exchanging neutron and proton wave functions
and providing the second term of (10.45). The two nucleons must
be in a state which is antisymmetric under their interchange as
required by the generalized exclusion principle; otherwise, (1 - P"")
destroys the state. For the two nucleons in an s state the potential
is attractive for finite separations r: lr: - trl ) 0 as seen from the
angular  average of  (10.51) ,

and from the observation that this state, symmetric in space coordi-
nates, must be antisymmetric under either spin or isotopic spin
interchanges. Therefore, in an s state

r = *(*)'

(L r6o r . r z  d r  .  d r ) "  :  ( / 12 lQr  *
:  %tr(r +

and V"(r) : -rf lg-:"L r

v" ( , ) :  I *vgyr2)
:  

f , r t  
-  P"* )  !o , .o ,a , .0 ,  [ r '  T  

-  + 'a3( r ) ]

nr), * 6l[(0, * dr), - 6]),

r) - 3/6IIS(S + 1) - 261 : -r

- I u'rri l
tt" I

(10.52)

(10.53)

The d-function repulsion is spread out into a short-range repulsive
core interaction rvhen nonstatic corrections are made to this simple
calculation. By itself, (10.53) is inadequate to explain deuteron and
low-energy scattering parameters. This is not surprising, since there is
little reason to expect the static one-meson exchange approximation to
the scattering to be reliable. Indeed, higher-order contributions from
other additional diagrams involving more mesons are irnportant
because of the large coupling constant g!/+r - t+. These, however,
have been shown to contribute predominantly for smaller separations
r and fall off as e-"p' for pr ) 1, where a is the number of exchanged
mesons.l

It is therefore very encouraging that in the analysis of the high
partial waves in an angular-momentum expansion of the nucleon-
nucleon scattering amplitude, (10.45) or (10.51) reproduces the
observed phase shifts accurately when g!/4r is set = 14 (/' : 0.08)
in agreement with its observed value in the meson-nucleon p-wave
scattering analysis.

l See M. J. Moravcsik and H. P. Noyes, Ann. Reu. Nucl. 9ci., 11, 95 (1961)
for a recent review aud for refereqces to earlier literature,
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4 .
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FiS. 10-8 Lowest order meson-
nucleon scattering corresponding to
Eq. (10.5a).
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10.6 Meson-Nucleon Scatterins

The Feynman graphs of Fig. 10.8 describe meson scattering from a
nucleon to lowest order in g7/4". The scattering amplitude according
to our rules is given by

^  1  l - -M,  - .sn : 
12,su lgep;W,(2t)a6a(q1 * h - Qz - Pz)w

with

wt : (.- iso)zy[a(pz,sz) 
l ,  

.  0f,r,  pLTLqL _ M itur.6,

, A iI e . 6ittff i-fu th,' . Qi 
)u(pr,st)xt 

(10.54)

Notice the crossing symmetry of (10.54); it is invariant under the
interchange

0t * 6f e1<-> -ez (10.55)

in analogy with the crossing symmetry found in (7.67) in Compton
scattering. This symmetry under (10.55) is preserved to all higher
orders.l From the Feynman diagrams it follows clearly when we
observe that for each graph, as in Fig. 10.8a, in which the incident r
is absorbed beJore the final zr is emitted, there is one, such as Fig.
10.8b, differing only in that the initial zr is absorbed after the finalr is
emitted.

l This is proved formally in Bjorken and Drell, op cit.
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We shall restrict our discussion to low energies,l retaining only
the s'wave scattering terms of otder I/M and the p waves of order
l/M'inlft. Rationalizing the Feynman deirominators and reducing
the 7 matrices with the aid of

u(p')i.vr(P i q * I l[)huu,(p) : u(p')qu(p)

rve find
t(o. 0iXr. 0,)q, * (* 6,)(" lOil1-a4lt l ? :  - i g2oy [a (p r , s r ) l
L  2pr( l r  + p2 '  -2pr .qz - l  p ,  _ l

X u(pys)y1 (10.56)

Computing now in the center-of-mass frame to the above stated
approximation, we simplify (10.56) to

-  in?
w = -# [ut(s,)u(s,)(x lx,) t0 l  0,) j

i u \  \  + ?-  
# ; u t ( s , ) x i ( c ' 0 i  

' ' 0 '  d ' q 2  d ' e r  -  5 ' 0 ' ' ' 6 ' d '  Q r  r l ' q z ) z ( s r ) x r

(10.57)

The first term is a, spin and isotopic spin independent interaction
which would be described nonrelativistically by the Born approxima-
tion notential

v ( r ) : (10.58)

fn perturbation theory this gives an enormous s-wave scattering length
of (4Mf'/p,,) l/p = 2/p = 2.8 X 10-13 cm, where 1ve have set./2 : 9.gg
as in the discussion of the nucleon-nucleon interaction. However,
since the interaction is repulsive and of short range-in this non-
relativistic approximation (10.58) has zero range-it actually has
very little effect,. A strong, short-range, repulsive potential, as
drawn in Fig. 10.9, produces an s-phase shift of the order 6 - qa,

where a, the range of the potential, is the low-energy scattering
length. From recoil corrections one expects lhat a - l/M and
that the low-energy s-w&ve meson-nucleon scattering is small, in
contrast, with the large amplitude of -l/p, oblained from the unjust
application of Born approximation to (10.58). This is indeed the
case found experimentally.2

1 E. M. Henley and W. Thirring, r'Iilementary Quantum Field Theory,"
McGraw-Hiil Book Company, Inc., New York, 1962.

2 Bethe and De Hoffman, Jackson, Gell-Mann and Rosenfeld, and Henley and

Thirring, op. cit.

* ,n;it6a(r) 
: 6i,// 

[.,1f; 
o'(')]
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Fig. 10-9 Short-range repulsion for s-wave
T-z sca,ttering.

The second term in (10.57) is the p-wave scattering. Its form
may be recognized as that obtained by applying second-order non-
relativistic perturbation theory. If we treat the nucleon as a non-
relativistic spin one-half particle propagating in positive-energy states
only in between the absorption of the initial meson and emission of the
final one, \rye may use (10.50) to reduce the interaction vertex to the
form go(d.V)(o.  $y1Znf  .  The factor  I /a  in  (10.57)  comes f rom the
energy denominator in this approximation, appearing with a plus sign
for the amplitude, Fig. 10.8a, and with a minus sign for Fig. 10.8b.
fn contrast, the first, or s-wave scatteling, term in (10.57) comes from
transitions of the nucleon in and out of the negative-energy sea in the
intermediate state. In this case Ey su - - 1 for low nucleon momenta,
and the energy denominator gives a factor -l/2M.

The uncertainty relation in the form AE At - 1 suggests that the
p-wave interaction via these graphs takes place over a longer time
scale, -Ifu, than does the I wave, -l/lVI . Therefore, it is natural
to expect a stronger energy dependence for the low-energy p-wave
scattering amplitude than found for the s wave. In fact, if there is a
strong attractive p-wave ttpotential," a resonance may develop.

The crucial question to be asked, as first, emphasized by Chew,1
is what the sign of the p-wave potential is. Independently of the
quantitative inadequacy of our perturbation approximation in writing
(10.57), this sign will have the greatest influence on the scattering and

i G. F. Chew, Phys. Ras.,96, 285 (1954).
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may serve as a valid qualitative guide to an understanding of the
p-waye amplitude. To answer this question, it is especially con-
venient to project out the amplitudes for the various channels cor-
responding to each individual value of total angular momentum J
and of total isotopic spin 1, since transitions between channels differ-
ing in -I are forbidden by angular-momentum conservation and between
those differing in 1by isotopic spin conservation, (10.44) (in the charge-
independence approximation).

10.7 Projection Operators for Isotopic Spin and
Angular Mornenturn

From the vector model for the addition of angular momenta we knorv
that the total isotopic spin of a system of one nucleon @ifh I : r7l)
and one meson (with 1 : 1) is either 1 : 1.( or I : ,6. The pro-
jection operators for these two stal"es, Pry and P,v,, will be 3 X 3 matrices
in the meson isotopic spin space spanned by the basis (10.36) and
2 X 2 matrices in the space of the nucleon isospinors (10.35). P,,t
and P9,, should have the basic properties of projection operators:

P ' , a { P u 7 " : L

P7, , , :  P*
P'1.r, : Plr,

where 1 is a unit matrix in the six-dimensional product space of the
meson and nucleon isotopic spaces.

The search for these operators is made easy by observing that
the uncrossed graph, Fig. 10.8a, must lead to a pure I - ,r2 amplitude,
since there is only a single intermediate nucleon line with 7 : t l and
1 is conserved at each vertex. Thus the isotopic matrices in the
uncrossed graph must be proportional to P'v,:

(0 ,1P '616)  :  da .6 i ' . 6 ' (10.60)

The coefficient a is determined to be!( by squaring (10.60) and
imposing (10.59b):

<o,lP'kl,,,> :,i,,6,1",, lil (6,lPr 16,)

: o,,2,(, . oil(n . 6J(n. 0I)G . 0,)
: B" (g,lpylo,) : (o,lpu16,)

(10.59o)

(10.5eb)



N onelectro tna gnetic interactions

o r  o : 1 7 ( a n d

(0 ,1P, ,16, )  :  )6o.0f  , .0 ,

Equation (10.59o) now gives P96 directly:

(6, lPxl0')  :  i l ' '  6 '  -  rr6,G. 0f l f ' .  0,1

(qr lQ' lq , )  :  l r /6d 'Qz d '  t r l fn ,

(q, loxlq) :  [qz'  rr  -  rAG'qz)(o ' r ,) l  
h

w i t h q = l q l l  : l q r l .

They are normalized according to

Happily, the angular-momentum composition is identical to that
for isotopic spin, since we are again coupling a spin S : Lz4 to L : t
for the meson p-wave orbital angular momentum. The orbital wave
functions for the ?r meson now are the vectors gr and qz in analogy
with the 0t and $, in isotopic space, and the angular-momentum
projection operators analogous to (10.61) and (10.62) are
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(10.61)

(10.62)

(10.63)

J d0" (q,lQnlq") (q"l8rlq') : D;,(q,10;lq,) (10.64)

where we have replaced the sum over the three orthogonal directions
in the space of q, as used in the isotopic projection operators, by an
integral over a sphere J dO,. This is an inessential difference in nor-
malization conventions between the P; and Q; which is motivated by
the fact that observed mesons are always oriented in isospace along
one of the three directions (10.36) corresponding to charge + 1, 0,
whereas their momentum vectors lie along a continuum of directions
corresponding to different scattering angles.

The combined projection operators for isotopic spin and angular-
momentum eigenstates are just the products of the P's and Q's. We
define them by

@ r : @ r r : P w Q * . ,

0 z :  0 B :  P y Q W

@ a : @ s r : P " , a Q r d

@ r : @ a a : P W Q * (10.65)

where the first index of 0;; is just twice the isotopic spin and the
secondindexistwicetheangularmomentum. The@o, a: l ,  .  ,4
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satisfy the properties (10.5g) wiih the normalization condition

\ '  t  . ^

L J da, o"l$"q,)(0.q,1c", : t,oo,eo

Introducing the projection operators into (10.57) we find for the
rr-nucleon scattering arnplitude to second order in gf; and in the non-
relativistic approxirnation for our model

;^2 'f i  
(4"q'z\f i  = - 

f f  uI(sz)u(sr)x|(Prc * Pt,)x, - 
i*, \  B /

x ilt(s,)xl (U,0, i 
9qr' - !9rl_]9';39!I!! 

lq,q ) u(s,)xr
t /

(10 .67)

observe in (10.67) that the scattering amplitude is negative only in the
(3,3) channel, corresponding to an attractive potential for 1 : J : 2/2
only.l The experimental observations of a resonance in this state
and of small phase shifts at low energies in the other three p-wave
states are in qualitative agreement with what we would expect frorn
a "potential" leading to (10.67).

l0.B Cross Seetions for Pi-Nucleon Scattering

The scattering cross section is formed from (10.62) and (10.5a) by
squaring and multiplying by the customary phase space factors.
For fixed initial and final spins we have

o. : ̂ .,ffi,) I (l4) (#:") (#.,0,,,) Cn
X D'(qt  *  P,  -  qz -  Pz)

which in the nonrelativistic limit M ---> q becomes, in the center_of_
mass frame,

(#)"- -' ,*,! lrnl' (10.68)

To evaluate d,a/dQ for a specific process, the appropriate zr-meson
isotopic wave functions $; and momenta q; and the corresponding
nucleon isotopic spinors xi are inserted into !J?. For au unpolarized

1 lbid. See also G. F. Chew and F. E. Low, phgs. Reu., tOL, 1b70, LbZg
(1956); G. C. Wick, Reu. Mod,.Phys.,27,339 (1955);and also Henley and Thir-
ring, op. cit.

(10.66)
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cross section the nucleon spins are summed over as usual. As an exam-
ple we consider zr+-p scattering, to which only the I : % channel
contributes, since Iz -- 76. Neglecting all but the 1 : J : 34 cor,-
tribution, we have from (10.65)

xl(q,6+lc,,lq,6+)xn : 
h ,r,' s, - Lda' ez d ' Qr) (10.69)

Summing over final and averaging over initial nucleon spins, we find
with the aid of (10.69)

| 
")" 

run,,r'
: L(#,)' (*)';" I ' '( ',) (n,'n, - *' 'r, o ' r,)'t ',) l '
:  (# t^ ) '  l  t ' " (n , 'q ,  -  

*  d 'q2 d 'n , ) (n , 'q ,  -  
*  o 'q ,  o 'q , )

(10.70)

Inserting into (10.68) we find for the I : J : fu contribution to the
differential zr+-p scatterinq cross section in the center-of-mass frame

: (#") '  tqlq? * B(q' 'q ') ' l

@#A :(#) '  s,(r+3cos2o) (10.71)

where. as before. we have introduced

p : 920 /_{\'
" 4tr\2M /

Equation (10.71) can hardly be considered reliable, since it is
based upon Born approximation which, as already seen, fails badly
for the s-wave scattering. It has the important virtue, however, of
predicting an angular distribution 1 * 3 cos2 0 which is in approxi-
mate agreement with experiment for meson energies in the 150- to
200-\tIeV region. Also in this energy region the ratios of cross sec-
tions are observed to be close to the computed values

o\n+-p -, o+-p) to(7--p -, rl-n) toG--p ---, n--?) : 9:2:l (I0.72)

for scattering in the I : J : zrl channel only.
With these suggestions that the scattering is dominantly through

the I : J : V6 channel in this energy region we try to extend the
validity of (10.71) with the aid of two general observations.l We

1 Chew and Low, Wick, and Henley and Thirring, op. czJ.
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notice first that the energy dependence of (10.71) is unrealistic except
near threshold since it predicts that o+ oo as (r---) @. 'Ihere is,
however, an upper bound on the magnitude of the total cross section
coming from unitarity. Purely within the framework of propagator
theory it is difficult to discuss unitarity of the S matrix;l here we
simply use some general results of nonrelativistic scattering theory,
namely:

1. For a given channel the scattering amplitude has the form

(10.73)

where q is the momenturn of each particle in the center-of-mass system
and d the phase shift in this channel. 6 is real if there are no competing
inelastic channels with the same quantum numbers.

2. The contribution of a channel with orbital angular momentum
I and total angular momentum J : I + ll to the total cross section
is limited bv

"t:l <gp+!
3. The effective range expansion

qzL+L cot 6 : o * bu * c<,:2 I (10.75)

provides a good approximation at low energies.

Secondly, we observe, as already noted in Sec. 10.6, that the
small energy denominator -c.r and relatively long time scale -1 /,'t
of the p-wave interaction make it natural to expect a strong energy
dependence in the p-wave scattering phase shifts. Therefore, in
(10.75) for the (3,3) channel we may anticipate that higher corrections
to the Born approximation will lead to a coefficient c that is nonnegli-
gible and negative, enhancing the Born approximation attraction in
this channel.

Using (10.73) and (10.74), we rewrite (10.71) in the form

le i6, '  s in  6asl , (1 *  3 cos2 0)

I .  I
t  a ' _ s t t  s i n  3 :  _ , , _

q  q ( c o t D - f )

with

(ea,r sin dar)eo", = + !'q:
,JQP'

l For this discussion see Bjorken and Drell, op. ci.t.

q2
(t0.74)

(10.76)

(r0.77)

(**")..,: h
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To this order we may also write
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(q3 cot 6rr)uo". :  +W

q3co t  Dsa  :  +W ( t  -  
; )

(10.78)

Comparing with (f0.75) shows that the singular nature of the Born
term at <,r --+ 0 demands that a : 0; furthermore, the coefficient b is
identified as b : *(3p'/4f,). To determine the next coefficient c in
the expansion (10.75) and to develop a formula including the effective
range correction to the scattering length term, we must, go beyond
our low-energy Born approximation calculation.

