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Preface

The propagator approach to a relativistic quantum theory pioneered
in 1949 by Feynman has provided a practical, as well as intuitively
appealing, formulation of quantum electrodynamics and a fertile
approach to a broad class of problems in the theory of elementary
particles, The entire renormalization program, basic to the present
confidence of theorists in the predictions of quantum electrodynamics,
is in fact dependent on a Teynman graph analysis, as is also con-
siderable progress in the proofs of analytic properties required to write
dispersion relations. Indeed, one may go so far as to adopt the
extreme view that the set of all Feynman graphs 4s the theory.

We do not advocate this view in this book nor in its companion
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volume, ‘‘Relativistic Quantum Fields,” nor indeed do we advocate
any single view to the exclusion of others. The unsatisfactory status
of present-day elementary particle theory does not allow one such a
luxury. In particular, we do not wish to minimize the importance of
the progress achieved in formal quantum field theory nor the con-
siderable understanding of low-energy meson-nucleon processes given
by dispersion theory. However, we give first emphasis to the develop-
ment of the I'eynman rules, proceeding directly from a particle wave
equation for the Dirac electron, integrated with hole-theory boundary
conditions.

Three main convictions guiding us in this approach were the
primary motivation for undertaking this book (later to become books):

1. The Feynman graphs and rules of calculation summarize
quantum field theory in a form in close contact with the experimental
numbers one wants to understand. Although the statement of the
theory in terms of graphs may imply perturbation theory, use of
graphical methods in the many-body problem shows that this formal-
ism is flexible enough to deal with phenomena of nonperturbative
character (for example, superconductivity and the hard-sphere Bose
gas).

2. Some modification of the IFeynman rules of calculation may
well outlive the elaborate mathematical structure of local canonical
quantum field theory, based as it is on such idealizations as fields
defined at points in space-time. Therefore, let us develop these rules
first, independently of the field theory formalism which in time may
come to be viewed more as a superstructure than as a foundation.

3. Such a development, more direct and less formal—if less com-
pelling—than a deductive field theoretic approach, should bring
quantitative calculation, analysis, and understanding of Feynman
graphs into the bag of tricks of a much larger community of physicists
than the specialized narrow one of second quantized theorists. In
particular, we have in mind our experimental colleagues and students
interested in particle physics. We believe this would be a healthy
development.

Our original idea of one book has grown in time to two volumes.
In the first book, “Relativistic Quantum Mechanics,” we develop a
propagator theory of Dirac particles, photons, and Klein-Gordon
mesons and perform a series of calculations designed to illustrate
various useful techniques and concepts in electromagnetic, weak, and
strong interactions. These include defining and implementing the
renormalization program and evaluating effects of radiative correc-
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tions, such as the Lamb shift, in low-order calculations. The necessary
background for this book is provided by a course in nonrelativistic
quantum mechanies at the general level of Schiff’s text “Quantum
Mechanies.” ,

In the second book, ‘“Relativistic Quantum Fields,” we develop
canonical field theory, and after constructing closed expressions for
propagators and for scattering amplitudes with the LSZ reduction
technique, return to the I'eynman graph expansion. The perturbation
expansion of the scattering amplitude constructed by canonical field
theory is shown to be identical with the Feynman rules in the first
book. With further graph analysis we study analyticity properties of
Feynman amplitudes to arbitrary orders in the coupling parameter
and illustrate dispersion relation methods. Finally, we prove the
finiteness of renormalized quantum electrodynamics to each order of
the interaction.

Without dwelling further on what we do, we may list the major
topics we omit from discussion in these books. The development of
action principles and a formulation of quantum field theory from a
variational approach, spearheaded largely by Schwinger, are on the
whole ignored. We refer to action variations only in search of sym-
metries. There is no detailed discussion of the powerful developments
in axiomatic field theory on the one hand and the purely S-matrix
approach, divorced from field theory, on the other. Aside from a
discussion of the Lamb shift and the hydrogen atom spectrum in the
first book, the bound-state problem is ignored. Dynamical applica-
tions of the dispersion relations are explored only minimally. A
formulation of a quantum field theory for massive vector mesons is not
given—nor is a formulation of any quantum field theory with deriva-
tive couplings. Finally, we have not prepared a bibliography of all
the significant original papers underlying many of the developments
recorded in these books. Among the following recent excellent books
or monographs is to be found the remedy for one or more of these
deficiencies:

Schweber, S.: “An Introduction to Relativistic Quantum Field Theory,” New
York, Harper & Row, Publishers, Inec., 1961.

Jauch, J. M., and F. Rohrlich: “The Theory of Photons and Electrons,” Cam-
bridge, Mass., Addison-Wesley Publishing Company, Inc., 1955.

Bogoliubov, N. N., and D. V. Shirkov: “Introduction to the Theory of Quantized
Fields,”” New York, Interscience Publishers, Inc., 1959.

Akhiezer, A., and V. B. Bereztetski: “Quantum Ilectrodynamics,” 2d ed., New
York, John Wiley & Souns, Inc., 1963.

Umezawa, H.: “Quantum Field Theory,” Amsterdam, North Holland Publishing
Company, 1956.
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Hamilton, J.: “Theory of Elementary Particles,” London, Oxford University
Press, 1959.

Mandl, F.: “Introduction to Quantum Field Theory,” New York, Interscience
Publishers, Inc., 1960.

Roman, P.: “Theory of Elementary Particles,” Amsterdam, North Holland
Publishing Company, 1960.

Wentzel, G.: “Quantum Theory of Field,”” New York, Interscience Publishers,

Ine., 1949.

Schwinger, S.: “Quantum Electrodynamics,” New York, Dover Publications,
Inc., 1958.

Feynman, R. P.: “Quantum Electrodynamics,” New York, W. A. Benjamin,
Inc., 1962.

Klein, L. (ed.): “Dispersion Relations and the Abstract Approach to Field Theory,”
New York, Gordon and Breach, Science Publishers, Inc., 1961.

Sereaton, G. R. (ed.): “Dispersion Relations; Scottish Universities Summer
School,” New York, Interscience Publishers, Inc., 1961.

Chew, G. F.: “S-Matrix Theory of Strong Interactions,” New York, W. A.
Benjamin, Inc., 1962.

In conclusion, we owe thanks to the many students and colleagues
who have been invaluable critics and sounding boards as our books
evolved from lectures into chapters, to Prof. Leonard I. Schiff for
important initial encouragement and support to undertake the writing
of these books, and to Rosemarie Stampfel and Ellen Mann for
marvelously cooperative secretarial help.

James D. Bjorken
Sidney D. Drell
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1.1 Formulation of a Relativistic Quantum Theory

Since the principles of special relativity are generally accepted at this
time, a correct quantun theory should satisfy the requirement of
relativity : laws of motion valid in one inertial system must be true in
all inertial systems. Stated mathematically, relativistic quantum
theory must be formulated in a Lorentz covariant form.

In making the transition from nonrelativistic to relativistic
quantum mechanics, we shall endeavor to retain the principles under-
lying the nonrelativistic theory. We review them briefly:!

1. IFor a given physical system there exists a state function @ that
summarizes all that we can know about the system. In our initial
development of the relativistic one-particle theory, we usually deal
directly with a coordinate realization of the state function, the wave
function ¥(g: - -« ,8 - - - ,t). ¥(gs,t) 18 a complex function of all
the classical degrees of freedom, ¢, - - - ¢, of the time ¢ and of any
additional degrees of freedom, such as spin s;, which arc intrinsically
quantum-mechanical. The wave function has no direct physical

interpretation; however, |[Y(qi - © - ¢80 © ¢ ¢ s, 0)[2 > 0 is inter-
preted as the probability of the system having values (¢1 + - * 8a)
at time t. Iividently this probability interpretation requires that
the sum of positive contributions [¢|* for all values of ¢, - - - s, at

time ¢ be finite for all physically acceptable wave functions y.

2. Every physical observable is represented by a linear hermitian
operator. In particular, for the canonical momentum p; the operator
correspondence in a coordinate realization is

i a
-
1 9q;

pi

3. A physical system is in an eigenstate of the operator Q if
Qb, = w,d, (1.1)

where &, is the nth eigenstate corresponding to the eigenvalue w,.
Ifor a hermitian operator, w, is real. In a coordinate realization the
equation corresponding to (1.1) is

Qq,8,0)¥0(q,8,0) = wapn(q,8,t)

L See, for example, W. Pauli, “Handbuch der Physik,” 2d ed., vol. 24, p. 1,
J. Springer, Berlin, 1933. L. I. Schiff, “Quantum Mechanics,” 2d ed., McGraw-
Hill Book Company, Inc., New York, 1955. P. A. M. Dirac, “The Principles of
Quantum Mechanics,” 4th ed., Oxford University Press, London, 1958.
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The Dirac equation 3

4. The expansion postulate states that an arbitrary wave func-
tion, or state function, for a physical system can be expanded in a
complete orthonormal set of eigenfunctions ¢, of a complete set of
commuting operators (2,). We write, then,

Y = Z Arfn

where the statement of orthonormality is
2/<dql W@ s Wn@r s ) = b

|a.|? records the probability that the system is in the nth eigenstate.

5. The result of a measurement of a physical observable is any
one of its eigenvalues. In particular, for a physical system described
by the wave function ¢ = Za.l,, with Qf, = w.b,, measurement of
a physical observable Q results in the eigenvalue w, with a probability
|a.|2. The average of many measurements of the observable @ on
identically prepared systems is given by

@g=) [War s D s g )

= z lan|2wn
n

4. The time development of a physical system is expressed by the
Schrodinger equation

A4

hél

Hy (1.2)
where the hamiltonian H is a linear hermitian operator. It has no
explicit time dependence for a closed physical system, that is,
dH /3t = 0, in which case its eigenvalues are the possible stationary
states of the system. A superposition principle follows from the
linearity of H and a statement of conservation of probability from the
hermitian property of H:

jtz [ votda - - ﬁg [ dax - - OlHG N — v HY)
=0 (1.3)

We strive to maintain these familiar six principles as under-
pinnings of a relativistic quantum theory,
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1.2 Early Attempts

The simplest physical system is that of an isolated free particle, for
which the nonrelativistic hamiltonian is

2
H = _27% (1.4)

The transition to quantum mechanics is achieved with the transeription

., 0
H— P (1.5)

p— ﬁ v
2
which leads to the nonrelativistic Schrédinger equation

L (g t)  —hIV?
it 3 " om ¥(g,t) (1.6)

Equations (1.4) and (1.6) are noncovariant and therefore unsatis-
factory. The left- and vight-hand sides transform differently under
Lorentz transformations. According to the theory of special rela-
tivity, the total energy ¥ and momenta (p.,p,,p.) transform as com-
ponents of a contravariant four-vector

E
Pt = (p°p"p%p") = (C px,py,pz)

of invariant length

E?
PLPE = PPt = i p:p = mik (1.7)
0

"
A

m is the rest mass of the particle and ¢ the velocity of light in vacuo.
The covariant notation used throughout this book is discussed in more
detail in Appendix A. Here we only note that the operator tran-
seription (1.5) is Lorentz covariant, since it is a correspondence
between two contravariant four-vectors! p* — i 9/9x,.

IFollowing this it is natural to take as the hamiltonian of a relativ-

istic free particle

H = \/p%* 4+ m** (1.8)

1We define z* = (¢,x) and V* = 9/9x,.
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and to write for a relativistic quantum analogue of (1.6)

m%‘f =/ — A%V + micty (1.9)

Immediately we are faced with the problem of interpreting the square-
root operator on the right in Eq. (1.9). If we expand it, we obtain an
equation containing all powers of the derivative operator and thereby
a nonlocal theory. Such theories are very difficult to handle and
present an unattractive version of the Schrédinger equation in which
the space and time coordinates appear in unsymmetrical form.

In the interest of mathematical simplicity (though perhaps with
a lack of complete physical cogency) we remove the square-root
operator in (1.9), writing

H> = p® + mct (1.10)

Equivalently, iterating (1.9) and using the fact that! if [4,B] = 0,
Ay = By implies A% = B%, we have
32

—h 2
A at?

,1[, — (—ﬁ2V202 + m264)1,b

This is recognized as the classical wave equation

.
() ]y
9 9
Before looking further into (1.11), we note first that in squaring
the energy relation we have introduced an extraneous negative-energy
root

H=— /7 T mio

In order to gain a simple equation, we have sacrificed positive definite
energy and introduced the difficulty of ‘‘extra’” negative-energy
solutions. This difficulty is eventually surmounted (as we shall study
in Chap. 5), and the negative-energy solutions prove capable of
physical interpretation. In particular, they are associated with
antiparticles. and the existence of antiparticles in nature lends strong
experimental support for this procedure. So let us for a moment con-
sider Eq. (1.10) and the inferred wave equation (1.11). Our first
task is to construct a conserved current, since (1.11) is a second-order

! Throughout, we use the notation [4,B]= 4B — BA for commutator
brackets and {A,B} = AB + BA for anticommutator brackets.
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wave equation and is altered from the Schrédinger form (1.2) upon
which the probability interpretation in the nonrelativistic theory
is based. This we do in analogy with the Schrédinger equation,
taking ¢* times (1.11), ¥ times the complex conjugate equation, and
subtracting:

e[+ (5) e v o+ (5) ] -0

VARV — YVp*) =0

or

gz[ h (\p* 4 — l//‘)] + div _ﬁ'_[ YEVY) — (VYN =0 (1.12)

2me?

We would like to interpret (ih/2mc?) <¢/"‘%—l'tb — gbajt) as a

probability density p. However, this is impossible, since it is not a
positive definite expression. Ifor this reason we follow the path of
history! and temporarily discard Eq. (1.11) in the hope of finding an
equation of first order in the time derivative which admits a straight-
forward probability interpretation as in the Schrédinger case. We
shall return to (1.11), however. Although we shall find a first-order
equation, it still proves impossible to retain a positive definite proba-
bility density for a single particle while at the same time providing a
physical interpretation of the negative-energy root of (1.10). There-
fore Eq. (1.11), also referred to frequently as the Klein-Gordon equa-
tion, remains an equally strong candidate for a relativistic quantum
mechanics as the one which we now discuss.

The Dirac Equation

We follow the historic path taken in 1928 by Dirac? in seeking a
relativistically covariant equation of the form (1.2) with positive
definite probability density. Since such an equation is linear in the
time derivative, it is natural to attempt to form a hamiltonian linear
in the space derivatives as well. Such an equation might assume a

form
i ﬁc( oW

="
ox! ® 922

+ ‘“) 4 Bmey = HY (1.13)

ot )
L E. Schrodinger, Ann. Physik, 81, 109 (1926); W. Gordon, Z. Physik, 40, 117
(1926); O. Klein, Z. Physik, 41, 407 (1927).
2P, A. M. Dirae, Proc. Roy. Soc. (London), A117, 610 (1928); ibid., A118,
351 (1928); ““The Prineiples of Quantum Mechanics,” op. cit.
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The coefficients «, here cannot simply be numbers, since the equation
would not be invariant even under a spatial rotation. Also, if we
wish to proceed at this point within the framework stated in Sec. 1.1,
the wave function ¢ cannot be a simple scalar. In fact, the proba-
bility density p = ¢*y should be the time component of a conserved
four-vector if its integral over all space, at fixed ¢, is to be an invariant.

To free (1.13) from these limitations, Dirac proposed that it be
considered as a matrix equation. The wave function y, in analogy
with the spin wave functions of nonrelativistic quantum mechanics,
is written as a column matrix with N components

¥

lI/N
and the constant coefficients «;, 8 are N X N matrices. In effect
then, Eq. (1.13) is replaced by N coupled first-order equations

N N
. 6\!/, _ fic 0o 9 ) .
ih ot 1 L <a1 az! + ort + ag 85‘:,)" ¥ + Zl Besmciy,
AY
- E H ol (1.14)
T=1

Hereafter we adopt matrix notation and drop summation indices,
in which case Kq. (1.14) appears as (1.13), to be now interpreted as
a matrix equation.

If this equation is to serve as a satisfactory point of departure,
first, it must give the correct energy-momentum relation

E? = plet + mict

for a free particle, second, it must allow a continuity equation and a
probability interpretation for the wave function ¢, and third, it must
be Lorentz covariant. We now discuss the first two of these
requirements.

In order that the correct energy-momentum relation emerge from
Eq. (1.13), each component ¢, of ¢ must satisfy the Klein-Gordon
second-order equation, or

%,
— k2 e

= (=22 + mc)y, (1.15)
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Tterating Eq. (1.13), we find

3
d tﬁ ajo; + oy 0%
2 32,2 § 5 g
— EZ L ) 2 dxt 9z?

%=1
hmc

2 (e + Bou) 2 + gmecty

We may resurrect (1.15) if the four matrices s, 8 obey the algebra:

i + opa; = 264
aB + Ba; =0 (1.16)
af = =1

What other properties do we require of these four matrices oy, 8, and
can we explicitly construct them? The «; and 8 must be hermitian
matrices in order that the hamiltonian H,, in (1.14) be a hermitian
operator as desired according to the postulates of Sec. 1.1. Since, by
(1.16), o = B2 = 1, the eigenvalues of a; and 8 are +1. Also, it
follows from their anticommutation properties that the trace, that is,
the sum of the diagonal elements, of each a;and Bis zero. For example,

o = —6aiﬁ
and by the cyeclic property of the trace

Tr AB = Tr BA
one has
Tra;, =+ TrB%; =+ TrBa8 = — Tra;, =0

Since the trace is just the sum of eigenvalues, the number of positive
and negative eigenvalues +1 must be equal, and the a; and 8 must
therefore be even-dimensional matrices. The smallest even dimen-
sion, N = 2, is ruled out, since it can accommodate only the three
mutually anticommuting Pauli matrices ¢; plus a unit matrix. The
smallest dimension in which the «; and 8 can be realized is N =
and that is the case we shall study. In a particular explicit repre-
sentation the matrices are

0 gy _ 1 O
AR T

where the o, are the familiar 2 X 2 Pauli matrices and the unit entries
in B stand for 2 X 2 unit matrices.

To construct the differential law of current conservation, we first
introduce the hermitian conjugate wave functions y' = (¥ - - - ¢J*
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and left-multiply (1.13) by ¢1:
fe v ]
Tﬁ = = O 2,1
hy ; i b gk v 4+ meiBy (1.18)

Next we form the hermitian conjugate of (1.13) and right-multiply
by ¢:

—in %% 2 o o + meyiy (1.19)

where o] = a,, 8/ = B. Subtracting (1.19) from (1.18), we find

9  Fie 0
h 3 Yy = kzl T ozt (Ylaky)

or
;p+de=o (1.20)

where we make the identification of probability density
4
b= = ) Y (1.21)
g=1

and of a probability current with three components
7* = cpfaty (1.22)

Integrating (1.20) over all space and using Green’s theorem, we find
9 Spdty =
m/dww—o (1.23)

which encourages the tentative interpretation of p = Y’y as a positive
definite probability density.

The notation (1.20) anticipates that the probability current j forms
a vector if (1.22) is to be invariant under three-dimensional space
rotations. We must actually show much more than this. The
density and current in (1.20) must form a four-vector under Lorentz
transformations in order to ensure the covariance of the continuity
equation and of the probability interpretation. Also, the Dirac
equation (1.13) must be shown to be Lorentz covariant before we may
regard it as satisfactory.
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1.4 Nonrelativistic Correspondence

Before delving into the problem of establishing Lorentz invariance
of the Dirac theory, it is perhaps more urgent to see first that the
equation makes sense physically.

We may start simply by considering a free electron and counting
the number of solutions corresponding to an electron at rest. Equa-
tion (1.13) then reduces to

5 0% 9
since the de Broglie wavelength is infinitely large and the wave func-

tion is uniform over all space. In the specific representation of Eq.
(1.17) for B, we can write down by inspection four solutions:

\bl — e—(imc’/h)t l//2 — 6—(1’»:02/?;)1

[
SO = OO lOOO»—*
[

(1.24)

HOoO OO OO +—=Oo

I
|
[
[ —

¢,3 — e+(-imc'z/h)t \[/4 — 6+(imn"/h)l

the first two of which correspond to positive energy, and the second
two to negative energy. The extraneous negative-energy solutions
which result from the quadratic form of H?* = p%? + m?*are a major
difficulty, but one for which the resolution leads to an important tri-
umph in the form of antiparticles. We come to this point in Chap. 5.
Here we confine ourselves to the ‘“‘acceptable” positive-energy solu-
tions. In particular, we wish to show that they have a sensible
nonrelativistic reduction to the two-component Pauli spin theory.
To this end we introduce an interaction with an external electro-
magnetic field deseribed by a four-potential

Ar:(®,A)

The coupling is most simply introduced by means of the gauge-
invariant substitution

Pk —> b — EAM (1.25)
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made in classical relativistic mechanics to describe the interaction of a
point charge e with an applied field. In the present case

p*— 1h 3/dx, = P+

according to (1.5), and (1.25) takes the Dirac equation (1.13) to

m% = (ca : (p — SA) + Bme* + e@) v (1.26)
Equation (1.26) expresses the ‘“‘minimal” interaction of a Dirac
particle, considered to be a point charge, with an applied electro-
magnetic field. To emphasize its classical parallel, we write in (1.26)
H =H,+ H', with H = —ea+A + ¢d. The matrix ca appears
here as the operator transcription of the velocity operator in the
classical expression for the interaction energy of a point charge:

e

Hélassical = - c'v ‘A + ed

This operator correspondence v,, = ca is again evident in Eq. (1.22)
for the probability current. It also follows if we make the relativistic
extension of the Ehrenfest relations:!

i i .
al= %[H,r] = Ca = Vo
and Dy = A — 22 A
dt f- ¢ at
¢ = [E + v x B] (1.27)

with = = p — (¢/c)A the operator corresponding to the kinetic
momentum and

= — - —_vo and B = curl A

the field strengths. Equation (1.27) is the operator equation of
motion for a point charge e. More general couplings in (1.26) would
lead to specific dipole and higher multipole terms in analogy with the
classical development.

In taking the nonrelativistic limit of Eq. (1.26), it is convenient
to work in the specific representation of Eq. (1.17) and to express the

! Pauli, Schiff, and Dirac, op. cit.
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wave function in terms of two-component column matrices ¢ and x:

v = [*’] (1.28)

X
We then obtain for (1.26)

3 fif-w [l oo

In the nonrelativistic limit the rest energy mc? is the largest energy
in the problem and we write

] - ] -
X X

where now ¢ and x are relatively slowly varying functions of time
which are solutions of the coupled equations

ih ;t L“j = ¢3-m D] + od [;’] — 2me? [Z] (1.30)

The second of Eqgs. (1.30) may be approximated, for kinetic energies
and field interaction energies small in comparison with me?, to
[N
= — 1.31
X =5 ¢ (1.31)
Equation (1.31) reveals x as the “small” components of the wave
function ¢ in comparison with the “large’”’ components ¢. Relative to
¢, x is reduced by ~»/c << 1 in the nonrelativistic approximation.
Inserting (1.31) into the first of Eqgs. (1.30), we obtain a two-component
spinor equation

5, 00 (8 md-= .
This 1s further reduced by the identity for Pauli spin matrices

érad-b=a-b+i6-axb

or, here,
i mx ==+ 16" X=
=7:2—%d-B (1.33)

Then we have

5 00 (p — (e/c)A)2 _eh .
i 2~ [*“"g“m—‘ e B+ 84»} . (1.34)
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which is recognized! as the Pauli equation. Equation (1.34) gives us
confidence that we are on the right track in accepting Eqs. (1.13) and
(1.26) as a starting point in constructing a relativistic electron theory.
The two components of ¢ suffice to accommodate the two spin degrecs
of freedom of a spin one-half electron; and the correct magnetic
moment of the electron, corresponding to the gyromagnetic ratio g = 2,
automatically emerges. To see this explicitly, we reduce (1.34)
further, keeping only first-order terms in the interaction with a weak
uniform magnetic field B = curl A; A == 14B x r:

5 00 | p? e . -

Here L = r X p is the orbital angular momentum, S = 1348 is the
electron spin, with eigenvalues +#/2, and the coefficient of the inter-
action of the spin with B field gives the correct magnetic moment
of the electron corresponding to a ¢ value of 2.

Fortified by this successful nonrelativistic reduction of the
Dirac equation, we go on and establish the Lorentz covariance of the
Dirac theory, as required by special relativity. Next we must inves-
tigate further physical consequences of this theory; especially we
must Interpret those ‘“negative-energy’” solutions.

Problems

1. Write the Maxwell equations in Dirac form (1.13) in terms of a six-component
field amplitude. What are the matrices corresponding to « and 8?7 [See H. I
Moses, Phys. Rev., 118, 1670 (1959).]

2. Verify that the matrices (1.17) satisfy the algebra of (1.16).
3. Verify (1.33).
4, Verifv (1.27).

1 Ibid.
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Lorentz
Covariance

of the Dirac Equation



2.1 Covariant Form of the Dirac Equation

It is necessary that the Dirac equation and the continuity equa-
tion upon which its physical interpretation rests be covariant under
Lorentz transformations. Let us first review what is meant by
a Lorentz transformation.! Two observers O and O’ who are in
different inertial reference frames will describe the same physical
event with the different space-time coordinates. The rule which
relates the coordinates 2* with which observer O describes the event
to the coordinates (a#)’ used by observer O’ to describe the same
event is given by the Lorentz transformation between the two sets of
coordinates:

3
(z*) = EO a’ot = ot ot (2.1)
P

It is a linear homogeneous transformation, and the coefficients a*,
depend only upon the relative velocities and spatial orientations of
the two reference frames of O and O’. The basic invariant of the
Lorentz transformation is the proper time interval

dst = g,, da* dz’ = da* dax, (2.2)

This is derived from the physical observation that the velocity of light
in vacuo is the same in all Lorentz frames. Equations (2.1) and (2.2)
lead to the relation on the transformation coeflicients

0, 0 = 8% (2.3)

Equations (2.1) and (2.3) serve as defining relations for both
proper and improper Lorentz transformations. 1In the former case the
determinant of the transformation coeflicients satisfies the relation

det |a| = +1

Proper Lorentz transformations can be built up by an infinite succes-
sion of infinitesimal transformations. They include transformations
to coordinates in relative motion along any spatial direction as well as
ordinary three-dimensional rotations. The improper Lorentz trans-
formations are the discrete transformations of space inversion and
of time inversion. They cannot be built up from a succession of
infinitesimal ones. Their transformation -coefficients satisfy the

'W. Pauli, “Theory of Relativity,” Pergamon Press, New York, 1958.

‘“The Principle of Relativity,” collected papers of H. A. Lorentz, A. Einstein,
H. Minkowski, and H. Weyl, Dover Publications, Inc., New York, 1923 reissue.

16
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relation
det o] = —1
in both cases.

Our task is to construct a correspondence relating a given set
of observations of a Dirac particle made by observers O and O’ in their
respective reference frames. In other words, we seek a transformation
law relating the wave functions y¥(z) and ¢/(z’) used by observers O
and O’, respectively. This transformation law is a rule which allows
0’ to compute y/(z’) if given ¥(x). According to the requirement of
Lorentz covariance, this transformation law must lead to wave func-
tions which are solutions of Dirac equations of the same form in the
primed as well as unprimed reference frame. This form invariance
of the Dirac equation expresses the Lorentz invariance of the under-
lying energy-momentum connection

— 22
Dup* = mec

upon which the considerations of Chap. 1 were based.

In discussing covariance it is desirable to express the Dirac equa-
tion in a four-dimensional notation which preserves the symmetry
between ct and x%. To this end we multiply (1.13) by /¢ and intro-
duce the notation

=8 Yy =8xu i=123
This gives
) a d a a
0 1 2 3 — p—
ih (y 370 + v F7s + v e + v 8x3> y—mey =0 (2.4)

The new matrices v* provide an elegant restatement of the
commutation relations (1.16)

vyt vyt = 2¢01 (2.5)

where 1 is the 4 X 4 unit matrix and hereafter will not be explicitly
indicated. It is clear from their definition that the v are anti-

hermitian, with (y%)? = —1, and that v° is hermitian. In the repre-
sentation (1.17) they have the form
P 0 o o |1 0
r= [—ai o} v= [0 —1] (2.6)

It is convenient to introduce the Feynman dagger, or slash, notation:

A = y*A, = guV'Y”AV =A% — v-A
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and in particular

_ .9 28
V=Vw = cat TV
Equation (2.4) then abbreviates to
GhY — me)y = 0 .7)
or, with p* = % ~a—y
! Az,
(B —me)y =0 (2.8)

Addition of the electromagnetic interaction according to the
“minimal”’ substitution (1.25) gives

(p—fﬁ—{—m0>¢=

This in no way influences considerations of covariance, because
both p# and A#, and hence their difference, are four-vectors,

2.2 Proof of Covariance

In order to establish Lorentz covariance of the Dirac equation,
we must satisfy two requirements. The first is that there must be an
explicit preseription which allows observer 0/, given the ¥(z) of
observer O, to compute the ¢'(z’) which describes to O’ the same
physical state. Second, according to the relativity principle, ¢/'(z’)
will be a solution of an equation which takes the form of (2.7) in the
primed system

o~ d i
(zhy“ F mc)z/x(x) =0

The §* satisfy the anticommutation relations (2.5); therefore ° = §°
and 7% = —4* as required for a hermitian hamiltonian. As may be
shown by a lengthy algebraic proof,! all such 4 X 4 matrices 7 are
equivalent up to a unitary transformation U:

5, = Uty U Ul = U~

'See R. H. Good, Jr., Rev. Mod. Phys., 27, 187 (1955), especially Sec. III,
p. 190,
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and so we drop the distinction between ¥* and y* and write
(p" — me)y/(z") =0 (2.9)

with p = ihy* 307

We ask that the transformation between ¢ and ¢’ be linear,
since both the Dirac equation and the Lorentz transformation (2.1) of
the coordinates are themselves linear. We introduce it in the form

V(@) = ¢(ax) = S(a)p(z) = S(a)¥(a™'z") (2.10)

where S(a) is a2 4 X 4 matrix which operates upon the four-component
column vector Y(x). It depends upon the relative velocities and
spatial orientations of O and O’. S must have an inverse, so that if O
knows ¢¥'(¢’) which O’ uses to describe his observations of a given
physical state, he may construct his own wave function y¥(x)

Y(x) = SHap' () = S Ha)y/ (az) (2.11)
We could equally well write, using (2.10),
¥(x) = S(a)¢' (ax)
which provides the identification
S(a™) = S~ Y(a)

The main problem is to find S. It must satisfy (2.10) and (2.11).
If S exists, observer O, given ¢(x) by O, may construct ¢'(z') using
(2.10).

By reexpressing the Dirac equation (2.7) of O in terms of ¢/(z’)
with the aid of (2.11), O’ could then check whether ¥/(z’) satisfies
his own equation (2.9). He would find after left-multiplication by
S(a)

[z’ﬁS(a)'yf‘S‘l(a) a%“ — mc] V() =0
Using (2.1) to write

14 b —
arh  dxk oxr Y ox

the primed equation is found to be
[msm)ws—wa)a»#%, - mc] V(') =0

This is form-invariant, that is, identical with (2.9), provided an S can
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be found which has the property

S(a)ySHa)a”, = v
or equivalently
a’y* = 87 (a)y*S(a) (2.12)

Equation (2.12) is the fundamental relation determining S. In seek-
ing S we are seeking a solution to (2.12). Once we show that (2.12)
has a solution and find it, the covariance of the Dirac equation is
established. By way of terminology, a wave function transforming
according to (2.10) and (2.12) is a four-component Lorentz spinor.
We anticipate that S will present novel features not found in tensor
calculus, since bilinear forms in ¢ such as the probability current (1.20)
are expected to form four-vectors.

We first construct S for an infinitesimal proper Lorentz trans-
formation

@’y = ¢’ + Aw’, (2.13a)
with Awp™ = — Aw** (2.13b)

according to Kq. (2.3) for an invariant proper time interval. Each
of the six independent nonvanishing Aw** generates an infinitesimal
Lorentz transformation,

Aw® = AB

for a transformation to a coordinate system moving with a velocity
¢ AB along the x direction,

Awly = — Aw!? = Ap

for a rotation through an angle Ay about the z axis, and so forth.
Expanding S in powers of Aw” and keeping only the linear term
in the infinitesimal generators, we write
S=1-~ »;:-U,“, Aw’  and 8-l =1+ iaﬂ, Awwr (2.14)

Wlth Ouy = Oy

by (2.13b). FEach of the six coefficients o,, is a 4 X 4 matrix, as are
the transformation S and the unit matrix 1. Inserting (2.13) and
(2.14) into (2.12) and keeping first-order terms in Aw**, we find

7
Awryt = — 4 (Aw)*(y*oag — cap¥”)
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From the antisymmetry of the generators Aw#” there follows

2u[g7avs — 9%8Ya)l = [¥",006) (2.15)

The problem of establishing proper Lorentz covariance of the
Dirac equation is now reduced to that of finding six matrices o,
which satisfy (2.15). The simplest guess to make is an antisymmetric
product of two matrices, and directly we find, using (2.5), that

T = 55 [Vuvi] (2.16)

is the desired matrix. According to (2.14), S for an infinitesimal
Lorentz transformation is given by

S=1+ % Ve, vs] A =1 — itf“, Awh? (2.17)
We now complete our task by constructing the finite proper

transformations by a succession of infinitesimal ones. First, to build
up (2.1) from (2.13), we write

Aw’y = Aw(l,)”, (2.18)

where Aw is the infinitesimal parameter, or “angle of rotation’” about
an axis in the direction labeled 7, and I, is the 4 X 4 (in space-time)
matrix of coeflicients for a unit Lorentz rotation about this axis.
v and u label row and column respectively. Thus for a transformation
to a primed system in motion along the z axis with an infinitesimal
velocity ¢ Aw = ¢ AB

(2.19)

(=R e R
S oo O

so that
I =1y= —]I"= 4]0 =—1

Using the algebraic property of I7,, that

I? = and I3 =41

[ R
OO RO
OO OO
oo OO

we can write the finite transformation for uniform relative z-axis
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motion as

%
I

' Al,l_r& (g + ’](\27 ])"ml <g + % ])m'a2 C .. pan
= (e*7)"a*

= (cosh wl + sinh wl)”a*

= (1 — I? + I? cosh w + [ sinh w)’,2*

For the individual components this gives

x¥ coshw —sinhw 0 O|f2°
xV — sinh o coshw 0 O || z!
a2 |~ 0 0 1 0|2 (2.20)
z¥ 0 0 0 1][=23
or
2 = (cosh w)(z® — tanh w zt)
2V = (cosh 1 — tanh w2°
( w)(z w 2°) @2.21)
z¥ = g2
2¥ = 3
where tanh w = 8 and cosh w = !

relate the Lorentz rotation angle » with the relative velocity ¢g.

This result can be generalized to include motion along any direc-
tion or spatial rotation about any axis. The six matrices I*, gener-
ating the six independent Lorentz rotations are the four-dimensional
generalizations of the three-dimensional space rotations familiar in
the nonrelativistic theory.

Turning now to the construction of a finite spinor transformation
S, we have from (2.14) and (2.18)

V@) = 8@ = lim (1= pali) v
= exp (— iwauyl';”) V() (2.22)

Specializing again to the transformation (2.19) we have
V(@) = e unmy(2) (2.23)

where 2’ and z are related by (2.21).
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Similarly, for a rotation through an angle ¢ about the z axis,
I* = — ] = —1 and

‘pl(zl) — e(i,/?)y:a”‘p(x) (224)

12 — a3 0 i
7 [0 73 |

in the representation (1.17), with

1 0]
7o —1

where

the Pauli 2 X 2 matrix. We recognize the similarity of (2.24) with the
form of rotation of a two-component Pauli spinor

¢ (@) = et () (2.25)

The covariant ‘‘angle’”’ variables w* in (2.18) are associated with the
Lorentz transformation in the same sense that the rotation angle and
direction in o are for the three-dimensional rotation. The appearance
of half-angles in (2.24), as in (2.25), is an expression of the double-
valuedness of the spinor law of rotation; it takes a rotation of 4r
radians to return y(x) to its original value. Because of this, physical
observables in the Dirac theory must be bilinear, or an even power in
¥(z).

For spatial rotations, S = Sg is unitary, since the o;; are hermitian,
and

Sly = e=Gretie, — o=inriey _ g3

This is not true for transformations to a moving coordinate system
S = 8.. For instance, for the transformation (2.23)

Sy = e~@Vury = g—w/Day = QT 5« 1
However, S, does have the property
Sz = veShvo

found by expanding S, in a power series. Since [y,,0%] = 0, this can
be generalized to include rotations

S~ = eStyo (2.26)

The continuity equation is also covariant. The probability
current (1.21) and (1.22), in the notation of (2.4), is

JHx) = et (2)y v ()
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and under (2.1) transforms to
(@) = ot @)y vy (@)
= o' (2) STyov S ()
= ot (2)yoS Iy Sy ()
ca* T () yor ¥ ()
a*,j7(x) (2.27)

Il

Evidently j*(x) is a Lorentz four-vector and the continuity equation

aj(x) _

ox+ 0

isinvariant. Also, the probability density j°(z) = cp(x) transforms as
the time component of a conserved four-vector. This is the desired
result noted in Sec. 1.3 for an invariant probability.

Because the combination ¢fy, in (2.27) occurs so often, it is
dignified by a new notation

$(x) = VMo (2.28)

where ¢(z) is known as the adjoint spinor. Its Lorentz transformation
property is given by
Y (@) = ()8 (2.29)

Space Reflection

We now expand our outlook to take into account the existence of
the improper Lorentz transformation of space reflection

x = —x =t

Again covariance requires a solution of (2.12), but in this case
we cannot build it up from the infinitesimal transformations. How-
ever, it is easy enough to solve (2.12) directly. The transformation
matrix is

1 0 0 0
lo -1 o of_
@ = 0 —1 0 = g» (2.30)
0 0 0 —1

Denoting S = P for the coordinate reflection, (2.12) becomes
P-ly’P = grry (2.31)

which is satisfied by
P = e¥yq (2.32)
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2.4

The phase factor is of no physical interest here and may be narrowed
down to the four choices +1, +7 if we require that four reflections
return the spinor to itself in analogy with a rotation through 4rx
radians. P in (2.32) evidently is unitary, P! = P%, and satisfies
(2.26) as well. KEquation (2.32) tells us that

Y @) =¥ (=x1) = evyap(x,1) (2.33)

In the nonrelativistic limit ¢ approaches an eigenstate of P,
and by (1.24) and (2.6) the positive- and negative-energy states at rest
have opposite eigenvalues, or intrinsic parities.

The discussion of the other improper transformations, such as
time reversal, is more involved; it is given in Chap. 5.

Bilinear Covariants

By forming products of the y matrices it is possible to construct
16 linearly independent 4 X 4 matrices T'zg which appear often in
applications of the Dirac theory. These are

s =1 FZ = Yu I‘Z’u = Ouv
TP = jy0yly2y? = y5 = 4° T2 = vyy, (2.34)

By using the anticommutation relations (2.5) the I'» are readily
established to be linearly independent by the following argument:

1. Tor each I', (T?)?2 = +1.
2. For each I' except I'S, there exists a I' such that

r*I'» = —T»T»
From this it follows that the trace of I'* vanishes:
+ TrI*» = Tr'*(I'")2 = — Tr I'»*I'm = — Tr I'*(I'™)? =0
3. Given I'* and T, a > b, there exists a I'*  I'S such that
rer? = e

This follows by direct inspection of the I's.
4. Suppose there exist numbers a, such that

E a,T" =0

Then multiply by I'm 5% I'S and take the trace; using (3), we find
an = 0. If ™ = T'S we find a, = 0, and all coefficients vanish.



26

Relativistic quantum mechanics

This establishes the linear independence of the I'>. It follows
that any 4 X 4 matrix can be written in terms of the I'?,

We may now write down the Lorentz transformation properties
of the bilinear forms ¢(2)T*y(x) constructed from the 16 T». We need
only the observation that

Yeyvs + vsyr =0 (2.35)
and therefore
[yﬁ)o-‘w] = 0
or
[S,vs] = 0 (2.36)
for all proper Lorentz transformations. As a special case of (2.35)
Py = —v5P (2-37>

Carrying out calculations similar to (2.27) we find:

V(W (@) = d(a))

a scalar

V(@) vl () = P(@)8 1vsSy () = det |ald(2)ys¥(x)

a pseudoscalar

V)Y @) = ad(@)vy(z)

a vector

V(@)vsy¥/ (2') = det |aja”d(2)vsyd(z)

a pseudovector

V(@)oY (2') = ataa’pl(z)oPY ()

a second-rank tensor (2.38)

Problems

1. Verify (2.26).
2. Verify the transformation laws given in (2.38).

3. Given a free-particle spinor u(p), construct u(p + ¢) for g, — 0, with p-g — 0,
in terms of u(p) by making a Lorentz transformation.

4. Show that there exist four 4 X 4 matrices I'* such that

Re T#y = 0
{I‘l‘JFV} = Zgl“‘
, [E}
Ii’LF“a—z“ — m:l \b(x) =0

that is, the Dirac equation is real.
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Solutions
to the Dirac Equation

for a Free Particle



3.1 Plane-wave Solutions

We have seen that the Dirac theory meets the requirements of Lorentz
covariance and that the positive-energy solutions to the Dirac equa-
tion have a sensible nonrelativistic correspondence.

Further insight into the nature and interpretation of solutions of
the Dirac equation may be gained by considering the free-particle
equation. The four solutions corresponding to a free particle at
rest were given in (1.24) and are written in the combined form

Yr(z) = wr(0)e Ceme’/ht r=1,2 34 (3.1)
+1 r=1,2
with € =
-1 r =34

The spinors are

1
wi(0) = | 0| w0) = wH(0) =
0

OO = O
O = C
—_ o O O

(3.2)

in this representation, Eq. (1.17), of the Dirac matrices. The first
two solutions describe the two spin degrees of freedom of a Schrédinger-
Pauli electron. The ‘‘negative-energy’” solutions, r = 3 and 4,
remain to be interpreted. They are all eigenfunctions of o, = 12 with
eigenvalues +1 and —1. The Lorentz transformation (2.10) may
be used to build the free-particle solutions for an arbitrary velocity.
By transforming to a coordinate system moving with velocity —v
relative to that of the solutions at rest, we construct free-particle
wave functions for an electron with the observed velocity +v.

In order to exhibit the general space-time coordinate variation,
we need only express the exponent in (3.1) in invariant form:

2 {0) !
exp <—z’e, mTc t> = exp (—ier Pl‘ﬁx“> = exp (—’ie, Pﬁ%ﬁ> (3.3)

where 2# = a*,2* and p* = a#,p"® = a*ymc; our notation throughout
is such that p® = E/¢c = + 4/p? + m%? > 0. The positive- and nega-
tive-energy solutions transform among themselves separately and do
not mix with each other under proper Lorentz transformations, as well
as under spatial inversions. This is seen to follow from (3.3), since
the four-momentum of a free particle is time-like, p*p, = m?%? > 0.
Therefore, p, is within the light cones in p space. Under the trans-

28
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formations mentioned above, the future and past light cones, and hence
the positive- and negative-energy solutions, remain distinet.
We transform the spinors with

S = (D (3.4)

according to (2.23), where for simplicity we have specified the velocity
to lie along the z axis. The Lorentz angle » in (3.4) is given by
w = tanh™!' (—v/c) = — tanh™! (v/¢) and differs by a minus sign from
(2.21), since we are transforming to a system moving in the z direc-
tion with velocity —v.

Applying the transformation (3.4) to the spinors (3.2), we find

w(p) = e~(elMonyr(0) = (oosh; — o sinh %’) w(0)
_ e
1 — tanh —
0 0 an 2
. 0 1 - tanhg 0
= cosh 3 w(0)
0  — tanh- 1 0
2
6]
—t 1
i anh 5 0 0

(3.5)

From the form (3.2) for w(0), it is clear that the rth column of this
transformation matrix is identically the column spinor corresponding
to w(p). We may reexpress it in terms of the energy and momentum
of the particle by using the trigonometric identities,

— tanh o _ v/e _ pc
14+ +1—tanh’e 1+ +/1— %/t E+me

@  [E+ me? .
and cosh 3=\ ome (3.6)

Also, we may generalize (3.5) to the case of arbitrary direction of
the velocity v. In this case the matrix I in (2.19) is replaced by

— tanhg =

0 —cosSa — COSf3 — coSvy
Ju - | T COSa 0 0 0
’ — cos B 0 0 0
— coS vy 0 0] 0

where cos a, cos 8, and cos v are the direction cosines of the velocity



30

Relativistic quantum mechanics

v, and in the transformation matrix

o l® = 2(co1 COS @ + ag2 OS B + gog cOSy) = —21 a|_‘-’|v
This gives, with the aid of (3.6),
wa -V
s=ew(-557)
1 0 (= i
E + me? E+ me?
0 1 P+C —PL
_ \/E + me? E + mc® E + mc? (3.7)
B 2mc? P:C p-C 1 0 ’
E + me2 E + me?
p+C —P:C 1
| L+ me? E 4+ me? N

where p, = p, + ip,. The general form of a free-particle solution is

V(@) = w(ple-ietmtin (3.8)

where the rth column of (3.7) gives the corresponding spinor w(p)
in the representation of the vy matrices given by Eq. (1.17).
The w(p) satisfy the following useful relations:

(P — emc)w(p) =0  w(p)(p — &me) =0 (3.90)
W (p)w”(p) = §,p€r (3.90)
4
Y Cwl()BH(p) = bos (3.90)

r=1

Equation (3.9a), obtained by applying the Dirac operator
(i¥ — m) to (3.8), states the Dirac equation for a free particle in
momentum space. Forr = 1or2, ¢ = 41 and (p — me)w (p) = 0.
This is the ecuation for the two positive-energy solutions given by the
first two columns of (3.7). In this representation their third and
fourth components are the ‘“small components” in a nonrelativistic
approximation, and they reduce to Eqs. (1.29) and (1.31) in the
absence of external fields. TFor the negative-energy solutions the
“large” and “small” components are interchanged in (3.7). We also
introduce the adjoint spinor according to the definition in (2.28):
@7(p) = wi(p)v,. It satisfies the adjoint wave equation

w(p)(p — eme) = 0 (3.10)
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which is obtained by taking the hermitian conjugate of (3.9a) and
multiplying from the right by v° with the aid of the identities
(v9)? = +1 and yOy#ty® = 4

Equation (3.9b) is a covariant normalization statement. The
bilinear form @7 (p)w”(p) is a Lorentz scalar as discussed in the pre-
ceding chapter [see Eq. (2.38)], and so we verify (3.9b) simply by
returning to the rest solutions (3.2). The probability density
wi(p)w(p) will not be an invariant but transforms as the fourth
component of a vector according to (2.27). Calculating from the
columns of (3.7) we find

, E
wi(ep)w”(ep) = =5 &rv (3.11)
This shows that the probability density acquires the correct factor
E/mc® to compensate the Lorentz contraction of the volume element
along the direction of motion and to preserve thereby the normaliza-
tion of the invariant probability. Notice that (3.9b) isan orthogonality
statement between a spinor and its adjoint of the same momentum
p, whereas in (3.11) the positive-energy spinor is orthogonal to its
hermitian conjugate spinor of negative energy and reversed momentum.
Thus two plane-wave solutions of the same spatial momentum p but
of opposite energy are orthogonal in the sense that ¢ T(x)y"'(z) = 0
if r =1, 2 and s = 3, 4, or vice versa,

Equation (3.9¢) is a completeness statement applying to the four
Dirac spinors for a given momentum. It is clearly true for a free
particle at rest. To prove it for an arbitrary momentum, we can
make an appropriate Lorentz transformation to the rest system and
then use (3.2) to find

4 4

Y cwiy(p)Epp) = ) el (— %) W, (0)27%,(0) 57 (- %)

r=1 r=1

= SarbnSig = Sap

I

That % and not w' appears in the completeness relation is due to the
relation St = 4°8-1y° derived in (2.26) and again reflects the fact that
the Lorentz transformation is not unitary.

By using the rotation operators

S = li/eds
upon the solutions (3.2) for the electron at rest and polarized in the

2 direction, it is possible to form states which are polarized in any
arbitrary direction s. In particular, the defining relation for such
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states is
88w =W

if the spinor w corresponds to a particle polarized along direction of
the unit vector s. The specific form of these solutions is similar to
that of the two-component Pauli theory owing to the structure of ¢
in (2.24).

In this deseription it is convenient to introduce a different nota-
tion. Let u(p,s) denote the spinor which is a positive-energy solution
of the Dirac equation with momentum p* and spin s*. Thus u(p,s)
satisfies the equation

(p — me)apus(p,s) = 0 (3.12)

The spin vector s* is defined in terms of the polarization vector § in
the rest frame by s* = ¢#,8”, where §* = (0,8) and the a*, are the trans-
formation coefficients to the rest frame, that is, p* = a*,p*, where
p* = (m,0). Notice that s,s* = —1 and that p+§, = 0 and therefore
p#sy = 0. In the rest frame u satisfies

¢ Su(p,8) = u(p,9) (3.13)
Similarly let v(p,s) denote a negative-energy solution
(® + me)o(p,s) = 0 (3.14)
with polarization —8§ in the rest frame, that is,
8- Su(p,8) = —u(p,3) (3.15)

The u(p,s) and v(p,s) are related to the w(p) by
w'(p) = u(p,u.)

w(p) = u(p,—u.) (3.16)
wi(p) = v(p,—u)
wi(p) = v(p,u.)

with «, a four-vector, which in the rest frame takes the form
= (0,1,) = (0,0,0,1)

An arbitrary spinor is thus specified by the momentum p,, the
sign of the energy, and the polarization in the rest frame §,.

Projection Operators for Energy and Spin

In practical calculations, it is often convenient to have operators
which project out a spinor of given sign of energy and polarization.
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These projection operators are the four-dimensional analogues of the
nonrelativistic two-component operators

_lzxo
2

Py

which project out of an arbitrary state the spin-up or spin-down
amplitude.

Ifor the Dirac equation, we search for four operators which project
from a given plane-wave solution of momentum p the four independent
solutions corresponding to positive and negative energy and to spin up
and spin down along a given direction. We would like these operators
in a covariant form so that we may transform with ease among
different Lorentz systems, as will prove useful in practical calculations.

The four projection operators are denoted by P.(p) = P(p,,u.,e€)
and are defined to satisfy the following properties:

P.(p)w(p) 8w (p)
or equivalently 3.17)

Pr(p)Pr’(p) = 51’T'Pr(p)

An operator which projects out positive- or negative-energy
eigenstates for a given p may be found directly from (3.9a), already in
covariant form. We denote it by

I

. me
Alp) = © pz—in;c
or, alternatively,
+ m
Mu(p) = TBTMC (3.18)

By direct calculation, using pp = p? = m??, we verify that

m2?(1 + ee0) + meple, + €) (1 + eer
= < 5 )Ar(p)

A(p)Ar(p) =
that is,

4m?2c?

AL(p) = A(p)

A(p)A-(p) =0
Also notice that

Ay(p) +A(p) =1

To exhibit the analogous operator for the spin, we go to the
rest frame, where the spin is most easily described, and try to find a
projection operator which may be cast into covariant form. The
natural candidate for a spin-up particle is (1 + ¢.)/2. In the same
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way as the two-component nonrelativistic spin projection operator is
liberated from explicit dependence upon the z direction by rewriting
(1 4 0.)/2 as a scalar,

[=14

14460,
2

we try to write the Dirac spin projection operator in scalar form by
using the four-vector %, that is
1+ o, _ 1+ vmdi"yo _ 1 + ysd.vo

2 2 2

This may now be cast into covariant form by eliminating the -,.
Because we are in the rest frame, v, acting upon the Dirac spinor
becomes +1. With the conventions established in (3.14) and (3.15),
the covariant Dirac spin projection operator is finally

1+ v

(u,) = 5

or for a general spin vector s*, with s#p, = 0,
() = —5F (3.19)
Thus in the rest frame
(L)' (0) = li;ﬂ wi(0) = L——;—Ufwl(O) — w'(0)  (3.20)

and Z(—1t)w(0) = w*0)

Similarly, for the negative-energy spinors

B(—tywi(0) = Y ws() = LT )

_1 42-% w3 (0) = w(0) (3.21)
and >()w'(0) = w*(0)

In terms of the definitions (3.16) of the spinors « and v, these are

Z(u)u(pu) = u(p,u,)
2(“:)”(%”2) = U(P,uz)
Z(—u)u(pu,) = Z(—uv(pu.) =0

Because of the covariant form of the projection operator Z, we may
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3.3

write for any polarization vector s*(s*p, = 0) that

Z(s)ulp,s) = u(p,s)
(s)v(p,s) = v(p,s) (3.22)
Z(—=s)u(p,s) = Z(—s)o(p,s) =0

With the four projection operators A . (p) and £(+s) we can now
completely specify free-particle motion in terms of four-momentum p,,
sign of energy ¢ and polarization s* with sp, = 0. 1In particular,
we construct from (3.18) and (3.19) the four projection operators

Pi(p) = A+(p)Z(u.)
Py(p) = A+(p)Z(—w)
Py(p) = A (P)Z(—w.)
Py(p) = A_(p)Z(u.)

Notice that [Z(s), A.(p)] = 0 for all vectors satisfying s*p, = 0,
since p anticommutes with both v; and s. Ifrom this it follows that
these P.(p) satisfy the defining relations (3.17).

We shall rely upon these projection operators very frequently
in developing rapid and efficient calculational techniques. They per-
mit us to use closure methods, thus avoiding the necessity of writing
out matrices and spinor solutions component by component.

In order to achieve an invariant formulation, we have introduced
negative-energy solutions of momentum p which, according to (3.8),
are eigenfunctions of the momentum operator p with eigenvalue —p.
Simijlarly, according to (3.19) and (3.21), the negative-energy solutions
representing spin-up and spin-down states reduce in their rest frames
to eigenfunctions of o, with eigenvalues —1 and 41, respectively.
The physical motivation for this apparently backward association of
eigenvalues for the negative-energy solutions will appear when we
come to the hole theory in Chap. 5.

i

It

Physical Interpretation of Free-particle
Solutions and Packets

We may now superpose the plane-wave solutions at our disposal
to construct localized packets. These packets are still solutions of the
free Dirac equation, as required by the superposition principle, since
the Dirac equation is linear. We study them to gain further insight
into the interpretation of the free-particle solutions.
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To begin, we form a packet by superposing positive-energy
solutions only:

3 2
1D = [ i\ 2 b updentn  (.23)
ts

To normalize the expansion coefficients b(p,s) to unit probability, we
call on the spinor orthogonality relations (3.11) and find!

[vrmop e diw = [ asp ™S b0l uls)

ts, ¢

= [ @ Y b =1 (3.24)
ts

The average current for such a packet is given by the expectation
value of the velocity operator

JH = [YOleay® dix (3.25)

In evaluating this we use the following important relation between
the three four-vectors that can be formed from free-particle solutions:

For ¢i(z) and ¢.(2) any two solutions to the Dirac equation,
(p — me)y(z) = 0,

B = o Do — (PP — o p. o) (3.26)

To prove (3.26), we observe that if a* and b* are two arbitrary four-
vectors

ap = a b8 (vyr + vv) + (v — vy
= a*b, — 1a*b’o,, (3.27)
1 We collect here familiar properties of the Dirac é function used in deriving
(3.24):
/’_: dz ei7e)E = 2r8(s — a)

[ as 56 — w165) = 1@

[int,erv&l ]
including s = a

if f(s) has no singularities in the interval of integration;
5 (z) = lelss) el # 0

The & function is mathematically respectable in the sense of distribution theory;
see, for instance, M. J. Lighthill, “Introduction to Fourier Analysis and General-
ized Functions.” Cambridge University Press, London, 1958.
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Then with the Dirac equation we construct

Io(—p — me)dpr + Dod(p — me)
— 2mePas - Polap, — iaPp’e,, — pra, + iphato ¥y
WP = pabr")

and (3.26) emerges as the coefficient of an arbitrary vector a~.

This identity is known as the Gordon decomposition.! It ex-
presses the Dirac current as the sum of a convection current similar
to the nonrelativistic one, and a spin current.

With the help of (3.26) for the special case ¥, = Y1 = ¢ and (3.23),
we now find for the current (3.25)

0

I

JP = /d% d—:%% i;_w b*(p’,8")b(p,s)et®—PHeylh
X %1 w(p',s)[(p; + po) + do*(py, — po)lu(p,s)
= [ @ 2SN (sl (3.28)
+s
According to the normalization (3.24), the current can be written
J® = {ca)y = <9;B>+ = (Voo)+ (3.29)

where { ). denotes expectation value with respect to a positive-energy
packet. Thus the average current for an arbitrary packet formed of
positive-energy solutions is just the classical group velocity. The
corresponding statement is familiar in the nonrelativistic Schrodinger
theory.

Now we come to an important difference in the relativistic theory.
In the Schrodinger theory the velocity operator appearing in the
current is just p/m and is a constant of the motion for free particles.
The current is not, however, proportional to the momentum in the

Dirac theory, and whereas the Ehrenfest relation (1.27) has shown that
d

7P = 0 for free-particle motion, the velocity operator ce is not
constant, since [e,H] #£ 0. Indeed in constructing eigenfunctions of
ca we have to include both positive- and negative-energy solutions,
since the eigenvalues of co! are +c¢ whereas |[{ca®);| < ¢, according
to (3.29).

1'W. Gordon, Z. Physik, 50, 630 (1928).
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Let us now enlarge our considerations to include the negative-
as well as positive-energy solutions in forming a packet from the
complete set of free-particle solutions. We generalize (3.23) to

Vot = (zm)% \/mc b<p,s)u<p s)e ivteulh
+ d*(p,s)v(p,s)et#*aulh]  (3.30)

again normalized to unit probability. A short calculation gives for
the probability

[ @z vi@ip@y = [dap ) [bel + dps) =
+s
and for the current for such a packet!

- fdap |2 [b(p,9)[* + |d(p,9)|%] gch
+s

T Z b*(—p,s')d*(p,s)e? =/ Mi(—p,s")o* v (p,s)
ts tse

— i ) b(=p,s)dp,s)e Ik (p,s)eou(—p,s) | (3.31)
ts, xs

In addition to the time-independent group velocity there now appear
cross terms between the positive- and negative-energy solutions which

oscillate rapidly in time with frequencies
2
2pec  2me

7 A

This rapid oscillation, or zitierbewegung,? is proportional to the ampli-
tude of the negative-energy solutions in the packet. We have as
yet no physical interpretation of these solutions, but we may ask
when to expect them to be present in the packet with appreciable
amplitude. The general form of a free-particle solution (3.30) shows
explicitly by the time independence of b(p,s) that a packet initially
formed with positive-energy solutions only does not develop negative-
energy components in the absence of forces. However, a packet
formed to represent an electron somehow localized initially in a region

= 2 X 10% sec™!

