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Preface

Physicists around the world received the sad news of the demise of

Professor Leo P. Kadanoff in October 2015. I had no personal inter-

action with him. I heard about him during my first statistical physics

class when I was a college junior while I studied Kadanoff’s block

spin procedure that provides an insight into the renormalization

group theory. Since my professional career has long been dedicated

to investigating the electronic structure problems in solids, I usually

studied the density functional theory, which is conventionally on top

of the zero-temperature or the finite-temperature quantum many-

body theory in equilibrium.

My first professional touch on the nonequilibrium statistical

physics was during my post-doctoral experience at Northwestern

University, Illinois, USA, in 2005, when I was struggling to develop

a computer code, under the guidance of Miyoung Kim and Art

Freeman, for calculating the Seebeck coefficients from the electronic

structures of solids. The transport coefficients, such as electric

conductivity, thermal conductivity, and thermoelectric power, are

defined by the assumption that a system is in a near-equilibrium

state, i.e., essentially in a nonequilibrium state close to equilibrium;

this leads to a completely different physical formalism from the

equilibrium physics with what I usually had dealt. At that time, I

adapted a branch of Boltzmann equation, the so-called Bhatnagar–

Gross–Krook (BGK) model in which the collision term is replaced

by a simple parametric function of the distribution function. The

BGK model has been known, erroneously in many textbooks for

solid state physicists, as the Boltzmann equation. The code for

the Seebeck coefficients based on the BGK model was written

incompletely, so the remaining numerical problems were fixed by

my friend Jung-Hwan Song, who unexpectedly passed away on June
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15, 2011, and its first realistic application was done by Min Sik Park

and Julia Medvedeva, who wrote the first draft of the manuscript for

publishing in Physical Review B in 2010.

During my POSTECH period, I faced a bunch of problems

on nonequilibrium statistical physics, but they are full of phe-

nomenological and empirical treatments dedicated for metallurgical

applications. I have had spent most of my efforts to build a

research framework, the so-called multiscale simulation method,

by organizing a research team consisting of Korean experts from

the vast disciplines of electronic structure modeling, molecular

dynamics modeling, phase field modeling, phase thermodynamics

with databases, and dislocation dynamics modeling. Struggling to

understand those theories, I realized that we need a rather smoothly

unified theoretical framework derived from first principles. To

this end, it is necessary to eliminate structural complications by

arranging atoms to form crystals and solids. Such a system is

nothing more than a very cold and dense plasma. In 2014, I

decided to move to the New Mexico Consortium, Los Alamos,

New Mexico, where I studied the two-component equilibrium

quantum plasma physics, the classical and quantum kinetic theories

for multicomponent systems, and the two-temperature molecular

dynamics for calculating transport coefficients.

In the meantime, I carefully read Leo P. Kadanoff and Gordon

Baym’s book Quantum Statistical Mechanics: Green’s Function Meth-
ods in Equilibrium and Nonequilibrium Problems (Benjamin, New

York, 1962). Like many other classic books, especially Frontiers in
Physics: A Lecture Note and Reprint Series, this book also explains

nonequilibrium statistical physics in a systematic way. It contains

essential concepts on statistical physics in terms of Green’s functions

with sufficient and rigorous details. However, as my friends agree

with me, a lack of effort at the publisher’s end reduced the

readability of this book. The book was printed as a photocopy of

the original manuscript, which was prepared with the help of a

typewriter. In my humble opinion, a book prepared with careful

typesetting helps a reader’s brain to work smoothly because it does

not have to work hard to interpolate text from bad printing. I have

rewritten the text in the LATEX2e format, fixed some typographical

errors, corrected mistakes in equation numbers, drawn figures with
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modern computer programs, added my own footnotes to the text,

and saved in my laptop. This rather tedious work was extremely

helpful for me to understand the formalism of nonequilibrium

quantum statistical mechanics.

During this rewriting and annotating, I felt the necessity to

provide a short note on the second quantization chapter in front

of the original text. Although there are no substantial paradigm

shifts after the publication of the original text, the curricula of

graduate schools have evolved since the 1960s. Graduate students

of modern physics now learn relativistic quantum field theory

and quantum many-body physics and have to work on their own

research topics. It, therefore, becomes necessary for them to spend

time on consistent study to make the knowledge of a topic concrete

in their minds in addition to passing relevant examinations. My

experience tells me that a systematically prepared summary is

extremely useful for settling down the key knowledge of a subject.

I would like to appreciate Mr. Stanford Chong, Pan Stanford

Publishing, for encouraging me to publish this rewritten text, which

was prepared purely for personal purposes, in the form of a book,

so that graduate students as well as senior researchers may benefit

from these annotations on the classical text.

In-Gee Kim
Winter 2017
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Preface of
Quantum Statistical Mechanics: Green’s

Function Methods in Equilibrium and
Nonequilibrium Problems

These lectures are devoted to a discussion of the use of thermo-

dynamic Green’s functions in describing the properties of many-

particle systems. These functions provide a method for discussing

finite-temperature problems with no more conceptual difficulty

than ground-state (e.g., zero-temperature) problems; the method is

equally applicable to boson and fermion systems, equilibrium and

nonequilibrium problems.

The first four chapters develop the equilibrium Green’s function

theory along the lines of the work of Martin and Schwinger. We

use the grand-canonical ensemble of statistical mechanics to define

thermodynamic Green’s functions. These functions have a direct

physical interpretation as particle propagates. The one-particle

Green’s function describes the motion of one particle added to the

many-particle system; the two-particle Green’s function describes

the correlation motion of two added particles. Because they are

propagators they contain much detailed dynamic information,

and because they are expectation values in the grand-canonical

ensemble they contain all statistical mechanical information. Several

methods of obtaining the partition function from the Green’s

functions are discussed. We determine the one-particle Green’s

function from its equation of motion, supplemented by the boundary

conditions appropriate to the grand-canonical ensemble. This

equation of motion, which is essentially a matrix element of the

second-quantized Schrödinger equation, gives the time derivative
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of the one-particle Green’s function G in terms of the two-particle

Green’s function G2. We physically motivate simple approximations,

which express G2 in terms of G, by making use of the propagator

interpretation of the Green’s functions.

Chapter 6 presents a formal method for generating Green’s

function approximations. This method is based on a consideration

of the system in the presence of an external scalar potential. We also

discuss here the relation between our equation of motion method

and the more standard perturbative expansions.

Chapters 7, 8, and 9 outline a theory of nonequilibrium

phenomena. We consider the deviations from equilibrium arising

from the application of an external time- and space-dependent force

field to the system. By making use of the results of Chapter 6 we

show that every Green’s function approximation for an equilibrium

system can be generalized to describe nonequilibrium phenomena.

In this way the Green’s function equations of motion can be

transformed into approximate quantum mechanical equations of

transport. These are used, in Chapter 10, to derive generalizations of

the Boltzmann equation. As examples of the nonequilibrium theory,

we then discuss ordinary sound propagation and also the Landau

theory of the low-temperature Fermi liquid.

Chapters 13 and 14 describe two approximations that have been

extensively applied in the recent literature. A dynamically shielded

potential is employed to discuss the properties of a Coulomb gas;

the two-body scattering matrix approximation is developed for

application to systems with short-range interactions.

An appendix and a list of references and supplementary reading

are included at the end.

We should like to express our gratitude for the hospitality offered

us at the Institutes for Theoretical Physics in Warsaw and Krakow,

Poland, and Uppsala, Sweden, where these lectures were given in

part. Special thanks are due Professor Niels Bohr of the Institute

for Theoretical Physics in Copenhagen, where lectures were first

delivered and finally written.

Leo P. Kadanoff
Gordon Baym

March 1962
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Chapter 1

Physical Prerequisites

1.1 Basic Quantum Mechanics

The quantum revolution in the beginning of the 20th century

changed our concepts of dynamics. The dynamic variables such as

position r and momentum p are replaced by the corresponding

position and momentum operators r̂ and p̂, respectively. When one

would like to observe a dynamical variable, say ω, of a particle , one

has to introduce a wavefunction ψ , which contains all the dynamical

information of particles, and to apply the corresponding dynamical

operator �̂ to the wavefunction ψ . Then one may obtain the desired

dynamical value of the particle as the eigenvalue of the operator,

�̂ψ = ωψ. (1.1)

This simple eigenvalue equation raises difficult philosophical

problems.

Although it possesses a simple mathematical structure, Eq. (1.1)

tells us that a dynamical property of particle is not a measurement

independent of particle. In order to observe a dynamical variable

of the particle, we have to perform an observation represented by

the operator �̂ and then we have to apply the operation to the

Annotations to Quantum Statistical Mechanics
In-Gee Kim
Copyright c© 2018 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-15-4 (Hardcover), 978-1-315-19659-6 (eBook)
www.panstanford.com

www.panstanford.com
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corresponding spuriously defined wavefunction ψ , which looks like

a metaphysical object. It seems like that our mother nature responds

us based on our observational acts. We would like to understand the

nature of measurement and the wavefunctions.

In the Hamiltonian dynamics,a all the dynamical properties

are described in terms of the canonical coordinates xr and the

corresponding conjugate momenta ps with r , s = 1, 2, 3, . . . , n
where n is the degree of freedom. The corresponding quantum

operators x̂r and p̂r follow the conditions

x̂r x̂s − x̂s x̂r = 0, p̂r p̂s − p̂s p̂r = 0

x̂r p̂s − p̂s x̂r = i�δrs ,
(1.2)

where i = √−1, � = h/2π is the rationalized Planck’s constant,

and δrs is the Kronecker delta.b This is known as the fundamental
quantum conditions.c The fundamental quantum conditions state

that the measurement order of two conjugate dynamical variables is

important. The noncommutative operations of conjugate dynamical

variables restrict the precision of measurements. The implication

of the fundamental quantum conditions to the classical dynamical

variables is so-called the first quantization.

Now one can prepare a quantum mechanical Hamiltonian

operator Ĥ , which is written in the form of operators described

earlier and is essentially the same as the classical Hamiltonian H ,

with the care of the fundamental quantum conditions Eq. (1.2).

When we operate a Hamiltonian operator Ĥ to the wavefunction ψ

of a particle, we obtain the energy of the particle:

Ĥ ψ = Eψ,

aThe annotator presumably assumes that the readers have studied the classical

dynamics at the level of L. D. Landau and E. M. Lifshitz, Mechanics, 3rd Ed.

(Elsevier, Amsterdam, 2005) and/or H. Goldstein, C. P. Poole, and J. L. Safko, Classical
Mechanics, 2nd Ed. (Addison-Wesley, Reading, Massachusetts, 1980).

bThe annotator assumes that the readers have studied the mathematical physics at

the level of George B. Arfken, Hans J. Weber, and Frank E. Harris, Mathematical
Methods for Physicists: A Comprehensive Guide, 7th Ed. (Elsevier, Amsterdam, 2013).

cP. A. M. Dirac, The Principles of Quantum Mechanics, 4th Ed. (Clarendon Press, Oxford,

1998) p. 87.
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where E is the total energy of the particle. It will be helpful if

we investigate the simplest physical situation: the motion of a free

particle.d

A free particle with mass m has the energy

E = p2

2m
. (1.3)

Let us align our coordinate system by putting the x-direction

parallel to the particle motion. In quantum mechanics, we have a

corresponding wavefunction ψ , which is believed to contain all the

information for describing the dynamics of the free particle. The

motion of transverse wave in time t is described by the equation

∂2ψ

∂t2
= γ

∂2ψ

∂x2
, (1.4)

where γ is the square of wave velocity. We may assume the

wavefunction is one of the linear combinations of plane waves,

cos(kx − ωt), sin(kx − ωt), ei(kx−ωt), e−i(kx−ωt),

as usual. Then the differential equation Eq. (1.4) satisfies if and only

if

γ = ω2

k2
= E 2

p2
= p2

4m2
.

The Planck–Einstein relations,

p = �k, E = �ω, (1.5)

enable us to write the wave equation Eq. (1.4) as

∂ψ

∂t
= γ

∂2ψ

∂x2
,

where

γ = iω
k

= i�E
p2

= i�
2m

.

We arrive at the one-dimensional Schrödinger equation of a free

particle,

i�
∂ψ

∂t
= − �

2

2m
∂2ψ

∂x2
.

dThe annotator follows the discussion of Leonard I. Schiff, Quantum Mechanics,

3rd Ed. (McGraw-Hill, New York, 1968) Chapters 1, 2, 3, and 6.
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The extension to the three-dimensional case is straightforward to

yield that

i�
∂ψ

∂t
= − �

2

2m
∇2ψ. (1.6)

Considering the three-dimensional Einstein relation is p = �k and

comparing with Eq. (1.3), one obtains the quantum operators of

energy and momentum,

E → i�
∂

∂t
, p → −i�∇ , (1.7)

respectively.

When an external force F defined by the external potential V ,

such as

F(r, t) = −∇V (r, t),

exerts on the particle, the total energy of the particle becomes

E = p2

2m
+ V (r, t) (1.8)

and one may have the Schrödinger equation as

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + V̂ (r, t)ψ, (1.9)

where V̂ is the potential operator corresponding to the classical

potential V . We have a good machinery to solve Eq. (1.9), so we

can obtain, in principle, the wavefunction of particle under the given

boundary conditions. However, we have a big problem: What is the
wavefunction?

There are many interpretations on the wavefunction, but we are

going to accept the standard assumption, due to Born,e that the

numerical value of a measurement is described by a probability

function, which is related to the wavefunction ψ , which is a complex

function. Since a probability must be real and nonnegative, one may

think of a multiplication of its complex conjugate ψ∗ to ψ as the

probability density. As an example, one may obtain a probability

density P (r, t)dxdydz to find the particle in the neighborhood of

volume dxdydz around the position r at time t as

P (r, t) = ψ∗(r, t)ψ(r, t) = |ψ(r, t)|2 . (1.10)

eM. Born, Z. Physik 37, 863 (1926); Nature 119, 354 (1927).
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This interpretation is termed the Copenhagen interpretation.
Because the particle should be found one and only one in the space,

the wavefunction normalization have to be∫
|ψ(r, t)|2 dr = 1. (1.11)

Copenhagen interpretation can be understood as follows: A dynam-

ical variable ω can be measured as any value after an observation.

Unfortunately, we have no prior knowledge which value will be

measured before the observations. Instead we have an expectation

value of the corresponding operator �̂,

〈ω〉 =
∫

ψ∗(r, t)�̂ψ(r, t)dr. (1.12)

Let us investigate how the expectation values of the position

operator x̂ and the momentum operator p̂x evolve in time. The time

evolution of 〈x〉 is

d
dt

〈x〉 = d
dt

∫
ψ∗ x̂ψdr =

∫
ψ∗ x̂

∂ψ

∂t
dr +

∫
∂ψ∗

∂t
x̂ψdr

= − i
�

∫
ψ∗ x̂

(
− �

2

2m
∇2ψ + V ψ

)
dr

+ i
�

∫ (
− �

2

2m
∇2ψ∗ + V ψ∗

)
x̂ψdr

= i�
2m

∫ [
ψ∗ x̂

(∇2ψ
)− (∇2ψ∗) x̂ψ

]
dr

= i�
2m

∫ [
ψ∗ x̂

(∇2ψ
)+ (∇ψ∗) · ∇ (x̂ψ)

]
dr

− i�
2m

∮
S

(x̂ψ∇ψ∗) · n̂dS .

Because the wave packet vanishes at infinity, the last surface integral

term vanishes. Then we have
d
dt

〈x〉 = i�
2m

∫ [
ψ∗ x̂

(∇2ψ
)+ (∇ψ∗) · ∇ (x̂ψ)

]
dr

= i�
2m

∫
ψ∗ [x̂∇2ψ − ∇2 (x̂ψ)

]
dr + i�

2m

∮
S
∇ · (ψ∗∇ x̂ψ) n̂dS

= − i�
m

∫
ψ∗ ∂ψ

∂x
dr.

Therefore, we arrived at a relation

d
dt

〈x〉 = 1

m
〈px〉 . (1.13)
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It is straightforward, in the same fashion, to have the time evolution

of the expectation value of the momentum operator as

d
dt

〈px〉 =
〈

−∂V
∂x

〉
. (1.14)

Equations (1.13) and (1.14) constitute the Ehrenfest’s theoremf for

the x-component. The Ehrenfest’s theorem shows the analogy of the

expectation values of x̂ and p̂ to the classical equations of motion:

dr
dt

= p
m

,
dp
dt

= −∇V .

Let us imagine a function uE (r), which satisfies an eigenvalue

equation [
− �

2

2m
∇2 + V̂ (r)

]
uE (r) = E uE (r). (1.15)

It also defines the Hamiltonian operator

Ĥ = − �
2

2m
∇2 + V̂ (r), (1.16)

and uE is the eigenfunction of the Hamiltonian operator. Using this

eigenfunction, we may write the wavefunction as

ψ(r, t) = u(r)e−i E t/�. (1.17)

Applying the energy operator i� ∂
∂t to the wavefunction Eq. (1.17), we

obtain

i�
∂ψ

∂t
= Eψ. (1.18)

So the constant E is an energy eigenvalue and the function ψ is an

energy eigenfunction ψ , corresponding to the energy operator i� ∂
∂t .

Since |ψ |2 is constant in time, the energy eigenfunction ψ represents

a stationary state of the particle of energy E .

The eigenfunction uE (r) satisfies the normalization condition∫ |uE (r)|2 dr = 1 for any discrete set of eigenfunctions labeled by

E . For two different normalized eigenfunctions of the respective

eigenvalues E and E ′ are orthogonal each other,∫
u∗

E ′ (r)uE (r)dr = δE E ′ (1.19)

fP. Ehrenfest, Z. Physik 45, 455 (1927).
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for non-degenerate energy eigenfunctions. When there is degener-

acy identified by s and s ′, the orthonormality condition has to be∫
u∗

E ′s ′ (r)uE s (r)dr = δE E ′δss ′ . (1.20)

We are able to expand any wavefunction ψ(r) in terms of the energy

eigenfunctions,

ψ(r) =
∑

E

AE uE (r). (1.21)

The coefficients in the expansion Eq. (1.21) can be obtained by the

procedure∫
u∗

E ′ (r)ψ(r)dr =
∑

E

AE

∫
u∗

E ′ (r)uE (r)dr =
∑

E

AE δE E ′ = AE ′ .

It is also important to note that the energy eigenfunctions uE satisfy

the closure property:∑
E

u∗
E (r′)uE (r) = δ(x − x ′)δ(y − y′)δ(z − z′) = δ(r − r′). (1.22)

In Copenhagen interpretation, we consider P (E ) = |AE |2 as the

probability of finding a particle described by the wavefunction ψ(r)

at the energy E , because∑
E

P (E ) =
∑

E

∫
u∗

E (r)ψ(r)dr
∫

uE (r′)ψ∗(r′)dr′

=
∫∫

ψ∗(r′)ψ(r)

[∑
E

u∗
E (r)uE (r′)

]
drdr′

=
∫∫

ψ∗(r′)ψ(r)δ(r − r′)drdr′

=
∫

|ψ(r)|2 dr = 1.

The energy eigenfunction expansion of the wavefunction enables

us to separate the time dependence of the Schrödinger equation

if the potential energy operator V̂ is independent of time t. The

wavefunction ψ(r, t) is expanded in energy eigenfunctions at the

time t with the time-dependent expansion coefficients:

ψ(r, t) =
∑

E

AE (t)uE (r), AE (t) =
∫

u∗
E (r)ψ(r, t)dr. (1.23)
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The expansion Eq. (1.23) is substituted into the Schrödinger

equation (1.9) to yield

i�
∑

E

uE (r)
d
dt

AE (t) =
∑

E

AE (t)E uE (r),

or, using the orthonormality of the uE ,

i�
d
dt

AE (t) = E AE (t), (1.24)

with the probability P (E ) = |AE (t)|2 being constant in time. It is a

simple procedure that the time integration to Eq. (1.24) is performed

once with the initial condition at time t0. The general initial value

wavefunction is, therefore, written in the form:

ψ(r, t) =
∑

E

AE (t0)e− i
�

E (t−t0)uE (r)

AE (t0) =
∫

u∗
E (r′)ψ(r′, t0)dr′.

(1.25)

We have another important eigenfunction expansion method by

using the momentum eigenfunctions defined by the momentum

eigenvalue equation

−i�∇up(r) = pup(r). (1.26)

The generic solutions to the momentum eigenvalue Eq. (1.26), with

the relation p = �k, are written in the form of

uk(r) ∝ exp(ik · r).

These are eigenfunctions of the momentum operator with the

eigenvalues �k. The proportionality constants are determined by the

choice of normalization method.

The simple and commonly chosen normalization method is the

box normalization, in which the probability to find a particle in a

cubic box of volume L3 with the length of each edge to be L is unity.

The box normalization restricts the possible values of k to be a set

of discrete values:

kx = 2πnx

L
, ky = 2πny

L
, kz = 2πnz

L
, nx , y, z = 0, ±1, ±2, · · ·

(1.27)

and the proportionality constant becomes L−3/2. The orthonormal-

ization condition becomes∫
L3

u∗
q(r)uk(r)dr = δkx qx δkyqy δkzqz = δkq (1.28)
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with the properly normalized momentum eigenfunctions

uk(r) = L−3/2 exp(ik · r). (1.29)

The continuity of k is assumed by taking the limit of the size of the

box to be sufficiently large, L → ∞. This limit is commonly taken at

the end of calculations.

There is another normalization method by using the properties

of delta function. To see this, we may consider the integral∫
u∗

q(r)uk(r)dr is the product of three integrals of each component:∫ ∞

−∞
ei(kx −qx )x dx = lim

g→∞

∫ g

−g
ei(kx −qx )x dx

= lim
g→∞

2 sin g(kx − qx )

kz − qx

=2πδ(kx − qx ),

where we employed the sinc function representation of delta

function, δ(x) = limg→∞ sin gx
πx . We now give the proportionality to

the momentum eigenfunctions defined in the infinite space to be

uk(r) = (2π)−3/2 exp(ik · r), (1.30)

which satisfy the orthonormality condition∫
u∗

q(r)uk(r)dr = δ(kx −qx )δ(ky −qy)δ(kz −qz) = δ(k−q). (1.31)

When we choose the delta-function normalization scheme, one may

expand the wavefunction in terms of the momentum eigenfunctions

with the introduction of k-dependent energy Ek,

ψ(x , t) =
∫

dkAke− i
�

Ektuk(x),

where we consider a one-dimensional motion for simplicity. The free

particle Schrödinger equation in one dimension,

i�
∂ψ

∂t
= − �

2

2m
∂2ψ

∂x2
,

yields the energy–momentum relation

Ek = �
2k2

2m
. (1.32)
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The Planck–Einstein relation Ek = �ω(k) transforms Eq. (1.32) to a

dispersion relation,

ω(k) = �

2m
k2. (1.33)

The efforts to obtain the dispersion relations for the interacting

systems constitute a central pillar of modern physics, since a

dispersion relation contains every physically relevant information

about the stationary quantum system.

Let us consider how we can observe the dynamical variables

precisely in quantum mechanics. This can be analyzed by consid-

ering the mean-square deviation of observations. The word “mean”

implies the expectation value discussed in the Ehrenfest’s theorem.

Let us restrict our discussions to the one-dimensional free particle

motion. The mean-square deviations of the position (	x)2 and the

momentum (	x)2

(	x)2 = 〈(x̂ − 〈x〉)2
〉 = 〈x2

〉− 〈2x 〈x〉〉 + 〈〈x〉2
〉 = 〈x2

〉− 〈x〉2

(	p)2 = 〈( p̂ − 〈p〉)2
〉 = 〈p2

〉− 〈p〉2 .

Introducing the measurement error operators

α̂ ≡ x̂ − 〈x〉 , β̂ ≡ p̂ − 〈p〉 = −i�
(

d
dx

−
〈

d
dx

〉)
,

one may obtain

(	x)2 (	p)2 =
∫ ∞

−∞
ψ∗α̂2ψdx

∫ ∞

−∞
ψ∗β̂2ψdx

=
∫ ∞

−∞
(α̂∗ψ∗) (α̂ψ) dx

∫ ∞

−∞

(
β̂∗ψ∗) (β̂ψ

)
dx

(1.34)

The right-hand side of the product of the mean-square deviation

Eq. (1.34) is in the form of
∫∞

−∞ f ∗ f dx
∫∞

−∞ g∗gdx , with f = α̂ψ and
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g = β̂ψ . Since the inequality∫ ∣∣∣∣ f − g

∫
f g∗dx∫ |g|2 dx

∣∣∣∣
2

dx ≥ 0

holds for all infinite range integrals, but the equality holds only for

f = cg with constant c, the inequality∫
| f |2 dx

∫
|g|2 dx ≥

∣∣∣∣
∫

f ∗gdx
∣∣∣∣

2

also holds. Then the product of the mean-square deviation Eq. (1.34)

satisfies the inequality

(	x)2 (	p)2 ≥
∣∣∣∣
∫

(α̂∗ψ∗)
(
β̂ψ
)

dx
∣∣∣∣

2

=
∣∣∣∣
∫

ψ∗α̂β̂ψdx
∣∣∣∣

2

. (1.35)

We consider the symmetric description of the operator product α̂β̂

as in the right-hand side of Eq. (1.35)

α̂β̂ = 1

2

(
α̂β̂ − β̂α̂

)+ 1

2

(
α̂β̂ + β̂α̂

)
and take care about the fact that the operator β̂ is a differential

operator to enable us in performing the integration by part with

discarding the surface integrals and cross terms. By definition and

the fundamental quantum conditions Eq. (1.2), it is easy to show that(
α̂β̂ − β̂α̂

)
ψ = −i�

[
x̂

dψ

dx
− d

dx
(x̂ψ)

]
= i�ψ.

It is, then, straightforward to show the relation

(	x)2 (	p)2 ≥ 1

4
�

2 or 	x · 	p ≥ 1

2
�. (1.36)

This inequality is known as the Heisenberg’s principles of uncer-
tainty.g

One has to take care about the interpretation of the uncertainty

principles. During the derivation of Eq. (1.36), we have not involved

any interaction related with any observation experiments. The

principle of uncertainty is the very nature of dynamics, once the

fundamental quantization conditions hold. The commonly known

explanation about the large disturbance of the motion due to the

lightness of particle, invented by Heisenberg himself (!), is invalid

to explain the principles of uncertainty.

gW. Heisenberg, Z. Physik 43, 172 (1927).
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1.2 Representations and Equations of Motion

The quantum mechanical operator relation Eq. (1.1) has been

represented in the form

�̂vμ(r) = ωμvμ(r), (1.37)

where �̂ can be the momentum operator Eq. (1.7) with eigen-

functions Eq. (1.29) or Eq. (1.30), or the Hamiltonian operator

Eq. (1.16) with eigenfunctions defined by Eq. (1.15). It can also

expand vμ in terms of the elements of an orthonormal complete set

of eigenfunctions wκ with expansion coefficients uκμ:

vμ(r) =
∫ 

dκ uκμwκ(r), (1.38)

where the symbol
∫  dκ denotes both a summation

∑
κ over

discrete values of the subscript κ and an integration
∫

dκ over the

continuous part of its range. The orthonormality of wκ(r) yields the

coefficients of transformation as

uκμ =
∫

w∗
κ(r)vμ(r)dr. (1.39)

We can also expand wκ in terms of vμ:

wκ(r) =
∫ 

dμ u∗
κμvμ(r). (1.40)

We may regard uκμ as the elements of a typical transformation

matrix U U†:(
U U†)

κλ
=
∫ 

dμ uκμuλμ

=
∫ 

dμ

∫
w∗

κ(r)vμ(r)dr
∫

v∗
μ(r′)wλ(r′)dr′

=
∫∫

w∗
κ(r)δ(r − r)wλ(r′)drdr′

=
∫

w∗
κ(r)wλ(r)dr = (1)κλ ,

(1.41)

where 1 is the identity matrix. This is the definition of the unitary

matrix U . So the expansion coefficients wκλ are the elements of

the unitary matrix. In general, the unitary matrix U transforms

an operator �̂ from one representation, in which a mathematical
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object in Hilbert space is expanded in terms of a set of orthonormal

eigenfunctions, to another:

U �̂U† = �̂′. (1.42)

Let ψα(r) represent a particular state α of a system. We regard

ψα as a matrix with one column, in which the rows are labeled by the

coordinate r. This column matrix ψα can be expanded in terms of the

orthonormal complete set of uk(r) with the expansion coefficients

aαk:

ψα(r) =
∫ 

dk aαkuk(r), aαk =
∫

u∗
k(r)ψα(r)dr, (1.43)

which can be written in the matrix form as

ψα = U†aα , aα = U ψα , (1.44)

respectively, where aα is a one-column matrix with rows labeled by k.

Just as the unitary matrix U transforms an operator �̂ into another

representation Eq. (1.42), it also transforms a state function ψα to

the corresponding representation through Eq. (1.44).

It is left as an exercise to show that the unitary transformation

does not change the norm of the state function:∫
ψ∗

α(r)ψα(r)dr =
∫ 

drψ∗
α(r)ψα(r) = ψ†

αψα , (1.45)

where ψ†
α is the Hermitian adjoint of the one-column matrix ψα with

the column labeled by r. The norm of a state function is a special case

of the inner product of two state vectors ψα and ψβ , which is defined

as (
ψα , ψβ

) = ψ†
αψβ =

∫
ψ∗

α(r)ψβ(r)dr (1.46)

and is also a number. We can consider the two state vectors ψα

and ψβ to be orthogonal if the inner product vanishes. The matrix

element ψ†
α�̂ψβ = (

ψα , �̂ψβ

)
is then the inner product of the state

vector ψα and �̂ψβ .

An extremely convenient notation system to represent the state

vectors and operators was invented by Dirac.h Since any state

hP. A. M. Dirac, op. cit. Section 6 and J. J. Sakurai and San Fu Tuan, Modern Quantum
Mechanics, Revised Ed. (Addison-Wesley, Reading, Massachusetts, 1994) Chapter 1.
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function or state vector can be transformed from one representation

to another, i.e., no matter how the state function is written as ψα

or aα , we know those representations indicate a definite quantum

state α. So we can write a quantum state α as a ket vector |α〉 and

its Hermitian conjugate bra vector 〈α|. The inner product of the two

state vectors is written as

ψ†
αψβ = 〈α|β〉 (1.47)

and is called a bracket expression. Operations on a ket vector from

the left with �̂ produce another ket vector

�̂ |β〉 = ∣∣β ′〉 (1.48a)

and operation on a bra from the right with �̂ produces another bra

vector

〈α| �̂ = 〈α′∣∣ . (1.48b)

The matrix element of �̂ between states α and β is written as

�αβ =
∫

ψ∗
α

(
�̂ψβ

)
dr

= (ψα , �̂ψβ

)
= 〈α|β ′〉 = 〈α ∣∣�̂∣∣β〉

(1.49a)

or equivalently

�αβ =
∫ [

�̂†ψα(r)
]∗

ψβ(r)dr

= (�̂†ψα , ψβ

)
= 〈α ∣∣�̂∣∣β〉 = 〈α|�̂|β〉 .

(1.49b)

The matrix element of the Hermitian adjoint operator �̂† is then

given by (
�̂
)
βα

= �∗
αβ = 〈β ∣∣�̂†∣∣α〉 = 〈α ∣∣�̂∣∣β〉∗ . (1.50)

We may represent a quantum state by Dirac notation: The ket

|μ〉 to denote an eigenstate of �̂ with eigenvalue ωμ. A specific

example is that |k〉 denotes an energy eigenstate of Hamiltonian Ĥ
with eigenvalue Ek. In the same way, we assign |r〉 as an eigenstate

of position operator r̂ with eigenvalue r. We may write the energy

eigenfunction of energy Ek as

uk(r) = 〈r|k〉 , u∗
k(r) = 〈k|r〉 .
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The Dirac notation representation of Eq. (1.43) becomes

ψα(r) = 〈r|α〉 =
∫ 

dk aαk 〈r|k〉 =
∫ 

dk 〈k|α〉 〈r|k〉 .

Since both factors 〈k|α〉 and 〈r|k〉 in the right-hand side are scalar,

their positions are interchangeable to yield

ψα(r) =
∫ 

dk 〈r|k〉 〈k|α〉 = 〈r|α〉 .

Here we employed the completeness relation∫ 

dk |k 〉〈 k| = 1, (1.51)

which have a short-hand notation of summation convention

|k 〉〈 k| = 1.

Now we may rewrite the Schrödinger equation with the

Hamiltonian operator Ĥ in Dirac notation:

i�
d
dt

|αS (t)〉 = Ĥ |αS (t)〉 , (1.52)

where the total time derivative is used due to the fact that there is

no explicit coordinate dependence of the ket and the subscript S
refers to the ket as viewed in the Schrödinger picture. It means the

Schrödinger picture ket varies in time as a function in the ordinary

differential equation. The fact that the Hamiltonian operator Ĥ is a

Hermitian leads the Hermitian adjoint equation,

−i�
d
dt

〈αS (t)| = 〈αS (t)| Ĥ . (1.53)

The solutions to Eqs. (1.52) and (1.53) are obvious if Ĥ is

independent of time:

|αS (t)〉 = e−i Ĥ t/� |αS (0)〉 〈αS (t)| 〈αS (0)| ei Ĥ t/�. (1.54)

One should take care about the order of operator products

appearing in the infinite series representation of e±i Ĥ t/� as an

infinite sum of powers of Ĥ , which is composed of noncommutative

operators r̂ and p̂.
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We may find the time rate of the matrix element of a dynamical

variable �̂S in the Schrödinger picture:

d
dt

〈
αS (t)

∣∣�̂S
∣∣βS (t)

〉 =
[

d
dt

〈αS (t)|
]

�̂S
∣∣βS (t)

〉

+
〈

αS (t)

∣∣∣∣∣∂�̂S

∂t

∣∣∣∣∣βS (t)

〉

+ 〈αS (t)| �̂S

[
d
dt

|βS (t)〉
]

=
〈

αS (t)

∣∣∣∣∣∂�̂S

∂t

∣∣∣∣∣βS (t)

〉

+ 1

i�

〈
αS (t)

∣∣(�̂S Ĥ − Ĥ �̂S
)∣∣βS (t)

〉
.

(1.55)

The time rate of the matrix element in the Schrödinger picture is

made of the expectation value of the time rate of the operator itself

and the expectation value of the commutator[
�̂S , Ĥ

] = �̂S Ĥ − Ĥ �̂S .

One interesting feature of Eq. (1.55) appears when �̂S commutes

with Ĥ and has no explicit time dependence. In this case, all terms

in the right-hand side vanish and so all matrix elements of �̂S are

constant in time. This property of the dynamical variable is the

definition of a constant of the motion.

Let us see what happens if we substitute the Schrödinger ket

Eq. (1.54) into the matrix element time rate Eq. (1.55). This gives

d
dt

〈
αS (0)

∣∣∣ei Ĥ t/��̂S e−i Ĥ t/�
∣∣∣βS (0)

〉

=
〈

αS (0)

∣∣∣∣∣ei Ĥ t/� ∂�̂S

∂t
e−i Ĥ t/�

∣∣∣∣∣βS (0)

〉

+ 1

i�

〈
αS (0)

∣∣∣[ei Ĥ t/��̂S e−i Ĥ t/�, Ĥ
]∣∣∣βS (0)

〉
,

where we have made use of the fact that Ĥ commutes with e±i Ĥ t/�.

It is convenient to define the time-dependent operator

�̂H ≡ ei Ĥ t/� ∂�̂S

∂t
e−i Ĥ t/�, (1.56)
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where the subscript H denotes the convention that the operator is

presented in the Heisenberg picture. Consequently, the Schrödinger

ket should be changed to the corresponding Heisenberg ket

|αH (t)〉 ≡ ei Ĥ t/� |αS (t)〉 = |αS (0)〉 . (1.57)

So the Heisenberg ket coincides with the Schrödinger ket at time t =
0. Thus, the Heisenberg ket does not depend on time for allowing to

write |αH (t)〉 = |αH 〉. In the Heisenberg picture, �̂H depends on time

t no matter how �̂S depends on time or not, unless �̂S commutes

with Ĥ . The matrix element time rate is then〈
αH

∣∣∣∣ d
dt

�̂H

∣∣∣∣βH

〉
=
〈

αH

∣∣∣∣∣∂�̂H

∂t

∣∣∣∣∣βH

〉
+ 1

i�

〈
αH
∣∣[�̂H , Ĥ

]∣∣βH
〉

.

Since this relation is valid for an arbitrary bra and an arbitrary ket, it

is valid for the operators themselves. The resulting operator relation

is known as the Heisenberg equation of motion:

d�̂H

dt
= ∂�̂H

∂t
+ 1

i�

[
�̂H , Ĥ

]
. (1.58)

This Heisenberg equation of motion serves the central role in this

book.

The time evolution of a quantum system is governed by the

unitary matrix e−i Ĥ t/�; the choice of the Schrödinger picture or the

Heisenberg picture is a matter of choice where the unitary matrix is

attached to the state vector or the operator, respectively. There is yet

another picture to describe the time evolution of a quantum system

by concentrating on this unitary matrix; it is the interaction picture
or Dirac picture. The first step to implement the interaction picture

is to divide the Hamiltonian into two parts:

Ĥ = Ĥ 0 + Ĥ ′.

The division criterion is rather arbitrary, but Ĥ 0 is commonly chosen

not to depend on time and to posses a simple structure. Most

common choice is that Ĥ 0 is the kinetic energy, while Ĥ ′ is the

potential energy. One may choose Ĥ 0 to be the Coulomb field and

Ĥ ′ to be some external electromagnetic interaction. In general, Ĥ ,

Ĥ 0, and Ĥ ′ do not commute with each other. The interaction picture
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defines the state vectors and the operators as

|αI (t)〉 ≡ ei Ĥ 0S t/� |αS (t)〉
�̂I (t) ≡ ei Ĥ 0S t/��̂S e−i Ĥ 0S t/�,

(1.59)

where the subscript I indicates the state vectors and the operators

are described in the interaction picture.

It is straightforward to show the time evolution of the state

vectors and the operators

i�
d
dt

|αI (t)〉 = Ĥ ′
I |αI (t)〉

d�̂I

dt
= ∂�̂I

∂t
+ 1

i�

[
�̂I , Ĥ 0I

]
,

(1.60)

where Ĥ ′
I = ei Ĥ 0S t/� Ĥ ′

S e−i Ĥ 0S t/�. In the interaction picture, the

time evolution of the state vectors is governed by the interaction

Hamiltonian Ĥ ′
I , while the time evolution of the operators is

governed by the reference Hamiltonian Ĥ 0I .

To see the importance of the interaction picture, let us introduce

a parameter λ, which varies from 0 to 1. We can modify the

Hamiltonian using the parameter λ to

Ĥ = Ĥ 0 + λĤ ′.

The parameter λ is tuned to be 0 at time t = −∞ and is increased

slowly to 1 as time increases until t = 0, when an experiment begins

and the state vector and the operator in the Schrödinger picture,

the Heisenberg picture, and the interaction picture coincide with

each other. The operator time evolution is steady because we have

chosen Ĥ 0I to not depend on time. The solution to the operator

can be obtained once in any time t, and this solution persists for

all time interval from t = −∞ to t = ∞. On the other hand, the

state vector can be prepared at time t = −∞ with the reference

Hamiltonian Ĥ 0I . Since λ = 0 at t = −∞, the state vector and the

operators coincide with those of the Heisenberg picture. This state

vector prepared at t = −∞ evolves in time to coincide with the

state vector in the Schrödinger picture at time t = 0 and the further

evolution like the Schrödinger picture, but with only the interaction

Hamiltonian Ĥ ′
I . So the experiment from t = 0 to t = ∞ observes

the effects of the interaction Ĥ ′
I to the state vector prepared by
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the Hamiltonian Ĥ 0I . This procedure is of great importance in the

equilibrium many-body theory.

An important example in the venue of many-body theory is

the problem of a simple harmonic oscillator of which a particle of

mass m oscillates in one-dimensional space with a small amplitude

around its equilibrium position through Hooke’s law with the spring

constant K . The Hamiltonian operator of the simple harmonic

oscillator is

Ĥ = p̂2

2m
+ 1

2
mω2 x̂2, (1.61)

where we find a characteristic oscillation frequency ω = √
K/m. The

symmetric powers of x̂ and p̂ operators in the Hamiltonian suggest

us that there is no difference whether we describe the simple

harmonic oscillator in the position space or in the momentum space.

It is convenient to describe the simple harmonic oscillator in another

space composed of another set of two operators that are connected

by the Hermitian adjoint to each other, say â and â†. One may find the

set of two operators by employing the symmetric and antisymmetric

linear combinations of the operators x̂ and p̂ to bei

â =
√

mω

2�

(
x̂ + i

p̂
mω

)
, â† =

√
mω

2�

(
x̂ − i

p̂
mω

)
. (1.62)

These operators satisfy a commutation relation[
â, â†] = 1

2�
(−i [x̂ , p̂] + i [ p̂, x̂]) = 1. (1.63)

We introduce a new operator N̂ = â†â, which is obviously

Hermitian.j This operator is explained by the x̂ and p̂ operators,

from the definitions Eq. (1.62),

N̂ = â†â =
(mω

2�

)(
x̂2 + 1

m2ω2
p̂2

)
+
(

1

2�

)
[x̂ , p̂] .

This result suggests us to rewrite the simple harmonic oscillator

Hamiltonian operator Eq. (1.61) in terms of the operator N̂:

Ĥ = �ω

(
N̂ + 1

2

)
. (1.64)

iThis is nothing more than a linear algebra exercise:

(
â

â†

)
=

(
cx x cxp

c px c pp

)(
x̂
p̂

)
.

jOne can check its Hermitian property by N̂† = (
â†â

)† = (â)†
(

â†)† = â†â = N̂.
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Since the Hamiltonian operator Ĥ is a linear combination of the

operator N̂ , an eigenvector of N̂ could be an eigenvector of Ĥ . Let

us write the eigenvalue equation of the operator N̂ by introducing

its eigenvector |n〉 with the corresponding eigenvalue n:

N̂ |n〉 = n |n〉 , (1.65)

so the eigenvalue equation of the Hamiltonian will be

Ĥ |n〉 = �ω

(
n + 1

2

)
|n〉 , (1.66)

from which the energy eigenvalue of the Hamiltonian becomes

En = �ω

(
n + 1

2

)
. (1.67)

The energy eigenvalue Eq (1.67) has more information than Planck’s

relation E = �ω by the factor
(

n + 1
2

)
. We need to understand

what is the meaning of the quantum number n, which is essentially

a dimensionless nonnegative number for ensuring the positive

definiteness of the harmonic oscillator energy. To this end, let us find

the operator relations among N̂, â, and â†.

We may first test the commutation relations[
N̂ , â

] = [â†â, â
] = â† [â, â] + [â†, â

]
â = −â,[

N̂ , â†] = [â†â, â
] = â† [â, â†]+ [â†, â†] â = â†.

(1.68)

Using these relations, we can investigate the effects of operators â
and â† on the eigenvector |n〉. One may show that

N̂â† |n〉 = ([N̂, â†]+ â† N̂
) |n〉 = (n + 1) â† |n〉 (1.69a)

N̂â |n〉 = ([N̂, â†]+ âN̂
) |n〉 = (n − 1) â |n〉 . (1.69b)

Hence, one may consider â |n〉 or â† |n〉 to be another eigenvector of

the operator N̂, say |m〉, to yield

N̂ |m〉 = (n − 1) |m〉
or

N̂ |m〉 = (n + 1) |m〉 .

So we can say

|m〉 → |n − 1〉 for â

|m〉 → |n + 1〉 for â†
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and these relations give the effects of the operators â and â† to |n〉 to

be

â |n〉 = c |n − 1〉 ,

â† |n〉 = c′ |n + 1〉 ,
(1.70)

where c and c′ are the appropriate phase factors. The implication

of the effects of the operator â or â† on the eigenvector |n〉 of the

operator N̂ is obvious; besides the corresponding phase factor, â
decreases the eigenvalue n by 1 or â† increases the eigenvalue n
by 1. These properties yield the name of the operators â and â† to

be the annihilation (or destruction) operator and the creation (or

construction) operator, respectively.

Let us find the phase factors c and c′. First we consider the square

of c and c′:

|c|2 = 〈n − 1
∣∣c∗c

∣∣ n − 1
〉 = 〈n ∣∣â†â

∣∣ n
〉 = 〈n ∣∣N̂∣∣ n

〉 = n,∣∣c′∣∣2 = 〈n + 1
∣∣c′∗c′∣∣ n + 1

〉 = 〈n ∣∣ââ†∣∣ n
〉

= 〈n ∣∣(N̂ + 1
)∣∣ n
〉 = (n + 1) .

By convention, we take c and c′ to be positive and real to obtain

â |n〉 =√
n |n − 1〉 ,

â† |n〉 =√
n + 1 |n + 1〉 .

(1.71)

Now we operate the annihilation operator â to the eigenstate |n〉
of the number operator N̂, successively. The sequence will be

â |n〉 = √
n |n − 1〉 ,

â2 |n〉 =
√

n(n − 1) |n − 2〉 ,

â3 |n〉 =
√

n(n − 1)(n − 2) |n − 3〉 ,

...

(1.72)

We know the positive definiteness of n as

n = 〈n ∣∣N̂∣∣ n
〉 = (〈n| â†) · (â |n〉) = |c|2 ≥ 0,

which proves the physical argument of the positive definiteness of

the harmonic oscillator energy En = �ω
(

n + 1
2

)
. The requirement

of the positive definiteness restricts n to be a nonnegative integer;

otherwise, the annihilation sequence Eq. (1.72) will never stop,
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leading to a negative value n. We conclude that n = 0 is the minimum

eigenvalue with which the Hamiltonian eigenvalue equation yields

Ĥ |0〉 = 1

2
�ω |0〉 , (1.73)

which constitutes the ground state |0〉 of the simple harmonic

oscillator combined with the ground-state energy E0 = 1
2
�ω.

We can now generate any simple harmonic oscillator states |n〉 by

applying successively the creation operator â† to this ground state:

|1〉 = 1√
0 + 1

â† |0〉 ,

|2〉 = 1√
1 + 1

â† |1〉 = 1√
2 · 1

(
â†)2 |0〉 ,

|3〉 = 1√
2 + 1

â† |2〉 = 1√
3 · 2 · 1

(
â†)3 |0〉 ,

...

|n〉 = 1√
n

(
â†)n |0〉 ,

(1.74)

with the corresponding energy

En = �ω

(
n + 1

2

)
, n = 0, 1, 2, 3, · · · (1.75)

We may interpret that N̂ operator counts the number of oscillators

n of frequency ω, so N̂ is called the number operator. This contrasts

sharply to a classical simple harmonic oscillator, which possesses its

energy proportional to its amplitude square:

E = 1

2
mω2 A2, (1.76)

where A is the amplitude and is a continuous positive real number.

The minimum energy of the classical simple harmonic oscillator

is, of course, zero, while the ground state of the quantum simple

harmonic oscillator is 1
2
�ω.

We can obtain the matrix elements for the annihilation operator

and the creation operator,〈
n′ |â| n

〉 = √
nδn′ , n−1,

〈
n′ ∣∣â†∣∣ n

〉 = √
n + 1δn′ , n+1, (1.77)
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respectively. It can also represent the position operator x̂ and the

momentum operator p̂ in terms of the annihilation â and creation

â† operators as

x̂ =
√

�

2mω

(
â† + â

)
, p̂ = i

√
�

2mω

(
â† − â

)
,

whose matrix elements are

〈
n′ |x̂| n

〉 =
√

�

2mω

(√
n + 1δn′ , n+1 + √

nδn′ , n−1

)
,

〈
n′ | p̂| n

〉 = i

√
�

2mω

(√
n + 1δn′ , n+1 − √

nδn′ , n−1

)
.

(1.78)

1.3 Second Quantization

The quantum mechanics formulation described in the previous

sections has shown its success when applied to a system whose

interaction can be modeled by a mean property single-particle

system. The physical world, which is made of many interacting

particles, requires the inclusion of the inter-particle potentials in the

many-particle Schrödinger equation. The many-body wavefunction

in configuration space contains all possible dynamical information.

Since it is impractical to solve the many-body Schrödinger equation

directly, one should resort to other techniques: second quantization,

quantum-field theory, and the Green’s function formalism. The

idea of second quantization was introduced by Dirack by applying

the concept of the annihilation and creation of particles in order

to bypass the mathematical difficulties in relativistic quantum

electrodynamics. Soon after Dirac, it has been shown that the second

quantization concept greatly simplifies the complicated problems of

many identical interacting particles.l

kP. A. M. Dirac, Proc. R. Soc. (London) 114A, 243 (1927).
lP. Jordan and O. Klein, Z. Physik 45, 751 (1927); P. Jordan and E. P. Wigner, Z. Physik
47, 631 (1928); V. Fock, Z. Physik 75, 622 (1932). The annotator suggests the reader

to refer the descent textbooks Alexander L. Fetter and John Dirk Walecka, Quantum
Theory of Many-Particle Systems (McGraw-Hill, New York, 1971) and John W. Negele

and Henri Orland, Quantum Many-Particle Systems (Addison-Wesley, Redwood City,

California, 1988).
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In relativistic quantum theory spins raise in natural such a

way to let a quantum field satisfy the relativistic transformation

properties.m It is, however, convenient to accept the existence of

fermions with spin half-integers and of bosons with spin integers,

for non-relativistic quantum many-body theory. The spin degree of

freedom is indicated separately, for example σ , and it is attached

to some dynamical variables, for example the position eigenvector

|x〉 = |rσ 〉. Further internal degrees of freedom, such as isospins,

can be attached in addition to such notation with an appropriate

quantum number.

A wavefunction of N identical particles �N (x1, x2, . . . , xN , t)

represents the probability amplitude for finding particles at the

N positions and combined with the corresponding spin states,

x1, x2, . . . , xN at a given time t and has to satisfy the definiteness

condition to be written in terms of inner product condition

(�N , �N ) =
∫

dx1dx2 · · · dxN |�N (x1, x2, . . . , xN , t)|2 < +∞.

(1.79)

The N-particle Schrödinger equation, with the Hamiltonian operator

Ĥ =
N∑
k

K̂(xk) + 1

2

N∑
k =l

V̂ (xk, xl ), (1.80)

where K̂ and V̂ are the many-particle kinetic energy and potential

energy, respectively, is given by

i�
∂

∂t
�N (x1, x2, . . . , xN , t) = Ĥ �N (x1, x2, . . . , xN , t) (1.81)

together with an appropriate set of boundary conditions for the

wavefunction �N .

The most important boundary condition of the many-particle

wavefunction �N would be the permutation properties of indistin-

guishable identical particles. Let (P 1, P 2, . . . , P N) represent any

permutation P of the set (1, 2, . . . , N). We do not know if someone

permutes two particles collected from the set of the N identical

mFor a rigorous derivation, one may refer J. M. Jauch and F. Rohrlich, The Theory of
Photons and Electrons, Second Expanded Edition (Springer-Verlag, New York, 1976),

Chapter 1.
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particles, but the N-particle wavefunction changes its sign according

to

�N (xP 1, xP 2, · · · , xP N , t) = ζ P �N (x1, x2, · · · , xN , t) , (1.82)

where P is the parity of permutation, and ζ is +1 for bosons and −1

for fermions.

Let ψαk (xk) be a time-independent single-particle wavefunction to

represent an independent single-particle quantum state |αk〉, which

is complete ∫ 

dk |αk〉 〈αk| = 1.

Conveniently, we consider that the infinite set of single-particle

quantum number αk is ordered (1, 2, 3, · · · , r, s, t, · · · , ∞) and αk

runs over this set of eigenvalues, so we have a fixed set of quantum
numbers

α1, α2, · · · , αN . (1.83)

We are going to construct the many-body wavefunction by ex-

panding in terms of the (independent) single-particle wavefunctions

ψαk (xk):

�N (x1, x2, . . . , xN , t)

=
∑

P

∑
αP 1,αP 2, ··· ,αP N

C (αP 1, αP 2, · · · , αP N , t) ψαP 1
(x1)ψαP 2

(x2) · · · ψαP N (xN ).

(1.84)

Since the ψα(x) are time independent, all the time dependence

of the many-particle wavefunction is described in the coefficients

C (α1, α2, · · · , αN , t), which also follows the permutation property

Eq. (1.82) in such a way that

C (αP 1, αP 2, · · · , αP N , t) = ζ P C (α1, α2, · · · , αN , t) . (1.85)

To obtain the coefficients C (α1, α2, · · · , αN , t) we require the

normalization condition∫ 

dxk |�N ({xk})|2 = 1. (1.86)

The orthonormality condition of the single-particle wavefunction

yields a condition∑
α1,α2, ··· ,αN

|C (α1, α2, · · · , αN , t)|2 = 1. (1.87)
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Let us multiply Eq. (1.84) to the left by ψ†
α1

ψ†
α2

· · · ψ†
αN

, which is the

product of adjoint wavefunctions corresponding to the fixed order

of quantum numbers α1α2 · · · αN as appeared in the left-hand side,

and then integrate over all the appropriate coordinates. The result

becomes

C (α1, α2, · · · , αN , t) =
∑

αP 1,αP 2, ··· ,αP N

C (αP 1, αP 2, · · · , αP N , t)

×
∫ 

dxk ψ†
α1

(x1)ψ†
α2

(x1) · · · ψ†
αN

(xN)

× ψαP 1
(xP 1)ψαP 2

(xP 2) · · · ψαP N (xP N)

=
∑

αP 1,αP 2, ··· ,αP N

C (αP 1, αP 2, · · · , αP N , t)

×
∑

P

ζ P
∫

dx1ψ
†
α1

(x1)ψαP 1
(xP 1)

×
∫

dx2ψ
†
α2

(x2)ψαP 2
(xP 2) · · ·

×
∫

dxNψ†
αN

(xN)ψαP N (xP N).

(1.88)

We know from the Copenhagen interpretation that the integral∫
dxkψ

†
αk

(xk)ψαP k (xP k) measures whether a particle occupies the

quantum state |αk〉 if αP k = αk. Let nk be the count of how many

times one has the same permuted states |αP k〉 as the state |αk〉,

so we say that nk is the occupation number. We also know that

a quantum state of fermions cannot accommodate more than one

particle because of the exclusion principle. The exclusion principle

allows one and only one permutation. On the other hand, bosons

can occupy any number of particles. In both cases, the sum of

the occupation numbers must be the same as the total number of

particles N:

N =
∑

k

nk. (1.89)

The factors
∑

P ζ P
∫

dx1ψ
†
α1

(x1)ψαP 1
(xP 1) · · · in the right-hand

side of Eq. (1.88) become (−1)P n1!n2!n3! · · · n∞ for fermions and

n1!n2!n3! · · · n∞! for bosons. Here we do not limit the index of

occupation numbers because 0! = 1. It is now available to switch the
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expansion coefficients C (α1, α2, · · · αN , t) to the occupation number

coefficients C̄ (n1, n2, n3, · · · n∞), which satisfies the normalization

conditions∑
n1, n2, ···n∞

∣∣C̄ (n1, n2, n3, · · · , n∞, t)
∣∣2 N!

n1!n2! · · · n∞!
= 1 (1.90a)

for bosons and∑
n1, n2, ··· , n∞

∣∣C̄ (n1, n2, n3, · · · , n∞)
∣∣2 N!

n1!n2! · · · n∞!
(−1)P = 1

(1.90b)

for fermions. Let us define another coefficient

f (n1, n2, · · · , n∞, t) ≡
(

N!

n1!n2! · · · n∞!

