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Foreword

Founded in 1925 and 1926 by Werner Heisenberg, Erwin Schrodinger and Paul
Dirac, quantum mechanics is nearly 100 years old. As the basis of modern
technology, it has given rise to countless applications in physics, chemistry and even
biology. The relevant literature is very rich, counting works written in many
languages and from various perspectives. They address a broad audience, from
beginner students and teachers to expert researchers in the field.

Professor Sakho has chosen the former as the target audience of this book,
connecting the quarter of a century that preceded the inception of quantum
mechanics and its first results. The book is organized in two volumes. The first deals
with thermal radiation and the experimental facts that led to the quantization of
matter. The second volume focuses on the Schrodinger equation and its applications,
Hermitian operators and Dirac notations.

The clear and detailed presentation of the notions introduced in this book reveals
its constant didactic concern. A unique selling point of this book is the broad range
of approaches used throughout its chapters:

— the course includes many solved exercises, which complete the presentation in
a concrete manner;

— the presentation of experimental devices goes well beyond idealized schematic
representations and illustrates the nature of laboratory work;

— more advanced notions (semiconductors, relativistic effects in hydrogen, Lamb
shift, etc.) are briefly introduced, always in relation with more fundamental
concepts;

— the biographical boxes give the subject a human touch and invite the reader to
anchor the development of a theory in its historical context.
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The book concludes with a list of references and a detailed index.

Science is a key element of contemporary culture. Researchers’ efforts to write
the books required for students’ education are praiseworthy. Undergraduate students
and teachers will find this work especially beneficial. We wish it a wide distribution.

Louis MARCHILDON

Professor Emeritus of Physics
University of Quebec at Trois-Rivieres
July 2019



Preface

Quantum mechanics or the physics of the infinitely small (microcosm) is often
contrasted with classical mechanics or the physics of macroscopic bodies
(macrocosm). This book, whose title is “Introduction to Quantum Mechanics 27,
aims to equip the reader with basic tools that are essential for a good understanding
of the physical properties of atoms, nuclei, molecules, lasers, solid bodies and
electronic materials — in short all that is infinitely small. Introductory courses on
quantum mechanics generally focus on the study of the interaction between matter
and radiation, and the quantum states of matter. This book emphasizes the various
experiments that have led to the discovery within the set of physical phenomena
related to the properties of quantum systems. Consequently, this book is composed
of seven chapters organized in two volumes. Each chapter starts with a presentation
of the general objective, followed by a list of specific objectives, and finally by a list
of prerequisites essential for a good understanding of the concepts introduced.
Furthermore, the introduction of each law follows a simple application. Each studied
chapter ends with a collection of various rich exercises and solutions that facilitate
the assimilation of all the concepts presented. Moreover, a brief biography of each
of the thinkers having contributed to the discovery of the studied physical laws or
phenomena is given separately, as the chapter unfolds. The reader can this way
acquire a sound scientific culture related to the evolution of scientific thought during
the elaboration of quantum mechanics. Due to its structuring and didactic approach,
this work is a modern and very original book. Volume 1 covers the study of the first
four chapters related to thermal radiation, to the experimental facts that revealed the
quantization of matter, and to De Broglie wave theory and Heisenberg’s uncertainty
principle.

Volume 2 is dedicated to the last three chapters related, respectively, to the study
of Schrédinger equation and applications, Hermitian operators and Dirac notations.
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Chapter 1 focuses on the study of the evolution of wave functions described by
the Schrodinger equation followed by several applications that introduce, in
particular, concepts such as potential well, potential path, wave reflection and
transmission factor, potential barrier, tunnel effect and 0D confinement through the
study of quantum dots. Chapter 2 deals with the basic tools related to the
mathematical formalism of quantum mechanics. Hence, this chapter presents the
properties of orthonormal bases in the space of square-summable wave functions,
Dirac notations for ket and bra vectors in the state space. Moreover, it introduces
notions such as linear operator, Hermitian operator, observable, Hermitian
conjugation and commutator. Finally, Chapter 3 studies the eigenvalues and
eigenvectors of an observable. This offers the possibility to introduce the notion of
representation of ket and bra vectors and operators, to pass from vector calculus in
the space of square-summable wave functions and to matrix calculus in the space of
states. Furthermore, the study relates to the introduction of the eigenvalue equation
of an operator and the characteristic equation (or secular equation) for determining
the eigenvalues of an operator based on a matrix representation. The chapter ends
with the definition of the mean value of an observable and the establishment of their
evolution equation by the study of conservative systems, and the establishment of
Ehrenfest theorem reflected by the laws of evolution of the mean values of position
and momentum operators.

Finally, the book is completed by a set of appendices that offer the reader the
possibility to gain a deeper understanding of the physical phenomena studied in this
book. Appendices 1 and 2 relate, respectively, to the description of quantum wires,
quantum wells and quantum dots of semiconductor materials. This description
facilitates the connection with potential wells and potential dots studied in quantum
mechanics. Moreover, these appendices make it possible to introduce the notions of
2D, ID and 0D confinement. Finally, Appendix 3 focuses on the detailed proof
of the expression of the transparency of a potential barrier of height ¥ for a particle
of energy E > V. This facilitates the introduction of the resonance phenomenon. A
list of references and an index can be found at the end of the book.

I wish to thank Chrono Environement Laboratory at the Université Franche
Comté de Besangon for their hospitality during my stay from September 1 to
November 2, 2018 as a Visiting Professor. Many pages of this book were written
during this period, which proved very favorable to this endeavor, both in terms of
logistics and documentation. I would like to make a special mention to Jean-
Emmanuel Groetz, Senior Lecturer at Chrono Environnement Laboratory, who was
in charge of my Visiting Professor request file. I wish to express my warmest thanks
to Elie Belorizky, Professor of Physics at Université Joseph Fourier de Grenoble
(France), for his critical remarks and suggestions, which had a great contribution to
improving the scientific quality of this work. Many corrections brought to this book
have been made via telephone exchanges during my stay at the Université Franche
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Comté de Besancon. I am expressing here my deep appreciation for him gracefully
bearing the inherent expenses for the telephone calls related to this book review.
Finally, I wish to address my deepest gratitude to Louis Marchildon, Professor of
Physics (Emeritus) at the Université de Quebec a Trois Riviéres (Canada), who
spared no effort to review the entire book, and whose comments have enhanced the
scientific quality of this work, whose foreword bears his signature. We started our
collaboration in 2013, when he invited me to host a conference at the Hydrogen
Research Institute (HRI). I am deeply grateful for his kind and very fruitful
collaboration.

All human endeavor being subject to improvement, I remain open to and
interested in critical remarks and suggestions that my readers can send me at the
below-mentioned email.

Ibrahima SAKHO
aminafatima_sakho@yahoo.fr
October 2019



Schrodinger’s Equation and
its Applications

General objective

The general objective is to apply the Schrodinger equation to the study of simple
physical systems.
Specific objectives

On completing this chapter, the reader should be able to:

— know the properties of the square-summable wave functions;

— know the boundary conditions imposed to any square-summable wave
function;

— distinguish between a physical state in classical mechanics and in quantum
mechanics;

— describe a physical quantity in quantum mechanics;
— define an operator;

— define an observable;

— give examples of operators and observables;

— know the correspondence principle or rule;

— define the Hamiltonian of a physical system;

— express the time-dependent Schrodinger equation;

— express the stationary Schrodinger equation;

For color versions of the figures in this book, see www.iste.co.uk/sakho/quantum?.zip.

Introduction to Quantum Mechanics 2: Wave-Corpuscle, Quantization &
Schrédinger’s Equation, First Edition. Ibrahima Sakho.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.
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— know the properties of the Schrodinger equation;

— integrate the Schrodinger equation for a free particle;

— integrate the Schrédinger equation for the ground state of the hydrogen atom;
— apply the Schrodinger equation to the study of quantum wells;

— apply the Schrodinger equation to the study of quantum dots;

— apply the Schrodinger equation to the study of potential barriers;
— apply the Schrodinger equation to the study of potential steps;

— define the probability current;

— define the reflection and transmission factors;

— define the reflection and transmission probabilities;

— provide an interpretation of the tunnel effect;

— describe the scanning tunneling microscope.

Prerequisites
— De Broglie plane wave.
— Heisenberg’s uncertainty relations.
— Properties of trigonometric functions.
— Euler formulae.

— Integer series.

1.1. Physical state and physical quantity
1.1.1. Dynamic state of a particle

According to classical mechanics, the dynamic state of a particle is fully
determined at each moment if the position 7(x,y,z) and velocity or linear
momentum ;(px, p,»p.)of this particle are known. In particular, if its position and

velocity at an instant ¢+ = 0 are known, it is possible to calculate, by solving the
fundamental equation of dynamics, its dynamic state at a subsequent moment ¢ and
hence its trajectory.

Given the uncertainty principle, the notion of trajectory loses its meaning and a
different approach must be adopted for the characterization of the dynamic state.
The mathematical entities that can describe the dynamic states of the particle must
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reflect its wave-like nature. Hence, an orbital dynamic state of the particle is
described by a generally complex wave function W(r,7) .

1.1.2. Physical quantities associated with a particle

In classical mechanics, the measurable physical quantities associated with a
particle such as kinetic or potential energy and angular momentum are expressed as
functions of position variables x, y, z and linear momentum variables p,, py, p.. For
example:

— its kinetic energy is written as £, = (p,% + pﬁ +p2)/2m;
— its orbital angular momentum with respect to a point O of the space is written

as EZO—M/\[%

In quantum mechanics, the measurable physical quantities are represented by
Hermitian operators, as described in section 1.3.2. For example, for a given particle:

— operator P =—V represents its linear momentum;
1
n* =2 o
— operator 7 = _TV represents its kinetic energy;
m

— operator R represents its position.

In contrast to classical mechanics, which does not distinguish between state and
physical quantity, there is an essential difference between the two notions in
quantum mechanics: a state is represented by a state vector, while a physical
quantity is represented by an operator, which is generally denoted by 4.

1.2. Square-summable wave function
1.2.1. Definition, superposition principle

As already explained above, the wave function describing the physical state of a
particle is a complex function W(r,¢) satisfying the normalization condition [4.49].

The set of square-summable wave functions constitutes the Hilbert space denoted by
L*[COH 77, MAR 00, NEU 18].

If \Ill(;, f) and P, (;,t) are two square-summable wave functions and if 4, and 4,

are two complex numbers, then any linear combination of these two functions is also
a square-summable wave function:
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W(r,0) = A W, (r, 1) + ALY (1) [1.1]

Relation [1.1] satisfies the superposition principle.