! Despite a certain inconsistency, we denote hereafter

u(V/p? + m?—p,s) = u(—p,s)

with similar conventions for expansion coefficients b, d*, etc.
2 E. Schrédinger, Sitzber. Preuss. Akad. Wiss. Physik-Math., 24, 418 (1930).
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of finite extent generally includes solutions of both signs of energy.
Consider, for example, the solution

W(r,0,8) = (wd2)~Yie=Yerid'y1(0) (3.32)

which corresponds to a Gaussian density distribution of half-width ~d
about the origin at time ¢ = 0. At a later time ¢ it can be expressed
as a packet (3.30) with the coefficients b and d* fixed by the initial
conditions, viz., at t = 0

[ ey S b up et a*(po(pee

= (7d?) e 1 1¢w1(0)
Taking the Fourier transform and using

/m d3r e—r2/2d’eil‘r/h — (zﬂ_dz)%ﬁe_yzzzdz/m
—

we find

“‘2 ! 4 ' ’ d2 }ﬁ 2 2
\/7%6~ 2 [b(p,s)u(p,s") + d*(—p,8)o(—p,8)] = (ﬁ?) e AP EIRyl(0)

+s

The orthogonality relation (3.11) gives

a2 2 \#
) = [ (L) e vt o)
(3.33)

o 2 2 \ %
d*(—p,s) = \/mfc (%) e*”zd"/”"vT(—p,S)wl(O)

Thus the amplitude d* of the negative-energy solutions in the packet
(3.32) is nonzero. Relative to the positive-energy components b it is
reduced by the ratio of the upper, or small, components of v to the
upper, or large, components of u, that is, by ~pc/(E + me?). This
shows that the negative-energy amplitudes are appreciable for
momenta ~me. We also see in (3.33), however, that the packet is
composed predominantly of momenta p X %/d. Therefore, this
packet must be localized in a region of space comparable with the elec-
tron Compton wavelength, that is, with d ~ #/mec, before the negative-
energy solutions enter appreciably.!

1 For a discussion of the position coordinate of a positive-energy Dirac electron
see T. D. Newton and E. P. Wigner, Rev. Mod. Phys., 21, 400 (1949).
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V(z)

I'ig. 3-1 Potential barrier confining electron of energy
E in region I to the left.

This result can be equally well inferred on dimensional groups
using Ap Az ~ # without reference to the particular gaussian shape.
In discussing problems and interactions in which the electron is
“spread out” over distances large compared with its Compton wave-
length, we may simply ignore the existence of the uninterpreted
negative-energy solutions and hope to obtain physically sensible and
accurate results. This will not work, however, in situations which find
electrons localized to distances comparable with #i/mc. The negative-
frequency amplitudes will then be appreciable, the zitterbewegung
terms in the current important, and indeed we shall find ourselves
beset by paradoxes and dilemmas which defy interpretation within
the framework so far developed by the Dirac theory of an electron.
A celebrated example of these difficulties is the Klein paradox,!
llustrated by the following example.

In order to localize electrons, we must introduce strong external
forces confining them to the desired region. Suppose, for example, we
want to confine a free electron of energy E to region I to the left of
the origin z = 0 in the one-dimensional potential diagram of Fig. 3.1.
If the electron is not to be found more than a distance d to the right
of z = 0, in region II, then ¥ must rise sharply within an interval
2 < d to a height Vo > E so that the solution in IT falls off with a
characteristic width <d. This is as in the Schrodinger theory, until
the confining length d shrinks to ~#/mc and Vo, — E increases beyond
mc®  To see what happens, let us consider an electrostatic potential
with a sharp boundary as in Fig. 3.2 and calculate the reflected and
transmitted current for an electron of wave number k incident from
the left with spin up along the z direction. The positive-energy
solutions for the incident and reflected waves in region I may be

10. Klein, Z. Physik, 63, 157 (1929).
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written
1
0
Y ine = aekz ckifi (3.34)
E + mc?
0
1 0
0 1
Yret = be~ 1z cki + be—thie 0
T E 4+ me? ckihi
0 E + mc?

For the transmitted wave we need the solutions of the Dirac equa-
tion in the presence of a constant external potential e® = V,. These
differ from the free-particle solutions only by the substitution
po = (1/¢)(E — V), so that in region II

Ao = (B — V)2 — m%* = (E — me® — Vo)(E + me? — Vo)

We therefore write the transmitted wave of positive energy E > 0 as

1 0
0 1
Yirans = det? chils + d'eike 0 (3.35)
E — Vy+ me? —ctiks
0 E — Vy+ me?

The amplitudes d and d’ are fixed by continuity of the solution at

AV(2)

I I

»2Z

Fig. 3-2  Flectrostatic potential idealized with a sharp bound-
ary, with an incident free electron wave of energy E moving to
the right in region I. For V, > E 4 mc? the reflected cur-
rent from the potential exceeds the incident one; this is an
example of the Klein paradox.
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the potential boundary as required by current conservation:
a+b=4d

_ ke  E+ me
T ki E — Vo + me?

b =d =0 (there is no spin flip)

a—1b d=rd (3.36)

If Vo> 0 and |[E — V| < me?, the wave number is imaginary,
ks = +1|ks, and the solution in region II is a decaying exponential
corresponding to damping in a distance d > #/me. However, as we
increase the height of the barrier beyond Vy = E 4 me? in order to
further confine the electron, the transmitted wave becomes oscillatory.
The transmitted and reflected currents may be computed, and we find

. - _ 2 ;
Jurans A7 Jra _ (L= 1)y Juwns (597

Jine (L4 1)? Jime (L1 Jine

Whereas the form of these results reminds us of the analogous pre-
dictions of the Schrodinger theory, we must now observe that, by
(3.36) and the above condition Vo > E + me?, r < 0. So we find in
(3.37) a result contradicting our ordinary reasoning by indicating a
negative transmitted current and a reflected current ezceeding the
incident one. What is the source of a current in region IT moving left
in Fig. 3.2 into region I in this case of Vo > E + mc?? We increased
the potential height V, beyond E + me? in attempting to localize the
solution within one Compton wavelength #/me, but ended up with
undamped oscillatory solutions instead. How do we understand
this? Only by understanding and interpreting the negative-energy
solutions. It is clear from the packet discussion that they enter
prominently in solutions localized within %/mec. It is equally clear
from the above calculation of the currents that our physical picture
of what is going on also fails at these distances.

We shall tackle and resolve these questions starting in Chap. 5.
Before doing this let us look in the vast, if limited, domain of physical
problems where the applied forces are weak and smoothly varying on
a scale whose energy unit is mc? and whose distance unit is #/me.
Here we may expect to find fertile fields for application of the Dirac
equation and theory for positive-energy electrons.

Problems

1. Derive (3.11) in a representation-free way directly from the Dirac
equation.
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2. Prove that (3.9¢) is independent of the specific representation of the Dirac
spinors.

3. Derive (3.31) for the current in & general packet (3.30).
4. Verify (3.36) as the conditions for current conservation.

5. Find the energy levels of a Dirac particle in a one-dimensional box of depth
Vo and width a.
6. Verify the completeness relation

4

L
wa (e'p)ws™ (€p) = o Oa

re=1
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4.1

4.2

Introduction

Aside from the negative-energy problem, the Dirac equation appears
to provide a suitable description of the electron. It has a sensible
nonrelativistic limit, and it automatically yields the correct magnetic
moment. We now investigate the interaction of the Dirac electron
with prescribed external potentials. In particular, we shall be pri-
marily interested in low-energy properties, avoiding the difficulties
associated with the as yet uninterpreted negative-energy solutions,
which are an essentially relativistic feature. We anticipate from our
discussions of the packet in the preceding chapter that in practice
they play a very minor role in a problem such as the hydrogen atom,
which finds the electron localized in Bohr orbits of radius! 1/am >> 1/m.

We shall see, in fact, that the stationary energy levels deduced
from the Dirac equation for the hydrogen atom are in exceedingly
close agreement with the observed eigenvalues. However, before
indicating the solution to the eigenvalue problem in the Coulomb
potential, it is instructive to cast the Dirac theory in a form which
displays the different interaction terms between the electron and an
applied field in a nonrelativistic and easily interpretable form.

We consider, then, a systemnatic procedure developed by Foldy
and Wouthuysen,? namely, a canonical transformation which decouples
the Dirac equation into two two-component equations: one reduces to
the Pauli description in the nonrelativistic limit; the other describes
the negative-energy states.

Free-particle Transformation

As a first illustration of the Foldy-Wouthuysen transformation we con-
sider the Dirac equation for a free particle, most conveniently—for
this purpose—written in hamiltonian form and with the « matrices in
the representation introduced in Eq. (1.17). We search for a unitary
transformation Up which will remove from the equation all operators
such as o which couple the large to the small components. We call

! Henceforth we set i = ¢ = 1. The Compton wavelength of the electron is
1/m = 3.86 X 10~ ¢m, and the rest energy n: = 0.511 MeV. The dimensionless
fine-structure constant is o = e2/4r 22 1{ 34,

1011 . 10“

= 5, 8ecT!l =m

0.511 MeV = 386 cm 1.99

in these units.
2 L. L. Foldy and S. A. Wouthuysen, Phys. Rev., 78, 29 (1950)

46
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any-such operator “odd”’; operators which do not couple large and
small components are “even”; thus e, v, v, ete., are odd, and 1, 8, d,
etc., are even.

Writing Ur = e with S hermitian and not explicitly time-
dependent, the unitary transformation is

Y o= etiSy
. Oy

and (%5 = etSHY = eHSHe Sy = HY

H’ is to contain no odd operators by construction.

Since H = a+p + Bm with {e¢B} = 0, our problem is quite
analogous to that of attempting to find a unitary transformation
which changes a two-component spin hamiltonian 3 = o¢,B, + ¢.B,
into a form which contains only even operators (that is, 1 and o).
Such a transformation is simply a rotation about the y axis and the
operator is et(/Vnbe = gtiteede with tan 6, = B,/B.. This suggests
that a good operator to try in our case would be

eiS = efe-pile) = cos [p|6 + ﬁ,‘lﬁf sin |p|6

Pl

where the right-hand side is established by expansion of the exponential
in powers of 6.
With this choice H’ becomes:

H = <OOS lpl6(p) + %B sin Iplﬂ(p)> (e p+ pm) (COS lp|8

~ 24P sin llo)

= (a+p+ Bm) <cos lp| 68 — 'BT—P'IP sin |p|0>2
= (e p + Bm) exp (—2B« - pb)
mn

= « - p(cos 2|p|6 — o sin 2|p|8) + B(m cos 2|p|6 + |p| sin 2|p|6)

In order to eliminate the odd operator, we choose

lp

tan 2'p|6 = %
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and the transformed hamiltonian is

H = g/m + p° (4.1)

as may be verified with the aid of the triangle construction of Fig. 4.1.
The new hamiltonian is just the one rejected in Chap. 1, with the
important change that now the negative energies are also accepted.
The negative energies and four-component wave functions are the
price we must pay in order to have a factorization of H' in (4.1) into a
linear Dirac equation.

The General Transformation

We turn now to the more general case of an electron in a prescribed
external electromagnetic field and search for the corresponding trans-
formation S. The hamiltonian is

H=qa-(p—eA) + pm+ ed
=pm+ 0+ 8 (4.2)

with O = a- (p — ¢A) and & = ed; as before, 30 = — 0B and
BE = 183

The fields appearing in (4.2) and hence the hamiltonian itself
may be time-dependent. In the general case the transformation S is
also time-dependent and it is not possible to construct an S which
removes the odd operators from H’ to all orders, as was achieved in
(4.1). Therefore, we content ourselves with a nonrelativistic expansion
of the transformed hamiltonian in a power series in 1/m, keeping terms
only through order (kinetic energy/m)? and (kinetic energy)(field
energy)/m?.

Pp+m
p Fig. 4-1 TFoldy-Wouthiysen triangle construction.

2lple
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Again we introduce the transformation by

Y o= ey
finding
d

. —zS‘l/ — le[/ He—zSyl,' — e——zS ('L aé_"’;) _'_ ( & e—7S> ‘//

111/’ i _ 2 — r_ 107
6t [eS<H zat>e 5]¢ = H'Y

Since S is expanded in powers of 1/m and is therefore “small’”’ in the
nonrelativistic limit, we expand the quantity in brackets in a series
of multiple commutators, using the relation!

Thus

eHSHeS = H + i[8,H] + (;), 18,18, H]] + -

+ 0SS, - IS H

n!

Since S = O(1/m), to the desired order of accuracy we have
— H +d[S,H) — JISISH — | S15,S,H]]
1 e 1

To start constructing S, we consider just the terms through order
unity :

H = Bm+ &+ 0+ iS,8m (4.3)
We require that the odd term in (4.3) vanish; and taking our cue from
the behavior in the free-particle case, we choose S = —i80/2m.

1 This may be verified by considering

— NS ,—AS — A (‘ﬂ
F(\) = eMSHe En =% @
It follows that
élf = piAS, —i\S
an = ¢ i(S,H]e
and thus
%}5 = eNSS[S, -« - L[S, H] - - -Jle™S

from which the identity follows upon setting A = 1 in (a).
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We then find, to the order of accuracy desired,

IS,H] = =0 + 2 [0,6] + 2 Bo?
CistsH = -2 Liofea) - o1y 00
SISISISHI = o) — L gor
TISISISISHI = oo
B
— 21881 = — ghyl0,8]

Collecting everything together,
B -8 (m + o 8‘%) +8 g [0[0,8]] — E};ﬁ [0,6]

+2 (0,6] — o+ ?59 —pmt e+ (44)

The odd terms now appear in (4.4) only in order 1/m. To reduce
them further, we apply a second Foldy-Wouthuysen transformation
using the same prescription:

,_—ig,, _—iB(8 80
S=—o—;—~(27n[o,]———+—>

3m?
Under this transformation we find

™ ) o S 8 166’
" 5iS / R — /1 of =
H' =e (H 1.—8,>e =Bm+ & —+—2 {(9,8]—}—2

— ﬁm + 8’ + @”
where 0" isnow O(1/m?). Finally, by a third canonical transformation

"o _ :iﬁeu
8" = 2m
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this term may also be eliminated in the same way, the end result being

H" = ¢is" (H - @;) e = pm + ¢

- 0! 1 i ,
= 8(m+ g = o) + 8 = gz (01081 — g (0,8
Evaluating the operator products to the desired order of accuracy, we

find

0F _(a-(p—eh))’ (p—cA)? ¢ . g
om 2m 2m om

1 .. e 7
Rm? ([0,8] 4+ 10) = ’m? (=t -V® — ja- A) & a-E

1e 1e
[O,Wd'E:l zg;rz_i[a'p,o"E]

ie .ol
WWEW( )*m“‘“"

)
d1vE+ — G+ cullE-{- —d Exp

and thus the reduced hamiltonian is to this order

H”’fﬂ<m+w e;)-i—e@—efl-ﬁd-B

2m 8m 2m

e e e . -
— %—zd-cuxlE — ZM?G-E Xp— Sr—n‘?dIVE (4.5)

The individual terms in (4.5) have a direct physical interpreta-
tion. The terms in the first bracket give the expansion of

Vip — eA)? + m?
to the desired order, showing the relativistic mass increase. The
second and third terms are the electrostatic and magnetic dipole
energies. The next pair of terms which taken together are hermitian

comprise the spin-orbit energy, and they have a very familiar form
in a spherically symmetric static potential. In this case curl E = 0,

10V 10V
dEXp——;ward r><p—-—;—~ard-L
and this term reduces to
e 13V
Hspin-orbit, - am? ; 737 é:L (46)
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Equation (4.6) is in agreement with the classical result obtained by
considering the magnetic field B’ = —v X E experienced by the mov
ing electron. The interaction energy one would expect is thus

¢ r= ¢ g,

However, this is reduced by a factor of 2 owing to the Thomas pre-
cession effect and indicates that the orbital moment of the electron

has the standard gyromagnetic ratio of g, = 1.

The last term—known as the Darwin term—may be attributed to
the zitterbewegung. Because the electron coordinate fluctuates over
distances ér ~ 1/m, it sees a somewhat smeared out Coulomb poten-
tial; the correction is

- "V \

(V) = (V(r + 8r)) — (V()) = \a A4 E b by 5 )

~

N 1
ot ViV ~ G \%a% (4.7)

| =

in qualitative accord with the sign, form, and magnitude of the Darwin
term,

The Hydrogen Atom!

We turn to a discussion of the bound-state solutions of the Dirac
equation, considering in particular the energy levels of the electron
in a Coulomb field. Tor this problem the Dirac equation is

HYy =la-p+ pm + V(r)ly = Ey 4.8)

with V.= —Za/r. In order to separate variables, we take advantage
of the fact that the angular momentum of a particle in a central field
is conserved. KEvidently J =L + S =r X p + 156 commutes with
the hamiltonian (4.8) and therefore we may construct simultaneous
eigenfunctions of H, J? and J,. To do this, we call on experience
with the Pauli matrices, observing that in the representation of

! The eigensolutions in the Coulomb potential were first given by C. G.
Darwin, Proc. Roy. Soc. (London), A118, 654 (1928), and W. Gordon, Z. Physik,
48, 11 (1928). For a complete discussion and references of the atomic applications
of the Dirac equation see H. A. Bethe and E. E. Salpeter, “Quantum Mechanics
of One- and Two-electron Atoms,” Academic Press Inc., New York, 1957, and
M. E. Rose, ‘““Relativistic Flectron Theory,” John Wiley & Sons, Inc., New York,
1961.
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¢ 0
dz[o d}

is diagonal in terms of 2 X 2 Pauli spin matrices. Therefore, if we
construct ¢ in terms of two-component spinors

v=[7]

the angular separation for the solutions of ¢ and x is precisely that
of the Pauli two-component theory. The two-component angular
solutions are eigenfunctions of J2, J,, L2, and S? and are of two types:

Chap. 3

Forj=14+ 15
L+ Y5+ m o,
XS
Oim = - (4.90)
L+ =m in
2l + 1 g
Forj=1— 14
I+ —-—m .
2141 Yi
Om = ——— (4.9b)
— \/_[ + yz +m Ym+%
2l + 1 :

The spherical harmonics here are written with the convention
Y. = (=)"Y,_,, and the solution ¢ exists only for > 0. The
two solutions above satisfy the eigenvalue equations

T2 = (7 + Dem

and
L agf = (7* ~ Lt — 3ot
= — 1+ ey
with

_[OHD =G+ =1+
+H=FG+Y)  j=1-

For a given j they are of opposite parity, since their [ values differ
by 1, and can be formed from each other by a scalar operator of odd
parity. This operator will be a linear combination of YT (6,¢) since
it must change the ! value by 1, and is therefore proportional to r.
Dotting with ¢, the only pseudovector at our disposal, we form the
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pseudoscalar ¢ « r/r and find with the above sign convention
+) = 6 (=)
o = w,m (4.10)

The general solution to the central field problem for a given jm is
D + . Y—
ZC:J‘ o + GJ’ ol
Yim =
Ft Fr
2 T S
7 7

We may finally break this down into two solutions each of definite
parity. Since V(r) is invariant under reflection of coordinates, we
know that the energy eigenfunctions can be classified into parity
eigenstates along with (j,m); and therefore we form the even and

odd solutions, which have the property under the transformation

x' = —x

V(@) = BY(e) = () (4.11)
These are given by

isz !
Y

o

jm T Fljd .r . (412)
T ﬁojm
ror

where as a common notation we have introduced
G_tG? i=1+% . [F;* j=1+ 1

l. = . (l. — _
oler =11 " F; - 1

o {dm i=1+%

J'In« goj_/,n/ ]- — l _ %

and have made use of (4.10). The parity of these solutions is (—)*
by the convention (4.11). With the aid of the following identities we
can now find the radial equations following from (4.8):

J P)L:) }m‘%f<d'rd'p)‘;/—‘<g')¢j'm
_ .2r<lr_+ ;. L)f(;) o

,
[0 a4 0 IR (45) e

.
fl
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The radial equations are then

(B-m+ 2V 6u0) = — 0 1 <y

0Gis(r) (4.13)

<E+ m+ )ph<>_+ +56,0)

The bound-state solutions of these equations may be found by standard
methods;! we quote only some of the results.
The energy eigenvalues are

Za ¥
L, = 1 — (4.14
m[ +<n—<j+%>+v<j+%>2—22aﬂ)] )

where the quantum number n = 1, 2, ., o is a positive integer
and the angular-momentum elgenvalues range from 0 to j + 14 < n,
with the restriction 0 <1 < n — 1. Expanding (4.14) in powers of
(Za)?, we see that n corresponds to the principal quantum number of
the nonrelativistic theory

1 2% (Za)2{ 1 3 s
E, = {1 T 5T {1 + T <‘"7—:*:*/ 4n):‘ + 0((Ze) )]
(4.15)

The ground-state energy is, withn = 1, j = 14
L, =mA1— Z%?>=m —%2%>m — YZta'm + - - -

The corresponding spin-up and spin-down normalized eigenfunctions
are

Yn—tjms 1 (7,0,0)

o

- (2mZ—a_2-/J V/ B W];’i—’y% (2mZo".)‘y——le-—~mZar u cOS 6
Vir  V2r(l + 2v) Lo
—-LZ— v) sin et
o -
¢n=1,j=4,é, { (T‘, 0} 90)
0
L]
G N R TP K U=t S
Vir Vo + 2v) Za
:&;1). cos 0
Za -

!} Darwin, Gordon, Bethe and Salpeter, and Rose, op. cit.
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with v = /1 — Z%a% In the nonrelativistic limit y — 1 and
(1 — 9)/Za— 0, and they reduce to the Schrédinger wave functions
multiplied by two-component Pauli spinors. In the relativistic
case we see that as r — 0, ¢ exhibits a mild singularity of order
(2mZar)~ %012 which becomes important only at distances

e~ 2 2%?

ImZa

For Za > 1, v is imaginary and the solutions exhibit an oscillatory
Yehavior reminiscent of that found in the Klein paradox. In this
case there is no longer a gap between the positive- and negative-energy
spectra, and again we lack a physical interpretation of the solution.

In classifying the energy levels (4.14) it is customary to denote
them by their nonrelativistic labels, that is, by the orbital angular
momentum ! appearing in ¢/, and by the total j. In the following
table we list a few of the first terms:

n l 7 E.;

1814 10 % mA1 - Z

\/1+\/1 — Ztat
moa | V1 = 2

2

14+41 - 22
" 2

V4 — Zta?

28 | 2 0

N
[N

2P 2 1

N
[N

2P34 2 1

NN
w3

The 28, and 2Py, states are degenerate, being the two eigenstates
of opposite parity corresponding to the same n and j. The 2Py
state is higher in energy than the 2Py, state; the energy difference,
(m(Za)4/32)(1 + 0(Za): + - - -), is the fine-structure splitting due to
the spin-orbit interaction, (4.6). In general, the state of larger j,
for a given n, lies higher in energy according to (4.15).

How do these predictions agree with observations for the H atom?
Prior to 1947 the agreement was completely satisfactory after the
above predictions were modified to take into account the hyperfine
splitting of each level due to coupling between the electron and proton
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E
3p¥?
172 3p¥? —_— Y
38N —= 3pV2 T_’——3D
Nearly equal (split by Lamb shift)
" 2P3/2 —]
28— Fine structure (spin-orbit coupling)
12 |
ZP L
Lamb shift

12 L—— (triplet) }
18 Hyperfine splitting
E (singlet)

L.
—=

Fig. 4-2 Low-lying energy levels of atomic hydrogen. The diagram is
not drawn to scale.

spins. In 1947 the Lamb-Retherford measurements® of the H-atom
fine structure confirmed an earlier suspicion of a shift of the 25, levels
upward relative to the 2P, lines. This “Lamb shift,” breaking the
degeneracy of levels with the same n and j but differing [, arises
from the interaction of the electrons with the fluctuations of the
quantized radiation field. Both the hyperfine structure splitting
and the Lamb shift have been measured and calculated to a very high
precision with good agreement.?

The hyperfine structure results from the interaction of the proton
with the electron magnetic moment.®* This has the effect of splitting
all lines into doublets corresponding to the two possible states of
total angular momentum compounded from the j of the electron

1'W. E. Lamb, Jr., and R. C. Retherford, Phys. Rev., 72, 241 (1957). For
references to subsequent work see Bethe and Salpeter, op. cil.; see also W. T..
Lamb, Jr., Repts. Progr. Phys., 14, 19 (1951).

2 Tor a review of the current situation, see R. P. Feynman, Proc. 1961 Solvay
Conf., Interscience, New York, 1962.

3 E. Fermi, Z. Physik, 60, 320 (1930); see also Bethe and Salpeter, op. cit.,
p. 163.
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system and the half-integer spin of the proton. Let us compute the
magnitude of this effect for s states. For our purpose a nonrelativistic
description of the electron suffices. The interaction is of the form

H’ = +M6.B
2m
— gpe 304! / 1
and B 2Mp/dr P X A X ¥) g

Here I is the proton spin operator (I. = +%4) and p(+) is the mag-
netic moment density of the proton, owing to the fact it is not a
point particle. Using the relations v x I x V) =1v: — I1-V)V
and taking the angular average for spherically symmetric wave func-
tions so that

V.V, = 145,V?
we find

2 e 39/ o (r) U2 1o N_2 e

The energy shift is then given, in nonrelativistic theory, by

_2 .92 g [ @ wr@en)

ABw = (aH'Yn) = 3 4mM
»

l gre® )
R PROLE
1

2

_m2é Z3a? ( m T
@139 e \01,)°

61 [ +14 triplet states
— 34 singlet state

¢

with

The splitting 5, of the nth s-state level is thus

5 = Lo |8, Ll (m
T g g9 s\,

and is reduced by the mass ratio m/M, relative to the fine structure.
Welton! has given a simple qualitative description of the Lamb

shift by considering the interaction of an electron, treated nonrela-

tivistically, with the vacuum fluctuations of the electromagnetic field.

Since the dynamics of a normal mode of the electromagnetic field is

equivalent to that of a harmonic oscillator, each mode upon quantiza-

tion acquires a zero-point energy of w/2. As a result of this quantum
T, A. Welton, Phys. Rev., 74, 1157 (1948).
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effect there are now fluctuating electromagnetic fields even when no
external fields are applied. Although the average field strengths
are zero, their mean-square values are nonvanishing, and this leads to a
mean-square fluctuation in the electron’s position coordinate due to its
coupling with the field. It is the amplitude of this jiggling of a bound
electron in the hydrogen atom that we estimate. It implies, as we
saw in our discussion of the origin of the Darwin term, (4.7), an
additional interaction energy L4((6r)2)V2V from the smearing out of
the Coulomb potential V(r) seen by the electron. To lowest order,
the change in the energy level for the electron due to this is then

AE,(Lamb) = Lg((dr)D [YXV2V (r)y, dér
= 2 Za{(4r) ) O)] (4.16)

To estimate ((8r)%), we treat the electron classically and non-
relativistically as a charged particle. Its equation of motion for
oscillation about its equilibrium coordinate in the atom is 8t = ;61- E,

where E is the fluctuating electromagnetic field. For the wth Fourier
amplitude we have

ek,

or, = — —

Mew?

and hence for its mean-square amplitude

AL
((br,)%) = Tt
and Gryy = 2 [ %@y (£.17)

To calculate the mean-square field strength, we consider the total
vacuum field energy

1 vyl
2]d3x(E2+B2)—AZIk22w

where the two values of X refer to the two states of transverse polariza-
tion and the sum extends over all modes in a large box of volume

= far Y- (2[;:)3 [ @k
k

Since [ d*z E? = [ d%x B? and w = [k| for free electromagnetic waves,
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the mean-square field strength in vacuo is
&) = 1y [ B = 2—1—fd3lc9 =—1—/w3dw = [ dw (B2
L3 ’ (2m)3 2 2 @
Inserting in (4.17), we find

((6r3) = g% / de (4.18)

w

where the frequency integral extends from 0 to «. Because of the
crudity of our approximate treatment of the electron, the integral
diverges at both ends. This is not the case for an accurate relativistic
treatment of the electron localized in a hydrogen atom. Wavelengths
larger than the Bohr radius ~(Zam) ! will not be effective, since there
must be & minimum frequency for the induced oscillations correspond-
ing to this typical atomic size; therefore, wmin ~ mZa. Thereisalsoa
high-frequency cutoff at distances ~ the electron Compton wave-
length 1/m coming from the relativistic structure of the electron.
This structure corresponding to the zitterbewegung amplitude suggests
that frequencies higher than wm.x ~ m will not be effective in jiggling
the electron. Hence we approximate [ dw/w ~1In (1/Ze) and find
for the mean-square amplitude of the oscillations in the vacuum field,

by (4.18),
(5r)?) = (27" In 72) <nll)2 (4.19)

The resulting energy shift is by (4.16)

", _ég_aQ _1_ ’ 1 2
AL, = 3 <m> In%[xpn(O)l

- [>§ 2o <1n Z—1a>] (Ygam)bio

O 7?,3
= 1,000 me/sec forn =2, Z =1,1=0

This accounts for most of the measured shift of the 2.5, level in the
hydrogen atom; for the p and higher I states the shifts are not pre-
cisely zero but are much smaller because the wave functions at the
origin are zero. By way of comparison with the ordinary fine strue-
ture we see by looking back at the hamiltonian (4.5) that the ratio of
the Lamb term to the Darwin term is (8«/3w)[In (1/Z«)] corresponding
to the ratio of the mean-square fluctuation amplitude (4.19) to the
zitterbewegung structure ~(1/m)?
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Problems

1. Derive (4.10).

2. The Dirac equation describing the interaction of a proton or neutron with an
applied electromagnetic field will have an additional magnetic moment interaction
representing their observed anomalous magnetic moments:

X K{€
iV — et + A o — M\ y(z) =0
where

a a
Ar — — A
oz [ii M

Fuv =

represents the field strengths as defined in Appendix 1.

a. For the proton, ¢ = p, ¢, = |e[; for the neutron ¢ = n, e, = 0. Verify that the
choice of x, = 1.79 and x, = —1.91 corresponds to the observed magnetic moments
and check that the additional interaction does not disturb the Lorentz covariance
of the equation. Check also that the Dirac hamiltonian is hermitian and that
probability is conserved in the presence of the acditional interaction.

b. Make a Foldy-Wouthuysen transformation for the neutron, keeping terms to
the accuracy of (4.5), and give a physical interpretation of the individual terms.
Calculate the cross section for the scattering of a slow neutron by an applied
electrostatic field. How might this be measured? [See L. L. Foldy, Rev. Mod.
Phys., 30, 471 (1958).]

3. Solve for the exact energy eigenvalues and eigenfunctions of a Dirac electron in
a uniform static magnetic field. [See L. D. Huff, Phys. Rev., 38, 501 (1931);
M. H. Johnson and B. A. Lippman, Phys. Rev., 77, 702 (1950).]

4. Calculate to lowest order in «? the first-order Zeeman effect for an electron in a
hydrogen atom. If the electron gyromagnetic ratio differs from g = 2, how are the
Zeeman levels altered (to first order in the difference g — 2)?

5. Discuss the precession of the spin of a charged Dirac particle with an anomalous
magnetic moment « in an applied static magnetic field. Show in particular that
the difference in the spin and orbital precession frequencies is proportional to
g — 2, or x. How does it depend upon the mass of the particle? See:

H. A. Tolhoek and 8. R. de Groot, Physica, 17, 17 (1951).

K. M. Case, Phys. Rev., 106, 173L (1957).

H. Mendlowitz and K. M. Case, Phys. Rev., 97, 33 (1955).

M. Carrassi, Nuovo Cimenio, 7, 524 (1958).

V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. Letters, 2, 435 (1959).
Louisell, Pidd, and Crane, Phys. Rev., 94, 7 (1954).

Schupp, Pidd, and Crane, Phys. Rev., 121, 1 (1961).

Charpak, Farley, Garwin, Muller, Sens, Telegdi, and Zichichi, Phys. Rev. Letlers, 6,
128 (1961.)
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6. Construct an additional interaction term to represent a possible anomalous elec-
tric dipole moment of a Dirac particle. What happens to the parity transforma-
tion? What is the effect of such a term on the hydrogen-atom energy levels?
[See G. Feinberg, Phys. Rev., 112, 1637 (1958); E. E. Salpeter, Phys. Rev., 112,
1642 (1950).]

7. Owing to meson effects (discussed in Chap. 10), the proton charge is distributed
over a small region of spatial extent ~1071* ¢cm. Compute the effect on the
hydrogen-atom energy levels of such a charge distribution with mean square
radius » =2 0.8 X 10713 ¢cm. Compare the result with the Lamb shift.
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5.1 The Problem of Negative-energy Solutions

The negative-energy solutions of the Diraec equation have been
touched on in some of our earlier discussions, and their presence in the
construction of a localized packet, for example, has been computed.
However, we have so far managed to avoid coming to grips with the
problems of interpreting them and of understanding their implica-
tions.! Let us now face up to these questions.

By their very existence the negative-energy solutions require a
massive reinterpretation of the Dirac theory in order to prevent atomie
electrons from making radiative transitions into negative-energy
states and cascading down to oblivion. This is no problem if we com-
pletely neglect interaction of the electrons with the radiation field.
We may then calculate stationary solutions as in the preceding chapter
and find energy eigenvalues and transition amplitudes which agree in
general very well with experiment. However, the problem of keeping
the electron from tumbling into a negative-energy state exists in
principle, as well as in practice, if we wish to calculate atomic properties
to such great accuracy as requires inclusion of the radiation interaction.
The transition rate for an electron in the ground state of a hydrogen
atom to fall into a negative-energy state may be calculated by apply-
ing semiclassical radiation theory and using the wave functions found
in Chap. 4. The rate for the electron to make a transition into the
energy interval —mc? to —2mec? is

~ 2at me? ~ 108 sec™!
T h
and it blows up if all the negative-energy states are included. This is
clearly nonsense!

We must find some treatment of the negative-energy states other
than that suggested by the one-particle Schrédinger theory if the Dirac
equation is to survive. Dirac did this for us in 1930. He formulated
the “hole theory,” which resolves the dilemma posed by the negative-
energy solutions simply by filling up the negative-energy levels with
electrons, in accord with the Pauli exclusion principle. The vacuum
state is then one with all negative-energy electron levels filled and all
positive-energy levels empty. The stability of the hydrogen-atom
ground state, for example, is now assured, since no more electrons can
be accommodated in the negative-energy sea by the Pauli principle.

There are many consequences of this new assumption of a filled

1P, A. M. Dirac, Proc. Roy. Soc. (London), A126, 360 (1930). See also J. R.
Oppenheimer, Phys. Rev., 35, 939 (1930).
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Unoccupied
states

@ Electron
Fig. 6-1 Pair production: a negative-
energy electron is excited to a positive-

energy state by radiation. Radiation

Occupied states Hole

sea of negative-energy electrons. It is possible for a negative-energy
electron to absorb radiation and be excited into a positive-energy
state, as shown schematically in Fig. 5.1. 1If this occurs, we observe
an electron of charge —|e¢| and energy +E and in addition a hole in
the negative-energy sea. The hole registers the absence of an electron
of charge — |e| and energy — E and would be interpreted by an observer
relative to the vacuum as the presence of a particle of charge =+ |e| and
energy +I; that is, the positron. This is the basis of the hole-theory
interpretation of pair production. Correspondingly, a hole in the
negative-energy sea, or a positron, is a trap for a positive-energy
electron and leads to electron-position pair annihilation with emission
of radiation, as shown in Fig. 5.2.

We recognize that with the hole theory we transit to a many-
particle theory describing particles of both signs of charge. No longer
does the wave function have the simple probability interpretation of
the one-particle theory, since it must now also record the production
or annihilation of electron-positron pairs.

Recall, however, that the Klein-Gordon equation was discarded
and the development of the Dirac equation was motivated by the

Electron

Fig. 5-2 Pair annihilation: a positive-
energy electron falls into a negative-energy
hole emitting radiation.

Radiation
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desire to establish a one-particle theory. Therefore, we may ask,
why not abandon the Dirac equation too? We are reluctant to
discard it for the simple reason that by now we have uncovered an
impressive body of “truth” in the Dirac equation—it predicts the
correct hydrogen-atom energy spectrum and g value of the electron to
high accuracy. Moreover, positrons as first predicted by the theory
have been observed.

Thus the historical path of reasoning mapped out originally by
Dirac has led to the desired equation for an electron, though we have
now reinterpreted the theory and thereby renounced the motivation
that started the development. The history of physics has numerous
other examples of this pattern of progress. Therefore, we shall retain
the Dirac equation and the hole-theory interpretation and reject
instead the one-particle probability interpretation which we originally
set out to achieve. We note here that it should also be possible to
return to the second-order Klein-Gordon equation and rescue it by a
suitable rcinterpretation of the wave function there too.

The advantage of the Dirac over the Klein-Gordon equation is
that it correctly describes electrons of spin 14 with ¢ = 2. The Klein-
Gordon equation applies for spinless particles such as pions, as will be
discussed in Chap. 9. For both equations we have the invariant,
quadratic energy-momentum relation for free particles p.p* = m2
In both cases we must reinterpret the negative-energy solutions in
order to secure stable ground states, and this leads unavoidably to
the existence of antiparticles as well as particles. The particles are
described by positive-energy solutions—for the Dirac equation, elec-
trons -of mass m and charge —[¢|; the antiparticles are described by
the reinterpreted negative-energy solutions and, in the present
instance, are positrons of mass m and charge -+ |e.

Charge Conjugation

There thus emerges from the hole theory a fundamental new sym-
metry in nature: to each particle there is an antiparticle and, in par-
ticular, the existence of electrons implies the existence of positrons.
We seek now a formal expression of this symmetry which we use to
form directly the wave function of a positron from that of the missing
negative-energy electron to which it corresponds.

By our physical picture a hole in the negative-energy sea record-
ing the absence of an energy — I (E > 0), and the absence of a charge e
(for an electron ¢ < 0), is equivalent to the presence of a positron of
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positive energy +FE and charge —e. We thus have a one-to-one
correspondence between the negative-energy solutions of the Dirac
equation

1V —ed —m)y =0 (5.1)

and the positron eigenfunctions. Since by their interpretation
positrons appear as positively charged electrons, the positron wave
function ¢, will be a positive-energy solution of the equation

(Y + ed — m)y, = 0 (5.2)

Conversely and with historical hindsight we could equally well
start with the Dirac equation (5.2) for positrons. Nowhere in our con-
siderations has the sign of the charge e played an essential role. Elec-
trons will then emerge from the hole theory reinterpretation as the
absence of the negative-energy solutions of (5.2). We have thereby
a one-to-one correspondence between solutions of (5.1) and (5.2) for
both signs of charge and are led to construct an operator transforming
the two equations into each other.

First we observe that it is necessary to change the relative sign
between the two terms ¥ and A in transforming from (5.1) to (5.2).
We accomplish this most readily simply by taking the complex

conjugate: 19/9x* = —(19/9z*)* and A, = + AF. Upon doing this,
we find that (5.1) becomes
. ' ;
[:(Z a‘; + 6/1“> % + 7'7/:| lp'k =0 (53)

If we can now find a nonsingular matrix, denoted Cy°, with the algebra

(CyOy (Cy®) = —# (5.4)
we shall have the desired form

(1Y + ed — m)(Cy%*) =0
with
Cy%y* = CYT = ¥, (5.5)
the positron wave function. That there exists such a matrix € may be
verified by explicit construction. ILet us exhibit it in our representa-
tion of (2.6), according to which y%y#'y® = +T g0 that (5.4) becomes
CyrTC"1 = —# or
C—Ly#C = ._y#T

In this representation € must commute with v; and v; and anti-
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commute with v, and v,, and a suitable choice is
C =iy = —(C!= —-Ct = —(CT (5.6)

It suffices to be able to construct a matrix C in any given representa-
tion; the unitary transformation to any other one when applied to this
C will give a matrix appropriate to the new representation. We note
also that there is a phase arbitrariness in our definition of C in (5.6);
the similar circumstance for the parity transformation was discussed
earlier. In the present considerations the phase of a wave function is
of no physical interest and we do not pursue this question.

Let usexamine in detail what the transformationy, = CyYT = yi*
does to a negative-energy free-particle eigenfunction. For a negative-
energy electron at rest with spin down we have the wave function

0
I |o
4 — +imt
VE= om0 |°
1
The corresponding positron solution is then
0 0 0 —4]|0
. S 0 ) 010 1 )
2,047 — —_— p—imt
wHE=4H g 5 0 oflo]|en®®
—1 0 0 01
1
I 1o _,
= e egmimt = Yl (5.7)
0

That is, the absence of a spin-down negative-energy electron at rest is
equivalent to the presence of a spin-up positive-energy positron at rest.
In the field-free case there is no difference between an electron and
positron, and we see by (5.7) that the transformation (5.5) has formed
just another electron solution.

Applying the same transformation to an arbitrary spin-momen-
tum eigenstate, we find, using [C,ys] = 0 and v = v5 = v¢,

Ve = CYT = Cygp™ = Cro <ép + m) (1 _’_275$) Y*

2m

T — T
= (") ()

(3
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Again we see that the operation of (take the complex conjugate) X
(matrix multiplication with Cy, = 4y?) has yielded from a negative-
energy solution described by four-momentum p, and polarization s, a
positive-energy solution described by the same p, and s,. In terms of
free-particle spinors, (5.5) reads

@ y(p,s) = Cul(p,s)
e Du(p,s) = CT(p,s)

showing that »(p,s) and u(p,s) are charge-conjugate spinors, within a
phase factor ¢(p,s).
Recall that the solutions were constructed such that

o=+ P Fm=E>0

Also notice that s does not change sign under charge conjugation but
the spin does reverse as we saw in (5.7). As discussed in Sec. 3.2, this
difference lies in the fact that the spin-projection operator has the form
(1 + vo 6 + s/2) in the rest system where s+ = (0,s), and the sign change
comes from the vy, matrix.

The operator in (5.5) explicitly constructs the wave function of a
positron. We may develop from it an invariance operation for the
Dirac equation by defining the additional operator which changes the
sign of the electromagnetic field. Then the sequence of instructions
(1) take complex conjugate, (2) multiply by Cvy,, and (3) replace all
A, by — A4, is a formal symmetry operation of the Dirac theory. It
transforms Eq. (5.1) [(5.2)] for the electron [positron] into the same
equation for the positron [electron] and is called the charge conjuga-
tion transformation, denoted by @. The physical content of the
transformation of charge conjugation is that for each physically
realizable state containing an electron in a potential A,(x) there cor-
responds a physically realizable state of a positron in the potential
— A, (xz). Thus € changes spin-up electrons of positive energy to
spin-up positrons of positive energy by transforming a positive-energy
solution of (5.1) to a negative-energy solution of the same equation,
that is, to a positron according to the hole theory.

That the dynamics of a positron in a field — A4, is exactly the
same as that of an electron in a field + 4, is not at all surprising to us
from classical considerations. The surprising and new result to which
we have been led by the hole theory is that if there exist electrons of
mass m and charge e, there necessarily must also exist positrons of the
same mass m but of opposite charge —e.
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It is indeed one of the strongest votes of confidence in at least
the partial validity of relativistic quantum theory that electrons of
both signs of charge and of the same mass are observed in nature.

Vacuum Polarization

The hole theory, while removing the negative-energy difficulty, leads
to new fundamental barriers to be surmounted and new physical
predictions to be verified by experiment. Ior example, consider the
influence of the vacuum on the definition of the charge of the electron
and upon the interaction between two charges. A positive-energy
electron electrostatically repels the electrons in the negative-energy
sea. It thereby polarizes the vacuum in its vicinity, and the charge
density of the electron, po(r), plus polarized vacuum, p,(r), measurcd
relative to the vacuum, is schematically shown in Fig. 5.3. The
charge of the electron as seen by a macroscopic applied field, or by a
test charge at a large distance, is [ d*[po(r) + p,(r)] = e, the “‘physi-
cal” charge. However, for a test charge probing at distances ro < R,
the apparent charge is more negative until, as ro— 0, the charge
becomes [ d* po(r) = ey, the “bare’” charge, with |eo] > |e|]. This
phenomenon is observed in the hydrogen-atom spectrum. The elec-
tronic s levels are lowered relative to those with angular momentum
l # 0, since the [ = 0 wave functions bring electrons close to the
protons. This effect of vacuum polarization, calculated in Chap. 8,
reduces the Lamb shift slightly. We also take up there the question
of how to connect the ‘“‘bare” charge of an isolated electron with its
observed value at large distances.

y(r) p,(r) Pyt
| r.\ ~
r 7 r 7
y

Fig. 6-3 Effect of vacuum polarization on the electron’s charge
density. pois the charge density of the ‘“‘bare” electron and p, that
of the induced polarization “cloud’ of virtual electron-positron pairs.
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5.4

Another question arises from the hole theory: What is the mean-
ing of the infinite negative total charge in the vacuum as we have
defined it? For the present we sidestep this question, remarking that
there 1s no preferred direction in which an electric field from such a
distribution could point. Only inhomogeneities in this distribution
due to vacuum polarization are observable.!

Time Reversal and Other Symmetries

Let us turn now to the parity and the time-reversal transformations.
These are symmetry operations which are not included in the discus-
sion of proper Lorentz invariance of the theory. The additional sym-
metry of electromagnetic gauge invariance is evident from the form
of the coupling, p, — ed,, as remarked in Chap. 1. It is verified in
just the same way as in the Schrédinger theory.

Recall that the parity, or space reflection, transformation was
found in Sec. 2.3 to be expressed by

Py(x,t) = ¢ (X',1) = eloyOy(x,1) forx’ = —x (5.9)

¥/ (x',t) is readily interpreted as the space-reflected solution. For
plane-wave solutions the parity transformation (5.9) inverts the
momenta and leaves the spins unchanged as we classically expect.
This transformation on the wave function coupled with the familiar
one for the vector potentials, expressing their scalar and vector nature

Pd(x,1)
PA(x,t)

Il

&' (x',t) = &(x,1)

(5.10)
Aty = —A®XD) for x’ = —x

It

leaves the Dirac equation and all physical observables unchanged.
The physical content of the parity invariance of the Dirac theory
may be expressed simply in terms of a set of observations on a state
described by a wave function ¥(x,{). We record these observations
on motion-picture film, aiming our camera at a plane mirror forming
an image of the experimental setup. We say that the dynamics
underlying our observations is invariant under parity if the movie we
make of the mirror image describes a sequence of physically realizable
observations, that is, if we cannot tell from the sequence of events
observed in the film whether we are looking at a mirror image or not.
For this purpose a mirror image is all that need be considered, although

1 This question is discussed again in J. D. Bjorken and S. D. Drell, “Relativis-
tic Quantum Fields,” McGraw-Hill Book Company, Inc., in press.
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it is not identical with spatial reflection. A mirror inverts only the
coordinates normal to its plane; this must be followed by a rotation
through = about the normal for the parity transformation. Such a
rotation is already included, however, in our discussion of proper
Lorentz invariance.

Turning next to time-reversal invariance, its physical content
may be illustrated again in terms of the motion-picture film which we
use to record a set of observations on a state described by y¥(z). Let
us now run the movie backward. We say that the dynamics under-
lying the set of observations is invariant under time reversal if the
backward-run movie describes a set of physically realizable observa-
tions. This invariance will be guaranteed if we may change ¢ to
t = —tand carry out a transformation which reproduces the form of
the Dirac equation with the same rules for its interpretation. The
transformed wave function will describe the original electron running
backward in time and will be physically realizable, since it satisfies the
Dirac equation.

To construct the desired time-reversal transformation, we write
the Dirac equation in hamiltonian form

'LM = Hy = [e: (—1V — eA) + Bm + e®lY(x,t) (5.11)

at
and define the transformation J such that if ¢ = —¢, ¢/ (') = ().
Then (5.11) becomes!
% 3 )W () = —3HFW () (5.12)
and time-reversal invariance requires that either 3H ()31 = —H({'), or
33t = —4

To investigate the behavior of H under 3, we must specify the behavior
of the electromagnetic potentials A, when we let ¢ = —{. Since A
is generated by currents which reverse sign when the sense of time is
reversed, we require

Aty = —A(t)
Similarly,

&' (') = +o(1) (5.13)

since it is generated by charges; also V' = +V, sincex’ = +x. To
restore (5.12) to the original form, it is clear then that transformations
with 3 - - - 3! must change 7 to —¢; hence, 3 may be written in the

! The inessential dependence on x is suppressed here.
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form (take complex conjugate) X (multiply afterward by a 4 X 4
constant matrix T):

Y () = Ty*®) (5.14)
This gives
iaﬁff') = {(=To*T)[(—1v' — eA'(t'))]

+ (TB*T-1)ym + @' (1) }¢' (1)

In our usual representation (1.17), this means T must commute with
as and 8 and anticommute with «; and «3; thus

T = —iaia; = +1yiy? (5.15)

is satisfactory; the phase factor is again arbitrary.

To show that the transformation 3 corresponds to what we mean
classically by time reversal, we apply (5.14) and (5.15) to a plane-wave
solution for a free particle of positive energy:

5 <73 ;‘mm) <1 +2'Ya$> \[/(x,t)

- 1(EE) o (L) 1w

2m

(ﬁ' + m> (1 +2’Ys$'> v (x,1) (5.16)

2m

Il

where p' = (po,—p) and s’ = (so,—s) project a free-particle solution
with reversed direction of space momentum p and spin's. This opera-
tion, known as the Wigner time reversal, was first introduced in 1932.!

Since the space and time coordinate inversions P and 3 are invari-
ance operations of the theory, we may just as well include them, if we
wish, in constructing the positron wave function. Combining (5.9),
(5.14), and (5.15) with (5.5), we find a simple correspondence between
a positron wave function

yrer(2') = PCvo(3y(x))* = PCIW(x) = de'oysy(x)
with z, = —a, (5.17)

and an electron wave function multiplied by zei¢y; and moving back-
ward in space-time. For a free-particle spin-momentum eigenstate
Y(x) characterized by (p#,s*) and ¢ = —1, we see that

VE. P. Wigner, Gottinger Nachr., 31, 546 (1932).
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Vror(2') = deieys (_TD + M> (1 +2‘Ys$> ¥(@)

2m

- (22 (257 vrerta) (518

2m

Equation (5.18) differs from (5.8) only in the direction of spin and
tells us, therefore, that we may picture a positron wave function of
positive energy as a negative-energy electron wave function multiplied
by ie*¢ys and moving backward in space-time.

For an arbitrary solution in the presence of electromagnetic forces
we may explicitly verify this interpretation by returning to the nega-
tive-energy eigenvalue equation

[a- (—1V — eA) + fm + edly = —Ey (5.19)

and carrying out the transformation (5.17). Evidently, by (5.10)
and (5.13), Aﬁ: (') = + A,(x) under space-time coordinate inversion,

U

x, = —x,; then (5.19) takes the desired form
[e: (—2V' 4 eA'(2)) + Bm — e®' (2")[¥per(@’) = +E¢¥per(a’)

The interpretation of positrons as negative-energy electrons running
backward in space-time forms the basis of the Stiickelberg-Feynman
form of positron theory.! We shall use it often in the following chap-
ters in developing scattering theory, and we shall find that it offers
great advantages there.

In conclusion, we must notice that the structure of the interaction
of electrons with the electromagnetic field was dictated by experience
with both the classical and the nonrelativistic limit of the clectro-
dynamics of electrons. The existences of the symmetries we have
discussed are dependent upon the form of interaction. For instance,
an anomalous moment interaction of the type discussed in the problems
for Chap. 4 for protons and neutrons adds a term of the form o,,F**J to
the Dirac equation. Its presence affects none of the above sym-
metries. In extending the Dirac theory to other particles of spin 14,
such as u meson or nucleons, and to other familiar interactions, it is
very natural to assume that these symmetries of 3, €, P are still
preserved.

It was the great contribution of Lee and Yang? to realize that
this is really an assumption to be verified by experiment and to suggest
that interactions such as 8 decay violate the symmetries of P and €.

VE. C. G. Stiickelberg, Helv. Phys. Acta, 14, 321, 588 (1941); R. P. Feynman,

Phys. Rev., 76, 749, 769 (1949).
T. D. Lee and C. N. Yang, Phys. Rev., 105, 1671 (1957).
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However, the symmetry under the operation JCP is guaranteed by
the much weaker assumptions of proper Lorentz invariance and the
usual connection between spin and statistics.

Problems

1. Show that the rate for an electron in the hydrogen-atom ground state to radiate
and fall into empty negative-energy states (treated in Born approximation) in
the energy interval —me? to —2me? is approximately 2abme?/rh ~ 108 sec™!.

2. Reinterpret and resolve the Klein paradox of Chap. 3 by using hole-theory
ideas.

3. Show that if v, and 7; are two representations f the v matrices related by a
unitary transformation U so that v, = U4,U™}, then ¢/ = (U?)"'CU, where ¢
and C’ are the corresponding matrices ¢f the charge-ccnjugaticn transformation.
Are relations (5.6) valid for C'?

In a similar way, free (5.15) frcm the represertaticn (1.17) ¢f the v matrices.

4. In order that 3 be a symmetry operation of the Dirac theory, the rules of
interpretation of the wave function ¢'(¢’) must be the same as those of ¢(f). This
means that observables composed of forms bilinear in ¢/ and ¢/t must have the
same interpretation (within a sign, appropriate to the observable) as those of y.
a. Verify that this is so for the current:

Jux') = j()
and also

Yy =@ ) = -

b. Repeat these calculations for the charge-conjugation transformation C. In
particular, show

Po(2)vutho(z) = +d (@) v (2)
and interpret using the hole theory.
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6.1

6.2

Introduction

We turn to a general discussion of scattering processes. Our aim is
to be able to calculate transition rates and cross sections with the
Dirac theory of electrons and positrons—in principle, exactly; in
practice, to low orders of expansion in the interaction parameters.
The possibility of altering the numbers of particles in such processes as
electron-positron pair production or annihilation carries us beyond
the scope of the discussions in nonrelativistic theory. However, we
shall delay as long as possible the enormous task of developing the
formalism of quantized field theory in order to accommodate this
production and annihilation of particles.

To this end we follow Feynman'! in developing the propagator
approach. The scattering process is described in terms of integral
equations. The boundary conditions for their solutions incorporate
the Stiickelberg-Feynman physical interpretation of positrons as
negative-energy electrons running backward in time. From this
formulation a working theory with unambiguous rules of calculation
for all physical processes emerges.? To begin, we review the propaga-
tor approach to the nonrelativistic Schrodinger equation.

The Nonrelativistic Propagator

In secattering problems our attention is focused upon wave solutions
which develop in time from initial conditions imposed in the remote
past rather than on stationary energy eigenfunctions, that is, standing
waves. Characteristically, given a wave packet which in the remote
past represents a particle approaching a potential, one asks what the
wave will look like in the remote future.

We turn to Huygens’ principle for a convenient way of viewing
this process. If the wave function ¥ (x,t) is known at one particular
time ¢, it may be found at any later time ¢’ by considering at time ¢ each
point of space x as a source of spherical waves which propagate outward
from x. The strength of the wave amplitude arriving at point x" at
time ¢ from the point x will be proportional to the original wave
amplitude ¢(x,t). If we denote the constant of proportionality by
1G(x',t;x,1), the total wave arriving at the point x’ at time ¢’ will, by

L R. P. Feynman, Phys. Rev., 76, 749, 769 (1949).

2 The quantum field theoretic basis for these rules is provided in J. D. Bjorken
and 8. D. Drell, “Relativistic Quantum Fields,” McGraw-Hill-Book Company,
Ine., in press.
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Huygens’ principle, be!
Y = of & G x, DY (x,t) v >t (6.1)

G(x',t';x,0) is known as the Green’s function or propagator, and it
describes to us according to Huygens’ principle the influence upon
Y(x',t') of the magnitude of ¢ at x at time &. -Knowledge of G enables
us to construct the physical state which develops in time from any
given initial state, and thus is equivalent to a complete solution of the
Schrodinger equation.

We must still give a complete formal definition of G. So far
we have only claimed its existence on the basis of physical arguments.
Let us pursue these arguments further in order to develop a better
understanding of the propagator approach. Consider first a free-wave
solution. The motion of a free particle is completely known, and it
should not come as a surprise that the corresponding free-particle
Green’s function G, can be constructed explicitly. If we now intro-
duce a potential, (', will be modified. Let V(x1,i;) represent an inter-
action potential which is “turned on” for a very brief interval of time
Aty about t;. Tor times earlier than {;, the wave function will be
that of a free wave ¢, and the corresponding propagator will be G.
However, V(x,,t;) acts as a source of new waves according to the
Schrodinger equation

(z‘ a% - H) Y(xyl) = V(s t)d(x,b) (6.2)

The right-hand side differs from zero in the interval Aty It
produces an additional change in ¥ during Af; above that taking place
in the absence of V. This additional wave Ay(xy,t,) is found by inte-
grating (6.2) to first order in At,.

A\//(xl,tl) = —?:V(X1,t1)¢>(xl,t1) Aty (63)

This added wave, by Huygens’ principle and (6.1), leads at a
future time ¢’ to a new contribution to y(x’,t'), which is

Al//(X,,t,) = fdxl'l Go(x',t/ ;Xl,tl)V(xl,t1)<p(x1,t1) Aty (64)

Thus the wave ¢ developing from an arbitrary packet ¢ in the remote
past is

Y1)

Il

‘P(X',t') + fdsxl G0<X/)t’;x1)t1)V(xhtl)<p(xl)t1) Aty
1f &3¢ [Go(X',1 ;x,1)
+ [ d3y Al Go(X ) 3%1,1) V (X, 0) Go(x0,t15%,) e (x,1) - (6.5)

! The applicability of Huygens’ principle without Kirchhoff’s modification
is due to the fact that the Schrédinger equation is first-order in the time derivative.

i
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Comparing with (6.1), we see that the Green’s function here is given by
G<X,)t,;x’t) = Go(X’,t/;X,t)

+ [ diey Ay Go(X 8 %1, 0) V (X0, 11)Go(X1,t1;%,8)  (6.6)
It may be illustrated by the space-time diagram shown in Fig. 6.1.
The first term (Fig." 6.1a) represents the propagation from (x,f) to
x',t') as a free particle; Fig. 6.1b represents free propagation from
(x,1) to (x,11), & scattering at (x4,41), and free propagation from (xy,t;)
to (x,t').

If we turn on another potential V(x,,t:) for an interval Af, at
time 1, > t;, the additional contribution to y(x’,t') for ¢ > i, is, in
analogy to (6.4),

AY () = [ dzs Go(2';2) V(2)9(2) Al
= of d3z d32s Aty Go(a';2)V(2)
X [Go(252) + [ déeq Aty Go(2;1) V(DGo(1:2)]e(x)  (6.7)
in an abbreviated notation whose meaning should be clear. The first
term is illustrated in the diagram (Fig. 6.1¢) and represents single

\¢ t
w %t
G,(x",t/,x,t) Vit —) (x1,89)
(x,t)
(x,t)
oz »X
(a) (b)
\t t
(x’,t") 7
(x5,25)
(x,,t,) (xy,t,)
(X, t) o (X, t) ]
(c) (d)

Fig. 6-1 Space-time diagrams for propagation from (x,1) to (x',t’) as (a)
a free particle, (b) with one scattering by potential V(xi,t1) at (x,,t1), (¢)
with single scattering at (x,,8,), and (d) with double scattering.
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scattering at {s; the second term is a double scattering correction
illustrated in Fig. 6.1d.

The total wave arriving at (x/,i’) is then built up by inserting
(6.5) for ¢(2) in the right-hand side of (6.7) and adding the resulting
Ay to (6.5):

Y(@') = (@) + [ diz1 AL Go(2";1) V(1) e(1)
4+ [ dxs Aty Go(2";2) V(2)0(2)
+ [ ddx; Aty d¥zs Aty Go(z';2) V(2)Ge(2;1) V(1D e(1)  (6.8)

Without further ado, if there are n such time intervals when the
potential V is turned on, the wave arriving at (x’,#’) will be

@) = o) + ), [ B AL Gu ) V (@)e(@)

+ 2 f e, Aty die; AL Gz 52) V (2:)Goli:2,) V(@) (@)
(h‘gli)
—I" d3$1' Ati d¥z; AL; d3xy Al
@Zk / ] k k
(1,‘>L,‘>lk)
X Go(z',2:) V(2:)Go(ws52) V (€:)Golassen) V(r)e(ae) + -+ (6.9)

By comparison with (6.5) and (6.6) the corresponding expression for
the Green’s function G will be

G('m) = Gola'm) + ). [ d: Ak Gole! ) V (%Gl i52)

+ 2 / dax‘,- Ati dsx,- Atj G()(x’ ;Xi,ti) V(Xi,ti)
(ti;jt;)

X Go(x,lix;, ) V (x3,4)Go(x;t52) + - - - (6.10)
We may lift the time-ordering restrictions t; > ;, ete., if we define
Gyx',t'xt) = 0 for t' <t With this boundary condition of prop-
agating waves forward in time only, G, is known as the retarded
propagator. Physically this just means that no Huygens wavelets Ay

from the sth iteration (at time ¢;) appear until after 4.

