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Preface to the second edition 

I am glad to have the opportunity to write a preface to a second 
edition of Basic Quantum Mechanics. The first edition has been out 
of print for a few years but, with the permission of the publishers, it 
has been circulating vigorously among students in photocopied 
form. This has encouraged me to believe that it would be worth­
while to produce an improved version of the book. 

There are two major changes that I have made. In chapter 3 there 
is now a much more thorough account of the relationship between 
potential energy curves, energy levels, and wave functions. A diffi­
culty here is that the discussion rests on the WKB approximation, an 
analysis of which would hold up progress at a point at which speedy 
movement is vital. My solution is to state and use the important 
features of the WKB approximation without proofs, which come 
later-in the same place as in the first edition, chapter 5. Since the 
statements required are few and succinct I believe this procedure 
will be acceptable. 

The second major change is to the treatments of radioactive states 
and the related resonant scattering, in chapters 8 and 9. It has 
always surprised me to notice how many physicists spend careers 
measuring widths and inferring lifetimes without asking for proofs of 
the formulae required. Certainly few elementary books on quantum 
mechanics are of any use to them in this respect. In the first edition I 
worked out decay and scattering for the same particular potential, 
pointed out the relationship of interest, and stated the general 
extension. That was better than nothing, but not really satisfactory. 
Now in this second edition I have given a more general treatment, 
based on the S-matrix, which owes much to research papers by Ning 
Hu and by Peierls, published thirty-three and twenty years ago, 
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X PREFACE TO THE SECOND EDITION 

respectively. I intend the version in this book to be comprehensible 
at the transition between British undergraduate and postgraduate 
studies, like the treatments of other advanced topics. 

I have also made many minor changes that are intended to 
improve the balance of the argument and to smooth the reader's 
path. Referring to the preface to the first edition, I cannot yet claim 
that the book is as easy to read as a novel, but perhaps it is now 
more nearly so. 

I have changed over to SI units throughout. This seems to be 
mandatory now, but I regret the clumsiness that has been intro­
duced into many of the formulae thereby. 

Finally I should thank Professor Sir Rudolf Peierls, and Drs 
Allcock and Huby for valuable advice, Dr Wormald for computa­
tional help, Misses Calland and Owen for typing the manuscript, 
and Mrs Cheyne for tracing the diagrams. I thank also Dr Carroll 
for help with the proofs. 

Liverpool, 1981 J. M. CASSELS 



Preface to the first edition 

When I first learnt about quantum mechanics, I thought it was 
horrible. The trouble was that the course was taught in a semi­
historical spirit, with a conscious attempt to bring in new ideas only 
very gradually. Every calculation involved further tinkering with the 
rules, until a point was reached when I had lost all confidence that a 
stable new view of physics would be achieved. It was a great relief in 
the following year to attend the lectures of Professor Dirac, which 
followed essentially the plan of his evergreen book, The Principles of 
Quantum Mechanics (Oxford University Press). I learnt at last that 
quantum mechanics had an extremely clear and logical structure, 
and that classical mechanics could be seen as a limiting case, in a 
very beautiful way. 

My lectures to third year Honours Physics students at Liverpool 
have therefore followed the logical approach, albeit at a more 
elementary level than Professor Dirac's. This book follows the same 
plan at the same level; all the new concepts are in chapter 1 and the 
rest of the book simply follows the consequences. 

A commitment to the logical approach also seems to me to make 
it advisable to give a full account of the mathematics. I have 
therefore tried very hard to avoid simply quoting 'well-known' 
mathematical results which in fact might well be encountered for the 
first time. 

I should make it clear that the book is about mechanics, and 
makes no claim to be a connected account of elementary atomic, 
nuclear, or particle physics. I have provided examples from these 
fields, however, to illustrate every important point in the discussion. 

I am aware that my emphasis on logic and basic structure, on full 
presentation of mathematical argument, and on overall brevity has 
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xii PREFACE TO THE FIRST EDITION 

produced a book which is not easy to read like, say, a novel. 
Possibly users of it may wish to work with another book in parallel 
which covers the same ground in a more relaxed, readable, and 
necessarily less thoroughgoing way. Another book, Introduction to 
Quantum Mechanics by Professor Matthews (McGraw-Hill), has 
always seemed to me to be an excellent essay in this manner. 

I should mention that my commitment to the logical approach 
does not in any way reflect disrespect for the history of quantum 
mechanics. On the contrary I believe that the whole development 
represents an adventure of the human spirit worthy to rank in the 
top dozen since the Renaissance. I feel, though, that the history of 
quantum mechanics is best appreciated by those who understand 
how it works. Once that is assured, I recommend strongly a study of 
The Conceptual Development of Quantum Mechanics by Professor 
Jammer (McGraw-Hill). 

During the writing of this book, I received much helpful advice 
from many colleagues at Liverpool, particularly Drs Huby and 
Allcock. 

At various times four departmental secretaries have worked on 
the typing of the manuscript, and I mention particularly Mrs Valerie 
Turnbull who broke the back of the job. I wish to thank also 
members of the departmental drawing office for their help with the 
diagrams. 

Liverpool, 1969 J. M. CASSELS 
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Fundamentals of particle 
quantum mechanics 

§1 Introduction 

Non-relativistic quantum mechanics is an elegant, logical, and com­
plete branch of physical theory, but for several reasons the early 
steps towards its understanding are not easy. 

First, a number of unfamiliar concepts are involved in the basic 
skeleton of the theory, and it is difficult to appreciate the signifi­
cance of any one of them until the others are understood. The initial 
conceptual investment is therefore high. Secondly, much of the 
discussion centres round the wave function 1{1 which, to be sure, can 
be calculated explicitly enough once the physical scene is set. 
Nevertheless, 1{1 has a purely abstract significance; an electromagnetic 
field carries the power to move objects, whereas 1{1 carries nothing 
more tangible than information. Thirdly, the methods for tapping 
this source of information are somewhat indirect. Fourthly, the 
predictions of the theory are often only statistical; the probabilities 
of this or that result for an experiment may be all that is available. 

It should be mentioned at once, before premature despair takes 
hold, that the mathematical operations involved in the theory are 
often very simple indeed. Thus encouraged the physicist's instincts, 
at first frozen by unfamiliarity, soon resume their normal functions; 
the right way to think about problems comes to feel completely 
natural. 

1 



2 BASIC QUANTUM MECHANICS 

The best answer to the problem of understanding the basic 
skeleton of the theory is surely to describe it all in one place, as 
clearly and briefly as possible, in order to facilitate reference and 
concentrated study; section 2 does just this, and the sections beyond 
do not call for further adjustments to basic concepts. 

Meanwhile nothing becomes a skeleton so much as flesh, and the 
rest of section 1 aims to provide some. A few very simple examples 
will be worked through in detail, to provide a quite informal mixture 
of information and exercise. The intention is that this preview 
should be read as lightly as possible, but that it should be frequently 
rechecked to see how general principles work out in practice. 

Informal preview The first point to understand is that the physical 
condition of a particle, its state, is described by a wave function 1/1 of 
position and time. One of the basic assumptions is that 1/1 obeys a 
partial differential equation called Schrodinger's equation, first pub­
lished in 1926. Solution of this gives the value of 1/J for all positions 
and all times. 

The simplest example is provided by a particle of mass m that is 
completely free to move in one dimension. Schrodinger's equation 
then takes the form 

a in a2 

-1/f(x, t) = -2 ----z 1/f(x, t) 
at max 

(1.1) 

where h is a universal constant, in fact Planck's constant h divided 
by 21r. Of course x measures the position and t the time. 

Two simplifying features should be noticed, and it is fortunate 
that they are common to all examples of Schrodinger's equation. 
First, it is linear in 1/J, so that no awkward terms proportional to, say, 
1/13 or (al/f/ax)2 appear. Secondly, it is homogeneous; all the terms are 
linear in 1/J and there is none that is independent of 1/J. 

A third feature is not universal but is found in this particular 
example. The coefficients qualifying the terms are constant, and not 
functions of x or, more complicated still, functions of both x and t. 

It is well known that a differential equation with the three 
features mentioned can be solved by an exponential function whose 
argument is linear in the variables, here x and t. With a little 
forethought this function may be written 

1/1 = Aei(kx-wt) = Aez,.;{(x/.1.)-vt} (1.2) 
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where k = 27T/ A., w = 27TV, and where A is a normalising constant, 
which may be chosen to be complex if desired. Obviously 1{1 behaves 
in a wavelike manner, k being the circular wavenumber,t IA.I the 
wavelength, w the circular frequency, and v the ordinary frequency. 

Substitution into equation (1.1) verifies the solution, provided 
only that a dispersion relation is always maintained between w and 
k: 

hk 2 
w=--

2m 
(1.3) 

The dispersion relation is non-linear, and elementary wave theory 
signals a warning. A complicated, that is anharmonic, wave function 
can be considered to be a superposition of harmonic wave functions 
of more than one frequency. The shape of such a wave function 
must change as the harmonic waves propagate forwards in time, 
since the wave velocity w/ k depends on k and w.:j: An example will 
be examined in section 6. 

For the moment attention will be confined to free particle wave 
functions of a single circular frequency, say w 1• Furthermore, the 
discussion will concentrate on a finite region of space, such that 
- L/2 ~ x ~ L/2. It will appear later, in section 4, that there is then a 
reason for requiring that L should be an integral multiple of the 
wavelength jA.1l of the wave function, and obviously the simplest 
choice is 

(1.4) 

t The term wavenumber is unfortunate, though standard, since k clearly has the 
dimensions of an inverse length. 

:j: In classical physics a displacement of a stretched string, or a pressure fluctuation 
in a gas, obeys the common wave equation 

which again is linear, homogeneous, and has constant coefficients. Therefore equation 
(1.2) holds good, but the dispersion relation then has the simple and familiar linear 
form 

w=±ck 

where c is a constant velocity, independent of k and w. A complicated disturbance 
can therefore propagate without distortion. 
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The associated circular wavenumbers and frequency are (equations 
(1.2) and (1.3)) 

(1.5) 

Three particular wave functions of frequency w1 will be discussed. 
They are 

1/Ja = L -112ei(k1x-w 1t) } 
1/Jb = L -1!2ei(-k1x-w1t) 

1/Jc = -i2-1121/Ja + i2-1121/Jb 
= (2/L?12 sin (k1x)e-iw,t 

(1.6) 

For the sake of definiteness k1 is now taken to be positive through­
out, and a negative wavenumber is shown explicitly by a minus sign. 

Clearly 1/Ja and 1/Jb are progressive waves, towards positive and 
negative x respectively, and 1/Jc is a standing wave. As usual a 
superposition of solutions of a linear differential equation is itself a 
solution of that equation; this is a fact of fundamental importance to 
quantum mechanics. 

A most important point is that 1/J itself cannot be measured 
directly by any kind of experiment. However, 1/1 does carry informa­
tion about all the usual dynamical variables of the particle, such as 
its position, momentum, kinetic energy, potential energy, and so on, 
and this information can be extracted by appropriate mathematical 
operations. 

Predictions about the position of the particle can be made directly 
from the wave function, in the manner first suggested by Born in 
1926. In fact 11/112 is the position probability density (PPD),t so called 
because 11/112 dx is the chance that the particle will be found between 
x and x +dx. For the sample wave functions of equation (1.6), 

II/Jal2 = II/Jbl2 = 1/L } 
lo/cl2 = (2/L) sin2 (k1x) 

(1.7) 

In the states represented by 1/Ja and 1/Jb the particle might equally 
well be found anywhere, whereas in that represented by 1/Jc it is most 
likely to be found near the points where x is an odd multiple of L/4 

t To avoid verbosity several longwinded titles, after their first occurrences, are 
abbreviated to sets of initials in capital letters. A list of abbreviations will be found at 
the front of the book. 
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-L/2 0 L/2 
X 

Figure 1.1 PPDs for the three wave functions t/1., t/Jb, and tf!c· 

(figure 1.1). Clearly quantum mechanics is making only predictions 
of a statistical nature here. 

In all three examples the wave function is normalised so that the 
chance of finding it somewhere in the region of special interest is 
unity, 

L/2 

J 11/112 dx = 1 (1.8) 
-L/2 

It should be realised, of course, that the wavefunctions and PPDs 
repeat themselves over and over again at intervals of L on either 
side of the region of special interest, so that other particles could be 
found out there. It is obviously not possible to produce a localised 
PPD with harmonic wave functions of a single frequency, Wt. in this 
case.t 

The other properties of the particle have to be discussed in a less 
explicit way. Such things as the momentum, kinetic energy, potential 
energy, and in fact all the objectives of measurement in experimen­
tal physics, are called observables. Each observable is represented in 
the theory by an operator, which gives instructions for a mathemati­
cal operation on 1/J. Forecasts of the result of measuring an observa­
ble are made by studying the effect of carrying out the associated 
mathematical operation on 1/J. 

The momentum of the particle in a one-dimensional problem, for 
example, is represented by the operator p = -ih(iJ/ax), which acts on 

t Note that in section 7 and figure 7.10 the wave functions are harmonic inside the 
range - L/2,;;;; x ,;;;; L/2, but zero outside it. A superposition of harmonic waves of an 
infinite number of frequencies is required to bring this about (vide problem 3.12). 
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1{1 to produce -ili(ol{l/ox).t If this operator is applied to -fJa or l(!b, 

A·'· •,1:. al(!a ,l:.k } P'l'a = -z, -a;=" t 1/Ja 

PI/Jb = -ih al(!b = -hkl -fJb ax 
(1.9) 

A significant feature is that the action of p on -fJa or t{!b has not 
changed their shapes, but only multiplied them by the factors hk1 or 
-hk1 respectively. The interpretation of this special mathematical 
situation is that a measurement of the momentum of the particle in 
the state represented by t/la or t{!b is sure to produce the result lik 1 or 
-hk1 respectively. The predictions here are definite and not 
statistical. 

The relationship between the momentum p and the wavelength 
27r/k1 in the state represented by t/la was verified in electron 
diffraction experiments by Davisson and Germer, and independently 
by G. P. Thomson, in 1927. 

When p is applied to 1/Jc the result is not so simple: 

P-fJc =-iii a: {(2/L)112 sin (klx)e-""•'} 

= -i(2/L)112hk1 cos (k1x)e-""•' (1.10) 

Here the action of p has changed the shape of -fJc, and the interpre­
tation is that the momentum of the particle in the state represented 
by -fJc cannot be definitely predicted. Nevertheless, some informa­
tion about it is available, from an inspection of the third of equa­
tions (1.6). There it is seen that t/lc can be expanded in terms of t/la 
and t{!b, both associated with definite momenta. The interpretation is 
that the momentum in the state represented by t/lc could be found to 
be either hk1 or -hk1• The chance of getting one or the other result 
is proportional to the square of the modulus of the expansion 
coefficient in the third of equations (1.6), that is l-i2-112l2 =!for the 
result hkh and li2-112f=! for the result -hk1• The prediction here 
is statistical again, and it is significant that a slightly more definite 
prediction about the position of the particle in the state represented 
by t/Jc has been accompanied by a more indefinite prediction about 
its momentum. 

-r Operators will be distinguished by a circumflex accent throughout. 
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A third observable may also be considered, the kinetic energy T. 
In classical mechanics T = p2/2m and in quantum mechanics the 
operator T which represents the kinetic energy is connected with p 
by the same relation. Thus, 

(1.11) 

and 

A li2 a2 1/Ja li2 ki 
Tl/la = -2m ax 2 = 2m 1/Ja 

A li2 a2 ifJb li2 ki 
TI/Jb = -2m ax2 = 2m 1/Jb (1.12) 

A li2 a2 1/Jc li2 ki 
TI/Jc = -2m ax2 = 2m 1/Jc 

In each of these operations the wave function is left unchanged 
except for a constant multiplicative factor and, as before, the 
interpretation is that the kinetic energy of the particle is certainly 
(li2 ki/2m). The relationship between the predicted kinetic energy 
(li2 ki/2m) and the predicted momentum or momenta (lik 1 or -lik1) 

is always the same as in classical physics. Clearly this is the result of 
equation (1.11), where the operators in quantum mechanics were set 
up to obey the corresponding relationship. That input has quickly 
produced an output reminiscent of classical physics, but with some 
added subtlety, like the uncertain prediction of the sign of the 
momentum in the state represented by 1/Jc· 

Table 1.1 summarises conclusions about the states represented by 
1/Ja, 1/Jb, and 1/Jc· A striking feature is that the position of the particle 
for all three states, and the momentum for that represented by 1/Jc, 
have not been definitely predicted. It might be thought that this is 
trivially the result of imprecise specification of the physical condi­
tions. However, it will soon appeart that a lack of full determinacy 
is a fundamental feature of quantum mechanics; it always turns up 
in some observables o~ other, whatever state may be considered. 
The potentially complete certainty of classical physics, with all its 
philosophical implications, must for ever be surrendered. 

t Vide section 5 
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Table 1.1 Predictions about the results of measuring various observables, 
for the three states represented by 1/1., 1/Jb, and 1/Jc (equations (1.6)) 

Wave Kinetic 
function Position Momentum energy 

1/1. Uniform probability likl li2 ki/2m 
density 

1/Jb Uniform probability -likl li2 ki/2m 
density 

{ Pmbability demdty •k, (pmbability ll } 
1/Jc peaked at odd multiples li2 ki/2m 

of L/4 -likt (probability!) 

§2 Basic assumptions 

The basic assumptions of particle quantum mechanics can be set out 
formally under seven main headings, and for the sake of clarity and 
ease of reference this will now be done. The result may make 
somewhat forbidding reading at first sight, and frequent reference 
back to section 1 is recommended. Simple examples of nearly all 
that is involved have been given there. 

Wave functions and probability density The state of a particle is 
represented by a complex function 1/J(r, t), such that ll/11 2 dT is the 
probability of finding the particle at the time t in the element of volume 
dT at the point r. 

The function 1/1 is called the wave function because it must satisfy 
an equation (2.18) whose solution in some circumstances has the 
form of stationary or travelling waves; 11/112 is called the position 
probability density (PPD). The complex conjugate wave function 1/J* 
is obtained by changing the sign of the imaginary part of 1/J at every 
rand t. 

The wave function will usually be normalised so that 

(2.1) 
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where the integration is carried through all the space available to 
the particle. t Physically this normalisation means that just one 
particle is present. The creation and destruction of particles will not 
be considered, so the time dependence of 1{1 must be such that the 
normalisation is preserved for all t. 

Linear superposition of states If two possible states of the particle 
are represented by 1{11 and 1{12 , then a possible state of the particle is 
also represented by 1{1 = c11{11 + c21{12, where the coefficients c1 and c2 
are arbitrary complex numbers, independent of r but possibly functions 
oft. 

Obviously, by continued superposition, any number of wave 
functions may be used to build up a new 1{1: 

1/J = C11/J1 + Czi/Jz + .. • + Csi/Js +. • . + Cni/Jn = t Csi/Js (2.2) 
s=l 

Observables and operators Obseroables are represented by linear 
operators which multiply, differentiate, or otherwise act on the wave 
function 1{1 to produce a new function.+ 

Thus an observable l will be represented by a linear operator f, 
and symbolically the result of applying f to 1{1 can be written ll{l. By 
definition a linear operator satisfies§ 

f(cl{l) = cll{l } 

f (cll{ll + Czl/lz) = C1 ll/11 + Cz li{Jz (2.3) 

Operators may be handled algebraically when rules for their 
equation, addition, subtraction, and multiplication have been pro­
vided. 

The equation f = m of two operators means that they produce the 
same result when they act on an arbitrary wave function 1{1. The sum 
f + m or difference f- m of two operators is defined by 

(2.4) 

t For free particles a 'region of special interest' is usually considered (cf. section 1, 
and the discussion of periodic boundary conditions in section 4). 

:j: a. p and fin section 1; these particular operators may be substituted into some 
of the equations which follow in order to gain a clearer view of their meaning. 

§ In view of the possible time dependence of c it may be remarked that f can 
always be expressed in a form which avoids differentiation or integration with respect 
to t. 
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Clearly f + m = m + f and f- m = -m + ~ so that addition and sub­
traction are commutative. More complicated sums and differences 
may be built up by repeated use of the basic rule. A simple example 
shows that addition and subtraction are associative, 

(2.5) 

since both sides act on 1/1 to produce li/J + ml/1 + nl/1. 
The product fm is defined to be the operator whose instructions 

are that m should act first, and then f should act on the result, 

(2.6) 

More complicated products may again be built up by repeated use 
of the basic rule. A simple example shows that multiplication is 
associative, 

(fm)n = f(mn) (2.7) 

since both sides instruct that n should act first, then m, and finally f. 
Another example shows that multiplication of linear operators is 
distributive, 

f(m + n) = (fm)+(fn) (2.8) 

since both sides act on 1/J to produce f(ml/1) + f(nl/1). 
Multiplication of operators is not guaranteed to be commutative, 

however. The product mf may produce a quite different result from 
fm, since the order of the component operations is reversed. The 
operators r and m, and the observables associated with them, are 
said to commute! if it does happen that mf = fm. Obviously any 
operator commutes with itself. 

The possible failure of the commutative law of multiplication is 
the only difference between the algebra of linear operators and 
ordinary elementary algebra; extra care must be taken with the 
order of the products. 

It is clear that functions of operators can be constructed if a 
suitable recipe is given in terms of additions, subtractions, and 
multiplications of the arguments. 

t p and T in section 1 are operators which commute, since 

• • ili3 ;P 
pT=Tp=--

2m i!x 3 



FUNDAMENTALS OF PARTICLE QUANTUM MECHANICS 11 

Predictions of the result of measuring an observable When f 
operates on a particular wave function, u. say, it may produce a 
function which differs from u. only by a constant multiplicative factor 
l.: 

fu. = l.u. (2.9) 

If so, then a measurement of l is certain to yield the numerical value 
l •. The particle is said to be in an eigenstate of l belonging to the 
eigenvalue l., and the wave function u. is called an eigenfunction of l 
belonging to the eigenvalue l •. t 

It is taken for granted+ that the eigenfunctions associated with an 
operator f form a complete set, in the sense that any wave function 
whatever can be formed by superposing them: 

(2.10) 

where I{! and all the u. are normalised. 
The expansion (2.10) may be used as the basis for a more general 

assumption, which includes the one already made as a special case; 
the probability of l being found to have the eigenvalue l. is equal to 
ic.l2 • No result other than an eigenvalue can be obtained,§ for it will 
appear in section 4 that 

(2.11) 

Hermitian operators Only a certain kind of linear operator is 
suitable for representing an observable. If 1/11 and 1/12 are any two wave 
functions, then f must satisfy 

(2.12) 

where the integrals are again to be taken over all the space available 
to the particle. Operators which satisfy this relation are called 
Hermitian. 

t Cf. equations ( 1. 9), which shows that 1/1. and 1/Jh are eigenfunctions of p, belonging 
to the eigenvalues hk 1 and -hk1 respectively. 

:f: Proofs of completeness are conventionally, and conveniently, not required by 
ordinary physicists. 

§ Cf. equations (1.6), where the momentum eigenfunctions and 1/Jc were all properly 
normalised, and the total probability of finding one momentum value or the other in 
the state represented by 1/Jc was!+!= 1 (vide also problem 1.3). 
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Momentum and energy operators The use of functions of position 
to represent the states of the particle fixes the form of the operator r 
which represents the position r of the particle. The instructions 
given by r are in fact that the wave function t./l(r, t) is to be 
multiplied at each point by the value of r at that point, 

rt./1 = rt./1 (2.13) 

For consider a wave function u, which is zero except at the point r,. 
The particle is then certainly located at r, since the probability 
density is zero elsewhere, and so u, must be an eigenfunction of r 
belonging to the eigenvalue r,. This is ensured by the multiplicative 
form of r, for then ru, = ru, = r,u,. 

In three-dimensional Cartesian coordinates the position compo­
nents x, y, z are represented by operators which multiply the wave 
function by x, y, and z respectively. In one dimension, of course 
x=x. 

The operator which represents the momentum is assumed to be 

p=-ihV (2.14) 

which acts on t./1 to produce -ihVt./1. Thus in three-dimensional 
Cartesian coordinates the momentum components Px• pY, Pz are rep­
resented byt 

Px = -ih(ajax) } 

Py = -ih(a/ay) (2.15) 

Pz = -ih(a!az) 

Operators for the position and momentum of the particle are now 
available, and these can be used to build up other operators. If an 
observable may be written in classical mechanics as a function F(r, p) 
of the position and momentum of the particle, then it is assumed that 
in quantum mechanics the observable is represented by the operator 
F(r, p).:l: 

Thus in classical mechanics the kinetic energy T of the particle is 
equal to p2/2m, and in quantum mechanics Tis represented by the 
differential operator 

A 1 A h2 h2 ( a2 a2 a2 ) T=-(pf=--V2 =-- -+-+-
2m 2m 2m ax2 ay2 az 2 

(2.16) 

t Cf. section 1. 
:j: The fact that some components of r and p do not commute does not raise 

difficulties in practice. 
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Similarly, a potential energy V(r, t) is represented by an operator 
V which instructs that the wave function is to be multiplied by 
V(r, t). 

Until chapter 6 attention will be confined to problems in which 
the forces on the particle can be described by a potential. The total 
energy H of the particle is then equal to T + V, and it is represented 
by 

A A A li2 2 
H=T+V=- 2m V +V(r,t) (2.17) 

Time dependence of 1{1 The rate of change of 1{1 is given by 

(2.18) 

so that the operator H. has the dual role of representing the energy 
of the particle and controlling the time dependence of 1{1; equation 
(2.18) is called the time-dependent Schrodinger equation (IDSE). 

The equation shows that if 1{1 is completely specified at any time, 
then its rate of change is also specified. Thus the development in 
time of 1{1 is completely determined by its initial shape, so long as 
the particle is left undisturbed. 

A measurement of some property of the particle generally does 
constitute a disturbance. The wave function 1{1 carries information 
about what might happen when the measurement is made. If an 
observer, presumably intelligent, sees what actually does happen, 
then some of the possibilities allowed by the wave function may 
cease to be compatible with reality. The wave function must jump 
discontinuously at the moment of observation in order to discard 
these redundant possibilities, and this jump is not described by any 
equation like (2.18). If, for example, a particle in a state represented 
by a diffuse wave function is seen to produce a water droplet in a 
cloud chamber, then the wave function and the position probability 
density immediately become concentrated at this point. Since the 
wave function has been changed fundamentally by the position 
measurement it is not generally possible to go on and measure some 
other observable and regard the result as a property of the original 
state. After each measurement, then, the Schrodinger equation must 
be solved again with a new set of initial conditions which takes into 
account the information that has been obtained. 
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Problems 

1.1 All the mathematical expressions in section 2 are in three­
dimensional form. Read the section again and jot down the 
corresponding one-dimensional expressions, where appro­
priate. Thus 

t/l(r, t) ~ I(J(x, t) 

lt/112 dT = lt/112 dx dy dz ~ lt/112 dx 

and so on. Check with section 1 where possible, and in partic­
ular show that the TDSE of equation (2.18) is translated into 
equation (1.1) when there is no potential energy. 

1.2 Show by direct integration that the 1/Ja and 1/Jb given by equa­
tions (1.6) are orthogonal in the interval-L/2.s;,x.s;,L/2, which 
means that 

L/2 L/2 

J 1/1~1/Ja dx = 0 = J 1/1~1/Jt, dx 
-L/2 -L/2 

If the frequency were raised from w1 to w' = 3w1/2, would 
the corresponding wave functions 1(1~ and 1/J~ be orthogonal in 
the same interval? [Comment: The wave functions involving w' 
are not periodic in the special interval - L/2 ::s;; x ..;, L/2 and it 
will appear in section 4 that they are lacking in certain 
essential qualities.] 

1.3 Consider a wave function formed from the 1/Ja and 1/Jb given in 
equations (1.6), 

1/J = Cat/Ja + Cbt/Jb 

where ca and cb are complex constants. Use the orthogonality 
of t/la and t/lb to demonstrate that 

L/2 

J 1/1*1/1 dx = lcal2 + icbl2 

-L/2 

Hence deduce that, if 1(1 is normalised to unity, the chances of 
finding p with the values hk1 or -hk1 add up to unity when the 
particle is in the state represented by 1(1. [Comment: 1/Jc in 
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equations (1.6) is a particular example of 1/J with ca = -iT112 

and cb = i2-112.] 

1.4 Verify that the momentum operator p is Hermitian m the 
examples 

L/2 L/2 

J (pi/JJ*I/Ia dx = J 1/!~(pi/Ja) dx 
-L/2 -L/2 

L/2 L/2 

J (pi/Ja)*l/lb dx = J 1/!~(pi/Jb) dx 
-L/2 -L/2 

L/2 L/2 

J (pi/Ja)*l/lc dx = J 1/!~(pi/Jc) dx 
-L/2 -L/2 

where 1/Ja, 1/Jb, and 1/Jc are given in equations (1.6). [Comment: 
The quickest results are obtained by free use of equa­
tions (1.9), together with the orthogonality of 1/Ja and 1/Jb- The 
Hermiticity of p and the reality of the eigenvalues of p are 
evidently closely related.] 

1.5 According to classical mechanics a particle subject to a restor­
ing force proportional to x should vibrate harmonically, say 
with circular frequency w. Find the classical expression for the 
potential energy in terms of w. 

Hence write down the quantum mechanical energy operator 
fi for the same problem. [Comment: The completed expres­
sion may be checked with equation (8.1).] 

1.6 Show that the wave function 1/feiB, with S real, gives rise to the 
same physical predictions as the wave function 1/J. Hence 
conclude that they represent the same state. [Hint: Substitute 
1/fei~> for 1/J in equations (2.1) and (2.10). Comment: Although 
the overall phase of a wave function is not significant, the 
relative phase of two superposed wave functions is very impor­
tant. For example 1/11 + 1/12 and 1/11 - 1/12 generally represent quite 
different states.] 



2 

Mathematical and physical 
development of the basic 

assumptions 

§3 Solutions to Schrodinger's equation 

The TDSE (equation (2.18)) is a partial differential equation involv­
ing both position and time as independent variables. The problem of 
solving it systematically is greatly eased when the variables can be 
separated, which is possible when the potential is independent of 
time and fi does not mention t, a very common situation. Then 

~ h2 
H= --V2 + V(r) 

2m 
(3.1) 

and there are energy eigenfunctions u. which depend on r but not 
on t, 

flu. (r) = E.u. (r) (3.2) 

To each u. there corresponds a solution of the TDSE: if the 
circulart frequency w. and the wave function 1/J. are defined by 

hw. =E. 
1/Js (r, t) = U5 (r )e -iw,t (3.3) 

then 

(3.4) 

t The adjective 'circular' will usually be left implicit in future. 

16 
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as required. In view of the special relationship between the 1/J. and 
u., equation (3.2) is called the time-independent Schrodinger equa­
tion (TISE).t 

The physical properties of the energy eigenstate represented by 1/J. 
do not change with time, because 1/J. varies only by an overall phase 
factor.:j: Such a state is therefore called stationary. 

A general wave function 1/J at t = 0 may be expanded§ in terms of 
the u., since they form a complete set, 

1/i(r, 0) = r c.u.(r) (3.5) 

The continued development of 1/J(r, t) according to the TDSE is then 
obviously given by 

(3.6) 

Thus all problems giving rise to time-independent energy operators 
are easily handled once the energy eigenfunctions u. and the energy 
eigenvalues E. (or frequencies w,) are known. The solution of the 
TISE is therefore a prime objective in practical calculations. 

Probability cummt density (PCD) As a preliminary step equa­
tion (2.18) may be written out in full, together with its complex 

t The relationship between the TDSE and the TISE in quantum mechanics is 
similar to that between the common wave equation and the Helmholtz equation in 
the classical theory of wave motion. For example a displacement 1/1 in a stretched 
string satisfies the wave equation 

_!_ if-1/1 = i!21/! 
c2 i!t2 i!x2 

and, if 1/1, varies with the particular frequency w,, 

1/1, = u.(x) cos (w,t +a,) 

where a, is a phase angle. Substitution into the wave equation gives the Helmholtz 
equation 

with ck, "" w,. 
:f: Vide problem 1.6. 
§An explicit formula for the constants c, will be derived later (equation (4.16)). 
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conjugate: 

(3.7) 

When the first equation, multiplied by (i/h)l/1*, is added to the 
second equation, multiplied by -(i/h)l/1, 

_ ~ ( 1/1* 1/1) = -1/1* (a"')_ (a"'*)l/1 
at at at 

= .!:!!:._ {(V21/1*)1/1- I/I*(V21/J)} 
2m 

(3.8) 

Now the vector j, known as the probability current density or PCD, 
can be defined by 

(3.9) 

and an equation of continuityt can readily be established between 
the PCD and the PPD: 

v. j+~ (1/1*1/1) = 0 
at 

(3.10) 

The physical significance of the PCD and the equation of con­
tinuity can be exposed with the help of Gauss's theorem, applied to 
an arbitrary volume W enclosed by the surface S: 

:t J 1/1*1/Jd-r=- J V.jd-r=-Jj.dS (3.11) 

w w s 

The rate of change of the probability of finding the particle inside 
the volume W is equal to the inward flux of the PCD. Thus j. dS 
may be interpreted as the probability per unit time that a particle 
passes through dS. 

t Similar equations in the classical theory of wave motion connect energy fluxes 

and densities. 
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§4 Mathematiall properties of wave functions and operators 

Hermitian operators The five operators introduced in section 2 
must be shown to be Hermitian, as defined by equation (2.12). 
Certainly r is Hermitian because it is multiplicative, and r is real: 

J 1/Jf(rt/lz) dT = J 1/Jfrt/lz dT = J (rt/11)*1/Jz dT = J (rt/11)*1/Jz dT 

(4.1) 

Similarly V is Hermitian, because it is multiplicative and V is a 
real functiont of r and t. 

The Hermitian characteristics of p and T are less straightforward 
to discuss. In one dimension, an integration by parts from x1 to x2 

gives 

x2 x2 

J 1/Jt( -ih aa~2 )dx = J ( -ih aa~1) * 1/12 dx- ih[ 1/Jft/12 I: (4.2) 
Xt X1 

Similarly, after two integrations by parts, 

J
x2 

( hz azt/1 ) Jx2 
( h2 a21/J )* 1/Jf ----2 dx = ----1 1/12 dx 

2m ax2 2m ax2 
x, x, 

(4.3) 

Obviously p and T are Hermitian in the range x1 :so; x :so; x2 if the 
second terms on the right-hand sides of these equations can be 
discarded. 

In many problems the particle is in a bound state so that its wave 
function is localised near some finite value of x; the wave functions 
are either zero at x1 and x2 or else they tend to zero exponentially 
as x1 ~ -oo, x2 ~ +oo. In either situation the unwanted terms disap­
pear. 

Sometimes it is not convenient to consider a region of space 
sufficiently large to embrace the entire wave function. For example, 

t Sometimes, though not in this book, a complex and non-Hermitian Vis used as a 
calculational device, to describe the disappearance of particles into states that the 
physicist does not want to discuss. Only a partial picture of the situation can be 
gained from such calculations. 



20 BASIC QUANTUM MECHANICS 

a beam of particles may be accelerated (x very negative), scattered 
by a field of force (x = 0), and finally detected (x very positive). The 
accelerator and detector play an essential part experimentally, but it 
is hardly desirable to include descriptions of them in a quantum 
mechanical analysis of the scattering process. This may be avoided if 
finite limits x1 and x2 are chosen so that the scattering region is 
included but the accelerator and detector are excluded. The artificial 
restriction of the space under scrutiny (x1 :s; x :s; x2) has to be 
matched by an artificial restriction on the wave functions; they have 
to satisfy boundary conditions at x1 and x2 such that the unwanted 
terms in equations (4.2) and (4.3) vanish. 

A possible boundary condition to impose on every 1/J, including of 
course 1/11 and 1/12 , is that 

(4.4) 

However, it is usually better to work with the periodic boundary 
conditions 

(::) x 1 = (::) Xz 
(4.5) 

The advantage is that 1/J can be a momentum eigenfunction, or a 
superposition of momentum eigenfunctions. t 

Similar considerations apply in three dimensions. If the particle is 
not localised, a possible boundary condition is 

(1/!)s=O (4.6) 

on the surface S of some suitable volume of space. Alternatively 
there are again the periodic boundary conditions, active on the 
surfaces of a cube of side L, 

1/1(-L/2, y, z): 1/f(L/2, y, z) } 
(V 1/1 )_L/2,y,z- (V 1/1 )uz.y.z 

with corresponding equations for y = ±L/2, z = ±L/2. 

(4.7) 

Finally, the Hermiticity of H is guaranteed because it is the sum 
of other operators, T and V, which are Hermitian. The number of 
particles is consequently conserved: 

:t f .p*.p dT = -~ {f .p*(HI/1) dT- f (HI/1)*1/1 dT}= 0 (4.8) 

t Cf. l/1., 1/Jb, and l/Jc in section 1. 
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Dirac notation Many times already the complex conjugate of one 
function of position has been multiplied by another function of 
position and the product has been integrated over all space, or over 
all of a special region of space if the particles are not localised. Such 
integrations are indeed very characteristic of quantum mechanics, and 
it will be worthwhile having a nomenclature and a shorthand 
notation for them. The integral on the left-hand side of the identity 

f t/Jft/Jz dT = (t{11 I t/Jz) (4.9) 
all space 

is called the scalar product of t{12 with t/Jt. and on the right-hand side 
this is expressed in the neat notation invented by Dirac. Obviously 

The normalisation integral (equation (2.1)) is now written 

<t/JI t/J)= 1 

and the Hermitian condition (equation (2.12)) becomes 

( t/J1 I lt{lz) = <ft/J1 I t/Jz) 

= (o/11 r lt/Jz) 

(4.10) 

(4.11) 

(4.12) 

The extension to the Dirac notation in the second line here has a 
symmetrical form which reflects the fact that r may equally well 
operate on t{12 or t{11. Obviously this notation would be meaningless 
and inappropriate if the operator concerned were not Hermitian. In 
future (o/11 r lt/Jz) will be called the matrix element of r taken between 
t{i2 and t/J1· 

An operator which is not Hermitian, k say, also has a matrix 
element taken between t{12 and t/Jt. but this must be understood to 
mean (t{11 I kt{12 ) and not (kt{11 I t/Jz). 

Orthogonality of eigenfunctions If u1 , u2 are two eigenfunctions of l 
belonging to the eigenvalues lt. lz, 

(u11 r iuz) = (u1 I luz) = lz(U1 I Uz) 

= (fu1 I Uz) = l1(u1 I Uz) 

and so (12 -11)(u1 I u2) = 0. If 11 and 12 are different, 

(u1 I u2) = 0 

(4.13) 

(4.14) 
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and uh u2 are said to be orthogonal. t Generally, if u,. and u. are any 
two eigenfunctions of f, 

<u. I u..> = s., (4.15) 

where the Kronecker symbol s., is zero if r=/= s and 1 if r = s. A 
collection of all the normalised mutually orthogonal eigenfunctions 
obeying equation (4.15) will be called a complete orthonormal set. 

