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PREFACE

This book continues the series of Proceedings dedicated to the Quantum
Mathematics International Conferences Series and presents a number of
selected refereed papers dealing with some of the topics discussed at its
10-th edition, Moieciu (Romania), September 10 - 15, 2007.

The Quantum Mathematics series of conferences started in the seventies,
having the aim to present the state of the art in the mathematical physics
of Quantum Systems, both from the point of view of the models considered
and of the mathematical techniques developed for their study. While at
its beginning the series was an attempt to enhance collaboration between
mathematical physicists from eastern and western European countries, in
the nineties it took a worldwide dimension, being hosted successively in
Germany, Switzerland, Czech Republic, Mexico, France and this last one
in Romania.

The aim of QMath10 has been to cover a number of topics that present
an interest both for theoretical physicists working in several branches of
pure and applied physics such as solid state physics, relativistic physics,
physics of mesoscopic systems, etc, as well as mathematicians working in
operator theory, pseudodifferential operators, partial differential equations,
etc. This conference was intended to favour exchanges and give rise to
collaborations between scientists interested in the mathematics of Quantum
Mechanics. A special attention was paid to young mathematical physicists.

The 10-th edition of the Quantum Mathematics International Confer-
ence series has been organized as part of the SPECT Programme of the
European Science Foundation and has taken place in Romania, in the moun-
tain resort Moieciu, in the neighborhood of Brasov. It has been attended
by 79 people coming from 17 countries. There have been 13 invited plenary
talks and 55 talks in 6 parallel sections:

• Schrödinger Operators and Inverse Problems (organized by Arne
Jensen),

• Random Schrödinger Operators and Random Matrices (organized
by Frederic Klopp),
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• Open Systems and Condensed Matter (organized by Valentin Za-
grebnov),

• Pseudodifferential Operators and Semiclassical Analysis (organized
by Francis Nier),

• Quantum Field Theory and Relativistic Quantum Mechanics (or-
ganized by Volker Bach),

• Quantum Information (organized by Dagmar Bruss).

This book is intended to give a comprehensive glimpse on recent ad-
vances in some of the most active directions of current research in quantum
mathematical physics. The authors, the editors and the referees have done
their best to provide a collection of works of the highest scientific standards,
in order to achieve this goal.

We are grateful to the Scientific Committee of the Conference: Yosi
Avron, Pavel Exner, Bernard Helffer, Ari Laptev, Gheorghe Nenciu and
Heinz Siedentop and to the organizers of the 6 parallel sections for their
work to prepare and mediate the scientific sessions of ”QMath10”.

We would like to thank all the institutions who contributed to sup-
port the organization of ”QMath10”: the European Science Foundation, the
International Association of Mathematical Physics, the ”Simion Stoilow”
Institute of Mathematics of the Romanian Academy, the Romanian Na-
tional Authority for Scientific Research (through the Contracts CEx-M3-
102/2006, CEx06-11-18/2006 and the Comission for Exhibitions and Sci-
entific Meetings), the National University Research Council (through the
grant 2RNP/2007), the Romanian Ministry of Foreign Affairs (through the
Department for Romanians Living Abroad) and the SOFTWIN Group. We
also want to thank the Tourist Complex ”Cheile Grădiştei” - Moieciu, for
their hospitality.

The Editors
Bucharest, June 2008
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Lassi Päivärinta University of Oulu
Jan van Casteren Universiteit Antwerpen
Michiel van den Berg University of Bristol
Jan Philip Solovej University of Copenhagen

Scientific Committee of QMath 10

Yosi Avron Haifa, Israel
Pavel Exner Prague, Czech Republic
Bernard Helffer Paris, France
Ari Laptev London, Great Britain and Stockholm, Sweden
Gheorghe Nenciu Bucharest, Romania
Heinz Siedentop Munich, Germany



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

xii Organizing Committees

Local Organizing Committee

Ingrid Beltita IMAR Bucharest
Gheorghe Nenciu IMAR Bucharest
Radu Purice IMAR Bucharest



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

xiii

CONTENTS

Preface v

Organizing Committees xi

Charge transport and determinants 1
S. Bachmann & G.M. Graf

The integrated density of states in strong magnetic fields 15
P. Briet & G.R. Raikov

Geometrical objects on matrix algebra 22
C. Ciupală
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CHARGE TRANSPORT AND DETERMINANTS

SVEN BACHMANN

Theoretische Physik, ETH-Hönggerberg
8093 Zürich, Switzerland

GIAN MICHELE GRAF

Theoretische Physik, ETH-Hönggerberg
8093 Zürich, Switzerland

E-mail:gmgraf@itp.phys.ethz.ch

We review some known facts in the transport theory of mesoscopic systems,
including counting statistics, and discuss its relation with the mathematical
treatment of open systems.

1. Introduction

The aim of these notes is to introduce to some theoretical developments
concerning transport in mesoscopic systems. More specifically, we intend
to show how concepts and tools from mathematical physics provide ways
and means to put some recent, fundamental results on counting statistics
on rigorous ground and in a natural setting. We will draw on concepts like
C*-algebras, which have been often used in the mathematical treatment
of systems out of equilibrium, see e.g. Ref. 7, but also on tools like Fred-
holm determinants, which have been used for renormalization purposes in
quantum field theory. Before going into mathematical details we will review
some of the more familiar aspects of transport, and notably noise. That will
provide some examples on which to later illustrate the theory.

These notes are not intended for the expert. On the contrary, the style
might be overly pedagogical.

2. Noises

Consider two leads joined by a resistor. The value of its conductance, G, is
to be meant, for the sake of precision, as corresponding to a two-terminal
arrangement, meaning that the voltage V is identified with the difference of
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chemical potentials between right movers on the left of the resistor and left
movers on its right. We are interested in the average charge 〈Q〉 transported
across the resistance in a time T , and in the variance 〈〈Q2〉〉 = 〈Q2〉− 〈Q〉2,
equivalently in the current 〈Q〉/T and in the noise 〈〈Q2〉〉/T .

There are two types of noises:

(1) Equilibrium, or thermal, noise occurs in the absence of voltage, V = 0,
and at positive temperature β−1 > 0. Then

〈Q〉 = 0 ,
〈Q2〉
T

=
2
β
G . (2.1)

(Johnson,8 Nyquist17). This is an early instance of the fluctuation-
dissipation theorem, those words being here represented as noise and
conductance.

(2) Non-equilibrium, or shot, noise occurs in the reverse situation: V 6= 0,
β−1 = 0. Ohm’s law states 〈Q〉/T = GV , while for the noise differ-
ent expressions (corresponding to different situations) are available: (a)
classical shot noise

〈〈Q2〉〉 = e〈Q〉 (2.2)

(Schottky21), where e is the charge of the carriers, say electrons. The
result is interpreted on the basis of the Poisson distribution

pn = e−λ
λn

n!
, (n = 0, 1, 2, . . .)

of parameter λ, for which

〈n〉 = λ , 〈〈n2〉〉 = λ .

Assuming that electrons arrive independently of one another, the num-
ber n of electrons collected in time T is so distributed, whence (2.2) for
Q = en.
(b) quantum shot noise. Consider the leads and the resistor as modelled
by a 1-dimensional scattering problem with matrix

S =
(
r t′

t r′

)
, (2.3)

where r, t (resp. r′, t′) are the reflection and transmission amplitudes
from the left and from the right. Then

〈〈Q2〉〉 = e〈Q〉(1− |t|2) (2.4)
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(Khlus,10 Lesovik12). In this case the result may be attributed to a
binomial distribution with the success probability p and with N at-
tempts:

pn =
(
N

n

)
pn(1− p)N−n ,

〈n〉 = Np , 〈〈n2〉〉 = Np(1− p) .

This yields (2.4) for p = |t|2 being the probability of transmission. For
small p it reduces to (2.2). It should be noticed that in the case of
thermal noise, the origin of fluctuations is in the source of electrons,
or in the incoming flow, depending on the point of view. By contrast,
in the interpretation of the quantum shot noise the flow is assumed
ordered, as signified by the fixed number of attempts, and fluctuations
arise only because of the uncertainty of transmission.

We refer to Ref. 6 for a more complete exposition of these matters. We
conclude the section by recalling that noises are quantitative evidence to
atomism. Thermal noise determines β−1 = k·temperature, and hence Boltz-
mann’s constant k as well as Avogadro’s number N0 = R/k (somewhat in
analogy to its determination from Brownian motion5,23). Shot noise deter-
mines the charge of carriers. In some instances of the fractional quantum
Hall effect this yielded e/319 or e/5 .18

3. A setup for counting statistics

Before engaging in quantum mechanical computations of the transported
charge we should describe how it is measured, at least in the sense of a
thought experiment. Consider a device (dot, resistor, or the like) connected
to several leads, or reservoirs, one of which is distinguished (‘the lead’). The
measurement protocol consists of three steps:

• measure the charge present initially in the lead, given a prepared state
of the whole system.

• act on the system during some time by driving its controls (like gate
voltages in a dot), but not by performing measurements. This includes
the possibility of just waiting.

• measure the charge present in the lead finally.

The transported charge is then identified as the difference, n, of the out-
come of the measurements. For simplicity we assume that n takes only
integer values, interpreted as the number of transferred electrons. Let pn



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

4 S. Bachmann & G.M. Graf

be the corresponding probabilities. They are conveniently encoded in the
generating function

χ(λ) =
∑

n∈Z
pneiλn (3.1)

of the moments of the distribution,

〈nk〉 =
(
−i

d

dλ

)k
χ(λ)

∣∣∣∣∣
λ=0

.

Similarly, logχ(λ) generates the cumulants 〈〈nk〉〉, inductively defined by

〈nk〉 =
∑

P

∏

α∈P
〈〈n|α|〉〉 ,

where P = {α1, . . . , αm} runs over all partitions of {1, . . . , k}. Alternative
protocols with measurements extending over time will be discussed later.

4. Quantum description

The three steps of the procedure just described can easily be implemented
quantum mechanically by means of two projective measurements and by a
Hamiltonian evolution in between.

Let H be the Hilbert space of pure states of a system, ρ a density matrix
representing a mixed state, and A =

∑
i αiPi an observable with its spectral

decomposition. A single measurement of A is associated, at least practically,
with the ‘collapse of the wave function’ resulting in the replacement

ρ Ã
∑

i

PiρPi , (4.1)

where tr(PiρPi) = tr(ρPi) is the probability for the outcome αi. Two mea-
surements of A, separated by an evolution given as a unitary U , result in
the replacement.22

ρ Ã
∑

i,j

PjUPiρPiU
∗Pj , (4.2)

where tr(PjUPiρPiU∗Pj) = tr(U∗PjUPiρPi) is the probability of the his-
tory (αi, αj) of outcomes. We can so compute the moment generating func-
tion (3.1):

χ(λ) =
∑

i,j

tr(U∗PjUPiρPi)eiλ(αj−αi)

=
∑

i

tr(U∗eiλAUPiρPi)e−iλαi . (4.3)
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The expression simplifies if

[A, ρ] = 0 ; (4.4)

then PiρPi = Piρ, whence the r.h.s. of (4.1) still equals ρ (no collapse at
first measurement) and

χ(λ) = tr(U∗eiλAUe−iλAρ) . (4.5)

If ρ is a pure state, ρ = Ω(Ω, ·), then

χ(λ) = (Ω, U∗eiλAUe−iλAΩ) . (4.6)

5. Independent, uncorrelated fermions

We intend to apply (4.5) to many-body systems consisting of fermionic
particles which are uncorrelated in the initial state. The particles shall
contribute additively to the observable to be considered and evolve inde-
pendently of one another. The ingredients can therefore be specified at the
level of a single particle. At the risk of confusion we denote them like the
related objects in the previous section: A Hilbert space H with operators
A,U, ρ. However, the meaning of ρ is now that of a 1-particle density ma-
trix 0 ≤ ρ ≤ 1 specifying an uncorrelated many-particle state, to the extent
permitted by the Pauli principle: any eigenstate of |ν〉 of ρ, ρ|ν〉 = ν|ν〉, is
occupied in the many-particle state with probability given by its eigenvalue
ν. Common examples are the vacuum ρ = 0 and, in terms of a single-
particle Hamiltonian H, the Fermi-Dirac distribution ρ = (1 + eβH)−1 or
its zero temperature limit, β−1 → 0, the Fermi sea ρ = Θ(−H).

The corresponding many-particle objects are obtained through second
quantization, which amounts to the following replacements:

H Ã F(H) =
∞⊕
n=0

n∧
H (Fock space) (5.1)

A Ã ddΓ(A) (5.2)

U Ã Γ(U) (5.3)

where ddΓ(A) and Γ(U) act on the subspaces
∧nH ⊂ F(H) as

ddΓ(A) =
n∑

i=1

1⊗ · · · ⊗A⊗ · · · ⊗ 1 ,

Γ(U) = U ⊗ · · · ⊗ U .
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Moreover, the state is replaced as

ρ Ã Γ(ρ/ρ′)
TrF(H)Γ(ρ/ρ′)

, (ρ′ = 1− ρ) . (5.4)

Indeed, if ρ splits with respect to H = H1 ⊕ H2, then the many-body
state (5.4) factorizes w.r.t. F(H) = F(H1)⊗F(H2). In particular if ρ|ν〉 =
ν|ν〉, this entails the following state on F [|ν〉] = ⊕1

n=0 ∧n [|ν〉]
10 + ν

ν′ 11

1 + ν
ν′

= ν′10 + ν11 ,

confirming that ν is the occupation number of |ν〉. We note that

TrF(H)Γ(M) = detH(1 +M) ,

provided that M is a trace-class operator on H, in which case the r.h.s. is
a Fredholm determinant. We will comment on that condition later. Under
the replacements (5.1-5.4) the assumption [A, ρ] = 0 is inherited by the
corresponding second quantized observables, [ddΓ(A),Γ(ρ/ρ′)] = 0. As a
result (4.5) applies and becomes the Levitov-Lesovik formula

χ(λ) = det(ρ′ + eiλU∗AUe−iλAρ) . (5.5)

Indeed,

χ(λ) =
TrF(H)(Γ(U)∗eiλddΓ(A)Γ(U)e−iλddΓ(A)Γ(ρ/ρ′))

TrF(H)Γ(ρ/ρ′)

=
TrF(H)Γ(U∗eiλAUe−iλAρ/ρ′)

TrF(H)Γ(ρ/ρ′)
=

det(1 + U∗eiλAUe−iλA(ρ/ρ′))
det(1 + (ρ/ρ′))

= det(ρ′ + U∗eiλAUe−iλAρ) .

Before discussing the mathematical fine points of (5.5), let us compute
the first two cumulants of charge transport. In line with the discussion in
the previous section, let A = Q be the projection onto single-particle states
located in the distinguished lead. Then (5.5) yields

〈Q〉 = −iχ′(0) = trρ(∆Q) ,

〈〈Q2〉〉 = −(logχ)′′(0) = trρ(∆Q)(1− ρ)∆Q

= tr(ρ(1− ρ)(∆Q)2) +
1
2
tr(i[∆Q, ρ])2 , (5.6)

where ∆Q = U∗QU − Q is the operator of transmitted charge. The
split (5.6) of the noise 〈〈Q2〉〉 into two separately non negative contribu-
tions is of some interest (3 by a different approach,1): The commutator
[∆Q, ρ] expresses the uncertainty of transmission ∆Q in the given state
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ρ; the second term in (5.6) may thus be viewed as shot noise. The factor
ρ(1− ρ) expresses the fluctuation ν(1− ν) in the occupation of single par-
ticle states |ν〉. It refers to the initial state, or source, and its term may be
viewed as thermal noise; indeed it vanishes for pure states, ρ = ρ2, while
for ρ = (1+eβH)−1 the energy width of ρ(1− ρ) is proportional to β−1, cf.
2.1).

6. Alternative approaches

We present alternatives and variants of the two-step measurement proce-
dures discussed in Sect. 3. We discuss them in the first quantized setting
of Sect. 4. The corresponding second quantized versions can then easily
obtained from the replacements (5.1-5.4).

i)14 One could envisage a single measurement of the difference U∗AU −
A. On the basis of (4.2) its generating function is

χ(λ) = tr(eiλ(U∗AU−A)ρ) .

It remains unclear how to realize a von Neumann measurement for this
observable, since its two pieces are associated with two different times.
Moreover, its second quantized version

χ(λ) = det(ρ′ + eiλ(U∗AU−A)ρ)

generates cumulants which, as a rule beginning with n = 3, differ from
those of (5.5).

ii)20 We keep the two-measurement setup, but refrain from making as-
sumption (4.4), i.e., the first measurement is allowed to induce a “collapse
of the wave function”. We do however assume that the eigenvalues αi of A
are integers, in line with the application made at the end of the previous
section, where A Ã ddΓ(Q) with Q a projection. Then (4.3) yields

χ(λ) =
∑
n,m

tr(U∗eiλAUPnρPm)δmne−iλn

=
1
2π

∫ 2π

0

ddτ tr(U∗eiλAUe−i(λ+τ)AρeiτA)

by using δmn = (2π)−1
∫ 2π

0
ddτ eiτ(m−n).
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iii)13 Here neither (3.1) nor (4.4) is assumed. The system is coupled to a
spin-1

2 resulting in a total state space H⊗C2. Specifically, the total Hamil-
tonian is obtained by conjugating the system Hamiltonian by e−i λ

2A⊗σ3 ,
where λ is a coupling constant and σ3 a Pauli matrix; equivalently, the
same holds true for the evolution U , which becomes

Û = e−i λ
2A⊗σ3(U ⊗ 1)ei λ

2A⊗σ3 .

We note that

Û(ψ ⊗ |σ〉) = (Uσ·λψ)⊗ |σ〉 , (σ = ±1) ,

where σ3|σ〉 = σ|σ〉 and Uλ = e−i λ
2AUei λ

2A. The joint initial state is as-
sumed of the form ρ⊗ ρi with ρ being that of the system and

ρi =
(〈σ|ρi|σ′〉

)
σ,σ′=±1

=
(
ρ++ ρ+−
ρ−+ ρ−−

)

that of the spin. The final state is Û(ρ ⊗ ρi)Û∗ and, after tracing out the
system,

ρf = trHÛ(ρ⊗ ρi)Û∗

with matrix elements

〈σ|ρf |σ′〉 = tr(UσλρU∗σ′λ)〈σ|ρi|σ′〉 .

In other words,

ρf =
(

ρ++ ρ+−χ(λ)
ρ−+χ(−λ) ρ−−

)

with

χ(λ) = tr(ei λ
2AU∗e−iλAUei λ

2Aρ) .

We remark that χ(λ) agrees with (4.5) under the assumption (4.4) of the
latter. It can be determined from the average spin precession, since 〈σ|ρf |σ′〉
reflects that measurement. On the other hand no probability interpretation,
cf. (3.1), is available for χ(λ), since its Fourier transform is non-positive in
general.9
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7. The thermodynamic limit

The derivation of (5.5) was heuristic. It therefore seems appropriate to
investigate whether the resulting determinant, cast as det(1 +M), is well-
defined, which is the case if M is a trace-class operator. This happens to be
the case if the leads are of finite extent and the energy range finite, essen-
tially because the single-particle Hilbert space becomes finite dimensional.
While these conditions may be regarded as effectively met in practice, it is
nevertheless useful to idealize these quantities as being infinite. There are
two physical reasons for that. First, any bound on these quantities ought
to be irrelevant, because the transport occurs across the dot (compact in
space) and near the Fermi energy (compact in energy); second, the infinite
settings allows to conveniently formulate non-equilibrium stationary states.
However this idealization needs some care. In fact, in the attempt of ex-
tending eq. (5.5) to infinite systems, the determinant becomes ambiguous
and ill-defined. The cure is a regularization which rests on the heuristic
identity

tr(U∗ρQU − ρQ) = 0 , (7.1)

obtained by splitting the trace and using its cyclicity. It consists in multi-
plying the determinant by

det(e−iλU∗ρQU ) · det(eiλρQ) = e−iλtr(U∗ρQU−ρQ) = 1 , (7.2)

thereby placing one factor on each of its sides. The straightforward result
is (see Ref. 2, and in the zero-temperature case Ref. 16)

χ(λ) = det(e−iλρUQUρ′eiλρQ + eiλρ′UQUρe−iλρ′Q) , (7.3)

where ρ′ = 1− ρ, ρU = U∗ρU , and similarly for ρ′U and QU .

Remark 7.1. 1. We observe a manifest particle-hole symmetry:

χρ(λ) = χρ′(−λ) .

2. We will see that the determinant (7.3) is Fredholm under reasonable
hypotheses.
3. The regularization bears some resemblance to det2(1 + M) = det(1 +
M)e−trM , though the latter typically changes the value of the determinant.

To the extent that the regularization is regarded as a modification at all,
it affects only the first cumulant, because the term−iλtr(ρUQU−ρQ), which
by (7.2) has been added to the generating function logχ(λ), is linear in λ.
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The mean is thus changed from 〈n〉 = trρ(QU −Q) to 〈n〉 = tr(ρ− ρU )QU .
In line with Sections 3 and 5 we interpret Q as the projection onto single-
particle states in the distinguished lead and U as the evolution preserving
the initial state ρ, except for changes in the dot. We then expect thatQU−Q
is non-trivial on states of any energy, while ρ−ρU is so only on states which
are located near the dot and near the Fermi energy. As a result, the second
expression for 〈n〉, but not the first one, appears to be well-defined.

8. A more basic approach

The regularization (7.1) remains an ad hoc procedure, though it may be
motivated as a cancellation between right and left movers, see Ref. 2. The
point we wish to make here is that eq. (7.3) is obtained without any recourse
to regularization if the second quantization is based upon a state of positive
density (rather than the vacuum, cf. Sect. 5), as it is appropriate for an
open system.

To this end let us briefly recall the defining elements of quantum me-
chanics of infinitely many degrees of freedom: (local) observables are rep-
resented by elements of a C*-algebra A and states by normalized, posi-
tive, continuous linear functionals on A. A state ω, together with its local
perturbations, may be given a Hilbert space realization through the GNS
construction: it consists of a Hilbert space Hω, a representation πω of A on
Hω, and a cyclic vector Ωω ∈ Hω such that

ω(A) = (Ωω, πω(A)Ωω) , (A ∈ A) .

Notice that the state ω is realized as a vector, Ωω, regardless of whether it
is pure. Rather, it is pure iff the commutant πω(A)′ ⊂ L(Hω) is trivial. The
closure of πω(A) yields the von Neumann algebra πω(A). Besides of local
observables πω(A) it also contains some global ones, whose existence and
meaning presupposes ω. An example occurring in the following is the charge
present in the (infinite) lead in excess of the (infinite) charge attributed to
ω.

The C*-algebra of the problem at hand is A(H), the algebra of canonical
anti-commutation relations over the single-particle Hilbert space H. It is
the algebra with unity generated by the elements a(f), a(f)∗ (anti-linear,
resp. linear in f ∈ H) satisfying

{a(f), a∗(g)} = (f, g)1 , {a(f), a(g)} = 0 = {a∗(f), a∗(g)} .
A unitary U induces a *-automorphism of the algebra by a(f) 7→ a(Uf)
(Bogoliubov automorphism). A single-particle density matrix 0 ≤ ρ ≤ 1
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defines a state ω on A(H) through

ω(a∗(f)a(g)) = (g, ρf) , ω(a(f)a(g)) = 0 = ω(a∗(f)a∗(g))

and the use of Wick’s lemma for the ccomputation of higher order correla-
tors. States of this form are known as gauge-invariant quasi-free states; they
describe uncorrelated fermions. It is possible to give an explicit construc-
tion of their GNS representation, known as Araki-Wyss representation, but
we will not need it.

For clarity we formulate the main result first for pure state and then for
mixed states. In both cases we assume [ρ,Q] = 0, cf. (4.4).

Theorem 8.1 (Pure states). Let ρ = ρ2. We assume that

ρ− UρU∗ (8.1)

is trace class. Then

(1) The algebra automorphisms a(f) 7→ a(Uf) and a(f) 7→ a(eiλQf) are
unitarily implementable: There exists (non-unique) unitaries Û and
eiλ bQ on Hω such that

Ûπω(a(f)) = πω(a(Uf))Û , eiλ bQπω(a(f)) = πω(a(eiλQf))eiλ bQ .

(2) Q̂ is an observable, in the sense that any bounded function thereof is in
πω(A(H)).

(3) The above properties define Û uniquely up to a phase and Q̂ up to an
additive constant.

(4) The generating function of cumulants, cf. (4.6), equals the regularized
determinant (7.3):

(Ωω, Û∗eiλ bQÛe−iλ bQΩω) = det(e−iλρUQUρ′eiλρQ + eiλρ′UQUρe−iλρ′Q) ,

where the determinant is Fredholm.

Eq. (8.1) demands that the evolution U preserves ρ, except for creating
excitations of finite energy within an essentially finite region of space. This
assumption is appropriate for the evolution induced by a compact device
operating smoothly during a finite time interval.

The generalization to mixed states is as follows.
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Theorem 8.2 (Mixed states). Let 0 < ρ < 1. Assume, instead of (8.1),
that ρ1/2−Uρ1/2U∗ and (ρ′)1/2−U(ρ′)1/2U∗ are trace class; moreover that

(ρρ′)1/2Q (8.2)

is, too. Then the above results (i-iv) hold true, upon replacing (iii) by

• Properties (i-ii) define Û uniquely up to left multiplication with an el-
ement from the commutant πω

(A(H)
)′, and Q̂ up to an additive con-

stant. In particular, Û∗eiλ bQÛe−iλ bQ is unaffected by the ambiguities.

Notice that the most general case, 0 ≤ ρ ≤ 1, is not covered. The
physical origin of the extra assumption (8.2) needed in the mixed state case
is as follows. In both cases, pure or mixed, the expected charge contained
in a portion of the lead is of order of its length L, or zero if renormalized
by subtraction of a background charge. In the pure case however, the Fermi
sea is an eigenvector of the charge operator, while for the mixed state, the
variance of the charge must itself be of order L, because the occupation of
the one-particle states is fluctuating, due to ρρ′ 6= 0. Hence, in this latter
situation, the measurement of the renormalized charge yields finite values
only as long as L is finite, of which eq. (8.2) is a mathematical abstraction.
In the limit L → ∞ all but a finite part of the fluctuation of the source
is affecting the transmitted noise. That suggests perhaps that there is a
better formulation of the result. Indeed, the expression for the transmitted
noise, cf. the first term (5.6), is finite if (U∗QU −Q)(ρρ′)1/2 is trace class.
This condition turns out to be sufficient for property (i), for making the
determinant Fredholm and ̂U∗QU −Q an observable, but not for (ii, iii).

For proofs we refer to Ref. 2.

9. An application

We discuss a very simple application to illustrate the working of the reg-
ularization. The system consists of two leads in guise of circles of length
T , joined at one point. Particles run in the positive sense along the circles
C at velocity 1, whence it takes them time T to make a turn, and may
scatter from one to the other circle at the junction. Initially states in the
two circles are populated up to Fermi energies µL < µR. This is formalized
as follows. The single particle Hilbert space is

H = L2(C)⊕ L2(C) 3 ψ =
(
ψL(x)
ψR(x)

)
,
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the evolution over time T is

(Uψ)(x) = Sψ(x)

with S as in (2.3). The momentum operator is p = −id/dx and the initial
state is ρ = ρL ⊕ ρR with ρi = θ(µi − p), (i = L,R). The projection onto
the right lead is Q = 0⊕ 1.

Quite generally, for ρ = ρ2 a pure state, eq. (7.3) reads

χ(λ) = detH(1 + (e−iλ − 1)QUρUρ′ + (eiλ − 1)QUρ′Uρ) ,

and in the present situation that determinant reduces to

χ(λ) = detL2(C)(1 + (eiλ − 1)ρ′RρL|t|2) .
It is to be noted that ρ′RρL selects a finite energy interval, (µL, µR], unlike
the determinant without regularization. Using eigenstates of momentum
p ∈ (2π/T )Z we find

χ(λ) =
∏

µL<p≤µR

(1 + (eiλ − 1)|t|2)

= (1− |t|2 + eiλ|t|2)N = (q + eiλp)N

with N = #{p | µL < p ≤ µR} ∼= (µL − µR)T/2π. This is a binomial
distribution with probability p = |t|2 and N attempts, reproducing (2.4).
In particular, it yields Ohm’s law 〈Q〉/T = GV with G = (2π)−1|t|2.4,11
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In this work we consider three-dimensional Schrödinger operators with constant
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energy regimes: far from the Landau levels and near a given Landau level.
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1. Introduction

During the last decades the spectral analysis of quantum Hamiltonians in
strong magnetic fields was approached by different authors. Many domains
of investigation of the mathematical physics are concerned, let us mention
here the problem of the stability of the matter,2,3,5,15,22 the study of eigen-
value distributions7,16,19,23–26 and the the investigation of the scattering
phase,6 the magnetic response of quantum gases and the quantum Hall
effect,10,14 and finally, the asymptotic analysis of the integrated density
of states in strong magnetic fields,21,26,27 which is the main theme of the
present note.

We consider here a three-dimensional Schrödinger operator with con-
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stant magnetic field B := (0, 0, b), b > 0 being the intensity of the field.
The precise definition of this operator is given in Section 2 below. We ana-
lyze the behavior of the integrated density of states as b→∞. Our results
described in Section 3 have been proved in Ref. 4. Here we give some ad-
ditional comments on the motivation, the physical interpretation, and the
possible extensions of our results.

2. Self-adjointness

In this section we introduce the class of random self-adjoint operators con-
sidered in the note. We first recall some basic facts. The potential vector
is chosen as A = 1

2B × x then the free magnetic Schrödinger operator is
defined on L2(R3) by

H0(b) = H⊥,0(b)⊗ I1 + I2 ⊗−∂2
x3
, b > 0,

where In is the identity operator on L2(Rn), n = 1, 2, and

H⊥,0(b) =
(
i
∂

∂x1
− bx2

2

)2

+
(
i
∂

∂x2
+
bx1

2

)2

− b,

is the Landau Hamiltonian on L2(R2) up to the additive constant −b. It is
well known that H⊥,0(b) is a self-adjoint operator having only pure point
spectrum which coincides with the set {2bq, q ∈ Z+}. The eigenvalues of the
Landau operator, called usually Landau levels, have infinite multiplicity.1

It is well-known1 that H0(b), b ≥ 0 is essentially self-adjoint on C∞0 (R3)
and its spectrum σ(H0(b)) = [0,∞) is purely absolutely continuous.

We consider now on L2(R3) a perturbation of the free operator

H(b) = H0(b) + V, b > 0,

where V is a real random electric potential defined in the following way.
Let (Ω,F ,P) be a complete probability space. Introduce the random

field Ω × R3 3 (ω, x) 7→ Vω(x) ∈ R which is supposed to be measurable
with respect to the product σ-algebra F × B(R3) where B(R3) is the σ-
algebra of the Borel sets in R3. Let G = R or G = Z. We assume that V is
a G3- ergodic real random field12,20 satisfying

E
(∫

C
|Vω(x)|4dx

)
<∞, (2.1)

where E is the mathematical expectation with respect to the probability
measure P, and C :=

(− 1
2 ,

1
2

)3. Note that if G = R, i.e. if Vω is R3- er-
godic, then (2.1) can be formulated as E(|Vω(0)|4) <∞. The ergodicity of



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

Integrated density of states 17

Vω combined with (2.1) implies17 that with probability one the operator
Hω(b) = H0(b) + Vω is essentially self-adjoint on C∞0 (R3). Moreover, there
exists a real subset Σ such that the spectrum σ(Hω(b)) of the operator
Hω(b) coincides almost surely with Σ.

Finally, in the formulation of our main results, we suppose that Vω is
G- ergodic in the direction of the magnetic field B.4,21

Most of random ergodic fields used in condensed matter physics for
modelling amorphous materials satisfy our assumptions. For example, the
Gaussian random fields whose correlation function is continuous at the
origin and decays at infinity are R3-ergodic, and R-ergodic in any direction.
The same is true for appropriate Poisson potentials. On the other hand the
Anderson-type potentials (called also alloy-type potentials) are Z3-ergodic,
and Z-ergodic in any direction.11,12

Finally, we recall that the operators with periodic or almost periodic
electric potentials also fit in the general scheme of the present note. We
refer the reader to Ref. 12 for the relationship between periodic and almost
periodic functions on one side, and ergodic random fields on the other.

3. Main Results

The main object of study in the present note is the integrated density of
states (IDS). We define the IDS %V,b associated with Hω(b) by the Shubin-
Pastur formula

%V,b(E) := E
(
Tr

(
χCχ(−∞,E)(Hω(b))χC

))
, E ∈ R,

where χC is the multiplier by the characteristic function of the cube C,
and χ(−∞,E)(Hω(b)) is the spectral projection of the operator Hω(b) corre-
sponding to the interval (−∞, E). The correctness of this definition of the
IDS, and its equivalence to the traditional definition involving a thermody-
namic limit are discussed in Refs. 9,17. The aim of the note is to study the
asymptotic behaviour as b→∞ of the quantities

%V,b(Eb+ λ2)− %V,b(Eb+ λ1),

the parameters E ∈ [0,∞), λ1, λ2, λ1 ≤ λ2, being fixed. It is reasonable
to distinguish two asymptotic regimes: asymptotics near a given Landau
level which corresponds to E ∈ 2Z+, and asymptotics far from the Landau
levels which corresponds to E ∈ (0,∞) \ 2Z+. This distinction is justified
already by the elementary calculation yielding the leading asymptotic term
as b → ∞ of the free IDS %0,b corresponding to Vω = 0. The explicit form



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

18 P. Briet & G.R. Raikov

of %0,b is well-known:

%0,b(E) =
b

2π2

∞∑
q=0

(E − 2bq)1/2+ , E ∈ R,

and we find easily that the leading asymptotic term as b → ∞ of the
variation of %0,b is of order b near any fixed Landau level, and of order b1/2

far from the Landau levels.
In order to formulate our results concerning the asymptotics of the IDS

%V,b near a given Landau level, we need some additional notations. For
x = (x1, x2, x3) ∈ R3 we denote by x⊥ = (x1, x2) ∈ R2 the variables
on the plane perpendicular to the magnetic field. Fix x⊥ ∈ R2. Since by
assumption V is ergodic in direction of the magnetic field, the random field
R 3 x3 7→ Vω(x⊥, x3) ∈ R is ergodic, and the operator

hV (x⊥) := − d2

dx2
3

+ V (x⊥, x3) (3.1)

is almost surely essentially self-adjoint on C∞0 (R) (see Ref. 12). Denote by
ρV (λ;x⊥), λ ∈ R, the IDS for the operator hV (x⊥). By Ref. 21, if V is
R-ergodic (respectively, Z-ergodic) in the direction of the magnetic field,
then the IDS ρV (λ;x⊥) is independent of x⊥ ∈ R2 (respectively, ρV (λ;x⊥)
is Z-periodic with respect to x⊥). Set

kV (λ) :=
∫

(− 1
2 ,

1
2 )2

ρV (λ;x⊥)dx⊥.

Thus, in the case of R-ergodicity we have kV (λ) = ρ(λ; 0). Moreover, since
the operator hV (x⊥) is an ordinary differential operator, the function R 3
λ 7→ kV (λ) ∈ R is continuous.12

Theorem 3.1. 4 Assume that the random potential V : Ω × R3 → R
is measurable with respect to the product σ-algebra F × B(R3), and that
(2.1) holds. Moreover, suppose that V is R3-ergodic or Z3-ergodic, and is
R-ergodic or Z-ergodic in the direction of the magnetic field.
i) Let E ∈ (0,∞) \ 2Z+, and λ1, λ2 ∈ R, λ1 < λ2. Then we have

lim
b→∞

b−1/2 (%V,b(Eb+ λ2)− %V,b(Eb+ λ1)) =
λ2 − λ1

4π2

[E/2]∑
q=0

(E − 2q)−1/2.

(3.2)
ii) Let E ∈ 2Z+, and λ1, λ2 ∈ R, λ1 < λ2. Then we have

lim
b→∞

b−1 (%V,b(Eb+ λ2)− %V,b(Eb+ λ1)) =
1
2π

(kV (λ2)− kV (λ1)) . (3.3)
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Let us discuss briefly our results, the methods applied in their proofs, as
well as several possible extensions and generalizations.

• Relation (3.2) implies that far from the Landau levels the main
asymptotic term of the IDS is independent of the potential Vω. Note
that the r.h.s. of (3.2) is proportional to the length of the interval
(Eb + λ1, Eb + λ2). It is likely that if we impose more restrictive as-
sumptions on the regularity of the realizations of Vω, we would be able
to obtain a more precise asymptotic expansion of the IDS, and the
lower-order terms will depend on the random potential

• Relation (3.3) shows us that at energies close to the Landau levels, the
three-dimensional quantum particle behaves like an one-dimensional
particle whose motion in the direction of the magnetic field is “aver-
aged” with respect to the variables in the plane perpendicular to the
magnetic field. A similar picture has been encountered in the inves-
tigation of the asymptotic behaviour of many other spectral charac-
teristics of quantum Hamiltonians in strong magnetic fields, such as
the ground state energy, the discrete-eigenvalue counting function, the
scattering phase, etc. This picture is in accordance with the physical
intuition born by the elementary analysis of the trajectory of a classical
three-dimensional particle in constant magnetic field. Generically, this
trajectory is a helix whose axis is parallel to the magnetic field, and
whose radius is inversely proportional to the intensity of the field.7

• In the proof of (3.3) we apply the Helffer-Sjöstrand formula8 for the
representation of a smooth compactly supported function ϕ of a self-
adjoint operator L via a quasi-analytic extension of ϕ, and the resolvent
of L. Moreover, we make use of appropriate estimates of the resolvents
of H0 and Hω(b).
For the proof of (3.2), we apply the so called suspension method,12,20

consisting of a standard extension of a Z3-ergodic random field defined
on Ω × R3, to a R3-ergodic random field. Once this extension is con-
structed, (3.2) follows quite easily from (3.3).

• We have formulated our assumptions on the random potential Vω seek-
ing for a reasonable compromise between generality and comprehensi-
bility. If more special classes of random potentials are considered, then
probably condition (2.1) could be relaxed in some cases.

• We have considered the asymptotic behaviour of the IDS only for posi-
tive energies, near or far from the Landau levels. An interesting problem
would be to consider this behaviour at negative energies in the cases
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when it is known that the spectrum of the operator Hω(b) almost surely
covers the real axis (e.g. in the case of Gaussian or attractive Poisson
potentials).
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In this paper we present some geometric objects (derivations, differential forms,
distributions, linear connections, their curvature and their torsion) on matrix
algebra using the framework of noncommutative geometry.
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1. Introduction

We study some differential calculi on the matrix algebra Mn(C) (most of
them used the techniques from noncommutative geometry), which have
been used in some different areas from mathematics and physics, here we
mention some of them: quantum groups,12 graded matrix algebra,20,21 the
noncommutative differential geometry of matrix algebras.1,2,16–18,24,25,30–32

The basic idea of noncommutative geometry is to replace an algebra of
smooth functions defined on a smooth manifold by an abstract associative
algebra A which is not necessarily commutative. In the context of non-
commutative geometry the basic role is the generalization of the notion of
differential forms (on a manifold). To any associative algebra A over the
real field or complex field k one associates a differential algebra, which is
a Z-graded algebra Ω(A) = ⊕n≥0Ωn(A) (where Ωn(A) are A-bimodules
and Ω0(A) = A) together with a linear operator d : Ωn(A) → Ωn+1(A)
satisfying d2 = 0 and d(ωω′) = (dω)ω′ + (−1)nωdω′, ω ∈ Ωn(A). The al-
gebra Ω(A) is also called the (noncommutative) differential calculus on the
algebra A.

A generalization of a differential calculus Ω(A) of an associative algebra
A is the ρ-differential calculus associated with a ρ-(commutative ) algebra
A, where A is a G-graded algebra, G is a commutative group and ρ is a
twisted cocycle. The differential calculus over a ρ-algebra A was introduced
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in Ref. 3 and continued in some recent papers Refs. 5–11,28,29.
The ”classical” noncommutative differential calculus and linear con-

nections on the algebra Mn(C) were studied in Ref. 16,18,26,27. The ρ-
differential calculi and the linear connections on matrix algebra are intro-
duced in Ref. 7. However, distributions, tensors and metrics on the algebra
Mn(C) were not introduced in that paper, and introducing these objects is
the aim of the present paper.

In the second section we review the basic geometrical objects about the
ρ-algebras as ρ-derivations, ρ-differential calculi, tensors, linear connections
and distributions. In the last section we apply the mentioned notions on
the matrix algebra Mn(C).

2. ρ-algebras

In this section we present briefly the class of the noncommutative algebras,
namely the ρ-algebras. For more details see Ref. 3.

Let G be an abelian group, additively written. A ρ-algebra A is a G-
graded algebra over that field k (which may be either the real or the complex
field), endowed with a cyclic cocycle ρ : G × G → k which fulfills the
properties

ρ(a, b) = ρ(b, a)−1 and ρ(a+ b, c) = ρ(a, c)ρ(b, c) (2.1)

for any a, b ,c ∈ G.

Notation 2.1. From now on, if M is a graded set, then Hg (M) will stand
for the set of homogeneous elements in M . The G-degree of a (nonzero)
homogeneous element f of M is denoted |f |.

A G-graded algebra A with a given cocycle ρ will be called ρ- commu-
tative (or almost commutative algebra ) if fg = ρ(|f | , |g|)gf for all
f, g ∈ Hg (A).

Example 2.1.

(1) Any usual (commutative) algebra is a ρ-algebra with the trivial group
G.

(2) Let be the group G = Z (Z2) and the cocycle ρ(a, b) = (−1)ab,
for any a, b ∈ G. In this case any ρ-(commutative) algebra is a su-
per(commutative) algebra.

(3) The N -dimensional quantum hyperplane3,5,6,11 SqN is the algebra gen-
erated by the unit element and N linearly independent elements
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x1, . . . , xN satisfying the relations

xixj = qxjxi, i < j,

for some fixed q ∈ k, q 6= 0. Then SqN is a ZN -graded algebra

SqN =
∞⊕

n1,...,nN

(SqN )n1...nN ,

with (SqN )n1...nN
the one-dimensional subspace spanned by products

xn1 · · ·xnN . The ZN -degree of these elements is denoted by

|xn1 · · ·xnN | = n = (n1, . . . , nN ).

Define the function ρ : ZN × ZN → k as

ρ(n, n′) = q
PN

j,k=1 njn
′
kαjk ,

with αjk = 1 for j < k, 0 for j = k and −1 for j > k. It is clear that
SqN is a ρ-commutative algebra.

(4) The algebra of matrix Mn (C)7 is a ρ−commutative algebra, as follows:
Let p, q ∈Mn(C),

p =




1 0 . . . 0
0 ε . . . 0
. . .

0 0 . . . εn−1


 and q =




0 0 . . . 0 1
ε 0 . . . 0 0
0 ε2 . . . 0 0
. . .

0 0 . . . εn−1 0



,

where εn = 1, ε 6= 1. Then pq = εqp and Mn(C) is generated by the set
B = {paqb|a, b = 0, 1, . . . , n − 1}. It is easy to see that paqb = εabqbpa

and qbpa = ε−abpaqb for any a, b = 0, 1, . . . , n−1. Let G := Zn⊕Zn, α =
(α1, α2) ∈ G and xα := pα1qα2 ∈Mn(C). Setting ρ(α, β) = εα2β1−α1β2 ,
one sees that xαxβ = ρ(α, β)xβxα, for any α, β ∈ G, xα, xβ ∈ B. It is
clear that the map ρ : G × G → C, ρ(α, β) = εα2βi−α1β2 is a cocycle
and Mn (C) is a ρ -commutative algebra.

2.1. ρ-derivations

Definition 2.1.7 Let α, β ∈ G. A ρ-derivation of the order(α, β) is a linear
map X : A→ A, which fulfills the properties

(1) X : A∗ → A∗+β ,
(2) X(fg) = (Xf)g + ρ(α, |f |)f(Xg), for any f ∈ A|f | and g ∈ A.
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The left product between the element f ∈ A and a derivation X of the
order (α, β) is defined in a natural way: fX : A→ A, (fX)(g) = fX(g) for
any g ∈ A. Remark that fX is a derivation of the order (|f |+ α, |f |+ β)
if and only if the algebra A is ρ-commutative.

Next we study the case when A is a ρ-commutative algebra.
Let X be a ρ-derivation of the order (α, β) and X ′ a ρ-derivation of the

order (α′, β′). The ρ-bracket ofX andX ′ is [X,X ′] = X◦X ′−ρ(α, β′)X ′◦X
and satisfies the following property: [X,X ′] is a ρ-derivation of the order
(α+ α′, β + β′) if and only if ρ(α, β)ρ(α′, β′) = 1.

Definition 2.2.3 We say that X : A→ A is a ρ-derivation if it has the order
(|X| , |X|), i.e., X : A∗ → A∗+|X| and X(fg) = (Xf)g + ρ(|X| , |f |)f(Xg)
for any f ∈ A|f | and g ∈ A.

It is known3 that the ρ-commutator [X,Y ]ρ = XY − ρ(|X| , |Y |)Y X
of two ρ -derivations is also a ρ-derivation and the linear space of all ρ-
derivations is a ρ-Lie algebra, denoted by ρ-DerA.

One verifies immediately that for such an algebra A, ρ -DerA is not only
a ρ-Lie algebra, but also a left A-module with the action of A on ρ -DerA
defined by (fX)g = f(Xg), for f , g ∈ A and X ∈ ρ-DerA.

Let M be a G-graded left module over a ρ-commutative algebra A, with
the usual properties, in particular |fψ| = |f | + |ψ| for f ∈ A, ψ ∈ M .
Then M is also a right A-module with the right action on M defined by
ψf = ρ(|ψ| , |f |)fψ, for any ψ ∈ Hg (M) and f ∈ Hg (A). In fact M is a
bimodule over A, i.e., f(ψg) = (fψ)g for any f , g ∈ A, ψ ∈M .

2.2. Differential calculi on a ρ-algebra

We generalize the classical notions of differential graded algebra and the
differential graded superalgebras by defining so called differential graded ρ
-algebras.

Denote by G′ = Z×G and define the cocycle ρ′ : G′ ×G′ → k through

ρ′ ((n, α) , (m,β)) = (−1)nm ρ (α, β) .

It is easy to see that the function ρ′ satisfies the properties (2.1).

Definition 2.3. We say that Ω =
⊕

(n,β)∈G′ Ω
n
β is a ρ-differential graded

algebra (DG ρ− algebra) if there is an element α ∈ G and a map d : Ωnβ →
Ωn+1
β of degree (1, α) ∈ G′ and the G′-degree |d|′ = (1, 0) such that d2 = 0

and

d(ωθ) = (dω) θ + (−1)n ρ (α, |ω|)ωdθ
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for any ω ∈ Ωn|ω| and θ ∈ Ω.

If we denote |ω|′ = (n, |ω|) the G′-degree of ω ∈ Ωn|ω|, then the last
equality becomes

d(ωθ) = (dω)θ + ρ′(|d|′ , |ω|′)ωdθ.
It follows that Ω is a ρ′-algebra.

Example 2.2.

(1) In the case where the group G is trivial, then Ω is the classical differ-
ential graded algebra.

(2) When the group G is Z2 and the map ρ is given by ρ(a, b) = (−1)ab,
then Ω is a differential graded superalgebra (see Refs. 22,23).

Definition 2.4. Let A be a ρ-algebra. Then

Ω(A) =

⊕

(n,α)∈G′
Ωnα (A) , d




is a ρ-differential calculus over A if Ω (A) is a ρ-differential graded algebra,
Ω (A) is an A-bimodule and Ω0 (A) = A.

The first example of a ρ-differential calculus over the ρ -commutative
algebra A is the algebra of forms (Ω(A), d) of A from Ref. 3. The second ex-
ample of a ρ-differential calculus over a ρ-algebra is the universal differential
calculus of A from the next paragraph.

2.2.1. The algebra of forms of a ρ-algebra

In this paragraph we construct the algebra of forms Ω(A) of an almost
commutative algebra A (see Ref. 3).

The algebra of forms of an the ρ-algebra A is given in the classical
manner: Ω0(A) := A and Ωp(A) for p = 1, 2, . . . as the G -graded space of
p-linear maps αp : ×pρ- DerA→ A, p-linear in sense of left A-modules

αp(fX1, . . . , Xp) = fαp(X1, . . . , Xp),

αp(X1, . . . , Xjf,Xj+1, . . . , Xp) = αp(X1, . . . , Xj , fXj+1, . . . Xp)

and ρ-alternating, that is,

αp(X1, . . . , Xj , Xj+1, . . . , Xp)

= −ρ(|Xj | , |Xj+1|)αp(X1, . . . , , Xj+1, Xj, . . . , Xp)
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for j = 1, . . . , p − 1, Xk ∈ ρ-Der (A), k = 1, . . . p, f ∈ A, and where Xf is
the right A-action on ρ -DerA.

Then Ωp(A) is in natural way a G-graded right A-module with

|αp| = |αp(X1, . . . , Xp)| − (|X1|+ · · ·+ |Xp|)
and with the right action of A defined as

(αpf)(X1, . . . , Xp) = αp(X1, . . . , Xp)f.

From the previous considerations, it follows that Ω(A) =
⊕∞

p=0 Ωp(A) is a
G-graded A-bimodule.

Exterior differentiation is defined to be a linear map d : Ωp(A) →
Ωp+1(A), for all p ≥ 0, given by

df(X) = X(f),

and for p = 1, 2, . . . ,

dαp(X1, . . . , Xp+1)

:=
p+1∑

j=1

(−1)j−1ρ(
j−1∑

i=1

|Xi| , |Xj |)Xjαp(X1, . . . , X̂j , . . . , Xp+1)

+
∑

1≤j<k≤p+1

(−1)j+kρ(
j−1∑

i=1

|Xi| , |Xj |)ρ(
j−1∑

i=1

|Xi| , |Xk|)

×ρ(
k−1∑

i=j+1

|Xi| , |Xk|)αp([Xj , Xk]ρ, . . . , X1, . . . , X̂j , . . . , X̂k, . . . Xp+1).

One can show that d has degree 0, and that d2 = 0.
There is an exterior product Ωp (A) × Ωq (A) → Ωp+q (A), (αp , βq) 7→

αp ∧ βq , defined by the ρ-antisymmetrization formula

αp ∧ βq (X1, . . . , Xp+q)

=
∑
σ

sign(σ) (ρ-factor)αp
(
Xσ(1), . . . , Xσ(p)

)
βq

(
Xσ(p+1), . . . , Xσ(p+q)

)
.

The sum is over all permutations σ of the cyclic group Sp+q such that
σ (1) < · · · < σ (p) and σ (p+ 1) < · · · < σ (p+ q). The ρ-factor is the prod-
uct of all ρ(

∣∣Xσ(j)

∣∣ , |αp |) for p+1 ≤ j ≤ p+ q and all ρ(
∣∣Xσ(j)

∣∣ , ∣∣Xσ(k)

∣∣)−1

for j < k and σ(j) > σ(k).
The algebra Ω(A) is a G′-graded algebra with the group G′ = Z × G.

Denote the G′ degree of αp by |αp|′ = (p, |αp|). It is easy to see that the
map ρ′ : G′×G′ → k defined by ρ′((p, a), (q, b)) = (−1)pqρ(a, b) is a cocycle
and that Ω(A) is a ρ′-commutative algebra. Moreover, the map d is a ρ′-
derivation of Ω(A) with G′-degree |d|′ = (+1, 0).



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

28 C. Ciupală

2.2.2. The algebra of universal differential forms of a ρ-algebra

We present here our construction of algebra of universal differential forms
ΩαA of the ρ-algebra A (not necessarily ρ -commutative) for a given element
α ∈ G.

Let α be an arbitrary element of G. By definition, the algebra of univer-
sal differential forms (also called the algebra of noncommutative differential
forms) of the ρ-algebra A is the algebra ΩαA generated by the algebra A
and the symbols da, a ∈ A, which satisfies the following relations:

(1) da is linear in a.
(2) The ρ−Leibniz rule: d(ab) = d(a)b+ ρ(α, |a|)adb.
(3) d(1) = 0.

Let ΩnαA the space of n−forms a0da1 . . . dan, ai ∈ A for any 0 ≤ i ≤ n.
The space ΩnαA is an A-bimodule with the left multiplication

a(a0da1 . . . dan) = aa0da1 . . . dan,

and the right multiplication is given by

(a0da1 · · · dan)an+1

=
n∑

i=1

(−1)n−iρ(α,
n∑

j=i+1

|aj |)(a0da1 . . . d(aiai+1) . . . dan+1)

+(−1)nρ(α,
n∑

i=1

|aj |)a0a1da2 . . . dan+1.

The algebra ΩαA =
⊕

n∈Z ΩnαA is a Z-graded algebra with the multiplica-
tion ΩnαA · Ωmα A ⊂ Ωn+m

α A given by

(a0da1 . . . dan)(an+1dan+2 . . . dam+n)

= ((a0da1 . . . dan)an+1)dan+2 . . . dam+n).

for any ai ∈ A, 0 ≤ i ≤ n+m, n,m ∈ N.
We define the G−degree of the n-form a0da1 . . . dan by

|a0da1 . . . dan| =
n∑

i=0

|ai| .

It is clear that |ωn · ωm | = |ωn|+|ωm| for any homogeneous forms ωn ∈ ΩnαA
and ωm ∈ Ωmα A.

The algebra ΩαA is a G′ = Z×G-graded algebra with the G′ degree of

the n-form a0da1 . . . dan given by |a0da1 . . . dan|′ = (n,
n∑
i=0

|ai|).



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

Geometrical objects on matrix algebra 29

We may define the cocycle ρ′ : G′ ×G′ → k on the algebra ΩαA

ρ′(|ωn|′ , |ωm|′) = (−1)nm ρ(|ωn| , |ωm|)
for any ωn ∈ ΩnαA, ωm ∈ Ωmα A. Then ΩαA is a ρ′-algebra. We note here
that G′-degree of the map d is (1, 0) i.e. d : Ωn|ω| → Ωn+1

|ω| , and the G′-degree
of an element x ∈ A is |x|′ = (0, |x|).

Theorem 2.1.7 1. The mapping d : Ω∗αA→ Ω∗+1
α A satisfies

d(ωθ) = (dω)θ + (−1)n ρ(α, |ω|)ωdθ
for any ω ∈ ΩnαA, θ ∈ Ωmα A.

2. (ΩαA, d) is a ρ-differential calculus over A.

Example 2.3. In the case where the group G is trivial, A is the usual
associative algebra and ΩαA is the algebra of universal differential forms of
A.

Example 2.4. If the group G is Z2 and the cocycle is as in Example 2.2,
then A is a superalgebra. In the case where α = 1 ΩαA is the superalgebra
of universal differential forms of A in Ref. 23.

2.3. Tensors

In this subsection we present briefly the ρ-tensor algebra T (A) of the almost
commutative algebra A. For more details see Ref. 28. Here Ω (A) is the
algebra of forms of A.

For α1, . . . , αp ∈ Hg
(
Ω1 (A)

)
and X1, . . . , Xp ∈ Hg (ρ-Der (A)) we set

α = α1 ⊗ρ · · · ⊗ρ αp to be the ρ-p-linear map defined by

(α1 ⊗ρ · · · ⊗ρ αp) (X1, . . . , Xp) :=
p∏

i=1

αi (Xi)
p−1∏

k=1

ρ
( p∑

j=k+1

|Xj | , |αk|
)

For example (α1 ⊗ρ α2) (X1, X2) = α1 (X1)α2 (X2) ρ (|X2| , |α1|).
It is easy to check that

α (fX1, . . . , Xp) = fα (X1, . . . , Xp)

and

α (X1, . . . , Xif, . . . , Xp) = α (X1, . . . , fXj+1, . . . , Xp) .

Then α = α1⊗ρ · · · ⊗ρ αp is a homogeneous map of G-degree |α| =
p∑
i=1

|αi|.
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The ρ-tensor product be extended to obtain the products of non homo-

geneous forms such that if β =
p∑
i=1

βi then

α1 ⊗ρ · · · ⊗ρ β ⊗ρ · · · ⊗ρ αp =
p∑

i=1

α1 ⊗ρ · · · ⊗ρ βi ⊗ρ · · · ⊗ρ αp.

The set T⊗
p
ρ is the A−A bimodule generated by the elements α1⊗ρ · · ·⊗ραp

defined above with the natural actions

(α1 ⊗ρ · · · ⊗ρ αp) f = α1 ⊗ρ · · · ⊗ρ αpf
and

f (α1 ⊗ρ · · · ⊗ρ αp) = (fα1)⊗ρ · · · ⊗ρ αp
for f ∈ Hg (A). Of course, the natural property

α1 ⊗ρ · · · ⊗ρ αif ⊗ρ · · · ⊗ρ αp = α1 ⊗ρ · · · ⊗ρ fαi+1 ⊗ρ · · · ⊗ρ αp
also holds.

2.3.1. ρ-tensor algebra

The ρ-tensor algebra T⊗ρ =
⊕

n≥0 T
⊗n

ρ , T⊗
0
ρ = A is the direct sum of linear

spaces. There is a natural algebra structure ⊗ρ defined on homogeneous
elements of T⊗ρ by

(T p ⊗ρ T q)(X1, . . . , Xp+q)

= T p (X1, . . . , Xp)T q (X1, . . . , Xq) ρ
( q∑

j=1

|Xp+j | , |T p|
)
,

for all T p ∈ T⊗
n
ρ , T q ∈ T⊗

q
ρ and X1, . . . , Xp+q ∈ Hg (ρ-Der (A)), and

extended linearly on T⊗ρ , and which coincides on A with initial product in
A.

Remark that |T p ⊗ρ T q| = |T p| + |T q|, the product ⊗ρ is associative,
and T1f ⊗ρ T2 = T1 ⊗ρ fT2 for any f ∈ Hg (A) and T1, T2 ∈ Hg (T⊗ρ).

2.4. Connections on a ρ-bimodule over a ρ-algebra

Let A be a ρ-algebra and M a ρ-bimodule on A.

Definition 2.5.6 A linear connection on M is a linear map of ρ -DerA into
the linear endomorphisms of M , ∇ : ρ−A → End(M) such that

∇X : Mp →Mp+|X|,

∇aX(m) = a∇X(m)
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and

∇X(ma) = ρ(|X| , |m|)mX(a) +∇X(m)a

if we use the right structure of M , or

∇X(am) = X(a)m+ ρ(|X| , |a|)a∇X(m),

if M is considered a left bimodule, for all p ∈ G, a ∈ A, X ∈ Hg (ρ-DerA)
and m ∈ Hg (M).

We say that the distribution D in the ρ-algebra A over the ρ-differential
calculus (Ω (A) = ⊕n≥0Ωn (A) , d) is parallel with respect to the connection
∇ : ρ-DerA→ End(Ω1 (A)) if

∇X(m) = 0 for any X ∈ ρ-DerA and for any m ∈ D.
The curvature R of the connection ∇ on M is defined in a natural way by

R : (ρ-DerA)× (ρ-DerA) → End(M); (X,Y ) 7−→ RX,Y ,

RX,Y (m) = ∇X∇Y − ρ(|X| , |Y |)∇Y∇X(m)−∇[X,Y ]ρ(m)

for any X,Y ∈ ρ-DerA, and m ∈M , where

[X,Y ]ρ = X ◦ Y − ρ(|X| , |Y |)Y ◦X.
Theorem 2.2.6 If the algebra A is ρ-commutative, then the curvature of
any connection ∇ has the following properties:

(1) A-linearity: RaX,Y (m) = aRX,Y ;
(2) RX,Y is right A-linear: RX,Y (ma) = RX,Y (m)a;
(3) RX,Y is left A-linear: RX,Y (am) = ρ(|X|+ |Y | , |a|)RX,Y (m);
(4) R is a ρ-symmetric map: RX,Y = −ρ(|X| , |Y |)RY,X ;

for any a ∈ A|a|, m ∈M , X,Y ∈ ρ -DerA.

In the case where the bimodule M is ρ-DerA then the torsion of the
connection ∇ is the map

T∇ : (ρ-DerA)× (ρ-DerA) → ρ-DerA

defined by

T∇(X,Y ) = [∇XY,∇YX]ρ − [X,Y ]ρ

for any homogeneous X,Y ∈ ρ-DerA.

Remark 2.1. If the group G is Z2 and the cocycle is from example 2 then
A is a superalgebra. In this case we obtain the same definition of linear
connections as in Ref. 22.
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Remark 2.2. The noncommutative geometry of ρ-algebras may be viewed
as a natural generalization of fermionic differential calculus.

2.5. Distributions

Let A be a ρ-algebra and (Ω (A) , d) a ρ-differential calculus over A.

Definition 2.6. A distribution D in the ρ-algebra A over the ρ -differential
calculus (Ω (A) , d) is an A-sub-bimodule D of Ω (A).

The distribution D is globally integrable if the is a ρ -subalgebra B of
A such that D is the space generated by AdB and (dB)A.

Remark 2.3. Let us assume that A is generated as algebra by n homo-
geneous coordinates x1, x2, . . . , xn and the ρ-differential calculus (Ω (A) , d)
by the differentials dx1, dx2, . . . , dxn with some relations between them. In
this case any globally integrable distribution D is generated by a subset of p
elements, denoted by I of {1, . . . , N}, such that D is generated by xjyi and
yixj for any j ∈ {1, . . . , N} and i ∈ I. Thus we say that the distribution D
has the dimension p. For other examples, see Refs. 6,9–11.

Definition 2.7. We say that the distribution D over the ρ-differential cal-
culus (Ω (A) , d) is parallel with respect to the connection ∇ : ρ-DerA →
End (ΩA) if

∇X(m) = 0 for any X ∈ ρ-DerA and for any m ∈ D.

3. Applications to the matrix algebra

In this section we apply the geometrical objects defined in the previous
section to the particular case of the matrix algebra Mn(C).

3.1. Derivations

We denote by ρ-DerMn(C) the set of ρ-derivations of the algebra Mn(C),
and it is generated by the elements ∂

∂pα1 , ∂
∂qα2 , with α = (α1, α2) ∈ G,

which acts on the basis {pα1qα2 | (α1, α2) ∈ G} like partial derivatives,

∂

∂pk
(pα1qα2) =

α1

k
pα1−kqα2 and

∂

∂pk
(qα2) = 0 of G-degree (−k, 0) (3.1)

and
∂

∂qk
(qα2pα1) =

α2

k
qα2−kpα1 and

∂

∂qk
(pα1) = 0 of G-degree (0,−k) (3.2)
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for any (α1, α2) ∈ G. Remark that the first relation from (3.2) is equivalent
with

∂

∂qk
(pα1qα2) =

α2

k
εα1kpα1qα2−k (3.3)

From a simple calculus we obtain that the applications from the equa-
tions (3.1) and (3.2) are ρ-derivations. It follows that ρ- DerMn(C) is a
Mn(C)-bimodule generated by 2n − 1 elements and the ρ-bracket of the
ρ-derivations is zero, i.e., [ ∂

∂pk1
, ∂
∂qk2

] = 0. Then any X ∈ ρ-DerMn(C) is
given by the relation

X =
∑

α=(α1,α2)∈G
(
∂

∂pα1
Xα1 +

∂

∂qα2
Xα2), (3.4)

where Xα1 , Xα2 ∈Mn(C). We use the compact form

X =
∑

α∈G
∂αX

α. (3.5)

to write the derivation in (3.4).

3.2. The algebra of forms of Mn(C)

In this section we use the construction of the algebra of forms of a ρ-
commutative algebra in Ref. 3 to introduce our construction of the algebra
of forms of the algebra Mn(C). Thus we obtain a new differential calculus
on the matrix algebra.

We denote by Ωp (Mn(C)) the space of p− forms and

Ω (Mn(C)) =
⊕

p∈Z
Ωp (Mn(C))

the algebra of forms of Mn(C).
The bimodule Ω1 (Mn(C)) is also free of rank 2n − 1 with the ba-

sis dual to the basis {∂α | α ∈ G} :=
{

∂
∂pi ,

∂
∂qj | i, j = 1, . . . , n

}
of the

bimodule ρ-Der (Mn(C)). The basis of Ω1(Mn(C)) is {dα| α ∈ G} :={
dpi , dqj | i, j = 1, . . . , n

}
with the relations

dpi(
∂

∂pj
) = 0 for i 6= j, dpi(

∂

∂pi
) = 1 and dpi(

∂

∂qj
) = 0, (3.6)

dqi(
∂

∂qj
) = 0 for i 6= j, dpi(

∂

∂pi
) = 1 and dqi(

∂

∂pj
) = 0. (3.7)

For a simpler writing, the relations (3.6) and (3.7) can be written in the
following compact form

dα(∂β) = 0 for α 6= β, and dα(∂α) = 1. (3.8)
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Remark that the G−degree of the 1-form dpk is
∣∣dpk

∣∣ = (k, 0) and that
of dqk is

∣∣dqk

∣∣ = (0, k).
An arbitrary 1-form α1 can be written as

α1 =
∑

α∈G
dαAα :=

n∑

i=1

dpiApi +
n∑

j=1

dqjAqj , (3.9)

where Api = α1( ∂
∂pi ) ∈ Mn(C) and Aqj = α1( ∂

∂qj ) ∈ Mn(C), for i, j =
1, . . . , n, or using the compact form we have: Aα = α1(∂α) ∈ Mn(C), for
α ∈ G.

Because Ω1 (Mn(C)) is of finite rank n2 − 1, Ωp (Mn(C)) is the pth
exterior power of Ω1 (Mn(C)) in the sense of Mn(C)− modules and is also
free, of rank

(
p, n2 − 1

)
. An arbitrary p−form αp can be written as

αp =
1
p!

(−1)
p(p−1)

2

p∑

i1,...,ip=1

dαi1
∧ · · · ∧ dαikp

Ai1...ip ,

with

Ai1...ip = αp(∂αi1
, . . . , ∂αip

) ∈Mn(C).

From these considerations we see that the algebra Ω (Mn(C)) is generated
by the elements pi, qj for i, j = 1, . . . , n and their differentials dpi , dqj , for
i, j = 1, . . . , n with the relations

piqj = εijqjpi, pipj = pjpi,

dpidqj = −εijdqjdpi , dpidpj = dpjdpi

and

pidqj = εijdqjpi, qidpj = ε−ijdpjqi, dpipj = pjdpi , qidqj = dqjqi.

3.3. The algebra of universal differential forms of Mn(C)

In this paragraph we present our construction of the algebra of universal
differential forms of Mn(C), using the construction from the Subsection 2.2.

Let α = (α1, α2) ∈ G = Zn × Zn an arbitrary element. Ω1
αMn(C) is the

Mn(C)-bimodule generated by the elements adb, with a, b ∈ Mn(C) which
satisfies the properties

(1) d(a+ b) = da+ db,
(2) d(ab) = (da)b+ ρ(α, |a|)adb,
(3) d1 = 0, for any a, b ∈Mn(C), where 1 is the unit of Mn(C).
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By a simple computation we obtain the following result.

Proposition 3.1. One has

(1) pkdp = (dp)pk and qldq = (dq)ql,
(2) dpk = εα(k,0)dp,
(3) dps = εα(0,s)dp,
(4) d(pkqs) = εα(k,0)p

k−1(dp)qs + ε−α2εα(0,s)p
kqs−1dq,

where εα(0,0) = 0, εα(k,0) = 1 + ε−α2 + ε−2α2 + · · · + ε−(k−1)α2 for k ∈
{1, . . . , n− 1} and εα(0,s) = 1 + ε−α1 + ε−2α1 + · · · + ε−(s−1)α1 for s ∈
{1, . . . , n− 1}.

The structure of theMn(C)-bimodule Ω1
αMn(C) is given in the following

theorem.

Theorem 3.1. Ω1
αMn(C) is generated by the elements pi, qj , dpk, dqs,

i, j, k, s ∈ {0, . . . , n− 1} with the relations

(1) pkqs = εksqspk,
(2) pkdpl = (dpl)pk and qsdql = (dql)qs,
(3) dpk = εα(k,0)p

k−1dp and dqs = εα(0,s)q
s−1dq

(4) d(pkqs) = εα(k,0)ε
spk−1qs(dp) + ε−α2εα(0,s)p

kqs−1dq,

for any k, l, s ∈ G.