We have already noted that (10.67) leads us to expect a negative
coefficient c for the 33 channel, since the signs correspond to an attrac-
tive potential in it as opposed to the other channels. Writing as a
low-energy approximation

(10.7e)

we obtain a good fit to experiment on zr+-p scattering provided

"f2 : 0.08, or equivalently, gf;/4r = 14 and u, = 2.2p.

o)..t.

4r\

1f

>r/q'z

Fig. 10-10 Radiative corrections with a single
intermediate nucleon line.

//Qz
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- {

Fi.g. 10-11 A higher-order contribution.

Equation (10.79) was first derived by Chew and Lowl from a
meson theory with fixed nucleon sources (,':/llI ---> 0) and without,
recourse to an expansion in powers of the coupling constant, such as we
made in (10.54).

The singularity in the scattering amplitude (10.77) at the point
o : 0 in the "unphSrsical region" below the physical threshold at
o : p may be traced to the vanishing energy denominator in the Born
amplitude (10.54). Thus the rationalized Feynman propagators in
(10.56) have simple poles for meson energies in the laboratory system
a1 - -p,2f2M and u2 : lp2/2M; arand <,rz ---+ 0 in the nonrelativistic
limit p,/ll'( --+ 0. All higher-order graphs with only one nucleon line
propagating between the meson vertices as in Fig. 10.10 will also
contribute terms with a pole al, os : 0, and the residue at this pole in
(10.78) and (10.79) includes the sum of their effects. All other dia-
grams, such as illustrated in Fig. 10.11, are finite at an energy c,r : 0
for the external meson line and therefore contribute to the second, or
effective range, terrn in (10.79).'? By plotting (q3 cot 6aa)/co versus c,r
and extrapolating to ro : 0, we isolate the contribution of the ampli-
tudes of Fig. 10.10, which measures the strength for a physical nucleon
with P2 : M2 to absorb or emit zero-energy mesons with imaginary
momentum lql : i,tt and to remain a physical nucleon with

(P iq ) ' : r I '

This amplitude is the meson-nucleon coupling constant as identified by
Chew and Low, with the value "f' 

: 0.08 as determined from the
extrapolation procedure. 3

1 Chew and Low, op. cit.
2 This statement, which appears to be plausible from these Feynman graphs,

may be proved generally; see e.g., Bjorken and Drell, op. cit.
3 S. D. Drel l ,  Reu. Mod. Ph31s., 33,458 (1961).
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10.9 Electrornagnetic Stmcture of Mesons and Nucleons

Kl't e D. -

Z  
o ry r . '
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The electromagnetic interactions of mesons and nucleons are influ-
enced by their strong interactions, as we have already remarked.
Indeed it has been known fot a long tirne that the magnetic moment of
a proton has the anomalously large value of 2.79 p.a, where

elt
tr" : rM;

is the nuclear Bohr magneton, instead of the value 1.0 pr predicted by
the Dirac equation for a particle of charge e, such as the electron.
(We neglect here the electromagnetic radiative corrections computed
in Chaps. 7 and 8.) Similarly, the neutron has a magnetic moment of
-1.91 pB, whereas the free Dirac equation predicts a zero magnetic
moment for a neutral particle.

It is possible to account for these anomalous moments by abandon-
ing the principle of minimal electromagnetic coupling.l Instead of
introducing electromagnetic interactions into the Dirac equation with

(10.80)

we might also add a magnetic dipole term

ivnTu(r#  - ,o , )

ig -> 7r'  (,  h 
- ,Ar) - (10.81)

with Kp :  l ' 79 r "  :  -  1 .91

A more fruitful approach eschews the temptation to introduce new
parameters as in (10.81) and rernains faithful to the minimal form
(10.80). This approach attributes all deviations from (10.80), includ-
ing the anomalous magnetic moments r, to the influence of the strong
interactions.2 In the sarne spirit we saw in Chap. 8 that the Lamb
shift in the atomic energy levels and the anomalous electron magnetic
moment could be explained, to the limit of present experimental pre-
cision, by including the effect of the interaction of the electron with
photons.

1 Gell-Mann, op. cit.
1S. D. Drell and, F. Zachariasen, "Electromagnetic Structure of Nucleons,"

Oxfold University Press, New York, 1961. R. Hofstadter, "Nuclear and Nucleon
Structure," lY. A. Benjamin, Inc., 1963. L. Hand, D. G. Miller, and R. Wilson,
Reu. Mod,. Phgs., 36, 335 (1963). S. D. Drell, Intern. School Phys., "Enrico
Fermi," Course XXVI, Varenna, 1962 fAcademic Press, 1964].
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Without entering into detailed calculations and by relying on
invariance arguments alone, we can establish the general form of the
modification of (10.80) produced by the strong interactions. In the
present instance the requirements of Lorentz covariance and of con-
servation of electromagnetic current severely limit the electromagnetic
vertex of a particle. Consider first the zr* meson and the graph in
Fig. 10.12b, which is a "radiative correction" to the vertex in Fig.
10.12a.

According to our rules the modification in the amplitude of Fig.
lA.l2a for the electromagnetic current of the zr+ due to the graph of
I'ig. 10.12b is

e(pu + p'u) -- e(r, + pi,) + (-is"\/2)'e I th'r, T! ror,
i t' . /--x  

, ,a  i  _  naeu,  + - t7_  a i t t :  e (pu+ pD +  I , (p ' ,p )  (10 .82)

The value of the integral Ir(p',p) is not of great interest since it is but
one term in a power series expansion in gfr which may well diverge.
However, the way in which this added contribution to the electromag-
netic current of the zr+ transforms under a Lorentz transformation is of
interest, sinee it is true of all higher orders as well. It is evident in
(10.82), after taking the trace and doing the momentum integrations,
lhal lr(p',p) transforms as a Lorentz four-vector and hence may be
written

Ir(p',p) : prlt(p2,p'',(p - p')') + p'ufr(p',p'',(p * p')t) (10'83)

where the form factors /1 and /2 are scalar functions of the three inde-

itr
I

,6'-r*o

\ p
L

\ r+

?^,A..A.n (

\ p
|rr*

(b )(o)

Fig. 10-12 Charged-pion electromagnetic vertex

radiative correction.

and
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pendent scalars ?2, ?'2, and (p - p')'in the integral. If we restrict

our attention to the scattering of a real meson from an electromagnetic
potential, the form factors become functions of the invariant momen-

trrm transfer qz : (p' - p)'only, since then p2 - p'' - tt'.
A further restriction on (10.83) follows from the requirement of

current, conservation, for example; for the gth Fourier component of

the current, of a real physical meson

qrl u(p' ,p) : (p' - p),I r(p' ,p) : 0 (10.84)

In (10.83), with p2 : p' '  : p2 this gives/1(q') : Ir(q'), a result that

may be verified directly from (10.82) in a similar manner-and with

the same kind of ambiguity- to that discussed in connection with the

Yacuum polarization irt Chap. 8.
We have now the general form of the electromagnetic current, of

a real zr* meson scattering with momentum transfer qr'. The point

interaction current e(pu I pj) is rnodified to

e(pu * p'-) * e(pu * pi)F 
"(q,)

(10.85)

where F"(q') is the charged n-meson form factor and depends only upon
the invariant momentum transfer. The form factor is normalized to
1 for zero momentum transfer, F"(0) : 1, after the charge renormaliza-
tion is carried out as in Chap. 8 and e is set equal to the observed
physical r+ charge. Study of F "(q2) requires more powerful techniques
of calculation than perturbation theory.r Already (10.85) constitutes
a powerful result in limiting the form of the differential cross section for
scattering of a r+ meson by an electromagnetic field. For example,
to lowest order in a the ratios of cross sections at different energies
and scattering angles, but with fixed q2. are independent of r'''(q'?) and
equal to the ratios calculated as in Chap. 9 with neglect of the strong
interactions.

A similar result is obtained in discussing the form of the electro-
magnetic current of the nucleon (and the strange hyperons as well).
Here the spin degree of freedom of the nucleon allows the possibility of
two scalar form factors corresponding to the additional possibility of a
spin one-half particle having a magnetic moment.

For the proton, for instance, one encounters graphs to order gfr
such as illustrated in Fig. 10.13. The corresponding modification of

1 More satisfactory techniques are discussed in Bjorken ar'd Dtell, op. cit.
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'lProton
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Fi,g, 10-19 Proton electromagnetic vertex and radiative corrections.

the proton current according to our rules is

a(p' ) et uu (p) ---+ a(p' ) e7,t' (p)

* (- i 'so{2Y I ff i ,d@')tv6 p:; --M huu(P)

X *-3 ., eQt;,, * c,,) ---. +- -
. .  

k z  _  pz  
- \ - , " t t  ,  vp t  (A .  *  q ) ,  _  p ,

* (-iso), I ,til^d(p')iru rt=-f:-rw 
ur,

i i
x 

e -;-- Mhru(p) F:n,: a(p')eru(p"p)u(p) (10'86)

' 
We again find, as was the case for the zr+ current, that the proton

current transforms as a four-vector. After the momentum integrations

are done, the only vectors remaining to be sandwiched between the pro-

ton spinors are ptt, p'r, and, y u. Any other remaining 7 matrices must be
'of 

the form p, P', ot'yr. However, the 75's can be elirninated, siDce

there are an even number of a'-N vertices and hence of 7s factors which

can be paired together with 7'?u : 1' I"urt'hermore, all factors of p'

and p appearing in a product of "v matrices can be anticommuted to the

left or r1!ht until they are adjacent to a(p') or u(p), respectively, and

set equaf to M. (Recall the concrete example of this procedure in the

calculation of the electron electromagnetic vertex in Chap' 8')

we conclude from these arguments that the general structure of

(10.86) must be

a(p' ) et,(p',p) 
"(p) 

: en(p)[p ul ln', I p',r r(t ') * rur' (q')]a(p)
(10.87)
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with I;(92), i : l, 2, 3, scalar functions of q2. Identical arguments
lead to the same general form for the neutron current.

Current conservation gives a relation between the three form
factors lr(q'). In analogy with (10.84),

quil(p')l u(p' ,p)u(p) : O

As a consequence, f1(q2)
most general form

a(p')et u(p' ,p)u(p)

: tr(q'), and the nucleon current takes as its

: ea(p')[(p, + p',)t{qr) * trrs(q\lu(p)

In discussing the electromagnetic structure of the nucleons it is con-
ventional to eliminate the vector (p, * p'r) in favor ofr

o r r ( p ' ' - P ' ) : o p , e o

by means of the Gordon reduction of the current. Since the spinor
wave fnnctions Tz(p') and u(p) obey free Dirac equations, we may
apply (3.26) directly to find the equivalent structure

u(p')et u(p',p)u(p) : et(p's[4uF {s\ + 
xH: 

rcr z(q,)]u(p) (10.88)

a form farniliar from our discussion of the radiative corrections to the
electron vertex (8.61). With r set equal to the anomalous part of the
magnetic moment in units of the Bohr magneton (xo : 1.79 and
Kn: - 1.91) and with e the physical proton charge, 1r(0) : 1 and
Ft(0) : 1 for the proton and !"(0) : 0 for the neutron.

Using the isotopic spin forrnalism we may combine the proton and
neutron currents into the sum of an isotopic scalar and an isotopic
vector part:

I
exr d(p') | r"[Fi"' (e') * r tF'r ', (q,)]

t
=

1 Form factors

*T;f: [Ff,(q,) t rfl[,\(q2)]l "ror,
xrUl:\ (p',p) + "."jf>(p',p)lx (10.89)

r n 2
Ge =  F ,  - l ' L -F ,-  

4M2

G u = F t t x F z

which have a more direct geometrical interpretation. are also in wide use now.
(Hand, Miller, and Wilson, op. cit.)
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where
F? : %(Ffd + Pr') Py'(o) : %
F?' : %(Fld - r'1"') F?'(0) : %
Ff, : )4knF|o, * r"F?)) r'f,(O) : -0.06

FI;' : l6,GoF?' - *,Ff') rf'(O) : +1.85

For a proton xtrax: 1 and (10.89) reduces to the proton current; for
the neutron xlrtx : - 1 and (10.89) reduces to the neutron current,.

The general form (10.88) or (10.89) again provides a seyere limita-
tion to the differential cross section for scattering of a proton or a neu-
tron in an electromagnetic potential. To the accuracy of the Born
approximation in a - Lz(fl, but to arbitrary order in the strong cou-
plings, the cross section for the scattering of an electron by a physical
proton or neutron is modified from that calculated in (7.46)
according to

1+ ) sin'z (0/2) sina
(r 0.e0)

where 0 is the laboratory scattering angle. Individual deterrninations
of Fr and Fz can be obtained by comparing measurements taken at
different scattering angles and energies but the same q2. More than
two observations at the same 92 must yield a series of points all lying
on the same straight line when

is plotted against cos'z(0/2) for fixed 92. Any deviations from this
cannot be attributed to our ignorance of the strong couplings or to our
inability to calculate the form factors but must be blamed on a failure
in the electrodynamic part of the calculation-perhaps to a failure in
the approximation of keeping only the first term in the power series
in a or to more profound reasons.

10.10 Weak Interactions

The weak interactions,r of which 0 decay is the most familiar example,
may be classified into two general groups: leptonic and nonleptonic.

I E. J. Konopinski, Ann. Reu. Nucl, Sci., 9, 99 (1959). L. B. Okun, Xlll
Intern. Conf. High Energg Phys, CERN, Geneva (1962). S. M' Berman, "Ler,fulss

ila
dn

('t,i)a,(r + #,^,3)#,

", [(ot 
- ;#\ri) cos, 3 - #r (F, * *Fz), sin, f,
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The leptonic interactions involve p mesons (p-), electrons (e-), and

two kinds of neutrinos (v,v') and include, along vrith the corresponding

antiparticle interactions (p+,e+,i,i'),
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B decay

pr decay

r decay

,, capture

n - - + p * e  t r _

p - - + e - * y , i v

-  l P - - r ' ' 'o  - l e -+ '

p - l p - - > n * v '

(10.91o)

(1o.e1b)

(10 .91c)

(10.e1d)

as well as a host of strangeness changing leptonic interactions which
transmute the strange particles into nucleons, leptons, and possibly
?r mesons; for instance

r z -  [ p - l l '' r \  - l , , - o * e - * ,

[ + p * e -  * ,

Examples of the nonleptonic decays, which always involve the

strange particles, are

I r - - -+p {  r -  K+-+o+ 4 n+ f  r -

We shall consider the leptonic interactions which do not involve

strange particlesl the weak interactions involving the strange particles

are not well understood and will not be discussed here. The problem

we face in discussing (10.91o, b, and c) is that of deducing from avail-

able experimental observations the structure of the interaction vertices

in the graphs for these processes. Two of our main standbys from the

discussion of the strong interactions are lost here. Both parity and

isotopic spin conservation are approximate symmetries and are violated

by the weak interactions in nature.

l0.l l  Beta Decay

The fundamental process (10.91o) is responsible for the 0 decay in

nuclei, and so we first study free neutron decay. The general structure

of the S matrix element describing this decay, illustrated in Fig. L0'14,

must be linear in the wave functions describing the incident neutron

on Weak Interactions," CERN Seminars (1961) (CERN 60-20); C. Fronsdal (ed.),

"Weak Interactions and Topics in Dispersion Physics," W. A. Benjamin, Inc.,

New York, 1963. Danby, Gaillard, Guilianos, Lederman, Mistry, Schwartz, and
Steinberger, Phys. Reu. Letters,9, 36 (1962).
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d,ar+tX", (r)gf'@)gl" (rrlgyt (r)

Fig. I0-1{ F decay.

and outgoing particles, that is,

S,fn-, : -; 
X I d,au . d,arngtro>(rr)*{r(*;g\a>@)gl,)(rn)

aP76 ='1. "

X Fout(tt nn) (10.92)

As usual, the hermitian conjugate wave functions ry'r represent emerging
particles (p,e-) or incident antiparticles, corresponding to the negative-
energy solutions propagating backward in time, and the ry' represent
incident particles (n) or emerging antiparticles (l). Thus all inter-
actions such as

u l n - - + ? l e -

are also included in (10.92) in addition to g decay. To allow for the
possibility of inverse B decay, or positron emission

P - ' - , n * e + ' l v

as is observed in energetically allowed nuclear transitions, there must
be an analogous matrix element to (10.92)

4

s " " i ' : - ,  X  ldox,
aB^y6 *1 '

X F,tut(nt, ,nn) (10.93)

The functions F and f in (1O.SZ) and (10.93) must be determined from
experiment. On general theoretical grounds we shall make only one
assumption here, namely, that

F ogy 5(r1,r 2, r s,r t)  :  F [oa, (r z,r r ,r  t ,r  z) (10.e4)

This assures the principle of detailed balance for the weak interactions
and tells us that, aside from phase-space factors, the reactions

n e p * e - * i  v l n d p + e -
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proceed with the same rates fronr right to left and left to right.l That
detailed balance (10.94) should apply follows from the weakness of
the p-decay interaction and the unitarity of the S matrix, discussed in
Chap. 8. For no interaction S1.i reduces to a unit matrix 6y;. Writing

5 1 ; : d 1 l - i T y

the unitary requirement (8.31) is for Tp,

i(Tp - r") :

For 0 decay, the right-hand side is much smaller than the left, being
second order in the weak coupling constant. This leads to (10.94),
s i n c e f o r / # z

S P :  - i T y

The neutrino is a massless neutral Dirac particle, and we maintain
the experimentally rigorously satisfied law of conserva,tion of leptons
as well as of nucleons by identifying as an antineutrino the neutral
partner of the electron in B decay. For process (10.91o) this is only
a matter of definitions I lepton conservation has definite implications,
however, for r and p decay. Observed p-decay spectra also indicate a
spin of l( for the neutrino. More recently the observation of the
r- -+ e- f n decay process has oonfirmed this. Finally, the massless-
ness of the neutrino requires a change in our normalization convention
for the neutrino amplitude relative to that for other fermions. We
write for a plane-wave solution with quantum numbers (ft,s)
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I rrr^r^n

go (r) : -+ 11(i (ft,s)s-ik'o
t/2Er(2t)3

qi o) (lx,s)lro) (k,s) : 2g r

(10.e5)

with

and therefore
11{,) (k,s)u<,) (k,s) : g

The neutrino projection operators are

A;b'(lc,s) :

A!6 ' ( /c ,s) :

u"(k,s)ap(k,s) : k

u"(k,s)EB(k,s) : -k

2

v
s : l
2

v
s : 1

1 In the language of field theory this corresponds to the assumption of a
hermitian hamiltonian in a perturbation approach.
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A convenient way to handle the normalization is to treat neu-
trinos in the identical fashion as electrons of finite mass, normalizing
as in Chap. 3, and to subsequently take the l imit ff i ,+0. The rules
(10.95) Iead to identical results.

