THE UNIVERSITY OF WESTERN ONTARIO
SERIES IN PHILOSOPHY OF SCIENCE

A SERIES OF BOOKS
ON PHILOSOPHY OF SCIENCE, METHODOLOGY,
AND EPISTEMOLOGY
PUBLISHED IN CONNECTION WITH
THE UNIVERSITY OF WESTERN ONTARIO

PHILOSOPHY OF SCIENCE PROGRAMME

Managing Editor

J.J.LEACH
Editorial Board

J.BUB, R. E. BUTTS, W. HARPER, J. HINTIKKA, D. J. HOCKNEY,

C. A. HOOKER, J. NICHOLAS, G. PEARCE

VOLUME 3



JEFFREY BUB

University of Western Ontario, Ontario, Canada, and
Institute for the History and Philosophy of Science, Tel Aviv University, Israel

THE INTERPRETATION
OF QUANTUM MECHANIC

D. REIDEL PUBLISHING COMPANY

DORDRECHT-HOLLAND [BOSTON- U.S.A.



Library of Congress Catalog Card Number 74-76479

Cloth edition: ISBN 90 277 0465 1
Paperback edition: ISBN 90 277 0466 X

Published by D. Reidel Publishing Company,
P.O. Box 17, Dordrecht, Holland

Sold and distributed in the U.S.A., Canada, and Mexico
by D. Reidel Publishing Company, Inc.
306 Dartmouth Street, Boston,
Mass. 02116, U.S.A.

All Rights Reserved
Copyright © 1974 by D. Reidel Publishing Company, Dordrecht, Holland
No part of this book may be reproduced in any form, by print, photoprint, microfilm,
or any other means, without written permission from the publisher

Printed in The Netherlands by D. Reidel, Dordrecht



TABLE OF CONTENTS

PREFACE

L.

The Statistical Algorithm of Quantum Mechanics
I. Remarks

II. Early Formulations

III. Hilbert Space

IV. The Statistical Algorithm

V. Generalization of the Statistical Algorithm

VI. Compatibility

II. The Problem of Completeness
I. The Classical Theory of Probability and Quantum
Mechanics
II. Uncertainty and Complementarity
III. Hidden Variables
III. Von Neumann’s Completeness Proof
IV. Lattice Theory: The Jauch and Piron Proof
V. The Imbedding Theorem of Kochen and Specker
VI. The Bell-Wigner Locality Argument
VII. Resolution of the Completeness Problem
VIII. The Logic of Events
I. Remarks
I1. Classical Logic
ITII. Mechanics
IX. Imbeddability and Validity
X. The Statistics of Non-Boolean Event Structures
XI. The Measurement Problem
XII. The Interpretation of Quantum Mechanics
BIBLIOGRAPHY

INDEX OF SUBJECTS

32
36
46
49
55
65
72
84
92
92
93
105
108
119
128
142

151

153






PREFACE

This book is a contribution to a problem in foundational studies, the
problem of the interpretation of quantum mechanics, in the sense of the
theoretical significance of the transition from classical to quantum
mechanics.

The obvious difference between classical and quantum mechanics is
that quantum mechanics is statistical and classical mechanics isn’t.
Moreover, the statistical character of the quantum theory appears to be
irreducible: unlike classical statistical mechanics, the probabilities are
not generated by measures on a probability space, i.e. by distributions
over atomic events or classical states. But how can a theory of mechanics
be statistical and complete?

Answers to this question which originate with the Copenhagen inter-
pretation of Bohr and Heisenberg appeal to the limited possibilities of
measurement at the microlevel. To put it crudely: Those little electrons,
protons, mesons, etc., are so tiny, and our fingers so clumsy, that when-
ever we poke an elementary particle to see which way it will jump, we
disturb the system radically — so radically, in fact, that a considerable
amount of information derived from previous measurements is no
longer applicable to the system. We might replace our fingers by finer
probes, but the finest possible probes are the elementary particles them-
selves, and it is argued that the difficulty really arises for these. Heisen-
berg’s y-ray microscope, a thought experiment for measuring the posi-
tion and momentum of an electron by a scattered photon, is designed to
show a reciprocal relationship between information inferrable from the
experiment concerning the position of the electron and information
concerning the momentum of the electron. Because of this necessary
information loss on measurement, it is suggested that we need a new kind
of mechanics for the microlevel, a mechanics dealing with the disposi-
tions for microsystems to be disturbed in certain ways in situations
defined by macroscopic measuring instruments. A God’s-eye view is
rejected as an operationally meaningless abstraction.



VIII THE INTERPRETATION OF QUANTUM MECHANICS

Now, it is not at all clear that the statistical relations of quantum
mechanics characterize a theory of this sort. After all, the genesis of
quantum mechanics had nothing whatsoever to do with a measurement
problem at the microlevel, but rather with purely theoretical problems
concerning the inadequacy of classical mechanics for the account of
radiation phenomena. Bohm and others have proposed that the quantum
theory is incomplete, in the sense that the statistical states of the theory
represent probability distributions over ‘hidden’ variables. Historically,
then, the controversy concerning the completeness of quantum mechan-
ics has taken this form: A majority view for completeness, understood in
the sense of the disturbance theory of measurement, and a minority
view for incompleteness.

An interpretation of quantum mechanics should show in what funda-
mental respects the theory is related to preceding theories. I propose that
quantum mechanics is to be understood as a ‘principle’ theory, in Einstein’s
sense of the term. The distinction here is between principle theories, which
introduce abstract structural constraints that events are held to satisfy
(e.g. classical thermodynamics), and constructive theories, which aim
to reduce a wide class of diverse systems to component systems of a
particular kind (e.g. the molecular hypothesis of the kinetic theory of
gases). For Einstein, the special and general theories of relativity are
principle theories of space-time structure.

I see quantum mechanics as a principle theory of logical structure: the
type of structural constraint introduced concerns the way in which the
properties of a mechanical system can hang together. The propositional
structure of a system is represented by the algebra of idempotent magni-
tudes — characteristic functions on the phase space of the system in the
case of classical mechanics, projection operators on the Hilbert space of
the system in the case of quantum ‘mechanics. Thus, the propositional
structure of a classical mechanical system is isomorphic to the Boolean
algebra of subsets of the phase space of the system, while the logical
structure of a quantum mechanical system is represented by the partial
Boolean algebra of subspaces of a Hilbert space. In general, this is a non-
Boolean algebra that is not imbeddable in a Boolean algebra. As principle
theories, classical mechanics and quantum mechanics specify different
kinds of constraints on the possible events open to a physical system, i.e.
they define different possibility structures of events.
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This view arises naturally from the Kochen and Specker theory of
partial Boolean algebras, which resolves the completeness problem by
properly characterizing the category of algebraic structures underlying
the statistical relations of the theory. Kochen and Specker show that it
is not in general possible to represent the statistical states of a quantum
mechanical system as measures on a classical probability space, in such a
way that the algebraic structure of the magnitudes of the system is pre-
served. Of course, the statistical states of a quantum mechanical system
can be represented by measures on a classical probability space if the
algebraic structure of the magnitudes is not preserved. But such a re-
presentation has no theoretical interest in itself in this context. The
variety of hidden variable theories which have been proposed all involve
some such representation, and are interesting only insofar as they intro-
duce new ideas relevant to current theoretical problems. Invariably, the
reasons proposed for considering a new algebraic structure of a specific
kind are plausibility arguments derived from some metaphysical view of
the universe, or arguments which confuse the construction of a hidden
variable theory of this sort with a solution to the completeness problem.

I reject the Copenhagen disturbance theory of measurement and the
hidden variable approach, because they misconstrue the foundational
problem of interpretation by introducing extraneous considerations
which are completely unmotivated theoretically, and because they stem
from an inadequate theory of logical structure. With the solution of the
completeness problem, all problems in the way of a realist interpretation
of quantum mechanics disappear, and the measurement problem is
exposed as a pseudo-problem.

The short bibliography lists only works directly cited, and since the
sources of the ideas discussed will be obvious throughout, I have not
thought it necessary to introduce explicit references in the text, except in
the case of quotations.






CHAPTER 1

THE STATISTICAL ALGORITHM OF
QUANTUM MECHANICS

I. REMARKS

Classical mechanics — Newton’s general theory of motion developed and
articulated by Euler, Lagrange, and Hamilton — describes the temporal
evolution of a mechanical system in terms of the change in certain ap-
propriate physical magnitudes (e.g. energy, angular momentum, etc.),
which are represented as real-valued functions on a ‘phase space’ X,
a linear (vector) space parametrized by generalized position and mo-
mentum coordinates, the phase variables.

For a free particle, the phase space is 6-dimensional, with position
coordinates g4, 4,, g3, representing the location of the particle in space,
and corresponding momentum coordinates p,, p,,p;. The classical
mechanical equations of motion, Hamilton’s equations:

dg; 0H dp, oH
dt ~ ap; dt  dg;

determine a trajectory in phase space, given the initial values of the
variables ¢4, 45, 43; Py, P2,P3. The quantity H, the Hamiltonian, is a
function of the phase variables and characterizes the particular system
involved. Since the physical magnitudes are functions of the phase
variables, the values of these quantities are defined for every point on the
phase trajectory of the system, and are determined for all time via
Hamilton’s equations by any point on the trajectory, i.e. by an assign-
ment of values to the ‘canonically conjugate’ sets of phase variables
41, 92, 93 and py, p,, p;. Such an assignment of values — the specification
of a point x=(qy, q,,93;P1, P2, P3) in phase space — is a classical
mechanical szate.

Electromagnetic phenomena were incorporated into this scheme by the
Faraday-Maxwell theory of fields, a field being something like a mechan-
ical system with a continuous infinity of phase variables. This extension
of classical mechanics began to collapse towards the end of the 19th

(i=1,2,3)
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century. The quantum theory was conceived in 1900 with Max Planck’s
solution to the ‘ultra-violet catastrophe’: Planck proposed that electro-
magnetic radiation is emitted and absorbed in discrete ‘quanta’, each
energy quantum being proportional to the frequency of the radiation.
The birth of quantum mechanics followed after a gestation period of
25 years, in the dual form of Schrodinger’s wave mechanics and the
Heisenberg-Born-Jordan matrix mechanics. Schrodinger demonstrated
the equivalence of the two theories, and a unified ‘transformation
theory’ was developed by Dirac and Jordan on the basis of Born’s
probabilistic interpretation of the wave function.

In Section II, I sketch the basic ideas behind matrix mechanics and
wave mechanics, presenting these theories as different algorithms for
generating the set of possible energy values of a system. I discuss von
Neumann’s critique of the Dirac-Jordan transformation theory, and
show that matrix and wave mechanics are equivalent in the sense that
they represent formulations of a mechanical theory in terms of different
realizations of Hilbert space. The exposition in this section follows von
Neumann. My purpose is to show the origin of the Hilbert space for-
mulation of quantum mechanics.

I develop the geometry of Hilbert space in Section III. I introduce the
notion of a Hilbert space as a vector space over the field of complex
numbers, with a scalar product which defines the metric in the space.

The core of this chapter is Section I'V. Quantum mechanics incorporates
an algorithm for assigning probabilities to ranges of values of the physical
magnitudes. I introduce this algorithm in the elementary form applicable
to the finite-dimensional case. Essentially, probabilities are generated by
statistical states according to a certain rule. The ‘pure’ statistical states
are represented by the unit vectors in Hilbert space; the physical magni-
tudes are represented by operators: associated with orthogonal sets of
unit vectors, corresponding to the possible ‘quantized’ values of the
magnitudes. These orthogonal sets of unit vectors function like Cartesian
coordinate systems in a Euclidean space. The probability assigned by a
particular vector, ¥, to the value a; of the magnitude A is given by the
square of the projection of  onto the unit vector «; (‘Cartesian axis’)
corresponding to the value a;. The problem of ‘degenerate’ magnitudes —
magnitudes associated with m possible values and m orthogonal vectors
in an n-dimensional space (m<mn) — involves a generalization of the
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statistical algorithm, which is dealt with by the apparatus of projection
operators and subspaces. The infinite-dimensional case requires a
further generalization, in terms of the ‘spectral measure’ of an operator
representing a physical magnitude.

Finally, the possibility of statistical states representing ‘mixtures’ of
pure states involves a generalization in terms of the notion of the ‘trace’
of an operator in Section V. This version of the statistical algorithm
represents the probability assigned by the statistical state ¥ to the range
S of the magnitude A as the trace of the product WP,(S), where P,(S)
is defined by the spectral measure of the operator representing A for the
Borel set S.

Chapter I concludes with some remarks on the compatibility relation
defined on the set of magnitudes, corresponding to the commutativity of
the corresponding Hilbert space operators.

II. EARLY FORMULATIONS

Both matrix and wave mechanics propose algorithms for generating the
set of possible energy values of a system, and the transition probabilities
between the corresponding ‘stationary states’. For simplicity, consider
a 1-dimensional example, say a particle confined to one dimension of
space.

The method of matrix mechanics characterizes a quantum mechanical
system corresponding to a classical mechanical system with the Hamil-
tonian function H (g, p) by a Hamiltonian matrix H (Q, P), i.e. the clas-
sical phase variables g, p are associated with certain matrices Q, P, and the
classical Hamiltonian is associated with a corresponding Hamiltonian
matrix. A matrix is simply an element of a certain non-commutative
algebra, which can be represented by an array of (complex) numbers
with a finite or countable number of rows and columns. Different re-
presentations are possible for the same matrix. The matrices Q, P are
required to satisfy the commutation relation

QP — PQ = ih/2n

where 4 is Planck’s constant and i=\/ ~1.
Under certain conditions, which we assume satisfied, there is a rep-
resentation in which the numbers in the array representing H are all
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zero, except along the diagonal, where they take real values. These are
the possible energy values of the system. (The position of a number in an
array representing a matrix is identified by the row number and column
number. By a diagonal element of a square matrix, I mean an element in
the position: row-i, column-i, for any i. The off-diagonal elements are
those in positions: row-i, column-j, i# j.)

The arrays representing the matrices Q, P in this representation
determine the transition probabilities according to a certain rule. This
representation is found by solving the ‘eigenvalue equation’ for H':

Z Hijgj = 68,-
J

where H;; represents the element (complex number) in row-i and column-;
of the array in some arbitrary representation. The eigenvalue equation
will generally have a countable number of distinct solutions, i.e. there
will be a countable number of distinct ‘eigenvalues’

€15 €3,...
and associated ‘eigenvectors’
1 1 2 2
(D, e, ), (€2, 62, ..), ...

which satisfy the equation, under the condition Y ;|e{"|? < oo, for each k
(where || denotes the absolute value of the complex number &).
Here each eigenvector (¢, 5, ...) is a sequence of numbers, representing
the components of the kth eigenvector in the representation. The super-
script (k) refers to the corresponding eigenvalue.

The diagonal representation of H is obtained as the product

S~1HS

where S is the matrix whose columns are the eigenvector solutions to the
eigenvalue equation for H. The elements along the diagonal in this rep-
resentation are the eigenvalues, i.e. the eigenvalues of H are the possible
energy values of the system. Thus, the algorithm of matrix mechanics
reduces the problem of generating the set of possible energy values of a
system to the eigenvalue problem.

To sum up: The possible energy values of a system are obtained as the
diagonal values of the Hamiltonian matrix H of the system in a certain
privileged representation. H, expressed as an array of numbers with
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respect to any given initial representation, is diagonalized — transformed
to this privileged representation — by a matrix S, constructed from the
eigenvector solutions to the eigenvalue equation in the initial represtion.
The matrices Q and P, transformed to the representation in which H
is diagonal by the transformation matrix S, determine the transition
probabilities between the stationary states corresponding the the dif-
ferent possible energy levels.

In the wave mechanical formulation, a quantum mechanical system
corresponding to a classical mechanical system with the Hamiltonian
function H (g, p) is characterized by a differential functional operator
H (g, —ih/2n(0/0q)) in ‘configuration space’, i.e. the space parametrized
by the position coordinates of the system. The possible energy values of
the system are those values of e for which the differential equation

0
H(q, ~ ihf2m a—) V(@) = b (@)
q

has solutions satisfying the condition [%,|y¥(g)|>dg<oco. This is
Schréodinger’s wave equation, an eigenvalue equation for the eigenvalues
e and corresponding (complex-valued) eigenfunctions . The eigen-
values e are the possible energy values, and the eigenfunctions rep-
resent the corresponding stationary states.

The Dirac-Jordan transformation theory exploits an apparent analogy
between the ‘continuous’ configuration space parametrized by the vari-
able g in the case of the wave functions ¥ (q), and the ‘discrete’ space
parametrized by the index i in the case of the sequences (g, &,,...),
regarded as functions ¢(i) of the variable i. That is, a particular sequence
(¢4, €5,...) is regarded as a map ¢ from a space of integers (1, 2,...) into
the complex numbers, and it is proposed that the equivalence of matrix
mechanics and wave mechanics has to do with some structural similarity
between this space and the space R of real numbers which the wave
functions map into the complex numbers. On this view, summation over
the ‘discrete’ variable i of the countable space corresponds to integration
over the ‘continuous’ variable g of the uncountable space, and so the
eigenvalue equation of matrix mechanics

> Hyey = e,
t'
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should correspond to an eigenvalue equation of the form

f H(g, ¢) ¥(q) dq’ = ey (q)

in the case of wave mechanics. But the eigenvalue equation of wave
mechanics is

0
H (q, — ih[2n 5~) Y (q) = ey (q)
q

and, as von Neumann points out in the introduction to his classic treatise
Mathematical Foundations of Quantum Mechanics, it is not possible in
general to represent a differential functional operator as an integral
operator, i.e. in general a function H (g, ¢") such that

0
JH @,9)¥()dq' =H (q, — ih[2n %> Y (q)

does not exist.

Such a function H (q, q’) is referred to as the ‘kernel’ of the differential
operator H. The Dirac-Jordan transformation theory in effect assumes
the existence of kernels for the differential operators of wave mechanics,
when in fact no such functions exist. The kernel of the identity operator
is represented by the Dirac é-function, 6 (g¢—¢q’), so that

V(g = j 5(a — ) V(@) dd’,

and the kernels of other differential operators are expressed in terms of
the o-function and its derivatives. But the é-function is an impossible map
from the real numbers into the complex numbers: it would have to map
every point except ¢ onto zero, and still satisfy

f 6(q—q)dq =1.

In fact, the real ‘analogy’ is not between the countable space of points i
and the uncountable space of points g, but between the space of sequences
(¢4, €2,...) with finite metric ) ;|e;|*> and the space of functions ¥ (q)
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with finite metric [% | (¢)|* dg. These two spaces are isomorphic, in the
sense that there exists a one-one mapping 4 from the function space onto
the sequence space which preserves linearity

h(ay + bo) = ah () + bh(9) :
and the metric, i.e. if A(Y)= (g, €,,...), then:

| wara=3ap.

(More generally, the scalar product is preserved. If A(Y)= (g4, &3,...),
h(@)= (11, n2,...), then

f V(@* o(q)dg =3 &n;.

The * denotes the complex conjugate.)

Matrix mechanics and wave mechanics are therefore equivalent in the
following sense: The formulation of matrix mechanics involves a linear
space of sequences with finite metric; wave mechanics is formulated in
terms of a linear space of functions with finite metric. These two spaces
are isomorphic. Now, the matrices Q and P — operators in the sequence
space — satisfy the same commutation relations as the functional opera-
tors g and —ih/27(0/0q), and these commutation relations are preserved
under the isomorphism 4. It follows that the matrices Q and P cor-
respond to the functional operators ¢ and —ih/27(0/0q), respectively,
under the isomorphism. Since the Hamiltonian matrix H (Q, P) and the
Hamiltonian functional operator H (g, —ih/2n(d/0q) are constructed by
the same algebraic operations from the matrices Q, P and the functional
operators g, —ih/27(0/0q), and these operations are preserved under the
isomorphism, H (Q,P) and H (q, —ih/2n(0/0q) correspond to one
another under the isomorphism. Thus, matrix mechanics and wave
mechanics are mathematically equivalent theories formulated in terms
of isomorphic representations.

The algebraic structure of which the sequence space of matrix mechanics
and the function space of wave mechanics are particular realizations is
Hilbert space. Von Neumann develops the quantum mechanical des-
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cription of events in terms of this structure. Thus, von Neumann’s
contribution is not merely a rigorous reformulation of the Dirac theory
that avoids the mathematical difficulties of the é-function, but a formu-
lation of quantum mechanics that abstracts what is common to matrix
mechanics and wave mechanics in an essential way. The Dirac theory
misrepresents the sense in which matrix mechanics and wave mechanics
are equivalent, and so the structure underlying these theories is not
properly identified.

In the following sections of this chapter, I shall present an exposition
of the elements of quantum mechanics, following von Neumann. I shall
not be concerned with the details of particular realizations, which are
relevant only insofar as they facilitate calculations in concrete problems.

III. HILBERT SPACE

A Hilbert space 5 is a linear space over the field of complex numbers.
This means that if o, fe# then a+pe i, and cae# where ¢ is any
complex number. The elements of a linear space are called vectors.
Vector addition is associative and commutative. Multiplication by
complex numbers is distributive (i.e. c(ax+pB)=ca+cf; (c;+¢)a=
=c,x+c,2) and associative (i.e. c¢;(c,a)=(c,c,)x). Notational con-
vention: Unless otherwise specified, lower case Greek letters label vectors,
1.e. elements of the space; lower case Latin letters label (complex)
numbers.

A scalar product is defined on 5#: a map from the set of ordered pairs
of vectors, o x o, into the complex numbers, satisfying certain con-
ditions. The image (complex number) of the pair of vectors a, f is
denoted by (e, ). The conditions on the map are:

(a, B) = (B, 0)*
@, B +7)=(xB) +(2,7)
(@, ¢B) = c(a, B)

(e, ) >0 unless o =0, the null vector, in which case (a, &)=0

The norm (i.e. ‘magnitude’) of a vector is defined as ||| =+/(¥, ¥).
The real-valued function on 5# x 5 that associates each pair of vectors
¥, @ with the norm of their difference ||y — ¢|| is a metric on the Hilbert
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space . It follows from the properties of the scalar product that

[ — ¢l =0
Iy — | =0 ifand onlyif ¢ =¢
¥ — ol =l — ¥l

¥ —eoll <ly —xll +1x—ol.

(The ‘triangle inequality’ is evidently equivalent to the inequality |y +
+o|<|V¥] +l¢l, and this follows from the Schwartz inequality
|, @)| <Vl llell, where |(¥, )| denotes the absolute value of the
complex number (i, ¢).)

Thus, the length or magnitude of a vector { is ||{||, and the distance
between points  and ¢ in S is ||y —¢|. It is consistent with this defi-
nition of the distance function to take the condition (s, ¢)=0 as the
condition of orthogonality of { and ¢. (E.g., Pythagoras’ theorem holds
for the length of the hypotenuse of a right-angled triangle.)

The dimension of the space 5 is defined via the concept of linear
independence: A set of vectors «,..., a, is linearly independent if there is
no way for a linear combination

10y + €0 + ... + Cp,

to sum to the null vector, other than by all ¢; being equal to zero, i.e. if
¢y +¢y05+... +c,2,=0 only if ¢;=0 for all i, where the c; are any
complex numbers. If n vectors are mutually orthogonal, i.e. («;, «;)=0,
i# j, then they are linearly independent. For suppose

Z C;o; = 0
i=1
then
(“js > Ci“i) =(2;,00=0 (j=1,...,n).
i=1
But
(“j, 211 ci“i) =C; (Olj, Otj)
and so
¢j(a;a)=0
i.e.

c.i=0 (j=1,...,n).
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A linear manifold in 5 is a set of vectors such that ca and o+ f belong
to the set if o, B belong to the set and ¢ is any complex number. Equiv-
alently, a linear manifold contains all linear combinations of any finite
subset of its elements. The linear manifold spanned by a set of vectors is
the smallest linear manifold that includes the set, i.e. it contains all and
only linear combinations of vectors from the set. The dimension of a
linear manifold is the maximum number of linearly independent vectors
in the manifold. If the linear manifold contains n linearly independent
vectors, but every set of n+1 vectors is linearly dependent, then it is
n-dimensional. If there is no maximum number, i.e. if there are arbitrarily
many linearly independent vectors, then the manifold is infinite-dimen-
sional.

An n-dimensional Hilbert space 5#, is an n-dimensional Euclidean
space over the field of complex numbers. Since an orthogonal set
{ay,..., &} is linearly independent, it follows that the set {y, «,..., &},
for any vector Y€, is linearly dependent, i.e. that there exist complex
numbers k, k,,..., k,, not all zero, such that

kW +keoty + ... +ky0,=0
or

|//=Cl(xl + ... +c"d" (ci=-—k,-/k).

Thus, any vector  can be expressed in terms of its components relative
to a ‘Cartesian coordinate system’ or set of axes, i.e. as a linear combina-
tion of its projections along any set {«;} of n mutually orthogonal unit
vectors in 5.

The condition of orthogonality requires that

(o, 0) =0, i#j.

In addition, each «; is of unit length, i.e.
loegll? = (o ) = 1.

It follows that
(o5, ) = ¢y (o, ) = ¢;

and so

¥ = (g, V)arg + (2, YIoz + ... + (& Yaty
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i.e. any vector ¥ in S, can be expressed in the form

b= 3, God) o

The set {o;} is said to be a complete orthonormal set in #,, an ortho-
gonal set of unit vectors spanning the whole space.

Notice that the absolute value of the scalar product, |(x; )|, is the
length of the projection of  along «;, and that

Wil =/ (b, ¥) = \/121 (o, Y%

the square of the length of y is the sum of the squares of the lengths of
the components of y along n orthogonal axes. This is Pythagoras’ theorem
in n-dimensional Hilbert space. The difference between 5, and a real
n-dimensional Euclidean space is that the components of a vector in 2,
are in general complex numbers, so that, for example, |(¢p, )| rather
than (¢, Y) — a complex number — is the magnitude of the projection
of Y along ¢.

In 57, problems of continuity and convergence become important,
but these aspects of the infinite-dimensional case are not really relevant
to the problem of interpretation. I include the following discussion of
terminology for completeness.

A sequence of vectors {y/;} in 5, converges to ¥, and ¥ is the limit of
the sequence, if the sequence of numbers {|y — ||} converges to zero.
A function f: £, —  , is continuous at the point ¢ if for each e >0 there
exists a d>0 such that | f(y)—f ()| <e if |{ —¢@|<d. Of course, these
definitions apply also in the case of 5 ,. Generally, it is assumed that
H , satisfies the conditions of separability and completeness (not to be
confused with completeness in the sense of the problem of hidden vari-
ables). Separability is the property that there exists a countable set in
H ., which is everywhere dense in 5, i.e. every vector in 5 is the
limit of a convergent sequence from the countable set or, equivalently,
for any yes#  there is an element ¥, in the countable set such that
Yy — ¢, <e, for any positive real number e. Completeness is the property
that every convergent sequence in J#  converges to a limit point in 5
(i.e. every sequence satisfying the Cauchy convergence criterion that
for each e>0 there exists an N (e) such that ||y, — || <e if m, n> N (e)).
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A finite-dimensional Hilbert space is necessarily separable and complete.

A subspace X of a Hilbert space £ is a closed linear manifold, i.e. a
linear manifold containing all its limit points. Evidently, ¢ is itself a
Hilbert space, with dimension less than or equal to the dimension of 7.
The set of vectors in £ orthogonal to all vectors in %" is a subspace
A L= —24". Two subspaces ", and X, are orthogonal if every vector
in 7", is orthogonal to every vector in ¢ ",, i.e. if 4", € X"} or, equivalently,
if A, H7.

It is a theorem that a linear manifold generated by a sequence of
vectors is also spanned by a countable orthonormal set of vectors.
(Von Neumann, Theorem 8.) In fact, there is a constructive procedure
for generating the orthonormal set from the original set of vectors, the
Schmidt orthonormalization procedure. It is also a theorem that every
subspace is spanned by a countable orthonormal set. In particular, 5#
is spanned by a countable orthonormal set. (Von Neumann, Theorem 9.)
The property of separability is crucial here. Thus, the major consequence
of the assumption of separability is the existence of Cartesian coordinate
systems in the sense of countable sets of basis vectors in terms of which
any vector can be represented. If {«;} is a complete orthonormal set in
H ., then

M s

'/’ = (ai, l/]) o;

i=1

in the sense that the sequence

.=i1 (ai: l/’) o

converges to . Of course, in 5, a complete orthonormal set of vectors
is always finite. '

If " is a subspace of 5, then each vector y can be resolved in one and
only one way into two components

Y=y +y, =Py + Py

where =Py et is the projection of { in the subspace ¢, and
Y,=Phye " is the projection of ¥ in the subspace o#t. The map
P: # — o associating each vector in S with its projection in X, is a
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special case of a linear operator in 5, i.e. the conditions

PW+¢)=Py +Pop
and

P (cy) = c(PY)

are satisfied. It is obvious geometrically that P is idempotent, i.e. P>=P
in the sense that P(Py)=Py, and self-adjoint, i.e.

(PY, ) = (b, Pp) forall y,pesl.

af

=Py +P =1+,
and

¢ =Po +Po=0,+ ¢,
then

(PY,0) =1, 0) = (Y1, 1)
and

W, Po) =, 1) = W1, 1))

A projection operator may be defined as a self-adjoint, idempotent
linear operator on 5#, and it is then a theorem that each projection
operator corresponds to a unique subspace which is its range. (Von

Neumann, Theorem 12.) It is an obvious consequence of the definition
that

W, PY) = (¥, P*Y) = (Py, PY) = | Py

i.e. the square of the length of the projection of y onto a subspace is
(Y, Py), where P is the projection operator corresponding to the subspace.

In general, an operator 4 is a function from a subset of J# into 5.
The operator 4 is said to be defined everywhere if the domain of A4 is 5.
Projection operators are defined everywhere. Notice that the operator
A+ A= A? is defined only if the range of 4 is contained in the domain of A.
This is the case for projection operators. An operator A is linear if its
domain is a linear manifold and if

A(a1a1 + a,0, + ... + a,,oc,,) = alAdl + azAdz + ... + a,,Aoc,,

for any linear combination of n vectors in the manifold. It follows that
the range of A is also a linear manifold.
For completeness, again, I include the following brief account of
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linear operators in Hilbert space (until the end of this section), although
these details are not of importance for the concerns of this inquiry.

A linear operator is bounded if, for all yes?, |Ay| <c||y¥|, where
0<c<oo. It is continuous at the point  if Ay, — Ay whenever ,— .
If A is bounded it is continuous. Conversely, if 4 is continuous at one
point (say the point y=0), it is continuous everywhere and bounded.
Hence the concepts of continuity and boundedness coincide for linear
operators. (Von Neumann, Theorem 18.) In 5#, every linear operator
is bounded.

A linear operator A’ is an extension of the linear operator A if the
domain of A is included in the domain of 4’, and A"y =Ay for all ¢
in the domain of 4. If {i,} is a Cauchy sequence in the domain of a
bounded linear operator 4 and y, — , where { is not in the domain of 4,
then A4 has a unique extension to the operator A’ defined on the closure of
the domain of 4 (i.e. the smallest subspace that includes the domain of A)
by the condition Ay =lim,_, Ay, This limit always exists, because
{Ay,} is a Cauchy sequence if {{,} is a Cauchy sequence and 4 is
bounded:

1A — AYull = |4 = Y| < cllVhm — Vil

If the domain of A4 is everywhere dense in 5, then the domain of A’
is . For the application of Hilbert space to quantum mechanics, it is
sufficient to consider linear operators defined everywhere, or linear
operators whose domains are everywhere dense if they are not defined
everwhere. Since a bounded linear operator may always be extended
uniquely to an operator defined everywhere, if the domain is everywhere
dense, the bounded linear operators of quantum mechanics may be
considered to be defined everywhere.

A linear operator is closed if the convergence of {4y} for a convergent
sequence {y,} implies that lim,,, AY,=A4lim, ¥, Notice that
equality is required only in the case that {Ay,} converges, i.c. when
lim,_, Ay, exists. Continuity requires the existence of lim,. . Ay,
when {{,} converges, and the equality lim,_  AY,=A4lim,_  V,: 4 is
continuousif {4y, } converges whenever {y,} converges,andlim,,_, , Ay, =
=A lim,_, ,,. Every continuous (i.e. bounded) operator may be extended
to a closed operator, because a continuous operator may always be
extended to an operator defined on a subspace, a closed linear manifold,
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so that whenever lim,,_, Ay, exists, lim,_, Ay ,=A lim,_, .V,. However,
a closed -operator is not necessarily continuous — there are unbounded
closed linear operators. An unbounded linear operator may be extended
to a closed linear operator under very general conditions, and if the
closure exists, it is unique. So, although unbounded operators cannot
be avoided in quantum mechanics, it is sufficient to consider closed
unbounded operators. A closed unbounded operator cannot be defined
everywhere: it is a theorem that every closed linear operator on 5# is
bounded (Jauch, p. 41, after Riesz and Sz.-Nagy). Hence, if a closed
linear operator is defined everywhere, it is continuous.