1.2.2. Properties

Generally speaking, for bound states there are discontinuous square-summable
wave functions. Nevertheless, in quantum mechanics, the square-summable wave
functions used have the following properties:

— they are continuous and indefinitely differentiable;

— their derivatives with respect to space variables are continuous, even at
possible points of discontinuity of potentials;

— they are zero at infinity according to the normalization condition [4.49];

— they satisfy the scalar product of two functions defined in the Hilbert space.

Let cI)(;) and \P(;) be two square-summable wave functions. By definition, the

scalar product of @(r) and W(r) is the complex number denoted by (¥, ®) and
given by the relation:

(‘P,q’)=f:‘}’*®d3r [1.2]

The scalar product uses the complex conjugate ¥* of the wave function V.

If Ay and A, are two complex numbers, the scalar product [1.2] has the properties:

(@, %)= (¥, )
(@4, +2,%,)= 4 (0. %))+ 4, (0. 9,) 3]
(4P, +4,®,,¥)=4 (P, ¥)+ 4 (®,,¥)
According to properties [1.3], the scalar product is linear with respect to the
second function of the pair and anti-linear with respect to the first function of the

pair. The definition of the scalar product makes it possible to define the norm of a
square-summable wave function. For ¥ = @, relation [1.2] becomes:

)= [ wrwats= [P at [1.4]

By definition, the norm of a wave function denoted by ||| is given by the
following relation:
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¥ =7 %) = [ @ 20 [1.5]

Equality [1.5] is satisfied when the wave function is zero.

1.3. Operator
1.3.1. Definition of an operator, examples

By definition, an operator denoted by A4 is a mathematical being whose action on
a wave function ¥ transforms it into another wave function ®. The transformation
equation is written as follows:

AY =D [1.6]
Some operator examples are listed below:

— multiplication by x denoted by X: X¥(x) = x¥(x) = ®(x);

— differentiation with respect to x denoted by ddx;

MW (x)
ox

=%¥'(x)
— parity denoted by IT:
MY (x) = Y(x): if Y(x) is even

or [T¥(x) = —¥(x): if ¥(x) is odd.

1.3.2. Hermitian operator

Considering the scalar product of y and A, we have:
= [ ATw ) a3
(Wa.p) = [ A+ d’r [1.7]

Operator A" (4 dagger) is by definition the adjoint operator of A.

Moreover, an operator that is its own adjoint is called a Hermitian operator or a
self-adjoint operator. Any Hermitian operator 4 verifies the relation 4 = A", Given
the properties [1.3] of the scalar product, any Hermitian operator verifies the
property:



6 Introduction to Quantum Mechanics 2

*

(P, Ay)= J.‘I’ () Ay(r)dr = (Jy/*(;)A‘I’(;)d3r j [1.8]

The simple definition of a Hermitian operator will be explored in Chapter 3, after
the introduction of Dirac notations and the notion of matrix element.

NOTE (HERMITIC OPERATOR AND HERMITIAN OPERATOR).* There are quantum
mechanics works that feature the adjective Hermitic. The appropriate adjective is,
nevertheless, Hermitian, for at least two reasons. First, as teaching experience
indicates, students often confuse the words hermitic and hermetic (which the
students are very familiar with). Second, many operators have been named after
famous scientists who contributed to the development of quantum mechanics
formalism. It is the case of Lagrangian, Laplacian, Hamiltonian, etc. The respective
names of these operators honor the French naturalized Italian mathematician,
mechanics scientist and astronomer Joseph Louis comte de Lagrange (1736-
1813), the French mathematician, physicist, astronomer and politician Pierre-Simon
de Laplace (1749-1827) and the Irish mathematician, physicist and astronomer Sir
William Rowan Hamilton (1805-1865). To avoid the confusion with the quasi-
homonymous adjective hermetic, it is wiser to use the adjective Hermitian, as a
reference to the French mathematician Charles Hermite (1822—1901) (Box 1.1).

APPLICATION 1.1.—
Let 4 be a self-adjoint operator. Is the operator B = i4 Hermitian?

Solution. Let us find the adjoint operator of B: B = (id)" = (i)*4" = —id = B' =
—B: operator B is not Hermitian.

Charles Hermite was a French mathematician. His work focused on the theory of
numbers, quadratic forms, orthogonal polynomials, elliptic functions and differential
equations. In quantum mechanics, Hermitian operators as well as Hermite polynomials,
used in the study of the quantum harmonic oscillator, are mathematical concepts known as
Hermitian in his honor.

In 1925, he developed in parallel to Schrodinger (see Box 1.3) the first theorization of
quantum mechanics within matrix formalism (while Schrodinger adopted a rather wave-
like approach by solving the differential equations). In 1927, Heisenberg stated the
indeterminacy principle rejecting the notion of trajectory of a microscopic particle. He
was awarded the Nobel Prize for physics in 1933 for his works in quantum mechanics.

Box 1.1. Hermite (1822-1901)
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1.3.3. Linear observable operator

By definition, a linear operator is a mathematical being that establishes a linear
correspondence between any wave function ¥ and another wave function W' If 4 is
a linear operator, then:

A(//illyl + /12‘1’2 ) = ﬂlA\Pl + /1214\112

The foundation of physics relies on observation and experimentation or
measurement. In quantum mechanics, any measurable physical quantity is
associated with an operator, which is an observable.

An observable is defined as a Hermitian operator whose eigen functions (or
eigen vectors, see Chapter 3) form a complete set. A set is complete to the extent
that every square-summable wave function is written in only one way, as a
convergent series expansion on the basis of the eigen functions of this observable.
The fundamental observables based on which all the others are expressed in

quantum mechanics are operators associated with the position r, linear momentum

;7 and the total mechanical energy E of a system (see section 1.3.4).

APPLICATION 1.2.—

Prove that the operator multiplication by z and the operator first derivative with
respect to variable y are linear operators.

Solution.

— Operator multiplication by z: Using [1.9], we have:

Y =z¥
= Z(4LY¥Y:+ 1LY )= 42V + 1z
{Z(/ll\lll+ﬂz‘}’2)=2(ﬂl‘{‘l+/12\112) ( 1142 2) 1ZY] + A2 )
This gives:
Z(?\,I‘PI +7\,2\P2) = }\,IZ\}II +7\,ZZ‘P2

— Operator first derivative with respect to variable y: Let d, be the first derivative
with respect to variable y. We have:

d (4 +A4Y,)= aay(/ﬁ‘lﬁ +4'1)
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This gives:

%4_228&

d, (A4 Y, )= A
(4 + W) 5 >

Hence:

dy(//ll\yl +/12‘P2) = //ildy\Pl +/12dy\l’2

1.3.4. Correspondence principle, Hamiltonian

In quantum mechanics, the principle according to which an observable 4 can be
determined from classical mechanics quantities is governed by an empirical rule
known as the correspondence principle [ATT 05] or correspondence rule [BAY 17].
All ambiguity should be removed before proceeding, given that the correspondence
principle developed in this section differs from Bohr’s correspondence principle.

Indeed, in 1923 Bohr formulated a heuristic principle known as Bohr’s
correspondence principle. This principle, which was very useful upon the start of
quantum mechanics development, states that the results of quantum mechanics must
agree with those of classical mechanics at the limit of very large quantum numbers
(see exercise 3.7.7, Chapter 3, Volume 1). In other terms, when the discrete
character of measurable quantities can be ignored, the results provided by quantum
mechanics can be determined with very good approximation within the framework
of classical mechanics. The applicability of this correspondence principle goes
beyond quantum mechanics. This principle is also valid in relativistic mechanics.
For example, when v/c << 1, Lorentz factor (equation [4.66], Chapter 4, Volume 1)
Y = | and the laws of relativistic mechanics coincide with those of classical
mechanics. This section takes a different approach to the formulation of the
correspondence principle, since it employs the notion of observable, which was
unknown during the development of Bohr’s theory.

Before stating the correspondence principle, let us list the expressions of the
observables associated with the physical quantities position 7, linear momentum p

and energy E, which are the most commonly used in quantum mechanics. These are
the following:

— position p (x, ¥, z) > position operator R X Y, 2);

— linear momentum p (x, y, z) = linear momentum operator P (P, P,, P.);

— potential energy V' ( 1:) — potential energy operator V' ( R );
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-2
— kinetic energy E.= p*/2m — kinetic energy operator = P /2m;

— mechanical energy £ — Hamiltonian H.

Let us note that the linear momentum operator and the Hamiltonian are,
respectively, expressed as functions of the Laplacian and the operator first derivative
with respect to time:

P-i'V.m=nl [1.10]
i ot

In order to prove relations [1.10], let us consider a one-dimensional problem that
analyzes the wave associated with a free particle that moves with a well-defined
linear momentum P = P,. In this case, De Broglie plane wave [4.1] can be written
considering Planck—FEinstein relations [2.54] as follows:

W(x,t) =W o P/ H=ELIT) [1.11]

Using expression [1.11], we determine the following partial derivatives (putting
Y (x, ©) =¥ in order to simplify):

ihaa—\P:E‘P HY = EW
2t 2 2 I I [1.12]
WY By py h¥="33
2m 2 2m Loox
This leads to:
Heindqgp hd _hy [1.13]

o Y diox i "

Relations [1.10] are obtained if the expression of operator P, is generalized to
three dimensions.

In the relation [1.13], { designates the identity operator [COH 77, SAH 12]. This

operator is also denoted by the symbol I [BAS 17]. The identity operator is often
omitted and for simplicity purposes we can write:

H=in? [1.14]
ot
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We can now formulate the correspondence principle so that it makes it possible
to determine the expression of an observable from a classical expression:

“The observable A (E ,F , t) describing a physical quantity A (; ,; , 1)
defined in classical mechanics is obtained by conveniently
symmetrizing the classical expression and then by replacing ; by
—i1/V in the symmetrized expression”.

Example: Let us determine the observable associated with the classical quantity
A(r,p)=r-p.
It is worth noting that given the commutativity of the scalar product, we have:

AG p)=rp=p-r [1.15]

On the other hand, R and I_E; operators, which are associated with ; and ;,

respectively, are not always commutative. This follows from Heisenberg uncertainty
principle. For example:

XP, # P,X but XP, = P,X

Hence, in the general case, R - P#P-R.

From a classical point of view,

- —

rp=L(Gptrp) [1.16]
2

The symmetrization of the classical expression [1.16] leads to: 1/2 (; . ; +; -;).

The observable 4 (E ,F ) can therefore be written as:

AR, P)=1(R-P+P R):_%(E-VJrV-E) [1.17]

0| =

NOTE.— Commutation operator is a very important notion in quantum mechanics.
This is why Chapter 3 is dedicated to its detailed study. We shall keep in mind for
the time being that the scalar product of two operators is commutative provided that
the physical quantities described by the two operators are simultaneously
measurable.
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APPLICATION 1.3.—

Find the expression of the observable describing the mechanical energy of a
conservative system.