The Mn(C)-bimodule ΩkαMn(C) is again free and an arbitrary element
ωk ∈ ΩkαMn(C) can be written as

ωk =
∑

l+s=k

Al+s(dp)l(dq)s,

where Al,s ∈Mn(C).
From these considerations we obtain the following theorem which gives

the structure of the algebra ΩαMn(C).

Theorem 3.2. The algebra ΩαMn(C) is generated by the elements
pi, qj , (dp)k := P k, (dq)s := Qs, i, j ∈ {0, . . . , n− 1}, k, s ∈ Z with the
relations

(1) piqj = εijqjpi, P kQs = (−1)ksεksQsP k,
(2) pkP s = P spk, qkQs = Qsqk,
(3) pkQs = εksQspk, qkP s = ε−ksP sqk.
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3.4. Tensors

In this subsection we give the tensor components in the matrix algebra.
Let T be the ρ -tensor algebra of Mn(C). The module T⊗

p
ρ is generated

by dαi1 ⊗ρ · · · ⊗ρ dαip , with αi1 , . . . , αip ∈ G. Specifically, any element
T ∈ T⊗p

ρ can be written in terms of the elements of the basis as

T =
∑

i1,...,ip∈G
dαi1 ⊗ρ · · · ⊗ρ dαipTαi1 ...αip

,

where

Tαi1 ...αip
= T

(
∂αi1

, . . . , ∂αip
)×

p−1∏

k=1

ρ
( p∑

j=k+1

|xαij
|, |xαik

|
)
.

3.5. Linear connections on Mn(C)

Next we introduce linear connections on the algebra Mn(C). A linear con-
nection on Mn(C) is a linear map

∇ : ρ-DerMn(C) → End(ρ- DerMn(C))

∇X : (ρ-DerMn(C))∗ → (ρ-DerMn(C))∗+|X|

satisfying the relations from the Definition 2.5. Any linear connection is well
defined if the connections coefficients are given on the basis {∂α|α ∈ G},
that is,

∂σΓσα,β = ∇∂α∂β

for any α, β ∈ G.
The curvature R of the connection ∇ is given by the curvature coeffi-

cients: Rσα,β,τ

∂σR
σ
α,β,τ = [∇∂α ,∇∂β

](∂τ )−∇[∂α,∂β ](∂τ ).

A simple computation shows that

Rσα,β,τ = ∂α(Γσβ,τ )− ρ(α,
∣∣∣Γµβ,τ

∣∣∣)Γσα,µ − ρ(α, β)(∂βΓσα,τ − ρ(β,
∣∣∣Γµβ,σ

∣∣∣)Γσβ,µ)
for any α, β, τ, σ ∈ G.

The torsion of the connection∇ is well defined by the torsion coefficients

T (∂α, ∂β) = ∂σT
σ
α,β

and the relations between connections coefficients and the torsion coeffi-
cients are

Tσα,β = Γσα,β − ρ(α, β)Γσβ,α.
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3.5.1. Linear connections on Ω1
α (Mn(C))

Any linear connection ∇ on the Mn(C)-bimodule Ω1
α(Mn(C)) is given by

the connection coefficients thus (using the compact formula)

∇∂β
dαp = Γp,pβ dαp+ Γp,qβ dαq,

Γpβ , Γqβ ∈Mn(C).
For example we have

∇ ∂

∂pi
(dαp) = Γp,pi dαp+ Γp,qi dαq

and

∇ ∂

∂pi

(
pkdαp

)
=

∂

∂pi
(
pk

)
dαp+ ρ ((−i, 0) , (k, 0)) pk∇ ∂

∂pi
(dαp)

=
k

i
pk−idαp+ pkΓp,pi dαp+ Γp,qi dαq.

3.6. Distributions

In this subsection we introduce distributions on the matrix algebra Mn(C)
over the differential calculi Ω (Mn(C)) and Ωα (Mn(C)). In each of these
situations we give characterizations of globally integrable distributions and
globally integrable distributions parallel with respect to a connection ∇ on
Ω1 (Mn(C)) and Ω1

α (Mn(C)).

3.6.1. Distributions on Ω(Mn(C))

From the Definition 2.6 a distribution D on Ω (Mn(C)) is a Mn(C) ρ-sub-
bimodule of Ω (Mn(C)). The distribution D is globally integrable if there
is a subspace B of Mn(C) such that D is generated by Mn(C)d (B), so the
determination of these kind of distributions is reduced to the determination
of subalgebras from Mn(C).

Let Dn = {k ∈ N such that k|n} be the set of all natural divisors of n.
Then for any subalgebra B of Mn(C) there are k, s ∈ Dn such that B is gen-
erated by the set

{
pk·iqs·j , i, j ∈ Z}

. Consequently we have the following
result.

Proposition 3.2. For any globally integrable distribution D of Ω(Mn(C))
there are k, s ∈ Dn such that D is generated by the elements pi, qj for
i, j = 1, . . . , n and the differentials dpi·k , dqj·s , for i, j = 1, . . . , n.

Remark 3.1. Without any confusion the previous proposition may be
written using the compact form (3.5) and (3.8): For any globally integrable
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distribution D of Ω (Mn(C)) there is a subgroup H of G such that D is
generated by the elements aαdbβ , with aα, bβ ∈ Mn(C) with α ∈ G and
β ∈ H.

Remark 3.2. If D is a globally integrable distribution of Ω (Mn(C)) of the
dimension p, then p is a divisor of n2.

It is obvious that a linear connection ∇ on the Mn(C) -bimodule
Ω1(Mn(C)) is given by its connection coefficients, again denoted by Γσα,β ∈
Mn(C), and these are given by the equation

∇∂α
dβ = Γσα,βdσ,

for any α, β ∈ G.

Proposition 3.3. Any globally integrable and parallel distribution D with
respect to a connection ∇ : ρ-DerMn(C) →End(Ω1 (Mn(C))) of dimension
p is given by the equations

Γσα,β = 0,

for a subgroup H of G and for any σ, α ∈ G, β ∈ H.

3.6.2. Distributions on Ωα (Mn(C))

Let α ∈ G. Any distribution D on Ωα (Mn(C)) is a Mn(C) ρ -sub-bimodule
of Ωα (Mn(C)).

Using the structure of Ωα (Mn(C)) (Proposition 3.2) we have that any
globally integrable distribution D on Ωα (Mn(C)) is one of the subalgebras
Mn(C), Mn(C)dαp, Mn(C)dαq and Ωα (Mn(C)), consequently any globally
integrable distribution on Ωα (Mn(C)) has the dimension 0, 1 or 2.

Any globally integrable and parallel distribution D with respect to a
connection ∇ : ρ-DerMn(C) → End(Ω1

α (Mn(C))) of dimension 1 is given
by the equations

Γp,pβ = Γp,qβ = 0

if D is Mn(C)dαp and

Γq,pβ = Γq,qβ = 0

if it is Mn(C)dαq, for any β ∈ G
Conclusions and remarks. In this paper we introduce the principal

notions from the (noncommutative) geometry as differential calculi, tensors,
linear connections and distributions to the matrix algebra Mn(C) using
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methods of ρ-algebras. We note that the tensors and connections open a
way to introduce metrics and Levi-Civita connections on Mn(C).

The general theory of ρ−differential calculi and of linear connections
over ρ−algebras offers many new possibilities to study some noncommuta-
tive spaces (which may be quantum spaces), related to physics (which are
ρ-commutative algebras): the quantum hyperplane, the quantum torus, the
quaternionic algebra, etc.
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6. Ciupală, C., Connections and distributions on quantum hyperplane.
Czechoslovak J. Phys. 54, no. 8, 821–832 (2004).
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based on noncommutative geometry. Czechoslovak J. Phys., 50 , no. 1, 45–51
(2000).

16. Djemai, A.E.F. and Smail, H., An example of Zn-graded noncommutative
differential calculus. Preprint arXiv:math-ph/9908005.

17. Dubois-Violette, M., Kerner, R., and Madore, J., Noncommutative differen-
tial geometry of matrix algebras. J. Math. Phys., 31, no. 2, 316–322 (1990).

18. Dubois-Violette, M., Lectures on graded differential algebras and noncom-
mutative geometry. In: Maeda, Y. et al. (eds.), Noncommutative Differential
Geometry and Its Applications to Physics(Shonan, 1999), Math. Phys. Stud.
23, Kluwer Academic Publ., Dordrecht, pp. 245–306 (2001).

19. Dubois-Violette, M. and Michor, P.W., Connections on central bimodules in
noncommutative differential geometry. J. Geom. Phys., 20, no. 2-3, 218–232
(1996).

20. Grosse, H. and Reiter, G., Graded differential geometry of graded matrix
algebras. J. Math. Phys., 40, no. 12, 6609–6625 (1999).

21. Grosse, H. and Reiter, G., Noncommutative supergeometry of graded matrix
algebras. In: Proceedings of the International Schladming School, Springer
(2000).

22. Jadczyk, A. and Kastler, D., Graded Lie-Cartan pairs. II. The Fermionic
differential calculus. Ann. of Physics 179, 169–200 (1987).

23. Kastler, D., Cyclic Cohomology Within the Differential Envelope. Travaux en
cours 30. Hermann, Paris (1988).

24. Konechny, A. and Schwarz, A., Introduction to M(atrix) theory and noncom-
mutative geometry. Phys.Rept. 360, 353–465 (2002).

25. Lychagin, V., Colour calculus and colour quantizations. Acta Appl. Math,
41, 193–226 (1995).

26. Madore, J., Masson, T., and Mourad, J., Linear connections on matrix ge-
ometries. Classical Quantum Gravity, 12, no. 6, 1429–1440 (1995).

27. Mourad, J., Linear connections in noncommutative geometry. Classical
Quantum Gravity, 12, no. 4, 965–974 (1995).

28. Ngakeu, F., Tensors and metrics on almost commutative algebras. Lett. Math.
Phys. (submitted in 2007).

29. Ngakeu, F., Levi-Civita connection on almost commutative algebras. Int. J.
Geom. Methods Mod. Phys., 4, no. 7, 1075–1085 (2007).

30. Varilly, J.C., Noncommutative geometry and quantization. In: Barata, J.C.A.
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F-75775 Paris Cédex 16, France
E-mail: esteban@ceremade.dauphine.fr

MICHAEL LOSS

School of Mathematics,
Georgia Institute of Technology,

Atlanta, GA 30332, USA
E-mail: loss@math.gatech.edu

Distinguished selfadjoint extensions of operators which are not semibounded
can be deduced from the positivity of the Schur Complement (as a quadratic
form). In practical applications this amounts to proving a Hardy-like inequality.
Particular cases are Dirac-Coulomb operators where distinguished selfadjoint
extensions are obtained for the optimal range of coupling constants.
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1. Introduction

In Ref. 4 we defined distinguished self-adjoint extensions of Dirac-Coulomb
operators in the optimal range for the coupling constant. This was done by
using a Hardy-like inequality which allowed the extension of one compo-
nent of the operator by using the Friedrichs extension. Then, the remain-
ing component could be extended by choosing the right domain for the
whole operator. The method of proof used simple arguments of distribu-
tional differentiation. This work was the sequel of a series of papers where
distinguished self-adjoint extensions of Dirac-Coulomb like operators were

∗ c© 2008 by the authors. This work may be reproduced, in its entirety, for non-
commercial purposes.
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defined by different methods almost in the optimal range, without reaching
the limit case (see Refs. 6,7,9,10,12–14).

Here we present an abstract version of the method introduced in Ref. 4.
We believe that this will clarify the precise structure and hypotheses nec-
essary to define distinguished self-adjoint extensions by this method.

The main idea in our method is that Hardy-like inequalities are funda-
mental to define distinguished (physically relevant) self-adjoint extensions
even for operators that are not bounded below.

We are going to apply our method to operators H defined on D2
0, where

D0 is some dense subspace of a Hilbert space H0. The general structure
taken into account here is:

H =
(
P Q

T −S
)
, (1.1)

where all the above operators satisfy Q = T ∗, P = P ∗, S = S∗ and S ≥
c1I > 0. Moreover we assume that P, Q, S, , T, S−1T and QS−1T send
D0 into H0.

In the Dirac-Coulomb case our choice was H0 = L2(R3,C2) and

P = V + 2− γ, Q = T = −iσ · ∇, S = γ − V ,

where V is a potential bounded from above satisfying

sup
x6=0

|x||V (x)| ≤ 1 . (1.2)

Moreover, σi, i = 1, 2, 3, are the Pauli matrices (see Ref. 4) and γ is a
constant slightly above maxR3 V (x). For D0 we chose C∞c (R3,C2). Note
that in our paper Ref. 4, where we deal with Dirac-Coulomb like operators,
there is an omission. We forgot to specify the conditions on the potential
V so that QS−1T is a symmetric operator on C∞c (R3,C2). The natural
condition is that each component of

(γ − V )−2∇V
is locally square integrable. This is easily seen to be true for the Coulomb-
type potentials.

In the general context of the operator H, as defined in (1.1), our main
assumption is that there exists a constant c2 > 0 such that for all u ∈ D0,

qc2(u, u) :=
(
(S + c2)−1Tu, Tu

)
+

(
(P − c2)u, u

) ≥ 0 . (1.3)

Note that since d
dαqα(u, u) ≤ −(u, u), (1.3) implies in fact that for all

0 ≤ α ≤ c2 and for all u ∈ D0,

qα(u, u) :=
(
(S + α)−1Tu, Tu

)
+

(
(P − α)u, u

) ≥ 0 . (1.4)
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Another consequence of assumption (1.3) is that the quadratic form

q0(u, u) =
(
S−1Tu, Tu

)
+

(
Pu, u

)
, (1.5)

defined for u ∈ D0, is positive definite:

q0(u, u) =
(
S−1Tu, Tu

)
+

(
Pu, u

) ≥ c2(u, u).

Note that the operator P +QS−1T which is associated with the quadratic
form q0 is actually the Schur complement of −S. Note also that by our
assumptions on P, Q, T S and by (1.3), for any 0 ≤ α ≤ c2, qα is the
quadratic form associated with a positive symmetric operator. Therefore
(by Thm. X.23 in Ref. 8), it is closable and we denote its closure by q̂α and
its form domain, which is easily seen to be independent of α (see Ref. 4)
by H+1. Our main result states the following:

Theorem 1.1. Assume the above hypotheses on the operators P,Q, T, S
and (1.3). Then there is a unique self-adjoint extension of H such that the
domain of the operator is contained in H+1 ×H0.

Remark 1.1. Note that what this theorem says that “in some sense” the
Schur complement of −S is positive, and therefore has a natural self-adjoint
extension, then one can define a distinguished self-adjoint extension of the
operator H which is unique among those whose domain is contained in the
form domain of the Schur complement of −S times H0.

2. Intermediate results and proofs

We denote by R the unique selfadjoint operator associated with q̂0: For all
u ∈ D(R) ⊂ H+1,

q̂0(u, u) = (u,Ru) .

R is an isometric isomorphism from H+1 to its dual H−1. Using the second
representation theorem in Ref. 5, Theorem 2.23, we know that H+1 is the
operator domain of R1/2, and

q̂0(u, u) = (R1/2u,R1/2u) ,

for all u ∈ H+1.

Definition 2.1. We define the domain D of H as the collection of all pairs
u ∈ H+1, v ∈ H0 such that

Pu+Qv , Tu− Sv ∈ H0 . (2.1)
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The meaning of these two expressions is in the weak (distributional)
sense, i.e., the linear functional (Pη, u) + (Q∗η, v) , which is defined for all
test functions η ∈ D0, extends uniquely to a bounded linear functional on
H0. Likewise the same for (−Sη, v) + (T ∗η, v) .

On the domain D, we define the operator H as

H

(
u

v

)
=

(
Pu+Qv

Tu− Sv

)
.

Note that for all vectors (u, v) ∈ D the expected total energy is finite.
The following two results are important in the proof of Theorem 1.1.

Proposition 2.1. Under the assumptions of Theorem 1.1

H+1 ⊂
{
u ∈ H0 : S−1Tu ∈ H0

}
, (2.2)

where the embedding holds in the continuous sense. Therefore, we have the
‘scale of spaces’ H+1 ⊂ H0 ⊂ H−1.

Proof. Choose c2 ≥ α > 0 . Since S ≥ c1I , we have for all 0 < δ ≤ c1α
c1+α

S−1 − (S + α)−1 ≥ δ S−2 ,

and so, for all u ∈ D0,

q0(u, u) ≥ qα(u, u) + α (u, u) + δ (S−1Tu, S−1Tu)

≥ δ (u, u) + δ (S−1Tu, S−1Tu) .

The proof can be finished by density arguments.

Lemma 2.1. For any F in H0,

QS−1F ∈ H−1 .

Proof. By our assumptions on H and by Proposition 2.1, for every η ∈ D0,
∣∣(S−1Tη, F )

∣∣ ≤ δ−1/2 ‖η‖H+1 ‖F‖2 .
Hence, the linear functional

η → (Q∗η, S−1F )

extends uniquely to a bounded linear functional on H+1.

Proof of Theorem 1.1. We shall prove Theorem 1.1 by showing that
H is symmetric and a bijection from its domain D onto H0. To prove the
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symmetry we have to show that for both pairs (u, v), (ũ, ṽ) in the domain
D,

(
H

(
u

v

)
,

(
ũ

ṽ

))
= (Pu+Qv, ũ) + (Tu− Sv, ṽ)

equals

(u, P ũ+Qṽ) + (v, T ũ− Sṽ) =
((

u

v

)
, H

(
ũ

ṽ

))
.

First, note that since (u, v) is in the domain,

S(v − S−1Tu) ∈ H0) . (2.3)

We now claim that

(Pu+Qv, ũ) = (Ru, ũ) + (S(v − S−1Tu), S−1T ũ ) .

Note that each term makes sense. The one on the left, by definition of
the domain and the first on the right, because both u, ũ are in H+1. The
second term on the right side makes sense because of (2.3) above and Propo-
sition 2.1. Moreover both sides coincide for ũ chosen to be a test function
and both are continuous in ũ with respect to the H+1 -norm. Hence the
two expressions coincide on the domain. Thus we get that

(
H

(
u

v

)
,

(
ũ

ṽ

))

equals

(Ru, ũ)− (S(v − S−1Tu), ṽ − S−1T ũ ) ,

an expression which is symmetric in (u, v) and (ũ, ṽ). To show that the
operator is onto, pick any F1, F2 in H0. Since R is an isomorphism, there
exists a unique u in H+1 such that

Ru = F1 +QS−1F2 . (2.4)

Indeed, F1 is in H0 and therefore in H−1. Moreover the second term is also
in H−1 by Lemma 2.1.

Now define v by

v = S−1(Tu− F2) , (2.5)

which by Proposition 2.1 is in H0.
Now for any test function η we have that

(Pη, u) + (Q∗η, v) = (Pη, u) + (Tη, v)

= (Pη, u) + (Tη, S−1Tu) + (Tη, (v − S−1Tu) )
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which equals

(η,Ru) + (Tη, (v − S−1Tu) = (η, F1)

This holds for all test functions η, but since F1 is in H0, the functional
η → (Pη, u) + (Tη, v) extends uniquely to a linear continuous functional
on H0 which implies that

Pu+Qv = F1 .

Hence (u, v) is in the domain D and the operator H applied to (u, v) yields
(F1, F2).

Let us now prove the injectivity of H. Assuming that

H

(
u

v

)
=

(
0
0

)
, (2.6)

we find by (2.4) and (2.5),

v = S−1Tu , Ru = 0 .

Since R is an isomorphism, this implies that u = v = 0.
It remains to show the uniqueness part in our theorem. By the bijectivity

result proved above, for all
(
F1
F2

) ∈ H0
2, there exists a unique pair (û , v̂) ∈

H+1 ×H0 such that H
(
u
v

)
=

(
F1
F2

)
. Let us now pick any other self-adjoint

extension with domain D′ included in H+1×H0 . Then for all (u, v) ∈ D′,
H

(
u
v

)
belongs to H0

2. Hence there exist a unique pair (û , v̂) ∈ H+1 ×H0

such that H
(
û
v̂

)
= H

(
u
v

)
. But, by the above considerations on injectivity,

u = û and v = v̂. Therefore, D′ ⊂ D and so necessarily, D′ = D.
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We analyze the spectrum of the generalized Schrödinger operator in
L2(Rν), ν ≥ 2, with a general local, rotationally invariant singular interaction
supported by an infinite family of concentric, equidistantly spaced spheres. It
is shown that the essential spectrum consists of interlaced segments of the
dense point and absolutely continuous character, and that the relation of their
lengths at high energies depends on the choice of the interaction parameters;
generically the p.p. component is asymptotically dominant. We also show that
for ν = 2 there is an infinite family of eigenvalues below the lowest band.

Keywords: Schrödinger operators, singular interactions, absolutely continuous
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1. Introduction

Quantum systems with the spectrum consisting of components of a different
nature attract attention from different points of view. Probably the most
important among them concerns random potentials in higher dimensions
— a demonstration of existence of a mobility edge is one of the hardest
questions of the present mathematical physics. At the same time, a study of
specific non-random systems can reveal various types of spectral behaviour
which differ from the generic type.

An interesting example among these refers to the situation where the
spectrum is composed of interlacing intervals of the dense point and abso-
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lutely continuous character. A way to construct such models using radially
periodic potentials was proposed in Ref. 10 since at large distances in such
a system the radial and angular variables “almost decompose” locally and
the radial part behaves thus essentially as one-dimensional there are spec-
tral intervals where the particle can propagate, with the gaps between them
filled densely by localized states.

To be specific consider, e.g., the operator t = −d2/dx2 + q(x) on L2(R)
with q bounded and periodic. By the standard Floquet analysis the spec-
trum of t is purely absolutely continuous consisting of a family of bands,
σ(t) =

⋃N
k=0[E2k, E2k+1], corresponding to a strictly increasing, generi-

cally infinite sequence {Ek}Nk=0. Suppose now that the potential is mirror-
symmetric, q(x) = q(−x), and consider the operator

T = −4+ q(|x|)

on L2(Rν), ν ≥ 2. It was shown in Ref. 10 that the essential spectrum of
T covers the half-line [E0, ∞), being absolutely continuous in the spectral
bands of t and dense pure point in the gaps (E2k−1, E2k), k = 1, . . . N .

The well-known properties of one-dimensional Schrödinger operators tell
us that the dense point segments in this example shrink with increasing en-
ergy at a rate determined by the regularity of the potential. If we replace the
bounded q by a family of δ interactions, the segment lengths tend instead
to a positive constant, see Ref. 5. Nevertheless, the absolutely continuous
component still dominates the spectrum at high energies.

The aim of this paper is to investigate a similar model in which a family
of concentric, equally spaced spheres supports generalized point interactions
with identical parameters. We will demonstrate that the interlaced spectral
character persists and, depending on the choice of the parameters, each
of the components may dominate in the high-energy limit, or neither of
them. Specifically, the ratio of the adjacent pp and ac spectral segments,
(E2k−E2k−1)/(E2k+1−E2k), has three possible types of behaviour, namely
like O(kµ) with µ = 0,±1. What is more, in the generic case we have µ = 1
so the dense point part dominates, which is a picture very different from
the mobility-edge situation mentioned in the opening. Apart from this main
result, we are going to show that the interesting result about existence of
the so-called “Welsh eigenvalues” in the two-dimensional case1,11,14 also
extends to the situation with the generalized point interactions.
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2. The model

As we have said, we are going to investigate generalized Schrödinger opera-
tors in Rν , ν ≥ 2, with spherically symmetric singular interactions on con-
centric spheres, the radii of which are supposed to be Rn = nd+d/2, n ∈ N.
It is important that the system is radially periodic, hence the interactions
on all the spheres are assumed to be the same. In view of the spherical
symmetry we may employ the partial-wave decomposition: the isometry
U : L2((0, ∞), rν−1dr) → L2(0, ∞) defined by Uf(r) = r

ν−1
2 f(r) al-

lows us to write L2(Rν) =
⊕

l∈N0
U−1L2(0, ∞) ⊗ Sl, where Sl is the l-th

eigenspace of the Laplace-Bertrami operator on the unit sphere. The oper-
ator we are interested in can be then written as

HΛ :=
⊕

l

U−1HΛ,lU⊗ Il, (2.1)

where Il is the identity operator on Sl and the l-th partial wave operators

HΛ,l := − d2

d r2
+

1
r2

[
(ν − 1)(ν − 3)

4
+ l(l + ν − 2)

]
(2.2)

are determined by the boundary conditionsa at the singular points Rn,
(
f(Rn+)
f ′(Rn+)

)
= eiχ

(
γ β

α δ

) (
f(Rn−)
f ′(Rn−)

)
; (2.3)

in the transfer matrix Λ := eiχ
0
@γ β
α δ

1
A the parameters α, β, γ, δ are real and

satisfy the condition αβ − γδ = −1. In other words, the domain of the
selfadjoint operator HΛ,l is

D(HΛ,l) =
{
f ∈ L2(0, ∞) : f, f ′ ∈ ACloc

(
(0, ∞) \ ∪n{Rn}

)
;

−f ′′ + 1
r2

[
(ν−1)(ν−3)

4 + l(l + ν − 2)
]
f ∈ L2(0, ∞);

F (Rn+) = ΛF (Rn−)
}
, (2.4)

where the last equation is a shorthand for the boundary conditions
(2.3). If the dimension ν ≤ 3 we have to add a condition for the be-
haviour of f ∈ D(Hl) at the origin: for ν = 2, l = 0 we assume that
limr→0+[

√
r ln r]−1f(r) = 0, and for ν = 3, l = 0 we replace it by

f(0+) = 0. Since the generalized point interaction is kept fixed, we will
mostly drop the symbol Λ in the following.

aFor relations of these conditions to the other standard parametrization of the generalized
point interaction, (U − I)F (Rn) + i(U + I)F ′(Rn) = 0, see Ref. 4
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3. Generalized Kronig-Penney model

As in the regular case the structure of the spectrum is determined by the
underlying one-dimensional Kronig-Penney model. We need its generalized
form where the Hamiltonian acts as the one dimensional Laplacian except
at the interaction sites, xn := nd + d/2, n ∈ Z, where the wave functions
satisfy boundary conditions analogous to (2.3). To be explicit we consider
the four-parameter family of self-adjoint operators

hΛf := −f ′′,
D(hΛ) =

{
f ∈ H2, 2

(
R \ ∪n{xn}

)
: F (xn+) = ΛF (xn−)

} (3.1)

where the matrix Λ has been introduced in the previous section (without
loss of generality we may assume χ = 0 because it is easy to see that
operators differing by the value of χ are isospectral). Spectral properties
of this model were investigated in Refs. 3,6 where it was shown that the
following three possibilities occur:

(i) the δ-type: β = 0 and γ = δ = 1. In this case the gap width is asymp-
totically constant; it behaves like 2|α|d−1 +O(n−1) as the band index
n→∞. This is the standard Kronig-Penney model.

(ii) the intermediate type: β = 0 and |γ + δ| > 2. Now the quotient of
the band width to the adjacent gap width is asymptotically constant
behaving as arcsin(2|δ + γ|−1)/ arccos(2|δ + γ|−1) +O(n−1).

(iii) the δ′-type: the generic case, β 6= 0. In this case the band width is
asymptotically constant; it behaves like 8|βd|−1 +O(n−1) as n→∞.

Recall that these types of spectral behaviour correspond to high-energy
properties of a single generalized point interaction as manifested through
the scattering, resonances,4 etc.

There is one more difference from standard Floquet theory which we
want to emphasize. It is well known [17, Thm 12.7, p. 188] that in the
regular case the spectral edge E0 corresponds to a symmetric eigenfunction.
In the singular case this is no longer true; one can check easily the following
claim.

Proposition 3.1. Let u be an α-periodic solution of the equation −u′′ =
E0u on (−d/2, d/2) with U(xn+) = ΛU(xn−), where E0 := inf σ(hΛ).
Then u is periodic for β ≥ 0 and antiperiodic for β < 0.

To finish the discussion of the one-dimensional comparison operator, let
us state three auxiliary results which will be needed in the next section.
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Lemma 3.1. There is a constant C > 0 such that for every function u in
the domain of the operator hΛ it holds that

‖u′‖ ≤ C(‖hΛu‖+ ‖u‖) . (3.2)

Proof. We employ Redheffer’s inequality13 which states that

b∫

a

|u′(x)|2 dx ≤ C ′




b∫

a

|u′′(x)|2 dx+

b∫

a

|u(x)|2 dx




holds for any u twice differentiable in an interval [a, b] and some C ′ > 0;
then we get an inequality similar to (3.2) for the squares of the norms by
summing up these inequalities with a = xn, b = xn+1, and the sought result
with C = 2C ′ follows easily.

Lemma 3.2. The set of functions from D(hΛ) with a compact support is
a core of the operator hΛ.

Proof. To a given u ∈ D(hΛ) and ε > 0 we will construct an approximation
function uε ∈ D(hΛ) which is compactly supported to the right, i.e., it
satisfies sup suppuε <∞, and

∫

R

(|u− uε|2 + |u′′ − u′′ε |2
)
(t) dt ≤ ε .

Given x ∈ R and d > 0 we can employ for a function v ∈ H2,2(x, x+ d) the
Sobolev embedding,

|v(x)|2 + |v′(x)|2 ≤ sup
t∈[x, x+d]

|v(t)|2 + |v′(t)|2

≤ C1

∫ x+d

x

(|v|2 + |v′′|2)(t) dt

with a constant C1 which depends on d but not on x. Let us take next a
pair of functions, φi ∈ C∞(0, d), i = 1, 2, such that they satisfy φ1(0) =
φ′2(0) = 1 and φ′1(0) = φ2(0) = φi(d) = φ′i(d) = 0. Denote by Mi the
maximum of |φi(t)|2 + |φ′′i (t)|2 and put M := max{M1, M2}; then it holds

∫ d

0

(|aφ1 + bφ2|2 + |aφ′′1 + bφ′′2 |2)(t) dt ≤ 2Md(a2 + b2).
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In view of the assumption made about the function u we can find n such
that

∫∞
xn

(|u|2 + |u′′|2)(t)dt ≤ ε̃ := ε/(2 + 8MdC1) and define

uε(x) :=




u(x) if x ≤ xn
u(xn+)φ1(x) + u′(xn+)φ2(x) if x ∈ (xn, xn + d)
0 if x ≥ xn + d

Then uε belongs to D(hΛ) being compactly supported to the right and
∫

R
(|u− uε|2 + |u′′ − u′′ε |2)(t) dt ≤ 2

∫ ∞

xn

(|u|2 + |u′′|2 + |uε|2 + |u′′ε |2)(t) dt

≤ 2
∫ ∞

xn

(|u|2 + |u′′|2)(t) dt+ 8Md(|u(xn)|2 + |u′(xn)|2)

≤ (2 + 8MdC1)
∫ ∞

xn

(|u|2 + |u′′|2)(t) dt ≤ (2 + 8MdC1)ε̃ = ε .

Furthermore, one can take this function uε and perform on it the analogous
construction to get the support compact on the left, arriving in this way at
a compactly supported ũε such that∫

R

(|u− ũε|2 + |u′′ − ũ′′ε |2
)
(t) dt ≤ 2ε ,

and since ε was arbitrary by assumption the lemma is proved.

The last lemma is a simple observation, which is however the main tool
for conversion of the proofs in the regular case to their singular counterparts.

Lemma 3.3. Let u, v ∈ D(hΛ), then the Wronskian

W [ū, v](x) := ū(x)v′(x)− ū′(x)v(x) (3.3)

is a continuous function of x on the whole real axis.

Proof. The condition αβ−γδ = −1 for the transfer matrix Λ is equivalent
to Λ∗σ2Λ = σ2, where σ2 is the second Pauli matrix.3 Then we have

W [ū, v](xn+) = iU∗(xn+)σ2V (xn+) = i(ΛU(xn−))∗σ2ΛV (xn−)

= iU∗(xn−)σ2V (xn−) = W [ū, v](xn−) ,

which concludes the proof.

The way in which we are going to employ this result is the following. Sup-
pose we have real-valued functions u0, v0, u which are H2, 2 away from the
points xn and satisfy the boundary conditions (2.3) at them. Let, in addi-
tion, W [u0, v0] be nonzero – in the applications below this will be true as
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u0, v0 will be linearly independent generalized eigenfunctions of hΛ – then
by the lemma the vector function

y =
[
u0 v0
u′0 v

′
0

]−1 (
u

u′

)
= W [u0, v0]−1

(
v′0u− v0u

′

−u′0u+ u0u
′

)
(3.4)

is continuous everywhere including the points xn.

4. The essential spectrum

Now we are going to demonstrate the spectral properties of HΛ announced
in the introduction. We follow the ideology used in the regular case,9,10

localizing first the essential spectrum and finding afterwards the subsets
where it is absolutely continuous. In view of the partial wave decomposition
(2.1) it is natural to start with the partial wave operators Hl.

The essential spectrum is stable under a rank one perturbation, hence
adding the Dirichlet boundary condition at a point a > 0 to each of the
operators Hl, hΛ we do not change their essential spectrum. Moreover, mul-
tiplication by Cx−2 is a relatively compact operator on L2(a,∞), thus the
essential spectra of the said operators coincide,

σess(Hl) = σess(hΛ). (4.1)

With this prerequisite we can pass to our first main result.

Theorem 4.1. The essential spectrum of the operator (2.1) is equal to

σess(HΛ) = [inf σess(hΛ),∞) . (4.2)

The idea of the proof is the same as in Ref. 9: First we check that
inf σess(HΛ) cannot be smaller than inf σess(hΛ), after that we show that
σess(HΛ) contains the whole interval [inf σess(hΛ),∞).

Proposition 4.1. Under the assumptions stated we have

inf σess(HΛ) ≥ inf σess(hΛ) . (4.3)

Proof. If ν > 2 we infer from equations (4.1), (4.4) that

inf σess(HΛ) ≥ inf
l

inf σ(Hl) = inf σess(hΛ) ;

notice that with the exception of the case ν = 2, l = 0 the centrifugal term
in the partial waves operators (2.2) is strictly positive, and consequently,
the mini-max principle implies

inf σ(Hl) ≥ inf σ(hΛ) = inf σess(Hl) ≥ inf σ(Hl). (4.4)
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For ν = 2 the argument works again, we have just to be a little more
cautious: for the operator A :=

⊕
l 6=0 U−1HlU⊗Il the above reasoning yields

inf σess(A) ≥ inf σess(hΛ) and the proposition follows from the equation

inf σess((U−1H0U⊗ I0)⊕ A) = min(inf σess(H0), inf σess(A)).

Proposition 4.2. σess(HΛ) ⊃ [inf σess(hΛ),∞].

Proof. The idea is to employ Weyl criterion. Let λ0 ∈ σess(hΛ) and λ > 0,
then we have to show that for every ε > 0 there exists a nonzero function

φ ∈ D(HΛ) satisfying ‖(HΛ − λ0 − λ)φ‖ ≤ ε‖φ‖.
Basic properties of the essential spectrum together with Lemma 3.2 provide
us with a compactly supported u ∈ D(hΛ) such that ‖u′′ − λ0u‖ ≤ 1

2ε. In
view of the periodicity we may suppose that supp u ⊂ (0, L). Next we
are going to estimate λ by the repulsive centrifugal potential in a suitably
chosen partial wave. Putting lR := [

√
λR ] we have

1
r2

[
(ν − 1)(ν − 3)

4
+ lR(lR + ν − 2)

]
= λ+O(R−1) for r ∈ [R, R+ L]

as R→∞, hence choosing R large enough one can achieve that

sup
r∈[R,R+L]

∣∣∣∣
1
r2

[
(ν − 1)(ν − 3)

4
+ lR(lR + ν − 2)

]
− λ

∣∣∣∣ ≤
1
2
ε .

Next we employ the partial wave decomposition, considering a unit vector
Y ∈ Slnε

and putting φ(x) := U−1u(|x| − R)Y (x/|x|). It holds obviously
φ ∈ D(HΛ), ‖φ‖ = ‖u(· −R)‖, andb

‖HΛφ− (λ0 + λ)φ‖ = ‖HlRu(r −R)− (λ0 + λ)u(r −R)‖
≤ ‖u′′(r −R)− λ0u(r −R)‖
+

∥∥∥∥
(

1
r2

[
(ν − 1)(ν − 3)

4
+ lR(lR + ν − 2)

]
− λ

)
u(r −R)

∥∥∥∥ ≤ ε‖φ‖,

which concludes the proof.

Once the essential spectrum is localized, we can turn to its continuous
component. In view of the decomposition (2.1) we have to describe the
continuous spectrum in each partial wave and the results for HΛ will im-
mediately follow; recall that the essential spectrum of Hl consists of the

bFor the sake of simplicity we allow ourselves the licence to write ‖f‖ ≡ ‖f(·)‖ = ‖f(r)‖
in the following formula.
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bands of the underlying one-dimensional operator hΛ. Our strategy is to
prove that the transfer matrix — defined in the appendix, Sec. 5 below
— is bounded inside the bands, which implies that the spectrum remains
absolutely continuous.8,16 The following claim is a simple adaptation of
Lemma 2 from Ref. 10 to the singular case.

Lemma 4.1. Let (a, b) be the interior of a band of the operator hΛ in
L2(R). Let further K ⊂ (a, b) be a compact subinterval, c ∈ R, and x0 > 0.
Then there is a number C > 0 such that for every λ ∈ K any solution u of

−u′′ + c

r2
u = λu, u ∈ D(hΛ) (4.5)

with the normalization

|u(x0)|2 + |u′(x0)|2 = 1 (4.6)

satisfies in (x0,∞) the inequality

|u(x)|2 + |u′(x)|2 ≤ C . (4.7)

Proof. For a fixed λ ∈ K the equation hΛw = λw has two real-valued,
linearly independent solutions, u0 = u0(·, λ) and v0 = v0(·, λ), such that
u0, v0 ∈ D(hΛ) and the functions |u0|, |u′0|, |v0|, |v′0| are periodic, bounded,
and continuous with respect to λ, cf. Ref. 17). Without loss of generality
we may assume that the determinant of the matrix

Y =
[
u0 v0
u′0 v

′
0

]

equals one; note that u0, v0 are real-valued and hence detY is continuous
at the singular points in view of Lemma 3.3. It is also nonzero, hence to
any solution u of (4.5) we can define the function

y := Y −1

[
u

u′

]

which satisfies

y′ = Ay on every interval (na, (n+ 1)a), (4.8)

where the the matrix A is given by

A := − c

x2

[
u0v0 v2

0

−u2
0 −u0v0

]
,
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being integrable away from zero. By a straightforward calculation we get

y =
[
v′0u− v0u

′

−u′0u+ u0u
′

]

and using Lemma 3.3 again we infer that y is continuous at the singular
points. Consequently,

y(x) = exp
{ x∫

x0

A(t) dt

}
y(x0)

is a solution of (4.8) and following Ref. 10 we arrive at the estimates

1
2
(|y|2)′ ≤ |(y, y′)| ≤ ‖A‖|y|2

which further yield

|y(x)|2 ≤ |y(x0)|2 exp
{

2

x∫

x0

‖A‖(t) dt

}
≤ |Y −1(x0)|2 exp

{
2

∞∫

x0

‖A‖(t) dt

}

for x ≥ x0 and every solution of (4.5) with the normalization (4.6). From
[
u(x)
u′(x)

]
= Y (x)Y −1(x0)

[
u(x0)
u′(x0)

]
+

x∫

x0

Y (x)A(t)y(t)dt

we then infer that the function |u(·)|2 + |u′(·)|2 is bounded in the interval
(x0,∞) which we set out to prove.

Now we are ready to describe the essential spectrum of HΛ.

Theorem 4.2. For HΛ defined by (2.1) the following is true:

(i) For any gap (E2k−1, E2k) in the essential spectrum of hΛ,

(a) HΛ has no continuous spectrum in (E2k−1, E2k), and
(b) the point spectrum of HΛ is dense in (E2k−1, E2k).

(ii) On any compact K contained in the interior of a band of hΛ the spec-
trum of HΛ is purely absolutely continuous.

Proof. (i) By (4.1), none of the operators Hl, l = 0, 1, 2, . . . has a con-
tinuous spectrum in (E2k−1, E2k), hence HΛ has no continuous spectrum
in this interval either. On the other hand, the entire interval (E2k−1, E2k)
is contained in the essential spectrum of HΛ; it follows that the spectrum
of HΛ in (E2k−1, E2k) consists solely of eigenvalues which are necessarily
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dense in that interval.
(ii) The claim follows from the previous lemma and Refs. 8,16. To make
the article self-contained we prove in the appendix a weaker result which
still guarantees the absolute continuity of the spectrum in the bands in our
singular case.

Remark 4.1. The distribution of eigenvalues of the operators partial wave
Hl in the gaps of the underlying one-dimensional operator was studied in
Refs. 2,12 Specifically, let q(·) be a periodic function and (a, b) an interval
inside a gap of the operator − d2

dx2 +q(x), then there is a numerical evidence2

for the conjecture that the number of eigenvalues of the operator − d2

dx2 +
q(x)+ c

x2 in the said interval is proportional to
√
c. A similar question could

be asked in the singular case but we do not address it here.

5. The discrete spectrum

Recall that with the exception of the case ν = 2, l = 0 the centrifugal
term in the partial waves operators (2.2) is strictly positive, hence by the
mini-max principle there is no discrete spectrum below E0. On the other
hand, in the two-dimensional case Brown et al. noticed that regular radially
periodic potentials give rise to bound states1 which they named to honor
the place where the observation was made. Subsequently Schmidt14 proved
that there are infinitely many such eigenvalues of the operator H0 below
inf σess(HΛ). Our aim is to show that this result persists for singular sphere
interactions considered here.

Theorem 5.1. Let ν = 2, then except of the free case the operator HΛ has
infinitely many eigenvalues in (−∞, E0), where E0 := inf σess(HΛ).

Proof. The argument is again similar to that of the regular case,15 hence
we limit ourselves to just sketching it. First of all, it is clear that we have
to investigate the spectrum of HΛ,0.

Let u, v be linearly independent real-valued solutions of the equation
hΛz = E0z, where u is (anti)periodic — cf. Proposition 3.1. — satisfying
W [u, v] = 1. We will search for the solution of H0y ≡ −y′′ − 1

4r2 y = E0y,
we are interested in, using a Prüfer-type Ansatz, namely

(
y

y′

)
=

(
u v

u′ v′

)
a

(
sin γ
− cos γ

)
,

where a is a positive function and γ is chosen continuous recalling
Lemma 3.3 and eq. (3.4). It is demonstrated in Ref. 15 that the function
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γ(·) and the standard Prüfer variable θ(·), appearing in
(
y

y′

)
= ρ

(
cos θ
sin θ

)
,

are up to a constant asymptotically equal to each other as r →∞. Accord-
ing to Corollary 5.1 there are then infinitely many eigenvalues below E0 if
θ, and therefore also γ, is unbounded from below.

Now a straightforward computation yields

γ′ = − 1
4r2

(u sin γ − v cos γ)2 = −1
4

cos2 γ u2
(1
r

tan γ − v

r u

)2

.

Furthermore, the Kepler transformation given by the relation tanφ =
(r−1 tan γ − r−1v/u) satisfies γ(r) = φ(r) +O(1) as r →∞, and

φ′ =
1
r

(
− sinφ cosφ− 1

4
u2 sin2 φ− 1

u2
cos2 φ

)

= − 1
2r

(
1
u2

+
1
4
u2 + sin 2φ+

( 1
u2
− 1

4
u2

)
cos 2φ

)
(5.1)

holds on R \ ∪n{rn} with the discontinuity

tanφ(rn+)− tanφ(rn−) = − 1
rn

β

u(rn+)u(rn−)
, (5.2)

where β is the parameter appearing in (2.3). A direct analysis of the equa-
tion (5.1) shows that φ′ ≤ 0, and owing to (5.2) and Proposition 3.1 the
corresponding discontinuity is strictly negative for β 6= 0. Hence φ is de-
creasing and there is a limit L = limr→∞ φ(r). Suppose that L is finite.
Then the condition | ∫∞

0
φ′(t) dt| <∞ gives

1
u2(r)

+
1
4
u2(r)+sin 2φ(r)+

(
1

u2(r)
− 1

4
u2(r)

)
cos 2φ(r) → 0 as r →∞

(5.3)
and, as u is (anti)-periodic and φ tends to a constant, we infer that u2 is
constant also, not only asymptotically but everywhere. With the exception
of the free case this may happen only for pure repulsive δ′ interaction,
β > 0, α = 0, γ = δ = 1. To finish the proof we employ eq. (5.3) again and
observe that L 6= π/2 (modπ) holds necessarily. We thus find a monotonous
sequence of points rn such that φ(rn−) < π

2

(
1 +

[
2L
π

])
, where [·] is the

integer part. Since φ is monotonous we have φ(rn±) ≥ L, hence all these
points belong to the same branch of the tan function. Summing then the
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discontinuities (5.2) we get

tanφ(rN+)− tanφ(rn−) ≤
N∑

i=n

tanφ(ri+)− tanφ(ri−)

= −
N∑

i=n

1
ri

β

u(ri+)u(ri−)
,

where the right-hand side diverges as N → ∞ for any β > 0, while the
left-hand side tends to a finite number tan(L) − tanφ(rn−). Hence L can
be finite for the free Hamiltonian only, which was to be demonstrated.

Appendix A: Continuous spectra for one dimensional
Schrödinger operators with singular interactions

In this appendix we consider Schrödinger operators on a half-line,

(Hu)(x) = −u′′(x) + V (x)u(x) (5.1)

u(0) = 0, U(xn+) = ΛU(xn−), (5.2)

where we suppose that the condition
∫ ∞

K

|u′|2 ≤ β

∫ ∞

K

(|Hu|2 + |u|2), (5.3)

holds for some β, K > 0 and every u ∈ D(H). This is obviously the case of
operators Hλ, l, where in the dimension ν > 2 we may put K = 0, while for
ν = 2 we have to choose K > 0.

Given a solution u of Hu = Eu we define the transfer matrix T(E, x, y)
at energy E by

T(E, x, y)
(
u′(y)
u(y)

)
=

(
u′(x)
u(x)

)
. (5.4)

Our purpose is to prove the following result.

Theorem 5.2. Let T(E, x, y) be bounded on S. Then for every interval
(E1, E2) ⊂ S we have ρac((E1, E2)) > 0 and ρsc((E1, E2)) = 0, where ρ
denotes the spectral measure associated with the operator H.

Following Ref. 16 we employ the theory of Weyl m-functions. For E ∈
C+ = {z, Im z > 0}, there is a unique solution u+(x, E) of Hu+(x, E) =
Eu+(x, E) with u+ ∈ L2 at infinity, which is normalized by u+(0, E) = 1.
We define the m-function by

m+(E) = u′+(0, E) ;
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the spectral measure ρ is then related to it by

dρ(E) =
1
π

lim
ε↓0

Imm+(E + iε) ,

where the imaginary part at the right-hand side can be expressed as

Imm+(E) = ImE

∫ ∞

0

|u+(x, E)|2dx. (5.5)

It is known, see Ref. 16 and references therein, that

supp ρsc =
{
E : lim

ε↓0
Imm+(E + iε) = ∞

}
,

while dρac(E) = 1
π Imm+(E + i0) dE. Theorem 5.2 is then an immediate

consequence of the following result.

Theorem 5.3. If T(E, x, y) be bounded as above and E ∈ (E1, E2), then

lim inf Imm+(E + i0) > 0 and lim sup Imm+(E + i0) <∞ .

Proof. For x 6= xn we have the relations

dT(E, x, y)
dx

=
(

0 V (x)− E

1 0

)
T(E, x, y),

d

dy
(T(E1, x, y)T(E2, y, x)) = (E1 − E2)T(E1, x, y)

(
0 1
0 0

)
T(E2, y, x).

It is straightforward to verify that T(E1, x, y)T(E2, y, x) is continuous at
singular points with respect to y and hence

1−T(E1, x, 0)T(E2, 0, x) =
∫ x

0

(E1−E2)T(E1, x, y)
(

0 1
0 0

)
T(E2, y, x)dy.

Now we put E1 = E, E2 = E+ iε and multiply by T(E+ iε, x, 0) from the
right to get the formula

T(E + iε, x, 0) = T(E, x, 0)− (iε)
∫ x

0

T(E, x, y)
(

0 1
0 0

)
T(E + iε, y, 0)dy.

By assumption we have ‖T(E, x, y)‖ ≤ C, and therefore

‖T(E + iε, x, 0)‖ ≤ C + ε

∫ x

0

C‖T(E + iε, y, 0)‖dy ,

so by an iteration we get

‖T(E + iε, x, 0)‖ ≤ CeεCx.
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Note that det T = 1 so ‖T‖ = ‖T−1‖. Putting now γ = ((E + 1)2β2 + 1)−1

and using the condition (5.3) we get
∫ ∞

0

|u(x)|2dx ≥ γ

∫ ∞

K

(|u(x)|2 + |u′(x)|2)dx

≥ C−2γ(1 + |m+|2)
∫ ∞

K

e−2εCxdx ,

hence by (5.5) we infer that

Imm+ ≥ 1
2
C−3γ(1 + |m+|2) .

From here the first claim follows immediately, and since

2C3γ−1 ≥ 1 + |m+|2
Imm+

≥ |m+| ,

we get also the remaining part.

Appendix B: Oscillation theory for singular potentials

In the case of point interactions the classical oscillation theory fails due to
the discontinuity of the wave functions. Nevertheless, we can employ the
continuity of the Wronskian and formulate the oscillation theory using the
approach of relative oscillations.7 The aim of this appendix is to present
briefly the basic theorems; since the claims are the same as in the regular
case we follow closely the above mentioned article. The same applies to
the proofs which are again closely similar to those in the regular case; to
observe the volume limit set for these proceedings contribution we refrain
from presenting them.

We consider Schrödinger-type operators on L2(l−, l+) with the singular
interactions at the points xn ∈ (l−, l+), n ∈M ⊂ N which act as

Tu(x) = −u′′(x) + q(x)u(x),

with a real-valued potential q ∈ L1
loc(l−, l+) and the domain

D(T) =
{
u, u′ ∈ ACloc

(
(l−, l+) \

⋃

n∈M
{xn}

)
:

Tu ∈ L2
loc(l−, l+) and U(xn+) = ΛnU(xn−)

}
.

Such an operator is obviously symmetric. Denote by H an arbitrary self-
adjoint extension of it satisfying either
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(a) T is limit point in at least one endpoint, or
(b) H is defined by separated boundary conditions.

By ψ±(E, x) we denote the real-valued solutions of the equation
Tψ±(E, x) = Eψ±(E, x), which satisfy the boundary conditions defining
H at the points l±, respectively. Note that such solutions may not exist,
the theorems given below implicitly assume their existence. In particular,
their existence is guaranteed for energies E outside the essential spectrum.
Moreover, in view of the analyticity in the spectral parameter we may use
the oscillation theory also at the edges of the essential spectrum.

The first theorem to follow provides the basic oscillation result, while the
corollary of the second one is the result used in Section 5. By W0(u1, u2) we
denote the number of zeros of the Wronskian W [u1, u2](x) in the open in-
terval (l−, l+), and given E1 < E2, we put N0(E1, E2) = dimRanP(E1, E2),
where P is the spectral measure of the self-adjoint operator H; we note
that N0(E1, E2) may even be infinite. In particular, in case of the pure
point spectrum N0(E1, E2) simply denotes the number of eigenvalues in
the interval (E1, E2).

Theorem 5.4. Suppose that E1 < E2 and put u1 = ψ−(E1), u2 = ψ+(E2).
Then W0(u1, u2) = N0(E1, E2).

Theorem 5.5. Let E1 < E2. Assume that either u1 = ψ+(E1) or u1 =
ψ−(E1) holds, and similarly either u2 = ψ+(E2) or u2 = ψ−(E2). Then
W0(u1, u2) ≤ N0(E1, E2).

Next we introduce Prüfer variables ρi, θi defined by
(
ui(x)
u′i(x)

)
= ρi(x)

(
cos θi(x)
sin θi(x)

)
,

where ρi is chosen positive and θi is uniquely determined by its boundary
value and the requirement that θi is continuous on (l−, l+) \ ⋃

n∈M{xn}
while its discontinuity at the sites xn of the point interactions satisfies
|θi(xn+)− θi(xn−)| = 0 (modπ).

Corollary 5.1. Suppose that E1 is the edge of the essential spectrum, and
u1 = ψ−(E1) or u1 = ψ+(E1). Then H has infinitely many eigenvalues
below E1 if θ1(·) is unbounded.

Proof. In analogy with the regular case the function θ2 corresponding to
u2 = ψ±(E) is bounded for negative E large enough. This implies that
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|θ2 − θ1| → ∞ and since W [u1, u2](x) = ρ1(x)ρ2(x) sin(θ2(x) − θ1(x)) we
get W0(u1, u2) = ∞. Hence Theorem 5.5. completes the proof.
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In this note, we discuss the point-wise existence of the Lyapunov exponent for
the ergodic family ψ(n+ 1) + ψ(n− 1) = 2λeiπω/2 sin(π(nω+ θ))ψ(n), n ∈ Z.
Here, λ > 1 is a fixed coupling constant, ω ∈ (0, 1) is a fixed frequency, and
θ ∈ [0, 1) is the ergodic parameter numbering the equations. This is actually the
Almost Mathieu equation with zero spectral parameter (and complex coupling
constant). This model is related to various self-adjoint models via a cocycle
representation. The existence of the Lyapunov exponent and the behavior of
the solution can be described quite explicitly.

Keywords: Lyapunov exponent, quasi-periodic equation, ergodic family, Almost
Methiew operator

1. Introduction

1.1. Quasi-periodic finite difference equations

Consider the finite difference Schrödinger equation

(Hθψ)(n) = ψ(n+ 1) + ψ(n− 1) + v(nω + θ)ψ(n) = Eψ(n), (1.1)

where v : R → R is continuous and periodic, v(x + 1) = v(x), 0 < ω < 1
and 0 ≤ θ < 1. When ω 6∈ Q, the mapping n 7→ v(nω+ θ) is quasi-periodic.

The spectral theory of such quasi-periodic equations is very rich,
and the study has generated a vast literature; among the authors are
A. Avila, Y. Avron, J. Bellissard, J. Bourgain, V. Buslaev, V. Chulaevsky,
D. Damanik, E. Dinaburg, H. Eliasson, A. F., B. Helffer, M. Hermann,
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S. Jitomirskaya, F. K., R. Krikorian, Y. Last, L.Pastur, J. Puig, M. Shu-
bin, B. Simon, Y. Sina¨ i, J. Sjöstrand, S. Sorets, T. Spencer, M. Wilkinson
and many others (see e.g. Ref. 9 for a recent survey).

Speaking about intriguing spectral phenomena, one can mention for
example that:

• For such equations, the spectral nature depends on the “number theo-
retical” properties of the frequency ω;

and that one expects that:

• Typically such equations exhibit Cantorian spectrum;
• σpp(Hθ), the singular continuous spectrum, is topologically typical.

This has been well understood only for a few models, most prominently, for
the almost Mathieu equation when v(x) = 2λ cos(x)).

1.2. Lyapunov exponent

One of the central objects of the spectral study of the quasi-periodic equa-
tions is the Lyapunov exponent. Recall its definition. Equation (1.1) can be
rewritten as
(
ψ(n+ 1)
ψ(n)

)
= M(nω+ θ)

(
ψ(n)

ψ(n− 1)

)
, M(x) =

(
E − v(x) −1

1 0

)
. (1.2)

So the large n behavior of solutions to (1.1) can be characterized by the
limits (when they exist) :

γ+(E, θ) = lim
n→+∞

1
n

log ‖M((n− 1)ω + θ) · · ·M(θ + ω)M(θ)‖ (1.3)

γ−(E, θ) = lim
n→+∞

1
n

log ‖M−1(θ − nω) · · ·M−1(θ − 2ω)M−1(θ − ω)‖
(1.4)

Furstenberg and Kesten have proved (see Ref. 2)

Theorem 1.1. Fix E. For almost every θ, these limits exist, coincide and
do not depend on θ.

For energies E such that the limits exist, coincide and do not depend on θ,
their common value is called the Lyapunov exponent ; we denote it by γ(E).

We are interested in the pointwise (in both E and θ) existence of the
limits γ+(E, θ) and γ−(E, θ). We call them the right and left Lyapunov ex-
ponents. Speaking about the pointwise existence of the Lyapunov exponent
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itself, we say that it does not exist for a pair (E, θ) when either at least one
of γ±(E, θ) does not exist or both of them exist, but at least one of them
differs from γ(E).

1.3. Lyapunov exponents and the spectrum

For ω 6∈ Q, one has the following theorem by Ishii - Pastur - Kotani.2

Theorem 1.2. The absolutely continuous spectrum, σac(Hθ), is the essen-
tial closure of the set of energies where the Lyapunov exponent vanishes.

This theorem immediately implies (see Ref. 2)

Corollary 1.1. If γ(E) is positive on I, an interval, then the spectrum in
I (if any) is singular, σ ∩ I ⊂ σs.

As, in general, singular continuous spectrum can be present, in this state-
ment, one cannot replace σs, the singular spectrum, with σpp, the pure
point spectrum. One may ask if it is possible to characterize the singular
continuous spectrum in terms of the Lyapunov exponent. Consider equa-
tion (1.1) on the interval E ∈ I where γ(E) > 0. Almost surely, for a given
θ, the Lyapunov exponents exist a priori only almost everywhere in E. De-
note by I Lyapunov the subset of I where γ+(E, θ) and γ−(E, θ) both exist
and are positive. For E ∈ I Lyapunov , the solutions to (1.1) have to increase
or decrease exponentially (see, e.g., Ref. 2). This implies that the singular
continuous component of the spectral measure vanishes on I Lyapunov . So,
it can be positive only on I \ I Lyapunov . And, the latter must happen if the
spectrum on I is singular continuous.

1.4. B. Simon’s example

We now recall an example by B.Simon showing that, for quasi-periodic
operators, one can find singular continuous spectrum on an interval where
the Lyapunov exponent is positive.

Consider the Almost Mathieu equation, i.e., equation (1.1) with v(θ) =
2λ cos θ.

For this equation, by Herman’s theorem,7 γ(E) ≥ log λ. We assume that
λ > 1. Then, γ(E) is positive for all E, and the spectrum is singular.

Let the frequency ω be such that, for some infinite sequence (pm, qm) ∈
N× N∗, ∣∣∣∣ω −

pm
qm

∣∣∣∣ ≤ m−qm .
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Such Liouvillean frequencies are topologically typical but of zero measure.
One has

Theorem 1.3.2 Under the above conditions, there are no eigenvalues and
the spectrum is purely singular continuous.

Note that this result is a consequence of a theorem by A. Gordon (see
Ref. 4,5) which roughly says that when the quasi-periodic potential can
be super-exponentially well approximated by periodic potentials, the equa-
tion (1.1) does not admit any decreasing solutions.

Note that actually, in the case of the almost Mathieu equation, Gordon’s
result implies that any of its solution φ satisfies the inequality

limm→∞max (φ(±qm), φ(±2qm) ) ≥ 1
2
φ(0),

φ(n) = (|ψ(n+ 1)|2 + |ψ(n)|2)1/2.
This means that the corresponding generalized eigenfunctions have to have
infinitely many humps located at some of the points ±qm, ±2qm, m ∈ N.
These humps prevent the solutions from being square summable.

1.5. Non-trivial model problem

In the present note, we concentrate on the model equation

ψ(n+ 1) + ψ(n− 1) = λv0(nω + θ) ψ(n), n ∈ Z, (1.5)

v0(θ) = 2 eiπω/2 sin(πθ), (1.6)

where 0 < ω < 1 is an irrational frequency, 1 < λ is a coupling constant,
and θ is the ergodic parameter. Actually, up to a shift in θ, this is an Almost
Mathieu equation with the spectral parameter equal to zero.

We study this equation for the following reasons:

(1) A large part of analysis is quite simple whereas (we believe that) to
carry it out one has to use a non trivial renormalization procedure;

(2) The techniques developed in this study can be generalized to the case
of real analytic potentials v;

(3) This model is related to various self-adjoint models via a cocycle rep-
resentation (see Ref. 3), e.g., it comes up naturally when studying the
spectral properties of the equation

−ψ′′(t) + α
∑

l≥0

δ ( l(l − 1)/2 + lφ1 + φ2 − t ) ψ(t) = Eψ(t).
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For the model equation (1.5), our ultimate goal is to describe the set of θ
for which the Lyapunov exponent exists or does not exist and to describe
the solutions both when the Lyapunov exponent exists and does not exist.

We concentrate on the case of frequencies complementary to the fre-
quencies occurring Simon’s example. And, in the case when the Lyapunov
exponent does not exist, this leads to a new scenario for the behavior of
solutions of (1.1).

Our main tool is the the monodromization renormalization method in-
troduced by V. Buslaev - A. Fedotov originally for the semi-classical study
of the geometry of the spectrum of one dimensional finite difference almost
periodic equations, see Ref. 1. The idea was to construct Weyl solutions
outside the spectrum but, at each step of the renormalization, closer to
spectrum so as to uncover smaller and smaller gaps in the spectrum. Now,
essentially, we use it to study the solutions of the model equation on the
spectrum.

2. Existence of the Lyapunov exponent for the model
equation

We now formulate our results on the pointwise existence of the right Lya-
punov exponent γ+(θ) for the model equation (1.5); as we have set the
energy parameter, to a fixed value, we omit it in the Lyapunov exponents.
The right Lyapunov exponent is defined by the formula (1.3) with

M(x) =
(
λv0(θ) −1

1 0

)
, (2.1)

where v0 is given by (1.6). Note that for γ−(θ), the left Lyapunov exponent,
one has similar results.

2.1. Main result

Here, we formulate a sufficient condition for the existence of the Lya-
punov exponent. Therefore, we need to introduce some notations. For
L = 0, 1, 2 . . . , define

ωL+1 =
{

1
ωL

}
, ω0 = ω.

where {a} is the fractional part of a ∈ R, and

λL+1 = λ
1

ωL

L , λ0 = λ
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Remark 2.1. The numbers {ωl}∞l=1 are related to the continued fraction
expansion of ω:

ω =
1

a1 + ω1
=

1
a1 + 1

a2 + ω2

=
1

a1 + 1

a2 + 1
a3 + ω3

=

... =
1

a1 + 1

a2 + 1

a3 + 1
a4 + . . .

where a1, a2, a3 . . . ∈ N are the elements of the continuous fraction for ω.
It is well known that, for any l ∈ N , one has ωlωl+1 ≤ 1/2. This implies
that the numbers λl increase super-exponentially.

Furthermore, for a given ω ∈ (0, 1) \ Q and s ∈ (0, 1), define the following
sequence

sL =
{
sL−1

ωL−1

}
, s0 = s. (2.2)

One has

Lemma 2.1. If s = k0 + ω0l0, where k0, l0 ∈ Z, then:

• For all L, one has sL = kL + ωLlL with kL, lL ∈ Z;
• if k0 > 0, then the sequence (k2L)L≥0 is monotonically decreasing until

it vanishes and then it stays constant equal to 0;
• Let k0 > 0 and L be the first number for which k2L = 0, then

k0ω0ω1 . . . ω2L−1 ≤ 2.

For a given L ∈ N, define K(2L, ω) being the maximal k0 such that
k2L = 0 and set K(2L − 1, ω) = K(2L, ω). Now, we are ready to discuss
the Lyapunov exponent. We have

Theorem 2.1. Pick λ > 1 and ω ∈ (0, 1) irrational. Assume that there
exists a function M : N→ N such that M(L) < L and that, for L→∞,

ωM(L)ωM(L)+1 . . . ωL−1 → 0 and

λM(L)ωM(L)ωM(L)+1 . . . ωL →∞.
(2.3)

For a given 0 ≤ θ ≤ 1, the Lyapunov exponent γ+(θ) for equation (1.5)
exists if, for all sufficiently large L, one has:

|θ − k − lω0| ≥ ω0ω1 . . . ωM(L)−1e
− 1

ω0ω1···ωM(L)−1 , (2.4)
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for all k, l ∈ Z such that 0 ≤ k + lω0 ≤ 1 and

K(M(L), ω) < k ≤ K(L̃, ω), L̃ =
{

L if L is even,
L+ 1 otherwise.

(2.5)

Furthermore, when γ+(θ) exits, it is equal to log λ.

One also has a similar statement on the pointwise existence of the left Lya-
punov exponent γ−. Note that for γ− to exist, θ has to avoid neighborhoods
of the points k+lω0 with negative k. Now, turn to a discussion of the results
given in Theorem 2.1.

2.2. Admissible frequencies

Denote by Ω the set of ω ∈ (0, 1) satisfying the conditions of Theorem 2.1

2.2.1. The measure of Ω

Khinchin’s famous result (see e.g. Ref 8) on the geometric means of the
products of the elements of the continued fractions implies

Lemma 2.2. mes Ω = 1.

Proof. Let {al} be the elements of the continued fraction for ω. By
Khinchin, for almost all ω, one has limL→∞ (a1a2 . . . aL)

1
L = C, where

C = 2, 6... is a universal constant. Pick l ∈ N. One has 1
2al

< ωl−1 <
1
al

.
Therefore, for almost all frequencies ω,

limL→∞ (ω0ω1 . . . ωL−1)
1
L ≤ 1

C
, limL→∞ (ω0ω1 . . . ωL−1)

1
L ≥ 1

2C
.

Such ω belong to Ω: in (2.3) one can take M(L) = [L/2 ].

2.2.2. Liouvillean numbers in Ω

Recall that an irrational number ω is called Liouvillean if, for any n ∈ N,
there are infinitely many (p, q) ∈ Z× N such that

∣∣∣∣ω −
p

q

∣∣∣∣ ≤
1
qn
.

(see e.g. Ref. 8). One has

Lemma 2.3. The set Ω contains Liouvillean numbers satisfying∣∣∣∣ω −
p

q

∣∣∣∣ ≤
1

qλcq
, c = c(ω) > 0, (2.6)
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for infinitely many (p, q) ∈ Z× N.

Proof. We construct a Liouvillean ω ∈ Ω by choosing inductively (al)l≥1,
the elements of its continued fraction. Therefore, we pick a1 ≥ 1 large and,
for all L ≥ 1, we choose aL+1 so that

1
2
aL+1 ≤ (a1a2 . . . aL)−1λa1a2...aL ≤ aL+1. (2.7)

We now check that such an ω belongs to Ω. Therefore, we check that one
has (2.3) for M(l) = l−1. As λ > 1, the sequence (al)l is quickly increasing,
and so

ωl−1 → 0, l→∞. (2.8)

Furthermore, as, for all l ≥ 0, one has ωl = (al+1 + ωl+1)−1, we get

ωl−1ωlλl−1 >
1

4alal+1
λa1a2...al ≥ a1a2 . . . al−1

8
.

This implies that

λl−1ωl−1ωl →∞,

and so ω ∈ Ω. Now, let us check that ω satisfies (2.6) (and, thus, is a
Liouville number). Consider

(
pl

ql

)
, the sequence of the best approximates

for ω. Recall that (see e.g. Ref. 8), for all l ∈ N,
∣∣∣∣ω −

pl
ql

∣∣∣∣ ≤
1

al+1q2l
, (2.9)

ql+1 = al+1ql + ql−1, q1 = a1, q0 = 1. (2.10)

The relations (2.10) imply that

alal . . . a2a1 < ql < P al . . . a2a1, P =
∞∏

l=1

(
1 +

1
alal+1

)
; (2.11)

the product P converges as the sequence (al)l is quickly increasing. Re-
lations (2.11) and (2.7) imply that al+1 ≥ q−1

l λql/P . This and (2.9) im-
ply (2.6).
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2.3. The set of “bad” phases

For given λ > 1 and ω ∈ Ω, denote by Θ the set of phases θ not satisfying
(2.4) for infinetly many L. One has

Lemma 2.4. The set Θ is topologically typical (countable intersection of
dense open sets) and, under the condition

∞∑

L>0

(
λM(L)ωM(L)ωM(L)+1 . . . ωL

)−1
<∞ (2.12)

(which is stronger than (2.3)), it has zero Lebesgue measure.

Proof. For a given L > 0, denote the set of θ not verifying (2.4) by ΘL.
Then

Θ =
⋂

N≥0

⋃

L≥N
ΘL. (2.13)

Thus, Θ is a countable intersection of open sets. As ω is irrational, the
points θk,l = k + ω0l (k, l ∈ Z, k ≥ 0) are dense in the interval (0, 1). So,
to complete the proof of the first property of Θ, it suffices to show that the
set

⋃
L≤N ΘL contains all the points θk,l with k sufficiently large. But, this

follows from (2.5) and the inequality M(L) < l. Finally note that, by (2.4),

mesΘL ≤ 1
ω
K(L)ω0ω1 . . . ωM(L)−1λM (L)−1

≤ 2
ω

(
λM (L)ωM(L) . . . ωL−1ωL

)−1
.

