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Preface

The following is a script, which tries to collect and extend some ideas about Quantum Field
Theory for the International Student Programs at GSI.

We start in the first chapter with some facts known from ordinary nonrelativistic quantum
mechanics. We emphasise the picture of the evolution of quantum systems in space and time.
The aim was to introduce the functional methods of path integrals on hand of the familiar
framework of nonrelativistic quantum theory.

In this introductory chapter it was my goal to keep the story as simple as possible. Thus
all problems concerning operator ordering or interaction with electromagnetic fields were
omitted. All these topics will be treated in terms of quantum field theory beginning with in
the third chapter.

The second chapter is not yet written completely. It will be short and is intended to contain
the vacuum many-body theory for nonrelativistic particles given as a quantum many-particle
theory. It is shown that the same theory can be obtained by using the field quantisation
method (which was often called “the second quantisation”, but this is on my opinion a very
misleading term). I intend to work out the most simple applications to the hydrogen atom
including bound states and exact scattering theory.

In the third chapter we start with the classical principles of special relativity as are Lorentz
covariance, the action principle in the covariant Lagrangian formulation but introduce only
scalar fields to keep the stuff quite easy since there is only one field degree of freedom. The
classical part of the chapter ends with a discussion of Noether’s theorem which is on the
heart of our approach to observables which are defined from conserved currents caused by
symmetries of space and time as well as by intrinsic symmetries of the fields.

After that introduction to classical relativistic field theory we quantise the free fields ending
with a sketch about the nowadays well established facts of relativistic quantum theory: It
is necessarily a many-body theory, because there is no possibility for a Schrodinger-like one-
particle theory. The physical reason is simply the possibility of creation and annihilation
of particle-antiparticle pairs (pair creation). It will come out that for a local quantum field
theory the Hamiltonian of the free particles is bounded from below for the quantised field
theory only if we quantise it with bosonic commutation relations. This is a special case of
the famous spin-statistics theorem.

Then we show how to treat ¢* theory as the most simple example of an interacting field theory
with help of perturbation theory, prove Wick’s theorem and the LSZ-reduction formula. The
goal of this chapter is a derivation of the perturbative Feynman-diagram rules. The chapter
ends with the sad result that diagrams containing loops do not exist since the integrals are
divergent. This difficulty is solved by renormalisation theory which will be treated later on



Preface

in this notes.

The fourth chapter starts with a systematic treatment of relativistic invariant theory using
appendix B which contains the complete mathematical treatment of the representation theory
of the Poincaré group as far as it is necessary for physics. We shall treat in this chapter at
length the Dirac field which describes particles with spin 1/2. With help of the Poincaré
group theory and some simple physical axioms this leads to the important results of quantum
field theory as there are the spin-statistics and the PCT theorem.

The rest of the chapter contains the foundations of path integrals for quantum field theo-
ries. Hereby we shall find the methods learnt in chapter 1 helpful. This contains also the
path integral formalism for fermions which needs a short introduction to the mathematics of
Grassmann numbers.

After setting up these facts we shall rederive the perturbation theory, which we have found
with help of Wick’s theorem in chapter 3 from the operator formalism. We shall use from
the very beginning the diagrams as a very intuitive technique for book-keeping of the rather
involved (but in a purely technical sense) functional derivatives of the generating functional
for Green’s functions. On the other hand we shall also illustrate the ,,digram-less” derivation
of the h-expansion which corresponds to the number of loops in the diagrams.

We shall also give a complete proof of the theorems about generating functionals for subclasses
of diagrams, namely the connected Green’s functions and the proper vertex functions.

We end the chapter with the derivation of the Feynman rules for a simple toy theory involving
a Dirac spin 1/2 Fermi field with the now completely developed functional (path integral)
technique. As will come out quite straight forwardly, the only difference compared to the pure
boson case are some sign rules for fermion lines and diagrams containing a closed fermion
loop, coming from the fact that we have anticommuting Grassmann numbers for the fermions
rather than commuting c-numbers for the bosons.

The fifth chapter is devoted to QED including the most simple physical applications at tree-
level. From the very beginning we shall take the gauge theoretical point of view. Gauge
theories have proved to be the most important class of field theories, including the Standard
Model of elementary particles. So we use from the very beginning the modern techniques to
quantise the theory with help of formal path integral manipulations known as Faddeev- Popov
quantisation in a certain class of covariant gauges. We shall also derive the very important
Ward-Takahashi identities. As an alternative we shall also formulate the background field
gauge which is a manifestly gauge invariant procedure.

Nevertheless QED is not only the most simple example of a physically very relevant quantum
field theory but gives also the possibility to show the formalism of all the techniques needed
to go beyond tree level calculations, i.e. regularisation and renormalisation of Quantum
Field Theories. We shall do this with use of appendix C, which contains the foundations
of dimensional regularisation which will be used as the main regularisation scheme in these
notes. It has the great advantage to keep the theory gauge-invariant and is quite easy to
handle (compared with other schemes as, for instance, Pauli-Villars). We use these techniques
to calculate the classical one-loop results, including the lowest order contribution to the
anomalous magnetic moment of the electron.

I plan to end the chapter with some calculations concerning the hydrogen atom (Lamb shift)
by making use of the Schwinger equations of motion which is in some sense the relativistic
refinement of the calculations shown in chapter 2 but with the important fact that now we
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Preface

include the quantisation of the electromagnetic fields and radiation corrections.

There are also planned some appendices containing some purely mathematical material needed
in the main parts.

Appendix A introduces some very basic facts about functionals and variational calculus.

Appendix B has grown a little lengthy, but on the other hand I think it is useful to write
down all the stuff about the representation theory of the Poincaré groups. In a way it may
be seen as a simplification of Wigner’s famous paper from 1939.

Appendix C is devoted to a simple treatment of dimensional regularisation techniques. It’s
also longer than in the most text books on the topic. This comes from my experience that it’s
rather hard to learn all the mathematics out of many sources and to put all this together. So
my intention in writing appendix C was again to put all the mathematics needed together. 1
don’t know if there is a shorter way to obtain all this. The only things needed later on in the
notes when we calculate simple radiation corrections are the formula in the last section of the
appendix. But to repeat it again, the intention of appendix C is to derive them. The only
thing we need to know very well to do this, is the analytic structure of the I'-functions well
known in mathematics since the famous work of the 18th and 19th century mathematicians
Euler and Gauss. So the properties of the I'-function are derived completely using only basic
knowledge from a good complex analysis course. It cannot be overemphasised, that all these
techniques of holomorphic functions is one of the most important tools used in physics!

Although I tried not to make too many mathematical mistakes in these notes we use the physi-
cist’s robust calculus methods without paying too much attention to mathematical rigour.
On the other hand I tried to be exact at places whenever it seemed necessary to me. It should
be said in addition that the mathematical techniques used here are by no means the state of
the art from the mathematician’s point of view. So there is not made use of modern nota-
tion such as of manifolds, alternating differential forms (Cartan formalism), Lie groups, fibre
bundles etc., but nevertheless the spirit is a geometrical picture of physics in the meaning of
Felix Klein’s “Erlanger Programm”: One should seek for the symmetries in the mathematical
structure, that means, the groups of transformations of the mathematical objects which leave
this mathematical structure unchanged.

The symmetry principles are indeed at the heart of modern physics and are the strongest
leaders in the direction towards a complete understanding of nature beyond quantum field
theory and the standard model of elementary particles.

I hope the reader of my notes will have as much fun as I had when I wrote them!

Last but not least I come to the acknowledgements. First to mention are Robert Roth and
Christoph Appel who gave me their various book style hackings for making it as nice looking
as it is.

Also Thomas Neff has contributed by his nice definition of the operators with the tilde below
the symbol and much help with all mysteries of the computer system(s) used while preparing
the script.

Christoph Appel was always discussing with me about the hot topics of QFT like getting
symmetry factors of diagrams and the proper use of Feynman rules for various types of
QFTs. He was also carefully reading the script and has corrected many spelling errors.
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Literature

Finally I have to stress the fact that the lack of citations in these notes mean not that I claim
that the contents are original ideas of mine. It was just my laziness in finding out all the
references I used through my own tour through the literature and learning of quantum field
theory.

I just cite some of the textbooks I found most illuminating during the preparation of these
notes: For the fundamentals there exist a lot of textbooks of very different quality. For me the

most important were [PS95, [Wei95l, Weid5l [Kak93]. Concerning gauge theories some of the
clearest sources of textbook or review character are [Tay76l [AL73, [FL.S72, ILZ.J72al,
ILZJ2bl [LZJ72d). One of the most difficult topics in quantum field theory is the question of
renormalisation. Except the already mentioned textbooks here I found the original papers

very important, some of them are [BP57, Wei6(), [Zim68), [Zim69, Zim70]. A very nice and

concise monograph of this topic is [CoI8G]. Whenever I was aware of an eprint-URL T cited it
too, so that one can access these papers as easily as possible.
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Chapter 1

Path Integrals

In this chapter we shall summarise some well known facts about nonrelativistic quantum me-
chanics in terms of path integrals invented by Feynman in 1948 as an alternative formulation
of quantum mechanics. It is thought to be an introduction to the tools of functional methods
used in quantum field theory.

1.1 Quantum Mechanics

In this course we assume that the reader is familiar with quantum mechanics in terms of
Dirac’s bra- and ket formalism. We repeat the basic facts by giving some postulates about
the structure of quantum mechanics which are valid in the nonrelativistic case as well as in
the relativistic. In this notes we emphasise that quantum theory is the picture about physical
systems in space and time. As we know this picture is in some sense valid for a wider range
of phenomena than the classical picture of particles and fields.

Although It is an interesting topic we don’t care about some problems with philosophy of
quantum mechanics. On my opinion the physicists have a well understood way in interpreting
the formalism with respect to nature and the problem of measurement is not of practical
physical importance. That sight seems to be settled by all experiments known so far: They all
show that quantum theory is correct in predicting and explaining the outcome of experiments
with systems and there is no (practical) problem in interpreting the results from calculating
“physical properties of systems” with help of the formalism given by the mathematical tool
“quantum theory”. So let’s begin with some formalism concerning the mathematical structure
of quantum mechanics as it is formulated in Dirac’s famous book.

e Each quantum system is described completely by a ray in a Hilbert space J#. A ray is
defined as the following equivalence class of vectors:

()] = A{clg)[19) € #',c € C\{0}}. (1.1)
If the system is in a certain state [|1)1)] then the probability to find it in the state [|1)2)]
is given by
2
Py — | (Y1 ¥2) | (1.2)

(1] 1) (aliba)

11



Chapter 1 - Path Integrals

e The observables of the system are represented by hermitian operators O which build
together with the unity operator an algebra of operators acting in the Hilbert space.
For instance in the case of a quantised classical point particle this algebra of observ-
ables is built by the operators of the Cartesian components of configuration space and
(canonical) momentum operators, which fulfil the Heisenberg algebra:

[Xiyxk]— = [pz’pk]— = Oa [Xi’pk]— = 161’61 (13)

Here and further on (except in cases when it is stated explicitly) we set (Planck’s
constant) A = 1. In the next chapter when we look on relativity we shall set the
velocity of light ¢ = 1 too. In this so called natural system of units observables with
dimension of an action are dimensionless. Space and time have the same unit which is
reciprocal to that of energy and momentum and convenient unities in particle physics
are eV or MeV.

A possible result of a precise measurement of the observable O is necessarily an eigen-
value of the corresponding operator O. Because O is hermitian its eigenvalues are real
and the eigenvectors can be chosen so that they build a complete normalised set of kets.
After the measurement the system is in a eigen ket with the measured eigenvalue.

The most famous result is Heisenberg’s uncertainty relation which follows from positive
definiteness of the scalar product in Hilbert space:

AAAB > % ([A.B]_)]. (1.4)

Two observables are simultaneously exactly measurable if and only if the corresponding
operators commute. In this case both operators have the same eigenvectors. After a
simultaneous measurement the system is in a corresponding simultaneous eigenstate.

A set of pairwise commutating observables is said to be complete if the simultaneous
measurement of all this observables fixes the state of the system completely, i.e. if the
simultaneous eigenspaces of this operators are 1-dimensional (nondegenerate).

e The time is a real parameter. There is an hermitian operator H corresponding to the
system such that if O is an observable then

0= % [0,H]_ +0,0 (1.5)

is the operator of the time derivative of this observable.

The partial time derivative is only for the explicit time dependence. The fundamental
operators like space and momentum operators, which form a complete generating system
of the algebra of observables, are not explicitly time dependent (by definition!). It
should be emphasised that O is not the mathematical total derivative with respect to
time. We’ll see that the mathematical dependence on time is arbitrary in a wide sense,
because if we have a description of quantum mechanics, then we are free to transform
the operators and state kets by a time dependent (!) unitary transformation without
changing any physical prediction (possibilities, mean values of observables etc.).

e Due to our first assumption the state of the quantum system is completely known if we
know a state ket |¢) lying in the ray [|1)], which is the state the system is prepared in,

12



1.2 - Choice of the Picture

at an arbitrary initial time. This preparation of a system is possible by performing a
precise simultaneous measurement of a complete complete set of observables.

It is more convenient to have a description of the state in terms of Hilbert space quan-
tities than in terms of the projective space (built by the above defined rays). It is easy
to see that the state is uniquely given by the projection operator

¥ (0
Plo) = |u1>¢|<|2|’

with [¢) an arbitrary ket contained in the ray (i.e. the state the system is in).

(1.6)

In general, especially if we like to describe macroscopical systems with quantum me-
chanics, we do not know the state of the system exactly. In this case we can describe the
system by a statistical operator p which is positive semi definite (that means that for
all kets |¢) € 7 we have (¢ |p|1) > 0) and fulfils the normalisation condition Trp = 1.
It is chosen so that it is consistent with the knowledge about the system we have and
contains no more information than one really has. This concept will be explained in a
later section.

The trace of an operator is defined with help of a complete set of orthonormal vectors
|n) as Trp = >, (n|p|n). The mean value of any operator O is given by (O) = Tr(Op).

The meaning of the statistical operator is easily seen from this definitions. Since the
operator P,y answers the question if the system is in the state [|n)] we have p, =
Tr(P,yp) = (n|p|n) as the probability that the system is in the state [|n)]. If now
|n) is given as the complete set of eigenvectors of an observable operator O for the
eigenvalues Oy, then the mean value of O is (O) = > p,O, in agreement with the
fundamental definition of the expectation value of a stochastic variable in dependence
of the given probabilities for the outcome of a measurement of this variable.

The last assumption of quantum theory is that the statistical operator is given for the
system at all times. This requires that

. 1
p=7 lp,H]_+0p=0. (1.7)

This equation is also valid for the special case if the system is in a pure state that means
p="P,).

1.2 Choice of the Picture

Now we have shortly repeated how quantum mechanics works, we like to give the time evolu-
tion a mathematical content, i.e. we settle the time dependence of the operators and states
describing the system. As mentioned above it is in a wide range arbitrary how this time de-
pendence is chosen. The only observable facts about the system are expectation values of its
observables, so they should have a unique time evolution. To keep the story short we formu-
late the result as a theorem and prove afterwards that it gives really the right answer. Each
special choice of the mathematical time dependence consistent with the axioms of quantum
mechanics given above is called a picture of quantum mechanics. Now we can state

13



Chapter 1 - Path Integrals

Theorem 1. The picture of quantum mechanics is uniquely determined by the choice of an
arbitrary hermitian Operator X which can be a local function of time. Local means in this
context that it depends only on one time, so to say the time point “now” and not (as could be
consistent with the causality property of physical laws) on the whole past of the system.

This operator is the generator of the time evolution of the fundamental operators of the system.
This means that it determines the unitary time evolution operator A(t,ty) of the observables
by the initial value problem

10pA (L, to) = —X(t)A(t, to), Alto,to) =1 (1.8)
such that for all observables which do not depend explicitly on time
O(t) = A(t, t0)O(to) AT (t, o). (1.9)

Then the generator of the time evolution of the states is necessarily given by the hermitian
operator Y = H — X, where H is the Hamiltonian of the system. This means the unitary
time evolution operator of the states is given by

i0,C(t, to) = +Y(1)C(t, to). (1.10)

Proof. The proof of the theorem is not too difficult. At first one sees easily that all the laws
given by the axioms like commutation rules (which are determined by the physical meaning of
the observables due to symmetry requirements which will be shown later on) or the connection
between states and probabilities is not changed by applying different unitary transformations
to states and observables.

So there are only two statements to show: First we have to assure that the equation of motion
for the time evolution operators is consistent with the time evolution of the entities themselves
and second we have to show that this mathematics is consistent with the axioms concerning
“physical time evolution” above, especially that the time evolution of expectation values of
observables is unique and independent of the choice of the picture.

For the first task let us look on the time evolution of the operators. Because the properties of
the algebra given by sums of products of the fundamental operators, especially their commu-
tation rules, shouldn’t change with time, the time evolution has to be a linear transformation
of operators, i.e. O — AOA ™! with a invertible linear operator A on Hilbert space. Because
the observables are represented by hermitian operators, this property has to be preserved
during evolution with time leading to the constraint that A has to be unitary, i.e. A™' = AT,

Now for t > ty the operator A should be a function of ¢ and tg only. Now let us suppose
the operators evolved with time from a given initial setting at ¢y to time t; > ty by the
evolution operator A(top,t;). Now we can take the status of this operators at time ¢; as a
new initial condition for their further time development to a time to. This is given by the
operator A(ty,t2). On the other hand the evolution of the operators from ty to t3 should be
given simply by direct transformation with the operator A(tg,t2). One can easily see that
this long argument can be simply written mathematically as the consistency condition:

Vig <t1 <ty €R: A(tz,tl)A(tl,to) = A(tg,to), (111)

i.e. in short words: The time evolution from t¢ to ¢; and then from #; to t5 is the same as
the evolution directly from tg to ts.

14



1.2 - Choice of the Picture

Now from unitarity of A(t,ty) one concludes:
AAT =1 = const. = (i0;A)AT = Ad;(iA)T, (1.12)

so that the operator X = —i(0;A)AT is indeed hermitian: X' = X. Now using eq. (ICIT) one
can immediately show that

[0, A(t, to)|AT(t, to) = [10:A(t, t1)|AT(L, 1) = —X(t) (1.13)

that shows that X(¢) does not depend on the initial time #g, i.e. it is really local in time as
stated in the theorem. So the first task is done since the proof for the time evolution operator
of the states is exactly the same: The assumption of a generator X(¢) resp. Y(t) which is
local in time is consistent with the initial value problems defining the time evolution operators
by their generator.

Now the second task, namely to show that this description of time evolution is consistent
with the above mentioned axioms, is done without much sophistication. From O(t) =
A(t,t9)O(tg)AT(t, ty) together with the definition (LX) one obtains for an operator which
may depend on time:

dO(t 1

d—i) =7 [O(t), X ()] _ + 9, O(t). (1.14)
This equation can be written with help of the “physical time derivative” (LX) in the following
form:

dO(t)
dt

One sees that the egs. ([LI4) and ([CTH) together with given initial values for an operator O
at time ty are uniquely solved by applying a unitary time evolution operator which fulfils the
eq. (C3).
Now the statistical operator p fulfils that equations of motion as any operator. But by the

axiom (7)) we conclude from eq. (CIH)

2 — o, Y1 (116

:O—%[O,H—X]_. (1.15)

and that equation is solved uniquely by a unitary time evolution with the operator C fulfilling

(T
Q.E.D.

It should be emphasised that this evolution takes only into account the time dependence of
the operators which comes from their dependence on the fundamental operators of the algebra
of observables. It does not consider an explicit dependence in time! The statistical operator
is always time dependent. The only very important exception is the case of thermodynamical
equilibrium where the statistical operator is a function of the constants of motion (we’ll come
back to that later in our lectures).

Now we have to look at the special case that we have full quantum theoretical information
about the system, so we know that this system is in a pure state given by p = Py = [1) (¢/|
(where |) is normalised). It is clear, that for this special statistical operator the general eq.

15



Chapter 1 - Path Integrals

(CT4) and from that (CI0) is still valid. It follows immediately, that up to a phase factor the
state ket evolves with time by the unitary transformation

[, t) = C(t, to) [¥, o) - (1.17)

From this one sees that the normalisation of |, t) is 1 if the ket was renormalised at the initial
time tg. The same holds for a general statistical operator, i.e. Trp(t) = Trp(tg) (exercise:
show this by calculating the trace with help of a complete set of orthonormal vectors).

1.3 Formal Solution of the Equations of Motion

We now like to integrate the equations of motion for the time evolution operators formally.
let us do this for the case of A introduced in ([CH). Its equation of motion which we like to
solve now is given by ().

The main problem comes from the fact that the hermitian operator X(t) generating the time
evolution depends in general on the time ¢ and operators at different times need not commute.
Because of this fact we cant solve the equation of motion like the same equation with functions
having values in C.

At first we find by integration of (L) with help of the initial condition A(tg,tp) = 1 an
integral equation which is equivalent to the initial value problem (C):

A(t,ty) =1 —i—i/t drX(7)A(T, t0). (1.18)

to
The form of this equation leads us to solve it by defining the following iteration scheme.

t
An(t,to) =1+i X(T)An_l(T, to)dT, Ao(t,to) =1. (119)
to
The solution of the equation should be given by taking the limit n — oo. We will not think
about the convergence because this is a rather difficult and as far as I know yet unsolved
problem.

One can prove by induction that the formal solution is given by the series

Altto) = Y AW(t,t) with (1.20)
k=0
t T1 Tl—1
A(k)(t,to) = / dTl/ dTQ.../ diX(Tl)X(TQ)...X(Tk).
to to to

To bring this series in a simpler form let us look at A®)(t,):

/t: dry /: dryX (1) X (7). (1.21)

The range of the integration variables is the triangle in the 7 mo-plane shown at figure [LTF

Using Fubini’s theorem we can interchange the both integrations
t t
A® = / dry / drX (1) X (19). (1.22)
to Tl

16



1.8 - Formal Solution of the Equations of Motion

to = ta

NN
NN
NN
NN
RMNNAAN

, - T
7 ¢ | (B

Figure 1.1: Range of integration variables in (LZ)

A glance on the operator ordering in (CZI)) and (C2Z2) shows that the operator ordering is
such that the operator at the later time is on the left. For this one introduces the causal time
ordering operator T, invented by Dyson. With help of T, one can add this both equations,
leading to the result

2) t t() / d’Tl/ dTQX ’7'1 ’7'2) (123)
to to
We state that this observation holds for the general case of an arbitrary summand in the
series ((C20), i.e.
t
AB (¢ 1) = k‘ / dry -- / dr, X (11) - - - X (7). (1.24)

to
To prove this assumption we apply induction. Assume the assumption is true for k =n — 1
and look at the nth summand of the series. Because the assumption is true for kK =n — 1 we
can apply it to the n — 1 inner integrals:

t T1 T1
AW (¢ ) = ;Tc / dm / dry - -- / A, X (1) - X (7). (1.25)
(n - 1)' to to to

Now we can do the same calculation as we did for A with the outer integral and one of the
inner ones. Adding all the possibilities of pairing and dividing by n one gets immediately

A (t tg) = 1, /dﬁ /thnX(ﬁ)-..X(Tn), (1.26)

n: to to
and that is (C24)) for £k = n. So our assumption is proved by induction.

With this little combinatorics we can write the series formally

A(t,t) = Toexp [i /tt dTX(T)} . (1.27)

This is the required solution of the equation of motion. For the operator C(t,ty) one finds
the solution by the same manipulations to be:

C(t,tg) = Toexp [—i /tt dTY(T)} . (1.28)

17



Chapter 1 - Path Integrals

1.4 Example: The Free Particle

The most simple example is the free particle. For calculating the time development of quantum
mechanical quantities we chose the Heisenberg picture defined in terms of the above introduced
operators X = H and Y = 0. We take as an example a free point particle moving in
one-dimensional space. The fundamental algebra is given by the space and the momentum
operator which fulfil the Heisenberg algebra

1

- [Xa p]— = 15 (129)

i
which follows from the rules of canonical quantisation from the Poisson bracket relation in
Hamiltonian mechanics or from the fact that the momentum is defined as the generator of
translations in space.

As said above in the Heisenberg picture only the operators representing observables depend
on time and the states are time independent. To solve the problem of time evolution we can
solve the operator equations of motion for the fundamental operators rather than solving the
equation for the time evolution operator. The Hamiltonian for the free particle is given by

H=_—, (1.30)

where m is the mass of the particle. The operator equations of motion can be obtained from
the general rule (LI4) with X = H:

dp 1 dx 1 P
— =Z[pH_=0, —=>[x,H_ =-—. 1.31

P lpHL e H) (1.31)
That looks like the equation for the classical case but it is an operator equation. But in our
case that doesn’t effect the solution which is given in the same way as the classical one by

p(t) = p(0) = const, x(t) = x(0) + %t. (1.32)

Here we have set without loss of generality to=0.

Now let us look on the time evolution of the wave function given as the matrix elements of
the state ket and a complete set of orthonormal eigenvectors of observables. We emphasise
that the time evolution of such a wave function is up to a phase independent of the choice of
the picture. So we may use any picture we like to get the answer. Here we use the Heisenberg
picture where the state ket is time independent. The whole time dependence comes from the
eigenvectors of the observables. As a first example we take the momentum eigenvectors and
calculate the wave function in the momentum representation. From ([C3T]) we get up to a
phase:

2
[p, ) = exp(iHt) |p,0) = exp (5175) p, 0), (1.33)
m

and the time evolution of the wave function is simply

2

$0) = (.19) = exp (=it ) 6(0.0) (1.39)
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This can be described by the operation of an integral operator in the form

Y(p,t) Z/dp’ (p.t|p',0) (p',0|¥) z/dp’U(t,p; 0,p)¥ (', 0). (1.35)

U(t,p;0,p")

From (C32) one finds
2

U(t,p,0,p") = exp (—izp—mt> é(p—1p"). (1.36)

It should be kept in mind from this example that the time evolution kernels or propagators
which define the time development of wave functions are in general distributions rather than
functions.

The next task we like to solve is the propagator in the space representation of the wave func-
tion. We will give two approaches: First we start anew and calculate the space eigenvectors
from the solution of the operator equations of motion (L32). We have by definition:

x(t) |z, t) = (X(O) + wt) |z, t) = x|z, t). (1.37)

m
Multiplying this with (z’,0] we find by using the representation of the momentum operator
in space representation p = 1/i0,:
it
(2’ —x) (2/,0|x,t) = =0y (',0| z,1) (1.38)
m
which is solved in a straight forward way:

U(t,z;0,2")* = (2, 0| z,t) = N exp [—i%(x' - x)Q} . (1.39)

Now we have to find the normalisation factor N. It is given by the initial condition
U(0,z;0,2") = 6(x — 2'). (1.40)

Since the time evolution is unitary we get the normalisation condition
/dx'U(O,x;t,x') =1. (1.41)

For calculating this integral from ([C39) we have to regularise the distribution to get it as a
weak limit of a function. This is simply done by adding a small negative imaginary part to
the time variable t — ¢ — ie. After performing the normalisation we may tend ¢ — 0 in the
weak sense to get back the searched distribution. Then the problem reduces to calculate a
Gaussian distribution. As the final result we obtain

U(t,x;0,2") = 4/ % exp [i%(:ﬂl - x)z] . (1.42)

An alternative possibility to get this result is to use the momentum space result and transform
it to space representation. We leave this nice calculation as an exercise for the reader. For
help we give the hint that again one has to regularise the distribution to give the resulting
Fourier integral a proper meaning.
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1.5 The Feynman-Kac Formula

Now we are at the right stage for deriving the path integral formalism of quantum mechanics.
In these lectures we shall often switch between operator formalism and path integral formal-
ism. We shall see that both approaches to quantum theory have their own advantages and
disadvantages. The operator formalism is quite nice to see the unitarity of the time evolution.
On the other hand the canonical quantisation procedure needs the Hamiltonian formulation
of classical mechanics to define Poisson brackets which can be mapped to commutators in
the quantum case. This is very inconvenient for the relativistic case because we have to treat
the time variable in a different way than the space variables. So the canonical formalism
hides relativistic invariance leading to non covariant rules at intermediate steps. Relativistic
invariance will be evident at the very end of the calculation.

Additional to this facts which are rather formal we shall like to discuss gauge theories like
electrodynamics or the standard model. The quantisation of theories of that kind is not
so simple to formulate in the operator formalism but the path integral is rather nice to
handle. It is also convenient to use functional methods to derive formal properties of quantum
field theories as well as such practical important topics like Feynman graphs for calculating
scattering amplitudes perturbatively.

In this section we shall take a closer look on path integrals applied to nonrelativistic quantum
mechanics.

For sake of simplicity we look again on a particle in one configuration space dimension moving
in a given potential V. Again we want to calculate the time evolution kernel U(t',z';t, x)
which was given in the previous chapter in terms of the Heisenberg picture space coordinate
eigenstates:

(2t @,t) = (2,0 |exp[-iH(t' — t)]| z,0) (1.43)
where we have used the solution of the equation of motion for Hamiltonian which is explicitly
time independent, i.e. in the Heisenberg picture it is a function of the fundamental operators,
here taken as x and p alone. We consider at the moment the most simple case which in fact
covers a wide range of application in the case of nonrelativistic quantum mechanics:

2

H= 2p_m + V(x). (1.44)

We will take into account more general cases later. The idea behind our derivation of the
path integral formula is quite simple. Because we know the time evolution explicitly for
very small time intervals, namely it is given by the Hamiltonian, it seems to be sensible to
divide the time interval (t,t’) in NV equal pieces (in the following called time slices) of length
At = (t — t)/N. Since the Hamiltonian is not explicitly time dependent which means in the
Heisenberg picture that it is a constant of motion (see eq. (LI4)) and keep in mind that in the
Heisenberg picture we have by definition X = H) we can write the time evolution operator
in the “time sliced” form

exp[—iH(t' — t)] = exp(—iHAt) exp(—iHA%) ... exp(—iHAt) . (1.45)

N times

Now there is the problem that x and p are not commuting. But one can show easily, that
there holds the following formula

exp[A(A + B)] = exp AA exp AB + O(\?) (1.46)
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1.5 - The Feynman-Kac Formula

by expanding both sides of the equation in orders of A.

From this we can hope that with N — oo the error made by splitting the time evolution
operator in the form

exp(—iAtH) = exp <—iAt%> exp[—iAtV (x)] + O(At?) (1.47)

and neglecting the terms of order At? becomes negligible. Now splitting the time evolution

operator in this way we may put a unity operator in between which is written as the spectral
representation [dz |z) (x| or [dp|p) (p| in the following way:

Ult,2;t,x) = /dpl...dedxl...delx

X <x’ exp <—iAt%> ‘p1> (p1 |exp[—1AtV (x)]] z1) x
x th exp (—iAt%)‘pN> (PN lexp(—iALV)| z) . (1.48)

Now the two different sorts of matrix elements arising in this expression are trivially calculated

to be
2 2 .
A4 P A Prt1 ) exp(izepr1)
<xk exp <—1At%> pk+1> = exp <—1At 2:'; ) Ton (1.49)

exp(—izgpr+1)

V2T ’

where we have used that the correctly normalised eigenstate of the momentum in the space
representation is given by

(Pr+1 lexp(—1ALV)| x) = exp[ 1ALV (zy)] (1.50)

exp(izp)
z|p) = ——.
(alp) = S
Putting all this together we obtain the time sliced form of the path integral formula which is
named after its inventors Feynman-Kac formula:

(1.51)

U(t',x';t,x) = ]\}lm dpl...dedml...de_l X

1\ X2 el
X <%> exp [—1At; <ﬁ + V(Cﬂk)> + 1k221pk(xk — Zp—1)| - (1.52)

Now we interpret this result in another way than we have obtained it. The pairs (zy, pk)
together can be seen as a discrete approximation of a path in phase space parametrised by
the time. The mentioned points are defined to be (z(tx), p(tx)) on the path. Then the sum in
the argument of the exponential function is an approximation for the following integral along
the given path:

/t " [—H(:ﬂ,p) + pz—f] . (1.53)

Now we should remember that we have fixed the endpoints of the path in configuration space
to be z(t) = x and z(t') = 2/. So we have the following interpretation of the Feynman-Kac
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formula after taking the limit N — oo: The time evolution kernel U(z/,t'; z,t) is the sum of
the functional exp(iS[x,p]) over all paths beginning at time ¢ at the point x ending at the
point 2’ at time #’. For the momenta there is no boundary condition at all. This is quite o.k.,
because we have no restriction on the momenta. Because of the uncertainty relation it does
not make any sense to have such conditions on both x and p at the same time! The action S
is here seen as a functional depending on the paths in phase space which fulfil this boundary
conditions:

Slz,p] = /t " {p‘;—f ~ H(a, p)} . (1.54)

We conclude that the formula ([CE2) may be taken as the definition of the continuum limit of
the path integral, written symbolically as
(t',z")
Ut ,o';t,x) = / DpDzx exp {iS[z, p]} . (1.55)
(t,x)

The physical interpretation is now quite clear: The probability that the particle known to be
at time ¢ exactly at the point z is at time ¢’ exactly at the point 2’ is given with help of the
time evolution kernel in space representation as |U (', z';t,2)|> and the amplitude is given as
the coherent sum over all paths with the correct boundary conditions. All paths in phase
space contribute to this sum. Because the boundary space points x and z’ are exactly fixed at
the given times ¢ and t’ respectively it is quantum mechanically impossible to know anything
about the momenta at this times. Because of that typical quantum mechanical feature there
are no boundary conditions for the momenta in the path integral!

Now let us come back to the discretised version (L22) of the path integral. Since the Hamilto-
nian is quadratic in p the same holds for the p-dependence of the exponential in this formula.
So the p-integrals can be calculated exactly. As seen above we have to regularise it by giving
the time interval At a negative imaginary part which is to be tent to zero after the calculation.
For one of the momentum integrals this now familiar procedure gives the result

2 . 2
B o PE _ _[2mm im(xp — xp—1)
I, = /dpk exp[ 1At—2m ipg (xg xk_l)] =\ A7 exp[ N . (1.56)

Inserting this result in eq. (CE2) we find the configuration space version of the path integral
formula:

N N 2
. [ m , m(zy — Tg—
Ut 2';t,x) = ]\}LI}})O dz;...dzxy omiA; OXP {z E [% - V(ﬂ:i)At} } .

k=1
(1.57)
As above we can see that this is the discretised version of the path integral
t
Ut o';t,z) = / D'z exp{iS[z]}, (1.58)
t,x

where we now obtained S[x] = ftt/ dtL, i.e. the action as a functional of the path in config-
uration space. The prime on the path integral measure is to remember that there are the
square root factors in ([CX1).

With that manipulation we have obtained an important feature of the path integral: It is
a description which works with the Lagrangian version of classical physics rather than with
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1.6 - The Path Integral for the Harmonic Oscillator

the Hamiltonian form. This is especially convenient for relativistic physics, because then the
Hamiltonian formalism is not manifestly covariant.

It was Feynman who invented the path integrals in 1942 in his Ph.D. thesis. Later on he
could use it as a tool for finding the famous Feynman graphs for perturbative QED which
we shall derive later in our lectures. That Feynman graphs give a very suggestive picture of
the scattering processes of the particles due to electromagnetic interaction among them. In
the early days of quantum field theory Schwinger and Feynman wondered why they obtained
the same results in QED. Schwinger was using his very complicated formal field operator
techniques and Feynman his more or less handwaving graphical arguments derived from his
intuitive space-time picture. Later on Dyson derived the Feynman rules formally from the
canonical quantisation of classical electrodynamics and that was the standard way getting
the rules for calculating scattering cross sections etc. With the advent of non-Abelian gauge
theories in the late fifties and their great breakthrough in the early seventies (electro weak
theory, renormalisability of gauge theories) this has changed completely: Nowadays the path
integral formalism is the standard way to obtain the content of the theory for all physicists
who are interested in theoretical many body quantum physics.

After this little historical sideway let us come back to the path integrals themselves. Now it
is time to get some feeling for it by applying it to the most simple nontrivial example which
can be calculated in a closed form: The harmonic oscillator.

1.6 The Path Integral for the Harmonic Oscillator

The harmonic oscillator is defined by the Lagrangian

2
%9‘52 - mTwmQ. (1.59)

L:

The corresponding Hamiltonian is quadratic not only in p but also in x. This is the reason,
why we can calculate the path integral exactly in this case. We will use the discretised version
([CE7) of the configuration space path integral.

The biggest problem is the handling of the boundary conditions of the path. Fortunately this
problem can be solved by parameterising the path relative to the classical one defined as that
path which extremises the action S|x]:

0S[z]
oz

=0 with z(t) = z, z(t') = 2. (1.60)

T=2]

Since the action is quadratic it can be expanded around the classical path and the series will
end with the summand of second order in y = x — z:

1 5%S
Sly + x| = Slza] + 3 <m

yly2> ) (1.61)
T=Tel 12

where the bracket is a shorthand notation with the following meaning

t/
(fiz.m)1o n = / dtqdty ... dt, f(t1,te, ... ty). (1.62)
t

23



Chapter 1 - Path Integrals

The term linear in y does not contribute because of ([LG0).

Since we have to sum over all paths x with the boundary conditions fulfilled by the classical
path this can be expressed as sum over all paths y with the easier to handle boundary
conditions y(t) = y(t') = 0. Formally this is done by substitution y = x — z into the path
integral. Thinking in terms of the discretised version of the path integral one immediately
sees that the path integral measure is invariant under time dependent translations of x, i.e.
D’z = D’y. So we get the important result

(#,0) i /6S[zq]
U,z t,z) = exp{iS[z. / D'yex [— < < >] 1.63
( ) = exp{iS{zal} oy DY 5 Gy 1 (1.63)

As the first step we calculate the action along the classical path. We have to calculate the
functional derivative of S with fixed boundary conditions.

v [oL_ 9L
0S8 = dt |—6 —o0x| . 1.64
/t [83: v 0% x] (1.64)
By integration by parts with taking into account the boundary conditions dx(t) = d0x(t') =0
we obtain py
oL d oL
08 = dt | =— — ——| dz. 1.65
/t [83: dt 63’:] v (1.65)
So the equations of motion defining the classical path are given by the Euler Lagrange equa-
tions with the Lagrangian L:
) oL d oL
0= — = <— — ——.> ) (1.66)
0T |y, Or  dtox ), ,

It is clear that we get the equation of the classical motion of the harmonic oscillator. The
equation with the correct boundary conditions defined in ([C60) is simple to solve:

x' — x cos|w(t' —t)]
sinfw(t' — t)]

sinjw(r —t)]. (1.67)

xa (1) = zcosfw(T — )] +

From this result the action along the classical path is given by

mw{(z® + %) cos|w(t’ — )] — Qxx’}‘

Slzal = 2sinfw(t’ —t)]

(1.68)

To finish the calculation now we are left with the path integral in ([C63]) with the homogeneous
boundary conditions. This has to be calculated in the discretised version. We call the path
integral the amplitude A:

mN N/2 Y Ty —yr1)? m2 4
A= lim [ —2 . dyn_ 1y 0| TR ) T 22
N <27ri(t’—t)> / dyr--- dyn—roxp g i [ 2Nt 9 Yk t]

k=1
(1.69)
Since yg = yny = 0 the argument of the exponential function can be written as
N 2 2
m(yx — Yr-1) m= 9 9 mo_y ~
—_— e — At| = —y'M 1.70
Z[ N 5 Ui oAV MNT, (1.70)

k=1
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where ¥ is the column vector (y1,y2,...,yn—1) and

)
¢c -1 0 0 0
-1 C -1 0 0 9 .9

Now we calculate the k-dimensional Gaussian integral with a symmetric positive definite
matrix M. Since such matrices can be diagonalised by an orthogonal transformation we get

k
/dkyexp(—thy) = H/dxj exp(—)\jxi), (1.72)
j=1

where we have substituted z = Oz. The \; are the eigenvalues of the matrix M. So the
problem reduces to the product of single Gaussian integrals:

/dkyexp(—thy) = ! :\/ i (1.73)
H;‘?Zl \j detM’ '

So after giving At a negative imaginary value and analytic continuation back to the real
value (t' — t)/N (determinants are analytic functions of the matrix elements) our problem
to calculate (LEJ) is reduced to calculate the determinant of My. That will be done as an
exercise because the calculation is lengthy and tedious. The result after taking the continuum
limit N — oo gives the result for the amplitude:

A= \/27Tisin[w(t’ 1) (1.74)

Thus the final result is

- B mw imw{ (22 + /%) coslw(t' — t)] — 22’}
A \/ 2risinfo(t — D) eXp{ 2sinfw(t — )] } - (1L7)

where we have put together (LC63)), (C64) and (C74).