In the limit of a continuous interaction the sums over time inter-
vals may be replaced by integrals over dt with the result

G(CE’ ,512) = Go(:ll’ ,il)) + fd41}1 Go(x’;xl)V(xl)Go(xl;m)
4+ [ dir d%e Go(z;2) V(z)Go(z1;20) V(22)Golzasz) + « - - (6.11)
where diz = d¥% dxo = d%x dt
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This multiple scattering series (6.11) is assumed to converge!
and may be summed formally to yield

G2’ x) = Go(x';z) + [ d*ay Gola';20) V (21)G(x1;2) (6.12)

We notice that not only Go(z’;x) but also G(z';x) vanishes for
t < t, as demanded by our elementary concept of causality.

Equation (6.11) gives us an iteration procedure for finding G
in terms of ¥V and G, and hence for constructing the wave function
Y(z',t’") if it is known at an earlier time. In particular, to solve the
scattering problem, we must know the wave in the remote future,
given a wave packet ¢(x,!) representing a particle in the remote past
approaching the interaction region. In order to define properly the
scattering problem, there should be no interaction at this initial time,
so that ¢ is a solution of the free-particle equation which incorporates
the required initial conditions.

A mathematically convenient way of accomplishing this is to
localize the interaction in time? by adiabatically turning off V(x,1)
as t{ — — «; the exact solution y then approaches ¢ in the remote past
and there is no scattered wave. In the future the wave ¢(x/,t') is
given by (6.1)

YU = lim ¢f dix Gt x,t)e(x,1) (6.13)
{— — o

Expressing @ in terms of Gy by (6.12), we see

YU = lim ) d%z [Go(x,t';x,t)

o + [ d'z Go(xX',t; 1) V()G (5%, 0] e (x,1)

(X' ) + [ dbr; Go(x b ;x0,60) V (x 1, b0 (X1,81) (6.14)

We have really not solved anything, since the unknown ¢ appears
under the integral on the right. However, we do have a formulation
which includes the desired boundary conditions and which affords
an immediate approximation procedure if the perturbing potential V
is weak.

We are primarily interested in the form of the scattered wave as
t"— co. In thislimit the particle emerges from the interaction region
and again ¢ becomes a solution of the free-particle equation. As
before, we adiabatically turn off the interaction as ¢’ — + « in order
to ensure this condition. All information about the scattered wave

! We ignore here the possibility of bound states in the potential V.
2 We might equally well build wave packets localized in space and initially
remote from the interaction region.
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6.3

may be obtained from the probability amplitudes for the particle to
arrive in various final free states ¢y

1 vy
or(E) = v i (6.15)

as i’ — 4 from a given incident wave ¢;; in particular, we may
work with plane waves.! The probability amplitude for a given pair
(f,7) is an element of the S, or scattering, matrix and is given by

Sfi = lim f‘P}k(x,)t,)lpE+)(x,;t/) d’z’

)
= lim [ d% o (@, )[ei¥,1)
T + f di Gol D) V (k)P (D)
By — k) + lim [ %’ diz o} (1) Go(x /%, 1)
o X Vix,H)giP(x,t)  (6.16)

where (" (x,t) is that solution of the wave equation (6.14) which
reduces to a plane wave of momentum k; as t — — . By the short-
hand ¢ — + « we mean {— any large finite time for which the par-
ticles are not in the interaction region (or alternatively when V is
turned off); in particular, t — + o may mean the times when the
particle is produced and detected.

We may expand ¢ in a multiple scattering series by iteration
of (6.14) and thus express the S matrix in a multiple scattering series,
the terms of which correspond to the diagrams of Fig. 6.1.

Formal Definitions and Properties of Green’s Functions

We have unearthed the physical ingredients for solving a scattering
problem. We now build the formal mathematical machinery to manu-
facture these solutions. Our goal is to investigate the differential
equation which defines @, and in particular to solve for G, explicitly,

1 The plane-wave solutions are normalized in the continuum language in
(6.15). Alternatively, the box normalization convention may be used, with

2n) % — VIt
where V is the volume of the box in which the physical interaction is confined.
With the box convention the Dirac é function in (6.16) is replaced by a Kronecker
& function
1 if ky = k;

sk]'ki = .
0 if ky 5= k;
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so that the expansion of @ we have outlined can be explicitly carried
out. We start with Eq. (6.1), valid for ¢’ > ¢, and rewrite it in a form
valid for all times:

8t — (') = 1f dz G’ ;2)¢(x) (6.17)
6(t' — ?) is the unit step function defined by
1 U >t
o — 1) = > (6.18)
0 U<t
and has the following very useful integral representation:
1 (o doer
or) = lim o [ 0T (6.19)

It is evaluated as a contour integral in the complex w plane as shown

in Fig. 6.2. I'or 7 > 0 the contour may be closed along an infinite

semicircle below the real axis in order to ensure exponential damping of

the integrand, and the value of the integral is 1 by Cauchy’s theorem.

For » < 0, the contour is closed above and the integral vanishes

because the pole at —7e now lies outside the contour. Since 6(r)
takes a unit jump at 7 = 0, its derivative is a 8 function:

W) = ) = o [ dw e (6.20)

We now attempt to find the equation and formal properties of

G (2’ ;x) from (6.17). We know only that 1[/(:v') satisfies the Schrodinger

equation; we are therefore led to apply [ a H(x’)] to (6.17):
[za%, - H(x’)] 0 — DY) =1 8(1 — DY)
=i [ dw [ﬁw - H(x')]a<x';x)¢(x) (6.21)

Alm @

7<0

> Re w

7>0

Fig. 6-2 Contour in the complex « plane for
integrating the unit step function 6(r).
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Since (6.21) is valid for all solutions ¥ we can extract from it the
Green’s function equation of the Schrodinger theory

[i% - H(x'>] Gx'sz) = 83(x' — x) 6(1' — 1) = 8%z’ — z) (6.22)
Together with the boundary condition of a forward propagation in

time, that is,

G';x) =0 fort <t (6.23)

Eq. (6.22) defines the retarded Green’s function or propagator appro-
priate for (6.17).

We can solve explicitly for the free-particle propagator when
1
Hy(x') = — om Vi. In this case Go(z';z) can depend only upon the

difference of the coordinates (x’,¢') and (x,t). This is because the
wave at (x',t’) emerging from a unit source at x which is turned on at ¢
depends only on the interval (x’ — x, I’ — t), and Gy(z’;z) is precisely
the amplitude of this wave. We consider its Fourier transform

Go(z';x) = Go(2! — x)

3
= [ P2 i ngisaGy(p,0) (6.24)

(2m)?

In terms of Go(p,w), (6.22) is

.9 _L 2/ /. dap dw — p2 — (4'—1)+ip-(x'—X)
<l6‘t' + 2mV >Go(2} ,:E) = W(m % Go(p,w)e P

= d(32p 31:0 gt (t'—t)Fip-(x'—x)
m
and hence for w # p?/2m
1
Go(pw) = —— 775 om (6.25)

A rule for handling the singularity in the denominator is necessary to
complete the expression in (6.25). This is determined by the retarded
boundary condition (6.23). Recalling the discussion of the 8 function
(6.19), we add a positive infinitesimal imaginary part to the denomina-
tor and carry out the w integration in (6.24) first. The singularity
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Im w

> > »Re w

Fig. 6-3 Singularity in Go(p,w).

then lies below the real axis as indicated in Fig. 6.3, and we obtain

S B Y - s
Go(z' — z) = / @m)i " /_m o @ — p2/2m = ie

3 e i 2

= =it — ) [ dp oy (x'1)Sh(x,0) (6.26)

where the last form uses the notation of (6.15). It is—for the special
case of plane waves—an example of a useful expression for the Green’s
function as a sum over a complete set of eigenfunctions of the cor-
responding differential equation.! In general, if we can construct a
complete set of normalized solutions to the Schrodinger equation
which satisfy a completeness statement of the form

D DY (R, = 83(x — X) (6.27)

= —3

where Z is a generalized sum and integral over the spectrum of quan-
n
tum numbers n, then, as is readily verified,

G(a'5z) = —i0( — 1) ¥ Pula )} (@) (6.28)

satisfies (6.22) with the desired boundary condition. The special
case (6.26) for G, is established by the connection 2—» / d*p when

n
integrating over the continuous momentum spectrum.

1 The free-particle Green’s function in (6.26) may be expressed in closed form

Golx' ' 5x,0) = —i (%@7,”—_7))% {exp [1—"215——__;)"2]} ot — 1)

This is reminiscent of an expression in the theory of brownian motion for the
probability that a particle which was at position x at time ¢ and which moves under
the influence of random disturbances will arrive at x’ at time ¢’. Indeed, the only
change that needs to be made is the replacement of (4,t') by (—dt,—it’). This
same change transforms the Schrédinger equation into the diffusion equation.
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From the form of (6.26) and (6.28) it follows that the same Green’s
function which propagates a solution of the Schrédinger equation
forward in time propagates its complex conjugate backward in time.
Multiplying (6.28) by ¥.(x), integrating over all x, and invoking
orthogonality and normalization of the eigenfunctions, we reproduce
(6.17)

i [ @G imin@) = 0 = 1) ), @) [ D2 @)

Il

0" — )m(z")

Repeating this operation, only multiplying instead by ¢X(z’) and
integrating over all x’; we obtain the indicated result:

iof d%’ ()G (@ ) = 6t — DY) (6.29)

We now use these relations to construcet various useful forms for the
S matrix.

From (6.17) and the defining equation (6.16) we can write a com-
pact form for the S-matrix elements in terms of the exact propagator:

Sy =2 lim lim [d% d’z of(2")G (2" 2)ei(2) (6.30)

Y=o > —

This is not yet useful because in general we cannot solve directly
for the exact propagator. Asis evident in (6.28) there is an enormous
amount of information contained in G(a’;z). All the solutions of the
Schrédinger equation, including the bound states as required in the
completeness relation (6.27), appear with equal weight. It is no
wonder that G is difficult to compute.

We proceed, as in our earlier intuitive considerations leading to
(6.11), by constructing an iteration procedure starting with the free-
particle Green’s function.

Regrouping terms in (6.22), we write, with H = Hy + V,

[z% — Hu(x'):l G(x'x) = 842" — 2) + V{2")G('x)
= [ diz' 84(2' — 2")[84 (" — ) + V()G ;x)] (6.31)

where we have expressed the interaction term on the right-hand side
as a superposition of é-function sources. The integral of (6.31) with
the desired boundary conditions is just the corresponding superposition
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of free propagators:
G(z'x) = [ dia” Go(a’ ;@) 64" — x) + V(2')G(z" ;x)]
= Go(z';x) + [ d2” Go(2' ;') V(2GR ;) (6.32)

which agrees with (6.12). Inserting (6.32) into (6.30) and making use
of (6.17) and (6.29) for free particles, we arrive at

Sﬁ = fds’li <p}k(33)§0¢(.’$) -+ , h{n fd4$1 d3z g&;‘(])ﬂV(.’l}l)G(Q}l;QT)(p{(fl:)

5/,’ — Zf d4I1 ¢7(1)V(1)<p1<1) - 'Lf d41121 d4x2 <p}‘(1) V(l)
X Go(1,2) V(2)0:(2) — if diz1 diws diws ¢} (1) V(1)
X Go(1,2)V(2)Go(2,3) V()ei(3) + -+ - (633)

This multiple-scattering series coincides term by term with that devel-
oped from (6.16). It may also be finally summed up in terms of a
solution of the exact Schrodinger equation asin (6.16). To do this, we
note in the first line of (6.33) that we can write
lim [d% G’ z)ez) = lim [ dPz G x)¢(x)
— —®»

= —wi(2")

if we refer to (6.17) and turn off V as we did earlier. Equation (6.33)
becomes

Sji — 5/1‘ — Zf dix’’ w}k(‘rn) V(fl)/')l//§~+)<$'/) (6.34)

where the superscript (4 ) is now appended to ¢ to indicate a solution
which reduces to a free wave as ¢/’ — — o [see (6.14)]

@) = @@) + [Go(a” @) Ve () d'z

Equation (6.34) with expansion (6.14) and (6.30) with (6.32) are
equivalent forms for the S matrix; both lead to the multiple-scattering
series (6.33).

In practice we shall usually calculate only the first or first two
nonvanishing contributions to the S matrix for a given interaction in
(6.33). The validity of this procedure depends on the weakness of
the interaction ¥V and the rapid convergence of this series in powers of
the interaction strength.

A general property of the S matrix which results from the con-
servation of probability is the property of unitarity. We recall from
the introductory remarks of Chap. 1 that hermiticity of the hamilto-
nian implies conservation of probability and thereby the result that the
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6.4

inner product of two solutions is independent of time. We can write,
therefore,

J a3y * @ @) = lim [ diz ¢ @) ()
= lim [d% ¢}(2)¢;(x) = 8:  (6.35)

In the particular example of a plane-wave representation
8 = 0%(k; — ki)

We may also project this inner product into the remote future in which
case, by (6.16) and the completeness relation (6.27) for the ¢’s, we can
expand the solutions ¥{" into plane-wave states with the S-matrix
elements as the expansion coefficients:

lim @) =Y eu(@’)Su (6.36)
V= 4w "

(E = / d*p for a plane-wave 1'epresentation4)
Inserting (6.36) into the left-hand side of (6.35), we find
Z S,“;S:j = sji (637)

or in matrix notation S'S = 1. If the (", like the ¢, in (6.36), form
a complete set, St = S—! and we conclude that S is a unitary matrix.!

The Propagator in Positron Theory

We generalize our propagator development of the nonrelativistic
theory and apply it to the relativistic electron theory. Our starting
point is provided by the picture of the nonrelativistic G(z’;z) as the
probability amplitude for a particle wave originating at z to propagate
to «’. This amplitude, given in (6.11), is a sum of amplitudes, the
nth such term being a product of factors corresponding to the diagram
of Fig. 6.4. FEach line in Tig. 6.4 represents the amplitude Go(2:;w:—1)
that a particle wave originating at z,_ propagates freely to ;. At the
point z; (represented by a °) it is scattered with probability amplitude
per unit space-time volume V(z;) to a new wave propagating forward
in time with amplitude Go(ziy1;z:) to the next interaction. This
amplitude is then summed over all space-time points in which the

11f bound states occur, the completeness sum in (6.27) must also include the
bound-state spectrum. This does not alter the proof of unitarity.
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Fig. 6-4 nth order contribution to G(z,z’).

Rry

%y

interactions can oceur. One may say the interaction at the ith
point, or vertex, destroys the particle propagating up to z; and creates
a particle which propagates on to x,.; with 44, > t.

It is this picture which we will keep in the Dirac hole theory.
It is well suited to a relativistic theory because of its emphasis on
the overall space-time view of the scattering process, in contrast to
a hamiltonian formalism with its emphasis upon the time. The aim is
to construct by analogy with the nonrelativistic propagator theory
rules for calculating scattering processes in Dirac hole theory. How-
ever, the existence of pair production and annihilation processes,
which we must also describe, complicates matters. The ground rules
which we shall adopt in dealing with this situation are simply that the
instructions for caleulating with the propagator must be consistent
with the dynamics of the Dirac equation and with the general postu-
lates pronounced in Chap. 1 and amended by our discussion of posi-
trons in Chap. 5. We shall lean heavily on intuitive arguments at
the expense of rigor in our developments in this and the following
chapters.!

Let us look at pictures of typical processes which must be
described in positron theory. There not only are scattering processes
of the type illustrated in Fig. 6.4 but also the pair production and
annihilation processes illustrated in Fig. 6.5. Diagram 6.5a shows the
production of an electron-positron pair by a potential acting at point 1;
the two particles of the pair then propagate to points z and «’, respec-

! These rules find their justification in the systematic but painful formal
exposition of quantum field theory given in Bjorken and Drell, op. cit.
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tively. Diagram 6.5b shows an electron originating at z and ending
up at z’. Along the way, a pair is produced by a potential acting at 1;
the positron of the pair annihilates the initial electron in the field at 3;
the electron of the pair propagates up to point 2, where it is destroyed
by the potential. This potential at 2 creates the electron which
propagates to 2’. Diagram 6.5¢ shows a pair produced at 1, prop-
agating up to 3, and being destroyed in the ficld there.

We see from these diagrams that we need not only the amplitude
for an electron to be created, say, at 1, to propagate from 1 to 2, and
to be destroyed at 2 as in the nonrelativistic case, but also the ampli-
tude for a positron to be created, to propagate, and to be destroyed.
If this positron amplitude is found, we may then attempt to associate
a probability amplitude with each process of the type illustrated in
Fig. 6.5 and to construct the total amplitude for any particular process,
by summing, or integrating, over all intermediate paths which can
contribute to the process. Thus for a scattering event paths of both
types shown in Fig. 6.4 and Fig. 6.5b occur.

We must determine the positron amplitude in accordance with
the hole theory formulated in the preceding chapter. Since the
existence of a positron is associated with the absence of a negative-

A2

(¢)

Fig. 6-56 Examples of space-time diagrams in positron theory for (a)
pair production, (b) scattering, and (¢) a closed loop.
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energy electron from the filled sea, we may view the destruction of a
positron at 3 in Fig. 6.5 as equivalent to the creation of a negative-
energy electron there. This suggests the possibility that the ampli-
tude for creating the positron at 1 and destroying it at 3 is related to
the amplitude for creating a negative-energy electron at 3 and destroy-
ing it at 1. The diagrams of Fig. 6.5 would be interpreted in terms of
electrons propagating forward in time with positive energy and back-
ward in time with negative energy. Diagram 6.5a, which describes
pair production, may be considered in terms of a negative-energy
electron originating at z’, propagating backward in time to 1, where it is
destroyed, and a positive-energy electron propagating forward to
space-time point z. In a scattering process the electron propagating
up to point 3 has the option of being scattered by the potential for-
ward in space-time as in Fig. 6.4 and propagating on with positive
energy or of scattering backward to 1 as in Fig. 6.5b with negative
energy.

In addition to electron paths which zigzag forward and backward
in time, there is also the possibility of closed loops as illustrated in
Fig. 6.5¢. In hole theory one says the potential at 1 scatters an
electron in the sea into a positive-energy state; it then scatters back
into the sea at 3. In propagator language, the electron created at 1
is scattered back in time from 3 to destroy itself at 1. Processes such
as these may not simply be ignored. The formalism requires them,
and, as we shall also see, experiment verifies their existence.

As the first step in our program we construct a Green’s function to
describe the propagation of electrons and positrons. We shall be
guided by the discussion of positron theory in Chap. 5 and by the
preceding discussion of propagators in the nonrelativistic theory.

The relativistic propagator, Sp(z’;z), is defined to satisfy a
Green’s funetion equation in analogy with the nonrelativistic definition
(6.22):

4 .
z ['y,‘ (z B%Z — eA“(x’)) — m]a)\ ’Fm(x’,x) = 8ag 842’ — 2) (6.38)

A=1

As defined here, the propagator is a 4 X 4 matrix corresponding to the
dimensionality of the v matrices. In matrix notation with indices
suppressed, (6.38) becomes

GV — eAd’ — m)Sp(z',z) = 82’ — 2) (6.39)

Another change from (6.22) is that the operator ¢ 3/dt' — H(2’) is
multiplied by ~° in (6.38) in order to form the covariant operator

(Y — ed’ — m).
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We can compute the free-particle propagator
(@Y — m)Sp(a’,z) = 82’ — x) (6.40)

by Fourier transforming to momentum space. As in the nonrela-
tivistic case (6.24), Sr(z/,z) depends only on the interval (2’ — z),
so that!

d'p

Sr(2'2) = Sp(x’ — ) = (2r)*

e &S p(p) (6.41)

Inserting into (6.40) gives
4
E v — m)axsﬁw(p) = Bag
r=1

Solving for the Fourier amplitude Sp(p) and reverting to matrix
shorthand, we find

Sp(p) = P T ™ — 1

P —m= p—m for p? = m? (6.42)

Instructions on how to handle the singularities at p? = m? that is, at
po = + A/p* + m? = +E, are needed to complete the definition.
As we recall from the nonrelativistic theory, the answer to this question
comes from the boundary conditions put on Sr(z’ — z) in integrating
(6.41).

The interpretation given to the Green’s function Sp(2’ — ) is
that it represents the wave produced at the point 2’ by a unit source
located at the point xz. The Fourier components of such a localized
point source contain many momenta larger than m, the reciprocal of the
electron Compton wavelength, and we expect that positrons as well as
electrons may be created at x by the source. However, a necessary
physical requirement of hole theory is that the wave propagating from
z into the future consist only of positive-energy electron and positron
components. Since positive-energy positrons and electrons are repre-
sented by wave functions with positive frequency time behavior [for
example,

v () = Co(p)Ten
Y @) = ulp)eiv

are (unnormalized) wave functions of positrons and electrons, respec-
tively, of momentum p* with p® > 0] Sp(2’ — z) can contain in the
future, z, > xo, only positive-frequency components.

(6.43)

! Henceforth, we employ the four-dimensional notation

Pz =pua* =pd —p-X
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In order to accomplish this, we return to the Fourier expansion of
Sr(z’ — z) in (6.41) and (6.42) and perform the dp, integration along
the contour in the complex p, plane shown in Fig. 6.6, For ¢’ > t,
the contour is closed in the lower half-plane and includes the positive-
frequency pole at po = + /p? + m? = E only. This gives

, A3 ., dpg e—ipo =0
Sp(z — ) = / (_2%;36”"“_1) /C Po€ 7 (p + m)

2 p? — m?

Eyo—p-v+m ,
R >

(6.44)

3
= _l‘f a*p £ip (X'—x) g—iE(t'—1)
(2m)°

so that the wave at (x/,f’) contains positive-frequency components
only. For ¢ < ¢, the contour can be closed above, including the pole

at po =

— 4/pt + m?. This gives

Se(@ — z) = —i/ (gal))s gv—ngrise—n (“EY0 — Dy +m)
m

oF
<1 (6.45)

showing the propagator to consist of negative-frequency waves for

U <t

These negative-energy waves, absent in the nonrelativistic

theory,

are unavoidable here. Any other choice of contour C in

(6.44) leads to negative-energy waves propagating into the future or
positive-energy waves into the past. Moreover, these negative-
energy waves propagating into the past are welcome; they are the
positive-energy positrons, as we discussed in the preceding section.
This will become more apparent when we apply the propagator formal-
ism to scattering problems. The origin of the negative-energy waves
is the pole at py = — 4/p? 4+ m?, which was not present in the non-
relativistic theory.

Hmpo

P0=—»)p2+m2=—E C

>

Fig. 00

*rRepo
py= p2+m?=E

Singularities of an integration contour for Sg(p).
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The choice of the contour C is summarized by adding a small posi-
tive imaginary part to the denominator in (6.42), or simply taking
m?— m? — te, where the limit ¢ — 0% is understood:

d4p e—’ip-(z'—::)

Sr@ =0 = | oy — i

(» +m) (6.46)

The forms (6.44) and (6.45) are combined by introducing projection
operators (3.18) and changing p to —p in the negative-frequency part:

Splx’ — ) = —1 r )3< >[A+(p)e (=D — )
+ A_(p)e> @26 — )] (6.47)
with po = I' > 0. Equivalently, writing

t‘[/I)(x) = J% (211')_%1_[)"(1))6—“41-:

for normalized plane-wave solutions, we find
2

Se(@ —2) = it — 1) [ & ) W) i)
r=1

4
+iot — ¢) [ ap ) W) (6.48)
r=3

and verify with the aid of (3.11) that Sr(z’ — 2) carries the posi-
tive-energy solutions ¢ forward in time and the negative-energy ones
Y backward:

0" — OYP (') = ¢fSr(@" — )y P (2) d’» (6.49)
0t — VW) = —ifSr(@" — 2)yp O (2) d (6.50)

Srp(2’ — z) as defined here is known as the Feynman propagator.
It was first introduced into positron theory in 1942 by Stickelberg
and independently in 1948 by Feynman, who applied it extensively to
physical calculations.

From the free propagator Sp(z’ — 2) we may formally construct
the complete Green’s function and the S-matrix elements, that is, the
amplitudes for various scattering processes of electrons and positrons
in the presence of force fields. To accomplish this, we paraphrase the
nonrelativistic treatment.

The exact Feynman propagator Sp(z';x) satisfies (6.39) and, in
parallel with (6.31) and (6.32), can be expressed in terms of a super-
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position of free Feynman propagators; that is
(1Y — m)Sp(a'5z) = [ d*y 8'(z" — p)[8'(y — ) + eA¥)Sr(y:2)]
which integrates to
Sp(r'x) = Sp(x' — 2) + ef dby Sr(@’ — Y)AW)Sk(y,2) (6.51)
In analogy with (6.14), the exact solution of the Dirac equation
(17 — m)¥ (z) = eA(x)¥ (2) (6.52)
with the Feynman boundary conditions, is
P(x) = ¥(2) + ¢f dy Se(x — PAWP () (6.53)

The scattered wave in (6.53) contains only positive frequencies in the
future and negative frequencies in the past according to (6.48):

(@) ~ v~ [ dp § @i [ dy I A0P )
ast— o (6.54)

@)~ y@) — [ dp 3 GO [ ay A0 @)

ast— — o (6.55)

We thus have a formulation of the scattering problem in (6.54) which is
in accord with the requirement from hole theory that electrons cannot
fall into the negative-energy sea after scattering by an applied field
A*#(y); only the unfilled positive-energy states are available. Equation
(6.55) shows that the waves scattered backward to earlier times have
negative energies.

From (6.54) and (6.55) we identify the S-matrix elements as the
coefficients of the free-wave solutions ¥’ (x), that is,

Spi = b8y — deesf d'y () AWV iy) (6.56)

where y;(y) is the final free wave emerging with quantum numbers f
and with ¢, = +1 for positive-frequency solutions in the future and
—1 for negative-frequency ones in the past, respectively; ¥;(y) is
the incident wave which reduces at y, — — « to an incident positive-
frequency wave ¥;(y) with quantum numbers 7 or at yo — -+ «© to an
incident negative-frequency wave propagating into the past, according
to the Feynman boundary condition on the solution (6.53).
Equations (6.56) and (6.53) contain the rules for calculating the
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pair production and annihilation amplitudes, shown in Fig. 6.5, as well
as for the “ordinary’’ scattering process of Fig. 6.4.

Consider first the ordinary process of electron scattering. For
this process ¥.(y) reduces to an incident plane wave of positive energy
¢P(y) at yo— — o and the nth order contribution to (6.56) is

—ier[f d'yr - A BV W) A W) Sr(Wn — Yar DA (Yarr) - -
X Sp(ys — y)A @Y (y1)  (6.57)

Graphs such as T'ig. 6.4 as well as Fig. 6.5b are contained in the series
(6.57).

To calculate pair production, we insert for ¥.(y) in (6.56) a solu-
tion which reduces as t — 4+ « to a free plane wave of negative energy.
Specifically, for production of an electron-positron pair with quantum
numbers (p_,s_) and (p.,s;), respectively (where poy > 0), we insert
for ¥, (y) in (6.56) the solution of (6.53), which reduces as ¢t — +
to a negative-energy plane wave with quantum numbers (+p.,+$4,
e = —1);1e,

YR) = [ B0 (s )et

For ¢, we take a positive-energy solution labeled by (p-, s—, e = 1).
By the ground rules of our discussion of hole theory, it is the absence of
a negative-energy electron with four-momentum —p; and spin —sy
that we record as the presence of a positron with four-momentum p;
and polarization s;. In the propagator formulation we have identified
the amplitude for producing the positron at » and propagating it for-
ward in space-time out of the interaction volume and into a given
plane-wave state (p4,s+) at 2’ with the amplitude for a negative-energy
electron with four-momentum —p, and spin —sy to propagate from
x’ back into the interaction volume and be destroyed at x. We thus
associate a transition amplitude with the pair-production process by
tracing the path of a negative-energy electron backward in time into
the interaction region where it scatters in the field and emerges in a
positive-energy state propagating forward in time. The two lowest-
order Feynman diagrams are shown in Fig. 6.7, and the second-order
amplitude is further decomposed by time ordering of the two scatter-
ings as indicated.

In a similar way, to calculate the pair annihilation amplitude,
we insert for ¥,(y) a solution of (6.53) which reduces to ¢{"(y) at
y — — . This positive-energy electron propagates forward in time
into the interaction to be scattered backward in time and emerge in a
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Fig. 6-7 Space-time Feynman diagrams of pair production to first and

second orders. The second-order contribution is further decomposed by
time ordering of the two scatterings.

negative-energy state. The nth-order amplitude that the electron
scatters into a given “final” state y{ labeled by quantum numbers

(p+,S+,6 = _1) is

verf diyy + - diyn ‘p}—)(yn)A(yn)SF(yn = Yn-1) * " "
X Ay (y)  (6.58)

In hole-theory language this is the mth-order amplitude that
an electron scatters into a negative-energy state of momentum —p;
and spin —s;. This state at { = —« must have been empty;
that is, there must have been a hole, or positron, present with four-
momentum p, and spin, or polarization, s;.

Finally, in order to describe positron scattering, the “incident”
positive-frequency wave in (6.56) and (6.58) is replaced by a negative-
frequency solution with quantum numbers (pi,si,e = —1). This
represents the outgoing positron with momentum and spin (p},s4).

Problems

1. Show that Sr(2’,z) reduces to the free-particle retarded propagator for the
Schrodinger equation in the nonrelativistic limit.

2. Verify (6.48) explicitly.

3. Verify (6.49) and (6.50) and derive analogous relations for the adjoint solutions
g and ¢,

4. Calculate Sr(z) explicitly. How does it behaveasz — «,asz — 0, and on the
light cone?

5. Suppose in our formalism we replace the vacuum by a Fermi gas with Fermi
momentum kp. How is the Feynman propagator modified? Compute the change
in Sp in the low-density limit,
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7.1 Coulomb Scattering of Electrons

In this chapter we apply the propagator formalism just developed to
various practical calculations. As we gain experience with these
propagator amplitudes we shall extend them in a natural and plausible
fashion to include interactions between several particles. Our pro-
gram is the same as that of the original Feynman papers:! to establish
rules for calculating transition rates and cross sections for general
processes of physical interest before resorting to the formal manip-
ulations of quantum field theory.

We shall begin with Rutherford scattering of an electron from a
fixed Coulomb potential. The transition matrix element for this
process, as given by (6.56),

Sy = —ief diz Yy () A ()W) (f # 15) (7.1)

must now be translated into plain English; here e < 0 is the electron
charge. In lowest order ¥.(x) reduces to the incident plane wave
¥i(z) describing an electron of momentum p; and spin s;:

() = \/E—’”V w(piys v (7.2)

where we normalize ¥(z) to unit probability in a box of volume V.
In the same way

m .
¥s(z) = \/m u(py,Ss)err® (7.3)
The Coulomb potential is given by
Aoz) = o T Afx) =0

for a point charge —Ze > 0; thus

Z 1
Si =20 e pisiyutpys) [ G oo @9

The integration over the time coordinate yields 2x8(E, — E;) and
expresses energy conservation between initial and final states in a
static potential. The space integral is the Fourier transform of the
Coulomb potential, well known to be

/ e = AT
Tx[ lq/?

1R. P. Feynman, Phys. Rev., 76, 749, 769 (1949).
100
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where ¢ = p; — p;.  Our S-matrix element becomes

X 1 m2 i ,S 0 5y 83
Sp = iZ¢' 3 g5, alps f?glj‘(p %) ors(B; — E)  (7.5)

The number of final states in momentum interval d%p; is
V d*p;/(2r)3, and thus the transition probability per particle into
these states is

18,2 V dip, _ Z%(4wa)m? [a(py,s,) v u(pis)|®  d*py
7 2n)? EV lq[* @n)°E,

X [2rd(E; — E))* (7.6)

The square of the § function requires some explanation. Were we to
consider transitions in a given time interval (—7T/2,T/2), the energy
§ function would be smeared out; that is

o 8in (T/2)(E; — Ey)
E, — E;

2n6(E; — E) = [ " ’ dteiErE — 7.7)

From (7.7) we see that for large but finite 7',

sin® (T/2)(E; — E)
(E; — E)?

[2n8(E; — E)]* =4

Considered as a function of Ej;, the area under such a curve is 27T,
so that we may identify

[2r8(E; — E))* = [2n8(0)12x8(E; — E;) = 2«T8(E; — E;) (7.8)
or simply!
2r8(0) = T (7.9)

A heuristic way of seeing this is from the definition

/2 ,
— . — i(B—E)t
2w3(F; — B) = [0 dveer

hence

T/
2r5(0) = ] =T

I If packets are constructed to represent the incident and emerging particles,
poorly defined mathematical expressions in which there appear squares of &
functions are avoided. The identification (7.9) can be made on a sound basis.
See F. Low, Brandeis Univ. Summer School, 1959.
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Returning to (7.6) and dividing out the time, we find the number
R of transitions per unit time into momentum interval d®p; to be

R— AZa*m? |4(py,87) 7y u(psss
EV lq[*

W dps om
E‘a(ﬂf E;)

A cross section is defined as the transition rate R divided by the flux
of incident particles, J§, = ¥.(x)y*¥:(z), where a denotes the vector
component along the incident velocity v, = p,/E;. With the nor-
malization adopted in (7.2) the flux is |Jino] = |vi|/V. Thus the dif-
ferential cross section do per unit solid angle d2 is

do [ 4Z%*m® |4(py,s,) v u(pss)|* p} dps o
gt / Vi o 5 o(B, — B (7.10)

Using the identity
psdp; = E; dE;

we finally obtain

72,22
o = I sl (.11)
which agrees with Rutherford in the nonrelativistic limit.

In general one does not observe the polarization of the final
particle and one does not know the initial polarizations. If the
incident beam has net polarization, there is usually a good reason
why; and the experimentalist eventually will discover it, as in the
case of polarized electrons from g decay. In the absence of such
information one assigns equal a priori probabilities to the different
initial polarization states. This means that the actual cross section
observed will be a sum of (7.11) over final spin states and an average
over initial states, that is,

do _ 4Z%a’m’

@ = 2t 2 [@(psys7) v u(psyss) |2 (7.12)

+s7,8i

This spin sum can be rewritten as follows:

2 Ta(P1,57)Y 25Us (D, )W (P, 8:) VM4 34s (D1,85)
+87,8:

= E ﬁa(pfysf)'ygﬂuﬁ(piysi)aé(pi;si)'ygaun(pbs!‘)
+ 87,8+
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7.2

with, as usual, sums over repeated indices implied. This is a special
case of the general form which we shall often encounter:

[2(NTu(@) > = [a(f)Tu(@)][a (@) Tu(f)] (7.13)

where T' = vy, and in particular,

W = fyl‘
WS = iy
yhys = ykyd

and

abg - - - p=1p - dhd
The spin sums can now be reduced to traces if we use the energy
projection operators from (3.18):

4

2 up(Pi8:)Un(piy8:) = z e:wy(ps) 107, (Ds) (% as m)ﬂ

2m
T r=1

- (B, - o

2m

The spin sum in (7.12) becomes

_ 0 %’ + m 0)
aZa J—Z,/ UalPy,ySy) (7 “om Y o us(Ps,S)
_ E ﬂl —l_ m o 7’! + m
af 2m Ba

where again we use the same technique. This last expression is the
trace, that is, the sum of the diagonal elements, of the matrix

m+m (ps + m)

2m 0 2m

Therefore, (7.12) may be written as

do  4Z%'m? B +m) (g + m)
R R LR Pl L7

(7.14)

Some Trace Theorems; the Spin-averaged Coulomb
Cross Section

We must now digress and establish useful properties of traces of Dirac
matrices. These properties will allow us to calculate cross sections
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without ever looking directly at a Dirac matrix. They are derived
from the commutation algebra of the y’s and are valid independently
of the choice of representations for the vy’s. We summarize these
properties in a series of theorems:

Theorem 1

The trace of an odd number of vy matrices is zero.

Proof. For n odd

Trdy - - - do=Trds - - daysys = Trysds - - - duys

where we have used the cyclic property of the trace, namely
Tr AB = Tr BA. Moving the first v; to the right, we pick up n
minus signs from vy,ys + vsy, = 0 and obtain

Tr ¢i1 PR ﬁn = (_)n Tr ¢1 e ﬂn’)’ﬁ’)’ﬁ =0 (7‘15)
for n odd.
Theorem 2
Trl =4
Tr g = Trpg = 35 Tr (¢b + bd) = abTr1 (7.16)
= 4a'b

Theorem 3
Try - - - dn=arasTrgdy - - - g — arag Trgiods - - - g
+ - ara.Trds - - goy (7.17)

In particular
Tr difolshs = 4[a102 a3°as + @104 G2°03 — 103 G2 C4)

Proof. Using gifs = —dagy + 2a:°as, we move ¢; to the right of
d¢s, that is,

Trdsdy - - - fn = 2ar02 Trdy - - - dy — Tr dofinds - -+ ¢a
Continuing the process, we obtain

Trhy © * * e = 20002 Trdhy © * - fhy — = - -
+ 2050, Trs © + * By — Trde * * * gath

Finally, we use the cyclic property of the trace to get ¢: back on the
left of the other v matrices; the theorem then follows.
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This last theorem is exceedingly useful in order to reduce a com-
plicated trace, although for any n > 6 it pays if possible to use some
subtlety to avoid an avalanche of terms.

Theorem 4
Trys =20
Tryedh = 0 (7.18)
Tr ysdldd = 4ieapysabfecrd?
where ¢.s,5 is +1 for {«,8,7,8), an even permutation of (0,1,2,3); is
—1 for an odd permutation; and is 0 if two indices are the same.

Proof. Since ys = 1y%yly%y3, the first two identities are immedi-
ate. The third follows by looking at the components. For a non-
vanishing contribution all components of a, b, ¢, d must be different
and the total contribution is the sum of the various combinations of
components multiplied by the sign of the permutation. To fix the
overall sign take

i60123a°b102d3 Tr ’y%

Tr vsvoyryeysatblcd?

= 4:?:60123(101)102(13
Theorem 5
—y“’yﬂ = 4:
'Yuﬁ’yﬁ = —2¢
vudhy* = 4ab (7.19)

vudbdyt = —2dhd
vulbddy: = 2[ddbd + ¢pid]

Although this is not strictly a trace theorem, it is often used in con-
junction with trace calculations, and it is included here for convenience.
The proof is a straightforward exercise.

Theorem 6
Tr s+ « + fon = Trg, - - - ¢ (7.20)
Proof. From the charge conjugation discussion of Chap. 5,
recall that there exists a matrix C such that Cy,C~! = —«%. Then
Trd, - -« dan = Tr Cg,C1CECL -+ - Chp, CF

Il

(=) Tr diidy - - - fan
Tr [dan - - - #1)T = Tr o - - - dhs

fl
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Returning to our problem of Coulomb scattering, and using
Theorem 1, (7.14) becomes
A
B = 2l [T YPw, + me Tr (v
Using Theorem 3 and Theorem 2, the final answer is obtained:
de  Z%a* P .
i = 2k (8E:E; — 4pi-ps + 4m?) (7.21)

The differential cross section can be put in terms of the scattering
energy E = E; = E; and scattering angle 6, using the kinematical
relations

pipr = L — p?cos 6 = m? + 28°K* sin2§ and lq* = 4pzsin2-§

We find
ds 2% ., 0
ae ~ iy sin* (6/2) (1 ~ Asin? 2‘) (7.22)

This is the Mott cross section!; it reduces to the Rutherford formula
as 8 — 0.

Coulomb Scattering of Positrons

Turning next to the scattering of positrons in a Coulomb field, we
note that to lowest order in « the cross section is identical to electron
scattering. This is most simply seen by writing down the matrix
element. From (6.56) and the discussion following it,

Sy = def diz ¥;(x)A(@)P(2) (7.23)

Here the incoming state is in the future and is to be interpreted as a
negative-energy electron of four-momentum — p,; running backward in
time as drawn in Fig. 7.1. Putting in plane waves to lowest order, the

wave function is
m .
Yi(z) = \IET/ v(py,sp)etirre (7.24)

Similarly, the outgoing state in (7.23) is the negative-energy electron
running backward into the past. Its wave function is

Yi(x) = \/1%/ v(pi,s;)etinee (7.25)

IN. F. Mott, Proc. Roy. Soc. (London), A124, 425 (1929).
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Fig. 7-1 Coulomb scattering of positrons.

representing the incident positron with momentum p; and polarization
s; before the scattering. Introducing (7.24) and (7.25) into the
S matrix, we have

iZe*' 1 | m? _ dz .
Spi = — “4r VNE,E; U(pi,s) v (ps,87) / IXT ei(p—pi) =

in analogy with (7.4).
Because of charge conjugation invariance, we could equally well
write for (7.23) to this order in e

Spi = +ief d'z Veil(x) Aes (2)

= —ief d'z YT (x) CACY ()
+ief d'z ¥;(x) Ags()
which leads to the same results as before. In this picture the positron
runs forward in time and ¥..(z) = Cy%J(z) is the wave function of
the initial positron.

By the same calculation asleading to (7.12) we find the differential
cross section

Il

d-— 2Z2 22
@@w:—ﬁﬁ-Ew@mwwmwv (7.26)

EX I H
Again the spin sum may be reduced to a trace, using the relation
for positron spinors [see (3.9)]

S vatpusaintoss) = — (HE™)

2m
+i

so that

d— Z2 2

This is the same as (7.14) with m replaced by —m. Since our answer
for electron scattering was even in m, this confirms that the positron
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Fig. 7-2 Coulomb scattering of electrons.

scattering cross section is equal to the electron scattering cross section
in lowest order of @. We could have anticipated this result from
charge conjugation invariance. We saw in Chap. 5 that to each
solution of an electron in a potential A, there is a corresponding solu-
tion of the positron in the potential — A, that is, the scattering of an
electron from the potential —e/4nr is the same as that of a positron
from potential +e/4xr; however, since the calculated cross section
depends only on e*, the sign of A* does not matter. This is not true
for the e® corrections which come from the product of the first- and
second-order scattering amplitudes in Fig. 7.2 and which have opposite
signs for electrons and positrons.

We may also observe that the positron cross section is obtained
from that of the electron by replacing p; <> — p;; thisisa general feature
of positron theory called the ‘‘substitution rule,” which is closely
related to the propagator picture we have developed. We shall see
more examples of this rule as we go along.

Electron Scattering from a Dirac Proton

Now suppose that we consider electron scattering from a free, live
proton instead of from a fixed Coulomb field. (Temporarily we shall
treat the proton as a structureless Dirac particle.) How would our
result be modified?

If we know the current of the proton J#(z), we can calculate by
Maxwell’s equations the field it generates. The S matrix (7.1) gives
the amplitude for scattering of the electron in this field and leads to
the transition rate and scattering cross section to lowest order in «
if we follow the discussion of the preceding example.

Our first step is to find the electromagnetic field produced by the
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proton. The potential is calculated from
Odx(x) = JH(z) (7.27)

where for convenience we have chosen to work in the Lorentz gauge.
In order to integrate (7.27) for A#(x), we introduce a Green’s function,
or propagator, just as in the case of the electron. The propagator
Dr(x — y) is defined by the equation

ODe(z — y) = 8'(x — ¥) (7.28)

and has the Fourier representation
d? )
Drte =) = [ gy e Drla?)

where Drp(g?) = —1/4¢* for ¢? %% 0.

As in the Fermion case, we must decide what happens at the pole
in Dpat ¢ = 0. In analogy with the discussion of the Dirac propa-
gator in Chap. 6 we append an infinitesimally small positive imaginary
part to ¢?; this is equivalent to adding a small negative imaginary mass

as done in (6.46):
—1
Dr(g?) = —— .

@) = 5 (7.26)
This preseription for handling the pole ensures only positive-frequency,
or -energy, radiation propagating forward in time. When we consider
the scattering of radiation by matter, perhaps the refraction of light in
passing through a bubble chamber, we must make certain that positive-
frequency waves—representing positive-energy quanta—emerge unac-
companied by negative frequencies. The Feynman propagator for
electromagnetic radiation is then given by

- = [P i L
Drw—y) = [ Gyt € (m) (7.30)
and the solution for the potential according to (7.27) is

Ar(z) = [d'y Dr(z — y)J*(y) (7.31)

Introducing this into the S-matrix element (7.1) along with plane-
wave electron solutions gives

Sy = —if d'z dYyled; (@) v (@) Dr(z — y)J*(y) (7.32)

Our problem now is to decide what to choose for the proton cur-
rent J4(y). A physically appealing choice suggested by the cor-
respondence prineiple is the transition matrix element of the current

JrY) = ey vdiQy) (7.33)
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where e, = —e > 0 is the proton charge and ¢¥?(y) and J2(y) represent
initial and final plane-wave solutions for free protons. They are of the
same form as (7.2) and (7.3), differing only in the substitution of
P, and P, for the initial and final proton four-momenta and of M
for its mass. With this choice the current is

Ju(y) = J 3 —e’“”f Pov a(Py,Sp)vru(Py,S:) (7.34)

Equations (7.31) and (7.33) define what is usually referred to as the
Mgller potential® of a Dirac proton. In the nonrelativistic approxima-
tion, this choice of the transition matrix element of the current as the
source of A*(x) was adopted by Heisenberg and applied to the electron
transitions in his calculations of radiation from atoms with matrix
mechanics.? Introducing (7.34) into (7.32) and using (7.30), we
readily compute the integrals, and the S-matrix element is

Sy = (21r)454(P/ P; + p; — pi) \/E E; E]lf[_;
X [qj/(pf’sj)’y,‘u(pi,si)] (p—;‘yz_‘* [M<PI;SJ‘)‘Y“U(P1,S)] (7.35)

The symmetric form of this result in electron and proton variables
bolsters our faith in the choice (7.33). Had we started this calculation
by applying (7.1) for the scattering amplitude of a proton in the field
generated by the electron current and making the guess (7.33) for the
electron current, we should have come to the same result.

Comparison with (7.5) shows that the difference between scatter-
ing an electron from a Coulomb field and from a proton is contained in
replacement of the factors Zv%/|q|? by

_1 MZ B
Vi (m) \EE @(Ps,Sp)v(PiS:)

(2r)%8%(P; — Pi + p; — pa)

expressing momentum conservation.

Equation (7.35) gives the electron-proton scattering amplitude
to lowest order in «; higher-order interaction effects which distort
the plane waves that were inserted in the currents have been ignored.

1 C. Mgller, Ann. Phys., 14, 531 (1932).

2 See, for example, W. Pauli in S. Fliigge (ed.), Handbuch der Physik, vol. V,

part 1, Springer-Verlag, Berlin, 1958; L. I. Schiff, “Quantum Mechanics,” 2d
ed., McGraw-Hill Book Company, Inc.,, New York, 1955.

and V by
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We may conveniently represent this expression by a Feynman. graph,
Fig. 7.3. A solid line with an arrow pointing toward positive time
represents the electron and a double line the proton. The wavy line
represents the influence of the electromagnetic interaction, which is
expressed in the matrix element by the reciprocal of the square of the
momentum transfer, or the inverse of the d’Alembertian of (7.27) in
momentum space. We refer to this line as representing a “virtual
photon’’ exchanging four-momentum ¢ = p; — p; = P; — P, between
the electron and proton. The amplitude for the virtual photon to
propagate between the two currents is — (¢2 + 4¢)~*. At the points—
or vertices—on which the photon lands there operate factors ey*
sandwiched between spinors v/m/E u(p,s) representing the free, real
incident and outgoing particles. TFor each line and intersection of
the graph there corresponds a unique factor in the S matrix. In
addition, S;; always contains a four-dimensional § function expressing
overall energy-momentum conservation.

Returning to I'ig. 7.3 and Eq. (7.35) to calculate a cross section,
we first form a transition rate per unit volume by dividing |Sy|* by
the time interval of observation T and by the spatial volume of the
interaction region. This gives

Syil?
(e l_vf% = (2m)**(P; + p; — Pi — pi)

2
— N |2

X 7 EE; E/E; Rd
where

2
Dye = (@813 1uu(Pos)) o [B(P1S )vu(Py )]

is a Lorentz invariant matrix element and will be called the invariant
amplitude. In forming wy from (7.35) we have extended the treat-

Fig. 7-8 Electron-proton scattering
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ment of the square of a & function given below [see (7.6)] to include
the space as well as time interval:

[(2m)164(Ps + p; — Pi — p)]?
= (2m)*0%(0) (27)*84(P; + pr — P — pi) —
X VT(2r)464(P; + py — Pi — pi)  (7.37)

Next we divide the transition rate per unit volume by the flux of
incident particles |Jine| and by the number of target particles per unit
volume, which is just 1/V according to the normalization used in (7.2).
Finally, to get a physical cross section, we must sum over a given
group of final states of the electron and proton corresponding to
laboratory conditions for observing the process. The number of
final states of a specified spin in the momentum interval d3p; d*P; is

d*p; , d°P;
VeV o (7.38)

and so the cross section for transitions to final states in interval r is

dip; d*P; 'V
do /TV @) (218 [Tinel
_ d3p; d*P; mM mM (2r)*8%(P; + p; — Pi — p) M2
- (2m)? (2)® EJE; EiE: ine V d

(7.39)

We may still sum this over spin states of the final particles and
average over the initial spins for unpolarized cross sections.

At this stage we can identify some features which will be common
to all scattering processes. The physics lies in |IM|?, the square of
the invariant amplitude. There is a factor m/FE for each external
fermion line, that is, for each Dirac particle incident upon or emerging
from the interaction. The phase-space factor for each final particle
is d®p;/(2r)?. We observe, then, that each final particle gives rise to
the factor (m/E)[d*p/(2r)?®]. This forms a Lorentz invariant volume
element in momentum space, as we see with the following identity:

dS © ®
sz = [, dpo d(pupt — m?) dop = 7. dp s(papr — mA6(po)  (7.40)

1 for po > 0

0 =
(Po) [ 0 for po < 0
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is the step function introduced in (6.18) and is Lorentz invariant pro-
vided p* is time-like, as is the case here. Overall energy-momentum
conservation in the interaction comes from the factor (2r)464(P, +
p; — P: — p;). Finally, there appears the factor 1/V|Jine|; |/inel,
the flux, is for collinear beams the number of particles per unit area
which run by each other per unit time, that is

. _ IV~; - Vi,
|J1nc| - V

When V|Ji| is combined with the normalization factor for the two
incident particles it forms a Lorentz invariant expression:

. mM _ mM _ mM
EEl|v; — Vi Ip:[E: + |Pi|E; vV (pirP)t — m*M?

(7.41)

This shows that the total cross section is invariant under Lorentz
transformation along the direction of motion of the incident beams.
Equation (7.39) may now be written in the invariant form

mM
d =
’ '/.’\/(Pi'PiV — mM?

|2 (2m)*84(Py — Pi + p; — pi)

m d*p, M d3P;

@niE, @ 4P

These factors are of very general origin; hereafter we shall omit details
of how they appear. The box normalization volume V has now dis-
appeared from our final result, which indeed could also be obtained
from other normalization conventions not involving V.

Under circumstances not involving collinear beams it is more
convenient to consider directly the number of events per unit time
dN /dt, which is found from (7.36) to be

dN M
= | A e [ B [ @n) e Py — Pit py — p)

m d'py M d*Fe
(@m)E; (2r)’E

The p.(x,t) and p,(x,f) are the number of electrons and protons per
unit volume, respectively, and they replace the two factors (1/V)
which normalized (7.36) to one per volume V.

As written, the cross section (7.42) is for a transition from given
initial spins to final spins of the electron and proton. If the polariza-
tions are not observed, we must average over initial and sum over
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final spins; then

— 1 o
M yi|* = i u(Pf,Sf)V“u(pu&) + u(Pf;SI)'Yuu(Pn‘SJ
8y,8.,87,8:
1 (Ff+m) L (pi+m) v P+ M) P+ M) e
=1, om T =5y " o e

The calculation of the first trace using the trace theorems of Sec.
7.2 yields

m+m7m+m

2m 2m

4m Tr (pry*pry” + miyiy?)

1
1 i+ iy = ¢#(prps — m?)]

The secund trace is of the same form and the final answer boils down
after some algebra to

Myl = 2*”?];[*2@2)2 [(Pypr)(Pips) + (Prp)(Pipy) — m*(PyPy)
— M?*p;p;) + 2M*m?  (7.43)

For the unpolarized cross section we insert this into (7.42).
For a useful result we evaluate do in the laboratory frame of
reference in which the initial proton is at rest and we let p, = (E',p’),
p; = (E,p), and P; = (M,0). Itisconvenient to apply (7.40) in carry-
ing out the phase-space integrals for the differential cross section for
the electron to emerge into a given solid angle dQ’ about an angle 6.
Writing d®p’ = p’2dp’ dQ = p'E’ dE' d, we have

ds m*Mp' dE’ 1o g s re .
= |mf Ty [Tl d'Py 8P} — M)(PY)
X 84(P; + p' — Pi — p)
2 m*M ,
= o g | 7 AE Tl — P p)* ~ )
X 6(PY + E — E')
mM [ MAE o, o , o
= m/M p dE | My2802m? — 2(8" — EYM — 2E'E
+ 2pp’ cos 6)
m*M p’ Bk

(7.44)

4> p M + E — (pE'/p’) cos 6
where the requirement of energy conservation coming from the & fune-
tion is

E'(M+4 E) — p'pcos§ = EM + m? (7.45)
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and in obtaining the final form we used [ dx §(f(z)) = |df(z)/dz|~ "

For electrons of energy /£ << M, the proton rest energy, we resur-
rect our earlier result of scattering in a static Coulomb field by neg-
lecting E/M < 1. In this limit (7.44) reduces to the Mott cross
section (7.21), since

de

. E
- |2
a0 S | 4] i «1

with E' = I from (7.45). From (7.43)

E
[T/[<<1

|2—8L°‘

i (2E* + m* — prpo)

When the proton recoil becomes important, the electron may be
treated as extreme relativistic and correction terms proportional to the
electron mass neglected. As is apparent from (7.43) and (7.44), there
are no linear (or odd) terms in m/K, so that the correction terms are of
order (m/E)?:

do _ m? E//E 7 2 m
i " e T QE/ID st (a7 Dl g <1

In computing |M,.|*> from (7.43) it is convenient to reexpress P; in
terms of the electron recoil using energy-momentum conservation
P; = P, + p. — p;. Doing this gives

87roz

Wl = i 2Peps Pove+ pops(Pope — Popy — M)

N % L6l 1
= WT6EE" sin® (6/2) [2 T 2sin’y <‘ 3 1 ]ﬂ
_ Tl , 0 q? R 0 m

m BE st (6)2) ("OS 5 = gip o £ <1

where werecall ¢ = (p; — pi)? = —4FE’sin? (6/2). The differential
cross section is thus

dé a’ cos? (5/2 — (42/21142 sin? (0/2) m
& " A ant (090 F QE/ M st (62)] B S (740

where use is made of (7.45) in the limit m?—» 0:
E'E(1 —cos ) = M(E — E')

Equation (7.46) was derived under the assumption that the proton
behaves just like a heavy electron of mass M. This description is
incomplete, however, since it fails to take into account the proton
structure and anomalous magnetic moment, which are of mesonic
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origin. A complete description of the proton leads to modifications in
(7.46) which are important at large energies exceeding several hundred
MeV. Weshall return to this point in a later discussion (see Chap. 10).

Higher-order Corrections to Electron-Proton Scattering

The calculation of electron-proton scattering we have carrried out thus
far is valid only to the lowest nonvanishing order in e2. To obtain
the next higher order corrections in ¢ we must return to (6.57) and
consider the amplitude for second-order interactions between the
electron and proton. This is given by

8 = —ieXf diz dy J(@) A@)Sr(z — NAW) (747

where the electromagnetic potential is again to be generated by the
current of the proton. To determine the form of this current, we look
at the form of the second-order electron current interacting with
Au(x) and A.(y) in (7.47). As in the first-order calculation (7.35),
S{? should be symmetric in form between this second-order electron
current,

W (@)Sr(r = Pydiy) = H@v { ), 6o ~ yo)¥u@)¥n(y)

n;pe>0

— Y 8o — (@) } vt (v)

n;po<0

and the proton current. The factor ¢ is necessary to make the current
a superposition of products of two transition currents. This suggests

e Y4
Dp(x-w)

(p),

Sp(x-y) Sp(w—-2) Fig. 7-4 Contribution to lourth-order electron-

proton scattering.




Applications 117

Fig. 7-6 Contribution to fourth-order
electron-proton scattering.

that we write, following (7.31),

An(l)AV(y)

Il

¢t [ d'wdt De(x — w)Daly — DP(w),

x{ ) bwo — 2y2w)P)

n;pe>0

— ) 0 — W | 7d2(2)

n;p0<0

ie? f d*w d*%z Dp(x — w)Dr(y — 2)
X Y2(w)vSt(w — 2)y¥i(z) (7.48)

The factors Dp(z — w)Dr(y — 2) are the Feynman propagators for
the two internal photon lines in Fig. 7.4. They propagate between
the electron and proton vertices, represented as dots, which contribute
ey and e,y., respectively. The internal electron and proton lines
have the fermion propagators Sr(x — y) and ShH(w — 2). These
factors are an example of the correspondence between Feynman graphs
and S matrix elements written in coordinate space. To complete the
expression for S'7, another term must be added to the proton current
expressing the indistinguishability of the two photons. The electron
does not know whether the photon interacting at x originated at w or
at 2z, and the possibility illustrated in Fig. 7.5 must be included along
with that corresponding to Fig. 7.4. The I'eynman propagators for
the photons assure that positive frequencies only are propagated for-
ward in time. However, all relative time orderings of the four points
z, y, w, and z occur in the interaction and the photon at w could be
equally well the first or second one emitted or absorbed by the elec-
tron. In order to symmetrize the variables of the two indistinguish-
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able exchanged photons, we add to (7.48) the term
ie,f d*w d*z Di(z — 2) Dr(y — w)¥3(w)y.Sk(w — 2)v.¥?(2)
This gives in (7.47)
85 = e[ div diy diz dw ¥s(2)vuSr(x — y)v¥u(y)
X {Drp(x — w)Dr(y — 2)P5(w)y*Sh(w — 2)v'¥¥(2)
+ Dr(z — 2)Dr(y — w)Pf(w)y"Sh(w — 2)vyi(2)}  (7.49)

Both terms of (7.49) satisfy the same rules for writing down S-matrix
elements from corresponding Feynman diagrams in coordinate space.

Notice that as yet our rules are somewhat unclear with regard to
factors! of 1. We associated an overall factor (—7) with the S matrix
and then a factor #S% with the proton propagator. In higher orders all
the proton propagators S% will be accompanied by an ¢ for the same
reason as in our present example. We may make the rule regarding
fermion propagators uniform if we write 7Sr also for each electron
line and associate with each A a factor —i, that is,

—deASreASr - - - ed = (—ief)iSp(—ied) - -+ (—ief)

The overall (—1) is absorbed into the extra factor of A. Thus to each
v« in the electron line we associate a factor —7. We can also associate
a —1 with each proton vertex v, if we compensate by writing an ¢ in
front of each photon propagator Dr. Then we obtain a uniform rule
for factors of ¢: —zfor each vertex and i for each line in the graph. We
shall hereafter assume this rule.