For unbounded operators, it is convenient to distinguish between
self-adjoint and Hermitian operators. The adjoint of an operator 4 may
be defined as the operator A* satisfying the condition (A*y, @)= (¥, Ap),
without assuming that the domains of 4* and A4 coincide. (Here I follow
Jauch’s definition rather than von Neumann’s.) The domain of 4* is the
set of vectors | in 5 for which the equation (y, 4@)= (V*, @) is satisfiable
by a vector y* in 5, i.e. A* is defined for all such y by A*y=y*. 4 is
Hermitian if A* is an extension of A4, i.e. if the domain of A* includes the
domain of A4, and A*y= Ay for all  in the domain of 4. 4 is self-
adjoint if A* and A are defined in the same domains and 4*= 4. In that
case, (Ay, )= (Y, A*¢p) and A**=A. If a closed Hermitian operator is
not self-adjoint, i.e. if the domain of 4* contains vectors which do not
belong to the domain of A4, then generally there are an infinite number of
closed Hermitian extensions of A4 (all of which coincide, of course, only
on the domain of 4%*). In this set of extensions of 4, there may be a subset
of operators for which no further extensions are possible, i.e. such
operators are already defined at all points where they could be defined
without violating their Hermitian character. These operators are said
to be maximal. A maximal extension which is also self-adjoint is said to
be hypermaximall.

IV. THE STATISTICAL ALGORITHM

Quantum mechanics incorporates an algorithm for assigning probabilities
to ranges of values of the physical magnitudes of a system, and an
equation of motion defining the dynamical evolution of the system. The
algorithm takes a particularly simple form in the finite-dimensional case.
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Consider, firstly, the eigenvalue problem in 5#,. This is the problem
of finding all solutions to the operator equation

Ao = ao.

If A is a self-adjoint operator, there exist » non-trivial solutions, i.e. n
eigenvectors o; and n corresponding eigenvalues a; (besides the trivial
solution «=0, a=0). The eigenvalues are the solutions to the equation

|4;; — al;;| =0

the secular equation, where A;; is the n x n matrix corresponding to the
operator A4, and |4;;—al;;| is the determinant of the matrix 4;;—al;;,
an nth order polynomial in a. (I;; is the unit matrix, with all off-diagonal
elements 0 and all diagonal elements 1.) By the fundamental theorem of
algebra, the secular equation has n roots. The solutions to the secular
equation, the eigenvalues, form the spectrum of the operator.

Each g; is real, since A is self-adjoint:

a;k (o3 ) = (Ao, o) = (o5, Ao;) = a;(a;, ;)

Eigenvectors corresponding to different eigenvalues are orthogonal,
because

a; (o ij) = (Ao, 0‘,‘) = (o, A“j) =a; (os, Oﬁj)

and so («;, ;)=0 if a;#a;. Since the solution a=0 is excluded, and the
vector ao is a solution if « is a solution, it is sufficient to consider solutions
o such that ||e| =1, i.e. unit vectors. The eigenvectors of 4 therefore form
an orthonormal set, and since there are exactly n orthogonal eigen-
vectors, these span 5, i.e. the orthonormal set is complete.

The n eigenvalues need not all be distinct. If there are k <n distinct
eigenvalues of A4, each eigenvalue a;(1<i<k) corresponds to m(i)
orthogonal eigenvectors o; 1, ®; 2,..., %; m(;)» Which span a subspace
A ,, of dimension m(i). The number m(i), the multiplicity of the eigen-
value a;, is the maximum number of linearly independent solutions to the
equation Aa=a;a. An eigenvalue with multiplicity greater than 1 is said
to be degenerate. If all the eigenvalues are non-degenerate, the spectrum
is simple. An operator is degenerate if it has one or more degenerate
eigenvalues. (The term ‘non-maximal’ is sometimes used, and should
not be confused with the notion introduced at the end of Section III.)
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A degenerate eigenvalue determines a unique subspace X ,, but since
any vector in the subspace ", is a solution to the equation da=a;x,
the eigenvalue a; does not determine a unique set of m(i) orthogonal
vectors in X",,. (Every vector y in 2, is expressible in the form

m (i)

Y= ;1 (“i, J Y) &,

so that
m (i)

Ay = _Z.l (o, i V) Aoy ;

m (i)

= .;1 (o, ;> ¥) a4,

m (i)

=a; 121 (0, 55 ¥) o, ;
=ay.

A complete orthonormal set of eigenvectors, i.e. vector solutions to the
eigenvalue equation for a degenerate operator A, is a set of vectors
{a;, ;} where, for each i, o; 4, d; 5,..., %; m(;) iS any orthonormal set of
vectors spanning ¢ ,,.

In 5%, then, there always exists a complete orthonormal set of eigen-
vectors for any self-adjoint operator A, i.e. each self-adjoint operator
defines a coordinate system or set of basis vectors, which is complete
in the sense that any vector y in the space is expressible in the form

b= 3 @b

If A4 is non-degenerate, the eigenvectors «; are uniquely determined. If 4

is degenerate, this is not the case, but it is nevertheless possible to find

complete orthonormal sets of solutions to the eigenvalue equation.
Any self-adjoint operator in 5#, may be expressed in the form

k
A == Z aiP ai
i=1
where the P, are projection operators corresponding to the k orthogonal

subspaces ¢, determined by the k distinct eigenvalues a; (¢, is the
subspace of vectors satisfying the equation Aa=a;x). This is the spectral
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representation of A. The projection operators P,, satisfy relations cor-
responding to the orthogonality and completeness of the eigenvectors:

P,P,, =1 if i=j (isthe unit operator)
PP, =0 if i#j (0isthe null operator)

k
Y P, =1.
i=1

The statistical algorithm has a particularly simple geometric inter-
pretation in 5 ,. Each self-adjoint operator in 5, is taken as representing
a physical magnitude of the system represented in S#,, in the sense that
the spectrum of the operator represents the set of possible values of the
magnitude. Notational convention: I use capital Latin letters 4, B, C,...
to represent physical magnitudes, and I denote the associated Hilbert
space operators by the same symbols. I label the eigenvectors of A4 by the
corresponding lower case Greek letter, and the eigenvalues of 4 by the
corresponding lower case Latin letter. In 5,, then, the magnitude 4
(represented by the operator A) has the possible values ay, a,,..., a,
which correspond to the eigenvectors o, «,,..., ,. Each unit vector
represents a statistical state, assigning probabilities to ranges of values
of the physical magnitudes. If the spectrum of A is simple, i.e. if 4 has »
distinct eigenvalues a;, the probability assigned to the value a; of 4 by the
statistical state y is

P.p(a = a;) = | (o, '//)lz = ||Pa,'m|2

i.e. py(a=a;) is equal to the square of the length of the projection of
onto the eigenvector «; corresponding to a;.

Here P,, is the projection operator onto the subspace %", the 1-di-
mensional subspace spanned by the vector a;. The expression for the
expectation value is

Expy(A)= Y a;p,(a =a;)

i=1

— _:Zl a;(P, ¥, P,)

= 3 i Pub)
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= (v, 3, apur)
= AY).

(Recall that A=)7_; a,P,, in the spectral representation.) Notice that
(Y, AY) is always real if A4 is self-adjoint, because (Y, AY)= (4AY, Y)=
= (), AY)*.

This is Born’s probabilistic interpretation of the state vector .
Schrédinger’s time-dependent equation (not to be confused with Schro-
dinger’s eigenvalue equation discussed in Section IT) determines a motion
of the system represented by a unitary transformation in Hilbert space,
i.e. a transformation

YUy
where U is a unitary operator defined by the condition
UU*=U*U=1, ie. U*=U"'.

It follows that a unitary operator is defined everywhere, continuous
(bounded), and preserves the scalar product, and hence the lengths of
vectors:

Uy, Up) = (U*UY, ¢) = (¥, ).
In the case of a degenerate operator:

py@=a)=|PY|*

where P, is the projection operator onto the m(i)-dimensional subspace
X, Notice that

m (i)
P, = Z Pa;,j
ji=1

where the P, , are the projection operators onto the m(i) mutually
orthogonal 1-dimensional subspaces corresponding to any orthonormal
set of vectors {a; ;} spanning ¢,

Comment on notation: I use the symbol P, to denote the projection
operator onto the subspace identified by the subscript s, which may there-
for label the value of a magnitude or a vector (in the case of a 1-di-
mensional subspace). Thus, P, denotes the projection operator onto the
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m(i)-dimensional subspace associated with the eigenvalue a; of the
magnitude 4. P, ,, or in general P, denotes the projection operator
onto the 1-dimensional subspace spanned by the vector. If a; is a non-
degenerate eigenvalue, I use either the symbol P, or the symbol P,, to
denote the corresponding subspace, depending on context.
In general, then, in 57 ,:
py(aesl) = ZS (ot )1 = Zs 1Poy? .
ai€ a;e

It is easy to verify that this is indeed a probability assignment to the ranges
of values S of A, for a fixed 4, where S is any Borel set of real numbers.
Since  is a vector of unit length, i.e. |y||®>= (¥, ¥)=1, it is obvious
geometrically that 0<p, (a=a;))=|(a; ¥)|*<1, i.e. that the length of the
projection of y onto a unit vector is less than 1, unless that vector is
identical with . And evidently

Y pya=a)=73 I W) =1
i.e. the sum of the squares of the lengths of the projections of i onto a set

of n orthogonal unit vectors is equal to 1, the square of the length of .
Equivalently, from the properties of the scalar product:

1= = (¥ %, @)
= 3 @ V) ()

ﬁ

o Y1) (o, Y

I(dp )I®

I
||M= ||M= .!.M’

.plll (a = al)

Since each p,(a=a;)>0, and Y7 ; p,(a=a)=1, it follows that
p,(a=a;)<1, equality corresponding to y=a,.
Thus:

@) Py(@e0)=0 p,(aeR)=1
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(ii) 0<py(aeS)<1

(i) py(aeS; or aeS,)=p,(ac(S1U S,))

= py(a€S;) + p,(aes;)
if Slf\Sz = O.

In 5, a problem arises because a complete orthonormal set of
solutions to the eigenvalue equation Aax=ax does not always exist. If
this is the case, the spectrum of A is said to be continuous. The eigenvalues
a; for which corresponding eigenvectors (or sets of eigenvectors) exist in
H . form the discrete spectrum of A. Of course, a countable basis or
coordinate system always exists in ¢ if 5 is separable. The difficulty
here is that the set of eigenvectors of an operator 4 does not necessarily
generate such a coordinate system: it is not always possible to represent
an arbitrary vector Yy e as a linear combination of a countable set of
solutions to the eigenvalue equation for 4. In this case, it is necessary to
reformulate the statistical algorithm of quantum mechanics because the
expression

py(aeS)= Y |(o ¥)I*

aieS

is defined only if the eigenvalue equation Aa=a;x has solutions in the
range S.

The generalization for S is as follows: Each hypermaximal operator
A defines a unique spectral measure, i.e. a map from the field of Borel
sets on the real line R into a set of projection operators. Notational con-
vention: The operator A4 associates the projection operator P,(S) with
the Borel set S< R. The spectral measure satisfies the conditions

P,0)=0 P, R)=I
Py(S; N S2)=P,(S) AP(S;)=P,(S51) Py(S;)
Py(S; v Sy)=P,u(S) vV P(S)=P4(S1) +P,y(S2) —Py(S1) Py(S,).

Now, each ye#,, assigns a probability u,,(S) to the range S of 4
according to the rule

Py(a€S)=pyua(S) =, Pa(SW) = (Pa(SW, P4 (SH) = IPL(SHWI*.
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(The symbol p,,(S) is introduced as an abbreviation for p,(aeS).)
Hence the expectation value of the physical magnitude A in the state y
is defined by:

(e 0]

Exp, (4) = f r Aty 4 (1)

— 00

o0

= f rd(Y, Py(r) W)

— o0

where py 4 (r)=py4((— 0, r]), P4(r)=P4((— o0, r]). The operator 4 may
be expressed in the form A= r dP,(r) (the spectral representation
of 4, cf. A=Y%; a,P,, in the discrete case) if we understand

(), 27 dP,4(r)Y) as the integral |2, d(f, P,(r)}), so that
Expy (4) = (¥, 4Y).

Again, one verifies easily that, for a fixed 4, pu,4(S) is a probability
measure on the set of Borel sets in R. Firstly, p,4(S)= (¥, P,(SHY)=
= (P4(SW, P,(SW)=|P4(S)¥|? i.e. u,,(S) is the square of the length
of the projection of { onto the subspace £ ,(S) corresponding to
P,(S). Since y is of unit length, 0<||P,(S)Y[I?<1. Also, p,,4(S)=
=y, P4(SHW)=0 if S=0, because P,(0)=0; and p,,(S)=1 if S=R,
because P,(R)=1. If S, and S, are disjoint sets in R, i.e. S;S,=0,
then

Uy 4 (S1 U S) =W, PSS,V S)Y)
= (), (P4(S1) + P4(S¥)
=, Po(SY) + (¥, P4(S2)¥)
= Uya (S + pya(S2)

since P,(S;nS,)=P,(S,) - P,(S,)=0.

In an n-dimensional Hilbert space, the probability measure p,,(r) is
the Lebesgue-Stieltjes measure concentrated at the eigenvalues aq;(i=
=1,...,n) with weights equal to p,(a=a;)=|P,¥|* The projection
operator P,(S) is the operator Y, .sP,, where P, is the projection
operator onto the subspace of solutions to the eigenvalue equation cor-
responding to the eigenvalue a;. (Comment on notation: My previously
introduced symbols P,,, X", may be regarded as abbreviations for the
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symbols P,({a;}), # 4({a;}), where {a;} denotes the singleton subset
containing the eigenvalue a;.)

The spectral theorem, that each hypermaximal operator on J# defines
a unique spectral measure, is evidently a generalization of the theorem
that in 5#, the eigenvalue equation is solvable for self-adjoint operators.
The solutions to the eigenvalue equation for the self-adjoint operator 4
in S, define a unique spectral measure

P A (S) = Z P a; *
aieS

The algorithm of quantum mechanics for assigning probabilities to ranges
of values S of 4 may be expressed in terms of the spectral measure,
without explicit reference to eigenvectors:

P.p(a €S)= "PA(S)l/’llz-

Conversely, it can be shown that there are vector solutions a #0 to the
eigenvalue equation Aa=ax in 5, (i.e. in a general &) only at a dis-
continuity r of P,(r), and these solutions span a subspace ¢ ,. If the
subspaces X, for all a, span the Hilbert space, then the eigenvectors of 4
form a complete orthonormal set. Thus, the points r at which P,(r) is
discontinuous form the discrete spectrum of A, and these are the only
values of a for which the eigenvalue equation Aa=aa, a#0, has solutions
in .

The spectrum of 4 may be defined as the set of points r in whose
neighbourhood P,(r) is not constant. For if P,(r) is constant for some
interval of points S=[ry, r,], including r, then

S=(_ OO,I'2]——(— 00, 4]
=(_ OO,I‘Z]f\(— oo,rl]'
and so

Py(S)=Pu(—o00,r] 0 (—0,r])
=P,4((— 0, ;) P4((— o, r{])
=P,y(ry) (I—P,(ry)
=Py(ry) = Py(ry) Py(ry)
=Py(ry) —P,(ry)
=0.

(Here [r,, r,] denotes a closed interval of points, i.e. an interval con-
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taining the end-points ry, r,; (ry,r,) denotes an interval open on the
left, i.e. not containing the end-point r,.) If P,(r) is not constant and
not discontinous in the neighbourhood of a point r, then the eigenvalue
equation has no solutions in Hilbert space for this set of points. Such
points form the continuous spectrum of A.

To sum up: The probability assigned to the range S of the magnitude
A by the statistical state represented by the vector y is defined as

Dy (ael)= ﬂwA(S) =W, Py(SH) =P, (S)‘/’"z-

This is the square of the length of the projection of ¥ onto the subspace
A ,(S) corresponding to the projection operator P ,(S).

In the case of a finite-dimensional Hilbert space, this expression re-
duces to

p,,,(aES) = Z | (0% W)Iz
aieS
where «; is the eigenvector corresponding to the eigenvalue a; of A4, i.e.
the probability is expressible as the sum of the squares of the projections
of  onto the eigenvectors corresponding to the eigenvalues lying in the
range S.

V. GENERALIZATION OF THE STATISTICAL ALGORITHM

The probability assignments defined by the statistical algorithm for each
unit Hilbert space vector iy may be generalized for convex sets of vectors,
i.e. sets of vectors Yy, ¥/,,... with weights w;, w,,... (w; =0, w,=0,...;
witw,+...=1):

p(aesl) = Z w; [P 4(S) ‘/’i”z = Z wi (i, P4 (S) ¥)
and

Exp (4) = ; w; (Vi AY;).

It is convenient to express these relations in terms of the trace of an
operator.

The trace of an operator 4 is defined as the sum ) ,(¢;, Ap;), where
{p;} is any complete orthonormal set in 5. The trace is invariant under
a change of basis, i.e.
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Tr(4) = ; (¢i Agy) = Z Y;, AYj), etc

If A is self-adjoint, Tr(A) is real. If A4 is also definite, (i.e. (, AY)=>0 for
all ), then Tr(A4) >0, and Tr(4)=0 just in case A=0. It can be verified
easily that

Tr(aAd) = a Tr(A)
Tr(A4 + B) = Tr(A4) + Tr(B)

Tr(AB) = Tr(BA) for all A, B (even non-commuting
A, B).

If P is a projection operator onto a k-dimensional subspace ", then
Tr(P)=k. For

k n
TI'(P) = .;1 (Wi’ Pl/’:) + ‘§1 (¢ja P(PJ)

where {y/4,..., Y;} is any orthonormal set of vectors spanning .¢°, and
{Yis.ees Vi3 @15--., @} is an orthonormal set spanning 5. Hence

k
Te(P)= 3. (b ¥) +0=k.

If {;} is a complete orthonormal set in 5, and P,, is the set of projec-
tion operators onto the corresponding 1-dimensional subspaces, then

Tr(Py,4) = Tr(4P,))
= Z (l//i’ APllljwi)
= (), AY).

So, the expectation value of 4 determined by the convex set of vectors
¥; with weights w; is

;Wi Expy, (4) = Et: w; (Y, AYy)
=Y w; Tr(P,,A4)
i

—Tr ( [; wiP,,,i] A)

The operator W=) w,P,,, termed the statistical operator, is self-adjoint
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and definite, because each P, is self-adjoint and definite and w;>0.
Tr(W)=) w;=1, because Tr(P,)=1. The statistical operator com-
pletely characterizes the probability assignments defined by convex sets
of statistical states according to the rule

Expy (A) = Tr(WA)
and
pw(aeS)=Tr(WP,(S))

because

py(@aeS) =[P (S|
=, P4 (SHY)
= Exp, (P4(S))
= Tr(Py,P4(S)).

It is usual to distinguish between pure statistical states and mixtures,
or mixed statistical states. A pure statistical state is determined by a
single vector Y in 5 - the corresponding statistical operator is the
projection operator P, onto the 1-dimensional subspace ",. Thus, a
necessary and sufficient condition that W is the statistical operator of a
pure state is that W is a projection operator, or W2=W (since W is
self-adjoint). If W2+ W, W represents a mixture.

The pure statistical states, represented by idempotent statistical
operators, are homogeneous in the sense that no idempotent statistical
operator is expressible as a convex sum of two (or more) different
statistical operators, i.e. if W is idempotent and

W=pW;+p,W, (py+p,=1;p>0,p,>0)

then W=W,=W,. I reproduce here the simple proof of London and
Bauer (pp. 31, 32).
If W=p,W,+p,W, is idempotent, W~— W?=0 and

W2 =piWi+piW5 +pp,(WiW, + W,W,)
= hWzf +p§W:§ + pip, Wi + Wi — (W, — W)P)
=pi W3 +p.Wi—pp,(Wy — Wy)>.
So

W—W>=p (Wy— W) +p,(Wy = W3) +p1p,(Wy — W,)* =0.
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But
(Wy — WD), (W, — W3), (W, — W,)?

are all definite, from which it follows that

W, - Wi=0
W2 - W% = 0
and, in particular
W, — Wz)z =0
ie.
W1 - W2 = 0

since W,;— W, is self-adjoint. Thus, W, =W,, and from W,=p, W, +
+p, W,, we get W=W,=W,.

If W has a pure discrete spectrum of eigenvalues w; and corresponding
eigenvectors w;, then W may be expressed in the spectral representation
as

W =) wpP,,.
i

The definiteness of W guarantees that each w;>0. Hence, W may be
represented as a unique mixture of mutually orthogonal states w; with
weights w;. However, if some eigenvalues are degenerate, the set of pure
states ; is not uniquely determined. What is uniquely determined is the
set of distinct eigenvalues with their corresponding subspaces. The
subspace ¢, corresponding to the eigenvalue w; is the set of all solutions
to the eigenvalue equation Ww=w;w. In this case it is not possible to
represent W as a unique mixture of orthogonal pure states. In fact, if a
mixture is formed from an orthogonal set of k pure states y/, ¥, ..., ¥y,
each with the same weight (i.e. with the relative weights 1, 1,..., 1), then
the statistical operator depends only on the subspace spanned by y/,,

/SO 1/
W=Ww'Tc(W")

where W'=P, +P,,+... +P, =Py. (Note that Tr(Py,)=k#1, the di-
mension of the subspace J£".)

Evidently, the same mixture may be generated by mixing any ortho-
normal set of pure states spanning ¢ with the relative weights 1, 1,..., 1.
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Von Neumann’s simple example is the mixture obtained from any two
orthogonal pure states y, ¢ with equal weights. This yields the same
statistics, and is therefore represented by the same statistical operator, as

the mixture of pure states (Y +go)/\/ 2, (n//—(p)/ﬁ with equal weights.
Thus, while the pure statistical state is pure in the sense that it is homo-
geneous with respect to the set of statistical states represented by statistical
operators in Hilbert space, the mixed state is a mixture only in the sense
that it is non-homogeneous — not in the sense that it represents a definite
mixture of homogeneous states.

The statistical algorithm of quantum mechanics is now expressed in the
general form

pw (@€ S) = py4(S)=Tr(WP,(S))
or

Expy (4) = Tr(WA).

This formulation is applicable to both pure and mixed states, finite and
infinite dimensional Hilbert spaces, degenerate and non-degenerate
operators. A further generalization of this rule to several magnitudes is
possible. The generalization is limited to compatible magnitudes cor-
responding to commuting operators.

VI. COMPATIBILITY
Two operators 4; and A, are said to commute if
A1A2 = A2A1 .

(To avoid complications with different domains of definition, I assume
that both 4, and A4, are defined everywhere, hence continuous.) If the
inverse operators A7 ! and A ! exist, then all polynomials of 4, commute
with all polynomials of 4, (Von Neumann, p. 102). The inverse A~ ! is a
linear operator whose domain is the range of 4 and whose range is the
domain of A4, with the property that A1 4y = for all { in the domain
of A, and A4 'p=¢ for all ¢ in the range of A (the domain of A™1).
The inverse of a linear operator A exists if Ay # A¢p whenever Y # .

It can be shown that 4, commutes with A4, if and only if each P, (S)
commutes with 4, and each P,,(S) commutes with 4,, in fact, if and
only if all P, (S) commute with all P,,(S) (Von Neumann, p. 171).
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Also, any function of 4, commutes with any function of 4, if 4, and 4,
commute. Conversely, if 4, and A4, commute, then there exists a
(self-adjoint) operator B such that

Ay =g,(B)
A, =g,(B).

The operator g (B) is defined as

g(B) = f g (r) dPy(r)

where g is a function g: R— R (Von Neumann, footnote 94, p. 145).
It follows that if A=g(B), then

twa(S) = uwp(g~"(S)) forevery W,S.

This suggests the following definition of compatibility for magnitudes:
Two physical magnitudes 4A; and A, are compatible if and only if there
exists a magnitude, B, and functions g,:R— R and g,:R— R such that

Bwa, (S) = PWB(gfl ()
and

”WA;(S) = Uwp (gz_l ()

for all statistical states ¥ and all Borel sets SSR. If g(B) is defined as
that magnitude satisfying the relation

#Wg(B)(S) = Hwp (9—1 (S))

for every W and S, where g is again a real-valued function on the real
line, then 4, and A, are compatible if and only if 4,=g,(B) and
A,=g,(B), and the compatibility of the two physical magnitudes is
equivalent to the commutativity of the corresponding self-adjoint
operators in Hilbert space.

There is an implicit assumption here: that two magnitudes 4, and 4,
are equivalent if and only if py 4, (S)=pw4,(S) for every W, S. This
makes the equivalence classes of quantum mechanical magnitudes, and
hence their algebraic structure, depend on the set of statistical states.
Different definitions of equivalence are conceivable, especially if the
set of statistical states, represented by the statistical operators in Hilbert
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space, is ‘incomplete’ in some sense. I shall consider the significance of
this equivalence relation again in Chapter VII.

The pure statistical state Y assigns probabilities to ranges of values S
of every magnitude:

py(ae S) =P (SH|>.

In the case of two compatible magnitudes, 4, and A4,, this expression
generalizes to joint probability assignments:

P.p(a1 €S &a,€8,)= l|PA1(S1)PA2(Sz)‘//“2-
And for n compatible magnitudes A4,, 4,..., 4,:
p.l,(al € S1 &... &an € Sn) = “PA1 (Sl)"‘PAn(Sn)l/IHZ .

(Comment on notation: Here the symbol a; is a variable denoting a
general value of the magnitude A4;, not a name for the ith eigenvalue of
a magnitude A as in Section IV. Thus, a;€S; is to be read: The value of
the magnitude A, lies in the range S;.)

The above relation follows, because if 4; and A4, are compatible,

Ay =g:(B)
and

A, = g,(B)
in the sense that

P.p(a1 € S;) =P¢(b € 91_1 (S1))
and

Dy (a; € S,) = Dy be 92_1 (S2)
for every ¥, Sy, S,. Thus:

P.p(a1 €S; &a,€sS,) =Pw(b € 91_1 (S))&be 92_1 (S2)
=Dy (be (91_1 (S1) n 92_1 (S2))
= 1Ps(g1" (S1) 0 g7 " (S¥11?
= “PB(.‘h_l (*5'1))1)13(92_1 (Sz))lbuz
= [Py, (S)P 4, (SHV>.

In the general case of a mixture represented by the statistical operator I :

pw(@ €S  &a,eS, &...&a,e€8,)=Tr(WP,,(Sy)...P4,(S)).
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Clearly, this expression does not hold for incompatible magnitudes,
because

1P a, (SOPa, (SN # | Py, (S2)Pa, (S

for all Y, and the order cannot be relevant to the assignment of a joint
probability distribution. No further generalization of the statistical
algorithm to incompatible magnitudes is possible in Hilbert space.



CHAPTER II

THE PROBLEM OF COMPLETENESS

I. THE CLASSICAL THEORY OF PROBABILITY
AND QUANTUM MECHANICS

The peculiarity of the statistics generated by the algorithm of quantum
mechanics can be brought out by recalling certain elementary features of
the classical mathematical theory of probability. To introduce termino-
logy, consider an experiment with a finite number of possible outcomes
X1, X5 ..., X, of which one and only one can occur. (The experiment of
tossing a die, say, has six possible outcomes.) A probability p; is as-
sociated with each outcome x;, and might, for example, be understood
as the relative frequency of the outcome in an infinite (i.e. very long)
series of trials or repetitions of the experiment. (In the case of the die,
the probabilities are all equal to %, unles the die is loaded.) An event E is
a set of possible outcomes, i.e. a subset of the set X={x;, x5,..., x,}.
The probability assigned to the event E is the sum of the probabilities of
the outcomes contained in E:

p(E) = Z Di-

x;€E

(E.g. the probability of an even throw is p, +p, +ps.) An outcome is an
elementary event: p({x;})=p;, where {x;} is the singleton subset.

In general, the set X will be infinite, and even uncountable (e.g. if X
is the set of possible outcomes of an experiment measuring the position
of a free particle). The events E to which probabilities are assigned form a
certain set of subsets of X. Evidently, both X (with probability 1) and
the null set (with probability 0) belong to the set of events. Also, for
every event E, the set of outcomes E'=X—F is an event, the event that
occurs if and only if E does not occur. And if E,, E, are events, so is
E, n E, (the event that occurs if and only if both E;, and E, occur) and
E,UE, (the event that occurs if and only if either E,, or E,, or both
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occur). The set of events is therefore a field & of subsets of X (i.e. a non-
empty set of subsets closed with respect to finite unions, intersections,
and complements), and the probability is a map p:%# — R satisfying the
conditions:

@ p0)=0; pX)=1

(ii) 0<p(E)1 for Ee&F

(iii) p(E,VE)=p(E)+p(E,) if E,E,e# and
E,nE,=0.

Condition (ii) is redundant. It follows easily that
P(E)<p(E) if E cE,
since p(E,)<p(E,)+p(E,—E,)=p(E,), and hence for any E,, E,

P(E,V E;))=p(E) +p(E,— E)<p(E) +p(E,).

(Here E,—E,=E,nE{, where E; is the complement of E; in X.)
Obviously, since & is a field, the additivity condition (iii) is equivalent
to the condition

p ( U Ei) = iZ:Il p(E)

for every finite class of disjoint sets E;€%#. For reasons of mathematical
convenience, it is usual to extend condition (iii) to countable unions, with
the additional assumption that & is a o-field, i.e. closed under countable
unions (and hence closed under countable intersections). The map p is
then a normed (i.e. p(X)=1), g-additive (or countably additive) real-
valued set function, a probability measure on the o-field & of subsets
of X. The triple (X, &, p) is referred to as a probability space.

The axiomatization of the classical theory of probability along these
lines is due to Kolmogorov. What is fundamental is the notion of prob-
ability as a measure function on an event structure represented as the
algebra generated by the subsets of a set under the operations of union,
intersection, and complement.

A random variable is, loosely, a quantity that can take on different
values according to the outcome of an experiment, where the outcomes are
the elements of a set X of a probability space (X, &, p). For example,
a quantity which is 1 for even throws of a die and 0 for odd throws is a
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random variable. More precisely, a random variable is a real-valued
function 4: X — R. If the probabilities are to be assigned to ranges of
values of A, then it is necessary that subsets of X of the form
{x:a<A(x)<b} belong to #. In general, therefore, it is required that
A is a measurable function with respect to the o-field & of X, i.e. A71(S)
is a measurable set — a member of the set # — for every Borel set SSR.
(The class of Borel sets in a topological space is the o-field generated by
the open sets.)

The expectation value (average value, mean value) of a random variable
A on a probability space (X, &, p) is defined as

Exp(4) = f Adp.

Evidently,
Exp(4 + B) = Exp(4) + Exp(B)
Exp(cA) = cExp(4), ceR

assuming that 4 and B are random variables on the same probability
space and that the integrals all exist. In the special case of a finite prob-
ability space with

X = Xy oo Xp p({xi})::pi’ A(xi)=ai’
Exp(4) = 2, piti.

A measure of the statistical ‘scatter’ of 4 about the expectation value
is given by the variance, (4A4)*, defined as

(44)* = Exp[(4 — Exp (4))*].

Tchebychev’s inequality states that if Exp(A4) and 4 are both finite, then
for A>1

p(l4 — Exp(4)| = A44) < A72.
In other words, the probability that 4 lies outside the interval (Exp(4) +

—A4A,Exp(A4)+A44)is at most equal to A~2. If 44 is small, then the
probability that the value of A will be close to Exp(A4) on any particular
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trial is high. The quantity 44 is often referred to as the dispersion of A.
If AA is finite, then

44y = [ (4 - Exp(4)* dp

x

~
= | A>dp — 2 Exp4 f Adp + (Exp(4))®
o

= Exp(4”) — (Exp(4))*.

Now, the statistics defined by the algorithm of quantum mechanics is
not expressed in terms of the standard classical notion of a probability
space. For a single quantum mechanical magnitude, 4, the algorithm does
define a probability measure in the classical sense, i.e. each statistical
state W specifies a measure uy 4, on the Borel subsets of the real line. And
a set of compatible magnitudes A4,,..., 4, which are all functions of the
magnitude B may be treated as random variables on the probability
space for B. The statistics defined for two incompatible magnitudes,
however, does not appear to be reducible to the classical scheme: There is
no joint probability space for the statistical relations specified by the
quantum algorithm for two incompatible magnitudes.

Or is there?

A host of questions arise here: In what sense does the quantum al-
gorithm generate probabilities, if the numbers between 0 and 1 specified
by the statistical states for ranges of values of the magnitudes do not
satisfy Kolmogorov’s axioms for probabilities? How are the magnitudes
of quantum mechanics to be understood, if they cannot be represented as
random variables on a probability space? Or, alternatively, how are the
statistical relations to be understood if they do not refer to random
variables in the usual sense? Are the statistical states of quantum mechan-
ics ‘ultimate’ in some sense, or is it possible to introduce additional
statistical states which are ‘finer’ than quantum states, and perhaps
additional physical magnitudes, so that the quantum statistics becomes
expressible as a truncated part of a classical probability theory? Evidently
the relation of compatibility (or incompatibility) is the symptom, and
perhaps also the origin, of the non-classical character of the quantum
statistics. But what is the significance of this relation?
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II. UNCERTAINTY AND COMPLEMENTARITY

Heisenberg’s uncertainty principle concerns a reciprocal relationship
between the dispersions of certain incompatible magnitudes 4, and 4,
as the statistical state varies between a dispersion-free state for 4; and
a dispersion-free state for 4,. (A statistical state W is said to be dispersion-
free for the magnitude 4 if 44 (4)=0.) In the case of two incompatible
magnitudes satisfying the commutation relation

A1A2 - A2A1 = ih/27'EI

e.g. magnitudes corresponding to canonically conjugate classical mechani-
cal quantities such as position and momentum, the relation takes the
form

A,A14,A, = hldn.