None of the functions in the set can be expressible in terms of the 
others, or equation (4.15) would fail: in other words all the func­
tions must be linearly independent. 

Sometimes two or more eigenfunctions, orthonormal and linearly 
independent though they may be, belong to the same eigenvalue of 
some observable. This is called degeneracy, and the eigenfunctions 
and states involved are said to be degenerate. The observable 
concerned should be stated, or at least kept in mind, because two 
eigenfunctions which are degenerate with respect to one observable 
are not necessarily so with respect to another.:j: The possible exis­
tence of degeneracy complicates many otherwise simple theorems in 
quantum mechanics, but further remarks in section 12 will show 
how best to deal with it. 

Expansion in eigenfunctions The interpretative structure of the 
theory makes it very important to be able to expand any 1{1 in terms 
of eigenfunctions. The expansion is easily carried out if the eigen­
functions are arranged into a complete orthonormal set. For if 

the coefficient c. may be determined by forming the scalar product 
of 1{1 with u., 

<u. II/I>=~ <u. I c.u..> = ~ c.<u. I u..> = ~ c.s., =c. (4.16) 

and therefore the required expansion§ is 

(4.17) 

t Cf. problem 1.2. 
:j: Cf. table 1.1: «//a and «//b are degenerate in energy, but not in momentum. The 

latter fact is quite enough to guarantee that they are orthogonal. 
§ Cf. the third of equations (1.6), where («//a I «/!c)= -i2-112 and («//b I «/!c)= i2- 112. 
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If I{! is normalised, 

(1/1 I 1/1) = L L (cru.l c,u,) = L L c~c,Srs = L ic,l2 = 1 (4.18) 
r s r s 

as promised in equation (2.11). 

Closure According to equation ( 4.17) two functions cf>r ane c(>., not 
necessarily normalised, may be expanded in terms of a complete 
orthornormal set by means of the relations cf>r =I (uk I cf>r)uk and 
cf>, =I (ui I c/>,)~. Then, k 

j 

k j 

k j 

= L (cf>r I uk)(uk I c/>,) (4.19) 
k 

This is the closure relation, of which equation (4.18) is actually a 
special example. Another useful special form arises if cf>r is identified 
with fu. and c(>, with fu,: 

(u.l f21u,) = (fu.l fu,) = L (u.l f luk)(ukl flu,) (4.20) 
k 

Pictorial summary Many of the results obtained so far can be 
summarised in a pictorial way. The illustrations exploit analogies 
between ordinary unit vectors and their scalar products, on the one 
hand, and normalised wave functions and their scalar products, on 
the other. 

In figure 4.1 a complete orthonormal set of eigenfunctions of l is 
represented pictorially by orthogonal unit base vectors. The set in 
this example has three members, but in general the number may be 
more or less, or even infinite. The scalar product of any pair of base 
vectors in the picture is of course zero, and so is the scalar product 
of any pair of eigenfunctions in the theory. 

In figure 4.2 a general normalised wave function I{! is represented 
by another unit vector, oriented so that its direction cosine with 
respect to each base vector u, is the scalar product (u, I 1/J).t The 
projection of the unit vector I{! on the base vector u, is (u, I I{!)= c., 

t The fact that (u, I 1/J) may be a complex number does not receive pictorial 
recognition. 
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Figure 4.1 A picture of a set of three orthogonal eigenfunctions. 

------ t/1 

Figure 4.2 A picture of a general normalised wave function ljl, and its 
projections on to the three basic eigenfunctions of figure 4.1. 

and the square of the length of this projection is lc.l2 , the chance of l 
being found to have the value l •. The equation ic112 + ic2 12 + ic3 l2 = 1 
corresponds to the usual relation for the sum of the squares of 
direction cosines. 

In general the vector representing I{! changes its direction as time 
goes on. One exception occurs if I{! represents a stationary state of 
energy E"' and f does not mention t explicitly; then the vector 
representing I{! does not move because the projection of I{! on each 
u. varies only by the overall phase factor e-iw.t and is therefore of 
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constant length. Another exception occurs (equation (3.6)) when the 
us are energy eigenfunctions and fi does not mention t; the projec­
tion of 1/1 on each us is then again constant in length but varies with 
its own particular phase factor e-iw,'. 

The abstract space in these illustrations is called Hilbert space. 

Expectation values of observables If the state represented by 1/J is 
set up many times, and the value of l measured each time, then the 
average of all the results is called the expectation value of l. It will 
be written as (l). 

The expectation value of r is easily calculated from the position 
probability density, 

(r) = f r Jl/112 dT = f 1/l*rl/1 dT = (.pj r j.p) 

The form of this result is in fact quite general. If again 

1/J = L CsUs 

where the us are the eigenfunctions of l, 

(.pj f Jl/1) = (1/1 I f.p) = L(c,.u,.j fcsus) 
r,s 

r,s r,s 

But 

since the probability of getting the result ls is ics j2 , and so, 

(l) =<.PI f j.p) 

(4.21) 

(4.22) 

(4.23) 

Products of operators It is easily seen that the one-dimensional 
position and momentum of a particle do not commute, 

(px).p = -ih_i_ (xl/1) = -ihx a.p- ihl/1 = (xp- ih)l/1 (4.24) 
ax ax 

so that 

xv-vx=ih (4.25) 
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This intriguing and beautiful equation was first obtained by Born 
and Jordan in 1925. 

The commutator of two operators f and 1ft is defined to be 
fm- mf and written as [f, m]. Thus, 

[x,p]=ih (4.26) 

Typical commutation relations for the three-dimensional position 
and momentum of a particle are 

(pxx)l{! = -ih~ (xl{!) = -ihx a!{!- ihl{! = (xpx- ih)l{!} 
ax ax 

(4.27) 
(pxy)l{! = -ih ~ (yl{!) = -ihy a!{!= (ypJl(J 

ax ax 

and generally, 

(4.28) 

where the suffixes i, j take the values 1, 2, 3 for the x, y, z compo­
nents of r and p respectively. 

If l does not commute with m it may be shown that fm is not a 
Hermitian operator, and therefore does not represent an observa­
ble. In general, t 

(o/1 I fmo/2) = <fo/1 I mo/2> = (mfo/1 I o/2> 
=!= < fmo/1 I o/2> (4.29) 

The form of this equation shows that the symmetrical product 
fm + mf is always a Hermitian operator. Of course if f and m do 
commute, then fm, and indeed any real function of r and m, are 
Hermitian operators. 

A particularly simple product operator is ff = f2, which does 
represent an observable F because f certainly commutes with itself. 
An eigenfunction us of l belonging to the eigenvalue Is is also an 

t The first step here assumes that equation (2.12) still holds good if mo{!2 is 
substituted for 1{!2 itself. This is usually true, except when i is a differential operator 
and the particle is not localised. The Hermitian character of i must then be enforced 
by boundary conditions, but mo/12 does not necessarily obey the conditions which 1{!2 

itself does. In a one-dimensional problem with periodic boundary conditions, for 
example, xo/12 = xo{!2 could not have the same value at the boundaries x1 and x2 • 

Whenever product operators are handled in this way the results must therefore be 
used with due discrimination. This is particularly important in section 5. 
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eigenfunction of F belonging to the eigenvalue 1;, 
h -AA -A -A _2 l Us- l(lus)- l(l.us)- lslus- l. Us (4.30) 

Clearly l 2 cannot have negative eigenvalues. It follows, for example, 
that a measurement of the kinetic energy of a particle (T=p2/2m) 
never gives a negative result. 

Symmetric energy operators and parity The observables consi­
dered so far have all been familiar from classical physics, but there 
are others that can be conceived only in the framework of quantum 
mechanics. They are defined by means of the linear and Hermitian 
operators that represent them. One such observable is the parity ll 
represented by the operator fi, whose instructions in one dimension 
are that 1/J(x) is to be replaced by 1/1( -x) at every point x. Thus 

fii/I(x) = 1/1(-x) (4.31) 

This amounts to a reflection of the wave function about the point 
x = 0. If 1/1 happens to be an even function of x, 

fii/I(x) = 1/1(-x) = 1/J(x) (4.32) 

and the parity evidently has the eigenvalue + 1. Similarly, if 1/1 
happens to be an odd function of x, the parity has the eigenvalue 
-1. There is no other possible eigenvalue, apart from ±1, because 
any "' is an eigenfunction of ll2 belonging to the eigenvalue + 1, 

fi 2 1/J(x) = flt/1(-x) = 1/J(x) (4.33) 

The commutation relation of fi with fi is of interest, particularly 
when V(x) is an even function of x. Then 

fiV(x) = V(-x)fi = V(x)fi (4.34) 

As forT, 

A a a A a dx A a A } n-=--n=---n= --n ax a(-x) ax d(-x) ax 

A h2 a2 h2 a A a h2 a2 A n(-2m ax 2 ) =2m ax n ax= -2m ax 2 n 

(4.35) 

Thus, when V(x) is an even function of x, 

[fi, H]=O (4.36) 

In section 5 it will appear that interesting general consequences 
follow when two observables commute, particularly when one is the 



28 BASIC QUANTUM MECHANICS 

energy. In anticipation it can be stated that a consequence of 
equation (4.36) is that the energy eigenfunctions, if they are not 
degenerate, must be parity eigenfunctions also, that is even or odd 
functions of x. Further, parity is conserved and in particular an 
eigenfunction of parity remains so for all time. Since an eigenfunc­
tion of parity, belonging to either eigenvalue, has a PPD which is an 
even function of x, any departure from parity conservation can be 
detected. If that were to happen it would be a sure sign that V(x) 
and therefore H was not in fact symmetric about x = 0. 

In three dimensions fi can be specified in either Cartesian or 
spherical polar coordinates: 

fii{!(x, y, z) = 1(1(-x, -y, -z) } 
fii{!(r, 0, cf>) = l{!(r, 7T- 0, cf> + 7T) 

(4.37) 

From the second form it is easy to see that a spherically symmetric 
H, as in the hydrogen atom, leads again to equation (4.36) and its 
consequences. 

Continuous eigenvaluest It has so far been tacitly assumed that 
the eigenvalues of l are discrete, although the position operator is 
an obvious exception. If in fact the eigenvalues of l are continuously 
distributed from zl to l2, then the expansion in eigenfunctions 
(equation (2.9)) has to be written as an integral over l, 

12 

1/1 = J c(l)u1 dl (4.38) 
l, 

and the interpretation must be altered to say that, if (1/1 II/I)= 1, the 
chance of getting a value of l between l and l +dl is ic(l)il dl. Then 
icOW may be referred to as the probability density for the observ­
able l. 

The orthogonality of eigenfunctions belonging to different eigen­
values (equation (4.15)) is now expressed by 

(4.39) 

whete the Dirac IS-function cS(Z-Z') is zero when l-l' =f 0. Its value 
at l-l' = 0, which fixes the normalisation of ur. is defined to be 

t This topic may be skipped at a first reading. 
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positively infinite in such a way that 

12 

J 5(1-1') d1' = 1 (4.40) 
1, 

Clearly 5(1-1') is a highly singular mathematical function, which 
only has a meaning when it appears in an integral similar to the one 
that defines it. An elementary property is 

12 12 

J c(1')5(l-1') d1' = J c(l)5(1-1') dl' 
1, 1, 

12 

= c(l) J 5(1-l') d1' = c(l) (4.41) 
1, 

The 5-function is only non-zero when its argument is zero, and so a 
reversal in sign of the argument has no effect. The last two equa­
tions are still satisfied when 5(l' -l) is substituted for 5(1-1'). 

The orthonormality of the eigenfunctions, as defined by equations 
(4.39) and (4.40), ensures that the total chance of getting a result 
from a measurement of l is unity. For, 

12 12 

(tfr ltfr) = J J (c(l)u1 I c(l')u 1·) d1' d1 
1, 1, 

12 12 

= J J c*(l)c(l')(u1 I U1·) d1' dl 

12 12 

= J c*(l){ J c(l')5(l-l') dl'} dl 
r, 1, 

12 

= J c*(l)c(l) dl (4.42) 
1, 

Since (t/11 t/1) = 1, 12 

J lcOW dl = 1 (4.43) 

1, 

in correspondence with equation (2.11). 
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Finally it may be shown that the expansion coefficient c(l) in 
equation (4.38) is equal to (u1 II/I), 

12 12 

(ul II/I)= J (ul I c(l')ul.) dl' = J c(l')(ul I U1·> dl' 
~ ~ 

I, 

= J c(l')8(l-l') dl' = c(l) 
It 

in correspondence with equation (4.16). 

§5 General properties of quantmn mechanics 

(4.44) 

Correspondence to classical mechanics The expectation value of 
an observable l was defined in section 4 and calculated in equ~tion 
( 4.23); its rate of change with time is given by 

(5.1) 

Differentiating each of the three parts of the integrand in turn, 

and, with the aid of Schrodinger's equation, 

:t co= ~(HI/II f II/I)+ ( "'' :: '"' )-~ (1/11 f IHI/1) 

= ( "'' e: -~ (ffi- fif) 1 '"') (5.3) 

The right-hand side here is clearly the expectation value of the 
operator in the parentheses, so that, 

d (af i f. A Y -(l)= ---[ H] 
dt at h ' 

(5.4) 
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As an example the general observable l may be identified with the 
momentum p. Since p and T commute, t 

[p, H]=pY- Vp=-ihVV+ihVV 

= -ih(VV) (5.5) 

Clearly ap/at = 0, since p does not mention t, and so equation (5.4) 
becomes 

d 
dt (p) = ( -(VV)) (5.6) 

which recalls at once the classical relation dp/dt = -VV. This is an 
example of a general rule, known as the correspondence principle, 
that the expectation values of observables in quantum mechanics 
behave in the same way as the observables themselves do in classical 
mechanics.t The characteristic feature of quantum mechanics is the 
frequently occurring fluctuations of the measured values of observa­
bles around their expectation values, a topic that will be examined 
soon. 

A second example of the correspondence principle in action arises 
when l is identified with the position r. Since r and V commute, 

[A HA] 1 [A A2] 
r, =2m r,p 

The ith component is 

u,, it2J = u,, vn = u,, v.Jv. + v.u,, v.J = 2ihp, 

and so 

[r, p2J = 2ihit 

Since art at= 0, equation (5.4) becomes 

d 1 
dt (r)= m (p) 

which corresponds to the classical equation dr/dt = p/m. 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

t If operator equations seem obscure at first it will be found worthwhile to include 
the wave function explicitly. Then the last step in this particular equation will be seen 
to involve nothing more difficult than the derivative of the product of two functions, 

VVt/1 = (VV)I(I+ VVI/1 

t Equation (5.6) is also known as Ehrenfest's theorem. Vaguer and more elusive 
versions of the correspondence principle are sometimes encountered. 
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As a final example, the total energy H may be considered in the 
situation where the potential Vis not a function of t. Then aHJat = 
0, and of course the commutator of H with itself vanishes, so 

:t (H)=O (5.11) 

corresponding to the classical conservation of the total energy in the 
same situation. 

Heisenberg's uncertainty principle The first part of section 5 has 
described how the expectation values of observables in quantum 
mechanics behave like the corresponding classical observables. In 
quantum mechanics, of course, the actual measured value of an 
observable is liable to differ from its expectation value, except when 
the particle is in an eigenstate of that particular observable. It is not 
in fact possible for a particle to be in an eigenstate of every 
observable simultaneously, so that there cannot be a physical situa­
tion in which all the observables are free from uncertainty. 

It is easy to find a condition which must be satisfied if a wave 
function t{l is to be an eigenfunction of two observables l and m. If 
[ifJ = 1.1/1 and ml/1 = m,.l/1, 

f~l/1 = f(m,.l/1) = m,.(fi/J) = m,.l.l/1} (5.12) 
mll/1 = m(l.ifJ) = z.(ml/1) = l.m,.l/1 

Obviously m,.l.t{l = lsmrt{l, so that 

(5.13) 

Sometimes the commutation relations between f and m are such 
that this condition can never be satisfied. In one-dimensional prob­
lems, for example, the position and momentum observables obey 
the commutation relation [x, p] =iii; but if t{l is normalised ilit{l 

cannot be zero everywhere. It follows that simultaneous eigenstates 
of x and p do not exist, and these observables are therefore said to 
be complementary. In three-dimensional problems x and Px• y and 
pY, z and Pz are pairs of complementary observables because of the 
commutation relations [rio Pi]= iMii. 

Sometimes l and m do not commute, but [ f, m] is equal to an 
operator rather than a constant. This situation produces a modified 
type of complementarity, less absolute than that involving x and p. 
The point is that the operator just mentioned may produce zero for 
some very particular wave functions 1{1, though not for all. The 
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complementarity of l and m is then abated for these very particular 
wave functions. The orbital angular momentum components in 
section 10 provide a fine example. 

So far a necessary but not sufficient condition has been derived 
for 1{1 to be a simultaneous eigenfunction of l and m. However, the 
discussion can be sharpened further; if [f, m]l{l = 0 and if 1{1 is an 
eigenfunction of l belonging to the eigenvalue 1., 

(5.14) 

Here ml{l is seen also to be an eigenfunction of l, belonging to the 
same eigenvalue ls. Provided that this eigenvalue is non-degenerate, 
ml{l can differ from 1{1 only by a multiplicative constant, m,. say. Thus 
ml{l = m,.l{l and "' is definitely an eigenfunction of m also. 

The uncertainties which must be associated with a pair of com­
plementary observables can be discussed quantitatively. A measure 
ill of the uncertainty of l is given by 

(lllf = C1 2)-Cl? = (t(!J f2Jt(!)- (I{!/ f /1{1)2 

= (t(!J (f- (t(!J f Jt(!)f /I{!) 

= (1/11 l'2 /t{l) (5.15) 

where f' = f -(t(!J f /1{1), the second term being simply multiplicative. 
The uncertainty of the complementary observable m is similarly 
measured by am. Then, 

(alf(llmf = (t(!J ['2 /t{l)(t(!J m'2 Jt(!) 

= <f't(! 1 f't(!)(m't(! 1 m't(!) (5.16) 

Now Schwarz's inequalityt states that for any two complex func­
tions f and g, 

(5.17) 

and, obviously, 

1 f f*g dTr;?; u Im (f*g) dTr = {f ;i (f*g- g*f) dTr 
(5.18) 

t The inequality may be obtained by considering that S h * h dT;;. 0, where h = 
(j' f*g dT)f -(j' f*f dT)g. 
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Iff is identified with l'l/1, and g with m'l/1, these two inequalities 
may be used in the right-hand side of equation (5.16): 

(at?(am)2~ {;i «f'l/1 I m'l/l>-<m'l/1 I f'l/1)) r 
~("'l;ia'rn.'-m'f') l"'r 
~ c;i [f', m'J)2 (5.19) 

Obviously, 

[ f', m. 'J = [ f, m. J (5.20) 

and so finally, 

(5.21) 

This is the mathematical expression of Heisenberg's uncertainty 
principle. It may be applied at once to the one-dimensional position 
and momentum to give the example 

Llx Llp~h/2 (5.22) 

The certainty of the classical theory would be regained if h were 
actually zero; this is a general feature of the uncertainty principle, 
since a non-vanishing [f, m] always contains a factor h. 

When attention is artificially restricted to a region of special 
interest the uncertainty principle must be applied with care. In 
section 1, for example, it has to be remembered that 1/Ja, 1/Jb, and 1/Jc 
really repeat themselves over and over again outside the region 
- L/2 ~ x ~ L/2. Physically Llx is infinite, and so Llp can be zero for 
1/Ja and 1/Jb· Mathematically the failure of equation (5.22), when 
attention is restricted to a special region, is explained by the 
footnote on page 26. 

The uncertainty principle will be extended later (sections 25, 26) 
to discuss the spread LlE of an energy measurement carried out in a 
finite time interval Llt. The considerations involved are qualitatively 
somewhat different from those presented here. 

Conservation of observables Usually afJat = 0, and in some physi­
cal situations it may happen that [f, H] = 0. According to equation 
(5.4) (l) is invariant, and so are ([2), Lll, and indeed the expectation 
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value of any function of l. The observable l is then said to be 
conserved. In particular, if a measurement of l is certain to yield the 
eigenvalue ls at some time, then it is certain to do so at all times. 

The simplest example is the conservation of energy whenever 
aH/at = 0 (equation (5.11)). Another instructive example is the 
conservation of linear momentum for a free particle, when H = 

p2/2m and [p, H] = 0. All the conservation laws of classical 
mechanics are reproduced in this way. 

Problems 

2.1 Suppose that the eigenfunctions of l are not degenerate, and 
that u.(r) and u~(r) are both normalised eigenfunctions of l 
belonging to the eigenvalue l.. Show that the most general 
possible relationship between the two eigenfunctions is 

u.(r) = u~(r)ei11 

where 5 is constant and real. 

2.2 Show that a non-degenerate solution to the simplest form of 
TISE (equation (3.2) with H given by equation (3.1)) can be 
expressed as a function which is real everywhere. 

Show further that the PCD for the solution is zero 
everywhere. 

[Hint: Suppose us to be a solution, write it in the form 
v. + iw. where Vs and w. are real everywhere, substitute into 
the TISE, and separate the real and imaginary parts of the 
equation. The absence of degeneracy points to a relationship 
between v. and w •. Comment: A complete set of real functions 
which solve the TISE can also be found when there is degener­
acy, but a set of complex functions may be more convenient if 
its members are simultaneous eigenfunctions of energy and 
some other important observable. Thus in equations (1.6) 1/!a 
and 1/!b are eigenfunctions of momentum, but 1/!c is not.] 

2.3 Use equation (3.9) to calculate the PCD for the states rep­
resented by 1/!a and 1/!b in equations (1.6). Verify that the PCD 
is equal to p/m times the PPD for these momentum eigen­
states, as might be expected from the classical relation p = mv. 
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2.4 In spherical polar coordinates the components of the operator 
V in the directions in which r only, (J only, and cp only increase 
are 

v =!___ 
r ar 

v -!~ 
ll- rae 

v =-1-~ 
q, r sin (J acp 

The radial probability current density (RPCD) is the flux of 
the PCD through a spherical surface of radius r. 

If 
1/J = (1/2'7T 112r)S(r) 

show that the RPCD is 

..!!!._ (dS* S _ S* dS\ 
2m dr d;) 

If in fact S = eikr, where k is real, then show that the RPCD is 
hk/m. 

2.5 The matrix elements of an operator are so called because they 
can be arranged in the form of a square matrix; if f in 
particular is a Hermitian operator, then (1/!m\ f \1/Jn) appears in 
the mth row and the nth column. If this matrix element is 
labelled lmm then a Hermitian matrix is one in which lnm = 1:!,"" 
Show that the (1/!m\ f \1/!n) form a Hermitian matrix and that the 
diagonal elements (m = n) are therefore real. 

Show further that if the wave functions used to form the 
matrix elements are in fact the eigenfunctions of l, and if there 
is no degeneracy, then the diagonal elements of the matrix are 
the eigenvalues of l and the off-diagonal elements vanish. 

Jot down the 2 x 2 matrix associated with p, 1/Ja, and 1/Jb in 
section 1. 

2.6 Suppose that f does not mention t, that [f, H] = 0, that the 
u.(r) form a complete orthonormal set of non-degenerate 
eigenfunctions of l, and that 

1/!(r, t) = L c.(t)u.(r) 
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Show that 

~lc 12 =0 dt s 

for any s, as would be expected when lis conserved. [Hint: In 
the circumstances that are postulated an eigenfunction of l is 
also an eigenfunction of H. Comment: The extension to cover 
degeneracy is quite difficult, but it can in fact be proved that 
the overall probability of l being found to have each eigen­
value is invariant.] 

2.7 The energy operator for a particle moving in a three­
dimensional potential field V(r) has the form 

A If a( 2 a) (2 

H=-2mr2 or r or +2mr2 +V(r,O,</>) 

in spherical polar coordinates r, (), q,. The operator I represents 
the angular momentum of the particle round the origin: it 
mentions () and </>, but not r. 

Show that the angular momentum is conserved, if the poten­
tial is central and described simply by V(r). 
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One-dimensional applications 

§6 Free particles: momentum probability density 

Stationary states It is a wise habit to start the quantum mechanical 
analysis of a physical situation by writing down the energy operator 
H, whenever possible. For free particles 

A A h?iP 
H=T=---

2mox2 
(6.1) 

Normally the next steps would be to write down the TISE, and 
solve it to find the stationary state wave functions U5 (x) and the 
energy eigenvalues Es = liw5 • The problem in hand is so simple, 
however, that the TDSE has already been written down and solved 
directly in section 1. According to equation (1.2) the solutions are 
wavelike, and a typical one after normalisation can be written 

1/Js(X, t) = L -1/2ei(k,x-w,t) (6.2) 

If attention is again confined to the finite region - L/2 ~ x ~ L/2, 
then periodic boundary conditions should be imposed. In essence 
they require that the interval L should be an integral multiple of the 
wavelength 27r/ ks. Then 

ks = 27Ts/L, s = 0, ±1, ±2, ... (6.3) 

38 
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where s is the first example of a quantum number, whose value must 
be chosen from a set of permissible values, not necessarily integral 
in every problem. The function of a quantum number is to ensure 
that a general solution to the TDSE or TISE, like equation (6.2), is 
specialised to conform to the boundary conditions. 

The value of each w. can be obtained from k. by means of the 
dispersion relation, equation (1.3). Thus 

(6.4) 

The transition from the mathematical style of section 1 to the 
more standard one of section 3 is made by writing equation (6.2) in 
the form of equations (3.3): 

1/J.(x, t) = u.(x)e-. iw,'} 
u.(x) = L -112e•k,x 

(6.5) 

It is readily shown that u. is an eigenfunction both of momentum 
and energy,t belonging to the eigenvalues hk. and hw. respectively. 
In fact 

(6.6) 

Discrete eigenvalues of momentum According to equations (6.3) 
and (6.6), 

Ps = 27Tsh/L (6.7) 

Since the quantum number s must be integral, the momentum 
eigenvalue spectrum is discrete: there is a gap between successive 
eigenvalues, equal to 27Th/L. Obviously this gap may be made as 
small as desired by taking L suitably large, but it is always possible 
to count the number of eigenvalues which lie in a certain interval of 
momentum. It will appear later that this is indeed a very important 
kind of operation. 

If a momentum interval 8p. is considered, then division of 8p. by 
the gap between eigenvalues will yield the corresponding number 
8N of momentum eigenvalues: 

8N = (L/27Th)8p.J 
8N L 
-=--
8p. 27Th 

(6.8) 

This may be called the density of states in momentum space. 

t Notice that p commutes with H for free particles. 
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Discrete eigenvalues of energy The energy eigenvalue spectrum is 
also discrete, because 

(6.9) 
The gaps between successive energy eigenvalues become larger as 
E. and s increase, because of the dependence on s2 • This means that 
the density of states in energy space decreases as the energy 
increases.t 

Wave packets It has been seen that a wave function proportional 
to eik'x represents a state in which the particle has the momentum 
hk'. On the other hand the position of the particle is undefined, 
since the PPD is constant. It is interesting to consider the effect of 
localising the particle, by putting into the wave function a modulat­
ing amplitude proportional to e-a2x 212, where a is a real constant. 
After normalisation:J: the resulting wave function, which is an exam­
ple of a wave packet, has the form 

(6.10) 

at t =0. 
The energy operator H is of course unchanged, and use of it 

shows that 1/f(x, 0) does not obey the TISE, and so it is not an energy 
eigenfunction and does not represent a stationary state. For the time 
being the discussion will be confined to the state of affairs at t = 0. 

The PPD is immediately calculable, and it has the Gaussian shape 
shown in figure 6.1. The PPD is symmetric about x = 0, and 

PPD 

0 
-2112 t:.x 

Figure 6.1 The PPD of the wave packet at t = 0. 

t Vide problem 3.2. 
:j: Vide appendix, equation (1). 
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MPD 

0 
I I I .. 

hk'-2112 J1p hk' hk'+2112 J1p 

Figure 6.2 The MPD of the wave packet at t = 0. 

therefore the expectation value of x must be zero. Indeed 

(x) = (1/f(x, O)l x 11/!(x, O)) 
= 

a J 2 2 =-- xe-ax dx=O 
7Tl/2 (6.11) 

because the integrand is an odd function of x. 
As for the expectation value of x2 and the uncertainty of position 

Ax, 

(x2 ) =~ f= x 2e-a2x 2 dx = 1/2a2 } 
7Tl/2 

Ax= ((x2)-= Cxi)112 = 1/2112a 

(6.12) 

with the help of the appendix, equation (2). It follows that the PPD 
falls to 1/e of its peak valuet at x = ±a-1 = ±2112Ax. 

Obviously 1/f(x, 0) is not an eigenfunction of the momentum, but 
the expectation value (p) is unchanged by the introduction of the 
factor e-a•x•12 : 

Cp)=(l/11 v II/I>=( 1/11-ih ::) 

= 

i ha J (. , 2 ) 2 2 = .--- lk -axe-ax dx =hk' 
7Tl/2 (6.13) 

t Of course there is the same relationship between any Gaussian distribution and 
its standard deviation. 



42 BASIC QUANTUM MECHANICS 

The value of (p2) is 

Cp2 ) = (1/11 P2 11/1) 
00 

=- h?a f (-a2-k'2-2ia2k'x+a4x2)e-a2x2dx 
7Tl/2 

(6.14) 

and so the uncertainty ~P in the momentum of the particle is given 
by 

~p = ((p2)-(p)2)112 = ha/Zl/2 

The product ~x ~p has the value 

~X ~p=h/2 

(6.15) 

(6.16) 

which is in fact the minimum allowed by the uncertainty principle. 
This is a special property of the Gaussian modulation of 1/!(x, 0). 

Momentum probability density (MPD) Some theoretical develop­
ment is needed to get detailed information about the momentum of 
the particle. When a wavefunction 1/1 is not an eigenfunction of 
momentum it is necessary to expand it in terms of a complete 
orthonormal set of momentum eigenfunctions. Such a set is pro­
vided by the second of equations (6.5), and the chance that the 
momentum will be found to have the value p. is 

(6.17) 

according to equation (4.17). The limits of integration are x = ±L/2, 
and the arbitrary length L must be set very large so that all values of 
x for which 1/1 is significant are covered. 

With that condition lc. 12 is proportional to 1/ L, which looks 
puzzling at first sight. However, the output of real physical interest 
is the MPD, ic(p.)IZ, defined so that the chance of the momentum 
being found with a value between p. and p. + 8p. is ic(p.)IZ 8p •. 
When L is very large there are many momentum eigenvalues in the 
range 8p., and so the density of states in momentum space, which is 
proportional to L, becomes a factor. Then, as L --+ oo, 

(6.18) 
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according to equations (6.8). After the superfluous suffix s has been 
dropped, 

(6.19) 

which is happily independent of L. 
If the wave function 1/J(x, 0) is. substituted into the general formulat 

00 

c(p) = (21T~/2,J 112 f e-i(p/ft)x+ik'x-(a2x2/2)dx 

and therefore, 

( 1 ) 112 -(ftk'-p)2/2ft2a2 = --- e 
1Tlt21ia 

I ( )12 = (-1-) -(ftk'-p)2Jft2a2 c P l/21i e 1T a 

(6.20) 

(6.21) 

This distribution, which is again of Gaussian form, is shown in figure 
6.2. The MPD is largest when p = (p ), and it falls to 1/e of its peak 
value at p=(p)±2112.ip. 

Continuous eigenvalues of momentum:j: The MPD was calculated 
by expanding 1/1 in eigenfunctions of p belonging to discrete eigen­
values, and then letting L ~ oo so that the spectrum went over to a 
continuum. The same final result can be obtained more directly by 
using the continuous eigenvalue theory developed in section 4. 

In fact equation (6.19) for c(p) corresponds exactly to equation 
(4.44) and it is only necessary to show that the eigenfunction 
Up= (21Tii)-112e;pxf" is correctly normalised; to check with equation 
(4.39) it must be proved that (Up I Up·)=cS(p-p'). 

It is hardly surprising, in view of its equation with a 5-function, 
that (Up I up.) is positively infinite when p' = p. This can be seen by 
defining the infinite integral in the usual way: 

X 

(Up I U ·) = lim - 1- J ei(p'-p)x/ft dx 
P X-+00 21Tii 

-X 

= lim sin {(p'- p )X/Ii} 
X-+oo 1r(p'- p) 

(6.22) 

t Vide appendix, equation (3). 
*This sub-section, which ends on page 44, may be skipped at a first reading. 
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The function whose limit is to be taken has the value X/7rli when 
p' = p, and so the final result is clearly infinite. 

It is irritating that the expression (6.22) does not settle down to 
zero when p' =f. p, in the limit X~ oo. Instead it oscillates finitely 
around the mean value zero as X increases, with the amplitude 
{ 7r(p'- p )}-1 . Steps may reasonably be taken to damp out these 
oscillations, by modifying the momentum eigenfunctions at ex­
tremely large values of jxj. After all, the eigenfunctions actually 
enter into calculations when scalar products with them of physical 
wave functions 1/J are taken. It is unlikely that 1/J will be significant as 
far away as the moon, let alone at infinity. Thus the scalar products 
will not be affected by the introduction of a factor which differs from 
unity only at extremely large jxj. 

The damping can be accomplished by introducing a factor 
e-elxlfzt., where e is real, positive, and very small. This is the simplest 
factor which will suit the purpose in hand; it has the disadvantage 
that the momentum eigenfunctions are not differentiable, and hence 
cannot respond properly top, at x = 0, but this fault may be excused 
since the uncertainty in the differential goes to zero in the limit 
e ~+0. Thus, 

= 

(Up I up.)= lim 2
1 /i 

e---++0 7T 

J e{i(p'-p)x-elxl}/h dx 

= lim _z_· ( 1 
e-->+0 27r p- p' + ie 

1. e = lm 
e-++0 7r{(p- p')2+ €2} 

(6.23) 

The separate terms in the second line appear when the integral is 
taken in two bites, from -oo to 0 and from 0 to +oo. 

The expression ( 6.23) may be completely identifiedt with 
8(p- p'). It is positively infinite when p' = p, zero when p' =f. p, and 
yields unity when integrated over all p'. 

Time dependence of wave packets Some important facts about the 
development with time of the wave packet can be seen without 
examining the wave function in detail. The momentum is conserved, 
since p is an operator which commutes with H and does not depend 

tIn shorthand, _[ eilk'-klx dx = 21T8(k- k') = 21T8(k'- k). 
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on t. Therefore, 

d d 
- (p)=- (p2)=0 
dt dt 

and (p ), (p2), and hence ~p preserve at all times the values already 
computed for t = 0. 

The value of (x) can also be found quickly. From equation (5.4), 

i. Cx) = -~ C[x H]) = --1-· C[x p2])} 
dt h ' 2hm ' 

[x, p2J = [x, vJv + v[x, vJ = 2ihv 
(6.24) 

with1the help of equation (4.26). So 
l 

d 1 hk'} -(x)=-(p)=-
dt m m 
(x)t = (x)0 +hk't/m 

(6.25) 

The first equation here shows the expectation value of x moving 
along at a velocity which is equal to 1/m times the expectation value 
of p: that is just what would be expected from the correspondence 
principle. 

In order to evaluate (x)t and (~x)t it is necessary to folklw the 
development of the wave function from 1/J(x, 0) to 1/J(x, t). That 
involves a straightforward but unfortunately lengthy calculation. t 
The final result is 

(6.26) 

The same result is predicted by the correspondence principle. An 
uncertainty ~p in momentum produces an uncertainty in position 
(~p)t/m after timet: the usual square law has to be used to combine 
this with the original uncertainty (~x )0 . 

The product (~x )t ~p, which at t = 0 had the minimum value 
allowed by the uncertainty principle, increases without limit as time 
goes on. 

t Vide problem 3.5. 
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§7 Solutions of the TISE 

General features It was explained in section 3 that the TISE 
(equation (3.2)) plays a central role when fi does not mention t. A 
qualitative discussion of its solutions is therefore appropriate now. 

In a region of x where E > V(x) the TISE, with the label s 
implicit, can be written as 

(7.1) 

where 

This linear and homogeneous equation is of the second order, which 
means that it involves the second but no higher derivative of u with 
respect to x. Consequently it must have two linearly independent 
solutions before boundary conditions are taken into account. 

Where k(x) is constant a general solution looks like the superposi­
tion of two standing waves, 

u =A cos (kx)+ B sin (kx) (7.2) 

where A and B are arbitrary constants. Alternatively, by taking 
suitable linear combinations of the terms, u can be made to look 
like two travelling waves, 

(7.3) 

where C and D are arbitrary constants. As a rule bound particle 
states are better represented by standing waves and free particle 
states by travelling waves. 

Where k(x) varies slowlyt these simple solutions become mildly 
distorted, as the left-hand side of figure 7.1 shows. The wavelength 
and the two amplitudes at each point are proportional to the local 
values of k-1 and k- 112 respectively.+ The variation of the 
wavelength is intuitively obvious, while that of the amplitudes gives 
unidirectional travelling waves a constant PCD, a necessity on physi­
cal grounds.§ The two constants, A and B say, may now be the 
amplitudes of the two distorted waves at some reference value of x. 

t The criterion is idk/dxl « k 2 • 

:j: Expressions for these solutions will be developed in section 18. but they are not 
quoted here because they involve phase integrals, which may appear abstruse at first 
sight. Problem 3.7 is intended to make the concept more familiar. 

§ Vide problem 3.8. 
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Figure 7.1 The left-hand side shows the behaviour of the two terms in 
equation (7 .2) when they are distorted by a slow linear variation in the 
potential energy V(g). The right-hand side shows the two terms in equation 
(7.5) similarly distorted. The variable g = \{2mh-2 (d V/dx)}'13\ x is propor­
tional to x but dimensionless. As a matter of fact uA is continuous with uF 

through the turning region if A = F, and so is u8 with Ua if B = G. 

Where k(x) changes rapidly the solutions just discussed break 
down, but usually the affected region of x is quite small and the 
qualitative behaviour of u within it can be guessed successfully. 

In a region of x where E < V(x) the TISE becomes 

d2 u 
dxz = Kz(x)u 

where 

(7.4) 

K(x) = \[2m{V(x)- E}/h2 ]1121 

Where K(x) is constant the general solution looks like the super­
position of two exponentials, one decaying and one growing with x, 

(7.5) 
where F and G are arbitrary constants. 
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Where K(x) varies slowlyt this simple solution becomes mildly 
distorted, although this is not very obvious in the right-hand side of 
figure 7 .1. The attenuation length and the two amplitudes are 
proportional to the local values of K-1 and K-112 respectively. The 
arbitrary constants F and G may now be the values of the distorted 
exponentials at a second reference value of x. 

