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Foreword 

Founded in 1925 and 1926 by Werner Heisenberg, Erwin Schrödinger and Paul 
Dirac, quantum mechanics is nearly 100 years old. As the basis of modern 
technology, it has given rise to countless applications in physics, chemistry and even 
biology. The relevant literature is very rich, counting works written in many 
languages and from various perspectives. They address a broad audience, from 
beginner students and teachers to expert researchers in the field. 

Professor Sakho has chosen the former as the target audience of this book, 
connecting the quarter of a century that preceded the inception of quantum 
mechanics and its first results. The book is organized in two volumes. The first deals 
with thermal radiation and the experimental facts that led to the quantization of 
matter. The second volume focuses on the Schrödinger equation and its applications, 
Hermitian operators and Dirac notations. 

The clear and detailed presentation of the notions introduced in this book reveals 
its constant didactic concern. A unique selling point of this book is the broad range 
of approaches used throughout its chapters: 

– the course includes many solved exercises, which complete the presentation in 
a concrete manner; 

– the presentation of experimental devices goes well beyond idealized schematic 
representations and illustrates the nature of laboratory work; 

– more advanced notions (semiconductors, relativistic effects in hydrogen, Lamb 
shift, etc.) are briefly introduced, always in relation with more fundamental 
concepts; 

– the biographical boxes give the subject a human touch and invite the reader to 
anchor the development of a theory in its historical context. 
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The book concludes with a list of references and a detailed index. 

Science is a key element of contemporary culture. Researchers’ efforts to write 
the books required for students’ education are praiseworthy. Undergraduate students 
and teachers will find this work especially beneficial. We wish it a wide distribution. 

Louis MARCHILDON 
Professor Emeritus of Physics 

University of Quebec at Trois-Rivières 
July 2019 

 



 

Preface 

Quantum mechanics or the physics of the infinitely small (microcosm) is often 
contrasted with classical mechanics or the physics of macroscopic bodies 
(macrocosm). This book, whose title is “Introduction to Quantum Mechanics 2”, 
aims to equip the reader with basic tools that are essential for a good understanding 
of the physical properties of atoms, nuclei, molecules, lasers, solid bodies and 
electronic materials – in short all that is infinitely small. Introductory courses on 
quantum mechanics generally focus on the study of the interaction between matter 
and radiation, and the quantum states of matter. This book emphasizes the various 
experiments that have led to the discovery within the set of physical phenomena 
related to the properties of quantum systems. Consequently, this book is composed 
of seven chapters organized in two volumes. Each chapter starts with a presentation  
of the general objective, followed by a list of specific objectives, and finally by a list 
of prerequisites essential for a good understanding of the concepts introduced. 
Furthermore, the introduction of each law follows a simple application. Each studied 
chapter ends with a collection of various rich exercises and solutions that facilitate 
the assimilation of all the concepts presented. Moreover, a brief biography of each 
of the thinkers having contributed to the discovery of the studied physical laws or 
phenomena is given separately, as the chapter unfolds. The reader can this way 
acquire a sound scientific culture related to the evolution of scientific thought during 
the elaboration of quantum mechanics. Due to its structuring and didactic approach, 
this work is a modern and very original book. Volume 1 covers the study of the first 
four chapters related to thermal radiation, to the experimental facts that revealed the 
quantization of matter, and to De Broglie wave theory and Heisenberg’s uncertainty 
principle.  

Volume 2 is dedicated to the last three chapters related, respectively, to the study 
of Schrödinger equation and applications, Hermitian operators and Dirac notations. 
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Chapter 1 focuses on the study of the evolution of wave functions described by 
the Schrödinger equation followed by several applications that introduce, in 
particular, concepts such as potential well, potential path, wave reflection and 
transmission factor, potential barrier, tunnel effect and 0D confinement through the 
study of quantum dots. Chapter 2 deals with the basic tools related to the 
mathematical formalism of quantum mechanics. Hence, this chapter presents the 
properties of orthonormal bases in the space of square-summable wave functions, 
Dirac notations for ket and bra vectors in the state space. Moreover, it introduces 
notions such as linear operator, Hermitian operator, observable, Hermitian 
conjugation and commutator. Finally, Chapter 3 studies the eigenvalues and 
eigenvectors of an observable. This offers the possibility to introduce the notion of 
representation of ket and bra vectors and operators, to pass from vector calculus in 
the space of square-summable wave functions and to matrix calculus in the space of 
states. Furthermore, the study relates to the introduction of the eigenvalue equation 
of an operator and the characteristic equation (or secular equation) for determining 
the eigenvalues of an operator based on a matrix representation. The chapter ends 
with the definition of the mean value of an observable and the establishment of their 
evolution equation by the study of conservative systems, and the establishment of 
Ehrenfest theorem reflected by the laws of evolution of the mean values of position 
and momentum operators. 

Finally, the book is completed by a set of appendices that offer the reader the 
possibility to gain a deeper understanding of the physical phenomena studied in this 
book. Appendices 1 and 2 relate, respectively, to the description of quantum wires, 
quantum wells and quantum dots of semiconductor materials. This description 
facilitates the connection with potential wells and potential dots studied in quantum 
mechanics. Moreover, these appendices make it possible to introduce the notions of 
2D, 1D and 0D confinement. Finally, Appendix 3 focuses on the detailed proof  
of the expression of the transparency of a potential barrier of height V0 for a particle 
of energy E > V0. This facilitates the introduction of the resonance phenomenon. A 
list of references and an index can be found at the end of the book. 

I wish to thank Chrono Environement Laboratory at the Université Franche 
Comté de Besançon for their hospitality during my stay from September 1 to 
November 2, 2018 as a Visiting Professor. Many pages of this book were written 
during this period, which proved very favorable to this endeavor, both in terms of 
logistics and documentation. I would like to make a special mention to Jean-
Emmanuel Groetz, Senior Lecturer at Chrono Environnement Laboratory, who was 
in charge of my Visiting Professor request file. I wish to express my warmest thanks 
to Elie Belorizky, Professor of Physics at Université Joseph Fourier de Grenoble 
(France), for his critical remarks and suggestions, which had a great contribution to 
improving the scientific quality of this work. Many corrections brought to this book 
have been made via telephone exchanges during my stay at the Université Franche 
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Comté de Besançon. I am expressing here my deep appreciation for him gracefully 
bearing the inherent expenses for the telephone calls related to this book review. 
Finally, I wish to address my deepest gratitude to Louis Marchildon, Professor of 
Physics (Emeritus) at the Université de Quebec à Trois Rivières (Canada), who 
spared no effort to review the entire book, and whose comments have enhanced the 
scientific quality of this work, whose foreword bears his signature. We started our 
collaboration in 2013, when he invited me to host a conference at the Hydrogen 
Research Institute (HRI). I am deeply grateful for his kind and very fruitful 
collaboration. 

All human endeavor being subject to improvement, I remain open to and 
interested in critical remarks and suggestions that my readers can send me at the 
below-mentioned email. 

Ibrahima SAKHO 
aminafatima_sakho@yahoo.fr 

October 2019 
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Schrödinger’s Equation and  
its Applications 

General objective  

The general objective is to apply the Schrödinger equation to the study of simple 
physical systems. 

Specific objectives 

On completing this chapter, the reader should be able to: 

– know the properties of the square-summable wave functions; 

– know the boundary conditions imposed to any square-summable wave 
function; 

– distinguish between a physical state in classical mechanics and in quantum 
mechanics; 

– describe a physical quantity in quantum mechanics; 

– define an operator; 

– define an observable; 

– give examples of operators and observables; 

– know the correspondence principle or rule;  

– define the Hamiltonian of a physical system; 

– express the time-dependent Schrödinger equation; 

– express the stationary Schrödinger equation; 
                            
For color versions of the figures in this book, see www.iste.co.uk/sakho/quantum2.zip. 
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– know the properties of the Schrödinger equation; 

– integrate the Schrödinger equation for a free particle; 

– integrate the Schrödinger equation for the ground state of the hydrogen atom; 

– apply the Schrödinger equation to the study of quantum wells; 

– apply the Schrödinger equation to the study of quantum dots; 

– apply the Schrödinger equation to the study of potential barriers; 

– apply the Schrödinger equation to the study of potential steps; 

– define the probability current; 

– define the reflection and transmission factors; 

– define the reflection and transmission probabilities; 

– provide an interpretation of the tunnel effect; 

– describe the scanning tunneling microscope. 

Prerequisites 

– De Broglie plane wave. 

– Heisenberg’s uncertainty relations. 

– Properties of trigonometric functions. 

– Euler formulae. 

– Integer series. 

1.1. Physical state and physical quantity 

1.1.1. Dynamic state of a particle  

According to classical mechanics, the dynamic state of a particle is fully 

determined at each moment if the position ),,( zyxr  and velocity or linear 

momentum ( , , )x y zp p p p


of this particle are known. In particular, if its position and 

velocity at an instant t = 0 are known, it is possible to calculate, by solving the 
fundamental equation of dynamics, its dynamic state at a subsequent moment t and 
hence its trajectory. 

Given the uncertainty principle, the notion of trajectory loses its meaning and a 
different approach must be adopted for the characterization of the dynamic state. 
The mathematical entities that can describe the dynamic states of the particle must 
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reflect its wave-like nature. Hence, an orbital dynamic state of the particle is 

described by a generally complex wave function ),( trΨ . 

1.1.2. Physical quantities associated with a particle 

In classical mechanics, the measurable physical quantities associated with a 
particle such as kinetic or potential energy and angular momentum are expressed as 
functions of position variables x, y, z and linear momentum variables px, py, pz. For 
example: 

– its kinetic energy is written as mpppE zyxc 2/)( 222 ++= ; 

– its orbital angular momentum with respect to a point O of the space is written 
as pOM ∧=σ .  

In quantum mechanics, the measurable physical quantities are represented by 
Hermitian operators, as described in section 1.3.2. For example, for a given particle: 

– operator ∇=
i

P 
 represents its linear momentum; 

– operator 
22

2
∇−=

m
T   represents its kinetic energy; 

– operator R  represents its position.  

In contrast to classical mechanics, which does not distinguish between state and 
physical quantity, there is an essential difference between the two notions in 
quantum mechanics: a state is represented by a state vector, while a physical 
quantity is represented by an operator, which is generally denoted by A. 

1.2. Square-summable wave function 

1.2.1. Definition, superposition principle 

As already explained above, the wave function describing the physical state of a 

particle is a complex function ),( trΨ  satisfying the normalization condition [4.49]. 

The set of square-summable wave functions constitutes the Hilbert space denoted by 
L2 [COH 77, MAR 00, NEU 18].  

If ),(1 trΨ  and ),(2 trΨ are two square-summable wave functions and if λ1 and λ2 

are two complex numbers, then any linear combination of these two functions is also 
a square-summable wave function: 
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),(),(),( 2211 trtrtr Ψ+Ψ=Ψ λλ  [1.1]  

Relation [1.1] satisfies the superposition principle. 

1.2.2. Properties 

Generally speaking, for bound states there are discontinuous square-summable 
wave functions. Nevertheless, in quantum mechanics, the square-summable wave 
functions used have the following properties: 

– they are continuous and indefinitely differentiable; 

– their derivatives with respect to space variables are continuous, even at 
possible points of discontinuity of potentials; 

– they are zero at infinity according to the normalization condition [4.49]; 

– they satisfy the scalar product of two functions defined in the Hilbert space.  

Let )(rΦ  and )(rΨ  be two square-summable wave functions. By definition, the 

scalar product of )(rΦ  and )(rΨ  is the complex number denoted by (Ψ, Φ) and 

given by the relation: 


∞+

∞−
ΦΨ=ΦΨ rd 3*),(  [1.2] 

The scalar product uses the complex conjugate Ψ* of the wave function Ψ. 

If λ1 and λ2 are two complex numbers, the scalar product [1.2] has the properties: 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )







ΨΦ+ΨΦ=ΨΦ+Φ

ΨΦ+ΨΦ=Ψ+ΨΦ
ΦΨ=ΨΦ

,,,

,,,

,*,

2
*
21

*
12211

22112211

λλλλ
λλλλ  [1.3] 

According to properties [1.3], the scalar product is linear with respect to the 
second function of the pair and anti-linear with respect to the first function of the 
pair. The definition of the scalar product makes it possible to define the norm of a 
square-summable wave function. For Ψ ≡ Φ, relation [1.2] becomes: 


∞+

∞−

∞+

∞−
Ψ=ΨΨ=ΨΨ rdrd 323*),(  [1.4] 

By definition, the norm of a wave function denoted by ||Ψ|| is given by the 
following relation: 
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0),( 32 ≥Ψ=ΨΨ=Ψ 
∞+

∞−
rd  [1.5] 

Equality [1.5] is satisfied when the wave function is zero. 

1.3. Operator 

1.3.1. Definition of an operator, examples 

By definition, an operator denoted by A is a mathematical being whose action on 
a wave function Ψ transforms it into another wave function Φ. The transformation 
equation is written as follows: 

AΨ = Φ  [1.6] 

Some operator examples are listed below: 

– multiplication by x denoted by X: XΨ(x) = xΨ(x) = Φ(x); 

– differentiation with respect to x denoted by ∂/∂x; 

)('
)( x

x
x Ψ=

∂
Ψ∂

 

– parity denoted by  Π:  

ΠΨ(x) = Ψ(x): if Ψ(x) is even 

or ΠΨ(x) = −Ψ(x): if Ψ(x) is odd. 

1.3.2. Hermitian operator 

Considering the scalar product of ψ and AΨ, we have: 

rdrrAA 3† )()(*),( ψψ  Ψ=Ψ   [1.7] 

Operator A† (A dagger) is by definition the adjoint operator of A. 

Moreover, an operator that is its own adjoint is called a Hermitian operator or a 
self-adjoint operator. Any Hermitian operator A verifies the relation A = A†. Given  
the properties [1.3] of the scalar product, any Hermitian operator verifies the 
property:  
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*
33 )()(*)()(*),( 





 Ψ=Ψ=Ψ  rdrArrdrArA ψψψ   [1.8] 

The simple definition of a Hermitian operator will be explored in Chapter 3, after 
the introduction of Dirac notations and the notion of matrix element. 

NOTE (HERMITIC OPERATOR AND HERMITIAN OPERATOR).– There are quantum 
mechanics works that feature the adjective Hermitic. The appropriate adjective is, 
nevertheless, Hermitian, for at least two reasons. First, as teaching experience 
indicates, students often confuse the words hermitic and hermetic (which the 
students are very familiar with). Second, many operators have been named after 
famous scientists who contributed to the development of quantum mechanics 
formalism. It is the case of Lagrangian, Laplacian, Hamiltonian, etc. The respective 
names of these operators honor the French naturalized Italian mathematician, 
mechanics scientist and astronomer Joseph Louis comte de Lagrange (1736–
1813), the French mathematician, physicist, astronomer and politician Pierre-Simon 
de Laplace (1749–1827) and the Irish mathematician, physicist and astronomer Sir 
William Rowan Hamilton (1805–1865). To avoid the confusion with the quasi-
homonymous adjective hermetic, it is wiser to use the adjective Hermitian, as a 
reference to the French mathematician Charles Hermite (1822–1901) (Box 1.1). 

APPLICATION 1.1.–  

Let A be a self-adjoint operator. Is the operator B = iA Hermitian? 

Solution. Let us find the adjoint operator of B: B† = (iA)† = (i)*A† = −iA  B† = 
−B: operator B is not Hermitian. 

Charles Hermite was a French mathematician. His work focused on the theory of 
numbers, quadratic forms, orthogonal polynomials, elliptic functions and differential 
equations. In quantum mechanics, Hermitian operators as well as Hermite polynomials, 
used in the study of the quantum harmonic oscillator, are mathematical concepts known as 
Hermitian in his honor. 

In 1925, he developed in parallel to Schrödinger (see Box 1.3) the first theorization of 
quantum mechanics within matrix formalism (while Schrödinger adopted a rather wave-
like approach by solving the differential equations). In 1927, Heisenberg stated the 
indeterminacy principle rejecting the notion of trajectory of a microscopic particle. He 
was awarded the Nobel Prize for physics in 1933 for his works in quantum mechanics. 

Box 1.1. Hermite (1822–1901) 
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1.3.3. Linear observable operator 

By definition, a linear operator is a mathematical being that establishes a linear 
correspondence between any wave function Ψ and another wave function Ψ′. If A is 
a linear operator, then: 

( )



Ψ+Ψ=Ψ+Ψ
Ψ=Ψ

22112211

'

AAA
A

λλλλ
                          [1.9] 

The foundation of physics relies on observation and experimentation or 
measurement. In quantum mechanics, any measurable physical quantity is 
associated with an operator, which is an observable. 

An observable is defined as a Hermitian operator whose eigen functions (or 
eigen vectors, see Chapter 3) form a complete set. A set is complete to the extent 
that every square-summable wave function is written in only one way, as a 
convergent series expansion on the basis of the eigen functions of this observable. 
The fundamental observables based on which all the others are expressed in 

quantum mechanics are operators associated with the position r , linear momentum 

p  and the total mechanical energy E of a system (see section 1.3.4).  

APPLICATION 1.2.–  

Prove that the operator multiplication by z and the operator first derivative with 
respect to variable y are linear operators. 

Solution. 

– Operator multiplication by z: Using [1.9], we have: 

( ) ( ) 22112211
22112211 )(

Ψ+Ψ=Ψ+Ψ




Ψ+Ψ=Ψ+Ψ
Ψ=Ψ

zzZ
zZ

zZ
λλλλ

λλλλ
 

This gives: 

( )1 1 2 2 1 1 2 2Z Z Zλ Ψ + λ Ψ = λ Ψ + λ Ψ   

– Operator first derivative with respect to variable y: Let dy be the first derivative 
with respect to variable y. We have: 

( ) )( 22112211 Ψ+Ψ
∂
∂=Ψ+Ψ λλλλ
y

dy  
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This gives: 

( )
yy

dy ∂
Ψ∂+

∂
Ψ∂=Ψ+Ψ 2

2
1

12211 λλλλ  

 
Hence: 

( ) 22112211 Ψ+Ψ=Ψ+Ψ yyy ddd λλλλ  

1.3.4. Correspondence principle, Hamiltonian 

In quantum mechanics, the principle according to which an observable A can be 
determined from classical mechanics quantities is governed by an empirical rule 
known as the correspondence principle [ATT 05] or correspondence rule [BAY 17]. 
All ambiguity should be removed before proceeding, given that the correspondence 
principle developed in this section differs from Bohr’s correspondence principle. 

Indeed, in 1923 Bohr formulated a heuristic principle known as Bohr’s 
correspondence principle. This principle, which was very useful upon the start of 
quantum mechanics development, states that the results of quantum mechanics must 
agree with those of classical mechanics at the limit of very large quantum numbers 
(see exercise 3.7.7, Chapter 3, Volume 1). In other terms, when the discrete 
character of measurable quantities can be ignored, the results provided by quantum 
mechanics can be determined with very good approximation within the framework 
of classical mechanics. The applicability of this correspondence principle goes 
beyond quantum mechanics. This principle is also valid in relativistic mechanics. 
For example, when v/c << 1, Lorentz factor (equation [4.66], Chapter 4, Volume 1)  
γ ≈ 1 and the laws of relativistic mechanics coincide with those of classical 
mechanics. This section takes a different approach to the formulation of the 
correspondence principle, since it employs the notion of observable, which was 
unknown during the development of Bohr’s theory. 

Before stating the correspondence principle, let us list the expressions of the 

observables associated with the physical quantities position r , linear momentum p  

and energy E, which are the most commonly used in quantum mechanics. These are 
the following: 

– position r  (x, y, z) → position operator R  (X, Y, Z); 

– linear momentum p  (x, y, z) → linear momentum operator P  (Px, Py, Pz); 

– potential energy V ( r ) → potential energy operator V ( R );               
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– kinetic energy Ec = p2/2m → kinetic energy operator T = 
2

P /2m; 

– mechanical energy E → Hamiltonian H.  

Let us note that the linear momentum operator and the Hamiltonian are, 
respectively, expressed as functions of the Laplacian and the operator first derivative 
with respect to time: 

P  = i ∇
i


; 
t

iH
∂
∂=   [1.10] 

In order to prove relations [1.10], let us consider a one-dimensional problem that 
analyzes the wave associated with a free particle that moves with a well-defined 
linear momentum P = Px. In this case, De Broglie plane wave [4.1] can be written 
considering Planck–Einstein relations [2.54] as follows: 

)//(
0),(  Etpxietx −Ψ=Ψ  [1.11] 

Using expression [1.11], we determine the following partial derivatives (putting 
Ψ (x, t) = Ψ in order to simplify): 









Ψ
∂
∂=Ψ

Ψ=Ψ











Ψ=Ψ=
∂

Ψ∂−

Ψ=
∂
Ψ∂

2

2

2

2
22

2

22

22 xi
P

EH

E
m

P
xm

E
t

i

xx



 [1.12] 

This leads to:  

t
iH

∂
∂=  ; x xP

i x i
∂= = ∇
∂

   [1.13] 

Relations [1.10] are obtained if the expression of operator Px is generalized to 
three dimensions. 

In the relation [1.13],   designates the identity operator [COH 77, SAH 12]. This 

operator is also denoted by the symbol Î  [BAS 17]. The identity operator is often 
omitted and for simplicity purposes we can write: 

t
iH

∂
∂=   [1.14]
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We can now formulate the correspondence principle so that it makes it possible 
to determine the expression of an observable from a classical expression: 

“The observable A ( R , P , t) describing a physical quantity A ( r , p , t) 

defined in classical mechanics is obtained by conveniently 

symmetrizing the classical expression and then by replacing p  by 

−i∇ in the symmetrized expression”. 

Example: Let us determine the observable associated with the classical quantity 

A ( r , p ) = r ⋅ p . 

It is worth noting that given the commutativity of the scalar product, we have: 

A ( r , p ) = r ⋅ p  = p ⋅ r  [1.15] 

On the other hand, R  and P  operators, which are associated with r  and p , 

respectively, are not always commutative. This follows from Heisenberg uncertainty 
principle. For example: 

XPx ≠ PxX but XPy = PyX 

Hence, in the general case, R ⋅ P ≠ P ⋅ R . 

From a classical point of view,  

r ⋅ p  = 
2

1  ( r ⋅ p + r ⋅ p ) [1.16] 

The symmetrization of the classical expression [1.16] leads to: 1/2 ( r ⋅ p + p ⋅ r ).  

The observable A ( R , P ) can therefore be written as: 

 A( R , P ) = 
2

1 ( R ⋅ P + P ⋅ R ) = 
2

i− ( R ⋅∇+∇⋅ R ) [1.17] 

NOTE.– Commutation operator is a very important notion in quantum mechanics. 
This is why Chapter 3 is dedicated to its detailed study. We shall keep in mind for 
the time being that the scalar product of two operators is commutative provided that 
the physical quantities described by the two operators are simultaneously 
measurable. 
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APPLICATION 1.3.–  

Find the expression of the observable describing the mechanical energy of a 
conservative system. 

Solution. The mechanical energy of a conservative system is constant. It is given 
by the classical expression: 

)(
2

2
rV

m
pE +=                  [1.18] 

The associated observable is the Hamiltonian H given by the quantum expression:  

)(
2

2

RV
m

PH += = Δ−
m2

2
+ V ( R )               [1.19] 

In the relations [1.19], Δ is the Laplacian, with ∇2 = Δ. 

Sir William Rowan Hamilton was an Irish mathematician, physicist and astronomer. He 
contributed to the development of optics, dynamics and algebra. He conducted significant 
researches for the development of analytical mechanics. The Hamiltonian operator or 
briefly the Hamiltonian involved in Schrödinger equation was named in his honor. 

Box 1.2. Hamilton (1805–1865) 

1.4. Evolution of physical systems 

1.4.1. Time-dependent Schrödinger equation 

In 1926, Schrödinger postulated the fundamental equation of quantum 
mechanics. According to this postulate, the evolution in time of a system is 
governed by the equation: 

),(
),( trH

t
tri Ψ=

∂
Ψ∂  [1.20] 

In equation [1.20], H is the Hamiltonian observable associated with the total 
energy of the system. For time-dependent phenomena, the potential energy is a 
function of position and time. The Hamiltonian is written according to [1.19]: 
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Δ−=
m

H
2

2 + V ( R , t) [1.21] 

Expression [1.21] shows that the Hamiltonian is a function of time. It is for this 
reason that equation [1.20] is known as time-dependent Schrödinger equation. Using 
[1.21], the partial differential equation [1.20] can be written in the following form: 

),(),(
2

),( 2
trtrV

mt
tri Ψ










+Δ−=

∂
Ψ∂   [1.22] 

1.4.2. Stationary Schrödinger equation 

In physics, many systems are subjected to time-independent potentials. It is 
particularly the case of hydrogen-like systems, potential wells, potential barriers, 
quantum harmonic oscillator, etc.; the Schrödinger equation [1.20] has for these 

systems a particular form where V ( r , t) = V ( r ). To establish this equation, the 
variable separation method will be used. For this purpose, particular solutions for 
equation [1.20] are sought for, writing the wave function as a product of a function 

of spatial coordinates Φ ( r ) and another time function χ (t): 

Ψ ( r , t) = Φ ( r ) × χ (t)   [1.23] 

Using [1.23], the Schrödinger equation [1.22] can be written as follows: 

)()()(
2

)(
)( 2

2
trrV

mdt
tdri χχ ×Φ












+∇−=Φ   [1.24] 

ATTENTION.– Simplification of both terms of equation [1.24] by Φ ( r ) should be 

avoided. Indeed, the right term contains the Laplacian of Φ ( r ), which is not equal 

to Φ ( r ). The division of both terms of [1.24] by Φ ( r ) × χ (t) leads to: 

)()(
2)(

1)(

)(

1 2
2

rrV
mrdt

td
t

i Φ











+∇−

Φ
=  χ

χ
 [1.25] 

Knowing that the term on the left side of [1.25] depends only on time and the 

one on the right side depends only on the variable r , then the two terms are equal to 
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a constant C. Moreover, each of these terms is equivalent to an energy. It can 
therefore be written as C = E. This leads to: 













Φ=Φ











+∇−

=

)()()(
2

)(
)(

2
2

rErrV
m

tE
dt

tdi



 χχ

 [1.26] 

It can be noted that the term between square brackets in [1.26] contains the 
expression of the Hamiltonian [1.19] for conservative systems, which is: 

HΦ ( r ) = EΦ ( r ) [1.27] 

Equation [1.28] is known as the stationary Schrödinger equation. This equation 
makes it possible to solve many physical phenomena related to the behavior of time-
independent potentials (see section 1.6). For this purpose, equation [1.27] is used in 
the form: 

)()()(
2

2
2

rErrV
m

Φ=Φ











+∇−   [1.28] 

Erwin Rudolf Josef Alexander Schrödinger was an Austrian physicist. In 1926, he 
postulated the non-relativistic wave equation describing the physical state of a system and 
opened the way for the development of the mathematical formalism of quantum 
mechanics. This wave equation, known as Schrödinger’s equation in his honor, brought 
him the Nobel Prize for physics in 1933, which he shared with Paul Dirac (see Chapter 2, 
Box 2.1). In 1935, Schrödinger imagined the cat paradox, a thought experiment that was 
later called Schrödinger’s cat, which is an evidence of the fracture between 
the microscopic realm (in which an object can simultaneously have several states) and the 
deterministic macroscopic realm. 

Box 1.3. Schrödinger (1887–1961) 

NOTE.– Schrödinger’s cat is a thought experiment (a cat and a flask of poison) used 
by Schrödinger in his attempt to refute the Copenhagen interpretation (see note at 
the end of section 4.2.2, Chapter 4, Vol. 1) of quantum mechanics, which involved a 
simultaneously dead and alive cat. Shortly before submitting his thought experiment 
to publication, Schrödinger presented it to Einstein, who subsequently employed 
gunpowder and a nearby cat in the thought experiment. Schrödinger and Einstein 
thought that the possibility of a dead-alive cat proved that the Max Born 
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interpretation of a wave function was incomplete. For more details on this 
experiment, the reader is invited to check the references [GRI 08, WIK 18]. 

1.4.3. Evolution operator 

The first equation of the system [1.26] can be written in the following form: 

dtEi
t
td


−=

)(

)(

χ
χ  [1.29] 

This differential equation can be easily integrated and has the following solution: 

)0(
00 )(),(

ttEi
ettt

−−
= χχ  [1.30] 

Let us consider χ (t0) = 1 since this constant is not involved in the physical 
predictions that feature the density of probability. This gives: 

)0(
0),(

ttEi
ett

−−
= χ  [1.31] 

Solution [1.31] makes it possible to introduce an important operator denoted U 
for the determination of the wave function Ψ ( r , t) describing the evolution of a 

physical system based on the wave function Ψ ( r , t0) at the initial moment t0. 
Considering that A = U and Φ = χ in [1.6], we have: 

)0(
0),(

ttEi
ettU

−−
==Ψ χ   [1.32] 

Knowing that the Hamiltonian H is the observable associated with the total 
energy E, the expression of operator U [1.31] can be deduced: 

)0(
0 ),(

ttHi
ettU

−−
=   [1.33] 

By definition, operator U is known as evolution operator acting on the eigen 

function of H. The passage from Ψ ( r , t0) to Ψ ( r , t) is expressed by the following 
relation: 

Ψ( r , t) = U(t, t0) Ψ( r , t0) [1.34] 
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Expression [1.33] is mentioned in Chapter 3 when studying conservative 
systems. 

APPLICATION 1.4. – 

By definition, A is a unitary operator if its adjoint coincides with its inverse. Prove 
that the evolution operator U is a unitary operator. 

Solution. A being a unitary operator, then: A† = A− 1. 

Using [1.33], we have: 

U†U = UU† = 1 U† = U−1                 [1.35] 

1.5. Properties of Schrödinger’s equation 

1.5.1. Determinism in the evolution of physical systems 

Schrödinger’s equation [1.20] is a first-order partial differential equation with 

respect to time. The value of the wave function Ψ( r , t0) at the initial instant t0 being 

given, the wave function Ψ( r , t) at a given instant t can be found. There is no 
indeterminism in the evolution of physical systems in time. Indeterminism occurs 
during the measurement of a physical quantity on the considered system. During the 
measurement, the state vector denoted |Ψ(t) undergoes an unpredictable jump due 
to what is known as fundamental perturbation [COH 77]. 

1.5.2. Superposition principle  

Let Ψ1 ( r , t) and Ψ2 ( r , t) be two wave functions that are solutions of the 
Schrödinger equation [1.20]. Let us consider that at instant t0, the state of the system 

is described by the wave function Ψ ( r , t0) such that: 

Ψ( r , t0) = λ1Ψ1( r , t0) + λ2Ψ2( r , t0)  [1.36] 

It should be reminded that in relation [1.36], λ1 and λ2 are complex numbers. 

Then at a given instant t, the wave function describing the system is written as: 

Ψ( r , t) = λ1Ψ1( r , t) + λ2Ψ2( r , t)  [1.37] 



16     Introduction to Quantum Mechanics 2 

Result [1.37] shows that any linear combination of wave functions that are 
solutions of the Schrödinger equation is also a solution of the same equation. 
Therefore Schrödinger’s equation [1.20] satisfies the superposition principle.  

For a conservative system, the Hamiltonian H is time independent. The passage 

from Ψ( r , t0) to Ψ( r , t) is linear and is made by the evolution operator according to 
relation [1.34]. 

1.5.3. Probability current density 

For a stationary wave function, the normalization condition [4.51] reflects the 
fact that the probability of finding the system at point r in space is equal to the unity. 
In other words, probability is conserved. This probability conservation involves the 
fact that the density of probability [4.49] is constant, even if the system evolves in 
time.  

Let us consider a general case for the study of the principle of probability 
conservation. For this purpose, let us first recall the principle of conservation of the 
electric charge.  

Let us consider a system of charged particles of volume charge density ρ ( r ,t). 
Charge variation dq = ρ ( r , t) dV in time corresponds to the flow of an electric 
current I through a cross-section dS limiting the volume dV so that dq = Idt. The 
global charge Q = dq is nevertheless conserved. This principle of global 
conservation of the electric charge relies on a local conservation of charge reflected 
by the continuity equation [SAK 18]: 

0),(
),( =⋅∇+

∂
∂ trJ

t
trρ  [1.38] 

In this relation, ),( trJ is the current density flux going out of dS, the surface 

being perpendicular to the current density vector.  

In quantum mechanics, a probability current density vector ),( trJ is introduced, 

which satisfies an equation of type [1.38] reflecting a principle of local probability 
conservation. To illustrate this point, it is convenient to imagine a “probability 
flow”. If the probability of finding the particle in the volume element dV around 

point r  varies, it is because the flux of the probability current through surface dS 
limiting the volume dV is not zero. To establish the continuity equation satisfied by 
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),( trJ , the starting point is the time-dependent Schrödinger equation [1.22], which 

is reminded below: 

),()(
2

),( 2
2

trrV
mt

tri Ψ











+∇−=

∂
Ψ∂     [1.22b] 

The complex conjugate of this equation is: 

),(*)(
2

),(* 2
2

trrV
mt

tri Ψ











+∇−=

∂
Ψ∂−    [1.39]

 

Multiplying both sides [1.22] by Ψ* and [1.39] by −Ψ* [and putting Ψ= Ψ( r , t) 
for the sake of simplification], we have: 

ΨΨ+Ψ∇Ψ−=
∂
Ψ∂Ψ *)(*

2
* 2

2
rV

mt
i     [1.40]

 

*)(*
2

* 2
2

ΨΨ−Ψ∇Ψ=
∂
Ψ∂Ψ rV

mt
i    [1.41]

 

The sum of these two equations is: 

( )**
2

*
* 22

2
Ψ∇Ψ−Ψ∇Ψ−=








∂
Ψ∂Ψ+

∂
Ψ∂Ψ

mtt
i   [1.42]

 

Arranging the member on the left side of equation [1.42], we get: 

( ) ( )**
2

* 22
2

Ψ∇Ψ−Ψ∇Ψ−=ΨΨ
∂
∂

mt
i   [1.43] 

Since the probability density satisfies the relation Ψ*Ψ = |Ψ|2, then we 
have ),( trρ = Ψ*Ψ. Equation [1.43] can then be written in the following form: 

( ) 0**
2

),( 22 =Ψ∇Ψ−Ψ∇Ψ+
∂

∂
mit

tr ρ  [1.44]

 

Equation [1.44] is identical to [1.42] if we consider: 

( )**
2

),( 22 Ψ∇Ψ−Ψ∇Ψ=⋅∇
mi

trJ   [1.45]
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In order to deduce the expression of ),( trJ from relation [1.45], let us add to the 
term between brackets of the left-side member, the quantity 

)*).(()*).(( Ψ∇Ψ∇−Ψ∇Ψ∇ . We then obtain: 

2 2( , ) * * ( *) ( ) ( *) ( )
2

J r t
mi

Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ ∇ ⋅ = ∇ − ∇ + ∇ ⋅ ∇ − ∇ ⋅ ∇ 
        [1.46]

 
This then gives: 

][ **)).((*)*).((
2

),( 22 Ψ∇Ψ−Ψ∇Ψ∇−Ψ∇Ψ+Ψ∇Ψ∇=⋅∇
mi

trJ   

which is: 

[ ]**
2

),( Ψ∇Ψ−Ψ∇Ψ⋅∇=⋅∇
mi

trJ   [1.47] 

Therefore, the probability current density is written as: 

[ ]**
2

),( Ψ∇Ψ−Ψ∇Ψ=
mi

trJ   [1.48] 

Equation [1.45] can then be written as: 

0),(
),( =⋅∇+

∂
∂ trJ

t
trρ  [1.49]

 

The continuity equation [1.49] reflects the probability conservation.  

The probability current density [1.49] is often expressed as a function of the 
three-dimensional linear momentum operator [ATT 08, BAY 17].  

In one dimension q, probability current density [1.48] can be written as a 
function of the linear momentum operator qq iP ∇−=  in the following form: 

)*Re(
1

*)*(
2

1 ΨΨ=ΨΨ−ΨΨ= qqqq P
m

PP
m

J  [1.50] 

In relation [1.50], Re designates the real part of the complex number (Ψ*PqΨ). 
In three dimensions, we have: 
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[ ]),(),(*Re
1

),( trPtr
m

trJ ΨΨ=
 

[1.51]
 

In [1.51], the linear momentum operator is given by the first relation [1.10]. 

1.6. Applications of Schrödinger’s equation 

1.6.1. Infinitely deep potential well 

The behavior of a particle confined in an infinitely deep potential well of width a 
[COH 77, GRI 95, PHI 03, MAR 00, STÖ 07, BEL 03, ATT 05, SAK 12, BAY 17] 
is studied. The profile of the potential energy V (x) is shown in Figure 1.1. 

     V(x) 

 
 
  Zone I                           Zone III 
 
 

 
          

 

Zone II 

 

a x0

 

Figure 1.1. Infinitely deep potential well of width a 

The potential energy function satisfies the following conditions: 

0, 0
( )

, <0 and x >a 

x a
V x

x
≤ ≤

= +∞
 [1.52] 

1.6.1.1. Behavior of the particle  

The energy E of the particle is equal to: 

)(
2

2
xV

m
pE +=  
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This then leads to: 

)(
2

2
xVE

m
p −=  [1.53]

 

The above relation [1.53] shows that, if the potential is infinite, the kinetic 
energy of the particle becomes negative. In other terms, the speed of the particle 
becomes imaginary. This has no meaning in classical mechanics: the zone is 
impenetrable. From the quantum point of view, it can be proved that the wave 
function is zero in a space domain where the potential is infinite. Therefore, in the 
zones where the potential is infinite, the wave function satisfies the boundary 
conditions: 

Φ (0) = 0; Φ (a) = 0 [1.54]  

1.6.1.2. Analysis of Schrödinger’s equation 

In the well, the potential energy is V (x) = 0. According to [1.54], we have: 

m
pE
2

2
= > 0 [1.55]

 

From a classical point of view, the particle is then executing oscillations between 
the limits x = 0 and x = a, its kinetic energy being Ec = E. From a quantum point of 
view, the state of the particle is governed by the stationary Schrödinger equation 
[1.28]. In one dimension, this is: 

)(
)(

2 2

22
xE

dx
xd

m
Φ=Φ−   [1.56]

 

The integration of the differential equation [1.56] makes it possible to determine 
the nature of the spectrum of the particle confined in the well. For this purpose, let 
us find the solutions to equation [1.56], which can be written as: 

0)(
2)(

22

2
=Φ+Φ xmE

dx
xd


 [1.57]

 

Given the Planck–Einstein relations [4.3] kp = , [1.57] can be written as: 

2
2

22 2

2 
 mEk

m
kE ==  [1.58] 



Schrödinger’s Equation and its Applications     21 

Using [1.58], equation [1.57] can be written in the form:

 

0)(
)( 2

2

2
=Φ+Φ xk

dx
xd  [1.59] 

One solution of equation [1.59] is of the type: 

kxBkxAx sinsin)( +=Φ  [1.60] 

1.6.1.3. Energy quantization 

The boundary conditions [1.54] require the wave function Φ (x) to be continuous 
at the well connection points (in x = 0 and in x = a). Therefore: 

– continuity in x = 0  ΦI (0) = ΦII (0) = 0  B = 0; 

– continuity in x = a  ΦII (a) = ΦIII (a) = 0 A sin ka = 0. Hence: 

a
nknka n

ππ =⇔=           [1.61]

 

Result [1.61] reflects the quantization of the wave vector norm. Consequently, 
the energy of the particle is also quantized according to [1.58]. Hence: 

2
2

22

2
n

ma
En

π=                         [1.62]

 

Therefore, the spectrum of the particle is discrete. In [1.62], n is the quantum 
number, which is strictly positive, since the energy is not zero, given the uncertainty 
principle. Indeed, if n = 0, E = 0. The linear momentum p is therefore zero. Given 
Heisenberg’s first uncertainty relation [4.59], the position of the particle is infinite, 
which is impossible, since it is confined in the well.  