The proof is straightforward. Since minimal dispersions are at issue
here, only pure states need be considered. First notice that

Ay =A,— W, A1
A'Z =A, — (‘l’a Azl»b)l

satisfy the same commutation relation as 4, 4,:
145 — AA = ih[2xnl .
Assuming |y|| =1

(Y, (4145 — A2 A)D Y) = ih[2n (Y, ¥) = ik2x.
Now:

(V,(414; — A,47) ¥) = (§, A149) — (¥, 4,4Y)
= (41Y, A2¥) — (429, A1)
= 2i Im (41, A3¥)

where Im(A4Y, A5Y)) is the imaginary part of the complex number
(AW, A5Y). It follows that

(W, (414; — A2A47) ¥) < 2i|(A1Y, A29)|

1.e.
||A'1|P|| ||A'z¢|| = hl4rw.
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Since
(444)* = (¥, (4 = (¢, AYIDNY)
=, (4))
=AYy, A'Y)
= |4'y|?
the inequality becomes
AyA14,A4; = hf4n.

For Bohr and Heisenberg, who jointly developed the ‘Copenhagen
interpretation’ of the theory, quantum mechanics is irreducibly statistical
on the basis of a disturbance theory of measurement, and the uncertainty
relations are interpreted as supporting this theory.

A possible reading of Heisenberg’s position amounts to something like
the following: The measurement procedures by which we determine that
the value of a physical magnitude A lies in a certain range S disturb the
system in such a way that the values of magnitudes incompatible with 4
are altered. Furthermore, this disturbance is unavoidable and uncontrol-
lable. A precise analysis of measurement procedures at the microlevel
reveals that any procedure for measuring position, for example, involves
an interference with the system in such a way that the momentum value
is changed in an indeterminate way. (The prototype of this type of
argument is the analysis of the y-ray microscope thought experiment.)
The uncertainty relations may be understood as reflecting the physical
impossibility of simultaneously assigning small ranges of values to in-
compatible magnitudes in any measurement process, because of the
unavoidable and uncontrollable disturbance of the values of magnitudes
incompatible with 4 involved in every measurement of A. The statistical
operators of the theory represent those (and only those) probability
assignments that are compatible with our possible knowledge of the
microlevel, in the light of the theory of measurement disturbances. The
pure statistical operators represent probability assignments that are
compatible with maximal knowledge: they represent various possible
totalities of events that are maximal with respect to what can be known
simultaneously. These are the state descriptions of quantum mechanics —
the quantum analogues of classical states — and the impure statistical
operators represent less than maximal knowledge, probability measures
over quantum states.
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To put this another way: On the basis of a discovery concerning
measurement disturbances at the microlevel (i.e. on the assumption that
a certain theory of measurement is true), a distinction is made between
a maximal totality of events in the sense of classical mechanics, and a
totality of events that is maximal with respect to what can be known
simultaneously. It is (physically) impossible, by any observation procedure
whatsoever, to simultaneously assign ranges of values to a set of mag-
nitudes in such a way as to define a classical state description. The maxi-
mal sets of events whose existence and non-existence are simultaneously
decidable empirically (at least in principle) are those sets of events cor-
responding to the quantum state descriptions (i.e. the pure statistical
states).

At the risk of introducing a confusing terminology, one might distin-
guish between a classical event (‘c-event’) and a quantum event (‘g-event’).
A c-event is represented by assigning a range to a classical magnitude.
A g-event is a c-event whose existence or non-existence can be established
by a measurement procedure that does not alter the value of any magni-
tude entering into the description of the ‘g-maximal’ totality of events
obtaining at that time. Thus, Heisenberg’s version of the Copenhagen
interpretation might be characterized by the thesis that quantum mechan-
ics is both statistical and complete in the sense that vectors in Hilbert
space represent g-maximal totalities of events — totalities of events that
are maximal with respect to what can be known simultaneously.

Einstein emphatically rejected this view and proposed a series of
arguments designed to show the incompleteness of quantum mechanics.
In 1935 he published a paper with Podolsky and Rosen which is directed
against Heisenberg’s completeness thesis as I have formulated it here.
It will be worthwhile to recall the argument, usually referred to as the
‘Einstein-Podolsky-Rosen paradox’.

Einstein, Podolsky, and Rosen propose a necessary condition of
completeness for a physical theory (Einstein, Podolsky, and Rosen,
p. 777): '

Every element of the physical reality must have a counterpart in the physical theory.

Secondly, they propose a sufficient criterion of physical reality (Einstein,
Podolsky, and Rosen, p. 777):

If, without in any way disturbing a system, we can predict with certainty (i.e. with
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probability equal to unity) the value of a physical quantity, then there exists an ele-
ment of physical reality corresponding to this physical quantity.

The condition of completeness, I think, amounts simply to the re-
quirement that every event be representable in the theory, say by as-
signing a range to a physical magnitude. The criterion of reality is applied
in a particular context — that of two separated systems, S; and S,, with
correlations between the values of their magnitudes (established during a
previous interaction), so that the measurement of an S,-magnitude makes
it possible to assign a value to the correlated S,-magnitude, without
disturbing S, by the S ;-measurement. In quantum mechanics, the
composite system S; +.5, is associated with the tensor product, #; x #,,
of the Hilbert spaces s#°; of S; and 5#, of S,. (The subscripts here do
not denote dimensionality.) The tensor product of s#;, and 5#, is es-
sentially the Cartesian product, 5#; x #°, (which is not, of course, a
vector space), with a vector addition operation defined on the set of
ordered pairs of vectors, such that

(% o > b,-coj) - ¥ aby 0.

Vectors in 5, ® 5, are represented by linear combinations of the form
V®¢p, where Yy ®¢ represents the equivalence class (Y, ¢) under the
above equivalence relation. (The symbol (/, @) here denotes an element
of #,; x5 ,, and not the scalar product.) Operators in s ® #, repre-
sented as tensor products, O;®0,, are defined in the obvious way:

000,V ®@¢ =0,y ®0,0

By an ‘S;-magnitude’, I mean a physical magnitude represented by a
self-adjoint operator in #; (i=1, 2). By an ‘S;-event’, I mean an event
representable by assigning a range to an S;-magnitude.

The criterion of reality might be reformulated as follows: In the case
of two separated physical systems, S; and S,, an S;-event is a g-event if a
range can be assigned to an appropriate S;-magnitude as a description
of the event by a measurement procedure which does not alter the value
of any S;-magnitude entering into the description of the g-maximal
totality of S;-events obtaining at that time.

The argument proceeds as follows: If the quantum theory is complete
(according to the condition of completeness) and the Hilbert space
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vectors are complete state descriptions in the sense that they represent
g-maximal totalities of events, then a position-event (i.e. an event des-
cribed by assigning a small range of values to the magnitude position)
and a momentum event cannot both belong to the g-maximal totality
of events obtaining at a particular time. For no g-event corresponds to the
joint assignment of a small range to position and a small range to mo-
mentum.

Now consider a composite system consisting of two sub-systems, S
and S,, which have interacted suitably at some time so that the values of
certain of their magnitudes are correlated. Assume that the Hilbert space
vector ¥ of the composite system S; + S, — a vector in the Hilbert space
H=H ,QH, — is a complete state description in the above sense. In
the example considered by Einstein, Podolsky, and Rosen, ¥ does not
determine a unique state description for S;, nor does ¥ determine a
unique state description for S,. What ¥ does determine are certain cor-
relations between S;-events and S,-events. These correlations are such
that the assignment of a small range to the position of §; determines a
small range for the position of S,, and conversely. Similarly, S;-momen-
tum events are correlated with S,-momentum events. It follows that
whether we assume that a position event belongs to the g-maximal
totality of S;-events obtaining at a particular time, or whether we assume
that a momentum event belongs to this totality, we are led to a contra-
diction. Because if the g-maximal totality of S;-events includes a position-
event, then a small range can be assigned to the momentum of S; by a
measurement procedure which does not alter the value of any S;-mag-
nitude entering into the description of that g-maximal totality of S;-
events, viz. a measurement procedure which assigns a small range to the
momentum of S, (assuming that the two systems are separated, so that
there is no possibility of any interaction between them). And, similarly,
if the g-maximal totality of S;-events includes a momentum event, then
an S;-position event is a g-event belonging to that totality.

Thus, the criterion of reality together with the assumption that the
Hilbert space vector is a complete state description in Heisenberg’s sense
leads to a contradiction. In short: If quantum mechanics is complete,
then a position event and a momentum event cannot both belong to the
g-maximal totality of events obtaining at a particular time. But, in a
specific case, it follows from the conjunction of the completeness as-
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sumption with the criterion of reality that a position event and a momen-
tum event do both belong to the g-maximal totality of events obtaining
at a particular time.

A possible objection to this argument was anticipated by Einstein,
Podolsky, and Rosen: One might assume that two (or more) g-events can
be asserted to belong to the same g-maximal totality of events only if
ranges can be assigned to appropriate magnitudes as a representation of
these events by a simultaneous process of measurement. Since either an
S -position-event or an S;-momentum-event can be established as
existing in this way, but not both simultaneously, the argument fails on
this supposition. But, as Einstein, Podolsky, and Rosen point out, this
would make the g-maximal totality of events obtaining at S; at a partic-
ular time - the quantum reality at S; at a particular time — depend
upon the measurement process at S,, i.e. the kind of measurement being
performed at S, at that time. Since S; and S, are separate systems, this
appears to be unreasonable.

At this point it might be worthwhile to disentangle Bohr’s version of
the Copenhagen interpretation from Heisenberg’s. Some remarks by
Heisenberg on the origin of the Copenhagen interpretation are worthwhile
quoting in full (Heisenberg, p. 105; my italics):

At this time, Dirac and Jordan developed the transformation theory to which Born
and Jordan in earlier investigations had already laid the foundation, and the comple-
tion of this mathematical formalism again confirmed us [i.e. Bohr and Heisenberg]
in our belief that there was no more to change in the formal structure of quantum
mechanics, and that the remaining problem was to express the connection between
the mathematics and the experiment in a way free of contradictions. But how this
was to be done remained unclear. Our evening discussions quite often lasted till after
midnight, and we occasionally parted somewhat discontented, for the difference in
the directions in which we sought the solution seemed often to make the problem
more difficult. Still, deeply disquited after one of these discussions I went for a walk
in the Faelledpark, which lies behind the Institute, to breathe the fresh air and calm
down before going to bed. On this walk under the stars, the obvious idea occurred to
me that one should postulate that nature allowed only experimental situations to occur
which could be described within the framework of quantum mechanics. This would ap-
parently imply, as one could see from the mathematical formalism, that one could not
simultaneously know the position and velocity of a particle. There was no immediate
possibility of discussing this idea in detail with Bohr, because just at this time (end of
February, 1927) he had left for a skiing holiday in Norway. Bohr was probably also
glad to be able to devote himself to a few weeks’ completely undisturbed thinking
about the interpretation of quantum theory.

Left alone in Copenhagen I too was able to give my thoughts freer play, and I
decided to make the above uncertainty the central point in the interpretation. Re-
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membering a discussion I had had long before with a fellow student in Géttingen, I
got the idea of investigating the possibility of determining the position of a particle
with the aid of a gamma-ray microscope, and in this way soon arrived at an interpre-
tation which I believed to be coherent and free of contradictions. I then wrote a long
letter to Pauli, more or less the draft of a paper, and Pauli’s answer was decidedly
positive and encouraging. When Bohr returned from Norway, I was already able to
present him with the first version of a paper along with the letter from Pauli. At first
Bohr was rather dissatisfied. He pointed out to me that certain statements in this first
version were still incorrectly founded, and as he always insisted on relentless clarity
in every detail, these points offended him deeply. Further, he had probably already
grown familiar, while he was in Norway, with the concept of complementarity which
would make it possible to take the dualism between the wave and particle picture as
a suitable starting point for an interpretation. This concept of complementarity fitted
well the fundamental philosophical attitude which he had always had, and in which the
limitations of our means of expressing ourselves entered as a central philosophical
problem. He therefore took objection to the fact that I had not started from the dualism
between particles and waves. After several weeks of discussion, which were not devoid
of stress, we soon concluded, not least thanks to Oskar Klein’s participation, that we
really meant the same, and that the uncertainty relations were just a special case of
the more general complementarity principle. Thus, I sent my improved paper to the
printer and Bohr prepared a detailed publication on complementarity.

How closely the idea of complementarity was in accord with Bohr’s older phil-
sophical ideas became apparent through an episode, which, if I remember correctly,
took place on a sailing trip from Copenhagen to Svendborg on the island Fyn. At
this time Bohr and a colleague and friend owned a sailing boat, the captain of which
was the brilliant and extremely charming chemist Bjerrum. The distinguished surgeon
Chevitz kept spirits high even in stormy weather, and the other friends contributed
each in his own way to this happy and untroubled existence. Bohr was full of the new
interpretation of quantum theory, and as the boat took us full sail southwards in
sunshine, there was plenty of time to tell of this scientific event and to reflect philo-
sophically on the nature of atomic theory. Bohr began by talking of the difficulties
of language, of the limitations of all our means of expressing ourselves, which one
had to take into account from the very beginning if one wants to practice science, and
he explained how satisfying it was that this limitation had already been expressed in
the foundation of atomic theory in a mathematically lucid way. Finally, one of the
friends remarked drily, “But, Niels, this is not really new, you said exactly the same
ten years ago.”

One way of understanding the intention behind Heisenberg’s remark
that ‘“one should postulate that nature allowed only experimental
situations to occur which could be described within the framework of the
formalism of quantum mechanics™ is in terms of the disturbance theory
of measurement that I have attributed to Heisenberg in the above discus-
sion of the Einstein-Podolsky-Rosen paradox. It is possible, and perhaps
even likely, that Heisenberg’s view is more radical than this, along the
lines of Bohr’s formulation of the Copenhagen interpretation.
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Bohr regards the quantum mechanical magnitudes as representing the
dispositions of a system to behave (i.e. be ‘disturbed’) in certain ways in
situations defined by macroscopic (classical) systems. The conditions
appropriate for the realization of different dispositions may be mutually
exclusive. This, Bohr claims, is the case for the space-time and energy-
momentum magnitudes of classical physics, i.e. the conditions appro-
priate for space-time magnitudes exclude the conditions appropriate for
energy-momentum magnitudes. Bohr terms pairs of magnitudes (dis-
positions) which are exclusive in this sense complementary, because their
simultaneous realization is a presupposition of classical physics: a clas-
sical mechanical state is represented by a point in phase space, an as-
signment of values to position and momentum variables. Quantum
mechanics is a rational generalization of classical mechanics in the fol-
lowing sense: Each quantum mechanical magnitude is associated either
with the group of space-time magnitudes or with the group of energy-
momentum magnitudes, but not with both. The assignment of a range of
values to a magnitude represents an event if and only if the conditions
for the realization of the associated disposition are satisfied. The as-
signment of a probability to a range of values S of a magnitude 4 is to
be understood as the probability that, if the conditions for the realization
of the associated disposition were to be satisfied, the corresponding event
would obtain.

In effect, Bohr adopts the assumption considered and rejected as
unreasonable by Einstein, Podolsky, and Rosen. The contradiction in the
application of quantum mechanics to the Einstein-Podolsky-Rosen
thought experiment is generated by assuming that the ‘reality’ at S, at a
particular time is constituted by some g-maximal totality of events
obtaining at that time, whether or not we know what these events are.
But this assumption is, strictly speaking, incompatible with the quantum
description of the composite system, which is represented by a vector ¥
in the Hilbert space #; ®5#, that does not reduce to a product of the
form

Y=y, @Y,

where Y €5, y,€°,, nor to a statistical mixture of such products.
In this case, on Bohr’s view, no events belonging to the g-maximal
totality of events obtaining at a particular time are representable by as-
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signing a range to an S;-magnitude, because the conditions appropriate
for the realization of dispositions associated with S;-magnitudes are not
satisfied (only the conditions appropriate for the realization of disposi-
tions associated with S-magnitudes are satisfied if the composite system
is described by the Hilbert space vector ¥). Moreover, the conditions
appropriate for space-time magnitudes at S, are simultaneously satis-
fiable with the conditions for space-time magnitudes at S;, and exclude
the conditions appropriate for energy-momentum magnitudes (and
similarly for energy-momentum magnitudes at S; and §,). Thus, an
S;-position measurement (which involves satisfying the conditions
appropriate for S,-space-time magnitudes) excludes the possibility of
satisfying the conditions for S,-momentum-energy magnitudes, and
hence excludes the possibility that the assignment of any range to the
momentum of S, represents an S,-g-event belonging to the g-maximal
totality of events obtaining at the time of the S;-measurement.

To quote from Bohr’s reply to Einstein, Podolsky, and Rosen (Bohr

(2), p. 700):

From our point of view we now see that the wording of the above-mentioned criterion
of physical reality proposed by Einstein, Podolsky, and Rosen contains an ambiguity
as regards the meaning of the expression ‘‘without in any way disturbing a system.”
Of course there is in a case like that just considered no question of a mechanical
disturbance of the system under investigation during the last critical stage of the mea-
suring procedure. But even at this stage there is essentially the question of an influence
on the very conditions which define the possible types of predictions regarding the future
behaviour of the system. Since these conditions constitute an inherent element of the
description of any phenomenon to which the term ‘physical reality’ can be properly
attached, we see that the argumentation of the mentioned authors does not justify
their conclusion that quantum-mechanical description is essentially incomplete.
This is the complementarity thesis, that a special mode of description is
required for micro-objects, in terms of mutually exclusive groups of
dispositions whose simultaneous realization is characteristic of the clas-
sical mechanical description of the macrolevel. Thus, a peculiar feature of
‘wholeness’ is introduced into the description of events by the indivisibility
of the micro-object and the measuring instruments which define the
conditions under which the events occur. In Heisenberg’s terminology,
one would have to say that in some sense the measurement process
engenders the magnitude measured. Mere disturbance is not enough, as
the Einstein-Podolski-Rosen paradox shows. The absurdity of this

position was obvious to Bohr (Bohr (b), p. 237):
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Meanwhile, the discussion of the epistemological problems in atomic physics attracted
as much attention as ever and, in commenting on Einstein’s views as regards the in-
completeness of the quantum-mechanical mode of description, I entered more directly
on questions of terminology. In this connection, I warned especially against phrases,
often found in the physical literature, such as ‘‘disturbing of phenomena by observa-
tion” or ‘‘creating physical attributes to atomic objects by measurements”. Such
phrases, which may serve to remind of the apparent paradoxes in quantum theory,
are at the same time apt to cause confusion, since words like ‘phenomena’ and
‘observation’, just as ‘attributes’ and ‘measurements’, are used in a way hardly com-
patible with common language and practical definition.

The question is whether complementarity really differs from this reductio
ad absurdam of Heisenberg’s theory of measurement, or whether it
amounts to no more than a disguised version of the untenable disturbance
theory of measurement. My own view is that Bohr’s contribution to the
Copenhagen interpretation was that of a remarkably successful pro-
pagandist. He saw the statistical relations of quantum mechanics as the
confirmation of an approach to the problem of knowledge that had
fascinated him since his youth. Heisenberg refers to “the fundamental
philosophical attitude which he had always had, and in which the
limitations of our means of expressing ourselves entered as a central
philosophical problem.” Aage Petersen describes this view as “the
doctrine that we are, philosophically speaking, suspended in language,
that we depend on our conceptual framework for unambiguous com-
munication, and that the scope of the frame may be extended by ge-
neralization in the way illustrated in mathematics (Petersen, p. 10).
He quotes Bohr as saying (Petersen, p. 12):

There is no quantum world. There is only an abstract quantum physical description.

It is wrong to think that the task of physics is to find out how nature is. Physics con-
cerns what we can say about nature.

And on another occasion, in reply to an objection that reality is more
fundamental than language and ‘lies beneath’ language, he responded
(Petersen, p. 11):

We are suspended in language in such a way that we cannot say what is up and what
is down.

Now, one can read almost anything into these intriguing asides, from
Plato to Wittgenstein. They reveal Bohr’s philosophical hang-ups, no
more. The careful phraseology of complementarity, drawing on this
reservoir, endows an unacceptable theory of measurement with mystery
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and apparent profundity, where clarity would reveal an unsolved prob-
lem. Einstein’s attitude to the Copenhagen interpretation was less
charitable in private correspondence than would appear from his publish-
ed articles. In a letter to Schridinger in May, 1928, he writes:

The Heisenberg-Bohr tranquillizing philosophy — or religion? — is so delicately con-
trived that, for the time being, it provides a gentle pillow for the true believer from
which he cannot very easily be aroused. So let him lie there.

IT1I. HIDDEN VARIABLES

In the 1930’s the controversy concerning the completeness of the quantum
statistics focussed on the problem of hidden variables. Since the statistical
operators in Hilbert space do not assign joint probabilities to ranges of
values of incompatible magnitudes, there are no statistical operators
which assign a probability of 1 to particular values of two (or more)
incompatible magnitudes. It follows that there are no statistical operators
which are dispersion-free for all magnitudes.

Now, if the statistical states of a theory are representable in the clas-
sical way as probability measures on a o-field & of subsets of a set X, the
dispersion-free states correspond to those measures which assign the
value 1 or 0 to every subset in % . To see this, first notice that if a measure
is dispersion-free for every random variable, i.e. every real-valued func-
tion on X, then it is dispersion-free for the characteristic functions on X.
The characteristic functions represent the idempotent magnitudes of a
classical theory. A characteristic function E maps every point belonging
to some set Y onto 1, and every point outside Y onto 0. Thus:

EXxX)=1 if xeY
E(x)=0 if x¢Y
and so
E*=E.
The expectation value of a characteristic function E for a statistical
state W represented by the probability measure p is the probability as-
signed to the associated set Y by the measure p:

Expy (E) = f Edp
X

=p(Y).
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The expression for the dispersion becomes

Ay (E) = Expy (E*) — (Expy (E))?
= Expy (E) — (Expy (E))2
=p(Y) - p*(Y).

If 45, (E)=0, p(Y)=1 or 0. Hence, if 4, (E)=0 for every characteristic
function on X, the corresponding probability measure p must satisfy

p(¥Y)=0 or 1

for every set YeZ.

This is possible only if each dispersion-free probability measure as-
signs probability 1 to some singleton subset in &#. In other words, there
is a one-one correspondence between the points of X and dispersion-free
probability measures on X, each dispersion-free measure assigning
probability 1 to a singleton subset and 0 to the rest of the space. Thus, if
the probability assignments of a statistical theory are generated by a set M
of statistical states representable as measures on a probability space, the
absence of dispersion-free statistical states in M can only indicate the
incompleteness of the theory, in the sense that the set M does not exhaust
all possible probability assignments on the event structure represented by
the o-field.

For example, in the case of classical statistical mechanics the statistical
states are represented as probability measures on the phase space of
classical mechanics. The points of phase space represent classical mechan-
ical states. Each dispersion-free probability measure corresponds to a
classical state. If we consider a hypothetical statistical theory involving
a set M of statististical states representable as measures on a probability
space, with no dispersion-free statistical states in M, we must conclude
that the set M is incomplete, since statistical states corresponding to
dispersion-free probability measures are definable, and the latter de-
monstrably exist on the probability space. Relative to the incomplete
theory with the set of states M, the variables which parametrize the
probability space might well be ‘hidden’; they do not belong to the set of
physical magnitudes of the M-theory. An assignment of values to these
variables would specify a state, analogous to the representation of a
classical mechanical state by a point in phase space. But such states would
be excluded by the M-theory, since they do not correspond to any as-
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signment of probabilities generated by the statistical states of the set M.

The absence of dispersion-free states in quantum mechanics poses this
problem: Is it possible to generate the statistical relations of quantum
mechanics by probability measures on a classical probability space? Or
is the theory complete in some sense, so that the existence of hidden
variables is excluded?



CHAPTER III

VON NEUMANN’S COMPLETENESS PROOF

Unlike Bohr and Heisenberg, who attempted to ground the completeness
of quantum mechanics on a thesis concerning the peculiarities of mea-
surement at the microlevel — an argument depending on considerations
extraneous to the theory — von Neumann saw the problem as that of
proving the non-existence of hidden variables on the basis of certain
structural features of quantum mechanics. The difference is important.
For suppose quantum mechanics can be reformulated as a classical
statistical theory — none of the arguments proposed by Bohr or Heisenberg
proves the contrary. Von Neumann could argue that, insofar as quantum
mechanics or its completion is an adequate theory, the Copenhagen inter-
pretation is simply false as a thesis concerning micro-elements. But
adherents to this interpretation would have to drop quantum mechanics,
regretfully perhaps, and search for a new theory incorporating the ‘feature
of wholeness’ or complementarity. The Copenhagen interpretation might
conceivably explain why the description of the microlevel requires an
‘irreducibly statistical’ theory, but it cannot guarantee that the mathemat-
ical theory of quantum mechanics does in fact have this character.

Von Neumann opens his investigation by considering the general
problem of distinguishing between two alternative interpretations of a
statistical theory (Von Neumann, p. 302):

I. The individual systems s1,..., sy of our ensemble can be in different states, so that
the ensemble [s1,..., sn] is defined by their relative frequencies. The fact that we do not
obtain sharp values for the physical quantities in this case is caused by our lack of
information: we do not know in which state we are measuring, and therefore we can-
not predict the results.

II. All individual systems s1,..., S5 are in the same state, but the laws of nature are
not causal. Then the cause of the dispersions is not our lack of information, but is
nature itself, which has disregarded the ‘principle of sufficient cause’.

The question is: Under what conditions is it possible to associate either
Case I or Case II uniquely with a given statistical theory? Von Neumann’s
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descriptions of the two cases are not formulated very carefully, but the
distinction is evidently between a purely epistemic ‘ignorance’ inter-
pretation of the statistics, and an interpretation of the theory as complete,
or ‘irreducibly statistical’ in some sense. Case I characterizes statistical
theories in which the probability assignments are generated by statistical
states representable as measures on a probability space. Case II is prob-
lematic. Is there an objective criterion of demarcation between the two
cases, i.e. under what circumstances are we justified in assuming that
“the cause of the dispersions is not our lack of information, but is nature
itself”’? And how are we to understand this notion?

Von Neumann first considers the objection that Case II makes no
sense at all. Nature cannot violate the ‘principle of sufficient cause’,
because this amounts to a definition of identity. If two systems behave
differently under identical conditions, we would not call them identical.
Since measurements of a magnitude 4 on systems in a statistical ensemble
represented by a Hilbert space vector which is not an eigenvector of A
yield different results, the systems cannot be identical. That is to say,
the Hilbert space description cannot be complete — there must exist other
variables, ‘hidden parameters’, which differentiate the systems in the
statistical ensemble represented by the Hilbert space vector.

Now, von Neumann sees a difficulty here because of the supposedly
irreducible and uncontrollable interaction between the measuring instru-
ment and measured object. Ordinarily, he argues, we might assume that
every ensemble can be resolved into homogeneous dispersion-free
subensembles, each of which is characterized by particular values for the
magnitudes A4, B, C,..., which are distributed in the original ensemble.
But because of the peculiar features of measurement at the microlevel, we
cannot actually carry out such a resolution. For suppose we resolve our
original ensemble into subensembles characterized by particular values
of A. Then any further process of selection of subensembles characterized
by particular values of B will change the values of 4, if 4 and B are
incompatible (Von Neumann, pp. 304, 305).

That is, we do not get ahead: Each step destroys the results of the preceding one, and
no further repetition of successive measurements can bring order into this confusion.
In the atom we are at the boundary of the physical world, where each measurement is
an interference of the same order of magnitude as the object measured, and therefore

affects it basically. Thus the uncertainty relations are at the root of these difficulties.
Therefore we have no method which would make it always possible to resolve
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further the dispersing ensembles (without change of their elements) or to penetrate to
those homogeneous ensembles which no longer have dispersion. The last ones are the
ensembles we are accustomed to consider to be composed of individual particles, all
identical, and all determined causally. Nevertheless, we could attempt to maintain the
fiction that each dispersing ensemble can be divided into two (or more) parts, different
from each other and from it, without a change in its elements. That is, the division
would be such that the superposition of two resolved ensembles would again produce
the original ensemble. As we see, the attempt to interpret causality as an equality
definition led to a question of fact which can and must be answered, and which might
conceivably be answered negatively. This is the question: Is it really possible to rep-
resent each ensemble [si,..., sx], in which there is a quantity 4 with dispersion, by
a superposition of two (or more) ensembles different from one another and from it?

More precisely: If an ensemble is not dispersion-free, do there always
exist two other ensembles such that, for all A4:

Exp (4) = ¢; Exp’ (4) + ¢, Exp” (A4)

where ¢, and c, are strictly positive and sum to unity? (Here Exp’(4) and
Exp”(A) are the expectation values of 4 in the new ensembles, and

Exp (4) # Exp’ (4) # Exp”" (4).

Now, this question can be investigated formally only in the framework
of a mathematical theory of probability general enough to incorporate
both Case I and Case II statistical theories. For, if we restrict the inquiry
to statistical ensembles of the classical (Kolmogorov) type, then it is
immediately obvious that all and only dispersion-free ensembles are
homogeneous: ensembles which are not dispersion-free are resolvable
into homogeneous, dispersion-free ensembles.

Von Neumann recognizes this, and attempts to sketch such a generalized
theory implicitly by specifying conditions on the functions Exp(4), for
all 4. On the basis of these conditions, von Neumann is able to prove
that in the case of quantum mechanics (where the set of magnitudes is
represented by the set of self-adjoint operators in Hilbert space, and the
functional relationships between magnitudes are those between the cor-
responding operators) every statistical ensemble is associated with a
statistical operator in Hilbert space, which generates the statistics ac-
cording to the usual rule:

Expy (4) = Tr (WA).

The impossibility of generating the statistical relations of quantum
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mechanics by measures on a classical probability space would now seem
to follow because (a) there are no statistical operators representing
ensembles which are dispersion-free for every magnitude, and yet (b) there
are homogeneous ensembles, which cannot be resolved into different
subensembles. These are represented by the idempotent statistical opera-
tors, i.e. projection operators with unit trace.

Von Neumann’s theorem is usually misunderstood. The object of the
proof is to demonstrate the existence of ensembles which are not disper-
sion-free and yet homogeneous, given certain conditions on the proba-
bility measures and physical magnitudes. It is often pointed out — wrongly,
I think — that the proof is redundant: It is sufficient to prove the non-
existence of dispersion-free ensembles, the argument goes; the existence
of homogeneous ensembles is an added bonus which is not essential to the
proof.

Now, von Neumann is obviously not concerned to prove that no
quantum mechanical statistical state is dispersion-free, for this follows
immediately from the limitation of the statistical algorithm to compatible
magnitudes. Nor could the absence of dispersion-free states in the theory
by itself exclude the possibility of reconstructing the statistical relations
on a classical probability space. Consider, for example, a theory with a
set of statistical states corresponding to all possible probability measures
on a classical probability space, excluding the dispersion-free probability
measures. In this case, the theory would include no statistical states rep-
resenting dispersion-free ensembles, and no statistical states representing
homogenous ensembles. Evidently, by construction, the probability
assignments of this theory can be generated by measures on a classical
probability space.

It is the existence of homogeneous ensembles with dispersion that von
Neumann regards as significant. His argument is a curious blend of
heuristic and logical reasoning here. The absence of dispersion-free
statistical states in the theory does not by itself provide a criterion of
demarcation between Case I and Case II statistics. Nor, clearly, does the
existence of statistical states representing homogeneous ensembles suffice
as a criterion. But the uncertainty principle and the Copenhagen theory
of measurement suggest that quantum mechanics is irreducibly statistical
because ensembles are not resolvable into subensembles with different
statistical properties beyond a certain point. In other words, homo-
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geneity with dispersion is the feature characterizing the irreducibly
statistical ensembles of micro-objects.

Yet von Neumann’s proof does not consist in merely pointing out
that quantum mechanics includes such statistical states. Rather, the
existence of such states is inferred from general assumptions on the
statistical states and physical magnitudes which are presumed to charac-
terize the statistical relations of quantum mechanics. Evidently von
Neumann’s intention is to develop the proof in the context of a general-
ized theory of probability. But there is considerable confusion here. The
proof fails because von Neumann does not properly distinguish his own
foundational problem from the Copenhagen disturbance theory of
measurement.

In Chapter V I shall show that von Neumann’s criterion of demarca-
tion between Case I and Case II is inadequate. The statistics generated
by the algorithm of quantum mechanics on a 2-dimensional Hilbert
space satisfies von Neumann’s criterion: There are no dispersion-free
statistical states, but homogeneous statistical states do exist, viz. those
corresponding to idempotent statistical operators or vectors in Hilbert
space. It can be shown that these statistical relations can be generated by
measures on a classical probability space, i.e. the absence of dispersion-
free states in the theory, together with the existence of homogeneous
statistical states, does not exclude the existence of hidden variables here.

Recent criticism of von Neumann’s proof has been directed against one
particular assumption.