Exercise

Calculate the determinant of My, put it into (CEIHLTN) to prove ([CZ4)! Hint: It is useful to
set C' = 2cos ¢ in (ICZI).

1.7 Some Rules for Path Integrals

Now that we have calculated a closed solvable example, we can derive some general properties
of path integrals. The first one we get by writing down the composition rule (LIIl), which is
valid for our time evolution kernel too, in terms of path integrals. For ¢; < to < t3 we have

(t3,73) (t2,22) (ts,23)
/ D'z exp{iS[z]} = /dxg/ D'z exp{iS|z|} D'zexp{iS[z]}.  (1.76)
( (

t1,21) t1,21) (t2,22)
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This formula can be proved with help of the discretised version of the path integral formula.
That easy task is left as an exercise for the reader.

We can give a more intuitive explanation of this composition rule. The left hand side of the
equation gives the sum of the functional exp{iS[z|} over all paths of the particle with the
boundary conditions z(t1) = x; to x(t3) = x3. On the right hand side the both path integrals
are the sum of the same functional over all paths with the same boundary conditions but with
the constraint z(t3) = x5 for a time in the interval (t1,t3), i.e. over all paths with the particle
at a given place z9 at time t5. Now this restriction is compensated by the single integral over
all intermediate positions x2. So the left and the right hand side of the equation are indeed
the same!

Now there is no problem to obtain a little bit more complicated quantities in terms of path
integrals. As an example which will become crucial in the quantum field case we shall calculate
the expectation value of a product of Heisenberg configuration space operators at different
times. If this times are ordered in the sense of the causal time ordering operator introduced
after eq. (C32), that means that the time values of the operators increase from the right to
the left, there is no problem. Using the unit operator given in terms of x-eigenstates at the
given times and applying the composition rule of path integrals we obtain the following rule

(t'2")
(2 ' |Tex(t)x(t2) - .. x(tg)| 2, t) = /(t ) D'zx(t)z(ta) ... z(ty) exp{iS|x]}. (1.77)

1.8 The Schrodinger Wave Equation

In this section we want to derive Schrodinger’s wave equation for the kernel of time evolution.
The main idea is to show, how to find such equations from the path integral. We start again
with the Feynman-Kac formula for the time evolution kernel for ¢’ > ¢:

(t',z")
Ut 2';t,x) = / D'z exp{iS[z]}. (1.78)
(t,z)

Now we want to calculate the time derivative of this expression with respect to . So let € be
a little increment of . Now by the composition rule one has

Ut +ea'st,z) = /ng(t’ +e,2 st OU, & x,t). (1.79)

Now we try to find the expansion with respect to €. Since it can be thought to be very small
compared to the typical time scale of the problem we can approximate the first kernel on the
right hand side by a path integral with just one time slice namely the interval (¢,¢ + €). So
we get

[ m m(z’ — €)?
Ut ,o';t,x) = /d§ 5ic OXP [i ( 5 3 ] (1 —ieV(z) + O(U(H, &t x).  (1.80)

€

Since we like to calculate this expression for ¢ — 0 the exponential is oscillating rapidly except
for values £ ~ 2/. In a mathematically more correct treatment we could have continued
the time to be imaginary instead of regularising the path integral by only a little negative
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imaginary part. If we had done so the exponential is not oscillating but damped. From the
imaginary time formalism we obtain the correct time evolution kernel by analytic continuation.
So we see that the main contribution of the &-integral comes from & ~ z’/. By changing the
variable of integration to 6 = 2’ — ¢ and expanding U (¢, ; ¢, x) around ¢ we obtain

: 2
Ul +eait,x) = /da, /27:16 exp (”Zf > [1— eV(2') + O(2)] x
00 k

[Z (%) U(t',x';t,x)(_:!)k

k=0

X

(1.81)

Now interchanging integration and summation of the series we need integrals of a Gaussian
multiplied by any potence of §. This integrals can be obtained by defining a generating

function:
m imé?
f(A) _/\/27716 eXp< 5 +A6>. (1.82)

After the usual regularisation by an negative imaginary part for € we can calculate this integral
and from this we find

I = /dé\/%ék exp <U;LSQ> = dileX(’i\) s (1.83)
For ¢ — 0 we need only the following identities
In=1,6L=0, I, = ii, Iy, = O(€"), Iypyq1 =0 for n € N. (1.84)
Inserting this into (LX) we get
Ut +e,2'5t,2) = [1 —ieV (') + O(€?)] [1 + ;—;ag,] Ut t,x). (1.85)
Subtracting U(t', 2’; t, z) and letting ¢ — 0 we obtain the important result
U, 25t x) = —%@%/ + V(ﬂ:/)] Ut',2';t,x) for t' > t. (1.86)

This is the Schrodinger equation, since the differential operator on the right hand side is the
Hamiltonian expressed in terms of configuration space representation. The initial condition
for the kernel, necessary to make the solution of the Schrédinger equation unique, is of course

Ut+0,2";t,x) = (2’ — ). (1.87)

This is the first time we see that the time evolution kernel is nothing but the Green’s function
of the Schrodinger equation. We will get a deeper insight in this relation by looking on
an important physical application of all the developed formalism, namely the perturbative
treatment of potential scattering with help of path integrals.
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1.9 Potential Scattering

Potential scattering is an example where the path integral formalism is very intuitive. The
setup of a scattering experiment can described in the following idealised way: The physicist
prepares a beam of particles with a definite momentum p; far away from the target where it
will be scattered. After the scattering process the physicist will use detectors, again far away
from the scatterer, to find the rate of scattered particles as a function of their momentum p.

Now let us describe this from a little bit more mathematical point of view: Since we want to
look on the most simple situation now, we give the scatterer in terms of a external potential.
So we have only one particle scattered by this external potential. This is approximately
realized by the scattering of a particle on another particle with a much greater mass (e.g.
scattering of an electron at a heavy nucleus). This potential should have only a finite range,
i.e., V(&) should be very small for |¥| > R, where R is a typical range scale of the potential.
So the particles prepared before the scattering and registered after the scattering, far away
from # = 0, that means now |Z] > R, can be treated as quasi free particles. This is what is
widely known as an asymptotic free state.

Now let us analyse this situation with help of quantum mechanics. What we like to calculate
is the transition rate of particles which are prepared at an initial time {5 — —o0 as asymptotic
free particles of definite momentum p; to a given asymptotic free state of definite momentum
Py at a time ty. In the Heisenberg picture this is simply written as

ti——00,tf—00

This defines the scattering matriz, shortly called the S-Matriz, as the transition rate from
a given initial asymptotic free state (in our case of definite momentum) to a given final
asymptotic free state (in our case also of definite momentum).

It can be seen as the main application of vacuum quantum field theory to calculate the S-
Matrix for this and much more complicated processes. We will give a description of scattering
from the quantum field theory point of view later. We will see that in the case of nonrelativistic
potential scattering the both approaches are equivalent. But for example the scattering of
two identical particles is much easier to get from the field theoretic point of view than from
our space-time point of view because the space of two identical particles becomes much more
complicated than one should expect from classical physics. We come back to this in the next
section when we show a very convincing argument made by Cecile Morette-de Witt about the
fact that there can only be bosons and fermions in a configuration space with three or more
dimensions. But let us come now back to our potential scattering problem of one particle!

The whole sections before we always calculated the transition amplitudes, i.e. the time
evolution kernel, dependent on space and time variables. Now of course we can look at the
scattering process in configuration space too, and we can introduce the time evolution kernel
simply by setting some identity operators between the momentum eigenvectors in (CS8):

Sp—  lim /d3f1d3f2 (LBt @1) (s Bl by @) (b, B 153 (1.89)

ti——00,tf—00

5, (Lr:T1) Utr,@15ta,@2)  #py(ti,72)
So we can write the S-Matrix in the form

Spi = lim/d3fld3fgg0;}f(tf,fl)U(tf,fl;ti,fg)goﬁi(ti,fg), (1.90)
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where lim is meant to remember to take the limit ¢; — —oo,ty — oo at the very end of
the calculation. Herein the wave functions ¢; have to be taken as the solution of the time
dependent (!) Schrodinger equation for a free particle with definite momentum p:

, 1 -
0p(t, T) = W exp <—1%t + 1px> . (1.91)
So again the main task is solved if we find a solution for the time evolution kernel or an
approximation appropriate for our situation. In the most cases one has to do it in the former
sense because it is impossible to find an analytical solution for the kernel. The best method
one can use is to solve the Schrodinger equation for the kernel. But here we like to give
a derivation of the approximation series known as the Born series with help of the path
integral. This has the great advantage to give a very intuitive picture of scattering in terms
of processes in space-time.

For this purpose we assume now that the potential is small in the sense of a small coupling
constant as is the case, for instance, for electromagnetic forces were the coupling constant
is of order of Sommerfeld’s fine structure constant o = €?/(he) ~ 1/137. In this case it is
sensible to expand the time evolution kernel in powers of the potential.

Our starting point is again the Feynman-Kac formula for the time evolution kernel

(ty,T2)
U(tf, fl; ti, fg) = / D'3fexp{iS[£’]}, (1.92)

(ti,%1)
which is a straight forward generalisation from the one dimensional case, treated so far, to
the case of three dimensional configuration space.
Now we have

Sla] = /t f[Lo(f, i—f) — V(z)]dt with Lo(Z, Z—f) = Solz] + Si[z] = % (j—f) - (1.93)

Here Sp[z] is the action functional of free particles and Sr[z]| the interaction part of the full
action of the problem. Now we expand the integrand of the path integral in powers of Sr:

(tf,E5)
Uty &piti ) = / D37 exp{iSola]} x (1.94)
(

i, %;)

{1—1/:f drV]z(r)] + (_21!)2 /t;f dry /tjf AV [z(11)]V [2(72)] +}

1

X

From this we see that the Oth approximation is given by the noninteracting time evolution
kernel. Now using the same arguments as used above when calculating the path integral for
the time ordered product of space operators we find as the first order correction

tf
U (tp, Zpits, ) = _1/ dﬁ/d3§U0(tf,ff;7-1,gl)V(gl)Uo(Tl,gl;ti,fi). (1.95)
ti
Herein Uy is the time evolution kernel for free particles. Since under the time integral in

(LI there is always t; < 71 < ty, we have no problem with the definition of the used time
evolution kernels.
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Chapter 1 - Path Integrals

Before proceeding to the second approximation let us interpret the result. For this purpose
we think about the integrand under the integral in (C95) at a fixed time 77 . Then we can
get the intuitive idea behind the formula as follows (we have to read it from the right to the
left!): first the particle propagates as a free particle from the initial position #; at time ¢; to
the point %, then it is scattered by the potential at this place, and it moves again as a free
particle to the end point Zy at the final time £;. The integrals over the time interval and the
intermediate point ¥; can be interpreted again as the coherent sum over all possibilities for
the particle to scatter once at the potential: This may take place at all times in the interval
(ti,tr) and at all places §. This is again consistent with our summation over paths picture
of quantum mechanics introduced by the path integral. Now we see the meaning of the kth
order of the expansion is clear: This term is in the series to take into account the possibility
that the particle is scattered k times by the potential and that this can happen at each point
in space and at each time in the interval (¢;,%).

Because of the time ordering problem when using the time evolution kernel we take a closer
look on the second order of our series expansion. Here we have to distinguish the two cases
71 < 79 and 71 > 1. This can be written with help of Heaviside’s unit step function defined

as
OforT<0

O(r) = { 1 for 7 > 0. (1.96)

With this function we can write the second order of the series as

_ 02 ty ty
U(Q)(tf,fl;ti,fg) = ( 21') / dTl/ dm x (1.97)
: t; t;

x[O(11 — 1) Uo(t s, 25 71, 1)V (51)Uo (71, 413 72, 42)V (§2) Uo (T2, os t, To) +
+O (12 — 1) Uo(t, 25 72, %2) V (52) Uo (72, 2 71, Y1)V (§1) Uo (71, §13 £, Z2)].

For convenience now we introduce the retarded time evolution kernel by:

Uo(T1, 91572, y2) for 71 > 7

0 for 1 <7 = O(m1 — 12)Uo(71, 91572, %2)  (1.98)

R - -

US™ (71,3713 72, 2) = {
and with this we find by interchanging the integration variables in the second integral on the
right hand side of (CI1) that both integrals are the same and can be written as one integral
with the retarded kernel which contains the time ©-functions. This line of arguing can be
done using induction with the general kth summand of the series:

By Etd) = (O [dtn [t [ diox (1.99)
R - (R _, L L, R S
x U (s, @90V U (11, G0 92)V (@) - - V(G U™ (136, 7).
Here we have introduced four-dimensional space-time variables (7, §) which we have abbre-
viated with y;. The integrals have to be understood with the boundaries (t;,t¢) for the time
arguments of the gy, and over all space for the g;-components. This is the form of the Born
series for the time evolution kernel known from wave mechanics.

Now it is time to introduce the Feynman rules for this problem. They can be read off the
eqs. (C34) and ([COJ)). They reflect the “history” of the particle passing the potential. For

each retarded time evolution kernel UO(R) (x1;2) we draw a solid line with an arrow pointing
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1.9 - Potential Scattering

from xo = (t9,%3) to x1 = (t1,71), representing the direction of propagation. Each potential
—iV is drawn as a sticker with a dashed line. This sticker is connected to two directed solid
lines, i.e., an ingoing and an outgoing time evolution kernel. The potential is to take at the
point where the three lines come together. Finally one has to integrate over all inner points,
also called vertices. The propagator kernels describe the propagation of the particle between
scattering events, and is therefore called propagator. Thus with this rules we can write the
Born series ([C34]) diagrammatically in the form shown in fig.

(ty, Zr) (ty, Zy) gy
n —-Q
Ulty,@piti, ) = + -0 4 o
Q" Y2
(ti, @) (ti, ) \
(ti, @)

Figure 1.2: Diagrammatic representation of the Born series

From this diagrams one reads off immediately that U (1;x2) fulfils the following integral
equation

U (w1, 25) = U™ (w1, 22) — i / A'yUS™ (21,9)V (1) U (y, 22). (1.100)

From ([CR6]) and the analogous equation for the free propagator UéR) (z1;x2), valid for t1 > to,

one reads off as matching condition

2m

A
(i@tl + —1> U™ (21, 22) = i6@W (21 — 22), (1.101)

which leads us to the important conclusion that the free retarded propagator is the Green’s
function for the free Schrodinger equation with the appropriate bounding condition, namely

U™ (w13 22) o Oty — 1), (1.102)

which expresses the retarded nature of the propagator and reflects the causal structure of the
Born series: At the time ¢ there is no influence from the potential which comes from times
later than ¢!

Using (CI0Z) together with (CION) we find that U, the exact propagator of the particle
under influence of the potential, is the retarded Green’s function of the Schrédinger equation
with the potential V:

i, + 2 V(@) | U (a1,22) = 160 @) — ), (1.103)
m

This shows the particle wave dualism of quantum mechanics: The problem of scattering of
a particle at a potential V' is equivalent to a scattering problem of Schrédinger’s waves. So
starting from the particle picture we ended here with the field picture of the behaviour of
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particles in quantum theory. Here in the nonrelativistic case both pictures are equivalent. We
will see in the next chapter that this is not true for the relativistic case. The physical reason
is simply explained: In the nonrelativistic case there is a conservation law for the number
of particles in a closed system, but in the quantum case there is always the possibility to
create pairs of particles and antiparticles, for instance, when a particle is scattered at an
external potential. The classical analogue is known from electrodynamics, namely the effect
of Bremsstrahlung, i.e., the emission of light, when charged particles are accelerated. In the
particle picture this is the creation of photons. In the relativistic case it is thus physically
not adequate to work with a Hilbert space of a fixed number of particles. Fortunately there
is a formalism which exactly describes this situation, namely quantum field theory. In the
former days this was known as the “second quantisation”, but this name is not consistent with
our modern understanding of quantum field theory which is nothing else than the quantum
theory of particles with the possibility to describe the creation and annihilation of particles
consistent with the conservation laws.

The space-time picture is nice to get an idea of the meaning of the scattering process in
the quantum sense, but it is complicated to calculate with because of the involved time
dependence of the free propagator, shown by ([[CZ2)). It is much more simple to work in the
momentum representation. This we obtain by inserting the Fourier representation of the free
retarded propagator. This is a nice example for the application of (LIO]). So we make the
ansatz:

d3p e o
Un(riirs) = [ 55 explflas — #2)]0o(trstas) (1.104)

With this (CIO) reads:

7\ (R
<i(9t1 - —> U (t13t0: ) = 16(t1 — t). (1.105)

2m

The J-function comes from the © function shown in the boundary condition (CI0Z). With
this we obtain the unique solution of the boundary value problem to be

(B)(p .y o PP
UO (tl,tg,ﬁ)—exp —1—(t1—t2) @(tl—tg). (1106)

2m

The time dependence in this representation is much easier to handle with than with that of
the configuration space representation.

Now we insert the obtained results into the first order Born approximation (CIH) to find
the first order result for the S-Matrix (CI0). The somewhat lengthy but straightforward
calculation is left as an exercise for the reader.

It should be emphasised that the result after doing all space and momentum integrations can
be taken without ambiguities in the limit #;, — —oo and ¢ty — oo which shows that the concept
of asymptotic states is well defined in the sense of a weak limit, i.e. it is a limit to be taken
after calculating the matrix elements.

Here we give the well known result of the first order Born approximation

S(l.) _ —i

5= eV B = OBy — B, (1.107)
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1.9 - Potential Scattering

where Ey and E; are the energy of the outgoing and the ingoing asymptotically free particle,
respectively, i.e., Ey/; = ;5? i /(2m). The d-function reflects the fact that the energy is con-

served by the scattering process. The meaning of V is simply to be the Fourier transform of
the potential, namely

V(p) = / A3z expipz]V (Z). (1.108)

Exercise

Calculate the first and second order result for the S-Matrix in terms of the momentum version
of USR) and V. Hint: Calculate at first U™ (tf,Zs;t;,2;) and then the integrals with the initial
and final asymptotic states. You can use the result for calculation of the second order!

Now we want to calculate the cross section for scattering at the external potential. It is
defined as the ratio of in a momentum p scattered particles per unit time and the incoming
current (i.e. number of particles per unit time and unit area).

The main difficulty is to calculate the number of particles per unit scattered in a given
momentum state, because for this we have to square Sy; — dy; ~ Sj(cli). But this expression,
given by ([CIO7), contains a ¢ distribution. So what is the meaning of the ¢ distribution
squared? From a mathematical point of view there is no meaning. On the other hand this
square gives the transition probability, not the probability per time unit. So we have to go
back to a finite time interval, and take again the limit after all other calculations are done.
The simple calculation yields:

glireg) _ V(P — pi){exp[~i(Ey — Ei)ty] — exp[-i(Ey — Eiti}

s (B - F) - (L19)

Taking the modulus of this expression squaring it and dividing by t; — ¢; gives after some
trigonometry

e _ [V By =) (sinl(By — Ei)(ty — t:)/2]\* ty — t: (1.110)
T (2m)° (Ey = Ei)(ty —t:)/2 2 '
Now we are ready to take the limit ¢; — —oo and ¢y — oo:
W _ V@ —p)l
) _ W P (g — Ry, 1.111
Wi (2m)3 (Ef ) ( )

We have again obtained an energy conserving § distribution, but as before in the case of the
S-Matrix there is no ambiguity to take the weak limit at the end of the calculation.

For the definition of the cross section we need the current of incoming particles. We know
from elementary quantum mechanics that the density of particles p(t,Z) = |(t, %)|?, where
1 is the asymptotic free wave function of the incoming particle, has a current defined by

. 1 7,
J(t,2) = 50— (0" Ve — ce.) = (%f)W' (1.112)

The conservation of the particle number is represented by the continuity equation

dup(t, T) + divj(t, ) = 0, (1.113)
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which again shows in the integrated form, together with the validity of the Schrodinger
equation, the unitarity of time evolution.

Taking the absolute value of the current and dividing the transition probability yields the
cross section per unit momentum volume:
a0 mlV(; — )P
d3py (2m)?|pil
Integrating this result over all momentum lengths yields the cross section per solid angle.
Here we use 0(Ey — E;) = m/p;ié(ps — p;i). The result is

(Ef — Ey). (1.114)

doW  m2V (p; — pi)|?
O - @

with |7}| = |5}, (1.115)

Exercise

Calculate the first order Born approximation for the cross section in the cases of a Yukawa
and a Coulomb potential!

1.10 Generating functional for Vacuum Expectation Values

Now let us come back to the operator formalism of quantum mechanics for a short while. The
time evolution kernel is defined in terms of eigenvectors of the configuration space variable as

U(tl,xl;tg,xg) = <t1,.%'1’ t2,1‘2> = <.%'1 \exp[—iH(tl — tz)” .%'2> (1.116)

where |z1) and |x2) are eigenvectors of x at a fixed time and H is the explicitely time-
independent Hamiltonian of the system. Now let |n) denote the complete set of eigenvectors
of the Hamiltonian, i.e.,

Hn)=E,|n). (1.117)

Since H is hermitian these kets can be taken to be orthogonal and normalised. That means
we have

1=> "[n)(n|, (n|m) = bum, (1.118)

and they are time-independent since H is time-independent in the here used Heisenberg
picture. With help of (CIIX)) we can write the time evolution kernel in the form

Ul(ty, x1;ta, x2) = Zexp[—iEn(tl — ta)]pn(x1)@} (x2) with @, (x) = (z|n). (1.119)

n

In quantum field theory we shall be interested in expectation values of time-ordered operator
products with respect to the ground state of the system, i.e., the energy eigenstate for the
lowest energy eigenvalue. The existence of a lower bound of the energy spectrum is necessary
for physical reasons. In the case of quantum fields this ground state has the meaning that
there are no particles around and therefore it is called the vacuum.

Now we like to show how to calculate the vacuum expectation values of time-ordered operator
products with help of the time evolution kernel by application of path integral methods. Here
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1.11 - Bosons and Fermions, and what else?

we will apply the external current formalism the first time. It will lead us to the Feynman
rules for perturbation theory in a quite straightforward manner. Now let us introduce the
Lagrangian

Ly=L+zJ (1.120)

Herein J is an external force applied to the system. We restrict the influence of this external
perturbation to a finite interval in time:

J(t) =0 for 7 ¢ [t,t']. (1.121)

From that we get for T' < t < ' < T" together with the composition rule for the time evolution
kernel

UJ(T,,CE/;T,$) :/dyldy2U(T/,l“,§t/,yl)UJ(t/ath,?/2)U(t,y2;T,$) (1122)

where Uy and U are the kernels with and without the influence of the external force respec-
tively. Now from (CITY) we have

Ul(t,ys; T, x) ngn (y2)er (x) exp[—iE,(t — T)]. (1.123)

Now if we have a Hamiltonian which is bounded from below, we can multiply the sum by
exp(—iEyT) and analytically continue the kernel to the upper complex plane. So we obtain

Tligloo exp(—1EoT)U (t,y2; T, x) = po(y2)ey(z) exp(—iEpt). (1.124)

With the same calculation for the other non perturbed kernel in (CI22) but with 77 — —ico
we get the desired result

T, 2/, T
o), =, tin Uyl 2.2)

Z[J] = T'——ico, T—ioo exp|—1Eo(T" — T)]po(z ) (x)

(1.125)

The whole discussion shows that it would have been enough to rotate the time axes clockwise
with a little angle §. So we can take the limit in (CI2H) as T — ocoexp(—ie) and T/ —
—ooexp(—ie). Another way, which we shall prefer in the context of path integrals, is to
introduce a small positive definite imaginary part into the Lagrangian, for instance we take
imez? /2.
Since for ' — oo and t — —oo a constant factor in Z[J] is not of interest, we take as boundary
conditions such paths for which

lim z(r) =0. (1.126)

T—=+00
This assures that the action integral along the whole time axis exists. Then we conclude from
(CTZ3) the path integral formula for the Z-functional:

= N/Dxexp [1/ dt <L+ Jr+ — ime 2)] . (1.127)

At the very end of the calculation the expression is understood to be taken for ¢ — +0. The
quantum field theoretical analogue of this functional will play a crucial role in the following
calculations.

1.11 Bosons and Fermions, and what else?

Section in preparation!
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Chapter 2

Nonrelativistic Many-Particle Theory

In this chapter we sketch shortly the many particle theory for the nonrelativistic case which is
done to show that field quantisation is nothing else than many particle theory in Fock space
representation.

2.1 The Fock Space Representation of Quantum Mechanics

First we like to describe many-particle states with a fixed number of identical bosons or
fermions. At first we have to think about the correct Hilbert space for this problem.

Each single particle state can be spanned by generalised momentum-spin eigenstates. Since
the momentum and spin operators for different particles commute the basis kets for the many
particles are given by the tensor products of the n single particle basis states. Thus the first
guess for the Hilbert space for the many-particle states is

Hyy=H@... 0N (2.1)
~—_——

n times

Unfortunately this Hilbert space is too big if the n particles are indistinguishable. This
assumption is understandable if one thinks about basic quantum mechanic considerations
about the nature of particles. In classical mechanics we can label the particles by their initial
positions and momenta and then we know the position of each individual particle over there
whole trajectory. But in quantum mechanics there is no trajectory in the classical sense.
Thus the only label of particles are its intrinsic quantum numbers, as are the spin sort (0,
1/2, ...), mass, charge numbers etc. Thus if we have indistinguishable particles there is no
possibility to find an individual particle along the time evolution.

In other words the multi-particle product states have to be unchanged (up to a phase which
we choose arbitrarily to be 1) under permutation of the single particle quantum numbers of
a complete compatible set of single particle observables. Thus each state in the n-particle
Hilbert space has to build a one-dimensional representation of the permutation group .5,.
These are either the trivial representation (such particles are called bosons) or the alternating
representation (such particles are called fermions). The latter representation is defined by
that it just multiplies the state with the sign of the permutation applied to the one-particle
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states contained in the n-particle product state. Thus we have

N 2pes, [4P1) © - ® [ap@)) for bosons (2.2)

‘q17q27 R 7Qn>i = { ZPGSn 51gn(P) |qp( )> R...Q |QP(n)> for fermions.

Herein g is the complete set of single-particle quantum numbers (for instance (py, o)) with
pr € R op = —s,—s+1,...,5. N is a (state dependent) normalisation constant which
normalises the states to -functions as usual in quantum mechanics.

Thus the correct Hilbert space for n indistinguishable particles is given by the span of all
this symmetrised or anti-symmetrised products of single particle states. In the following we
denote the bosonic or fermionic n-particle Hilbert space by ;" or J,.

Now sometimes it is more convenient to describe a system of many particles without fixing
the numbers of particles contained in the system. As we shall see in the next chapter this
is necessary to describe relativistic particles consistently. The physical reason is well-known
nowadays, namely the possibility to create and annihilate particles. In the nonrelativistic
theory the particle numbers are ﬁxedﬂ as we shall see later in this chapter.

The appropriate Hilbert space is given as the orthogonal sum over all n-particle bosonic or
fermionic Hilbert spaces:

HE =0 A0S (2.3)

This space is called the Fock space of many particle states with a non-fixed number of particles.
Clearly there is also a Hilbert space which describes the possibility that there is no particle
at all. This Hilbert space is by definition one-dimensional and this state is therefore called
the vacuum.

Now we come to a nice feature of the Fock space, namely the possibility to define so called
creation operators. Both are defined as linear operators by their operation on the above
given symmetrised or anti-symmetrised product states. They map a n-particle state to a
n + l-particle state. We define these operators by

al (@) g1, ) =g, a1, an)™ (2.4)

Thus aT(q)E adds one particle in the state |g) to the n-particle state leading to a n+ 1-particle
state. It is therefore called a creation operator.

Now we want to calculate the hermitian conjugate of the creation operator. This is most
conveniently done by noting that the identity operator on the Hilbert space can be written

as
1—2 > danan) (@l (2.5)

QIy -4n

Multiplying this identity from the left with af(¢) we obtain by definition (ZZI):

Z = > g a) (g gal (2.6)

q1,---n

!This is only true for elementary particles, not for quasiparticles (like phonons in condensed matter physics).
2Tt is written as a', not as a simply by convention in literature.
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From this we find the adjoint

n!
q1,---dn

9]
1
a(Q) = E - |q15---aQn>i <q,Q1,--->Qn|i (27)
n=0 q

and by using the fact that the states used are orthonormalised we find

n

a(@) a1, an)t = (1 15(15,0) zl,...,z},...,zn>. (2.8)

j=1
With help of ([Z8)) and (4] we obtain the important commutator relations
[a(), a (k)]x = 6(1,k), [a(l),a(k)] =0, [a’(),a (k)]z = 0. (2.9)

Now we can write any operator in terms of creation and annihilation operators which shows
that these are a complete set of generating operators of the algebra of observables of our many
body system. To show how the prove for this works, we calculate this representation for the
two most simple cases, namely one-particle and two-particle-operators.

In the n-particle subspace of the Fock-space a one-particle operator is defined to be of the
form

n n

0M=%"10--®@ o, ®l-1:=) o (2.10)
j=1 jth place J=1

It is important that this operator is symmetric under all interchanges of the positions of

the one-particle operator o because otherwise one could use it to distinguish a part of the

identical particles from another part in the sample. This would contradict our understanding
of identical particles!

Further it is clear that a one-particle operator is defined on the Fock space by

0=) oM. (2.11)
n=1

On the unsymmetrised Fock space the operator can be written as

O =" "|k1) @ @ [kn) (k1| @ - @ (k|0 1)) @ -+ @ |ln) (1| @ -+~ @ (In] . (2.12)
j=1 k|l

Now we introduce the symmetrisers and anti-symmetrisers:

St = J% > P(+)P. (2.13)
T PeSy

Herein we have set P(—) = o(P) and P(+) = 1 for P € S,,. The operator P interchanges
the one-particle states of a direct product of n one-particle Hilbert space vectors given by the
permutation P € S, and is further defined on the n-particle space to be a linear operator.
Thus the symmetriser or anti-symmetriser maps the unsymmetric product space to the boson
or fermion Fock space. It is a simple exercise to show that S* is a hermitian projection
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operator, i.e., (Si)2 = S* and S*' = S*. With help of this operator we can show for the
operator to be defined on the n-particle subspace of the boson or fermion Fock space by

o = stomg* = ZZ ko k) o (el D) (2.14)
j=1 k,l

Here we have used the one-particle matrix elements og; = (k|o|l). With help of 4] and
summing over n we find on the whole Fock spaced:

Oi = ZoklaT(k:)a(l). (2.15)
kl

This has a simple interpretation: The one-particle operator destroys a particle in state [ and
creates a particle in state k. The “weight” with which this happens is given by the one-particle
matrix element o;.

We give now a very simple example for this formalism. As the one-particle basis we chose the
generalised position-spin basis |Zo). As a typical one-particle operator we take the momentum
of the particle. The one-particle matrix element is given by

(7,0 |p|X',0") = —i7m050 8P (& — 27), (2.16)
xr

which is already known from elementary quantum mechanics. For a reason we will give in
the next section below the creation and annihilation operators for this basis will be denoted
by ¥ (#,0). This operators are called field operators. We shall see that these operators can
be obtained directly by a canonical quantisation formalism for Schrédinger’s equationt].

Thus by inserting (ZI6]) into the general formula [ZIH) we find

i .10 .
B, — / ZU:d?’mpT(ma)Ta—f (7,0). (2.17)

3making use of the representation of the identity operator (ZH)

4In the ancient days of quantum mechanics this formalism was called “second quantisation”. Hereby the
physicist had in mind that there was the first quantisation procedure which quantised Hamiltonian classical
mechanics by making the canonical variables hermitian operators. As we try to show in this chapter this
is a misleading idea since the field quantisation is nothing else than many particle quantum mechanics for
indistinguishable particles
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Canonical Field Quantisation

In the 19th century the physicists changed their point of view about the fundamental forces
(as far as they were known these days) dramatically. The paradigm of a fundamental force
law was Newton’s 1/r? behaviour of gravitation which was extremely successful in describing
the motion of the planets around the sun. This law was the description of an instantaneous
action at a distance. The force caused by the masses of the bodies attracting each other
depends only on the distance of this bodies in space. Changing the relative position of the
bodies effects the force without any delay in time.

On the other hand there was Maxwell’s theory of electromagnetism which introduced a new
type of dynamical quantities in physics, namely fields. This description showed that the forces
are not acting instantaneously when the sources of this forces change their position but the
forces need a certain time to propagate from one point in space to another. The main physical
phenomenon in this context is the propagation of waves. In the case of electromagnetic waves
that included the propagation of light, known to be a wave phenomenon a long time before.

In this chapter we like to give an introduction to field quantisation and its meaning in terms
of the operator formalism. This will be done using the most primitive examples, namely on
free scalar particles and scalar real ¢*-theory. In the rest of our lectures we shall use the more
convenient path integral formalism and functional methods. The main goal of this chapter
is to get an understanding of the physical meaning of field quantisation as a many particle
theory.

In the beginning we shall recapitulate some facts about the special relativistic space time
structure in terms of the Poincaré groups. Then we shall investigate the unitary represen-
tations of this groups which are important in physics. Equipped with this fundamentals we
can introduce the action functional for fields in the Lagrangian as well as in the Hamiltonian
formulation and proof the classical part of Noether’s theorem.

Having done the classical part we can quantise the free theory.

The chapter ends with a short introduction to perturbation theory from the operator point
of view applied to ¢* theory.
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3.1 Space and Time in Special Relativity

In 1905 Einstein wrote his famous article about “electrodynamics of moving bodies”. It
was a revolution in our knowledge about space and time. His approach to special relativity
was to take the problems of electrodynamics and Galilean invariance serious and to give
up the Newtonian picture of space and time. He simply postulated that on one hand the
velocity of light is independent on the velocity of the source the light comes out (which was
an empirical fact in this time) and on the other hand there is no possibility to distinguish
between two coordinate frames which are in relative motion with constant velocity. With this
two postulates he could investigate what it means to measure time and space intervals and
the transformation laws from one inertial frame to another equivalent one.

Nowadays we are in the convenient position that we have Minkowski’s famous four-dimensional
geometry at hand. Together with the Ricci formalism for tensor algebra and analysis we can
formulate relativity in a straightforward mathematical manner. Space and time build together
a four-dimensional real vector space. The vectors are given by their components with respect
to a coordinate system and are denoted by z# with the upper index running from 0 to 3.

On this space we define the Minkowski inner product as the symmetric indefinite bilinear
form

z'gy = guaty” with § = (gu) = diag(l, -1, -1, —1). (3.1)
Herein a summation over a pair of indices, one upper and one lower, is understood. The upper
index t on a column vector means the row vector with the same components (transposition
of a matrix).

The physical meaning of the components is that 2 = ct, where c is the velocity of light. In
the following we set ¢ = 1 which is convenient in relativistic physics. The structure of space
and time and so the kinematics of special relativity is now fixed by the statement that a
linear transformation, i.e., the transformation from one inertial system to another, is defined
as the set of linear matrices acting on the column vectors (x*) which leave the Minkowski
inner product invariant. That means that L is such a transformation matrix if and only if

Va,y € R*: (f)x)tgﬁy = zlgy. (3.2)

Since this has to hold for all pairs of vectors z and y we can conclude that L is an “allowed”
transformation if and only if

LYgL = §. (3.3)
All linear transformations fulfilling this restriction are called Lorentz transformations and
build a group of transformations (prove this as an exercise!). This group is called O(1,3),
i.e., the orthogonal group with respect to a inner product with one positive and one negative
eigenvalue of its defining symmetric matrix.

Since all points in our four-dimensional space-time are indistinguishable the physical laws are
also invariant under a translation in time and space. Together with the Lorentz group these
translations build the inhomogeneous Lorentz group or the Poincaré group. The main task
addressed with our investigation of this groups is to find the mathematical structures which
are invariant under the action of this group. Fortunately there are some further restrictions on
the physical laws (like causality) which restrict the possible physical important representations
of this symmetry. Because of this it is important to know the structure of the Poincaré group
quite well.
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But at first let us give a physical meaning to the Lorentz group. Since this group leaves the
Minkowski inner product invariant there are three distinct classes of vectors, namely:

o (zt) time-like & x,2* > 0
o (zt) light-like & x,2* =0

o (zt) space-like & z, a2 < 0.

These three classes of vectors are invariant under Lorentz transformations. They can be
visualised by using a 1 4 2-dimensional space-time:

Timelike vector
Forward light coyf

Backward lightcone
Figure 3.1: 1 + 2-dimensional space-time

Now we think about the physical meaning of this space-time. It is clear that the geometry of
our space-time is different from that of the more familiar Euclidean spaces used in geometry.
The reason is, of course, the indefiniteness of the scalar product. From elementary classical
electrodynamics we know that the free plain waves are a solution of the Maxwell equations,
i.e., the equations of motion for free electromagnetic waves (e.g. light). The propagation of
the waves is described by its phase factor which is of the form (here setting ¢ the velocity of
light):

exp(—iwt 4 ikZ) = exp(—ika) with 2° = ct. (3.4)
The physical meaning is evidently a plane wave propagating in space along the direction
of k. The Maxwell equations are solved by waves with such phase factors if k2 = 0 which

leads to the dispersion relation w = |l€|/ c. In our covariant language that means that a free
electromagnetic wave has a light-like four-vector as the wave vector.
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Now in relativistic physics there is no causal signal or event which can travel faster than the
light. In more geometrical language this means that two events can only be causally related
if their relative four-vector is time-like. If x and y are such events this means (x — )2 > 0.
Now we say that = happened after y if 20 — y° > 0, i.e. if # — y is in the forward light-cone.
We can say the forward (backward) light-cone defines the future relative to the origin. All
the space-like points are such points which can happen simultaneously from the point of view
of an appropriate coordinate frame.

we shall come back now to the Lorentz transformation itself. If we have a transformation
that leaves the zero-components of four-vectors invariant, this transformation is of the form
D = diag(1,d) where d is a 3 x 3-matrix. This matrix fulfils the condition |dZ| = || for all
three vectors &. One can easily show that from this we can conclude that for all three vectors
Z and g this transformation has to have the property to leave the three dimensional Euclidean
scalar product invariant: (d)(dij) = &§. So for the matrix d we have d'd = dd' = 1. Such
matrices are called orthogonal matrices. These matrices describe rotations or the composition
of a rotation and a reflection. All these matrices together build a linear group, called O(3),
i.e. the group of orthogonal transformations of the Euclidean space R?. The pure rotations
are given by orthogonal matrices with detd = +1 and form a subgroup of O(3), namely the
so called special orthogonal group SO(3).

From this reasoning it follows that the whole Lorentz group has O(3) and SO(3) as subgroups.

Now we come to another subgroup. As explained above the four-dimensional space-time
contains a “causal structure”: Namely events which are causally connected are in the light-
cone, i.e. its relative vector is time-like. The direction of time is given by the sign of the
zero-component of the relative vector, namely if it is in the forward or backward light-cone.
Now a physical change of the frame, i.e. the change of the coordinate system of R* by a
Lorentz transformation, should not change the time direction of causally connected events.
Now a Lorentz transformation maps a time-like vector to a time-like vector, because it does
not change the Minkowski product. So the time-like basis vector of the original frame eq is
mapped by the Lorentz transformation to the time-like vector ef, of the new frame. In order to
be in the forward light-cone, defined by the direction of ey, the applied Lorentz transformation
L should have a positive matrix element L%. Now from [B3) we have |L%]| > 1.