Under the condition (2.12), this implies that the Lebesgue measure of Θ is
zero.

2.4. Heuristics and the statement of Theorem 2.1

Let us now describe some heuristics “explaining” Theorem 2.1. Consider a
continuous version of equation (1.5)

φ(s+ ω) + φ(s− ω) = λv0(s) φ(s), s ∈ R. (2.14)

If φ satisfies this equation, then the formula ψ(n) = φ(nω + θ), n ∈ Z,
defines a solution to (1.5).

If λ >> 1, then one can expect that, on a fixed compact interval, equa-
tion (2.14) has an exponentially increasing solution φ+ with the leading
term φ+

0 satisfying the equation

φ+
0 (s+ ω) = λv0(s) φ+

0 (s), s ∈ R. (2.15)
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For the last equation, one can easily construct a solution φ+
0 that is analytic

and has no zeros in the band 0 < re s < 1+ω. One can extend this solution
analytically to the left of this band using equation (2.15). As v0 vanishes
at integers, φ+

0 has zeros at all the points of the form sk,l = k + lω where
k, l > 0 are integers.

If there is a true solution to (2.14) with the leading term φ+
0 , then (1.5)

has a solution ψ+ with the leading term φ+
0 (nω + θ). Furthermore, if θ ∈

(0, 1) admits the representation θ = k0 − l0ω with some positive integers
k0 and l0, then, at least for sufficiently large λ, the leading term of ψ+

increases exponentially on the “interval” where −k0
ω + l0 < n < l0 + 1 and

then vanishes at the points n = l0 + 1, l0 + 2, . . . .
The equality θ = k0 − l0ω can be interpreted as a quantization condi-

tion: when this condition is satisfied, the solution ψ+ that is exponentially
growing up to the point n = l0, at this point, changes to the exponential
decay.

So, it is natural to expect that the solution ψ+ keeps growing up to the
infinity if θ is “far enough” from all the points of the form k0 − l0ω with
positive integers k0 and l0. Hence, the right Lyapunov exponent should
exist.

3. Non-existence of the Lyapunov exponent

Theorem 2.1 is rather rough in the sense that the sizes of the “secure
intervals” that θ has to avoid for the Lyapunov exponent to exist (see (2.4))
are too big. This is actually due to the fact that, under the conditions of
Theorem 2.1, one has much more than the existence of Lyapunov exponent.
Roughly, under these conditions, for each L large enough, equation (1.5) has
solutions that, locally, on intervals of length of order (ω0ω1 . . . ωM(L)−1)−1,
can have complicated behavior whereas globally, on the interval 0 < k < K
of length of order (ω0ω1 . . . ωL)−1, they are nicely exponentially increasing.

Our method also allows a precise description of the set of θ where the
Lyapunov exponent does not exist. The structure of this set is quite com-
plicated; in the present note, we only describe it for frequencies in Ω1 ⊂ Ω,
the set of ω satisfying the conditions

ωL → 0, and λL−1ωL−1ωL →∞ (3.1)

instead of (2.3). One has the following two statements:

Theorem 3.1. Pick λ > 1. Let ω ∈ Ω1. For a 0 < θ < 1, define the
sequence {sL} by (2.2) with s0 = θ. Assume that there is a positive constant
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c such that for infinitely many even positive integers L one has

dist ( sL−1 , ωL−1 · N ) ≤ ωL−1 λ
−c
L and sL−1 ≥ c.

Then, the right Lyapunov exponent γ+(θ) does not exist.

and

Theorem 3.2. Pick λ > 1. Let ω ∈ Ω1. For a 0 < θ < 1, define the
sequence {sL} by (2.2) with s0 = θ. Assume that there is a positive constants
c and N such that for infinitely many odd positive integers L one has

dist ( sL , ωL · N ) ≤ λ−cL , sL−1 ≤ 1− c, and sL ≤ ωLN.

Then, the right Lyapunov exponent γ+(θ) does not exist.

The above two theorems are sharp: in the case of ω ∈ Ω1, if the Lya-
punov exponent does not exist, then θ satisfies the conditions of one of the
them.

As for the behavior of the solutions, in both cases, roughly, we find that,
for infinitely many L, even if we forget of the complicated local behavior of
the solutions on the intervals of the length of order (ω0ω1 . . . ωM(L)−1)−1,
one can see that globally, on the interval 0 < k < K of the length of or-
der (ω0ω1 . . . ωL)−1, the solutions change from exponential growth to the
exponential decay. For example, in the case of Theorem 3.2, there exists
solutions that, at first, are globally exponentially increasing then are glob-
ally exponentially decaying, the length of the interval of increase and the
interval of decrease being of the same order. Here we use the word globally
to refer to the fact that this exponential growth or decay happens at a large
scale.

4. The main ideas of the proof

As we have mentioned in the introduction, the main tool of the proof is the
monodromization renormalization method. The new idea is that one can
consider the infinite sequence of the almost periodic equations arising in
the course of the monodromization as a sequence of equations describing a
given solution of the input equation on larger and larger intervals, the ratio
of their length being determined by the continued fraction of the frequency.

Now, the renormalization formulas can be written in the form

M(θ + (k − 1)ω) . . .M(θ + ω)M(θ)

∼ Ψ({kω + θ}) [M1(θ1 − ω1)M1(θ − 2ω1) . . .M1(θ − k1ω1) ]t Ψ−1(θ).
(4.1)
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Here, “∼” means “equal up to a sign”,

• M(θ) =
(

2λ sin(πθ) −e−iπθ
eiπθ 0

)
; the second order difference equa-

tion (2.14), the continuous analog of (1.5), is equivalent to the first
order matrix difference equation

Ψ(s+ ω) = M(s)Ψ(s), s ∈ R; (4.2)

• Ψ is a fundamental solution to (4.2), i.e., such that Ψ(s) ∈ SL(2,C) for
all s;

• t denotes the transposition;
• M1 is a monodromy matrix corresponding to this solution, i.e., the

matrix defined by Ψ(s+ 1) = Ψ(s)M t
1(s/ω).

The new constants ω1, θ1 and the number k1 are defined by

ω1 = { 1/ω }, θ1 = { θ/ω }, k1 = [ θ + kω ].

And, as usual {a} and [a] denote the fractional and the integer part of
a ∈ R.

Formula (4.1) relates the study of the matrix product M(θ + (k −
1)ω) . . .M(θ+ω)M(θ) to that of a similar product: the monodromy matrix
M1 is unimodular and, as the matrix M , it is 1 anti-periodic. One can apply
the same renormalization formula for the new matrix product and so on. It
is easy to check that after a finite number of renormalizations, one gets a
matrix product containing at most ... one matrix. This feature recalls the
renormalization of the quadratic exponential sums carried out by Hardy
and Littlewood (see Ref.3,6).

At each step of the monodromization, one has to study similar difference
equations ΨL(s + ωk) = ML(s)ΨL(s), L = 0, 1, 2, . . . . One needs to have
a good enough control of their solutions but only on one fixed compact
interval namely [0, 1].

For our model, one can choose the fundamental solutions so that all the
matrices ML have the same functional structure, and the numbers (λL) are
the successive coupling constants in these equations.

For λ = λ0 > 1, the sequence (λL)L tends to infinity very rapidly; this
enables an effective asymptotic analysis of the successive equations. For
general almost periodic equations, one finds an analogous effect at least
when the coupling constant in the input equation is large enough.
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We review recent results on the universal occurrence of Anderson localization
in continuum random Schrödinger operators, namely localization for any non
trivial underlying probability measure. We extend known results to the case
where impurities are located on Delone sets. We also recall the recent local-
ization result for Poisson Hamiltonian. A discussion on the Wegner estimate is
provided with a comparison between the “usual” estimate and the one derived
through Sperner’s type argument and (anti)concentration bounds.

1. Setup and results

1.1. Setup and results for the Anderson model

In this note, we consider random Schrödinger operators on L2(Rd) of the
type

HD,ω = Hω := −∆ + Vω, (1.1)

where ∆ is the d-dimensional Laplacian operator, and Vω is an Anderson-
type random potential,

Vω(x) :=
∑

ζ∈D
ωζ u(x− ζ),

where

(I) the single site potential u is a nonnegative bounded measurable function
on Rd with compact support, uniformly bounded away from zero in a

∗The author thanks the hospitality of the Pontificia Universidad Católica de Chile where
this note has been written.
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neighborhood of the origin, more precisely,

u−χΛδ− (0) ≤ u ≤ u+χΛδ+ (0) for some constants u±, δ± ∈]0,∞[;
(1.2)

(II) D is a periodic lattice.
(III) ω = {ωζ}ζ∈D is a family of independent identically distributed random

variables, whose common probability distribution µ is non-degenerate
with bounded support, and satisfies

{0, 1} ∈ suppµ ⊂ [0, 1]. (1.3)

To fix notations, the set of realizations of the random variables {ωζ}ζ∈D
is denoted by Ω = ΩD = [0, 1]D; F denotes the σ-algebra generated by the
coordinate functions, and P = PD = ⊗ζ∈D µ is the product measure of
the common probability distribution µ of the random variables ω = ωD =
{ωζ}ζ∈D. In other words, we work with the probability space (Ω,F ,P) =⊗

ζ∈D
(
[0, 1],B[0,1], µ

)
, where B[0,1] is the Borel σ-algebra on [0, 1]. A set

E ∈ F will be called an event.
Under assumption (II), that is if D is a lattice, Hω is a D-ergodic

family of random self-adjoint operators. It follows from standard results
(cf. Refs. 41,56) that there exists fixed subsets Σ, Σpp, Σac and Σsc of R
so that the spectrum σ(Hω) of Hω, as well as its pure point, absolutely
continuous, and singular continuous components, are equal to these fixed
sets with probability one.

We shall take advantage of this review to extend some results to the
more general setting

(II’) ∃ 0 < r ≤ R < ∞, s.t. D is a (r,R)-Delone set, that is for any cubes
Λr,ΛR of respective sizes r,R, |D ∩ Λr| ≤ 1 and |D ∩ ΛR| ≥ 1.

Recall that a lattice is a particular case of a Delone set.
With condition (1.3), the family of operators Hω is “normalized”, so

that, by the Borel-Cantelli lemma, assuming (I), (II’), (III),

for P a.e.ω, σ(Hω) = [0,+∞[. (1.4)

Instead of Condition (III) above we may consider the more general sit-
uation:

(III’) ∃ 0 ≤ a < b <∞ s.t. {a, b} ⊂ suppµ ⊂ [a, b].

Assuming (III’), the operator Hω may be rewritten as

Hω = −∆ + V0 +
∑

ζ∈D
ω′ζu

′
ζ
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with

V0 = a
∑

ζ∈D
uζ , ω

′
ζ =

ωζ − a

b− a
, and u′ζ = (b− a)uζ ≥ 0.

The picture (1.4) is lost. The infimum of the spectrum is shifted by a
constant E0 = inf σ(−∆ + V0), which becomes the almost sure infimum of
the spectrum. If (II) and (III) hold, then by ergodicity there exists a set
Σ ⊂ [E0,∞[ that is the almost sure spectrum of Hω. If we only assume
(II’), then this picture is lost.

It will be convenient to work with the sup norm in Rd,

‖x‖ := max {|x1| , |x2| , . . . , |xd|} for x = (x1, x2, . . . , xd) ∈ Rd.
Then

ΛL(x) :=
{
y ∈ Rd; ‖y − x‖ < L

2

}
= x+

]
−L

2
,
L

2

[d

denotes the (open) box of side L centered at x ∈ Rd. By a box ΛL we
mean a box ΛL(x) for some x ∈ Rd. Given a set B, we write χB for its
characteristic function. By χx we denote the characteristic function of the
unit box centered at x ∈ Rd, i.e., χx := χΛ1(x).

We prove localization at the bottom of the spectrum for the Ander-
son Hamiltonian without any extra hypotheses. We actually prove stronger
versions of Anderson localization (pure point spectrum with exponentially
decaying eigenfunctions) and dynamical localization (no spreading of wave
packets under the time evolution).

Theorem 1.1. Let Hω be an Anderson Hamiltonian on L2(Rd) as above
with hypotheses (I), (II), (III’). Then there exists E0 = E0(d, u±, δ±, µ) > 0
such that Hω exhibits Anderson localization as well as dynamical localiza-
tion in the energy interval [0, E0]. More precisely:

• (Anderson localization) There exists m = m(d, Vper, u±, δ±) > 0 such
that the following holds with probability one:

– Hω has pure point spectrum in [0, E0].
– If φ is an eigenfunction of Hω with eigenvalue E ∈ [0, E0], then φ

is exponentially localized with rate of decay m, more precisely,

‖χxφ‖ ≤ Cω,φ e
−m|x| for all x ∈ Rd. (1.5)

– The eigenvalues of Hω in [0, E0] have finite multiplicity.
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• (Dynamical localization) For all s < 3
8d we have

E
{

sup
t∈R

∥∥∥〈x〉m
2 e−itHωχ[0,E0](Hω)χ0

∥∥∥
2s
m

2

}
<∞ for all m ≥ 1. (1.6)

The full proof of Theorem 1.1 is presented in Ref. 35. In particular it
combines the multiscale analysis of Bourgain and Kenig7 together with the
concentration bound of Ref. 3. This yields Anderson localization (using
Ref. 33 for finite multiplicity). To get dynamical localization, one builds on
ideas that are by now standard and that come from Refs. 1,18,19,27,28,32,
33.

1.2. Extension to underlying Delone sets

The following theorem extends known results, in particular Theorem 11 in
Ref. 8, where the regularity of the random variable is assumed.

Theorem 1.2. Conclusions of Theorem 1.1 hold under conditions (I),
(II’), (III). Constants then also depend on r,R.

Remark 1.1. So far, the general case that would consist in assuming (II’)
and (III’) is out of reach for the multiscale analysis cannot be started with
current methods. Indeed if D is not a lattice, both the argument we provide
in Section 3 and the Lifshtiz tails approach (e.g. Refs. 45,46,56) fail when
the bottom of the spectrum is not zero.

Remark 1.2 (The Bernoulli case). If the random variables ωζ are
Bernoulli, taking values 0, 1 (so that hypothesis (III) holds), then for a given
configuration ω, the Hamiltonian reads, with D(ω) := {ζ ∈ D,ωζ = 1},

Hω = −∆ +
∑

ζ∈D(ω)

uζ . (1.7)

One may wonder what can be said about sets D(ω)’s for which localization
is proved. It is clear that they are not (r,R)-Delone sets anymore (otherwise
the spectrum would not start at zero). However it is interesting to note that
as a by product of the proof, D(ω) is relatively dense in the following weak
sense: for any ε > 0, for any x ∈ Rd,

lim
L→∞

L−(d−ε)|ΛL(x) ∩D(ω)| = +∞.

This observation follows from the existence of free sites, at any scale large
enough, which associated value can be turned to 1 at the end of the multiscale
analysis, ensuring the presence of the point.
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Instead of considering just one underlying Delone set, one may want
to look at a family of such sets. A common way of “randomizing” D is to
consider the complete metric space given by the closure, with respect to
the Delone topology, e.g., Ref. 50, of all its translates:

D = {x+D,x ∈ Rd}.
Provided D has finite complexity, e.g., Ref. 50, such a set possesses a Haar
measure that we shall denote by ν. It is then possible to consider “thinned”
or “coloured” Delone sets Dω := (D,ωD) on D, and to construct the asso-
ciated Schrödinger operator, which amounts, for any D ∈ D, to consider the
model HDω = HD,ωD

described in (1.1). The probabilistic structure of such
a colouring of D is well described in Ref. 53, elaborating on Ref. 39 who
considered Bernoulli colourings on Penrose tilings. In particular the overall
probability measure dP̂(Dω) can be decomposed as dν(D) × dPD(ω) [53,
Theorem 3.5]. In particular, this enables one to first perform a condition-
ning with respect to the Delone variable and conduct the analysis with the
random variables.

Since the event of {σc(HD,ω) = ∅} is P̂-measurable, the following state-
ment follows from Theorem 1.2 along the same lines as in Ref. 3.

Corollary 1.1. Assume D has finite local complexity. There exists E(µ) >
0, such that, for P̂ a.e. ω, HDω exhibits spectral localization in [0, E(µ)],
that is pure point spectrum.

Remark 1.3. Extension of Corollary 1.1’s result to the localization picture
described in Theorem 1.1 and Theorem 1.2 requires a carefull treatment of
measurability, since, one has to make sure that events considered through-
out the multiscale analysis are jointly measurable in ν and P, perform the
conditionning and do the multiscale analysis. It is very likely that this can
be done along the lines of Ref. 35.

For pure Delone sets, that is with no random colouring, the situation
is much more delicate. One can nevertheless show for large dense sets of
Delone sets that localization holds.37

1.3. The Poisson model

Writing the (Bernoulli-)Hamiltonian in the form (1.7) is reminiscent to cases
where the randomness is introduced by the location of the impurities, rather
than by their amplitudes as in the Anderson model. A popular model of such
a Schrödinger operator with impurities located at random is given by the
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Poisson Schrödinger operator, where single site potentials are centered at
points obtained through a Poisson point process of a given intensity. While
localization in any dimension is expected for many years for this model, at
least since the proof of Lifshitz tails provided by Donskher and Varadhan
in 1975,20 a rigorous proof of this phenomena has recently been obtained in
Refs. 29,30 for repulsive potentials and Ref. 31 for attractive potential. We
review this result in the sequel. Note however that localization in dimension
one was known to hold by the work of Stolz.57

Let us note that another model obtained by randomizing the location of
impurities is also of interest: the random displacement model. Only partial
results are known for this model: localization in dimension 1,10,17 and an
asymptotics result (of semi-classical type) in higher dimensions.43 Other
models of interest have been studied, such as potentials given by Gaussian
random variables, see Refs. 51,58.

The Poisson Hamiltonian is the random Schrödinger operator on L2(Rd)
given by

HX = −∆ + VX , with VX(x) =
∑

ζ∈X
u(x− ζ),

where the single-site potential u is a nonnegative C1 function on Rd with
compact support satisfying (1.2), and VX is a Poisson random potential,
that is, X is a Poisson process on Rd with density % > 0. Thus the configu-
rationX is a random countable subset of Rd, and, letting NX(A) denote the
number of points ofX in the Borel set A ⊂ Rd, eachNX(A) is a Poisson ran-
dom variable with mean %|A| (i.e., P%{NX(A) = k} = (%|A|)k(k!)−1e−%|A|

for k = 0, 1, 2, . . . ), and the random variables {NX(Aj)}nj=1 are independent
for disjoint Borel sets {Aj}nj=1. We will denote by (X ,P%) the underlying
probability space for the Poisson process with density %.

Note that HX is an ergodic (with respect to translations in Rd) random
self-adjoint operator. It follows that the spectrum of HX is the same for
P%-a.e. X, as well as the decomposition of the spectrum into pure point,
absolutely continuous, and singular continuous spectra. For u as above we
actually get σ(HX) = [0,+∞[ for P%-a.e. X.41

Theorem 1.3.30 Given % > 0, there exists E0 = E0(%) > 0 and m =
m(ρ) > 0, such that conclusions of Theorem 1.1 hold on [0, E0].
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2. A bit of history and the Wegner estimate

2.1. Some history

In the one-dimensional case the continuous Anderson Hamiltonian has been
long known to exhibit spectral localization in the whole real line for any
non-degenerate µ, i.e., when the random potential is not constant.17,38,49

In the multidimensional case, localization at the bottom of the spectrum
is already known at great, but nevertheless not all-inclusive, generality; cf.
Refs. 7,47,56 and references therein. First proofs of this result are due to
Combes Hislop11 and Klopp,44 assuming that the single site probability dis-
tribution µ is absolutely continuous with bounded density. The result relies
on a multiscale analysis argument “à la” Fröhlich Spencer26 and adapted
from Ref. 21’s discrete version; it took more time and a lot of efforts to
carry the Aizenman Molchanov approach of fractional moments4 over the
continuum,2 still under the regularity assumption on µ.

The absolute continuity condition of µ can be relaxed to Hölder conti-
nuity of µ, both in the approach based on the multiscale analysis, and in the
one based on the fractional moment method. The basis in the former case
is an improved analysis of the Wegner estimate, which was first noticed by
Stollmann in Ref. 55. Important improvements in Wegner estimates with
(not too) singular continuous measures µ have then been successively ob-
tained in Refs. 12,15,16,36,40 until the recent optimal form due to Combes
Hislop and Klopp;13 all theses improved forms provide in particular some
continuity property of the integrated density of states.

However, techniques relying on the regularity of µ seem to reach their
limit with log-Hölder continuity. In particular, until recently the Bernoulli
random potential had been beyond the reach of analysis in more than one
dimension. For that extreme case, i.e., of Hω with µ {1} = µ {0} = 1

2 ,
localization at the bottom of the spectrum was recently proven by Bourgain
and Kenig.7

In Ref. 7, the Wegner estimate is obtained along the lines of (an elabo-
rated version of) the multiscale analysis, scale by scale, through a combina-
tion of a quantitative unique continuation principle together with a lemma
due to Sperner.54 Although it definitely requires some technical care, it is
quite clear from the analysis of Ref. 7 that the result extends to any mea-
sure for which a Sperner’s type argument is valid. See for an illustration of
this point the note Ref. 34, where µ is a uniform measure on some Cantor
set (µ turns to be log log-Hölder continuous in this example).

Localization was thus proved for the two extreme cases: µ regular enough
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and µ Bernoulli, and with two different proofs, none of which applying di-
rectly to the other case. Our motivation was then to find a single proof for
any non degenerated measure, and thus unifying these two extreme results.
A key step, the concentration bound extending the Sperner’s Lemma esti-
mate used by Bourgain and Kenig, was obtained in Ref. 3. The full technical
details of the extension of the multiscale analysis of Ref. 7 are provided in
Ref. 35.

2.2. The Wegner estimate

It is easy to understand (or at least to get a hint of) why regularity of
the distribution might help for a proof of a Wegner type estimate. But let
us first describe what a Wegner type estimate is and what it is good for.
The multiscale analysis deals with resolvents of the random Hamiltonians,
restricted to finite volume cubes. The aim of the game is to show that
such kernels of finite volume resolvents decay exponentially with a good
probability. Before showing that resolvents decay exponentially, it sounds
reasonable to make sure that their norm is not too big, namely at most
sub-exponentially big (so that it does not destroy the exponential decay
that has already been obtained from previous scales).

To fix notations, consider a scale L, HL,ω a suitable restriction of Hω

to a cube ΛL of side L with Dirichlet boundary condition, and RL,ω(z) its
resolvent (that is now a compact operator). The spectrum of HL,ω is thus
discrete and given E ∈ σ(Hω) = [0,+∞[ we want to investigate the size of
‖RL,ω(E)‖ and show it is ≤ eL

1−δ

, δ > 0, with probability at least 1−L−p,
for some p > 0 (note that ‖RL,ω(E)‖ may be infinite, namely when E ∈
σ(HL,ω), but typically, this should happen for a set of ω’s of small measure.
This amounts to analyze the probability that dist(E, σ(HL,ω)) ≥ e−L

1−δ

.
The strong form of the Wegner estimate reads as follows:13 there exists

CW <∞, such that for η small enough and L large enough,

P(dist(E, σ(HL,ω)) < η) ≤ CWQω0(2η)L
d,

where Qω0(η) is the (Levy) concentration function of the random variable
ω0 (or equivalently the modulus of continuity of its measure µ), that is,

Qω0(η) = sup
x∈R

P(ω0 ∈ [x, x+ η[) = sup
x∈R

µ([x, x+ η[). (2.1)

It is worth pointing out that (2.2) is an a priori estimate that is indepen-
dent of the existence of localized states. Applying (2.2) with η = e−L

1−δ

obviously leads to the needed estimate. A weaker version, corresponding
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to the approach of Bourgain Kenig, reads as follows. Let S be a subset of
D ∩ ΛL, and ωS = (ωζ)ζ∈S . There exists CW < ∞ and δ0 > 0 s.t., for
suitable events FL,ω,S ⊂ F coming from the multiscale analysis, for L large
enough, δ, ε > 0 small enough,

PS(dist(E, σ(HL,ω)) < e−L
1−δ

;FL,ω,S) ≤ LεQZ(2e−L
1−δ

), (2.2)

where PS =
⊗

ζ∈S µ is the restriction of P to S, Z = Φ(ωS) is a random
variable such that for any ωS , for any vζ ≥ δ0,

Φ(ωS + vζ)− Φ(ωS) > 2e−L
1−δ

. (2.3)

In practice, Φ is an eigenvalue of the finite volume operator, and property
(2.3) follows from a quantitative unique continuation principle. Note that
unlike what happens in the strong form, it is a only collective effect of the
random variables ωζ , ζ ∈ S, that provides some decay. The best univer-
sal bound is the following concentration bound (as proven in Ref. 3, see
Theorem 2.1 below)

QZ(2e−L
1−δ

) ≤ C|S|− 1
2 .

In practice, |S| = L
3
4d−, so that the probability in (2.2) amounts to L−

3
8d+.

We shall discuss this point in the next subsection.
One way to understand this difference between regular and singular

measures is to consider a purely discrete diagonal model, i.e. where HL,ω =
VL,ω is a diagonal matrix, with entries labelled by n = 0, 1, · · · , N = |Λ∩D|.
Since the eigenvalues are exactly the ωn’s, the distance between E and the
spectrum of this diagonal matrix is exactly infn |E−ωn|. As a consequence

P(dist(E, σ(HL,ω)) < η) ≤ Nµ(]E − η,E + η[) ≤ Qω0(2η)N. (2.4)

Note that it is the concentration of a single random variable that enters
(2.4). Assume now the measure µ is singular, say Bernoulli with even prob-
ability 1

2 , then as soon as ]E − η,E + η[ contains an atom of µ, a single
ωn is enough to spoil the picture: we get P((dist(E, σ(HL,ω)) < η) ≥ 1

2

and the situation is desperate! This simple example tell us that 1) some
correlation between the eigenvalues is needed (in particular note that if
Φ(ωS) = ω1, then (2.3) fails) and it is the Laplacian and the unique quan-
titative principle that shall provide this; 2) it is by a collective effect that
P((dist(E, σ(HL,ω)) < η) has a chance to be small, and this is typically
what Sperner’s theorem provides.
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2.3. Antichains, Sperner’s lemma and Ref. 3’s

concentration bound

The configuration space {0, 1}N for a collection of Bernoulli random vari-
ables η = {η1, . . . , ηN} is partially ordered by the relation defined by:

η ≺ η′ ⇐⇒ for all i ∈ {1, ..., N} : ηi ≤ η′i . (2.5)

A set A ⊂ {0, 1}N is said to be an antichain if it does not contain any pair
of configurations which are comparable in the sense of “≺”. The original
Sperner’s Lemma54 states that for any such set: |A| ≤ (

N
[ N
2 ]

)
. An immediate

computation using Stirling formula shows that the latter is bounded by
C2N/

√
N . A more general result is the LYM inequality for antichains (e.g.

Ref. 5):
∑

η∈A

1(
N
|η|

) ≤ 1 , (2.6)

where |η| = ∑
ηj . The LYM inequality has the following probabilistic im-

plication. If {ηj} are independent copies of a Bernoulli random variable η
with probabilities (1− p, p), then for any antichain A ⊂ {0, 1}N :

P ({η ∈ A}) ≤ 2
√

2
ση
√
N
, (2.7)

where η = (η1, . . . , ηN ), ση =
√
pq is the standard deviation of η. The same

bound extends to antichains on larger alphabet: {0, 1, · · · , k}N with k ≥ 1
for equidistributed weights5 as well as for general weights22,23 (more than
an upper bound, an asymptotics as N goes to ∞ is proven in those cases).
An extension of (2.7) to independent Bernoulli variables, but no necessarily
identically distributed is proven in Ref. 3.

Such bounds on probability of antichains find their natural generaliza-
tion in the following theorem, that deals with arbitrary non degenerate
random variables and that is proved in Ref. 3.

Theorem 2.1. Let X = (X1, . . . , XN ) be a collection of independent ran-
dom variables whose distributions satisfy, for all j ∈ {1, ..., N}:

P ({Xj ≤ x−}) ≥ p− and P ({Xj > x+}) > p+ (2.8)

at some p± > 0 and x− < x+, and Φ : RN 7→ R a function such that for
some ε > 0

Φ(u + vej)− Φ(u) > ε (2.9)
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for all v ≥ x+ − x−, all u ∈ RN , and j = 1, . . . , N , with ej the unit vector
in the j-direction. Then, the random variable Z, defined by Z = Φ(X),
obeys the concentration bound

QZ(ε) ≤ 4√
N

√
1
p+

+
1
p−

. (2.10)

If the random variables are Bernoulli then the link between Theo-
rem 2.1 and Sperner’s theory of antichains is quite obvious. Indeed, let
ε, ε′ be two comparable realizations of (X1, · · · , Xn), say εj ≤ ε′j for all
j = 1, · · · , N . Then by (2.9), Φ(ε) and Φ(ε′) cannot both belong to a given
interval of length ε. In other words, for any given x ∈ R, realizations of
Z = Φ(X1, · · · , Xn) that fall into [x, x + ε[ belong to an antichain; (2.7)
above then yields (2.10).

It remains to extend such a reasoning to arbitrary non degenerate
random variables, and not just Bernoulli. This is achieved by taking ad-
vantage of a Bernoulli decomposition of random variables described in
Ref. 3. This decomposition enables us to rewrite each variable as (in law)
Xi = Fi(ti)+ δi(ti)εi, where Fi, δi are measurable functions, ti is a random
variable on ]0, 1[ with uniform distribution, εi is a Bernoulli random variable
independent of ti. Moreover it is shown in Ref. 3 that under condition (2.8),
Pti(δi(ti) ≥ x+ − x−) ≥ p− + p+. A large deviation argument enables us
to restrict ourselves to the latter case, that is where δi(ti) ≥ x+ − x− for
all i = 1, · · · , N . We are thus left with Bernoulli variables for which (2.9)
applies (since δi(ti) ≥ x+ − x−); as before (2.7) finishes the proof.

The Bernoulli decomposition we used here found also an application to
random matrices theory.9

3. Proof of Theorem 1.2

With Theorem 2.1 in hands, the Bourgain-Kenig multiscale analysis can
be conducted in the same way as in Ref. 35, provided we can start the
algorithm and make sure the density condition on the so called “free sites”
is satisfied at all scales. Both points will be clear from the construction we
give in Section 3.2 below. It is indeed enough to show that with a sufficiently
good probability, the bottom of the spectrum of finite volume operators is
lifted up, uniformly with respect to the random variables attached to a set
S ⊂ D s.t. |S ∩ Λ| = CR|Λ| for some CR <∞ (actually, CR = (2R)−d).
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3.1. Finite volume operators

Given a box Λ = ΛL(x) in Rd, we denote by Λ̂ the subcube ΛL−δ+(x) (recall
(1.2)). We then define finite volume operators as follows:

Hω,Λ := −∆Λ + Vω,Λ on L2(Λ), (3.1)

where ∆Λ is the Laplacian on Λ with Dirichlet boundary condition, and

Vω,Λ =
∑

ζ∈D∩Λ̂

ωζuζ .

Since we are using Dirichlet boundary condition, we always have
inf σ(Hω,Λ) > 0.

The multiscale analysis estimates probabilities of desired properties
of finite volume resolvents at energies E ∈ R. As in Refs. 6,7,31, these
properties include ‘free sites’. Given a box Λ, a subset S ⊂ Λ̂, and
tS = {tζ}ζ∈S ∈ [0, 1]S , we set

Hω,tS ,Λ := H0,Λ + Vω,tS ,Λ on L2(Λ), (3.2)

where Vω,tS ,Λ = χΛVωΛ,tS
with

VωΛ,tS (x) := VωΛ\S
(x) + VtS (x) =

∑

ζ∈Λ̂\S
ωζ uζ(x− ζ) +

∑

ζ∈S
tζ uζ(x− ζ).

(3.3)
Rω,tS ,Λ(z) will denote the corresponding finite volume resolvent.

3.2. Proof of Theorem 1.2

Given an energy E, to start the multiscale analysis we will need, as in
Refs. 6,7,31, an a priori estimate on the probability that a box ΛL is ‘good’
with an adequate supply of free sites, for some sufficiently large scale L.
The multiscale analysis will then show that such a probabilistic estimate
also holds at all large scales.

To prove the needed initial estimate, it is enough to prove that a spectral
gap occurs above 0 for finite volume operators with a good probability. This
is the purpose of the next proposition.

Proposition 3.1. Fix p > 0 and 0 < ε ≤ 1 . There exists a scale L̃ =
L̃(d, q, u−, δ−, µ, p, ε), such that for all scales L ≥ L̃ and all x ∈ Rd we have

P
{
Hω,tS ,ΛL(x) ≥ CR−2d−2(logL)−

2
d for all tS ∈ [0, 1]S

}
≥ 1− L−pd,

(3.4)
where S ⊂ Λ, |S| = (2R)−d|Λ|.
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Proof. By definition of D being a (r,R)-Delone set, for any j ∈ Zd, there
exists a point such that ζj ∈ D ∩ΛR(j) (if ζj is not unique, we select one).
We define the set ΥR ⊂ D to be the collection of these ζj ’s, and we further
define Υ0

R as the subcollection corresponding respectively to points ζj with
j ∈ (2Z)d. Note that |ΥR ∩ Λ| = R−d|Λ|, and |Υ0

R ∩ Λ| = (2R)−d|Λ|. We
set S = Υ0

R ∩ Λ.
We further set

VΥ0
R,ω

:=
∑

ζj∈Υ0
R

ωζj
uζj

Clearly, for any ω,

Vω ≥
∑

ζj∈ΥR

ωζj
uζj

= VΥ0
R,ω

+
∑

ζj∈ΥR\Υ0
R

ωζj
uζj

Going to finite volumes, the same inequality holds with ω replaced by ωΛ.
We now follow Refs. 7,30,35. Setting K > 10δ−, Λ = ΛL, It follows from

the lower bound in (1.2) that there exists a constant cu,d > 0 such that

V Υ0
R,ωΛ

(x) :=
1

(2RK)d

∫

Λ2RK(0)

daVωΛ(x− a) ≥ cu,d
(2R)d

Yω,ΛχΛ(x), (3.5)

where

Yω,Λ := min
ξ∈eΛ

1
Kd

∑

ζ∈Λ̃ K
3

(ξ)

ωζ .

It follows from standard estimates (e.g., Proposition 3.3.1 in Ref. 59) that,
with µ̄ the mean of the probability measure µ, we have, for some Aµ > 0,

P





1
Kd

∑

ζ∈Λ̃ K
3

(ξ)

ωζ ≤ µ̄

2




≤ e−AµK

d

. (3.6)

It follows from (3.5) and (3.6) that. with c′u,d = cu,d

2 ,

P
{
V ωΛ > c′u,d(2R)−dµ̄χΛ

} ≥ 1− Lde−AµK
d

, (3.7)

and thus, we have for the “free sites Hamiltonian” with

S = (D \Υ0
R) ∩ Λ, (3.8)

(recall (3.2)-(3.3)), with probability ≥ 1− Lde−AµK
d

, uniformly in tS ,

Hω,Λ,tS := −∆Λ + VωΛ,tS + V Υ0
R,ωΛ

≥ c′u,d(2R)−dµ̄ on L2(Λ). (3.9)
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Thus, if ϕ ∈ C∞c (Λ) with ‖ϕ‖ = 1, we have

〈ϕ,Hω,Λ,tSϕ〉Λ =
〈
ϕ,Hω,Λ,tS

ϕ
〉
Λ

+
〈
ϕ,

(
VΥ0

R,ωΛ
− V Υ0

R,ωΛ

)
ϕ
〉

Λ

≥ c′u,d(2R)−dµ̄+
〈
ϕ,

(
VΥ0

R,ωΛ
− V Υ0

R,ωΛ

)
ϕ
〉
Rd

≥ c′u,d
(2R)d

µ̄+
〈
ϕ, VΥ0

R,ωΛ
ϕ
〉
Rd
− 1

(2RK)d

∫

Λ2RK(0)

da 〈ϕ(·+ a), VωΛϕ(·+ a)〉

≥ c′u,d
(2R)d

µ̄− 1
(2RK)d

×

×
∫

Λ2RK(0)

da
∣∣∣
〈
ϕ, VΥ0

R,ωΛ
ϕ
〉
−

〈
ϕ(·+ a), VΥ0

R,ωΛ
ϕ(·+ a)

〉∣∣∣

≥ c′u,d
(2R)d

µ̄− 2c′uKR ‖∇Λϕ‖Λ ≥ c′u,d µ̄− 2c′uKR 〈ϕ,Hω,Λϕ〉
1
2
Λ ,

where we used

‖ϕ(·+ a)− ϕ‖Rd =
∥∥(ea·∇ − 1)ϕ

∥∥
Rd ≤ |a| ‖∇ϕ‖Rd = |a| ‖∇Λϕ‖Λ .

It follows that there is K̃u,d > 0, such that for K > K̃u,d we have, uniformly
in tS ,

〈ϕ,Hω,Λ,tS
ϕ〉Λ ≥ c′′u,d

µ̄2

R2d+2K2
.

Since this holds for all ϕ ∈ C∞c (Λ) with ‖ϕ‖ = 1, we have, from (3.7),
uniformly in tS ,

Hω,Λ,tS
≥ c′′u,d

µ̄2

R2d+2K2
on L2(Λ), (3.10)

with probability ≥ 1 − Lde−AµK
d

. Given p > 0, we take K =(
(p+1)d
Aµ

logL
) 1

d

and get uniformly in tS ,

P
{
Hω,ΛL,tS

≥ Cu,µ,d,pR
−(2d+2) (logL)−

2
d

}
> 1− L−pd,

for L ≥ L̃u,µ,d,p, where Cu,µ,d,p > 0 is an appropriate constant.
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We present recent works15,16 on the thermodynamic limit of quantum Coulomb
systems. We provide a general method which allows to show the existence of
the limit for many different systems.

1. Introduction

Ordinary matter is composed of electrons (negatively charged) and nuclei
(positively charged) interacting via Coulomb forces. The potential between
two particles of charges z and z′ located at x and x′ in R3 is

zz′

|x− x′| .

∗ c© 2008 by the authors. This work may be reproduced, in its entirety, for non-
commercial purposes.



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

98 C. Hainzl, M. Lewin, & J.P. Solovej

There are two difficulties which occur when trying to describe systems com-
posed of electrons and nuclei. Both have to do with the physical problem
of stability of quantum systems.

The first is due to the singularity of 1/|x| at 0: it is necessary to explain
why a particle will not rush to a particle of the opposite charge. One of the
first major triumphs of the theory of quantum mechanics is the explanation
it gives of the stability of the hydrogen atom (and the complete description
of its spectrum) and of other microscopic quantum Coulomb systems, via
the uncertainty principle. Stability means that the total energy of the con-
sidered system cannot be arbitrarily negative. If there was no such lower
bound to the energy it would be possible in principle to extract an infinite
amount of energy. One often refers to this kind of stability as stability of
the first kind.19,20 If we denote by E(N) the ground state energy of the
system under consideration, for N particles stability of the first kind can
be written

E(N) > −∞. (1.1)

In proving (1.1) for Coulomb systems, a major role is played by the
uncertainty principle which for nonrelativistic systems is mathematically
expressed by the critical Sobolev embedding H1(R3) ↪→ L6(R3). The latter
allows to prove Kato’s inequality

∀ε > 0,
1
|x| ≤ ε(−∆) +

1
ε
,

which means that the Coulomb potential is controlled by the kinetic energy.
The second issue concerns the slow decay of 1/|x| at infinity and this

has to do with the macroscopic behavior of quantum Coulomb systems. It
is indeed necessary to explain how a very large number of electrons and
nuclei can stay bounded together to form macroscopic systems, although
each particle interacts with a lot of other charged particles due to the
long tail of the Coulomb interaction potential. Whereas the stability of
atoms was an early triumph of quantum mechanics it, surprisingly, took
nearly forty years before the question of stability of everyday macroscopic
objects was even raised (see Fisher and Ruelle11). A rigorous answer to the
question came shortly thereafter in what came to be known as the Theorem
on Stability of Matter proved first by Dyson and Lenard.8

The main question is how the lowest possible energy E(N) appearing
in (1.1) depends on the (macroscopic) number N of particles in the object.
More precisely, one is interested in proving a behavior of the form

E(N) ∼N→∞ ēN. (1.2)
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This behavior as the number of particles grows is mandatory to explain why
matter does not collapse or explode in the thermodynamic limit. Assume
that (1.2) does not hold and that for instance E(N) ∼N→∞ cNp with
p 6= 1. Then |E(2N) − 2E(N)| becomes very large as N À 1. Depending
on p and the sign of the constant c, a very large amount of energy will be
either released when two identical systems are put together, or necessary
to assemble them. The constant ē in (1.2) is the energy per particle.

Stability of Matter is itself a necessary first step towards a proof of (1.2)
as it can be expressed by the lower bound

E(N) ≥ −κN. (1.3)

Put differently, the lowest possible energy calculated per particle cannot be
arbitrarily negative as the number of particles increases. This is also often
referred to as stability of the second kind.19,20

A maybe more intuitive notion of stability would be to ask for the
volume occupied by a macroscopic object (in its ground state). Usually
this volume is proportional to the number of particles N . Denoting by Ω a
domain in R3 which is occupied by the system under consideration and by
E(Ω) its (lowest possible) energy, (1.2) then reads

E(Ω) ∼|Ω|→∞ ē|Ω| (1.4)

where |Ω| is the volume of Ω. Stability of the second kind is expressed as

E(Ω) ≥ −κ|Ω|. (1.5)

Instead of the ground state energy, one can similarly consider the free
energy F (Ω, β, µ) at temperature T = 1/β and chemical potential µ. One
is then interested in proving the equivalent of (1.4)

F (Ω, β, µ) ∼|Ω|→∞ f̄(β, µ)|Ω| (1.6)

where f̄(β, µ) is the free energy per unit volume.
Large quantum Coulomb systems have been the object of an important

investigation in the last decades and many techniques have been developed.
A result like (1.3) (or equivalently (1.5)) was first proved for quantum elec-
trons and nuclei by Dyson and Lenard.8 After the original proof by Dyson
and Lenard several other proofs were given. Lieb and Thirring27 in par-
ticular presented an elegant and simple proof relying on an uncertainty
principle for fermions. The different techniques and results concerning sta-
bility of matter were reviewed in several articles.19–21,29,33
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It is very important that the negatively charged particles (the electrons)
are fermions. It was discovered by Dyson7 that the Pauli exclusion princi-
ple is essential for Coulomb systems: charged bosons are alone not stable
because their ground state energy satisfies E(N) ∼ −CN7/5, as was proved
later.4,26,32

A result like (1.2) (or equivalently (1.4)) was first proved by Lieb and
Lebowitz22 for a system containing electrons and nuclei both considered
as quantum particles, hence invariant by rotation. Later Fefferman gave a
different proof9 for the case where the nuclei are classical particles placed
on a lattice, a system which is not invariant by rotation.

In a recent work,15,16 we provide a new insight in the study of the
thermodynamic limit of quantum systems, by giving a general proof of (1.4)
or (1.6) which can be applied to many different quantum systems including
those studied by Lieb and Lebowitz22 or Fefferman,9 and others which were
not considered before. Our goal was to identify the main general physical
properties of the free energy which are sufficient to prove the existence of the
thermodynamic limit. However, for the sake of simplicity we will essentially
address the crystal case in this paper and we refer to our works15,16 for a
detailed study of the other cases.

In proving the existence of the thermodynamic limit of Coulomb quan-
tum systems, the most difficult task is to quantify screening. Screening
means that matter is arranged in such a way that it is essentially locally
neutral, hence the electrostatic potential created by any subsystem decays
much faster than expected. This effect is the main reason of the stability of
ordinary matter but it is very subtle in the framework of quantum mechan-
ics because the particles are by essence delocalized. In our approach, we
shall heavily rely on an electrostatic inequality which was proved by Graf
and Schenker12,13 and which serves as a way to quantify screening. It was
itself inspired by previous works of Conlon, Lieb and Yau,4,5 for systems
interacting with the Yukawa potential. Fefferman used a similar idea in his
study of the crystal case.9

Like in previous works, our method consists in first showing the ex-
istence of the limit (1.6) for a specific domain 4 which is dilated (and
possibly rotated and translated). Usually 4 is chosen to be a ball, a cube
or a tetrahedron. In the applications16 we always choose a tetrahedron as
we shall use the Graf-Schenker inequality13 which holds for this type of do-
mains. The second step consists in showing the existence of the limit (1.6)
for any (reasonable) sequence of domains {Ωn} such that |Ωn| → ∞. This
is important as in principle the limit could depend on the chosen sequence,
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a fact that we want to exclude for our systems. We shall specify later what
a “reasonable” sequence is. Essentially some properties will be needed to
ensure that boundary effects always stay negligible.

It is to be noticed that our method (relying on the Graf-Schenker in-
equality) is primarily devoted to the study of quantum systems interacting
through Coulomb forces. It might be applicable to other interactions but
we shall not address this question here.

Proving a result like (1.4) or (1.6) is only a first step in the study of the
thermodynamic limit of Coulomb quantum systems. An interesting open
problem is to prove the convergence of states (or for instance of all k-body
density matrices) and not only of energy levels. For the crystal case, conver-
gence of the charge density or of the first order density matrix was proved
for simplified models from Density Functional Theory or from Hartree-Fock
theory.3,25 A result of this type was also proved for the Hartree-Fock ap-
proximation of no-photon Quantum Electrodynamics.14

Another (related) open question is to determine the next order in the
asymptotics of the energy in the presence of local perturbations. Assume
for instance that the crystal possesses a local defect modelled by a local po-
tential V and denote the ground state energy in the domain Ω by EV (Ω).
Since V is local, it does not contribute to the energy in the first order of
the thermodynamic limit. One is then interested in proving a behavior like
EV (Ω) = E0(Ω) + f(V ) + o(1)|Ω|→∞. Such a result was recently proved
for the reduced Hartree-Fock model of the crystal with the exchange term
neglected.2 This includes an identification of the function f(V ). This pro-
gram was also tackled for the Hartree-Fock model (with exchange term) of
no-photon Quantum Electrodynamics.14

The present paper is organized as follows. In the next section we intro-
duce the model for the crystal and state our main theorem. In Section 3,
we briefly describe two other quantum systems which we can treat using
our method. Section 4 is devoted to the presentation of our new approach,
in a quite general setting, together with hints on how it can be applied to
the crystal case.

2. The Crystal Case

For simplicity, we put identical nuclei of charge +1 on each site of Z3. The
results below can be generalized to any periodic system. Let Ω be a bounded
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open set of R3 and define the N -body Hamiltonian in Ω by

HN
Ω :=

N∑

i=1

−∆xi

2
+ VΩ(x1, ..., xN ),

where

VΩ(x) =
N∑

i=1

∑

R∈Z3∩Ω

−1
|R− xi|+

1
2

∑

1≤i6=j≤N

1
|xi − xj |+

1
2

∑

R 6=R′∈Z3∩Ω

1
|R−R′| .

Here −∆ is the Dirichlet Laplacian on Ω (we could as well consider another
boundary condition). The HamiltonianHN

Ω acts onN -body fermionic wave-
functions Ψ(x1, .., xN ) ∈ ∧N

1 L2(Ω). Stability of the first kind states that
the spectrum of HN

Ω is bounded from below:

ENΩ = inf
Ψ∈VN

1 H1
0 (Ω),

‖Ψ‖L2=1

〈
Ψ,HN

Ω Ψ
〉

= inf σVN
1 L2(Ω)(H

N
Ω ) > −∞.

We may define the ground state energy in Ω by

E(Ω) := inf
N≥0

ENΩ . (2.1)

It is more convenient to express (2.1) in a grand canonical formalism.
We define the (electronic) Fock space as

FΩ := C⊕
⊕

N≥1

N∧
1

L2(Ω).

The grand canonical Hamiltonian is then given by HΩ :=
⊕

N≥0H
N
Ω with

the convention that H0
Ω = (1/2)

∑
R 6=R′∈Z3∩Ω |R−R′|−1 ∈ C. The number

operator reads N :=
⊕

N≥0N . It is then straightforward to check that

E(Ω) = inf σFΩ(HΩ) = inf
Γ∈B(FΩ), Γ∗=Γ,

0≤Γ≤1, trFΩ (Γ)=1.

trFΩ (HΩΓ) .

The free energy at temperature 1/β and chemical potential µ ∈ R is defined
by

F (Ω, β, µ) := inf
Γ∈B(FΩ), Γ∗=Γ,

0≤Γ≤1, trFΩ (Γ)=1.

(
trFΩ((HΩ − µN )Γ) +

1
β

trFΩ(Γ log Γ)
)

= − 1
β

log trFΩ

[
e−β(HΩ−µN )

]
. (2.2)

As explained in Introduction, our purpose is to prove that

E(Ω) ∼|Ω|→∞ ē|Ω| and F (Ω, β, µ) ∼|Ω|→∞ f̄(β, µ)|Ω| (2.3)
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in an appropriate sense. The first important property of E and F is the
stability of matter.

Theorem 2.1 (Stability of Matter16). There exists a constant C such
that the following holds:

E(Ω) ≥ −C|Ω|, F (Ω, β, µ) ≥ −C
(
1 + β−5/2 + max(0, µ)5/2

)
|Ω|

for any bounded open set Ω ⊂ R3 and any β > 0, µ ∈ R.

Sketch of the proof. The first step is to use an inequality for classical
systems due to Baxter,1 improved later by Lieb and Yau,28 and which allows
to bound the full N -body Coulomb potential by a one-body potential:

V (x1, ..., xN ) ≥ −
N∑

i=1

3/2 +
√

2
δ(xi)

(2.4)

where δ(x) = infR∈Z3 |x − R| is the distance to the closest nucleus. Hence
we have the lower bound

HN
Ω ≥

N∑

i=1

(
−∆xi

2
− 3/2 +

√
2

δ(xi)

)
.

Next we split the kinetic energy in two parts and we use the uncertainty
principle to show that on L2(Ω)

−∆
4
− 3/2 +

√
2

δ(x)
≥ −C.

In proving this lower bound, one uses the Sobolev inequality in a small
ball around each nucleus, exploiting the fact that the nuclei are fixed and
separated by a distance at least one to each other. The proof of the stability
of matter for systems with classical nuclei whose position is unknown is
more difficult and it uses the improved version of (2.4) contained in the
paper by Lieb and Yau,28 as explained in our work.16 This shows

HN
Ω ≥

N∑

i=1

(
−∆xi

4
− C

)
hence HΩ ≥ −1

4

∑

i

∆i − CN (2.5)

on L2(Ω) and FΩ respectively. The last step is to use the Lieb-Thirring
inequality27 which states that

〈
N∑

i=1

(−∆xi)Ψ,Ψ

〉
≥ CLT

∫

Ω

ρΨ(x)5/3dx (2.6)
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for all N ≥ 1 and all N -body fermionic wavefunction Ψ ∈ ∧N
1 L2(Ω). The

density of charge ρΨ is as usual defined by ρΨ(x) = N
∫
ΩN−1 |Ψ(x, y)|2dy.

Using the fact that
∫
Ω
ρΨ = N and Hölder’s inequality, (2.6) yields on the

Fock space FΩ
∑

i

(−∆xi) ≥ CLT|Ω|−2/3N 5/3. (2.7)

Hence we obtain HΩ ≥ (CLT/4)|Ω|−2/3N 5/3 −CN which, when optimized
over N , gives the result for the ground state energy.

For the free energy, we use (2.5), (2.7) and Peierls’ inequality30,34 to get

F (β, µ,Ω) ≥ − 1
β

log trF
(
e−β

P
i(−∆i)/4

)
− C(1 + µ

5/2
+ )|Ω|.

The first term of the r.h.s. is the free energy of a free-electron gas which is
bounded below by −C(1 + β−5/2)|Ω| in the thermodynamic limit.16

In order to state our main result, we need the

Definition 2.1 (Regular sets in R3). Let be a > 0 and ε > 0. We say
that a bounded open set Ω ⊆ R3 has an a-regular boundary in the sense of
Fisher if, denoting by ∂Ω = Ω \ Ω the boundary of Ω,

∀t ∈ [0, 1],
∣∣∣
{
x ∈ R3 | d(x, ∂Ω) ≤ |Ω|1/3t

}∣∣∣ ≤ |Ω| a t. (2.8)

We say that a bounded open set Ω ⊆ R3 satisfies the ε-cone property if for
any x ∈ Ω there is a unit vector ax ∈ R3 such that

{y ∈ R3 | (x− y) · ax > (1− ε2)|x− y|, |x− y| < ε} ⊆ Ω.

We denote by Ra,ε the set of all Ω ⊆ R3 which have an a-regular boundary
and such that both Ω and R3 \ Ω satisfy the ε-cone property.

Note that any open convex set is in Ra,ε for some a > 0 large enough
and ε > 0 small enough.15 We may state our main

Theorem 2.2 (Thermodynamic Limit for the Crystal16). There
exist ē ∈ R and a function f̄ : (0,∞) × R → R such that the follow-
ing holds: for any sequence {Ωn}n≥1 ⊆ Ra,ε of domains with |Ωn| → ∞,
|Ωn|−1/3diam(Ωn) ≤ C, a ≥ a0 > 0 and 0 < ε ≤ ε0

lim
n→∞

E(Ωn)
|Ωn| = ē, lim

n→∞
F (Ωn, β, µ)

|Ωn| = f̄(β, µ). (2.9)

Moreover f̄ takes the form f̄(β, µ) = ϕ(β)− µ.
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Remark 2.1. We know from [22, Appendix A p. 385] and [10, Lemma 1]
that if each set Ωn of the considered sequence is connected, then automat-
ically |Ωn|−1/3diam(Ωn) ≤ C.

A very similar result was proved by C. Fefferman.9 Our result is more
general: we allow any sequence Ωn tending to infinity and which is regular
in the sense that {Ωn}n≥1 ⊆ Ra,ε. In Fefferman’s paper,9 Ωn = `n(Ω+xn)
where `n →∞, Ω is a fixed convex open set and xn is any sequence in R3.
These sets are always in Ra,ε for some a, ε > 0.

In our work16 a result even more general than Theorem 2.2 is shown:
we are able to prove the existence of the same thermodynamic limit if the
crystal is locally perturbed (for instance finitely many nuclei are moved or
their charge is changed). A similar result can also be proved for the Hartree-
Fock model.

3. Other models

Our approach15,16 is general and it can be applied to a variety of models,
not only the crystal case. We quickly mention two such examples. It is inter-
esting to note that for these other models, we do not need the cone property
and we can weaken the assumptions on the regularity of the boundary by
replacing t on the r.h.s. of (2.8) by any tp, 0 < p ≤ 1. Details may be
found in our article.16 Roughly speaking, when the system is “rigid” like
for the crystal (the nuclei are fixed), the proof is more complicated and more
assumptions are needed on the sequence of domains to avoid undesirable
boundary effects.

3.1. Quantum particles in a periodic magnetic field

Define the magnetic kinetic energy T (A) = (−i∇+A(x))2 where B = ∇×A
is periodic (for instance constant) and A ∈ L2

loc(R3). Next, consider the
Hamiltonian

HN,K
Ω :=

N∑

i=1

T (A)xi +
K∑

k=1

T (A)Rk
+ V (x,R),

V (x,R) =
∑

i,k

−z
|Rk − xi| +

1
2

∑

i 6=j

1
|xi − xj | +

1
2

∑

k 6=k′

z2

|Rk −Rk′ | .

The ground state energy is this time defined as

E′(Ω) := inf
N,K≥0

inf σVN
1 L2(Ω)⊗SNK

1 L2(Ω)

(
HN,K

Ω

)
.
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We do not precise the symmetry S of the particles of charge z which can
be bosons or fermions. A formula similar to (2.2) may be used for the free
energy on the (electronic and nucleic) Fock space. We prove in our paper16

a result similar to Theorem 2.2 for this model. Lieb and Lebowitz already
proved it in the seminal paper Ref. 22 when A ≡ 0. They used as an essential
tool the rotation-invariance of the system to obtain screening. When A 6= 0
the system is no more invariant by rotations and their method cannot be
applied.

3.2. Classical nuclei with optimized position

For all R ⊂ Ω, #R <∞, let us define

HN,R
Ω :=

N∑

i=1

−∆xi

2
+ V (x,R)

and the associated ground state energy by

E′′(Ω) := inf
N≥0

inf
R⊂Ω,

#R<∞
inf σVN

1 L2(R3)

(
HN,R

Ω

)
.

We could as well optimize the charges in [0, z] of the nuclei without changing
the energy.6,16 However, the free energy itself is not the same when the
charges of the nuclei are optimized or not.16

Surprisingly, to our knowledge the existence of the thermodynamic limit
for this model was unknown. A result similar to Theorem 2.2 is proved in
our paper16 for E′′.

4. A general method

In this section, we give the main ideas of our new approach which allows to
prove Theorem 2.2 and its counterparts for the other models quoted before.

4.1. Screening via the Graf-Schenker inequality

As mentioned in the introduction, an important step is to quantify screen-
ing. For quantum nuclei without a magnetic field (A ≡ 0), Lieb and
Lebowitz used22 the following method (see Figure 1). First they took a big
ball B which they packed with several small balls Bk of different size. In
each of these balls, they took the (neutral) ground state of the correspond-
ing ball. As the system is invariant under rotations, they can freely rotate
each ground state. Averaging over rotations of all the small balls, they re-
duced the computation of the interaction between them to that of classical
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Ω

△
(R,u)
i

R

u

Fig. 1. A comparison between the original method of Lieb and Lebowitz22 (left) and
our method based on the Graf-Schenker inequality13,15,16 (right).

pointwise particles located at the center of the balls, by Newton’s theorem.
As each subsystem is neutral, this interaction vanishes. This proves a for-
tiori that there exists an adequate rotation of each system in each little
ball such that the total interaction between them cancels. Choosing this
configuration, they could build a test function whose energy is just the sum
of the small energies, proving an estimate of the form E(B) ≤ ∑

k E(Bk).
This inequality can be used to prove the limit for balls. Clearly this trick
can only be used for rotation-invariant systems.

Note in the Lieb-Lebowitz proof, a domain (the big ball) is split in
several fixed subdomains and an average is done over rotations of the states
in each small domain. This yields an upper bound to the energy. The Graf-
Schenker inequality is kind of dual to the above method (see Figure 1).
This time a domain Ω is split in several subdomains by using a tiling of the
space R3. But the system is frozen in the state of the big domain Ω and the
average is done over the position of the tiling. This yields a lower bound to
the energy of the form E(Ω) ≥ ∑

k E(∆(r,u)
i ∩Ω) + errors, where ∆(r,u)

i are
the tetrahedrons which make up the (translated and rotated) tiling.

The Graf-Schenker inequality was inspired by previous works of Con-
lon, Lieb and Yau.4,5 It is an estimate on the Coulomb energy of classical
particles. The proof of Fefferman in the crystal case9 was also based on a
lower bound on the free energy in a big set and an average over transla-
tions of a covering of this set (the method was reexplained later in details
by Hugues17). Fefferman9 uses a covering with balls and cubes of different
size. The lower bound depends on the number of balls contained in the big
domain and of the form of the kinetic energy which is used to control error
terms.
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Let G = R3oSO3(R) be the group of translations and rotations acting
on R3, and denote by dλ(g) its Haar measure.

Lemma 4.1 (Graf-Schenker inequality13). Let 4 be a simplex in R3.
There exists a constant C such that for any N ∈ N, z1, ..., zN ∈ R, xi ∈ R3

and any ` > 0,

∑

1≤i<j≤N

zizj
|xi − xj | ≥

∫

G

dλ(g)
|`4|

∑

1≤i<j≤N

zizj1g`4(xi)1g`4(xj)
|xi − xj | − C

`

N∑

i=1

z2
i .

(4.1)

In the previous theorem it is not assumed that 4 yields a tiling of R3.
Up to an error which scales like `, (4.1) says that the total Coulomb energy
can be bounded from below by the Coulomb energy (per unit volume)
of the particles which are in the (dilated) simplex g`4, averaged over all
translations and rotations g of this simplex.

Because of the above inequality, simplices play a specific role in the study
of Coulomb systems. Hence proving the existence of the thermodynamic
limit for simplices first is natural (as it was natural to consider balls in the
Lieb-Lebowitz case due to the invariance by rotation). In the next section
we give an abstract setting for proving the existence of the limit when an
inequality of the form (4.1) holds true.

4.2. An abstract result

In this section we consider an abstract energy E : Ω ∈ M 7→ E(Ω) ∈ R
defined on the setM of all bounded open subsets of R3 and we give sufficient
conditions for the existence of the thermodynamic limit. In the application,
E will be either the ground state energy, or the free energy of the system
under consideration.

We fix a reference set 4 ∈ Ra,ε which is only assumed to be a bounded
open convex set in R3 (it need not be a simplex for this section), such that
0 ∈ 4. Here a, ε > 0 are fixed. We assume that the energy E satisfies the
following five assumptions:

(A1) (Normalization). E(∅) = 0.

(A2) (Stability). ∀Ω ∈M, E(Ω) ≥ −κ|Ω|.
(A3) (Translation Invariance). ∀Ω ∈ Ra,ε, ∀z ∈ Z3, E(Ω + z) = E(Ω).

(A4) (Continuity). ∀Ω ∈ Ra,ε,Ω′ ∈ Ra′,ε′ with Ω′ ⊆ Ω and d(∂Ω, ∂Ω′) > δ,

E(Ω) ≤ E(Ω′) + κ|Ω \ Ω′|+ |Ω|α(|Ω|).
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(A5) (Subaverage Property). For all Ω ∈M, we have

E(Ω) ≥ 1− α(`)
|`4|

∫

G

E
(
Ω ∩ g · (`4)

)
dλ(g)− |Ω|r α(`) (4.2)

where |Ω|r := inf{|Ω̃|, Ω ⊆ Ω̃, Ω̃ ∈ Ra,ε} is the regularized volume of Ω.

In the assumptions above α is a fixed function which tends to 0 at
infinity and δ, a′, ε′ are fixed positive constants. In our work,15 an even
more general setting is provided. First (A3) can be replaced by a much
weaker assumption but we do not detail this here. Also a generic class of
regular sets R is considered instead of Ra,ε. This is because for instance
the cone property is only needed for the crystal case and it is not at all
necessary in other models, hence the concept of regularity depends on the
application.

Notice (A4) essentially says that a small decrease of Ω will not increase
too much the energy. A similar property was used and proved in the crystal
case by Fefferman [9, Lemma 2]. Taking Ω′ = ∅ and using (A1), property
(A4) in particular implies that for any regular set Ω ∈ Ra,ε, E(Ω) ≤ C|Ω|.
However this upper bound need not be true for all Ω ∈M. We give a sketch
of the proof of the following result in Section 4.5.

Theorem 4.1 (Abstract Thermodynamic Limit for 415).
Assume E : M → R satisfies the above properties (A1)–(A5) for some
open convex set 4 ∈ Ra,ε with 0 ∈ 4. There exists ē ∈ R such that e`(g) =
|`4|−1E

(
g`4)

converges uniformly towards ē for g ∈ G = R3oSO(3) and
as `→∞. Additionally, the limit ē does not depend on the set 4a.

4.3. Idea of the proof of (A1)–(A5) for the crystal

Before switching to the abstract case of a general sequence {Ωn}, we give
an idea of the proof of (A1)–(A5) in the crystal case. We apply the theory
of the previous section to both the ground state energy and the free energy
of the crystal which were defined in Section 2. First (A1) and (A3) are
obvious. Property (A2) is the stability of matter as stated in Theorem 2.1.
On the other hand (A5) is essentially the Graf-Schenker inequality (4.1),
up to some localization issues of the kinetic energy which essentially have
already been delt with by Graf and Schenker.13

For the crystal the most difficult property is (A4). The difficulty arises
from the fact that this is a very rigid system. For the two other examples

aThis means if all the assumptions are true for another set4′ then one must have ē′ = ē.
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Fig. 2. Idea of the proof of (A4) for the crystal.

mentioned in Section 3, (A4) is obvious, the energy being nonincreasing:
E(Ω) ≤ E(Ω′). This is because we can simply choose a ground state of Ω′

as a test for Ω and take the vacuum in Ω\Ω′. In the crystal case we always
have nuclei in Ω\Ω′ and if we do not put any electron to screen them, they
will create an enormous electrostatic energy.

The idea of the proof of (A4) for the crystal is displayed in Figure 2. We
build a test state in Ω by considering the ground state in Ω′, and placing
one radial electron in a ball of fixed size on top of each nucleus ouside Ω′.
By Newton’s theorem, the electrostatic potential out of the support of the
electron will vanish, hence the energy will simply be E(Ω′) plus the sum of
the kinetic energies of the electrons, which is bounded above by a constant
times |Ω \Ω′| for regular domains. The only problem is that we cannot put
an electron on top of the nuclei which are too close to the boundary of Ω
or of Ω′. For these nuclei, using the cone property we can place the ball
aside and create a dipole. The difficult task is then to compute a bound on
the total interaction between the dipoles and the ground state in Ω′. We
prove16 that it is o(|Ω|), using a specific version of stability of matter.

4.4. General domains and strong subadditivity of entropy

In the previous two subsections, we have presented our abstract theory giv-
ing the thermodynamic limit of special sequences built upon the reference
set 4, and we have explained how to apply it to the crystal case. For all
regular domain sequences we can only get from (A5) a bound of the form

lim inf
n→∞

E(Ωn)
|Ωn| ≥ ē.

In order to get the upper bound, we use a big simplex Ln4 of the same size
as Ωn and a tiling made with simplices of size `n ¿ Ln, as shown in Figure
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3. We use the ground state of the big simplex Ln4 to build a test state in
Ωn, hence giving the appropriate upper bound. To this end, we need some
localization features, hence more assumptions in the general theory.

Fig. 3. Proof for general sequences {Ωn}.

It is sufficient15 to assume that

(i) 4 can be used to build a tiling of R3;

(ii) the free energy is essentially “two-body”b such that we may write the
total energy E(Ln4) as the sum of the energies of the small sets of the
tiling, plus the interaction between them and the relative entropy;

(iii) the entropy is strongly subadditive.

This is summarized in the following assumption. We assume that Γ is a
subgroup of G yielding a tiling of R3 by means of 4, i.e. ∪µ∈Γµ4 = R3

and µ4∩ ν4 = ∅ for µ 6= ν.

(A6) (Two-body decomposition). For all L and ` we can find g ∈ G and
maps Eg : Γ → R, Ig : Γ× Γ → R, sg : {P : P ⊆ Γ} → R such that

• Eg(µ) = Ig(µ, ν) = 0 if `gµ4∩ (L4) = ∅;
• E(L4) ≥

∑

µ∈Γ

Eg(µ) +
1
2

∑
µ,ν∈Γ
µ6=ν

Ig(µ, ν)− sg(Γ)− |L4|α(`);

• For all P ⊆ Γ and AP = L4∩⋃
µ∈P `gµ4

E(AP) ≤
∑

µ∈P
Eg(µ) +

1
2

∑
µ,ν∈P
µ6=ν

Ig(µ, ν)− sg(P) + |AP |α(`);

bWe could as well assume that the energy is k-body with k <∞ but this would compli-
cate the assumptions further more.
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• (Strong subadditivity). for any disjoint subsets P1, P2, P3 ⊆ Γ

sg(P1 ∪ P2 ∪ P3) + sg(P2) ≤ sg(P1 ∪ P2) + sg(P2 ∪ P3);

• (Subaverage property).

∫

G/Γ

dg
∑

µ,ν∈Γ
µ 6=ν

Ig(µ, ν) ≥ −|L4|α(`).

In the applicationsc the previous quantities are interpreted as follows:
Eg(P) is the free energy in the union AP = (L4) ∩ ∪µ∈P`gµ4, Ig(µ, ν) is
the interaction energy between the simplices `gµ4 and `gν4, and sg(P) is
the difference between the entropy of AP and the sum of the entropies of
`gµ4 with µ ∈ P .