After proposing the following conditions on the functions Exp(4):

) if the magnitude A4 is represented by the unit operator, then
Exp(4)=1
(ii) for every A, and every real number a, Exp(ad)=a Exp(A4)

(iii) if 4 is ‘by nature’ ‘non-negative’ (e.g. if 4=B?), then
Exp(4)=>0

(iv) if A and B are compatible magnitudes, then
Exp (A4 + B) = Exp(4) + Exp(B)

von Neumann argues that condition (iv) is applicable also to incompatible
magnitudes (von Neumann, pp. 308, 309; I have altered von Neumann’s
symbols to conform to my own notation):
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Regarding (iv) it should be noted that its correctness depends on this theorem on
probability: the expectation value of a sum is always the sum of the expectation values
of the individual terms, independent of whether probability dependencies exist between
these or not (in contrast, for example, to the probability of the product). That we have
formulated it only for simultaneously measurable A, B,...is natural, since otherwise
A+ B+ ... is meaningless. But the algorithm of quantum mechanics contains still
another operation, which goes beyond the one just discussed: namely, the addition of
two arbitrary quantities, which are not necessarily simultaneously observable. This
operation depends on the fact that for two Hermitian operators, A, B, the sum 4 + B
is also an Hermitian operator, even if the 4, B do not commute, while, for example,
the product AB is again Hermitian only in the event of commutativity. In each state
the expectation values behave additively:

(9, Ag) + (9, Bp) = (9, (4 + B)o) .

The same holds for several summands. We now incorporate this fact into our general
set-up (at this point not yet specialized to quantum mechanics):

If A, B,... are arbitrary quantities, then there is an additional quantity 44 B+ ...
(which does not depend on the choice of the Exp (A4)-function), such that

Exp(A4 + B+ ...)) =Exp(A) + Exp (B) + ...

J. S. Bell has objected to this extended additivity assumption on the grounds
that the eigenvalues of the operator 4 + B are not the sums of eigenvalues
of the operators 4 and B respectively, if 4 and B do not commute:
measurement of the magnitude 44 B is not constituted by adding the
results of separate measurements of 4 and B if these magnitudes are
incompatible. In fact, three quite different measurement procedures are
involved for A, B, A+ B, which ‘interfere’ with each other. Hence, he
argues, it is unreasonable to extend the additivity assumption from com-
patible to incompatible magnitudes. The possibility of generating the
probability assignments of quantum mechanics on a classical probability
space requires the validity of the additivity assumption only for those
probability measures corresponding to the statistical states of quantum
mechanics. In particular, the extended additivity assumption might be
expected to fail for dispersion-free measures. It seems to me that this
argument is confused, although I accept Bell’s conclusion that the extend-
ed additivity assumption is suspect in the context of the proof. I shall
reconsider Bell’s argument in Chapter VII and show that it rests on a
misunderstanding of the completeness problem.

Doubts such as these about the acceptability of von Neumann’s
assumptions led to a number of attempts to establish the non-existence
of hidden variables on the basis of weaker assumptions. The lattice
theoretic proof of Jauch and Piron is perhaps the most successful of these.



CHAPTER 1V

LATTICE THEORY: THE JAUCH AND PIRON PROOF

In his Mathematical Foundations of Quantum Mechanics, von Neumann
pointed out that the properties of a quantum mechanical system are
represented by the projection operators in Hilbert space. The properties
correspond to the idempotent magnitudes, those magnitudes whose only
possible values are 0 and 1, representing the non-existence or existence of
the property in question. Since the projection operators are in one-one
correspondence with the subspaces of Hilbert space, there is a corre-
spondence between quantum properties, or equivalently quantum prop-
ositions, and subspaces. Von Neumann remarked (von Neumann, p. 253)
that this correspondence ‘““makes possible a sort of logical calculus® with
the propositions of quantum mechanics, which differs from ordinary
logic in that the notion of ‘simultaneous decidability’ is relevant. He
developed this idea further in a classic paper co-authored with G.
Birkhoff. The Birkhoff-von Neumann paper presents the structure of the
quantum proposition system as a lattice of a certain kind.

A lattice is a partially ordered set £ with a greatest lower bound
(infimum) and a least upper bound (supremum) defined for every pair
of elements. A partially ordered set S is a set with a binary relation
< on § that is reflexive (i.e. a<a), antisymmetric (if a<b and b<a,
then a=>), and transitive (if a<b and b < c then a<¢). The set S is totally
ordered if, in addition, either a<b or b<a for every a, beS. The infimum
of a and b, denoted by aAb, is defined as the (unique) element ce#
such that c<a and c¢<b, and if ¢'<a and ¢’'<b, then ¢'<c. Similarly,
the supremum of a and b, denoted by av b, is defined as the (unique)
element ¢ such that a<c and b<c¢, and if a<<c’ and b<c’ then c<c'.

It follows that in any lattice:

anb=bAa avb=bva
an(bArco=(@Ab) Ac avibve)y=(@vbvece
(avbAb=b> (anb)vb=>

The lower and upper bounds of a lattice are unique of they exist,
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denoted by 0 and 1, the zero and unit elements. The complement of a
lattice element a is defined as an element a’ such that ana’=0,ava’'=1.
The complement a’ of a is not necessarily unique. A complemented
lattice is a lattice in which every element has a complement. An ortho-
complemented lattice is a lattice with an operation denoted by * (the
‘orthogonal complement’ or orthocomplement), satisfying the condi-
tions:

@t =a

a<b ifandonlyif b'<a'

ana-=0

ava- =1

The orthocomplement a* of a is unique if it exists.
A lattice is distributive if

anbvec)=(@ab)v(@anc
avibac=(@vb)a(avo)

for every a, b, ce#. Complementation is unique in a distributive lattice
and has the properties of orthocomplementation.

A complemented distributive lattice is a Boolean algebra. Indeed, a
Boolean algebra may be defined as a non-empty set with two binary
operations, meet and join, and one unary operation, complementation,
satisfying the axioms (Sikorski, p. 3):

ana =0 ava =1

anb=bAa avb=bva
an(bac)=(@nb)ac avbvec=(@vbd)ve
ba(avb)=> bv(@nanb)=>b
anbvcecy=@ab)v(anac) avibanc=(@vb)Aa(avc)
Ova=a lAha=a

(This set of axioms is redundant.) Essentially, the axioms specify that
the three operations have properties analogous to the operations of
intersection, union, and complementation on the subsets of a fixed set or
space.

The set of subspaces of a Hilbert space forms a lattice under the partial
ordering defined by set inclusion. The least upper bound of two sub-
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spaces ¢ ; and J¢, is the smallest subspace containing both ", and ¢’,,
and similarly the greatest lower bound of >, and ¢, is the largest
subspace contained in both " and X °,. The subspace X' AX, is
identical with the set theoretical intersection of 24" and X ,, but the
union of >¢°; and 2¢", does not necessarily contain all linear combinations
of vectors from X', and X, (i.e. all vectors of the form c;a, +c,a,
where o, €4, and a,e£,), and so is not a subspace (and hence not
identical with ", v X£°,).

The lattice of subspaces of a Hilbert space is non-distributive, unlike
the Boolean lattice of subsets of a set, i.e. it is not the case in general that

YN v AH)=(H L AKX )V (KX AA)
or

Consider, for example, three distinct 1-dimensional subspaces o¢";, £ ,,
A5 in H#,, such that A", 10 5, ie. H,=43. Then A, AA =0, the
null subspace; so

XIV(XZAX‘3)=9{1V@=%1.

But

A NH,=H,
and

H A 3=,
SO

V)N v A )=3,.
Similarly,

A, v Hy=,,
SO

A N,y ))=H ANK =
whereas

X‘IA%2=%‘1AX3=@=(.X‘1A%z)V(%lA%‘3).

A concept of compatibility, corresponding to the compatibility of
(idempotent) magnitudes, can be defined for subspaces. Two subspaces
X, and X, are compatible if they generate a distributive lattice under
the operations of supremum (Vv ), infimum (A), and orthocomplement
(1). It is easy to see that ¢, and X", are compatible if 2, =X, or
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A = A3, i.e. if one subspace is included in the other or the two sub-
spaces are orthogonal. It can also be shown that 5", and X, are com-
patible if and only if they are orthogonal, except for an overlap, i.e. if
X, and X", are expressible in the form

Hy=[H AL ALY TV (AL )

Hy=(H L NV [y Ay AL
where

Hy AL ANA),

the intersection of 5¢"; with the orthogonal complement of X", A Y, is
orthogonal to

9{2/\(9{1’\9{2)J',

the intersection of X, with the orthogonal complement of | A ,.
(Equivalently, o¢°; and 5, are compatible if there exists three mutually
orthogonal subspaces '}, X,, and ¢, such that S =X v,
A ,=A",v A .) Two subspaces are compatible in this sense if and only
if the corresponding projection operators commute, i.e. if and only if the
associated idempotent magnitudes are compatible.

The projection operators in 5 form a lattice isomorphic to the lattice
of subspaces. The partial ordering is defined so that P, <P, just in
case X, =X ,, where P, corresponds to ¢"; and P, corresponds to X',
(i.e. A", and o, are the ranges of P, and P, respectively). P* is the
projection operator I—P with range # —X =" If A", and ¢, are
compatible, then

PIAP2=P1'P2
and
PIVP2=P1+P2_P1‘°P2.

In general, of course, P; A P, is defined as the projection operator with
range X, AX,, and P, v P, as the projection operator with range
K vH,.

If P, and P, do not commute, i.e. if

P,P, # P,P,

then P,P, and P, +P,—P,P, are not projection operators. So, com-
mutativity is a necessary and sufficient conditions for P, P, to be a pro-
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jection operator. Notice that if P, P, =0, it follows that P, P, =0 (because
the null operator is a projection operator), and hence that P, +P, is a
projection operator if and only if P,P,=0. Since the subspace corre-
sponding to PP, is X ; n 2{ , the condition P,P, =0 is equivalent to the
condition that the intersection of &¢°; and ¢°, is empty, and hence that
2, is orthogonal to ¢°,. (Recall that ¢, and £, are compatible just in
case there exist three mutually orthogonal subspaces ¢, X7, X =
=X 0nH,, suchthat X\ =A" v H, A ,=HvH.)

IfP,,..., P,is a set of projection operators onto n mutually orthogonal
subspaces X y,..., 4 ,, then P, +P,+...+P, is a projection operator
onto the subspace X', vX,v..vX, Also, P,—P,; is a projection
operator if and only if P,P, =P, (or equivalently P,P,=P,), i.e. if and
only if X', =2 ,. In this case P,—P, is the projection operator with
range oA, — A, =H ", A 1. (Notice that P, — P, is a projection operator
if and only if 7— (P,—P,) is a projection operator, i.e. if and only if
(I—P,)+ P, is a projection operator. Since a sum of projection operators
is a projection operator if and only if their product is the null operator,
it follows that (I—P,)+P; is a projection operator if and only if
(I-P,)P,=0,ie. P,—P,P,=0.)

Birkhoff and von Neumann’s paper was published in 1936, but did
not have any appreciable influence on the hidden variable controversy,
or the problem of interpretation of quantum mechanics, until the redis-
covery of their work by Jauch and co-workers in the 1960’s. On the basis
of various considerations, which are not of immediate relevance here,
Birkhoff and von Neumann proposed that the system of quantum
propositions forms a modular lattice, i.e. a lattice satisfying the condition

avibac)=(@vb)ac forall a<c.

Their purpose was to formulate quantum mechanics as a theory on a
non-Boolean propositional structure of a certain kind, conceived as a
generalization of the classical propositional structure which takes into
account measurement restrictions at the microlevel in accordance with
Heisenberg’s uncertainty principle.

Jauch and Piron find the modularity assumption too restrictive, and
develop the theory axiomatically as a generalized probability calculus
on a complete, orthocomplemented, weakly modular, atomic lattice.
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The assumption of weak modularity is that
a<b onlyifaand b are compatible.
In Hilbert space, this axiom is automatically satisfied:
If o, <, o, and X, are compatible,

the corresponding projection operators commute, and the associated

idempotent magnitudes (properties, propositions) are compatible.
The probability measures on this non-Boolean lattice are defined as

generalized probabilities, satisfying the following conditions:

¢)) 0<p(a)<1foreveryae ¥

2) p(0)=0,p(1) =1, where 0 and 1 are the minimum ard
maximum elements of %

3) if {a;} is a sequence of orthogonal elements in &
(ie. a; < ai, i # k) then p(V;a) = Y.ip(a)

4 for any sequence {a;}, if p(a;) =1 for all i then p(Aa;) =1

(5a) if a # 0, then there exists a probability assignment such that
p(@=0

(5b) if a # b, then there exists a probability assignment such that

p(a) #p®)

The dispersion, 4a, of a proposition a for the probability measure p
is defined by

42 (a) = Exp,(P,)* — (Exp, (P)?
=p(a) — p*(a)

where P, is the idempotent magnitude or projection operator correspond-
ing to the proposition a. A probability measure is dispersion-free if

4,(a)=0 forall ae ¥

in which case p(a)=1 or 0 for every aeZ.

Jauch proves the theorem that every generalized probability measure
on a lattice is expressible as a weighted integral of dispersion-free measures,
only if all the elements of £ are pairwise compatible, i.e. only if 2 is
Boolean. (This is a modified version of the theorem proved by Jauch and
Piron in their joint paper on hidden variables.)

Jauch remarks (Jauch, p. 118):
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The conclusion of the theorem is seen to be very strong, since it affirms compatibility
for all pairs of propositions. Thus it suffices to exhibit a single pair of noncompatible
propositions to establish that hidden variables are empirically refuted. Now we have
seen that the occurrence of non-compatible propositions is the essence of quantum
mechanics, since the lattice is Boolean and the system behaves classically if every pair
of propositions is compatible. Because of this result we may simply affirm: a quantum
system cannot admit hidden variables in the sense in which we have defined them.
With this result the quest for hidden variables of this particular kind has found its
definitive answer in the negative.

What the theorem says is this: If the statistical states of a theory are
representable as generalized probability measures on a lattice, then these
states specify the statistics of ensembles resolvable into homogeneous
ensembles defined by dispersion-free states only if the lattice is Boolean.

Now, the possibility of resolving ensembles defined by statistical states
on a Boolean lattice into homogeneous ensembles defined by dispersion-
free states is no surprise. The classical mathematical theory of probability
represents statistical states as measures on a o-field of subsets of a set,
and might equivalently be formalized on a Boolean algebra. Every
Boolean algebra is in fact isomorphic to a field of sets. (This isomorphism
will be dealt with in detail in Chapter VIII.) Moreover, the impossibility
of the resolution in the case of generalized probability measures on a
non-Boolean lattice is hardly an interesting piece of information about
non-Boolean lattices, but rather a consequence of Jauch’s definition of
a generalized probability measure.

Consider the set of generalized probability measures on the lattice of
subspaces of a 2-dimensional Hilbert space. Every measure corresponding
to a quantum mechanical pure state — i.e. associated with a vector in
Hilbert space, or a projection operator, according to the statistical
algorithm of quantum mechanics — assigns unit probability to some
proposition (viz. the proposition corresponding to the projection opera-
tor, or the 1-dimensional subspace spanned by the vector). Suppose the
measure p assigns unit probability to the proposition a:

p@=1
If o, and X", are incompatible subspaces of #,, then

the null subspace, and so the probability assigned by the measure p to the
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conjunction of the corresponding incompatible propositions is O:
pa@anb)=0.

By Jauch’s condition (4) it follows that
p()#1

for any b incompatible with a. If p’ is a dispersion-free measure assigning
unit probability to a, then

p®=0

for every b incompatible with a. Hence, trivially, the measure cannot be
expressed as a weighted integral of dispersion-free measures in Jauch’s
sense (representing the resolution of the p-ensemble into homogeneous,
dispersion-free ensembles), because every single one of these dispersion-
free measures necessarily assigns unit probability to a and (by condition
(4)) zero probability to b.

Bell has argued that the Jauch and Piron proof, while interesting as a
generalization of von Neumann’s result to a lattice structure, is open to
similar objections with respect to condition (4). All that can reasonably be
required of a hidden variable theory is that distributions of hidden vari-
ables corresponding to the statistical states of quantum mechanics yield
probabilities satisfying condition (4). For particular values of the hidden
variables (i.e. for dispersion-free measures, which do not correspond to
quantum states), the propositions a and b might both be true, with the
proposition a A b false. The proposition aA b is represented by the pro-
jection operator P,,, whose range is the subspace A ,,,=X ,AX,.
Bell’s point is that knowledge of the precise values of the hypothetical
hidden variables might enable one to predict with certainty that the
system will manifest the properties P,, P, on measurement, and fail to
manifest the property P,,,, since the measurement of P,,, does not
simply involve a combination of P, and P, measurements, but an entirely
different measurement procedure, the outcome of which cannot be
predicted from a knowledge of measurement results for P, and P,.

The evaluation of this criticism raises a number of problems which
I have touched on in the previous chapter. Condition (4) is undeniably
suspect in the context of a generalized mathematical theory of probability —
the most one could require is that the condition holds for compatible
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lattice elements. But what does measurement have to do with the purely
internal problem of whether the statistical states of a theory are repre-
sentable as probability measures on a classical probability space? For
that matter, what does the Jauch and Piron theorem have to do with this
problem?

Let the statistical states of a theory, say quantum mechanics, be rep-
resented as generalized probability measures in Jauch’s sense on a non-
Boolean lattice. By the theorem, these states cannot be resolved into
dispersion-free measures — where a dispersion-free measure is a generalized
probability measure in Jauch’s sense, satisfying the condition

p(@=1or0foreveryae Z.

This has absolutely no bearing on the question of whether these states
can be represented as probability measures on a classical probability
space. The fact that if they are so represented, the states would be re-
solved into dispersion-free measures does not conflict with the theorem.
For the theorem says only that the resolution is impossible in the set of
generalized probability measures on the non-Boolean lattice. There
might well be no dispersion-free measures in this set with respect to
which the resolution can be carried out.

Why, then, has this theorem been proposed as a completeness proof
for quantum mechanics? The confusion underlying von Neumann’s
proof is involved here. The theorem would suffice as a completeness
proof for quantum mechanics if it could be guaranteed that the lattice
of quantum propositions — the complete, orthocomplemented, weakly
modular, atomic lattice — is somehow ultimate, so that the hypothetical
Boolean lattice of the classical probability space corresponds to nothing
actual. Von Neumann appealed directly to the Copenhagen theory of
measurement. Jauch sees the lattice of quantum propositions as ‘“‘the
formalization of a set of empirical relations which are obtained by making
measurements on a physical system’ (Jauch, p. 77). A proposition is a
‘yes-no experiment’, an experiment with only two possible outcomes,
and the non-Boolean features of the quantum lattice are understood as
limitations on the possibilities of measurement at the microlevel expressed
as empirical relations between yes-no experiments. And this is why “it
suffices to exhibit a single pair of noncompatible propositions [inter-
fering yes-no experiments] to establish that hidden variables are empiri-
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cally refuted”” (Jauch, p. 118). Also why Bell’s criticism is accepted as
relevant: Condition (4) applied to dispersion-free probability measures
goes beyond a straight codification of empirical relations between yes-no
experiments.

I think this line of reasoning begs the question even more blatantly
than von Neumann’s argument. And Bell’s objection serves onmly to
entrench the confusion. The problem at issue is this: We have before us
a mechanics which includes a schema for assigning probabilities to ranges
of values of the physical magnitudes. The statistical relations are non-
standard and exhibit a number of striking peculiarities. We want to
know whether the statistical states, which generate probabilities via an
algorithm peculiar to the theory, are representable as measures on a
classical probability space. If this is not the case, we want to know just
in what sense the numbers generated by the statistical algorithm are
probabilities. Since there are no dispersion-free statistical states in the
theory, we want to understand the significance of the irreducibility of
the statistics. And, lastly, we want to understand the relationship between
this mechanics and classical mechanics, which allows a statistical theory
of the standard sort.

This problem has been completely solved by Kochen and Specker.
In the following Chapter I shall discuss one aspect of their work, their
answer to the first of the above questions.



CHAPTER V

THE IMBEDDING THEOREM OF KOCHEN
AND SPECKER

Kochen and Specker begin their analysis of the hidden variable problem
by pointing out that in one sense the statistical states of a theory can
always be represented as measures on a classical probability space. It is
always possible to represent each physical magnitude A4 by a real-valued
function f, on a space X, i.e. by a random variable on X, and associate
each statistical state W with a probability measure gy on X, so that the
measure of the set of points in X mapped onto the set S by the function
f, is equal to the probability assigned to the range S of A4 by the statistical
state W7, i.e.

Qw (fA_l () = uwa(S)
or

f £ (x) daw (x) = Expy ().

In the case of quantum mechanics gy 4(S)=Tr(WP,(S)) and
Expwy (4) = Tr (WA).

Consider, for example, a theory with a finite set of physical magnitudes,
Ay, ..., A,. Introduce a ‘hidden variable’ x; for each magnitude, so that
the value of x; determines a value for A4;. Let each hidden variable define
a dimension of the probability space X, i.e. the space X is the set of
sequences (xg,..., x,). Let the value of the function f,, at the point
(x4, ..., x,) be defined as the value assigned to A; by x;. The probability
measure corresponding to the statistical state W may be defined as the
product measure

ow =11 owa,
Ay

where
Qwa, (fA:1 S) = Hwa,(S).

ew (fA_,l (8)) = QWA,(f_l(S)) = Uy, (S)

Clearly
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because the set of points in X assigning the range S to the magnitude 4;
is the set of sequences (x;, ..., x,), where each x;# x; takes on all possible
values, and x;, is restricted to the set £, ' (S).

In the general case, let X be the set of all possible real valued functions
on 2, the set of magnitudes, i.e.

X=R’={x|x:2-> R}.
Thus, the points of X are functions assigning values to every magnitude,

instead of finite sequences. Let the random variable f,:X — R be de-
fined as

fa(x) = x(4)
and the measure gy as the product measure
Qw = H Owa
Ae2
where
Owa (S, ' () = pwa(S)-
Then:

ow (41 () = ew({x | x(DeS}) = owa (fa * (5)) = twa(S).

The possibility of this construction, however trivial from a physical
point of view, shows that the problem is not the representability of the
statistical states of quantum mechanics by measures on a classical probab-
ility space. Rather, the problem concerns the possibility of preserving
the structure of the set of physical magnitudes under such a representation.
The trivial construction associates each magnitude with an independent
random variable on a probability space, preserving none of the quantum
mechanical relations between magnitudes.

The characteristic feature of quantum mechanics is the relation of com-
patibility, which differentiates the algebraic structure of quantum mechan-
ical magnitudes from the commutative algebra of magnitudes of classical
mechanics (or, more generally, from the commutative algebra of random
variables on a classical probability space). A set of compatible magnitudes
exhibits the structure of a commutative algebra, and might be represented
as a set of random variables on a classical probability space, preserving
the relationships between magnitudes in the set. But the intransitivity
of the compatibility relation disrupts commutativity in a specific way.
Kochen and Specker formalize this structure as a partial algebra.
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A partial algebra over a field & is a set &/ with a reflexive and symmetric
binary relation «» (termed ‘compatibility’), closed under the operations
of addition and multiplication, which are defined only from < to 7,
and the operation of scalar multiplication from & x & to </. That is:

(1) o c I xA
(i) every element of &7 is compatible with itself
(iii) if a is compatible with b, then b is compatible with a, for all
a, bess
(iv) if any a, b, ce o/ are mutually compatible, then (a+b)«—c, ab< c,
and Aa—b for all Ae&F.

In addition, there is a unit element 1 which is compatible with every
element of 7, and if a, b, ¢ are mutually compatible, then the values of
the polynomials in a, b, ¢ form a commutative algebra over the field &.
(Kochen and Specker use the term ‘commeasurability’ instead of ‘com-
patibility’. For obvious reasons, I prefer the neutral-sounding term.)

A partial algebra over the field 2°, of two elements, {0, 1}, is termed a
partial Boolean algebra. The Boolean operations A, v, and ' may be

defined in terms of the ring operations + , -, in the usual way:
anb=ab
avb=a+b—ab
a=1-a.

If a, b, ¢ are mutually compatible, then the values of the polynomials
in a, b, ¢ form a Boolean algebra.

Clearly, if # is a set of mutually compatible elements in a partial
algebra &7, then # generates a commutative sub-algebra in &7; and in
the case of a partial Boolean algebra &/, # generates a Boolean sub-
algebra in 7. Just as the set of idempotent elements of a commutative
algebra forms a Boolean algebra, so the set of idempotents of a partial
algebra forms a partial Boolean algebra.

A partial Boolean algebra may be defined directly in terms of the
Boolean operations A, v, and ’. Or, a partial Boolean algebra may be
regarded as a partially ordered set with a reflexive and symmetric relation
of compatibility, such that each maximal compatible subset is a Boolean
algebra. Picture a partial Boolean algebra as ‘pasted together’ from its
maximal Boolean sub-algebras, although the intransitivity of compatibil-
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ity means that the sub-algebras are not simply pasted side by side and
joined at the top and bottom by a common unit (maximum) and zero
(minimum) element.

Formally: Take a set of Boolean algebras, {#};., such that

(i) the intersection of every pair %,;, #; is a Boolean algebra %, =
=%; n %; in the set, and

(i) if ay,..., a, are elementsin | J;.; #;, and if for every pair of these
elements there exists a Boolean algebra in the set containing both ele-
ments of the pair, then there exists a kel such that a,,..., a,e%,.
B=\;c1 %, is a partial Boolean algebra if the algebraic operations are
restricted to elements which lie in a common Boolean algebra #%,, i.e.
the compatibility relation is defined by membership in a common %,;.

The problem of representing the statistical states of the quantum
algorithm as probability measures on a classical probability space, in
such a way that the structure of the set of physical magnitudes is preserved,
may be reformulated as the problem of imbedding the partial algebra of
magnitudes, 2, into a commutative algebra. An imbedding of a partial
algebra & into a partial algebra &/’ is a homomorphism A:%/ — &'
which is one-one into &7’. A homomorphism is a map, h:/ — &', which
preserves the algebraic operations, i.e. for all compatible a, beo/:

h(a) < h(b)
h(Aa + ub) = Ah(a) + ph(b)
h(ab) = h(a) h (D)
(D) =1.

Now, the association

A-f,

represents the magnitudes as random variables f, : X — R on a probability
space X, which form a commutative algebra €. If the representation of
the quantum statistics on a classical probability space is to preserve the
structure of the set of physical magnitudes, 2, the association 4 — f,
must be an imbedding of 2 into €.

The imbeddability of the partial algebra of magnitudes into a com-
mutative algebra requires the imbeddability of the partial Boolean algebra
of idempotent magnitudes into the set of idempotents of the commutative
algebra, i.e. into a Boolean algebra. Kochen and Specker prove the
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preliminary theorem that a necessary and sufficient condition for the
imbeddability of a partial Boolean algebra, 27, into a Boolean algebra
is that for every pair of distinct elements a, beo/ there exists a 2-valued
homomorphism, 4#: & - Z,, separating these elements, i.e. such that

h(a) # h(b).

Notice that each point x of the probability space X assigns a definite
value f,(x) to every magnitude A. This assignment is actually a real-
valued homomorphism on the partial algebra of magnitudes, and a
2-valued homomorphism on the partial Boolean algebra of idemptotents,
the quantum propositions.

Kochen and Specker prove that the partial Boolean algebra of idem-
potent magnitudes on a 3-dimensional Hilbert space cannot be imbedded
into a Boolean algebra by showing that there are no 2-valued homo-
morphisms on the partial Boolean algebra of subspaces of #;.

This is not difficult to see. The following proof is an adaptation of a
similar proof by Bell. (Bell’s proof is a demonstration that in a Hilbert
space of 3 or more dimensions von Neumann’s additivity condition
cannot be satisfied by dispersion-free statistical states, not even for the
expectation values of compatible magnitudes.)

If Xy, A ,, A 5 are mutually orthogonal 1-dimensional subspaces of
H 5, and h is a 2-valued homomorphism, then:

RV () VR )=h(H v H v H3)=h(H3)=1
RA)ARAH ) =h(H AL )=h(O)=0 (G, j=1,2 3;i#j)

Hence, h maps one and only one of every orthogonal triple of lines onto 1,
the remaining two lines being mapped onto 0. If the lines are replaced by
lines of unit length, then 4 defines a map from the surface of the unit
sphere onto {0, 1}, such that for any orthogonal triple of points on S,
exactly one point is mapped onto 1. It follows that if two points on S,
represented by two unit vectors, « and B, are orthogonal, and A(x)=
=h(f)=0, then h(ax+bp)=0, for all a, b, i.e. any vector in the plane
spanned by a, f is assigned the value 0.

Now consider any pair of unit vectors, « and B, such that v(«)=1 and
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v(B)=0. The vector  may be expressed as a linear combination
B =oa+po’

where o’ is a unit vector orthogonal to a. Let «” be the remaining member
of the orthogonal triple of unit vectors {a, a’, &"}.
If it were possible to demonstrate that

vle+a)=v(@@—a)=0

then it would follow that v(ax)=0, since a+a" and «—«” are orthogonal
and sum to 2«. But v(20) =v(er), which was assumed equal to 1. Now, it
would follow that v(a +a")=0if « +a" =y +J, where y is a linear combina-
tion of f and ", and ¢ is a linear combination of o’ and «”, and y and ¢
are orthogonal. For this to be possible, it is sufficient that

y=B+q 'pa" =+ pa’ +q 'pa”
and

0 =— pa’ + qpa”
with

pi@+q™H=1, ie. p<i.

Similarly, if p<3} there are real values of g such that p(g+g~1)=—1,
i.e. such that «—a"=7y+4. Thus a contradiction follows unless p>3,
i.e. unless there is a minimum distance between vectors assigned different
values.

Now, since each vector is assigned either a 1 or a 0, there must be pairs
of arbitrarily close vectors that are assigned different values, i.e. there
cannot be a minimum distance between vectors with different values.
For suppose y and ¢ are two points on S that are assigned different values.
Then, no matter how close |y and ¢ are on S, there exists a point y between
¥ and ¢. Since y is assigned either a 1 or a 0, the value assigned to y must
either be the same as the value assigned to y or the same as the value
assigned to ¢. (This is a topological property of the surface S.) Thus, a
contradiction cannot be avoided on the assumption that the map exists.

The proof of Kochen and Specker is rather more complicated. They
consider it important to show that there is no 2-valued homomorphism
on a finite partial Boolean sub-algebra of the partial Boolean algebra of
subspaces of ;. Thus, their proof establishes the non-existence of a
map from a subset, T, on the surface of the unit sphere onto {0, 1}, such
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that for any orthogonal triple of points in 7, exactly one is mapped onto 1.
Actually, they require 117 points on the sphere with particular ortho-
gonality relations. They show that there is no way of assigning 1’s and
0’s to this set of points in such a way that exactly one member of every
orthogonal triple is mapped onto 1. The above proof does not construct
a finite set of points on the surface of the sphere which can be mapped
onto {0, 1} only by violating the orthogonality conditions. What is
shown instead is that the orthogonality conditions can only be satisfied
if there is a minimum distance between points mapped onto different
values. And this conflicts with the topology of the surface of the sphere.

The proof applies to Hilbert spaces of three or more dimensions. In
the case of #,, the unit vectors define the circumference of the unit
circle, and the mapping is possible. For example, if the points are labelled
by an angular parameter 0 between 0 and 27, a 2-valued homomorphism
on the partial Boolean algebra of subspaces of 5, is defined by a map
which assigns 1 to all points in the half-open quadrants [0, ©/2), [=, 37/2),
and 0 to all points in the half-open quadrants [r/2, n), [3n/2, 2x). This
difference between a quantum mechanical system associated with a 2-
dimensional Hilbert space, and quantum mechanical systems associated
with higher dimensional Hilbert spaces is crucially important for the
interpretation of quantum mechanics. For the imbeddability of the partial
Boolean algebra of subspaces of &, into a Boolean algebra means that
it is possible to represent the statistical relations generated by the quantum
algorithm on 5#°, by measures on a classical probability space, in such
a way that the algebraic structure of the set of magnitudes is preserved.
In other words, a hidden variable reconstruction of the quantum statistics
is possible in this case, and Kochen and Specker formulate such a theory.

Notice that the uncertainty principle holds for 5#,, i.e. the uncertainty
relations (and hence the disturbance theory of measurement) cannot
characterize the irreducibility of the quantum statistics, because they
hold even when the statistics is formally reducible.

Putting this another way: There are no dispersion-free statistical states
on the partial Boolean algebra of subspaces of 5#,, but homogeneous
statistical states do exist. Thus, von Neumann’s criterion of demarcation
between ‘classical’ statistical theories (Case 1) and irreducibly statistical
theories (Case II) is inadequate.



CHAPTER VI

THE BELL-WIGNER LOCALITY ARGUMENT

J. S. Bell has objected to the Kochen and Specker imbedding theorem as
a proof of the completeness of quantum mechanics on similar grounds
to his objections to von Neumann’s proof and the proof of Jauch and
Piron. Again, the argument is that the proof implicitly assumes that equal
values are assigned to quantum mechanically equivalent magnitudes by
the hypothetical dispersion-free probability measures, whereas equivalence
in the algebra of quantum mechanical magnitudes should be understood
as statistical equivalence only for those probability measures which cor-
respond to the statistical states of quantum mechanics.

Bell proposes a ‘locality condition’ as a physically motivated restriction
on hidden variable theories which attempt to reconstruct the quantum
statistics on a classical probability space. In the case of separated but
coupled systems as in the Einstein-Podolski-Rosen experiment, he derives
an inequality for certain statistical relations on the classical probability
space which the quantum mechanical probabilities fail to satisfy. On this
basis local hidden variable theories are rejected.

Before discussing Bell’s objection to the completeness proofs of von
Neumann, Jauch and Piron, and Kochen and Specker in Chapter VII,
I want to show that Bell’s result is quite trivial and irrelevant to the com-
pleteness problem. I shall develop Wigner’s elegant reformulation of
Bell’s argument.