So we have L% > 1 for such Lorentz transformations which do not change the direction of
time. They are called orthochronous Lorentz transformations. It is clear that these transfor-
mations build a subgroup of the whole Lorentz group called the orthochronous Lorentz group
O(1,3) 7. This can be proved by the following intuitive argument: Since an orthochronous
Lorentz transformation maps all time-like vectors in the forward (backward) light-cone to
time-like vectors which remain in the same light-cone, this is also the case for compositions
of such transformations and their inverses.

From B3) we can also conclude that detl = +1 for all Lorentz transformations L. Now
it is clear that the matrices with determinant 1 form a subgroup of all linear coordinate
transformations in R* called the special linear group SL(4,R). Since the intersection of two
subgroups of a bigger group builds again a subgroup of this group the Lorentz transformations
with determinant 1 build a subgroup of the whole Lorentz group, namely the special Lorentz
group SO(1,3) also called proper Lorentz group. With the same argument we see that also
the intersection SO(1,3) 1= O(1,3) T NSO(1,3) is a subgroup of the whole Lorentz group.
It is called the proper orthochronous Lorentz group, which is the part of the Lorentz group,
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which is connected to the identity of the group (this is shown in appendix B).

Now let us investigate what is the meaning of a transformation acting on both the time and the
space indices. For this purpose it is enough to find the general form of a transformation keeping
x? and 23 constant. This is enough since all three space-like basis vectors are equivalent in
this context.

So we write

(L") = diag(i,1,1) with { = ( ‘CL Z > . (3.5)

Now since L is assumed to be in SO(1,3) 1 we have the following restrictions on the sub
matrix [:

a>1,detL=ad—bec=1,a>-c=1,0*—d*>=—-1, ab—cd = 0. (3.6)

The three last conditions are derived from (B3]). The first of these together with the first
inequality we use to parameterise

a = cosh A\, ¢ = —sinh \. (3.7)
From the last condition we conclude
b/d = c¢/a = —tanh A (3.8)
and since detl = 1 we have
dcosh A + bsinh A =1 = d(cosh A —sinh Atanh A\) =1 = d = cosh A\, b = —sinh A.  (3.9)
So we find finally

—sinh A cosh A\

This applied to the four-vector x gives

i ( coshA —sinh\ > (3.10)

29 cosh A — z! sinh A
_ 0 1
o - z" sinh )\x—; x+ cosh A (3.11)

3

which shows that we describe the change of the frame of reference from one coordinate system
to another equivalent one which moves with constant velocity along the z! axes relative to
each other. The origin of the primed system is given by # = 0 and is thus moving with
respect to the other system with velocity:

21
v=c— = ctanh A\ = ¢f. (3.12)

z0
Here again we set ¢ for the velocity of light. This is an important physical conclusion of this
whole calculation: The relative velocity of two inertial frames can not be greater than the
velocity of light. Since we can express the hyperbolic functions with help of tanh, we have

cosh \ = N sinh A = _s (3.13)

i I
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Inserting this into (BI2) we find the more familiar form of this physically most important
sort of proper Lorentz transformations, namely the so called Lorentz boosts. In our case we
have found the boost in 1-direction:

20— gzt _ !l — vt (3.14)

Vi-p i

In appendix B we prove the theorem that each proper orthochronous Lorentz transformation
can be obtained by composition of a boost in 1-direction and rotations in the original frame
and the boosted frame. This should not be too surprising from intuition. It shows the
physical meaning of proper orthochronous Lorentz transformations: This matrix group gives
the correct relativistic transformations from one inertial frame to another.

0
2 =ct =

It is easy to show that all boosts in 1-direction form a subgroup (exercise: show this by
multiplying two matrices of the form (BI0) and application of the addition theorem for the
hyperbolic functions). But this is not the case for Lorentz boosts in different directions. Two
boosts in different direction composed always give a proper orthochronous Lorentz transfor-
mation but containing rotations.

The most famous physical implication of this is the magnetic moment of the electron: In the
early days of quantum mechanics, when the physicists calculated the spin orbit coupling in
atomic physics, they miscalculated the electromagnetic moment by a factor 1/2! The reason
was that they had to transform from the rest frame of the electron, where it was easy to
calculate the magnetic field induced by the motion of the nucleus, back to the rest frame of
the nucleus. Thomas has shown that one has to use the Lorentz transformation rather than
the Galilean transformation. This rather complicated calculation yields the correct result 2
for the gyro magnetic factor of the electron (which is valid up to small radiative corrections we
shall explain in the context of quantum electrodynamics (QED) later). We shall obtain this
result immediately from the calculation of a relativistic electron in a homogeneous external
magnetic field in lowest order perturbation theory, a calculation much simpler than Thomas’
original one. That was the first success in Dirac’s relativistic hole theory, the most important
precursor of our today’s view of relativistic quantum electrodynamics!

3.2 Tensors and Scalar Fields

In physics we have to look for structures which are consistent with the space-time structure
chosen to describe nature. In our case the space-time is not too complicated, since the
Minkowski space is a flat space with an indefinite metric as we have described it above.

In classical physics the question, which structures are the right ones is relatively straightfor-
ward. The mathematical objects used to describe nature should have a definite behaviour
under Lorentz transformations (at least proper orthochronous Lorentz transformations). Since
the Lorentz transformations are linear transformations the most simple covariant quantities
are scalars, vectors and tensors of higher rank. A tensor is defined by its components with
respect to a given coordinate system and their transformation rules under Lorentz transfor-
mations. We know so far how a vector transforms, namely z#* — L*, ¥, where we have used
the contravariant vector components (with upper indices). The covariant components have
lower indices and are defined with help of the Minkowski metric to be z,, = g, 2”. It is clear
that with the same matrix one can raise the indices again, now written as x* = ¢g"”x, with
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(gMV) = (gw/)il = diag(lv -1, -1, _1)'

A tensor of rank k is a quantity with & indices (upper or lower) whose components transform
under Lorentz transformations like a product of vector components. It is clear that g*¥ is
a tensor of rank 2 which is invariant under Lorentz transformations due to their defining
property B3): ¢'* = LH,L" ;9" = g".

This property ensures that summation over an upper and an lower index of a tensor yields
again a tensor. This operation is called a contraction. By definition it is clear that the product
of two tensors with ranks k£ and [, defined by the products of their components, results in a
tensor of rank k£ + [. The most simple example is the scalar product itself. Two vectors x*
and y* build together the tensor T*” = z*y" of second rank. Now the contraction of the
tensor T+, = TH g, gives the invariant Minkowski product of the two vectors.

The next simple quantities are tensor fields, especially scalar fields. They are functions of
the space variables obeying certain transformation properties. For instance, in the case of a
tensor field of second rank the transformation law under a Lorentz transformation is given by

T (&) = L* LV T (z) with 2/ = L* 2" (3.15)

The analogous transformation property holds for tensors of any rank. The most simple case
is that of a tensor field of rank zero, i.e., a scalar field:

¢ (2') = ¢(x) with o'* = LH ,z". (3.16)

Under translations all fields behave like scalar fields. An infinitesimal translation in space
and time is thus given by

0
ox'H

¢'(2') — ¢(z) = ¢(2') — ¢(a' — ba) = da'' ———(a"). (3.17)
Hence the generators of this transformations, which are the operators of energy and momen-
tum, are given by

p, =i0,. (3.18)

Now for a free particle energy and momentum are definite quantum numbers. So we look for
eigenstates of energy and momentum:

10,0p(x) = pudp(x) = dp(x) = Npexp(—ip,z"). (3.19)

N is a normalisation constant which will be fixed in a convenient way when we develop the
quantum field theory.

With help of the four-momenta we can build a scalar operator m?

propagation of the waves described by the fields the momentum p has to be time-like. So
2 > (0. Here we shall concentrate on the case m2 > 0. Since m? is a scalar it
commutes with generators of Lorentz transformations as well as with energy and momentum
operators. Thus it is represented by a number in any irreducible representation of the Poincaré
group. So it is a definite quantum number of the system, called the mass. If we think about
wave functions of quantum mechanics this is the mass of the particles described by the wave
function. The particle at rest has an energy fulfilling the condition E? = m?2. So there are
plane wave solutions for the free particle with a negative energy. This is a big problem we
have to solve since the Hamilton operator should be bounded from below.

= p,p". For a causal

we have m
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Otherwise one could always find an energy state which is lower than any given other one.
Then the whole system could never be stable. We could produce as much energy as we like
and could construct a perpetuum mobile of first kind which is claimed not to exist.

we shall see that there is an elegant solution in terms of interpret the free particle states in
terms of a quantum field theory. In the case of a scalar field the mass is the only intrinsic
quantity describing the particles. There can only be intrinsic degrees of freedom like electric
charge which will be defined later.

The fields with a definite mass are given by the wave equation for free particles, namely
(p,p" —m*)p = (-0 —m?) = 0 with O = 9,0". (3.20)

This is the Klein-Gordon equation.

So a general field with definite mass and three momentum consists of a positive and a negative
energy part:

¢(x) = N T exp(—iwgt + ipT) + N~ exp(+iwyt + ipZ) with wy = /2 + m2. (3.21)

From a physical point of view we cannot see the meaning of the negative energy states which
is a problem since in the case of interacting fields we need the complete set of plane waves to
describe the time evolution of the system. So starting with an state without negative energy
parts time evolution will bring in such states.

The (modern) interpretation of this ambiguity is to say that there does not exist a one particle
picture of relativistic quantum mechanics like in the case of the non relativistic theory in terms
of the Schrodinger equation. Nowadays we know the physical reason since in accelerators like
GSI, CERN, etc., all beam time there are produced a lot of particles. So we have to use a
theory to describe these phenomena correctly which has not a fixed number of particles. As
we have seen for the nonrelativistic case quantum field theory fulfils exactly this idea.

Here is a short historical remark at place: In the old days of quantum mechanics relativity
(at least special relativity) was a well established theory. So it is not astonishing that the
physicists started from the very beginning to seek for a relativistic generalisation of quantum
mechanics as it was formulated by Schrédinger (which was in these days thought to be the
most convenient formulation of quantum mechanics). Since the heuristic concept to find
wave equations by assuming a dispersion relation due to the energy momentum relation of
the underlying classical mechanics (that was known as the correspondence principle), it is
easy to imagine that very quickly the physicists found the Klein-Gordon equation. Really it
was found by Schriédinger just before he found his nonrelativistic equation! But the problem
were the negative energy eigenstates and the fact that nobody could find a positive definite
scalar product with a current conservation law which settles the time evolution to be unitary
as is needed for conserving the probability (i.e. the normalisation of the wave packets).
So the pioneers of quantum mechanics concluded that there is not such an easy relativistic
quantum mechanics as is Schrédinger’s nonrelativistic one. On the other hand in these days
the only known “elementary particles” were electrons and protons both with spin 1/2 (as was
known since the famous work by Goudsmit and Uhlenbeck). So P.A.M. Dirac came to the
conclusion that the correct wave equation has to take into account the spin of the “elementary
particles”. The same time he liked to solve the problem with the negative energy states. So
since the Klein Gordon equation was of second order in both time and space derivatives
and the successful Schrodinger equation had a time derivative only in first order, he had the
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ingenious idea to seek a first order relativistic equation. Since the equation has to be covariant
the space derivatives had to be of first order too. As you might guess what he found by that
intuitive reasoning was the famous Dirac equation. We shall derive it in the next chapter
by studying the systematic representation theory of the Poincaré group (first done by E.P.
Wigner in 1939). The Dirac equation indeed did solve one of the two problems, namely that
of a positive definite scalar product. But already there were the negative energy eigenstates
and they could not be omitted by the same reason as for the scalar case. But now Dirac had
another ingenious idea: Since electrons are fermions they can occupy a quantum state with
only one particle. So he concluded that the world we live in is given by filling all the negative
energy states with electrons! Since there is an energy gap of 2m.c?> = 1022 MeV no electrons
of that Dirac sea can come to our positive energy world except in cases of hard scattering
processes where one can create a pair with an electron and an in these days unknown partner,
the “anti-electron” which was realized to have the same mass and spin as the electron but
an opposite sign of electric charge. This lead Dirac to the prediction (!) of the existence of
antiparticles.

Nowadays we have another sight of this facts, which will be given later in detail: The formalism
of quantum field theory gives us the possibility to reinterpret the negative energy states to
be anti particles with positive energy (Feynman-Stueckelberg interpretation). Together with
fixing the ground state energy of the now bounded from below Hamiltonian to be zero there
is no longer any need for a Dirac sea occupied completely by infinitely many electrons! The
preference of this approach comes from the fact that nowadays there are known hundreds
of bosons: If the Hamiltonian for them was not bounded from below all the bosons must
crash into this infinitely low energy state (at least at zero temperature) and as far as I know
there would not be any chance of stable bosons. There is another more physical reasoning
against the sea interpretation also for fermions: Since we know that our space-time is much
more complicated then in special relativity namely due to general relativity (Wheeler gave
it the nice name “geometrodynamics”). This theory of space and time at large scales (there
are models of the whole universe like the cosmological standard model with the big bang
as the beginning) tells us that the energy-momentum tensor of the matter and fields enters
Einstein’s equations as source terms for the field of gravity. But gravity is not a field as those
we are taking into account in this course! It is nothing else than the curvature of the four-
dimensional space-time. Since the Dirac sea should give an infinitely big energy density our
universe would look completely different from our experience. From this yet not completely
formulated quantum theory of the curved space-time itself it follows that we are on the save
side with our Feynman-Stueckelberg interpretation which renormalises the vacuum of the
free theory by introducing normal-ordering which is also necessary to give the field operator
products introduced in one of the next sections in the canonical quantisation approach a
unique meaning.

Now let us come back to the theory and the most simple case of a scalar field. It is important
to realize that the Klein Gordon equation can be formulated by an action functional in the
same way as one can formulate Newton’s point mechanics with help of an action functional.
Here we think of the fields as infinitely many dynamical degrees of freedom, labelled by Z. So
the Lagrangian is defined as a space integral over a Lagrange density:

L(t) = / BPEL(¢,0,0). (3.22)
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Exercise

To give a very intuitive idea what is meant by this, look at a spring with masses equidistantly
connected to it. This masses can move as transversal waves. Find the equation of motion of
such a system! After doing this think the masses to be smeared out over the whole spring.
You will end with a string and the wave equation for its motion. This is indeed a very intuitive
picture what is meant by a system with infinitely many degrees of freedom!

Then the action is given by integrating [B22)) over a finite time interval (t1,%2).

Stol = [ ' 2(0.0,0). (3.23)

In order to be invariant under Lorentz transformations the Lagrange density, in the context
of quantum field theory widely called Lagrangian, has to be a scalar field built by ¢ and its
gradient.

Now the equation of motion for the field is given by the stationarity condition of the action
functional. One immediately finds by applying the tools shown in appendix A that the
functional derivative and with it the stationarity condition is given by

08 0% 9 0.7
5¢ ¢ "O(0u9)
Now we like to find relativistically invariant equations of motion for fields which are intended
to describe particles the same way as the Schrodinger field does for nonrelativistic particles.
we shall find that this fails and that this problem can be solved by thinking about the field
equations as operator equations of motion in the sense of a many particle theory in terms of

=0 (3.24)

a quantum field theory we have found in the previous chapter from the particle point of view
for the nonrelativistic case. There this was only a convenient description for a many particle
system which could be described in an equivalent way with help of Schrédinger wave functions
for the many particle system. As we will see soon this is not the case for the relativistic case,
since there is always the possibility to create and annihilate pairs of particles and antiparticles.
Thus the number of a certain sort of particles is not conserved but only other quantities like
the electric charge. So in the relativistic case the Fock space of a non-definite number of
particles is not only a convenient but a necessary concept to describe relativistic particles!

Nevertheless at first we stay a little moment at the classical point of view and find a covariant
equation of motion for the scalar field. In the next chapter we shall do this in a more formal
and more complete way. Here we give a simple heuristic argument to find the free particles’
equation of motion. This equation of motion should be derivable from a Lagrangian which
is quadratic in the field and depends only on the field and its gradient. It should also be a
scalar field. Now the only scalar one can build out of the gradient of the field is 0,¢0"¢. So
a good candidate for the Lagrangian of the free real scalar field is

1 " m? 9
2 = L(0u0)(@"0) ~ - (3.25)
Using (B2Z4)) we obtain the Klein-Gordon equation for the real scalar field:
O¢ +m?p = 0 with O = 9,0u = 87 — A. (3.26)
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Now we can interpret this equation with help of the meaning of the gradient operator known
from nonrelativistic quantum mechanics to be the momentum operator: p, = id,. So the
Klein-Gordon equation gives the relativistic relation between energy and momentum of a free
particle, namely E? = 5> + m?.

To get now a consistent definition of physical quantities we prove Noether’s theorem.

3.3 Noether’s Theorem (Classical Part)

As shown above the classical field theory is defined by an action functional S[¢]. The physical
fields are given by the condition of stationarity of S

a8
5o
which is the equation of motion for the fields. The action functional is given as the four-

dimensional integral of the Lagrange density, which is a function of the fields ¢ and their
gradients 0,,¢:

0, (3.27)

S[g] = / Lol (6,0,9). (3.28)

The only constraint on the field is that it must vanish in the infinity of four-dimensional space
such that S exists.

Calculating the functional derivative with help of the techniques shown in appendix A shows
that the stationarity condition ([BZZ17) gives the Euler-Lagrange equations for the fields:
oS 0L 0L
0] _0Z _, 02 _, (3.29)
00 oo (0u0)

Now we look at a rather general class of symmetry transformations which are described by
the operation of a Lie group on the fields and space-time variables. The only assumption we
want to make is that the action of the group on the space-time variables is independent on
the fields.

Then the operation of an infinitesimal transformation can be described by
't =t + Sxt, ¢ (2) = p(x) + So(). (3.30)

The field variation d¢(x) contains the operation of global and local internal symmetries of
the fields as well as the action of the Lorentz group on the fields. Now we have to calculate
the change of the action under the change of such an operation:

5S[¢] = / d*a'L(¢',0,¢') — / 'z L ($,0,0). (3.31)

In the first integral we have to change the variables of integration to the original space-time
variables. The Jacobian is in first order in dx:

ox'H
det (0 > = det (88 + 0,02") =1 4 0,0z, (3.32)

Ty

This can be seen easily if one thinks of the definition of a determinant as the sum over
permutations of matrix elements. In first order in dx only the product of the diagonal elements
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are important. All other products appearing in the definition of the determinant contain at
least two factors dzx.

Now we have to take into account that variation and differentiation of the fields do not
commute since we are varying the space-time variables as well as the fields:

oz'H
ox?

-1
8(0ud) = 0,9 (2) — Opdp = 0,(¢ + ¢) ( > — 06 = 0,(6¢) — (8,62")D,¢.  (3.33)

Taking ([B32) and ([B33) together with [B3T]) we obtain after integrations by parts
0S[¢] ( 0«
53 :/d4x [—5 + 0, | (0,

The vanishing of the variation of the action functional for all fields (not only for solutions of
the equations of motion!) is the definition for symmetry transformations. Now the identical
vanishing of the integral for all fields can only be true if the integrand is a four-divergence.

— 55.3) 595”} ~0. (3.34)

A little calculation concerning the derivative in the second summand gives

— / d%%(@@)w. (3.35)

Now the infinitesimal operation of the group can be written in the form
6¢(z) = 7a(x,9)on*, oat = —T5(x)on*, (3.36)

where 7 and T are bases of the Lie algebra of the group in the representation on the fields
and space-time variables respectively. The &7 are real parameters independent on z and ¢.
All together we draw the conclusion that the integrand of ([B34]) has to be a four-divergence:

3l dSlo
6p(z) = dp(x)
For the solutions of the field equations, i.e., such fields which fulfil the stationarity condition

B27) we have

(0v)T, | on® = O, gkion. (3.37)

Oujl =0 (3.38)
since the generators of the Lie group 7% and 7¢ are linearly independent.
This is E. Noether’s Theorem:

For each generator of a symmetry group of the action functional there exists a current ji
with vanishing four-divergence. These currents are called Noether currents of the symmetry.

Now we have to find the explicit expressions for the currents. That means we have to express
the vanishing of the four-divergence and the constraint on the group to be a symmetry of
the action with help of the Lagrange density rather than with help of the action functional.

Using B34 we find
0L 0L
om0,k =0 [(&,(b
8 : o) 9(0u¢)
So we conclude that the group operation is a symmetry of the action, if there exists a field €2
such that

- 553) 5z — 56| + 0.2 + L0,62". (3.39)

I8 (¢, x) : 0L + L0,6x" = 0,080 (3.40)
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and then the Noether currents are given by

0L 0L
() ()

Now we show that Noether’s theorem is the local formulation of a conservation law. This
can be done by integrating the vanishing four-divergence over an arbitrary four-dimensional
V' volume which has a boundary 9V built by three dimensional space-like hypersurface of
the four-dimensional space-time. Hereby a hypersurface is called space-like if all its normal
vectors are time-like. Integrating ([B38]) over this volume and applying the four-dimensional
version of Gauss’ integral theorem we obtain

Syt = (31,(;5 - 553) Sz — 8¢ + QEon®. (3.41)

/8 § jHdS, = 0. (3.42)

Now a set of space-like hypersurfaces parameterised by f(x) = 7 = const (with f an arbitrary
scalar field with time-like gradients) defines an invariant measure of time 7. Now we assume
that the four-volume V' is bounded by the two hypersurfaces S; : f(z) = 7 and Sa : f(z) = 7o:

Qalm) :/S JhdS, :/S JhdS, = Qa(12). (3.43)

This means that the integral over the space-like hypersurface is a quantity constant in time
and that the s are independent of the special choice of the space-like hypersurface. For
convenience we may use the hypersurface 2% = ¢ in a given reference frame:

Qu = / A3z jo (z). (3.44)

The @, are called the Noether charges of the symmetry group.

Now we look on space-time translations. The four Noether charges of this group are the total
energy and momentum of the fields. A translation in space and time is defined as

d¢(x) =0, dx = da = const = 7,(x, ) =0, TH(x) = —0¥, on® = Ja®. (3.45)

With help of (B37)) we obtain with setting Q* = 0:
0¥
e, = <7> Oad — 0L L. 3.46
50,9) (340

This is the so called canonical energy momentum tensor which has no direct physical meaning
because it is not unique as we shall show soon. On the other hand the Noether charges are
unique physical quantities, namely total energy and momentum of the field system:

P,(t) = / a*ze’,. (3.47)

The Noether currents can be changed with an arbitrary four-divergence without changing the
Noether charges. With the j, defined above there are equivalent Noether currents given by

J'a = b+ OukyH (3.48)

a
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Chapter 8 - Canonical Field Quantisation

Since the divergence of this currents should vanish also we have only to take the k5" anti-
symmetric with respect of p and v which is a rather weak assumption.

As we shall see in the case of electrodynamics the canonical energy-momentum tensor cannot
be interpreted as density of energy and momentum in all cases of physical interest. For
instance in the case of electrodynamics this tensor is not gauge-invariant. But we shall see
that we can define a physical energy-momentum tensor (the so called Belinfante tensor) which
is gauge-invariant and gives the well-known expressions for energy and momentum density in
form of the familiar Poynting vector.

The space components of the physical energy-momentum tensor have the physical meaning
of a tension. This can be seen by derivation of the total momentum (28] with respect to
time and using its conservation. In the case of electrodynamics the space components of the
physical energy momentum tensor is Maxwell’s tensor of tension.

Now we apply Noether’s theorem to the case of Lorentz transformations. An infinitesimal
Lorentz transformation acts on the fields and space-time coordinates as follows:

1
0p(x) = §5wu,,6’“’¢(x), 0, = dwyx”, (3.49)

where 6#¥ = —g"* are the six generators of the representation of the SL[2,C] which is the
covering group of the SOI1,3]. Because we have 9,6x# = 0 the Lorentz invariance (which
means that the Lorentz transformations are a symmetry group of the action) is the constraint
on the Lagrange density to be a scalar field (seen as a function of z). The six Noether currents
are then given by

0L
9(9,9)
Here it is important to anti-symmetrise the currents J”** with respect to u and v since dw*”

is antisymmetric. The p and v indices label the six Noether currents. Thus the six Noether
charges are given by

JPHY — pHQPY _ RV QPH + a—l“/(b. (350)

Jﬂ”::t/ﬁ dS,.JoH . (3.51)
oV

Herein V' has the same meaning as in ([B2Z2)). The three space components coming from the
invariance under rotations build therefore the total angular momentum of the system. By
looking on (BA0) and the meaning of the energy-momentum tensor one sees that the angular
momentum tensor contains an orbital and a spin part.

The conservation of the three mixed components of J#” comes from invariance under boost
transformations. So this is the relativistic analogue of the centre of mass motion in the
nonrelativistic case.

We end this section with the construction of a symmetric energy-momentum tensor. This
is important for general relativity since there the energy-momentum tensor is necessarily
symmetric. We shall see in the next chapter that in the case of electrodynamics the tensor
can be chosen to be gauge-invariant, which is important to show that energy and momentum
densities are sensible physical quantities in this case.

We start with (B50) and the fact that it is conserved:

0L
9(9p9)

0= 8,JP = " — @™ 1, 5o, (3.52)
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8.4 - Canonical Quantisation

which shows that the canonical energy-momentum tensor is in general not symmetric in the
indices p and v.

Now we make the ansatz
T = 0" + J,wP", (3.53)
where wP* is an arbitrary tensor field which is antisymmetric in the indices p and v.

Now we try to chose wP*” such that TH” is symmetric. Since it differs from the canonical
energy-momentum tensor only by a total divergence it yields the same total energy and
momentum for the field configuration. The antisymmetry of w?*” in p and v makes the
divergence of TH” vanish the same time with ©H.

Inserting this ansatz in (BR3]) shows that it is consistent with setting

0L
0, (W — ) = 0 [7@%] | 3.54
p ( ) P (9( ap gb) ( )
The general solution of this equation is given by
0L
WPHY — PVE = ' + Ogn?PH = nPHY, 3.55
90,0) U U (3.55)

where n°P* is an arbitrary tensor field which is antisymmetric in ¢ and p as well as in p and
v. It is clear that then n*¥ is antisymmetric in p and v.

Now using
WPHY — (PVH = PRV PRV PV = () (3.56)

we find that with given n?* ([BE1H) is solved uniquely by

WPV = Z [PV 4 ghvP — pVPH] (3.57)

N |

It is simple to show by an algebraic calculation that indeed w fulfils the conditions we derived
for it above. So we find the theorem, proven first by Belinfante in 1939, that we can always
find a symmetric energy-momentum tensor.

We shall see in the next chapter that by a clever choice of n7?# which is the only freedom we
have to make the energy-momentum tensor symmetric, makes the energy-momentum tensor
of the electromagnetic field gauge-invariant the same time.

3.4 Canonical Quantisation

Now we like to solve our problem with the particle interpretation and causality raised by the
negative energy states. For this purpose let us consider a free complex scalar field with the
Lagrangian

L = (0,0)" (9"¢) — m*¢" 9. (3.58)

Although there seems to be no solution in terms of a Schrodinger-like theory, i.e., to interpret
the ¢-field as one-particle wave function, we try to build a many-particle theory by quantising
the fields.
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Chapter 8 - Canonical Field Quantisation

For this purpose we need another formulation of the classical field theory, namely the Hamil-
tonian one, known from point mechanics and the canonical quantisation as an approach to
Dirac’s operator formulation of quantum mechanics in terms of the algebra of observables.

This approach has the disadvantage to destroy manifest Lorentz invariance since we have to
introduce canonical momentum densities by the definition

0L 0L

T @) 900 55
Now let us look on the variation of the action
B 4 05 4 (9_ 0%
S[g] = / Qo = 5620 == [ [ b0+ 8000+ (V50) 5 (3.60)

where the nabla symbol V acts only on the space components of . This is what is meant
by saying that the formalism is not manifest covariant since we have now fixed the reference
frame by splitting in space and time components.

But now we can proceed in the same way as we would do in the case of point mechanics: We
introduce the Hamiltonian density

A =10, — L. (3.61)

Now varying with respect to the fields we find

0L 0L
99"~ V5

This shows that the natural variables for J# are II, ¢, V¢ and their conjugate complex
counterparts. Now we define the Hamiltonian

5. = 5110, + 1168,¢ + cc. — 6. = 5110, —

+ cc. (3.62)

H= / B3z (3.63)

With help of B64) we find for the functional derivative of H, where ¢ is to be seen as a
parameter:

0H oA v 0 5H H

5o I o(Vo)’ T or
and using the definition of . together with the equations of motion [B29) we find the
Hamiltonian equations of motion

(3.64)

SH SH
Ol = =357 06 = S (3.65)

For an arbitrary observable, which is a functional of ¢ and II and may depend explicitly on
t, we find

_ [ e[ 00 _sH 5O 6H
atO_/d [5¢(t,f)5ﬂ(t,f) i) o m | 0 =0 g (3.66)

Specially we have the following fundamental Poisson brackets:

{¢(t7 f)v H(tv g)}pb = 53(f - g)v {H(tv f)? H(t7 g)}pb = 07 {¢(t7 f)v ¢(tv g)}pb =0. (3'67)
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8.4 - Canonical Quantisation

It should be kept in mind that the Poisson brackets are only defined for functionals at one
instant of time. That means that a Poisson bracket makes only sense if the quantities entering
have equal time arguments.

Now we can use the recipe of canonical quantisation. The fields become operators and build
together with the unit operator the algebra of observables. As we know from the nonrela-
tivistic case, we can quantise fields with help of commutators describing bosonic particles or
anti-commutators describing fermionic particles. We shall see soon that in the relativistic
case stating some simple physical axioms we can quantise the scalar field only in terms of
bosons. The direct translation of the Poisson bracket rules in commutation rules are the fields
in the Heisenberg picture, which we shall give capital Greek symbols. Then the canonical
commutation relations read:

1 S L S S o ., . _
Y [(I)(t’x)a H(tay)]— = 5(3)($ - y)’ T [(I)(t’x)’ (I’(tay)]— = T [H(t’x)’ﬂ(t’y)]— =0. (368)
The classical Lagrangian for the free case is given by ([BE58]). Here ¢ and ¢* have to be seen
to represent two independent real field degrees of freedom. Now we like to quantise these free

fields. The first step is to define the canonical field momenta:

0L 0L

= o] @) ) = G5

The canonical non-vanishing commutation relations ([B68]) read therefore for these fields

II(z) = O (). (3.69)

B(t,7)0,®' (t,7) = i6®) (z - i), (3.70)
where the symbol gt is defined by

J (6209t 5) = 1, D)2 (t, 5) — o] (1, 2))g (1, 7). (3.71)
The physical field operators have to fulfil the operator equations of motion, i.e.
(O +m?)® = 0. (3.72)
In terms of a Fourier decomposition the field can be written as
d(z) = [ \/% [A+(P) exp(—iw(p)t + ipT) + A_(p) exp(+iw(P)t + 1p7)]
with w(p) = ++/p% +m?2, (3.73)

where the normalisation of the fields will be explained later on. Now the second part does not
look physical since it seems to describe a particle with a time-like momentum in the negative
light-cone, i.e., a particle which moves in the “direction of the past” which is evidently not
consistent with causality. We can reinterpret this term with help of a creation operator of
another sort of particles with help of A_ () = b'(—p) and substitution 5 — —p'in the integral:

d3p

Sl VoW Tom

[a(ﬁ) exp(—ipz) + bl () exp(ipx)]pozw(m . (3.74)

This is the solution of the problem of negative energy states, the so called Feynman-Stueckel-
berg interpretation. This was possible because we have introduced a multi-particle description
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Chapter 8 - Canonical Field Quantisation

with help of the field quantisation, where the annihilation of a negative energy state corre-
sponding to the motion of the particle backward in time can be seen as the creation of a state
of positive energy moving forward in time with a momentum in the opposite direction. This
redefinition is not possible with c-number fields. This is the first place we see explicitely that
the relativistic quantum theory is necessarily a multi-particle theory. Now we define

1
(1) = —————= exp[—iw(§)t + i¢7]. 3.75
pql@) R GIE p[—iw(q)t + 4] (3.75)
A simple direct calculation shows that
i/dgfgpg(t,f)ati’(t,f) = a(p), i/d?’fcp}(t,f)@t@T(t,f) = b(p). (3.76)

With help of the canonical commutation relations [BZ0) we find

a@).a'@] =@ -, [be).b'@] =w-. (3.77)

All other commutators between the a- and b-operators vanish. These relations show that the
free complex scalar field describes two distinct sorts of particles and that the Hilbert space
the annihilation and creation operators operate in is the Fock space of a- and b-particles. For
example the one-particle states are given by

lap) = a'(p) [0), [bp) = b'(7) |0}, (3.78)

where |0) is the vacuum of the theory uniquely defined by a(p) |0) = b(p) |0) = 0.

We now want to calculate the total energy and momentum operators. We just remember that
due to Noether’s theorem for the classical field theory these quantities are given by

_ 3.0 3. [ 0L A . 0
b, —/d 7O ,,—/d Z [78(@@5)8”(;5—{—78(8@*)&,(;5 0,2, (3.79)

which was given by ([B46]) and ([BZ7) from translation invariance of the action.

Now we take instead of the c-number fields their operator counterparts in a very naive way.
But here arises the problem of operator ordering since the operators multiplied at the same
space-time point do not commute. Let us start with three-momentum with just an arbitrary
ordering of the operators:

—

B - / BHI(2)Vd(z) + V! ()T (2)]. (3.80)

Using the plain wave representation of the field operators ([B72]) we find after some algebra

1

P = 3 /d%?ﬁ[a*(ﬁ)a(ﬁ) + a(ﬁ)aT(ﬁ) + bT(ﬁ)b(ﬁ) + b(ﬁ)b*(ﬁ)], (3.81)

Now n,(p) = af(p)a(p) is the operator for the number of a-particles per momentum volume
with momentum p’ (and the same is true for the analogous expression for the b-particles).

Now we fix the ordering of the fields at the same space-time point by the definition that the
vacuum expectation value of the momentum should vanish, because if there is no particle the
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8.4 - Canonical Quantisation

total momentum should be zero. This cancels the infinite vacuum expectation value of the
terms with the creation operator on the right side. This is the first time we have “renor-
malised” a physical quantity, namely the vacuum expectation value of the three-momentum.

This definition of the vacuum expectation value can be expressed by the fact that we just
change the order of the creation and annihilation operators such that all annihilation operators
come to the right and all creation operators to the left. The order of the annihilation or
creation operators among themselves is not important since they commute. This is called
normal-ordering and is denoted by enclosing the field operators which are intended to be
normal-ordered in colons. One should keep in mind that the normal-ordering on field operator
products in space-time is by no means a trivial procedure since the fields is the sum of
annihilation and creation operators in contrast to the nonrelativistic case. So the final result
for the total momentum operator is

P / P, 0% (z) = / &5 () + 0y (5)]. (3.82)

Herein the field operator ordering in the canonical energy-momentum tensor is well-defined
with help of the normal-ordering colons.

Applying this procedure to the zero component of the total four-momentum, which is the total
energy of the system, it is seen that this is given with the canonically quantised Hamiltonian
density which has to be normal-ordered again to get rid of the operator ordering problem and
to keep the vacuum expectation value of the energy to be zero:

H = / B / 435 e(7)[na () + 1o (7). (3.83)

Since the density operators are positive semi-definite the Hamiltonian is bounded from below
(it is a positive semi-definite operator) and the vacuum state is the state with the lowest
energy.

So we have found a physical sensible interpretation for the free quantised scalar field if we
can show that this scalar field obeys the equation of motion of quantum mechanics. For this
purpose one has simply to show that the equations of motion for the Heisenberg picture is
true for the fields, namely

0p(x) = 1 [B(x), Ht)]_ (384)

which is simply proved by inserting the plain wave expansion for the field operator (B:74]) and
B=3)) by use of the commutator relations for the annihilation and creation operators.

Now we have another symmetry for our free field Lagrangian (B58). This is the invariance
under global phase transformations of the fields, given by

¢ (r) = exp(—iea)d(x), ¢'*(x) = exp(+iea)d*(x), ' = x with a € [0, 27]. (3.85)

This is the most simple example for an internal symmetry, i.e., a symmetry of the internal
structure of the fields which has nothing to do with the symmetries of space and time. It
is called a global internal symmetry since the transformation is the same for all space-time
points, because the transformation is independent of space and time variables. We shall see
that the assumption of a local internal symmetry, which is called a “gauge symmetry” has far
reaching important implications on the structure of the theory. Since the standard model is
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a (unfortunately somewhat ugly) gauge theory these theories are the most successful physical
meaningful theories in elementary particle physics. Quantum electrodynamics, which we shall
study in detail in chapter 5 is the local gauge theory of the here shown global phase invariance
and can be seen as the theory, which is the best to experiments agreeing one ever found.

Now we apply Noether’s theorem, which is in the case of global internal symmetries which
leave not only the action but also the Lagrangian invariant very simple to treat. At first we
take the infinitesimal version of (B.8H):

8¢ = —iedag, d¢* = +iedag, dx =0 = 6.2 =odiz =0= Q" = 0. (3.86)

The conserved Noether current from this theory is given by (BZ1):

() = —ied™ D o, (3.87)

Although we have not coupled the electromagnetic field to our ¢-field we say that this will be
identified with the electromagnetic current of the scalar particles. In the case of a real field,
which means ¢* = ¢ this current vanishes identically. This is understandable since in the real
field case there is no phase invariance!

The quantised version is again given a unique meaning by normal-ordering:

= —ie: ¢l(2)D Bla): . (3.88)

The corresponding conserved quantity is given by integration over the three-dimensional space
(see eq. B4l and a simple calculation with use of (3.66) yields

Q- / BT(z) = —e / 5 na(5) — (7)) (3.89)

which shows that the a-particles and b-particles have the same electric charge e with opposite
signs. It should be emphasised that it is alone this phase symmetry which makes this pair
of particles special, namely to be particle and the corresponding antiparticle. Without this
symmetry there would be no connection between the two independent sort of particles we
have called a and b-particles.

The same time this shows that the normalisation of the plain waves is chosen such that we
have the simple representation n, = a'a (and analogous for the b-particles) for the density
operators.

Now we have described the most important physical symmetries and the related quantities.
There are more general mathematical, but also very important topics left out. They are
shown from a more general point of view in appendix B, which should be read at the end
of this chapter 3. It describes all representations of the Poincaré group (more precisely we
should say its covering group), which have been found to be important in physics so far.

3.5 The Most Simple Interacting Field Theory: ¢*

Now we have studied a lot of quantities of the free scalar field. But such fields are a little
boring since we never can observe the corresponding particles because they do not interact
with our apparatus. But the mathematical tools are very important since we have seen in
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3.5 - The Most Simple Interacting Field Theory: ¢*

chapter 1 for the example of nonrelativistic potential scattering theory that the initial and
final states are asymptotically free states fulfilling the free equations of motion.

In this section we shall show the most simple interacting quantum field theory. It is not very
physical but an ideal playground to learn all important features of quantum field theory. We
use it here as the most convenient example to derive the Feynman rules from the operator
formalism of quantum field theory. That was first done by F. Dyson in 1949 for quantum
electrodynamics. But for this very important theory the path integral technique is much
more convenient, so that we use it in the next chapter to treat QED with many physically
important examples for low order perturbation theory. Here we use the operator technique
for the much simpler case of ¢*-theory to learn all concepts in the operator formalism, which
is quite useful when using the path integral formalism too.