Solution. The mechanical energy of a conservative system is constant. It is given
by the classical expression:

2
E:LH/(,,) [1.18]
2m
The associated observable is the Hamiltonian A given by the quantum expression:

—2 hz B
=L 1y®)=-2—A +V(R) [1.19]
2m 2m

In the relations [1.19], A is the Laplacian, with V> = A.

Sir William Rowan Hamilton was an Irish mathematician, physicist and astronomer. He
contributed to the development of optics, dynamics and algebra. He conducted significant
researches for the development of analytical mechanics. The Hamiltonian operator or
briefly the Hamiltonian involved in Schrédinger equation was named in his honor.

Box 1.2. Hamilton (1805-1865)

1.4. Evolution of physical systems
1.4.1. Time-dependent Schrédinger equation

In 1926, Schrodinger postulated the fundamental equation of quantum
mechanics. According to this postulate, the evolution in time of a system is
governed by the equation:

¥ (1t -
YD _ g g [1.20]
ot
In equation [1.20], H is the Hamiltonian observable associated with the total
energy of the system. For time-dependent phenomena, the potential energy is a
function of position and time. The Hamiltonian is written according to [1.19]:



12 Introduction to Quantum Mechanics 2

hZ
H=-""A+V(R,? [1.21]
2m

Expression [1.21] shows that the Hamiltonian is a function of time. It is for this
reason that equation [1.20] is known as time-dependent Schrodinger equation. Using
[1.21], the partial differential equation [1.20] can be written in the following form:

- 2
in STD { LN ]‘P(r 0 [1.22]
ot 2m

1.4.2. Stationary Schrédinger equation

In physics, many systems are subjected to time-independent potentials. It is
particularly the case of hydrogen-like systems, potential wells, potential barriers,
quantum harmonic oscillator, etc.; the Schrodinger equation [1.20] has for these

systems a particular form where V (;, n=V"r (;). To establish this equation, the
variable separation method will be used. For this purpose, particular solutions for
equation [1.20] are sought for, writing the wave function as a product of a function

of spatial coordinates ® (;) and another time function ¥ (?):

W (r,0)=®(r)xy (0) [1.23]

Using [1.23], the Schrodinger equation [1.22] can be written as follows:

2
ih®(r )dZ(Z) { hm +V(r)}<l)(r)>< 2(0) [1.24]

ATTENTION.— Simplification of both terms of equation [1.24] by @ (;) should be
avoided. Indeed, the right term contains the Laplacian of @ (7), which is not equal
to @ (). The division of both terms of [1.24] by @ () X y (¢) leads to:

2
Lody) _ 1 | h~ V2 er () o) [1.25]
20 di ()

Knowing that the term on the left side of [1.25] depends only on time and the

one on the right side depends only on the variable 7, then the two terms are equal to
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a constant C. Moreover, each of these terms is equivalent to an energy. It can
therefore be written as C = E. This leads to:

dx(t) = E()

) [1.26]
I V2+V(r) (1) = ED(r)

It can be noted that the term between square brackets in [1.26] contains the
expression of the Hamiltonian [1.19] for conservative systems, which is:

H® ()= ED (1) [1.27]

Equation [1.28] is known as the stationary Schrodinger equation. This equation
makes it possible to solve many physical phenomena related to the behavior of time-
independent potentials (see section 1.6). For this purpose, equation [1.27] is used in
the form:

2
_h V2 +V () [@() = EO®) [1.28]

Erwin Rudolf Josef Alexander Schrodinger was an Austrian physicist. In 1926, he
postulated the non-relativistic wave equation describing the physical state of a system and
opened the way for the development of the mathematical formalism of quantum
mechanics. This wave equation, known as Schrédinger’s equation in his honor, brought
him the Nobel Prize for physics in 1933, which he shared with Paul Dirac (see Chapter 2,
Box 2.1). In 1935, Schrédinger imagined the cat paradox, a thought experiment that was
later called Schrodinger’s cat, which is an evidence of the fracture between
the microscopic realm (in which an object can simultaneously have several states) and the
deterministic macroscopic realm.

Box 1.3. Schrédinger (1887—1961)

NOTE.— Schrddinger’s cat is a thought experiment (a cat and a flask of poison) used
by Schrodinger in his attempt to refute the Copenhagen interpretation (see note at
the end of section 4.2.2, Chapter 4, Vol. 1) of quantum mechanics, which involved a
simultaneously dead and alive cat. Shortly before submitting his thought experiment
to publication, Schrodinger presented it to Einstein, who subsequently employed
gunpowder and a nearby cat in the thought experiment. Schrodinger and Einstein
thought that the possibility of a dead-alive cat proved that the Max Born
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interpretation of a wave function was incomplete. For more details on this
experiment, the reader is invited to check the references [GRI 08, WIK 18].

1.4.3. Evolution operator

The first equation of the system [1.26] can be written in the following form:

dx® __E , [1.29]

() h

This differential equation can be easily integrated and has the following solution:

E
—i—(t—tp)
X(t.t9)= x(tg)e " [1.30]

Let us consider y (f) = 1 since this constant is not involved in the physical
predictions that feature the density of probability. This gives:

—iﬁ(t—to)
X(t.tg)=e N [1.31]

Solution [1.31] makes it possible to introduce an important operator denoted U
for the determination of the wave function ¥ (7, ) describing the evolution of a

physical system based on the wave function ¥ (;, %) at the initial moment f.
Considering that 4 = U and ® =7 in [1.6], we have:

—iE(t—to)
UY¥ = y(t,ty)=e [1.32]

Knowing that the Hamiltonian H is the observable associated with the total
energy E, the expression of operator U [1.31] can be deduced:

—iﬁ(t—t())
Ult,tg)=e " [1.33]

By definition, operator U is known as evolution operator acting on the eigen

function of H. The passage from ¥ (;, ty) to ¥ (;, f) is expressed by the following
relation:

W(r, ) = U, to) P(r, to) [1.34]
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Expression [1.33] is mentioned in Chapter 3 when studying conservative
systems.

APPLICATION 1.4. —

By definition, 4 is a unitary operator if its adjoint coincides with its inverse. Prove
that the evolution operator U is a unitary operator.

Solution. 4 being a unitary operator, then: AT=4"".
Using [1.33], we have:

Uu=uU'=1=U'=U" [1.35]

1.5. Properties of Schréodinger’s equation
1.5.1. Determinism in the evolution of physical systems

Schroédinger’s equation [1.20] is a first-order partial differential equation with
respect to time. The value of the wave function W(r, #) at the initial instant #, being

given, the wave function W(r, f) at a given instant ¢ can be found. There is no
indeterminism in the evolution of physical systems in time. Indeterminism occurs
during the measurement of a physical quantity on the considered system. During the
measurement, the state vector denoted |W(#)) undergoes an unpredictable jump due
to what is known as fundamental perturbation [COH 77].

1.5.2. Superposition principle

Let ¥, (7, ¢) and ¥, (7, f) be two wave functions that are solutions of the
Schrodinger equation [1.20]. Let us consider that at instant #,, the state of the system

is described by the wave function ¥ (;, to) such that:

W(r, 1) = A7, t0) + W7, o) [1.36]
It should be reminded that in relation [1.36], 4, and A, are complex numbers.

Then at a given instant ¢, the wave function describing the system is written as:

W(r, )= LV (r, )+ LYa(r, 1) [1.37]
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Result [1.37] shows that any linear combination of wave functions that are
solutions of the Schrédinger equation is also a solution of the same equation.
Therefore Schrodinger’s equation [1.20] satisfies the superposition principle.

For a conservative system, the Hamiltonian H is time independent. The passage

from ‘P(;, ty) to ‘P(;, ?) is linear and is made by the evolution operator according to
relation [1.34].

1.5.3. Probability current density

For a stationary wave function, the normalization condition [4.51] reflects the
fact that the probability of finding the system at point r in space is equal to the unity.
In other words, probability is conserved. This probability conservation involves the
fact that the density of probability [4.49] is constant, even if the system evolves in
time.

Let us consider a general case for the study of the principle of probability
conservation. For this purpose, let us first recall the principle of conservation of the
electric charge.

Let us consider a system of charged particles of volume charge density p (;,t).
Charge variation dg = p (;, ) dV in time corresponds to the flow of an electric
current / through a cross-section dS limiting the volume dV so that dg = Idt. The
global charge QO = [dg is nevertheless conserved. This principle of global
conservation of the electric charge relies on a local conservation of charge reflected
by the continuity equation [SAK 18]:

ap(r t)+VJ( o= [1.38]

In this relation, j(;,t) is the current density flux going out of dS, the surface
being perpendicular to the current density vector.

In quantum mechanics, a probability current density vector j(;,t) is introduced,

which satisfies an equation of type [1.38] reflecting a principle of local probability
conservation. To illustrate this point, it is convenient to imagine a “probability
flow”. If the probability of finding the particle in the volume element dV around

point r varies, it is because the flux of the probability current through surface dS
limiting the volume dV is not zero. To establish the continuity equation satisfied by
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j(;,t), the starting point is the time-dependent Schrodinger equation [1.22], which

is reminded below:

- 2
VD) { n

[1.22b]
5 2m + V(r)}‘{"(r 1)

The complex conjugate of this equation is:

- 5 ) )
_ihw - {_ va + V(r):|‘1’*(r, 1) [1.39]
ot 2m

Multiplying both sides [1.22] by W* and [1.39] by —W* [and putting VY= ‘I‘(;, t)
for the sake of simplification], we have:

2 .
inwrdY _ h—‘I’*Vz‘P+V(r)‘I’*‘{’ [1.40]
o 2m
* 2 .
P a;: h ‘I’Vz‘{’* V(r)PY * [1.41]

The sum of these two equations is:

" 2
zh(‘{’*a‘{l vy ¥ j:—h(\y*vzw—\wz‘y*) [1.42]
ot ot 2m

Arranging the member on the left side of equation [1.42], we get:

. 0 2 2 2
ih—(P*W)=——(P*V¥ PV * [1.43]
ot 2m

Since the probability density satisfies the relation W*¥ = |W|, then we
have p(;,t) = Y*W¥, Equation [1.43] can then be written in the following form:

plra) I (pev2p_wy2ys)=g [1.44]
ot 2ml

Equation [1.44] is identical to [1.42] if we consider:

6-}(;,t)=%(‘I-’*V2‘P—‘I‘V2‘-I’*) [1.45]
mi
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In order to deduce the expression of j(;,t) from relation [1.45], let us add to the
term  between  brackets of the left-sidle member, the quantity
(W*).(ﬁl’)—(ﬁl’*).(ﬁ{’) . We then obtain:

V.JGn=-"— ['{’*Vz‘l’ oV 2 (V) (V) = (V%) (V) [1.46]

This then gives:

V- J(r.1) =% (V). F) + w720 (). ) - w2

mi
which is:

— = - h — — —

V-J(r,t):—.V{\P*V‘P—‘PV\P*] [1.47]
2mi

Therefore, the probability current density is written as:
n
J(r t)— [‘I‘*V‘P ‘I‘V‘I’*] [1.48]

Equation [1.45] can then be written as:

ap(r PO L FT = [1.49]

The continuity equation [1.49] reflects the probability conservation.