Conjectured by Lanford and Robinson18 the strong subadditivity (SSA)
of the entropy in the quantum mechanical case was proved by Lieb and
Ruskai.23,24 The fact that SSA is very important in the thermodynamic
limit was remarked by Robinson and Ruelle31 and others.34 In a forthcom-
ing article15 we prove the following

Theorem 4.2 (Abstract Limit for general domains15). Assume E :
M→ R satisfies the properties (A1)–(A6) for some open convex polyhe-
dron 4 ∈ Ra,ε with 0 ∈ 4, yielding a tiling of R3. Then we have for all
sequences {Ωn} ⊂ Ra,ε with |Ωn| → ∞ and |Ωn|−1/3diam(Ωn) ≤ C,

lim
n→∞

E(Ωn)
|Ωn| = ē,

where ē is the limit obtained in Theorem 4.1.

The proof of Theorem 4.2 is based on a careful estimate of the energy
and the interaction energies of boundary terms, ie. of the sets `gµ4 which
intersect the boundary of the big set L4. The application to the crystal
is not much more difficult than for Theorem 4.1. Indeed in the paper of
Graf and Schenker,13 (4.1) was expressed using a tiling of R3 and the last
subaverage property of (A6) essentially follows from their ideas.13 Strong
subadditivity of the entropy is usually expressed via partial traces. A gen-
eralization in the setting of localization in Fock space is detailed in our
article.16

cDue to some localization issues of the kinetic energy, it is often needed that the sets of
the tiling slightly overlap. See15 for a generalization in this direction.
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4.5. Proof of Theorem 4.1

Denote as in the Theorem e`(g) = E(g`4)|`4|−1. Notice that (A2), (A4)
with Ω′ = ∅, and (A1) imply that e` is uniformly bounded on G. Also we
have by (A3) e`(u+ z,R) = e`(u,R) for all (u,R) ∈ R3×SO3(R), z ∈ Z3,
i.e. e` is periodic with respect to translations. Hence it suffices to prove the
theorem for g = (u,R) ∈ [0, 1]3 × SO3(R).

Next we take ḡ ∈ G, LÀ ` and apply (A5) with Ω = ḡL4. We get

eL(ḡ) ≥ 1− α(`)
|L4|

∫

G

E(ḡL4∩ g`4)
|`4| dg − α(`).

Let us introduce the set Z of points z ∈ Z3 such that R`4+ u+ z ⊂ ḡL4
for all u ∈ [0, 1]3 and all R ∈ SO3(R). We also define ∂Z as the set of points
z ∈ Z3 such that (R`4+u+z)∩ḡL4 6= ∅ for some (u,R) ∈ [0, 1]3×SO3(R)
but z /∈ Z. We obtain using (A1) and (A3)
∫

G

E(ḡL4∩ g`4)
|`4| dg =

∑

z∈Z3

∫

[0,1]3
du

∫

SO3(R)

dR
E(ḡL4∩ (R`4+ u+ z))

|`4|

=
∑

z∈∂Z

∫

[0,1]3
du

∫

SO3(R)

dR
E(ḡL4∩ (R`4+ u+ z))

|`4|

+(#Z)
∫

[0,1]3
du

∫

SO3(R)

dR e`(u,R).

Using the stability property (A2), we infer

E(ḡL4∩ (R`4+ u+ z))
|`4| ≥ −κ |ḡL4∩ (R`4+ u+ z)|

|`4| ≥ −κ.

Hence∫

G

E(ḡL4∩ g`4)
|`4| dg ≥ (#Z)

∫

[0,1]3×SO3(R)

e`(g) dg + κ(#∂Z).

As 4 has an a-regular boundary, it can be seen that (#∂Z) ≤ CL2` and
#Z = |L4|+O(L2`). Using again that e` is bounded, we eventually obtain
the estimate

eL(ḡ) ≥
∫

[0,1]3×SO3(R)

e`(g) dg − C(α(`) + `/L)

for some constant C. It is then an easy exercise to prove that

lim
`→∞

inf
G
e` = lim

`→∞

∫

[0,1]3×SO3(R)

e` := ē

and finally that e` → ē in L1([0, 1]3 × SO3(R)).
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The last step consists in proving the uniform convergence, using (A4).
Fix some small η > 0. As 0 ∈ 4 and 4 is convex, we have (1− η)4 ⊂ 4.
More precisely, there exists an r > 0 and a neighborhood W of the identity
in SO3(R) such that R(1−η)4+u ⊂ 4 for all (u,R) ∈ A := B(0, r)×W ⊂
G. We have that g`(1 − η)4 ⊂ `4 for all g ∈ A` := B(0, r`) ×W , hence
in particular for all g ∈ A. Now we fix some ḡ ∈ G and apply (A4) with
Ω = ḡ`4 and Ω′ = ḡg`(1− η)4, we get

E(ḡ`4) ≤ E(ḡg`(1− η)4) + C|`4|η + o(|`4|).
Integrating over g ∈ A and dividing by |`4| we infer

e`(ḡ) ≤ 1
|ḡA|

∫

ḡA

e(1−η)`(g) dg + Cη + o(1)`→∞.

First we pass to the limit as `→∞ using that e` → ē in L1(G) and |A| 6= 0.
Then we take η → 0 and get lim sup`→∞ supḡ∈G e`(ḡ) ≤ ē. This ends the
proof of Theorem 4.1.
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We present a review of recent work on the mathematical aspects of the BCS
gap equation, covering our results of Ref. 9 as well our recent joint work with
Hamza and Solovej8 and with Frank and Naboko,6 respectively. In addition,
we mention some related new results.

1. Introduction

In this paper we shall describe our recent mathematical study6,8,9 of one
of the current hot topics in condensed matter physics, namely ultra cold
fermionic gases consisting of neutral spin- 1

2 atoms. The kinetic energy of
these atoms is described by the non-relativistic Schrödinger operator, and
their interaction by a pair potential λV with λ being a coupling parameter.
As experimentalists are nowadays able to vary the inter-atomic potentials,
the form of λV in actual physical systems can be quite general; see the
recent reviews in Refs. 5 and 4. Our primary goal concerns the study of
the superfluid phases of such systems. According to Bardeen, Cooper and
Schrieffer2 (BCS) the superfluid state is characterized by the existence of a
non-trivial solution of the gap equation

∆(p) = − λ

(2π)3/2

∫

R3
V̂ (p− q)

∆(q)
E(q)

α̃nh
E(q)
2T

dq (1.1)

∗ c© 2008 by the authors. This paper may be reproduced, in its entirety, for non-
commercial purposes.
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at some temperature T ≥ 0, with E(p) =
√

(p2 − µ)2 + |∆(p)|2. Here,
µ > 0 is the chemical potential and V̂ (p) = (2π)−3/2

∫
R3 V (x)e−ipxdx de-

notes the Fourier transform of V . The function ∆(p) is the order parameter
and represents the wavefunction of the Cooper pairs. Despite the fact that
the BCS equation (1.1) is highly non-linear, we shall show in Theorem 2.1
(see also [8, Thm 1]) that the existence of a non-trivial solution to (1.1) at
some temperature T is equivalent to the fact that a certain linear operator,
given in (2.3) below, has a negative eigenvalue. For T = 0 this operator is
given by | − ∆ − µ| + λV . This rather astonishing possibility of reducing
a non-linear to a linear problem allows for a more thorough mathematical
study. Using spectral-theoretic methods, we are able to give a precise char-
acterization of the class of potentials leading to a non-trivial solution for
(1.1). In particular, in Theorem 2.2 (see also [6, Thm 1]) we prove that for
all interaction potentials that create a negative eigenvalue of the effective
potential on the Fermi sphere (see (2.6) below; a sufficient condition for
this property is that

∫
R3 V (x)dx < 0), there exists a critical temperature

Tc(λV ) > 0 such that (1.1) has a non-trivial (i.e., not identically vanish-
ing) solution for all T < Tc(λV ), whereas there is no such solution for
T ≥ Tc(λV ). Additionally, we shall determine in Theorem 2.2 the precise
asymptotic behavior of Tc(λV ) in the small coupling limit. We extend this
result in Theorem 2.3 (see also [9, Thm 1]) and give a derivation of the
critical temperature Tc valid to second order Born approximation. More
precisely, we shall show that

Tc = µ
8eγ−2

π
eπ/(2

√
µbµ) (1.2)

where γ ≈ 0.577 denotes Euler’s constant, and where bµ < 0 is an effective
scattering length. To first order in the Born approximation, bµ is related to
the scattering amplitude of particles with momenta on the Fermi sphere,
but to second order the expression is more complicated. The precise for-
mula is given in Eq. (2.11) below. For interaction potentials that decay fast
enough at large distances, we shall show that bµ reduces to the usual scat-
tering length a0 of the interaction potential in the low density limit, i.e.,
for small µ. Our formula thus represents a generalization of a well-known
formula in the physics literature.7,13

In the case of zero temperature, the function E(p) in (1.1) describes an
effective energy-momentum relation for quasi particles, and

Ξ := inf
p
E(p) = inf

p

√
(p2 − µ)2 + |∆(p)|2
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is called the energy gap of the system. It is of major importance for applica-
tions, such as the classification of different types of superfluids. In fact, Ξ is
the spectral gap of the corresponding second quantized BCS Hamiltonian.
(See Refs. 2 and 12 or the appendix in Ref. 8.)

An important problem is the classification of potentials V for which Ξ >

0. This questions turns out to be intimately related to the continuity of the
momentum distribution γ(p), which will be introduced in the next section.
In the normal (i.e., not superfluid) state, ∆ = 0 and γ is a step function at
T = 0, namely γ(p) = θ(|p| − √µ). According to the picture presented in
standard textbooks the appearance of a superfluid phase softens this step
function and γ(p) becomes continuous. We are going to prove in this paper
that if V (x)|x| ∈ L6/5 and

∫
V < 0 then indeed both strict positivity of

Ξ > 0 and continuity γ hold. It remains an open problem to find examples
of potentials such that the gap vanishes in cases where a superfluid phase
occurs.

One of the difficulties involved in evaluating Ξ is the potential non-
uniqueness of the solution of the BCS gap equation. For interaction poten-
tials that have nonpositive Fourier transform, however, we shall show that
the BCS pair wavefunction is unique, and has zero angular momentum.
In this case, we shall prove in Theorem 2.5 (see also [9, Thm. 2]) similar
results for Ξ as for the critical temperature. It turns out that, at least up
to second order Born approximation,

Ξ = Tc
π

eγ
(1.3)

in this case. This equality is valid for any density, i.e., for any value of
the chemical potential µ. In particular, Ξ has exactly the same exponential
dependence on the interaction potential, described by bµ, as the critical
temperature Tc.

2. Preliminaries and main results

We consider a gas of spin 1/2 fermions at temperature T ≥ 0 and chemical
potential µ > 0, interacting via a local two-body interaction potential of
the form 2λV (x). Here, λ > 0 is a coupling parameter, and the factor 2 is
introduced for convenience. We assume that V is real-valued and has some
mild regularity properties, namely V ∈ L1(R3) ∩ L3/2(R3). In the BCS
approximation, the system is described by the BCS functional FT , derived
by Leggett in his seminal paper,11 based on the original work of BCS.2 The
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BCS functional FT is related to the pressure of the system and is given by

FT (γ, α) =
∫

(p2 − µ)γ(p)dp+
∫
|α(x)|2V (x)dx− TS(γ, α), (2.1)

where the entropy S is

S(γ, α) = −
∫

TrC2 [Γ(p) log Γ(p)] dp, Γ(p) =
(
γ(p) α̂(p)
α̂(p) 1− γ(p)

)
.

The functions γ(p) and α̂(p) are interpreted as the momentum distribution
and the Cooper pair wave function, respectively. The satisfy the matrix
constraint 0 ≤ Γ(p) ≤ 1 for all p ∈ R3. In terms of the BCS functional
the occurrence of superfluidity is described by minimizers with α 6= 0. We
remark that in the case of the Hubbard-model this functional was studied
in Ref. 1.

For an arbitrary temperature 0 ≤ T <∞ the BCS gap equation, which
is the Euler-Lagrange equation associated with the functional FT , reads

∆(p) = − λ

(2π)3/2

∫

R3
V̂ (p− q)

∆(q)
E(q)

α̃nh
E(q)
2T

dq, (2.2)

where E(p) =
√

(p2 − µ)2 + |∆(p)|2. The order parameter ∆ is related to
the expectation value of the Cooper pairs α via 2α(p) = ∆(p)/E(p). We
present in the following a thorough mathematical study of this equation. In
order to do so, we shall not attack the equation (2.2) directly, but exploit
the fact that α is a critical point of the semi-bounded functional FT .

The key to our studies is the observation in Ref. 8 that the existence of
a non-trivial solution to the non-linear equation (2.2) can be reduced to a
linear criterion, which can be formulated as follows.

Theorem 2.1 ( [8, Theorem 1]). Let V ∈ L3/2, µ ∈ R, and∞ > T ≥ 0.
Define

KT,µ = (p2 − µ)
e(p

2−µ)/T + 1
e(p2−µ)/T − 1

.

Then the non-linear BCS equation (2.2) has a non-trivial solution if and
only if the linear operator

KT,µ + λV , (2.3)

acting on L2(R3), has at least one negative eigenvalue.

Hence we are able to relate a non-linear problem to a linear problem
which is much easier to handle. The operator KT,µ is understood as a mul-
tiplication operator in momentum space. In the limit T → 0 this operator
reduces to | −∆− µ|+ λV .



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

BCS gap equation of superfluidity 121

2.1. The critical temperature

Theorem 2.1 enables a precise definition of the critical temperature, by

Tc(λV ) := inf{T |KT,µ + λV ≥ 0}. (2.4)

The symbol KT,µ(p) is point-wise monotone in T . This implies that for
any potential V , there is a critical temperature 0 ≤ Tc(λV ) < ∞ that
separates two phases, a superfluid phase for 0 ≤ T < Tc(λV ) from a normal
phase for Tc(λV ) ≤ T < ∞. Note that Tc(λV ) = 0 means that there is no
superfluid phase for λV . Using the linear criterion (2.4) we can classify the
potentials for which Tc(λV ) > 0, and simultaneously we can evaluate the
asymptotic behavior of Tc(λV ) in the limit of small λ. This can be done
by spectral theoretical methods. Applying the Birman-Schwinger principle
one observes that the critical temperature Tc can be characterized by the
fact that the compact operator

λ(sgnV )|V |1/2K−1
Tc,µ

|V |1/2 (2.5)

has −1 as its lowest eigenvalue. This operator is singular for Tc → 0, and
the key observation is that its singular part is represented by the operator
λ ln(1/Tc)Vµ, where Vµ : L2(Ωµ) 7→ L2(Ωµ) is given by

(Vµu
)
(p) =

1
(2π)3/2

1√
µ

∫

Ωµ

V̂ (p− q)u(q) dω(q) . (2.6)

Here, Ωµ denotes the 2-sphere with radius
√
µ, and dω denotes Lebesgue

measure on Ωµ. We note that the operator Vµ has appeared already earlier
in the literature.3,10

Our analysis here is somewhat similar in spirit to the one concerning
the lowest eigenvalue of the Schrödinger operator p2 + λV in two space
dimensions.14 This latter case is considerably simpler, however, as p2 has
a unique minimum at p = 0, whereas KT,µ(p) takes its minimal value on
the Fermi sphere p2 = µ, meaning that its minimum is highly degenerate.
Hence, in our case, the problem is reduced to analyzing a map from the L2

functions on the Fermi sphere Ωµ (of radius
√
µ) to itself. Let us denote

the lowest eigenvalue of Vµ as

eµ(V ) := inf specVµ .

Whenever this eigenvalue is negative then the critical temperature is non
zero for all λ > 0, and we can evaluate its asymptotics. Moreover, the
converse is “almost” true:
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Theorem 2.2 ( [6, Theorem 1]). Let V ∈ L3/2(R3) ∩ L1(R3) be real-
valued, and let λ > 0.

(i) Assume that eµ(V ) < 0. Then Tc(λV ) is non-zero for all λ > 0, and

lim
λ→0

λ ln
µ

Tc(λV )
= − 1

eµ(V )
. (2.7)

(ii) Assume that eµ(V ) = 0. If Tc(λV ) is non-zero, then ln(µ/Tc(λV )) ≥
cλ−2 for some c > 0 and small λ.

(iii) If there exists an ε > 0 such that eµ(V − ε|V |) = 0, then Tc(λV ) = 0
for small enough λ.

As we see, the occurrence of superfluidity as well as the asymptotic behavior
of Tc(λV ) is governed by eµ(V ). A sufficient condition for eµ(V ) to be
negative is

∫
V < 0. But one can easily find other examples. Eq. (2.7)

shows that the critical temperature behaves like Tc(λV ) ∼ µe1/(λeµ(V )). In
other words it is exponentially small in the coupling.

In the following, we shall derive the second order correction, i.e., we will
compute the constant in front of the exponentially small term in Tc. For
this purpose, we define an operator Wµ on L2(Ωµ) via its quadratic form

〈u|Wµ|u〉 =
∫ ∞

0

d|p|
(

|p|2∣∣|p|2 − µ
∣∣
[∫

S2
dΩ

(|ϕ̂(p)|2 − |ϕ̂(
√
µp/|p|)|2)

]

+
∫

S2
dΩ |ϕ̂(

√
µp/|p|)|2

)
. (2.8)

Here, ϕ̂(p) = (2π)−3/2
∫
Ωµ
V̂ (p − q)u(q)dω(q), and (|p|,Ω) ∈ R+ × S2 de-

note spherical coordinates for p ∈ R3. We note that since V ∈ L1(R3),∫
S2 dΩ |ϕ̂(p)|2 is Lipschitz continuous in |p| for any u ∈ L2(R3), and hence

the radial integration is well-defined, even in the vicinity of p2 = µ. In fact
the operator Wµ can be shown to be Hilbert-Schmidt class, see [9, Section
3].

For λ > 0, let

Bµ = λ
π

2
√
µ
Vµ − λ2 π

2µ
Wµ , (2.9)

and let bµ(λ) denote its ground state energy,

bµ(λ) = inf specBµ . (2.10)

We note that if eµ < 0, then also bµ(λ) < 0 for small λ. In fact, if the
eigenfunction corresponding to the lowest eigenvalue eµ of Vµ is unique and
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equals u ∈ L2(Ωµ), then

bµ(λ) = 〈u|Bµ|u〉+O(λ3) = λ
πeµ
2
√
µ
− λ2π〈u|Wµ|u〉

2µ
+O(λ3) . (2.11)

In the degenerate case, this formula holds if one chooses u to be the eigen-
function of Vµ that yields the largest value 〈u|Wµ|u〉 among all such (nor-
malized) eigenfunctions.

With the aid of bµ(λ), we can now recover the next order of the critical
temperature for small λ.

Theorem 2.3 ( [9, Theorem 1]). Let V ∈ L1(R3) ∩ L3/2(R3) and let
µ > 0. Assume that eµ = inf specVµ < 0, and let bµ(λ) be defined in
(2.10). Then the critical temperature Tc for the BCS equation is strictly
positive and satisfies

lim
λ→0

(
ln

(
µ

Tc

)
+

π

2
√
µ bµ(λ)

)
= 2− γ − ln(8/π) . (2.12)

Here, γ ≈ 0.577 denotes Euler’s constant.

The Theorem says that, for small λ,

Tc ∼ µ
8eγ−2

π
eπ/(2

√
µbµ(λ)) . (2.13)

Note that bµ(λ) can be interpreted as a (renormalized) effective scattering
length of 2λV (x) (in second order Born approximation) for particles with
momenta on the Fermi sphere. In fact, if V is radial and

∫
R3 V (x)dx < 0,

it is not difficult to see that for small enough µ the (unique) eigenfunction
corresponding to the lowest eigenvalue eµ of Vµ is the constant function
u(p) = (4πµ)−1/2. (See [6, Section 2.1].) For this u, we have

lim
µ→0

〈u|Bµ|u〉 = (λ/4π)
∫

R3
V (x)dx− (λ/4π)2

∫

R6

V (x)V (y)
|x− y| dxdy ≡ a0(λ) .

Here, a0(λ) equals the scattering length of 2λV in second order Born ap-
proximation. Assuming additionally that V (x)|x| ∈ L1 and bearing in mind
that bµ(λ) = 〈u|Bµ|u〉+O(λ3) for small enough µ, we can, in fact, estimate
the difference between bµ(λ) and a0(λ). Namely we prove in [9, Proposition
1] that

lim
µ→0

1√
µ

(
1

〈u|Bµ|u〉 −
1

a0(λ)

)
= 0 .

This yields the approximation

Tc ≈ µ
8eγ−2

π
eπ/(2

√
µa0(λ))
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in the limit of small λ and small µ. This expression is well-known in the
physics literature.7,13 We point out, however, that our formula (2.13) is
much more general since it holds for any value of µ > 0.

2.2. Energy Gap at Zero Temperature

Consider now the zero temperature case T = 0. In this case, it is natural
to formulate a functional depending only on α instead of γ and α. In fact,
for T = 0 the optimal choice of γ(p) in FT for given α̂(p) is clearly

γ(p) =
{

1
2 (1 +

√
1− 4|α̂(p)|2) for p2 < µ

1
2 (1−

√
1− 4|α̂(p)|2) for p2 > µ

. (2.14)

Subtracting an unimportant constant, this leads to the zero temperature
BCS functional

F0(α) =
1
2

∫

R3
|p2 − µ|

(
1−

√
1− 4|α̂(p)|2

)
dp+ λ

∫

R3
V (x)|α(x)|2 dx .

(2.15)
The variational equation satisfied by a minimizer of (2.15) is then

∆(p) = − λ

(2π)3/2

∫

R3
V̂ (p− q)

∆(q)
E(q)

dq , (2.16)

with ∆(p) = 2E(p)α̂(p). This is simply the BCS equation (2.2) at T = 0.
For a solution ∆, the energy gap Ξ is defined as

Ξ = inf
p
E(p) = inf

p

√
(p2 − µ)2 + |∆(p)|2 . (2.17)

It has the interpretation of an energy gap in the corresponding second-
quantized BCS Hamiltonian (see, e.g., Ref. 12 or the appendix in Ref. 8.)

A priori, the fact that the order parameter ∆ is non vanishing does
not imply that Ξ > 0. Strict positivity of Ξ turns out to be related to the
continuity of the corresponding γ in (2.14). In fact, we are going to prove
in Lemma 5.1 that if V decays fast enough, i.e., V (x)|x| ∈ L6/5(R3), the
two properties, Ξ > 0 and γ(p) continuous, are equivalent. Both properties
hold true under the assumption that

∫
V < 0:

Theorem 2.4. Let V ∈ L3/2 ∩ L1, with V (x)|x| ∈ L6/5(R3) and
∫
V =

(2π)3/2V̂ (0) < 0. Let α be a minimizer of the BCS functional. Then Ξ
defined in (2.17) is strictly positive, and the corresponding momentum dis-
tribution γ in (2.14) is continuous.

One of the difficulties involved in evaluating Ξ is the potential non-
uniqueness of minimizers of (2.15), and hence non-uniqueness of solutions
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of the BCS gap equation (2.16). The gap Ξ may depend on the choice of ∆
in this case. For potentials V with non-positive Fourier transform, however,
we can prove the uniqueness of ∆ and, in addition, we are able to derive
the precise asymptotic of Ξ as λ→ 0.

In the following we will restrict our attention to radial potentials
V with non-positive Fourier transform. We also assume that V̂ (0) =
(2π)−3/2

∫
V (x)dx < 0. It is easy to see that eµ = inf specVµ < 0 in

this case, and that the (unique) eigenfunction corresponding to this lowest
eigenvalue of Vµ is the constant function.

In particular we have the following asymptotic behavior of the energy
gap Ξ as λ→ 0.

Theorem 2.5 ( [9, Theorem 2]). Assume that V ∈ L1(R3) ∩ L3/2(R3)
is radial, with V̂ (p) ≤ 0 and V̂ (0) < 0. Then there is a unique minimizer
(up to a constant phase) of the BCS functional (2.15) at T = 0. The cor-
responding energy gap, Ξ = infp

√
(p2 − µ)2 + |∆(p)|2 , is strictly positive,

and satisfies

lim
λ→0

(
ln

(µ
Ξ

)
+

π

2
√
µ bµ(λ)

)
= 2− ln(8) . (2.18)

Here, bµ(λ) be defined in (2.10).

The Theorem says that, for small λ,

Ξ ∼ µ
8
e2
eπ/(2

√
µbµ(λ)) .

In particular, in combination with Theorem 2.3, we obtain the universal
ratio

lim
λ→0

Ξ
Tc

=
π

eγ
≈ 1.7639 .

That is, the ratio of the energy gap Ξ and the critical temperature Tc
tends to a universal constant as λ → 0, independently of V and µ. This
property has been observed before for the original BCS model with rank one
interaction,2,12 and in the low density limit for more general interactions7

under additional assumptions. Our analysis shows that it is valid in full
generality at small coupling λ¿ 1.

3. Sketch of the proof of Theorem 2.1

The backbone of our analysis is the linear criterion in Theorem 2.1. As a
first step towards its proof, one has to prove that the functional FT (γ, α)
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in (2.1) attains a minimum on the set

D = {(γ, α) | γ ∈ L1(R3, (1+p2)dp), α ∈ H1(R3), 0 ≤ γ ≤ 1, |α̂|2 ≤ γ(1−γ)}.

This can be done by proving lower semi-continuity of FT on D. See [8,
Prop. 1] for details. Theorem 2.1 is then a direct consequence of the equiv-
alence of the following three statements [8, Theorem 1]:

(i) The normal state (γ0, 0), with γ0 = [e(p
2−µ)/T + 1]−1 being the Fermi-

Dirac distribution, is unstable under pair formation, i.e.,

inf
(γ,α)∈D

FT (γ, α) < FT (γ0, 0) .

(ii) There exists a pair (γ, α) ∈ D, with α 6= 0, such that

∆(p) =
p2 − µ

1
2 − γ(p)

α̂(p) (3.1)

satisfies the BCS gap equation (2.2).
(iii) The linear operator KT,µ + V has at least one negative eigenvalue.

The proof of the equivalence of these three statement consists of the
following steps. First, it is straightforward to show that (i) ⇒ (ii). By
evaluating the stationary equations in both variables, γ and α, one shows
that the combination (3.1) satisfies the BCS equation (2.2).

To show that (iii) ⇒ (i), first note that (γ0, 0) is the minimizer of FT in
the case V = 0. Consequently d

dtFT (γ0, tg)|t=0 = 0 for general g. Moreover,
a simple calculation shows that

d2

dt2
F(γ0, tg)t=0 = 2〈g|KT,µ + λV |g〉 .

If KT,µ + λV has a negative eigenvalue, we thus see that F(γ0, tg) <

FT (γ0, 0) for small t and an appropriate choice of g.
The hardest part in showing the equivalence of the three statements is

to show that (ii) ⇒ (iii). Given a pair (γ̃, α̃) such that the corresponding
∆ in (3.1) satisfies the BCS equation (2.2), we note that if α̂ = m(p) ˆ̃α(p)
and γ(p) = 1/2 +m(p)(γ(p)− 1/2), the pair (γ, α) yields the same ∆ and
hence also satisfies (2.2). Moreover, with the choice

m(p) =
p2 − µ

1
2 − γ̃(p)

α̃nhE(p)
2T

2E(p)
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(where E(p) =
√

(p2 − µ)2 + |∆(p)|2), the new pair (γ, α) satisfies addi-
tionally

2E(p)

α̃nhE(p)
2T

=
p2 − µ

1
2 − γ(p)

(3.2)

λ

(2π)3

∫
V̂ (p− q)α̂(q)dq =− p2 − µ

1
2 − γ

α̂(p) . (3.3)

Note that in the case V = 0, i.e., ∆ = 0, the equation (3.2) reduces to

2KT,µ(p) =
p2 − µ
1
2 − γ0

.

Using this fact, together with (3.3), we thus obtain

〈α|KT,µ + λV |α〉 =
1
2

〈
α

∣∣∣∣
p2 − µ
1
2 − γ0

− p2 − µ
1
2 − γ

∣∣∣∣α
〉
. (3.4)

Using the definition of E(p) and the strict monotonicity of the function
x 7→ x/α̃nh x

2T for x ≥ 0, we infer from (3.2) that

p2 − µ
1
2 − γ0

≤ p2 − µ
1
2 − γ

,

with strict the inequality on the set where ∆ 6= 0. Consequently, the expres-
sion (3.4) is strictly negative. Hence KT,µ + λV has a negative eigenvalue.
This shows that (ii) implies (iii).

4. Proof of Theorems 2.2 and 2.3

For a (not necessarily sign-definite) potential V (x) let us use the notation

V (x)1/2 = (sgnV (x))|V (x)|1/2 .
From our definition of the critical temperature Tc it follows immediately
that for T = Tc the operator KT,µ + λV has and eigenvalue 0 and no
negative eigenvalue. If ψ is the corresponding eigenvector, one can rewrite
the eigenvalue equation in the form

−ψ = λK−1
T,µV ψ.

Multiplying this equation by V 1/2(x), one obtains an eigenvalue equation
for ϕ = V 1/2ψ. This argument works in both directions and is called the
Birman-Schwinger principle (see [6, Lemma 1]). In particular it tells us that
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the critical temperature Tc is determined by the fact that for this value of
T the smallest eigenvalue of

BT = λV 1/2K−1
T,µ|V |1/2 (4.1)

equals −1. Note that although BT is not self-adjoint, it has real spectrum.
Let F : L1(R3) → L2(Ωµ) denote the (bounded) operator which maps

ψ ∈ L1(R3) to the Fourier transform of ψ, restricted to the sphere Ωµ. Since
V ∈ L1(R3), multiplication by |V |1/2 is a bounded operator from L2(R3) to
L1(R3), and hence F|V |1/2 is a bounded operator from L2(R3) to L2(Ωµ).
Let

mµ(T ) = max
{

1
4πµ

∫

R3

(
1

KT,µ(p)
− 1
p2

)
dp , 0

}
,

and let

MT = K−1
T,µ −mµ(T )F∗F . (4.2)

As in [6, Lemma 2] one can show that V 1/2MT |V |1/2 is a Hilbert-Schmidt
operator on L2(R3), and its Hilbert Schmidt norm is bounded uniformly in
T . In particular, the singular part of BT as T → 0 is entirely determined
by V 1/2F∗F|V |1/2.

Since V 1/2MT |V |1/2 is uniformly bounded, we can choose λ small
enough such that 1 + λV 1/2MT |V |1/2 is invertible, and we can then write
1 +BT as

1 +BT = 1 + λV 1/2 (mµ(T )F∗F +MT ) |V |1/2 (4.3)

=
(
1 + λV 1/2MT |V |1/2

) (
1 +

λmµ(T )
1 + λV 1/2MT |V |1/2

V 1/2F∗F|V |1/2
)
.

Then BT having an eigenvalue −1 is equivalent to

λmµ(T )
1 + λV 1/2MT |V |1/2

V 1/2F∗F|V |1/2 (4.4)

having an eigenvalue −1. The operator in (4.4) is isospectral to the selfad-
joint operator

F|V |1/2 λmµ(T )
1 + λV 1/2MT |V |1/2

V 1/2F∗ , (4.5)

acting on L2(Ωµ).
At T = Tc, −1 is the smallest eigenvalue of BT , hence (4.4) and (4.5)

have an eigenvalue −1 for this value of T . Moreover, we can conclude that
−1 is actually the smallest eigenvalue of (4.4) and (4.5) in this case. For, if
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there were an eigenvalue less then −1, we could increase T and, by conti-
nuity, find some T > Tc for which there is an eigenvalue −1. Using (4.3),
this would contradict the fact that BT has no eigenvalue −1 for T > Tc.

Consequently, the equation for the critical temperature can be written
as

λmµ(Tc) inf spec F|V |1/2 1
1 + λV 1/2MTc |V |1/2

V 1/2F∗ = −1 . (4.6)

This equation is the starting point for the proof of Theorems 2.2 and 2.3.

Proof of Theorem 2.2. Up to first order in λ the equation (4.6) reads

λmµ(Tc) inf spec F[V − λVMTc
V +O(λ2)]F∗ = −1 , (4.7)

where the error term O(λ2) is uniformly bounded in Tc. Note that FV F∗ =√
µVµ defined in (2.6). Assume now that eµ = inf specVµ is strictly nega-

tive. Since V 1/2MTcV
1/2 is uniformly bounded, it follows immediately that

lim
λ→0

λmµ(Tc) = − 1
inf spec FV F∗

= − 1√
µ eµ

.

Together with the asymptotic behavior mµ(T ) ∼ µ−1/2 ln(µ/T ) as T → 0,
this implies the leading order behavior of ln(µ/Tc) as λ→ 0 and proves the
statement in (i).

In order to see (ii) it suffices to realize that, in the case FV F∗ ≥ 0,
Eq. (4.7) yields mTc ≥ const /λ2.

The statement (iii) is a consequence of the fact that

F|V |1/2 1
1 + λV 1/2MTc |V |1/2

V 1/2F∗ ≥ F[V − constλ|V |]F∗ ≥ 0,

for λ small enough. We refer to Ref. 6 for details.

Proof of Theorem 2.3. To obtain the next order, we use Eq. (4.7)
and employ first order perturbation theory. Since FV F∗ is compact and
inf spec FV F∗ < 0 by assumption, first order perturbation theory implies
that

mµ(Tc) =
−1

λ〈u|FV F∗|u〉 − λ2〈u|FVMTcV F∗|u〉+O(λ3)
, (4.8)

where u is the (normalized) eigenfunction corresponding to the lowest eigen-
value of FV F∗. (In case of degeneracy, one has to the choose the u that
minimizes the λ2 term in the denominator of (4.8) among all such eigen-
functions.)
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Eq. (4.8) is an implicit equation for Tc. Since FVMTV F∗ is uni-
formly bounded and Tc → 0 as λ → 0, we have to evaluate the limit of
〈u|FVMTV F∗|u〉 as T → 0. To this aim, let ϕ = V F∗u. Then

〈u|FVMTV F∗|u〉

=
∫

R3

1
KT,µ(p)

|ϕ̂(p)|2 dp−mµ(T )
∫

Ωµ

|ϕ̂(p)|2 dω(p) (4.9)

=
∫

R3

(
1

KT,µ(p)
[|ϕ̂(p)|2 − |ϕ̂(

√
µp/|p|)|2] +

1
p2
|ϕ̂(
√
µp/|p|)|2

)
dp .

Recall that KT,µ(p) converges to |p2 − µ| as T → 0. Using the Lipschitz
continuity of the spherical average of |ϕ̂(p)|2 (see [9, Equ. (29)]) it is easy
to see that

lim
T→0

〈u|FVMTV F∗|u〉 = 〈u|Wµ|u〉 , (4.10)

with Wµ defined in (2.8). In particular, combining (4.8) and (4.10), we have
thus shown that

lim
λ→0

(
mµ(Tc) +

1
inf spec

(
λ
√
µVµ − λ2Wµ

)
)

= 0 . (4.11)

The statement follows by using the asymptotic behavior ( [9, Lemma 1])

mµ(T ) =
1√
µ

(
ln
µ

T
+ γ − 2 + ln

8
π

+ o(1)
)

(4.12)

in the limit of small T , where γ ≈ 0.5772 is Euler’s constant.

5. Proof of Theorems 2.4 and 2.5

5.1. Sufficient condition for Ξ > 0

If eµ(V ) < 0 we know that the BCS equation (2.16) has a solution, meaning
the system shows a superfluid phase for T = 0. This is not sufficient, how-
ever, to guarantee the existence of a positive gap Ξ > 0 nor the continuity
of the momentum distribution γ. Unlike the case of the critical tempera-
ture, we lack a linear criterion which allows a precise characterization of
potentials V giving rise to a strictly positive gap. We are, however, able to
derive sufficient conditions, namely a fast enough decay of V . Under such
assumptions one can show the equivalence of the positivity of Ξ and the
continuity of γ. Both hold true if additionally

∫
V < 0. It remains an open

problem to find examples for V such that eµ < 0 but Ξ = 0.

Lemma 5.1. Assume that V ∈ L3/2 and that V (x)|x| ∈ L6/5(R3). Then
Ξ > 0 if and only if γ is continuous.
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Proof. It is easy to deduce8 from the BCS equation (2.16) that α̂ is in
C0(R3). Because of (2.14) the continuity of γ is equivalent to the fact that
|α̂| ≡ 1/4 on the Fermi Ωµ. From the relation ∆(p) = 2E(p)α̂(p) one obtains

|α̂(p)|2 =
1
4

1√
(p2−µ)2

|∆(p)|2 + 1
, (5.1)

and we can conclude that |α̂|2 = 1/4 on the Fermi surface if and only if
∆(p) does not vanish on Ωµ. Namely, suppose that ∆ vanishes at some p′

on the Fermi surface. Since α ∈ H1(R3) we see that α ∈ L2(R3) ∩ L6(R3)
and hence, together with V (x)|x| ∈ L6/5, Hölder’s inequality implies that
∆̌(x)|x| = V (x)α(x)|x| ∈ L1(R3). We thus infer that ∆(p) is Lipschitz
continuous, meaning that ∆(p) cannot decay slower to 0 than linear. Hence
there is a δ such that limp→p′

(p2−µ)2

|∆(p)|2 ≥ δ and |α(p′)|2 ≤ 1
4

1√
δ+1

< 1
4 .

Proof of Theorem 2.4. Let α be a global minimizer of the BCS functional
F0. Then for any ĝ ∈ C∞0 (R3) such that |α̂+ εĝ| ≤ 1/2 for ε small enough,

d2

dε2
F(α+ εg)

∣∣∣∣
ε=0

≥ 0. (5.2)

A straightforward calculation yields

d2

dε2
F(α+ εg)

∣∣∣∣
ε=0

= 2〈g|E(−i∇) + λV |g〉+ 8
∫ |p2 − µ|[Re(α̂¯̂g)]2

[1− 4|α̂|2]3/2 . (5.3)

Assume now that Ξ = 0. This means that ∆ has to vanish at some point
p′ ∈ Ωµ. Then there has to be an open neighborhood on Ωµ on which ∆
vanishes. In fact, according to the argument in the proof of Lemma 5.1
(Eq. (5.1) and Lipschitz continuity of ∆) there is a neighborhood Nδ(p′) ⊂
R3 in the vicinity of p′ where |α̂|2 < 1/4 − δ for some δ > 0, and hence
∆ vanishes on Nδ(p′) ∩ Ωµ. Note that ∆ cannot vanish at one point on
the Fermi surface since otherwise |α̂| = 1/2 except on one point, which
contradicts the continuity of α̂.

We shall now construct an appropriate trial sequence ĝn, essentially
supported in Nδ, such that

lim
n→∞

[
〈gn|E(−i∇)|gn〉+ 8

∫ |p2 − µ|[Re(α̂ ¯̂gn)]2

[1− 4|α̂|2]3/2
]

= 0 (5.4)

and

lim
n→∞

〈gn|V |gn〉 =
∫

R3
V (x)dx < 0 . (5.5)

This gives a contradiction to (5.2).
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For the construction of gn let ψn ∈ L2(Ωµ) be supported in Nδ(p′)∩Ωµ
such that ψn(s) → δ(s − p′) as n → ∞. Choose also fn ∈ L2(R+, t

2dt)
such that fn(t) → δ(

√
µ − t), and let ĝn(p) = ψn(s)fn(|p|). Observe that

on N (p′), E(p) = |p2 − µ|/
√

1− 4|α̂(p)|2 ≤ c|p2 − µ| for some constant c,
and thus grows linearly in |p| close to

√
µ. Hence one easily sees that the

problem here is equivalent to the existence of a negative eigenvalue of the
relativistic operator |p|+V in one dimension. Using the Birman-Schwinger
principle, it is easy to see that the latter always has a negative eigenvalue
if

∫
V < 0.

5.2. Proof of Theorem 2.5

The energy gap of the system at zero temperature, Ξ = infpE(p), with

E(p) = |p2 − µ|/
√

1− 4|α̂(p)|2 =
√
|p2 − µ|2 + |∆(p)|2,

depends on the behavior of |∆(p)| on the Fermi sphere. The function ∆ is
not unique, in general and need not be radial even in case V is radial.

Under the assumption that V̂ is non-positive and V̂ (0) < 0, we shall
argue in the following that the minimizer of the BCS functional (2.15) at
T = 0 is unique [9, Lemma 3]. If, in addition, V is radial, this necessarily
implies that also the minimizer has to be radial. Since V̂ ≤ 0,

∫

R6
α̂(p)V̂ (p− q)α̂(q) dpdq ≥

∫

R6
|α̂(p)|V̂ (p− q)|α̂(q)| dpdq . (5.6)

Hence, if α̂(p) is a minimizer of F0, (2.15), so is |α̂(p)|.
Assume now there are two different minimizers f 6= g, both with non-

negative Fourier transform. Since t → 1 − √
1− 4t is strictly convex for

0 ≤ t ≤ 1/2 we see that ψ = 1√
2
f + i 1√

2
g, satisfies

F0(ψ) < 1
2F0(f) + 1

2F0(g) .

This is a contradiction to f, g being distinct minimizers, and hence f = g.
In particular, the absolute value of a minimizer has to be unique. If α̂
is the unique non-negative minimizer, then one easily sees from the BCS
equation (using

∫
V < 0) that α̂ is, in fact, strictly positive. Hence any

minimizer is non-vanishing. But (5.6) is strict for non-vanishing functions,
unless α̂(p) = |α̂(p)|eiκ for some constant κ ∈ R.

To summarize, we have just argued that for V̂ ≤ 0, V̂ (0) < 0 and V

radial, the solution of the BCS equation is unique, up to a constant phase,
and it is radially symmetric. This will enable us to apply the same methods
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as we used for the critical temperature Tc in order to derive the asymptotic
behavior of Ξ.

The variational equation (2.16) for the minimizer of F0 can be rewritten
in terms of α as

(E(−i∇) + λV (x))α(x) = 0. (5.7)

That is, α is an eigenfunction of the pseudodifferential operator E(−i∇) +
λV (x), with zero eigenvalue. Since V̂ ≤ 0 and α̂(p) is non-negative we can
even conclude that α has to be the ground state.

Similarly to the proof of Theorem 2.3, we can now employ the Birman-
Schwinger principle to conclude from (5.7) that φλ = V 1/2α satisfies the
eigenvalue equation

λV 1/2 1√
(p2 − µ)2 + |∆(p)|2 |V |

1/2φλ = −φλ . (5.8)

Moreover, there are no eigenvalues smaller than −1 of the operator on the
left side of (5.8).

Let

m̃µ(∆) = max

{
1

4πµ

∫

R3

(
1√

(p2 − µ)2 + |∆(p)|2 −
1
p2

)
dp , 0

}
. (5.9)

Similarly to (4.2), we split the operator in (5.8) as

V 1/2 1
E(−i∇)

|V |1/2 = m̃µ(∆)V 1/2F∗F|V |1/2 + V 1/2M∆|V |1/2 .

Again one shows that V 1/2M∆|V |1/2 is bounded in Hilbert-Schmidt norm,
independently of ∆. Moreover, as in the proof of Theorem 2.3 (cf. Eqs. (4.3)–
(4.5)), the fact that the lowest eigenvalue of λV 1/2E(−i∇)−1|V |1/2 is −1
is, for small enough λ, equivalent to the fact that the selfadjoint operator
on L2(Ωµ)

F|V |1/2 λm̃µ(∆)
1 + λV 1/2M∆|V |1/2

V 1/2F∗ (5.10)

has −1 as its smallest eigenvalue. This implies that limλ→0 λm̃µ(∆) =
−1/(

√
µ eµ) and hence, in particular, m̃µ(∆) ∼ λ−1 as λ→ 0. The unique

eigenfunction corresponding to the lowest eigenvalue eµ < 0 of Vµ is, in
fact, a positive function, and because of radial symmetry of V it is actually
the constant function u(p) = (4πµ)−1/2.

We now give a precise characterization of ∆(p) for small λ.
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Lemma 5.2. Let V ∈ L1 ∩ L3/2 be radial, with V̂ ≤ 0 and V̂ (0) < 0, and
let ∆ be given in (2.16), with α the unique minimizer of the BCS functional
(2.15). Then

∆(p) = −f(λ)

(∫

Ωµ

V̂ (p− q) dω(q) + ληλ(p)

)
(5.11)

for some positive function f(λ), with ‖ηλ‖L∞(R3) bounded independently of
λ.

Proof. Because of (5.8), F|V |1/2φλ is the eigenfunction of (5.10) corre-
sponding to the lowest eigenvalue −1. Note that because of radial symme-
try, the constant function u(p) = (4πµ)−1/2 is an eigenfunction of (5.10).
For small enough λ it has to be eigenfunction corresponding to the low-
est eigenvalue (since it is the unique ground state of the compact operator
FV F∗). We conclude that

φλ = f(λ)
1

1 + λV 1/2M∆|V |1/2
V 1/2F∗u = f(λ)

(
V 1/2F∗u+ λξλ

)
(5.12)

for some normalization constant f(λ). Note that ‖ξλ‖2 uniformly bounded
for small λ, since both V 1/2M∆|V |1/2 and V 1/2F∗ are bounded operators.

From (5.7) and the definition φλ = V 1/2α we know that

∆(p) = 2E(p)α̂(p) = −2λV̂ α(p) = −2λ ̂|V |1/2φλ(p) .

In combination with (5.12) this implies that

∆(p) = −2λf(λ)
(
V̂ F∗u(p) + λη̂λ(p)

)
,

with ηλ = |V |1/2ξλ. With ‖η̂λ‖∞ ≤ (2π)−3/2‖ηλ‖1 ≤ (2π)−3/2‖V ‖1‖ξλ‖2
by Schwarz’s inequality, we arrive at the statement of the Lemma.

With the aid of Lemma 5.2 and Lipschitz continuity of
∫
Ωµ
V̂ (p−q) dω(q)

(which follows from V ∈ L1(R3)) it is not difficult to see that

m̃µ(∆) =
1√
µ

(
ln

µ

∆(
√
µ)
− 2 + ln 8 + o(1)

)
(5.13)

as λ→ 0. From Eq. (5.10) we now conclude that

m̃µ(∆) =
1

λ〈u|FV F∗|u〉 − λ2〈u|FVM∆V F∗|u〉+O(λ3)
, (5.14)
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where u(p) = (4πµ)−1/2 is the normalized constant function on the sphere
Ωµ. Moreover, with ϕ = V F∗u,

〈u|FVM∆V F∗|u〉 =
∫

R3

1
E(p)

|ϕ̂(p)|2 dp− m̃µ(∆)
∫

Ωµ

|ϕ̂(
√
µp/|p|)|2 dω(p)

=
∫

R3

(
1

E(p)
[|ϕ̂(p)|2 − |ϕ̂(

√
µp/|p|)|2] +

1
p2
|ϕ̂(
√
µp/|p|)|2

)
dp .

Using Lemma 5.2 and the fact that limλ→0 f(λ) = 0, we conclude that

lim
λ→0

〈u|FVM∆V F∗|u〉 = 〈u|Wµ|u〉 , (5.15)

with Wµ defined in (2.8). (Compare with Eqs. (4.9) and (4.10).) In combi-
nation with (5.13) and (5.14) and the definition of Bµ in (2.9), this proves
that

lim
λ→0

(
ln

(
µ

∆(
√
µ)

)
+

π

2
√
µ 〈u|Bµ|u〉

)
= 2− ln(8) .

The same holds true with 〈u|Bµ|u〉 replaced by bµ(λ) = inf specBµ, since
under our assumptions on V the two quantities differ only by terms of order
λ3.

Now, by the definition of the energy gap Ξ in (2.17), Ξ ≤ ∆(
√
µ).

Moreover,

Ξ ≥ min
|p2−µ|≤Ξ

|∆(p)| ,

from which it easily follows that Ξ ≥ ∆(
√
µ)(1 − o(1)), using Lemma 5.2.

This proves Theorem 2.5.
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We consider a periodic magnetic Schrödinger operator on a noncompact Rie-
mannian manifold M such that H1(M,R) = 0 endowed with a properly dis-
continuous cocompact isometric action of a discrete group. We assume that
there is no electric field and that the magnetic field has a periodic set of com-
pact magnetic wells. We review a general scheme of a proof of existence of
an arbitrary large number of gaps in the spectrum of such an operator in the
semiclassical limit, which was suggested in our previous paper, and some ap-
plications of this scheme. Then we apply these methods to establish similar
results in the case when the wells have regular hypersurface pieces.

Keywords: magnetic Schrödinger operator; magnetic well; spectral gaps; Rie-
mannian manifolds; semiclassical limit; quasimodes

1. Introduction

Let M be a noncompact oriented manifold of dimension n ≥ 2 equipped
with a properly discontinuous action of a finitely generated, discrete group
Γ such that M/Γ is compact. Suppose that H1(M,R) = 0, i.e., any closed
1-form on M is exact. Let g be a Γ-invariant Riemannian metric and B a
real-valued Γ-invariant closed 2-form on M . Assume that B is exact and
choose a real-valued 1-form A on M such that dA = B.

∗Partially supported by the ESF programme SPECT.
†Partially supported by the Russian Foundation of Basic Research (grant 06-01-00208)
and the Russian Science Support Foundation.
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Thus, one has a natural mapping

u 7→ ih du+ Au

from C∞c (M) to the space Ω1
c(M) of smooth, compactly supported one-

forms on M . The Riemannian metric allows to define scalar products in
these spaces and consider the adjoint operator

(ih d+ A)∗ : Ω1
c(M) → C∞c (M).

A Schrödinger operator with magnetic potential A is defined by the formula

Hh = (ih d+ A)∗(ih d+ A).

Here h > 0 is a semiclassical parameter, which is assumed to be small.
Choose local coordinates X = (X1, . . . , Xn) on M . Write the 1-form A

in these local coordinates as

A =
n∑

j=1

Aj(X) dXj ,

the matrix of the Riemannian metric g as

g(X) = (gj`(X))1≤j,`≤n

and its inverse as

g(X)−1 = (gj`(X))1≤j,`≤n.

Denote |g(X)| = det(g(X)). Then the magnetic field B is given by the
following formula

B =
∑

j<k

Bjk dXj ∧ dXk, Bjk =
∂Ak
∂Xj

− ∂Aj
∂Xk

.

Moreover, the operator Hh has the form

Hh =
1√
|g(X)|

∑

1≤j,`≤n

(
ih

∂

∂Xj
+Aj(X)

)

×
[√

|g(X)|gj`(X)
(
ih

∂

∂X`
+A`(X)

)]
.

For any x ∈ M , denote by B(x) the anti-symmetric linear operator on
the tangent space TxM associated with the 2-form B:

gx(B(x)u, v) = Bx(u, v), u, v ∈ TxM.
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Recall that the intensity of the magnetic field is defined as

Tr+(B(x)) =
∑

λj(x)>0
iλj(x)∈σ(B(x))

λj(x) =
1
2

Tr([B∗(x) ·B(x)]1/2).

It turns out that in many problems the function x 7→ h · Tr+(B(x)) can
be considered as a magnetic analogue of the electric potential V in a
Schrödinger operator −h2∆ + V .

We will also use the trace norm of B(x):

|B(x)| = [Tr(B∗(x) ·B(x))]1/2.

It coincides with the norm of B(x) with respect to the Riemannian metric
on the space of linear operators on TxM induced by the Riemannian metric
g on M .

In this paper we will always assume that the magnetic field has a peri-
odic set of compact potential wells. More precisely, put

b0 = min{Tr+(B(x)) : x ∈M}
and assume that there exist a (connected) fundamental domain F and a
constant ε0 > 0 such that

Tr+(B(x)) ≥ b0 + ε0, x ∈ ∂F . (1.1)

For any ε1 ≤ ε0, put

Uε1 = {x ∈ F : Tr+(B(x)) < b0 + ε1}.
Thus Uε1 is an open subset of F such that Uε1 ∩ ∂F = ∅ and, for ε1 < ε0,
Uε1 is compact and included in the interior of F . Any connected component
of Uε1 with ε1 < ε0 and also any of its translates under the action of an
element of Γ can be understood as a magnetic well. These magnetic wells
are separated by barriers, which are getting higher and higher when h→ 0
(in the semiclassical limit).

For any linear operator T in a Hilbert space, we will denote by σ(T )
its spectrum. By a gap in the spectrum of a self-adjoint operator T we will
mean any connected component of the complement of σ(T ) in R, that is,
any maximal interval (a, b) such that

(a, b) ∩ σ(T ) = ∅ .
The problem of existence of gaps in the spectra of second order periodic

differential operators has been extensively studied recently. Some related
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results on spectral gaps for periodic magnetic Schrödinger operators can be
found for example in Refs. 1,4,5,14–22,24 (see also the references therein).

In this paper, we consider the magnetic Schrödinger operator Hh as an
unbounded self-adjoint operator in the Hilbert space L2(M) and will study
gaps in the spectrum of this operator, which are located below the top
of potential barriers, that is, on the interval [0, h(b0 + ε0)]. In this case, an
important role is played by the tunneling effect, that is, by the possibility for
the quantum particle described by the Hamiltonian Hh with such an energy
to pass through a potential barrier. Using the semiclassical analysis of the
tunneling effect, we showed in Ref. 4 that the spectrum of the magnetic
Schrödinger operator Hh on the interval is localized in an exponentially
small neighborhood of the spectrum of its Dirichlet realization inside the
wells. This result reduces the investigation of gaps in the spectrum of the
operator Hh to the study of the eigenvalue distribution for a “one-well”
operator and leads us to suggest a general scheme of a proof of existence of
spectral gaps in Ref. 5. We review this scheme and some of its applications
in Sec. 2. Then, in Sec. 3, we will apply these methods to prove the existence
of an arbitrary large number of gaps in the spectrum of the operator Hh, as
h→ 0, under the assumption that b0 = 0 and the zero set of B has regular
codimension one pieces.

2. Quasimodes and spectral gaps

In this section, we review a general scheme of a proof of existence of gaps
in the spectrum of the magnetic Schrödinger operator Hh on the interval
[0, h(b0 + ε0)] and some of its applications obtained in Ref. 5.

2.1. A general scheme

For any domain W in M , denote by Hh
W the unbounded self-adjoint op-

erator in the Hilbert space L2(W ) defined by the operator Hh in W

with Dirichlet boundary conditions. The operator Hh
W is generated by the

quadratic form

u 7→ qhW [u] :=
∫

W

|(ih d+ A)u|2 dx

with the domain

Dom(qhW ) = {u ∈ L2(W ) : (ih d+ A)u ∈ L2Ω1(W ), u |∂W = 0},
where L2Ω1(W ) denotes the Hilbert space of L2 differential 1-forms on W ,
dx is the Riemannian volume form on M .
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Assume now that the operator Hh satisfies the condition of Eq. (1.1).
Fix ε1 > 0 and ε2 > 0 such that ε1 < ε2 < ε0, and consider the operator
Hh
D associated with the domain D = Uε2 . The operator Hh

D has discrete
spectrum.

The following result is a slight generalization of Theorem 2.1 in Ref. 5,
which is concerned with the case when Nh is independent of h. It permits
to get a more precise information on the number of gaps as h→ 0.

Theorem 2.1. Suppose that there exist h0 > 0, c > 0, M ≥ 1 and that,
for h ∈ (0, h0], there exists Nh and a subset µh0 < µh1 < . . . < µhNh

of an
interval I(h) ⊂ [0, h(b0 + ε1)) such that

µhj − µhj−1 > chM , j = 1, . . . , Nh,

dist(µh0 , ∂I(h)) > chM , dist(µhNh
, ∂I(h)) > chM ,

and, for each j = 0, 1, . . . , Nh, there exists some non trivial vhj ∈ C∞c (D)
such that

‖Hh
Dv

h
j − µhj v

h
j ‖ ≤

c

3
hM ‖vhj ‖ .

Then there exists h1 ∈ (0, h0] such that the spectrum of Hh on the interval
I(h) has at least Nh gaps for h ∈ (0, h1).

2.2. A generic situation

As a first application of Theorem 2.1, we show in Ref. 5 that the spectrum of
the Schrödinger operator Hh, satisfying the assumption of Eq. (1.1), always
has gaps (moreover, an arbitrarily large number of gaps) on the interval
[0, h(b0+ε0)] in the semiclassical limit h→ 0. Under some additional generic
assumption, this result was obtained in Ref. 4. Indeed, slightly modifying
the arguments of Ref. 5, one can show the following theorem.

Theorem 2.2. Under the assumption of Eq. (1.1), for any interval [α, β] ⊂
[b0, b0 + ε0] and for any natural N , there exists h0 > 0 such that, for any
h ∈ (0, h0], the spectrum of Hh in the interval [hα, hβ] has at least N gaps.

The proof of this theorem can be given by a straightforward repetition of
the proof of Theorem 3.1 in Ref. 5 with the only difference that one should
choose µ0 < µ1 < . . . < µN in the interval (α, β) instead of (b0, b0 + ε0).

Indeed, using Theorem 2.1 with Nh dependent on h and a continuous
family of quasimodes constructed in the proof of Proposition 2.3 in Ref. 4,
we can get an estimate for the number of gaps in the constant rank case.
Denote by [a] the integer part of a (the largest integer n satisfying n ≤ a).
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Theorem 2.3. Under the assumption of Eq. (1.1), suppose that the rank
of B is constant in an open set U ⊂ M . Then, for any interval [α, β] ⊂
Tr+B(U), there exists h0 > 0 and C > 0 such that, for any h ∈ (0, h0], the
spectrum of Hh in the interval [hα, hβ] has at least [Ch−1/3] gaps.

2.3. The case of discrete wells

A more precise information on location and asymptotic behavior of gaps in
the spectrum of the magnetic Schrödinger operator Hh, satisfying the as-
sumption of Eq. (1.1), can be obtained, if we impose additional hypotheses
on the bottoms of the magnetic wells. In this section, we consider a case
when the bottom of the magnetic well contains zero-dimensional compo-
nents, that is, isolated points, and, moreover, the magnetic field behaves
regularly near these points. More precisely, we will assume that b0 = 0 and
that there is at least one zero x0 of B such that, for some integer k > 0,
there exists a positive constant C such that for all x in some neighborhood
of x0 the following estimate holds:

C−1d(x, x0)k ≤ |B(x)| ≤ Cd(x, x0)k (2.1)

(here d(x, y) denotes the geodesic distance between x and y). In this case,
the important role is played by a differential operator Kh

x̄0
in Rn, which

is in some sense an approximation to the operator Hh near x0. Recall its
definition (see Ref. 7).

Let x̄0 be a zero of B. Choose local coordinates f : U(x̄0) → Rn on
M , defined in a sufficiently small neighborhood U(x̄0) of x̄0. Suppose that
f(x̄0) = 0, and the image f(U(x̄0)) is a ball B(0, r) in Rn centered at the
origin.

Write the 2-form B in these local coordinates as

B(X) =
∑

1≤`<m≤n
b`m(X) dX` ∧ dXm, X = (X1, . . . , Xn) ∈ B(0, r).

Let B0 be the closed 2-form in Rn with polynomial components defined by
the formula

B0(X) =
∑

1≤`<m≤n

∑

|α|=k

Xα

α!
∂αb`m
∂Xα

(0) dX` ∧ dXm, X ∈ Rn.

One can find a 1-form A0 on Rn with polynomial components such that

dA0(X) = B0(X), X ∈ Rn.
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Let Kh
x̄0

be the self-adjoint differential operator in L2(Rn) with polyno-
mial coefficients given by the formula

Kh
x̄0

= (ih d+ A0)∗(ih d+ A0),

where the adjoints are taken with respect to the Hilbert structure in L2(Rn)
given by the flat Riemannian metric (g`m(0)) in Rn. If A0 is written as

A0 = A0
1 dX1 + . . .+A0

n dXn,

then Kh
x̄0

is given by the formula

Kh
x̄0

=
∑

1≤`,m≤n
g`m(0)

(
ih

∂

∂X`
+A0

`(X)
)(

ih
∂

∂Xm
+A0

m(X)
)
.

The operators Kh
x̄0

have discrete spectrum (cf, for instance, Refs. 10 and
8). Using the simple dilation X 7→ h

1
k+2X, one can show that the operator

Kh
x̄0

is unitarily equivalent to h
2k+2
k+2 K1

x̄0
. Thus, h−

2k+2
k+2 Kh

x̄0
has discrete

spectrum, independent of h.

Theorem 2.4.5 Suppose that the operator Hh satisfies the condition of
Eq. (1.1) with some ε0 > 0 and that there exists a zero x̄0 of B, sat-
isfying the assumption of Eq. (2.1) for some integer k > 0. Denote by
λ1 < λ2 < λ3 < . . . the eigenvalues of the operator K1

x̄0
(not taking into

account multiplicities). Then, for any natural N and any C > λN+1, there
exists h0 > 0 such that the spectrum of Hh in the interval [0, Ch

2k+2
k+2 ] has

at least N gaps for any h ∈ (0, h0).

3. Hypersurface wells

In this section, we consider the case when b0 = 0 and the zero set of the
magnetic field has regular hypersurface parts. More precisely, suppose that
there is an open subset U of F such that the zero set of B in U is a smooth
oriented hypersurface S, and, moreover, there are constants k ∈ N and
C > 0 such that for all x ∈ U we have:

C−1d(x, S)k ≤ |B(x)| ≤ Cd(x, S)k . (3.1)

On compact manifolds, this model was introduced for the first time by
Montgomery23 and was further studied in Refs. 7, 25 and 3.

Let

ω0.0 = i∗SA
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be the closed one form on S induced by A, where iS is the embedding of S
into M .

Denote by N the external unit normal vector to S and by Ñ an arbitrary
extension of N to a smooth vector field on U .

Let ω0,1 be the smooth one form on S defined, for any vector field V on
S, by the formula

〈V, ω0,1〉(y) =
1
k!
Ñk(B(Ñ , Ṽ ))(y), y ∈ S,

where Ṽ is a C∞ extension of V to U . By Eq. (3.1), it is easy to see that
ω0,1(x) 6= 0 for any x ∈ S. Denote

ωmin(B) = inf
x∈S

|ω0,1(x)| > 0.

For any α ∈ R and β ∈ R, β 6= 0, consider the self-adjoint second order
differential operator in L2(R) given by

Q(α, β) = − d2

dt2
+

(
1

k + 1
βtk+1 − α

)2

.

In the context of magnetic bottles, this family of operators (for k = 1) first
appears in Ref. 23 (see also Ref. 7). Denote by λ0(α, β) the bottom of the
spectrum of the operator Q(α, β).

Let us recall some properties of λ0(α, β), which were established in Refs.
23, 7 and 25. First of all, remark that λ0(α, β) is a continuous function of
α ∈ R and β ∈ R \ {0}. One can see by scaling that, for β > 0,

λ0(α, β) = β
2

k+2λ0(β−
1

k+2α, 1) . (3.2)

A further discussion depends on k odd or k even.
When k is odd, λ0(α, 1) tends to +∞ as α→ −∞ by monotonicity. For

analyzing its behavior as α→ +∞, it is suitable to do a dilation t = α
1

k+1 s,
which leads to the analysis of

α2

(
−h2 d

2

ds2
+

(
sk+1

k + 1
− 1

)2
)

with h = α−(k+2)/(k+1) small. One can use the semi-classical analysis (see
Ref. 2 for the one-dimensional case and Refs. 26 and 11 for the multidimen-
sional case) to show that

λ0(α, 1) ∼ (k + 1)
2k

k+1α
k

k+1 , as α→ +∞ .

In particular, we see that λ0(α, 1) tends to +∞.
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When k is even, we have λ0(α, 1) = λ0(−α, 1), and, therefore, it is
sufficient to consider the case α ≥ 0. As α → +∞, semi-classical analysis
again shows that λ0(α, 1) tends to +∞.

So in both cases, it is clear that the continuous function λ0(α, 1) is lower
semi-bounded,

ν̂ := inf
α∈R

λ0(α, 1) > −∞,

and there exists (at least one) αmin ∈ R such that λ0(α, 1) is minimal,

λ0(αmin, 1) = ν̂.

For k odd, one can show that the minimum αmin is strictly positive. One
can indeed compute the derivative of λ0(α, 1) at α = 0 and find that

∂λ0

∂α
(0, 1) < 0 .

In the case k = 1, it has been shown that this minimum is unique (see Ref.
25). Numerical computations show (see Refs. 23 and 7) that, in this case,
ν̂ ∼= 0.5698.

Theorem 3.1. For any a and b such that

ν̂ ωmin(B)
2

k+2 < a < b

and for any natural N , there exists h0 > 0 such that, for any h ∈ (0, h0],
the spectrum of Hh in the interval

[h
2k+2
k+2 a, h

2k+2
k+2 b]

has at least N gaps.

Proof. Let S and U as defined before (3.1) and g0 be the Riemannian
metric on S induced by g. Without loss of generality, we can assume that
U coincides with an open tubular neighborhood of S and choose a diffeo-
morphism

Θ : I × S → U,

where I is an open interval (−ε0, ε0) with ε0 > 0 small enough, such that
Θ

∣∣{0}×S = id and

(Θ∗g − g̃0)
∣∣{0}×S = 0,

where g̃0 is a Riemannian metric on I × S given by

g̃0 = dt2 + g0.
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By adding to A the exact one form dφ, where φ is the function satisfying

N(x)φ(x) = −〈N,A〉(x), x ∈ U,
φ(x) = 0, x ∈ S,

we may assume that

〈N,A〉(x) = 0, x ∈ U.
As above, denote by Hh

D the unbounded self-adjoint operator in L2(D)
given by the operator Hh in the domain D = U with Dirichlet boundary
conditions.

For any t ∈ R, let PhS
(
ω0,0 + 1

k+1 t
k+1ω0,1

)
be the formally self-adjoint

operator in L2(S, dxg0) defined by

PhS

(
ω0,0 +

1
k + 1

tk+1ω0,1

)
=

(
ihd+ ω0,0 +

1
k + 1

tk+1ω0,1

)∗

×
(
ihd+ ω0,0 +

1
k + 1

tk+1ω0,1

)
.

Consider the self-adjoint operator Hh,0 in L2(R×S, dt dxg0) defined by
the formula

Hh,0 = −h2 ∂
2

∂t2
+ PhS

(
ω0,0 +

1
k + 1

tk+1ω0,1

)

with Dirichlet boundary conditions. By Theorem 2.7 of Ref. 7, the operator
Hh,0 has discrete spectrum. Moreover, it can be seen from the proof of
this theorem that if λ0(h) is an approximate eigenvalue of Hh,0 with the
corresponding approximate eigenfunction wh ∈ C∞c (R× S) such that

λ0(h) ≤ Dh(2k+2)/(k+2)

and

‖(Hh,0 − λ0(h))wh‖ ≤ Ch(2k+3)/(k+2)‖wh‖,
then λ0(h) is an approximate eigenvalue of Hh

D with the corresponding
approximate eigenfunction vh = (Θ−1)∗wh ∈ C∞c (U),

‖(Hh
D − λ0(h))vh‖ ≤ Ch(2k+3)/(k+2)‖vh‖.

So it remains to construct approximate eigenvalues of Hh,0.

Lemma 3.1. For any λ ≥ ν̂ ωmin(B)2/(k+2), there exists Φ ∈ C∞c (R × S)
such that

‖(Hh,0 − λh
2k+2
k+2 )Φ‖ ≤ Ch

6k+8
3(k+2) ‖Φ‖.
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Proof. Take x1 ∈ S such that |ω0,1(x1)| = ωmin(B). Consider α1 ∈ R such
that λ0(α1, 1) = λωmin(B)−2/(k+2) ≥ ν̂. Let ψ ∈ L2(R) be a normalized
eigenfunction of Q(α1, 1), corresponding to λ0(α1, 1),
[
− d2

dt2
+

(
1

k + 1
tk+1 − α1

)2
]
ψ(t) = λωmin(B)−

2
k+2ψ(t), ‖ψ‖L2(R) = 1.

For simplicity of notation, put αB = α1ωmin(B)−
k+1
k+2h

k+1
k+2 . Then the func-

tion

Ψ(t) = ωmin(B)
1

2(k+2)h−
1

2(k+2)ψ(ωmin(B)
1

k+2h−
1

k+2 t)

satisfies(
−h2 d

2

dt2
+ ωmin(B)2

(
1

k + 1
tk+1 − αB

)2
)

Ψ(t) = λh
2k+2
k+2 Ψ(t),

‖Ψ‖L2(R) = 1.

Take normal coordinates f : U(x1) ⊂ S → Rn−1 on S defined in a neigh-
borhood U(x1) of x1, where f(U(x1)) = B(0, r) is a ball in Rn−1 centered
at the origin and f(x1) = 0. Choose a function φ ∈ C∞(B(0, r)) such that
dφ = ω0,0. Write ω0,1 =

∑n−1
j=1 ωj(s) dsj . Note that

ωmin(B) =



n−1∑

j=1

|ωj(0)|2



1/2

.