The classical ¢* theory is the theory of a single real scalar field with the Lagrangian

1 A
L = 5(0,0)(0"9) = T&* T (3.90)

)

Herein .7 is the free Lagrangian. The ¢* term is called the perturbation. We now apply the
interaction picture, which is defined such that the time evolution of the operators is generated
by the free Hamiltonian. Then the time evolution of the states is necessary generated by the
perturbation (see section 1 of chapter 1!).

The fields, which are the set of fundamental operators generating the algebra of observables,
are hermitian now. In this case the antiparticles are the same as the particles. The inter-
action picture field operators obey the free field equations of motion. Thus the plain wave
decomposition is given by

d3p
z) = | ——— |a(p) exp(—ipz) + a'(p) exp(ipx . 3.91
$a) = | =y (3@ expl—ipe) + 2l @ explipn)] ,_ o (39
The free Hamiltonian and the perturbation potential are given by
A
Hy(t) = /d3f: II(z)0p(x) — Lo, V(I) = 1 /d3f: ot (3.92)

where we have again applied the normal-ordering description to give the local operator pro-
ducts a precise meaning.

Now we want to solve the problem of finding the S-matrix elements for scattering processes.
In principle that is the same as we did for the case of potential scattering in the nonrelativistic
quantum theory.

In the remote past we think about the system as prepared in an initial state of asymptoti-
cally free particles |i) and ask for the transition amplitude to a given final state |f) of also
asymptotically free particles. These states need to be connected by a time evolution operator,
which we obtain in the same manner as we did for the potential scattering problem. In the
interaction picture the state |i) the system is prepared in at time ¢; — —oo evolves with time

due to (C2]):
|i,t) = Teexp [—i/: dTV(T)] |7, t0) - (3.93)

7
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For the scattering operator we find

S =T,exp [—i / dtV(t)] = T, exp [ / d4x_4—i!>\ cpt(x) o] . (3.94)

So the unitary operator S maps the initial state from the remote past, i.e. the in-state, to
the final state in the ultimate future, i.e. to an out-state. So up to an indefinite phase factor
one obtains the S-matrix elements by “sandwiching” the S-operator with free multi-particle
states which can in turn be written as operating with creation and annihilation operators to
the vacuum state:

ng nyg
i) = [p1fa - By = [ [ T (B0)10), (Fl = (@12 Gn,| = (O] [ ] a(dh). (3.95)
k=1 k=1

Thus the S-matrix element for a process with n; particles with given momenta pj, in the initial
state scattered to the final state with n; particles with certain momenta gj, is given by

nf ni
Spi = <0 [Ta@)s ] @) 0> : (3.96)
k=1

Jj=1

So our problem of calculating S-matrix elements is formulated as the calculation of vacuum
expectation values. Perturbation theory is then the expansion of the S-operator given by

E.24):
—iA

S=1+—

1 /—in)°
TC/d45'31 FNCIE +5 <4—1,> Tc/d4:v1d4:v2 st ay) () -
(3.97)
The small parameter of the expansion is the coupling constant A.

Now the task is formulated: To calculate the S-matrix elements in perturbation theory we
need rules to get vacuum expectation values of annihilation an creation operators times time-
ordered products of normal-ordered interaction operators. The final result will be the Feyn-
man rules. To obtain them there is some work to be done.

3.6 The LSZ Reduction Formula

The first step is to reduce the problem to that of calculating vacuum expectation values of
time-ordered products. This was done by Lehmann, Symanzik and Zimmermann and is one
of the most important results of axiomatic quantum field theory. On the one hand it shows
that the mathematical meaning of the asymptotic limits ¢; — —oo and ¢ty — o0 is to be seen
as the so called weak limit, which means that first one has to take the matrix elements and
then take the limit. On the other hand it shows for practical purposes that all is done if
one can calculate the so called n-point Green’s functions of the theory, at least in a certain
approximation. Our aim is the perturbation theory for calculating this functions. The LSZ
reduction formula is deduced most easily with help of the Heisenberg picture. From now on
we denote the Heisenberg picture field operators by capital Greek letters. The exact n-point
function is defined as

iGM (21, @9, .. xy) = (0| T.®(x1)®(22) ... ®(x,)] 0) . (3.98)
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Since in the Heisenberg picture the states are constant in time the time evolution of the field
operators is generated by the full Hamiltonian, which means that they obey the equation of
motion

(Op + m?)®(z) = —% c®3(2) ;. (3.99)

Now we use the asymptotic condition that in the remote past and future the Heisenberg
operators are an asymptotically free in-field or out-field respectively. This means

w-lim @(2) = VZy, (2), w-lim @(2) = VZ o (@), (3.100)

where w-lim is the symbol for the above explained weak limit and V/Z is a normalisation
constant. Now a S-matrix element is given by [B35HZTH). For deduction of the reduction
formula it is more convenient to reformulate it step by step out of the overlap

— —

Syi=(q1 ... Gr;out| pr...p;in) . (3.101)

Using the asymptotic condition (BI00) together with the definition of the free field wave
functions [B7H) we can write with help of ([B0):

Sy = <(j’1...(j’k;0ut a;rn((j’l)‘cjé...cfl;in>:

= —iz7/? tli{noo BTz (2) 04 (G - . - G out |®(x)| Pa. .. Pi;in) . (3.102)

Now we can write for an arbitrary function

t

f
Jim 10 Jim 50 =t [ a1 (1). (3.103)
So we find
Sp = <(j’1 ...;out alut(ﬁl)‘ﬁg . ;in> -+
d;src. ’
v iz /d4m8t [gpﬁl ()¢ (G ... ;0ut |®(2)| o . .;in) | . (3.104)

Here we have applied the asymptotic condition (BI00) again. The matrix element in the first
line is a ¢ function times a reaction with one particle less in the out state, which can be seen
immediately when we let act the out-creation operators to the out-bra as an out annihilation
operator. This is called a disconnected part. It corresponds to the situation that one particle
was not scattered in the reaction. This is not a very interesting part of the S-Matrix. So we
treat only the connected part further. For this we do the time derivatives under the integral:

Spi = disc. +i271/? / dbaog (0)(a))? + 02 (G .. sout [@ (@) Fo..sin).  (3.105)

Now we use the on-shell condition ¢ = m? and the fact that we can integrate by parts with
respect to the space coordinates (which is not allowed for the time coordinates due to the
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non-vanishing asymptotic boundary conditions!). With help of these manipulations we obtain
the result for the first reduction:

Sy = disc. + iz=1? / d*z10p, (21)[Dey +m?] (G ... ;out |®(z)|Pa .. .;in) . (3.106)

The next step is done the same way as before. But now we have to be careful with the
operator ordering. As an example look at the out-state with momentum ¢;. Since we like to
act with the corresponding in-state to the in-ket by using (BI03]) again and this is given for
t — —oo we have to time-order the Heisenberg field operators. With this ordering we can
do all calculations we have done in the first reduction step. This calculations are repeated
until there is no in- and out-state left but the vacuum expectation value of the time-ordered
Heisenberg operator product, which is the exact n-point Green’s function defined above (B0g]).
The final result is

k l k l
Sy = disc.+(iZ1/2)”+Z/H<p2»a(ya)Hapﬁb(xb)H(Dyc +m?) [[(Oe, + m?) x
a=1 b=1 c=1 d=1

iGFHD (g1, k@1, 00)

This is called the LSZ reduction formula where “LSZ” stands for the physicists Lehmann,
Symanzik and Zimmermann who found this theorem when investigating the mathematical
meaning of the asymptotic condition. It describes the connection between the n-point func-
tions (B08) and the S-matrix elements. The formula tells us to truncate the n-point functions
with help of the Klein-Gordon operators and multiplying it with free wave functions ¢* for
the out- and ¢ for the in- states. The name truncated Green’s functions will be explained
when we have deduced the formulation in terms of Feynman diagrams!

3.7 The Dyson-Wick Series

Now we want to describe how to calculate the Green’s functions order by order perturbation
theory. For this we need the transformation from the Heisenberg to the interaction picture
and vice versa. We shall show that the transformation from one general picture to another is
given by a common time dependent unitary operator for the states and the operators.

As shown in chapter 1 an operator, which is not explicit time dependent, has due to chapter
1 the time dependence coming from the fundamental operators

0U) (1) = AW (¢,t9)0W (1) AT (¢, 1y). (3.108)

Herein j, running over 1 and 2, labels the two pictures which are assumed to coincide at
t = tg. So we have immediately

oW (1) = B2 (£, 1) 0P ()BT (¢, 1) with BU? = AWM (¢, t0) AP (¢, 1). (3.109)

In this way we have a unitary operator transforming the operators of the second picture to
the operators of the first one. The same argument leads to a unitary operator transforming
the states from the second to the first picture:

‘w(l),t> = B'12)(t,19) (zp(2>,t> with B/ = C (¢, 10)CP (¢, t). (3.110)
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Now we have to show that the picture transformations are the same for both the states and
the operators, i.e. we have to show that

B'(12) — B(12) oo AWTc() = A@TC(®), (3.111)

So in an arbitrary picture we define

U(t, to) = A'(t,t0)C(t, to). (3.112)
By using (LX) and ([CI0) we have
10,U(t, to) = ATH[E(t), ]A(t, o) U(t, to) = H[f (to), t]U(t, to). (3.113)

Herein f stands for a complete set of fundamental operators generating the algebra of observ-
ables.

Since the pictures coincide for ¢t = tg the operator U obeys the same equation of motion for
all pictures and the same initial condition U(tg,tg) = 1, U is the same for all pictures, i.e., it
is a picture independent operator which proves ([BITTI).

We apply this to the Heisenberg and interaction picture. Since in the Heisenberg picture the
states are constant in time, we have

|0, 1) = | @) = CH)(t,t5) =1 (3.114)

and in the interaction picture the time evolution of the states is generated by the interaction:

¢
o, t) =T [—i / drvh (7)] |, t0) - (3.115)
to
So we have for the picture transformation operator
B! = cH)ct = cDf (3.116)
and

Since the Heisenberg field operators are defined to obey the asymptotic condition, the two
pictures coincide for tg — —oo, so we define

—00

dTV(I)(T)] : (3.118)
Now with this relation we go into ([B08]):

e (1,22, .., Tp) = <0

T.CH (1) $(21)C(11)C (t2) p(2) C(t2) -+ C' () p(w)C (1) | 0)
(3.119)

T.CH(t1)$(@1)C(t1, 12)(2)C{ta,ts) -+ Cltn-1,1,)b(2n)Cl(t) | 0)
(3.120)

Now from the composition rule for the time evolution operator we have

IG(n)(.%'l, ce ,Jﬁn) = <0
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Introducing a time instant ¢ > max(|t1],. .., |t,]) we can write
GO (@1, w0) = (0| CTOTLC(E 1) @(01)Clt, 1) -+ Clta, —)C(=1)] 0) . (3.121)

Since the Heisenberg vacuum coincides for ¢t — —oo with the free one and is stable under
time evolution we have

Jim C(=1)[0) = [0), lim C(t)|0) = |0) (0[S[0), (3.122)

where the vacuum vacuum transition element is just a phase factor. Inserting these relations

to (BIZI) and taking t — oo we find

(0[S]0YiG™ (21, xg, ..., ) = <0

Tl (o) -+ o) exp | i [ arv (o)) o)
(3.123)

3.8 Wick’s Theorem

Now we obtain the perturbation series, also known as the Dyson Wick series, by expanding
the exponential in ([BI2Z3]). It is an expansion in orders of interactions, i.e., in powers of the
coupling constant(s). To evaluate this in practice we prove Wick’s theorem which expresses
time-ordered products in terms of normal-ordered products and vacuum expectation values
of time-ordered products of operator pairs.

It is clear that this can be done by using the commutation relations of field operators. By
use of the plane wave expansion ([B74]) we find indeed a c-number

3=
#0). 6] = [ G el — o) —eslpe -l @120

So we can write a time-ordered product of interaction picture field operators with help of
the commutator functions as a sum of normal-ordered products. Our aim is to apply this on
time-ordered products as they appear in the S-Matrix.

More precisely we can say we need the reformulation of a time-ordered operator product with
interaction operators which are composed out of local normal-ordered field operator products.
In the case of ¢* theory these products are of the form

Tegp(ar) - plan) : @' (y1) -+ @' () - (3.125)
This problem is solved by Wick’s theorem.

We start with the definition of the contraction of a pair of operators to be
.UV =UV+:UV:. (3.126)

The two dots at the left summand of the expression on the right hand side of the equation
is what is called a contraction of two operators. The contraction is a c-number, i.e., it is
an operator proportional to the unit operator. To prove this we split the field operator in a
creation and an annihilation part:

¢(z) = ¢y (z) + ¢_(z) (3.127)
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3.8 - Wick’s Theorem

with
=/ W a(p) exp(—ipz)| o —(p) (3.128)
=l ey 20 m @n)? al () exp(+ipz) [po—u(p (3.129)

With this notation we obtain from the definition of time and normal-ordering respectively

Tep(x1)p(x2) =: Pp(z1)¢(22) : +O(t1 — t2) [P (71), d_(22)] +

£O(ts — 1) [ (22). _(21)] (3130

The commutators are indeed c-numbers as shown in eq. (BIZ24). Since the vacuum ex-
pectation value of the normal-ordered product vanishes, a much more convenient equivalent
definition is thus

¢ (z) ¢ (y) = (0|Ted(2)p(y)| 0) = iAr(z —y). (3.131)

The scalar function Ag is the Feynman propagator for scalar fields and will be calculated
below in terms of its Fourier transform. Now we start with our proof of Wick’s theorem by
stating a simple lemma. Let U, V... X be field operators with arbitrary time arguments and
Z a field operator with a time earlier than any of the times in the former ones. Then we shall
prove the following formula

:UV...XY:Z = :UV...XYZ :+:UV.---XYZ :+---
+:UV...XYZ :+:UV..-XYZ: . (3.132)

Since arbitrarily ordered products obey the distribution law of algebra we can assume without
loss of generality that all operators are pure annihilation or creation operators.

The statement is trivial, if Z is an annihilation operator since then the left hand side is a
normal-ordered product and all contractions on the right hand side vanish, so that in this
case the equation is indeed valid.

So assume Z to be a creation operator. Since one can change the order of the operators
under the normal-ordering sign without changing the meaning we assume that U---Y is
normal-ordered. Now it is trivial to multiply the product with an arbitrary number of cre-
ation operators without changing the normal-ordering on both sides of the equation. So we
can assume that all operators except Z are annihilation operators. Then we have just to
interchange Z until it comes to the very left of the product to obtain the normal-ordering
of the whole product. The commutators are identical with the contractions, because it is
assumed that Z is a time argument less than all other time arguments in the product, and
the annihilation operators commute and are thus normal-ordered. So the lemma is proved.

Now we are ready for proving Wick’s theorem: A time-ordered product of field operators
with different time arguments can be transformed into a sum of normal-ordered products
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multiplied with c-number contractions as follows:

T.UV.---XYZ = :UV..-XYZ: +
normal-ordered product without contractions
+ :UVW...XYZ:+:UVW ... XYZ: +--- +

sum of all normal-ordered products together with one contraction

n UV-W . . XY Z ... . (3.133)

sum over all possible total contracted operator pairs

It is clear that in the case that we have a product with an odd number of operators in the
last line there is just one operator left, in the case of an even number of operators the last
line is the product of contracted pairs, which is a c-number.

The proof of the theorem is not difficult and as the reader may have guessed is done by
induction. There is indeed nothing to prove if there is just one field operator in the game. It
is clear that for two operators the formula is identical with the definition of the contraction
of an operator pair [BI20). So suppose the theorem is true for a product with k operators.
Now we multiply the formula from the right with an operator 2 with a time earlier than all
the times in the other operators. Then the left hand side keeps time-ordered, and on the right
hand side one can apply the lemma proved above. The result is evidently Wick’s theorem for
(k 4+ 1) operators.

If © has not the most early time argument of all operators, just take the operator with the
earliest time out of the product and apply Wick’s theorem to the k remaining operators. Then
when multiplying with the out taken operator from the right, which has now the earliest time
argument, the argument given above holds showing that Wick’s theorem for time-ordered
products of field operators with different times hold.

Now it is easy to see that Wick’s theorem holds for products containing normal-ordered local
products of field operators. Due to normal-ordering one needs not contract normal-ordered
operators, because such contractions vanish.

One should realize that nothing will change in the case of fermionic field operators if we
include the following sign conventions to the time and normal ordering and to contractions:
The time and normal-ordering of a given field operator products includes the sign of the
permutation needed to order the operators in the given meaning. In the case of contractions
one has to multiply by the sign needed to bring the field operators in the contracted pairs
together. The order of the two operators in the pair is the same as in the original product as
it is understood above for the bosonic case too.

3.9 The Feynman Diagrams

Now we have all the techniques in our hands to evaluate the perturbation series for the n
point Green’s functions. But as one can imagine this is not an easy task also for vacuum
theory, where we have to take vacuum expectation values of time-ordered products, there
remain only the totally contracted parts of the right hand side of Wick’s theorem (vacuum
expectation values of an odd number of fields is always vanishing). Fortunately there is a very
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3.9 - The Feynman Diagrams

nice tool at hand, namely the Feynman diagrams. These give not only a systematic technique
for calculating the perturbation series but also are very suggestive physical pictures of the
scattering processes. We have explained this interpretation in the case of non-relativistic
potential scattering in chapter 1.

So let us derive the rules for the diagrammatic evaluation of the perturbation series! We
start with the expression (BIZ3)) and expand the exponential inserting the ¢* interaction
vi(t) = [diz: p*(2) :

:<0

Now we apply Wick’s theorem (BI33]). In our case of vacuum quantum field theory we have
to sum over all fully contracted expressions leaving out those which contain contractions over
normal-ordered operator pairs. Although this can be done for low orders by hand, it is a
quite complicated business.

G (2, ..., 2,)(0]S]0) = (3.134)
Tep(wr) -+ @lon) o () S dtyn o iy s M) s 91 () 1 0).

The finding of all contractions of a given order for the n-point Green’s function can be
systemised with help of the diagrammatic rules invented by Feynman for QED (before Dyson’s
field theoretical approach!). In this chapter we want to give the rules for ¢*-theory.

Each interaction contains four normal-ordered field operators. The diagrammatic element
which describes this is a so called vertex, drawn as a point representing the space-time vari-
ables entering the normal-ordered field operator with four legs standing for the field factors
contained in the interaction. A contraction is depicted as the link of two space-time points.

y |

xT

Figure 3.2: Diagrammatic elements for ¢*-theory. The vertex contains an inner space-time
point entered by four legs representing the four fields in the interaction. An outer point is
attached to one leg representing the field operator with this external point as its argument.

The contraction of two operators at the same space-time point, a so called tadpole diagram,
lets the whole expression vanish, because it represents the contraction of two field opera-
tors coming from one interaction term of the Hamiltonian and these are normal ordered by
definition.

Now we can give the Feynman rules in the space-time representation.

For calculating the contributions of the Dyson Wick series to the n-point function
G (xy,...,z,) (0]S]0) (3.135)

of kth order draw all topologically distinct diagrams with n external space-time points
x1,...,%y containing k vertices with inner space-time points y1, . . . Yi.

To find the analytical expression depicted by a certain diagram

1. Write down a factor —iA/4! for each vertex.
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2. Link the legs of the vertices and external field operators together to obtain the given
diagram. The same time count the number of ways you can do this. Hereby the factor
1/k! in the series is cancelled by the permutations of the vertices. So one can count
the possible links to obtain the desired diagram with fixed vertices. Multiply the whole
diagram with this number.

3. For each line connecting two space-time points (internal or external) multiply with a
free Feynman propagator

4. Integrate over all internal space-time points.

Now we have a nice tool for calculating the n-point functions in perturbation theory. Before
we give examples for this we have to find out what is about the vacuum to vacuum transition
factor. This is given by

(0[s|0)=%" } / dtyy - dhy (O[T ¢4(y) -2 d4(y) 2] 0). (3.137)
j=0""

In diagrammatic language this is the sum over all diagrams without external points, the closed
diagrams. One has to take into account that in this case the 1/;! is not cancelled completely.
Thus one has to count the possibilities of pairing the fields to contract them without fixing
the vertices. It comes out that there is always a factor 1/j left compared to diagrams with
external points.

Now we define diagrams of the first class to be such which do not contain any vacuum
subdiagram. A vacuum subdiagram is a diagram which is not connected to a diagram with
external points.

Now we can write the kth-order term of the Dyson Wick series as the sum over all first class
diagrams times the vacuum subdiagrams with together k vertices. The result is

G (z1,22,...,2,) (0[S]0) = Y220 & Z?:O (I;) X
Teplr) - plan) [ Ay -diy; ()2 ) -2 40 0)
X <O chd4y1 - diy (74—1!)‘)k7j : ¢4(yj+1) RRRRWCR (T :‘ 0> ) (3.138)

The binomial is the combinatorial number of possibilities to pick j interaction factors out of
k connected with external points, denoted by (- ->(1). Now we interchange the order of the
two summations

><<0

GO (1, @2, ... an) (018]0) = 32520 71 320 gy X
—_ix\k—J
<0 T [ d*yjr - Ay (G0)" 7 ' (yyn) - 0 () :‘ 0> %
1)

Top(a1) -+ @lan) [ dyn - dy; () o () o5 $4wy) [ 0) . (3.130)

><<0
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Now substituting ¥’ = k£ — j in the inner sum and renaming the integration variables of the
vacuum to vacuum diagrams one sees that this expression factorises such that the vacuum to
vacuum expectation value on the left side of the equation can be cancelled:

G(")(ml,mg,. .. ,xn) = z;‘;o %X
o 1
< (0| Teplan) - blare) [ by iy () #4) - B4 o[0) . (3.140)

So one has only to sum over all diagrams, connected and disconnected, where all sub-diagrams
are connected to at least one external point. From Wick’s theorem we know that only G
with n even are different from 0.

The last thing we have to do now is to calculate the Feynman propagator (BI36]). With help
of the unit step function we can rewrite it as

iDp(z1 — x2) = O(t1 — t2) (0]Pp(21)P(22)| 0) + O(t2 — 11) (0|@p(w2)p(21)[0) . (3.141)
Using ([B91) we find after a little calculation

37
iDF(ml — .%'2) = /%{@(p[—ik(ml — xz)]@(tl — tz) +
+ @(752 — tl) exp[—ik:(xg — xl)]}kozw(lg)' (3142)

Now it is easy to show with help of the residuum theorem that we can write this as

. . d*k exp[—ik(x1 — x2)]
Dp(or — ) = i / T (3.143)

For this purpose one has to close the path of the p® integration running along the real axes with
an infinite half circle in the upper plane for ¢; < t2 or in the lower half plane for ty < ¢; (the
half circles are then negligible because the contribution coming from them is exponentially
damped). This is depicted in figure B3

Figure 3.3: The p’-plane for calculation of the Fourier integral (3123). The poles of the
integrand are drawn. The path of integration is to close in the upper half plane for t1 < to
and in the lower one for ty < t,. In this way the ie-description in the p° plane gives the correct
causal boundary conditions for the Feynman propagator which is defined by the normal-
ordering of the field operators, i.e., the ©-functions in ([BIZ2).

This Fourier representation for the Feynman propagator shows that it is a Lorentz scalar
translational invariant field. Its explicit form in space-time representation is involved and not
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needed further on, since we shall now derive the Feynman rules in momentum representation.
For this we introduce the Fourier transform of the n-point Green’s function as

d* d*p,
G(")(xl,...,xn):/ﬁ--- P 1 6XD Zp]x] " (p1y-..,Dn). (3.144)

Because of four-momentum conservation there is a d-function contained in G:

Gp1y-- - pn) = Cm) W (py 4+ -+ p) G (p1, ... pn). (3.145)

We have used the same symbol G(™ for both the space-time as well as for the momentum
representation of the n-point Green’s function.

Putting in this definition to the Feynman rules, writing all Feynman propagators in the
Fourier representation (BI43]) one realises that the integration over the internal vertex point
y; gives the factor

/ d*y; exp(—iy;q;) = (2m)*6W(g;), (3.146)

where ¢; is the sum of all momenta flowing into the vertex. These momenta can come from
propagators (in which case one has to integrate over them) as well as from the external
momenta flowing into the whole diagram. All the integrations over the external x; yield
momentum space propagators for the external lines.

Now we write down the Feynman rules in momentum space. The diagrams are the same as
in the space-time representation. Each vertex stands for —i\/4!. Each propagator line carries
an internal momentum k; or an external momentum p; and represents a factor iDp(k;) =
i/(p?> — m? +ie). The calculation of the symmetry factor for the diagram is the same as in
the space-time representation.

For calculating the G(") (p1,. .. ,pn) the incoming momenta have to be conserved, which means
p1+ -+ pn = 0. Further on one has to fulfil momentum conservation at each vertex. Then
there is just to integrate over the internal momenta with [ d*k/(2r)? which are not fixed by
momentum conservation.

As the most simple nontrivial example let us give the expression for the diagram shown in
figure B4l which is a second order two loop contribution to the two point function:

—ix\? d*ky d*ky i i
Gy _ _ () 4. 4!/
5 (P, —p) Al (2m)% (2m)4 k2 —m2 +ie k2 —m2 + ie X

2
i i
. 3.147
(k1+k2+p)2—m2+ie(pz—mz—i—ie) ( )

Here we encounter the first time a very serious problem which made quantum field theory
obscure for many years. The integral given in ([BI47) is divergent coming from the high
internal momenta. This can be seen by a simple power counting argument: The integrand is
of order ki 4 and the four-volume element is of order k3, so that the kj-integral is logarithmic
divergent.

The experience shows that the most diagrams with loops are divergent for high momenta.
This is known as UV-divergence. If there are particles with zero masses there are also IR-
divergences, i.e., divergences for small momenta.
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ki +ka+p

k1

Figure 3.4: second order two-loop Contribution to the 2-point Green’s function in ¢* theory.

On the other hand we have seen that there is the problem of normalisation in the LSZ
reduction formalism. We shall see in chapter 5 how to get rid of the divergent integrals. Here
we just give the idea of this so called renormalisation program of quantum field theory: The
first step is to find a way to make the integrals finite in a way which keeps the symmetries of
the procedure unchanged. This is called the regularisation. The regularised integrals of the
theory contain a parameter (for instance €), where the physical case is given for some limit of
this parameter (e.g. € — 0). In this limit the results are divergent.

On the other hand there is a certain class of quantum field theories, called renormalisable
which can be made finite by assuming that the parameters entering the Lagrangian (like
masses, coupling constants, wave function normalisation factors etc.) are not the physical
observed quantities but the bare quantities. Since we do not observe free particles but the
fully interacting ones, we can never see the bare parameters but only the physical ones. A
theory is now called renormalisable if one has a finite set of conditions on the n-point Green’s
functions defining the physical parameters of the theory at certain points in momentum space,
and these conditions can be fulfilled by adding counter terms to the Lagrangian which are of
the same form as the given ones, making the theory finite for ¢ — 0. Then the infinities are
absorbed by the bare quantities which cannot be observed. The physical parameters are to
be found by fitting to observed measurements like cross sections.

Although this concept does not look very convincing its very successful in describing the sub-
atomic world. The most precise theory is QED which predicts anomalous magnetic moment
of the electron or the Lamb shift of the Hydrogen atom with a phantastic precision.

Also our theoretical picture about “elementary particles”, i.e., the Standard model of elemen-
tary particles is a quantum field theory (more precisely a gauge theory) where there is up to
now no experimental result which is against this theory.
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Chapter 4

Relativistic Quantum Fields

In this chapter we shall exploit the work we have done in appendix B and use it to construct
the quantum field theory for fields of higher spin. In chapter 3 we have treated from a more
physical point of view the scalar field. From this we learnt the concepts we try to extend to
the more general case. These concepts can be summarised in the following axioms

1. A system consisting of elementary particles can be described by local quantum fields.
The Hilbert space is given as the Fock space with asymptotic one particle states building
a irreducible representation of the universal covering group of the proper orthochronous
Poincaré group PJTF.

2. The Hamiltonian of the system is bounded from below, and it exists a normalisable
ground state. This is called “the vacuum” further on and denoted by |0).

3. Let 01(x) and O(x) operators, which represent local observables (e.g. energy-momen-
tum density, charge density etc.). Then they commute at space-like separated points,
i.e.

[01(x), Oa(y)]_ =0 for (z —y)* < 0. (4.1)

This assumption is called the microcausality condition.

4. The Hamiltonian can be formulated as an integral over a normal-ordered Hamiltonian
density J(x).

At first we shall construct the representation spaces of PJTr in terms of one-particle configura-
tion space wave functions with spins < 1. These will be formulated as appropriate c-number
fields which are restricted to the representation states by deriving certain equations of motion
and constraints. It will come out that we can find in this way the free particle wave functions
which can be also described with help of a Lagrangian density.

After this we are using the method of canonical field quantisation to construct the Fock space
of states. It is well known that there are problems with quantising fields with constraints, such
that it is more convenient to use formal path integral and functional methods for quantising
this kind of theories.

The first part of the the chapter has the aim to prove the two most general theorems of local
relativistic quantum field theory namely the connection between spin and statistics, i.e., the
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fact that particles with half-integer spins are fermions and particles with integer spins are
bosons, and the C'PT theorem which tells us that a theory with the above mentioned features
has to be also invariant under the transformations which simultaneously reflects space and
time and interchanges particles with their corresponding antiparticles.

It should be emphasised that both theorems are connected only in the way that the C'PT
needs the assumption that fields building a tensor representation of SO(1,3)! are quantised
as bosons and such which build a “half integer” representation of the covering group SL(2,C)
are quantised as fermions. This assumption for the proof of the C'PT theorem is consistent
with the spin-statistics theorem while the latter is logically independent from the former.

4.1 Causal Massive Fields

In appendix B we have constructed the one particle irreducible Hilbert spaces which are
consistent with relativistic invariance. This means that these spaces build irreducible repre-
sentations of the proper orthochronous Poincaré group.

Now we want to find the configuration space representation of these Hilbert spaces, i.e. the
representation in L? with the functions defining the free fields.

At first we have to find the momentum eigenfunctions with definite mass and spin which
build a complete set for the given irreducible Hilbert space. The momentum operators are
immediately found by the fact that they generate translations:

¢, (2') = ¢o(x), 2’ =&+ dx = p,, = i0,. (4.2)
From this we have the eigenstate of p in J#(m, s, +)

Ppo () = N exp(—ipz)uq(p). (4.3)

The fact that p? = m? is described in configuration space by the field equation

P’ Gpo (1) = m’dpo () = (O +m?)dpo(z) = 0. (4.4)

Thus we have the simple result that each field component has to obey the Klein-Gordon
equation we have found by the same (but a little bit more hand-waving presented argument
in chapter 3 for the scalar field which is of course a special case included here as the L?2-
representation for J#(m,s =0, +).

Since we are in the space with positive energy the momenta fulfil the on-shell condition in

P’ = +v/m2 + p2 = w(p). (4.5)

The transformation law under Lorentz transformations is given with help of the representation
D) of the SU(2) which is the little group of the standard momentum py = (m, 0,0,0) (see
appendix B):

the form

U(L)dpo(2) = DELIK (L, p))dpor (L), (4.6)

In our space with definite mass m we have

D00 (2) B () = ooy () = 0. (47)
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As discussed in connection with Noether’s theorem in chapter 3 we know that this implies
that

Foor(p,p') = / BEN" (5 )N ()i (o Yo (p) explico (7') — 170, expl—iw(p) + ip] =

= —(2m)* 120 (P)u, (5) uo ()| N (p) P8 (5 — )

(4.8)

is a SO(1, 3)"-invariant quantity. Since it is positive definite, it is the invariant scalar product
on the Hilbert space J#(m,s,+). The same is true with an additional sign for the corre-
sponding space with negative energy . (m,s,+). As in nonrelativistic quantum theory N (p)
is defined up to an unimportant phase factor by the assumption that the generalised energy-
momentum eigen-solutions are normalised to a ¢ function in the continuous independent
quantum numbers 7 and a Kronecker-0 with respect to the discrete spin projection quantum
numbers o.

Since we have treated the scalar fields in a more intuitive way in chapter 3 we can go further
and apply our representation theory on the fields with s > 1/2. The reader is invited to do
the scalar case in our more systematic way as a simple exercise!

4.1.1 Massive Vector Fields

We start with s = 1 since this is the most simple case besides the scalar field to get the idea
of the whole story.

But it is clear from our discussion that all types of fields can be built as field products of
spinors since all representations are given by tensor products of spinors (eventually reduced
to its irreducible parts). This makes it possible to restrict the rest of the chapter to the spin-
1/2 Dirac fields explained below without loss of generality in respect to the transformation
properties of the fields under the Poincaré groups.

But now we treat first the case of 7 (m,1,+). The standard momentum for the little group
is again chosen to be py = (m,0,0,0)t. The little group is the s = 1 representation of SU(2)
which is equivalent to the fundamental SO(3)-representation for the rotation group. We will
use this representation.

We shall not apply the complicated method of constructing the representation out of the little
group representation. For py, i.e., if the particle is at rest we define ug(pyo) = ex. Then the
operation of the little group on the field for this pg is given by the rotations which leave the
0-component invariant. For the general case of arbitrary on shell momenta the polarisation
vectors uy, can be determined by pug(p) = puu’,j = (0. Thus these are three space-like vectors
transverse to the four-momentum.

In configuration space the fields are thus determined by the on-shell condition and the
transversality constraint

—OAM = m2AF, 9, A" = 0. (4.9)

The scalar product is given with help of () together with the space-like character of the uy
(AL A2) = —i / PzAN*9AP) (4.10)
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4.1.2 Massive Spin-1/2 Fields

We start to describe Dirac spinors which are defined in the direct sum (1/2,0) & (0,1/2) of
the two fundamental SL(2,C) representations. This are the most often needed spinor fields
and the Weyl spinor fields can be obtained by restriction of the field on one summand of
this representation. In appendix B it is shown that we can look on this as the irreducible
representation space for the O(1,3)! which contains the parity operator but this topic is
treated in a later section in this chapter. In this section we concentrate on the fields itself
and develop a rather convenient notation for calculations with spinors.

Since the space of Dirac spinors is given by the direct sum of SL(2,C) representations the
Dirac spinors are four-component quantities of the following form

P = <77;> , a, € {1,2} (4.11)

where £ and 1, are Weyl spinors of the two different kinds which are explained in detail in
appendix B.1. Here we just note how to raise and lower indices of the Weyl spinors

§a = 6a5§ﬁ7 Nae = fdgﬁﬁ7 gﬁ = 6aﬁ§o¢a 77ﬁ = ﬁdﬁ%, (412)

where €,4 is the skew symmetric symbol in two dimensions:

@ == (2 o) (413)

In appendix B we have also shown how to represent a four vector as mixed second rank spinor.
Now we want formulate this with help of the Pauli matrices. Let p a four-vector. Then the
unique mapping to a mixed second rank spinor is given as

0 3 1 ion2
p+p° p —1p 0 =
2) = . =p'1+0op. 4.14
(Pag) <p1 1p2 po —p3> p P ( )

Herein & are the generators of SU(2), i.e., the three linearly independent 2 x 2 hermitian
traceless matrices, given here in the standard form where o3 is diagonal. These matrices are
known as the Pauli-matrices:

01 0 —i 1 0
U1—<1 0>,02—<i O>’U3_<O _1>. (4.15)
With help of [ET2) we find .
(Pag) = €(p™”)e" = p°1 — jig. (4.16)

Now the action of the momenta on the dotted and undotted Weyl spinors is given by

pa%g', Ppas” (4.17)
respectively. Together with ([EI4]) and (EIG) this reads for acting on the Dirac spinor (EIII)
in matrix representation

0 1 + o
- . 4.1
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4.1 - Causal Massive Fields

Herein the left hand side is a formal Minkowski product of the four-vector p with the 4 x 4
matrices (operating on the Dirac spinors) v#. These are given by

0 __ 0 1 m 0 —Om

One proves immediately by direct calculation the anti commutator relations of the y-matrices:
[v*,7"]4 = 29" (4.20)

This is known in mathematics as the Clifford algebra of R(:3) . With help of this we find

1

P = spupe V7] =17 (4.21)
2

where we have used the Feynman slash p = p,y* for convenience. Since we have Pp? = p? we

obtain an invariant equation for projecting the spinors to J#(m,1/2, £):

9T = m, (4.22)

where we have set the phase factor of the energy-momentum eigenfunctions to be exp(+ipz)
for U € #(m,1/2,£) which is convenient for the Feynman-Stueckelberg formalism when
quantising the theory.

This is the Dirac equation. Taking energy-momentum eigen-solutions of this equation for
the standard vectors pg = (£m,0,0,0)! for the positive and negative energy eigenvalues
respectively we obtain the coefficient functions

1 0
0 1
u+(p0,1/2) =N 1] u+(p0,—1/2) =N ol
0 ! (4 23)
—1 0 '
0 1
U,(p0,1/2) =N 1 ) Uf(PO,—1/2) =N 0
0 -1

Here we have introduced the notation uy(p, o) which will be used from now on, with p the
energy-momentum eigenvector fulfilling the on-shell condition in the form p° = +w(p and
o = +1/2 the eigenvalue of the spin-3-component in the rest frame of the particle.

Since the little group is given by the rotations leaving the zero component of the four-vectors
unchanged the spin operator is given by

= 1/6 0
s-1(29). 2t

Applying these matrices to the solutions [23]) of the Dirac equation we find that they are
simultaneously eigenvectors of Sz with eigenvalues +1/2.

In appendix B we have shown that one obtains the solution for general momenta (Fw(p),p)!
on the mass shell by applying the appropriate boost A(p) to the solutions to the solution for
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the standard vectors pg. For this purpose we show that all boosts lay in the image of the
exponential function expsi(2,C) — SL(2,C). Taking @ = p/||p]|, i.e. the direction of the
boost A(p), the boost transformation in the Dirac spinor space is given by

A = [exP (Aﬁ&) 0
B(7i,\) = < 02 exp (—%ﬁ&)) , (4.25)

where A is the boost parameter which is related with the relative velocity 3 of the two frames

by 8 = tanh A.

Clearly it is enough to prove this claim for Weyl spinors. To this end we realize by direct
calculation the following properties of the Pauli matrices

[0as 0p]y = 204p, tr0 =0 = tr(p® + 57) = 2p°, tr[(pd)5] = 2d. (4.26)

Let T denote a boost transformation which operates by definition on the second rank spinor

(ETA) is given by

PO+ 53 =T + pa)T" (4.27)
and for a infinitesimal transformation 7" =1 + § we have up to first order in d:
5(p° + p) = 6(p° + pa) + (p° + por)aT. (4.28)
On the other hand an infinitesimal boost with velocity §7 is given by
p'0 = p® — psv, §f = p— plou. (4.29)
Comparing this with ([E28]) we have the properties
G6+ 061G = —00, 6+ 61 = —G7. (4.30)
Using [26) we find immediately that this is fulfilled by the choice

1
0 = — 5500, (4.31)

Since the boosts in an arbitrary fixed direction is a one-parameter subgroup of SO(1,3)! this
gives (EZH)) by adding the representations.