For practical calculations it is useful to go over into momentum
space, and so we Fourier-transform everything in sight in (7.49). The
wave functions of the external particles (that is, the incident and final
electron and proton) are presumed to be plane waves as in (7.2),
(7.3), and (7.34). Then the first term of (7.49), for instance, becomes

M2 ddql d4QQ d4'p d*P
4 d4y dés d4
7 f diz dty d zdw\/EfE \/EJE @) 4(2m) (@) @)
e~ (m3—w) p—igy (y—2) . e—ip (z=v) -
ey e g e—ipit
q% + e q% F e [0 u(pfysf)yﬂﬂ —m + 1e ’Y"u<p1)sl)e ]
e~ P (w—2z)

X [6’})’ v (Py,Sp)v m—

Carrying out the integrations over all coordinates yields a factor of
(27)* times a four-dimensional § function for energy-momentum con-

' By working out Prob. 7.2 one may dispel possible doubts with regard to
overall factors of 2.

vu(P;,S5) 6—”""’] (7.50)
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servation at the vertex associated with each coordinate. The momen-
tum integrals may now be done; (7.50) then reduces to

4 m2 M2
ViZ‘}ETE.; E_fE (2m)484(P; + p; — Pi — i)

dtg, 1 1
X[ G aTra— T

X [am,sm w(pf,so]

1
Pr— 41— m + e

X [a(Pf,sw v"u(Pz-,si)} (7.51)

1
P, +a— M+ e

where ¢ = p, — p; as earlier, Notice the appearance of the overall
energy-momentum conserving 4 function and of the integral over the
four-momentum ¢, running around the closed loop in the momentum
space Feynman diagram shown in Fig. 7.6. There has been a sys-
tematic cancellation of factors of (2r)* except for the (27)* we associate
with the 84 and the compensating (2r)~* that goes with the integral
over dg;. Other factors in (7.51) may be associated with the
Feynman diagram in the same way as done for the lowest order cal-
culation in Fig. 7.3. Hach vertex contributes a factor —iey, and
each external particle a factor v/m/E. The new feature here is the
factor i[p — m + 7¢J7!, which is inserted in matrix order between
vertices, coming from the propagator for the virtual intermediate
fermion line.

With the aid of a little experience it is possible to associate
forms such as (7.51) with given Feynman diagrams by inspection.
The Feynman graph of Fig. 7.7 in momentum space corresponds to

Fig. 7-6 Contribution to fourth-order electron-
proton scattering.
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Fig.7-7  Contribution to fourth-order electron-proton
scattering.

Fig. 7.5, and the amplitude differs from (7.51) only in the replacement
of the proton spin factor there by

1

P: _ ql. _ J‘/[ _I__ 'l:E 'Y“u(Pi,Si) (752)

(PS5

The rest of the evaluation of (7.51) and (7.52) is nontrivial; it
involves a difficult four-dimensional integration. For the static limit
of the proton as a point Coulomb source it has been calculated by
Dalitz.! Special difficulties arise in this example from the infinite
range of the Coulomb interaction. We shall not carry this caleulation
further here.

7.6 Bremsstrahlung

It is quite possible that one of the two quanta exchanged in Figs. 7.6
and 7.7 will satisfy the Einstein condition ¢* = 0. In this case it
might escape in transit between the electron and proton and emerge
as free radiation, or bremsstrahlung. To study the effect of this
interaction with the radiation field on the scattering process, we again
turn to heuristic arguments similar to those used by Schiff.2 These
yield with relatively little labor useful experimental results which
coincide with answers obtained on the basis of a strict quantum
treatment of the radiation as discussed in the companion volume.?

' R. H. Dalitz, Proc. Roy. Soc. (London), A206, 509 (1951).

2 Pauli, Schiff, op. cit.

8J. D. Bjorken and S. D. Drell, Relatwistic Quantum Fields, McGraw-Hill
Book Company, New York, in press.
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The four-vector potential of a ‘“photon” with momentum k,
and polarization e* is written as a plane wave

e+

V2kV

with k.* = 0. ¢ is the unit polarization vector and satisfies the
transversality condition

An(z;k) = (672 - g*-2) (7.53)

ekt =0 (7.54)

as required by the nature of the radiation field. In a special Lorentz
frame ¢ 1s pure space-like, that is, ¢ = (0,e), with e-¢ = 1; in an
arbitrary Lorentz frame e* is space-like and normalized to

€6t = —1 (7.55)

The normalization constants in (7.53) are so chosen that the energy
in the wave 4* is just o = ky = |k| as desired. To verify this, we
compute

U=1Y5[d% (B> + B?) = [ d% B?
Since

B =curlA = i VkE/2V k X (e — ¢*%) = A/2k/V k X ¢ sin k-z
and, according to (7.54) and (7.55),
kxe hxe=ce— (keg)?=g-2e— (&2 = +1

we have

Uzz—;c/d%sinz(wt— Kex) =k — o

We consider the scattering amplitude describing the radiation
of such a “photon” during a scattering event. I'or simplicity we
return to the static approximation, replacing the proton by a static
Coulomb field as in (7.4), and caleulate S;; to lowest nonvanishing
order in e. The Feynman diagrams for this process, shown in Fig. 7.8,
correspond to a second-order process with one vertex for the interac-
tion of the electron with the Coulomb field and one for the emission of
the bremsstrahlung quantum. There can be no first-order emission
of radiation by a free electron in the absence of the external field.
This is kinematically forbidden, since it is lmpossible to conserve
energy and momentum: k2 = 0 # (p; — p,)? < 0.
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Fig. 7-8 Bremsstrablung nf an electron in a Coulomb field.

The second-order S-matrix element is

Sy = exf dw dy ¥ (x) { —iA (x;k)iSp(z — y)(—iv?) AP ()
+ (=) AT (@)iSr(x — »I—iA(y;0) ]} i(y)  (7.56)
—Ze
coul = "
where Agevi(x) x|
and the two terms correspond to the two orderings of the vertices
shown in Iig. 7.8.

As usual, it is convenient to transform (7.56) to momentum
space by Fourier-expanding all factors and carrying out the coordinate
integrations. The result of this by-now-routine operation is

—27Ze® 1 m? 1

X ﬁ’(pfysf) l:(_7'¢) F—I—;ﬂ——m (—Z‘Yo)

(i) e (i) | upas) (75)

where ¢ = p; + k — p;..  There is an additional contribution eoming
from the first term in (7.53) for which the energy & function is
8(B: + k — E;). This term describes absorption of energy in the
scattering process and does not contribute to the process of interest
here, in which the incident electron gives up energy to the radiation
field and emerges with £, = E; — k < E;. We note the new feature in
(7.57) which is to be added to our growing lore in Feynman amplitudes:
the factor (—1¢) appears at the vertex where a free photon of polariza-
tion e, is emitted, and 1/4/2kV appears as the normalization factor for
a photon “wave function.”
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The bremsstrahlung cross section can now be calculated from the
S matrix (7.57). We limit the derivation to k¥ — 0, that is, to the
emission of a very soft photon. The more general result, known as
the Bethe-Heitler formula, appears in many texts. In this limit the
factor within the brackets in (7.57) can be approximated as follows:

. k ; — k
_MZ(PJ,SI) [¢ ((%F—*;*_W_I_—_%) + o Wk—)j_—m:l u(pt)81>

(ps
~ i [2ep; — (pr — m)élvo
— Zu(phsf) ‘ 2]6])/
2epi — ¢(ps — m)]
-+ vil2ep _22%{ m)J} u(ps,s:)
= —i(py,s)ou(pss) (k—g - ,—g) (7.58)

where we have dropped a factor & — 0 in the numerator and, in the
last step, used the properties (3.9) of Dirac spinors. The brems-
strahlung matrix element in the & — 0 limit is just a multiple of the
elastic scattering amplitude. Proceeding to the cross section, we
square Sy; of (7.57) and (7.58), divide by the flux |v|/V and by 278(0)
to form a rate, and sum over final states (V2 d% d*p;)/(27)% in the
observed interval of phase space. (Ifor a cross section for unpolarized
electrons we should also sum over final and average over initial electron
spin states.) We obtain

do — 2% m? (E'Pf _ LP:‘)Q |u(ps,87)you(pi,s:)|?

2kl E/E: ) \kpr  kp MR
d*k dp
Identifying terms with the elastic scattering cross section in (7.11),
we find
do _ do Pr _ €Ds 2 5
i, = <d9f>emsm k(o) k2 d, dk< =y k-p¢> 0(E; — m — k)

(7.59)

This is the cross section for the electron to be observed in a solid angle
d; and for a photon of polarization e to emerge with k in the interval
dQ dk. Thus in the limit of soft-photon emission we can express
the inelastic cross section as a multiple of the elastic cross section
at the same energy and angle of scattered electron.

We observe in (7.59) that the photon energy spectrum behaves
a8 dk/k and therefore the probability to emit a zero-energy photon
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Fig. 7-9 Radiative corrections to

« Ze
)Ze Coulomb scattering.

is infinite. This is the “infrared catastrophe.” It requires a careful
analysis of actual experimental conditions for observing bremsstrah-
lung in order to remedy the difficulty presented by this infinity. The
crucial point is that every detecting apparatus has a finite energy
resolution; and if it accepts inelastically scattered electrons in a finite
energy interval including k = 0, it also accepts the elastically scattered
ones, For a consistent comparison with experiment we must there-
fore include both elastic and inelastic cross sections calculated to the
same order in e2. Since the bremsstrahlung contribution (7.59) is of
order e? relative to the elastic scattering, we must also include radia-
tive corrections to (do/dQ))ensiic to the same order ¢%. These arise
from two types of terms. There are those illustrated in Figs. 7.4
and 7.5 corresponding to a second-order scattering of the electron
in the Coulomb field. In addition, we must take into account the
interaction of the electron with tself via the radiation field. The
Feynman graphs for these contributions in Fig. 7.9 show a virtual
photon originating on the electron and boomeranging back instead
of landing at the Coulomb source (or proton) as in Fig. 7.4. The
amplitude coming from these graphs contains a divergent term which
precisely cancels the divergence in (7.59) at ¥k = 0. We shall arm
ourselves with more training and experience before undertaking the
delicate task of calculating it.

Before leaving (7.59), however, we shall evaluate the cross section
for emission of soft bremsstrahlung in an interval AE which excludes
the elastic limit. We begin by summing over photon polarizations
by using a very convenient technique due to Feynman.! Notice
that the exact scattering matrix element in (7.57) vanishes if we replace
the photon polarization e by its four-momentum k*. This property
is also valid for the soft-photon approximation to the cross section
(7.59). It is a consequence of current conservation 9j.(z)/dz, = 0
which has as its momentum space analogue k,j*(k) = 0. It isrequired

I R. P. Feynman, Phys. Rev., T6, 769 (1949).
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of a gauge invariant calculation in electrodynamics, since the momen-
tum space analogue of a change of gauge is A#(k) — A#(k) + k*A(k)
and the added factor proportional to k* must not change the final

answer.
To take advantage of this result, we write
. _ €pr eps 2
ey <k~p, k‘p,») (7.60)

and orient the coordinates such that k* = (k9 k,0,0), where k! = k° = k.
Since (7.60) is a scalar, we can evaluate it in an arbitrary Lorentz
frame; in particular, we choose one in which the scalar potential
vanishes, A4°z) = 0 in (7.53). In this system A(z) is transverse
and the two independent transverse polarizations may be specified in
accord with (7.54) and (7.55) by

e = (0,0,1,0)
and e = (0,0,0,1)

Summing (7.60) over polarizations gives

3
Yeeder = Jr A J5 = g0 — Ji— N T,
n=0

pol

Since k,J** = k,J#* = 0, as observed above, it follows that J% = J,
J»® = J*1 and therefore J° = J!!; hence

S edw = —Jk,

pol

where we again revert to the summation convention. The polariza-
tion sum has now been replaced by a manifestly covariant expression
which carries a quite general instruction based only upon current
conservation: the result of performing a polarization sum is

Y [e(R)ar () [e, (k)" (k)] = —ab (7.61)

pol

provided a* and b* are conserved currents; that is, k-a(k) = k-b(k) = 0.

Applying (7.61) gives the bremsstrahlung cross section (7.59)
summed over polarizations. Integrating this over all photon emission
angles and energies in the interval 0 < kpin <k < knux < E,, we
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write
do iig [ Emax 2p;pi o m? _ _m,2,_
a?z—f B (de>clastic 4r? /kmin o dk / 4% ':kpf kp1 (kpf)z (k.pf)z

_ ﬁ a ma‘( ko 2(1 - GI ¢ @1)
<d9f>elust|c “‘”‘ X / l: 1 - f( ¢ gf)(l - f{ ¢ @1)

2 2
_ m? _ i } (7.62)
B —k-g) B - kg

where §; and 8, are the initial and final electron velocities, respectively,
with 8, = 8; = B in the soft-photon limit and ;- 8, = B2 cos 8, for
scattering angle ;. Integration of the last two terms in (7.62) is
elementary.

ko m? m? 1

I — g B - 3 = e~ !

The first integral is readily evaluated with the aid of yet another trick
introduced and exploited by Feynman.! This consists of combining
the two denominators with a parameter integral

1 1 dx
ab - /0 [az + b(1 — 2)]? (7.63)

Applied here it gives

dﬂk 1— @f @'
dr (11— k.81 — k-8
~ A 1
=201 8- 1)/ / dr (1 —k- @ + 61 — o)
— J— . ; 1
= 2(1 — B, B) /0 dz 3 Bz + 8:.(1 — x)?
dz

2 1
=201 — g2 cos 6) [, =% 1 4p%sin? (0/2)2(1 = 2]

<1+ 2 sin? >+0(6) K1

2In< >+0< > 7;—;«1

= (py — pi)* = —4E? sm?g
! Ibid.
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7.7

The soft bremsstrahlung cross section is then

4 . .0
g 62 sin? 5 + 0(64) NR

n (;j;gf) 140 (lq";) ER .

where the two forms apply in the nonrelativistic (NR) and extreme
relativistic limit (ER) of electron energies. We must join (7.64) onto
the radiative corrections to (do/dQ)emtic in order to obtain a finite
result when kmin — 0.

dr () 2 ke
de B dQ/ elastic T kmin

Compton Scattering

We may now include second-order interactions with plane-wave
fields (7.53). Let (7.53) represent an incident photon which is
absorbed by an electron at one vertex and
1 ) .
A"k = ———== e(e7*F + o' 7.65
(@) NGl Al ) (7.65)
a final photon emitted at the second vertex. This process, known as
Compton scattering, conserves energy and momentum in scattering
from a free electron according to the relation

k+pi=k + ps (7.66)

The second-order Compton amplitude differs from (7.56) by the sub-
stitution of v,A*(z;k’) for yo AL (2). Inserting (7.53) and (7.65) into
the second-order S matrix and carrying out the Fourier transforma-
tion to momentum space gives

e fm 1
VENEE; /22K

(Compton) —
S 7o =

(2m)i64(ps + k' — pi — k)

. (_‘i!f'):l u(ps,si)  (7.67)

. 1

RISy
corresponding to the Feynman graphs of Fig. 7.10. Three additional
terms with changed signs of k and/or &’ have been dropped from (7.67).
Two of these vanish, since they lead to 8% functions corresponding to
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Fig. 7-10 Compton scattering.

the energy-momentum conditions
p=prtk+Hk and  p=pit kAN

which are impossible to satisfy. These conditions correspond to the
process of a free electron decaying to a final state of one free electron
plus two photons, which is kinematically forbidden. A third term
with the two photons k£ and k' interchanged leads to the condition
k' 4+ p. = k -+ p; corresponding to scattering of an incident photon
with &’ to a final one with k. The kinematical constraint cannot be
satisfied simultaneously with (7.66), which describes our present
conditions, and so can be dropped. The term retained in (7.67) comes
from the first term of (7.53), ¢~*#*= which corresponds to absorption
at = of a photon of four-momentum k* from the radiation field, and
from the second term of (7.65), e***"#' representing emission at 2’ of a
photon with four-momentum %’

Notice that S{T°™°*™ in (7.67) is symmetric under the substitution

ke —k'¢

This is known as crossing symmetry, and it persists as an exact sym-
metry in all higher orders of interaction.! It plays an important role
in particle physics.

Calculation of the Compton scattering cross section proceeds
along the lines developed earlier; it is only the spinor algebra that
presents a somewhat more formidable hurdle. We form the cross
section do by squaring the amplitude of (7.67), dividing by (27)454(0)
to form a rate, dividing by an incident flux |v|/V and by the number
of target particles per unit volume 1/V, and summing over the phase

1 See the companion volume, Bjorken and Drell, op. cit.
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space [V?/(27)¢] d3p, d°k’:

do — e‘m
77 ©@n)2E,v|
_ , 1 1 , 2
X / ‘u(pfysf) <¢ m ¢+ ¢m ¢ ) u(Pi,$:)
. o ) A K
X 84ps + &' — pi —k) B, oK (7.68)

The factor m/kE;|v| is just (1/k) if we work in the laboratory frame
in which the initial electron is at rest; and the integral over all recoil
electrons and over photons scattered into a solid angle dQ. about a
laboratory angle 6 gives, with the aid of (7.40),

A

k' di’ /' m

dapf 4 ’ .
on E, o (py + k pi — k)

— m dQ /0“ K dk' 5[k + ps — K2 — m®)8(k + m — )

Il

m dQ /0"+’" K dk’ s[2m(k — k) — 2kk’(1 — cos )]

i 7
= 57 dw (7.69)

where &’ and k are related by the Compton condition according to the
§ function in (7.69):

' k B k
YeErr (k/m)(1 — cos 8) 1+ (2k/m) sin? (6/2) (7.70)
Equation (7.68) reduces now to
d k\? 7 ! 1 1 ’
d—gzz m(%) a(py,sy) (il ¢i+k—m¢+¢p-—k’ -—m’)
2
w(pys:) | (7.71)

which describes the differential cross section for electrons and photons
polarized initially and finally. We can further simplify the spinor
matrix element considerably by choosing the special gauge in which
both the initial and final photon are transversely polarized in the
laboratory frame of reference; that is, we choose

e = (0,¢) withe-k =0
¢ = (0,¢) withe kK =0
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It follows from this that ep; = ¢'p, = 0 and the spinor factors col-
lapse to

) P+ k4 — K )
a(py,ss) <¢ LS —;k-p e+ ¢¢_————_2l‘,l.; Ly > u(p:, i)
_ ek k!
= —alps,s) (;k% + 2‘—,‘0,‘1,,) u(py,s)

where we anticommuted spin matrices and used the property of the
Dirac spinors as before: (p; + m)eu(pi,s:) = ¢(—p: + m)u(p;,s;) = 0.
Inserting this result into (7.71) and taking the sum over final spins s;
and the average over initial spins s; for an unpolarized electron cross
section, we find, with the aid of (7.13),

ot (KN P+ mf fek gk’ \p. +m
- 5(%) Tr 2m <2k'p,~ + 2k'~pi> om

ked' k'¢d'e

which presents us with traces containing up to eight v matrices.
There are three distinct traces to be evaluated; the two cross terms
with the denominator factor (k-p;)(%'-p:) are identical according to
trace theorem 6 and the cyclic properties of traces. In reducing such
complicated traces which contain the same vector more than once
it is usually desirable to anticommute factors until the identical
vectors are alongside each other; then the identity ¢¢ = a? removes
two y matrices. Applying this technique here, we reduce the above
traces as follows:

Ty = Tr (p; + m)¢ek(p: + m)ked

= Tr psd ehopiked’ terms proportional to m? vanishing because
2 =

Tr 2k-p; pre¢kee’ = 2k-p; Tr pi'ke

[

8k-p.(k-p; + 2k-¢ pse) according to Theorem 3
8k pilk i + 2(k-¢)?]

where we have used energy-momentum conservation k£ + p; = k' + py,
so that

kpi = ks and épr =€k (7.73)



Applications 131

In the same way we evaluate
T, = Tr (p; + m)ee'k’ (p: + m)k'¢'¢
which differs from T’y only in the substitution ¢, & < ¢/, —k’, so that
Ty, = 8k"pilkp; — 2(k'-¢)?)
For the last trace we find, by the various tricks indicated,
Ts = Tr (p; + m)dek(p. + m)k'¢'s

= Tr (p; + m)¢'¢k(p; + m)k'¢'¢ + Tr (k — k')¢ ¢kp.k'¢'¢

Tr (p: + m)k(p. + m)k'¢'e¢’¢ + 2k-¢ Tr (—Lkpk'¢
— 2k"e Tr (—D¢kp.k’

2p; Tr pik’¢'ed’e — 8(k€')2 k' ps + 8(k¢)® kp;
= 8(kp)(k"p:)[2(e" )2 — 1] — 8(k-¢)2 k" p; + 8(k'-¢)? kp;

Il

Putting the traces all together in (7.72) we find the Klein-Nishina!
formula for Compton scattering

de o (E'\*|[K | &k \g

where &’ and k are related through the scattering angle according to
(7.70). In the low-energy limit of £ — 0 this reduces to the classical
Thomson scattering

where
o e?
m  4drme?

=28 X 10-¥ em

is the classical electron radius. As the scattering angle § — 0, k — &’
and we find the Thomson cross section to be valid for all energies
in the forward direction. Finally, we can sum over final photon
polarizations ¢ and average over initial ¢ for the unpolarized cross
section. The procedure is just the same one used in classical electro-
dynamics for scattering of light, and we borrow the result:

da o [K'\* (K k R
m%‘%(’z{) <75+z"sm”’)

1 0. Klein and Y. Nishina, Z. Physik, 52, 853 (1929).
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Fig. 7-11 Pair annihilation.

This is readily integrated over the photon solid angle to a total cross
section. Introducing z = cos 4 and using (7.70)

__ma’ 1 1 1
A |[1 T k/m)@ = 2F T T G/m) T = 2)]
1 — 22
“ar ma —ap 7Y

The Thomson cross section again emerges at low energies:

forﬁ——>0
m

At high energies the total cross section is

_ . mal 2k | 1 m, k

with the dominant logarithm coming from the second term in (7.75).

Pair Annihilation into Gamma Rays

If we turn the Feynman diagrams for Compton scattering on their
sides as in Fig. 7.11, we come upon another process of considerable
physical interest. This is the annihilation of an electron-positron
pair into two photons. The relevant S-matrix element in momentum
space, with kinematics as shown in the figure, is

62

) m?
(pair) — e 4 _ 1l
S V2 \/E+E_2k12]cg (@m0t (ks + k2 = Py = PUP184)

X [(—ih) - — ;c;——_rﬁ (—7¢1) + (—7;9?1) m (—i¢2)]

X u(p_,s_) (7.76)
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and is symmetric under the interchange of the two photons as required
by the Bose statistics. According to our deseription with Feynman
propagators, this process corresponds to the picture of an electron
produced in the past scattering into a state of negative energy —p,
and propagating back into the past. Along the way it produces two
photons, that is, it gives up energy twice to the radiation field. This
is the lowest order in e? in which this process can occur, since pair
annihilation to a single photon cannot conserve energy and momentum.
Both graphs must be included in order to ensure the required sym-
metry of S£*" under interchange of the two photons.

Looking back at the Compton scattering amplitude, we notice a
very strong similarity between (7.76) and (7.67). Indeed, the
substitutions

€, ke €1y —‘]C]_

K e, +k
‘ T (7.77)
Puy S P, S

Dsy 85 < — D4, T84
transform the two amplitudes into each other. Thisis an example of a

general substitution rule! which is valid to arbitrary orders and which
relates processes of the type

A+B—-C+ D
for instance, to the processes
A+C—>B+D

where B denotes the antiparticle to B, etc. Another example of this
substitution rule applies to the relation of the bremsstrahlung ampli-
tude (7.56) corresponding to the graph of Fig. 7.8 with the amplitude
of pair production in a Coulomb field as shown in Fig. 7.12.

By familiar steps we proceed from the matrix element (7.76)
to a differential cross section. For an unpolarized positron incident
on an unpolarized electron at rest in the laboratory frame the result is

o e m (—1) T ™~ Pt ( g2k g1 ¢1kaer > p-t+m

T @nt) B 4 om  \2p_k: | 2p_ky) 2m
% ( ¢1k1¢2 ¢okogs ) % @k_}

4 —_— —
9k T 2p_ks) Ok, Ok, O K1t e = —py) (7.78)

where 8, = p,/E, is the incident positron velocity, the factor 14
comes from the spin average over initial states of both the electron and

1 A proof to all orders is given in Bjorken and Drell, op. cit.
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Fig. 7-12  Pair production in & Coulomb field.

positron, and the (potentially treacherous!) minus sign comes from our
normalization of positron spinors [see Eq. (3.9)]. The simplified form
of the matrix element is due to the choice of transverse gauge

e'p- = ep_ =0

for the laboratory frame of reference and is the same gauge, according
to the substitution rule, as was applied to the Compton scattering
calculation. It has the virtue here that we can obtain the trace
directly from (7.72) and (7.73), with the substitutions (7.77). The
only task remaining is to reduce the 8§ functions for laboratory
kinematies:

Ak, d*h
/ 2 54y + ks — i — o)

2k, 2k,
= fo” 5 k1 ks dQu, 8[(py + p-)? — 2ky (0 + pIOEL + B- — k)

_ kol E,4+m
=5

1 m(m + Ey)

~ 4[m + E, — p, cos 0]?

k1 dky 8[2m? + 2mE, — 2ky(m + Ey — p4 cos 6)]

A, (7.79)

Collecting the above trace and phase-space results in (7.78), we
find the following result for the pair annihilation cross section in terms
of laboratory energies and angles:

dﬁ' _ QQ(m + E+) _ ]Cg . ]Cl . 2
m = 8p+[m T E+ — py COS 0]2 |: kfl k—2 + 4(61 62) 2
a’(m + Ey)

8p+(m + E, — py cos 0)?
L, — pycosb i m
m E, — p, cos b

+ 2 — d(erer)? ] (7.80)
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7.9

where
‘" m+ E, — pycosb
and
k2=m+E+—kl=Wkl

according to the kinematic constraints in (7.78) and (7.79).

For a total cross section we sum do/dQ, over final photon polar-
izations and integrate over the solid angle d$,. This latter step
requires care, since the final state contains two identical particles.
Equation (7.80) tells us that one of the photons emerges in d ;
because of their indistinguishability, this can be either of the two
photons. If we were to integrate do/d:, over the entire 4r solid
angle, we would be counting each distinguishable state exactly twice,
that i1s, we would evidently be counting two photons per scattering
event. We should therefore take one-half of this integral in forming
a total cross section

o =5/ i (7.81)
The low- and high-energy approximations for the total cross section are
now readily obtained from (7.81) and (7.80): as p; — 0, k; —» —k, and
the polarization average of (eres)? — 14; hence!
a’r
Bym?

g =

[1+006D)] B+ K1

In the extreme relativistic limit we find

;=T [111271::—14—0(&111&)-{- e ]

T mE, E."m

where the first two terms of (7.80) contribute equally to the leading
order contribution and the sum of the last two terms there is smaller
by a factor m/E,. These results were first obtained in 1930 by Dirac.?

Electron-Electron and Electron-Positron Scattering

Electron-electron scattering is handled in a manner very similar to
electron-proton scattering. However, there is an additional graph
! This is a poor approximation to & for 8. - 0. Coulomb wave functions

should rep'ace the plane waves of the electron and positron.
*P. A. M. Dirae, Proc. Cambridge Phil. Soc., 26, 361 (1930).
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R

Fig. 7-13  Electron-electron scattering.

B

which arises because of the identity of the electrons. The two graphs
for this process are shown in Fig. 7.13, which also defines the relevant
kinematics. The corresponding scattering amplitude is, with spin
labels suppressed and with factors as in (7.35) for the electron-proton
amplitude,

gM — —e'm’ [ a(py) (— v, u(py)a(ps) (—1y*)u(ps)
" Vi/E.E,E\E} (pr — P}’
; BPD(=1v.) u(pz)u(pz)(—w“)u(pl)]
(p1 — pi)?

X (2m)*84(p1 + py — 1 — p2)  (7.82)

The relative minus sign between the direct and exchange terms is due
to the Fermi statistics, which requires the amplitude to be antisym-
metric under interchange of the two final electrons. It is also anti-
symmetric under interchange of the two initial electrons as required
by the statistics. By a similar argument the scattering amplitude
to or from a state containing two identical Bose particles must be
symmetric under their interchange. We observed this to be the case
in the amplitude (7.76) for the pair annihilation process of Fig. 7.11.
No additional normalization factors, such as 1/4/2 or 2, were intro-
duced into (7.82) when the exchange term was added. The rules for
constructing differential cross sections from Sy, are not altered by the
presence of identical particles in the initial or final states. We must
only take care that the factor 14 of (7.81) is included in integrating
for a total cross section when two identical particles appear in the
final state. No special factors appear for identical particles in the
initial state, since the incident flux is unchanged. Electron-electron
scattering provides a clear and simple example of the correctness of
this rule. The second, or exchange, term in (7.82) can be neglected
for scattering in the forward direction with a small momentum trans-
fer (p1 — py? In this limit the scattering reduces to the correct
Coulomb amplitude, a result which is independent of statistics.
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An expression for the differential cross section for scattering of
unpolarized electrons can be constructed from (7.82) in the usual way.
In the center-of-mass frame it is

o e'm? 1 ‘ 1
7T @0E@B) ) 4[] — po
X Tr <p12—:nm Ye ?’12_7:/7” 'Yv) Ty (pz —,T;L m e L +m 7’)
B 1
(p1 — P)*(p3 — P1)?

pitm_ pitm @itm (@t m
XTr[ om ™ om " 2m T om 7}

d

+ (o} p@] 5(pi + ph — pr — pa) d*pldip) (7.83)

where E is the center-of-mass energy of each electron and 8 its velocity.
Notice the factor 28 for the relative velocity of the two initial electrons
in the center-of-mass system. For relativistic energies this approaches
twice the speed of light. There is no contradiction here with special
relativity, and indeed the velocity of one electron viewed from the
other never exceeds that of light. The symbol (p; <> p,) above stands
for the two additional terms that are obtained from the first two in da
by interchanging p; and ps.

The interference term in (7.83) between direct and exchange
scattering contains only one very long trace. A pictorial way of
representing the squares of matrix elements in terms of closed loops
as in Fig. 7.14 shows the difference of the direct term with two loops
and two traces and the interference term with one. These diagrams
are useful at times for keeping the order of indices u, » and of spinor
factors straight. The circle on the line is a reminder that no denom-
inator (p? — m?)~! appears.

Ig. 7-14 Graphical representation of the squares of matrix elements for
electron-electron scattering. The circle on the line indicates that no factor
of (p? — m?)~! appears.
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Evaluation of the traces in (7.83) can be carried out by applying
the trace theorems following (7.14). In particular, Theorem 5 is very
useful in reducing the trace of eight v matrices in the interference term.
Simplifying the result to relativistic energies E 3> m and neglecting
terms proportional to m?, we find for example

Tr (PryuprvsPey pey’) = —2 Tr (Prvapipeyps) = —8prp: Tr pips
= —32(prp2) (Py'D2)

In terms of center-of-mass energy F and scattering angle 6 the differ-
ential cross section is

dz\ _ a® |1+ cos*(6/2) n 2
/)y~ 8E? [ sin® (6/2) sin? (6/2) cos? (6/2)

1 + sin‘ (8/2)
— (0/2)"'] (7.84)

where the first and third terms are the squares of the matrix elements
for the two graphs of Fig. 7.13, and the second term is the interference
contribution. In obtaining this result we used the kinematical iden-
tities p1ps = PPy = 2E%; prps = pyps = 2E? cos? (6/2); and

4 7 . 0
Prpy = prpy = 2E7sin’

which are valid when terms in m? are neglected. Equation (7.84) is
the high-energy limit of the Mgller formula! in the center-of-mass
frame.

Turning next to electron-positron scattering, we invoke the sub-
stitution rule as in (7.77) to obtain the cross section from the Mgller
formula. The Feynman diagrams for this process, known as Bhabha
scattering,? aré shown in Fig. 7.15. With the substitutions

P14 D1
P P
P2 —q,
p’z < —q

1 C. Mgller, Ann. Phys., 14, 531 (1932).
tH. J. Bhabha, Proc. Roy. Soc. (London), A164, 195 (1935).

(7.85)
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—q
kp 1 vy 1
Fig.7-16 Electron-positron scattering. NN
p—p
4 -—
B 9
(a)

and upon changing the overall sign in accordance with (6.56), we
find the Bhabha amplitude
et 1
V2 \/E:EDI'EG)EQ(
[ - (p1) (— vy, u(p1)9(g) (—1v*)v(gh)
X |1 A%
(Pt — 1)
_ 2-11(171)(—iw)v(q{)z‘)<q1>(—z'~r‘*)u(1f>1)}
(P + q0)?
X (@m)*t(pt + ¢1 — pr — 1) (7.86)

88 =

The first term represents direct electron-positron scattering in analogy
with the first scattering term in the electron-electron amplitude (7.82).
The annihilation term corresponds to the second or exchange scattering
term there. The relative minus sign between these two terms comes
from applying the substitution rule to (7.82). The antisymmetry of
(7.82) under the interchange of the two final, or initial, electrons
becomes in (7.86) an antisymmetry between an incoming positive-
energy electron (p;) and an “incoming” negative-energy electron (—g¢;)
running backward in time, or between outgoing electrons p; and —g.
To understand this antisymmetry in the language of hole theory, we
note that at a time prior to the interaction the initial state contains
an electron p; of positive energy and, in addition, a negative-energy
sea filled except for the hole in the negative-energy state —g:. In
particular, a negative-energy electron is present in the state —¢; and
therefore, by the I'ermi statistics, the initial state must be antisym-
metric under the interchange of p; <> —g¢;; a similar argument applies
to the final state. Antisymmetrization is also required with respect
to all other particles in the sea, but these do not appear in (7.86) and
therefore do not change its form.

In order to obtain the cross section for electron-positron scattering
in the center-of-mass system, we apply the substitution rules (7.85)
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to (7.83) and carry out the traces as for Mgller scattering. This
gives for the extreme relativistic limit

(d&)B o? [1+cos4 (60/2) _ 2cos' (6/2) | (1 + cos’ ﬂ (7.87)

do /s ~ 8EE|  sini(6/2)  sin? (6/2) P)

Polarization in Electron Scattering

As a practical application of the spin projection operators developed
in Chap. 3 we return to the Mott cross section in Sec. 7.2 and consider
the calculation for an incident beam of polarized electrons. As will be
discussed in Chap. 10, the decay electrons from p mesons are polarized
with their spins pointing antiparallel to their direction of motion.

The Coulomb scattering of an electron incident with momentum
p; and spin s;, where s;'p; = 0, and summed over final spin states +s;
is given by [see Eq. (7.11)]

do _ AZ%'m?

a " v Z [2(ps,8) v u(ps,sd) |? (7.88)

tsy

In order to take advantage of trace techniques in evaluating (7.88),
we introduce the spin projection operator, using (3.19) and (3.22):

Z(s)u(pysi) = u(pys:)
Z(su(ps,—si) = 0

(7.89)

Repeating the development indicated between (7.13) and (7.14), we
have!

d 47%*m? _ _
B el D s sulps) ] s roupns) )

Esssi

_Aztemt (1 + wsi> B tm) Brm) g g

- __-mr_ 2 2m 2m

According to (7.15) and (7.18), the additional trace involving the spin
vector vanishes and we return once again to the Mott formula (7.22).
Our result that the differential cross section is the same for a polarized

1 One can, of course, introduce =(s) twice, both into the matrix element and
its adjoint, but this Is unnecessary.
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as for an unpolarized incident beam is a special consequence of the use
of lowest order perturbation theory only and is not true generally.!
In order to illustrate an observable effect of spin polarization, we
again consider an incident electron with spin lined up along its direction
of motion and compute the polarization of the scattered electron as a
function of the scattering angle. The initial polarization vector s;

satisfies

si=—1=(sH2 — s, s (7.91)
and sipr =0 or s =8;+3
where B: = % (7.92)

V1 — (8- §)?
where §; is a unit vector along s;. For the electron spin polarization

lined up along 8; denoting a right-handed electron with polarization
siv, we have B, + §;x = B, and

— 1 — E; 0o _
|SiR| = \—/T_———Ef = '”_lz Sr = 6i|SiR| (7.94)
Similarly, for the spin polarization antiparallel to 3;, denoted a left-
handed electron with s;r. = —s;r, we have
Bi* 8 = —B:
— E; [
and |S¢L| = m S = _18i|SiL|

T

Similar formulas apply to the scattered electron with the index ¢
replaced everywhere by f. The right- and left-handed vectors
sr = —s;i form a particularly convenient basis for describing electron
polarizations to which we shall frequently refer. The eigenstates of
=(s) in (7.89) with s = +sg = Fs. are known as positive- and
negative-helicity eigenstates.?

The polarization of the scattered electrons is measured by

Ngp — Np
Nr + Ny

! N. F. Mott and H. 8. W. Massey, “The Theory of Atomic Collisions,” 2d
ed. chap. IX, Oxford University Press, New York, 1949. L. Wolfenstein, Ann.

Rev., Nucl. Phys., 6, 43 (1956). H. A. Tolhoek, Rev. Mod. Phys., 28, 277 (1956).
¢ M. Jacob and G. C. Wick, Ann. Phys. (N.Y.), 7, 404 (1959).

P = (7.95)
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where Nz denotes the number emerging with positive helicity (or
polarized right-handed) and Ni the number with negative helicity
(left-handed). Nwr, Ni, and P are generally functions of the scattering
energy and angle. The polarization for Coulomb scattering of a
right-handed electron is given according to (7.11) and (7.95) by

Py = [a(py,srm)voulpysm)|* — [3(ps,s50)You(pssiv) |2

1@(ps,8rR)you(pisir) |* + [a(py,srL)you(p,sw) 2
,Tr [w (Lt vosm) (B +m) (1 +;5mg (p; + m)}

2 2m 2m
B — Tr [yo a +275${R) @i;;nm> "o 1 _2’>’5$m) (Ff2;m>j|]
Tr [‘Yo a +275$“") (7”1'2;7") vo (%2; m)]
Tr [7075$m 93_12:;_7@ Yoyséir (_1015-%_@]
- (7.96)

Tr [W i+ m) (B + m>J

2m 0 2m

The subscript appended to Pr denotes the polarization for an incident
beam that is completely right-handed. All terms linear in sz or
s;r vanish as in (7.90). The denominator trace in (7.96) has already
been computed in (7.21) and the numerator is reduced by anticommut-
ing the two v; matrices together and applying (7.17). The result
after a short caleulation and insertion of (7.94) is

Pn=1— [ 2m? sin® (6/2) ]

2 cos? (6/2) + m?sin? (6/2) (7.97)

In the relativistic limit m/E — 0, or 83— 1, we find Pr — 1,
indicating no depolarization of the incident electrons in the high-
energy limit of Coulomb scattering.

Tor an incident electron beam that is not completely but only
partially polarized along its direction of motion, we expect that (7.97)
is modified to

P = pPx (7.98)
Here p denotes the polarization of the incident electrons, that is,
P =DPr — DL

where pgr is the fraction with positive helicity and pr = 1 — pg is the
fraction with negative helicity. To verify (7.98), it is only necessary
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to return to (7.96) and observe that the expression for the polarization
is linear in the initial spin projection operator. Therefore, with the
aid of the identity

1 4+ ys8m 1 — vedim _ 1 + pyssir
PRy TR = 9

in (7.96) we have the desired result:

- _ 2m? sin? (6/2)
P=yp [1 E? cos® (6/2) + m? sin? (0/2)] (7.99)

A special case of (7.99) for p = 0 shows that an initially unpolarized
beam of electrons remains unpolarized in Coulomb scattering.

For a geometric picture to associate with these polarization results
we define the angle between the spin of a moving electron with spinor

wave function u(p,s) and an arbitrary direction along the unit vector
n* = (0,n) by

u'(p,s)é - nu(p,s)
ut(p,s)u(p,s)

= V1 — B2 a(p,s)ysnu(p,s) (7.100)

cosa = (¢-n) =

where 3 = p/E.
Again introducing projection operators and resorting to trace

techniques to evaluate the matrix element in (7.100) we find, with the
aid of (7.93),

COS o = \/1 — B2 Tr <p ;;nm> <1 +2'Yﬁ$> -
— Vi Fsen

_ i,
_ \/1‘—“(6-‘@725 n (7.101)

According to this, [cos «] < /1 — B2 for § perpendicular to 8 and the
expectation value of spin given in (7.100) for a state with its spin axis
perpendicular to the velocity direction vanishes as 8 — 1. On the
other hand, if the spin s is taken along the velocity axis, that is, for
helicity states,

cosa=§-n (7.102)

and the spin projection is +1 along a direction n parallel or antiparallel
tos. In this case we call @ = 6 and

cos § = +1 (7.103)
sagpectively.
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The average value of cos « for a beam of scattered electrons is
given by

(cos a) = 2 w(s,p) cos a (7.104)
ts

where w(s,p) is the transition probability to a given final state with
momentum p and spin s. The sum in (7.104) is most conveniently
taken over the two helicity states. For the spin projection along the
direction of motion we find from (7.103), (7.104), and (7.95)

(cos 8) = w(sr,p) — w(sL,p) = P (7.105)

that is, the polarization represents the cosine of the angle between
spin and momentum vectors. For Coulomb scattering of an initially
polarized beam of electrons with p = 1, (7.105) and (7.99) tell us
that at high energies E >> m or small scattering angles 6 << 1,

(5) N% 6 (7.106)

that is, the angle between the spin and momentum vectors of the
emerging electrons is m/E times the scattering angle.!

The relativistic limit of polarization calculations is most simply
achieved by directly reducing the polarization projection operators for
m/E — 0. In this limit the spin projection operators for longitudi-
nally polarized electrons with s parallel to p can be further reduced.
By (7.93) and (7.94) we write

1 V1 — g
2o~ T ;i 40
s mp P B g
Pt
—>m asg—1

and find in this limit

L+ ysdr) (Pt m)_ (LEfvs\(ptm

2 <2m 2 <2m
1 £ yssr\/m — p 1 Fys\/fm—9p
() ()= (57 () o

Since the spin projection operators stand next to energy projection
operators in the cross-section calculations, the simplifications in
(7.107) can be made in the relativistic imit. The result of (7.99),

'S, M. Berman, private communication.

Similarly,
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that Coulomb-scattered electrons are not depolarized for m/E — 0,
is seen immediately in this limit. The matrix element for a right-
handed relativistic electron

(1 + ’Ya)

’LL(]J.’,S{ = —2 u(piysi)
to scatter to a left-handed one
1 —
u(py,s;) = —2—% u(py,sy)

with interaction v* is proportional to

_ _ 1 1
B(Pys,87)vuu(Piy8:) = U(py,s5) (%’Y) Vi ( _; W) u(pi,s:)

_ 1 — s\ /1
= u(pf:sf)yu( ) X > ( —; 75) u(pﬁsl')
-0

Problems

1. Show that the plane-wave solutions normalized as in (7.2) and (7.3) have the
desired Lorentz transformation properties. In particular, include the effect of a
Lorentz transformation on the box volume V to show that ¢(z)¢(x) is a scalar and
that yt(z)y(z) is the time component of a vector, as desired.

2. Construct the scattering amplitude for the exchange of two photons between
an electron and proton corresponding to the two graphs in Figs. 7.6 and 7.7.
Show that the static limit, for infinite proton mass, agrees with the amplitude in
second Born approximation for electron scattering in a Coulomb potential, as in
Fig. 7.2.

3. Construct the amplitude for bremsstrahlung in electron-proton scattering and
show that the static limit reduces to (7.57) for bremsstrahlung in a Coulomb field.
Show that there is the same correspondence in factors between these two cases as
was found in (7.5) and (7.35) for elastic scattering.

4. Derive the Bethe-Heitler cross section for bremsstrahlung of photons of arbi-
trary energy. (See W. Heitler, “The Quantum Theory of Radiation,” 3d ed.,
Oxford University Press, London, 1954, for discussions of this and related processes.)

5. Derive the Bethe-Heitler cross section for production of an electron-positron
pair by an incident photon in a Coulomb field. Show that the amplitude for this
is related to the bremsstrahlung amplitude (7.57) by the substitution rule.

6. Calculate from (7.80) the total cross section for pair annihilation into two
photons, et + e~ — vy 4 v, for all energies and show that your answer agrees
with the two low- and high-energy limits given in the text for (7.81).
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7. Construct the differential cross section for electron-electron scattering in lowest
order Born approximation in terms of laboratory energies and scattering angles.

8. Calculate the cross section for the absorption of light by a bound electron in
an atom with low atomic number Z, such that Ze = Z/137 < 1 and Epinding K mc?.
Assume also that the frequency of the light is such that fiw 3 Episainge. Making
these simplifying assumptions calculate differential and total cross sections for
the two limiting cases:

a. Eyinding K fiw K me? nonrelativistic

b. hw > me? ultrarelativistic

9. Spin polarization sums have been carried out in (7.99) and (7.105) by adding
contributions from positive- and negative-helicity states. Equally well we could
use any two independent spin states as our basis for the expansion. Show that
the final results are independent of choice of the basis.

10. Verify Eq. (7.97) for the polarization in Mott scattering.



8

Higher-order
Corrections

to the Scattering Matrix



8.1 Electron-Positron Scattering in Fourth Order

The rules for writing S-matrix elements which have been developed
in the preceding examples can be extended to higher orders in the
coupling constant, although there are new problems to be faced.
Consider, for example, the ¢* contributions to electron-positron scatter-
ing. In order to construct such an amplitude, we draw all possible
Feynman graphs with four electromagnetic vertices which correspond
to this scattering process. Then, following the rules given by the
examples discussed so far, we write down the desired matrix elements.
Several of the graphs contributing to this calculation (there are
18 altogether) are shown in Fig. 8.1. Graph (a) shows a two-photon
exchange between electron and positron and contributes an amplitude
analogous to (7.47) and (7.48) for electron-proton scattering:

8PP = —(—ie)*] d'w diz dy &'z [§;7 (@)vuiSr(z — v di” W)
X iDp(z — w)iDe(y — )P (2)v"i8p(z — w)y ()] (8.1)
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Fig. 8-1 Some fourth-order graphs for electron-positron
scattering.
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f f’ 4 f f’

(c)

Fig. 8-2 Origin of the relative minus sign between
graphs (@) and (¢) due to Fermi statistics.

where ¢ and f, +" and f’, are the quantum numbers of the electron
and positron, respectively. Graph (b) is an annihilation term and
contributes a minus sign relative to (8.1)

Sy = +(—de)*f d*w d'x d*y d'z ()" (2)vuiSr(z — »)v 5 ()]
X tDp(x — w)iDp(y — 2)[Pe (2)v"iSr(z — w)vi” (w)]  (8.2)

The origin of the relative minus sign between the two amplitudes is
the same as in the lower-order calculation (7.82); it comes from anti-
symmetrization of the wave functions for the initial positive- and
negative-energy electron state.

The amplitude for graph (¢) corresponds to a process in which the
pair produced from the annihilation photon scatters before emerging
into the final state. According to our by-now-familiar rules of writing
—iey, and the invariant volume integral [ d‘c at each vertex, a
Feynman propagator zSr(x — y) for each internal line, and wave
functions for free incident and emerging particles, the amplitude for
this process is

8t = +(—ie)*f dw d'z d*y d'2 iDp(x — w)iDr(y — 2)
X WP (@)7.Se(@ — y)v.i8e(y — W)y @)IF @ (@) (8.3)

Only the choice of overall sign in (8.3) requires comment. It comes
from the requirement of Fermi-Dirac statistics that two electron states
must be antisymmetric under interchange of the electrons. One of the
possible time orderings of the four vertices in (a) is drawn in Fig. 8.2,
together with a corresponding one from diagram (c). These two
graphs differ by the exchange of the two electron lines labeled I and II.
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The relative minus sign between (8.1) and (8.3) assures the required
antisymmetry of the total S-matrix element under the exchange of two
similar fermions. The sign of (8.3) is the same as that of the lowest
order contribution of the annihilation diagram, Fig. 7.15b, to the
second term of (7.86).

A graph of type (d) must also be included when we symmetrize
the amplitude under the interchange of the two photons; that is, the
photons arriving at vertices w and y in Fig. 8.1¢ may have equally
well originated from z or z, respectively. This leads to a contribution
to the fourth-order S matrix of the form

Syt = +(—ie)*f dw d'z dy d%2 iDr(x — y)iDs(w — 2)
X [P @yaSel@ — YriSely — Wy @IFC@re@) (8.4)

and with the same sign as (8.3).

The amplitude for graph (e) of Fig. 8.1 corresponds to a process
in which the pair produced from the annihilation photon interacts,
again via annihilation, before emerging into the final state. Above
the vertex at y, graphs (¢) and (e) of 17ig. 8.1 are related in the same
way as the two second-order processes of electron-positron scattering
in Fig. 7.15, and we expect to find, as in (7.86), that their contributions
to the S matrix are of opposite sign. This leads to the result

S = —(—ie)[ d'w d'a dy d*z I (w) v (w)iDp(w — )
X [vatSr(y — 2)anxv3iSr(z — Y)raliDr(y — 2)
X W@y ()] (8.5)

The overall sign in (8.5) can be independently verified by constructing
an appropriate time-ordered sequence as in Fig. 8.2.

The symmetry and antisymmetry requirements that have carried
us this far lead to one additional class of graphs as illustrated by
Fig. 8.3. This arises from symmetrizing the two photons in Fig.
8.1¢; the photon arriving at w can equally well originate from z or z.
All such disconnected graphs, that is, graphs containing a completely
isolated part into or out of which none of the initial or final particles
emerge, are properly ignored in all calculations. Figure 8.3 shows
an electron propagating to z; there it emits a photon and scatters
backward to y, where it destroys itself and the photon. In the
language of hole theory this is a fluctuation effect in which an electron
jumps out of the negative-energy sea into an empty positive-energy
state with virtual photon emission and then drops back into the nega-
tive-energy sea upon reabsorbing the photon. Such fluctuations are
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w

Fig. 8-3 Example of a disconnected graph.

taking place all the time; and to find the scattering amplitude relative
to what happens in the vacuum, we divide out the contribution of all
disconnected bubbles, which evidently provides a multiplicative factor
on the connected graphs of interest.

We may summarize the rules for constructing the amplitudes
for higher-order processes as follows:

1. Draw all connected graphs.
2. Associate with each graph an amplitude with a factor

—tey,uf dx

at each vertex.

3. Include a propagator :Sr(x — y) or iDg(xz — y) for each line
representing a fermion or photon which terminates at vertices z and y
—this is an internal line, For photons insert an additional factor
gu» to tie together the v# and v at the vertices connected by the photon
line.

4. Introduce a wave function for each external line, that is, a
line representing an incident or scattered particle.

These rules are as developed in the low-order examples, with
the new condition that only connected graphs are to be calculated.
Finally, we add the sign conditions:

5. There must be a relative minus sign between two terms which
differ by the exchange of identical fermions, as in (7.82) and Fig. 7.13
for two positive-energy electrons and in (7.86) and Fig. 7.15 for one
positive- and one negative-energy electron. In the amplitude (8.5),
for Fig. 8.1e, this led to the introduction of an additional minus
sign with the closed electron loop. As a general rule a factor of (—1)
is included with each closed Fermion loop, as in Fig. 8.1e, in construct-
ing the amplitude for a given Feynman diagram.
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(c) (d) (e)’

Fig. 8-4 Feynman graphs illustrating (c) vertex
corrections, (d) electron self-mass, and (¢) vacuum
polarization.

6. In accordance with (6.56) there is an overall factor (—)%, where
7 is the number of positrons appearing in the initial state.

The big question remaining is how to compute the integrals,
in particular for the fourth-order interactions, and obtain numbers for
comparison with experiments. Diagrams (a) and (b) of Fig. 8.1,
along with the two crisscrossing photon lines obtained by interchang-
ing z and y, present a formidable four-dimensional integral of the
type given by (7.51) for the similar contribution to electron-proton
scattering, and they will not be computed here.

It is convenient in discussing diagrams (¢) to (e) of Fig. 8.1
to go into momentum space and relate them to the similar lowest
order graph, Fig. 7.15b, which contributes the second term of (7.86).
Making the—by now familiar—expansions in momentum space, we
find that Sj;” differs from the second term of (7.86) by the replacement
of the current

1

7,)(
pL— k —m e

+ e

aperatad = 20 [ (g g g (T

7 . ,
X eYu 4 — k —m + e (—ey")v(qy) (8.6)

S{i® differs by the insertion for the final electron wave function

alp) = 1) [ i (—iev)

7

Xk —m + e

. )
(—ZB’Y ) p;—_m (87)
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8.2

and S§i® differs by the insertion into the photon propagator
— 10wy (—2) 2
T =Y
N (=1) [(px +q)? + u]
)
X / (@r )4T”( Ze”“)m(_“’”)k— Pi— @i — m + e

I Gl I (—72)
T (pr g0t A e Lu(pr+ 41) (pr + q1)? + e (8.8)

The portions of the graphs contributing here are shown in Fig. 8.4.

All of the remaining fourth-order graphs give rise to insertions
of these same three types. It is unfortunate that these closed-loop
contributions diverge for £ — «. We discuss and compute them in
order.

Vacuum Polarization

The most severe divergence is that in (8.8) corresponding to the
closed electron loop of Fig. 8.4e. We refer to this contribution as
the second-order photon self-energy part. The integral contains two
electron propagators and therefore, with only two powers of k in the
denominator, diverges quadratically. The quadratic divergence may
be argued away with a certain amount of plausibility by appealing
to the condition of gauge invariance as discussed above (7.60). A
gauge change A.(¢) — A.(9) + ¢.A(g) must not alter final results
of a calculation of physical amplitudes. This requirement has the
following significance for (8.8). Let the photon in Fig. 8.4¢ be a real
physical photon with ¢ = 0 according to the Einstein condition, such
as occurs in the bremsstrahlung or Compton process. As illustrated

Fig. 8-6 Vacuum polarization correc- ?
tion to an electromagnetic process.




154

Relativistic quantum mechanics

in Fig. 8.5, the electron loop gives an e? correction to the current flow-
ing through the question box with which 4,.(¢) interacts. The gauge
requirement is that ¢, times the current vanish, which in terms of (8.8)
means

¢luw(g) = 0 (8.9)
when g?=0
This may be rewritten as
() = —e* Tr (g:rlg4qk—nlz—|—ie7"k— q—1m~|-z'e
- —&Tr (‘;;’;%_g_lmﬂe[(k—mﬂe)
— (=g = m+ i g
R (g;’;frr(k_q_lmﬂé— k—nlz+¢e)7” (8.10)

If the integral were finite, we could let &’ = k& — ¢ in the first term and
thus obtain zero. The fact that the integral is not finite is unavoid-
able, and consequently (8.10) remains ambiguous. In order to pro-
ceed, we cut off (8.8) at high frequencies, making the replacement®?

Li(gm?) = Lu(q) = Tw(qym®) + 3, C(M)1.(q,M?)

= E Ci]u»@;m?) <8.11)

where the M? are large masses and the C; are chosen such that the
integrals converge. This cutoff procedure is not unique and is adopted
only to define the mathematics. If physically measurable quantities
depend upon any cutoff parameters, the theory fails, In any case
the existence of divergent quantities leads one to suspect trouble
in the theory at large momenta or, equivalently, small distances.
Notice that the method of cutoff in (8.11) has the virtue of pre-

''W. Pauli and F. Villars, Rev. Mod. Phys., 21, 434 (1949). An alternative
procedure for handling these divergent integrals which first led to a gauge invariant
result was given by J. Schwinger, Phys. Rev., T4, 1439 (1948).

*R. Feynman, Phys. Rev., 76, 769 (1949).
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serving the gauge condition (8.9). Were the individual propagators
to be cut off, we would not be able to maintain gauge invariance.

The calculation of 1,,(g) subject to the condition -(8.9) is most
readily done by elevating the propagator denominators into expo-
nential factors by the identity

1; — <k + m iz(k2—m?2+1i¢)
k—m+1e k*—m?+4e (k—}-m)/ dz e (8.12)
This gives
‘ ) w d*k
Lo(g) = —4(=ie)" ["dar ["das [ G5

X [kulk = @)y + k(b — Qu — gu(k® — kg — m?)]
X exp {1z1[k® — m? + i) + 12o[(k — q)? — m? + 7]} (8.13)

where the trace has been carried out and orders of integration inverted.
Completing the square in the exponential by changing the integration
variable to

l=k— -2 g4+ 2 (8.14)

we perform the momentum integrals, using the identities!

atl [1,1, 1.0, eittertey = PR S 1,0 _ Wwr (8.15)
(2m)s Y 167% (21 + 22)2 | 7 2(21 + 22) )

with the result
= dzs
I, = —tzc1 / dzlﬂ) [CEPAL

X <exp ‘z [q2 zlz_f:? — (m? — de)(zr + Zz)“)

2122 —1 q%12s
8 [2(g“”q e A [ R e m“
(8.16)

The terms proportional to (g..q®> — qug,) automatically satisfy the
gauge condition (8.9), whereas the last three terms proportional to

! These are best evaluated in rectangular coordinates. Each integral, with
a rotation of contour of 45°, becomes a gaussian integral, for. example,

T4
/‘m dlo ellg‘(d+t€) = _ e
—w 21 2 \V/ra
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gu» do not. However, we may show that these vanish, that is,

w (o dzidey e 1 2t
/o /o (21 + 22)? Z ¢ [m‘ (1 +2) (2 + 22)2]
. 2122 2 .
X {expi [q2m — (m? — 1¢e)(z1 + zg)”

_ [ [* _daide , _ t it
B ﬁ) -/0 (21 + 22)? 2 é |:m? Mz + 22) (21 + z2)2J

2

. le d22
- (9)\ / .[ )\(21 + Z2)3
. 22122
X Z C; €Xp ‘1)\ [21 g2,

where we have let 2, — \z; in the second step. Upon letting Az; — 2
in the integrand, we see that the integral is independent of A; hence
(8.17) is identically zero.

The remaining contribution to I,, is evaluated with the aid of the
same scaling trick. Using the identity

(m? — i) + z>]] 8.17)

_[edA 21+ 2y
R (1_ ' ) (8.18)
w d\ dz, dzs
L,(g) = — (q,,q, gq") / / / x(z?:z:)l“zz

X 6(1 . ;[: z2> ch,exp{ [zq iz; (m? -1,'e)(zl+z2)]’

2

20 w© [ o g\
= (99> — 9ug®) /0 /0 dey dzs 21226(1 — 21 — 2a) /0 N

X Y ciexp [iNg2ize — m? + )] (8.19)

where we have again scaled z; — Mz,
The integral over A, unhappily, diverges logarithmically, and we
evaluate it with the aid of the cutoff procedure. Choosing, in (8.11),
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C;=—1,C; =0( > 1), we find

I, = 1,(m? — I,,(M?
M

- 2ta . ) 1 _
= <QuQv 9uq?) /0 dz 2(1 2) log m2——q22—(?z)

= 23% (9uqr — gug®)
ﬂ[? 1 2
X [log —5— 8 /0 dz (1 — 2) log (1 — %2(1 - z)ﬂ (8.20)

To understand the physical significance of (8.20), we consider, as in
Fig. 8.1e, the contribution of the closed loop to the scattering. Add-
ing it to the second-order amplitude in (7.86) gives, according to (8.8),
a photon propagator which can be written as the sum of two terms

~igu (=) (=)
e S L) 5 (8.21)
Inserting (8.20) and dropping the terms proportional to ¢, and g,
which vanish by current conservation at the electron vertices, we find

W |y _ @M
7 [1 37rlogm2

4 2?0,/01 dz 2(1 — 2) log< ¢l = 2) - ))] (8.22)

m?