Where K(x) changes rapidly the solution just discussed breaks 
down, but again the qualitative behaviour of u can be guessed 
successfully. 

In figure 7.1, and in figures 7.2-7.4 below, it is assumed that the 
wave functions are real everywhere. There is no loss of generality 
because non-degenerate solutions of the TISE are being sought.+ 

The behaviour of u is clearly very different in the two regions. 
Where E > V(x) the signs of d2 u/dx2 and u are opposite: then the 
curve of u against x is concave towards the u = Q axis, and is apt to 
cross it repeatedly at nodes. Where E < V(x) the signs of d2 u/dx 2 

and u are the same: then the curve of u against x is convex towards 
the u = 0 axis, and therefore if it crosses the axis once§ it cannot do 
so again within the region. If the region extends over all positive x, 
and if u ~ 0 as x ~ oo, then it does not cross the axis at all within 
the region. 

A region of x where k (x) is constant or slowly varying is called 
oscillatory, and so is the behaviour of u there. Similarly a region of x 
where K(x) is constant or slowly varying is called exponential, and so 
is the behaviour of u there. 

Continuity through a turning region An oscillatory region is sepa­
rated from an exponential one by a turning region, within which lies 
a turning point where E = V(x). Classically a particle projected from 
an oscillatory region towards a turning point would be turned back 
precisely there. In quantum mechanics k (or K) varies rapidly in that 
part of the turning region that lies between the turning point and the 
oscillatory (exponential) region.1[ 

A particular approximate u in the oscillatory region, involving 
definite values for A and B, specifies the exact u to which it is an 
approximation. The exact u can then be followed through the 

t The criterion is \dK/dx\« K2 . 

:j: Vide problem 2.2. 
§ F and G would have to be of opposite sign. 
~Note that k 2 (or K2 ) is small near the turning point. 
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turning regiont and into the exponential region, where in turn it 
specifies another particular approximate u, involving definite values 
for F and G. When A and B are given, F and G can in principle be 
determined. More precisely, F and G are connected with A and B 
by two linear homogeneous equations. 

Boundary conditions at infinity It is usual in physics for the 
general solutions of differential equations to be specialised by 
boundary conditions in particular problems, and the solutions of the 
TISE are no exception. For example the second term in equa­
tion (7.5) must be excluded when an exponential region persists as 
x ~ oo. Otherwise the PPD would become infinite where classically 
no particle could penetrate, and that would be unphysical. The 
boundary condition can say simply that G = 0, or alternatively that 
u ~ 0 as x ~ oo. A third, and particularly simple, linear homogene­
ous equation for the arbitrary constants has appeared here. 

When an exponential region persists as x ~ -oo then F = 0, or 
u ~ 0 as x ~ -oc. 

Construction of part of an overall solution The next step is to 
consider the construction of a solution that passes current all the 
way from an oscillatory region through a turning region to an 
exponential region of infinite extent (figure 7 .2). The four constants 
A, B, F, G, are here connected by three linear homogeneous 
equations, two for the connection through the turning region and 
one for the boundary condition as x ~ oo. Therefore u is determined 
apart from an overall scale factor, which may as well be identified 
with F. In figure 7.2 F has a positive real value but it might equally 
well have been negative, and then u would have approached the 
x-axis from underneath as x ~ oo. 

The solution in figure 7.2 has been computed exactly, but a result 
not much inferior might have been obtained by taking the very 
simple approximate u in the exponential region, extrapolating by 
eye across the turning region, and continuing with an approximate u 
in the oscillatory region. The extrapolation relies on the fact that u 
and du/dx must be continuous if V(x) is well behaved.:j: 

The vertical dotted line in figure 7.2 is a reminder that d2 u/dx 2 

changes sign at the turning point, although u does not. 

·;· A glance forward to figure 18.1 may be helpful. * If they were not continuous, then d2 u/dx 2 would not exist, in general contradic­
tion of the TISE. 
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Figure 7.2 A wave function current through a turning point, and obeying 
the usual boundary condition for an exponential region of infinite extent. 
The variable I;'= \{2mli-2 (dV/dx)0} 113 \ x is proportional to x but dimension­
less. 

Bound states When V(x) takes on the shape of a potential well, as 
in figure 7 .3, there is a possibility that bound states can be formed. 

The partial solution u+ in figure 7.3 is similar to the solution 
constructed for figure 7.2: it is valid in the central oscillatory region 
and in the right-hand turning and exponential regions. Let it be 
proportional to the scale factor F+. 

The second partial solution u_ is valid only in the left-hand 
exponential region. In view of the boundary condition as x ~ -oo, 
u_ consists of a single term decaying with - x, and proportional to 
the scale factor G_. 

To form a complete solution u+ and u_ must be extrapolated 
through the left-hand turning region to a smooth junction at the 
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Figure 7.3 An attempt to construct a wave function current through all 
regions fails because the slopes of u+ and u_ do not match at the left-hand 
turning point. 

left-hand turning point. Now the ratio F+/G_ can be adjusted so 
that u+ is continuous with u_ at the turning point, but no scope 
remains for an adjustment to constants which will make du+/dx 
continuous with du_Jdx there. In general it will not be so, t and 
figure 7.3 shows an example. The defect is unacceptable, and the 
only cure is to vary E: if E is increased (reduced) the turning points 
move further apart (closer together) and the wavelengths of the 
oscillations are reduced (increased). Either way a legitimate eigen­
function of energy can be obtained (figure 7 .4), and further variation 
of E will find more. As E is increased (decreased) a node in u+ may 
appear (disappear) and the sign of G_ or F+ has to be changed to 
maintain u+ continuous with u_. That is why one eigenfunction in 

t A more mathematical analysis would note that there are six amplitudes, for two 
solutions to the TISE in each of three regions of x. There are also six linear 
homogeneous equations connecting the amplitudes, two to satisfy boundary condi­
tions as x ~ ±co and four to ensure the continuities of u and du/dx at two turning 
points. There is no non-trivial solution unless the determinant formed from the 
coefficients of the amplitudes is zero, and that will not generally happen. 
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V(x) 

Figure 7.4 Decrease or increase of E in figure 7.3 produces satisfactory 
energy eigenfunctions u1 or u2 , which have one or two nodes respectively. 

Further decrease of E would set up u0 , while further increase would set up 
u3 , u4 , .••. The eigenfunctions here have not yet been normalised. 

figure 7.4 approaches the u = 0 axis from above as x ~ -oo, and the 
other from underneath. 

When the energy eigenfunctions in figure 7.4 have been 
normalised they are then completely determined apart from a 
trivial ambiguity in sign. t 

When the genesis of the two energy eigenfunctions in figure 7.4 
has been fully pondered, some very important facts about bound 
states in simple one-dimensional potential wells will become obvi­
ous. The energy eigenvalues of these states have a discrete spectrum, 
and the energy eigenfunctions are non-degenerate. If the eigenvalues 
in order of increasing energy are E 0 , El> El> ... , then the correspond-
ing eigenfunctions u0 , ul> u2 , ••• have 0, 1, 2, ... nodes+ respectively 
in the oscillatory region. 

The lowest energy eigenvalue E 0 is bound to lie above the 
minimum potential energy.§ The difference is called the zero-point 
energy. 

t A particular example of a trivial phase factor, the subject of problem 1.6. 
* The quantum number conventionally assigned to a bound state is often equal to 

the number of nodes, or the number of nodes plus one. 
§ Vide problem 3.9. 



ONE-DIMENSIONAL APPLICATIONS 53 

The potential V(x) in figure 7.4 was deliberately made asymmet­
ric for the sake of generality. If V(x) had been symmetric, the 
theorems about parity proved in section 4 would have come into force: 
u0 , u2 , u4 , ••• would have belonged to the parity eigenvalue + 1 (even 
parity), while u 1, u 3 , u5 , • •• would have belonged to the parity eigen­
value -1 (odd parity).t 

Reflection and transmission at a potential step It is useful to 
consider next some solutions to the TISE which represent free 
particle states. 

The potential step shown in figure 7.5 is a simplified description 

E~---------------------------

Yo ------------~-------------

v 

0~------------~-------------.x 

Figure 7.5 A potential step such that V(x) does not exceed E. Both 
regions are oscillatory, but the wave function discussed in the text is not 
shown because it is complex, the PCD being non-zero. 

of a situation where a very large force to the left acts on the 
particles over a very small interval of x near x = 0. 

For negative x the general solution of the TISE is:j: 

u = Aeikx + Be-;kx (7 .6) 

whereas for E > V0 and positive x it is 

(7.7) 

Calculation of the PCD verifies that u describes particle fluxes equal 
to (hk!m) \A\2 to the right and (hk/m) \B\2 to the left, and likewise 

tClearly an eigenfunction of parity with an even (odd) number of nodes must 
belong to even (odd) parity. 

tIn future the formulae for wave numbers k(x) and absorption coefficients K(x) 
(lines following equations (7.1) and (7.4)) will usually be taken for granted. 
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that u' describes particle fluxes equal to (hk'/m) ICI2 to the right and 
(hk'/m) ID\2 to the left. 

The change in V at x = 0 is not singular enough to destroy the 
continuityt of u' with u and of d2 u'/dx 2 with d2 u/dx2 • Thus there 
are two linear homogeneous equations connecting the four constants 
A, B, C, and D. Since there are no boundary conditions at x = ±ao, 
there are two linearly independent solutions:!: for each value of 
E > V 0 • By setting D = 0, one of these can be chosen to represent a 
state where no particles enter from the right. Now there are three 
linear homogeneous equations for four constants, and so this solu­
tion certainly exists for any E > V 0 • The energy eigenvalues of free 
particle states have a continuous spectrum. 

When the continuity conditions at x = 0 are put into mathematical 
form, 

A+B=C } 
k(A-B)=k'C 

(7.8) 

Reflection and transmission coefficients for particles entering from 
the left and encountering the step may be defined and evaluated in 
an obvious manner: 

(flux to right)x<o A k' + k (7 _9) 
1//l = (flux to leftt<o = \B 12 = (k'- k)2 

} 

fT _(flux to right)x>o _ k' I C 12 _ 4k' k 
- (flux to leftt<o - k A - (k' + k)2 

Physically it is satisfying and indeed necessary that 1//l and fT are real 
and positive, that 

1//l+fl=l (7.10) 

and that 1//l ~ 0 when V 0 ~ 0. 
If 0 < E < V0 then equation (7. 7) must be altered to read 

(7.11) 

The boundary condition G = 0 is now mandatory, and so there are 
four constants connected by three linear homogeneous equations. A 

t For finite V 0 the TISE requires only that d2 u'/dx 2 should be discontinuous with 
d2 u/dx 2 . 

+ In counting constants and linear homogeneous equations there is no need to 
worry whether or not the wave function is complex. A complex constant contains two 
real constants, but then a complex equation provides two real equations. 
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Figure 7.6 A finite potential step such that V(x) does exceed E. The wave 
function in the oscillatory region is a harmonic standing wave. The wave 
function can be shown because it is real, the PCD being zero everywhere. 

single solution always exists and therefore the spectrum of energy 
eigenvalues is continuous. Since there is no degeneracy the eigen­
function can be expressed in real form (figure 7.6).t Finally, because 
the PCD is zero for a real wave function, it may be concluded that 
~ = 1, .o/"=0. 

Reflection and transmission at a barrier A 'rectangular' barrier of 
height V0 and width a is shown in figure 7. 7. If E > V0 , and if 
attention is restricted to situations in which all particles enter from 
the left, 

u = Aeikx + Be-ikx, 

u, = Ceik'x +De -ik'x, 

u"=Feikx, 

t Vide problem 3.11. 

x<O } 
Oo;;;xo;;;a 

x>a 

(7.12) 
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Figure 7.7 A potential barrier of width a and height V0 • 

There are five constants connected by four equations, which ensure 
that the wave function and its derivative are continuous at x = 0 and 
x = a. The other constants, and in particular F, can therefore be 
expressed in terms of A alone. A mildly tedious calculation gives 
the result 

F 4kk'ei(a-IJ) 

A (k + k'f- (k- k'fe2 iot 

where a = k' a and (3 = ka. Thus 

IFI2 8k2 k'2 

ff= A =k4 +6k2 k'2 +k'4 -(k2 -k'2 ) 2 cos2a 

= I + v~ sin2 a 1-l 
1 4E(E- V 0 ) 

(7.13) 

(7.14) 

The variation of fJ for values of V0IE in the range -1 to + 1 is 
shown in figure 7.8. Transmission is complete when V 0IE is zero, 
for the obvious reason that there is then no barrier. It is also 
complete whenever a = mr, with n = 1, 2, 3, ... : the waves 
reftectedt at x = 0 and x = a then superpose with opposite sign in 
the region where x < 0. 

t Similar effects in optics are exploited when camera lenses are coated to promote 
transmission of light. 
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Figure 7.8 Transmission through a potential barrier. 

Transmission through a classically impenetrable ba"ier When 
E=V0 , 

(7.15) 

and so it looks likely that finite transmission will persist when 
E > V 0 • That can be checked by working with a trio of equations 
like equations (7 .12), but with iK substituted for k'. The solution 
will be like equation (7 .14), but again iK must be substituted for k'. 
Thent 

and so 

fF = {1 + V6 sinh2 (Ka)}-1 
4E(V0 -E) 

Ka » 1 

(7.16) 

(7.17) 

The most important factor here is the exponential e-ZKa. which makes 
fF extremely sensitive to the value of Ka. This is a feature of the 
theory of a-decay that was developed by Gurney and Condon, and 
independently by Gamow, in 1928. The a-particle has to penetrate 
the Coulomb barrier, outside the range of nuclear forces but inside 
the radius at which it is classically free. The decay lifetime is indeed 
a very sensitive function of the a-particle energy (Geiger-Nuttall 
relation). 

t Note that sin (ix) = i sinh x. 
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Particle trapped between impenetrable walls An understanding of 
the behaviour of wave functions at potential steps makes it possible 
to discuss the simplest of all bound state problems, that of the 
trapped particle, and the results exemplify very well the earlier 
exposition of the general properties of bound states. 

The appropriate potential is illustrated in figure 7 .9. With the two 
walls the particle is free to move and V(x) = 0, while at each wall 
(x = ±L/2) there is an infinite potential step. There is no transmis­
sion to the region outside either wall, t and so two boundary 

-L/2 0 L/2 

Figure 7.9 Potential for an infinitely deep particle trap. 

conditions are imposed on a general energy eigenfunction u.: 

u.(x)= 0, x =±L/2 (7.18) 

The energy operator in the region between the walls is 

A A li2 il 
H= T= --- -Lf2o;;;.xo;;;.Lf2 (7.19) 

2m ax2 ' 

and the TISE is 

-Lf2o;;;.xo;;;.Lf2 (7.20) 

Obviously the solutions are harmonic and depend as usual on a 
wavenumber k •. Since this is a bound state problem a representation 
in terms of standing rather than travelling waves will prove to be 
most convenient: 

u. =A. cos (k.x) +B. sin (k.x) (7.21) 

Further specialisation is introduced by the fact that the potential in 
figure 7.9 is symmetric about x =0, so that u. shouldt have even 

t Vide problem 3.11. 
:j: There is no question of degeneracy in this problem. 
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parity (B. = 0) or odd parity (A. = 0). Thus, when the boundary 
conditions (7 .18) are taken into account, and the eigenfunctions are 
normalised, 

00 

v 

_ {(2/L)112 cos ( 7TSX/L), 
Us - (2/L)112 sin ( 7TSX/L), 

00 

s: 1, 3, 5, .. ·} 
s- 2, 4, 6, ... 

- - - - - - - E 4 --- 16 

- - - - - - - E3 --- 9 
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(7.22) 

Figure 7.10 Unified diagram for the energy eigenstates of a particle in an 
infinitely deep trap. The potential energy (top left), energy eigenvalues (top 
right), energy eigenfunctions (bottom left), the quantum numbers, zeros, 
and parities (bottom right) are shown. The dashed lines are related to the 
turning points of the classical motion. The ordinate scale for the eigenfunc­
tions is set by a=(2/L) 112• 
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The usual relation between E •. and k. givest 

(7.23) 

A bound state problem in quantum mechanics is apt to give rise 
to three different types of diagram: a plot of V(x) against x (as in 
figure 7 .9), a display in which the eigenenergies are drawn as 
horizontal lines against a vertical energy scale, and plots of some of 
the u,.(x) against x. In figure 7.10 all three are presented in a unified 
form which emphasises the connections between them. The horizon­
tal dashed lines show how the eigenenergies are related to the 
turning points, and the vertical dashed lines are reminders that the 
latter are the points at which d2 u./dx2 changes sign. 

The available space at the bottom right accommodates informa­
tion on the quantum numbers (ON), numbers of nodes (Os) and 
parities (ll). 

§8 The linear harmonic osdllator 

Energy eigenvalues Classically a particle which is subjected to a 
restoring force -(m<rJ2)x oscillates about x = 0 at the frequency 
w/27T. The restoring force can be described by the potential energy 
V(x) = m<rJ 2x2/2 (figure 8.1, top left) and in quantum mechanics this 
appears in the operator which represents the total energy, 

(8.1) 

The energy eigenvalues E,. can of course be obtained by substi­
tuting the appropriate operators into Schrodinger's equation 
Hu,. = E,.u,., but the resulting differential equation requires to be 
solved in series. This tiresome procedure can be avoided by attacking 
the problem in a more indirect way, which makes use of simple non­
commutative operator algebra. 

t An analogous problem in classical physics is provided by a stretched string 
clamped at both ends, as in a guitar. The eigenfrequencies there are proportional to 
the harmonic number s, and not s2 as they are here. The difference arises entirely 
from the different dispersion relation (equation (1.3) and subsequent footnote). 
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Figure 8.1 Unified diagram for the energy eigenstates of a particle in a 
linear harmonic oscillator potential. The ordinate scale for the eigenfunc­
tions is set by (3 = (mw/7rh) 114• Note the strong family resemblance to figure 
7.10. 

It is convenient to define two dimensionless operators a and a* 
by the equations 

a =~{i(limw)-112p+(mw/li) 112x} } 

a*= )2 {-i(limw)-112p+(mw/li)112x} 
(8.2) 
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Since p and x are Hermitian it can be seen that (1/11 I d.l/12) = 
(d.*l/11 ll/12) and (1/11 I d.*l/12) = (d.l/11 ll/12) for any two wave functions 1/11 
and 1/12. Thus the operators d. and d.* are not Hermitian; they do not 
represent observables and the symmetrical notation (equation 
(4.12)) for their matrix elements is not appropriate. However·d.d.* 
and a* a are Hermitian operators, because they can be expressed as 
real functions of H, 

A A* 1 ( 1 A2 mw2 A2) i [A A] H. 1 } aa =- -p +--x -- x p =-+-
hw 2m 2 2h ' hw 2 

2 A (8.3) 
A* A 1 ( 1 A2 mw A2 ) i [A A] H 1 a a=- -p +--x +- x p =---

hw 2m 2 21'1 ' liw 2 
and so 

H = (d.d.* -!)liw = (d.*d. +!)liw; [d., d.*]= 1 (8.4) 

These equations may be used to investigate the commutation rela­
tion between H. and a, 

H.a = (aa* a -!d.)liw 

= a(a*a -i)liw = a(H. -hw) (8.5) 

If both sides of this equation are applied to an energy eigenfunction 
u.. belonging to the eigenvalue Em then H(au,.) = a(H -hw)u,. = 
(E,. -liw)(d.u,.). Clearly au,. is also an energy eigenfunction, but it 
belongs to the eigenvalue E,. - hw; the effect of a on u.. is to produce a 
new eigenfunction whose energy is lower by hw. This amount of 
energy is called a quantum, and a is referred to as the quantum 
destruction operator. Similarly, 

H.a* = (a*aa*+!a*)hw 

= a*(aa*+!)hw = a*(H +hw) (8.6) 

and so H(d*u,.) =(En +hw)(a*u,.). The effect of a* on u.. is to 
produce a new eigenfunction whose energy is higher by hw, and a* is 
referred to as the quantum creation operator. A 

The energy eigenvalues cannot be negative since H is the sum of 
the squares of Hermitian operators. There must exist an eigenfunc­
tion u0 belonging to the minimum energy E 0 , and when the quan­
tum destruction operator is used the equation H(du0 ) = 
(E0 -hw)(au0 ) can only be satisfied by the disappearance of au0 • 

Thus, 

auo=O (8.7) 
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and with the help of equation (8.3), 

CH -!hw)u0 = hwa*(auo) = 0 

Hu0 =!hwu0 

63 

(8.8) 

so that E 0 = !hw. Successive applications of the quantum destruction 
operator to any u,. must eventually reduce it to the form u0 , since 
the production of negative energy eigenvalues can be avoided in no 
other way. If n applications are required, then 

(8.9) 

where n is an integer (figure 8.1, top right) 
The minimum energy hw/2 is of course the zero-point energy. An 

oscillator in the nth stationary state is said to have n quanta, the 
zero-point energy being ignored. 

The relationship (8.9) between the classical frequency w and the 
quantised energy step hw is just the one brilliantly though indirectly 
conceived by Planck on 7 October 1900. He was thinking of 
'resonators' in the walls of a cavity and coupled to the elec­
tromagnetic field inside, and his idea resolved serious difficulties that 
had appeared in the theory of black body radiation. 

Energy eigenfunctions The explicit expressions for the quantum 
destruction and creation operators can be obtained by substituting 
p = -ih at ax in equation (8.2), 

(8.10) 

where ~ = +(mw/h)112x. Thus equation (8.7) for u0 , and its normal­
ised solution, may be written 

(8.11) 

The other eigenfunctions can be obtained from u0 by successive 
applications of the quantum creation operator; obviously u,. is 
proportional to (a*)nu0 • The normalisation may be kept in order by 



64 BASIC QUANTUM MECHANICS 

observing that 

<a*u. 1 a*u.>=<u. I aa*u.> 
=\u. I (h~ +~)u.)=(s+1)(u. I u.) (8.12) 

so that if us is normalised so is us+l =(s+l)-112ti*u •. Therefore, 

u, = (1. 2. 3 ... n)-112(ti*)"u0 

= (2"n o-l/2(::r/4 (-:~ + ~ r e-~2/2 (8.13) 

This expression may be simplified to some extent by means of the 
operator identities 

so that 

- dd~ + ~ = -e"''2 dd~ e-~212 } 
(8.14) 

(- dd~ +~r = (-1)"e~2'2Cd~re-"''2 

Table 8.1 Stationary state wave functions of 
a linear harmonic oscillator. The last bracket 
in each is the Hermite polynomial 

n 

0 

2 

3 

(8.15) 
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where the function in the braces defines Hn (g), the Hermite polyno­
mial of degree n. t 

The first few eigenfunctions are given in table 8.1 and illustrated 
in figure 8.1 (bottom left). The peaks in the n = 2 and n = 3 
eigenfunctions show clearly the approximate k-112 factor in the 
amplitude (figure 7 .1). 

Parity Clearly u0 has even parity because it is an even function of 
g, or x. In general the parity is even if n is even, and odd if n is 
odd.+ 

Zero-point energy and the uncertainty principle When the oscil­
lator is in the lowest energy state, 

hw mw 2 1 (H)=-= (V+T)=-(x2)+-(p2) 
2 2 2m 

(8.16) 

Now if a, b, c are any three real numbers such that a+ b = c, then 
ab .:;;_c2 /4. Application of this inequality to mw2(x2), (l/m)(p2 ), and 

hw gives ax ap =.J(Cx2)(pz)).:;;_hf2 (8.17) 

since (x) and (p) = (d/dt)Cx) are obviously zero. This equation may 
be compared with the uncertainty principle, ax ap;:;:. h/2, to see that 
in fact ax ap = h/2. Obviously the zero-point energy could not have 
been any lower than hw/2 without violating the uncertainty 
principle. 

Matrix elements of the destruction and creation operators The 
matrix elements of a and a* will be of interest later. They are 
readily calculated from the relation us+l = (s + l)- 112a*u., 

<u. I a~>= <a*u. I~>= <s + 1)112(u.+l I~> 

and, 
(8.18) 

(8.19) 

Finally it may be noted that (a*a)~={(H/hw)-!}~=n~. The 
Hermitian operator a* a represents an observable whose eigen­
values are the number of quanta which the oscillator can have, and 
a* a is therefore called the number operator. 

tThe leading term in H"(g) is readily seen to be proportional tog". 
:j: Vide problem 3.13. 
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Problems 

3.1 Show that the eigenfunctions of momentum and energy given 
by the second of equations (6.5) form an orthonormal set. In 
mathematical terms the required result is 

(u,.(x) I u.(x)) = 8rs 

3.2 For free particles show that the density of states in energy 
space is given by 

8N L ( m)112 

8E. = 27rh 2E 

[Hint: Use the relation 

8N 8N 8p. 
-=--
8E. 8p. 8E. 

together with equations (6.8).] 

3.3 If 1/1 is expanded in terms of the normalised momentum 
eigenfunctions identified before equation (6.22), 

00 00 

1/1 = f c(p )Up dp = (27rh)-l/2 f c(p )eipx/t> dp 

According to equation (6.19), 

00 

c(p) = (27rh)-112 J l{!e-ipx/hdx 

Check that this pair of equations exemplifies Fourier's 
theorem, which states that if 

00 

f(x)=(27r)-112 J g(k)eikxdk 

then 
00 

g(k) = (271")-112 J f(x)e-ikx dx 
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Note that f(x) is called the Fourier transform of g(k), and 
vice versa. 

3.4 The process of going over in one dimension from an expan­
sion in discrete momentum eigenfunctions to one in continu­
ous momentum eigenfunctions can be summarised as follows: 

= 

lim ~ L -l ~ f (21Th)-1 dp 
L--->= s 

Understand this statement. [Hint: Write out the expansion of 
a general 1(1 in terms of normalised discrete momentum 
eigenfunctions, with c. expressed as a scalar product. Repeat 
in terms of normalised continuous momentum eigenfunc­
tions, with c (p) similarly expressed.] 

3.5 In equation (6.10) a wave function I(J(x, 0) representing a 
particular wave packet was given. Subsequently I(J(x, 0) was 
expanded in momentum wavefunctions 

= 

I(J(x, 0) = (21Th)-112 f c(p )eivx!h dp 

where c(p) was expressed in the second of equations (6.20). 
Now momentum eigenfunctions are also energy eigenfunc­

tions for free particles, and so the TDSE can be solved at 
once by extending equation (3.6) to integral form: 

= 

I(J(x, t) = (21Th)-1/2 J c(p )eipxlhe-ip2tf2hm dp 

Carry out the integration with the help of the appendix, 
equation (3), and show that 

I(J(x, t) = 1T-114a 112{1 +(iha2t/m)}-112 

{-a2x 2/2 + ik'x- (ihk'2t/2m)} 
xexp 1 +(iha2 t/m) 

[Hint: It is tidier to work with k' = p/h as the variable of 
integration. Comment: Note how I(J(x, t) goes back to I(J(x, 0) 
when t=O.] 
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3.6 Form the PPD from l{!(x, t) in problem 3.5 and verify equa­
tions (6.26). 

3.7 Where k is constant equation (7.6) can be written 

X X 

u =A cos (J k dx) + B sin (J k dx) 
0 0 

Where k varies slowly show that the appropriate generalisa­
tion is 

u = A(~o) 112 cos {j k(x) dx }+ B(~o) 112 sin {j k(x) dx} 
0 0 

and certainly not 

(k )1/2 (k )1/2 
u =A ko cos {k(x)x}+ B, ko sin {k(x)x} 

Ignore the amplitude factors (k0 /k) 112 in this discussion. 

3.8 The distorted unidirectional travelling wave 

X 

u = (k0 /k) 112 exp {i J k(x) dx} 
Xo 

is said in section 7 to be an approximate solution to the TISE 
where k(x) varies slowly. Check this by direct differentiation. 

According to equation (3.10) the PCD in a stationary state 
must conform to the equation 

V .j=O 

and in one dimension the PCD must therefore be constant. 
Check that u is satisfactory from this point of view, and 
hence justify the k-112 factor in the amplitude. [Hint: Use the 
condition ldk/dxl « k 2 at each differentiation.] 

3.9 If the lowest bound state in a potential well V(x) has the 
eigenfunction u0 and the energy E 0 , show that the zero-point 
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energy is 
= 

E 0 -Vmin= J [{v(x)-Vmin}luol2 +;~ ~~:orJdx 
Explain qualitatively why the first term must be greater than 
or equal to zero, and the second greater than zero. [Hint: 
Express E 0 in terms of ( V) and ( T), and use the hermiticity 
of p.] 

3.10 Suppose that the turning points in problem 3.9 are a distance 
2d apart, and that u0 can be approximated by a Gaussian 
function. Show with the help of the appendix, equation (2), 
that 

Relate this result to the uncertainty principle, equation 
(5.22). [Hint: Arrange that a normalised Gaussian function 
has d2 u0/dx 2 = 0 at x =±d. For the final part recall that 
(apf = Cpz)-Cp)z.J 

3.11 Show that the wave function in figure 7.6 may be expressed 
in the form 

u=A'cos(kx+<(>), x,;.;;O 

with 
K 

tan <P =k 

If the potential step is infinitely high show further that 
K/k ~ oo and u ~ 0 at the barrier, while u' ~ 0 there and at 
all points to the right. [Comment: In the last part of the 
problem the gradient of the wave function is not continuous 
at x = 0. This exceptional behaviour arises because the poten­
tial is infinite.] 

3.12 Find the MPD for a particle trapped between rigid walls and 
in its ground state. [Comment: Recall the discussions below 
equation (1.8).] 
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3.13 Show that the parity operator fi and the quantum destruction 
operator a* (equations (8.10)) anticommute, that is 

fla* = -a*fi 
Hence show that a linear harmonic oscillator in the state 
belonging to the eigenenergy (n +~)hw also belongs to the 
parity ( -l)n. 

3.14 Use classical mechanics to consider a particle subject to a 
restoring force proportional to its displacement, and so acting 
as a linear harmonic oscillator. If the amplitude is A, find an 
expression for the time-averaged probability of finding the 
particle between x and x + Sx, and plot it as a function of x. 

Use quantum mechanics, and a computer, to make a 
similar plot of the PPD when the particle is in its lOth 
eigenstate. Hence show the general correspondence of the 
two plots when the turning points are made to coincide: 

(n +~)hw = mw2 A 2 /2 

[Hint: The Hermite polynominal of degree 10 can be looked 
up in the Handbook of Mathematical Functions (ed. M. 
Abramowitz and I. A. Stegun), Dover Publications, New 
York, 1965.] 

3.15 A wave packet moves along at the group velocity dw/dk. 
Recall the dispersion relation (equation (1.3)) and so check 
the remarks in the text under the first equation (6.25). 
[Comment: this is a very easy and beautiful example of the 
correspondence principle.] 
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Three-dimensional 
applications 

§9 Free particles 

Stationary states For free particles in three dimensions the total 
energy operator is 

A A lr? 
H=T=--V2 

2m 
(9.1) 

In Cartesian coordinates a stationary state wave function u .. belong­
ing to the energy &.. obeys the TISE 

(9.2) 

It is convenient to restrict attention to a cube of volume L 3 , 

bounded by the planes x = ±L/2, y = ±L/2, z = ±L/2. The operators 
p and T will be kept Hermitian by means of the periodic boundary 
conditions given in equation ( 4. 7). 

The variables may be separated by the substitution u..(x, y, z) = 
f(x)g(y)h(z); after division by fgh the Schrodinger equation be­
comes 

h2 a2f h2 a2g h2 a2h 
2mf ax2 + 2mg ay2 + 2mh az2 + &.. = 0 (9.3) 

71 
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The first term is the only one which depends on x, and so the 
equation can only be correct for all x if this term is separately equal 
to a constant, which may be written in the form -h2 k;J2m. Then, 

d2f + k2f= 0 
dxz x 

(9.4) 

Similar constants ky and kz may be defined so that 

d2 g d2 h 
dy 2 +k;g=O; dz 2 +k;h=O (9.5) 

and equation (9.3) is satisfied if (h2 /2m)(k;+ k;+ k;) = Ek. Solutions 
for these three equations are readily found and normalised: 

(9.6) 

Now k may be defined as the vector whose components are f<x, ky, 
kz; the stationary state wave functions may then be written in the 
form 

kx = 27T'Sx/ L, 

ky = 27T'Sy/ L, 

kz = 27T'szf L, 

Sx =0, ±1, ±2, .. . 

Sy = 0, ±1, ±2, .. . 

Sz = 0, ± 1, ±2, .. . 

(9.7) 

where the conditions on f<x, ky, kz ensure that the periodic boundary 
conditions are satisfied. 

The wave function associated with the vector k and the energy & 
is also an eigenfunction of the momentum belonging to the eigen­
value Pk = hk: 

This is only possible because the momentum and total energy for 
free particles commute, as they did in one dimension. 

Density of states To every set of integers sx, Sy, Sz there corre­
sponds a distinct stationary state. Now the relations betweent Px, f<x, 
and sx are precisely the same as those between p., k., and s in one 

t From this point the suffix 'k' on Ek and Pl. will often be left implicit. 
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dimension, and therefore equation (6.8) can be taken over to see 
that the number of Px eigenvalues in the interval Spx is (L/27rli}SPx· 

Similarly the numbers of pY and Pz eigenvalues in the intervals Spy 
and Spz are (L/27rli)Spy and (L/27rli)Spz respectively. The number 
of eigenvalues of p where the three components lie in the intervals 
Spx, Spy, Spz is the product, 

SN = (2~1i) 3 
Spx Spy Spz (9.9) 

A momentum space may be constructed in which Px, pY, Pz are 
Cartesian coordinates. In this space Spx Spy Spz is an elementary 
volume, and equation (9.9) shows that there are simply (L/27rli)3 

free particle stationary states per unit volume. 
Later on the number of states in the energy interval SE will be 

required. Since E = (li2 k 2/2m) = p2 /2m, the corresponding momen­
tum interval is Sp = (dp/dE)SE = (m/p) SE. If the direction of pis left 
unspecified the associated momentum space is a spherical shell of 
radius p and thickness Sp. The volume of this is 47rp2 Sp = 47rmp SE 
and therefore 

( L )3 L 3mp } SN = 27Tii 47rmp SE = 27T21i3 SE 

SN_ _L3 mp 
SE - PE - 27rzli3 

(9.10) 

The density of states is of course reduced by the factor dw/47T if p 
is required to point into an elementary solid angle dw in some 
particular direction. 

Momentum distribution The wave functions given in equations 
(9.7) form a complete orthonormal set of momentum eigenfunc­
tions, which can be used to find the momentum probability distribu­
tion in a general state represented by t{!(r). If 

then 
(9.11) 

since p = lik. Obviously L must be chosen very large so that I{! is 
negligibly small at distances of the order of L/2 from the origin; the 
exact limits of integration will turn out to be unimportant. 
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The overall probability of finding the momentum with compo­
nents in the intervals 8px, 8py, 8pz is ickl2 5N = 

(L/27Th? ickl2 5px 5py 5Pz· This is equal to \c(p)i2 5px 5py 5pz if c(p) is 
defined by 

(9.12) 

The result here is independent of L, which may thus be allowed to 
become infinite so that the eigenvalues of p go over to a continuum. 

Momentum with continuous eigenvaluest As in one dimension, 
c(p) can be computed directly from continuous eigenvalue theory if 
correctly normalised momentum eigenfunctions are available. The 
result of equation (9 .12) shows at once that these are uP= 
(27Th)-312eip.r/h. An obvious extension of the calculation in section 6 
verifies that 

which serves also to introduce and define the vector Dirac function 
5(p-p'). 

§10 Orbital angular momentum 

Operators In classical mechanics the orbital momentum I of a 
particle round a point is defined by 

l=rxp (10.1) 

where r is the radius vector of the particle from the point, and p is 
its linear momentum. As usual the quantum mechanical operator I 
must be connected with the operators r and p by the same equation. 
If Cartesian coordinates are set up with the point of reference for I 
at the origin, 

lA AA AA "h( a a) =zp -xp =-z z--x-
Y X z ax az (10.2) 

[A A A A A "h( a a) =xp -yp =-z x--y-
z y x ay ax 

t This sub-section may be skipped at a first reading. 
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z 

X 

Figure 10.1 The standard relationship between Cartesian and spherical 
polar coordinates. 

The passage to quantum mechanics is quite straightforward because 
no products of non-commuting operators are involved. 

Often it will be convenient to wcrk in spherical polar coordinates 
(figure 10.1), defined in the standard way so that x = r sin 0 cos cf>, 
y = r sin 0 sin cf>, z = r cos e. When the variables are changed, 

A ( a a) lx = ih sin cf>-+cot (J cos cf>-
ae act> 

A ( a a) IY = ih -cos cf> -+cot 0 sin cf>-ae act> 
A a 
l =-ih­
z act> 

(10.3) 

The coordinate r does not appear in any of these operators, which 
therefore commute with any operator involving r alone. 

The square of the total orbital angular momentum is represented 
by 

A A ,..., ,..., { 1 a ( a ) 1 a2 } e=F+l"+l"=-h2 --- sinO-+---- (104) 
X y z sin (J ae ae sin2 (J acf> 2 • 

Commutation relations According to equation (4.28) each compon­
ent of linear momentum fails to commute with the corresponding 
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component of position. Thus, 

[fx, fy] = [YPz- zpy, ztlx- xtlzJ 

= YPx[tlz, z]+xpy[z, PzJ 
= ih(xpy- YPx) = ihfz (10.5) 

Similar equations for the commutators [fy, fzJ and [fz, fxJ may be 
written down immediately, because all the equations involved re­
main true when x, y, z are cyclically interchanged. To summarise,t 

[fx, fy] = ih~, [fy, fz] = ihfx, [fz, ~] = ih~ (10.6) 

The square of the total angular momentum, on the other hand, 
commutes with any of the three components. For example, 

(i2, fxJ=[f;, fxJ+[f;, fxJ 

= fy[fy, fxJ+[fy, fx]fy + fz[fz, fxJ+[fz, fxJfz 

= ih(-fJz- fJY + fJY + fJz) = 0 

Since i2 is unaffected by cyclic interchange of x, y, z, 

[l2 , ~] = [l2 , fy] = [i2 , fzJ = 0 

(10.7) 

(10.8) 

Complementarity The commutation relations between the three 
components of I suggest that an eigenstate of one component is not 
in general an eigenstate of the other two. 

It may indeed be proved that an eigenstate of any two compon­
ents must also be an eigenstate of the third, belonging to the 
eigenvalue zero for all three. For equation (5.13) shows that if u, 00 

is an eigenfunction+ of, say, lx and ly, 

[~, fy]U,oo = ihfzU..oo = 0 (10.9) 

so that u,00 is also an eigenfunction of lz, belonging to the eigen­
value zero. Once this is established, equation (5.13) can be used 
twice more: [l~ 1~] = ·hf = 0} 

Y' z U,oo I xU..oo (10.10) 
[f., fxJ«..oo = ihfyU,oo = 0 

tIn vector notation i xI= ihi; this equation looks strange at first sight but 
corresponds to the classical I xI = 0 as li ~ 0. 