Let us rewrite expression [1.62] in the form: 

2

22

11
2

2
;

ma
EEnEn

π==                         [1.63] 

Figure 1.2 represents the discrete spectrum of the particle for several energy 
levels. The values of energy En are proportional to the ground state energy E1.  

Result [1.63] reveals the essential difference between the physical predictions of 
classical mechanics and those of quantum mechanics.  
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From a classical point of view, the energy E of the particle is continuous (from 0 
to infinity since the speed of the particle is under no restriction).  

From the perspective of quantum predictions, due to the physical properties of 
the wave function, the energy E of the particle can only take discrete values in the 
well. Moreover, for the one-dimensional quantum harmonic oscillator, the energy is 
given by relation [3.263]: 

ωω  =−=Δ





 += ± nnnn EEEnE 12

1  [1.64] 

The energy gap between these two consecutive levels of the quantum harmonic 
oscillator is therefore constant (the energy levels are equidistant). On the other hand, 
the energy gap between two consecutive levels of the particle confined in the well is 
equal to (2n + 1), as shown in Figure 1.2. This is due to the fact that the energy 
[1.63] of the particle varies with the square of the quantum number n. 

 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.2. Discrete spectrum of a particle confined to an  
infinitely deep potential well 

1.6.1.4. Expression of the normed wave function 

Using [1.61] and considering that B is zero, [1.60] gives: 







=Φ x

a
nAxn
π

sin)(                        [1.65] 
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Given the normalization condition of the wave function: 

1sin
0

22 =





 dxx

a
nA

a π  

Considering the transformation cos2q = 1 – 2sin2q, (q = nπx/a), the integration of 
the previous equation gives: 

a
AaA 2

1
2

2 ==  [1.66] 

In summary, the normed wave function satisfies the following equations: 

0 < 0

2
( ) sin , 0 < <

0 > 0

n

x

n xx x a
a a

x

πΦ



  =   

 


 [1.67] 

1.6.1.5. Expression of the probability density 

In zone II, the density of the probability of particle presence is given by the 
square of the probability amplitude ΦII(x). Using [1.67], we have: 







= x

a
n

a
xn

πρ 2sin
2

)(  [1.68]  

Expression [1.68] shows that the probability density ρn (x) is zero at the well 
connection points (x = 0 and x = a). Consequently, it has a maximum between 0 and 
a. The maximum of this probability density is obtained for: 

1sin2 =





 x

l
nπ  

For x > 0, we have: 

)12(22
)12(

+
=+=

kn
axkx

a
n

n
ππ  [1.69]  

Let us consider the particular case when the integer k = 0. For the ground state (n 
= 1) and the first excited state (n = 2), the maxima of probability density ρn (x) 
correspond to x1 = l/2 and x2 = l/4.  
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The plots of the wave function Φn (x) and of the probability density ρn (x) are 
shown in Figure 1.3 below for the ground level n = 1 and for the first two excited 
levels n = 2 and 3. 

  |Φn (x)|2

|Φ3 (x)|2

|Φ2 (x)|2

n = 3 

Φ1 (x)

n = 1

n = 2

Φn (x) 

Φ3 (x)

Φ2 (x) 

n = 3
9E1 

4E1 

E1 

|Φ1 (x)|2

n = 2

n = 1 

0 a/6 a/3 a/2 2a/3 5a/6 a 0 a/6 a/3 a/2 2a/3 5a/6 a 

x x 

 

Figure 1.3. Variations of the wave function and of the probability density of a particle 
confined in an infinitely deep potential well 

1.6.2. Potential step 

This section focuses on the study of a particle coming from − ∞ and heading to a 
potential step [COH 77; PÉR 86; SIV 86; GRI 95; PHI 03; ATT 05; STÖ 07;  
SAK 12; BAY 17] of height V0 (Figure 1.4). This is a rectangular potential barrier 
(Figure 1.5) of width a → ∞. The kinetic energy of the particle is denoted by E.  

Here, we study the behavior of the particle through the potential step when the 
energy E >V0, then when E < V0. 
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Figure 1.4. Potential step of height V0 

1.6.2.1. Case of E > V0 

1.6.2.1.1. Classical and quantum predictions 

From a classical point of view, the particle flies over the step and carries on 
along its path: its motion is rectilinear with a speed drop at the transition point of 
abscissa x = 0. From the quantum mechanics point of view, the state of the particle is 
described by a wave function. There is a non-zero probability for the particle to be 
reflected or transmitted through the potential step. To analyze these purely quantum 
phenomena, let us consider Schrödinger equation [1.28] in one dimension: 
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m
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

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




+−   [1.70]  

In zone I, the potential is zero. Hence, according to [1.70]: 

0)(
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2 2
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=Φ+Φ

Ι
Ι xE

dx
xd

m
  [1.71]  

In zone II, the potential is equal to V0. Equation [1.70] then yields: 

0)()(
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ΙΙ
ΙΙ xVE
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m
  [1.72]  

1.6.2.1.2. General solutions 

The general solutions of equations [1.71] and [1.72] respectively, are as follows: 
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Zone I  

)(exp)(exp)( xikBxikAx ΙΙΙ −+=Φ  [1.73]  

with: 

2

2


mEk =Ι  [1.74]  

Zone II 

)(exp)(exp)( xikDxikCx ΙΙΙΙΙΙ −+=Φ  [1.75]  

with: 

2
0 )(2


VEmk −

=ΙΙ   [1.76] 

1.6.2.1.3. Amplitude reflection and transmission factors 

Expression [1.73] of the wave function is a superposition of an incident plane 
wave exp (ikIx) and a reflected plane wave exp (−ikIx). This proves that the particle 
can either be reflected or transmitted through the potential barrier; there is no 
similarity in classical mechanics. The objective is to find the expression of the 
reflection and transmission probabilities, and then to verify the law of probability 
conservation. 

In zone II, there is no backward wave. Therefore, the coefficient D = 0. To 
summarize, only the following solutions should be considered: 









=Φ

−+=Φ

ΙΙΙΙ

ΙΙΙ

)(exp)(

)(exp)(exp)(

xikCx

xikBxikAx
                          [1.77] 

Let us use the boundary conditions imposed to the wave function Φ’i(x) and to 
its first derivative Φ’i(x) = dΦ (x)/dx in x = 0: 

ΦI(0) = ΦII(0) 

Φ’I (0) = Φ’II (0) 

Using [1.77], the boundary conditions [1.78] lead to the following system: 





=−
=+

ΙΙΙ CkBAk
CBA
)(

            [1.79] 

[1.78] 
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Arranging [1.79], we express B and C as functions of A. Therefore, we obtain: 

A
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kkB

ΙΙΙ

ΙΙΙ
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−=

                                         

[1.80] 

A
kk
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ΙΙΙ

Ι
+

= 2

                                         

[1.81] 

By definition, the amplitude reflection factor denoted r and the amplitude 
transmission factor denoted d of the waves at the level of the barrier result from the 
following relations: 

A
Cd

A
Br == ;

                          

[1.82] 

Using relations [1.80] and [2.82], we obtain: 

ΙΙΙ

ΙΙΙ
+
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=
kk

kd 2

            

[1.83] 

1.6.2.1.4. Reflection probability R and transmission probability T 

By definition, the reflection probability R and the transmission probability T of 
the particle are given by the following relations: 

2
2

2
;
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A
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k
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C
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Ι
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Using expressions [1.80] and [1.81], we finally obtain: 
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The transmission probability T [SAK 12, BAY 17] is also often known as 
barrier permeability or barrier transparency [SIV 86, BEL 03], or as the barrier 
transmission coefficient [COH 77, STÖ 07]. 

1.6.2.1.5. Probability conservation 

Let us find the sum of reflection and transmission probabilities using [1.85]. We 
have: 
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The expansion of the first term of the right-hand member leads to: 
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Hence: 

R + T = 1                          [1.86] 

Therefore, from the quantum perspective, the particle is either reflected or 
transmitted, while from the classical mechanics perspective it moves past the barrier, 
so no reflection takes place. Among others, result [1.86] reflects the law of 
conservation of mass. 

1.6.2.2. Case when E < V0 

1.6.2.2.1. Value of the reflection factor, evanescent wave 

When E < V0, the quantity kII becomes imaginary according to [1.76]. Similarly 
to geometric optics, total reflection takes place. Consequently, the probability is  
R = 1. Indeed, if we consider kII = iρ, the amplitude reflection factor [1.83] can be 
written as: 

1
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Though total reflection occurs, the wave transmitted in zone II is not zero: it is 
transformed into a wave known as an evanescent wave of low depth of penetration. 
To establish the expression of this wave, we consider kII = iρ. Using [1.77], we 
obtain: 

)(exp)( xCx ρ−=ΦΙΙ  [1.87] 

with: 

2
0 )(2


EVm −

=ρ             [1.88] 
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1.6.2.2.2. Expression of the depth of penetration 

The depth of penetration of the evanescent wave is the distance lp at which the 
density of probability decreases by 1/e [SIV 86, SAK 12]. According to [1.87], the 
density of probability is: 

)2(exp)( 2 xCxD ρ−=   [1.89] 

For x = lp, exp (−2ρlp) = 1/e = exp (−1). Therefore, 2ρlp = 1, or lp = 1/2ρ.  Using 
[1.88], we finally find (knowing that  = h/2π): 

)(24 0 EVm
hl p −

=
π

   [1.90] 

1.6.2.3. Conclusion 

Result [1.90] shows that the wave penetrates zone II even though it undergoes 
total reflection.   

It is worth noting the existence of a factor kII/kI in the expression [1.84] of the 
probability of transmission T. The origin of this factor should be clarified. For this 
purpose, let us express the probability current densities for the process of reflection 
and transmission of the particle using [1.73] and the expressions [1.75] of the wave 
functions ΦI (x) and ΦII (x). The complex conjugates of these functions can be 
written as follows: 


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These relations are used in the calculation of the probability current in zones I 

and II. We obtain respectively: 
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Let us calculate the products between brackets involved in relations [1.92] and 
[1.93]. We obtain: 
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Similarly: 
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Taking [1.91] and [1.94] into account, this leads to:
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Using these relations, the probability currents in zones I and II are written 
according to the probability currents [1.92] and [1.93]:  

[ ]22 BA
m
kJ −= Ι

Ι
  ; 2C

m
kJ ΙΙ

ΙΙ =   [1.96] 

The expression of JI is the sum of these two terms. The first term corresponds to 
the incident probability current JIi (due to the incident wave) and the second term 
corresponds to the reflected probability current JIr (due to the reflected wave). 
Hence: 

22 ; B
m
kJA

m
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Ι
Ι

Ι
Ι ==            [1.97]             

By definition, the reflection probability R is equal to the ratio of the reflected 
probability current JIr to the incident probability current JIi. If we use the results 
[1.97], we have: 
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This is the first of relations [1.84]. Similarly, the transmission probability T is 
defined as the ratio of the transmitted probability current JIIr to the incident 
probability current JIi. Hence: 

i

r
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This is the second of relations [1.84].  

In the particular case of kI = kII = k, T = 1 and R = 0 according to [1.85]. A further 
consequence is that the coefficient B = 0. Therefore, the wave functions [1.77] are 
identical, since A = C according to [1.99]: 
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This is in agreement with the predictions of classical mechanics: the particle 
moves past the barrier without being reflected. Figure 1.5 shows the variations of the 
density of probability of presence ρ (x) = |Φ (x)|2 in the two cases considered (E <V0 
and E >V0). 

From a classical perspective, the particle is reflected for E < V0, while from a 
quantum perspective the density of probability of presence ρ (x) is not zero in the 
zone II forbidden by classical mechanics.  

 

 

 

 

Figure 1.5. Variations of the density of probability of presence ρ (x) 
 of a particle of energy E encountering a potential step of  

height V0 (a) for E < V0 and (b) for E > V0 

   ρ (x)    ρ (x) 

x 0 x 0 

(a): E <V0 (b): E >V0 
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Nevertheless, the density of probability decreases exponentially with x and 
becomes negligible when x is above the penetration length lp [1.90] of the 
evanescent wave (Figure 1.5(a)): the particle is then definitely reflected. When the 
energy E > V0, the particle is transmitted according to the classical predictions. 

From a quantum perspective, the density of probability of presence ρ (x) is 
constant in zone II and the particle has a non-zero probability R to go back 
according to [1.86]. Nevertheless, for E >>V0 so that the height of the barrier can be 
ignored, then kI ≈ kII and the transmission probability T ≈ 1 according to [1.85]: the 
particle is then transmitted according to the classical predictions, as shown in  
Figure 1.6 indicating the variation of probabilities T and R for E < V0 and for E >V0. 

– At low energy (E << V0), the coefficient kI → 0 according to relation [1.74]. 
Consequently R → 1 and T → 0 according to [1.85]: reflection is then total; 

– for E = V0, kII = 0: R = 1 and T = 0. Reflection is then total; 

– at high energy (E >>V0), kI → kII; R → 0 and T → 1: the particle is then 
transmitted according to the classical predictions.  

 

 

 

Figure 1.6. Variations of the transmission probability T and of the  
reflection probability R depending on E/V0 

1.6.3. Potential barrier, tunnel effect 

Let us consider a rectangular potential barrier [COH 77, PÉR 86, SIV 86,  
GI 95, MAR 00, PHI 03, BEL 03, ATT 05, STÖ 07, SAK 12, BAY 17] of  
height V0 and width a. A particle whose total energy is E <V0 moves toward the 
barrier from a point of abscissa x < 0. The profile of the barrier is schematically 
represented in Figure 1.7. The potential described is such that: 
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Figure 1.7. Rectangular potential barrier of height V0 and width a 

Our objective is to describe the behavior of the particle in contact with the 
barrier and to analyze the Schrödinger equation in the three zones: I, II and III. Then 
the case of 0 < E < V0 is considered. The case of E >V0 will be dealt with in 
Appendix 3. 

1.6.3.1. Classical and quantum descriptions, Schrödinger’s equation  

From the classical perspective, the particle is reflected: it hits the barrier and 
turns back with the same initial speed. From a quantum perspective, the particle 
behaves entirely differently. To describe the physical phenomena involved, we 
analyze the Schrödinger equation in the three zones: I, II and III. We obtain, 
respectively: 
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We consider: 

2
2 2
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=   [1.104] 

Let us write the solutions ΦI(x), ΦII(x) and ΦIII(x) of the above equations. 

Zone I 

The solution to equation [1.101] has the form: 

ikxikx BeAex −
Ι +=Φ )(                                   [1.105] 

 
Zone II 

Equation [1.102] has the following solution: 

xikxik DeCex '')( −
ΙΙ +=Φ                      [1.106] 

Since E<V0, k’ = iK according to [1.104]. Solution [1.106] is then written as: 

KxKx DeCex +=Φ −
ΙΙ )(                                    [1.107] 

Zone III 

The solution to equation [1.103] has the following form: 

ikxikx GeFex −
ΙΙΙ +=Φ )(                                               [1.108] 

Since there is no reflected wave in zone III, then G = 0. Hence: 

ikxFex =ΦΙΙΙ )(                                   [1.109] 

1.6.3.2. Expression of the barrier transparency 

Let us summarize the previous solutions to Schrödinger’s equation: 










=Φ

+=Φ

+=Φ

ΙΙΙ

−
ΙΙ

−
Ι

ikx

KxKx

ikxikx

Fex

DeCex

BeAex

)(

)(

)(

                        [1.110] 



Schrödinger’s Equation and its Applications     35 

We now express the boundary conditions in x = 0 and then in x = a. We obtain:  

ΦI (0) = ΦII (0); ΦII (a) = ΦIII (a) 

Φ’I (0) = Φ’II (0); Φ’II (a) = Φ’III (a)                                  [1.111]     

dx
xdx i

i
)(

)('
Φ

=Φ  

Using [1.110] and [1.111], we have: 
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The probability of particle transmission from zone I to zone III is given by the 
ratio: T = |F|2/|A|2. The proof of the expression of T is quite lengthy. It will be given 
in Appendix 3, as the focus here is on its physical interpretation. We then obtain: 
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1.6.3.3. Tunnel effect 

Result [1.114] expresses the probability of the particle crossing the barrier. This 
partial transmission is known as the tunnel effect. Adopting a view according to 
which the particle goes through an already existing tunnel (for example, tunnels dug 
underground and used by subways or trains) should be avoided. This is a purely 
quantum effect reflecting the fact that a part of the incident wave is transmitted in 
the barrier and another part is reflected. 

To clarify this, let us prove that the transparency T of the barrier decreases 
exponentially with its width a. For this purpose, we express T as a function of Ka 
using [1.104] and [1.114]. We have: 
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Given the approximation Ka >> 1, the hyperbolic sine is shKa ≈ exp(Ka)/2. 
Equation [1.115] is then written as: 
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Since Ka >> 1, the first term of the denominator of [1.116] is negligible 
compared to the second term. Hence: 
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with: 
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The approximated result [1.117] shows that the tunnel effect decreases 
exponentially with the width a of the barrier and also with the mass m of the 
particle, since according to [1.105], we have: 
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with:  


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Relation [1.119] makes it possible to clarify the sensitivity of a particle to the 
tunnel effect. 

As shown by expression [1.118], the tunnel effect decreases exponentially with 
the mass m of the particle via the constant K. The larger the mass of the particle, the 
faster the decrease of T to zero. Consequently, the intensity of the tunnel effect 
grows with the decrease in particle mass. Therefore, for the same value (V0 – E), an 
electron of mass m has a higher probability to generate a tunnel than the (smaller) 
proton of mass mp (mp/m ≈ 1,836). 
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1.6.3.3.1. General conclusion 

The tunnel effect cannot be perceived for macroscopic objects. Figure 1.8 shows 
the variation of the density of probability ρ (x) = |Φ (x)|2 in zones I, II and III. The 
density of probability of presence ρ (x) decreases exponentially and becomes zero in 
zone III beyond x > lp. 

 

 

 

 

 

Figure 1.8. Exponential decrease of the density of probability of presence ρ (x)  
of a particle that crosses a potential barrier by tunnel effect 

1.6.3.4. Penetration length of a particle by tunnel effect 

Let us give an order of magnitude for a particle to cross a potential barrier by 
tunnel effect. We consider the case of the electron and proton. This makes it possible 
to theoretically confirm the assertion according to which the electron has a higher 
probability to cross the barrier by tunnel effect. The depth of penetration of the 
evanescent wave is given by [1.119], which is worth recalling: 

)(24 0 EVm
hlp −

=
π

  [1.119b]

 

Let us consider an electron and a proton of similar energy E = 1 eV each 
encountering a potential barrier of width a = 1 Å and height V0 = 2 eV (the condition 
E < V0 should be respected). Let us calculate the depth of penetration of the 
evanescent wave and the probability for the electron or proton to cross the barrier by 
tunnel effect. For the numerical applications: h = 6.63 × 10−34 J⋅s. 

1.6.3.4.1. Length of penetration 

– for the electron (m = 9.1 × 10−31 kg), we have: lpe = 0.98 Å ≈ a = 1 Å; 

– for the proton (mp = 1.67 × 10−27 kg), we have: lpp = 0.023 Å << a = 1 Å. 

   ρ (x) 

x

 I II III 
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These results prove that the electron penetrates the barrier more than the proton; 
the length of penetration of the evanescent wave in the barrier is approximately  
43 times (lpe/lpp ≈ 43) larger for the electron than for the proton. 

1.6.3.4.2. Transmission coefficient 

Let us express the depth lp as a function of K taking into account [1.119]. We 
have: 

KK
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Using [1.117] and [1.120], we have: 
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Knowing that E = 1 eV and V0 = 2 eV, formula [1.121] can be written as: 
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– for the electron: lpe = 0.98 Å ≈ a = 1Å T = 0.59 ≈ 60%; 

– for the proton: lpe = 0.023 Å T ≈ 5.2 × 10−19 ≈ 0%. 

We take lpe/lpp ≈ 43. Hence, if E = 1 eV and V0 = 2 eV, the results below show 
that while the electron has a 60% probability to cross the barrier by tunnel effect, the 
probability for the proton to cross the barrier by the same effect is extremely low. 

 
 
 
 
 
 
 
 
 

Figure 1.9. Variations of the transmission probability T and the  
reflection probability R depending on E/V0 
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Figure 1.9 shows the variations of transmission probability T and reflection 
probability R depending on the ratio E/V0. If E >>V0 probability T ≈ 1, the particle is 
certainly transmitted according to the predictions of classical mechanics. 

1.6.4. Quantum dot 

Let us consider a particle confined in a quantum dot [PÉR 86, STÖ 07, SAK 12] 
of edge a (Figure 1.10). This confinement makes it possible to define a cubic 
potential such that: 




∞

=
elsewhere

xV
,

;a<z<0;a<y<0;a<x<0,0
)(        

 
 
 
 
 
 
 
 
 

Figure 1.10. Quantum dot of edge a 

Similar to the case of the two-dimensional rectangular potential, in the case of 
the cubic potential, the total energy E = Ex + Ey + Ez = constant. Moreover, the 
global wave function Ψ (x, y, z) describing the state of the particle in the dot is the 
product of three functions Φ(x), ψ(y) and χ(z), which is:  

Ψ (x, y, z) = Φ(x) × ψ(y) × χ(z)                      [1.124] 

The transformation [1.124] is known as ansatz.  

The objective here is to determine the spectrum of the particle in the dot and the 
explicit expression of the global wave function [1.124]. 

1.6.4.1. The Schrödinger equation, normed wave function 

The density of the probability of finding the particle at a point M(x, y, z) in the 
dot is given by the square of the amplitude of probability Ψ(x, y, z). The potential is 
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infinite outside the dot, Ψ(x, y, z) = 0. Consequently, the density of the probability of 
presence of the particle is zero outside the quantum dot. The Schrödinger equation in 
the dot is a three-dimensional equation. The potential being zero in the dot, this 
equation can be written according to [1.28]: 
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Using the variable separation method in [1.124], we obtain: 
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Dividing both terms of this equation by Φ(x) × ψ(y) × χ(z), we have: 
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Knowing that E = Ex + Ey + Ez = constant, this equation can be written as: 
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By identification, we find: 
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The solutions to equations [1.128] are identical to solution [1.62] in the case of a 
particle confined in a potential well of width a. Hence: 
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In these expressions, n, µ andν designate the quantum numbers characterizing 
the state of the particle along directions x, y and z, respectively. The normed wave 
function [1.124] Ψnµν (x, y, z) can then be written as: 
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In [1.130], n, µ andν have the minimal values n = µ = ν = 1. The value 0 should 
be excluded, otherwise the wave function is zero in the dot. Moreover, the value 0 
(involving E0 = 0) is forbidden by the uncertainty principle, as explained above in 
the case of the infinitely deep potential well. 

1.6.4.2. Spectrum of the particle, degeneracy of the energy levels 

Similar to the case of the rectangular potential, for each of the three degrees of 
freedom of the particle, the total energy is quantized and given by [1.62]. Therefore, 
for the three dimensions, we have: 
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The total energy is then written as: 
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Expression [1.133] shows that the different quantum states for which the sum n2 
+ µ2 + v2 = constant have the same energy. There is therefore a degeneracy of the 
energy levels of the particle confined in the cubic box. It is worth recalling that the 
degree (order) of degeneracy of a given energy level Enµq is equal to the number of 
different quantum states that have the same energy. We illustrate this degeneracy in 
the case of the ground state and for specific combinations for which n2 + µ2 + v2 = 6 
and 9. Table 1.1 summarizes the results obtained. 
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n µ ν Enµν Degree of degeneracy (g) 

1 1 1 3E0 g = 1: non-degenerate ground level 

1 1 2 6E0 

g = 3: three times degenerate excited level 1 2 1 6E0 

2 1 1 6E0 

1 2 2 9E0 

g = 3: three times degenerate excited level 2 1 2 9E0 

2 2 1 9E0 

2 2 2 12E0 g = 1: non-degenerate excited level 

Table 1.1.  Degeneracy of the energy levels of a particle confined in a cubic box. 
Only a few levels are presented 

1.6.5. Ground state energy of hydrogen-like systems 

The quantization of the energy of the hydrogen atom has been established by 
Bohr since 1913. Our objective here is to find the expression of the ground state 
energy of hydrogen-like systems using Schrödinger’s equation. V (r) designates the 
potential energy of electron–nucleus interaction. Moreover, the stationary wave 
function describing the state of the electron is denoted by Ψ(r,θ,ϕ). Therefore, the 
stationary Schrödinger’s equation should be integrated in spherical coordinates. In 
this system of coordinates, the Laplacian is given by the following expression: 
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1.6.5.1. Schrödinger’s equation  

Using Schrödinger’s equation [1.28], we have: 
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For the stationary states, the wave function is the product of the radial wave 
function Φ(r) and the angular wave function Y(θ,ϕ) (in this notation the angular 
momentum quantum number and the orbital magnetic quantum number have been 

omitted; the spherical harmonics are denoted by ),( ϕθmY ). Hence: 
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),()(),,( ϕθϕθ Υ×Φ=Ψ rr  [1.135] 

Taking into account this form of the wave function, equation [1.134] can be 
written as: 
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Considering the ground state of a hydrogen-like system for which the 1s orbital 
has spherical symmetry, the global wave function [1.134] is independent of θ and ϕ 
and the function Y(θ,ϕ) is constant. It only depends on the radial coordinate r. 
Consequently, the Laplacian [1.133] acts only on the radial part of the wave 
function. Hence, dividing [1.136] by Y(θ,ϕ) in order to separate the angular and 
radial variables, we obtain: 
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In this equation, the Laplacian is purely radial and is written according to 
[1.133]: 
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Using [1.138], equation [1.137] becomes: 
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After arrangement, we have: 
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Moreover, for a hydrogen-like system, the potential energy resulting from the 
Coulomb interaction between nucleus (+Ze) and electron (–e) is given by the 
relation: 
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Inserting [1.140] in equation [1.139], we have: 
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Let us consider: 
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The differential equation [1.141] can then be written in the form: 
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1.6.5.2. Ground state energy 

Knowing the wave function Φ (r) for the ground state makes it possible to 
determine the parameters ρ and σ and then deduce the expression of energy E 
according to [1.142]. One of the simplest solutions to equation [1.143] with a  
finite value for r = 0 and tending to zero for r → ∞ has the following form [SIV 86, 
SAK 12]: 

Φ (r) = e 
−µr  [1.144] 

The first and second derivatives of this function can be written as: 

rr eµ
dr

rdeµ
dr

rd μμ −− =Φ−=Φ 2
2

2 )(
;

)(   [1.145] 
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Inserting results [1.145] in [1.143], after arrangement we find: 

0)22(
1

)( 2 =−++ µ
r

µ ρσ  [1.146] 

Equation [1.146] is verified for any value of variable r. Consequently, the terms 
between brackets in [1.146] are simultaneously zero. Hence: 





==−
−==+

µµ
µµ

ρρ
σσ

0)22(

0)( 22

   [1.147] 

We deduce from these relations:σ = −ρ2. According to [1.142], we then have: 

2

2

2

2

2








−=


kZmemE  

Or in the end: 

2

422

1 2
meZkE −=  [1.148] 

Result [1.148] actually corresponds to the ground state energy of the hydrogen-
like systems [3.24] if n = 1. If Z = 1, we find the expression of the ground state 
energy of the hydrogen atom known since 1913. This result is one of the strong 
confirmations of the validity of the Schrödinger equation postulated in 1926, which 
was 13 years after the elaboration of Bohr’s theory on the hydrogen atom. 

1.7. Exercises 

1.7.1. Exercise 1 – Probability current density 

The objective of this exercise is to express the probability current density in one 
dimension. For this purpose, we consider the generalized coordinate q (x, y or z) and 
the wave function Ψ (q, t) of an arbitrary system (particle). Operator Q is associated 
with q. 

(1) Express the Hamiltonian H of the system, then write the equations 
corresponding to the action of operators Q and V (Q, t) on the wave function Ψ (q, t). 
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(2) Let ρ be the probability density. Prove that: 
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(3) Given the following relations: 
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Prove the equation: 



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
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
Ψ

∂
Ψ∂−

∂
Ψ∂Ψ

∂
∂−=

∂
∂

qqqimt
*

*
2
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(4) Then prove that the equation for probability conservation can be written as: 

0
),(),( =

∂
∂+

∂
∂

q
tqJ

t
tqρ  

In this relation, J (q, t) is a quantity to be defined. 

1.7.2. Exercise 2 – Heisenberg’s spatial uncertainty relations 

This exercise focuses on the proof of Heisenberg’s spatial uncertainty relations. 
For this purpose, let us consider the root mean square deviations Δx and Δpx. The 
remaining two relations relative to y and z coordinates will be deduced by analogy. 
To simplify the study, we consider a one-dimensional problem and we choose the 
origin O of coordinates at the point of abscissa x = 0 so that the mean of the linear 
momentum is p = 0. Consequently: 

0===
dt

xd
mvmp  

The calculations will be done using the wave function Ψ = Ψ (x) that is assumed 
normed to unity. 
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For all practical purposes, we have [CHP 78]: 

0
2

≥Ψ+Ψ dx
dx
dwux ; 

+∞

∞−






 ΨΨ

dx
d

* = 0 

In the above inequality, u and w are auxiliary variables. 

(1) Recall the definition of the average x. Then deduce the root mean square 
deviations Δx and Δpx by analogy. 

(2) We consider: 

dxxA  ΨΨ= *2 ; dx
dx
dxB  ΨΨ−= *)( ; dx

dx
d

dx
dC  ΨΨ= *  

Prove the inequality: 

Au2 – uwB + Cw2≥ 0. 

Clarify the sign of A, with supporting rationale. 

(3) Find the values of A and B. Then deduce the inequality verified by AC. 

(4) Find the expression of C. 

(5) Use the above results to deduce Heisenberg’s uncertainty relations. 

1.7.3. Exercise 3 – Finite-depth potential step 

We consider a finite-depth potential step (Figure 1.11).  

 
 
 
 
 
 
 
 
 
 

Figure 1.11. Finite-height potential step 
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A particle of energy E moves toward the potential step from a point of abscissa  
x < 0. The potential as described meets the following conditions: 





−
=

axV
axV

xV
<,

>,
)(

2

1  

This exercise focuses on the study of the behavior of the particle in the following 
two cases: 

E >V1  

and: 

– V2 < E <V1 

(1) First case: E > V1 . 

(1.1) Prove that the states of the particle are stationary states. Write the 
Schrödinger equation in zones I (x < a) and II (x > a).  

(1.2) Deduce the solutions ΦI (x) and ΦII (x) in zones I and II, respectively. We 
consider: 

2
22 )(2


VEmq +=  for the solution in zone I 

2
12 )(2


VEm −=ρ  for the solution in zone II 

(1.3) Express the transmission probability T and the reflection probability R. 

(1.4) Find R + T. Conclude by comparing the classical and quantum predictions 
relative to the behavior of the particle. 

(2) Second case: – V2 < E <V1. Answer the same questions as for (1.1), (1.2), 
(1.3) and (1.4) above. As applicable, the expression of the evanescent wave and the 
emerging purely quantum effect shall be specified. 

1.7.4. Exercise 4 – Multistep potential 

Let us consider a multistep potential (Figure 1.12).  
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Figure 1.12. Multistep potential 

The potential is defined as follows: 
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A particle of energy E < 0 moves from −∞ to the potential step. 

The profile of the potential is schematically represented in Figure 1.12. 

(1) Write the stationary Schrödinger equation in zones I, II and III. 

(2) The particular case for which E = – V0 is studied. Let Ψi (x) be the solution in 
the considered zone (i). We have: 

2
02 6


mVk = ;

2
02 2


mVq =  

Express the solutions Ψi (x) in the three zones. 

 (3) Using the connection conditions, express the solutions Ψi (x) as a function of 
x, a, and q. 

(4) Then prove the relation: 

32tan −−= YY  

where Y is a parameter to be clarified. 
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(5) What is the condition to obtain a bound state of energy E = – V0? 

(6) Use a graphical representation to find the set of solutions corresponding to a 
bound state of the particle of energy E = – V0. 

1.7.5. Exercise 5 – Particle confined in a rectangular potential  

We study the behavior of a particle confined in an infinitely deep rectangular 
potential well (Figure 1.13). 

 

 

 

Figure 1.13. Rectangular potential 

In zone I, the potential is marked by the points O (0, 0), A (0, a), B (b, a) and  
C (b, 0). This yields: 
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Moreover, along the two dimensions, the total energy E = Ex + Ey = constant. Let 
Ψ (x, y) be the wave function describing the state of the particle in zone I. Φ(x) and 
ψ(y) designate the functions describing the state of the particle along the directions x 
and y, respectively.  

(1) Describe the behavior of the particle from a classical perspective. 

(2) Establish the differential equations satisfied by Φ(x) and ψ(y).  

(3) Deduce the solutions Φn (x) and ψq (y) to these equations, n and q designating 
the quantum numbers characterizing the state of the particle along directions x and y.  

(4) Find the expression of the normed wave function Ψnq (x, y). What are the 
minimal values of n and q? 
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(5) Express the density of the probability of finding the particle at point M (x, y). 
At what point(s) is this density maximal? 

(6) Prove that the total energy of the particle is quantized. 

(7) Deduce the expression of the energy E’ in the case of a square potential  
(a = b = l). Then show that the energy levels E’ are degenerate. Specify the origin of 
this degeneracy.  

1.7.6. Exercise 6 – Square potential well: unbound states 

Let us consider a square potential well of width 2a and depth V0 > 0 as shown in 
Figure 1.14. The potential described in this figure satisfies the following conditions: 
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A particle of total energy E > 0 comes from – ∞ toward the well. 

The behavior of the particle upon its arrival above the well is studied. 
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Figure 1.14. Square potential well 

(1) How does the particle behave from a classical perspective once it arrives 
above the well? What is its behavior from the quantum perspective? 

(2) Write the stationary Schrödinger equation in zones I, II and III. Deduce the 
corresponding solutions ΦI (x), ΦII (x) and ΦIII (x), respectively. We consider: 

2
2 2


mEk =  for the solutions in zones I and III. 
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2
02 )(2


VEm +

=ρ  for the solution in zone II. 

(3) Prove that the probability of transmission from zone I to zone III can be 
written in the following form: 

akk
kT

ρρρ
ρ

2sin)(4

4
222222

22

−+
=  

(4) Define and then express the probability of reflection R. 

(5) In relation to the behavior of the particle, specify the predictions of quantum 
mechanics in comparison to classical predictions. 

(6) Is the energy spectrum of the particle discrete or continuous? Justify the 
answer. 

1.7.7. Exercise 7 – Square potential well: bound states 

The same potential well of width 2a and depth V0 > 0 such as that described in 
Figure 1.14 is considered. This time a particle is coming from – ∞ with a total 
energy E < 0 so that – V0 < E < 0.  

(1) From a classical perspective, what is the behavior of the particle since its 
entry in zone I (see Figure 1.14)? What is the quantum perspective? 

(2) Find the wave functions ΦI (x), ΦII (x) and ΦIII (x). We consider: 

2
2 2


mE−=ρ  for the wave functions in zones I and III; 

2
02 )(2


VEmk +=  for the solution in zone II. 

(3) Prove the relation: 
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
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−

ρ
ρ  

Then show that the energy is quantized. 
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(4) Provide a graphical solution to the above equation. Two cases are 
distinguished. Show that the wave functions associated with the bound states of the 
particle have well-defined parity. 

1.7.8. Exercise 8 – Infinitely deep rectangular potential well  

The objective is the study of the behavior of a particle in an infinitely deep 
potential well, the profile of which is schematically represented in Figure 1.15. The 
potential V (x) is defined as follows: 
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Figure 1.15. Infinitely deep potential well 

(1) Find the wave function Φ (x) describing the state of the particle. 

We consider: 

 
2
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
mEk =  

(2) What is the condition imposed on k? Then express the quantized energy of 
the particle. 

(3) Express the even and odd wave functions describing the bound states of the 
particle. Establish the normed expressions of these even and odd wave functions. 
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(4) Provide a graphical representation of the wave functions and of the densities 
of probability corresponding to the ground state and to the first three excited levels 
of the particle.  

1.7.9. Exercise 9 – Metal assimilated to a potential well, cold emission  

In a metal, there are two bands that play a significant role in the electric 
conduction mechanism in metals. These are the valence band and the conduction 
band. In a first approximation, the N conduction electrons are considered free (in 
fact, each electron interacts with N − 1 other electrons and with the electric field 
generated by the crystal lattice).  

For the model of free electrons (perfect electron gas model), the metal is 
assimilated to a rectangular potential well of finite depth V0 > 0. Electrons are thus 
confined in the well (Figure 1.16). Then the potential is considered zero on the 
bottom of the well and changes at the walls, jumping from 0 to V0. At low 
temperature, no electron can be emitted by the metal. Nevertheless, if the metal is 
brought to quite a high temperature (above 1,000°C), the thermal agitation motion 
becomes so intense that electrons with sufficient energy manage to overcome the 
potential barrier of height V0 and escape from the metal: this phenomenon is known 
as the thermoelectric effect. Is it then possible to observe a cold metal emitting 
electrons? 

 

 

 

 

 

 

Figure 1.16. Metal assimilated to a rectangular potential well 

From an experimental point of view, it can be noted that when a strong electric 
field (approximately 106 V/cm) is applied, normally at the surface of a metal, the 
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latter emits electrons: it is the cold emission phenomenon that is studied in this 
exercise. When an electric field is zero, the potential energy is represented by a step 
AOBC of origin O located at the surface of the metal. The potential energy can  
therefore be considered zero inside the metal and equal to a constant K outside the 
metal (Figure 1.17).  

 

 

 

 

Figure 1.17. Potential profile in a metal assimilated to a rectangular potential well 

If an electric field of intensity E is applied, this field does not penetrate the 
metal, and so the potential is still zero. Outside the metal, the potential energy varies 
as a function of x and decreases according to BD. Hence, between the metal and the 
vacuum there is a potential barrier OBD. An electron of energy W at the point M of 
abscissa x1 (thickness of the barrier at point M) is tunneling out of the metal. 

Transparency T of the barrier is given by the expression [SIV 86, SAK 12]: 
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(1) Find the expression of potential energy V(x) for x > 0. 

(2) Express x1 as a function of K, E, W and e (elementary charge). 

(3) Prove that the probability of transmission of the barrier can be written in the 
following form (φ = K − W):  

EET /exp 0−=  

where E0 is a constant whose expression will be specified. 
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Calculate E0 and T. Draw a conclusion. 

Given data. 

 e = 1.6 × 10−19 C; m = 9.1× 10−31 kg; E = 4 ×107 V⋅cm− 1  

= 1.05 × 10−34 J ⋅ s; φ = 5 eV 

1.7.10. Exercise 10 – Ground state energy of the harmonic oscillator 

Let us consider a one-dimensional classical harmonic oscillator. It is constituted 
of a particle of mass m. During the motion, the position of the oscillator is given by 
its abscissa x with respect to a point O chosen as origin of space. At any instant, the 
oscillator is subjected to an opposing spring force F = −kx, where k is a positive 
constant known as the coefficient of elasticity.  