)1/2

C̄ (n1, n2, · · · n∞, t) ,

which satisfies the corresponding normalization condition∑
n1, n2, ···n∞

| f (n1, n2, · · · , n∞, t)|2 = 1.

The original N-particle wavefunction is now expressed as

�N (x1, x1, · · · xN , t) =
∑

α1,α2, ···αN

C (α1, α2, · · · αN , t) ψα1
(x1) ψα2

(x2) · · · ψαN (xN )

=
∑

α1,α2, ···αN

C̄ (n1, n2, · · · nN , t) ψα1
(x1) ψα2

(x2) · · · ψαN (xN )

=
∑

n1, n2, ···n∞
f (n1, n2, · · · , n∞ , t)

(
n1!n2! · · · n∞!

N!

)1/2

×
∑

P

ζ P
∑

αP 1,αP 2, ···αP N

ψαP 1
(x1) ψαP 2

(x2) · · · ψαP N (xN )

=
∑

n1, n2, ···n∞
f (n1, n2, · · · , n∞ , t) �n1, n2, ···n∞ (x1, x2, · · · xN ) ,

(1.91)

where we introduced a symmetric (ζ = 1) or an antisymmetric
(ζ = −1) complete orthonormal basis function

�n1, n2, ···n∞ (x1, x2, · · · xN) =
(

n1!n2! · · · n∞!

N!

)1/2

×
∑

P

ζ P
∑

αP 1,αP 2, ···αP N

ψαP 1
(x1) ψαP 2

(x2) · · · ψαP N (xN) ,
(1.92)

which is independent of time. Let us write, as an explicit example, a

spinless three-boson (ζ = +1) wavefunction, which describes two
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particles occupying the ground state (denoted by the subscript 1)

and the rest particle occupying the first excited state (denoted by

the subscript 2):

�210···(n∞=0) (x1, x2, x3)

= 1√
3

[ψ1(1)ψ1(2)ψ2(3) + ψ1(1)ψ2(2)ψ1(3)

+ ψ2(1)ψ1(2)ψ1(3)],

where we employ an abbreviation that (1) represents the coordinate

x1. Yet another example of a two-fermion (ζ = −1) wavefunction,

which describes one particle occupying the ground state and the

other occupying the first ground state, can be expressed as

�110···(n∞=0) (x1, x2) = 1√
2

[ψ1(1)ψ2(2) − ψ2(1)ψ1(2)] ,

in which the single-particle wavefunctions form a Slater determi-
nantn in their permutations due to the factor (−1)P .

Great conveniences are achieved when the time-independent

many-body wavefunctions �n1n2···n∞ (x1, x1, · · · x∞) are represented

by the Dirac notation. We introduce a time-independent occupation
number state vector

|n1n2 · · · n∞〉ζ ,

which represents a physical state that the state α1 is occupied by n1

particles, the state α2 is occupied by n2 particles, etc. This occupation

number state satisfies the orthogonality〈
n′

1n′
2 · · · n′

∞|n1n2 · · · n∞
〉

ζ
= δn′

1n1
δn′

2n2
· · · δn′∞n∞ (1.93a)

and the completeness∑
n1, n2, ···n∞

|n1n2 · · · n∞ 〉〈 n1n2 · · · n∞|ζ = 1. (1.93b)

nJ. C. Slater, Phys. Rev. 34, 1293 (1929). One may write

�n1n2···n∞ (x1, x1, · · · x∞) =
(

n1!n2! · · · n∞!

N!

)1/2

∣∣∣∣∣∣∣∣∣

ψ1 (x1) ψ1 (x2) · · · ψ1 (xN )

ψ2 (x1) ψ2 (x2) · · · ψ2 (xN )

.

.

.

ψN (x1) ψN (x2) · · · ψN (xN )

∣∣∣∣∣∣∣∣∣
.
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We consider that the occupation-number basis states are simply

the direct product, or tensor product, of eigenstates of the number

operator of each modeo

|n1n2 · · · n∞〉ζ = |n1〉ζ |n2〉ζ · · · |n∞〉ζ , (1.94)

which forms the so-called Fock space.
The single-mode occupation number states |nk〉 suggest us to

extend the annihilation ĉk and creation ĉ†k operators, which satisfy

the commutation relations

[ĉk, ĉl ]−ζ = 0,
[

ĉ†k , ĉ†l
]

−ζ
= 0[

ĉk, ĉ†l
]

−ζ
= δkl ,

(1.95)

where we introduced an extended commutator
[

Â, B̂
]
−ζ

= Â B̂ −
ζ B̂ Â. For ζ = +1, the operators ĉk = b̂k and ĉ†k = b̂†

k are bosonic

and their effects when applied to s single-mode state |nk〉 are well

studied, because they follow the same commutation rules of simple

harmonic oscillator:

b̂k |nk〉+ = √
nk |nk − 1〉+

b̂†
k |nk〉+ =

√
nk + 1 |nk + 1〉+

n̂k,+
(
= b̂†

kb̂k

)
|nk〉+ = nk |nk〉+ , nk = 0, 1, 2, · · · ∞.

(1.96)

The operations of the bosonic operators to a many-body state are

simply extended as

b̂†
kb̂l |n1n2 · · · n∞〉+ =

√
nk + 1

√
nl |n1 · · · nk + 1 · · · nl − 1 · · · n∞〉+.

(1.97)

On the other hand, for ζ = −1, the properties of the fermionic

operators ĉk = âk and ĉ†k = âk are rather different from that of the

bosonic ones, due to the anticommutation rules

âkâl + âl âk = 0, â†
k â†

l + â†
l â†

k = 0,

âkâ†
l +âl†âk = δkl .

(1.98)

oSome references use the notation of tensor product:

|n1n2 · · · n∞|ζ = |n1〉ζ ⊗ |n2〉ζ ⊗ · · · ⊗ |n∞〉ζ .
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First of all, they have the most important properties âkâk = â†
k â†

k = 0

so that â†
k â†

k |0〉 = 0, which prevents two particles from occupying

the same state k. Second, it is easy to show, by omitting the

subscripts, that(
â†â
)2 = 1 − 2ââ† + ââ†ââ† = 1 − 2ââ† + â

(
1 − ââ†) â†

= 1 − ââ† = â†â

In other words, the number operator for the kth mode n̂k,− = â†
k âk

satisfies the condition that

n̂k,− (1 − n̂k,−) = 0, (1.99)

which suggests that the number operator has the eigenvalues zero or

one. Consequently, for a given state, the properties of the operators

âk and â†
k to the state |nk〉 are

â†
k |0k〉 = |1k〉 ,

â†
k |1k〉 = 0,

âk |1k〉 = |0〉 ,

âk |0k〉 = 0.
(1.100)

We define a fermionic many-particle state in the occupation

number representation by operating the creation operators to the

vacuum state |0〉:

|n1n2 · · · n∞〉− =
(

â†
1

)n1
(

â†
2

)n2 · · · (â†
∞
)n∞ |0〉 . (1.101)

The effect of an annihilation operator âk on this state is

âk |n1n2 · · · n∞〉− = âk

(
â†

1

)n1
(

â†
2

)n2 · · · (â†
∞
)n∞ |0〉

= (−1)â†
1âk

(
â†

1

)n1−1 (
â†

2

)n2 · · · (â†
∞
)n∞ |0〉

...

= (−1)n1

(
â†

1

)n1

âk

(
â†

2

)n2 · · · (â†
∞
)n∞ |0〉

...

= (−1)Sk

(
â†

1

)n1
(

â†
2

)n2 · · ·
(

âk

(
â†

k

)nk
)

· · · (â†
∞
)n∞ |0〉 ,

where Sk = n1 + n2 + · · · + nk−1. If nk = 0, the operator âk can

permute with all the operators at the right without further payments
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for changing the sign until âk |0〉, which yields to zero. If nk = 1, on

the other hand, the anticommutation rule âkâ†
k = 1 − â†

k âk is applied

first and then the second term â†
k âk to the vacuum yields to zero.

The operations of the fermionic annihilation and creation operators

to the many-body state in the occupation number representation are

summarized as

âk |· · · nk · · · 〉− =
{

(−1)Sk
√

nk |· · · nk − 1 · · · 〉− , if nk = 1

0, if nk = 0

â†
k |· · · nk · · · 〉− =

{
0, if nk = 1

(−1)Sk
√

nk + 1 |· · · nk + 1 · · · 〉− , if nk = 0

n̂k,−
(
= â†

k âk

)
|· · · nk · · · 〉− = nk |· · · nk · · · 〉− , nk = 0, 1.

(1.102)

Armed with the occupation number representation of many-

particle states combined with the single-mode annihilation and

creation operators, one defines the field operators

ψ̂ (r) ≡
∑

k

ψk (r) ĉk,

ψ̂† (r) ≡
∑

k

ψ
†
k (r) ĉ†k ,

(1.103)

where the coefficients are the single-particle wavefunctions at states

|αk〉 and the sum is over the complete set of single-particle quantum

numbers. It is convenient to split the spinor quantum numbers,

for example spin index α, by writing the wavefunctions having two

components

ψk (r) =
[
ψk (r)1

ψk (r)2

]
≡ ψk (r)α , α = 1, 2,

so we may write the index field operators ψ̂α (r) and ψ̂†
α (r). The field

operators satisfy the following quantization conditions:[
ψ̂α (r) , ψ̂β

(
r′)]

−ζ
= 0,

[
ψ̂†

α (r) , ψ̂
†
β

(
r′)]

−ζ
= 0,[

ψ̂α (r) , ψ̂
†
β

(
r′)]

−ζ
= δαβδ

(
r − r′) .

(1.104)

Equation (1.104) is another form of quantization of dynamical

variables, the fields, and it is known as the second quantization
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rules, or the field quantization rules, distinguished from the first

quantization rules Eq. (1.2), which quantize the position and

momentum operators.p One of the advantages of the second

quantization in many-body quantum theory is that the position

vector is treated as a parameter, not as an operator in the first

quantization, like the time in the first quantization language. This

allows us to treat the quantum mechanical problems of many-body

system on the space and time equally.

It would be helpful if the readers verify the following operators

in the second quantization language: The Hamiltonian operator can

be represented as

Ĥ =
∫

dr ψ̂† (r) T̂ (r) ψ̂ (r)

+ 1

2

∫∫
drdr′ ψ̂† (r) ψ̂† (r′) V

(
r, r′) ψ̂

(
r′) ψ̂

(
r′) (1.105)

and the total-number operator

N̂ =
∫

dr n̂ (r) =
∫

dr ψ̂† (r) ψ̂ (r) . (1.106)

It is noticeable that the number operator N̂ commutes with the

Hamiltonian operator Eq. (1.105), which is physically commensu-

rate with the fact that the ordinary Schrödinger Hamiltonian does

not change the total number of particles. We infer that N̂ is a

constant of motion and can be diagonalized simultaneously with the

Hamiltonian.

pHere we do not discuss the quantizations of the other conjugate variables energy

and time.
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Chapter 2

Mathematical Introduction

2.1 Basic Definitions

The properties of a quantum mechanical system composed of many

identical particles are most conveniently described in terms of

the second-quantized, Heisenberg representation, particle-creation,

and annihilation operators. The creation operator ψ̂† (r, t), when

acting to the right on a state of the system, adds a particle to the

state at the space–time point r, t; the annihilation operator ψ̂ (r, t),

the adjoint of the creation operator, acting to the right, removes a

particle from the state at the point r, t.

The macroscopic operators of direct physical interest can all be

expressed in terms of products of a few ψ ’s and ψ†’s. For example,

the density of particles at the point r, t is

n̂ (r, t) = ψ̂† (r, t) ψ̂ (r, t) (2.1a)

Since the act of removing and then immediately replacing a particle

at r, t measures the density of particles at that point, the operator

for the total number of particles is

N̂ (t) =
∫

dr ψ̂† (r, t) ψ̂ (r, t) (2.1b)

Similarly, the total energy of a system of particles of mass m
interacting through an instantaneous two-body potential v (r) is
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given by

Ĥ (t) =
∫

dr
∇ψ̂† (r, t) · ∇ψ̂ (r, t)

2m
(2.2)

+1

2

∫
drdr′ψ̂† (r, t) ψ̂† (r′, t

)
v
(∣∣r − r′∣∣) ψ̂

(
r′, t
)
ψ̂ (r, t)

In general, we shall take � = 1.

The equation of any operator X̂ (t) in the Heisenberg representa-

tion is

i
∂ X̂ (t)

∂t
= [X̂ (t) , Ĥ (t)

]
(2.3)

Since
[

Ĥ (t) , Ĥ (t)
] = 0, we see that the Hamiltonian is independent

of time. Also the Hamiltonian does not change the number of

particles,
[

Ĥ , N̂ (t)
]= 0; therefore, N̂ (t) is also independent of time.

Because of the time independence of H , (2.3) may be integrated in

the form

X̂ (t) = ei Ĥ t X̂ (0) e−i Ĥ t (2.4)

Particles may be classified into one of two types: Fermi–Dirac

particles, also called fermions, which obey the exclusion princi-

ple, and Bose–Einstein particles, or bosons, which do not. The

wavefunction of any state of a collection of bosons must be a

symmetric function of the coordinates of the particles, whereas,

for fermions, the wavefunction must be antisymmetric. One of

the main advantages of the second-quantization formalism is that

these symmetry requirements are very simply represented in the

equal-time commutation relations of the creation and annihilation

operators. These commutation relations are

ψ̂ (r, t) ψ̂
(

r′, t
)∓ ψ̂

(
r′, t
)
ψ̂ (r, t) = 0

ψ̂† (r, t) ψ̂† (r′, t
)∓ ψ̂† (r′, t

)
ψ̂† (r, t) = 0

ψ̂ (r, t) ψ̂† (r′, t
)∓ ψ̂† (r′, t

)
ψ̂ (r, t) = δ

(
r − r′) (2.5)

where the upper sign refers to Bose–Einstein particles and the

lower sign refers to Fermi–Dirac particles. We see, for fermions, that

ψ̂2 (r, t) = 0. This is an expression of the exclusion principle in

space—it is impossible to find two identical fermions at the same

point in space and time.
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We shall be interested in describing the behavior of many-

particle systems at finite temperature. For a system in thermody-

namic equilibrium, the expectation value of any operator X̂ may

be computed by using the grand-canonical ensemble of statistical

mechanics. Thus 〈
X̂
〉 =

∑
i 〈i | X̂ |i〉 e−β(Ei −μNi )∑

i e−β(Ei −μNi )
(2.6a)

Here |i〉 represents a state of the system, normalized to unity, with

energy Ei and number of particles Ni . The sum runs over all states of

the system with all possible numbers of particles. A more compact

way of writing the average (2.6a) is

〈
X̂
〉 =

tr
[

e−β(Ĥ −μN̂) X̂
]

tr
[

e−β(Ĥ −μN̂)
] (2.6b)

where tr denotes the trace.

The thermodynamic state of the system is now defined by

the parameters μ, the chemical potential, and β , the inverse

temperature measured in energy units, i.e., β = 1/kBT , where kB is

Boltzmann’s constant. Zero temperature, or β → ∞, describes the

ground state of the system.

Green’s functions, which shall form the base of our discussion

of many-particle systems, are thermodynamic averages of product

of the operators ψ̂ (1) and ψ̂ (1′). (We use the abbreviated notation

1 to mean r1t1 and 1′ to mean r1′ t1′ , etc.) The one-particle Green’s

function is defined by

G
(

1, 1′) = 1

i

〈
T̂
(
ψ̂ (1) ψ̂† (1′))〉 (2.7a)

while the two-particle Green’s function is defined by

G2

(
12, 1′2′) = 1

i 2

〈
T̂
(
ψ̂ (1) ψ̂ (2) ψ̂† (2′) ψ̂† (1′))〉 (2.7b)

In these Green’s functions, T̂ represents the Wick time-ordering

operation. When applied to a product of operators, it arranges them

in chronological order with the earliest time appearing on the right

and the latest on the left. For bosons, this is the full effect of T̂ .

For fermions, however, it is convenient to define T̂ to include an

extra factor ±1, depending on whether the resulting time-ordered
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product is an even or odd permutation of the original order. Thus,

for example,

T̂
(
ψ̂ (1) ψ̂† (1′)) =

{
ψ̂ (1) ψ̂† (1′) for t1 > t1′

±ψ̂† (1′) ψ̂ (1) for t1 < t1′

As in (2.5), the upper sign refers to bosons and the lower for

fermions. We shall use this sign convention throughout these

lectures.

The one-particle Green’s function G (1, 1′) has a direct physical

interpretation. It describes the propagation of disturbances in which

a single particle is either added or removed from the many-particle

equilibrium system. For example, when t1 > t1′ , the creation operator

acts first, producing a disturbance by adding a particle at the space–

time point r1′ t1′ . This disturbance then propagates to the later time

t1, when a particle is removed at r1 ending the disturbance and

returning the system to its equilibrium state.a For t1 < t1′ , ψ̂ acts

first. The disturbance, which is now produced by the removal of a

particle at r1t1, propagates to time t1′ , when it is terminated by the

addition of a particle at the point r1′ .

Similarly, the two-particle Green’s function describes, for the

various time orders, disturbances produced by the removal or

addition of two particles. For example, when t1 and t2 are both later

than t1′ and t2′ , G2 (12, 1′2′) describes the addition of two particles

and the subsequent removal of two particles. Yet when t1 and t1′

are later than t2 and t2′ , the two-particle Green’s function describes

the disturbance produced by the addition of one particle and the

removal of one particle, and the subsequent return to equilibrium by

the removal of a particle and the addition of a particle. We shall make

extensive use of this physical interpretation of Green’s functions.

In addition to the one-particle Green’s function, we define the

correlation functions

G>
(

1, 1′) = 1

i

〈
ψ̂ (1) ψ̂† (1′)〉

G<
(

1, 1′) = ±1

i

〈
ψ̂† (1′) ψ̂ (1)

〉 (2.8)

The notations > and < are intended as a reminder that for t1 > t1′ ,

G = G>, while for t1 < t1′ , G = G<.

aHere the typographic errors at the subscripts appeared in t1′ and r1′ in the original

text are corrected.
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2.2 The Boundary Condition

The time-development operator e−i t Ĥ bears a strong formal simi-

larity to the weighting factor eβ Ĥ that occurs in the grand-canonical

average. Indeed for t = −iβ , the two are the same. We can exploit

this mathematical similarity to discover identities obeyed by Green’s

functions. In particular, we shall now derive a fundamental relation

between G> and G<.
Our argument is based on the fact that the time dependence of

ψ̂ and ψ̂†, given by (2.4), may be used to define the creation and
annihilation operators and, therefore, G> and G<, for complex values
of their time arguments. In fact, the function G>, which we may write
as

G>
(

1, 1′) =
(

1

i

) tr
[

e−β(Ĥ −μN̂)eit1 Ĥ ψ̂ (r1, 0) e−i(t1−t1′ )Ĥ ψ̂† (r1′ , 0) e−i t1′ Ĥ
]

tr
[

e−β(Ĥ −μN̂)
]

is an analytic function for complex values of the time arguments

in the region 0 > � (t1 − t1′ ) > −β . This analyticity follows

directly from the assumption that the e−β(Ĥ −μN̂) factor is sufficient

to guarantee the absolute convergence of the trace for real

time. Similarly, G< (1, 1′) is an analytic function in the region

0 < � (t1 − t1′ ) < β .

To derive the relation between G> and G<, we notice that the

expression

G<
(

1, 1′)∣∣
t1=0

=
(

±1

i

) tr
[

e−β(Ĥ −μN̂)ψ̂† (r1′ , t1′ ) ψ̂ (r1, 0)
]

tr
[

e−β(Ĥ −μN̂)
]

may be rearranged, using the cyclic invariance of the trace (tr Â B̂ =
trB̂ Â), to become

G<
(

1, 1′)∣∣
t1=0

= ±1

i

tr
{

e−β(Ĥ −μN̂)
[

eβ(Ĥ −μN̂)ψ̂ (r1, 0) e−β(Ĥ −μN̂)ψ̂† (r1′ , t1′ )
]}

tr
[

e−β(Ĥ −μN̂)
]

= ±
(

1

i

)〈
eβ(Ĥ −μN̂)ψ̂ (r1, 0) e−β(Ĥ −μN̂)ψ̂† (r1′ , t1′ )

〉
Because ψ̂ (r1, 0) removes a particle, we have

ψ̂ (r1, 0) f
(

N̂
) = f

(
N̂ + 1

)
ψ̂ (r1, 0)
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where f
(

N̂
)

is any function of the number operator N̂ . In particular,

e−βμN̂ψ̂ (r1, 0) eβμN̂ = eβμψ̂ (r1, 0)

and from (2.7a) it follows that

eβ Ĥ ψ̂ (r1, 0) e−β Ĥ = ψ̂ (r1, −iβ)

Thus,

G<
(

1, 1′)∣∣
t1=0

= ±
(

1

i

)〈
ψ̂ (r1, −iβ) ψ̂† (1′)〉 eβμ

= ±eβμ G>
(

1, 1′)∣∣
t1=−iβ (2.9)

This relationship is crucial to all our Green’s function analysis.

Notice that Eq. (2.9) follows directly from the cyclic invariance of

the trace and the structure of the time dependence of ψ̂ (1). Since

G2 is also defined as a trace, we can go through an entirely similar

analysis for it, splitting it into several non-time-ordered expectation

values of ψ̂ ’s and ψ̂†’s and proving a set of relations similar to

Eq. (2.9). However, this analysis is much too complicated because

G2 is composed of too many different analytic pieces, corresponding

to all the different possible time orderings of its four times variables.

We employ the following simple device to exhibit a relation like

Eq. (2.9) for G2. We consider the time variable to be restricted to the

interval

0 ≤ i t ≤ β

Equation (2.4) defines the field operators and, therefore, Green’s

functions for imaginary times. To complete the definition of Green’s

functions in this time domain, we extend the definition of the time-

ordering symbol T̂ to mean “i × t” ordering when the times are

imaginary. The further down the imaginary axis a time is, the “later”

it is. Then Green’s functions are well defined in the interval 0 ≤ i t ≤
β . For example, the one-particle Green’s function is

G
(

1, 1′) =
{

G> (1, 1′) for i t1 > i t1′

G< (1, 1′) for i t1 < i t1′

For 0 < i t1′ < β , we have

G
(

1, 1′)∣∣
t1=0

= G<
(

1, 1′)∣∣
t1=0

(since 0 = i t1 < i t1′ for all t1′ )
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and

G
(

1, 1′)∣∣
t1=−iβ = G>

(
1, 1′)∣∣

t1=−iβ (since β = i t1 > i t1′ for all t1′ )

Therefore, Eq. (2.9) can be restated as a relation between the values

of G (1, 1′) at the boundaries of the imaginary time domain:

G
(

1, 1′)∣∣
t1=0

= ±eβμ G
(

1, 1′)∣∣
t1=−iβ (2.10)

Moreover, we can see immediately that G2 on the imaginary time axis

obeys exactly this same boundary condition.

G2

(
12, 1′2′)∣∣

t1=0
= ±eβμ G

(
12, 1′2′)∣∣

t1=−iβ (2.11a)

and also

G2

(
12, 1′2′)∣∣

t1′=0
= ±e−βμ G

(
12, 1′2′)∣∣

t1′ =−iβ (2.11b)

These boundary conditions on G and G2 will be used over and over

again in the subsequent analysis.

It is only at a later stage that we shall need the imaginary-time

Green’s functions. Now we shall restrict our attention to the one-

particle function, for which Eq. (2.9) is a suitable representation of

the boundary condition.

Because of the translational and rotational invariance of the

Hamiltonian Eq. (2.2) in space and its translational invariance in

time, G> and G< depend only on |r1 − r1′ | and t1 − t1′ . When

we want to emphasize that these functions depend only on the

difference variables, we shall write them as G>(<) (1 − 1′) or

as G>(<) (|r1 − r1′ | , t1 − t1′ ). In terms of the difference variables,

Eq. (2.9) is

G< (r, t) = ±eiβG> (r, t − iβ)

We now introduce the Fourier transformations of G> and G<, defined

by

G> (p, ω) = i
∫

dr
∫ ∞

−∞
dt e−ip·r+iωtG> (r, t)

G< (p, ω) = ±i
∫

dr
∫ ∞

−∞
dt e−ip·r+iωtG< (r, t)

(2.12)

Note the explicit factors of i and ±i that we have included here to

make G> (p, ω) and G< (p, ω) real nonnegative quantities. Equation

(2.9) then becomes the simpler relationship

G< (p, ω) = e−β(ω−μ)G> (p, ω) (2.13)
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It is useful to introduce the “spectral function” A (p, ω) defined by

A (p, ω) = G> (p, ω) ∓ G< (p, ω) (2.14)

The boundary condition on G can then be represented by writing

G> (p, ω) = [1 ± f (ω)] A (p, ω)

G< (p, ω) = f (ω) A (p, ω)
(2.15)

where

f (ω) = 1

eβ(ω−μ) ∓ 1
(2.16)

The term f can be recognized as the average occupation number in

the grand-canonical ensemble of a mode with energy ω.

[The statement is, more precisely, that if the Hamiltonian can be

diagonalized to the form
∑
λ ελψ̂

†
λ ψ̂λ , then ψ̂

†
λ is a creation operator

for a mode of the system with energy ελ . The average occupation

number of the mode λ is
〈
ψ̂

†
λ ψ̂λ

〉
= f (ελ).]

From the definitions of G> and G<, it follows that

A (p, ω) =
∫

dr
∫ ∞

−∞
dt e−ip·r+iωt

〈[
ψ̂ (r, t) ψ̂† (0, 0) ∓ ψ̂† (0, 0) ψ̂ (r, t)

]〉
Thus, as a consequence of the equal-time commutation relation

Eq. (2.5), A satisfies the sum rule∫
dω

2π
A (p, ω) =

∫
dre−ip·r

〈[
ψ̂ (r, 0) ψ̂† (0, 0) ∓ ψ̂† (0, 0) ψ̂ (r, 0)

]〉
=
∫

drδ (r) = 1 (2.17)

We can use the relations that we have just derived to find G for

the trivial case of free particles, for which the Hamiltonian is

Ĥ 0 =
∫

dr
∇ψ̂† (r, t) · ∇ψ̂ (r, t)

2m
We notice that

G< (p, ω) =
∫

dt
eiωt

�

〈
ψ̂† (p, 0) ψ̂ (p, t)

〉
where � is the volume of the system and ψ̂ (p, t) is the spatial

Fourier transform of ψ̂ (r, t). Since ψ̂ (p, 0) removes a free particle

with momentum p, it must remove energy p2/2m from the system.

Thus,

ψ̂ (p, t) = ei Ĥ tψ̂ (p, 0) e−i Ĥ t = e−i
(

p2

2m

)
t
ψ̂ (p, 0)
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so that

G< (p, ω) =
(

2π

�

)
δ

(
ω − p2

2m

)〈
ψ̂† (p, 0) ψ (p, 0)

〉
Hence, A (p, ω) is proportional to δ

(
ω − p2

2m

)
, and the constant of

proportionality is determined from the sum rule Eq. (2.17) to be 2π .

Thus, for free particles,

A (p, ω) = A0 (p, ω) = 2πδ

(
ω − p2

2m

)
(2.18)

G>
0 (r, t) =

∫
dp

(2π)3
eip·r−i

(
p2

2m

)
t

⎛
⎝1 ± f

(
p2

2m

)
i

⎞
⎠

G<
0 (r, t) =

∫
dp

(2π)3
eip·r−i

(
p2

2m

)
t

⎛
⎝ f

(
p2

2m

)
i

⎞
⎠

(2.19)

Since ψ̂† (p, 0) ψ̂ (p, 0) is the operator representing the density

of particles with momentum p, it follows that for free particles, the

average number of particles with momentum p is

〈n (p)〉 =
〈
ψ̂† (p, 0) ψ̂ (p, 0)

〉
�

= f
(

p2

2m

)

= 1

eβ
(

p2

2m −μ
)

∓ 1

(2.20)

This is a result familiar from elementary statistical mechanics.
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Chapter 3

Information Contained in G> and G<

3.1 Dynamical Information

Now that we have set down the preliminaries, we shall try to gain

some insight into G> and G<.

The Fourier transformation of the field operator ψ̂ (r, t), given by

ψ̂ (p, ω) =
∫

dr
∫

dt e−ip·r+iωtψ̂ (r, t)

is an operator that annihilates a particle with momentum p and

energy ω. Thus, G< (p, ω) can be identified as the average density

of particles in the system with momentum p and energy ω:

G< (p, ω) = 〈n (p, ω)〉 = A (p, ω) f (ω) (3.1)

The interpretation of this result is evident. As we have pointed out,

f (ω) is the average occupation number of a mode with energy

ω; the spectral function A (p, ω) is a weighting function with total

weight unity, which, whenever it is nonzero, defines the spectrum of

possible energies ω, for a particle with momentum p in the medium.

To check this result, we may note that the density of particles,

〈n (r, t)〉 = 〈ψ̂† (r, t) ψ̂ (r, t)
〉 = ±iG< (rt, rt)

=
∫

dω

2π

dp

(2π)3
G< (p, ω) (3.2)
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This says that the total density of particles is equal to the integral

over all p and ω of the density of particles with momentum p and

energy ω. Since 〈n (r, t)〉 is independent of r and t, we shall represent

it simply by the symbol n.

As an example, for a system of free particles,

A0 (p, ω) = 2πδ

(
ω − p2

2m

)

Hence, A0 (p, ω) is non-vanishing only when ω = p2

2m . This says that

the only possible energy value for a free particle with momentum p
is p2

2m . The total density of particles with momentum p is

〈n (p)〉 =
∫

dω

2π
〈n (p, ω)〉 = f

(
p2

2m

)
= 1

eβ
(

p2

2m −μ
)

∓ 1

(3.3)

To see what happens in the classical limit, we explicitly write the

factors of � in the expression of the density:

n =
∫

dp

(2π�)3

1

eβ
(

p2

2m −μ
)

∓ 1

(3.4)

In order that at a fixed temperature, the density does not diverge as

� → 0, the factor e−βμ must become very large. Thus, the classical

limit is given by βμ → −∞. We may then neglect the ∓1 in

the denominator of Eq. (3.4), so that the momentum distribution

becomes the familiar Maxwell–Boltzmann distribution

〈n (p)〉 = (const) e−β
(

p2

2m

)

Equation (3.4) indicates that βμ → −∞ is also the low-density

limit.

On the other hand, for a highly degenerate (i.e., high-density)

Fermi gas, βμ becomes very large and positive. Defining the Fermi

momentuma pF by μ = p2
F

2m , we find

〈n (p)〉 �
{

0 for p > pF

1 for p < pF

All states with momentum p < pF are filled, and all states with

p > pF are empty.

aThe symbol for the Fermi momentum was originally pf instead of pF.
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For a Bose system, μ cannot become positive, but instead it

approaches zero as the density increases. Then the total density of

particles with nonzero momentum cannot become arbitrarily large,

but it is instead limited by

∫
dp

(2π)3

1

eβ
(

p2

2m

)
− 1

= 1

2π2

(
2m
β

) 3
2
∫ ∞

0

x2

ex2 − 1
dx

In order to reach a higher density, the system puts a macroscopic

number of particles into the mode p = 0. The mathematical

possibility of this occurrence is the fact that μ = 0, f (0) = ∞. This

phenomenon, called the Bose–Einstein condensation, is reflected in

the physical world as the phase transition of He4 to the superfluid

state.

When there is an interaction between the particles, A (p, ω) will

not be a single delta function. To see the detailed structure of A, let us

compute G> (p, ω) by explicitly introducing sums over states. Then

G> (p, ω) is

G> (p, ω) = A (p, ω) [1 ± f (ω)]

=
∫ ∞

−∞
dt

eiωt

�

∑
i

e−β(Ei −μNi ) 〈i | ψ̂ (p) e−i Ĥ tψ̂† (p) |i〉
tr
[

e−β(Ĥ −μN̂)
]

= 1

�

∑
i, j

e−β(Ei −μNi )
∣∣〈i | ψ̂† (p) | j〉∣∣2 2πδ

(
ω + Ei − E j

)
tr
[

e−β(Ĥ −μN̂)
]
(3.5)

It is clear then that the values of ω for which A (p, ω) is non-

vanishing are just the possible energy differences that result from

adding a single particle of momentum p to the system. Almost always

the energy spectrum of the system is sufficiently complex so that

A (p, ω) finally appears to have no delta functions in it but is instead

a continuous function of ω. However, there are often sharp peaks in

A. These sharp peaks represent coherent and long-lived excitations,

which behave in many ways like free or weakly interacting particles.

These excitations are usually called quasi-particles.

We can notice from Eq. (3.5) that G> (p, ω) is proportional to

the averaged transition probability for processes in which an extra
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particle with momentum p, when added to the system, increases the

energy of the system by ω. This transition probability measures the

density of states available for added particles. Therefore, G> (p, ω) is

the density of states available for an extra particle with momentum

p and energy ω.

Similarly, G> (p, ω) is proportional to the averaged transition

probability for processes involving the removal of a particle with

momentum p, and leading to a decrease in the energy of the system

by ω. Since the transition probability for the removal of a particle is

just a measure of the density of particles, we again see that G> (p, ω)

is the density of particles with momentum p and energy ω. The

interpretation of G> as a density of states and G< as a density of

particles will be used many times in our further work.

In terms of these two transition probabilities,b the boundary

condition Eq. (2.13)c is

P (adding p, ω)

P (removing p, ω)
= A (1 ± f (ω))

A f (ω)
= eβ(ω−μ) (3.6)

This statement, called the “detailed balancing condition,” is a direct

consequence of the use of an equilibrium ensemble.

3.2 Statistical Mechanical Information Contained
in G

In addition to the detailed dynamical information, G contains all

possible information about the statistical mechanics of the system.

We have already seen how we can write the expectation value of

the density of particles in terms of G<. Similarly, we can express the

total energy, i.e., the expectation value of the Hamiltonian Eq. (2.2),

in terms of G<. To do this, we must make use of the equations of

motion for ψ̂ and ψ̂†. Using the equation of motion Eq. (2.3) and the

bHere we introduce the symbol P for representing the transition probability. In the

original text, the symbol was T.P.
cThe equation number was originally (2.12), but this is just definition of the Fourier

transformations of G> and G< .
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commutation relations, Eq. (2.5), we see that(
i

∂

∂t
+ ∇2

2m

)
ψ̂ (r, t) =

∫
dr̄ v (r − r̄) ψ̂† (r̄, t) ψ̂ (r̄, t) ψ̂ (r, t)

(3.7a)

and(
−i

∂

∂t′ + ∇′2

2m

)
ψ̂† (r′, t′) = ψ̂† (r̄′, t′) ∫ dr̄′ v

(
r′ − r̄′) ψ̂

(
r̄′, t′) ψ̂

(
r̄′, t′)
(3.7b)

Therefore, it follows that

1

4

∫
dr
[(

i
∂

∂t
− i

∂

∂t′

)
ψ̂† (r, t′) ψ̂ (r, t)

]
t′=t

= 1

4

∫
dr

[(
− ∇2

2m
− ∇′2

2m

)
ψ̂† (r, t′) ψ̂ (r, t)

]
r′=r

+ 1

2

∫
drdr̄ψ̂† (r, t) ψ̂† (r̄, t) v (r − r̄) ψ̂ (r̄, t) ψ̂ (r, t)

(3.8)

The right side of Eq. (3.8) is half the kinetic energy put all the

potential energy. When we add the other half of the kinetic energy,

we find that〈
Ĥ
〉 = 1

4

∫
dr
[(

i
∂

∂t
− i

∂

∂t′ + ∇ · ∇′

m

)〈
ψ̂† (r′, t′) ψ̂ (r, t)

〉]
r′=r, t′=t

= ± i
4

∫
dr
[(

i
∂

∂t
− i

∂

∂t′ + ∇ · ∇′

m

)
G<
(

rt, r′t′)]
r′=r, t′=t

= �

∫
dp

(2π)3

dω

2π

ω +
(

p2

2m

)
2

f (ω) A (p, ω) (3.9)

where � is the volume of the system. Equation (3.9) is very useful

for evaluating ground-state energies, specific heats, etc.

All statistical–mechanical information can be obtained from the

grand partition functiond

� = tr
[

e−β(Ĥ −μN̂)
]

(3.10a)

We shall now show how we can find � from G. Statistical mechanics

tells us that in the limit of large volume, the grand partition function

dThe symbol for the grand partition function was Z g in the original text.
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is related to the pressure P by

� = eβ P� (3.10b)

Differentiating the logarithm of � with respect to μ at fixed β and �,

we find

β�
∂ P
∂μ

∣∣∣∣
β�

= ∂

∂μ
ln � = ∂

∂μ
ln tr

[
e−β(Ĥ −μN̂)

]

= β
tr
[

e−β(Ĥ −μN̂)
]

N̂

tr
[

e−β(Ĥ −μN̂)
]

= β
〈

N̂
〉

so that the density of particles is given by

n = ∂ P
∂μ

∣∣∣∣
β�

(3.11)

This is a very commonly used thermodynamic identity. Since we

know that, in the limit μ → −∞, the density and the pressure both

go to zero, we can integrate Eq. (3.11) to obtain

P (β, μ) =
∫ β

−∞
dμ′ n

(
β, μ′) (3.12)

Consequently if, or for a given β , we know Green’s function as a

function of μ, we can calculate P and hence the partition function.

Unfortunately, the integral in Eq. (3.12) can rarely be performed

explicitly. One of the few cases for which a moderately simple result

emerges is for a free gas. Here

n (β, μ) =
∫

dp

(2π)3

1

eβ
[(

p2

2m

)
−μ

]
+ 1

(3.13a)

and hence

P (β, μ) = ∓ 1

β

∫
dp

(2π)3
ln

{
1 ∓ eβ

[(
p2

2m

)
−μ

]}
(3.13b)

In the classical limit, βμ → −∞. Then we see that

n =
∫

dp

(2π)3
e−β

[(
p2

2m

)
−μ

]

and

P = β−1

∫
dp

(2π)3
e−β

[(
p2

2m

)
−μ

]
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so that P = β−1n = nkBT . This is the well-known equation of state

of an ideal gas.

There is, however, another method of constructing the grand

partition function, which is very useful in practice. Let us write a

coupling constant λ in front of the potential energy term in Eq. (2.2).

Then

Ĥ = Ĥ 0 + λV̂

where Ĥ 0 is the kinetic energy and V̂ is the potential energy

operator,

V̂ = 1

2

∫
drdr̄ ψ̂† (r) ψ̂† (r̄) v (|r − r̄|) ψ̂ (r̄) ψ̂ (r)

When we differentiate ln � with respect to λ, at fixed β , μ, and �, we

find

∂

∂λ
ln � = 1

�
tr

[
∂

∂λ
e−β(Ĥ 0+λV̂ −μN̂)

]
= −β

〈
V̂
〉

(3.14)

(We do not have to worry about the noncommutatibility of V̂ with

Ĥ 0 − μN̂ because of the cyclic invariance of the trace.) Integrating

both sides of Eq. (3.14) with respect to λ, from λ = 0 to λ = 1, we

find

[ln �]λ=1 − [ln �]λ=0 = −β

∫ 1

0

dλ
λ

〈
λV̂
〉
λ

(3.15)

Now
〈
λV̂
〉
λ

is the expectation value of the potential energy, for

coupling strength λ. It may be expressed in terms of G< by

subtracting from Eq. (3.8) half the kinetic energy. Then

〈
λV̂
〉
λ

= �

∫
dp

(2π)3

dω

2π

ω −
(

p2

2m

)
2

Aλ (p, ω) f (ω) (3.16)

so that

β P� = [ln �]λ=1

= [ln �]λ=0 − β�

∫ 1

0

dλ
λ

∫
dp

(2π)3

dω

2π

ω −
(

p2

2m

)
2

Aλ(p, ω) f (ω)

(3.17)

The constant term [ln �]λ=0 is just β P� for free particles, which we

have evaluated in Eq. (3.13b).
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Chapter 4

The Hartree and Hartree–Fock
Approximations

4.1 Equations of Motion

We have seen that the one-particle Green’s function contains

very useful dynamic and thermodynamic information. However,

to extract this information, we must first develop techniques for

determining G.

Our methods will be based on the equation of motion satisfied by

the one-particle Green’s function. This equation of motion is derived

from the equation of motion (3.7a) for ψ̂ (1). From Eq. (3.7a), it

follows thata(
1

i

)〈
T̂
[(

i
∂

∂t1

+ ∇2
1

2m

)
ψ̂ (1) ψ̂† (1′)]〉

= ±
(

1

i

)∫
dr2 v (r1 − r2)

× 〈
T̂
(
ψ̂ (1) ψ̂ (2) ψ̂† (2+) ψ̂† (1′))〉∣∣

t2=t1

= ±i
∫

dr2 v (r1 − r2) G2

(
12; 1′2+)∣∣

t2=t1

(4.1)

aThe equation number (4.1) was omitted in the original text.
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Here, the notation 2+ is intended to serve as a reminder that the time

argument of ψ̂† (2) must be chosen to be infinitesimally larger than

the time arguments of the ψ̂ ’s in order that the time ordering in G2

reproduces the order of factors that appear in Eq. (3.7a). [Since ψ̂ ’s

commute (or anti-commute) at equal times, we do not have to worry

about the time ordering of ψ̂ (1) and ψ̂ (2).]

To convert Eq. (4.1) into an equation for G, we must take the time

derivatives outside the T̂ -ordering symbol. The spatial derivatives

commute with the time-ordering operation, but the time derivative

does not. Since T̂ changes the time ordering when t1 = t1′ , the

difference
∂

∂t1

〈
T̂
(
ψ̂ (1) ψ̂† (1′))〉−

〈
T̂
(

∂

∂t1

ψ̂ (1) ψ̂† (1′))〉
must be proportional to a delta function of t1 − t1′ . The constant

of proportionality is the discontinuity of
〈

T̂
(
ψ̂ (1) ψ̂† (1′)

)〉
as t1

passes through t1′ , i.e.,

∂

∂t1

〈
T̂
(
ψ̂ (1) ψ̂† (1′))〉−

〈
T̂
(

∂

∂t1

ψ̂ (1) ψ̂† (1′))〉
= δ (t1 − t1′ )

〈(
ψ̂ (1) ψ̂† (1′)∓ ψ̂† (1′) ψ̂ (1)

)〉
= δ (t1 − t1′ ) δ (r1 − r1′ ) = δ

(
1 − 1′)

In this way, we find that Eq. (4.1) becomes an equation of motion

for G:(
i

∂

∂t1

+ ∇2
1

2m

)
G
(

1, 1′) = δ
(

1 − 1′)
± i
∫

dr2v (r1 − r2) G2

(
12; 1′2+)∣∣

t2=t1

(4.2a)

In a similar fashion, we can also write an equation of motion for

G2 involving G3, one for G3 involving G4, and so on. As we will have

no need for these equations, we shall not write them down.

Starting from the equation of motion of ψ̂† (1′), we also derive

the adjoint equation of motion,(
−i

∂

∂t1′
+ ∇2

1′

2m

)
G
(

1, 1′)= δ
(

1 − 1′)
± i
∫

dr2 G2

(
12−; 1′2

)∣∣
t2=t1

v (r2 − r1′ )

(4.2b)
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Equations (4.2) are equally valid for the real-time and the imaginary-

time Green’s function. The only difference between the two cases

is that for imaginary times, one has to interpret the delta function

in time as being defined with respect to integrations along the

imaginary time axis.

Equations (4.2a) and (4.2b) both determine G in terms of G2. It is

in general impossible to know G2 exactly. We shall find G by making

approximations for G2 in the equations of motion (4.2).

However, even if G2 were precisely known, Eq. (4.2) would not be

sufficient to determine G unambiguously. These equations are first-

order differential equations in time, and thus a single supplementary

boundary condition is required to fix their solution precisely. The

necessary boundary condition is, of course, Eq. (2.10):

G
(

1, 1′)∣∣
t1=0

= ±eβμ G
(

1, 1′)∣∣
t1=−iβ (2.10)

A very natural representation of G, which automatically takes the

quasi-periodic boundary condition into account, is to express G as

a Fourier series, which we write in momentum space as

G
(

p, t − t′) = 1

−iβ

∑
ν

e−i zν (t−t′)G ( p, zν) for
0 ≤ i t ≤ β

0 ≤ i t′ ≤ β

(4.3)

where zν =
(

πν
−iβ

)
+μ. The sum is taken to run over all even integers

for Bose statistics and over all odd integers for Fermi statistics in

order to reproduce correctly the ± in the boundary conditions.

The equation of motion directly determines the Fourier coeffi-

cient G
[(

πν
−iβ

)
+ μ

]
. However, we want to know the spectral weight

function A. To relate G to A, we invert the Fourier series (4.3):

G ( p, zν) =
∫ −iβ

0

dt ei
[(

πν
−iβ

)
+μ

]
(t−t′)G

(
p, t − t′)

This integral must be independent of t′ and is most simply evaluated

by taking t′ = 0. Then

G ( p, t) = G> ( p, t) =
∫

dω

2π i
e−iωt A ( p, ω)

1 ∓ e−β(ω−μ)

and we find

G ( p, zν) =
∫ ∞

−∞

dω

2π i

∫ −iβ

0

dt
[

ei
[(

πν
−iβ

)
+μ−ω

]
t
]

A ( p, ω)

1 ∓ e−β(ω−μ)

=
∫

dω

2π

A ( p, ω)

zν − ω
(4.4)
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Thus, the Fourier coefficient is just the analytic function

G ( p, z) =
∫

dω

2π

A ( p, ω)

z − ω
(4.5)

evaluated at z = zν =
(

πν
−iβ

)
+ μ. The procedure for finding

A from the Fourier coefficients is then very simple. One merely

continues the Fourier coefficients—a function defined on the points

z =
(

πν
−iβ

)
+ μ—to an analytic function for all (nonreal) z. The

unique continuation that has no essential singularity at z = ∞ is

the function Eq. (4.5). Then, A ( p, ω) is given by the discontinuity of

G ( p, z) across the real axis, i.e.,

A ( p, ω) = i [G ( p, ω + iε) − G ( p, ω − iε)] (4.6)

since

1

ω − ω′ + iε
= ℘

1

ω − ω′ − π iδ
(
ω − ω′)

where ℘ denotes the principal value integral and ε is an infinitesimal

positive number.

The three concepts—equations of motion, boundary conditions,

and analytic continuations—form the mathematical basis of all our

techniques for determining Green’s function.

4.2 Free Particles

Let us illustrate these methods by considering some very simple

approximations for G. The most trivial example is that of free

particles. Since v = 0, the equation of motion (4.2a) is simply(
i

∂

∂t1

+ ∇2
1

2m

)
G
(

1, 1′) = δ
(

1 − 1′) (4.7)

We multiply this equation by

exp

[
−ip · (r1 − r1′ ) + i

(
πν

−iβ
+ μ

)
(t1 − t1′ )

]
Integrate over all r1 and all t1 in the interval 0 to −iβ . Then Eq. (4.7)

becomes an equation for the Fourier coefficient,(
zν − p2

2m

)
G ( p, zν) = 1
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Therefore,

G ( p, zν) = 1

zν −
(

p2

2m

) (4.8a)

The analytic continuation of this formula is

G ( p, z) = 1

z −
(

p2

2m

) (4.8b)

This analytic continuation involves nothing more than replacing(
πν
−iβ

)
+ μ by the general complex variable z. The analytic

continuations we shall perform will never be more complicated than

this. We see directly from Eqs. (4.6) and (4.8b) that

A0 ( p, ω) = 2πδ

[
ω −

(
p2

2m

)]
This by-now-familiar result expresses the fact that a free particle

with momentum p can only have energy p2

2m . Once we know A, we

know G> and G<.

4.3 Hartree Approximation

To determine G when v = 0, we must approximate the G2 that

appears in Eq. (4.2a). Approximations to G2 can be physically moti-

vated by the propagator interpretation of G (1, 1′) and G2 (12; 1′2′).

The one-particle Green’s function, G (1, 1′), represents the

propagation of a particle added to the medium at 1′ and removed

at 1. We can represent this pictorially by a line going from 1′ to 1:

G (1, 1′) = 1′ 1

Notice that this line represents propagation through the medium,

and not free-particle propagation. Similarly,

G2 (12; 1′2′) = G2

2′

1′

2

1
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describes the propagation of two particles added to the medium

at 1′ and 2′ and removed at 1 and 2. In general, the motion of the

particles is correlated because the added particles interact with each

other, either directly or intermediately through other particles in the

system.

However, as a first approximation, we may neglect this corre-

lation and assume that the added particles propagate through the

medium completely independent of each other. That is, we use the

approximationb

G2 (12; 1′2′) = G2

2′

1′

2

1

�
2′

1′

2

1

= G (1, 1′) G (2, 2′)
(4.9)

If we then substitute Eq. (4.9) into the equation of motion (4.2a),

we obtain the approximate equation for G:[
i

∂

∂t1

+ ∇2
1

2m
∓ i
∫

dr2 v (r1 − r2) G
(

2, 2+)]G
(

1, 1′)
=
[

i
∂

∂t1

+ ∇2
1

2m
−
∫

dr2 v (r1 − r2) 〈n (r2)〉
]

G
(

1, 1′)
= δ

(
1 − 1′) (4.10)

Equation (4.10) is a Green’s function statement of the well-known

Hartree approximation. It is the same equation as we would have

obtained had we considered a set of independent particles moving

through the potential field

V (r1) =
∫

dr2 v (r1 − r2) 〈n (r2)〉 (4.11)

The potential field Eq. (4.11), called the self-consistent Hartree

field, is the average field generated by all the other particles in

the system. Thus, we see that the Hartree approximation describes

the many-particle system as a set of independent particles, each

bThe symbol � in the second line was omitted in the original text.
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particle, however, moving through the average field produced by all

the particles.

For a translationally invariant system, Eq. (4.10) is quite trivial.

Since 〈n (r2)〉 is independent of the position r2, the average potential

is also constant. Letting v = ∫ drv (r), we may write

V = nv

Then, by just the same procedure as in the free-particle case, we find

from Eq. (4.10) the equation for the Fourier constant:[
zν −

(
p2

2m

)
− nv

]
G ( p, zν) = 1

The continuation from zν to all complex z of the Fourier coefficient

is, therefore,

G ( p, z) = 1

z −
(

p2

2m

)
− nv

(4.12)

so that in the Hartree approximation

A ( p, ω) = 2πδ

[
ω −

(
p2

2m

)
− nv

]
(4.13)

Thus, the particles move as free particles, except that they each

have the added energy nv .

To complete the solution to the Hartree approximation, we must

solve for the density of particles in terms of μ, or vice versa. This can

be computed from Eq. (3.2):

n = ±iG< (rt, rt) =
∫

dp

(2π)3

dω

2π
A ( p, ω) f (ω) (4.14)

which for the Hartree approximation becomes

n =
∫

dp

(2π)3

dω

2π

1

eβ
[(

p2

2m

)
+nv−μ

]
∓ 1

(4.15)

Similarly, we find the energy per unit volume from Eq. (3.9):

〈H 〉
�

=
∫

dp

(2π)3

(
p2

2m
+ nv

2

)
1

eβ
[(

p2

2m

)
+nv−μ

]
∓ 1

=
(

1

2

)
n2v +

∫
dp

(2π)3

p2

2m

eβ
[(

p2

2m

)
+nv−μ

]
∓ 1

(4.16)
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Finally, we may obtain the equation of state of a gas in the Hartree

approximation. We do this in the low-density limit for simplicity.

We start out by considering the effect of changing the chemical

potential by an infinitesimal amount dμ at fixed temperature. Then

the familiar thermodynamic identity,

d P = ndμ (4.17)

gives the change in the pressure. When Eq. (4.15) is taken in the low-

density limit (βμ → ∞), it becomes

n = eβ(μ−nv)

∫
dp

(2π)3
e−β

(
p2

2m

)

Hence at fixed β ,

dn = βn (dμ − vdn)

Thus, from Eq. (4.17),

d P =
(

1

β

)
dn + vndn = kBT dn +

(
1

2

)
vd
(

n2
)

Since the pressure vanishes at n = 0, we find

P −
(

1

2

)
n2v = nkBT (4.18)

This is in the form of a van der Waals equation,(
P − an2

)
(� − �exc) = nkBT

but without the volume-exclusion effect. For an interacting whose

long-range part is attractive, v is negative, and quite reasonably the

pressure is reduced from its free-particle value.

We could never hope to discover a volume-exclusion term from

the Hartree approximation. Such a term arises because the particles

can never penetrate each other’s hard cores. However, in deriving

the Hartree approximation, we have said that the particles move

independently; therefore, this correlation effect has been completely

left out. In order to treat hard-core interactions, it is necessary to

include in the approximation for G2 the fact that the motion of one

particle depends on the detailed positions of the other particles in

the medium.

The Hartree approximation is much less trivial when the

particles are sitting in an external potential U (r). The system for
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which Hartree originated his approximation was that of electrons in

an atom, under the influence of the central potential of the nucleus.

The equation of motion for G in the presence of an external

potential isc[
i

∂

∂t1

+ ∇2
1

2m
− U (r1)

]
G
(

1, 1′)
= δ

(
1 − 1′)± i

∫
dr2 v (r1 − r2) G2

(
12; 1′2+)∣∣

t2=t1

and in the Hartree approximation, this reduced to[
i

∂

∂t1

+ ∇2
1

2m
− U (r1) −

∫
dr2v (r1r2) 〈n (r2)〉

]
G
(

1, 1′) = δ
(

1 − 1′)
(4.19)

Again this equation is the same as we would have obtained had we

considered independent particles in the effective potential field

U eff (r1) = U (r1) +
∫

dr2 v (r1 − r2) 〈n (r2)〉 (4.20)

Since the system is no longer translationally invariant, we cannot

consider 〈n〉 or U eff to be independent of position, and the equation

cannot be diagonalized by Fourier transforming in space. It can,

however, be diagonalized on the basis of normalized eigenfunctions,

ϕi (r), of the effective single-particle Hamiltonian, Ĥ 1 (r) =
(
− ∇2

2m

)
+

U eff (r):

Ĥ 1 (r) ϕi (r) = Ei ϕi (r) (4.21)

The procedure for solving the equation is to first take Fourier

coefficients of the equation of motion, finding[
zν − Ĥ 1 (r)

]
G
(

r, r′; zν

) = δ
(

r − r′) (4.22)

so that in terms of the ϕi ,

G
(

r, r′; zν

) =
∑

i

ϕi (r) ϕ∗
i (r′)

zν − Ei

Hence

A
(

r, r′, ω
) = 2π

∑
i

ϕi (r) ϕ∗
i

(
r′) δ (ω − Ei ) (4.23)

cThe integral variable symbol dr2 was omitted in the original text.
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We see that the single-particle Hamiltonian Ĥ 1 defines both the

single-particle energies and wavefunctions of the particles in the

system.