The probability current density [1.49] is often expressed as a function of the
three-dimensional linear momentum operator [ATT 08, BAY 17].

In one dimension ¢, probability current density [1.48] can be written as a
function of the linear momentum operator Pq =—ihV p in the following form:

1 1
Jq =E(\P*Pq\l‘—\ypq\}'*pZRe(\P*Pq\P) [1.50]

In relation [1.50], Re designates the real part of the complex number (¥*P,\V).
In three dimensions, we have:
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— > 1 - — -
J(r,t)=—Rel|¥ *(r,t)P‘P(r,z)] [1.51]
m
In [1.51], the linear momentum operator is given by the first relation [1.10].

1.6. Applications of Schrodinger’s equation
1.6.1. Infinitely deep potential well
The behavior of a particle confined in an infinitely deep potential well of width a

[COH 77, GRI 95, PHI 03, MAR 00, STO 07, BEL 03, ATT 05, SAK 12, BAY 17]
is studied. The profile of the potential energy V' (x) is shown in Figure 1.1.

V(x) A

Zone | Zone 11 Zone 111

0 a x

Figure 1.1. Infinitely deep potential well of width a

The potential energy function satisfies the following conditions:

0, 0<x<a

V(x) ={ [1.52]

+oo,  x<0 and x >a

1.6.1.1. Behavior of the particle

The energy FE of the particle is equal to:

2
E=2 4y(x
2m
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This then leads to:
2
p—zE—V(x) [1.53]
2m

The above relation [1.53] shows that, if the potential is infinite, the kinetic
energy of the particle becomes negative. In other terms, the speed of the particle
becomes imaginary. This has no meaning in classical mechanics: the zone is
impenetrable. From the quantum point of view, it can be proved that the wave
function is zero in a space domain where the potential is infinite. Therefore, in the
zones where the potential is infinite, the wave function satisfies the boundary
conditions:

® (0)=0; ® (a)=0 [1.54]

1.6.1.2. Analysis of Schrédinger’s equation

In the well, the potential energy is V' (x) = 0. According to [1.54], we have:

2
E=%>o [1.55]
m

From a classical point of view, the particle is then executing oscillations between
the limits x = 0 and x = a, its kinetic energy being E. = E. From a quantum point of
view, the state of the particle is governed by the stationary Schrodinger equation
[1.28]. In one dimension, this is:

1 D)

g2 = ED(x) [1.56]

The integration of the differential equation [1.56] makes it possible to determine
the nature of the spectrum of the particle confined in the well. For this purpose, let
us find the solutions to equation [1.56], which can be written as:

d%(x) | 2mE

R

D(x)=0 [1.57]
Given the Planck—Einstein relations [4.3] p =7k, [1.57] can be written as:

2,2
E:h k :>k2=2mE [1.58]
2m 72
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Using [1.58], equation [1.57] can be written in the form:

d%o(x)

Ak D(x) =0 [1.59]

dx
One solution of equation [1.59] is of the type:
@O(x) = Asinkx+ Bsinkx [1.60]

1.6.1.3. Energy quantization

The boundary conditions [1.54] require the wave function @ (x) to be continuous
at the well connection points (in x = 0 and in x = a). Therefore:

— continuity inx =0 = ®;(0) =Py (0) =0 = B =0;

— continuity in x = a = @y (a) = @y (a) = 0 =4 sin ka = 0. Hence:

ka=nm ek, ="" [1.61]
a

Result [1.61] reflects the quantization of the wave vector norm. Consequently,
the energy of the particle is also quantized according to [1.58]. Hence:

E, = n [1.62]

Therefore, the spectrum of the particle is discrete. In [1.62], n is the quantum
number, which is strictly positive, since the energy is not zero, given the uncertainty
principle. Indeed, if n = 0, £ = 0. The linear momentum p is therefore zero. Given
Heisenberg’s first uncertainty relation [4.59], the position of the particle is infinite,
which is impossible, since it is confined in the well.

Let us rewrite expression [1.62] in the form:

[1.63]

E, =n’E, ; E| =
Figure 1.2 represents the discrete spectrum of the particle for several energy
levels. The values of energy F, are proportional to the ground state energy E|.

Result [1.63] reveals the essential difference between the physical predictions of
classical mechanics and those of quantum mechanics.
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From a classical point of view, the energy E of the particle is continuous (from 0
to infinity since the speed of the particle is under no restriction).

From the perspective of quantum predictions, due to the physical properties of
the wave function, the energy E of the particle can only take discrete values in the
well. Moreover, for the one-dimensional quantum harmonic oscillator, the energy is
given by relation [3.263]:

En=hw[n+;):AEn=Enil—En=hw [1.64]

The energy gap between these two consecutive levels of the quantum harmonic
oscillator is therefore constant (the energy levels are equidistant). On the other hand,
the energy gap between two consecutive levels of the particle confined in the well is
equal to (2n + 1), as shown in Figure 1.2. This is due to the fact that the energy
[1.63] of the particle varies with the square of the quantum number 7.

[ = )
16E, 4 oo
7E,

9EI 3 o O oo
SE,

4E, 2 =N

-

E, ] ¥ .

Figure 1.2. Discrete spectrum of a particle confined to an
infinitely deep potential well

1.6.1.4. Expression of the normed wave function

Using [1.61] and considering that B is zero, [1.60] gives:

@, (x) = Asin [””xj [1.65]
a
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Given the normalization condition of the wave function:

[ 1apsin [ﬂx]dm
0 a

Considering the transformation cos2q = 1 — 2sin’g, (¢ = nzv/a), the integration of
the previous equation gives:

pa |2 1.66
e a- 2 [1.66)

In summary, the normed wave function satisfies the following equations:

0 x<0
@, (x)= \/gsin (@j 0<x<a [1.67]
a a
0 x>0

1.6.1.5. Expression of the probability density

In zone II, the density of the probability of particle presence is given by the
square of the probability amplitude ®y(x). Using [1.67], we have:

,(¥) = 2sin? ("” j [1.68]
a a

Expression [1.68] shows that the probability density p, (x) is zero at the well
connection points (x = 0 and x = @). Consequently, it has a maximum between 0 and
a. The maximum of this probability density is obtained for:

sin? (nl” xj =1

For x > 0, we have:

LN Y | LA [1.69]
a 2 2n(2k+1)

Let us consider the particular case when the integer k£ = 0. For the ground state (n
= 1) and the first excited state (n = 2), the maxima of probability density p, (x)
correspond to x; = /2 and x, = I/4.
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The plots of the wave function @, (x) and of the probability density p, (x) are
shown in Figure 1.3 below for the ground level n = 1 and for the first two excited
levels n =2 and 3.

®, (1) L 12,01
| D5 ()|
D; (%) !

9E,

|(I)2(JC)|2

D, (x)

n=2

SR I——— ]

I n=1 X

T T T T T T T T T T

0 a/6 a/3 a/2 2a/3 5a/6 a 0 a/6 a/3 a/2 2a/3 5a/6 a

Figure 1.3. Variations of the wave function and of the probability density of a particle
confined in an infinitely deep potential well

1.6.2. Potential step

This section focuses on the study of a particle coming from — e and heading to a
potential step [COH 77; PER 86; SIV 86; GRI 95; PHI 03; ATT 05; STO 07;
SAK 12; BAY 17] of height V; (Figure 1.4). This is a rectangular potential barrier
(Figure 1.5) of width a — oo. The kinetic energy of the particle is denoted by E.

Here, we study the behavior of the particle through the potential step when the
energy E >V, then when E < V.
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V() |

Mo

Zone I Zone 11

Figure 1.4. Potential step of height V,

1.6.2.1. Case of E> V),
1.6.2.1.1. Classical and quantum predictions

From a classical point of view, the particle flies over the step and carries on
along its path: its motion is rectilinear with a speed drop at the transition point of
abscissa x = 0. From the quantum mechanics point of view, the state of the particle is
described by a wave function. There is a non-zero probability for the particle to be
reflected or transmitted through the potential step. To analyze these purely quantum
phenomena, let us consider Schrédinger equation [1.28] in one dimension:

n? d*
{— gt V(x):|<1)(x) = Ed(x) [1.70]
X

In zone I, the potential is zero. Hence, according to [1.70]:

2 ;2
h*d q)l(x)-i-Ed)](x):O [1.71]
2m dx2
In zone 11, the potential is equal to V;,. Equation [1.70] then yields:

1* d’®y(x)
2m dx2

1.6.2.1.2. General solutions

The general solutions of equations [1.71] and [1.72] respectively, are as follows:
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Zone |

@ (x) = Aexp (ikyx) + Bexp(—ikyx) [1.73]
with:

ky = @ [1.74]

h

Zone Il

(DH (x) = Cexp (ika) +D exXp (—ika) [175]
with:

kyp = /2”’(52_’/0) [1.76]

1.6.2.1.3. Amplitude reflection and transmission factors

Expression [1.73] of the wave function is a superposition of an incident plane
wave exp (ikyx) and a reflected plane wave exp (—ikyx). This proves that the particle
can either be reflected or transmitted through the potential barrier; there is no
similarity in classical mechanics. The objective is to find the expression of the
reflection and transmission probabilities, and then to verify the law of probability
conservation.