Together with the definition of A(p) (B:62) and (BED) we have

u(p) = B[A(p)]u(po), (4.32)

where u(pp) stands for one of the four possible solutions of the Dirac equation which is the
same time an eigenfunction of the momentum operator with eigenvalues given by the standard
momentum pg and u(p) for the same with eigenvalues given by arbitrary on-shell momentum

p.
With help of (20 we obtain by applying the series expansion of the exponential function

exp <%ﬁ6’> = cosh (%) + 16 sinh <%> . (4.33)
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Using the addition theorems for the hyperbolic functions together with § = tanh A we find
the relation between this functions and the physical boost parameter

COSh(é):\/1+cosh)\:\/1+7’Sinh@):\/M:\/v_—l’ (4.34)
2 2 2 2 2 2

where we have used the usual abbreviations

_ 21
V= ﬁz, 8= oG (4.35)

Thus putting this together we find

cosh <%) _jemEm <5> _jep=m (4.36)

2m 2 2m

and now applying ([E2H]) together with (Il we find as the desired result

u(p) = : m -+ 2, ulpo) (4.37)

2mim + w

Thus a general spin 1/2 field in the orthogonal sum of the Hilbert spaces s (m,1/2,4) in
configuration space is given by

3—»
o) = [ s AL ) (i) + AT () explipn)] gy (439

The normalisation of the eigen-spinors of momentum is chosen in an invariant way by

Ty (p,0)uy(p,0") = 2mbygr, U (—p,0)u_(—p,0’) = —2mb,e with @ = u'~?, (4.39)

which will be convenient for the quantised fields. The spinor invariance of this form follows
directly from the definition ([T of the Dirac spinors and the transformations properties of
the dotted and undotted representations.

Since the ug (p, o) are solutions of the Dirac equation in momentum space we find together
with the normalisation 39

puiis (£p, o)y us (£p,0) = £2p* = £2m? = i o0 — 44

14 (4p, 0) s (£p,0) = +2p" v pT= e A0)
Thus we find for the invariant scalar product in our case the following form in configuration
space

©0l0) = [ 761 0(a). (4.41)
The projection operators on the subspaces J#(m, 1/2, +) is given by the projection operators
mF p
P. =—= 4.42
:I:(p) om ( )

which can directly be generalised from the solution for standard momentum E23)).
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4.2 Causal Massless Fields

Since there is nothing new to say about massless scalar fields compared to their massive
counterpart, we come immediately to the important case of a massless vector field, which is
realized in nature by the gauge bosons of the standard model especially the photon.

4.2.1 Massless Vector Field

As we know from the discussions in appendix B the little group in the massless case is
isomorphic to ISO(2). We chose the standard vectors for both cases #(0,\,+) as py =
(£1,0,0,1)t. Then the little group is generated by the rotations around the 3-axis and
two independent null rotations. This null rotations correspond to the translations in the
isomorphic mapping of the little group to ISO(2) and has to be represented trivially in the
physical representations since there is no particle known which has a continuous number of
intrinsic degrees of freedom.

Since the Casimir operator p? has eigenvalue zero in the case of massless fields we have
OA#(x) = 0. (4.43)

If we represent the whole little group trivially we have a scalar field and the vector field is
given as the gradient of this scalar field.

Since we want to give a representation with helicity A = 1 we impose the constraint
0, At =0 (4.44)

which was enough to fix the field to be of spin one in the massive case. We shall show now
that this constraint is not enough to ensure the field to be of helicity one. This can be seen
by calculating the fields with A = 1 and A = —1 and operating with the null rotations on this
fields. One finds at Eig(p,po) that the null rotations are not represented trivially but, using
the parameterisation ([B.89)

A'"(pg) — A*(po) + (RebA' —TmbA?)p}). (4.45)

We find that the null rotations are trivially represented if and only if A, oc p, but this
corresponds to the A = 0, i.e., the scalar representation.

In other words we don’t find a function Hilbert space which is complementary to A = 0
realized with vector fields.

Instead we have necessarily to construct the Hilbert space as a quotient vector space. We
show that it is given algebraically by

(0,1, +) = {AP|DAF = 0, 9,A" = 0}/{A"| 9,4, — ,A, = 0}. (4.46)

At first we find that on this space the null rotations are trivially represented. From the action
on the momentum eigenspace with eigenvector py we learnt that this null rotations are given
by AL = A, +0,x with an appropriate scalar function x. But since [0,,,0,] = 0 on the space
of continuously differentiable functions, which is a dense subspace in L?, the transformed field
AL is identified in the quotient vector space (EZ0]).
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4.2 - Causal Massless Fields

It is also important to notice that the definition of the quotient space can be expressed in the
form

(0,1, %) = {A*|DA" — 9,0"A” = 0}/{A¥| 0,A, — 0, A, = 0}. (4.47)
The reason for that is that the equation
OA* — 0,0"A” =0 (4.48)
is invariant under the transformation
AL =A,+0ux (4.49)

with an arbitrary smooth scalar function y and for any solution one can find a scalar field y
such that
9, A" =0. (4.50)

This means we can express the fact that we want to construct a field equation for a massless
spin-1-field such that the null-rotations contained in the little group are represented trivially
and project out the Spin-0-components by using the field equation ([EZF]) for a representative
of the vector field in the quotient space. This equation is invariant under the gauge trans-
formation (Y] which ensures the triviality of the representation of the null-rotations and
taking this modulo the pure gauge fields which are gradients of (massless) scalar fields. This
ensures in addition that the spin-0-component vanishes.

As our analysis shows, both conditions together ensure also the masslessness of the represen-
tation because there is always a representative AL of each A, (connected to A, by a gauge
transformation (E49) such that 9, A" = 0. This means that a massless spin-1-field is neces-
sarily described as a gauge field, i.e. a theory which is invariant under transformations which
operates on the vector field in the form [Z9). The application of the gauge transformation
to other fields contained in the theory has to be chosen appropriately in order to leave the
action invariant. The necessity of gauge invariance for massless vector fields together with
Poincaré invariance restricts the possibility for building theories of such fields with other fields
drastically. This is a very important guide to build theories for the strong and electro-weak
interactions within the standard model of elementary particles and is called gauge princi-
ple. There the gauge group is extended to non-abelian groups. We shall come back to these
important ideas in chapter 7.

To finish the proof that this quotient space is indeed the correct representations space for the
helicity 1 representation of PJTr we show that in this quotient space the scalar product (EI0),
given above for the massive case, is positive definite also for the massless case. To this end
we have to show that for a real massless transversal vector field A, which is a eigenvector for
p with light-like eigenvalue p which fulfils

(Al A) = / d37A,0,A” =0 (4.51)

fulfils 9,,A,, — 0, A,. To this end we use the momentum representation of the invariant scalar

product
dBﬁ * v : _
(A1) = — [ Gl A @) with (@) = 7], (452)

Since p is light-like and pA = 0 the real as well as the imaginary part of A,(p) is light-like or
space-like (it is a nice exercise to show that a four-vector which is orthogonal to a light-like
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vector is space-like or light-like. In the latter case it is proportional to the given light-like
vector!). From this we learn that the invariant scalar product is positive semi-definite also for
the light-like case. If it vanishes than we have necessarily A*(p)A*(p) = 0 since the integrand
is positive semi-definite. This means that real and imaginary part of A(p) are light-like and
since this vector is orthogonal to the light-like momentum p, it is necessarily proportional to
p, ie., A,(p) = pA(p). In momentum space this means A, (z) = 9, A(z) and thus the field
equivalent to zero in the quotient space ([EZ0). Q.E.D.

Thus we have obtained the correct physical space for representing the Hilbert space as the
quotient space (L40]). Since R(13) is a simply connected space two vector fields A;L and A, are
identified in this space if and only if Iy : Ox(z) =0, AL — A, = 0ux. This is a restricted form
of gauge invariance, namely under gauge transformations with gauge fields x which respect
the Lorentz condition d,A* = 0 which is expressed in form of the constraint Oy = 0.

At last we want to give the fields of helicity 1 and —1. As shown in appendix B to this
end we need the Pauli-Lubanski vector. To calculate it we first look for the generators of
SO(1,3)"-transformations:

A2y = (68 + dwh,)AY (x) = (08 + dwh ) A(2'7) — 0P paP =

i , (4.53)
= AH(@') = S0wpe (MP7)", A% ().

Comparison of the first with the second line of this equation shows that the generators of the
SO(1,3)!-transformations in the spin one representation of fields are given by

(MPTVW =1i[(2P07 —x70°)dL + g"P o7 — M7 o7 . (4.54)
For the Pauli-Lubanski vector we have
(Wu)aﬁ = i€apupd” = €apuuP’. (4.55)
So from (B97)) we see that the states of helicity A = +1 are given by the constraint
€upo 0’ A7 = N0, A, — 0,A,) = AF ), (4.56)

i.e., a massless vector field has helicity 1 (—1) if its Faraday tensor F),, is self-dual (antiself-
dual). One can show that these are the right (left) circular polarised wave solutions of the
free Maxwell equations.

4.2.2 Massless Helicity 1/2 Fields

The case of massless helicity 1/2 fields can be found immediately by setting m = 0 in the
corresponding massive case. The projector on the positive or negative energy eigenstates are
given by the projectors [Z2)). The standard vectors of the little group are chosen to be
po = (£1,0,0,1).

The only thing we have to show is that the null rotations are represented trivially. To this
end we use the fact that the Dirac equation [ZZZ) for m = 0 separates in equations for the
two Weyl spinors, namely

(p" — p&)E = 0. (4.57)
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This is the so called Weyl equation. Now we look on the subspace Eig(p,pg) of 5#(0,1/2,+).
The Weyl equation is then given by

(I —03)é =0, (4.58)

which is solved by €2 = 0. The space of solutions is one-dimensional and is due to (B:89)
not changed by null rotations (which means for a = 0). So indeed the null rotations are
represented trivially in our representation. It shows also that this spinor has helicity A =
+1/2. It remains as an exercise for the reader to show that the analogue calculations for the
dotted spinors give helicity A = —1/2.

4.3 Quantisation and the Spin-Statistics Theorem

Now we want to quantise the fields above. We have to fulfil the postulates given in the
beginning of this chapter. The one-particle wave functions are in general not the solution of
the problem to quantise relativistic particles. The reasons are explained already in chapter 3:
A mathematical reason is that we cannot restrict the fields to the Hilbert spaces of positive
energy since the interactions “scatter” the wave functions from the positive energy space to
the negative one which means that the Hilbert spaces are in general given as the orthogonal
sum of the positive and the negative energy space leading to a closed Hilbert space under time
evolution. The physical reason is nowadays obvious since the production and annihilation of
particle antiparticle pairs are a well known fact. Thus the relativistic quantum mechanics is
necessarily a many-particle theory.

To quantise the theory we take the case of scalar particles as a guideline. There we have
found the following “recipes” to solve the problems of the negative energy states and the zero
point energy:

e The negative energy states are identified with the anti-causal propagation of particles
which can be reinterpreted as the causal propagation of an antiparticle with positive
energy. This is known as the Feynman-Stueckelberg formalism.

e To renormalise the vacuum to energy 0 we have to normal-order the local operators
representing densities of additive observables. This densities are expressed with help
of the fields by quantising the corresponding Noether currents of symmetries of the
classical action.

Since we have done this quantisation procedure for scalar fields in great detail in chapter 3
we come immediately to the important case of Dirac fields.

4.3.1 Quantisation of the spin-1/2 Dirac Field

As shown in section 4.1. in the massive case these fields are completely determined by the
Dirac equation which is is the field equation of motion

i@, = my. (4.59)
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Since there are no constraints necessary to obtain the spin-1/2 field the theory is completely
determined by the action, which is given by the Lagrangian

L = (i — m)p. (4.60)
From this we read off the canonical energy-momentum (B46]) tensor
Ok, = Yiy'd, — 1.ZL. (4.61)

We like now to quantise this theory. For this purpose we need the total energy of the field
configuration to be sure to fulfil postulate 2, namely that the energy is bounded from below.
The Hamiltonian is given with help of [X2I):

H:/ﬁm%:/&mme+mw (4.62)
For fields fulfilling the free Dirac equation ([LE%) we can write this in the shorter form
H:/&m@w (4.63)

Now we use the fact that there are known only bosons and fermions in nature which means
that the multi-particle Fock space states are totally symmetric or antisymmetric respectively
under exchange of single-particle states contained in this multi-particle states. In chapter 1
we have given a nice path integral argument for this.

Since in the case of free fields the Lagrangian is bilinear in the field operators the local
observables are represented by bilinear forms of field operators too. Thus the microcausality
condition ([T can be fulfilled for bosonic as well as fermionic quantisation. This can be seen
from the simple formula

[AB,X] = A[B,C|_+[A,B] C=A[B,C|, —[A,B],C. (4.64)

From nature we know that spin-1/2 particles. Thus we try to quantise the Dirac fields as
a fermionic field, i.e., we introduce particle annihilation operators a(p,o) and antiparticle
annihilation operators b(p, o) fulfilling the anti-commutator relations

a1 o), 8! (2. 00) || = 001~ 7)o, (D1 00), b (2 02)| | =60 F1 — ),
(4.65)

with all other anti-commutators vanishing.

Now we express the field operators in terms of the energy-momentum eigenstates ([E23]):

d3p
z) = | ——— |a(p, 0)ur(p, o) exp(—ipz) + bl (7, 0)u_(—p, o) exp(ipz ,
V@) = [ = (a0 (. 0) exp(ipe) + B G0 (p ) explipn)]
(4.66)
where we have incorporated the Feynman-Stueckelberg formalism.
Since from ([EA0) we have
it (£p, )7 us (£p, 0) = ul (£p, 0)us (£p, 0) = 20(p) (4.67)
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we find by inserting this ansatz the equal-time anti-commutator relation

vt whg)] =@ -, (4.68)

+

where 1 is the 4 x 4 unity matrix in the Dirac-spinor space.

The Hamiltonian can also be calculated in a straightforward way. With application of normal-
ordering the quantised form of [ZG3) reads

H=Y [N o)+ Nio) (469)

where the normal-ordering implies signs from interchanging two fermionic field operators due
to the anti-commutators used for fermionic quantisation. This change of sign is crucial for
the energy to be positive definite. Thus we have a very important result: The spin-1/2 field
is necessarily to be quantised in terms of fermions to get a positive definite energy for the
free particles. We shall show below that the observables built with help of the invariant
bilinear forms of the field operators, especially the energy and momentum densities, fulfil the
requirement of micro causality.

The number operators are given as usual defined by
N, (7, 0) = a'(p,0)a(p, o), Ny(p,0) = b'(5,0)b(p, 0). (4.70)

The momentum operator is given by
pe— [ #50% =Y [ @niNu(F.0) + Ny(7.0). (4.71)
g

At last we calculate the electrical charge which is given by the Noether charge of the symmetry
under U(1) transformations

8 = iqda, 69 = —igda, 6z = 0 with ¢, o € R. (4.72)
The Noether current is given by (BZT]):
7" = gy (4.73)
Its quantised version is given with help of normal-ordering
=y (4.74)

leading to the operator representing the electric charge
Q=g [ @5:0:% =0} [ @NG0) - N0 (4.75)

which shows that the a-particles have electric charge +¢ and the b-particles —¢q. Thus from
the anti-commutator relations we find that particles and antiparticles have the same quantum
numbers except for the electric charge which has opposite sign.
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Now we want to show that the microcausality condition is fulfilled. To this end we calculate
the anti-commutator of the Dirac field operators for arbitrary space-time points:

(¥ (1), P (x2) / \/2w / \/2w

01,02

[a(p1, o1)uy (p1, 01) eXp(—ipwm) + bT(m, o1)u—(—p1,01) exp(+ip121),

al(p, 02) iy (p2, 02) exp(ipawa) + b(p2, 02)u— (—p2, 02) exp(—ipaz2)] | -
(4.76)

Using the anti-commutator relations for the creation and annihilation operators (EGH) we

find

d*p _ .
;/W{Wr(ﬁﬂ)uﬁpa o) explip(r1 — z2)]+ (4.77)
+ u_(—p,0)u_(—p,0) exp[—ip(z1 — 2)]}.

Herein we have to calculate the matrix

2p+ p7 Zu-f- p7 ’LL+ p7 ) (478)

which is two times the polarisation matrix for particles. We know that this matrix can only
depend on the on-shell momentum p. Further we know that « is a solution of the free Dirac
equation in momentum representation [L22) with the upper sign on the right hand side.

By direct calculation we verify

AOAHAD = H (4.79)
and together with ([E22) we find
s (p, ) (p — m) = 0. (4.80)
The end of the story is that the polarisation matrix fulfils the equation
( —m)p4(p,0) = p4(p,0)(p — m) (4.81)
which has the unique solution
p+(p,0) = N(p+m) (4.82)

where the normalisation constant N is given with help of our normalisation convention (39
1

2t , , ,0)=4m = N = —. 4.83

rp(p,0 ZU+p o)us(p,o) = 4m 5 (4.83)

So our final result is )
51 (p,0) = 5+ m). (4.84)

In the same line of arguing one obtains for the polarisation matrix for unpolarised antiparticles
S ()i (o) = 55— m) (1.85)
2(fu_p,au_p,a—z m). .
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With help of this we can calculate the non-vanishing anti-commutator between the field
operators at arbitrary space-time points. To this end we use again (LG0) and the anti-
commutator relations (EL6D]). The result is

[P (x1),9(x2)], = (i —m)iA_(z1 — 2), (4.86)
where A_ is given by
3 =
iA_(z) = / @iﬁ[exp(—ipx) — exp(ipz)]. (4.87)
This can be written as
4
iA_(z) = / (;1734 sign p2276(p? — m?) exp(—ipz). (4.88)

This is an odd solution of the Klein-Gordon equation and invariant under SO(1,3)! transfor-
mations, i.e., a Lorentz-invariant function.

To show the microcausality condition it is convenient to write the time-dependent part out:

4
A_(z) = / (;77]))4 216 (p? — m?){exp[—iw(p)t] — expliw(p)t]} exp(ipi). (4.89)

Since the integrand vanishes for t = 2% = 0 and we can transform any space-like vector
with 22 < 0 with help of a SO(1,3)!- transformation to a vector #’ with 2’® = 0 this means
together with the Lorentz invariance of A_

A_(z) =0 for 22 < 0. (4.90)

Applied this to ([ER0) we find that the anti-commutator of the Dirac field operators on space-
like related space-time points vanishes. Together with (6] this shows that the operators
representing observables which are given as bilinear forms of the Dirac operators fulfil the
microcausality condition.

The same time we have found the restriction for interaction terms that these have to be built
with a even number of Dirac Field operators in order to fulfil the microcausality condition.

4.4 Discrete Symmetries and the C'PT Theorem

Now we come to the important investigation of discrete symmetries. From space-time we
know the reflections of space (parity) and time reflections (time reversal).

Since we have shown that there are necessarily to each sort of particles its corresponding
antiparticles (for sake of simplicity we include the case that the antiparticles may be identical
with the particles (e.g. the real particles), we can exchange the particles and the antiparticles
and look whether the system is invariant under this transformation. In the following we will
clarify this idea. But it is clear that this transformation which is called charge conjugation
builds the group Ss, i.e., C2 = 1 and that a charge-neutral system (it might be an elementary
particle also denoted as strictly neutral systems or a bound state like the positronium or
hydrogen atom) can be even or odd under charge conjugation.
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We will show the famous C'PT theorem which states that any Lorentz-invariant theory, i.e.,
a theory which is invariant under SO(1, 3)!-transformations is automatically invariant under
the combined discrete transformation which reverses time, reflects space and interchanges
particles with antiparticles, in short notation the C'PT transformation. There is no necessity
for C', P or T alone to be a symmetry transformation. We know since the famous experiment
by Wu that the weak interaction violates the P invariance and from Kaon decay that also the
combined C'P transformation is violated. But there is yet nothing known about a violation
of C' PT invariance which would be a strong hint that local relativistic quantum field theory
is not the right picture about nature.

4.4.1 Charge Conjugation for Dirac spinors

We shall consider in this section again only Dirac particles since with help of them we can
compose all other representations with help of Kronecker multiplication and reduction to
irreducible parts.

Now let us consider the particle solutions in momentum space u4(p, o) and look how to trans-
form them to a corresponding antiparticle solution. From our treatment of antiparticles in
terms of the Feynman-Stueckelberg formalism it is easy to guess that it could have something
to do with complex conjugation. Complex conjugation in the context of Dirac spinors is
better done as the Dirac conjugation @ = u'7? which leaves the formalism invariant. As we
have shown above [S0) w4 fulfils the following equations

(b —m)uy(p,0) =0, ay(p,0)(p —m). (4.91)

Transposing this equation leads back to a column spinor

(" —m)d (p, o) = 0. (4.92)

Now we seek a unitary transformation which makes this an equation for an antiparticle wave
function in momentum representation, called the charge conjugated wave function of v and
denoted with u°

ul(p,o) = C’ﬂi(p, o) with (=p + m)us (p,0) = 0. (4.93)
Comparing this equation with ([92) we have the condition
A = —41C. (4.94)

In our representation of the y-matrices ([EIJ]) together with the representation (D) of the
Pauli spin matrices we have
yH = (=) (4.95)

and a solution of (f94]) for C is given up to a factor
C =nev*’, (4.96)
where n¢ is an arbitrary factor. From the unitarity condition for C
Ct=C1 (4.97)
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we find that |pc| = 1 which shows that n¢ is only a phase factor which may be set to 1. We
have so far

ul (p,0) = 1oy°7 uly (p, 0). (4.98)

Since o is the eigenvalue of the spin 3-component in the rest frame of the particle we look for
the action of the spin operator ([EZ24]) on the charge conjugated state for p = py:

Ssuf (po, o) = —ouf (po, o). (4.99)

Since Sz =1 [71, 72] _ this is proven by using the anti-commutator relations of the y-matrices
(E20)). Choosing nc = i we have

uS (p,0) = u_(p,—o). (4.100)

At last we want to calculate the action of the wunitary charge conjugation operator C in
the Fock space. It is defined to operate on the field operators the same way as the charge
conjugation on the c-number fields:

P°(z) = CyCl = CP' (). (4.101)
Using ([EI00) we find

3=
Po(z) = / % [exp(ipw)uf(p, —o)a'(p, o) + exp(—ipz)uy (p, —0)b(p,0)| .
7 (4.102)

Comparing the charge conjugated annihilation and creation operators with this we have
Ca(p,o)C' = b(p,0), Cb(p,0)C' = a(p,0). (4.103)

The action of the charge conjugation operation on the bilinear local or global observables
shows that energy and momentum keep unchanged while the electromagnetic charges as well
as the local electromagnetic currents change sign as one would expect from charge conjugation.

This charge conjugation interchanging particles with their antiparticle counterparts is another
definition (beside the phase invariance of the action) of the connection between these sorts of
particles.

4.4.2 Time Reversal

Now we come to the time-reversal operation. Mathematically it is nothing else than the time
reflection, i.e., the change t — —t. This looks simple, but this is not the case in physics.
The point is that the time manifold is not simply R but oriented R which means nothing else
than causality, a principle which we have pronounced throughout these whole lectures. On
my point of view there is much confusion about time reversal since it is misunderstood. The
point is not the mathematical theory of the symmetry but the physical interpretation and
thus there are some words at place about it before treating it mathematically.

As we have seen above in the introductory chapters 1 and 2 causality is just an axiom in
physics, i.e., physics as we know would not make sense if we would not assume the existence
of causal natural laws. Causality is not broken by quantum theory but quantum theory is a
completely causal theory, it only modifies the meaning of physically sensible observables, it
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just defines what we can know about the system here and now and if we were clever enough
to solve the time-evolution equations for the states and operators exactly it would perfectly
tell us what this possible knowledge tells us about our possible knowledge for later instants
of time.

As we have seen in chapter 1 and 2 time is directed in quantum theory. For instance it is
expressed in the fact that we have to use the time-ordering for calculating the (global) time-
evolution kernel out of the (local) generators and this gave us the proper meaning for the
propagator in momentum representation, namely to be retarded in the nonrelativistic and
consistent with the Feynman-Stueckelberg formalism in the relativistic case.

Now we come to the correct interpretation of time-reversal operation. The idea can be seen
in any physical theory, so we look at first on classical Newtonian mechanics. The most simple
system is a point particle moving in an external potential. A “pure state” of such a point
particle is given as a point in six dimensional phase space, namely by giving the position and
the momentum of the point particle at the initial time 3. Now suppose we were able to solve
the Newtonian equation of motion exactly (which is of course the case for many textbook
examples). Then we know the trajectory of the particle in phase space for all instants of time
t > tg. Now suppose we read off the position of the particle in phase space at some instant
of time t1 > tg, reverse it is momentum leaving it at exactly the same position as it was and
start now the calculation again. Then time-reversal invariance means that the particle will
be after a time interval t; — tg at the time-reversed initial point we started with at t = ;.

Thus the time-reversal operation has to be defined on the states of the system. This can be
done also in quantum mechanics with the statistical operator for the general case or with
the state vectors in Hilbert space for the pure states. Now we remember scattering theory
in chapters 1 and 2 where we have defined very carefully the initial and final asymptotic
states. Now from our classical example it is clear that time reversal in quantum mechanics
cannot simply means a unitary transformation of the asymptotic states but we have to take
into account the causality expressed in the orientedness of time. This means that the time-
reversal operator takes an asymptotic final state to an asymptotic initial state and vice versa.

Now to express this idea mathematically we use the S-matrix which defined the causal tran-
sition from the initial to the final state forced by the dynamics of the system which is locally
described by the Hamiltonian and globally by the time-evolution operator. The S-matrix
is known if we have all matrix elements with respect to a complete set of initial and final
asymptotic states |7) and (f| which we have denoted with S¢; = (f]4). If we act now with
the time-reversal operator on S which gives the S-matrix for the time-reversed asymptotic
states this means to interchange initial and final states and thus

St = (Tf| Ti) = Sip = (i| ) = (f|9)" = S}s. (4.104)
This means that the time-reversal operator is necessarily anti-unitary rather than unitary.

The treatment of time reversal for the Dirac fields is analogue to that of the charge conjugation
in the last section. The only difference is that we start here in the configuration space
representation. The Dirac equation reads

(i — m)y = 0. (4.105)
The equation for the Dirac conjugated spinor is given by
(i@" + m)yt = 0. (4.106)
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If time reversal is a symmetry of the free Dirac equation there must be, since it is given by
an anti-unitary operator, a unitary transformation 71" such that
YT (z) = Ty (Tx) with T(t, %) = (—t, T) (4.107)

fulfils the Dirac equation. From now on we use the same symbol T for the operation on the

Dirac spinors and the action on space-time vectors. This should not cause any confusion.
Changing the sign of ¢ in ([EI06]) gives

(—in™0y + 7'V + m)i! (—t, &) = 0. (4.108)

Multiplying this from the left with 7" we find that the spinor field (EI107) fulfils the Dirac
equation if T fulfils the equation

A0 = AOF T3t = _F7. (4.109)

In our representation of the Dirac matrices we have

A =0 4% = (—1)%y" fora=1...3 (4.110)
which shows that we may chose
T = nry*y'4°, (4.111)
where 77 is an arbitrary phase factor. Thus the time-reversed state 17 () is given by
W (,7) = To(—1,7) = TY°0* (—1,8) = nryy 0" (—1, ). (4.112)

In our convention ([EZJ) for the momentum eigen-solutions of the Dirac equation the time-
reversal matrix 7" acts on these as

ul(p,0) = —signou(Pp, —0), (4.113)

where ]S(po, p) = (p°, —p) which shows that time reversal operates as reflection of the mo-
menta.

We find now the anti-unitary time-reversal operator T operating in the Fock space by the
analogue calculation as we have done in the case of charge conjugation but here we have to
take account on the anti-unitarity of T. First we see that T has to fulfil

Ty(x)T ' = T (T). (4.114)

Using the expansion in annihilation and creation operators (EG0) and II3) we find by
comparing the operator valued factors in front of the exponential functions

Ta(p, )T~} = signo a(Pp, —0), Tb(p,o0)T~! = signo b(Pp, —0). (4.115)

Applying this to ([@EY) and XTI we see that the energy is unchanged under time-reversal
transformation while momentum changes sign. With (E7H) we find that the electrical charge
operator Q is unchanged. It is also straight forward to show that we have for the local
electromagnetic current

j*T(z) = Pj(Tz) with T(t,Z) = (—t, 7). (4.116)

This is also consistent with our naive understanding of the electromagnetic four-current for
a moving charged medium known from classical electrodynamics as “charge times velocity”.
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4.4.3 Parity

Parity can be treated very short since we thought about it in appendix B. This was the reason
why we introduced Dirac spinors in favour of Weyl spinors, namely to have the possibility to
build parity invariant theories.

Using the covering ([B.44) of the O(1,3)" and rewriting it in our Dirac spinor convention we
find

VP (z) = Py(Pz) = iy (Px). (4.117)
A direct calculation yields ) )
Puy(p,0) = f+iuy(Pp, o) (4.118)

which shows that the energy and spin of the state is unchanged while the momenta are
reflected by the parity transformation as we expect from the meaning of space reflection.

In the same kind of calculation as we did at length for the case of charge conjugation we
obtain (remembering that P is unitary)

Pa(p,o)P =ia(P,0), Pb(p,0)P’ =ib(P,0). (4.119)

This shows that the field energy is unchanged and the momentum changes sign, the electro-
magnetic charge is unchanged and the three-current changes sign.

4.4.4 Lorentz Classification of Bilinear Forms

As we have seen studying the examples of the energy-momentum vector and the electromag-
netic current density, we can build physical important quantities out of the Dirac spinor field
which have certain tensor structure with respect to SO(1,3)'-transformations.

Now the spinor has four linearly independent complex components and thus we can build
4 x 4 = 16 linearly independent local bilinear forms. These can be written as

By (@) = ta(@)Ot(x), (4.120)

where we preferred to take 1) rather than 11 as the left argument of the bilinear form since
this makes the definition relativistically invariant.

Now we can find sixteen linearly independent matrices which have certain transformation
properties under SO(1, 3)T—transformations. This is important when we construct interaction
terms for the Lagrangian including Dirac spinor fields. Since our discussion has shown that
all local observables have to be built with help of pairs of Dirac spinors, i.e., a monomial
contained in the Lagrangian has to contain an even number of spinor field factors in order to
obtain local observables fulfilling the microcausality condition with commutators rather than
with anti-commutators.

The matrices are given as

~ i 1 v VUV 1 v
1, v =iy = i€mee VY A HP, A = 50" (4.121)

The last matrix we have identified above with the generators of the Dirac spinor representation
of the SL(2,C). Together we have 1+ 1+ 4+ 4 + 6 = 16 matrices which can be shown to be
linearly independent.
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With these matrices we can build the following local observables
Sap = %%7 Py = ilﬁﬂ%b’ Valz = il/;a’)/ﬂwh = il/;afyﬂ75wb7 T(fby = il/;aiijba (4'122)

which are scalars, vectors and an antisymmetric tensor with respect to SO(1, 3)'-transforma-
tions. Herein we have left out the space-time arguments. This is evident from the meaning
of the y-matrices and the first part of appendix B.

Now we want to classify these objects further with respect to parity transformations. To this

end we write down the Dirac spinor with help of the Weyl-spinors 1 = (5) Since

S=¢n+nle, P=i(¢n—nle) (4.123)

and due to ([ELITD) the parity transformation interchanges £ and 7 we find that S is unchanged
while P changes sign. Thus S is a scalar and P a pseudo-scalar. From the Dirac equation we
learn that V* is a wvector and A* an azial vector or pseudo-vector. TH” builds an antisym-
metric tensor of second rank which changes sign under parity transformations. A second-rank
symmetric tensor reduces to a scalar since [y, "] L= 29"

Here we summarise again the behaviour under parity transformation

SE =8, P =—PP,, VP =PV, AL = _—PAy, Th = —PT,P. (4.124)

a a

Herein we left out the space-time arguments of the fields. It is understood that on the right
hand side the space-time arguments have to be taken as the parity transformed ones of the
left hand side: * — Px = (t, —%).

All these properties hold also true for the normal-ordered field operator counterparts of these
bilinear forms.

But now let us look on charge conjugation. We define

Bo =: 9,0, : . (4.125)
From (EZ396]) we learn
PO = CP' = @7 = 'Cr = —y'C. (4.126)
Inserting this into we find
B =: 'l,ZaCOA'l,bg =4 'l,ZbCA'OAUg'l/Ja 5 (4.127)

where we have used the fact that we can interchange the field operators under the normal
product with an extra sign. Had we used not the field operators but the classical fields we
would have obtained the opposite sign in [EI27). We shall see in the context of the path
integral treatment for fermionic fields that the correct classical field counterparts are not the
well known commuting c-numbers but the anti-commuting Grassmann numbers. This does
not play any role concerning observables since the fermionic fields are not observable at all
since they obey not the commutator but the anti-commutator microcausality condition. As
we have seen the reason why the charge conjugated observable bilinear forms have a changed
sign compared to the commuting classical counterparts is that this transformation is anti-
unitary (we had to take a transformation from ¢ to ¢ and then a unitary one). Since the
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same is true for the time-reversal transformation we have for this case also a sign change
compared to the classical commuting fields.

Putting in the different matrices for O we find

C C Cuv v
SG, = S, PG, =Py, V= -V A = Al TG = —T)Y. (4.128)

ba’

The time reversal is due to ([EITI)) given by
T =Tyt ' = 4T (4.129)

We have also to take into account that the time reversal includes a change of order of field
operators since it interchanges initial and final states. For the scalar we have for example:

(Poty)" = —(P,T)(TTeh,) = Putp,. (4.130)
For the different bilinear forms we find

St =sL, PL =Py, VI, = PVy, AL = PAy,, TT, = —PT,,P. (4.131)

ba>

4.4.5 The CPT Theorem

Now we show the famous theorem that each local quantum field theory with a SO(1,3)-
invariant real action and being quantised according to the spin-statistics theorem is also
invariant under the discrete transformation which applies instantaneously the time reversal,
the parity and the charge conjugation transformation, shortly denoted as the C'PT transfor-
mation.

We want to show that the Hamilton density obeys
(CPT). 7 (z)(CPT) ! = #(—x). (4.132)

This proves the theorem since then it is clear that the Hamiltonian is unchanged under C'PT
transformations because the change of sign in the last equation has no effect on the three-space
integral H = [ d37.5(z).

The main message of this theorem is that there is no necessity for the discrete transformations
P, T, C or CP alone from the principle of Poincaré invariance, at least not for local quantum
field theory as we consider here. We shall see that indeed the weak interaction does break
these discrete symmetries. This is directly proven from experiments for parity and CP (-
decay for parity- and K-meson decay for C'P non-conservation) and if one assumes that the
elementary particles are described correctly by a local quantum field theory we know from
the C'PT theorem that also the time reversal is not a symmetry of nature.

Now we like to prove the theorem. We summarise the combined action of the three discrete

transformations by applying (124, EIZX) and EI3T) to the bilinear forms [EETZZ).
ST (x) = Sw(—z), PGS (2) = Pop(—2), (4.133)
VT () = ~Va(—2), AG " (2) = —Aw(—2), TG (2) = Tap(—2). (4.134)

Since we can consider all fields as built from the Dirac spinors, with help of the sixteen
matrices (EIZT)) and reduction to irreducible parts of the representation we see that all real
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SO(1,3)"-tensors which can be build are even or odd if they have an even or odd rank number.
There is no difference between tensors and pseudo-tensors for the whole C'PT transformation.
This holds also true for tensors for which one or more indices are obtained by applying 9.
Finally for a elementary Dirac spinor field we find in our bispinor representation

T (2) = s (—a). (4.135)

Since only the time-reversal transformation P is anti-unitarian a general even (odd) complex
tensor transforms to it is hermitian conjugate (negative hermitian conjugate) and any complex
valued constants are complex conjugated.

Now any Lagrangian which is SO(1, 3)!-invariant is build as a contraction of tensors (which
may be built out of spinor bilinear forms described above). Since it has to be the sum of
scalars and pseudo-scalars the sum of all ranks in a monomial contained in the Lagrangian
has to be even. Thus the Lagrangian behaves like any scalar or pseudo-scalar. Since it is
assumed to be a real local quantity we have

LOPT (1) = Z(—x). (4.136)
Now the Hamiltonian density is given by
H=11,¢,: -2, (4.137)

where the sum over r runs over all fields contained in the theory.

It is easy to show that the canonical field momenta transform under CPT with the nega-
tive conjugate complex phase factor compared to the original fields since the Lagrangian is
hermitian. The time derivative of the field gets only an additional sign compared to the
C PT-transformed field. Thus the canonical commutator relations or anti-commutator rela-
tions for tensor and spinor fields respectively are invariant under C'PT transformations and
thus together with ([EI36) we have proven ([I32)) which completes the proof of the CPT
theorem also known as the Pauli-Liders Theorem.

4.4.6 Remark on Strictly Neutral Spin—1/2—-Fermions

This subsection completes the investigation of the discrete symmetry transformations. Espe-
cially it shows that except for the case of strictly neutral Dirac fermions, which we do not
have found in nature yet, the two inequivalent representation of the parity transformation,
one with P? = 1 and one with P2 = —1, are indeed physically equivalent .

We start with the investigation of the so called relative parity of particles and their corre-
sponding antiparticles which is in principle observable. As we have seen in the beginning
of the chapter the intrinsic properties of particles are most easily observed when looking on
them in their rest system. In our description of C', P and T we have chosen the parity repre-
sentation with P2 = —1 in the bispinor representation and splitting up the so far used Dirac
spinor in it’s Weyl components explicitely we have

5 (€YY _ . (M
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Using the charge conjugation transformation ([Z36]) we find that the charge conjugated spinor
transforms in the same way. In the rest frame we have

£ = na, aC =g (4.139)

which is the reduction to a Weyl spinor which is appropriate for the rest frame of the par-
ticle. As we read off from ([EI38) these Weyl spinors for the particle and its corresponding
antiparticle are both multiplied with a factor i. This means that the Weyl spinor product
50‘55 changes sign under parity transformations, i.e., it is a pseudo-scalar. By definition this
means that particle and the corresponding antiparticle have opposite intrinsic parity. As one
can show explicitly in the same way this is also the case if we chose the representation with
P2 = 41. The only difference is that in this latter case the parity transformation has a 1
instead of the i in while the charge conjugated state has —1. But the net effect for
the relative intrinsic parity is the same as before, namely to be of opposite sign. Thus there
seems to no physical difference in the two coverings of the O(1,3)T.

Now we look on a particle which is identical with its antiparticle. This means that ¢ = ¢,
In bispinor representation this means

£ = —in®, m, = —igl. (4.140)

Such spinors are called Majorana—spinors. One can show by direct calculation that this condi-
tion is invariant under C'PT if we define the C, P and T transformations as described above.
But with our description where P2 = —1 this definition is also CP-invariant since particle
and antiparticle transform with the same transformation, while under the other representation
with P2 = —1 the sign of the charge conjugated state changes under parity transformations.
Thus the different descriptions of parity transformations are physically distinguishable if one
can find a strictly neutral spin 1/2 particle in nature, because then one could investigate
if the neutral particles would be CP-invariant or not. Since up to now there is no strictly
neutral spin-1/2 particle observed by experiment there is no physical important difference in
the different parity transformation concepts so far.

4.5 Path Integral Formulation

Now we come to the path integral formulation of relativistic quantum field theory which
follows the same line of arguments as the analogous path integral for nonrelativistic quantum
theory as shown in chapter 1.

Here we derive the path integral formalism for fields from the so far used operator methods.
First we consider a real scalar field ¢ with its operator counterpart ¢ and the conjugated
momentum operator 7.

At time t = 0 we define the generalised eigenvectors of the field operators as |¢) with

#(0,7) [p) = (T) [0) - (4.141)

As in the case of ordinary quantum mechanics these generalised states in the Fock space build
a complete orthogonal set

/ Dy() [0 (ol = 1, (al 0) = 8l — 0], (4.142)
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where both the integral and the J-distribution have to be taken in a formal functional sense.
One can think about this as the following limit: First one takes a finite volume in three-space,
let us say a cube, and applies periodic boundary conditions to the fields, then discretises this
space and then does the same calculations as in the quantum mechanical case. After this
one goes to an infinite continuous space. We shall show this procedure later on explicitely if
necessary.

The same line of arguments can be done with the canonical field momentum operator:

(0, ) |

[

(Ta| Tp) = O[mg — mp).