Once more, to complete the solution, we have to compute the

density, since this determines U Jeff. We have

〈n (r, t)〉 =
∫

dω

2π
A (r, r, ω) f (ω)

=
∑

i

|ϕi (r)| f (Ei ) (4.24)

The term f (Ei ) gives the average occupation of the i -th single-

particle level, while |ϕi (r)|2 is obviously the probability of observing

at r a particle in the i -th level.

Notice that to determine φi (r), it is necessary to solve a nonlinear

equation, since Ĥ 1 (r) itself depends on all the ϕi through its

dependence on the density. The process of solving this nonlinear

equation is called obtaining a “self-consistent” Hartree solution.

4.4 Hartree–Fock Approximation

The Hartree approximation (4.9) for the two-particle Green’s

function does not take into account the identity of the particles.

Since the particles are identical, we cannot distinguish processes in

which the particle added at 1′ appears at 1 from a process in which it

appears at 2. These processes contribute coherently. To include this

possibility of exchange, we can writed

G2 (12; 1′2′) = G2

2′

1′

2

1

�
2′

1′

2

1

±
2′

1′

2

1

= G
(

1, 1′)G
(

2, 2′)± G
(

1, 2′)G
(

2, 1′) (4.25)

dThe symbol � in the second line was = in the original text.
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This approximation to G2 leads to the Hartree–Fock approximation.

In fixing the relative signs of the two terms in Eq. (4.25), we use the

fact that G2 (12; 1′2′) = ±G2 (21; 1′2′). This symmetry can be verified

directly from the definition of G2, Eq. (2.7b).

The approximate equation of G resulting from substituting

Eq. (4.25) into Eq. (4.2a) takes the form(
i

∂

∂t1

+ ∇2
1

2m

)
G
(

1, 1′)+∫ dr2 〈r1|V |r2〉 G
(

2, 1′)∣∣
t2=t1

= δ
(

1 − 1′)
(4.26)

where

〈r1|V |r2〉 = δ (r1 − r2)

∫
dr)3v (r1 − r3) 〈n (r3)〉

+ iv (r1 − r2) G< (1, 2)
∣∣

t2=t1

(4.27)

again has the interpretation of an average, self-consistent potential

field through which the particles move. However, with the inclusion

of exchange, V becomes nonlocal in space.

In the case of translationally invariant system, we can Fourier

transform Eqs. (4.26) and (4.27) in space to obtain[
i

∂

∂t1

− E ( p)

]
G ( p, t1 − t1′ ) = δ (t1 − t1′ ) (4.28)

and

E ( p) = p2

2m
+ nv ±

∫
dp′

(2π)3
v
(

p − p′) 〈n (p)〉 (4.29)

where v (p) = ∫
dr e−ip·rv(r) is the Fourier transform of the

potential v (r). Just as before

A ( p, ω) = 2πδ (ω − E ( p)) (4.30)

so that

〈n (p)〉 = f (E ( p)) = 1

eβ[E ( p)−μ] ∓ 1
(4.31)

The Hartree–Fock single-particle energy E ( p) must then be ob-

tained as the solution to Eqs. (4.29) and (4.31).

To sum up: Both the Hartree and the Hartree–Fock approx-

imations are derived by assuming that there is no correlation

between the motion of two particles added to the medium. Thus,
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these approximations describe the particles as moving indepen-

dently through an average potential field. The particles then find

themselves in perfectly stable single-particle states. There is no

possibility for collisions and indeed no mechanism at all for particles

moving from one single-particle state to another.

In Chapter 5, we describe a way of introducing the effect of

collisions into our Green’s function analysis.
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Chapter 5

Effects of Collisions on G

5.1 Lifetime of Single-Particle States

The Hartree and Hartree–Fock approximations have the character-

istic feature that A has the form

A ( p, ω) = 2πδ (ω − E ( p))

so that there is just a single possible energy for each momentum.

This result is physically quite unreasonable. The interaction be-

tween the particles should result in the existence of a spread in these

possible energies. Perhaps the best way of seeing the necessity of

this spread is to consider

1

�2

∣∣〈ψ̂ (p, t) ψ̂† (p, t′)〉∣∣2 = ∣∣G>
(

p, t − t′)∣∣2
=
∣∣∣∣
∫

dω

2π
A ( p, ω) [1 ± f (ω)] e−iω(t−t′)

∣∣∣∣
2

(5.1)

If the expectation value in Eq. (5.1) involved only a single state,

Eq. (5.1) would be the probability that one could add a particle

with momentum p to this state at the time t′, remove a particle at

the time t, and then come back to the very same state as in the
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beginning. Clearly, as the addition and removal processes become

very separated in time, i.e.,
∣∣t − t′∣∣ → ∞, this probability should

decrease. The expectation value in Eq. (5.1) actually contains a sum

of many different states. This sum should lead to a result decreasing

even more strongly in time.

However, in the Hartree and Hartree–Fock approximations, the

right-hand side of Eq. (5.1) is independent of time. Therefore, this

approximation predicts an infinite lifetime for any state produced by

adding a single particle to the system. Thus, we must look for better

approximations if we are to have an understanding of the lifetime of

single-particle excited states.

It is possible to estimate this lifetime for a classical gas without

doing any calculation. If we first add a particle and then remove

a particle with the same momentum, we should come back to the

same state only if, in the intervening time, the added particle has

not collided with any of the other particles in the gas. Therefore,

we should expect that the probability Eq. (5.1) should decay as

e−�( p)|t−t′|, where �( p) is the collision rate for the added particle.

This collision rate can be estimated as

�( p) ∼ 〈n〉 σ

(
p̄
m

)
(5.2)

where σ is an average collision cross section, and p̄
m is an average

relative velocity of the added particle with respect to the other

particles in the medium.

This decay of single-particle excited states is an exceedingly

important feature of many-particle systems. It is responsible for

the return of the system to thermodynamic equilibrium after a

disturbance.

It is very easy to find a form for A that will lead to a proper decay

of the probability Eq. (5.1). No A, which is a sum of a finite number

of delta functions, will lead to exponential decay in Eq. (5.1). But

any continuously varying A will lead to rapid decay. Consider, for

example, the Lorentzian line shape

A ( p, ω) = �( p)

[ω − E ( p)]2 +
[

�( p)

2

]2
(5.3)
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When the dispersion in energy �( p) is much less than β , we can

perform the integral in Eq. (5.1) by replacing f (ω) by f (E ( p)).

Then the probability does indeed decay as e−�( p)|t1−t1′ |. Thus, �( p)

represents both the energy dispersion and decay rate of the single-

particle excited state with momentum p. The average energy of the

added particle is E ( p).

5.2 Born Approximation Collisions

We now want to describe an approximation that includes the

simplest effects of collisions. We have already noticed that if one just

takes into account independent particle propagation in G2, i.e.,

G2 = ±

then no lifetime appears.a The simplest type of process that can lead

to a lifetime is one in which the two particles added at 1′ and 2′

propagate to the spatial points r̄1 and r̄2; at the time t̄1, when the

particles are at these spatial points, the potential acts between the

particles, scattering them. Then the particles propagate to the points

1 and 2, where they are removed from the system. We can represent

the contribution of this process to G2 pictorially as

G2

2′

1′

2

1

= · · · +

2′

1′

2

1

r̄2t̄1

r̄1t̄1

(5.4)

where the dashed line represents v (r̄1 − r̄2).

At first sight, it appears quite easy to write down Green’s

functions that correspond to our physical picture (5.4). We replace

each line by a propagator and integrate over all possible points at

which the intermediate interaction could occur. Then we find that

aThe symbol ± was missing in the original text.
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the value of this picture is

(?) ×
∫

dr̄1

∫
dr̄2

∫ (?)

(?)

dt̄2

[
G
(

1, 1̄
)

G
(

1̄, 1′) v (r̄1 − r̄2) G
(

2, 2̄
)

G
(

2̄, 2′)]
t̄2=t̄1

(5.5)

The three question marks in Eq. (5.5) represent the quantities that

we cannot fix by a physical argument alone. First, there is the

numerical factor in front of the entire expression. We shall see in

Chapter 6 that it should be i . More important is the ambiguity of the

limits on the t̄1 integration. Should this integral run over all times?

Over all times after the particles have been added? Or when? This

question is very hard to settle on the basis of physical arguments

alone. To remove this latter ambiguity, we consider Green’s functions

defined in the pure imaginary time domain, 0 < i t < β . There G and

G2 must satisfy the boundary conditions

G
(

1, 1′)∣∣
t1=0

= ±eβμ G
(

1, 1′)∣∣
t1=−iβ (2.10)

G2

(
12, 1′2′)∣∣

t1=0
= ±eβμ G

(
12, 1′2′)∣∣

t1=−iβ (2.11)

Notice that the G2 we used to define the Hartree–Fock approxi-

mation certainly satisfies Eq. (2.11), since

[
G
(

1, 1′)G
(

2, 2′)± G
(

1, 2′)G
(

2, 1′)]
t̄1=0

= ±eβμ
[
G
(

1, 1′)G
(

2, 2′)± G
(

1, 2′)G
(

2, 1′)]
t̄1=−iβ

Expression (5.5) will also satisfy Eq. (2.11) if the t̄1 integral is taken

to run from 0 to −iβ . In that case, Eq. (5.5) is of the form

F (1, . . .) =
∫ −iβ

0

dt̄1

∫
dr1 G

(
1, 1̄
) · · ·

so that

F (1, . . .)|t1=0 =
∫

G
(

1, 1̄
)∣∣

t1=0
· · · = ±eβμ

∫
G
(

1, 1̄
)∣∣

t1=−iβ · · ·

= ±eβμ F (1, . . .)|t1=−iβ



February 8, 2018 10:55 PSP Book - 9in x 6in Annotations2QSM

Born Approximation Collisions 67

All the above is just an elaborate justification for approximating

G2 by

G2 (12, 1′2′) = G2

= ±

+ ±

= G
(

1, 1′)G
(

2, 2′)± G
(

1, 2′)G
(

2, 1′)
+ i
∫ −iβ

0

dt̄1dr̄1dr̄2 v (r̄1 − r̄2)

×{G
(

1, 1̄
)

G
(

1̄, 1′)G
(

2, 2̄
)

G
(

2̄, 2′)
± G

(
1, 1̄
)

G
(

1̄, 2′)G
(

2, 2̄
)

G
(

2̄, 1′)}
t̄2=t̄1

(5.6)

This approximation describes the two particles added to the system

as either propagating independently or scattering through single

interaction. Both direct and exchange processes are included. Since

only the first-order terms in v are included in describing the

scattering, clearly Eq. (5.6) gives no better a picture of the scattering

than the first Born approximation of conventional scattering

theory. For that reason, we shall call Eq. (5.6) and the resulting

approximation for G the Born scattering or collision approximation.

In Chapter 6, this approximation will be shown to be the first two

terms in an expansion of G2 in power series in G and v .

When Eq. (5.6) is substituted into the equation of motion for G,

Eq. (4.2a), the Born scattering approximation takes the form[
i

∂

∂t1

+ ∇2
1

2m

]
G
(

1, 1′)−
∫ −iβ

0

dt̄1dr̄1 
(

1, 1̄
)

G
(

1̄, 1′)

= δ
(

1 − 1′) for
0 ≤ i t ≤ β

0 ≤ i t′ ≤ β

(5.7)
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where  (1, 1′), which is usually called the self-energy, can be split

into two parts,


(

1, 1′) = HF

(
1, 1′)+ c

(
1, 1′) (5.8)

The Hartree–Fock part of , whose effects we have already treated

in detail, is

HF

(
1, 1′) = δ (t1 − t1′ )

{
δ (r1 − r1′ )

∫
dr2 v (r1 − r2) 〈n (r2)〉

+ iv (r1 − r2) G< (1, 2)
∣∣

t1=t2

}
(5.9)

while the part of the self-energy due to collisions is, in the Born

scattering approximation,

c

(
1, 1′) = ± i 2

∫
dr2dr2′ v (r1 − r2) v (r1′ − r2′ )

× [G (1, 1′)G
(

2, 2′)G
(

2′, 2
)

± G
(

1, 2′)G
(

2, 1′)G
(

2′, 2
)]

t2=t1, t2′ =t1′

(5.10)

As a first step in solving Eq. (5.7), we Fourier-transform it in

space and find[
i

∂

∂t1

− E ( p)

]
G
(

p, t − t′)−
∫ −iβ

0

dt̄  ( p, t − t̄)

× G
(

p, t̄ − t′) = δ
(

t − t′) (5.11)

where E ( p) is just the Hartree–Fock single-particle energy defined

by Eq. (4.28). The Fourier transform of the collisional part of the self-

energy is, from Eq. (5.10),b

c

(
p, t − t′) = ± i 2

∫
dp′

(2π)3

dp̄

(2π)3

dp̄′

(2π)3

×
(

1

2

)(
v (p − p̄) ± v

(
p − p̄′))2

(2π)3

× δ
(

p + p′ − p̄ − p̄′)
× G

(
p′, t′ − t

)
G
(

p̄, t − t′)G
(

p̄′, t − t′)
(5.12)

In our later analysis, we shall see in detail that the integrand in

Eq. (5.12) describes processes in which particles with momentum

p and p′ scatter into states with momentum p̄ and p̄′ as well as

bThe integral variables in the original text have to be corrected.
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the inverse processes in which the barred momenta go into the

unbarred ones. In either cases, we recognize that the momentum

delta function in Eq. (5.12) represents the conservation of momen-

tum, while the combination
(

1
2

)
(v (p − p̄) ± v (p − p̄′))2

represents

the first Born approximation collision cross section with exchange

included.

We now have to solve Eq. (5.11) and Eq. (5.12) to obtain

the physically interesting functions G>, G<, and A. However, it is

convenient for us to obtain the solution to these equations by using

properties of c, which are generally valid. Hence we turn to a

discussion of these general properties.c

5.3 Structure of �c and A

From Eq. (5.12), we notice that c, like G, is composed of two analytic

functions:

c

(
p, t − t′) =

{
> ( p, t − t′) for i t > i t′

< ( p, t − t′) for i t < i t′ (5.13)

where

>
(

p, t − t′) =
∫

· · · G<
(

p′, t′ − t
)

G>
(

p̄, t − t′)G>
(

p̄′, t − t′)
<
(

p, t − t′) =
∫

· · · G>
(

p′, t′ − t
)

G<
(

p̄, t − t′)G<
(

p̄′, t − t′)
(5.14)

In fact, it is true in general that c is composed of two analytic

functions, as indicated in Eq. (5.13).

It is in general convenient to represent the functions > and <

as Fourier integral analogous to Eq. (2.12):

> ( p, t) =
∫ ∞

−∞

dω

2π i
> ( p, ω) e−iωt

< ( p, t) = ±
∫ ∞

−∞

dω

2π i
< ( p, ω) e−iωt

(5.15)

c(Original) ‡The general properties discussed below are not all valid when dealing

with hard-core interactions. This will be taken up in Chapter 14.
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We have again written the explicit factors of i and ±i so that the

functions > ( p, ω) and < ( p, ω) will turn out to be real and

nonnegative.

In particular approximation Ref. (5.14)

> ( p, ω) =
∫

dp′dω′

(2π)4

dp̄dω̄

(2π)4

dp̄′dω̄′

(2π)4

× (2π)4 δ
(

p + p̄′ − p̄ − p̄′) δ
(
ω + ω′ − ω̄ − ω̄′)

× (v (p − p̄) ± v
(

p − p̄′))2

×G<
(

p′, ω′)G> ( p̄, ω̄) G>
(

p̄′, ω̄′)
< ( p, ω) =

∫
· · · G>

(
p′, ω′)G<

(
p̄, ω̄′)G<

(
p̄′, ω̄′) (5.16)

The second important property of c (t − t′) is that it satisfies

the same boundary condition (2.10) as G. This is derived from

the fact that G2 satisfies the boundary condition (2.11). Thus,

for 0 < i t1′ < β ,

c

(
1, 1′)∣∣

t1=0
= ±eβμ c

(
1, 1′)∣∣

t1=−iβ

ord

<
(

1, 1′)∣∣
t1=0

= ±eβμ >
(

1, 1′)∣∣
t1=−iβ (5.17)

Therefore, > ( p, ω) and < ( p, ω) are related in exactly the same

way as G> ( p, ω) and G< ( p, ω). In analogy to A, we define

� ( p, ω) = > ( p, ω) ± < ( p, ω) (5.18)

so that in analogy with Eq. (2.15),

> ( p, ω) = � ( p, ω) [1 ± f (ω)]

< ( p, ω) = � ( p, ω) f (ω)

Since c obeys the quasi-periodicity condition (5.17), it too may

be expanded in a Fourier series like (4.3) in the imaginary time

interval, with the Fourier coefficients given by

c ( p, zν) =
∫ ∞

−∞

dω

2π

� ( p, ω)

zν − ω
(5.19)

where zν =
(

πν
−iβ

)
+ μ.

dThe subscript c appeared in the original text is omitted.
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Now we can see quite directly how to solve Eq. (5.11) for G. We

take Fourier coefficients of both sides of this equation by multiplying

by ei zν (t−t′) and integrating over all t from 0 to −iβ . Then we find

[zν − E ( p) − c ( p, zν)] G ( p, zν) = 1

This is a relation between the functions G ( p, z) and  ( p, z) on the

set of points zν , and it must, therefore, hold for all complex z. Thus

G ( p, z) = 1

z − E ( p) − c ( p, z)

= 1

z − E ( p) − ∫ dω′
2π

�( p,ω′)
z−ω′

(5.20)

We recall that A is given in terms of G by the discontinuity of G across

the real axis. Hence

A ( p, ω) = i

ω + iε − E ( p) − ∫ dω′
2π

�( p,ω′)
ω+iε−ω′

− i

ω − iε − E ( p) − ∫ dω′
2π

�( p,ω′)
ω−iε−ω′

Since
1

x + iε
= ℘

1

x
− iδ(x)

we may write

A ( p, ω) = i
ω − E ( p) − �c ( p, ω) + ( i

2

)
� ( p, ω)

− i
ω − E ( p) − �c ( p, ω) − ( i

2

)
� ( p, ω)

(5.21)

where

�c ( p, ω) = ℘

∫
dω′

2π

� ( p, ω′)
ω − ω′

Finally, we find A in terms of � as

A ( p, ω) = � ( p, ω)

[ω − E ( p) − �c ( p, ω)]2 +
[

�( p,ω)

2

]2
(5.22)

This equation is an entirely general result.

Notice that A is of the same form as we used in our discussion

of the lifetime of single-particle excited states, except that �c and

� depend on frequency. If these are slowly varying functions of the

frequency, we can still think of � as a lifetime of the single-particle

excited state with momentum p. �c can clearly be interpreted as

the average energy gained by a particle of momentum p in virtue
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of its correlations with all the other particles in the system. Notice

that the line shift, �c, and the line width, �, are not independent:

They are connected by the dispersion function (5.21). This kind of

dispersion relation occurs again and again in many-particle physics.

5.4 Interpretation of the Born Collision
Approximation

The above arguments do not depend in the slightest on the use

of the Born collision approximation. The result (5.22) is quite

generally valid. To gain a more detailed understanding of this result,

let us study the lifetime that emerges from the Born collision

approximation.

We recall that

> ( p, ω) =
∫

dp′dω′

(2π)4

dp̄dω̄

(2π)4

dp̄′dω̄′

(2π)4

× (2π)4 δ
(

p + p̄′ − p̄ − p̄′) δ
(
ω + ω′ − ω̄ − ω̄′)

× (v (p − p̄) ± v
(

p − p̄′))2

× G<
(

p′, ω′)G> ( p̄, ω̄) G>
(

p̄′, ω̄′) (5.16a)

< ( p, ω) =
∫

dp′dω′

(2π)4

dp̄dω̄

(2π)4

dp̄′dω̄′

(2π)4

× (2π)4 δ
(

p + p̄′ − p̄ − p̄′) δ
(
ω + ω′ − ω̄ − ω̄′)

× (v (p − p̄) ± v
(

p − p̄′))2

× G>
(

p′, ω′)G<
(

p̄, ω̄′)G<
(

p̄′, ω̄′) (5.16b)

Equations (5.16) look rather horrible, but actually they are quite

easy to understand. � is related to the decay of the probability that

when we add a particle with momentum p to a system at time t′ and

then remove a particle with this momentum at time t, we return to

the same state. In fact when A is a Lorentzian line shape (5.3), this

probability is ∣∣〈ψ̂ (pt) ψ̂† (pt′)〉∣∣2 ∼ e−�( p)|t−t′|

Now we do not expect the system to return to the same state if

the added particle disturbs the system in any way. In particular, if
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the particle collides with other particles, this will prevent the system

from returning to its initial state. We may interpret > ( p, ω) as the

collision rate of the added particles. To see this, consider a collision

in which a particle with momentum p and energy ω scatters off a

particle withe momentum p′ and energy ω′ and the two particles end

up in states p̄, ω and p̄′, ω̄′:f

p′, ω′

p, ω

p̄′, ω̄′

p̄, ω̄

In the Born approximation, the differential cross section for such

a process is proportional to [v (p − p̄) ± v (p − p̄′)]2
times delta

functions representing the conservation of energy and momentum

in the collision. We can recognize these factors in Eq. (5.16a).

To get the collision rate, we must multiply by the density of

scatterers, G< ( p′, ω′) = A ( p′, ω′) f (ω′) and by the density of

available final states, G> ( p̄, ω̄) G> ( p̄′, ω̄′) = A ( p̄, ω̄) A ( p̄′, ω̄′) ×
[1 ± f (ω̄)] [1 ± f (ω̄′)]. Thus, we see that Eq. (5.16a) is indeed the

total collision rate of the added particle.

In a low-density system, e.g., any classical system, > ( p, ω)

represents the entire lifetime. This follows because the boundary

condition implies < ( p, ω) = e−β(ω−μ)> ( p, ω). However, in a low-

density system βμ → −∞, so that < is negligible in comparison

with >.

In a highly degenerate system, however, < is just as large as

>. By just the same arguments as we have just gone through, we

can see that < is the total collision rate into the configuration p, ω,

assuming that p, ω is initially empty. Hence we must conclude that,

for fermions, the total decay rate, � (p, ω), is the sum of the rates

for scattering in and scattering out, whereas for bosons this total

rate is the difference between these two rates. How can this result

be understood physically.

eThe typographic errors of the appearance of the symbols p′ and ω′ in the original

text are fixed.
fThe hatched circle of the diagram in the original text is replaced by the hatched

square.
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We said that the system would not come back to the same

state whenever the interaction between the added particle and

the particles originally present changed the configuration of the

system. The added particle has two effects. First, this particle itself

undergoes collisions, p, ω + p′, ω′ → p̄, ω̄ + p̄′, ω̄′, as represented

in >. Second, the added particle changes the rate of occurrence of

the inverse process, p̄, ω̄ + p̄′, ω̄′ → p, ω + p′, ω′, as represented

in <. For a fermion system, these inverse processes are inhibited

because the exclusion principle prevents a scattering from sending a

particle into the state p, ω. Then the net effect of > and < is that

extra particles pile up in the configurations p̄, ω and p̄′, ω̄′. Thus, for

fermions, > and < contribute additively to the lifetime.

On the other hand, for bosons the presence of an extra particle

in the state p, ω increases the probability of a scattering into

that state, since it increases the density available of final state.

Now the processes represented in < will tend to decrease the

occupation of the configurations p̄, ω̄ and p̄′, ω̄′, whereas the

processes represented by > will tend to increase the occupation

of these configurations. Therefore, for bosons, � = > − <.

In a zero-temperature fermion system, it is quite convenient to

interpret > and < in the language of “holes and particles.” Here,

> ( p, ω) is the lifetime of a particle state and vanishes for ω ≤ μ,

while < ( p, ω) is the lifetime of a hole state, and it vanishes for ω ≥
μ. When our model is specialized to zero temperature, � ( p, ω) =
0 at ω = μ. This result, which is true in all order of perturbation

theory, enables us to define long-lived single-particle states near the

edge of the Fermi sea.

After all this talk about the meaning of the result we have

obtained, it is important to notice that we really do not have a

solution for A. Equations (5.16) and (5.22) represent a horribly

complex set of integral equations for A. To get detailed numerical

answers, it is necessary to solve these equations. For example, if � is

small, to 0-th order, we can take A ( p, ω) = 2πδ (ω − E ( p)). To first

order, we could substitute this form for A into Eq. (5.16) and obtain

the lowest-order results for > and <. Then we would substitute

these approximations for > and < into Eq. (5.22) and find the

first-order solution result for A. And so forth.
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5.5 Boltzmann Equation Interpretation

We have just been considering the response of a system, initially in

equilibrium, to a disturbance that adds a particle with momentum

p to the system. A perhaps more familiar way of describing

the behavior of a system after a disturbance is by means of

the Boltzmann equation. Now we shall indicate how the lifetime

obtained in the previous section may also be derived from a

Boltzmann equation.

The Boltzmann equation is only valid in cases in which �, the

dispersion in energy, is small, so that a particle with momentum

p1 can be considered to have the energy E ( p1). Then we can

describe the system after the disturbance in terms of n (p1, T ), the

average density of particles with momentum p1 and time T . The

Boltzmann equation expresses the time derivative of n (p1, T ) as

the rate of scattering of particle into the state with momentum p1

minus the rate of scattering out of momentum p1. If we use Born

approximation cross section, we find, as the Boltzmann equation,

∂

∂T
n (p1, T ) = −

∫
dp′

(2π)3

dp̄

(2π)3

dp̄′

(2π)3

× 2πδ
[

E ( p1) + E
(

p′)− E ( p̄) − E
(

p̄′)]
× (2π)3 δ

(
p1 + p′ − p̄ − p̄′)(1

2

)

× [v (p1 − p̄) ∓ v
(

p1 − p̄′)]2

×{n (p1, T ) n (p′, T )
[
1 ± n (p̄, T )

] [
1 ± n (p̄′, T )

]
−[1 ± n(p1, T )][1 ± n(p′, T )]n (p̄, T )n (p̄′, T )

}
(5.23)

After adding at time T = 0 a particle with momentum p to a system

in equilibrium, n (p1, 0) is given by

n (p1, 0) = f (E ( p1)) = 1

eβ(E ( p1)−μ) ∓ 1
for p1 = p (5.24)

However, n (p, T ) is initially not given by its equilibrium value but

is instead n (p1, 0). Now, n (p1, T ) for p1 = p will never change

appreciably from its equilibrium value. Therefore, for this initial
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condition, the Boltzmann equation (5.23) reduced to the simple

result

∂

∂T
n (p, T ) = −n (p, T )> ( p) + [1 ± n (p, T )

]
< ( p) (5.25)

Notice that > ( p) and < ( p) are precisely the values of

> ( p, ω = E ( p)) and < ( p, ω = E ( p)), which emerges when A is

approximated by 2πδ (ω − E ( p)). Equation (5.25) has the solution

n (p, T ) = f (E ( p)) + e−�( p)T [n ( p, 0) − f (E ( p))
]

where

�( p) = > ( p) ∓ < ( p) (5.26)

This result indicates a close correspondence between our Born

collision approximation and the results of an analysis based on

a Boltzmann equation with Born approximation collision cross

sections. We shall later use a generalization of the Born collision

approximation for G to derive this Boltzmann equation.
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Chapter 6

A Technique for Deriving Green’s
Function Approximations

Up to now we have written approximation for G by relying on the

propagator interpretations of G and of the G2 that appears in the

equations of motion for G. We have thus been able to write a few

simple approximations for G2 in terms of the processes that we wish

to consider. However, physical intuition can take us just so far. The

use of purely imaginary times makes a direct interpretation of these

equations difficult. Furthermore, it is hard to find physical ways of

determining the numerical factors that appear in front of the various

terms in the expansion of G2. We, therefore, seek a systematic way of

deriving approximations for G.

As a purely formal device, we define a generalization of the one-

particle Green’s function in the imaginary time interval [0, −iβ]:

G
(

1, 1′; U
) = 1

i

〈
T̂
[

Ŝψ̂ (1) ψ̂† (1′)
]〉

〈
T̂
[

Ŝ
]〉 (6.1)

Here T̂ means imaginary time ordering and the operator Ŝ is given

by

Ŝ = exp

[
−i
∫ −iβ

0

d2 U (2)n̂(2)

]
(6.2)
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n̂(2) = ψ̂†(2)ψ̂(2) and U (2) is a function of space and times in the

intervala [0, −iβ].

One reason that the Green’s function (6.1) is convenient to use is

that it satisfies the same boundary condition,

G
(

1, 1′; U
)∣∣

t1=0
= ±eβμ G

(
1, 1′; U

)∣∣
t1=−iβ (6.3)

as the equilibrium Green’s function. The derivation of this boundary

condition for G(U ) is essentially the same as for the equilibrium

functions. The time 0 is the earliest possible time, so that

G
(

1, 1′; U
)∣∣

t1=0
= ±1

i

〈
T̂
[

Ŝψ̂† (1′)
]
ψ̂ (r1, 0)

〉
〈

T̂
[

Ŝ
]〉

Since the time −iβ is the latest possible time,

G
(

1, 1′; U
)∣∣

t1=−iβ = 1

i

〈
ψ̂ (r1, −iβ) T̂

[
Ŝψ̂† (1′)

]〉
〈

T̂
[

Ŝ
]〉

The cyclic invariance of the trace that defines the expectation value

then implies Eq. (6.3).

Another reason this Green’s function is convenient is that it obeys

equations of motion quite similar to those obeyed by the equilibrium

function G. These are[
i

∂

∂t1

+ ∇2
1

2m
− U (1)

]
G
(

1, 1′; U
) = δ

(
1 − 1′)

± i
∫

dr2 v (r1 − r2) G2

(
12, 1′2+; U

)∣∣
t2=t2

(6.4a)

and [
i

∂

∂t1′
+ ∇2

1′

2m
− U

(
1′)]G

(
1, 1′; U

) = δ
(

1 − 1′)
∓ i
∫

dr2 v (r2 − r1′ ) G2

(
12−, 1′2; U

)∣∣
t2=t2

(6.4b)

where

G2

(
12, 1′2′; U

) =
(

1

i

)2
〈

T̂
[

Ŝψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)
]〉

〈
T̂
[

Ŝ
]〉 (6.5)

a(Original) ‡We may regard G
(

1, 1′; U
)

as a one-particle Green’s function, written in

the interaction reapresentation, for the system developing in imaginary time in the

presence of the scalar potential U . This potential is represented by adding a term∫
dr U (r, t)n̂(r, t) to the Hamiltonian. In the interaction representation, all the U

dependence is explicit int the Ŝ factor, and the field operators are the same as in the

absence of the potential.
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We derive Eq. (6.4) in exactly the same way as the equations of

motion for the equilibrium function G (1 − 1′). The only new feature

is the appearance of the terms U G. To see the origin of these terms,

consider, for example,

T̂
[

Ŝψ̂(1)
] =T̂

{
exp

[
i
∫ −iβ

t1

d2 U (2)n̂(2)

]}

× ψ̂(1)T̂
{

exp

[
−i
∫ t1

0

d2 U (2)n̂(2)

]}

Then

i
∂

∂t1

T̂
[

Ŝψ̂(1)
] =T̂

{
exp

[
−i
∫ −iβ

t1

d2 U (2)n̂(2)

]}

×
{

i
∂ψ̂(1)

∂t1

+
∫

dr2 U (r2, t1)
[
ψ̂(1), n̂ (r2, t1)

]}

× T̂
{

exp

[
i
∫ −iβ

t1

d2 U (2)n̂(2)

]}

Since from Eq. (2.5)[
ψ̂ (r1, t1) , n̂ (r2, t1)

] = δ (r1 − r2) ψ (r1, t1)

it follows that

i
∂

∂t1

[
T̂
(

Ŝψ̂(1)
)] = T̂

[
Ŝi

∂ψ̂(1)

∂t1

]
+ T̂

[
Ŝψ̂(1)

]
U (1) (6.6)

Such a calculation is the source of the U G term in Eq. (6.4a).

So far we have only succeeded in making things more compli-

cated. We shall learn something by considering the change in G(U )

resulting from an infinitesimal change in U . We let

U (2) → U (2) + δU (2) (6.7)

The change in G resulting from this change in U is

δG
(

1, 1′; U
) = δ

{
1

i

〈
T̂
[

Ŝψ̂ (1) ψ̂† (1′)
]〉

〈
T̂
[

Ŝ
]〉

}

= 1

i

[〈
T̂
[
δ Ŝψ̂ (1) ψ̂† (1′)

]〉
〈

T̂
[

Ŝ
]〉 −

〈
T̂
[
δ Ŝ

]〉
〈

T̂
[

Ŝ
]〉

〈
T̂
[

Ŝψ̂ (1) ψ̂† (1′)
]〉

〈
T̂
[

Ŝ
]〉

]

(6.8)
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When δ Ŝ appears in a time-ordered product, it can be evaluated as

δ Ŝ = δ

{
exp

[
−i
∫ −iβ

0

d2 U (2)n̂(2)

]}
= Ŝ

1

i

∫ −iβ

0

d2 δU (2)n̂(2)

(6.9)

since the T̂ ’s automatically provide the proper (imaginary) time

ordering. On substituting Eq. (6.9) into Eq. (6.8), we find

δG
(

1, 1′; U
) =

∫ −iβ

0

d2

{〈
T̂
[

Ŝψ̂(1)ψ̂† (1′) n̂(2)
]〉

i 2
〈

T̂
[

Ŝ
]〉

−
〈

T̂
[

Ŝψ̂(1)ψ̂† (1′)
]〉

i
〈

T̂
[

Ŝ
]〉

〈
T̂
[

Ŝn̂(2)
]〉

i
〈

T̂
[

Ŝ
]〉

}
δU (2)

= ±
∫ −iβ

0

d2[G2

(
12, 1′2+; U

)
− G

(
1, 1′; U

)
G
(

2, 2+; U
)

]δU (2) (6.10)

Since this calculation of δG is just a generalization of the method

by which one obtains an ordinary derivative, we call the coefficient

of δU (2) in Eq. (6.10) the functional derivative, or variational

derivative, of G (1, 1′; U ) with respect to U (2). It is denoted by

δG (1, 1′; U ) /δU (2), so that

δG (1, 1′; U )

δU (2)
= ± [G2

(
12, 1′2+; U

)− G
(

1, 1′; U
)

G
(

2, 2+; U
)]

(6.11)

We may, therefore, express the G2 that appears in the equation

of motion Eq. (6.4) for G in terms of δG/δU . This equation then

becomes{
i

∂

∂t1

+ ∇2
1

2m
− U (1) ∓ i

∫
dr2v (r1 − r2)

×
[

G
(

r2t1, r2t+
1 ; U

)+ δ

δU
(

r2, t+
1

)
]}

G
(

1, 1′; U
) = δ

(
1 − 1′)

(6.12)

The Green’s function G(U ) is thus determined by a single functional

differential equation.

Unfortunately, there exist no practical techniques for solving such

functional differential equations exactly. Equation (6.12) may be

used, however, to generate approximate equations for G. We shall

begin our discussion by using Eq. (6.12) to derive the beginning of a

perturbative expansion of G(U ) in a power series in v .
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6.1 Ordinary Perturbation Theory

If there is no interaction between the particles, G(U ) is determined

by the equation[
i

∂

∂t1

+ ∇2
1

2m
− U (1)

]
G0

(
1, 1′; U

) = δ
(

1 − 1′) (6.13)

together with the boundary condition (6.3). The function

G0(1, 1′; U ) may be used to convert Eq. (6.12) into an integral

equation:b

G
(

1, 1′; U
) = G0

(
1, 1′; U

)± i
∫ −iβ

0

d1̄d2̄ G0

(
1, 1̄; U

)
V
(

1̄ − 2̄
)

×
[

G
(

2̄, 2̄+; U
)+ δ

δU
(

2̄
)
]

G
(

1̄, 1′; U
)

(6.14)

We have introduced the notation

V
(

1 − 1′) = v (|r1 − r1′ |) δ (t1 − t1′ ) (6.15)

By applying
[

i ∂
∂t1

+ ∇2
1

2m − U (1)
]

to Eq. (6.14), one can verify that Eq.

(6.14) is a solution to Eq. (6.12). To see that it satisfies the boundary

condition (6.3), we observe that

G
(

1, 1′; U
)∣∣

t1=0
= G0

(
1, 1′; U

)∣∣
t1=0

+
∫ −iβ

0

d1̄ G0

(
1, 1′; U

)∣∣
t1=0

· · ·

= ± eβμ

[
G0

(
1, 1′; U

)∣∣
t1=−iβ

+
∫ −iβ

0

d1̄ G0

(
1, 1′; U

)∣∣
t1=−iβ · · ·

]
= ± eβμ G

(
1, 1′; U

)∣∣
t1=−iβ

Notice that Eq. (6.14) contains time integrals from 0 to −iβ . This is

the ultimate origin of the appearance of such integrals in the Born

collision approximation.

To expand G(U ) in a power series in V , we need only successively

iterate Eq. (6.14). To zeroth order G = G0: The first-order term is

bThere was a typographic error in the equation number of the original text.
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obtained by substituting G = G0 into the right side of Eq. (6.14).

Then to first order in V :

G
(

1, 1′; U
) = G0

(
1, 1′; U

)± i
∫ −iβ

0

d1̄d2̄ G0

(
1, 1̄; U

)
V
(

1̄ − 2̄
)

×
[

G0

(
2̄, 2̄+; U

)+ δ

δU
(

2̄
)
]

G0

(
1̄, 1′; U

)
(6.16)

We then must compute δ
δU (2)

G0 (1, 1′; U ). Perhaps the simplest way

of finding this derivative is to regard G0 (1, 1′; U ) as a matrix in the

variable 1 and 1′. The inverse of this matrix, defined by

∫ −iβ

0

d1̄ G0

(
1, 1̄; U

)
G0

(
1̄, 1′; U

) = δ
(

1 − 1′)
is, from Eq. (6.13), just

G−1
0

(
1, 1′; U

) =
[

i
∂

∂t1

+ ∇2
1

2m
− U (1)

]
δ
(

1 − 1′) (6.17)

Varying both sides of the matrix equation G−1
0 G0 = 1 with respect to

U implies

δ
[
G−1

0 G0

] = δG−1
0 G0 + G−1

0 δG0 = 0

or

δG0 = −G0δG−1
0 G0

Thus

δG0 (1, 1′)
δU (2)

= −
∫ −iβ

0

d3d3′ G0 (1, 3)

[
δG−1

0 (3, 3′; 0)

δU (2)

]
G0

(
3′, 1′)

=
∫ −iβ

0

d3 G0 (1, 3)
δU (3)

δU (2)
G0

(
3, 1′)

= G0 (1, 2) G0

(
2, 1′) (6.18)

since δU (3)

δU (2)
= δ(3−2). Substituting Eq. (6.18) into Eq. (6.16), we find
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that to first order in V ,

G
(

1, 1′; U
) = G0

(
1, 1′; U

)± i
∫ −iβ

0

d1̄d2̄ G0

(
1, 1̄; U

)
V
(

1̄ − 2̄
)

× [
G0

(
2̄, 2̄+; U

)
G0

(
1̄, 1′; U

)
± G0

(
1̄, 2̄+; U

)
G0

(
2̄, 1′; U

)]
(6.19)

We represent this pictorially as

G (1, 1′; U ) = 1′ 1 +1′ 1

× 1′ 1

where the lines signify G0. When U is set equal to zero, we have the

expansion of G (1 − 1′) to first order in V .

It is instructive to compare this first-order result with the

Hartree–Fock approximation, which may be written as(
i

∂

∂t1

+ ∇2
1

2m

)
G
(

1 − 1′) = δ
(

1 − 1′)± i
∫ −iβ

0

d2̄ V
(

1̄ − 2̄
)

× [G (2̄ − 2̄+)G
(

1 − 1′)
± G

(
1 − 2̄2

)
G
(

2̄ − 1′)]
Then

G
(

1 − 1′) = G0

(
1 − 1′)± i

∫ −iβ

0

d1̄d2̄ G0

(
1 − 1̄

)
V
(

1̄ − 2̄
)

× [G (2̄ − 2̄+)G
(

1 − 1′)± G
(

1 − 2̄2
)

G
(

2̄ − 1′)]
(6.20)

The first-order solution (6.19) is equivalent to the Hartree–Fock

solution expanded to first order in V .

To obtain higher-order terms in V , we substitute Eq. (6.19) back

into Eq. (6.14), and again use Eq. (6.18). The GG term gives the
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second-order contributions

+

+ + (6.21a)

while the second-order contribution from δG
δU is

i
∫ −iβ

0

d1̄d2̄ G0

(
1, 1̄ U

)
V
(

1̄ − 2̄
)

(6.21b)

× δ

δU
(

2̄
){± i

∫
d3̄d4̄G0

(
1̄, 3̄; U

)
V
(

3̄ − 4̄
)

× [G0

(
4̄, 4̄+; U

)
G0

(
3̄, 1′; U

)± G0

(
3̄, 4̄+; u

)
G0

(
3̄, 1′; U

)]}

= +

+ +

+ +
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All the terms in Eq. (6.21a) and the first four terms in Eq. (6.21b)

arise from an iteration of the Hartree–Fock approximation. However,

the last two terms do not appear in the Hartree–Fock approximation,

but are instead the lowest-order contributions of the collision terms

in the Born collision approximation. In the appendix, we consider

this expansion in more detail.

One can iterate further and expand G to arbitrarily high order in

V . The general structure of G is given by drawing all topologically

different connected diagrams.

We should point out that there are very few situations in which

this expansion converges rapidly. Usually, the potential is sufficiently

large so that the first few orders of perturbation theory give a

very poor answer. Furthermore, physical effects such as the e−�(t−t′)

behavior of G and the single-particle energy shift cannot appear

in finite order in this expansion. Instead, one would find e−�(t−t′)

replaced by its power-series expansion

1 − �
(

t − t′)+
(

1

2

)
�2
(

t − t′)2 + · · ·

which converges slowly for large time differences.

6.2 Expansion of � in V and G0

The difficulties of the expansion of G in powers of V may be avoided

by either infinite classes of terms in the expansion, or equivalently

by expanding the self-energy  (1, 1′; U ) in terms of V . We recall

that  is defined by(
i

∂

∂t1

+ ∇2
1

2m

)
G
(

1 − 1′)−∫ −iβ

0

d1̄
(

1 − 1̄
)

G
(

1̄ − 1′) = δ
(

1 − 1′)
(6.22)

in equilibrium case. In the presence of U , we define  by the

equation∫ −iβ

0

d1̄
[
G−1

0

(
1, 1̄; U

)− 
(

1, 1̄; U
)]

G
(

1̄, 1′; U
) = δ

(
1 − 1′)

(6.23)

If we define the matrix inverse of G by the equation∫ −iβ

0

d1̄ G−1
(

1, 1̄; U
)

G
(

1̄, 1′; U
) = δ

(
1 − 1′)
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it is clear that

G−1
(

1, 1′; U
) = G−1

0

(
1, 1′; U

)− 
(

1, 1′; U
)

(6.24)

To find (U ), we matrix multiply Eq. (6.12) on the right by G−1.

Then

G−1
(

1, 1′; U
) = G−1

0

(
1, 1′; U

)∓ i
∫ −iβ

0

d2̄V (1̄ − 2̄)G(2̄, 2̄+)δ(1 − 1′)

− i
∫ −iβ

0

d2̄d1̄V (1 − 2̄)

[
δG(1, 1̄; U )

δU (2)

]
G−1(1̄, 1′; U )

(6.24a)

so that


(

1, 1′; U
) = ±i

∫ −iβ

0

d2̄V
(

1̄ − 2̄
)

G
(

2̄, 2̄+) δ
(

1 − 1′)
+ i
∫ −iβ

0

d2̄d1̄V (1 − 2̄)

[
δG(1, 1̄; U )

δU (2)

]
G−1(1̄, 1′; U )

(6.25a)

Using δG · G−1 + GδG−1 = 0, we find∫ −iβ

0

d1̄

[
δG
(

1, 1̄; U
)

δU (2)

]
G−1

(
1̄, 1′; U

)

= −
∫

d1̄ G
(

1, 1̄; U
) δ

δU (2)

[
G−1

0

(
1̄, 1′; U

)− 
(

1̄, 1′; U
)]

= G
(

1, 1′) δ
(

2 − 1′)+
∫ −iβ

0

d1̄ G
(

1, 1̄; U
) δ

(
1̄, 1′; U

)
δU (2)

Hence Eq. (6.25a) for  becomes


(

1, 1′; U
) = δ

(
1 − 1′) [±i

∫
d2̄ V

(
1 − 2̄

)
G
(

2̄, 2̄+; U
)]

+ i V
(

1 − 1′)G
(

1, 1′; U
)

+ i
∫

d1̄d2̄ V
(

1 − 2̄
)

G
(

1, 1̄; U
) δ

(
1̄, 1′; U

)
δU
(

2̄
)
(6.25b)

This latter equation is very useful for deriving the expansion of

 in a power series in G0 and V . To lowest order in V ,


(

1, 1′; U
) = ±iδ

(
1 − 1′) ∫ d2̄ V

(
1 − 2̄

)
G0

(
2̄, 2̄+; U

)
+ i V

(
1 − 1′)G0

(
1, 1′; U

) (6.26)
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This is clearly just the lowest-order approximation to the Hartree–

Fock self-energy. The second-order result for  is obtained by taking

the Hartree–Fock terms in Eq. (6.25b) to first order in G, using Eq.

(6.19). The more interesting second-order terms in  result from
δ
δU . To lowest order, these terms are

+ (6.27)

where the lines signify G0’s. Expression (6.27) is just the lowest-

order evaluation of the collision term in the Born collision

approximation self-energy.

6.3 Expansion of � in V and G

In the calculations in previous chapters, we have expanded  in V
and G instead of V and G0. The primary reason for doing this is that G
has a simple physical interpretation, while the physical significance

of G0 in an interacting system is far from clear. We shall, therefore,

indicate how successive iteration of Eq. (6.25b) leads to such an

expansion in G and V .

The Hartree approximation is derived by neglecting δG
δU in Eq.

(6.25a). This approximation is the first term in the systematic

expansion of  in a series in V and G:

HF

(
1, 1′; U

) = ± i
∫

d2̄ V (1 − 2) G
(

2̄, 2̄+; U
)
δ
(

1 − 1′)
+ i V

(
1 − 1′)G

(
1, 1′; U

)
The next term comes from approximating δ

δU by δHF

δU in Eq. (6.25b).

Then Eq. (6.25b) becomes


(

1, 1′; U
) =HF

(
1, 1′; U

)± i 2

∫ −iβ

0

d1̄d2̄ V
(

1 − 2̄
)

G
(

1, 1̄; U
)

× δ

δU
(

2̄
)[ ∫ d3̄ V

(
1̄ − 3̄

)
G
(

3̄, 3̄+; U
)
δ
(

1̄ − 1′)
± V

(
1̄ − 1′)G

(
1̄, 1′; U

) ]
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However, δG = −G · δG−1 · G, so that to lowest order,

δG (1, 1′; U )

δU (2)
= G (1, 2) G

(
2, 1′)

Therefore, we find to second order in V ,


(

1, 1′; U
) − HF

(
1, 1′; U

)
= ± i 2

∫
d2̄d3̄ V

(
1 − 2̄

)
V
(

3̄ − 1
)

× [G(1, 1′; U )G(3̄, 2̄; U )G(2̄, 3̄; U )

± G(1, 3̄; U )G(3̄, 2; U )G(2̄, 1′; U )]

= + (6.28)

where the lines represent G’s. Equation (6.28), when U is set equal

to zero, is the Born collision approximation.
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Chapter 7

Transport Phenomena

So far we have studied many-body systems by considering the effect

of adding or removing one or more particles. From the one particle

Green’s function G (1 − 1′), we were able to determine the energy

spectrum and decay times of the single-particle excited states.

We indicate that G2 can be used to describe the scattering of

two particles added to the medium. Higher-order Green’s functions,

defined similarly to G and G2, describe the effects of adding or

removing more than two particles.

However, there exists a class of disturbances that are not

conveniently described in terms of these equilibrium Green’s

functions. Consider, for example, a disturbance produced by the

externally applied force field, F (r, t) = −∇U (r, t).a This force field

may be represented by the addition of the termb

Ĥ ′ (t) =
∫

dr U (r, t) n̂ (r, t) (7.1)

aIn this chapter, the original text uses capital letters for the position vector R and the

time T . Here, we switch the capital letters to the lower cases, r and t, for avoiding

confusions. In Section 7.4, a new coordinate system has been introduced, but it is

not necessary at this stage.
bThe typographic error on assigning the equation number (7.1) in the original text is

fixed.
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where

n̂ (r, t) = ψ̂† (r, t) ψ̂ (r, t)

to the Hamiltonian of the system. One example in which this kind

of disturbance is particularly important is a system of charged

particles, perturbed from equilibrium by a longitudinal electric field.

Then, the external force is the electric field, times e, the charge on

each particle, while e−1U (r, t) is the scalar potential for the applied

electric field.

Other types of external disturbances, e.g., general electromag-

netic fields, can be represented by other terms added to the

Hamiltonian. These extra terms cause no additional conceptual

difficulties. However, for the sake of simplicity, we shall restrict

ourselves to the disturbance (7.1).

Many interesting physical phenomena appear as the response of

systems to external disturbances of this kind. For example, in an

ordinary gas, a slowly varying U (r, t) will produce sound waves. A

longitudinal electric field, applied to a charged system, will lead to

a flow of current. Both processes will be accompanied by the flow

of heat. Each of these processes involves the flow of macroscopically

observable quantities—momentum (in a sound wave), charge, and

energy—and are, therefore, known as transport processes.

Preparatory to developing a Green’s function theory of transport,

we shall review the conventional approach based on the Boltzmann

equation in order to see, on the one hand, its shortcomings and, one

the other hand, the features that must be retained in any correct

theory.

7.1 Boltzmann Equation Approach to Transport

The conventional Boltzmann equation is an equation of motion for

f (p, r, t), the average density of particles with momentum p at

the space–time pointc r, t. The time derivative of f is computed by

c(Original) ‡The reader may argue that it is unreasonable to define an f (p, r, t)

quantum mechanically because the uncertainty principle makes it impossible to

simultaneously specify the position and momentum of a particle. However, we are

not interested in specifying the position of any particle with accuracy much greater

than the wavelength of the disturbance. Therefore, when the disturbance varies only

over macroscopic distances we can specify the momentum of the particles with

macroscopic accuracy.
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taking into account the following effects:

(1) Particles with momentum p continually drift into and out of the

volume element of space about r.

(2) Owing to the average forces acting on the particles, the momenta

of the particles in this volume are gradually changed.

(3) Collisions that take place in this volume suddenly change the

particle momenta. Collision rates are computed by using the

free-particle collision cross sections, correcting the collision

rates for the density of final states in the many-body system. For

fermions, the exclusion principle requires that particles cannot

scatter into occupied states; bosons, on the other hand, prefer to

scatter into occupied states.

Thus, the Boltzmann equation is{
∂

∂t
+ p · ∇r

m
− [∇U (r, t)] · ∇p

}
f (p, r, t) =

(
∂ f
∂t

)
collision

(7.2)

where, in terms of Born approximation collision cross sections,(
∂ f
∂t

)
collision

=
∫

dp′

(2π)3

dp̄

(2π)3

dp̄′

(2π)3

(
1

2

)[
v (p − p̄) ± v

(
p − p̄′)]2

× (2π)3 δ
(

p + p′ − p̄ − p̄′)
× 2πδ

(
p2

2m
+ ( p′)2

2m
− p̄2

2m
− ( p̄′)2

2m

)

× [(1 ± f )
(

1 ± f ′) f̄ f̄ ′ − f f ′ (1 ± f̄
) (

1 ± f̄ ′)]
(7.3)

Here

f = f (p, r, t) , f ′ = f
(

p′, r, t
)

, etc.

This Boltzmann equation is appropriate only for systems with weak,

short-ranged forces.

When particles interact through the Coulomb force, v(r) = e2

r ,

the force is so long-ranged that the whole picture of instantaneous

local collisions breaks down completely. For long-ranged forces,

Eq. (7.2) is almost certainly wrong. It is much better to leave

out the collision term entirely and consider the particles move

independently through an average potential field. This effective field
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is the sum of the applied field and the averaged field produced by all

the particles in the system:

U eff (r, t) = U (r, t) +
∫

dr′ v
(

r − r′) ∫ dp′

(2 pi)3
f
(

p′, r, t
)

(7.4)

Then the Boltzmann equation becomes{
∂

∂t
+ p · ∇r

m
− [∇U eff (r, t)] · ∇p

}
f (p, r, t) = 0 (7.5)

This equation is often called the Vlasov–Landau equation. It is

nonlinear because U Jeff depends on f . We shall defer the discussion

of the collisions Boltzmann equation to Chapter 8.

In the absence of a U , Eq. (7.2) has the solution

f (p, r, t) = 1

eβ
[

(p−mv)2

2m −μ
]
± 1

(7.6)

the readers should check for themselves that, in fact, the collision

term vanishes for this choice of f . This solution represents

thermodynamic equilibrium. The parameters β , μ, and v are the five

parameters (v is a vector) necessary to specify the thermodynamic

state of the system. The new parameter here is v, the average

velocity of the system. Notice that the solution (7.6) is the

distribution function in thermodynamic equilibrium for a set of

independent particles. Therefore, the Boltzmann equation ignores

the change in the equilibrium distribution caused by the inter-

particle potential. Our more general theory will overcome this

limitation.

Now we use the Boltzmann equation, (7.2), to derive the exis-

tence of ordinary sound waves. This derivation indicates the way

in which the Boltzmann equation describes transport phenomena.

Sound waves appear in the limit in which the disturbance U (r, t)

varies very slowly in space and time.