Consider the function Φ ∈ C∞(B(0, r)× R) given by

Φ(s, t) = ch−β/2(n−1)χ(s) exp
(
−iφ(s)

h

)
exp


iαB

h

n−1∑

j=1

ωj(0)sj




× exp
(
− |s|2

2h2β

)
Ψ(t), s ∈ B(0, r), t ∈ R,

(3.3)

with some β, where χ ∈ C∞c (B(0, r)) is a cut-off function and c is chosen
in such a way that ‖Φ‖L2(S×R) = 1.

Put

Hh,1 = −h2 ∂
2

∂t2
+ PhS

(
1

k + 1
tk+1ω0,1 − αBω0,1(0)

)
,

E(s) = ch−β/2(n−1)χ(s) exp
(
− |s|2

2h2β

)
,

Φ1(s, t) = E(s)Ψ(t).
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Then we have

Hh,0Φ(s, t) = exp
(
−iφ(s)

h

)
exp


iαB

h

n−1∑

j=1

ωj(0)sj


Hh,1Φ1(s, t).

Next, we have

PhS

(
1

k + 1
tk+1ω0,1 − αBω0,1(0)

)

=
∑

j,`

1√
g0

(
ih

∂

∂sj
+

1
k + 1

tk+1ωj(s)− αBωj(0)
)

×
(
gj`0
√
g0

(
ih

∂

∂s`
+

1
k + 1

tk+1ω`(s)− αBω`(0)
))

=
∑

j,`

gj`0

(
ih

∂

∂sj
+

1
k + 1

tk+1ωj(s)− αBωj(0)
)

×
(
ih

∂

∂s`
+

1
k + 1

tk+1ω`(s)− αBω`(0)
)

+
∑

`

ihΓ`(s)
(
ih

∂

∂s`
+

1
k + 1

tk+1ω`(s)− αBω`(0)
)

= −h2
∑

j,`

gj`0
∂2

∂sj∂s`
+ 2ih

∑

j,`

gj`0
1

k + 1
tk+1 ∂ω`

∂sj
(s)

+2ih
∑

j,`

gj`0

(
1

k + 1
tk+1ω`(s)− αBω`(0)

)
∂

∂sj

+
∑

j,`

gj`0

(
1

k + 1
tk+1ωj(s)− αBωj(0)

)

×
(

1
k + 1

tk+1ω`(s)− αBω`(0)
)
− h2

∑

`

Γ`(s)
∂

∂s`

+ih
∑

`

Γ`(s)
(

1
k + 1

tk+1ω`(s)− αBω`(0)
)
,

where

Γ` =
∑

j

1√
g0

∂

∂sj

(
gj`0
√
g0

)
.

By a well-known property of normal coordinates, we have ∂jg`m0 (0) = 0. So
we get Γ`(0) = 0, and

g`m0 (s) = δ`m +O(|s|2), Γ`(s) = O(|s|), s→ 0. (3.4)
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We get

Hh,1Φ1(s, t) = λh
2k+2
k+2 Φ1(s, t)− h2

∑

j,`

gj`0
∂2E

∂sj∂s`
(s)Ψ(t)

+2ih
∑

j,`

gj`0
1

k + 1
∂ω`
∂sj

E(s)tk+1Ψ(t)

+2ih
∑

j,`

gj`0
∂E

∂sj
(s)

(
1

k + 1
tk+1ω`(s)− αBω`(0)

)
Ψ(t)

+R(s, t)Φ1(s, t)− h2
∑

`

Γ`(s)
∂

∂s`
E(s)Ψ(t)

+ih
∑

`

Γ`(s)
(

1
k + 1

tk+1ω`(s)− αBω`(0)
)
E(s)Ψ(t),

where

R(s, t) =
∑

j,`

gj`0

(
1

k + 1
tk+1ωj(s)− αBωj(0)

)
×

×
(

1
k + 1

tk+1ω`(s)− αBω`(0)
)
− ωmin(B)2

∑

j

(
1

k + 1
tk+1 − αB

)2

=
1

(k + 1)2


∑

j,`

g`0(s)ωj(s)ω`(s)−
∑

j

(ωj(0))2


 t2(k+1)

− 2
k + 1

tk+1
∑

j

(ωj(s)− ωj(0))αBωj(0)

+O(|s|2)
∑

j

(
1

k + 1
tk+1 − αB

)2

.

We have

‖|s|mE(s)‖ =
(
h−β(n−1)

∫

Rn−1
|s|2m exp

(
−|s|

2

h2β

)
ds

)1/2

= C1h
βm,

(3.5)
and, furthermore,

‖|s|m ∂E
∂sj

(s)‖ = C2h
β(m−1), ‖|s|m ∂2E

∂sj∂s`
(s)‖ = C3h

β(m−2). (3.6)

We also have

‖tk+1Ψ(t)‖ ≤ C4h
k+1
k+2 , ‖t2(k+1)Ψ(t)‖ ≤ C5h

2k+2
k+2 . (3.7)
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Since s = 0 is a minimum of |ω0,1(s)|2, we have

|ω0,1(s)|2 − ωmin(B)2 =
∑

j,`

gj`0 (s)ωj(s)ω`(s)− (ωj(0))2 ≤ C6|s|2 (3.8)

and
(

∂

∂sr
|ω0,1|2

)
(0) = 2

∑

j

∂ωj
∂sr

(0)ωj(0) = 0,

which implies
∣∣∣∣∣∣
∑

j

(ωj(s)− ωj(0))ωj(0)

∣∣∣∣∣∣
≤ C7|s|2. (3.9)

Using Eq. (3.4), Eq. (3.5), Eq. (3.6), Eq. (3.7), Eq. (3.8) and Eq. (3.9) and
putting β = 1

3(k+2) , one can easily get that

‖Hh,0Φ− λh
2k+2
k+2 Φ‖ ≤ Ch

6k+8
3(k+2) .

Given a and b such that ν̂ ωmin(B)2/(k+2) < a < b and some natural N ,
choose numbers νj , j = 0, . . . , N, such that

a < ν0 < ν1 < . . . < νN < b.

By Lemma 3.1, for any m = 0, 1, . . . , N ,

µhm = νmh
2k+2
k+2 ∈ [h(2k+2)/(k+2)a, h(2k+2)/(k+2)b]

is an approximate eigenvalue of the operator Hh
D: for some Φhm ∈ C∞c (D)

‖(Hh,0 − µhm)Φhm‖ ≤ Ch
6k+8

3(k+2) ‖Φhm‖.
Using Theorem 2.1 with Nh = N independent of h, we complete the proof.

Remark 3.1. Using the methods of the proof of Theorem 3.1, one can
construct a much larger (h-dependent) number of approximate eigenvalues
of the operatorHh on the interval [h(2k+2)/(k+2)a, h(2k+2)/(k+2)b] with some
a and b such that ν̂ ωmin(B)2/(k+2) < a < b. Applying then Theorem 2.1
with Nh dependent on h, one can get the following theorem.

Theorem 3.2. Under the assumptions of Theorem 3.1, for any a and b

such that

ν̂ ωmin(B)
2

k+2 < a < b,
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there exist h0 > 0 and C > 0 such that, for any h ∈ (0, h0], the spectrum
of Hh in the interval

[h
2k+2
k+2 a, h

2k+2
k+2 b]

has at least [Ch−
2

3(k+2) ] gaps.

4. Concluding remarks

1. Suppose that the operator Hh satisfies the condition of Eq. (1.1) with
some ε0 > 0, and that the zero set of the magnetic field B is a smooth
oriented hypersurface S. Moreover, assume that there are constants k ∈ N
and C > 0 such that for all x in a neighborhood of S we have:

C−1d(x, S)k ≤ |B(x)| ≤ Cd(x, S)k .

Note that these assumptions are stronger than the assumptions of Theo-
rem 3.1.

It is interesting to determine the bottom λ0(Hh) of the spectrum of the
operatorHh in L2(M). By Theorem 2.1 in Ref. 4 and Theorem 2.7 in Ref. 7,
λ0(Hh) is asymptotically equal to the bottom λ0(Hh,0) of the spectrum of
the operator Hh,0. From the construction of approximate eigenvalues of
Hh,0 given in Lemma 3.1, one can see that, in order to find λ0(Hh,0), it is
natural to consider a self-adjoint second order differential operator P (v,w),
v,w ∈ Rn−1, in L2(R) given by

P (v,w) = − d2

dt2
+

∣∣∣∣
1

k + 1
wtk+1 − v

∣∣∣∣
2

and minimize the bottom λ0(v,w) of the spectrum of the operator P (v,w)
over v ∈ Rn−1 and w ∈ K, where K = {ω0,1(s) : s ∈ S̄} is a compact
subset of Rn−1 \ {0}.

The identity

P (v,w) =

(
− d2

dt2
+

(
1

k + 1
|w|tk+1 − v ·w

|w|
)2

)
+

∣∣∣∣v −
v ·w
|w|2 w

∣∣∣∣
2

shows that, for determining the minimum of λ0(v,w) over v ∈ Rn−1 and
w ∈ K, it is sufficient to assume that v is parallel to w. For such v and
w, we obtain P (v,w) = Q(α, β) with α = ±|v|, β = |w|. By Eq. (3.2),
it follows that, for determining the minimum of λ0(α, β) over α ∈ R and
β ∈ {|ω0,1(s)| : s ∈ S̄}, we should first minimize over β, that is, take s1 ∈ S
such that

|ω0,1(s1)| = min{|ω0,1(s)| : s ∈ S̄},
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and then, for the minimal β, minimize over α.
This observation provides some explanations of our construction of ap-

proximate eigenvalues of the operator Hh,0 in Lemma 3.1, in particular, of
our choice for the exponent in Eq. (3.3). It also motivates us to formulate
the following conjecture:

Conjecture 4.1. Under current assumptions, for the bottom λ0(Hh) of
the spectrum of the operator Hh in L2(M), we have

lim
h→0

h−
2k+2
k+2 λ0(Hh) = ν̂ ωmin(B)

2
k+2 .

Observe that a similar result was obtained by Pan and Kwek25 for the
bottom of the spectrum of the Neumann realization of the operator Hh in
a bounded domain in the case k = 1.

2. In the setting of Sec. 3, one can assume that the function |ω0,1(x)|
has a non-degenerate minimum at some x1 ∈ S. In some sense this is the
“miniwells case” analyzed in Ref. 12 in comparison with the “uniform case”
analyzed in Ref. 13, which in this setting was studied in Ref. 5. Then we
can obtain a more precise information about gaps located near the bottom
of the spectrum of Hh (see some relevant calculations in Ref. 3). This will
be discussed elsewhere.

3. The results obtained in Sec. 3 and in the previous remark can be
extended to the case b0 6= 0 (for the “miniwells case”, see some relevant
results in Ref. 9). We will consider these problems in a future publication
(cf. Ref. 6).
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In the framework of the theory of open systems based on completely positive
quantum dynamical semigroups, we describe the behaviour of a bipartite sys-
tem interacting with an environment in connection with the quantum entangle-
ment. We solve in the asymptotic long-time regime the master equation for two
independent harmonic oscillators interacting with an environment and give a
description of the continuous-variable asymptotic entanglement in terms of the
covariance matrix of the considered subsystem for an arbitrary Gaussian input
state. Using Peres–Simon necessary and sufficient condition for separability of
two-mode Gaussian states, we show that for certain classes of environments
the initial state evolves asymptotically to an entangled equilibrium bipartite
state, while for other values of the coefficients describing the environment,
the asymptotic state is separable. We calculate also the logarithmic negativity
characterizing the degree of entanglement of the asymptotic state.

Keywords: Open systems, Quantum entanglement, Nonseparable states

1. Introduction

The rapid development of the theory of quantum information, communi-
cation and computation has revived the interest in open quantum systems
in relation, on one side, to their decohering properties and, on the other
side, to their capacity of creating entanglement in multi-partite systems
immersed in certain environments. Quantum entanglement represents the
physical resource in quantum information science which is indispensable for
the description and performance of such tasks like teleportation, superdense
coding, quantum cryptography and quantum computation.13 Therefore the
generation, detection and manipulation of the entanglement continues to
be presently a problem of intense investigation.

When two systems are immersed in an environment, then, besides and



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

156 A. Isar

at the same time with the quantum decoherence, the environment can also
generate a quantum entanglement of the two systems and therefore an ad-
ditional mechanism to correlate them.1,2,5 In certain circumstances, the
environment enhances entanglement and in others it suppresses the entan-
glement and the state describing the two systems becomes separable. The
structure and properties of the environment may be such that not only
the two systems become entangled, but also such that a certain amount of
entanglement survives in the asymptotic long-time regime. The reason is
that even if not directly coupled, the two systems immersed in the same
environment can interact through the environment itself and it depends on
how strong this indirect interaction is with respect to the quantum deco-
herence, whether entanglement can be generated at the beginning of the
evolution and, in the case of an affirmative answer, if it can be maintained
for a definite time or it survives indefinitely in time.1

In this work we study, in the framework of the theory of open quantum
systems based on completely positive dynamical semigroups, the existence
of the continuous variable asymptotic entanglement for a subsystem com-
posed of two identical harmonic oscillators interacting with an environment.
We are interested in discussing the correlation effect of the environment,
therefore we assume that the two systems are independent, i.e., they do not
interact directly. The initial state of the subsystem is taken of Gaussian
form and the evolution under the quantum dynamical semigroup assures
the preservation in time of the Gaussian form of the state. We only in-
vestigate here the asymptotic behaviour of the subsystem states. The time
evolution of the entanglement, in particular the possibility of the so-called
”entanglement sudden death”, that is suppression of the entanglement at
a certain finite moment of time, will be discussed in a future work.

The organizing of the paper is as follows. In Sect. 2 the notion of the
quantum dynamical semigroup is defined using the concept of a completely
positive map. Then we give the general form of the Markovian quantum
mechanical master equation describing the evolution of open quantum sys-
tems. We mention the role of complete positivity in connection with the
quantum entanglement of systems interacting with an external environ-
ment. In Sec. 3 we write the equations of motion in the Heisenberg picture
for two independent harmonic oscillators interacting with a general envi-
ronment. From these equations we derive in Sec. 4 the asymptotic values
of the variances and covariances of the coordinates and momenta which
enter the asymptotic covariance matrix. Then, by using the Peres-Simon
necessary and sufficient condition for separability of two-mode Gaussian
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states,14,17 we investigate the behaviour of the environment induced en-
tanglement in the limit of long times. We show that for certain classes
of environments the initial state evolves asymptotically to an equilibrium
state which is entangled, while for other values of the parameters describ-
ing the environment, the entanglement is suppressed and the asymptotic
state is separable. The existence of the quantum correlations between the
two systems in the asymptotic long-time regime is the result of the compe-
tition between entanglement and quantum decoherence. We calculate also
the logarithmic negativity characterizing the degree of entanglement of the
asymptotic state. Conclusions are given in Sec. 5.

2. Axiomatic theory of open quantum systems

The standard quantum mechanics is Hamiltonian. The time evolution of a
closed physical system is given by a dynamical group Ut, uniquely deter-
mined by its generator H, which is the Hamiltonian operator of the system.
The action of the dynamical group Ut on any density matrix ρ from the set
D(H) of all density matrices in the Hilbert space H of the quantum system
is defined by

ρ(t) = Ut(ρ) = e−
i
~Htρe

i
~Ht

for all t ∈ (−∞,∞). According to von Neumann, density operators ρ ∈
D(H) are trace class (Trρ < ∞), self-adjoint (ρ† = ρ), positive (ρ > 0)
operators with Trρ = 1. All these properties are conserved by the time
evolution defined by Ut.

In the case of open quantum systems, the time evolution Φt of the
density operator ρ(t) = Φt(ρ) has to preserve the von Neumann conditions
for all times. It follows that Φt must have the following properties:

(i) Φt(λ1ρ1 + λ2ρ2) = λ1Φt(ρ1) + λ2Φt(ρ2) for λ1, λ2 ≥ 0, λ1 + λ2 = 1,
i. e., Φt must preserve the convex structure of D(H),

(ii) Φt(ρ†) = Φt(ρ)†,
(iii) Φt(ρ) > 0,
(iv) TrΦt(ρ) = 1.
The time evolution Ut for closed systems must be a group Ut+s = UtUs.

We have also U0(ρ) = ρ and Ut(ρ) → ρ in the trace norm when t→ 0. The
dual group Ũt acting on the observables A ∈ B(H), i.e., on the bounded
operators on H, is given by

Ũt(A) = e
i
~HtAe−

i
~Ht.
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Then Ũt(AB) = Ũt(A)Ũt(B) and Ũt(I) = I, where I is the identity operator
on H. Also, Ũt(A) → A ultraweakly when t → 0 and Ũt is an ultraweakly
continuous mapping.4,7,12 These mappings have a strong positivity property
called complete positivity,∑

i,j

B†i Ũt(A
†
iAj)Bj ≥ 0, Ai, Bi ∈ B(H).

In the axiomatic approach to the description of the evolution of open
quantum systems,4,7,12 one supposes that the time evolution Φt of open
systems is not very different from the time evolution of closed systems.
The simplest dynamics Φt which introduces a preferred direction in time,
characteristic for dissipative processes, is that in which the group condition
is replaced by the semigroup condition6,7,11

Φt+s = ΦtΦs, t, s ≥ 0.

The complete positivity condition has the form∑

i,j

B†i Φ̃t(A
†
iAj)Bj ≥ 0, Ai, Bi ∈ B(H), (2.1)

where Φ̃t denotes the dual of Φt acting on B(H) and is defined by the
duality condition

Tr(Φt(ρ)A) = Tr(ρΦ̃t(A)).

Then the conditions TrΦt(ρ) = 1 and Φ̃t(I) = I are equivalent. Also the
conditions Φ̃t(A) → A ultraweakly when t→ 0 and Φt(ρ) → ρ in the trace
norm when t→ 0, are equivalent. For the semigroups with these properties
and with a more weak property of positivity than Eq. (2.1), namely

A ≥ 0 → Φ̃t(A) ≥ 0,

it is well known that there exists a (generally unbounded) mapping L̃ – the
generator of Φ̃t, and Φ̃t is uniquely determined by L̃. The dual generator
of the dual semigroup Φt is denoted by L,

Tr(L(ρ)A) = Tr(ρL̃(A)).

The evolution equations by which L and L̃ determine uniquely Φt and Φ̃t,
respectively, are given in the Schrödinger and Heisenberg picture as

dΦt(ρ)
dt

= L(Φt(ρ)) (2.2)

and

dΦ̃t(A)
dt

= L̃(Φ̃t(A)). (2.3)
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These equations replace in the case of open systems the von Neumann-
Liouville equations

dUt(ρ)
dt

= − i

~
[H,Ut(ρ)]

and

dŨt(A)
dt

=
i

~
[H, Ũt(A)],

respectively. For applications, Eqs. (2.2) and (2.3) are only useful if the
detailed structure of the generator L(L̃) is known and can be related to the
concrete properties of the open systems described by such equations. For
the class of dynamical semigroups which are completely positive and norm
continuous, the generator L̃ is bounded. In many applications the generator
is unbounded.

According to Lindblad,12 the following argument can be used to justify
the complete positivity of Φ̃t: If the open system is extended in a trivial
way to a larger system described in a Hilbert space H ⊗ K with the time
evolution defined by

W̃t(A⊗B) = Φ̃t(A)⊗B, A ∈ B(H), B ∈ B(K),

then the positivity of the states of the compound system will be preserved by
W̃t only if Φ̃t is completely positive. With this observation a new equivalent
definition of the complete positivity is obtained: Φ̃t is completely positive
if W̃t is positive for any finite dimensional Hilbert space K. The physi-
cal meaning of complete positivity can mainly be understood in relation
to the existence of entangled states, the typical example being given by a
vector state with a singlet-like structure that cannot be written as a tensor
product of vector states. Positivity property guarantees the physical consis-
tency of evolving states of single systems, while complete positivity prevents
inconsistencies in entangled composite systems; therefore the existence of
entangled states makes the request of complete positivity necessary.1

A bounded mapping L̃ : B(H) → B(H) which satisfies L̃(I) =
0, L̃(A†) = L̃(A)† and

L̃(A†A)− L̃(A†)A−A†L̃(A) ≥ 0

is called dissipative. The 2-positivity property of the completely positive
mapping Φ̃t,

Φ̃t(A†A) ≥ Φ̃t(A†)Φ̃t(A), (2.4)
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with equality at t = 0, implies that L̃ is dissipative. Lindblad12 has shown
that conversely, the dissipativity of L̃ implies that Φ̃t is 2-positive. L̃ is
called completely dissipative if all trivial extensions of L̃ to a compound
system described by H⊗K with any finite dimensional Hilbert space K are
dissipative. Lindblad has also shown that there exists a one-to-one corre-
spondence between the completely positive norm continuous semigroups Φ̃t
and completely dissipative generators L̃. The structural theorem of Lind-
blad gives the most general form of a completely dissipative mapping L̃.12

Theorem 2.1. L̃ is completely dissipative and ultraweakly continuous if
and only if it is of the form

L̃(A) =
i

~
[H,A] +

1
2~

∑

j

(V †j [A, Vj ] + [V †j , A]Vj), (2.5)

where Vj ,
∑
j V

†
j Vj ∈ B(H), H ∈ B(H)s.a..

The dual generator on the state space (Schrödinger picture) is of the
form

L(ρ) = − i

~
[H, ρ] +

1
2~

∑

j

([Vjρ, V
†
j ] + [Vj , ρV

†
j ]). (2.6)

Eqs. (2.2) and (2.6) give the explicit form of the most general time-
homogeneous quantum mechanical Markovian master equation with a
bounded Liouville operator:8,12,15

dΦt(ρ)
dt

= − i

~
[H,Φt(ρ)] +

1
2~

∑

j

([VjΦt(ρ), V
†
j ] + [Vj ,Φt(ρ)V

†
j ]).

The assumption of a semigroup dynamics is only applicable in the limit
of weak coupling of the subsystem with its environment, i.e., for long relax-
ation times.18 We mention that the majority of Markovian master equations
found in the literature are of this form after some rearrangement of terms,
even for unbounded generators. It is also an empirical fact for many phys-
ically interesting situations that the time evolutions Φt drive the system
towards a unique final state ρ(∞) = limt→∞ Φt(ρ(0)) for all ρ(0) ∈ D(H).

The evolution equations of Lindblad are operator equations. In cases
when these equations are exactly solvable, the solutions give complete in-
formation about the studied problem and determine completely the time
evolution of the observables.
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3. Equations of motion for two independent harmonic
oscillators

We are interested in the generation of entanglement between two harmonic
oscillators due to their interaction with the environment. Since the two
harmonic oscillators interact with a common environment, there will be in-
duced coupling between them, even if initially they are uncoupled. Thus,
the master equation for the two harmonic oscillators must account for their
mutual interaction by their coupling to the environment. We study the
dynamics of the subsystem composed of two identical non-interacting (in-
dependent) oscillators in weak interaction with a large environment, so that
their reduced time evolution can be described by a Markovian, completely
positive quantum dynamical semigroup.

If Φ̃t is the dynamical semigroup describing the time evolution of the
open quantum system in the Heisenberg picture, then the master equation
has the following form for an operator A (see Eqs. (2.3), (2.5)):8,12,15

dΦ̃t(A)
dt

=
i

~
[H, Φ̃t(A)] +

1
2~

∑

j

(V †j [Φ̃t(A), Vj ] + [V †j , Φ̃t(A)]Vj). (3.1)

Here, H denotes the Hamiltonian of the open system and Vj , V
†
j , which are

operators defined on the Hilbert space of H, model the interaction of the
open system with the environment. Since we are interested in the set of
Gaussian states, we introduce those quantum dynamical semigroups that
preserve this set. Therefore H is taken to be a polynomial of second degree
in the coordinates x, y and momenta px, py of the two quantum oscillators
and Vj , V

†
j are taken polynomials of only first degree in these canonical

observables. Then in the linear space spanned by the coordinates and mo-
menta there exist only four linearly independent operators Vj=1,2,3,4,16

Vj = axjpx + ayjpy + bxjx+ byjy,

where axj , ayj , bxj , byj ∈ C. The Hamiltonian H of the two uncoupled iden-
tical harmonic oscillators of mass m and frequency ω is given by

H =
1

2m
(p2
x + p2

y) +
mω2

2
(x2 + y2).

The fact that Φ̃t is a dynamical semigroup implies the positivity of
the following matrix formed by the scalar products of the four vectors
ax,bx,ay,by, whose entries are the components axj , bxj , ayj , byj , respec-
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tively,

1
2
~




(axax) (axbx) (axay) (axby)
(bxax) (bxbx) (bxay) (bxby)
(ayax) (aybx) (ayay) (ayby)
(byax) (bybx) (byay) (byby)


 .

Its matrix elements have to be chosen appropriately to suit various physical
models of the environment. For a quite general environment able to induce
noise and damping effects, we take this matrix of the following form, where
the coefficients Dxx, Dxpx

. . . , and λ are real quantities, representing the
diffusion coefficients and, respectively, the dissipation constant




Dxx −Dxpx
− i~λ/2 Dxy −Dxpy

−Dxpx
+ i~λ/2 Dpxpx

−Dypx
Dpxpy

Dxy −Dypx Dyy −Dypy − i~λ/2
−Dxpy Dpxpy −Dypy + i~λ/2 Dpypy


 .(3.2)

It follows that the principal minors of this matrix are positive or zero. From
the Cauchy-Schwarz inequality the following relations for the coefficients
defined in Eq. (3.2) hold (from now on we put, for simplicity, ~ = 1),

DxxDyy −D2
xy ≥ 0, DxxDpxpx −D2

xpx
≥ λ2

4
,

DpxpxDpypy −D2
pxpy

≥ 0, DyyDpypy −D2
ypy

≥ λ2

4
,

DxxDpypy −D2
xpy

≥ 0, DyyDpxpx −D2
ypx

≥ 0. (3.3)

The matrix of the coefficients (3.2) can be conveniently written as
(
C1 C3

C3
† C2

)
, (3.4)

in terms of 2× 2 matrices C1 = C1
†, C2 = C2

† and C3. This decomposition
has a direct physical interpretation: The elements containing the diagonal
contributions C1 and C2 represent diffusion and dissipation coefficients cor-
responding to the first, respectively the second, system in absence of the
other, while the elements in C3 represent environment generated couplings
between the two, initially independent, oscillators.

The covariance of self-adjoint operators A1 and A2 can be written with
the density operator ρ, describing the initial state of the quantum system,
as follows,

σA1A2(t) =
1
2
Tr(ρΦ̃t(A1A2 +A2A1)).
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We introduce the following 4× 4 covariance matrix:

σ(t) =




σxx σxpx σxy σxpy

σxpx
σpxpx

σypx
σpxpy

σxy σypx σyy σypy

σxpy
σpxpy

σypy
σpypy


 . (3.5)

By direct calculation we obtain16

dσ

dt
= Y σ + σY T + 2D, (3.6)

where

Y =




−λ 1/m 0 0
−mω2 −λ 0 0

0 0 −λ 1/m
0 0 −mω2 −λ


 ,

D is the matrix of the diffusion coefficients

D =




Dxx Dxpx Dxy Dxpy

Dxpx Dpxpx Dypx Dpxpy

Dxy Dypx Dyy Dypy

Dxpy Dpxpy Dypy Dpypy




and T denotes the transposed matrix. Introducing the notation σ(∞) ≡
limt→∞ σ(t), the time-dependent solution of Eq. (3.6) is given by16

σ(t) = M(t)(σ(0)− σ(∞))MT(t) + σ(∞),

where M(t) = exp(tY ). The matrix M(t) has to fulfil the condition
limt→∞M(t) = 0. In order that this limit exists, Y must only have eigen-
values with negative real parts. The values at infinity are obtained from the
equation16

Y σ(∞) + σ(∞)Y T = −2D. (3.7)

4. Environment induced entanglement

The two-mode Gaussian state is entirely specified by its covariance matrix
σ (3.5), which is a real, symmetric and positive matrix with the following
block structure

σ =
(
A C

CT B

)
,
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where A, B and C are 2 × 2 matrices. Their entries are correlations of
the canonical operators x, y, px, py, A and B denote the symmetric co-
variance matrices for the individual reduced one-mode states, while the
matrix C contains the cross-correlations between modes. The entries of
the covariance matrix depend on Y and D and can be calculated from
Eq. (3.7). To simplify the calculations, we shall consider environments for
which the two diagonal submatrices in Eq. (3.4) are equal: C1 = C2, so that
Dxx = Dyy, Dxpx

= Dypy
, Dpxpx

= Dpypy
. In addition, in the matrix C3

we take Dxpy = Dypx . Then both unimodal covariance matrices are equal,
A = B and the entanglement matrix C is symmetric. With the chosen co-
efficients, we obtain the following elements of the asymptotic entanglement
matrix C:

σxy(∞) =
m2(2λ2 + ω2)Dxy + 2mλDxpy

+Dpxpy

2m2λ(λ2 + ω2)
,

σxpy (∞) = σypx(∞) =
−m2ω2Dxy + 2mλDxpy +Dpxpy

2m(λ2 + ω2)
,

σpxpy (∞) =
m2ω4Dxy − 2mω2λDxpy + (2λ2 + ω2)Dpxpy

2λ(λ2 + ω2)

and of matrices A and B

σxx(∞) = σyy(∞) =
m2(2λ2 + ω2)Dxx + 2mλDxpx +Dpxpx

2m2λ(λ2 + ω2)
,

σxpx(∞) = σypy (∞) =
−m2ω2Dxx + 2mλDxpx +Dpxpx

2m(λ2 + ω2)
, (4.1)

σpxpx(∞) = σpypy (∞) =
m2ω4Dxx − 2mω2λDxpx + (2λ2 + ω2)Dpxpx

2λ(λ2 + ω2)
.

With these quantities we calculate the determinant of the entanglement
matrix

detC =
1

4λ2(λ2 + ω2)
×

×[(mω2Dxy +
1
m
Dpxpy )2 + 4λ2(DxyDpxpy −D2

xpy
)].

(4.2)

It is very interesting that the general theory of open quantum systems allows
couplings via the environment between uncoupled oscillators. According
to the definitions of the environment parameters, the diffusion coefficients
above can be different from zero and can simulate an interaction between
the uncoupled oscillators. Indeed, the Gaussian states with detC ≥ 0 are
separable states, but for detC < 0, it may be possible that the asymptotic
equilibrium states are entangled, as it will be shown in the following.
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On general grounds, one expects that the effects of decoherence, coun-
teracting entanglement production, be dominant in the long-time regime,
so that no quantum correlation (entanglement) is expected to be left at
infinity. Nevertheless, there are situations in which the environment allows
the presence of entangled asymptotic equilibrium states. In order to in-
vestigate whether an external environment can actually entangle the two
independent systems, we can use the partial transposition criterion:14,17 A
state is entangled if and only if the operation of partial transposition does
not preserve its positivity. Simon17 obtained the following necessary and
sufficient criterion for separability, S ≥ 0, where

S ≡ detAdetB

+(
1
4
− | detC|)2 − Tr[AJCJBJCTJ ]− 1

4
(detA+ detB)

(4.3)

and J is the 2× 2 symplectic matrix

J =
(

0 1
−1 0

)
.

In order to analyze the possible persistence of the environment induced
entanglement in the asymptotic long-time regime, we consider the environ-
ment characterized by the following values of its parameters: m2ω2Dxx =
Dpxpx , Dxpx = 0, m2ω2Dxy = Dpxpy . In this case the Simon expression
(4.3) takes the form

S =

(
m2ω2(D2

xx −D2
xy)

λ2
+

D2
xpy

λ2 + ω2
− 1

4

)2

− 4
m2ω2D2

xxD
2
xpy

λ2(λ2 + ω2)
. (4.4)

There exists a large range of diffusion coefficients characterizing the envi-
ronment (and fulfilling at the same time the constraints (3.3)) for which the
expression (4.4) is negative, so that the asymptotic final state becomes en-
tangled. Just to give an example, without compromising the general features
of the system, we consider the particular case of Dxy = 0. Then we obtain
that S < 0, i.e., the asymptotic final state is entangled, for the following
range of values of the coefficient Dxpy characterizing the environment,

mωDxx

λ
− 1

2
<

Dxpy√
λ2 + ω2

<
mωDxx

λ
+

1
2
,

where the coefficient Dxx satisfies the condition mωDxx/λ ≥ 1/2, equiva-
lent with the unimodal uncertainty relation. If the coefficients do not fulfil
the inequalities (4.5), then S ≥ 0 and therefore the asymptotic final state
of the considered bipartite system is separable.9 These results show that,
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irrespective of the initial conditions, we can obtain either an separable or an
inseparable asymptotic entangled state, for a suitable choice of the diffusion
and dissipation coefficients.

We apply the measure of entanglement based on negative eigenvalues
of the partial transpose of the subsystem density matrix. For a Gaussian
density operator, the negativity is completely defined by the symplectic
spectrum of the partial transpose of the covariance matrix. The logarithmic
negativity E = − 1

2 log2[4f(σ)] determines the strength of entanglement for
E > 0. If E ≤ 0, then the state is separable. Here

f(σ) =
1
2
(detA+ detB)− detC

−
√[

1
2
(detA+ detB)− detC

]2

− detσ.
(4.5)

In the considered particular case the logarithmic negativity is given by

E = − log2

[
2

∣∣∣∣
mωDxx

λ
− Dxpy√

λ2 + ω2

∣∣∣∣
]
. (4.6)

This expression depends only on the diffusion and dissipation coefficients
characterizing the environment and does not depend on the initial Gaussian
state.10 One can easily see that the double inequality (4.5), assuring the
existence of entangled states (S < 0) is equivalent with the condition of
the positivity of logarithmic negativity, E > 0. For E > 0, quantity E

(4.6) simply gives a measure of the degree of entanglement contained in the
particular asymptotic inseparable state determined by inequalities (4.5).

5. Summary

We have given a brief review of the theory of open quantum systems based
on completely positive quantum dynamical semigroups and mentioned the
necessity of the complete positivity for the existence of entangled states of
systems interacting with an external environment. In the framework of this
theory we investigated the existence of the asymptotic quantum entangle-
ment for a subsystem composed of two uncoupled identical harmonic oscil-
lators interacting with a common environment. By using the Peres-Simon
necessary and sufficient criterion for separability of two-mode Gaussian
states, we have shown that for certain classes of environments the initial
state evolves asymptotically to an equilibrium state which is entangled, i.e.,
there exist non-local quantum correlations for the bipartite states of the two
harmonic oscillator subsystem, while for other values of the coefficients de-
scribing the environment, the asymptotic state is separable. We determined
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also the logarithmic negativity characterizing the degree of entanglement
of the asymptotic state.

Due to the increased interest manifested towards the continuous vari-
ables approach3 to quantum information theory, these results, in particu-
lar the possibility of maintaining a bipartite entanglement in a diffusive-
dissipative environment for asymptotic long times, might be useful for appli-
cations in the field of quantum information processing and communication.
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REPEATED INTERACTIONS QUANTUM SYSTEMS:
DETERMINISTIC AND RANDOM
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This paper gives an overview of recent results concerning the long time dy-
namics of repeated interaction quantum systems in a deterministic and ran-
dom framework. We describe the non equilibrium steady states (NESS) such
systems display and we present, as a macroscopic consequence, a second law
of thermodynamics these NESS give rise to. We also explain in some details
the analysis of products of certain random matrices underlying this dynamical
problem.

Keywords: Non equilibrium quantum statistical mechanics, Repeated interac-
tion quantum systems, Products of random matrices

1. Introduction and Model

A repeated interaction quantum system consists of a reference quantum
subsystem S which interacts successively with the elements Em of a chain
C = E1+E2+· · · of independent quantum systems. At each moment in time,
S interacts precisely with one Em (m increases as time does), while the other
elements in the chain evolve freely according to their intrinsic dynamics.
The complete evolution is described by the intrinsic dynamics of S and of
all the Em, plus an interaction between S and Em, for each m. The latter is
characterized by an interaction time τm > 0, and an interaction operator Vm
(acting on S and Em); during the time interval [τ1+· · ·+τm−1, τ1+· · ·+τm),
S is coupled to Em only via Vm. Systems with this structure are important
from a physical point of view, since they arise naturally as models for funda-
mental experiments on the interaction of matter with quantized radiation.
As an example, the “One atom maser” provides an experimental setup in
which the system S represents a mode of the electromagnetic field, whereas
the elements Ek describe atoms injected in the cavity, one by one, which



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

170 A. Joye

interact with the field during their flight in the cavity. After they leave the
cavity, the atoms encode some properties of the field which can be mea-
sured on these atoms.14,16 For repeated interaction systems considered as
ideal, i.e., such that all atoms are identical with identical interactions and
times of flight through the cavity, corresponding mathematical analyses are
provided in Refs. 7,17. To take into account the unavoidable fluctuations
in the experiment setup used to study these repeated interaction systems,
modelizations incorporating randomness have been proposed and studied
in Refs. 8,9. With a different perspective, repeated quantum interaction
models also appear naturally in the mathematical study of modelization of
open quantum systems by means of quantum noises, see Ref. 4 and refer-
ences therein. Any (continuous) master equation governing the dynamics
of states on a system S can be viewed as the projection of a unitary evo-
lution driving the system S and a field of quantum noises in interaction. It
is shown in Ref. 4 how to recover such continuous models as some delicate
limit of a discretization given by a repeated quantum interaction model.
Let us finally mention Ref. 15 for results of a similar flavour in a somewhat
different framework.

Our goal is to present the results of the papers Refs. 7,8 and Ref.9 on
(random) repeated interaction quantum systems, which focus on the long
time behaviour of these systems.

Let us describe the mathematical framework used to describe these
quantum dynamical systems. According to the fundamental principles of
quantum mechanics, states of the systems S and Em are given by normal-
ized vectors (or density matrices) on Hilbert spaces HS and HEm , respec-
tively,3,6a. We assume that dimHS < ∞, while dimHEm may be infinite.
Observables AS and AEm of the systems S and Em are bounded opera-
tors forming von Neumann algebras MS ⊂ B(HS) and MEm ⊂ B(HEm).
They evolve according to the Heisenberg dynamics R 3 t 7→ αtS(AS) and
R 3 t 7→ αtEm

(AEm), where αtS and αtEm
are ∗-automorphism groups of MS

and MEm , respectively, see e.g., Ref. 6. We now introduce distinguished ref-
erence states, given by vectors ψS ∈ HS and ψEm ∈ HEm . Typical choices
for ψS , ψEm

are equilibrium (KMS) states for the dynamics αtS , αtEm
, at in-

verse temperatures βS , βEm . The Hilbert space of states of the total system

aA normalized vector ψ defines a “pure” state A 7→ 〈ψ,Aψ〉 = Tr(%ψA), where %ψ =
|ψ〉〈ψ|. A general “mixed” state is given by a density matrix % =

P
n≥1 pn%ψn , where

the probabilities pn ≥ 0 sum up to one, and where the ψn are normalized vectors.



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

Repeated interactions quantum system 171

is the tensor product

H = HS ⊗HC ,
where HC =

⊗
m≥1HEm , and where the infinite product is taken with

respect to ψC =
⊗

m≥1 ψEm
. The non-interacting dynamics is the prod-

uct of the individual dynamics, defined on the algebra MS
⊗

m≥1 MEm

by αtS
⊗

m≥1 α
t
Em

. It will prove useful to consider the dynamics in the
Schrödinger picture, i.e. as acting on vectors in H. To do this, we first
implement the dynamics via unitaries, satisfying

αt#(A#) = eitL#A#e−itL# , t ∈ R, and L#ψ# = 0, (1.1)

for any A# ∈ M#, where # stands for either S or Em. The self-adjoint
operators LS and LEm

, called Liouville operators or “positive temperature
Hamiltonians”, act onHS andHEm , respectively. The existence and unique-
ness of L# satisfying (1.1) is well known, under general assumptions on the
reference states ψ#.6 We require these states to be cyclic and separating.
In particular, (1.1) holds if the reference states are equilibrium states. Let
τm > 0 and Vm ∈ MS ⊗MEm be the interaction time and interaction oper-
ator associated to S and Em. We define the (discrete) repeated interaction
Schrödinger dynamics of a state vector φ ∈ H, for m ≥ 0, by

U(m)φ = e−ieLm · · · e−ieL2e−ieL1φ, (1.2)

where

L̃k = τkLk + τk
∑

n6=k
LEn (1.3)

describes the dynamics of the system during the time interval [τ1 + · · · +
τk−1, τ1 + · · · + τk), which corresponds to the time-step k of our discrete
process. Hence Lk is

Lk = LS + LEk
+ Vk, (1.4)

acting on HS ⊗ HEk
. We understand that the operator LEn in (1.3) acts

nontrivially only on the n-th factor of the Hilbert space HC of the chain.
As a general rule, we will ignore tensor products with the identity operator
in the notation.

A state %(·) = Tr(ρ · ) given by density matrix ρ on H is called a normal
state. Our goal is to understand the large-time asymptotics (m → ∞) of
expectations

% (U(m)∗OU(m)) = %(αm(O)), (1.5)
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for normal states % and certain classes of observables O that we specify
below. We denote the (random) repeated interaction dynamics by

αm(O) = U(m)∗OU(m). (1.6)

1.1. Van Hove Limit Type Results

A first step towards understanding the dynamics of repeated interaction
quantum systems reduced to the reference system S was performed in the
work Ref. 2. This paper considers Ideal Repeated Quantum Interaction Sys-
tems which are characterized by identical elements Ek ≡ E in the chain
C, constant interaction times τk ≡ τ and identical interaction operators
Vk ≡ V ∈ MS ⊗ ME between S and the elements E of the chain. In
this setup, a Van Hove type analysis of the system is presented, in sev-
eral regimes, to describe the dynamics of observables on S in terms of a
Markovian evolution equation of Lindblad type. Informally, the simplest
result of Ref. 2 reads as follows. Assume the interaction operator V is re-
placed by λV , where λ > 0 is a coupling constant, and let m, the number of
interactions during the time T = mτ , scale like m ' t/λ2, where 0 ≤ t <∞
and τ are fixed. Assume all elements of the chain are in a same thermal state
at temperature β. Then, the weak coupling limit λ → 0 of the evolution
of any observable O acting on S obtained by tracing out the chain degrees
of freedom from the evolution (1.6) satisfies, after removing a trivial free
evolution, a continuous Lindblad type evolution equation in t. The tem-
perature dependent generator is explicitely obtained from the interaction
operator V and the free dynamics. The asymptotic regimes of the parame-
ters (λ, τ) characterized by τ → 0 and τλ2 ≤ 1 are also covered in Ref. 2,
giving rise to different Lindblad generators which all commute with the free
Hamiltonian on S. The critical situation, where τ → 0 with τλ2 = 1 yields
a quite general Lindblad generator, without any specific symmetry. In par-
ticular, it shows that any master equation driven by Lindblad operator,
under reasonable assumptions, can be viewed as a Van Hove type limit of
a certain explicit repeated interaction quantum system.

By contrast, the long time limit results obtained in Refs. 7–9 that we
present here are obtained without rescaling any coupling constant or param-
eter, as is usually the case with master equation techniques. It is possible to
do without these approximations, making use of the structure of repeated
interaction systems only, as we now show.
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2. Reduction to Products of Matrices

We first link the study of the dynamics to that of a product of reduced dy-
namics operators. In order to make the argument clearer, we only consider
the expectation of an observable AS ∈ MS , and we take the initial state of
the entire system to be given by the vector

ψ0 = ψS ⊗ ψC , (2.1)

where the ψS and ψC are the reference states introduced above. We’ll com-
ment on the general case below. The expectation of AS at the time-step m
is

〈ψ0, α
m(AS)ψ0〉 =

〈
ψ0, P eieL1 · · · eieLmAS e−ieLm · · · e−ieL1Pψ0

〉
, (2.2)

where we introduced

P = 1lHS
⊗

m≥1

PψEm
, (2.3)

the orthogonal projection onto HS ⊗ CψC . A first important ingredient in
our analysis is the use of C-Liouvilleans introduced in Ref. 11 , which are
operators Kk defined by the properties

eieLkAe−ieLk = eiKkAe−iKk , (2.4)

Kk ψS ⊗ ψC = 0, (2.5)

where A in (2.4) is any observable of the total system. The identity (2.4)
means that the operators Kk implement the same dynamics as the L̃k
whereas relation (2.5) selects a unique generator of the dynamics among
all operators which satisfy (2.4). The existence of operators Kk satisfying
(2.4) and (2.5) is rooted to the Tomita-Takesaki theory of von Neumann
algebras, c.f. Ref. 11 and references therein. It turns out that the Kk are
non-normal operators on H, while the L̃k are self-adjoint. Combining (2.4)
with (2.2) we can write

〈ψ0, α
m(AS)ψ0〉 =

〈
ψ0, P eiK1 · · · eiKmPAS ψ0

〉
. (2.6)

A second important ingredient of our approach is to realize that the inde-
pendence of the sub-systems Em implies the relation

P eiK1 · · · eiKmP = P eiK1P · · ·P eiKmP. (2.7)

Identifying P eiKkP with an operator Mk on HS , we thus obtain from (2.6)
and (2.7),

〈ψ0, α
m(AS)ψ0〉 = 〈ψS ,M1 · · ·MmAS ψS〉 . (2.8)
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It follows from (2.5) that MkψS = ψS , for all k, and, because the operators
Mk = P eiKkP implement a unitary dynamics, we show (Lemma 4.1) that
the Mk are always contractions for some suitable norm ||| · ||| on Cd. This
motivates the following definition.

Definition 2.1. Given a vector ψS ∈ Cd and a norm on ||| · ||| on Cd, we
call Reduced Dynamics Operator any matrix which is a contraction for ||| · |||
and leaves ψS invariant.

Remark 2.1. In case all couplings between S and Ek are absent, Vk ≡ 0,
Mk = eiτkLS is unitary and admits 1 as a degenerate eigenvalue.

We will come back on the properties of reduced dynamics operators
(RDO’s, for short) below. Let us emphasize here that the reduction process
to product of RDO’s is free from any approximation, so that the set of
matrices {Mk = P eiKkP}k∈N encodes the complete dynamics. In particu-
lar, we show, using the cyclicity and separability of the reference vectors
ψS , ψEk

, that the evolution of any normal state, not only 〈ψ0, · ψ0〉, can be
understood completely in terms of the product of these RDO’s.

We are now in a position to state our main results concerning the asymp-
totic dynamics of normal states % acting on certain observables O. These
result involve a spectral hypothesis which we introduce in the next defini-
tion.

Definition 2.2. Let M(E) denote the set of reduced dynamics operators
whose spectrum σ(M) satisfies σ(M) ∩ {z ∈ C | |z| = 1} = {1} and 1 is
simple eigenvalue.

We shall denote by P1,M the spectral projector of a matrix M corre-
sponding to the eigenvalue 1. As usual, if the eigenvalue 1 is simple, with
corresponding normalized eigenvector ψS , we shall write P1,M = |ψS〉〈ψ|
for some ψ s.t. 〈ψ|ψS〉 = 1.

3. Results

3.1. Ideal Repeated Interaction Quantum System

We consider first the case of Ideal Repeated Interaction Quantum Systems,
characterized by

Ek = E , LEk
= LE , Vk = V, τk = τ for all k ≥ 1,

Mk = M, for all k ≥ 1.
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Theorem 3.1. Let αn be the repeated interaction dynamics determined by
one RDO M . Suppose that M ∈ M(E) so that P1,M = |ψS〉〈ψ|. Then, for
any 0 < γ < infz∈σ(M)\{1}(1−|z|), any normal state %, and any AS ∈ MS ,

% (αn(AS)) = 〈ψ,ASψS〉+O(e−γn). (3.1)

Remark 3.1. 1. The asymptotic state 〈ψ| ·ψS〉 and the exponential decay
rate γ are both determined by the spectral properties of the RDO M .

2. On concrete examples, the verification of the spectral assumption on
M can be done by rigorous perturbation theory, see Ref. 7. It is reminiscent
of a Fermi Golden Rule type condition on the efficiency of the coupling V ,
see the remark following the definiton of RDO’s.

3. Other properties of ideal repeated interaction quantum systems are
discussed in Ref. 7 , e.g. continuous time evolution and correlations.

For deterministic systems which are not ideal, the quantity % (αn(AS))
keeps fluctuating as n increases, which, in general, forbids convergence, see
Proposition 5.3. That’s why we resort to ergodic limits in a random setup,
as we now explain.

3.2. Random Repeated Interaction Quantum System

To allow a description of the effects of fluctuations on the dynamics of
repeated interaction quantum systems, we consider the following setup.

Let ω 7→M(ω) be a random matrix valued variable on Cd defined on a
probability space (Ω,F ,p). We say thatM(ω) is a random reduced dynamics
operator (RRDO) if

(i) There exists a norm ||| · ||| on Cd such that, for all ω, M(ω) is a con-
traction on Cd for the norm ||| · |||.

(ii) There exists a vector ψS , constant in ω, such that M(ω)ψS = ψS , for
all ω.

To an RRDO ω 7→ M(ω) on Ω is naturally associated a iid random
reduced dynamics process (RRDP)

ω 7→M(ω1) · · ·M(ωn), ω ∈ ΩN
∗
, (3.2)

where we define in a standard fashion a probability measure dP on ΩN
∗

by

dP = Pij≥1dpj , where dpj ≡ dp, for all j ∈ N∗.
We shall write the expectation of any random variable f as E[f ].
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Let us denote by αnω, ω ∈ ΩN
∗
, the process obtained from (1.6), (2.8),

where the Mj = M(ωj) in (2.8) are iid random matrices. We call αnω the
random repeated interaction dynamics determined by the RRDO M(ω) =
P eiK(ω)P . It is the independence of the successive elements Ek of the chain
C which motivates the assumption that the process (3.2) be iid.

Theorem 3.2. Let αnω be the random repeated interaction dynamics deter-
mined by an RRDO M(ω). Suppose that p(M(ω) ∈M(E)) > 0. Then there
exists a set Ω ⊂ ΩN

∗
, s.t. P(Ω) = 1, and s.t. for any ω ∈ Ω, any normal

state % and any AS ∈ MS ,

lim
N→∞

1
N

N∑
n=1

% (αnω(AS)) = 〈θ,ASψS〉 , (3.3)

where θ = P ∗1,E[M ]ψS .

Remark 3.2. 1. Our setup allows us to treat systems having various
sources of randomness. For example, random interactions or times of in-
teractions, as well as random characteristics of the systems Em and S such
as random temperatures and dimensions of the Em and of S.

2. The asymptotic state 〈θ, · ψS〉 is again determined by the spectral
data of a matrix, the expectation E[M ] of the RRDO M(ω). Actually, our
hypotheses imply that E[M ] belongs to M(E), see below.

3. The explicit computation of the asymptotic state, in this Theorem
and in the previous one, is in general difficult. Nevertheless, they can be
reached by rigorous perturbation theory, see the examples in Refs. 7–9.

3.3. Instantaneous Observables

There are important physical observables that describe exchange processes
between S and the chain C and, which, therefore, are not represented by
operators that act just on S. To take into account such phenomena, we
consider the set of observables defined as follows.

Definition 3.1. The instantaneous observables of S + C are of the form

O = AS ⊗rj=−l B(j)
m , (3.4)

where AS ∈ MS and B(j)
m ∈ MEm+j .

Instantaneous observables can be viewed as a train of l + r + 1 observ-
ables, roughly centered at Em, which travel along the chain C with time.
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Following the same steps as in Section 2, we arrive at the following
expression for the evolution of the state ψ0 acting on an instantaneous
observable O at time m:

〈ψ0, α
m(O)ψ0〉 = 〈ψ0, PM1 · · ·Mm−l−1Nm(O)Pψ0〉 . (3.5)

Here again, P is the orthogonal projection onto HS , along ψC . The operator
Nm(O) acts on HS and has the expression (Proposition 2.4 in Ref. 9)

Nm(O)ψ0 =

P eiτm−l
eLm−l · · · eiτm

eLm(AS ⊗rj=−l B(j)
m )e−iτm

eLm · · · e−iτm−l
eLm−lψ0.

(3.6)

We want to analyze the asymptotics m → ∞ of (3.5), allowing for ran-
domness in the system. We make the following assumptions on the random
instantaneous observable:

(R1) The operators Mk are RRDO’s, and we write the corresponding iid
random matrices Mk = M(ωk), k = 1, 2, · · · , .

(R2) The random operator Nm(O) is independent of the Mk with 1 ≤ k ≤
m− l−1, and it has the form N(ωm−l, . . . , ωm+r), where N : Ωr+l+1 →
B(Cd) is an operator valued random variable.

The operator Mk describes the effect of the random k-th interaction on
S, as before. The random variable N in (R2) does not depend on the time
step m, which is a condition on the observables. It means that the nature
of the quantities measured at time m are the same. For instance, the B(j)

m

in (3.4) can represent the energy of Em+j , or the part of the interaction
energy Vm+j belonging to Em+j , etc. Both assumptions are verified in a
wide variety of physical systems: we may take random interaction times
τk = τ(ωk), random coupling operators Vk = V (ωk), random energy levels
of the Ek encoded in LEk

= LE(ωk), random temperatures βEk
= βE(ωk) of

the initial states of Ek, and so on.
The expectation value in any normal state of such instantaneous ob-

servables reaches an asymptotic value in the ergodic limit given in the next

Theorem 3.3. Suppose that p(M(ω) ∈ M(E)) 6= 0. There exists a set
Ω̃ ⊂ ΩN

∗
of probability one s.t. for any ω ∈ Ω̃, for any instantaneous

observable O, (3.4), and for any normal initial state %, we have

lim
µ→∞

1
µ

µ∑
m=1

%
(
αmω (O)

)
= 〈θ,E[N ]ψS〉 , E[N ] ∈ MS . (3.7)
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Remark 3.3. 1. The asymptotic state in which one computes the expec-
tation (w.r.t the randomness) of N is the same as in Theorem 3.2, with
θ = P ∗1,E[M ]ψS .

2. In case the system is deterministic and ideal, the same result holds,
dropping the expectation on the randomness and taking θ = ψ, as in The-
orem 3.1, see Ref. 7.

3.4. Energy and Entropy Fluxes

Let us consider some macroscopic properties of the asymptotic state. The
systems we consider may contain randomness, but we drop the variable ω
from the notation.

Since we deal with open systems, we cannot speak about its total en-
ergy; however, variations in total energy are often well defined. Using an
argument of Ref. 7 one gets a formal expression for the total energy which is
constant during all time-intervals [τm−1, τm), and which undergoes a jump

j(m) := αm(Vm+1 − Vm) (3.8)

at time stepm. Hence, the variation of the total energy between the instants
0 andm is then ∆E(m) =

∑m
k=1 j(k). The relative entropy of % with respect

to %0, two normal states on M, is denoted by Ent(%|%0). Our definition of
relative entropy differs from that given in Ref. 6 by a sign, so that in our
case, Ent(%|%0) ≥ 0. For a thermodynamic interpretation of entropy and
its relation to energy, we assume for the next result that ψS is a (βS , αtS)–
KMS state on MS , and that the ψEm are (βEm , α

t
Em

)–KMS state on MEm ,
where βS is the inverse temperature of S, and βEm are random inverse
temperatures of the Em. Let %0 be the state on M determined by the vector
ψ0 = ψS ⊗ ψC = ψS

⊗
m ψEm . The change of relative entropy is denoted

∆S(m) := Ent(% ◦ αm|%0) − Ent(%|%0). This quantity can be expressed in
terms of the Liouvillean and interaction operators by means of a formula
proved in Ref. 12.

One checks that both the energy variation and the entropy variations
can be expressed as instantaneous observables, to which we can apply the
results of the previous Section. Defining the asymptotic energy and entropy
productions by the limits, if they exist,

lim
m→∞

%

(
∆E(m
m

)
=: dE+ and lim

m→∞
∆S(m)
m

=: dS+,

we obtain
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Theorem 3.4 (2nd law of thermodynamics). Let % be a normal state
on M. Then

dE+ =
〈
θ,E

[
P (LS + V − eiτL(LS + V )e−iτL)P

]
ψS

〉
a.s.

dS+ =
〈
θ,E

[
βE P (LS + V − eiτL(LS + V )e−iτL)P

]
ψS

〉
a.s.

The energy- and entropy productions dE+ and dS+ are independent of the
initial state %. If βE is deterministic, i.e., ω-independent, then the system
satisfies the second law of thermodynamics: dS+ = βEdE+.

Remark: There are explicit examples in which the entropy production can
be obtained via rigorous perturbation theory and is proven to be strictly
positive, a sure sign that the asymptotic state is a NESS, see Ref. 7 .

As motivated by (2.8), the theorems presented in this Sections all rely
on the analysis of products of large numbers of (random) RDO’s. The rest
of this note is devoted to a presentation of some of the key features such
products have.

4. Basic Properties of RDO’s

Let us start with a result proved in Ref. 7 as Proposition 2.1.

Lemma 4.1. Under our general assumptions, the set of matrices {Mj}j∈N∗
defined in (2.8) satisfy MjψS = ψS , for all j ∈ N∗. Moreover, to any
φ ∈ HS there corresponds a unique A ∈ MS such that φ = AψS . |||φ||| :=
‖A‖B(HS) defines a norm on HS , and as operators on HS endowed with
this norm, the Mj are contractions for any j ∈ N∗.

Again, the fact that ψS is invariant under Mj is a consequence of (2.5) and
their being contractions comes from the unitarity of the quantum evolution
together with the finite dimension of HS .

As a consequence of the equivalence of the norms ‖ · ‖ and ||| · |||, we get

Corollary 4.1. We have 1 ∈ σ(Mj) ⊂ {z | |z| = 1} and

sup {‖MjnMjn−1 · · ·Mj1‖, n ∈ N∗, jk ∈ N∗} = C0 <∞

Actually, if a set of operators satisfies the bound of the Corollary, it
is always possible to construct a norm on Cd relative to which they are
contractions, as proven in the next
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Lemma 4.2. Let R = {Mj ∈ Md(C)}j∈J , where J is any set of indices
and C(R) ≥ 1 such that

‖Mj1Mj2 · · ·Mjn‖ ≤ C(R), forall {ji}i=1,··· ,n ∈ Jn, for all n ∈ N.
(4.1)

Then, there exists a norm ||| · ||| on Cd, which depends on R, relative to
which the elements of R are contractions.

Proof. Let us define T ⊂Md(C) by

T = ∪n∈N ∪(j1,j2,···jn)∈Jn Mj1Mj2 · · ·Mjn . (4.2)

Obviously R ⊂ T , but the identity matrix I does not necessarily belong to
T . Moreover, the estimate (4.1) still holds if the Mji ’s belong to T instead
of R. For any ϕ ∈ Cd we set

|||ϕ||| = sup
M∈T∪I

‖Mϕ‖ ≥ ‖ϕ‖, (4.3)

which defines a bona fide norm. Then, for any vector ϕ and any element N
of T we compute

|||Nϕ||| = sup
M∈T∪I

‖MNϕ‖ ≤ sup
M∈T∪I

‖Mϕ‖ = |||ϕ|||, (4.4)

from which the result follows.

Remark 4.1. If there exists a vector ψS invariant under all elements of R,
it is invariant under all elements of T and satisfies ‖ψS‖ = |||ψS ||| = 1.

5. Deterministic Results

In this section, we derive some algebraic formulae and some uniform bounds
for later purposes. Since there is no probabilistic issue involved here, we shall
therefore simply denote Mj = M(ωj). We are concerned with the product

Ψn := M1 · · ·Mn. (5.1)

5.1. Decomposition of the Mj

With P1,Mj the spectral projection of Mj for the eigenvalue 1 we define

ψj := P ∗1,jψS , Pj := |ψS〉〈ψj |. (5.2)

Note that 〈ψj |ψS〉 = 1 so that Pj is a projection and, moreover,M∗
j ψj = ψj .

We introduce the following decomposition of Mj

Mj := Pj +QjMjQj , with Qj = 1l− Pj . (5.3)
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We denote the part of Mj in QjCd, by MQj := QjMjQj . It easily follows
from these definitions that

PjPk = Pk, QjQk = Qj , (5.4)

QjPk = 0, PkQj = Pk − Pj = Qj −Qk. (5.5)

Remark 5.1. If 1 is a simple eigenvalue, P1,Mj = Pj and (5.3) is a (partial)
spectral decomposition of Mj .

Proposition 5.1. For any n,

Ψn = |ψS〉〈θn|+MQ1 · · ·MQn
, (5.6)

where

θn = ψn +M∗
Qn
ψn−1 + · · ·+M∗

Qn
· · ·M∗

Q2
ψ1 (5.7)

= M∗
n · · ·M∗

2ψ1 (5.8)

and where 〈ψS , θn〉 = 1.

Proof. Inserting the decomposition (5.3) into (5.1), and using (5.4), (5.5),
we have

Ψn =
n∑

j=1

PjMQj+1 · · ·MQn +MQ1 · · ·

Since Pj = |ψS〉〈ψj |, this proves (5.6) and (5.7). From (5.5), we obtain for
any j, k,

MQjMQk
= MQjMk = QjMjMk. (5.9)

Hence, Ψn = P1M1 · · ·Mn + Q1M1 · · ·Mn = |ψS〉〈M∗
n · · ·M∗

2ψ1| +
MQ1 · · ·MQn , which proves (5.8).

5.2. Uniform Bounds

The operators Mj , and hence the product Ψn, are contractions on Cd for
the norm ||| · |||. In order to study their asymptotic behaviour, we need some
uniform bounds on the Pj , Qj , . . . Recall that ‖ψS‖ = 1.

Proposition 5.2. Let C0 be as in Corollary 4.1. Then, the following
bounds hold

(1) For any n ∈ N∗, ‖Ψn‖ ≤ C0.
(2) For any j ∈ N∗, ‖Pj‖ = ‖ψj‖ ≤ C0 and ‖Qj‖ ≤ 1 + C0.
(3) sup {‖MQjn

MQjn−1
· · ·MQj1

‖, n ∈ N∗, jk ∈ N∗} ≤ C0(1 + C0).
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(4) For any n ∈ N∗, ‖θn‖ ≤ C2
0 .

Proof. It is based on von Neumann’s ergodic Theorem, which states that

P1,Mj
= lim
N→∞

1
N

N−1∑

k=0

Mk
j .

The first two estimate easily follow, whereas the third makes use of (5.9)
to get MQjn

MQjn−1
· · ·MQj1

= QjnMjnMjn−1 · · ·Mj1 , so that

‖MQjn
MQjn−1

· · ·MQj1
‖ ≤ ‖Qjn‖C0 ≤ C0(1 + C0).

Finally, (5.8) and the above estimates yield ‖θn‖ ≤ C0‖ψ1‖ ≤ C2
0 .

5.3. Asymptotic Behaviour

We now turn to the study of the asymptotic behaviour of Ψn, starting with
the simpler case of Ideal Repeated Interaction Quantum Systems.

That means we assume

Mk = M, for all k ≥ 1.

If 1 is a simple eigenvalue of M , then P1,M = |ψS〉〈ψ|, for some ψ s.t.
〈ψ|ψS〉 = 1, and

Ψn = Mn = |ψS〉〈ψ|+Mn
Q

Further, if all other eigenvalues of M belong to the open unit disk, Mn
Q

converges exponentially fast to zero as n→∞.
Consequently, denoting by spr(N) the spectral radius of N ∈Md(C),

Lemma 5.1. If the RDO M belongs to M(E),

Ψn = |ψS〉〈ψ|+O(e−γn),

for all 0 < γ < 1− spr(MQ).

Two things are used above, the decay of Mn
Q and the fact that θn = ψ is

constant, see (5.6). The following result shows that in general, if one knows
a priori that the products of MQj ’s in (5.6) goes to zero, Ψn converges if
and only if Pn = |ψS〉〈ψn|, does.

Proposition 5.3. Suppose that limn→∞ sup{‖MQjn
· · ·MQj1

‖, jk ∈
N∗} = 0. Then θn converges if and only if ψn does. If they exist, these
two limits coincide, and thus

lim
n→∞

Ψn = |ψS〉〈ψ∞|,
where ψ∞ = limn→∞ ψn. Moreover, |ψS〉〈ψ∞| is a projection.
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In general, we cannot expect pointwise convergence of the θn, but we
can consider an ergodic average of θn instead. This is natural in terms of
dynamical systems, a fluctuating system does not converge.

The previous convergence results relies on the decay of the product
of operators MQj . Conditions ensuring this are rather strong. However,
Theorem 6.1 below shows that in the random setting, a similar exponential
decay holds under rather weaker assumptions.

6. Random Framework

6.1. Product of Random Matrices

We now turn to the random setup in the framework of Section 3.2. For
M(ω) an RRDO, with probability space (Ω,F , p), we consider the RRDP
on ΩN

∗
given by

Ψn(ω) := M(ω1) · · ·M(ωn), ω ∈ ΩN
∗
.

We show that Ψn has a decomposition into an exponentially decaying
part and a fluctuating part. Let P1(ω) denote the spectral projection of
M(ω) corresponding to the eigenvalue one (dimP1(ω) ≥ 1), and let P ∗1 (ω)
be its adjoint operator. Define

ψ(ω) := P1(ω)∗ψS , (6.1)

and set

P (ω) = |ψS〉〈ψ(ω)|, Q(ω) = 1l− P (ω).

The vector ψ(ω) is normalized as 〈ψS , ψ(ω)〉 = 1. We decompose M(ω) as

M(ω) = P (ω) +Q(ω)M(ω)Q(ω) =: P (ω) +MQ(ω). (6.2)

Taking into account this decomposition, we obtain (c.f. Proposition 5.1)

Ψn(ω) := M(ω1) · · ·M(ωn) = |ψS〉〈θn(ω)|+MQ(ω1) · · ·MQ(ωn), (6.3)

where θn(ω) is the Markov process

θn(ω) = M∗(ωn) · · ·M∗(ω2)ψ(ω1) (6.4)

= ψ(ωn) +M∗
Q(ωn)ψ(ωn−1) + · · ·+M∗

Q(ωn) · · ·M∗
Q(ω2)ψ(ω1),

a M∗(ωj) being the adjoint operator of M(ωj). We analyze the two parts
in the r.h.s. of (6.3) separately.
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Theorem 6.1 (Decaying process). Let M(ω) be a random reduced dy-
namics operator. Suppose that p(M(ω) ∈M(E)) > 0. Then there exist a set
Ω1 ⊂ ΩN

∗
and constants C,α > 0 s.t. P(Ω1) = 1 and s.t. for any ω ∈ Ω1,

there exists a random variable n0(ω) s.t. for any n ≥ n0(ω),

‖MQ(ω1) · · ·MQ(ωn)‖ ≤ Ce−αn, (6.5)

and E[eαn0 ] <∞. Moreover, E[M ] ∈M(E).

Remark 6.1. 1. The sole condition of M having an arbitrarily small, non-
vanishing probability to be in M(E) suffices to guarantee the exponential
decay of the product in (6.5) and that E[M ] belongs to M(E).

2. Actually, E[M ] ∈ M(E) is a consequence of spr(E[MQ]) < 1, which
comes as a by product of the proof of Theorem 6.1. From the identities

E[M ] = |ψS〉〈E[ψ]|+ E[MQ], 〈E[ψ]|ψS〉 = 1, E[MQ]ψS = 0, (6.6)

which do not correspond to a (partial) spectral decomposition of E[M ],
and this estimate, we get

E[M ]n = |ψS〉〈 E[ψ] + E[MQ]∗E[ψ] + · · ·+ E[MQ]∗n−1E[ψ] |+ E[MQ]∗n

n→∞−→ |ψS〉〈(I− E[MQ]∗)−1E[ψ]| ≡ P1,E[M ].
(6.7)

3. Our choice (6.1) makes ψ(ω) an eigenvector of M∗(ω). Other choices
of (measurable) ψ(ω) which are bounded in ω lead to different decompo-
sitions of M(ω), and can be useful as well. In particular, if M(ω) is a bis-
tochastic matrix, ψ(ω) can be chosen as an M∗(ω)-invariant vector which
is independent of ω.

6.2. A Law of Large Numbers

We now turn to the asymptotics of the Markov process (6.5).