(1) Express the elastic potential energy V(x) of the classical oscillator. 

(2) Prove that the classical oscillator is a conservative system. 

(3) Let us now study the behavior of a quantum harmonic oscillator of potential 
energy V(x). 

(3.1) Prove that the stationary Schrödinger equation describing the evolution of 
the quantum harmonic oscillator can be written in the following form: 

)()(
)( 2

2

2
qqq

dq
qd Φ=Φ+Φ− α  

where q and α are dimensionless quantities to be specified. 

(3.2) For a certain value of α, the ground state wave function has the form  
Φ0(q) = exp (βq2), where β is a constant. Using the previous equation, prove the 
relation: 

(1 – 4β 2)q2 – 2β = α 

(3.3) Deduce from this equation the possible values of β. What value should be 
retained? Justify the answer. 

(3.4) Find the expression of the ground state energy E0 of the quantum harmonic 
oscillator. 
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1.7.11. Exercise 11 – Quantized energy of the harmonic oscillator 

Let us consider a one-dimensional quantum harmonic oscillator of energy E, 
angular frequency ω and potential energy V(x). The dimensionless quantities are: 

xmq

ω= ; 

ω
ε


E2=  

(1) Prove that the Schrödinger equation for the stationary states of the harmonic 
oscillator can be written in the following form: 

( ) 0)(
)( 2

2

2
=Φ−+Φ qq

dq
qd ε  

(2) The solution to this equation has the form: 

2/2
)()( qequAq −=Φ  

In this expression, A is a constant to be determined by the normalization 
condition.  

The function u (q) is a complete series of powers of q given by the expression: 

=
∞

= 0
)(

k

k
k qaqu  

Prove that u (q) satisfies the following differential equation: 

( ) 0)(1
)(

2
)(

2

2
=−+− qu

dq
qduq

dq
qud ε  

(3) Express the recurrence relation satisfied by the coefficients of u (q). 

(4) Using the cut-off condition, prove that the energy of the harmonic oscillator 
is quantized. Deduce the value of the energy E0 of the ground state. 

(5) Plot the curve of the variation of potential energy V(x). Draw on this curve 
the ground level of the studied quantum harmonic oscillator, as well as the first four 
excited levels. Comment on this curve first from a classical perspective and then 
from a quantum perspective. 



58     Introduction to Quantum Mechanics 2 

(6) What is the energy of the studied harmonic oscillator from both a classical 
and a quantum point of view?  

(7) Making the classical oscillator–quantum oscillator analogy, decide if the 
existence of energy E0 can be justified from the classical point of view.  

1.7.12. Exercise 12 – HCl molecule assimilated to a linear oscillator 

A very simple particular case of a quantum harmonic oscillator is the model of 
the hydrogen chloride molecule HCl assimilated to an oscillating dipole.  

 

 

 

Figure 1.18. HCl molecule assimilated to an oscillating dipole 

Indeed, since chlorine is more electronegative than hydrogen, the electron 
doublet is not equidistant from the centers of inertia of H and Cl atoms. The doublet 
is slightly attracted by the chlorine, which induces a polarization of the molecule and 
each of the bound atoms also carries a partial charge −δ for Cl and +δ for H. The 
mean distance between the hydrogen atom and the chlorine atom is denoted by a 
(Figure 1.18). The potential energy of the dipole thus constituted has the following 
form: 
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)( axkxV −=  

Moreover, the wave function Φ0 (x) of the ground state and Φ1(x) of the first 
excited state are given by the expressions: 

2/2)(2
00 )( axeAx −−=Φ α ; ( ) 2/2)(2

11 )( axeaxAx −−−=Φ β
 

In these expressions, A0 and A1 are normalization constants and α and β are 
strictly positive constants. 

(1) Write the Schrödinger equation of the vibration stationary states of the 
hydrogen chloride molecule. Deduce from it the relation between α and β. 

    H                                            Cl

 
                                                        x 
 
                         a



Schrödinger’s Equation and its Applications     59 

(2) Find the expressions of energies E0 and E1 of the respective ground state and 
first excited state of the HCl molecule. 

(3) What are the values of constants A0 and A1? Deduce the expressions of the 
normed wave functions of the ground state and of the first excited state. 

Given data.  

For the family of integrals of the type:  


∞ −=
0

2
dxexI xp

p
ρ  

(where ρ is a strictly positive constant), the recurrence relation can be written as: 
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1
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1.7.13. Exercise 13 – Quantized energy of hydrogen-like systems 

The objective here is to determine the expression of the quantized energy of 
hydrogen-like systems. For such systems which are in a stationary state, we consider 
the wave functions with spherical symmetry that depend only on the radial  
variable r.  

The Schrödinger equation describing the evolution of the radial function is of a 
similar type to equation [1.144]. The following changes are made:  

σ = – ε2 and 2ρ = δ  

The parameters σ and ρ are given by relations [1.143]. Consequently, equation 
[1.144] has the form: 

0)(
)(2)( 2

2

2
=Φ






 −+Φ+Φ r

rdr
rd

rdr
rd εδ  (equation 1)   

In this equation, the variation of the wave function with r is given by the 
expression: 

re
r
rr εχ −=Φ )(

)(    (equation 2)  
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The function χ(r) in equation (2) is written as a complete series: 

=
∞

=ν
χ

k

k
k rar)(  (equation 3) 

where ν is a positive integer to be determined. 

(1) Using equation (1), establish the differential equation verified by the function 
χ(r). 

(2.1) Using equation (3), prove the following relations: 

1

( 1) 0

( 1) 2 0k k kk k a k a a
ν ν

ε δ+

− =
 + − + =

             (equations 4) 

(2.2) Deduce from equations (4) the possible values of ν. What values should be 
retained? Why? 

(3) Express the ratio ak+1/ak. What is the asymptotic behavior of this ratio to 
infinity? 

(4) Compare the behavior of the ratio ak+1/ak to infinity to that of the complete 
series expansion of the function e2εr. Draw a conclusion. 

(5) Using the cut-off condition, express the quantized energy of hydrogen-like 
systems. 

1.7.14. Exercise 14 – Line integral of the probability current density 
vector, Bohr’s magneton 

At various points in Chapter 3 of Volume 1, we expressed the energy gaps 
between the fine structure levels as a function of Bohr’s magneton µB (see,  
for example, the exercise in section 3.7.15). The objective here is to establish the 
expression of µB based on the probability current density. 

In classical electrodynamics, the expression of the magnetic moment of a 
circular current features the intensity of the circular current and the area around 
which it flows. Nevertheless, in quantum mechanics, which rejects the notion of 
circular or elliptical orbit, the situation is described in terms of density of probability 
of the presence of the electron. This approach takes into account the mean density of 
the electrical charge eΨ*Ψ present throughout the space (charge is distributed in 
space and is not confined to the line assimilated to a circular or elliptical loop).  
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The mean value of the current is thus the product of the elementary charge e and the 

probability current density J  provided by expression [1.48], which is recalled as 
follows: 

[ ]**
2

),( Ψ∇Ψ−Ψ∇Ψ=
mi

trJ    

In this expression, the wave function depends on spherical coordinates (r, θ, ϕ). 
Therefore, Ψ =Ψ (r,θ, ϕ) = R(r) × Θ(θ) × Φ(ϕ). The radial part R(r) and the angular 
part Θ(θ) of the wave function are real. The angular part Φ(ϕ) = exp (i m ϕ) is 

complex. Figure 1.19 shows the flow of the tube of volume current (equivalent of 
the circular loop in classical theory), the component Jϕ of the probability current 
density vector and the area dσ of the cross-section of the current tube. 

 

 

 

 

Figure 1.19. Tube of volume current 

(1) Specify the values of the components Jr and Jθ of the probability current 
density vector. Prove that Jϕ can be written in the form: 

θϕ sin
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r
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m
J ΨΨ×= 

  

(2) Express the intensity dIϕ of the current through dσ (which is the flux of the 
probability current density vector through the elementary surface dσ). 

(3) Prove that the magnetic moment dM verifies the relation: 

τdm
m

edM ΨΨ= *
2 
  

where dτ designates the elementary volume of the current tube of cross-section dσ. 

 
 
 
 
 
 
 
 x 

→
Jϕ 

z 

r dσ 

O y

ϕ

θ 
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(4) Express the orbital magnetic moment of the electron. Deduce the expression 
of Bohr’s magneton. 

Given data. Components of the gradient in spherical coordinates: 

ϕθθ ϕθ ∂
Ψ∂=Ψ∇

∂
Ψ∂=Ψ∇

∂
Ψ∂=Ψ∇

sin

1
)(;

1
)(;)(

rrrr  

1.7.15. Exercise 15 – Schrödinger’s equation in the presence of a 
magnetic field, Zeeman–Lorentz triplet 

Schrödinger’s equation offers a simple way to find the previous Zeeman–Lorentz 
triplet (result [3.188]). This proves once more the broad range of applications of this 
equation for the correct interpretation of various physical phenomena such as the 
Zeeman effect, which is the focus of this exercise. In the absence of a field of 
external forces, the Schrödinger equation describing the evolution of the state of a 
free particle is written as follows: 

0)(
2

2
=Ψ−+ΔΨ VEm


 

In the presence of a magnetic field, an additional term appears [CHP 78]: 

Ψ∇− .
2 Aei


 (equation 1) 

This term is due to the action of the magnetic field on the particle and A  

corresponds to the vector potential and satisfies the equation AB ∧∇= . 

Schrödinger’s equation in the presence of a magnetic field is in this case: 

0)(
2

.
2

2
=Ψ−+Ψ∇−ΔΨ VEmAei


 (equation 2) 

Let us consider a hydrogen-like system (fixed nucleus) subjected to a uniform 
magnetic field of arbitrary direction Oz. The wave function of the hydrogen-like 
system considered is Ψ (r,θ,ϕ) = R (r) × Θ (θ) × Φ (ϕ). It is worth recalling that 
functions R (r) and Θ (θ) are real and Φ (ϕ) = exp (i m ϕ). 

In the Zeeman effect, only the function Φ (ϕ) containing the orbital magnetic 
quantum number plays an essential role.  
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(1) Passing to spherical coordinates and assuming that variables r and θ are 
constant, prove the relation: 

x
y

y
x

∂
Ψ∂−

∂
Ψ∂=

∂
Ψ∂
ϕ

 

(2) Prove that the applied magnetic field is deduced from the vector potential, the 
components of which are: 

yBAx 2

1−= ; xBAy 2

1= ; Az = 0 

(3) Prove the relation: 

ΨΨ 
Bme.Aei =∇− 2

 

(4) Write the Schrödinger equation describing the evolution of the state of the 
electron along the direction of the magnetic field using equation (2). Prove that it 
can be written in the form: 

0)'(
2

2
=Ψ−+ΔΨ VEm


  (equation 3) 

In this equation, E’ is an energy that will be defined and expressed. 

(5) For a hydrogen-like system whose potential energy is V (r) = −Ze2/r and total 
energy is E, Schrödinger’s equation can be written as follows: 

0)(
2

2
=Ψ−+ΔΨ VEm


 

Knowing that solving this equation yields discrete values En of the energy E (see 
the exercise in section 1.7.13), prove without solving equation (3) that energy E’ is 
quantized. Then find the Zeeman–Lorentz triplet. 

Given data. x = r sinθ cosϕ; y = r sinθ sinϕ; z = r cosθ. 

1.7.16. Exercise 16 – Deduction of the stationary Schrödinger equation 
from the De Broglie relation 

The wave function describing the evolution of a system makes it possible to 

calculate the probability of finding the system at a point r in space. This function 
can also be used to calculate the mean values of the physical quantities 
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characterizing the system, such as energy and linear momentum. The problem is 
then knowing how to find such a wave function.  

Obviously, the De Broglie plane wave cannot be used, as its temporal and spatial 
uniformity is incompatible with the space localization of the system. Schrödinger 
holds the merit of postulating in 1926 the fundamental equation of quantum 
mechanics describing the evolution of any wave function. There is no logical 
approach to proving this equation (since it originates in a postulate). Its validity is 
confirmed by the significant physical consequences following from it. There is, 
nevertheless, a purely inductive way to find the Schrödinger equation.  

The objective of this exercise is to find this equation from the De Broglie 
relation. For this purpose, let us consider a one-dimensional problem. The 
generalized coordinate is designated by q, q = x, y or z. 

Let Ψ(q, t) be an electromagnetic wave propagating in vacuum. It satisfies the 
general differential equation: 

2

2

22

2 1

tcq ∂
Ψ∂=

∂
Ψ∂   (equation 1) 

Schrödinger’s equation being verified for any quantum state, we consider the 
particular case of a stationary state for which the wave function solution to the 
propagation (equation (1)) has the form: 

( , ) ( ) exp( )q t q i tωΨ = Φ ×  

As chosen, the stationary wave function Ψ(q, t) oscillates in time with angular 
frequency ω, its amplitude varying with the generalized coordinate q. 

(1) Express equation (1) as a function of the wavelength and of the frequency 
with which the electromagnetic wave Ψ(q, t) oscillates in time. 

(2) Use De Broglie’s relation to prove: 

)(4
)(

2

2
2

2

2
q

h
p

q
q Φ−=

∂
Φ∂ π  

(3) Express the energy E of a conservative system subjected to potential V(q). 

(4) Find the one-dimensional stationary Schrödinger equation. 

(5) Make a generalization of the previous result to three dimensions. 
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1.8. Solutions 

1.8.1. Solution 1 – Probability current density 

(1) Hamiltonian expression, operator actions 

The Hamiltonian H of the system and the equations resulting from the action of 
operators Q and V (Q, t) on the wave function Ψ (q, t) are given by the relations: 

),(
2

2
tQV

m
H q +Δ−=           [1.149] 

QΨ (q, t) = qΨ (q, t); V (Q, t)Ψ (q, t) = V (q, t)Ψ (q, t) [1.150] 

(2) Proof 

The one-dimensional probability density is written according to [1.48]: 

),(*),(),(),( 2 tqtqtqtq ΨΨ=Ψ=ρ  [1.151] 

For simplicity purposes, variables q and t in relation [1.151] are omitted. We 
express the first derivative with respect to time of the probability density. We obtain: 

[ ] [ ]ΨΨ+ΨΨ−=
∂
Ψ∂Ψ+Ψ

∂
Ψ∂=

∂
∂ H

i
H

ittt
*

1
*)(

1
*

*


ρ   [1.152] 

In [1.152], we substitute H by its expression [1.149], hence: 












Ψ+ΨΔ−Ψ+Ψ












Ψ+ΨΔ−−=

∂
∂

),(
2

*
1

*),(*
2

1 22
tqV

mi
tqV

mit qq






ρ  

This is: 

[ ]*)(*)(
2

ΨΨΔ−ΨΔΨ=
∂
∂

qqimt
ρ  [1.153] 

Moreover, the one-dimensional expression of the linear momentum operator is 
written according to [1.14]: 

q
iiP qq ∂

∂−=Δ−=                       [1.154] 
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Using [1.154], relation [1.153] is written as: 












Ψ










∂
Ψ∂−











∂
Ψ∂Ψ=

∂
∂

*
*

2 2

2

2

2

qqimt
ρ   [1.155] 

(3) Proof 

Let us consider the following system of equations: 

























∂
Ψ∂Ψ+

∂
Ψ∂

∂
Ψ∂=








∂
Ψ∂Ψ

∂
∂












∂
Ψ∂Ψ+

∂
Ψ∂

∂
Ψ∂=








∂
Ψ∂Ψ

∂
∂

2

2

2

2

*
*

*

***

qqqqq

qqqqq                      [1.156] 

Subtracting one relation from the other, member by member, we have: 









∂
Ψ∂Ψ

∂
∂−








∂
Ψ∂Ψ

∂
∂=Ψ











∂
Ψ∂−











∂
Ψ∂Ψ

qqqqqq
*

*
*

*
2

2

2

2
 

Hence: 









Ψ

∂
Ψ∂−

∂
Ψ∂Ψ

∂
∂=Ψ











∂
Ψ∂−











∂
Ψ∂Ψ *

*
*

*
2

2

2

2

qqqqq
 

which then leads to: 









Ψ

∂
Ψ∂−

∂
Ψ∂Ψ

∂
∂−=Ψ











∂
Ψ∂−











∂
Ψ∂Ψ

qqqqq
*

**
*

2

2

2

2
 [1.157] 

Using [1.157], equation [1.155] can be written in the following form: 









Ψ

∂
Ψ∂−

∂
Ψ∂Ψ

∂
∂−=

∂
∂

qqqimt
*

*
2

ρ  [1.158] 

(4) Probability conservation 

Probability conservation is reflected by an analogous continuity equation [1.42]. 
Taking [1.158] into account, the probability current density Jq = J (q, t) is written as: 
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







Ψ

∂
Ψ∂−

∂
Ψ∂Ψ=

qqim
Jq

*
*

2

         [1.159] 

Highlighting variables q and t, the conservation of probability can finally be 
written as: 

0
),(),( =

∂
∂+

∂
∂

q
tqJ

t
tqρ                      [1.160] 

1.8.2. Solution 2 – Heisenberg’s spatial uncertainty relations 

Given data: 

x = 0 ; p = 0                                               [1.161] 

0
2

≥Ψ+Ψ dx
dx
dwux ; 0* =






 ΨΨ

+∞

∞−dx
d  [1.162] 

(1) Mean value, root mean square deviation 

Let us consider the one-dimensional wave function Ψ(x, t). The mean value x is 
defined by the relation: 


+∞

∞−
Ψ= dxtxxx 2),(                                    [1.163] 

Moreover, the root mean square deviations are given by the relations: 

22 xxx −=Δ ; 22
xx ppp −=Δ  [1.164] 

Taking [1.161] into account, the following relations can be deduced from 
[1.164]: 

2xx =Δ ; 2
xx pp =Δ  [1.165] 
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(2) Proof, sign of A 

We consider: 

dxxA  ΨΨ= *2 ; dx
dx
dxB  ΨΨ−= *)( ; dx

dx
d

dx
dC  ΨΨ= *  [1.166] 

Let us find the expressions under the integral sign of inequality [1.162]. We 
have: 

*2







 Ψ+Ψ×






 Ψ+Ψ=Ψ+Ψ

dx
dwux

dx
dwux

dx
dwux    

Knowing that u and w are real variables, we have: 

dx
d

dx
dw

dx
d

dx
duwxxu

dx
dwux ΨΨ+






 ΨΨ+ΨΨ+ΨΨ=Ψ+Ψ **

** 222
2

 

Hence:                           

dx
d

dx
dw

dx
duwxxu

dx
dwux ΨΨ+ΨΨ+ΨΨ=Ψ+Ψ *

)*(* 222
2

 [1.167] 

Integrating [1.167], we have: 

dx
dx
d

dx
dwdx

dx
dxuwdxxudx

dx
dwux  ΨΨ+ΨΨ+ΨΨ=Ψ+Ψ *

)*(* 222
2

    

Or taking inequality [1.167] into account, we have: 

Au2 – uwB + Cw2 ≥ 0        [1.168] 

Moreover, considering the expression of A according to [1.166], we see that: 


+∞

∞−
Ψ== dxxxA 222  ≥ 0                      [1.169] 

(3) Expressions of A and B, inequality verified by the product AC 

– Expression of A 

Taking [1.165] and [1.169] into account, we get: 

A = (Δx)2                                                            [1.170] 
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– Expression of B 

To find the expression of B, let us integrate by parts. We have: 

( ) 
∞+

∞−

∞+
∞−

∞+

∞−
ΨΨ+ΨΨ−=ΨΨ−= dxx

dx
dxB *)(**)(  [1.171] 

The wave function Ψ being square-summable, |Ψ|2 → 0 when x → ±∞. 
Consequently:  

02 =




 Ψ

+∞

∞−
x  

Knowing that the wave function Ψ is normed, relation [1.171] then yields: 

12 =Ψ= 
∞+

∞−
dxB  [1.172] 

– Inequality verified by the product AC 

Integrating by parts as previously, we have: 


∞+

∞−

+∞

∞−

∞+

∞−

ΨΨ−





 ΨΨ=ΨΨ= dx

dx
d

dx
ddx

dx
d

dx
dC

2

2
**

*  

Taking [1.162] into account, we get: 


∞+

∞−

ΨΨ−= dx
dx
dC

2

2

*         [1.173] 

Let us now determine the mean value 2
xp  . 

Operator 

dx
dipx −=   

We have: 


∞+

∞−

∞+

∞−

ΨΨ−=ΨΨ= dx
dx
ddxpp xx 2

2
222 **    
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Using this result, we see that, according to [1.173] and [1.165], we have: 

2

2


xp

C = 
2

2)(


xpC Δ=         [1.174] 

(4) Expression of the product AC 

Let us consider the second-degree equation in u according to [1.168]. We obtain: 

Au2 – uwB + Cw2= 0 Δ = w2B2 − 4ACw2 

Knowing that A ≥ 0 according to [1.169] and B = 1 according to [1.172], this 
means: 

B2 − 4AC ≤ 0  4AC ≥1 [1.175] 

(5) Heisenberg uncertainty relations 

Considering results [1.170] and [1.174], inequality [1.175] is written as: 

222 )()(4 ≥ΔΔ xpx 
2

≥ΔΔ xpx  [1.176] 

Applying circular permutation, Heisenberg spatial uncertainty relations are 
written in the following form: 

2

≥ΔΔ xpx ;
2

≥ΔΔ ypy ;
2

≥ΔΔ zpz  [1.177] 

1.8.3. Solution 3 – Finite-depth potential step 

(1) First case: E > V1 

(1.1) Nature of the states of the particle, Schrödinger equation 

Potential depends only on variable x in zones I and II. The Hamiltonian is 
therefore time independent: consequently, the states of the particle are stationary 
states. The Schrödinger equation is written for a zone i under consideration: 

[ ] 0)()(
2)(

22

2
=Φ−+Φ xxVEm

dx
xd


 [1.178] 
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In zones I (x < a) and II (x > a), the stationary Schrödinger equation is written 
respectively as: 

[ ] 0)(
2)(

222

2
=Φ++Φ

Ι
Ι xVEm

dx
xd


 [1.179] 

[ ] 0)(
2)(

122

2
=Φ−+Φ

ΙΙ
ΙΙ xVEm

dx
xd


 [1.180] 

(1.2) Solutions in zones I and II 

We consider: 

2
22 )(2


VEmq += ;

2
12 )(2


VEm −=ρ  [1.181] 

Equations [1.179] and [1.180] admit the following solutions: 










+=Φ

+=Φ

−−−
ΙΙ

−−−
Ι

)()(

)()(

)(

)(

axiaxi

axiqaxiq

eDeCx

eBeAx

ρρ

 [1.182] 

Knowing there is no reflected wave in zone II, then D = 0. This finally leads to: 










=Φ

+=Φ

−
ΙΙ

−−−
Ι

)(

)()(

)(

)(

axi

axiqaxiq

eCx

eBeAx

ρ

 [1.183] 

(1.3) Expressions of transmission and reflection probabilities  

Let us express the boundary conditions for the wave function in x = a:  

ΦI (0) = ΦII (0) 

Φ’I (0) = Φ’II (0)   [1.184] 

Φ’i (x – a) = dΦi (x – a)/dx 
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Applying these boundary conditions to equations [1.183], we find: 

( )



=−
=+

CBAq
CBA

ρ
 ( )

( )



=−
=+

CBAq
qCBAq
ρ

  [1.185] 

We express the coefficients B and C as a function of A (coefficient assigned to 
the incident wave). Making the sum and then the difference of the two equations 
[1.185], we find: 

A
q
qBA

q
qC

ρ
ρ

ρ +
−=

+
= ;

2  [1.186] 

Using [1.186], the probabilities of reflection and transmission are written as:  

2

2

A
B

R =  ( )
( )2

2

ρ

ρ

+

−=
q

qR  [1.187] 

2

2

A
C

q
T ×= ρ 

( )2
4

ρ

ρ

+
=

q

qT  [1.188] 

(1.4) Classical and quantum predictions 

Considering [1.187] and [1.188], we have: 

( )
( ) ( )

1
4

22

2

=
+

+
+

−=+
ρ

ρ

ρ

ρ

q

q

q

qTR  

CONCLUSION.– R + T = 1: The particle is either reflected or transmitted, contrary to 
the predictions of classical mechanics, according to which the particle can in no way 
be reflected since E > V1. 

(2) Second case: –V2 < E < V1 

(2.1) Schrödinger equation, solutions 

The stationary Schrödinger equation in zones I (x < a) and II (x > a) is given by 
[1.179] and [1.180], respectively. To determine the solutions ΦI (x) and ΦII (x), let 
us consider: 
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2
22 )(2


VEmq += ; σρρσ iEVm =−=−= 2

2
12 )(2


  [1.189] 

Equations [1.179] and [1.180] admit the following solutions (replacing ρ by iσ): 










+=Φ

+=Φ
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ΙΙ

−−−
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)()(

)()(
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axiqaxiq
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BeAex
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  [1.190] 

Knowing that a wave function must be square-summable, the coefficient D = 0. 
Therefore, we finally have: 










=Φ

+=Φ

−−
ΙΙ

−−−
Ι

)(

)()(

)(
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axiqaxiq

Cex

BeAex

σ

 [1.191] 

(2.2) Expressions of T and R 

Let us express the boundary conditions [1.184] in x = a:  

( )



−=−
=+

CBAiq
CBA

σ
 ( )

( )



−=−
=+

CBAiq
iqCBAiq

σ
 [1.192]  

Using [1.192], we obtain: 










+
−=

+
=

A
iq
iqB

A
iq
qC

σ
σ
σ

2


2

2

2

2

σ
σ

iq
iq

A
B

R
+

−
== = 1 [1.193]  

Since R = 1, then T = 0. 

CONCLUSION.– Reflection is total, according to the predictions of classical 
mechanics. Nevertheless, the wave in zone II is not zero, as shown by the second 
equation [1.191]. 
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1.8.4. Solution 4 – Multistep potential 

(1) Schrödinger’s equation, solutions 

Schrödinger’s equation for stationary states in zones I, II and III is written as: 

( ) 0)(4
2)(

022

2
=Φ++Φ

Ι
Ι xVEm

dx
xd


 [1.194] 

( ) 0)(
2)(

022

2
=Φ++Φ

ΙΙ
ΙΙ xVEm

dx
xd


 [1.195] 

0)(
2)(

22

2
=Φ+Φ

ΙΙΙ
ΙΙΙ xmE

dx
xd


 [1.196] 

We consider: 

2
02 )4(2


VEmk += ; 2

2 2


mEq =  [1.197] 

(2) Expression of the solutions in the three zones  

Zone I  

The solution to equation [1.194] has the form: 

ikxikx BeAex −
Ι +=Φ )(  [1.198] 

Zone II 

For E = −V0, the second term of the right member of equation [1.195] is zero. 
Hence: 

0
)(

2

2
=ΦΙΙ

dx
xd  DxCx +=ΦΙΙ ')(    [1.199] 

C’ and D are constant. 

Since zone II starts at the connection point x = a, only the values of x ≥ a can be 
taken into account. Consequently the solution in zone II is written as: 

DaxCx +−=ΦΙΙ )()(  [1.200] 
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Zone III 

Equation [1.196] admits the following solution: 

xikxik GeFex '')( −
ΙΙΙ +=Φ  

Since E < 0, let us consider k’ = iq. This yields: 

qxqx GeFex +=Φ −
ΙΙΙ )(    

As the wave function ΦIII must be square-summable (therefore bounded), the 
second term of the right member of the above equation is physically inconceivable. 
Hence G = 0. Moreover, as previously, let us change x into x − 3a. We obtain: 

)3()( axqeFx −−
ΙΙΙ =Φ         [1.201] 

(3) Expression of the wave functions 

For x < 0, the wave function is zero, since the potential is infinite. Using [1.198], 
the connection conditions in x = 0 require A + B = 0. Hence:  A = −B. The wave 
function ΦI (x) is then written as: 

)()( ikxikx eeAx −
Ι −=Φ  kxAx sin2)( =ΦΙ   [1.202] 

According to [1.199], it can be noted that: 

qkqk 33 22 ==          [1.203] 

Inserting [1.203] into [1.202], and considering X = 2A, we find:  
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 [1.204] 

(4) Proof 

Let us express the boundary conditions in x = a, then in x = 3a. We have: 
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ΦI (a) = ΦII (a); ΦII (3a) = ΦIII (3a) 

Φ’I (a) = Φ’II (a); Φ’II (3a) = Φ’III (3a)  

Φ’i = dΦ/dx 

Using [1.205] and [1.204], we have: 
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2
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Using [1.206], the ratios D/C are written as: 

( )aq
qC

D
3tan

3

1= ; 
q

a
C
D 1

2 −−=   [1.207] 

Using [1.207], we have: 

( )
q

aaq
q

1
23tan

3

1 −−=  

This leads to: 

( ) 3323tan −−= qaaq   [1.208] 

Hence: 

tan 2 3Y Y= − −   [1.209] 

with aqY 3= . 

(5) Obtaining a bound state of energy 

The condition for obtaining a bound state of energy E = – V0 is satisfied for all 
the solutions of equation [1.209]. The set of these solutions at a bound state of 
energy E = – V0 is given by the points of intersection of the curves of equations: 

Yy tan1 = and 322 −−= Yy
  [1.210] 

(6) Graphical solutions  

Some solutions of equations [1.210] are indicated in Figure 1.20. 

[1.205] 
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Figure 1.20. Graphical solution to equation [1.210] providing the possible values of 
equation Y = 3aq,  for which a bound state of energy E = – V0 is reached. Only  

three solutions Y1, Y2 and Y3 are indicated in the figure 

1.8.5. Solution 5 – Particle confined in a rectangular potential 

(1) Description 

From a classical point of view, the particle is confined in the rectangular well, 
since the potential is infinite outside of it. Moreover, its energy can have any value: 
its spectrum is continuous.  

From the perspective of quantum mechanics, the wave function of the particle is 
zero outside of the dot. The evolution of the state of the particle inside the well is 
governed by the Schrödinger equation. 

(2) Differential equations 

Schrödinger’s equation in zone I is written in two dimensions: 
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The potential being zero inside the rectangle, this equation becomes: 
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Let us use the variable separation method by writing the global wave function in 
the form: Ψ (x, y) = Φ (x) ×ψ (y). Equation [1.212] can be written as: 
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Dividing both sides of equation [1.212] by the functions Φ(x) and ψ(y) and 
knowing that E = Ex + Ey = constant, we get: 
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By identification, we find: 
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(3) Solutions Φn (x) and ψq(y) 

Solutions Φn(x) and ψq(y) to these equations are already known (see [1.129]). We 
find: 
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In [1.216], the quantum numbers n and q are strictly positive. Since values  
n = q = 0 lead to zero energy, they are forbidden by the uncertainty principle. 
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(4) Expression of the normed wave function, minimal values of n and q 

The normed wave function Ψnq (x, y) = Φn (x) × ψq (y). Or, using [1.216]: 
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(5) Expression of the density of probability 

The density of the probability of finding the particle at point M (x, y) is given by 
the square of the amplitude of probability |Ψnq (x, y)|2. Hence: 
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This density is maximal if the two functions sin2 (nπx/a) and sin2 (qπy/b) are 
simultaneously maximal. Therefore: 

nπx/a = (2kx +1) π/2 (1 ≤ kx ≤ n – 1) and  

qπy/b = (2 ky +1) π/2 (1 ≤ ky ≤ q – 1)  

In the particular case of kx = ky = 0, we have: 
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which finally leads to: 
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(6) Quantization of the total energy, case of square potential 

According to [1.62], we already know that for one dimension the total energy E 
is quantized. Designating the width of the well as l, we have: 
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If, in this formula, we replace l with a or b as applicable, we get: 


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Result [1.221] shows that the spectrum of the particle is discrete, contrary to the 
predictions of classical mechanics, according to which the spectrum is continuous.  

(7) Square well, degeneracy of the energy levels 

For a square potential well (a = b = l), the energy E’ is: 

( )22
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' qn
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22
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Expression [1.222] shows that there are various pairs of values (n, q) giving the 
same value of the energy E′n,q. For this reason, the levels are said to be degenerate. 
To illustrate this, Table 1.2 summarizes the degree (or order) of degeneracy of these 
levels. The degree of degeneracy is the number of quantum states characterized by 
the same value of the energy of the system. 

n q En,q Degree of degeneracy (gn,q) 

1 1 E0 g1,1 = 1: non-degenerate ground level 

1 2 
5E0 g1,2 = g2,1 = 2: twice degenerate first excited level 

2 1 

2 2 8E0 g2,2 = 1: non-degenerate second excited level 

1 3 
10E0 g1,3 = g3,1 = 2: twice degenerate third excited level 

3 1 

2 3 
13E0 g2,3 = g3,2 = 2: twice degenerate fourth excited level 

3 2 

3 3 18E0 g3,3 = 1: non-degenerate fifth excited level 

Table 1.2. Degeneracy of the levels of energy of a particle confined  
in a square potential well 

[1.222] 
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The degeneracy of the levels of energy E′ is due to the symmetry of potential for 
which a = b = l : the two axes Ox and Oy are therefore equivalent. 

1.8.6. Solution 6 – Square potential well: unbound states 

(1) Behavior of the particle 

From a classical point of view, the particle passes over the well and carries on its 
uniform rectilinear motion. The particle has the same speed before reaching the well 
and after leaving it; let v1 be this speed. Its speed v2 above the well is constant:  

m
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1 = ; 
m

VEv )(2 0
2

+=  [1.223] 

From a quantum point of view, the state of the particle is described by a wave 
function. The particle has a non-zero probability of being reflected. 

(2) Schrödinger’s equation, solutions ΦI (x), ΦII (x) and ΦIII (x) 

– Schrödinger’s equation 

In zones I, II and III, Schrödinger’s equation is written as, respectively: 
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– Solutions ΦI (x), ΦII (x) and ΦIII (x) 

Since the backward wave is absent in zone III, then G = 0 in the expression of 
ΦIII (x). The solutions to the above equations are written as, respectively: 
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In relations [1.225]: 
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2
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VEm +=ρ  [1.226] 

To ease the calculation, the origin of coordinates undergoes translation: 

(x + a) for x < −a; (x − a) for x > + a; (x − a) for −a ≤ x ≤ + a 

Solutions [1.227] are then written as: 
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This writing clearly shows that at the well connection points in x = −a and in  
x = + a, the exponential factors are equal to unity. This makes the calculations 
simpler. 

(3) Probability of transmission  

Let us express the boundary conditions in x = −a and then in x = +a: 

ΦI (− a) = ΦII (− a); ΦII (a) = ΦIII (a) 

Φ’I (− a) = Φ’II (− a); Φ’II (a) = Φ’III (a) [1.228] 

Φ’i = dΦ/dx 

Using [1.227] and [1.228], we find: 
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The transmission coefficient is defined by the relation (knowing that  
kIII = kI = k): 
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Using [1.230], we express C and D as functions of F, and A as a function of C 
and D. We then have: 
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Using [1.232], we have: 
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Expanding the expression between brackets and then simplifying, we have: 
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Knowing that cos2x + sin2x = 1, we get: 
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Factorizing the second member by sin2 2ρa, after arrangement we obtain: 
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or after expansion and simplification of the terms between brackets: 
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The inverse of relation [1.234] gives the expression of the barrier transmission. 
We finally have: 

( ) akk

kT
ρρρ

ρ

2sin4

4

222222

22

−+
=  [1.235] 

Using the expressions of k2 and ρ2 according to [1.226], we express the 
transmission coefficient T as a function of E and V0. Hence: 
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(4) Definition, expression 

Taking [1.230] into account, the reflection probability R = |B/A| is written as: 
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or as a function of the barrier transmission: 
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It is then sufficient to express the ratio B/F. Using [1.237], we express B as a 
function of C and D. We obtain: 
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Using the first relations [1.232], relation [1.239] is written as: 
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Expanding the term between brackets, we have: 
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Using the last equality, we have: 
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Inserting [1.240] and [1.236] into [1.238], after simplification we get: 
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(5) Predictions 

We determine the sum T + R. Using [1.237] and [1.242], we obtain: 
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or, after arrangement and expansion: 
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Which gives after simplification: T + R = 1. 

CONCLUSION.– From a quantum point of view, the particle is either reflected or 
transmitted. The predictions of classical mechanics are quite different: the particle is 
transmitted without being able to turn back. 

(6) Spectrum of the particle 

The energy spectrum of the particle is continuous. This is due to the fact that the 
states of energy E > 0 are unbound states.  
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1.8.7. Solution 7 – Square potential well: bound states 

(1) Wave functions 

Let us consider: 
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Schrödinger’s equations in zones I, II and III are given by the previous relations 
[1.224]. 

Solutions ΦI(x), ΦII(x) and ΦIII(x) to the above equations are the following (to 
facilitate the calculation, x changes into x + a for x ≤ −a or x − a for x ≥ a for the 
solutions in zones I and III): 
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Since E < V0, we consider k′ = iρ. We obtain: 
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The wave function being bounded, then for x ≤ −a, the function Ae−ρ(x + a) is 
divergent. Moreover, for x ≥ a, the wave function Ge ρ(x − a) is also divergent. 
Consequently, we must simultaneously have A = 0 and G = 0. In summary, solutions 
[1.245] are written as: 
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(2) Proof, energy quantization 

– Proof 

Let us express the connection conditions of the wave function in x = −a and then 
in x = +a, which are:  

ΦI (−a) = ΦII (−a); ΦII (a) = ΦIII (a) 

Φ’I(−a) = Φ’II(−a); Φ’II(a) = Φ’III(a) [1.247] 

Φ’i = dΦ/dx 

Using [1.247] and [1.246], we find: 
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Let us express the coefficients C and D as a function of B. Considering the first 
system of equations [1.249], we multiply the two equations by eika. Then we divide 
the second equation by ik and multiply the obtained result by eika. We obtain:  









−=

+=

ikaika

ikaika

DeC
ik
Be

DeCBe

2

2

ρ
 [1.250] 

Similarly, we multiply the first equation in [1.249] by e−ika. We then divide the 
second equation by −ik. Multiplying the obtained result by e− ika, we find: 
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 Using [1.250] and [1.251], we have: 
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We then express F as a function of C and D. For this purpose, we use the second 
system of equations [1.249] and then proceed as previously. We have: 
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From these equations, we deduce: 
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Using [1.254], we express F as a function of C and then as a function of D. 
Hence: 
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It is easy to express F as a function of B using [1.253]. This leads to: 
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Equalizing the two relations [1.256], after arrangement we find: 
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– Quantization of energy 

Let us recall the relations [1.243]: 

2
2 2


mE−=ρ ; 

2
02 )(2


VEmk +=  

These relations prove that ρ and k depend on the energy E. Consequently, 
equation [1.257] can only be satisfied for certain values of E: the energy is therefore 
quantized (the possible values are discrete). Hence, requiring the wave function to 
be square-summable in zones I and III drives a quantization of the energy of the 
particle.  

(3) Graphical solution, parity of the wave functions 

Two cases are possible:  

2 2;ika ikaik ike e
ik ik

ρ ρ
ρ ρ

   − −= − =   + +   
 [1.258] 

The first equation of [1.258] gives: 

ikaika ikeeik 22 −−=− ρρ  

This yields: 
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Expanding the terms between brackets in the second member of the above 
expression, we have: 

)tan( ka
k

=ρ  [1.259] 

where tan (ka) > 0. 
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The solution to equation [1.259] is not convenient due to the ratio ρ/k, since the 
parameters ρ and k both depend on the energy E.  