This is the photon propagator including corrections of order a. In
any Feynman graph the effect of an eleectron loop on the amplitude
for the exchange of a photon between two conserved currents is given
by (8.22). In the limit ¢> — 0, the propagator is changed only by the
multiplicative factor Z;, defined by

M2
21 — % log —5 (8.23)

and therefore, for example, the Coulomb scattering amplitude for
small momentum transfers becomes

euyou . Uy, M?*\ _ deRuyou
o — 7e Pz (1 3 log m )= g (8.24)

We conclude that the parameter e? appearing in the Dirac equa-
tion is not 4r/137 but something larger, since it is e} which is measured
to be 4w/137. eg is called the renormalized charge and e the bare
charge. In any process where a photon is exchanged, this multiplica-
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tive factor will be present
~ a M?
6?3 = Z382 =~ g? (1 - 5 log %2> (825)

independently of momentum transfer. Consequently, there will also
be the same renormalization of the electron charge arising from the
static polarizability of the vacuum. Therefore, the divergence in the
calculation, to order e?, disappears if we rewrite cross sections in
terms of the observed charges e}. The observable, momentum-
dependent corrections come from the second term of (8.22), which
vanishes in the static limit ¢2— 0. Its contribution is finite and
independent of the cutoff procedure adopted in the calculation. Only
the relation between bare and physical charge is cutoff-dependent.
In the limit of low momentum transfer |¢?/m?| <1, it alters, for
instance, the Coulomb scattering amplitude (8.24) by the factor

a u: :
ie? uzgu <1 _ ilog— _ Li.) g% uzou[l — 15 + O(QR)]
(8.26)

This can be expressed as an additional interaction in coordinate space
of the form

2
<1 ~ 5 Vi> oo Ty G o) (8.27)

15mm? 4xr r 157m?

It leads to a first-order change AE,; in the atomic energy levels in
hydrogen-like atoms of charge Z

AEnl _ ZCRC!R

2,3
WOt = —(42%m) 52 % 5, (3.28)

Forn=21=0,and Z =1

v = A}—? = —27 megacycles per second

The signs of the contribution (8.26) and (8.27) are what the
discussion in Chap. 5 leads us to expect. For an electron scattering
with low momentum transfer |¢?| << m? corresponding to a large
impact parameter, the interaction is proportional to the total charge.
For scatterings with small impact parameters and large momentum
transfers ¢> = —|q|?, the electron penetrates the polarization cloud
and the interaction strength increases. The resulting modification of
Coulomb’s law, as first calculated by Uehling! in 1935, was the object

1 E. A. Uehling, Phys. Rev., 48, 55 (1935); R. Serber, Phys. Rev., 48, 49 (1935).
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of the original measurements of the 28,; — 2Py, Lamb shift splitting in
the hydrogen atom. Instead of —27 me/sec a shift of ~ 4 1,000 me/
sec was discovered in 1947; this was due primarily to the vacuum
fluctuations of the radiation field as discussed in Chap. 4. Very
precise measurements and calculations during the last decade agree
to within 0.2 me/sec for the Lamb shift of the n = 2 levels in hydrogen
and therefore confirm to high accuracy the presence of the —27 me/sec
of vacuum polarization. This is an impressive vote of support both
for the hole theory of the Dirac equation, which has given rise to
the closed-loop contributions, and for the simple form of point coupling
used in describing the interaction of electrons with photons. It still
remains for experiments probing the theory for large ¢?, corresponding
to interactions at small distances, to demonstrate the need for any
modifications. For large momentum transfer scattering with

g*l = —¢*>m?

the correction in (8.22) increases logarithmically and the photon
propagator, to first order in the unrenormalized charge «, is

'Lgpv |Q| o E
o (1 + log > <1 3 log m2> (8.29)

When the momentum transfer reaches the cutoff value M2, the correc-
tion compensates the charge renormalization factor and suggests that
in the limit of infinite energies the interaction is measured by the
strength of the bare point charge of Fig. 5.3. This is an interesting
but unproved conjecture.!

Whenever the virtual photon momentum ¢ is time-like and g2
exceeds 4m? as in the pair production diagram of ¥ig. 8.1e, the correc-
tion to the propagator in (8.22) becomes complex, with an imaginary
part given by?

ingﬂ' (2?&) /01 dz z2(1 — z)im6 [2(1 —2) — 12—2]

19, 1o 2&\/_41”_<_4ﬂ>
= + 3<1+q2>1 q201 e (8.30)

1 See remarks in Sec. 5.3. For extensive discussion of motivation and impli-
cations of this interpretation see L. Landau, A. Abrikosov, and I. Khalatnikov,
Dokl. Akad. Nauk SSE, 96, 773 (1954). L. Landau in W. Pauli, V. Weisskopf,
and L. Rosenfeld, ‘“‘Niels Bohr and the Development of Physics,” McGraw-Hill
Book Company, Inc., New York, 1955. M. Gell-Mann and F. Low, Phys. Rev.,
95, 1300 (1954). N. N. Bogoliubov and D. V. Shirkov, ‘“Introduction to the
Theory of Quantized Fields,” Interscience Publishers, Inc., New York, 1959.

?R. Feynman, Phys. Rev., 76, 769 (1949).
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To understand the origin of this imaginary part, we recall from
Chap. 6 and the discussion of scattering in the nonrelativistic prop-
agator theory that the S matrix in the Schrédinger theory is unitary.
The condition of unitarity

StS =1

8.31
that s, 3, 82y = b (8.31)

ensures the probability interpretation of the scattering solutions
according to which the sum of all transition probabilities for a given
initial state must add up to unity. In the positron theory, particles
are produced and destroyed and the sum over states n must include
all electron, positron, and photon final states to which a given initial
state can scatter. One finds that (8.31) retains its interpretation
as a statement of probability conservation. Since it is an identity
in ¢, each order in an expansion of S in powers of the interaction con-
stant must satisfy (8.31). If we expand

Spi= 8+ S +SP 4+ - - - (8.32)

the unitarity condition becomes

S(l) + SP* = (8.33a)
8P 4 SP* = — E SH*gWw (8.33b)
8P + SP* = — E (S0 "85 4 85800 (8.33¢)

S(A) + S(4)* - E [S(l)*S(B) S%-)*Sﬁ) + S;:})*Sgl)] (833d)

For i representing an initial free electron-positron state, Sy = 0;
the reaction e~ 4 ¢t — 1y is forbidden by energy-momentum con-
servation. Relation (8.33b) is satisfied by (7.86), which is anti-
hermitian as required. Relation (8.33d) gives a nonvanishing her-
mitian part of the fourth-order amplitude in terms of the second-order
contributions. Equation (8.30) represents just this fourth-order con-
tribution; it is real and therefore gives a hermitian contribution to the
S matrix (8.5) as required. The threshold function 6(1 — 4m?/¢?)
indicates that (8.30) is present only for momenta which could lead
to a final real pair state in addition to the virtual pairs in the closed
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8.3

Fig. 8-6 Exchange of a ‘‘real” photon ¢%=0
between two currents macroscopically
separated in space.

Distant source

electron loop.! The proof that the S matrix is unitary in any order
is best carried out within the framework of field theory.?

Renormalization of External Photon Lines

The contribution of (8.8) has been discussed so far for the propagator
of a virtual photon. Closed electron loops will also correct the
contributions of external photon lines. Here the photon may be
visualized as in Fig. 8.6 as having been produced by some distant
source. If the vacuum polarization bubble is incorporated into the
system of interest, it provides a multiplicative factor of Z; to the
uncorrected matrix element, according to (8.23) and (8.24). How-
ever, the source current then remains unrenormalized. If a factor
\/Z; is associated with the source and the other \/Z; with the sys-
tem of interest, the bare charge ¢ at each vertex will be replaced by
\/Zse = ep. Thus a working rule for dealing with real external
photons is to ignore corrections to all external lines and replace e by ez
at each external vertex. This is equivalent to calculating all graphs,
including vacuum polarization bubbles on external lines, and then
dividing by v/Z; for each external photon line.

Hereafter we shall assume, when writing equations, that charge
renormalization has been carried out. e?/4r denotes 1{37, and the
bare charge, whenever needed, will be denoted by es.

! The imaginary part, (8.30), is just right to make the total transition proba-
bility out of the initial-state unity to order a2. See R. H. Dalitz, Proc. Roy. Soc.
(London), A208, 521 (1951).

tFor the proof see J. D. Bjorken and 8. D. Drell, ‘“Relativistic Quantum
Fields,” McGraw-Hill Book Company, Inc., in press.
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8.4 Self-mass of the Electron

The amplitude for the graph of Fig. 8.4d—known as the electron
proper self -energy part to order e>—is given by the integral in (8.7),
namely,

d*k (—4) i -
Cr) k= N+ e "B — Kk — m + g¢ |

—iZ(p) = (—ie)? (8.34)

Equation (8.34) diverges, since there are only three powers of k&
in the denominator, two coming from the photon and one from the
electron propagator. X\ is a small photon mass inserted to protect
us from infrared divergences which will appear.

Introducing (8.12) and taking the analogous steps to (8.16), we
come to

_ _(X_ o © B d21 ng _ pzl
Z(P) = o _/0 /0 (zl + 32)2 [Zm P 22:|

2
X exp [z( P2 _ m2zy — )\‘*‘zl)] (8.35)

21 1+ 22

Z(p) in (8.35) applies both for internal electron lines with arbitrary
p?and p in a Feynman graph and for external lines. 1In the latter case
p? = m? and p stands next to a free-particle spinor as in (8.7). The
Dirac equation may then be used to set p = m. As in vacuum
polarization, we use (8.18) and let 2; — +yz;, obtaining

) = 5 [, dzlzm — 9t = 2] [, Dexp finip1 - 2
—m2 — N1 — 2) + i€} (8.36)
The integral

Jpmp) = [° "% exp {ir[p%2(l — 2) — miz — M(1 — 2) + id]}

diverges logarithmically; we cut it off by subtracting off J(p,m,A)
with A a large mass.
Using the identity

/Om dv (efsr — o) = <10g g) (8.37)

x
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we find for the propagator, after cutoff,

o

Sp) = 5 [, dz2m — p(1 ~ 2)]

A1 — 2)
X log miz + N1 — 2) — p2%(l — 2) — e
A1 —
=%[Oldz[2m—p(l — 2)] log (L= 2)

m2z?

o 1
+ o [ de12m — p(1 = 2)]
o omP N1 - 2)
XIOgm%—i—)\?(l —z) — p2k(l — 2)
o~ Sam Ouﬁ_ﬁ( — m) 1 X
=4 B T P 08 i

+ 237;/01 dz [2m — p(1 — 2)]

o omEE Nl — 2)
mi* + N1 — 2) — p(l — 2)

X log (8.38)

All the cutoff dependence lies in the first two terms, which will be
disposed of by the renormalization procedure.! The integral is readily
evaluated for p? — m2>> m\; one obtains

oomz
— p*(l — 2)

am m2 _ pi/: m2 . p‘l
(T

™

_e(m mt A P ™ T D
B () (5]

Near the “mass shell,” that is, when p? = m? (but p?* — m? > mh),
and when 2 stands next to a free-particle spinor (p = m),

1
% fo dz 2m — p(1 — 2)] log b

~ 3a A2 o A? m? — p?
S(p) = i log Sl (p — m) <log - + 4 log m#) (8.40)

Notice the logarithmic singularity as p?— m? TFor p?> m? 2
becomes complex, corresponding to the existence of the process of
virtual electron decaying into electron and photon, in analogy to what
happened to the photon propagator. For p? — m? < m\ the last

1 The finite term separated off in (8.38) is fixed uniquely by requiring it to
vanish identically for the electron on the mass shell, p2 = m?2
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logarithm in (8.40) is replaced by log (\/m). This may be verified
by a direct calculation® of the integral in (8.38) in the limit p? — m2.

Renormalization of the Electron Propagator

The modification of the electron propagator thus far has been the
replacement, according to (8.34),

—

T e T e CEe) S
R S ) (8.41
sy + 0 B4
From (8.40), we write
Z(p) = om — [Z5' — 1 + C(p)I(p — m) (8.42)
with
o = o A2
m= 4 g m?
and

A2 2 2
Zyt — 1+C(p)%%<logw+4logm“mzp>
mx L p? — m? LK m?

C(p) 1s chosen such that at p = m, C(p) = 0; it thus contains no
dependence upon the cutoff A. At p = m this becomes

a A2 m?
Zyt— 1= . <log i 2 log V) (8.43)
Using (8.42) we may now rewrite (8.41) as follows:
1 _ 12,
p—m—2(p) @ —m)l+ Z:.L(p)] — Zsom
125

= + 0(a? 8.44

F—m —mi + () T O G4

We identify m,, = m + ém as the physical mass of the electron;
the parameter m in the Dirac equation is, like the bare charge, another
unmeasured number. The necessity of mass renormalization already
occurs in classical electrodynamics; experiments on a free electron

! For the complete second-order contribution to the electron self-energy part
see R. Karplus and N. M. Kroll, Phys. Rev., 77, 536 (1950). See also J. M. Jauch
and F. Rohrlich “The Theory of Photons and Electrons,” Addison-Wesley Pub-
lishing Company, Inc., Reading, Mass., 1955.
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Fig. 8-7 Time orderings for the second-order A
self-mass correction.
| |
A

(a) (b)

measure m, the parameter in the Lorentz force law, plus the iner-
tia of the electron’s self-field.! For a classical electron of radius
~a, the electromagnetic self-energy is ~a/a and the observed mass
is ~(m + a/a) = M. For a point charge, a — 0 and the correc-
tion to the mass becomes infinite. This is true also in Dirac theory;
however, here it diverges logarithmically with the cutoff in contrast
to the classical self-energy correction, which is linearly divergent
as the charge radius @ — 0. This weakening of the divergence is a
consequence of hole theory. As first studied by Weisskopf,? the
virtual pairs in the time-ordered graph of Fig. 8.7a cancel the leading
divergence in Fig. 8.7b.

Although formally infinite, the mass correction is small for cutoff
masses A K me?/3* ~ 101%%n. On the other hand, the mass of the
universe is estimated?® to be ~10%%n,

A systematic way of carrying out mass renormalization is to
rewrite the Dirac equation in terms of the physical mass and treat
the difference as an additional interaction term. That is, we write

GV — me¥ = eAY + (m — mu)p = eAdy — dmy  (8.45)

The additional interaction term is represented by the graph in Fig. 8.8.
This term just cancels out the first term in (8.40), and the propagator
reduces to a multiple of the free propagator as g — my.

We shall hereafter suppose mass renormalization to be carried
out, that is, the graphs of Fig. 8.8 to be included; we shall let m denote
the physical mass of the electron.

The rest of the correction to the propagator lies in Z, and the
function C(p), chosen such that at p = m, C(p) = 0. Thus, for

1 H. A. Lorentz, “The Theory of Electrons,” B. G. Teubner Verlagsgesell-
schaft, mbH, Stuttgart, 1916.

2 V. F. Weisskopf, Phys. Rev., 66, 72 (1939).

3 C. W. Allen, “Astrophysical Quantities,” University of London Press, Ltd.,
London, 1955.



166

Relativistic quantum mechanics

—om Fig. 8-8 Mass renormalization counterterm.

8.6

.
tam

P == m the propagator is given by
) A

— (8.46)
p—m p—m

that is, it is modified by a multiplicative factor. Z, is analogous in
this sense to the Z; factor encountered in the photon propagator.
Here also this factor may be absorbed into the charge e, appearing
at the vertices at either end of the electron line; however, this is
unnecessary, since we shall see that the correction to the vertex
will cancel the Z,, We cannot expect Z, to contain much physics,
since 1t depends upon the photon mass according to (8.43).

One must be careful not to correct external lines twice; the
situation here is similar to that encountered for the photons. The
propagator is an expression bilinear in the field amplitudes, as seen,
for example, in (6.48). However, an external line represents a field
amplitude; hence it is renormalized by the factor /Z,. Thus if all
graphs giving corrections to external lines are included in the calcula-
tion, the result must be divided by /Z, for each external electron line.

A familiar example of this effect is found in nonrelativistic pertur-
bation theory, where

=Vt Y mll) (8.47)
m#En ke
] — _ l(‘Pm,V\I/n)|2

Again, the Z factor is computed essentially from the Green’s function
and the wave function is renormalized by \/Z,.

The Vertex Correction

There remains only the graph of Fig. 8.4¢, which shows the correction
due to a photon bridging the vertex v,. This contribution is referred
to as the second-order vertex part. In order to compute its contribu-
tion to physical processes, we study the integral
. dk (—2) 1
’ — i\ ~
Au(P',p) (—1e) (2m) k2 — N F qe Yy P —k —m+ e

X Yu

e Em Y 649
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where p’ denotes the momentum of the electron and —p the momen-
tum of the physical positron created by the virtual photon in Fig. 8.4c.
Equally well, (8.49) represents a radiative correction due to an electron
scattering from some external potential, as illustrated in I'ig. 8.9.
In this case, p’ is again the momentum of the final electron but p is
now the momentum of the initial electron. Thus the same function
(8.49) describes corrections to different physical processes.

The amplitude (8.49) diverges, since the integral contains only
four powers of & in the denominator. In addition, we shall encounter
an infrared divergence and again assign the photon a small mass A
to cut off the contribution of very soft photons. We identify the
infinite part to be separated out by considering A*(p’,p) for

¢=p —p—0
and for free-particle momenta for the initial and final electron, that is,

p=mp =m
In this case

a(p)Mu(p,p)u(p) = (Z7' — 1)a(p)y.u(p) (8.50)

where Z; is a constant depending upon the masses m? = p? \? and
the cutoff needed to make it finite. Equation (8.50) is general, since
the only other four-vector, p,, is the same as mvy, when sandwiched
between spinors u(p) and u(p) in (8.50).

It is not necessary to calculate Z,, because a direct comparison
of (8.49) for p’ = p and of the propagator Z(p) in (8.34) shows that

_ _%z(p)
Au(p,p) = 3 (8.51)
Here the important identity
0 1 1 1
ap“p*m—_p—m’y“p—m (852>

is used; it says that differentiation of a free propagator with respect
to momentum is equivalent to the insertion of a zero-energy photon

4

Fig. 8-9 Vertex correction to scattering in an external
electromagnetic potential.
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in the line. 9Z(p)/dp* may be computed directly from (8.42). and
we find

a(p)du(p,p)u(p) = (Z3' — Da(p)v.u(p) (8.53)
or by (8.50)
Zy = 27, (8.54)
to order e?,
T'o this order, the vertex correction is then
Ap,p) = (27" = Dy + AL(0,p) (8.55)

All the cutoff dependence is contained in Z,. AL(p’,p) is finite pro-
vided we avoid the infrared catastrophe by keeping the photon mass
N > 0. It is also unique, satisfying the condition

a(p)AL(p,p)u(p) =0 (8.56)

We now may either regard Z, as renormalizing the charge e
at the vertex or observe that it just cancels the \/Z, wave function
renormalization of the external lines. This is best seen by looking
at all the graphs to order e? for the forward scattering of an electron
from a potential. These are shown in Fig. 8.10.

o

e

Fig. 8-10 Second-order radiative corrections to scattering in an ex-
ternal electromagnetic potential.



Higher-order corrections to the scattering matrix 169

The contributions of these graphs in the limit ¢ — 0 are listed

below:

(d) —ie'Y;x

(b)  —dev.(Z7' — 1)

©  Homo (o) = (25 = 1)(—ien) (8.57)
(d) —dm v m (— devw)

(e) —(—revu) % log % = —idevu(Z; — 1)

According to our previous discussion, we also divide by V7,
for each external electron line and 4/Z; for the photon line; the sum
of all these contributions is, to order e?

5\172;3 —dey )l + (Z7' — 1) — 2(Z7 — 1) + (Z3 — 1)]
S S X X )
ZoNZ, 1+ &t —DP
= —1eZ'Zs NV Zs v,
= —1erYu (8.58)

where (8.25) and (8.54) are used in the last step. Between the
vertex part and the propagator the Z; renormalization is completely
removed. The vacuum polarization is entirely responsible for the
charge renormalization.

The rather elaborate notation employed in arriving at (8.58)
is used with an eye to dealing with higher orders. In particular,
(8.51) and the relation Z, = Z, in (8.54) are true to all orders (Ward’s
identity) as is the result that all divergent integrals can be absorbed
into the renormalization constants Z,, Z,, and Z3.!

We have already found a physically observable effect in the finite
part of the vacuum polarization graph. Looking into the finite part
of the vertex and electron self-energy contributions, we also uncover
predictions of great physical interest.

Turning to the vertex A,(p’,p), & somewhat lengthy calculation
is required to reduce the integrals in (8.49). We first rationalize
electron propagators and combine denominators, using either expo-

1 This is discussed in detail in Bjorken and Drell, op. cit.



170

Relativistic quantum mechanics

nentiation of the propagator denominators (8.12) followed by the
scaling trick (8.18) or, more directly, the formula!

1 =(n_1)t-/‘wd21".dzus(l_;zi)_ .59
ay * *  Qa “Jo (E a,'zz')n .

One finds, after the four-dimensional k integration (and using a cutoff
A? on the divergent integral)

M) = v log s 4+ 00|

b [T [ e (1Y )
i=1

m2(1 — 21)% + %
(1 — 21)? + N2y — q%92;5 — ¢

SN dzldzzdz;;ﬁ(l——EZ,)

V[P (1 — 22) — pas + mlyup(l — 2) — p'z2 + mly”
m*(1 — 2)? + A2y — q%uq — qe

At this stage it is convenient to reduce the numerator of the last
term by anticommuting ¢ and p’ to the sides, where they may act

X log oy

(8.60)

! With the aid of this Feynman integral [Phys. Rev., 76, 679 (1949)] we bring
the denominators to a quadratic form and then complete the square by shifting
the origin of the & integrations, viz.

b 1 1 1
/—w dkJ) k2 — N2+ de (pf — k)2 —m? 4 de (p — k)2 — m? + e

=2/0m/0”/0mdzldz?d538(l — 21 — 23 — 2y)

. / w d*k f (k)
—w [k? — 2kp'zs — 2k-pzy — N2y + (P2 — mDzy + (p? — mPzs + 1e]?

L) 4 o
= 2/ / / dzy dzy dzy (3 — 2y — 2o — 23) / ! kj(']({lz i_fi_ :)sza)

with ¢ = (p’z2 + pzs)-(p'z2 + pz3) + N2y — (p'2 — mPzz — (p? — m)zs
—p'%y(1 — z5) — p2y(1 — z3) + 2p-p'2ezs + M1 — z1) + N
—(p"” — mHza(l — 22) — (p? — mHzs(L — 25) — ¢2a2
+ m2(1 — z1)? + Nz

I

I

We now perform the [ dk by contour methods, carrying out the /_w dky with
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upon electron spinors between which we tacitly assume A, to be
sandwiched. The Gordon reduction (3.26) helps here; the numerator
of the last term becomes

—v2m*(1 — 421 + 2]) + 20°(1 — 2)(1 — 23)] — 2mzwolg,v,] (8.61)

The integration over the #’s is in general a mess, although an
analytic result has been obtained and is quoted in many places.!
We restrict ourselves here to the two limits |¢|? < m? and |¢?| > m™
In the first case the integrations are straightforward and yield, to
order ¢?,

c(p ) 2 g _3 o
vt 400 2|14+ L (o - )|+ % e B62)

For |¢?| > m? we obtain the A-dependent terms only and find

1~ log " [log( 7) 1+o< )“ (8.63)

Adding these results to the contribution from the vacuum polar-
ization (8.26) gives the radiative correction to order « for an electron
scattering in an external field which supplies a virtual photon gq.
I'rom (8.26) we find that the vacuum polarization adds a constant
—1¢ to the —34 in (8.62) in the low momentum transfer limit and
has no effect on the infrared or magnetic moment terms in (8.62) and
(8.63).

The last term of (8.62) adds a magnetic moment of «/2r to an
electron, since it modifies the static limit of the interaction of an

Yo T AP ,D) = v

the contour displaced from the poles at + +/[k]2 + ¢ by Fie as indicated:
k2 — ¢+ ie = (ky — \/[k]? + ¢ + ie) (ko + /[k] + ¢ — 7¢). This gives
o0 1 .”.2
4 _ — =
/_mdk %% — ¢ fie?  2ic
The results for arbitrary powers of the denominator, n > 3, are obtained by
differentiating with respect to ¢. Because of the symmetry of the denominator,

which is a function of k2 only in the above expression, numerator factors are also
easily reduced: odd powers of k, — 0

kuk, — YWgokt  ete.

1 See Feynman, Phys. Rev., 76, 769 (1949). For the vertex when the electron
lines are not on the mass shell and p? = m?, p’2 = m?, see Karplus and Kroll,
op. ctt.
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electron with an external field to

1 Tu,q”

—ieae) (1 + 32 L) utp) 4@

= —ieu(p) [(%—;—fi + (1 + %)fﬁ] u(p)4*(g) (8.64)
This correction factor of (1 + «/2m) for the electron magnetic moment
was first derived by Schwinger! in 1948 and has since been confirmed
experimentally.?

The experiments have become sufficiently accurate to study the
a? correction to the magnetic moment. This has been calculated by
Sommerfeld and Petermann;?® their result of — (a2/72)(0.328) is in
agreement with present experimental limits. The result is obtained
by considering all vertex graphs involving the exchange of two virtual
photons.

The other terms of (8.62) and (8.63) lead to infrared divergent
contributions to electron scattering. These, however, disappear when
the contribution from bremsstrahlung of soft photons is included in
the cross section. Any experimental apparatus has finite resolution;
if electrons are detected with a given energy resolution AE, the number
of observed events corresponds to the elastic cross section plus the
bremsstrahlung cross section leading to electrons whose energy is
within AE of the elastic value.

We verify to order e? that this sum of elastic plus inelastic cross
sections is finite and free of the infrared difficulty by comparing (7.64)
and (8.62) and (8.63). The infrared part of the elastic cross section
to order e? is

do do 200 m
(Eﬁ)x = ((To)o [1 — - log+ x(qQ)] (8.65)
2 2
— 1L - L«
: 3 m? m?2
e MO = e ¢
log® 5-—1 = >»1 (8.66)

1J. Schwinger, Phys. Rev., 78, 4161, (1948).

2H. M. Foley and P. Kusch, Phys. Rev., 73, 412L (1948).

8 C. Sommerfeld, Phys. Rev., 107, 328 (1957), and Ann. Phys. (N.Y.), b,
20 (1958); A. Petermann, Helv. Phys. Acta, 30, 407 (1957).

4The latest experimental value has been reported as p =1 4 a/2r —
[0.327 + 0.005]a?/x? by D. T. Wilkinson and H. R. Crane, Phys. Rev., 130, 852
(1963).
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(do/dQ), 1s the lowest order contribution to the elastic scattering cross
section. The bremsstrahlung cross section is given by (7.64)

d(T da- kma,x
<d§z)b,m <d9)0 1083~ x(¢) (8.67)

We cannot directly add these last two equations together because we
have cut off the low-frequency photons differently in the two cases.

To overcome this problem, we have the choice of rederiving the
bremsstrahlung cross section with photons of finite mass or of recom-
puting the vertex corrections assuming that emission of photons of
energy less than knin is suppressed. We choose the latter alternative
in order to avoid the intricacies due to real longitudinal quanta,
absent when A = 0. Since the introduction of the photon cutoff kmin
is a noncovariant procedure, identification of the renormalization
parts in the vertex correction becomes very delicate. This is why
the development was given first in terms of the invariant photon
mass \. Furthermore, we choose kmin >> N\ to ease the mathematics.
Therefore, we must now return to (8.49) and modify the photon
propagator by suppressing the k¥ < ki amplitude.

This means that Dr(z — y, \) in the photon propagator (7.30)
is modified from

D@ =N =i [ (27r)32|qo| i
—1ig-(2—y)
o f (27r)4(q “NTF g (8.68)
to
. d3q ) )
DF(:B - Y, kmin) =1 T R i (x—y)—ilal lzg—yol
FEANCLY 2[q|
. i d? q )
= DF(x - Y, )\) == 9 ToNioT el (x—y)—ilgo} lzo—ydl
la| < Fmia @m)*2lq ©
= Dr(z — y,\)
_d*q_ 490 gz L
+ lq]i/l‘c . (27")3/ w 21 emiey q2 — A2 + 4e (8-69)
where g = V@ + A2 Emin > A (8.70)

The regions of momentum space in which the two propagators are
modified are shown in Fig. 8.11. The change §A,(p’,p) in the vertex
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(8.49) is then

8Au(p",p) = Mu("\p\) — Au(P' 0, Komin)
. d*k o dkg
= —et | = =
k| <kmin (2“)3/_“’ 2m
(P — k+ m)vu(p — k + m)y*
(’0 —>\2+26) (@ — k) — m? + de][(p — k) — m? + ie]

This expression is free from ultraviolet divergence, since the range of
integration is limited.

To compute (8.71), we do the k, integration first by performing
a contour integral in the ko plane and using Cauchy’s theorem. Three
simple poles are enclosed, as indicated in Fig. 8.12. In the limit
Emin << m, only the residue from the pole at ky = v/k? + \? survives
in 8A,(p',p), which simplifies to

—e? o d% V(B 4+ m)vu(p + m)y
| L (2772 VEk? £\ (2k-p) (2k-p")
d3k pp’
o 3o ST e (TN (o) 8.72
lkl</km;,. (27)*2 VE: + \ (kp)(kp’) ( )

(8.71)

8Au.(p",p) =

= —ey,

where we anticipate sandwiching 6A, between free electron spinors.
The renormalization is now delicate because the introduction

1qi

17’

N

Fig. 8-11 Regions of momentum space
modified by infrared cutoffs.
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Im kg
~2p
_ N XXX poz Re kg
- X - X X<
! K+X il
p0+,/(k—p)2+m2

’&52p0

Fig. 8-12 Singularities in the ko plane encountered in computing
A, (p’,p)-

of the photon cutoff is a noncovariant operation. Since (8.51) is
still valid, we may use our previous conclusion (Z; = Z,) that no
renormalization of A, is necessary, provided the self-energy parts are
included properly. However, 2 changes because of the changes in the
photon propagator; indeed
52(1’) = 2(]),)\) - E(Z),kmin)
— e / _d_af,c_[“’ dko 1 “ - 1
i, @m)3 o 2n oy =k —m +de | K — A + de
(8.73)
This must be computed through order p? — m? since the modification
in the renormalization constant Z, is what is needed here (dm is free
of infrared divergence).

We integrate over k, first, as for the vertex, and obtain, through
first order! in p? — m?,

a*k Y@ + m)y*
62 = —p2 2
) ‘ 1 <o 2T 2VEE A NN = 2k + (pP — m?)
d*k (p* — m*)yu(® + m)y*

= 2 — ™), 0 - -

i || <kenin (27)32\/k2 + N (A2 — 2%p)? + 0((p m?)?)
+ O(kmin)
= v, o ® 8.74
= |kl<£:m., @m*2vk> + \* (k'p)? ®—m) (8.74)

1 The term O(kmin) changes &m by a negligible amount.
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The complete change of the vertex due to modification of the
photon propagator is then

1
A, + = 62(17 ) ey 1% + D=t g 53(p)
= — el d3k
’ [k <kmia (2m)3 2/ k? + A2
pp m? _ m?
X [m)(phk) - 2(pk)? 2(p’-k)2} (8.75)

where we must remember to take only half the contribution of the self-

energy bubbles of Fig. 8.10¢ and d, since it is the external wave func-

tions that are being corrected by the factor /Z, =1 + 4(Z, — 1).
Evaluating (8.75) in the nonrelativistic limit |¢2/m?| < 1 gives

c / . ﬁ _ﬁ 2kmin __ §
6Au(p ;p) = Yu T me (10g X 6 (876)
and thus, from (8.62) and (8. 71)
c ’ ) _ a 0 yq “ m 5 i 3—
AL, p,kmin) = 5 [ b + m2 'y“ (log T + 6 8>] (8.77)

For |g?/m? > 1 one finds for the infrared divergent terms

— 2 E
SAL(p',p) = —'y”;:: []og <?%) — 1] (log X — log kmm) (8.78)

and consequently, from (8.63) and (8.71),
, E —q?
A (D", p,kmin) = log — [log (%) - 1} (8.79)

We see that in terms of the knin cutoff the infrared part of the elastic
scattering is given, instead of (8.65), by

(jg)km - (%)0 [1 ~20g kLn 2)} (8.80)

Adding on the bremsstrahlung cross section (8.67) gives the infrared
part of the scattering cross section, including emission of photons
of energy less than kpax:

do _ do B 2_(¥ . E ,
<dﬂ>inl‘rared N (dTZ)O [1 T 100 kmx\x X(q )] (881)

It is completely independent! of kumin and .

1 J. Schwinger, Phys. Rev., 75, 651; 76, 790 (1949). For a recent review and
discussion of the entire infrared question see D. R. Yennie, S. C. Frautschi, and
H. Suura, Ann. Phys. (N.Y.) 18, 379 (1961).
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8.7 The Lamb Shift

The scattering correction (8.77) may be considered to be due to an
additional “effective potential” which acts between the electron and
the source of photons, which we take here to be a nucleus of charge Ze.
The change in the atomic energy levels due to this added interaction
is the Lamb shift, which we are now able to discuss in more detail
than in the physical argument of Chap. 4.

The effective interaction in momentum space between the electron
and a current source e4#(q) is given by (8.77) plus the vacuum polar-
ization contribution (8.26),

i(p’ 5 3 1 o ,
u(p’) [ [ + 5 3 me (1 g 270mm + 6 8" 3)] + mawq } u(p)
X eA*(q) (8.82)

Equation (8.82) contains the corrections of order « to the electron’s
current operator, u(p’)y,u(p), due to photons of momentum greater
than kmin, and it is valid for small momentum transfers ¢, = p, — Pu,
that is, for |¢?/m?| << 1. The current source is eA*(q) = — (Ze?/|q?|,0)
for an electron in the Coulomb field of a nucleus of charge Ze, and
(8.82) becomes

n[Ze ] alqf? m 5 3 1
T )’l P[l %W(longmi,,Jré_é"E)]

ol ue) 68

The first term is spin-independent and is the Fourier transform of an
effective Interaction potential of the form
4o Za m 11 .
R (logzicmmJ“ 21~ )5 )
In hydrogen-like atoms this leads to an energy shift due to photons
of momentum > knin which is found from a first-order perturbation
calculation to be

_4ada

AEZ 5 [Waum (0)]? (10g PO u_ 1) (8.84)

2kmin 24 b
To this must be joined the contribution from soft photons of momen-
tum less than kumin.

One expects a natural cutoff of order kmin < (Za)m, that is, for
photon wavelengths large compared to the size of the atom. Indeed,
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kmin cannot be chosen arbitrarily small, because the propagator of
a bound electron is modified from the free-particle form for values
of p* — m? ~ (Za)*m® 1In the atom

p*~ (m +V,p)
with V~ (Za)*m and Ip| ~ Zam

and in our previous calculation of the self-energy part Z(p) as well
as the vertex A, [see (8.74)] we assumed

k'p ~ kminm > p2 — m? -~ (Za)2m2

For photons of momenta less than k., relativistic corrections should
be small, that is, involve higher powers of Za, and one uses a com-
pletely nonrelativistic ecalculation, first carried out by Bethe.! From
old-fashioned second-order perturbation theory, the energy shift due to
emission and reabsorption of a photon by an electron in state n is

ki % E(”la'ﬂe“‘"|m> (mlo « £ e77|n) (8.85)

(<= 2
AL e/ E — kL.

0 2k(2m)?

m,e

where the sum is over transverse photon polarizations and all electron
states. We now choose knin such that

(Za)'m K kmin K (Za)ym

[for instance let kuin =~ (Za)*m] and make the dipole approximation,
admittedly a somewhat questionable procedure. Because the electron
states are nonrelativistic, « may be replaced by v = p/m. The
integrations over k may then be done, yielding

ABS = 22

-2 [ ~ omin(m|¥1n)

|<n|p|m>|2] (8.86)

Em h En |Em - En + kmin|
+ Z e log E. — |

We now must carry out the mass renormalization for this part
of the calculation. Since the electromagnetic mass dm of the electron
is already contained in its experimental mass m, there will be a mass
counter term of the form

S S Y AN
2(m — &m) 2m~2<m) om

1H. A. Bethe, Phys. Rev., 72, 339 (1047).
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in the hamiltonian. This leads to an energy shift.
8B, = ¥4 om (n|vi|n)

which is just the structure of the first term of (8.86). It therefore
is absorbed into the mass renormalization. Since kmin > E., — E
~ (Za)*m, the nonrelativistic part of the Lamb shift is given by

m

km
AE:=3m22<E = By) log 1= [(nlelm)|?

%sz(E = B.) log 2 (olplm)] (3.87)

which serves to define E, expected to be ~(Za)?m. The sum over
states can now be performed with some commutator algebra

D, (B = Ba)nlplm)® = L5¢nl(p,H1plln)
yielding

@ kmm 4:a(Za) kmm
37rm2 ( ,V2V, >“ Im? l‘/’nlm(o)lz (8-88)

AES =

Joining onto (8.84) gives the energy shift to order a(Za)* for s states
in hydrogen-like atoms:

4a(Za)* m 11 1
AES = W (Iog EE -+ 51 - g) m (8.89)

E has been evaluated by Bethe! et al. and found to be 8.9a’m in
hydrogen in agreement with our anticipations. To (8.89) must still
be added the contribution of the anomalous magnetic moment term in
(8.83) in order to complete the Lamb shift to order a(Za)*

The reader may understandably be unhappy with this treatment,
in particular with regard to the dipole approximation and the treat-
ment of kmin. To the devoted student we recommend the recent
treatment of Ericksen and Yennie,? which avoids the division into
soft and hard photons.

1H. A. Bethe, L. M. Brown, and J. R. Stehn, Phys. Rev., 77, 370 (1950).
More recent improvements are due to C. L. Schwartz and J. J. Tiemann, Ann.
Phys. (N.Y.), 6, 178 (1958).

2 G. Ericksen, unpublished doctoral dissertation, University of Minnesota,
1959.
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In this chapter we have shown how to extend the rules for writing
S-matrix elements by one power of « beyond the lowest order ampli-
tudes. The divergence difficulties which were encountered in this
development were surmounted by showing that the infinite expressions
could all be isolated in a well-defined way and included in constants
which renormalize the charge and mass of the electron and the wave
functions describing the propagation of the electron and photon.
The need for such renormalizations is clear on physical grounds. To
the mass parameter in the Dirac equation, the electromagnetic mass
must be added, since this is already contained in the experimental
mass. Also, the charge must be renormalized to include the effect
of the static polarizability of the vacuum. Finally, the wave funec-
tion must be renormalized, as in ordinary nonrelativistic perturbation
theory illustrated by (8.47) and (8.48), to correct for the amplitude
of observing an electron in the presence of the fluctuations induced
by the interaction.

Delicate care in carrying out the renormalization program has
been demanded by the unfortunate fact that the Z,, Z,, Z;, and om
diverge. However, we have seen that the remaining physical effects
are finite and independent of our cutoff. Moreover, they agree with
experiment, as, for example, in the Lamb shift and anomalous mag-
netic moment observations.!

It is natural to ask at this point what new problems we face
as we push on further to higher orders in a. The answer is none
beyond the demand of added computational labor. We have already
introduced all the renormalizations required. The ideas and pro-
cedures introduced in this chapter suffice to carry us in a well-defined
way to unique, finite, and cutoff-independent answers to all physical
amplitudes in a calculation of the S matrix to any (finite) order in «.?

Problems

1. Check unitarity of the electron-proton seattering amplitude through order e’.
Do this by computing the absorptive part of (7.51), which corresponds to the
intermediate electron and proton propagating on their mass shells, and showing
by (8.33) that this equals the appropriate product of second-order amplitudes.
Show also that no other absorptive parts arise from Fig. 7.6 and Fig. 7.7.

1 For the most recent review of this situation see R. P. Feynman, Rept
Solvay Congr., Brussels, Interscience, New York, 1961; also S. D. Drell, 4dnn.
Phys. (N.Y.), 4, 75 (1958).

2 The sufficiency of these ideas and procedures is discussed in Bjorken and
Drell, op. cit.
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2. Check unitarity of the scattering amplitude to order e3 by relating the imagi-
nary part of the vertex correction (8.60) to the appropriate product of the second-
order electron positron scattering amplitude and the vertex evy,.

3. Show that the self-mass computed from (8.35) for a cutoff A, such that A < m,
increases linearly with A and corresponds to the classical self-energy for a charge
distribution of radius a ~ 1/A.

4. Complete the calculation of the Lamb shift to order «(Za)* by adding the
anomalous magnetic moment term in lqgs. (8.83) to (8.89) and computing the
contribution to both s and p states.

5. Construct the photon-photon scattering amplitude to order e* and show that
it is gauge-invariant and finite.

6. Prove Furry’s theorem (Phys. Rev., 51, 125 (1937)] which states that a closed
loop, from which an odd number of photon lines emerge, vanishes. It follows
from this that scattering of light in an external field (Delbriick scattering) is
quadratic in the strength of the field in lowest order.

7. Verify Z, = Z, to second order by explicit calculation. Cut off the photon
propagator to maintain gauge invariance.

8. Prove (8.59).
9. Verify (8.76) and (8.78).

10. Compute the radiative corrections to electron scattering from a Coulomb
potential at high energies and momentum transfers ¢ to order « log (¢2/m?) and
a log (B /kwmin).
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The
Klein-Gordon

Equation



9.1 Introduction

The propagator formalism may be used and techniques of calcula-
tion may be developed for processes involving particles of zero spin.
We attempt to describe these particles by a scalar wave function
o(z) with only one single component, and consequently we are led
back to the Klein-Gordon equation

(O + mYe(x) =0 (9.1)
for the free particle.

Such an equation was abandoned in Chap. 1 because of the
impossibility of defining a conserved positive definite probability.
However, this original motivation for rejecting (9.1) has by now dis-
appeared and we reexamine it in the light of the Feynman interpre-
tation of the negative-energy states propagating backward in time.
The spin of the particle does not enter crucially into such an interpreta-
tion which we shall find to be applicable to spin-zero particles as well
as to electrons. As in the case of the electron, we shall again be led
to this picture: along with a =+ meson, for instance, which is described
by a positive-energy solution of the Klein-Gordon equation, there
emerges its antiparticle, the =~ meson, which is interpreted as a =+
meson of negative energy propagating backward in time.

Let us consider for a moment for which particles in nature one
would hope to use the Klein-Gordon equation. There are no known
stable elementary particles of spin zero; however, the = mesons and
K mesons are nearly stable candidates. They are experimentally
found! to be copiously created and destroyed one at a time, for exam-
ple, in reactions (p = proton, n = neutron, A° = neutral lambda
particle, 7+ = positively charged = meson, ete.)

ptp—optntat
—>p+p+n°
—p+ A+ KF (9.2)
~ +p— A+ K°
K-+ p— A+ x°
— 27 47t
Therefore the wave equation for these spin-zero mesons must take

into account their possible production and annihilation. One cannot

! See, for example, M. Gell-Mann and A. H. Rosenfeld, Ann. Rev. Nucl.
Sci., T, 407 (1957); J. D. Jackson, ‘“The Physics of Elementary Particles,” Prince-
ton University Press, Princeton, N.J., 1958; W. 8. C. Williams (ed.), ‘“‘An Intro-
duction to Elementary Particles,” Academic Press Inc., New York, 1961.

184
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Fig. 9-1 Contribution to the electro- p p
magnetic structure of a 7 meson. at s

follow the world lines of these particles throughout a scattering process
as was possible in our discussion of the electron world lines interacting
with photons. This is also true if we consider just the interactions of
charged = and K mesons with photons, since graphs such as Fig. 9.1
contribute.

This possibility of creation and destruction of single spinless
particles as confirmed by experimental observation requires that a
theory of their interactions be a many-particle theory. The quantum
field theory formalism is best suited to a discussion of this problem,
but again, as with the electrons and photons, we shall find it possible
to understand and calculate a great deal by extending our propagator
approach to a study of the mesons coupled to source terms added to the
right-hand side of (9.1).

If we include the weak interactions, the spin-zero mesons are
also destroyed® by reactions of the type, for example (x = mu meson
and » = neutrino),

Tt — ut 4 v
Kr—ogt+ ot 4+ 71— 9.3)

-t ut o

Because of the exceedingly small magnitude of these weak decay inter-
actions (9.3), the charged = and K mesons have very long half-lives
7~ 1078 sec, which greatly exceed the natural unit of time formed
from #, ¢, and the = or K-meson masses, #/mc? < 1072 sec. To
first order in an expansion in a perturbation series in powers of the
weak interaction constant we may therefore ignore the decays (9.3)
and the finite lifetimes r ~ 10=% sec in discussing strong interaction
amplitudes such as (9.2). In this approximation the = and K mesons
are treated as stable particles and are represented by initial or final
free wave functions.

The neutral #° and K° mesons which we also wish to include
in these discussions have shorter half-lives, their predominant decay

! Gell-Mann and Rosenfeld, Jackson, and Williams, op. cit.
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modes being?
-yt T~ 10718 gec

K°— gt + o TK0 ~ 10710 gec

However, these decay rates are still very long compared with the
characteristic period of 10722 sec, and the interactions responsible for
them need be included in lowest order only. The #° and K°® will
therefore also be treated as stable in strong reactions as in (9.2).

In addition to the interactions of the spin-zero particles illus-
trated by (9.2) and (9.3), the charged = and K mesons interact with
photons and with external electromagnetic fields. In order to empha-
size first the similarity to the electrodynamics of a Dirac electron,
we shall limit the discussions of this chapter to the electrodynamic
interactions of charged spin-zero particles. The propagator develop-
ment follows the physical lines given for the electron theory. In
order to discuss the low-energy properties of mesons in external fields,
for example, the bound states of the m-mesic atoms, we also make a
systematic nonrelativistic reduction and interpretation of the Klein-
Gordon equation. More general weak decay and strong nuclear
couplings are discussed in the following chapter.

The Propagator for Klein-Gordon Particles

Solutions of the Klein-Gordon equation satisfy a continuity equation,
as derived in (1.12):

y *
‘L(‘%)zii*%_wa& -0
oz gt ox, o,

By the divergence theorem, the integral

Q = [ d% jo(x) = if d% ¢p*0p (9.4)

<o, ab da
where adeb = a <6_t> — (?97) b

is a useful shorthand, is conserved for solutions of (9.1).
The plane-wave solutions of the Klein-Gordon equation with
both positive and negative frequencies form a complete set. Normal-

! Gell-Mann and Rosenfeld, Jackson, and Williams, op. cit.
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ized in a box of volume V, the solutions are
e:F'ip-z

V2w,V

with w, = po > 0 and p? = m? according to the Einstein condition.

In the continuum normalization language we write
1

\/@7?) 20,

for the positive- and negative-frequency solutions, respectively. They

satisfy the orthogonality and normalization relations

[ & P @)id @) = +8(p — p)
| d3 fP* (2)190f 5 () = 0

Notice that @ is positive for a superposition of positive-frequency
solutions, that is, for

D) = [ d*p ar(p)fy"(2)

$() =

fp(i)(x) = e:F”:P‘T

(9.5)

(9.6)

o (9.7)
Q = if d% oD *(@)3optD(2) = +f dp ar(P)]*
and for negative-frequency solutions @ is negative, that is, for
() = [ d*p aX(p)fy ()
(9.8)

Q = if d ¢ (@) (2) = —J d*p la_(p)|?

Herein lies the difficulty for a probability interpretation for the solu-
tions of the Klein-Gordon equation, since € may take on negative as
well as positive values for a general superposition of plane-wave
solutions.

To construct the Feynman propagator for the Klein-Gordon
equation, we want to find a solution of

(v + mHAp(z’ — 2) = — 842’ — 2) 9.9)

which propagates positive-frequency parts of waves forward in time
and negative-frequency ones backward in time. Proceeding in
analogy with the Dirac theory, (6.40) to (6.46), we Fourier-transform
to momentum space in which Ar has the representation

1

d'p .

/ — _ ~ip-(x'—z)
Ap(d — 2) = / CBE e = T (9.10)
The small negative imaginary part added to the mass in (9.10) assures

that (9.10) meets the desired boundary condition of propagating only
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the positive frequencies forward in time and the negative frequencies
backward. As discussed in Chap. 6, there is no other choice of inte-
gration contour in (9.10) which accomplishes this.

We may verify that (9.10) is the correct choice of contour by
integrating over dp, to obtain, with the use of the Cauchy theorem,

. d? gl s et
AF(II - x) = —7// (Q—W):gwp g~ twplt'—tl pip-(x'—x)

Il

—i [ Ep L@ @0 —
— i [ FpfO@IO @O — 1) (9.11)

By direct computation we find from (9.6) and (9.11) that Ap(z’ — z)
propagates only the positive-frequency part of a general wave

e(@) = ¢ (z) + ¢ (z) (9.12)
as formed in (9.7) and (9.8), forward in time,
-0t — D™ V) = [ déz Ap(x’ — x)i?ow(+’(x,t) (9.13)
and the negative-frequency part backward
— 10t — V)X V) = — [ d*x Ap(a) — x)ib_;go(—)(x,t) (9.14)

Equations (9.13) and (9.14) are analogous to (6.49) and (6.50) for the
Dirac equation.

Introduction of Electromagnetic Potentials

Interaction of a charged spin-zero meson with the electromagnetic
field is introduced by the minimal substitution

p*— p* — eA*(x) (9‘15)

as for the Dirac equation. We first consider A*(z) as an applied
external potential. TIntroducing (9.15) into (9.1), we obtain

[<z éi-; - Mw)2 - m2] #(z) = 0 (9.16)

Equation (9.16) still has a conserved current which we find, as in
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(1.12), to be

- (@) [(’ 2 - eA“(;L)> ¢<x>}

— $(2) [(:5‘9— + eA"(x)) d)*(x)] (9.17)
Ly
The corresponding conserved charge is

Q = [ d% ¢*(2)[i00 — 2eA%(z)]$(2) (9.18)

A plane wave representing a free incident charged meson will
scatter in this potential, with the amplitude given by the solution of
(9.16). Adopting the Feynman boundary condition that scattered
waves of positive frequency only are to propagate forward in time
and negative-frequency waves backward, we integrate (9.16) with the
Feynman propagator (9.10):

e+ moct) = —ie (0 40+ ar 2 ) o+ o
$xD) = e + [ dy Az — DV W) (919
with V) = (7 40) + 40) 1) ~ 4G AW)

Equation (9.19) is the analogue of (6.53) for Dirac particles, and the
physical interpretation of the solution is again very similar to that
given for the electron. In order to ensure that only positive-frequency
waves, representing positive-energy particles, emerge into the future
after a scattering, we have integrated with the Feynman propagator in
(9.19). This leads by (9.11) to

o(x,0) = o(x,0) — <f d*p [P (x) [ d 0t — yo)fS"* () V(y) oY)
— [ A fS() [ dYy 8(ye — ST * W V() é(y)  (9.20)

which also contains negative-frequency waves propagating backward
to earlier times. However, from the point of view of an observer
watching his instruments, the absorption in the past of a negative-
energy particle of charge e is equivalent to the emission of a positive-
energy one of charge —e. In this way we are led to the fundamental
and experimentally verified prediction that there exists an oppositely
charged antiparticle for each particle in nature.

A particle may have no charge, in which case it may be identical
with its antiparticle. Such a particle is found in nature, the neutral
spin-zero  meson, 7°. Though it does not share in the electromagnetic
couplings introduced in (9.15), the propagator for free =° mesons can
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Fig. 9-2 Diagrams for particle and antiparticle scattering and for pair
production and anuihilation.

be developed in complete analogy with Sec. 9.2.  Since the current and
charge (9.4) vanish for it, the 7° will be represented in absence of inter-
actions by a real solution ¢ = ¢* of the free Klein-Gordon equation.
The Feynman propagator (9.11) will then propagate the positive-fre-
quency parts of ¢ forward and the negative-frequency parts backward
in time as for the charged mesons.

9.4 Scattering Amplitudes

By moving the world lines around—as in Fig. 9.2—so that they
move both backward and forward in time, we include in our scattering
formalism for mesons, as for electrons, the amplitudes for production
and annihilation of particle-antiparticle pairs along with the direct
scattering amplitudes.

In order to compute a scattering or transition amplitude, (9.19)
is iterated until ¢ is evaluated to the desired accuracy. The free
solution ¢ in (9.19) represents the normalized free-particle wave
in the absence of scattering. The transition amplitude to a particle
state of given momentum, say, p} is found by projecting the scattered
wave emerging from the interaction onto a normalized free wave of
momentum p’. The transition probability is then given by the abso-
lute square of this amplitude, or by the intensity of the projection of
the scattered wave.

For ordinary scattering of mesons (Fig. 9.2a), positive-frequency
waves emerge after the scattering as t — « with a scattering amplitude
that is calculated by projecting out the positive-frequency part of the
scattered wave (9.20):

Sp

,
+ P4

= lim [ d% f9*180(x)
t— o

= 8%(p, — py) — of Ay FE* WV (W) é(y) (9.21)
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9.5

where ¢(y) i8 given by (9.19), with fz‘,t’(y) representing the incident
meson wave of positive frequency. The transition probability is then
|S5,75.]% TFor pair production (Fig. 9.2d), we again project out the
positive-frequency waves as in (9.21), but now ¢(y) represents a
scattered wave developing from an incident negative-frequency wave
(y) in (9.19). According to (9.14), the negative-frequency wave
is “incident” at yo— -+ «, since Ar(z — y) propagates it backward
in time only. In complete analogy with the ground rules developed in
Chap. 6 for positron theory, we associate the backward propagation
of the negative-frequency solution with quantum numbers p_ with
the emergence of the antimeson—say, the =~ meson—of positive
energy and four-momentum p_.

For the pair annihilation amplitude, Fig. 9.2¢, we project out the
negative-frequency part of the scattered wave (9.20) ast— — oo:

Spope = — lm [ d% f*(2)1d00(y) (9.22)
> —»

= =i dY 2" W)V () oY)
Here ¢(y) is given by (9.19) with f{"(y) representing the incident

D+

mt-meson wave of positive frequency with four-momentum p;. As
usual, the incident =~ meson with positive energy and four-momentum
p— is represented by a negative-frequency wave f5*(y) propagating
backward into the past out of the interaction V(y). Finally, the
7~ (or anti-) meson scattering, Fig. 9.2b, is given by (9.22), where
¢(y) is still determined by (9.19). However, the “incident” =+ meson
wave of negative frequency is now given by f$7(y), representing the
final =~ emerging with positive energy and four-momentum p_ after
the scattering, that is,

Sp_pr = 8%(p- — p1) — if dy [, V() 6() (9.23)

Comparison with the propagator formulation of positron theory
in Chap. 6 shows that the S-matrix rules discussed here have the
same physical origin and interpretation as discussed there.

The practical rules for calculation of transition rates for spin-zero
mesons under electromagnetic interactions can be developed by

calculating several simple examples as was done for the electron in
Chap. 7.

Low-order Scattering Processes

As a first example we consider the Coulomb scattering of a =+ meson
to lowest order in e. The ¢24,A4* term in the interaction (9.19) does
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not contribute to this order and may be neglected. The transition
amplitude corresponding to the graph, Fig. 9.3, is found from (9.21)
with ¢(y) = f;,f)(y). For ¢ = p; — p: # 0 the s-function term van-
ishes, so that
Sovne = gy [ Ay e, + )
e (2m)? V20520, v

— ie(pf + ZZQ‘L' u
(2m)3 ’\/20)['2601' 4@

[y ervany)

(9.24)

where  A*(q)

Ml

The form of the current in (9.24) is reminiscent of the spin-independent
term in the Gordon decomposition of the electron current. Inserting
A#(q) in (9.24) for a static Coulomb potential

Ze

Ar(q) = Ta]? 2r8(wy — wi)gH® (9.25)

we obtain the cross section by the usual procedure of squaring, sum-
ming over final states, and dividing by the incident flux. In analogy
with (7.10), we find

3
do = (27!') d3pf 271'6(0)_[ - w1-) . l:

Zew; + w) 1 ]2
|v]

34/90- 9% 4|

(2m)* /2052w, 14 (0.26)
d i‘_’: _ Z2(X2

an o~ 4pr sin’ (0/2)
which lacks the factor 1 — B2?sin? (6/2) found for the electron in
(7.22) and associated with the spin.

A similar result is obtained for the Coulomb scattering of =~
mesons. From (9.24), with f5*(y) representing the =~ with momen-
tum p-— before the scattering and ¢(y) = f5(y), the final 7~ emerging

\ Ze
| AVAVAVAV AV AT Frg. 9-8  Coulomb scattering of a =+ meson.
/
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Fig. 9-4 Coulomb scattering of a =~ meson. )"\N\N\/\x
/
/
/)‘
/R
/
after the scattering, as in Fig. 9.4, we find
. !
Sy pr = te(p— + pl)ud*(9) (9.27)

(2m)3 VvV 2w_ 2w

with ¢ = p’ — p_ again representing the momentum transfer. Equa-
tions (9.24) and (9.27) differ in sign only, corresponding to the change
in sign of the =¥ and =~ charge, and lead to identical cross sections
(9.26).

The lesson we learn from this calculation is that to the m-meson
vertex we attach a factor e(p, + p,) instead of ey, as for the electron.
The wave function normalization factor is 1/4/2w, which replaces the
v/m/E for the electron, and of course there are no spinors.