After 30 years of research, the function F in (10.g4) has finally
been completely determined at low energies, that is, for relatively large
coordinate separations r,i - rj. The simplest hypothesis about the
nature of F is that it vanishes for large space-time separations r." * iLj.
rndeed, if the range of distances over which I is nonvanishing is small
compared withh,/ EBc ru 10-12 cm, the characteristic distance associated
with B-decay energies EB - | to 10 MeY, one may take i' to a first
approximation to be a local interaction, that is,

Fqp76(u1,r2,xtpa) = $"Br56(a)(r1 - rr)Dtnlia, - s.r)6{a)(q - ra) (10.96)

where Sop"5 is a constant, matrix tying together the spinor factors.
This turns out to be an extremely good approximation for all observa-
tions thus far. Irourier-transforming (10.96) to momentum space gives

F op.r;(lcyk2,k3,/cn) = J daq dar2 d,ar.] darE

X e i (k  I  r t+k  r '  r r l k  s ,  ca lha .  a )  p  
oB7 t ( f  1 , f r  2 , f r  s , f i  a )

: (2r)a6a(lu * /c, * h3 | ka)5^6y6 (10.97)

The interaction is just a constant matrix times the usual 6 function
expressing energy-momentum conservation at the interaction vertex.
This is to be contrasted with the case of nucleon-nucleon scatterins
due to the exchange of r mesons, where

F , - - -  
L  -

q' - p"'
(10.e8)

corresponding to a potential of range -lt,/pc. If the mass of the
,r meson were allowed to beconre large, one u.onld for small q2 approach
a situatinn sirnilar to p decay, that is, an approximate point coupling
of the four ferrnions. Conversely, as energies involved in weak inter-
action processes increase, such as in the inverse B decay reaction

v + p ' - - + n { s +

one may anticipate that the interaction will appear nonlocal; for
instance, a possible heavy boson IZ+ might be exchanged between the
p-n and e-l systems, as in Fig. 10.15, or some more complicated non-
locality might occur. I

t T. D. Lee and C, N. Yarg, Phys. Reu., tl9;1410 (1960) ; yukawa, op. cit.
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Fig. 10-16 A possible heavy I[+ boson exchange
in B decay.
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For our present discussion we remain with the approximation
(10.96) and (10.97). In the realm of low-energy B decay, nucleon

recoil may also be neglected to within corrections of -lql/M,

where q is the recoil momentum of the proton, and the neutron

and proton wave functions are replaced by constant spinors in (f0.92)

and (10.93). After squaring and doing the spin sums for unpolarized
neutrons and final particles, we obtain

lsrll - I 1
Yi * 

@Ei@E; 1"" 
('" { m)r'aPrB

X (%r)a6a(p" * P, * P, - P) (10.99)

where pr represents the four-momentum of particle 'i, : (e,i,p,n) and
Ziis the corresponding energy; Eo = Mearrd En - Mn. Ia and I's

are some complicated matrices which depend upon the structure of the

matrix so6'6. In the rest frame of the neutron, they are constant
matrices, since they are functions of the nucleon variables only'
Therefore, after carrying out the trace (10.99), which must have the
general form

a U r * B E " E I * C E " E r \ " , f r o

where A, B, and, C are constants, $, : p"f 8", and pu = Pt/ Er, we find
for the transition rate to a given final state

lSrl'
VT

We may now multiply by phase-spece factors d\po dapr dspo for I'he

final state and integrate over all proton and neutrino momenta to find

the electron spectrum in the neutron decay:

" (t+ B + cg"'p,) (2tr)a6a(p, * pu * p, - P^) (10.100)

Me-8, -8 , ) (#"*u*

E"Y (i+ n) an"

cg" ' f r )

o p,E"(M^ - Me - (10 .101)
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Thus by plotting

, da"

wdE"
versus E" we should find an energy dependence A/8"+ B. It is
observed-not only in free neutron decay but also in a wide class of
nuclear B decays known as the allowed transitions-that the electron
spectrum fits this dependencel and, further, that A :0, that is.
(10.i02) is observed to be a constant in experiments. A more farliliar
way of presenting the data is in terrns of a Kurie prot, which disprays

/ 1 du"\tt

\eE;dE;)
versus E" as a straight line proportional to (M* _ Mo _ E"). The
absence of a term o A/8" in (10.100) is a consequence of the detailed
nature of the B-decay interaction to which we come in the next para-
graph; it is one of the so-called "rtierz interference" terms which are
conspicuously absent fror' all observed B spectra, inchrcling the for-
bidden B-decay transitions which have matrix elernents proportional
to the nucleon velocities, but which again verify the approximate
locality of the B-decay interaction. It is amusing to noie that the
electron energy spectrum (10.10r), with -z{ : 0, is sirnply proportional
to the phase-space volume (8,,zp"tr), dlr") and has the statistical shape
predicted by a constant S-matrix element S1; c (2r)a6a(p" * pn -f
?e - pn), in place of (10.100),

We turn next to the structure of the matrix lF"B"5 in (l0.g7).
Holding the indices "y and 6 fixecl for the moment in (10.92), we can
summarize the a, B dependence in complete generality in terms of the
16 7-matrices discussed in Chap. 2:

5o9t6 : FG)tal*p a Fe)ra76*a * F, ,rr 
r ,(y,),p

(10.102)

:l

)
Lt

r : 0

11 g
'  

-L^o'o"'o(7'. ' )"P +, L ^ 
F,)\"a(ox')oo

A 7 t : V

The matrices 1, ?0, 7,t "{r"f,t and o1. form scalars (S), pseudoscalars (p),
vectors (tr/), axial vectors (,4), and tensors of rank 2 (?), respectively,
when sandwiched between Dirac solutions 0@) . . ) {(d, as seen in
(2.38). It is then clear from (10.92) and (10.96) that proper Lorentz
covariance of the transition amplitude requires prsr lna r(p) to be

l coulomb corrections must be made. E. J. Konopinski and L. M. Langer,
Ann. Reu. Nucl. Sci. ,2, 261 (19b8).
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linear combinations of 1 and 7s, F(v)' a1d 1(e)z to be linear combina-
tions of 7' and y'Is, and 1(?)rr 1o be a linear combination of or' and
o\',yb. The S matrix then takes the form
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e(@-) - r I mr?n,i" /..)-\4\4/^ | -'5i? '): -ruylznit"B","g"(2")464(p"+ P' * ?'- p')yJl

with
( m -

and

The
with the
according
according

)
i ,=  I ,P ,V,A,T

C t[d o(p )l tu" (p )l lr i "(p ")[ 
1 * *ry u] rc u,(p r) | ( I 0. 1 03)

| ;  :  (1, 'y r, 'y p,7 r7 p,o p,)

l i  :  (1,?r,7u,y'ylrorv)

S-matrix element for inverse B decay takes the same form,
constants Cr and cvi replaced by their complex conjugatesr
to (10.94) and with the labels on the spinors interchanged
t o '

u p '  '  ' u * ) u n '  '  ' u p

'17" ut --+ 17, " u;

ff we again neglect all momentum dependence in the nucleon
spinors, thereby restricting our attention to "allowed" transitions,
(10.103) simplifies in terms of two-component Pauli spinors for the
nucleons to

ySl = (uf,u") lC s'a,"(p")ll * osy uTu r(p) I Cvil"(p,)[l + av"rr]tou.(po)l

* (utrau")'l2Crd"(p")[! * o.nv]dut(pr) + Ced"(p")[L * c'etaltr.rur(p)\
(10.104)

The first line induces the allowed Fermi transitions (S,I/) with lASl : 0
and the second line the allowed Gamow-Teller transitions (,4,7) with
lASl : 1 in the nucleon state. One may separate Fermi from Gamow-
Teller in nuclear B decay, where transitiorrs occur between well-defined
angular-momentum statesl both contribute to the lree neutron decay.

All the terms proportional to a.;Ts in (10.104) violate parity and
prior to 1956 and the lvork of Lee and Yang were abolished so as not
to destroy the invariance of Syr under the parity operation. The
experimental discovery of parity violation in weak decays following
Lee and Yang2 has now led to a complete determination of all the a;
arrd C,; in a series of key experiments.s

I Up to a sign: a ; + { a f , f o r i : A , V
o;- -of,, lor i = S,P,T

r T. D. Lee and C. N. Yang, Phys. Reu., L04,254 (1956).
3 Konopinski, Okun, Berman, Fronsdal, and Danby et al., op. cit.
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The constants a; of the parity-violating terms are determined by
measuring the longitudinal polarization of the electron. One method
of determining this polarization is by measuring a left-right asymmetry
in the scattering of the B-decay electron from an atom. We define the
polarization, as in (7.95), by

o _ / y ' * - l y ' "
F "+N;

where Nn equals the number of "right-handed" electrons with spin in
the direction of motion, (o).0 : f 1, and Nr, is the number of ,,left-
handed" ones with (o) . 0 : - 1. Both in Fermi and Gamow-Teller
transitions in nuclei as well as in free neutron decay, the electron
polarization in the ]imit of no recoil and after integrating over neutrino
angles is given to good accuracy by

P : - lg,l (10.105)

In the limit B" --+ 1 only left-handed electrons are emitted. In the
same limit the spin projection operator for a left-handed electron
becomes, as in (7.107), (1 - 76)f2, so that the wave function for a
left-handed electron is

lP'l
Eu

0"":f+* (10.106)

Therefore all the ar's in (10.104) equal *1 in order that the correcr
sign and relativistic limit be reproduced. The polarization for arbi-
trary g, is found by introducing (3.19) and (7.94) into (10.99) and
carrying out traces and the neutrino angular integral to obtain
- S|m"f E": - lg"l as claimed. Equation (10.104) is now simplified to

sIf t :  (utou") i l "(p")( t  +.rb)(cs * Cno)u/p,)

4 (uf,au") "8"(p")(l | 1)QCrd * Cer)u,(p,) (10.107)

and the relative magnitudes of the constants Cs, Cv, Cr, and Ce remain
to be determined.

It is a straightforward exercise to square D? and sum over spins.
For unpolarized nucleons there are no interference terms between the
Fermi (S,7) transitions and the Gamow-Teller (,4,?) transitions.
Moreover, there are no interference terms between S and }/ or A and. T
in (10.107), since these lead to different final antineutrino states.
When the (1 f 75) factors are commuted to the right, we see that I

{ L t  : ' ; t  f
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a\d, T transitions lead to the emission of left-handed antineutrinos

u ! t ( p r ) : l t t u u ! t ( p r )

On the other hand, for transitions via tr/ and -4. only right-handed anti-
neutrinos are emitted. In the absence of interference between S and
V or A and 7 there are no Fierz terms; that is, the coefficient,4 in
(10.100) and (10.101) vanishes. The contributions to ,4 come from
terms of the form

moTt I 'ap1lg

If there are an even number of 7 matrices in I,1, there must be an odd
number in Is, and vice versa;thus all contributions to the Fierz term
are interference terms, which, as we have seen, vanish. Were neu-
trinos emitted with less than 100 per cent polarization, the absence of
Fierz terms would require the coupling to contain either S or I/ and
either ,4 or ? terms only. All four terms may appear in (10.107),
however, and we must consider experiments which measure the coeffi-
cient C in (10.100), that is, the electron-antineutrino angular correla-
tion, for more information on Cs, Cv, Ce, and Cr.

Consider, for example, a pure Fermi transition involving the S
and V contributions only. Summing over electron and antineutrino
spin variables in (10.107) gives for the angular distribution of the
emerging antineutrino relative to the electron

try'r*^i(d) o Tr (9" * m)(L + ?6)(Cs * toCv)pu(C* + yoCt)(t - %)
: 8E"ErllCslr(t - g, cos g) * lCylr(l * g, cos d)l (10.108)

where 0 is the angle between them. The same distribution is found for
inverse B decay. The experimental distribution, determined for the
almost pure Fermi transition in As6 by measuring the direction of the
positron and recoil nucleus, is found to be approximately 1 * F, cos d,
suggesting the transition is vector. A similar calculation for Gamow-
Teller transitions gives

i[ot(0) o E"ErlCel'(L - rA9" cos d) * alCrl'(l + ys7, cos d)]

(10.10e)

and the measurements on a pure Gamow-Teller transition, as in Ne23,
together with other data on mixed Fermi and Gamow-Teller transi-
tions, indicatelCr/Cl << l. Equation (10.107) may then be simplified
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It'i{1. 10-16 Some higher order graphs for B decay.

to two terms in the limit CrlCa : 0:

YP - (uIou,)d"(p")C vf (t - "y )u,(pr)

a @lau,,) .a"(p")(*Coi(r  -  tn)a,(po) (10.110)

which leads to the emission of right-handed antineutrinos only. Now
only the magnitudes sf cv and ca and their relative phase rernain to be
determined. The magnitudes are found from measurement of the
decay rates of the neutron and of the pure Fermi transition in Ola.
The phase is determined fro'r t,he rnellsure'rent of the electron's arrgu-
Iar distribution relative to the neutron's spin axis in the p decay of
polarized neutrons, which is sensitive to the Z-,4 mixture. The final
result isl

\ /2cv :  ( t .o ls  +  o .o3)  x  to -6*  =  c
l U ;

g n :  ( { t . 2 1  +  0 . 0 3 ) c y
= *aCv

r'serting the notation (10.111) into (10.110) and reverting to a rera-
tivistic rrotation, we have for the invariant amplitude of B decay

laotu(r - at)u,lld"1p(l - rb)url (10.112)

It would be natural to regard [J? as a first-order interaction ampli-
tude and to study higher-order effects such as illustlated by the Feyn-
man diagrams in tr'ig. 10.16. Howe.r'er, in the approxirnation (10.96)
of local interactions we do not know holv to calculate these amplitudes.
The closed Ioops in these diagrams give rise to infinite contributions

1 Tlre factor L/ 1/2 appears for historicai reasons dating to lgb6, when calcu-
lated decay rates doubled upon insertion of the factors (1 - "yr). Only the rela-
tive phase of cv and c,r is determined by experiment. cy is chosen to be real
and positive by conventiol.