~

= 7(Z) |m)

) (] =1 (4.143)

E)

Herein the introduction of the 27 denominator in the measure of the path integral is just for
later convenience. As in ordinary quantum mechanics in the case of position and momentum
operators one can prove from the canonical commutation relations

= [(0,2), 7 (0,5)]_ = 6P (% — ) (4.144)

the important overlap between field and momentum eigenvectors as follows

(| ) = exp [i / d3f7r(f)gp(f)] . (4.145)

Now we can do the same as in the case of quantum mechanics in chapter 1 to get rid of field
and momentum operators with help of the path integral formalism. The transition amplitude
with respect to the field eigenvectors can be written with help of the Schrodinger picture
time-evolution as

Ca(ty,ti) = (wplexp[—iH(ty — t;)]] pa) - (4.146)

Of course the result is picture independent! Herein H = [ d3Z# is the Hamiltonian which
is assumed time-independent, which is the case iff 5 does not depend explicitely on time
(Noether’s theorem for symmetry under time translation). Now we divide the time interval
(ti,tf) in N equidistant pieces and insert complete sets of momentum and field eigen-kets as
we did in the path integral formulation in chapter 1:

N Dr D¢
Chalty, t;) = li —h ok
et = Jim [ TT=E22 Gl ) o

X (my lexp(=iHAL) [ o) ... (m1 [exp(—IHAL) [ 1) (91 ¢a) -
Now we assume that H seen as an operator-valued functional of ¢ and 7 is ordered in a way

that all canonical momenta are on the left of all fields, which is called Weyl ordering. If there
are no derivative couplings in the theory, as for instance in ¢*-theory, then we can write

(g |exp(—iHAL)| i) Zar—o (1 — iHpAL) exp[—i/d?’fﬂ'kgok], (4.148)
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where we have used I4H) and the abbreviation Hy = [d3Z5(my, ). Now putting all
this together one obtains

dmd
Cralty, ti) = lim /H STRCPk

exp —iAtZ/d:’zf[%(ﬂj, ¢j) — mi(@jr1 — @)/ At] 2 0(p1 — @a)-
j=1

(4.149)

In the continuum limit this may be written as

(ty @) =ps(z)
Cha(ty, t; /D?T /Q5 e D¢ exp {i/tf dtz |:7T(.%') 8(2(;) — H(m, (b)] } . (4.150)
ti

tl »L)=Pa (Z‘)

Now we can calculate the vacuum-to-vacuum transition amplitude by using the ie description
introduced at the end of chapter 1. As we have shown there explicitely, the ie-description
projects out the vacuum state and makes the Green’s function solutions unique which will
be used later on for perturbation theory. It selects out of the possible Green’s functions the
causal one, i.e., the Feynman Green’s function. In the operator formalism this came out of
the proper Fourier transform of the vacuum expectation value of the time-ordered product of
two field operators which we called a contraction.

All this has not to be repeated here at length, because it is the same story as for the non-
relativistic case in chapter 1. We end with the Feynman-Kac Formula for the calculation of
vacuum expectation values of time-ordered functionals:

(0 |T.F[p, ]| 0) = N / o / D exp {iS[g, ]} Flo, ). (4.151)

Herein F'[¢, m] has to be written in Weyl-ordered form, i.e., with all canonical field momenta
7w to the left of all fields ¢ to obtain the correct c—number functional. Also we have to take
the action functional in its canonical form S[¢, 7] = [ d*x{0;é(z)n(z) — 5[, 7|}. We shall
see that in many cases it is possible to integrate out the canonical field momenta resulting in
the Lagrangian form of the path integral.

Especially we can calculate the generating functional for disconnected Green’s functions by

demandin
) - N / 2_: / D¢ exp {iS[qﬁ,w] +i / d4xJ(x)¢(x)}, (4.152)

where the normalisation constant has to be chosen such that Z[J = 0] = (0| 0) = 1 holds.
Then according to ([EIR]]) the n-point Green’s function is given by the nth order functional
derivative of Z with respect to J:

1 " Z[J]

i 0J(x1)0J (x) -+ 6J (xp,)
Before we come to the calculation of path integrals for physically relevant examples we want

to treat also fermions with the path integral formalism. As the first step we introduce the
generalised eigenvectors of the fermionic field operator ¥ by

Y(ti, T) |¢) = P(Z) [¢) - (4.154)

G (1,22, ..., 2n) = (0|Tep(z1)Pp(22) - - P(20)] 0) =

(4.153)
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But here arises a problem, because the fermionic fields are anti-commuting rather than com-
muting which means

[ (ti, @), (t:, 9)], = 0. (4.155)

This means that ([{I54]) can only be consistent with ([EIB3]) if the (&) are anti-commuting
numbers. The correct mathematical concept was given by Grassmann in the 19th century.

Here we have to define how to calculate with such anti-commuting Grassmann numbers,
especially we have to define how to integrate and differentiate with these objects.

Nevertheless we first have to look on the algebraic properties of the Grassmann numbers.
In the mathematical sense it is an algebra, i.e. a vector space over the number fields R
or C with a multiplication we have to define now. First we look on a finite-dimensional
Grassmann algebra. We start with the G-basis of the Grassmann algebra, which should not
be interchanged with the basis of the vector space the Grassmann algebra is constructed
with. The G-basis is a set of n linear independent basic Grassmann elements g, with & =
1...n. Now we define the product of basis elements to be anti-commutative, associative and
distributive with respect to vector addition. At the same time it is commutative with the
multiplication with ordinary numbers. Then the algebra is given as the algebraic closure of
this structure.

With help of this ideas one can build a basis of the vector space underlying the Grassmann
algebra with help of the basis elements. By definition we include the number 1 as a basis
element of that space. Thus we have

L, 9j, 9ik = 9iGk = —9kGj> Giki = 9j9kGls - - - Jkrko.ken = Gk1Ghks = * Ghop - (4.156)

Since the product of two g, is anti-commuting in any of the higher products each basic element
can appear at most one time. Two such products which are only different by the interchange
of some elements are the same up to a sign given by the permutation of the one order of
indices to the other. A standard choice for the basis is that we order the indices from left to
right. Thus the dimension of the vector space is

Zn: (Z) = 9", (4.157)

k=0

Now we define the integral over the Grassmann numbers to be a linear mapping from the
algebraic functions &7 (G,), where G,, is the Grassmann algebra. We assume also that it
should be translationally invariant. Let us start with the most simple case of the Grassmann
algebra G1. The general algebraic function is

flg) = a+ Bg with a, 3 € R or C. (4.158)

Using translational invariance and linearity of the integral we find

[assgrn =@+ [ag+5 [agg=a [dg+5 [agg (4159

and since this has to hold for all a, 3,7 € R or C we have
/dg =0, /dgg £ 0. (4.160)
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For convenience we chose

/dgg =1 (4.161)

For a Grassmann algebra of rank n we define [dgidgs---dgnf(g1,...,9n) as the iterated
integral over the basis elements. The only thing we have to do is to define a sign convention
for a monomial. If we like to integrate a monomial over g, we bring at first this element to
the very right and integrate after that over it using the rule defined above:

/dgkf(gla B 7.@/?7 o 7gn)gk = f(gl7- .- 7.@]?7' .- 7gn) (4162)

The hat over g; as the element of f means that f is independent of it. By this sign convention
now the integral over g¢;...g, is well defined as an iterated integral. At the same time we
see, that also the “differentials” dg; ...dg, are anti-commuting.

Since the most general element of </ (G,,) is of the form

f(g1, - 9n) = a+ Bijgig; + -+ wg192 - - gn. (4.163)

With the definition above we have the simple rule

/dgldgg codgnf(91,92y -5 gn) = w. (4.164)

Now if we define analytic functions of Grassmann algebra of finite rank by their formal
series expansion with respect to the basis elements we find that this series breaks down after
n summands. Thus the set of analytic functions of Grassmann numbers is identical with
o (Gy,). So we have defined the integral over Grassmann numbers completely by Eq. ([EI64).
Now we prove the crucial theorem for the quantum field theory of fermions. Let {n, 7} }n=1..n
the basis of a Grassmann algebra of rank 2n and A an arbitrary n x n-matrix. Then

/dvﬁdm - drdny exp(n® An) = det A where = (n1,...,na), 0" = (05, ,n}). (4.165)

To prove [EIGA) we have to find the coefficient of njn; ---nin, in the series expansion of
exp(n*)An and show that this is det A. Now the expansion is

* A * 1 a «
exp(if" An) =1+ Apjpm + -+ + — 11 Arr (i, m)- (4.166)

v=1

Now we rewrite the last summand in this expansion. Since the Grassmann basis elements are
anti-commutative the sum runs over all possible permutations of the indices k£ and [. Any
term with equal indices is zero. So the summand is

1 n .
nl > 20 T Ak Ay iy ) (4.167)
" keSnleS, v=1

Now we have to bring the Grassmann numbers in the lexical order to integrate over them
all using the definition of the integral. The only problem is to get the correct sign. First of
all we change the pairs of Grassmann numbers in a given permutation such that the starred
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4.5 - Path Integral Formulation

numbers are in lexical order. Now we have to bring the non-starred numbers to the correct
position right from the starred one with the same index. First we bring n; to the right of the
pair containing 7. This gives no sign change, since 7; commutes with the paired objects it
has to be interchanged with. After this we interchange the non-starred number which was
paired with 7} previously with the next starred number in order to get the correct ordered
pair nim on the very left. This procedure gives an additional sign and the rest contains
(n — 1) pairs with the starred objects in lexical order. We have to repeat this procedure with
this rest of the product as long as all is in the correct order. The sign is thus the sign of the
permutation of the non-starred objects times the sign of the starred ones. So our product is

% > > I oo (k) Axp) Ay (im) -+ (). (4.168)

" keSp leS, v=1

But now from the elementary theory of determinants we know that

Z H Ak(y)l(y) = O'(k:) det A (4.169)

leSyp v=1

This shows that the sum over [ is always the same result, namely det A and the sum over k
cancels the factorial in the denominator. This proves (EI63).

Now we like to define the derivative with respect to Grassmann numbers. There are two sorts
of derivatives called left and right derivatives. The derivative operation is by definition a
linear mapping from 7 (G),) to itself and thus it is enough to define the left (right) derivative
applied to a monomial. To obtain the left (right) derivative of a monomial with respect to g
one has bring gi to the very left (right) of the monomial and cancel it from the product. If
gk, is not contained in the monomial the derivative is set to zero. This shows the funny fact
that in the case of Grassmann numbers the integration is the same as right derivative.

Now we want to show another important result. For this we look on a Grassmann algebra

of rank 4n with basis elements g1, - ,g, and g, --- g5, J1,--- ,J, and J},...,J;. Now we
define a function of the J and J* of the following form
f(J%J) =explClg",9) + J"g + g"J]. (4.170)
If C contains only monomials with an even number of g-elements, then
orf oL f
=gt f. —L = . 4.171

The proof is simple: Since C contains only monomials with an even number of Grassmann
basis elements it commutes with all basis elements. Thus we can apply Cauchy’s law of
multiplication for (formal) power series to show that the exponential factorises

f(J*,J) = exp[C(g", g)] exp[J"g] explg" J]. (4.172)

Let us consider the right derivative with respect to Ji. From the definition of derivatives we
have to apply it only to the right factor. This exponential factorises by the same reason as
before. So we have
Oft explg*J o L a . .
O explg™J] _ 0~ [exp(g;7) = gi [I exp(g;Ts) = gk exp(g*J), (4.173)
0Jx 0Jy, e il
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where we have repeatedly used the fact that g, commutes with functions containing only
monomials with an even number of Grassmann basis elements. In the last step we have
further used the identity g; exp(gjgr) = g;. Plugging all this together we have proven the
first equation (EITI). With the same argument we can also show the second one to be true.

We shall also use the simple result

aL/R
/dgl...dgna—f(gl,...gn) =0. (4.174)
9k
To see this we have only to remember that integration with respect to g; is the same as to
take the right derivative of gg. In any monomial g can show up at most one time. If this
is the case, the (left or right) derivative will cancel it and the integration over g, makes the
whole monomial vanish. If gi is not contained in a monomial the (left or right) derivative
cancels it. Thus the net result of the whole procedure is zero in any case as we have claimed.

In conclusion we may say that the “analysis” of Grassmann numbers (which is more algebra
than real analysis) is in great parts analogue to the corresponding operations in real or complex
analysis. The only thing one has to take care of are the signs arising from the anti-commuting
structure of the Grassmann algebra.

4.5.1 Example: The Free Scalar Field

Here we like to derive an important example for the path integral. As we have seen in
the previous chapter in detail from the point of view of the operator formalism, to calculate
transition amplitudes in a perturbative expansion we need the time-ordered n-point functions.
Now we can directly apply what we have learnt in section 1.10. studying the example of 1+ 0-
dimensional ordinary quantum mechanics, namely to write down the generating functionals
for time-ordered n-point functions. The rest of this section is used to calculate this generating
functionals for the case of a free scalar field.

The Lagrangian is
2

2 = S(0u0)@"0) ~ -6 (4.175)

Now we like to apply the path-integral formula for calculating of the generating functional
for n-point Green’s functions:

Zol) = 0 lexp i @1 20 )10) = N [ 57 [ Doexplisio, ] +i(7¢)) (4.176)

Herein we use the abbreviation (fi2..n);5 j for the integral of a space-time-dependent function
over the space-time variables x1, 9, ...z} resulting in another space-time-dependent function
of the variables xgy1,...,Zy.

The canonical field momentum is given by its definition:

0%
"= St~ (1177)
Thus the Hamiltonian is
04 1 5 2 2
_ _ —— 4.1
a(atgzs)M % 2[71' + (Vo) +m7] (4.178)
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and the canonical action is given by

S[g, n] = /d4x {mw - %[7'(2 +(Vo)* + m2]} . (4.179)

Herein the canonical momentum 7 has to be seen independent from the fields ¢!

But since [EI79) is a quadratical form in 7, the m-integration in ([IT70l) is the value of the
exponential at the momentum for which the exponential becomes stationary (with fixed ¢)
times a J-independent constant. The stationary point is given by

oS

— =0=7r=20 4.180

5 16 (4.130
and this is the value the momentum has in the Lagrangian formalism. Thus we have (including
the J-independent constant in the overall normalisation N)

ZolJ] = N / Do expliS[g] +i (J)]. (4.181)

It should be clear that this calculation is also valid in the interacting case as long as the
interaction does not contain any derivative couplings and thus no canonical field momenta
in the Hamiltonian formulation. So we can start in these cases with the Lagrangian version
of the path integral formula, which has the advantage of being manifestly covariant. This is
not the case in the canonical formulation, because there we have split explicitly in space and
time variables in an arbitrary fixed reference frame!

Now we can rewrite the action with help of a integration by parts using the boundary con-
ditions included in the path integral, namely that the fields have to vanish in space-time
infinity:

S[¢] = —% /d4m¢(D +m?)¢. (4.182)

Since this is a quadratic functional in ¢ we can invoke the same trick as we used for integrating
over the field momentum. The path integral is given by the stationary point of the exponential
in (EIXT). The corresponding field will be denoted with ¢ and is given by the equations of
motion

951¢l
op

For the path integral we have included a regularisation reading m? as m?—ie to project out the
vacuum state as explained at length in chapter 1. We find immediately the solution of ([ELI83])
with help of the Green’s function of the Klein-Gordon equation with the boundary conditions
given by the ie-description. We find the same as in chapter 1 in the case of nonrelativistic
path integral formulation that projecting out the vacuum expectation values leads to the
uniqueness of the Green’s function, namely the causal, to use for solving the inhomogeneous
equations of motion:

= —(O+m?—ie)p=—J. (4.183)

2

o(z) = —/d4x'D(3: —a')J ("), (4.184)

where D is the Green’s function with the causal boundary conditions, the free Feynman
propagator. It can be calculated by taking the Fourier transform of the defining equation

4p exp[—ip(z — o’
—(Dx+m2—ie)D(aﬂ—m'):54(x—x')=>D(x—x'):/(;17£4 119)2[—2:7(22+ie)]' (4.185)
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This is, of course, the free Feynman propagator we know from chapter 3, where we have
obtained it by calculating the vacuum expectation value of the time-ordered product of two
field operators (i.e. as the contraction in the sense of Wick’s theorem).

Inserting the solution (EIRZ) into the action we find for the path integral (again absorbing a
J-independent constant in the normalisation)

ZolJ] = exp [% <¢J>] — oxp [—% <J1D12J2>12} . (4.186)

Herein we have used the abbreviation Dy = D(x1 — x2) = D(z9 — x1) where the symmetry
of the Feynman propagator can be seen from ([ZIR0]) by substituting p — —p. The same time
we have fixed the normalisation constant such that Zy[0] = (0] 0) = 1.

4.5.2 The Feynman Rules for ¢* revisited

Now we are ready to rederive the Feynman rules with help of our functional technique. Here
we like to find the Feynman rules for the disconnected Green’s functions.

Thus we write down again our path integral in the Lagrangian form:

210 = N [ Doexpolo] + iSile] +i (o)) (4.187)

Here we have split the action functional in a free part Sy, which is a quadratic functional in
¢ and an interaction part S7.

Now we factorise the exponential in the free (including the source term) part and the in-
teraction part. Then we expand the interaction part in powers of S;. Since Sy is (for the
most fundamental cases) a polynomial in ¢ and eventually its derivatives each field can be
substituted by 1/i(6/6.J). Formally we may write this in the form

Z1J] = Nexp {151 [%] } / Do exp(iSolé] +i (J161)) = N exp {is, [%} } ZolJ]. (4.188)

Again we have absorbed all J-independent factors into N. Now we have found Zy[.J] above
and are ready to obtain the Feynman rules for the disconnected n-point Green’s functions in

the form 5 21
nZJ
TelQ) —
G () <16J(x1)16J(x2) 10 (zn) > i (4.189)

For this we use the explicit form for Zy to calculate the two-point function up to first order in
A as an example to find again the Feynman rules we have already derived in chapter 2 with
help of the operator method. To that end we have to perform all the functional derivatives.
This could be done completely analytically, but it is much more convenient to use from the
very beginning a diagrammatical picture for the calculation.

To do so at first we introduce the basic diagrammatical elements, which are in our case dots
(symbolising space-time points), lines (representing propagators), and full blobs with a dot
(representing external currents with its space-time argument): Now we can write down the
generating functional for the free particles [LIS6]) as the series of the exponential function

(see fig. D).
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® space-time point x
x

ZolJ] =1+ %Q—O+

Figure 4.2: Diagrammatic representation for Zy. All internal space-time points have to be
integrated out [d*z

BSIE

o
@O

We have shown the factors 1/2 explicitly.

Now it is very simple to find the rules for calculating the Dyson-Wick series with help of
(EIRY). As a very simple example let us calculate the first-order correction to the two-
point Green’s function. At first we have to calculate [ d*zé*Zy[J]/6.J%(z) as the first-order
correction of the generating functional. After that we have to differentiate the result again
with respect to J(z1) and J(x2). After all we have to set J = 0 and renormalise the result
by dividing through Z[0] up to the given order (here it is the first-order) in .

Now the differentiation with respect to J means truncating a “current-blob” from the dia-
grams in fig. EE2and to multiply with the correct factor (coming from the rule of differentiating
powers of J).

From this we learn that we have to keep only the terms in the power expansion in fig.
which contain the same number of external currents as we have to differentiate the expansion
to obtain the searched expression. Indeed, a term which contains less currents than the
number of differentiations is cancelled by the differentiations, one with more currents will
have at least one current left after performing the differentiations and cancels when setting
J = 0 at the very end of the calculation.

In our case we have to keep only the term with six external currents. Then one has to build
64 /8.J(x)* Zy[J] with help of the product rule for functional differentiation. The final result

is given by fig.
§Z0[J] _ S Ao A7 \Q AP+
504—"'+3 +6= ; :\L |+

N 4
a

Figure 4.3: Contribution to Z in first order perturbation theory with two external currents.
The factor for each diagram is given explicitly and is not contained in the diagram!

The same has to be done to calculate the first-order correction to Z[0] for renormalising the
propagator up to the given order. The result is shown in fig. B4

107



Chapter 4 - Relativistic Quantum Fields

zZo)=1-1 O@ +0(A\?)

Figure 4.4: Contribution to the vacuum-to-vacuum amplitude in first order perturbation
theory

At the end we find that the vacuum to vacuum amplitude cancels with the same part in the
two-point result shown in fig. B3l

The reader should do this graphical calculations on his own. One realizes immediately from
this very simple example that we get the same Feynman rules as in the canonical technique
but now without using Wick’s theorem from the operator technique. Here it is simply the
result of functional differentiation rules. The only difference to the canonical formalism is,
that we have lost the normal ordering of the operators which gave the additional rule, that
all tadpole contributions can be dropped. Now normal ordering was used to fix the vacuum
energy for the free fields to the value 0.

But on the other hand this is not as worse as it looks like, because we have to renormalise
the perturbative results order by order in A anyway. In general, many diagrams containing
at least one loop are not well defined as we have already seen at the end of chapter 2. We
shall solve this problem of infinities in chapter 6 and appendix C.

4.6 Generating Functionals

Now we shall derive some other formal features for our generating functionals which are
important to obtain the LSZ reduction formula and some important subclasses of diagrams
which can be used as building blocks for higher order calculations. One of such subclasses are
the connected diagrams, which can be used to prove that all vacuum to vacuum amplitudes
cancel exactly when calculating the n-point Green’s functions.

The main advantage is that the number of diagrams to calculate, which are contained in a
certain subclass is much smaller than the number of all diagrams.

We shall also define the effective action, which is shown to be the generating functional for
one-particle-irreducible or 1PI truncated diagrams. These are important building blocks for
the connected Green’s functions. As we shall see they are in a certain sense those diagrams
we have to calculate (including regularisation and renormalisation to get rid of the infinities)
at least to build up all other sorts of diagrams mentioned so far.

4.6.1 LSZ Reduction

As we have already seen in chapter 3 we can get the S-matrix-elements, i.e., the transition
amplitude to find a system in the asymptotic free out-state |f) after a reaction which was
prepared in a asymptotic free in-state |i), by truncating the (disconnected) n-point functions
and multiplication with the appropriate free-particle amplitudes for in- and out-states respec-
tively. This connection is known as LSZ reduction formula and was proved in section 3.6 with
help of the operator formalism.

Now we shall again prove this important theorem with help of our path integral formalism.
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We shall again use ¢*-theory as an example, which can be extended to more complicated
theories immediately.

Due to eq. ([EIR0) the only difference between the path integral formula for the generating
functional for n-point functions Z and the generating functional S for S-matrix elements are
the boundary conditions for the fields. In the former case we have ¢ — 0 for ¢t — +oo in the
latter we have

¢(x) = olx) (4.190)

t—+o0
where g is a given free state. This can be written as

d3p
wo(x) = \/W [a(p) exp(—ipz) + a(p)” exp(ip)] ) —uy(7)—ic - (4.191)

Here the ie-description is to project out the in- and out-states with definite momentum for
t — to0.

The generating functional for S-matrix elements is given by

X[J, 0] = /%70 D¢ exp [iS[¢] + <¢1J1>1] . (4.192)

It is clear that we obtain a certain S-matrix element by inserting ([Z191]) in (192) and taking
the functional derivative with respect to a(p) for a in-particle with momentum p and a*(p)
for a out-particle with momentum p. It is also clear that one can do the same directly in
space-time by differentiating S[J, o] with respect to g for each in- resp. out-field, multiply
the result with the one-particle free in- resp. out-state and integrate over the space-time
points.

All this is done in presence of the external source J which has to be set to zero at the very
end of the calculation.

But now we can use the external source to write down the Dyson series for the generating
functional S in the same way as we did for the generating functional Z in (EI8S):

2[J, o] = exp {151 [ ;J] } ZolJ; ¢, (4.193)

where Sy[J, o] is the generating functional for the free particles under influence of an external
source J and S7[¢] is the interaction part of the action functional.

Now we substitute .
P(x) = ¢p(x) + o(x). (4.194)

Together with the translational invariance of the path integral measure we obtain
Yol o] = /DQEGXP {iso[<2~5 + o +i <J1(<l5~1 + 8001)>1} ; (4.195)

where ¢ fulfils the homogeneous boundary conditions qz(x) — 0 for g — Fo0. Since for g
the free Klein-Gordon equation holds, integrating the action functional by parts we have:

Soleo + @] = Solg]. (4.196)
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This leads to

Eo[J, QD()] = Zo[J] exp[i <J1g001>1]. (4197)
Inserting this result into ([EI93)) we find using
0Zy .
0, 2 = ZolJ], 4.1
O + s =@l (1,199

which is obtained from (EEIR6]) and the fact, that the Feynman propagator is the resolvent of
the Klein-Gordon operator (ELISH) on the left hand side in eq. (EI9S]),

Sln] = exp | (fle)(~0 = )5 H 21). (4.199)

From this we obtain the reduction formula by functional differentiating with respect to a(p)
according to the in- and with respect to a*(p) out-states one likes to have in the S-matrix
element.

Performing the above explained calculation for an arbitrarily given S-matrix element Sy; we
find (up to a phase factor for the wave functions, which is physically irrelevant) again the
LSZ reduction formula BI07). The difference is that the renormalisation factors Z are now
absorbed in the overall renormalisation of the generating functional Z which is such that
Z[J =0] = (0,0ut |S]0,in) = 1.

4.6.2 The equivalence theorem

Now we shall prove a theorem which will become important for the treatment of non-abelian
gauge theories in chapter [

Let Fi[¢] be an arbitrary local functional of ¢. Suppose we define a modified generating
functional Z'[J] by

70 =N / D expliS[o] + i (1 (61 + Fio]))y)- (4.200)

It is clear that with this definition we create new n-point functions compared to those arising
from ([EIRT) by taking derivatives with respect to J. Nevertheless, as we shall show now, the
S-matrix elements derived from

S'[J, o] = exp [<<po1(D1 + m2)%>1] Z'[J] (4.201)

are the same as those derived from . It is clear that we can write

5
20 =exp (i { hF | =) ) Z[J] (4.202)
é0J /4
Since the functional derivatives in (201]) and [202) are commuting we find immediately
5
Y[, 0] = exp (i <J1F1 [ED ) E[J, o). (4.203)
1

Since the S-matrix elements are generated by X[J = 0, @g] it is clear that also X'[J = 0, ¢]
generates the same S-matrix-elements.
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4.6.3 Generating Functional for Connected Green’s Functions

From a diagrammatical point of view it is immediately clear that one has to calculate only
the connected Green’s functions, because if the diagram is composed out of two or more
connected diagrams which are not linked together, then the whole expression is given as the
product of its connected parts.

At first we introduce the diagrammatics for the disconnected n-point functions.

€3

.
Q
a3
K
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3
~
I
q

xZ
ZE/ n

Figure 4.5: Diagrammatic representation for the exact disconnected Green’s functions

Now we call a diagram connected, if it does not split into two or more subdiagrams which are
not connected together. Now we prove the following theorem. For first reading the reader
may omit the proof, because it is rather technical.

Theorem 2 (Connected Green’s Functions). The functional
iW[J] =Wn{Z[J]} & Z[J] = exp{iW[J]} (4.204)

is the generating functional for connected n-point functions.

ng)(xl’ o) = <%>n <5J($(15;L‘VT/'[5J<]](%)>J:O (4205

Proof. We represent the connected Green’s functions diagrammatically as shown in fig.

Figure 4.6: Diagrammatic representation for the exact connected Green’s functions

The main difficulty in proving this theorem is to formulate the diagrammatical statement in
analytical terms. The mathematics is rather simple. Only the use of chain and product rule
of functional differentiating is needed.
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At first we have to solve the combinatorial problem to express the fact that the disconnected
n-point Green’s function is given by the sum of all products of connected ones with together
n space-time arguments i, ... Zy.

In mathematical terms we have to label all disjoint partitions of space-time coordinates. Any
summand entering the sum of products of connected functions can be classified after the
number of contained factors and the space-time points attached to a connected subdiagrams
the diagram is built off.

Thus we define the following quantities

e P[': The set of all disjoint partitions of the index set N,, = {1,2,...n} in k subsets.
® 7,k The number of elements in the /th set of the jth partition out of P.

® Mnkjils - - > Makjlrp) labels the elements contained in the jth partition out of P}’

To prove the theorem we define at first the functions with external source J:

A1 5" Z[J] m _ 1 0"WJ]
G = — - = — : 4.206
T I 0 (n) T 180 (ay) -0 (2m) (4.206)
The arguments of this functions are always z1,...,x,. Now we state that the following
equation holds:
ZlJ] : (Frist)
ng) == ikZZHirnkjl—chJnle (xmlnkjl7""xmnjklrnkjl)' (4.207)
k=1 P j§ I=1

The first is to understand that this formula is identical to the statement of the theorem. Of
course the n-point Green’s function is given by the sum over all possible products of connected

Green’s functions with together n external points and with each argument z1, ..., z, one and
only one time appearing as these external points. This is the reason why we had to take the
disjoint partitions of the external points. It is also clear that k& = 1,...,n, because there

is one disjoint partition with one element, namely the set N, of the indices itself, and one
disjoint partition with n elements containing all sets with one element. Thus E201) is the
statement of the theorem written in analytical form.

Finally we see that the i-factors in [Z201) cancel. Since the partitions have to be defined as
disjoint we have indeed
k

> raje =n. (4.208)

=1

The proof is now given easily by induction:

The statement is true for n = 1, because GSI)(xl) = Z[J]Gg]) (x1) follows directly by differ-
entiating the definition of W (E2Z04]).

Now we suppose the statement is true for n. To perform the induction, we have to do is to
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differentiate [E207) after J(x,+1). Using the product rule for functional derivatives we find:

G(n+1) _ 1 5ng) —
J i (5J(1’n+1)

— 1 Tn 1 ~(Tnkjt)
T yndl 5J x +1 Z ZZH M G ’ ( m”kj“7...’xm"kﬂ’"nkjl)+ (4.209)

k=1 Pp

k

E E E rnkjl_l (Tnkjl)
1"‘"1 = P 5J (Tnt1) Hl Ge (xmnkjll’ T ’xmnkﬂ'”nk]‘z)

The last step is to understand that with this expression we have taken account of all disjoint
partitions of the set N, 11 of indices.

Since
30Z1J]

6J (®n+1)

the first term in ([Z0)) is the sum over all disjoint partitions of N, 1, which are partitions
of N,, with the one-element set {x,,11} added to the partition. Also the factor i is correct for
the one-point Green’s function. Indeed by adding the one-element set to a partition P’ of
the index set N,, makes a partition of the class P"le1 of partitions of the index set Ny ;1.

Further holds

—iZ[JGY) (@) (4.210)

6 T 1 T
(SJ(QE +1) Gcgkﬂ ('Imnkjll’ trty xmnkjlrnkjl ) IG "kﬂ (xmnkjll’ R xm”kjlrnkjl 9 anrl)- (4211)
n

In the 2nd part of ([209) we can use the product rule again. Then we that this procedure
corresponds to making a partition of class P* w1 of Ny 1 out of a partition of class Pk of N,
by adding the element (n 4 1) to one of the subsets of the partitions in P*. The additional
factor i has to be counted with ik,

Now we are finished with our proof because all disjoint partitions of N, 1 are obtained from
those of N,, by adding the element (n + 1) as a one-element set to a partition of N, or to add
this element to one of the sets already existing in a partition of N,,.

Q.E.D.

Now the fact, that the vacuum-to-vacuum subdiagrams cancel, is clear too: Since Z =
exp(iW) after performing all the functional derivatives to obtain the n-point Green’s func-
tions in terms of connected ones, setting J = 0 one has to divide by Z[0] to get the proper
normalisation of the vacuum-to-vacuum amplitude to 1. This cancels Z[0] = exp(iWW[0]).

The same holds order by order in perturbation series, because then we apply our theorem
to Zy and we have already shown that one obtains the Dyson-Wick expansion of the exact
Green’s functions just by calculating functional derivatives of the free generating functional
Zy = exp(iW]0]).

4.6.4 Effective Action and Vertex Functions

The next subset of diagrams is given by the exact n-point vertex functions. These are defined
as the one-particle irreducible truncated diagrams with n external space-time points. Here
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a diagram is called one-particle irreducible or 1PI if it is not possible to disconnect the
diagram by cutting only a single exact propagator line. The diagram is called truncated if all
propagators connecting an internal space-time point with an external one are left out. Thus
the external points are connected with the diagram by at least two propagator lines.

Before we go into the analytical details we should explain why this is a useful subset of
diagrams. The most practical reason is given by the momentum space representation of
the Feynman rules. Due to momentum conservation a diagram which consists of two parts
connected only through one propagator line splits in the product of the two parts times the
propagator. This is a direct consequence of the translation invariance of the theory!

In addition we shall see in the next section that we have a description of the quantum field
theory in form of a variational principle which is close to classical field theory in this sense.
For instance we shall derive Noether’s theorem for the quantum case with help of the effective
action which is introduced in the following theorem. Its proof is also quite involved (but not
really difficult) and may be omitted at the first reading.

Theorem 3 (The Effective Action). By performing a functional Legendre transformation
of the gemerating functional W

SWJ]
0J[z]

Llps) = W) = [ daps (@) (0) with o(z) = (4.212)

one obtains a generating functional for exact vertex functions.

Especially the negative inverse of the two-point connected Green’s function is given by

2
2) 5" Tlep]
'V (x,29) = — . 4.213
) = e (@) 21
The other vertex functions are defined as follows
n o"r
(21, 1) 2] (4.214)

~ Sps(x1) - 0py(@n)

Proof. The vertex functions are represented diagrammatically as shown in fig. EE71

Figure 4.7: Diagrammatical representation for the vertex functions

The first step is to show, that ' is the negative functional inverse for the two-point connected
Green’s function. This follows immediately from [EZI2):

oW
oT = W&] —y0J — Jbpy = —Jdpy. (4.215)
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Thus I' depends only on ¢ and not directly on J. From the last equation it follows
L]
dps ()

Because of the definition ([2I3]) we have

= —J(x) (4.216)

6J (1) d(y2)
4,, 1@ ©) _ _/ 1 = 6D (zy - 4.21
/d yel'y" (@1, 42)Geg (v, 2) d y2590J(y2) 6J (z2) Pl —a), 20)

which proves our statement that the two-point vertex function is the negative functional
inverse of the two-point connected Green’s function.

With help of this equation we find

GSJ)(@H,M) = /d4y1d4y2ff]2)(y1,y2)inj)($1,yl)iGSJ)(@,yz) (4.218)

which is equivalent to the graphical statement that the two-point vertex function is identical
with the truncated two-point connected Green’s function (keep in mind, that a line with a
open circle means in])). Of course there is no possibility for the two-point connected Green’s
function to contain an exact propagator. The only possibility is to truncate both external

points.

The systematics for a inductive proof starts with the three-point functions. Diagrammati-
cally it is clear, that also the three-point connected Green’s function cannot be one-particle
reducible. Thus the three-point function should be expressed just by dressing each external
point of the three-point vertex with an exact propagator. This is shown to be true for the
analytical statement by differentiation of ([EZI]]) with respect to J(x3). Using 214 we find
with help of the chain rule of functional differentiation

151‘(”) Yis---5Yn n .
T J <[5J(x) ] = /I’S Jr1)(yl, T yn+1)1Gf]) (Yn+1, ). (4.219)
With help of this relation we obtain by differentiation of and bringing all a®
cJ
to the left hand side of the equation
3 3 > 2
G((;J) (@1, 22, 23) = /d4y1d4y2d4ygff,)(y1, Y2,Y3) H iGiJ) (@k, Yr)- (4.220)

k=1

But this is the statement: To obtain the three-point connected Green’s function one has to
dress the three-point vertex function with exact propagators.

Now the rest is done by induction. Let us first think about the diagrammatical statement
of the theorem. It says that we can calculate the n-point connected Green’s function by
summing all possible diagrams built with help of the vertex functions linked together with
connected two-point Green’s functions (shortly called the exact propagator) with n external
points, which have to be dressed with exact propagators.

In another way we can express this as follows: One has to build the exact Green’s functions
with help of the exact vertices and propagators as in the case of perturbation series diagrams
but taking only diagrams without loops. Now a diagram without loop is called a tree diagram
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and in perturbation theory the sum over all tree diagrams contributing to a n-point Green’s
function (connected or disconnected) is called the tree approrimation of this function. Thus
the short form of the theorem is: The exact n-point Green’s function is given by the tree level
approzimation using exact vertex functions and exact the Green’s function as building blocks.

As we shall see in the next section, the perturbation series can also be seen as an expansion
in powers of A. A diagram with L loops is of order #¥~!. The analogue in ordinary quantum
mechanics is known as WKB approximatio.

So let us come back to our proof. Similarly to the proof of the theorem in the last section
we have to classify now our diagrams as built by tree level diagrams of exact vertex functions
and propagators.

Now one can classify the diagrams again by the disjoint partitions of the set N,, in k subsets.
These sets contain the external points which are linked to the 1PI subdiagrams of the tree
diagram. The topology of the diagram is fixed by the number of elements contained in the
k subsets of N,,. A one-element set in a partition tells us to cut the external line meaning
the truncation of the corresponding point of the Green’s function. Although this does not
classify the topology of the diagram this special case is important as it becomes clear when
doing the induction from n’ to n’ + 1 below.

The topological type of a diagram is given by a tuple of natural numbers (ni,na,...,ng),
where n; > 2 is the number of external points connected with the jth (j = 1,...,k) 1PI
subdiagram of the tree diagram.

Let us take the four-point connected Green’s function as an example. One has partitions
of type (4) and of type (2,2). The first one corresponds to the dressed four-point vertex,
the second one to two three-point vertices connected with one internal propagator line and
with dressed external points. The partitions of types (1,3), (1,1,2), and (1,1,1,1) are only
truncations. This is shown in fig. EER

4 3
4 3 4 3
- + + exchange
1 2 1 )
1 2

Figure 4.8: The connected four-point function as a tree diagram built out of exact vertex
functions and propagators. By “exchange diagrams” we mean the diagrams with the tree
point vertices of the same topology but with interchanged external legs (there are three tree
diagrams of this kind).

Now we have to show that our analytical statement coincides with this diagrammatical rules.

named after the inventors of the method, Wentzel, Kramers and Brillouin
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We have seen that it holds for n = 3 and we can show the rest by induction. So we suppose,
that the theorem is correct for all connected n-point functions with n < n’. We have to show
that the theorem then also holds for (n’ 4 1)-point functions.

But this can be done diagrammatically, if we find the diagrammatical manipulations for
differentiating the sum of n/-point tree diagram with respect to the external current. The
result are n’ + 1-point tree diagrams and, because the theorem is claimed to hold for n # n/,
the result is the complete (n’ + 1)-point functional.

To differentiate a n’-point function one has to use the product rule under the integral and
in the case of differentiating a vertex function the chain rule already given in ([ZZI9). The
diagrammatical meaning of this calculations is as follows:

e If the derivative is applied to the vertex function according to (EZIT]) this generates a
vertex function with one more external point which is dressed by a propagator iG.;.
So we have again a diagram consistent with our rules. In the description by disjoint
partitions of N,/ 1 this corresponds to adding the new point x,/,1 to one of the sets in
N,, which contain at least two points.

e The derivative is applied to a propagator which dresses a vertex point. This propagator
gives a three-point connected Green’s function which is given as the dressed three-
point vertex function according to ([220)). Thus the resulting diagram has one internal
propagator line more than the original one. This means making a disjoint partition of
Ny/11 by adding the element x,,;1 to a one-element set in the partition of N,,» describing
the original diagram.

e The derivative is applied to a propagator, which connects two vertex functions in the
diagram. The result is again a three-point vertex function with one point dressed and
connected with its two remaining points to the rest of the diagram by a propagator.
This means adding the one-element set {x,/11} to the partition of N,/ corresponding
to the original diagram.