To find a more convenient equation to solve, we consider relations [1.243]. We 
then note that: 

2
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2
2 222
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mVmVmEk +−=+= ρ

 

which is: 

2
022 2


mVk =+ ρ  [1.260] 

For E = 0, ρ = 0 and k = k0. Equation [1.260] can then be written in the following 
form: 
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The constant k0, independent of the energy E, makes it possible to set a simple 
equation, the graphic solution of which is easy. For this purpose, we also note that: 
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Considering relation [1.259], we thus obtain: 
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Using the last equality, we finally get: 
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The system of equations [1.262] is equivalent to equation [1.259]. The function 
coska being even, equation [1.262] is verified provided that tan (ka) > 0. The  
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discrete values of energy E are then given by the intersection of a sine function y1 
and the line y2 given by the expressions: 
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We now study the second scenario, considering [1.258]: 
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Expanding this equation as previously, we get: 
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ρ  [1.265] 

with tan (ka) < 0. 

We consider the trigonometric transformation: 
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Equation [1.264] can thus be written as: 
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After arrangement, the above relation becomes: 
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Taking [1.261] into account, we have: 
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The function sinka is odd, hence equation [1.266] is satisfied with the additional 
condition tan (ka) < 0. The discrete values of energy E are given by the intersection 
of a sine function y1 and the line y2 given by the following expressions: 











=

=

0< )tan(

sin

0
2

1

ka
k
ky

kay
  [1.267] 

(4) Let us now solve equation [1.262] graphically using the equivalent equations 
[1.266] and [1.267]. We obtain the curves represented in Figure 1.21. 

 

 

 

 

Figure 1.21. Graphic solution of equation [1.257] giving the discrete values of energy 
of the bound states of a particle confined in a square potential well. The values at the 
points of intersection P (thick line curve) correspond to the solutions to equation 
[1.263], and those at the points of intersection I (dotted line curve) correspond to the 
solutions to equation [1.267]  

For 0 < ka < π/2, π < ka < 3π/2, etc., we have tan ka > 0. This satisfies the 
condition imposed for solution [1.263] and the corresponding curves are represented 
in thick line in Figure 1.21.  

Similarly, for π/2 < ka < π, 3π/2 < ka < 2π, etc., we have tan ka < 0. This meets 
the condition imposed to solution [1.267] and the corresponding curves are 
represented in dotted lines in Figure 1.21. Only four bound states are marked in this 
figure. Two of them are associated with points P and the other two with points I. 

– Parity of the wave function 

To prove that the associated wave functions are either even or odd, we express 
the ratios C/D and F/B using the relations [1.253] and [1.256]; then we take [1.258] 
into account. Hence: 

    y                                  y2 = k/k0 
 
 
                                         
                                
                      
           

   

I P 
I 

P 

0 π/2 π 3π/2 2π ka 
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– Even wave functions 

Using the first relations of systems [1.268], we get: 
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NOTE.– We have multiplied both the numerator and the denominator of the first 
equation [1.269] by the imaginary number i; this effectively leads to C/D = 1:  
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Knowing that C = D and F = B according to [1.269], the wave functions 
[1.248] are: 
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A wave function is even if Ψ (− x) = Ψ (x). Given [1.270], we have: 
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Using [1.271] it can be verified that Φi (− x) = Φi (x): the bound states associated 
with the energies corresponding to the solutions to equation [1.263] are therefore 
even (in other words, the wave functions are symmetrical). Figure 1.21 shows the 
two even bound states associated with points P (therefore this point marks the even 
solution). 
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– Odd wave functions 

Using the two relations of systems [1.268], and proceeding as previously, we get: 
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Using these results, the wave functions [1.270] are written as follows: 
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A wave function is considered odd if Ψ (− x) = −Ψ(x). Considering [1.273], it 
can be verified that Φi (− x) = −Φi (x): the bound states associated with energies 
corresponding to solutions to equation [1.267] are therefore odd (which corresponds 
to antisymmetric wave functions). As Figure 1.21 shows, the two odd bound states 
are associated with points I (therefore this point marks the odd solution). 

1.8.8. Solution 8 – Infinitely deep rectangular potential well 

(1) Determination of the wave function 

The particle is confined to zone II where the potential is zero. It is in this zone 
that the Schrödinger equation must be written (it is already known that the wave 
function is zero in the other zones, where the potential is infinite). Then we obtain: 
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The solution to this equation has the form: 
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(2) Condition imposed on k, quantization of the energy  

– Condition imposed on k  

Let us express the connection conditions of the wave function for x = −a/2 and 
then for x = +a/2: ΦI (− a/2) = ΦII (− a/2) = 0; ΦII (a/2) = ΦIII (a/2) = 0. Using [1.275] 
this leads to: 
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These equations are transformed as follows: 
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After factorization we have: 
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This system of equations is solved if: (A + B) = 0 and (A −B) = 0. This gives:  
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The system [1.277] admits the following solutions: 
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Finally, the condition imposed on k is written as: 

a
nkn

π=  [1.279] 

where n is a strictly positive integer. 

– Quantization of energy 

Knowing that k2 = 2mE/ 2 , relation [1.279] gives: 
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(3) Expressions of wave functions, normalization 

– Expressions of wave functions 

The even and odd wave functions describing the bound states of the particle are 
deduced from solutions [1.277]. Let us study the two possible cases. 

First case: A = B 

In this case, expression [1.275] gives: 

( )xnikxnik eeAx −
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Or taking condition [1.279] into account: 
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In this expression, the integer n is odd according to [1.278]. The wave function 
[1.281] is even (therefore symmetric) since Φn (− x) = Φn (x). 

Second case: A = −B 

In this case, expression [1.275] is written as: 
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or taking condition [1.279] into account: 
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In expression [1.278], the quantum number n is even and the wave function is 
odd (therefore antisymmetric). It can be verified that Φn (− x) = −Φn(x). In summary, 
let us consider C = 2A and D = 2iA. The wave function ΦII (x) satisfies the following 
conditions: 
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It is worth recalling that the integer n is even for the first function and odd for the 
second function. Outside of the well, Φ(x) = 0. Operating a translation of the origin 
of coordinates such that x′ = x − a/2, expressions [1.283] are written as: 
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Knowing that cos (nπ/2) = 0 (n is odd) and sin (nπ/2) = 0 (n is even), we have:  
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with n = 1, 2, 3,… . 

– Normed wave functions 

Using wave functions [1.283] and applying the normalization condition, and 
knowing that the particle is confined to the well, we have: 
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After integration this leads to: 










==×

==×

a
DaD

a
CaC

2
1

4
2

2
1

4
2

2

2
  [1.286] 

Using results [1.286], the normed wave functions are written as follows: 
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Let us note that in [1.287], C and D have been chosen real and positive. Complex 
numbers can be chosen, which involves multiplying the factors in equations [1.288] 
by i; this does not change the physical predictions (two proportional wave functions 
represent the same physical state).  

Moreover, physical predictions involve the density of probability; this eliminates 
the number i. As a general rule, it is always possible to choose real and positive 
normalization constants. 

(4) Graphical representation 

Let us express the wave functions and the densities of probability for the ground 
level (n = 1) and for the first three excited levels (n = 2; n = 3; n = 4) of the particle. 
These are summarized in Table 1.3 (where “S” stands for the symmetric wave 
function and “AS” for the antisymmetric wave function).  

The graphical representation of the wave functions [1.287] and of the 
corresponding probability densities poses no difficulty (see Figure 1.3). 
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N Wave function  Φn(x) Density of probability |Φn(x)|2 Symmetry 
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Table 1.3. Parity of the wave function describing the bound states of a particle 
confined in an infinitely deep square potential well 

1.8.9. Solution 9 – Metal assimilated to a potential well, cold emission 

Let us consider an electron of energy W at point M of abscissa x1 (barrier 
thickness at point M) tunneling out of the metal.  

(1) Determination of the expression of the potential energy 

As shown in Figure 1.17, the potential energy V (x) varies linearly with x 
between B and D for x > 0. Hence: V (x) = ax + b; slope a is negative, as the function 
V (x) is decreasing.  

The potential energy V (x) is the sum of the potential energy K outside the metal 
and the potential energy Ep(x) is due to the interaction between the electron and  
the electric field of intensity E. By definition: 

Ep(x) = qEx = −eEx V (x) = −eEx + K [1.288]

 
In summary, the potential energy function V (x) varies as follows:

 
0,  <0

( )
,  >0

x
V x

eEx K x


= − +
 [1.289]

 

(2) Expression of x1 

The thickness x1 of the barrier in M is determined by the condition V (x1) = W 
(Figure 1.22). Or, using [1.290]: 
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xWKeEx =+− 1 
eE

WKx x−=1  [1.290] 

(3) Proof, numerical applications 

The transmission probability T of the barrier is given by the expression: 

[ ]dxWxVmT
x

x −−=
1

0 2
)(2

2exp


 [1.291] 

Using [1.289], we obtain for x > 0 and knowing that φ = K − W: 

[ ] dxeExmT
x

 −−=
1

0 2

2
2exp


φ  [1.292] 

In the exponential of [1.293], we insert: 

[ ] dxeExmI
x

 −=
1

0 2
22


φ  [1.293] 

Integration leads to: 

( )[ ]2/32/3
13

22 φφ −−−= eEx
eE

mI  [1.294] 

Since φ = K − W, according to [1.290] we have x1 = φ/eE  φ = eEx1. Result 
[1.294] is then written as: 

eE
mI
3

22 2/3φ= 
Ee

mT 1

3

24
exp

3
×φ−=


  [1.295] 

Finally, this leads to: 

T = exp − E0/E [1.296] 

with: 

e
mE

3

24 3

0
φ=  
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N.A.– E = 4 × 109 V ⋅ m−1; E0 = 7.66 × 1010 V ⋅ m−1; T ≈ 5 ×10−9. 

CONCLUSION.– The probability of cold emission of electrons from a metal is very 
low. On the other hand, this probability is measurable, since the number of electrons 
is very large. 

1.8.10. Solution 10 – Ground state energy of the harmonic oscillator 

(1) Expression of the elastic potential energy 

The oscillator under consideration is subjected at any instant to an opposing 
spring force F = −kx. This force derives from the potential energy (it can be verified 
that 0=∧∇ F ): 

 =−= xdxkFdxxV )(  2

2

1
)( kxxV =  [1.297] 

The origin of potential energies has been chosen at point O, origin of 
coordinates, and the integration constant in [1.298] is therefore zero. 

(2) Proof 

By definition, the classical harmonic oscillator is a conservative system if its 
mechanical energy E is constant. By definition, E = Ec + V (x). Hence: 

22

2

1

2

1 kx
dt
dxmE +






=  

Differentiating this expression with respect to time, we have: 

dt
dxkx

dt
xd

dt
dxm

dt
dE +×






=

2

2
 

This leads to: 












+






= kx

dt
xdm

dt
dx

dt
dE

2

2
 [1.298] 

Applying Newton’s second law, we get: 

2

2

dt
xdmkxmaF =−=  
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This finally leads to: 

0
2

2
=+ kx

dt
xdm  [1.299] 

Considering [1.298] and [1.299], we finally have: dE/dt = 0 E = Cst: the 
classical harmonic oscillator is definitely a conservative system (in fact, all fluid 
friction is assumed zero). 

(3) Behavior of the quantum harmonic oscillator 

(3.1) Proof  

The stationary Schrödinger equation of the quantum oscillator has the following 
form: 

)()()(
2 2

22
xExxV

dx
d

m
Φ=Φ












+−   [1.300] 

Using [1.297], after arrangement equation [1.300] becomes: 

)(
2

)(
)(

2
2

22

2
xmExxmk

dx
xd Φ=Φ+Φ−


  [1.301] 

The angular frequency of the oscillator described by equation [1.299] verifies the 
well-known relation ω2 = k/m  m = k/ω2. Equation [1.301] can be written as: 

)(
2

)(
)( 2

2

2
xkExkkx

dx
xd Φ






=Φ










+Φ−

ωωωω 
 [1.302] 

We introduce the dimensionless quantities α and q such that: 










==

=

q
k

xxkq

E

ω
ω

ω
α





22

2

 [1.303] 

We now express the second derivative of the wave function with respect to the 
variable x. Taking the second relation of [1.303] into account, we have: 

dx
xd

kdq
dx

dx
xd

dq
qd )()()( Φ=Φ=Φ ω  
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Using this equality, we have: 

dq
dx

dx
xd

dx
d

kdq
qd ×






 Φ=Φ )()(

2

2 ω  

Hence: 

2

2

2

2 )()(

dx
xd

kdq
qd Φ=Φ ω  

We finally have: 

 
2

2

2

2 )()(

dq
qdk

dx
xd Φ=Φ

ω
 [1.304] 

Using [1.303] and [1.304], equation [1.302] can be written after simplification: 

)()(
)( 2

2

2
qqq

dq
qd Φ=Φ+Φ− α  [1.305]

 

(3.2) Proof 

The wave function of the ground state has the form Φ0(q) = exp (βq2), where β is 
a constant. Using this solution, equation [1.305] is written as: 

( ) )(42
)( 22

2

2
qq

dq
qd Φ+=Φ ββ  

This leads to: 

 ( ) αββ =−− 241 22 q  [1.306] 

(3.3) Possible values 

Equation [1.306] only has a solution if it is identically verified with respect to 
variable q. Hence: (1 – 4β 2) = 0 and – 2β = α. We then have β = ± 1/2. The value β 
= 1/2 gives a wave function Φ0 (q) = exp (q2/2), which is divergent when q → ∞. 
The value β = −½ is retained. 
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(3.4) Expression of the ground state energy 

It is known that – 2β = α. Since we know that β = −1/2, α = 1. If the energy of 
the ground state of the quantum harmonic oscillator is designated by E0, the first 
relation of system [1.303] thus becomes: 

20
ω= E  [1.307] 

1.8.11. Solution 11 – Quantized energy of the harmonic oscillator 

The dimensionless quantities are: 

xmq

ω= ; 

ω
ε


E2=  [1.308] 

(1) Proof 

The stationary Schrödinger equation of the quantum harmonic oscillator is given 
by [1.305] where α must be replaced by ε. We obtain: 

( ) 0)(
)( 2

2

2
=Φ−+Φ qq

dq
qd ε  [1.309] 

(2) Differential equation 

The solution to equation [1.309] has the form: 

2/2
)()( qequAq −=Φ  [1.310] 

where A is a constant and the function u (q) is a complete series of powers of q: 

=
∞

= 0
)(

k

k
k qaqu  [1.311] 

Differentiating twice the wave function [1.310], we have: 





















−−












−−=Φ









−=Φ

−−

−

2/22/2

2

2

2

2

2/2

)(
)(

)(
)()()(

)(
)()(

qq

q

eqqu
dq

qduqAequ
dq

qduq
dq

qudA
dq

qd

eqqu
dq

qduA
dq

qd
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The second of these equations can be written as: 

2/22
2

2

2

2
)()1(

)(
2

)()( qequq
dq

qduq
dq

qud
dq

qd −












−+−=Φ  

If we insert this result in [1.309], after arrangement we get: 

( ) 0)(1
)(

2
)(

2

2
=−ε+− qu

dq
qduq

dq
qud  [1.312] 

(3) Expression  

Using [1.311], we have: 















−=

=




∞

=

−

∞

=

−

0

2
2

2

0

1

)1(
)(

)(

k

k
k

k

k
k

qakk
dq

qud

qka
dq

qdu

 [1.313] 

Using [1.313], equation [1.312] can be written as: 

( ) 012)1(

00

1

0

2 =−+−− 
∞

=

∞

=

−
∞

=

−

k

k
k

k

k
k

k

k
k qaqkaqqakk ε  

Hence: 

( ) 012)1(
00

2 =−−ε+− 
∞

=

∞

=

−

k

k
k

k

k
k qakqakk  [1.314] 

Identifying the terms of the same power in qk, we find (it suffices to replace k by 
k + 2 in the first term of equation [1.314]): 

( ) 012)1)(2( 2 =−−+++ + kk akakk ε  

 

 



106     Introduction to Quantum Mechanics 2 

This finally leads to: 

( )
kk a

kk
ka

)1)(2(

12
2 ++

−+=+
ε  [1.315] 

(4) Quantization of energy  

The wave function [1.310] is finite or convergent for all the values of q 
(including q → ±∞), provided that the series [1.315] stops for a certain value n of 
the integer k. This cut-off condition requires the coefficient an + 2 = 0. Or, according 
to the series [1.315]: 

2n + 1 − ε = 0 ε = 2n + 1 [1.316] 

Using [1.309], after arrangement we have: 







 +=

2

1nEn ω  [1.317]
 

The ground state energy of the oscillator is obtained for the minimal value n = 0. 
This yields 2/0 ω=E according to [1.307]. 

(5) Potential energy variation curve 

Expression [1.297] shows that the representative curve of the potential energy  
V (x) is a parabola (Figure 1.22).  

 
 
 
 
 

 

 

Figure 1.22. Curve of the variation of the potential energy of a  
harmonic oscillator with position x 

                   V (x) 
 
  n = 4                                                   E4 = 9E0 
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From the perspective of classical mechanics, the particle is subjected to the 
opposing spring force F = −kx and oscillates around its equilibrium position at the 
origin O of abscissa x0 = 0.   

In quantum mechanics, the notion of opposing spring force is devoid of meaning. 
The harmonic oscillator is defined as a particle (atoms in vibration motion in a polar 
molecule such as HCl (see the solution in section 1.8.12), thermal agitation of atoms 
or nuclei in a crystal lattice, etc.) whose potential energy is given by the expression 
[1.297]. The particle is then confined in a parabolic potential well (Figure 1.22) in 
which the energy levels are discrete and equidistant.  

(6) Classical and quantum predictions 

According to Figure 1.22, the harmonic oscillator is at rest at its equilibrium 
position in x0 = 0. From a classical point of view, its energy is therefore zero. On the 
other hand, from the quantum perspective, the ground state energy of the oscillator 
is non-zero (given the uncertainty principle) and is equal to 2/0 ω=E . This means 
there is an essential difference between the classical and quantum predictions of the 
behavior of the harmonic oscillator.  

NOTE.– At absolute zero temperature, the oscillator does not oscillate. The energy at 
absolute zero is thus a purely quantum quantity and it corresponds to the oscillation 
energy of the quantum vacuum. Indeed, in quantum electrodynamics, any 
electromagnetic field can be assimilated to a set of independent virtual harmonic 
oscillators for which the principal quantum number n in the quantized expression 
[1.317] refers to the number of photons. Hence, the situation of the ground state for 
which n = 0 corresponds to the absence of photons, which is a photonic vacuum in 
the enclosure initially filled by a radiation field (see Appendix 1, Volume 1).  
The residual energy E0 is thus called zero-oscillation energy (T = 0 K) of the 
photonic vacuum.                                         

(7) Ground state energy 

From a classical point of view, the total energy of the harmonic oscillator is 
given by the sum of its kinetic and potential energies. Knowing that the potential 
energy is defined up to an additive constant, we obtain: 

stCkxmvE ++= 22

2

1

2

1  [1.318]
 

If the particle is at rest in x = 0, then the total energy is equal to Cst. We can  
intuitively consider Cst ≡ 2/0 ω=E . This reconciles the predictions of classical 

mechanics and those of quantum mechanics. Caution is however recommended, as 
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there is no classical law that makes it possible to prove that 2/0 ω=E . The energy 

E0 is a purely quantum property of the harmonic oscillator studied in this exercise. 

1.8.12. Solution 12 – HCl molecule assimilated to a linear oscillator 

The potential energy of a HCl dipole has the following form: 

2)(
2

1
)( axkxV −=  [1.319]

 

The wave function Φ0 (x) of the ground state and that of the first excited state  
Φ1 (x) are given by the following expressions:  

2/2)(2
00 )( axeAx −−=Φ α ; ( ) 2/2)(2

11 )( axeaxAx −−−=Φ β  [1.320]
 

In relations [1.320], A0 and A1 are normalization constants, and α and β are 
strictly positive constants. 

(1) Schrödinger’s equation of stationary states, proof  

– Schrödinger’s equation 

The Schrödinger equation of vibration stationary states of the HCl molecule is 
given by the following expression: 

)()()(
2 2

22
xExxV

dx
d

m
Φ=Φ












+−   

Using [1.320], we obtain: 

0)()(
2

12)( 2
22

2
=Φ



 −−+Φ xaxkEm

dx
xd


 [1.321] 

– Relation between α and β 

Let us determine the second derivatives of the wave functions [1.321] with 
respect to variable x. We obtain: 

( )[ ]
( )[ ]










Φ−−=Φ

Φ−−=Φ

)(1
)(

)(
)(

0
222

2
0

2

0
20

xax
dx

xd

xax
dx

xd

αα

α
 [1.322] 
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( )

( )











Φ






 −+−=Φ








 −−=Φ −−

)(3
)(

1
)(

1
222

2
1

2

2/2)(2
1

221

xax
dx

xd

eAax
dx

xd ax

ββ

β β
 [1.323] 

Taking [1.322] into account, after arrangement equation [1.321] gives: 

( )[ ] 0)(
2 2

22
0224 =




 −−+−− axkmmEax


αα   

 Hence: 

( ) 0
2 2

2
02

2
4 =







 −+−






 − αα

mEaxkm  [1.324] 

This equation is verified in all cases if: 











==





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



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2
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2
0

2
2

2
4

2
0

2

0


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mEmE

kmkm

αα

αα
 [1.325] 

Similarly, using [1.323], after arrangement equation [1.321] gives : 

( ) 03
2 2

2
12

2
4 =







 −+−






 − ββ

mEaxkm  [1.326] 

As previously explained, this equation is verified in all cases if: 











==






 −

==






 −

2
2

2
1

2
2

2
4

3

2
03

2

0




mEmE

kmkm

ββ

ββ
 [1.327] 

Comparing the first relations in [1.325] and [1.327], we have:α = β. 
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(2) Expressions of energies 

For the studied harmonic oscillator, the angular frequency of the oscillations 
verifies the relation ω2 = k/m. Hence, we have: km = ω2m2. Therefore, the first 
relation of equations [1.325] gives: 


ωωα mm ==

2

22
2  [1.328] 

Since α = β, we have: 


ωβα m==  [1.329] 

The expressions of the respective energies E0 and E1 of the ground state and of 
the first excited state of the HCl molecule are automatically expressed considering 
the second relations of equations [1.325] and [1.327]. Hence: 











==

==




ωβ

ωα

mmE
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2
1

2
0

3

2

2

 

From the previous relations, we deduce: 










ω=

ω=





2

3
2

1

0

E

E
 [1.330] 

Results [1.330] can be directly obtained from the general expression [1.317] of 
the energy En considering n = 0 and n = 1, respectively. 

(3) Expressions of the normed wave functions 

Family of integrals:  

dxexI xp
p

2

0

ρ−∞
= ;

22

1
−

−= pp IpI
ρ

;
ρ
π

2

1
0 =I ; 

ρ2

1
1 =I  [1.331] 
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Constants A0 and A1 are determined by the normalization condition satisfied by 
the wave function. Or, using [1.320]: 

1)( 2 =Φ
∞+

∞−
dxx 



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
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


∞+
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α

 [1.332] 

Let us make the change of variable: y = x − a. Considering that the wave 
functions are even, equations [1.332] are written as: 
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After integration, we have: 


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






===

==

02

2
12

2
1

0

2
00

2
0

2

1
12

2

1
12

II
AIA

I
AIA

ρ
 

where ρ = α2. Using [1.329] and [1.331], if A0 and A1 are real, we have: 

π
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α 3
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
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
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
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


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 [1.333] 

Using [1.333], the normed wave functions are written according to [1.320]: 
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=Φ βω

π   [1.335] 

NOTE.– A detailed study of the properties of the classical harmonic oscillator is 
provided in the references [COH 77, GRI 95, MAR 00]. The wave functions 
associated with the stationary states of the harmonic oscillator are given by the 
general expression: 
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[1.336]

 

Thus we find the expressions [1.334] and [1.335] by changing in the general 
wave function [1.336] x into x − a for n = 0 and n = 1, respectively.  

1.8.13. Solution 13 – Quantized energy of hydrogen-like systems 

Schrödinger equation describing the evolution of the radial function of 
hydrogen-like systems: 

0)(
)(2)( 2

2

2
=Φ






 −+Φ+Φ r

rdr
rd

rdr
rd εδ  [1.337] 

In this equation: 

2

2

2
2 2;

2


kZmemE =−= δε  [1.338] 

k = 1/4πε0 

re
r
rr εχ −=Φ )(

)(  ; =
∞

=ν
χ

k

k
k rar)(  [1.339] 

where ν is a positive integer. 
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(1) Differential equation 

Using [1.339], the first derivative of function Φ (r) is: 

re
rdr
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rd εεχχχ −
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hence: 
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The second derivative is: 
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Moreover, using [1.340], we have: 
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Summing equations [1.341], [1.342] and [1.343], we find: 
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rd χδχεχ  [1.344] 

(2.1) Proof 

We express the first and second derivatives of function χ (r) using [1.339]. This 
leads to: 
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Using [1.340], the differential equation [1.344] gives: 
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Two cases can be distinguished. 

– First case: k = ν. 

Using equation [1.346], we have: 

0)2()1( 12 =−+− −− ν
ν

ν
ν ενδνν rara  

 
This equation is verified in all cases if: 
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ενδ
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– Second case: k ≠ ν. 

Expanding equation [1.346], we obtain the terms of the same power in rk. The 
identification of these terms leads to: 

02)1( 111
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+
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k
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Hence: 
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+
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Considering [1.348] and the results [1.347], we finally get: 

1

( 1) 0

( 1) 2 0k k kk k a k a a
ν ν

ε δ+

− =
 + − + =

 [1.349] 

(2.2) Possible values of ν 

The first solution of [1.348] leads to ν = 0 or ν = 1. For ν = 0, the series [1.339] 
contains one constant term and is written as: 
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The wave function [1.346] has the form: 

r

k

k
k era
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ar ε−∞

≠
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0 1
)(  [1.351] 

Expression [1.351] shows that for ν = 0, the wave function has a term that tends 
toward infinity when r = 0 (a0 is not zero). Since the wave function must be 
bounded, the only solution to be retained is ν  = 1. For this solution, we have: 

rear ε−=Φ 1)(  [1.352] 

This corresponds to the solution characterizing the ground state of the hydrogen-
like system. The only difference between this solution and [1.144] resides in the 
factor a1, which is determined from the normalization condition that must be met by 
the wave function Φ(r).  

(3) Expression, asymptotic behavior 

Using the second equation of results [1.349], we have: 
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a
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At infinity (k → ∞), the ratio ak+1/ak tends toward: 
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(4) Comparison 

The expansion in complete series of the function e2εr can be written as follows: 
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The coefficients bk of this expansion are given by the relation: 
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Using this expression, the ratio bk+1/bk can be written as follows: 

1

21
+

=+
kb

b
k

k ε  [1.357] 

This corresponds to the convergence limit [1.354] of the ratio ak+1/ak.. 
Consequently, at infinity the series [1.339] behaves as the function e2εr. It can be 
noted that the wave function [1.339] diverges if we consider χ (r) = e2εr. This 
justifies the cut-off condition. 

CONCLUSION.– The series [1.339] is therefore convergent. It presents a cut-off, 
meaning that it stops for a certain well-determined integer value of k.  

(5) Expression of the quantized energy 

The cut-off condition of the series [1.339] is obtained for k = n, where n is a 
positive integer taking the values 1, 2, 3… (it is worth recalling that the smallest 
value of k is equal to kmin = ν = 1). Hence, the series stops for k = n. It follows from 
this that the coefficient ak +1 in [1.353] is zero. Hence: 2εn = δ. Using [1.338], we 
have: 
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Arranging this relation, we finally have: 
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2 n
meZEn


−=  [1.358] 

1.8.14. Solution 14 – Line integral of the probability current density 
vector, Bohr’s magneton 

Probability current density: 

[ ]**
2

),( Ψ∇Ψ−Ψ∇Ψ=
mi

trJ   [1.359] 

Wave function:  

Ψ (r,θ, ϕ) = R (r) × Θ (θ) × Φ (ϕ); Φ(ϕ) = exp (i m ϕ) [1.360] 
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ϕθθ ϕθ ∂
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∂
Ψ∂=Ψ∇

∂
Ψ∂=Ψ∇

sin

1
)(;

1
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rrrr  [1.361] 

(1) Components of the probability current density vector 

According to expression [1.359], the components Jr and Jθ involve the real parts 
R (r) and Θ (θ), respectively: these components are therefore zero.  

The component Jϕ is written as: 

[ ]*)*
2

Ψ∇Ψ−Ψ∇Ψ= ϕϕϕ mi
J 

 
[1.362]

 

Taking [1.360] and [1.361] into account, we have: 
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Expression [1.362] is then written as follows:  

ΨΨ×= *2
sin2 θϕ r
im

mi
J   

This leads to: 
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r
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m
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  [1.364] 

(2) Expression of intensity 

Intensity dIϕ of the current through dσ (the flux of the current density vector 
through the elementary surface dσ) is defined by the following relation: 

dIϕ = jϕ dσ [1.365] 

By definition, the component of the current density vector is jϕ = −eJϕ. Using 
[1.364] and [1.365], we get: 
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r
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m
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Hence, we have: 

σ
θϕ d

r
m

m
edI

sin

*ΨΨ−= 
  [1.366] 

(3) Expression of the elementary magnetic moment 

The magnetic moment is the product of the intensity and the area delimited by 
the current. Knowing that the delimited area is S = πρ2 = π(rsinθ)2, we have: 

SdIdM ϕ=  2)sin( θπϕ rdIdM =  [1.367]
 

Inserting [1.366] into [1.367], we find:
 

σθπ
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m
m
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sin

*ΨΨ−= 
  

This leads to: 

τdm
m

edM ΨΨ−= *
2 
  [1.368] 

In relation [1.368], the elementary volume is dτ = 2πrsinθdσ. 

(4) Orbital magnetic moment, Bohr’s magneton 

– Magnetic moment  

Integrating [1.368] on all the current tubes (which amounts to integration 
throughout the space), we obtain: 

 ΨΨ−== τdm
m

edMM *
2 
  [1.369]

 

Knowing that the wave function is normed: 


 m
m

eM
2

−=  [1.370] 

– Bohr’s magneton 

Expression [1.370] shows that the orbital magnetic moment is the product of the 
dimensionless magnetic quantum number m  and a magnetic moment denoted µB, 

known as Bohr’s magneton. By definition, µB = −M/m  . Hence: 
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m
eµB 2

=  [1.371] 

Numerical expression:  

µB = 9.274 × 10− 24 Am2.  

1.8.15. Solution 15 – Schrödinger’s equation in the presence of a 
magnetic field, Zeeman–Lorentz triplet 

In the absence of a field of external forces, the stationary Schrödinger equation 
describing the evolution of the state of a free particle is written as: 

0)(
2

2
=Ψ−+ΔΨ VEm


  [1.372] 

In the presence of a magnetic field, equation [1.372] takes the form: 

0)(
2

.
2

2
=Ψ−+Ψ∇−ΔΨ VEmAei


 [1.373] 

The wave function of the hydrogen-like system Ψ (r,θ, ϕ) = R (r) × Θ (θ) ×  
Φ (ϕ), the imaginary angular part Φ(ϕ) = exp (i m ϕ). The relations between 

Cartesian coordinates and spherical coordinates are: 

x = r sinθ cosϕ; y = r sinθ sinϕ; z = r cosθ [1.374] 

(1) Proof 

The wave function depends on x, y, z through r. Hence: 
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Taking [1.374] into account, expression [1.375] leads to: 
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Therefore, after arrangement we have: 
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 [1.376] 

(2) Deduction of the magnetic field 

The vector potential A  is given by the relation of definition AB ∧∇= . To 
answer the question, it is sufficient to prove that the direction of the magnetic field is 
that of the Oz axis, hence: B = Bz. Let us consider the following relations: 

1
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We have: 
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In conclusion, the magnetic field derives from the vector potential whose 
coordinates are given by relations [1.377]. 

(3) Proof 

Let us determine the quantity Ψ∇.A in the expression [1.373]. We have: 
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Taking [1.376] into account, we have: 
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Using [1.376] and [1.379], we obtain: 

ϕ∂
Ψ∂=Ψ∇⋅ BA

2

1  

This leads to: 

ϕ∂
Ψ∂−=Ψ∇⋅− BeiAei


2  [1.380] 

Knowing that Ψ (r,θ, ϕ) = R (r) × Θ (θ) × exp (i m ϕ), [1.380] is finally written 

as: 

Ψ=Ψ∇⋅− 
BmeAei 2  [1.381] 

(4) Schrödinger’s equation 

Inserting [1.381] into equation [1.373], we find: 
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The Schrödinger equation in the presence of a magnetic field [1.382] can be 
written as: 
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Writing this equation in the form of the Schrödinger equation [1.372], we have: 
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 [1.383] 

In equation [1.383], E′ is the total energy of the studied hydrogen-like system in 
the presence of a magnetic field with: 

B
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(5) Expression of total energy, Zeeman–Lorentz triplet 

– Expression of total energy 

For a hydrogen-like system with potential energy V (r) = −Ze2/r and total energy 
E, the solution to the stationary Schrödinger equation [1.372] gives the discrete 
values [1.359] of the energy E, which are the following: 

22

42

2 n
meZEn


−=
 

Consequently, the solution [1.383] of the Schrödinger equation in the presence of 
the magnetic field can be written as follows: 

B
m

emEE nn 2
' 

+=  [1.385]   

Result [1.385] expresses the quantization of the total energy of the hydrogen-like 
system, which now depends on the angular momentum quantum number. 

– Zeeman–Lorentz triplet 

During a transition between states   = 0 and   = 1, the energy varies by the 
quantity: 


 mB
m

eEE nn Δ+Δ=Δ
2

'  [1.386]   

Knowing that ω=ΔE  and Larmor’s frequency is Ω = eB/2m, we have: 

m
m

eB Δ+=
20ωω  mΔΩ+= 0ωω  [1.387] 

The result [3.187] effectively gives the Zeeman–Lorentz triplet [3.188]. 

1.8.16. Solution 16 – Deduction of Schrödinger’s equation from the  
De Broglie relation 

(1) Differential equation 

Let us recall the propagation differential equation: 
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For an electromagnetic wave, the frequency ν = c/λ  c = λν. Equation [1.388] 
can be written in the form: 
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ν  [1.389] 

(2) Proof 

The solution to the propagation equation [1.389] has the form: 

( , ) ( ) exp( )q t q i tωΨ = Φ ×   [1.390] 

According to the De Broglie relation, λ = h/p. Using this relation, the wave 
equation [1.389] is written as: 
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Moreover, using [1.390], the second-order derivatives of the wave function with 
respect to the generalized coordinate q and with respect to time are: 
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Using [1.392], after simplification equation [1.391] becomes: 
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Since ω = 2πν, we finally find: 
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This equation is valid for a free particle. 
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(3) Expression of energy    

We generalize equation [1.394] to the case of a particle subjected to a potential. 
For this, we consider the particular case of a conservative system subjected to 
potential V(q). Energy E is given by the relation: 

)(
2

2
qV

m
pE +=  [1.395]

 

This expression gives the total energy of a non-relativistic particle (which 
already gives the idea that the Schrödinger equation is a non-relativistic equation). 

(4) Schrödinger’s equation for stationary states 

Expression [1.395] can be used to deduce the linear momentum p of the particle: 

[ ])(22 qVEmp −=  [1.396] 

Inserting [1.396] into [1.394], and knowing that h2/4π =   ħ2, we find:
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or, after arrangement: 
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This is the stationary Schrödinger equation. 

(5) Generalization to three dimensions 

Equation [1.397] can be written in three dimensions (x, y, z) as follows: 
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 [1.398] 
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Summing equations [1.398], we find: 
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Making use of the Laplacian, we have: 
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which can be finally written as: 
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This is the stationary Schrödinger equation [1.28]. 



 2 

Hermitian Operator,  
Dirac’s Notations 

General objective  

The general objective is to know the properties of Hermitian operators and the 
usefulness of Dirac’s notations. 

Specific objectives 

On completing this chapter, the reader should be able to: 

– define the space of square-summable wave functions; 

– know the properties of the scalar product of two functions; 

– define a discrete orthonormal basis; 

– define the Kronecker symbol; 

– define the components of a wave function; 

– define the norm of a wave function; 

– know the orthonormalization relation;  

– write the expansion of a wave function; 

– know the closing relation;   

– define the space of states; 

– know Dirac’s notations; 
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– write the expansion of a state vector;  

– distinguish between a ket vector and a bra vector; 

– distinguish between a linear operator and a linear functional; 

– define the components of a ket and a bra; 

– define a matrix element; 

– define the projection operator on a ket and on a sub-space; 

– define a self-adjoint operator; 

– define a Hermitian operator; 

– give examples of Hermitian operators; 

– know the rules of Hermitian conjugation; 

– define a function of operators; 

– know the commutation rules; 

– define the Poisson brackets; 

– know the properties of commutators; 

– define the trace of an operator; 

– define a unitary operator; 

– define the density operator; 

– define the evolution operator; 

– define an observable; 

– know the properties of observables associated with spin; 

– know the properties of Pauli matrices; 

– know the properties of an orbital angular momentum operator. 

Prerequisites 

– Wave function. 

– Properties of Cartesian space. 

– Vector space. 
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2.1. Orthonormal bases in the space of square-summable wave 
functions 

2.1.1. Subspace of square-summable wave functions 

As already noted in Chapter 1, the wave function )(rΨ  describing the physical 

state of a system satisfies the normalization condition (see [4.51], Chapter 4, 
Volume 1). The set of square-summable wave functions belongs to Hilbert space L2 

[COH 77, MAR 00, HLA 00, NEU 18]. Since the dimension of Hilbert space is too 
large, a subspace of L2 denoted F is considered. This is constituted of square-
summable wave functions that are defined everywhere, continuous and indefinitely 
differentiable. As the set F has the structure of a vector space, every wave function 

)(rΨ ∈ F satisfies the superposition principle [1.1].  

In addition, if )(rΦ ∈ F and )(rψ ∈ F, the scalar product of )(rΦ  and )(rψ  

considered in this order is a complex number and denoted as (ψ,Φ) and given by the 
relation [1.2] (this will be widely used in this chapter). The properties of the scalar 
product are expressed by the relations [1.3]. 

2.1.2. Definition of discrete orthonormal bases 

Let { )(rui } ∈ F be a discrete set, where i is a discrete index: i = 1, 2, 3… . 

{ )(rui } is an orthonormal set if: 
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where: 
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δij is defined as the Kronecker symbol. The name of this symbol honors the 
German mathematician and logician Léopold Kronecker (1823–1891). 
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The set { )(rui } constitutes a basis, if any wave function Ψ ∈ F is uniquely 

expanded on the basis vectors )(rui such that: 
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2.1.3. Component and norm of a wave function 

Let us consider the expansion [2.2] and then express the scalar product (uj,Ψ) 
using [1.2]. We obtain: 
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Result [2.3] shows that component ci of the wave function )(rΨ  on the discrete 

basis { )(rui } is equal to the scalar product of )(rui  and )(rΨ . 