(10 .111)

r rn :  q
\/t
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which cannot be separated and isolated into renormalization constants
as they were in Chap. 8. The difficulty here arises from the loss of
boson propagators between the nucleon and lepton vertices which
provide convergence at high momenta. The local approximation
(10.96) is equivalent to replacing the propagators by constants as in
(10.98); this will not be valid in closed-loop calculations which require
integration over all momenta. Although we are dealing with weak
interactions with a very small coupling constant (10.111), this question
of higher-order contributions is not entirely academic, since the cross
sections computed from (10.112) for scattering processes such as

n + P ' - - + n I e +

increase with the square of the energyl and are proportional to

(10.113)

By the time we reach energies 8".-. - 300M, - 300 BeV the weak
interactions may well have grown into strong ones and the effects
of nonlocalities and of higher-order graphs may beoome of major
importance.

10.12 Two-compon€nt Neutrino Theory

We have already noted that only right-handed antineutrinos are
emitted in B decay. Correspondingly, only left-handed neutrinos
appear in the inverse processes, according to (10.94), owing to the
(1 - yu) in (10.112). Since the right-handed neutrinos and their left-
handed antiparticles are absent from these as from all weak interac-
tions, they represent, an unnecessary extra degree of freedom in the
Dirac equation for a massless particle which we may attempt to remove.

The Dirac equation for a massless particle

:  - i a .  Y * , (10.114)

does not contain the B matrix, and the anticommutation relations
(1.16) for the three matrices ott o.2t &nd a3

lor,or l  :  26;" 
"1 

:  I (10 .1  15)
1 B. Pontecorvo, J. Erp. Theoret. Phgs. (USSR),37, L75t (1959); M. Sch'wartz,

Phys. Reu. Letters,4,306 (1960); T. D. Lee and C, N. Yang, Ph11s. Beu. Letters,
4 ,307 (1960) .

l H  \ n  IG'E'".^. -\ffi*") a.'*.

; a*,' a t
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may be satisfied with the 2 X 2 Pauli matrices; that is,

a  :  d  (10 .116)

It was the necessity for constructing B as a fourth anticommuting
matrix that forced 4 X 4 matrices upon us in Chap. 1.

A positive-energy plane-wave solution of (10.114) and (10.116)
has the form

* (n) - 
AiW, 

u (p,8) e- i ( E t-p'x) (10. r17)

with -E : ipl and the spinor z(p,s) satisfying the equation

Eu(p,s) :  d.  pu(p,s) (10.118)

The solution of (10.118) in the usual representation of the Pauli
matrices, with the direction of the a axis along p, is

which describes right-handed neutrinos with spin along the direction of
motion:

d . p

6 u(p,+) :  lu(p,- l )

To obtain left-handed neutrinos, as observed in nature, we must
choose the solution of (10.1i5) with

u(p,*): l;l

a :  - d

instead of (10.116). In this case (10.118) is replaced by

E u ( p , - ) :  - d . p u ( p , - )

and we have left'handed neutrinos

(10.11e)

(10.120)

(10 .121)

(r0.r22)u(p, -) : tl]
To understand better the relation of these two-component solu-

tions to the by-now-familiar four-component electron spinors, we
return to the Dirac equation for a particle with mass m and, choose a
representation for the c, p matrices

',: [r -l] ' : [-? 
-l]

(10.123)
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which differs from (1.17) by a unitary transformation

"r s'Y o)

In this representation the Dirac equation
split two-component notation, with
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1
t l " :  - ( 1  *

\ / 2 '

(1.13) may be expressed in a

r:l:i!l)
t,f iu}) :  - id. va(*) -  mu(-)

i  *  " f - l  
:  * i ;  ' vu ( - )  -  mu (+ )

and it is easy to see that the solution

/ (  ,  .  [u (+) l+ l  :  L  
'o  ' l  for  m--+o

corresponds to right-handed neutrinos, since

(10.124)

The upper and lower components of {., arc mixed only by the mass terms
in (10.124);and in the limit m---+0 there result two uncoupled two-
component equations corresponding to (10.114), with a: d as in
(10.116) and o : -d as in (10.120). In the representation (10.123)

", : [i _?]

tr* ( * ) :  + , / (+ )
Similarly for

t a { ( - )  :  - 9 ( - )

showing that the solutions ry'(-) represent left-handed neutrinos.
The possibility of describing massless Dirac particles by a two-

component equation was first discussed by Weylr in 1929 but was not
taken seriously, the reason being that the B matrix, and thus the parity
operation P of (2.32), has been lost in reducing to two components.
After the downfall of parity in 1956, the WeyI equation was resurrected
by Landau, Lee and Yang, and Salam,2 who observed that the charge

r H. Weyl, Z. Physik,66, 330 (1929).
2 L. Landau, NucI. Phy., 3, L27 (1957); T. D. Lee and C. N. Yang, Phys. Reu.,

106, 1671 (1,957); A. Salam, Nuno Cimento, 6,299 (1957).

* ( - )  :  
[ " , t - , ]
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conjuga,tion symmetry C of (5.5) and (5.6) has also been lost, but that
a combined invariance under CP remains.

According to (5.5), the charge conjugation operation consists of
replacing il(x,l) by *"(x,t) : C09*$,t) with C, a matrix satisfying (5.4)
and (5.6). In the new representation the matrix

r  ^ - l
c : - i l1 '  u l-  "  

Lo -or l

satisfies these conditions. For the case of the two-component neu-
trino, the presence of the B in the above charge conjugation transforma-
tion means that it is no longer a symmetry operationl however, the
combined operation CP is. For if r/(r) is a solution of (10.114), so is

*ce(x,t) : C{* (-x,t) : T i,or**(-x,d) (10.125)
since

/ a  \
(  i ;  +  ia 'Y" l  *ce(x, t )  :
\ d ,  /

+ u,(t *, 
- o,*. v") **{-*,0

*r, [( 
-c 

* 
- i" .  v,,),r(* ' , ,)]

with x' : -x.
To form the antineutrino wave function, we take-as in (5.7) and

(5.8) for electrons-a negative-energy neutrino solution, complex-
conjugate the wave function, and multiply by zo2. tr'or example, a
negative-energy solution of (10.114) with c : -d for left-handed
neutrinos is, with f : *lpl,

: 0

(10.126)

where

and

According to (10.125) the antineutrino wave function is then

(ro.r27)

which evidently is also a solution of the left-handed Weyl equation.
Now (10.127) indeed represents a left-handed particle, but in the
parity reflected system, with x' - -x; just as a right-handed person
appears to be left-handed in a mirror, so the left-handed antineutrino
in the primed system (L0.L27) is right-handed to us in the unprimed
system.

* (r) : 
?#, 

u (- ?, - ) s+i(Et+o'xl

* E  u ( - p , - )  :  - o  .  p u ( - p , - )

f r lu \ -? ,  - ,  :  
LOJ
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Fig. 10-17 p decay.

10.13 Mu-rneson Decav

The decay of a ,u meson

p - - + e - * v ' * l

involves four fermions, including an (e-,i). This similarity to the
B decay of the neutron suggests that we try the same form of S-matrix
element as in the B decay. As in the inverse B-decay process, the
amplitude for p+ decay

t t " + - - + e * l v I i ,

will be given by detailed balance. We again pair the e-i wave func-
tions as in (10.112) assuming the forrn of the coupling to be

u"(p)yt(L - yr)ur(E) (10 .128)

This implies right-handed antineutrinos and completely left-polarized
electrons in pr- decay (and right-handed positrons in pr+ decay). The
neutrino polarization is not observed, but experimentsl indicate the
complete left-handed polarization of the electrons predicted bv (10.123).

The S-niatrix element for p decay then takes the form

a  _  - i  l n r m "  I  tbro : 
Tzoju lE;E 2Erry-r (2r)a6a(P - p - n - DsJft

ffi : +Gkz,,(kht,(r - \,1s)uu(p)l[a"(p)y*(r - tu)u,(E)] (10.129)
\/2

with the kinematies illustrated in Fig. 10.12.
1 P. C. Macq, K. M. Crowe, and R. P. Haddock, phgs. Reu.,112, 2061 (19b8).

For a recent general review see G. Feinberg and L. M. Lederman, ann. Reu. Nucr.
Sci. ,13,431 (1963).
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The parameter tr which determines the polarization of !,he v'
associated with the /r- meson and the coupling constant G remain to
be determined from the observed p-decay rate and spectrum.

To obtain the transition rate for p- decay from (10.12g) for
unpolarized particles, we take lS1;12, multiply by final phase-space fac-
tors d3p dslt d?8, insert projection operators for the sum olrer spins,
divide by 2 for the p- spin average, divide by VT : (2,r)404(0) for the
transition rate per unit volume, and finally divide by l/(%r)3, the p-
density, for the transition rate per p meson. These steps give for
the decay rate

,  I  I  f  -q ! ! ' ! t - !64(p-n-k- [ l ] rmr ,o'  :  '1 'o1u'E; J rf ,zgozEn d'(r  -  

"#" '
with

fiz
). lt:nl, : i rr [r,(1 - )iy')(F + mph"(t - r*,yu)k]

sprna 

X Tr l (p * m")tu(r  -  tu)Et,(r  -  rr)r  (10.180)

For the total integrated rate, everything to the right of (2Ep)-r
in (10.130) is Lorentz invariant, and we see that the inverse decay
rate is proportional to the energy Ep as required by special relativity.
In the rest frame of the p meson this is the lifetime.

Carrying out the traces, we obtain

";, 
l*1, : 32G'(r + lrl,) (k.p p.E -l k.E p.p)

+ G'(r * tr*) Tr (ktuPt"yu)Tr (pyu&y,y6) (10.181)

The last trace yields a scalar antisymmetric in ft and P, antisymmetric
in I and p, and linear in all four momentum variables. It therefore
has the form

Tr (kyrpr,r5) Tr (p7,E7,ts) :  a(k. i l  p.P - h.p P.E) (10. i32)

and there is only the number o to be deterrnined. We do this by tem-
porarily choosing the vectors lc, E, p, P at our convenience, requiring
only that (10.132) not vanish. For example, with /cu - E, : (1,0,0,0)
and P, :  pp: (0,1,0,0),  (10.132) becomes

-o : Tr ("yol\Tt"t,yr) Tr (:yr"yu"yo^y"7u)

In summing indices p, ar...d. v only the two combinations p : 2, v : 3
and p : 3, v :2 survive and contribute equally;thus

-q, : 2Tr (lolzyty,3?s) Tr (7r"yr"yo"rr.yu) : +32
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and the spin sum in (10.131) becomes

," I .  ,* , '  :  32G'{ \1 *  ) , ] ' t .Ep'P + l r  +\ l 'k .pE.Pl  (10.133)

To proceed further, we integrate over the valiables of the unob-
served neutrinos in (10.130). Since l$Jll ' is linear in /c and E, we are led
to evaluate the integral

r ,13 j.' dslt
I ,B :  I  . r , ;F k"! .p64(Q - i .  _,+)

r  L f t k  L u k

(10 .134)

with 8 : P - F. T'his integral transforms as a second-rank Lorentz
tensor and is best evaluated in the center-of-mass system of the two
neutrinos, in which Q is pure time-like. In this system we find after
a short calculation

I : R : L A T o " p * z o d o g p o l- (u,  
24 

nr to |  -Y

Knowing that (10.134) is a tensor of rank 2, we ca:n no\r express the
answer in an arbitrary Lorentz frame as

r * :h l sdQ,*2Q"Qp l

Putting (10.130), (10.133), and (10.135) together gives

a, : i!,p 
d4t dt)o 

{lt - ),1,6p.p (m,, * m"z - 2p.p)
l92ra Eo

+ 11 + l , l ' l -a(p,P)2 *  3p 'P(mu2 *  m"2)  -  2mu2m"2l l

Integrating over electron angles and neglecting the electron rest mass,
that is, nz,fUo* 0, gives for the energy distribution of electrons in
the p- rest frame

/i*) ' : G'f: ' !, ' f  t, - nt,u ( , -,ou\+ 11 + xr, /s - *",).1
\ d E r /  4 8 1 3  L -  * , / ' ' - ' " '  \ "  m r / l

(10 .136)

The observed energy distribution favors I : + 1 to good accuracy,
that is, the neutrino associated with the p- meson in (10.129) is also
left-handed.r Setting tr : I in (10.136) and integrating over all
electron energies 0 l Do lLrlnr,u gives for the total p-decay rate

(10 .135)

(10.137)^ 1 G2mus
rs l92rl

I  rThe energy dependence of (10.136) with I : , f  1 corresponds to a Michel
parameter p : 3r4,. L. Michel, Pnrc. Phgs. Soc. (Lond,on), A63, 514 (1950).
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The value of G deduced from the observed

ru : (2.2L + 0.003) X 10-G sec

is equal to the vector coupling constant C : \/2 Cv in nuclear
B deeayL (10.111), to within 2 per cent! From this strong indication
of a universality in the weak B-decay couplings between fermions we
draw additional support for the description of the interactions given
here and look to other processes involving pairs of leptons (e-,v) or
0t-,r') to see if they too indicate a V-A coupling form (10.128).

10.14 Pi-rneson Decay

In writing the S-matrix elements for the decay of the r meson
(10.91c), we may optimistically start off again with the Z--4 coupling
in (10.128) which has done so well in B decay and p decay. We are
strongly aided in this approach by two experimental findings. First,
the p- meson in the T- ---+ tt- { z/ decay is observed to be longitudi-
nally polarized and right-handed. Then the antineutrino must arso
be emitted with a right-handed polarization, since the r- has spin zero.
In the er- rest frame the p- and !/ emerge with equal and opposite
momenta, and both must be right- or left-handed if their angular
momenta along the direction of emission are to cancel as required
by angular-momentum conservation. This observation agrees with
(10.128), which predicts that only right-handed antineutrinos (or
left-handed neutrinos in zr+ decay) are emitted.' 

The second experimental finding in support of (10.128) is the
observed very small value of the branchine ratio

(10.138)

A very strong depression in the electron emission rate is predicted by
(10.128) owing to the factor (1 - ru), which leads to completely
polarized left-handed neutrinos and right-handed antineutrinos.
Anticommuting it to the left gives A(p) (t * tr), corresponding in
the limit u"/c--+ l to the emission of left-handed electrons (or right-
handed positrons) only. However, angular-momentum conservation
requires, as already remarked above and illustrated in Fig. 10.18,
that right-handed electrons accompany the right-handed antineutrinos

tR. P. Feynman and M. Gell-Mann, Phgs. Reu., !09, 198 (19b8). S. M.
Berman and A. Sirlin, Ann. Phys. (N.f.), ZO,20 (1962).

o (=;H,)  : "x10- i



N onelectro magnetic inter ac tion s

Forbidden: ( .\, ht-A---- (s,*+l)
r ( le f t - ianded)V Y 

Wr(r ighi 'handed) ' - '

Altowed: +(\ (7-A- (s.:o). '"-"-- 'er(r ight.handed)V 
Y 

W Z(right-handed) "

Fig. 10-18 Spin conservation in r decay showing both e- and I as right
handed.

ln r- decay. Therefore, the transition rate ealculated from (10.128)
ls depressed by a factor

where p is the zr-meson mass, representing the probability for a right-
handed electron to be emitted. For the heavier g meson which is
emitted nonrelativistically with energy

p2 + rnuzn _ : t.04mp

the spin projeetion operator differs considerably from (1 * .y6) and
there is no appreciable depression factor.

We adopt, then, (10.128) for the iepton term in the zr-decay
S-matrix elen-rent and seek a four-vector or axial vector with which
to multiply it in forming the invariant transition'amplitude. Since
the r meson has no spin, this vector must be formed from the two
independent momentum four-vectors in the decay , Pu for the zr and [u
for the I as i l lustrated in Fig. 10.19. The Fu wil l not contribute, since
Eur(E) : 0. Therefore, the structure of the S-matrix element for zr-
decav is unioue and mav be written

265

'- (:')' =(T)'

r;J (;)(nb,) ftn.roovu(l 
- vu)u,(E)l

2p

stT,: #,4(
X (2rr)ala(P - p-k) (10.139)

The constant G is the B-decav constant (10.111), and the constant, o,
which determines the overall decay rate of the zr meson may differ for
the p-- and e--decay modes.
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Fig 10-19 a decay.