When U (r, t) has this slow variation, f (p, r, t) must be slowly

varying. Then the left-hand side of Eq. (7.2) must be very small, since

it is proportional to space or time derivatives. Hence the collision

term in Eq. (7.2) must also be small. For an arbitrary choice of f , the

collision term is on the order of � f , where � is the typical collision

rate. By hypothesis, we are considering a slowly varying disturbance,

so that � f is much greater than ∂ f
∂t or

( p
m

) · ∇r f . Therefore, the
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condition that the collision term be small is a strong requirement on

the solution f . To lowest order we can determine f by demanding

that (
∂ f
∂t

)
collision

= 0 (7.7)

The solution to Eq. (7.7) must be of the form

f (p, r, t) =
{

exp

[
β (r, t)

(p − mv (r, t))2

2m
− β (r, t) μ (r, t)

]
∓1

}−1

(7.8)

The f represented by Eq. (7.8) describes the system as being in

local thermodynamic equilibrium. However, the system is not in

complete thermodynamic equilibrium since the temperature β (r, t),

the chemical potential μ (r, t), and the average local velocity of the

particles, v (r, t), vary from point to point.

Notice that in obtaining Eq. (7.8), we are really thinking the

collision term to be a dominant part of the Boltzmann equation. It

is the collisions that are responsible for keeping the system in this

local thermodynamic equilibrium.

To complete the lowest-order solution, we must determine the

five unknown functions, β (r, t), μ (r, t), and v (r, t), which appear

in Eq. (7.8). We can determine these by making use of the five

conservation laws for the number of particles, momentum, and

energy.

These five conservation laws are obtained by multiplying

Eq. (7.2) by 1, p2

2m , or p, and then integrating the resulting equations

over all p. In all three cases, the integrals of the collision terms vanish

and we find the differential conservation laws:

Number conservation:
∂

∂t
n (r, t) + ∇ · j (r, t) = 0 (7.9a)

where

n (r, t) =
∫

dp

(2π)3
f (p, r, t)

j (r, t) =
∫

dp

(2π)3

p
m

f (p, r, t)
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Energy conservation:

∂E (r, t)

∂t
+ ∇r ·

∫
dp

(2π)3

p
m

p2

2m
f (p, r, t) = −j (r, t) · ∇rU (r, t)

(7.9b)

where

E (r, t) =
∫

dp

(2π)3

p2

2m
f (p, r, t)

Momentum conservation:

m
∂

∂t
j (r, t)+

∫
dp

(2π)3
(p · ∇r)

[ p
m

f (p, r, t)
]

= −n (r, t) ∇U (r, t) (7.9c)

The number conservation law expresses the result that the time

derivative of the density of particles must be equal to the negative

divergence of the current. This is also called the equation of

continuity. Similarly, the time derivative of the energy density is the

negative divergence of the energy current, plus the density of the

power added at the point in question. Finally, the time derivative of

the momentum density is the negative divergence of the momentum

current, plus the applied force density.

The conservation laws (7.9) are exact consequences of the

Boltzmann equation. They do not depend in any way on the

use of approximation (7.8) for f . However, we can substitute

the approximate f into these equations and thereby determine

parameters in Eq. (7.8) in terms of U .

To simplify this analysis, we shall consider only the low-density

limit (βμ → −∞), in which f has the simpler form

f (p, r, t) = exp

{
−β (r, t)

[
(p − mv (r, t))2

2m
− μ (r, t)

]}
(7.8a)

As a further simplification, we consider U (r, t) to be a small

perturbation of the system from an initial equilibrium configuration

at time −∞ in which v (r, −∞) = 0, β (r, −∞) = β , and

μ (r, −∞) = μ. This enables us to write the conservation laws in

a linearized form. These linearized conservation laws are derived by

substituting Eq. (7.8a) into Eq. (7.9). Since terms like v·∇ , v2, etc.,
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are all of second or higher order, the linearized conservation laws

are

∂n (r, t)

∂t
= −∇ · (v (r, t) n (r, t)) � −n∇ · v (r, t)

∂E (r, t)

∂t
= −∇r

{∫
dp

(2π)3

p
m

p2

2m

}
e−β(r, t)

[
(p−mv(r, t))2

2m −μ(r, t)
] (7.10a)

so that

∂E (r, t)

∂t
≈ − (E + P ) ∇ · v (r, t) (7.10b)

and

mn
∂v (r, t)

∂t
= −∇ P (r, t) − n∇U (r, t) (7.10c)

In Eq. (7.10)

n (r, t) =
∫

dp

(2π)3
exp

{
−β (r, t)

[
p2

2m
− μ (r, t)

]}

E (r, t) =
(

3

2

)
n (r, t) β−1 (r, t)

(7.11)

and

P (r, t) = n (r, t) β−1 (r, t)

are the particle density, energy density, and pressure of a free

low-density gas, expressed as functions of β (r, t) and μ (r, t). Also

n, E , and P are the values of these quantities at time −∞. The

linearized hydrodynamic Eqs. (7.10) can be derived for all ordinary

fluids. However, Eqs. (7.11) are not always true, since they are

the thermodynamic relations for a perfect gas. In a more general

discussion of sound propagation, one must use more accurate

thermodynamic relations than Eq. (7.11). These cannot be derived

from a Boltzmann equation.

We now eliminate U (r, t) from Eq. (7.10). If we take m times the

time derivative of Eq. (7.10a) and subtract from it the divergence of

Eq. (7.10c), we find

m
∂2n (r, t)

∂t2
− ∇2 P (r, t) = n∇2U (r, t) (7.12)
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and from Eqs. (7.10b) and (7.10a), we find

1

n
∂

∂t
n (r, t) = −∇ · v (r, t) = 1

E + P
∂E (r, t)

∂t

= 3

5

1

P
∂ P (r, t)

∂t
(7.13)

This last equation is a restriction on the possible changes in β (r, t)

and μ (r, t), and we may use it to eliminate ∇2 P (r, t) from Eq.

(7.12). Note that we are switching from the variables β (r, t) and

μ (r, t) to n (r, t) and P (r, t). The solution to Eq. (7.13) is just

(P (r, t) − P ) = 5

3

P
n

(n (r, t) − n) (7.14)

since P (r, t) is P and n (r, t) is n at the initial time t = −∞. Then

from Eq. (7.14)

∇2 P (r, t) = 5

3
β−1∇2n (r, t)

so that Eq. (7.12) becomes[
∂2

∂t2
− 5

3

β−1

m
∇2

]
n (r, t) = n

m
∇2U (r, t) (7.15)

This is the equation obeyed by forced, undamped sound waves. The

velocity C of this sound wave is given by

C 2 = 5

3

β−1

m
= 5

3

kBT
m

(7.16)

which is the adiabatic or Laplace sound velocity for a perfect

gas. The restriction (7.13) is equivalent to the statement that the

sound wave must propagate with constant entropy. In terms of the

thermodynamic derivatives of a free gas, C 2 is given by

C 2 =
[

1

m

(
∂ P
∂n

)
S/N

]
free gas

The analysis that we have just carried out is the lowest order in

an expansion in powers of ω/� and
[

(k·p)

m

]
/�, where ω and k are

the frequency and wavenumber of the disturbance U , and � is the

typical collision rate.

The next-order terms in this expansion involve viscosity and

thermal conductivity. These transport coefficients can, therefore, be



February 8, 2018 10:55 PSP Book - 9in x 6in Annotations2QSM

Boltzmann Equation Approach to Transport 97

calculated from the Boltzmann equation. They appear in the sound-

wave damping.

It is interesting to note that these correction terms are of order

ω/� relative to the terms we have just computed. Therefore, the

analysis of transport is based on an expansion of 1/� or one over

the square of the potential. Thus, in our Green’s function analysis, we

can hardly expect that any power-series expansion in the potential

could describe transport.

This result for the sound velocity indicates both the strength and

the weakness of the Boltzmann equation approach. The Boltzmann

equation predicts the existence of sound waves, and it gives

the correct sound velocity for low-density systems: the result

C 2 = 5kBT /3m has been verified experimentally for dilute gases.

However, the sound velocity C 2 = (
1
m

) (
∂ P
∂n

)
S/N is correct for a very

wide range of fluids, even in situations in which thermodynamic

derivative is very far from its free gas value. Yet the Boltzmann

equation predicts the free gas value, which suggests that the

Boltzmann equation approach cannot give a good description of any

systems except those that are weakly interacting.

There is another hint that the Boltzmann equation is inherently

limited to weakly interacting system. Look at the energy conserva-

tion law, Eq. (7.9b). This is actually a conservation law for kinetic

energy, ∫
dp

(2π)3

p2

2m
f (p, r, t)

However, it is not merely the kinetic energy that is conserved but the

total energy—kinetic plus potential. Any approximation that leads to

an energy conservation law of the kinetic energy alone can be valid

only when the average potential energy is much smaller than the

kinetic energy, i.e., in the weak-interaction limit.

As we shall soon see, the Green’s function approach overcomes

this limitation of the Boltzmann equation and, in fact, is capable of

going far beyond the Boltzmann equation in its range of applicability

and its accuracy.

On the other hand, we must retain one very important feature

of the Boltzmann equation in our Green’s function approach: the

conservation laws for the number of particles, the energy, and the
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momentum. In fact, we saw that the derivation of sound waves de-

pends only on the assumption of local thermodynamic equilibrium

and the use of these conservation laws. These conservation laws

dominate the response of the system to slowly varying disturbances;

they must be included to get a qualitatively correct description of

this response.

7.2 Green’s Function Description of Transport

The problem posed by transport theory, be it quantum or classical,

is to calculate the space- and time-dependent responses induced in

a system by external space- and time-dependent disturbances. In

electrical transport, for example, one applies, starting at a certain

time, an external disturbance in the form of an electric potential, like

Eq. (7.1), and tries to find the current and charge distributions due

to this potential.

To be specific, we shall consider only disturbances of the form

Eq. (7.1),

H ′ (t) =
∫

dr n (r, t) U (r, t) (7.1)

We then want to calculate the expectation values of physical

operators, as they develop in time when the system is influenced by

U . In the Heisenberg representation, any operator, X̂ (r, t), develops

in time according to the equation

i
∂

∂t
X̂ U (r, t)=

[
X̂ U (r, t) , ĤU (t)+

∫
dr′ n̂U

(
r′, t
)

U
(

r′, t
)]

(7.17)

Here ĤU (t) is the Hamiltonian (2.2) of the system. It now

depends on time because there is an external time-dependent

perturbation. The subscript U on the operators indicates that their

time development is given by Eq. (7.17) and, therefore, depends

on U .

Let us suppose that at a very earlier time t0, before U is turned

on, the system is in a definite eigenstate, |i, t0〉 of Ĥ and N̂ . The t0 in

the designation of the state means that

Ĥ (t) |i, t0〉 = Ei |i, t0〉 when t < t0 (7.18)
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In the Heisenberg picture, the system will always remain in this

state. Only the operators change in time. [The relation (7.18) will fail

to hold as soon as t becomes later than the time when U is turned

on.] The expectation value of the operator X̂ at the time t and point

r is 〈
X̂ (r, t)

〉
U = 〈i, t0| X̂ U (r, t) |i, t0〉 (7.19)

Now in an actual experiment, the system is not in a definite

eigenstate of the Hamiltonian at time t0 but is rather at a definite

temperature β−1. We start with a system in thermal equilibrium

at a definite temperature (and chemical potential) when we begin

the experiment, and then we observe how the system develops in

time. We must, therefore, average Eq. (7.19) over a grand-canonical

ensemble of eigenstates of the system, at time t0. The expectation

value becomes

〈
X̂ (r, t)

〉
U =

∑
i e−β(Ei −μNi ) 〈i, t0| X̂ U (r, t) |i, t0〉∑

i e−β(Ei −μNi )
(7.20)

The ensemble can still be represented by a trace, but we must be

careful to specify, by writing Ĥ (t0), the time at which the ensemble

was prepared. Actually, Eq. (7.20) is independent of t0 as long as

t0 is before the time that U is turned on. The number operator is

independent of time, since an external potential does not change the

number of particles.

Next we notice that we can solve Eq. (7.17), at least formally, by

going to the interaction representation. In this representation, the

operators develop in time according to

i
∂ X̂ (r, t)

∂t
= [X̂ (r, t) , Ĥ (t)

]
(7.21)

The transformation between the interaction representation and the

Heisenberg representation is given byd

X̂ U (r, t) = V̂−1(t)X̂ (t)V̂(t) (7.22)

d(Original) ‡One may check (7.22) by explicit differentiation with respect to t0. Using

i
∂V̂ (t)

∂t
=

∫
dr′ n

(
r′ , t

)
U

(
r′ , t

)
V̂ (t)
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where

V̂(t) = T̂
{

exp

[
−i
∫ t

t0

dt′
∫

dr′ n̂
(

r′, t′)U
(

r′, t′)]} (7.23)

is written in terms of the density operator in the interaction

representation.

The problem of calculating the expectation value of an operator,

developing in the presence of U , is then reduced to calculating〈
X̂ U (r, t)

〉 = 〈X̂ (r, t)
〉

U

=
tr
{

e−β[Ĥ (t0)−μN̂]V̂−1 (t) X̂ (r, t) V̂ (t)
}

tr
{

e−β[Ĥ (t0)−μN̂]
} (7.24a)

Since we are in the interacting representation, Ĥ (t0) is independent

of time so that we can drop the t0 in Ĥ (t0). Since t0 can be any time

before the disturbance is turned on, Eq. (7.24) does not depend on

t0. Then we can write

〈
X̂ (r, t)

〉
U =

〈
V̂−1 (t) X̂ (r, t) V̂ (t)

〉
V̂ (t) = T̂

{
exp

[
−i
∫ t

−∞
dt′dr′ n

(
r′, t′)U

(
r′, t′)]} (7.24b)

where the expectation value written without the U denotes the

equilibrium expectation value. Equation (7.24b) is, in a certain

sense, the solution to the problem of transport, since all the

operators develop as they would in the equilibrium ensemble. All

the dependence on the external field U is explicit in Eq. (7.24b).

Our program for determining quantities like Eq. (7.24b) will be

to write equations of motion for generalized Green’s functions in

one finds

i
X̂ U (t)

∂t
=V̂−1(t)

(
i

∂

∂t
X̂ (t)

)
V̂(t)

+ V̂−1(t)

[
X̂ (t),

∫
dr′ n̂

(
r′ , t

)
U (r, t)

]
V̂(t)

=V̂−1(t)

[
X̂ (t), Ĥ (t) +

∫
dr′ n̂

(
r′ , t

)
U (r, t)

]
V̂(t)

=
[

X̂ U (t), Ĥ U (t) +
∫

dr′ n̂U
(

r′ , t
)

U
(

r′ , t
)]
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terms of which quantities like Eq. (7.24b) can be expressed. These

equations of motion will bear a strong resemblance to Boltzmann

equations.

We now use the Heisenberg representation creation and annihi-

lation operators to define Green’s functions

g
(

1, 1′; U
) =1

i

〈
T̂
(
ψ̂U (1) ψ̂

†
U

(
1′))〉

g>
(

1, 1′; U
) =1

i

〈
ψ̂U (1) ψ̂

†
U

(
1′)〉

g<
(

1, 1′; U
) = ± 1

i

〈
ψ̂

†
U

(
1′) ψ̂U (1)

〉

g2

(
12, 1′2′; U

) =
(

1

i

)2 〈
T̂
(
ψ̂U (1) ψ̂U (2) ψ̂

†
U

(
2′) ψ̂

†
U

(
1′))〉

(7.25)

In terms of these Green’s functions, we may describe the response

of a system, initially in thermodynamic equilibrium, to the applied

disturbance U . For example, the average density and current at the

point r, t are given by

〈n̂ (r, t)〉U =
〈
ψ̂

†
U (r, t) ψ̂U (r, t)

〉
= ±ig< (rt, rt; U )〈

ĵ (r, t)
〉

U
=
{∇ − ∇′

2im

[±ig<
(

rt, r′t; U
)]}

r′=r
(7.26)

We use the “g” to distinguish these physical response functions,

which are defined for real times, from their imaginary time

counterparts G(U ), G2(U ). We shall see later that there is a close

connection between these two different sets of Green’s functions.

For the time being, we limit ourselves to discussing the real-time

functions.

We now consider the equations of motion obeyed by g(U ). To

derive these, we notice from Eq. (7.17) thate

i
∂

∂t
ψ̂U (r, t) = −

(∇2

2m

)
ψ̂U (r, t) + U (r, t) ψ̂U (r, t)

+
∫

dr′ v
(

r − r′) ψ̂
†
U

(
r′, t
)
ψ̂U
(

r′, t
)
ψ̂U (r, t)

(7.27)

eThe typographic error of the omission of the superscript † at the first ψ̂ in the second

line in the original text is fixed.
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It follows then that[
i

∂

∂t1

+ ∇2
1

2m
− U (1)

]
g
(

1, 1′; U
)

= δ
(

1 − 1′)± i
∫ ∞

−∞
dt2dr2 V (1 − 2) g2

(
12, 1′2′; U

)
(7.28a)

Making use of the equation of motion of ψ̂
†
U , we can similarly derive[

−i
∂

∂t1′
+ ∇2

1′

2m
− U (1)

]
g
(

1, 1′; U
)

= δ
(

1 − 1′)± i
∫ ∞

−∞
d2 V

(
1′ − 2

)
g2

(
12−, 1′2′; U

) (7.28b)

Here V (1 − 2) = v (r1 − r2) δ (t1 − t2). As in the case of the equili-

brium Green’s functions, we shall construct approximations for g(U )

by substituting an approximation for g2(U ) into these equations of

motion.

7.3 Conservation Laws for g(U)

In our derivation of sound propagation from the Boltzmann

equations, we saw that it was essentially to make use of the

conservation laws for the number of particles, the energy, and

the momentum. When a system is disturbed from equilibrium, the

first thing that happens is that the collision forces the system to

a situation that is close to local thermodynamic equilibrium. This

happens in a comparatively short time, on the order of �−1. After

this rapid decay has occurred, there is much slower return to all-

over equilibrium. During this latter stage, the behavior of the system

is dominated by the conservation laws. These laws very strongly

limit the ways in which the system can return to full equilibrium. For

example, if there is an excess of energy in one portion of the system,

this energy cannot just disappear; it must slowly spread itself out

over the entire system. This slow spreading out is the transport

process known as heat conduction. Therefore, in order to predict

even the existence of transport phenomena—like heat conduction

or sound propagation—it is absolutely essential that we include the
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effects of the conservation laws. The conservation laws must be

woven into the very fabric of our Green’s function approximation

scheme.

For example, we must be sure that any approximate calculation

leads to an 〈n̂ (r, t)〉U and
〈

ĵ (r, t)
〉

U
which satisfy the differential

number conservation law

∂

∂T
〈n̂ (r, t)〉U + ∇ ·

〈
ĵ (r, t)

〉
U

= 0

This conservation law becomes a restriction on g(U ). Using Eq.

(7.26), we can express this restriction as

[(
i

∂

∂t1

+ i
∂

∂t1′

)
g(1, 1′; U )

]
1′=1+

+ ∇ ·
[∇1 − ∇1′

2m
g(1, 1′; U )

]
1′=1+

= 0

(7.29)

where 1′ = 1+ means r1′ = r1, t1′ = t+
1 .

Fortunately, it is very simple to state criteria that will guarantee

that an approximation for g(U ) is conserving, i.e., it satisfies

the restrictions imposed by the number, momentum, and energy

conservation laws. We get an approximation for g(U ) by substituting

an approximation for g2(U ) into Eqs. (7.28a) and (7.28b). This

procedure really defines two different approximations for g(U ), one

given by Eq. (7.28a) and the other by Eq. (7.28b). We shall show

that the differential number conservation law is equivalent to the

requirement on the approximation: [criterion A] g(U ) satisfies both

Eqs. (7.28a) and (7.28b).

To derive the number conservation law from criterion A, it is only

necessary to subtract Eq. (7.28b) from Eq. (7.28a) to find[
i

∂

∂t1

+ i
∂

∂t1′
+ (∇1 + ∇1′ ) · ∇1 − ∇1′

2m
− U (1) + U

(
1′)] g

(
1, 1′; U

)
= ± i

∫
d2
[

V (1 − 2) − V
(

1′ − 2
)]

g2

(
12−, 1′2+; U

)
(7.30)

When we set 1′ = 1+ in Eq. (7.30), we find Eq. (7.29), so that the

approximation indeed satisfies the differential number conservation

law exactly.
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We shall not write differential momentum or energy conserva-

tion laws analogous to Eq. (7.30). Instead we shall only employ

the integrated forms of these conservation laws. For example, the

conservation law for the total momentum is

d
dt

〈
P̂ (t)

〉
U = −

∫
dr [∇U (r, t)] 〈n̂ (r, t)〉U (7.31)

This states that the time derivative of the total momentum is equal

to the total force acting on the system.

In order to have an approximation that conserves the total

momentum, we place one more restriction on the approximate

g2(U ) to be substituted into Eq. (7.28). This is: [criterion B]

g2

(
12; 1+2+; U

) = g2

(
21; 2+1+; U

)
.

In order to see that this additional restriction is sufficient to

obtain a momentum-conserving approximation, we construct the

time derivative of the total momentum in the system by applying
∇1−∇1′

2i to Eq. (7.27), setting 1′ = 1+ and integrating over all r1. In

this way, we findf

d
dt1

{∫
dr1

[∇1 − ∇1′

2i
ig<

(
1, 1′; U

)]
1′=1+

}

+
∫

dr1 ∇ ·
[∇1 − ∇1′

2i
∇1 − ∇1′

2m
g<
(

1, 1′; U
)]

1′=1

= ±
∫

dr1dr2

[∇r1
v (|r1 − r2|)

]
g2

(
r1t1, r2t1; r1t+

1 , r2t+
1 ; U

)
− i
∫

dr1 [∇U (r1)] g< (r1t1, r1t1; U ) (7.32)

The term proportional to a divergence on the left side of Eq. (7.32)

vanishes after integration over all r1. The term proportional to g2

vanishes in this equation because criterion B implies that this term

changes sign when the labels r1 and r2 are interchanged. Therefore,

this term must be zero. Equation (7.32) then becomes

i
d

dt1

{∫
dr1

[∇1 − ∇1′

2i
g<
(

1, 1′; U
)]

1′=1+

}

= −i
∫

dr1 g< (1, 1) ∇U (r1)

(7.33)

fThe typographic error in the argument of the function g2

(
r1t1, r2t1; r1t+

1 ; r2t+
1 ; U

)
in the original text is fixed.



February 8, 2018 10:55 PSP Book - 9in x 6in Annotations2QSM

Relation of g(U) to the Distribution Function f(p, R, T) 105

This is just the momentum conservation law that we wished to build

into our approximations.

The discussion of the energy conservation law is no more

complicated in principle, but it involves some algebraic complexities,

so we shall only outline it here. By using the same device as we

discussed in this section on equilibrium properties of Eq. (3.9), we

can express the energy density in terms of U and of differential

operators acting upon ψ̂
†
U (1′) ψ̂U (1). Then, with the aid of Eq.

(7.30), we can construct the time derivative of the total energy. After

a bit of algebraic manipulation, which employs only criteria A and B,

we find

d
dT

〈
Ĥ (t)

〉
U = −

∫
dr [∇U (r, t)] ·

〈
ĵ (r, t)

〉
U

(7.34)

which says that the time derivative of the total energy in the system

is equal to the total power fed into the system by the external

disturbance.

To sum up: Any approximation that satisfies criteria A and B

must automatically agree with the differential number conservation

law and the integral conservation laws for energy and momentum.

Therefore, we may expect that these conserving approximations for

g(U ) lead to fitting descriptions of transport phenomena.

7.4 Relation of g(U) to the Distribution Function
f(p, R, T)g

The Green’s function theory of transport is logically independent of

the Boltzmann equation approach. However, it will be interesting for

us to make contact between the two theories. We shall now indicate

the connection between the distribution function f (p, R, T ) and the

Green’s function g(U ).

We have already noted that f (p, R, T ) has no well-defined

quantum mechanical meaning. Therefore, the best that we can hope

to do is to define an f (in terms of g) that has many properties

analogous to those of the classical distribution function. To do this,

gNow, we introduce the coordinates R and T in terms of the Wigner distribution

function. It was not necessary to introduce these coordinates before this section.
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we write the real-time Green’s function, ±ig< (1, 1′; U ), in terms of

the variables

r = r1 − r1′ t = t1 − t1′

R = r1+r1′
2

T = t1+t1′
2

(7.35)

Then we define

g< (p, ω; R, T ; U ) =
∫

dr
∫ ∞

−∞
dt e−ip·r+iωt [±ig< (r, t; R, T ; U )]

(7.36)

This function may be thought of as the density of particles with

momentum p and energy ω at the space–time point R, T at least in

the limit in which g varies slowly in R and T . Hence, f (p, R, T ) can

be defined as

f (p, R, T ) =
∫

dω

2π
g< (p, ω; R, T ; U )

=
∫

dr e−ip·r
〈
ψ̂

†
U

(
R − r

2
, T
)

ψ̂U

(
R + r

2
, T
)〉

(7.37)

This definition is originally due to Wigner.

The function f has many similarities to the classical distribution

function. When it is integrated over all momenta, it gives the density

at R, T , that is,∫
dp

(2π)3
f (p, R, T ) =

〈
ψ̂

†
U (R, T ) ψ̂U (R, T )

〉
= 〈n̂ (R, T )〉U

When it is integrated over all R, it gives the number of particles with

momentum p at time T since∫
dR f (p, R, T ) =

∫
dr1dr1′ e−ip·r1 e−ip·r

〈
ψ̂

†
U (r1′ , T ) ψ̂U (r1, T )

〉
=
〈
ψ̂

†
U (p, T ) ψ̂U (p, T )

〉
Just as in the classical case, the particle current is〈

ĵ (R, T )
〉

U
=
∫

dp

(2π)3

p
m

f (p, R, T )

This identification of the distribution function f will enable us to

see the relationship between Green’s function transport equations

and the Boltzmann equation.
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Chapter 8

Hartree Approximation, Collision-Less
Boltzmann Equation, and Random Phase
Approximation

Our general procedure for describing transport phenomena will be

based on approximations in which g2(U ), which appears in the

equation of motion for g(U ), is expanded in terms of g(U ). The

simplest approximation of this nature is the Hartree approximation.

g2

(
12; 1′2′; U

) = g
(

1, 1′; U
)

g
(

2, 2′; U
)

(8.1)

The two particles added to the system are taken to propagate

completely independently of each other. They do, however, feel the

effects of the applied potential U as they propagate through the

medium, and hence their propagation is described by g(U ).

When Eq. (8.1) is substituted in the equations of motion, Eq.

(7.28), these become[
i

∂

∂t1

+ ∇2
1

2m
− Ueff (1)

]
g
(

1, 1′; U
) = δ

(
1 − 1′) (8.2a)[

−i
∂

∂t1′
+ ∇2

1′

2m
− Ueff

(
1′)] g

(
1, 1′; U

) = δ
(

1 − 1′) (8.2b)

where

U eff (R, T ) = U (R, T ) ± i
∫

dR′ v
(

R − R′) g<
(

R′T , R′T
)

(8.3)
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Equations (8.2) describe the propagation of free particles

through the effective potential field U eff (R, T ). This potential is the

sum of the applied potential U and the average potential produced

by all the particles in the system. It is the potential that would be felt

by a test charge added to the medium.

When the particles have internal degrees of freedom, such as

spin, or there is more than one kind of particle in the system, we

must sum the last term in Eq. (8.3) over the different degrees of

freedom. If the internal degree of freedom is spin, and the interaction

is spin-independent, then this summation just gives a factora 2S + 1,

so that Eq. (8.3) becomes

U eff (R, T ) = U (R, T ) ± i (2S + 1)

∫
dR′ v

(
R − R′) g<

(
R′T , R′T

)
(8.3a)

In general, we shall not explicitly write this summation in our

formulas.

Before we go any further, we shall show that this approximation

is conserving. From Eq. (8.1), we see directly that criterion B, the

symmetry of g2 (12, 1′2′; U ) under the interchange 1 ↔ 2, 1′ ↔ 2′

is trivially satisfied. Criterion A states that Eqs. (8.2a) and (8.2b) are

consistent with one another. To check this, we construct

� =
[

i
∂

∂t1

+ ∇2
1

2m
− Ueff (1)

] [
−i

∂

∂t1′
+ ∇2

1′

2m
− Ueff

(
1′)] g

(
1, 1′; U

)

in two ways; first, by multiplying Eq. (8.2a) by

[
−i

∂

∂t1′
+ ∇2

1′

2m
− Ueff

(
1′)]

and then multiplying Eq. (8.2b) by

[
i

∂

∂t1

+ ∇2
1

2m
− Ueff (1)

]

aThe variable S denotes the number of internal degrees of freedom. This statement

was not mentioned in the original text.
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These two operations imply, respectively, that

� =
[
−i

∂

∂t1′
+ ∇2

1′

2m
− Ueff

(
1′)] δ

(
1 − 1′)

and

� =
[

i
∂

∂t1

+ ∇2
1

2m
− Ueff (1)

]
δ
(

1 − 1′)
=
[
−i

∂

∂t1′
+ ∇2

1′

2m
− Ueff

(
1′)] δ

(
1 − 1′)

Therefore, we see that Eqs. (8.2a) and (8.2b) both lead to the

same differential equation for g. When supplemented by suitable

boundary conditions, they will both determine the same function g.

Thus, the Hartree approximation is conserving.

If we take the difference of the two mutually consistent equations

(8.2a) and (8.2b), we find

{
i
(

∂

∂t1

+ ∂

∂t1′

)
+ (∇1 + ∇1′ ) · ∇1 − ∇1′

2m
− [U eff (1) − U eff

(
1′)]}

× g
(

1, 1′; U
) = 0

We now set t1′ = t+
1′ = T ; thus

{
i
(

∂

∂t1

+ ∂

∂t1′

)
+ (∇1 + ∇1′ ) · ∇1 − ∇1′

2m

− [U eff (r1, T ) − U eff (r1′ , T )]

}
× g< (r1T , r1′ T ; U ) = 0

(8.4)

In the limit in which U eff (R, T ) varies slowly in space, Eq. (8.4)

is equivalent to the collision-less Boltzmann equation. In order

to show the relationship between the Green’s function theory of

transport and the Boltzmann equation approach, and to gain a

deeper insight into the meaning of both, we shall now derive the

collisions Boltzmann equation from Eq. (8.4).
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8.1 Collision-Less Boltzmann Equation

When Eq. (8.4) is expressed in terms of the variables r = r1 −r1′ and

R = 1
2

(r1 − r1′ ), it becomesb

±
{

∂

∂T
+ ∇R · ∇r

im
− 1

i

[
U eff

(
R + r

2
, T
)

− U eff

(
R − r

2
, T
)]}

×
∫

dp′

(2π)3
eip′ ·r f

(
p′, R, T

) = 0

(8.5)

where f , defined by Eq. (7.37), is the quantum analogue of the

classical one-particle distribution function. We multiply Eq. (8.5) by

e−ip·r and integrate over all r. Then Eq. (8.5) becomes(
∂

∂T
+ p · ∇R

m

)
f (p, R, T ) = 1

i

∫
dr
∫

dp′

(2π)3
ei(p′−p)·r

×
[

U eff

(
R + r

2
, T
)
−U eff

(
R − r

2
, T
)]

f (p′, R, T )

(8.6)

So far this equation is an exact consequence of the Hartree

approximation (8.1). Now let us suppose that Ueff (R, T ) varies

slowly in R. In the integrand above, we may, therefore, expand

U eff

(
R ± r

2
, T
)

as

U eff

(
R ± r

2
, T
)

= U eff (R, T ) ±
( r

2

)
· ∇RU eff (R, T )

so that(
∂

∂T
+ p · ∇R

m

)
f (p, R, T ) = ∇RU eff (R, T ) ·

∫
dr′
∫

dp′

(2π)3

× f
(

p′, R, T
) [−∇p′ ei(p′−p)·r

]
On integrating by parts, we find precisely the collisions Boltzmann

equation[
∂

∂T
+ p

m
· ∇R − ∇RU eff (R, T ) · ∇p

]
f (p, R, T ) = 0 (8.7)

where, in terms of f ,

U eff (R, T ) = U (R, T ) +
∫

dR′ v
(

R − R′) ∫ dp′

(2π)3
f
(

p′, R′, T
)

(8.8)

bWe also need the new time variables t = t1 − t1′ and T = 1
2

(t1 + t1′ ) for the

completion. This statement was omitted in the original text.
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8.2 Linearization of the Hartree Approximation:
The Random Phase Approximation

We may solve Eq. (8.4), or equivalently Eq. (8.6), exactly in the limit

in which the potential U (R, T ) is small.

We consider only disturbances that vanishes as T → −∞. The

boundary condition on Eq. (8.6) is an initial condition which states

that at T = −∞, the system is in equilibrium, i.e., that f (p, R, T )

is given by the equilibrium value of
∫ dω

2π
G< ( p, ω), evaluated in the

Hartree approximation. Thus,

lim
T →−∞

f (p, R, T ) = 1

eβ(E ( p)−μ) ± 1
= f (E ( p)) (8.9)

where

E ( p) = p2

2m
+ n

∫
dr v(r)

From the definition Eq. (7.25) of g<(U ), we see that f (p, R, T )

depends on the values of U (R′, T ′) only for times T ′ earlier than

time T . We may, therefore, write, to first order in U , that

f (p, R, T ) = f (E ( p)) + δ f (p, R, T )

where

δ f (p, R, T ) =
∫ T

−∞
dT ′

∫
dR′ δ f

δU

(
R − R′, T − T ′)U

(
R′, T ′)

(8.10)

This equation defines the linear response function, δ f
δU , in the real

time domain. It is closely related, as we shall soon see, to the

functional derivative in the imaginary time domain, which was

defined in Chapter 6.

Owing to the smallness of U , we may write Eqs. (8.6) and (8.8) in

linearized form:[
∂

∂T
+ p · ∇R

m

]
δ f (p, R, T )

= 1

i

∫
dr

dp′

(2π)3
ei(p′−p)·r

[
δU eff

(
R + r

2
, T
)

− δU eff

(
R − r

2
, T
)]

(8.11a)
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and

δU eff (R, T ) = U (R, T ) +
∫

dR′ v
(

R − R′) ∫ dp′

(2π)3
δ f
(

p′, R, T
)

(8.11b)

The Hartree approximation, when linearized in the external field, is

known as the “random phase approximation.” Equation (8.11) is just

one of many equivalent statements of this approximation.

To solve these equations, we consider the case in which U (R, T )

is of the form

U (R, T ) = U (k, �) eik·r−i�T (8.12)

where � is a complex frequency such that �� > 0. Then U (R, T )

vanishes as T → −∞. We see from Eq. (8.10) that

δ f (p, R, T ) = eik·r−i�T δ f (p, k, T ) (8.13)

where

δ f (p, k, �) =
∫ 0

−∞
dT ′

∫
dR′e−i�T ′+ik·R′ δ f

δU

(
p, −R′, −T ′)U (k, �)

(8.14)

Equation (8.11) then becomes(
� − k · p

m

)
δ f (p, k, �) =

[
f
(

E
(

p − k
2

))
− f

(
E
(

p + k
2

))]

× δU eff (k, �) (8.15a)

where

δU eff (k, �) = U (k, �) + v (k)

∫
dp′

(2π)3
δ f
(

p′, k, �
)

(8.15b)

Here

v (k) =
∫

dr e−ik·r v(r)

We readily find

δ f (p, k, �) = f
(

E
(

p − k
2

))− f
(

E
(

p + k
2

))
� − k·p

m

δU eff (k, �)

(8.16a)
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and

δU eff (k, �) = U (k, �)

+ v(k)

∫
dp′

(2π)3

f
(

E
(

p′ − k
2

))− f
(

E
(

p′ + k
2

))
� − k·p′

m

× δU eff (k, �)

= U (k, �)

1 − v(k)
∫ dp′

(2π)3

f (E (p′− k
2 ))− f (E (p′+ k

2 ))
�− k·p′

m

(8.16b)

There are two quantities of physical interest that we can

determine from Eq. (8.16). The first is the change in the density

δn (k, �) =
∫

dp

(2π)3
δ f (p, k, �)

Let (
δn
δU

)
0

(k, �) =
∫

dp

(2π)3

f
(

E
(

p′ − k
2

))− f
(

E
(

p′ + k
2

))
� − k·p′

m
(8.17)

This is the density response of a system of free particles, with single-

particle energies E ( p), to applied field. Then δn is given by

δn (k, �) =
(

δn
δU

)
0

(k, �)

1 − v (k)
(

δn
δU

)
0

(k, �)
U (k, �) (8.18)

The other function of direct interest is the dynamic dielectric

response function K . This function, defined by

δUeff (R, T ) =
∫ T

−∞
dT ′

∫
dR′ K

(
R − R′, T − T ′)U

(
R′, T ′)

(8.19a)

or

K
(

R − R′, T − T ′) = δU eff (R, T )

δU (R′, T ′)
(8.19b)

gives the change in the effective potential when one changes the

externally applied potential. It is a generalization of the ordinary

(inverse) dielectric constant to the case in which the external

potential depends on space and time. When U (R′, T ′) is one of the

form (8.12), it follows that

δUeff (R, T ) = eik·R−i�T K (k, �) U (k, �)
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where

K (k, �) =
∫ 0

−∞
dT ′

∫
dR′ eik·R′−i�T ′

K
(−R′, −T ′)

In the � = 0, k → 0 limit, K−1 (k, �) becomes the ordinary static

dielectric constant ε. It is clear from Eq. (8.16b) that in the random

phase approximation

K (k, �) = 1

1 − v (k)
(

δn
δU

)
0

(k, �)
(8.20)

8.3 Coulomb Interaction

A particularly important application of the random phase approxi-

mation is to a system of charged particles. The interaction is through

the Coulomb potentialc

v (R) = e2

R
v (k) = 4πe2

k2
(8.21)

If a system contains two kinds of oppositely charged particles,

say electrons and ions, and the ions are much heavier than the

electrons, then to a first approximation, we can think of the ions

as producing a fixed uniform positive background potential, and

consider only the dynamics of electrons. The positive background

is a time-independent potential added to U eff, whose only purpose is

to guarantee overall electrical neutrality of the system.

In this case, −e−1U is the scalar potential for an externally

applied electric field, and −e−1U eff is the scalar potential for the

total electric field seen by the particles—the external field plus

the average field produced by the electrons plus the uniform

background:

U eff (R, T ) = U (R, T )+
∫

dR′ e2

|R − R′|
(〈

n̂
(

R′, T
)〉

U − n
)

(8.22)

n, representing the background, is the average density of particles.

cInstead of “coulomb” in the original text, we will use “Coulomb,” which starts with

the capital C, because it is the name of a person.



February 8, 2018 10:55 PSP Book - 9in x 6in Annotations2QSM

Coulomb Interaction 115

The random phase approximation is useful for calculating the

dielectric response function of the system. From Eq. (8.17), we have

(
δn
δU

)
0

(k, �) =
∫

dp

(2π)3

f
(

(p− k
2 )

2

2m

)
− f

(
(p+ k

2 )
2

2m

)
� − k·p′

m

(8.23)

Let us consider first the limit in which the disturbance varies so

slowly in space that
(

k·p
m

)2

� �2 for all momenta p that are

appreciably represented in the system. Then,

1

� − k·p
m

≈ 1

�

[
1 + k · p

m�
+
(

k · p
m�

)2

+
(

k · p
m�

)3

+ · · ·
]

By symmetry, the terms even in p here do not contribute to the

integral in Eq. (8.23). Thus

(
δn
δU

)
0

(k, �) = 1

�2

∫
dp

(2π)3

[
f

((
p − k

2

)2

2m

)
− f

((
p + k

2

)2

2m

)]

×

⎡
⎢⎣k · p

m
+
(

k·p
m

)3

�2

⎤
⎥⎦

Shifting the origin of the p integrations and keeping only terms up to

order k4, we find

(
δn
δU

)
0

(k, �) = k2

m�2

∫
dp

(2π)3
f
(

p2

2m

)[
1 + 3

(
k · p
m�

)2
]

= nk2

m�2

[
1 + k2

�2

〈
v2
〉]

(8.24)

where

〈
v2
〉 = 1

n

∫
dp

(2π)3
f
(

p2

2m

)
p2

m2
(8.25)

In the classical limit

〈
v2
〉 = 3

mβ
(8.26a)



February 8, 2018 10:55 PSP Book - 9in x 6in Annotations2QSM

116 Random Phase Approximation

and for zero temperature fermions

〈
v2
〉 =

(
3

5

)( pF

m

)2

(8.26b)

where pF = (2mμ)1/2 is the Fermi momentum.

Upon substituting Eq. (8.24) into Eq. (8.20) for the dielectric

function, we find

K (k, �) = 1

1 − 4πe2

k2
nk2

m�2

(
1 + k2

�2

〈
v2
〉)

= �2

�2 − 4πne2

m − 4πne2

m�2

〈
v2
〉

k2
(8.27)

We notice at once that there are poles in this response function at

�2 =
(

4πne2

m

)
+ 〈v2

〉
k2 = ω2

p + 〈v2
〉

k2 (8.28)

Exactly as a pole in the one-particle Green’s function G(z) indicated

a single-particle excited state, so does a pole in K indicate a

possible excitation, or resonant response, of the system. This

resonance occurs also in δn (k, �), as we see from Eq. (8.18).

It, therefore, corresponds to a possible density oscillation of the

system with frequency
(
ω2

p + 〈v2
〉

k2
)1/2

. This resonance is called

a plasma oscillation, and the frequency ωp is called the plasma

frequency. Plasma oscillations have been observed experimentally in

systems as diverse as the upper atmosphere and metals. The upper

atmosphere is partially ionized; a metal, to the first approximation,

can be described as an electron gas.

We may see the physical significance of the plasma oscillation

quite clearly if we examine the density change, δn (R, T ), caused by

an external field U (R) = eik·RU k, which is switched on at time T0

and switched off at a later time T1, i.e.,

U (R, T ) =
{

eik·RU k, T0 < T < T1

0, otherwise

This U may be written in terms of its Fourier transform as

U (R, T ) = eik·RU k

∫ ∞

−∞

d�

2π i
e−i�T

(
ei�T1 − ei�T0

�

)
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Hence, U may be regarded as a superposition of potentials of the

form U (R, �) = Uk
ei�T1 −ei�T0

i� . Thus, δn (R, T ) is found from Eq.

(8.18) by the formula

δn (R, T )

= eik·RU k

∫ ∞

−∞

d�

2π i
e−i�(T −T1) − e−i�(T −T0)

�

(
δn
δU

)
0

(k, �)

1 −
(

4πe2

k2

) (
δn
δU

)
0

(k, �)

Using
(

δn
δU

)
0

from Eq. (8.24), we find

δn (R, T ) = eik·RU k

∫
d�

2π i
nk2

m�

�2 + k2
〈

v2
〉

�4 − �2ω2
p − ω2

pk2
〈

v2
〉

×
(

e−i�(T −T1) − e−i�(T −T0)

�

)

= eik·RU k

∫
d�

2π i

nk2

m�

�2 − ω2
p − k2

〈
v2
〉

×
(

e−i�(T −T1) − e−i�(T −T0)

�

)
since to order k2, we may make the replacement

�4 − �2ω2
p − ω2

pk2
〈

v2
〉→ (

�2 − ω2
p − k2

〈
v2
〉) (

�2 + k2
〈

v2
〉)

The integrand has plasma oscillation poles at

� = ± (ω2
p + k2

〈
v2
〉)1/2

and hence the integral will be well defined only when we specify

the integration contour near these poles. The contour is determined

from the fact that the response to the external potential is causal, i.e.,

δn (R, T ) = 0 if T is earlier than T0. This implies that the contour

must be chosen to pass above the poles, since when T < T0, we

may close the path of integration in the upper-half � plane and the

integral vanishes.

When T > T1, we may close the integration contour in the lower-

half � plane and find, from the sum of the residues,

δn (R, T ) = eik·RU k
nk2

m�2
p (k)

× {cos
[
�p (k) (T − T0)

]− cos
[
�p (k) (T − T1)

]}
(8.29)
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where

�p (k) = + (ω2
p + k2

〈
v2
〉)2

It is clear from Eq. (8.29) that the effect of the external potential is

to set the density in oscillation with frequency �p (k). The spatial

dependence is the same as the spatial dependence of the external

field.

In a zero-temperature fermion system, the plasma oscillations

are undamped. However, a more careful calculation of Eq. (8.23) at

finite temperature would show that the plasma oscillations decay in

time.

From the evaluation (8.27) of the dielectric response function,

we see that in the limit of very high frequencies, K ≈ 1; therefore,

the total field is almost exactly the same as the applied field. This

is because at very high frequencies, the particles in the system

hardly have time to move in response to the applied field. The first

correction to this result is

K (k, �) = 1 + ω2
p

�2
(8.30)

On the other hand, when the external field is very slowly varying,

the particles have time to respond, and they move to as to practically

cancel the applied field. We may see this very clearly in the limit in

which the frequency goes to zero, and the wavenumber is small but

nonzero. Then, from Eq. (8.27)

(
δn
δU

)
0

(k, 0) = −
∫

dp

(2π)3

f
(

(p− k
2 )

2

2m

)
− f

(
(p+ k

2 )
2

2m

)
k·p′

m

=
∫

dp

(2π)3

k·p
m

∂

∂
(

p2

2m

) f
(

p2

2m

)
k·p
m

= −
∫

dp

(2π)3

∂

∂μ
f
(

p2

2m

)

= −
(

∂n
∂μ

)
β

(8.31)

Hence

K (k, 0) = k2

k2 + rD
−2

(8.32)
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where the Debye shielding distance rD is given by

rD
−2 = 4πe2

(
∂n
∂μ

)
β

(8.33)

In the classical limit,
(

∂n
∂μ

)
β

= nβ , so

r2
D = 1

4πe2nβ
(8.34)

For a zero-temperature fermion system, ∂n
∂μ

= 3n
mv2

F

, where vF is the

velocity of particles at the edge of the Fermi sea.d Thus,

r2
D = π�a0

4mvF

(8.35)

where a0 is the Bohr radius, �

me2 .

The particles in the system, therefore, move in such a way as to

reduce the total field by the factor k2/
(

k2 + rD
−2
)

. In particular, if

the external field is a static Coulomb potential,

U (R, T ) = C
|R| U (k, �) = 2πδ (�)

4πC
k2

then in the long-wavelength limit,

U eff (k, �) = 4πC
k2 + rD

−2
2πδ (�)

The long-ranged applied field is shielded by the particles in the

system, and the effective field is short-ranged.

In the classical limit, Eq. (8.32) is valid for all wavelengths, so that

U eff (R, T ) = C
e−R/rD

R
(8.36)

Thus, the total field produced by a point charge drops off with

exponential rapidity, with a range equal to the shielding radius rD.

This screening effect is a very fundamental property of a Coulomb

gas.

dWe note that vF, which was written as vf in the original text, is nothing more than

the Fermi velocity.
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8.4 Low-Temperature Fermion System and Zero
Sound

In a low-temperature, highly degenerate fermion system, the

evaluation of
(

δn
δU

)
0

in Eq. (8.17) is particularly simple. In the long-

wavelength limit, as βμ → ∞,

f
(

E
(

p − k
2

))
− f

(
E
(

p + k
2

))

= −k · p
m

∂

∂
(

p2

2m

) 1

eβ
(

p2

2m +nv−μ
)

+ 1

= k · p
m

δ

(
p2

2m
+ nv − μ

)
Therefore, Eq. (8.17) becomes(

δn
δU

)
0

(k, �) = 1

4π

∫ ∞

0

p2dp
∫ 1

−1

dz
kpz
m

� − kpz
m

δ

(
p2

2m
− p2

F

2m

)

where pF, the Fermi momentum, is defined by

p2
F

2m
= μ − n

∫
dr v(r)

and z is the direction cosine between k and p, then(
δn
δU

)
0

(k, �) = ρE

∫ 1

−1

dz
2

kpFz
m

� − kpFz
m

(8.37)

where ρE = mpF

2π2 is the density of energy states at the top of the Fermi

sea; i.e., dp
(2π)3 = ρE d E dz

2
.

The inverse of the response function K is thus given by

K−1 (k, �) = 1 + v(k)ρE

(
1 + m�

2kpF

∫ kpF
m

− kpF
m

dx
x − �

)

Let � = ω + iε, where ω be a real positive frequency and ε be an

infinitesimal positive number. Then we find explicitly,

K−1 (k, �) = 1 + v(k)ρE

×
{

1 + mω

2kpF

[
ln

∣∣∣∣∣
kpF

m − ω
kpF

m + ω

∣∣∣∣∣+ π iη+

(
kpF

m
− ω

)]}

(8.38)
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where η+ (x) = 1 if x is positive, and 0 otherwise. If the interaction

is sufficiently weak, so that the dimensionless parameter v(k)ρE is

much less than unity, then K will be very close to unity except when

the logarithm is very large, and this happens when ω ≈ kpF

m . In this

case

K−1 (k, ω + iε) = 1 + v(k)ρE

2

×
{

1 + log
1

2

∣∣∣∣1 − mω

kpF

∣∣∣∣+ π iη+

(
kpF

m
− ω

)}

(8.39)

When the interaction is attractive, v(k) < 0, a very special

condensation occurs in a low-temperature fermion system—the

transition to the superconducting state, as described by Bardeen,

Cooper, and Schrieffer. This condensation leads to new physical

effects that completely invalidate the Hartree approximation. In Eq.

(8.39), all we see is that K becomes very small in the neighborhood

of ω = kpF

m , indicating that a disturbance with this frequency and

wavenumber would be screened out.

On the other hand, when the interaction is repulsive, v(k) is

positive, and K has the form indicated in Fig. 8.1.e (We have drawn

the v < 0 case in dashed lines for comparison.) Notice the sharp

resonance at

ω = kpF

m

{
1 + 2 exp

[
−
(

2 + 2vρE

vρE

)]}

This corresponds to a resonant phenomenon in the system, which is

called zero sound. It is characterized by the sound velocity

C0 ≈ pF

m
= vF (8.40)

An analogue of zero sound is observed in the giant dipole resonance

of nuclei.

It is interesting to compare the phenomenon of zero sound with

ordinary sound in a highly degenerate fermion system. The relation

C 2 = 1
m

(
∂ P
∂n

)
S implies that C = vF/

√
3. We see that the dispersion

eThe figure differs from the original one significantly. The figure has been tried to

be reproduced from Eq. (8.38), but the low-frequency region results are completely

different from the original one.
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v(k) > 0

v(k) < 0
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mw /kpF

ℜ
K

(w
)

Figure 8.1 �K (ω) for a weak repulsive interaction. The dashed line is

�K (ω) for a weak attractive interaction.

relation for zero sound, ω = vFk, is different from that for ordinary

sound, ω =
(

vF/
√

3
)

k. For ordinary sound, the system is in local

thermodynamic equilibrium, so that

δ f (p, k, �) = [p · δv (k, �) − δμ (k, �)]
∂

∂
(

p2

2m

) f (E ( p))

(8.41a)

(At low temperatures, δβ

β
is negligible in a sound wave.) On the other

hand, Eq. (8.16a) implies that for zero sound

δ f (p, k, �) =
k·p
m

k·p
m − �

∂

∂
(

p2

2m

) f (E ( p)) (8.41b)

This is clearly not a form for a local equilibrium phenomenon.

Ordinary sound is just an oscillating translation and an oscillating

expansion of the Fermi surface, but its shape remains spherical.

Zero sound is a complex oscillation of the surface of the Fermi
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sphere. Atkinsf describes this oscillation as follows: “At a particular

instant the Fermi surface is considerably elongated in the forward

direction of propagation and slightly shortened in the backward

direction (like an egg), but half a cycle later it is slightly elongated in

the backward direction and considerably shortened in the forward

direction, the amplitude of oscillation being greater at the forward

pole than at the backward pole.”

Finally, the change in density for zero sound is

δn (k, �) = ρE v2
F k2

∫ 1

−1

dz
2

z2

�2 − v2
F k2z2

δU eff (k, �)

whereas, in ordinary sound it is

δn (k, �) = ρE C 2k2

�2 − C 2k2
U eff (k, �)

Zero sound is certainly a more complex phenomena.

Ordinary sound was derived from a better Boltzmann equation

than was zero sound—a Boltzmann equation that included not only

the effect of the average fields, but also the effect of collisions. It

was just the collision terms that determined that the distribution

function in the low-frequency, low-wavenumber limit be a local

equilibrium one. In fact, when we examine this problem more

carefully, we find that the quasi-equilibrium result must hold

whenever the disturbance is so slowly varying that even the longest-

lived single-particle excited states have ample time to decay. Since

these states are at the edge of the Fermi sea, the criterion for the

correctness of the ordinary sound solution is

� � � ( pF, μ)
k · p

m
� � ( pF, μ) (8.42)

In the opposite limit, the fields are oscillating too rapidly for

the collisions to exert a damping effect. Therefore, the zero sound

calculation, which neglected collisions, may be expected to be valid

in the limit of high-frequency, short-wavelength disturbances:

� � � ( pF, μ)
k · p

m
� � ( pF, μ) (8.43)

f(Original) ‡K. R. Atkins, “Liquid Helium,” Cambridge University Press, New York,

1959, p. 249.
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At zero temperature, the single-particle excited states at the edge

of the Fermi sea are infinitely long lived; � ( p, μ) = 0. Thus, the

domain of existence of ordinary sound essentially disappears, but

one can have zero sound at very low frequencies. In particular, nuclei

in their ground states are zero-temperature system; therefore, they

may be expected to exhibit an analogue of zero sound.

8.5 Breakdown of the Random Phase
Approximation

The Hartree approximation and the random phase approximation

do not always lead to sensible results. In particular, the pressure

derived from the Hartree approximation does not always obey the

basic statistical mechanical inequalityg(
∂ P
∂n

)
β

≥ 0 (8.44)

We recall that the classical limit of the Hartree approximation gives

P =
(

1

2

)
n2v (k = 0) + β−1n

and, therefore, (
∂ P
∂n

)
β

= nv(0) + β−1 (8.45)

g(Original) ‡To derive this inequality we write(
∂ P
∂n

)
β

=
(

∂ P
∂μ

)
β

/(
∂n
∂μ

)
β

Now (
∂ P
∂μ

)
β

= 1

β�

∂

∂μ
log � = n ≥ 0 (� = volume of system) (8.44a)

and

(
∂n
∂μ

)
β

= 1

�

∂

∂μ

tr
[

e−β(Ĥ −μN̂) N̂
]

tre−β(Ĥ −μN̂)

= β

�

〈(
N̂ − 〈

N̂
〉)2

〉 (8.44b)

so that
(

∂ P
∂n

)
β

is the ratio of two nonnegative quantities.
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Suppose that the interaction is attractive, so that v(0) is negative.

Thus, if we keep n fixed, we can make
(

∂ P
∂n

)
β

negative by choosing

β−1 = kBT ≤ −nv(0)

Thus, for temperatures too low, the Hartree approximation violates(
∂ P
∂n

)
β

≥ 0

As the temperature is lowered and
(

∂ P
∂n

)
β

= n
/(

∂n
∂μ

)
β

ap-

proaches zero, it is clear that
〈(

N̂ − 〈N̂
〉)2
〉

becomes arbitrarily

large. Such a tremendous fluctuation in the number of particles can

be a signal that the system is about to undergo a phase transition.