In zone II, there is no backward wave. Therefore, the coefficient D = 0. To
summarize, only the following solutions should be considered:

D (x) = Aexp(ikyx) + Bexp(—ikyx)
[1.77]

@y (x) = Cexp(ikyrx)
Let us use the boundary conditions imposed to the wave function @’;(x) and to
its first derivative @’;(x) = d® (x)/dx in x = 0:
D(0) = Dy(0)

©',(0) = ", (0) [1.78]

Using [1.77], the boundary conditions [1.78] lead to the following system:

A+B=C [1.79]
ki(4—=B)=kyC
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Arranging [1.79], we express B and C as functions of 4. Therefore, we obtain:

p=fizku [1.80]
k1+kH

co_2h_, [1.81]
k1+kH

By definition, the amplitude reflection factor denoted r and the amplitude
transmission factor denoted d of the waves at the level of the barrier result from the
following relations:

_B.,_C [1.82]

A7 A4
Using relations [1.80] and [2.82], we obtain:

_hi—kn, o 2K [1.83]
kI + kII kl + kH

1.6.2.1.4. Reflection probability R and transmission probability T

By definition, the reflection probability R and the transmission probability T of
the particle are given by the following relations:

Ll

W:| o p b [k a2 [1.84]

R=
ky \A\z ky

Using expressions [1.80] and [1.81], we finally obtain:

R= (kl knj ;T:ﬂﬂz [1.85]
ky +kp (kg + p)

The transmission probability 7' [SAK 12, BAY 17] is also often known as
barrier permeability or barrier transparency [SIV 86, BEL 03], or as the barrier
transmission coefficient [COH 77, STO 07].

1.6.2.1.5. Probability conservation

Let us find the sum of reflection and transmission probabilities using [1.85]. We
have:
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R4+T= (ky = hr +_ Yk
(y + kg P (kg +hey )

The expansion of the first term of the right-hand member leads to:

ki + kit = 2y + 4k _ K+ ki + 2kky _

R+T=
(ky + kyp ) (ky + kyp )

Hence:
R+T=1 [1.86]

Therefore, from the quantum perspective, the particle is either reflected or
transmitted, while from the classical mechanics perspective it moves past the barrier,
so no reflection takes place. Among others, result [1.86] reflects the law of
conservation of mass.

1.6.2.2. Case when E <V,
1.6.2.2.1. Value of the reflection factor, evanescent wave

When E < V,, the quantity k;; becomes imaginary according to [1.76]. Similarly
to geometric optics, fotal reflection takes place. Consequently, the probability is
R = 1. Indeed, if we consider kj; = ip, the amplitude reflection factor [1.83] can be
written as:

, 2
r=L _l.p =T ‘r‘z :Ll lp‘z =1
kI Y ‘kl +Zp‘

Though total reflection occurs, the wave transmitted in zone II is not zero: it is
transformed into a wave known as an evanescent wave of low depth of penetration.
To establish the expression of this wave, we consider k; = ip. Using [1.77], we
obtain:

@y (x) = Cexp(—px) [1.87]

p= /2’”(';02_& [1.88]

with:
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1.6.2.2.2. Expression of the depth of penetration

The depth of penetration of the evanescent wave is the distance /, at which the
density of probability decreases by 1/e [SIV 86, SAK 12]. According to [1.87], the
density of probability is:

D(x) = C?exp (-2 px) [1.89]

For x = [,, exp (=2pl,) = 1/e = exp (-1). Therefore, 2pl, =1, or [, = 1/2p. Using
[1.88], we finally find (knowing that 7= h/2m):

h

] =— -
P4 om(vy - E) [1.90]

1.6.2.3. Conclusion

Result [1.90] shows that the wave penetrates zone II even though it undergoes
total reflection.

It is worth noting the existence of a factor ky/k; in the expression [1.84] of the
probability of transmission 7. The origin of this factor should be clarified. For this
purpose, let us express the probability current densities for the process of reflection
and transmission of the particle using [1.73] and the expressions [1.75] of the wave
functions ®; (x) and @y (x). The complex conjugates of these functions can be
written as follows:

{d) *1 (x) = Aexp (—ikyx) + Bexp (ikyx) [1.91]
@ *p (x) = Cexp (—ikyrx)

These relations are used in the calculation of the probability current in zones 1
and II. We obtain respectively:

=2 oo —o, Lo, [1.92]
2mi dx dx
n d d [1.93]
Ji =—| @y ¥*— Py - Py — Py *
11 2mi|: 11 dx 11 11 dx 11 :|

Let us calculate the products between brackets involved in relations [1.92] and
[1.93]. We obtain:

a4 _ iAky exp (ikyx) — iky B exp (—ikx)
dx [1.94]

4oy _ ik C exp (ikypx)
dx
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Similarly:

dd*; . . . .
= —idky exp (=ikyx) + ik B exp (ikyx)
dx [1.95]
dd *

=— ik[ICGXp (—ika)

Taking [1.91] and [1.94] into account, this leads to:

D % = il Ak — iky AB exp (=2ik;x) + iky AB exp (2ik;x) — i Bk
X
%
®; % = — i APPky + iky AB exp (ik;x) — iky AB exp (<2ikix) + 1| Bk
X

do .
@y ?Hﬂkn\c\z

do* .
(D" dxH :—lk“‘c‘z

Using these relations, the probability currents in zones I and II are written
according to the probability currents [1.92] and [1.93]:

ik, . ki
sy =" 2B s =02 [1.96]

The expression of J; is the sum of these two terms. The first term corresponds to
the incident probability current Jj; (due to the incident wave) and the second term
corresponds to the reflected probability current J;, (due to the reflected wave).
Hence:

s =04y, M) (197
m m

By definition, the reflection probability R is equal to the ratio of the reflected
probability current Jy; to the incident probability current Jy. 1If we use the results
[1.97], we have:

rodir = o _|Bf [1.98]
Ji |4
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This is the first of relations [1.84]. Similarly, the transmission probability T is
defined as the ratio of the tramsmitted probability current Jy, to the incident
probability current Jy;. Hence:

rodur =,k |CP [1.99]
Ji k|4

This is the second of relations [1.84].

In the particular case of k= k;; =k, T=1 and R = 0 according to [1.85]. A further
consequence is that the coefficient B = 0. Therefore, the wave functions [1.77] are
identical, since 4 = C according to [1.99]:

D (x) = Aexp (ikx)
= @y (x) = O (x) = Aexp (ikx) [1.100]
@y (x) = Cexp (ikx)

This is in agreement with the predictions of classical mechanics: the particle
moves past the barrier without being reflected. Figure 1.5 shows the variations of the
density of probability of presence p (x) = |® (x)|* in the two cases considered (E <V,
and £ >V).

From a classical perspective, the particle is reflected for £ < V,, while from a
quantum perspective the density of probability of presence p (x) is not zero in the
zone II forbidden by classical mechanics.

e P} N\

> —

0 X 0 X

K (a): E<Vy (b): E>V, /

Figure 1.5. Variations of the density of probability of presence p (x)
of a particle of energy E encountering a potential step of
height V (a) for E < Vpand (b) for E >V
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Nevertheless, the density of probability decreases exponentially with x and
becomes negligible when x is above the penetration length /, [1.90] of the
evanescent wave (Figure 1.5(a)): the particle is then definitely reflected. When the
energy E > V), the particle is transmitted according to the classical predictions.

From a quantum perspective, the density of probability of presence p (x) is
constant in zone II and the particle has a non-zero probability R to go back
according to [1.86]. Nevertheless, for £ >>V}, so that the height of the barrier can be
ignored, then k; = &y and the transmission probability 7' = 1 according to [1.85]: the
particle is then transmitted according to the classical predictions, as shown in
Figure 1.6 indicating the variation of probabilities 7 and R for £ < Vj and for £ >V,

— At low energy (E << V)), the coefficient k; — 0 according to relation [1.74].
Consequently R — 1 and 7'— 0 according to [1.85]: reflection is then total;

— for E=Vy, ky=0: R=1 and T= 0. Reflection is then total;

— at high energy (E >>V,), ki = ky; R —> 0 and T — 1: the particle is then
transmitted according to the classical predictions.

-

0.5

k 0 E/Voy

Figure 1.6. Variations of the transmission probability T and of the
reflection probability R depending on E/V,

1.6.3. Potential barrier, tunnel effect

Let us consider a rectangular potential barrier [COH 77, PER 86, SIV 86,
GI 95, MAR 00, PHI 03, BEL 03, ATT 05, STO 07, SAK 12, BAY 17] of
height 7, and width a. A particle whose total energy is £ <V, moves toward the
barrier from a point of abscissa x < 0. The profile of the barrier is schematically
represented in Figure 1.7. The potential described is such that:
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0, x<O
V(ix)=<V,, 0<x<a
0, x>a
vl
Vo

Zone I Zone I1 Zone III

v

Figure 1.7. Rectangular potential barrier of height V, and width a

Our objective is to describe the behavior of the particle in contact with the
barrier and to analyze the Schrodinger equation in the three zones: I, I and III. Then
the case of 0 < £ < V, is considered. The case of E >V, will be dealt with in
Appendix 3.

1.6.3.1. Classical and quantum descriptions, Schrédinger’s equation

From the classical perspective, the particle is reflected: it hits the barrier and
turns back with the same initial speed. From a quantum perspective, the particle
behaves entirely differently. To describe the physical phenomena involved, we
analyze the Schrodinger equation in the three zones: I, II and III. We obtain,
respectively:

d’®;(x) 2mE

5t ®p(0)=0 [1.101]
dx h
d’o(x) 2m
#.,_7(5_1/0)(1)11@):0 [1.102]
dx? n?

2
d 4)1121 ™), 2sz Oy () =0 [1.103]
dx h
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We consider:

k2 — ; kvzz_zm(VO_E);KZ=2m(VO_E) [1.104]
K2 h h
Let us write the solutions ®;(x), ®y(x) and Dy (x) of the above equations.
Zone |
The solution to equation [1.101] has the form:
@ (x) = Ae’™ + Be™ [1.105]
Zone Il
Equation [1.102] has the following solution:
@y (x) = Ce'F ™ + Do~k [1.106]

Since E<V,, k* = iK according to [1.104]. Solution [1.106] is then written as:
®y;(x) = Ce X 4+ Dk~ [1.107]

Zone Il

The solution to equation [1.103] has the following form:

Oy (x) = Fe'™ + Ge™& [1.108]
Since there is no reflected wave in zone III, then G = 0. Hence:

Dy (x) = Fe'™ [1.109]

1.6.3.2. Expression of the barrier transparency

Let us summarize the previous solutions to Schrodinger’s equation:

@ (x)= 4™ + Be™™
@y (x) = Ce X + D [1.110]
Dy (x) = Fe™
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We now express the boundary conditions in x = 0 and then in x = a. We obtain:

D, (0) = Dy (0); Py (a) = Dy (a)

@’ (0) =@’ (0); P’y (a) =P’ (a) [1.111]
vy dDi(x)
Q;'(x) = 0

Using [1.110] and [1.111], we have:

S [1.112]
ikA—ikB=—KC+KD
—K K ik
g CE HDEE=FE [1.113]
—KCe K+ kDK = ik d*e

The probability of particle transmission from zone I to zone III is given by the
ratio: T = |F*/|A>. The proof of the expression of T is quite lengthy. It will be given
in Appendix 3, as the focus here is on its physical interpretation. We then obtain:

4E(Vy—E)

2m(Vy —E)
7?[ a

T=

[1.114]
4E(Vy—E)+Vish® {

1.6.3.3. Tunnel effect

Result [1.114] expresses the probability of the particle crossing the barrier. This
partial transmission is known as the tunnel effect. Adopting a view according to
which the particle goes through an already existing tunnel (for example, tunnels dug
underground and used by subways or trains) should be avoided. This is a purely
quantum effect reflecting the fact that a part of the incident wave is transmitted in
the barrier and another part is reflected.