To obtain the rules for the ¢24,4* term in V of (9.19), we turn
to Compton scattering of a charged meson. The “external potential”
in this example consists of the absorbed and emitted photons described

“in continuum normalization” by the two terms, respectively [see
(7.53)]

2@)6—1‘1.; MONGE:
V/21(2r)? V/21(2r)?

where [, X refer to the momentum and polarization. Since the lowest
order Compton amplitude is proportional to e, the terms in V linear
in e must be iterated once. The S matrix to order e?, corresponding
to the Feynman graphs of Fig. 9.5, is then

Au(z) = (9.28)

. . a
S = (=i [ dy a2 4,0 + 40 |
2y

X iAr(y — 2)i [6i A, () + 4.2 a_i—,]fl(’Jr)(z)

+ et [ diy I AW AW (9.29)
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Inserting A, from (9.28) and keeping only the cross terms between
e
vV (2r)32k

describing absorption of a photon with (k,)\), and

éﬁeikl"”
N/ (Cr)52k

for the emission of one with (k¥',\"), we find after performing the
coordinate integrations

S, = (_7:3)2 9 )464 k , i
1T @) o 2ok P R = =)

X {6(21) + ]C) @_i_—k;?_—nﬁ e"(2p’ + ]Cl)

@ =0 o ¢ 2p— ¥) - 27:6'6':] (9.30)

lc’)2 —
Notice in particular the factor of 2 appearing with the A4,4# term.
This occurs because there are two ways of associating absorbed and
emitted photons with the two factors of A#(z) and is easy to forget.
As a useful check on (9.30), we may apply the test of gauge invariance
as applied to the electron amplitudes in Chap. 7. Thus Sy, is invari-
ant, as is readily checked, under a transformation of the gauge

e — et + \k# (9.31)
employed for the initial photon, as well as under a gauge change

e:‘ — e,’, + )\'k,/J (9.32)
for the final one.
A convenient gauge choice to make in (9.30) is

ep = e"p =0
corresponding to transversely polarized photons in the laboratory

frame, in which the meson is initially at rest, p = (m,0). Then only

KN RN

Fig. 9-6 Compton scattering of a = meson.
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9.6

Fig. 9-6 Vertex graph representing the interac-
tion ep*(p’ + plupA*.

the A,A* term survives in (9.30), since ek = ¢*k’ = 0. Proceeding
to a cross section in the by-now-familiar manner, we find, upon
squaring (9.30), dividing out one power of (2r)%*(p + k — p’ — k'),
multiplying by the final-state phase-space factor

d¥p’ d*'

and by the reciprocal of the incident flux in the laboratory, (2r)3 as
well as the reciprocal of the density of target particles, (2r)3,

ili‘ _ 32— (e€¢')? B
dQ Jies m2[1 + (k/m)(1 — cos )]
This reduces to the classical Thomson limit in the limit of low photon

energy k — 0. Summing over final photon polarizations ¢ and averag-
ing over the incident ¢ for unpolarized light, we obtain

do)  _ a?(1 4 cos? 6)
<d9>lab = 9?1 F (k/m)(L — cos 6)]? (9.33)

Higher-order Processes

We may continue to imitate the development of propagator theory
for the electron and infer the rules of computation for higher-order
graphs from the preceding examples. The major changes from the
electron rules are:

1. At a vertex scattering a meson from p, to p,, as illustrated
in Fig. 9.6, for any directions of the lines forward or backward in
time we replace

eyt — e(p* + p*') (9.34)

2. The additional A,4* interaction term in (9.19) contributes
with a factor?
21e%g,, (9.35)

! There is one exception to this. See Prob. 9.11.
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as illustrated in the amplitude (9.30). The factor 7 appears because
the expansion parameter for this term is e?. Therefore, to order e*
there appears the factor (—i)* from = iterations of (9.19) when we
calculate the contributions of (9.34) to this order. A factor of
(=)= 1)™ = (—1z)*~*(4)™ arises if the A,4* term appears m times
in the calculation; hence the factor of 7 in (9.35). Throughout we
must remember that the expansion parameter is ¢ and not the order
of interaction. The factor 2 in (9.35) appears because there are always
two ways of associating the factors A,4* with the quanta to be
destroyed, created, or scattered in the vertex (Fig. 9.7). The test
of gauge invariance may be applied to the interaction amplitude
representing the sum of all graphs which contribute to any given
order of e. As in (9.30) to (9.32), this provides a very simple and
useful check in the relative factors coming from the p-4 + A-p and
the 4-A terms in (9.19).

3. For the propagator of an internal line of momentum p, we
replace

i i(p + m) 2

P—mT i pP_miiie P —m i (9.36)

that is, the factor p + m — 1.
4. For the normalization of the external lines we replace the
electron spinors

O o (9.37)

All other factors of ¢ and 27 are precisely the same as for the
electron. Only a question of relative minus signs remains. For
electrons we were led by the Pauli principle to antisymmetrize the
interchange of two identical particles. On the other hand, experi-
mental evidence indicates that = mesons are bosons, that is, they
satisfy the symmetric statistics of Bose-Einstein. In particular, in

S ' Fig. 9-7  Graph representing the interaction e24,4#p*p.

k€



The Klein-Gordon equation 197

\\ P, // \\ A
1 pg P, /P,
4 ’ A
\ / \ /
\ / \ /
}AVACAVAVAY { } AVAVAVAVAV {

/ \ / \
doN, 4N
//ql \qz YA \q2

\ / \

Fig. 9-8 at — 7t Coulomb scattering.

the reaction
Kt—at 47t + o

the two 7+ mesons are emitted in a relative s state. In addition,
there are strong theoretical reasons, given originally by Pauli, for
a connection between spin and statistics, with particles of half-integer
spin obeying the exclusion principle (fermions) and integer-spin
particles symmetrized as bosons. These arguments are best discussed
within the framework of field theory.! Here we shall simply assume
that the spin-zero particles being deseribed are bosons obeying sym-
metric statistics. This means that there must be a relative plus,
instead of a minus, sign between graphs differing only by the inter-
change of bosons.

There are no longer factors of (—1) appearing with closed loops
or between scattering and annihilation graphs. These were introduced
in the electron graphs, as in the amplitudes (8.2) and (8.5) for the
processes in Iigs. 8.1b and 8.le, by applying the Pauli principle
to the states of hole theory. For bosons we have no filled negative-
energy sea and must argue for relative signs in a different way. In
the Coulomb scattering of like bosons, the relative sign between the
amplitudes for the two graphs in Fig. 9.8 is plus. We obtain from
this the amplitude for boson-antiboson scattering by changing the
sign of energy of two of the lines; for example, by the substitution

Qs < — P2 (9.38)

we obtain the amplitudes for the graphs illustrated in Fig. 9.9. The
relative sign between the two amplitudes corresponding to the graphs
of Fig. 9.9 remains positive if the substitution (9.38) is the only

!'W. Pauli, Phys. Rev., 88, 716 (1940); W. Pauli, V. Weisskopf, and L. Rosen-
feld, “Niels Bohr and the Development of Physics,” McGraw-Hill Book Company,
Inc., New York, 1955. For the discussion of the argument, see J. D. Bjorken and

S. D. Drell, “Relativistic Quantum Fields,” Mc¢Graw-Hill Book Company, Inc.,
N press.
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\\P /. P,
W ¥

\
4 \ /

Fig. 9-9 «t — o~ Coulomb scattering.

change in going from the scattering graphs 9.8 to the graphs 9.9.
Equation (9.38) is an example of the substitution rule already encoun-
tered for electron processes in (7.85) and extended now to boson
amplitudes. Tt leads to relative plus signs for ail three amplitudes
shown in Fig. 9.10. Graphs 9.10a and 9.10b are identical below vertex
y and therefore have a relative plus sign between them. Since no
minus sign accompanies the introduction of the additional scattering
interaction between u and » in graph 9.10a relative to 9.10¢, we con-
clude that no factor of (—1) appears along with the closed loop in
Fig. 9.100, as stated at the beginning of the paragraph.

Higher-order calculations of the electromagnetic interactions
of the spin-zero bosons such as 7 and K mesons showing also the
renormalization effects can be pursued in complete analogy with the
considerations of the preceding chapter. We do not go into these in
detail here because the much stronger interactions of the = and K
mesons with themselves and with nucleons must also be included
before comparison with physical observations is possible. A discus-
sion of these nonelectromagnetic couplings is introduced in the follow-
ing chapter.

Nonrelativistic Reduction and Interpretation of the
Klein-Gordon Equation

There exist physical situations in which an approximate description
of = mesons in terms of ordinary one-particle quantum mechanies with
a probability interpretation is very desirable. For instance, the
interactions of charged = mesons with atomic electric and magnetic
fields in matter or with applied external fields, as well as the properties
of m-mesic atoms, may be studied from this point of view.
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Fig. 9-10 Fourth-order contributions to #t-r
Coulomb scattering,

These are similar to the situations in which the one-particle
Dirac electron theory is successfully applied and interpreted. In these
cases we would like to exhibit a nonrelativistic reduction to the
Schrodinger equation as well as a classical correspondence limit.

In the face of the impossibility of constructing an ezact one-
particle quantum mechanics with a probability interpretation we
were led to abandon the second-order Klein-Gordon equation at the
very beginning in Chap. 1. We did so in favor of the Dirac equation
which was first order in the time derivative, as in the nonrelativistic
Schrodinger theory. By now, however, we have amply seen that the
one-particle picture of the Dirac equation survives only in limited
circumstances such as weak, slowly varying fields in which there still
remains a broad gap ~2mc? between the positive- and negative-energy
spectra. It is to such physical situations that we now turn in search
of an approximate one-particle quantum mechanics of the Klein-
Gordon equation.

Our first step to bring the Klein-Gordon equation to Schréodinger
form containing only first-order time derivatives is to rewrite (9.1)
as a pair of first-order equations.! Defining

)

at

! Here we follow the discussion of H. Feshbach and F. M. H. Villars, Rev.
Mod. Phys., 80, 24 (1958). See N. Kemmer, Proc. Roy. Soc. (London), A178,
91 (1939); Sakata and Taketani, Proc. Math.-Phys. Soc. Japan, 22, 757 (1940);
and W. Heitler, Proc. Roy. Irish Acad., Sec. A, 49, 1 (1943).

£ ¢ (9.39)

Ii
It
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and rewriting (9.1) as

o3}

£

£= 3= (V2 — m?)e (9.40)

we accomplish this goal. It is convenient to introduce the two linear

combinations
1 7. 1 7.
9“§<¢+ﬁ¢> x—é(w—~¢) (9.41)

which have simple nonrelativistic limits. I'or a free particle of posi-
tive energy at rest

P (9.42)

) )
17 oc e—-,unt —_
m

and, in this limit,
= ¢ x g imt x =0 (9.43)
For the negative-energy, or antiparticle, solution
0=0 and X = ¢ o« erimt (9.44)

in this limit. Thus 6 plays the role analogous to the large components,
and x to the small components, of the Dirac spinor. In terms of § and
x the Klein-Gordon equation now reads

.00 v?
i3 = gy (0T )+ me
(9.45)
X 0t —m
a1 2m X X
We introduce the more compact two-component notation
6
o = [ } (9.46)
X
and write z% = H\® (9.47)
with the free-particle hamiltonian operator H, given by
3 1 17w [1 o
Ho = - [—1 —1] om [0 —1}’" (048)

Although it is in Schradinger form, (9.47), in analogy to (9.1), does not
lead to a conserved positive definite probability, because H, is not a

1} in the

hermitian operator. The non-hermitian matrix [_1 1
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kinetic-energy term couples the ‘“large” and “small” components
together.

Neglecting the V2 to lowest order for a slowly moving particle,
we reduce to a Schrédinger equation and to the solutions (9.43) and
(9.44) in the two cases of positive and negative frequency. By
borrowing the Foldy-Wouthysen technique directly from the Dirac
theory, Chap. 4, we can systematically incorporate the corrections
from the kinetic-energy term. Here the matrix p = [_(1) é] is the
1
0
the reduction of the Dirac equation. TUsing the arguments leading to
(4.1), we let

non-hermitian analogue of « and 7 = [ _(1)] is the analogue of 8 in

Q' = oS (9.49)
. 0 1 -
with S = 5o6(p) = 1 0 O(p) (9.50)
and find that the odd operators p are removed from the hamiltonian
when
= _ l’ —1 p*/2m x
6(p) 5 tanh m T pt/om (9.51)

1
with p = AL The transformation (9.49) to (9.51) is not unitary

and leads from a hamiltonian (9.48) which is not hermitian to a new
one which is:

Hiy = eiSHoe S = 5+/m? + p? (9.52)

In this form the positive- and negative-energy solutions are completely
decoupled and the energy-momentum relation is the same as for
free electrons. The only difference of (9.52) from (4.1) is that there is
now no doubling of the solutions for the spin degree of freedom. Since
Hj is hermitian, we are free to give a probability interpretation to the
solutions @’ in this representation. For positive-frequency solutions

() = ginn [(1)] 0 x) (9.53)
we have
V'm? + p? a®(x) = wa(x) (9.54)
with
P(x) = [a®(x)[? (9.55)
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representing the probability density and
wp = [O' O *()H(x)D' P (z) d* (9.56)

the energy. For negative-frequency solutions we write
(= we |0
Q'O (g) = et 1 a) (x) (9.57)

The energy eigenvalue equation is similar to (9.54)
Vm? F p? aO(x) = wya(x) (9.58)
and the probability may be defined as by (9.55):
P(x) = |a®(x)|? (9.59)

Now, however, the expectation value of the hamiltonian is the nega-
tive of the energy eigenvalue due to the » in (9.52):

wp = — [O'OF()H y(x)D' O (2) dix (9.60)

We associate ®'* with the antiparticle wave function because
Hy = Hy* by (9.52) for a free particle and, according to the propagator
picture [(9.11), (9.10), and (9.5)], it is the complex conjugate of a neg-
ative energy solution that propagates forward in time.

In the presence of external electromagnetic fields we can no
longer, in general, diagonalize the Klein-Gordon equation into separate
positive- and negative-frequency parts. DProceeding in analogy with
(4.2) to (4.4), however, we can achieve an approximate diagonalization
in the presence of weak, slowly varying fields. If we again introduce
the field interaction by the minimal prescription

P — Pu — €A,

in (9.1), the Klein-Gordon equation in the two-component language
of (9.48) becomes

S R E B

where = = p — eA. @ is defined as in (9.46) and (9.41), with

£ = [a% + z'ecb(x)] ¢
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replacing (9.39). Identifying in (4.2)

1 0
w2 0 17 =2
0O=p-—= — :
p2m [—1 O] 2m (9.61)

2

a:e¢+né"m

we arrive at (4.4), with 8 replaced by 5. In the special case of static
external fields we find the approximate Schrédinger equation, through
terms of order 1/m?*:

!
za—(?t— = H@' @ = 5@
with
Hl:7]<m+32—_—ﬂi+"')+6¢+—}—[ﬁ2[ﬂ2eq)]]+"‘
2m  8m? 32mA T T

(9.62)

The first term is the binomial expansion of v/m? + =? showing the
correct relativistic mass increase as in the Dirac theory. In an
applied magnetic field it reduces the orbital g factor by m/E, as we
saw for a Dirac particle. The last term of (9.62) is the Darwin term,
correcting the classical electrostatic interaction of a point charge,
ed(x), in analogy to the zitterbewegung correction of the Dirae
theory. Here, however, it first appears in order 1/m* in contrast
with (4.5) and (4.7).

As long as we limit ourselves to physical problems for which the
Foldy-Wouthysen procedure converges and, with a few terms of the
series (4.4) or (9.62), leads to a good approximation to the exact
description, we can discuss meson interactions as In nonrelativistic
quantum mechanics. To the accuracy of the terms retained in H’,
the positive- and negative-frequency solutions are decoupled in this
representation and the hamiltonian is hermitian, and we can make
the conventional nonrelativistic quantum-mechanical probability
interpretation according to the postulates given in Chap. 1.

Taking (9.62) as an example and writing for positive-frequency
solutions in this representation, in analogy with (9.53),

D, (z) = e it [é] PP (x) (9.63)
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we have

(4 5 = ot )+ et et - - v
2m  8m? 32mH
= E.)P(x)  (9.64)
The probability density is given by
P(z) = 10,7 (@)* = ")) (9.65)

and the energy eigenvalue £, coincides with the expectation value
of H as in (9.56):

E, = [y,P*(x)H' (x,e)¢."” (x) d* (9.66)
where H'(x,e) is the operator on the left-hand side of (9.64):

B (x,) = (m bt ) e g feten]

2m  8m?
+ -0 (9.67)
For negative-frequency solutions we write as in (9.57)
6, (z) = e+ m ) (0.68)
and find from (9.62),
H'(x,—e)*¥,”(x) = E,” (%) (9.69)

Again it is the complex conjugate of the negative-energy solution
which we associate with the antiparticle, since ¥$7*(x) satisfies

H'(x,— e}y *(x) = E7%(x)
which differs from (9.64) only by the sign of e. The probability den-
sity is

P(x) = |8, (@) = [ (02 (9.70)

and the expectation value of the hamiltonian is again the negative of
the energy eigenvalue as found in (9.60):

B, = —[0,7*@@)H'® (v) d% (9.71)

Since the positive- and negative-frequency solutions differ only
by the sign of charge in (9.64) and (9.69), it is attractive for us to
redefine the probability and energy expectation values in this Foldy-
Wouthysen transformed representation by inserting the diagonal
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matrix n = [(1) __(1)] introduced earlier:
Qu(z) = P (x)nD,(z) (9.72)
E, = [®X()nH D, (2) d*x (9.73)

This redefinition does not alter (9.65) and (9.66) for the positive-
frequency solutions, but it changes the signs in (9.70) and (9.71)
for the negative-frequency ones. The energy eigenvalue coincides
with the expectation value of H which is now positive for both positive-
and negative-frequency solutions as for standard quantum mechan-
ics. However, Q(x) is now >0 for the positive-frequency and <0
for the negative-frequency solutions and is interpreted as the charge
density for the particle and antiparticle, respectively.

We can proceed further in the Foldy-Wouthysen representation
which, to the approximation that the terms are retained in H’ and
the series in powers of 1/m converges, is the same formalism as
standard quantum mechanics. Energy levels and transition rates
for m-mesic atoms can be computed from (9.62) with the relativistic
mass and Darwin corrections to the Schrédinger theory, for example.
Also, a classical correspondence can be established and Ehrenfest
relations derived from

50 = amon + %) 0.74

The one-particle probability interpretation is limited only to
those cases where the positive- and negative-frequency solutions can
be decoupled by the Foldy-Wouthysen procedurc. It will not apply
to physical problems with strong or rapidly varying fields for which
one must take into account the existence of m+z— pairs. With the
ansatz that the definitions (9.72) and (9.73) shall apply in the general
case as well, we can return to the original representation and study
the structure of these inner products by undoing the transformation
according to

G = ¢-iSQ’ (9.75)

We must proceed with some care here because the transformation
connecting the two representations is not unitary. Equations (9.50)
and (9.51) show that for the free-particle case

S§S= -8 (9.76)
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For the energy we find, since 8 = — Sy,
wp = JOF(x)nHD(z) A%
= [0*(x)e= Sy HoeS® ,(z) d*x
= [®¥(x)ne~SHoeD,(x) dx
=[O} (x)nH @, () d*x (9.77)

which has the same form. Similarly, for the charge we find, using
(9.46) and (9.41),

[ e@ @ = [ 0 @)@
= [ 0@, () d%
[ @ 16*@)6() — x*@)x@)]

= g [ 4% P 078)

which (times 2m) was already identified as a conserved charge in (9.4).
Similar results are obtained when interactions are present. The
Foldy-Wouthysen transformation then has the form

D = o . SN ISP
as in Chap. 4, with each S satisfying
8t = 8" Sy = — 58"

as in (9.76). Therefore, the charge density defined with the 5 present
as in (9.78) again takes a simple form in the original representation
and coincides with (9.17) for the charge density. Similarly, for the
energy levels of a 7 or #— meson in static external fields we have

E = [0"*(x)nH (x)®' (z) d’z = [O*(x)nH x)P(z) d*z  (9.79)
This simple correspondence of expectation values between the
two representations suggests that we insert the matrix 4 = [(1) _?J
in the general definition of expectation values so that
(O7) = JO'*(2)90" ()9 (z) d’x
= [O*(2)10(2)D(x) d'x
= (0) (9.80)

with O'(z) = ¢30(z)e~*. Without the matrix » we obtain no such
simplicity of correspondence of forms between the two representations.
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The physical effect of introducing » into the definition (9.80) is to
multiply the expectation values of the physical observables for the
system in a state of negative frequency by —1. This is connected
with the requirement that negative-frequency solutions propagate
backward in time, thus reversing the role of emission and absorption
and associating physical observables with minus the parameters of
these negative-energy solutions. In positron theory, the boundary
condition of backward propagation for negative frequencies was
ensured by hole theory; for bosons, there is no hole theory and one
must be content with the arguments of propagator theory or turn to
the formalism of quantum-field theory.

In concluding, we recall that we have now given a probability
interpretation to solutions of physical problems for bosons for which
the Foldy-Wouthysen procedure converges. In particular, for free
particles we constructed the exact transformation decoupling the
positive- and negative-frequency, or particle and antiparticle, solu-
tions. This justifies our interpretation in (9.21), (9.22), and (9.24) of
the S matrix as a probability amplitude.

The charge that distinguishes the boson from the antiboson
need not be electric but may be of an entirely different character.
In nature there occurs, for example, the K, and K,, which are elec-
trically neutral and are each other’s antiparticle differing by the
sign of their ‘“strangeness charge.”’”! Also, the boson may bear no
charge whatever, in which case it coincides with its own antiparticle;
the 70 is such an example. In this case the wave function is real and

Q) = 0.

Problems

1. Calculate in first Born approximation the differential cross section in the
laboratory system for Coulomb scattering of a #* meson by a K~ meson.

2. Calculate the differential scattering cross section of a = meson by a =% meson
in the center-of-mass system and compare with Eq. (7.84) for electron-electron
scattering.

3. Calculate the differential cross sections for bremsstrahlung by a «* in a Cou-
lomb field and for =*x~ pair production, and compare with the Bethe-Heitler
formulas.

4. Calculate the total #*#~ pair production cross section in the extreme relativistic
limit E > mc? and compare with the analogous result for electron-positron pairs.

! This is discussed in Bjorken and Drell, op. cit.
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5. Compute the contribution of =*r~ pairs to the vacuum polarization and inter-
pret the sign of the result.

6. Compute the electromagnetic self-energy of a =+ meson and compare with that
of the electron.

7. Verify that the wave function and vertex renormalization constants are equal to
second order in e? for charged =~ mesons, thatis Z, = Z,and Au(p,p) = —90Z(p)/dp*
as in Eqgs. (8.51) and (8.54) for electrons.

8. Solve for the energy levels of a =~ meson bound in a Coulomb field.

9. Establish a classical correspondence for the w-meson Schrédinger equation by
deriving the Ehrenfest relations from Eq. (9.74).

10. Construct the Feynman propagator for vector mesons satisfying the free-
wave equation
4 4
2 —_——— — Vo=
{@+mige - Lz e =0

11. Give arguments for rule 4, “Electrodynamics of a Spin-zero Boson,"” Appendix
B. Then show that this rule leads to a unitary =+-r~ elastic scattering amplitude
through order et
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10.1 Introduction

Armed with a propagator theory developed for their electromagnetic
interactions, we attack the other known interactions of “‘elementary’
particles of spin 0 and 4. These interactions are divided into three
distinct clagses. The first is the gravitational interaction, which at
customary laboratory energies is characterized by an extremely small
dimensionless coupling constant of (M, M.G/hc) = 10~*° and which
we shall neglect. The second class is the weak interactions, which lead
to transmutations between particles such as in 8 decay and the decay
of =, K, and u mesons [see (9.3)]. These are characterized in the
region of low and moderate energies (<1 BeV) by a dimensionless
coupling constant of ~10-5 to 10-%. Finally, there exist the strong
interactions, characterized by coupling constants 21, which are
responsible for the forces which bind nuclei and which provide the
mechanism for producing =, K, A, £, and = particles in reactions such
as (9.2).

The understanding of the weak and the strong interactions
has not progressed to such a degree that their effects can be derived
from a general principle such as the equivalence principle and general
covariance in gravitational theory or the principle of “minimal
electromagnetic interaction” which instructs the introduction of
electrodynamie couplings with the substitution' p, — p, — ed,. In
the absence of such a lofty starting point it is necessary to appeal
directly to the available experimental evidence along with symmetry
prineiples, notably Lorentz invariance, to limit the possible forms
of the interaction.

“What are the vertices?” is the central question in discussing
the weak and the strong interactions, and to this we now turn. We
proceed within the framework of the propagator approach and limit
ourselves to lowest order calculations in the coupling parameters.
From the point of view of detailed experimental comparison this is a
very severe limitation. For the strong interactions, the expansion
parameter exceeds unity; for the weak interaction theory in its present
primitive form, higher-order diagrams are dependent on the cutoff
in the closed-loop momentum integrals in an unpleasant way which
does not permit the divergences to be isolated into renormalization
constants as illustrated in the electrodynamic calculations in Chap. 8.

' M. Gell-Mann, Nuowo Cimento Suppl. 2, 4, 848 (1956).
210
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10.2

14
A B
F’z:g. T10—1 Nucleon-nucleon interaction By ———»——— {2,
with single »° exchange.
P D,

Strong Interactions

In 1935, Yukawa! made an analogy between the strong, short-ranged
nuclear force and the electromagnetic force between particles. If the
Coulomb force is due to the exchange of a virtual quantum, or photon,
perhaps the nuclear force is likewise due to a virtual particle, neces-
sarily of integral spin, exchanged between nucleons. For a particle
of spin zero and mass u we may use the Klein-Gordon propagator
(9.36) in writing the first-order scattering amplitude corresponding
to Fig. 10.1:

h

In writing (10.1) we have suppressed all factors coming from the ver-
tices at which the particle, represented by the dashed line, is absorbed
or emitted by the two nucleons, drawn as solid lines with initial and
final momenta pi, p» and p;, p;, respectively. The invariant momen-
tum transfer ¢> = (p1 — p1)? = (py — p2)? is space-like (4> < 0). In
the nonrelativistic limit in which the recoil kinetic energies of the
nucleons are neglected relative to their rest energies, ¢* ~ —|q|? and
we may approximate (10.1) to

2

m~ o

Qo+ 102

Fourier-transforming to coordinate space, we see that 9t corresponds
to the Born approximation amplitude for scattering in a Yukawa
potential

e
V() ~ g3 -

" H. Yukawa, Proc. Phys.-Math. Soc., Japan, 17, 48 (1935).
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Since the range of nuclear forces extends to ~10-1 em, roughly
one-third the classical electron radius, the particle being exchanged
should have a mass

. %”—e ~ 200 MeV

A strong candidate for this particle, the # meson of mass ~140
MeV, was eventually found in 1947; indeed there are now! known to
exist three such particles, the =+, #—, and #° of approximately the same
mass. These three m-mesons of charge +¢, —e¢, and 0, respectively,
are believed to be the major contributors to the nuclear force at large
distances, although heavier particles such as the K meson may also
play a role for small impact parameter collisions with large ¢*

It has been determined experimentally that the spins of the =
mesons are zero but that their “intrinsic parity’” is odd. For the
charged = mesons application of detailed balance to the reactions

mt+dep+p

gives the spin as zero, since the ratio of these processes proceeding in
the two directions is determined by the statistical weights. The
“intrinsic parity”’ was determined by observation of capture of a 7~
from the K shell in a deuterium atom, leading to two neutrons:

™ +d—on+n

The only state of J = 1 that can be formed by two neutrons is the 3P,
according to the exclusion principle and has parity —1. If parity
conservation is to apply in this strong reaction, the #— must also have
odd parity. In this assignment of parity we follow the usual con-
vention of choosing proton and neutron to have the same intrinsic
parity +1; that is, the same phase ¢ = 0 is assigned to their wave
functions under the spatial reflection (2.33) so that ¢/(x',t) = +vo¢(x,t)
for X’ = —x. Sinee the 7 is captured from a spherically symmetric
s orbit, the parity — 1 assigned to its wave function is referred to as its
“intrinsic parity.” The properties of zero spin and negative intrinsic
parity are shared by both =+ and 7= mesons which—as interpreted in
Chap. 9—are each other’s antiparticle. For the #°-meson observa-

'H. A. Bethe and F. de Hoffmann, “Mesons and Fields,”” vol. II, Harper &
Row, Publishers, New York, 1955. J. D. Jackson, “The Physics of Elementary

Particles,” Princeton University Press, Princeton, N.J., 1958. M. Gell-Mann
and A. H. Rosenfeld, Ann. Rev. Nucl. Sci., 7, 407 (1957).
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tion of the two-photon decay
™=y +y

coupled with the observation of the correlation in the planes of polar-
ization! of the “Dalitz pairs”

m0— (¢t 4 e) + (eF + )

determines the spin to be zero and parity to be —1.

With this information we continue to model the nuclear force
discussion along the lines of electrodynamics, starting with a more
detailed discussion of proton-proton scattering due to the exchange
of a single 7° as in Fig. 10.1. Consider, for instance, that proton 1
is scattered in a ‘“‘r-meson field” which is produced by proton 2,
in analogy with the electromagnetic potential A,(z) in the discussion
of electron-proton scattering, Eq. (7.31).

To describe this process, we write a tentative Dirac equation,
analogous to (6.52), which will be of the form

(Y — Mpp() = goly,(x)eo() (10.3)

where g¢ is the analogue of ¢ and TI' is a Dirac matrix to be determined.
The proposed equation for the meson field o, analogous to (7.27) and
(7.33), will then be, within a sign 7, = +1 to be determined,

(O + wodeo(z) = —goby(2)Tp(x)70 (10.4)

Parity? is observed to be conserved to high accuracy for nuclear forces,
and we consequently demand that (10.3) and (10.4) conserve parity as
well as be Lorentz covariant. It is then necessary to choose I' = 7y to
make the right-hand side of (10.4) transform as a real pseudoscalar, as
does the left-hand side.

We may also verify that there is a charge conjugation trans-
formation which leaves (10.3) invariant so that we can carry over
directly the hole-theory discussions of Chap. 5 and reinterpret the
negative-energy solutions as antiprotons. The antiproton wave func-
tion is formed as in (5.5) by

¥ = CPY

1 Plano, Prodell, Samios, Schwartz, and Steinberger, Phys. Rev. Letters, 3,
525 (1959).
*G. C. Wick, Ann. Rev. Nucl. Phys., 8, 1 (1958).
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A

————— Fig. 10-2 Pauli exchange graph for two protons.

NS

and satisfies the same Dirac equation as (10.3) if the 7° field is identical
with the charge conjugate field, that is,

((pO)c = + oo

This simple form of the interaction is in all likelihood incorrect
or at best incomplete. The analogy with electrodynamic interactions,
together with simplicity, was our sole motivation in writing (10.3)
and (10.4). We have, for example, arbitrarily excluded the possibility
of interaction terms containing derivatives of the fields, although we
have already encountered such terms in the preceding chapter in
discussing the electrodynamic couplings of charged = mesons. We
should therefore regard (10.3) and (10.4) as no more than a rough,
simple model, since nature undoubtedly has more imagination than is
exhibited in those equations. The virtue of the model is that it
permits discussion of general features of the nuclear interaction which
survive in a more general treatment.

Now that there is a candidate for the #%p vertex, we may com-
pute the amplitude for the graph of Fig. 10.1. From (10.4), the first-
order 70 field produced by the “transition current’’ of particle 2,

~gonodp, (T)iy s, (%)
is
eo(x) = —igof do’ iAp(z — 2")[¥u, (2 )ivs¥p, (") mo  (10.5)

This produces a change in the wave function of proton 1, according
to (10.3),

Ay (x) = [d'2” Sp(z — 2")lgotys¥p, (27) 0o(2")] (10.6)
and thus the seattering amplitude, by (6.53) and (6.56), is

S = (—1g90)?f da’ d*c" [, (@" )iysp, (" )iAp(z" — 2")no
X [¢Pz'(xl)i75\bpz(xl)] (107)
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Comparing (10.7) with the analogous (7.32) and (7.33), we con-
clude that the rules for graphs are modified by replacement of the
vertex ey, in electrodynamics by ige¢ys and of the photon propagator
10, Dr(z — &) by +iAr(z — 2")no for the «°.

To (10.7) we must add the exchange contribution corresponding
to Fig. 10.2 that is due to the identity of the two protons. The ampli-
tude for this is

7= —(—1g0)*f dix" d*a" [Yp, (2" )iy s, (2" )iAR (2" — 2")mo
X [P (@ )iysbp, ()] (10.8)

and differs from (10.7) by the interchange of final proton wave func-
tions ¥y, () & ¥p,(2) as well as by the important minus sign which,
as in electron-electron scattering (7.82), assures antisymmetry of the
initial and final proton wave functions under interchange of the two
protons.

Neutron-neutron scattering is deseribed in a similar fashion.
We must write a wave equation for a neutron which includes an inter-
action term with the #° In addition, we add to (10.4) a neutron
source term for the =% Important experimental guidance here
comes from the observed equality of p-p and n-n forces within correc-
tions due to electromagnetic interactions, such as the Coulomb force
between protons.! This suggests that, within a sign e, = +1 still
to be determined, the coupling between neutrons and the =° be the
same as for protons. We therefore write for the neutron wave
functions

(@Y — Mo )¥a(x) = —goeotysya(z)eo(t) (10.9)
and we replace (10.4) by

(O + u)eo(®) = —goldp(@)ivabp(®) — eolu(@)ivabn(@)lmo  (10.10)

The small mass difference between neutrons and protons, M, — M,
=~ 0.002M ,, is attributed to electromagnetic effects due to the proton
charge and is neglected in this approximation along with all the other
electromagnetic interactions. FEquations (10.9) and (10.10) lead to
an n-n scattering amplitude which is identical to the p-p amplitude
(10.7) and (10.8), since e; = +1.

We must also take into account the coupling to charged =+ and
7~ mesons when we come to the p-n scattering. In the lowest order
approximation of including only one meson exchange in the scattering

! David Wong and H. Pierre Noyes, Phys. Rev., 126, 1866 (1962); G. Breit,
Rev. Mod. Phys., 34, 766 (1962); H. Pierre Noyes, Phys. Rev., 180, 2025 (1963);
M. M. Lévy, Phys. Rev., 88, 725 (1952).
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(a)

Fig. 10-3 Noncharge-exchange and charge-exchange diagrams
for n-p scattering.

amplitude these give rise to diagrams (Fig. 10.3b) of the charge

exchange type in addition to the noncharge exchange scattering (Fig.

10.3a). In writing a wave equation for the =+ we are again guided

by the observed equality of the n-p force to the p-p force, within

electromagnetic corrections, in the states available to the p-p system.
In analogy with (10.10) for the #° we write for the =+

O+ #i)¢+($) = — g4 ¥a () iy s, (T) (10.11)

where the sign n, = +1 and the coupling constant g, will be deter-
mined relative to go and 5o later. The right-hand side of (10.11)
gives rise to vertices (Fig. 10.4) from which a 7=t emerges in the
transmutation of a proton to a neutron. The 7+ may then propagate
forward or backward in time. If backward, as discussed in the
propagator theory for 7% mesons in the preceding chapter, it is inter-
preted as a v~ coming forward in time with positive energy to be
absorbed at the vertex as in Fig. 10.4b.

The complex conjugate of (10.11) gives the equation for the
charge-conjugate particle, the =—:

(O + ek = (O + uh)e-(r) = —gindp(@)ivsda(z) (10.12)
The right-hand side of (10.12) provides the vertices of Fig. 10.5.

Fig. 10-4 Vertices for p — n.
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Fig. 10-5 Vertices for n — p.
s

/
/™ \n

We must now modify the wave equations for the neutron and
proton with additional terms allowing for the transitions in Figs. 10.4
and 10.5. Comparing (10.11) and (10.12) with (10.3), (10.9), and
(10.10), we are led to write for the complete wave equations for
protons and neutrons, -

(Y — M)Wp(x) = goivsdp(x)oo(x) + g¥ivsda(2) ey (x)

. . . (10.13)
(Y — M )ya(2x) = —goeotysn(x) 0o(2) + grerivysdp(T)o—()

where an additional sign e, = +1 remains to be determined.

In order to limit the constants remaining in the wave equations,
we consider n~p scattering and write the amplitudes associated with
the two lowest order graphs, Fig. 10.3. Considering the incident
neutron (pi) to scatter in the meson field produced by the incident
proton (p,), we find as before

Sri = (—1g0)2(—eo)nof Az’ de” [Yp, (2")iy s, (X)) iAp (2" — 27)
X [Wpr (2" iy (2")]
+ (=g ) (—ighme [ d'e de" Wy (&)ivsty, (2)idr(2" —~ 2”')
X [P (@ )ivadn,(2”)] (10.14)

Had we instead considered the incident proton to scatter in the field
produced by the incident neutron, (10.14) would be modified by the
replacement
N+ > €4
Hence we set
e =1 (10.15)

since the only change has been our point of view.

In order to determine the relative magnitudes of ¢, and go,
we again appeal to the observed approximate equality of the n-p force
to the p-p force in the states allowed for the p-p system by the exclusion
principle. Let us then compare p-p and p-n scattering for the two
particles in antisymmetric states. To do this, we temporarily tmagine
the neutron to be identical to the proton but still coupled to charged
as well as neutral mesons, and we compute its scattering by adding
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Fig. 10-6 Sum of graphs for p-n scattering with one pion exchange
including Pauli- and charge-exchange contributions.

exchange graphs, with the appropriate minus sign, to assure anti-
symmetric states. Figure 10.6 shows the two diagrams of Fig. 10.3
plus their exchange parts, with the momenta and coupling as indicated;
diagram (c) is the exchange of (a) and (d) of (b). The sum of these
four contributions to the scattering amplitude, 8, constructed as if
n and p were identical and obeyed the exclusion principle is

S = —(—1)noeogy + nlg+|?]
X [ diz" d'a” { [y (2 )iy by, () AR (2" — &) [Fpy (2 )0y ¥, (27)]
= [ @ )ivsip, (2 IAR (2" — 2") [Py, (2" )ivsdp, (2]} (10.16)
Comparing (10.16) with the sum of (10.7) and (10.8) shows that

the condition on the coupling constants for equal n-p and p-p inter-
actions in the antisymmetrical states available to the p-p system is

9(2)710 = —|g+|27)+ - g(Q)'Iloéo (1017)

This has two solutions
lg? =0 e= —1 (10.18)
and lg-I® = 2g¢ € = +1 No = —n4 (10.19)

The first, (10.18), corresponds to the exchange of only neutral mesons,
which clearly leads to equal n-p and p-p forees in corresponding states.
Since the 7+ and 7 mesons exist and reactions are observed with
vertices of the types in Figs. 10.4 and 10.5 at which single =+ or »—
mesons are produced, for example,

Yy+p—on+t+at

we are led to choose the second solution (10.19). There might, of
course, be additional single neutral mesons contributing to the nuclear
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force; but since no clear candidate! exists, we ignore this possibility
here.

According to (10.19) the coupling of charged mesons to a (p-n)
vertex is greater by 4/2 than the #° coupling to a (p-p) vertex. Since
only the absolute square |g.|> appears in the scattering amplitude, we
may choose g4 real for convenience, so that

9+ = V2 g (10.20)

We find it convenient to replace the condition 5, = —n In

(10.19) by an additional rule in writing Feynman amplitudes. We
write

N4 = 7o (10.21)

and introduce the following additional rule for writing the amplitudes
for each graph: Multiply by —1 if an odd number of charged mesons
are exchanged by the nucleons in the graph. This rule may be shown
to be equivalent to the rule to antisymmetrize not only with respect
to interchange of n-n and p-p lines in a graph but also to n-p lines.
This 1s because any graph with a charged pion exchange can be
related to a graph with a neutral pion exchange by interchange of
n and p lines (and the relative minus sign comes from the opposite
signs 7o and 74 associated with the pion propagator). This evidently
is the case in lowest order; compare Figs. 10.6a and b.

In general, there are two cases to consider in making the anti-
symmetrization prescription well-defined. The first, illustrated in
Fig. 10.7a, occurs when the =t is exchanged between two different
nucleon lines. This case is similar to that encountered above in lowest
order.

If the 7 is emitted by a nucleon and reabsorbed by the same
nucleon, a little care must be taken. Consider, for instance Fig. 10.70,
for which one time ordering is shown in Fig. 10.7¢. To relate thisto a
graph with a signature we know (that is, not involving the =+ line), we
interchange with appropriate minus sign the neutron and proton I and
II and obtain graph 10.7d. Graph 10.7d has the same signature
as graph 10.7¢, whose signature is opposite that of graph 10.7f, obtained
by interchange of lines I and II in (¢). Collecting the minus signs
(there are two), we see that if the =+ is emitted and reabsorbed on the
same nucleon line, one may set 4 = 5o and give the graph the same
signature as the graph obtained by replacing the =+ by a =°.

It must be emphasized that all we are doing here is making a
purely formal extension, by construction, of the antisymmetrization

1 A possible candidate found recently is the 4° meson with mass ~550 MeV.
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(d) (e)

77
0

Fig. 10-7 Rule antisymmetrizing n-p exchanges.
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rule from the p-p scattering case, where it has a physical basis in the
exclusion principle. As applied to the n-p scattering case for which
the particles are different, distinguishable, and can scatter in sym-
metrie 38y, WPy, 3D, 1., cte., states, it is no more than a convenient rule
for bookkeeping on the signs, in the approximation of “charge inde-
pendence,” that is, of equal p-p, n-n, and n-p forces in corresponding
states.

Our reason for introducing this formal and seemingly complicated
generalization of the exclusion principle will be seen in the next section,
where we develop a simple unified description of the proton and
neutron as two aspects of the same particle, the nucleon. According
to this rule we introduce a relative minus sign into a p-n scattering
amplitude when we interchange the final p and »n, as in Figs. 10.3a
and 10.3b, in the same way as we introduce a — 1 between the ampli-
tudes for Figs. 10.1 and 10.2 in p-p scattering as required by the
exclusion prineiple for two identical fermions.!

At this stage we have determined all parameters except no;
€0 = €, = +1 and 9 = 5o with the additional convention that graphs
differing by exchange of an n and p line be antisymmetrized. To
obtain 7o, we observe that, according to the interactions in (10.13), as
illustrated by Figs. 10.4 and 10.5, a proton is not always a proton, but
is sometimes a neutron and a n+; hence the electric charge is carried
mutually by the =+ and the proton. This has the consequence that
neither the electromagnetic current of the proton nor that of the
7+ is separately conserved, as is seen by computing these currents
(normalized to unit charge) from the above wave equations:

. ad . . . .
1 jup<x) =1 N (‘LP'Yu‘r’/p) = gi‘pp175‘//1»¢+ - g+‘l/n'VYS\1/p€0—
Lu

ox,
i 2@ =i e (2 - 2
9z, 7 oz, | T \oxr T gae)
= _n§-gi¢ﬁi75¢ﬂ@+ + T]:»g+lpni')’5¢p<{’— (1022)

There cxists, however, a differential current conservation law
for the sum of the proton and =+ currents:

d ;. .
o []#p(x) + _7,_"‘—+(Q:)] =0 (1023}
0x,
1 The convention (10.21) together with the antisymmetrization rule applies to
all processes, including self-energy insertions as well as = exchanges between nucleon
lines.
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provided we choose
ne = +1 (10.24)

in the =+ equation (10.11). We make this choice in order to rule out
the unobserved possibility of local sources and sinks of electric charge.
It follows from (10.21) that

no = ny = +1 (10.25)

Isotopic Spin Formalism

Gathering together the rules (10.15), (10.19) to (10.21), and (10.25),
as determined by the requirement of equal n-n, n-p, and p-p scattering
amplitudes in corresponding states, we can write the wave equations
(10.10) to (10.13) in terms of one real unknown coupling constant, as
summarized below:

(ZW - N[p)‘l’p = go'L"YE»(l//pﬁOo + '\/E ‘/’n‘/’+)

(Y — M)¥n = gotvs(—v¥aeo + V2 ¥pe) (10.26)
(D -+ #g)‘pﬂ = _90(¢pi76‘r,’p - J’ni')/ﬁ‘//n)
(1 + #%r)¢+ = —fo \/5 Yulysdp (10.27)

O+ v = O+ eb)ef = —go V2 ¥yt

The similarity in the forms of the proton and neutron equations
suggests that we introduce one nucleon wave function

v — [‘ﬂ (10.28)

to describe them. The nucleon wave function is represented by an
eight-component spinor, the top four components for the proton spinor
and the lower four for the neutron. The free Dirac equation is
diagonal with no coupling between the p and n components; and in
the “charge independent’” approximation, with M, = M, = M, it is
simply

(V- M)¥ =0

For the interaction terms in (10.26) we must introduce nondiagonal
matrices mixing the n and p wave functions. As a notation for this
mixing it is convenient to introduce the three Pauli matrices

n:[? (1)} mz[? _3] TFB _ﬂ (10.29)
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with each entry understood to operate on all four components of ¢, or
¥, in (10.28), for example,

v
o [w}

We label the matrices here by = in order to distinguish them from the
Pauli matrices ¢, which operate on the spin components of the neutron
and proton. Iiquations (10.26) may now be combined and rewritten

as
(@Y — M)W = goivs(rs¥eo + V2 1. T0r + /27 W ) (10.30)
where T+ = 8 (r + irp) = [8 (l)J (10.31)
. 0 0
and TaE%(T1~Z7'2): [1 OJ

are the charge “raising” and “lowering” operators, respectively. We
further reduce this to a very compact form if we introduce a ‘“vector”
¢ with the three components

b = (p1,02,¢3) (10.32)
where

. .
oL = \*/5 (o4 + ¢-) P2 = '\%ﬁ (p+ — @) P3 = ¢o

This gi-ves

In the same way, with neglect of the small 7+ — 7% mass difference,
wo = py =~ p, Bgs. (10.27) may be combined into an approximate
equation for the = mesons:

(O + u2)p = —goPiyse¥ (10.34)

This compact “isotopic spin” notation for = mesons and nucleons
represents purely formal progress and has been accompanied by no new
physical input. In terms of a fictitious ‘‘isotopic space’” we may sup-
pose that ¥ transforms as a spinor and § as a vector. Then the wave
equations (10.33) and (10.34) are both covariant under rotations in
isotopic space. This covariance is a consequence of limiting the forms
of the coupling terms so that protons and neutrons and charged and
neutral = mesons share identical interactions and are therefore equiv-
alent in the absence of electromagnetic effects. Conversely, we may
turn the whole procedure around and show that for any set of such
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wave equations which are invariant under rotations in isotopic space
the n-n, n-p, p-p forces in corresponding states are equal.!

It was with this aim of constructing a compact language in
which the proton and neutron appear as two components of the nucleon
wave function ¥ that we tailorcd our rules for IFeynman amplitudes in
the preceding section.

The isotopic spin formalism is mathematically identical to the
three-dimensional angular-momentum formalism. In the same way
that the law of angular-momentum conservation follows from the
covariance of the wave equation under rotations in ordinary three-
dimensional space, a law of isotopic spin conservation emerges from
the covariance of (10.33) and (10.34) in isotopic space. However,
the isotopic spin conservation is only an approximate law, since the
symmetry of the equations is valid only with the neglect of electro-
magnetic couplings and of mass differences between p and n and =*
and 7° In this approximation the states of systems of mesons and
nucleons may be diagonalized with respect to the square of the total
isotopic spin /2 and, say, the third component of isotopic spin I,
which is related to the total charge of the system. The nucleon wave
function (10.28) rotates in isotopic space as a two-component spinor;
the nucleon is thus assigned one-half unit of isotopic spin 7, with the
component along the three-axis being 4 for the proton and —14
for the neutron. The meson wave function (10.32) rotates as a vector,
with a three-axis projection of 0 for the #°. The meson thus carries
one unit / = 1 of isotopic spin.

Meson-nucleon scattering may be discussed in terms of the two
isotopic channels of / = 34 and / = 14 through which a meson and
nucleon may couple according to the familiar rules of angular-momen-
tum combination. In nucleon-nucleon scattering only one isotopic
channel 7 = 1 is available for p-p and n-n scattering in the charge-
independent approximation. For the p-n system [; = 0, and the
scattering may be via both the 7 = 0 and / = 1 channels. We shall
discuss these examples in the isotopic spin language shortly.

To summarize, we list the rules for writing amplitudes correspond-
ing to graphs in this model with the charge-independent interactions
of (10.33) and (10.34) (compare Sec. 8.1):

1. Draw all connected graphs.
2. Associate with each graph an amplitude with a factor

- Z'go(?:’y;',Ta)f d4.’17
at each vertex.
t Wick, op. cit.
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3. Include a propagator iSr(z — y)1, with 1 the unit matrix in
the 2 X 2 dimensional space of the nucleon isotopic spinors, for
each internal nucleon line terminating at  and . For each internal
meson line include a propagator 7Ap(x — y)das, With 8.5 2 3 X 3 unit
matrix tying together the r, and 75 operators at the vertices connected
by the meson.

4. Introduce a wave function for each external line. For the
nucleon line the projection operators 15(1 4 7;) and ¥4(1 — 73) for

. . . . 1
proton and neutron, with isotopic wave functions x, = 0 and

Xn = {ﬂ, respectively, are useful. The wave function for an incident

neutron with quantum numbers (p,s), for example, is

1 \/_z"lze,ip,”( S, = L Mﬂ.ﬂ( y (L= {0
%N, HPshoc = onu N, ¢ TP\ T |

(10.35)

For the meson line the wave function has the isotopic factor §, where
$ is a unit vector in the three-dimensional isotopic spin space of the
7 mesons. In terms of the states of mesons with charge 4. —, and
0, § has the components, by (10.32):

N 1

b= g (Li0)

X 1

b= 5 (L—i0) (10.36)
60 = (O)Oll)

Thus at the vertex on which an incident 7+ meson is absorbed, or a
final 7~ is emitted, corresponding to an incident 7+ of negative energy
propagating backward in time, there appears the isotopic factor
X T % (r1 + tr3) = /274 asin (10.30). For emission of a final
7+ (or absorption of an incident =—) the factor is = - §% = v/2r_.

5. Because of the convention made at the end of Sec. 10.2, there
must be a relative minus sign between two terms corresponding to
graphs which differ topologically only by the interchange of two
nucleon lines. There is also a factor —1 for each closed nucleon loop
and a factor (—1)*, where 7 is the number of antiparticles in the
initial state [see (6.56)].
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We have slavishly imitated electrodynamics in formulating this
model. General features such as the isotopic spin conservation for the
m-nucleon interactions are generally valid to all orders in their coupling,
in the approximation of neglecting small mass differences and electro-
magnetic effects. However, perturbation expansions of the inter-
action into a power series in go are not generally useful, since gj/4m
appears to be =14 and is not small as is its electromagnetic analogue
a~ Y{37. Instead of converging, a power series expansion leads to
a diverging perturbation series.

Conserved Currents

In the isotopic notation (10.28) and (10.32) the differential law of
current conservation (10.23) takes the form

E) 147 s\ _
i (2m) e (exgi) [0 oo

where vector notation applies to the isotopic space. The conserved
total electric charge, found by integrating the time component, p = 0,
over all space is

Q= fd%[ (1 +”>\p + (8 x 8 } (10.38)

The conservation law emerging directly from (10.33) is

d
J = —
a“c,‘ 0x,

= 5}

Yy, ¥ = oz, vy + Puvdn) =0 (10.39)
This is identified as the conservation of nucleonic charge. The

total nucleonic charge is given by

N = ¥V d% = [, + vivn) d% (10.40)

and is a constant in this model, since the total number of nucleons
(protons 4 neutrons) minus the total number of antinucleons is con-
served. This is seen to follow from the graphs in Figs. 10.4 and 10.5,
since a continuous nucleon line propagates through each vertex with
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all possible time orderings. Introducing (10.40) into (10.38) gives

Q= %[ + I (10.41)
where Iy = [ d% (LWl + (§ X §)3] (10.42)

is identified as the third component of the ‘“‘isotopic spin.”” From the
invariance of Eqgs. (10.33) and (10.34) under rotations in isotopic space
we suspect that not only 7;, but all three components of the isotopic
spin should be conserved. By construction we indeed find this to be
true. The conserved isotopic current is

99

J. = %@7/‘"\1’ + ¢ X Juk (10.43)

and the constant total isotopic spin is
I = [db[Ls¥tel + (3 X §)] (10.44)

Conservation of electric and nucleonic charge and of isotopie
spin are general features of a theory based on Eqgs. (10.33) and (10.34).
Both @ and N are observed' to be rigorously conserved in nature;
isotopic spin 7, on the other hand, is conserved only to the approxima-
tion of neglecting electromagnetic and weak interactions. These
couplings destroy the charge independence of the strong interactions
which led to the symmetric form of (10.33) and (10.34), and thence to
(10.43) and (10.44), leaving only the third component 73 as rigorously
conserved according to (10.41). The usefulness of the isotopic spin
formalism has been evident in this discussion of conservation laws in
permitting us to “see” better what the equations say.

Approximate Calculations; Nucleon-Nucleon Scattering

To illustrate both applications of theisotopic formalism and some of the
general physical features of the m-meson and nucleon interactions, we
consider briefly two examples: the one 7m-meson exchange contribu-
tion to the nucleon-nucleon interaction, and =-nucleon scattering.
The nucleon-nucleon scattering graphs which we considered,
Figs. 10.1 to 10.3, may now all be combined into a compact form.
Following our rules and going as usual into momentum space gives for
! N must be generalized to mean the number of baryons (N,A,Z,=, etc.) minus
antibaryons when strange particles are taken into account. It is then known as

baryon number, denoted by B in the companion volume, J. D. Bjorken and S. D.
Drell, “Relativistic Quantum Fields,” McGraw-Hill Book Company, Inc., in press.
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the scattering amplitude

(—igo)*M?

Spi= ———— L (2r)46" ol ot
" (2m)¢ \/IB.LIE (@) ' (ps o+ P2 = pi = p)
YW AN P ’lj I
X1 xda(ph) iy seu(py) xal =) = [x3a(ps)iyseu(p2)x2)

- [xiu<p1>zmu<m>m}
(10.45)

— *,d YA % ___hl—_,_
[x3%(p3) vy svu(pr) xi] = p)f — 2

Comparison of (10.45) with (7.82) for electron-electron scattering
shows the correspondence of factors

eYu — 1§0YsT
guvDF(k2) - AF‘(]C“Z)

according to our rules. The substitution of (27)® for V2 comes from
the transition to continuum normalization of the external lines. For
p-p scattering the isotopic factors become

(o) (Xhexs) = (xhrans) (Xhraxs) = 1 (10.46)

and the two terms in (10.45) correspond to the direct and exchange
scattering of the two identical fermions, as in (10.7) and (10.8);
similarly for n-n scattering. For p-n scattering the isotopic factors are

(xp7xp) (Xhexn) = —1
for the first term, and
(XILTXI))'(ch)(n) = +2

for the exchange term, and the scattering amplitude differs from that
for p-p and n-n scattering. If, however, we ask for scattering into the
symmetric isotopic state with 7 = 1 and 7; = 0,

;}5 B (1xe(2) + xa(2)xp(1)] (10.47)

formed by the proton and neutron the isotopic factors in (10.45)
become, both for the first term and the second term,

1 1 1
/2 (XX X% X+ XX XA Xn) = a1t =15 (10.48)

The scattering amplitude equals 1/4/2 times that for p-p and n-n
scattering and is antisymmetric under interchange of their space
variables.
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For scattering into an antisymmetric isotopic state with / = 0,
.[3 = O

—v% B (5@ — 105 (1)) (10.49)

the isotopic factors in (10.45) are

1 3
V2 (X XimXn — X0TXp XTXn) = — NG

for the first term and +3/+/2 for the second term. Hence the scatter-
ing amplitude is symmetric under the interchange of the p and » space
(coordinate and spin) variables when antisymmetric under interchange
of their isotopic variables.

These examples show how the generalized exclusion principle
applies in N-N scattering. They interact only in states antisymmetric
under interchange of both their isotopic and space variables. The
charge-independent approximation equates the p-p and n-n scattering
amplitudes to the amplitude for a p-n system in a symmetric isotopic
state (10.47) and hence interacting in an antisymmetric space state.
This equality follows from (10.45), (10.46), and (10.48) when we
recall that the total p-p and m-n cross sections are integrated only
over one-half the phase space as in (7.81) in order not to count the
protons or neutrons twice; thus 14 compensates the (1/4/2)% from
(10.48).

In the nonrelativistic limit the spinor matrix elements in (10.45)
simplify to

I 6+ (p1 — DI i
a(pl s ysulpys) = ul(s] m%ﬂ [PJ) u(sy) (10.50)

where u(s;) stands for a two-component Pauli spinor; (10.50) is readily
verified by writing out the spinors in the nonrelativistic limit. In

this limit the meson propagators reduce to the Fourier transform of a
Yukawsa potential

1 —~1
(pr— ) — > (P —p)’ +p?

and (10.45) is seen to be the scattering which to order g; results from
a potential

o
_ 1 / A3y eitm—mr &
4 7

e—Hni—ral

T/<rhr2) = z_z (1 - f)ex) (‘Vl * ‘CZ) (61 * Vl) (62 ¢ VI) “IT—:'I_;I (1051)
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4w \2M

and P., is the operator exchanging neutron and proton wave functions
and providing the second term of (10.45). The two nucleons must
be in a state which is antisymmetric under their interchange as
required by the generalized exclusion principle; otherwise, (1 — Pey)
destroys the state. For the two nucleons in an s state the potential
is attractive for finite separations r = [r; — rs| > 0 as seen from the
angular average of (10.51),

aQ
Vi) = [ G2 V)

where

? 1 —ur
= L0 Poguemaa|w - i) |

and from the observation that this state, symmetric in space coordi-
nates, must be antisymmetric under either spin or isotopic spin
interchanges. Therefore, in an s state

(L4772 810 82)s = (M al(x1 + 72)? — 6][(81 + 82)2 — 6)),
=44[T(T +1) — 33][S(S+1) — 33] = —1 (10.52)

and Vi(r) = —2f [% — % 53(r)} (10.53)

The s-function repulsion is spread out into a short-range repulsive
core interaction when nonstatic corrections are made to this simple
calculation. By itself, (10.53) is inadequate to explain deuteron and
low-energy scattering parameters. This is not surprising, since there is
little reason to expect the static one-meson exchange approximation to
the scattering to be reliable. Indeed, higher-order contributions from
other additional diagrams involving more mesons are important
because of the large coupling constant gi/4r ~ 14, These, however,
have been shown to contribute predominantly for smaller separations
r and fall off as e~ for ur > 1, where n is the number of exchanged
mesons. !

It is therefore very encouraging that in the analysis of the high
partial waves in an angular-momentum expansion of the nuecleon-
nucleon scattering amplitude, (10.45) or (10.51) reproduces the
observed phase shifts accurately when gi/4r is set ~14 (/2 = 0.08)
in agreement with its observed value in the meson-nucleon p-wave
scattering analysis.

! See M. J. Moravesik and H. P. Noyes, Ann. Rev. Nucl. Sci., 11, 95 (1961)
for a recent review and for references to earlier literature,
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10.6
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Meson-Nucleon Scattering

The Feynman graphs of Fig. 10.8 describe meson scattering from a
nucleon to lowest order in gj/47. The scattering amplitude according
to our rules is given by

1 K
= o) 454 e
S5 (2m)® \/EP\EPZ'?(‘UQ!ZO){M (2m)'84(qs + P ¢ = )W
with
M = (—igo)xu(ps,s2) [‘c - §ivs

2 . 2
P A

+ T @11.75 m i‘Ya‘E . %;(:| u(pl,sl)xl (1054)

Notice the crossing symmetry of (10.54); it is invariant under the
interchange

A 2

0108 Qe —qe (10.55)

in analogy with the crossing symmetry found in (7.67) in Compton
seattering. This symmetry under (10.55) is preserved to all higher
orders.! From the Feynman diagrams it follows clearly when we
observe that for each graph, as in Fig. 10.8a, in which the incident x
is absorbed before the final » is emitted, there is one, such as Fig.
10.8b, differing only in that the initial 7 is absorbed after the final r is
emitted.

U This is proved formally in Bjorken and Drell, op cut.
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We shall restrict our discussion to low energies,’ retaining only
the s-wave scattering terms of order 1/M and the p waves of order
1/M?in 9R. Rationalizing the Feynman denominators and reducing
the v matrices with the aid of

w(pivs(p + g + M)iysu(p) = a(p")qu(p)
we find

M = —igixia(pe,s2) [“—

(= @})’(i'j;)(:ﬁi)}
—2prgs + 4

X u(pns)x:  (10.56)

Computing now in the center-of-mass frame to the above stated
approximation, we simplify (10.56) to

'~ :ﬁgj [ut (s2)u(s1) (xix1) (§61)]

_ W
4 M 2

ut(sy)xi(x - & $16-qu6-qr—x- iz 86 qi - q)uls)x
(10.57)

The first term is a spin and isotopic spin independent interaction
which would be deseribed nonrelativistically by the Born approxima-
tion potential

2
V() = + 50 8 = oM [313 53(r)] (10.58)
In perturbation theory this gives an enormous s-wave scattering length
of (4Mf*/u) 1/u = 2/u =~ 2.8 X 10713 ¢cm, where we have set f2 = 0.08
as in the discussion of the nucleon-nucleon interaction. However,
since the interaction is repulsive and of short range—in this non-
relativistic approximation (10.58) has zero range—it actually has
very little effect. A strong, short-range, repulsive potential, as
drawn in Fig. 10.9, produces an s-phase shift of the order & ~ ga,
where a, the range of the potential, is the low-energy scattering
length. TFrom recoil corrections one expects that a ~1/M and
that the low-energy s-wave meson-nucleon scattering is small, in
contrast with the large amplitude of ~1/u obtained from the unjust
application of Born approximation to (10.58). This is indeed the
case found experimentally.?