This thermodynamic instability in the Hartree approximation is

reflected as a dynamic instability in the response of the system to

external fields, as calculated in the random phase approximation. To

see this, we calculate K in the classical and long-wavelength limit.

In this limit, Eq. (8.17) becomes(
∂n
∂U

)
0

(k, �)

= −
∫

dp

(2π)3

k·p
m

� − k·p
m

∂

∂
(

p2

2m

) exp

[
−β

(
p2

2m
+ nv(0) − μ

)]

= β

∫
dp

(2π)3

k·p
m − � + �

� − k·p
m

exp

[
−β

(
p2

2m
+ nv(0) − μ

)]

= −βn + β�eβ(μ−nv(0)) 1

4π

∫ 1

−1

dz
∫ ∞

0

dp
p2e−β

(
p2

2m

)

� − kpz
m

Now let � be very small and in the upper half plane. Then to lowest

order in �, we may replace the � in the denominator of the integral

by iε. Then � integral becomes∫ 1

−1

dz
1

iε − kpz
m

= −π im
kp

in the ε → 0 limit. Thus,(
δn
δU

)
0

(k, �) = −βn

(
1 + i

�

k

√
βm
2

)
(8.46)
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We see then that

K (k, �) =
[

1 + βnv(k) − i
�

k

√
βm
2

βv(k)

]−1

(8.47)

has a pole at

� = �c = ik

√
2

βm
β−1 + nv(k)

nv(k)
(8.48)

As long as �c is in the lower half-plane, there is no difficulty, since we

have assumed � to be in the upper half-plane in deriving the form

(8.47) for K . However, when

β−1 + nv(k)

nv(k)
≥ 0 (8.49)

the pole is in the upper half-plane. To produce such a pole with an

attractive interaction, v(k) < 0, we need only increase β , i.e., lower

the temperature until 1 + βnv(k) is negative. If v(0) ≥ v(k), the

temperature at which poles in the upper half-plane begin to appear

in K is the same temperature at which
(

∂ P
∂n

)
β

becomes negative.

It is very easy to see how a pole in K in the upper half-plane

represents a dynamic instability. Consider, for example, an external

disturbance of the form

U (R, T ) =
{

eik·R+ζ T U k, T < 0

0, T > 0

where ζ > −i�c. This U may be written in terms of its Fourier

transform as

U (R, T ) = eik·R+ζ T U k

∫ ∞

−∞

dω

2π i
e−iωT

ω − iε

Then the density fluctuations induced by this U are given by

δn (R, T ) = eik·RU k

∫ T

−∞
dT ′ δn

δU

(
k, T − T ′) eζ T ′

∫ ∞

−∞

dω

2π i
e−iωT ′

ω − iε

= eik·RU k

∫ ∞

−∞

dω

2π i
e−i(ω+iζ )T ′

ω − iε

∫ 0

−∞
dT ′ e−i(ω+iζ )T ′ δn

δU

(
k, −T ′)

= eik·RU k

∫ ∞+iζ

−∞+iζ

d�

2π i
e−i�T

� − i (ζ + ε)

δn
δU

(k, �)

= eik·RU k

∫ ∞+iζ

−∞+iζ

d�

2π i
e−i�T

� − i (ζ + ε)

(
δn
δU

)
0

(k, �) K (k, �)
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Suppose that K has the pole in the upper half-plane at � = �c, but

is otherwise analytic in the upper half-plane. Then, since ζ > −i�c,

we can write the � integral as a loop around the pole and an integral

from −∞ to ∞ just above the real axis. The contribution to δn from

the pole is, therefore,

eik·Re−i�c T (−2π i) (residue at �c) .

This term increases exponentially in time, which would seem

to indicate that the potential U has excited an unstable density

fluctuation. It really implies that the random phase approximation

is unable to describe the system (except for very short time), and

that there are physical processes occurring in the system that

call for a better mathematical approximation. The appearance of

the pole in the upper half-plane has been suggested as a way of

seeing dynamically that the collection of particles with attractive

interactions has undergone a transition from a gas to liquid.h

Later we shall see a similar instability occurring in fermion

systems with an attractive short-range interaction. The onset of this

instability represents the transition to a “superconducting” phase.

h(Original) ‡N. D. Mermin, doctoral thesis, Harvard University, 1961.
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Chapter 9

Relation between Real and Imaginary
Time Response Functions

In the last chapter, we used the Hartree approximation to describe

nonequilibrium phenomena. Unfortunately, we cannot directly write

more complicated approximations in the real-time domain because

we have no simple boundary conditions that can act as a guide in

determining g2(U ). Therefore, we have, at this stage, no complete

theory for determining the physical response function g(U ). [As

we saw in Chapter 4, simple physical arguments do not suffice to

determine approximations for the two-particle Green’s function; it

is necessary to use the boundary conditions to determine the range

of the time integrations in, e.g., Eqs. (5.6) and (5.7).]

In Chapter 6, we developed a theory for approximating  and,

therefore, G2(U ) in the imaginary time domain. Now we shall discuss

the relationship between g(U ), the physical response function, and

G(U ), the imaginary time response function, and show how the

theory already developed suffices to determine g(U ).

9.1 Linear Response

There is a particularly simple relation between the linear responses

of the density in the two time domains. In the imaginary time

Annotations to Quantum Statistical Mechanics
In-Gee Kim
Copyright c© 2018 Pan Stanford Publishing Pte. Ltd.
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domain,

δG (1, 1′; U )

δU (2)
= ± [G2

(
12, 1′2+)− G

(
1, 1′)G

(
2, 2+)]

Hence, the response of the density can be written

±i
δG
(

1, 1+; U
)

δU (2)
= i

[
G2

(
12, 1+2+)− G

(
1, 1+)G

(
2, 2+)]

= 1

i

[〈
T̂ (n̂ (1) n̂ (2))

〉− 〈n̂〉 〈n̂〉] (9.1)

In discussing this response, it is convenient to define

L(1 − 2) = ±i

[
δG
(

1, 1+; U
)

δU (2)

]

= 1

i

〈
T̂ [(n̂ (1) − 〈n̂〉) (n̂ (2) − 〈n̂〉)]

〉
(9.2)

We should notice that L(1 − 2) is quite analogous in structure to the

one-particle Green’s function. Just as G (1 − 1′) is composed of the

two analytic functions of time G> (1 − 1′) and G< (1 − 1′), so

L(1 − 2) =
{

L> (1 − 2) for t1 > t2

L< (1 − 2) for t1 < t2

(9.2a)

where

L> (1 − 2) =1

i
〈(n̂ (1) − 〈n̂〉) (n̂ (2) − 〈n̂〉)〉

L< (1 − 2) =1

i
〈(n̂ (2) − 〈n̂〉) (n̂ (1) − 〈n̂〉)〉

(9.2b)

As G satisfies the boundary condition,

G
(

1 − 1′)∣∣
t1=0

= ±eβμ G
(

1 − 1′)∣∣
t1=−iβ

so L(1 − 2) the boundary condition

L(1 − 2)|t1=0 = L(1 − 2)|t1=−iβ (9.3)

Therefore, L can also be written in terms of a Fourier series asa

L(1 − 2) =
∫

dk

(2π)3

∑
ν

L(k, �ν) eik·(r1−r2)−i�ν (t1−t2) (9.4a)

aThe function symbol L just after the summation symbol
∑

ν was omitted in the

original text.
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where

�ν = πν

−iβ
ν = even integer (9.4b)

In exactly the same way as we establish that the Fourier coefficient

for G (1 − 1′) is

G (p, z) =
∫

dω′

2π

A ( p, ω′)
z − ω′

=
∫

dω′

2π

G> ( p, ω′) ∓ G< ( p, ω′)
z − ω′

we find that

L(k, �) =
∫

dω′

2π

L> (k, ω′) − L< (k, ω′)
� − ω′ (9.5a)

where

L≷ (k, ω) =
∫

dr1

∫ ∞

−∞
dt1 e−ik·(r1−r2)+iω(t1−t2)i L≷ (r1 − r2, t1 − t2)

(9.5b)

The function L(k, �) is the quantity that is most directly

evaluated by a Green’s function analysis in the imaginary time

domain. The linear response of the density to a physical disturbance

can be easily expressed in terms of L(k, �). The physical response is

given by

〈n̂ (1)〉U =
〈
Û† (t1) n̂ (1) Û (t1)

〉
where

Û = T̂
{

exp

[
−i
∫ t1

−∞
d2 U (2) n̂ (2)

]}
and all the times are real. Hence, the linear response of 〈n̂ (1)〉U to

U is

δ
[±ig

(
1, 1+; U

)
)
] = δ 〈n̂ (1)〉

= 1

i

∫ t1

−∞
d2 〈[n̂ (1) , n̂ (2)]〉 U (2)

=
∫ t1

−∞
d2 [L> (1 − 2) − L< (1 − 2)) U (2)

(9.6)

These functions L> and L< are exactly the same analytic functions

that appear in the coefficient of Eq. (9.2) of the linear term in the
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expansion of G(U ). This is the fundamental connection between the

two linear responses.

If

U (R, T ) = U 0eik·R−i�T (9.7)

then

δ 〈n̂ (1)〉U =
(

δn
δU

)
(k, �) U (R, T )

where(
δn
δU

)
(k, �) =

∫ t1

−∞
dt2

∫
dr2 e−ik·(r1−r2)+i�(t1−t2)

× [L> (r1 − r2, t1 − t2) − L< (r1 − r2, t1 − t2)]

= 1

i

∫ t1

−∞

∫ ∞

−∞

dω′

2π

[
L>
(

k, ω′)− L<
(

k, ω′)] ei(�−ω′)(t1−t2)

=
∫

dω′

2π

L> (k, ω′) − L< (k, ω′)
� − ω′

However, we can recognize this last expression as just L(k, �), so

that (
δn
δU

)
(k, �) = L(k, �) (9.8)

Therefore, the Fourier coefficient function L(k, �) is exactly the

linear response of 〈n̂ (1)〉U to a disturbance with wavenumber k and

frequency � in the upper half-plane.

Let us determine this Fourier coefficient by using the Hartree

approximation in the complex time domain. We certainly expect

that this approximation has the same physical content as the

real-time Hartree approximation. Therefore, we anticipate that the

linear response L(k, �) computed from this approximation for G(U )

should be identical to the
(

δn
δU

)
(k, �) that we computed in the last

chapter by means of the random phase approximation.

In the imaginary time domain, the Hartree approximation is

G−1
(

1, 1′; U
) =

[
i

∂

∂t1

+ ∇2
1

2m
− U eff (1)

]
δ
(

1 − 1′)
=
[

i
∂

∂t1

+ ∇2
1

2m
− U (1)

∓i
∫ −iβ

0

d2 V (1 − 2) G< (2, 2; U )

]
δ
(

1 − 1′)
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We can compute

δG (1, 1′; U )

δU (2)
= −

∫ −iβ

0

d3

∫ −iβ

0

d3′ G (1, 3; U ) G
(

3, 1′; U
)

×δG−1 (3, 3′; U )

δU (2)

=
∫ −iβ

0

d3 G (1, 3; U ) G
(

3, 1′; U
) δU eff(3)

δU (2)

= G (1, 2; U ) G
(

2, 1′; U
)± i

∫ −iβ

0

d3

∫ −iβ

0

d4

×G (1, 3; U ) G
(

3, 1′; U
)

V (3 − 4)
δG
(

4, 4+; U
)

δU (2)

(9.9)

Therefore, in the Hartree approximation,

L(1 − 2) = ±i

[
δG
(

1, 1+; U
)

δU (2)

]
U =0

= ±iG (1 − 2) G (2 − 1) +
∫ −iβ

0

d3

∫ −iβ

0

d4

× [±iG (1 − 3) G (3 − 1)] V (3 − 4) L(4 − 2)

If we define

L0 (1 − 2) = ±iG (1 − 2) G (2 − 1) (9.10)

we can write this approximation as

L(1 − 2) = L0(1 − 2) +
∫ −iβ

0

d3

∫ −iβ

0

d4L0(1 − 3)V (3 − 4)L(4 − 2)

(9.11)

By employing the boundary conditions on G

G (1 − 2)|t1=0 = ±eβμ G (1 − 2)|t1=−iβ

G (1 − 2)|t2=0 = ±eβμ G (1 − 2)|t2=−iβ

we can see that L0 satisfies the same boundary condition (9.3) as

L. Thus, L0 may also be expanded in a Fourier series of the form

Eq. (9.4), with a Fourier coefficient L0 (k, �ν). From Eq. (9.10), it

follows that

L>
0 (1 − 2) = ±iG> (1 − 2) G< (2 − 1)

L<
0 (1 − 2) = ±iG< (1 − 2) G> (2 − 1)
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and hence

L≷0 (k, ω) =
∫

dp′

(2π)3

dω′

2π
G≷
(

p′ + k
2

, ω′ + ω

2

)
G≶
(

p′ − k
2

, ω′ − ω

2

)

so that

L>
0 (k, ω) −L<

0 (k, ω)

=
∫

dp′

(2π)3

dω′

2π
A
(

p′ + k
2

, ω′ + ω

2

)
A
(

p′ − k
2

, ω′ − ω

2

)

×
{[

1 ± f
(
ω′ + ω

2

)]
f
(
ω′ − ω

2

)

− f
(
ω′ + ω

2

) [
1 ± f

(
ω′ − ω

2

)]}
Because Eq. (9.11) is derived by differentiating the Hartree

approximation, the G’s that appear in Eq. (9.10) must be the Hartree

Green’s functions, and for these

A ( p, ω) =2πδ (ω − E ( p))

=2πδ

(
ω − p2

2m
− nv

)
Therefore, L>

0 − L<
0 takes the simple form

L>
0 (k, ω) − L<

0 (k, ω) =
∫

dp

(2π)3
2πδ

(
ω − E

(
p + k

2

)
+ E

(
p − k

2

))

×
[

f
(

E
(

p + k
2

))
− f

(
E
(

p − k
2

))]

It follows then that the Fourier coefficient L0 (k, �) is

L0 (k, �) =
∫

dω′

2π

L>
0 (k, ω′) − L<

0 (k, ω′)
� − ω′

=
∫

dk

(2π)3

f
(

E
(

p + k
2

))− f
(

E
(

p − k
2

))
� − k·p

m

(9.12)

If we compare Eq. (9.12) with Eq. (8.23), we see that

L0 (k, �) =
(

δn
δU

)
0

(k, �) (9.12a)

The latter function is the quantity that appears in the solution to the

real-time Hartree approximation.

Now it is trivial to solve Eq. (9.11). We multiply it by

e−ik·(r1−r2)+i�μ(t1−t2) and integrate over all r1 and all t1 between 0 and
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−iβ . In this way, we pick out the Fourier coefficients on both sides of

the equation and find

L(k, �ν) = L0 (k, �ν) [1 + v(k)L(k, �ν)]

and therefore

L(k, �) = L0 (k, �) [1 + v(k)L(k, �)]

Thus

L(k, �) = L0 (k, �)

1 − v(k)L0 (k, �)

or

L(k, �) =
(

δn
δU

)
0

(k, �)

1 − v(k)
(

δn
δU

)
0

(k, �)
(9.13)

We recognize this expression for L(k, �) as exactly that derived

for
(

δn
δU

)
(k, �) in the random phase approximation [cf. Eq. (8.18)].

Therefore, we see that
(

δn
δU

)
(k, �) can be determined equally well

from the imaginary time theory. One just has to solve for L(k, �),

using an approximation for G(U ), to find the physical response(
δn
δU

)
(k, �).

Unfortunately, this procedure for determining the physical

response from the imaginary time response is very difficult to

employ for approximations fancier than the Hartree approximation.

It is only for this approximation that we can solve exactly for

the response and hence obtain an exact solution for the Fourier

coefficient. In other situations, we cannot obtain an explicit form

for L(k, �) from the imaginary time Green’s function approximation,

and hence we cannot employ the simple analysis that we have

developed here.

9.2 Continuation of Imaginary Time Response to
Real Times

We should really like to have approximate equations of motion for

g(U ). However, these are hard to obtain directly, because g2(U )

satisfies a somewhat complicated boundary condition. Instead of

working with g2(U ) directly, we shall show how, g2(U ) in terms of

G2(U ), we obtain a theory of the physical response function.
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We begin this analysis by introducing an essentially trivial

generalization of G(U ) and G2(U ). These functions were originally

defined for pure imaginary times in the interval 0 < i t, i t′ < iβ .

However, there is nothing very special about the time zero. We could

just as well define Green’s functions in the interval [t0, t0 − iβ], i.e.,

0 < i (t − t0) < β (t0 real) (9.14)

For times in this interval, we write

G
(

1, 1′; U ; t0

) = 1

i

〈
T̂
[

Ŝψ̂ (1) ψ̂† (1′)
]〉

〈
T̂
[

Ŝ
]〉 (9.15a)

where

Ŝ = exp

[
−i
∫ t0−iβ

t0

d2 U (2)n̂(2)

]
(9.15b)

Here T̂ orders according to the size of i (t − t0); operators with

larger value of i (t − t0) appear on the left. When t0 = 0, the G (U ; t0)

defined by Eq. (9.15) reduces to the G(U ) discussed in Chapter 6.

The theory of G (U ; t0) is identical to the theory of G(U ). This

generalized response function satisfies the boundary condition

G
(

1, 1′; U , t0

)∣∣
t1=t0

= ±eβμ G
(

1, 1′; U , t0

)∣∣
t1=t0−iβ

instead of

G
(

1, 1′; U
)∣∣

t1=0
= ±eβμ G

(
1, 1′; U

)∣∣
t1=−iβ

Therefore, the only change that has to be made in the formulas

of Chapter 6 to make them apply to G (U ; t0) is to replace all

time integrals over the time interval [0, −iβ] by integrals over

[t0, t0 − iβ]. In particular, G (U ; t0) satisfies the equations of motion:b

[
i

∂

∂t1

+ ∇2
1

2m
− U (1)

]
G
(

1, 1′; U ; t0

)
+
∫ t0−iβ

t0

d1̄ 
(

1, 1̄; U ; t0

)
G
(

1̄, 1′; U ; t0

) = δ
(

1 − 1′) (9.16a)

bThe + symbol in front of the integral sign
∫

in Eq. (9.16a) in the original text was

omitted.
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and[
−i

∂

∂t1′
+ ∇2

1′

2m
− U (1)

]
G
(

1, 1′; U ; t0

)
−
∫ t0−iβ

t0

d1̄ G
(

1̄, 1̄; U ; t0

)

(

1̄, 1′; U ; t0

) = δ
(

1 − 1′) (9.16b)

We shall now establish a relationship between G (U ; t0) and g(U )

in order that we may convert Eq. (9.16) into equations of motion for

g(U ). To do this, we consider the case i (t1 − t0) < i (t1′ − t0). Then

G
(

1, 1′; U ; t0

) = G<
(

1, 1′; U ; t0

)
= ±1

i

〈
T̂
[

Ŝψ̂† (1′) ψ̂ (1)
]〉

〈
T̂
[

Ŝ
]〉

= ±
(

1

i

)〈
Û (t0, t0 − iβ)

[
Û† (t0, t1′ ) ψ̂† (1′) Û (t0, t1′ )

]
×
[
Û† (t0, t1) ψ̂ (1) Û (t0, t1)

]〉/〈
Û (t0, t0 − iβ)

〉
(9.17)

where

Û (t0, t1) = T̂
{

exp

[
−i
∫ t1

t0

d2 U (2)n̂(2)

]}
(9.17a)

For comparison, we write the physical response function, which

is defined for real times. For example,

g<
(

1, 1′; U
) = ±

(
1

i

)〈
ψ̂

†
U

(
1′) ψ̂U (1)

〉

= ±
(

1

i

)〈[
Û† (t1′ ) ψ̂† (1′) Û (t1′ )

] [
Û† (t1) ψ̂ (1) Û (t1)

]〉
(9.18)

where

Û (t1) = T̂
{

exp

[
−i
∫ t1

−∞
d2 U (2)n̂(2)

]}
(9.18a)

Let us consider the case in which U (1) is an analytic function of t1′

for 0 > �t1 > −β , which satisfies

lim
�t1→−∞

U (t1) = 0 (9.19)

For example, U (R, T ) might be U0eik·r−i�T where �� > 0. If

U (R, T ) is an analytic function of the time, then Û (t0, t1) and
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Û (t0) are analytic functions of their time variables in the sense that

every matrix element of each term in their power-series expansion

is analytic. If all sums converge uniformly, as we shall assume,

G< (1, 1′; U ; t0) and g< (1, 1′; U ) are then each analytic functions of

their time arguments. The analytic functions Û (t0, t1) and Û (t0) can

also be defined by

i
(

∂

∂t1

)
Û (t1) =

∫
dr1 n̂ (1) U (1) Û (1)

Û (−∞) = 1 (9.20)

and

i
(

∂

∂t1

)
Û (t0, t1) =

∫
dr1 n̂ (1) U (1) Û (t0, t1)

Û (t0, t0) = 1

Because of this analyticity, it follows that

lim
t0→−∞ Û (t0, t1) = Û (t0)

and, because of (9.19)

lim
t0→−∞ Û (t0, t0 − iβ) = 1

Therefore, the analytic functions G< (1, 1′; U ; t0) and g (1, 1′; U )

are connected by

lim
t0→−∞ G<

(
1, 1′; U ; t0

) = g<
(

1, 1′; U
)

(9.21a)

and, similarly,

lim
t0→−∞ G>

(
1, 1′; U ; t0

) = g>
(

1, 1′; U
)

(9.21b)

In order to have a simple confirmation of the result that we have

just obtained, let us compute ±iG< (1, 1′; U ; t0) and ±ig< (1, 1; U )

to first order in U . These are

±iG< (1, 1; U ; t0)

= 〈n̂〉 +
∫ t0−iβ

t0

d2

(
1

i

)〈
T̂ {[n̂(1) − 〈n̂〉] [n̂(2) − 〈n̂〉]}〉U (2)

= 〈n̂〉 +
∫ t1

t0

d2

(
1

i

)
〈[n̂(2) − 〈n̂〉] [n̂(1) − 〈n̂〉]〉 U (2)

−
∫ t1

t0−iβ
d2

(
1

i

)
〈[n̂(1) − 〈n̂〉] [n̂(2) − 〈n̂〉]〉 U (2)

= 〈n̂〉 +
∫ t1

t0

d2 L> (1 − 2) U (2) −
∫ t1

t0−iβ
d2 L< (1 − 2) U (2)

(9.22)
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Since L> and L< are analytic function of their time variable, when

U is also analytic, the right side of Eq. (9.22) is clearly an analytic

function of t1 and t0. If we take the limit t0 → −∞, Eq. (9.22)

becomes

lim
t0→−∞

[±iG< (1, 1; U ; t0)] = 〈n̂〉 +
∫ t1

−∞
d2 [L> (1 − 2) − L< (1 − 2)] U (2)

(9.22a)

This should be compared with Eq. (9.6), which indicates the physical

response is

〈n̂(1)〉U = ± ig< (1, 1; U )

= 〈n̂〉 +
∫ t1

−∞
d2 [L> (1 − 2) − L< (1 − 2)] U (2) (9.22b)

This is, of course, the same as Eq. (9.22a).

9.3 Equations of Motion in the Real-Time
Domain

We now describe how approximate equations of motion for G (U ; t0)

may be continued into equations of motion for the physical response

function g(U ).

Let us begin with the very simple example, the Hartree

approximation. In this approximation, Eq. (9.16a) is[
i

∂

∂t1

+ ∇2
1

2m
− Ueff (1; t0)

]
G
(

1, 1′; U ; t0

) = δ
(

1 − 1′) (9.23a)

where

U eff (R, T ; t0) = U (R, T ) ± i
∫

dR′ v
(

R − R′)G<
(

R′T ; R′T ; U ; t0

)
(9.23b)

We consider the case in which i (t1 − t0) < i (t1′ − t0). Then[
i

∂

∂t1

+ ∇2
1

2m
− U eff (1; t0)

]
G<
(

1, 1′; U ; t0

) = 0

Using the analyticity of U (R, T ), we take the limit t0 → −∞ to find

U eff (R, T ; −∞) = U (R, T ) ± i
∫

dR′ v
(

R − R′) g<
(

R′T ; R′T ; U
)

(9.24a)
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and [
i

∂

∂t1

+ ∇2
1

2m
− U eff (1; −∞)

]
g<
(

1, 1′; U
) = 0 (9.24b)

These equations hold for all complex values of t1 and t1′ such that

β > � (t1 − t1′ ) > 0. When they are specialized to the case of real

values of the time variables, they become just the familiar statement

of the real-time Hartree approximation.

Our original derivation of the Hartree approximation depended

in no way on the analytic properties of U (R, T ). In fact, the validity

of the equations for g(U ) that we shall derive does not depend on

the analyticity of U at all. The analytic continuation device is just

a convenient way of handling the boundary conditions on the real-

time response functions. It also gives a particularly simple way of

seeing the connection between the imaginary time G(U ) and the

physical response function g(U ).

This same continuation device can be applied in a much more

general discussion of the equations of motion for g(U ). The self-

energy  (1, 1′; U ; t0) can be split into two parts as


(

1, 1′; U ; t0

) = HF

(
1, 1′; U ; t0

)+ c

(
1, 1′; U ; t0

)
(9.25)

where the Hartree–Fock part of  is

HF

(
1, 1′; U ; t0

) = δ (t1 − t1′ )

{
± iδ (r1 − r1′ )

∫
dr2 v (r1 − r2)

×G< (r2t1; r2t1; U ; t0) + iv (r1 − r1′ ) G<
(

1, 1′; U ; t0

)}
(9.25a)

and the collisional part of  is composed of two analytic functions of

the time variables > and <:

c

(
1, 1′; U ; t0

) =
{

> (1, 1′; U ; t0) for i (t1 − t1′ ) > 0

< (1, 1′; U ; t0) for i (t1 − t1′ ) < 0
(9.25b)

For example, in the Born collision approximation

c

(
1, 1′; U ; t0

) = ±i 2

∫
dr2dr2′ v (r1 − r2) v (r1′ − r2′ )

× {G
(

1, 1′; U ; t0

)
G
(

2, 2′; U ; t0

)
G
(

2′, 2; U ; t0

)
− G

(
1, 2′; U ; t0

)
G
(

2, 1′; U ; t0

)
G
(

2′, 2; U ; t0

)}
t2=t1

t2′ =t1′

(9.26a)
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so that > and < are

≷ (1, 1′; U ; t0

)
= ±i 2

∫
dr2dr2′ v (r1 − r2) v (r1′ − r2′ )

×
{

G≷ (1, 1′; U ; t0

)
G≷ (2, 2′; U ; t0

)
G≶ (2′, 2; U ; t0

)
± G≷ (1, 2′; U ; t0

)
G≶ (2, 1′; U ; t0

)
G≶ (2′, 2; U ; t0

)}
t2=t1

t2′ =t1′

(9.26b)

Since G> and G< are analytic functions of their time variables, so is

≷.

For the sake of simplicity in writing, let us for the moment drop

the exchange term in HF, i.e., the term proportional to v (r1 − r1′ )

in Eq. (9.25a). Then Eq. (9.16a) becomes[
i

∂

∂t1

+ ∇2
1

2m
− U eff (1; t0)

]
G
(

1, 1′; U ; t0

)
= δ

(
1 − 1′)+

∫ t0−iβ

t0

d1̄ c

(
1, 1̄; U ; t0

)
G
(

1̄, 1′; U ; t0

)
For the case i (t1 − t0) < i (t1′ − t0), this gives[

i
∂

∂t1

+ ∇2
1

2m
− Ueff (1; t0)

]
G<
(

1, 1′; U ; t0

)
=
∫ t1

t0

d1̄ >
(

1, 1̄; U ; t0

)
G<
(

1̄, 1′; U ; t0

)
+
∫ t1′

t1

d1̄ <
(

1, 1̄; U ; t0

)
G<
(

1̄, 1′; U ; t0

)

+
∫ t0−iβ

t1′
d1̄ <

(
1, 1̄; U ; t0

)
G<
(

1̄, 1′; U ; t0

)
If we now take the limit t0 → −∞, we find that g<(U ) obeys[

i
∂

∂t1

+ ∇2
1

2m
− Ueff (1)

]
g<
(

1, 1′; U
)

=
∫ t1

−∞
d1̄
[
>
(

1, 1̄; U
)− <

(
1, 1̄; U

)]
g<
(

1̄, 1′; U
)

−
∫ t1′

−∞
d1̄ <

(
1, 1̄; U

) [
g>
(

1̄, 1′; U
)− g<

(
1̄, 1′; U

)]
(9.27a)
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where

U eff (1) = U eff (1; −∞)

≷ (1, 1′; U
) = ≷ (1, 1′; U ; −∞)

Applying the same arguments (9.16a) in the case i (t1 − t0) >

i (t1′ − t0), we findc[
i

∂

∂t1

+ ∇2
1

2m
− Ueff (1)

]
g>
(

1, 1′; U
)

=
∫ t1

−∞
d1̄
[
>
(

1, 1̄; U
)− <

(
1, 1̄; U

)]
g>
(

1̄, 1′; U
)

−
∫ t1′

−∞
d1̄ >

(
1, 1̄; U

) [
g>
(

1̄, 1′; U
)− g<

(
1̄, 1′; U

)]
(9.27b)

Similarly, Eq. (9.16b) implies[
−i

∂

∂t1′
+∇2

1′

2m
− U eff

(
1′)] g<

(
1, 1′; U

)
=
∫ t1

−∞
d1̄
[
g>
(

1, 1̄; U
)− g<

(
1, 1̄; U

)]
<
(

1̄, 1′; U
)

−
∫ t1′

−∞
d1̄ g<

(
1, 1̄; U

) [
>
(

1̄, 1′; U
)− <

(
1̄, 1′; U

)]
(9.28a)

and[
−i

∂

∂t1′
+∇2

1′

2m
− U eff

(
1′)] g>

(
1, 1′; U

)
=
∫ t1

−∞
d1̄
[
g>
(

1, 1̄; U
)− g<

(
1, 1̄; U

)]
>
(

1̄, 1′; U
)

−
∫ t1′

−∞
d1̄ g>

(
1, 1̄; U

) [
>
(

1̄, 1′; U
)− <

(
1̄, 1′; U

)]
(9.28b)

When > (U ; t0 = −∞) and < (U ; t0 = −∞) are expressed in

terms of g>(U ) and g<(U ), Eqs. (9.27) and (9.28) can be used to

determine the real-time response functions g>(U ) and g<(U ). For

cThe integration variable symbol d1̄ in Eqs. (9.27b) and (9.28a) was omitted in the

original text.
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example, the Born collision approximation for g(U ) is derived by

using Eq. (9.26b) to findd

≷ (1, 1′; U
)

≡ ≷ (1, 1′; U ; t0 = −∞)
= ±i 2

∫
dr2dr2′ v (r1 − r2) v (r1′ − r2′ )

×
[

g≷ (1, 1′; U
)

g≷ (2, 2′; U
)

g≶ (2′, 2; U
)

± g≷(1, 2′; U )g≷(2, 1′; U )g≷(2′, 2; U )
]

t2=t1′ , t2′ =t1′

(9.29)

Equations (9.27) and (9.28) are exact, except for the trivial

omission of the exchange term in HF. In Chapter 10, we shall

discuss how these equations may be used to describe transport.

In particular, we shall use the approximation (9.29) to derive a

generalization of the Boltzmann equation. We shall also use these

equations to discuss sound propagation in many-particle systems.

dThe typographic errors of the wrong parenthesis [· · · ] in the last line and of the

missing comma at the subscript in the original text are corrected.
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Chapter 10

Slowly Varying Disturbances and the
Boltzmann Equation

Equations (9.27)–(9.29) are, in general, exceedingly complicated.

Fortunately, they become much simpler in the limit in which

U (R, T ) varies slowly in space and time. This is exactly the situation

in which simple transport processes occur.

When U varies slowly, g> (1, 1′; U ) and g< (1, 1′; U ) are slowly

varying functions of the coordinates

R = r1 + r1′

2
T = t1 + t1′

2
(10.1a)

but sharply peak about zero values of

r = r1 − r1′ t = t1 − t1′ (10.1b)

The equilibrium Green’s functions are sharply peaked about r = 0

and t = 0, as can be seen, for example, from G<
0 (r, t) in the low-

density limit:

G<
0 (r, t) =

∫
dp

(2π)3
eβ

(
p2

2m −μ
)

−i
(

p2

2m

)
t+ip·r

= 1

i

(
m

2π (β + i t)

)3/2

exp

[
βμ − mr2 (β − i t)

2
(
β2 + t2

)
]

Annotations to Quantum Statistical Mechanics
In-Gee Kim
Copyright c© 2018 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4774-15-4 (Hardcover), 978-1-315-19659-6 (eBook)
www.panstanford.com

www.panstanford.com


February 8, 2018 10:55 PSP Book - 9in x 6in Annotations2QSM

146 Slowly Varying Disturbances

This function has a spatial range on the order of a thermal

wavelength, λth = �β

2m , and in time, it decreases with a t−3/2

dependence. Actually, if one includes a lifetime, then G< would

decay exponentially in time. We may expect then that external

disturbances with wavelengths much longer than the thermal

wavelength and frequencies much smaller than the single-particle

collision rates will not change this sharp r , t dependence of g.

It is, therefore, convenient to consider g≷ (1, 1′; U ) as functions

of the variables (10.1). We, therefore, write g≷ (1, 1′; U ) as

g≷ (r, t; R, T ). We recall that

g< (p, ω; R, T ) =
∫

drdt e−ip·r+iωt [±ig< (r, t; R, T )] (10.2a)

can be interpreted as the density of particles with momentum p and

energy ω at the space–time point R, T . Also

g> (p, ω; R, T ) =
∫

drdt e−ip·r+iωt ig> (r, t; R, T ) (10.2b)

is essentially the density of states available to a particle that is added

to the system at R, T with momentum p and energy ω.

10.1 Derivation of the Boltzmann Equation

We may derive an equation of motion for g< (p, ω; R, T ) by

subtracting Eq. (9.27a) from Eq. (9.28a). We find[
i

∂

∂t1

+ i
∂

∂t1′
+ ∇2

1

2m
− ∇2

1′

2m
− U eff (1) + U eff

(
1′)] g<

(
1, 1′; U

)
=
∫ t1

−∞
d1̄
[
>
(

1, 1̄; U
)− <

(
1, 1̄; U

)]
g<
(

1̄, 1′; U
)

+
∫ t1′

−∞
d1̄ g<

(
1, 1̄; U

) [
>
(

1̄, 1′; U
)− <

(
1̄, 1′; U

)]
−
∫ t1′

−∞
d1̄ <

(
1, 1̄; U

) [
g>
(

1̄, 1′; U
)− g<

(
1̄, 1′; U

)]
−
∫ t1

−∞
d1̄
[
g>
(

1, 1̄; U
)− g<

(
1, 1̄; U

)]
<
(

1̄, 1′; U
)

(10.3)
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We now rewrite Eq. (10.3) in terms of the variable r, t; R, T by

expressing the g’s that appear in this equation in terms of these

variables and also writing  asa

≷ (1, 1′; U
) = ≷ (r, t; R, T )

Then after this change of variables, the left side of Eq. (10.3)

becomes[
i

∂

∂T
+ ∇R · ∇r

m
− U eff

(
R + r

2
, T + t

2

)
+ U eff

(
R − r

2
, T − t

2

)]
×g< (r, t; R, T )

(10.3a)

Because g< (r, t; R, T ) is very sharply peaked about r = 0, t = 0,

we can consider r and t to be small in Eq. (10.3a). Then we can

expand the difference of Ueff’s in the powers of r and t, retaining only

the lowest-order terms. In this way, we see that Eq. (10.3a) may be

approximately replaced by{
i

∂

∂T
+ ∇R · ∇r

m
−
[(

r · ∇R + t
∂

∂T

)
U eff (R, T )

]}
g< (r, t; R, T )

(10.4a)

In terms of the variables r, t; R, T , the first term on the right side

of Eq. (10.3) may be written asb∫ t

−∞
dt̄
∫

dr̄
[
>

(
r − r̄, t − t̄; R + r̄

2
, T + t̄

2

)

−<

(
r − r̄, t − t̄; R + r̄

2
, T + t̄

2

)]

× g<

(
r̄, t̄; R −

(
r − r̄

2

)
, T −

(
t − t̄

2

)) (10.3b)

where we have made the change of integration variables

r̄ = r̄1 − r1′ = r̄1 −
(

R − r
2

)
t̄ = t̄1 − t1′ = t̄1 −

(
T − t

2

)

aThe typographic error, . . . (10.3) terms of the variable . . . , of this sentence in the

original text is corrected to . . . (10.3) in terms of the variable . . .
bThe notation for the integration symbol dr̄ in the original text is corrected to be a

vector symbol dr̄.
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Because > (r, t; R, T ) and g< (r, t; R, T ) are each sharply peaked

about r = 0, t = 0, and slowly varying in R, T , we can neglect the

necessarily small quantities added to R and T in Eq. (10.3b). Then

Eq. (10.3b) becomesc∫ t

−∞
dt̄
∫

dr̄ [> (r − r̄, t − t̄; R, T )

−< (r − r̄, t − t̄; R, T )] g< (r̄, t̄; R, T )

(10.4b)

The second term on the right side of Eq. (10.3) can be written in

terms of the variable r, T ; R, T asd∫ ∞

t
dt̄
∫

dr̄ g<

(
r, t̄; R + (r − r̄)

2
, T + (t − t̄)

2

)

×
[
>

(
r − r̄, t − t̄; R − r̄

2
, T − t̄

2

)

− <

(
r − r̄, t − t̄; R − r̄

2
, T − t̄

2

)] (10.5a)

after the change in integration variable

t̄ = t1 − t̄1 r̄ = r1 − r̄1

We again realize that only small values of r and r̄, t and t̄ are

important, so that this term becomese∫ ∞

t
dt̄
∫

dr̄g(r̄, t̄; R, T )[>(r−r̄, t−t̄; R, T )−<(r−r̄, t−t̄; R, T )]

(10.5b)

When Eqs. (10.4b) and (10.5b) are added together, we see that the

first two terms on the right side of Eq. (10.3) can be approximated

by∫ ∞

−∞
dt̄
∫

dr̄g<(r̄, t̄; R, T )[>(r−r̄, t−t̄; R, T )−<(r−r̄, t−t̄; R, T )]

Similarly, the remaining two terms in Eq. (10.3) can be evaluated as

−
∫ ∞

−∞
dt̄
∫

dr̄[g>(r̄, t̄; R, T ) − g<(t̄, t̄; R, T )]<(r − r̄, t − t̄; R, T )

cThe integral symbol
∫

is added in front of the integration variable symbol dr̄, which

is also vectorized.
dThe integral symbol

∫
is added in front of the integral variable symbol dr̄.

eThe integral symbol
∫

is added in front of the integration variable symbol dr̄, which

is also vectorized.
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Therefore, Eq. (10.3) may be approximately replaced by[
i

∂

∂T
+ ∇R · ∇r

m
− (r · ∇RU eff (R, T )) − t

∂

∂T
U eff (R, T )

]
g< (r, t; R, T )

=
∫

dr̄dt̄
{

g< (r̄ , t̄; R, T ) [> (r − r̄, t − t̄; R, T ) − < (r − r̄, t − t̄; R, T )]

− [g> (r̄, t̄; R, T ) − g< (r̄, t̄; R, T )] < (r − r̄, t − t̄; R, T )
}

=
∫

dr̄dt̄
{

g< (r̄, t̄; R, T ) > (r − r̄; R, T )

−g> (r̄, t̄; R, T ) < (r − r̄, t − t̄; R, T )
}

(10.6)

To convert this equation into a more useful form, we multiply by

±e−ip·r−iωt and integrate over all r and t. Then we find[
∂

∂T
+ p · ∇R

m
− ∇RU eff (R, T ) · ∇p + ∂U eff (R, T )

∂T
∂

∂ω

]
g< (p, ω; R, T )

= −g< (p, ω; R, T ) > (p, ω; R, T ) + g> (p, ω; R, T ) < (p, ω; R, T )

(10.7a)

where

> (p, ω; R, T ) =
∫

drdt e−ip·r+iωti> (r, t; R, T )

< (p, ω; R, T ) =
∫

drdt e−ip·r+iωt [±i< (r, t; R, T )]

(10.8)

Exactly the same analysis applied to Eqs. (9.27b)f and (9.28b) yields

the equation of motion for g> (p, ω; R, T ):g

±
[

∂

∂T
+ p · ∇R

m
− ∇RU eff (R, T ) · ∇p + ∂U eff (R, T )

∂T
∂

∂ω

]
g> (p, ω; R, T )

= −g< (p, ω; R, T ) > (p, ω; R, T ) + g> (p, ω; R, T ) < (p, ω; R, T )

(10.7b)

In order to gain some insight into the result we have just

obtained, we consider the Born collision approximation in which ≷

are given by Eq. (9.29),h where this equation is written in terms of

fThe wrong equation number (9-27b) in the original text is corrected.
gThe wrong superscript < of g at the left-hand side in the original text is corrected

to >.
hThe wrong equation number (8-2) in the original text is corrected.
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the variables r, t; R, T :

≷ (r, t; R, T ) = i 2

∫
dR̄dr̄ v

(
R + r

2
− R̄ − r̄

2

)
v
(

R − r
2

− R̄ + r̄
2

)

× g≶ (−r̄, −t; R, T )
[

g≷ (r, t; R, T ) g≷ (
r̄, t; R̄, T

)
± g≷

(
R̄ + r̄

2
− R + r

2
, t;

(
R + R̄

)
2

+ (r̄ − r)

4
, T

)

× g≷
(

R + r
2

− R̄ + r̄
2

, t;
(R + R)

2
+ (r̄ − r̄)

4
, T

)]

If the disturbance varies very little within a distance on the order of

the potential range, the second spatial argument of all the g’s may be

taken to be R, i.e.,

≷ (r, t; R, T ) ≈ i 2

∫
dR̄dr̄ v

(
R + r

2
− R̄ − r̄

2

)
v
(

R − r
2

− R̄ + r̄
2

)

× g≶ (−r̄, −t; R, T )
[

g≷ (r, t; R, T ) g≷ (r̄, t; R, T )

± g≷
(

R + r̄
2

− R + r
2

, t; R, T
)

× g≷
(

R + r̄
2

− R̄ + r̄
2

, t; R, T
)]

This may now be Fourier transformed in r, t to givei

≷ (p, ω; R, T ) =
∫

dp′

(2π)3

dω′

2π

dp̄

(2π)3

dω̄

2π

dp̄′

(2π)3

dω̄′

2π

× (2π)4 δ
(

p + p′ − p̄ − p̄′) δ
(
ω + ω′ − ω̄ − ω̄′)

×
(

1

2

)[
v (p − p̄) ± v

(
p − p̄′)]2

× g≶ (
p′, ω′; R, T

)
g≷ (p̄, ω̄; R, T ) g≷ (

p̄′, ω̄′; R, T
)

(10.9)

In interpreting Eq. (10.7a), we should notice that > (p, ω; R, T )

is the collision rate for a particle with momentum p and energy

ω at R, T , while < (p, ω; R, T ) is the rate of scattering into p, ω

at the space–time point R, T , assuming that the state is initially

iThe typographic error at the last frequency integration variable symbol dω′
2π

in the

original text is corrected to dω̄′
2π

.
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unoccupied. Therefore, the right-hand side of Eq. (10.7a) is the

net rate of change of the density of particles with momentum p
and energy ω at R, T . This right side has then exactly the same

interpretation as the right side of the Boltzmann equation (7.3).

The contributions −p · ∇Rg< and +∇RU eff · ∇pg< to the rate of

change of g< can also be recognized in the Boltzmann equation.

They are, respectively, the result of the drift of particles into the

volume element about R and the change in the momentum due to

the average force acting on the particles at R.j The eastern on the left-

hand side of Eq. (10.7a),
(

∂Ueff

∂T

) (
∂

∂ω

)
g<, results from the change in

the average energy of a particle at R, T caused by the time variation

of the potential field through which it moves. This term does not

appear in the usual Boltzmann equation because this equation does

not include the particle energy as an independent variable.

Therefore, Eq. (10.7a) has the same physical content as the

usual Boltzmann equation. To see whether these equations are

mathematically identical, we subtract Eq. (10.7a) from Eq. (10.7b).

The result is

±
[

∂

∂T
+ p · ∇R

m
− ∇RU eff (R, T ) · ∇p + ∂U eff (R, T )

∂T
∂

∂ω

]
× [g> (p, ω; R, T ) ∓ g< (p, ω; R, T )] = 0

Just as in the equilibrium case, we define a spectral function a by

a (p, ω; R, T ) = g> (p, ω; R, T ) ∓ g< (p, ω; R, T ) (10.10)

Thus, we may write[
∂

∂T
+ p · ∇R

m
− ∇RU eff(R, T ) · ∇p + ∂U eff(R, T )

∂T
∂

∂ω

]
× a(p, ω; R, T ) = 0

(10.10a)

This has the solution

a (p, ω; R, T ) = y
(

ω − p2

2m
− Ueff (R, T )

)
(10.10b)

where y is an arbitrary function.

We are now faced with a rather embarrassing situation. Because

we claim that Eqs. (10.7) and (10.9) are just extensions of the

equilibrium Born collision approximation to a nonequilibrium

jThe notation R in the original text is replaced by the vector notation R.
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situation, we must demand that as T → −∞, a (p, ω; R, T ) reduce

to the equilibrium A ( p, ω), which emerges from the Born collision

approximation. However, this equilibrium A ( p, ω), which was

determined in Chapter 5, is not a function only of ω − p2

2m . Therefore,

the a (p, ω; R, T ) determined as a solution to Eq. (10.10a) cannot

possibly reduce to this A ( p, ω) as T → −∞. Therefore, we must

have made a mistake in our analysis.

Later, we shall look back and find the mistake. Now let us proceed

as if no mistake had been made. We do know one very simple

A ( p, ω), which is of the form of Eq. (10.10b), namely, the Hartree

result:

A ( p, ω) = 2πδ (ω − E ( p))

E ( p) = p2

2m
+ nv

If we take this to be the initial value of a (p, ω; R, T ), we find from

Eq. (10.10b) that

a (p, ω; R, T ) = 2πδ (ω − E (p, R, T )) (10.11)

where

E (p, R, T ) = p2

2m
+ U eff (R, T )

We can now simplify the equation of motion (10.7a) for

g< (p, ω; R, T ) considerably. We assume that g< is of the form

g< (p, ω; R, T ) = a (p, ω; R, T ) f (p, R, T )

= 2πδ (ω − E (p, R, T )) f (p, R, T ) (10.12)

and, therefore,

g> (p, ω; R, T ) = a (p, ω; R, T ) [1 ± f (p, R, T )]

Here, f (p, R, T ) is the distribution function that appears in the

Boltzmann equation, i.e., the density of particles with momentum p
at R, T . The left side of Eq. (10.7a) can be written as[

∂

∂T
+ p · ∇R

m
− ∇RU eff (R, T ) · ∇p + ∂U eff (R, T )

∂T
∂

∂ω

]
×a (p, ω; R, T ) f (p, R, T ) (10.13)
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We have explicitly constructed a (p, ω; R, T ) to commute with the

differential operator appearing in Eq. (10.13). Therefore, Eq. (10.13)

can just as well be written as

a (p, ω; R, T )

[
∂

∂T
+ p · ∇R

m
− ∇RU eff (R, T ) · ∇p

]
f (p, R, T )

(10.13a)

The right side of Eq. (10.7a) is

a(p, ω; R, T )[− f (p, R, T )>(p, ω; R, T )

+ (1 ± f (p, R, T ))<(p, ω; R, T )] (10.14)

Therefore, when we integrate Eq. (10.7a) over all ω, it reduces to[
∂

∂T
+p · ∇R

m
− ∇RU eff (R, T ) · ∇p

]
f (p, R, T )

= − f (p, R, T ) > (p, ω = E (p, R, T ) ; R, T )

+ [1 ± f (p, R, T )] < (p, ω = E (p, R, T ) ; R, T )

(10.15)

By using the expressions (10.9) for ≷, we find[
∂

∂T
+p · ∇R

m
− ∇RU eff (R, T ) · ∇p

]
f (p, R, T )

= −
∫

dp′

(2π)3

dω′

2π

dp̄

(2π)3

dω̄

2π

dp̄′

(2π)3

dω̄′

2π

× (2π)4 δ
(

p + p′ − p̄ − p̄′) δ
(
ω + ω′ − ω̄ − ω̄′)

×
(

1

2

)[
v (p − p̄) ± v

(
p − p̄′)]2

× [ f f ′ (1 ± f̄
) (

1 ± f̄ ′)− (1 ± f )
(

1 ± f ′) f̄ f̄ ′]

(10.16)

where f = f (p, R, T ), f ′ = f (p′, R, T ), etc. Except for the trivial

substitution of U eff for U , this is exactly the ordinary Boltzmann

equation with Born approximation collision cross section.

10.2 Generalization of the Boltzmann Equation

We have to go back and remove the inconsistency from our analysis

of the previous section. We derived a value for a (p, ω; R, T ) that

did not agree with the Born collision approximation from which we

began. Since our Boltzmann equation purports to be nothing more
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than the extension of the Born collision approximation to the case

in which there is a slowly varying external disturbance, this lack of

agreement with the equilibrium analysis is indeed a serious defect.

When we look back at our derivation, we can see our error at

once. We were trying to find an expansion, Eq. (10.3), that is valid

in the limit in which all the functions involved vary slowly in the

variables R, T . One the left side of Eq. (10.3), we held on to all

terms of order ∂
∂T or ∇R. However, in evaluating the right side of Eq.

(10.3), we only considered terms that involved no space and time

derivatives; we left out terms of order ∂
∂T and ∇R. This procedure is

clearly inconsistent. The correct analysis would include all terms of

order ∇R and ∂
∂T on both sides of Eq. (10.3).

We shall now go back and find the terms that should not have

been neglected. For example, let us re-examine the first two terms

on the right side of Eq. (10.3). By employing exactly the same change

of variables as we used earlier, we can write these terms ask∫ t

−∞
dt̄dr̄ (> − <)

(
r − r̄, t − t̄; R + r̄

2
, T + t̄

2

)

× g<

(
r̄, t̄; R − (r − r̄)

2
, T − (t − t̄)

2

)

+
∫ ∞

t
dt̄dr̄ (> − <)

(
r − r̄, t − t̄; R − r̄

2
, T − t̄

2

)

× g<

(
r̄, t̄; R + (r − r̄)

2
, T + (t − t̄)

2

)
(10.17)

where

(> − <) (r, t; R, T ) = > (r, t; R, T ) − < (r, t; R, T )

Because r, r̄, and t, t̄ are small, compared to the characteristic

distances and times over which g< (p, ω; R, T ) and < (p, ω; R, T )

vary, we can expand the various quantities that appear in the

expression (10.17) as, for example,

g<

(
r̄, t̄; R − (r − r̄)

2
, T − (t − t̄)

2

)

= g< (r̄, t̄; R, T ) −
[

r − r̄
2

· ∇R + t − t̄
2

∂

∂T

]
g< (r̄, t̄; R, T )

kThe argument variable r̄ of g< function at the first term in the original text is

corrected to be a vector r̄.
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We can now see that to order ∇R and ∂
∂T the expression in Eq. (10.17)

is∫ ∞

−∞
dt̄dr̄ (> − <) (r − r̄, t − t̄; R, T ) g< (r̄, t; R, T )

+
∫ ∞

−∞
dt̄dr̄

{[
r̄ · ∇R + t̄

∂

∂T
− (r − r̄) · ∇R′ − (t − t̄)

∂

∂T ′

]

× σ (r − r̄, t − t̄; R, T ) g<
(

r̄, t̄; R′, T ′)}
R=R′ , T =T ′

(10.18)

where

σ (r, t; R, T ) = 1

2

t
|t| (> − <) (r, t; R, T )

The first integral in Eq. (10.18) was included in our earlier

discussion; it appears on the right side of Eq. (10.6). The second

integral was not included, and it should be added to this right side.

The last two terms in Eq. (10.3) also give an extra term:

−
∫ ∞

−∞
dt̄dr̄

{[
r̄ · ∇R + t̄

∂

∂T
− (r − r̄) · ∇R′ − (t − t̄)

∂

∂T ′

]

× b (r − r̄, t − t̄; R, T ) <
(

r̄, t̄; R′, T ′)}
R=R′ , T =T ′

(10.19)

In this equation,

b (r, t; R, T ) = 1

2

t
|t| (g> − g<) (r, t; R, T )

which also should be added to the right-hand side of Eq. (10.6).

When these extra terms are included, this equation is correct to

order ∇R and ∂
∂T .