Theorem 6.2 (Fluctuating process). Let M(ω) be a random reduced
dynamics operator s.t. that p(M(ω) ∈ M(E)) > 0. There exists a set Ω2 ⊂
ΩN

∗
s.t. P(Ω2) = 1 and, for all ω ∈ Ω2,

lim
N→∞

1
N

N∑
n=1

θn(ω) = θ, (6.8)

where

θ = lim
n→∞

E[θn] = P ∗1,E[M ]E[ψ] = P ∗1,E[M ]ψS . (6.9)
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Remark 6.2. 1. The ergodic average limit of θn(ω) does not depend on
the particular choice of ψ(ω). This follows from the last equality in (6.9).

2. The second equality in (6.9) stems from

E[θn] =
n−1∑

k=0

(E[MQ])kE[ψ],

by independence, and which converges to P ∗1,E[M ]E[ψ] by (6.7). The third
equality follows from (6.6).

3. Comments on the proof of these Theorems are provided below.

Combining Theorems 6.1 and 6.2 we immediately get the following
result.

Theorem 6.3 (Ergodic theorem for RRDP). Let M(ω) be a random
reduced dynamics operator. Suppose p(M(ω) ∈ M(E)) > 0. Then there
exists a set Ω3 ⊂ ΩN

∗
s.t. P(Ω3) = 1 and, for all ω ∈ Ω3,

lim
N→∞

1
N

N∑
n=1

M(ω1) · · ·M(ωn) = |ψS〉〈θ| = P1,E[M ]. (6.10)

Remark 6.3. 1. If one can choose ψ(ω) ≡ ψ to be independent of ω, then
we have by (5.8) that θn(ω) = ψ, for all n, ω. Thus, from (6.3)-(6.5), we get
the stronger result limn→∞M(ω1) · · ·M(ωn) = |ψS〉〈ψ|, a.s., exponentially
fast.

2. This result can be viewed as a strong law of large numbers for the
matrix valued process Ψn(ω) = M(ω1) · · ·M(ωn).

Comments. The existence of (ergodic) limits of products of random oper-
ators is known for a long time and under very general conditions, see e.g.,
Refs. 5,13 . However, the explicit value of the limit depends on the detailed
properties of the set of random matrices considered. The point of our anal-
ysis is thus the explicit determination of the limit (6.10) which is crucial for
the applications to the dynamics of random repeated interaction quantum
systems.

The more difficult part of this task is to prove Theorem 6.1. The idea
consists in identifying matrices in the product Ψn(ω) which are equal (or
close) to a fixed matrixM that belongs toM(E). Consecutive products ofM
give an exponential decay, whereas products of other matrices are uniformly
bounded. Then one shows that the density of long strings of consecutive
M ’s in a typical sample is finite. Once this is done, a self-contained proof
of Theorem 6.3, is not very hard to get8 .
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On the other hand, given Theorem 6.1 and the existence result of Ref.,5

we can deduce Theorem 6.3 as follows. Let us state the result of Beck and
Schwarz in our setup. Let T denote the usual shift operator on ΩN

∗
defined

by (Tω)j = ωj+1, j = 1, 2, · · · .
Theorem 6.4 (Beck and Schwartz5). Let M(ω) be a random reduced
dynamics operator on Ω. Then there exists a matrix valued random variable
L(ω) on ΩN

∗
, s.t. E[‖L‖] <∞, which satisfies almost surely

ginequationL(ω) = M(ω1)L(Tω), (6.11)

where T is the shift operator, and

lim
N→∞

1
N

N∑
n=1

M(ω1) · · ·M(ωn) = L(ω). (6.12)

Further assuming the hypotheses of Theorem 6.1, and making use of the
decomposition (6.3), we get that L can be written as

L(ω) = |ΨS〉〈θ(ω)|,
for some random vector θ(ω). Now, due to (6.11) and the fact that ψS is
invariant, θ(ω) satisfies

θ(ω) = θ(Tω) a.s.

The shift being ergodic, we deduce that θ is constant a.s., so that

θ(ω) = E[θ] a.s.

which, in turn, thanks to Proposition 5.2 and Lebesgue dominated conver-
gence Theorem, allows to get from (6.5)

E[θ] = lim
n→∞

E[θn] = P ∗1,E[M ]ΨS .

6.3. Limit in Law and Lyapunov Exponents

We present here results for products “in reverse order” of the form Φn(ω) :=
M(ωn) · · ·M(ω1), which have the same law as Ψn(ω). They also yield infor-
mation about the Lyapunov exponent of the process. The following results
are standard, see e.g. Ref.1 . The limits

ΛΦ(ω) = lim
n→∞

(Φn(ω)∗Φn(ω))1/2n and ΛΨ(ω) = lim
n→∞

(Ψn(ω)∗Ψn(ω))1/2n

exist almost surely, the top Lyapunov exponent γ1(ω) of ΛΦ(ω) coincides
with that of ΛΨ(ω), it is constant a.s., and so is its multiplicity. It is in
general difficult to prove that the multiplicity of γ1(ω) is 1.
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Theorem 6.5. Suppose p(M(ω) ∈ M(E)) > 0. Then there exist α > 0, a
random vector

η∞(ω) = lim
n→∞

ψ(ω1) +M∗
Q(ω1)ψ(ω2) + · · ·+M∗

Q(ω1) · · ·M∗
Q(ωn−1)ψ(ωn)

and Ω4 ⊂ ΩN
∗

with P(Ω4) = 1 such that for any ω ∈ Ω4 and n ∈ N∗

ginequation
∥∥∥Φn(ω)− |ψS〉〈η∞(ω)|

∥∥∥ ≤ Cωe
−αn, for some Cω. (6.13)

As a consequence, for any ω ∈ Ω4, γ1(ω) is of multiplicity one.

Comments. While the Theorems above on the convergence of asymptotic
states give us the comfortable feeling provided by almost sure results, it is
an important aspect of the theory to understand the fluctuations around
the asymptotic state the system reaches almost surely. In our iid setup, the
law of the product Ψn(ω) of RRDO’s coincides with the law of Φn(ω) which
converges exponentially fast to |ψS〉〈η∞(ω)|. Therefore, the fluctuations are
encoded in the law of the random vector η∞(ω). It turns out it is quite
difficult, in general, to get informations about this law. There are partial
results only about certain aspects of the law of such random vectors in case
they are obtained by means of matrices belonging to some subgroups of
Gld(R) satisfying certain irreducibility conditions, see e.g. Ref. 10. However,
these results do not apply to our RRDO’s.

6.4. Generalization

A generalization of the analysis performed for observables acting on S only
described above allows to establish the following corresponding results when
instantaneous observables are considered.

The asymptotics of the dynamics (3.5), in the random case, is encoded
in the product

M(ω1) · · ·M(ωm−l−1)N(ωm−l, . . . , ωm+r),

where N : Ωr+l+1 →Md(C) is given in assumption (R2).

Theorem 6.6 (Ergodic limit of infinite operator product).
Assume M(ω) is a RRDO and (R2) is satisfied. Suppose that p(M(ω) ∈
M(E)) 6= 0. Then E[M ] ∈ M(E). Moreover, there exists a set Ω5 ⊂ ΩN

∗
of

probability one s.t. for any ω = (ωn)n∈N ∈ Ω5,

lim
ν→∞

1
ν

ν∑
n=1

M(ω1) · · ·M(ωn)N(ωn+1, . . . , ωn+l+r+1) = |ψS〉〈θ| E[N ],

where θ = P ∗1,E[M ]ψS .



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

188 A. Joye

As in the previous Section, a density argument based on the cyclicity and
separability of the reference vector ψ0 allows to obtain from Theorem 6.6 the
asymptotic state for all normal initial states % on M given as Theorem 3.3
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We consider the mathematical model of the interface of two homogeneous
waveguides. This model includes, as particular cases, most types of the acoustic,
electrodynamic and quantum waveguide interfaces. We give an accurate math-
ematical construction of the most important object in the waveguide interface
theory — the scattering operator — and discuss its most general properties.

Keywords: inhomogeneous waveguide, scattering in waveguide

1. Introduction

The problem of modes transformation in inhomogeneous waveguides has
very long history, and a long list of publications in physics and mathematics
was devoted to this problem during the last century. There exist now a lot of
approximate methods to solve these problems analytically and numerically
and, moreover, the commercial soft for such problems (see, e.g., Refs. 10,11).
Nevertheless, the well-known and widely used term “scattering matrix”
(see, e.g., Ref. 5) seems to be not yet mathematically well-defined in the
waveguide problems, and, accordingly, the mathematical properties of the
scattering operator of a waveguide (in any sense) are not well described.
Such description is, however, necessary to understand the processes in the
quantum, electrodynamic and acoustic waveguides, and, in particular, to
develop good numerical algorithms for waveguide simulation.

Here we consider a mathematical model of the stepwise waveguide and
demonstrate that the investigation of this model is, essentially, a problem of
the theory of the self-adjoint extensions of the symmetric operators in the
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Hilbert spaces. In such approach, the scattering operator appears naturally
when the resolvent of the self-adjoint extension of some symmetric operator
is calculated, and hence the scattering operator is, from the very beginning,
the operator in an appropriate Hilbert space, namely, the deficiency space of
the initial symmetric operator. This allows us to investigate the properties
of the “scattering matrix” within the operator theory.

In addition to a construction of the scattering operator, we obtain in
this way a description of some of its important properties. Some of them
seem to be rather unexpected, as, for example, the fact that this operator
may be, in general, unbounded in the Hilbert space of the sequences of
mode amplitudes with the usual inner product. It is also interesting that,
under some conditions, the scattering operator may be approximated (in
some well-defined sense) by finite-dimensional operators which are scatter-
ing operators for appropriate “finite dimensional waveguides”. This approx-
imation preserves most of important properties of such operators, such as
the flow conservation law, and can be used to numerical calculation of the
scattering matrix for various types of waveguides.

Our work is mainly devoted to the simplest of problems mentioned
above — the problem of mode transformation at the “ interface” of two
homogeneous waveguides. In this case, the field in each homogeneous part
of waveguide may be represented as the superposition of the correspond-
ing eigenwaves with coefficients depending on the longitudinal coordinate.
From this point of view, the scattering operator in this case maps the vec-
tor of in-wave amplitudes to the vector of out-wave amplitudes. For such
consideration, one must have a precise definition of what in- and out-waves
are. If, as is the case in some problems of quantum mechanics, the number
of eigenwaves in both waveguides is finite, it is not so difficult to explain
what they are, and hence what the scattering operator is: It is simply a ma-
trix of finite size. The situation becomes dramatically complicated in the
infinite dimensional case which appears in most physical problems, such as
acoustic or electrodynamic waveguides, quantum wires and so on. In such
cases, the in- and out- waves belong to the infinite dimensional space which
has not, as a rule, any natural structure of a Hilbert space. So, the scatter-
ing operator must be considered as the operator in the infinite dimensional
space of quite complicated nature.

It is not that difficult to write the formal algebraic expression for the
scattering operator in terms of the boundary conditions at the waveguide
interface, and different kinds of such expressions appear in a number of
books and papers, see, e.g., ref. 6. In the finite dimensional case, these ex-
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pressions can be used for analytic, as well as numerical, investigation of
mode transformation, although, if the dimension of the “transversal space”
is large enough, this investigation may be not that simple. To do this formal
expression valid in the infinite dimensional case, one must, however, inves-
tigate in some detail certain analytic properties of the operators entering
in this expression, and we do this for our model.

2. A Mathematical Model of the Stepwise Waveguide

2.1. An Abstract Homogeneous Waveguide

For a mathematical model of a homogeneous waveguide, let us consider an
infinite dimensional Hilbert space H and the self-adjoint negative operator
Â with compact resolvent in this space. We say that any essentially self-
adjoint operator of the form

W = IH ⊗ d2

dz2
+ Â⊗ IL2 (2.1)

in the Hilbert space H⊗L2(R) with the domain D(Â)⊗C∞0 (R) is a waveg-
uide.

For any non-real point λ ∈ C, the resolvent of the operator (2.1) is of
the form

(RW (λ)f)(z) = −1
2

∞∫

∞
dζB(λ)−1e−|z−ζ|B(λ)f(ζ), (2.2)

where B(λ) = (λ − A)1/2 and for the branch of the square root we take
Re
√
µ > 0 for any µ ∈ C such that Imµ 6= 0. It is easy to see that (2.2) is

a bounded operator in the space H ⊗ L2(R). Further, for any real −ω2 6∈
specA, there exist limit operators RW (−ω2 ± i0) defined on a dense set;
they map the domain H ⊗ C∞0 (R) into the space

(H ⊗ L2(R))⊕(
⊕

−ω2
k∈specA, ω2

k<ω
2

Vk ⊗ [e±i|z|
√
ω2−ω2

k ]

)
,

(2.3)

where Vk is the eigenspace of the operator A corresponding to the eigenvalue
−ω2

k, and in the last tensor product, [e±i|z|
√
ω2−ω2

k ] is the one-dimensional
space spanned by the function in square brackets. The last direct sum in
(2.3) represents what is usually called the in- or out-space, depending on
the sign.
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This approach to the definition of the scattering states, instead of using
the “radiation conditions”,3 rather complicated in the waveguide problems,
is known as “limiting amplitude principle”.9 The passage to the limit of
the resolvent of the stepwise waveguide and the corresponding scattering
operator at the real values of spectral parameter does not contain any
essential obstacles, so we will not consider this limit in what follows.

2.2. The Abstract Stepwise Waveguide

Let now consider two Hilbert spaces H± and two negative self-adjoint op-
erators A± with compact resolvents in these spaces. Let further consider
the Hilbert space and the dense domain in it:

L = (H+ ⊗ L2(R+))⊕ (H− ⊗ L2(R−)),
D0 = (H+ ⊗ C∞0 (R+))⊕ (H− ⊗ C∞0 (R−)).

The operator

W0 =
(
IH+ ⊗

d2

dz2
+A+ ⊗ IL2(R+)

)

⊕
(
IH− ⊗

d2

dz2
+A− ⊗ IL2(R−)

) (2.4)

is symmetric, but not self-adjoint on this domain. In what follows any self-
adjoint extension of the operator (2.4) is said to be a stepwise waveguide. We
will see that self-adjoint extensions of this operator are parameterized by
the operator we refer to as a scattering operator in the stepwise waveguide.

3. The Scattering Operator

3.1. The Self-adjoint Extensions of the Operator W0

To describe the self-adjoint extensions of the operator (2.4), we will follow
the von Neumann approach.1 We need first to describe the deficiency spaces,
i.e., the kernels of the adjoint operators W ∗

0 ± i. To do this, we need to find
all solution in the space L of the equation

W ∗
0 u = ±iu . (3.1)

It is easy to see that these solutions are of the form

u±(z) =
{
e−B+(±i)zv+ if z > 0,
eB−(±i)zv− if z < 0,

(3.2)

where B±(λ) = (λ − A±)1/2 and v± are the right and left “limit values”
of the function u(z), respectively; for details, see subsection 2.1. For the
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function u(z) to belong to L, these values must lie in the spaces H±
A which

are the augmentations of the spaces H± with respect the norms

‖v‖±A = ‖X−1
± v‖H± . (3.3)

The self-adjoint positive operators X± in (3.3) are defined as

X± = (B±(i) +B±(−i))1/2,
and hence are the operators with compact resolvent. Hence, the deficiency
spaces N± are isomorphic to the space

HA = H+
A ⊕H−

A . (3.4)

(Note that the extensions of the operators e∓B±(λ)z : H± −→ H±⊗L2(R)±
to the map H±

A −→ H± ⊗ L2(R)± are natural and these extensions give
unitary isomorphisms desired. The inverse operators are given by the maps

u 7→ HA lim
z−→±0

u(z),

where hereafter HA lim denotes a limit in HA. The fact that the deficiency
spaces do not coincide with the “transverse” space of the waveguide has a
physical interpretation: It is well-known that the field may have singularities
on the waveguide interface.

Any unitary operator V in the space HA defines a unitary operator
N+ −→ N− given by

(
e−B+(i)z ⊕ e−B−(i)z

)
v 7−→

(
e−B+(−i)z ⊕ e−B−(−i)z

)
V v . (3.5)

Hence, the set of the unitary operators in the space HA parameterizes
the set of self-adjoint extensions of the operator (2.4). We designate WV the
extension corresponding to a given unitary operator V . So, the interface of
two homogeneous waveguides can be described by such an operator.

3.2. The Self-adjoint Extensions and the Boundary

Conditions

Physicists like to describe the waveguide interface through “boundary con-
ditions”, i.e., some linear relations between the values of the function u(z)
and its first derivatives at the interface.3 We now show how such conditions
follow from the definition of the operator WV . Note, however, that not all
possible extensions can be obtained in such a way. Indeed, due to von Neu-
mann’s theory, the domain of this operator consists of elements of the form
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u0 ⊕ ũ⊕ V ũ, where u0 ∈ D0 and ũ ∈ N+. It follows from this relation that

H±
A lim
z→±0

u(z) = (I + V ) ṽ,

H±
A lim
z→±0

u′(z) = − (B(i) +B(−i)V )Jṽ,
(3.6)

where ṽ =
(
v+
v−

)
∈ HA = H+

A ⊕H−
A is the vector of “limit values” of the

function ũ and where the operators B(±i) in the space HA are defined as
B(±i) = B+(±i)⊕B−(±i). Hence, if both the operators in the right hand
side of the equations (3.6) are invertible, we obtain the relation

Q0u(0) +Q1u
′(0) = 0, (3.7)

where the operators Q0, Q1 in the space HA are defined in terms of the
operator V as follows:

Q0 = (I + V )−1
,

Q1 = (B (i) +B (−i)V )−1
J,

(3.8)

and operator J in the space HA = H+
A ⊕H−

A is defined as J = I+⊕ (−I−).
Note that these operators may be unbounded not only in H, but even in
HA.

As an example, let us consider the waveguide such that H+ = H− and
A+ = A−. Let further the boundary conditions be the continuity conditions
of the function u(z) and its z-derivative at z = 0. So, this waveguide is
exactly an homogeneous waveguide. The corresponding unitary operator V
is of the form

V++ = V−− = − 1
2B (−i)−1

X2,

V−+ = V+− = −2iB (−i)−1
X−2.

3.3. The Resolvent of the Operator WV and the Scattering

Operator

We now calculate the resolvent of the waveguide operator and show how
the scattering operator appears in a natural way. To do this, we need to
find in D(WV ) the solution for u of the equation

WV u− λu = f, where f ∈ L and Imλ 6= 0.

The general solution of this equation has the form

u (z) = −1
2
B−1
± (λ)

∞∫

0

e−||z|−ζ|B±(λ)f (±ζ) dζ + e−|z|B±(λ)u±,
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where we take all + for z > 0 and all − for z < 0. The vectors u± ∈ H±
A

in these formulas are the constants of integration. To satisfy the conditions
(3.6), we must choose these constants (i.e., the vector u = u+ ⊕ u−) as
follows. Let us consider the vectors

F± = −1
2
B−1
± (λ)

∞∫

0

e∓ζB±(λ)f (±ζ) dζ . (3.9)

One can see that these vectors, same as the vectors B±(λ)F±, belong to
the spaces H ′

A± = {ϕ ∈ H± ‖Xϕ‖ <∞}. Let us now consider the system
of equations (for a constant u and a vector ṽ ∈ HA) of the form

F + u = (I + V ) ṽ,
B(λ) (F − u) = − (B(i) +B(−i)V ) ṽ.

(3.10)

This system is a direct consequence of the conditions (3.6). Formally, the
solution (for u) of the system (3.10) can be expressed as

u = 2 (I + V ) (B(λ)−B(i) + (B(λ)−B(−i))V )−1
B(λ)F − F

≡ SV (λ)F .
(3.11)

If the inverse operator in (3.11) exists, the operator SV (λ) : H ′
A 7→ HA,

defined in this relation, is said to be a scattering operator for the stepwise
waveguide WV . In terms of the scattering operator the resolvent of the
operator WV is expressed as follows:

u (z) ≡ (RWV
(λ)f)(z) =

− 1
2B

−1
ε (λ)

∞∫
0

e−|εz−ζ|Bε(λ)f (εζ) dζ+

e−εzBε(λ)(SV (λ)F )ε, where ε = sign(z).

(3.12)

We show now that the operator SV (λ) : H ′
A 7→ HA exists and bounded.

First, note that for Imλ > 0, the operator (B(λ)−B(−i))−1 is a bounded
operator H ′

A −→ HA. This assertion is equivalent to the boundedness of the
the operator X−2 (B(λ)−B(−i))−1 in H, which follows from the obvious
numerical inequality of the form

sup
q>0

∣∣∣∣
1

(
√
q + i+

√
q − i)(

√
q + λ−√q − i)

∣∣∣∣ <∞.

To prove the desired property of the scattering operator, it suffices
now to prove that the operator (B(λ)−B(−i))−1 (B(λ)−B(i)) + V has a
bounded inverse in HA. This fact follows form the inequality

‖ (B(λ)−B(−i))−1 (B(λ)−B(i)) ‖= b(λ) < 1. (3.13)



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

Scattering in stepwise waveguides 197

(Hereafter we consider all operators as operators in HA and use the corre-
sponding norms.) Indeed, if so, than for any ϕ ∈ HA, one has

∥∥∥
(
(B(λ)−B(−i))−1 (B(λ)−B(i)) + V

)
ϕ
∥∥∥ ≥

‖V ϕ‖ − ‖ (B(λ)−B(−i))−1 (B(λ)−B(i))ϕ‖ ≥
‖ϕ‖ − b(λ)‖ϕ‖ = (1− b(λ)) ‖ϕ‖,

(3.14)

and hence the operator (B(λ)−B(−i))−1 (B(λ)−B(i)) + V has the
bounded inverse. The inequality (3.13) follows from another numerical in-
equality of the form

sup
q>0

∣∣∣∣
√
q + λ−√q + i√
q + λ−√q − i

∣∣∣∣ = b(λ) < 1. (3.15)

This is simple and we omit the proof. The case Imλ < 0 can be considered
by a similar way.

The boundedness of the scattering operator as the operator from H ′
A

to HA seems to be a too weak assertion. But we show in what follows that
it may be unbounded in H, and this fact seems to be rather unexpected
from the physical point of view; we do not understand at the moment its
physical consequences.

It is important to note that the constant b(λ) in the estimate (3.13) does
not depend on the operator V , but only on the spectra of the operators
A±. We use this fact in what follows to prove the existence of the finite
dimensional approximations of the scattering operator.

4. The General Properties of the Scattering Operator

4.1. On The Finite Dimensional Approximation of the

Operators in the Hilbert Space

In this section, we briefly discuss the main general notions concerned with
the finite dimensional approximations of the operators in Hilbert spaces.8

Let H be an infinite dimensional Hilbert space and

{Hn, Tn : H −→ Hn | n ∈ N}

a sequence of finite dimensional Hilbert spaces and linear surjections. We
say that this sequence approximates the space H if the maps Tn are defined
on some dense linear manifold M⊂ H and, for each x ∈M, we have

lim
n→∞

‖Tnx‖Hn = ‖x‖H .
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Let further A : H → H be a linear operator such that AM ⊂ M and
An : Hn → Hn a sequence of linear maps. We say that this sequence
approximates the operator A if, for each x ∈M, we have

lim
n→∞

‖TnAx−AnTnx‖Hn = 0 .

Such definitions of approximation of linear spaces and operators are widely
used in Numerical Analysis.

The following properties of approximations used bellow are evident:

(i) If the operators An are uniformly bounded, then the operator A is
bounded.

(ii) If the sequences An and Bn approximate the operators A and B and
the sequence An is uniformly bounded, then the sequence AnBn ap-
proximates the operator AB.

(iii) If the operator A−1 exists and is bounded, the sequence An approxi-
mates the operator A, and the operators A−1

n exist and are uniformly
bounded, then the sequence A−1

n approximates the operator A−1.

The example which we use below is as follows. Let A be a positive
operator in H with compact resolvent, Pn the projection onto the linear
span of the eigenvectors of A corresponding to the eigenvalues λ, where
λ < n. Let Hn = PnH , Tn = Pn,An = A|Hn and M be the set of
vectors in H with finite spectral decompositions. Then the pairs (Hn, An)
approximate (H,A).

4.2. The Approximation of the Scattering Operator

There exists a very limited number of physically interesting examples of the
stepwise waveguides for which the scattering operator can be investigated
analytically and most of these examples are finite dimensional. To calcu-
late the scattering operator in the infinite dimensional case, a numerical
procedure is usually needed. Such procedures are always based on some
finite dimensional approximation of the original problem. The question of
the convergence of such numerical procedures is the key question for the
successful calculation and, as a rule, this question appears to be very com-
plicated.

We show that, under certain conditions, a scattering operator for a given
infinite dimensional step-wise waveguide can be approximated, in the above
sense, by appropriate finite dimensional waveguides.

In Ref. 4 it was shown that such conditions are satisfied for certain
physically interesting cases.



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

Scattering in stepwise waveguides 199

Suppose the approximating sequences of the operators A±,n are defined
as in subsect. 4.1. Let further suppose there exists a sequence Vn of unitary
operators approximating a given unitary operator V . The existence of such
approximation is the main condition for the following constructions. Due
to the fact that the operators Pn are projections on the eigenspaces of
the operators A±, the sequences B(n,±) = PnB±(λ)Pn approximate the
operators B±. It follows from the this fact and the relations (3.13), (3.15)
that the sequence of operators

(Bn(λ)−Bn(−i))−1 (Bn(λ)−Bn(i)) + Vn

approximates the corresponding limiting operator and their inverses are
uniformly bounded. Hence, the sequence

SVn(λ) =
2 (In + Vn) (Bn(λ)−Bn(i) + (Bn(λ)−Bn(−i))Vn)−1

Bn(λ)− In

approximates the operator SV (λ) and, moreover, is the sequence of scatter-
ing operators for the finite dimensional waveguides defined by the transver-
sal operators A±,n and unitary operators Vn.

4.3. Unboundedness of the Scattering Operator. An

Example

In this section, we show4 that the scattering operator may indeed be un-
bounded in the space H. We emphasize that the example discussed is artifi-
cial and seems to have no physical meaning. But, first, it is mathematically
natural, and, second, it shows that for the scattering operator in H to be
bounded, some additional conditions are needed.

Let us consider a sequence of the finite dimensional waveguides of the
form (where βn is a constant)

H±,n = C2,

A−,n = Λn =
(−1 0

0 −β4
n

)
, A+,n = UnA−,nU∗n,

where the unitary operators Un are of form

Un = U∗n = U−1
n =

1
1 + β2

n

(
1− β2

n 2βn
2βn β2

n − 1

)

and the boundary conditions are the continuity conditions of the function
u(z) and its first derivative. Let Wn be the corresponding waveguide. For a
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given n, it is easy to calculate the scattering operator which is a 4×4-matrix
of the form

Sn(λ) =
(

Rn Tn
UnTnU

∗
n UnRnU

∗
n

)
,

where the 2× 2-matrices Tn = T (βn) and Rn = E − Tn are matrix-valued
functions of β. An explicit expressions for the T -matrix is quite complicated,
but it can be shown that, for a given λ ∈ C and βn →∞, the matrix element
T12(βn) is O(βn).

Now suppose βn →∞ and consider a waveguide of the form

W =
∞⊕
n=1

Wn .

The corresponding scattering operator is then

S(λ) =
∞⊕
n=1

Sn(λ).

For any λ ∈ C, the set of matrix elements of this operator is unbounded,
and hence the operator can not be bounded.

5. The Multistep Waveguides and The Scattering Operator

To construct a mathematical model of the multistep waveguide, let us con-
sider the set of real numbers 0 = a0 < a1 < ... < aN <∞. Let

L =
N+1⊕

j=0

Hj ⊗ L2(∆j),

where ∆0 = (−∞, a0) and ∆j = (aj−1, aj) for j = 1, ..., N ; let ∆N+1 =
(aN ,∞), and let

D0 =
N+1⊕

j=0

Hj ⊗ C∞0 (∆j).

Let the Aj , where j = 0, ..., N + 1, be negative operators in the respective
Hilbert spaces Hj and let

W0 =
N+1⊕

j=0

(
d2

dz2
⊗ IHj ⊕ IL2(R∆j

) ⊗Aj

)

be the symmetric operator in L with the domain D0. This operator has
many self-adjoint extensions; we will consider only local extensions, i.e.,
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those defined by boundary conditions of the form (3.7) at each point aj .
Such extensions W we be referred to as multistep waveguides.

For each j = 0, ..., N , one can define the scattering operator Sj(λ) for
the pair (Aj , Aj+1) as in subsection 3.3. These operators completely define
the waveguide, e.g., in terms of its resolvent. For a given scattering operator,
the resolvent of the waveguide may be constructed as follows. Let

u = RW (λ)f.

Let Pj(t) = e−tBj(λ), where t ∈ ∆j . These operators are known in physics
as propagators. Then, for z ∈ ∆j , we have

u (z) = − 1
2B

−1
j (λ)

aj∫
aj−1

Pj(| z − ζ |)f(ζ)dζ+

Pj(z − aj−1)u+
j + Pj(aj − z)u−j ,

where the vectors u±j ∈ HAj are the constants of integration. Due to the
boundary conditions at infinity, one has u+

0 = 0 and u−N+1 = 0. The defini-
tion of the scattering operator implies that

(
u+
j+1

u−j

)
= Sj(λ)

(
Pj+1(|∆j+1|)u−j+1 + ψ+

j+1

Pj(|∆j |)u+
j + ψ−j

)
(5.1)

for j = 0, ..., N , where

ψ−j = − 1
2B

−1
j (λ)

∆j∫
0

Pj(ζ)f(ζ + aj−1)dζ,

ψ+
j = − 1

2B
−1
j (λ)

∆j∫
0

Pj(ζ)f(aj − ζ)dζ.

The equations (5.1) define the vectors u±j , and hence the resolvent of the
multistep waveguide is completely defined by the set of partial” scatter-
ing operators. Together with the finite dimensional approximation of the
scattering operator described in subsect. 4.2, these equations give a way to
numerical calculation of the different problems connected with multistep
waveguides.2,7
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We consider the Schrödinger operators on R2 with the magnetic field given
by a positive constant field plus random δ magnetic fields of the Poisson-
Anderson type. We give sufficient conditions for the lower Landau levels to be
infinitely degenerated eigenvalues, and for the lowest Landau level not to be
an eigenvalue. The proof relies on the entire function theory by B. Ya. Levin.
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1. Introduction

Define a differential operator Lω on R2 by

Lω =
(

1
i
∇+ aω

)2

,

where ω is an element of a probability space Ω, and aω is the magnetic
vector potential. The magnetic field corresponding to a vector potential
a = (ax, ay) is defined by rota = ∂xay − ∂yax in the distribution sense. We
assume the magnetic field rotaω is given by

rotaω(z) = B +
∑

γ∈Γω

2παγ(ω)δ(z − γ). (1.1)
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Here, B is a positive constant, δ is the Dirac measure concentrated on
the origin. The random set Γω is the Poisson configuration (the support
of the Poisson point process) with intensity measure ρdxdy, where ρ is a
positive constant (for the definition of the Poisson point process, see e.g.
Refs. 2,21). The random variables {αγ}γ∈Γω are i.i.d., [0, 1)-valued random
variables independent of Γω a, and their common distribution measure µ
satisfies

suppµ 6= {0}.
We denote

ᾱ = E[αγ ], p = P{αγ 6= 0},
where E[X] denotes the expectation of a random variable X, and P{E} the
probability of an event E. The values ᾱ and p are independent of γ, since
{αγ}γ∈Γ are i.i.d. We call the magnetic field satisfying these assumptions
the Poisson-Anderson type random δ magnetic fields b. The assumption
αγ(ω) ∈ [0, 1) loses no generality, since the integral differences of αγ(ω)’s
can be gauged away.15 These conditions are considered to be a mathe-
matical model for the randomly distributed infinitesimally thin solenoids
under the influence of a homogeneous magnetic field. A system of this type
appears in the study of the Hall conductivity (see Desbois et. al.8–10).

A vector potential aω satisfying (1.1) can be constructed as follows.15

In the sequel, we identify a vector z = (x, y) ∈ R2 with a complex number
z = x+ iy ∈ C. Put

φω(z) =
Bz̄

2
+
α0(ω)
z

+
∑

γ∈Γω\{0}
αγ(ω)

(
1

z − γ
+

1
γ

+
z

γ2

)
, (1.2)

where α0(ω) = 0 if 0 6∈ Γω. Later we will prove that the right hand side of
(1.2) converges locally uniformly in C \ Γω, almost surely. Put

aω(z) = (Imφω(z),Reφω(z)).

aMore precisely, we construct the random variables {αγ}γ∈Γω as follows. Let Ω1 be
the probability space on which the Poisson configuration Γω is defined, and number the
elements {γj}∞j=1 of Γω as 0 < |γ1| < |γ2| < · · · (the probability that there exist two
points of Γω with the same absolute value is zero). Let Ω2 be the probability space
on which i.i.d. random variables {αj}∞j=1 are defined. Put Ω = Ω1 × Ω2, and denote
αγj (ω) = αj(ω) (j = 1, 2, . . .).
bOf course, we can consider the case Γω is a non-random lattice Γ and {αγ} are i.i.d.
(Anderson type). The arguments below can be applied to this case with a little modifi-
cation.
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Then we can easily verify (1.1) holds.
We denote the Friedrichs extension of Lω|C∞0 (R2\Γω) by Hω, then Hω is

a self-adjoint operator on the Hilbert space L2(R2). The domain of Hω is
given by

D(Hω) = {u ∈ L2(R2) | Lωu ∈ L2(R2),

lim sup
z→γ

|u(z)| <∞ for any γ ∈ Γω}. (1.3)

Remark that we can take another self-adjoint extensions of Lω|C∞0 (R2\Γω),
since Lω|C∞0 (R2\Γω) is not essentially self-adjoint (see e.g. Refs. 1,7,17).
When αγ(ω) 6∈ Z, the boundary condition lim supz→γ |u(z)| <∞ is equiv-
alent to

lim sup
z→γ

|u(z)| = 0.

This boundary condition physically means that the solenoids are electrically
shielded and the electron cannot penetrate inside the solenoids.

We denote the free operator (the operator corresponding to the constant
magnetic field rota = B) by H0. The spectrum of H0 is well-known:

σ(H0) =
∞⋃
n=1

{En},

where En = (2n − 1)B is called the n-th Landau level. The Landau levels
are infinitely degenerated eigenvalues of H0.

In this paper, we shall investigate whether the infinite degeneracy of the
Landau levels changes under the perturbation of the δ-magnetic fields. This
problem is closely related to the infinite degeneracy of zero modes for the
2-dimensional Pauli operator.14,15,22 The result is the following.

Theorem 1.1.

(1) If n is a positive integer satisfying
B

2πρ
+ ᾱ > np, then En is almost

surely an infinitely degenerated eigenvalue of Hω.

(2) If
B

2πρ
+ ᾱ < p, then E1 is almost surely not an eigenvalue of Hω.

The above theorem roughly means the lower Landau levels tend to be stable
under the perturbation by δ magnetic fields, even if it is random. Similar
results are obtained in the case of (scalar) point interactions3–5,12,13,20 or in
the case of δ magnetic fields.14,15,17,18,22 It may be interesting to compare
the above results with those in the case of regular potentials.11,23 In that
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case, it is widely believed that the Landau levels are broadened and there
exist some extended states corresponding to the center of the Landau level.

It seems natural for the authors to conjecture En is not an infinitely
degenerated eigenvalue when B/(2πρ) + ᾱ < np. However, this conjecture
could not be proved for some technical reasons (see the remark after the
proof of Theorem 1.1 in section 4). The spectrum between Landau levels
will be argued in our forthcoming paper.19

The rest of the paper is organized as follows. In section 2, we introduce
a multi-valued holomorphic function on C called the multi-valued canonical
product, and estimate its exponential growth order at infinity. In section
3, we give an explicit form of eigenfunctions corresponding to the Landau
levels, using the multi-valued canonical products. This expression combined
with the result of section 2 will lead us to the conclusion in section 4 (a
similar argument is found in Ref. 6).

2. Multi-valued canonical product

There is a beautiful theory by B. Ja. Levin16 about the relation between
the exponential growth order of the canonical product and the distribution
of its zeros. His theory also holds for the multi-valued function, with the
modification as follows.

Let Γ be a discrete subset of C and α = (αγ)γ∈Γ be a sequence of non-
negative real numbers. For r > 0 and θ1, θ2 ∈ R with 0 ≤ θ2 − θ1 ≤ 2π,
put

n(r, θ1, θ2) =
∑

0<|γ|≤r,θ1≤arg γ<θ2

αγ

(the sum is taken over γ ∈ Γ, as in the sequel). Put n(r) = n(r, 0, 2π). We
assume

n(r) = O(r2) as r →∞. (2.1)

Define a sum ζΓ,α and a product σΓ,α by

ζΓ,α(z) =
α0

z
+

∑

γ 6=0

αγ

(
1

z − γ
+

1
γ

+
z

γ2

)
, (2.2)

σΓ,α(z) = zα0
∏

γ 6=0

(
1− z

γ

)αγ

e
αγ

“
z
γ + z2

2γ2

”
(2.3)

(we put α0 = 0 when 0 6∈ Γ). Particularly when Γ is a lattice of rank 2 and
αγ ≡ 1, then ζΓ,α is the Weierstrass ζ function, and σΓ,α is the Weierstrass
σ function.
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Let {Cj}∞j=1 be a system of disks, where Cj = {|z − zj | ≤ rj}. We say
C =

⋃∞
j=1 Cj is a C0-set if

lim sup
r→∞

1
r

∑

|zj |≤r
rj = 0.

Proposition 2.1. Assume (2.1) holds. Then the following holds:

(1) The sum (2.2) converges uniformly in a compact subset of C \ Γ. If
we take the branches of the functions {(1 − z

γ )αγ}γ∈Γ\{0} appropri-
ately, then the right hand side of (2.3) converges uniformly in a simply
connected compact subset of C \ Γ. For k = 0, 1, 2, . . ., the function
| ( d
dz

)k
σΓ,α(z)| is independent of the choice of the branches. Moreover,

we have

d

dz
σΓ,α(z) = σΓ,α(z)ζΓ,α(z). (2.4)

(2) Assume additionally that

(a) there exists I0 ⊂ [0, 2π) such that [0, 2π) \ I0 is countable and the
limit

∆(θ1, θ2) = lim
r→∞

n(r, θ1, θ2)
r2

exists for any θ1, θ2 ∈ I0 + 2πZ with 0 ≤ θ2 − θ1 ≤ 2π, and
(b) the limit

δΓ,α =
1
2

lim
r→∞

∑

0<|γ|≤r

αγ
γ2

(2.5)

exists and is finite.

Let d∆ be the Lebesgue-Stieltjes measure given by the relation∫
[θ1,θ2)

d∆(ψ) = ∆(θ1, θ2). Then, there exists a C0-set C such that

lim
r→∞,reiθ 6∈C

log |σΓ,α(reiθ)|
r2

= H(θ), (2.6)

where the function H(θ) is defined by the Stieltjes integral

H(θ) = −
∫ θ

θ−2π

(ψ − θ) sin 2(ψ − θ) d∆(ψ) + Re(e2iθδΓ,α).

The convergence (2.6) is uniform with respect to θ ∈ [0, 2π).
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Remark 2.1. The proof of the first assertion is easy. The second assertion
is a generalization of Theorem 2 in Chap. II, Sec. 1 of Ref. 16, and its proof
is also similar (there is a misprint in the first edition of Ref. 16; there must
be the minus sign before the integral in (2.06) in Ref. 16). The outline of
the proof will be given in Ref. 19.

Corollary 2.1. In addition to the assumption of (ii) of Proposition 2.1,
assume that

∆(θ1, θ2) = c(θ2 − θ1)

for some positive constant c. Put

σ̃Γ,α(z) = e−δΓ,αz
2
σΓ,α(z).

Then, there exists some C0-set C satisfying the following; for any ε > 0, we
have

|σ̃Γ,α(z)| ≤ e(cπ+ε)|z|2 (2.7)

for sufficiently large z, and

|σ̃Γ,α(z)| ≥ e(cπ−ε)|z|
2

(2.8)

for sufficiently large z outside C.

Proof. By Proposition 2.1 and the equality

−c
∫ θ

θ−2π

(ψ − θ) sin 2(ψ − θ)dψ = cπ,

we see that there exists some C0-set C such that both (2.7) and (2.8) hold
for sufficiently large z outside C. Since C is a C0-set, the limitation z ∈ C\C
on (2.7) can be eliminated by using the maximum modulus principle (see
the argument after the proof of Lemma 5 in Chap. II, Sec. 3 of Ref. 16).

For an entire function f , it is well-known that f and its derivatives dkf
dzk

have the same exponential growth order.16 For a multi-valued holomorphic
function f , we have the following.

Lemma 2.1. Let f be a multi-valued holomorphic function on C and n0 a
nonnegative integer. Let Γ be the set of the branch points of f . Assume the
following conditions hold:

(1) In a neighborhood Uγ of each γ ∈ Γ, f is written as

f(z) = (z − γ)αγgγ(z),

where αγ > n0 and gγ is a function holomorphic in Uγ .
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(2) #{γ ∈ Γ | |γ| ≤ r} = O(r2) as r →∞.
(3) There exists a constant a > 0 such that

|f(z)| ≤ ea|z|
2

for sufficiently large z.

Then, for any ε > 0, we have for any k = 0, 1, . . . , n0∣∣∣∣
dkf

dzk
(z)

∣∣∣∣ ≤ e(a+ε)|z|
2

(2.9)

for sufficiently large z ∈ C \ Γ.

Remark 2.2. By (i), the function |dkf
dzk (z)| is single-valued.

Proof. By (i), we have

lim
z→γ

∣∣∣∣
dkf

dzk
(z)

∣∣∣∣ = 0

for k = 0, . . . , n0. Thus the function Mk(r) = max|z|=r
∣∣∣dkf
dzk (z)

∣∣∣ is monotone
nondecreasing, by the maximum modulus principle. By (ii), we can take
A ∈ N such that

#{γ ∈ Γ | |γ| ≤ r} ≤ Ar2 − 1.

Take l ∈ N. Dividing the ring {l− 1 < |z| ≤ l} into Al2 subrings, we find a
subring {rl − 1

2Al2 < |z| ≤ rl + 1
2Al2 } which contains no point of Γ. Then,

for |z| = rl, we have by the Cauchy integral formula

dkf

dzk
(z) =

k!
2πi

∫

|w−z|= 1
3Al2

f(w)
(w − z)k+1

dw.

Using this formula, we have

Mk(l − 1) ≤ (3Al2)kk!M0 (l) .

Therefore (2.9) follows from (iii).

3. Eigenfunctions for Landau levels

Let us return to our model and construct the eigenfunctions for Landau
levels. Similar solutions are found in Refs. 14,15,18,22.

Let φω be the function given in (1.2). Define differential operators Aω
and A†ω by

Aω = 2∂z + φω(z), A†ω = −2∂z̄ + φω(z),
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where ∂z = (∂x − i∂y)/2, ∂z̄ = (∂x + i∂y)/2. These operators satisfy the
canonical commutation relation

Lω = A†ωAω +B = AωA†ω −B (3.1)

as an operator on D′(C \ Γω).
Put α(ω) = (αγ(ω))γ∈Γω

, ζω = ζΓω,α(ω) and σω = σΓω,α(ω). Then, we
have

Aω = 2∂z +
Bz̄

2
+ ζω(z), A†ω = −2∂z̄ +

Bz

2
+ ζω(z). (3.2)

Put

α̃γ(ω) =
{

1 (0 < αγ(ω) < 1),
0 (αγ(ω) = 0),

σ̃ω = σΓω,eα(ω),

where α̃(ω) = (α̃γ(ω))γ∈Γω . Notice that σ̃ω is an entire function.

Lemma 3.1. Let n ∈ N. Then, the following holds:

(1) Let f be an entire function. Put

u(z) = A†ω
n−1

(
e−

B
4 |z|2 |σω(z)|−1σ̃ω(z)nf(z)

)
. (3.3)

If u ∈ L2(C), then u ∈ D(Hω) and Hωu = Enu. Moreover, if u ∈
D(Hω) satisfies Hωu = Bu, then there exists an entire function f such
that (3.3) holds with n = 1.

(2) For almost all ω, the assumptions (a) and (b) in (ii) of Proposition 2.1
are satisfied with Γ = Γω, α = β(ω) = (nα̃γ(ω)− αγ(ω))γ∈Γω and

∆(θ1, θ2) = ρ(θ2 − θ1)(np− ᾱ)/2.

(3) Let ω ∈ Ω satisfying the conclusion of (ii). Let δω = δΓω,β(ω) be the
constant defined by (2.5) for Γ = Γω and α = β(ω). For a polynomial
g 6≡ 0, let un,g be the function u defined by (3.3) with f(z) = e−δωz

2
g(z).

Then, there exists a C0-set C such that for any ε > 0

|un,g(z)| ≤ exp
((

−B
4

+
πρ(np− ᾱ)

2
+ ε

)
|z|2

)
(3.4)

for sufficiently large z, and

|u1,g(z)| ≥ exp
((

−B
4

+
πρ(p− ᾱ)

2
− ε

)
|z|2

)
(3.5)

for sufficiently large z outside C.
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Proof. In the sequel, we denote the inner product on L2(R2) by (u, v) =∫
R2 uvdxdy, the L2-norm by ‖u‖2 = (u, u).

(i) For simplicity of the notation, we omit the subscript ω for a while.
Let u be the function given by (3.3). By (2.4) and (3.2), we have

A = e−
B
4 |z|2 |σ(z)|−1(2∂z)e

B
4 |z|2 |σ(z)|. (3.6)

Put

v(z) = e−
B
4 |z|2 |σ(z)|−1σ̃(z)nf(z).

By (3.1) and (3.6), we have (L − B)v = A†Av = 0. Then we can prove
LA†jv = Ej+1A†jv for any nonnegative integer j, by an inductive argument
using (3.1). Thus we have Lu = Enu.

If u ∈ L2(R2), then we have Lu = Enu ∈ L2(R2). Since v(z) =
O(|z − γ|n−αγ+l) as z → γ (l is the order of zero at γ for f), we have
u(z) = O(|z−γ|1−αγ+l) as z → γ. Thus u satisfies the boundary conditions
lim supz→γ |u(z)| <∞ for every γ ∈ Γ. By (1.3), we have u ∈ D(H).

Next, suppose u ∈ D(H) and Hu = Bu. Since H is the Friedrichs
extension, (3.1) implies

((H −B)u, u) = (A†Au, u) = ‖Au‖2.
Thus, we have

Au = 0 in R2 \ Γ. (3.7)

By (3.6), any solution to (3.7) is written as

u(z) = e−
B
4 |z|2 |σ(z)|−1g(z),

where g(z) is a holomorphic function on C\Γ. Since u satisfies the boundary
conditions lim supz→γ |u(z)| <∞ for every γ ∈ Γ, we see that the function
g has to be factorized as g(z) = σ̃(z)f(z), where f(z) is an entire function
on C. Thus the assertion holds.

(ii) First we prove the assumption (a) is satisfied. For N = m + ni ∈
Z⊕ Zi, define a square QN by

QN =
{
s+ ti | m− 1

2
≤ s < m+

1
2
, n− 1

2
≤ t < n+

1
2

}

and put

XN (ω) =
∑

γ∈Γω∩QN

βγ(ω).

Then the random variables {XN}N∈Z⊕Zi are independent and

E[XN ] = EΩ1 [#(Γ· ∩QN )]EΩ2 [nα̃γ − αγ ] = ρ(np− ᾱ),
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where we used E[#(Γ· ∩ U)] = ρ|U | (for the probability spaces Ω1 and Ω2,
see the footnote about the definition of the Poisson-Anderson fields). For
r > 0 and θ1, θ2 ∈ R with 0 ≤ θ2 − θ1 ≤ 2π, put

S(r, θ1, θ2) = {seiθ | 0 < s ≤ r, θ1 ≤ θ < θ2},
N(r, θ1, θ2) = {N ∈ Z⊕ Zi | QN ⊂ S(r, θ1, θ2)},
ñ(r, θ1, θ2) =

∑

N∈N(r,θ1,θ2)

XN .

Then we have

ñ(r, θ1, θ2)
r2

=

∑
N∈N(r,θ1,θ2)

XN

#N(r, θ1, θ2)
#N(r, θ1, θ2)

r2
→ ρ(np− ᾱ)(θ2 − θ1)

2

almost surely, by the law of large numbers. Moreover, we readily have

lim
r→∞

ñ(r, θ1, θ2)− n(r, θ1, θ2)
r2

= 0

almost surely. Thus we have

lim
r→∞

n(r, θ1, θ2)
r2

=
ρ(np− ᾱ)(θ2 − θ1)

2
(3.8)

almost surely, for each θ1, θ2 ∈ Q with 0 ≤ θ2−θ1 ≤ 2π. By the monotonic-
ity of the function n(r, θ1, θ2) with respect to θ1 or θ2, we see that (3.8)
holds for every θ1, θ2 ∈ R, almost surely.

Next we show the assumption (b) holds. Put

δ(r) =
∑

1<|γ|≤r

βγ
γ2
.

We shall prove δ(r) converges as r →∞, almost surely.
For m = 1, 2, . . . and k = 0, . . . , 4m− 1, put

Um,k =
{
reiθ

∣∣∣∣ m2 < r ≤ (m+ 1)2,
kπ

2m
≤ θ <

(k + 1)π
2m

}
,

cm,k = m2ei
kπ
2m , Γm,k = Γ ∩ Um,k, δm,k =

∑

Γm,k

βγ
γ2
.

In the sequel, we denote the general constants independent of m, k, ω by C.
For γ ∈ Um,k, we have

∣∣∣∣∣
1
γ2
− 1
c2m,k

∣∣∣∣∣ =

∣∣∣∣∣
(γ + cm,k)(γ − cm,k)

γ2c2m,k

∣∣∣∣∣ ≤ Cm−5. (3.9)
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Put β̄ = E[βγ ] = np− ᾱ. Then we have

|δm,k + δm,k+m|

≤ m−4

∣∣∣∣∣∣
∑

Γm,k

βγ −
∑

Γm,k+m

βγ

∣∣∣∣∣∣
+ Cm−5 (#Γm,k + #Γm,k+m)

≤ m−4

(∣∣∣∣∣∣
∑

Γm,k

(βγ − β̄)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

Γm,k+m

(βγ − β̄)

∣∣∣∣∣∣
+ |#Γm,k −#Γm,k+m|β̄

)

+Cm−5 (#Γm,k + #Γm,k+m) , (3.10)

where we used (3.9) and c2m,k+m = −c2m,k in the first inequality. By the
Schwarz inequality and the independence of {βγ}, we have

E




∣∣∣∣∣∣
∑

Γm,k

(βγ − β̄)

∣∣∣∣∣∣


 = EΩ1


EΩ2




∣∣∣∣∣∣
∑

Γm,k

(βγ − β̄)

∣∣∣∣∣∣







≤ EΩ1





VΩ2


∑

Γm,k

βγ







1/2

 = EΩ1

[
(#Γm,kVΩ2 [βγ ])

1/2
]

≤ (EΩ1 [#Γm,k])
1/2 (VΩ2 [βγ ])

1/2 ≤ Cm,

(3.11)

where V[X] denotes the variance of a random variable X. The expectation
E

[∣∣∣∑Γm,k+m
(βγ − β̄)

∣∣∣
]

is estimated in the same way. Moreover, we have

E[|#Γm,k −#Γm,k+m|] ≤ 2E[|#Γm,k − ρ|Um,k||]
≤ 2V[#Γm,k]1/2 ≤ Cm, (3.12)

E[#Γm,k + #Γm,k+m] = 2ρ|Um,k| ≤ Cm2, (3.13)

where we used V[#Γm,k] = ρ|Γm,k| ≤ Cm2. By (3.10), (3.11), (3.12) and
(3.13), we have

E [|δm,k + δm,k+m|] ≤ Cm−3,

so
∞∑
m=1

m−1∑

k=0

E [|δm,k + δm,k+m + δm,k+2m + δm,k+3m|] <∞.

Therefore we conclude the sequence {δ(m2)}∞m=1 converges almost surely.
Now it is sufficient to show that

sup
m2<r<(m+1)2

|δ(r)− δ(m2)| → 0 as m→∞ (3.14)
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almost surely. As in the proof of (a), we can prove

#{γ ∈ Γω | m2 < |γ| < (m+ 1)2}
π(m+ 1)4 − πm4

→ ρ

almost surely. This implies

#{γ ∈ Γω | m2 < |γ| < (m+ 1)2} ≤ Cm3

almost surely. Thus we have

|δ(r)− δ(m2)| ≤ #{γ ∈ Γω | m2 < |γ| < (m+ 1)2}m−4 ≤ Cm−1

for m2 < r < (m+ 1)2, which implies (3.14).
(iii) By (2.4) and (3.2), we have

A†ω = sgnσω(z)−1

(
−2∂z̄ +

Bz

2

)
sgnσω(z),

where sgn(z) = z
|z| = |z|

z̄ . Thus we have

un,g(z)

= e−
B
4 |z|2 sgnσω(z)−1 (−2∂z̄ +Bz)n−1

σω(z)−1σ̃ω(z)ne−δωz2g(z)

= e−
B
4 |z|2 sgnσω(z)−1 (−2∂z̄ +Bz)n−1

σ̃Γω,β(ω)(z)g(z).

Since
#(Γω ∩Br(0))

r2
→ πρ

almost surely, we have

#(Γω ∩Br(0)) = O(r2) as r →∞
almost surely. So the conclusion follows from (ii) of this lemma, Corollary
2.1, Lemma 2.1 and the Leibniz rule.

4. Proof of theorem 1.1

Proof. Suppose B/(2πρ) + ᾱ > np. Then, there exists ε > 0 such that
−B/4 + πρ(np − ᾱ)/2 + ε < 0. For any polynomial g, the function un,g is
an eigenfunction of Hω corresponding to the eigenvalue En, by (3.4). Thus
we see that En is an infinitely degenerated eigenvalue of Hω, almost surely.

Next, suppose B/(2πρ) + ᾱ < p. Then, there exists ε > 0 such that
−B/4 + πρ(np− ᾱ)/2− ε > 0. By (3.5), we have

|u1,1(z)| ≥ 1 (4.1)
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for sufficiently large z outside some C0-set C. Adding some disk centered
at the origin to C, we may assume (4.1) holds for every z ∈ C \ C. Let

S0 = {r > 0 | {|z| = r} ∩ C = ∅}.
Suppose some u ∈ D(H) satisfies Hu = Eu. By (i) of Lemma 3.1, u is
written as u = u1,1f̄ for some entire function f =

∑∞
n=0 anz

n. Then we
have

∫

C

|u|2dxdy ≥ 2π
∞∑
n=0

∫

S0

|an|2r2n+1dr. (4.2)

Since C is a C0-set, we have
∫

(0,R)∩S0

r2n+1dr ≥ |(1, R) ∩ S0| → ∞

as R → ∞, where |S| denotes the Lebesgue measure of S. Thus the right
hand side of (4.2) diverges if some an is not zero. This implies u = 0, so we
see that E1 is not an eigenvalue of Hω, almost surely.

Remark 4.1. We could not prove the conjecture ‘En is not an infinitely
degenerated eigenvalue when B/(2πρ) + ᾱ < np’ for two reasons. First,
we could not exclude the possibility of the existence of the exceptional
solutions, which cannot be written as (3.3), when n ≥ 2. Second, we could
not establish the lower bound like (3.5) for the solution un,g, when n ≥ 2.
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MEAN FIELD LIMIT FOR BOSONS AND SEMICLASSICAL
TECHNIQUES

FRANCIS NIER

IRMAR, UMR-CNRS 6625, Campus de Beaulieu, Université de Rennes 1
35042 Rennes Cedex, FRANCE

We give a summary of results obtained with Z. Ammari in Ammari-Nier2

after analyzing accurately the formal relationships between mean field and
semiclassical asymptotics.

Keywords: Mean field limit; bosonic QFT; Wigner measures

1. Introduction

When the one particle states lie in a complex Hilbert space Z, the many
body problem is formulated in a Hilbert space H ⊂ ⊕n∈NZ⊗n, which
contains the symmetry (resp. antisymmetry) constraint for bosons (resp.
fermions). The mean field limit consists in studying states associated with
a large number N of particles and their dynamics for some specific Hamil-
tonian. After introducing the small parameter ε = 1

N , one can consider
for example initial states Ψ0 = z⊗N0 = z⊗ε

−1

0 and the evolved states
Ψt = e−i

t
εHεΨ0, when Hε is the Wick quantized version of a polynomial

expression p(z, z) of z ∈ Z obtained after replacing the zj (resp. zj) vari-
able by a scaled annihilation (resp. creation) operator

√
εaj (resp.

√
εa∗j )

while fulfilling the Wick ordering rule (annihilation on the right-hand side).
The mean field dynamics is given by Ψt ' z⊗ε

−1

t where zt evolves accord-
ing to the Hamiltonian dynamics, i∂tzt = ∂zp(zt, zt), in the phase space Z
endowed with the symplectic form Im 〈 , 〉. The precise meaning of ' is
given after proving that with the normalization |zt| = 1, the quantity

〈Ψt , ε(A⊗ I ⊗ · · · ⊗ I + I ⊗A⊗ I ⊗ · · · ⊗ I ⊗+I ⊗ · · · ⊗ I ⊗A)Ψt〉
(1.1)

is equivalent to 〈zt , Azt〉 in the limit ε → 0 (i.e. N → ∞). Within the
bosonic framework, the observable involved in (1.1) is nothing but the Wick
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quantized operator pWick
A for the polynomial pA(z, z) = 〈z ,Az〉. Higher or-

der correlations are also described after testing with Wick quantized higher
order polynomials.

This summarizes the formal relationship between mean field limits and
semiclassical analysis: they both involve the Hamiltonian dynamics on the
phase space and ε-dependent quantizations of classical symbols. In spite
of the strong development of semiclassical techniques for finite dimensional
problems in the eighties, very little has been done in this spirit for mean
field problems. One reason is the well-known difficulty to develop a pseudo-
differential calculus in infinite dimension which is rich enough to catch the
properties of realistic nonlinear dynamics. Another reason is that some
other methods, based on the integral functional point of view or techniques
of truncated Dyson expansions were more effective for other problems in
quantum field theory.

This text provides a short presentation of a recent joint work with
Z. Ammari, where the introduction of Wigner measures in infinite dimen-
sion allowed to analyze the links between various approaches to mean field
problems and to prove new results. While doing so the differences between
the inductive and projective approaches to the infinite dimensional case
and the specificities of Weyl-, Wick- and anti-Wick quantizations have been
completely clarified.

2. Review of the finite dimensional case

2.1. Finite dimensional phase space and Schrödinger

representation

Consider Z = Cd with its natural Hermite scalar product 〈z1 , z2〉 =∑d
j=1 z1,jz2,j , its real scalar product S(z1, z2) = Re〈z1 , z2〉 and its sym-

plectic form σ(z1, z2) = Im〈z1 , z2〉. Set H =
⊕∞

n=0

∨nZ = Γs(Z) the
bosonic Fock space, defined as a Hilbert direct sum. For any n ∈ N, the
orthogonal projection from

⊗nZ onto the closed subspace
∨nZ of sym-

metric tensors is denoted by Sn. For any (ξ1, ξ2, . . . , ξn) ∈ Zn, the vector
ξ1 ∨ ξ2 ∨ · · · ∨ ξn ∈

∨n Z is

ξ1 ∨ ξ2 ∨ · · · ∨ ξnSn(ξ1 ⊗ ξ2 · · · ⊗ ξn) =
1
n!

∑

σ∈Sn

ξσ(1) ⊗ ξσ(2) · · · ⊗ ξσ(n)

After introducing a small parameter ε > 0, the ε-dependent annihilation
and creation operators are defined by

a(z)|Wn Z =
√
εn 〈z| ⊗ IWn−1 Z
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a∗(z)|Wn Z =
√
ε(n+ 1) Sn+1 ◦ ( z ⊗ IWn Z) =

√
ε(n+ 1) z

∨
IWn Z ,

when z ∈ Z is identified with the operator C 3 λ 7→ λz ∈ Z. The quantized
real variables

Φ(z) =
1√
2
(a∗(z) + a(z)) and Π(z) = Φ(iz) =

1
i
√

2
(a(z)− a∗(z)) .

They are self-adjoint operators on H and satisfy the identities:

[Φ(z1),Φ(z2)] = iεσ(z1, z2)I, [Φ(z1),Π(z2)] = iεS(z1, z2)I.

The representation of the Weyl commutation relations in the Fock space

W (z1)W (z2) = e−
iε
2 σ(z1,z2)W (z1 + z2)

= e−iεσ(z1,z2)W (z2)W (z1),
(2.1)

is obtained by setting W (z) = eiΦ(z). After introducing the vacuum vector
(1, 0, . . . ) ∈ H, the coherent state vectors are given by

E(z) = W

(√
2z
iε

)
Ω = e

1
ε [a∗(z)−a(z)]Ω ,

for any z ∈ Z, with the explicit form

E(z)e−
|z|2
2ε

∞∑
n=0

1
εn
a∗(z)n

n!
Ω = e−

|z|2
2ε

∞∑
n=0

ε−n/2
z⊗n√
n!
. (2.2)

They should not be confused with Hermite or product states of the form

Hn(z) = z⊗n . (2.3)

The number operator is also scaled with the small parameter ε > 0 accord-
ing to

N|Wn Z = εnI|Wn Z =
d∑

j=1

a∗(ej)a(ej)

where the last identity holds for any orthonormal basis (e1, . . . , ed) ∈ Zd .
The relationship with the Schrödinger representation which can be for-

mulated with a Bargmann transform in the finite dimensional case (see
Folland,9 Martinez,22 Aftalion-Blanc-Nier1) can be explicitly given after
setting z = x + iξ, with (x, ξ) ∈ T ∗Rd. The symplectic form [[ , ]] and the
scalar product ( , ) on T ∗Rd are usually defined according to

] = ξ.y − x.η = −Im 〈x+ iξ , y + iη〉 = −σ(x+ iξ, y + iη)

((x, ξ), (y, η)) = x.y + ξ.η = Re 〈x+ iξ , y + iη〉 = S(x+ iξ, y + iη) .
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In order to recover easily the correspondence with the standard pseudodif-
ferential calculus of operators a(

√
hx,

√
hDx), it is convenient to set

ε = 2h .

While specifying the relationship between the usual presentations of the
bosonic Fock space and the semiclassical analysis of finite dimensional prob-
lems, fixing the normalizations in a coherent way for both approaches is
probably the hardest task. Here is a summary of these correspondences:

Z = Cd T ∗Rd
Γs(Cd) , L2(Rd)
S(z1, z2) = Re〈z1, z2〉 ((x1, ξ1) , (x2, ξ2)) = ξ1.ξ2 + x1.x2 = S(z1, z2)
σ(z1, z2) = Im〈z1, z2〉 [[(x1, ξ1), (x2, ξ2)]] = ξ1.x2 − x1.ξ2 = −σ(z1, z2)
a(z) = a(

∑d
j=1 αjej) a(z) =

∑d
j=1 αj(

√
h∂xj +

√
hxj)

a∗(z) = a∗(
∑d
j=1 αjej) a∗(z) =

∑d
j=1 αj(−

√
h∂xj +

√
hxj)

[a(z1), a∗(z2)] = ε 〈z1 , z2〉 [a(z1), a∗(z2)] = 2h 〈z1 , z2〉
Φ(z0) = 1√

2
(a(z0) + a∗(z0))

√
2h(x0.x+ ξ0.Dx)

W (z0) = eiΦ(z0) τ(−
√

2hξ0,
√

2hx0)
= ei(

√
2hx0.x+ξ0.

√
2hDx)

E(z0) = W (
√

2
iε z0)Ω τ

(
x0√

h
,

ξ0√
h
)
(π−d/4e−

x2
2 )

z⊗n0 , |z0| = 1 Hermite function

(n!)−1/2[z0.(−∂x + x)]n(π−d/4e−
x2
2 )

N =
∑d
j=1 a

∗(ej)a(ej) h(−∆ + x2 − d)

2.2. Quantizations

The Wick quantization is defined for any polynomial symbol while fol-
lowing the Wick ordering rule with creation operators on the left-hand
side and annihilation operators on the right-hand side. After choosing an
orthonormal basis (e1, . . . , ed) in Z, a∗(ej) is associated with the anti-
linear form zj = 〈z , ej〉, the annihilation operator a(ej) with the linear
zj = 〈ej , z〉, and with the polynomial b(z, z) =

∑
|α|+|β|≤m cα,βz

αzβ is
associated the operator bWick =

∑
|α|+|β|≤m cα,β(a

∗)αaβ . A more intrinsic
way can be done by considering for a (p, q)-homogeneous polynomial, the
associated sesquilinear form. In finite dimension, this amounts to

b(z, z) =
〈
z⊗q , b̃z⊗p

〉
, b̃ =

1
p!

1
q!
∂pz∂

q
zb(z, z) ∈ L(

p∨
Z,

q∨
Z) (2.4)
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The general definition of the unbounded operator bWick (see for example
Derezinski-Gérard6), is given by its action on any n-particles sector

bWick
|Wn Z = 1[p,+∞)(n)

√
n!(n+ q − p)!

(n− p)!
ε

p+q
2

(
b̃
∨
IWn−p Z

)

bWick
|Wn Z ∈ L(

n∨
Z,

n+q−p∨
Z) .

(2.5)

The Weyl quantization is defined after considering the Fourier trans-
form of the symbol b,

F [b](z) =
∫

Z
b(ξ) e−2πi S(z,ξ) L(dξ) , b(z) =

∫

Z
F [b](z) e2πi S(z,ξ) L(dz) ,

when L(dz) denotes the Lebesgue measure on Z = Cd. The Weyl quan-
tization (corresponding to the standard definition of aWeyl(

√
hx,

√
hDx),

ε = 2h) is then given by

bWeyl =
∫

Z
F [b](z) W (

√
2πz) L(dz) . (2.6)

After taking good Weyl-Hörmander symbol classes, this makes an al-
gebra with the Moyal product with full asymptotic expansions w.r.t.
ε > 0 (see Hörmander,19 Bony-Chemin,3 Bony-Lerner,4 Helffer,16 Nataf-
Nier,23 Robert24). A good choice which contains polynomial symbols is
∪s∈RS(〈z〉s , g) with g = dz2 = dx2 + dξ2 or g = dz2

〈z〉2 . Moreover for any
polynomial symbol, the relationship between the Wick and Weyl quantiza-
tion is explicit according to

bWeyl


b ∗ e−

|z|2
ε/2

(πε/2)d



Wick

. (2.7)

The Anti-Wick quantization can be defined in different ways. Either
by associating with any polynomial symbol b(z, z) =

∑
|α|+|β|≤m cα,βz

αzβ

the operator bA−Wick =
∑
|α|+|β|≤m cα,βa

β(a∗)α . Equivalent definitions
which make its properties more obvious are given by:

bA−Wick =
∫

Z
b(ξ) |E(ξ)〉〈E(ξ)| Lp(dξ)

(πε)d
(2.8)

bA−Wick =


b ∗ e−

|z|2
ε/2

(πε/2)d



Weyl

(2.9)

=
∫

Z
F [b](ξ) W (

√
2πξ) e−

επ2
2 |ξ|2 L(dξ) . (2.10)
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For example, the Anti-Wick quantization appears directly as a non negative
quantization in (2.8) while the comparison with the Weyl quantization can
be derived from (2.9) or (2.10). In finite dimension, all these quantization
are asymptotically equivalent in the sense that they are asymptotically
equal up to a well controlled O(ε) term when one deals with good classes
of symbols.

2.3. Mean field or semiclassical asymptotics

The semiclassical asymptotic can be written
{
ih∂tψ = pWeyl(

√
hx,

√
hDx)ψ

ψ(t = 0) = ψh0 ,

and there are several ways to handle the limit h→ 0:

1a) Use the WKB-ansatz, ψ(t) = ei
S(x,t)

h

∑∞
k=0 h

kak(x, t), when the initial
data equals ψh0 = ei

S0(x)
h

∑∞
k=0 h

kak(x, 0);
1b) Express more generally e−

it
h p(

√
hx,

√
hDx) as a Fourier integral operator;

1c) Express e
it
h p(

√
hx,

√
hDx)bWeyl(

√
hx,

√
hDx)e−

it
h p(

√
hx,

√
hDx) as an h-

pseudodifferential operator with principal part solving ∂tb = {p, b}
according the classical Hamiltonian dynamics associated with p;

2) Analyze the propagation of squeezed coherent states when ψh0 = E(z0)
also known as the Hepp method;

3) Use Wigner measures which solve ∂tµ+ {p, µ} = 0 .