Let us now consider two functions Ψ and Φ of F and then express the scalar 
product (Ψ, Φ) as a function of their respective components bi and cj. We obtain:  
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Taking [2.1] into account, we have: 

=ΦΨ 
ji

ijji cb
,

*),( δ =ΦΨ
i

ii cb*),(  [2.4] 

In particular, if Φ = Ψ, the squared norm of the wave function is (Ψ,Ψ), with:  

=ΨΨ
i

ic 2),(   [2.5] 
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APPLICATION 2.1.– 

Calculate the norm of the wave function below and draw a conclusion. 

21 22

1 uiu −=Ψ                             [2.6] 

Solution. We use [2.5]: 

22
2

2
2

1
2

22

1
),(

iccc
i

i −+=+==ΨΨ                                             [2.7] 

4

3

4

1

2

1
),( =+=ΨΨ  

Hence: 

2

3

4

3
),( ==ΨΨ                                                                                        [2.8] 

 
CONCLUSION.– The wave function is not normed to unity. 

2.1.4. Closing relation 

The orthonormalization relation [2.1] reflects the fact that the basis vectors 

)(rui are orthogonal and normed to unity. In what follows, a relation will be 

established expressing that the set { )(rui } is a basis in the space of square-

summable wave functions. Taking [2.2] and [2.3] into consideration, we have: 


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
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
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)()(
 

Using [2.3] in terms of variable 'r , we have: 

( ) )'()'(')'(),'( *3 rrurdrruc iii Ψ=Ψ=    [2.9] 
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Hence: 

 Ψ=Ψ
i

ii rurrurdr )()'()'(')( *3     

This means: 

)'()()'(')( *3 rrururdr
i

ii Ψ











=Ψ   [2.10] 

By definition, Dirac’s delta function (δ) has the property that, for any wave 

function )(rΨ , satisfies the equation: 

 −Ψ=Ψ )'()'(')( 3 rrrrdr δ  [2.11] 

The comparison of expansions [2.10] and [2.11] reveals that the function ui  
must satisfy the relation: 

)'()()'(* rrruru
i

ii −= δ  [2.12] 

The closing relation [2.12] expresses the fact that the set { )(rui } constitutes a 

basis in the space of square-summable wave functions. 

2.2. Space of states, Dirac’s notations 

2.2.1. Definition 

The previous section focused on the study of the properties of wave functions 

)(rΨ ∈ F. In quantum mechanics, the state of a physical system is described by a 

state vector denoted |Ψ or |Ψ(t) belonging to the space Er of states. The passage 
from the space of square-summable wave functions to the space of states can be 
formally expressed as follows:  

r

r

EtFtr

EFr

∈Ψ→∈Ψ

∈Ψ→∈Ψ

)(),(

)(
 [2.13] 
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Let us note that in the writing of the state vector, the dependence with respect to 

variable r  is no longer present. Only the temporal variable t is highlighted in the 

symbol of the state vector. The wave function )(rΨ is then interpreted as the set of 

components of the state vector on a particular basis denoted {| r } in which r  plays 

the role of a continuous index, the components of r varying between − ∞ and + ∞. 

The relation of the passage from the state vector |Ψ to the wave function )(rΨ will 

be revisited in section 2.2.2. 

2.2.2. Ket vector, bra vector 

The symbol | involved in writing the state vector is known as ket and the state 
vector |Ψ or |Ψ(t) is known as a ket vector or simply ket. Therefore, any square- 

summable wave function )(rΨ is associated with a ket vector denoted |Ψ belonging 

to the space of states Er. By definition, a bra Φ| is a linear functional that 
establishes a correspondence between any ket |Ψ and a complex number λ such 
that: 

(Φ|)|Ψ = Φ|Ψ = λ [2.14] 

It can be proven that the set of linear functional defines a vector space denoted 
by E*r known as the dual of Er. 

Paul Adrien Maurice Dirac was a British physicist. In 1927, he published the results 
concerning the statistical distribution of the half-integer spin particles known as 
fermions in cooperation with the Italian physicist Enrico Fermi (1901–1954). This led to 
the elaboration of the Fermi-Dirac distribution or statistics, which is commonly employed 
in the physics of semiconductors. In 1928, Dirac established the relativistic wave equation 
in order to unify quantum mechanics and the theory of special relativity. The development 
of this relativistic theory of quantum mechanics made it possible to predict in 1931 the 
existence of a positron (positive electron), which was discovered in 1932 by the American 
physicist Carl David Anderson (1905–1991). In 1930, Dirac introduced linear operator 
algebra as a generalization of Heisenberg’s and Schrödinger’s theories. He also 
introduced the notions of ket and bra known as Dirac’s notations, greatly simplifying the 
mathematical formalism of quantum mechanics. In 1933, he was awarded the Nobel Prize 
for physics, which he shared with Schrödinger for their important contributions to 
quantum mechanics. 

Box 2.1. Dirac (1902–1984) 
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The symbol | is known as bracket. This explains the origin of the names ket for 
the symbol | and bra for the symbol |. The ket | and bra | notations are known as 
Dirac’s notations to honor Paul Dirac who introduced them to quantum mechanics. 

2.2.3. Properties of the scalar product 

The scalar product has been defined for two square-summable wave functions 
[1.2] and its properties have also been established [1.3]. They are established here 
once again in the space of states. Using Dirac’s notations, the scalar product of ket 
|Ψ and ket |Φ is defined by the relation: 

 (|Φ,|Ψ) = Φ|Ψ [2.15] 

This scalar product verifies the following properties: 










Ψ+Ψ=Ψ+

Ψ+Ψ=+Ψ

ΦΨ=ΨΦ

2
*
21

*
12211

22112211

*

ϕλϕλϕλϕλ

ϕλϕλϕλϕλ  [2.16] 

If Φ|Ψ = 0, then ket |Φ and ket |Ψ are orthogonal. 

If |Φ = |Ψ, then the squared norm of the ket is equal to Ψ|Ψ. 

If the ket |Ψ is normed to unity, then Ψ|Ψ = 1. 

2.2.4. Discrete orthonormal bases, ket component 

Discrete orthonormal bases have been previously defined [2.3] for the space of 
square-summable wave functions. They are redefined here in the space of states and 
their properties are studied using Dirac notations. 

Let us consider a discrete set {|ui}∈ Er, where i is a discrete index: i = 1, 2, 3, … . 

The set {|ui} is an orthonormal set if: 

ui|uj = δij  [2.17] 

δij is the previously defined [2.3] Kronecker symbol. 

The set {|ui} constitutes a basis in the space of states if any ket |Ψ in the space 
of states Er is uniquely expanded on {|ui}, hence: 
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=Ψ
i

ii uc  [2.18] 

Let us determine the scalar product (|uj, |Ψ). Using [2.18], we get: 

( ) ji
i

iij
i

i
i

iijj cuucucuu δ ==








=Ψ ,,  

which means: 

(|uj,|Ψ) = uj|Ψ = cj  [2.19] 

Therefore, the component ci of the state vector |Ψ on the basis {|ui} is equal to 
the scalar product of |Ψ and |ui, hence: 

ci = ui|Ψ  [2.20] 

Moreover, relation [2.17] expresses the fact that the set {|ui} is orthonormal. We 
will establish a further relation that expresses that this set is a basis in the space of 
states. For this purpose, we substitute ci by its expression [2.20] in the expansion 
[2.18] of the state vector. We obtain: 

Ψ









=Ψ=Ψ=Ψ 

i
ii

i
ii

i
ii uuuuuu  

Knowing that |Ψ is arbitrary, the closing relation satisfied by the set {|ui} can 
then be written as: 


i

ii uu =   [2.21] 

Relation [2.21] is the equivalent of the closing relation [2.12] satisfied by the set  
{ )(rui }in the space of the square-summable wave functions. 

2.3. Hermitian operators 

2.3.1. Linear operator, matrix element 

Linear operators are similar to those defined in the space of square-summable 
functions. They are redefined here using Dirac notations.  
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According to a Dirac notation system, a linear operator A is a mathematical 
being that establishes a correspondence between any ket |Ψ of the space of states Er 
and another ket |Ψ’ belonging to the same space, the correspondence being linear. 
Hence: 







+=+

Ψ=Ψ

22112211 )(

'

ψλψλψλψλ AAA

A
 [2.22] 

Properties [2.22] reflect the action of operator A on the kets. While operator A 
acts on the left of a ket, it always acts on the right of a bra. The action of operator A 
on the bras can then be written as follows: 

AAA 22112211 )( ψλψλψλψλ +=+  [2.23] 

Expressing the scalar product of ket A|Ψ and ket |Φ, we obtain:   

(|Φ, A|Ψ) = Φ|(A|Ψ) = (Φ|A)|Ψ = Φ|A|Ψ [2.24] 

By definition, a matrix element of A between kets |Φ and |Ψ is the complex 
number denoted by [COH 77]: 

Φ|A|Ψ  [2.25] 

2.3.2. Projection operator on a ket and projection operator on a sub-
space 

In the previous section, we have defined the linear operator using Dirac 
notations. Let us give a simple example of the linear operator known as the 
projection operator, which will be defined in the space of states. An interpretation of 
the action of such an operator on the kets will then be provided by an analogy with 
the Cartesian space. 

Let us consider the quantity Pψ =|ψψ| and then express its action on the ket |Ψ. 
We obtain: 

Pψ|Ψ =|ψψ|Ψ = ψ|Ψ|ψ = λ|ψ, with λ = ψ|Ψ 

Hence 

Pψ|Ψ = λ|ψ = |Ψ’  [2.26] 
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Result [2.26] shows that the quantity Pψ establishes a correspondence between 
any ket |Ψ and another ket |Ψ’: Pψ = |ψψ| is therefore an operator. Let us prove 
that it is linear.  

Let us consider the action of Pψ on the ket λ1|ϕ1 + λ2|ϕ2. We obtain: 

Pψ (λ1|ϕ1 + λ2|ϕ2) = |ψψ|(λ1|ϕ1 + λ2|ϕ2) 

Hence: 

|ψψ|(λ1|ϕ1 + λ2|ϕ2) = λ1|ψψ|ϕ1 + λ2|ψψ|ϕ2 

 And finally: 

Pψ(λ1|ϕ1 + λ2|ϕ2) = λ1Pψ|ϕ1 + λ2 Pψ|ϕ2  [2.27] 

Result [2.27] actually expresses the fact that operator Pψ is linear. 

Before providing a “geometrical” interpretation of relation [2.26], let us make 
sure that Pψ is actually a projection operator. If Pψ is a projection operator, then the 
following property is verified: (Pψ)2 = Pψ.  

We then consider a normed ket |ψ that means: ψ|ψ = 1. The squared operator 
Pψ is written as: 

(Pψ)2 = Pψ × Pψ= (|ψψ|) × (|ψψ|) 

Hence: 

(Pψ)2 = |ψψ|ψψ| = |ψψ| = Pψ  

CONCLUSION.– From a “geometrical” point of view, Pψ is the “orthogonal 
projection operator” on the ket |ψ (see Figure 2.1). 

As shown in Figure 2.1, the projection operator on the ket |ϕ can also be 
defined. The projection operator on the two-dimensional subspace generated by the 
kets |ψ and |ϕ is then defined by the relation: 

Pψ + Pϕ = |ψψ| + |ϕϕ| [2.28] 

In order to generalize result [2.28], let us consider the subspace Eq generated by 
q basis vectors {|ϕi}, i = 1, 2, 3,…, q with ϕi|ϕj = δij. Let Pq be the projection 
operator defined by the relation: 
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
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=
q

i
iiqP

1
ϕϕ  [2.29] 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.1. “Geometrical” interpretation of the projection operator Pψ on the ket |ψ  

By analogy to orthogonal projection in the Cartesian space:  

ixiOMiOMP i =⋅= )(
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, we have: Pψ|Ψ = ψ|Ψ|ψ = λ|ψ 

Let us verify that Pq is actually a projection operator. We obtain: 
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This finally leads to: 
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We then prove that Pq is a projection operator acting all over the subspace Eq. 
For this purpose, we consider the ket |Ψ and we obtain: 
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Hence: 

qq

q

i
iiqP ϕλϕλϕλϕλϕλ ......332211

1

+++==Ψ 
=

 [2.31] 

Result [2.31] actually proves that projection operator Pq acts on the subspace Eq 
subtended by the q basis vectors {|ϕi}. 

2.3.3. Self-adjoint operator, Hermitian conjugation 

Let A be a linear operator. The ket: 

A|Ψ∈ Er  → (A|Ψ)* ∈ E*r  [2.32] 

with: 

(A|Ψ)* = Ψ|A† [2.33] 

This is the definition of the adjoint operator A† of A that uses Dirac’s notations. 
The matrix element [2.24] then leads to the simple relation: 

Φ|A|Ψ* = Ψ|A†|Φ  [2.34] 

If A is linear, then A† is also linear. If λ is a complex number, the following 
Hermitian conjugations using Dirac’s notations are verified: 

(λA) † = λ*A†; (λ*A†)† = λA  [2.35] 

(Φ|AλΨ)* = λ*Ψ|A†|Φ [2.36] 

(λ1ϕ1+λ2ϕ2|A)* = A†|λ1ϕ1+λ2ϕ2= λ1A†|ϕ1 +λ2A†|ϕ2 [2.37] 

(λϕ|A|Ψ)* = λ*Ψ|A†|ϕ [2.38] 

As a general rule, in order to obtain the Hermitian conjugate of an arbitrary 
expression that involves kets, bras, operators and complex numbers, it is sufficient 
to write the vectors and operators in reverse order replacing: 

– complex numbers by their complex conjugates; 

– kets by their associated bras; 
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– bras by their associated kets; 

– operators by their adjoints and the inverse. 

The order in which the complex numbers and their conjugates are placed is not 
important. 

If operator A is Hermitian, then A =A†. Relation [2.34] is then written as: 

Φ|A|Ψ* = Ψ|A|Φ [2.39] 

APPLICATION 2.2.–  

Prove the following property: 

   (AB)† = B†A†            [2.40]                                                   

Solution.  Given the ket |Ψ = (AB)|Φ = A(B|Φ), we put: B|Φ = |ψ ; |Ψ = A|ψ. 

We then obtain: 

Ψ| = Φ|(AB)† = ψ|A†= Φ|B†A† (AB)† =B†A† 

Therefore, when the adjoint of the product of two operators is set, the initial order 
of the operators is reversed. 

2.3.4. Operator functions 

An example of an operator function has already been provided in Chapter 1. It is 
the evolution operator denoted U (t, t0) defined by relation [1.34]. The objective is 
here to define operator functions in the general case and then express several of their 
properties.  

Let A be a linear operator and F (u) a function of the variable u that can be 
expanded in the form of an integer series such that: 

n

n
n ufuF 

∞

=
=

0

)(   [2.41] 

By definition, the operator F (A) of the linear operator A is defined by the 
expression: 
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n

n
nAfAF 

∞

=
=

0

)(   [2.42] 

If A is Hermitian, then F (A) is Hermitian if coefficients fn are real. 

APPLICATION 2.3.– 

Let A be an observable. Prove that the operator F (A) = eA is Hermitian. 

Solution. Let us expand the operators F(A) and F (A†) in integer series using 
relation [2.42]. We obtain: 

  n
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A A
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Since A is Hermitian, then: 


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=
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0

†
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1
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A
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e  (A†)n  =       +
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1
 (A)2 + 
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1
 (A)3 +… 

!

1

n
 (A)n +…            [2.44] 

Comparing [2.43] and [2.44], it can be noted that F (A) = F (A†): F (A) is actually 
Hermitian. 

2.4. Commutator algebra 

2.4.1. Poisson brackets 

As already noted throughout Chapter 1, the operators representing fundamental 
observables are the position and linear momentum operators, which are used in 
building various other operators, such as the Hamiltonian, based on the 
correspondence principle stated in section 1.3.4.  

Let us consider two arbitrary functions F (qk, pk) and G (qk, pk) defined in the 
space of phases characterized by the canonical coordinates qk (generalized 
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coordinate) and pk (generalized linear momentum), i =1, 2, 3… Poisson’s bracket is 
defined as the quantity denoted [F, G], which is given by the expression [CHP 78]: 

 
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



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k kkkk q
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q
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],[   [2.45] 

Let λ be a complex number. Poisson’s bracket verifies the following properties: 

[F, F] = [G, G] = 0; [F, λ] = [G, λ] = 0; [F, G] = − [G, F] [2.46] 

[F, G + K] = [F, G] + [F, K]; [G + K, F] = [G, F] + [K, F] [2.47] 

[F, GK] = [F, G] K + G[F, K]; [GK, F] = G[K, F] + [G, F]K [2.48]  

The properties below are also satisfied if F and G are operators and if the 
operator [F, G] represents their commutator (see further below). 

APPLICATION 2.4.– 

Prove the first of relations [2.47]. 

Solution. Using [2.45], we have: 
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Hence: 
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Or: 

     [F, G + K] = [F, G] + [F, K] 
 
APPLICATION 2.5.– 

Prove that the product (AB) of two Hermitian operators A and B is not Hermitian 
unless the two operators commute. 
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Solution. Let A and B be two arbitrary operators. The commutator of A and B is 
the operator denoted [A, B] defined by the relation: 

[A, B] = AB − BA                             [2.49] 

If A and B commute, then: 

[A, B] = 0  AB = BA                  [2.50] 

If A and B are Hermitian, then according to [2.40] we have:  

(AB)† = B†A† = BA                  [2.51] 

Knowing that A and B commute, then relation [2.52] can be written as: 

(AB)† = (AB)                   [2.52] 

Therefore, the product (AB) of two Hermitian operators A and B is not Hermitian 
unless the two operators commute. 

 
APPLICATION 2.6.– 

The quantum Poisson bracket is defined as the operator [F, G] given by the 
relation: 

)(],[ GFFGiGF −=


                 [2.53] 

Prove that if F and G are Hermitian, then operator [F, G] defined by [2.53] is 
Hermitian because of the introduction of factor i. 

Solution. Using the property [2.40], we have:  

)()()(],[ †††††
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Hence: 
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†

† FGGFiGFFGiGFFGiGF −=−−=

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

 −=


          [2.54] 

If F and G are Hermitian, then: 
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],[)(],[ † GFGFFGiGF =−=


                             [2.55] 

The introduction of factor i in the definition relation [2.53] is a requirement for 
ensuring the Hermiticity of the quantum Poisson bracket. 

2.4.2. Commutation of operator functions 

As a general rule, any operator A commutes with its function F (A). Moreover, if 
A and B commute, then: 

[A, F (A)] = 0; [B, F (A)] = 0; [A, F (B)] = 0 [2.56] 

Furthermore, as seen in Volume 1, Chapter 4, according to Heisenberg 
uncertainty relations, it is impossible to simultaneously measure the position x and 
the linear momentum p = px. In other terms, the associated operators X and P are 
anticommutative. To verify these assertions, let us first calculate commutator [X, P]. 

We consider the continuous set {|x} and express the number x|[X, P]|ψ: 

[ ] ψψψψ PXxXPxPXXPxPXx −=−= )(,  

Hence: 

[ ] ψψψψψ x
dx
dxix

dx
dxiPxxPxxPXx  +−=−=,  [2.57]

  

Expanding the left member of [2.57], we have: 

[ ] ψψψψ xix
dx
dxix

dx
dxiPXx  ++−=,  

After simplification and arrangement, we find: 

[ ] ψψ ixPXx =,  [2.58] 

Which finally leads to: 

iPX =],[   [2.59] 
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APPLICATION 2.7.– 

Calculate the commutators [X, P2], [X, P3] and [X, Pn], n > 0. 

Solution.  

– Commutator [X, P2] 

Using the first property [2.48], we obtain: 

[X, P2] = [X, PP] = [X, P]P + [X, P]P 

Using [2.59] (for the sake of simplification, the identity operator is omitted), we 
find: 

[X, P2] = Pi2                   [2.60] 

– Commutator [X, P3] 

Similarly, we obtain: 

[X, P3] = [X, P2]P + P2[X, P] 

Using results [2.59] and [2.60], we find: 

[X, P3] = Pi3                    [2.61] 

– Commutator [X, Pn] 

Let us consider the commutator: 

[X, Pp + 1] = [X, PPp] = [X, P]Pp + P[X, Pp] 

According to [2.60] and [2.61], we obtain by recurrence:  

1],[ −= pp PpiPX   

This involves: 

pppp PpiPPpiPiPX )1(],[ 11 +=+= −+     

This relation is valid for any integer p in particular for p = n − 1. Hence: 

1],[ −= nn nPiPX   [2.62] 
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We now consider the function F (P) of operator P defined by relation [2.42], in 
which the operator A is replaced by P. Then we express the commutator [X, F(P)]. 
We obtain: 

1],[)](,[ − == n

n
n

n

n
n PnfiPXfPFX   [2.63] 

The last term of equation [2.63] features the derivative of the operator function  
F(P) with respect to P, which is: 

1)(
)(' − === n

n
n

n

n
n PnfPf

dP
d

dP
PdFPF    

Therefore, we finally get: 

)(')](,[ PFiPFX =  [2.64] 

Let us also express the commutator [P, G(X)]. In this commutator, G (X) is a 
function of the position operator X defined by relation [2.42] in which A must be 
replaced by X. We obtain: 

],[)](,[ n

n
n XPgXGP =  [2.65] 

Or: 

],[],[],[],[ 111 −−− +== nnnn XPXXXPXXPXP  [2.66] 

Using the third property [2.46], we obtain iXP −=],[ according to [2.59]. 

Relation [2.66] is finally written as: 

21 )1(],[ −− −−−= nnn XnXiXiXP    

Or after arrangement: 

1],[ −−= nn nXiXP    [2.67] 

Inserting [2.67] in [2.65], we find: 

1)](,[ −−= n

n
nnXgiXGP   
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The derivative of function G(X) with respect to X is written as: 

1)(
)(' − === n

n
n

n

n
n XngXg

dX
d

dX
XdGXG  

Hence: 

)(')](,[ XGiXGP −=  [2.68] 

Results [2.64] and [2.68] feature the derivatives of the operator functions F (P) 
and G (X) with respect to P and X, respectively. We now consider the case when F 
and G are time dependent. The rules of differentiation with respect to time t are 
identical to the rules of differentiation commonly used for classical quantities. 
Hence: 

dt
dG

dt
dF

dt
GFd +=+ )(  [2.69] 

dt
dGFG

dt
dF

dt
FGd +=)(  [2.70] 

The order of operators in relation [2.70] should be respected. If F and G 
commute, then this order has no importance. 

APPLICATION 2.8.– 

Let A and B be two time-dependent operators that do not commute. We consider 
the operator function F (A, B, t) = eAteBt. Under what condition we can write: 

FBA
dt
dF

)( +=                                [2.71] 

Solution. Let us differentiate the function F (A, B, t) = eAteBt with respect to time. 
We get: 

dt
edee

dt
ed

dt
dF Bt

AtBt
At

+=
                 [2.72] 

Using [2.43], we have: 


∞

=

−∞

=
==

0

1

0 !!

)(

n

nn

n

nCt

n
tCn

n
Ct

dt
d

dt
ed  
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Hence: 

Ct

p

p

n

nCt
eC

p
CtC

n
CtC

dt
ed ==

−
= 

∞

=

∞

=

−

01

1

!

)(

!)1(

)(               [2.73] 

Using [2.73], relation [2.72] can be written as: 

BtAtBtAt eBeeeA
dt
dF +=                 [2.74] 

Relation [2.74] cannot be written in the form [2.71] unless A and B commute. They 
commute with their functions, hence eAtBeBt = B eAtBt. Factoring the right member 
of [2.74] by eAtBt, we actually obtain [2.71]. 

Siméon Denis Poisson was a French mathematician, physicist and geometrician. His 
contributions to physics essentially relate to electricity and magnetism. Relying on the 
Laplace (1749–1827) equation, Poisson published, in 1813, the differential equation 
satisfied by any electrostatic potential. This Poisson equation expresses that the Laplacian 
of the potential in a point in space depends only on the volume charge density in this 
point. Based on the notion of vector field flux, Gauss (1777–1855) formulated, in 1840, 
the local Poisson equation at macroscopic scale (Gauss theorem). In quantum mechanics, 
Poisson brackets are named in his honor.  

Box 2.2. Poisson (1781–1840) 

2.4.3. Trace of an operator 

By definition, the trace of an operator A, denoted TrA, is the sum of its diagonal 
matrix elements. In the discrete orthonormal basis {|ui}, the trace of operator A can 
be written as: 

i
i

i uAuTrA =  [2.75] 

We prove that the trace of an operator is an invariant, meaning that it does not 
depend on the chosen basis. Then we consider another discrete basis {|uk} 

in the 
space of states. Let U be a matrix. A change of basis involves the passage from the 
set {|ui} to the set {|vk} by means of the transformation: 

=
k

kiki vUu
  

[2.76]
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Vectors {|vk} form a discrete orthonormal basis in the space of states, if matrix 
U is unitary, therefore: 

ij
k

jkikUU δ= *

 
[2.77]

 

Then we have: 





















==  

l
lil

i k
kiki

i
i vUAvUuAuATr *)(

 

Hence: 

kl
kl

lklk
kl i

ilik vAvvAvUUATr δ  =









= *)(

 

It finally leads to: 

 ==
k

kki
i

i vAvuAuATr )(
  

[2.78]

 

Result [2.78] actually expresses the fact that the trace of an operator is an 
invariant. 

2.5. Exercises 

2.5.1. Exercise 1 – Properties of commutators 

Let A, B and C be three operators.  

(1) Prove the following properties: 

a) [A, B] = − [B, A]; b) [A, (B + C)] = [A, B] + [A, C] 

c) [A, BC] = [A, B]C + B[A, C];   d) [A, B]† = [B†, A†]  

(2) Fill in the following equations (λ and μ are complex numbers): 

a) (A†)† = ……;   b) (λA)† = ………;   c) (λA†+ μ* B)† = ……… ;  

d) (AB†)† = ……. 



150     Introduction to Quantum Mechanics 2 

(3) Prove the following relations [for Ψ (x) → 0 when x → ∞]:  

a)

 dx
d

dx
d −=





 †

 ; b) †

2

2












dx
d = 

2

2

dx
d  ; c)  P † = P (linear momentum operator) 

2.5.2. Exercise 2 – Trace of an operator 

Let A be a linear operator. We consider the case when A is an observable. Let 
i
nu

 
be a ket of A verifying the equation A i

nu = an
i
nu ,  i = 1, 2, 3, ….., gn, 

where gn is the degree of degeneracy. 

(1) Prove the relation:  

=
n

nn agATr
 

(2) Prove the following properties:  

a) Tr AB = Tr BA; b) Tr ABC = Tr BCA = Tr CAB 

2.5.3. Exercise 3 – Function of operators 

Let A and B be two operators that commute. We consider the functions of 
operators F (A) and F (B) defined by: 

=
n

n
n AfAF )(  ;

 
=
n

n
n BgBF )(  

Let An be the operator obtained by n successive applications of operator A on 
itself and let |Φ be a ket of A such that A|Φ = a|Φ.  

(1) Express the action of operator F(A) on the ket |Φ. 

(2) Given the matrix: 









−

=
10

01
σz   

Find e zσ .  

(3) Find the commutators [A, F(A)], [A, F(B)] and [F(A), F(B)]. 
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2.5.4. Exercise 4 – Infinitesimal unitary operator 

Let us consider an infinitesimal unitary operator U (ε) defined by the relation:  

U (ε) = (   + A)ε 

In this relation, ε is an infinitesimal quantity. 

(1) Prove that the product of two unitary operators is also unitary. 

(2) Expand U (ε) to the first order approximation. 

(3) Express in this approximation, the products U† (ε)U (ε) and U (ε)U† (ε) as a 
function of ε, A and A†. 

(4) Is the operator A Hermitian? 

(5) Prove that there is a Hermitian operator B such that B = F (A). 

2.5.5. Exercise 5 – Properties of Pauli matrices  

An orthonormal basis {|+ ; |− is chosen. In this basis, dimensionless operators 
σx, σy, and σz are represented by Pauli matrices and defined by: 

 








=

01

10
xσ ; 







 −
=

0

0
σ

i
i

y ;  








−

=
10

01
σz  

The spin angular momentum is given by the expression: 

σ
2

=S  

(1) Prove that σx, σy, and σz are self-adjoint operators. 

(2) Compare 2
xσ , 2

yσ
 
and 2

zσ . 

(3) Express Tr (σi), i = x, y and z. 

(4) Prove that σxσy + σyσx  = 0 and that σxσy – σyσx = 2iσz. 

(5) Express the commutators [σx, σy], [σy, σz] and [σz, σx].  

(6) Deduce from the above the commutators [Sx, Sy], [Sy, Sz] and [Sz, Sx]. 
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2.5.6. Exercise 6 – Density operator 

Let us consider a discrete orthonormal basis {|un} in the space of states of a 
particle. At instant t, a ket vector of this state can be written as: 

n
n

n utct )()( =Ψ  

(1) Express the relation that must be satisfied by coefficients cn (t) so that the 
state vector |Ψ(t) is normed (this is the assumption in what follows). 

(2) The density operator is defined in the representation {|un}: 

ρ (t) =|Ψ(t) Ψ(t)| 

Prove that ρ (t) is Hermitian and idempotent (hence a projection operator). 

(3) Find the trace of the density operator. 

2.5.7. Exercise 7 – Evolution operator 

Let us consider an observable A acting in the space of states with n dimensions. 
We designate by |Φk, the kets of A such that A|Φk = ak|Φk (k = 1, 2.. n). Moreover, 
we consider a linear operator U (k, m) defined by the relation: 

U (k, m) =|ΦkΦm| 

(1) Establish the relation between U (k, m) and its adjoint. 

(2) Find the commutator [A, U (k, m)]. Deduce from it [A, U (k, k)]. 

(3) Prove that Tr U (k, m) = δmk.  

(4) Let B be an observable of matrix elements Bkm. Prove that: 

=
mk

km mkUBB
,

),(  

(5) Prove the relation: 

 Bkm = Tr {BU† (k, m)} 
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(6) Let us consider a normed ket |Ψ(t) whose evolution in time is described by 
the equation: 

|Ψ(t) = U (t, t0)|Ψ(t0) 

In this equation, U(t, t0) is the evolution operator. 

(6.1) Prove that U (t, t0) is a unitary operator.  

(6.2) Using the Schrödinger equation, prove the relation: 

),(
),(

0
0 ttHU

dt
ttdUi =  

In this relation, H is the Hamiltonian of a conservative system. 

(6.3) Deduce from it the expression of the evolution operator U(t, t0). 

2.5.8. Exercise 8 – Orbital angular momentum operator 

We consider the orbital angular momentum operator defined by the relation: 

 prl ∧=  

The component pq of the linear momentum operator is defined by the relation: 

q
ipq ∂

∂−=   

(1) Express the components lx, ly and lz of the angular momentum operator. 

(2) Establish the expressions of the products of operators lxly and lylx.  

(3) Deduce from them the commutators [li, lj] (i = x, y, z ≠ j). 

2.6. Solutions 

2.6.1. Solution 1 – Properties of commutators 

(1) Proof 

a) [A, B] = AB − BA = − (BA − AB) = − [B, A]. 
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b) [A, (B + C)] = A (B + C) − (B + C) A = AB + AC − BA − CA = (AB − BA) + 
(AC − CA) = [A, B] + [A, C]. 

c) [A, B]C + B [A, C] = (AB − BA) C + B(AC − CA) = ABC − BAC + BAC − BCA 
= (ABC− BCA) = [A, BC]. 

d) [A, B]† = (AB − BA)† = (AB)† − (BA)† = B†A† − A†B† = [B†, A†]. 

(2) Solutions 

a) (A†)† = A ; b) (λA)† = λ*A† ; c) (λA†+ μ* B)† = (λ*A + μB† ; d) (AB†)† = A†B . 

(3) Proof  

a) Let us consider the scalar product: 

 ( ψ , Φ
dx
d ) = Φψ

dx
d           [2.79] 

Using {|x} representation, the closing relation is written as follows: 

 xxdx =          [2.80] 

Inserting [2.80] in [2.79], we get: 

ΦψΦψ
dx
dxxdx

dx
d


+∞

∞−

=  

It is given as: 

)()(* x
dx
dxdx

dx
d ΦψΦψ 

+∞

∞−

=
 

Using the integration by parts, we have: 

[ ] )(*)(* x
dx
dxdx

dx
d ψΦΦψΦψ 

+∞

∞−

∞+
∞− −=

 It is given as: 

[ ] 
+∞

∞−

∞+
∞− −= )()(** xx

dx
ddx

dx
d ΦψΦψΦψ   [2.81] 
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The functions ψ(x) and Φ(x) related to bound states tend to 0 when x  → ± ∞, 
hence the product ψ*(x) Φ(x) → 0 when x  → ± ∞. Therefore, the first term of the 
right member in [2.81] is zero. Hence:  


+∞

∞−

−= )()(* xx
dx
ddx

dx
d ΦψΦψ

 
It is given as:   


+∞

∞−






−= )()(

*
xx

dx
ddx

dx
d ΦψΦψ  

Or: 

ΦψΦψ
dx
d

dx
d −=   [2.82]

 

Moreover, it is known that if B is the adjoint of A, then the following equality is 
verified: 

 ψ|AΦ = Bψ|Φ = A†ψ|Φ [2.83] 

with B = A†. We put: 

 
dx
dB

dx
dA −== ;  [2.84] 

Inserting [2.84] into [2.82] and taking [2.83] into account, we get: 

dx
d

dx
d −=





 †

 [2.85] 

b) The adjoint of the second derivative operator with respect to variable x is 
written as: 

††††

2

2















=






 ×=











dx
d

dx
d

dx
d

dx
d

dx
d
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Using [2.85], we find: 

2

22†

2

2

dx
d

dx
d

dx
d =






−=










  [2.86a] 

c) Using {| r } representation, the linear momentum operator is defined by the 
expression: 

k
dz
dij

dy
dii

dx
diiP  −−−=∇−=  [2.86b] 

The adjoint of this operator is written as: 

†
†









−−−= k

dz
dij

dy
dii

dx
diP 

 

It is given as: 

††††






−








−






−= k

dz
dij

dy
dii

dx
diP 

   

which then gives: 

††††






+








+






= k

dz
dij

dy
dii

dx
diP 

 [2.87a]
 

 Taking property [2.85] into account, expression [2.87a] becomes: 

k
dz
dij

dy
dii

dx
diP  −−−=

†

 [2.87b]
 

Comparing [2.86b] and [2.87b], it can be noted that 
†

PP = . This equality 
proves that the linear momentum operator is Hermitian. It is worth noting that d/dx 
is not Hermitian because of the change of sign introduced by the integration by parts 
(see [2.81] and [2.85]). On the other hand, operator id/dx is Hermitian due to  
factor i. 
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2.6.2. Solution 2 – Trace of an operator 

(1) Proof  

Let us consider the equation: 

A i
nu = an

i
nu   

i = 1, 2 , 3,…. gn  

Equation [2.87] is written as: 

=
n

ng

i

i
n

i
n uAuTrA  

This leads to: 

=
n

ng

i

i
n

i
nn uuaTrA

  
It is given as: 

 =
n

ng

i
iinnnaTrA δδ   

which finally leads to: 

=
n

nn agTrA   [2.88]
 

(2) Proof  

a) By definition: 

i
i

i uABuTrAB =

 
Inserting the closing relation defined in the basis {|uk} between A and B, we get: 

i
k

kk
i

i uBuuAuTrAB =  
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This leads to: 

k
k i

iik uAuuBuTrAB =

 
which is: 

k
k i

iik uAuuBuTrAB  =  

Hence: 

TrBAuABuTrAB k
k

k ==   [2.89] 

b) By definition: 

i
i

i uABCuTrABC =
 

As previously, let us insert between operators A and B the closing relation 
defined in the basis {|uk} and between B and C the closing relation defined in the 
basis {|ul}. We get: 

il
l

l
k

kk
i

i uCuuBuuAuTrABC =
 

Arranging this expression, we have: 

illkk
k l i

i uCuuBuuAuTrABC =  [2.90] 

This leads to: 

k
k l i

iillk uAuuCuuBuTrABC =

 
Hence: 

 =
k

k
i

ii
l

llk uAuuCuuBuTrABC
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which finally leads to: 

   TrBCAuBCAuTrABC
k

kk ==  [2.91] 

Using [2.91], we have: 

lkk
k l i

iil uBuuAuuCuTrABC =

 
Or after arrangement: 

TrCABuCABuTrABC
l

ll ==  [2.92] 

2.6.3. Solution 3 – Function of operators 

(1) Expression 

According to the problem statement, we have: 

A|Φ = a|Φ [2.93] 

Using [2.93], we get by recurrence: 

A2|Φ= aA|Φ= a2|Φ; A3|Φ= a3|Φ;…. ; An − 1|Φ= a n − 1|Φ 

or: 

An|Φ = a n − 1A|Φ  An|Φ = a n|Φ [2.94] 

Moreover: 

ΦΦ =
n

n
n AfAF )(  

or: 

ΦΦΦ )()( aFafAF
n

n
n ==  [2.95] 
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(2) Finding eσz  

Using the property [2.95], we find: 









=

e
e

e z
/10

0σ                  [2.96]  

(3) Finding the commutators 

Commutators [A, F(A)], [A, F(B)] and [F(A), F(B)] can, respectively, be written 
as: 

AAFAAFAFA )()()](,[ −=  

We get: 

AAfAfAAFA n

n
n

n

n
n  −=)](,[  

which is: 

0)](,[ 11 =−= ++  n

n
n

n

n
n AfAfAFA   [2.97]

 

According to this result, operator A commutes with any function of A. 

[A, F(B)] = A F(B) − F(B) A 

Similarly: 

[ ] ABgBAgBFA n

n
n

n

n
n  −=)(,  

Factoring by gn, we get: 

[ ] )()(, ABBAgBFA nn

n
n −=  

which is:
  

[ ] )()(, ABBAgBFA nn

n
n −=   [2.98] 
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If A and B commute, then ABn = BnA  [A, F(B)] = 0 according to [2.98]. 

[F(A), F(B)] = F(A)F(B) − F(B)F(A)  

or: 

[ ] n

n
n

n

n
n

n

n
n

n

n
n AfBgBgAfBFAF  −=)(),(  

Since A and B commute, then: 

AB = BA  AnBn  = BnAn  

which leads us to: 

[ ] 0)()(),( =−= nnnn
n

n
n ABBAgfBFAF  [2.99] 

2.6.4. Solution 4 – Infinitesimal unitary operator 

Let us consider an infinitesimal unitary operator U (ε) defined by the relation:  

U(ε) = (   + A)ε  [2.100] 

(1) Proof 

By definition, an operator is unitary if its adjoint coincides with its inverse. If U 
is unitary, then: 

U† = U −1  [2.101] 

which leads to the relations: 

U†U = UU† =   [2.102]                       

Let U and V be two unitary operators. According to [2.101], we have: 

U†U = UU† =  ; V†V = VV† =     [2.103]             

Let us now express the product of operators (UV)†(UV). We get: 

(UV)†(UV) = (V†U†)(UV)   
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Hence:  

(UV)†(UV) = V†U†UV = V†V =   [2.104]             

Result [2.104] shows that the product of two unitary operators is also unitary. 

(2) Expansion to first-order approximation 

In first-order approximation, equation [2.100] gives: 

U (ε) =   + εA + …         [2.105]                        

(3) Expression 

Let us express the adjoint of U using [2.105]. We get: 

U† (ε) =   + εA† + … [2.106]                                     

Using [2.105] and [2.106], the products U†(ε)U (ε) and U (ε)U† (ε) can be written 
as: 

U† (ε)U (ε) =   + ε (A† + A) + ε2A†A 

U (ε)U† (ε) =   + ε (A† + A) + ε2AA† 

Approximating to the first order, we get: 

U (ε)U† (ε) = U† (ε)U (ε) =   + ε (A† + A) [2.107] 

(4) Hermiticity  

Using [2.107], the equation gives: 

ε (A† + A) = 0  A† = − A [2.108]  

The last equality [2.108] reflects the fact that A is an anti-Hermitian operator. 