We derived the ordinary Boltzmann equation by taking the

Fourier transform of Eq. (10.6) and hence finding Eq. (10.7a). To

obtain a generalized Boltzmann equation, we must add the Fourier

transforms of these two extra terms to the right-hand side of

Eq. (10.7a). If we define b (p, ω; R, T ) as the Fourier transform of

b (r, t; R, T ) in the r, t variables, we can write the transform of the
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term (10.19) asl

±i
∫

drdtdr̄dt̄ e−ip·r+iωt
[

r̄ · ∇R + t̄
∂

∂T
− (r − r̄) · ∇R′ − (t − t̄)

∂

∂T ′

]

×
∫

dp′′

(2π)3

dω′′

2π

dp′

(2π)3

dω′

2π
eip′′ ·(r−r̄)+ip′ ·r̄−iω′′(t−t̄)−iω′ t̄

× b
(

p′′, ω′′; R, T
)
<
(

p′, ω′; R′, T ′)
= ±

∫
drdtdr̄dt̄

dp′dω′

(2π)4

dp′′dω′′

(2π)4
e−i(p−p′′)·r+i(ω−ω′′)t+i(p′−p′′)·r̄−i(ω′−ω′′)t̄

×
[
−∇p′ · ∇R + ∂

∂ω′
∂

∂T
+ ∇p′′ · ∇R′ − ∂

∂ω′′
∂

∂T ′

]
× b

(
p′′, ω′′; R, T

)
<
(

p′, ω′; R′, T ′)∣∣
R′=R
T ′=T

= ±
[
−∇p′ · ∇R + ∂

∂ω′
∂

∂T
+ ∇p · ∇R′ − ∂

∂ω

∂

∂T ′

]
× b (p, ω; R, T ) <

(
p′, ω′; R′, T ′)∣∣

R′=R, T ′=T
p′=p,ω′=ω

In order to write expressions like this in a compact form, we

define a generalization of the Poisson bracket

[X , Y ] =∂ X
∂ω

(p, ω; R, T )
∂Y
∂T

(p, ω; R, T )

− ∂ X
∂T

(p, ω; R, T )
∂Y
∂ω

(p, ω; R, T )

− ∇p X (p, ω; R, T ) · ∇RY (p, ω; R, T )

+ ∇R X (p, ω; R, T ) · ∇pY (p, ω; R, T )

(10.20)

Using this Poisson bracket notation, we can write the Fourier

transform of Eq. (10.19) as

∓ [b, <]

Similarly, the Fourier transform of the previously neglected term in

Eq. (10.18) is

± [σ, g<]

By adding these extra two terms, we can correct Eq. (10.7) so

that it includes all terms of order ∇R and ∂
∂T . This corrected version

lThe wrong time argument T of < at the second equality in the original text is

corrected to be T ′ .
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of Eq. (10.7) is[
∂

∂T
+p · ∇R

m
− ∇RU eff (R, T ) · ∇p + ∂U eff

∂T
(R, T )

∂

∂ω

]
g< (p, ω; R, T )

− [σ, g<] + [b, <]

= −< (p, ω; R, T ) g> (p, ω; R, T ) + > (p, ω; R, T ) g< (p, ω; R, T )

(10.21)

Now we have to evaluate the Fourier transforms σ (p, ω; R, T )

and b (p, ω; R, T ). The latter is given by

b (p, ω; R, T ) =
∫

drdt e−ip·r+iωt t
|t| [g> (r, t; R, T ) − g< (r, t; R, T )]

Since the Fourier transform of i [g> − g<] is a (p, ω; R, T ), we can

write

b (p, ω; R, T ) =
∫

dt eiωt t
|t|
∫

dω′

2π i
e−iω′ta

(
p, ω′; R, T

)
=
∫

dω′

2π i
a
(

p, ω′; R, T
)

×
[∫ ∞

0

dt ei(ω−ω′)t −
∫ 0

−∞
dt ei(ω−ω′)t

]

= ℘

∫
dω′

2π

a (p, ω′; R, T )

ω − ω′

where ℘ denotes the principal value integral.

In our discussion of the equilibrium Green’s functions, we

introduced the function

G ( p, z) =
∫

dω′

2π

A ( p, ω′)
z − ω′

As z approaches the real axis from above or below, z → ω ± iε,

G ( p, z) →
∫

dω′

2π

A ( p, ω′)
ω − ω′ ∓ π i A ( p, ω)

In either case, we can write

�G ( p, ω) = ℘

∫
dω′

2π

A ( p, ω′)
ω − ω′

Similarly, for the nonequilibrium case, we define

g (p, z; R, T ) =
∫

dω′

2π

a (p, ω′; R, T )

z − ω′ (10.22a)
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and we write

b (p, ω; R, T ) = ℘

∫
dω′

2π

a (p, ω′; R, T )

ω − ω′
as

b (p, ω; R, T ) = �g (p, ω; R, T ) (10.22b)

Moreover, in the equilibrium case, we define a collisional self-energy

as

c ( p, z) =
∫

dω′

2π

> ( p, ω′) − < ( p, ω′)
z − ω′

=
∫

dω′

2π

� ( p, ω′)
z − ω′

We now define the analogous nonequilibrium quantities:

� (p, ω; R, T ) = > (p, ω; R, T ) ∓ < (p, ω; R, T ) (10.23a)

and

c (p, z; R, T ) =
∫

dω′

2π

� (p, ω′; R, T )

z − ω′ (10.23b)

By just the same arguments as we used to derive Eq. (10.22b),

we can see that σ (p, ω; R, T ), the Fourier transform of

(t/|t|) [> (r, t; R, T ) − < (r, t; R, T )], is

σ (p, ω; R, T ) = �c (p, ω; R, T ) (10.23c)

Now we can rewrite Eq. (10.21) in the form[
∂

∂T
+ p · ∇R

m
− ∇RU eff · ∇p + ∂U eff

∂T
∂

∂ω

]
g< − [�c, g<] + [�g, <]

= − >g< + >g<

(10.24)

The last two terms on the left side of Eq. (10.24) are written in terms

of the generalized Poisson bracket (10.20). This equation can be

simplified in form a bit if we notice that the other terms on the left

also form a Poisson bracket, i.e.,[
∂

∂T
+ p · ∇R

m
− ∇RU eff · ∇p + ∂Ueff

∂T
∂

∂ω

]
g< =

[
ω −

(
p2

2m

)
− U eff, g<

]
Therefore, Eq. (10.24) becomes[

ω −
(

p2

2m

)
− U eff − �c, g<

]
+ [�g, <] = −>g< + <g>

(10.25a)
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By exactly the same procedure, we can derive the following equation

of motion for g>:

±
[
ω −

(
p2

2m

)
− U eff − �c, g>

]
+ [�g, >] = −>g< + <g>

(10.25b)

Equations (10.25a) and (10.25b) are coupled integro-differential

equations for the unknown functions g> (p, ω; R, T ) and

g> (p, ω; R, T ). The self-energies > and < are expressed in terms

of g> and g< by the particular Green’s function approximation being

considered. For example, in the Born collision approximation, >

and < are given by Eq. (10.9). The auxiliary quantities �g and �c

are expressed, respectively, in terms of g> and g< and > and < by

Eqs. (10.22) and (10.23).

Equations (10.25) are generally correct except for one rather

trivial omission: So far, we have left the exchange term in HF out

of our discussion. The direct (Hartree) term is included; it appears

in U eff (R, T ). When g< (p, ω; R, T ) varies little within distances of

the order of the potential range, we can approximately evaluate

U eff (R, T ) = U (R, T ) +
∫

dp′

(2π)3

dω′

2π

∫
dR′ v

(
R − R′) g<

(
p′, ω′; R′, T

)
as

U eff (R, T ) = U (R, T ) +
∫

dp′

(2π)3

dω′

2π

∫
dR′ v

(
R − R′) g<

(
p′, ω; R, T

)
= U (R, T ) + Hartree (R, T )

With the inclusion of the exchange term in Eq. (10.25),

U eff (R, T ) + �c (p, ω; R, T ) → U (R, T ) + � (p, ω; R, T )

(10.26a)

where, just as in the equilibrium case, the total self-energy is a sum

of the Hartree–Fock and the collisional contribution

� (p, ω; R, T ) = HF (p, R, T ) + �c (p, ω; R, T )

HF (p, R, T ) =
∫

dp′

(2π)3
dω′2π

[
v ± v

(
p − p′)] g<

(
p′, ω′; R, T

)
(10.26b)

where

v =
∫

dr v(r) (10.26c)
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When Eqs. (10.25) are modified using Eq. (10.26), they are exact for

slowly varying disturbances.

These generalized Boltzmann equations can be integrated

partially. We notice that the collision term on the right side of Eq.

(10.25b) is exactly the same as the collision term in Eq. (10.25a).

Therefore, when we subtract these two equations, the collision

terms cancel and we find[
ω −

(
p2

2m

)
− U (R, T ) − � (p, ω; R, T ) , a (p, ω; R, T )

]
+ [�g (p, ω; R, T ) , � (p, ω; R, T )] = 0

(10.27)

where

a = g> ∓ g< � = > ∓ <

Equation (10.27) may be integrated simply. In fact, the solution

to Eq. (10.27) gives almost exactly the same evaluation of a as in the

equilibrium case. In equilibrium,

G ( p, z) = 1

z − p2

2m −  ( p, z)

Therefore,

G ( p, ω − iε) = �G ( p, ω) +
(

i
2

)
A ( p, ω)

=
[
�G−1 ( p, ω) −

(
i
2

)
� ( p, ω)

]−1

where �G−1 is an abbreviation for ω −
(

p2

2m

)
− � ( p, ω). Also

G ( p, ω + iε) = �G ( p, ω) −
(

i
2

)
A ( p, ω)

=
[
�G−1 ( p, ω) +

(
i
2

)
� ( p, ω)

]−1

Thus

�G ( p, ω) = �G−1 ( p, ω)[�G−1 ( p, ω)
]2 +

[
�( p,ω)

2

]2

A ( p, ω) = � ( p, ω)[�G−1 ( p, ω)
]2 +

[
�( p,ω)

2

]2
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Let us see whether there is a similar solution to Eq. (10.27). We

try

g (p, z; R, T ) = 1

z −
(

p2

2m

)
− U (R, T ) −  (p, z; R, T )

(10.28a)

Then

a (p, ω; R, T ) = 1

i

[
1

�g−1 (p, ω; R, T ) − ( i
2

)
� (p, ω; R, T )

− 1

�g−1 (p, ω; R, T ) + ( i
2

)
� (p, ω; R, T )

]

= � (p, ω; R, T )[�g−1 (p, ω; R, T )
]2 +

[
�(p,ω;R, T )

2

]2

(10.28b)

and

�g (p, ω; R, T ) =1

2

[
1

�g−1 (p, ω; R, T ) − ( i
2

)
� (p, ω; R, T )

− 1

�g−1 (p, ω; R, T ) + ( i
2

)
� (p, ω; R, T )

]

= �g−1 (p, ω; R, T )[�g−1 (p, ω; R, T )
]2 +

[
�(p,ω;R, T )

2

]2

(10.28c)

where

�g−1 (p, ω; R, T ) = ω −
(

p2

2m

)
− U (R, T ) − � (p, ω; R, T )

(10.28d)

Then, the left side of Eq. (10.27) becomes[�g−1, a
]+ [�g−1, �

] = 1

i

[
�g−1,

1

�g−1 − i �
2

]

− 1

i

[
�g−1,

1

�g−1 + i �
2

]

+ 1

2

[
1

�g−1 − i �
2

.�

]
+ 1

2

[
1

�g−1 + i �
2

.�

]

(10.29)
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Like the commutator, our Poisson bracket has the property [A , B] =
− [B , A]. Hence, expression (10.29) may be rearranged in the form

1

i

[
�g−1 − i

2
�,

1

�g−1 + i �
2

]
− 1

i

[
�g−1 + i

2
�,

1

�g−1 − i �
2

]

(10.29a)

However, the Poisson bracket of any quantity A with any function of

A is zero, since

[A , f (A)] = ∂ A
∂ω

∂ f (A)

∂T
− ∂ A

∂T
∂ f (A)

∂ω
− ∇p A · ∇R f (A) + ∇R A · ∇p f (A)

= ∂ f
∂ A

[
∂ A
∂ω

∂ A
∂T

− ∂ A
∂T

∂ A
∂ω

− ∇p A · ∇R A + ∇R A · ∇p A
]

= 0

Therefore, expression (10.29) is, in fact, zero, providing that

Eq. (10.28) is a solution to Eq. (10.29). Since the solution (10.28a) is

of exactly the same form as the equilibrium solution, it must reduce

to the equilibrium solution as T → −∞. Therefore, it satisfies the

initial condition on the equation of motion.

To sum up, the equation of motion[
ω −

(
p2

2m

)
− U (R, T ) − � (p, ω; R, T ) , g< (p, ω; R, T )

]
+ [�g (p, ω; R, T ) , < (p, ω; R, T )]

= −> (p, ω; R, T ) g< (p, ω; R, T ) + < (p, ω; R, T ) g> (p, ω; R, T )

(10.30)

provides an exact description of the response to slowly varying

disturbances. All the quantities appearing in this equation may be

expressed in terms of g> and g<. In particular, > and < are

defined by Green’s function approximation, which gives the self-

energy in terms of g> and g<. The lowest-order approximation of

this kind is given by Eq. (10.8). Both g> and g< are related to g by∫
dω

2π

g> (p, ω; R, T ) ∓ g< (p, ω; R, T )

z − ω

= g (p, ω; R, T )

=
[

z −
(

p2

2m

)
− U (R, T ) −  (p, ω; R, T )

]−1

(10.31)

which is exactly the same relation as defines the equilibrium Green’s

functions.
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To go from Eq. (10.30) back to the ordinary Boltzmann equation

with Born approximation cross sections, we replace > and < on

the right side of Eq. (10.30) by the approximations (10.9). On the left

side of Eq. (10.30), however, we must employ the approximations

> = < =  = 0. Since the left side of Eq. (10.30) determines the

result Eq. (10.28b) for a, we must, therefore, replace  and � in Eq.

(10.31) by zero. Then we get a = 2πδ
(
ω −

(
p2

2m

)
− U (R, T )

)
, so

that we recover the ordinary Boltzmann equation (7.2).

The ordinary Boltzmann equation emerges then from an approx-

imation in which the self-energies that appear on the left side of

Eq. (10.30) are handled differently from those that appear on the

right. One can see that these two appearances of the self-energy 

play a very different physical role in the description of transport

phenomena. The > and < on the right side of Eq. (10.30) describe

the dynamical effect of collisions, i.e., how the collisions transfer

particles from one energy–momentum configuration to another. On

the other hand, the ’s on the left side of Eq. (10.30) describe the

kinetic effects of the potential, i.e., how the potential changes the

energy–momentum relation from that of free particles, ω =
(

p2

2m

)
+

U , to the more complex spectrum, Eq. (10.31). Because these two

effects of  are physically so different, we should not be surprised

to find that we can independently approximate the kinetic effects of

 and the dynamical effects of .

In the derivation of the ordinary Boltzmann equation, we

completely neglect all the kinetic effects of  and retain the dynamic

effects. In this way, we get to the familiar Boltzmann equation, which

describes the particles as free particles in between collisions. The

more general equation (10.30) includes the effects of the potential

on the motion of particles even between collisions. These effects

arise from several different sources. When the system is fairly dense,

the particles never get away from the other particles in the system.

Therefore, we cannot ever really think of the particles as being “in

between collisions.” Quantum mechanically, the wavefunctions of

the particles are sufficiently smeared out so that there is always

some overlap of wavefunctions; the particle is always colliding.

Also the particle always retains some memory of collisions it has

experienced through its correlations with other particles in the
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system. This memory is also contained in its energy–momentum

relation.

Equations (10.30) and (10.31) can be used to describe all

types of transport phenomena. In Chapter 11, we shall use these

equations to describe the simplest transport process, ordinary

sound propagation. In Chapter 12, these equations will be applied

to a discussion of the behavior of low-temperature fermion systems.
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Chapter 11

Quasi-Equilibrium Behavior: Sound
Propagation

11.1 Complete Equilibrium Solutions

It is interesting to see how the nonequilibrium theory leads, as

a special case, to the equilibrium theory of Chapters 2–5. There

are two situations in which we expect an equilibrium solution to

come out of the generalized Boltzmann equation. The first and most

obvious case is when U (R, T ) vanishes for all T previous to the time

of observation. Then the system has never felt the disturbance, and

it remains in its initial state of equilibrium. The second case is when

U (R, T ) = U0, a constant, for all times after some time, say T0.

Then if we observe the system at some time much later than T0, we

should expect that the system will have had sufficient time to relax

to complete equilibrium.

In an equilibrium situation, the functions g> (p, ω; R, T ) and

g< (p, ω; R, T ) are completely independent of R, T . Since we are

looking when U (R, T ) is also independent of R and T , the left side

of Eq. (10.30) vanishes. Therefore, g> and g< obey

0 = > (p, ω) g< (p, ω) − < (p, ω) g> (p, ω) (11.1)
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To see the consequences of Eq. (11.1), we consider, as an

example, the Born collision approximation. Then Eq. (11.1) becomes

0 =
∫

dp′dω′

(2π)4

dp̄dω̄

(2π)4

dp̄′dω̄′

(2π)4

(
1

2

)[
v (p − p̄) ± v

(
p − p̄′)]2

× a (p, ω) a
(

p′, ω
)

a (p̄, ω̄) a
(

p̄′, ω̄′) δ
(
ω + ω′ − ω̄ − ω̄′)

× δ
(

p + p′ − p̄ − p̄′) (2π)4
{

f (p, ω) f
(

p′, ω′) [1 ± f (p̄, ω̄)]

× [
1 ± f

(
p̄′, ω̄′)] − [1 ± f (p, ω)]

[
1 ± f

(
p′, ω′)] f (p̄, ω̄) f

(
p̄′, ω̄′)}

(11.2)

where we have written

g> (p, ω) = [1 ± f (p, ω)] a (p, ω)

g< (p, ω) = f (p, ω) a (p, ω)
(11.3)

The expression in braces in Eq. (11.2) will vanish if f (p, ω) is of the

form

f (p, ω) =
{

exp

[
β

(
ω − p · v + 1

2
mv2 − μ′

)]
∓ 1

}−1

(11.4)

where v is an arbitrary vector. In fact, it is possible to prove that

Eq. (11.4) is the most general f for which Eq. (11.2) vanishes.

The proof is quite analogous to the proof of the H theorem for the

ordinary Boltzmann equation.

Therefore, to determine the possible equilibrium limits of

g> (p, ω; R, T ) and g< (p, ω; R, T ), we must solve Eq. (10.31):

g−1 (p, z) = z −
(

p2

2m

)
− U 0 −  (p, z) (10.31)

using the relationships (11.3) and (11.4). These two may be written

as

g> (p, ω) = eβ(ω−p·v+ 1
2

mv2−μ′)g< (p, ω) (11.5)

Since  (p, z) is a function of g> and g<, Eqs. (10.31) and (11.5)

provide two relations between the two unknown functions g> (p, ω)

and g< (p, ω).

When U 0 = v = 0, Eqs. (10.31) and (11.5) are identical to the

equations in Chapter 5 to determine the equilibrium Green’s func-

tions for chemical potential μ′ and inverse temperature β . Writing
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these equilibrium functions as G> ( p, ω; β, μ′) and G> ( p, ω; β, μ′),

we find

g> (p, ω) = G>
(

p, ω; β, μ′)
g< (p, ω) = G<

(
p, ω; β, μ′) (11.6)

In this case, the nonequilibrium Green’s functions reduce to their

equilibrium counterparts, and the whole equilibrium theory of

Chapters 2 through 5 emerges as a special case of the nonequilib-

rium theory developed in Chapters 9 and 10.

Consider next the case U 0 = 0, v = 0. U 0 then represents a

constant term added to the energy of every particle in the system.

We expect that U 0 should have two effects on the equilibrium

solution: First, the frequency should go into ω − U 0, and second, the

chemical potential should go into μ′ − U 0. If we define

ḡ≷ (p, ω) = g≷ ( p, ω + U 0) (11.7)

we then expect that the solution to Eqs. (10.31) and (11.5) at v = 0

is

ḡ≷ (p, ω) = G≷ ( p, ω; β, μ) (11.8)

where μ = μ′ − U 0.

To verify this conjecture, we let z → z + U 0 in Eq. (10.31). This

then becomes

g−1 (p, z + U 0) =
[∫

dω′

2π

g> (p, ω) ∓ g< (p, ω)

z + U 0 − ω′

]−1

=
[∫

dω′

2π

ḡ> (p, ω) ∓ ḡ< (p, ω)

z − ω′

]−1

and also

g−1 (p, z + U 0) = z −
(

p2

2m

)
−  (p, z + U 0; g>, g<)

= z −
(

p2

2m

)
− HF (p, g<)

−
∫

dω

2π

>(p, ω + U 0; g>, g<) − <(p, ω + U 0; g>, g<)

z − ω

We may express the self-energies as functionals of ḡ. We first note

that

HF (p, g<) =
∫

· · ·
∫

dω′

2π
g<
(

p, ω′) =
∫

· · ·
∫

dω′

2π
ḡ<
(

p, ω′)
=HF (p, ḡ<)
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In the Born collision approximation,

> (p, ω + U 0 g>, g<) ∼
∫

dω′dω̄dω̄′ δ
(
ω + U 0 + ω′ − ω̄ − ω̄′)

× g<
(

p′, ω′) g> (p̄, ω̄) g>
(

p̄′, ω̄′)
∼
∫

dω′dω̄dω̄′ δ
(
ω + U 0 + ω′ − ω̄ − ω̄′)

× ḡ<
(

p′, ω′) ḡ> (p̄, ω̄) ḡ>
(

p̄′, ω̄′)
=> (p, ω; ḡ>, ḡ<)

Thus, we see that the ḡ’s obey[∫
dω′

2π

ḡ> (p, ω) ∓ ḡ< (p, ω)

z − ω′

]−1

= z −
(

p2

2m

)
−  (p, z; ḡ>, ḡ<)

which is exactly the same equation as is obeyed by the equilibrium

G> and G<. Furthermore, when v = 0, the boundary condition (11.5)

can be written in terms of the ḡ’s as

ḡ> (p, ω) = eβ(ω−μ′+U0)ḡ< (p, ω)

The ḡ’s must then be the equilibrium G’s, since they are both

determined by the same equation.

The equilibrium state that results when U = U 0 and v = 0 is

thus the initial equilibrium state. The only difference is that the zero

point of the particle energies has been shifted by an amount U 0.

We shall now see that the equilibrium state that occurs with

v = 0 is one in which the system as a whole is moving with a uniform

velocity v. If the entire system is moving, Green’s function should

be the same as the equilibrium Green’s functions that would be

“seen” by an observer moving with velocity −v past a fixed system. A

particle moving with momentum p and energy ω in the fixed system

would appear to the moving observer to have the extra momentum

−mv and the extra kinetic energy
(

1
2m

)
(p − mv)2−

(
p2

2m

)
. Therefore,

if v does in fact represent the velocity of the system, g> and g<

should be related to the equilibrium functions by

ḡ≷ (p, ω) = G≷ ( p, ω; β, μ) (11.9)

where

ḡ≷ (p, ω) = g≷
(

p + mv, ω + p · v + 1

2
mv2 + U 0

)
(11.10)
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To verify this, we must show that the ḡ’s satisfy the same

equations as the G’s. First, the boundary condition. From Eq. (11.5),

we see that

ḡ> (p, ω) = eβ[ω+p·v+ 1
2

mv2−(p+mv)·v+ 1
2

mv2−μ]ḡ< (p, ω)

= eβ(ω−μ)ḡ< (p, ω)

Thus, the ḡ’s satisfy the same boundary condition as the equilibrium

G’s. The other equation that determines g> and g< is Eq. (10.31). We

can rewrite this equation in terms of the ḡ’s by letting p → p − mv
and z → z + U 0 + p · v − 1

2
mv2. Then, it becomes

g−1

(
p + mv, z + U 0 + p · v + 1

2
mv2

)

=
[∫

dω

2π

ḡ> (p, ω) ∓ ḡ< (p, ω)

z − ω

]−1

=
(

z + p · v + 1

2
mv2

)
− (p + mv)2

2m

− 

(
p + mv, z + p · v + 1

2
mv2 + U 0; g>, g<

)

= z −
(

p2

2m

)
− 

(
p + mv, z + p · v + 1

2
mv2 + U 0; g>, g<

)

By essentially the same argument as we gave before, we can show

that

 (p + mv, z + p · v + U 0; g>, g<) =  (p, z; ḡ>, ḡ<)

Since the ḡ’s obey the same equations as the equilibrium Green’s

functions, Eq. (11.9) is, in fact, correct, and v is the average velocity

of the system.

Such an equilibrium state would be reached if the potential

U (R, T ), when it acted, transferred a net momentum mNv to the

system.

11.2 Local Equilibrium Solutions

A very simple extension of the results of Section 11.1 can be applied

to a discussion of sound propagation. This is the primary reason
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for having described the equilibrium solutions to the generalized

Boltzmann equation.

The arguments we shall use to find sound propagation will be

very closely analogous to those used to find sound propagation from

the ordinary Boltzmann equation. The left side of the generalized

Boltzmann equation, (10.30), involves space and time derivatives;

the right side does not. Therefore, when U (R, T ) varies very slowly

in space and time, the left side of Eq. (10.30) is necessarily very

small. Hence, in this limit, we can neglect the left side of Eq. (10.30)

entirely. We then have to solve

> (p, ω; R, T ) g< (p, ω; R, T ) − < (p, ω; R, T ) g> (p, ω; R, T ) = 0

(11.11)

In the Born collision approximation (11.11) becomesa∫
dp′

(2π)3

dω′

2π

dp̄

(2π)3

dω̄

2π

dp̄′

(2π)3

dω̄′

2π

× (2π)4 δ
(

p + p′ − p̄ − p̄′) δ
(
ω + ω′ − ω̄ − ω̄′)

×
(

1

2

)[
v (p − p̄) ± v

(
p − p̄′)]2

× {g<(p, ω; R, T )g<(p′, ω′; R, T )g>(p̄, ω̄; R, T )g>(p̄′, ω̄′; R, T )

−g>(p, ω; R, T )g>(p′, ω′; R, T )g<(p̄, ω̄; R, T )g>(p̄′, ω̄′; R, T )
}

= 0 (11.12)

From the discussion in Section 11.1, we know that the solution to

Eq. (11.12) is

g> (p, ω; R, T )

g> (p, ω; R, T )
= exp

{
− β(R, T )

[
ω − p · v(R, T ) + 1

2
mv2(R, T )

−μ(R, T ) + U (R, T )

]}
(11.13)

where β−1 (R, T ), μ (R, T ), and v (R, T ) now represent the local
temperature, chemical potential, and mean velocity of the particles

in the system.

To determine g> and g<, we make use of Eq. (10.31),

g−1 (p, z; R, T ) = z −
(

p2

2m

)
− U (R, T ) −  (p, z; R, T ) (10.31)

aThe equality = 0 in the last line was omitted in the original text.
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Since all the quantities in Eq. (10.31) depend on the values of g> and

g< at only the space–time point R, T , we can directly carry over the

discussion of Section 11.1 to establish the solution to Eqs. (10.31)

and (11.13). In analogy to Eq. (11.9), we find

g≷
(

p + mv(R, T ), ω + p · v(R, T ) + 1

2
mv2(R, T ) + U (R, T ); R, T

)
= G≷ (p, ω; β (R, T ) , μ (R, T ))

or

g≷ (p, ω; R, T ) = G≷ (p − mv (R, T ) , ω̄; β (R, T ) , μ (R, T ))

ω̄ = ω − p · v (R, T ) + 1

2
mv2 (R, T ) − U (R, T )

(11.14)

Here G≷ (p, ω; β.μ) are the equilibrium Green’s functions deter-

mined by the equilibrium Born collision approximation at the

temperature β−1 and the chemical potential μ.

Therefore, when the disturbance varies very slowly in space and

time, the nonequilibrium Green’s functions g≷ (p, ω; R, T ) reduced

to the equilibrium functions defined at the local temperature,

chemical potential, and average velocity. Each portion of the system

is very close to thermodynamic equilibrium, but the whole system is

not in equilibrium because the temperature, chemical potential, and

velocity vary from point to point.

We have derived this local-equilibrium result from the Born

collision approximation. The result Eq. (11.14) is, in fact, much more

generally valid. However, it is important to notice that Eq. (11.14)

emerges from the application of Green’s function approximations

to a specific situation; it is not an extra assumption inserted into

the theory. Equation (11.14) is not always correct; it is wrong

in superfluid helium and in a superconductor, where the local-

equilibrium state cannot be described by five parameters only. It

is probably also wrong in a Coulomb system because of the long

interaction range. The general theory is capable of predicting when

Eq. (11.14) is correct, and when it is wrong.

To obtain a solution to Green’s function equations of motion,

we have to determine that local temperature, chemical potential,

and velocity. Just as in the discussion of the ordinary Boltzmann

equation, these parameters will be determined with the aid of the

conservation laws for particle number, energy, and momentum.
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11.3 Conservation Laws

The conservation laws can all be derived from the generalized

Boltzmann equation (10.30). It is much more convenient, however,

to derive from our starting point: Green’s function equations of

motion, Eqs. (7.28a) and (7.28b). We shall use only the difference

of these two equations[
i
(

∂

∂t1

+ ∂

∂t1′

)
+ ∇2

1

2m
− ∇2

1′

2m
− U (1) + U

(
1′)] g

(
1, 1′; U

)
= ±i

∫
d2
[

V (1 − 2) − V
(

1′ − 2
)]

g2

(
12−, 1′2+; U

)
(11.15)

Eventually, we will employ the form of Eq. (11.15) in which g2(U )

is determined by the Born collision approximation, but for now, we

shall make use of only some rather general properties of g2(U ).

If we set 1′ = 1+ in Eq. (11.15), we derive the number

conservation law

∂

∂t1

[±ig< (1, 1; U )] + ∇r ·
[∇1 − ∇1′

2m
(±i) g<

(
1, 1′; U

)]
1′=1

= 0

or

∂

∂T
〈n̂ (R, T )〉U + ∇ ·

〈
ĵ (R, T )

〉
U

= 0 (11.16)

To find a differential momentum conservation law, we apply

± (∇1−∇1′ )

2i to Eq. (11.15) and set 1′ = 1+. In this way, we findb

∂

∂t1

[
(∇1 − ∇1′ )

2i
(±i) g<

(
1, 1′; U

)]
1′=1

= m
∂

∂t1

〈
ĵ(1)

〉
U

= − [∇r1
U (1)

] 〈n̂(1)〉U

− ∇r1
·
{

(∇1 − ∇1′ )

2i
(∇1 − ∇1′ )

2im
(±i) g<

(
1, 1′; U

)}
1′=1

+
∫

dr2

[∇r2
v (r1 − r2)

]
g2

(
12; 1+2+; U

)∣∣
t2=t+

1

(11.17)

bThe 1++ symbol in the original text is corrected by 1+ .
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So far this equation does not even have the structure of a

conservation law because the term involving g2 is not proportional

to a divergence. However, in the limit as the disturbance varies

slowly in space, this term may be approximately converted into a

divergence. The point is that g2

(
12; 1+2+)∣∣

t2=t+
1

can be written as

g2 [r1 − r2; (r1 + r2)/2, t1] and if the disturbance varies slowly in

space, g2 varies slowly as a function of (r1 + r2)/2. In fact, we may

now write∫
dr2

[∇r2
v (r1 − r2)

]
g2

(
12; 1+2+; U

)∣∣
t2=t+

1

=
∫

dr [∇v(r)] g2

(
r; r1 − r

2
, t1

)
= 1

2

∫
dr [∇v(r)]

[
g2

(
r; r1 − r

2
, t1

)
− g2

(
−r; r1 + r

2
, t1

)]
(11.18)

Because of the symmetry

g2

(
12; 1+2+; U

) = g2

(
21; 2+1+; U

)
of both the exact g2(U ) and any approximate g2(U ) that obeys

condition B , it follows that

g2

(
−r; r1 − r

2
, t1

)
= g2

(
r; r1 + r

2
, t1

)
Thus, expression (11.18) becomes

1

2

∫
dr [∇v(r)]

[
g2

(
r; r1 − r

2
, t1

)
− g2

(
r; r1 + r

2
, t1

)]
If the disturbance varies very slowly over the force range, we can

expand the g2 to first order in r, getting∫
dr2 ∇r1

v (r1 − r2) g2

(
12; 1+2+; U

)∣∣
t2=t+

1

≈ −
∫

dr [∇v(r)]
r · ∇r1

2
g2 (r; r1, t1)

= −
3∑

j=1

(∇r1

)
j

[∫
dr2

∇v
(∣∣r1 − r′

2

∣∣)
2

(r1 − r2) j g2

(
12; 1+2+; U

)∣∣
t2=t+

1

]

Therefore, for slowly varying disturbance, the momentum

conservation law has the structure

m
∂

∂T

〈
ĵ (R, T )

〉
U

= − [∇U (R, T )] 〈n̂ (R, T )〉U − ∇ · T (R, T )

(11.19)
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where

Ti j (R, T ) =
[(∇1 − ∇1′

2i

)
i

(∇1 − ∇1′

2im

)
j

(±i) g<
(

1, 1′; U
)]

1′=1=R, T

+ 1

2

∫
dr2

(r1 − r2)i (r1 − r2) j

|r1 − r2|
∂v (|r1 − r2|)
∂ |r1 − r2|

× g2

(
12; 1+2+; U

)∣∣
t2=t+

1 , t1=T , r1=R (11.20)

Ti j is usually called the stress tensor. It is the momentum current;

but since the momentum is a vector, its current is a tensor.

An exactly similar argument leads to a differential energy

conservation law in which the time derivative of the energy density

is

∂

∂t1

〈E(1)〉U = ∂

∂t1

{
±i

∇1 · ∇1′

2m
g<
(

1, 1′; U
)

−1

2

∫
dr2 v (r1 − r2) g2

(
12; 1+2+; U

)∣∣
t2=t+

1

}

= − [∇U (1)] ·
〈

ĵ(1)
〉

U
− ∇ · jE(1) (11.21)

where the energy current, for slowly varying disturbance, isc

jE(1) = ± i
[∇1 − ∇1′

2im
∇1 · ∇1′

m
g<
(

1, 1′; U
)]

1′=1

−
∫

dr2 v (r1 − r2)
∇1 − ∇1′

2im
g2

(
12, 1′2+; U

)∣∣
t2=t+

1 , 1′=1+

+
∫

dr2

v (r1 − r2)

2
(r1 − r2)

×
{∇2 · (∇1 − ∇1′ )

2im
g2

(
12, 1′2+; U

)∣∣
t2=t+

1 , 1′=1+

}
(11.22)

11.4 Application of Conservation Laws to the
Quasi-Equilibrium Situation

These conservation laws are true not only for the exact g(U ) and

g2(U ) but also for any conserving approximation for these functions.

cHere the redundant vertical bar on the right of the first term is omitted.
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In particular, these laws hold in the Born collision approximation.

Therefore, we may determine functions β (R, T ), μ (R, T ), and

v (R, T ) in Eq. (11.14) by substituting the local equilibrium solutions

into the conservation laws.

This is most simply done for the number conservation law

(11.16), which can be expressed as∫
dω

2π

∫
dp

(2π)3

[
∂

∂T
+ p · ∇R

m

]
g< (p, ω; R, T ) = 0

For the local equilibrium solution (11.14), this is∫
dω

2π

∫
dp

(2π)3

[
∂

∂T
+ ∇R · p

m

]
G<(p−mv(R, T ), ω; β(R, T ), μ(R, T )) = 0

We now let p → p+mv (R, T ). Since the rotational invariance of the

equilibrium Green’s function implies∫
dp

(2π)3
pG< ( p, ω; β, μ) = 0

we find∫
dω

2π

∫
dp

(2π)3

[
∂

∂T
+ ∇R · v (R, T )

]
G< ( p, ω; β (R, T ) , μ (R, T )) = 0

Hence, the number conservation law becomes

∂

∂T
n (β (R, T ) , μ (R, T ))+∇R ·[v (R, T ) n (β (R, T ) , μ (R, T ))] = 0

(11.23)

where

n (β, μ) =
∫

dp

(2π)3

dω

2π
G< ( p, ω; β, μ)

is the equilibrium density derived from the Born collision approxi-

mation, expressed as a function of the inverse temperature and the

chemical potential. Similarly, in the local-equilibrium situation, the

momentum conservation law (11.19) becomes

m
d

dT
[v (R, T ) n (β (R, T ) , μ (R, T ))]

= − n (β (R, T ) , μ (R, T )) ∇RU (R, T ) − ∇R · T (R, T )

(11.24)
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while from Eq. (11.20), the stress tensor is seen to have the form

Ti j (R, T ) =
∫

dω

eπ

∫
dp

(2π)3

pi p j

m
G<(|p − mv(R, T )|, ω; β(R, T ), μ(R, T ))

+
∫

dr2

(r1 − r2)i (r1 − r2) j

|r1 − r2|
∂v (|r1 − r2|)
∂ |r1 − r2|

× g2

(
12; 1+2+; U

)∣∣
t2=t+

1
, t1−T , r=R (11.25)

By exactly the same argument that we used to evaluate the

Born collision approximation  (p, z; R, T ) in terms of the local

temperature, velocity, and chemical potential, it is easy to show that

g2

(
12, 1′2+; U

) = eimv(R, T )·(r1−r1′ )G2

(
12, 1′2+; β (R, T ) , μ (R, T )

)
(11.26)

for

R = r1 + r1′

2

T = t1, t2 = t+
1 , t1′ = t++

1

where G2 (12; 1′2′; β, μ) is the equilibrium two-particle Green’s

function, in the Born collision approximation. The rotational

invariance of this function and G ( p, ω) implies that Eq. (11.25)

becomes

Ti j (R, T ) = mvi (R, T ) v j (R, T ) n (β (R , T ) , μ (R , T ))

+ δi j P (β (R, T ) , μ (R, T ))
(11.27)

where

P (β, μ) =
∫

dω

2π

dp

(2π)3

p2

3m
G< ( p, ω; β, μ)

+ 1

6

∫
dr2 |r1 − r2| ∂v (|r1 − r2|)

∂ |r1 − r2| G2(12; 1+2+; β, μ)
∣∣

t2=t+
1

(11.28)

Thus, the momentum conservation law, Eq. (11.24), reduces to

m
∂

∂T
[v (R, T ) n (β (R, T ) , μ (R, T ))]

= − n (β (R, T ) , μ (R, T )) ∇U (R, T )

− ∇ · [mv (R, T ) v (R, T ) n (β (R, T ) , μ (R, T ))]

− ∇ P (β (R, T ) , μ (R, T ))

(11.29)

We have used the symbol P for the part of the stress tensor

proportional to the unit tensor δi j , in anticipation of the fact that
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this quantity is actually the pressure in the many-particle system.

The most elementary reason for the appearance of the pressure in

the momentum conservation law is that the pressure and the stress

tensor have quite parallel meanings: The pressure is the average

flux of momentum up to a surface of the system, whereas the stress

tensor Ti j gives the flux of the i -th direction momentum through a

surface perpendicular to the j -th direction.

We can make this identification of the pressure mathematically

as follows. Let us go back to the original Boltzmann equation

(10.30):[
ω − p2

2m
− U − �, g<

]
+ [�g, <] = −>g< + <g> (10.30)

For the case in which U (R, T ) is independent of T , the time-

independent local-equilibrium form

g< (p, ω; R, T ) = f (p, ω; R) a (p, ω; R)

< (p, ω; R, T ) = f (p, ω; R) � (p, ω; R)

f (p, ω; R) = 1

exp[β(R)(ω − p · v(R) + 1
2

mv2(R) − μ(R) − U (R))] ∓ 1

is an exact solution to the Boltzmann equation, since then the right

side of the Boltzman equation vanishes, and the left side becomes[
ω −

(
p2

2m

)
− U − �, f a

]
+ [�g, f �] = 0 (11.30)

Like ordinary Poisson brackets, the generalized Poisson brackets

satisfy

[A , BC ] = C [A , B] + B [A , C ]

Therefore, Eq. (11.30) may also be written as

f
{[

ω −
(

p2

2m

)
− U − �, a

]
+ [�g, �]

}

+a
[
ω −

(
p2

2m

)
− U − �, f

]
+ � [�g, f ] = 0

However, the term in the braces must vanish, because a is evaluated

by demanding that this term be zero. We are then left with

a
[
ω −

(
p2

2m

)
− U − �, f

]
+ � [�g, f ] = 0 (11.31)
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which has the simple solution

v = 0

β (R) = β, independent of R

μ (R) + U (R) = μ′, independent of R

(11.32)

For these values of β , μ, and v, the function f (p, ω; R) is

independent of p, and R:

f (p, ω; R) = 1

eβ(ω−μ′) ∓ 1

and hence,

a
[
ω −

(
p2

2m

)
− U − �, f

]
+ � [�g, f ]

= −
[

a
(

∂

∂T

)(
ω −

(
p2

2m

)
− U − �

)
+ �

(
∂�g
∂T

)]
∂ f
∂ω

Since neither

ω −
(

p2

2m

)
− U − �

nor g depends on time, the choice Eq. (11.32) indeed gives a solution

to Eq. (11.31).

Now we consider Eq. (11.29), the momentum conservation law,

in the case U (R, T ) = U (R). Using Eq. (11.32), we find

0 = −n (β, μ (R)) ∇U (R) − ∇ P (β, μ (R))

or

0 = −
[

n (β, μ (R)) − ∂ P (β, μ (R))

∂μ

]
∇U (R)

But ∇U (R) is arbitrary, so that(
∂

∂μ

)
P (β, μ) = n (β, μ) (11.33)

This is identical with one of the thermodynamic definitions of the

pressure that we used in Chapter 3. The identification of the P
in Eq. (11.29) as the pressure is, therefore, correct. Incidentally,

Eq. (11.28) is a useful expression for calculating the pressure.
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Finally, we consider the energy conservation law (11.21). The

substitution of the local-equilibrium solutions into this law yields(
∂

∂T

){
E (β (R, T ) , μ (R, T )) + 1

2
m [v (R, T )]2 n (β (R, T ) , μ (R, T ))

}

= −∇ · jE (R, T ) − n (β (R, T ) , μ (R, T )) v (R, T ) · ∇U (R, T )

(11.34)

where the equilibrium energy density is

E (β, μ) =
∫

dp

(2π)3

dω

2π

p2

2m
G< ( p, ω; β, μ)

− 1

2

∫
dr2 v (r1 − r2) G2

(
12; 1+2+; β, μ

)∣∣
t2=t+

1

(11.35)

The energy current is given by Eqs. (11.22) and (11.26) as

jE(R, T ) =
∫

dp
(2π)3

dω

2π
p

p2

2m
G< (|p − mv(R, T )| , ω; β(R, T ), μ(R, T ))

−
∫

dr2 v (|r1 − r2|)
[

v (R, T ) + ∇1 − ∇1′

2im

]
× G

(
12; 1′2+; β (R, T ) , μ (R, T )

)∣∣
1′=1+ , t2=t+

1

+
∫

dr2 v (|r1 − r2|) r1 − r2

2

[∇1 − ∇1′

2im
+ v (R, T )

]
· ∇2

× G
(

12; 1′2+; β (R, T ) , μ (R, T )
)∣∣

1′=1+ , t2=t+
1

The rotational invariance of the equilibrium solution may be used to

reduce the energy current to the form

jE (R, T ) = v (R, T ) {}β(R, T ),μ(R, T )

where

{}β,μ = m
2

v2 (R, T ) n (β, μ) +
∫

dp

(2π)3

dω

2π

(
1 + 2

3

)
p2

2m
G< ( p, ω; β, μ)

−
∫

dr2 v (|r1 − r2|) G
(

12; 1′2+; β, μ
)∣∣

1′=1+ , t2=t+
1

+ 1

6

∫
dr2 v (|r1 − r2|) (r1 − r2) · ∇2 G

(
12; 1′2+; β, μ

)∣∣
1′=1+ , t2=t+

1

When we integrate the last term in the braces by parts, it becomes∫
dr2

[∇r1
v (r1 − r2)

] · (r1 − r2) G2 () + 1

2

∫
dr2 v (r1 − r2) G2 ()
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We now see that the energy current may be expressed in terms of

pressure and energy density, defined, respectively, by Eqs. (11.28)

and (11.35):

jE (R, T ) = v (R, T )

[
1

2
mv2 (R, T ) n (β (R, T ) , μ (R, T ))

+ P (β (R, T ) , μ (R, T )) + E (β (R, T ) , μ (R, T ))

]
(11.36)

The energy current is thus the local mean velocity times the sum of

the mean increase in kinetic energy due to the local mean velocity

and the enthalpy density, E + P .

11.5 Sound Propagation

To derive the existence of sound propagation from these conser-

vation laws, we consider the case in which U (R, T ) is small. At

time T = −∞, we consider the system to be in equilibrium with

β (R, T ) = β; μ (R, T ) = μ, v (R, T ) = 0. Then, for all later times

β (R, T ) − β , μ (R, T ) − μ, and v (R, T ) will be small.

In the conservation laws, we consider only first-order terms.

Then the number conservation law (11.23) is

∂

∂T
n (β (R, T ) , μ (R, T )) + n∇ · v (R, T ) = 0 (11.37)

The energy conservation law (11.34) is

∂

∂T
E (β (R, T ) , μ (R, T )) + (E + P ) ∇ · v (R, T ) = 0 (11.38)

and the momentum conservation law (11.29) is

n
∂

∂T
v (R, T ) + ∇ P (β (R, T ) , μ (R, T )) = −n∇U (R, T ) (11.39)

We eliminate v from Eqs. (11.37) and (11.38) to find:

1

n
∂

∂T
n (β (R, T ) , μ (R, T )) = 1

E + P
∂

∂T
E (β (R, T ) , μ (R, T ))

(11.40)
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We also eliminate v from Eqs. (11.37) and (11.39) by taking the

divergence of the latter and then substituting the time derivative of

the former. This gives

m
∂2

∂T 2
n(β(R, T ), μ(R, T )) − ∇2 P (β(R, T ), μ(R, T ))

= −n∇2U (R, T ) (11.41)

These equations are almost identical to those that arose in the

discussion of sound propagation based on the ordinary Boltzmann

equation.

Equation (11.40) relates the permissible variations in μ (R, T )

and β (R, T ). Since all the quantities that appear in this equation

are thermodynamic functions, we can give a thermodynamic

interpretation of Eq. (11.40). This equation demands that the change

in β and μ be such that

dn
n

− dE
E + P

= 0 (11.42)

where dn and dE are the local changes in n and E . We recall the

thermodynamic identities

T S = E + P V − μN

and

SdT = −Ndμ + V d P

where S is the entropy, E is the total energy, and N is the total

number of particles. These identities may be expressed solely in

terms of intensive quantities by dividing both sides of each by N .

Then

T
(

S
N

)
= E + P

n
− μ (11.43)

and

S
N

dT = −dμ + d P
n

(11.44)

If we take the differential of Eq. (11.43) and use the relation (11.44),

we find the equation

T d
(

S
N

)
= dE

n
− E + P

n
dn
n
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It follows that

dn
n

− dE
E + P

= − T n
E + P

d
(

S
N

)

Therefore, the restriction (11.42) may be written as

d
(

S
N

)
= 0 (11.45)

This restriction means that β (R, T ) and μ (R, T ) change so that the

entropy per particle, a local quantity, is constant.

Because of this restriction, the change in pressure must be

related to the change in the density by

d P =
(

∂ P
∂n

)
S/N

dn

Therefore, the momentum conservation law (11.41) becomes simply

the sound-propagation equation[
∂2

∂T 2
− C 2∇2

]
n (β (R, T ) , μ (R, T )) = −∇2U (R, T )

n
m

(11.46)

where C , the sound velocity, is determined by

mC 2 =
(

∂ P
∂n

)
S/N

(11.47)

For a perfect gas, the result (11.47) agrees with the sound

velocity derived from the ordinary Boltzmann equation. When the

potential is nonzero, these results differ. The sound velocityd (11.47)

is amply verified by experiment.

This formula for the sound velocity can be obtained much

more directly, assuming only local thermodynamic equilibrium and

applying the conservation laws. The main justification for our rather

elaborate Green’s function arguments is that they provide a means

of describing transport phenomena in a self-contained way, starting

from a dynamical approximation, i.e., an approximation for G2(U ) in

terms of G(U ). These calculations require no extra assumptions. The

existence of local thermodynamic equilibrium is derived from the

dThe equation number was originally (11.31), which is the time-independent local-

equilibrium Boltzmann equation, the wrong reference.
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Green’s function approximations. The various quantities that appear

in the conservation laws are determined by the approximation. The

theory provides at the same time a description of what transport

processes occur, in this case sound propagation, and a determination

of the numerical quantities that appear in the transport equation, in

this case (∂ P/∂n)S/N .
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Chapter 12

The Landau Theory of the Normal Fermi
Liquid

12.1 The Boltzmann Equation

The nonequilibrium theory described in the previous chapters

reduces to a particularly simple form for a system of fermions

very close to zero temperature. To see this, let us define a “local

occupation number” f (p, ω; R, T ) by writing

g< (p, ω; R, T ) = a (p, ω; R, T ) f (p, ω; R, T ) (12.1)

where

a (p, ω; R, T ) = g> (p, ω; R, T ) ∓ g< (p, ω; R, T )

In equilibrium, at zero temperature

f (p, ω; R, T ) → f (ω) =
{

0 for ω > μ

1 for ω < μ

Therefore, all “states” with ω < μ are occupied, and all “states” with

ω > μ are empty. At very low temperatures, f differs from 0 or 1

only for ω very near to μ. We shall assume that f still has this form

at low temperatures, even in the presence of a disturbance. That is,

we assume that there exists a μ (R, T ) such that f (p, ω; R, T ) = 0

Annotations to Quantum Statistical Mechanics
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for ω appreciably greater than μ (R, T ), and f (p, ω; R, T ) = 1 for

ω appreciably less than μ. The only frequencies for which the local

occupation number, f (p, ω; R, T ), is different from zero or one are

those within an infinitesimal range of μ (R, T ). This dependence of

f on ω is essentially what we mean by “low temperature” for a non-

equilibrium system. We shall show in a moment that this hypothesis

about the behavior of f leads to a perfectly consistent solution to

our basic nonequilibrium equations.

There is one simplification that makes this low-temperature

system rather tractable: for ω near μ, the lifetime � becomes

vanishingly small. We have mentioned in Chapter 5 that at zero

temperature in equilibrium

> ( p, ω) = 0 for ω < μ

< ( p, ω) = 0 for ω > μ

The proof of this relations depends only on the fact that f = 0 for

ω > μ and 1 − f = 0 for ω < μ. Since we are assuming that f has a

similar behavior in the nonequilibrium case, it follows that

> (p, ω; R, T ) = 0 for ω < μ (R, T )

< (p, ω; R, T ) = 0 for ω > μ (R, T )
(12.2)

when the system is very little excited from its zero-temperature

state. Therefore, for situations near zero temperature, we shall take

both > and < to be very small at those frequencies, near μ, for

which the occupation numbers f (p, ω; R, T ) differ from 0 or 1.

This approximation involves an assumption about the continuity of

> and < at ω = μ. The continuity can be proved in all orders

of perturbation theory, but it is not necessarily true for situations,

such as the superconducting state, in which perturbation theory is

not valid. Therefore, the discussion in the remainder of this chapter

applies only to so-called “normal” fermion systems and not to the

superconductor.

If > and < are both negligible for ω near μ, then this region

the Boltzmann equation (10.30) becomes[
ω −

(
p2

2m

)
− U (R, T ) − �(p, ω; R, T ), a(p, ω; R, T ) f (p, ω; R, T )

]
= 0

for ω ≈ μ

(12.3)
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We may verify that out assumptions about f for ω appreciably

greater or less than μ (R, T ) lead to a consistent solution to the

Boltzmann equation. First if ω is appreciably less than μ, then from

the assumption f = 1, we have

> = 0, < = �, g> = 0, and g< = a (12.4)

When we substitute this solution into the Boltzmann equation

(10.30), we find[
ω −

(
p2

2m

)
− U (R, T ) − � (p, ω; R, T ) , a (p, ω; R, T )

]
− [� (p, ω; R, T ) , �g (p, ω; R, T )] = 0 for ω < μ

(12.5)

Since this equation is, in fact, just Eq. (10.27) satisfied by a, Eq. (12.4)

for ω appreciably less than μ. For ω appreciably greater than μ, the

solution g< = < = 0, which follows from the assumption f = 0,

trivially satisfies Eq. (10.30).

We have shown in Chapter 10 that for all ω, a (p, ω; R, T ) is given

bya Eq. (10.28b) with the aid of Eq. (10.31)

a (p, ω; R, T ) = � (p, ω; R, T )[
ω −

(
p2

2m

)
− U (R, T ) − � (p, ω; R, T )

]2

+
[

�(p,ω;R, T )

2

]2

Thus, when ω is close to μ, so that

� (p, ω; R, T ) = > (p, ω; R, T ) ∓ < (p, ω; R, T ) → 0

a becomes just the delta function

a (p, ω; R, T ) = 2π

(
ω −

(
p2

2m

)
− U (R, T ) − � (p, ω; R, T )

)
(12.6)

Note that at ω = μ (R, T )

∂

∂ω
� (p, ω; R, T ) = ∂

∂ω

∫
dω′

2π

� (p, ω′; R, T )

ω − ω′

= −
∫

dω′

2π

� (p, ω′; R, T )

(μ − ω′)2
< 0

since � is a positive function. By continuity, ∂�
∂ω

< 0 for all ω near

μ. Therefore, the argument of the delta function in Eq. (12.6) is a

aIn the original text, the reference equation number was only (10.31), but this is not

enough to explain the following equation.
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monotonically increasing function of ω for all ω near μ. It follows

then that for every p, R, T , there exists just one root of

ω =
(

p2

2m

)
+ U (R, T ) + � (p, ω; R, T )

Let us write this solution as

ω = E (p, R, T ) + U (R, T ) (12.7)

where

E (p, R, T ) =
(

p2

2m

)
+ � (p, ω; R, T )|ω=E (p, R, T )+U (R, T )

In equilibrium, E (p, R, T ) reduces to E ( p). Because the re-

sponse to the disturbance is primarily a change in the occupation

of single-particle levels with ω near μ, the response manifests itself

mostly for momenta such that E ( p) ≈ μ. We shall assume that there

exists a unique momentum pF, called the Fermi momentum, such

that E ( pF) = μ.

The two basic assumptions that go into this theory are the

existence of a unique Fermi momentum and the smooth variation

of > and < near ω ≈ μ. Whenever these two assumptions are

satisfied, the rest of our statements will hold for a fermion system at

sufficiently low temperatures, in which the disturbance varies very

slowly in space and time.

We can combine Eqs. (12.3) and (12.6) into the form[
ω −

(
p2

2m

)
− U − �, 2πδ

(
ω −

(
p2

2m

)
− U − �

)
f (p, ω; R, T )

]
= 0

for ω ≈ μ

(12.8)

Clearly, we need not consider the general f (p, ω; R, T ) but only the

simpler distribution functionb

n (p, R, T ) = f (p, ω; R, T )|ω=E (p, R, T )+U (R, T ) (12.9)

We shall interpret n (p, R, T ) as the density of quasi-particles

with momentum p at the space–time point R, T . As we proceed, we

b(Original) ‡The symbol n (p, R, T ) for the quasi-particle distribution function,

rather than f (p, R, T ), is conventional in the literature of low-temperature fermion

systems.
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shall find that these quasi-particles behave very much like a system

of weakly interacting particles.

For example, the quasi-particle distribution function obeys a

simple Boltzmann equation. To derive this, we use the fact that[
ω −

(
p2

2m

)
− U − �, 2πδ

(
ω −

(
p2

2m

)
− U − �

)]
= 0

to rewrite Eq. (12.8) in the formc

2πδ

(
ω −

(
p2

2m

)
− U − 

)[
ω −

(
p2

2m

)
− U − , n

]
= 0

(12.10)

It is possible to effect a considerable simplification in Eq. (12.10).