:j: This and subsequent eigenfunctions are labelled by three suffices. The second and 
third serve to indicate the eigenvalues of 12 and lz to which the eigenfunctions belong 
(equations (10.11)). The first is connected with their radial variation (equation (11.2)), 
which must be decided by reference to another observable because the operators for 
angular momentum depend on 0, cb only. 
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Thus U..oo must belong to the eigenvalue zero for lx, ly, lz, and 
consequently e also. 

This argument shows that, if the total angular momentum is not 
zero, then only one of its three components can be definitely specified. 
Conventionally lz is picked out for this special attention, and no 
generality is lost because the orientation of the basic coordinate 
system can be chosen arbitrarily. There is, of course, no obstacle to 
the specification of both e and lz at the same time, since these two 
observables commute. A general angular momentum eigenfunction 
will therefore be written U..lm• with 

(10.11) 

where the form of the U..lm and the possible valuest of the numbers l 
and m, which fix the eigenvalues of e and lZ' remain to be investi­
gated. Negative values of l need not be considered because 12 , which 
is represented by the sum of the squares of Hermitian operators, 
cannot have negative eigenvalues. 

Sometimes l is called the orbital angular momentum quantum 
number, and m the magnetic quantum number. An eigenstate of e 
belonging to the eigenvalue l(l + 1)h2 may conveniently, but some­
what loosely, be referred to as a 'state of orbital angular momen­
tum l'. 

Eigenvalues The eigenvalues can best be found by operator 
algebra+ based on equations (10.6) and (10.8). It is convenient to 
define two operators t and L by the relations 

(10.12) 

Since fx and ~ are Hermitian it is clear that (1/11 I f+t/12) = (Lt/11 I 1/12) 

and (1/11 I Lt/12 ) = (f+t/11 I 1/12 ) for any two wave functions 1/11 and 1/12 • 

Thus the operators t and f_ are not Hermitian and they do not 
represent observables. However tf1 and Lt are Hermitian 
operators, because they can be expressed as real functions of l2 

t The eigenvalue in the first of equations (10.11) is written in the way that it is 
because l will later turn out to be integral; however, this is in no way assumed at this 
point. 

t The procedure here is very similar to that followed in section 8 to find the energy 
eigenvalues of the linear harmonic oscillator. 
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AA A fA A i'21'2 AA} l+L = (lx + ity)(lx- ily) = lx + ly- i[lx, ly] 

= f2+ P+hf =F- f (f -h) X y Z Z Z 

AA Azl'2 A A2 AA 
Ll+=lx+ly-hlz=l -lz(lz+h) 

(10.13) 

Obviously l2 commutes with f+, because it commutes with both fx 
and fY. On the other hand, 

[f., Af~J: ~f., fxJ+ i[/., fy] = ihly +hlx = ht} (10_14) 

lzl+-l+(lz +h) 

The result of applying f+ to the angular momentum eigenfunction 
U..tm (equations (10.11)) may now be considered. Since [i2 , f+] = 0, 

l2(tU..!m) = fJ2 U..lm = l(l + 1)h2 (f+U..lm) (10.15) 

so that tu..rm is also an eigenfunction of 12 belonging to the same 
eigenvalue as U..rm itself. On the other hand, by equations (10.14), 

(10.16) 

so that tunzm is also an eigenfunction of 1., but it belongs to the 
eigenvalue (m + l)h. The effect of t on u,.1m is to produce a new 
angular momentum eigenfunction, belonging to the same eigenvalue 
of e but with the eigenvalue of lz increased by h. For this reason f+ is 
called the positive shift operator for orbital angular momentum. 

Similarly l2 commutes with f_, and fJ_ = L(fz -h). The result of 
applying L to U..zm is then expressed by the equations 

i~(f;U..zm): 1(1 ~1)h2(~-U..zm)} 
lz(LU..rm)- (m 1)h(l_u,.zm) 

(10.17) 

The effect of L on U..zm is to produce a new angular momentum 
eigenfunction, belonging to the same eigenvalue of e but with the 
eigenvalue of lz decreased by h. Correspondingly L is called the 
negative shift operator for orbital angular momentum. 

There are limits to the amounts by which the lz eigenvalue can be 
raised or lowered by successive applications of the shift operators. 
The observable 12 -1; = l~ + z; cannot have negative eigenvalues; for 
a given eigenvalue of e there must be maximum and minimum 
eigenvalues of l., which may be denoted by m+h and m_h respec­
tively. 

When f+ is applied to U..zm+' equation (10.16) can only be satisfied 
because Unzm+ vanishes everywhere. An equation for m+ in terms of 
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l can then be found with the help of equations (10.13), 

Utu..rmJ = {l(l + 1)- m+(m+ + 1)}1i2 Unfm+ = 0} 
m+(m+ + 1) = l(l + 1) (10.18) 

so that m+ = l or -(I+ 1). Similarly Lu..rm_ must also vanish 
everywhere, and this leads to an equation for m_ in terms of l, 

t{Lu,,m_) ={l(l + 1)- m_(m_ -1)}1i2 U..rm_ = 0} 

m_(m_ -1) = l(l + 1) 
(10.19) 

so that m_ = -l or (l + 1). Now obviously m+;;,: m_, which rules out 
the second of the two possible solutions for m+ and m_. Therefore, 

m_=-l (10.20) 

Successive applications of the positive shift operator to U..rm_ must 
eventually bring it to the form U..rm+• because the production of 
negative eigenvalues of e -1; can be avoided in no other way. Since 
the eigenvalue of lz increases by li at each application, the value of 
m increases by integral steps from m_ to m+. It follows that 
m+- m_ = 21 must be integral, and therefore l must be integral or 
half-integral. 

Similarly it can be seen that any allowed value of m differs from 
m+ by an integer. It follows that, for a given l, all the possible values 
of m are contained in the series which climbs by integral steps from -1 
to +I (figure 10.2). For a given I there are obviously (21 + 1) possible 
values of m. 

This completes the information which can be extracted from the 
commutation relations for the components of I. It will appear 
shortly that in fact no suitable eigenfunctions of r, 0, <f> can be found 
for the half-integral values of I and m, and so the corresponding 
eigenvalues are ruled out for orbital angular momentum. Neverthe­
less these values are shown by open circles in figure 10.2, and they 
will be discussed later in connection with the concept of spin angular 
momentum. 

Eigenfunctions A frontal assault on the problem of finding the 
unlm could be made by putting the various values of I and m into 
equations (10.11), together with the explicit expressions for l2 and fz 
in terms of 0 and <f>. Unfortunately the second-order differential 
equation involving l2 is laborious to discuss, although it is very well 
known in mathematica! physics. 
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m 0 

-1 

-2 

0 2 

Figure 10.2 The allowed values for angular momentum quantum numbers. 
The half-integral values shown by the open circles are not suitable for 
orbital angular momentum. 

This difficulty can be avoided by starting with the u,1 -r. which 
obey the first-order differential equation Lu,1,_1 = 0. Sub~equently 
the general eigenfunction U..rm can be found by applying the positive 
shift operator l + m times to u,1,_1• In these operations the normal­
isation can be kept in order by noting that 

<f+unlm' I tunlm') = (Unlm' I Ltu..rm•) 

= {t(z + 1)- m'(m' + 1)}1i2(unrm· I unrm·> 

= (l + m' + 1)(1- m')h2(Unlm' I Unlm'> (10.21) 

so that, if U..rm' is normalised, then so is 

Unl,m'+l ={(I+ m' + 1)(1- m')}-1121i-l tunlm' (10.22) 

Since m' ~ l the numerical coefficient here has been chosen in such a 
way that it is always real, and never negative. This is a generally 
accepted convention. 

Separation of variables The U..rm may conveniently be written as 
the product of separate functions of r, 0, cfJ: 

(10.23) 
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The logical arrangement of most of the suffices can be easily 
understood. The operator fz depends only on <(>, and so the second 
of equations (10.11) reduces simply to fzcpm = mhcl>m. Thus the 
function cl>m depends only on the value of m. Similarly the operator 
l2 depends only on fJ and <(>, and so the first of equations (10.11) 
reduces to l2 B1mcl>m = l(l + 1)1i2 B1mcf>m. This equation obviously de­
pends on l, and it also depends on m through cl>m. Thus both must 
be specified in order to label Brm· The suffices attached to Rn1 

cannot be discussed until section 11, however. 
The normalisation of U..rm requires that 

co 'TT 2'7T 

<u..rm I U..rm> = f f f (R!,Rnr)( et,.e,m)( cf>!cl>m) 

x r2 sin fJ dr dO d<f> = 1 (10.24) 

and this can conveniently be arranged by three separate normalisa­
tions: 

-rr 

f et,.elm sin (J dfJ = 1 
0 

= 

f R!1Rn1r2 dr = 1 
0 

(10.25) 

Azimuthal angle functions cl>m It has already been pointed out 
that cl>m obeys the simple equation 

(10.26) 

whose correctly normalised solution is 

(10.27) 

A restriction on the values of m now becomes apparent. The 
wave functions cannot be properly interpreted if they are not 
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single-valued functions of position; but tPm ( </> + 27r) = tPm ( </>) only if 
m be integral. For orbital angular momentum attention must there­
fore be restricted to the eigenvalues which are indicated by filled 
circles in figure 10.2. 

Polar angle functions 8 1m A plan for finding these by means of the 
shift operators has already been outlined. Explicit expressions for f+ 
and L will be needed: 

f+ = hei<I>Cao + i cot o a~) 

= hei"'Gao- ~~-1 cot 8lz) 
A , ... ( a a ) l =he-..,. --+ i cot 0-- ao aq, 

(10.28) 

The function 8 1,-1 is found first by writing down the equation 
LRn1B1,-1tP _, = 0. Since L does not affect Rn~o 

-he-i"'Gao + h-1 cot Olz )81.-14»_1 = 0 (10.29) 

After substituting lz = -lhtP_1 and removing the factor -he-i<l>tP_" 

(:0 -l cot o )81.-1 = 0 (10.30) 

which has the simple solution 8 1.-1 =A sin1 0. The normalising factor 
A can be found from the second of equations (10.25) by repeated 
partial integration. The result is 

8 1.-1 = {i(2l + 1)!P'2 (2~ 1)sin1 0 (10.31) 

Now 8 1m can be found by using the upward shift operator l + m 
times, a typical step being given by equation (10.22). Again R,.1 is 
not affected by t, and so equation (10.22) becomes 

a,.m.+1 tPm.+1 = {(l + m' + 1)(l- m')}-1' 2ei<I>Gao- ~~- 1 cot orz )8,m.tPm. 

(10.32) 
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After substituting fzq,m, = m'htPm' and cancelling a factor tPm'+l = 
ei<1>4Jm, from both sides, 

el.m'+l = w + m' + 1)(1- m'n-1'2Gd8 - m' cot 8 )elm' 

= {(l + m' + 1)(1- m')}-112 ( sinm' 8 d~ sin-m' 8 )elm' 

(10.33) 

This operation must be carried out 1 + m times, starting with m' = -1 
and the e 1._1 given by equation (10.31), and ending with m' = m -1. 
After cancelling many intermediate factors of sin 8 the result is 

_ [(21+1)(l-m)!] 1'2[( 1 ) . m ( 1 d )l+m . 21 ] 
elm- 2(l+m)! 211! SID 8 sin8d9 SID 9 

[(21+1)(1-m)!]l/2{(-1)m . m dl+m 2 '} 
= 2(1+m)! 2il'!SID 8d(cos8)'+m(cos 8-1) 

- [(21 + 1)(1- m)!]l/2 pm( 8) (10.34) 
- 2(l+m)! 1 cos 

where the expression in the braces defines Pj(cos 8), the associated 
Legendre functiont labelled by 1 and m. When m = 0 this function is 
identical with P1(cos 8), the Legendre polynomial of degree:j: 1, and 
the upper suffix is then omitted. Thus, 

ew = {!(21 + 1W12{2~1 ! d(c:~ 8)' (cos2 9 -1)'} 

= {!(21 + 1}P12P1(cos 8) (10.35) 

Spherical harmonics ¥ 1m ( 8, ~) The product Y1m( 6, ~) = e,m ( 8)4Jm ( ~) 
is called a spherical harmonic. The first few of them are set out in 
table 10.1, and figure 10.3 gives a polar diagram which illustrates 
their behaviour on the y = 0 (~ = 0, 1r) plane. 

An inspection of the examples in table 10.1 shows that the angular 
dependence of the position probability density, u~1munlm ex: I Y;m(8, ~)12. 

t Various definitions of Pj(cos 6) are current, many of them inconsistent by factors 
of -1 for some values of m. The definition used here has the merit of being valid for 
both positive and negative m, and it agrees with the one given in Higher Transcenden­
tal Functions, Vol. I, Bateman Manuscript Project, McGraw-Hill (1953). A useful 
relation is 8 1m =(-1)m8t.-m· 

*The leading term in P1 (cos 6) is easily seen to be proportional to cos1 6. 
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Table 10.1 Spherical harmonics for l = 0, 1, 2. The minus signs occur for 
odd positive values of m only 

m Ylm(l1, <(I) m Ytm(O, <(I) 

0 0 c~r2 2 -- sin2 (Je?'"' ( 15 r 2 . 
32'7T 

1 ( 3 r 2 . - 8 '7T sin Oe"~> 1 csr2 . - 8 '7T sin 0 cos Oe'"' 

( 5 r
2 

( 3 r
2 

2 0 - (3cos2 0-1) 

1 0 4.; cos 0 
16'7T 

e5r2 . -1 8 '7T sin 0 cos Oe ~i<f> 

( 3 r 2 . ( 15 r2 . -1 8 '7T sin Oe ~i<f> -2 -- sin2 (Je ~z,., 
32'7T 

can be expressed simply in terms of a polynomial of degree 21 in 
cos 0. For example, I ¥ 1012 IX cos2 (J and I ¥ 21 12 IX sin2 (J cos2 (J = 

-cos4 (J + cos2 0. A little study of equation (10.34) can easily put this 
remark on a general basis. 

This kind of relationship between the angular distribution of the 
position probability density and the angular momentum of the particle 
concerned is widely exploited in atomic, nuclear, and particle physics. 

It is also worth remarking that spherical harmonics belonging to 
different eigenvalues of 12 or lz must of course be orthogonal, and 
therefore 

7T 27T 

J J Y~m·(O, <f>)Y1m(O, </>)sin 0 d(J d<f> = 8l'l8m'm (10.36) 

0 0 

Parity In three dimensions the instructions of the parity operator 
n are 

llifJ(x, y, z) = 1/1(-x, -y,-z) (10.37) 

The various theorems proved about parity in one dimension are 
readily extended to three, and in particular the two possible eigen­
values of II are again + 1 (even parity states) and -1 (odd parity 
states). 
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Figure 10.3 Polar diagrams of the spherical harmonics with l ""'2 on the 
q, = 0, 7T or z, x plane. The directions of z and x are shown on the Y 00 

diagram only, to avoid clutter. Negative values are indicated by dashed 
lines, and the parities of the spherical harmonies should be noted. The scale 
is fixed by the radius of the ¥00 diagram, which is of course (47r)- 112• 
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When the instructions of fi are translated into spherical polar 
coordinates and applied to u,1m, 

(10.38) 

so that the form of Rn1(r) is immaterial so far as the parity is 
concerned. The parity properties of Y1m ( 8, <f> ), on the other hand, 
can be established in a clear and simple form. 

The first point to notice is that fi commutes with all angular 
momentum operators, including the shift operators. For example, 

AA { a a }A 
IIlz=-ih -xa(-y)+ya(-x) n 

( a a)A AA = ih x--y- ll= lzll 
ay ax (10.39) 

Next, it is easy to see from equation (10.38) that ¥ 1,_1(8, </>)ex 
sin1 8e-il4> has parity ( -W, since sin ( 7T- 8) =sin 6 and e-il(<t>+-rr) = 
e-H.,.e-il<t> = ( -1)1e-il<t>. 

Finally, since fi commutes with t and Y1m(6, </>)is proportional 
to (f+y+m ¥ 1,_1 ( 6, <f> ), it follows that Y1m ( 6, <f>) has the same parity as 
¥ 1,_1(6, </>). Thus it is seen that states of even (odd) orbital angular 
momentum have even (odd) parity. 

Properties of the shift operators For future reference the properties 
of the shift operators may conveniently be summarised at this point. 
With the normalisation established by equation (10.22), 

f _{+{(I+ m + 1)(1- m)}112hun!,m+l, 
+U..!m- 0, 

f _{+{(1-m+ 1)(1 + m}P12hun!,m-h 
-U..!m- 0 

' 

-l:S;;m:S;;l-1} 
m =l 
-1+1:S;;m:S;;I 

m=-l 
(10.40) 

The third equation may be obtained from the first by replacing m by 
m -1, applying f_ to both sides, and using equations (10.13) for 
Lt. 

Spectroscopic notation For historical reasons states of orbital an­
gular momentum 0, 1, 2, 3, 4, 5, ... are called s, p, d, f, g, 
h, ... states respectively. 
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§ 11 Central potentials 

Stationary states and radial functions Rn1(r) A central potential 
V(r) is one which depends only on the magnitude of r and not on 
the value of (} or </>. A particle moving in such a field is subject to 
forces which are always directed to or from the origin of the 
coordinate system. 

The total energy operatort is H = -(h2/2m0)V2 + V(r), and in 
spherical polar coordinates this becomes 

(11.1) 

The second term, which stands alongside V(r), is called the cen­
trifugal potential. In classical mechanics its negative gradient would 
be the centrifugal force, (12/m0 r4 )r. 

None of the angular momentum operators mentions r, and all of 
them commute withe; therefore all of them commute here with H. 
This has the usual consequence that the orbital angular momentum 
is conserved, just as it would be in classical mechanics. 

A further consequence is that the stationary states can be eigen­
states of lz and e, as well as H, and the corresponding eigenfunc­
tions can therefore be written in the form U..rm = Rn1 (r) ¥ 1m ( 8, <P ). 
The time-independent Schrodinger equation, Hu,1m = En1U..1m, is 
readily simplified by operating with 12 and cancelling the ¥ 1m 

throughout. The result is 

(11.2) 

This equation does not mention m, which is the reason why Rn1 and 
En1 are given only two distinguishing suffices. 

tIn this section the masses of particles will be given a suffix (e.g. m0, m0, mP) in 
order to avoid all possibility of confusion with the magnetic quantum number m. 
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A more convenient equation can be obtained by the substitution 
Rn1 = Snrfr; after multiplication by r, 

{11.3) 

This has the same mathematical form as a one-dimensional 
Schrodinger equation, with the centrifugal potential added to V(r). 

According to equations (10.25), Sn1 is correctly normalised byt 

(11.4) 

Boundary conditions Near the origin Sn1 must tend to zero at least 
as fast as r, in order to avoid having an infinite position probability 
density at that point. At very large r, on the other hand, equation 
(11.3) takes the form 

(11.5) 

As r increases V(r)- En1 must become positive for bound states, 
and the solutions of the equation either increase or decrease expo­
nentially. The increasing solutions must obviously be rejected, be­
cause they do not represent states in which the particle is to be 
found near the origin. 

§12 The hydrogen atom 

Stationary states The simplest of all atomic systems is the hy­
drogen atom, consisting of an electron (mass me, charge -e) bound 
electrically to a proton (mass mP, charge e). Since me« mP, the 
proton may to a good approximation+ be considered stationary at 
the origin of the coordinate system, and the Coulomb forces acting 
on the electron are then described by the central potential V(r) = 

-e2/47re0 r. 

t Note carefully that Sn1 is normalised so that there is no factor of 41T in this 
integral. In future 1Sntl2 will be called the radial position probability density (RPPD). 

t As shown in section 14, this approximation may easily be avoided by replacing 
me with the reduced mass 11 = memp/(me + m.,). 
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As usual a stationary state of orbital angular momentum l is 
associated with a radial function Sn1 obeying equation (11.3): 

{ -~~+l(l+1)h2 ~} -E 
2 d 2 2 2 4 snl- nlsnl (12.1) 

me r mer 7TBor 

This equation is cluttered with coefficients and in need of rational­
isation. As a first step a positive number n may be defined: 

n = I (2;~nJ 112
1 (4::J (12.2) 

It should be noted that En1 is negative for bound states and that the 
spectrum of n is discretet because the spectrum of En1 is discrete. 

Next a natural length a0 may be constructed from the physical 
constants present, namely h, me, and e2/47Te0 • It is 

(12.3) 

and is called the Bohr radius: it sets the scale of all atomic and 
molecular systems and processes. 

Finally a dimensionless variable p proportional to r may be 
defined: 

( mee 2 ) 2r p= r--
- 27Te0 nh2 - na0 

(12.4) 

Use of p in place of r in the equation has the effect of introducing a 
natural length varying with the energy eigenvalue. This unusual step 
is justified by the mathematical simplification that is gained. 

When the first equation (12.4) is used on the left-hand side of 
equation (12.1), and equation (12.2) on the right-hand side, 

d2Snl+{-.!+~_l(l+1)}s ~=0 (12.5) 
dp2 4 p p2 n 

At very large values of r, or p, the equation takes the asymptotic 
form (d2/dp2)Sn1 = Snr/4, which has the exponentially decreasing 
solution Sn1 - e-p12. A suitable solution to equation (12.5) would be 
Sn1 = f(p)e-p12 where f(p) is a function whose behaviour at large p 
does not dominate that of the factor e-p12. After substituting for Sn~> 

(12.6) 

t n will later tum out to be integral; however, this is in no way assumed at this 
point. 
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An expression for f may be sought in the form of a series 
in ascending powers of p: f = (a0 pu + a 1pu+l + a2 pu+z + · · ·) = 
pal: a.p•. When this is put into equation (12.6) every power of p 

s 

must of course vanish separately. The terms of lowest power, pa-z, 
cancel if 

a(a--1) = l(l + 1) (12.7) 

and so a= l + 1 or -1. The first choice must be adopted because 
a0 p -l would become infinite at r = 0, contrary to the boundary 
conditions on Snl· Once a has been fixed, it may be seen that the 
terms proportional to pl+s in equation (12.6) cancel if 

l+s+1-n 
as+l = (s+1)(s+21+2) a. (12.8) 

This relates all the coefficients in the series to a0 , whose value can 
be decided by normalisation (equation (11.4)). 

The docile behaviour of f at large p must still be checked. The 
highest powers of p are the most important from this point of view, 
and equation (12.8) shows that the ratio between successive coeffi­
cients becomes a.+lla. = 1/s when s is very large. The same asymp­
totic ratio is found in the series expansion of e", and it may be 
concluded that f tends to behave like eP for large p, which is 
contrary to specification. The difficulty can only be avoided if the 
series for f is in fact a polynomial in p of finite degree; this is true 
provided that n is integral and n;;;. l + 1, for then the numerator on 
the right-hand side of equation (12.8) vanishes after n -l terms of 
the series. The denominator is never zero and so an-I and all higher 
coefficients vanish. 

The integer n is called the principal quantum number, and in 
spectroscopic notation its value is often written in front of the letter 
indicating the orbital angular momentum. For example, a state with 
n = 2 and l = 1 is called a 2p state. 

Energy eigenvalues The original definition of n relates the energy 
eigenvalues directly to the principal quantum number. In fact 

E = n 32'7T2e~h2n 2 
(12.9) 

where the suffix l has been dropped because the energy eigenvalues 
do not depend on l at all. This is a special property of the Coulomb 
potential and not generally true. 



THREE-DIMENSIONAL APPLICATIONS 91 

0 1 2 3 
0 

~ 4p ~ 
_4_f_ 

3s 3p 3d 

2s 2p 

-10 

Figure 12.1 Energy levels and quantum numbers for the hydrogen atom. 
The spectroscopic label for each state is shown underneath the line which 
represents its energy. Only the states with principle quantum number n ,.;4 
are shown, simply because the lines get crowded as n ~ oo and E.. ~ 0. 

The scheme of quantum numbers and energy eigenvalues for the 
hydrogen atom is shown in figure 12.1. 

The first semi-classical derivation of equation (12.9) was given by 
Bohr in 1913. He was able to account for many known features of 
the optical spectrum of the hydrogen atom, and so established 
beyond doubt that atomic structures were to be described by 
quantum mechanics. The first modern treatment of the hydrogen 
atom was published by Schrodinger in 1926, in the same paper that 
introduced the TDSE and TISE themselves. 

The actual value of E 1 is -2.180x 10-18 J or -13.61 eV when the 
proton mass is taken to be infinite. 

Energy eigenfunctions The polynominal generated by the recurr­
ence relation (12.8) may be connected with the associated Laguerre 



Table 12.1 Radial functions Sn1 = rRn1 for the 
hydrogen atom, according to equation (12.11). 
Here P1 = 2r/ao, P2 = r/a0 , and p3 = 2r/3a0 , as 
specified by equation (12.4) 

n 

1 0 

2 {~ -m 112P2e-p"20- P212) 
-(i4) 112 p~e -p,f2 

-(~)li2p3e-p,J2(1- p, + p~/6) 
3 -(f7)1/2p~e-pi2(1- p,/4) 

-(to1so) 112 p~e -p,J2 

0 4 8 12 16 rlar. 
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Figure 12.2 Unified diagram for the energy eigenstates of the hydrogen 
atom, with l = 0 (s states). Note that the radial wave functions are S10, etc., 
and not R 10, etc. 
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Figure 12.3 Unified diagram for the energy eigenstates of the hydrogen 
atom, with l = 1 (p states). The centrifugal potential is present, in contrast 
with figure 12.2. 

polynomial of degree n -l-1, 
n-1-1 ( )A 

L 21+1( ) {( Z)'}2 ~ -p 
n+l p =- n+ . A£.:,0 A.!(n-Z-1-A.)!(2Z+1+A.)! 

and then 
(12.10) 

S _ -1/2[(n-Z-1)! ] 112 -p/2 1+1L21+1() (12.1l) 
nl- ao n2{(n + l)!? e p n+l p 

The normalisation is in accord with equation (11.4). 
The first few of these eigenfunctions are listed in table 12.1. The 

three s wave functions for n :s:;; 3 are shownt in figure 12.2 and the 
two p wave functions for n :s:;; 3 in figure 12.3. The centrifugal 
potential has the important effect of moving the oscillatory region 
out from the origin, as well as raising the energy eigenvalue. 

t Note that these unified diagrams must deal with S"1 and not R,.1: only the former 
obeys a simple radial equation. 
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Degeneracy The problem of degeneracy mentioned in section 4 
can now be discussed in more detail. For example, the stationary 
state wave functions for the hydrogen atom are clearly degenerate 
so far as the energy is concerned. Thus figure 12.1 shows nine states 
with n = 3 and energy E 3 = -mee4/2887T2e~h2 , namely one 3s state 
(m = 0), three 3p states (m = 0, ±1), and five 3d states (m = 
0, ±1, ±2). If the energy eigenvalues alone had been calculated it 
would not be clear that the corresponding eigenfunctions are or­
thogonal. In fact they must be so, because they belong to different 
combinations of eigenvalues of 12 and lz. 

This example shows how to form a complete orthonormal set of 
eigenfunctions even when there is degeneracy. A complete commut­
ing set of observables must be used, such that each eigenfunction 
belongs to a unique combination of eigenvalues. The set used here 
for the hydrogen atom comprised e, lz, and H. 

§13 The three-dimensional hannoni~ osdllator 

Stationary states A problem with important practical applications 
is provided by the three-dimensional harmonic oscillator, set up by 
subjecting a particle to the central potential V(r) = mw2 r2/2. This 
potential is illustrated by the full curve in figure 13.1, while the 
dashed curve illustrates the sort of potential which could represent 
the short-range nuclear forces binding a proton or neutron to a 
nucleus. The curves diverge widely outside a certain radius, but for 

Figure 13.1 Qualitative comparison between the oscillator potential and a 
plausible potential for a neutron or proton bound in a nucleus. The 
Coulomb interaction of a proton has been ignored. 
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tightly bound states the wave functions are in any event small and 
decreasing exponentially in this region. The oscillator potential is 
therefore often used for simplified nuclear calculations. 

It is perfectly possible to proceed in the standard way by writing 
the stationary state wave functions in the form U..lm = 

Rn1(r)Y1m(8, <(>), and finding the Rn1 by the method of section 11. 
This amounts, of course, to the selection of JZ, lz, and H as the 
complete set of commuting observables for the problem. 

There are, however, some advantages in working with a different 
set, in order to make use of the work already done on the linear 
harmonic oscillator (section 8). The stationary state wave functions 
so obtained are not generally eigenfunctions of e or lz, but it is 
instructive to discuss the possible values of these observables with­
out making formal expansions in angular momentum eigenfunctions. 

The energy operator can be expressed as the sum of three 
operators depending only on x, y, and z respectively, 

H = Hx + Hy +Hz (13.1) 

where Hx, for example, is given by equation (8.1) with the under­
standing that p there means Px· 

The stationary state eigenfunctions can be expressed as the pro­
duct of three eigenfunctions depending only on x, y, and z respec­
tively, 

(13.2) 

where un}x), for example, is given by equation (8.15) with the 
understanding that n there means nx. Then 

(13.3) 

The energies for the lowest five values of N are given in table 13.1, 
column 2. 

Table 13.1 Energies, multiplicities, 
parities, and quantum numbers for the 
three-dimensional harmonic oscillator 

N EN/hw ~ n n, l 

0 3 1 + 1s 2 

1 5 3 2p 2 

2 7 6 + 2s,3d 2 

3 9 10 3p,4f 2 

4 11 15 + 3s, 4d, 5g 2 
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Energy degeneracy In general there are several different sets of flx, 
ny, nz values for each value of N, so that the wave functions are 
degenerate with respect to energy. When N is given, nx can take the 
values 0, 1, ... , N, and for each nx there are N- nx + 1 possible 
values of ny, namely 0, 1, 2, ... , N- flx. Thus the total number of 
independent eigenfunctions belonging to the energy EN is 

N 

gN = ~ (N -nx + 1) =!(N + 1)(N +2) 
n.=O 

The values of gN are given in table 13.1, column 3. 

Parity The effect of using fi is equivalent to multiplication by 
( -1t·( -1)n•( -1t· = ( -1)N. States of even (odd) N therefore have 
even (odd) parity, as shown in table 13.1, column 4. 

Angular momentum The leading term in Un.n.n. may be written 
down in Cartesian coordinates and then transformed into spherical 
polar coordinates: 

(13.4) 

Comparison with the remarks below equation (10.35) about the 
angular complexity of I Yim ( 6, <f> )12 shows that an expansion of U n.n,n, 
in angular momentum eigenfunctions contains only terms with l .;;;; N. 
Moreover, in view of the parities, the expansion contains only terms 
with l even (odd) if N is even (odd). These two rules lead quite 
simply to the angular momentum assignments indicated in table 
13.1, column 5. 

Thus the wave function with N = 0 can only be associated with 
l = 0, and so it must represent the lowest energy state of zero 
angular momentum, the 1s state. 

The three linearly independent wave functions with N = 1 can 
only be associated with l = 1, and so they must be composed of 
linear combinations of the wave functions which represent the 
lowest energy states of angular momentum 1, the three 2p states. 

The six linearly independent wave functions with N = 2 can be 
associated with l = 0 or 2. They cannot contain any 1s component, 
however, because they are all orthogonal to the N = 0 wave func­
tion. Therefore they must be composed of linear combinations of 
the wave functions representing the next lowest energy state of zero 
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Figure 13.2 Energy levels and spectroscopic labels for the three­
dimensional harmonic oscillator. The comparison with figure 12.1 is inter­
esting: the Coulomb potential is relatively more effective at smaller radii 
and therefore for smaller I. Nuclear physicists using the oscillator potential 
often use the principal quantum number n' = n -I. 

angular momentum, the 2s state, or the lowest energy states of 
angular momentum 2, the five 3d states. In fact these states must all 
be degenerate in energy, in order to provide the 1 + 5 = 6 linearly 
independent combinations which are required. Thus the N = 2 wave 
functions represent mixtures of 2s and 3d states. 

The wave functions with N = 3 and 4 can be analysed in the same 
way, and the level scheme shown in figure 13.2 is the result. It is 
interesting to compare this with figure 12.1. 

§ 14 The deuteron 

Structure The deuteron is a bound state of a neutron (mass mm 
position rn) and a proton (mass mP, position rp). The two are held 
together by a short-range and strongly attractive nuclear force, 
which for many purposes may be described by the 'square well' 
potential shown in figure 14.1. The potential energy is supposed to 
depend only on the distance between the two particles, \rn -rP\; it is 
equal to - V 0 if this distance is less than or equal to the range a, and 
zero otherwise. 



98 BASIC QUANTUM MECHANICS 

0 a 

Figure 14.1 The 'square well' potential for the neutron-proton interac­
tion. 

Quantum mechanics of two-particle systemst Some modifications 
need to be made in the basic assumptions (section 2) when two 
particles are present, and in particular the wave function becomes a 
function of two position vectors as well as the time. In the deuteron 
problem, for example, the wave function is l{!(rm rP, t); physically 
I{!* I{! dTn dTP is the probability of finding the neutron in an elemen­
tary volume dTn at rm and at the same time finding the proton in an 
elementary volume dTp at rp. The overall probability is proportional 
to both the elementary volumes, as it obviously must be. 

The operators representing observables are formed in the same 
way as before. Thus the three components of momentum of the 
neutron are represented by -ih ajaxm -ih a;aym -ih a;azm where 
Xm Ym Zn are the components of rn. Operators representing more 
complicated observables are again found by reference to their 
classical analogues, and in particular the total energy is represented 
by 

(14.1) 

where, for example, V~ stands for the operator a2Jax~+a2/ay~+ 
a2Jaz~. 

The interpretative structure of the theory is unaltered, and the 
TDSE still states that ih at{!! at= HI{!. If I{! is written in the form 

t Further points arise when the two particles are identical (section 24). 
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u,(r"' rp)e-iE,•t", then the TISE exhibits u,(r"' rp) as the usual eigen­
function of H belonging to the eigenvalue E,: 

Hu.(r"' rp) = {-2~0 v~- 2~p ~+ V(lrn -rpD }u.(rn, rp) 

= E,u.(r"' rp) (14.2) 

Centre of mass coordinates It is convenient to introduce new 
coordinates and masses by the relationships 

R= mnrn+mprp} 
mn+mp 

M=mn+mp 
(14.3) 

Clearly R (with components X, Y, Z) is the position of the centre 
of mass of the deutron as a whole, and M is its total mass. On the 
other hand r (with components x, y, z) is the position of the neutron 
relative to that of the proton, and IL is called the reduced mass of 
the system. Now equation (14.2) may be transformed by introducing 
R, r, M, and IJ., by writing u.(r0, rp) = F,(R)f.(r), and by dividing 
throughout by F,(R)f,(r). The result is 

1{17?} 1{1f } F,(R) - 2M V~ F,(R)+ f,(r) - 21-t V~+ V(r) /,(r) = E, 

(14.4) 

where, for example, V~ stands for the operator a2 /a)(2+a2/a¥Z+ 
a2/aZ2 • Physically F*f*Ff dTR d-r. is the probability of finding the 
centre of mass of the deuteron within the element of volume dTR at 
R, and at the same time finding the position of the neutron, relative 
to that of the proton, within the element of volume dT. at r. 

The first term in equation (14.4) is the only one that depends on 
R, and so it must separately be equal to a constant, E,,R say: 

(14.5) 

Similarly, 

{-;: V~ + V(r) }t.(r) = E •. .f.(r) (14.6) 

with E... also a constant, such that E •. R +E •.• = E,. 
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Comparison with equation (9.1) shows that equation (14.5) refers 
simply to the motion of the deuteron, considered as a free particle 
of mass M located at R. The appropriate function for Fs (equations 
(9.7)) is a plane wave proportional to eiK,.R, representing a state in 
which the deuteron has momentum hKs and kinetic energy Es,R = 
h2K';J2M. 

On the other hand, equation (14.6), which is concerned only with 
the internal structure of the deuteron, is identical mathematically 
with the TISE for a single particle of mass IL subject to the fixed 
central potential V(r). The appropriate methods for handling it have 
therefore been fully developed already. 

Explicitly, fs(r) will be written in the form r-1Sn1(r)Y1m(O, <b), 
where the spherical polar coordinates r, 0, <b are related to x, y, z in 
the usual way (figure 10.1). If the internal energy Es,r is renamed 
En~> then the Sn1 obey equation (11.3) exactly as before, except that 
m0 is replaced by IL· The Y1m(O, <b) are also unchanged (table 10.1), 
and they are eigenfunctions of the e and lz defined by equations 
(10.3) and (10.4). The observable I will be referred to as the internal 
orbital angular momentum; it is actually the sum of the orbital 
angular momenta of the neutron and proton round the position of 
their centre of mass. 

Ground state of the deuteron The stationary state of lowest inter­
nal energy has l = 0 in order to avoid a repulsive centrifugal 
potential, and n = 1 in order to minimize the number of nodes in the 
wave function and hence the kinetic energy. The appropriate radial 
equation is 

{ h2 d2 } 
- 211- dr2 + V(r) S10 = E 10S10 (14.7) 

with V(r) as shown in figure 14.l.t If the deuteron is bound, E must 
be negative, and for r > a, 

d2 S 
dr2 _K2S = 0, (14.8) 

whose solution is S = Ae-Kr. (The solution proportional to eKr does 
not satisfy the boundary conditions at r = oo.) Similarly for r.;:; a, 

(14.9) 

t The suffices 10 will be left implicit for the rest of this section. 
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whose solution is S = B sin (kr). The solution proportional to 
cos (kr) does not satisfy the boundary conditions at r = 0.) At r =a 
the wave function and its first derivative must be continuous, and 
therefore 

Ae-"'a = B sin (ka) } 
-k:Ae-"'a = kB cos (ka) 

When the second equation is divided by the first, 

cot (ka) = -K/k 

(14.10) 

(14.11) 

This equation must be solved numerically in order to arrive at the 
appropriate value of E. A condition on the solution is 7T/2 < ka < 7T; 
the lower limit is set because cot (ka) is negative, and the upper 
limit because an n = 1 wave function has no nodes between r = 0 
and r = oo. The lower limit gives rise to a condition for a bound state 
of the deuteron to exist at all: 

(2/L Yo) 1!2 {2'"" }1/2 7T a-- >a -(E+V) >-h2 fz2 0 2 

since E is negative. In other words, 

a2Vo> 7T2fz2/81L 

(14.12) 

(14.13) 

The deuteron is in fact only just bound, and the inequality only just 
satisfied; this gives information about a2 V0 , but not about either the 
range or the depth of the potential separately. 