To clarify this, let us prove that the transparency 7' of the barrier decreases
exponentially with its width a. For this purpose, we express T as a function of Ka
using [1.104] and [1.114]. We have:

4E(Vy —E) [1.115]
4E(Vy — E)+ Vish*[Ka]
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Given the approximation Ka >> 1, the hyperbolic sine is shKa = exp(Ka)/2.
Equation [1.115] is then written as:

4E(V)—E) [1.116]

T =
V0262Ka
J’_i

4E(Vy - E)

Since Ka >> 1, the first term of the denominator of [1.116] is negligible
compared to the second term. Hence:

Tz%g—E)e—ZKazToe—ZKa [1.117]
"o
with:
o 160 —E) [1.118]
0~ 2
Vo

The approximated result [1.117] shows that the tunnel effect decreases
exponentially with the width a of the barrier and also with the mass m of the
particle, since according to [1.105], we have:

—Vz’"(Z‘)_E)=a><M [1.119]

with:

J20,—E)

/]

Relation [1.119] makes it possible to clarify the sensitivity of a particle to the
tunnel effect.

As shown by expression [1.118], the tunnel effect decreases exponentially with
the mass m of the particle via the constant K. The larger the mass of the particle, the
faster the decrease of T to zero. Consequently, the intensity of the tunnel effect
grows with the decrease in particle mass. Therefore, for the same value (V — E), an
electron of mass m has a higher probability to generate a tunnel than the (smaller)
proton of mass my, (m,/m = 1,836).
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1.6.3.3.1. General conclusion

The tunnel effect cannot be perceived for macroscopic objects. Figure 1.8 shows
the variation of the density of probability p (x) = |® (x)|” in zones I, II and III. The
density of probability of presence p (x) decreases exponentially and becomes zero in
zone I1I beyond x > /..

/ P ) I \

o

Figure 1.8. Exponential decrease of the density of probability of presence p (x)
of a particle that crosses a potential barrier by tunnel effect

1.6.3.4. Penetration length of a particle by tunnel effect

Let us give an order of magnitude for a particle to cross a potential barrier by
tunnel effect. We consider the case of the electron and proton. This makes it possible
to theoretically confirm the assertion according to which the electron has a higher
probability to cross the barrier by tunnel effect. The depth of penetration of the
evanescent wave is given by [1.119], which is worth recalling:

h [1.119b]

=
P4z 2m(Vy - E)

Let us consider an electron and a proton of similar energy £ = 1 eV each
encountering a potential barrier of width @ = 1 A and height ¥, = 2 eV (the condition
E < V, should be respected). Let us calculate the depth of penetration of the
evanescent wave and the probability for the electron or proton to cross the barrier by
tunnel effect. For the numerical applications: 4 = 6.63 x 107 J.s.

1.6.3.4.1. Length of penetration
— for the electron (m =9.1 x 107" kg), we have: [, =098 A~a=1A;
p
— for the proton (m, = 1.67 x 107" kg), we have: [,,=0.023 A <<a=1A.
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These results prove that the electron penetrates the barrier more than the proton;
the length of penetration of the evanescent wave in the barrier is approximately
43 times (/,e/l,, = 43) larger for the electron than for the proton.

1.6.3.4.2. Transmission coefficient

Let us express the depth /, as a function of K taking into account [1.119]. We
have:

| = h __h 1 =Kk=1/21 [1.120]
P an om(vy-E) 4mK 2K

Using [1.117] and [1.120], we have:

1 [1.121]
T= )
1+Lea/1,,
16E(Vy—E)
Knowing that £=1 ¢V and V; =2 eV, formula [1.121] can be written as:
Te l1 [1.122]
1+
— for the electron: [,. = 0.98 A=a=1A=T=0.59 = 60%;
— for the proton: I, = 0.023 A =T=52x 107" = 0%. [1.123]

We take /,¢/l,, = 43. Hence, if E =1 eV and V, = 2 eV, the results below show
that while the electron has a 60% probability to cross the barrier by tunnel effect, the
probability for the proton to cross the barrier by the same effect is extremely low.

/" 1ry N\

\ 0 E/Vj/

Figure 1.9. Variations of the transmission probability T and the
reflection probability R depending on E/V,
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Figure 1.9 shows the variations of transmission probability 7" and reflection
probability R depending on the ratio E/V,. If E >>V, probability 7 = 1, the particle is
certainly transmitted according to the predictions of classical mechanics.

1.6.4. Quantum dot

Let us consider a particle confined in a quantum dot [PER 86, STO 07, SAK 12]
of edge a (Figure 1.10). This confinement makes it possible to define a cubic
potential such that:

0, 0<x<a;0<y<a;0<z<a;
V(ix)=

oo, elsewhere

“A

O i
/y
x/a

Figure 1.10. Quantum dot of edge a

Similar to the case of the two-dimensional rectangular potential, in the case of
the cubic potential, the total energy E = E, + E, + E. = constant. Moreover, the
global wave function W (x, y, z) describing the state of the particle in the dot is the
product of three functions ®(x), y(y) and %(z), which is:

Y (x,y,2) = O(x) X y(y) X x(2) [1.124]
The transformation [1.124] is known as ansatz.

The objective here is to determine the spectrum of the particle in the dot and the
explicit expression of the global wave function [1.124].
1.6.4.1. The Schrédinger equation, normed wave function

The density of the probability of finding the particle at a point M(x, y, z) in the
dot is given by the square of the amplitude of probability ‘¥(x, y, z). The potential is
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infinite outside the dot, ¥(x, y, z) = 0. Consequently, the density of the probability of
presence of the particle is zero outside the quantum dot. The Schrédinger equation in
the dot is a three-dimensional equation. The potential being zero in the dot, this
equation can be written according to [1.28]:

2 (2 2, 2,
|9 p.2) 9% p,2) 9 2) | F¥(x..7) [1.125]
2m|  ox oy &

Using the variable separation method in [1.124], we obtain:

2 2
_h(my 2 000 T s {20 "(Z)J E@Qop(zz) [1-126]

Dividing both terms of this equation by ®(x) X y(y) X y(z), we have:

h2[ L a0, 1 dyp), dZ;((z)J:

2m\ ®(x) dx oy dy  x(2) dz

Knowing that £ = E, + E,+ E,= constant, this equation can be written as:

2 2 2 2
_Z{ L dow 1 dy(p), 1 dZ(Z)J=Ex+Ey+EZ [1.127]
m

o) dr  w() &y d

By identification, we find:

J2
(I)(x) 2mE xq)( )=0
dx

dZV,(y) 2m [1.128]
& h2 Ly (y)=0

dg(z) ZmE Z( )=0
z n?

The solutions to equations [1.128] are identical to solution [1.62] in the case of a
particle confined in a potential well of width a. Hence:



Schrédinger’s Equation and its Applications 41

ﬂ] [1.129]

In these expressions, n, 4 andv designate the quantum numbers characterizing
the state of the particle along directions x, y and z, respectively. The normed wave
function [1.124] ¥, (x, , z) can then be written as:

W (X,9,2) = ﬁ sin[m xjsin[w yjsin[wr zj [1.130]
a a a a

In [1.130], n, 4 andv have the minimal values n = 4 = v= 1. The value 0 should
be excluded, otherwise the wave function is zero in the dot. Moreover, the value 0
(involving E, = 0) is forbidden by the uncertainty principle, as explained above in
the case of the infinitely deep potential well.

1.6.4.2. Spectrum of the particle, degeneracy of the energy levels

Similar to the case of the rectangular potential, for each of the three degrees of
freedom of the particle, the total energy is quantized and given by [1.62]. Therefore,
for the three dimensions, we have:

y [1.131]

The total energy is then written as:

2”_2
Enpy =27 (2 4 12402 [1.132]
2ma

Expression [1.133] shows that the different quantum states for which the sum n’
+ u*> + v* = constant have the same energy. There is therefore a degeneracy of the
energy levels of the particle confined in the cubic box. It is worth recalling that the
degree (order) of degeneracy of a given energy level E,,q is equal to the number of
different quantum states that have the same energy. We illustrate this degeneracy in
the case of the ground state and for specific combinations for which n* + u* +v*= 6
and 9. Table 1.1 summarizes the results obtained.
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n|u|v| Ey Degree of degeneracy (g)

1|11 3E g = 1: non-degenerate ground level

1112 6E

112 |1] 6E g = 3: three times degenerate excited level

2011 6E

1122 95
2

2|1 9E, g = 3: three times degenerate excited level
2 12| 1] 9E
2 (2|2 12E g = 1: non-degenerate excited level

Table 1.1. Degeneracy of the energy levels of a particle confined in a cubic box.
Only a few levels are presented

1.6.5. Ground state energy of hydrogen-like systems

The quantization of the energy of the hydrogen atom has been established by
Bohr since 1913. Our objective here is to find the expression of the ground state
energy of hydrogen-like systems using Schrodinger’s equation. V (») designates the
potential energy of electron—nucleus interaction. Moreover, the stationary wave
function describing the state of the electron is denoted by ¥(r,6,¢). Therefore, the
stationary Schrodinger’s equation should be integrated in spherical coordinates. In
this system of coordinates, the Laplacian is given by the following expression:

2
=19(r23j+ ! 3[ 1 a}r 10 [1.133]
p2or\ dr) ;2sin@ 06\ sin@96) ;2sin00%p

1.6.5.1. Schrédinger’s equation

Using Schrodinger’s equation [1.28], we have:

2 N N N
{{A*V(r)}*'(n 6.0) = E¥(r.6,0) [1.134]
m

For the stationary states, the wave function is the product of the radial wave
function ®(r) and the angular wave function Y(6,¢) (in this notation the angular
momentum quantum number and the orbital magnetic quantum number have been

omitted; the spherical harmonics are denoted by ;" (6, ¢) ). Hence:
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¥ (r,0,0) = D(r)xY(8,0) [1.135]

Taking into account this form of the wave function, equation [1.134] can be
written as:

2
{—fm V(r)}QD(V)XY(B, @) =ED(r)xY(6,9) [1.136]
m

Considering the ground state of a hydrogen-like system for which the s orbital
has spherical symmetry, the global wave function [1.134] is independent of & and ¢
and the function Y(6,¢) is constant. It only depends on the radial coordinate r.
Consequently, the Laplacian [1.133] acts only on the radial part of the wave
function. Hence, dividing [1.136] by Y(6,¢) in order to separate the angular and
radial variables, we obtain:

2
{—hA, + V(r):ld)(r) = ED(r) (1.137]
2m

In this equation, the Laplacian is purely radial and is written according to
[1.133]:

A =1d(r2d) [1.138]
g r2 dr dr

Using [1.138], equation [1.137] becomes:

n1d

2d(r) -
2 dr (r dr) +V(r)®(r) = ED(r)

After arrangement, we have:

%%[rzdc;ir)j+;—’;[E—V(r)]<D(r)=0 [1.139]
r )

Moreover, for a hydrogen-like system, the potential energy resulting from the
Coulomb interaction between nucleus (+Ze) and electron (—e) is given by the
relation:

V(r) 2 [1.140]
r
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Inserting [1.140] in equation [1.139], we have:

2
gd(rz dq)(r))Jrz’? E+* o4y =0
rodr dr h r

Hence:

dzq)(r)+2d<1>(r)+2m[E+kZe2Jq)(r):O
2 r

dr? r dr

Or:
2 2
dr r dr h r h

Let us consider:

o= PR e [1.142]
The differential equation [1.141] can then be written in the form:
2
d0(r) , 2 do(r) +(G+2p)®(r) ~0 [1.143]
dr? roodr r

1.6.5.2. Ground state energy

Knowing the wave function @ () for the ground state makes it possible to
determine the parameters p and o and then deduce the expression of energy FE
according to [1.142]. One of the simplest solutions to equation [1.143] with a
finite value for » = 0 and tending to zero for » — oo has the following form [SIV 86,
SAK 12]:

O (r)=e™ [1.144]
The first and second derivatives of this function can be written as:

) _ o d’o(r) _ e

; [1.145]
dr dr?
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Inserting results [1.145] in [1.143], after arrangement we find:
W2 +0)+L2p-21)=0 [1.146]
r

Equation [1.146] is verified for any value of variable . Consequently, the terms
between brackets in [1.146] are simultaneously zero. Hence:

(W +0)=0=>0=—u’ [1.147]
2p-2u)=0 =p=u

We deduce from these relations: = —p°. According to [1.142], we then have:

2mE [ kZme® ’
o

Or in the end:

E = "2272’;164 [1.148]
2h
Result [1.148] actually corresponds to the ground state energy of the hydrogen-
like systems [3.24] if n = 1. If Z = 1, we find the expression of the ground state
energy of the hydrogen atom known since 1913. This result is one of the strong
confirmations of the validity of the Schrodinger equation postulated in 1926, which
was 13 years after the elaboration of Bohr’s theory on the hydrogen atom.

1.7. Exercises

1.7.1. Exercise 1 — Probability current density

The objective of this exercise is to express the probability current density in one
dimension. For this purpose, we consider the generalized coordinate q (x, y or z) and
the wave function ¥ (g, f) of an arbitrary system (particle). Operator Q is associated
with g.

(1) Express the Hamiltonian H of the system, then write the equations
corresponding to the action of operators Q and V' (Q, f) on the wave function ¥ (g, 7).
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(2) Let p be the probability density. Prove that:
2 2
W _ [ fomwr) (2],
ot 2im dg> dg>

(3) Given the following relations:

2
a[\yaw*]_waw*+\},[a \y*j

g\ 9 ) 9g g 92
2
dq dg ) dq dq dg

Prove the equation:

dp__h 9 [\P*a\P_a\P*TJ

a  2mog\  og og

(4) Then prove that the equation for probability conservation can be written as:

9p(g,1) + 9J(q,1) _ 0
ot dq

In this relation, J (g, ?) is a quantity to be defined.

1.7.2. Exercise 2 — Heisenberg’s spatial uncertainty relations

This exercise focuses on the proof of Heisenberg’s spatial uncertainty relations.
For this purpose, let us consider the root mean square deviations Ax and Ap,. The
remaining two relations relative to y and z coordinates will be deduced by analogy.
To simplify the study, we consider a one-dimensional problem and we choose the
origin O of coordinates at the point of abscissa (x) = 0 so that the mean of the linear

momentum is {p) = 0. Consequently:

The calculations will be done using the wave function ¥ =W (x) that is assumed

normed to unity.
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For all practical purposes, we have [CHP 78]:

2 oo
J‘ux‘l’+wd\y dx203(‘P*d‘Pj =0
dx dx )|_,

In the above inequality, # and w are auxiliary variables.

(1) Recall the definition of the average (x). Then deduce the root mean square
deviations Ax and Ap, by analogy.

(2) We consider:

dx

A =J.x2‘}"l’*dx; B =—Jx—(‘}"l’*)dx; C=J-

d av* ay
dx dx

dx
Prove the inequality:

Au® —uwB + Cw*> 0.
Clarify the sign of 4, with supporting rationale.

(3) Find the values of 4 and B. Then deduce the inequality verified by AC.
(4) Find the expression of C.

(5) Use the above results to deduce Heisenberg’s uncertainty relations.

1.7.3. Exercise 3 — Finite-depth potential step

We consider a finite-depth potential step (Figure 1.11).

Vx)h

4

Zone 1 Zone 11

0 a

B

_V2

Figure 1.11. Finite-height potential step
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A particle of energy £ moves toward the potential step from a point of abscissa
x < 0. The potential as described meets the following conditions:

M, x>a
V(x)=
=V, x<a

This exercise focuses on the study of the behavior of the particle in the following
two cases:

E>V,
and:
- V< E<V;
(1) First case: E> V.

(1.1) Prove that the states of the particle are stationary states. Write the
Schrédinger equation in zones I (x < a) and II (x > a).

(1.2) Deduce the solutions ®; (x) and @y (x) in zones I and II, respectively. We
consider:

qZ — M:VZ) for the solution in zone I
i

o = 2m(E—-V)) for the solution in zone II
hz

(1.3) Express the transmission probability 7 and the reflection probability R.

(1.4) Find R + T. Conclude by comparing the classical and quantum predictions
relative to the behavior of the particle.

(2) Second case: — V, < E <V,. Answer the same questions as for (1.1), (1.2),
(1.3) and (1.4) above. As applicable, the expression of the evanescent wave and the
emerging purely quantum effect shall be specified.

1.7.4. Exercise 4 — Multistep potential

Let us consider a multistep potential (Figure 1.12).
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() W o

II

_VO
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A

Figure 1.12. Multistep potential

The potential is defined as follows:
+oo, x<0
=4y, 0<x<a ,with Vy>0anda >0

V(x)=
) =Vy, a<x<3a

0, x>3a

A particle of energy £ < 0 moves from —eo to the potential step.
The profile of the potential is schematically represented in Figure 1.12.
(1) Write the stationary Schrodinger equation in zones I, I and II1.

(2) The particular case for which £ =— Vj is studied. Let ‘¥; (x) be the solution in
the considered zone (i). We have:

k2

_6ml, .qz _2mly
n’ n’
Express the solutions ¥; () in the three zones.

(3) Using the connection conditions, express the solutions ¥; (x) as a function of
X, a, and q.

(4) Then prove the relation:

tanY=—2Y—\/§

where Y is a parameter to be clarified.
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(5) What is the condition to obtain a bound state of energy £ = — V;?

(6) Use a graphical representation to find the set of solutions corresponding to a
bound state of the particle of energy £ =— V.
1.7.5. Exercise 5 — Particle confined in a rectangular potential

We study the behavior of a particle confined in an infinitely deep rectangular
potential well (Figure 1.13).

y

a

Zone I

O b x

Figure 1.13. Rectangular potential

In zone I, the potential is marked by the points O (0, 0), 4 (0, a), B (b, @) and
C (b, 0). This yields:

0, zonel

Vix)= {

+oo, elsewhere

Moreover, along the two dimensions, the total energy E = E, + E, = constant. Let
¥ (x, y) be the wave function describing the state of the particle in zone 1. ®(x) and
y(y) designate the functions describing the state of the particle along the directions x
and y, respectively.

(1) Describe the behavior of the particle from a classical perspective.
(2) Establish the differential equations satisfied by ®(x) and y(y).

(3) Deduce the solutions @, (x) and y, () to these equations, #n and g designating
the quantum numbers characterizing the state of the particle along directions x and y.

(4) Find the expression of the normed wave function ¥, (x, y). What are the
minimal values of n and ¢?
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(5) Express the density of the probability of finding the particle at point M (x, y).
At what point(s) is this density maximal?

(6) Prove that the total energy of the particle is quantized.

(7) Deduce the expression of the energy £’ in the case of a square potential
(a = b =1). Then show that the energy levels E’ are degenerate. Specify the origin of
this degeneracy.

1.7.6. Exercise 6 — Square potential well: unbound states

Let us consider a square potential well of width 2a and depth V> 0 as shown in
Figure 1.14. The potential described in this figure satisfies the following conditions:

0, x<-a
V(x)=<=V,, —a<x<a

0, x>a

A particle of total energy £ > 0 comes from — e toward the well.

The behavior of the particle upon its arrival above the well is studied.

Zone I | Zone III

_VO

Figure 1.14. Square potential well

(1) How does the particle behave from a classical perspective once it arrives
above the well? What is its behavior from the quantum perspective?

(2) Write the stationary Schrédinger equation in zones I, II and III. Deduce the
corresponding solutions @ (x), @y (x) and Dy (x), respectively. We consider:

k2= MTE for the solutions in zones I and III.
h
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,02 - 2m(E+V0) for the solution in zone II.
2
h

(3) Prove that the probability of transmission from zone I to zone III can be
written in the following form:
- 4p2k>
4%k +(p* —k*)?sin® 2pa

(4) Define and then express the probability of reflection R.

(5) In relation to the behavior of the particle, specify the predictions of quantum
mechanics in comparison to classical predictions.

(6) Is the energy spectrum of the particle discrete or continuous? Justify the
answer.

1.7.7. Exercise 7 — Square potential well: bound states

The same potential well of width 2a and depth V; > 0 such as that described in
Figure 1.14 is considered. This time a particle is coming from — o« with a total
energy E < 0 so that — Vi< E < 0.

(1) From a classical perspective, what is the behavior of the particle since its
entry in zone I (see Figure 1.14)? What is the quantum perspective?

(2) Find the wave functions @ (x), @y (x) and Py (x). We consider:

p2 __2mE for the wave functions in zones I and I1I;
2
h

K2 = 2m(E+Vy) for the solution in zone II.
2
7

(3) Prove the relation:

2 \2
p—ik _ e4ika
p+ik

Then show that the energy is quantized.
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(4) Provide a graphical solution to the above equation. Two cases are
distinguished. Show that the wave functions associated with the bound states of the
particle have well-defined parity.