First note that

δ

(
ω −

(
p2

2m

)
− U − 

)
= δ

(
[ω − U − E (p, R, T )]

[
1 − ∂ (p, ω; R, T )

∂ω

])

= δ (ω − U (R, T ) −  (p, R, T ))

1 − ∂ (p, ω; R, T )

∂ω

(12.11)

Thus, Eq. (12.10) can be writtend

2πδ (ω − U (R, T ) −  (p, R, T ))

1 − ∂ (p, ω; R, T )

∂ω

{[
1 − ∂ (p, ω; R, T )

∂ω

]
∂n (p, R, T )

∂T

+∇p

[(
p2

2m

)
+ U (R, T ) +  (p, ω; R, T )

]
· ∇Rn (p, R, T )

−∇R

[(
p2

2m

)
+ U (R, T ) +  (p, ω; R, T )

]
· ∇pn (p, R, T )

}
= 0

(12.12)

Now{
∇p

[(
p2

2m

)
+ U (R, T ) +  (p, ω; R, T )

]}
ω=U (R, T )+E (p, R, T )

= ∇p E (p, R, T ) −
[

∂ (p, ω; R, T )

∂ω

]
ω=U (R, T )+E (p, R, T )

∇p E (p, R, T )

c(Original) §Since we are assuming that  (p, z; R, T ) is real near z = μ, we shall

drop the � in � (p, ω; R, T ) henceforth in this chapter.
dIn the original text, the equation number was (12.7).
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and also

{
∇R

[(
p2

2m

)
+ U (R, T ) +  (p, ω; R, T )

]}
ω=U +E

= ∇R (E + U )

(
1 − ∂

∂ω

)
ω=U +E

Therefore, Eq. (12.12) can be written in the much simpler form

2πδ (ω − E (p, R, T ))

[
∂n (p, R, T )

∂T
+ ∇p E (p, R, T ) · ∇Rn (p, R, T )

− ∇R E (p, R, T ) · ∇pn (p, R, T )

]
= 0 for ω ≈ μ

(12.13)

Consequently, the quasi-particle distribution function satisfies the

Boltzmann equation

∂n
∂T

+ ∇p E · ∇Rn − ∇R E · ∇pn − ∇RU · ∇pn = 0 (12.14)

12.2 Conservation Laws

The response of the system to a slowly varying external disturbance

can be described in terms of the quasi-particles, whose distribution

function is determined by the Boltzmann equation (12.14). From

this Boltzmann equation, we can derive the forms of the conserva-

tion laws appropriate to a very low-temperature fermion system.

These conservation laws will provide an identification of physical

quantities like the number density, the momentum density, and the

energy density in terms of the quasi-particle distribution function.

Moreover, they will give a further confirmation of the quasi-particle

picture.

We recall that the differential number conservation law is

∂

∂T
〈n̂ (R, T )〉U + ∇ ·

〈
ĵ (R, T )

〉
U

= 0 (12.15)
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To obtain a result that we can identify with this number conserva-

tion law, we integrate Eq. (12.14) over all momenta p, and find∫
dp

(2π)3

∂n (p, R, T )

∂T
+
∫

dp

(2π)3
∇p E (p, R, T ) · ∇Rn (p, R, T )

−
∫

dp

(2π)3
∇R E (p, R, T ) · ∇pn (p, R, T ) = 0

(12.16)

The last term here can be converted into the form∫
dp

(2π)3

[∇R · ∇p E (p, R, T )
]

n (p, R, T )

by an integration by parts, so that Eq. (12.16) becomes

∂

∂T

∫
dp

(2π)3
n(p, R, T )+∇R·

∫
dp

(2π)3

[∇p E (p, R, T )
]

n(p, R, T ) = 0

(12.17)

But the number density is the unique quantity constructible from g>

and g< that satisfies a conservation law of the form of Eq. (12.15).

Consequently, we can identify the first term in Eq. (12.17) with
∂ 〈n̂ (R, T )〉U

∂T
and the second term with ∇ ·

〈
ĵ (R, T )

〉
U

. Thus

〈n̂ (R, T )〉U =
∫

dp

(2π)3
n (p, R, T ) + n0 (12.18)

〈
ĵ (R, T )

〉
U

=
∫

dp

(2π)3

[∇p E (p, R, T )
]

n (p, R, T ) + j0 (12.19)

The constants n0 and j0 must be independent of time and space,

respectively. Therefore, these constants must be independent of the

distribution function n (p, R, T ). Since we shall only be interested

in the variations in 〈n̂〉 and
〈

ĵ
〉

resulting from variations in the

distribution function, we shall neglect these constants hereafter.

Similarly, we can ignore the fact that n (p, R, T ) is ill-defined for p
far from pF. The only variations in n (p, R, T ) that we need consider

are for p near pF, and hence the integrals in Eqs. (12.18) and (12.19)

will contribute only for p near pF.

Equations (12.18) and (12.19) indicate the essential correctness

of the quasi-particle picture. In Eq. (12.18), we see that the change in

the density of particles is the integral over all momenta of the change

in the density of quasi-particles with momentum p. In Eq. (12.19),
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we see that the change in the total current is ∇p E (p, R, T ), the

velocity of a quasi-particle with momentum p, times n (p, R, T ),

the change in the density of quasi-particles with momentum p,

integrated over all momenta.

The momentum conservation law is

∂

∂T
m
〈

ĵ (R, T )
〉

U
+ ∇ · T (R, T ) = −〈n̂ (R, T )〉U ∇RU (R, T )

(11.19)

To obtain the form of this law appropriate to the present situation,

we multiply Eq. (12.14) by p and integrate over all momenta. Thus,

we find

∂

∂T

∫
dp

(2π)3
pn(p, R, T ) +

∫
dp

(2π)3
p
{

(∇p E ) · (∇Rn) − (∇R E ) · (∇pn)
}

= − [∇RU (R, T )] 〈n̂ (R, T )〉U (12.20)

It is exceedingly plausible to identify the momentum density,

m
〈

ĵ (R, T )
〉

U
, with the integral of the momentum times the quasi-

particle distribution function, i.e.,〈
ĵ (R, T )

〉
U

=
∫

dp

(2π)3

p
m

n (p, R, T ) (12.21)

This identification, as well as the identifications (12.18) and (12.19),

can be put on a firm mathematical basis, but the arguments

necessitate inquiring more deeply into the structure of the many-

body perturbation theory than we care to at this point. We shall

merely state that Eq. (12.21) can be shown to be a consequence of

the momentum conservation law, while Eqs. (12.18) and (12.19) can

be similarly derived from the number conservation law. Equation

(12.21) is an alternative expression for the current, which should be

compared with our earlier result, Eq. (12.19). Later we shall use the

equality of these two expressions for the current in the calculation

of the equilibrium value of ∇p E .

Now let us consider the expression for the stress tensor that

is derived by making use of identification (12.21) of the current.

A comparison of the momentum conservation law (11.19) with

Eq. (12.20) yields

3∑
i=1

∂

∂ Ri
Ti j (R, T ) =

3∑
i=1

∫
dp

(2π)3
pj

[
∂ E
∂pi

∂n
∂ Ri

− ∂ E
∂ Ri

∂n
∂pi

]

(12.22)
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By integrating the last term in Eq. (12.22) by parts, we can write

3∑
i=1

∂

∂ Ri
Ti j (R, T ) =

3∑
i=1

∫
dp

(2π)3

[
pj

∂ E
∂pi

∂n
∂ Ri

+ n
∂

∂pi

(
∂ E
∂ Ri

pj

)]

=
3∑

i=1

∂

∂ Ri

[∫
dp

(2π)3

(
pj

∂ E
∂pi

+ δi j E
)

n
]

−
∫

dp

(2π)3
E

∂n
∂ R j

(12.23)

If the right side of this equation is really to be the divergence of a

tensor, ∫
dp

(2π)3
E (p, R, T ) ∇Rn (p, R, T )

must be the gradient of some scalar. Let us denote this scalar by the

E (R, T ). Then E (R, T ) is defined by

∇RE (R, T ) =
∫

dp

(2π)3
E (p, R, T ) ∇Rn (p, R, T ) (12.24)

E (R, T ) is a functional of n (p, R, T ) for all values of p. And because

 (p, ω; R, T )|ω=U (R, T )+E (p, R, T )

can be expressed (as we saw in Chapter 11) as a functional of

n (p′; R, T ) with no explicit dependence on U (R, T ), E (R, T ) does

not have any explicit dependence on U . Therefore, we can compute

∇RE (R, T ) as

∇RE (R, T ) =
∫

dp
δE (R, T )

δn (p, R, T )
∇Rn (p, R, T ) (12.25)

By comparing Eqs. (12.24) and (12.25), we see that

E (p, R, T ) = (2π)3 δE (R, T )

δn (p, R, T )
(12.26)

Because the last term in Eq. (12.23) is the gradient of E , we can solve

this equation for T to find

Ti j (R, T ) =
∫

dp

(2π)3

[
pj

∂ E (p, R, T )

∂pi
+ δi j E (p, R, T )

]
n (p, R, T )

− E (R, T ) δi j (12.27)
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We can, by calculating ∂E
∂T , discover the physical interpretation of

E . From Eq. (12.26)

∂E (R, T )

∂T
=
∫

dp
δE (R, T )

δn (p, R, T )

δn (p, R, T )

∂T

=
∫

dp

(2π)3
E (p, R, T )

∂n (p, R, T )

∂T

From the Boltzmann equation (12.14), we see that∫
dp

(2π)3
E (p, R, T )

∂n (p, R, T )

∂T

= −
∫

dp

(2π)3

[
E∇p E · ∇Rn − E∇R · ∇pn

]+
∫

dp

(2π)3
E∇RU · ∇pn

= − ∇R ·
∫

dp

(2π)3

(
E∇p E

)
n − ∇RU ·

∫
dp

(2π)3

(∇p E
)

n

so thate

∂E (R, T )

∂T
+ ∇R ·

∫
dp

(2π)3
E (p, R, T )

[∇p E (p, R, T )
]

n (p, R, T )

= − ∇RU (R, T ) ·
∫

dp

(2π)3

[∇p E (p, R, T )
]

n (p, R, T )

(12.28)

This is exactly the form of an energy conservation law with an energy

current

jε (R, T ) = ∇R ·
∫

dp

(2π)3
E (p, R, T )

[∇p E (p, R, T )
]

n (p, R, T )

(12.29)

equal to the sum over all momenta of the density of quasi-particles,

times the energy of the quasi-particle E , times the quasi-particle

velocity ∇p E . The source term in the conservation law is

−∇RU (R, T ) ·
∫

dp

(2π)3

[∇p E (p, R, T )
]

n (p, R, T )

which is the power fed into the system. Hence, Eq. (12.28) becomes

exactly the usual energy conservation law

∂E (R, T )

∂T
+ ∇ · jε (R, T ) = −∇U (R, T ) ·

〈
ĵ (R, T )

〉
U

(12.30)

eWe insert the parenthesis [· · · ] in the right-hand side for avoiding the differentiation

confusion.



February 8, 2018 10:55 PSP Book - 9in x 6in Annotations2QSM

Thermodynamic Properties 195

12.3 Thermodynamic Properties

It seems quite clear by this point that E (R, T ) is just the energy

density. A final check on this point, we compute, in the case of

equilibrium [U (R, T ) = 0], the change in E (R, T ) resulting from

a change in the chemical potential μ. In this situation

δE =
∫

dp

(2π)3
E ( p)δn( p) (12.31)

From the definition of n (p, R, T ) in equilibrium, at zero tempera-

ture

n( p) = f (E ( p)) =
{

0 for E ( p) > μ

1 for E ( p) < μ
(12.32)

Therefore, all contributions to Eq. (12.31) come at p = pF, where

E ( p) = μ. Thus

δE =
∫

dp

(2π)3
δn( p)μ = μδn

so that

dE
dn

= μ (12.33)

We, therefore, recover the thermodynamic relationship that at zero

temperature, the derivative of the energy density with respect to

the particle density is the chemical potential. This is but another

indication that E is the energy density.

We would like to see how the other important thermodynamic

quantities appear in this theory. To do this, let us note that the

basic element of the theory, the quantity that can be calculated

directly from Green’s function, is E (p; R, T ), the quasi-particle

energy expressed as a functional of the distribution function. From

E (p, R, T ), we can calculate

f
(

p, p′; R, T
) = (2π)3 δE (p, R, T )

δn (p′, R, T )
(12.34)

Since f (p, p′; R, T ) is a second variational derivative, and two such

derivatives comment, it is symmetrical in p and p′, i.e.,

f
(

p, p′; R, T
) = f

(
p′, p; R, T

)
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This second variational derivative of the energy is a kind of effective

interaction. For example, in the Hartree approximation,

E (p, R, T ) =
(

p2

2m

)
+
∫

dp′

(2π)3

[
v − v

(∣∣p − p′∣∣)] n
(

p′, R, T
)

Therefore,

E (R, T ) =
∫

dp

(2π)3

p2

2m
n
(

p′, R, T
)

+ 1

2

∫
dp

(2π)3

dp′

(2π)3
n (p, R, T )

[
v − v

(∣∣p − p′∣∣)]

and

f
(

p, p′; R, T
) = [v − v

(∣∣p − p′∣∣)]
Unfortunately, this is the last case in which we can obtain any

moderately simple forms for E , E , and f . For example, in the Born

collision approximation c (p, z; R, T ) is expressed as complicated

integrals of products of g> (p′, ω′; R, T ) and g> (p′′, ω′′; R, T ).

Through the contribution of these integrals for frequencies near

μ (R, T ), c (p, z; R, T ) gains a dependence on n (p′, R, T ). Also

c depends on a for all frequencies, and a in turn is expressed

in terms of . Thus, a and E turn out to depend on n in a very

complex implicit fashion. But even though we cannot obtain simple

expressions for E , E , and f , we can use the theory to derive some

interesting general relations between these quantities.

In equilibrium, E (p, R, T ) = E ( p). All the interesting properties

of the system are determined by the distribution function for

momenta near pF. To find these properties, we need to know the

behavior of E ( p) near p = pF. In particular, we should know the

effective mass m∗, defined by

E ( p) = μ + p2 − p2
F

2m∗ near p = pF (12.35)

We can express this effective mass in terms of f (p, p′) by making

use of the fact that Eqs. (12.19) and (12.21) are both valid
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expressions for the current
〈

ĵ (R, T )
〉

. We havef

〈
ĵ (R, T )

〉
=
∫

dp

(2π)3

p
m

n (p, R, T ) (12.21)

=
∫

dp

(2π)3
∇p E (p, R, T ) n (p, R, T ) (12.19)

By taking the variational derivative of this equation with respect to

n (p, R, T ), we find

p
m

= ∇p E (p, R, T ) +
∫

dp′

(2π)3

[∇p′ f
(

p, p′; R, T
)]

n
(

p′, R, T
)

In equilibrium, this becomesg

p
m

= p
m∗ −

∫
dp′

(2π)3
f
(

p, p′)∇p′ n
(

p′) (12.36)

But

n( p) =
{

0 p > pF

1 p < pF

so that

p
m

= p
m∗ −

∫
dp′

(2π)3
f
(

p, p′) p′

p′ δ
(

p′ − pF

)
(12.37)

At p = pF and p′ = pF, f (p, p′) depends only on cos θ = p·p′

p2
F

. Thus,

at p = pF, we can write Eq. (12.37) as

1

m
= 1

m∗ − 1

pF

∫
dp′

(2π)3
f (cos θ) cos θδ

(
p′ − pF

)
or

1

m
= 1

m∗ − pF

2π2

∫ 1

−1

d (cos θ)

2
f (cos θ) cos θ (12.38)

This expression relates the effective mass to a moment of the

effective two-particle interaction. For example, in the Hartree–Fock

approximation, this gives the effective mass as

1

m
= 1

m∗ − pF

2π2

∫ 1

−1

d (cos θ)
{

v(0) − v
(

pF

√
2 − 2 cos θ

)}
cos θ

fThe equation numbers were not written in the original text. Here those numbers are

written intentionally for providing better understanding.
gThis can be done by the integration by parts on the integral term of the right-hand

side.
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Another thermodynamic quantity of some importance is the

thermodynamic derivative dn
dμ

. From Eq. (12.18), the change in n can

be written as

dn =
∫

dp′

(2π)3
dn (p)

But from Eq. (12.32)

dn (p) = −d [E ( p) − μ] δ (E ( p) − μ)

Since dn (p) depends only on p when we change μ, we have

d E ( p) =
∫

dp′

(2π)3
f
(

p, p′) dn
(

p′)

=
∫ 1

−1

d (cos θ)

2
f (cos θ)

∫
dp′

(2π)3
dn
(

p′)

=
∫ 1

−1

d (cos θ)

2
f (cos θ) dn

Thus

dn( p) = −δ (E ( p) − μ)

[
dn
∫ 1

−1

d (cos θ)

2
f (cos θ) − dμ

]
and

dn =
∫

dp

(2π)3
δ (E ( p) − μ)

[
dμ −

∫ 1

−1

d (cos θ)

2
f (cos θ) dn

]

Because δ (E ( p) − μ) = δ

((
p2

2m∗

)
−
(

p2
F

2m∗

))
,

dn = m∗ pF

2π2

[
dμ − dn

∫ 1

−1

d (cos θ)

2
f (cos θ)

]
and

dn
dμ

=
( pF

2m

)[ 1

m∗ + pF

2π2

∫ 1

−1

d (cos θ)

2
f (cos θ)

]−1

If we make use of expression (12.36) for m∗, we find

dn
dμ

=
[

2π2

m∗ pF

+
∫ 1

−1

d (cos θ)

2
f (cos θ) (1 − cos θ)

]−1

(12.39)

as our expression for the thermodynamic derivative in terms of the

effective two-particle interaction.
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Expressions (12.38) and (12.39) were originally derived by

Landau. He goes on to use the basic equations we have written here

to derive all the properties of a low-temperature normal fermion

system, including the existence of zero sound. Since we feel that we

cannot hope to surpass the clarity and beauty of Landau’s original

presentation, we strongly suggest that the reader refer to his papers

cited in References and Supplementary Reading.
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Chapter 13

Shielded Potential

13.1 Green’s Function Approximation for
Coulomb Gas

In our discussion of the random phase approximation, we saw that

the particles in a Coulomb system move so as to produce a decided

shielding effect. They reduce the effect of slowly varying external

forces applied to the system. In particular, the applied field U (R, T )

produces the reduced total potential fielda

U eff (R, T ) = U (R, T ) +
∫

dR′ e2

|R − R′|
(〈

n̂
(

R′, T
)〉− n

)
= U (R, T ) +

∫
dR′ e2

|R − R′|
× [±i (2S + 1) G<

(
R′, T ; R′, T ; U

)− n
]

(13.1)

The constant n, the average density, represents the subtraction of

the uniform background. The (2S + 1) comes from summing over

the spin degree of freedom [cf. Eq. (8.3a)]. The main application of

this chapter will be to an electron gas for which (2S + 1) = 2.

aThe coordinate variable R′ in G< was R, which was a typographic error, in the

original text.
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The reduction in the applied field is measured by the dielectric

response function

K (1, 2) =
[
δU eff(1)

δU (2)

]
(13.2)

In fact, the Fourier transform of K goes to zero in the low-wave-

number, low-frequency limit [cf. Eq. (8.32) for example], implying

that the applied field is completely shielded out in this limit.

Now all of the approximations we have discussed so far have

been derived by expanding G2 or  in a power series in V and

G. In Chapter 6, these expansions were derived by considering

quantities such as δ (1, 1′; U ) /δU (2) to be small in comparison

with δ (2 − 1′) δ (1 − 2). This kind of approximation is certainly

wrong in a Coulomb system. To see this, we should note that to

lowest order

δ (1, 1′; U )

δU (2)
=δHartree (1, 1′; U )

δU (2)

= δ

δU (2)
[U eff(1) − U (1)] δ

(
1 − 1′)

Then

δ (1, 1′; U )

δU (2)
= δ

(
1 − 1′) [K (1, 2) − δ (1 − 2)]

But we have already said that K can usually be considered to be

a small quantity, in the sense that its Fourier transform is usually

much less than one. Therefore, in the lowest approximation in a

Coulomb system,

δ (1, 1′; U )

δU (2)
≈ −δ

(
1 − 1′) δ (1 − 2)

Clearly, then we cannot use approximations derived from the

statement

δ (1, 1′; U )

δU (2)
� δ

(
1 − 1′) δ (1 − 2)

We shall instead derive approximations for the Coulomb system

by considering how functions change when Ueff is changed. There

is much physical sense in saying that the relevant quantity for a

Coulomb system is the total field through which the particles move,
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and not the applied field. We can expect that physical quantities

should vary rather slowly in their dependence on the total field U eff.

To derive approximations, we begin from the exact equation

(6.24a)

G−1
(

1, 1′; U
) =

[
i

∂

∂t1

+ ∇2
1

2m
− U eff(1)

]
δ
(

1 − 1′)

− i
∫ −iβ

0

d1̄d2̄ V (1 − 2)

[
δ

δU (2)
G
(

1, 1̄; U
)]

G−1
(

1̄, 1′; U
)

(13.3)

which holds for the time arguments in the imaginary interval

[0, −iβ]. Since the only occurrence of U in this equation is in U eff, we

see that G depends on U only in so far as it depends on U eff. We shall,

therefore, regard G as a functional of U eff. We may handle variational

derivatives very much as ordinary derivatives. Thus, we may use the

chain rule for differentiating G (U eff) with respect to U , i.e.,

δG (1, 1′; U eff)

δU (2)
=
∫ −iβ

0

d3
δU eff(3)

δU (2)

δG (1, 1′; U eff)

δU eff(3)
(13.4)

The (r3, t3) integral is over all space and all times in the interval

[0, −iβ], since G depends on U eff in that entire region. Then we can

rewrite Eq. (13.3) as

G−1
(

1, 1′; U
) =

[
i

∂

∂t1

+ ∇2
1

2m
− U eff(1)

]
δ
(

1 − 1′)

− i
∫ −iβ

0

d1̄d3 VS (1, 3)

[
δG

(
1, 1̄; U eff

)
δU eff(3)

]
G−1

(
1̄, 1′; U eff

)
(13.5)

The quantity

VS (1, 3) =
∫ −iβ

0

d2 V (1 − 2)
δU eff(3)

δU (2)

=
∫ −iβ

0

d2 V (1 − 2) K (3, 2)

(13.6)

occurring in the above equation is interpreted simply as an effective

time-dependent interaction between particles at the points 1 and 3.

A particle at 1 can affect a particle at 3 in two ways. First, the particle

at 3 can feel the effects of the potential V (1 − 3) directly. Also the

potential V can effect particles at 2, which in turn will change the

potential they exert at point 1. This intermediate polarization of the
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medium leads to the time dependence of the effective interaction.

The first effect is represented in the delta-function part of K and

the second effect in the remainder in K . Because of the dynamic

shielding, VS is of much smaller than V ; we shall call it the shielded

potential.

To the lowest order, we can approximate Eq. (13.5) by neglecting

δG/δU eff. This yields the Hartree approximation

G−1 = G−1
0 − U eff

To obtain the next-order result, we define

G−1
(

1, 1′; U eff

) =
[

i
∂

∂t1

+ ∇2
1

2m
− Ueff(1)

]
δ
(

1 − 1′)− ′(1, 1′; U eff

)
(13.7)

where ′ differs from  in that it does not contain the Hartree self-

energy. From Eq. (13.5), we find

′ (1, 1′; U eff

) = − i
∫

VS (1, 3) G
(

1, 1̄
) δG−1

(
1̄, 1′)

δU eff(3)

= i VS

(
1, 1′)G

(
1, 1′)+ i

∫
VS (1, 3) G

(
1, 1̄
) δ′ (1, 1′)

δU eff(3)

(13.8)

Our approximation will be to neglect δ′/δU eff. Thus

′ (1, 1′; U eff

) = i VS

(
1, 1′; U eff

)
G
(

1, 1′; U eff

)
(13.9)

We then need an expression for VS. From its definition, Eq. (13.6)

and the definition of U eff, we write the exact equation

VS (1, 3) =
∫

d2 V (1 − 2)
δU eff(3)

δU (2)

= V (1 − 3) ± i (2S + 1)

∫
V (1 − 2)

δG (4, 4+; U eff)

δU (2)
V (4 − 3)

= V (1 − 3) ± i (2S + 1)

∫
VS (1, 2)

δG (4, 4+)

δU eff(2)
V (4 − 3)

= V (1 − 3) ± i (2S + 1)

∫
VS (1, 2) G (4, 2) G

(
2, 4+) V (4 − 3)

± i (2S + 1)

∫
VS (1, 2) G (4, 5)

δ′ (5, 5′)
δU eff(2)

G
(

5′, 4
)

V (4 − 3)

Again we neglect δ′/δU eff. Thus

VS(1, 3) = V (1 − 3) ± i(2S + 1)

∫
VS (1, 2)G(4, 2)G(3, 4)V (4 − 3)

(13.10)
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We shall use the approximate Eqs. (13.9) and (13.10) to describe the

one-particle Green’s function in an electron gas.

Incidentally, if we started from the random phase approximation

for K , we would arrive at essentially the same equation as Eq.

(13.10) for VS, but the G’s would be replaced by Hartree Green’s

function. To see this, we recall that to derive the random phase

approximation, we began with the Hartree approximation for G in

the presence of U . Then to find K , we differentiated

U eff(1) = U (1) +
∫

V (1 − 2)
[±i (2S + 1) GH

(
2, 2+)− n

]
with respect to U . Here GH is the Hartree Green’s function. Thus

δUeff(1)

δU (3)
= δ(1 − 3) +

∫
V (1 − 2) [±i(2S + 1)]

δGH(2, 2+)

δU eff(4)

δU eff(4)

δU (3)

or

K(1, 3) = δ(1 − 3) ± i(2S + 1)

∫
V (1 − 2)GH(2, 4)GH(4, 2)K(4, 3)

(13.11)

Then using the definition (13.6) of VS, we find for VS in this

approximation

VS(1, 3) = V (1−3) ± i(2S + 1)

∫
VS(1, 2)GH(4, 2)GH(2, 4)V (4−3)

(13.12)

In some ways, it is better to use the Hartree Green’s functions

than the real G’s to determine VS. The derivation of the plasma

pole in VS (or equivalently in K) from Eq. (13.12) depends rather

critically on the use of the properties of the Hartree Green’s

functions. A calculation shows that the plasmon pole appears in VS in

the approximation (13.10) but only at relatively high wavenumber.

Therefore, the low wavenumber form of VS is not given too well

by Eq. (13.10). One would need a fancier equation than Eq. (13.10)

to get the correct low wavenumber behavior of VS, using real G’s.

Nonetheless, we shall use Eq. (13.10) in the evaluation of G.

Let us proceed to the analysis of the equilibrium Green’s function.

Since we are finished taking functional derivatives with respect to

U and U eff, we may set U = 0 in Eqs. (13.9) and (13.10). Then

U eff = 0, because we have included a uniform positive background to

guarantee over-all electric neutrality of the system. This background
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has the effect of canceling the Hartree field of the electrons. Had we

not included the background, U eff would be given by

U eff (r, t) =
∫

dr′ ne2

|r − r′|
where the integral extends over the entire volume of the system.

Thus, U eff would become infinite as the system became infinite.

As in Chapter 5, we wish to determineb

A (p, ω) = � (p, ω)

[ω − E ( p) − �c (p, ω)]2 +
[

�(p,ω)

2

]2

where

� (p, ω) => (p, ω) − < (p, ω)

c (p, z) =
∫

dω′

2π

� (p, ω′)
ω′ − z

and

E ( p) = p2

2m
± (2S + 1)

∫
dp′

(2π)3

4πe2

|p − p′|2

〈
n̂
(

p′)〉
To write down an expression for c, we must note a few simple

facts about VS. The shielded potential obeys the periodic boundary

condition

VS

(
1 − 1′)∣∣

t1=0
= VS

(
1 − 1′)∣∣

t1=−iβ (13.13)

The difference VS − V , like G, is composed of two analytic functions

VS

(
1 − 1′)− V

(
1 − 1′) =

{
V >

S (1 − 1′) for i t1 > i t1′

V <
S (1 − 1′) for i t1 < i t1′

Therefore, VS may be written in terms of a Fourier series, where the

Fourier coefficient is

VS (k, �ν) = V (k) +
∫

dω

2π

V >
S (k, ω) − V <

S (k, ω)

�ν − ω
(13.14)

�ν = πν

−iβ
We may then take Fourier coefficients of Eq. (13.10) and obtain

VS (k, �ν) = V (k) [1 + L1 (k, �ν) VS (k, �ν)] (13.15)

bThe necessary vector symbols are explicitly given in this chapter for clarity. In the

original text, those are written in scalar format.



February 8, 2018 10:55 PSP Book - 9in x 6in Annotations2QSM

Green’s Function Approximation for Coulomb Gas 207

where L1 (k, �ν), the Fourier coefficient of ±(2S + 1)G(4, 2)

G(2, 4) is given by

L1 (k, �ν) =
∫

dω

2π

L>
1 (k, �ν) − L<

1 (k, �ν)

� − ω
(13.16)

and

L≷1 (k, ω) = (2S + 1)

∫
dp′

(2π)3

dω′

2π
G≷

(
p + k

2
, ω′ + ω

2

)
G≶

(
p − k

2
, ω′ − ω

2

)
(13.17)

It is now simple algebra to convince oneself that

V >
S (k, ω) − V <

S (k, ω) = 2�VS (k, ω − iε)

= 2�
[

V (k)

1 − V (k)L1 (k, ω − iε)

]
= |VS (k, ω − iε)|2 × [L>

1 (k, ω) − L<
1 (k, ω)

]
Since

V >
S (k, ω) = eβωV <

S (k, ω) and L>
1 (k, ω) = eβω L<

1 (k, ω)

It follows that

V ≷
S (k, ω) = |VS (k, ω − iε)|2 L≷1 (k, ω) (13.18)

We shall first find >
c (p, ω), the collision rate of a particle with

momentum p and energy ω. The collisional part of the self-energy

differs from ′ by the single-particle exchange energy. Thus, from

Eq. (13.9),

c

(
1 − 1′) = i

[
VS

(
1 − 1′)− V

(
1 − 1′)]G

(
1 − 1′)

so that

≷ (1 − 1′) = i V ≷
S

(
1 − 1′)G≷ (1 − 1′)

and

≷ (p, ω) =
∫

dp′

(2π)3

dω′

2π
V ≷

S

(
p − p′, ω − ω′)G≷ (p′, ω′)

Now from the result (13.18), we find that

> (p, ω) = (2S + 1)

∫
dp′

(2π)3

dω′

2π

dp̄

(2π)3

dω̄

2π

dp̄′

(2π)3

dω̄′

2π

× (2π)3 δ
(

p + p′ − p̄ − p̄′) 2πδ
(
ω + ω′ − ω̄ − ω̄′)

× |VS(p − p̄, ω − ω̄ + iε)|2 G<(p′, ω′)G>(p̄, ω̄)G>(p̄′, ω̄′)
(13.19a)
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Similarly, < (p, ω), the collision rate of an excitation produced by

removing a particle with momentum p and energy ω is

< (p, ω) = (2S + 1)

∫
dp′

(2π)3

dω′

2π

dp̄

(2π)3

dω̄

2π

dp̄′

(2π)3

dω̄′

2π

× (2π)3 δ
(

p + p′ − p̄ − p̄′) 2πδ
(
ω + ω′ − ω̄ − ω̄′)

× |VS (p − p̄, ω − ω̄ + iε)|2

× G>
(

p′, ω′)G< (p̄, ω̄) G<
(

p̄′, ω̄′) (13.19b)

Notice that these results are exactly the same as those that

emerged from the Born collision approximation (without exchange)

except that in the collision cross section,

|VS (p − p̄, ω − ω̄ + iε)|2

replaces

[v (p − p̄)]2

This replacement is absolutely necessary when dealing with the

Coulomb interaction. In this case, the first Born approximation

differential cross section is proportional to the non-integrable

function

[v(k)]2 =
[

4πe2

k2

]2

There is a very small-angle scattering from the long-ranged Coulomb

force, the total cross section diverges, and the lifetime � is infinite.

However, using the shielded potential in the form of Eq. (13.15):

VS (k, �) =
4πe2

k2 − 4πe2 (2S + 1)
∫ dp

(2π)3
dω
2π

dω′
2π

G>(p+ k
2

,ω)G<(p− k
2

,ω′)−G<(p+ k
2

,ω)G>(p− k
2

,ω′)
�−ω+ω′

(13.20)

The low-momentum transfer divergence disappears, and the total

cross section is quite finite. Thus, it is essential to use the shielded

potential in discussing the Coulomb gas.

Not only is it essential to describe the scattering of particles

in the medium by shielded potential, but it is quite reasonable to

do so. VS (k, �) represents the total potential field produced by an

externally added charge distribution proportional to

eik·R−i�T
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But the system should not be able to distinguish very well between

external perturbations and the fields produced by the particles

within the medium. Therefore, if one adds a particle to the medium,

its scattering should be described by the average total field it

produces, i.e., VS.

Another way of stating the same result is to notice that a

particle moving through the medium produces a rather complicated

disturbance. It tends to repel other particles from its immediate

neighborhood so that at large distances, the net disturbance

produces a small to repel particles in its neighborhood. In some

sense, the total disturbance—added particle plus lowered density

in the neighborhood—moves as a single entity. This entity is called

a quasi-particle. The elementary scattering processes are not the

collisions of particles but the collisions of quasi-particles. The

effective potential between quasi-particles is not V (1 − 2) but the

shielded potential VS (1 − 2).

To determine A, we must solve Eqs. (13.12) and (13.19) self-

consistently. It is extremely difficult to get very far in carrying out

this solution. Hence, we shall leave this aspect of the problem here

and turn a discussion of the equation of state of the Coulomb gas in

the shielded potential approximation.

13.2 Calculation of the Equation of State of a
Coulomb Gas

In Chapter 3, we described a method for computing the pressure of a

system by means of an integral, Eq. (3.15), of the interaction energy

over an interaction strengthc parameter. This integral is

P − P0 = − 1

�

∫ 1

0

dλ
λ

〈λV 〉λ � = volume of system (13.21)

where P0 is the pressure of a non-interacting gas with the same

values of the chemical potential and temperature. The interaction

cThere is a typographic error on the word “strength” by “strengthn” in the original

text.
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energy may be expressed in terms of G2 as

〈λV 〉λ =
〈(

1

2

)∫
dr1dr2ψ̂

†(r1)ψ̂†(r2)λv (r1 − r2) ψ̂(r2)ψ̂(r1)

〉
λ

=1

2

∫
dr1dr2 λv (r1 − r2) G2

(
12, 1+2+; λ

)
t2=t+

1

(13.22)

Thus

P = P0 +
∫ 1

0

dλ
λ

∫
dr2 λv (r1 − r2) G2

(
12, 1+2+; λ

)
t2=t+

1

(13.23)

This equation can be used to obtain an implicit form for the

equation of state. Since the density n is given as

n =
(

∂ P
∂μ

)
β

it implies

n = n0 +
∫ 1

0

dλ
λ

∫
dr2 λv (r1 − r2)

[
∂

∂μ
G2

(
12, 1+2+; λ

)]
λβ

(13.24)

Equations (13.23) and (13.24) lead to expressions for the pressure

and the density in terms of the variables β and μ. We shall now

indicate briefly the structure of this result for a Coulomb gas.

For the approximation in the last section, the total interaction

energy is

−
∑
spin

∫
dr2 v (r1 − r2) G2

(
12, 1+2+; λ

)
t2=t+

1

= ± i (2S + 1)

∫ −iβ

0

d1̄ ′ (1 − 1̄
)

G
(

1̄ − 1+)
= ± (2S + 1)

∫
dp

(2π)3

dp′

(2π)3

4πe2

|p − p′|2

∫
dω

2π

dω′

2π
G< (p, ω) G<

(
p′, ω′)

± i (2S + 1)

∫
dp

(2π)3

[∫ t1

0

dt̄1 > (p, t1 − t̄1) G< (p, t̄1 − t1)

−
∫ −iβ

t1

dt̄1 < (p, t1 − t̄1) G> (p, t̄1 − t1)

]
(13.25)

Since the left side is independent of t1, we may, for convenience,

choose t1 = 0. Then, using the Fourier transforms of < and G>,
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we find that the last term is

− (2S + 1)

∫
dp

(2π)3

dω

2π

dω′

2π

eβ(ω−ω′) − 1

ω − ω′ < (p, ω) G>
(

p, ω′)
= − (2S + 1)

∫
dp

(2π)3

dω

2π

dω′

2π

>(p, ω)G<(p, ω′) − <(p, ω)G>(p, ω′)
ω − ω′

Thusd

P = P0 ∓ (2S + 1)

∫ 1

0

dλ
λ

∫
dp

(2π)3

dp′

(2π)3

4πλe2

|p − p′|2
〈n̂ (p)〉λ

〈
n̂
(

p′)〉
λ

+ (2S + 1)

∫ 1

0

dλ
λ

∫
dω

2π

∫
dω′

2π

∫
dp

(2π)3

×> (p, ω) G< (p, ω′) − < (p, ω) G> (p, ω′)
ω − ω′ (13.26)

where 〈n̂ (p)〉λ is the density of particles with a particular spin

direction.

When we substitute the result (13.19) for ≷ into Eq. (13.26),

we find

P = P0 ∓ (2S + 1)

∫ 1

0

dλ
λ

∫
dp

(2π)3

dp′

(2π)3

4πλe2

|p − p′|2
〈n̂ (p)〉λ

〈
n̂
(

p′)〉
λ

+ (2S + 1)2

∫ 1

0

dλ
λ

∫
dpdω

(2π)4

dp′dω′

(2π)4

dp̄dω̄

(2π)4

dp̄′dω̄′

(2π)4

× (2π)4 δ (p + p′ − p̄ − p̄′)
ω + ω′ − ω̄ − ω̄′

∣∣VS

(
λ, p′ − p̄′, ω′ − ω̄′ + iε

)∣∣2
× [G> (p, ω; λ) G>

(
p′, ω′; λ

)
G< (p̄, ω̄; λ) G<

(
p̄′, ω̄′; λ

)
−G< (p, ω; λ) G<

(
p′, ω′; λ

)
G> (p̄, ω̄; λ) G>

(
p̄′, ω̄′; λ

)]
= P0 + P1 + P2 (13.27)

Note incidentally the detailed similarity between the last term

in Eq. (13.27) and a typical quantum mechanical second-order

perturbation theory calculation of an energy shift. The factor

|VS|2 δ
(

p + p′ − p̄ − p̄′)
is the matrix element for a process

pω + p′ω′ → p̄ω̄ + p̄′ω̄′

dThe equation number (13.26) was missing in the original text. In addition, the prime

symbol ′ at the one of the integral symbol
∫ dω

2π
was also missing in the original text.
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The G<’s are densities of initial states, the G>’s are densities of

available final states, and the factor[
ω + ω′ − ω̄ − ω̄′]

is the typical energy denominator that enters such a calculation.

The reason for this similarity is that for the particular case of a

zero-temperature system, the pressure is simplye

P = −
(

1

�

)[〈
Ĥ
〉− μ

〈
N̂
〉]

(13.28)

This can be seen from the thermodynamic relation

T S = 〈Ĥ
〉− μ

〈
N̂
〉+ P�

Therefore, Eq. (13.26) also determines the ground-state energy.

When the G’s in Eq. (13.26) are replaced by G0’s, Eq. (13.26) leads

to a calculation of the ground-state energy of an electron gas similar

to that done by Gell-Mann and Brueckner.f

In general, there is no guarantee that the pressure determined

by Eq. (13.27) will be the same as that determined by Eq. (3.12),

an integral of the density over the chemical potential. It is true

that these alternative methods will lead to identical results for all

the approximations for G we have discussed up to now.g However,

these methods require solving for G self-consistently, i.e., as the

solution to a nonlinear integral equation. The closer we come to

self-consistency in the approximate solution to these nonlinear

equations, the closer we will come to making the results of the μ′

integrations for P outlined in Chapter 3 correspond to the result

(13.27).

To carry the evaluation of the pressure further, we replace the G’s

that appear in Eq. (13.27) by G0’s. There are then two cases in which

we can get results simply. The first is a zero-temperature electron

gas, and the second is a classical system.

eThere is no equation number (13.28) in the original text. The equation number

(13.28) is assigned to this equation from the context.
f(Original) ‡M. Gell-Mann and K. Brueckner, Phys. Rev., 106, 364 (1957).
g(Original) §The proof of this result will be published shortly by one of us (GB) in the

Physical Review. (Author) This article is indeed published in Gordon Baym, Phys. Rev.
127, 1391 (1962).
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For zero-temperature electrons, the Hartree–Fock term in the

pressure becomes simply the negative of the exchange energy. Here

2S + 1 = 2. Thus, setting p0
F = √

2mμ,

P1 = 2

∫ 1

0

dλ
λ

∫
p<p0

F

dp

(2π)3

∫
p′<p0

F

dp′

(2π)3

4πe2λ

|p − p′|2

= e2

2π3

∫ p0
F

0

p2dp
∫ p0

F

0

p′2dp′
∫ 1

−1

dα
1

p2 + p′2 − 2αpp′

= e2
(

p0
F

)4

4π3
(13.29)

To the degree of accuracy to which we shall work, it makes no

difference if we replace the p0
F in P1 and P2 by the Fermi momentum

pF, which is conventionally defined byh pF = (3π2n)1/3. Therefore,

we can write the result (13.29) as

P1 = e2 p4
F

4π3
(13.29a)

The density n of an interacting gas with a certain value of μ is

not equal to the density n0 of a free gas with the same value

of μ. Therefore, pF = (3π2n)1/3, different fromi p0
F = (3π2n0)1/3.

For example, in the Hartree approximation, p0
F = √

2mμ, whereas

pF = √
2m (μ − nv). In replacing the G’s by G0’s in the collision term,

we write

G> ( p, ω) → 2πδ

(
ω − p2

2m

)[
1 ± f

(
p2

2m

)]

and

G< ( p, ω) → 2πδ

(
ω − p2

2m

)
f
(

p2

2m

)

We make the change of variables

p → p − k
2

≡ p− p̄ → p + k
2

≡ p+

p′ → p′ + k
2

≡ p′
+ p̄′ → p − k

2
≡ p′

−

hThe power factor 1/3 was typographically wrong by 1/2 in the original text.
iThe subscript 0 at p0

F , which was omitted in the original text, is necessary.
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in the integral. Then the collision term in the pressure becomes

P2 = 4

∫
dλ
2λ

∫
dp

(2π)3

dp′

(2π)3

dk

(2π)3

× f
(

p2
+

2m

)
f

((
p′

−
)2

2m

)[
1 ± f

(
p2

−
2m

)][
1 ± f

((
p′

+
)2

2m

)]

×
2

∣∣∣VS

(
k,
(

p′·k
m

)
+ iε λ

)∣∣∣2
(p−p′)·k

m

(13.30)

The extra factor two arises from the use of the symmetry of∣∣∣∣VS

(
k,

(
p′ · k

m

)
+ iε λ

)∣∣∣∣
2

under k → −k.

We recall that in the discussion of the random phase approxima-

tion, we found

K (k, � = 0) = k2

k2 +
(

1
rD

)2

for k small. Thus, in this approximation

VS (k, � = 0; λ) = 4πe2λ

k2 +
(

1
rD(λ)

)2

We may expect that for k−1 much less than the screening radius rD,

VS (λ) is nearly equal to

V (λ) = 4πe2λ

k2

To see the qualitative effects of the shielding, we shall replace the

shielding in Eq. (13.30) by a cutoff at low momentum transfer k.

We take as a cutoff kmin = 1
rD

. For k > 1
rD

, we take VS = 4πλe2

k2 . Then

Eq. (13.30) becomes

P2 = 2
(

4πe2
) ∫ 1

0

dλλ
∫

dp

(2π)3

dp′

(2π)3

×
∫

k>r−1
D (λ)

dk

(2π)3

1

k4

1

(p′ − p) · ( k
m

)
× f

(
p2

+
2m

)
f

((
p′

−
)2

2m

)[
1 ± f

(
p2

−
2m

)][
1 ± f

((
p′

+
)2

2m

)]

(13.31)
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If the k integral were not cut off below, it would be divergent.

Let us evaluate this for fermions at zero temperature. For large

rD, 1
rD

� pF, the main contribution to this integral comes from

k � pF. Therefore, we can cut off the above integral at k = pF and

make approximations appropriate to small k within the integrand.

In particular, we note that the factor

f
(

p2
+

2m

)[
1 ± f

((
p′

+
)2

2m

)]

is nonzero only when p + k
2

is within the Fermi sphere,
∣∣p + k

2

∣∣< pF

and when p − k
2

is outside the Fermi sphere,
∣∣p − k

2

∣∣ > pF. This can

only happen if p is close to pF. Therefore, we can approximately

write

p · k = pFkα(
p ± k

2

)2

2m
= p2

2m
± pFkα

2m

where α is direction cosine between k and p. We can also approxi-

mately write∫
dp

(2π)3
= 1

2π2

∫ 1

−1

dα

2

∫ ∞

0

dp p2 ≈ mpF

2π2

∫
dα

2

∫ ∞

0

d
(

p2

2m

)

Thus, Eq. (13.31) becomes

P2 =4πe2

π2

(mpF

2π2

)2
∫ ∞

−∞
d E p

∫ ∞

−∞
d E p′

∫ 1

−1

dα

2

∫ 1

−1

dα′

2

∫ pF

1/rD

dk
k2

× f
(

E p + kpFα

2m

)[
1 − f

(
E p − kpFα

2m

)]

× f
(

E p′ − kpFα
′

2m

)[
1 − f

(
E p′ + kpFα

′

2m

)]
1

pFk
m (α − α′)

where Ep = p2

2m . Now the integrals over E are easily evaluated, since

f is either 1 or 0. In particular,

∫
d E p f

(
E p + x

2

) [
1 − f

(
E p − x

2

)]
=
{

0 for x > 0

−x for x < 0
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so that

P2 = 4

(
mpFe2

π2

)∫ 0

−1

dα

2

∫ 1

0

dα′

2

∫ pF

1/rD

dk
k2

(
pFk
m

)
|α|
(

pFk
m

) ∣∣α′∣∣
pFk
m (α′ − α)

=
(

mpFe2

π2

)
pF

m

∫ pF

1/rD

dk
k

∫ 1

0

dα

∫ 1

0

dα′ αα′

α′ + α

=
(

mpFe2

π2

)
pF

m
ln ( pFrD)

2

3
(1 − ln 2)

From Eq. (8.35)

rD
2 = π�

4 pF

a0 ∼ 1

e2

Thus,

P2 = − p2
F

3π4
me4 (1 − log 2)

[
ln

me2

pF

+ O(1)

]
(13.32)

Note the appearance of the e4 ln e2 in this term.

Since P0 = (
p0

F

)5
/15mπ2 for zero-temperature fermions (with

spin), we find for Eq. (13.27):

P =
(

p0
F

)5

15mπ2
+ e2 p4

F

4π3
− p2

F

3π4
me4 (1 − log 2) log

me2

pF

+ · · · (13.33)

To find an equation of state, we must now express P in terms of n
by eliminating p0

F in Eq. (13.33). Using the thermodynamic identity

n =
(

∂ P
∂μ

)
β

, we have

n = ∂ P
∂p0

F

∂p0
F

∂μ

= m
p0

F

{(
p0

F

)4

3mπ2
+ ∂pF

∂p0
F

[
e2 p3

F

π3
− p2

F

π4
me4 (1 − ln 2) ln

me2

pF

]}

≈
(

p0
F

)3

3π2
+ e2mp2

F

π3
− m2 pFe4

π4
(1 − ln 2) ln

(
me2

pF

)
The last two terms in this equation represent the change in the

density from that of a non-interacting gas with the same value of the

chemical potential. We must solve this equation for p0
F in terms of n.

Since pF = (3πn)1/3,

p0
F =

[
1 − 3e2m

πpF

+ 3m2e4

π2 p2
F

(1 − ln 2) ln
e2m
pF

]1/3

pF (13.34)
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Substituting Eq. (13.34) into Eq. (13.33) and writing (1 − X )5/3 as

1 − 5
3

X , we discover the equation of state for the Coulomb gas:

P = np2
F

5m
− ne2

4π
pF (13.35)

When the pressure is expressed as a function of n, instead of p0
F , the

e4 ln e2 term fortuitously cancels out.

We can now use this equation of state to find the ground-state

energy of the Coulomb gas. From Eq. (13.28), E/� = μn − P . We

evaluate μ in terms of n from Eq. (13.34) as

μ =
(

p0
F

)2

2m
≈ p2

F

2m
− e2 pF + me4

pF

(1 − ln 2) ln
me2

pF

(13.36)

so that

E
�

=
(

3

10

)
np2

F − 3

4

e2

4π
npF + nme4

π2
(1 − ln 2) ln

me2

pF

(13.37)

It is customary in the literature to express results like this in

terms of the Rydberg unit of energy,

e2

2a0

= me4

2�2

(a0 = Bohr radius), and the dimensionless parameter rs , which is

essentially the ratio of the inter-particle spacing to the Bohr radius,

rs =
(

3

4πn

)1/3 me2

�2
=
(

9π

4

)1/3
1

pFa0

Thus,

E
�

=
[

3

5

(
9π

4

)2/3
1

r2
s

− 3

2π

(
9π

4

)1/3
1

rs
+ 2

π2
(1 − ln 2) ln rs + O(1)

]
me4

2�2
n

≈
[

2.21

r2
s

− 0.916

rs
+ 0.0622 ln rs

]
me4

2�2
n (13.38a)

and

P = n
me4

2�2

[
2

5

(
9π

4

)2/3
1

r2
s

− 1

2π

(
9π

4

)1/3
1

rs

]
(13.38b)

These expressions are the first few terms in expansions of the

energy and pressure in terms of rs —expansions that are increasingly
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accurate in the high-density (rs → 0) limit. It is important to notice

the appearance of the e4 ln e2 term in the energy. It means that

these expansions can only be asymptotic; they are not power

series expansion. Such logarithms will appear in the expansion of

any physical quantity in the Coulomb gas. Therefore, no physical

quantity can be expanded in a power series in e2.

There is Dyson’s old argument why this should be so. If

physical quantities could be expanded in a power series in e2,

the expansion would be just valid for negative e2, an alternative

Coulomb interaction, as for e2 > 0. However, a purely attractive

Coulomb interaction is indeed a very strange interaction; the system

would be able to undergo extremely coherent processes.

One indication of this is the plasma pole, which we found near

�2 = ω2
p = 4πe2

m

When e2 becomes negative, this becomes a complex pole at z =
±i
√

n
∣∣e2
∣∣ /m. Such a complex pole, as we have discussed in

Chapter 8, leads to unstable behavior of the system, and this means

that the Green’s function analysis that we have given cannot be

correct for e2 < 0.

The next term in the expansion of the pressure is of the form

(const) × n
(

me4/2�2
)

. Our expression, Eq. (13.27), gives only part

of this term. The remainder comes from the term δ′/δU eff, which

we neglected in Eq. (13.8). To find the contribution to order e4 from

this term, we take ′ (1, 1′) = i VS (1, 1′) G (1, 1′) in the right side

of Eq. (13.8) and keep only the δG/δU eff term. Then to order e4, the

correction term (13.9) is

δ′(1, 1′; U eff) = −
∫ −iβ

0

d2d3V (1 − 3)V (2 − 1′)

× G0(1, 2)G0(2, 3)G0(3, 1′) (13.39)

The contribution of this term to the pressure must be evaluated

numerically.

This highly quantum mechanical formalism leads to reasonable

results in the � → 0 limit. We could calculate P2 directly from

Eq. (13.30), but it is somewhat simpler to go back to our original
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equation (13.23). We wrote P = P0 + P2, where

P =
∑

integral variables 1 and 2

∫
dλ
λ

dr2 λv (r1 − r2)

× [G2

(
1, 2; 1+, 2+)− G

(
1, 1+)G

(
2, 2+)]

t2=t+
1

(13.40)

and again make use of the shielded potential approximation for G2.

We find

P2 = ±(2S + 1)

∫ −iβ

0

d1̄d2̄K(1 − 1̄)V (1̄ − 2̄)G(2̄ − 1+)G(1 − 2̄+)

(13.41)

where the dielectric function K is defined by

K (1 − 2) = δ (1 − 2) ± i (2S + 1)

∫ −iβ

0

d1̄d2̄K
(

1 − 1̄
)

V
(

1̄ − 2̄
)

×G
(

2̄ − 2
)

G
(

2 − 2̄
)

(13.42)

By comparing Eq. (13.41) with Eq. (13.42), we see that vG2 may be

simply expressed in terms of K − 1.

There is one complication. In Eq. (13.41), 1+ and 2̄+ signify that

the δ
(

1 − 1̄
)

term in K
(

1 − 1̄
)

should reproduce the exchange term

· · ·
∫

dr2 v (r1 − r2) G
(

r2 − r1, t1 − t+
1

)
G
(

r1 − r2, t1 − t+
1

)
But in the integral in Eq. (13.42), the δ

(
1 − 1̄

)
term in K yields

lim
t2→t1

∫
dr2 v (r1 − r2) G (r2 − r1, t1 − t2) G (r1 − r2, t2 − t1)

which, because of the different equal-time limit of the G’s, is not the

same as the exchange term. Thus, to express vG2 in terms of K − 1,

we write

G(2̄ − 1+)G(1 − 2̄+) = [G(2̄ − 1+)G(1 − 2̄+) − G(2̄ − 1)G(1 − 2̄)
]

+ G(2̄ − 1)G(1 − 2̄)

Substituting this in the right side of Eq. (13.41) and using Eq. (13.42)

give∑∫
v(G2 − GG) = ± (2S + 1)

∫ −iβ

0

d1̄d2̄K(1 − 1̄)v(1̄ − 2̄)

× [G(2̄ − 1+)G(1 − 2̄+) − G(2̄ − 1)G(1 − 2̄)
]

− i lim
r2→r1
t2→t1

[K(1 − 2) − δ(1 − 2)]

(13.43)
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The difference G
(

2̄ − 1+)G
(

1 − 2̄+) − G
(

2̄ − 1
)

G
(

1 − 2̄
)

con-

tributes only when t̄2 = t1. Hence, only the δ
(

1 − 1̄
)

term in

K
(

1 − 1̄
)

contributes to the first term in Eq. (13.43). We may,

therefore, replace K
(

1 − 1̄
)

by δ
(

1 − 1̄
)

in this term. Thus∑∫
v (G2 − GG) = ± (2S + 1) lim

t2→t1

∫
dr2 v (r1 − r2)

× [G (r2 − r1, 0−)G
(

r1 − r2, 0−)
− G (r2 − r1, t2 − t1) G (r1 − r2, t1 − t2)

]
− i lim

r2→r1
t2→t1

[K (1 − 2) − δ (1 − 2)]

We get the same result whether we let t2 → t+
1 or t2 → t1̄; we

consider the latter case. Then∑∫
v(G2 − GG) = ±(2S + 1)

∫
drv(r)G<(−r, 0)(G<(r, 0) − G>(r, 0))

− i K>(r = 0, t = 0) (13.44)

From the equal-time commutation relations of ψ̂ and ψ̂†, we have

G< (r, 0) − G> (r, 0) = −iδ (r)

so that the right side of Eq. (13.44) is nv (r = 0)−i K> (r = 0, t = 0).