Problems 

4.1 Consider a mole of helium kept under standard pressure and 
temperature in a cubical box of side L (volume= 2.24 x 
10-2 m3). How many quantum states are available to the 
atoms, below a reasonably estimated maximum energy, say 
2kT (k = 1.38 x 10-23 J K-1 , T = 273 K)? Hence estimate the 
probability of a quantum state being occupied. 

4.2 Show that the PPD for each of the three p wave eigenfunctions 
can be expressed as a polynomial in cos (J of degree 2. Show 
further that, if the PPDs (not the wave functions) are added 
together with equal weight, then the result is spherically sym­
metrical. Repeat, mutatis mutandis, for the d wave eigenfunc­
tions. [Comment: The rule exposed here explains in part why a 
closed electron shell in an atom is so inert.] 
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4.3 The addition theorem for spherical harmonics refers to two sets 
of Cartesian axes i, j, k, and i', j', k', together with a general 
point r. The polar and azimuthal angles of r relative to i, j, k 
are 8, <P and the corresponding angles of k' relative to i, j, k 
are a, {3. The angle between r and k' is 8'. Then 

47T l 

P1(cos 8') = 21 + 1 m~-~ Yfm(a, {3) "Ytm (8, <(>) 

Make a sketch to illustrate the angles 8, <(>, a, {3, and 8'. 
A particle is in a p state belonging to the eigenvalue lz' = 0. 

Use the addition theorem to show that the chances of finding 
lx.fl't = -1, 0, or -1 are !, 0, or ! respectively. [Hint: Align k 
along i'. The angle {3 is arbitrary but that does not affect the 
result.] 

4.4 Show that the TDSE for a free particle in an s state takes the 
simple form 

where 

h2 a2 <(>(r, t) 

2m ar2 

<P (r, t) = rt{l(r, t) 

Show further that a solution is 

<(>(r, t) = (1/27Tl/2)S(r)e-iEt/h 

with 
S (r) ,= A_e -ikr + A+eikr 

and write down the consequent dispersion relation between k 
and E (or w ). [Hint: Treat the radial operator in V2 as in 
equation (11.3). Comment: The boundary condition at r = 0 
means that A+/ A_ = -1, but this would be modified if the 
particle were not free inside some definite radius, say a.] 
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Approximate methods for 
stationary states 

§ 15 Perturbation theory 

First-order perturbations The stationary state problems so far 
discussed have been solved exactly with the single exception of the 
deuteron problem, where numerical methods can be used to get a 
solution to any desired accuracy. Essentially the Schrodinger equa­
tion flu.= E.u. has yielded the energy eigenfunctions u. and the 
corresponding eigenvalues E •. 

In practice the energy H in these problems may very often be 
modified by the addition of a small perturbing term H', so causing 
the eigenfunctions to change by small amounts from u. to u. + u~ 
and the eigenvalues similarly from E. to E. + E~. The new 
Schrodinger equation, 

CH + fl')(u. + u~) =(E.+ E~)(u. + u~) (15.1) 

may not be capable of exact solution. An approximate procedure is 
then to neglect terms of the second order of smallness, namely fl'u~ 
and E~u~. After cancellation of flu. with E.u., 

(15.2) 

As usual the original unperturbed eigenfunctions u. form a com­
plete set, so that each u~ may be expanded in the form u~ =I c~.u,.. 

r 

103 
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After flu,. has been put equal to Eru,., the equation becomes 

(15.3) 

Every term may now be multiplied by ut and integrated over all 
space. Since (uk I u,.) = 5k" 

(15.4) 

The shift E~ in the energy eigenvalues is obtained when k is put 
equal to s: 

E~ =(us I H' Ius)= (H') (15.5) 

The change in the eigenfunctions is calculated by taking k not 
equal to s: 

kf=s (15.6) 

This does not fix the value of c~., which must be chosen so that 
us+ u~ is suitably normalised. In fact it may be put equal to zero: 

u~ = L (uk I H' lus)uk (15 _7) 
k,.,s Es -Ek 

This is because all the uk concerned are orthogonal to u., and so 
(us+ u~ I us+ u~) =(us I us)= 1 to terms of the first order of small­
ness. 

Degeneracy A condition for this procedure to work satisfactorily is 
that the c~s given by equation (15.6) are small compared to unity. 
This is obviously not true when there are uk which are degenerate in 
energy with us (that is Es- Ek = 0), and at the same time 
(ukl H' Ius) f= 0. If this difficulty arises the eigenfunctions concerned 
must be rearranged into new linear combinations such that all the 
appropriate matrix elements of H' are zero. An example is given in 
section 16. 

Second-order perturbations A second-order calculation of the 
energy shift is sometimes required, especially when E~ = 0. This 
starts with the equation 

(H + H')( Us+ :t C~suk + u~) = (Es + E~+ E~)( Us+ :t C~sUk + u~) 
(15.8) 
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where the c~. and E~ have already been evaluated, and u~ and E~ 
are of the second order of smallness. The zero- and first-order terms 
already satisfy the equation, and when third- and higher-order terms 
are discarded, 

(15.9) 

Now u~ may be written in the form I c'f,~ and the scalar product 
i 

taken of every term with u •. The result is 

E~= L (u.IH'Iuk)(ukiH'Iu.) 
k¢s E. -Ek 

= L i(ukl H' lu.)l2 

k¢s E. -Ek 
(15.10) 

For the ground state (s = 1, say) E~ is necessarily negative, be­
cause E 1 - Ek is always negative. 

The summation in equation (15.10) may be difficult to evaluate, 
but a useful upper limit to - E~ may be found by replacing Ek - E 1 

by its minimum value, E 2 - E 1 . With the help of the closure relation 
of equation (4.19), 

-E~~ (E ~E) L (u1l H' luk)(ukl H' iu1) 
2 1 k¢1 

= ~2~ EJ(~ (u1i H' iuk)(ukl H' iu1)-(u11 H' iu1)2 ) 

(15.11) 

§16 Hydrogen atom in an electric field 

The perturbing potential in a uniform field The coordinate system 
may be chosen so that the electric field is directed along the z axis, 
and the potential energy of the electron (charge -e) then contains 
an extra term e~z = e~r cos 8. For any reasonable v;tlue of ~ this 
may certainly be regarded as small compared to the kinetic and 
Coulomb energy terms. 
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Ground state perturbation in first order According to equation 
(15.5) the first-order shift in the ground state energy is 

E~oo =-(u100l e'€r cos 8 lu100) 

= e'€ J ut00(r cos 8)u100 dT (16.1) 

Now u 100 is a parity eigenfunction,t and so ut00u 100 is an even 
function of position. On the other hand the perturbation is an odd 
function and therefore the integrand as a whole is odd. Any 
contribution at the point r is cancelled by the contribution at -r, and 
it follows that E~00 = 0. 

A short way of stating this result is to say that the electric dipole 
moment of the system is zero. Obviously the same is true of any 
state of definite parity, provided that the calculation is not compli­
cated by degeneracy. 

Ground state perturbation in second order A limit to the second­
order shift may be obtained from equation (15.11): 

E , (u100l e2'€ 2r2 cos2 8 lu100) 
- 100,;;;; -'---'='-:-=---=----:----=----=.:"'-

(E2oo- Etoo) 

= 3~E::2 J I r r4e-2 ' 1«o cos2 (J sin (J dcf> d(J dr 
0 0 0 

= 327Te0 a~'€2 
3 (16.2) 

The second-order shift may be written -!a'€ 2, where a is the 
polarisability of the system; evidently for the ground state of the 
hydrogen atom:j: a,;;;; ( 64e0/3)a~. 

Perturbations of n = 2 states in first order The n = 2 eigenfunctions 
U2oo. U211> u21o, and u21- 1 represent four states which are degener­
ate in energy in the simple theory of the hydrogen atom. They are 
also eigenfunctions of the parity, and in fact the energies associated 
with u211 and u21_1 are not shifted in first order by the electric field, 
However, the perturbation calculations for u200 and u210 are spoiled 

tIt is in fact even parity, since l = 0, but this is not essential to the argument. 
:j: An exact calculation gives a = (18e0)a~. so that the upper limit is only about 20 

per cent high. 
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by non-vanishing matrix elements, t 

(u21ol e~r cos 6lu2oo) = (u2ool e~r cos 6lu21o)* 
QO 'IT 2'fl' 

= ~ J J J r4(1--r )e-rla0 

161Ta0 2a0 
0 0 0 

x cos2 6 sin 6 dr d6 de/> 

=-3e~a0 (16.3) 

The remedy is to work with new normalised linear combinations 
of these two eigenfunctions, namely u~ = (1/v'2)(u200 + u210) and 
u~ = (llv'2)(u200 - u210). With the help of equation (16.3) it is easily 
seen that 

(u~l e~r cos 6lu2) = (u21 e~r cos 6lu~) = 0} 

(u~l e~r cos 6lu~) = -3e~a0 

(u~l e~r cos 6lu~) = 3e~a0 

(16.4) 

The first equation checks that u~ and u~ can be handled by 
perturbation methods, while the second and third give the corre­
sponding energy shifts in first order. 

The n = 2 stationary states of the hydrogen atom in the electric 
field are therefore represented by u211, u21_t> u~, and u2, whose 
energy eigenvalues are summarised in figure 16.1. Obviously u~ and 
u~ are not eigenfunctions of 12 or ll, but this is not surprising 
because these observables do not commute with the total energy 
when the term e~r cos 6 is present. 

§17 The variational method 

Upper limits to ground state energies It is obvious that the expec­
tation value of the energy (H), computed from a normalised wave 
function v, cannot be less than the lowest energy eigenvalue E 0 • 

Moreover, the difference is very small if v does not differ much from 
u0 , the ground state eigenfunction. For let v be expanded in energy 
eigenfunctions, v =I c.u.. where the coefficients c. for s ;;::?:: 1 are 

s 

t Matrix elements of e~r cos 6 which connect two states of different magnetic 
quantum number vanish when the integration over tb is carried out. 
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+3 

0 

-3 u' 2 

Figure 16.1 The n = 2 energy levels of a hydrogen atom in a uniform 
electric field. 

supposed to be of the first order of smallness. Then, because 
L \cs\2 = 1, we find 

= = 

(H)= L \cs\2 Es =Eo+ L (Es- Eo) \cs\2 (17.1) 
s~O s~l 

which shows that (H)- E 0 is of the second order of smallness. 
The variational method for estimating a ground state energy is to 

write down a trial wave function depending on one adjustable 
parameter, whose value is then varied until (H) is a minimum. This 
minimum will not be far above E 0 if the trial wave function has been 
wisely chosen. Obviously it should have a general form which is 
appropriate to the state being investigated; the ground state of the 
helium atom, for example, should be represented by a spherically 
symmetrical electron wave function (no orbital angular momentum) 
with no nodes between zero and infinite radius (minimum kinetic 
energy). This particular problem will be worked out in detail later 
(section 24). 

The variational principle A simple generalisation of equation 
(17 .1) states that if a normalised v differs little from an eigenfunc­
tion us of l, belonging to the eigenvalue l., then (v\l-ls \v) is of the 
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second order of smallness. This principle can be applied to find 
approximations both to ls and u., but considerable insight and 
subtlety are required to get useful results. 

§18 The WKB approximation 

This method of approximation was invented by Jeffreys in 1925 and 
introduced into quantum mechanics by Wentzel, Kramers, and 
Brillouin in 1926. It provides the mathematical support for the 
discussion given in section 7 and especially the part that related to 
figure 7.1, which should be studied again. 

The oscillatory region Here E- V(x) is positive and the TISE 
may be written 

(18.1) 

where k(x) is real and positive. The WKB approximation may be set 
up by writing u = eiv. Then, 

- (dv)z + i dzv = -kz 
dx dx 2 

(18.2) 

and 

(18.3) 

The fixed but arbitrary lower limit of integration will be chosen 
later, and the associated constants of integration left implicit up to 
that point. 

Now if k(x) had actually been a constant, k0 say, the solutions 
u = e±ikox could have been written down at once. Then v would have 
been equal to ±k0 x, and d2v/dx 2 would have been zero. This 
suggests that, if k is actually varying slowly, a first approximation to 
v can be obtained by neglecting d2 v/dx2 in equation (18.3) Thus, 

X 

v=v1 =± Jkdx (18.4) 

Now d2 v1/dx 2 = ±dk/dx, and this can be put back into equation 
(18.3) to get a second approximation to v, 

Jx( dk)l/Z 
v = v2 = ± k2 ± i dx dx (18.5) 
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where, to be consistent, plus or minus signs must be used through­
out. If the approximation is to work well v2 should be close to v1 . 

So, 

(18.6) 

which is the basic condition for applying the WKB approximation in 
the oscillatory region. If a 'wavelength' A(x) is defined by A= 27T/k, 
an equivalent statement is that 

1:~ I« 27T 
(18.7) 

Thus the fractional change in wavelength from one oscillation to the 
next (an increase of x by about A) must be small compared to 27T. 

Obviously this allows u to differ markedly from an oscillation of 
constant wavelength. 

The expression for v2 can be simplified by making further use of 
equation (18.6) to write 

X X 

Vz = ± f ( k ± lik :~) dx = ± f k dx + -1i log k (18.8) 

In the oscillatory region, then, u can be approximated by 

Xo 

eiv2 = k- 112 exp ( =Fi f k dx + c"') (18.9) 
X 

where the arbitrary limit of integration has been fixed at the position 
of the turning point (x0 ) and the limits of integration have been 
reversed to make the integral positive. The constants of integration 
have also been made explicit; they can be complex to achieve any 
desired phase and normalisation. 

In bound state problems it is convenient to use standing rather 
than progressive waves. They are produced by appropriate linear 
combination of the solutions (18.9), 

u = u0 = k-l/2 cos (y0 +</J) (18.10) 

where 
Xo 

Yo= J k dx (18.11) 

X 
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In equation (18.10) a particular choice of normalisation has been 
made, but the phase angle ~ is still arbitrary. Obviously two 
independent standing waves can always be obtained by choosing a 
pair of phase angles differing by TT/2. 

The exponential region Now equation (18.1) is replaced by 

d2 u 
-=K2(x)u 
dx2 

(18.12) 

where K(x) is real and positive. The WKB approximation to the 
solution of this equation can be obtained in a similar way, provided 
that 

(18.13) 

The result is 

(18.14) 

where 
X 

YE= J K dx (18.15) 

xo 

and an arbitrary choice of normalisation has been made. In practice 
the solution with a negative sign in the argument of the exponential 
is most often required, to suit a boundary condition. 

Joining solutions through the turning region It will be realised that 
the WKB solutions (18.10) and (18.14) hold good whether or not 
V(x) varies linearly with x, as it did in figure 7.1. It is only necessary 
that the conditions (18.6) and (18.13) are satisfied over a useful 
range of x. 

To join up solutions through the turning region it is necessary to 
specify V(x) there precisely. Clearly a linear variation is most 
generally appropriate, 

V(x) = E(1 +ax) (18.16) 

where, for convenience, the origin of the coordinate system has 
been chosen so that x0 = 0. 

The TISE in the turning region has two independent solutions as 
usual. The first (second) may be arranged to connect a solution of 
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Figure 18.1 The exact wave function u near the turning point of a linearly 
varying potential, and the WKB approximations u0 and uE. The vertical 
scale is linear to the left of turning point and logarithmic to the right. 

the type (18.10) with <f> = -Tr/4 (</> = +Tr/4) through to the solution 
of the type (18.14) which decreases (increases) exponentially. The 
connection formulae which give the internal normalisations are 

k-l/2 COS (y0 -Tr/4) ~ !K-112e-yE} 

k- 112 COS (y0 + Tr/4) ~ K- 112e+yF 
(18.17) 

The proof of these easily grasped results is both very tedious and 
quite advanced, and it will not be given here. However, figure 18.1 
shows the first solution through all three regions, and the failure of 
the WKB approximations in the turning region can be seen. The 
position variable used in figure 18.1 is dimensionless, t 

(18.18) 

The double and single arrowheads in equations (18.17) are a 
reminder of a point that must be kept in mind. If the exponentially 

tEquations (18.16) and (18.18) give y0 =~(-~)312 and yE=~e12. 
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decreasing solution is found far inside the exponential region, then 
the phase of the wave function in the oscillatory region can be 
confidently inferred. The reverse is not true, for a small change in 
phase in the oscillatory region will introduce some of the exponen­
tially increasing solution; the coefficient may be small, but neverthe­
less this solution will dominate far inside the exponential region. 
The first formula (18.17) can be used freely only in the direction of 
the double arrow. In the second formula the double arrow points in 
the opposite direction, obviously. 

Potential increasing to the left The discussion so far has dealt 
entirely with a potential increasing to the right through the turning 
point x0 . However, the connection formulae can be used unchanged 
in the reverse situation, provided that the limits of integration in the 
formulae for Yo and YE are both reversed. 

Approximate energy eigenvalues for bound states The WKB ap­
proximation can be applied in an interesting way to estimate the 
energy eigenvalues of bound states. 

If there is no node the angle y0 +cf> (equations (18.10) and 
(18.11)) must increase from the value -71"/4 at the reference turning 
point (x1) through zero to the value 71"/4 at the other turning point 
(x2). Thus 

x2 

f k dx = 71"/2, no node (18.19) 

If there are nodes the phase integral must increase by 7r for each 
node, 

x2 

J k dx = (n +!)7r, n nodes (18.20) 

x, 

This equation expresses the Bohr-Sommerfeld quantisation rule, 
published in 1915. 

As an example the energy levels of the linear harmonic oscillator 
may be estimated. With the notation of section 8, 

+(2EJmw2)1/2 

mw 
J (-~-~-~- x2 r12 

dx = (n + !)7r (18.36) 
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and integration gives the remarkable result E" = (n +~)hw. This 
formula is exactly correct in spite of the approximations made in the 
calculation. 

Phase space and quantisation Classically a particle with energy E" 
in a bound state bounces back and forth between the turning points 
x1 and x2 , its momentum at any intermediate point being p = 
±[2m{E,.- V(x)}]112• 

Now phase space is constructed by using x and p as two or­
thogonal coordinates, and the classical trajectory of the particle in 
phase space may be plotted (figure 18.2) through one complete 
oscillation. This trajectory is of course closed, and symmetrical 
about the p = 0 axis. The area inside is 

"2 

2 J p dx = (2n + 1)1Th (18.22) 

"• 
according to equation (18.20). 

The trajectory of a particle with En-l would lie entirely inside the 
one just discussed, and it would enclose an area (2n -1)1rh. 
Another version of the quantisation rule, therefore, is that each 
additional stationary state involves the enclosure in phase space of 

p 

0 

Figure 18.2 Classical trajectory in phase space of a particle in a bound 
state. 
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an extra area 27Th by the corresponding classical motion. The 
similar rule in three-dimensional motion involves a volume (27Th)3 

in phase space. Something like these rules has been seen before 
(equations (6.8) and (9.9)). 

Problems 

5.1 The proton would be more accurately described as a uniformly 
charged sphere of radius 10-14 m than as a point charge. Use 
perturbation theory to estimate the consequent small change 
in the binding energy of the 1s state of the hydrogen atom. 

The change in the binding energy of the 2p state is even less. 
Why is this? 

5.2 When a uniform electric field is applied to the 1s state of the 
hydrogen atom the wave function becomes distorted. Find the 
admixture of the following wave functions: 

2p (m =0), 2p (m = 1), 2s 

5.3 A particle is subject to a square well potential of finite depth 
(V=O, -Lf2,;;;x,;;;Lf2; V=V0 elsewhere). Use the Bohr­
Sommerfeld quantisation rule to find the number of bound 
states. Is the answer accurate? 

5.4 Verify that the Bohr-Sommerfeld quantisation rule is not 
useful for estimating the energy of the 1s state of the hydrogen 
atom. The failure appears as a mathematical snag: what is the 
basic reason for it? 



6 

Magnetic fields and spin 
angular momentum 

§ 19 Review of classical mechanics: general rules for quantisation 

Introduction It has been assumed so far that the forces acting on a 
particle can be described by a scalar potential V. However, the 
forces produced on a charged particle by a magnetic field are not in 
this class; they depend on the particle's velocity as well as its 
position. To deal with these forces it is necessary to put the theory 
on a more general basis, which uses the advanced classical 
mechanics embodied in the Lagrangian and Hamiltonian equations 
of motion. A brief review of this classical theory follows, and then it 
will be seen that the passage to quantum mechanics can be very 
simply achieved. 

Classical mechanics: Lagrangian equations of motion A Lagran­
gian function L(x;, X;, t) is assigned to the particle, where the X; (i = 
1, 2, 3) are the Cartesian position coordinates and the X; are the 
corresponding components of velocity; for mathematical purposes 
the X;, X;, and t will be regarded as independent arguments in 
considering variations of L. 

The Lagrangian equations of motion are given by 

d aL aL 
----=0 
dt a~ axi 

116 

(19.1) 
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The physical content of these equations depends entirely on the 
choice of L. In the simple situation, with forces that can be de­
scribed by a potential V(~, t), the correct choice is easily seen to be 
L=T-V, 

L(~, j;, t) = L !mit- V(~, t) 

For then the Lagrangian equations take the form, 

or mv=-grad v. 

.. av 0 m~+-= 
a xi 

(19.2) 

(19.3) 

Classical mechanics: Hamiltonian equations of motion The La­
grangian equations can be cast into another form by defining new 
variables, the momenta p; conjugate to the ~. and a new function, 
the Hamiltonian H. 

The momenta are defined by 

aL 
Pi =-a. 

~ 

and the Hamiltonian function by 

H = L gj;- L(~, j;, t) 

(19.4) 

(19.5) 

When considering variations of H the p; and j; will be considered as 
independent arguments for the first term, and the ~. the j;, and t for 
the second term. Then 

aL(~, x;, t) d 
X· axj J 

aL(~, j;, t) dt 
at 

= L (:Xj dp.- aL dx.)- aL dt 
j J axi J at 

= L (x· dp. -p. dx.)- aL dt 
j 1 1 1 1 at (19.6) 

Here the second and fourth terms of the first equation cancelled 
because of the definition of the momenta, and the step between the 
second and third equations used the Lagrangian equations also. 
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It is clear from the last line of equation (19.6) that the xi, the pi, 
and t may conveniently be used as the independent arguments for 
H, when considering its variation as a whole. In this way the 
Hamiltonian equations of motion are obtained: 

aH(:x;, g, t) 

axj 
(19.7) 

All this takes on a very familiar appearance in the simple situation 
where the forces can be described by a potential V. Then L is given 
by equation (19.2) and the momenta defined by equation (19.4) are 
Pi= m:Xi, as usual. The Hamiltonian H, defined by equation (19.5), is 

H = L Pi~- T + v = T + v 

thus H is in fact the total energy, in line with the notation used all 
along. Explicitly, 

H(:x;, Pi, t) = (L pf/2m )+ V(:x;, t) 
' 

and the Hamiltonian equations are, 

Pi . -=x. m J 

In other words p =-grad V and p = mv, as usual. 

(19.8) 

(19.9) 

Quantisation Two rules suffice for the passage from classical to 
quantum mechanics. First, the Pi conjugate to each X; is to be 
replaced by the operator -ih(aJaxJ. Secondly, the Hamiltonian 
operator H{xi, -ih(aJa:x;), t} thus formed is to be used in the 
Schrodinger equation ih(al{i/at) = Hl{i. 

In the simple situation where the forces can be described by a 
potential these rules lead at once to equations (2.14) and (2.17). All 
conclusions up to the present point are thus automatically reco­
vered. 

§20 Magnetic fields 

Classical mechanics An electric and magnetic field, specified by '€ 
and 00, can be described in terms of scalar and vector potentials 4> 
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and A. The relations between the fields and the potentials are 

OO=VxA (20.1) 

and the divergence of A may be fixed by the gauge condition, 

(20.2) 

For a particle of charge e and mass m moving in this electromagne­
tic field the Lagrangian is in fact 

L = T- e<f> + ev. A= L (!m# + exAJ- e<f> (20.3) 

To check this the Lagrangian equations must be shown to predict 
the correct electric and magnetic forces on the particle. In fact they 
state that 

(20.4) 

Now there are two reasons why the value of A at the position of the 
particle may vary with time; one is that A itself may vary with time 
and the other is that the particle may be changing its position in the 
field with time. In other words, 

and so 

. aA ~ aA 
A-=-~+t...X;-~ 

1 at i axi 

mxi =e(- a<f>- aAi)+ei (-xi aAi+X; aAi) 
axi at i axi aXj 

(20.5) 

(20.6) 

The expression in the first bracket is the jth component of ~, and in 
the second bracket two terms cancel and the remaining four can be 
identified with v x V x A. Thus the Lagrangian equations simply 
show the particle accelerating under the usual Lorentz force, 

mv=e(~+vxOO) (20.7) 

Now that L has been decided, equation (19.4) can be used to find 
the momenta Pi conjugate to the xi, 

Pi= mxi +eAi (20.8) 
or 

p=mv+eA (20.9) 
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Then the Hamiltonian function can be found from equation (19.5), 

H = L (g:X; -!mxf- e:X;A;) + e<t> 
i 

= L -21 (P; - eAY + e<f> 
i m 

1 
=- (p-eA)2 +e<t> 

2m 

(20.10) 

Quantisation The rules for quantisation set out at the end of 
section 19 lead at once to the Hamiltonian operator 

A 1 
H =- (-ihV-eA)2 +e<f> 

2m 

h2 ihe e2 
= --V2 +-(V. A+A. V)+-A2 +e<t> (20.11) 

2m 2m 2m 

Here the first term in the parentheses instructs that the differen­
tial operator should act on the product of A and any wave function 
to which fi is applied. With the usual rule for the differentiation of 
products, and with the help of equation (20.2), 

1 0 

V. A=A. V+(V .A)=A. V- 2 <t> 
c 

(20.12) 

where the parentheses indicate a multiplicative factor. Altogether 
then 

Electrons in a uniform magnetic field The magnetic field may be 
supposed to have a uniform strength 00 directed along the z axis, 
since the orientation of the coordinate system can be chosen arbit­
rarily. The vector potential is then, 

Ax =-!OOy; Ay =!OOx; Az =0 } 
(VxA)x =(VxA)y =0; (VxA)z =00 

(20.14) 

The electric field is assumed to be static, so that ci> = 0. 
For reasonably weak magnetic fields A 2 may be neglected, so that 

the second term in equation (20.13) is the only new one. Its value 
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for an electron of charge -e and mass me is, t 

_ ihe A. V= _ iheOO (-y~+x~)= eOO (-ih~) 
me 2me ax ay 2me ac~> 

(20.15) 

The operator here is the familiar In and so the effect of the 
magnetic field on an eigenstate of lz is easily evaluated. The energy 
of the state is altered by the Zeeman shift em, where 

eh 
em=-2 mOO 

me 
(20.16) 

It is obvious now why m was called the magnetic quantum number 
in section 1 0. 

Classically the energy of a magnetic dipole in the magnetic field 
would be -~-tzOO, where 1-Lz is the z-component of its magnetic 
moment. Thus the electron behaves as if it had a z -component of 
magnetic moment 

(20.17) 

where 1-LB = -eh/2me is a natural unit of magnetic moment for a 
particle of charge -e and mass me. It is called the Bohr magnetic 
moment of the particle concerned, here an electron. 

The Zeeman shift will often be written 

(20.18) 

where a subscript I has been added to the magnetic quantum 
number, to show that orbital angular momentum is involved, and a 
factor g1 equal to unity has been introduced. The significance of 
these steps will be understood in section 21. 

Atoms in a non-uniform magnetic field Classically a force ~-tz00 1 in 
the z -direction is exerted on a magnetic dipole with z -component 
1-Lz by a magnetic field whose z -component is 00 + 00 1 z ( 00, 00 1 

constants). The effects of this force are also predicted by quantum 
mechanics, in accordance with the correspondence principle, but 
there is the important feature that 1-Lz is quantised by equation 
(20.17). From 1921 onwards Stern and Gerlach demonstrated this 

t Just at this point the same symbol q, is being used for both the scalar potential 
and the azimuthal angle. The context will show which is meant. 
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by using a non-uniform magnetic field to split collimated beams of 
randomly oriented atoms into 21 + 1 discrete components, each with 
a particular value of m. The importance of these observations was 
immediately clear, but some years passed before they could be fully 
interpreted. 

§21 Spin angulu momentum 

Experiments on Zeeman shifts and Stern-Gerlach splittings show 
that equation (20.18) leads to the right order of magnitude for the 
effects observed, which are certainly of the kind predicted. There 
are, however, some very serious discrepancies in detail. 

The first Stern-Gerlach experiment, for example, split a beam of 
silver atoms into two components, although 21 + 1 cannot be even 
for integral 1. This is of course a complicated result to discuss here, 
because the silver atom contains many electrons. 

It is simpler to consider a fact which was established with more 
difficulty, that the 1s level of the hydrogen atom is Zeeman shifted 
and split into two components, differing in energy by 2~-tnOO. This is 
just twice the normal spacing between states differing by unit m1• 

There are two important points to note. The first is that there are 
twice as many levels (2) as expected (1), and this feature turns out to 
be common to all levels of a single electron. The second is that the 
energy splitting is at least of the order of magnitude predicted. 

These clues support the suggestion, first put forward by Uhlen­
beck and Goudsmit in 1925, that the anomaly had something to do 
with an angular momentum of the electron such that two eigen­
values for its z-component exist. Consideration of figure 10.2 shows 
that the appropriate angular momentum has a squared value of 
!(! + 1 )h2 = ~h2 , with possible z -components of ±!h. Conveniently, 
but somewhat loosely, these eigenvalues may be said to belong to 'a 
state of angular momentum !'. 

It is true that half-integral values were eschewed for orbital 
angular momentum, on the grounds that eigenfunctions single­
valued in cfJ could not be found for them. The objection does not 
rule out the possibility that the particle itself has an intrinsic angular 
momentum, or spin, which is not directly related to its orbital 
motion; this spin angular momentum s may be represented by 
operators s which have no other function except to act on spin 
eigenfunctions X±!• which in turn have no other function than to 
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respond to s. In particular the X±! are not represented by wave 
functions of some coordinate describing the orientation of the 
electron, so that no question arises of single-valuedness in such a 
coordinate. The quantum mechanical formalism for all this is per­
fectly normal, as will be seen, but no useful classical picture of the 
spin can be given because the angular momentum involved disap­
pears in the limit h ~ 0. The same is not true for orbital angular 
momentum because the quantum numbers I and m may take 
arbitrarily large values. 

In order to explain the double-sized Zeeman splitting the corre­
sponding equation to equation (20.18) must be 

(21.1) 

with & = 2. This means that the magnetic moment per unit of spin 
angular momentum is given just twice the value deduced for orbital 
angular momentum. 

The introduction of spin ! (as it is loosely called) and the assign­
ment & = 2 are presented here as responses to experimental facts. It 
should be mentioned that in fully relativistic quantum mechanics the 
Schrodinger equation is replaced by either the Klein-Gordon or the 
Dirac equation. The particles described by the Klein-Gordon equa­
tion have no spin, but those described by the Dirac equation have 
the spin ! and & = 2 'built in' from the start. The latter class of 
particles includes the electron. 

As a matter of fact the proton also has spin !, causing a further 
doubling of the number of levels of the hydrogen atom. The 
splittings are much smaller than those discussed here, because the 
Bohr magneton for the proton is smaller than that of the electron by 
the factor me/ mp. 

Formal mathematical machinery The basic assumptions are that 
the spin angular momentum operators obey the same commutation 
rules as orbital angular momentum operators, 

and that 

S -1 -z 

(21.2) 

(21.3) 

Positive and negative shift operators, s+ = sx + iSy and L = sx - isy, 
and a magnetic quantum number ms can be defined in the manner 
of section 10, and the procedure of that section followed in a 
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completely routine way. Two eigenfunctions Xm,• with ms = ±!, 
emerge with the following properties: 

A lh A lh A2 3h2 } SzX-~ = -2 X-~· SzX~ = +2 X~, S X±~= 4 X±~• 

s+x -! = hx~; s+Xi = 0 

Lx-~ = O; Lx~ = hx-1 

(21.4) 

Scalar products of the two eigenfunctions are given the usual 
values for an orthornomal set, 

<x~ I x~> = <x-~ I x-~> = 1} 
<x~ I X-~>= <x-~ I x~> = o 

(21.5) 

Since no actual coordinate is involved these are not integrals, but 
they may be visualised as scalar products in a two-dimensional 
Hilbert space (figures 4.1, 4.2). 

There is no difficulty in forming the matrix elements of s. For 
example, 

(21.6) 

Finally, the Hamiltonian for an electron (charge -e) in an elec­
tromagnetic field must be amended to include a term 
(g.e/2mec )00 . s, which obviously produces the right Zeeman splitting 
(equation (21.1)). This is actually one of four additions to equation 
(20.13) that are discussed in section 23. 

§22 Combination of orbital and spin angular momenta 

Full wave functions The full wave function of an electron must 
now carry information about the spin as well as the ordinary 
observables. It is appropriately formed by multiplying together the 
spin and ordinary wave functions. The operators representing ob­
servables act only on the part of the full wave function with which 
they are concerned, and they simply ignore the other part. Two 
examples follow, for the 2p (ms = +!) state of the hydrogen atom, 

fzu211(r)X! = (fzu211(r))x! = hu211(r)x! } 
SzU211 (r)Xi = U211 (r)(SzX!) = !hu211 (r)x~ 

(22.1) 

Both have the familiar form of an operator acting on a (full) wave 
function to generate an eigenvalue multiplied by a (full) wave 
function. 
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Addition of orbital and spin angular mometa The two kinds of 
angular momentum combine vectorially to give the total angular 
momentum, 

j=l+s (22.2) 

with the components ix = lx + sx, jY = ly + Sy, iz = lz + Sz. From the prop­
erties of i and s it is clear that j obeys the usual commutation rules, 

[Jx, ]y] = ihJz; (22.3) 

and therefore 
(22.4) 

Positive and negative shift operators, j+ = ix + ijy and j_ = ix- ijy, 
and total and magnetic quantum numbers j, mi can be defined in the 
usual way. The procedure of section 10 can be followed once more 
to see that the values of these quantum numbers are to be found in 
figure 10.2. 

Three relations involving f can usefully be written down at once: 

f =P+s2 +2i. s 1 
A2 2 A A A 

A =I +s -:2lzsz+l+L+Ls+ (22.5) 

l.s=1W-e-s2) 

The wave functions Yrm (0, <f>)Xm formedt in the manner of 
equations (22.1) are eigenf~nctions ~f the commuting set P, f, s2 , 

and sz. Often it is better to work with wave functions Wi;'· which are 
eigenfunctions of the commuting set f j, P, and s2 • Two non­
vanishing commutators should be noticed at once: 

[f, f,J: 2s:[~, :~+?sy[C fzJ } 
- h(s+l- s_l+) 

[j2 , sz] = -h(s+L-Lt) 

(22.6) 

It follows that in general the eigenfunctions of j2 cannot be eigen­
functions of lz and sz also. An exception to this statement (cf. equation 
(5.13)) occurs when m" m, and mi = m1 + m. all have their maximum 
values l, s, and j = l + s: the shift operators s+ and [+ in equations 
(22.6) then produce zero. A second exception occurs when m" m, and 
mi all have their minimum values -l, - s, and - j = -I - s; the shift 
operators L and f_ then produce zero. 

t The radial variation of the u"1"' is not involved in what follows, and it will be left 
implicit. 
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Apart from these two exceptions the WI~' will be superpositions 
of two YimtXm.• since s =! and mi = m1 + m. = m1 ± !. Explicitly, 

Wim--Cim, Y X +Cim Y X ll'- l(m;+iH-! l(m;+D -! l(rh,-!lH l(m,-l) ! (22.7) 

The coefficients c{::::sm, which appear here are called Clebsch­
Gordan coefficients; their values in most practical situations may be 
found from published tables, similar to table 22.1. The first two sets 
of coefficients given there will now be derived in detail. 

I = 0, s =! Matters are very simple here because all combinations 
are exceptional; either m1 = 0 and m. =! (both maximum values), or 
m1 = 0 and m. = -! (both minimum values). Since j 2 = 82 , 

Wb\= YooX!• 

and Chb ll = Cbo\-l = 1. 

(22.8) 

I = 1, s =! The exceptional combination m1 = -1, m. = -! may be 
considered first. With the help of the second of equations (22.5), 

j 2 Y1-1X-1 = (2+!+ 1)1i2 Y1-1X-! 

(22.9) 
and so 

Wi!~ = Y1-1X-! (22.10) 

Three more eigenfunctions of j2 with j = ~ can be found by using the 
shift operator l+ = t + s+. The normalisation is kept in order by 
factors similar to those in equations (10.22), (10.40), and (21.4). 
Thus 

Wl-l 3-1/2~-1(lA +A )Y 
H = n + S+ 1-1X-! 

= (~) 112 YwX-! +(i}1' 2 Y1-1Xl (22.11) 

and likewise 

WH _ (1)1tzy X + f'l)112y X } H - 3 11 -! \3 10 l 

Wiit= YllXl 
(22.12) 

The last-mentioned eigenfunction of course involves the second 
exceptional combination m1 = 1, m. = !. 

A normalised wave function orthogonal to Wi!l can be con­
structed from it by transposing the coefficients of YwX-! and 
Y1_ 1X!• at the same time changing the sign of one. This new wave 
function is still an eigenfunction of iz· As for· j 2 , the second of 
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Table 22.1 Clebsch-Gordan coefficients for the vectorial addition of the 
orbital and spin angular momenta of a single electron. The second column is 
redundant, since l'nj = m1 + m., and it is only included for clarity. In (c) the 
coefficients are zero unless the square root of a positive quantity is indicated. 

(a) l =0, s =~ 

j l'nj m1 m. cim, 
ooin1s 

1 1 0 1 1 2 2 2 
1 1 0 1 1 2 -2 -2 

(b) 1=1,s=~ 

j l'nj mt m. C\':\ti"'s 

3 3 1 1 1 2 2 2 

{ 1 1 <W'2 3 1 -2 
2 2 

0 1 @1/2 2 

{_~ 
1 (~)1/2 

3 1 -2 
2 -2 1 (l)l/2 2 
3 3 -1 1 1 2 -2 -2 

{ 1 1 (~)1/2 1 1 -2 
2 2 

0 1 -m1'2 2 

{_~ 
1 <W'2 1 1 -2 

2 -2 1 -G)1'2 2 

(c) General!, s =~ 

j l'nj mt m. Cl(ri.,-m,Hm, 

{m;+ 
1 (1-l'nj +~)1/2(21 + 1)-112 

l+~ 
-2 

m; 1 (I+ l'nj +!)1'2(21 + 1)-1'2 m-- 2 l 

{m;+~ 
1 (I+ ~nj +~)1'2(21 + 1)-1'2 

l-~ 
-2 

l'nj 1 -(1-l'nj +~)1/2(21 + 1)-112 m;-2 2 

equations (22.5) can be used to see that 

•J2{(1)112y (2)112y } 3 1oX-!- 3 1-1X! 

so that, 
= !(!+ 1)h2{(i)112 Y10X-! -(~)112 Y1-1XJ (22.13) 

w!-!=tl)lt2y X -(~)112y X H \3 10 -! 3 1-1 ! (22.14) 
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Finally, with the help of J+, 

(22.15) 

Six independent Ws have now been found, four belonging to j = ~ 
and two to j = !. No others exist, because there are only 6 = 3 x 2 
independent products of Ys and xs available. 