Wigner begins by considering something like the hidden variable con-
struction outlined at the beginning of Chapter V for a system with a finite
set of physical magnitudes. The system in question is the quantum me-
chanical system consisting of two spin-} particles in the singlet spin state,
and the magnitudes are the nine magnitudes corresponding to spin in
any of three directions a, b, ¢ for the two particles.

The quantum mechanical description of the composite system is as
follows: Each subsystem is associated with a 2-dimensional Hilbert
space. The magnitude ‘spin in the direction a’ is represented by a self-
adjoint operator 4 on the Hilbert space, with two distinct eigenvalues,
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a, and a_, and corresponding eigenvectors, o, and «_. The eigenvalues
a,, a_ correspond to ‘spin up in the direction a’, and ‘spin down in the
direction a’, respectively, in the usual terminology. Similarly, the magni-
tudes ‘spin in the direction b’, and ‘spin in the direction ¢’ are represented
by the operators B, C with eigenvalues b, b_; ¢, c_, and corresponding
eigenvectors S, f_; Y+, V--

I shall use superscripts to distinguish the two subsystems and their
descriptions. The composite system, S* +S?2, is associated with the tensor
product Hilbert space, #*®#2. Recall that the tensor product of #*
and 2 is essentially the Cartesian product, #* x #2 (which is not a
vector space), with a vector addition operation defined on the set of
ordered pairs of vectors, such that

(; kit ; k?-wi-) ) kik? (i, ¥

(where the symbol (', y?) here denotes an element of #'® #°2, and not
the scalar product).

Vectors in #'®#2 are represented by linear combinations of the
form y!'®y?, where Y1 ®y? represents the equivalence class (!, y?)
under the above equivalence relation. Operators in #'® 22 represented
as tensor products, O'®0?, are defined in the obvious way:

01 ® Oz.ll,l ® wz — Olwl ® OZIPZ.
The nine magnitudes are those represented by the operators
A1®A2, A1®B2, A1®C2
B'® 4>, B'®B*, B'®C?
Cl®4*, C'®B*, C'®C>.
These magnitudes have four eigenvalues, corresponding to the spin

values + +, + —, — +, — —. In the case of the magnitude 4'® B2, the
eigenvectors are

 ®pL, «i®FL, oL@, a-®p.
The singlet spin state is the statistical state represented by the vector
P = (1//2) o} @ o — (1/4/2) ol @ o2
where ¥ has been expressed as a linear combination of the basis vectors

1 2 1 2 1 2 1 2
0y ®ai, oz ®a’, o-@oai, o-@aZ.
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In terms of the f-system, or y-system:

¥ = (1/y/2) B ® B~ — (1/42) B ® £
=(1//2) 7 @72 — (1//2) 2 @75 .

The statistical correlations defined by ¥ are such that

pl@=ad &a*=ad*)=1%
plad=a &a*=d>)=1
pl@=a &a*>=ad%)=0
pl@=al &a*>=ad*)=0

i.e. S and S? never have a' and a® both positive (‘spin in direction a
up’), or both negative (‘spin in direction a down’): if a* is positive, a? is
negative, and conversely. The statistical correlations for » and c are
similar. Thus, S! and S?2 are ‘mirror-images’ of each other for the magni-
tudes 4, B, C.

Now, the classical probability space X is the space of sequences (x;, ...,
Xo), where each hidden variable determines a value of the corresponding
magnitude (assuming some ordering of the nine magnitudes). Thus, we
have a 9-dimensional Cartesian space, which can be partitioned into
4° subsets corresponding to the 4° distinct sequences of values for the
9 magnitudes.

Bell’s locality condition is this: In the case of measurements on two
separated systems S* and S? the result of a measurement on S* cannot be
affected by the kind of measurement performed on S? (e.g. whether it is
a measurement of spin in the direction a, i.e. the magnitude A2, or whether
it is a measurement of spin in the direction b, i.e. the magnitude B?). That
is to say, the value of an S!-magnitude 4! should depend only on the
values of the hidden variables (and perhaps the experimental arrangement,
according to Bohr) at S and not at all on the experimental arrangement
at S, if S and S? are sufficiently separated in space.

The locality condition reduces the 9 distinct magnitudes to 6: measure-
ment of A%, for example, is no longer regarded as a partial measurement
of either A'®A4% or A'®B? or A'® C?. The 6 distinct magnitudes are

A, B, Ct
A2 BZ C2
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each with 2 possible values:

at,at: bL,bl; et

at,a%; b2, b%2; 3,2
Only 6 hidden variables are introduced, i.e. a 6-dimensional probability
space which can be partitioned into 2° subsets corresponding to the 26
distinct sequences of values for the 6 magnitudes.

A brief argument now shows that no probability measure on this space
can reproduce the quantum mechanical probabilities generated by the
singlet spin state. Let (i, j, k; [, m, n) denote the measure of the subset in
the probability space corresponding to the sequence of values (a;, b3, ck;
a?, b2, ¢®) for the magnitudes, where the subscripts range over + and —.
In the case of the singlet spin state, all but 8 of the 2° subsets have measure
zero, for (i, j, k; I, m,n)=0if i=1 or j=m or k=n.

It follows that

p@'=ai &c*=c)= 3 (+,),k;1,m,+)

Jklm
=(+,+,—; = —H)+(+,——; —, +, +)
=w++ 2z, say

p(b'=bi & =cl)=(+,+,—; =, =, H)+ (=, +, = +,—, +)
=w-+Xx, say

pl@' =ai &b’ =b)=(+,—, +; -+, =)+ (+,— —; =+, +)
=y+z, say.

Since w, X, y, z are all positive and greater than or equal to zero:
plat=al &P =32)<p(bt =bL &* =) + p(a' = a} &b* =b2).
The probabilities generated by ¥ are:

p(a' = a} &c* = i) = %sin’40,,
p(b* = b} &c; = ¢}) = }sin” 46,
p(a' = al &b* =b%) =4 sin’ 10,
where 0,, is the angle between a and ¢, etc. But the inequality

sin?10,, < sin®10,, + sin?10,,

cannot be satisfied for arbitrary angles. For example, if b bisects the angle
between a and ¢, the inequality does not hold, and it is easy to demonstrate
that the inequality fails to hold whenever a, b, and ¢ are coplanar.
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It would seem that the possibility of representing the statistical states
of quantum mechanics by measures on a classical probability space is
excluded on the basis of a simple calculation, at least in the case of rep-
resentations satisfying the locality condition. This makes the imbedding
theorem of Kochen and Specker uninteresting.

Now, a similar inequality may be derived for a single spin-} particle,
associated with a 2-dimensional Hilbert space. Consider the three magni-
tudes 4, B, C: spin in the direction a, spin in the direction b, spin in the
direction ¢. The probability space is 3-dimensional, partitioned into
eight subsets corresponding to the 23 =8 distinct sequences of values for
the 3 magnitudes. We have:

p(a=a_&c=c+)=(—, +a +)+(_’_, +)
p(b=b_&C=C+)=(+,—, +)+('—’_: +)
p(a=a—&b=b+)=(_’ +’ +)+(_: +, _)
It follows that
pla=a_&c=c)<pla@a=a_&b=>b,)+plb=b—&c=c,).

The pairs of eigenvectors

o4y o—; ﬂ+s ﬁ—s 7+a '}’—

in Hilbert space are related in such a way that

0y = (13/2) €03 30,4 + (1/+/2) sin 30,8
4 = — (1/y/2) sin 0B + (1/y/2) cos30,8-
Xy = (1/\/2) cos 30,7+ + (1/\/2) sin 36,y -
0 = — (1//2) 50307+ + (1/4/2) c0530,7—

Similar expressions hold for the representation of f,., f_ in terms of
®., ®_ Or y,, y_, and for the representation of y,, y_ in terms of o,

@_ Oor ﬁ+’ ﬁ—‘

This means that

Do_ (C = C+) = }sin® %Bac
Da_ (b = b+) = % sin® %Gab
ps_(c=cy)=1% sin” 10, .
If we take the probability p,_(c=c,) as the conditional probability of
the value ¢, for the magnitude C, given that the value of 4 is a_, then



THE BELL-WIGNER LOCALITY ARGUMENT 77

this is computed in the probability space as

p(a=a_&c=c,)

p(a-)
Similarly
P (b=b,) = D= &b=b.)
p(a-)
c=c,) = p(b=b_&c=c,)
Pof= 640 = p(b)

From the inequality
pla=a_&c=c,)<pla=a_&b=>b,)+plb=b_&c=c,)
it follows that

pla=a_ &c—c+)<p(a a_&b= b+)+p(b b_&c=c,)
p(a-) h p(a_) p(b.)

p(-)<p(a-).

if
Hence

Po_(c=¢)<p, (b=b,)+ps_(c=cy)
and again we have the inequality

sin?10,. < sin?10,, + sin210,,

which cannot be satisfied in general. (Notice also that the condition
p(b_)< p(a_.) can always be satisfied by choosing an appropriate initial
measure, and is independent of Bell's inequality.)

Evidently, the probabilities

po_(c=c¢y),  po.(b=0by), pg(c=cy)

cannot be computed by the classical rule for conditional probabilities
on the probability space. In order to clarify what is involved here, I shall
reformulate the derivation. Let @,_, ¢,., @,_, @._ be the subsets of the
probability space associated with the values

a=a_, b=b,, b=b_, c=cC_

i.e. the sets of atomic events or ultrafilters for which the magnitudes 4
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B, C have these values. Let u be any measure on the space. Then

pla=a_&c=c)=p@,_. nd.)
pb=b_&c=c,)=p(®,_nP.)
pl@a=a_&b=0b,)=pu(P,. 0 d;,).

Now, for any subsets @,, ¥,, P, on the probability space (where @,
is the set-theoretical complement of @,) and any measure yu:

p(P9) = p(P; 0 ;) + pu (P, 0 P5).

Hence
p(@, 0 ®)=p(@,n 9, 0 P) +pu(@,0 9,0 P,)
p(@;n®)=p(@;n P, nP,)+u@ndno,
p(@, N D) =p(@, 00,0 P) +pu(P; 0 &, N D)
and so

Taking s as a_, t as ¢, u as b, we have
M(QG— N ¢c+)< M(Qa_ N ¢b+) + ﬂ(¢c+ N QI’H-)‘

Since ®,_= @, , i.e. the subset for which b=5_ is the complement of the
subset for which b=b5_, the inequality becomes

p( P, 0P )< u(P,. 0 Dy,) +u(Pp_ 0 D,,)
and so

pa=a_&c=c,)<plb=b_&c=c,)+pla=a_&b=50,).

Now this is an inequality between joint probabilities for the values of
incompatible magnitudes defined on the classical probability space. (Recall
that the representation of the statistical states of quantum mechanics by
measures on a classical probability space cannot exclude the existence
of measures which do not correspond to quantum mechanical statistical
states, e.g. dispersion-free measures. The completeness problem concerns
the possibility of representing the statistical states as a subset of the full
set of measures on a classical probability space.)

It is clear that we cannot compute p,_ (¢ = c,) as

p(P,_. nd.)
p(P,_)
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where u is the initial probability measure corresponding to the statistical
state |, say, because

Da_ (C = C+) =Pys (a = a—) = % Sinz%gac
and

p(@,.n®.,)  p(@,_no.,)
p(P,.) p(P.,)

unless u (¥,_) = u (P.,). The crucial assumption in the derivation of
Bell’s inequality from the inequality for the joint probabilities is that

Da_ (C=C+), Pa_ (b=b+)3 pﬁ_(c=c+)

are to be computed as conditional probabilities

ﬂ(dia_ N ¢c+) ﬂ(gpa_ N ¢b+) #(¢b_ N ¢c+)
W) p(@) 1(Py)
on the classical probability space in a classical representation of the

quantum statistics.
Now, a conditional probability

p(s=s’|t=t’)

is determined by a new measure y,., defined by

p(P 0 P,)
p(P,)
for every measurable set.

The measure y,. is the initial measure u, ‘renormalized’ to the set @,,,
i.e. u, satisfies the conditions:

O (@) =1

(ii) if ¢,=®, and P, P,
He(2,) _ (P

pe () p(P,)

Condition (ii) ensures that u,. preserves the relative measures of sub-
sets in @,. defined by u. Notice that

te (D) =

then
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1P, 0 P)  p(2y)
p(9,) p(Py)
F(Qv N cpt') _ ﬂ(Qv)

@)= @y a@)

Hy ((pu) =

and hence

Ky ((pu) — ﬂ(¢u)
pe(9,)  w(2,)

It follows immediately that if u is a measure corresponding to some
quantum mechanical statistical state, then u,. (where =t is the value of
a quantum mechanical magnitude 7°) will not in general be a measure
corresponding to a quantum mechanical state. Thus,

Pa_(c=c4), po_(b=0b)), pg_(c=c,)

cannot be computed as conditional probabilities on the classical prob-
ability space, and Bell’s inequality cannot be derived.

To see that this is so, it suffices to consider pure statistical states. Sup-
pose u is the initial measure corresponding to the pure statistical state
represented by the Hilbert space vector . Let t’ be the eigenvector corre-
sponding to the eigenvalue ¢’ of T, and suppose that 7’ does not coincide
with {, and is not orthogonal to  (i.e. 7’ and y do not form part of any
orthogonal set of basis vectors in the Hilbert space, and so do not corre-
spond to the eigenvectors of any common magnitude). Then u,. preserves
the relative measures of subsets in @,. defined by u, but u.. — the measure
corresponding to the statistical state ' — is uniform over the set @,.. Both
measures satisfy condition (i), i.e.

e (D) = p (B,) = 1

but they do not define the same relative measures on subsets of @,.. (A
hidden variable theory with a non-uniform measure u.. over the set @,.
is conceivable. The above argument still applies, for it requires only that
i, depends on , while u.. depends on 7’. Hence y.. could not in general
preserve the relative measures of subsets in @, as defined by y.)

It might be supposed that the situation is different for the composite
2-particle system. A precisely analogous argument applies:
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p(a' =ai & =c3)=p(®,,. 0 9,,2)
P = bL & c? = c2) = p(Pyoi 1 D)
p(a1 = ai &b2 = bﬁ') = ﬂ(¢a+1 N @b_'_Z)-

If &, is a set such that
p(@, N @) =p(®, N &) =0

then
p(®, 0 ®) = pu(d n P,)
for
p(@, 0 ) =p(@, 00,0 P) +pu(d, 09,0 P)
p(@:nb)=p@nNnd,nd)+pu(@ nd,nd)
and

pu@, n o, nd)=p(d, nd,nd,)=0.
Hence the inequality
p(@s 0 ®) <p(®,09,) +p(@, N 9,)
follows from the inequalit.y
p(@; N P) < p(@,0 @) +u (P, 0 D).
Taking s as ¢%, ¢ as a%, and u as b', we have
B (@ays 0 B, 2) < BBy O Boa) + 1(Pays 0 B).
Now, the singlet spin state statistical correlations require that

B(Dy, 1 0 Dy, 2) = p(Py_1 0 Dy_2) =0
i.e.
ﬂ(¢b+1 (@) ¢b+2) = [l(Q;H_x N qsl'”z) =0.

Hence, taking r as b2, the above inequality becomes

lu(¢0+1 N ¢c+2) < ﬂ(¢b+1 N ¢0+2) + ﬂ(¢a+1 N ¢b+2)
i.e.

pa'=a} &c*=c2)<p(a' =al & b2 = b2) + p(b' = b &> =c2),

At first sight it appears that my objection does not apply to this com-
putation, because the step from the above inequality to Bell’s inequality

sin®30,, < sin®16,, + sin?16,,
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does not depend on any assumptions concerning conditional probabil-
ities. This is an inequality between joint probabilities for the values of
compatible magnitudes, which is well-defined both on the classical prob-
ability space and in Hilbert space. But the ‘mirror-image’ correlations of
the singlet spin state require that

p@'=di &c*=c}) = p(a®*=a2)p, 2(* =c%)
(b =B & *=h) = p(b? = b2) py_a(c = ¢2)
p(a' =a% &b* =b3) = p(a® =a2) p,_2(b* = b%)

with

p(@=al)=p*=by)=p(c*=ci)=1%
and

p(a' =ay)=p(' =b1)=p(c' =ci)=1.

In words: The probability specified by the singlet spin state that 4!
has the value a* and C? has the value ¢ is equal to the product of the
probability that 42 has the value a* as defined by the singlet spin state
(i.e. 3) and the probability, specified by the statistical state o, that C2
has the value ¢%. This means that the probabilities

Pea(c®=¢c%), ppa(c®=c%), p,_2(B*=03)
are to be computed as conditional probabilities:

#(¢a+1 N ¢c+2) ﬂ(¢b+l N ¢c+2) ﬂ(¢a+1 N ¢b+2)
(22 p(®y2) #(9,_2)

where the measure u corresponds to the singlet spin state.
Since

#(¢a+2 n ¢a+1) = ﬂ(dsa_; n Qa_2) = 0
i.e.
ﬂ(¢a+2 (@) ¢a+1) = ﬂ((p:”_z (@) @p:“n) =0

it follows that
I‘l'(Qa-{.l N ¢c+2) = u(¢0—2 N ¢c+2)'
To see this, recall that for any measure y, if

p(@, 0 P,)=pu(@,nP;)=0
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then ,
I‘(Qt N dsu) = #((pt N ¢r)
Take r as a’, u as @, and ¢ as ¢, and the above relation follows.
Similarly:

ﬂ(d§b+1 N ¢c+2) = au(dib_2 N ¢c+2)
(D, N Dy 2) =p(P, 2N Dy,2).

It follows that the Bell-Wigner computation implicitly assumes that
the probabilities:

P.2(c*=ck), ppa(®=cl), pe2(b®=0%)
are to be computed as the conditional probabilities

.u(gpa_2 N (pc+z) I‘l(Qb_2 N ¢c+2) I‘(dsa_2 N ¢b+2)
p(Paz) p(P2) 1(Pa_2)

This assumption is exactly analogous to the objectionable assumption
in the case of the single spin-} particle.

To sum up: I have shown that the Bell-Wigner argument excludes a
classical representation of the quantum statistics on the basis of an ob-
viously untenable assumption concerning the correspondence between
quantum statistical states and their representative measures on the prob-
ability space. In particular, the argument has nothing whatsoever to do
with locality.

On the basis of Bell’s argument, Clauser, Horne, Shimony, and Holt
designed an experiment to test the validity of Bell’s inequality for the
spatially separated components of a certain composite system. The
experiment was proposed as a crucial test between quantum mechanics
and the class of ‘local’ hidden variable theories. It was actually carried
out (by Freedman and Clauser), and the statistical correlations of quan-
tum mechanics were confirmed. Although Holt later obtained results in
conflict with the quantum statistics, it is now generally assumed that only
‘non-local’ hidden variable theories are viable alternatives to quantum
mechanics. Clearly, these experiments prove nothing of any theoretical
interest at all. If Holt’s results are confirmed, and Bell’sinequality is found
to hold for arbitrary angles, the statistics of a single spin-} particle
would be unexplained, and no ‘local’ hidden variable theory could possibly
account for the violation of the inequality in this case.




CHAPTER VII
RESOLUTION OF THE COMPLETENESS PROBLEM

The theorem proved by Kochen and Specker is the non-imbeddability of
the partial Boolean algebra of idempotent magnitudes — propositions —
of quantum mechanics into a Boolean algebra, in the case of systems
associated with Hilbert spaces of three or more dimensions. This means
the impossibility of representing the statistical states of the quantum
algorithm as probability measures on a classical probability space, in
such a way that the structure of the set of (idempotent) magnitudes is
preserved. Now, the structure involved here is the compatibility structure.
One might raise the following objection to the Kochen and Specker
result as a completeness proof for the quantum statistics:

Suppose compatibility is defined as in Chapter I, i.e. two magnitudes,
A, and A,, are compatible just in case there exists a magnitude, B, and
two functions, g, :R— R and g,:R— R such that

Ay =g,(B)
A, =g,(B).

If, in general, g (B) is understood as the magnitude corresponding to the
operator

4(B) = f g (r) dPy(r)

this amounts to a definition of g(B) as that magnitude M satisfying the
relation

pw (meS) =pw(beg‘1'(S)

for every statistical state W of quantum mechanics, and every Borel set
S, on the assumption that two magnitudes, 4, and A4, are equivalent if
and only if:

pw(a €8) = pw(a,€S)

for every W, S. (Here, g is again a real-valued function on the real line.
The symbol g, is a variable denoting a general value of the magnitude 4,
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not a name for the i'th eigenvalue of a magnitude 4 as in Chapter I,
Section IV. Thus, q;€S is to be read: The value of the magnitude A4;
lies in the range S.)

Thus, two magnitudes, 4, and A,, are compatible just in case there
exists a magnitude, B, and two functions, g, : R— R, g,:R— R such that:

pw(a,€8) = py(begs * (S))
pw(a,€8) = py (beg; ' (S))

for every W, S.

Now, with this definition of equivalence, functional relationship, and
compatibility, surely the theorem of Kochen and Specker is unsatis-
factory as a completeness proof for the quantum theory, because part of
the problem at issue is just whether the set of statistical states, {W},
generates all possible probability measures, and in what sense, since it is
easily conceivable that two different magnitudes, A; and A4,, represented
by different Hilbert space operators, satisfy the condition

pw(a€S) = pw(a,€8)

for every quantum statistical state W and every Borel set S? The magni-
tudes would then be statistically equivalent with respect to the set { W}
of statistical states of quantum mechanics, but inequivalent in the algebra
of magnitudes represented by self-adjoint Hilbert space operators. And
the magnitude M defined by the condition

Pw (MeS) =PW(b€g_1 (S)

for every quantum statistical state W, and every Borel set S, would not
necessarily be equivalent to the magnitude g (4) defined by this condition
with respect to a wider class of statistical states which are complete in
some sense for the algebra of magnitudes.

To put this objection another way: The Kochen and Specker proof
shows only that the mere statistical equivalence of two magnitudes, A4,
and A,, for the statistical ensembles of quantum mechanics does not
guarantee equivalence with respect to the values of these magnitudes for
individual systems in an ensemble. The reconstruction of the quantum
statistics on a classical probability space does not require the statistical
equivalence of the random variables representing 4, and A, for all prob-
ability distributions. In particular, f4, and f,, need not be statistically
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equivalent for dispersion-free distributions, i.e. f;, and f,, may take on
different values at the same point in probability space. All we require is
the statistical equivalence of f,, and f,, for those probability measures
corresponding to the statistical states of the quantum theory. Only by
assuming that equivalence in the partial algebra of magnitudes defined
relative to the set of quantum states is not merely statistical can we claim
the Kochen and Specker theorem as a proof of the impossibility of re-
presenting the statistical states of the theory as measures on a classical
probability space. We might equally well assume that such a representa-
tion is always possible (or, at least, possible in the case of quantum me-
chanics), in which case it follows that this equivalence in the partial
algebra of magnitudes is merely statistical, and cannot be extended to
the representative random variables.

That is to say, there are points, x, in the probability space X such that:

Ja, (%) # f4,(%)

and measures, g, such that

e(fa, () #e(f5,' ()

for some Borel sets S, but

QW(fA_ll (5)) = ow (fA_zl (s))

for all measures gy corresponding to statistical states of the quantum
theory.

Now, of course, a set of statistical states assigning probabilities to
ranges of values of a set of magnitudes can always be represented as
probability measures on a classical probability space, if there are no
structural constraints on the representation of the magnitudes as random
variables. I discussed the possibility of such a construction at the beginning
of Chapter V. It is clear, however, that the formal possibility of this
representation is completely uninteresting theoretically. The force of the
argument derives from the presumption that the structural constraints
imposed here reflect equivalence relationships valid only for a restricted
set of statistical states. But this is a misunderstanding. The problem con-
cerns the character of the statistics definable on a given class of event
structures, specified by the algebraic structures of the idempotent mag-
nitudes of quantum mechanical systems. And this is given by the partial
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Boolean algebras of subspaces or projection operators of the Hilbert
spaces of the theory.

Kochen and Specker contribute to this misunderstanding by pointing
out in the introductory sections of their article that equivalence, functional
relationship, and compatibility in the algebra of magnitudes can be de-
fined with respect to the set of quantum states. If linear combinations and
products are defined for compatible magnitudes by

c14; + 45 = (c191 + ¢295) (B)
A1 A, = (9:19,) (B)

where A, =g, (B), A,=g,(B), the set of quantum magnitudes acquires the
structure of a partial algebra. The condition

Sy (4) = g(fa)

on the association 4 — f, representing the magnitudes as random vari-
ables on a probability space X, preserves the structure of the partial
algebra:

fc1 Ay +c2dr ™ f(c1 g1 +c292)B
= (191 + €292) /5
= ¢19:1 (fp) + 292 (f3)
= clfg1 (B) + chaz (B)
=c1 fa, + €2 S,
and

fAlAz = f(mz) (B)

= (9192) (/)
= g1 (fp) 92(f3)

= fa1 (B)faz (B)

= fAlfAz .

What this condition says is that the value assigned to the magnitude
g(A) is always equal to the value derived by applying the function g to
the value assigned to the magnitude 4. Thus, the imbedding of a partial
algebra of quantum magnitudes into a commutative algebra of random
variables on a probability space might be understood as a map, from the
set of magnitudes into a set of random variables, which preserves the
functional relationships between magnitudes. And the Kochen and
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Specker proof then amounts to a demonstration that no such map exists.
Specifically: If the compatible magnitudes A4,, 4,,... are all expressible
as functions of a magnitude B, i.e.

Ay =g.(B), A, =g,(B),....

then if B is represented by the random variable fg, 4, is represented by
the random variable f,, 5y=9g:(fp), 4, is represented by the random
variable f,, (=9, (fp), etc. — this cannot be achieved.

Now, this way of presenting the significance of the Kochen and Specker
proof is misleading, because the algebraic structure generated by defining
equivalence, functional relationship, and compatibility with respect to the
set of statistical states of quantum mechanics is isomorphic to the partial
algebra of self-adjoint Hilbert space operators just because this set of
states is complete for the partial algebra of operators. And the completeness
of the quantum statistics is what is at issue here. The contribution of
Kochen and Specker lies in showing that the problem of hidden variables
is not that of fitting a theory — i.e. a class of event structures — to a statis-
tics. This can always be done in an infinite number of ways; in particular,
a Boolean representation is always possible. Rather, the problem con-
cerns the kind of statistics definable on a given class of event structures.
The Kochen and Specker proof is a demonstration that the statistics
definable on the event structures of quantum mechanics is not repre-
sentable by probability measures on a classical probability space. The
completeness of the statistics generated by the algorithm of quantum
mechanics for this class of structures is shown by Gleason’s theorem.

Gleason’s theorem was proposed as a solution to a problem posed by
Mackey: to specify all possible measures on the subspaces of a Hilbert
space, where a measure is a map,. u, from the subspaces onto the non-
negative real numbers satisfying the additivity condition

u<\i/=%’i) ~ S

for a countable set of mutually orthogonal subspaces. (Here V; 1; is
the span of the subspaces {J¢";}, the subspace which is the least upper
bound of the set.)

The theorem states that in a Hilbert space of three or more dimensions,
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every measure is representable as
p () = Tr (WP)

where W is a statistical operator, and P is the projection operator whose
range is ¢ .

If we define a generalized probability measure as a normed, countably
additive, real-valued function, u, on a partial Boolean algebra, i.e. a
measure function satisfying the usual conditions for a probability measure
on each maximal compatible subset of the partial Boolean algebra, then
the probability assignments generated by the algorithm of quantum
mechanics are generalized probabilities in this sense, and Gleason’s theo-
rem shows that the quantum algorithm generates all possible generalized
probability measures on the partial Boolean algebra of propositions of
a quantum mechanical system.

From a purely formal point of view the Kochen and Specker result
follows as a corollary to Gleason’s theorem. A dispersion-free probability
measure in the generalized sense is a 2-valued homomorphism, and so
the impossibility of imbedding a partial Boolean algebra of quantum
propositions into a Boolean algebra follows from the non-existence of
dispersion-free states. However, the significance of Gleason’s theorem
for the completeness problem of quantum mechanics is only fully brought
out by Kochen and Specker’s notion of a partial Boolean algebra, which
completely clarifies the sense in which the Boolean event structures of
classical mechanics are generalized by quantum mechanics.

The core of Bell’s objection to the completeness proofs of von Neumann,
Jauch and Piron, and Kochen and Specker (in the form of a corollary
to Gleason’s theorem) is essentially the argument I have discussed above.
(Bell (a), p. 447).

It will be urged that these analyses leave the real question untouched. In fact it will be
seen that these demonstrations require from the hypothetical dispersion free states,
not only that appropriate ensembles thereof should have all measurable properties of
quantum mechanical states, but certain other properties as well. These additional
demands appear reasonable when results of measurement are loosely identified with
properties of isolated systems. They are seen to be quite unreasonable when one
remembers with Bohr ‘‘the impossibility of any sharp distinction between the be-
haviour of atomic objects and the interaction with the measuring instruments which
serve to define the conditions under which the phenomena appear.”

The reference to Bohr here serves to legitimize a dispositional inter-



90 THE INTERPRETATION OF QUANTUM MECHANICS

pretation of the quantum mechanical magnitudes. The ‘result of measure-
ment’, i.e. the assignment of a value to an idempotent magnitude, is only
‘loosely identified” with a property of the system, for it represents the
disposition of the system to function in a certain way under certain
conditions defined by a macroscopic measuring instrument. Since in-
compatible magnitudes A, B represent dispositions referring to incom-
patible conditions, the equality

Expw (4 + B) = Expy (4) + Expy (B)

for the set of statistical states of quantum mechanics should be regarded
as a relation peculiar to the theory. It would therefore be unreasonable
to require that this condition be satisfied by dispersion-free states in the
representation of the statistical states of the theory by measures on a
classical probability space. This is Bell’s objection to von Neumann’s
proof. His objections to the Jauch and Piron proof and the Kochen and
Specker proof are similar. He shows that these proofs implicitly impose
restrictions on the values assigned to incompatible magnitudes by dis-
persion-free measures on the classical probability space, and that these
restrictions are unreasonable on a Bohrian dispositional interpretation
of the magnitudes.

In the case of the Kochen and Specker proof (or Gleason’s theorem,
for Bell), the intransitivity of the compatibility relation is exploited. Bell
sees the relevant corollary to Gleason’s theorem as providing a proof
of von Neumann’s result without the additivity condition for the expecta-
tion values of incompatible magnitudes. Since compatibility is intransitive,
even the additivity condition for compatible magnitudes implicitly im-
poses restrictions on incompatible magnitudes.

For example, consider the magnitudes A and C represented by the
operators: ’

A=aA; +aA; +a34;

C=c¢C{ +c,C; +c3C;
where

Ay =C; =P

A,=0, A3 =R

C,=0', C;=R’

and P, O, R are projection operators onto 3 mutually orthogonal 1-dimen-
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sional subspaces in 5#;, and Q', R’ are projection operators onto a
different orthogonal pair of subspaces in the plane defined by Q and R.
Both 4 and C are compatible with the magnitude

B=bB, +b,B,
where

B =P

B, =P!

but 4 and C are incompatible.

For Bell, the idempotent magnitudes 4; and C,; represent dispositions
referring to the behaviour of the system under conditions defined by an
A-instrument and a C-instrument, respectively, which are mutually in-
compatible. Although

pw(a=a;) = py(b=0by) =py(c=cy)

for all statistical states W of quantum mechanics, this equality cannot be
required for the dispersion-free states, for this would amount to stipulating
that 4, and C, represent the same dispositions. 4; and C, are statistically
equivalent for the statistical states of quantum mechanics, and are rep-
resented by the same projection operator, P, in the theory. Bell suggests
that in a hidden variable theory, 4, and C; should be represented by
different random variables on the probability space, which are statistically
equivalent only for those measures corresponding to the statistical states
of quantum mechanics.

The dispositional interpretation of the magnitudes serves only to moti-
vate Bell’s proposal that equivalence in the algebra of quantum magni-
tudes need not be preserved in a hidden variable theory. I have argued
above that the question of the possibility of a Boolean representation of
the quantum statistics is uninteresting if the algebraic structure of the
magnitudes of the theory is not preserved, e.g. if the equivalence of A,
and C; is not preserved. The completeness problem makes sense only
with respect to a given class of structures.



CHAPTER VIII

THE LOGIC OF EVENTS

I. REMARKS

In the previous two chapters, I have shown that the statistical relations
of quantum mechanics cannot be represented by measures on a classical
probability space, because the partial algebra of quantum magnitudes
is not imbeddable in a commutative algebra. Thus, the quantum statistics
cannot be interpreted as an incomplete classical (i.e. Boolean) statistics.
Moreover, the set of statistical states of the theory generates all possible
probability measures in the generalized sense on the partial Boolean
algebra of idempotent magnitudes. The purpose of this chapter, and the
next, is to clarify the significance of non-imbeddability here. My thesis
is that the transition from classical to quantum mechanics involves the
generalization of the Boolean event structures of classical mechanics to
non-Boolean event structures of a particular kind.

In order to develop this thesis, I need certain elementary notions of
classical logic. In Section II of this chapter, I shall give an exposition of
the proof theory (syntax) and model theory (semantics) of classical first-
order logic, the predicate calculus. First-order logic concerns the for-
malization of propositions which deal with the quantification of individuals
in a certain domain, with respect to properties and relations predicated
of these individuals. (Higher-order logics involve quantification over
properties and relations.) I discuss the proof theory of this logic, the
notion of theoremhood, or provability from a set of axioms, and the
semantic notion of truth under an interpretation for the sentences of
the formal system. Classical first order logic is complete: the proof theory
generates as theorems all (and only) the universally valid sentences, i.e.
those sentences which are true in every interpretation.