Now it is clear, that from claiming the theorem to hold for n = n’ follows, that it also holds
for n = n’ 4 1 since one obtains all disjoint partitions of N/, out of the partitions of N, by
adding the n/ + 1th point either to a set of the partition of N, or adding the one-element set

{Zp/41} to a partition of N,y and these possibilities correspond to product and chain rule of
(n")

functional derivative of G,

written as the sum of tree diagrams according to the theorem.

Especially this shows that for n = n/+1 there is no propagator which connects two arguments
of the same vertex function if this is true for the n = n’ but this was the assumption of our
induction proof. Of course if there was such a line connecting to arguments of one and the same
vertex, we could cut this internal line without disconnecting the diagram. This shows that
the n-point vertex function is the complete truncated 1PI n-point Green’s function. Q.E.D.

Finally we should say that we have to set J to zero. According to ([EZIG) for the vertex
functions, seen as functionals of ¢, this means, that we have to insert the field ¢ for ¢,
which is given by

— 0. (4.221)
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Our proof also shows, why I' as a functional of ¢ is called the effective action: The n-point
connected Green’s functions are given as the tree level approximation of the field theory
defined by the effective action as action functional. According to the A-expansion in the next
section there is some analogy of the tree level approximation of the quantum field theory with
the corresponding classical field theory.

It should also be mentioned that in momentum it is convenient to define the self-energy 3 by
S(p) =Gyt -G =p* —m?+TO(p), (4.222)

fulfilling Dyson’s equation:
G = Gy + GXGy. (4.223)

This shows that X is perturbatively given as the sum over all amputated 1PI diagrams with
at least one loopﬁ.

4.6.5 Noether’s Theorem (Quantum Part)

In section 3.3 we have seen the important connection between symmetries and conservation
laws, known as Noether’s theorem, for the classical field theory.

Now we can describe the quantum field theory also by a variational principle, but with the
quantum effective action I'[¢] introduced in the last section, rather than with the classical
action S[y].

We start from the invariance of the classical action and ask for the consequences for the
effective action of the corresponding quantised theory. For this we suppose, that the path
integral measure of the fields D¢ is invariant under the symmetry transformation and that it
can be written in the Lagrangian form.

Now we make the substitution ¢ = ¢’ — d¢ in the generating functional [EISZ). Since
S[¢] = S[¢'] and D¢ = D¢’ by assumption we have

2] = N / D¢’ exp{iS[e] +1 (1), } exp{i6 (J1d1)}. (4.224)
Now J is an auxiliary external current, which we can give arbitrary behaviour under the

symmetry transformation. We shall assume that it transforms as a set of scalar fields under
Poincaré transformations and as a scalar under intrinsic transformations of the fields ¢.

Now we subtract the original form EIH2)) of the functional and expand the expression to
linear order in the infinitesimal transformation:

[ D05 (o), explislo] +1(Ja0u)] = 0. (4.225)
Now we have defined J to be a set of scalar fields, leading to
5 (i), = / A () [56(x) — 5279,9), (4.226)

as it was shown when proving Noether’s theorem for classical fields in section 3.3.

2Since in the perturbative diagrams a line stands for iGo any diagram with this properties contributes to
—iX.
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To understand the meaning of [E2Z0]) better, we write the most general infinitesimal trans-
formation we want to take into account in the following form (also used in section 3.3):

do(x) = 14(x, P)on®, dat = —=TH(x)on*, (4.227)

where the dn® are the infinitesimal independent parameters of the Lie group.

According to the general Feynman-Kac formula ([I5]]) and using the effective action formal-
ism we obtain from (E2T0)

4 (5F[(pj] a _ —
[ 4SS (0 il ) = 720,011 0) =0, (4.228)

which is exactly of the same form, we deduced for the classical action to prove Noether’s
theorem in the classical case, if 7 is linear in ¢, because then we have (7(¢,x)) = 7 ((¢p) , )
and (@) = 7, where (---) is the vacuum expectation value for the operators under influence
of the external current J.

Together we have shown, that, if the classical action functional is invariant under a infinites-
imal transformation, which is linearly realized on the fields and leaves the path integral
measure invariant, then the effective action of the corresponding quantum field theory also is
invariant under the same transformation. We can immediately conclude, that then Noether’s
theorem holds for the quantum case, i.e., there exists a conserved Noether current for each
independent symmetry transformation, which operates linearly on the fields.

Warning! All this is purely formal, because we have not taken into account that one has to
regularise and renormalise the field theory. All this formal manipulations with path integrals
have only sense if we are able to regularise the theory in some way. This regularisation
has to be done such that the symmetries hold for the regularised theory too. One nice
regularisation technique is the dimensional regularisation invented by Veltman and van ’t
Hooft especially for gauge theories (explained in chapter 6 of this notes). Now it may happen
that there is a transformation which leaves the classical action invariant in the physical 1+ 3-
dimensional space-time, but that there is no symmetry in other space-time dimensions. Then
the regularised theory has no symmetry and thus it happens that the effective action fails
also to be symmetric under the symmetry transformation, although the formal assumptions
may be fulfilled.

It can also be that the path integral measure is not invariant under the symmetry trans-
formation, which again breaks the symmetry for the effective action. All these cases, when
a symmetry of the classical action is not a symmetry of the effective action, are called an
anomaly. Thus we should keep in mind that we have to check carefully if the theory is free
of anomalies before we use any symmetry argument in the quantum case.

In the next section we show in which sense Noether’s theorem holds for the Dyson-Wick
expansion of the quantum field theory, if all the conditions for the transformation to be a
symmetry of the exact effective action is fulfilled.

4.6.6 h-Expansion

In this section we reintroduce h explicitly in the path integral formulation of quantum field
theory. We expect that it should be possible to expand around the classical solutions for
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the fields which we denote by . In order to discuss the generating functionals for discon-
nected and connected Green’s functions and the effective action which generates proper vertex
functions we include an external source J:

08

— + J; = 0. 4.229
501 : (4229)

$=¥0

The generating functional for disconnected Green’s functions is defined according to EEIS1
As explained above we reintroduce A explicitely:

217 = N/Dqﬁexp [% (S[6] + {Jm}l)} — exp (%W[JD . (4.230)

Now we substitute vi¢/ = ¢ — ¢y where g is the classical field subject to the equation of
motion @Z2). The classical field is of course of order O(h) since it is completely classical
while the quantum part should be scaled with /A according to its dimension. With this
substitutions we find

Z[J] = exp |:% (S[eo] + {Jltpol}l):| Z1(J) (4.231)

with

. ., |
2 =N [ Dot e | $(25dhoth, — 207 Lol - Dot} )|
2 3! 41 (4.232)

D5 = <_ml —m?— ggogl) 6 (1 — x2).
This shows that we can evaluate an h-expansion for Z; if we apply the perturbative expansion
given for Z itself by ([EI88]). There are only two differences: The first is that the propagator
is given by %212 which depends on the classical field ¢y and thus implicitly on the external
source J. The second is that we are not allowed to cancel the additional factor for Z1o[J, K|
(where K denotes a new independent external source), because it depends on ¢y and thus
also on J.

Thus we obtain

Zi[J] = N{exp [—Mﬁf/@) E%} — iRy @ E%” 7O, K]‘Kzo}l. (4.233)

Here we have abbreviated the interaction parts of the Lagrangian in ({L2Z32) by

id‘*, (4.234)

3 A 3
V) (p) = AL Vi(e) =

while Zfo)(J, K) is given by the quadratic part of the Lagrangian in ([233]). We apply to it
the same trick as for obtaining (EZIR6]) but here we have to keep the overall factor, because it
depends in J via its dependence on q:

200K = [D6exp |5 {755 0105+ {Krch |
. . (4.235)
= exp [—% {912K1K2}12] /ng,exp [% {-@121¢,1¢/2}12} :
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To calculate the path integral factor we think of the path integral in terms of its discretised
form. Then after a Wick rotation of the integrand we can use ([LZ3]) to obtain immediately
i _ N’
/ng/ exp [5 {@121¢/1¢/2}12] = Di@_l =
t(Z1z) (4.236)

1
= N"exp [—5 Tr ln(@_lD)] ,

where we have introduced other indefinite factors N/ and N” which are independent of both
J and K. In the second term we have used the free propagator, defined by

D*l — (_Dl _ m2)5(4) (1-1 _ x2)7 (4237)

to normalise the whole expression and to avoid dimensionful quantities within logarithms. As
we shall see below in the TrIn-form we can calculate the functional determinant with help of
a perturbation series at any given order of h.

Now it is our goal to calculate the effective action, defined by @ZIJ), up to order h%. Ac-
cording to ([E230) for that purpose we have to expand the functional Z; [E232) up to order
h. Thus we expand the functional differential operator ([ELZ33]) up to order # leading to

A 53 o4 0
ZAn=nN1 VR i) 291 K
LB KAUPIOI |
2@ P eRTeRE T L |
Straight-forward calculation leads after some algebraE to the result
i A
W1J] = hin Z[J] = S + {Jigo1}; + %hln (27'D) +in* 5 { 7R}, +
1 1 (4.239)
+ 1W2A? S =001 P11 P12 Doz ooz + — o1 Dy 02
8 12 b
The next task is to invert the definition
oW [J]
— 4.240
#1 5, ( )

and substitute ¢ instead of J in order to perform the Legendre transformation according to
(E2T2)). This is of course impossible to obtain exactly. But it is not too difficult to provide
the systematic hi-expansion. Here it is important to note that by definition [E2ZZ)) ¢y is the
stationary point of the functional S{p] + {J1¢1},;. Thus we have

1 .
Sle] +{J1p1}; = Sleo] + {101} + 3 { P21 65}, + O(h*) with ¢’ = ¢ — . (4.241)

Here we have used the fact that ¢’ = O(h) which we have to prove now. To that end we
derive the expansion ([EZ39) with respect to J. Since ([EZ39) depends only implicitly on J
we do first the derivative with respect to ¢g. Using [Z2Z9) we find

ow i\

—— = —~hpn P11 + O(R?). (4.242)

0po1 2

3 A simple computer algebra system like FORM is recommended for such cases!
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Again using ([E239) we get

dpo1/ 6 \
= =Y. 4.243
5J1 <5g001/> 1 ( )
Combining [E242)) and [E243)) leads to
oW
A A . h{s001f9w.@1/1}1, + O(R?). (4.244)

This proves that ¢’ = ¢ — @9 = O(h). Now we have also

B _ ) _ A _
P15 =Dy, — 580019002512 = Dy — 5301%02512 +O(h) := 255 (p) + O(h). (4.245)

This means that up to corrections of order O(h) we can substitute ¢ instead of o in Zs.
Now we are ready to expand ([EZ39) systematically up to order O(h?).

Making use of ({239, [E244) and E245) we find

2
Sleo] + {10ty = Sle] + {Jip1} + %hQ {01211(9) Z12(0) D2 (@) P2}y + O(R®). (4.246)

For the logarithm we have

%hTr In(25'D) = %hTr In <513 - ggp?Dlg) -
. v (4.247)
= %hTrln[@_l(w) ] — —h {£1211(0) Dr2(9) Do (#) 2 }15 + O(BY).

In the remaining terms of (EE239) which are explicitely of order O(h?) we can simply set ¢
instead of g which gives only differences of order O(h?).

The final result for the action up to order A2 is thus

Tlp] = S[wH%hTﬂn[-@‘l(sD)DH%hQ {Z2(0)}, + S0 {0128 (0)pa} 1, +O(RP). (4.248)

For sake of completeness we derive the rule how to get derivatives of Z(p) with respect to ¢.
These are needed if we like to calculate the proper vertex functions using ([E2I4]). We have

S12 = {1 Dva}, =
X7 8Dy 4.249
{5” @} {@ﬂ}(gm} | (4.249)
@3 v @3 1/

Using the explicit form of 27! given by [@Z4H) we find

P12(p)

5 = A\Z13(0) 3 P32(0). (4.250)
©3

Now we shall give a diagrammatical interpretation in terms of the propagator . To obtain
an interpretation in terms of the perturbative propagator D = Z(¢ = 0) we have to use
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(EZ23)) which is inverted with help of a resummation which reads in obvious functional matrix
notation:

(QD) = —>\ g02 = E —)\ g02 ' ( 251)
Diagrammatically this is given by

_ IRAVZANEAN 2 (4.252)

where the bold line stands for & and the thin one for the perturbative propagator D. The
single leg with a cross at the end symbolises the field .

Diagrammatically these are the following “ring diagrams”:

ATy In(271D) = Q + :ié: + ;Q?A +o
(4.254)

For the two-loop contribution it is more convenient to give the diagrams in terms of & rather

than of D:
iAZ2h? /\

; N (4.255)

Here it becomes clear that the number of loops in the diagrams for the proper vertices, which
are obtained by taking the appropriate derivative due to [ZI4]) and setting ¢ = 0 at the
end give the order or . This can be understood directly from the diagrams as follows: The
number of loops is given by the number of independent loop momenta. If I is the number
of internal propagator lines and V' the number of vertices we have L = I — (V — 1) loops,
since on each vertex energy-momentum conservation has to hold but one of this restrictions is
fulfilled due to the overall energy-momentum conservation for the external legs. Each vertex
multiplies the diagram with a 1/h due to the factor 1/h in the original path integral (EEZ30I)
and each propagator delivers a factor h. Then there is the overall factor 4 from the definition
of Was W = —ihln Z. So a diagram has h-order I — V + 1 which was seen to be the number
of loops of the diagram.

The calculation of the second order terms also shows how the one particle reducible con-
tributions to I' cancel order by order in the h-expansion as we have already proven in a
semi-combinatorial way in section 4.6.3.

4.7 A Simple Interacting Field Theory with Fermions

We end this chapter with deriving the Feynman rules for a very simple quantum field theory
including fermionic fields. It will be quite the same line of arguments as given in the scalar
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case, but we have to be careful with the signs coming from the anti-commuting character of
fermionic fields (Grassmann fields in the path integral formalism).

This theory contains massive Dirac fields ¢ with mass m and a massive scalar field with mass
M. We couple these fields using a pure vector coupling. As we shall see in chapter 6 in order
to keep the theory renormalisable we also need a ¢*-coupling: Thus the Lagrangian is

1 Mm%, Ay _
Z = 5(0.9)(8"9) = Z-¢" + (i —m)¢p — 576" — g (4.256)

This Lagrangian is relativistically invariant because we coupled the scalar field to the scalar
bilinear form of the Dirac spinor ¢7). Since the Lagrangian again contains no derivative
couplings we can go immediately over to the Lagrange-an formalism of the path integral. So
we define the generating functional

20,0 = N / DEDGDY exp [iS[6, 6, 9] +i (J6) +i () +1 (4n)] . (4.257)

where J is a real and, 77 and 7 are Grassmann external currents.

Now the Dyson-Wick series can be derived along the same lines as done with the scalar ¢*-
theory above. The first step is to calculate the free generating functional. Fortunately this
functional factorises in a scalar and a spinor part. So we can use the scalar free functional
from above and have only to calculate the functional for the fermions. So we have to solve
for

Zor[n,m] = N/D¢D¢ exp [iSor (1, ] +1 () +1i(y¥m)] . (4.258)

The free Dirac spinor action is

Sorld, ] = / At (i) — m)o. (4.259)

Now again we have an action quadratic in the fields under the path integral. Due to our
calculations above for Grassmann fields we can use the same trick as before: The value of the
generating functional is a current-independent constant times the exponential of the action
functional at its stationary point. Fortunately it is enough to solve the equation of motion
for ¢

(i@ — m)y = —n. (4.260)

This is the inhomogeneous free Dirac equation, which can be solved with help of the causal
Green’s function with appropriate boundary conditions. We shall do the calculation a little
sloppy. The reader is invited to do the exact calculation by first going to Euclidean space-time
and then back to Minkowski space by analytic continuation. Thus we set

P(z) = —/d4$/G0(CE — 2" n(a’), (4.261)

where we have named the free Green’s function for Dirac fields Gy in order to distinguish
from the scalar Green’s function D. Again the Green’s function can be found by solving its
equation of motion

i@y — m)Go(x — 2') = §(x — 2) (4.262)
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with help of the Fourier transformation

4
Golir = /) = [ oz explipla —21Ga(p) = (b= m)Go(p) = 1 (4.263)

Multiplying this algebraic equation from the left side with /p + m and using

4 1 14
P =pupy"Y” = Spupy 110", =9 (4.264)
N——
2gHv
we find p
+m
G(p) = e ( +m)D(p). (4.265)

Here we have used the ie-description known from scalar theory in order to define the prop-
agator properly. As said above this result may be obtained by a formal Wick rotation and
analytical continuation back to Minkowski space. Physically it is also clear that the causal-
ity of this solution is correct in the sense of the Feynman-Stueckelberg interpretation of the
“negative energy states”.

The insertion of (261 gives

Zor(1,m) = exp[—i(N1Go12m2)15)- (4.266)

Now to write the action functional for the interacting theory as a series in powers of interac-
tions we use the same trick as above in the scalar case. The only thing we have to be careful
with is the anti-commuting nature of the Grassmann fields and functional derivatives with
respect to the Grassmann external currents (signs!). With this caveats in mind the Feynman
rules can be derived the same way as in the scalar case. The only point is, that the fermionic
propagator G has to be represented with an arrow which gives the order of the arguments.
Our convention will be such that Feynman diagrams have to be translated to analytic expres-
sions by reading against the direction of the arrows. This will give also the correct order for
the matrix valued propagators (and vertices if there is, for instance, an axial scalar coupling
involving 7s).

In the following we shall only use left functional derivatives and writing §/dn as abbreviation

for 57 /6n. With this notation we have, using (EI73):

« ~(m,n 5m+nZ J, 7,
IG%’)(331,--->33m§?/1,---,yn):< [ 7777] > .
J,m,n=0

6(in(z1)) - -+ 6(in(wm))d(=in(y1)) - - - 6(=in(yn))
(4.267)
It is simple to see from the Dyson-Wick series that to all orders perturbation theory this is
only non-vanishing for m = n. Our diagrammatical convention is thus as given in fig.

iGo(.Tl, .Tg) — 6— a9
T T2

Figure 4.9: The diagrammatical representation of the Dirac-fermion propagator

It is also clear that the Feynman rules can be calculated the same way as we did in case of
pure scalar ¢*-theory. The only change is that the external fermionic lines have an arrow,
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which gives the direction of the current ¥y*i rather than the direction of momentum. Thus
an incoming (outgoing) external fermionic line can mean an incoming (outgoing) particle or
an outgoing (incoming) antiparticle. The vertex coming from the ¢i1/-interaction always
contains an incoming and an outgoing fermionic line and a bosonic line (further on drawn
as wavy line) which does not necessarily need an arrow. Interchanging two external fermion
lines changes the sign of the whole diagram. The overall sign is not important because it adds
only an unphysical phase factor to the S-matrix.

There is also another sign rule saying that for each loop which consists of a closed ring of
fermionic lines, also gets an additional sign, the so-called sign rule for fermionic loops. To
prove this we look on the general structure of such a loop drawn in fig. EET0l

Figure 4.10: A fermionic loop with additional sign

This diagram comes from a term in the Dyson-Wick series of the form

L 5 5 5

= (—ig)™ 4.%, 4.%, . .
Zo = " [ L G 42

In order to get the n free Green’s functions as drawn in the diagram, one has to interchange
the order of the derivatives with respect to 7,,, which has to be written to the very left of the
whole expression. Since this is done by interchanging this derivative operator an odd number
of times with another Grassmann derivative operator this gives the sign change due to the
fermionic loop theorem.

It is clear further that there is no other formal change in the Feynman rules for S-matrix
elements. It is also the same Fourier transformation technique as used in chapter 3 to get the
momentum space representation for the Feynman rules.

1. Draw all topological different diagrams for the process due to initial and final state in
Spi. A diagram with n vertices is to multiply with 1/n! (from the expansion of the
exponential of the interaction part)ﬂ Leave all diagrams out which contain vacuum-to-
vacuum parts (closed diagrams).

2. For any ¢*-vertex there is a factor —i\/4!, for any vYn)¢ vertex a factor —ig. Each of
the latter vertices is attached to one incoming and one outgoing fermionic current.

3. There is to obey energy-momentum conservation on each vertex and for the overall
diagram (with an overall factor (27)8*(Py — P;) cancelled).

4This factorial is not cancelled completely since there are two different vertices. Only the interchange of the
different vertices of the same sort gives a factor. Thus it is more save to count all contractions (or possibilities
to connect external points and vertex points to give the partial diagram). It is also important to keep in mind
that the external points have fixed labels!
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For any fermionic line write down a factor iGGg, for any bosonic line iD.

. Integrate over all independent momenta (loops of the diagram).

Any diagram is to be multiplied by the number of ways one can draw the given diagram
out of the vertices and external points, which is called symmetry factor of the diagram.

Multiply the diagram with a factor (—1) for each fermionic loop contained. The overall
sign of the diagrams to a given order is arbitrary but there is a relative sign for each
interchange of external fermionic legs compared to an arbitrary diagram with a certain
reference of order of the external points.

For any external fermionic line multiply with the proper normalised free fermion ampli-
tudes. For a fermionic line with outgoing arrow this can be either a 4 (p, o) (outgoing
particle in the final state) or a 4_(—p, o) (incoming antiparticle in the initial state). For
a fermionic line with incoming arrow this can be either a u, (p,o) (incoming particle in
the initial state) or a u_(—p, o) (outgoing antiparticle in the final state).

All the external momenta are to be taken on the mass shell.

If one measures the unpolarised cross section one has to average over the spins in the
initial state and to sum over the spins in the final state.

The changes in rule 8. for calculating connected or disconnected Green’s functions is to
substitute a Green’s function for the external amplitudes and just to cancel this factors
completely when calculating truncated diagrams. If one likes to calculate vertex functions
perturbatively one has to keep 1PI diagrams only.
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Chapter 5

Renormalisation

5.1 Infinities and how to cure them

We have already seen in chapter 3 that Feynman diagrams contributing to the perturbation
series for the Green’s functions are divergent integrals over momentum space if we go beyond
the lowest order tree level diagrams.

The physicists have found such divergences in quantum field theory quite from the very
beginning of quantum field theory in the late twenties and early thirties when Heisenberg and
Pauli invented Quantum Electro Dynamics. The problem of infinities was finally solved in
1948 for the case of QED by Feynman, Schwinger and a little bit earlier during the war by
Tomonaga in Japan.

Nevertheless this solution was only formal and the physicists stayed to feel uneasy with this
solution. It looked like as “sweeping the mistake under the rug”. It took until the early
seventies when Wilson gave it the full physical meaning looking on quantum field theory
from the point of view of a solid state physicist. It is this Wilsonian point of view we are
after in this chapter.

Because the mathematics of renormalisation is rather involved we shall take a little time in
this introducing section to get a qualitative idea, what has to be done and what is the physical
meaning of this complicated procedure.

For this purpose let us look back on what has been done in the chapters before. We started
with ordinary non-relativistic quantum mechanics for a point particle. On this simple example
for a quantum system we repeated how the general structure of quantum theory looks like:
As an ingredient from classical physics quantum theory inherits the structure of space and
time. Almost all of the physical content of space time can be summarised in the symmetries
this space time respects and the principle of causality, i.e., the direction of time. Further the
quantum system is defined by an algebra of observables which is realized as a representation
by Hermitian operators in a Hilbert space. These observables have to be generators of the
symmetry group of the space time, which must be a symmetry of the quantum formalism
because the theory would not be consistent with the structure of space and time if this was
not the case.

We have also seen that any symmetry has to be realized as a unitary (or anti-unitary) trans-
formation in the Hilbert space, i.e., any symmetry group has to build a unitary representation
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in Hilbert space.

Further to complete the definition of a quantum system, we have to define the Hamiltonian
(contained in the algebra of observables). The Hamiltonian describes the causal evolution of
the system in time. Since the physical laws have to be the same at any instant of time this
time evolution has to be also a symmetry transformation, which means that it is necessarily
also described by a unitary transformation.

The most important special application of quantum mechanics for elementary particle physics
is scattering theory. Our picture of such processes is induced by the typical experimental setup
of an elementary particle collision: At first one prepares the particles in a given asymptotically
free state (in most experiments as particles with a certain momentum). These particles
collide and the experimenter observes the asymptotically free state of the scattered and the
particles which might have been produced during the collision. The transformation from the
asymptotically free initial to the asymptotically free final state is given by time evolution and
is thus a unitary transformation in Hilbert space, which we have called the S-operator (or
S-matrix).

This S-matrix contains the main physical outcome of the theory, namely the transition prob-
abilities for the scattering events. In order to be consistent with the structure of space and
time it has to respect this symmetry. Note that we neglect by definition the question “What
happens at the collision time?”

Coming now back to our problem of the divergences we have to take care of this fundamental
structure in order to keep the theory physically consistent. This means that we can summarise
the main task of renormalisation theory that we have to get rid of the infinities, arising
whenever we try to calculate loop diagrams in perturbation theory, in such a way that the
fundamental features of the S-matrix (namely to be unitary and to respect the symmetries of
space and time and other symmetries which we shall use in the next chapter when we come to
the description of the standard model of elementary particles) are settled and thus the theory
keeps its fundamental physical meaning with which we started when we built this theory as
a model for real processes.

Since this section is introductory for the whole topic and because the physical meaning of
renormalisation theory is hidden under a carpet of tremendously complicated mathematical
formalisms it might be allowed to look from the solution of the problem at the physical
results. This might be done from the point of view of the quantum effective action we have
introduced as a generating functional for truncated 1PI diagrams, which represent the exact
proper vertex functions of the theory. Nevertheless the first way to approximate this effective
action is perturbation theory and we have also seen using formal manipulations of path
integrals that the lowest order, corresponding to tree-level diagrams (which means diagrams
without loops), corresponds to the classical approximation while the number of loops counts
the A-power of the diagram. This means that the loop diagrams contribute to the interaction
vertices already existent in the classical limit as well as to interactions which are clearly
induced as quantum corrections and which are not contained in the classical limit.

Now this picture of a h-expansion or an expansion around the classical limit gives us a
first intuitive picture about the physical meaning of the radiative corrections in quantum
field theory. We want to take QED as an example because we know very well the classical
limit, which is nothing else than Maxwell’s theory of electro-magnetism given in a modern
relativistic prescription. The particle content is given by the classical Lagrangian containing
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a massless spin-1-field, describing photons. This field is necessarily a gauge field as we have
seen in chapter 4. This in turn means that this field is necessarily coupled to a conserved
current and the most easy way to do so is minimal coupling (the geometric meaning of this
formalism will become much clearer in the next chapter about more general gauge theories).
Let us concentrate on QED in the narrow sense where we have an electron field (a massive
Dirac-spinor field) minimally coupled to the photon-field.

The point we are interested in here is now the meaning of the constants in this classical
Lagrangian from the point of view of quantum theory of fields. There is a mass of the
electron and a coupling constant which is given by the elementary charge e of the positron
(particle/anti-particle symmetry dictates then that the electron has the same charge with
the opposite sign, namely —e). The only classical coupling is given by the 3-point vertex
describing the coulomb interaction of positrons and/or electrons by exchange of a virtual
photon. Especially note that there are no interactions of photons in the classical limit because
these are uncharged particles which do not interact. Now there are radiative corrections to
the 3-point vertex and the propagators of the particles. This means there is not only the
classical Coulomb interaction between electrons and/or positrons but also interactions with
virtual photons created spontaneously due to quantum fluctuations and also absorbed due
to these interactions. On the other hand there are also electron/positron-pairs created and
absorbed by quantum fluctuations. This means the real (not perturbative) photons, electrons
and positrons are surrounded with a cloud of virtual particles.

The main effect of this cloud to the n-point-functions is a contribution to the mass and
charge of the particles. This means that there are fluctuations of the energy contributing
to the measured mass of the electrons (and of course also to that of the photons!). The
same is true for the correction to the three-point vertex, which means that the main effect of
the virtual particles is a contribution to the measured charge of the electrons and positrons.
But this shows us completely what is the cure for the infinities arising by the naive use
of the perturbation theoretical Feynman rules: The couplings and masses written down in
the Lagrangian cannot be the physically measured parameters since these correspond to the
tree-level diagrams which are shown to leave out the quantum fluctuations or neglects in our
intuitive picture the clouds of virtual particles around the physical measured entities. This
in turn means that these parameters have no physical meaning because the observed physical
particles contain these quantum fluctuations. For this reason be call the parameters given in
the Lagrangian the bare parameters. These parameters can have any value because they are
not observable. Thus we can hope that we shall be able to push the infinities of the naive
Feynman rules to these unobservable parameters and writing down the results in terms of
the physical or dressed parameters which have the measured values listed in the particle data
booklet.

But now as the quantum action functional shows that there will be contributions of the
perturbation theory which were not given in the original classical Lagrangian. For instance in
QED there is the famous box diagram which gives a contribution to the four-photon vertex
which means physically the scattering of “light by light” (also called Delbriick scattering), an
effect which is not known from classical electro-magnetic theory. Now if this diagram was
infinite we would need such a coupling in the classical Lagrangian, which shows that it might
be that we need an infinite number of terms in the classical Lagrangian because all vertices
generated by radiative corrections are infinite forcing us to introduce a bare parameter where
we can push the infinity to. This is indeed the case for almost all quantum field theories.
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Nevertheless fortunately there are some quantum field theories which need only a finite num-
ber of bare parameters, and these are called renormalisable. It is the main task of this chapter
to give the strict mathematical condition to prove that a field theory is renormalisable and
how it is done in practice to push the infinities to the bare parameters in order to obtain a
perfectly finite result in terms of the physical parameters.

To make our qualitative story about QED complete we have to mention some specialities
which are caused by the gauge symmetry of the underlying Lagrangian. The first physical
content is that the photon is massless. This is the reason that the theory must be gauge
invariant and thus the physical mass of the photon should be 0. As we shall see in this
chapter this is indeed the case and the reason for that is, the reader might have guessed it,
the gauge invariance of the classical Lagrangian, which cancels the infinity which could force
us to introduce a bare mass term to the Lagrangian which would spoil the whole physical
content of the theory. There is also a nice cancellation of an infinity in the four-photon diagram
mentioned above, so that we are prevented from introducing a bare four-photon coupling in
the classical Lagrangian. As we shall see below quantum electrodynamics as formulated in
the previous chapter is a renormalisable theory, which means nothing else than that we can
hide all infinities into the bare parameters given in the QED-Lagrangian.

Thus a renormalisable Quantum field theory contains only a finite number of parameters, of
which the bare ones are given in the classical Lagrangian. These bare parameters absorb the
infinities and the physical (dressed) parameters are the finite coupling constants, masses and
so on which are measured in experiments.

As one can guess the procedure of renormalisation is not unique since one always may add
arbitrary finite renormalisations to the bare parameters of the theory. A certain choice of
this finite renormalisation is called a renormalisation scheme. This shows that the numerical
values of the physical parameters change when we go to a different renormalisation scheme.
On the other hand since the theory is defined uniquely by the particle content (i.e. the
sorts of fields contained) and the particular form of the Lagrangian this dependence should
change nothing with respect to S-matrix elements, i.e., the measurable particle properties.
As we shall see this is indeed the case and the dependence of the physical parameters on
the renormalisation scheme is described by the renormalisation group equations which have
perfectly the meaning that the physical content of the theory is not changed at all even if we
change the renormalisation scheme.

This leads directly to the Wilsonian interpretation of the renormalisation process: The phys-
ical parameters like coupling constants and masses have to be fixed at a certain scale of
energies involved in the processes. The choice of the scale is principally arbitrary for a renor-
malisable theory. But in practice if we use perturbation theory we can only evaluate the
Green’s functions when the coupling constants are small. This might be the case on certain
scales and not on others. For instance in QCD (Quantum Chromo Dynamics as the most
promising candidate for describing the strong interactions of quarks) the couplings are small
at high energy scales and perturbation theory can be justified but this is not the case at lower
energies where other non-perturbative techniques (especially lattice QCD calculations) are at
place.

This Wilsonian point of view also shows that in the Quantum Field theory always enters a
scale, the renormalisation scale. This widens also the applicability of Quantum Field Theory
to so called effective theories which are not renormalisable in the sense explained above. The
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Lagrangian we build for such theories may contain an arbitrary number of terms consistent
with a given symmetry which is underlying the theory. Then we have to introduce a cutoff-
parameter which is higher than the energies of interest and at which the theory is estimated to
be valid. As we shall see the most relevant part of such a theory will be its renormalisable part
and this explains why up to the nowadays applicable energies the renormalisable standard
model of elementary particle is so successful: There might exist an underlying “first-principle
theory” of which the standard model is an effective energy valid at least up to energies which
are available with nowadays machines.

To clear this point of view on effective theories we can give one example from solid state
physics which is quite enlightening. If one looks on the phenomenon of super-conductivity
one can describe it as Quantum electro dynamics where the gauge symmetry is spontaneously
broken (in the sense of the Higgs mechanism which we shall describe in the next chapter). This
leads to “phenomenological” theories like the London or the Ginzburg Landau theory of super-
conductivity and explains almost all measured phenomena of super-conducting materials with
help of a view parameters which have to be fitted to the data. On the other hand we know
that the conducting electrons in a metal are described very well as a free Fermi gas with weak
interactions of the electrons and the phonons (the quanta of lattice vibrations). Now the
effective interaction of the electrons near the Fermi Surfacﬂ is attractive due to the electron-
phonon interaction. Due to this attraction the naive picture of the scattering of electrons fails
at small momenta. The reason is that the electrons near the Fermi surface can lose ener
by pairing to pairs of total spin 0. This is the main ingredient of the famous BCS—theorya
Due to this mechanism the Cooper pairs there is an energy gap (which especially prevents
the Cooper pairs to break by weak enough perturbations) to the next excited state super
conductivity can take place. This shows that there are two levels of describing the system:
The first one uses only symmetry principles and explains super-conductivity as a phenomenon
of spontaneous U(1)-gauge symmetry breaking while the other explains what happens on a
microscopic level and how this symmetry breaking comes about.

It might be that the standard model of elementary particles is also an effective theory of
which the underlying “microscopic theory” is not known yet. Of course we do not know up to
now the mechanism which explains the spontaneous symmetry breaking and so gives insight
into the mechanism how the elementary particles obtain the values of their masses we are
observing.

We end this qualitative introduction with a short overview over the rest of this chapter since
the mathematical task is difficult and the whole chapter will be a little long. The reader
should keep in mind this overview when going through the rest of the chapter.

5.1.1 Overview over the renormalisation procedure

In the next section we start the renormalisation procedure on the simple example of ¢*-theory.
The first goal is to understand renormalisation of this simple case. The first task is to give
the infinite integrals a meaning which is called regularisation. Regularisation means to render
the infinite integrals finite and parameterising the infinity.

'Remember that a Fermi gas at zero temperature fills the electrons up to a certain energy level due to
Pauli’s exclusion principle. This is called the Fermi surface in momentum space. The quantum theory at finite
temperatures describes the system with help of particle like excitations from this ground state.

2named after its inventors Bardeen, Cooper and Shriver
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On the most simple example of an infinite integral, namely the tadpole diagram, which is 0
in the operator formalism due to normal ordering but stays in the path integral formalism
where normal ordering is lost, we show how to regularise this divergence with help of a cutoff.
We shall also show that the infinity can be absorbed completely into the bare mass rendering
the tadpole diagram to 0 (in one particular renormalisation scheme, the so called physical
scheme).

This example shows that it is most convenient to calculate the Feynman integrals in Euclidean
space time with help of a Wick rotation. To go back to Minkowski space is then a task of
analytic continuation, as will be worked out together with the regularisation scheme used in
these notes.

There are a lot of regularisation schemes on the market but we shall use only the so-called
dimensional reqularisation scheme. This scheme uses the observation that the Feynman
integrals would be finite if the space time dimension was less than 4 and that the results
of these finite integrals are analytic functions of the dimension of space time. The infinities
are manifest in this formalism as the Feynman integrals have poles in the complex space-time
dimension plane in d = 4. For dimensional regularisation we give a self contained study
of the I'-function which is needed to calculate some standard integrals which can then be
used as a tool-box for calculating Feynman integrals. We calculate these standard integrals
and continue back to Minkowski space. Then we can do all our calculations completely in
Minkowski space.

In order to get some experience what to do about the poles for d = 4 we go further with another
one-loop example of infinite integrals in ¢* theory and calculate it within the dimensional
regularisation scheme. We shall see how to renormalise the bare parameters of the theory in
order to make the results of the calculation finite.

This experience will help us to formulate the convergence criterion for Feynman integrals,
which is known as Dyson’s power counting theorem. This theorem was proven by Weinberg
and is also known as Weinberg’s theorem. This theorem leads to a necessary condition for
renormalisability of a quantum field theory.

The next task will be to show that ¢?-theory (which fulfils the necessary condition) is indeed
renormalisable. As we shall see this is a rather complicated stuff and we shall also a self
contained complete proof of this fact in terms of the so called BPHZ-renormalisation (also in
the version given by Zimmermann).

As we shall see the BPHZ-formulation is applicable to general quantum field theories. We
shall use this wide applicability of the BPHZ-scheme to show the complications coming in
when the theory is a gauge theory like QED. Here renormalisability not only means to absorb
the infinities into the bare constants but also to make sure that the renormalised theory is
gauge invariant. Of course the proof that the S-matrix is gauge invariant in chapter 5 was
only formally and it is not trivial that the renormalisation procedure keeps the theory gauge
invariant. We end the chapter with a proof that this is really the case for both fermionic
and bosonic QED, because the gauge invariance of the underlying Lagrangian causes the
validity of the Ward-Takahashi-identities which are crucial for showing that the renormalised
S-matrix is indeed gauge invariant.

13/



5.2 - Wick rotation

5.2 Wick rotation

With this section we start the prescription of the mathematical formalism of regularisation
as the first step towards renormalisation.

We have shown in the third and fourth chapter that we can restrict our investigation to 1PI
truncated diagrams, the so called proper vertex functions. We shall use ¢*-theory as the
most simple example of a quantum field theory which has no symmetries (especially no gauge
symmetries) to be fulfilled along the procedure of regularisation. We shall also use the path
integral formalism Feynman rules which corresponds to a non-normal-ordered Lagrangian.
From the point of view of renormalisation this means not more than that we have also to
regularise the vacuum of the theory and this is done by an additional mass renormalisations.
The reason for that is that the path integral formalism is more simple in the case of gauge
theories.

Now let us take the most simple 1-loop-diagram in ¢*-theory, which is the tadpole contribution
to the self energy shown in fig. Bl

[
—in@) = Q

Figure 5.1: The 1-loop tadpole contribution to the self-energy

Due to the Feynman rules we have found in the third chapter within the canonical operator
formalism and in the fourth in the path integral formalism that the analytic expression of

this diagram is given by

s _ 2/ d% LI (5.1)

2 ) 2m)*2—m2+in

The first complication we have to get rid of is the complicated pole structure for on-shell loop
momenta. Now we find it again important to have used the in—regulatorﬁ, which came into
the game when we calculated the propagator in the operator formalism as well as in the path
integral formalism. In the former the reason we had to plug in the in was the time ordering
operator in the definition (BI3T) of the propagator, in the latter it was used to project out the
vacuum expectation value as shown in section 1.10. To say it from the mathematical point
of view it is the correct causal (i.e. the Feynman-Stiickelberg-) weak limit of the propagator
in momentum space.

It is clear that the in-prescription helps us to take the correct integral over ly. Thus we
look on figure B2 where [y is depicted as a complex variable in its plane. The two poles
+w(p) are slightly shifted due to the in. In (BJ]) we are told to integrate over the real lp-axis.
On the other hand the integration over the path % vanishes due to the residuum theorem,
because there are no poles inside this path thanks to the ie-shifts. Now since the integrand is
&) oo 1/12 the two quarter circles do not contribute to the integral. Thus we have

ico

/ dlof(lo) =0 = /OO dlof(lo) — f(lo) = O, (5.2)
€ -0

—ioco

3Beginning with this chapter we change the regulator in the Green’s functions from ie to i because usually
one uses d = 4 — 2¢ for the space time dimension.
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Im l()

Figure 5.2: The Wick rotation: The 0-component of the loop momentum as a complex variable
and the pole structure of the integrand in (1))

where the limits in the 2nd integral mean the integral along the imaginary lp-axis from —ioco
to ico (the sign comes from the fact that this path is run in the opposite direction as part of

©).