(10.140)

where rz is the mass of the electron or p meson emitted.
If the constant o is the same for both the electron and p-meson

decay modes of the ?r lneson, (10.140) predicts a branching ratio

B(t=,  t - t  \  :  / r " \ '  -o tz  
-  m'2\2

\a-- / ,  -r  - /  
)  

:  
\ -  )  i f f i :z j t  

:  r '22 X lo-n

in agreernent with the observed value (10.138), within errors of the
order of 5 per cent. 'Ihis is further strong support for the coupling
(10.128) which applies universally for all lepton decays. Without
the strict selectiorr rule of the V-A interaction for left-handed neu-
trinos and right-handed antineutrinos this dramatically small branch-
ing ratio would be replaced by a much larger one lying closer to the
phase-space ratio

(p2 - tnu2)2

( r z - * , f = D ' D

From the observed lifetime of z : (2.55 + .08) X 10*8 sec for the
zr meson, we compute a value

lol  = 0.93p (10.141)

for the constant in (10.1a0).
With the assumption of a universal coupling, (10.128), for all

lepton decays the polarization of the p meson from zr-meson decay is
determined. This leads to a unique prediction of an asymmetry

i"
I
I
iP

Repeating the similar (but simpler) steps (10.180) to (10.187),
we find for the decay rate

|  _  ( % r ) r  /  I \ G r l a f  .  f  d r t  d ' p , n . . .  -
; :  e : "> ' \n ) ' | '  

8  LE;2 f  l zn 'e  k 'P  -  k 'p  Pz l6 t (p  -  k  -  p )

:w,'(;)'(,-#)'
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parameter in the pr-decay spectrum correlating the direction of the
decay electron with that of the pr-meson spin in the decay chain

T  - p  t v

I
t - + e - * i * v '

We calculate this by first computing the polarization of the p meson
emerging into a given element of solid angle and then computing the
spectrum of decay electrons from these p mesons.

To compute the p-meson polarization in r decay, we return to
(10.139) and compute the differential decay rate to a state of given

spin polarization s. The spin projection operator (1 * rrg)/2 is
introduced as in (7.89) and (7.90) to enable us to use trace techniques,
and we obtain in place of (10.140)

.  1 I  Gzla l2 1 dt f i Ia ,pct'),," : 
4,rr rE;- 2 l rilrrtr"

x 2Trl  r ,  * n,,)( '  *""d) Fe - ^/ ,)kr lan(p - p - E)
L '  \  Z  /  J

_ G ' l o l ' / p \  , / ^ u \ ' f  d ' ?  
" , , o: # \E;) r'(;/ I ;i ut(P - P)'l

" 
{1(t - 4".') * rn'": P} eo.r42)
t - \  1 " , /  t t ,  ,

P and p are the r and p, four-momenta, respectively. The decay rate
is a maximum for a right-handed p- of positive helicity, that is, for

'u 'P: I*(r-4)
z , r r [  \  l t ,  /

by Eq. (7.94). It vanishes for a negative-helicity pr meson with
sr : -.sn.

For the decay rate of the p meson with a given spin polarization
s we return to (10.129) and repeat that calculation, inserting ), : f 1
as measured and neglecting the electron rest mass, m,f Eo'-'+ S. The
spin projection operator (1 + "ys$)/2 again enables us to use trace
techniques in evaluating the squared matrix element. Retracing the
steps to (10.133), we find

tt-1

\  IqDt2/ .
elostron

spia

: *r,[',,t - 
",) (+ad) r, + muw(r - 

",)n]

: MGz k.p E.(p - mus) 

X Tr [p7"(1 - t)Et'(L - vr)]
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rntegration over the variables of the unobserved neutrinos is carried
out precisely as in (10.185) to give

,.r,,, - G' ?-q!tda,
48tra Ep I-+1p.pS, * Bmi(p.p) -  mrtp[mz* -  +(p.p) j l

In the p rest system this reduces to

a, !  :  #,^mtrEo, dEpdel(r  -  n*) + yG* -  t ) l
L \  m u /  h ' o \  m u  - / l

As we saw in Eq. (10.1a2), the p- meson is produced with positive
helicity in the zr- decay. Therefore, by Eq. (2.g4),

/s'p\
\ f i i  

: - s ' P = - c o s d

where 0 is the angle between the p- spin and the direction of the decay
electron. This gives

E z  r  n 1
(d.t:o| : 

ffim,rni d,Eo d(cosa) | g _ +# | O _ a cos g)
L  m p l '

__L^-._ 4Eo _ muwnere  d= f r -4Ue

is the asymmetry parameter as observed.r

10.15 Two Neutrinos

All the leptonic interactions we have studied have led to the same z-,4.
structure for the leptonic matrix elements given in (10.12g). That is,
p- and e- transform into two-component left-handed.neutrinos in weak
interactions. But nature, after being so economicar in providing
parity nonconservation as a \^ray of eliminating the need for an extra
neutrino degree of freedom, has been inexplicably generous in giving
us two such objects, v and v,, nearly alike but yet very different. The
/ associated at a vertex with an electron line is left-handed and has zero
(ot 

Igl-V small) mass, just like the z, associated with the p. But they
are different.2

l Konopinski, Okun, Berman, Fronsdal, op. cil.
2 At best they migtrt be different pairs of two components of a four-component

neutrino spinor wave function.
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Fig. 10-20 Possible p+ e + 7 decay (for identical v and. u').

The first hint that they might be different came from comparison
of unreliable theoretical estimates of the radiative decay rate,

tt- ---+ e- + 'y

with experiments which showed a branching ratior

R(p- -' e* * t)
f f i )<10-7

This process does not occur to first order in the weak interactions by
any known mechanism unless we invoke the hypothesis of an inter-
mediate charged vector meson to nrediate the weak interactions.
With this hypothesis calculations can be made with n-rodels along the
lines shown in Fig. 10.20. Although the answers from these calcula-
tions diverge and are not to be taken too seriously, it was hard to push
the above ratio below 10-a to 10-6. These graphs evidently vanish,2
however, along with all others if the z' associated with the p- is differ-
ent from the v associated with e-.

A more reliable test for two neutrinos, proposed by Pontecorvo
and Schwartz,s involves initiating inverse B-decay reactions by a
high-energy z' beam from r decays. In particular, one looks for high-
energy electrons or p mesons produced in the reactions

v' + 5L--+ Xt I p, or e

Since p production has been observed with certainty whereas no e events
were identified, one now has positive evidence in favor of two neutrinos.
To the difficult question "What is the difference between p and e other
than rest mass and rvhy did nature provide two charged leptons?"
is now to be added "Why did nature bother with two neutrinos?"

l Konopinski, Okun, Berman, Fronsdal, and Danby et aL, op. cit.
t G. Feinberg, Phys. Reu.,110, 1482 (1958).
I Pontecorvo, Schwartz, and Lee and Yang, op. cit,

w  (? )
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10.16 Conseryed Vector Current Hypothesis

The zr- and p-meson decays, as well as the nuclear B decay, indicate
that the lepton pairs (e,z) and (1.t,v') are coupled in the decay matrix
elements with a common (7-.4) form. Moreover. a comparison of
(10.112) and (10.129),  with a :  1.21, ) ,  :  1.00, and G = G to high
accuracy as discussed, shows a strong similarity between the nucleon
and lepton couplings.

It would be natural to expect the cloud of strongly interacting
7r mesons which surrounds the physical nucleons, but not the leptons,
to modify the strengths of the vector and axial vector parts of a
coupling that is introduced for "bare" nucleons in the absence of such
strong couplings. It seems quite remarkable, then, that the strengths
of the vector part of the interaction in B decay and pr decay are equal
within 2 per cent. Even the constant a: l.2l which gives the ratio
of the axial part of the interaction for nucleons relative to leptons is
sufiiciently close to unity to encourage interesting speculations.

Our earlier discussions of the electromagnetic interactions of
electrons in Chap. 8 and of protons in Sec. 10.9 provide an important
clue for understanding the equality of the vector part of the interactiou
current for the nucleons and leptons. In (8.50) and (8.57) we s&w
that the vertex function of an electron was modified by a faclor Z7r
that was due to electromagnetic radiative corrections. There also
appears in the S-matrix elements, according to (8.46) and (8.57), an
additional factor of. 22 coming from renormalization of the electron
wave functions owing to the self-energy insertions. To lowest order
iri a, we found, from (8.54), lhat Zt : Zzso that these effects canceled;
as remarked there, the identity Zt : Zz is valid to all orders and is a
consequence of the Ward identity (8.51).1

A similar situation holds for the electromagnetic interaction of a
proton. The mesonic radiative corrections, as illustrated in Fig. 10.13
and Eq. (10.86), modify the electromagnetic vertex of a proton by a
factor (infinite in perturbation theory) analogous Lo Zrwhich is again
canceled by the mesonic renormalization of the proton wave functions.
This assertion can be verified to second order in the meson-nucleon
coupling by showing that (8.51) remains valid in the presence of the
meson-nucleon coupling.

From this identity of renormalization constants we come to the
very important conclusion: the physical, observed charges of the elec-
tron and proton are equal in magnitude if their bare charges are equal,

1 For discussion see Bjorken and. Drell, op. cit.
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s i n c e t h e Y a c u u m p o l a r i z a t i o n ( 8 . 2 2 ) a s c o m p u t e d f o r t h e p h o t o n
propagator affects both the electron and proton in the same way'

This was already implicit in the discussion of the electromagnetic

structure of the p.oton, where 11(e)(0) was set equal to l in (10.89).

In p decay the form of the S-matrix element

E G
L,_{o,yu*,: L- VTuraV
\ /2  \ /Z

(10.143)

with r + : Y z G r * i r z )

used for the vector part of the interaction bears a strong resemblance

to the electromagnelic vertex of a proton. The fact that the mesonic

radiative corrections do not alter the coefficient of "vr at zero momen-

tum transfer makes this similarity even more striking' The main

difference is that the B-decay transition changes the charge by one unit'

Gerschtein and zel'dovichl and later Feynman and Gell-Mann2 pro-

posedthatthevector, ,current, , inBdecaycouldbeobtainedfromthe
electromagnetic current just by an isotopic rotation' This is possible

because oicharge independence of the strong interactions. Recalling

iro- (fO.SS) til'at the electromagnetic current of nucleons may be

written as a sum of an isotopic scalar and an isotopic vector term'

the rule of Feynman and Gell-Nlann is to take the isotopic Yector

part ja and to replace it for B decay by

Gji'' jt : 
;lrj'r 

+ ij',)

This rule is known as the "conserved vector current" hypothesis' If

there are no radiative corrections, it reproduces the interaction

(10.143). With radiative corrections' the g-decay vector transition

amplitude is obtained directly from (10'89), namely:

jt: 2 4&@'),*f ruF,(,)(e,) + ry#r',(')(q')l v(p) (10.144)
v z  

'  
L ' '  

' -  z l u r  I

Since the form factors have been measured in electron-proton scat't'er-

ing and are essentially constant fot -q2 ( p2, they may be replaced by

their values at qz : g' Equation (10'144) then becomes

fi : #ra"(p)lt, +?ry;Pf",ro, (10.145)

1s. s. Gersohtein and J. B. Zel 'dovich, JETP (ussR),29' 698 (1955);

translation in Sniet Phys. JETP (Engt. Transl'), 2' 576 (1957)'

, R. P. Feynman and M. Gell-Mann, Phys' Reu', 109' 193 (1958)'
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we notice that this current is conserved, that is, b5r construction

(p ' -p ) r j t r (q ) :o

rn addition to ensuring the lack of renormalization of the
coeffi.cient of 7, in (10.14b), we find an eiperimental consequence
of the conserved vector current hypothesis in the second ,,weak
magnetism" term.l rt is, unfortunately, of the same order of magni-
tude as the first-order nucleon recoil corrections to B decay and is
very difficult to observe. However, a careful and beautiful experiment
which analyzes the B spectra in the decays of Br2 and Nr2 into c12 has
established the existence of the weak magnetism term.2

The rules for Feynman graphs according to the conseryed current
hypothesis may be inferred from those for electromagnetism. First
of all, there is a one-to-one correspondence between graphs in B decay
and electromagnetic interactions. For instance, the graphs of Fig.
10.21 replace those of Fig. 10.18 for the electromagnetic structure.
In Fig. 10.21a and 10J1c, the factor e(I * ra)/2 for electromagnetism
is replaced by (G/\/2)ra according to our rule. Figure 10.21b is an
additional direct "pion weak current" term which is asain determined
by rotating the pion electromagnetic current in isotopic spin space.
The pion electromagnetic vertex is found by regarding the current in
(10.37) as a transition matrix elementl the vertex in momenrum space
is then

i,' : -ie(6' x Q)r(p', + pu) (10.146)

where $ and $', p and. p'are the isotopic wave functions and momenta
of initial and final mesons. The apparent factor 2 difference between
(10.146) and (10,37) arises because of the two ways of associating the
wave functions g(r) in (10.87) with initial and final particres. To
obtain the vertex for B decay, we again replace the three-component,
by the (f ) component and e by G/{2; the pion vertex in Fig. 10.21b
will consequently have the form

jI : - *x$'x 0), + z(0' x 0),1(p'u + ?) (10.147)
\ / z

The existence of this interaction term leads to another experimental
consequence, namely, the existence of the reactions

zr* ___+ ro * e- * , (10.148)
1M. Gell-Mann, Phgs. Reu., !11,362 (19b8).
2 Y. K. Lee, L. W'. Mo, and C. S. Wu, phys. Reu. Letters, 10, 2b3 (1968).
3 Konopinski, Okun, Berman, and Fronsdal, op. cit.; Feynman and Gell-Mann,

op. cil,.
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\

o--ta,
\
l_or
I

Fig. 10-21 Vector part of the weak-interaction vertex according to the
conserved vector current hypothesis.

The matrix element in the presence of strong interactions is again
related to the electromagnetic current of the pion (10.85) by an isotopic
rotation. Therefore, mesonic radiative corrections modify (10.147)
only by the inclusion of the pion form factor F"(qt), which for the small
values of q2 present in the reaction (10.148) can be set equal to 1.
The rate of this reaction can then be calculated from the vertex
(10.147), which leads to the unique, but difficult to measure,l prediction

(b)(o)

R ( " - - r o * e - * l )-____h,__=______ :l_ : 1.0 x 10_8
r L \ I f  - p  t v )

(r0.149)

The conserved vector current hypothesis may then be summarized
as follows. The lepton current il,,au(I -'yr){, is to interact with the
(*) cpmponent of the conserved isotopic spin current (10.43), treated
as a transition current just as it was for electromagnetism. Experi-
mental consequences result because this (*) component is determined
from the third component by the charge independence of the strong
interactions; the third component is measurable by means of electro-
magnetic interactions.

10.17 "Partially Conservedo' Axial Vector Coupling

The meson cloud about the nucleons will also affect the axial vector,
or Gamow-Teller, part of the p-decay interaction. We may interpret
the number a : l.2l relating the strength of the axial vector to the
vector coupling constant as coming from the effects of this meson

1 See reports to Proceedings of 1962 High Energg Phgsics ConJerence at CERN
(Geneva).
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q . .

/ T
Fig. 10-22 Single r-exchange contribution to the weak axial
interaction.

cloud. a is close to unity and a perturbation calculation of the
lenormalization of a coupling strength due to virtual cloud effects
gives a logarithmically diverging number. This suggests that perhaps
an approrimole conservation law is operating for the axial vector

B-deeay coupling.l
At this time little progress has been made in explaining the magni-

tude of a on the basis of this vague idea or any other idea, and we shall
not consider a further. However, the idea that the leptons couple
to a t'partially" conserved axial vector current of the nucleons in the
weak decay amplitude has had some success in calculating the observed
lifetime of rt decay, as we now discuss.

The simplest radiative correction to the axial vector current is
that involving a single lr meson, as shown in Fig. 10.22. According
to our rules, it contributes a term to the invariant amplitude for B decay

/1^

Dtr" : # t-U {2)[a(tt,)ituu(p)l n+,,,\ / z  q ' -  p

x (r,s)la(p")r, (i - ^yu)u(k)I (10.150)

where Ga/{2 is the coupling constant in (10.139) for zr+ decay and g

is the r-ly' strong interaction coupling constant. The additional 1/2
comes from the isotopic matrix for charged r emission. The kine-
matics is illustrated in Fig. 10.22. There are rnany additional con-
tributions to first order in the weak couplings coming from such dia-
grams as shown in Fig. 10.23. All contributions from the diagrams
of Fig 10.23 can be written in the form

\,I

with

$tr(Po,P")
(10 .151)

1Y. Nambu, Phys. Reu. Letters,4, 380 (1960); Bernstein, Fubini, Gell-Mann,
and Thirring, Nuouo Cimento, 1?, 757 (1960).