General addition of angular momenta When j = j1 + h, with j 1 ~ j 2 , 

the total angular momentum quantum number j may take any of the 
values j 1 + j2, j 1 + j2 -1, ... , j 1 - j2 + 1, j 1 - j2. The number of inde­
pendent eigenfunctions, either of the set ii, j 1., ji, j 2• or of the set j2 , 

j., n, j~, is given by 

jl +iz 

(2il + 1)(2i2 + 1) = I (2i + 1) (22.16) 
j=j1-j2 

Spectroscopic notation The spectroscopic notation mentioned in 
section 10 is extended to label a state of principal quantum number 
n, spin multiplicity 2s + 1, orbital angular momentum l, and total 
angular momentum j. Such a state is called a n2 •+ 1 1i state. The total 
angular momentum eigenfunctions derived earlier would thus be 
appropriate to n2s, n 2p,, and n2p, states. Of course the value of n is 
open until the radial part of the wave function is specified. 

At times it is convenient to omit the values of n and 2s + 1, and 
write down simply li. 

§23 Spin-orbit coupling and fine structure: Zeeman effects 

It has already been mentioned that the correct relativistic equation 
for the electron is the Dirac equation, and really this should be used 
to determine the energy eigenvalues of the hydrogen atom. The 
work involved is beyond the scope of this book, but it leads to the 
conclusion that, to a good approximation, the normal Schrodinger 
equation and non-relativistic quantum mechanics can be used, pro­
vided that some extra terms are included in the Hamiltonian. This 
should be amended to read 

A 1 2 A A A 
H=-p + V(r)+H'+H"+H"' 

2p, 
(23.1) 
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where t-t is the reduced mass, V(r) = -e2/47rs0r, and the three last 
terms are new and small. They are given by 

A I p4 
H =- 8t-t3C2 

H"= _ ___if_ av ~ 
4t-t 2c2 ar ar 

(23.2) 

H"'=-1 _ _! a vi. s 
2t-t 2c2 r ar 

The classical and relativistic genealogy of two of these terms can 
be understood quite easily. The first, H', is the second term in the 
expansion of the relativistic kinetic energy in powers of p2 / t-t 2c2; 
apart from potential energy, E 2 = c2p2+ t-t 2c4, and the difference 
between E and the rest energy is E- t-tc2 = (1/2t-t)p2-
(1/8t-t 3c2)p4 + ... 

The second term, H", is known as the Darwin term and cannot be 
understood in a purely classical way. 

The third term, H"', was first written down correctly by Thomas. 
A relativistic transformation of the Coulomb field into the rest 
frame of the electron gives rise to a small magnetic field, and H"' 
describes the energy of the electron's magnetic moment in this field. 
The situation is complicated by the fact that the electron rest frame 
precesses with a certain angular velocity relative to the centre of 
mass frame, and this halves the value of the term. 

Since the third term contains i. sit is said to give rise to spin-orbit 
coupling. A term of this type arises in many other atomic and 
nuclear problems, and so it is important to understand how to deal 
with it. 

General strategy The effect of the new small terms may be calcu­
lated with the help of the perturbation theory of section 15. The 
unperturbed wave functions must of course represent the stationary 
states of the original first two terms of equation (23.1). 

It is at once obvious that the Rn1 (r) Y 1m,Xm, will not serve for the 
purpose; because of the i. s operator in H"' there will be finite 
matrix elements connecting degenerate states with the same values 
of n, l, and mi = m1 + m., but different values of mr. ms. To see this 
it is only necessary to write i. s = lzsz +1(f+s- + Ls+) and to consider 
the effect of the shift operators on Y 1m,Xm.· 
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The remedy is to use the unperturbed wave functions R,1 W{';\ the 
total angular momentum eigenfunctions of section 22. The point is 
that these are eigenfunctions of I . s = !(j2 -12 - i), and the orthonor­
mality of the W{'f• can the:efore be relied upon to suppress undesir­
able matrix elements of H"'. 

The actual eigenvalues of I. s will be needed; they are equal to 
!{j(j + 1) -l(l + 1) -i}h2 , or !lh2 for j = l +! and -!{l + 1)h2 for j = 

l-!. 

Evaluation The calculation is straightforward once the correct 
unperturbed wave functions have been chosen. The first energy shift 
is 

00 

= _21 2 f (En +-4 e2 )2R~Ir2dr 
p,c 1Te0r 

0 

= :: (,:!-~)En (23.3) 

Here the TISE satisfied by the Rn1 W{'f• has been used to substi­
tute for (p2 /2p,)2 , and the final result is stated in terms of the fine 
structure constant a= e2 /4'1Te0 hc. This is an important pure number 
with a value close to 1/137. 

The second energy shift is 

(23.4) 

since Rn1(0) = 0 if lf 0. 
The third energy shift is zero if l = 0, because there cannot then 

be any spin-orbit coupling. When l is not zero, 

E"' = (Rnl W{'f•J H"' IRnl W{'f') 
00 

h2e2 J 1 
= 6 2 2 {j(j+1)-l(1+1)-i} -R~1 dr 

1 '1Te0p, c r 
0 

=-a 2 {j(j+1)-1(l+1)-i} . 
n 1(1+1)(21+1) En, (23.5) 
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0-

E'+E"+E"' 

_! 
2 

Figure 23.1 Fine structure of the n = 2 energy levels of the hydrogen 
atom. 

All three terms may be collected together to give the total fine 
structure energy, 

E' + E" + E"' = a 2 {__!!._-~}E 
n2 j +! 4 n 

(23.6) 

independent of whether l = 0 or not, and whether j = l +! or l-!. 
Obviously the spin-orbit coupling gives rise to a splitting of levels 

that were previously degenerate. A simple example is the splitting of 
the 22p~ and 22p! levels in hydrogent (figure 23.1). 

Weak magnetic field If a magnetic field 00 in the z direction is 
added, then there will be a further term in the Hamiltonian, 

(23.7) 

The operator here has non-zero matrix elements connecting WiT· of 
differing j but the same l and mi. Nevertheless, since just these 
levels are split by the spin-orbit term, a perturbation calculation 
based on the Wii' is valid if the magnetic field is weak. The criterion 
is that the Zeeman splitting energies must be small compared to the 

t The 22s1 and 22p1 levels are still degenerate to this approximation. They are 
actually split by the Lamb shift, an effect smaller than the fine structure by another 
factor of a 2 . 
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spin-orbit splitting. Provided that this is so, 

(23.8) 

The matrix element can be calculated by expanding the Wj';'; in 
terms of the Yrm,Xm,• with the help of Clebsch-Gordan coefficients. 
For example, when j = ~ and mi =!, equation (22.12) shows that the 
expectation value of lz+2sz is {1(1-l)+~(O+l)}h=~h. Similar 
evaluations for the other three p~ wave functions show that 

(23.9) 

with g~ = ~- For the two P! state"S the corresponding formula for e!m; 
has the factor g! = ~- These results determine the initial slopes of the 
lines in figure 23.2, which traces the energies of the 2p levels of 
hydrogen as a function of magnetic field. 

2 Weak! . field Intermediate field I Strong 
field 

-1 

-2 

0 

-- -====~----=-== 
~-- YuX-,t 

........... ----
............ ----

................................ --~ 
'-..... YwX-1 

1 
2 

............... 

1 
i¥J/1Lfi 1a 2IE21 

Figure 23.2 The Zeeman effect for the 2p energy levels of the hydrogen 
atom. 
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General values of gi The general results are worth quoting. The 
Zeeman shift is 

(23.10) 

with 

1 j(j+1)-1(1+1)+s(s+1) 
gj = + 2j(j + 1) (23.11) 

Here gi is called the Lande splitting factor. 

Strong magnetic field When the Zeeman splitting energies are 
large compared to the spin-orbit splitting a reversal of policy on the 
choice of unperturbed wave functions is necessary. Now the Ylm,Xm. 
should be used, because they are eigenfunctions of lz and s" and so 
of H"". Undesirable matrix elements of H'"' are therefore suppressed. 

The magnetic energy obviously has the value 

(23.12) 

The spin-orbit coupling can now be regarded as perturbing the 
Ylm,Xm,• because the magnetic energy splits the previously degener­
ate states with the same mi = ml + ms. The essential expectation 
value, that of i. s = fzsz +~(tL + Lt), is easily calculated, 

(23.13) 

since the raising and lowering operators produce wave functions that 
are orthogonal to Ylm,Xm,· A A 

For the 2p stages of hydrogen the combined effect of H', H", and 
H"' is easily calculated by substituting mlms h2 into equation (23.5), 
in place of the eigenvalues of i . s. In this way a small energy shift, 

(23.14) 

is obtained for these particular states, and this must be added to the 
large magnetic energy given by equation (23.12). 

The whole of figure 23.2 can now be understood. The weak field 
results at the left of the picture give way to the strong field results at 
the right. The change of pattern is known as the Paschen-Back 
effect. In the intermediate field region, which has not been discus­
sed, the energy eigenvalues are indicated by dotted lines. 
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Problems 

6.1 A hydrogen atom is in a 2p, j = ~. '"i = ~ state. Predict the 
results of measuring 12 , s2 , lz, and Sz. 

6.2 A hydrogen atom is in a 2p, m1 = 1, m. = -~ state. Predict the 
results of measuring j2 and iz· 

6.3 Draw the diagram corresponding to figure 23.1 for the n = 3 
levels of the hydrogen atom. Compare quantitatively the PrP~ 
splitting in the two diagrams. 

6.4 Draw the diagram corresponding to figure 23.2 for the 3d 
levels of the hydrogen atom. 
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Identical particles and the 
Pauli principle 

§24 Identical particles 

The wave functiont for two particles, first discussed in section 14, 
has the form 1/'(r~> r2 , t) when the particles are labelled 1 and 2. The 
probability at time t of finding particle 1 in the elementary volume 
dTt. and particle 2 in dT2 , is 1'1'12 dT1 dT2 • Other observables, for 
example momentum, are represented by operators mentioning r 1 

and r2 in the appropriate way. 

The exchange operator Although the labels 1 and 2 are explicit in 
the wave function, it seems that no physical distinction can be made 
between particles that are identical. This is the principle of indistin­
guishability, and it gives rise to an important property of the wave 
function. No difference can be detected between the state described 
by 'l'(r~> r2 , t) and that described by 'l'(r2 , r~> t), where the role of 
particle 1 has been taken by particle 2, and vice versa. This means 
that the second wave function can differ from the first at most by a 
phase factor ei•S, with 5 real. Mathematically, if F\2 is the operator 
that exchanges particle 1 for particle 2 (and vice versa), 

1\2 1f'(r1, r2 , t) = 1/'(rz, r~> t) = eia'l'(r~> r2 , t) (24.1) 

t Spin variables may be added to r 1 and r2 , fOF particles with spin. 

135 
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If P12 is applied twice, 
A2 A "11 2ili 

P 12 "l/l(rt. r2, t) = P12e' "l/l(rt. r2, t) = e "IJI(rt. r2, t) (24.2) 

After two exchanges of the particles the wave function must be 
back to its initial form, so also, 

Pi2 "l/l(rt. r2 , t) = "l/l(rt. r2 , t) (24.3) 

Thus e2 i11 = 1 and ei11 = ±1. 
It is not hard to see that P12 is a Hermitian operator, as defined 

by equation (2.12). Obviously P12 is linear, and so it is fit to 
represent an observable, the exchange parity. The eigenvalues of 
exchange parity are + 1 (symmetric or even state) and -1 (antisym­
metric or odd state). 

It is clear that the energy operator H must involve the coordi­
nates r1 and r2 in a symmetrical way, t and it follows that [P12, H] = 
0. All the work done in section 4 with ordinary parity can then be 
repeated with P12 substituted for fi. 

One consequence is that any stationary state is automatically 
represented by an eigenfunction of exchange parity, unless there is 
degeneracy. 

A second consequence is that exchange parity is conserved. If two 
particles are created in a particular state of exchange parity, they 
will so continue for all time. 

It happens that fermions,:l: or particles of half-integral spin, are 
found only in states of odd exchange parity; on the other hand 
boson~§ or particles of integral spin, are found only in states of 
even exchange parity. The first of these rules is referred to as the 
Pauli exclusion principle, for reasons that will become clear shortly. 
Both rules can actually be deduced from relativistic quantum 
mechanics. 

Two independent fennions The Schrodinger equation, for two 
identical fermions moving without mutual interaction and without 
spin-dependent forces, has the form, 

A A (1) (2) {H(r1)+ H(r2)}"1/1(rh r2)X(m. , m, ) 
= E"l/l(rt. r2)X(m~1l, m~2l) (24.4) 

where the spin wave function X has been made explicit. 

t For example equation (24.10). 
:!: Electrons, muons, protons, and neutrons are fermions. 
~ Pions, kaons, and photons are bosons. 
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The appropriate PX can be built up very easily out of the 
solutions to the Schrodinger equation for each particle individually. 
These solutions have the form 

H(rl)l/la (rl)xW = Eal/la (rl)xW1 
H (r2) 1/Jn (r2) xl]{ = Enl/ln (r2) xl]? - (24.5) 

It is easily checked that the product PX = 1/Ja (r1)1/!b (r2) xWxW solves 
equation (24.4) with E = Ea + Eb. When it is remembered that 
H(r1) + H(r2) mentions r 1 and r2 symmetrically, and the spins not at 
all, it becomes clear that the solution is at least eightfold degenerate. 
The spin wave functions can be any one of the four combinations 
xc,;£x<;£, and the spatial wave function can be 1/Jb (r1)1/!a (r2) instead of 
1/Ja (r1)1/!b (r2). None of these are eigenfunctions of P 12, and the next 
step is to write down linear combinations that are so. 

The four symmetric and normalisedt combinations are 

xWxW 
1 

- (x0 ·)x(2! + x0 1x<2!) -./2 +, -, -, +, 

(24.6) 

and the four antisymmetric and normalisedt combinations are 

xWxW (24.7) 
1 1 

-./2 c 1/Ja Cr1)1/Jb Cr2)- "'b Cr1)1/Ja Cr2)) -./2 <xWx~t + x(l£xl]l) 

x(llx~t 

The Pauli exclusion principle states that none of the symmetric 
wave functions are allowed for two fermions. The antisymmetric 
wave functions, on the other hand, vanish identically if the two 
fermions are in the same state (that is a= b and m~ll = m~2l). A 
consequence of the Pauli exclusion principle, applicable to non­
interacting fermions, is that two fermions cannot be in the same state. 

t When a = b the normalising factor for the spatial part of the wave function is ~. 
not 1/../2. Obviously t/la (r1 )t/Ja (r2) is correctly normalised. 
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Total spin wave functions The spin angular momenta of two 
fermions can be added vectorially to give the total spin, 

(24.8) 

The observables of interest are Sz and S2 , represented by operators 
such that 

(24.9) 

where s~l, s'}l' s~l, s~) are the usual raising and lowering operators. 
The methods of section 22 can be used again to see that the three 
symmetric spin wave functions which appear in equations (24.6) and 
(24.7) are eigenstates of Sz, belonging to the eigenvalues 1, 0, -1 
respectively, and that all three are also eigenstates of S2 , belonging 
to the eigenvalue 1(1 + 1)h2 = 2h2 ; they are referred to as the triplet 
spin states or, more loosely, as states of total spin 1. Similarly, the 
antisymmetric spin wave function belongs to the eigenvalues 0, 0 for 
Sz, S2 • It is referred to as the singlet spin state, or as the state of 
total spin 0. 

The Clebsch-Gordan coefficients for combining two spin ! angular 
momenta are given in table 24.1. 

Table 24.1 Clebsch-Gordan coefficients for 
the vectorial addition of two spin angular 
momenta 

s m, m(1l 
' 

m~2l csm, 
~m/l)~ms(2) 

1 1 1 1 1 2 2 

{ -~ 1 2-1/2 -2 
1 0 1 2-1/2 

2 
1 -1 1 1 1 -2 -2 

{ -~ 
I 2-1/2 

0 
-2 

0 1 -2-1/2 
2 



IDENTICAL PARTICLES AND THE PAULI PRINCIPLE 139 

Ground state of helium The helium atom has a nucleus of charge 
2e and two electrons, for which the operator H has the form 

A h? 2 h2 2 e2 e2 e2 
H = --vl--v2--------+---,----

2m 2m 27Te0 r1 21re0 r2 47Teo lr1 -r21 
(24.10) 

As a first approximation the last term may be ignored, and the two 
electrons then become independent. Each electron is represented by 
a wave function similar to that of the hydrogen atom, with 2e2 

substituted for e2 throughout. The ground state is obviously ob­
tained by putting both electrons into the 1s state, necessarily pro­
ducing a symmetric spatial part of the wave function. It follows, 
because electrons are fermions, that the ground state contains an 
antisymmetric, or singlet, spin wave factor. In fact, t 

(1/!X) =__!___ exp (-2rl_ 2r2). ___!_ (xolx<21- xo1x<2l) 
0 3 '2 +2-2 -2+2 1ra0 a0 a0 v 

(24.11) 

where a0 is given by equation (12.3) as usual. The associated energy 
eigenvalue:!: is -me4/47T2e~h2 . 

It is important to notice that the total spin is forced to be zero by 
the Pauli principle and the associated symmetry considerations, even 
though H mentions no spin-dependent interaction. The lowest 
energy for a triplet spin state, to the same approximation, has an 
energy of -5me4/327T2e~h2, when one electron is in the 1s state and 
the other in a 2s or 2p state. 

A more accurate energy for the ground state may be obtained by 
the variational method of section 17. The charge on the nucleus is 
+ 2e, but each electron partially screens the other so that the 
'effective charge' lies between e and 2e. Thus suggests that the 
effective charge should be written ze, and that z should be varied to 
minimize (1JI'I H I1J1'). The spin wave function is not involved, and it 
will be left implicit. The trial wave function is simply 

z3 
1Jf = -- e-(z/ar)(r,+r2) 

1ra6 
(24.12) 

t Vide tables 10.1 and 12.1 with e2 replaced by 2e2 , and equation (24.7) and its 
associated footnote. 

:j: That is two electrons each four times as strongly bound as in the hydrogen 1s 
state (equation (12.9)). 
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The calculation of (1Jtl fi IP) is straightforward so far as the first 
four terms of equation (24.10) are concerned. They produce to­
gether an expectation energy equal to (z 2 -4z)(me4 /161T2 e6/i2). 

The fifth term in equation (24.10) can be handled by means of an 
expansion involving Legendre polynomials. If r1 < r2 

1 1 r1 ( ') ri ( ') -
1 
--

1 
=-+--z P1 cos 8 +3 P2 cos 8 

r 1 -r2 r2 r 2 r 2 
(24.13) 

where 8' is the angle between r 1 and r2 . If r2 < r1 then the roles of r1 

and r2 should be exchanged on the right-hand side. 
Only the first term of each expansion needs to be considered, 

because 1Jt is spherically symmetric. The result is an expectation 
energy equal to (5z/8)(me4/161T2e~h2). Altogether then 

I A I ( 2 27z) me4 

(1Jt H 1Jt) = z -S 161r2dh2 (24.14) 

This expression has a minimum when z = 27/16 = 1.688. The corre­
sponding energy is 2.85 (me4/161T2e~h2), a result which is accurate to 
2 per cent. 

Spectroscopic notation Once more the spectroscopic notation is 
extended. A state of spin multiplicity 2S + 1, orbital angular 
momentum Lh, and total angular momentum Jh is referred to as a 
25+ 1 LJ state. The capital letters conventionally signify vectorial 
addition of the angular momenta of two or more electrons. 

Another notation may be used to show how the individual elec­
trons are disposed, by specifying the number of electrons in each 
state. Obviously lower case letters are used to specify these. 

Thus the ground state of helium is a 1 S0 state, and its invididual 
particle configuration is (ls)2 • 

Excited states of helium: exchange interaction According to equa­
tion (24.7) four different states of helium can be built up from the 
individual particle configuration (1s) (2s). The spatial wave function 
may be symmetric and the spin wave function antisymmetric, so 
giving rise to a 1S0 state or, alternatively, the spatial wave function 
may be antisymmetric and the spin wave function symmetric, so 
giving rise to three degenerate 3 S1 states. 

When the mutual interaction of the two electrons is ignored the 
1S0 and the 3 S1 states have the same energy. The degeneracy is 
lifted, however, when the mutual interaction is taken into account. 
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A perturbation calculation of the effect of the fifth term in equation 
(24.10) shows this clearly. For the 1S0 state, 

( 1f'•soi41Teo ~:1 -r2111f'·s~= J J uToo(r1)u!oo(r2){41Teo ~:1 -r21} 

X U10o(r1)U2oo(r2) d-r1 d-r2 

+ J J uToo(r1)u~oo(r2){41TBo ~:1 -r2l} 

X U2oo(r1)U10o(r2) d-r1 d-r2 

=Ic+IE (24.15) 

Here the wave functions are the same as those in section 12, except 
that 2e2 replaces e2 throughout. The two terms are called the 
Coulomb integral (Ic) and the exchange integral (IE). For the 3S1 

state, 

( 1/' •s, 141Teo ~:1- r2l 11/' •s,) = Ic- IE (24.16) 

Obviously Ic is positive, and this turns out to be true for IE also; 
essentially the reason is that the interaction is strongest when r1 =r2 , 

so that there is not a great deal of difference between Ic and IE. It 
follows that the 1 S0 state has higher energy (less binding) than the 
3 S1 state. Here again there is a remarkable difference in energy 
between singlet and triplet spin states, even though H does not 
mention spin. 

Problems 

7.1 Three fermions labelled 1, 2, 3 are to be put into three 
quantum states labelled a, b, c. Form a properly antisymmetri­
cal and normalised wave function for this. 

What would happen if the three particles were bosons 
instead, with the further assumption that Ea < Eb <Be and the 
gaps between energy levels are large compared to kT? 
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Transitions 

§25 Spin precession and magnetic resonance 

So far the discussion has been mainly concerned with the properties 
of stationary states, although the wave packet in section 6 was an 
exception. In this chapter some situations that call for the TDSE will 
be discussed. The two problems that follow, both concerned with 
the behaviour of spin ! in magnetic fields, offer the attraction that 
exact solutions are possible and convenient. The first, about spin 
precession, illustrates the use of equation (3.6) when H is indepen­
dent of time. The second, about magnetic resonance, involves a 
time-dependent H so that equation (3.6) is not applicable. It is 
typically convenient to expand the wave function in terms of the 
stationary states of the time-independent part of H, but the expan­
sion coefficients are, of course, functions of time that require 
calculation. 

Spin precession A particle of spin t will be considered whose state 
is represented by tf/(r)X±!' and it will be supposed that tf/(r) is not 
coupled to a magnetic field of strength 00 in the z direction. This 
would be true if the particle were bound in an s state, for example. 
The space part of the wave function can then be left implicit when 
considering the effect of the magnetic field on the spin angular 
momentum. 

142 
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The Hamiltonian is given by H = -(g.e/2m)OOsz, where e and m 
are the charge and mass of the particle. The factor g. is very close to 
2 for the electron or muon, but it takes other values for particles that 
are subject to nuclear forces, such as the proton. The stationary 
states are represented by X+! and X-!• belonging to the eigenvalues 
±~h for Sz and =F (g.eh/4m)OO for the energy. The Larmor precession 
frequency wL may be defined by 

g.eOO 
WL =: -- (25.1) 

2m 

and the energy eigenvalues are then given by ±~hwL. 
When t = 0 the spin wave function <f> will be taken to be 

1 
</>(O) = .Jz <x+~ +X-!) (25.2) 

Obviously Sz is equally likely to have the two possible values ±~h, 
but </>(0) is actually an eigenfunction of sx, belonging to the eigen­
value +~h, 

(25.3) 

where the properties of the shift operators s+, L have been recalled. 
The subsequent development of <f>(t) can be written down at once 

by means of equation (3.6): 

<f>(t) = J2 (e-u..Lt/2X!+e+iwLt/2X-!) (25.4) 

It is clear that the particle is repeatedly in an eigenstate of sx, 
belonging to the eigenvalue +h/2, when t is an integral multiple of 
2TT/wL; at such times <f>(t) = ±<(>(0). This suggests that the spin 
rotates, or precesses, in the xy plane and this idea is easy to verify. 
A unit vector n may be defined that starts off in the x direction arrd 
rotates in the xy plane, round the z -axis, with angular velocity wv 
A positive (negative) wL corresponds to clockwise (anticlockwise) 
rotation when viewed along the z-axis. The component of s along n 
is represented by the operator 

s . n = sxnx + Syfly = Sx cos (wLt) + Sy sin (wLt) 

(25.5) 

and it is easy to check that 

(§ . n)<f>(t) = 2-312(eiwLt/2Lx~ + e-U..Lt12S+X-!) = !h<f>(t) (25.6) 
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Here it is seen that the spin steadily maintains the eigenvalue h/2 in 
the direction of the rotating vector n. This behaviour corresponds to 
the classical precession of a gyroscope that is subjected to a couple 
at right angles to its angular momentum. 

Magnetic resonance Another situation of great practical interest 
arises when a static magnetic field of strength 00 is maintained in the 
z-direction, while a rather weak magnetic field 00' is arranged to 
rotate in the xy plane at angular velocity w. The components of the 
rotating field in the x- andy-directions are 00' cos (wt) and 00' sin (wt), 
so that a positive (negative) w corresponds to clockwise 
(anticlockwise) rotation when viewed along the z-axis. The Hamil­
tonian is 

H = -(g.e/2m)(OOsz + 00' cos (wt)sx + 00' sin (wt)sy) 

= wLsz +i(As+e-""' +ALe""') (25.7) 

where A is defined to be the angular frequency -(g.e00'/2m). 
The spin wave function at t = 0 may be supposed to be X-i• so 

that the particle would be in the stationary state represented by 
X-te""L'12 if 00' were zero. When 00' is not zero,t 

(25.8) 

with c+(O) = 0, c_(O) = 1. Clearly lc+(t)IZ is the probability at time t 
that there has been a transition to the state with sz = +h/2. 

When H is given by equation (25.7), the TISE says that 

(25.9) 

The scalar product of this equation may be formed with X!e-""L'12 

and X-te""L'12 to get two equations, involving c+, c+, c_, and c_, 

The first of these may be differentiated to get 

C+- i(wL -w)c+ +;iA 2c+ = 0 

(25.10) 

(25.11) 

t The exclusion of the exponential factors from c+(t) and c_(t) greatly simplifies 
the following equations. In advanced quantum mechanics this is called 'working in 
the interaction representation'. 
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This linear and homogeneous differential equation may be solved as 
usual by the substitution c+ = eP', which gives a quadratic equation 
for p with the two solutions 

(25.12) 

The constants in the general solution c+ = AeP''+ BePz' can be 
obtained by considering that c+(O) = 0, and by looking at the first of 
equations (25.10) at t=O. The final result is 

i,\ei<w~.-wlt/2 Sin [H(wL- W f +A 2}1/2t] 
c+=- {(wL -w)2+.\2P/2 

2 .\2sin2[!{{wL -w)2+.\2PI2t] 
ic+i = (wL -wf+,\2 (25.13) 

There are several instructive general points that are exemplified in 
this formula. In the first place it is clear that, for.\« wL (or 00' « 00), 
the transitions from S2 = -h/2 to S2 = +h/2 occur for a sharply 
limited range of angular frequencies w. This is illustrated in figure 
25.1, which shows ic+\2 for t = 7r/ .\, when the transition can be 
complete for the first time. The relationship between the effective 
range of applied frequencies and the energy change between the two 

Figure 25.1 The probability \c+\2 of S2 being found to be +h/2 at the time 
t = 7T/A and as a function of w. The probability as t ~ oo is also shown, with 
the assumption that experimental conditions are not ideal. 
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states concerned is given by the formula 

Et-Ei=hw (25.14) 

where Ei and Ef are the energy eigenvalues of the initial and final 
states. 

For the sake of definiteness the discussion will temporarily be 
specialised by supposing that the particle is in fact an electron, 
which has negative charge and a positive wL (clockwise when viewed 
along the steady magnetic field). Then equation (25.14) shows that 
energy is being supplied by the source of the rotating magnetic field 
to the electron. At exact resonance the flow of energy is reversed 
after t = 7r/ A until the initial situation is restored at t = 27r/ A. 

For slight variations of frequency, inhomogeneities of field, and 
long periods of time the trigonometric function in equation (25.13) 
averages out to the value !. The remaining factor then controls the 
final dependence of lc+\2 on wL and the population of the sz = +h/2 
state fluctuates around the dashed line in figure 25 .1. If there is no 
other process involving the electron spin the net flow of energy from 
the source of the magnetic field ceases after this initial investment 
has been made. In solids or liquids there is often some other method 
of spin relaxation by which the electron is returned to the Sz = -h/2 
state, and then the flow of energy from the source is continuous and 
can be macroscopically detected. 

Alternatively the transitions can be microscopically detected in 
free particles, atoms, or ions by a change in the effect of an 
inhomogeneous magnetic field, applied before and after the magne­
tic fields discussed here. The Stern-Gerlach experiments mentioned 
in section 20 were powerfully extended in this direction by Rabi and 
his collaborators. 

A second point of interest is that equation (25.14) becomes more 
and more exact as A/wL is reduced, as figure 25.1 indeed makes 
obvious. Of course the time required for the transition to occur is 
increased, in inverse proportion to A. The error t.E in measuring 
Et- Ei is related to the time tot before a transition is likely to be 
observed by 

1 
t.E tot = hA - = h .A (25.15) 

as foreshadowed in section 5 when the uncertainty principle was first 
discussed. 

Finally, the correspondence principle can again be seen at work. 
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A classical magnetic dipole associated with an angular momentum 
would precess round 2l1 at the angular frequency wL, as discussed 
earlier. The magnetic field 2l1', rotating at the same angular fre­
quency, would point consistently along the vector n, so producing a 
further precession round that vector at the angular frequency A. The 
component Sz of the particle's angular momentum would thus be 
proportional to -cos (At) at exact resonance. The quantum mechani­
cal formula (25 .13) shows that (sz) is indeed proportional to 

lc+\2 -lc-12 = 2 \c+\ 2 -1 = 2 sin2 (~At)-1 =-cos (At) (25.16) 

There is a point of experimental technique that should be men­
tioned. A linearly oscillatory magnetic field is usually applied, rather 
than a pure rotating field. The linear field can, however, be decom­
posed into a superposition of two rotating fields, with angular 
frequencies ±w. When w = wL the component at angular frequency 
-w does not produce a significant effect. 

§26 Transitions caused by a perturbation independent of time 

A non-stationary situation of very general interest can be discussed 
with the help of figure 26.1, which shows the energy eigenvalues 
associated with a time-independent Hamiltonian H. By hypothesis 
the state labelled s is an isolated one, whereas those labelled r (or 
k) are closely spaced and their energies E, (or Ek) extend indefin­
itely above and below Es. At t = 0 the system starts off in the state s, 
which would of course be stationary if the Hamiltonian comprised H 
alone. In fact it will be supposed that a second time-independent 

t 
E 

- }··' 

(u,IH'Iu,)fO 

Figure 26.1 The structure assumed for the energy eigenvalues of H alone. 
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term fl' is also included in the total Hamiltonian, and the aim is to 
see what happens after t = 0 because of this fact. An important role 
in the calculation will be played by the matrix elements (u,.\ fi' \us) 
(or (uk\ H' \us)) which are assumed to be non-zero. Other conditions 
on them will appear later. 

The energy eigenfunctions of fi alone form a complete orthonor­
mal set, and so I{! can be expanded in terms of them: 

t/1 = Cs(t)use-i(E,+E;ltlli+ ~ c,(t)~e-i(E,+E;l</li} 

{Cs(0)=1 {E~=(us\IY'\us) 
c,(O)=O E~=(u,.\H'\u,.) 

(26.1) 

The complex exponential factors are included as a matter of con­
venience, because later equations will be simplified thereby, but of 
course the as yet uncalculated cs(t), c,(t) allow full freedom to the 
variation of 1{1. The energies E~, E~ defined here would, in other 
circumstances, be the first-order energy corrections to E., E, caused 
by H' (section 15). 

The actual time variation of t{! is described by the TDSE 

and so 

ih at{!= (fi + H')l/1 at 

(ihc + E' c )u e-i(E,+E;)t/h+ '\' (ihc + E' c )u,.e-i(E,+E;)t/h 
s ss s L r rr 

since flus = Esus and Hu,. = E,u,.. 

(26.2) 

The scalar product of equation (26.3) may be formed, first with us 
and then with one of the u,., say uk. Some terms are eliminated by 
orthonormality of the eigenfunctions, and others cancel because of 
the definitions of E~ and E~ (or E~). The results are 

ihcs = L c,(us \ H' \u,.)e-iw~• } 

ihck = ;s(uk\ H'\us)eiw.,.'+ L c,(uk\ H'\u,.)eiw.,< 
... k 

(26.4) 

where, for example, 

(26.5) 
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An integral equation for c. So far the calculation has been exact, 
but further progress depends on getting rid of the last term in the 
second of equations (26.4), by puttingt (uk I fl' lu,.) = 0 for r=f k. In 
words it is usual to say that 'the final states do not interact'. This is 
often an exactly fulfilled requirement, for example in the nuclear 
beta decay calculation of section 27, where H' includes a charge 
operator. In other situations the final states do in fact interact, and 
the omission of the terms under discussion is a regrettable approxi­
mation which impairs the credibility of the final result. 

When the final states do not interact, Ek and E~ are also apt to be 
zero. It is therefore consistent to simplify equation (26.5) to read, 

(26.6) 

It is an easy matter to reinstate Ek and E~ alongside Ek and E. in 
succeeding formulae, if desired. 

The second of equations (26.4), with its last term now dropped, 
may be integrated and put into the first of equations (26.4), 

t 

c.=-;z t l(ukl H' lu.We-u.. .. t{J c.(t')e; ..... t' dt'} (26.7) 
0 

The next step is to recognise that the states k are all of the same 
type, so that l(ukl H' lu.W will vary smoothly with &, or wks· 
Moreover, if the number dN of states kin the energy interval dEk is 
given by 

dN 1 dN 
dEk =PE =h dwks 

(26.8) 

then PE can be assumed to be large and also to vary smoothly with 
wks· Thus the summation in equation (26. 7) can be replaced by integra­
tion over wk., 

(26.9) 

A final approximation, of physical significance, is to assume that the 
time integral in equation (26.9) is negligibly small outside a small 
interval of wks near wks = 0. If this is so, then l(ukl H' lu.W and PE 
may be regarded as constants, and the range of integration over wks 

t Note that the possible values of r specifically exclude s (figure 26.1). 
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extended from -oo to +oo, 

00 t 

c.=-~ i(ukl FI' iu.WPE J e-u.. .. '{J c.(t')eu.. .. t' dt'}dwks 
0 

(26.10) 

The conditions for the validity of this final approximation will be 
discussed later. 

Solution of the integral equation The key to the solution of 
equation (26.10) is to remember the exponential decay law of 
radioactivity. A nucleus in a state s, able to make transitions into 
states k which include one or more free particles, does so in such a 
way that ic. 12 = e-xt, where A may be called either the transition rate 
or the decay constant. 

An obvious suggestion is therefore that c.(t) = e-xt/2 should be 
tried. The time integration in equation (26.10) then gives, 

t 

J (-M2+iw )t' d ' -i{e<-M2+iw.,)t_l} 
e •· t = --'-------....:. 

Wks +iA/2 
0 

and the wks integration givest 

(26.11) 

(26.12) 

Since c. = -iAe-x'12 it is now clear that equation (26.10) is satisfied if 

27T A 2 
A=-,; i(uki H' iu.)i PE (26.13) 

t Vide the appendix, equation (4). An alternative and altogether more dashing 
treatment results from reversing the order of integration over t' and wk,, and using 
the fact (section 6) that 

00 

J e"""'(t'-tl dwk, = 21T B(t'- t) 

Then, 
t 00 

21T J e-x''12 B(t'- t) dt = 1r J e-xt'/2 B(t'- t) dt' = 1re-x'12 

0 0 
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This important formula is often referred to as the Golden Rule. It 
obviously involves two distinct parts, the square of the modulus of 
the matrix element and the density PE· The latter is often called the 
phase space factor, because it is equal to (27Th)-3 multiplied by the 
volume of phase space embraced when a unit increase is made in Ek 
(section 18). 

Very often the matrix element cannot be precisely calculated, 
because of lack of knowledge about H, uk> and u., but it is usually 
possible to make some statements about it (for example angular 
distribution or dependence on E 8 ). The phase space factor can 
always be calculated, and useful predictions may sometimes be 
made from the behaviour of this factor alone (section 27). 

Decay width The chance I(wk., t) dwks of finding the system at 
time t in one of the states k lying in the interval dwks is given by 
integration of the second of equations (26.4): 

= ~ If (uk I H' \us)e(-A/Z+iw_,)r' dt' r PE dwks 

0 

With the help of equations (26.11) and (26.13), 

A le(-.\/2+iw•,)'-112 
I(w t)=-

kso 27T Wks + iA/2 

A/2 {1 -.\t 2 -.\t/2 ( )} 
7T(wls+A2/4) +e - e cos Wkst 

At infinitely large times, 

I(w oo)- A/2 
k., -7T(w~s+A2/4) 

(26.14) 

(26.15) 

(26.16) 

Figure 26.2 shows how I depends on wks for At= 1, 2, and oo. The 
characteristic bell-shaped form of the last of these should be noted, 
together with the fact that 

00 

J I(wk., oo) dwks = 1 
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Figure 26.2 The probability distribution for wk., at various times. 

In nuclear and particle physics it is more usual to express I in 
terms of Ek rather than the frequency wrcs. Thus, t 

T/2 
I(Ek, oo) = 7r{(Ek- E,)2+ _T'2f4} (26.17) 

where r = hA is an energy called the decay width; it is the full width 
of the energy interval within which I(Ek, oo) has more than half its 
maximum value. 

The uncertainty principle involving energy and time is again 
exemplified here. An observer attempting to determine E, by one 
measurement of Ek must wait for the transition to occur, which 
takes a time at of the order of 1/ A. But the error aE in identifying 
E, with Ek is of the order T=hA, so aEat=h as before (equation 
(25.15)). Obviously the limitation can be overcome by repeating the 
experiment many times, so building up an experimental distribution 
curve to compare with figure 26.2 

The approximation leading to equation (26.10) It is now clear that 
the important final states are those for which IEk - E, I = r, and a 
retrospective look at the derivation of equation (26.10) shows that 
uk and PE must not change appreciably for these values of Ek. This 

t If Ek and E; had been carried along the denominator would involve the energy 
(Ek +Ek-E,- E;)2 
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is assured if r « Tk> where Tk is the kinetic energy of the particle or 
particles involved. 