These two terms are individually divergent in the Coulomb case,

but their difference is finite. Writing them in terms of their Fourier

transforms, we find∑∫
v (G2 − GG) =

∫
dk

(2π)3

[
nv (k) − i

∫ ∞

−∞

dω

2π
K> (k, ω)

]

Now we know from the boundary condition on K that

K> (k, ω) = 1

i
Q (k, ω)

1 − e−βω

where Q (k, ω) is the discontinuity of the function K (k, z) across the

real axis:

Q (k, ω) = −i [K (k, ω − iε) − K (k, ω + iε)] (13.45)

Thus, P2 becomes

P2 =
∫ 1

0

dλ
λ

∫
dk

(2π)3

(
λn (λ) v (k) −

∫
dω

2π

Q (k, ω)

1 − e−βω

)
(13.46)
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The weight function Q (k, ω) contributes appreciably to the ω

integral only in the neighborhoods of density excitations of the

system, e.g., for ω ∼ ωp. In the classical limit, these contributions are

for �βω � 1, so that we may replace
(

1 − e−�βω
)−1

in the integral

by �βω: ∫
dω

2π

Q (k, ω)

1 − e−βω
→
∫

dω

2π

Q (k, ω)

βω

Now in the high-frequency (|�| → ∞) limit, K (k, �) → 1, so

that from Cauchy’s integral theorem, K (k, �) may be written

K (k, �) − 1 =
∫

dω

2π

1

� − ω
i [K (k, ω − iε) − K (k, ω + iε)]

=
∫

dω

2π

1

� − ω
Q (k, ω)

Therefore, we see that∫
dω

2π

Q (k, ω)

βω
= − 1

β
[K (k, � = 0) − 1]

(using the fact that K (k, � = 0) is real so that the � → 0 limit may

be taken uniquely). Thus, P2 assumes the rather simpler form

P2 =
∫ 1

0

dλ
λ

∫
dk

(2π)3

(
λn (λ) v (k) + 1

β
[K (k, � = 0) − 1]

)
(13.47)

To evaluate this, we recall that in the classical limit, for � = 0, we

found

K−1 (k, 0; λ) = 1 + βλn (λ) v (k)

= 1 + [krD (λ)]−2

where the λ-dependent screening radius is defined by

rD (λ) = 1√
4πλe2βn (λ)

Substituting this evaluation of K into Eq. (13.47), we find

P2 = 1

β

∫ 1

0

dλ
λ

∫
dk

(2π)3

1

k2 [rD (λ)]2

1

1 + k2 [rD (λ)]2

Doing the k integral gives

P2 = 1

β

∫ 1

0

dλ
8πλ

1

[rD (λ)]3
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The lowest-order contribution to this term may be evaluated by

replacing n (λ) in rD (λ) by n0, the density of a non-interacting gas

with the same value of the chemical potential. Thus, finally,

P2 = 1

9
n0kBT

1

n0

(
4π
3

)
r3

D
(13.48)

It is clear from this form that the dimensions are correct.

What is the physical interpretation of the calculation that we

have just done for P2? Let us go back to our starting point,

Eq. (13.21), which relates the pressure to the interaction energy. The

interaction energy is a perfectly reasonable classical concept. We can

express it classically as

1

2

∫
dr1dr2 v (r1 − r2) ρ (r1, r2)

where the density correlation function ρ (r1, r2) is the probability

for finding a particle at r1 and a (different) particle at r2, in an equal

time measurement. To the lowest order, the density correlation

function is just the product of the densities n0n0. However, since this

interaction energy diverges for the Coulomb system, we have added

a background charge that cancels it out. Therefore, we must estimate

ρ (r1, r2) more accurately to find the lowest-order order change in

the pressure in a Coulomb gas.

We notice that when there is a particle present at r2, the

density of particles in the immediate neighborhood will be lowered,

since the particle repels its neighbors. According to the Maxwell–

Boltzmann distribution, the density of particle at r2 in the potential

field v (r1 − r2), will be proportional to e−βv(r1−r2). Therefore, we

might guess that

ρ (r1, r2) ≈ n2
0e−βv(r1−r2)

and the interaction energy will be

1

2

∫
dr1dr2 v (r1 − r2)

[
e−βv(r1−r2) − 1

]
n2

0

If βv is usually much less than one, we may expand the exponential

to find an interaction energy

−β
�

2
n2

0

∫
dr
[
v2(r)

]2 = −β
�

2
n2

0

∫
dk

(2π)3

[
v2(k)

]2
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This second-order interaction energy leads to exactly the same

second-order pressure as we would have obtained had we replaced

VS by V in the last term of Eq. (13.27) and take the classical limit.

However, this result diverges for a Coulomb gas since [v(r)]2 ∼ 1
r2 .

But in a Coulomb system, the shielding effect will decrease the

amount that a particle repels the other particles in the system, so

that more realistically, ρ (r1, r2) should be estimated by

ρ (r1, r2) ≈ n2
0e−βVS(r1−r2) (13.49)

Therefore, the interaction energy will be

1

2

∫
dr1dr2 v (r1 − r2)

[
e−βVS(r1−r2) − 1

]
n2

0

which, when βVS is usually much less than one, is

−β
�

2
n2

0

∫
dr v(r)VS(r) = −β

�

2
n2

0

∫
dk

(2π)3
v(k)VS(k)

Taking

VS(k) = 4πe2

k2 + r−2
D

yields a P2 identical to Eq. (13.48).

We can use Eq. (13.48) to get an equation of state for the Coulomb

gas. We calculated that the pressure is

P = P0

[
1 + 1

9

1

n0

(
4π
3

)
r3

D

]
= n0kBT + kBT

12π

(
4πe2n0β

)3/2

(13.50)

wherej P0 = n0kBT is the pressure of an ideal gas with temperature

T and chemical potential μ:

n0 =
∫

dp

(2π�)3
e−β

(
p2

2m −μ
)

We remember that the real density is not n0 but ∂ P
∂μ

∣∣∣
T

. If we use

Eq. (13.50) and ∂n0

∂μ
= βn0, we see that

n = n0 + 3

2

1

12π

(
4πe2βn0

)3/2

jThe Boltzmann constant kB was written as k in the original text.
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so that

P = nkBT

(
1 − 1

18

1(
4π
3

)
r3

Dn

)
(13.51)

Equation (13.51) indicates that the first-order effect of the

correlations is to reduce the pressure. To understand this, we need

only note that the direct effect of the average Coulomb force would

be to produce an (infinite) increase in the pressure. As each particle

got near the wall, all its fellows would push against it and help it

along. We have explicitly eliminated this infinite helping effect by

including the background of charges. The shielding tends to further

reduce this helping effect by reducing the forces felt by the particles.

Therefore, the shielding acts to reduce the pressure.

Equation (13.51) represents the first few terms in the expansion

of the pressure in terms of the shielded potential. The parameter

that we consider small is

1

n
(

4π
3

)
r3

D

the inverse of the number of particles within a sphere with radius rD.

This number of particles has to be large in order that the description

of shielding that we are using be sensible. If the number is less

than one, there are no particles available to shield. Notice that this

expansion is certainly not an expansion in the potential strength

e2. The first term we have here is of order e3. Therefore, in this

high-temperature limit, as in the low-temperature limit, a Coulomb

force seems highly unamenable to expansion in a power series of e2.

Nevertheless, there exists a well-defined asymptotic expansion for

the limit of small e2.

One final point. Equations (13.9) and (13.10) can be used as the

basis of a description of nonequilibrium phenomena in plasmas. It is

easy to verify that they are a conserving approximation. Eventually,

they lead to a Boltzmann equation for a plasma in which the left

side is the same as in the collision-less Boltzmann equation, and

the collision term involves scattering cross sections proportional

to |VS|2.
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T Approximation

14.1 Structure of the T Matrix

All our Green’s function approximations so far have been based

on the idea that the potential is small. Even the shielded potential

approximation depends on there being a dimensionless parameter,

proportional to the strength of the interaction, which is small. For

zero-temperature fermions, this parameter is rs = 1
a0

(
3

4πn

)1/3
, and

in the classical limit, it is 1
rD

(
3

4πn

)1/3
. However, in many situations

of practical interest, the potential is not small, but nonetheless the

effects of the potential are small because the potential is very short-

ranged. For example, a gas composed of hard spheres with radius r0

has the potential

v(r) =
⎧⎨
⎩

0 for r > r0

1 for r < r0

(14.1)

but when r0 → 0, the properties of this gas are essentially identical

with the properties of a free gas.

We can make a first estimate of the properties of such a gas

by adding up an infinite sequence of terms in the expansion of
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G2 (12; 1′2′). In the Born approximation,

G2 = +

± (exchange terms)

Only processes in which two particles propagate independently or

come together and interact only once are considered. If the potential

is strong, we have to take into account that the particles feel the

effect of the potential many, many times as they approach one

another, i.e., that

G2 = +

+ + · · ·

+ + · · ·

± (exchange terms) (14.2)

Equation (14.2) represents the power-series expansion of the

integral equation

G2

(
12; 1′2′) = G

(
1, 1′)G

(
2, 2′)± G

(
1, 2′)G

(
2, 1′)

+ i
∫ −iβ

0

d1̄d2̄G
(

1, 1̄
)

G
(

2, 2̄
)

V
(

1̄ − 2̄
)

G2

(
1̄2̄; 1′2′)

(14.3)

This should be compared with Eq. (5.6).
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To see the consequences of Eq. (14.3), we introduce the auxiliary

quantity T , which satisfiesa

〈12| T̂
∣∣1′2′〉 = V (1 − 2) δ

(
1 − 1′) δ

(
2 − 2′)

+ i
∫

d1̄d2̄ 〈12| T̂
∣∣1̄2̄
〉

G
(

1̄1′)G
(

2̄, 2′) V
(

1′ − 2′)
(14.4)

We shall see that in the low-density limit, T reduces to the T matrix

of conventional scattering theory. The T matrix defined in Eq. (14.4)

is related to the G2 defined in Eq. (14.3) by

V (1 − 2) G2

(
12; 1′2′) =

∫
d1̄d2̄ 〈12| T̂

∣∣1̄2̄
〉

× [G (1̄, 1′)G
(

2̄, 2′)± G
(

1̄, 2′)G
(

2̄, 1′)]
(14.5)

This is easiest to see if we write Eqs. (14.3) and (14.4) in matrix

notation:

[1 − iGGV ] G2 = GG ± GG

T [1 − iGGV ] = V (14.3a)

V G2 = V
1

1 − iGGV
[GG ± GG] (14.4a)

Thus,

V G2 = T [GG ± GG]

which is just the right side of Eq. (14.5). The combination

V (1 − 2) G2 (12, 1′2′) appears in the equation of motion for G.

Even when the potential is infinite, e.g., v is of the form (14.1),

T can be finite. The reason is that the correlation between particles

ensures that there can be no particles closer together than r0. This

is reflected in the vanishing of the G2

(
rt, r′t; rt+, r′t+) defined by

Eq. (14.3) when
∣∣r − r′∣∣ is less than r0.

aHere one should not be confused with the notations for the quantity T and the

operator T̂ . In the context, the quantity T means T (12; 34) = 〈12| T̂ |34〉, while

the operator T̂ should not be confused with the time ordering operator T̂ in the

previous chapters.
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Let us see how T may be determined. From Eq. (14.4), it follows

that T has the structure

〈1, 2| T̂
∣∣1′, 2′〉 = δ (t1 − t2) δ (t1′ − t2′ ) 〈r1, r2| T (t1 − t1′ ) |r1′ , r2′ 〉

〈r1, r2|T (t1 − t1′ )|r1′ , r2′ 〉 =

⎧⎪⎪⎨
⎪⎪⎩

〈r1, r2|T >(t1 − t1′ )|r1′ , r2′ 〉 for i t1 > i t1′

〈r1, r2|T <(t1 − t1′ )|r1′ , r2′ 〉 for i t1 < i t1′

〈r1, r2|T0(t1 − t1′ )|r1′ , r2′ 〉 for i t1 = i t1′

(14.6)

where T > and T < are analytic functions of the time arguments. T
satisfies the same boundary conditions as G (t1 − t1′ ) G (t1 − t1′ ), i.e.,b

〈| T (t1 − t1′ ) |〉|t1=0 = 〈|< T (t1 − t1′ ) |〉∣∣t1=0

= e2βμ 〈| T > (t1 − t1′ ) |〉∣∣t1=−iβ

= e2βμ 〈| T (t1 − t1′ ) |〉|t1=−iβ

so that T > and T < are related by

〈r1, r2| T > (ω) |r1′ , r2′ 〉 = eβ(ω−2μ) 〈r1, r2| T < (ω) |r1′ , r2′ 〉 (14.7)

where

〈| T > (ω) |〉 =
∫ ∞

−∞
dt e−iωti 〈| T > (t) |〉

〈| T < (ω) |〉 =
∫ ∞

−∞
dt e−iωti 〈| T < (t) |〉

We can represent this boundary condition by writing T as the

Fourier series

〈| T (t1 − t1′ ) |〉 = 1

−iβ

∑
ν

e−i zν (t1−t1′ ) 〈| T (zν) |〉 (14.8)

where

zν = πν

−iβ
+ 2μ ν = even integer

Essentially, the same calculation as we went through in Chapter 9

[c.f. Eq. (9.5a)] indicates that the Fourier coefficient of T is

〈| T (z) |〉 = 〈| T0 (z) |〉 +
∫

dω

2π

〈| T > (ω) |〉 − 〈| T < (ω) |〉
z − ω

(14.9)

b(Author) Here and after, we understand the symbol 〈|A|〉 to be an abbreviation of

〈r1, r2|A|r1′ , r2′ 〉.
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where

〈| T0 (z) |〉 =
∫ iε

−iε
dt e−i zt 〈| T0 (z) |〉

The other function of time that appears in Eq. (14.4) for T is

〈r1, r2|G(t1 − t1′ )|r1′ , r2′ 〉 = iG(r1 − r1′ , t1 − t1′ )G(r2 − r2′ , t1 − t1′ )

(14.10)

We can similarly expand 〈|G |〉 in a Fourier series and find that its

Fourier coefficient is

〈r1, r2|G (z) |r1′ , r2′ 〉 =
∫

dω

2π

〈|G> (ω) |〉 − 〈|G< (ω) |〉
z − ω

=
∫

dω

2π

dω′

2π

× G>(r1 − r1′ , ω)G>(r2 − r2′ , ω′) − G<(r1 − r1′ , ω)G<(r2 − r2′ , ω′)
z − ω − ω′

(14.11)

Now we can write Eq. (14.4) as

〈r1, r2|T (t1 − t1′ )|r1′ , r2′ 〉 = δ(r1 − r1′ )δ(r2 − r2′ )δ(t1 − t1′ )v(r1′ − r2′ )

+
∫ −iβ

0

dt̄
∫

dr̄1dr̄2〈r1, r2|T (t1 − t1′ )|r̄1, r̄2〉

× 〈r̄1, r̄2|G(t̄ − t1′ )|r1′ , r2′ 〉v(r1′ − r2′ )

We take Fourier coefficients of this equation by multiplying by

ei zν (t1−t1′ ) and integrating over all t1 in [0, −iβ]. Then we find

〈r1, r2| T (z) |r1′ , r2′ 〉 = δ (r1 − r1′ ) δ (r2 − r2′ ) v (r1′ − r2′ )

+
∫

dr̄1dr̄2〈r1, r2|T (z)|r̄1, r̄2〉〈r̄1, r̄2|G(z)|r1′ , r2′ 〉v(r1′ − r2′ )

(14.12)

Equation (14.12) is originally only derived for

z = zν = πν

−iβ
+ μ ν = even integer

but both sides may be continued to all complex values of z. This

complex variable corresponds to the total energy of the particles

that take part in the scattering process. We can also Fourier
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transform with respect to the center of mass variables in Eq. (14.12).

We write

〈r1, r2| T (z) |r1′ , r2′ 〉 =
∫

dP

(2π)3
exp

[
− i

2
P · (r1 + r2 − r1′ − r2′ )

]
× 〈r1 − r2| T (P, z) |r1′ − r2′ 〉

〈r1, r2|G(z) |r1′ , r2′ 〉 =
∫

dP

(2π)3
exp

[
− i

2
P · (r1 + r2 − r1′ − r2′ )

]
× 〈r1 − r2|G (P, z) |r1′ − r2′ 〉 (14.13)

so that Eq. (14.12) becomes

〈r|T (P, z)|r′〉 = δ(r − r′)v(r ′) +
∫

dr̄〈r|T (P, z)|r̄〉〈r̄|G(P, z)|r′〉v(r ′)

(14.14)

Equation (14.14) remains an integral equation in the radial

variables. This integral equation cannot be solved exactly except in

a very few special cases. To see the nature of this equation, let us

assume that v is finite, so that it may be Fourier-transformed. We

multiply this equation by e−ip·r+ir′ ·r′
and integrate over all r and r′.

We then find
〈p|T (P, z)|p′〉

= v(p − p′) +
∫

dp̄
(2π)3

dp̄′

(2π)3
〈p|T (P, z)|p̄〉〈p̄|G(P, z)|p̄′〉v(p′ − p̄′)

(14.15)

Here, p represents the momentum of one of the initial particles

in the center of mass system, p′ is the momentum of this particle

after the scattering, P is the center of mass momentum, and

〈p| T (P, z)
∣∣p′〉 is the scattering amplitude for such a process.

To see the relation of T to the conventional scattering amplitude,

let us consider the low-density limit in which

βμ → −∞
and

A ( p, ω) → A0 ( p, ω) = 2πδ

(
ω − p2

2m

)
Then

〈r1, r2|G(z) |r1′ , r2′ 〉 =
∫

dp1

(2π)3

dp2

(2π)3

eip1·(r1−r1′ )+ip2·(r2−r2′ )

z −
(

p2
1

2m

)
−
(

p2
2

2m

)
〈r|G (P, z)

∣∣r′〉 =
∫

dp

(2π)3

eip·(r−r′)

z − (p+ P
2 )

2

2m − (p− P
2 )

2

2m
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and

〈p|G (P, z)
∣∣p′〉 = (2π)3 δ (p − p′)

z −
(

P 2

4m

)
−
(

p2

2m

) (14.16)

With this value of G, Eq. (14.15) becomes

〈p|T (P, z)|p′〉 = v(p − p′) +
∫

dp̄
(2π)3

〈p|T (P, z)|p̄〉v(p̄ − p′)

× 1

z −
(

P 2

4m

)
−
(

p2

2m

) (14.17)

When the complex variable z is replaced by the total energy of

the incident particles
(

P 2

4m

)
−
(

p2

2m

)
+ iε, Eq. (14.17) determines

the scattering amplitude of conventional scattering theory. This

scattering matrix is defined by

〈p| T̂ = 〈ϕp
∣∣ v (14.18)

where 〈p| is a free two-particle state and 〈ϕp| is a two-particle

scattering state with energy p2

2m . The state 〈ϕp| satisfies

〈
ϕp
∣∣ (Ĥ 0 + v −

(
p2

2m

))
= 0 (14.19)

where Ĥ 0 is the free-particle Hamiltonian. We may write the

solution to this equation as〈
ϕp
∣∣ = 〈p| + 〈ϕp

∣∣ v
1(

p2

2m

)
− Ĥ 0 + iε

where the iε is chosen so that the solution to 〈ϕp| corresponds to an

outgoing wave. Multiplying by v and using Eq. (14.18) then gives

〈p| T
∣∣p′〉 = 〈p| v

∣∣p′〉+ 〈p| T
1(

p2

2m

)
− Ĥ 0 + iε

v
∣∣p′〉

which is Eq. (14.17), with z =
(

p2

2m

)
+ iε +

(
P 2

4m

)
.

In this conventional two-body scattering matrix, the particles

may be thought of as propagating as free particles, between

Born approximation scatterings, while in the many-body case, the

particles feel the full effects of the medium between the scatterings

with each other. Even if the interactions of the particles with the
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medium are neglected, A ( p, ω) → 2πδ
(
ω − p2

2m

)
, the weightings

of the intermediate states between scatterings are changed by the

presence of the medium. This is reflected in the factors of f and 1± f
that appear in Eq. (14.11). Also the many-body T matrix depends

on the center of mass momentum of the two particles, whereas the

conventional scattering matrix is independent of this momentum.

The many-particle T satisfies an optical theorem quite analogous

to the one obeyed by the conventional scattering matrix. To derive

this theorem, let us consider T to be a matrix in the variables p
and p′. Then Eq. (14.15) may be written with the momentum indices

suppressed as

T (z) = v + T (z)G(z)v

or as

T −1(z) = v−1 − G(z) (14.20)

T and G are real functions of the complex variable z. We let z =
ω − iε. Then the imaginary part of T is given by

�T (ω − iε) = − [T (ω − iε)]∗ [�T −1 (ω − iε)
]

T (ω − iε)

= − T (ω + iε)
[�T −1 (ω − iε)

]
T (ω − iε)

Now from Eq. (14.20),

�T −1 (ω − iε) = − �G−1 (ω − iε)

= − 1

2
[G> (ω) − G< (ω)]

and

�T (ω − iε) = 1

2
[T > (ω) − T < (ω)]

Thus,

T > (ω) − T < (ω) = T (ω + iε) [G> (ω) − G< (ω)] T (ω − iε)

or, with the matrices indices reinserted,〈
p
∣∣T > (P, ω) − T < (P, ω)

∣∣p′〉 =
∫

dp̄
(2π)3

dp̄′

(2π)3
〈p |T (P, ω + iε)| p̄〉

× 〈
p̄
∣∣G>(P, ω) − G<(P, ω)

∣∣ p̄′〉
× 〈

p̄′ |T (P, ω − iε)| p′〉
(14.21)
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Since

T > (ω) = eβ(ω−2μ)T < (ω)

and

G> (ω) = eβ(ω−2μ)G< (ω)

we can derive from Eq. (14.21) that〈
p
∣∣∣T ≷ (P, ω)

∣∣∣p′
〉

=
∫

〈p |T (P, ω + iε)| p̄〉 dp̄

(2π)3

〈
p̄
∣∣∣G≷ (P, ω)

∣∣∣ p̄′
〉

× dp̄′

(2π)3

〈
p̄′ |T (P, ω − iε)| p′〉 (14.22)

Equations (14.21) and (14.22) are generalizations of the optical

theorem of ordinary scattering theory.

Let us now substitute the approximation (14.5) for G2 into the

equation of motion for G. Then(
i

∂

∂t1

+ ∇2
1

2m

)
G
(

1, 1′) = δ
(

1 − 1′)±
∫

V (1 − 2) G2

(
12; 1′2+)

= δ
(

1 − 1′)±
∫ 〈

12 |T | 1̄2̄
〉

× [G (1̄, 1′)G
(

2̄, 2+)± G
(

1̄, 2+)G
(

2̄, 1′)]
≡ δ

(
1 − 1′)+

∫

(

1, 1̄
)

G
(

1̄, 1′)
so that the self-energy is, in this approximation,


(

1, 1′) = ±
∫

d2d2̄
[〈

12 |T | 1′2̄
〉± 〈12 |T | 2̄1′〉]G

(
2̄, 2+)

= ± i
∫

dr2dr̄2 [〈r1r2 |T (t1 − t1′ )| r1′ r̄2〉
± 〈r1r2 |T (t1 − t1′ )| r̄2r1′ 〉] G (r̄2 − r2, t1′ − t1)

(14.23)

To understand the T approximation for G, let us computec

> (p, ω), the average collision rate for a particle traveling through

cThe momentum p of the arguments of > and G≷ , which was printed in scalar form

in the original text, is vectorized for clarity.
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the medium with momentum p and energy ω. From Eq. (14.23), we

see that

> (p, ω) =
∫

dp′

(2π)3

dω′

2π

[〈
p − p′

2

∣∣T >
(

p + p′, ω + ω′)∣∣ p − p′

2

〉

±
〈

p − p′

2

∣∣T >
(

p + p′, ω + ω′)∣∣ p′ − p
2

〉]
G<
(

p′, ω′)
Using the optical theorem (14.22), we find

> (p, ω) =
∫

dp′dω′

(2π)4

dp̄

(2π)3

dp̄′

(2π)3

×
〈

p − p′

2

∣∣T (p + p′, ω + ω′ + iε
)∣∣ p̄
〉

× 〈p̄ ∣∣G>
(

p + p′, ω + ω′)∣∣ p̄′〉
×
[〈

p̄′ ∣∣T (p + p′, ω + ω′ − iε
)∣∣ p − p′

2

〉

∓
〈

p̄′ ∣∣T (p + p′, ω + ω′ − iε
)∣∣ p′ − p

2

〉]
However,〈

p̄
∣∣G> (P, ω)

∣∣ p̄′〉 = (2π)3 δ
(

p̄ − p̄′) ∫ dω′

2π

× G>

(
p̄ + P

2
, ω′ + ω

2

)
G>

(
−p̄ + P

2
, −ω′ + ω

2

)
so that > (p, ω) has the form

> (p, ω) =
∫

dp′dω′

(2π)4

∫
dp̄dω̄

(2π)4

∫
dp̄′dω̄′

(2π)4

× (2π)4 δ
(

p + p′ − p̄ − p̄′) δ
(
ω + ω′ − ω̄ − ω̄′)

×
(

1

2

) ∣∣∣∣
〈

p − p′

2

∣∣T (p + p′, ω + ω′ + iε
)∣∣ p̄ − p̄′

2

〉

±
〈

p − p′

2

∣∣T (p + p′, ω + ω′ + iε
)∣∣ p̄′ − p̄

2

〉∣∣∣∣
2

× G<
(

p′, ω′)G> (p̄, ω̄) G>
(

p̄′, ω̄′)
This is an exceedingly natural result. The lifetime is proportional

to the cross section for a scattering process, p, ω + p′, ω′ → p̄,

ω̄ + p̄′, ω̄′. The differential cross section is composed of energy-

and momentum-conserving delta functions times the squared
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magnitude of the direct scattering amplitude ± the exchange

amplitude. This differential cross section is multiplied by the density

of scatters G< (p′, ω′) and the available density of final states

G> (p̄, ω̄) G> (p̄′, ω̄′) and then integrated over all possible scatterers

and final states.

< (p, ω) has exactly the same structure except that G< (p′, ω′)
is replaced by G> (p′, ω′) and G> (p̄, ω̄) G> (p̄′, ω̄′) is replaced by

G< (p̄, ω̄) G< (p̄′, ω̄′).

The T matrix approximation is extremely useful when the

potential has a hard core, e.g., Eq. (14.1). With a finite potential, we

found that there was a term in  (1, 1′) proportional to δ (t1 − t1′ ),

which was, in fact, the Hartree–Fock contribution,

HF (p) = nv (k = 0) ±
∫

dp′

(2π)3
v
(

p − p′) 〈n (p′)〉
If, however, there is a hard core in the potential, the Hartree–Fock

term diverges, since the v(k) are infinite. There still is a finite term

in  proportional to δ (t1 − t1′ ), but instead of being the Hartree–

Fock term, it is determined by T0, the delta-function part of T in

Eq. (14.6). Also, there is a term in T , and hence in , proportional

to ∂
∂t1

δ (t1 − t1′ ).

Brueckner and others have applied the T -matrix approximation

to the calculation of the ground-state energy and density of nuclear

matter. The results check nicely with the extrapolated properties of

heavy nuclei.

The T approximation is conserving, i.e., it satisfies criteria

A and B . Therefore, when stated in terms of G(U ), it may be

used to describe nonequilibrium behavior. The Boltzmann equation

for g(U ) derived from this approximation involves collision cross

sections proportional to |T |2. In the classical low-density limit, these

reduce to the classical collision cross section.

14.2 Breakdown of the T Approximation in
Metals

At very low temperatures, some metals exhibit the peculiar

phenomenon of superconductivity. We now want to show how its
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appearance is signaled by the breakdown of the T approximation in

a metal.

We can consider a metal to be a Fermi gas of electrons. The

long-range part of the Coulomb interaction is effectively shielded

out. For some metals, the residual interaction with the ions leads

to a net effectively attractive interaction between the electrons.

This effective interaction is highly velocity dependent. To a first

approximation, it can be considered to act only between electrons

whose energies lie in the range

|E ( p) − μ| < �ωD (14.24)

about the Fermi energy μ. The Debye energy, �ωD, which is the

maximum phonon energy in the metal, is comparatively small. It

corresponds to a temperature of a few hundred degrees Kelvin,

while μ is an energy of the order of 20, 000 degrees. The particles in

this shell about the Fermi sea interact through a potential that may

be taken to be

v (r1 − r2) = −vδ (r1 − r2)

Such a potential can have no effect between electrons of the same

spin. The exclusion principle prevents them from ever coming on

top of one another. However, electrons of opposite spin can interact

via this potential. There are, of course, no exchange process between

particles of opposite spin. This is represented in our formalism by

taking the total scattering matrix for all the particles in the process

p + p′ → p̄ + p̄′ having the same spin to be

1√
2

[〈
p − p′

2

∣∣T (
p + p′, z

)∣∣ p̄ − p̄′

2

〉
−

〈
p − p′

2

∣∣T (
p + p′, z

)∣∣ p̄′ − p̄
2

〉]

(14.25)

while the scattering matrix for the process in which p and p̄ have

spin up while p′ and p̄′ have spin down contains no exchange term

and is simply 〈
p − p′

2

∣∣T (p + p′, z
)∣∣ p̄ − p̄′

2

〉
(14.26)

From Eq. (14.4), we can see that when v (r1 − r2) is a delta function,〈
1, 2 |T | 1′, 2′〉 ∼ δ (1 − 2) δ

(
1′ − 2′)
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Therefore, in this case〈
p − p′

2

∣∣T (p + p′, z
)∣∣ p̄ − p̄′

2

〉
= T

(
p + p′, z

)
(14.27)

so that the total scattering amplitude Eq. (14.25) for the same-spin

particles vanishes. However, the scattering amplitude Eq. (14.26) for

unlike spins is certainly nonzero.

To determine T in this case, we go back to Eq. (14.14). Since T is

of the form (14.27) and, when nonzero v (p − p′) is just −v , we see

that

T (P, z) = −v
[

1 +
∫

dp̄

(2π)3

dp̄′

(2π)3

〈
p̄ |G (P, z)| p̄′〉 T (P, z)

]

and consequently, where T is nonzero,

[
T −1 (P, z)

]−1 + v−1 =
∫

dω′

2π

∫
dω

2π

∫
dp′

(2π)3

× G> (p + P/2, ω) G> (−p + P/2, ω) − G< (p + P/2, ω) G< (−p + P/2, ω)

z − ω − ω′

(14.28)

For an attractive interaction, T has a very peculiar behavior at

low temperatures. We shall see that when P , the total momentum

of the particles taking place in the collision, is small, there appear

complex poles in T for values of z near 2μ. To show this, we shall

evaluate the integral in Eq. (14.28) at P = 0, assuming that G can be

replaced by G0. Then

[
T −1 (0, z)

]−1 + v−1 =
∫

|E ( p)−μ|<ωD

dp

(2π)3

1 − 2 f (E ( p))

z − 2E ( p)

where the limits of the integration are determined by the assump-

tion that V only acts for energies in the range Eq. (14.24). Since the

contributions to the integral all come from a narrow sheet about the

surface of the Fermi sea, we can write

T −1 (0, z) = −v

1 + vρE
∫ ωD

−ωD
dε

tanh( βε

2 )
(z−2μ)−2ε

(14.29)

where ε is single-particle energy measured relative to μ, i.e.,

ε =
(

p2

2m

)
− μ
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and ρE = mpF

2π2 . Let us evaluate this integral for imaginary values of

z − 2μ, z − 2μ = iy. Then Eq. (14.29) becomes

T −1 (0, z) = −v

1 − vρE
∫ ωD

0
dε
(

tanh
(

βε

2

))
4ε

(2ε)2+y2

(14.30)

If the temperature is sufficiently high so that

vρE

∫ ωD

0

dε
tanh

(
βε

2

)
ε

< 1 (14.31)

then Eq. (14.30) will have no poles for real values of y, i.e., complex

values of z. However, when the temperature is low enough so that

vρE

∫ ωD

0

dε
tanh

(
βε

2

)
ε

≥ 1

there will be poles for real values of y. For sufficiently low

temperatures, this integral may be made arbitrarily large. For

example, at zero temperature, β = ∞, tanh β|ε|
2

= 1, and∫ ωD

0

dε
4ε

y2 + (2ε)2
= 1

2
log

(
y2 + 4ω2

D

y2

)

which we can make as large as we please by picking y sufficiently

small.

Therefore, for high temperatures, the T approximation contains

no complex poles and is perfectly consistent. For low temperatures,

complex poles appear. The T matrix measures the probability

amplitude for adding a pair of particles in a certain configuration,

and then removing a pair in some other configuration. A complex

pole in the upper half-plane in Eq. (14.29) then indicates that if a

pair of particles with equal and opposite momenta are added at

a certain time, the probability amplitude for removing such a pair

increases exponentially in time. Then the T approximation as stated

in Eq. (14.29) is no longer capable of correctly describing the system,

except for very short times. The appearance of these complex poles

signals that something about the system has radically changed. This

change is actually the onset of superconductivity.

To estimate the critical temperature at which this change first

occurs, we have to estimate the temperature at which the equality

in Eq. (14.31) occurs. This estimate is most easily made if we use

the experimental fact that the parameter v is roughly 1/4. Then,
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the integral Eq. (14.31) will only be sufficiently large if β−1 = kBT
is small compared with ωD, so that the hyperbolic tangent will be

close to unity over most of the domain of integration. To get a rough

estimate of the integral, we write

tanh

(
βε

2

)
≈
{

1 for
(

βε

2

)
> 1

0 for
(

βε

2

)
< 1

Then Eq. (14.31) determines the critical temperature Tc = [kBβc]−1

to be

1 = vρE log
βcωD

2

or

β−1
c = kBTc = �ωD

2
e− 1

vρE ≈ �ωD

2
e−4

The critical temperature determined in this way is indeed quite

small. In fact, it is typically of the order of 5 degrees, while the Debye

temperature, �ωD/kB, is typically 300 degrees. This tremendous

difference comes about because the coherent effects that lead to the

complex pole and hence the instability in the normal state are an

exceedingly delicate summation of small perturbations to produce a

net large effect.

If we investigated the structure of T (P, z) in detail, we would

discover that the complex pole first appeared at P = 0, as indeed

we have assumed in the foregoing analysis. This indicates that the

instability first appears in the scattering of particles with equal and

opposite momentum. We have already indicated that the complex

pole appears only in the scattering of particles of opposite spin

at total energy equal to 2μ. This complex pole appears because

particles with equal and opposite momentum, opposite spin, and

total energy 2μ form an essentially bound state. This pair formation

is responsible for all the peculiar properties of superconductors.
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Appendix A

Finite-Temperature Perturbation Theory

In these chapters, we always determined G by making use of some

kind of equation of motion. However, there exists an alternative

scheme for determining G based on an expansion of G in a power

series of V and G0. We described the first few terms of this expansion

in Chapter 6. However, for many purposes, it is useful to know the

structure of the entire expansion. We shall, therefore, describe this

expansion in detail.

The basic elements in the expansion of G (1, 1′; U ) are the free

particle propagator

G0

(
1, 1′; U

) = 1′ 1

and the interaction:

i V
(

1 − 1′) = iv (r1 − r1′ ) δ (t1 − t1′ ) = 1′ 1

G(U ) can be expressed as the sum of the values of all topologically

different connected diagrams for which (a) one propagator line

enters and one line leaves, (b) each potential line contains at both

of its ends one entering and one leaving propagator line; i.e., the

potential line appears only in the combination
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The point of connection between the two propagator lines and the

potential line is called a vertex. Each vertex is labeled with a space–

time point.

To calculate the value of a particular graph, for example,

1′ 1
1̄′ 1̄

2̄′ 2̄

we do the following:

(1) Write down the product of all the propagators and interactions

that appear in it, in this case

G0(1, 1̄)G0(1̄, 1̄′)G0(1̄′, 1′)i V (1̄′ − 2̄′)i V (1̄ − 2̄)G0(2̄′, 2̄)G0(2̄, 2̄′)

(2) Integrate the labels on all the vertices over all space and all times

between 0 and −iβ . In this case, we integrate the four barred

variables.

(3) This gives the contribution of the diagram to G (1, 1′) for the

case of bosons. For a fermion system, we multiply the result of

the integration by a factor of (−1)�, where � is the number of

closed loops composed of fermion lines in the diagram. In this

example, there is one closed loop,

2̄′ 2̄

so we have to multiply by a factor of −1 fermions.

Therefore, this diagram contributes

±
∫ −iβ

0

d1̄d2̄d1̄′d2̄′ G0

(
1, 1̄
)

G0

(
1̄, 1̄′)G0

(
1̄′, 1′)

× i V
(

1̄ − 2̄
)

i V
(

1̄′ − 2̄′)G0

(
2̄, 2̄′)G0

(
2̄′, 2̄

) (A.1)

to G (1, 1′).
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However, in equilibrium (U = 0), the physical information is

most readily accessible not from G (1 − 1′) but from A ( p, ω), which

is easily determined from

G ( p, z) =
∫

dω′

2π

A ( p, ω′)
z − ω′

Therefore, what we really want is a diagrammatic expansion

for G ( p, z). To get this expansion, we take the expansion for

G (1, 1′; U = 0), multiplied by e−ip·(r1−r1′ )+i zν (t1−t1′ ), where

zν = πν

−iβ
+ μ

ν = even integer for bosons

odd integer for fermions

and integrate over all r1 and all t1 in the interval [0, −iβ]. In this way,

we generate an expansion for G ( p, zν).

The basic rules for calculating G ( p, zν) are only slightly more

complex than those for calculating G (1, 1′). In fact, we can derive

these new rules by using the old rules and the fact that

G0

(
1 − 1′) = 1

−iβ

∑
ν

∫
dp

(2π)3

eip·(r1−r1′ )−i zν (t1−t1′ )

zν −
(

p2

2m

) (A.2)

We associate with every particle line in the diagram a momentum

p and an “energy” zν . For example, the diagram we considered before

is labeled

p, zν

p̄, zν̄

p̄′′, zν ′′

p̄′, zν̄ ′

p′, zν ′

The “energies” and momenta of the lines are, respectively, summa-

tion and integration variables.

(1) For each particle line, we write a factor

G0 ( p, zν) = 1

zν −
(

p2

2m

) =
p, zν
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(2) For each potential line, with its associated particle lines, we

write a factor

(2π)3 δ
(

p + p′ − p̄ − p̄′) (−iβ) δν+ν ′ , ν̄+ν̄ ′

which expresses the conservation of momentum and “energy”

in the collision,

p, zν

p′, zν ′

p̄, zν̄

p̄′, zν̄ ′

We also write a factor

iv (p − p̄)

(3) To find the value of the diagram, we integrate over the momenta

and sum over the possible “energies” of all lines, except one

of the external lines, that is, one of the two lines that connect

with only one vertex. Instead of summing over this external

line, we set its “energy” and momentum equal to zν and p. The

energy sums are, of course, sums over ν. For each summation

and integration, we also write a factor
(

1
−iβ

) [
1

(2π)3

]
(4) Finally, for fermions we again multiply the resulting expression

by (−1)�, where � is the number of closed loops.

In this way, we determine the contribution of the diagram to

G ( p, zν).

For the particular diagram we are considering, the particle lines

give a factor

1

zν −
(

p2

2m

) 1

zν ′ −
(

p′2

2m

) 1

zν̄ −
(

p̄2

2m

) 1

zν̄ ′ −
(

( p̄′)2

2m

) 1

zν̄ ′′ −
(

( p̄′′)2

2m

)
andd

iv (p − p̄) iv
(

p̄ − p′′)
dThe typographic error p̄′of the argument of the first potential factor iv

(
p − p̄′) in

the original text is fixed by following the rule 2.
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Since there is one closed loop, there is again a factor of ±1.

Therefore, the value of this diagram is

(±1)

(
1

−iβ

)4∑
ν̄,ν′
ν̄′ ,ν′′

∫
dp̄

(2π)3

dp′

(2π)3

dp̄′

(2π)3

dp′′

(2π)3

× 1

zν −
(

p2

2m

) 1

zν ′ −
(

p′2

2m

) 1

zν̄ −
(

p̄2

2m

) 1

zν̄ ′ −
(

( p̄′)2

2m

) 1

zν̄ ′′ −
(

( p̄′′)2

2m

)
× (2π)3 δ

(
p + p′ − p̄ − p̄′) (−iβ) δν+ν ′ , ν̄+ν̄ ′

× (2π)3 δ
(

p′′ + p′ − p̄ − p̄′) (−iβ) δν ′′+ν ′ , ν̄+ν̄ ′

× i 2v (p − p̄) v
(

p̄ − p′′) (A.3)

We can see that zν ′′ and p′′ are limited to be just equal to zν and p.

Therefore, Eq. (A.3) is⎛
⎝ 1

zν −
(

p2

2m

)
⎞
⎠

2

0
c ( p, zν) (A.4)

where

0
c ( p, zν) = (±1)

(
1

−iβ

)3 ∑
ν̄,ν ′ , ν̄ ′

∫
dp̄

(2π)3

dp′

(2π)3

dp̄′

(2π)3

× 1

zν ′ −
(

p′2

2m

) 1

zν̄ −
(

p̄2

2m

) 1

zν̄ ′ −
(

( p̄′)2

2m

)
× (2π)3 δ

(
p + p′ − p̄ − p̄′) (−iβ) δν+ν ′ , ν̄+ν̄ ′

×i 2 [v (p − p̄)]2 (A.5)

The sums extend over ν ′, ν̄, ν̄ ′ = even integers for bosons, odd for

fermions.

If we now compute the frequency sums in Eq. (A.5), we find,

after a considerable amount of algebra, that 0
c ( p, zν) is just the

collisional self-energy in the lowest order. This lowest order is

obtained by replacing the G’s in the Born collision approximation of

Chapter 5 by G0’s.

A useful method for doing these Fourier sums is to represent

them as contour integrals in the complex plane. Consider the

contour integral

I = ±
∮

C

dz
2π

f (z)h(z) (A.6)
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where

f (z) = 1

eβ(z−μ) ∓ 1
(A.7)

and h(z) is an arbitrary function of z except for possible poles.

Assume that the poles of h(z) do not coincide with the poles of f (z),

which are at z = zν = πν
−iβ + μ, and take the contour C in Eq. (A.6)

to encircle all poles of f in the negative sense, but none of the poles

of h. Since the residue of f (z) at z = zν is ± 1
β

, we have, on the one

hand,

I = 1

−iβ

∑
ν

h (zν) (A.8)

Now on the other hand, if zf (z)h(z) → 0 as |z| → ∞, we can replace

the contour C by the contour C ′ that encircles all the poles of h(z) in

the positive sense. Comparing these two evaluations of I , we find

1

−iβ

∑
ν

h (zν) = ∓
∮

C ′

dz
2π

f (z)h(z) (A.9)

To illustrate such a frequency summation, let us consider a

simple diagram, the “bubble,”

1 2

which, in space–time language, is

L0 (1, 2) = ±iG0 (1, 2) G0 (2, 1) (A.10)

This is a piece of the diagram we have been considering so far, and, it

will be recalled, the bubble enters into the discussion of the random

phase approximation.

Introducing the Fourier sum and integral representation of G0,

we find that

i L0 (1, 2) = ±i
(

1

−iβ

)2∑
ν ′′ ,ν ′

∫
dp

(2π)3

dp′

(2π)3

1

zν ′′ −
(

p2

2m

) 1

zν ′ −
(

( p′)2

2m

)
× e−i(zν′′ −zν′ )(t1−t2)+i(p−p′)·(r1−r2)
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z-plane

z = 0 ∗
( p′)2

2m

C ′

∗
(p′+k)

2

2m + �ν

C ′

μ
×
×

×

×

×

×

×

×

×
×
×

C

C

Figure A.1 The contour deformation from C to C ′ in the z-plane. The

thin lines represent the contour C and their directions of integration are

indicated by the arrows. The thick lines represent the contour C ′ with

the direction of integration to be counter clockwise. The poles of the

distribution function f (z) (for fermions) are indicated by ×, while the poles

from the particle lines are represented by ∗.

We multiply this expression by ei�ν (t1−t2)−ik·(r1−r2) and integrate over

all t1 between 0 and −iβ and all r1. In this way, we pick out the

Fourier coefficient:

L0 (k, �ν) = ±i
1

−iβ

∑
ν ′

∫
dp′

(2π)3

1

zν ′ + �ν − (p′+k)2

2m

1

zν ′ − ( p′)2

2m

(A.11)

where

�ν = πν

−iβ
= even integer

This we recognize as a portion of the expression (A.5).

We now apply Eq. (A.9) to the calculation of the sum in Eq. (A.11).

In this case, the contours C and C ′ are as shown in Fig. A.1, since

h(z) = 1

z + �ν − (p′+k)2

2m

1

z − ( p′)2

2m
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Then Eq. (A.5) becomes

L0 (k, �ν) = 1

i

∫
dp′

(2π)3

∮
C ′

dz
2π

f (z)
1

z + �ν − (p′+k)2

2m

1

z − ( p′)2

2m

=
∫

dp′

(2π)3

f
(

( p′)2

2m

)
− f

(
(p′+k)

2

2m − �ν

)
�ν + ( p′)2

2m − (p′+k)2

2m

(A.12)

This equation tells us the values of the analytic function L0 (k, �) at

the points

� = �ν = πν

−iβ
(ν = even integer)

To discover L0 (k, �) from Eq. (A.12), we must analytically continue

the right side of Eq. (A.12) to a function that is analytic for � not

real and approaches zero as |�| → ∞. Just replacing �ν by � in Eq.

(A.12) is not satisfactory analytic continuation because it leads to an

L0 (k, �) that does not approach zero as � → ∞ in all directions. The

origin of this difficulty is that as � → ∞, f
((

p2

2m

)
− �

)
approaches

∓1 or 0, depending on whether �� is greater than or less than(
p2

2m

)
− μ. The correct continuation is found by first replacing

f
(

(p′+k)
2

2m − �ν

)
by f

(
(p′+k)

2

2m

)
in Eq. (A.12). This does not change

the value of L0 (k, �ν) since eβ�ν = 1. Therefore, we can write Eq.

(A.12) as

L0 (k, �ν) =
∫

dp′

(2π)3

f
(

(p′)2

2m

)
− f

(
(p′+k)

2

2m

)
�ν + ( p′)2

2m − (p′+k)2

2m

(A.13)

We can now continue L0 (k, �ν) to L0 (k, �) by replacing �ν by �

in Eq. (A.13), since this continuation now leads to a function that

approaches zero as � → ∞ in the upper or lower half-plane. Thus

L0 (k, �) =
∫

dp′

(2π)3

f
(

(p′− k
2 )

2

2m

)
− f

(
(p′+ k

2 )
2

2m

)
�ν + ( p′)2

2m − (p′+k)2

2m

(A.14)

This agrees with our earlier evaluation of L0 (k, �).
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There is one remaining ambiguity in this graphical formalism,

namely in the graphs that contain

1

2̄ = ±i
∫ −iβ

0

d2̄ V
(

1 − 2̄
)

G0

(
2̄, 2̄
)

(A.15)

or

1′ 1 = i V
(

1 − 1′)G0

(
1, 1′) (A.16)

In both these cases, there appears G0 (1, 1′)t1′=t1
, which is ambiguous

since G0

(
r1t1, r1′ t+

1

) = G0

(
r1t1, r1′ t−

1

)
. But in both cases, we should

evaluate t1 as t+
1 = t1 + ε. Then Eq. (A.15) becomes

1

= ±i
∫

dr1 v (r1 − r2)

∫
dp

(2π)3

1

−iβ

∑
ν

ei zνε

zν − p2

2m

= −iv
∫

dp

(2π)3

∮
C

dz
2π

ei zε

eβ(z−μ) ∓ 1

1

z − p2

2m

where ε = 0+.

Now notice that the integrand goes to zero exponentially as

z → ∞ in either the right or the left half-plane. Therefore, we can

deform the contour C to encircle p2

2m in the positive sense and pick
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up no contribution at ∞. In this way, we find

1

= −iv
∫

dp

(2π)3

∮
C ′

dz
2π

f (z)
1

z − p2

2m

= v
∫

dp

(2π)3
f
(

p2

2m

)
= vn0

This is, of course, just the single-particle Hartree self-energy in the

lowest order of approximation. Similarly, the diagram (A.16) is just

the lowest-order single-particle exchange energy.



February 8, 2018 10:55 PSP Book - 9in x 6in Annotations2QSM

References and Supplementary Reading

Chapter 1
The annotator discussed quantum mechanics based heavily on P. A. M.

Dirac, The Principles of Quantum Mechanics, 4th Edition (Clarendon Press,

Oxford, 1998); Leonard I. Schiff, Quantum Mechanics (McGraw-Hill, New

York, 1968); and J. J. Sakurai and San Fu Tuan, Modern Quantum Mechanics,

Revised Edition (Addison-Wesley, Reading, Massachusetts, 1994). The

required classical mechanics are presumably assumed that the readers

have studied L. D. Landau and E. M. Lifshitz, Classical Mechanics, 3rd

Edition (Elsevier, Amsterdam, 2005) and H. Goldstein, Classical Mechanics,

2nd Edition (Addison-Wesley, Reading, Massachusetts, 1980) along with

the enough mathematical training by George B. Arfken, Hans J. Weber,

and Frank E. Harris, Mathematical Methods for Physicists: A Comprehensive
Guide, 7th Edition (Elsevier, Amsterdam, 2013). Copenhagen interpretation

of quantum mechanics was first given by M. Born, Z. Physik, 37, 863

(1926); Nature 119, 354 (1927). The correspondence between the quantum

mechanical expectation values and the classical mechanics was provided

by P. Ehrenfest, Z. Physik, 45, 455 (1927). The Principles of Uncertainty

is given by W. Heisenberg, Z. Physik, 43, 172 (1927). The idea of second

quantization was given by P. A. M. Dirac, Proc. R. Soc. London, 114A, 243

(1927). The non-relativistic quantum many-body theory was formulated by

P. Jordan and O. Klein, Z. Physik, 45, 751 (1927); P. Jordan and E. P. Wigner,

Z. Physik, 47, 631 (1928); V. Fock, Z. Physik, 75, 622 (1932); while a rigorous

treatment of relativistic quantum field theory can be found in J. M. Jauch and

F. Rohrlich, The Theory of Photons and Electrons, Second Expanded Edition

(Springer-Verlag, New York, 1976). The annotator discussed the second

quantization based on Alexander L. Fetter and John Dirk Walecka, Quantum
Theory of Many-Particle Systems (McGraw-Hill, New York, 1971) and John W.

Negele and Henri Orland, Quantum Many-Particle Systems (Addison-Wesley,

Redwood City, California, 1988). A fermionic many-particle wavefunction is

expanded in terms of Slater’s determinant formulated by J. C. Slater, Phys.
Rev., 34, 1293 (1929).

Recent developments of nonequilibrium statistical mechanics are well

guided by Jørgen Rammer, Quantum Field Theory of Non-equilibrium States



February 8, 2018 10:55 PSP Book - 9in x 6in Annotations2QSM

252 References and Supplementary Reading

(Cambridge University Press, Cambridge, 2007); Alex Kamenev, Field The-
ories of Non-Equilibrium Systems (Cambridge University Press, Cambridge,

2011); and Gianluca Stefanucci and Robert van Leeuwen, Nonequilibrium
Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge

University Press, Cambridge, 2013).

Chapter 2
The discussion in the first four chapters is based to a large extent on

the work of P. C. Martin and J. Schwinger, Phys. Rev., 115, 1342 (1959),

where many earlier references are cited. The Green’s functions were first

introduced by T. Matsubara, Progr. Theoret. Phys. (Kyoto), 14, 351 (1955).

The boundary conditions was derived by R. Kubo, J. Phys. Soc. Japan, 12,

570 (1957). There is much work done along similar lines in Russia. See the

review articles D. N. Zubarev, Uspehki Fiz. Sauk, 71, 71 (1960) [translation

Soviet Phys. Uspekhi, 3, 320 (1960)] and A. I. Alekseev, Uspekhi Fiz. Nauk, 73,

41 (1961) [translation Soviet Phys. Uspekhi, 4, 23 (1961)] where extensive

lists of references are given.

Chapter 3
For the basic notions of statistical mechanics, we refer the reader to

Schrödinger’s excellent little book, Statistical Thermodynamics (Cambridge

University Press, London, 1946).

Chapter 4
For a discussion of the mathematical justification of the continuation of the

Fourier coefficient function to all z, see G. Baym and N. D. Mermin, J. Math.
Phys., 2, 232 (1961). The original Hartree and Hartree–Fock approximations

are reviewed by D. R. Hartree, Repts. Prog. Phys., 11, 113 (1948).

Chapter 6
The variational derivative techniques were introduced by J. Schwinger, Proc.
Natl. Acad. Sci. U.S.A., 37, 452 (1951). Perturbative expansions in v of G, ,

and also some of the thermodynamic functions, e.g., the pressure, are very

commonly used in many-particle physics. See, for example, E. W. Montroll

and J. C. Ward, Phys. Fluids, 1, 55 (1958); C. Bloch and C. DeDominicis,

Nuclear Phys., 7, 459 (1958); J. M. Luttinger and J. C. Ward, Phys. Rev., 118,

1417 (1960). A very original approach to the problem of expanding  in

terms of G is given by R. Kraichnan, Rep. HT-9, Devision of Electromagnetic

Research, Institute of Mathematical Sciences, New York University, 1961.



February 8, 2018 10:55 PSP Book - 9in x 6in Annotations2QSM

References and Supplementary Reading 253

Chapter 7
For discussions of the Boltzmann equation, see A. Sommerfeld, Thermody-
namics and Statistical Mechanics (Academic Press, New York, 1956); J. Jeans,

Introduction to the Kinetic Theory of Gases (Cambridge University Press,

London, 1948); S. Chapman and T. G. Cowling, Mathematical Theory of Non-
Uniform Gases (Cambridge University Press, London, 1939). These books

also describe how dissipative phenomena, e.g., sound-wave damping and

heat conduction, can be derived from the Boltzmann equation. The Landau–

Vlasov equation is discussed by A. Vlasov, J. Phys. (U.S.S.R.), 9, 25 (1945).

The energy conservation law for G(U ) is demonstrated in the appendix

to G. Baym and L. P. Kadanoff, Phys. Rev., 124, 287 (1961).

Chapter 8
The random phase approximation was developed by D. Bohm and D. Pines,

Phys. Rev., 92, 609 (1953). An extensive list of references is given by D. Pines

in The Many-Body Problem (W. A. Benjamin, New York, 1961). For work on

zero sound, see L. D. Landau, J. Exptl. Theoret. Phys. (U.S.S.R.), 32, 59 (1957)

[translation Soviet Phys. JETP, 5, 101 (1957)]; K. Gottfried and L. Pičman, Kgl.
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