I lt : gI @o,p")n(p")yr(l - t u)u(E)

G
: 

Jii l(p,)lv,"rusr(q') 
* Quttsz(Qz) I Pflu5'(q',)lu(p")
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a n d  Q : p ^ - - p p : p " + E  P : p o * p ,

The construction of this form is sin'ilar to the construction of (10.82)
for the electromagnetic current, the only difference being the insertion
here of the yr to form an axial vector. If we assume that all contribu-
tions to 5j, as is the case in Fig. 10.23, transform &s the (*) component
of an isotopic vector, we may simplify this form further by showing
that

s'(q') : o (10.152)

on grounds of charge conjugation invariance and isotopic spin invari-
ance of the strong interactions. To show this, we first rotate gf, in
isotopic space by changing the ra in the weak vertices of the diagrams
of Fig. L0.23a to 13 and, in Fig. L0.23b, changing the za at the vertex
for emission of the lr- meson which couples to the leptons to a 13.
Owing to the charge independence of the strong interactions, this
transforms Jf into the third component of an isotopic vector; in
particular for a proton

E
$f,(p',p) ::;ri(p)ltuyuff'(s') * qfl$z(qz) I Pflga@2)lu(p)

\ / z

(10.153)
with

According to charge conjugation invariance of the strong couplings,
the additional contributions to (10.151) coming from the diagrams of
Fig. 10.23 must lead to a gfl(p',p) which transforms, if the proton is
replaced by an antiproton, exactly as the current of the ,,bare', proton

il(p')vutuu(p) (10.154)

(a)

Fig. 10-25 W'oak axial contributions to p decay.

I

Q p :  P p  
-  

P p P u : p ' u * p u
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FiS. 10-24 Weak-interaction vertex of an
antiproton.

transforms. For the charge conjugate transition of an antiproton
scattering from momentum p to p' we have the diagram of Fig.
10.24 conesponding to a negative-energy proton running backward
in t i r r ie  to be scat tered f rom -p ' lo  -p as d iscussed in Chap.6:
its axial vector current is

D(p)v,t uu(p') : - u'(p)C-ry,7 sCur (p')et+

:  _d(p,) tut ru(p)e io ( t0. lbb)

where we have used (5.8). The phase factor is determined by external
momenta and spins as we saw before (5.8). We rnust retain in (10.153)
only those terms with the same transforrnation properties, that is,

3, , ' ( -p,-p')  :  -  31"(p' ,p)roo (10 .156)

I'rom this it is easy to show that (10.152) follows.
The contributions to the axial vector part of the B-decay ampli-

tude coming from diagrams like l,'ig. 10.231, can all be written in the
same form as (10.150) riiultiplied by a scalar function of q2. All
modifications of the ?r-nucleon vertex will lead to an interaction of
the form 

rr(pr)y6ff(q2)u(p,,)

with q = Pn - po and $(q') an invariant function of the invariant
momentum transfer q2. This follows from the fact, that there are
always an odd number of 75 vertices and that all factors po and p,
can be cornmuted to the right or left until they stand next to the
Dirac free-particle spinors and become ,41. Thus the graphs of
Fig. 10.23b in which a single meson in the nucleon cloud couples
directly to the leptons contribute only to $z(q2) in (10.151). Isolating
these contributions from $2(q2), we write

(10 .157)

The constant o in this terrn is related to the observed lifetime of zr+
decay by (10.140), and the form factor $(q2) can be specifieci at the

f r  / . o \  7  /  e \  a g  \ / 2 S 1 q ' 1' J z \ Q ' ) : ' t z \ Q ' )  - - -
q ' - p '
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point 92 : p,2 )n terms of the otrserved strength of the r-nucleon
coupling constant g as discussed for pion-nucleon scattering in Sec.
10.8. With the 9 in (10.157) taken to be the physicallv observed z-N
couplirrg constant Qzf 4tr = L4, ff(qz) is normalized at qz : ptz tc l:

i r  (p ' . /  :  J (10 .1  58)

Nothing is known about fr:. However, because $z is the coeffi-
cient of 4175, which is a recoil correction -(q,/ M), it has not been
observed in B decay. From our previous discussion we know that

s r ( 0 )  :  - a :  - - I . 2 7 (10.15e)

With these preliminaries, u/e may attack the question of the
partially conserved axial vector current. rf the axial vector currenr,
were precisely conserved, the condition

qrh[(Po,P,) : 0

applied to (10.151) Ieads to the relation

2Mff{sr)  -  qzt t r (qz) :0
or

t l , (nz\  :  *zM5'(q2)' q 2

Since $1(0) * 0, this means that sr would have a pole at q, : 0,
corresponding to the exchange of a massless pseudoscalar particle.
It is tempting to associate this pole with the,r-meson pole in (10.152)
and in addition to associate the breakdown of exact current, conserva-
tion with the existence of a mass for the zr meson. We are thus led,
using (10.151) and (10.157), to the modif;ed hypothesis

0 : l im e,$f,(?o,?")
c+0

: 
fia(r,S7,l-r*r,{n\ + q,ff,(() - q!I;!y]uro,,

(10.160)

IVith the additional assumption that the invariant form factors are
changed little from their physical values by the lirnit p2 --+ 0, we find
from (10.160)

-2Mff10) : t2Ma : +zM(r.2r) = as \/2 (10.161)

Numerically (10.161) predicts

lal  = 0.87p
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which agrees with that obtained from the observed er+ lifetime, Eq.
(10.141), to better than 10 per cent. Such a relation between the
decay rate of a r meson, the Fermi constant G, and the zr-nucleon
coupling constant for the strong interactions was derived first by
Goldberger and Treimanl from an approximate dispersion theory
calculation. It, was subsequently discussed as a consequence of a
"partially conserved" axial vector current by Nambu and Bernstein
et al.2

Problerns

1. Discuss the invariance of Eqs. (10.3) and (10.4) under charge conjugation and
time-reversal transf ormations.

2. With what transformation law for 9a and. (p_ under the charge conjugation
transformation are Eqs. (10.12) and (10.18) invariant?

3. Verify consistency of the sign convention, Eq. (10.21), by considering sixth-
order graphs.

4. G parity is a useful symmetry operator in the charge-independent approxima-
tion. It is defined by

G : gtnttg

What are the transformation properties of { and V under G?

5. Verify that the potential given by Eq. (10.51) leads to the scattering amplitude
(10.45) to order gf; in the nonrelativistic approximation.

6. . Show that the potential (10.58) leads to the S-wave n-N scattering amplitude in
(1b.57) to order 9! and verify the expression for the scattering length.

7, Use the cyclic property of the trace to show that Eq. (10.82) transforms as a
Lorentz four-vector; generalize to arbitrary order. The integral J dalc in Eq.
(10.82) must be regulated and the divergent part separated into a renormalization
constant; this does not affect the transformation properties, however.

8. Prove that the electromagnetic form factors in Eqs. (10.85) and (10.8g) must
be real for scattering problems when q2 < 0 if the interaction current is hermitian.
Must the current be hermitian?

9. Discuss possible electromagnetic form factors for the n0 and K! mesons.

10. Show that the "Rosenbluth formula," Eq. (10.90), gives the most general
dependence upon scattering angle for a fixed momentum transfer, for arbitrary
relativistically covariant proton or electron structure, assuming one photon
exchange between the electron and proton.

I M. L. Goldberger and S. B. Treiman, PhEs. Ran., 110, 1178 (1958).
2 Nambu and Bernstein et al., op. cit.
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11. Show that the second-order expression for Fo(qz), Eq. (10.g2), can be pur
into a spectral form

e"o\ : * Io
and compute p(q/z).

_dq'z p(q ' ' )

e ' ' - q 2 - i ,

12. Prove that 21 : Zzfor a proton and r+ meson to second order in ez and, gz and
show, therefore, that their renormalized charges remain equal if their bare charges

13' compute photoproduction of r mesons to lowest order in e and, o. verifv
gauge invariance.

14. compute the second-order electromagnetic self-energy of the neutron and
proton using (10.89) and approximating the form factors to their static values,
that is, F(q')* F(0). The integrals must be cut off wifh regulators. rs it
possible in this way to arrive at a positive neutron-proton mass difference? [see
R. P. Feynman and G. Speisman, phgs. Reu., 94, b00 (19b4), and Kerson Huang,
Phgs.  Reu. ,101,  1173 (1956) .1

15. construct a gauge-invariant and relativistically covariant form for the s
matrix for the decay T0 + 27 and compute the decay rate. Compute the branch_
ing ratio for production of a Dalitz pair: ro + t * e+ * e*. Finally, discuss the
decay to two Dalitz pairs and show that the correlation of decay planes for the
pairs deterrnines the parity of the r0. fsee N, M. Kroll and w.-wada- phas.
&eu. ,98 ,  1355 (1955) .1

16. verifv that the electron polarization is -lg"l as claimed in Eq. (r0.10b) if
the B-decay matrix element is given by Eq. (10.102).

17. verify Eq' (10.11s) for the energy dependence of the cross section lor t a p +
n * e+ to lowest order in G2. compute this cross section with an intermediate lz
propagator and include general form factors at the vertices.

18. verify that the weyl equation (10.114) has a time-reversal symmetry opera-
tion.

19. Compute the general p-decay spectrum including all five couplin gs S, T, p, V,
and ,{ and compare with Eq. (10.lg6). show in parlicular that tie g-"r".al urr""gy
dependence there is unchanged and evaluate the nnicnet parameter" (see footnote
page 263) in terms of the five coupling strengths.

20. rf the p decay is mediated by a w meson of finite mass as in Fig. (10.rb) in
B decay, the spectrum (10.136) is modified. Evaluate the modification and relate
it to the change in Michel parameter. fsee T. D. Lee and c. N. yang, przys.
Eeu., I08, 1611 (1957).1

21. calculate the r B-decay rate, Eq. (10.14g), and verify the branching ratio
(10.149).

22. compute the branching ratios and structure dependence for the decays

K o + n - l e + * v

- T  t u ' ' 1 r v '
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23. Compute the branching ratio for aDalitz pair in the decay

>o__+ Ao * z
- - + A o * e + + e -

Discuss the possibility of determining the relative Zo, Ao parity in this decay.
[See G. Feinberg, Phys. Rea., 109, 1019 (1958); G. Feldman and T. Fulton, ly'acl.
Phys . ,8 ,106 (1958) .1

24. What is the general structure of the weak decay amplitude

/ \ o + p + T -

For a polarized- A0 compute the asymmetry parameter in the decay.

25. Compute the asymmetry parameter and electron polarizbtion in the B decay
of polarized neutrong.



Appendi* A

Notation

Coordinates and Momenta

The space-time coordinates (t,n,y,z) = (l,x) are denoted by the contravariant
four-vector (c and fr are set equal to 1):

stt = (fro,frr,E2,bs) = (t,n,y,z)

The covariant four-vector or is obtained by changing the sign of the space
components:

0p= (r.o,rr, ! tz,nt) = (t ,*t ,-U,-z): guvar

.  f l  0  0  0 l

wfth 
".= 1 3 

-l _l 3l
Looo - r l

The summation convention, according to which repeated indices ara summed, is

used unless otherwise specified. It is likely that if two identical iridices (to be

summed) are both in the lower or the upper position, one has erred. The inner
product is c2 : rur$ : t2 - *2.

Momentum vectors are similarly defined

pP : (E,p.,purF")

and the inner product is

P t P 2 :  P f P z p :  E t E z  -  P r ' 9 2
Likewise

r ' P : t E - x ' P

Four-vectors p are always written in lightface type, while three-vectors p are in

boldface.

281
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The momentum operator in coordinate representation is written

. .  a  / . a I  \
P '  :  x  

A r t ,  
=  

\ r " ' = v  ) = i v r

and transforms as a contravariant four-vector:

Pppp : -+ * - - t r
dfip dIP

In these units the Compton wavelength is L / m (=9.96 X 10-11 cm for the electron)
and the rest energy is zz(c29.511 MeV for the electron).

The four-vector potential of the electromagnetic field is defined by

4r = (A,A)
: gt"a,

The field strengths are defined by

p r r : = 6  A * -  0  
A ,-  

l x y ' -  A r " ' '

and the electric and magnetic fields in a noncovariant notation are given by

E - (trlot, 7t02, [iroa)
B : (Nzz, F81, F12)

Dirac Matrices and Spinors

A Dirac spinor for a particle of physical momentum p and polarization s is
denoted by uo(p,s), while for the antiparticle it is called uo(p,s). In each case the
energy po = Eo : + \/p, + *, is positive. In each case the vector .sll, which in
the rest frame has the form

r r , :  ( 0 , 6 )  3 . 3  =  I

rep4esents the direction of spin of the physical particle in the rest frame.
The 7 matrices in the Dirac equation satisfy the anticommutation relations

y p y , * 7 v 7 t t = ) g u t

and are related to the a and B matrices by ,y : gc; yo = g, A familiar representa-
t i o n i s  

, o = r 1  o r'  L 0  - 1 1

l , r t : . : [  0  d l
'  L - d  0 l

where " '  :  f9 l l  " , :  f9 - i1 tr  or
L r  u J  L 1  u l  " '  

:  
L O  - 1  |

are the familiar 2 X 2 Pauli matrices uoa r : [l 9l i* tfr" 2 X 2 unit matrix.
L U  I  J

Frequently appearing combinations are

or" : 
nftp,tr) and -yE : i1o717273 : .yt.
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fn this representation the components of ap'are

, ,  foo  o l
" "  

:  
L o  o o l

with i ,  j ,  h :  1,2,3 in cycl ic order and

co"  -  to  o i1  fo  1 l
t a '  :  t l o t  

0 l  r s  -  r o  :  
l ,  0 l

The inner product of a 7 matrix with an ordinary four-vector is often encoun-
tered and denoted by

' r u A t t - 1 1  : , o a o - 1 ' A

p r T p = f , _ E t o _ p . r

p t tp  =  iY  :  UrT t  i1 .v  :  L t r ! ,
At ]rtt

The spinors u and u satisfy the Dirac equation

( i l - m ) u ( p , a ) : 0

( f , { m ) a ( p , s ) : 0

and a,re given explicitly by Eq. (3.7), but for most applications the following prc-
jection operators suffice. In ierms of the adjoint spinors

" 
: u,r:

a  =  u , 1 "
satisfying

r | ( p , s ) ( i l - m ) : 0

a ( p , s ) ( l  *  m )  : 0

, the projection operators are

u.(p,s)il8(p,s) : 
lry 

. L*dj*

uo(p,s)rp(p,s) :-- 
l* 

- t  
+t]", 

(A' l)

These lead to the normalization conditions

fi(p,s)u(p,s) = 1 
@.2)

D(P,s)u(P,s) = - l

and the completeness relation

l. [u,(p,s)rrB(p,s) - uo(p,s)DB@,s)] : 6"p
LI

In taking ,rur* iu. form hermitian conjugates of matrix elements for which

Ifr(P',s ') Iu(P,s)]t  : 'ai(P,s) |  u(P',s ')
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I  =  7o f f7o

j P : " y | t r , y 0 - . y P

6 . t t v - y o o a l l a r 0 : o t t t

1 1 6 : ' l 1 " " i ) + - y o : i r 6

(A.3)

with

For example

Summing the projection operators (A.1) over spin leads to the energy proiection
operators

[A+@)l"p : ) rr"(p,s)ad(p,s) : (d ! 
*\

u y 2m ,lap

tr-(p)l+ = - 
I aa(p,s)aa(p,s) : (49,,
t e

The Gordon decomposition of the current is a frequent and useful identity:

i l(p)tFu(p) = e(p,)l(p !Lp')p +i!1=9:1"<pt"  ' L  Z n x  Z r n  J  " . -

Traco Theorems and'y Identities

6b=a 'b - io l r ra t tb "

Trace of odd number Tr's vanighes

T r T u  =  I

T r l : 4

Tr frP = a*'6
Tr ildzd#a : 4laraz as'a1 - dtas, ee'ar * arat az:atl

Tr yrfifl : g

. Tr rd\dd : 4ieog5aqb9c'til6

tPdtq : -2fr

u&VtP : Aa'b

nfrVhP = -2i\fr

For further rules see Sec. 7.2.
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Rules for

Feynrnan Graphs

Expressions for cross sections are divided into two parts: first the invariant ampli-

tude fi, which is a lorentz scalar and in which physics lies, and second, the phase

space and kinematical factors. In terms of !J?, the expression for a differential

cioss section d,c is, for spinless particles and, for photons only,

a":6a-,,r (#) (+)rrnv#h #fu
X (2oye5r (r, + o, -

where oo : fwl n, as usual and vr and vz are velocities of the incident col-

linear particles. 
- 

This expression is then integrated over all undetected momenta

kr . . . /c, of the final particles. The statistical factor s is obtained by including

a factor L/ml iI there are nr, identical particles in the final state:

^  r r 1D : l l r ;1

For Dirac particles,l the factor 1/2aois replaced by mf Eo, and the stat'istical fa'ctor

S is again included; all other factors remain the same'

A differential decay rate of a particle of mass M is given in its rest frame by
n

)  -  r / l \  -  1 ' , D t t , , d , k ' , - .  .  .  = ! * \ r Q f l a a a ( p -  )  * , ) td@ : d 
\;) 

: -2M tJJ'r 2,J!{z 
' 

2i^12"1" '--, 
- 

\. ,?, 
/

t If one adopts the convention that Dirac spinors be normalized to 2nr, instead

of to unity as in 81. (A.2), Eq- (B.1) applies as well to fermions' The energy

Suojection operators are then simply (nz + fr) in place of (A'3)'
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with factors defined as before. For any fermions in the final state, again r /2o" .+
m/Et; the factor I/2M is dropped if the initial particle is a felmion.