More vaguely, the condition can be stated in the form that 
H' « H, and for this reason the derivation of the Golden Rule is 
described as a perturbation theory of transitions. 

Selection rules The matrix element (ukl H' Ius) may be zero for all 
Ek =E., and then the transition rate vanishes to first order. Often 
this does not happen by accident, but rather because of symmetry 
properties of H', u., and uk. If H' were an odd parity operator, for 
example, then us and uk would have to have opposite parity to 
achieve a non-zero transition rate.t Similar situations crop up in 
connection with angular momentum, where matrix elements often 
vanish on angular integration except in special circumstances. Con­
siderations of this kind give rise to selection rules governing the 
nature of the transitions that are allowed to occur. 

Second-order transitions If the first-order transition rate is small 
or forbidden by a selection rule, then the more complicated situa­
tion shown in figure 26.3 may have to be considered. The virtual 
states q are such that Eq =!= E., and they have finite matrix elements 

E 

--s 

Figure 26.3 The structure assumed for the energy eigenvalues of H alone, 
when transitions only occur in second order. 

t Cf. previous remarks about electric dipole moments (section 16). 



154 BASIC QUANTUM MECHANICS 

of fl', both with u. and u,. (or uk). It is assumed as before that the 
final states do not interact ((ukl fl' lu,.)=O, rf= k), and that E~ and 
E~ are zero. 

The new form of 1/J may be written 

"'= c.(t) [Us+ L ru~ ~~us> }uqe -i(E,+E;}t/h ] 
q s q 

where 

+ L c,(t)[u,.+ L {(uql ~, lu,.)}uq]e-i(E,+E:lr/h 
, q E,Eq 

(26.18) 

Here the wave functions in the square brackets are stationary to 
terms of first order in the presence of fi' (equation (15.7)). As 
before the exponential factors are chosen for future convenience; in 
other circumstances E~, E'; would be the second-order energy 
corrections to E., E, caused by fl' (equation (15.10)). 

When the expression for 1/J is substituted into equation (26.2), 
scalar products are taken with us and ub and all appropriate 
cancellations are made: 

"h. = ~ {~(us I FI' luq)(uql FI' lu,.)} -iu>,t} 
lCs £..Crt- E-E e 

r q r q 

.h. {~ (ukl FI' luq)(uql Fl' Ius)} iw , 
z~=~t- eb 

q Es -Eq 

(26.19) 

These equations are the same as equations (26.4) (final state interac­
tions neglected), except that the summations over the virtual states q 
replace the direct matrix elements that appeared previously. Con­
tinuation of the calculation along the same lines as before carries 
this feature into the answer, the second-order Golden Rule, 

(26.20) 

The only new condition is that r = hA. must be small compared to 
IEs - Eq I for all q, so that the summation denominators can always 
be written as Es - Eq. 

The denominator E. - Eq exercises some restraint on the energy 
of the virtual states through which the decay proceeds. If this 
restraint be sacrificed an upper limit for the second-order transition 
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rate can be found by replacing Es - Eq by Es - Eq., where Eq' is the 
energy of the lowest effective virtual state. With the help of the 
closure relation (equation (4.19)), 

21TI(ukl fl' 2 iusW 
A ~h (Es _ Eq.f PE (26.21) 

Obviously this is much smaller than a typical first-order transition 
rate produced by fi' and not forbidden by a selection rule, since fl' 
is small and Es- Eq' will be of the order of H. 

§27 Nuclear beta decay 

The Golden Rule can be applied with confidence when H' corre­
sponds to an electromagnetic interaction, or to the weak Fermi 
interaction responsible for, among other processes, nuclear beta 
decay. As an example the latter process will be discussed in order to 
bring out some general points of interest. 

The process A-B+e-+iie will be analysed, where A, Bare the 
initial and final nuclei, e- is an electron, and ve is an antineutrino of 
the electron-associated variety. The differential decay constant 
dA (Ee) for transitions in which an electron is produced with total 
energy between Ee and Ee +dEe is 

21T I I A I 2 dA(Ee)=h (t/letfivo/B H' 1/J'A) pdEe 

= 2:: i(L -3/2eik •. r •. L-3/2eik;;.•;;1JI'BI H' 11/1' A)2p dEe (27 .1) 

where hk, and hk., are the momenta of the emitted electron and 
antineutrino respectively. They are free particles apart from H' (and 
neglected Coulomb interactions between the electron and the nu­
clear charges), and therefore have the usual plane wave functions 
(section 9). Provided that the electron and antineutrino wavelengths 
are long compared to nuclear dimensions, and this is a good 
approximation, only the constant 1 need be kept in the expansions 
eik •. r. = 1 + ik, . re + · · · and eik;;.r;; = 1 + ik.,. r., + · · · . The spins of 
both are ignored. 

The meaning in equation (27.1) of the phase space factor p needs 
some thought, since there are two free particles of variable energy in 
the final state. Of course p contains a factor PE., such that PE. dEe is 
the number of electron states with electron energy in the range dEe. 
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But for each electron state there is an energy density of final states 
obtained by varying the antineutrino energy E,. Thus p also con­
tains a second factor PE.• evaluated at the antineutrino energy E;; 
which is given by overall energy conservation. The integral involving 
a 8-function at the end of equation (27 .2) is a convenient way of 
writing down this second factor. 

Next, FI' may be taken to be a scalar constant g, whose dimen­
sions are energy x volume, multiplied by a charge operator fJ that 
changes a neutron into a proton. 

This is a very simplified assumption, which does not, however, 
affect the general points at which this discussion is aimed. In truth 
the interaction is a mixture of vector and axial vector interactions, 
which involve the neglected spins of the electron and antineutrino. 

With the above simplified form of H', the differential decay 
constant is 

PE. S(Eo- Ee- E;;) dE;; 
0 (27.2) 

where M = \(PB\ fJ \P A)\ is of order unity, unless it vanishes because 
of a selection rule. In the 8-function, E 0 is the total energy available 
for the two particles, including that required for the mass energy of 
the electron. 

A minor deviation is needed to recalculate equation (9.10) rel­
ativistically. This is necessary for the massless antineutrino, and 
might as well be done for the electron as well. Thus, for either 
particle, PE = dN/dE = (dN/dp)(dp/dE) and, since E 2 = c2p2+ m2c4, 

dN ( L ) 3 2 L 3 ( 2 2 4) } dp = 27Th 47Tp = 27T2c2h3 E - m c 
(27.3) 

dp E E _ =-=-(E2-m2c4)-112 
dE c2p c 

where the phase space rule mentioned in section 18 has been used 
to count the states. Thus, 

dA (Ee) = (27Tg2 M 2) ( L 3 ){E (E2 _ 2 4)1;2} 
dEe hL 6 27T2c3h3 e e m c 

0 

(27.4) 
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It is seen here that the shape of the electron spectrum has been 
entirely determined by the phase space factor; it is called the 
'allowed' shape and has been experimentally checked with great 
accuracy in numerous transitions. 

The total transition rate obtained by integrating equation (27 .4) 
over Ee is given by 

(27.5) 

where, 

TJo=(E~-m2c4)1/2/mcz } 

f( TJo) = -±TJo- fiTJ~ +:foTJ6 +*(1 + TJ~) 112 ln { TJo + (1 + TJ~) 112} 
(27.6) 

The value of M might conceivably be accurately zero, for example 
if A had the opposite parity to B; this would be an example of a 
selection rule at work. In such a case the second terms in the 
expansion of eike.re and eiky.r;. would have to be brought into play. 
The electron spectrum would be modified into a 'forbidden' shape, 
and M 2 would be reduced by a factor of the order of (E0 a/hc)2 , 

where a is the nuclear radius. This is about a factor 100, and the 
effect of this can be clearly seen in a group of experimental values 
of ..\.. 

The experimental half-life of the neutron (about 103 s) leads to a 
value for g of about 1.5 x 10-49 MeV m3, since M should be close to 
1 in this transition. The interaction is certainly weak compared to 
the ordinary potential energy describing the nuclear force, say 
30 MeV, multiplied by the cube of its range, say 3 x 10-45 m3, giving 
a typical product of about 10-43 MeV m3. The ratio of the weak FI' 
to the nuclear H, about 10+6 , amply justifies the use of perturbation 
theory for this problem. 

Nuclear double IJ-decay Certain nuclei are unstable against the 
emission of two electrons and two antineutrinos. A typical example 
is 48Ca (~ 48Sc+e-+iie)~ 48Ti+2e-+2iie, where the virtual state 
configuration is indicated in brackets; the energy available for the 
whole process is 4.3 MeV. Although 48Ca is energetically unstable 
for single 13-decay to 48Sc, the process is very highly forbidden 
because of angular momentum selection rules. A value of I(E. - Eq·)l 
of about 1 MeV may be adopted as an estimate of the minimum 
energy required to raise the 48Sc to a virtual state of more suitable 
nuclear spin. An upper limit for the integrated double beta decay 
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rate is, according to equation (26.21), 

2q4 ( L3 )4 
A.::; li(E. _ Eq,fL 12I("P'T;I fT2 I"P'caW 21r2c31i3 

X J J J J Ee.(E;,- m2c4)112E.,(E;2- m2c4)112 

xE~,E~28(E0 -Ee,-E.,- E;;,- &,,) dEe, dEe2 dE;;, dE;;2 (27.7) 

The phase space integral may be made dimensionless by bringing 
out a factort of (mc2) 11, and it will then be of order unity, like the 
matrix element, M. Thus, 

s:: 21Tg4 ( L 3 )4( 2)11 -2s -1 
A""' li(E. _ Eq.)2 e2 21T2C31i3 me = 5 X 10 s (27 .8) 

The lifetime 1/ A is thus about 1020 years, but experimentally the 
process just evades detection at the time of writing. 

§28 Radioactivity 

The immediate objective here is to give a mathematical description 
of the emission of particles in radioactivity, and to develop a 
relation between the energy spectrum of the particles and the decay 
lifetime.:!: However, some of the equations that will be written down 
will be useful again in section 31, where the remarkable relation­
ships between bound or radioactive states and scattering will come 
to light. 

A central force of definite range a will be supposed to act on a 
particle of mass m, 

V(r) = {V(r}, 
0, 

r-s;a} 
r>a (28.1} 

No attempt will be made to specify V(r) in detail, and so it will not 
be possible to write down the wave function inside a. That does not 
matter; it is the wave function outside a that carries the information 
sought. In that region the TDSE for an s state takes the simple 

t From its definition a 8 function obviously has dimensions reciprocal to those of 
its argument. 

:j: The relation was seen already at equation (26. 7), but the derivation there is 
subject to the limitations of perturbation theory. 
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formt 
ih ac(>(r, t) = _.!f_ a2 c(>(r, t) 

at 2m ar2 ' 
r>a (28.2) 

where 

cf>(r, t) = n{l(r, t) 

If V(r) is attractive enough a bounds state with negative energy 
E 0 can be formed. Outside a, and therefore outside the outer 
turning point, the wave function decays exponentially with r: 

r>a (28.3) 

where 

Ko= l(-2mEo/h)112l 

When the force is not quite so attractive a radioactive s state may 
be formed. A major part of the wave function represents a station­
ary state of energy E. in the usual way, but there is an extra factor 
e-A,t/2 which introduces exponential decay with the decay constant 
A •. Thus 

{ 

( A./41TV.) 112{ eik,r e -iE,tlh)e -A,r/2 } 
(A./41TV.)112eik,re-i(E,-!iQt/h 

cf>.(r, t) = 

0 

a<r:o;;;;;v.t 

(28.4) 

r>v.t 

where the width r. = hA •. If r. « E., and this will be assumed to the 
end of this section, the waveform emitted from the central region 
will be well preserved as it travels outwards:!: with the group velocity 
v. (figure 28.1); in other words the RPPD is a function only of the 
retarded time t-v;- 1 r, and it is zero for negative retarded times. 
Now the RPPD is 

and this is a function of the retarded time only if 

-2 Im k. = A.lv. 

(28.5) 

(28.6) 

The probability of decay occurring by the time t should be 1-e-A·', 
and the normalisation of cf>. ensures this. Provided that a is much 
smaller than v.l A., the radius reached by the wavefront after the 

t Vide problem 4.4. 
:t: Like toothpaste squirted from the tube. 
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ReS,,/ J(RPPD)dr=0.819 
A tl2v-tl2 o 

s s ' 

A.t=0.2 

O~rr~-----------------------------------

a 

ReS. J (RPPD) dr = 0 368 
A~'2v;;-t/2 / o 
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11 

0+-++~~~~~~rr~-r-------------------

v 

Oa 1 2 

Figure 28.1 The wave functions of a particle emitted from a radioactive 
state. 

mean lifetime of the decay, the normalising integral is 

"·' 
(As/Vs) J e-A,(t-v;-'r) dr= 1-e-A•t, 

a 

Since equation (28.2), the TDSE, is satisfied 

k. = {(2m/h2)(E. -~iT.W12 

a« v.IA.. (28.7) 
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Re k. = l(2mE.fli2 ) 112l 

Im k. =-Re k.(r.J4E.) 

161 

(28.8) 

The two equations for Im k. are compatible because E. =!mv;, as 
the correspondence principle requires. 

The particle kinetic energy spectrum According to the usual in­
terpretative rules, the chance of finding the particle with kinetic 
energy T and T+oT is I(T, oo), with 

(28.9) 

Here uT= (1/2?T 112)Sr(r) is an angular momentum and kinetic 
energy eigenfunction belonging to the eigenvalues 0 and T, respec­
tively, and dN/dT is the density of kinetic energy eigenstates. After 
appropriate substitution, t and omission of factors of modulus unity 

I fv,t . 12 2A ( m )112 
I(T, oo) =lim sin (krr)e•kr!".'d --• -

~-->= 1rliv. 2T 
a 

I 1 1 12 
= kr - Re k.- i Im k. + kr + Re k. + i 1m k. 

A ( m )112 
X27T~Vs 2T 

(28.10) 

An example is shown in figure 28.2. The full width of the spectrum 
at half height (say ~E) is close to r., while the mean lifetime of the 
state (say ~t) is A-; 1 =Iii r., and so ~E ~t = li as the uncertainty 
principle requires. 

t Vide problem 8.3. 
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I(I, oo) 

0 T 

Figure 28.2 The kinetic energy spectrum of a particle emitted from a 
radioactive state. The shorter the lifetime of the state, the broader is the 
spectrum. 

Problems 

8.1 Sketch the diagram analogous to figure 25.1, with t = 37T/A. 
instead of TT/ A.. Interpret the result in the light of the uncer­
tainty principle. 

8.2 The maximum kinetic energy of the electrons emitted in the 
beta decay of 3H to 3He is 18.6 keV. Estimate the half-life of 
the decay. 

8.3 Verify that the radial wavefunction 

Sr(r) = (2/R)112 sin (lc-rr} 
= -i(2R)-1'2(e;ry- e-;ry) 

is an eigenfunction of the kinetic energy T belonging to the 
eigenvalue 11?k}/2m. 

Note that Sr satisfies the boundary condition Sr = 0 both at 
zero radius and at the arbitrarily large radius R, in order to 
ensure that T is Hermitian. Hence show that the density of 
states is 

dN = ( dN) (dkT) = _B_ (~) 112 

dT dlc-r dT TTh 2T 



9 

Scattering 

§29 Introduction: analysis into partial waves of definite angular 
momentum 

In atomic, nuclear, and particle physics scattering experiments are a 
standard means of investigating interactions and structures. Typi­
cally a collimated beam of particles, as monoenergetic as possible, is 
directed on to a target consisting of many atoms. The interactions of 
the incident particles with the target cause some of them to be 
scattered out of the beam, and the numbers appearing at various 
angles may be measured. The energy of the beam and the nature of 
the particles in it determines whether each atom as a whole acts as a 
scattering centre, or whether the nucleus or the particles within it 
are the effective centres. Sometimes indeed, when the wavelength of 
the incident particles matches the interatomic spacing, the col­
laborative effects of many atoms must be considered. For simplicity, 
the wavelengths will here be assumed to be small compared to 
interatomic distances so that superposition effects do not come in. In 
such conditions it is enough to analyse the scattering of the incident 
particles by a single atom or nucleus, the separate effects of the 
various scattering centres being simply additive. 

Some features of the interaction between the incident particle and 
the scatterer show up quite directly. The range of the interaction 
may sometimes be indicated by sharp minima in the intensity of the 
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scattered particles as a function of scattering angle (section 32); at 
other times an upper limit to the range is a fair deduction from a 
featureless angular distribution (section 29). If the system 'particle 
plus scatterer' has bound states, then the scattering at low beam 
energies is predictable (sections 30, 31). If the same system has 
radioactive states with positive energies, then the intensity of scat­
tering shows dramatic maxima or resonances at just those energies 
(section 31). 

On the other hand, the establishment of the fine details of the 
interaction between the scatterer and the incident particle requires 
very patient investigation. In general, data are collected for many 
angles and energies and compared with the predictions of various 
assumed interactions. It often takes much effort to reach a satisfac­
tory description, ideally in terms of a potential energy between the 
particle and the scatterer that is specified for all separations between 
them. Often the interaction is too complicated to describe in these 
terms although, even then, an effective potential which gives the 
right answer in some conditions may be a useful abstraction. 

The discussion is often much simplified by dealing one at a time 
with the various angular momenta of the incident particles around 
the scatterer. To see how to do this, the beam alone will be 
considered first. 

The incident beam: no scatterer present A collimated beam of free 
particles, moving co-axially along the z -axis with momentum hk 
and energy E = hP!2m, can be represented by the wave function 
t/J = eikz in the bombarded region (x, y small). The time-dependent 
factor e-iEtth is left implicit, and normalisation will not be necessary. 
The collimating diaphragms are supposed to be wide enough to 
avoid trouble from diffraction effects. 

The particles obviously have zero z-component of angular 
momentum lz, but a measurement of the square of the total angular 
momentum may yield any of the eigenvalues of e. When "' is 
expanded in eigenfunctions of e and lz, belonging to the eigenvalue 
0 for the latter, 

(29.1) 

where r, 8, <f> are related to x, y, z in the usual way. Since F and H 
commute, (J2)"t/l also obeys the Schrodinger equation for arbitrary 
integral n, and so each term in the expansion must separately be a 
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solution. Thus s; obeys the usual radial equation (equation (11.3)) 
with V(r) = 0, 

{ h2 d2 l(l + 1)h2} , , - (h2k2) , 
- 2m dr2 + 2mr2 Sl(r) = ES1(r)- 2m S1(r) (29.2) 

The boundary condition S!(O) = 0 applies as before. 
The l = 0 or s wave is particularly easy to discuss. The radial 

function Sb may be obtained from equation (29.1) by using the 
orthonormality of the ¥ 10, expressed in equation (10.36). After 
writing z = r cos 0 and remembering that ¥ 00 = (1/4'1T)112, 

1 J.,. J2.,. ( 1 ) 1/2 . 
-; Sb = 4 '1T e•krcosfl sin (J dO d<f> 

0 0 

i'1Tl/2 [ . ].,. (4'1T)l/2 
=-- e•krcosa =---sin(kr) 

kr a=o kr 
(29.3) 

(4'1T)112 
Sb = -k- sin (kr) 

As expected this is a solution of the l = 0 version of equation (29.2), 

_(!f...) d2 Sb = (h2 P)so' 
2m dr2 2m (29.4) 

with Sb(O) = 0. The full s wave including ¥ 00 is 

! S , Y: = _!_ sin ( kr) = _,_· (e -ikr- eikr) 
r 0 00 kr 2kr 

(29.5) 

Scatterer present The scatterer, centred on the origin of the coor­
dinate system, will be supposed to exert only central forces that can 
be described by a potential V(r). Very often V(r) is zero for r 

greater than some range a, and this too will be assumed. At some 
distance from the origin the stationary state wave function will now 
take the modified form, 

"'= eikz + f( 0) eikr, 
r 

r»a (29.6) 

Again I{! is independent of <P because the angular momentum is 
conserved for central forces, so that lz still has the eigenvalue 0. 

Upstream in the incident beam (small x, y, and large negative z) 
the first term in equation (29.6) is dominant. Calculation of the 
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probability current density j yields a flux of v incident particles per 
unit time and area, where v is the velocity hk/m. 

Well outside the incident beam (large x, y) the first term in 
equation (29.6) is cut off by the collimators, and the second becomes 
dominant. Another calculation of j shows a flow of v If( OW d!l 
scattered particles per unit time passing through an area subtending 
the elementary solid angle d!l at the origin. The fact that this flow is 
directed radially outwards is the physical justification for the general 
form of equation (29.6), and in particular for the positive sign in the 
exponent of the second term. This term represents an outgoing 
travelling wave. 

The differential scattering cross-section du/d!l is defined as the 
scattered flow per unit time and solid angle, divided by the incident 
flux, 

du =lt<oW 
d!l 

(29.7) 

From equation (29.6) it is obvious that f(O) has the dimensions of a 
length, as the nomenclature implies. In a purely statistical sense du 
may be thought of as the effective target area that the incident 
particles have to hit in order to score a scatter into the solid angle 
d!l. 

The total scattering cross-section ut is the integral of du/d!l over 
all directions, 

~ 2~ w 

ut = J J (:~)sino dO d<f> = 21r J It< oW sino do (29.8) 
0 0 0 

Obviously f(O) contains all information about the scattering. It 
can be calculated by solving the Schrodinger equation, including 
V(r), over the whole region of the beam, including the origin. The 
boundary conditions state that 1{1 must remain finite at r = 0, and 
conform to equation (29.6) at large radii. 

Again 1{1 may be expanded in angular momentum eigenfunctions, 
belonging to the eigenvalue 0 for lz, 

co 1 
1{1= ~ -Sl(r)Yio(O,<f>) 

l=o r 
(29.9) 

Since the forces are central P and fi continue to commute, and 
each term in the expansion must obey the Schrodinger equation 
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separately. Thus, 

{ li2 d2 1(1 + 1)1i2 } (li2k2) 
-2m dr2 + 2mr2 + V(r) Sr(r) = 2m Sr(r) (29.10) 

with S1(0) = 0. At large radii equation (29.6) will be achieved if the 
S1 can be related to the s;: 

(29.11) 

This is possible because the second and third terms on the left-hand 
side of equation (29.10), and the second on the left-hand side of 
equation (29.2), are negligible at large radii. The two equations 
become identical and simple, and the solutions are harmonic func­
tions of kr, like Sh in equation (29.3). The harmonic functions can 
be expressed as superpositions of in-going and out-going travelling 
waves, like Sh in equation (29.5). If S1 is normalised so that its 
in-going part is matched to that of s;, then equation (29.11) will be 
satisfied. 

For the s wave in particular, the I= 0 version of equation (29.10) 
is 

{ Ji2 d2 
} (lik 2

) - 2m dr2 + V(r) S0(r) = 2m S0(r) (29.12) 

with S0(0) = 0. Outside a, the second term on the left-hand side is 
zero and S0 must take the form A sin (kr + 80 ), where A is a 
normalising constant and 80 is a real angle called the s wave phase 
shift. The value of A can be fixed to match the in-going part (cf. 
equation (29.5)) of Sh: 

1 i "k 2"1l "k - s y: =- (e-· '-e l oe' ') 
r 0 00 2kr 

! (S -S')Y: =-'-· (1-e2ill0)eikr 
r o o oo 2b , 

(29.13) 

r~a 

For the s waves there is no need to go to the limit of large radii 
because the centrifugal potential is absent. 

Neglect of scattering in states of high I The second term on the 
left-hand side of equation (29.10), the centrifugal potential, will 



168 BASIC QUANTUM MECHANICS 

equal the energy of the particles at a radius b1 given by the relation 
l(l + 1)/bf = k 2 • When l is large enough b1 will be considerably larger 
than a, the range of the scattering potential. Between a and b1 the 
dominant terms in equation (29.10) state that 

d2S1=l(l+1) S 
dr2 r2 z, 

(29.14) 

which has the general solution S1 = B1r 1+ 1 + C1r-1• The ratio of B1 to 
C1 is of course fixed by the solution of equation (29.10) inside a, and 
the boundary condition at the origin, but it would be an extremely 
exceptional situation if B1 were precisely zero. In general the 
radially increasing term B1r 1+ 1 will become completely dominant at 
bz, whatever the behaviour of V(r) inside a may be. The effective 
boundary condition offered to S1 at larger radii is thus independent 
of V(r), and the same as if there were no scatterer present at all. 
Thus S1 = s; and the scattering will be negligible for angular 
momentum l such that 

b1 »a } 
l(l+1)»(ka)2 =(a/X)2 ( 29"15) 

The classical analogue of this conclusion is easy to see. A particle 
with linear momentum hk and angular momentum hka would pass 
the origin at the distance a, just touching the scattering potential. If 
the angular momentum were greater than hka, no interaction at all 
would take place. 

It follows that the scattered wave described by equation (29.11) 
involves the sum of a limited number of spherical harmonics of low 
l. If da/dfl is expressed in powers of cos 8, no power greater than 
(say) 6a/X will be significant. 

In particular, at energies low enough for the inequality 2 » (a/X)2 

to hold good, only l = 0 or s wave scattering will occur. The angular 
distribution of the scattered particles is then isotropic. 

s wave approximation There is now only one term in equation 
(29.11), and this is written down in equations (29.13). Thus, 

f(O) =J... (1-e2 illo) = (.!.)eillo sin S0 = a0 
2k k 

du (1)2 . 2 ,., 2 • 2 ,., I 12 d{l = k sm u 0 = X sm u 0 = a0 (29.16) 

ut = 4'1Tie sin2 So= 4'1T iaol2 

where a0 , the s wave scattering amplitude, has been defined. 
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Obviously the total s wave scattering cross-section cannot be 
greater than 41TK 2 • 

Calculation of 80 , a0 The scattering cross-section has now been 
firmly tied to the phase shift 80 , which can only be obtained by 
solving equation (29.12) inside a, with S0(0) = 0. The solution must 
be joined smoothly (S0 , dS0/dr continuous) at a to the S0 written 
down in equations (29.13). The two joining equations give the 
normalisation of the internal solution (not interesting here) and the 
phase shift 80 in the external solution (all important). In fact the 
fixing of 80 may be isolated by requiring (1/S0 ) dS0/dr to be 
continuous at a: 

( 1 dS0 ) -- = k cot(ka+80 ) 
S0 dr a 

This equation suggests that a0 should be expressed in terms of cot 
(ka + 80), rather than sin 80 • This can be done by means of the 
trigonometric identity 

a0 = (~ )eillo sin 80 

{ 1 eika sink (ka)} 
=e-2ika k cot(ka+80)-ik (29.17) 

which may be checked by using the standard trigonometrical expres­
sions for sin (ka + 80), cos (ka + 80 ) in terms of sin (ka ), cos (ka ), 
sin 80 , and cos 80 • 

Now ka is small for the s wave approximation to be valid at all, 
and so equation (29.17) can be written in the approximate form 

1 
ao k cot(ka+80 )-ik a 

1 
a 

(..!_ dS0 ) _ ik 
S0 dr a 

(29.18) 

The first term here is called the resonance term, and it is only 
significant if a near-cancellation of its denominator occurs; such an 
event is apt to be connected with the existence of bound or 
radioactive states at about the same energy of the system 'particle+ 
scatterer' (sections 30, 31), The second term is called the potential 
scattering term, and it is constant and determined by the range of 
the interaction between particle and scatterer. 
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As k, E ~ 0, the right-hand side of equation (29.12) will lose its 
influence inside a. Correspondingly S0(r <a), {(l/S0 ) dS0/dr}a, a0 , 

and hence 0"1 must become independent of energy. If in particular 
a0 ~ ab, then -ab is called the scattering length. 

Formulae for general l For reference some of the formulae for 
general l may be set down. A full analysis of equation (29.1) shows 
that oo ( ) 112 

eikz = 1~ (21 + 1)i1 2~r J1+!(kr)P1(cos 8) (29.19) 

where J1+!(kr) is the Bessel function of order l +!. At large radii, 

( 7T)l/2 (1) 
2kr J1+!(kr)~ kr sin(kr-!l7T) (29.20) 

The right-hand side here shows the harmonic dependence on kr that 
is expected from the earlier discussion. When the scatterer is present 
the sine function is replaced by ei11• sin (kr -!l7T + ~1 ), the in-going 
travelling wave being preserved. The real angle ~~ is of course called 
the I wave phase shift. Then, 

(1) 00 
. f(8) = k 1~ (21 + 1)e'11' sin 81P1(cos 8) 

00 

O"t = 47TX2 L (21 + 1) sin2 ~~ 
1~0 

(29.21) 

It is interesting to notice that, since P1(1) = 1 and Im ei11• =sin~" 

47T 
0"1 =klmf(O) 

This result is known as the optical theorem. 

(29.22) 

As k, E ~ 0 it can be shown that ~~ must become proportional to 
k 21 + 1, and correspondingly the contribution of the lth partial wave 
to O"t will be proportional to k 41 or E 21• 

§30 Neutron-proton scattering at low energies 

This problem involves two particles, but the methods of section 14 
can be used to reduce it to single-particle form. The analysis of 
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section 29 holds good, provided that IJ. = mnmp/(mn + mp) is written 
in place of m, and also that r (components x, y, z) is interpreted as 
the position of the neutron relative to the proton (equation (14.3)). 
The interaction between neutron and proton will be the same as that 
used to calculate the binding energy of the deuteron (figure 14.1) 

The zero range approximation will be adopted; this says that a is 
extremely small and Y0 extremely large, while the product a 2 Y0 just 
satisfies the inequality of equation (14.13). 

Since a is extremely small the s wave approximation will be valid, 
the scattering will be isotropic, and the potential scattering term in 
equation (29.18) will be negligible. 

In the interaction region (ro;;;a) the solution to equation (29.12) 
with the right boundary condition at the origin is S0 oc 

sin [{2~J-(E + Y0)/h2P12r ], where E = h2 k2/21J.. Since Y0 is extremely 
large, and a is extremely small, 

(l_dS0 ) =(2~J-Y0) 1'2 {(2~J-Y0) 1'2 } 
So dr a h2 cot h2 a 

(30.1) 

Under the same conditions, equation (14.11) says that 

( 21J. Y0 ) 
112 

{ (21J. Y0 ) 
112 

} = _ (-2~J-E10) 112 

h2 cot h2 a h2 (30.2) 

where E 10 is the (negative) energy of the bound state of the 
deuteron. The resonant scattering term is therefore 

a,-~~~'2(+A'})- ik } (30.3) 

a-t=-;- IElOI+E 

It is clear that the binding energy of the deuteron and the 
neutron-proton scattering cross-section are very closely related; the 
smaller the binding energy, the larger the cross-section. In practice 
the situation is complicated by the fact that both particles have spin 
!, and the interaction between them is spin dependent. The total 
spin of the deuteron is actually 1, and so equation (30.3) only apply 
to the scattering which takes place when the spins of the neutron 
and proton are set up to form total spin 1. More usually the spins 
are at random, and a slightly more complicated formula than 
equations (30.3) must then be used. The details will not be pursued 
here. 
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Transformation to laboratory system In actual practice experimen­
tal measurements are made in the laboratory frame of reference; in 
a typical collision the proton is initially at rest and the neutron is 
projected towards it with velocity v (figure 30.l(a)). In this picture 
the centre of mass, located at the point R (equation (14.3)), is 
moving to the right at the velocity {m0 /(mn + mP)}v. 

Since the motion of R is undisturbed by the collision, it is 
convenient to follow developments in a frame of reference in which 
R is constant. This is the centre of mass frame of reference. A 
picture of the initial situation in this frame (figure 30.l(b)) may be 
obtained by giving both particles an additional velocity {m0 /(m0 + 
mP)}v to the left. The velocity of the neutron is reduced to the value 
{mp/(mn + mP)}v to the right by this transformation. 

In the centre of mass frame after the collision (figure 30.l(c)) the 
conservation of energy and linear momentum require the velocities 
of the particles to be unchanged in magnitude, although directed 
differently. The final direction of r determines the angle of scatter­
ing 0. 

v 
r CofM 

(a) (b) 

(c) (d) 

Figure 30.1 Neutron-proton scattering in the laboratory and centre of 
mass frames. 
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The final velocity of the neutron in the laboratory frame (figure 
30.l(d)) may be obtained by adding back the velocity {m0 /(m0 + 
mP}}v to the right. The laboratory angles of scattering 9', <b' are 
evidently given by 

9, mP sin 9 sin 9 } tan = ---"'----
mP COS 9 + mn COS 9 + 'Y 

<b' = <b 
(30.4) 

where 'Y = mn/mp. 
The fictitious particles with reduced mass IL and position r have 

the initial velocity r = v; their momentum is IJ.V = lik, their energy is 
E = !JLv 2 = li2 k2 /21J., their position probability density in the incident 
beam is normalised to unity, and their incident flux is v. 

The neutrons in laboratory space with mass mn and position rn 
have the initial velocity r n = v; their momentum is mn v = lik' = 
(m0 /i.t)k, their energy is E' =!mnv2 = (mniiL}E, their position proba­
bility density is unity, and their incident flux is therefore v also. 

To each scattering of a fictitious particle at the angles 9, q, there 
corresponds a scattering of a neutron at the angles 9', </J'. When an 
elementary solid angle d.Q is traced out by r, a corresponding 
elementary solid angle d.Q' is traced out by rn. According to equation 
(30.4), 

d.Q = I sin 9 d9 d</J I= (1 + 2-y cos 9 + y 2}312 

d.U' sin 9' d9' d<!J' 11 + 'Y cos 9 I (30.5) 

The solid angle transformation gives rise to a difference between the 
outgoing flows per unit solid angle of scattered neutrons at 9', <b' 
and fictitious particles at 9, </J. Since the incident fluxes are the same, 
the differential cross-section for neutron scattering in the laboratory 
frame is given by 

(30.6) 

The scattering of the neutron in the laboratory frame is not iso­
tropic, obviously. 

Since the total numbers of scattering events are identical, the total 
cross-section for neutron scattering in the laboratory frame is 

(30.7) 
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Here equation (30.3) has been rewritten in terms of E', with the 
approximation 'Y = 1. 

§31 Resonant scattering 

As in section 28, it will be supposed that the particle is subject to a 
central force of definite range a. The energy of the particle is 
supposed to be low enough to ensure that only s wave scattering 
occurs. 

The TDSE again takes the formt 

ih iJcf>(r, t) = _!f_ iJ2 cf>(r, t) 
at 2m ar2 ' 

r>a (31.1) 

whose solution is 

(31.2) 

where k = l(2mE/Ii2) 112l. 
The ratio of A+ to A_ for a given k is fixed by the boundary 

condition at r = 0. It would always be -1 if the potential V(r) inside 
a were not present. 

All this looks like the familiar progression from the TDSE 
through the TISE to an energy eigenvalue and a stationary state 
wave function, but this is not so. Unusually, E will be allowed to be 
complex as well as real, so bringing in states in which the wave 
function grows or decays exponentially. The wave function of equa­
tion (28.4) and figure 28.1 is an example of a decaying state. The 
normalised wave function in a growing or decaying state is confined 
to a changing region of space bounded by a wave front. The writ of 
equation (31.2) does not run everywhere, and therefore there is no 
question of saying that the energy has a complex eigenvalue: rather 
it has a spectrum of real values when a proper analysis is made 
(equation (28.10)). 

The S-matrix:j: The scattering of particles is often described by 
means of the S-matrix. When elastic s wave scattering alone is 
involved the S-matrix becomes a 1 x 1 matrix, or just an ordinary 

t Vide problem 4.4. 
:j: A capital S sans serif will be used to denote the S-matrix. There should be no 

confusion with S(r) = rR(r), a persistent usage since section 11. The former appears 
only in section 31, the latter not at all in section 31. 
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function, actually of k. It may be defined by reference to equation 
(31.2), 

(31.3) 

When k is varied it is to be expected that S(k) varies analytically, 
but there are situations in which it becomes infinite. 

For example the bound state of section 28 may be considered. If k 
is given the particular value iK0 in equation (31.2), and if the result 
is then compared with equation (28.3), it is clear that A+ can be 
identified with A 0 , and A_ with zero. Thus S(iK0) has an infinite 
value or, in other words, the S-matrix has a pole when k takes the 
value iK0 • 

The radioactive state represented by equation (28.4) may be 
considered similarly, and the conclusion is that the S-matrix has a 
pole when k takes the value k •. 

An alternative way of writing the wave function in equation (31.2) 
is 

cf>(r, t) = (A+e-H-k)r + A_eH-k)')e-iEt/11, 

from which is it apparent that 

S(-k) = -A_JA+= 1/S(k)} 
S(k)S(-k) = 1 

r>a (31.4) 

(31.5) 

Thus it followst from the identification above of poles that if there is 
a bound state S has a zero at k = -iK0, and if there is a radioactive 
state S has a zero at k = -k •. 

If l{!(r, t) is a solution of the TDSE then it can be shown that 
l{l*(r, -t) is another.:!: Thus equation (31.2) implies the existence of a 
solution which can be written§ 

r>a (31.6) 

so that 

S(-k*) =-A!/ A~ =S(k)* (31.7) 

Thus poles and zeros not on the imaginary k -axis occur in pairs; the 
radioactive state also gives rise to a pole at -k~ and a zero at k~, in 
addition to the pole and zero already noted. 

t Attention may be drawn to figures 31.1 and 31.2 at this point. 
:j: Vide problem 9.2. 
§Since, for example, (ikr)* = -ik*r = i(-k*)r. 
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Connection between 5(k) and the scattering amplitude When k is 
real and positive 5(k) can be connected with the scattering am­
plitude. According to the second of equations (29.13), 

5(k) = e2Ulo, k real,+ (31.8) 

and then the first of equations (29.17) gives 

k real,+ (31.9) 

Two more conditions on 5 The description of pure scattering must 
show as many particles going out as coming in, and so IA-12 = IA+I2 

for real and positive k in equation (31.2). Furthermore, as was 
noted below equation (29.18), the scattering amplitude tends to a 
constant a~ at low energies. Therefore 

ISI=l 

lim -k1 arg 5 = 2a~ 
k--+0 

(31.10) 

Scattering when there is a bound state An expression for 5 can be 
constructed which reproduces the features of figure 31.1 and obeys 
equations (31.5), (31.7), and (31.10). It is 

5 = _ k+iK0 

k-iK0 

Imk 
x Pole 

o Zero 

------------+-----------+Rek 

(31.11) 

Figure 31.1 The pole and zero of the S-matrix when there is a bound state 
of the 'particle plus scatterer'. 
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Im k 

0 

x Pole 
o Zero 

-------+-------Re k 
X 
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Figure 31.2 Poles and zeros of the S-matrix when there is a radioactive 
state of the 'particle plus scatterer'. 