I prove this theorem for the classical propositional calculus as an
application of Stone’s representation theorem for Boolean algebras:
every Boolean algebra is isomorphic to a perfect, reduced field of sets.
The propositional calculus treats the logical operations of negation
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(‘not’), conjunction (‘and’), disjunction (‘or’), etc. as truth functions of
the atomic propositions. Syntactically, the atomic propositions may be
regarded as O-place predicates, which are assigned truth values under an
interpretation independently of the relations holding between individuals
in the set-theoretic interpretation of the predicate calculus. The complete-
ness proof requires the algebraic formulation of the propositional cal-
culus, via the notion of the Lindenbaum-Tarski algebra of a logic. The
basic idea of Stone’s theorem involves the concept of an ultrafilter,
essentially a maximal consistent set of propositions, which is picked out be
a possible assignment of truth values to the atomic propositions. An
ultrafilter, then, represents a set of events which is maximal in a logical
sense: all events belong to the set which are consistent with the existence
of a particular set of atomic events and the non-existence of all other
atomic events. The Lindenbaum-Tarski algebra of the classical prop-
ositional calculus is a Boolean algebra. The relevant corollary to Stone’s
theorem says, in effect, that every possible event is represented by a
proposition that belongs to at least one ultrafilter. The isomorphism
associates events or propositions with the set of ultrafilters containing
the proposition.

In Section III, I shall argue that the phase space of classical mechanics
is a topological representation of a Boolean event structure, while the
Hilbert space of quantum mechanics represents a strongly non-
Boolean event structure.

II. CLASSICAL LOGIC

The formalization of any mathematical domain — e.g. arithmetic — in
terms of classical logic involves a formal language, L, with variables
(x, y, z, etc., ranging over individuals in the domain in the case of a
first-order theory), predicates or relational symbols (F, G, H, etc., rep-
resenting properties and relations), connectives (A, 1, etc., for con-
junction, negation, etc.), and quantifiers (the existential quantifier
Jdx — read ‘there exists an x’ — and the universal quantifier Vx — read ‘for
all x’). Out of these symbols formulae are constructed. For example,
Fx A Gy is a well-formed formula in L. Read this as: x has the property F
and y has the property G. The formula —1Hxy is read as: it is not the
case that x and y stand in the relation H. Quantifying over x and y, we
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form formulae such as: (3x) (Vy) (Fx A Gy) — there is an x such that for
every y, x has the property F and y has the property G.

The well-formed formulae are generated from the atomic formulae
by the logical operations of negation, conjunction, and existential
quantification. An atomic formula is of the form Fx,...x,, where F is a
relational symbol of degree n. Other connectives may be defined in terms
of negation and conjunction. The disjunction, s v ¢, where s and ¢ are any
formulae, is defined as —1(—1sA —1t); the conditional, s>¢, is defined
as 1(sA—it), i.e. 1svt; the biconditional, s=¢, is defined as
(sot)A (t>s). The universal quantifier may be defined in terms of the
existential quantifier and negation: (Vx)s is —1(3x)—1s. An occurrence of
a variable in a formula is said to be bound if it is governed by a quantifier;
otherwise it is free. For example, in the formula (Vx)Fxy A Gx, the
occurrence of the variable x in the subformula Fxy is bound, while the
occurrence of x in the subformula Gx is free. The occurrence of y is
free. In the formula (3x) (Fxy A Gx), both occurrences of x are bound.
A formula in which no variable occurs free is a sentence.

A formal theory — say, of arithmetic — requires a finite number of
axioms (certain selected formulae in L) and a finite number of inference
rules, which allow theorems to be generated from the axioms in a proof.

An interpretation of a formal theory is a relational structure:

M=(M;R,S,..)

where M is a non-empty set, and R, S,... are properties and relations
on M. Consider an assignment of members of M to the variables of L.
A formula s(x, y,...) with the free variables x, y,... is said to be satisfied
in 4 by the assignment of m, to x, m, to y, etc., if the relation over M
corresponding to s holds between the elements m,, m,, etc. when each
relational symbol F, G,... is replaced by an appropriate relation R, S, ....
Notation:

ME s [my, m,,...]

where the sequence m,, m,,... is an assignment of elements in M to the
free variables in s. For example, consider the formula Fxy and the
interpretation .# = (N, <), where N is the set of natural numbers and
< is the relation ‘less than’. If F is interpreted as the relation <, the
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assignment [1, 2] satisfies Fxy, while the assignment [4, 3] fails to
satisfy Fxy.

The notion of satisfaction of a formula in a relational structure
M =(M; R, S,...)) may be defined recursively as follows:

@) MEFx,---x,[ay,..., a,] if and only if the relation R assigned
to F holds between the elements ay,..., a,, i.e. if and only if
the sequence a,,..., a, is in the relation R assigned to F
under the interpretation. This defines the notion of satisfaction
for atomic formulae in L.

(ii) A Fslay, a,,...] if and only if it is not the case that
M Eslay, a,,...]

(iii) ME (sAt)|ay, a,,...] if and only if #Fs[a,a,,...] and
MEt[ay, a,,...].

(@iv) MHE QAY)s(xy,..., X, Vay,..., a,] if and only if there is a
be M such that A Fs(xy,..., x,, Y)[ay,-.., a, b].

If #Eslay,...,a,] for all assignments of elements in M to the free
variables in s, then s is said to be true in .#, and .# is said to be a model
of s. Notation: .#Fs. The formula s is said to be universally valid or
logically true if #Fs for every interpretation .#. Notation: Fs. For
example, the formula (Ix)Fxy is not true under the interpretation
M = (N ; <); the relational structure is not a model for this formula. The
relational structure .# = (I'; <), where /I is the set of positive and negative
integers, is a model for (3x)Fxy. The sentence (Ix) (Iy) (Fxy> Fxy)
is true in every relational structure, i.e. every sequence a, b satisfies the
formula Fxy>Fxy in every domain, whatever relation is associated
with F.

Notice that if s is a sentence, a formula in which no variables occur
free, then A Fs if and only if #Fs[a,,..., a,] for some sequence of
elements ay,..., a, in M. (In this case, either no sequences satisfy s —
vacuously — or all sequences satisfy s.) .# is said to be a model of a set
of sentences X if and only if .# ks for every seZ.

A set of axioms sufficient to generate all and only the universally
valid formula in L via one or more inference rules is a proof theory for
the classical predicate calculus. A proof is a finite sequence of formulae,
such that each formula is either an axiom or follows from formulae
earlier in the sequence by the inference rules. Notation: | s signifies s is
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provable, or s is a theorem, i.e. s is the last formula in a proof sequence.
A proof theory is sound if every theorem is a universally valid formula,
i.e. if the axioms and inference rules do not generate any formulae which
are outside the class of universally valid formulae. A proof theory is
complete if every universally valid formula is a theorem, i.e. if the axioms
and inference rules generate all universally valid formulae. Soundness
and completeness are metalogical notions relating the proof theory or
syntax of a formal system with the model theory or semantics of the
system.

Soundness — if Fs then ks — is usually relatively easy to prove. All
that needs to be shown is that each of the axioms is universally valid, and
that the inference rules preserve universal validity. From this it follows
that the set of axioms is consistent, i.e. s and —1s cannot both be proved
in the system, for any s. For if Fs, then Fs; and if F s, then F —s.
But s and —1 s cannot both be universally valid.

In order to prove completeness, it is necessary to show that if ks, then
Fs. I shall prove completeness for the classical propositional calculus.
The propositional calculus may be regarded as a restriction of the pre-
dicate calculus to O-place predicates. In other words, the universally
valid formulae of the propositional calculus — the tautologies — correspond
to those sentences of the predicate calculus whose validity is independent
of quantification.

The formulae of the propositional calculus may be generated from a
countable set of atomic sentences (0-place predicates) {P, Q, R,...} by
negation and conjunction, the disjunction, conditional and biconditional
being defined in terms of these connectives.

An appropriate set of axioms is the set of all sentences of any of the
forms (Bell and Slomsen, pp. 36, 37):

(D §so(t>s)

2) (sAt)>os (sAt)ot

3) so(svi) to(svit)

4) (—so2—t)o(t>59)

(5) (s2@2u)>(s>1)>(t>u)

(6) E2t)2((s2w)>2(>2@Auw)

@) (s2t)o(u>t)o((svuot)).

Theorems are generated from these axioms by the inference rule known
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as modus ponens: {s, s>t}F¢ (¢ is provable from the set of formulae
{s, sot}).

I have previously introduced the symbols A and v for infimum and
supremum in a lattice, as well as for meet and join in a Boolean algebra.
Considered as a partially ordered set, a Boolean algebra is a comple-
mented, distributive lattice, with the Boolean meet and join corresponding
to the lattice infimum and supremum. And the classical propositional
calculus is Boolean, in the sense that the Lindenbaum-Tarski algebra of
the logic is a Boolean algebra. (Of course, it will always be obvious from
the context whether the symbols A and v denote lattice operations or
logical connectives.)

The Lindenbaum-Tarski algebra % of a logic is generated by first
defining an equivalence relation ~ on the formulae in L:

s~t ifandonlyif Fs>¢t and Fi¢os

and then defining a relation (transitive, reflexive, and antisymmetric) on
the set of equivalence classes of formulae {|s|:s €%}, where |s|=
={te L:s~t}:

s| <|t] ifand onlyif Fso>¢t.

The partially ordered set of equivalence classes of formulae is the
Lindenbaum-Tarski algebra of the logic.

In the case of the classical propositional calculus, it is easy to verify
that the relation <, defined by

|s|<|#] ifand onlyif Fsot

is transitive, reflexive, and antisymmetric, i.e. a partial ordering. Now,
the infimum of |s| and |¢| always exists and is equal to |sA |, because

F(At)os
and
F(sat)ot

by axiom 2, so that

s A 2] < 5|
and
ls A t] < |2

i.e. |sAt| is a lower bound of |s| and |¢].
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But if, for some u, |u|<|s|, |u|<|t|, then Fu>s and Fu>t, so that

Fuos(sat)

by axiom 6 and modus ponens, i.e.
lul <|s Atl.

Hence, the greatest lower bound of |s| and |¢] is |s A Z], i.e.
Is| At =1Is A t]

Similarly, the supremum of |s| and |¢] is [s Vv t], i.e.
Is] v |t]=]s Vv t].

So the partially ordered set of equivalence classes of formulae is a lattice.
It follows easily that the distributive law holds, since

FsAa(@@vuo(@Aat)v(sAuw

and
FsAat)v(saAauosa(tvu)
and hence
lsA@Evul=]EAt)v(sAu)
i.e.

sl A (2] v ul) = (Is| A 12]) v (Is] A [ul).

The lattice is complemented because |s| =1 if and only if Is, and |s|=0
if and only if F—1s. (If Fs, then, by axiom 1, ¢ >s for every ¢, and so
|2| <|s| for every ¢, i.e. |s|=1. And if |s|=1, then for any ¢, |¢|<|s|, and
so Ft>os for every t. Choosing ¢ an axiom or a theorem, it follows that
Fs.)

Since, for every s

Fsv s
and

Fa(saAs)
it follows that

Is| v |Ts] =1
and
Is| A |]Ts|=0
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so that a complement
|sl" =[5

exists for every |s|. The Lindenbaum-Tarski algebra of the classical
propositional calculus is therefore a complemented distributive lattice,
i.e. a Boolean algebra.

The semantic notion of satisfaction for the propositional calculus
evidently does not require any explicit consideration of sequences of
elements in the relational structures over which the sentences are inter-
preted. The satisfaction of s in .# is independent of the relations holding
between elements in M, and depends only on the truth values assigned to
the atomic sentences (0-place predicates) in .#. That is to say, the senten-
ces of the propositional calculus are truth functions of the atomic
sentences: the truth or falsity of a sentence constructed by the logical
operations of negation and conjunction from the atomic sentences is
completely determined by the truth values assigned to the atomic senten-
ces. An interpretation amounts to a particular assignment of the truth
values true and false to the atomic sentences, which is then extended
recursively to all sentences. Equivalently, an interpretation is a map, v,
from the set of atomic sentences onto the zero and unit elements of the
2-element Boolean algebra Z,, with 0 corresponding to false and 1
corresponding to true, extended recursively to all sentences as follows:

v(T1s)=v(s)
visAt)=v(s) Av(t)
v(isvt)=v()vo().

It is easy to check that these condition on v ensure that —1sis true if and
only if s is false, that a conjunction is true if and only if both conjuncts
are true, and that a disjunction is true if and only if at least one disjunct
is true.

Notice that the condition for the disjunction is superfluous, and fol-
lows from the conditions for negation and conjunction. The symbols A
and v in v(sAt),v(svt) denote conjunction and disjunction in the
logic L. In v(s) Av(t), v(s) v v(t) they denote the meet and join in Z,.

Now, the theorems of the classical propositional calculus belong to
the equivalence class |s|=1. A sentence s is inconsistent if and only if a
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sentence ¢ and its negation are both provable from s, i.e. if and only if

sktAt
or

Fso(@At).
Clearly,

F@At)os

for any sentence t, so s is inconsistent if and only if

Is| =1t A 1 ¢t].
But
[tAt|=]t|]A|Tt] =0

for any ¢, and so s is inconsistent if and only if |s|=0. A sentence s is
consistent if and only if |s|#0, i.e. if and only if |1s|#1, or —1s is not
provable.

To show that s is a theorem if and only if s is a tautology, is to show
that |s| =1 if and only if v(s)= 1 for every map v from the atomic sentences
onto % ,, the 2-element Boolean algebra. That is to say, |1s|=0 if and
only if v(—15)=0 for every map v, for v(—1s)=0 if and only if v(s)=1.
The negation is superfluous here, since the statement holds for every
sentence s of the propositional calculus. Thus: |s|]=0 if and only if
v(s)=0 for every map v, or equivalently, |s|#0 if and only if v(s)=1 for
some map v from the atomic sentences onto Z,. The completeness
theorem for the classical propositional calculus may therefore be re-
formulated: A sentence is consistent if and only if it is satisfiable.

I shall prove completeness as the logical analogue of the fundamental
representation theorem for Boolean algebras, Stone’s theorem, that
every Boolean algebra is isomorphic to a perfect reduced field of sets. The
proof of this theorem involves the concept of an unltrafilter, which is of
importance in the subsequent discussion.

I use the symbol & for a Boolean algebra. To distinguish the elements
of # from the members of the representative set X, I shall denote elements
of # by the letters a, b, c,... (from the beginning of the alphabet) and
elements of X by the letters x, y, z,... (from the end of the alphabet).

A filter in a Boolean algebra is a non-empty subset @ of %, satisfying
the conditions

)] if a, be®, then aAbed
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(ii) ifae®d and a<b, then bed.

Equivalently, a filter may be defined as a non-empty subset @ of % such
that a Abe® if and only if ae® and be P, or a non-empty subset d=H
with 1e€® such that ae®, a’ v b implies be®P. (The dual notion is that of
an ideal, i.e. a non-empty subset of % such that the join of any two elements
is a member of the set, and every member of # below any member of the
set belongs to the set.)

A proper filter is a proper subset of %, i.e. ®# %, or 0€®. The principal
filter generated by the element aeZ is the set

{be#:a<b}.

Consider the set of all filters in #. This set is partially ordered with
respect to the relation of set inclusion. An ultrafilter (or maximal filter)
is a proper filter that is maximal with respect to this ordering i.e. it is not
a proper subset of a proper filter in #. It can be shown that the necessary
and sufficient condition for a proper filter @ in # to be an ultrafilter is
that for every ae4, either ae @ or a’€® but not both.

In the case of a power set Boolean algebra, i.e. the Boolean algebra of
subsets of a set X, the set of subsets containing a specific point xeX is an
ultrafilter in the power set Boolean algebra — the principal ultrafilter
generated by the point x.

A map h:%#, > %, from %, into #, is a homomorphism if it preserves
the algebraic operations, i.e. if for all a, b,e%, :

h(aAb)=h(a) A h(b)
h(av b)=h(a) v h(b)
h(a) = h(a).

It follows that 4 maps the zero and unit elements of #, onto the zero and
unit elements of %,, and that if a<b in #,, then h(a)<h(b) in %,.

A, and %, are isomorphic if h is one-one and onto, i.e. if h(#,)=%,,
where A(%,) is the image of %, under the map, i.e. the set of elements in
%, onto which some element of %, is mapped by A. A necessary and
sufficient condition for a homomorphism to be an isomorphism is that
h(a)=0 implies a=0, or A~ 1(0) contains only the zero of %,. (If this
condition is satisfied and A(a)=h(b), then

h(anb)=h(@ A h(d) =0
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and

h(bana)=hb)Ah(a) =0
so that

anb =banad=0

and hence a<b and b<a, i.e. a=b. The converse is trivial.) By duality, a
homomorphism # is an isomorphism if and only if #~1(1) contains only
the unit element of %,.

If h:%#,—%, is a homomorphism, then the set of elements in %,
mapped onto 1 by 4 is a filter, i.e. the set ?={aeH,: h(a)=1} is a
filter.

A 2-valued homomorphism on % is a homomorphism from % onto the
2-element Boolean algebra, &,. The set of elements in % mapped onto 1
by a 2-valued homomorphism, i.e. {ae%:h(a)=1}, is an ultrafilter. Con-
versely, if @ is an ultrafilter in %, the map h: % — Z,, such that A(a)=1
if ae® and h(a)=0 if aeP, is a 2-valued homomorphism. Hence, there
is a one-one correspondence between the set of ultrafilters on &% and the
set of 2-valued homomorphisms on %.

A 2-valued homomorphism, 4:# — % ,, on the Lindenbaum-Tarski
algebra of the classical propositional calculus defines an interpretation
or model for the propositional calculus, i.e. a map from the atomic
sentences onto &, :

v(P)=h(P]), v(Q)=hr(Q2D,...

that may be extended to the set of all sentences
v(s) = h(ls])

because # is a homomorphism (dnd so if v(s)=nh(|s|) and v(z)=h(|t]),
for s and ¢, then v(sAt)=v(s)Av(t) and v(T1s)=v(s)). Conversely,
every interpretation corresponds to a 2-valued homomorphism.

It is a theorem that for every proper filter @ in a Boolean algebra there
exists an ultrafilter that includes @. For, consider the set of all filters in #
that include (i.e. are extensions of) a particular filter @. This set, &#, may
be partially ordered by set inclusion. Suppose {®;:i€l} is a chain of
filters with respect to this ordering. Then | J=1);.,9P; is a filter, an
upper bound for the chain. (If g, bel J, then aed;, bed; for some
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®;, P;. But either ;= P;, or ;= P,, and so ecither q, bedP; or a, beP;,
and hence either aAbe®; or anbed;; in either case anbe ). If ae P,
then ae®;, for some i€l, and so beP;<| ) for all beZ such that a<b.
Obviously 0¢ | J, because 0¢P;, for anyiel.) Since = J, U belongs to
the set of all filters in # that are extensions of @, and so each chain in the
partially ordered set has an upper bound in the set. It follows from Zorn’s
Lemma that there is a maximal element in the set, an ultrafilter that
includes .

It is an immediate consequence of this theorem that each non-zero
element ae % is contained in some ultrafilter (i.e. the ultrafilter that is the
maximal extension of the principal filter generated by a), and that if a
and b are distinct elements of &, there is an ultrafilter containing a but
not b (a#b implies that either not a<b or not b<aq, i.e. either a A b’ #0,
or a’ A b # 0, and so either there is an ultrafilter containing @ and b’ or
there is an ultrafilter containing a’ and b).

A field of sets, &, is a non-empty set of subsets of a fixed set, X, closed
with respect to finite unions, intersections, and complements. (This defini-
tion is redundant: If & is closed with respect to finite intersections and
complements, it is closed with respect to finite unions; and if & is closed
with respect to finite unions and complements, it is closed with respect to
finite meets.) Obviously, a field of sets is a Boolean algebra.

A field &# of subsets of a set X is said to be reduced if for every dis-
tinct pair of points x, y in X there exists a set in & containing x but not
containing y. & is perfect if every ultrafilter in & is determined by a point
in X. The sets in & containing a specific point xe X form an ultrafilter
(if a set does not contain x, its complement does), the ultrafilter deter-
mined by x.

If & is a perfect reduced field of subsets of a set X, then the one-one
correspondence between ultrafilters and 2-valued homomorphisms can be
extended to points of X. Every point in X determines a unique ultrafilter
(or 2-valued homomorphism), and conversely every ultrafilter (or 2-
valued homomorphism) is determined by a point in X. (If x and y are
distinct points in X, they determine different ultrafilters, because & is a
reduced field of sets, and so there is a set in & containing x, i.e. belonging
to the ultrafilter determined by x, but not containing y, i.e. not belonging
to the ultrafilter determined by y.)

Stone’s theorem can now be formulated as follows: If X is a set of
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ultrafilters in a Boolean algebra &, and A (a) is the subset of ultrafilters in
X containing the element ae#, then the set of all such subsets

F = {h(a):ac A}

is a perfect reduced field of subsets of X, and 4 is an isomorphism from #
onto &#.

The map h:# — % is a homomorphism, because
h(a A b) = h(a) n h(b)

i.e. the subset of ultrafilters (in X) containing the element a A b€ is the
set-theoretical intersection of the subsets /4 (@) and 4 (b), since a A b belongs
to the ultrafilter $eX if and only if both a and b belong to &; and

h(d) = h(a)

i.e. the subset of ultrafilters containing the element a’e & is identical to
the set-theoretical complement in X of the subset of ultrafilters containing
the element ae %, which is the subset of ultrafilters in X that do not con-
tain a. (Recall that each ultrafilter contains either a or a’, but not both).
h is an isomorphism, because every non-zero element ae B is contained
in an ultrafilter, and hence 4 (a)=0 only if a=0.

Evidently, # =h(%) is a field of subsets of X. & is a reduced field be-
cause if @, and @, are distinct elements of the set of ultrafilters X, then
thereisanae% suchthat ae®,, a¢ P, and so there is a subset of ultrafilters
h(a) containing ¢, but not @, (i.e. for each pair of points &,, &, in X,
there is a set in the field &# containing @,, but not &,). & is perfect be-
cause h is an isomorphism between & and %, and so each ultrafilter
{h(a), h(b), ...} in F corresponds to an ultrafilter {a, b, ...} in 4. Thus,
each Z-ultrafilter consists of those sets in & which contain a specific
A-ultrafilter. But the points of the'set X are just the ultrafilters in %, and
so each ultrafilter in & is determined by a point in X.

The core of this theorem is the lemma that every non-zero element of a
Boolean algebra is contained in an ultrafilter, i.e. it is the existence of this
ultrafilter, guaranteed by the Axiom of Choice in the form of Zorn’s
Lemma, that is crucial for the existence of the isomorphism between the
Boolean algebra and the field of sets.

The completeness theorem for the classical propositional calculus states
that a sentence is consistent if and only if it is satisfiable. In the Linden-
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baum-Tarski algebra ., which is Boolean, this amounts to the statement
that |s| 20 if and only if there exists an interpretation that satisfies s. Now,
every non-zero element |s| is mapped by the Stone isomorphism onto a
non-empty subset h(|s|) in the field of sets that is isomorphic to #. And
every point in the subset 4(|s|) corresponds to an ultrafilter in % con-
taining |s|, hence to a 2-valued homomorphism that maps |s| onto 1, i.e.
to an interpretation that satisfies s.

ITII. MECHANICS

The phase space of a classical mechanical system, say a free particle, is a
Euclidean space, X, parametrized by the position and momentum co-
ordinates of the particle. The physical magnitudes are real-valued func-
tions on X, forming a commutative algebra. The idempotent magnitudes
are represented by the characteristic functions on the Borel subsets of X.
The characteristic function on the set Y, say E, is defined by

E(x)=1 if xeY
E(x)=0 if x¢Y

The field & of Borel subsets of X under the partial ordering defined by
set-inclusion is a complemented distributive lattice, a Boolean algebra.
The Boolean algebra of idempotent magnitudes (propositions) is iso-
morphic to the Boolean algebra of Borel subsets of X, representing the
possible events open to the system. The singleton subsets {x}e%# are
atomsin &% . An atom in a Boolean algebra # is a minimal non-zero element
of 4%, i.e. an element ae% such that there is no element of Z between 0
and a. More precisely, a is an atom if and only if a#0 and b<a only if
b=0 or b=a.

It follows that a is an atom if and only if the principal filter generated
by a is an ultrafilter. (For any b#0, a A b<a, and so if a is an atom either
anb=0oranb=a.If anb=a, then a<anb<b. If anb=0, then

a=aA (bvb)
= (@A b)v (anbd)
=0v (a@anb)
=anb
ie.
asb'.
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So, for any b#0, either b is a member of the principal filter ¢, generated
by a, or b’ is a member of ¢,. Hence &, is an ultrafilter. Conversely, if @,
is an ultrafilter, for any b#0, either a<b or a<bd’, If c<a then either
a<c, li.e. c=a, or a<c, ie. c<d, in which case c<aAd/, i.e. c=0. So
a is an atom.)

Equivalently, ae % is an atom if and only if there is only one ultrafilter
containing a. (Every ultrafilter containing an element ae% includes the
principal filter &, generated by a. If a is an atom, @, is an ultrafilter, and so
is not included in any proper filter. If a is an atom, @, is the only ultrafilter
containing a. Conversely, if @ is the only ultrafilter containing a, then for
any non-zero b<a, @ is the only ultrafilter containing b, because any
filter containing b necessarily contains a. Hence b=a, because if a and b
are distinct elements of # there exists an ultrafilter containing a but not 5.)

Thus, there is a one-one correspondence between points in X and
maximal consistent sets of propositions, i.e. with ultrafilters in the Boolean
algebra of propositions. This is the significance of the classical mechanical
notion of a state, the specification of a point in X. A state corresponds to
an atom in &, hence to an ultrafilter in the Boolean algebra of proposi-
tions, or a 2-valued homomorphism on this algebra, i.e. a Boolean assign-
ment of truth values to the propositions.

In this sense, the phase space of a classical mechanical system is a topo-
logical characterization of the propositional structure: the phase space is
the Stone space of the Boolean algebra of propositions. Under the Stone
isomorphism, the image of a consistent set of propositions (i.e. a proper
filter) is a non-empty closed subset in &, and an ultrafilter corresponds to
a singleton subset in & . The unit filter is associated with the whole space,
and the dual of the unit filter, the zero ideal, with the empty set.

I propose to view the transition from classical to quantum mechanics
as involving the generalization of the Boolean event structures or proposi-
tional structures of classical mechanics to a particular class of non-Boolean
structures. The propositional structure of a quantum mechanical system
is a partial Boolean algebra isomorphic to the partial Boolean algebra
of subspaces of a Hilbert space. The magnitudes of the system are
represented by the self-adjoint operators on the Hilbert space, the idem-
potent magnitudes by projection operators. An atomic event is represented
by an ultrafilter in the partial Boolean algebra, i.e. by a projection operator
whose range is a 1-dimensional subspace or ray in the Hilbert space. The
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theorem of Kochen and Specker shows that the propositional structure
of a quantum mechanical system — the logical structure of all possible
events associated with a quantum mechanical system — is a partial
Boolean algebra that is strongly non-Boolean, i.e. not imbeddable in
a Boolean algebra.

To put this another way: The transition from classical to quantum
mechanics involves a generalization of the classical notion of validity.
The class of models over which validity is defined is extended to include
partial Boolean algebras which are not imbeddable into Boolean algebras.
I understand these models as representing possibility structures of events.



CHAPTER IX

IMBEDDABILITY AND VALIDITY

A classical propositional function ¢(xy,..., x,) is a proposition-valued
map on a classical propositional logic L. (Here the variables x,..., x,
range over propositions in L, not over individuals in a domain of inter-
pretation as in the previous chapter.) To say that a particular propositio-
nal function, e.g. the function

X A (X AX3)= (X1 AXy) A X5

is a classical tautology, is to say that every classical interpretation satisfies
¢, whatever propositions are substituted for the variables x;, x,, x;.

Now, an interpretation may be regarded as a 2-valued homomorphism
from the Lindenbaum-Tarski algebra, .Z, onto the 2-element Boolean
algebra & ,. The validity of this propositional function may be expressed
as the validity of the corresponding Boolean function

@ (X1, X35 X3) = (Y AY) A Yo AYY)
where

Y =X A (X3 A X3)

Vo= (X1 A Xp) A X3.

(Recall the definition of the biconditional = in terms of conjunction and
negation, and the correspondence between conjunction and infimum, and
negation and complement. Here the variables x;, x,, x, range over ele-
ments in %, and the symbol A denotes the infimum in Z.)

To say that the Boolean function is valid, is to say that the image or
value of this function is mapped onto the unit element in &, by every 2-
valued homomorphism, whatever elements in £ are substituted for the
variables. This amounts to saying that the function takes on the value 1
in #, for all substitutions of sequences from £ for the variables x,, x,
x3. From an algebraic point of view, then, the notion of a classical tauto-
logy applies to a Boolean function ¢ (x,, ..., x,), which takes on the value
1 in Z, for all possible substitutions of sequences from £ for the
variables.
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Clearly, if ¢ is valid, and & is any Boolean algebra, then ¢ takes on the
value 1 in & for all substitutions of elements from Z%. To see this, consider a
particular Boolean function, say the function ¢ (x,, x,, x;) above. Suppose

p#1 in &

for some sequence from %> substituted for the variables x,, x,, X3, i.e.
¢e(a,a5,a3)=a#1 in Z,

then there exists a 2-valued homomorphism, 4:% — Z ,, such that
h(a)=0 in Z,,

i.e. (h(ay), h(a,), h(as)) is a sequence from Z> which yields the value 0 in
% , for the function ¢(x;, x,, x3), which is impossible if ¢ is valid.
Moreover, the classical tautologies specify all Boolean functions which
yield the unit element in a Boolean algebra when elements of the algebra
are substituted for the variables — there are no other Boolean functions
which are valid in this sense. One might regard the classical notion of
validity as a logical concept restricted to possibility structures of events
which are represented as Boolean algebras. (In the case of the predicate
calculus, these Boolean algebras are set-algebras.) We seek a generaliza-
tion of this notion to include possibility structures of events represented
as partial Boolean algebras. Kochen and Specker propose that a proposi-
tional function such as the above is valid in a partial Boolean algebra <« if
every ‘meaningful’ substitution of elements from .2/ into the associated
Boolean function yields the unit element in 7. A ‘meaningful’ substitution
is one which satisfies the compatibility relations; otherwise the partial
operations are undefined in 7. In the above example, the elements a,, a,,
a; of & substituted for x;, x,, x5 are required to satisfy the conditions:

a, <> a,
a, <> a,

a; <> a, A a

a; A a, <> a,

a; A (a, Aaz) o (a; Aay) Aas.

This notion is formalized in the following definition: Let a= (ay, ..., a,)
be an element in &/", the n-fold Cartesian product &/ x & x ... of the
partial Boolean algebra /. The domain, D, in & of a Boolean function
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¢(xy,..., X,) — regarded as a polynomial over &, — is defined recursively,
together with a recursive definition of a map ¢* (corresponding to ¢) from
D, into &, as follows:

¢)) if ¢ is the polynomial 1, then D,=2/" and ¢*(@)=1

2 if ¢ is the polynomial x; (i=1,..., n), then D, =" and
p*(@)=a;

3) if o=y +y or =y -y then D, consists of those sequences a
which belong to the intersection of the domains of { and yx (i.e.
aeD,nD,), and also satisfy the compatibility condition

Y* (@< x*(a).

The map ¢*(a) is defined by ¢* (@) =y*(a) +x* (a) or o*(a) =y *(a)* x*(a),
respectively.

The definition of the domain of a Boolean function in a given partial
Boolean algebra &7 serves to make precise the notion of a ‘meaningful’
substitution, while the map ¢* defines the value of the polynomial in &7
for each substitution.

The statement that the identity

(p(xl,..., x,,) - 1

holds in &7 is to be understood in the sense that
p*@) =1

for all aeD,,.
The statement that the identity

QO(X1y.ens Xp) =Y X150y X))
holds in &7 is to be understood in the sense that
o*(@ =y*(a
for all ae D ,n D,
Now, the generalized definition of validity is this:
A propositional function ¢(xy,..., x,) is valid in the partial Boolean
algebra </ if the identity ¢ =1 holds in &7 for the corresponding Boolean

function.
@ is refutable in &/ if for some aeD,, p*(a)=0 in «.
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¢ is logically valid in the generalized sense, i.e. Q-valid, if ¢ is valid in
every partial Boolean algebra /.

If the choice of 7 is restricted to Boolean algebras, this definition of
validity coincides with the usual definition: the set of valid propositional
functions is just the set of classical tautologies. Thus the recursive defini-
tion of the domain of a propositional function coupled with the recursive
definition of the map ¢* is a straightforward generalization of the
classical, Boolean notion of satisfaction for ¢.

It is important to appreciate the distinction between the validity of a
propositional function

Y=y

in a partial Boolean algebra 27, and the holding of the identity
Y=

in &/. Tosay that y = y is valid in & is to say that
Y=x=1

in &7, i.e. writing @ =(y =yx) we require that

¢*(a) =1

for every sequence ae Dy, n D, satisfying the additional compatibility con-
dition

¥*(a@) < x*(a).