If desired, polarizations are sum.med, over final and" aueraged, over initiar states.
The invariant ampliiude lJl is computed by drawing ali Feynman graphs for

the process in question except for graphs with clisconnectecJ bubbles and wiiti sett-
energy irsertions ot errernal lincs, rvhich arc specifically excludecl. The amplitude
rJl(G) corresponding to graph G is built up by associating factors with the elements
of the graph. Those factors independent of specific details of the interactiol are:

1' For each spin-zero boson entering the.graph a ractor 1fz. 1/z is fornd,
by computing the exact meson propagator t'r(p) in the limit prn pr; nL@)-
Zte( 'p) as p2+ pz.

2. For each external fermion line entering the graph a factor l/Tz u(p,s) or
1/Z*2 u(p,s) depending on whether the line is in the initial o" nnat stlte; lii<ewise,
for each fermion line leaving the graph a factor l/fua(p,r) or 1/ZrA1p,s\. 22is
defined by the limit

#n 
S;(.e):  ZzSr@)

3. For each external photon line a factor ,o f'Zr, where

1-1'-r^t ^:4!*' , -^..-.'r\Q)r. - -", + gauge terms

as q2+ 0 .
In lowest order pe'turbation calculations these z |aclors may be set equal to

unity' In higher orders, toge-ther with self-energy and vertex insertionq they
renormalize tbe charges from their bare to physical values.

4. For each internal fermion line with momentum p a faetor

iSr(p) : _lglJr)_
p z _ m , 2  l i . e

5. For each internal meson line of spin zero with momentum o atactor

tn r (q )  :  : ._4- -q ' - p ' t l , e

6. For each internal photon line with momentum q a facior

i D p ( r 1 ) p , :  -  : l ! ' -
q ' t x e

Gauge terms proportional to quq,, eptt,, ELc.t may be ignored in a theory with con_
served currents.

For meson-nucleon physics, an isotopic factor 6;; appears on each internal
megon line and for external lines there are factors:

L

i l - m * i e
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7. a or xl for initial and final nucleon spinors; r - 
[l] 

for a proton and

tO- l  -
- : 

Lil 
for a neutron. (Similar factors appear for K and E mesons.)

8. 0 or $* for the isotopic wave function of a r in the initial or final state,
respectively, with

O'* : + (1, ti,o) ono : (0,0,1)
\ /z

(Similar factors appear for 2 particles.)
9. For each internal momentum I not fixed bv momentum conservation

constraints at vertices, a factor

f dnt
J 

-e"Y

10. For each closed fermion loop a factor -1.
11. A factor -l between graphs which differ only by an intercha,nge of two

external identical fermion lines. This includes not only exchange of identical
particles in the final state, but also interchange, for example, of initial particle
and final antiparticle,

The interactions determine the structure and type of the vertices. We
present here the rules for four typical theories:

Spinor Electrodynarnics

There are two kinds of vertices, shown in Fig. B.L, corresponding to the

Fis.8.1

normal ordered interaction hamiltonian density

Kr :  - tr  : :esPTtl 'AP: '6m: Pr|:

The rules for these are:

1. A factor -iexy, at each vertex.
2. A factor i6m for each mass counterterm.
3. Renormalize the charge with e : ZzZ{1 t/heo: \/Qao where the

exact vertex |u(p',p)- Zfltufor fr' : il : tn and, Zt: Zz by Ward'sidentity.
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Electrodynarnics of a Spin-zero Boson

Here there are three vertices, shown in Fig. B,2, corresponding to the inter-

{
(
/ p '

n z'-izo(n+n'),

\ JJlt'

--t'-'E;\\\\\\-

l3p2:,p1,p:

The rules for these vertices are:

1. A factor - ieo@ * ?')p, where p and p' are the monrenta in the charged line.
2. A factor *2ieozgp, for each "seagull" graph.
3. A faotor i6p2 f.or each mass counterterm.
4. A factor rrl tor each closed loop containing only two photon lines, as shown

in Fig.,B.3.

/ " *
Fis .8.9

5. Renormalize the charge as in spinor electrodynamico,

/

.r.t#rr-*--_.//

Fig. 8.9 

'

action Lagrangian density

/ A
8 1  :  - i s . ; t r l - "

\dJr

f ' r
- ;  l  p ; A p  *  e s z : A 2 : : 9 1 9 :

d r p f '
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16 Meson-Nucleon Scattering

There ard fotr interaction termg in the charge-independent theory:

5cr :  -8r : : igovlra. 0rr:  -  6m:&v: - ,46p' ib. b: * l /4}61,: (0. 0),:

as illustrated in Figs. B.4 and B.5. The dotted line signifies that 1 : 0 only is

-x_
/' i6L2 - \ '

/ / '  
' v F  - t > -

Fis. 8.4

transmitted from the meson pair c) to the pair rs, as shown by rule 2 below. The
mass counterterms are treated as before and there is:

F is .8.6

1, A factor gotsto at each meson-nucleon vertex giving relative coupling
strengths oI {2 go for charged mesons and *L for neutral ones to protons and
neutrons, respectively.

2. A factor -2i6tr6ir.6"u at each four-meson vertex in Fig. 8.5.
3. A factor tTlf.or each closed loop containing two meson lines as in Fig. 8.6.

I

1 /
\..j 

/"

) . . .a|,0^ 
ouu,"

/! \,
,/ 

tt

Fig.  8.6 . .  . : : :__:>.. .  
"*
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Electrodynarnics of Spin-one Boson

A vector boson propagator is [-9r, * k*k,/m2l(kz - m2)-r in place of the
-Qp,/kz for massless photons, and the external line has a polarization factor e,
as for photons.

There are electrodynamics vertices shown in Fig. B.7 corresponding to an

c,
C-

^) D'
/ b - - - ; - - - t

pr.. / - ieol(o + p., )*s 
"p

d' 
-:pf,Bur-pug",nl

-x\
, r..'i6u2gof,-t -

' t '  

o,o. u. ,  

--{

interaction Lagrangian density

t, : -ieo: 
t(H) (A,eu - Apc,)

(1u (r

1"5
Y - - - * - - - P

,.t 
tuil2gr,s"u

'a
-SpoEuB

-g*gPpl

x I

- (ft1''"i - A,*'\f'
* eoz:lArAur*e, - A"qpAvcf; l : l  6pz:pf,g,:

The rules for these vertices as illustrated are:

. 1. A factor -iex(p, * p)pgoB I ieogBpp'" I ieopggor.
2. A factor + ieozlzgpygqp - gpag,y - gp\go,l.
3. A factor i6p2gogtor each mass counterterm.
4. A factor l/ for each closed loop containing only two photon lines.
5. For the derivation of -these rules from canonical theory, effects of an

anomalous magnetic moment term, and a regularization scheme see T. D, Lee
and C. N. Yang, Phys. Eeu., 128,88b (1962).

In all above examples matrices are arranged in "natural order"" For closed
loops this means taking a trace. rsotopic indices are contracted with their mate
at the other end of a boson line, In taking polarization sums for photons

fl

/  
ep(k,) t )e,(k, t r )  + -gp,

) .u1r,^y. ,1r ,D -  -nu,  +W

and for vector mesons



Adjoint spinor, free.particle solution, 30
Adjoint wave equation, free-particle

solution, 30
Angular momentum, 230, 234-236

conservation of, 52
eigensolutions, 53

Anomalous magnetic moment, ll5, 241
Antiboson,'197, lg8, 2Oz
Antineutrino, 249, 254, 255, 257

electron-antineutrino angular correla-
tion,255,256

wave function, 260
Antiparticles, 5, 66, 184

Index

Antiparticles, interactions, 247,
neutral spin-zero mesons and, 189
particle-antiparticle pairs, formation

and annihilation, 190, 191
scattering, 190
wave function, 202

Antiproton, wave function, 213
Antisymmetrization, electron-electron

scattering, 136
electron-positron scattering, 139, 149,

150
neutron-proton exchange, 219-22I,

234

29r
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Antisymmetrization,proton-proton Centralfieldeigensolutions,parity,54
scb,ttering, 215 Charge-conjugate spinors, 69

Asymmetry parameter in p decay,267, Charge conjugation, 66-70
268 invariance, 69, L07, l0g,275

Axial vector coupling, B decay,274 transformation, 69, 213, 2b9,260
partially conserved, 273*278 Charge density and vacuum polatiza-

tion, 70
Charge-exchange scattering, 216,

Bare charge, 70, I57 218
Baryon number,227n. Charge independence,22l, 222, 224
p decay, 246,247-257 Charge lowering, 223

allowed transitions, 252,253 Charge raising, 223
axial vector coupling, 274 Charge renormalization (see Renormali-
forbidden transitions, 252 zation)
higher-order effects, 256,257 Chew, G. F.,233,240
invariant amplitude, 256 Closed loops, 91, 92, 158, 1b7, lbg, 16l
inverse, 248,250, 253,255,257,269 in p decay, 256,257
pion vertex, 272 Collinear beams, 113
universality in,264 Combined invariance, 260
weak axial vector contributioas,2T4, Compton condition, 12g

275 Compton scattering, L27-L32,153
Bethe, H, A., 178, 179 cross section, L28-L32
Bethe-Heitler formula, 123 Klein-Nishina formula, 181
Bhabha amplitude, 139 of r mesons, lg3
Bhabha scattering, 138 Compton wavelength, 39,40,42,46n.,
Bilinear covariants, 25-26 60
Bohr magneton,241,245 Conservation of current (see Current
Bohr radius, 46, 60 ' conservation)
Born approximation,2ll, 237,238,239, Conservation of leptons, 249

246 Conservation of probability, B
Boson(s), 136 Conserved vector current hypothesis,
. heavy, Wi, exchange in B decay, 250, 270-273

25L Continuity equation, 24, t86
spin-one,electrodynamics,290 Coordinates,notat ion,2St,2S2
spin-zero,electrodynamics,288 Coulombcorrections,252a.
strangeness charge,207 Coulomb cross section, 102, 106
symmetric scattering, 196-198 spin-averaged, 103-106
(See also n meson) substitution rule, 108

Boson-antiboson scattering, 197, 198 Coulomb eigensolutions, 5b
Bound-state solutions, 52-60, 89n. Coulomb force, 215
Bremsstrahlung, 120-727, I53 Coulomb potential, 46, 52, 59, 100

cross section, 723,124, I25, L27 Coulomb scattering, amplitude, 157,
in vertex correction, 172, L73, L76 158

bremsstrahlung and, t21, I22, 124
of electrons, 100-103, 107-108

Center-of-mass systerl, 138,139,232, pair production and, 133, 134
236,237 of z mesons, 191-193, 197-199

Central field eigensolutions, angular polarization in, 140-145
momentum, 53 of positrons, 106-108

Coulomb, 55 radiative corrections, 124



Index

Covariant, notation, 4, 281
Cross section, bremsstrahlun g, 723, 724,

L25, r27, r72, 1,73, 176
Compton,128-132
Coulomb, 102-106, 108
elastic, 172, 173,1,76
electron-proton scattering, 246
meson-nuoleon scattering, 236-240
Mott,  106, 115, 140
normalization factors, ll2, 113
pair annihilation, 134, 135
Thomson, 131, 132
for transitions, lI2-11.4

Crossing symmetry, L28, 23I
Current conservation, 226-227, 243,

245
law of, 8-9, 221,226
(S ee also Electromagnetic current)

Cutoff, 154, 156, 157, 162, 163
infrared, L74,176
photon, 175
u vertex correction, 167, 168, 170,

173-r76

Dali tz, R. H., 120
Dalitz pairs, 213, 279, 280
Darwin term, 52, 203, 205

ratio of Lamb term to, 60
de Broglie wavelength, 10
Delbriick scattering, 181
Detailed balance, 248, 261
Dirae, P. A. M., 6, 64, 65
Dirac d function, 83n.

properties, S6
Dirac equation, 6-9

bound-state solutions, 52-60
four-dimensional notation, 17-18
for free particle, 30, 46
free-particle solutions, 28-43
hole theory and, 65, 66, 67, 90
Lorentz covariance, 10, 13, 18-24
nonrelativistic reduction, 10-13
parity transformation, 71
plane-wave solutions, 28-32
projection operators, energy, 33

spin, 34
Dirac matrix, 7, 12, 28

notation, 282'284
trace theorems, 103-106, 284

293

Dirac particle, electron scattering from,
108

(See also Electron-proton scatter-
ing)

minimum interaction, 11
Dirac spinors, notation, 2E2,283

Ehrenfest relations, II, 37, 205
relativistic extension, 11
velocity operator, 37

Eigensolutions, angular momenturn, 5lt
Coulomb, 55
parity, 54

Eigenstate, 2, 3
Eigenvalues, 2, 3
Electromagnetic current, of meson-

nucleon scattering, 243
of neutron, 245
of proton, 244
(See also Current conservation)

Electromagnetic field, external, 10, 48
mean-square field strength, 59-60
vacuum fluctuations, 58-59

Electromagnetic form factors (see Form
factors)

Electrornagnetic potential, Klein-
Gordon equation, 188-190

Electromagnetic radiation propagators,
109

Electromagnetic structure of mesons
and nucleons, 24L-246

Electron(s), charge density and vacuurn
polarization, 70

hydrogen atom, 57, 58
pair production (saa Pair production)
reco i l ,115
self-mass of , L52, 162*164

second-order correction, 165
spin-down negative-energy, 68
transition tabe (see Transil,ion rate)
wave function, 73

Electron-antineutrino angular correla-
tion, 255, 256

Electron current, second-order, 116
Electron-electron scattering, 135-138
Electron-positron scattering, 138-140

in fourth order, 148-153
amplitudes, construction of, 151,

L52
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Electronpropagator,renormalization Feynmangraphs,Coulombscattering,
of, 164-166 193

(See also Propagator) electron-electron scattering, 136
Electron proper self-energy part, 162 electron-positron scattering, 139
Electron-protonscattering,108-116 fourth-order,148,149,152

cross section, 246 disconnected, 150, 151
fourth-order, 116, 117, 119, 120 electron-proton scattering, 111, 116,
higher-order corrections, 116-120 lI7, 119, t2O
second-order, 116 higher-order corrections to S matrix,

amplitude, 97, tl6 152, L62, 165
Electronscattering, Coulomb, 100-103, meson-nucleonscattering, 23L,240

107-108 pair annihilation, 132
large momentum transfer, 159 pair production, 97, 98, 134
Iow momentum transfer, 158 photon exchange, 157, 161
polarization in, 140-145 T-meson decay, 266

Electrostatic potential, 40-41 rules for, 285-290
Energy levels, in Coulomb field, 52 vertex correction, 167, 168

of hydrogen atom, 56, 57 weak axial interaction, 274,275,276
vacuum polarization contribution, Feynmanintegral, 170-LZtn.