(5) Proof 

We put F(A) = iA. Taking result [2.108] into account, we get: 

 [F (A)]† = (iA)† = − iA† = iA = F (A)  [2.109] 

Therefore, operator B = F (A) = iA is Hermitian.  
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2.6.5. Solution 5 – Properties of Pauli matrices  

We consider the Pauli matrices. 









=

01

10
xσ

 







 −
=

0

0
σ

i
i

y
 









−

=
10

01
σz

  
[2.110]

 

The spin angular momentum operator is: 

σ
2

=S  [2.111] 

(1) Proof 

It is known than a Hermitian operator is represented by a Hermitian matrix such 
that two arbitrary elements that are symmetrical with respect to the main diagonal 
are complex conjugates. Consequently, the operators represented by matrices 
[2.111] are self-adjoints or Hermitian. 

(2) Comparison 

We successively calculate the squared operators [2.110] as follows: 









=
















=

10

01

01

10

01

102
xσ  









=







 −







 −
=

10

01

0

0

0

02

i
i

i
i

yσ  









=








−








−

=
10

01

10

01

10

012
zσ  

These results show that the squared Pauli matrices are all equal to the identity 
operator I in the space of states with two dimensions. Hence: 









====

10

01222 Izyx σσσ  [2.112] 

(3) Expressions of the trace 

Knowing that the trace of an operator is the sum of its diagonal matrix elements, 
using [2.110], it can be seen that: 
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Tr (σx) = Tr (σy) = Tr (σz) = 0 [2.113] 

(4) Proof 

σxσy + σyσx  = 0? 

Using [2110], we get: 









−

=






 −








=

i
i

i
i

yx 0

0

0

0

01

10
σσ

 








−
=















 −
=

i
i

i
i

xy 0

0

01

10

0

0
σσ  

These expressions prove that: 

σxσy = − σyσx  σxσy + σyσx  = 0   

σxσy – σyσx = 2iσz? 

According to [2.114], 

σxσy  = − σyσx   σxσy  − σyσx = − 2σyσx 

which is: 

σxσy  − σyσx = 2i2σyσx [2.115]                         

Let us express the matrix i2σyσx. We get: 








−
=















 −
=

i
i

i
i

i
ii xy 0

0
2

01

10

0

0
22 222 σσ  

which is: 

zxy ii
i

i
ii σσσ 2

10

01
2

0

0
22

2

2
2 =








−

=












−
=   [2.116]

 

After simplification, we find: 

σxσy  − σyσx = 2iσz [2.117]   

[2.114] 
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(5) Expressions of commutators 

Commutators [σx, σy], [σy, σz] and [σz, σx] are written, respectively: 

[σx, σy] 

Taking property [2.217] into account, we have: 

[σx, σy] = σxσy − σyσx  [σx, σy] = 2iσz  

[σy, σz] 

Proceeding as previously, we get: 

[σy, σz] = σyσz − σzσy [2.119] 

Using [2.110], we get: 









=








−







 −
=

0

0

10

01

0

0

i
i

i
i

zyσσ
 









−

−
=







 −








−

=
0

0

0

0

10

01

i
i

i
i

yzσσ
 

Hence: 

xzy ii σσσ =







=

01

10

 

This relation leads to: 

xyz ii σσσ −=







−=

01

10

 
[2.120]

 

Using these expressions, relation [2.119] finally gives: 

[σy, σz] = 2iσx            

– [σz, σx] 

 

 

[2.118] 

[2.121] 



166     Introduction to Quantum Mechanics 2 

Similarly: 

[σz, σx] = σzσx − σxσz       [2.122] 

Using matrices [2.110], we successively get: 









−

=















−

=
01

10

01

10

10

01
xzσσ

 

 







 −
=








−








=

01

10

10

01

01

10
zxσσ

 

which is: 

yxz i
i

i
i σσσ =







 −
=

0

0

  

yzx i
i

i
i σσσ −=







 −
−=

0

0

                  

Using these results, relation [2.122] finally leads to: 

[σz, σx] = 2iσy  

Summarizing the properties of Pauli matrices: 









====

10

01222 Izyx σσσ
  

Tr (σx) = Tr (σy) = Tr (σz) = 0         [2.123] 

σxσy + σyσx  = 0 ; σxσy  − σyσx = 2iσz  

[σx, σy] = 2iσz   ; [σy, σz] = 2iσx; [σz, σx] = 2iσy  

(6) Deduction 

Using [2.111] and properties [2.123], we get: 

xxS σ
2

= , yyS σ
2

= , zzS σ
2

=   [2.124] 
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Hence: 

[ ] [ ] [ ] [ ] [ ] [ ]xzxzzyzyyxyx SSSSSS σσσσσσ ,
2

,;,
2

,;,
2

,
222  ===  

or: 

[ ] [ ] [ ] yxzxyzyzyx SiSSSiSSSiSS  === ,;,;,  [2.125] 

2.6.6. Solution 6 – Density operator 

In the discrete orthonormal basis {|un}, the vector state is written as: 

n
n

n utct )()( =Ψ  [2.126]  

The density operator is defined by the relation: 

ρ (t) = |Ψ(t) Ψ(t)| [2.127] 

(1) Expression 

If ket |Ψ (t) is normed, then Ψ(t)|Ψ(t) = 1. According to [1.126], we get: 

1)()( * = nm
n

mn uutctc   

Introducing the Kronecker symbol, we have: 

1)()( * = mn
n

mn tctc δ
 

Or finally: 

1)( 2 =
n

n tc   [2.128] 

(2) Proof 

Considering [2.127], we get: 

ρ † (t) = |Ψ(t)Ψ(t)| = ρ (t) [2.129]  
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Relation [2.129] indicates that the density operator is Hermitian. 

Furthermore, we calculate the square of this operator. We get: 

ρ 2 (t) = |Ψ(t) Ψ(t)|Ψ(t)Ψ(t)| = ρ (t) [2.130] 

Operator ρ (t) is therefore idempotent. 

(3) Trace of density operator 

The sum of the diagonal elements of the density matrix is determined by its 
trace. We then obtain: 

n
n

n ututTr )()( ρρ =  [2.131]  

Inserting [2.127] in [2.131], we get: 

2
)()()()(  Ψ=ΨΨ=

n
nn

n
n tuuttutTrρ  

Knowing that coefficient cn(t) = un|Ψ(t), and taking [2.128] into account,  
we get: 

1)()( 2 ==
n

n tctTrρ   [2.132] 

2.6.7. Solution 7 – Evolution operator 

(1) Relation 

 The linear operator U (k, m) is defined by the relation: 

U (k, m) =|ΦkΦm| [2.133] 

Using [2.133], we get: 

U† (k, m) = |ΦmΦk| 
 U† (k, m) = U (m, k) [2.134] 

Let us note that operator U (k, m) is not Hermitian since indices k and m are 
different. 
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(2) Commutator 

The observable A verifies the property: 

A|Φk = ak|Φk [2.135] 

 Commutator [A, U (k, m)] is: 

[A, U (k, m)] = AU (k, m) − U (k, m)A  

Using [2.135], this commutator can be written as: 

[A, U (k, m)] = A|ΦkΦm|
 
 − |ΦkΦm|

 
A

 

Hence: 

[A, U (k, m)] = ak|ΦkΦm|
 
 − |ΦkΦm|

 
a*m 

Since A is Hermitian (it is an observable), then a*m = am. Hence: 

[A, U (k, m)] = (ak − am)|ΦkΦm| 

which is finally given as:  

[A, U (k, m)] = (ak − am)U (k, m)] [2.136]
 

This expression leads to: 

[A, U (k, k)] = 0   

(3) Proof 

Let us express Tr U(k, m) using the basis {|Φl}: 

l
l

l mkUmkTrU ΦΦ=  ),(),(  

That means using [2.133]: 

lmk
l

lmkTrU ΦΦΦΦ= )(),(  
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Hence: 

k
l

llmlm
l

klmkTrU Φ







ΦΦΦ=ΦΦΦΦ= ),(  

So we finally get: 

Tr U (k, m) = Φm|Φk  = δmk [2.137] 
 

The closing relation satisfied by the set {|Φl} has been used. 

(4) Proof 

The observable B of matrix elements Bkm can be written as follows: 

B =   B   [2.138] 

Using the closing relations verified by the sets {|Φk} and {|Φm}, relation 
[2.138] gives: 

mm
mk

kk BB ΦΦΦΦ= 
,

  

Hence: 

m
mk

kkmmkm
mk

k BBB ΦΦ=ΦΦ= 
,,

 

which leads to: 

=
mk

km mkUBB
,

),(  [2.139] 

(5) Proof  

Let us find the trace of BU†. We get: 

[ ]  ΦΦ=
l

ll mkBUmkBUTr ),(),( ††   

Knowing that U† (k, m) = |ΦmΦk|, we get:  
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[ ]  ΦΦΦΦ=
l

lkml BmkBUTr ),(†  

Hence: 

[ ]  ΦΦ=
l

lklmBmkBUTr ),(†  

So we finally get: 

 Bkm = Tr{BU† (k, m)}
 
 [2.140] 

(6) Evolution equation 

|Ψ(t) = U (t, t0)|Ψ(t0) [2.141] 

In this equation, U(t, t0) is the evolution operator. 

(6.1) Proof 

Let us express the norm of ket vector |Ψ (t) using [2.141]. We get: 

Ψ (t)|Ψ (t) = Ψ t0)| U†(t, t0) U(t, t0)|Ψ (t0) 

Knowing that Ψ (t)|Ψ (t) = 1, we have: 

U†(t, t0) U(t, t0)Ψ t0)|Ψ (t0) = 1 

which finally leads to: 

U†(t, t0) U(t, t0) =   [2.142] 

Result [2.142] indicates that U† (t, t0) = U − 1 (t, t0): U(t, t0) is therefore unitary. 

(6.2) Proof 

The Schrödinger equation that governs the evolution of the conservative system 
is:

  

),(
),(

0
0 ttH

dt
ttd

i Ψ=
Ψ

  [2.143] 
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Inserting [2.141] in [2.143], we get: 

 

)(),(
)(),(

00
00 tttHU

dt
tttdU

i Ψ=
Ψ

  

Hence: 

),(
),(

0
0 ttHU

dt
ttdUi =  [2.144]

 

(6.3) Expression  

As the Hamiltonian H is time independent (the system is conservative), 
expression [6.220] leads to the relation, which involves the variables t and t0: 

dt
i
H

ttU
ttdU


=

),(

),(

0

0  

Or after integration: 

/),(
0

0),( ttiHettU −=    [2.145]
 

Since U (t0, t0) =   

2.6.8. Solution 8 – Orbital angular momentum operator 

Orbital angular momentum operator with respect to the origin point O is: 

prl ∧=   [2.146] 

The component pq of the linear momentum operator is given by the relation: 

q
ipq ∂

∂−=    [2.147] 

(1) Expressions of components 

Using [2.146], operators lx, ly and lz are written, respectively: 
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






















∂
∂−

∂
∂=−=









∂
∂−

∂
∂=−=









∂
∂−

∂
∂=−=

y
x

x
yiypxpl

x
z

z
xixpzpl

z
y

y
zizpypl

xyz

zxy

yzx







)(

)(

)(

 [2.148] 

(2) Expressions of products  

Considering [2.148], we have: 









∂
∂−

∂
∂









∂
∂−

∂
∂−=

x
z

z
x

z
y

y
zLL yx

2  

That means: 

 







∂
∂

∂
∂+

∂
∂

∂
∂−








∂
∂

∂
∂−

∂
∂

∂
∂−=

x
z

z
y

x
z

y
z

z
x

z
y

z
x

y
zLL yx

2  

After expansion, we find: 












∂
∂+

∂∂
∂+

∂∂
∂−

∂
∂−

∂∂
∂−=

x
y

xz
yz

xy
z

z
yx

zy
zxLL yx

22
2

2

22
2  [2.149] 

Using the same reasoning as previously, we find: 












∂
∂+

∂∂
∂+

∂∂
∂−

∂
∂−

∂∂
∂−=

y
x

yz
xz

yx
z

z
xy

zx
zyLL xy

22
2

2

22
2   [2.150] 

It is worth noting that partial derivatives with respect to two independent 
variables are commutative, hence: 

xyyx ∂∂
∂=

∂∂
∂ 22

  [2.151] 
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(3) Commutators 

Subtracting the two equalities [2.149] and [2.150], member by member, we find 
after simplification and arrangement: 

zxyyx lillll =−   

Circular permutation can be used to obtain the other commutation relations: 

yzxxz lillll =−  

xyzzy lillll =−  

Summarizing, we have: 

zyx lill =],[
 
; xzy lill =],[ ; yxz lill =],[  [2.152] 

NOTE.– Relations [2.152] express that two arbitrary components of the angular 
momentum operator are not commutative. Consequently, there is no physical state in 
which the three or two projections of the angular momentum have determined 
values. In other words, there is no physical state in which the magnitude and 
direction of the angular momentum are fully determined, contrary to the predictions 
of classical mechanics. Only the squared angular momentum operator and one of its 
projections can be simultaneously determined (see Exercise 3.5.4, Chapter 3). 

 



 3 

Eigenvalues and Eigenvectors  
of an Observable 

General objective  

The general objective is to know the properties of the eigenvalues and 
eigenvectors of an observable.  

Specific objectives 

On completing this chapter, the reader should be able to: 

– define a representation; 

– represent a ket and a bra; 

– represent an operator; 

– represent the adjoint of an operator; 

– recognize a Hermitian matrix; 

– determine the properties of the eigenvalues of an observable; 

– determine the properties of the eigenvectors of an observable; 

– distinguish between a simple eigenvalue and a degenerate eigenvalue;  

– use the characteristic equation; 

– know the properties of the eigenvectors and eigenvalues of a Hermitian 
operator; 

– establish the evolution equation of the mean value of an observable; 

                            
For color versions of the figures in this book, see www.iste.co.uk/sakho/quantum2.zip 
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– define a complete set of commuting observables (CSCO); 

– know the properties of conservative systems; 

– integrate Schrödinger’s equation applied to conservative systems; 

– establish Ehrenfest’s theorem. 

Specific objectives 

– Matrix calculus. 

– Observable. 

– Hamiltonian. 

– Properties of the space of states. 

3.1. Representation 

3.1.1. Definition 

In quantum mechanics, the passage from vector calculus introduced in the space 
of states to matrix calculus in the same space is based on the choice of a 
representation. For this purpose, a discrete or continuous orthonormal basis is 
chosen, in which: 

– kets and bras are represented by numbers (their components on the basis 
vectors); 

– operators are represented by their matrix elements. 

This study focuses on the case of discrete bases {|ui}, i = 1, 2, 3,... . It requires 
using the orthonormalization relations [2.17] and the closing relations [2.21], as well 
as the relation of definition of a matrix element [2.25] between kets |Φ and |Ψ 
which are summarized as follows: 

ui|uj = δij ; ci = ui|Ψ ; 
i

ii uu =   ; Φ|A|Ψ [3.1] 

As will be seen in section 3.2, the choice of a representation in the space of states 
makes it possible to determine the eigenvectors and eigenvalues of a given 
observable based on operations on matrices. 
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3.1.2. Representation of kets and bras 

By convention, 

– a ket is represented by a single column matrix with a countable infinity of 
rows. The matrix elements being the components ci given by the second of relations 
[2.20]; 

– a bra is represented by a single row matrix with a countable infinity of 
columns. The matrix elements are complex conjugates c*i of the components ci of 
the state vector on the chosen basis, hence: ci* = Ψ|ui.  

The representations of ket |Ψ and bra Ψ| are given below (Figure 3.1). 

 

Figure 3.1. Representation of a) kets and b) bras in the space of states 

3.1.3. Representation of operators 

This section covers only the linear operators. 

Let us consider the discrete set {|ui}. The matrix elements denoted Aij of an 
operator A are defined by the expression:  

Aij = ui|A|uj. [3.2] 

Operator A is represented by a square matrix N × N of elements Aij. It is a matrix 
with N rows and N columns; index i identifies the row, while index j identifies the 
column. The representation shown in Figure 3.2 is thus obtained. 
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Figure 3.2. Representation of an operator A 

APPLICATION 3.1. –  

We represent the projection operator Pψ = |ψψ| in the basis {|ui}, i = 1, 2. 

Solution. In the two-dimensional basis {|ui}, vectors ket |ψ and bra ψ| are 
provided by the expansions: 














+==

+==





=

=
2

1

2
*
21

*
1

*

2

1

2211

i
ii

i
ii

ucucuc

ucucuc

ψ

ψ
                  [3.3]  

Using expansions [3.3], the representations of ket |ψ and bra ψ| can be written 
according to Figure 3.1: 

 

                          
                                                      

The projection vector Pψ = |ψψ| is then represented by the following square 
matrix 2 × 2: 
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





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i 

j 

c1 
 

c2 
(|ψ) = ;  (ψ|) = c1*    c2* [3.4] 



Eigenvalues and Eigenvectors of an Observable     179 

      

3.1.4. Hermitian matrix  

As already mentioned, an operator A is Hermitian if it coincides with its adjoint 
A†. It is important to be able to recognize if A is Hermitian based on its matrix 
representation. For this purpose, we first need to state the principle for the 
representation of the adjoint of an operator. 

Let us thus consider the complex conjugate of the matrix elements Aij of operator 
A defined by relation [3.2]. We have: 

(Aij)* = (ui|A|uj)* = uj|A†|ui = (A†)ji [3.6] 

According to [3.6], the adjoint A† of operator A is represented by a square matrix 
N × N of matrix elements (A†)ji = (Aij)*. In order to represent A†, we consider the 
complex conjugates of matrix elements Aij of A followed by an inversion with 
respect to the main diagonal. 

As an illustration, let us represent the adjoint A† of operator A represented by the 
first matrix below. We have: 









−

−−
=








−

−−
=








=

12

3
)(;

13

2
)*(;

13

2
)( †

i
ii

A
i

ii
A

i
ii

A  [3.7] 

Let us now consider the specific case of Hermitian operators. 

If A is Hermitian, then A = A†. Hence according to [3.6]: 

 (Aij)* = (A)ji and (Aii)* = (A)ii [3.8] 

CONCLUSION.– A Hermitian operator is represented by a Hermitian matrix such that 
the diagonal matrix elements are real. Moreover, two arbitrary matrix elements 
symmetrical with respect to the main diagonal are complex conjugates. 

 

 

 

c1 
 

c2 
(Pψ) = c1*   c2* (Pψ) = 

c1c1*      c1c2*
 

c2c1*       c2c2*
. [3.5] 
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APPLICATION 3.2.–   

Represent the adjoints A†, B† and C† of operators A, B and C represented below. 
Identify those that are Hermitian. 








 −
=







 −−
=








=

1

1
)(;

2
)(;

0

20
)(

i
i

C
ii
ii

B
i

A                   [3.9] 

Solution. We have: 








 −
=








−

−−
=







 −
=

1

1
)(;

2
)(;

02

0
)( †††

i
i

C
ii

ii
B

i
A              [3.10] 

According to [3.10], only C is Hermitian. B is not Hermitian because its diagonal 
matrix elements are not real. 

3.2. Eigenvalues equation, mean value 

3.2.1. Definitions, degeneracy 

As already noted, a linear operator establishes a correspondence between any  
ket |Ψ in the space of states Er, and another ket |Ψ’ belonging to the same space 
such that A|Ψ = |Ψ’.  

Let us consider the specific case when the initial ket A|ψ is proportional to  
ket |ψ. Let λ be the coefficient of proportionality. We have: 

A|ψ = λ|ψ [3.11] 

By definition, equation [3.11] is known as equation with eigenvalues of operator 
A. In this equation, λ  designates the eigenvalue of operator A and |Ψ represents the 
eigenket or the eigenvector of operator A associated with the eigenvalue λ. 

An important example is that of the Hamiltonian H of a system whose total 
energy is E. The equation with eigenvalues can be written as: H|ψ = E|ψ. 

When equation [3.11] is considered, two cases can be distinguished. 

First case: The eigenvalue λ is non-degenerate (or simple). 

The eigenvalue λ is known as non-degenerate or simple if, ignoring a 
multiplicative factor, only one eigenvector or ket is associated with it. 
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A simple example is the case of a particle of mass m confined in a potential well 
of infinite depth and width a. The eigenvalue of the Hamiltonian is quantized, and is 
given by the expression [1.63], which is: 

2
2

22

2
n

ma
En

π= ; 2
2

22

0
2

n
ma

E π=  

or: 

 En = E0n2 [3.12] 

The eigenvalue equation can be written as follows:  

H|ψn = En|ψn [3.13] 

– for the ket |ψ1: E1 = E0; 

– for the ket |ψ2: E2 = 4E0; 

– for the ket |ψ3: E3 = 9E0; 

– …………………………; 

– for the ket |ψn: En = n2E0. 

These results actually show that the eigenvalue En is non-degenerate since it is 
associated with a single ket |ψn. 

Second case: The eigenvalue λ is degenerate. 

The eigenvalue λ is known as degenerate if it is associated with two or more 
eigenvectors or kets. 

A simple example is that of a particle of mass m confined in a square potential 
well. The eigenvalue of the Hamiltonian is given by the expression [1.223], which is 
recalled below: 

 E’n, q = E0 (n2 + q2)  

The equation with eigenvalues can be written in the following form:  

H|ψn,q = En,q|ψn,q  [3.14] 
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Using [3.14], we have: 

– for the ket |ψ1,1: E1,1 = 2E0; non-degenerate eigenvalue E1,1; 

– for the ket |ψ1,2: E1,2 = 5E0; 

– for the ket |ψ2,1: E2,1 = 5E0. 

The eigenvalue E2,1 or E1,2 is therefore twice degenerate since two different kets 
|ψ1,2 and |ψ2,1 are associated with it.  The same is true for all the eigenvalues En,q 
when n ≠ q.  

As previously explained, this degeneracy is due to the symmetry of the potential. 
For a rectangular well, the eigenvalues En,q are all simple, as shown by the 
expression [1.222].  

Therefore, in the general case, the eigenvalue λ is gn times degenerate if it is 
associated with gn different eigenkets. In this case, the eigenvectors of A form a 
vector subspace of the eigenvalue λ of dimension gn.  

Denoting by i
nu the eigenvalues of A, the vector subspace of the eigenvalue λ is 

then subtended by the set { i
nu }, i =1, 2, 3,…, gn. The expansion of the state vector 

is then: 

i
n

n

g

i

i
n uc

n


∞

= =
=Ψ

1 1

        [3.15] 

APPLICATION 3.3. –  

Let λ = an be the eigenvalues of an operator A associated with the eigenvectors  
i
nu . What can be said about the following ket: 

i
n

g

i

i
ni uc

n


=

=
1

ψ                       [3.16] 

Solution. The equation with eigenvalues of A is: 

i
n

g

i

i
ni

i
nn

i
n uAcAuauA

n


=

==
1

ψ                                         [3.17] 
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Knowing that summing is not applicable over n, we have: 

ini
i
n

g

i

i
nni aAucaA

n

ψψψ == 
=1

                         [3.18] 

According to [3.18], iψ is an eigenket of A associated with the same eigenvalue  

an. 

3.2.2. Characteristic equation 

Equation [3.11] expresses the relation between the eigenvalue λ and the 
eigenvector |ψ of the observable A. The issue is to find out how to determine λ and 
|ψ. In what follows, we establish an equation that makes it possible to determine the 
eigenvalues of an observable. Once these eigenvalues are known, it becomes easy to 
deduce from them the associated eigenvectors using equation [3.11].  

Let {|ui} be a discrete orthonormal set. Projecting the equation with eigenvalues 
[3.11] on the ket |ui, we obtain: 

ui|A|ψ =λ ui|ψ [3.19] 

Inserting the closing relation verified by the set {|uj} in the right member of 
equation [3.19], we have: 

ψλψ i
j

jji uuuAu =  

This yields: 

ψλψ i
j

jji uuuAu =  

which is: 

i
j

jij ccA λ=   [3.20] 
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Knowing that (see proof leading to relation [2.19]): 

ij
j

ji cc δ=   

we have: 

 =
j

ijj
j

jij ccA δλ  

which is: 

( ) 0=−
j

jijij cA λδ  [3.21] 

Relation [3.21] can be considered as a system of equations whose unknowns are 
the components cj of the eigenvector |ψ

 
on the basis {|uj}. It is a homogeneous and 

linear system with N unknowns cj (j = 1, 2, ..., N) involving N equations  
(i = 1, 2, ... N). Because the system [3.21] is homogeneous and linear, it has one 
solution (other than the trivial solution for which all cj are zero) if and only if the 
determinant of the coefficients is zero, which means: 

Det [A − λI] = 0 [3.22] 

Equation [3.22] is known as a characteristic equation or secular equation. In this 
equation, A is a square matrix N × N of matrix elements Aij, and I designates the unit 
matrix. 

APPLICATION 3.4. –  

Determine the eigenvalues and the eigenvectors of operator A represented by the 
following matrix: 









−

=
0

21
)(

i
i

A                     [3.23] 

Solution. 

1) Eigenvalues of A 

The matrix of A is a square matrix 2 × 2. Let |ψ be the eigenvector of A associated 
with the eigenvalue λ. Using the secular equation [3.22] and the matrix [3.23], we 
obtain: 
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      0
21

)( =







−−

−
=−

λ
λ

λ
i

i
IA                  [3.24] 

Then this equation is written as follows: 

− λ (1 − λ) − 2 = 0  λ1 = − 1 and λ2 = 2  

2. Eigenvectors of A 

The equation with eigenvalues of A is given by [3.11]. Equation [3.24] provides 
two eigenvalues of operator A. Let |ψ1 

and |ψ2 be, respectively, the associated 
eigenvectors. The ket expansion in the orthonormal basis {|ui} is written as 
follows:  

2211

2

1

ucucuc
i

ii +==
=

ψ                [3.25] 

According to the condition for the normalization of |ψ, we have: 

11 2
2

2
1

2

1

2 =+== 
=

ccc
i

iψψ                           [3.26] 

In the orthonormal basis {|ui}, the matrix equation corresponding to the equation 
with eigenvalues [3.11] is written using [3.23]: 


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
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














− 2

1
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21
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i
i
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This leads to: 





=−
=+

21

121 2

cic
cicc

λ
λ

                 [3.27] 

– Case of eigenvalue λ1 = −1 

The second equation of system [3.27] yields: ic1 = c2. Using [3.26] and making an 
arbitrary choice for a real and positive c1, we get: 

2 2

1 1 1

1
1

2
c ic c+ =  =  ;

2
2

i
c =                [3.28] 

Det  
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The eigenvector of A is then written using the expansion [3.25]: 

 211
22

1
u

i
u +=ψ                 [3.29] 

– Case of the eigenvalue λ2 = 2 

Using the same reasoning as previously, the eigenvector of A associated with the 
eigenvalue λ2 = 2 can be written as: 

212
5

1

5

2 uui +=ψ                 [3.30] 

3.2.3. Properties of eigenvectors and eigenvalues of a Hermitian 
operator 

The eigenvectors and eigenvalues of a Hermitian operator verify the following 
two fundamental properties. 

First property: The eigenvalues of a Hermitian operator are real. 

Proof. 

Let us consider the equation with eigenvalues [3.11]. We project this equation 
onto the ket |ψ. We obtain: 

ψ|A|ψ = λψ|ψ = λ  [3.31] 

The complex conjugate of [3.31] can be written knowing that A is Hermitian: 

(ψ|A|ψ)* = λ*  ψ|A†|ψ = ψ|A|ψ = λ* [3.32] 

Comparing [3.31] and [3.32], we see that λ* = λ. The property is therefore 
proved. 

Second property: Two eigenvectors of a Hermitian operator associated with two 
different eigenvalues are orthogonal. 

Proof. 

Let λ1 and λ2 be two eigenvalues of a Hermitian operator A, associated with the 
respective eigenvectors |ψ1 and |ψ2. The equations with the corresponding 
eigenvalues are written according to [3.11]: 
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A|ψ1 = λ1|ψ1; A|ψ2 = λ2|ψ2 [3.33] 

We project the first of equations [3.33] on the ket |ψ2 and the second on the ket 
|ψ1. We obtain: 

ψ2|A|ψ1 = λ1ψ2|ψ1; ψ1|A|ψ2 = λ2ψ1|ψ2 [3.34] 

Knowing that λ1 and λ2 are real and A is Hermitian, the complex conjugate of the 
first equation [3.34] is then written as follows: 

ψ1|A|ψ2 = λ1ψ1|ψ2 [3.35] 

Equalizing [3.35] and the second equation [3.34], and knowing that λ1 ≠ λ2, we 
have: 

(λ1 −λ2) ψ1|ψ2 = 0  ψ1|ψ2 = 0 [3.36] 

The result [3.36] reflects the orthogonality of eigenvectors |ψ1 and |ψ2. 

3.2.4. Evolution of the mean value of an observable 

Let |Ψ(t) be a ket normed in the space of states; by definition, the mean value of 
an observable A (t) denoted by A(t) is given by the relation: 

A(t) = Ψ(t)|A(t)|Ψ(t) [3.37] 

If the state vector |Ψ(t) is not normed, then [3.37] should be divided by the 
squared norm Ψ(t)|Ψ(t). Let us differentiate A(t) with respect to time taking into 
account the fact that the observable A may depend on other quantities, such as the 
position (case of potential V (r, t)). We obtain: 

 



 ΨΨ+Ψ

∂
∂Ψ+Ψ



 Ψ= )()()()(

)(
)()()()(

)(
t

dt
dtAtt

t
tAtttAt

dt
d

dt
tAd

     [3.38] 

Using Schrödinger’s equation [1.20], we have: 

)()(
)(

)()(
)(

tHt
dt

td
ittH

dt
td

i Ψ=
Ψ

−Ψ=
Ψ

  [3.39] 
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Using [3.39], the evolution equation [3.38] is written as: 
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i
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idt
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∂
∂+= )(

],[
1)(


 [3.40] 

Relation [3.40] expresses the equation of evolution of the mean value A(t) of 
the observable A (t). This equation involves two remarks. 

If the two terms of the right member of equation [3.40] are simultaneously equal 
to zero, then A(t) = constant. Hence: dA(t)/dt = 0. Let us put: 







=
∂

∂
=

0
)(

0],[

t
tA
HA

 [3.41] 

An arbitrary observable that simultaneously satisfies the two equations [3.41] is 
known as a constant of motion.  

By definition, an observable A is a constant of motion if: 

1) It commutes with the Hamiltonian H; 

2) It does not explicitly depend on time. 

The Hamiltonian H of a conservative system is an example of a constant of 
motion (see section 3.3). 
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3.2.5. Complete set of commuting observables 

Throughout this chapter, it has been shown that Hermitian operators play a very 
important role in quantum mechanics due to the possibility to build a basis in the 
space of states from their eigenvectors. Moreover, a constant of motion such as the 
observable A commutes with the Hamiltonian H. There is a particularly interesting 
case in which one can choose a single basis (ignoring a multiplicative factor) 
constituted of eigenvectors common to observables A and H.  In this particular case, 
the set A and H constitutes a complete set of commuting observables (CSCO).  

In the general case, a set of observables A, B, C,……, is known as complete set 
of commuting observables if [COH 77]: 

– all the observables A, B, C,…, commute; 

– given the eigenvectors of A, B, C,…, it is sufficient to define a single basis 
(ignoring a multiplicative factor) that is common to the set of observables. 

The notion of CSCO plays a very important role in quantum mechanics. It is, for 
example, the case of conservative systems, where a basis can be built in the space of 
states from eigenvectors common to the Hamiltonian H, to the component Lz and to 

the square 
2

l of the angular momentum operator defined in Chapter 2 (Volume 2).  

3.3. Conservative systems 

3.3.1. Definition 

A conservative system is a system whose Hamiltonian does not depend on time: 
H (t) = constant. Or, according to [3.40], putting A (t) = H (t):  

0
)(

],[
1)(

=
∂

∂+=
t
tHHH

idt
tHd


 [3.42] 

This equation shows that the Hamiltonian of conservative systems is actually a 
constant of motion. The fact that H is a constant of motion entails the conservation 
of the total energy E. This corresponds to the classical case of the system not being 
subjected to any friction force.  

Moreover, the states of the conservative system are stationary states and its 
evolution is governed by the time-independent Schrödinger equation [1.29]. Many 
conservative systems have been studied in Chapter 1. It is the case of a particle 
confined in a potential well, a quantum harmonic oscillator, the hydrogen atom, etc. 
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3.3.2. Integration of Schrödinger’s equation 

Let {|ϕn,k} be a set of eigenkets of the Hamiltonian H of a conservative system. 
The equation with eigenvalues is written as follows: 

H|ϕ n,k = En|ϕn,k [3.43] 

In the equation [3.43], En is the eigenvalue of the Hamiltonian H and the index k 
identifies the eigenstates of the observables that, together with H, constitute a 
CSCO. 

Let us consider the simple case when the basis {|ϕn,k} is common to the set  H 
and A. The equation with eigenvalues of the observable A of eigenvalues ak is then 
written as follows:  

A|ϕn,k = ak|ϕn,k [3.44] 

The state vector is given by the expression: 


∞

=Ψ
kn

knkn tct
,

,, )()( ϕ  [3.45] 

In [3.45], the components cn,k (t) are defined by the relation: 

c n,k (t) = ϕn,k|Ψ(t) [3.46] 

Let us apply the bra ϕ n,k| to Schrödinger’s equation [1.20]. We obtain: 
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Using [3.46], equation [3.47] is written as: 
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By integration, we find: 

)0(
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=   [3.48] 

The state vectors at instants t0 and t are then written as, respectively: 
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[3.50]

 

In the particular case of the conservative systems described by stationary states, 
the initial ket |Ψ (t0) is itself eigenstate of the Hamiltonian H. Consequently, the 
expansion of ket |Ψ (t0) involves only the eigenstates of H associated with the same 
eigenvalues En. Summing is then done over index k, hence: 


∞

=Ψ
k

knkn tct ,0,0 )()( ϕ
 

[3.51]

 

Taking [6.51] into account, the state vector [3.50] at instant t is written as: 

)()()( 0

)0(

,
,0,

)0(
tetcet

tt
i
nE

kn
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tt
i
nE

Ψ==Ψ
−∞−

  ϕ  [3.52] 

Equation [3.52] can be put in the form: 

)()()( 0

)0(

0

)0(
tetet

tt
i
nEtt

i
H

Ψ=Ψ=Ψ
−−

  [3.53] 

The evolution operator U (t, t0) [1.34] has already been introduced. Equation 
[3.53] is then written as: 

|Ψ (t) = U (t, t0) |Ψ (t0) [3.54] 
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A comparison between [3.53] and [3.54] leads to the expression of the 
evolution operator [1.34] which can be rewritten as follows: 

)0(

0),(
tt

i
H

ettU
−

=   [3.55] 

3.3.3. Ehrenfest’s theorem 

The Hamiltonian for a conservative system is written as: 

)(
2

2

RV
m

PH +=  [3.56] 

Let us study the particular case of the evolution of the respective mean values 

R  and P  of the observables position R  and linear momentum P . Using [3.40], 
we get: 
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Using the expression [3.56] of the Hamiltonian, we obtain: 
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+=  [3.57] 
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+==  [3.58]  

As already noted, an observable A commutes with its function: [A, F(A)] = 0. 

Moreover, according to [2.60], [ R ,
2

P


] = 2i P

 . 
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This yields:  

m

P

dt

Rd
=  [3.59] 

Similarly, taking [2.67] into account, we have: 
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[3.60]

 

Summarizing results [3.59] and [3.60], we have:  
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[3.61] 

The equations [3.61] of the evolution of the respective mean values of the 
observables position and linear momentum express what is known as Ehrenfest’s 
theorem. Let us find the classical equivalent of these equations to make the 
connection with classical mechanics.  

We consider the derivatives with respect to time of the position vector and linear 
momentum vector. Hence: 



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===

)()( rVrVgrad
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pdF

m
pv
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 [3.62] 

A comparison between the systems of equations [3.61] and [3.62] reveals that 
Ehrenfest’s theorem is the quantum equivalent of the derivative with respect to time 
of the position vector and of the fundamental law of dynamics. 
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Paul Ehrenfest was an Austrian theoretical physicist. In 1899, he studied at the 
Technische Hochschule of Vienna, where he attended Boltzmann’s lectures (see  
Box A.3, Volume 1) on the “mechanical theory of heat”. In 1904, under Boltzmann’s 
supervision, in Vienna he defended his thesis on “The motion of rigid bodies in fluids and 
the mechanics of Hertz”. Ehrenfest was the successor of Lorentz (see Box 3.9, Volume 
1) at the chair of theoretical physics at the University of Leyde. In quantum mechanics, he 
is especially well known for the theorem bearing his name and reflecting the equations of 
evolution of the mean values of the observables position and linear momentum of a 
conservative system. 

Box 3.1. Ehrenfest (1880–1933) 

3.4. Exercises 

3.4.1. Exercise 1 – Pauli matrices, eigenvalues and eigenvectors 

Let us consider an orthonormal basis constituted by the eigenvectors |+ and |– 
of the Sz observable. Sz is the component of the kinetic spin momentum operator 
according to the Oz direction. The expressions [2.110] of the Pauli matrix are 
recalled below: 









=

01

10
xσ 







 −
=

0

0
σ

i
i

y 







−

=
10

01
σz  

It is also worth recalling the spin angular momentum operator: 

σ
2

=S  

(1) Determine the eigenvalues of σx, σy and σz. Deduce from them the 
eigenvalues of operators Sx, Sy and Sz. 

(2) Determine the eigenvectors of σx, σy and σz. Deduce from them the 
eigenvectors of operators Sx and Sy. 

3.4.2. Exercise 2 – Observables associated with the spin 

Let us consider the two-dimensional spin states space subtended by the 
eigenvectors |+ and |−

 
of the spin observable Sz.  
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Figure 3.3. Unit vector 

u defined by the polar coordinates θ and ϕ 

Furthermore, let lu be the component of l  along a unit vector u defined by the 

polar coordinates θ and ϕ (Figure 3.3). 

The components lx, ly and lz of the spin-related angular momentum l  are 

associated, respectively, with the spin observables Sx, Sy and Sz represented in the 
basis |+ and |−

 
by the square matrices: 









=
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
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
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i
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

 








−

=
10

01

2


zS  

(1) Write the orthonormalization and closing equations satisfied by the vectors 
|+ and |−. 

(2) Express lu in the basis |+ and |− as a function of lx, ly, lz,θ and ϕ. Then 
deduce the matrix representing the observable Su associated with lu in the very same 
basis. 

(3) Determine the eigenvectors |+u and |−u 
of the observable Su. 

For all practical purposes, the following trigonometric transformations are given: 

 





=+

2
cos2)1(cos 2 xx ; 






−=−

2
sin2)1(cos 2 xx   
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3.4.3. Exercise 3 – Evolution of a 1/2 spin in a magnetic field: CSCO, 
Larmor precession 

Let us consider a silver atom subjected to a uniform magnetic field B along 

direction Oz. The silver atom is in ground state. 