But, for the identity =y to hold in =7, we require that y* (@) =x* (a) for
every sequence a€ D, n D,, not only those sequences satisfying the addi-
tional compatibility condition {* (a) < x* (a). Thus, the set of admissable
sequences ac.¥" is smaller in the case of the validity of the biconditional
than in the case of the identity. If the identity holds in &7, then certainly
the biconditional is valid in &7, but the converse is not in general true.
The validity of the biconditional amounts to the holding of the identity
for the restricted set of sequences which satisfy the compatibility condition
y*(@er*(@.
For example, let ¢ = (y =) be the classical tautology:

Xi A (X VX3)=(x1 AXy)V (X1 A X3).
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@ is not only valid in every partial Boolean algebra, it is also the case that
the identity

Xy A (X2 V X3) = (X1 A X2) V (X1 A X3)
holds in every &. For if a= (ay, a,, a3)eD,,,

a, <> a;
ap < a,
a1 Ha3.

But then q,, a,, a; generate a Boolean algebra. It follows that

a; A (@, v az)=(a Aay) v (a1 A ay),
and hence
a A (@, vaz)e (a Aay) Vv (a A aj).

Thus, every sequence ae D, n D, automatically satisfies the compatibility
condition y* (@) < x*(a).

In the case of a partial Boolean algebra &/ imbeddable into a Boolean
algebra, the validity of the biconditional Y=y in £, (i.e. the classical
tautologousness of the biconditional) entails the holding of the identity
Y=y in &. Thus, in the case of imbeddability (and only in this case):
Y=y is valid in &, (and hence, as it turns out, valid in &) is equivalent
to Y=y holds in <.

This follows from a theorem of Kochen and Specker, which establishes
a relationship between the validity of classical tautologies in a partial
Boolean algebra 7 and the imbeddability of .7 into a Boolean algebra.
The statement of the theorem is as follows:

(1) A necessary and sufficient condition for the imbeddability of a
partial Boolean algebra &7 into a Boolean algebra is the holding of the
corresponding identity ¥ =y in ¢ for every classical tautology of the
form Y =y.

(2) A necessary and sufficient condition for the weak imbeddability of a
partial Boolean algebra 7 into a Boolean algebra is the validity in &7 of
every classical tautology.

(3) A necessary and sufficient condition for the existence of a homo-
morphism from a partial Boolean algebra 7 into a Boolean algebra is the
irrefutability in &/ of every classical tautology.

A weak imbedding is a homomorphism which is an imbedding on Boo-
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lean subalgebras of /. More precisely, a homomorphism 4 of &7 into </’
is a weak imbedding if 4(a) # h(b) whenever a<»b and a#b in «/. Recall
that a necessary and sufficient condition for the imbeddability of a partial
Boolean algebra &7 into a Boolean algebra % is that for every pair of
distinct elements a, be.<Z there exists a homomorphism A:%/ — 2, which
separates them in &, i.e. such that A(a) #h(b) in £ ,. Kochen and Specker
label this important lemma Theorem 0. This result depends on the semi-
simplicity property of Boolean algebras, i.e. essentially the homomorphism
or ultrafilter theorem. The counterpart of Theorem 0 for weak imbeddab-
ility is the following: A necessary and sufficient condition for the weak
imbeddability of a partial Boolean algebra 7 into a Boolean algebra & is
that for every non-zero element aes/ there exists a homomorphism
h:o - Z, such that h(a)#0.

The first part of the theorem states that .27 is imbeddable into a Boolean
algebra if and only if, for every propositional function of the form Y=y
which is valid in &, (i.e. for which the identity (y =x)=1 holds in &,),
the identity y =y holds in /.

Clearly, if 7 is imbeddable into a Boolean algebra £, all the classical
tautologies (i.e. all functions ¢ which are valid in &,) are valid in 2. For
if ¢ is a classical tautology, ¢ is valid in 4, and hence certainly valid in <.
Validity in % requires ¢ =1 in # for all sequences in B", while validity in
&/ requires the holding of the identity only for those sequences in the
domain of ¢. Recall that the imbeddability of &7 into # means the existence
of a one-one map into a part of #.

The difference between weak imbeddability and (strong) imbeddability
for the set of functions valid in &7 is just this: In the case of weak im-
beddability all the classical tautologies are valid in &/ (and in general
there are also functions valid in 7 which are not classical tautologies).
In the case of (strong) imbeddability, all the classical tautologies are valid
in &/. There may also be functions valid in &/ which are not classical
tautologies. But here we know in addition that if Y=y is a classical
tautology, then =y holds in .

Thus, for weak imbeddability, if Y=y is a classical tautology (i.e. if
Y=y isvalid in Z,), we know that =y is valid in 7 (by the second part
of the theorem), but we cannot conclude that i =y holds in <. In the case
of (strong) imbeddability, this inference in legitimate, i.e. from the validity
of a biconditional in Z',, we may infer that the corresponding identity
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holds in 7. This means that in the case of imbeddability we may infer the
holding of the identity

Y=y in &
from the validity of the biconditional
WY=yx=1 in

whenever =y is a classical tautology, as well as the converse (which
follows immediately from the definition of validity and identity).

Notice that we cannot conclude that only the classical tautologies are
valid in &/ if o7 is imbeddable into a Boolean algebra: it does not follow
that if o/ is imbeddable, and ¢ is valid in &7, then ¢ is valid in & ,. For,
to say that ¢ is valid in &7 is to say that

p*(@=1 in &
for every aeD, in A", and to say that ¢ is valid in £, is to say that
p*(a@=1 in Z,

for every ain Z7,. Now, if ¢ is valid in &, i.e. a classical tautology, then
@ is valid in every Boolean algebra, #. But the Boolean imbeddability of
&/ cannot guarantee that ¢ is valid in every Boolean algebra if ¢ is valid
in /. For this to follow it would be necessary — at least — that ¢*(a@)=1
in & for every ae/", not only for ae D, since a Boolean imbedding is a
one-one homomorphism into %, and all sequences aec#" are used in
determining validity.

The necessity of the condition is relatively easy to prove. It is required
to prove that the holding of the corresponding identity =y in & for
every classical tautology of the form yy =y is a necessary condition for the
imbeddability of &7 into a Boolean algebra. In other words, if &/ is im-
beddable, then for every biconditional which is a classical tautology (i.e.
which is valid in &), the corresponding identity iy =y holds in /.

Suppose & is imbeddable into a Boolean algebra, and that Y=y is a
classical tautology. I shall show that this entails that the identity =y
holds in &/ by proving that the converse

y#y in

leads to a contradiction.
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If Y #y in &, then for some aeD, N D,
y*(a) # x*(a)

Now, by Theorem 0, since &7 is imbeddable into a Boolean algebra, for
each b, ceZ (b#c) there exists a homomorphism 4:/ — Z, such that

h(b) # h(c)

and so there exists a homomorphism 4: ./ - %, such that

h(y*(a)) # h(x* (@)

or
y*(h(ay),..., h(ay) # x*(h(ay), ..., h(ay).
In other words, (A(a,),..., h(a,)) is a sequence in &7, such that

Y*(h(ay),..., h(a,)) # x*(h(ay),..., h(a,)).

This means that =y in Z,, and so the biconditional =y is not valid
in Z,, i.e. Y=y is not a classical tautology, contrary to our original as-
sumption.

Notice that it would not in general be permissable to infer the non-
validity of the biconditional Y=y from the fact that the identity Y=y
fails to hold in a partial Boolean algebra. This inference is, however, ob-
viously legitimate in Z,.

To prove the sufficiency of the condition, it is necessary to show that the
holding of the corresponding identity y =y in & for every classical tautol-
ogy of the form y =y entails the Boolean imbeddability of «Z. Kochen
and Specker prove the contrapositive: If &7 is not imbeddable into a
Boolean algebra, then there exists a classical tautology =y such that
Y#yin .

They consider the set of sentences K, formulated in some first-order
language L, describing all equations of the form o+ =17 or &y={ which
hold among elements of &7, together with the set of axioms, K,, charac-
terizing the class of Boolean algebras. Thus, the class of all models of the
set of sentences K=K, U K, comprises all homomorphic images of .o/
which are Boolean algebras.

Now, if &7 is not imbeddable into a Boolean algebra, then, by Theorem
0, there exists a pair of elements a, be./ such that no homomorphism into
%, will separate them. That is, a and b are two distinct elements in &/
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which are identified by every homomorphism into Z,. If a and b are not
separated by any homomorphism into Z&,, then they cannot be separated
by a homomorphism into any Boolean algebra (by the ultrafilter theorem,
or the semi-simplicity property of Boolean algebras). That it so say, a and
b are identified in every model of K (since the models of K are just a class
of Boolean algebras, viz. those which are homomorphic images of 7).

Kochen and Specker construct a formula in L which is provable from
K,, the set of axioms for a Boolean algebra. The formula says, in effect,
that two distinct elements in <7 are identified if some finite set of relations
of the form o+ =7y and &n={ hold in 7. This formula is therefore valid
in all Boolean algebras. If  is the Boolean function corresponding to the
conditional x> g, where g is the formula in L describing the set of rela-
tions o+ =7y and &n={, and x is the Boolean function corresponding
to the conditional y> g, with x and y variables in L ranging over elements
in &. it follows that

Y=
holds in &, and hence that
Y=y

is valid in &, i.e. that Y=y is a classical tautology. But Y=y does not
hold in &7, by construction.

Thus, in the case of a partial Boolean algebra for which there is no
Boolean imbedding, a biconditional is constructed which is a classical
tautology, but for which the corresponding identity, =y, does not hold
in /.

The relation between imbeddability and classical validity established by
this theorem shows that there is a propositional function ¢ which is a
classical tautology but which is not Q-valid. In particular, there is a pro-
positional function ¢ which is not valid in the partial Boolean algebra 27,
isomorphic to the partial Boolean algebra of subspaces of 5, since
there is no 2-valued homomorphism on &5, and hence no imbedding of
&/ 5 into a Boolean algebra. That is to say, there is a Boolean function
¢(x,,..., x,) which maps every sequence (a,,..., a,) in & onto the unit
in & ,, but which does not map every sequence in the domain of ¢ in

3 onto the unit in 7.

Kochen and Specker construct the following example: Cbnsider the
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Boolean function
¥ =]+ x; + x5 + xx)

where each factor in the product, x;+x;+x; +x;x;x,, coresponds to an
orthogonal triple of vectors in the set of 117 vectors used by Kochen and
Specker in their imbeddability theorem. Each factor takes on the value 1
in &, only for sequences (a,, a,, a;) with exactly one g; equal to 1. The
non-existence of a 2-valued homomorphism on the finite partial Boolean
sub-algebra generated by the 117 vectors means that there is no sequence
of 1’s and 0’s such that one 1 and two 0’s is substituted for the variables
X;, Xj, X, in each factor x;+x; +x;, +x;x;x,. Hence § takes on the value
0 in Z, for every sequence in Z7. It follows that the function

Q= 1 —l_[(x,- + xi + Xy + x,-xjxk)

is classically valid — takes the value 1 in &, for every sequence in Z7.
Now the Boolean function

X;VX; VX e X4 X+ X+ XXX — XiX; — XX, — X%

maps any sequence (4, d,, d;) in /3 corresponding to three mutually
orthogonal subspaces in 5 ; onto the unit element in &7 5, and so the func-
tion x; +x, + x; +x;x %, maps every sequence onto the unit. Clearly, then,
there exists a sequence in 25 which the function y maps onto the unit in
&/ 5, and hence there exists a sequence which ¢ maps onto 0. Thus, ¢ is a
classical tautology which is not valid in &7;.

This theorem puts the significance of the non-imbeddability of the
propositional structure of quantum mechanics into a Boolean algebra in
a new light. If the valid propositional functions are regarded as invariants
characterizing the logical structure of events — just as the invariants of a
group of geometrical transformations characterize the space-time structure
of events — then the Boolean imbeddability of the partial Boolean algebra
of sub-spaces of 5, means that thislogical structure is essentially Boolean:
all the classical tautologies are valid in 4, (as well as some propositional
functions which are not classical tautologies). The classical tautologies
will remain valid under an extension of the structure to a Boolean structure
2, while those propositional functions which are valid in %7, but not
classical tautologies will no longer map all sequences in #Z onto the unit.
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But in the case of logical structures &7 5, &7, ..., generated by the subspaces
of #,, #,,..., some classical tautologies are not valid. The structures
are essentially non-Boolean: there is no possible extension of &7, to
a Boolean algebra %, because all classical tautologies are valid in %,
yet some propositional functions which are classical tautologies do not
map every sequence in 273 onto the unit in .27 .



CHAPTER X

THE STATISTICS OF NON-BOOLEAN
EVENT STRUCTURES

The Kochen and Specker theory of partial Boolean algebras leads to the
resolution of the core problem of interpretation of quantum mechanics,
the problem of hidden variables. To recapitulate: Quantum mechanics
incorporates an algorithm for assigning probabilities to ranges of values
of the physical magnitudes:

pw(aeS) = Tr(WP4(S))

where W represents a statistical state of the theory, and P,(S) is the pro-
jection operator onto the subpsace in Hilbert space associated with the
range S of the magnitude 4. The statistical states generate all possible
(generalized ) probability measures on the partial Boolean algebra of
subspaces of Hilbert space. Joint probabilities

pwl(a,eS; & a,eS, & --- & a,eS,) =
= TT(WPA,(SOPAZ(Sz) PA,.(Sn))

are defined only for compatible magnitudes A4,, 4,,..., 4,, and there are
no dispersion-free statistical states. The problem of hidden variables con-
cerns the possibility of representing the statistical states of quantum
mechanics by measures on a classical probability space in such a way that
the algebraic structure of the magnitudes of the theory is preserved. This
is the problem of imbedding the partial algebra of magnitudes into a com-
mutative algebra or, equivalently, the problem of imbedding the partial
Boolean algebra of idempotent magnitudes (properties, propositions) into
a Boolean algebra. The imbedding turns out to be impossible; there are
no 2-valued homomorphisms on the partial Boolean algebra of idem-
potents of a quantum mechanical system, except in the case of a system
associated with a 2-dimensional Hilbert space. Thus, the transition from
classical to quantum mechanics involves the generalization of the Boolean
propositional or event structures of classical mechanics to a particular
class of non-Boolean structures. This may be understood as a generaliza-
tion of the classical notion of validity: The class of models over which
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validity is defined is extended to include partial Boolean algebras which
are not imbeddable into Boolean algebras.

In a Boolean algebra #, there is a one-one correspondence between
atoms, ultrafilters, and 2-valued homomorphisms, essentially because an
ultrafilter @ in & contains a or a’, but not both, for every ae%. If b is
an atom, either a or a’ is above b, i.e. eithera<b or a<b’ for every ac%#
(but not both, or else 5=0). Hence, there can be one and only one ultra-
filter containing an atom. A 2-valued homomorphism is definable on #
by mapping each element ae Z onto 1 or 0 according to whether a is or is
not a member of the ultrafilter @.

In a partial Boolean algebra that is not imbeddable in a Boolean algebra,
the one-one correspondence between atomic events, ultrafilters, and 2-
valued homomorphisms no longer holds. The partial Boolean algebra
may be regarded as a partially ordered system, so the notion of a filter
(and hence an ultrafilter as a maximal filter) is still well-defined. But it is
no longer the case that if @ is an ultrafilter, then or each ae.</ either ae ®
or a'e®, and hence ultrafilters do not define 2-valued homomorphisms
on . This is because ultrafilters (maximal filters) are no longer prime
filters. A filter @ is prime if it is proper (i.e. a proper subset of <), and if
av be ® only if either ae @ or be P. Every ultrafilter @ in a partial Boolean
algebra contains the unit, and hence contains av a’ for every ae 4. But
if @ is an ultrafilter in the maximal Boolean sub-algebra #Z ., then
neither a nor a’ will belong to @ if a and a’ are outside %, i.e. incompatible
with the elements contained in ¢. An atom in &/ will correspond to an
ultrafilter, but not to a prime filter, and hence will not define a 2-valued
homomorphism on .

The Stone isomorphism maps every element in a Boolean algebra onto
the set of ultrafilters containing the element. Thus, a measure on a clas-
sical probability space X may be interpreted as a measure over ultrafilters
or atomic events in a Boolean algebra %, the points xe X corresponding
to ultrafilters in & and the singleton subsets {x} in & corresponding to
atomic events. The probability of an event @ may be understood as the
measure of the set of ultrafilters containing a, or the measure of the
set of atomic events that can occur together with the event a:

p@=p(2,).
The conditional probability of a given b, p(a | b), is the measure of the
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set of ultrafilters containing a in the set of ultrafilters containing b, with
respect to a renormalized measure assigning probability 1 to the set @,:

(@, ) planb)
w(@)  pk)

Loosely; we ‘count’ the number of atomic events that can occur together
with the event b, in the set of atomic events that can occur together with the
event a. Notice that if b is an atom, the conditional probability is a 2-valued
measure.

The statistical states of quantum mechanics define probability measures
in the classical sense on each maximal Boolean sub-algebra of the partial
Boolean algebra of propositions of a quantum mechanical system. Con-
sider a system associated with a 3-dimensional Hilbert space 5#;. Let 4
and B be two incompatible (non-degenerate) magnitudes with eigen-
values a,, a,, ay and b,, b,, b;, respectively. The corresponding eigen-
vectors are o, ®,, a3 and By, B,, B5. I shall also denote the atoms (atomic
propositions or events) in the maximal Boolean subalgebras #, and %
of &7 by a; and b;, i.e., I shall use the same symbols to denote properties
of the systems represented by these values of the magnitudes.

The statistical state associated with the vector «, assigns probabilities

p(a|b)=

pal(al) =1, pal(GZ) =0, pa1(a3) =0

to the atomic propositions in %, and probabilities p,,(b,)=|(B;, #,)|?,
Pa(52)=1(B2s 2%, Pa, (b3)=|(B3, 1)|* to the atomic propositions in
% 5. How are these probabilities to be understood? Since there are no 2-
valued homomorphisms on &/,, the probability p, (b;), for example,
cannot be interpreted as the conditional probability, p(b, | a,), that the
proposition b, is true (or the corresponding event obtains) given that the
proposition a, is true, i.e. the probability that the value of the magnitude
B is b, given that the value of the magnitude 4 is q;.

The problem at issue is this: Suppose a system S has the property q;.
The statistical algorithm of quantum mechanics assigns (non-zero)
probabilities to properties incompatible with a,, for example p, (b,)=
| (B4, )|?. These probabilities cannot be understood as conditional
probabilities. The probability assigned to b, by the statistical state «; can-
not be interpreted as the relative measure of the set of ultrafilters con-
taining b, in the set of ultrafilters containing a,, because, firstly, a, and b,
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are atoms in &/ and, secondly, a; and b, cannot be represented as non-
atomic propositions in a Boolean algebra because no Boolean imbedding
of &7, is possible. What do these probabilities mean?

I shall show that the generalized measures on the partial Boolean alge-
bras of quantum mechanics satisfy a law of large numbers in an analogous
sense to the measures on a classical probability space or Boolean event
structure.

Suppose AV, AP .. A™ are independent random variables on a
classical probability space X that are statistically equivalent, i.e.

p@®e8) = p(4P~1(S) =1(S)
for all AD, and all Se#, so that
Exp, (A”) =k

for all A®. Here fis the “distribution function’ of the random variable.
To say that the random variables are statistically equivalent, is to say that
they all have the same distribution function. The symbol a(® is a variable
denoting a general value of the magnitude 42, so aPeS is to be read:
the value of the magnitude A'? lies in the range S.

Define the random variable

1
A==(AD + AP +...+ 4M).
n
Let Ak be a neighbourhood of %, i.e. an interval (k—4, k +J) where 6 > 0.
Then, it can be shown that for any 4k (i.e. for any 6 >0)

p,(Gedk) - 1

as n— oo. This is the classical law of large numbers. (The symbol 4 is a
variable denoting a general value of the magnitude 4. Thus de Ak is to be
read: the value of the magnitude A lies in the range Ak.)
To put this another way: Consider the n-fold Cartesian product of the
space X
X =XD x x@ x ... x x™

with the probability measure
o= H(l) X ”(2) X eee X [.l(")

where p? is the same probability on X @ as u? is on X, the measure
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u. Define the random variable
1
A==-(AD +A4® +...4+ 4AM)
n

where A is the same random variable on X ® as 4 is on X, say A.
(Actually, 4 should be defined as

A= —I-(A“’ X I® xcoox I™ 4+ 1M x AP x
n
X I® xooox IM oo 4 IV x o x 07D x 4™)

where I is the unit random variable — real-valued function — on the
space X (".) Let Exp,(4)=k. Then, for any 4k: \

Al (4K)] - 1

as n— 00, i.e. the measure in X of the set of points assigning a value to the
random variable A4 in an infinitesimally small range about Exp, (4) tends
to 1 as the number of factor spaces in X tends to infinity.

Loosely: If we understand the probability space X as exhibiting the
possible events open to a certain physical system (i.e. the propositional
structure of a system), and these events are weighted by a measure function
determining the average or expectation value of a random variable 4 as
Exp,(A4) =k, then if we consider a very large number n of non-interacting
copies of the system as a new composite system, in the limit as # — oo the
probability is 1 that the value of the magnitude A of the composite system
is equal to k.

Now, the expectation value of an idempotent magnitude is the probabili-
ty of the corresponding proposition or event. Thus, to say of a system that
the probability of the proposition a corresponding to the idempotent
magnitude P, is p,(a), is to say that if we take n non-interacting copies of
the system, then in the limit as n — oo the probability is 1 that the value of
the magnitude P, of the composite system is equal to p,(a). In other words,
the probability tends to 1 that the composite system (i.e. the statistical
ensemble) has the property p,(a), i.e. the property corresponding to this
value of the magnitude P,. And this property of the composite system is,
loosely, the property that a fraction, exp,(P,)=p,(a), of the component
systems has the property a.

Notice that if the measure u is a 2-valued measure assigning the prob-
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ability 1 to the atomic proposition a, i.e. if the statistical ensemble is con-
stituted of systems with the property a, then the probability in the ensem-
ble tends to 1 that the value of the magnitude P, for any idempotent
P,# P, is equal to 0. (For P,, of course, the value is 1.) In particular, the
fraction of systems in the ensemble with an atomic property b#a is zero.

In the case of a partial Boolean algebra like 7, the following theorem
can be proved (see Finkelstein): Let ¥ be a unit vector in #°Y, gener-
ating the statistics of a pure statistical state, so that Exp, (“(A("))=k for
the magnitude 4”. Consider the vector

J, — lI,(l) ® lp(z) ® @ ll/(")

in the tensor product Hilbert space
s = TP © 7 @@ FP
where ¥ is the same vector in # as Y is in #§’, say ¥, and the

magnitude

_ 1
A=—(AD + 4% +.-+ 4™)
n

where A) is the same operator in S as A is in #Y, say 4. (Again,
A should be defined as

A= 1(A(1)®I(2) R ® I(") + 1(1) ®A(2)®
n

®1(3)®_”® I(") 4o I(1)®,,_® I("—1)®A("))

where IV is the unit operator on s#{.) Then ¥ is practically an eigen-
vector of the operator 4 in # ;, with the eigenvalue k, even though v is
not an eigenvector of 4 in %, i.e.

lim |Ay —k§| =0.
n—> oo
This holds for any operator. What this theorem says is that if we con-
sider n non-interacting copies of a system whose statistics is generated by a
vector Y as a new composite system, then the statistics of this system is
generated by a vector which is practically an eigenvector of the operator
representing the magnitude 4, with eigenvalue Exp,, (4), if n is large, for
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any magnitude 4 and any vector . Thus, if we take n non-interacting
copies of a system for which the proposition a, is true, so that the statistics
of the ensemble is generated by the vector «;, then the above theorem ap-
plied to the idempotent magnitude P,, yields:

lim ||P,&; — k&;|| =0.

n— oo
Loosely: in the limit as n— oo, &, is practically an eigenvector of the
operator representing the magnitude P, with eigenvalue k, where k is the
expectation value of P, specified by the vector «,.

Now, the expectation value of an idempotent magnitude is the probab-
ility of the corresponding proposition, i.e. Exp,, (Py,)=p,,(b;). And to
say that &, is practically an eigenvector of the operator representing the
magnitude P,, with eigenvalue k, is to say, in effect, that the probability
is very close to 1 that the magnitude P, takes the value k, i.e. in the limit
as n— oo, the probability is 1 that the magnitude P, takes the value
P.,(b1). (More precisely, for any neighbourhood 4k of k

pt_il (ﬁb1€Ak) _)' 1

as n— oo, where p;, is a variable denoting a general value of the magni-
tude P,,.) In other words, the probability tends to 1 that the composite
system (i.e. the ensemble) has the property p,. (by), i.e. the property corre-
sponding to this value of the magnitude P, . And this property of the com-
posite system is, loosely, the property that a fraction, exp,, (Py,) = p,,(b1),
of the component systems have the property b;,.

Thus, a system S with the atomic property a, is associated with the
statistical state oy in the sense that with respect to the property b,, say, S
is to be regarded as a member of a statistical ensemble considered as a
composite system with the property p, (b;) corresponding, loosely, to a
fraction p,, (b,) of the component systems having the property b,. But
this is not to say that some component systems in the ensemble have the
property a, A by, for just as in the Boolean case, an atomic proposition
is a maximal specification of the properties of a system, and no system is
characterized by the conjunction of two atomic propositions, whether
or not these are incompatible. The probabilities assigned to atoms in
#,, By, etc., are determined by the law of large numbers as properties
of an ensemble homogeneous with respect to the atomic property a,, but
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such an ensemble is not defined by a 2-valued measure on &7;. In a
Boolean propositional structure, the probabilities generated in this way
are all 0. The assignment of non-zero probabilities in 275 to atoms in-
compatible with the designated atom is directly related to the non-trivial
compatibility relation.

(It might be supposed that the non-existence of systems in the ensemble
with the property a; A b; depends on an arbitrary restriction of the con-
junction operation to compatible elements. In a partial Boolean algebra,
anb is defined as an element in the algebra if and only if a and b are
compatible. In the partial Boolean algebra of subspaces of a Hilbert
space, X ,A A, denotes the infimum of the subspaces 2¢°, and £, and
this is always defined, even if the subspaces are incompatible: the sub-
spaces of a Hilbert space actually form a lattice. Thus, conjunction in the
sense of infimum is always defined. But this is quite irrelevant. There are
no subspaces in the lattice which are left out of the partial Boolean
algebra. The infimum and supremum of two incompatible subspaces
X, A, are elements in the partial Boolean algebra as well, only these
elements not related to ', and £, by the binary operations of the
algebra.)

These considerations further clarify the way in which the properties of
a quantum mechanical system hang together, and the difference between
this propositional structure and the Boolean structure of the properties
of a classical mechanical system. Since the propositional structure of a
quantum mechanical system is not imbeddable in a Boolean algebra,
there is no sense in which this structure is ‘incomplete’ relative to the
propositional structures of classical systems. A quantum mechanical
system has all its properties in the same sense in which a classical mechan-
ical system has allits properties : the difference lies in the way in which these
properties are structured. In the Boolean case there is a correspondence
between atoms and 2-valued homomorphisms, hence 2-valued measures,
and so an ensemble homogeneous in some atomic property is character-
ized by a 2-valued measure which selects an ultrafilter of propositions,
i.e. assigns probabilities 0 or 1 to every range of every magnitude. In a
partial Boolean algebra like &7, the algebraic relations between the in-
compatible atoms in #, and %y determine multi-valued measures
Pa,(b;)=pg,(a;). Since these measures satisfy a law of large numbers,
they may be regarded as probabilities in the same sense as the 2-valued
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measures of classical mechanics. There should be no special problem
concerning the meaning of the multi-valued probabilities assigned to the
properties of a quantum mechanical system by the specification of an
atomic property of the system. They mean whatever the 0, 1 probabilities
assigned to the properties of a classical system by the specification of an
atomic property of the system are understood to mean.



CHAPTER XI

THE MEASUREMENT PROBLEM

Underlying the disturbance theory of measurement of the Copenhagen
interpretation is the assumption that the propositional structures of
physical systems are Boolean algebras, i.e. that the properties of a physical
system can hang together only in a Boolean structure. On this assumption,
the peculiar statistical relations of quantum mechanics reflect either the
incompleteness of the theory and the existence of hidden variables, or
necessary measurement restrictions on measurements at the microlevel.
By rejecting the first explanation, the Copenhagen interpretation treats
the magnitudes of the theory as dispositional, in the sense that the
probabilities refer to the dispositions for a microsystem to be ‘disturbed’
in certain ways in situations defined by measuring instruments. Formally,
a measuring instrument selects a particular maximal Boolean sub-algebra
and hence a particular set of possible disturbances for the system. Thus,
the probability assignments generated by the statistical states are usually
characterized as the probabilities of finding values for the magnitudes if
appropriate measurements are made. A measurement is not understood
as a procedure for establishing whether or not a system has a certain
property, but as a disturbance of a certain kind characterized by the
appropriate magnitude.

I have argued that von Neumann’s basically analytical approach was to
some extent undermined by an uncritical acceptance of certain aspects
of the disturbance theory of measurement. He saw the non-existence of
joint probability assignments to incompatible propositions as a feature of
the theory directly related to the:disturbance character of measurement
at the microlevel. Since measurements disturb, and the probabilities rep-
resent dispositions for the system to be disturbed in certain ways in
certain situations, the theory comprising the statistical algorithm and
equation of motion alone would seem to be incomplete, since it does not
determine the peculiar stochastic transitions that occur in measurement
processes at the microlevel. To complete the theory, von Neumann
proposed a measurement postulate that has since become known as the
‘projection postulate’.



THE MEASUREMENT PROBLEM 129

His argument for this postulate proceeds from an analysis of the experi-
ment of Compton and Simon. The experiment involves a collision interac-
tion between photons and electrons. Given the initial paths of the photon
and electron before the collision, and the direction of the momentum
transfer, the paths of the particles after collision are determined by the
theory. The experiment may be regarded as providing a refutation of the
Bohr-Kramers-Slater theory, a preliminary version of quantum mechanics
in which energy and momentum are conserved only statistically and not in
individual collision processes. If we assume the laws of collision (as given
by the quantum theory) and take the paths of the particles before the
collision as known, then measurement of the path of either the photon or
the electron after the collision suffices to determine the direction of the
momentum transfer. What the Compton-Simon experiment shows, von
Neumann argues, is that these two measurements, M; and M,, give the
same result, i.e. the same physical magnitude A4 (the direction of the mo-
mentum transfer at the point of collision) is measured in two different
ways (by detecting the photon, and by detecting the electron, after the
collision) and the results always agree.

Now, the quantum statistical state associated with the state of motion
of the photon and electron before the collision does not determine a unique
direction of momentum transfer at the point of collision, but assigns
probabilities to the possible values of this magnitude 4. In the experiment,
the time difference between the measurements M; and M, is usually of
the order of 10~ 1° seconds. Prior to the measurement M, of the magnitude
A, then, the result of the measurement is only statistically determined.
But after the measurement M,, the result of M, is uniquely determined.
(Von Neumann, pp. 213, 214; I have altered von Neumann’s symbols to
conform with my notation.)

We can formulate the principle that is involved as follows: by nature, three degrees of
causality or non-causality may be distinguished. First, the 4 value could be entirely
statistical, i.e., the result of a measurement could be predicted only statistically; and if
a second measurement were taken immediately after the first one, this would also have
a dispersion, without regard to the value found initially - for example, its dispersion
might be equal to the original one. Second, it is conceivable that the value of A may
have a dispersion in the first measurement, but that immediately subsequent measure-
ment is constrained to give a result which agrees with that of the first. Third, 4 could
be determined causally at the outset.

The Compton-Simons (sic) experiment now shows that only the second case is
possible in a statistical theory .Therefore, if the system is initially found in a state in
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which the values of 4 cannot be predicted with certainty, then this state is transformed
by a measurement M of A4 (in the example above, M;) into another state: namely,
into one in which the value of A is uniquely determined. Moreover, the new state, in
which M places the system, depends not only on the arrangement of M, but also on the
result of the measurement M (which could not be predicted causally in the original
state) — because the value of 4 in the new state must actually be equal to this M-result.

On this basis, von Neumann argues that if a measurement of the magnitude
A with (non-degenerate) eigenvalues a,, a,,... and corresponding eigen-
vectors oy, ®,,... yields the result a,, then the initial statistical state is
transformed to a new statistical state determined by the vector «,. For
only the statistical operator P,, represents the quantum statistical state
assigning a probability of 1 to the value @, of 4. (Von Neumann, p. 217.
Again, I have altered von Neumann’s symbols to conform with my nota-
tion.)

We have then answered the question as to what happens in the measurement of a
quantity 4, under the above assumptions for its operator 4. To be sure the ‘how’
remains unexplained for the present. This discontinuous transition from y into one of
the states a1, a2, ... (Which are independent of y, because w enters only into the respec-
tive probabilities p(a:) = | (a, w)|2, i=1, 2,... of this jump) is certainly not of the type
described by the time dependent Schrodinger equation. This latter always results in a
continuous change of y, in which the final result is uniquely determined and is depen-
dent on y.

Now, the projection postulate introduces a consistency problem. A mea-
surement involves an interaction between a system, S, and a measuring
instrument, M. The equation of motion of the theory describes the time-
evolution of the composite system, S + M. Suppose we measure S + M by
a second measuring instrument. Then we ought to get the same result for
the system S whether we apply the projection postulate directly to S, or
whether we apply the projection postulate to the system S + M after a
suitable interaction. Von Neumann shows that this is in fact the case by
a rather ingenious argument requiring a detailed examination of the
quantum statistics of composite systems.