We refer the reader for example to Grigis-Sjöstrand,15 Martinez,22 Robert24

for the first approach and to Combescure-Ralston-Robert5 for the sec-
ond one in finite dimension and Gérard,12 Gérard-Markowich-Mauser-
Poupaud,13 Helffer-Martinez-Robert,17 Lions-Paul20 for the introduction
of Wigner measures.

The bosonic mean field limit writes with ε → 0 when ε = 1
n and n is

the characteristic number of bosons. It is usually written
{
iε∂tψ = pWickψ

ψ(t = 0) = ψz0 with ψz0 = E(z0) or ψz0 = z⊗n0 , n = 1
ε .

The problem is to show

〈ψ(t) , Aψ(t)〉 ε→0∼ 〈ψzt , Aψzt〉
where A is any Wick-quantized polynomial A = bWick and zt is the solution
to the associated classical equation

i∂tzt = ∂zp(zt, zt), zt=0 = z0 .
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In the framework of mean field limits, this has been considered first with
the Hepp method. This method was actually first developed for the infinite
dimensional case by Hepp18 and Ginibre-Velo.14 Another approach widely
studied consists, when ψz0 = z⊗n0 , in computing explicitly the evolution of
Wick observables tested on such states via a Dyson expansion (see Fröhlich-
Graffi-Schwarz,11 Fröhlich-Knowles-Pizzo,10 Erdös-Schlein-Yau7,8). Both
methods work essentially for some specific initial data contrarily to the
methods 1b), 1c) and 3) used in the finite dimensional semiclassical frame-
work.

3. Infinite dimensional case

Considering the infinite dimensional case which is the relevant one within
the mean field theory presents some well known difficulties. First of all
building a good pseudodifferential calculus is not so trivial and the dif-
ferent approaches carry different pieces of information. Even when a good
pseudodifferential algebra is built, it has to be preserved by nonlinear defor-
mations according to the mean field dynamics. In the infinite dimensional
case, this essentially never happens.

There are essentially two ways to consider the extension of the pseudo-
differential calculus in infinite dimension: one is inductive and occurs within
the problems of thermodynamical limits, the other one is projective and
fits better with a stochastic processes point of view. The first one consists
in having a good control of phase-space integrals like (2.6), (2.8), (2.10),
with respect to the dimension or by replacing the Lebesgue measure with
Gaussian measures. The quasi-equivalence of two Gaussian measures is en-
sured by some Hilbert-Schmidt condition which occurs in the presentation
by Lascar21 of some infinite dimensional pseudodifferential calculus and is
reminiscent of Shale’s theorem. Such Hilbert-Schmidt conditions do not en-
sure that all the infinite dimensional phase space is well explored and brings
difficulties after applying a nonlinear Hamiltonian dynamics.

The second one relies on the tensor decomposition

Γs(Z) ∼ Γs(pZ)⊗ Γs(p⊥Z) (3.1)

with

W (ξ + ξ′) = W (ξ)W (ξ′) = Wp(ξ)⊗Wp⊥(ξ′) when ξ ∈ pZ , ξ′ ∈ p⊥Z ,
(3.2)

where p is any finite rank orthogonal projection and p⊥ = 1− p (the tensor
product is the Hilbert tensor product). Hence it is possible to define cylin-
drical Weyl (resp. Anti-Wick) observable by restricting the integral (2.6)
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(resp. (2.10)), and testing with such an observable corresponds to tracing
out (or integrating) with respect to all the directions but pZ.

This distinction can be considered within the Wick quantization of poly-
nomial symbols. Actually it is contained in the discussion of what is the
right continuity assumption for polynomials b(z, z) =

〈
z⊗q , b̃z⊗p

〉
which

amounts to the right notion of completed tensor product. The Hilbert-
Schmidt condition would say that b̃ ∈ L2(

∨pZ,∨q Z) is a Hilbert-Schmidt
operator (Lp(E,F ) denotes the p-Schatten class and L∞(E,F ) the set of
compact operators). The condition (2.4) actually provides the right alge-
bra property and it is a mixture of Hilbert-Schmidt (the symmetric tensor
products

∨pZ and
∨pZ are Hilbert tensor products) and projective topol-

ogy (b̃ is a general bounded operator). Here again the difficulty comes from
the fact that a nonlinear Hamiltonian dynamics does not preserve the class
of polynomial symbols.

Although the possible pseudodifferential calculi do not lead in infinite
dimension to good notions of Fourier integral operators and yet do not al-
low nonlinear deformations, some results about the mean field dynamics
are available via the Hepp method (see Hepp,18 Ginibre-Velo14) or via the
truncated Dyson expansion approach (see Erdös-Schlein-Yau,7,8 Fröhlich-
Graffi-Schwarz,11 Fröhlich-Knowles-Pizzo10). The most flexible way to ap-
proach the semiclassical limit, that is Wigner measures, allows to clarify
the situation in infinite dimension.

Wigner measures are easily defined with the Weyl and Anti-Wick quan-
tization within the projective approach according to (2.6), (2.10), (3.2).
When the trace class operator % ≥ 0 on H with Tr[%] = 1, the family of
probability measures defined by duality according to

Tr
[
%(bA−Wick ⊗ IdΓs(p⊥Z))

] ∫

pZ
b(z)dµ(z)

on any finite dimensional subspace pZ, is a projective family of probability
measures also called a weak distribution. When the phase space Z is separa-
ble and under the additional assumption that Tr

[
(1 +N)δ/2%ε(1 +N)δ/2

]
is uniformly bounded w.r.t ε ∈ (0, ε) for some δ > 0, it is possible to
carry out the diagonal extraction process which leads to the definition of
the Wigner measure. Moreover such an asymptotic weak distribution is
actually a Radon measure on the infinite dimensional phase space Z (see
Skohorod,26 Schwartz25).

Theorem 3.1. Assume that Z is a separable Hilbert space. Let (%ε)ε∈(0,ε̄)

be a family of normal states on L(H) parametrized by ε. Assume
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Tr[Nδ/2ρεN δ/2] ≤ Cδ uniformly w.r.t. ε ∈ (0, ε) for some fixed δ > 0
and Cδ ∈ (0,+∞). Then for every sequence (εn)n∈N with limn→∞ εn = 0
there exists a subsequence (εnk

)k∈N and a Borel probability measure µ on
Z such that

lim
k→∞

Tr[ρεnk bWeyl] lim
k→∞

Tr[ρεnk bA−Wick]
∫

Z
b(z) dµ(z) ,

for all cylindrical functions b ∈ ∪p∈P F−1 (Mb(pZ)) of which the Fourier
transform is a bounded measure (P is the set of orthogonal projections with
a finite rank).

Moreover this probability measure µ satisfies
∫

Z
|z|2δ dµ(z) <∞.

Definition 3.1. For a family (%ε)ε∈(0,ε) which satisfy the assumptions of
Theorem 3.1,M(%ε) denotes the set of all its Wigner measures defined after
extracting a subsequence εnk

→ 0 .

Once these asymptotic objects are defined it is possible to handle them
and to compare the action of different quantizations (the comparison of
Weyl and Anti-Wick quantized cylindrical observables is contained in the
theorem), of different kinds of results (Hepp method, truncated Dyson ex-
pansion) and of different points of view (inductive or projective). For every
questions several limits have to be considered: the limit ε → 0, the limit
with respect to the dimension going to or being infinite and possibly the
limit due to an approximation process which allows to switch from one kind
of observables to another (cylindrical, polynomial). The order of taking the
limits is often crucial and makes the analysis non trivial. For example, the
asymptotic equivalence of quantizations is only partially true.

Proposition 3.1. Assume the uniform estimate
∣∣∣(1 +N)δ/2%ε(1 +N)δ/2

∣∣∣
L1(H)

≤ Cδ for all δ > 0

and further that the family (%ε)ε∈(0,ε) has a unique Wigner measure µ as
ε→ 0. Then the limit

lim
ε→0

Tr
[
βWick%ε

]
=

∫

Z
β(z) dµ(z)

holds for any polynomial β(z, z) =
〈
z⊗q , β̃z⊗p

〉
, with a compact kernel

β̃ ∈ L∞(
∨pZ,∨q Z).
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Dimensional defect of compactness: The restriction

β ∈ L∞(
p∨
Z,

q∨
Z)

is not an artefact of our approach. It accounts for what we called the di-
mensional defect of compactness. Here is the basic example: Take an or-
thonormal basis (ej)j∈N of Z and consider for %ε the projector

%ε = |E(e[1/ε])〉〈E(e[1/ε])|
when [1/ε] denotes the integer part of 1/ε. This family admits the unique
Wigner measure δ0 as ε → 0. For any Wick quantized polynomial with a
compact kernel

lim
ε→0

〈
E(e[1/ε]) , bWickE(e[1/ε])

〉
= 0 .

But taking bWick = N , that is b(z) = |z|2 gives
〈
E(e[1/ε]) , bWickE(e[1/ε])

〉
= 〈E(ej) , NE(ej)〉 = 1 .

4. Applications

Three applications have been given with details in Ammari-Nier.2

(1) Reconsidering the thermodynamic limit of the ideal Bose gas as a small
parameter limit allows to reconsider the Bose-Einstein condensation
phenomenon. It provides an interesting illustration of the dimensional
defect of compactness.

(2) It is possible to specify the relationship between various approaches
and various results about mean field limits. For example a slightly
weaker version of the propagation of chaos, that is for products states
|z⊗n〉〈z⊗n| tested on Wick observables, can be derived from the result
given by the Hepp method for coherent states.

Theorem 4.1. Let Uε be a unitary operator on H possibly depending
on ε ∈ (0, ε) which commutes with the number operator [N,Uε] = 0.
Assume that for a given z ∈ Z such that |z| = 1, there exists zU ∈ Z
such that

M (|UεE(z)〉〈UεE(z)|) = {δzU } .
Then for any non negative function ϕ ∈ L1(R, ds) such that

∫
R ϕ(s)(1+

|s|)δ ds <∞ for some δ > 0 and
∫
R ϕ(s) ds = 1, the family

%εϕ =
∞∑
n=0

ε1/2ϕ(ε1/2(n− ε−1))|Uεz⊗n〉〈Uεz⊗n|
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admits a unique Wigner measure

M (
%εϕ

) 1
2π

∫ 2π

0

δeiθzU
dθ .

(3) Non trivial superpositions: It is possible to derive from the results ob-
tained for the mean field dynamics of coherent states or product states,
the mean field dynamics of non trivial superposition of states. For ex-
ample the Wigner measure allows to use some orthogonality of measures
arguments.

Proposition 4.1. Assume that the family of vectors (uε)ε∈(0,ε) and
(vε)ε∈(0,ε) satisfy the uniform estimates

∣∣∣(1 +N)δ/2uε
∣∣∣
H

+
∣∣∣(1 +N)δ/2vε

∣∣∣
H
≤ C , |uε|H = |vε|H = 1

for some fixed δ > 0 and C > 0. Set

%εuv = |uε〉〈vε| .
Assume further that any µ ∈M(%εuu) and any ν ∈M(%εvv) are mutually
orthogonal. Then the family (%εuv)ε∈(0,ε) is pure with

M(%εuv, ε ∈ (0, ε)) = {0}
i.e. lim

ε→0

〈
uε , bWeylvε

〉
lim
ε→0

〈
uε , bA−Wickvε

〉
= 0

for any b ∈ F−1(Mb(pZ)) and any p ∈ P.
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Perturbations of Hamiltonians whose Fourier symbol attains its minimum along
a hypersurface are considered. Such operators arise in several domains, like
spintronics, theory of superconductivity, or theory of superfluidity. Variational
estimates for the number of eigenvalues below the essential spectrum in terms
of the perturbation potential are provided.

Keywords: Schrödinger operator, variational principle, Fourier symbol

1. Introduction

We are studying quantum Hamiltonians H = H0 + V acting on L2(Rn),
n ≥ 2, where V is a potential and H0 is a self-adjoint (pseudodifferential)
operator whose Fourier symbol H0(p) attains its minimal value on a certain
(n − 1)-dimensional submanifold of Rn (surface of extrema). A possible
example for H0 is the Hamiltonian

H0(p) = ∆ +

(|p| − p0

)2

2µ
, ∆, µ, p0 > 0, p ∈ R3, (1.1)

arising in the study of the roton spectrum in liquid helium II1 and intro-
duced by Landau.2 Another example can be the three-dimensional Hamil-
tonian

H0(p) = (p2 − µ)
eβ(p2−µ) + 1
eβ(p2−µ) − 1

, µ, β > 0, (1.2)

which has appeared very recently in the theory of superconductivity;3,4

we refer to the papers cited for the physical meaning of all the constants.
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Similar situations appear in the study of matrix Hamiltonians related to the
spintronics (see below) and in the elasticity theory.5 We will be interested
in situations when V is has a short range (in a suitable sense) and does
not change the bottom of the essential spectrum, hence one arrives at a
couple of questions concerning the eigenvalues lying below the threshold.
A rather detailed analysis of the eigenvalues can be carried out using the
constructions of Laptev-Safronov-Weidl, see Ref. 6.

Our aim here is more methodological. It is a classical result that the
existence of a negative eigenvalue for the Schrödinger operator −∆ + V in
dimensions one and two is guaranteed by the condition

∫
V (x)dx < 0. We

are going to find some analogs of these conditions for the above Hamilto-
nians, in particular, estimates for the number of discrete eigenvalues below
the threshold. While estimates of this kind along with a more detailed spec-
tral information could, in principle, be achieved using more sophisticated
methods of Ref. 6, they can be useful for an a priori analysis; moreover, this
provides an intuitive illustration of the role of one-dimensional dynamics in
the direction transversal to the surface of extrema and shows the origin of
an infinite discrete spectrum appearing under negative perturbations.

It seems that the presence of an infinite discrete spectrum in the physics
literature in such a setting has been observed first rather recently in Ref. 7
on example of rotationally invariant perturbations of the Rashba Hamilto-
nian. In Refs. 8,9 we gave a rigorous justification for a class of spin-orbit
Hamiltonians and rather general potentials, including distributional inter-
actions and interactions supported by null sets, using variational arguments
and specific test functions for two-dimensional systems. Here we develop
this idea in a different direction and use the one-dimensional character of
the dynamics in the direction transversal to the surface of extrema to con-
struct another type of test functions using exact eigenfunctions of a certain
integral operator.

2. Assumptions and basic construction

Let us list our assumptions. Below we consider a self-adjoint operator H0 =
H0(−i∇), where Rn 3 p 7→ H0(p) ∈ R is a semibounded below continuous
function attaining its minimum value minH0 = m. Denote Γ = {p ∈ Rn :
H0(p) = m}; we will assume that for some domain Ω ⊂ Rn the intersection
S = Ω ∩ Γ is a smooth (n− 1)-dimensional submanifold of Rn (in general,
with boundary); by ω we denote the induced volume form on S. Without
loss of generality we assume that S is compact and orientable (otherwise
one can take a smaller Ω). We also suppose that H0 is twice continuously
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differentiable near S.
For both the Hamiltonians (1.1) and (1.2) one takes Ω = R3. For the

example of Eq. (1.1), one has m = 0 and S is the sphere of radius p0

centered at the origin. In Eq. (1.1) one has m = 2β−1 and S is the sphere
of radius

√
µ centered at the origin.

Consider a real-valued potential V ∈ L1(Rn). We will assume that the
operator H = H0 + V defined as a form sum is self-adjoint with

inf specess(H0 + V ) = inf specessH0 = m. (2.1)

For both the Hamiltonians (1.1) and (1.2) the assumption (2.1) holds for
V ∈ L3/2(R3) ∩ L1(R3); indeed, such V is relatively compact with respect
to the Laplacian. As the difference (H0−Laplacian) is infinitely small with
respect to the Laplacian, V is a relatively compact perturbation of H0 as
well.

In what follows we will work in the p-representation. The operator H is
then associated with the bilinear form

〈f,Hf〉 =
∫

Rn

H0(p)|f(p)|2dp+
∫

Rn

∫

Rn

V̂ (p− p′)f(p)f(p′)dp dp′,

where V̂ is the Fourier transform of V ; in our case V̂ is a bounded continuous
function due to V ∈ L1(Rn). By V we denote the operator on L2(S, ω)
acting by the rule

Vf(s) =
∫

S

V̂ (s− s′)f(s′)ω(ds′).

Theorem 2.1. The number of eigenvalues of H below m is not less than
the number of negative eigenvalues for V counting multiplicities.

Proof. Let n(s) be a unit normal vector to S at a point s ∈ S and depend
on s continuously. For r > 0 consider the map σ : S × (−r, r) → Rn,
(s, t) 7→ s + tn(s); we choose r sufficiently small in order that L becomes
a diffeomorphism between S × (−r, r) and σ

(
S × (−r, r)). Note that due

to H0 ∈ C2 one has H0

(
σ(s, t)

) − m ≤ Ct2 for t → 0 with some C > 0
independent of s and that σ(s, 0) = s for any s ∈ S.

Consider two arbitrary function Ψ1,Ψ2 ∈ L2(S, ω). Take ϕ ∈ C∞0 (R)
with

∫
ϕ = 1 and ε > 0. Consider functions fεj ∈ L2(Rn) given by

fεj (p) =

{
ε−1 ϕ(ε−1t)Ψj(s), p = σ(s, t), (s, t) ∈ S × (−r, r),
0, otherwise.

(2.2)
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Clearly,

〈fε1 , (H −m)fε2 〉 =
∫

Rn

fε1 (p)
(
H0(p)−m

)
fε2 (p)dp

+
∫

Rn

∫

Rn

V̂ (p− p′)fε1 (p)fε2 (p′) dp dp′.

One has dp = ρ(s, t)ω(ds)dt with ρ(s, t) = 1 + O(t) for t→ 0 uniformly in
s ∈ S, hence ∣∣∣∣

∫

Rn

(
H0(p)−m

)
fε1 (p)fε1 (p)dp

∣∣∣∣

=
∣∣∣∣ ε−2

∫ r

−r

∫

S

(
H0

(
σ(s, t)

)−m
)∣∣ϕ(ε−1t)

∣∣2Ψ1(s)Ψ2(s)ρ(s, t)ω(ds)dt
∣∣∣∣

≤ C

∣∣∣∣
∫ r

−r

∫

S

ε−2t2
∣∣ϕ(ε−1t)

∣∣2Ψ1(s)Ψ2(s)ρ(s, t)ω(ds)dt
∣∣∣∣

≤ Cε

∣∣∣∣∣
∫ r/ε

−r/ε

∫

S

t2
∣∣ϕ(t)

∣∣2Ψ1(s)Ψ2(s)ρ(s, εt)ω(ds) dt

∣∣∣∣∣ = O(ε).

On the other hand, for any bounded continuous function v : Rn ×Rn → R
one has ∫

Rn

∫

Rn

v(p, p′)fε1 (p)fε2 (p′) dp dp′

= ε−2

∫ r

−r

∫ r

−r

∫

S

∫

S

v
(
σ(s, t), σ(s′, t′)

)
ϕ(ε−1t)ϕ(ε−1t′)

×Ψ1(s)Ψ2(s′)ρ(s, t)ρ(s′, t′)ω(ds)ω(ds′)dt dt′

=
∫ r/ε

−r/ε

∫ r/ε

−r/ε

∫

S

∫

S

v
(
σ(s, εt), σ(s′, εt′)

)
ϕ(t)ϕ(t′)

×Ψ1(s)Ψ2(s′)ρ(s, εt)ρ(s′, εt′)ω(ds)ω(ds′)dt dt′ =: I(ε).

(2.3)

Due to the obvious estimate∣∣∣∣
∫

S

∫

S

v
(
σ(s, εt), σ(s′, εt′)

)
Ψ1(s)Ψ2(s′)ρ(s, εt)ρ(s′, εt′)ω(ds)ω(ds′)

∣∣∣∣

≤ C̃

∫

S

∣∣Ψ1(s)
∣∣ω(ds)

∫

S

|Ψ2(s)|ω(ds)

with C̃ = supp,p′∈Rn |v(p, p′)| sup(s,t)∈S×(−r,r) |ρ(s, t)|, one has, by the
Lebesgue dominated convergence,

lim
ε→0

I(ε) =
∫

S

∫

S

v
(
σ(s, 0), σ(s′, 0)

)
Ψ1(s)Ψ2(s′)ω(ds)ω(ds′)

=
∫

S

∫

S

v(s, s′)Ψ1(s)Ψ2(s′)ω(ds)ω(ds′).
(2.4)
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Taking v(p, p′) = V̂ (p− p′), we have shown that for any Ψ1,Ψ2 ∈ L2(S, ω)
and the functions fε1 , fε2 given by Eq. (2.2) one has

lim
ε→0

〈fε1 , (H −m)fε2 〉 = 〈Ψ1,VΨ2〉. (2.5)

Assume now that V has N negative eigenvalues E1, . . . , EN and let
Ψ1, . . . ,ΨN be the corresponding normalized eigenfunctions orthogonal to
each other. Consider the functions fεj , j = 1, . . . , N , given by the expres-
sions (2.2). Then, by Eq. (2.5), the matrix h(ε) =

(〈fεj , (H −m)fεk〉
)

con-
verges to diag(E1, . . . , EN ). In particular, h(ε) is negative definite for suf-
ficiently small ε, which means, by the variational principle, that H has at
least N eigenvalues below m.

3. Estimates for the number of eigenvalues

Due to the obvious estimate∫

S

∫

S

|V̂ (s− s′)|2ω(ds)ω(ds′) <∞

V is a Hilbert-Schmidt operator and hence compact, which implies
specess V = {0}.

Theorem 3.1. If V ≤ 0 and V 6≡ 0, then the discrete spectrum of V
consists of an infinite sequence of negative eigenvalues converging to 0, and
0 is not an eigenvalue.

Proof. Let f ∈ L2(S, ω). One has

〈f,Vf〉 =
∫

S

∫

S

V̂ (s− s′)f(s)f(s′)ω(ds)ω(ds′)

=
1

(2π)n/2

∫

S

∫

S

∫

Rn

V (x)ei〈s
′−s,x〉f(s)f(s′)dxω(ds)ω(ds′)

=
1

(2π)n/2

∫

Rn

V (x)
∣∣g(x)

∣∣2 dx ≤ 0

with

g(x) :=
∫

S

f(s)e−i〈s,x〉ω(ds). (3.1)

Therefore, specV ⊂ (−∞, 0].
Assume that 〈f,Vf〉 = 0 for some f . The function g in Eq. (3.1) is

analytic as the Fourier transform of the compactly supported (and hence
tempered) distribution (2π)n/2f(s)δS(s), where δS is the Dirac measure



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

236 K. Pankrashkin

concentrated on S. To have 〈f,Vf〉 = 0 the function g must vanish on a
set of non-zero Lebesgue measure (the support of V ) and hence, due to the
analyticity, must vanish everywhere. As the Fourier transform is a bijection
on the set of the tempered distributions, this means f = 0. Therefore, 0
cannot be an eigenvalue of V, and it remains to recall that V is a compact
operator in a Hilbert space of infinite dimension.

Combining Theorems 2.1 and 3.1 one arrives at

Corollary 3.1. If V ≤ 0 and V 6≡ 0, then H has infinitely many eigenval-
ues below the essential spectrum.

If the condition V ≤ 0 does not hold, one still can try to estimate
the number of negative eigenvalues for V using the values of the Fourier
transform at some points. Due to specess V = {0} the number of negative
eigenvalues for V can be estimated using the variational principle as well.

Theorem 3.2. Let N ∈ N. Assume that there exist points sj ∈ S, j =
1, . . . , N , such that the matrix

(
V̂ (sj − sk)

)
is negative definite, then V has

at least N negative eigenvalues and hence H has at least N eigenvalues
below m.

Proof. Fix some neighborhoods Sj ⊂ S of sj such that there exist diffeo-
morphisms Jj : B → Sj , where B is the unit ball centered at the origin in
Rn−1. Without loss of generality we assume Jj(0) = sj . Let us take func-
tions ϕj ∈ C∞0 (Rn−1) with Dj(0)

∫
ϕj = 1, where Dj is the Jacobian for

Jj , j = 1, . . . , N . Denote Ψε
j(s) = ε1−nϕj(ε−1J−1

j (s))χB(J−1
j (s)) where χB

stands for the characteristic function of B. Clearly, Ψε
j ∈ L2(S, ω). One has

〈Ψε
j ,VΨε

k〉 =
∫

S

∫

S

Ψε
j(s)V̂ (s− s′)Ψε

k(s
′)ω(ds)ω(ds′)

= ε2−2n

∫

B

∫

B

ϕj(ε−1u)V̂
(
Jj(u)− Jk(u′)

)
ϕk(ε−1u)Dj(u)Dk(u′)du du′

=
∫

B/ε

∫

B/ε

ϕj(u) V̂
(
Jj(εu)− Jk(εu′)

)
ϕk(u′)Dj(εu)Dk(εu′)du du′

ε→0−→ V̂ (sj − sk).

Therefore, the matrix
(〈Ψε

j ,VΨε
k〉

)
is negative definite for small ε. The rest

follows from the variational principle and Theorem 2.1.

Taking N = 1 in Theorem 3.2 we obtain a simple condition resembling
that for perturbations of the Laplacian in one and two dimensions.
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Corollary 3.2. If
∫

Rn

V (x)dx < 0,

then H has at least one eigenvalue below m.

We note that Corollary 3.1 can be also obtained from Theorem 3.2
because for V ≤ 0 and V 6≡ 0 the matrix

(
V̂ (sj − sk)

)
is negative definite

for any choice and any number of mutually distinct points sj ∈ Rn by the
Bochner theorem.

4. Matrix Hamiltonians

The above constructions can be also applied to a class of matrix Hamiltoni-
ans. Namely, consider an operator H0 acting in L2(Rn)⊗Cd whose Fourier
symbol in the multiplication by a d×d Hermitian matrix H0(p). Then there
exist unitary matrices U(p), p ∈ Rn, and real-valued continuous functions
p 7→ λ1(p), . . . , p 7→ λd(p) with λ1(p) ≤ λ2(p) ≤ · · · ≤ λd(p) such that

H0(p) = U(p) diag
(
λ1(p), . . . , λd(p)

)
U∗(p). (4.1)

We assume that λ1(p) satisfies the same conditions as the symbol H0(p) in
the scalar case. We will use the same notation; in particular, minλ1(p) =
inf specH0 = m.

A class of such matrix operators is delivered by spin-orbit Hamiltoni-
ans10 acting in L2(R2)⊗ C2 and given by the matrices

H0(p) =
(
p2 a(p)
a(p) p2

)
(4.2)

with some linear functions a. In particular, the case a(p) = α(p2 + ip1)
corresponds to the Rashba Hamiltonian,11 and a(p) = −α(p1 + ip2) gives
the Dresselhaus Hamiltonian;12 in both cases α is a non-zero constant. Here
one has λ1(p) = p2 −

∣∣a(p)
∣∣, and the minimum −α2/4 is attained at the

circle |p| = |α|/2.
Again consider a scalar real-valued potential V ∈ L1(Rn). Assume that

the operator H0 + V defined through the form sum is self-adjoint and that
inf specess(H0 + V ) = inf specessH0 = m. The preservation of the essential
spectrum for the above Rashba and Dresselhaus Hamiltonians is guaran-
teed, e.g. for V ∈ L1(R2) ∩ L2(R2), which is achieved by comparison with
the two-dimensional Laplacian.

Also in this case we can prove an analogue of Corollary 3.1.
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Theorem 4.1. Let V ≤ 0 and V 6≡ 0, then the matrix Hamiltonian H has
infinitely many eigenvalues below m.

Proof. The proof follows the construction in the proof of Theorem 2.1.
Consider the vector h = (1, 0, . . . , 0)T ∈ Cd, and for ε > 0 denote F εj (p) =
U(p)fεj (p)h with the functions fεj from Eq. (2.2). Then by Eq. (4.1) one has

〈F εj , (H −m)F εk 〉 =
∫

Rn

λ1(p) fεj (p)f
ε
k(p)dp

+
∫

Rn

∫

Rn

V̂ (p− p′)〈U(p)h,U(p′)h〉fεj (p)fεk(p′) dp dp′.

By Eqs. (2.3) and (2.4), there holds

lim
ε→0

〈F εj , (H −m)F εk 〉

=
∫

S

∫

S

V̂ (s− s′)
〈
U(s)h, U(s′)h

〉
Ψ1(s)Ψ2(s′)ω(ds)ω(ds′).

By the same arguments as in the proof of Theorem 2.1, the number of
eigenvalues ofH belowm is not less than the number of negative eigenvalues
of the operator U acting on L2(S, ω) and given by

Uf(s) =
∫

S

V̂ (s− s′)
〈
U(s)h, U(s′)h

〉
f(s)ds′.

Again, U is a compact operator by
∫

S

∫

S

∣∣∣V̂ (s− s′)
〈
U(s)h, U(s′)h

〉∣∣∣
2

ω(ds)ω(ds′)

≤
∫

S

∫

S

∣∣V̂ (s− s′)
∣∣2ω(ds)ω(ds′) <∞.

Let us show that all eigenvalues of U are negative (this, like in Theo-
rem 3.1, will mean that U has an infinite number of negative eigenvalues).
For f ∈ L2(S, ω) one has

〈f,Uf〉 =
∫

S

∫

S

V̂ (s− s′)
〈
U(s)h,U(s′)h

〉
f(s)f(s′)ω(ds)ω(ds′)

=
∫

S

∫

S

∫

Rn

V (x)ei〈s
′−s,x〉

(2π)n/2
〈
U(s)h, U(s′)h

〉
f(s)f(s′)dxω(ds)ω(ds′)

=
1

(2π)n/2

∫

Rn

V (x)
∣∣g(x)

∣∣2 dx ≤ 0

(4.3)

with

g(x) :=
∫

S

U(s)f(s)he−i〈s,x〉ω(ds).
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It remains to show that 0 is not an eigenvalue of U . Assuming Uf = 0 we
obtain from Eq. (4.3) that g vanishes on the support of V having non-zero
Lebesgue measure. As g is again the Fourier transform of a compactly sup-
ported distribution and hence analytic, it must vanish everywhere, which
means that the vector function s 7→ U(s)f(s)h is zero a.e. As the matrix
U(s) is unitary for any s, this means f = 0.

We note that Corollary 3.1 and Theorem 3.2 for the Rashba and Dres-
selhaus Hamiltonians were shown in Ref. 8 using special test functions for
two-dimensional operators.13 The above analysis can be extended to the
case when the perturbation V is not a potential, but a measure with some
regularity conditions. For the Hamiltonians (4.2) one can still prove the in-
finiteness of the discrete spectrum for perturbations by negative measures
supported by curves.9

Acknowledgments

The author thanks Grigori Rozenblum for critical comments on a prelimi-
nary version of the paper. The work was supported in part by the Deutsche
Forschungsgemeinschaft.

References

1. Kruglov, V. I. and Collett, M.J., Roton excitation spectrum in liquid helium
II. Phys. Rev. Lett. 87, 185302 (2001).

2. Landau, L., The theory of superfluidity of helium II. J. Phys. USSR 5, 71–90
(1941).

3. Frank, R.L., Hainzl, C., Naboko, S., and Seiringer, R., The critical tem-
perature in the BCS model at weak coupling, J. Geom. Anal. (to appear).
Preprint arxiv: 0704.3564.

4. Hainzl, C., Hamza, E., Seiringer, R., and Solovej, J.P., The BCS model for
general pair interactions. Commun. Math. Phys. (to appear). Preprint arxiv:
math-ph/0703086.

5. Förster, C., Trapped modes for the elastic plate with a perturbation of Young’s
modulus. Preprint arxiv: math-ph/0609032.

6. Laptev, A., O. Safronov, O., and Weidl, T., Bound states asymptotics for el-
liptic operators with strongly degenerate symbols. In Nonlinear Problems in
Mathematical Physics and Related Topics I. In Honor of Professor O. A. La-
dyzhenskaya. Eds. M. Sh. Birman, S. Hildebrandt, V. A. Solonnikov, and
N. N. Uraltseva, Int. Math. Ser., vol. 1, Kluwer/Plenum, New York etc.,
2002, pp. 233–246.

7. Chaplik, A.V. and Magarill, L.I., Bound states in a two-dimensional short
range potential induced by spin-orbit interaction. Phys. Rev. Lett. 96, 126402
(2006).



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

240 K. Pankrashkin
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We present a rigorous proof of the appearance of quantized vortices in dilute
trapped Bose gases with repulsive two-body interactions subject to rotation,
which was obtained recently in joint work with Elliott Lieb.14 Starting from
the many-body Schrödinger equation, we show that the ground state of such
gases is, in a suitable limit, well described by the nonlinear Gross-Pitaevskii
equation. In the case of axially symmetric traps, our results show that the
appearance of quantized vortices causes spontaneous symmetry breaking in
the ground state.

1. Introduction

In recent remarkable experiments,1,12,21,22 the appearance of quantized vor-
tices in the ground state (and low temperature equilibrium states) of ro-
tating dilute Bose gases was beautifully demonstrated. These quantized
vortices are a consequence of the superfluid nature of the system under
investigation. In particular, since the system is almost completely Bose
condensed, it behaves like a single quantum particle.

The state of ultracold dilute Bose gases is usually described by means
of the Gross-Pitaevskii (GP) equation.2,4,5,9,10 This non-linear Schrödinger
equation originates as the variational equation from the corresponding GP
energy functional, given by

EGP[φ] = 〈φ|H0|φ〉+ 4πg
∫

R3
|φ(x)|4d3x . (1.1)

Here, φ ∈ L2(R3), and H0 denotes the one-particle Hamiltonian, describing
the kinetic, potential and rotational energy of the particles. In fact, if Ω

∗ c© 2008 by the author. This work may be reproduced, in its entirety, for non-commercial
purposes.



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

242 R. Seiringer

denotes the angular velocity vector and V (x) the trap potential, H0 is, in
appropriate units, given by

H0 = −∆ + V (x)− Ω · L , (1.2)

where L = −ix ∧∇ denotes the angular momentum operator. The param-
eter g in (1.1) is nonnegative and measures the interaction strength among
the particles. The trap potential V (x) is assumed to be locally bounded and
to increase fast enough at infinity in order to have the particles confined
to the trap (and, in particular, to ensure that H0 is bounded from below).
More precisely, we assume that

lim
|x|→∞

(
V (x)− 1

4
|Ω ∧ x|2

)
= +∞ . (1.3)

Since −∆−Ω ·L = (−i∇+ Ω∧ x/2)2− |Ω∧ x|2/4, this implies the desired
property.

The GP energy is the minimal value of EGP[φ] among all (appropriate
normalized) functions φ, i.e.,

EGP(g,Ω) = inf
‖φ‖2=1

EGP[φ] .

Using (1.3) and the fact that g ≥ 0, it is in fact not difficult to show
that the infimum is actually a minimum (see Ref. 20). That is, there exists
a minimizer of the GP functional (1.1). Note that, in general, there may
be many different minimizers. In any case, any minimizer satisfies the GP
equation

−∆φ(x) + V (x)φ(x)− Ω · Lφ(x) + 8πg|φ(x)|2φ(x) = µφ(x)

where µ = EGP(g,Ω) + 4πg
∫
R3 |φ(x)|4d3x is the corresponding chemical

potential.
For axially symmetric V (x), i.e., in case V (x) commutes with Ω · L,

the GP functional is invariant under rotation about the Ω axis. It turns out
that for any Ω 6= 0, this rotational symmetry is broken in the GP minimizer
for large enough interaction strength g.23,24 This symmetry breaking is the
result of the appearance of quantized vortices since, in case of more than one
vortex, they cannot be arrange in a symmetric way. Note that, in particular,
this implies that there will be many GP minimizers (for g large enough).

We remark that the phenomenon just described is a special feature of
rotating systems and cannot be observed in a non-rotating system. In fact,
for Ω = 0 there is always a unique minimizer of the GP functional.20
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It turns out that the appearance of quantized vortices, and the resulting
symmetry breaking, which we have just described, are not merely a property
of the GP theory, but can actually be derived out of the underlying (many-
particle) Schrödinger equation. This was proved in Ref. 14. In the following
sections, we will give a summary of these results, and we will explain the
key ideas leading to their proof.

2. The Schrödinger Equation for Many Particles

Consider a quantum-mechanical system of a large number, N , of bosons,
with one-particle energies described by H0 (given in (1.2) above). We as-
sume that the particles interact via a repulsive pair interaction potential
va(x). The Hamiltonian for this system is given by

HN =
N∑

i=1

H
(i)
0 +

∑

1≤i<j≤N
va(xi − xj) , (2.1)

where the superscript (i) refers to the fact that H0 acts on the i’th variable.
Since the particles under consideration are bosons, the Hamiltonian HN

acts on the subspace of totally symmetric functions in
⊗N

L2(R3), which
we denote by HN .

The interaction potential va(x) is assumed to be nonnegative and
of short range. More precisely, it is assumed to have finite scattering
length,17,20 denoted by a, which means that it has to be integrable at infin-
ity (i.e., it has to decay faster than |x|−3). A typical example would be a
hard sphere interaction, which formally means that va(x) = ∞ for |x| ≤ a

and va(x) = 0 otherwise. We shall, in fact, choose some fixed (nonnega-
tive) interaction potential w(x) with scattering length 1 and obtain va(x)
by scaling as

va(x) = a−2w(x/a) .

It is then easy to see that va(x) has scattering length a. Moreover, a now
appears as a parameter in the Hamiltonian HN , which can be freely varied.
In particular, we can (and will) let a depend on N . We note that this scaling
of va(x) is, of course, mathematically and physically equivalent to scaling
the trap potential V (x) (and the angular velocity Ω) in an appropriate way,
while keeping the interaction potential fixed.
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2.1. Ground State Energy

For fixed w(x) and V (x), we shall denote the ground state energy of HN

as E0(N, a,Ω), i.e.,

E0(N, a,Ω) = inf
Ψ∈HN

〈ψ|HN |Ψ〉
〈Ψ|Ψ〉 .

Since the ground state energy per unit volume of a homogeneous Bose gas
with interaction va(x) at density ρ is given by 4πaρ2 for low density,18 it
is reasonable to expect that E0(N, a,Ω) ≈ NEGP(Na,Ω) for dilute gases.
Here, dilute means that a3ρ̄¿ 1, where ρ̄ denotes the average density. This
condition is, in particular, satisfied if N À 1 and Na = O(1). We call this
the GP limit. In this limit, we have the following result.14

Theorem 2.1. For any g ≥ 0 and Ω ∈ R3,

lim
N→∞

E0(N, g/N,Ω)
N

= EGP(g,Ω) (2.2)

That is, for large N and a = O(1/N), the ground state energy per
particle is given by the GP energy with coupling parameter g = Na. The-
orem 2.1 holds for all angular velocities Ω (satisfying the stability criterion
(1.3)). It extends previous results in the nonrotating case Ω = 0.20

Note that the right side of (2.2) is independent of the choice of the un-
scaled interaction potential w(x). In the dilute limit considered here, only
the scattering length a matters, and not the details of the interaction po-
tential. Note also that the result cannot be obtained by simple perturbation
theory; in fact, the

∫ |φ|4 term in the GP functional is partly kinetic energy,
and not the average value of va(x) (which might even be zero, as in the case
of the hard-sphere interaction).

As will be pointed out in Subsect. 2.3 below, it is essential to restrict
to symmetric wave functions (bosons) in Theorem 2.1. For the absolute
ground state energy (defined as the infimum of HN over all wavefunctions,
not necessarily symmetric ones), the result is wrong, in general. For the
absolute ground state, the right side has to be replaced by minimizing a
density-matrix functional instead.23

2.2. Bose-Einstein Condensation

The GP energy functional (1.1) and its minimizers contain information not
only about the ground state energy of the many-body Hamiltonian (2.1),
but also about the ground state or, more precisely, its reduced density
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matrices. Recall that for any wavefunction Ψ ∈ HN , its reduced one-particle
density matrix γ(1)

N is given by the kernel

γ
(1)
N (x, x′) = N

∫

R3(N−1)
Ψ(x, x2, . . . , xN )Ψ∗(x′, x2, . . . , xN )d3x2 · · · d3xN .

Note that this defines a positive trace class operator on the one-particle
space L2(R3).

The one-particle density matrix of a state Ψ contains all the information
about the system concerning expectation values of one-particle operators.
It particular, the concept of Bose-Einstein condensation (BEC) is defined
in terms of γ(1)

N .
Note that if Ψ is normalized, i.e., ‖Ψ‖2 = 1, then the trace of γ(1)

N is
N . BEC means that γ(1)

N has an eigenvalue of order N . The corresponding
eigenfunction is called the condensate wave function. For dilute systems, as
we consider here, one expects in fact complete BEC, meaning that γ(1)

N is
approximately a rank one projection, or γ(1)

N (x, x′) ≈ Nφ(x)φ(x′) for some
normalized φ ∈ L2(R3).

In the non-rotating case Ω = 0, complete BEC in the ground state of
HN was proved in Ref. 15. Moreover, it was shown that the condensate wave
function equals the GP minimizer. Recall that in the case Ω = 0 there is a
unique minimizer of the GP functional (1.1) (up to constant phase factor,
of course), which we denote by φGP. That is, if γ(1)

N denotes the one-particle
density matrix of the ground state Ψ of HN for Ω = 0, then

lim
N→∞

1
N
γ

(1)
N (x, x′) = φGP(x)φGP(x′) (2.3)

in the GP limit N → ∞, Na → g. To be precise, the limit (2.3) holds
in trace norm sense. Note that although a is scaled to zero in the limit
considered, the right side of (2.3) depends on g = Na via φGP.

The corresponding result for Ω 6= 0 is necessarily more complicated
because of non-uniqueness of the GP minimizer φGP. It is actually more
natural to not just look at a ground state of HN (which may not be unique
in the rotating case either), but on the set of all approximate ground states.
These are defined as sequences of (bosonic) N -particle density matrices γN
(that is, positive operators on HN with trace one) with TrHNγN ≈ NEGP.
One can then expect that the reduced one-particle density matrix γ(1)

N of any
such approximate ground state is a convex combination of GP minimizers,
i.e.,

γ
(1)
N (x, x′) ≈

∑

i

λiφ
GP
i (x)φGP

i (x′)∗
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where each φGP
i is a GP minimizer, and

∑
i λi = N .

Theorem 2.2 below states that this is indeed the case. The mathemati-
cally precise formulation is slightly complicated by the fact that the set of
GP minimizers is, in general, not countable.

Let Γ be the set of all limit points of one-particle density matrices of
approximate ground states:

Γ =
{
γ : ∃ sequence γN , lim

N→∞, Na→g
1
N

TrHNγN = EGP(g,Ω),

lim
N→∞

1
N
γ

(1)
N = γ

}
. (2.4)

Since H0 has a compact resolvent by our assumption (1.3), one easily sees
that Tr γ = 1 for all γ ∈ Γ. Moreover, because of the linearity of the
conditions in (2.4), Γ is clearly convex.

Theorem 2.2. For given value of g ≥ 0 and Ω, let Γ denote the set of all
limit points of one-particle density matrices of approximate ground states
of HN , defined in (2.4).

(i) Γ is a compact and convex subset of the set of all trace class operators.
(ii) Let Γext ⊂ Γ denote the set of extreme points in Γ. We have Γext =

{|φ〉〈φ| : EGP[φ] = EGP(g,Ω)}, i.e., the extreme points in Γ are given
by the rank-one projections onto GP minimizers.

(iii) For each γ ∈ Γ, there is a positive (regular Borel) measure dµγ , sup-
ported in Γext, with

∫
Γext

dµγ(φ) = 1, such that

γ =
∫

Γext

dµγ(φ) |φ〉〈φ|

where the integral is understood in the weak sense. That is, every γ ∈ Γ
is a convex combination of rank-one projections onto GP minimizers.

We remark that item (iii) of Theorem 2.2 follows from item (ii) by
Choquet’s Theorem.6

As explained above, Theorem 2.2 is the natural analogue of (2.3) in the
rotating case. It can also be interpreted as a rigorous proof of superfluid-
ity. As typical for superfluids, angular momentum in rotating systems is
acquired in terms of quantized vortices. These can be seen by solving the
GP equation.

Theorem 2.2 also shows the occurrence of spontaneous symmetry break-
ing. As remarked earlier, axial symmetry of the trap V (x) leads to non-
uniqueness of the GP minimizer for g large enough.23,24 Uniqueness can
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be restored by perturbing H0 to break the symmetry and favor one of the
minimizers. This then leads to complete BEC in the usual sense, since Γ
contains contains only one element in case the GP functional (1.1) has a
unique minimizer.

As in the case of the ground state energy discussed in the previous
subsection, the situation is very different for the absolute ground state.
The set Γ consists of only one element in this case (namely the minimizer
of the density matrix functional discussed below, which is unique for any
value of Ω and g). In particular, there is no spontaneous symmetry breaking
in the absolute ground state. This will be discussed in the next subsection.

2.3. The Absolute Ground State

Let Eabs(N, a,Ω) denote the absolute ground state energy of HN in (2.1),
irrespective of symmetry constraints, i.e.,

Eabs(N, a,Ω) = inf
Ψ∈L2(R3N )

〈ψ|HN |Ψ〉
〈Ψ|Ψ〉 .

Note that necessarily Eabs(N, a,Ω) ≤ E0(N, a,Ω). As is well known, for
Ω = 0 the two energies are equal. This turns out not to be the case for
Ω 6= 0, in general.

In the GP limit, the absolute ground state energy, and the correspond-
ing one-particle reduced density matrices of approximate ground states,
turn out to be described by a GP density matrix functional, introduced in
Ref. 24,

EDM[γ] = Tr [H0γ] + 4πg
∫

R3
ργ(x)2d3x .

Here, γ is a positive trace class operator on L2(R3), and ργ denotes the den-
sity of γ, i.e., ργ(x) = γ(x, x). The functional EDM can be shown24 to have
a unique minimizer (under the normalization condition Tr γ = 1), which
we denote by γDM. We denote the corresponding energy by EDM(g,Ω) =
EDM[γDM].

The following Theorem concerning the absolute ground state of HN was
proved in Ref. 23.

Theorem 2.3. For any fixed g ≥ 0 and Ω ∈ R3,

lim
N→∞

Eabs(N, g/N,Ω)
N

= EDM(g,Ω) and lim
N→∞

1
N
γ

(1)
abs = γDM



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

248 R. Seiringer

Here, γ(1)
abs denotes the one-particle density matrix of any approximate

(absolute) ground state sequence of HN . In other words, the set Γ defined
as in (2.4), but for the absolute ground state, contains only one element,
namely the unique minimizer of EDM.

Note that EGP is the restriction of EDM to rank one projections. In
the case of symmetry breaking (i.e., for g large enough), rank γDM ≥ 2,
and hence EDM < EGP. In particular, in view of Theorems 2.1–2.3, the
absolute and bosonic ground state differ significantly, in general, both in
terms of their energy and their reduced one-particle density matrix.

We remark that the results explained in this subsection become phys-
ically relevant if one considers bosons with internal degrees of freedom.
Internal degrees of freedom effectively increase the number of allowed sym-
metry classes (see, e.g., Ref. 8). In particular, if the number of states of the
internal degrees of freedom of the bosons is greater or equal to the rank of
γDM, EDM(g,Ω) equals the (bosonic) ground state energy per particle in
the GP limit. More generally, one can show that in the GP limit the func-
tional EDM, when restricted to density matrices of rank at most n, correctly
describes the ground state energy (and corresponding one-particle density
matrix) of bosons with n internal states.

3. Sketch of the Proof of Theorem 2.1

In the following, we shall give a brief outline of the main ideas in the proof
of Theorem 2.1. For details we refer to the original work in Ref. 14. We
shall restrict our attention to the appropriate lower bound on the ground
state energy E0(N, a,Ω). The corresponding upper bound can be obtained
via a variational argument, as explained in Ref. 23.

A convenient way to keep track of the bosonic symmetry requirement
is to work in Fock space. Recall that the bosonic Fock space F is given by
F =

⊕
N≥0HN . In terms of creation and annihilation operators a†j and aj

on F , the Hamiltonian can be written as

H =
∑

j≥1

eja
†
jaj + 1

2

∑

ijkl

a†ia
†
jakalWijkl . (3.1)

Here, we choose the basis in the one-particle space L2(R3) as to diagonalize
H0, i.e., H0 =

∑
j ej |ϕj〉〈ϕj |, and a†j creates a particle with wavefunction

ϕj , whereas aj annihilates it. The coefficients Wijkl are given in terms of
expectation values of va(x), namely Wijkl = 〈ϕi ⊗ ϕj |va|ϕk ⊗ ϕl〉.

Note that H in (3.1) commutes with total particle number operator∑
j≥1 a

†
jaj . Hence it splits into a direct sum of operators on HN for N =
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0, 1, . . . . In fact, our HN in (2.1) is just the restriction of H to HN .
The analysis employed for obtaining a lower bound on the ground state

energy of H in the sector of N particles consists of two main steps:

1. Eq. (3.1) is not necessarily well defined. E.g., if va(x) is the hard-
core interaction potential (or, more generally, is not integrable), then
Wijkl = ∞ for any set of indices. In order to overcome this problem,
we shall first show that, for a lower bound, one can replace va(x) by
a “soft” and longer ranged potential U(x) (with the same scattering
length), at the expense of the high-momentum part of the kinetic en-
ergy. We note that this step is necessary even in the case when va(x)
is integrable (and hence (3.1) is well defined) in order to proceed with
the second step.

2. After having replaced va(x) by the softer potential U(x), one then shows
that it is possible to replace the operators a†j and aj by complex num-
bers zj without changing the ground state energy too much.19 Note
that if all the a†j and aj in (3.1) are treated as numbers, the expression
(3.1) looks very similar to the GP energy functional (1.1); in fact, it is
given by

〈φz|H0|φz〉+ 1
2

∫

R6
va(x− y)|φz(x)|2|φz(y)|2 d3x d3y ,

with φz(x) =
∑
j zjϕj(x).

In the following, we shall explain these two main steps in more detail.

3.1. Step 1: Generalized Dyson Lemma

The following Lemma can be viewed as a generalization of an idea of
Dyson.7 The purpose of the lemma is give a lower bound on the interaction
potential va(x) in terms of a softer and longer ranged potential U(x), at
the expense of some kinetic energy (see also Ref. 18). For our purpose, we
can only spare the high momentum part of the kinetic energy, however; the
low momentum part is needed for the H0 term in the GP functional.

We thus have to separate the high momentum from the low momentum
part of the kinetic energy. This can be done in the following way. The proof
of Lemma 3.1 is given in Ref. 16.

Lemma 3.1. Let va(x) have scattering length a and range R0. Let θR be
the characteristic function of the ball {x : |x| < R}. Let 0 ≤ χ(p) ≤ 1, such
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that h(x) ≡ 1̂− χ(x) is bounded and integrable,

fR(x) = sup
|y|≤R

|h(x− y)− h(x)| ,

and

wR(x) =
2
π2
fR(x)

∫

R3
fR(y)d3y .

Then for any ε > 0 and any positive radial function U(x) supported in
R0 ≤ |x| ≤ R with

∫
U = 4π we have the operator inequality

−∇χ(p)θR(x)χ(p)∇+ 1
2va(x) ≥ (1− ε)aU(x)− a

ε
wR(x) . (3.2)

Here, χ(p) denotes a multiplication operator in momentum space. Note
that the operator −∇χ(p)θR(x)χ(p)∇ can be interpreted as a Laplacian
that has been localized to the ball of radius R and cut off in momentum
space. Because of the cut-off, this is not a local operator, however. The
parameter R is chosen such that a ¿ R ¿ N−1/3. Note that to leading
order in a/R, the scattering length of 2aU(x) is given in terms of its first
order Born approximation as (8π)−12a

∫
R3 U(x)d3x = a.

Because of the appearance of the characteristic function θR(x) in (3.2),
Lemma 3.1 has the following immediate consequence. If y1, . . . , yn are n
points in R3 whose mutual distance is at least 2R, then

−∇χ(p)2∇+ 1
2

n∑

i=1

va(x− yi) ≥
n∑

i=1

[
(1− ε)aU(x− yi)− a

ε
wR(x− yi)

]
.

This bound accomplishes the replacement of the hard interaction potential
va(x) by a soft one, at the expense of the high momentum part of the kinetic
energy. For given configuration of N−1 particles, this estimate is applied to
the remaining particle. Of course one still has to estimate the contribution
from configurations where 2 (or more) of the N − 1 fixed particles are
closer together than 2R. This can be achieved by a Feynman-Kac integral
representation25 of the ground state. We refer to Ref. 14 for details.

3.2. Step 2: Coherent States

The Fock space F can be viewed as an infinite tensor product of the form
F =

⊗
j≥1 Fj , with Fj spanned by the vectors (a†j)

n|0〉 for n = 0, 1, . . . .
Here, |0〉 denotes the Fock space vacuum.

Consider first the case of a single mode, F1, say. For z ∈ C, a coherent
state13 in F1 is defined by

|z〉 = e−|z|
2/2+za†1 |0〉 .
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These states span in the whole space F1. In fact, they satisfy the complete-
ness relation ∫

C
dz|z〉〈z| = I , (3.3)

where dz stands for π−1dxdy, and z = x+ iy, x, y ∈ R.
In terms of coherent states, upper and lower symbols of operators can

be defined. Lower symbols are simply the expectation values of operators
in coherent states, e.g., 〈z|a1|z〉 = z and 〈z|a†1a1|z〉 = |z|2. Upper symbols,
on the other hand, represent functions of z which, when integrated against
|z〉〈z|dz over C, yield given operators. For instance, it is not difficult to see
that a1 =

∫
dz z|z〉〈z|, while a†1a1 =

∫
dz (|z|2 − 1)|z〉〈z|. Hence, upper and

lower symbols of a1 are given by z, whereas the lower symbol of a†1a1 is |z|2
and the upper symbol is |z|2 − 1.

Note that lower symbols yield upper bounds on ground state energies, by
the variational principle, while upper symbols are useful for lower bounds.
The difference in the symbols thus quantifies the error one makes in replac-
ing the operators a†1 and a1 by numbers. In particular, for every quadratic
term a†1a1 a factor −1 has to be taken into account. For this reason, one
cannot introduce coherent states of all the modes j, but only for a finite
number of them.

In fact, we shall introduce coherent states of all the modes 1 ≤ j ≤ J

for some J À 1. That is, we first write F = F<⊗F>, where F< is spanned
by the vectors of the form (a†1)

n1 · · · (a†J )nJ |0〉, with nj ∈ N for 1 ≤ j ≤ J .
For z = (z1, . . . , zJ ) ∈ CJ , we introduce the projection operator Π(z) on
F<, given by

Π(z) = |z1 ⊗ · · · ⊗ zJ〉〈z1 ⊗ · · · ⊗ zJ | .
Using upper symbols, we can then write the Hamiltonian H in (3.1) as

H =
∫

CJ

dzΠ(z)⊗ h(z) .

Here, h(z) represents the upper symbol of H. Since only the modes 1 ≤
j ≤ J have been replaced by numbers, h(z) is an operator on F>. Using
the completeness property of the coherent states, Eq. (3.3), it is then easy
to see that

inf specH ≥ inf
z

inf spech(z) .

One then proceeds to show that h(z) ≈ EGP[φz] modulo controllable
error terms. These error terms are, in fact, operators on F> which describe
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both the interactions among particles in high modes as well as the interac-
tion between particles in modes j ≤ J and j > J . Precise bounds on these
terms can be found in Ref. 14.

4. Sketch of the Proof of Theorem 2.2

In order to obtain information on (approximate) ground states from bounds
on the energy, one proceeds as follows. One first perturbs the Hamiltonian
HN in (2.1) by some one-particle perturbation S, and applies the same
perturbation to the GP functional (1.1). One then shows that the result
of Theorem 2.1 still holds for the perturbed system. In fact, the proof of
Theorem 2.1 outlined in the previous section is sufficiently robust in order
to easily incorporate such a modification.

Griffiths’ argument11 then implies that, for any γ ∈ Γ, and any bounded
hermitian operator S,

TrSγ ≥ min
φ=φGP

〈φ|S|φ〉 , (4.1)

where the minimum on the right side is taken over all GP minimizers.
Inequality (4.1) is the key to the proof of Theorem 2.2. The rest follows
from convexity theory,26 as we shall explain now.

Recall that an exposed point of a convex set C is an extreme point p
with the additional property that there is a tangent plane to C containing
p but no other point of C. Hence, for γ̃ ∈ Γ an exposed point, there exists
an S such that

TrSγ̃ ≤ TrSγ for all γ ∈ Γ . (4.2)

with equality if and only if γ = γ̃.
It is not very difficult to show that |φGP〉〈φGP| ∈ Γ for any GP minimizer

φGP. Hence, if we choose γ in (4.2) to be equal to |φGP〉〈φGP| for the φGP

that minimizes the right side of (4.1) for this particular S, the inequalities
(4.1) and (4.2) imply that

min
φ=φGP

〈φ|S|φ〉 = 〈φGP|S|φGP〉 ≤ TrSγ̃ ≤ TrSγ = 〈φGP|S|φGP〉

and hence there is actually equality in (4.2). This, in turn, implies that
γ̃ = |φGP〉〈φGP|. We have thus shown that all exposed points of Γ are of
this form!

In order to extend this result to all extreme points, now merely exposed
points, we employ Straszewicz’s Theorem,26 which states that the exposed
points are a dense subset of the extreme points. Strictly speaking, this
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theorem only holds in finite dimensions and not, a priori, in the infinite
dimensional case under consideration here. However, because of compact-
ness, the set Γ is “almost” finite dimensional, and hence the theorem can
be applied via an approximation argument. We refer again to Ref. 14 for
details.

5. Conclusions

We have presented a rigorous justification of the Gross-Pitaevskii approxi-
mation for sufficiently dilute rotating Bose gases. For large particle number
N and both Na and Ω of order 1, the ground state of a rotating Bose gas
is well approximated by the solution to the GP equation. This is true both
for the energy and the reduced density matrices. In particular, our analysis
proves the appearance of quantized vortices and the occurrence of sponta-
neous symmetry breaking in the parameter regime where these phenomena
can be observed in the GP equation, e.g., for Ω 6= 0 and g large enough.

We point out that one of the major open problems in this field is the
validity of the GP equation for rapidly rotating gases, where either |Ω| → ∞
as N →∞ (in case the trap potential grows faster than quadratic at infin-
ity), or Ω approaches the trap frequency (for traps that are asymptotically
quadratic). There is evidence that the GP descriptions breaks down once
the number of vortices in the system is of the same order as the number of
particles. Despite recent progress in this direction,3 a proof of this assertion
is still lacking.
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The model of spatial permutations is related to the Feynman-Kac represen-
tation of the Bose gas. The transition to infinite cycles corresponds to Bose-
Einstein condensation. We review the general setting and some results, and we
derive a multi-body interaction between permutation jumps, that is due to the
original interactions between quantum particles.
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1. Introduction

One purpose of this article is to review the setting for the model of spatial
permutations and its relation with the quantum Bose gas, and to summarize
some of the material presented in a recent collaboration with Volker Betz.2

Another purpose is to compute the effective interaction between permuta-
tion jumps. It involves the original interaction potential between quantum
particles. While several mathematical questions remain unanswered, it is
argued that the model of interacting spatial permutations describes the
quantum interacting Bose gas exactly, and in a simpler way. The main phe-
nomenon in bosonic systems is the Bose-Einstein condensation. We discuss
the links between this phase transition and the occurrence of infinite cycles
in random permutations.

Given points x1, . . . , xN in Rd, one considers random permutations π of

∗ c© 2007 by the author. This article can be reproduced, in its entirety, for non-
commercial purposes.
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N elements with weight

N∏

i=1

exp
{− 1

4β |xi − xπ(i)|2
}
.

Permutation jumps are essentially finite, but permutation cycles can be
large. This model is illustrated in Fig. 1. It is motivated in large part by
the Feynman-Kac representation of the Bose gas. We actually discuss a
more general setting where permutation jumps interact.

Fig. 1. Illustration for a random set of points x = (x1, . . . , xN ), and for a permutation
π ∈ SN . Isolated points are sent onto themselves. Permutation jumps are small, but long
cycles can occur nonetheless.

The precise setting is introduced in Section 2. We recall the Feynman-
Kac representation of the Bose gas in Section 3; it makes the relation be-
tween the ideal Bose gas and non-interacting spatial permutations clear.
The two-body interaction between permutation jumps, that is expected to
give the exact behaviour to lowest order in the strength of the particle in-
teractions, is computed in Section 4. Finally, we describe a simple model of
interacting permutations in Section 5. It is exactly solvable, and it provides
some understanding about the effects of interactions on the Bose-Einstein
condensation.
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2. The model of spatial permutations

Let Λ ⊂ Rd be a cube of size L and volume V = Ld, and let N ∈ N. The
state space of the model of spatial permutations is

ΩΛ,N = ΛN × SN ,
with SN the symmetric group of permutations of N elements. We are inter-
ested in the properties of permutations, and all our random variables are
functions θ : SN → R. Their probability distributions depend on spatial
variables in an indirect but essential way. Let `i(π) denote the length of the
cycle that contains i, i.e., the smallest integer n ≥ 1 such that πn(i) = i.
The most important random variable is the density of points in cycles of
certain lengths. For n, n′ ∈ N, let

%n,n′(π) =
1
V

#
{
i = 1, . . . , N : n ≤ `i(π) ≤ n′

}
. (2.1)

The expectation of the random variable θ is defined by

EΛ,N (θ) =
1

Z(Λ, N)N !

∫

ΛN

dx
∑

π∈SN

θ(π) e−H(x,π) . (2.2)

Here, the normalization factor Z(Λ, N) is chosen so that EΛ,N (1) = 1.
The term N ! is present in order that Z(Λ, N) scales like the exponential
of the volume of Λ — thus behaving like a partition function in statistical
mechanics. The integral is over N points in Λ, denoted x = (x1, . . . , xN ).

We consider Hamiltonians of the form

H(x, π) =
N∑

i=1

ξ(xi − xπ(i)) +
∑

1≤i<j≤N
V (xi, xπ(i), xj , xπ(j)), (2.3)

with ξ a spherically symmetric function Rd → [0,∞], and V a translation
invariant function R4d → R. We also suppose that ξ is increasing and
that ξ(0) = 0. One should think of typical permutations as involving finite
jumps, i.e., |xi − xπ(i)| stays bounded as Λ, N →∞.

The major question concerns the occurrence of infinite cycles. It turns
out that the distribution of cycles can be well characterized in the absence
of interactions, with the potential V ≡ 0. We need a few hypotheses on
ξ. Let C =

∫
e−ξ . We suppose that e−ξ has positive Fourier transform,

which we denote C e−ε(k) . Precisely, we have

C e−ε(k) =
∫

Rd

e−2πikx e−ξ(x) dx.

The case of physical relevance is ξ(x) = 1
4β |x|2 with β the inverse tem-

perature, in which case ε(k) = 4π2β|k|2. But it may be of mathematical
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interest to consider other functions, including some where e−ξ has bounded
support. Criteria that guarantee positivity of the Fourier transform are dis-
cussed e.g. in Ref. 6.

We define the critical density by

ρc =
∫

Rd

dk
eε(k) − 1

. (2.4)

The critical density is finite for d ≥ 3, but it can be infinite for d = 1, 2.
The experienced physicist will have recognized the formula for the critical
density of Bose-Einstein condensation. The relation with the Bose gas will
be discussed in the next section. In the following theorem we fix the density
ρ and we let N = ρV in the expectation (2.2).

Theorem 2.1. Let ξ satisfy the assumptions above. Then for any 0 < a <

b < 1, and any s ≥ 0,

(a) lim
V→∞

EΛ,ρV (%1,V a) =

{
ρ if ρ ≤ ρc;

ρc if ρ ≥ ρc;

(b) lim
V→∞

EΛ,ρV (%V a,V b) = 0;

(c) lim
V→∞

EΛ,ρV (%V b,sV ) =





0 if ρ ≤ ρc;

s if 0 ≤ s ≤ ρ− ρc;

ρ− ρc if 0 ≤ ρ− ρc ≤ s.

In order to understand the meaning of these claims, one should think
of a as barely bigger than 0, and b barely smaller than 1. In part (a), %1,V a

is the density of points in finite cycles. All points belong to finite cycles if
ρ ≤ ρc. However, if ρ > ρc, a fraction ρ − ρc of points belong to infinite
cycles. It is natural to ask oneselves about the size of “infinite cycles” in
a finite domain of volume Ld = V . One could expect the typical length to
be of order L2, since the continuum limit of random walks has Hausdorff
dimension 2, and cycles are somewhat like closed random walks. However,
part (b) shows that cycles of length V b, with 0 < b < 1, have vanishing
density. Thus infinite cycles are macroscopic, i.e., each cycle involves a
strictly positive fraction of points. The statistics of macroscopic cycles is
characterized in part (c).

The proof of Theorem 2.1 can be found in Ref. 2. Actually, the correct
statement involves periodic boundary conditions; the interested reader is
invited to look in Ref. 2 for the precise statement. Theorem 2.1 extends an
earlier result of Sütő for the ideal Bose gas.13
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A different model is investigated in Ref. 4, where the positions
x1, . . . , xN form a cubic lattice. The density is always equal to 1, but the
function ξ(x) depends on a parameter that represents the temperature of
the system. It is found numerically that the critical temperature for the oc-
currence of infinite cycles is close but different from that of the ideal Bose
gas. Many properties are similar, however; infinite cycles are also macro-
scopic. A surprising fact is that the expectation of the length of the longest
cycle seems to be identical to that in the ideal Bose gas; this suggests that
the distribution of macroscopic cycles may be the same.

3. Feynman-Kac representation of the Bose gas

The Feynman-Kac formula relates the kernel of e−βH , with H a
Schrödinger operator, to the Brownian motion, whose mathematical ex-
pression is the Wiener measure. It seems to have first appeared in Ref. 3,
precisely in the context of bosonic systems and in the discussion of cycles.
Ginibre wrote an excellent mathematical introduction to the Wiener mea-
sure, the Feynman-Kac formula, and its application to bosonic systems.5

We review these notions here without introducing the full mathematical
setting, but all equations below can be justified with a bit of analysis. In
particular, we do not discuss the details arising from the boundary condi-
tions; as usual in statistical mechanics, they are irrelevant for large systems.

Let Λ ⊂ Rd be a cube of size L, and let gβ denote the normalized
Gaussian function

gβ(x) =
1

(2πβ)d/2
e−|x|

2/2β .

It is not hard to check that∫

Λ

gs(x− a)gt(x− b)dx = gs+t(a− b),

and that, after iteration,
∫

Λn−1
dx2 . . . dxn

n∏

i=1

gt(xi+1 − xi − ai) = gnt
(
xn+1 − x1 − Σni=1ai

)
. (3.1)

Let H = −∆ + U be a Schrödinger operator in L2(Λ), with ∆ the
Laplacian and U a smooth real function. This operator is unbounded and
we need to specify its domain. We can choose the space of C2 functions
on Λ with Dirichlet boundary conditions. Then H is symmetric and we
consider its self-adjoint extension. Of relevance to statistical mechanics is
the operator e−βH . It is a nice operator, bounded and compact, but these
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properties are not important here. The Feynman-Kac formula states that
(with xn+1 ≡ x1)

Tr e−βH = lim
n→∞

∫

Λn

dx1 . . . dxn
[ n∏

i=1

g2β/n(xi+1 − xi)
]
exp

{
−β
n

n∑

i=1

U(xi)
}

≡
∫

Λ

dx exp
{
− 1

2

∫ 2β

0

U
(
ω(s)

)
ds

}
dW 2β

xx (ω).

Here, ω is a Brownian bridge starting and ending at x and traveling in time
2β, and W 2β

xx is the Wiener measure. In the second line we should restrict
the paths to stay inside Λ, because of Dirichlet boundary conditions; we
neglect these technicalities, however.

Let us turn to the description of bosonic systems. The state space for
N quantum bosons in a domain Λ ⊂ Rd is the subspace L2

sym(ΛN ) of
symmetric complex functions of N variables. The Hamiltonian is given by
the Schrödinger operator

H = −
N∑

i=1

∆i +
∑

1≤i,j≤N
U(xi − xj).