(1) Express the potential energy of interaction W of the magnetic moment of the 
silver atom with the magnetic field. Then deduce the expression of the Hamiltonian 
H associated with W as a function of ω = 2Ω (Ω: Larmor frequency) and of the spin 
observable to be specified. 

(2) Prove that H and Sz constitute a CSCO. 

(3) Then determine the eigenvalues E+ and E− of H associated, respectively, with 
the eigenvectors |+ and |−. 

(4) The purpose is now to evidence the Larmor precession. For this, we consider 
the evolution in the magnetic field of the spin magnetic moment uMM u= , where 

u  is the unit vector identifying the direction of M  in polar coordinates (Figure 3.4). 

 
 
 
 
 
 
 
 
 

 

 

Figure 3.4. Spin magnetic moment 
 

uM = M u  in polar coordinates 

We assume that at the initial instant t0 = 0, the eigenstate of the spin associated 
with the eigenvalue + /2 is given by the ket vector:  

−++==Ψ − 2/2/
0 2

sin
2

cos)0( ϕϕ θθ ii eet
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M
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ϕ

O 

 

B 
→

→

y 
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(4.1) Express the expansion of the state vector |Ψ(t) over the eigenstates of 
Hamiltonian H. 

(4.2) Prove that |Ψ(t) can be written in the following form: 

−++=Ψ
−

2

)(

2

)(

2
sin

2
cos)(

titi
eet

φφ
θθ

 

Draw a conclusion. 

(4.3) Specify the polar coordinates of the unit vector )(tu . Prove that the spin 

magnetic moment is in Larmor precession motion. 

3.4.4. Exercise 4 – Eigenvalue of the squared angular momentum 
operator 

Let lx, ly and lz be the operators of angular momentum operator projections on the 

axes of coordinates x, y and z. Let 
2

l be the square angular momentum operator. 

Moreover, we introduce the operators denoted by l+ and l− and defined by the 
expressions: 

l+ = lx + ily; l− = lx − ily 

(1) Prove that the square 
2

l  of the angular momentum operator commutes with 

one of its components, for example lz. Draw a conclusion. 

(2) Calculate the commutators [l+, l−], [lz, l+] and [lz, l−]. 

(3) Express 
2

l  as a function of its components. Prove the relations: 

zzzz lllllllll  ++=−+= +−−+
222

 

(4) Let λ2 be the eigenvalue of l2. Moreover, |Φ designates the eigenstate 
common to l2 and lz. Write the equations with eigenvalues of operators l2 and lz. 

(5) Then prove that the states l+|Φ and l−|Φ are eigenstates of lz associated, 
respectively, with the eigenvalues α+ and α− to be specified. 
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(6) Which one of the eigenvalues α+ or α− is incompatible with the principle of 
quantization of operator lz for its maximal eigenvalue? Justify the answer. 

(7) Then justify the fact that we must put l+|Φ = 0. Deduce the expression of the 

eigenvalue λ2 of the square angular momentum operator 
2

l . 

(8) Draw a vector diagram to represent the possible orientations of the angular 
momentum operator in unit   when   = 2. 

3.4.5. Exercise 5 – Constant of motion, good quantum numbers 

Let us consider an observable A that is explicitly time independent and 
commutes with the Hamiltonian H, which is itself explicitly time independent. Let 
{|Φn,k,m} be a system of eigenkets common to A and H, the discrete index m 
identifying the eigenvalues of observables forming a CSCO with H and A. The 
eigenvalues of H and A are denoted by En and ak, respectively.  

(1) Write the equations with eigenvalues of observables H and A. 

(2) Prove that H and A are constants of motion. 

(3) The system is assumed in state |Φn,k,m at the initial instant t0. Explain why the 
eigenvalues of A are known as good quantum numbers. 

(4) Express the expansions of state vectors |Ψ (t0) and |Ψ (t) over the 
eigenstates |Φn,k,m common to observables H and A.  

3.4.6. Exercise 6 – Evolution of the mean values of the operators 
associated with position and linear momentum  

We consider the operators X and P (for Px) associated, respectively, with the 
position x and the linear momentum p of a free particle. 

(1) Using Ehrenfest’s theorem, establish the equations of evolution of the mean 
values X and P. Make the connection with classical mechanics. 

(2) Establish also the equations of evolution of the mean values X2, P2 and 
XP + PX. Make the connection with classical mechanics. 

(3) Express the quadratic deviation ΔX. What happens when t increases? Draw a 
conclusion. We consider that at t = 0, XP + PX0 = X0 = 0. 
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3.4.7. Exercise 7 – Particle subjected to various potentials  

A particle of mass m is immersed in a field of forces whose potential is  
V(x) = a xn, where a is a constant and n is an integer. 

(1) Establish the equations of evolution of X and P
 
when the particle is: 

(1.1) Free. 

(1.2) Subjected to a uniform potential. 

(1.3) Subjected to a parabolic potential. 

(2) Then make the connection with classical mechanics. 

(3) Does the particle behave as a classical system when n = 3? Draw a 
conclusion in the general case. 

3.4.8. Exercise 8 – Oscillating molecular dipole, root mean square 
deviation 

We reconsider the model of the hydrogen chloride molecule assimilated to an 
oscillating dipole such as that described in the exercise in section 1.7.12 in  
Chapter 1 (Volume 2).  

The lighter hydrogen atom is maintained at a mean distance a from the center of 
inertia of chlorine. The potential energy thus constituted is: 

2)(
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1
)( axkxV −=

 

Moreover, the normed wave functions Φ0 (x) of the fundamental state and Φ1(x) 
of the first excited state are given by the following expressions: 
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(1) Calculate the mean value X of the observable X when the oscillator is in 
ground state and when it is in the first excited state. 

(2) The uncertainty involved in the measurement of position of the hydrogen 
atom relative to that of the chlorine atom is defined by the relation: 

Φ−Φ=Δ 2)( aXX  

(2.1) Calculate the uncertainties (ΔX)0 and (ΔX)1 when the oscillating system is in 
ground state and in the first excited state. 

(2.2) Provide an interpretation of the observed difference between (ΔX)0 and 
(ΔX)1. 

Given data. For the family of integrals of the type:  

dxexI xp
p

2

0

ρ−
∞

=  (ρ > 0),   

the recurrence relation is written as: 

22

1
−

−= pp IpI
ρ

, with 
ρ
π

2

1
0 =I  and

ρ2

1
1 =I  

3.4.9. Exercise 9 – Infinite potential well, time–energy uncertainty 
relation 

Let us consider a particle confined in an infinitely deep potential well of width l 
such that: 

V(x) = 0, if 0 ≤ x ≤ l 

V(x) = ∞, elsewhere. 

The Hamiltonian of the particle is: 

)(
2

2
XV

m
PH +=  

The eigenvalues of the Hamiltonian H are quantized and given by the expression 
(see formula [1.62]): 
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2
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22
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π=
 

Moreover, the eigenfunctions of H are given by (see formula [1.67]): 







=Φ

l
xn

l
xn

π
sin

2
)( , if 0 < x < l 

 Φn (x) = 0, elsewhere. 

Wave functions  Φn (x) are associated with kets |Φn. 

At t = 0, the state of the particle is described by the ket |Ψ(0) whose expansion 
in the basis {|Φn} is written as:  

( )21
2

1
)0( Φ+Φ=Ψ

 

(1) Express the wave function Ψ (x, 0) in {|x} representation. 

(2) Prove that at instant t, the state vector |Ψ (t) is written as: 

( )2
2

1
1

2

1
)( Φ+Φ=Ψ −− titi eet αα

  

In this relation, α1 and α2 are constants to be specified. 

(3) Prove that the density of the probability of presence D (x, t) of the particle 
can be put in the form: 

( )txxxxtxD 2121
2
2

2
1 cos)()(2)()(

2

1
),( ωΦΦ+Φ+Φ=  

In this expression, ω21 is a Bohr angular frequency to be specified. Draw a 
conclusion. 

(4) Calculate the mean value X (t) representing the motion of the center of the 
wave packet associated with the particle. We put X’ = X − l/2.  

(5) Represent the variations of the mean value X (t) as a function of time 
compared to the predictions of classical mechanics (a classical particle that is 
moving back and forth in a well with angular frequency ω21 is considered). 
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(6) Calculate H(t) and H2(t). Deduce the root mean square deviation ΔH. Are 
these quantities time-dependent? Explain why. 

(7) Knowing that the wave packet significantly evolves after a period of time of 
about 1/ω21, find the time–energy uncertainty relation. 

Given data. 
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3.4.10. Exercise 10 – Study of a conservative system  

Let us consider a conservative system whose Hamiltonian is H0. The space of 
states of the system is generated by the basis vectors |Φn, n  = 1, 2, 3. Let E0 be the 
eigenvalue of H0 such that: 

H0|Φn = E0|Φn 
Moreover, an operator W generating a coupling between various vectors |Φn is 

considered, with: 

2
12211331

λ=ΦΦ=ΦΦ=ΦΦ=ΦΦ WWWW
 

where λ is a constant such that 0 < λ < E0. 

(1) Write the matrix representing the Hamiltonian H = H0 + W in the discrete set 
{|Φn}. 

(2) We designate by |φ−, |φ0 and |φ+ the eigenstates of H associated, 
respectively, with eigenvalues α–, α0 and α+. Express: 

(2.1) The eigenvalues α–, α0 and α+ as a function of λ and E0. 

(2.2) The eigenstates |φ−, |φ0 and |φ+ of H. 

(3) At instant t = 0, the system is in the state |Ψ (0) = |Φ1.  
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(3.1) Find the state |Ψ (t) of the system at instant t. 

(3.2) Calculate the mean value H(t). Draw a conclusion. 

3.4.11. Exercise 11 – Evolution of the density operator  

Let us consider a statistical mixture of states of a system. In the context of 
quantum mechanics, it can be proven that it is not possible to describe the mixture 
by a “mean vector” [COH 77]. The introduction of the density operator facilitates a 
simple description of the statistical mixture of states.  

In this exercise, we consider the case of a system in a pure state (the state of the 
system is perfectly determined). Let {|un} be a discrete orthonormal basis in the 
space of states of the system. At the instant t, a normed ket vector of the system can 
be written as: 

=Ψ
n

nn utct )()(

 Moreover, the density operator is defined in {|un} 
representation as: 

)()()( ttt ΨΨ=ρ
 

Let A be an observable. 

(1) Find the trace of ρ (t) and then express A
 
as a function of ρ (t) and A. 

(2) Find the equation of evolution followed by ρ (t). 

(3) We designate by |un 
the eigenkets of the Hamiltonian H associated with the 

eigenvalues En. Prove the relation: 

( ) )()( ,, tEEt
dt
di knknkn ρρ ⋅−=

 

(4) Prove that the populations ρnn (t) are constant and that coherences ρnk (t) 
oscillate at Bohr’s frequency, νnk, to be specified. 

3.4.12. Exercise 12 – Evolution of a spin 1/2 in a magnetic field  

Let us consider a silver atom subjected to a uniform magnetic field B  along 

direction Oz. The silver atom is in ground state. The Hamiltonian H describing the 
spin evolution in the magnetic field is given by the relation: 
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H = ω Sz 

In this relation, Sz is the observable associated with the spin along direction Oz 
and whose eigenstates are |+ and

 
|−, ω = − 2γB, where γ is the gyromagnetic ratio 

of the electron. Moreover, using the equation with eigenvalues of the Hamiltonian, 
we get: 






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We assume that the spin at t = 0 is in the state: 

−++=Ψ − 2/2/

2
sin

2
cos)0( ϕϕ θθ ii ee

 

(1) Verify that the physical quantities associated with observables H and Sz are 
simultaneously measurable. 

(2) Calculate the mean values H0 and Sz0 at t = 0. Draw a conclusion. 

(3) The system is now considered at a given instant t.  

(3.1) Express the state vector at instant t. 

(3.2) Find the mean values H (t) and Sz (t). Draw a conclusion. 

(3.3) Is it possible to simultaneously measure the energy E and the components 
associated with Sx and Sy of the spin angular momentum? Justify the answer. 

(3.4) Calculate the mean values Sx (t) 
and Sy (t). Draw a conclusion. 

Given data. The matrices representing the observables Sx and Sy in the basis 
constituted of kets |+ and

 
|−: 
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3.5. Solutions 

3.5.1. Solution 1 – Pauli matrices, eigenvalues and eigenvectors 

(1) Finding the eigenvalues 

Let us consider the characteristic equation Det [A −λI] = 0 and then evaluate the 
matrices σx − λI, σy − λI and σz − λI. Using Pauli matrices [2.110], we find: 
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These expressions show that the three matrices have the same secular equation: 

λ2 − 1 = 0  λ = ± 1 [3.63] 

The eigenvalues of operators σx, σy and σz are therefore λ = ± 1.  

The spin angular momentum operator is given by the relation: 

σ
2

=S  [3.64] 

Using [3.63], we deduce the eigenvalues of operators Sx, Sy and Sz: 

2
'

±=λ  [3.65] 

(2) Finding the eigenvectors  

Relation [3.64] shows that operators σz and Sz have the same eigenvectors |+ and 
|−. The equations with eigenvalues of σz are thus written as: 







−−=−

++=+

z

z

σ
σ

 
 

[3.66]
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Let us designate by |±x and |±y,
 
respectively, the eigenvectors of operators σx 

and σy. We express their expansions on the basis vectors of operator Sz. The 
equations with eigenvalues of σx and σy are written as follows: 







−−=−

++=+







−−=−

++=+

yyy

yyy

xxx

xxx

σ

σ

σ

σ

 







±±=±

±±=±

yyy

xxx

σ

σ
 [3.67] 

Let α± and β± be the coefficients of the expansions of the eigenvectors of σx and 
σy. We have: 

−++=−

−++=+

−−

++

βα

βα

x

x  [3.68] 

– Eigenvectors of σx 

According to [3.68], the vectors |±x are represented in the basis of eigenstates of  
Sz by the single column matrices: 









=+

+

+
β
α

x
, 








=−

−

−
β
α

x
 [3.69] 

Using [3.69] and Pauli matrices, we get, according to [3.67]: 









±=

















±

±

±

±
β
α

β
α

01

10 




−=
+=

−−

++
βα
βα  [3.70] 

Moreover, the kets |±x being normed, according to the normalization condition 
we have: 

122 =+ ±± βα
  122 22 == ±± βα

 
If coefficients α± and β± are arbitrarily chosen real, we get: 










=−=

=+=

−−

++

2

1
2

1

βα

βα
                  [3.71] 
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Using [3.71], the eigenvectors of operator σx are written according to [3.67]: 

[ ]

[ ]









−−+=−

−++=+

2

1
2

1

x

x    [3.72]   

– Eigenvectors of σy 

According to the above, vectors |±y are represented in the basis of states of Sz by 
the same matrices [3.69] (a change in coefficients is not required). Using Pauli 
matrices [2.110], we get according to [3.67]: 









±=















 −

±

±

±

±
β
α

β
α

0

0

i
i  

This leads to: 





−=
−=−





+=
+=−

−−

−−

++

++
βα
αβ

βα
αβ

i
i

i
i

;                                                                   [3.73]   

Considering [3.73] and taking advantage of the normalization condition, we 
have: 





=
−=

−−

++
βα

βα
i

i   










==

=−=

−−

++

2

1
2

1

βα

βα

i

i
                                                         [3.74] 

Inserting results [3.74] into equation [3.68] where index x should be replaced by 
y, we find the expressions of eigenvectors of the operator σy. Hence: 

[ ]

[ ]









−−+=−

−++=+

i

i

y

y

2

1
2

1

   [3.75]  

According to [3.64], it can be noted that operators Sx and Sy have, respectively, 
the same eigenvectors [3.72] and [3.75] as operators σx and σy. 
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3.5.2. Solution 2 – Observables associated with the spin 

The matrices representing the spin observables Sx, Sy and Sz in the basis |+  
and |−

 
are: 

 







=

01

10

2


xS

 

; 






 −
=

0

0

2 i
i

Sy
 ; 








−

=
10

01

2


zS  [3.76] 

(1) Orthonormalization and closing equations 

The orthonormalization and closing relations satisfied by the eigenvectors |+ 
and |−

 
are the following: 

– Orthonormalization relation 







=+−=−+

=−−=++

0

1   [3.77] 

– Closing relation 

|++| + |−−| =   [3.78] 

(2) Expression, matrix of the observable Su 

Let us consider Figure 3.5. 

 

 

 

 

 

 

 

Figure 3.5. Orthonormal basis {


e, k } 

 

               z                     
 
                            

                                u  
 

                θ 
              

           O                              y 
                               ϕ 

 x                                    e               
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In the { e , k } basis, the unit vector u is expressed by the following relation: 

zzueeuu )..()..( +=   zeu .cos.sin θθ +=  [3.79] 

But the unit vector e is written as: 

yxe .sin.cos ϕ+ϕ=  

The unit vector [3.79] is then written as: 

zyxu .cos.sinsin.cossin θ+ϕθ+ϕθ=  [3.80] 

Moreover, lu is written as: 

ullu .= , with zlylxll zyx ++=  

Considering [3.80], we get: 

θϕθϕθ cossinsincossin zyxu llll ++=  [3.81] 

The expression of the observable Su associated with lu can be deduced from 
[3.81]. Hence: 

θϕθϕθ cossinsincossin zyxu SSSS ++=  [3.82] 

Using [3.76], we express the matrix representing the observable Su in this same 
basis {|+,|−}. Hence: 









−+

−
=

θϕϕθ
ϕϕθθ

cos)sin(cossin

)sin(cossincos

2 i
i

Su
  

 

Finally: 















−
=

−

θθ

θθ
ϕ

ϕ

cossin

sincos

2 i

i

u
e

e
S 

 
[3.83] 
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(3) Eigenvectors 

The equations with eigenvalues of the observable Su are: 










−−=−

+=+

uuu

uuu

S

S

2

2



 [3.84] 

Let α± and β± be the coefficients of the expansion of kets |±u on the basis {|+, 
|−}. We have: 







−++=−

−++=+

−−

++

βα

βα

u

u  [3.85] 

According to [3.85], the kets |±u are represented in the basis {|+,|−} by the 
matrices: 









=−








=+

−

−

+

+
β
α

β
α

uu ;  [3.86] 

Using [3.83] and [3.86], the equations with eigenvalues [3.84] are written as: 









±=






















− ±

±

±

±
−

β
α

β
α

θθ

θθ
ϕ

ϕ

cossin

sincos
i

i

e

e  [3.87]
 

This equality leads to: 







±=−

±=+

±±±

±
−

±±

βθβθα

αθβθα
ϕ

ϕ

cossin

sincos

i

i

e

e   [3.88] 

Let us solve the first system of equations [3.88] relative to coefficient α+. We 
have: 







=+−

=+−

++

−
++

0)1(cossin

0sin)1(cos

θβθα

θβθα
ϕ

ϕ

i

i

e

e

 

 [3.89]
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Using the following transformations: 







=+

2
cos2)1(cos 2 θθ  ; 






−=−

2
si2)1(cos 2 θθ n  

The system [3.89] is then written as: 










=−

=+−

++

−
++

0
2

cos
2

sin

0
2

cos
2

sin

θβθα

θβθα

ϕ

ϕ

i

i

e

e

 

[3.90]

 

These equations lead to: 

ϕθαβ ie
2

tan++ =  ; 122 =+ ++ βα  [3.91] 

The last relation [3.91] expresses the normalization condition verified by the  
ket |+u. Then we obtain: 

1
2

tan1 22 =





 ++

θα 
2

cos
θα =+  [3.92]   

Knowing that coefficients α+ and β+ depend on ϕ, we choose α+ so that it is 
proportional to e − iϕ/2 (the factor e − iϕ would yield a coefficient β+ that does not 
depend on ϕ, as shown by the relation [3.91]). Hence: 










=

=

+

−
+

2/

2/

2
sin

2
cos

ϕ

ϕ

θβ

θα

i

i

e

e
 [3.93] 

Using the second system of equations [3.89] relative to coefficient α−, and 
adopting a similar reasoning as previously, we get: 










=

−=

−

−
−

2/

2/

2
cos

2
sin

ϕ

ϕ

θβ

θα

i

i

e

e

 

[3.94] 
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Using [3.93] and [3.94], the eigenvectors [3.85] are written as: 










−++−=−

−++=+

−

−

2/2/

2/2/

2
cos

2
sin

2
sin

2
cos

ϕϕ

ϕϕ

θθ

θθ

ii
u

ii
u

ee

ee

 

[3.95]

 

3.5.3. Solution 3 – Evolution of a 1/2 spin in a magnetic field: CSCO, 
Larmor precession 

(1) Potential energy  

The potential energy W of interaction between the magnetic moment of the silver 
atom and the magnetic field is: 

BsgBMW s ⋅−=⋅−= γ  W = −gsγBsz [3.96]
 

Inserting the Larmor frequency Ω = −γB into the expression above and knowing 
the Landé factor gs = 2, we get: 

W = 2Ωsz  [3.97]
 

We consider ω = 2Ω. The observable associated with spin Sz, the Hamiltonian H 
associated with W, is then written as: 

H = ωSz  [3.98]
 

(2) CSCO 

Relation [3.98] expresses that observables H and Sz commute. Indeed, we have: 

[H, Sz] = [ω Sz, Sz] = ω [Sz, Sz] = 0 [3.99]
 

Moreover, H is proportional to Sz according to [3.98], and therefore they have the 
same eigenvectors (eigenvectors |+ and |− of Sz): H and Sz therefore constitute a 
CSCO. 

(3) Eigenvalues  

Let us designate by E+ and E− the eigenvalues of H associated, respectively, with 
eigenvectors |+ and |−. The equation with eigenvalues is written as follows: 
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








−−=−=−

+=+=+

2

2
ωω

ωω





z

z

SH

SH
 







−=−

+=+
−

+

EH

EH  [3.100] 

or: 

2
;

2

ωω  −== −+ EE               [3.101] 

Relations [3.101] show that in the magnetic field, the silver atom has two energy 
levels. The energy gap between the higher level E+ (positive angular frequency ω) 
and the lower level E− is equal to ω . 

(4) Spin magnetic moment 

uMM u=   

The initial state of the spin associated with the eigenvalue 2/+  is described by 

the ket:  

−++=Ψ
−

22
2

sin
2

cos)0(

ϕϕ
θθ ii

ee  [3.102] 

(4.1) Expression of the state vector 

At the instant t, the evolution of ket |Ψ (t) is governed by the equation: 

/
00 ),(;)0(),()( iHtettUttUt −=Ψ=Ψ

 [3.103] 

Using [3.102], the evolution equation [3.103] is written as: 

−++=Ψ − ),(
2

sin),(
2

cos)( 0
2/

0
2/ ttUettUet ii ϕϕ θθ

 

Hence: 

−++=Ψ −−−  /2//2/

2
sin

2
cos)( iHtiiHti eeeet ϕϕ θθ
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Or: 

−++=Ψ
−−+−−  /2//2/

2
sin

2
cos)( tiEitiEi eeeet ϕϕ θθ  [3.104] 

Using [3.101], the evolution equation [3.104] can be written after arrangement: 

−++=Ψ
++−
2

)(

2

)(

2
sin

2
cos)(

ϕωϕω
θθ

titi
eet

 

[3.105]

 

Putting φ (t) = ωt + ϕ, the ket [3.105] is finally written as: 

−++=Ψ
−

2

)(

2

)(

2
sin

2
cos)(

titi
eet

φφ
θθ

 
[3.106]

 

CONCLUSION.– Since ω = − 2γB, then: 

φ (t) = − 2γBt + ϕ [3.107] 

Relation [3.107] shows that the magnetic field introduces a phase difference 
between the coefficients assigned to eigenstates |+ and |− of the spin observable Sz. 

(4.2) Polar coordinates, Larmor precession 

In the presence of the magnetic field, the coordinates of the unit vector )(tu are: 





+=
==

=
ϕωφ

θθ
tt

Ctet
tu

)(

)(
)(  [3.108] 

The angle θ (t) between the directions of vector )(tu  and the magnetic field is 

constant throughout time. On the other hand, )(tu  and therefore uMM u=  turns 

around the field direction with a speed ω = dφ/dt. This phenomenon is known as 
Larmor precession. 

3.5.4. Solution 4 – Eigenvalue of the square angular momentum 
operator   

l+ and l− are defined by the expressions: 

l+ = lx + ily ; l− = lx − ily [3.109] 
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(1) Proof 

The square angular momentum operator 
2

l is given by the relation: 

2222
zyx llll ++=  [3.110] 

The product 
2

llz is then written as: 

)( 2222
zyxzz llllll ++=  

Hence: 

))()( 32
zyyzxxzz lllllllll ++=  [3.111] 

Similarly, we obtain: 

32
)(()( zzyyzxxz lllllllll ++=  [3.112] 

Deducing the products lxlz, lylz, lzlx and lzly from the commutation relations 
[2.152] and inserting the obtained results in [3.111] and [3.112], we respectively 
find: 

))()( 32
zxyzyyxzxz llillllilllll +++−=   

))()( 32
zyxzyxyzxz lllillllillll +−++=   

Subtracting member by member the two equalities above, we have: 

0
22

=− llll zz  [3.113] 

The square angular momentum operator commutes with lz (it goes without saying 
that the same commutation relation is valid for the other components lx and ly). 

CONCLUSION.– Since 
2

l and lz commute, there is a physical state in which these two 

operators have determined values. In other words, these two operators are 
simultaneously measurable observables. 



216     Introduction to Quantum Mechanics 2 

(2) Commutators  

Let us calculate the respective commutators [l+, l−], [lz, l+] and [lz, l−]. 

(2.1) [l+, l−] 

By definition: 

+−−+−+ −= llllll ],[  [3.114] 

Using [3.109], we have: 

))((

))((

yxyx

yxyx

illillll

illillll

+−=

−+=

+−

−+

 

Hence: 

22

22

yxyyxx

yxyyxx

llillillll

llillillll

+−+=

++−=

+−

−+  

Subtracting these equalities member by member, after arrangement we get: 

l+ l− − l+ l− = − 2i (lxly − lylx) 

Using the commutation relations [2.152], we finally find: 

zlllll 2=− +−−+   

(2.2) [lz, l+] and [lz, l−] 

Similarly: 

zzz llllll +++ −=],[  [3.116] 

Using [3.109], we get: 

zyzxzyxz

yzxzyxzz

lillllillll

lilllilllll

+=+=

+=+=

+

+

)(

)(

 

Subtracting these equalities member by member, we have: 

)()( zyyzzxxzzz llllillllllll −+−=− ++  [3.117] 

[3.115] 
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Using [2.152], equality [3.117] gives: 

)( yxxyzz illllillll +=+=− ++   

Or according to [3.109]: 

+++ =− lllll zz   [3.118] 

Similarly, we find: 

−−− −=− lllll zz   [3.119] 

(3) Expression, proof 

Let us deduce from [3.109] the expressions of lx and ly as a function of l+ and l−. 
Inserting the results obtained in [3.110], we find: 

  

2
222

22 zli
lllll +





 −+






 += −+−+   [3.120] 

Expanding this expression, we have: 

( ) ( ) 222222

4

1

4

1
zllllllllllllll +−−+−+++= +−−+−++−−+−+

 

Hence: 

( ) 22

2

1
zllllll ++= +−−+  [3.121] 

Using [3.115], we finally find: 

 zzzz lllllllll  ++=−+= +−−+
222

  [3.122] 

(4) Equations with eigenvalues  

The highest value of the magnetic quantum number m is .  In the eigenstate |Φ 

common to 
2

l  and lz, the eigenvalue of lz is therefore . If λ2 designates the 

eigenvalue of 
2

l , the equations with eigenvalues of operators 
2

l  and lz are written 

as: 
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Φ=Φ=Φ

Φ=Φ

max

22

ml

l

z

λ  [3.123] 

(5) Proof 

Let us put that l+|Φ and l−|Φ are eigenstates of lz associated, respectively, with 
the eigenvalues α+ and α− to be specified. We have: 







Φ=Φ

Φ=Φ

−−

++

α

α

ll

ll

z

z
 [3.124] 

Using [3.118] and [3.119], we obtain: 

 Φ±=Φ ±±± )( lllll zz   

Hence: 

Φ±Φ=Φ ±±± lllll zz    
 

Or according to [3.123]: 

Φ±=Φ ±± lllz )1(  [3.125]
 

A comparison between equations [3.124] and [3.125] reveals that vectors l+|Φ  
and l−|Φ are eigenstates of lz associated, respectively, with the eigenvalues α+ and 
α− given by: 

)1(;)1( −=+= −+  αα  [3.126] 

(6) Incompatible eigenvalue 

 The eigenvalue α+ is incompatible with the principle of quantization of lz. 
Indeed, the eigenvalues of lz are equal to m . Knowing that the maximal m is  , 

it follows that )1( +=+ α cannot be an eigenvalue of lz. 

(7) Eigenvalue of the square angular momentum operator 

The equation with eigenvalues [3.125] results from the commutation relations 
[3.117]. Consequently, equation [3.125] is well defined, though it leads to an  
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eigenvalue α+ that is unacceptable for lz. To eliminate the contradiction, the 
condition l+|Φ = 0 must be imposed. This condition implies: 

 l− l+|Φ = 0 [3.127] 

Using [3.122], we have: 

Φ++=Φ −+ )( 22
zz lllll   

Taking equations [3.123] and [3.127] into account, we get: 

Φ+=Φ )1(22
l  [3.128] 

Comparing the first equation [3.123] and [3.128], it can be noted that the 

eigenvalue λ2 of the square angular momentum operator 
2

l  is equal to: 

)1(22 += λ  [3.129] 

(8) Representation 

In the context of the vector diagram model, the angular momentum operator l  is 

represented by a vector of module: 

)1(
2

+== ll  [3.130] 

For a given state, m takes values from −   to + , hence (2  +1) values.  

In   unit, the possible values of m are figured on the axis Oz, being considered 

projections on this axis of vector l  of length )1( + .  

For   = 2, the module of vector l  is 6 . These results, which determine the 

various possible values of operators  
2

l  and lz, are known as spatial quantization, 

which is generally represented in the form of a vector diagram, as illustrated in  
Figure 3.6 for   = 2. 
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Figure 3.6. Vector diagram reflecting the spatial quantization  
of the angular momentum operator 

3.5.5. Solution 5 – Constant of motion, good quantum numbers  

(1) Equations with eigenvalues 

The system {|Φn,k,m} of eigenkets is common to observables A and H with 
eigenvalues En and ak, respectively. The discrete index m identifies the eigenvalues 
of the observables that potentially form a CSCO with H and A. The equations with 
eigenvalues of observables H and A are then written as follows: 







Φ=Φ

Φ=Φ

mknkmkn

mknnmkn

aA

EH

,,,,

,,,,  [3.131] 

(2) Constant of motion 

Operator A is explicitly time independent and commutes with Hamiltonian H, 
which is itself explicitly time independent: therefore, H and A are constants of 
motion. 

(3) Good quantum numbers 

The states |Φn,k,m of H being stationary states (H is time independent), if the 
system is in state |Φn,k,m, it will remain so indefinitely. Or, according to [3.131], the 
states |Φn,k,m are also eigenstates of A with eigenvalues ak. Hence, if A is a constant 
of motion, there are eigenstates of the system that remain at any instant eigenstates 
of A with eigenvalues ak. For this reason, the eigenvalues ak are known as good 
quantum numbers. 
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(4) Expressions of the state vectors 

The expansions of the state vectors |Ψ (t0) and |Ψ (t) on the eigenstates |Φn,k,m 
are written as, respectively: 

mkn
mkn

mkn tct ,,
,,

0,,0 )()( Φ=Ψ 
 

[3.132]
 

mkn
mkn

mkn tct ,,
,,

,, )()( Φ=Ψ 
 

[3.133]
 

In these expressions, the components cn,k,m (t) are deduced from [3.48]. Hence: 

/)0(
0,,,, )()( ttniE

mknmkn etctc −−=  [3.134] 

3.5.6. Solution 6 – Evolution of the mean values of the operators 
associated with position and linear momentum  

(1) Evolution equations, connection with classical mechanics 

According to Ehrenfest’s theorem, the equations of evolution of the mean values 
X

 
and P

 
 are written as follows: 










∇−=

=

)(XV
dt
Pd

m
P

dt
Xd

 [3.135] 

For a free particle, V(X) = 0. Therefore, according to [3.135]: 










=

=

0

1

P
dt
d

P
m

X
dt
d

 

[3.136]

 
System [3.136] leads to the following result: 

P = P0 = Cst  [3.137] 
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Hence, the first of equations [3.136] is written as: 

0
1 P
m

X
dt
d =  

Therefore: 

0
0 Xt

m
P

X +=  [3.138] 

The classical equivalent of equation [3.138] is the equation of motion of a 
vehicle of mass m in uniform rectilinear motion: x (t) = v0 + x0. Knowing that  
p = mv, this leads to: 

0)( xt
m
ptx +=  [3.139] 

The classical equation [3.139] is quite similar to the quantum equation [3.138]. 

(2) Evolution equations, connection with classical mechanics 

The observables X and P are time independent. 

– For P2   

],[
1 22 HP
i

P
dt
d


=

  
[3.140]

 
The commutator: 

)](,[)](
2

,[],[ 2
2

22 XVPXV
m

PPHP =+=
 

Or: 

[ ] [ ]2[ , ( )] , ( ) , ( )

( )
2

P V X P P V X P V X P
V Xi P

X

= +
∂= −

∂


 

For a free particle, V(X) = 0. Hence: 

0)](,[],[ 22 == XVPHP   [3.141]
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Equation [3.140] is then written as: 

02 =P
dt
d

 

 
0

22 PP = = Cst  [3.142]

 

– For X2   

],[
1 22 HX
i

X
dt
d


=  [3.143]

 

Let us determine the commutator in [3.143]. Knowing that [X2, V (X)] = 0, we 
obtain: 

]
2

,[)](
2

,[],[
22

22

m
PXXXV

m
PXHX =+=  [3.144] 

Or: 

( )XPXPXX
mm

PXX ],[],[
2

1
]

2
,[ 22

2
+=  

Knowing that 1],[ −= nn nPiPX  (see result [2.62]), the last commutator in 

[3.144] is written as: 

( )PXXP
m
i

m
PXX += 

]
2

,[
2

 [3.145]

 

Using result [3.145], equation [3.143] can then be written as: 

PXXP
m

X
dt
d += 12  [3.146] 

The integration of equation [3.146] requires the calculation of  XP + PX. 

Considering the equation of evolution of the mean  XP + PX, according to 
Ehrenfest’s theorem we obtain: 

],[
1 HPXXP
i

PXXP
dt
d +=+

  
[3.147] 
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The commutator in the right member of [3.147] is: 

[XP + PX, H] = [XP, H] + [PX, H]
 

which is:  

[XP + PX, H] = X [P, H] + [X, H] P + P [X, H] + [P, H] X [3.148]
 

For a free particle, V(X) = 0 and H = P2/2m. Therefore, [3.148] becomes: 

XPP
m

PXP
m

PPX
m

PPX
m

HPXXP

],[
2

1
],[

2

1

],[
2

1
],[

2

1
],[

22

22

++

++=+
 

which is: 

22 11
],[ Pi

m
Pi

m
HPXXP  +=+

 

or: 

22
],[ P

m
iHPXXP =+  [3.149]

 

Using result [3.149], equation [3.147] is written as: 

22 P
m

PXXP
dt
d =+

 
 [3.150]

 

Taking [3.142] into account, equation [3.150] is written as: 

0

22 P
m

PXXP
dt
d =+

 [3.151] 

The integration of this equation leads to: 

00

22 PXXPtP
m

PXXP ++=+  [3.152] 
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Using [3.152], equation [3.146] can be written in the form: 

00

2
2

2 12 PXXP
m

tP
m

X
dt
d ++=

 

Or after integration: 

0

2
0

2

0

2
2

2 11
)( XtPXXP

m
tP

m
tX +++=  [3.153] 

The mean value [3.153] evolves according to the classical law of uniformly 
accelerated motion along the axis Ox: 

00
2

2

1
)( xtvtatx ++=   

(3) Root mean square deviation 

By definition, the root mean square deviation ΔX is defined by the following 
relation: 

22 XXX −=Δ    [3.154] 

Using [3.138] and [3.153], we obtain according to [3.154]: 

           
2

000

2
0

2

0

2
2

2 111
)( 






 +−+++=Δ XtP

m
XtPXXP

m
tP

m
X  [3.155] 

Knowing that at t = 0,  XP + PX0 = X0, equation [3.155] becomes: 

22
020

22

0

2
2

2 11
)( tP

m
XtP

m
X −+=Δ  [3.156] 

Let us insert into the first term of the right member of equation [3.156] the 

mean 2
0X , though it is zero. We obtain: 







 −+






 −=Δ 2

00

222
00

2
2

2 1
)( XXtPP

m
X  
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It can be noted that the second member of this relation contains the square of 
root mean square deviations (ΔX)t = 0 and (ΔP)t = 0. Hence: 

2
0

22
02

2 )()(
1

)( XtP
m

X Δ+Δ=Δ   

or: 

2
0

22
0 )()(

1 XtP
m

X Δ+Δ=Δ  [3.157] 

CONCLUSION.– When t increases, the width ΔX of the wave packet increases: this 
reflects the packet spreading. 

3.5.7. Solution 7 – Particle subjected to various potentials  

(1) Evolution equations 

According to Ehrenfest’s theorem, the mean values X
 

and P
  

evolve 
according to the laws [3.135]. The potential to which a particle is submitted has the 
following form: V(x) = axn. 

(1.1) Free particle 

For a free particle, the potential is zero. We obtain [3.137] and [3.138]. 

(1.2) Particle subjected to uniform potential  

For a particle subjected to a uniform potential: V(x) = a (n = 0) = Cst. Equations 
[3.137] and [3.138] are still verified since ∇V(X) = 0. 

(1.3) Particle subjected to parabolic potential 

For a particle subjected to a parabolic potential, V(x) = ax2. Using [3.135], we 
find knowing that ∇V(X) = 2aX: 










−=

=

XaP
dt
d

P
m

X
dt
d

2

1

  [3.158] 
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Using equations [3.158], we have: 

P
dt
d

m
X

dt

d 1
2

2
=  [3.159] 

Taking the second of equations [3.158] into account, equation [3.159] can be 
written as: 

0
2

2

2
=+ X

m
aX

dt

d
 [3.160] 

The integration of this equation finally leads to: 

)(cos)( 000 ϕω += tXtX  [3.161] 

where ma /20 =ω . 

(2) Connection with classical mechanics 

The differential equation of a classical harmonic oscillator can be written as: 

kx
dt

xdm −=
2

2

 [3.162] 

The classical equation [3.162] is the equivalent of the quantum equation [3.160].  
Moreover, the solution to the differential equation [3.162] has the well-known form: 

)(cos)( 000 ϕω += txtx   

or mk /0 =ω  

Comparing the laws [3.163] and [3.161], it can be seen that the center of the 
wave packet behaves as a classical particle. 

(3) Behavior of the particle 

For V(x) = ax3, using [3.135] and knowing that ∇V(X) = 3aX, we obtain: 










−=

=

23 Xa
dt
Pd

m
P

dt
Xd

 

[3.163] 
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which then yields: 

2
2

2 3 X
m
aX

dt
d −=  [3.164]

 Equation [3.164] has no classical equivalent. Consequently, the center of the 
wave packet does not behave as a classical particle. 

GENERAL CONCLUSION.– The center of the wave packet does not rigorously follow 
the laws of classical mechanics for the free particle and for the particle subjected to 
uniform or parabolic potential. 