Consider two systems, S; and S,, with associated Hilbert spaces 5,
and 5 ,. (The subscripts here do not denote dimensionality.) The compo-
site system, S; +.5,, is represented in the Hilbert space 4, ®,. Let
{{,a} be a complete orthonormal set of basis vectors in J#;, and {@,} a
complete orthonormal basis in 5#,. Then {®,,,=V,,®¢,} is a complete
orthonormal basis in #;®J¢,. S;-magnitudes, S,-magnitudes, and
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(S; +S,)-magnitudes are represented by self-adjoint operators in 5¢;, H#,,
and 5, @ ,, respectively.

It is convenient to represent these operators by matrices. The matrix
of the & -operator A! is the array of (complex) numbers:

Art:m' = ('//ma Allpm’) (m, m' = 1’ 2, )

The matrix of the #,-operator A2 is the array:

Arzm' = (@n Az(pn') (n,n'=1,2,..).
The matrix of the 5, ® 5, operator A is the array:
Amn mn = @pny APpry) (myn,m’,n" =1,2,..).
Now, an S;-magnitude may be regarded as an (S; +S,)-magnitude.
The 5#;-operator represented by the matrix
Al .
defines an 5#; ® #,-operator represented by the matrix
Amn, m'n = Ar}:m’Ifn'
where 12, is the matrix of the unit operator I in 5#,, i.e. I,,=1 if n=n’,
and I,,’=0if n#n’. Similarly, the 5#,-operator represented by the matrix
A2,
defines an s#°; ® 5 ,-operator represented by the matrix

A2 71
Amn, mn’ — Ann'I mm’ *

A statistical operator in 5#; @5, determines a statistical operator in
J; and a statistical operator in J#,, i.e. the statistical operator of the
composite system S; +S, determines the statistical states of the sub-
systems S; and S,. Suppose the statistical state of the composite system
is represented by the statistical operator W in 5, ® 5 ,, with the matrix

Wmn,m'n’ .

It is easy to show that the statistical operator W' defining the statistical
state of the subsystem S, in the factor space #,, is represented by the
matrix:

Wn%m' = Z Wmn, m'n -
n=1
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Similarly, the statistical operator W?2 is represented by the matrix:
2 [+0]
I/Vnn' = Z Wmn, mn’ *
m=1

Von Neumann considers the following general problem: For any two
statistical matrices Wy, Wz, find a statistical matrix W, -, such
that

Z Wmn, mn’ = ann' .
m=1

He shows that this problem has a unique solution if and only if at least
one of the two matrices represents a pure statistical state. In this case the
solution is:

Wmn, m'n’ = Wr:m’ I/Vrtzn’ .

He also shows that for any vector @ in 5#; ®,, it is possible to choose
complete orthonormal bases {y,,}, {¢,} in £, and 5, such that

M
@ = ‘Zl Ci‘/’rt ® (psi

with M finite or infinite, i.e. the values of the magnitudes A and 4% with
eigenvectors {¢,,} and {{,} are correlated in the state represented by the
vector P
po(a' = a4, & a* = a;) = |c||*
p(b(a1=arlt&a2=afj)=0 (i'-'éj)'
Now, the matrix of the statistica] operator W= P is:

Wmn,m’n' = fmnfn’:n’

and so
Wr:m' = Z fmnf:’n
n=1
where
fmnfn:k’n: lcilz for m=m'=ri; i= 1, 2, ces
and

fonfok, =0 otherwise,
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1.e.
- 2
Similarly:
o0
VV"Z"' = Z f mnf r:lkn’
m=1
where
fmnfr::l’= Icilz for n=n,=si; i=1, 2,-..!
and
SounSow =0 otherwise,
i.e.

M
W;Z Z 2
— i_l Icil P¢si .

Thus, a pure statistical state W= Py in 5, @I ,, projected into the
factor space S, or J,, is in general a mixture. (It is a pure state if M =1.)

To sum up: If the systems S; and S, are represented by the vectors
Yyes; and pe’,, respectively, then the system S; +S, is represented
by the vector Y=y ®¢ in o, ®H,. If S; +S, is represented by a vector
¥ in s, @4, which is not a tensor product y®¢, then S; and S, are
associated with statistical states which are mixtures. There exists an §,-
magnitude and an S,-magnitude such that the statistical correlations
determined by ¥ establish a one-one correspondence between the values
of these magnitudes.

The consistency problem is resolved in the following way: Suppose we
have a system S represented by the vector y, i.e. the pure statistical state
P,. Let

V=Y ()

where the «; are eigenvectors of the self-adjoint operator representing
the magnitude 4. By the projection postulate, measurement of the magni-
tude A results in a transition

V-

with probability |(«;, ¥)|2. Now consider the measurement as an interac-
tion between the system S and a measuring instrument M suitable for
measuring 4. This means that S and M interact in such a way that the
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Hilbert space vector representing the composite system S + M during the
interaction evolves (by a unitary transformation determined by the equa-
tions of motion of the theory) to a vector of the form

; (o V) o, ® 9.

The \; are eigenvectors of some M -magnitude, say R, and this representa-
tion of the statistical state of S +M correlates the eigenvalues of R
(representing the ‘pointer-readings’ of the instrument M) with the eigen-
values of the magnitude 4 in the system S':

pla=a;&r=r)=|(x )
and

pla=a&r=r)=0 (#}]).

In other words, if the measuring instrument is represented initially by the
vector ¢, then the measurement process is an interaction governed by the
equation of motion of the theory which results in the transition:

'/’®(P—’§i:(°‘i,‘/’)“i®¢i-

What von Neumann shows is that there exists measuring instruments
in this sense: Given a complete orthonormal set {«;} in 5#; (the Hilbert
space of the system S) and any vector y € #; specifying the initial statisti-
cal state of S, there exists a complete orthonormal set {¢;} in 5, (the
Hilbert space of M) and a vector e 5, (specifying the initial statistical
state of the instrument M), such that

Y()= z (o, ¥) o, @ @,

(the statistical state vector of the composite system S + M in the Hilbert
space #;®,) is a solution of Schrodinger’s equation of motion for
the composite system S + M, if

P()=¥®¢

is the initial statistical state vector of the composite system. Equivalently:
There exists a unitary transformation:

V@3 () 4® .
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Now, by the projection postulate, a measurement of the magnitudes 4
and R on the composite system S + M by a second measuring instrument
results in the transition:

() - o @ o;

with probability |(a;, )|, from which it follows that the statistical state
vector of the system § after the interaction is a; with probability | (a;, 1)|2.
By the theory of statistical operators in 5#; ® ¢, developed above, if

W=.Pl17, With ‘I’=Oci®(pi
then
Wt=P,

and
W2=PpP

@i’

We have consistency in the following sense: The application of the pro-
jection postulate directly to the system .S is consistent with its application
to the system S + M after a suitable interaction between S and M governed
by the equation of motion of the theory.

The significance of von Neumann’s projection postulate, and the re-
sulting consistency problem and its solution, is generally misunderstood.
It is not sufficient, the argument goes, merely to show consistency. What
has to be shown is, firstly, that the statistical state vector of the compo-
site system S +M immediately after the measuring instrument M has
registered a result corresponding to the value a; for A4 is:

o; ® @;

and, secondly, that in a measurement of the magnitude A4 on the system .S
the transition

V¢ - o;®0;

occurs with probability |(e;, )|

Now, this objection depends on the assumption that a system has an
atomic property if and only if it is associated with a Hilbert space vector
in the 1-dimensional subspace which is in the range of the projection
operator representing the property, i.e. if and only if this projection
operator is the statistical operator of the system. Thus, if the composite
system S + M is associated with the vector ¥ (¢), it cannot have the proper-
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ty corresponding to the value r; of R and a; of A, for any i: a system only
has those properties assigned probability 1 by the statistical state. This
assumption requires that the properties of a system incompatible with the
atomic property assigned probability 1 (i.e. those properties assigned
probabilities between 0 and 1) are in some sense brought into existence by
the measurement process, and this is surely part of what is involved in
von Neumann’s proposal of the projection postulate as characterizing
the peculiar disturbances of micro-systems that supposedly occur during
measurement — disturbances that underly the statistical relations of quan-
tum mechanics, according to the Copenhagen interpretation. The ob-
jection makes no sense at all if what is demanded is a reduction of the
stochastic measurement transitions determined by the projection postu-
late to the temporal evolutions governed by the equation of motion of the
theory. For, clearly, there can be no possible interaction between S and
M governed by the quantum mechanical equation of motion which results
in different transitions of the Hilbert space vector ¥ on different occasions.
This follows immediately and trivially from the equation of motion,
which is deterministic and describes a unitary transformation of the Hilbert
space vector representing the composite system.

The measurement problem is usually posed as follows: that the statisti-
cal operator associated with S + M after the interaction is actually

W = (@ W Pagy,

and not
W)= Py

and what is to be explained is the projection postulate in the form
W w

where W is the statistical operator of the composite system before the
interaction. This is a weaker requirement, because the decomposition of
W' as a sum of projection operators onto the 1-dimensional subspaces
defined by the vectors «;® ¢, is unique only if the probabilities | (x;, )|
are all distinct.

It is not at all evident just what problem would be solved by a theoreti-
cal explanation of the transition W — W' in a measurement process, for
this transition could not be associated in an unambiguous way with a
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measurement of the magnitude A4 (on the above assumption that the
system has an A-value if and only if the Hilbert space vector is an eigen-
vector of A) unless the probabilities |(a;, 1/)|? — the eigenvalues of the
operator W' — were all distinct, and this would depend on . But even
supposing that this difficulty could be avoided in some way, the only
conceivable explanation for a statistical operator representing a mixture
resulting from an interaction (defined by a unitary transformation)
would be to suppose that the initial statistical operator associated with the
measuring instrument represented a mixture.

Now this explanation is obviously untenable, as von Neumann has
shown. For suppose the statistical operator associated with M before the
interaction is:

W2=ZwiP‘Pi'
i

As before, we assume that the statistical operator associated with S before
the interaction is:

1
W - .P v
Then the initial statistical operator of the composite system is:
W = Z WiP VYR
]
A (unitary) interaction could transform W to:

W= Z wiPlI't@@H :

But this is of no use at all, for the probabilities, w;, depend on M and not
at all on S! We require, of course, w;=|(«;, )|?, and here the w; repre-
sent, loosely, a measure of our ignorance concerning the value of the
magnitude R of the measuring instrument M before the interaction.

In general, a measurement process is an interaction between two systems,
S; and S,, resulting in correlations between (some of) the magnitudes of
S; and §,, so that the value of an S;-magnitude, say, can be inferred from
the value of an appropriate S,-magnitude, on the basis of the theory of
the interaction. From the standpoint of the theoretical analysis of mea-
surement, the value of the S,-magnitude is simply stipulated, i.e. the value
of the S,-magnitude is ascertained by looking at S,, and this must be
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understood as ‘mere looking’. Whether or not the systems are macro-
systems or microsystems is irrelevant here, for it would be absurd to sup-
pose that S, is disturbed in any way at all by the assignment of values
to its magnitudes in this sense: the value of the S,-magnitude is not brought
into being by ‘looking’, or altered by ‘looking’. Of course, the process of
‘looking’ can be treated as an actual measurement process, i.e. an inter-
action similar to the S;—S, interaction establishing correlations between
the magnitudes of S, and the magnitudes of a system S5, but this intro-
duces nothing new. For in the theoretical analysis of the measurement
process the values of the S;-magnitudes are now stipulated, i.e. they are
ascertained by ‘mere looking’.

For example, consider the composite classical mechanical system,
S; +8S,, whose states are represented by the points (q,, p; ; 45, P,) in phase
space, a 4-dimensional space constructed as the Cartesian product of the
phase spaces of S; and S,. The Hamiltonian function

H =qp, +q,p:

correlates the state of S; (represented by the values of the position and
momentum variables g;, p;) to the state of S, (represented by the values
of the position and momentum variables g,, p,). For Hamilton’s equations
of motion for the systems are:

dg; OH

& g
dg, 0H

A " ag

dp, 0H

W Tog TR
dp, 0H

dt  oq, Dt

with the solutions

Aé' + Be™*  q,= Ae' — Be™!
Cé' + De ! p, =— Cé' + De™*

q91
D1

where 4, B, C, D are four arbitrary constants of integration. Evidently,
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the state of $; may be inferred by looking at the state of S,. Or, two ob-
servations (in the sense of ‘mere looking’) of the magnitude g, (or p,) at
two different times suffice to determine the magnitude g, (or p,) at any
time.

A similar example in quantum mechanics is the composite system
consisting of two spin-} particles in the singlet spin state, the system con-
sidered in Chapter VI. By looking at one particle, i.e. by ascertaining
whether or not the system has a particular atomic property, we can infer
whether or not the other particle has the correlated property. The fact
that the properties of microsystems cannot be directly observed is quite
irrelevant here. Von Neumann’s measurement interaction between S and
M results in a correlation between the values of the magnitudes 4 and R
expressed by the Hilbert space vector:

PO =Y () u® ;.

By ascertaining that the value of the A/-magnitude R is r;, say, we infer
that the value of the S-magnitude A is a;. There is no measurement
problem here peculiar to quantum mechanics.

To argue that the Hilbert space vector of the composite system ought
to be

o X @;

if the value of the M -magnitude R is r; and the value of the S-magnitude
A is a;, is to assume that a quantum mechanical magnitude has a
value for a system if and only if the statistical state of the system is
represented by an eigenvector of the magnitude. And this assumption
could only be incorporated into the Hilbert space theory of quantum
mechanics by a special measurement postulate of the sort proposed by
von Neumann. If the statistical state of a system is represented by the
Hilbert space vector

'// = Z (ais ll/) o;

then measurement of the magnitude A yielding the value q; must involve
a transition of the Hilbert space vector:

l/l-—>0(i.
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This is von Neumann’s projection postulate. Given this assumption on the
quantum mechanical magnitudes (which I have associated with the
Copenhagen interpretation), the only remaining problem is the consis-
tency of the measurement postulate with the equation of motion of the
theory. In order to show consistency, we assume an interaction between
the system .S and a measuring instrument M which establishes correlations
between an S-magnitude and an M-magnitude, of the sort given by the
Hilbert space vector

Y(t) = Z (o4 ¥) o ® @

i.e. by the statistical operator
W (t) = P ()"

The objection that the statistical operator of the composite system S + M
after the interaction is actually

W, = ; I(ai’ l/I)Iz Pa:@m

confuses the consistency problem with the measurement problem which
is already resolved by the incorporation of the measurement postulate
into the theory.

To sum up: To a certain extent, von Neumann took the disturbance
theory of measurement of the Copenhagen interpretation seriously, and
thought it necessary to ‘complete’ the Hilbert space theory of quantum
mechanics by a postulate describing the peculiar stochastic transition of a
microsystem under a measurement acting as a disturbance of a certain
kind. This introduces a problem of consistency with the equation of
motion of the theory, which von Neumann solved. The standard ‘mea-
surement problem’ rests on a misunderstanding of von Neumann’s
problem, and a failure to see the significance of the projection postulate
as the theoretical principle characterizing measurement disturbances,
which according to the Copenhagen interpretation underly the statistical
relations of quantum mechanics. This problem is a pseudo-problem.

But von Neumann’s problem is also a pseudo-problem, since it derives
from an uncritical acceptance of certain tenets of the Copenhagen inter-
pretation, and a consequent inadequate analysis of the completeness
problem. What is to be explained is the significance of statistical states
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which assign unit probability to atomic propositions and non-zero
probabilities to other incompatible atomic propositions. Thus, it is the
significance of the compatibility relation which is at issue. The probabili-
ties

I(ai: '/’)Iz

associated with the values a; of a magnitude 4 by the Hilbert space vector
Y reflect the incompatibility of the Boolean subalgebra #, with any
Boolean subalgebra containing a proposition represented by the 1-dimen-
sional subspace o",. The system always has an 4-property, even when the
statistical stateis P,, and this A-property is ascertained by ‘looking’. The
point is that having an 4-property, B-property, etc., does not require the
existence of a 2-valued homomorphism on the propositional structure;
the existence of 2-valued homomorphisms is associated only with Boolean
propositional structures.



CHAPTER XII

THE INTERPRETATION OF QUANTUM MECHANICS

What constitutes an interpretation of a theory like quantum mechanics?
What problem is solved by proposing an interpretation?

Einstein has introduced a distinction between principle theories and
constructive theories, which is of fundamental importance for the theory
of theories. In the case of constructive theories, the idea is to reduce a
wide class of diverse systems to component systems of a particular kind.
The existence claims to which theories of this type have led are well
known. The molecular hypothesis of the kinetic theory of thermodynamic
systems is an example. Classical discussions of the reality of theoretical
concepts have focussed on constructive theories (Einstein (b), p. 54):

When we say that we have succeeded in understanding a group of natural processes,
we invariably mean that a constructive theory has been found which covers the proces-
ses in question.

Principle theories have a different aim. These theories introduce abstract
structural constraints which events are held to satisfy. Einstein’s example
is a theory like classical thermodynamics, which specifies (Einstein (b),

p. 54)

general characteristics of natural processes, principles that give rise to mathematically
formulated criteria which the separate processes or the theoretical representations of
them have to satisfy.

The special and general theories of relativity are principle theories — this
conception of the significance of the relativity principle is crucial for a
proper understanding of the theories. As a principle theory of space-time
structure, Newtonian mechanics in the absence of gravitation represents
the 4-dimensional geometry of space-time by the inhomogeneous Galilean
group, which acts transitively in the class of free motions, i.e. the inhomo-
geneous Galilean group is the symmetry group of the free motions: it is a
subgroup of the symmetry group of every mechanical system, and the
largest such subgroup. Einstein’s special principle of relativity is the
hypothesis that the symmetry group of the free motions is the Poincaré
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group. The transition from the Galilean group to the Poincaré group is
associated with a corresponding modification in space-time structure.
The absolute time and Euclidean metric of Newtonian mechanics are
dropped, and the metrical relations of space-time are determined by the
Minkowski tensor.

By an interpretation of a theory, I mean an account that shows in what
respects the theory is related to preceding theories. In the case of principle
theories, this requires a characterization of the theory as involving a
modification of certain specific structural principles, representing the
transition from one class of possible structures to another. I understand
general relativity as a principle theory of space-time structure involving
the hypothesis that the symmetry group of the free motions is the group
of all diffeomorphisms, i.e. the group preserving only the local differential
and topological structure of the space-time manifold. The space-time
metric plays a dynamical role and is no longer an absolute element in the
description of motion. An opposing interpretation is implicit in the
Wheeler-Misner theory of geometrodynamics. Space is the dynamical
element of geometrodynamics. On this view, general relativity is a con-
structive theory of matter: material systems are constructed out of the
temporal behaviour of space.

The central foundational problem of quantum mechanics is the com-
pleteness problem, the problem of hidden variables. Consider, again, a
system S associated with a 2-dimensional Hilbert space £, (say a spin-}
particle). Let 4 and B be two incompatible magnitudes (spins) with
eigenvalues a;, a, and b,, b,, respectively. The corresponding eigen-
vectors are o4, o, and B,, f,. As usual, I denote the atoms (atomic
propositions or events) in the maximal Boolean subalgebras %, and %5
of &,, by a; and b;. The statistical state associated with the vector o,
assigns probabilities

pa1(a1) = 1’ pal(az) =0

to the atomic propositions in #,, and probabilities

pal(bl) = | (ﬂls 061) IZ: pa1(b2) = | (BZa OC1) |2

to the atomic propositions in #. The problem concerns the significance
of the measures p, (b,), p,,(b2), which are neither 0 nor 1. The measure
P, (b;) cannot be interpreted as the conditional probability, p(bj| a,),
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that the proposition b; is true (or the corresponding event obtains) given
that the proposition g, is true, i.e. as the probability that the value of the
magnitude B is b; given that the value of the magnitude 4 is a,. For a,
and b; are atoms in &/,, and so p,, (b;) cannot be understood as the
relative measure of the set of ultrafilters containing b; in the set of ultra-
filters containing a;.

To put this another way: The B-statistics defined by «, cannot be
represented by a mixed ensemble consisting of a fraction | By, 1) |2 of
f;-systems and a fraction |(ﬂ’2, o) |2 of B,-systems, for this ensemble
does not generate the A-statistics specified by «,. The statistical operator

W= | (B1> 29) |2Pp1 + | (B2, 1) |2sz

generates the same statistics as the operator P,, for all magnitudes com-
patible with B, but not for magnitudes compatible with A.

Now, if we assume that the properties of a system are necessarily struc-
tured in a Boolean algebra, the natural move is to regard the atomic
character of a; and b; as spurious. In other words, because only a Boolean
structure makes sense for the properties of a system, quantum mechanics
isincomplete, and the statistical relations of the theory reflect an averaging
process over variables whose precise values remain ‘hidden’ at present.
This interpretation is possible for %7, since 2-valued homomorphisms do
exist on &/,: @; and b; can be represented as non-atomic properties in a
Boolean algebra, i.e. a Boolean imbedding of &7, is possible. Thus, the
B-statistics defined by a, can be represented by a mixture which also gener-
ates the A-statistics, if the quantum mechanical description is extended
by the introduction of additional parameters — hidden variables — which
enable the construction of a measure space whose 1-point subsets repre-
sent atoms in a Boolean algebra.

The special feature of a 2-dimensional Hilbert space which allows this
possibility is that all magnitudes are non-degenerate (or ‘maximal’).
Alternatively, compatibility reduces to orthogonality — two different pro-
positions are compatible if and only if they are represented by orthogonal
subspaces in J#,, i.e. if and only if they negate each other. In higher-
dimensional Hilbert spaces, the existence of degenerate magnitudes (or
non-trivial instances of compatibility) prevents a hidden variable exten-
sion of the theory which preserves the algebraic structure of the magni-
tudes. In the case of a degenerate magnitude B which is compatible with
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each of two mutually incompatible magnitudes, 4 and C, it is impossible
to represent 4, B, and C by three random variables on a measure space
in such a way that the compatibility relations are preserved. We cannot
introduce a functional relationship between f, and f; (via a random
variable fp) and a functional relationship between fz and f (via a random
variable f), without also introducing a relationship between f, and f.
(See Chapter VII.) But the incompatibility of A and C requires the com-
plete independence of A and C.

The simplest way to see this is to notice that in the 2-dimensional case
we can, formally, introduce a different measure space for each magnitude
A, and define a probability measure py on X, for each statitical state W
of quantum mechanics, generating the A-statistics specified by W as the
measure of points in X, which a random variable f, maps onto the value
a; of A:

pwa=a) = pW(f.Il(ai))-

The spaces X, can then be combined into a Cartesian product measure
space
X=1] X4
Ae2

with an appropriate product measure which generates the statistics de-
fined by W for any magnitude. In the case of higher-dimensional Hilbert
spaces, if we introduce in a similar way a different measure space for each
non-degenerate magnitude, then the representation of a degenerate mag-
nitude as a random variable is non-unique: each degenerate magnitude
will have to be represented by a family of random variables, a different
real-valued function on each measure space associated with a non-
degenerate magnitude compatible with the degenerate magnitude. We
cannot introduce a special measure space for each degenerate magnitude,
for this would amount to treating a degenerate magnitude B, compatible
with the non-degenerate magnitude A, as completely independent of A.

Thus, the construction of a classical probability space for a quantum
mechanical system as the product of factor spaces associated with the
maximal Boolean subalgebras in &/ is possible for %/, and impossible
for &4, &,, ... (assuming the propositional structure is preserved in the
construction), because all the Boolean subalgebras of %/, are maximal
(each consisting of 0, 1, and two orthogonal atoms), while there exist non-
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maximal Boolean subalgebras in <75, &Z,,.... Each such non-maximal
Boolean subalgebra, associated with a degenerate magnitude, can be ex-
tended to a maximal Boolean subalgebra in an infinite number of ways,
corresponding to the family of maximal Boolean subalgebras associated
with the non-degenerate magnitudes compatible with the degenerate
magnitude in question. The non-uniqueness of these extensions makes a
Boolean imbedding of the partial Boolean algebra impossible.

Now, it is precisely the existence of degenerate magnitudes, i.e. non-
trivial instances of compatibility, which characterizes the non-Boolean
propositional structure of quantum mechanics, and the peculiar statistical
relations of the theory. Hidden variable theories are Boolean reconstruc-
tions of the quantum statistics which alter the propositional structure by
replacing degenerate magnitudes by appropriate sets of magnitudes. Thus,
magnitudes which are equivalent in the partial Boolean algebra of magni-
tudes of a quantum mechanical system are treated as inequivalent in a
hidden variable theory: they are statistically equivalent only for those
probability measures corresponding to the statistical states of quantum
mechanics. Insofar as statistical ensembles are possible which do not
generate the quantum statistics, such theories differ in content from
quantum mechanics, and the difference is in principle testable.

For example, in the theory of Bohm and Bub a system is characterized
by an ordered pair of vectors: a vector Y e # representing the (pure)
statistical state of the system, and a vector & € 5#’ representing the addi-
tional ‘hidden variables’. An equation of motion is proposed for  which
involves £, and differs from Schrédinger’s equation by a term which
is assumed to dominate when the macroscopic environment is such as
to constitute a measuring instrument for a non-degenerate magnitude.
If the magnitude in question is 4, with eigenvectors a,, a,,..., «,, then
this additional term describes a process in which  is projected onto a
particular eigenvector «;. It follows from the equation that the resulting
eigenvector is determined by the greatest ratio | (o, ¥) |2/ |(o;, &) |2
Thus, the Bohm-Bub hidden variable theory involves a measure space
X =4 x #', random variables f, on X defined for each non-degenerate
magnitude by the algorithm

|(‘xb ll/)lz |(°Cja W|2

’ = 4a; if
Ja, O =ac i O (@ OF

forall j#i,
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and a probability measure p, on X defined as the product of an atomic
measure on £ concentrated at the point {y (where ¢ is the statistical
state) and a measure which is uniform on the surface of the unit hyper-
sphere in S’ and zero elsewhere on 5. It is not difficult to show that
the measure of the set of points satisfying the above inequality is in fact
l(% n//)l 2. (See Bohm and Bub for a simple proof in the 2-dimensional
case; Bub for a concise generalization to the n-dimensional case. A
similar theory was first proposed by Wiener and Siegel.) The problem
that arises is the definition of the random variables for degenerate magni-
tudes, and evidently there is no way of defining these variables without
introducing inequivalent representation for magnitudes which are equi-
valent in the partial algebra.

A hidden variable theory will yield probabilities which differ from
those generated by the quantum algorithm for measures which do not
correspond to the statistical states of quantum mechanics. Statistical en-
sembles represented by such measures are always in principle possible in
a hidden variable theory, and generally will have to be treated as ‘un-
stable’ by introducing some mechanism which tends to transform these
exceptional statistical ensembles to ‘equilibrium’ ensembles represented
by measures corresponding to quantum statistical states. For example,
the Bohm-Bub theory postulates a randomization process which tends to
reconstitute the random measure over the unit hypersphere in the Hilbert
space ', the only measure yielding the quantum statistics.

Now, a theory constructed along these lines might very well be interest-
ing for all sorts of reasons. (It might, for example, be true.) But the
replacement of quantum mechanics by an alternative theory cannot be
regarded as a contribution to the foundational problem of interpretation,
for the problem is simply ignored. Hidden variable theories in this sense
will have to stand on their own feet.

Heisenberg’s version of the Copenhagen interpretation (as I have re-
constructed it in Chapter II) is the interpretation of quantum mechanics
as a ‘degenerate’ hidden variable theory. The statistical relations of
quantum mechanics are understood with reference to a Boolean recon-
struction in which the only statistical ensembles that can be constructed
physically (by measuring instruments in principal at our disposal) are
those represented by measures corresponding to the statistical states of
quantum mechanics. In terms of the Bohm-Bub theory: the randomiza-
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tion process is always infinitely fast, i.e. the randomization time is zero.
Bohr’s dispositional interpretation of the quantum mechanical magni-
tudes involves the assumption that a (micro-) system, at any one time, is
characterized by a set of properties which form a Boolean algebra, corre-
sponding to a maximal Boolean subalgebra in the partial Boolean algebra
of quantum mechanical idempotent magnitudes. The appropriate Boolean
subalgebra is related to the macroscopic measuring instruments, which
define conditions appropriate for the realization of some set of disposi-
tions for the system to manifest a family of properties forming a Boolean
algebra. In effect, this amounts to saying that a system is always repre-
sented by a mixture of quantum states (in the limiting case by a mixture
with 0, 1 weights), the constituents of the mixture being determined by
the experimental conditions. If the experimental conditions are such as
to determine the maximal Boolean subalgebra #, associated with the
non-degenerate magnitude 4, then the system is actually in one of the
states a;, and hence represented by a statistical operator of the form

Y w;P,,.

If the state is known, w;=1 or 0. The probabilities assigned to the
‘complementary’ properties in %5 by a pure statistical operator P, re-
presenting a statistical ensemble of systems all in the state a;, are to be
understood as the probabilities of finding particular B-values, if the
experimental conditions are altered so as to determine the maximal
Boolean subalgebra #p, given that the system is in the state «;. The
quantum mechanical description of a system, in terms of a partial Boolean
algebra of dispositions, allows the consideration of all possible experi-
mental conditions, but the application of this description to a particular
system is always with respect to the experimental conditions obtaining
for the system, which specify a particular maximal Boolean subalgebra
of properties, via the dispositions for the system to manifest such proper-
ties under these conditions.

Now this interpretation leads to an insoluble measurement problem,
if the experimental conditions for a system S are assumed to be deter-
mined (in principle, at least) by a physical interaction between S and a
second system M (which, even if macroscopic, ought to be reducible to a
complex of interacting microsystems). There is no way in which a partic-
ular maximal Boolean subalgebra #Z, can be selected for S by an interac-
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tion with M governed by the quantum mechanical equation of motion,
for mechanical interactions are unitary transformations which do not
violate the integrity of the Hilbert space: a vector can always be repre-
sented with respect to any orthogonal set of basis vectors. The only pos-
shle way in which quantum mechanics can be made to fit this interpreta-
tion — as von Neumann saw — is by including a special projection postu-
late in the theory, which has the effect of ‘filtering out’ a suitable maximal
Boolean subalgebra in each case of measurement.

From this point of view, there is nothing to choose between Bohr’s
version of the Copenhagen interpretation and Heisenberg’s, for the
introduction of the projection postulate is quite analogous to the hypo-
thesis of a discontinuous, infinitely fast randomization process for the
hidden variables. This is like interpreting classical electrodynamics as an
ether theory supplemented by Lorentz’s length contraction and time
dilatation postulate, as opposed to Einstein’s interpretation in the special
theory of relativity.

Fundamentally, then, there is only one puzzle about the quantum
statistics, which arises because of the non-existence of 2-valued homo-
morphisms on the partial Boolean algebra of propositions, i.e. the break-
down of the one-one correspondence between atomic events, ultrafilters,
and 2-valued homomorphisms which holds for Boolean algebras. The
variety of conceptual puzzles and paradoxes (the 2-slit experiment,
tunnelling paradox, Schrddinger’s cat, etc. — ‘interference’ phenomena of
one sort or another) all reflect the impossibility of interpreting the non-
zero probabilities between incompatible atoms as conditional probabili-
ties. A paradox is generated by requiring a non-Boolean propositional
structure to satisfy certain conditions which only a Boolean structure can
satisfy (for example, that all ultrafilters are prime filters, or that a propo-
sition can only be true or false relative to a truth value assignment to all
the propositions defined by a 2-valued homomorphism).

In the previous chapters, I have represented classical and quantum
mechanics as principle theories of logical structure, since they introduce
constraints on the way in which the properties of a physical system are
structured. The logical structure of a physical system is understood as
imposing the most general kind of constraint on the occurrence and
non-occurrence of events. I have argued that the transition from classical
to quantum mechanics is to be understood as a generalization of the
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Boolean propositional structures of classical mechanics to a particular
class of non-Boolean structures. There are two aspects to this thesis:
firstly, the significance of a realist interpretation of logical structure
analogous to Einstein’s realist interpretation of geometric structure in-
volved in the transition from classical to relativistic physics; secondly,
the resolution of problems of interpretation by relating the peculiar
statistical relations of quantum mechanics to the specific character of the
underlying logical structure. Insofar as problems of interpretation re-
main, they are either problems about logic, or problems about the category
of algebraic structures in relation to the Boolean structures of classical
mechanics.

Both the search for alternative hidden variable theories of the micro-
level and the Copenhagen disturbance theory of measurement (the
Bohrian dispositional interpretation of the quantum mechanical magni-
tudes) misconstrue the foundational problem of interpretation by intro-
ducing extraneous considerations which are completely unmotivated
theoretically. Thus, it may well be the case that there are features of micro-
systems which quantum mechanics, in its present form, cannot explain,
so that the theory will have to be drastically revised by the introduction
of new parameters, or perhaps even scrapped altogether. But this has no
bearing on the theoretical significance of the transition from classical to
quantum mechanics. The Copenhagen interpretation grounds the com-
pleteness of quantum mechanics (in the sense of the impossibility of a
hidden variable theory of micro-events with a non-zero randomization
time) on a thesis concerning the peculiarities of measurement at the
microlevel, and this, too, is irrelevant to the problem of interpretation.
For, while a thesis of this sort would explain why the description of the
microlevel requires an irreducibly statistical theory of a certain kind, it
cannot guarantee that quantum mechanics does in fact have this charac-
ter, nor does it answer the question of how the quantum theory is related
to other statistical theories. Both interpretations stem from an uncritical
approach to foundational issues, and an inadequate theory of logical
structure.
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