Here, ∆i denotes the d-dimensional Laplacian for the i-th variable, and
U(xi − xj) is a multiplication operator that represents the interaction be-
tween particles i and j. We always suppose that U(x) ≥ 0. We can choose
the self-adjoint extension of H that corresponds to Dirichlet boundary con-
ditions. Of course, the sum of N Laplacians in Λd can be viewed as a
Laplacian in ΛdN , so we can apply the Feynman-Kac formula.

The canonical partition function is equal to

TrL2
sym(ΛN ) e−βH = TrL2(ΛN ) P+ e−βH

where P+ is the projector onto symmetric functions,

P+ϕ(x1, . . . , xN ) =
1
N !

∑

π∈SN

ϕ(xπ(1), . . . , xπ(N)).

Using this projection and the Feynman-Kac formula, the partition func-
tion of the Bose gas can be written as

Tr e−βH =
1
N !

∫

ΛN

dx
∑

π∈SN

e−H
′(x,π) ,
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with the Gibbs factor given by

e−H
′(x,π) =

[ N∏

i=1

∫
dW 2β

xixπ(i)
(ωi)

]
×

× exp
(
− 1

2

∑

1≤i<j≤N

∫ 2β

0

U
(
ωi(s)− ωj(s)

)
ds

)
.

(3.2)

This formula is illustrated in Fig. 2. It involves spatial positions and per-
mutations of these positions.

x

y

β

x1 = ω1(0)

x2 = ω2(0)

ω1(β)

Fig. 2. Feynman-Kac representation of a gas of N bosons. The horizontal plane rep-
resents the d spatial dimensions, and the vertical axis is the imaginary time dimension.
The picture shows five particles and two cycles, of respective length 4 and 1.

In the case of the ideal gas, U ≡ 0, the paths no longer interact and the
Wiener integrals in (3.2) can be computed. We find that

e−H
′(x,π) = (4πβ)−dN/2 e−H

(0)(x,π) (3.3)

with

H(0)(x, π) =
1
4β

N∑

i=1

∣∣xi − xπ(i)

∣∣2. (3.4)

The prefactor in (3.3) plays no rôle in expectations of random variables
and it can be ignored. Thus the ideal Bose gas is equivalent to the “ideal”
model of spatial permutations with Gaussian weights. Random variables of
permutations have same distribution in both models, and the transition to
infinite cycles takes place at the same critical density.

The equivalence between the occurrence of infinite cycles and Bose-
Einstein condensation is an open problem. It is known to be true in the
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ideal gas, see Refs. 12,13,15, but it does not seem to be true in strongly
interacting systems in a solid phase. Pollock and Ceperley have argued that
superfluidity is related to spatially winding cycles.11 Such cycles are clearly
infinite in the thermodynamic limit. On the other hand, we know from
Theorem 2.1 that infinite cycles are macroscopic (i.e., they have strictly
positive density), so they certainly have non-zero winding number. Infinite
and winding cycles should therefore be equivalent. Superfluidity is by no
means equivalent to Bose-Einstein condensation. These facts bring some
level of confusion and we can only hope that they will be clarified in the
future.

However, it is expected that, in dimension d ≥ 3, weakly interacting
bosonic systems have the same critical density for Bose-Einstein condensa-
tion, superfluidity, infinite cycles, and winding cycles. Hereafter, we study
the occurrence of infinite cycles in the weakly interacting regime, and we
implicitly assume that they reveal a Bose-Einstein condensation.

4. Exact two-body interaction for permutation jumps

4.1. Expansion of path interactions

The two-body interactions between quantum particles translate into many-
body interactions for permutations. But we can perform an expansion and
see that, to lowest order, we obtain a two-body interaction between permu-
tation jumps.

Let Ŵ t
x,y = g−1

t (x− y)W t
x,y be a Wiener measure normalized such that∫

dŴ t
x,y(ω) = 1. From (3.2), we have

e−H
′(x,π) = (4πβ)−dN/2 e−H

(0)(x,π) e−H
(1)(x,π)

with H(0) given by (3.4), and

e−H
(1)(x,π) =

[ N∏

i=1

∫
dŴ 2β

xixπ(i)
(ωi)

] ∏

1≤i<j≤N
e−

1
2

R 2β
0 U

(
ωi(s)−ωj(s)

)
ds

=
[ N∏

i=1

∫
dŴ 2β

xixπ(i)
(ωi)

] ∏

b

(
1−Υ(ωb)

)
. (4.1)

The last product is over bonds b = {i, j} with i 6= j. For i < j, we defined
ωb = ωi − ωj , and

Υ(ωb) = 1− e−
1
2

R 2β
0 U(ωb(s))ds . (4.2)
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Expanding the product in (4.1), we have

e−H
(1)(x,π) =

[ N∏

i=1

∫
dŴ 2β

xixπ(i)
(ωi)

] 1
2N(N−1)∑

k=0

(−1)k
∑

{b1,...,bk}

k∏
m=1

Υ(ωbm
).

(4.3)
In the regime of weak interactions, the typical k in the above sum is a small
fraction of the volume, and the typical b1, . . . , bk are mostly disjoint.

We first perform the expansion in a somewhat cavalier fashion. We will
be more precise in Section 4.2, where we will check that we have identified
the leading order. Let bm = {im, jm}. Let us assume that b` ∩ bm = ∅ for
all ` 6= m; then

[ N∏

i=1

∫
dŴ 2β

xixπ(i)
(ωi)

] k∏
m=1

Υ(ωbm) =
k∏

m=1

V (xim , xπ(im), xjm , xπ(jm)) (4.4)

where the potential V has been defined by

V (x, y, x′, y′) =
∫

dŴ 2β
xy (ω)

∫
dŴ 2β

x′y′(ω
′)Υ(ω − ω′). (4.5)

This is the two-body interaction between jumps x 7→ y and x′ 7→ y′. The
expression (4.5) can be simplified, see Eq. (4.16) below. We use the identity
(4.4) for all b1, . . . , bk that appear in (4.3), not only disjoint ones. This is
an approximation; it assumes that either the terms with intersecting bm’s
are not important, or that their contribution is close to (4.4). We obtain

e−H
(1)(x,π) ≈

∑

k≥0

(−1)k
∑

{b1,...,bk}

k∏
m=1

V (xim , xπ(im), xjm , xπ(jm)).

Ignoring the possibility that a same bond may occur several times, we get

e−H
(1)(x,π) ≈

∑

k≥0

(−1)k

k!

∑

b1,...,bk

k∏
m=1

V (xim , xπ(im), xjm , xπ(jm))

= exp
{
−

∑

1≤i<j≤N
V (xi, xπ(i), xj , xπ(j))

}
.

(4.6)

These approximations suggest that, to lowest order in the strength of the
interaction, the multi-body interaction arising from the Feynman-Kac rep-
resentation can be approximated by the two-body interaction defined in
(4.5).
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4.2. Cluster expansion

It is not clear that the approximations above have produced the correct
terms, that are exact to lowest order. In this section we perform a cluster
expansion. It cannot be entirely justified from a mathematical point of view,
but it nevertheless clarifies the approximations.

Consider the graph with vertices {1, . . . , k}, and with an edge between
` and m whenever b` ∩ bm 6= ∅. We say that a set of bonds B = {b1, . . . , bk}
is connected if this graph is connected. Let suppB = ∪b∈Bb. We say that B
and B′ are compatible if their supports are disjoint, suppB ∩ suppB′ = ∅.
Then the sum over sets of bonds in (4.3) can be written as a sum over
connected and mutually compatible B’s, namely

∑

k≥0

(−1)k
∑

{b1,...,bk}

k∏
m=1

Υ(ωbm) =
∑

`≥0

1
`!

∑

B1,...,B`
compatible

∏̀
m=1

[
(−1)|Bm|

∏

b∈Bm

Υ(ωb)
]
.

(4.7)
The contribution of compatible B’s factorizes. For a connected B, let us
introduce

ΦB(x, π) = (−1)|B|
[ ∏

i∈suppB

∫
dŴ 2β

xixπ(i)
(ωi)

] ∏

b∈B
Υ(ωb).

Notice that ΦB(x, π) depends only on positions xi and xπ(i) for i ∈ suppB.
Then we have

e−H
(1)(x,π) =

∑

`≥0

1
`!

∑

B1,...,B`
compatible

∏̀
m=1

ΦBm(x, π). (4.8)

We now apply the cluster expansion method, see e.g. Ref. 9,14 for ref-
erences. Given B1, . . . , B`, let ϕ(B1, . . . , B`) be the following combinatorial
function:

ϕ(B1, . . . , B`) =





1 if ` = 1;
1
`!

∑

G⊂G(B1,...,B`)

(−1)|G| if ` ≥ 2.

Here, G(B1, . . . , B`) denotes the graph with ` vertices, and with an edge
between i and j whenever Bi and Bj are not compatible. The sum is over
all connected subgraphs of ` vertices, and |G| is the number of edges of
G. Notice that ϕ(B1, . . . , B`) is zero unless B1, . . . , B` form a cluster, i.e.,
unless G(B1, . . . , B`) is connected.
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The cluster expansion yields a convergent series for the logarithm of
(4.8), hence for H(1). Precisely,

H(1)(x, π) = −
∑

`≥1

∑

B1,...,B`

ϕ(B1, . . . , B`)
∏̀
m=1

ΦBm
(x, π). (4.9)

Let i1, . . . , ik be distinct indices. The previous equation suggests to define
the k-body interaction by

V (k)
(
(xi` , xπ(i`))

k
`=1

)

= −
∑

m≥1

∑

B1,...,Bm

∪` suppB`={i1,...,ik}

ϕ(B1, . . . , Bm)
m∏

`=1

ΦB`
(x, π). (4.10)

Then H(1) is given by

H(1)(x, π) =
∑

k≥2

∑

1≤i1<···<ik≤N
V (k)

(
(xi` , xπ(i`))

k
`=1

)
. (4.11)

Everything here is exact, and it is rigorous provided we can prove the
absolute convergence of the series of cluster terms in (4.9). A sufficient
criterion is that, for any i,

∑

B,suppB3i
|ΦB(x, π)| ea|B| ≤ a (4.12)

for some constant a > 0. See e.g. Ref. 9,14 for concise statements about
cluster expansions. The sum above involves bonds whose positions are far
away. In order to get such an estimate, one needs to control spatial decay.
It depends on permutations, and there are combinatorial difficulties.

We conclude this subsection by discussing various estimates for the
terms above. Using 1− e−x ≤ x, we have that

‖Υ‖∞ = sup
ω

Υ(ω) ≤ β‖U‖∞.

The interesting regime of parameters is β ∼ 1/T (0)
c and U → 0, so Υ is

arbitrarily small. If the potential U is a hard-core with small radius, then
‖Υ‖∞ = 1, but ‖Υ‖p is small for p <∞. We also have that, for any B, x,
and π,

|ΦB(x, π)| ≤ ‖Υ‖|B|∞ .

Consider the series (4.10) for the potential at order k. The sets B1, . . . , Bm
that contribute to lowest order are such that

∑
` |B`| = k − 1. It follows

that V (k) is of order ‖Υ‖k−1
∞ .
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We can extract the lowest order term. The expression for
V (2)(xi, xπ(i), xj , xπ(j)) involves terms of arbitrary orders. But we only need
to consider −ΦB with B containing the single bond b = {i, j}. We then ob-
tain the potential V defined in (4.5).

4.3. A simpler expression for the interaction

We now seek to simplify the formula (4.5). Namely, we can replace the two
integrals over Brownian bridges by a single integral, which will lead to the
nicer formula (4.16). We have

∫
dW 2β

xy (ω)
∫

dW 2β
x′y′(ω

′)Υ(ω − ω′)

= lim
n→∞

∫

Λ2(n−1)
dx2 . . . dxn dx′2 . . . dx

′
n

[ n∏

i=1

g2β/n(xi+1 − xi)g2β/n(x′i+1 − x′i)
]
×

×
[
1− exp

{
−β
n

n∑

i=1

U(xi − x′i)
}]

(4.13)

with x1 = x, xn+1 = y, x′1 = x′, x′n+1 = y′. Let us introduce zi = xi − x′i.
It is not hard to check that

g2β/n(xi+1 − xi) g2β/n(x′i+1 − x′i)

= gβ/n(xi+1 − xi − 1
2zi+1 + 1

2zi) g4β/n(zi+1 − zi).
(4.14)

Substituting into (4.13), we get

lim
n→∞

∫

Λn−1
dz2 . . . dzn

[ n∏

i=1

g4β/n(zi+1 − zi)
][

1− exp
{
−β
n

n∑

i=1

U(zi)
}]

∫

Λn−1
dx2 . . . dxn

n∏

i=1

gβ/n(xi+1 − xi − 1
2zi+1 + 1

2zi). (4.15)

Using Eq. (3.1), the last line is equal to

gβ
(
y − x− 1

2 (y − y′ − x+ x′)
)

= gβ
(

1
2 (y + y′ − x− x′)

)
.

The first line of (4.15) yields an integral over Brownian paths. Then (4.15)
is equal to

gβ
(

1
2 (y + y′ − x− x′)

) ∫ [
1− e−

1
4

R 4β
0 U(ω(s))ds

]
dW 4β

x−x′,y−y′(ω).

Finally, we have the following identity, similar to (4.14)

g2β(y − x)g2β(y′ − x′) = gβ
(

1
2 (y + y′ − x− x′)

)
g4β(y − y′ − x+ x′).
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Recall that the two-body interaction defined in (4.5) involves normalized
Wiener measures. Putting normalizations back, we get the following elegant
formula for the interaction between jumps x 7→ y and x′ 7→ y′,

V (x, y, x′, y′) =
∫ [

1− e−
1
4

R 4β
0 U(ω(s))ds

]
dŴ 4β

x−x′,y−y′(ω). (4.16)

It would be useful to obtain a closed form expression in terms of special
functions, if it is possible. When U consists of a hard-core potential of radius
a, V (x, y, x′, y′) is equal to the probability that a Brownian bridge, starting
at x− x′ and ending at y− y′, intersects the ball of radius a centered at 0.

4.4. Effect of interactions on the critical temperature

The model of spatial permutations should help to clarify the effects of
interactions on the critical temperature of Bose-Einstein condensation.

Let T (a)
c be the critical temperature for Bose-Einstein condensation as

a function of the scattering length a of the interaction potential U between
quantum particles. It is believed that T (a)

c behaves in three dimensions as

T
(a)
c − T

(0)
c

T
(0)
c

= cρ1/3a+ o(ρ1/3a), (4.17)

with c a universal constant that does not depend on the mass of particles
or on the interactions. The value and even the sign of c has been contested
in the physics literature, although a consensus has recently emerged that
c ≈ 1.3. See Refs. 1,7,8,10 and references therein.

The model of spatial permutations is clearly simpler than the Feynman-
Kac representation of the Bose gas, and is therefore better suited to Monte-
Carlo simulations. More importantly, we expect that this model, with the
interaction (4.16), is exactly related to the original quantum boson model,
to lowest order in a. Numerical simulations should allow to determine the
constant c in the model of permutations with high precision, and with high
confidence. It should be identical to the universal constant of (4.17) for the
interacting Bose gas.

5. A simple model of interacting spatial permutations

In this final section, we discuss a simple model of interacting spatial per-
mutations that was introduced in Ref. 2. We consider only interactions
between permutation jumps of 2-cycles, arguably the most important. The
resulting model is exactly solvable, and it provides a heuristic description
for the shift in the critical temperature of the Bose-Einstein condensation.
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The approximation consists in replacing the Hamiltonian (2.3) by

H̃(x, π) =
1
4β

N∑

i=1

|xi − xπ(i)|2 +
∑

1≤i<j≤N
π(i)=j,π(j)=i

V (xi, xj , xj , xi).

The interaction term V (·) is given by (4.16) as before. From now on, all
computations will be exact, at least to lowest order in the scattering length
of the original potential U . We consider the three-dimensional case, obvi-
ously the most interesting. A computation shows that

V (x, y, y, x) =
2a

|x− y| +O(a2). (5.1)

The lowest order term in the right side does not depend on β, surprisingly.
The expectation of a random variable of permutations is given by (2.2),

EΛ,N (θ) =
1

Z(Λ, N)N !

∑

π∈SN

θ(π)
∫

ΛN

dx e−H̃(x,π) .

We now substitute H̃ with the following simpler Hamiltonian H(α):

H(α)(x, π) =
1
4β

N∑

i=1

|xi − xπ(i)|2 + αN2(π), (5.2)

with N2(π) denoting the number of 2-cycles in the permutation π. The
substitution is exact provided that, for any given permutation π,

∫

ΛN

dx e−H(x,π) =
∫

ΛN

dx e−H
(α)(x,π) .

Isolating the contribution of 2-cycles, this equation reduces to
∫

Λ2
dx1dx2 e−

1
2β |x1−x2|2−V (x1,x2,x2,x1) =

∫

Λ2
dx1dx2 e−

1
2β |x1−x2|2−α .

With V (·) in (5.1), we find that

α =
( 8
πβ

)1/2

a+O(a2). (5.3)

We now compute the pressure of the model with Hamiltonian H(α). The
grand-canonical partition function is given by

Z ′(β,Λ, µ) =
∑

N≥0

eβµN

N !

∑

π∈SN

∫

ΛN

dx e−H
(α)(x,π) .
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It is convenient to work in the Fourier space. Let us introduce a new par-
tition function,

Z(β,Λ, µ) =
∑

N≥0

eβµN

N !

∑

k1,...,kN∈Λ∗

∑

π∈SN

e−αN2(π)
N∏

i=1

e−β|2πki|2 δki,kπ(i) .

(5.4)
Here, Λ∗ = 1

LZ
3 is the dual lattice. The thermodynamic pressure is defined

by

p(α)(β, µ) = lim
V→∞

1
βV

logZ(β,Λ, µ) (5.5)

One can verify that the partition functions Z and Z ′ differ in two re-
spects only. First, a normalization is missing, which results in a shift of
the chemical potential. Second, Z has been defined with periodic boundary
conditions, unlike Z ′ (where boundary conditions are neither periodic, nor
Dirichlet). But both partition functions yield the same thermodynamics;
precisely,

lim
V→∞

1
βV

logZ ′(β,Λ, µ) = p(α)
(
β, µ+ 3

2β log(4πβ)
)
.

We now compute p(α). Introducing occupation numbers, (5.4) becomes

Z(β,Λ, µ) =
∑

(nk)k∈Λ∗

∏

k∈Λ∗

[
e−β(|2πk|2−µ)nk

∑

πk∈Snk

1
nk!

e−αN2(πk)

]
.

We decomposed the permutation π into permutations (πk) for each Fourier
mode, and we also used

N2(π) =
∑

k∈Λ∗
N2(πk).

Notice that the chemical potential needs to be strictly negative, as in the
ideal gas. We get

p(α)(β, µ) = lim
V→∞

1
βV

∑

k∈Λ∗
log

[∑

n≥0

e−β(|2πk|2−µ)n
∑

π∈Sn

1
n!

e−αN2(π)

]
.

(5.6)
Let us compute the bracket above. For given π ∈ Sn, let rj denote the num-
ber of cycles of length j. Then

∑
j jrj = n, and the number of permutations

for given (rj) is equal to

n!
/ ∏

j≥1

jrjrj !.
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The bracket in (5.6) is equal to
∑

n≥0

1
n!

∑

r1,r2,···≥0P
j jrj=n

n!∏
j≥1 j

rjrj !
e−β(|2πk|2−µ)

P
j jrj e−αr2

=
∑

r1,r3,r4,···≥0

∏

j=1,3,4,...

1
rj !

[
1
j e−jβ(|2πk|2−µ)

]rj
∑

r2≥0

1
r2!

[
1
2 e−2β(|2πk|2−µ)−α ]r2

= exp
{ ∑

j=1,3,4,...

1
j e−jβ(|2πk|2−µ) + 1

2 e−2β(|2πk|2−µ)−α
}

= exp
{
− log(1− e−β(|2πk|2−µ) )− 1

2 e−2β(|2πk|2−µ) (1− e−α )
}
.

This can be inserted into (5.6). In the limit V →∞ the expression converges
to a Riemann integral. If α = 0, we get the pressure of the ideal gas

p(0)(β, µ) = − 1
β

∫

R3
log

(
1− e−β(|2πk|2−µ)

)
dk, (5.7)

as expected. And if α 6= 0, we get

p(α)(β, µ) = p(0)(β, µ)− e2βµ

211/2π3/2β5/2
(1− e−α ).

(b)(a)

µ

p
(α)(β, µ)

ρ

f
(α)(β, ρ)

ρ
(α)
c

Fig. 3. The pressure and the free energy of the simple interacting model in three di-
mensions.

The pressure p(α) is plotted in Fig. 3 (a) as a function of µ. One can
consider other thermodynamic potentials as well. Recall that the free energy
f (α) is function of the (inverse) temperature and of the density, and it is
related to the pressure by a Legendre transform:

f (α)(β, ρ) = sup
µ

[
ρµ− p(α)(β, µ)

]
.



July 4, 2008 10:4 WSPC - Proceedings Trim Size: 9in x 6in QMATH10-book

The model of interlacing spatial permutations and its relation to the Bose gas 271

One then obtains the graph depicted in Fig. 3 (b). It is strictly decreasing
up to the critical density ρ(α)

c = ρ
(α)
c (β), and it is constant afterwards. The

critical density is equal to the derivative of p(α) with respect to µ at 0−.
We have

ρ(α)
c = ρ(0)

c − 1
29/2π3/2β3/2

(1− e−α ). (5.8)

The first term of the right side, ρ(0)
c , is equal to the critical density of the

ideal gas, Eq. (2.4). The second term is the correction due to our simple
interaction.

We see that ρ(α)
c is smaller than ρ(0)

c — interactions favour Bose-Einstein
condensation. This observation is in line with physicists’ expectations. The
heuristics is particularly simple in this model: 2-cycles are penalized and this
favours all other cycles, including infinite cycles. The latter occur therefore
at a lower density. While elementary, this heuristics may well be correct.

Let us now estimate the change in the critical temperature. Using (5.3)
with β = 1/T (0)

c , we find that, to lowest order,

T
(a)
c − T

(0)
c

T
(0)
c

= 1
3
√

2
ζ( 3

2 )−1α = c̃ ρ1/3a

with c̃ = 0.37. This formula can be compared to (4.17). If we believe the
value c = 1.3 found numerically, then 2-cycle interactions account only for
a fraction of the effect of all interactions. One could also take into account
the interactions within 3-cycles and longer cycles; the constant c̃ would
increase a bit.

One would expect infinite cycles to occur for all densities larger than
the critical density (5.8). More precisely, Theorem 2.1 should remain valid
for α > 0, replacing ρc by ρ

(α)
c . But only a weaker claim has been proved

so far.

Theorem 5.1. For any b < 1,

lim
V→∞

EΛ,ρV (%V b,ρV ) ≥ ρ− 4
(1 + e−α )2

ρ(0)
c .

Theorem 5.1 guarantees the existence of macroscopic cycles for large
enough densities. The proof can be found in ref. 2.
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This talk contains a review of some results about homogeneous boson models,
which are a special case of the general variational problem of statistical me-
chanics that can be solved in terms of quasi-free states. We apply these results
to the model of the Mean-Field Boson Gas with Bardeen-Cooper-Schrieffer
(BCS) interaction.

Keywords: Solvable boson models, Bose-Einstein condensation, canonical com-
mutation relations, equilibrium states, quasi-free states, gauge breaking, en-
tropy densities, variational principles, pairing boson model

1. Introduction

1.1. Motivation

Shortly after the discovery of superfluidity F. London made a connection
between this phenomenon and the almost forgotten Bose-Einstein conden-
sation (BEC) in the free Bose gas.28 His arguments were essentially based
on fact that Helium-4 atoms are bosons, and their superfluidity can be un-
derstood in terms of the Bose statistics that they obey. Almost ten years
later N.N Bogoliubov8 proposed a microscopic theory of the superfluidity
of Helium-4 showing that it can be regarded as a consequence of combina-
tion of two factors: the Bose-Einstein condensation and interaction between
bosons. The Bogoliubov theory had a serious impact, since just a few years
before L.D. Landau had developed a spectral criterion for superfluidity and
according to this criterion the free Bose gas is not superfluid even in the
presence of BEC.23

But more than eighty years after the prediction of Bose-Einstein con-

∗This lecture (QMath10-Conference in Moeciu, Romania) is based on the joint projects
with J.V.Pulé (UC Dublin) and A.F.Verbeure (KU Leuven).
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densation the problem of whether this phenomenon is stable with respect
to realistic pair-interaction is still unsolved and seems beyond the reach of
the present methods. Either one must use special pair-potentials and lim-
its27 or one must truncate the Hamiltonian. The second course was followed
by many authors. One such approach is to use a Hamiltonian which is a
function of the occupation of the free-gas single particle states.42 Since all
the operators in these models commute, they can be investigated by prob-
abilistic techniques using Laplace’s method (Large Deviations).6,7 However
these models (which include mean-field or imperfect Bose gas) produce a
spectrum identical to that of the free Bose gas and therefore does not satisfy
the superfluidity criterion.

A more plausible model is the so-called Bogoliubov model, also called
the weakly imperfect Bose-gas, see Refs.8,45. This model takes into account
more interaction terms without losing its exact solvability. The basic ingre-
dients of this model in terms of states on the (Canonical Commutation
Relations) CCR-algebra of the boson observables, including the problem of
the Bogoliubov-Landau spectral behaviour, has been analyzed in Refs. 1,2.
Later the boson Pairing Model was introduced as a further refinement of
the Bogoliubov model by including of BCS boson interaction.46 Theoret-
ical work on this model resulted into some intriguing properties like the
occurrence of two types of condensation, a boson BCS-type pair condensa-
tion and the standard one-particle condensation, as well the presence of a
spectral gap in the elementary excitations spectrum.18,20,21,29,35

The methods that have been used so far for the study of these solvable
models have been the Bogoliubov approximating Hamiltonian method45

and some form of Laplace’s method,67 One should also mention the non-
commutative large deviation method developed in Ref. 32 for lattice sys-
tems and later refined in Ref. 39. This method has not been rigorously ex-
tended to Bose systems mainly due to technical problems with unbounded
operators. However on a formal level it gives the right variational formulas
(see for example Ref. 35.) Here we develop a new method based on the
quasi-free states on the algebra of observables given by the algebra of the
canonical commutation relations.9,30

1.2. Solvable Models

All the solvable models referred to above share the property that their equi-
librium states and/or ground states, which are states on the algebra of the
Canonical Commutation Relations (CCR) are completely determined by
the one- and two-point correlation functions. Such states are called quasi-
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free states. This class of states has been intensively studied in the sixties and
seventies. Although quasi-free states are frequently used as the ideal labo-
ratory for performing tests of all kinds, this mathematical analysis turned
out to be much too technical to be very practical for its utility in the study
of Bose systems in physics, see e.g. Refs. 12,40.

Recently we found in Ref. 36 a presentation of the quasi-free states
suitable for the study of space homogeneous systems and in particular the
explicit form of the variational principle of statistical mechanics for all solv-
able boson models. Then for these models the set of states over which one
minimizes the free-energy density (or grand-canonical pressure) is reducible
to the set of homogeneous quasi-free states. The main technical step in this
is the explicit formula for the entropy density of a general quasi-free state
including the non-gauge symmetric ones.

Though the variational principle when solved fully, in principle contains
all the information about the model, in practice it is often difficult to solve.
A very useful additional tool is the use of condensate equations introduced
in Refs. 43,44. They form an essential part of the study of the variational
principle and can be derived without any explicit knowledge of the entropy
of the system, Section 2. Moreover, they are always valid as opposed to the
Euler-Lagrange equations which are not always satisfied because either the
stationary point is a maximum or the minimum does not correspond to any
stationary point.

In Section 3 we apply our method to the Pairing Boson Model with
Mean-Field and Bardeen-Cooper-Schrieffer (BCS) interactions to obtain
the variational principle conjectured in Ref. 35 (and proved in Ref. 38),
supplemented by the condensate equations. This model with BCS attrac-
tion is a very good example of a situation, when the condensate equations
can give some conclusions more directly. For instance, from the condensate
equations (3.11), (3.12), one immediately concludes that there is neither
pairing nor zero-mode condensation for negative chemical potentials and
also that zero-mode condensation implies a non-trivial boson pairing. An
unusual property of this model is that for the BCS repulsion it is not com-
pletely equivalent to the mean-field case: the repulsion does not change the
density of corresponding thermodynamic potentials but produces a gener-
alized (type III) condensation à la van den Berg-Lewis-Pulé.
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2. Quasi-Free Boson Systems

2.1. Mathematical Heuristics

Traditional approach to boson systems in mathematical physics is to start
with symmetric Fock Hilbert space F of vector states. Let L2(Rn) be
the space of square integrable functions on Rn, here n stands for dimen-
sionality. One considers the creation and annihilation operators: for any
f, g ∈ L2(Rn). The creation operator is given by a∗(f) =

∫
dxf(x)a∗(x)

acting in some domain dom(a∗(f)) ⊂ F, the annihilation operator is its
adjoint operator a(f), and satisfying the usual canonical commutation re-
lations

[a(x), a∗(y)] = δ(x− y) , [a(x), a(y)] = 0,

leading to the relations

[a(f), a∗(g)] = (f, g) , [a(f), a(g)] = 0.

It is assumed that there exists a particular normalized vector Ω in F such
that it is annihilated by all a(x) and hence that for all f :

a(f)Ω = 0. (2.1)

The symmetric Fock space F is then the Hilbert space is the linear span
generated by all vectors of the set: {a∗(f1)a∗(f2)...a∗(fn)Ω}n for all fi and
for all n ∈ N.

A vector-state ωΨ of a boson system is an expectation value of the
type ω(A) = (Ψ, AΨ), where Ψ is a normalized vector of the Fock space
and where A is any observable of the boson system. Remark that each
observable is a function of the boson creation and annihilation operators.
In particular, the physical model is defined through the energy observable,
called Hamiltonian. For a two-body interaction v the general model takes
the following form in a finite volume V = |Λ|:

HΛ =
∫

Λ

dx
1

2m
∇a∗(x) · ∇a(x)

+
1

2V

∫

Λ

dx

∫

Λ

dy a∗(x)a∗(y)v(x− y)a(x)a(y) .
(2.2)

Stability of the model requires that the Hamiltonian operator acting in the
Fock space is bounded from below.

In this paper we adopt the following definition: we shall say that a
system is solvable if the corresponding density of thermodynamic potential
can be expressed explicitly via a finite number of correlation functions.
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We shall make this definition more exact later. In general the model (2.2)
described above is not solvable. The natural way of defining solvability is
in terms of the correlation functions.

The state ω is known if one can find all its correlation functions

ω(a∗(f1)...a∗(fn)a(g1)...a(gm)) (2.3)

for all functions fi, gj . One should realize that in order to know the state
one has to know an infinity of correlation functions, for all n,m ∈ N. This
makes the many-body problem unsolvable in most cases.

In the literature one can find many approximation procedures, where the
original state ω is replaced by a state ω̃ constructed via various decoupling
procedures such that all higher order correlation functions can be expressed
in terms of those of order less than some n+m. It must remarked that on
the basis of the Marcinkiewicz theorem,33,41 many of them are erroneous.
Indeed, this theorem tells us that if the decoupling holds for all correlation
functions from some n+m on, then the decoupling holds for all correlation
of order n+m > 2. This means that the only decoupling, not contradicting
the positivity of the state ω̃, is the one in terms of the one-point function,
ω̃(a(f)) and two-point functions, ω̃(a∗(f)a(g)), ω̃(a(f)a(g)), for all f and
g. Any state satisfying the decoupling procedure described above is called
a “quasi-free state” (qf -state).

In the rest of this section we recall the main features of the boson Gibbs
states, in particular the class of space homogeneous quasi-free states which
are necessary for the formulation of the variational principle of statistical
mechanics for solvable models.

Our main original contribution in this section is a proof of the existence
of a canonical automorphism mapping a gauge breaking state in a gauge
invariant one. This result will be essential for the explicit computation of the
entropy density of the state, which makes possible the explicit formulation
the variational principle for our class of solvable boson models.

2.2. Canonical Commutation Relations and Quasi-Free

States

In order to define the total set of all quasi-free states it is convenient to
work with the boson field which is defined on S a suitable subspace of
L2(Rn), called a space of test functions. This field is defined by the map
b : f ∈ S 7→ b(f), where the linear operator b(f) on Fock space is given by

b(f) = a(f) + a∗(f).
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The Canonical Commutation Relations (CCR) for these fields are now

[b(f), b(g)] = 2iσ(f, g) , (2.4)

with σ(f, g) = Imm(f, g). Note that the fields are real-linear in their ar-
gument: b(λf) = λb(f), for Im mλ = 0, but b(if) = i(−a(f) + a∗(f)) and
a(f) = 1

2 ((b(f) + ib(if)).
It is equivalent to use the field operators as the generators of all ob-

servables instead of creation and annihilation operators. To avoid using
unbounded operators we use the Weyl operators as the generators of the
algebra of observables A of the system. These are given by

W (f) = exp{ib(f)}, (2.5)

for any f ∈ S. The CCR are then equivalent to the relations

W (f)W (g) = e−iσ(f,g)W (f + g). (2.6)

We shall denote the set of states on A by S. We recall that a state ω ∈ S,
is any normalized linear positive form on A.

Very often it is convenient to define states though their truncated func-
tions ω(b(f1)b(f2) . . . b(fn))t for f1, f2, . . . fn ∈ S. These functions are de-
fined recursively through the formula

ω(b(f))t = ω(b(f)), ω(b(f1) . . . b(fn)) =
∑

ω(b(fk) . . . )t . . . ω(· · · (fl))t,

where the sum is over all possible partitions of {1, . . . , n}, and where the
order within each of the clusters is carried over from the left to the right.

Let ω be an arbitrary state on the Weyl algebra A, then for all f ∈ S,
the expectation values ω(W (f)) are known and can be expressed in terms
of the truncated functions (see e.g., Ref. 9),

ω(W (f)) = ω(eiλb(f)) =
∞∑
n=0

inλn

n!
ω(b(f)n)

= exp

{ ∞∑
n=1

inλn

n!
ω(b(f)n)t

}
.

(2.7)

For the models that we study in this paper we shall see that only the one-
and two-point functions play a role. The one-point function is determined
by the linear functional φ on S and the two-point functions by two (un-
bounded) operators R and S on S. These are defined by

φ(f) = ω(a∗(f)) (2.8)
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and the truncated two-point functions

〈f,Rg〉 = ω(a(f)a∗(g))− ω(a(f))ω(a∗(g)),

〈f, Sg〉 = ω(a(f)a(g))− ω(a(f))ω(a(g)),
(2.9)

where g stands for the complex conjugate of g. Clearly ω(b(f)b(f)) can be
expressed in terms of these two operators and φ. Note that the operator R
is self-adjoint. We shall denote by Sφ,R,S the elements of S determined by
the triplet φ, R and S.

Since ∗-automorphisms (canonical transformations) leave the CCR in-
variant, many properties of a state are conserved under these transforma-
tions. We shall say that states are canonically equivalent if they can be
transformed into each other in such a way.

It is easy to see that in general there is a canonical transformation
which transforms a state ω into a state ω0 with φ = 0. For any real linear
functional χ on S, the transformation τχ on the boson algebra defined by

τχ(W (f)) = eiχ(f)W (f) (2.10)

together with linearity and conservation of products, is a canonical trans-
formation. Clearly this transformation translates the boson field, τχb(f) =
b(f) + χ(f). Now the composition of a state ω with the transformation τχ,
ω0 = ω ◦ τχ is again a state and ω0(b(f)) = ω(b(f)) +χ(f). Therefore if we
choose χ(f) = −ω(b(f)) = −2Re φ(f), which is real linear, then the one-
point function of ω0 vanishes. Moreover the reduced two-point functions
are left invariant so that operators R and S are unchanged.

It is clear that the positivity of the state ω implies that

ω((a(f) + a∗(g))(a(f) + a∗(g))∗) ≥ 0 (2.11)

for all f, g ∈ S. Assuming φ = 0 the inequality (2.11) is equivalent to

〈f,Rf〉+ 〈f, Sg〉+ 〈g, S∗f〉+ 〈g, (R− 1)g〉 ≥ 0

for all f, g ∈ S. Putting f = 0 we see that R ≥ 1, and putting g = −R1/2h

and f = R−1/2Sh gives

R(R− 1) + S∗S −R−1/2S∗SR1/2 −R1/2S∗SR−1/2 ≥ 0.

Notice that if operators R and S commute, then the latter simplifies to

T 2 ≡ R(R− 1)− S∗S ≥ 0. (2.12)

We now introduce the one-parameter group of gauge transformations.
This group of canonical transformations or CCR-automorphisms, {τλ|λ ∈
R}, is defined by

τλ(a∗(f)) = eiλa∗(f), τλ(a(f)) = e−iλa(f). (2.13)
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A state ω is called gauge invariant if the relation ω ◦ τλ = ω holds for all
λ ∈ R. In particular for a state ω ∈ Sφ,R,S the one- and two-point functions
transform under such a gauge transformation as follows

(ω ◦ τλ)(a∗(f)) = eiλω(a∗(f)),

(ω ◦ τλ)(a(f)a∗(g)) = ω(a(f)a∗(g)),

(ω ◦ τλ)(a(f)a(g)) = e−i2λ(ω)(a(f)a(g)),

or equivalently (φ,R, S) is transformed into (eiλφ,R, e−i2λS). Therefore a
necessary condition for gauge invariance is that φ = 0 and S = 0.

We now prove that any ω ∈ Sφ,R,S is canonically equivalent to a state
ω̃ ∈ S eR ≡ S0, eR,0 if R and S commute and Rf = Rf for all f ∈ S. We shall
see later that these conditions are satisfied for translation invariant states.
We determine explicitly the operator R̃ as a function of R and S. This
result is similar to the more restricted result stated in Ref. 30, where only
the existence of such a map between pure quasi-free states (see definition
later) is proved. Here we prove not only the existence of this map but we
give its explicit construction.

Theorem 2.1. Let ω ∈ Sφ,R,S with R and S commuting and Rf = Rf

for all f ∈ S. Then there exists a canonical transformation τ mapping ω
into ω̃ ∈ S eR where the operator R̃ is given, in terms of the operators R ≥ 1
and T ≥ 0, by

R̃ =
1
2

+
(
T 2 +

1
4

) 1
2

. (2.14)

Proof. Clearly we can assume that φ = 0. By applying a canonical trans-
formation similar to the gauge transformation in (2.13) we can transform
operator S into |S|. Then we consider another canonical transformation γ

(also called Bogoliubov transformation)

ã(f) = γ(a(f)) = a(Uf)− a∗(V f),

where U and V are commuting self-adjoint operators commuting with R

and S and satisfying Uf = Uf , V f = V f and U2 − V 2 = I. We consider
the two equations

〈f, R̃g〉 = ω̃(a(f)a∗(g)) = ω(γ(a(f)a∗(g))),

0 = 〈f, S̃g〉 = ω̃(a(f)a(g)) = ω(γ(a(f)a(g))),

in order to express R̃ as a function ofR and S or preferably T . One computes
explicitly the following equations from the former ones, using the symmetry
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of R and S, as follows

R̃ = U2R+ V 2(R− 1)− 2UV S, (2.15)

0 = U2S − UV (2R− 1) + V 2S. (2.16)

From the second relation (2.16) one gets a quadratic equation for the op-
erator X := UV −1, which is semi-bounded from below by I. Then solution
of this equation has the form

X =
(
R− 1/2 +

(
(R− 1/2)2 − S2

)1/2)
S−1.

Using the relation (2.12) between the operators S and T , one gets

X =
(
R− 1/2 +

(
T 2 + 1/4

)1/2) (
R(R− 1)− T 2

)−1/2
.

This gives for U and V ,

U = X(X2 − 1)−1/2, V = (X2 − 1)−1/2,

which we insert into the first equation (2.15) to obtain R̃ as a function
(2.14) of R and T .

The canonical transformation τ of the theorem is of course given by the
composition of the gauge transformation with the Bogoliubov transforma-
tion.

The states we shall be considering will be translation invariant. Space
translations are again realized by a group of canonical transformations
{τx|x ∈ Rn} of the algebra of observables A given by τx(a(f)) = a(Txf)
where (Txf)(y) = f(y − x). The translation invariance of a state ω, given
by ω ◦ τx = ω for all x ∈ Rn, is immediately translated to the operators
R,S by the property that they both commute with the operators Tx for
x ∈ Rn.

Translation invariance implies that φ(f) = cf̂(0) where f̂ denotes the
Fourier transform of f and c = ω(a∗(0)). On the other hand it is well
known19 that if A is such a translation invariant operator, then there
exists a function ξ on Rn whose Fourier transform is a tempered distri-
bution such that for all functions f , (Âf)(k) = ξ(k)f̂(k). This is due
to the kernel theorem for operator-valued distributions and the convolu-
tion theorem for Fourier transforms. In particular, our operators R and
S are simple multiplication operators with functions denoted by r(k)
and s(k). It is easily checked that for k 6= 0, r(k) = ω(â(k)â∗(k)) and
s(k) = ω(â(k)â(−k)) = s(−k) where â(k) is the operator-valued distribu-
tion given by the Fourier transform of a(x). For our purposes (see later) we
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can assume in addition that r(−k) = r(k). This last property is equivalent
to Rf = Rf . As R and S are multiplication operators they commute so
that (2.12) holds and can be written in terms of r and s:

r(k)(r(k)− 1)− |s(k)|2 ≥ 0.

It is convenient to introduce a non-negative function t(k), corresponding to
the operator T , defined by

t(k)2 = r(k)(r(k)− 1)− |s(k)|2. (2.17)

The class of translation invariant states Sφ,R,S can now be parameterized
by the complex number c and the functions r ≥ 1, t ≥ 0 and α(k) =
arg s(k).

Now we turn to the quasi-free states.

Definition 2.1. A state ω is called a quasi-free state (qf -state) if all trun-
cated functions of order n > 2 vanish. This means that a qf -state is com-
pletely determined by its one- and two-point functions:

ω(W (f)) = exp{iω(b(f))− 1
2
ω(b(f)b(f))t} (2.18)

The set of qf -states will be denoted by Q.

Note that a qf -state is completely determined by φ, R and S. We denote
the qf -state corresponding to φ, R and S by ωφ,R,S . Of course, translation
invariant qf -states can be parameterized uniquely by the complex number
c and the functions r ≥ 1, t ≥ 0 and α(k) = arg s(k). Note also that a
qf -state is gauge invariant if and only if φ = 0 and S = 0. The above
arguments show that ωφ,R,S is canonically equivalent to ω eR ≡ ω0, eR,0.

We end this section by calculating the entropy for qf -states. For any
normal (density matrix) state ω with density matrix ρ the von Neumann
entropy is defined by the formula S(ω) = −Tr ρ ln ρ. The entropy is left
invariant under any canonical transformation τ (see e.g., Ref. 34, Chapters
1 and 9), that is, S(ω ◦ τ) = S(ω). Let ω be a translation invariant, locally
normal state on the algebra A (i.e., its restriction to every bounded region
of Rn is normal). Let Λ ⊂ Rn be a family of bounded regions increasing to
Rn. Then the entropy density of ω is defined by

S(ω) = lim
Λ

S(ωΛ)
V

, (2.19)

where V = |Λ| denotes the volume of Λ, ωΛ is the restriction of ω to Λ and
limΛ := limΛ↑Rn . For translation invariant qf -states of the type ωR, S has
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been calculated in Ref. 15 and is given by

S(ωR) =
∫
ν(dk) {r(k) ln r(k)− (r(k)− 1) ln(r(k)− 1)} (2.20)

where ν(dk) = dnk/(2π)n. It is clear from the above argument that the
entropy density of ωφ,R,S is the same as that for ω eR. We state this result
in the following proposition.

Proposition 2.1. The entropy density of qf -state with two-point functions
defined by R and S is given by

S(ωφ,R,S) = S(ω eR)

=
∫
ν(dk) {r̃(k) ln r̃(k)− (r̃(k)− 1) ln(r̃(k)− 1)} (2.21)

where r̃ is given by (2.14),

r̃(k) =
1
2

+
(
t2(k) +

1
4

) 1
2

. (2.22)

In particular, the entropy density is independent of the one-point function
φ.

2.3. Equilibrium States

An equilibrium state at inverse temperature β of a homogeneous boson
system will be defined by the variational principle of statistical mechanics,
that is, an equilibrium state is one that minimizes the free energy density.

The free-energy density (or more precisely the grand-canonical pressure)
functional is defined on the state space by

f(ω) := β E(ω)− S(ω) , (2.23)

where S(ω) is defined in the previous section and E(ω) is the energy density.
The energy density is determined by the local Hamiltonians of the system
under consideration, HΛ, defined for each bounded region of volume V

E(ω) = lim
V

1
V
ω(HΛ − µNΛ) ,

where µ is the chemical potential and NΛ is the particle number operator.
The variational principle of statistical mechanics states that each trans-

lation invariant (or periodic) equilibrium state ωβ is the minimizer of the
free energy density functional, that is, for any state ω,

f(ωβ) = inf
ω
f(ω). (2.24)
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In the definition of E and S it has been presupposed that the states are
locally normal in the sense that ωΛ is a normal state. This is a reasonable
assumption since we are basically interested in equilibrium states which are
thermodynamic limits of local Gibbs states given locally by their (grand)
canonical density matrices ρΛ = e−β(HΛ−µNΛ)/Tr e−β(HΛ−µNΛ).

Let ω be a normal state with density matrix ρ on Fock space F, with
zero one-point function and with two-point functions given by the operators
R and S = 0. Let {fj} be an orthonormal basis of eigenvectors of R with
eigenvalues rj . Consider the operator (trial diagonal Hamiltonian) H =∑
j εja

∗
jaj with aj = a(fj) and εj = ln(rj/(rj − 1)). Let σ be the density

matrix given by σ = e−H/Tr e−H . It is clear that the state defined by σ is
a qf -state which has two point function

Trσ a(f)a∗(g) = 〈f,Rg〉 = Tr ρ a(f)a∗(g).

Thus σ is the density matrix for the qf -state ωR.
We use this construction to prove the entropy inequality

S(ω) ≤ S(ωR). (2.25)

Using the Bogoliubov-Klein convexity inequality [9, Lemma 6.2.21], one
gets

S(ω(R,0))− S(ω) = Tr ρ ln ρ− Trσ lnσ ≥ Tr (ρ− σ) lnσ

where lnσ = −∑
j εja

∗
jaj − ln Tr (exp−H) and hence

S(ωσ)− S(ω) ≥ −
∑

j

εj(Tr ρ a∗jaj − Trσ a∗jaj) = 0,

since the states ρ and σ have the same two-point functions. This proves the
inequality (2.25), which is a mathematical expression with the following
physical interpretation: The state ω is a state with more non-trivial corre-
lations than its associated qf -state ωR and therefore it is understandable
that the entropy of the state is smaller than or equal than the entropy of
its associated qf -state.

Clearly this inequality carries over to the entropy density of locally
normal states and using canonical equivalence to locally normal states with
non-vanishing φ and S. Thus for locally normal states in Sφ,R,S we have

S(ω) ≤ S(ωφ,R,S) = S(ω eR). (2.26)

From now on we shall study solvable models, i.e., models with a Hamil-
tonian whose energy density limΛ ω(HΛ)/V for any translation invariant
state ω depends only on the one- and two-point correlation functions of the
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state. This will be made more precise in Definition 2.3. But we first impose
one last restriction on the states.

Definition 2.2. A translation invariant state ω is called space-ergodic, if
for any three A,B,C local observables the following holds

lim
Λ
ω(ABΛC) = ω(AC)ω(B),

where BΛ the space-average

BΛ =
1
V

∫

Λ

dx τx(B).

Note that for translation invariant states one has that ω(B) =
limΛ ω(BΛ), and therefore the above definition can be written in the form

ω(A(lim
Λ
BΛ − ω(B)I)C) = 0.

In other words, for a space-ergodic state ω, the limiting space-average op-
erator B := ω − limΛBΛ is proportional to identity I. In the same way
one gets ω − limΛ[BΛ, A] = 0 for any local observables A and B. For these
reasons the limiting operator B is called an observable at infinity .9 Note
that B is a normal operator since [B,B∗] = 0

As a first application of the ergodicity of states we have

lim
Λ
ω

(
a∗0a0

V

)
= |c|2 := ρ0, (2.27)

where ρ0 is the zero-mode condensate density for boson systems.

Definition 2.3. We say that a model is solvable if for every ergodic state
ω, the energy density E(ω) depends only on the one-point and two-point
correlation functions of ω.

Note that if a model is solvable then the energy density E(ω) is the
same for all ω ∈ Sφ,R,S . We shall denote this common value by E(r, t, α, c).
On the other hand we have shown that for ω ∈ Sφ,R,S , S(ω) attains its
maximum at the qf -state ω = ωφ,R,S . Thus we have

inf
ω∈Sφ,R,S

f(ω) = f(ωφ,R,S)

= βE(r, t, α, c)−
∫
ν(dk) {r̃(k) ln r̃(k)− (r̃(k)− 1) ln(r̃(k)− 1)} .

(2.28)

Taking the infimum in (2.28) over φ, R and S we obtain our main result.
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Theorem 2.2. For a solvable boson system the equilibrium state ωβ is a
qf -state and it is defined by

f(ωβ) = inf
ω∈Q

f(ω)

= inf
r, t, α, c

{
βE(r, t, α, c)−

∫
ν(dk) {r̃(k) ln r̃(k)− (r̃(k)− 1) ln(r̃(k)− 1)}

}
,

where r̃(k) is given by (2.22) as a function of r and t.

2.4. Condensate Equations

Now we are in position to introduce the notion of condensate equations for
equilibrium states of general boson system. They constitute essential tools
for the study of the equilibrium as well as ground states of boson models.
For a full discussion of this topic we refer the reader to Refs. 43,44. These
equations are derived directly from the variational principle of statistical
mechanics formulated above. However they have certain advantages over
the Euler-Lagrange equations. First of all that they can be derived without
any explicit knowledge of the entropy of the system. Secondly, while the
Euler-Lagrange equations are not always satisfied because either the sta-
tionary point is a maximum or the minimum occurs on the boundary, the
condensate equations are always valid.

To this end, consider the following completely-positive semigroups of
transformations on the locally normal states in S. Let A be any local (quasi-
local) observable (with space-average AΛ over region Λ) and let

ΓΛ =
∫

Λ

dx{[τx(A∗Λ), .]τx(AΛ) + τx(A∗Λ)[., τx(AΛ)]}.

Then for each finite region Λ one can define a semigroup of completely-
positive maps on S13 given by

{γλ,V = expλΓΛ|λ ≥ 0}.
Let ωβ be any locally normal state satisfying the variational principle with
density matrix ρΛ. Then using the notation of Definition 2.2, one gets

0 ≤ lim
λ→0

1
λ

(f(lim
Λ
ω ◦ eλΓΛ)− f(ω))

≤ lim
Λ

{
β Tr ρΛA

∗
Λ[HΛ(µ), AΛ]− Tr ρΛA

∗
ΛAΛ ln

Tr ρΛA
∗
ΛAΛ

Tr ρΛAΛA∗Λ

}

The second inequality is a consequence of the bi-convexity of the function
x, y → x ln(x/y). Since the limiting space-average operator A is normal,
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the second term of the right-hand side of the inequality vanishes and one
gets

lim
Λ
βωβ(A∗Λ[HΛ(µ), AΛ]) ≥ 0, (2.29)

along with the same inequality with AΛ replaced by A∗Λ.
Using the same argument as above, but now working with the group

of unitary operators {Ut = exp(itHΛ(µ))| t ∈ R}, one gets immediately
limΛ ωβ([HΛ(µ), X]) = 0 for any observable X. Therefore

0 = lim
Λ
ωβ([HΛ(µ), A∗ΛAΛ])

= lim
Λ
{ωβ([HΛ(µ), A∗Λ]AΛ) + ωβ(A∗Λ[HΛ(µ), AΛ])}.

(2.30)

Using (2.29) and the property that the space-averages commute with all
local observables, one gets the general condensate equation.

Theorem 2.3. Let ωβ be any limit Gibbs state, satisfying the variational
principle for equilibrium states at inverse temperature β, including β = ∞
which means that ω∞ is a ground state, and let A be any local (or quasi-
local) observable, then the condensate equation with respect to A is given
by

lim
Λ
ωβ(A∗Λ [HΛ(µ), AΛ]) = 0. (2.31)

3. Pairing Boson Model with BCS and Mean-Field
Interactions

The model was invented in Ref. 46 as an attempt to improve the Bogoli-
ubov theory of the weakly imperfect boson gas, see a detailed discussion in
Refs 25,45. Using the notation of the previous section the Hamiltonian of
the Pairing Boson Model (PBH) is then given as in Refs. 35,38 by

HΛ = TΛ − u

2V
Q∗ΛQΛ +

v

2V
N2

Λ, (3.1)

where

TΛ =
∑

k∈Λ∗
ε(k) a∗kak, QΛ =

∑

k∈Λ∗
λ(k)aka−k, NΛ =

∑

k∈Λ∗
a∗kak.

The coupling λ is for simplicity a real L2-function on Rn satisfying λ(−k) =
λ(k), 1 = λ(0) ≥ |λ(k)|. The coupling constant v is positive and satisfies
v − u > 0, implying that the Hamiltonian defines a superstable system.38

For a discussion of the origin of this model, see Ref. 38 and the references
therein.
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Again since the operators NΛ/V and QΛ/V are both space averages,
by the arguments of Section 2.3, this model is solvable in the sense of
Definition 2.3 and the energy density is given by

E(r, t, α, c) =
∫
ν(dk) (ε(k)− µ)(r(k)− 1)− µ|c|2

+
v

2

(∫
ν(dk) (r(k)− 1) + |c|2

)2

− u

2

∣∣∣∣λ(0)c2 +
∫
ν(dk)λ(k)s(k)

∣∣∣∣
2

.

We have used the relations

ω(a∗kak) = 〈φk, (R− 1)φk〉+ |c|2V δk0,
ω(aka−k) = 〈φk, Sφk〉+ c2V δk0.

With

ρ(k) = r(k)− 1, c =
√
ρ0e

iα,

ρ =
∫
ν(dk) ρ(k) + ρ0, σ =

∫
ν(dk)λ(k)s(k),

the energy density E(r, t, α, c) becomes

E(r, t, α, c) =
∫
ν(dk) ε(k)ρ(k)− µρ+

v

2
ρ2 − u

2

∣∣ρ0e
2iα + σ

∣∣2 . (3.2)

Since the cases u > 0 and u ≤ 0 are very different, we shall consider them
separately.

3.1. BCS attraction u > 0: Coexistence of BEC and

BCS-boson pairing

First we consider u > 0. Clearly, in this case the minimum in (3.2) is
attained when 2α = arg σ. Therefore, instead of (3.2) one can take for
further analysis the function Ẽ(r, t, c) := E(r, t, α = (arg σ)/2, c), which has
the form

Ẽ(r, t, c) =
∫
ν(dk) ε(k)ρ(k)− µρ+

v

2
ρ2 − u

2
(ρ0 + |σ|)2 . (3.3)

The corresponding entropy density S(ω) is given in (2.21). It is independent
of ρ0 and depends only on ρ(k) and |s(k)|. Then for real λ(k), after optimiz-
ing with respect to the argument of s(k), for 2α = arg σ the Euler-Lagrange
equations in the parameters r, t and c, take the form

2ρ(k) + 1 =
f(k)
E(k)

coth(βE(k)/2), (3.4)

s(k) =
u(ρ0 + |σ|)λ(k)

2E(k)
coth(βE(k)/2), (3.5)
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0 = −µ+ vρ− u(ρ0 + |σ|) , (3.6)

where

f(k) = ε(k)− µ+ vρ, (3.7)

and

E(k) =
{
f2(k)− u2λ(k)2(ρ0 + |σ|)2}1/2

. (3.8)

As usual these equations are useful only if they have solutions within the
admissible domain of r, t and c, which corresponds to the positivity of
the state. These three equations coincide respectively with equations (2.8),
(2.9) and (2.10) in Ref. 35. The integrated form of the first two equations
also coincide with equations (5.1) and (5.2) in Ref. 38:

ρ =
1
2

∫

Rn

ν(dk)
{
f(k)
E(k)

coth
1
2
βE(k)− 1

}
+ ρ0 , (3.9)

(|σ|+ ρ0) =
u (|σ|+ ρ0)

2

∫

Rn

ν(dk)
λ(k)2

E(k)
coth

1
2
βE(k) + ρ0 . (3.10)

On the other hand, we find that the condensate equation (2.31) with respect
to a0/V

1/2 is

ρ0(−µ+ vρ− u(ρ0 + |σ|)) = 0, (3.11)

cf. (3.6), and that with respect to QΛ/V it takes the form

(c2 + σ)

{∫
ν(dk)λ(k)(ε(k)− µ+ vρ ) s(k) + (−µ+ vρ ) c2

−u
[∫

ν(dk)λ(k)2(ρ(k) + 1/2) + ρ0

]
(c2 + σ)

}
= 0.

(3.12)

Taking into account that |c|2 = ρ0, one can check that these conden-
sate equations are consistent with the Euler-Lagrange equations (3.4)-(3.6)
and/or (3.9)-(3.10).

Remark 3.1. Notice that there is a relation between the condensate equa-
tion (3.11) and the Euler-Lagrange equation (3.6). Indeed, by (3.3) the
ρ0-dependent part of the variational functional has the form

Ẽ0(ρ0) :=
1
2
(v − u)ρ2

0 − (µ− vρ+ u|σ|)ρ0 ,

where ρ := ρ − ρ0. Since v > u, Ẽ0 is strictly convex and has a unique
minimum at ρmin

0 . For µ ≤ vρ − u|σ| one gets ρmin
0 = 0, which is not a
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stationary point, whereas for µ > vρ − u|σ| the minimum occurs at the
unique stationary point ρmin

0 = (µ−vρ+u|σ|)/(v−u) > 0. These of course
correspond to the solutions of the Euler-Lagrange equation (3.6), or the
condensate equation (3.11).

Remark 3.2. We have assumed above that E(k) ≥ 0. It is clear that E(k)
corresponds to the spectrum of the quasi-particles of the model (3.1) and
that it should be real and non-negative for all k. We can see this by applying
the general and well-known inequality (see e.g. Refs. 9,17 or Ref. 43)

lim
V
ω([X∗, [HV − µNV , X]]) > 0

holding for each equilibrium state and for each observable X. Let X = ãk,
where ãk = ukak − vka

∗
−k, with

u2
k =

1
2

(
f(k)
E(k)

+ 1
)
, v2

k =
1
2

(
f(k)
E(k)

− 1
)
. (3.13)

Then one obtains limV ω([ã∗k, [HV − µNV , ãk]]) = E(k) ≥ 0, as should be
by the stability of the original system.

There are two order parameters in the model (3.1), namely ρ0 (Bose
condensate density) and the function s(k), or the density of condensed
BCS-type bosons pairs σ with opposite momenta. By virtue of equations
(3.9), (3.10) and (3.6) it is clear that there exists always a trivial solution
given by ρ0 = s(k) = 0, i.e., no boson condensation and no boson pairing.
The interesting question is about the existence of non-trivial solutions.

The variational problem for the Boson pairing model for constant λ has
been studied in detail in Ref. 35. It was shown there that the phase diagram
is quite complicated and it was only possible to solve the problem for some
values of u and v, see Fig. 2 in Ref. 35.

The first Euler-Lagrange equation (3.9) implies that for u > 0 (attrac-
tion in the BCS part of the PBH (3.1)) the existence of Bose-Einstein
condensation, ρ0 > 0 for large chemical potentials µ, or the total particle
density ρ. Moreover, it causes (in ergodic states) a boson pairing, σ 6= 0.
This clearly follows from the condensate equations (3.11), (3.12) or the sec-
ond Euler-Lagrange equation (3.10), since (3.10) is impossible for ρ0 > 0
and σ = 0. However from the same equation it can be seen that the bo-
son pairing σ 6= 0 can survive without Bose-Einstein condensation i.e. for
ρ0 = |c|2 = 0. This is proved in the next remark.

Remark 3.3. In this remark we prove that it is possible to have a solution
of the condensate equations (3.11), (3.12) with ρ0 = 0 and σ 6= 0. The proof
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is based on the analysis in Ref. 35. For simplicity let us take n = 3 and
λ(k) = 1. For x ≥ 0 we let

E(k, x) :=
{
(ε(k) + x)2 − x2

}1/2
. (3.14)

and for fixed v > 0

I2(x) =
v

2

∫

R3
ν(dk)

{
ε(k) + x

E(k, x)
coth

1
2
βE(k, x)− 1

}
. (3.15)

Let ρc be the critical density of the Perfect Bose Gas at inverse temperature
β,

ρc :=
∫

R3
ν(dk)

1
eβε(k) − 1

. (3.16)

Let µ1 = supx≥0(I2(x) − x). From (3.15) one can check that I2(0) = vρc
and I ′2(0) = +∞, and therefore µ1 > vρc. Choose vρc < µ < µ1 and let x̂
be one of the solutions of µ = I2(x)− x.

Now for x ≥ 0, let

I1(x) =
v

2

∫

R3
ν(dk)

1
E(k, x)

coth
1
2
βE(k, x),

A(x) = xI1(x)− I2(x). (3.17)

One can check that A is a strictly concave increasing function of x with
A(0) = −vρc. Let

α := (A(x̂) + µ)/x̂+ 1 = I1(x̂). (3.18)

Note that A(x̂) + µ > A(0) + µ > µ− vρc > 0 and therefore α > 1. Let the
BCS coupling constant u = v/α.

We now propose the following solution:

ρ0 = 0, (3.19)

ρ(k) =
ε(k) + x̂

2E(k, x̂)
coth

1
2
βE(k, x̂)− 1

2
, (3.20)

s(k) =
x̂

2E(k, x̂)
coth

1
2
βE(k, x̂). (3.21)

From the definitions above it can be verified that (s(k))2 ≤ ρ(k)(ρ(k) + 1).
Then using the identities

vρ = v

∫

R3
ν(dk)ρ(k) = I2(x̂) = µ+ x̂,

uσ =
v

α
σ =

1
α
I1(x̂)x̂ = x̂,
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we can check that the condensate equations (3.11), (3.12)) are satisfied.
Note that (3.19)-(3.21) is also a solution of the Euler-Lagrange (3.4)-(3.6).
In fact, in Ref. 35 we have proved that there is a whole region in the µ-α
phase space for which this happens.

Suppose now that (ρ̃0 6= 0, ρ̃(k), s̃(k)) is another solution of (3.4)-(3.6)
for the same values of µ, v and u. Then from (3.6) we can let

y := v

∫

R3
ν(dk)ρ̃(k)− µ = u(ρ̃0 + |σ̃|) > 0 (3.22)

and so from (3.4)) and (3.5)) we obtain

ρ̃(k) =
ε(k) + y

2E(k, y)
coth

1
2
βE(k, y)− 1

2
,

s̃(k) =
y

2E(k, y)
coth

1
2
βE(k, y).

Integrating these identities we get

y + µ− vρ̃0 = I2(y),

αy − vρ̃0 = yI1(y)

and subtracting gives A(y) = (α − 1)y − µ. But from the properties of
the function A mentioned above the last equation has only one solution for
µ > vρc and therefore y = x̂. Thus the solution coincides with (3.19)-(3.21).

3.2. BCS repulsion u < 0: suppression of BCS pearing and

generalized (type III) Bose condensation

The “two-stage” phase transitions with one-particle ρ0 = |c|2 6= 0 and pair
σ 6= 0 condensations described in Section is possible only for attractive BCS
interaction u > 0. This behaviour was predicted in the physics literature
(see for example Refs.20,46) and then was proved in Refs. 35,38.

The case of repulsion (u < 0) in the BCS part of the PBH (3.1) is very
different than attraction. Despite general belief,18,20,21,29 repulsion u < 0 is
not identical to the case u = 0, i.e., to the Mean-Field Bose gas. The latter
model has been studied in great details by different methods and it shows
a simple type I BEC in the ground state, see Refs. 5,14,16,22,26,37.

Remark 3.4. Formally one deduces that (3.10) for u < 0 implies only
trivial solutions ρ0 = 0, σ = 0, but since the equation gives stationary
points of the variational problem, this observation can not be conclusive.
On the other hand the condensate equations (3.11), (3.12) give immediate
but only partial information that for µ < 0 the Bose condensation ρ0 and
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boson pairing σ must be zero. The inequalities of Remark 3.2 do not give
more information about those parameters. The pressure for u ≤ 0 was ob-
tained rigorously in Ref. 35, in fact for a wider class of interactions then we
consider here. The nature of the phase transition was studied in Ref. 38,
where a method of external sources was used to prove the variational prin-
ciple. Below we give another argument that solves the problem for the BCS
repulsion in the PBH model (3.1).

Let us therefore take u < 0. Then clearly

E(r, t, α, c) ≥
∫
ν(dk) ε(k)ρ(k)− µρ+

v

2
ρ2.

Therefore, since r 7→ r ln r− (r− 1) ln(r− 1) is increasing and r̃(k) ≤ r(k),
we have

S(ωφ,R,S) ≤ S(ω eR) ≤ S(ωR),

where S(ωR) = S(ωφ,R,S=0) = S(ωφ=0,R,S=0) as in (2.20), the free-energy
density f(ωβ) is bounded below by the free-energy density fMF (β, µ) of
the MF boson model. On the other hand

f(ωβ) = inf
ρ0, α, r, s

{βE(r, t, α, c)− S(ωφ,R,S)}

≤ inf
ρ0=0, s=0

{βE(r, t, α, c)− S(ωφ,R,S)}

= inf
ρ

{
β

(∫
ν(dk) ε(k)ρ(k)− µρ+

v

2
ρ2

)
− S(ωR)

}
,

(3.23)

where ρ =
∫
ν(dk)ρ(k). It is well known that the last infimum gives the

free-energy density of the MF model (though this infimum is not attained
with ρ0 = 0 for µ > vρc(β)) and therefore f(ωβ) coincides with the free-
energy density fMF (β, µ). Here ρc(β) is the critical density for the Perfect
Bose Gas (3.16). Thus we have the following: In the case of BCS repulsion
u < 0 the free energy for the PBH is the same as for the mean-field case

f(ωβ) = fMF (β, µ) . (3.24)

Returning to the variational principle this means that the infimum of the
free-energy functional in the repulsive case is not attained for µ > vρc(β).
Since the critical density ρc(β) is bounded (for n > 2), we must have BEC
in this domain. But now it cannot be a simple accumulation of bosons in
the mode k = 0, i.e. ρ0 6= 0, since it would imply that c 6= 0, and by
consequence a positive BCS energy in E(r, t, α, c), see PBH (3.1).

The situation which one finds strongly suggests a relation to what is
known as generalized condensation. The possibility of such condensation
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was predicted by Casimir11 and studied extensively by van den Berg, Lewis
and Pulé.4 One form of generalized condensation is called type III ; here
the condensate is spread over an infinite number of single particle states
with energy near the bottom of the spectrum, without any of the states
being macroscopically occupied. To make the connection with the large
deviation and variational techniques developed by van den Berg, Lewis and
Pulé, see e.g., Refs. 6,7, note that though the infimum in the right-hand
side of (3.23) cannot be reached within the space of regular measures ρ(k)
with ρ0 = 0, there is a sequence of regular measures {ρ(l)(k)}l such that
ρ(l)(k) = 0 · δ(k) + ρ(l)(k) → ρ̃0δ(k) + ρ̃(k), l → ∞. Here ρ̃0 > 0 when
µ > vρc(β).

If F denotes the free-energy density functional in terms of
(ρ0, ρ(k), s(k)), then we get

lim
l→∞

F(0, ρ(l)(k), s(l)(k) = 0) = F(ρ̃0, ρ̃(k), s̃(k)). (3.25)

Mathematically this is due to the fact that the functional F is not lower
semi-continuous on the set of regular measures. The physical explanation
was given in Ref. 38: In the case u < 0 this model corresponds to the mean-
field model but with type III Bose condensation, i.e. with approximative
regular measures that have no atom at k = 0. The fact that repulsive
interaction is able to “spread out” the one-mode (type I ) condensation into
the type III was also discovered in other models.10,31
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and some models of an interacting boson gas. Commun. Math. Phys. 118,
61–85 (1988).

7. van den Berg, M., Dorlas, T.C., Lewis, J.T., and Pulè, J.V., A perturbed
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35. Pulé, J.V. and Zagrebnov, V.A., A pair Hamiltonian of a nonideal boson
gas. Ann. Inst. Henri Poincaré 59, 421-444 (1993).
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