'E. M. Henley and W. Thirring, “Elementary Quantum Field Theory,”
McGraw-Hill Book Company, Inc., New York, 1962.

2 Bethe and De Hoffman, Jackson, Gell-Mann and Rosenfeld, and Henley and
Thirring, op. cit.
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Vi(r
~ gon 2 )

Fig. 10-9 Short-range repulsion for s-wave
=-n scattering.

ans=

The second term in (10.57) is the p-wave scattering. Its form
may be recognized as that obtained by applying second-order non-
relativistic perturbation theory. If we treat the nucleon as a non-
relativistic spin one-half particle propagating in positive-energy states
only in between the absorption of the initial meson and emission of the
final one, we may use (10.50) to reduce the interaction vertex to the
form g¢o(6 - V)(z - §)1/2M. The factor 1/w in (10.57) comes from the
energy denominator in this approximation, appearing with a plus sign
for the amplitude, Fig. 10.84, and with a minus sign for Fig. 10.8b.
In contrast, the first, or s-wave scattering, term in (10.57) comes from
transitions of the nucleon in and out of the negative-energy sea in the
intermediate state. In this case #y;u ~ —1 for low nucleon momenta,
and the energy denominator gives a factor —1/2M.

The uncertainty relation in the form AL At ~ 1 suggests that the
p-wave interaction via these graphs takes place over a longer time
scale, ~1/w, than does the s wave, ~1/3/. Therefore, it is natural
to expect a stronger energy dependence for the low-energy p-wave
scattering amplitude than found for the s wave. 1In fact, if there is a
strong attractive p-wave “potential,” a resonance may develop.

The erucial question to be asked, as first emphasized by Chew,!
is what the sign of the p-wave potential is. Independently of the
quantitative inadequacy of our perturbation approximation in writing
(10.57), this sign will have the greatest influence on the scattering and

1 G. F. Chew, Phys. Rev., 95, 285 (1054).
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may serve as a valid qualitative guide to an understanding of the
p-wave amplitude. To answer this question, it is especially con-
venient to project out the amplitudes for the various channels cor-
responding to each individual value of total angular momentum J
and of total isotopic spin 7, since transitions between channels differ-
ing in J are forbidden by angular-momentum conservation and between
those differing in 7 by isotopic spin conservation, (10.44) (in the charge-
independence approximation).

Projection Operators for Isotopic Spin and
Angular Momentum

From the vector model for the addition of angular momenta we know
that the total isotopic spin of a system of one nucleon (With I = 14)
and one meson (with I = 1) is either I/ = 14 or / = 34. The pro-
jection operators for these two states, Py, and Py, will be 3 X 3 matrices
in the meson isotopic spin space spanned by the basis (10.36) and
2 X 2 matrices in the space of the nucleon isospinors (10.35). Py
and Py should have the basic properties of projection operators:

Pu2 + Py =1 (1059@)
Y %
2
= Pl
B (10.59b)
P'Vz P%

where 1 is a unit matrix in the six-dimensional product space of the
meson and nucleon isotopic spaces.

The search for these operators is made easy by observing that
the uncrossed graph, Fig. 10.8a, must lead to a pure / = 14 amplitude,
since there is only a single intermediate nucleon line with I = 14 and
I is conserved at each vertex. Thus the isotopic matrices in the
uncrossed graph must be proportional to Py:

B2|Prsld) = aw- 837 s (10.60)
The coefficient « is determined to be 14 by squaring (10.60) and
imposing (10.590):

3

2 @lPalb) G1Ple)

lI

(82 Plsl41)

= a? 2 (e 80 (x- 8)(z - §)(z - 1)
3 (82| Pil1) = (B2l Pysldy)

f
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ora = 14 and

(@a| Pl = 142 87 = & (10.61)
Equation (10.59a) now gives Py directly:
&2 Pysfd) = & - & — 24(=- 8 (= &) (10.62)

Happily, the angular-momentum composition is identical to that

for isotopic spin, since we are again coupling a spin § = 15 to L = 1

for the meson p-wave orbital angular momentum. The orbital wave

functions for the = meson now are the vectors q: and q. in analogy

with the §, and $. in isotopic space, and the angular-momentum
projection operators analogous to (10.61) and (10.62) are

3

(q2]Quslq1) = [}46 - q2 6 - q1] drg?

(10.63)
(92 Qula) = [z qu — }4( - q2) (3 - qu)] W

with ¢ = |q| = |qel.
They are normalized according to

A0 (92| Qi) (q.1Qilq:) = 6:(q.]Q4qy) (10.64)

where we have replaced the sum over the three orthogonal directions
in the space of q, as used in the isotopic projection operators, by an
integral over a sphere [ dQ,. This is an inessential difference in nor-
malization conventions between the P; and ; which is motivated by
the fact that observed mesons are always oriented in isospace along
one of the three directions (10.36) corresponding to charge +1, 0,
whereas their momentum vectors lie along a continuum of directions
corresponding to different scattering angles.

The combined projection operators for isotopic spin and angular-
momentum eigenstates are just the products of the P’s and @’s. We
define them by

®1 = Cu = PyQy
@y = P13 = PyQy
®3 = Cu = PyQy
®s = Gu = PysQys (10.65)

where the first index of ®;; is just twice the isotopie spin and the
second index is twice the angular momentum. The®, e =1, ... ,4
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satisfy the properties (10.59) with the normalization condition

3
Y [ 40 Culba) (.0./00 = buus (10.66)
re1

Introducing the projection operators into (10.57) we find for the
m-nucleon scattering amplitude to second order in ¢ and in the non-
relativistic approximation for our model

g 4
~ ZW uT(Sg)u(Sl)Xz(P‘é + Py)xi — mﬁ( ,SFI )

|90)11 APy — 20 — 20y + (Pu‘l
w 1

X ul(s2)x} \(h@z {19 x> u(s1)x1

(10.67)

Observe in (10.67) that the scattering amplitude is negative only in the
(3,3) channel, corresponding to an attractive potential for / = J = 34
only.* The experimental observations of a resonance in this state
and of small phase shifts at low energies in the other three p-wave
states are in qualitative agreement with what we would expect from
a “potential”’ leading to (10.67).

Cross Sections for Pi-Nucleon Scattering

The scattering cross section is formed from (10.67) and (10.54) by
squaring and multiplying by the customary phase space factors.
For fixed initial and final spins we have

_mp M\ (AN (M 1
da 2""’71""11 vPl, ‘/ FP! 2(’"‘12 l d? 2 (2%.)2
X 8%(q1 + P1— g2 — Ps)

which in the nonrelativistic limit 4/ — « becomes, in the center-of-
mass frame,

1 1
((;—g) = s M2 (10.68)

To evaluate da/dQ for a specific process, the appropriate m-meson
1sotopic wave functions éi and momenta q; and the corresponding
nucleon isotopic spinors y; are inserted into 9. For an unpolarized

1Jbid. See also G. F. Chew and F. E. Low, Phys. Rev., 101, 1570, 1579

(1956); G. C. Wick, Rev. Mod. Phys., 27, 339 (1955); and also Henley and Thir-
ring, op. cit.
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cross section the nucleon spins are summed over asusual. Asanexam-
ple we consider 7t-p scattering, to which only the I = 34 channel
contributes, since /3 = 34. Neglecting all but the I = J = 34 con-
tribution, we have from (10.65)

s . 3
X326+ @as|q1d )% = g (Q2+q1 — }46-q26-q:) (10.69)

Summing over final and averaging over initial nucleon spins, we find
with the aid of (10.69)

=25 () 2

i 1
ul(ss) (qz "qi— 3 G:(Q26" Q1> u(s1)
spins

2 \21 1 1
:(ﬂj’%) §T1(q qr — gd'qw'%)(qrm—gd'QJd'(h)

2

2
- (555.) latat + 3@ 007 (10.70)

Inserting into (10.68) we find for the I = J = 34 contribution to the
differential =+-p scattering cross section in the center-of-mass frame

dﬂ'ag(’lr —z?) < 4:f
asQ 3w

2

) (1 + 3 cos? 6) (10.71)

where, as before, we have introduced

Qo >
= (2%)

Equation (10.71) can hardly be considered reliable, since it is
based upon Born approximation which, as already seen, fails badly
for the s-wave scattering. It has the important virtue, however, of
predicting an angular distribution 1 4+ 3 cos? § which is in approxi-
mate agreement with experiment for meson energies in the 150- to
200-MeV region. Also in this energy region the ratios of cross sec-
tions are observed to be close to the computed values

o(rt-p — 7t-p) ol —p > 2%n) iomp — r-p) = 9:2:1 (10.72)

for scattering in the I = J = 34 channel only.

With these suggestions that the scattering is dominantly through
the I = J = 34 channel in this energy region we try to extend the
validity of (10.71) with the aid of two general observations.! We

! Chew and Low, Wick, and Henley and Thirring, op. cit.
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notice first that the energy dependence of (10.71) is unrealistic except
near threshold since it predicts that ¢ — © as w— . There Is,
however, an upper bound on the magnitude of the total cross section
coming from unitarity. Purely within the framework of propagator
theory it is difficult to discuss unitarity of the S matrix;! here we
simply use some general results of nonrelativistic scattering theory,
namely:

1. For a given channel the scattering amplitude has the form

L osgins = 1 .

{ o ae sin 6 = oot 5 =9 (10.73)
where ¢ is the momentum of each particle in the center-of-mass system
and & the phase shift in this channel. § is real if there are no competing
inelastic channels with the same quantum numbers.

2. The contribution of a channel with orbital angular momentum
! and total angular momentum J =1 + 14 to the total cross section
is limited by

<DL (10.74)
q
3. The effective range expansion
¢**tlcot 6§ = a + bo + cw?+ - - - (10.75)

provides a good approximation at low energies.

Secondly, we observe, as already noted in See. 10.6, that the
small energy denominator ~w and relatively long time scale ~1/w
of the p-wave interaction make it natural to expect a strong energy
dependence in the p-wave scattering phase shifts. Therefore, in
(10.75) for the (3,3) channel we may anticipate that higher corrections
to the Born approximation will lead to a coefficient ¢ that is nonnegli-
gible and negative, enhancing the Born approximation attraction in
this channel.

Using (10.73) and (10.74), we rewrite (10.71) in the form

dosg g 2 2
with
£2~3
(e 8in 533)porn 2 + 1 (10.77)
Swu?

! For this discussion see Bjorken and Drell, op. cit.
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To this order we may also write

Swp?
if?

Comparing with (10.75) shows that the singular nature of the Born
term at w — 0 demands that a = 0; furthermore, the coefficient b is
identified as b = + (3u?/4f%). To determine the next coefficient ¢ in
the expansion (10.75) and to develop a formula including the effective
range correction to the scattering length term, we must go beyond
our low-energy Born approximation calculation,

We have already noted that (10.67) leads us to expect a negative
coefficient ¢ for the 33 channel, since the signs correspond to an attrac-
tive potential in it as opposed to the other channels. Writing as a
low-energy approximation

(q3 cot 533)B0rn = + (1078)

Bwu? I3
q3 COt. 533 = + 4f2 (l - w—,> (1079)

we obtain a good fit to experiment on #t-p scattering provided
7 = 0.08, or equivalently, ¢gi/4r ~ 14 and w, =~ 2.2.
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Iig. 10-10 Radiative corrections with a single
intermediate nucleon line.
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Fig. 10-11 A higher-order contribution.

Equation (10.79) was first derived by Chew and Low! from a
meson theory with fixed nucleon sources (w/J — 0) and without
recourse to an expansion in powers of the coupling constant such as we
made in (10.54).

The singularity in the scattering amplitude (10.77) at the point
w = 0 in the “unphysical region” below the physical threshold at
w = p may be traced to the vanishing energy denominator in the Born
amplitude (10.54). Thus the rationalized Feynman propagators in
(10.56) have simple poles for meson energies in the laboratory system
wi = —u?/2M and ws = +u?/2M; w; and wy, — 0 in the nonrelativistic
limit u/M — 0. All higher-order graphs with only one nucleon line
propagating between the meson vertices as in Fig. 10.10 will also
contribute terms with a pole at w = 0, and the residue at this pole in
(10.78) and (10.79) includes the sum of their effects. All other dia-
grams, such as illustrated in Fig. 10.11, are finite at an energy w = 0
for the external meson line and therefore contribute to the second, or
effective range, term in (10.79).2 By plotting (¢® cot 83;)/w versus w
and extrapolating to w = 0, we isolate the contribution of the ampli-
tudes of Fig. 10.10, which measures the strength for a physical nucleon
with P2 = M? to absorb or emit zero-energy mesons with imaginary
momentum |g| = iu and to remain a physical nucleon with

(P + ¢)* = M

This amplitude is the meson-nucleon coupling constant as identified by
Chew and Low, with the value f2 = 0.08 as determined from the
extrapolation procedure.?

! Chew and Low, op. cit.

2 This statement, which appears to be plausible from these Feynman graphs,
may be proved generally; see e.g., Bjorken and Drell, op. cit.

3S. D. Drell, Rev. Mod. Phys., 33, 458 (1961).
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10.9 Electromagnetic Structure of Mesons and Nucleons

The electromagnetic interactions of mesons and nucleons are influ-
enced by their strong interactions, as we have already remarked.
Indeed it has been known for a long time that the magnetic moment of
a proton has the anomalously large value of 2.79 up, where

et

HE = 2M ¢

is the nuclear Bohr magneton, instead of the value 1.0 up predicted by
the Dirac equation for a particle of charge e, such as the electron.
(We neglect here the electromagnetic radiative corrections computed
in Chaps. 7 and 8.) Similarly, the neutron has a magnetic moment of
—1.91 pp, whereas the free Dirac equation predicts a zero magnetic
moment for a neutral particle.

Tt is possible to account for these anomalous moments by abandon-
ing the principle of minimal electromagnetic coupling.! Instead of
introdueing electromagnetic interactions into the Dirac equation with

; .9
N — y# (’Z a; - GA“) (1080)
we might also add a magnetic dipole term
} .0
iV — y* (z Frie eA“> — K';—B ou Fr (10.81)
with kp = 1.79 kn = —1.91

A more fruitful approach eschews the temptation to introduce new
parameters as in (10.81) and remains faithful to the minimal form
(10.80). This approach attributes all deviations from (10.80), includ-
ing the anomalous magnetic moments «, to the influence of the strong
interactions.? In the same spirit we saw in Chap. 8 that the Lamb
shift in the atomic energy levels and the anomalous electron magnetic
moment could be explained, to the limit of present experimental pre-
cision, by including the effect of the interaction of the electron with
photons.

! Gell-Mann, op. cit.

?S. D. Drell and F. Zachariasen, ‘‘Electromagnetic Structure of Nucleons,”
Oxford University Press, New York, 1961. R. Hofstadter, ‘‘Nueclear and Nucleon
Structure,” W. A. Renjamin, Inc., 1963. L. Hand, D. G. Miller, and R. Wilson,

Rev. Mod. Phys., 35, 335 (1963). S. D. Drell, Intern. School Phys., ‘“Enrico
Fermi,” Course XXV1, Varenna, 1962 [Academic Press, 1964].
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Without entering into detailed calculations and by relying on
invariance arguments alone, we can establish the general form of the
modification of (10.80) produced by the strong interactions. In the
present instance the requirements of Lorentz covariance and of con-
servation of electromagnetic current severely limit the electromagnetic
vertex of a particle. Consider first the =+ meson and the graph in
Fig. 10.12b, which is a ‘“radiative correction” to the vertex in Fig.
10.12a.

According to our rules the modification in the amplitude of Fig.
10.12¢ for the electromagnetic current of the =+ due to the graph of
Fig. 10.12b 1s

)

' / . 5 a‘k .
e(pu + Pl = epu + 1)) + (—ige VD) [ EEURA T TR
X pﬁ‘_i'_”]:’jM €Yu WI:TEI 1y = e(pu + 79,:) + I»(P’;P) (1082)

The value of the integral 7,(p’,p) is not of great interest since it is but
one term in a power series expansion in ¢gi which may well diverge.
However, the way in which this added contribution to the electromag-
netic current of the 7+ transforms under a Lorentz transformation is of
interest, since it is true of all higher orders as well. It is evident in
(10.82), after taking the trace and doing the momentum integrations,
that I,(p’,p) transforms as a Lorentz four-vector and hence may be
written

L(@'p) = pufi(@%p'%(p — D)) + pufo(p20'%(p — p)?)  (10.83)

where the form factors f, and f, are scalar functions of the three inde-

/'ﬂ"" 4/7r+
4 L
// Proton /P
/P’=p+q P+
y ’V\-;\N/ y q Neutron
\ k
\\ p+k
\P Proton \
\ \P
\r* \\7‘.4»
(a) (b)

Fig. 10-12 Charged-pion electromagnetic vertex and
radiative correction.
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pendent scalars p% p’?, and (p — p’)? in the integral. If we restrict
our attention to the scattering of a real meson from an electromagnetic
potential, the form factors become functions of the invariant momen-
tum transfer ¢> = (p’ — p)? only, since then p? = p’? = p%

A further restriction on (10.83) follows from the requirement of
current conservation, for example; for the gth Fourier component of
the current of a real physical meson

¢1.(p'\p) = (p" — p)*L.(p",p) =0 (10.84)

In (10.83), with p? = p'? = u? this gives f1(¢%) = f.(¢?), a result that
may be verified directly from (10.82) in a similar manner—and with
the same kind of ambiguity— to that discussed in connection with the
vacuum polarization in Cthap. 8.

We have now the general form of the electromagnetic current of
a real 7+ meson scattering with momentum transfer ¢g*#. The point
interaction current e(p, + p,) is modified to

e(py + 1) — e(Pu + D) F(g%) (10.85)

where F,(g?) is the charged m-meson form factor and depends only upon
the invariant momentum transfer. The form factor is normalized to
1 for zero momentum transfer, ,(0) = 1, after the charge renormaliza-
tion Is carried out as in Chap. 8 and ¢ is set equal to the observed
physical 7+ charge. Study of F,(¢?) requires more powerful techniques
of calculation than perturbation theory.! Already (10.85) constitutes
a powerful result in limiting the form of the differential cross section for
scattering of a 7+ meson by an electromagnetic field. For example,
to lowest order in « the ratios of cross sections at different energies
and scattering angles, but with fixed ¢2, are independent of F,(g?) and
equal to the ratios calculated as in Chap. 9 with neglect of the strong
interactions.

A similar result is obtained in discussing the form of the electro-
magnetic current of the nucleon (and the strange hyperons as well).
Here the spin degree of freedom of the nucleon allows the possibility of
two scalar form factors corresponding to the additional possibility of a
spin one-half particle having a magnetic moment.

For the proton, for instance, one encounters graphs to order gj
such as illustrated in Fig. 10.13. The corresponding modification of

! More satisfactory techniques are discussed in Bjorken and Drell, op. cit.
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Fig. 10-13 Proton electromagnetic vertex and radiative corrections.

Proton

the proton current according to our rules is

u(p"evuu(p) — u(p)evau(p)

7

+ (=igg VD) [ (o aleivs sy (o)

7 )
X O T ) G

. alv o .. ;
+ (—2g90)* / '(ﬂ)i %(p’)ivs }b'—:'»lZ'—WM €Yu

X 3 () s = A p)ulp)  (1086)

)
Py 7

We agaln find, as was the case for the =+ current, that the proton
current transforms as a four-vector. After the momentum integrations
are done, the only vectors remaining to be sandwiched between the pro-
ton spinors are p,, p,, and v,. Any other remaining y matrices must be
of the form p, ¢’, or vs. However, the vs's can be eliminated, since
there are an even number of 7-N vertices and hence of v; factors which
can be paired together with 42 = 1. T'urthermore, all factors of p’
and P appearing in a product of v matrices can be anticommuted to the
left or right until they are adjacent to u(p’) or u(p), respectively, and
set equal to M. (Recall the concrete example of this procedure in the
calculation of the electron electromagnetic vertex in Chap. 8.)

We conclude from these arguments that the general structure of
(10.86) must be

a(p)elu(@',p)u(p) = ea(p)pL1(g?) + Pul(g?) + v.Ta(g?))u(p)
(10.87)
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with Tu(¢?), 7 = 1, 2, 3, scalar functions of ¢%. Identical arguments
lead to the same general form for the neutron current.

Current conservation gives a relation between the three form
factors Ti(¢?). In analogy with (10.84),

g a(p )Tu(p",p)ulp) = 0

As a consequence, T'1(g%) = T1(g?), and the nucleon current takes as its
most general form

a(p)elu(p',p)u(p) = ea(p)(py + p)T1(g?) + v.Ts(g)]ulp)

In discussing the electromagnetic structure of the nucleons it is con-
ventional to eliminate the vector (p, + p,) in favor of!

0w (D" — P*) = owq’

by means of the Gordon reduction of the current. Since the spinor
wave functions 4(p’) and u(p) obey free Dirac equations, we may
apply (3.26) directly to find the equivalent structure

io,‘,q"

a(p’)elu(p’,p)u(p) = ea(p")vul\(g") + 57 «Fa(g”)lu(p) (10.88)

a form familiar from our discussion of the radiative corrections to the
electron vertex (8.61). With « set equal to the anomalous part of the
magnetic moment in units of the Bohr magneton (x, = 1.79 and
k, = —1.91) and with ¢ the physical proton charge, F»(0) = 1 and
1 (0) = 1 for the proton and I,(0) = 0 for the neutron.

Using the isotopic spin formalism we may combine the proton and
neutron currents into the sum of an isotopic scalar and an isotopic
vector part:

X a(p) PR + PP (@) + L (R () + 7o (@)} u(p)x
= x"[j@(p',p) + 732 (p",p)Ix  (10.89)
! Form factors
x0?2
Gg=F, + 4‘;114*2 ry
GM = Fl + kl"y

which have a more direct geometrical interpretation are also in wide use now.
(Hand, Miller, and Wilson, op. cit.)
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where
PO = 15(FP + FP) F0) = 3
FO = 35(FP — FP) FP0) = 34

FP = 15(cFP + iaF3) F(0) = —0.06
FY = 15 (F P — k) F(0) = +1.85

For a proton x'r;x = 1 and (10.89) reduces to the proton current; for
the neutron x'r;x = —1 and (10.89) reduces to the neutron current.

The general form (10.88) or (10.89) again provides a severe limita-
tion to the differential cross section for scattering of a proton or a neu-
tron in an electromagnetic potential. To the accuracy of the Born
approximation in & = 1437, but to arbitrary order in the strong cou-
plings, the cross section for the scattering of an electron by a physical
proton or neutron is modified from that calculated in (7.46)
according to

272 0 2 s g
éﬂ' - a? |:(F% - ZKA%_2 F%) €os? 5 2"%47, (FFy + kF5)? sin? §:| (10.90)
ae 4F12[1 + (2E/M) sin? (6/2)] sin* (6/2) '

where 6 1s the laboratory scattering angle. Individual determinations
of F; and F, can be obtained by comparing measurements taken at
different scattering angles and energies but the same ¢%. More than
two observations at the same ¢? must yield a series of points all lying
on the same straight line when

., 0 2F .  68\do
(sm“ §> £ (1 + 578 sin? Q) 0

is plotted against cos? (8/2) for fixed ¢%.. Any deviations from this
cannot be attributed to our ignorance of the strong couplings or to our
inability to caleulate the form factors but must be blamed on a failure
in the electrodynamic part of the calculation—perhaps to a failure in
the approximation of keeping only the first term in the power series
In & or to more profound reasons.

Weak Interactions

The weak interactions,! of which 8 decay is the most familiar example,
may be classified into two general groups: leptonic and nonleptonic.

1E. J. Konopinski, Ann. Rev. Nucl. Sci., 9, 99 (1959). L. B. Okun, X1th
Intern. Conf. High Energy Phys. CERN, Geneva (1962). S. M. Berman, ‘‘Lectures
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10.11

The leptonic interactions involve u mesons (u~), electrons (e), and
two kinds of neutrinos (»,»") and include, along with the corresponding
antiparticle interactions (ut,et,»,¥),

B decay n—pt+e + 5 (10.91a)

u decay pm—e v 4+ 5 (10.910)
_ T

7 decay T ’ ot (10.91¢)

u capture wEtpon+ (10.91d)

as well as a host of strangeness changing leptonic interactions which
transmute the strange particles into nucleons, leptons, and possibly
7 mesons; for instance

K- — 'M_ + ¥

™+ e+ 5
A—=p+e +v»

Examples of the nonleptonic decays, which always involve the
strange particles, are

A—p+ 7 Kt—at+ ot 4+ 71—

We shall consider the leptonic interactions which do not involve
strange particles; the weak interactions involving the strange particles
are not well understood and will not be discussed here. The problem
we face in discussing (10.91a, b, and ¢) is that of deducing from avail-
able experimental observations the structure of the interaction vertices
in the graphs for these processes. Two of our main standbys from the
discussion of the strong interactions are lost here. Both parity and
isotopie spin conservation are approximate symmetries and are violated
by the weak interactions in nature.

Beta Decay

The fundamental process (10.91a) is responsible for the 8 decay in
nuclei, and so we first study free neutron decay. The general structure
of the S matrix element describing this decay, illustrated in Fig. 10.14,
must be linear in the wave functions describing the incident neutron

on Weak Interactions,” CERN Seminars (1961) (CERN 60-20); C. Fronsdal (ed.),
‘“Weak Interactions and Topics in Dispersion Physics,”” W. A. Benjamin, Inc.,
New York, 1963. Danby, Gaillard, Guilianes, Lederman, Mistry, Schwartz, and
Steinberger, Phys. Rev. Letters, 9, 36 (1962).
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Fig. 10-14 8 decay.

and outgoing particles, that is,

4
ST =i S [ dm o el @)l v @l )

afiys=1

X Faﬂy&(l'] ot x4) (1092)

As usual, the hermitian conjugate wave functions ¢ represent emerging
particles (p,e~) or incident antiparticles, corresponding to the negative-
energy solutions propagating backward in time, and the ¥ represent
incident particles (n) or emerging antiparticles (). Thus all inter-
actions such as

v+n—p 4 e

are also included in (10.92) in addition to 8 decay. To allow for the
possibility of inverse 8 decay, or positron emission

p—n+et+ v

as is observed in energetically allowed nuclear transitions, there must
be an analogous matrix element to (10.92)

$E = —4 [d“;v1 C s Al @ (el ()Y (24)

X Fogys(y, . . . ,xs) (10.93)

The funetions F and F in (10.92) and (10.93) must be determined from
experiment. On general theoretical grounds we shall make only one
assumption here, namely, that

Faﬁyﬁ(.’l?1,$2,f€3,{l)4) = F;aay(xg,xl,m,xg) (1094)

This assures the principle of detailed balance for the weak interactions
and tells us that, aside from phase-space factors, the reactions

nep+e 4 v v+na2p + e
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proceed with the same rates from right to left and left to right.! That
detailed balance (10.94) should apply follows from the weakness of
the B-decay interaction and the unitarity of the S matrix, discussed in
Chap. 8. For no interaction Sy; reduces to a unit matrix ;.  Writing

Sﬁ = 5;{ - ’I:Tﬁ
the unitary requirement (8.31) is for 7'y,

W(Tye — Th) = 0, Th T
n

For 8 decay, the right-hand side is much smaller than the left, being
second order in the weak coupling constant. This leads to (10.94),
since for f # ¢

Sﬁ = —iTﬁ

The neutrino is a massless neutral Dirac particle, and we maintain
the experimentally rigorously satisfied law of conservation of leptons
as well as of nucleons by identifying as an antineutrino the neutral
partner of the electron in 8 decay. For process (10.91a) this is only
a matter of definitions; lepton conservation has definite implications,
however, for = and u decay. Observed S-decay spectra also indicate a
spin of 14 for the neutrino. More recently the observation of the
7~ — ¢~ + » decay process has confirmed this. Finally, the massless-
ness of the neutrino requires a change in our normalization convention
for the neutrino amplitude relative to that for other fermions. We
write for a plane-wave solution with quantum numbers (%,s)

YO () = u® (k,8)e~i*-= (10.95)

1
V/ 2E,(2r)®
with
wt O (k,8)u® (k,s) = 2E,
and therefore
a M (k,s)u (k,s) =0

The neutrino projection operators are
2

AR (hs) = Y walkys)iis(h,s) =

2
MG (hys) = 2, vall,s)3s(k,s) = —k

=1

1In the language of field theory this corresponds to the assumption of a
hermitian hamiltonian in a perturbation approach.
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A convenient way to handle the normalization is to treat neu-
trinos in the identical fashion as electrons of finite mass, normalizing
as in Chap. 3, and to subsequently take the limit m, — 0. The rules
(10.95) lead to identical results.

After 30 years of research, the function F in (10.94) has finally
been completely determined at low energies, that is, for relatively large
coordinate separations z; — z;, The simplest hypothesis about the
nature of F is that it vanishes for large space-time separations x, — z;.
Indeed, if the range of distances over which F is nonvanishing is small
compared with #i/Egec ~ 10~ !? em, the characteristic distance associated
with B-decay energies Ly ~ 1 to 10 MeV, one may take F to a first
approximation to be a loeal interaction, that is,

szﬂy&(xl,xz,xs,xo ~ 5aﬂ755(4)(?61 - x2)5<‘”(x1 — x3)5(4)<$1 - 2134) (1096)

where Fasys 15 8 constant matrix tying together the spinor factors.
This turns out to be an extremely good approximation for all observa-

tions thus far. TFourier-transforming (10.96) to momentum space gives

Fa,ga,{(kl,kg,kg,kh) = f d4231 d‘*xz d4$3 d‘x.;
X ei(k1'21+k2-17+k3-xg+k4‘x4)FaB‘ya(xhxz,xg’24)

= (2m)46%(ky + ko + ks + kg Fagys  (10.97)

The interaction is just a constant matrix times the usual § function
expressing energy-momentum conservation at the interaction vertex.
This is to be contrasted with the case of nucleon-nucleon scattering
due to the exchange of = mesons, where

Pt (10.98)

q2 — #2
corresponding to a potential of range ~7#/uc. If the mass of the
= meson were allowed to become large, one would for small ¢* approach
a situation similar to 3 decay, that is, an approximate point coupling
of the four fermions. Conversely, as energies involved in weak inter-
action processes increase, such as in the inverse 8 decay reaction

v+ p—on+et

one may anticipate that the interaction will appear nonlocal; for
instance, a possible heavy boson W+ might be exchanged between the
p-n and e-» systems, as in Fig. 10.15, or some more complicated non-
locality might ocecur.?

'T. D. Lee and C. N. Yang, Phys. Rev., 119, 1410 (1960); Yukawa, op. cil.
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Fig. 10-15 A possible heavy W= boson exchange

in decay. XXX XXX
In f decay w1

For our present discussion we remain with the approximation
(10.96) and (10.97). In the realm of low-energy 8 decay, nucleon
recoil may also be neglected to within corrections of ~|q|/M,
where q is the recoil momentum of the proton, and the neutron
and proton wave functions are replaced by constant spinors in (10.92)
and (10.93). After squaring and doing the spin sums for unpolarized
neutrons and final particles, we obtain

Sl “ G S 2 Tr (p. + m)I4p,T>
X (2r)486%*(p. + p» + ppr — pa)  (10.99)

where p; represents the four-momentum of particle i = (e,7,p,n) and
E; is the corresponding energy; E, ~ M, and E, ~ M,. T, and I'p
are some complicated matrices which depend upon the structure of the
matrix Fapys. In the rest frame of the neutron, they are constant
matrices, since they are functions of the nucleon variables only.

Therefore, after carrying out the trace (10.99), which must have the
general form

AE; + BE.E; + CE,E;8, - ps
where A, B, and C are constants, 8. = p./E., and p; = ps;/E5, we find
for the transition rate to a given final state

|2
l?/ffll “ (EA + B+ Cg.- p;) (2m)*8%(pe + 5 + P — ) (10.100)

We may now multiply by phase-space factors d*p, d*p; d*p, for the
final state and integrate over all proton and neutrino momenta to find
the electron spectrum in the neutron decay:

dw, o d“p,f dips 6(M. — M, — E. — Ej) (EA 4+ B + ng-f)p)

« pE(M, — M, — E.)> (EA + B) dE. (10.101)
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Thus by plotting

1 ‘d&
pE. M, — M, — E,)?dE,

versus F, we should find an energy dependence A/E.+ B. It is
observed—not only in free neutron decay but also in a wide class of
nuclear 8 decays known as the allowed transitions—that the electron
spectrum fits this dependence! and, further, that A = 0, that is,
(10.102) is observed to be a constant in experiments. A more familiar
way of presenting the data is in terms of a Kurie plot, which displays

1 dee)®
p.L. dE,

versus F, as a straight line proportional to (M, — M, — E,;). The
absence of a term « A/FE, in (10.100) is a consequence of the detailed
nature of the 8-decay interaction to which we come in the next para-
graph; it is one of the so-called “Fierz interference’” terms which are
conspicuously absent from all observed g spectra, including the for-
bidden S-decay transitions which have matrix elements proportional
to the nucleon velocities, but which again verify the approximate
locality of the p-decay interaction. It is amusing to note that the
electron energy spectrum (10.101), with 4 = 0, is simply proportional
to the phase-space volume (#,%p,E. dE,) and has the statistical shape
predicted by a constant S-matrix element Sy o« (2r)%4(p. + ps +
Pp — P»), In place of (10.100).

We turn next to the structure of the matrix F.s,s in (10.97).
Holding the indices v and § fixed {for the moment in (10.92), we can
summarize the «, 8 dependence in complete generality in terms of the
16 y-matrices discussed in Chap. 2:

(10.102)

3
Fagys = F®yslag + FPosybap + z F7m5(Yr) as
':’0

3 3
T E F(A)T‘yﬁ (’Y 577)&[3 + E F(T)xrvb (a')\r)aﬁ
=0 AET=0

The matrices 1, vs, ¥-, Y57, and oy form scalars (S), pseudoscalars (P),
vectors (V), axial vectors (4), and tensors of rank 2 (7T'), respectively,
when sandwiched between Dirac solutions ¥(z) - - - ¢(x), as seen in
(2.88). It is then clear from (10.92) and (10.96) that proper Lorentz
covariance of the transition amplitude requires F and F® to be

! Coulomb corrections must be made. E. J. Konopinski and L. M. Langer,
Ann. Rev. Nucl. Sci., 2, 261 (1953).
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linear combinations of 1 and v, F™7 and F“)7 to be linear combina-
tions of 4" and y™ys, and F®™M to be a linear combination of ¢ and
o*ys.  The S matrix then takes the form

- 1| momam.
8 = ays \/2;?;" T, @5 e+ pr + py — PN

with

Sm = Z Ci[ap<pp)rzun(pn)]{'Izc(pe)[l + a;ys,]FiU,-,(p;)} (10103)
1=S,P VAT

and Ti = (1,75, Yy Y6Y,0us)

Té = (1,v5v%75v*,0"")

The S-matrix element for inverse 8 decay takes the same form,
with the constants C; and «; replaced by their complex conjugates?
according to (10.94) and with the labels on the spinors interchanged
according to

up...u"_)rlzn...uﬂ
’1,25"'1);—912,,"‘2)5

If we again neglect all momentum dependence in the nucleon
spinors, thereby restricting our attention to “allowed’” transitions,
(10.103) simplifies in terms of two-component Pauli spinors for the
nucleons to

M = (ulun>{08ﬂe(pe)[1 + asyslos(ps) + Cvita(pe)[1 + avys)y®s(ps) )

+ (uhoun) - {2C7.(p)[1 + arys|ovs(ps) + Catta(pe)[1 + aavslysyvs(ps))
(10.104)

The first line induces the allowed Fermi transitions (S, V) with |AS| = 0
and the second line the allowed Gamow-Teller transitions (4,T) with
|AS| = 1in the nucleon state. One may separate Fermi from Gamow-
Teller in nuclear B decay, where transitions occur between well-defined
angular-momentum states; both contribute to the free neutron decay.

All the terms proportional to asys in (10.104) violate parity and
prior to 1956 and the work of Lee and Yang were abolished so as not
to destroy the invariance of S, under the parity operation. The
experimental discovery of parity violation in weak decays following
Lee and Yang? has now led to a complete determination of all the «
and C; in a series of key experiments.?

1 Up to a sign: o — -{—oz’;f fori = AV

a;— —af fori = S,P,T
2T. D. Lee and C. N. Yang, Phys. Rev., 104, 254 (1956).
3 Konopinski, Okun, Berman, Fronsdal, and Danby et al., op. cit.
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The constants a; of the parity-violating terms are determined by
measuring the longitudinal polarization of the electron. One method
of determining this polarization is by measuring a left-right asymmetry
in the scattering of the 8-decay electron from an atom. We define the
polarization, as in (7.95), by

P:NR—NL
Nr + Ny

where Nr equals the number of “right-handed’ electrons with spin in
the direction of motion, {(8) - = +1, and Ny, is the number of ““left-
handed” ones with () +p = —1. Both in Fermi and Gamow-Teller
transitions in nuclei as well as in free neutron decay, the electron
polarization in the limit of no recoil and after integrating over neutrino
angles is given to good accuracy by

_ Ip| _
P=— E = — 8. (10.105)

In the limit 8, — 1 only left-handed electrons are emitted. In the
same limit the spin projection operator for a left-handed electron
becomes, as in (7.107), (1 — v¢)/2, so that the wave function for a
left-handed electron is

YU = 1 _2 Y5y JLiE = 1 _;'YS (10.1086)

Therefore all the oi’s in (10.104) equal +1 in order that the correct
sign and relativistic limit be reproduced. The polarization for arbi-
trary 8, is found by introducing (3.19) and (7.94) into (10.99) and
carrying out traces and the neutrino angular integral to obtain
—8°m,/E, = —|B.| as claimed. JEquation (10.104) is now simplified to

m = (ulun)a&(pe)(l + 'YE)(OS + CV'YO)UF(pF)
+ (upoua) * Te(pe) (1 + v5)(2Cr6 + Cax)vs(ps)  (10.107)

and the relative magnitudes of the constants Cs, Cy, C'r, and C 4 remain
to be determined.

It is a straightforward exercise to square I and sum over spins.
For unpolarized nucleons there are no interference terms between the
Fermi (S,V) transitions and the Gamow-Teller (4,T) transitions.
Moreover, there are no interference terms between S and V or 4 and T'
in (10.107), since these lead to different final antineutrino states.
When the (1 4 v5) factors are ecommuted to the right, we see that S



Nonelectromagnetic interactions 255
and T transitions lead to the emission of left-handed antineutrinos
v¥H(p;) = I—Zﬂ v (p;)

On the other hand, for transitions via V and A only right-handed anti-
neutrinos are emitted. In the absence of interference between S and
V or A and T there are no Fierz terms; that is, the coefficient 4 in
(10.100) and (10.101) vanishes. The contributions to A come from
terms of the form

Me Tr FAp;PB

If there are an even number of vy matrices in I'4, there must be an odd
number in ', and vice versa; thus all contributions to the Fierz term
are interference terms, which, as we have seen, vanish. Were neu-
trinos emitted with less than 100 per cent polarization, the absence of
Fierz terms would require the coupling to contain either S or V and
either 4 or T terms only. All four terms may appear in (10.107),
however, and we must consider experiments which measure the coeffi-
cient €' in (10.100), that is, the electron-antineutrino angular correla-
tion, for more information on Cs, Cy, C4, and Cr.

Consider, for example, a pure Fermi transition involving the S
and V contributions only. Summing over electron and antineutrino
spin variables in (10.107) gives for the angular distribution of the
emerging antineutrino relative to the electron

Nremi(8) « Tr (p. + m)(1 + v5)(Cs + vCy)ps(CE 4 voC7) (1 — 7vs)
= 8E,E[|Cs|2(1 — B, cos 8) + |Cy|2(1 + B, cos 6)] (10.108)

where 6 is the angle between them. The same distribution is found for
inverse 8 decay. The experimental distribution, determined for the
almost pure Fermi transition in A* by measuring the direction of the
positron and recoil nucleus, is found to be approximately 1 + 8, cos 6,
suggesting the transition is vector. A similar calculation for Gamow-
Teller transitions gives

Nar(6) « EB;||C4l?(1 — 148, cos 6) + 4|Cr|2(1 + 248. cos 6)]
(10.109)
and the measurements on a pure Gamow-Teller transition, as in Ne?3,

together with other data on mixed Fermi and Gamow-Teller transi-
tions, indicate |Cr/C4| < 1. Equation (10.107) may then be simplified
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Fig. 10-16 Some higher order graphs for 8 decay.

to two terms in the limit Cr/C4x = 0:
9:.)2 =~ (u;un)ﬁu(pe)CV'Yo(l - 76)1)5(177)
+ <uLGUn)'722(pe)<+CAY)(1 - 75)v;(pﬁ) (10110)

which leads to the emission of right-handed antineutrinos only. Now
only the magnitudes of Cy and C, and their relative phase remain to be
determined. The magnitudes are found from measurement of the
decay rates of the neutron and of the pure Fermi transition in O'.
The phase i1s determined from the measurement of the electron’s angu-
lar distribution relative to the neutron’s spin axis in the 8 decay of
polarized neutrons, which is sensitive to the V-4 mixture. The final
result is!

V2 Cy = (1.015 + 0.03) X 105 ﬁ%z ~ 0
b
Ca = (+1.21 + 0.03)Cy (10.111)
= +alv

Inserting the notation (10.111) into (10.110) and reverting to a rela-
tivistic notation, we have for the invariant amplitude of 8 decay

G _ e
M = = [@pya(l — ays)ul@ey (1 — v5)v5) (10.112)
V2

It would be natural to regard MM as a first-order interaction ampli-
tude and to study higher-order effects such as illustrated by the I"eyn-
man diagrams in Fig. 10.16. However, in the approximation (10.96)
of local interactions we do not know how to calculate these amplitudes.
The closed loops in these diagrams give rise to infinite contributions
! The factor 1/+/2 appears for historical reasons dating to 1956, when calcu-
lated decay rates doubled upon insertion of the factors (1 — ~;). Only the rela-

tive phase of Cy and C, is determined by experiment. Cvy is chosen to be real
and positive by convention.
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10.12

which cannot be separated and isolated into renormalization constants
as they were in Chap. 8. The difficulty here arises from the loss of
boson propagators between the nucleon and lepton vertices which
provide convergence at high momenta. The local approximation
(10.96) is equivalent to replacing the propagators by constants as in
(10.98); this will not be valid in closed-loop caleculations which require
integration over all momenta. Although we are dealing with weak
interactions with a very small coupling constant (10.111), this question
of higher-order contributions is not entirely academie, since the cross
sections computed from (10.112) for scattering processes such as

p+p—on+tet

increase with the square of the energy’ and are proportional to

G ~( Do )4 1 (10.113)
o 300M,) E?,. ’

By the time we reach energies E..... ~ 3000/, ~ 300 BeV the weak

interactions may well have grown into strong ones and the effects

of nonlocalities and of higher-order graphs may become of major

importance.

Two-component Neutrino Theory

We have already noted that only right-handed antineutrinos are
emitted in B decay. Correspondingly, only left-handed neutrinos
appear in the inverse processes, according to (10.94), owing to the
(I — ;) in (10.112). Since the right-handed neutrinos and their left-
handed antiparticles are absent from these as from all weak interac-
tions, they represent an unnecessary extra degree of freedom in the
Dirac equation for a massless particle which we may attempt to remove.
The Dirac equation for a massless particle

oy,
LY

= —ja- VY, (10.114)

does not contain the B matrix, and the anticommutation relations
(1.16) for the three matrices ai, as, and as

{anar} = 2860 ol =1 (10.115)

! B. Pontecorvo, J. Exp. Theoret. Phys. (USSR), 87,1751 (1959); M. Schwartz,
Phys. Rev. Letters, 4, 306 (1960); T. D. Lee and C. N. Yang, Phys. Rev. Leiters,
4, 307 (1960).
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may be satisfied with the 2 X 2 Pauli matrices; that is,
o« =34 (10.116)

It was the necessity for constructing 8 as a fourth anticommuting
matrix that forced 4 X 4 matrices upon us in Chap. 1.

A positive-energy plane-wave solution of (10.114) and (10.116)
has the form

1 )
J = ————— y i El—px) 10117
() NEY o u(p,s)e ( )
with B = ip| and the spinor u(p,s) satisfying the equation
Eu(p,s) = ¢+ pu(p,s) (10.118)

The solution of (10.118) in the usual representation of the Pauli
matrices, with the direction of the z axis along p, is

ulp,+) = m (10.119)

which describes right-handed neutrinos with spin along the direction of
motion:

%—p u(p,+) = +ulp,+)

To obtain left-handed neutrinos, as observed in naturc, we must
choose the solution of (10.115) with

o= —¢ (10.120)
instead of (10.116). In this case (10.118) is replaced by
Eu(p,—) = —¢ - pu(p,—) (10.121)

and we have left-handed neutrinos

u(p,—) = m (10.122)

To understand better the relation of these two-component solu-
tions to the by-now-familiar four-component electron spinors, we
return to the Dirac equation for a particle with mass m and choose a
representation for the «, 8 matrices

aiz{gi *S{] Bz[—? _(1)] (10.123)
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which differs from (1.17) by a unitary transformation
U= —= (1 + 7ev0)
\/g YsYo

In this representation the Dirac equation (1.13) may be expressed in a
split two-component notation, with

]

as
ia%u(H = —i¢- Vu(+) — mu(—)
i (10.124)
i g (=) = +id - vu(—) — mu(+)

The upper and lower components of Y are mixed only by the mass terms
in (10.124); and in the limit m — 0 there result two uncoupled two-
component equations corresponding to (10.114), with e« = ¢ as in
(10.116) and ¢ = —d¢ as in (10.120). In the representation (10.123)

[ 0]
Y5 = 0 —1

and it is easy to see that the solution

v(+) = [u(gb)] form — 0

corresponds to right-handed neutrinos, since

v (+) = +¢(+)

Similarly for
v =[] e = o

showing that the solutions ¥(—) represent left-handed neutrinos.

The possibility of describing massless Dirac particles by a two-
component equation was first discussed by Weyl! in 1929 but was not
taken seriously, the reason being that the 8 matrix, and thus the parity
operation P of (2.32), has been lost in reducing to two components.
After the downfall of parity in 1956, the Weyl equation was resurrected
by Landau, Lee and Yang, and Salam,? who observed that the charge

UH. Weyl, Z. Physik, 56, 330 (1929).

2 L. Landau, Nucl. Phy., 8, 127 (1957); T. D. Lee and C. N. Yang, Phys. Rev.,
106, 1671 (1957); A. Salam, Nuovo Cimento, b, 299 (1957).
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conjugation symmetry C of (5.5) and (5.6) has also been lost, but that
a combined invariance under CP remains.

According to (5.5), the charge conjugation operation consists of
replacing ¥ (x,t) by ¢.(x,t) = CB¢*(x,t) with C, a matrix satisfying (5.4)
and (56.6). In the new representation the matrix

___.0’2 0
C = 1,[0 —02]

satisfies these conditions. For the case of the two-component neu-
trino, the presence of the 8 in the above charge conjugation transforma-
tion means that it is no longer a symmetry operation; however, the
combined operation CP is. For if ¢(z) is a solution of (10.114), so is

Yor(x,t) = CY*(—x,t) = Fiogp*(—x,t) (10.125)
since

i

Fio <7,562 — da* v,) Y*(—x,0)

a *
Fios [(—i& R vzf> yb(x',t)] =0
with x’ = —x.

To form the antineutrino wave function, we take—as in (5.7) and
(5.8) for electrons—a negative-energy neutrino solution, complex-
conjugate the wave function, and multiply by 7¢,. For example, a
negative-energy solution of (10.114) with « = —4¢ for left-handed
neutrinos is, with £ = - |p|,

(1,(% -+ Z.(!'Vx> y[/cp(X,t)

]' i(Et+p-x
$E) = s o, =)
where —Ev(—p,—) = —6-pv(—p,—)
and o(—p,—) = [(1)] (10.126)

According to (10.125) the antineutrino wave function is then

Yer(',t) = [ i E =) (10.127)

0 1

1] \/2E (2r)?
which evidently is also a solution of the left-handed Weyl equation.
Now (10.127) indeed represents a left-handed particle, but in the
parity reflected system, with x’ = —x; just as a right-handed person
appears to be left-handed in a mirror, so the left-handed antineutrino
in the primed system (10.127) is right-handed to us in the unprimed
system.
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Fig. 10-17 u decay.

10.13 Mu-meson Decay

The decay of a x meson
e+ b
involves four fermions, including an (e~,). This similarity to the
B decay of the neutron suggests that we try the same form of S-matrix
element as in the B decay. As in the inverse g-decay process, the

amplitude for u* decay
ut—et 4+ » 4+ ¥

will be given by detailed balance. We again pair the e~v wave func-
tions as in (10.112) assuming the form of the coupling to be

@(p)v*(1 — vs)vs(k) (10.128)

This implies right-handed antineutrinos and completely left-polarized

electrons in u~ decay (and right-handed positrons in u* decay). The

neutrino polarization is not observed, but experiments! indicate the

complete left-handed polarization of the electrons predicted by (10.128).
The S-matrix element for u decay then takes the form

—1 m" me 1

S (21r>6 t I 3, E @ — p — b — B

m = \/ Gl (k)v*(1 — Ays)uu(P))[a@.(p)v,(1 — vs)os(k)]  (10.129)

with the kinematics illustrated in Fig. 10.17.

1P, C. Macq, K. M. Crowe, and R. P. Haddock, Phys. Rev., 112, 2061 (1958).
For a recent general review see G. Feinberg and L. M. Lederman, Ann. Rev. Nucl.
Seci., 18, 431 (1963).
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The parameter N which determines the polarization of the »’
associated with the u~ meson and the coupling constant G remain to
be determined from the observed p-decay rate and spectrum.

To obtain the transition rate for u— decay from (10.129) for
unpolarized particles, we take |S|2, multiply by final phase-space fac-
tors d*p d*k d’k, insert projection operators for the sum over spins,
divide by 2 for the p~ spin average, divide by VT = (2r)454(0) for the
transition rate per unit volume, and finally divide by 1/(2x)3, the u—
density, for the transition rate per p meson. These steps give for
the decay rate

1 1 dsp dsk d*k

do = —=

il hadl sl ¥ _ _ A 2
5@n) 0, | 21, 2m, 08 0L —P k=R ), 1|

spins

with

)

8ping

am

G2
P= 5 Trlvi(l = M) (P 4 m)y'(L = Nys)k]

X Tr[(p + m)v.(1 — 'Yb)](—«")’y(l — vs)] (10.130)

For the total integrated rate, everything to the right of (2Ep)~!
in (10.130) is Lorentz invariant, and we see that the inverse decay
rate is proportional to the energy Ep as required by special relativity.
In the rest frame of the u meson this is the lifetime.

Carrying out the traces, we obtain

Y Mz = 32G2(1 + N (kp Pk + kk pP)

spins
+ G*(\ + N*) Tr (ky*Py*ys) Tr (pvv,vs)  (10.131)

The last trace yields a scalar antisymmetric in k and P, antisymmetric
in k and p, and linear in all four momentum variables. It therefore
has the form

Tr (ky*Py*ys) Tr (pv.ky,vs) = alkk p-P — kp P-k) (10.132)

and there is only the number a to be determined. We do this by tem-
porarily choosing the vectors k, k, p, P at our convenience, requiring
only that (10.132) not vanish. For example, with k, = k, = (1,0,0,0)
and P, = p, = (0,1,0,0), (10.132) becomes

—a = Tr (vov*v1y*ys) Tr (vivuvovsvs)

In summing indices ¢ and » only the two combinations u = 2, » = 3
and u = 3, v = 2 survive and contribute equally; thus

—a = 2 Tr (yovav1vsvs) Tr (vivavoysys) = +32
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and the spin sum in (10.131) becomes
5 Im2 = 3267

spins

Yok p-P + |1 + N%p E-P]  (10.133)

To proceed further, we integrate over the variables of the unob-
served neutrinos in (10.130).  Since |M|2 is linear in k and k, we are led
to evaluate the integral

A5 -
Jos = / 7 ﬁ/aw 54Q — k — k) (10.134)

with @ = P — p.  This integral transforms as a second-rank Lorentz
tensor and is best evaluated in the center-of-mass svstem of the two
neutrinos, in which ) is pure time-like. In this system we find after
a short calculation

s
I = 24 Qilg® + 209

Knowing that (10.134) is a tensor of rank 2, we can now express the
answer in an arbitrary Lorentz frame as

I6 = — [g**Q* + 2QQF] (10.135)

.
24
Putting (10.130), (10.133), and (10.135) together gives
G? pdE,do )
E’Qpp B, UL = Ap-P(m? + m? — 2pP)
+ |1 + N {—4(p-P)? + 3p-P(m,? + m?2) — 2m,m,?])

Integrating over electron angles and neglecting the electron rest mass,
that is, m./E, — 0, gives for the energy distribution of electrons in
the u~ rest frame

dw G2m, 2102 , 2K, 4K,
<dF ) T 480 ['1 — 6<1 B > I W( m,
(10.136)

The observed energy distribution favors A = +1 to good accuracy,
that is, the ncutrino associated with the u meson in (10.129) is also
left-handed.! Setting A = 1 in (10.136) and integrating over all
electron energies 0 < E, < 4m, gives for the total u-decay rate

dw =

(Y2 5
G2m,

T (10.137)

1
w0:—=
Tu

! The energy dependence of (10.136) with A = +1 corresponds to a Michel
parameter p = 34. L. Michel, Proc. Phys. Soc. (London), A63, 514 (1950).
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The value of G deduced from the observed
7 = (2.21 4 0.003) X 10-% sec

is equal to the vector coupling constant G = /2 Cy in nuclear
B decay! (10.111), to within 2 per cent! From this strong indication
of a universality in the weak B-decay couplings between fermions we
draw additional support for the description of the interactions given
here and look to other processes involving pairs of leptons (e-,») or
(u=,»") to see if they too indicate a V-A coupling form (10.128).

Pi-meson Decay

In writing the S-matrix elements for the decay of the = meson
(10.91c), we may optimistically start off again with the V-4 coupling
in (10.128) which has done so well in 8 decay and u decay. We are
strongly aided in this approach by two experimental findings. First,
the u~ meson in the 7= — u= + ¥’ decay is observed to be longitudi-
nally polarized and right-handed. Then the antineutrino must also
be emitted with a right-handed polarization, since the 7~ has spin zero.
In the 7~ rest frame the p~ and » emerge with equal and opposite
momenta, and both must be right- or left-handed if their angular
momenta along the direction of emission are to cancel as required
by angular-momentum conservation. This observation agrees with
(10.128), which predicts that only right-handed antineutrinos (or
left-handed neutrinos in 7+ decay) are emitted.

The second experimental finding in support of (10.128) is the
observed very small value of the branching ratio

R(w—*e—{—v

— 7Y = —4
. V,) 1.3 X 10 (10.138)

A very strong depression in the electron emission rate is predicted by
(10.128) owing to the factor (1 — v;5), which leads to completely
polarized left-handed neutrinos and right-handed antineutrinos.
Anticommuting it to the left gives 4(p) (1 4+ v;), corresponding in
the limit »./¢ — 1 to the emission of left-handed electrons (or right-
handed positrons) only. However, angular-momentum conservation
requires, as already remarked above and illustrated in Fig. 10.18,
that right-handed electrons accompany the right-handed antineutrinos

'R. P. Feynman and M. Gell-Mann, Phys. Rev., 109, 193 (1958). S. M.
Berman and A. Sirlin, Ann. Phys. (N.Y.), 20, 20 (1962).
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Forbidden: < @ G - (8,=+1)
€ (left-handed) pch 7 (right-handed )

Allowed: 4-——0 @ QA - S, =0)
e~(right-handed) Z \A F(right-handed) 5

Fig. 10-18 Spin conservation in = decay showing both ¢~ and » as right
handed.

in 7= decay. Therefore, the transition rate calculated from (10.128)

Is depressed by a factor
¢ I

where u is the m-meson mass, representing the probability for a right-
handed electron to be emitted. For the heavier ¢ meson which is
emitted nonrelativistically with energy

E, =

2 2
BT O4m,
2u

the spin projection operator differs considerably from (I + v;5) and
there is no appreciable depression factor.

We adopt, then, (10.128) for the lepton term in the w-decay
S-matrix element and seek a four-vector or axial vector with which
to multiply it in forming the invariant transition amplitude. Since
the = meson has no spin, this vector must be formed from the two
independent momentum four-vectors in the decay, P, for the = and k,
for the 7 as illustrated in Tig. 10.19. The k, will not contribute, since
kv,(k) = 0. Therefore, the structure of the S-matrix element for =~
decay 1s unique and may be written

S = oo \/<2EP> (( ;) 8 i puapyya(1 — vo)s(B)

X (2r)464(P — p — k) (10.139)

The constant G is the g-decay constant (10.111), and the constant a
which determines the overall decay rate of the = meson may differ for
the p= and e-decay modes.
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Fig 10-19 = decay.

Repeating the similar (but simpler) steps (10.130) to (10.137),
we find for the decay rate

1 () Gz‘a\Q & . .

——(27r>5< >“ 2Ek2"“2 p-P kP — kp PP — k — p)

_ @laf (ﬂ)2<1 - %) (10.140)
81r I u

where m is the mass of the electron or x meson emitted.
If the constant a is the same for both the electron and p-meson
decay modes of the = meson, (10.140) predicts a branching ratio

R<l:ﬁ——”7>=< > W = me)® ) 95 5 1074

T— o+ (n? — m,2)?

in agreement with the observed value (10.138), within errors of the
order of 5 per cent. This is further strong support for the coupling
(10.128) which applies universally for all lepton decays. Without
the strict selection rule of the V-A interaction for left-handed neu-
trinos and right-handed antineutrinos this dramatically small branch-
ing ratio would be replaced by a much larger one lying closer to the
phase-space ratio

(u* — me)?

(w2 — m,?)?
From the observed lifetime of r = (2.55 + .03) X 10~ sec for the
T meson, we compute a value

la| 22 0.934 (10.141)

= 5.5

for the constant in (10.140).

With the assumption of a universal coupling, (10.128), for all
lepton decays the polarization of the x meson from =-meson decay is
determined. This leads to a unique prediction of an asymmetry
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parameter in the p-decay spectrum correlating the direction of the
decay electron with that of the p-meson spin in the decay chain

= u + Y

e+ v+
We calculate this by first computing the polarization of the p meson
emerging into a given element of solid angle and then computing the
spectrum of decay electrons from these p mesons.

To compute the y-meson polarization in = decay, we return to
(10.139) and compute the differential decay rate to a state of given
spin polarization s. The spin projection operator (1 + vs$)/2 is
introduced as in (7.89) and (7.90) to enable us to use trace techniques,
and we obtain in place of (10.140)

1 1 GYa|? f d¥kdip

doseyy = = 57 -

4r2 2Ep, 2 2F; 2E,

X 2Tr| (p + m,) <1+75$)P(1—«/5)klz} P —p — k)

K
() 2
% :%( _ %{) + ﬂ&fi’] (10.142)

P and p are the = and p four-momenta, respectively. The decay rate
is a maximum for a right-handed u~ of positive helicity, that is, for

_ 1w m;
“P—m( o

by Eq. (7.94). It vanishes for a negative-helicity u meson with
S = —S8r.