158 Feynman propagator, 95-96
Energy-momentumconservation, 113, forelectromagneticradiation, 109

115, 1I8, 119 in electron-proton scattering, 117, 118
Compton scattering, 127-132 for Klein-Gordon equation, 187, 189,

Energy-momentum relations, 7, 66 190
Energyproiectionoperator,S2-35 inmeson-nucleonscattering,232,240
Energy shift, hydrogen atom, 58 Fierz interference terms, 252,255
Ericksen, G., 179 Fluctuation effect, 150, 151
40 (eta), determination of, 221 Flux of incident particles, 102, Il2

with mass -550 MeV, 219n.. Foldy-Wouthuysen transforrnation,
Even operators, 47 46-62
Exchange contribution, 215 general, 48-52
Exchangescattering,electron-electron, forKlein-Gordonequation,20l,
' 

137 203-207
Exclusion principle, 64 Form factors, 242,243,245n.,246,278

generalized, 22L,229 Free-particle solutions, 28*43
Expansion postulate, 3 adjoint spinor, 30

adjoint wave equation, 30
Fermi statistics, 136, 149 completeness, 31

antisymmetry in, 149, 150 Foldy-Wouthuysen transformation'
Fermi transitions, 253-256 46-48
Fermion propagator, 117 general form, 30
Feynman, R. P., 78, 100, 124, 126, 184, normalization, 31

27I orthogonality, Sl
Feynmat dagger notation, 17 packets, general,3S*39
Feynman graphs, 97, 98 positive-energy,36,37

B decay, 256 physical interpretation, SS-42
bremsstrahlung, L22, I24 plane-wave, 28-32
Compton scattering, I28,194 polarization, 31, 32
conserved vector current hypothesis, small and large components, 30

272,27A spin, 31, 3?
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Free-particle solutions, spinors in
momentum space, 30, 31

Furry's theorem, 181

G parity,278

1 identities, notation, 284
Gamow-Teller transitions, 253, 254,

255,273
Gauge invariance, 10, 7I,  I25,153, 194,

196
Gel l -Mann,  M. ,271,278
Gerschtein, S. S., 271
Goldberger-Treiman relation, 278
Gordon current decomposition , 37, 792,

284
Gordon reduction, 17 I, 245
Gravitational interaction, 210
Green's function, 79-81

completeness, 86
for electromagnetic radia,tion, 109
free-part icle, 79,86n., 87, 88
properties, 83-89
relativistic propagator, 92, 93
re tarded,81 ,85

Ground-state energy, 55
Group velocity,37, 38

Ilamiltonian, 4
time-dependenf, 48
transformation, 46-48

Heisenberg, W., 110
Ileiicity, eigenstates, positive ancl nega-

tive, 141
negative, I41,142
positive, l4l, I42

Hermitian conjugate wave funcl;ions,
8-9

Ilermitian matrix, 8
Hermitian operator, Iinear, 2
Hole theory, 64-75,90,91, 159
Huygens' principle, 78, 79
Hydrogen atom, 46, 52-60

bare charge, 70
eigensolutions , 54, 55
energy levels, 46, 56, 57, 59

classification of, 56
vacuum polarization contribution,

158

295

Hydrogen atom, fine structure, 5ii, 5?
hyperfine structure, 57, b8
Lamb shift, 58-60

Infrared catastrophe, 124, 168
Infrared crftoff,174,176
Infrared divergence, 162, !67, I72, 176
Interaction(s), effective, in Lamb shift,

1 r7t7

gravitational, 210
strong,210-222
weak (see Weak interactions)

Interaction energy of point charge, .t l
Intrinsic parity, 25, 212, 213
Invariant amplitude, ILl, ll2
Isotopic current, conserved, 227
Isotopic factors, 228, 229
Isotopic space, 223
Isotopic spin, conservalion, 224, 226,

227, 234
{ormalism, 222-226, 245

notation, 223
invariance, 275
proj ection operators, 234-236

K meson, 184-186,212
halfJife, 185
higher-order interactions, 198
Ko (neutrai), 185, 186

Kinetic energy, 48
Klein-Gordon equation, 6, 7, 65, 66,

184-208
electromagnetic potentials, 188-f 90
nonrelativistic reduction, 198-207
plane-wave solutions, 186, 187

Klein-Gordon particies, higher-order
processes, 195-198

low-order scattering, 191*195
propagator, for, 186-188
scattering amplitude, 190-191, 21 I

ICein-Nishina formula for Compton
scattering, 131

Klein paradox, 40-41, 56
Kronecker 6 function, 83n.
Kurie plot, 252

Lamb-Retherford m easurements of
hydrogen atom, 57
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Lamb shift, 57-60, II7-180,241
vacuum polarization effect, 70, 159

Landau, L.,259
Lee,  T .  D. ,253,259
Leptonic interactions, 247
Leptons, conservation of, 249

conserved vector current hypothesis,
270,273

Lorentz covariance, 2, 4, 7, 9, 10, 13,
18-24

Lorentz frame, 121, 125
Lorentz invariant, 111, 112, 113
Lorentz scalar, 26,31
Lorentz transformation, 4, L6-I7

bilinear forms, 26
free-particle solutions, 28
improper, 16

of space reflection, 24*25
infinitesimal, 20-21
of r meson, 242
in plane-wave solutions, 28-31
spinor, 20

Magnetic dipole, 241
Magnetic moment, anomalous, 115,

241
radiative correction, t7 l, 172

Mass renorm alizat \on, 164*1 66
in Lamb shift, 178, 179, 180

Mass shell, 163
Meson(s), electromagnetic structure,

24r-246
wave function,224, 225

Meson-nucleon scattering, 224, 231*
234,289

coupling constant, 240
cross section, 236-240
p-wave, 233,234
s-wave,232,233

Michel param eter, 263n.
Minus sign, relative (see Relative minus

sign)
Mlller formula, 138, 140
Moller potential, 110
Momenta, notation, 28I, 282
Mott cross section, 106, 115, 140
p meson(s), 247

captrre,247
decay, 247, 261-264, 279

Relatiuistic quantunt, rnechanic s

p meson(s), decay, asymmetry param-
eter,266, 267,268

' tale,262
spectrum, 263

polarization in r-meson decay,267

Nambu,  Y . ,278
Negative-energy solutions, 5, ltt, 13, 28-

30, 32, 37-40
eigenvalue equation, 74
hole theory and, 64-70
neutrino, 260

Negative-energy waves, 94
Neutrino (s), 247, 249

left-handed, 257-260
projection operators, 249
right-handed, 257-260
two, 268, 269
two-component theory, 257 -260

Neutron(s), electromagnetic current,
245

free, decay, 247, 248, 25L, 254
magnetic moment, 241
wave function, 225

Neutron-neutron scattering , 2L5, 228
Neutron-proton scattering, 215-217

antisymmetriz alion, 219-22L
cross section, 246
isotopic factors, 228

Noncharge-exchange scattering, 216
Nonrelativistic reduction, 1 0
Normalization factors, for cross sec-

t ions, 112, l l3
for photon wave function, 122

Nuclear force, 213
Nucleon(s), conservation of, 249

conserved vector current hypothesis,
270

electromagnetic structure, 241-246
wave {unction,222,224

Nucleon-nucleon potential, 230
Nucleon-nucleon scattering, 224, 227'

23r
figures, 211,214,216
isotopic factors, 228, 229

Nucleonic charge, conservation of, 226

Odd operators, 47
One-particle theory, 65, 66, 198, 199
Orthonormality, statement of, 3
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Pair annihilation, 65, 66,90, 91
amplitude, 97-98
in electron-positron scattering, L49,

150
into gamma rays, 132-135
Klein-Gordon part icles, 190, 191
particle-antiparticle pairs, 1 90

Pair production, 65, 90, 9f
arnpl i tude, 96 97
in Coulomb f ield, 133. 134
Klein-Gordon part icles, 190, 191
negative- and positive-energy elec-

trons, 92
particle-antiparticle pairs, 190

Parity transformation, 25, 71
Parity violation in weak decays, 25i3,

254,259
Partially conserved axial vector cou-

pling,273-278
Pauli equation, 13
Pauli exchange graph, proton-neutron

scattering,2l8
proton-proton scattering, 214

Pauli exclusion principle, C)4, 221, 229
Pauli  matr ix, 8, 12,23, 52, 53,222,223,

258
Pauli spin theory, 10, 32, 53
Pauli spinor, 23, 56
Petermann, 4,,172
Phase-space factor, 112, 114
Photon(s), Compton scattering, 127-

t32
exchange, L57, l6L
indistinguishability of, 117, ll8
polarization, sum, 124, 125
renormalization of external photon

Iines, 161
scattering amplitude, 121, 7.22
self-energy part, second-order, 153
soft, 123, 124

emission, limit of, 125, 126
vector potential of, 121
virtual, Lll, 124, 159, 161

Photon propagator, 157, 159
corrections of order a, 157
modif icat ion of, !73,175, 176

r-mesic atoms, 198, 205
r meson(s), 66, 184-186

as boson, 196-198
Compton scattering, 193

297

r  meson{s , .  Cou louh sca t te r ing ,  19 I -
1 9 3 , 1 9 7 - 1 9 9

decal'. 2,17, 264-268
spin interaction, 265

detai led balance, 212
electromagnetic vertex and radiative

corlection, 242,243
exclrange, 218, : .1 l9
halfJife, 185
intrinsic parity, 2L2, 213
of mass -140 MeV, 212
in nucleon-nucleon scattering, 227
one-particle quantum mechanics,

198, 199
r-, 784, 791, 192, 193,212
r+, 184, 191-195, 272, 242
ro, 185, 186, 189, Ig0,2l2
pion weak current term,272
scattering amplitude, 190-191
strong interactions, 212 216
symmetric statistics, 196-198

r-nucleon interaction, 2I3, 227
(.See al.so Meson-nucleon scattering)

r-nucleon vertex, general form,
276

Plane-wave solutions, 28-32, 7 L, 83, 89,
95, 258

for free protons, 109, 110
of Klein-Gordon equation, 186, 187

Polarization, in Coulomb scattering,
r02

in electron scattering, 140-145
Ieft-handed, 261
longitudinal, 254
relativistic limit, 144
of scattered electrons, 141
spin, 141
vacuum (see Vacuum polarization)

Polarization sum, photon, I24, t25
Polarization vector, 121

free-particle solution, 32, 35
Poles, extrapolation, 240

in scattering amplitude, 240
Pontecorvo, B., 269
Positive-energy solutions, 10, 28-30, 32,

37-4r
hoie theory, 67-69
positron theory, 97

Positive-frequeney radiation, propaga-
tors, 109
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Positive-frequency time behavior, 93,
94 .

Positron(s), 65,66
amplitude, 91-92
in hole theory, 69
spin-up positive-energy, 68, 69
wave function, 66, 67, 73

Positron scattering, amplitude, 98
Coulomb, 106-108

Positron theory, propagator in, 89-98
Stiickelberg-Feynman form, 7 4, 78,

95
unitarity in, 160

Probability current, I
Probability density, 9
Projection operator, for angular

momentum, 234-236
for energy, 32-35
for isotopic spin, 234-236
for spin, 33-35, 143

Propagator, 78-98
for electromagnetic radiation, 10g
electron, renormalization of, 164-166
exac t .87
Feynman (see Feynman propagator)
for Klein-Gordon particles, 186-

188
nonrelativistic, 78-83
photon, \57, 759, 173, 1,75, 176
in positron theory, 89-98
relativistic,92

free-particle, 93'retarded,81, 
85

Proton(s), electromagnetic vertex and
radiative corrections, 244

hydrogen atom, 57, 58
magnetic moment, 241
recoi l ,  l15
structure, 115, 116
wave function, 225
(See also Electron-proton scattering)

Proton current, 109, 110, 116, 117
Proton-proton scattering, 2L3-215, 218,

228
Pseudoscalar. 54
Pseudovector, 53

Quantum number, principal, of nonrela-
tivistic theory, 55

Relatiaistic quantu rn tnechanic s

Quantum theory, nonrelativistic, prinici-
' ples of, 2-B

relativistic, formulation of, 2-3

Radiative correction, 242, 244, 27 l, 273
to electron magnetic moment, 171,

t72
to scattering, 17L,2ts9

Relative minus sign, 149, "1,50, LlI,22L
Relativistic mass increase, 203
Relativistic quantum theory, formula-

tion of, 2-3
Renormalization, charge, 157, 158, 161,

168, 169
conserved vector current hypothesis,

270
of electron propagator, 164-166
of external electron lines, 166, 168
of external photon lines, 161
mass, 164-166

in Lamb shift, 178, 179, 180
in vextex correction, L74,175

Resonance in 33 channel, 239
Rest mass, 4
Rosenbluth formula, 246, 278
Rutherford scattering, 100

S matrix, 83, 87-89, 95, 96
B decay, 247, 248, 253, 277
bremsstrahlung, 122
compact form, 87
Compton scattering, 727, 128
electron-positron scattering, 148, 150
electron-proton scattering, 110, 117,

118
higher-order corrections, 148*181
/r-meson deeay,26L
pair annihilation, 132
r-meson d.ecay, 264, 265
unitarity of, 88, 160, 238,249

Salam, A.,259
Scattering, 78-83

Bhabha, 138, 139
charge-exchan ge, 216, 218
Compton, L27-L32, IgB
Coulomb (see Coulomb scattering)
Delbrtick, 181
electron-electron, 135-138
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Scattering, electron-positron (see Eiec-
tron-posrtron scatlering)

electron-proton (see Electron-protorr
scattering)

isotopic factors, 228, 229
of iight, classical electrodynamics,

1 3 1
meson-nucleon , 224, 231-234, 236-

240
neutron-neutron, 215
neutron-proton, 215-22I, 246
noncharge-exchange, 216
normalization factors, LL2, Lls
nucleon-nucle on, 224, 227 *231
polarization in, 140-145
in positron theory, 90, 92, 96, 97, 98
proton-proton, 213-21 5, 218
Rutherford, 100
Thomson,  I3 l ,  ' l 32 ,  

195
Scattering amplitude, for Klein-Gordon

part icles, i90-191
of particle-antiparticle pairs, 190,

191
of photon, 121
poles in, 240
singularity in, 240

Scattering rnatrix (see S matrix)
Schiff, L. L, 120
Schrddinger equation, 3-6, 78, 79, 84,

86-88
Klein-Gordon equation in form of,

199, 200, 203
Schrridinger-Pauli electron, 28
Schrodinger theory, 37 , 40, 42, 64, 71,

85, 160
Schwartz, M., 269
Schwinger correction, 172
Second-order vertex part, 166

(See also Vertex correction)
Self-mass of electron, 152, I62-L64

second-order correction, 165
Small components, in free-particle solu-

tions, 30
of wave function, 12

Soft photons (see Photon)
Sommerfield, C., 172
Space reflection, 24-25, 7L
Space-time coordlnate inversion, 74
Space-time diagrams, 80, 91, 98
Spin-one boson, electrodynamics, 290
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Spin-orbit energy, 51
Spin-orbit interaction, 56
Spin polarization, 141
Spin-projection operator, 33-35, 69, 140
Spin sum, Coulomb scattering, 102, 103
Spin-up and spin-down eigenfunctions,

55, 68
Spin vector, free-particle solution, 32,

t ^

Spin-zero particles, 184-f 86
electrodynamics, 188, 288
interaction with electromagnetic

field, 188-190
(See also I( meson; r meson)

Spinors, Dirac, notation, 282,283
electrodynamics, 287
Pauli, 23, 56

State function, 2
Step function, unit, 84
Strangeness charge, 207, 247
Strong interactions, 210-222
Stiickelberg-l'eynman positron theory,

74, 79, 95
Substitution rule, 108, 133, 139, 198
Superposition principle, 3
Symmetrizing in electron-positron scat-

tering, 150

Thomas precession, 52
Thornson cross section, 131, 132
Thomson scattering, 131, 132, 195
'Iime-reversal transformation, 72-73

Wigner, 73
Trace theorems, 103-106, 114, 130, 131,

137, 138, 140,284
Transition amplitude, 190

(See also Scattering amplitude)
Transition current, 214
Transition rate, 64, 100, 102

cross sections, 112
per unit volume, 1ll, ll2

Transversality condition, 121
Two-component solutions, 53
Two-component theory, neutrino, 257-

260

Uehling term, 158, 159
IJltraviolet divergence, 174
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Unit step function, 84
Unitarity of S matrix, 88, 160, 238,249
Universal coupling, 266

7 - ,4 coupling, 261, 264,266
Vacuum fluctuations of electromagnetic

field, 58-59
Vacuum polarization, 70-71, 153-161,

27L
in Lamb shift, 177
in vertex correction, 169, 171

Vacuum state,'64
Vector current, conserved, 270-273
Vector meson equation, 208
Velocity operator, 11, 37
Vertex (vertices), LLl, 122

neutron-proton scattering, 2L6, 217
weak-interaction, 272, 27 3, 27 6

Vertex correction, L52, 166-176
radiative, 171
second-order, 168

Vertex part, second-order, 166
Virtual photon, l l l ,124,159, 161

Ward's identity, 169, 270
Wave amplitude, 89
W'ave equation, classical, 5

neutron-proton scattering, 217, 222
Wave function , 2, 3, 7, 56

antiparticle, 202
antiproton, 213

Relatiaistic quanturn. rnechant cs

Wave function, electron, 73
electron-proton scattering, 118
meson, 224,225
negative-frequency, 94
neutron, 225
nucleon, 222,224
positive-frequency, 93
positron, 66,67,73
positron scattering, 106, 107
proton,225
scattering problems, 78-83
small and large components, 12

Wave packets in scattering problems,
78,79 ,  82

Weak interactions, 210, 246-247
Ieptonic, 247
nonleptonic, 247
parity violation in, 253, 254,259
spin-zero mesons, 185
(See also 0 decay)

Weak magnetism term, 272
Weisskopf, V. F., 165
Weyl equation, 259, 260, 279
Wigner time reversal, 73

Yang, C. N., 253, 259
Yukawa potential, 2LI, 229

Zel 'dovich, J. 8.,271,
Zitterbewegung, 38, 40, 52, 60, 203
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