This gives 

7r I k + iK0 12 
a= 47r laol2 = p 1 + k- iKo 

7T ( k 2 
) 27rh2 

( 1 ) 
= k 2 P+K6 =----;:;;- E+IEol ' k real, + (31.12) 

in complete agreement with equation (30.3) when minor differences 
of notation are taken into account. 

Scattering when there is a radioactive state The features of figure 
31.2 and equations (31.5), (31.7), and (31.10) indicate that 

S= (k-k~)(k+k,) 
(k- k.)(k + k~) 

(31.13) 

For real and positive k, t while lSI = 1 as already mentioned, arg S 
starts at 0 when k = 0, increases through 7r when k is near Re k., 
and approaches 27r as k ~ oo. 

A resonance is said to occur when arg S = 7r precisely, and 
S = -1. The cross-section at that particular value of k, say kreso is 

47r 2 
at(kres) = k 2 = 47rAres 

res 
(31.14) 

which is the maximum value possible. 

t The moduli and arguments of the four factors should be considered in order to 
follow these remarks. For example lk- k~l = lk- k.l and lk + k.l = lk + k~l for real k. 
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An expression for the cross-section may be obtained as follows: 

I 12 7T' I (k- k~)(k + k.) 
1
2 

at=47T' ao = k2 1-(k- k.)(k + k~) 

7T' !2k(k~- k.W 
k 2 ik- k.l 2 ik + k.l2 

7T'r;J(Re k.)2 

(E- E.)2 + r;/4' 

where equation (28.8) has been used. 

k real,+ (31.15) 

In figure 31.3 a plot of at against E, for the particular case 
r. = E./10, shows the resonance at energies near to E •. The full 
width of the peak at half height is always equal to r" and thus r, is 
usually called the width of the resonance or, equally, of the radio­
active state. 

A comparison between figures 28.2 and 31.3 shows remarkable 
similarities. It may be concluded that the energies of radioactive states 
can be determined in two ways, either by measuring the most probable 
energies of emitted particles or by finding the resonance energies for 
scattering of the same particles by the residual systems. 

The lifetimes of the radioactive states can be found in three ways. 
The decays with time of the fluxes of emitted particles may be 
followed, or the widths of the emitted particles measured, or the widths 

u, 

47T 

(RekY 

' ' ' ' ' ' ' 

0+----------------===~~---.,-----~~+ 
0 E 

Figure 31.3 Resonance scattering, when there is a radioactive state of 
'particle plus scatterer'. The shorter the lifetime of the state, the broader is 
the resonance. 
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of resonance scattering measured. The first method is most convenient 
for long lifetimes, and the other two for short lifetimes. 

Applications in atomic, nuclear, and particle physics are wide­
spread. 

§32 The Born approximation 

A completely different approach to the scattering problem may be 
developed by regarding the interaction H' of the particles with the 
scattering centre as weak compared to their kinetic energy H. The 
momentum eigenfunctions L - 312eik.r discussed in section 9 may be 
used as unperturbed eigenfunctions of H. These eigenfunctions obey 
periodic boundary conditions at the faces of a cube of side L. The 
conditions are enforced by the restrictions of equation (9.7) on the 
components of k, and these in turn determine the density of states 
(equation (9.10)). 

The perturbation H' causes transitions of particles from a state 
with the initial momentum hk; to other states with the final momen­
tum hkt. Conservation of energy in the usual way ensures that 
lk~l = lk;l = k2 . The density of final states is found by putting p = hk 
in equation (9.10), with an additional factor of dD/4'77" when attention 
is focused on those final states where kr points into the solid 
angle dil. 

The initial state has a flux vL - 3 particles per unit area and time, 
so that the rate at which the specified transitions occur must be 
vL - 3 do-. This may be equated with the transition rate givent by the 
Golden Rule, 

vL -3 do-= 2'77" 1- (L -3/Zeik,.r I H'i L -3/Zeik,.r 12 Cmk dil (32.1) 
h 8'7T3 h2 

The factors of L cancel as usual, and L may therefore be allowed to 
become infinite. If His represented by the scattering potential V(r), 

(32.2) 

t A negative sign is included to indicate the phase of f(O) (see equations (29.6) and 
(29.7)) and this is faithfully preserved through equation (32.4). The phase is not 
readily deduced here, but there are other ways of obtaining the Born approximation 
which do supply this information. The amplitude does not obey the optical theorem 
(equation (29.22)). 
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At this point is is convenient to define the vector K == ~- kf; an 
elementary construction shows that the magnitude K is equal to 
2k sin (0/2). Evidently hK is the momentum transfer from the scat­
tered particle to the scattering centre in the collision concerned. 

Now the direction of K can be taken as the polar axis of a set of 
spherical coordinates r, 0', cf>'. Integration of the right-hand side of 
equation (32.2) is trivial over cf>', and simple over 0', 

du m2 I I"' f.,. 2f.,. . , 12 
d.O = 41r2h4 - V(r)e•Kr cos 6 r2 sin(}' de(>' dO' dr 

0 0 0 

(32.3) 

which leads to the standard Born approximation formula, 

00 

du =4m2 ,_ f V(r){sin Kr}r2 drl 2 
d.O h4 Kr 

(32.4) 
0 

It is worth noting that du/d.O depends on the kinematics of the 
collision only through the variable K = 2k sin (0/2). This means, for 
example, that quadrupling the energy of the particle and halving the 
value of sin (0/2) would leave du/d.O unchanged. 

Validity The accuracy of the Born formula is not easily discussed 
in a general way, but some criteria can be obtained when the 
potential V(r) may be given some sort of average value V' up to its 
range a. 

The scattered wave will not be a serious perturbation of the 
incident wave if the phase shifts are small, and in particular the s 
wave phase shift 80 is small. According to equation (29.16), 

( V') 112 { ( V') 112} k 1-E cot ka 1-E =kcot(ka+80 ) (32.5) 

At high energies (E » V') it is clear that 80 will be small if the 
cotangent on the left-hand side has an argument differing by a small 
angle from ka. Since {1-(V'/E}P12 = 1-~(V'/E), the condition is 

\k;:'l = ~~~~~« 1 (32.6) 
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where v is the classical velocity of the incident particles. It is 
satisfactory to note that in this situation the Born approximation is 
complementary to the s wave approximation, which applies at low 
energies. 

It is possible for the Born approximation to be valid at low 
energies, when ka « 1, Y' is negative, and E «I Y'\. Then equation 
(32.5) says 

tan 80 = (-E/Y') 112 tan {(-2m Y') 112a/h} (32.7) 

Thus 80 will be small provided that (-2mY')112a/h does not ap­
proach 'Tf'/2 very closely. 

If Y(r)=-Y0 (Y0 positive) when r~a. and Y(r)=O otherwise, 
the condition says that 

(32.8) 

Comparison with equation (14.13) shows that the Born approxima­
tion is valid at low energies provided that the scattered particle 
cannot have, or nearly have, a bound state in the interaction 
potential. The Born approximation could not therefore be used to 
obtain equation (30.3), for example. 

Neutron scattering by nuclei at intermediate energies A suitable 
use for the Born approximation is to calculate the scattering of, say, 
400 MeV neutrons by nuclei. The interaction can be represented by 
a constant potential - Y0 extending up to the nuclear radius a. 
Typical values are Y0 - 40 MeV and a- 2.5 x 10-15 m for carbon, 
so that Y0/E=0.1 and aY0/hv=!; thus equation (32.6) is rather 
sparsely satisfied. The calculation will therefore not be extremely 
accurate. 

The appropriate substitutions in equation (32.4) yield the result 

drr 4m 2 Y2 { Kfa }2 

d.Q = h4 ° K-3 Ka sin (Ka) d(Ka) 
0 

4m2~a6 
= 9h4° [-3(Ka)-3{sin(Ka)-Kacos(Ka)}]Z 

4m2 Y2 a 6 

= 9h4° {-3(Ka)-1jl(Ka}? (32.9) 

where the spherical Bessel function of order 1 has been identified. 
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2 4 

4.49 

6 8 
7.73 

10 

KQ 

Figure 32.1 Neutron scattering by nuclei of intermediate energies, calcu­
lated by means of the Born approximation. Diffraction minima are seen. 

The dependence of du/d.!l on Ka is shown in figure 32.1. The 
diffraction minima are quite characteristic, and experimental studies 
of them are often used to establish the radii of nuclei and particles. 
When the calculations are made exactly the minima actually occur at 
slightly smaller values of Ka. 
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Problems 

9.1 At first sight equation (29.6) conveys the impression that the 
number of particles is not conserved. The beam appears to 
continue undisturbed downstream from the target, while scat­
tered particles travel away from the target in other directions. 

Prove in fact that particles disappear in the forward direc­
tion because of a destructive superposition of the two terms in 
equation (29.6). The overall number of particles is conserved 
as a consequence of the optical theorem, equation (29.22). 

9.2 Show that if 1/J(r, t) is a solution of the TDSE then so is 
1/J*(r, -t). [Hint: Write down the TDSE, 

and then write down its complex conjugate, which is not a 
TDSE because of a minus sign on the left-hand side. This can 
be corrected by substitution of 1/J*(r, -t) for 1/J*(r, t).] 

9.3 Show that 1/J*(r, -t) represents a physical state which is the 
same as that represented by 1/J(r, t), except that it develops in 
the reverse order of time. 

9.4 Show that S cannot have a pole where the real and imaginary 
parts of k are both positive. Since poles are paired this means 
that S cannot have poles in the upper half plane, apart from 
those on the imaginary axis due to bound states. [Hint: At­
tempt to construct an analogue to figure 28.1 with proper 
attention to normalisation.] 

9.5 Show that the maximum value of O't, given by equation 
(31.15), occurs when E = Es. Show further that resonance 
occurs at the slightly higher E = !(E;+ Tsf4)112!. [Hint: In the 
second part find where the maximum of O't/47TA 2 occurs.] 

9.6 Show that the potential scattering is described by S = e-2ika, 

and that equations (31.5), (31.7), and (31.10) are duly 
satisfied. When the potential scattering is not neglected, and 



184 BASIC QUANTUM MECHANICS 

u,/(Re k,)> 

12 

10 

8 

6 

4 

2 

Figure 9P.l Resonance and potential scattering, showing constructive 
superposition above resonance and destructive superposition below it. 

when there is a radioactive state, 

s- -2ilca (k- k~)(k + k.) 
- e (k- k.)(k + k~) 

Sketch Argand diagrams for S and 1 - S, and hence show that 
the resonance and potential scattering superpose construc­
tively above resonance and destructively below it. [Comment: 
Figure 9P.l shows a computed example.] 
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Radiation 

§33 Quantisation of the radiation field 

A single oscillator: classical version In a vacuum, with no charges 
or currents present, the electromagnetic field is called a pure radia­
tion field. It can be described by a vector potential A(r, t), the scalar 
potential cf>(r, t) being zero. The vector potential obeys the equations 

(33.1) 

and the electric and magnetic fields are 

'IJ =-A, OO=curl A (33.2) 

A Fourier analysis of A can be made in terms of travelling waves 
obeying periodic boundary conditions in a cube of space with side L. 
For the moment attention will be restricted to a situation in which 
just one of these waves is present: 

( h )V2 . . A= t: -{a ·(t)e•k.r + a*(t)e-•k.r} 2eokcL 3 kJ kJ kJ 
(33.3) 

185 
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Here k is the propagation vector of the wave, and 
(h/2e0 kcL 3) 112aki(t) is a complex amplitude:t A is kept real by the 
addition of the second term involving the complex conjugate am­
plitude. The wave is transversely polarised in the direction of the unit 
vector Eki• which must be orthogonal to k in view of the second of 
equations (33.1). Two orthogonal choices for Eki are required, and 
these may be decided and labelled by j = 1, 2 in any convenient 
manner. In order to satisfy the periodic boundary conditions, 

(33.4) 

with Sx, Sy, Sz integral. 
When the expression for A is substituted into the first of equa­

tions (33.1) the time dependence of a is exposed::j: 

w=ck (33.5) 

The appropriate solution is 

(33.6) 

since A will then be a harmonic function of k . r- wt: this makes the 
wave travel in the direction of k with velocity c. 

The real observables Q and P can be defined by 

( h )1/2 } Q= 2w (a+a*) 

. . hw 112 * P=Q=-{2) (a-a ) 

(33.7) 

since a = - iwa and a* = iwa *. After inversion, 

_ 1 {·( 1 )112 (w)112 } } a--z- P+- Q 
../2 hw h 

*- 1 { ·( 1 )112 (w)l/2 } a -- -z- P+- Q 
../2 hw h 

(33.8) 

tIt might seem strange that the arbitrary normalising factor contains h112, while 
the discussion remains strictly classical. Later on this is matched by a factor li 112 in 
the definitions of Q and P (equations (33.7)), so that in fact no trace of li remains 
when those observables are used. The factors are so chosen in order to prepare for a 
close analogy between a and a*, on the one hand, and the quantum destruction and 
creation operators a and a* of section 8, on the other. 

t The suffices kj will be left implicit while one particular wave is being discussed. 



RADIATION 187 

The electric and magnetic fields given by equations (33.2) can 
now be calculated, first in terms of a and a* and then in terms of Q 
and P: 

( hw ) 112 . . 'IJ=i -- E(ae•k.r_a*e-•k.r) 
2e0 L 3 

( 1 )1/2 
=-

100
L 3 t:(P cos k. r+wQ sink. r) (33.9) 

and 

·(I-L0hw) 1'2(k X E) . . 00= l 2L!> k (ae•k.r_a*e-•k.r) 

( 1-L ) 112(kXE) =- L~ -k- (Pcosk.r+wQsink.r) (33.10) 

Thus the total energy H of the electromagnetic field can be 
found: 

(33.11) 

The total energy has deliberately been called H in order to 
suggest that it may be regarded as a Hamiltonian depending on a 
'coordinate' Q and a conjugate 'momentum' P. The corresponding 
Hamiltonian equations (equations (19.7)) are indeed correct, 

aH . 
-=w 2 Q=-P aQ , 

which agree with equation (33.7). 

aH=P=Q 
aP 

(33.12) 

An analogy between the electromagnetic wave and the linear 
harmonic oscillator of section 8 is now quite obvious. The Hamilton­
ian of equation (33.11) is the same as that of a linear oscillator of 
unit mass and frequency w. The electromagnetic wave may be 
quantised simply by pursuing this analogy to its logical conclusions. 

A single oscillator: quantised version The quantum mechanical 
description of the wave involves the operators 6, P, i'I, a, and a* 
whose mathematical properties reproduce those of the operators .X, 
fJ, i'I, a, and ci* of section 8. Thus [0, P]= ih, and the operator 
algebra based on this leads to the inevitable consequence that the 
wave has quantised energy eigenvalues, 

(33.13) 
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In the nth state the wave is said to involve n photons, each of 
energy hw. Since any transition involves the creation or destruction 
of integral numbers of photons, it is reasonable to think of them as 
particles. 

The operators just mentioned must operate on wave functions 
u" ( Q )e -iE.tlh, which corresponds to the oscillator wave functions 
u" (x )e -iE.tlh. Obviously u~( Q) Un ( Q) d Q is the probability of field 
measurements on the wave leading to the conclusion that Q lies in 
the range dQ. In fact such measurements are seldom discussed, and 
the number of photons in the wave is nearly always the point of 
interest. In order to recognise this it is reasonable to develop a 
notation which promotes n to a more prominent position and omits 
to mention the wave function explicitly. This will be done from 
equation (33.15) onwards. 

The photon destruction and creation operators (equations (8.2), 
(33.8), and (8.18)) have the following non-vanishing matrix ele­
ments: 

(u, I dUn)= n 1128s,n-1 } 

<u. I a*Un> = <n + 1)1' 2B •. n+l 
(33.14) 

The vector potential can be expressed in terms of a and a*' and 
so it takes on the properties of an operator A. Its non-vanishing 
matrix elements are obtained from equations (33.3) and (33.14): 

( h )1/2 } (n -11 A In)= n 112 Eeik.r 
2e0 kcL 3 

A h 1/2 • 
(n + 11 A In)= (n + 1)112 ( ) Ee-•k.r 

2e0 kcL 3 

(33.15) 

Very often the radiation process under discussion is the emission of 
a photon where none was present before. The relevant matrix 
element is then 

(11 A IO) = ( h )ee-ik.r 
2e0 kcL 3 

(33.16) 

The exponential factors here and in the previous equation are 
signals that the photon has momentum hk. t Thus the relation 
between the energy and momentum of the photon is 

E = hw = hck = cp (33.17) 

which is the appropriate relativistic formula for a particle of zero 
rest mass. 

t Vide problem 10.1. 
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A full set of oscillators When the most general variation of the 
classical A is considered, equation (33.3) must be replaced by 

( h )V2 _ . 
A= L 2 k L 3 EJ.i{aki(t)e•k.r + a;it)e-•k.r} 

ki eo c 
(33.18) 

Because of equation (33.4) the waves can be counted in the manner 
of section 9. Thus the number with k vectors whose magnitudes lie 
in the interval dk is given by 

dN L 3 k 2 
---
dk 27T2 

(33.19) 

After quantisation this leads, through equation (33.17), to an energy 
density PE for oscillators with a single photon of specified polarisa-
tion: 

(33.20) 

If the polarisation is not specified, then the right-hand sides of the 
last two equations should be doubled, to allow for summation over 
j = 1, 2. If k is restricted to point into the solid angle d.Q then a 
factor of d.Q/47T should be included. 

The next step is to calculate the Hamiltonian in terms of the full 
set of wki• Qki• and Pki· The result replacing equation (33.11) is 

H = !(e0~2 + ~-t(/fii)L 3 = L!(Pki + w~iQ~i) (33.21) 
kj 

which shows that each oscillator makes its own separate contribu­
tion. In general the cross-terms between pairs of waves vanish on 
spatial averaging, since they come from two different values of k and 
therefore vary spatially through an integral number of cycles. Even 
if the pair has a common k the cross-terms for the two orthogonal 
polarisations vanish. Finally, when the cross-terms between a pair of 
waves of indices k, j and -k, j are considered, the contributions to 
!e0~2 and !~-to 1 ~jf are equal in magnitude but opposite in sign. This 
is seen most easily from the fact that k, ~. and 00 always form an 
orthogonal right-handed set of vectors. 

The Hamiltonian equations now state that each Pki is conjugate 
to Qki• and uncoupled to the coordinates of any other oscillator. 
After quantisation [Qki•pk'i']=ih if k=k', j=j', and zero other­
wise. Thus the operator algebra for finding the energy eigenvalues 
can be carried through for each oscillator separately, the inevitable 
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E = L (nki +!)hwki 
kj 

(33.22) 

Since there is an infinite number of oscillators there is an infinite 
zero-point energy, I !hwki· However, this energy does not change in 

kj 

transitions, and is therefore unobserved and capable of being ig­
nored. 

The matrix element given by equation (33.16) must now be 
modified slightly in order to specify which oscillator gains a photon: 

(33.23) 

General remarks on radiative transitions When a charged particle 
and a radiation field are considered together, the total Hamiltonian 
Ht is the sum of the Hamiltonian HP for the particle alone, Hr for 
the radiation field alone, and Hi for the interaction between the 
two: 

(33.24) 

It will soon appear that fi; can be treated as a perturbation, so that 
the stationary states of the system can be well represented by 
products of the eigenfunctions of HP and Hr. Transitions will be 
induced by Hi in which the states both of the particle and of the 
radiation field change simultaneously, the latter by the creation or 
destruction of one photon since Hi is actually proportional to A. In 
section 26 it was seen that energy is approximately conserved in 
such transitions. When, for example, the particle starts in an eigen­
state of HP belonging to the energy eigenvalue Ei and ends in one 
belonging to Ef, and simultaneously a photon of energy hwki ap­
pears in the radiation field where none was present before, 

(33.25) 

This formula, and its twin for processes in which a photon disap­
pears, played a vital part in Einstein's discussion of the photoelectric 
effect (1905) and Bohr's of the spectrum of the hydrogen atom 
(1913). 
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The interaction term most prominently involved in radiative 
transitions is the second one in equation (20.13), t 

for a particle of charge e. 

e A 

H;= --A.p 
m 

(33.26) 

According to section 26 the Golden Rule (equation (26.13)) will 
give an accurate radiative decay rate if the width r is small 
compared to the photon energies involved. An order of magnitude 
assessment gives 

(33.27) 

where the fine structure constant a = e2/47Te0 hc = 1/137 has been 
identified. Clearly the validity of the Golden Rule is assured. 

In this estimate it was assumed that the factor e-ik.• in the matrix 
element is well approximated by unity. This is called the electric 
dipole approximation. Because of a selection rule the matrix ele­
ment of p may vanish, and then a higher term in the series 
expansion of e-ik.• must be considered. If the sth term is the lowest 
effective one then the radiative width will be reduced by a factor of 
about (kR)2• = (R/1i.f•, where R is a typical dimension in the 
particle system. This is apt to be a severe and experimentally 
obvious inhibition. 

If n photons are already present in an oscillator involved in an 
emission process, then the corresponding transition rate is increased 
by the extra factor:j: n + 1 in the square of the matrix element 
(equation (33.15)). This is the fundamental basis of stimulated 
emission devices such as the laser, in which a large collection of 
excited atoms is induced to co-operate in emitting energy into 
particular radiation oscillators. 

tit is worth noticing that the third term, involving A 2 , is responsible for low 
energy or Thomson scattering of radiation by a charged particle. 

:!:This same factor appeared in the early and simple calculations by Einstein of his 
'A and B coefficients' for induced radiative transition probabilities (1917). 
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§34 The 2p-ls radiative transition in the hydrogen atom 

The value of k can be calculated immediately from equation (12.9), 
corrected by use of the reduced mass tJ-, and equation (33.25). It is 

w t-Le 4 

k =-= 32 2 2h3 (1-t) c 7T e0 c 
(34.1) 

When this value of 
number is obtained, 

k is multiplied 

3 e2 
ka0 =----

8 47Te0 hc 

by the Bohr radius a small 

3 1 
8 137 

(34.2) 

where the fine structure constant a has been identified again. The 
smallness of ka0 permits the use of the electric dipole approxima­
tion, since no problem arises with the matrix element for the 
transition under discussion. 

According to the Golden Rule the differential transition rate d,\m 
from the 2p state with magnetic quantum number m, when the 
photon propagation vector k is required to point into the solid angle 
dll, is given by 

d,\m = L 27T I(!._) ( h 3) 1/2 S..i 
i~1,2 h lL 2e0 kcL 

A 2 L 3 k 2 dll 
x(u10ol P lu21m)l 27T2hc 47T (34.3) 

As usual L has cancelled out and may conveniently be allowed to 
become infinite. According to equations (5.7) and (5.9), 

A it-L[A HA] p= --,; re, (34.4) 

where, for clarity, the position of the electron is labelled with a 
suffix to distinguish it from the coordinate involved in the classical 
vector potential A. Then, 

(u10ol -p !u21m) =- i: Hu10ol re 1Hu2lm>-<1fu10ol re lu21m)} 

it-L = -h (E2- E1)(u10ol re lu21m) 

(34.5) 
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Thus, 

(34.6) 

This new fonn of the matrix element explains why the electric 
dipole approximation is so called. The next step is to express the 
vector matrix element in tenns of ordinary vectors with real compon­
ents by the definitions 

(34.7) 

The angle between Ej.i and, say, Mmr will be called eimr> and so on. 
Then, 

(34.8) 

Since k, ek1, and Ek2 are an orthogonal set of vectors, the sum of the 
direction cosines of any vector with respect to them is unity. Thus, 

d..\m_ 1 ( e2 k 3 ){( 2 2 2 -..:2 
d.Q- 27T 47Teoh 1-cos ekmr)Mmr+(1-cos ekm;)1um;} 

(34.9) 

where, for example, ekmr is the angle between k and Mmr· 
The totai transition rate is obtained by integrating over all direc­

tions of k, when the average values of both cos2 ekmr and cos2 ekmi 

will be ~. So, 

4 ( e2 k3
) =3 47Teoh (u21ml le lutoo) · (Utool le lu21m) (34.10) 

The components of Mmr and Mmi are easily calculated (Table 34.1) 
by writing 

(34.11) 
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Table 34.1 Components of the electric di-
pole matrix elements, with the radial factor 
removed, for the 2p-ls transition in hy-
drogen 

Vector Components divided by Ir 

X y z 

Mt. -.Ji 0 0 
M1, 0 -.Ji 0 

Mor 0 0 ..;~ 
MOi 0 0 0 

M-lr ../i 0 0 
M-1• 0 -.Ji 0 

and remembering the I'= l = 1 version of equation (10.36), 

'7r 2'71" 

J J Y!m· Y1m sin 8e dcf>e d8e = ilm'm (34.12) 
0 0 

Each component contains the radial integral 

00 

I= Jr3 R* R dr =215123-912a r e 10 21 e 0 (34.13) 
0 

which is not included in the data given in table 34.1 Equation 
(34.10) shows that the transition rate is independent of the value of the 
initial state magnetic quantum number m; this is a particular example 
of a general result. Very often the initial state is a mixture, with equal 
probability but random relative phase, of all the states of different m; 
the transition rate remains the same. It is given here by 

(34.14) 

This has a value of 6.26 x 108 s-1 , the corresponding lifetime being 
1.60 X 10-9 S. 



RADIATION 195 

Selection rules It is obvious from equation (34.6) that the matrix 
element would have vanished if the initial and final states had not 
been of opposite parity. It is also clear from equations (34.11) and 
(10.36) that only a p state has a non-vanishing matrix element for an 
electric dipole transition to an s state. These are particular examples 
of the electric dipole selection rules; the transitions allowed are those 
with 6-l = 1, am= 0, ±1, and change of parity. 

Angular distributions According to equation (34.9) and table 
34.1, the angular distribution of the photons from the m = 0 initial 
state is proportional to sin2 8kz• where 8kz is the angle between k 
and the z-axis. 

Similarly the angular distribution of photons from the m = ± 1 
initial state is proportional to i(l-cos2 8ra) + i(l-cos2 8ky) = 
1 - i sin2 8kz· 

If all three initial states are populated, with equal probability but 
random relative phase, the angular distribution is isotropic. This 
co"esponds to a general rule that such a prescription makes all 
orientations of the initial system equally likely. 

Polarisation: transition from the 2p (m = O) state The rules gov­
erning linear polarisation of the photons can be found from equa­
tions (34.6), (34.7), and table 34.1. When the initial state has m = 0, 
the matrix element of re reduces simply to the z-component of Mo,. 

It then follows that all photons emitted in the equatorial (or x, y) 
plane are plane polarised parallel to the z-axis. 

No photons are emitted along the z-axis, so that no question of 
their polarisation arises. In figures 34.1 and 34.2 this pattern of 
polarisation will be referred to as type p 1. 

Polarisation: transition from the 2p (m = 1) state Here M1, has 
only an x-component, and MH only a y-component. 

It follows that photons emitted in the equatorial plane are plane 
polarised in the equatorial plane, obviously at right angles to k. 

Photons emitted along the z-axis have both an x-component and 
a y -component of polarisation. It is then interesting to consider 
whether these are phased in such a way that the polarisation is 
circular. In fact the analysis that follows will show that photons 
emitted in the positive z -direction are right circularly polarised, 
and those emitted in the negative z-direction are left circularly 
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Figure 34.1 The 2p-ls transitions including Zeeman effect, with spin 
neglected. The angular distributions of the photons are proportional to 
sin2 8k.(al), or to 1-hin2 8kz(a2). The polarisation patterns pl, p2 and p3 
are described in the text. 

polarised. This pattern of polarisation will be referred to as type 
p2 in figures 34.1 and 34.2. 

In order to discuss circular polarisation of photons, the first point 
to recognise is that the classical vector potential A could have been 
expanded in terms of right and left circularly polarised travelling 
waves, in place of the plane polarised waves that were actually used. 

When only a single right circularly polarised wave is present, 
equation (33.3) would be replaced by 

(34.15) 

where k, Eh and~ form a right-handed orthogonal set of vectors. 
The discussion then proceeds along the same lines as before. Real 

observables PJr.R, QJr.R are constructed from aJr.R, ak by equations 
like equation (33.6). A Hamiltonian for the wave is thus H = 
!(Pk + w 2 Qk). When the oscillator is quantised aJr.R becomes a 
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Figure 34.2 The 2p-ls transitions including Zeeman effect, with spin. 
Where appropriate the branching ratios are given, as well as the photon 
angular distribution and polarisation patterns. 

right circularly polarised photon destruction operator, and atR 
similarly a right circularly polarised photon creation operator. The 
matrix elements of akR and atR are given again by equations like 
equation (33.15). So, when only one right circularly polarised oscil­
lator is considered, the matrix elements of A are 

((n -1)kRI A lnkR) = (nkR)112 (Zeo:cL 3) 
112 

1 .k 
x .Jz (Ej.1 + iEj.z)e' .r 

(34.16) 
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A full set of oscillators, both left and right circularly polarised, 
can be handled without difficulty because once again the Hamil­
tonian does not contain cross-terms. Thus equations (34.16) hold 
good for each right circularly polarised oscillator separately. The 
similar matrix elements for left circularly polarised oscillators are 

(34.17) 

When the perturbation calculation of the 2p-1s transition rate is 
carried out once more, equation (34.6) is obviou~ly to be replaced 
by 

dA 1 ( e3k3 ){11 12 
d;; = 2 '7T 41TBoh ..;2 (el- iez) · (UlOol re iu21m) 

+ IJ2 (e1 + ie2). (ulOol re iu21m) 1
2
} (34.18) 

where the first term corresponds to right circularly polarised 
photons, and the second to left. A little thought will show that the 
total transition rates given by equations (34.6) and (34.18) are the 
same. 

Now the particular problem in hand can be taken up again. For 
emission along the positive z-axis the polarisation vector e1 can lie 
along the positive x-axis, and ez along the positive y-axis. Consider­
ation of the components of M1 r and M1 i in table 34.1 then shows 
that only the first term of equation (34.18) contributes; therefore 
the photons are right circularly polarised. 

For emission along the negative z -axis, e1 can lie along the 
positive x-axis and ez along the negative y-axis, so forming k, Et> 

and ez into the required right-handed set. It is then obvious that 
only the second term in equation (34.18) contributes, and the 
photons are left circularly polarised. 

Photons moving along the z -axis cannot carry a z -component of 
orbital angular momentum, but in the transition under discussion 
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one unit of lz disappears from the electron. The missing angular 
momentum can be accounted for if the photon is given one unit of 
intrinsic angular momentum, or spin. When the photon is right (left) 
circularly polarised the component of the spin along k is supposed to 
be +h (-h). This simple picture of the photon's spin cannot be taken 
too far, because the expected third state of alignment is missing. 
However, within its limits, the idea is a useful one. 

Polarisation: transition from the 2p (m = -1) state Here, as 
would be expected, the photons emitted along the positive (nega­
tive) z-axis are left (right) circularly polarised. This pattern of 
polarisation is referred to as type p3 in figures 34.1 and 34.2. 

Zeeman effect: spin neglected When a uniform magnetic field 00 is 
applied along the z-axis, the three initial states have slightly differ­
ent energies, and correspondingly there are three slightly different 
values of k. Each of the three spectral lines has a unique combina­
tion of angular distribution and polarisation pattern. The predictions 
are illustrated in figure 34.1. 

Zeeman effect: spin included The actual experimental results differ 
from figure 34.1, because the electron has spin ! and there is a 
spin-orbit term in its energy. With the help of chapter 6 the 
amended predictions of figure 34.2 can be constructed. The initial 
states are shown split according to the weak field part of figure 23.2. 
The final state is of course a doublet, since spin angular momentum 
alone is present. The magnitude of all the Zeeman splittings are 
controlled by the Lande g-factor (equation (23.11)). 

The initial states are eigenfunctions of f and iz· When discussing 
radiative transitions these must be considered as superpositions of 
eigenfunctions of lz and Sz, because s is not mentioned in equation 
(33.26) and so sz cannot change in the transition. Those initial states 
which contain two terms of different sz will decay by two routes, 
with branching ratios controlled by the squares of the corresponding 
Clebsch-Gordon coefficients. The branching ratios are shown in 
figure 34.2 along with the angular distributions and polarisation 
patterns. 

When this extraordinary wealth of experimentally accessible in­
formation is considered, it will be readily understood how atomic 
spectroscopy came to be the principal testing ground for the quan­
tum theory in its early days. 
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Problems 

10.1 Write down the matrix element for the emission of a quan­
tum of radiation by a free particle. If the initial momentum of 
the particle is Pi and its final momentum is Pt, show that the 
matrix element averages to zero over the usual cube of side L 
unless 

Pi =pt+lik 

[Comment: Energy is not conserved in this process, so that it 
can only be part of a more complicated event.] 

10.2 Calculate the lifetime for the 3s-2p transition in the H atom. 



Appendix 

A few non-elementary integrals 

00 f 1/2 
-a2x2 d 7T e x=--

a 
(1) 

(2) 

00 

J 1/2 b2 
-2bcx-c2x2 d 7T e e x=---

c 
(3) 

Completion of the square in the exponent leads to a version of 
equation (1): 

00 

J (e->..•12-e-u..') 
dw = i7Te ->..'12 

w + iA/2 
(4) 

This is most easily verified by contour integration in the complex w 
plane. The contour extends from -oo to +oo along a real axis (giving 
the integral required), and returns by clockwise traversal of an 
infinite semicircle in the lower half plane. The integral is regular at 
w = -iA/2, and so the integral required is the negative of the contour 
integral round the semicircle. The second term in the numerator 
contributes nothing to this (Jordan's lemma, slightly modified) but 
the first term gives rise to the result stated. 
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addition theorem for angular 
momentum, 102 

angular momentum, combination of, 
122-8 

orbital, 7 4-84 
quantum number, 77,79 
spin, 122-4 

alpha decay, 57 

barrier, 55 
beta decay, 155-7 
Bohr, 91, 

radius, 89 
-Sommerfeld rule, 113 

Born approximation, 179-82 
boson, 136 

central potentials, 87-8 
centre of mass coordinate, 99, 172-

4 
Clebsch-Gordan coefficients, 126-7 
closure, 23 
common wave equation, 17 
commutation relations, 25-7 
commutator, 26 
complementarity, 32 
complete commuting set of observa-

bles, 94, 95 
Condon, 57 
Conservation laws, 34-5, 87 
correspondence principle, 30-2 
Coulomb integral, 141 

creation and destruction operators, 
61-2, 187-8 

cross-section, differential, 166 
total, 166 

Darwin term, 129 
degeneracy, 22 
density of states, 72-3, 114-5 
destruction operators (vide Creation 

and destruction operators) 
deuteron, 97-101 
Dirac S-function, 28, 74 

equation, 128 
notation, 21 

dispersion relation, 3 

Ehrenfest theorem, 31 
eigenfunction, 11 
eigenfunctions, expansion in, 22 
eigenstate, 11 
eigenvalue, 11 
eigenvalues, continuous, 28-30, 43 
Einstein, 191-2 
electric dipole moment, 106 

approximation, 191 
energy, 13, 37 

kinetic, 6, 12 
potential, 13 

exchange integral, 141 
exchange parity, 135-6 
exclusion principle (vide Pauli ex­

clusion principle) 
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expectation values of observable, 
25, 30-2 

exponential region, 48, 111 

fermion, 136 
fine structure constant, 130, 191 
free particles, 38-45, 71-3 

Gamow, 57 
Geiger-Nuttall relation, 57 
golden rule, 15D-1, 155 
Gurney, 57 

Hamiltonian, 117-8 
equations, 118 

helium, 139-41 
Helmholtz equation, 17 
Hermite polynomials, 64-5 
Hermitian operators, 11, 19-20 
Hilbert space, 25 
hydrogen atom, 88-94 

fine structure, 128-31 
in electric field, 105-7 
in magnetic field (vide Zeeman 

effect) 
lifetime of 2p state of, 192-9 
polarisability, 106 

identical particles, 135-41 
indistinguishability, 135 

Kronecker symbol, 8,, 22 

Lagrangian, 116-7 
equation, 116-7 

Laguerre polynomial, 91, 93 
Lande splitting factor, 133 
Larmor precession frequency, 143 
laser, 191 
Legendre, associated function, 83 

polynomial, 83 

magnetic field, 118-22 
quantum number, 77 
resonance, 144-7 

matrix elements, 36 
momentum, 5, 12, 39, 42-3, 74 

probability density (MPD), 42-3 
transfer, 180 

normalisation, 5 
number operator, 65 

operator algebra, 9-10 
optical theorem, 170, 183 
orthogonality, 14, 21-2, 28 
oscillator, 15, 59-65 

three-dimensional, 94-7 
oscillatory region, 48, 109-11 

parity, 27-8 
phase, 15 
Paschen-Back effect, 133 
Pauli exclusion principle, 136-8 
periodic boundary conditions, 20 
perturbation of stationary states, 

103-5 
phase, 15 
phase integral, 46, 68, 110 

shift, 167 
space, 114-5 

photon, 188 
Planck, 63 
Planck's constant, 2 
polarisation of photons, 195-9 
position probability density (PPD) 

(vide et Radial position proba­
bility density), 4, 8 

potential scattering, 169, 183-4 
step, 53-5 

precession, 142-4 
principal quantum number. 90 
probability current density (PCD) 

(vide et Radial probability cur­
rent density), 17-18 

quantisation, general ru1e for, 118 
quantum, 62 

Rabi, 146 
radial equation, 87 

position probability density 
(RPPD), 88 

probability current density 
(RPCD), 36 

radiation, 185-91 
radiative transitions, 185-91 
radioactivity, 158-62 
reduced mass, 99 
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resonance scattering, 164, 169, 
174-9, 184 

S-matrix, 174-8, 183-4 
s wave, 168 
scalar product, 21 
scattering, 163-82 

amplitude, 168 
length, 170 
neutron-proton, 170-4, 177 
resonance (vide Resonance scat-

tering) 
Schrodinger, 2 
Schrodinger's time-independent 

equation (TISE), 17, 46-59, 68 
time-dependent equation (TDSE), 

2, 16 
selection rules, 153 
shift operators, 77-86 
spectroscopic notation, 86, 128 
spherical harmonics, 83-6 
spin (videAngular momentum, spin) 
spin orbit coupling, 129-31 

Stern-Gerlach experiments, 121-2 
superposition, 9 

Thomas term, 129 
transitions, perturbation theory of, 

147-55 
trapped particle, 58-9 
turning point, 48 

region, 48, 111-3 
Two-particle systems, 98, 135-41 

uncertainty principle, 32-4, 42, 146 

variational method, 107-9 
virtual states, 153 

wave function, 1, 2, 8 
wave packet, 40-45, 67, 70 
WKB approximation, 68, 109-13 
width, 159, 162 

Zeeman effect, 121, 131-3 
zero-point energy, 65 