For the decay rate of the u meson with a given spin polarization
s we return to (10.129) and repeat that calculation, inserting A = 41
as measured and neglecting the electron rest mass, m./E, — 0. The
spin projection operator (1 4+ v:¢)/2 again enables us to use trace
techniques in evaluating the squared matrix element. Retracing the
steps to (10.133), we find

= e[ 220t = 0 (L2 @ 4 mrea 90k

electron
spin

X Tr[pv.(1 — 75)12’)’,(1 — vs)]
= 64G2 kp k(P — mys)
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Integration over the variables of the unobserved neutrinos is carried
out precisely as in (10.135) to give

dw, = i8¢t Ep {—4(p-P)? + 3mi(p-P) — my s-plmy — 4(p-P)])

In the p rest system this reduces to
G2 E, spf E
0 — 7 2@ 2 4 =P sl -7 _
dol = g miE, dE, d2 [(3 4my> + 7 (4 o 1>]
As we saw in Eq. (10.142), the y— meson is produced with positive
helicity in the 7= decay. Therefore, by Eq. (7.94),

<§E—p>= ~8:p= —cosf
P

where 8 is the angle between the u~ spin and the direction of the decay
electron. This gives

G? E
(dw®) = o4 miE 2 dE, d(cos §) [3 —4 Ef] (1 — «cos 8)
_ 4K, —m,
Where oa = 3m;

is the asymmetry parameter as observed.!

Two Neutrinos

All the leptonic interactions we have studied have led to the same V-4
structure for the leptonic matrix elements given in (10.128). That is,
w~ and ¢~ transform into two-component lefi-handed neutrinos in weak
interactions. But nature, after being so economical in providing
parity nonconservation as a way of eliminating the need for an extra
neutrino degree of freedom, has been inexplicably generous in giving
us two such objects, » and »', nearly alike but yet very different. The
v associated at a vertex with an electron line is left-handed and has zero
(or very small) mass, just like the »" associated with the p.  But they
are different.?

! Konopinski, Okun, Berman, Fronsdal, op. cit.
2 At best they might be different pairs of two components of a four-component
neutrino spinor wave function.
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[ 4
W (1) w(?)
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n e u— e e
Y ¥

Fig. 10-20 Possible p — ¢ + v decay (for identical » and »").

The first hint that they might be different came from comparison
of unreliable theoretical estimates of the radiative decay rate,
ety
with experiments which showed a branching ratio!

Ru=—e + 1)

R =74+, 107

This process does not occur to first order in the weak interactions by
any known mechanism unless we invoke the hypothesis of an inter-
mediate charged vector meson to mediate the weak interactions.
With this hypothesis calculations can be made with models along the
lines shown in Fig. 10.20. Although the answers from these calcula-
tions diverge and are not to be taken too seriously, it was hard to push
the above ratio below 10 ¢ to 1075, These graphs evidently vanish,?
however, along with all others if the »" associated with the u~ is differ-
ent from the » associated with ¢~.

A more reliable test for two neutrinos, proposed by Pontecorvo
and Schwartz,® involves Initiating inverse B-decay reactions by a
high-energy »” beam from 7 decays. In particular, one looks for high-
energy electrons or u mesons produced in the reactions

vV + >IN+ pore

Since p production has been observed with certainty whereasno e events
were identified, one now has positive evidence in favor of two neutrinos.
To the difficult question “What is the difference between u and e other
than rest mass and why did nature provide two charged leptons?”
is now to be added “Why did nature bother with two neutrinos?”’

! Konopinskl, Okun, Berman, Fronsdal, and Danby et al., op. cit.
* G. Feinberg, Phys. Rev., 110, 1482 (1958).
* Pontecorvo, Schwartz, and Lee and Yang, op. cit.
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10.16 Conserved Vector Current Hypothesis

The 7- and u-meson decays, as well as the nuclear 8 decay, indicate
that the lepton pairs (e,») and (u,»’) are coupled in the decay matrix
elements with a common (V-A4) form. Moreover, a comparison of
(10.112) and (10.129), with « = 1.21, A = 1.00, and G = G to high
accuracy as discussed, shows a strong similarity between the nucleon
and lepton couplings.

It would be natural to expect the cloud of strongly interacting
7 mesons which surrounds the physical nucleons, but not the leptons,
to modify the strengths of the vector and axial vector parts of a
coupling that is introduced for “bare’”’ nucleons in the absence of such
strong couplings. It seems quite remarkable, then, that the strengths
of the vector part of the interaction in 8 decay and p decay are equal
within 2 per cent. Even the constant o = 1.21 which gives the ratio
of the axial part of the interaction for nucleons relative to leptons is
sufficiently close to unity to encourage interesting speculations.

Our earlier discussions of the electromagnetic interactions of
electrons in Chap. 8 and of protons in Sec. 10.9 provide an important
clue for understanding the equality of the vector part of the interaction
current for the nucleons and leptons. In (8.50) and (8.57) we saw
that the vertex function of an electron was modified by a factor Z7*
that was due to electromagnetic radiative corrections. There also
appears in the S-matrix elements, according to (8.46) and (8.57), an
additional factor of Z, coming from renormalization of the electron
wave functions owing to the self-energy insertions. To lowest order
in @, we found, from (8.54), that Z, = Z, so that these effects canceled;
as remarked there, the identity Z; = Z, is valid to all orders and is a
consequence of the Ward identity (8.51).1

A similar situation holds for the electromagnetic interaction of a
proton. The mesonic radiative corrections, as illustrated in Fig. 10.13
and Eq. (10.86), modify the electromagnetic vertex of a proton by a
factor (infinite in perturbation theory) analogous to Z; which is again
canceled by the mesonic renormalization of the proton wave functions.
This assertion ean be verified to second order in the meson-nucleon
coupling by showing that (8.51) remains valid in the presence of the
meson-nueleon coupling,.

From this identity of renormalization constants we come to the
very important conclusion: the physical, observed charges of the elec-
tron and proton are equal in magnitude if their bare charges are equal,

! For discussior see Bjorken and Drell, op. cit.
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since the vacuum polarization (8.22) as computed for the photon

propagator affects both the electron and proton in the same way.

This was already implicit in the discussion of the electromagnetic

structure of the proton, where F,‘»(0) was set equal to 1 in (10.89).
In 8 decay the form of the S-matrix element

G G -
VU Yi¥n = — Uy ¥ (10.143)
Vo T Vo T
with 7 = Y5 (v + ir2)

used for the vector part of the interaction bears a strong resemblance
to the electromagnetic vertex of a proton. The fact that the mesonic
radiative corrections do not alter the coefficient of v, at zero momen-
tum transfer makes this similarity even more striking. The main
difference is that the 8-decay transition changes the charge by one unit.
Gerschtein and Zel’dovich! and later Feynman and Gell-Mann? pro-
posed that the vector “current’” in 8 decay could be obtained from the
electromagnetic current just by an isotopic rotation. This is possible
because of charge independence of the strong interactions. Recalling
from (10.89) that the electromagnetic current of nucleons may be
written as a sum of an isotopic scalar and an isotopic vector term,
the rule of Feynman and Gell-Mann is to take the isotopic vector
part 7; and to replace it for 8 decay by

. . G . ..
o= N3 (Gt + 42

This rule is known as the “conserved vector current” hypothesis. If
there are no radiative corrections, it reproduces the interaction
(10.143). With radiative corrections, the B-decay vector transition
amplitude is obtained directly from (10.89), namely:

=25 ¥, [rio@) + 558 P <q2>] ¥(p) (10149)

Since the form factors have been measured in electron-proton scatter-
ing and are essentially constant for — ¢? << u2, they may be replaced by
their values at ¢> = 0. Equation (10.144) then becomes

. G 3.7000,,9”

+ U ’ o.lhoy

Ik \/5 i (p') |:'Yu Vi ] un(p) (10.145)
1S, S. Gerschtein and J. B. Zel’dovich, JETP (USSR), 29, 698 (1955);

translation in Soviet Phys. JETP (Engl. Transl.), 2, 576 (1957).
?R. P. Feynman and M. Gell-Mann, Phys. Rev., 109, 193 (1958).
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We notice that this current is conserved, that is, by construction
(' = p)¥i(e) =0

In addition to ensuring the lack of renormalization of the
coefficient of v, in (10.145), we find an experimental consequence
of the conserved vector current hypothesis in the second ‘“‘weak
magnetism” term.! It is, unfortunately, of the same order of magni-
tude as the first-order nucleon recoil corrections to 8 decay and is
very difficult to observe. However, a careful and beautiful experiment
which analyzes the 8 spectra in the decays of B2 and N2 into C!? has
established the existence of the weak magnetism term.?

The rules for Feynman graphs according to the conserved current
hypothesis may be inferred from those for electromagnetism. First
of all, there is a one-to-one correspondence between graphs in 8 decay
and electromagnetic interactions. For instance, the graphs of Fig.
10.21 replace those of Fig. 10.13 for the electromagnetic structure.
In Fig. 10.21a and 10.21¢, the factor e(1 + 73)/2 for electromagnetism
is replaced by (G/A/2)r,. according to our rule. Figure 10.21b is an
additional direct “pion weak current” term which is again determined
by rotating the pion electromagnetic current in isotopic spin space.
The pion electromagnetic vertex is found by regarding the current in
(10.37) as a transition matrix element; the vertex in momentum space
is then

Jub = —ie(® X 8):(p, + pu) (10.146)

where § and §/, p and p’ are the isotopic wave functions and momenta
of initial and final mesons. The apparent factor 2 difference between
(10.146) and (10.37) arises because of the two ways of associating the
wave functions §(z) in (10.37) with initial and final particles. To
obtain the vertex for 8 decay, we again replace the three-component
by the (+) component and e by G/4/2; the pion vertex in Fig. 10.21)
will consequently have the form

+ G ., s Ak ,

=3 (@ x &) + 1 x 8)d(p. + pu)  (10.147)

The existence of this interaction term leads to another experimental
consequence, namely, the existence of the reaction?

at o0 4 e+ b (10.148)

1 M. Gell-Mann, Phys. Rev., 111, 362 (1958).

2Y. K. Lee, L. W. Mo, and C. S. Wu, Phys. Rev. Letters, 10, 253 (1963).

3 Konopinski, Okun, Berman, and Fronsdal, op. cit.; Feynman and Gell-Mann,
op. cil.
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10.17

(a) ®) ()

Fig. 10-21 Vector part of the weak-interaction vertex according to the
conserved vector current hypothesis.

The matrix element in the presence of strong interactions is again
related to the electromagnetic current of the pion (10.85) by an isotopic
rotation. Therefore, mesonic radiative corrections modify (10.147)
only by the inclusion of the pion form factor F,(¢?), which for the small
values of ¢® present in the reaction (10.148) can be set equal to 1.
The rate of this reaction can then be calculated from the vertex
(10.147), which leads to the unique, but difficult to measure,! prediction

R~ —n'+e +7) s
e 1.0 X 10 (10.149)

The conserved vector current hypothesis may then be summarized
as follows. The lepton current ¥.v.(1 — vs)¢, is to interact with the
(+) component of the conserved isotopic spin current (10.43), treated
as a transition current just as it was for electromagnetism. Experi-
mental consequences result because this (4) component is determined
from the third component by the charge independence of the strong
interactions; the third component is measurable by means of electro-
magnetic interactions,

“Partially Conserved’® Axial Vector Coupling

The meson cloud about the nucleons will also affect the axial vector,
or Gamow-Teller, part of the 8-decay interaction. We may interpret
the number « = 1.21 relating the strength of the axial vector to the
vector coupling constant as coming from the effects of this meson

! See reports to Proceedings of 1962 High Energy Physics Conference at CERN
(Genevs).
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p

5, . : - ‘
Fig. 10-22 Single =-exchange contribution to the weak axial
interaction.

D

cloud. o« is close to unity and a perturbation calculation of the
renormalization of a coupling strength due to virtual cloud effects
gives a logarithmically diverging number. This suggests that perhaps
an approximale conservation law is operating for the axial vector
B-decay coupling.!

At this time little progress has been made in explaining the magni-
tude of @ on the basis of this vague idea or any other idea, and we shall
not consider « further. However, the idea that the leptons couple
to a “partially’”’ conserved axial vector current of the nucleons in the
weak decay amplitude has had some success in calculating the observed
lifetime of »* decay, as we now discuss.

The simplest radiative correction to the axial vector current is
that involving a single = meson, as shown in Fig. 10.22. According
to our rules, it contributes a term to the invariant amplitude for 8 decay
M = T (ig VDo)

X (igu)[@(py* (1 — vs)v(k)] (10.150)

where Ga/A/2 is the coupling constant in (10.139) for =+ decay and ¢
is the 7-N strong interaction coupling constant. The additional 4/2
comes from the isotopic matrix for charged = emission. The kine-
maties is illustrated in Fig. 10.22. There are many additional con-
tributions to first order in the weak couplings coming from such dia-
grams as shown in Fig. 10.23. All contributions from the diagrams
of Fig 10.23 can be written in the form

m = S:(pp;pn)d(pe)')’#(l - 'YE)U(]E)
with
G
gt(pmpn) = \7—2 d(pp)[yu')’sgl(q2> + QM'YBEFZ(qz) + Pu’YafFa(qz)]u(Pn)
(10.151)

1Y, Nambu, Phys. Rev. Lelters, 4, 380 (1960); Bernstein, Fubini, Gell-Mann,
and Thirring, Nuovo Cimento, 17, 757 (1960).
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and Q=Pn—DPo=De+k P =p,+ pa

The construction of this form is sin.ilar to the construction of (10.87)
for the electromagnetic current, the only difference being the insertion
here of the v; to form an axial vector. If we assume that all contribu-
tions to g1, as is the case in Fig. 10.23, transform as the (+) component
of an isotopic vector, we may simplify this form further by showing
that

Fs(q®) = 0 (10.152)

on grounds of charge conjugation invariance and isotopic spin invari-
ance of the strong interactions. To show this, we first rotate g, in
isotopie space by changing the 7, in the weak vertices of the diagrams
of Fig. 10.23a to 7; and, in Fig. 10.23b, changing the 7, at the vertex
for emission of the 7~ meson which couples to the leptons to a ;.
Owing to the charge independence of the strong interactions, this
transforms g} into the third component of an isotopic vector; in
particular for a proton

Ju',p) = ;72 (") [vuvsF1(g®) + quvsFa(g®) + PuysTFs(gd)u(p)

(10.153)
. ’ ’
with Ju = Pu = Pu Pu:pu+pl‘

According to charge conjugation invariance of the strong couplings,
the additional contributions to (10.151) coming from the diagrams of
Tig. 10.23 must lead to a g2(p’,p) which transforms, if the proton is
replaced by an antiproton, exactly as the current of the “bare” proton

AP ) vuysu(p) (10.154)

=

(a) (d)
Fig. 10-23 Weak axial contributions to 8 decay.
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[vg. 10-24 Weak-interaction vertex of an
antiproton.

transforms. For the charge conjugate transition of an antiproton
scattering from momentum p to p’ we have the diagram of Fig.
10.24 corresponding to a negative-energy proton running backward
in time to be scattered from —p’ to —p as discussed in Chap. 6:
its axial vector current is

Up)vuysv(p) = —uT(p)C~Yy,ysCu” (p')e
= —ua(p)v.ysu(ple (10.155)

where we have used (5.8). The phase factor is determined by external
momenta and spins as we saw before (5.8).  We must retain in (10.153)
only those terms with the same transformation properties, that is,

gi(—=p,—p") = —g.(p"\ple” (10.156)
From this it is easy to show that (10.152) follows.

The contributions to the axial vector part of the S-decay ampli-
tude coming from diagrams like Fig. 10.23b can all be written in the
same form as (10.150) multiplied by a scalar function of g% All
modifications of the w-nucleon vertex will lead to an interaction of
the form

Z(Pp)vsT(q*)u(pa)

with ¢ = p. — p, and F(¢?) an invariant function of the invariant
momentum transfer ¢2. This follows from the fact that there are
always an odd number of vs vertices and that all factors p, and p.
can be commuted to the right or left until they stand next to the
Dirac free-particle spinors and become M. Thus the graphs of
Fig. 10.23b in which a single meson in the nucleon cloud couples
directly to the leptons contribute only to F.(q2) in (10.151). Isolating

these contributions from F,(¢%), we write
d 2
Fa(g?) = F2(¢®) — %-7%—2—5@ (10.157)

q — p

The constant a in this term is related to the observed lifetime of #%
decay by (10.140), and the form factor F(g%) can be specified at the
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point ¢* = u?® in terms of the observed strength of the =-nucleon
coupling constant ¢ as discussed for pion-nucleon scattering in Sec.
10.8. With the ¢ In (10.157) taken to be the physically observed 7-N
coupling constant g%/4r =2 14 F(g?) is normalized at ¢2 = u? to 1:

F(u2) = (10.158)

Nothing is known about .. However, because F, is the coeffi-
cient of ¢,vs. which is a recoil correction ~(q/M), it has not been
observed in 8 decay. ['rom our previous discussion we know that

51(0) = —a = -121 (10.159)

With these preliminaries, we may attack the question of the
partially conserved axial vector current. If the axial vector current
were precisely conserved, the condition

@9y (Ppypn) = 0
applied to (10.151) leads to the relation
2MT(g%) — ¢*Fa(g®) = 0
or
2M T, (q?
su(g) = + 2D
q
Since F,(0) # 0, this means that &, would have a pole at ¢ = 0,
corresponding to the exchange of a massless pseudoscalar particle.
It is tempting to associate this pole with the r-meson pole in (10.157)
and in addition to associate the breakdown of exact current conserva-
tion with the existence of a mass for the = meson. We are thus led,
using (10.151) and (10.157), to the modided hypothesis

0 = lim qﬂcﬂr(pmpn)

1—0

. ~ 2 ¢*F (¢
= 1;33 a(ps)vs [—2M‘51<<12) + (g — WY \q{_—q#?_(q )] u(ps)
(10.160)

With the additional assumption that the invariant form factors are
changed little from their physical values by the limit u? — 0, we find
from (10.160)

—2MF(0) = +2Ma = +2M(1.21) = ag+/2  (10.161)
Numerically (10.161) predicts
la| = 0.87u
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which agrees with that obtained from the observed =+ lifetime, Eq.
(10.141), to better than 10 per cent. Such a relation between the
decay rate of a 7 meson, the Fermi constant G, and the w-nucleon
coupling constant for the strong interactions was derived first by
Goldberger and Treiman! from an approximate dispersion theory
calculation. It was subsequently discussed as a consequence of a
‘“partially conserved’ axial vector current by Nambu and Bernstein
et al.?

Problems

1. Discuss the invariance of Egs. (10.3) and (10.4) under charge conjugation and
time-reversal transformations.

2. With what transformation law for ¢, and ¢_ under the charge conjugation
transformation are Egs. (10.12) and (10.13) invariant?

3. Verify consistency of the sign convention, Eq. (10.21), by considering sixth-
order graphs.

4. @ parity is a useful symmetry operator in the charge-independent approxima-
tion. It is defined by

G = eimly(C

What are the transformation properties of § and ¥ under G?

5. Verify that the potential given by Eq. (10.51) leads to the scattering amplitude
(10.45) to order g; in the nonrelativistic approximation.

6. Show that the potential (10.58) leads to the S-wave =-N scattering amplitude in
(10.57) to order g; and verify the expression for the scattering length.

7. Use the cyclic property of the trace to show that Eq. (10.82) transforms as a
Lorentz four-vector; generalize to arbitrary order. The integral [ d* in Eq.
(10.82) must be regulated and the divergent part separated into a renormalization
constant; this does not affect the transformation properties, however.

8. Prove that the electromagnetic form factors in Egs. (10.85) and (10.89) must
be real for scattering problems when g2 < 0 if the interaction current is hermitian.
Must the current be hermitian?

9. Discuss possible electromagnetic form factors for the »° and K° mesons.

10. Show that the “Rosenbluth formula,” Eq. (10.90), gives the most general
dependence upon scattering angle for a fixed momentum transfer, for arbitrary
relativistically covariant proton or electron structure, assuming one photon
exchange between the electron and proton.

! M. L. Goldberger and S. B. Treiman, Phys. Rev., 110, 1178 (1958).
? Nambu and Bernstein et al., op. cit.
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11. Show that the second-order expression for Fr(¢?), Eq. (10.82), can be put
into a spectral form

L (= dg”p@?)
7 2y = = — s
R

and compute p(q’?).

12. Prove that Z, = Z, for a proton and =+ meson to second order in e? and ¢? and
show, therefore, that their renormalized charges remain equal if their bare charges
are.

13. Compute photoproduction of = mesons to lowest order in e and g. Verify
gauge invariance.

14. Compute the second-order electromagnetic self-energy of the neutron and
proton using (10.89) and approximating the form factors to their static values,
that is, F(g?) — F(0). The integrals must be cut off with regulators. Is it
possible in this way to arrive at a positive neutron-proton mass difference? [See
R. P. Feynman and G. Speisman, Phys. Rev., 94, 500 (1954), and Kerson Huang,
Phys. Rev., 101, 1173 (1956).]

15. Construct a gauge-invariant and relativistically covariant form for the 8§
matrix for the decay =9 — 2v and compute the decay rate. Compute the branch-
ing ratio for production of a Dalitz pair: 7® = v 4 ¢* 4 ¢=. Finally, discuss the
decay to two Dalitz pairs and show that the correlation of decay planes for the
pairs determines the parity of the #°. (See N. M. Kroll and W. Wada. Phys.
Rev., 98, 1355 (1955).]

16. Verify that the electron polarization is —|(8.! as claimed in Eq. (10.105) if
the g-decay matrix element is given by Eq. (10.107).

17. Verify Eq. (10.113) for the energy dependence of the cross section for ¥ + p —
n + e* to lowest order in G?. Compute this cross section with an intermediate W
propagator and include general form factors at the vertices.

18. Verify that the Weyl equation (10.114) has a time-reversal symmetry opera-
tion.

19. Compute the general u-decay spectrum including all five couplings S, 7, P, V,
and 4 and compare with Eq. (10.136). Show in particular that the general energy
dependence there is unchanged and evaluate the Michel parameter (see footnote
page 263) in terms of the five coupling strengths.

20. If the x decay is mediated by a W meson of finite mass as in Fig. (10.15) in
8 decay, the spectrum (10.136) is modified. Evaluate the modification and relate
it to the change in Michel parameter. [See T. D. Lee and C. N. Yang, Phys.
Rev., 108, 1611 (1957).]

21. Calculate the = g-decay rate, Eq. (10.148), and verify the branching ratio
(10.149).

22. Compute the branching ratios and structure dependence for the decays
KO— 7= et +»

=7 4t 4y
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23. Compute the branching ratio for a Dalitz pair in the decay
20— A+
— A et 4 e

Discuss the possibility of determining the relative 20 A° parity in this decay.
[See G. Feinberg, Phys. Rev., 109, 1019 (1958); G. Feldman and T. Fulton, Nucl.
Phys., 8, 106 (1958).]

24. What is the general structure of the weak decay amplitude
A > p 4+ 7~
For a polarized A® compute the asymmetry parameter in the decay.

25. Compute the asymmetry parameter and electron polarization in the g8 decay
of polarized neutrons.



Appendix A

Notation

Coordinates and Momenta
The space-time coordinates (,z,y,2) = ({,x) are denoted by the contravariant
four-vector (¢ and % are set equal to 1):

ot = (x%72%2%) = (4x,1,2)
The covariant four-vector z, is obtained by changing the sign of the space
components:

{, —,—Y,—2) = guz"

Ty = (xo)x11x21x3)

1 0 0 0

. 0 -1 0 0
with =, 0 —1 0
0 0 0 -1

The summation convention, according to which repeated indices are summed, is
used unless otherwise specified. It is likely that if two identical indices (to be
summed) are both in the lower or the upper position, one has erred. The inner
product is z? = z,a* = (2 — x%

Momentum vectors are similarly defined

p* = (E,p:,py,p:)
and the inner product is
p1pz = pifpy = E\Ey — p1-p.
Likewise
zp =tE —x-p

Four-vectors p are always written in lightface type, while three-vectors p are in
boldface.

281
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The momentum operator in coordinate representation is written
. 0 .81 .
p=f— = (i V) =ik
P ( ET )
and transforms as a contravariant four-vector:

d 9
Moy = — = _
Phpu 92, 92 (|
In these units the Compton wavelength is 1/m (2<3.86 X 107!! ¢m for the electron)
and the rest energy is m(220.511 MeV for the electron).

The four-vector potential of the electromagnetic field is defined by

A+

fl

(®,A)
g A,

The field strengths are defined by

Fur =i‘4u _iAv
Ty Ozpu

and the electric and magnetic fields in a noncovariant notation are given by

E
B

(o1, [0z, [1o3)
(F F3 )

I

Dirac Matrices and Spinors

A Dirac spinor for a particle of physical momentum p and polarization s is
denoted by u«(p,s), while for the antiparticle it is called va(z,s). In each case the
energy po = E, = + +/p? 4+ m? is positive. In each case the vector s#, which in
the rest frame has the form

s# = (0,8) §-5=1

represents the direction of spin of the physical particle in the rest frame.
The y matrices in the Dirac equation satisfy the anticommutation relations

YRy oty = QgMr

and are related to the « and 8 matrices by
tion is

Il

Ba; vo = B. A familiar representa-
1 0
0 =
Y [o - l
o 0 ¢
it = =] 9 9
_J0 1 _ [0 =i 1 0
where al—[l 0] a”—[i Ojl aa—[o *1]

1

are the familiar 2 X 2 Pauli matrices and 1 = [0

(1)] is the 2 X 2 unit matrix.

Frequently appearing combinations are

7 .
o =3 (v*, 771 and vh = Ay tylyiyt =y
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In this representation the components of o#* are

=[5 2

.

with 7, 7, ¥ = 1, 2, 3 in cyclic order and

a'““==7fa"=i|:0- a’] 75="/6=|:0 1]
st 0 1 0

The inner product of a v matrix with an ordinary four-vector is often encoun-
tered and denoted by

AR = A = 4040 — vy A
Y =p=Ey—p-vy
)

iV =iy— +iy*V — i
ot Jdz#

i

puy"

The spinors » and » satisfy the Dirac equation
(» — mu(p,s) =0
@ + m(p,s) =0

and are given explicitly by Eq. (3.7), but for most applications the following pro-
jection operators suffice. In terms of the adjoint spinors

a7 = utsy?
= I)*“/o
satisfying
alp,s)p —m) =0
#(p,s)(p +m) =0

the projection operators are

Ua (P,S)’Jzﬁ (P73>

- ['ILM LA e ]
2m 2 af

51+ vof @1
_ m — 5
va(p,s)Pa(p,s) = — [“QEP : T”]a,a
These lead to the normalization conditions
a(p,s)ulp,s) =1 (A.2)

wp,sh(ps) = =1
and the completeness relation

2 [ua(p,s)ig(p,s) — va(p,s)08(,5)] = dap

§
In taking traces we form hermitian conjugates of matrix elements for which

[E(p,s" ) Tu(p, )t = alp,s) T ulp’,s’)
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with

r

il

'YDFT'YO

For example F#

Oty 0 = M
GHY = 40Ty 0 = kP
ﬁﬁ = v()(ﬁ'yz‘)‘rn/o = i—yb

Summing the projection operators (A.1) over spin leads to the energy projection

operators
A Plos = Y walp)stps) = ()
= i (A.3)
(A-o)los = = ) salps)is(ps) = (T )

g

The Gordon decomposition of the current is a frequent and useful identity:

'lz(p’);y#u(p) = ﬂ(p’) [(P ;‘mp’)l‘ + ia’“”(?{’z’m_ P)y] u(p)

Trace Theorems and y Identities
@b = ab — to,atb’

Trace of odd number v,’s vanishes

Trys =0

Trl =4

Tr ¢f = 4ab

Tr ¢dodads = 4larar asas — a1-a; a2-a4 + a1 aq Q2°As)
Tr yadp = 0

Tr yedhdd = %eaﬁwa"‘bﬂwds

vudr* = —24

Yudbv* = 4a-b
vuthevt = —20b4

For further rules see Sec. 7.2.
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Rules for

Feynman Graphs

Expressions for cross sections are divided into two parts: first the invariant ampli-
tude M, which is a Lorentz scalar and in which physics lies, and second, the phase
space and kinematical factors. In terms of M, the expression for a differential
cross section do is, for spinless particles and for photons only,

_ 1 1 1 vie A% A%k
do = [vi — v (2%,) (27;) m'zzwl(zf)s " Qwn(2r)3
n

X (2m)18* (zn + p2 — 2 k.-) S (B.1)

T=1

where w, = +/[p|> + m? as usual and v, and v, are velocities of the incident col-
linear particles. This expression is then integrated over all undetected momenta
k1 - - - ky of the final particles. The statistical factor S is obtained by including
a factor 1/m! if there are m identical particles in the final state:

S = H;,i.f
7

For Dirac particles,! the factor 1/2w, is replaced by m/E,, and the statistical factor
S is again included; all other factors remain the same.
A differential decay rate of a particle of mass M is given in its rest frame by

n
a1 = L gy Pk %, 44< _z )
do = d (T) = g7 I0ie 50 sorsys en'et (p ki) S

1=1

1 If one adopts the convention that Dirac spinors be normalized to 2m instead
of to unity as in Ej. (A.2), Eq. (B.1) applies as well to fermions. The energy
wrojection operators are then simply (m + ) in place of (A.3).
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with factors defined as before. For any fermions in the final state, again 1/20,
m/E;; the factor 1/2M is dropped if the initial particle is a fermion,

If desired, polarizations are summed over final and averaged over initial states.

The invariant amplitude MM is computed by drawing all Feynman graphs for
the process in question except for graphs with disconnected bubbles and with self-
energy irsertions on exlernal lines, which are specifically exeluled. The amplitude
M (@) corresponding to graph G is built up by associating factors with the elements
of the graph. Those factors independent of specific details of the interaction are:

1. For each spin-zero boson entering the graph a factor /Z. /Z is found
by computing the exact meson propagator Ap(p) in the limit p? — u?; Ap(p) —
ZAp(p) as p*— pl

2. For each external fermion line entering the graph a factor v/Z, u(p,s) or
\/Z, v(p,s) depending on whether the line is in the initial or final state; likewise,
for each fermion line leaving the graph a factor \/Z, @(p,s) or \/Z, i(p,s). Zsis
defined by the limit

lim Sp(p) = Z:Sr(p)
Pom
3. Tor each external photon line a factor ¢, \/Z,, where

7 —Z, v
Dp(qlu, — 7:& + gauge terms

as g2 — 0.

In lowest order perturbation calculations these Z factors may be set equal to
unity. In higher orders, together with self-energy and vertex insertions, they
renormalize the charges from their bare to physical values.

4. For each internal fermion line with momentum p a factor

i _ @+ m

P —m +ie pt— m?+ e

i8r(p) =

5. For each internal meson line of spin zero with momentum ¢ a factor

. i
A = i
1Ar(q) ¢ — i+ e

6. I'or each internal photon line with momentum ¢ a factor

. _ tuv
iDp(Quy = — 7 -‘I;/i;

Gauge terms proportional to g.g,, gun,, etc., may be ignored in a theory with con-
served currents.

For meson-nucleon physics, an isotopic factor é;; appears on each internal
meson line and for external lines there are factors:
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7. x or x! for initial and final nucleon spinors; x = [1] for a proton and

0

x = I:(ll—‘ for a neutron. (Similar factors appear for K and = mesons.)
8. § or §* for the isotopic wave function of a = in the initial or final state,
respectively, with

1 . 2
re = 75 (1, +£4,0) ér = (0,0,1)

(Similar factors appear for ¥ particles.)
9. For each internal momentum ! not fixed by momentum conservation
constraints at vertices, a factor
/ dil
(2m)¢

10. For each closed fermion loop a factor —1.

11. A factor —1 between graphs which differ only by an interchange of two
external identical fermion lines. This includes not only exchange of identical
particles in the final state, but also interchange, for example, of initial particle
and final antiparticle.

The interactions determine the structure and type of the vertices. We
present here the rules for four typical theories:

Spinor Electrodynamics

There are two kinds of vertices, shown in Fig. B.1, corresponding to the

Fig. B.1

idm

normal ordered interaction hamiltonian density
= —L1 =:edvapA¥r —dm:
The rules for these are:

1. A factor —iesy, at each vertex.

2. A factor i8m for each mass counterterm.

3. Renormalize the charge with e = Z,Z,71 \/Z; es = \/Z; ec where the
exact vertex I,(p',p) = Z; !y, for ' = p = m and Z, = Z, by Ward’s identity.
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Electrodynamics of a Spin-zero Boson

Here there are three vertices, shown in Fig. B.2, corresponding to the inter-

7 u ’
pl
A T P
p 2 Tie(ptp’), v 2iekg ~~a
L4 - ladd ~~
Ve P ~-
7/ -
/
’/
/%2\
" idu s.\\‘
-
’/
Fig. B.2
action Lagrangian density
— —
Ly = —degiep’ (i — i) e Ap + e A%l + Suliole:
! 6Zy 0xpu '
The rules for these vertices are:
1. Afactor —ie(p + p')u where p and p’ are the momenta in the charged line.
2. A factor +2ie¢%g,, for each “seagull’” graph.
3. A factor 76u? for each mass counterterm.
4. A factor 14 for each closed loop containing only two photon lines, as shown
in Fig. B.3.
/
\ /
\ ;o
X7 Fig. B.3
/ \
/ \
\

5. Renormalize the charge as in spinor electrodynamics.
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vs Meson-Nucleon Scattering
There are four interaction terms in the charge-independent theory:
Hop o= —&) =:ige¥vst dW: — dm:iWw¥: — L6ou?:d - b+ LI6N: (B @)

as illustrated in Figs. B.4 and B.5. The dotted line signifies that 7 = 0 only Is

/

4
/
/

&Y% iém
x
f//i‘s“Z\\\\
e ~o

Fig. B4

transmitted from the meson pair 7 to the pair rs, as shown by rule 2 below. The
mass counterterms are treated as before and there is:

\ /
\ ; /
\( / 8
\ /
Fig. B.6 pose (-2;‘ ON 8,8,
/ \
\
/ \
/i \(
// \

1. A factor ggysre at each meson-nucleon vertex giving relative coupling
strengths of /2 g, for charged mesons and +1 for neutral ones to protons and
neutrons, respectively.

2. A factor —2¢6)\8;;5,; at each four-meson vertex in Fig. B.5.

3. A factor 14 for each closed loop containing two meson lines as in Fig. B.6.

. 7T TS 1
Fig. B.6 Y & T®eee X3

~ -

—_—
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Electrodynamics of Spin-one Boson

A vector boson propagator is [—g,, + kuk,/m?(k2 — m2)~! in place of the
—gu/k? for massless photons, and the external line has a polarization factor e,
as for photons.

There are electrodynamics vertices shown in Fig. B.7 corresponding to an

u I v
p’
_ —_———=———8 -2———->———ﬂ
— ’ P
P " —ie[(p+p'),8,4 s ieg (28,8,
- -p'g —pg, ] - &85
4 a“Bu ‘Bau o Ma
_gmg,uﬂ]
/,><\ AN /
RPN el
™ /
a N / \\
7 ~

Fig. B.7

interaction Lagrangian density

£ o= _ic.[(@)(,{v¢ ‘Awu)—(awu>('lylp*—~/l ,,,k>:|
N\ oy, T PP AR

+ e [A ARG @ — ALeFATOE] + ittt

The rules for these vertices as illustrated are:

- A factor —ieo(p’ + Pufas F T€005uPe - TCPsTes-

. A factor + 7¢0’ (204008 — Gualty — GuBfavl-

. A factor 76u2gqag for each mass counterterm.

. A factor 14 for each closed loop containing only two photon lines.

. For the derivation of these rules from canonical theory, effects of an
anomalous magnetic moment term, and a regularization scheme see 1. D. Lee
and C. N. Yang, Phys. Rev., 128, 885 (1962).

B oo

S48

In all above examples matrices are arranged in ‘“‘natural order.” Tor closed
loops this means taking a trace. Isotopic indices are contracted with their mate
at the other end of a boson line. In taking polarization sums for photons

E ex(kN)ew(BN) = —guv

N
and for vector mesons

kuky
me

zay(k,)\)éy(k,)\) = —{guv

IS



Adjoint spinor, free-particle solution, 30
Adjoint wave equation, free-particle
solution, 30
Angular momentum, 230, 234 236
conservation of, 52
eigensolutions, 53
Anomalous magnetic moment, 115, 241
Antiboson, 197, 198, 207
Antineutrino, 249, 254, 255, 257
electron-antineutrino angular correla-
tion, 255, 256
wave function, 260
Antiparticles, 5, 66, 184

Index

Antiparticles, interactions, 247
neutral spin-zero mesons and, 189
particle-antiparticle pairs, formation

and annihilation, 190, 191
scattering, 190
wave function, 202
Antiproton, wave function, 213
Antisymmetrization, electron-electron
scattering, 136
electron-positron scattering, 139, 149,
150
neutron-proton exchange, 219-221,
230

291



292

Antisymmetrization, proton-proton
scattering, 215
Asymmetry parameter in p decay, 267,
268
Axial vector coupling, 8 decay, 274
partially conserved, 273-278

Bare charge, 70, 157
Baryon number, 227n.
B decay, 246, 247-257
allowed transitions, 252, 253
axial vector coupling, 274
forbidden transitions, 252
higher-order effects, 256, 257
invariant amplitude, 256
inverse, 248, 250, 253, 255, 257, 269
pion vertex, 272
universality in, 264
weak axial vector contributions, 274,
275
Bethe, H. A., 178, 179
Bethe-Heitler formula, 123
Bhabha amplitude, 139
Bhabha scattering, 138
Bilinear covariants, 25-26
Bohr magneton, 241, 245
Bohr radius, 46, 60
Born approximation, 211, 237, 238, 239,
246
Boson (s), 136
heavy, Wt, exchange in 8 decay, 250,
251
spin-one, electrodynamics, 290
spin-zero, electrodynamics, 288
strangeness charge, 207
symmetric scattering, 196-198
(See also = meson)
Boson-antiboson scattering, 197, 198
Bound-state solutions, 52-60, 89n.
Bremsstrahlung, 120-127, 153
cross section, 123, 124, 125, 127
in vertex correction, 172, 173, 176

Center-of-mass system, 138, 139, 232,
236, 237
Central field eigensolutions, angular
momentum, 53
Coulomb, 55

Relativistic quantum mechanics

Central field eigensolutions, parity, 54

Charge-conjugate spinors, 69

Charge conjugation, 66-70
invariance, 69, 107, 108, 275
transformation, 69, 213, 259, 260

Charge density and vacuum polariza-

tion, 70
Charge-exchange scattering, 216,
218

Charge independence, 221, 222, 224

Charge lowering, 223

Charge raising, 223

Charge renormalization (see Renormali-

zation)

Chew, G. F., 233, 240

Closed loops, 91, 92, 153, 157, 159, 161
in 8 decay, 256, 257

Collinear beams, 113

Combined invariance, 260

Compton condition, 129

Compton scattering, 127-132, 153
cross section, 128-132
Klein-Nishina formula, 131
of = mesons, 193

Compton wavelength, 39, 40, 42, 46n.,

60

Conservation of current (see Current

conservation)

Conservation of leptons, 249

Conservation of probability, 3

Conserved vector current hypothesis,

270-273

Continuity equation, 24, 186

Coordinates, notation, 281, 282

Coulomb corrections, 252n.

Coulomb cross section, 102, 106
spin-averaged, 103-106
substitution rule, 108

Coulomb eigensolutions, 55

Coulomb force, 215

Coulomb potential, 46, 52, 59, 100

Coulomb scattering, amplitude, 157,

158
bremsstrahlung and, 121, 122, 124
of electrons, 100-103, 107-108
pair production and, 133, 134
of = mesons, 191-193, 197--199
polarization in, 140-145
of positrons, 106-108
radiative corrections, 124



Covariant notation, 4, 281
Cross section, bremsstrablung, 123, 124,
125, 127, 172, 173, 176
Compton, 128-132
Coulomb, 102-106, 108
elastic, 172, 173, 176
electron-proton scattering, 246
meson-nucleon scattering, 236-240
Mott, 106, 115, 140
normalization factors, 112, 113
pair annihilation, 134, 135
Thomson, 131, 132
for transitions, 112-114
Crossing symmetry, 128, 231
Current conservation, 226-227, 243,
245
law of, 8-9, 221, 226
(See also Electromagnetic current)
Cutoff, 154, 156, 157, 162, 163
infrared, 174, 176
photon, 175
n vertex correction, 167, 168, 170,
173-176

Dalitz, R. H., 120

Dalitz pairs, 213, 279, 280

Darwin term, 52, 203, 205
ratio of Lamb term to, 60

de Broglie wavelength, 10

Delbriick scattering, 181

Detailed balance, 248, 261

Dirac, P. A. M., 6, 64, 65

Dirac & function, 83n.
properties, 36

Dirac equation, 6-9
bound-state solutions, 52-60
four-dimensional notation, 17--18
for free particle, 30, 46
free-particle solutions, 28-43
hole theory and, 65, 66, 67, 90
Lorentz covariance, 10, 13, 18-24
nonrelativistic reduction, 10-13
parity transformation, 71
plane-wave solutions, 28-32
projection operators, energy, 33

spin, 34

Dirac matrix, 7, 12, 28
notation, 282-284
trace theorems, 103106, 284

293

Dirac particle, electron scattering from,
108
(See also Electron-proton scatter-
ing)
minimum interaction, 11
Dirac spinors, notation, 282, 283

Ehrenfest relations, 11, 37, 205
relativistic extension, 11
velocity operator, 37
Eigensolutions, angular momentum, 53
Coulomb, 55
parity, 54
Eigenstate, 2, 3
Eigenvalues, 2, 3
Electromagnetic current, of meson-
nucleon scattering, 243
of neutron, 245
of proton, 244
(See also Current conservation)
Electromagnetic field, external, 10, 48
mean-square field strength, 59-60
vacuum fluctuations, 58-59
Electromagnetic form factors (see 'orm
factors)
Electromagnetic potential, Klein-
Gordon equation, 188-190
Electromagnetic radiation propagators,
109
Electromagnetic structure of mesons
and nucleons, 241-246
Electron(s), charge density and vacuum
polarization, 70
hydrogen atom, 57, 58
pair production (see Pair production)
recoil, 115
self-mass of, 152, 162-164
second-order correction, 165
spin-down negative-energy, 68
transition rate (see Transilion rate)
wave function, 73
Electron-antineutrino angular correla-
tion, 255, 256
Electron current, second-order, 118
Electron-electron scattering, 135-138
Electron-positron scattering, 138-140
in fourth order, 148-153
amplitudes, construction of, 151,
152
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Electron propagator, renormalization
of, 164-166
(See also Propagator)
Electron proper self-energy part, 162
Electron-proton scattering, 108-116
cross section, 246
fourth-order, 116, 117, 119, 120
higher-order corrections, 116~120
second-order, 116
amplitude, 97, 116
Electron scattering, Coulomb, 100-103,
107-108
large momentum transfer, 159
low momentum transfer, 158
polarization in, 140-145
Electrostatic potential, 40—41
Energy levels, in Coulomb field, 52
of hydrogen atom, 56, 57
vacuum polarization contribution,
158
Energy-momentum conservation, 113,
115, 118, 119
Compton scattering, 127-132
Energy-momentum relations, 7, 66
Energy projection operator, 32-35
Energy shift, hydrogen atom, 58
Ericksen, G., 179
7% (eta), determination of, 221
with mass ~550 MeV, 219n.
Even operators, 47
Exchange contribution, 215
Exchange scattering, electron-electron,
137
Exclusion principle, 64
generalized, 221, 229
Expansion postulate, 3

Fermi statistics, 136, 149
antisymmetry in, 149, 150
Fermi transitions, 253-256
Fermion propagator, 117
Feynman, R. P., 78, 100, 124, 126, 184,
271
Feynman dagger notation, 17
Feynman graphs, 97, 98
8 decay, 256
bremsstrablung, 122, 124
Compton scattering, 128, 194
conserved vector current hypothesis,
272, 273

Relativistic quantum mechanics

Feynman graphs, Coulomb scattering,
193
electron-electron scattering, 136
electron-positron scattering, 139
fourth-order, 148, 149, 152
disconnected, 150, 151
electron-proton scattering, 111, 116,
117, 119, 120
higher-order corrections to S matrix,
152, 162, 165
meson-nucleon scattering, 231, 240
pair annihilation, 132
pair production, 97, 98, 134
photon exchange, 157, 161
w-meson decay, 266
rules for, 285-290
vertex correction, 167, 168
weak axial interaction, 274, 275, 276
FFeynman integral, 170-171n.
Feynman propagator, 95-96
for electromagnetic radiation, 109
in electron-proton scattering, 117, 118
for Klein-Gordon equation, 187, 189,
190
in meson-nucleon scattering, 232, 240
Fierz interference terms, 252, 255
Fluctuation effect, 150, 151
Flux of incident particles, 102, 112
Foldy-Wouthuysen transformation,
46-62
general, 48-52
for Klein-Gordon equation, 201,
203-207
Form factors, 242, 243, 245n., 246, 278
Free-particle solutions, 28-43
adjoint spinor, 30
adjoint wave equation, 30
completeness, 31
Foldy-Wouthuysen transformation,
46-48
general form, 30
normalization, 31
orthogonality, 31
packets, general, 35-39
positive-energy, 36, 37
physical interpretation, 35-42
plane-wave, 28-32
polarization, 31, 32
small and large components, 30
spin, 31, 32
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Free-particle solutions, spinors in
momentum space, 30, 31
Furry’s theorem, 181

@ parity, 278
v identities, notation, 284
Gamow-Teller transitions, 253, 254,
2565, 273
Gauge invariance, 10, 71, 125, 153, 194,
196
Gell-Mann, M., 271, 278
Gerschtein, S. S., 271
Goldberger-Treiman relation, 278
Gordon current decomposition, 37, 192,
284
Gordon reduction, 171, 245
Gravitational interaction, 210
Gireen’s function, 79- 81
completeness, 86
for electromagnetic radiation, 109
free-particle, 79, 86n., 87, 88
properties, 83-89
relativistic propagator, 92, 93
retarded, 81, 85
Ground-state energy, 55
Group velocity, 37, 38

Hamiltonian, 4
time-dependent, 48
transformation, 46-48
Heisenberg, W., 110
Helicity, eigenstates, positive and nega-
tive, 141
negative, 141, 142
positive, 141, 142
Hermitian conjugate wave functions,
8-9
Hermitian matrix, 8
Hermitian operator, linear, 2
Hole theory, 64--75, 90, 91, 159
Huygens’ principle, 78, 79
Hydrogen atom, 46, 52-60
bare charge, 70
eigensolutions, 54, 55
energy levels, 46, 56, 57, 59
classification of, 56
vacuum polarization contribution,
158

(3]
N=}

L

Hydrogen atom, fine structure, 56, 57
hyperfine structure, 57, 58
Lamb shift, 58~60

Infrared catastrophe, 124, 168
Infrared cutoff, 174, 176
Infrared divergence, 162, 167, 172, 176
Interaction(s), effective, in Lamb shift,
177
gravitational, 210
strong, 210-222
weak (see Weak interactions)
Interaction energy of point charge, {1
Intrinsic parity, 25, 212, 213
Invariant amplitude, 111, 112
Isotopic current, conserved, 227
Isotopic factors, 228, 229
Isotopic space, 223
Isotopic spin, conservation, 224, 226,
227, 234
formalism, 222-226, 245
notation, 223
invariance, 275
projection operators, 234-236

K meson, 184 -186, 212
half-life, 185
higher-order interactions, 198
K° (neutral), 185, 186
Kinetic energy, 48
Klein-Gordon equation, 6, 7, 65, 66,
184-208
electromagnetic potentials, 188-190
nonrelativistic reduction, 198-207
plane-wave solutions, 186, 187
Klein-Gordon particles, higher-order
processes, 195-198
low-order scattering, 191-195
propagator, for, 186-188
scattering amplitude, 190--191, 211
Klein-Nishina formula for Compton
scattering, 131
Klein paradox, 4041, 56
Kronecker 6 function, 83n.
Kurie plot, 252

Lamb-Retherford measurements of
hydrogen atom, 57
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Lamb shift, 57-60, 117-180, 241
vacuum polarization effect, 70, 159

Landau, L., 259

Lee, T. D., 253, 259

Leptonic interactions, 247

Leptons, conservation of, 249
conserved vector current hypothesis,

270, 273
Lorentz covariance, 2, 4, 7, 9, 10, 13,
18-24

Lorentz frame, 121, 125

Lorentz invariant, 111, 112, 113

Lorentz scalar, 26, 31

Lorentz transformation, 4, 16-17
bilinear forms, 26
free-particle solutions, 28
improper, 16

of space reflection, 24-25

infinitesimal, 20-21
of = meson, 242
in plane-wave solutions, 28-31
spinor, 20

Magnetic dipole, 241
Magnetic moment, anomalous, 115,
241
radiative correction, 171, 172
Mass renormalization, 164-166
in Lamb shift, 178, 179, 180
Mass shell, 163
Meson(s), electromagnetic structure,
241-246
wave function, 224, 225
Meson-nucleon scattering, 224, 231~
234, 289
coupling constant, 240
cross section, 236-240
p-wave, 233, 234
s-wave, 232, 233
Michel parameter, 263n.
Minus sign, relative (see Relative minus
sign)
Mgller formula, 138, 140
Mgller potential, 110
Momenta, notation, 281, 282
Mott cross section, 106, 115, 140
w meson(s), 247
capture, 247
decay, 247, 261-264, 279
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r meson(s), decay, asymmetry param-
eter, 266, 267, 268
rate, 262
spectrum, 263
polarization in w-meson decay, 267

Nambu, Y., 278
Negative-energy solutions, 5, 10, 13, 2&
30, 32, 37-40
eigenvalue equation, 74
hole theory and, 64-70
neutrino, 260
Negative-energy waves, 94
Neutrino (s), 247, 249
left-handed, 257-260
projection operators, 249
right-handed, 257-260
two, 268, 269
two-component theory, 257-260
Neutron(s), electromagnetic current,
245
free, decay, 247, 248, 251, 254
magnetic moment, 241
wave function, 225
Neutron-neutron scattering, 215, 228
Neutron-proton scattering, 2156-217
antisymmetrization, 219-221
cross section, 246
isotopic factors, 228
Noncharge-exchange scattering, 216
Nonrelativistic reduction, 10
Normalization factors, for cross sec-
tions, 112, 113
for photon wave function, 122
Nuclear force, 213
Nucleon (s), conservation of, 249
conserved vector current hypothesis,
270
electromagnetic structure, 241-246
wave function, 222, 224
Nucleon-nucleon potential, 230
Nucleon-nucleon scattering, 224, 227-
231
figures, 211, 214, 216
isotopic factors, 228, 229
Nucleonic charge, conservation of, 226

0Odd operators, 47
One-particle theory, 65, 66, 198, 199
Orthonormality, statement of, 3
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Pair annihilation, 65, 66, 90, 91
amplitude, 9798
in electron-positron scattering, 149,
150
into gamma rays, 132-135
Klein-Gordon particles, 190, 191
particle-antiparticle pairs, 190
Pair production, 65, 90, 91
amplitude, 96 97
in Coulomb field, 133, 134
Klein-Gordon particles, 190, 191
negative- and positive-energy elec-
trons, 92
particle-antiparticle pairs, 190
Parity transformation, 25, 71
Parity violation in weak decays, 253,
254, 259
Partially conserved axial vector cou-
pling, 273-278
Pauli equation, 13
Pauli exchange graph, proton-neutron
scattering, 218
proton-proton scattering, 214
Pauli exclusion principle, 64, 221, 229
Pauli matrix, 8, 12, 23, 52, 53, 222, 223,
258
Pauli spin theory, 10, 32, 53
Pauli spinor, 23, 56
Petermann, A., 172
Phase-space factor, 112, 114
Photon(s), Compton scattering, 127--
132
exchange, 157, 161
indistinguishability of, 117, 118
polarization, sum, 124, 125
renormalization of external photon
lines, 161
scattering amplitude, 121, 122
self-energy part, second-order, 153
soft, 123, 124
emission, limit of, 125, 126
vector potential of, 121
virtual, 111, 124, 159, 161
Photon propagator, 157, 159
corrections of order a, 157
modification of, 173, 175, 176
w-mesic atoms, 198, 205
= meson(s), 66, 184-186
as boson, 196-198
Compton scattering, 193
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« meson(s), Coulomb scattering, 191-

193, 197-199
decay, 247, 264-268
spin interaction, 265

detailed balance, 212
electromagnetic vertex and radiative

correction, 242, 243
exchange, 218, 219
half-life, 185
intrinsic parity, 212, 213
of mass ~140 MeV, 212
in nucleon-nucleon scattering, 227
one-particle quantum mechanics,

198, 199
r~, 184, 191, 192, 193, 212
=, 184, 191--195, 212, 242
= 185, 186, 189, 190, 212
pion weak current term, 272
scattering amplitude, 190-191
strong interactions, 212-216
symmetric statistics, 196 198

w-nucleon interaction, 213, 227

(See also Meson-nucleon scattering)

m-nucleon vertex, general form,

276
Plane-wave solutions, 28-32, 71, 83, 89,
95, 258
for free protons, 109, 110
of Klein-Gordon equation, 186, 187
Polarization, in Coulomb scattering,
102
in electron scattering, 140-145
left-handed, 261
longitudinal, 254
relativistic limit, 144
of scattered electrons, 141
spin, 141
vacuum (see Vacuum polarization)
Polarization sum, photon, 124, 125
Polarization vector, 121
free-particle solution, 32, 35
Poles, extrapolation, 240
in scattering amplitude, 240
Pontecorvo, B., 269
Positive-energy solutions, 10, 28-30, 32,
37-41
hole theory, 67-69
positron theory, 97
Positive-frequency radiation, propagsa-
tors, 109
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Positive-frequency time behavior, 93,
94
Positron(s), 65, 66
amplitude, 91-92
in hole theory, 69
spin-up positive-energy, 68, 69
wave function, 66, 67, 73
Positron scattering, amplitude, 98
Coulomb, 106-108
Positron theory, propagator in, 89-98
Stickelberg-Feynman form, 74, 78,
95
unitarity in, 160
Probability current, 9
Probability density, 9
Projection operator, for angular
momentum, 234-236
for energy, 32-35
for isotopic spin, 234-236
for spin, 33-35, 143
Propaguator, 78-98
for electromagnetic radiation, 109
electron, renormalization of, 164 -166
exact, 87
Feynman (see Feynman propagator)
for Klein-Gordon particles, 186 -
188
nonrelativistic, 78-83
photon, 157, 159, 173, 175, 176
in positron theory, 89-98
relativistie, 92
free-particle, 93
retarded, 81, 85
Proton(s), electromagnetic vertex and
radiative corrections, 244
hydrogen atom, 57, 58
magnetic moment, 241
recoil, 115
structure, 115, 116
wave function, 225
(See also Electron-proton scattering)
Proton current, 109, 110, 116, 117
Proton-proton scattering, 213-215, 218,
228
Pseudoscalar, 54
Pseudovector, 53

Quantum number, principal, of nonrela-
tivistic theory, 55

Relativistic quantum mechanics

Quantum theory, nonrelativistic, prinici-
- ples of, 2-3
relativistic, formulation of, 2-3

Radiative correction, 242, 244, 271, 273
to electron magnetic moment, 171,
172
to scattering, 171, 239
Relative minus sign, 149, 150, 151, 221
Relativistic mass increase, 203
Relativistic quantum theory, formula-
tion of, 2-3
Renormalization, charge, 157, 158, 161,
168, 169
conserved vector current hypothesis,
270
of electron propagator, 164-166
of external electron lines, 166, 168
of external photon lines, 161
mass, 164-166
in Lamb shift, 178, 179, 180
in vextex correction, 174, 175
Resonance in 33 channel, 239
Rest mass, 4
Rosenbluth formula, 246, 278
Rutherford scattering, 100

S matrix, 83, 87-89, 95, 96
8 decay, 247, 248, 253, 271
bremsstrahlung, 122
compact form, 87
Compton scattering, 127, 128
electron-positron scattering, 148, 150
electron-proton scattering, 110, 117,
118
higher-order corrections, 148 -181
u-meson decay, 261
pair annihilation, 132
r-meson decay, 264, 265
unitarity of, 88, 160, 238, 249
Salam, A., 259
Scattering, 78~83
Bhabha, 138, 139
charge-exchange, 216, 218
Compton, 127-132, 193
Coulomb (see Coulomb scattering)
Delbriick, 181
electron-electron, 135~138



Scattering, electron-positron (see Elec-
tron-positron scattering)
electron-proton (see Electron-proton
scattering)
isotopic factors, 228, 229
of light, classical electrodynamics,
131
meson-nucleon, 224, 231- 234, 236 -
240
neutron-neutron, 215
neutron-proton, 215-221, 246
noncharge-exchange, 216
normalization factors, 112, 113
nucleon-nucleon, 224, 227-231
polarization in, 140-145
in positron theory, 90, 92, 96, 97, 98
proton-proton, 213-215, 218
Rutherford, 100
Thomson, 131, 132, 195
Scattering amplitude, for Klein-Gordon
particles, 190 -191
of particle-antiparticle pairs, 190,
191
of photon, 121
poles in, 240
singularity in, 240
Scattering matrix (see S matrix)
Sehiff, L. 1., 120
Schrodinger equation, 3-6, 78, 79, 84,
86-88
Klein-Gordon equation in form of,
199, 200, 203
Schrédinger-Pauli electron, 28
Schrédinger theory, 37, 40, 42, 64, 71,
85, 160
Schwartz, M., 269
Schwinger correction, 172
Second-order vertex part, 166
(See also Vertex correction)
Self-mass of electron, 152, 162--164
second-order correction, 165
Small components, in free-particle solu-
tions, 30
of wave function, 12
Soft photons (see Photon)
Sommerfield, C., 172
Space reflection, 24-25, 71
Space-time coordinate inversion, 74
Space-time diagrams, 80, 91, 98
Spin-one boson, electrodynamies, 290

Spin-orbit energy, 51
Spin-orbit interaction, 56
Spin polarization, 141
Spin-projection operator, 33--35, 69, 140
Spin sum, Coulomb scattering, 102, 103
Spin-up and spin-down eigenfunctions,
55, 68
Spin vector, free-particle solution, 32,
34
Spin-zero particles, 184--186
electrodynamics, 188, 288
interaction with electromagnetic
field, 188 -190
(See also K meson; = meson)
Spinors, Dirac, notation, 282, 283
electrodynamies, 287
Pauli, 23, 56
State function, 2
Step function, unit, 84
Strangeness charge, 207, 247
Strong interactions, 210 222
Stiickelberg-Feynman positron theory,
74,78, 95
Substitution rule, 108, 133, 139, 198
Superposition principle, 3
Symmetrizing in electron-positron scat-
tering, 150

Thomas precession, 52
Thomson cross section, 131, 132
Thomson scattering, 131, 132, 195
Time-reversal transformation, 72--73
Wigner, 73
Trace theorems, 103- 106, 114, 130, 131,
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scattering problems, 78 83
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(See also 8 decay)

Weak magnetism term, 272

Weisskopf, V. F., 165

Weyl equation, 259, 260, 279

Wigner time reversal, 73

Yang, C. N., 253, 259
Yukawa potential, 211, 229

Zel'dovich, J. B., 271
Zitterbewegung, 38, 40, 52, 60, 203



	pp.cover-13
	pp.15-26
	pp.27-43
	pp.45
	pp.46-62
	pp.63-75
	pp.77-95
	pp.96-98
	pp.99-103
	pp.104-122
	pp.123-126
	pp.127
	pp.128-191
	pp.192-216
	pp.217-247
	pp.248-300