Now substituting in the second integral Iy = il4 we find

[e.e] oo

/ dlo f(lo) = i / dly f(—ily). (5.3)
—00 —00

This rule, which allows one to take the causal pole structure of the propagators into account

by integrating over the complex lp-axis instead along the real axis, is called Wick-rotation,

because it can be seen as a rotation of the real path of integration to the complex axis.

Now introducing I = (I1,...,l4) as a new four vector, we can write (&) as
A[d 1
w1 _ _/_7 5.4
2 ) (2m)* 2 +m?’ (5.4)

where [2 = 2+ .13 is the Buclidean inner scalar product of the four-vector I. Thus the Wick-
rotation means to go from causal quantum field theory to Euclidean field theory. This feature
of the ie-description we have already seen in section 1.10 where we could either rotate the
time integral over the Lagrangian to the complex axes (leading to the Euclidean description)
or rotate only with a tiny angle (leading to the ie-description).

Now we introduce four dimensional spherical coordinates. Since the integrand depends only
on [? we leave out the angular part of the integral, which will be discussed in detail in the next
section. It gives only the surface of the three-dimensional sphere 23 in the four-dimensional
Euclidean space. Now we see the trouble with the integral explicitly, which is divergent,
because the volume element reads L3dL (with L = \/ﬁ) while the integrand goes only with
1/L? for Large Euclidean loop momenta.

In order to calculate this most simple example to the end we make a very crude regularisation
by simply cutting the integral off at a loop momentum A, called the cut-off. From the power
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5.2 - Wick rotation

counting above we expect the integral to diverge with A? for A — co. Then we can write:

A A L’ AQ m?
s =_2_0 / dL = 2 (A2 2ln — ). .
reg  3ard” 7 f) L2+ m? 647t TR + m? (5:5)

This shows that the naive power counting was right for our simple example. The divergence
is thus called quadratic divergence.

Now we can use the recipe given in the last section. We try to absorb this divergent contri-
bution of the radiation corrections to the bare parameters of the Lagrangian. This must be
done by adding a counter term to the interacting Lagrangian which is of the same form as
a term which is already in the bare Lagrangian (it is not important if the term in the bare
Lagrangian is in the “free part” or the “interacting part”). Because this counter term should
give a contribution to the self energy, it has to be o ¢2.
Now we see that to make the whole contribution (i.e. the sum of (BH) and the counter term)
finite, we can set
(1) Eg% + const. ,
Lot = — 5 ¢

This counter term has to be treated as a vertex in the interaction part of the Lagrangian,
leading to the counter term Feynman-rule in figure B3l

(5.6)

. Zgg;—l—const.
=1 3

Figure 5.3: The 1-loop counter-term contribution to the bare Lagrangian, which compensates
the infinity of the tadpole diagram.

Due to the Feynman rules the contribution of the counter term to the self energy is given by:

—128% = i(2(1) + const.). (5.7)

reg
Here we have taken into account the factor 2 from connecting the legs to the external points
(the legs have of course to be amputated). We find then for the whole contribution

> =x0) _»l) _ const. (5.8)

ren reg reg

This is indeed an arbitrary constant contributing to the bare mass of the particles described
by the quantum field ¢, which is finite for A — oo, because it does not depend on A at all.
We have expected the arbitrariness of the finite part of the counter term, because the only
thing we have to fix is the divergent part, which has to be cancelled completely with help of
the counter term.

Now in our case it is also simple to interpret this arbitrariness. From ([222)), Dyson’s equa-
tion, we know that the approximation for the two-point Green’s function to first order in the
coupling constant is given by

1

GM(p) = :
p? —m? — S0 + e

(5.9)

Now it becomes clear that the physical mass squared is given by the pole of the Green’s
function of the particle, which means that we have

Mipys = m? + S, (5.10)
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Now choosing the constant we define a certain renormalisation scheme. This can be done such
that 2&21 = 0, which is called the physical renormalisation scheme or the on-shell scheme. In
that case we set the bare mass equal to the physical mass order by order of the Dyson-Wick
series. We may also chose another scheme. The only point is that we have to compensate the
part of the regularised Feynman integrals which is infinite for A — oo with help of a counter
term in the Lagrangian. The counter term should be of the same form as a term which was
in the bare Lagrangian in the beginning in order that we can absorb the infinities to the bare
parameters of the theory. The numerical values of the physical parameters have to be fitted
to experiments, they are not given from first principles of relativistic quantum field theory.
As we shall see later the only known principles which restrict the choice of parameters are
gauge invariance and renormalisability.

From our simple example the whole idea of renormalisation can by summarised now. Our first
step was to handle the pole structure of the Green’s function in order to keep the causality
of the theory with help of the Wick-rotation. Then we have seen that the integral is indeed
divergent and to give it a definite meaning we had to reqularise this integral. Here we did this
by introducing a cut-off A for the Euclidean four-momentum. The reader should keep in mind
that we have introduced a momentum scale into the theory when we keep A finite. The next
step was to renormalise the integral making the first order Tadpole-contribution to the self
energy finite for A — oo by absorbing the infinity of order A? for A — oo into the bare mass of
the particle. After this we could take the physical limit A — oco. The physical renormalisation
scheme was in this case nothing else than enforce the normal ordering description of the path
integral which makes the Tadpole contribution vanish from the very beginning within the
canonical operator formalism.

We can now give a further outlook of the mathematical solution of the problem of infinite
Feynman integrals: For a given theory we have to show that all infinities can be cancelled
with help of adding counter-terms to the bare Lagrangian which shuffle the infinities when
taking the regularisation parameter (in our example the cut-off) to the physical limit (in
our case this was A — o0) into a finite set of bare parameters of the theory as there are
masses, coupling constants and wave function normalisation constants. Thus a necessary
condition for renormalisability is that only a finite set of proper amputated diagrams should
be divergent. For ¢*-theory only the 2-point and the 4-point function are allowed to be
divergent. If another diagram would be divergent, and this divergence had to be compensated
by a counter-term which goes with ¢% for example, this would violate the renormalisability of
¢*-theory or it would at least force us to introduce a ¢5-vertex into the bare Lagrangian from
the very beginning. But we shouldn’t be forced to introduce infinite many terms into the
bare Lagrangian and thus also to use an infinite set of parameters to describe the interaction
of the particles involved. Although we might be forced to introduce a finite number of such
bare terms, we can define a renormalisable quantum field theory such that it is possible to
start with a bare Lagrangian with a finite number of parameters.

A first superficial hint which diagrams are divergent is given by power counting of the loop
integrals. Beginning with the next section we shall solve the problem of renormalisation. The
first step is to introduce a simple regularisation scheme which gives us a recipe to calculate
systematically the Feynman integrals and to extract the infinities in order to find the correct
counter terms for the bare Lagrangian. Because it is so useful for the renormalisation of gauge
theories we shall use dimensional regularisation in these notes.
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5.3 Dimensional regularisation

In this section we want to show one of the most convenient regularisation prescriptions used
in perturbative calculations. The idea is to preserve as many symmetry features as possible
in the theory. This is most important in the case of gauge theories, where this theory is not
only on the heart of the model building process to describe interactions which occur in nature
but also is a necessary condition to give the theory a physical meaning at all. It is the only
principle known so far to build theories which are the same time far enough to describe all
the features of elementary particle up to the highest energies which are available nowadays
in accelerator facilities in the world and are rigid enough to be renormalisable and give thus
a physically consistent theory with a unitary S-matrix to describe scattering processes of
interacting elementary particles.

To find a regularisation which keeps especially the gauge invariance of the theory valid at all
stages of the calculation (as far as this is possible at all) is not only important for convenience
during the calculations in perturbation theory(although this is indeed also an important point
for practical purposes) but it is also on the heart of the proof of renormalisability in the sense
that the renormalised S-matrix is unitary as well as gauge invariant.

We shall come back to gauge theories (not only QED but also the more general case of non-
abelian gauge theories and as a final goal of these notes the standard model for elementary
particles) after we have settled the complete renormalisation program. Now as a first step we
use again our ¢*-toy model theory which we aim to renormalise as the first particular example
for a field theory. In that case there is no need for dimensional regularisation. We could do
all with the above given regularisation scheme with a cut-off momentum A without violating
any physical principles. But this has no advantages compared to dimensional regularisation,
and since we shall need this technique for all physical relevant theories we like to understand
later on, we shall use the dimensional regularisation prescription also in that simple case.
This work is also not lost since we shall calculate all the standard integrals, which are useful
for practical calculations in perturbation theory, in this section.

Our starting point is the naive power counting approach we have seen to work for the most
simple Tadpole-graph in the preceding section. If space-time would not be four-dimensional
but only one-dimensional (which would of course be a rather “boring world” so to say),
the integral we had to calculate were perfectly finite. Thus we introduce the dimension of
space time as the regularisation parameter. It seems just clear that all inner symmetries,
i.e. symmetries which have nothing to do with the space-time symmetries, are valid in the
arbitrary space time-dimension. We shall see later on that there are very important exceptions
of this conjecture, known as anomalies, which are not only important for phenomenological
reasons (e.g. pion decay to photons) but may also be dangerous for the renormalisability and
unitarity of gauge theories. As an anomaly we define the case that a symmetry of the bare
Lagrangian, which leads to a conserved current due to Noether’s theorem, is not preserved in
the quantised theory. But we shall come to that point later. Our ¢*-toy theory cannot have
an anomaly because there is no symmetry except Lorentz-invariance.

Thus we introduce the space time-dimension d as our regularisation parameter with the
physical limit d — 4 which will be taken after renormalising the Feynman-integral under
consideration. Now it happens that the Feynman-integrals can be formally seen as analytic
functions in the complex d-plane. Of course there is no sophisticated geometrical meaning

139



Chapter 5 - Renormalisation

behind that, but it is convenient to expand the integrals around the point d = 4 which is
a singular point if these integrals are divergent (otherwise they were convergent and we had
nothing to regularise). This is perfectly what we like to find, namely a parameterisation
of the infinity of the Feynman-integral, which gives us the possibility to push this infinity
into the bare parameters of the (hopefully) renormalisable theory. After the subtraction of
the infinities by introduction of counter terms into the bare Lagrangian we can take without
further problems the physical limit d — 4 to obtain the finite result of the radiation corrections
to the tree level order of perturbation theoryﬂ.

We have seen that it is very convenient to get rid of the pole structure of the free propagators
by using the Wick-rotation to switch to Euclidean field theory. This will be done here. We
should only remark, that we have also to take the Euclidean form of the external momenta,
which enter a given diagram, in order to have a SO(4) instead of a SO(1, 3) invariant theory.
We shall also have to solve the problem of analytic continuation to Minkowskian space time
for the external momenta.

As mathematical foundation the first step is to remember the properties of the I'-function
which is very useful to calculate the d-dependent regularised Feynman-integrals. What we
shall also need is the complete analytic structure of the I'-function.

5.3.1 The I'-function

The I'-function lies at the heart of the dimensional regularisation technique, because its
analytic properties allow to manage the problem of continue the dimension d of Euclidean
space time from a few integer values where the Feynman integrals are convergentﬁ to the
whole complex d-plane.

Indeed it was a quite similar task Euler and Gaufl solved in the 18th century, namely the
continuation of the factorial function, defined on the non-negative integer numbers, to the
whole complex plane.

We start with Fuler’s representation of the I'-function:

o0
T(z) = / dt exp(—t)t . (5.11)
0
Herein we understand the potential of ¢ as
t*71 = exp[(z — 1) Int], (5.12)

where the logarithm along the positive real axis is defined as real (principal value of the
logarithm). Now we show that the integral (I2)) is uniformly convergent in all compact
areas in the right z-half-plane, i.e., for all Rez > 0. This implies that the I'-function is an
analytic function in the right z-half-plane.

For this purpose we split the integral in the following way:

I'(z) = /01 dt exp(—t)t*~' + /100 dt exp(—t)t*~L. (5.13)

4The next much more involved task will be to show that the renormalised physical result is independent of
the regularisation scheme, which will be done beginning with the next section.

5The whole dimensional regularisation program makes only sense if at least one integer space time dimension
exists, where the integral under consideration is convergent.
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At first we look on the second integral:

w(z) = /100 dtexp(—t)t* ! : (5.14)

For each t > 1 the integrand is an analytic function of z € C. For an arbitrary compact area
B of the z-plane there exists zy € R such that:

xo = r%ag[Re z]. (5.15)

Since further for ¢ > 1 the logarithm is non-negative, we find
Vz € B: |exp(—t)t* 1| = |exp[—t + (z — 1) Int]| < exp(—t)t*~ L, (5.16)

Because the integral
oo
/ exp(—t)t*ladt (5.17)
1

is converging point-wise for all z € B, due to Weierstraf3’ convergence criterion this is also the
case in the sense of uniform convergence in B and thus w is a analytic function in B. Thus
w is analytic in the whole complex z-plane.

A little more work is to do for the first integral in (BI3):

1
qS(z)z/O dt exp(—t)t*~ L. (5.18)

The modulus of the integrand is exp(—#)t*~!, and for z > 1 the integral converges. Thus
(EI8) is an analytic function for Rez > 1. We like to show that this is the case for all compact
areas of the right z-half-plane. Because B is supposed to be compact, there exists

x1 = min Re z, (5.19)
z€B

and it is x1 > 0. For 0 <t <1 we have Int < 0. Thus also
Vz € B: |exp(—t)t* 1 < exp(—t)t®1 ! (5.20)

holds true.

Since the integral over this real function is converging, again applying Weierstraf3’ criterion
for uniform convergence shows that (EI8]) is an analytical function in B.

Since B can be an arbitrary compact area in the right z-half-plane from (EI1I) follows the
analyticity of I' in the whole open right z-half-plane.

The next step is to find a maximal analytic continuation of I' to the left half plane. It is
enough to do this for the first integral in (EI3]), because the second one has been shown to
be an analytic function of z in the whole complex plane.

Now the series

exp(—t) =y (=" (5.21)
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is uniformly convergent for fixed ¢ € R. Plugging this into (EIX) by naive order by order-
integration of the series we find for z € C with Rez > 0:

$(z) = L1 (5.22)

' .
— nt n4+=z

Since the series at the right hand side of this equation is uniformly convergent in any compact
subset of the right z-half-plane which does not contain any of the points {0;—1;—2;...},
the order by order-integration is justified and ¢ is analytically continued to a meromorphic
function with simple poles at the non-positive integer numbers. This property is thus also
true for the I'-function itself. From this we read off Weierstraf3’ expansion of the I'-function:

I(z) = /100 dt exp(—t)t*~1 + Z ﬂ ! (5.23)
n=0

nl n+z

In the following we understand this meromorphic function as I'. Now we like to find some
useful properties of the I'-function.

Fur n € N we can calculate the integral (I1]) analytically with the result
F'(n+1)=n! (5.24)

This is easily shown inductively by integrating (2I1l) by parts. For any real positive z this
yields also the important functional relation

I'(z+41) = 2I'(2). (5.25)

Since I' is a meromorphic function this is valid for all z € C\ Z<.

The next relation we like to show is

I'z)I'(1l-2)= . 5.26
(1 =2) = (5.26)
To prove this we substitute ¢ = u? in (EI1) and suppose z € (0,1) C R:
o0
I'(z) = 2/ duexp(—u?)u*1, (5.27)
0
Now setting 1 — z for z and renaming the integration variable with v we find
o0
N1-2)= 2/ exp(—v?)vl =% dv. (5.28)
0

Multiplicating (27) with (B28)) yields
0 S 2 2 u 2z—1
Pz -=z2) = 4/ / dudv exp(—u® — v*) <—) . (5.29)
o Jo v
This can be read as an integral over the first quarter of the uv-plane and we transform it into
plane polar coordinates:

[ee} w/2
P F 1 — :4 d >'¢ — 2 d 2z—1 —
()01 - 2) /0 r dr exp( ”/o 6 (cot 6)
/2
=9 d 2z71‘
/O 6 (cot )

142



5.8 - Dimensional reqularisation

To calculate this integral we substitute ¢ = arccot(y/x):

T(:)P(1 - 2) = /OOO da f+; (5.30)
The function -
fly) = 7(_132 ; (5.31)

has an essential singularity in y = 0 and we cut the complex y-plane along the positive real
axis. Now we go to the sheet of the Riemannian surface for which

lim (—y)*" = [yl explFin(z — 1)] (5.32)
Imz—+0

is valid. Now we integrate over the path shown in figure B4l

Imy

x 410
4 »=Rey

Figure 5.4: Path for the integral (230)

Letting the radius of the big circle go to infinity and this of the small one to zero these circles
do not contribute to the integral, and we find

_2\2—1 o] z+1
/ dy% =2i sin(ﬂ'z)/ do——. (5.33)
c 1ty 0 L+

On the other hand using the residuum theorem we see, that

_.\2—1 _.\2—1
/ dy Y o Res SYT o (5.34)
c 1ty y=—1 l+y

Both results prove together with ([29]) the conjecture (26 for z € (0,1) and thus for all
z€C\{0,—-1,-2,...}, because I' is a meromorphic function.

Especially plugging in z = 1/2 in (E26) we find

r <1> = /OO dtvtexp(—t) = /7. (5.35)

0

Further we need Fuler’s Beta-function, defined by

1
B(p;q) = /0 dza? (1 — 2)7 L, (5.36)
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Substitution of ¢ = 1 — x yields the symmetry of the function under interchange of its two
arguments:

B(p;q) = B(g;p). (5.37)
Integration by parts shows that

q
B(pig+1) = "B+ 1iq). (5.38)
holds. Inspection of (Z7) gives
o [e’e]
F(p)r(q) = 2/ du/ dvexp(—u2 - ?}2)u2p*1v2q*1 =
0 0
o

/2
= 4/ drrZ(’H'q_l)/ de exp(—r?) cos?P~! psin?~1 ¢, (5.39)
0 0

where we have introduced plane polar coordinates in the last step.

Substitution of t = 2 gives

o0 w/2
ot = 2/ dt exp(— )ttt / dg cos? ! psin~! g =
0 0

w/2
= 2I'(p+q) / d¢p cos?P 1 psin?i~1 ¢, (5.40)
0

In the remaining integral we substitute x = cos? ¢ and obtain its value to be B(p;q)/2. Thus
we have FIT()
p)L\q

B(p;q) = ——=. 5.41
(#:0) L(p+q) (5.41)

Now we want to give a proof for Gaufl’s representation of the I'-function as an infinite product:

s =zen0a [T (14 5) e (-5)

1
with v = lim <ZE—lnn>.

k=1

(5.42)

v is the so called Fuler-Mascheroni-constant.

To prove (222 we use the following representation of the exponential function

n—oo n

Po(2) = /On (1 — %)nﬁldt. (5.44)

Naively looking on this definition we see that this series converges to I'(z) in each regular
point z. We shall show that this is even the case in the sense of uniform convergence. But at
first we show that we then also have proven the product representation (E42):

exp(—t) = lim (1 - 3>n (5.43)

and define the function series

144



5.8 - Dimensional reqularisation
Substitution of t = n7 in (B44) yields

1
P.(z) = nz/ dr(1 —7)"r* L =n*B(z;n + 1) =
0

_ n*T(z)L'(n+1) n*n! (5.45)

I'(z+n+1)  (z+n)(z+n—-1)---2

Here we have used the properties of the B-function given above as well as the functional
property ([220) of the I'-function.

A little algebra of this result yields:

1 explz(1+1/2+---4+1/n—Inn)] z+1 z+n
P.(z)  explz(1+1/2+---+1/n)] S n
=zexplz(1+1/2+---4+1/n—1Inn)|x

T+ 3)en().

This shows that indeed the uniform convergence of the series P, to I' proves Gauf’ product

representation (B42).

From the principle of analytic continuation we know that it is sufficient to show this for real
positive z. Differentiating with respect to ¢ leads to the following relation:

t t -1
1- <1 — —) expt = / dv (1 - B)n exp . (5.46)
n 0 n n

For 0 <t < n the integrand is positive. On the other hand we have

t -1 n 12
/ dvg (1 — g>n expv < / dvg expt = —expt, (5.47)
0 n n 0 n 2n
which leads to )
t t
0< —)—(1—-— —. 5.48
< exp( ) < ’I’L) < on ( )

From Euler’s definition of the I'-function (I1l) we know that

t

[(z) — Py(2) = /On dt [exp(—t) - (1 - _)1 + /:O dt exp(—t)t*! (5.49)

n

holds. Within the convergence proof of (BI1l) we have shown that the second integral con-
verges uniformly to 0 for n — co. From the above inequality we read off

0 < /On dt [exp(—t) — (1 — %)n} 7l <

no n n
< / dt [exp(—t) - (1 - 3) ]tz‘l +/ dt exp(—t)t*~1 <
0 n no
n tz+1 [e’e)
< / dt—— + / dt exp(—t)t* ! (5.50)
0 2n no
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for all n € N. Let ¢ > 0. Because of the uniform convergence of the last integral we may
chose ng so large that
o
/ dtexp(—t)t*~1 < < (5.51)
no 2

holds. Then we have for n > ng by using the inequality again:

n t no gl o 1 nzt?2 ¢
0< dt HH—[(1-=2)|¢r < / dt - = 0 —. 5.52
_/0 [exp( ) < n)] 0 2n +2 z2+2 n +2 (5:52)

From this we can read off immediately that the integral is uniformly convergent in each
compact interval of the positive real axis. Thus we finished the proof of Gaufl’ product
representation for the I'-function.

Taking its logarithm we find

—In[[(2)] = vz +1Inz+ i [—% +1In <1 + %)] . (5.53)
k=1

Deriving of this equation with respect to z leads to

Uy (2) = % In[[(2)] = —y — % +23 m (5.54)
k=1

Since the series converges uniformly on each compact subset of C which does not contain a
negative integer number or 0, this is really the logarithmic derivative of the I'-function.

Within the dimensional regularisation technique we shall also need the Laurent-expansion of
the I'-function around the simple poles at z € Z<¢. It is enough to find the expansion up to
the first order:

VneN: I'(—n+e) = % E +Pi(n+1)+0(e)] . (5.55)

For proving this equation we state that from (&2l follows

Ui(1)=—y—1+ ; m = —. (5.56)
From (BZH) we obtain
Uiz 41) = % Dz +1)] = £+ ¥ (2). (5.57)
By induction we find .
VYn>1: \IIl(n—i-l):—’y—i—kZ:l% (5.58)

Now we look on the Taylor-expansion of the I'-function around the regular point z = 1:
T(1+e)=1+el"(1)+0() =1+ €Wy (1) + O(e?), (5.59)
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which is valid in the open disc of radius 1 around ¢ = 0, because the next pole of the I'-function
is at e = —1. Dividing this equation through € yields:

D(e) = 2T(1 +6) = -~ +0(e). (5.60)

This is (B5H) for n = 0. For all other n € N the equation can be shown by induction. Suppose
it is true for n = k. Then we find making use of (220 again:

D(—k+e (=111

Comparing this with (E00) we see that this is of course this equation for n = k + 1, and this
was to show.

5.3.2 Spherical coordinates in d dimensions

We have seen in the last section that one can use the ie-description of the free Green’s functions
to make use of the Wick-rotation. This makes it possible to calculate the Feynman integrals in
Euclidean space. The final result in Minkowski space is then given by analytic continuation.

The first step to find the standard formulas which we shall use when we calculate Feynman
integrals, is to introduce d-dimensional spherical coordinates. For d = 2 these are the usual
polar coordinates

T = (rcos¢,rsin¢g) with r € Ry, ¢ € (0,2m). (5.62)

The d-dimensional spherical coordinates can be defined recursively starting with the 2-dimen-
sional polar coordinates as follows:

Z=r(fg_1sinfy_o9,c0804 o). (5.63)

Herein 741 is the radial vector of unit length in (d — 1)-dimensional space. The angles 6y
with k = 1...(d—2) are defined in (0, 7). The Jacobian of the transformation from Cartesian

to spherical coordinates contains a factor 41
O(x1;me;. .. 52q) d1 -
Jg = det 7 =r% g, 5.64
A(r; ¢;015 .. .;04-2) (5.64)

Using the definition of the Jacobian for (.G3]) we obtain the recursion formula by expansion
of the determinant with respect to its last row:

jo=1; jg = (sinfy_2)" ja_1, (5.65)

from which we get immediately

d—2
Ja = H sin® @y, for d > 3. (5.66)
k=1

Further we remark that the part of R¢ which is not covered by the spherical coordinates is
of Lebesgue-measure 0, so that the Euclidean integrals can be calculated by using this one
chart.
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5.3.3 Standard-integrals for Feynman integrals

In this subsection we shall calculate some integrals which will be useful to calculate Feynman-
integrals within the dimensional regularisation scheme. First we consider:

Li(q) = / ( A (5.67)

m2 —p? — 2pq — ie)®’

This integral is written in d-dimensional Minkowski space. If the integral exists in the d-
dimensional space we can shift the integration variables by p’ = p + ¢:

- ddp/
Ia(q) = / ()2 + (m? + ¢2) — g’

(5.68)

Now we suppose that ¢ is chosen such that u? := m? + ¢> > 0. This integral is of the
typical form of Feynman—integralsﬁ. It is simply the a-th power of the negative Feynman-
Green’s function for a free scalar particle. We have seen in the previous section that its
pole structure allows us to make use of the Wick-rotation and transform the integral to its

Euclidean counterpart:
1

o =1 f

Herein p? is the positive definite Euclidean quadratic form of the d-dimensional vector p. Now
we introduce the d-dimensional spherical coordinates. From (64]) and (.60 we get:

Iy(q) = i/oC>o drrd_li(rglllz)a X

27 d—2
x/ d¢/---/d01---d6d1 I sin* 6, (5.70)
0 k=1

where r = ||p||. The integration over the angles can be done with help of Euler’s B-function.
When we proved (E41]) we found

(5.69)

m(2 1 L(p)I'(q)
df cos?? 1 9sin®1 9 = ZB(p;q) = P2\ 5.71
/0 2P 2I'(p+ q) BT
For p =1/2 we have
T 9 I'(1/2)I'(q)
dfsin21g = /229 5.72
/0 I'(p+aq) (5:72)

because the sine is symmetric around 7/2. Setting k = 2q — 1 yields with help of (E3H):

Tk VTL[(k+1)/2]
/O dfsin* 6 = OIS (5.73)

5As o does not need to be an integer along the calculations of multi-loop-integrals it is advantageous to use
[-G(p)]* which enables a Wick rotation without introducing factors (—1)®. Since « in the original Feynman
integrals is integer this causes no trouble since one can uniquely introduce an integer number of factors (—1)
within the original integral as needed.
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5.8 - Dimensional reqularisation

Thus the integration over the angles in (B70) gives the area of the d-dimensional hyper-sphere
of radius 1, which is the d-dimensional analogue of the full solid angle in 3-dimensional space:

k+2)/2]  T(d/2)

d—2 P 7Td/2
Qg = 27TkH1 \gi[(k‘ + U722 (5.74)

For d = 2 we find the well known length of the circumference of the unit circle 2m, for d = 3
the surface area of the unit sphere 4.

Now the right hand side of this formula is written in the form which is most important for the
dimensional regularisation technique, namely it can be interpreted as an analytic function of
the dimension d.

Using (B74) in (&70) we get

2i7Td/2 00 T’d_l
1, = dr-———>—. 5.75
0= Tap) /o NGENDE 1)
Substitution of

21 N SR 5.76
T—;— ?t—m77'7'——ﬁt, ( )

in the definition of the B-function (30) yields

[e8) 7.2yfl [e8) T2:1:71

where we have used the symmetry of the B-function under the interchange of its two argu-
ments. Setting herein

_p+1 B+1 s
r=o L y=as ,T—M, (5.78)
we find 5
o s 1 B+1 g+1
= B N —_— . .
/0 T R T ( 2 T2 ) (>79)
With 3 =d —1 in (BT5) we have
s d)2 1rd/2 _
A ‘_i;a _d pd—20 = 11 (o —d/2) (5.80)
rap 23 T(@) ()i

Because of 42 = m? + ¢ we can write this as:

dp 1 i I'(a—d/2)
Ia(q) = / (2m)d (m2 — p2 — 2pq — in)™ - (4m)3/2T () (¢ + m2)a—d4/2 (5.81)

For ¢°> > —m? the power in the denominator is defined to be real and has to be continued
analytically to the whole Minkowski space. For later convenience we introduce d = 2w:
d> 1 i I(a-— —1)~

(2m)* (m? —p® —2pg —in)*  (4m)* T(a) (¢* +m?)*~"

All other formulas we shall need for the calculation of Feynman-integrals can be obtained by
deriving this result with respect to g,:

/ d?p Pu B i INa-—w) Qu (5.83)

(2m)% (m? —p? = 2pg —in)* — (4m)* T(a) (¢ +m?)oe
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Differentiating this result again with respect to ¢ we obtain:

/ d2wp PuPv i 1

()% (m? = p + 2pg )" (4m)T () (@ + m?)"= "

X [quqyf(a —w) — %gu,,((f +m?) D —w—1)|. (5.84)

Contracting the indices p and v results in:

/ dp P> B i 1 "
(2m)d (m? — p? = 2pg —in)* ~ (4m)“T() (g2 + m2)o—w (5.85)
X [¢*T(a — w) — w(g® + m*)I(a —w —1)].

With these formulas and the others listed in appendix C we shall calculate almost all of the
Feynman integrals in these lectures. Of course there are some subtleties in those calculations
which will be developed in the next section where we give some characteristic examples in
¢*-theory.

There is only one general topic we have to mention, concerning the dimensions. In this notes
we always set i = ¢ = 1 and thus are left with one fundamental unit, namely energy or length
(which is in our “natural” units inverse energies). Since we work in momentum space the
most time we shall count the dimensions in terms of energies. It is clear that from A =1 the
action functionals have dimension 1 and thus the Lagrangian is of dimension E?* where 2w is
the dimension of the space-time under consideration. In order to keep the coupling constants
of the same dimension as they obtain in 2w = 4, which is of course the physical case, we have
to introduce an energy scale u. We see that from this there comes an energy scale into the
game from the regularisation procedure which was introduced in a less formal way also by the
crude cut-off regularisation. In the case of renormalisable quantum field theories in the final
result the infinities can be absorbed into the bare quantities and in terms of the renormalised
parameters the energy-scale will drop in the physical limit w — 2. In effective theories which
contain an energy scale from physical grounds there has to be left a cut off in any scheme of
renormalisation, and it is still important that an energy scale enters the game.

5.4 The 4-point vertex correction at 1-loop order

Now we are ready to look on a next example which is less trivial than the tadpole, namely
the 4-point vertex correction shown in figure

D2 [ D3

iy =< S +(1=3)+(1—4)

D1 L=DP  Pi p=psp>  p=pa-p
p=p1+D2

Figure 5.5: The “dinosaur diagram” as a one-loop contribution to the 4-point function

Evidently it is enough to calculate the first diagram. From momentum conservation and
relativistic covariance this diagram is a function of the Mandelstam variable s = (p; + p2)?.
The symmetry factor is calculated as follows: There are 8 possibilities to connect the first
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5.4 - The 4-point vertex correction at 1-loop order

external point to one of the both inner vertices, remaining 3 possibilities to connect the
second one with the same inner vertex, 4 to connect the other inner vertex with the external
point and again 3 to connect this inner vertex with the last external point. Then there are 2
possibilities to connect both vertices with the two lines building the loop. There is a factor
1/2 from the Dyson-Wick series while a factor (—i\/4!)? comes from the Lagrangian. The
lines represent propagators iDpr and in dimensional regularisation we have to keep track of
the momentum dimension by a factor (u?)?*~* = p*¢. All together the Feynman rules give
in 2w = 4 — 2¢ space time dimensions:

T (s, t,u) = — [A(s) + A(t) + A(u)] with
A2 [ A 1 (5.86)
o H / 2m)d (12 = m2 +in)[(l — p)2 —m?2 +in]’

—iA(p?) =

To apply formula (B82)) we introduce the Feynman parameterisation making use of

1
1
— = d . 5.87
ab /0 v [ax + b(1 — x)]? (5.87)
Setting this into (.86l we find
22 ddl M4e
—iA(p d .
)= [0 [ G e O
Introducing I’ = [ — xp leads to
)\2 de d4 1
—iA(p .
1 / * | G e (589)
and applying ([82) gives
N (drpt)e 1 I'(e)
—iA — [ d . .
AP = 3272 /0 v [m? — z(1 — z)p?] (5:90)
Now using (B5H) and ([58) this gives
iz 1 ! m? —z(1 — x)p* —in
—iA SR QR 1 91
iA(p®) = o2 {6 gt /Odwn[ 2 H (5.91)

where we have reintroduced explicitly the regulator in from the propagator in order to define
the analytic continuation of the integral from space like momenta p where it is analytic and
uniquely defined. The remaining Feynman integral is finite and can be evaluated analytically

to be
1 2 2_4 2 : 2 3
€ 472 p? +in p? —4m?2 +in

(5.92)

For first investigation of the properties of this function we shall apply the so called minimal
subtraction scheme which just subtracts the pole term at € — 0 leading to the finite result

A2y m? p? —4m? +in p? +in
AMS(S):_W 2—7—ln <471'Iu2> -2 Wartanh ]92_4—77&2_’_177

(5.93)

)‘2/1'26
3272

A(p?) = -

151



Chapter 5 - Renormalisation

for € — 0. Thereby we have introduced a counter term for the coupling constant(l:

3)\2M26 1
32712 €

- = 0AMs = (5.94)
€

into the Lagrangian in order to render the 1-loop contribution to I'* finite.

Now we can investigate the analytic structure of A(s) around the real axis. In the physical
sheet of the Riemannian surface this function is analytic for s < 4m? and has a branch cut
along the real axis. For s < 4m? the function is real and from Schwarz’ reflection principle
this means along the cut we have Apg(s—in) = Afg(s+in). The branch point s = 4m? marks
the 2-particle threshold which can be read off the Feynman diagram by the two propagators
building the loop. Later in this chapter we shall investigate such analytic properties from
first physical principles as are unitarity of the S-matrix and causality.

Now the unitarity of the S-matrix can only survive if the counter terms chosen to make the
loop diagrams finite are real. Thus we can set the physical point at which we like to fix the
physical coupling only below the threshold. For instance we can chose the symmetric point
of the static limit, i.e., s = ¢t = u = 0, which means to say F(4)(0,0, 0,0) = 0. We have only
to introduce another counter term to compensate for the contribution of the loop integral at
this point leading to

A2 s —4m? —in | s+in
A =— 1 —————— artanh _ 5.95
phys () 1672 [ + st in artan < s am? 1 i ( )
with the counter term for the physical scheme
A2p2€ 1 m2
0 Aphys = £ ) [E —v—1In (471_#2)] = 0Aphys = 3 0 Aphys- (5.96)

5.5 Power counting

Our experience from the previous section lets us now look for the systematic proof of renor-
malisability to all orders of perturbation theory. We shall again take ¢*-theory as the most
simple example of a renormalisable theory.

At first we look on the so called superficial degree of divergence. This is obtained by simply
counting the powers of loop momenta within the Feynman integral I' in d-dimensional space
time. A diagram with L loops yields an integral over dL momenta. Each internal line stands
for a propagator which gives a power of —2I (where [ is the number of internal lines). The
whole integral has thus a momentum power

Dy(d,T) = Ld — 2I. (5.97)

For the convergence of T it is obviously necessary but by no means sufficient that Dg(T") < 0.

The diagrams in the previous section showed that of course the divergent part had the power
law in the external momenta as expected by this simple power counting method but the finite

"Note that in the effective action all three diagrams in figure dressed with mean fields appear. Thus
the counter term for the coupling has an additional factor 3 compared to the single diagram.
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5.5 - Power counting

part contains non-trivial logarithms. The powers in momenta where < 2 for d = 4. Now it is
evident that it is necessary for a theory to be renormalisable that the degree of divergence is
negative and that the infinite part can be subtracted with help of a counter term which is of
the same form as monomials of fields and its derivatives already contained in the Lagrangian.
This means that necessarily a renormalisable theory can contain only interaction monomials
such that the superficial degree of divergence for proper vertex-functions is positive only for
a finite set of such vertex functions and exactly those which are already in the Lagrangian.

Now we want to show that ¢* is fulfilling this necessary requirements. This is simply done
by substituting £ and L in ([291) instead of I. The conditions are fulfilled if only the 2- and
4-point 1PI vertex functions are superficially divergent. It does not matter if the divergences
arise at all orders perturbation theory but the counter terms should only contain polynomials
of order O(p?) for the 2-point function and only of order O(p°) for the 4-point vertex. The
3-point vertex should be finite and also all n-point vertices for n > 5. Due to the symmetry
under ¢ — —¢ the 3-point vertex vanishes at all.

Now we have to count the number of internal lines in terms of the number of loops and
external lines. From momentum conservation at each vertex we have I — V independent
momenta but 1 condition is already fulfilled by conservation of the external momenta (the
sum of all momenta running into or out of the vertex diagram has to be 0), thus we have

L=I-V+1. (5.98)

While (B07) and (E398)) are valid for any bosonic quantum field theory now we have to use
the fact that each vertex of ¢*-theory contains exactly 4 legs leading to I = (4V — E)/2 (each
of the 4V legs is connected to an external point linked with another leg. The external legs
do not contribute to the internal lines, each of which is the linking of two fields). This leads
to the following expression for the superficial degree of divergence

D) = (d— )V +d+ <1 - g) E. (5.99)

For d = 4 this reads Dgl) (T') = 4 — E. This means that the superficial degree of divergence is
negative for F£ > 5, i.e., the first condition is fulfilled. Now we have to count the naive powers
of momentum for the vertex function.

An n-point vertex function has the same naive momentum power as a coupling constant in
front of a (fictive or real) ¢™-contribution in the Lagrangian. In our system of units the action
has dimension O(p") and thus from the kinetic term 9,¢9"¢ we read off that ¢ = O(pl4=2)/2).
This shows that an E-point proper vertex function has the naive dimension O(pE —n(E/ 2*1)) =
O(p” (d)(r)). Thus for d = 4 the ¢*-theory is really superficially renormalisable because for
E = 2 the naive momentum power is 2 (we have a mass counter term there to absorb the
infinities into the mass) and for E = 4 the power is 0 and this gives rise to the counterterm

absorbing the infinities into the bare coupling.

As we have always emphasised this ideas are not complete. The so far developed power
counting arguments are only necessary but not sufficient conditions for renormalisability.
Although a diagram may have a negative naive degree of divergence it need not be finite and
even worse the infinities need not be polynomial in the external momenta which seems to
introduce non-local interactions into the Lagrangian. It is not a difficult task to explain how
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7
(a) /(b) /\

(c)

Figure 5.6: An example for a convergent (a) and two superficially convergent but in fact
divergent diagrams

this comes about and how this problem can be solved while the mathematical proof is a hard
stuff.

So let us first give a heuristic argument how to treat these problems practically.

First take a superficially finite diagram namely the 6-point vertex of which some contribu-
tions are shown in fig. The first diagram is primitive, i.e. it does not contain any 1PI
subdiagrams which can diverge. It is clear how to calculate this diagram qualitatively: One
introduces a Feynman-parameter and treats the diagram making use of the standard formulas
of appendix C. The result is finite by naive power counting.

But now look on diagram (b) which contains a 1-loop four-point-vertex sub-diagram which we
have calculated in just some paragraphs above. This diagram is divergent, but we have also
to add a counter-term diagram making use of our result of the counter-term at least in the
MS-scheme. This cancels the divergencies which are not local, i.e., which are not polynoms
of p? which look awkward on the fist look because this would spoil the idea of renormalising
the divergencies with local counter terms in the