3.5.8. Solution 8 – Oscillating molecular dipole, root mean square 
deviation  

The potential energy of the HCl dipole has the form: 

2)(
2

1
)( axxV −=  [3.165] 

The normed wave functions Φ0(x) of the ground state and Φ1(x) of the first 
excited state are given by the expressions: 

 
2)(

2

1
4

1

0 )(
axm

emx
−−







=Φ 


ω

π
ω  [3.166] 

( ) 2/)(4
1

3

1
224

)( axeaxmx −−−

















=Φ βω

π 
 [3.167] 

(1) Mean value  

In the general case, the kets |Φn being normed, the mean value X
 
is: 

X n= Φn|X|Φn  [3.168]
 

Using the closing relation in {|x} representation, we have: 

nnn XxxdxX ΦΦ= 
∞+

∞−
 [3.169] 
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Hence: 

nnn xxxdxX ΦΦ= 
∞+

∞−
 

Therefore: 

2)(xxdxX nn Φ= 
∞+

∞−
  [3.170] 

– Case of the ground state 

Considering [3.166], relation [3.170] gives: 

2)(2

1

0

axm

exdxmX
−−∞+

∞−







= 


ω

π
ω

 

[3.171]

 

Putting: 

 y  = x – a, and 2

1







=
π
ωmA , 


ωρ m

=  [3.172] 

then equation [3.171] is written in the form: 













+= −
∞+

−
∞+

∞−


2

0

2

0 2 yy edyaeydyAX ρρ  [3.173] 

Knowing that 
2yye ρ− is an odd function, then: 

 0
2

=−
∞+

∞−
 yeydy ρ  
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Using [3.172], equation [3.173] yields: 

2

1

2

1

00 2 





×






×===

ω
π

π
ω

ρ
π

m
maAaAaIX 


 

or finally:  

X0 = a [3.174] 

– Case of the first excited state 

Considering the wave function [3.167], relation [3.170] yields: 

2)(2
2

1
3

1 )(
4 axm

eaxxdxmX
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×−



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
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



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

ω
ω

π
 [3.175] 

Let us use the changes of variables [3.172] where: 

2

1
34


















=

ω

π
mA  

Equation [3.175] then gives (with y = x – a): 
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That means:  
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−
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22 23
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Knowing that 
23 yey ρ− is an odd function, we have: 

0
23 =−

∞+

∞−
 yeydy ρ  

Then, using [3.176] we obtain: 

3021 4

1
2

ρ
π

ρ
AaIAaAaIX ===  

Replacing A and ρ by their expressions, we get: 

2

1
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1
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1 4
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







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
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
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




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




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πω

π m
maX 


  

or finally: 

X1 = a. [3.177] 

NOTE.– Results [3.174] and 3.177] are identical. This is justified in the context of 
the adopted model, which does not reflect reality, as the potential is not perfectly 
harmonic. 

(2) Uncertainty in the measurement of the position of the hydrogen atom  

Φ−Φ=Δ 2)( aXX  [3.178] 

(2.1) Calculation of uncertainties 

Using the closing relation satisfied in {|x} representation, the square of the 
uncertainty (ΔΧ)n is written according to [3.178]: 

222 )()()( xaxdxX nn Φ−=Δ 
∞+

∞−
 [3.179] 

– Case of the ground state  

Using [3.166], we get, according to [3.179]: 
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2)(22
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0 )()(
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eaxdxmX
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=Δ 
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 [3.180]
 

Using the same changes of variables [3.180], we have: 
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Hence: 
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or: 

ωm
X 

2

1
)( 2
0 =Δ  

which finally leads to: 

ωm
X 

2

1
)( 0 =Δ  [3.181]

 

– Case of the first excited state  

Using [3.167], equation [3.179] yields: 

2)(42
1 )()(

axm
eaxdxAX

−−∞+

∞−
 −=Δ 

ω
 [3.182]

 

Using the same changes of variables as previously, we have: 
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IAAIeydyAX y
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which is: 

502
2
1 4

3

2

3
)(

ρ
π

ρ
AIAX ==Δ   

Replacing A and ρ by their expressions [6.328], we have: 
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
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ωm
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)( 2
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or finally: 

ωm
X 

2

3
)( 1 =Δ  [3.183]

 

 
NOTE.– Integrating the general equation [3.179], we find: 

  
ωm

nX n








 +=Δ

2

1
)( 2                                                                    [3.184] 

Result [3.184] actually gives the specific cases [3.181] and [3.183], respectively, 
for the ground state (n = 0) and for the first excited state (n = 1). 

(2.2) Interpretation 

Results [3.181] and [3.183] show that the uncertainty (ΔΧ)n increases with the 
excitation (when n increases). This becomes clearer when the general expression 
[3.184] is considered. 

3.5.9. Solution 9 – Infinite potential well, time–energy uncertainty 
relation 

The particle is confined in an infinite potential well of width l, such that: 
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V(x) = 0,  if 0 ≤ x ≤ l 

V(x) = ∞,  elsewhere 

The Hamiltonian of the particle is: 

)(
2

2
XV

m
PH +=  [3.185] 

The eigenvalues of the Hamiltonian H are given by the expression: 

2
2

22

2
n

ml
En

π=   [3.186]

 

The eigenfunctions of H are such that: 







=Φ

l
xn

l
xn

π
sin

2
)( , if 0 < x < l  

     0)( =Φ xn , elsewhere.  

At instant t = 0, the state of the particle is described by the ket: 

)(
2

1
)0( 21 Φ+Φ=Ψ  [3.188]

 

(1) Expression of the wave function 

Using [3.188], we get in {|x}
 
representation: 

)(
2

1
)0( 21 Φ+Φ=Ψ xxx  

Hence: 

[ ])()(
2

1
)( 21 xxx Φ+Φ=Ψ  [3.189] 

Using [3.187], the wave function [3.189] is written as: 

[3.187] 
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
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



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

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=Ψ
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l
x ππ 2
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)(  [3.190] 

(2) Proof 

At instant t, the state vector is given by the expression: 

n
n

tiE
n nect Φ=Ψ 

=

−
2

1

/)0()( 
 [3.191] 

Hence: 

2
/

21
/

1 21 )0()0()( Φ+Φ=Ψ −−  tiEtiE ecect  [3.192] 

This expression is valid for any t. In particular, at t = 0, we have: 

2211 )0()0()0( Φ+Φ=Ψ cc  [3.193] 

Comparing [3.189] and [3.193], we see that: 

2

1
)0()0( 21 == cc  [3.194] 

Moreover, according to [3.186]: 
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E
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E ππ  ==  [3.195] 

Using [3.194] and [3.195], expression [3.192] is written in the following form: 



















Φ+Φ=Ψ
−−

21
2 2

2

2

2

2

1
)(

t
ml

it
ml

i
eet

ππ 

 [3.196] 

We put:  
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παπα  ==  [3.197] 
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Taking [3.198] into account, the wave function [3.196] is written in the form: 





 Φ+Φ=Ψ −−

21 21

2

1
)( titi eet αα  [3.198] 

(3) Density of probability of presence 

The density of the probability of presence D (x, t) of the particle is written as: 

2),(),( txtxD Ψ=  [3.199] 

Considering [6.354], we get in {|x} representation: 





 Φ+Φ=Ψ −− )()(

2

1
),( 2

/
1

/ 21 xexetx tiEtiE   [3.200] 

The complex conjugate of the wave function [3.200] is written as: 
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Using expressions [3.200] and [3.201], the density of probability is written as: 
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Hence: 
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We put: 


)12(

21
EE −

=ω  [3.203] 

Taking [3.203] into account, expression [3.202] is written in the following form: 
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Hence: 
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
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2

1
)(

2

1
),( 2121

2
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2
1 txxxxtxD ω  [3.204] 

CONCLUSION.– Expression [3.204] shows that the variation in time of the density of 
probability is due to the interference term, which is proportional to the product  
Φ1 (x) Φ2 (x). This term, which is responsible for the evolution of the wave packet, 
oscillates in time with the single Bohr angular frequency given by [3.203]. 

NOTE.– Figure 3.7 indicates the plots of the density of the probability of presence for 
the ground state, for the first excited state and for the interference term responsible 
for the evolution of the shape of the wave packet. 

 
  )(2

1 xΦ                         )(2
2 xΦ                          )()( 21 xx ΦΦ

 
 
 

 
                                                 
 

             0    l /2        l     x           0          l/2         l      x                  0                       l    x    
 

            (a)                                  (b)                                          (c)                      
 

Figure 3.7. Plots of the densities of probability of presence of the particle Φ x2
1 ( )  for 

the ground state (a) and Φ x2
2 ( )  for the first excited state (b) and of the interference 

term Φ1 (x) Φ2 (x) (c) responsible for the evolution of the wave packet 

(4) Mean value 

Taking [3.199] into account, the mean value X(t) representing the motion of the 
center of the wave packet associated with the particle is given by the following 
equation:  


∞+

∞−

∞+

∞−
=Ψ=ΨΨ= ),(),()()()( 2 txDxdxtxxdxtXttX   [3.205] 

Using [3.204], relation [3.205] yields: 
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 [3.206] 
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Knowing that the wave function does not differ from zero unless 0 < x < l, 
[3.206] is written as: 
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1
)( 2121
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2
2
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2
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lll
ωΦΦ+Φ+Φ=   [3.207] 

To facilitate the integration of [3.207], we put X’ = X − l/2 for symmetry reasons. 
This leads to: 

2
)(')(

ltXtX +=  [3.208] 

The mean value of the observable X’ is equal to:  


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

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According to [3.199], this yields: 
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Deducing the wave functions Φ1 (x) and Φ2 (x) from the general expression 
[3.187] and inserting the resulting expressions in [3.210], we get: 

)(cos
2

sinsin
2

2

2
sin

2

1
sin

2

1
)('

21

0

0

2

0

2

t
l
x

l
xlxdx

l

l
xlxdx

ll
xlxdx

l
tX

l

ll

ωππ

ππ























 −+















 −+














 −=




       [3.211] 

 

 



Eigenvalues and Eigenvectors of an Observable     239 

The two first integrals of [3.211] are zero, as they are of the type: 
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We then obtain: 
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Hence: 
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[3.212]

 

The last term of equation [3.212] is zero. It can be more easily verified without 
integration, as shown below.  

Knowing that (|Φ1,|Φ2) constitutes a basis in the space of states, then the two 
kets are orthonormal. Hence, using the closing relation satisfied by the continuous 

set {|x}: 1 2 0.Φ Φ =
 
We then obtain: 
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Considering this result, expression [3.212] is then written as: 
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The integral in relation [3.213] is of the type: 
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which then yields: 
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Taking [3.208] into account, the mean value X(t) of the observable X 
representing the motion of the center of the wave packet associated with the particle 
is then: 

tlltX 212
cos

9

16

2
)( ω

π
−=   [3.215] 

(5) Graphical representation 

The variations of the mean value X(t) compared to the law of motion of a 
classical particle in a back-and-forth motion in the well with the same angular 
frequency ω21 are indicated in Figure 3.8. For the classical particle, the law of 
motion is reflected by the equation: 
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Figure 3.8. Variation of the mean value X(t) representing the motion of the center of 
the wave packet compared to the law of motion of a classical particle that is moving 

back and forth in the well with the same angular frequency ω21 

Figure 3.8 shows how the classical particle turns back after having reached the 
higher limit of the well in x = l. The quantum mechanics predictions are very 
different: the center of the wave packet makes a half turn before the particle even 
gets to x = l. This can be explained by the sudden variations of potential at the well 
boundaries where it passes from zero to infinity: the potential then acts on the packet 
in such a way that it makes a half-turn before reaching the boundaries x = 0 and  
x = l. 

(6) Mean values, root mean square deviation  

– Mean values 

The mean values H(t) and H 2(t) are written as: 
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Knowing that the eigenkets |Φn 
are orthonormal, and using the equation with 

eigenvalues H|Φn = En|Φn we get: 
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– Root mean square deviation ΔH  

Using [3.219], the root mean square deviation ΔH is equal to: 

11
22

2

3

4

25

2

17
)()( EEtHtHH =−=−=Δ  [3.220]

      
 

The mean values [3.219] and the root mean square deviation [3.220] are time 
independent. This is due to the fact that the Hamiltonian of the system is a constant 
of motion. 

(7) Time–energy uncertainty relation 

Taking [3.195] into account, the Bohr angular frequency is: 


13)12(

21
EEE

=
−

=ω
 [3.221] 

As shown in Figure 3.8, the wave packet evolves significantly after a time period 
of about 1/ω21. Let us put Δt ≈ 1/ω21. Using [3.221], we get: 

13E
t ≈=Δ   [3.222]  

Using [3.320] and [3.322], we get: 

232

3

1
1

 =×=ΔΔ
E

EtH  [3.223]  

Result [3.223] satisfies the lower limit of Heisenberg’s time–energy uncertainty 
relation. 

3.5.10. Solution 10 – Study of a conservative system  

The equation with eigenvalues of the Hamiltonian H0 is written as follows: 

H0|Φn = E0|Φn [3.224] 
 

Operator W generating a coupling between various eigenkets {|Φn} of the 
Hamiltonian H0 satisfies the following conditions:
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2
12211331

λΦΦΦΦΦΦΦΦ ==== WWWW  [3.225]  

where λ is a constant such that 0 < λ < E0. 

(1) Matrix representing the Hamiltonian 

In the orthonormal set {|Φn}, the Hamiltonian H = H0  + W is represented by the 
square matrix 3 ×  3 of matrix elements: 

Hnm = H0nm  + Wnm  [3.226]  

This yields: 
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Using [3.224], we find: 

 nmnmmnmnnm EHHHH δ00000 =ΦΦ=ΦΦ=  [3.228] 

Using [3.225] and [3.228], matrix [3.227] is finally written as:  
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(2) Expressions of the eigenvalues and of the eigenstates 

The eigenkets |φ−, |φ0 and |φ+ of H are associated with the eigenvalues α–, α0 
and α+, respectively. 

(2.1) Expressions of the eigenvalues 

The eigenvalues α–, α0 and α+  are determined by the characteristic equation: 

Det [(H) − αI] = 0 [3.230] 
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where (H) designates the matrix [3.229], α designates α–, α0 or α+ and I is the unit 
matrix. Then we obtain:   
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This leads to: 

 (E0 − α)[(E0 − α)2 − λ2] = 0 [3.232] 

The eigenvalues of the Hamiltonian H can be deduced from the equation: 

α0 = E0; α− = E0 − λ; α+ = E0 + λ  [3.233] 

(2.2) Expressions of the eigenstates  

We write the equations with eigenvalues of the Hamiltonian H. We get: 
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In the basis {|Φn} forming the eigenstates of H0, the eigenstates of H satisfy the 
expansion: 

n
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Then we obtain: 
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Let us summarize the system of equations [3.234] as follows: 

 ννν φαφ =H  [3.237] 

Equation [3.237] can be written using [3.229] and [3.235] in matrix form: 
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From equation [3.238], we deduce the following system: 
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The coefficients cnν in [3.239] are fully determined taking the normalization 
condition into consideration: 

12
3

2
2

2
1 =++ ννν ccc  [3.240] 

Making the sum of equations (2) and (3) of the system [3.239] and deducting (3) 
from equation (2), we get: 
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Equation (5) of system [3.241] has two solutions: αν = E0 and αν  ≠ E0. 
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– For αν = E0 = α0 

Equations (1) and (4) of systems [3.239] and [3.241] yield: 



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=

3020

10 0

cc
c

 [3.242] 

Using [3.240] and [3.242], we find: 

2

1
3020 =−= cc  [3.243] 

The eigenstate 0φ of H is then written according to [3.235]: 

210
2

1

2

1 Φ−Φ=φ  [3.244] 

– For αν ≠ E0 (ν ≠ 0) 

Equations (5) and (4) of [3.241] yield, respectively: 
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– For αν  = α− = E0 − λ 

Using [3.245], we get: 
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Similarly, taking [3.240] into account, we find: 
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1
322 −=== −−− ccc  [3.247] 

Using the expansion [3.235], the eigenstate −φ of H is written as: 
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1 Φ−Φ−Φ=−φ  [3.248] 
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– For αν  = α+ = E0 + λ 

Considering the system [6.402], we get: 







=

=

++

++

21
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2 cc
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According to [3.240], this leads to: 
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1
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321 === +++ ccc  [3.250] 

The eigenstate +φ of H is then written as: 
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2

1 Φ+Φ+Φ=+φ  [3.251] 

In summary, the eigenstates of the Hamiltonian H are written as: 
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(3.1) State of the system  

We express the initial state |ψ (0) = |Φ1 of the system in the basis of eigenstates 
of the Hamiltonian H. Let us add the first and third of the expansions of system 
[3.352]. We obtain: 

+− −= φφψ
2
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2

1
)0(  [3.253] 

The state of the system at instant t is then written as: 
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which is: 

+
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− += φφψ αα  /
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[3.255]

 

Taking [3.233], [3.247] and [3.250] into account, we have: 
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or after factorization: 
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(3.2) Calculation of the mean value 

The mean value H (t) of the observable H is given by the relation: 

)()()( tHttH ψψ=  [3.257] 

Using [3.256], we get: 
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Hence: 
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Moreover, the bra corresponding to ket [3.256] is written as: 
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Using [3.259] and [3.260], the mean value [3.257] is written as: 

)(
2

1
)( +− += ααtH  [3.261]

 

Using [3.233], relation [3.261] is written as:  

[ ])()(
2

1
)( 00 λλ ++−= EEtH  

or finally: 

H(t) = E0 [3.262] 

CONCLUSION.– The mean value H(t) does not depend on time. This is due to the 
fact that the system is conservative. 

3.5.11. Solution 11 – Evolution of the density operator  

The state vector is given by the expansion: 

n
n

n uct =)(ψ  [3.263]

 

The density operator is defined by the relation: 

)()()( ttt ψψρ =  [3.264] 

(1) Trace, mean value 

– Trace of ρ (t) 

Using [3.264], the trace of the density operator is written as: 

=
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nn tututTr )()()( ψψρ
 

Hence: 

1)()( 22  ===
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n
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n ctutTr ψρ  [3.265] 
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– Mean value of A 

The state vector [3.263] being normed, the mean value A(t) of the observable A 
is given by the relation: 

)()()( tAttA ψψ=  [3.266] 

We insert in [3.266] the closing relation satisfied by the discrete set {|un}. We 
have: 

)()()( tuuAttA nn
n

ψψ=  

Hence: 
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nn uAttutA )()()( ψψ  [3.267] 

Taking [3.264] into account, relation [3.267] is written as: 

=
n

nn uAtutA )()( ρ  

or finally: 

[ ]AtTrtA )()( ρ=  [3.268] 

(2) Evolution equation 

Let us differentiate [3.264] with respect to time. We get: 





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

= )()()()(

)( t
dt
dttt

dt
d
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td ψψψψρ

 [3.269] 

Moreover, Schrödinger’s equation describing the temporal evolution of the 
system is given by the relation: 

)()()( ttHt
dt
di ψψ =  [3.270] 

Knowing that H is Hermitian, the complex conjugate of equation [3.270] is 
written as: 
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)()()( tHtt
dt
di ψψ =−   [3.271] 

Using [3.270] and [3.271], the evolution equation [3.269] is written as follows: 
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td ρρρ −=


 [3.272] 

The commutator of operators H and ρ can be identified in [3.272]. Finally: 

[ ])(),(
1)( ttH
idt

td ρρ


=  [3.273]
 

(3) Proof 

Using [3.273], we get: 

[ ]( ) 1
( ), ( )n k n k

d tu u u H t t u
dt i
ρ ρ=

   

Hence: 

knknkn utHtuuttHuutu
dt
di )()()()()( ρρρ −=   [3.274] 

Using the equation with eigenvalues of the Hamiltonian H and taking its 
hermiticity into account, the equation gives: 

knkknnkn utuEutuEutu
dt
di )()()( ρρρ −=

 

Finally, the evolution equation of the density operator is written as follows: 

)()()( ,, tEEt
dt
di knknkn ρρ −=  [3.275]
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(4) Proof 

By definition, populations are the elements of matrix ρn,n (t). For n = k, the 
evolution equation [3.275] gives: 

ρn,n = Cst  [3.276] 

Populations are therefore constant. 

By definition, coherences are the elements of matrix ρn,k (t) for n ≠ k. Integrating 
[3.275], we get: 

tEE

knkn

kn
et 

)(

,, )0()(

−−
= ρρ  [3.277]

 

Result [3.277] shows that coherences oscillate with the single Bohr frequency 
given by νn,k = (En – Ek)/h. 

3.5.12. Solution 12 – Evolution of a 1/2 spin in a magnetic field  

We summarize the essential given data: 

– Hamiltonian H describing the spin evolution in the magnetic field: 

H = ω Sz [3.278] 

with ω = − 2γB 

– Equation with eigenvalues of the Hamiltonian H: 

−=−=−

+=+=+
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2
ω
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



EH

EH
 [3.279] 

– State of the spin at t = 0: 

−++=
−

22
2

sin
2

cos)0(

ϕϕ
θθψ

ii
ee  [3.280] 

(1) Verification 

Relation [3.278] shows that H and Sz commute (HSz − SzH  = 0). Consequently, 
the physical quantities associated with them are simultaneously measurable. 
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(2) Calculation of mean values, conclusion 

Mean value is given as: 

)0()0(0 ψψ HH =  [3.281] 

Using [3.280], we have: 
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ii
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2
sin

2
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θθψ  [3.282] 

Moreover, the bra corresponding to ket [3.280] is written as: 
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ii
ee  [3.283] 

Using [3.282] and [3.283], the mean value [3.281] is written as: 

2
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θθ −+ += EEH  [3.284] 

Using [3.279], relation [3.284] gives: 
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or finally: 
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We have used the trigonometric transformation: 
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The mean value Sz0
 

is deduced from [3.278], taking [3.285] into account. 
Hence: 
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CONCLUSION.– The angle θ being constant, results [3.285] and [3.286] show that the 
observables H and Sz are constants of motion. 

(3) Study of the system at an instant t 

(3.1) Expression of the state vector 

The state vector at instant t is given by the expression: 

n
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n
ect φψ 
−

=
= )0()(
2

1
 [3.287] 

Hence: 
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At t  = 0, we have: 

2211 )0()0()0( φφψ cc +=  [3.289] 

Comparing [3.289] and [3.280], we can see that:  
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Taking into account the evolution operator [3.55] and using [3.290], the state 
vector [3.288] is written as: 
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or, using [3.279]: 
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2
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2
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The evolution equation [3.292] shows that the presence of the magnetic field 
introduces a phase difference that is proportional to the time between the 
coefficients assigned to the eigenvectors |±

 
of the observable of spin Sz. 

(3.2) Finding the mean values, conclusion  

Let us express the mean value H(t):  

)0()0()()()( ψψψψ HtHttH ==  [3.293] 

Using [3.293], we find as previously: 
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and:  
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)( 0
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(3.3) Simultaneous measurement 

The simultaneous measurement of the energy E and of the components 
associated with observables Sx and Sy is impossible since H, Sx and Sy do not form a 
CSCO. Indeed, the observables Sz, Sx and Sy satisfy the commutation relations: 

[ ], ; , ; ,x y z y z x z x yS S i S S S i S S S i S   = = =       [3.296]  

Since H = ω Sz, it follows that H commutes with neither Sx nor Sy.  

(3.4) Calculation of mean values 

Matrices representing the observables Sx and Sy in the basis  {|+ and
 
|−}: 
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The mean values Sx(t) and Sy(t) are written as, respectively: 
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Knowing that a ket is represented by a single column matrix and a bra by a 

single line matrix, using [3.280] and [3.283], expressions [3.298] are written as: 
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 [3.299]

 

and: 
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We finally obtain: 

)sin(sin
2

)();cos(sin
2

)( ϕωθϕωθ +=+= ttSttS yx
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 [3.301] 

CONCLUSION.– The mean values Sx (t) and Sy (t) oscillate in time with the single 
Bohr frequency ν = ω/2π. This explains the fact that observables Sx and Sy are not 
constants of motion.  

 
 



Appendix 1 

Quantum Well of Semiconductor Materials 

A1.1. 2D, 1D and 0D confinement 

At temperature T = 0 K, the energy bands of a crystal are filled with valence 
electrons. The last of these bands is known as a valence band (VB) of energy Ev 
separated from a conduction band (CB) of energy Ec by a forbidden band (FB) 
corresponding to the material gap of positive energy Eg = Ec − Ev (Figure A1.1). In 
these energy bands, Schrödinger’s equation has no solution.  

 

 

 

 

Figure A1.1. Relative arrangement of the energy bands in a material 

Three categories of materials can be distinguished, according to the gap value: 
metals, insulators and semiconductors. As an example, let us consider several values 
of the gap at 300 K [SAK 15]. Metal: tin (Sn): 0.0 eV; insulator: diamond (C): 6.0 
eV; semiconductor: silicon (Si): 1.12 eV; germanium: 0.67 eV; gallium arsenide 
(GaAs): 1.40 eV. 
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– Metals have low resistivity at ambient temperature (of about 10−5 Ωcm). 
Conduction is due to the free electrons in the CB (density: 1022 to 1028 cm−3). An 
increase in temperature drives only a small increase in resistivity, because the 
motion of free electrons is hindered by the vibrations of metal atoms. 

– The resistivity of insulators is above 108 Ω cm. This is the case for glass, mica, 
silica (SiO2), carbon, etc. In insulators, the release of electrons is triggered by an 
increase in temperature. This drives a decrease in resistivity. 

– Semiconductors are materials whose resistivity ranges between 10−8 and  
104 Ω cm (or more). Conduction is ensured by the charge carriers (electrons and 
holes). Two types of semiconductors can be distinguished: intrinsic semiconductors 
(Si, Ge, As, etc.) and extrinsic semiconductors (GaAs, GaAlAs, etc.). 

In a perfect three-dimensional crystal (3D), energy is not discrete. When  
the charge carriers are confined in a sufficiently low volume (of about  
De Broglie wavelength (λ = h/p) of the charge carrier), discretization of the energy 
values can be observed. The nanocrystal is then described in a purely quantum 
context. Three types of nanostructures can be identified [SAK 15]: 

– Quantum well (material deposited in a 2D layer): an electron confinement is 
introduced along a direction (Oz, for example). This is known as 2D confinement 
(Figure A1.2). A discretization of the energy levels (En,z) is associated with this 
confinement. In the 2D confinement, electrons can freely move along two directions. 

 

 

 

 

Figure A1.2. Quantum well (2D confinement) 

– Quantum wire (material deposited in a 1D layer): An electron confinement is 
introduced along two directions (Ox and Oy, for example). This is known as 1D 
confinement (Figure A1.3).  
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Figure A1.3. Quantum wire (1D confinement) 

A discretization of the energy levels (Enx,ny) is associated with this confinement. 
In this 1D confinement, electrons are free to move along a single direction (Oz). 

– Quantum dot (material deposited in 0D layer): An electron confinement is 
introduced along three directions (Ox, Oy and Oz). This is a 0D confinement (Figure 
A1.4). A total discretization of the energy levels (Enx,ny,nz) is associated with this 
type of confinement. In a 0D confinement, electrons are not free to move along any 
direction: the nanostructure is assimilated to a quantum dot. 

 

 

 

 

Figure A1.4. Quantum dot (0D confinement) 

There are few systems that can be assimilated to model quantum wires (these are 
wires that are to little or no extent perturbed by disorder). Such an example are 
carbon nanotubes; semiconductor wires obtained by sophisticated techniques of 
nanostructuring by epitaxy. Epitaxy is the technique that enables crystal growth on a 
crystal. Polydiacetylene (known as poly-3BCMU) is an example of ideal quantum 
wire having the perfect structure of a carbon nanotube [DUB 04, BAR 06]. The 
chains of poly-3BCMU are obtained by triggering the polymerization of the 
diacetylene monomer by exposure to various radiations (UV, slow electrons or 
gamma radiations). The reaction takes place in solid phase. The average length of 
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chains easily exceeds a dozen microns (over 20,000 chained monomer units). The 
following sections focus on a brief study of the quantum wells and quantum dots of 
semiconductor materials as a connection to the quantum wells and dots studied in 
sections 1.6.1 and 1.6.4 of Chapter 1. 

A1.2. Description of the quantum wells of semiconductors 

In semiconductors, a quantum well can be obtained by the successive stacking of 
plane layers of various materials [BAR 06]. For example, a well material (B) of a 
small gap surrounded on each side by a barrier material (A) of a larger gap (Figure 
A1.5). In this case, electrons see a square potential well with a finite height barrier.  

 

 

 

 

 

 

Figure A1.5. Quantum well: (a) quantum well of width Lz and height V0. (b) Quantum 
well constituted of a layer of width Lz of semiconductor material (B) of a small gap 
surrounded on each side by a layer of semiconductor material (A) of a larger gap 

The development of quantum wells has greatly benefitted from the progress 
achieved in the growth of materials. Quantum wells are mainly manufactured by 
molecular beam epitaxy or by chemical plating in vapor phase. The discontinuity 
between energy bands in the two materials creates a potential barrier that confines 
the charge carriers (electrons and holes) in the quantum well. Depending on the 
nature of the discontinuity of the FBs at the well-barrier interface, three types of 
quantum wells can be identified [LAH 17]: 

1) quantum well of type I: electrons and holes are confined in the same material 
constituting the well. The energy of the emitted photon depends on the confinement 
energies of the carriers and of the well material gap;  
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2) quantum well of type II, in which electrons and holes are confined in the same 
material constituting the well. The energy of the emitted photon depends on the 
confinement energies of the carriers and on the well material gap;  

3) quantum well of type III, which is a particular case of type II; the lower level 
of the CB is below the highest level of the VB. In this configuration, known as 
semimetallic, the energy of the emitted photon is only a function of the confinement 
energies of electrons and holes. 

A1.3. Wave function and levels of energy 

In a semiconductor, the moving mass of the charge carriers is the “effective 
mass” denoted by m*, which differs from the rest mass of the electron m0. If m*c = 
mc designates the mass of an electron in the CB and m*v = mv is the mass of a hole in 
the VB, then [SAK 15]:  

mc = 1.05 m0; mv = 0.62 m0; m0 = 9.1 ×10 – 28 g. [A1.1]  

Unless otherwise specified, we put: mc = mv = m0.  

Let us then consider the quantum well of height V0 and width Lz (Figure 
A1.5(a)). The potential V (z) is defined by: 
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[A1.2]

 

In the absence of electron-hole interaction, Schrödinger’s equation is (m = m*): 
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[A1.3]

 

As the potential V(z) is a function of the single variable z, the wave function can 
be built as the product of a function Φ (x, y) describing the motion of the particle in 
the xy plane of the quantum well and a function χ (z) for the motion along direction 
z, hence: 

Ψ (x, y, z) = Φ (x, y) × χ (z) [A1.4] 
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The energy E of the particle is the sum of two terms and is written as follows: 
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The first term in the right-hand side of equation [A1.5] designates the 
confinement energy and the second and the third terms designate the sum of the 
kinetic energies of the particle in the xy plane. The exponent n represents  
the quantum number characterizing the discrete character of the energy along the 
confinement direction Oz. Considering [A1.4], the resolution of Schrödinger’s 
equation [A1.3] gives the following solutions for the wave function χ (z) (see 
exercise in section 1.7.7): 
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– if n is odd: 
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In equations [A1.6] and [A1.7]: 
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In these expressions:  

– mw* is the mass of the particle in the quantum well material; 

– mb* is the mass of the particle in the barrier material.  

It is worth noting that these expressions are similar to relations [1.244], 
reproduced below: 

2
2 2


mE−=ρ

; 
2

02 )(2


VEmk +=

 

It can be seen that in the case of a potential well of a semiconductor material, the 
mass m in expressions [1.244] must be indexed so that it takes into account the state 
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of the particle in the barrier material and in the well material, as indicated by 

relations [A1.8]. The confinement energy n
zE  is the solution to equations: 
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The graphical resolution of equations [A1.41] and [A1.42] is similar to the 
resolution of equations [1.267] and [1.268]. The resulting curves are similar to those 
represented in Figure 1.21.  

For a quantum well of depth V0  ≈ ∞, the particle is confined in the well. 
Schrödinger’s equation resolution in zone II yields the energy: 
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This leads to expression [1.63] that is reproduced below (putting mm =*
ω  and 

Lz = a): 
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Appendix 2 

Quantum Dot of Semiconductor Materials 

A2.1. Definition, qubits 

A quantum dot is a heterostructure obtained by 0D confinement of 
semiconductor materials. Current research on the properties of quantum dots is 
motivated by the fact that they constitute potential elementary bricks of the quantum 
processing of information, known as quantum bits or qubits. On a long term, it may 
be possible to use the properties of quantum dots at a nanometric scale in order to 
get an infinitely more rapid coding and processing of information.  

The unit in classical computer science is the bit, which follows a binary logic. It 
takes only two values denoted as 0 or 1. On the other hand, a quantum bit is 
associated with the quantum state of a quantum dot assimilated with a system with 
two levels characterized by the states |0 and |1. Any linear superposition |Φ of 
these two states is also a state materializing the quantum bit with:  

|Φ  = α|0  + β|1 , |α|2 + |β|2 = 1 [A2.1] 

The existence of superpositions of type [A2.1] makes it possible to develop 
quantum computers that are far more rapid than a classical computer. 

A.2.2. Quantum dots emergence  

Many quantum dots are generated by interface defects of the quantum wires such 
as those engraved in V. This is particularly the case of the quantum wires of gallium 
arsenide (GaAs) that are used as quantum wells, and of the alloy of gallium arsenide 
and aluminum (GaAlAs), which operates as a potential barrier. These two materials 
are deposited by vapor phase epitaxy on a GaAs substrate. V-grooves have 
previously been engraved on this substrate by photolithography (set of operations 
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enabling the transfer of an image on a substrate), spaced at 4 μm and with a depth 
of 1 μm. Growth takes place in the following order [END 07]:  

1) GaAs layer serves as buffer; 

2) barrier layer of GaAl0.6As and then GaAl0.3As;  

3) 5 nm layer of GaAs well material; 

4) another barrier of GaAl0.6As and then GaAl0.3As. 

The electron microscopy image of the stacking is shown in Figure A2.1. The 
studied sample has a surface of 2 mm × 2 mm, which represents 500 wires. 

 

Figure A2.1. Electron microscopy image of a cross-section of a GaAs quantum wire 
[END 07] 

Since the axis of the wire is Ox, the confinement is realized along the two 
directions Oy and Oz. It is, nevertheless, worth noting that the origin of the 
confinement is different in the two directions Oy and Oz perpendicular to the wire. 
In the growth direction (Oy), it is the gap difference (600 meV) between the two 
materials that allows the confinement of carriers in the material whose gap is the 
lowest (here GaAs). On the other hand, in the Oz direction, confinement is due to the 
fact that the GaAs film is thicker at the bottom of the V-groove.  

A2.3. Confinement energy 

The energy of an electron (a hole), calculated at the lowest level of the band, in 
the conduction band (valence band) is given by the sum of a confinement energy  
 

GaAs 
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Econf and a band energy Efree. Knowing that me* (mh*) represents the effective mass 
of the particle in the conduction (valence) band and Ly and Lz are the confinement 
transversal dimensions, we have: 
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Expression [A2.2] shows that the energy in the GaAs quantum wire is only 
partially discretized, since the conduction electrons can freely move along the free 
direction Ox of the wire. Confining the carriers in the third direction of space (free 
axis x of the wire), we obtain a quantum dot. Because real structures are not perfect, 
having various defects and inhomogeneities, this confinement naturally emerges 
when quantum dots are maintained at a temperature below 10 K.   

To obtain this, the sample is immersed in a cryostat that enables the operation at 
10 K. It is worth noting that the cryostat comprises a tank filled with liquid nitrogen  
at 77 K surrounding a tank with liquid helium at 4.2 K, the two tanks being 
separated by a vacuum enclosure that limits thermal diffusion between the two 
tanks. The sample is fixed on a sample holder that is itself in contact with the cold 
finger containing liquid helium. This is how the sample is maintained at a 
temperature of 10 K during the experiment. When 0D confinement is realized, the 
energy of an electron (e) (respectively of a hole (h)) in a quantum dot is therefore 
uniquely a confinement energy given by the following expression [END 07]: 
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In [A2.3], the quantum numbers nx, ny and nz are strictly positive. The lowest 
confinement energy is given by the triplet (ny, nz, nx) = (1, 1, 1). Moreover, the 
energy [A2.3] is similar to expression [1.133] corresponding to the confinement 
energy in a cubic quantum dot of edge a. In the present case, the quantum dot 
constituted of GaAs-based quantum wires is parallelepipedic. The transversal 
dimensions of confinement are Ly = 5 nm, Lz = 15 nm and Lx = 50 nm. 



Appendix 3 

Transparency of a  
Potential Barrier, Resonance 

A3.1. Expression of transparency 

Physical phenomena related to the transparency of a rectangular potential 
barrier of height V0 and width a have been studied in Chapter 1. We have studied 
the particular case of a particle of total energy E < V0 that moves toward the barrier 
from a point of abscissa x < 0. The profile of the barrier is schematically represented 
in Figure 1.7. This appendix completes the description of the behavior of the particle 
in contact with the barrier and analyzes Schrödinger’s equation in the three zones I, 
II and III for E >V0. 

If Schrödinger’s stationary equation is applied to zones I, II and III, expressions 
[1.102], [1.103] and [1.104] are obtained as follows: 
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Solutions to equations [A3.1] can be written as follows: 
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Let us now express the boundary conditions in x = 0, and then in x = a. Using 
[A3.3], we get:  
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The transparency of the barrier is T = |F|2/|A|2. Let us eliminate the coefficients C 
and D expressing them as a function of F. Using [A3.4] and [A3.5], we get: 
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Using [A3.7], we have: 
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Let us transform equations [A3.8] as follows: 
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Taking systems [A3.6] and [A3.9] into account, we get: 
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Using [A3.10], we express the quantities (A+B) and (A – B) as follows: 
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It is now easy to express A and B as functions of F and to deduce the expression 
of the transparency T of the barrier. Then using [A3.11], we get: 
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Using [A3.12], transparency T of the barrier is: 
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In order to verify the law of conservation of mass, let us express the probability 
of reflection R. According to [A3.12], we have: 
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Summing [A3.13] and [A3.14], it can actually be verified that T + R = 1. 

A3.2. Resonance  

Let us express the transparency T as a function of E and V0 inserting [A3.2] in 
expression [A3.2]. We get:  
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The denominator of equation [A3.15] shows that there are values of the width a 
of the barrier for which transparency is maximal, therefore T = 1. These values have 
been obtained for: 
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Let us take into account the wavelength in zone II. According to [A3.16], we get:  
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Fixing E and V0, the representative curve of the transparency variations as a 
function of the width a of the barrier shows that T oscillates periodically between its 
minimal value ])(4/[)(4 2

000min VVEEVEET +−−=  and its maximal value Tmax = 1 as 

shown in Figure A3.1.   
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Figure A3.1. Variations of transparency T of a potential barrier as a function of the 
width a of the barrier 

Therefore, in zone II a resonance phenomenon occurs each time the width a is 
equal to an integer number of half wavelengths in zone II [A3.17]. 

Reflected waves undergo constructive interference. For this reason, the 
resonance condition kIIa = nπ corresponds to the values of the width a for which a 
system of stationary waves can be established in zone II. On the other hand, far from 
resonances, the waves reflected at the points of discontinuity of the potential 
undergo destructive interference. The values of the wave function become weak.  
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