1.7.8. Exercise 8 — Infinitely deep rectangular potential well
The objective is the study of the behavior of a particle in an infinitely deep

potential well, the profile of which is schematically represented in Figure 1.15. The
potential V (x) is defined as follows:

{0, ‘x‘ <al2
Vix)=
+oo, x‘>a/2

V(x)A
N R
N N
N N
N N
N N
Zone | s Zone | 11 §Zone 111
N N
N N
X N
N N
N N
S N
N N
A N
N N s
—al2 0 +a/2 X

Figure 1.15. Infinitely deep potential well

(1) Find the wave function @ (x) describing the state of the particle.
We consider:

K2 = 2mE
hz

(2) What is the condition imposed on £? Then express the quantized energy of
the particle.

(3) Express the even and odd wave functions describing the bound states of the
particle. Establish the normed expressions of these even and odd wave functions.
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(4) Provide a graphical representation of the wave functions and of the densities
of probability corresponding to the ground state and to the first three excited levels
of the particle.

1.7.9. Exercise 9 — Metal assimilated to a potential well, cold emission

In a metal, there are two bands that play a significant role in the electric
conduction mechanism in metals. These are the valence band and the conduction
band. In a first approximation, the N conduction electrons are considered free (in
fact, each electron interacts with N — 1 other electrons and with the electric field
generated by the crystal lattice).

For the model of free electrons (perfect electron gas model), the metal is
assimilated to a rectangular potential well of finite depth V> 0. Electrons are thus
confined in the well (Figure 1.16). Then the potential is considered zero on the
bottom of the well and changes at the walls, jumping from 0 to V,. At low
temperature, no electron can be emitted by the metal. Nevertheless, if the metal is
brought to quite a high temperature (above 1,000°C), the thermal agitation motion
becomes so intense that electrons with sufficient energy manage to overcome the
potential barrier of height Vand escape from the metal: this phenomenon is known
as the thermoelectric effect. Is it then possible to observe a cold metal emitting
electrons?

Vacuum
Vo

R T .

Figure 1.16. Metal assimilated to a rectangular potential well

From an experimental point of view, it can be noted that when a strong electric
field (approximately 10° V/cm) is applied, normally at the surface of a metal, the
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latter emits electrons: it is the cold emission phenomenon that is studied in this
exercise. When an electric field is zero, the potential energy is represented by a step
AOBC of origin O located at the surface of the metal. The potential energy can
therefore be considered zero inside the metal and equal to a constant K outside the
metal (Figure 1.17).

V(x)“
B C
)
I AN

1

| ot

1 i ,
A 0] X1 D X

Figure 1.17. Potential profile in a metal assimilated to a rectangular potential well

If an electric field of intensity E is applied, this field does not penetrate the
metal, and so the potential is still zero. Outside the metal, the potential energy varies
as a function of x and decreases according to BD. Hence, between the metal and the
vacuum there is a potential barrier OBD. An electron of energy W at the point M of
abscissa x; (thickness of the barrier at point M) is tunneling out of the metal.

Transparency 7 of the barrier is given by the expression [SIV 86, SAK 12]:

X1
T =exp— ZJA 1 —Zm[V(x;l— W) dx
0

(1) Find the expression of potential energy V(x) for x > 0.
(2) Express x; as a function of K, E, W and e (elementary charge).

(3) Prove that the probability of transmission of the barrier can be written in the
following form (¢ = K — W):

T=exp—-Ey/E

where E is a constant whose expression will be specified.
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Calculate Ey and 7. Draw a conclusion.
Given data.
e=16x10"C;m=9.1x 10" kg; E=4x10" V-cm™ '

i=1.05x107*J-s; p=5¢eV

1.7.10. Exercise 10 — Ground state energy of the harmonic oscillator

Let us consider a one-dimensional classical harmonic oscillator. It is constituted
of a particle of mass m. During the motion, the position of the oscillator is given by
its abscissa x with respect to a point O chosen as origin of space. At any instant, the
oscillator is subjected to an opposing spring force F = —kx, where k is a positive
constant known as the coefficient of elasticity.

(1) Express the elastic potential energy V(x) of the classical oscillator.
(2) Prove that the classical oscillator is a conservative system.

(3) Let us now study the behavior of a quantum harmonic oscillator of potential
energy V(x).

(3.1) Prove that the stationary Schrodinger equation describing the evolution of

the quantum harmonic oscillator can be written in the following form:

2
-9 4 Poig)=a vg)
d

where g and o are dimensionless quantities to be specified.

(3.2) For a certain value of ¢, the ground state wave function has the form
Dy(q) = exp (Sg°), where S is a constant. Using the previous equation, prove the
relation:

(1-48%¢" - 2=«

(3.3) Deduce from this equation the possible values of . What value should be
retained? Justify the answer.

(3.4) Find the expression of the ground state energy Ej of the quantum harmonic
oscillator.
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1.7.11. Exercise 11 — Quantized energy of the harmonic oscillator

Let us consider a one-dimensional quantum harmonic oscillator of energy E,
angular frequency @and potential energy V(x). The dimensionless quantities are:

(1) Prove that the Schrodinger equation for the stationary states of the harmonic
oscillator can be written in the following form:

2
LD e~ 2 )oig) =0
dq

(2) The solution to this equation has the form:

() = Au(g)e 12

In this expression, 4 is a constant to be determined by the normalization
condition.

The function u (g) is a complete series of powers of g given by the expression:
— S, ok
u(q)= Xapq
k=0

Prove that u (g) satisfies the following differential equation:

2
d ”(2‘7) “2g D | (e _1)uig)=0
dg dgq

(3) Express the recurrence relation satisfied by the coefficients of u (g).

(4) Using the cut-off condition, prove that the energy of the harmonic oscillator
is quantized. Deduce the value of the energy E, of the ground state.

(5) Plot the curve of the variation of potential energy V{(x). Draw on this curve
the ground level of the studied quantum harmonic oscillator, as well as the first four
excited levels. Comment on this curve first from a classical perspective and then
from a quantum perspective.
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(6) What is the energy of the studied harmonic oscillator from both a classical
and a quantum point of view?

(7) Making the classical oscillator—quantum oscillator analogy, decide if the
existence of energy Ejcan be justified from the classical point of view.
1.7.12. Exercise 12 — HCI molecule assimilated to a linear oscillator

A very simple particular case of a quantum harmonic oscillator is the model of
the hydrogen chloride molecule HCI assimilated to an oscillating dipole.

H Cl
', . X
e R -l
a

Figure 1.18. HCI molecule assimilated to an oscillating dipole

Indeed, since chlorine is more electronegative than hydrogen, the electron
doublet is not equidistant from the centers of inertia of H and Cl atoms. The doublet
is slightly attracted by the chlorine, which induces a polarization of the molecule and
each of the bound atoms also carries a partial charge —6 for Cl and +0 for H. The
mean distance between the hydrogen atom and the chlorine atom is denoted by «
(Figure 1.18). The potential energy of the dipole thus constituted has the following
form:

V(x)= %k(x —a)?

Moreover, the wave function @, (x) of the ground state and ®;(x) of the first
excited state are given by the expressions:

2 2 2 >
q)o(x):AOe_a (x—a) /2, q)l(x)zAl(x_a)e—ﬂ (x—a) /2

In these expressions, Ay and 4;are normalization constants and o and f are
strictly positive constants.

(1) Write the Schrodinger equation of the vibration stationary states of the
hydrogen chloride molecule. Deduce from it the relation between ozand f.
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(2) Find the expressions of energies E, and E; of the respective ground state and
first excited state of the HC]l molecule.

(3) What are the values of constants 4, and 4,? Deduce the expressions of the
normed wave functions of the ground state and of the first excited state.

Given data.

For the family of integrals of the type:
oo .2
1,= I xPe” P* dx
0

(where p is a strictly positive constant), the recurrence relation can be written as:

-1 . 1 |z - 1
1, =—1, 55, == |Zs]j=—
P, 02 1y 2\ 173,

1.7.13. Exercise 13 — Quantized energy of hydrogen-like systems

The objective here is to determine the expression of the quantized energy of
hydrogen-like systems. For such systems which are in a stationary state, we consider
the wave functions with spherical symmetry that depend only on the radial
variable r.

The Schrodinger equation describing the evolution of the radial function is of a
similar type to equation [1.144]. The following changes are made:

=—¢and2p=9

The parameters ¢ and p are given by relations [1.143]. Consequently, equation
[1.144] has the form:

2
d (I)(I") + gd‘b(”) + (5 _ 82)(1)(7") =0 (equation 1)
dar? rodr r

In this equation, the variation of the wave function with r is given by the
expression:

() = Me_” (equation 2)
r
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The function %(r) in equation (2) is written as a complete series:

2(r) = E a ¥ (equation 3)
k=v

where Vvis a positive integer to be determined.

(1) Using equation (1), establish the differential equation verified by the function
x().

(2.1) Using equation (3), prove the following relations:

viv-1) =0 (equations 4)
k(k+V)a,, —2¢ka, +6a, =0

(2.2) Deduce from equations (4) the possible values of v. What values should be
retained? Why?

(3) Express the ratio a;.i/a;. What is the asymptotic behavior of this ratio to
infinity?

(4) Compare the behavior of the ratio ay.i/aq; to infinity to that of the complete
series expansion of the function ¢*?. Draw a conclusion.

(5) Using the cut-off condition, express the quantized energy of hydrogen-like
systems.

1.7.14. Exercise 14 - Line integral of the probability current density
vector, Bohr’s magneton

At various points in Chapter 3 of Volume 1, we expressed the energy gaps
between the fine structure levels as a function of Bohr’s magneton up (see,
for example, the exercise in section 3.7.15). The objective here is to establish the
expression of up based on the probability current density.

In classical electrodynamics, the expression of the magnetic moment of a
circular current features the intensity of the circular current and the area around
which it flows. Nevertheless, in quantum mechanics, which rejects the notion of
circular or elliptical orbit, the situation is described in terms of density of probability
of the presence of the electron. This approach takes into account the mean density of
the electrical charge e¥*¥ present throughout the space (charge is distributed in
space and is not confined to the line assimilated to a circular or elliptical loop).
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The mean value of the current is thus the product of the elementary charge e and the

probability current density J provided by expression [1.48], which is recalled as
follows:

TGt = P s
2mi

In this expression, the wave function depends on spherical coordinates (r, 6, ¢).
Therefore, ¥ =¥ (7,6 @) = R(r) X O(6) X ®(¢). The radial part R(r) and the angular
part ©(6) of the wave function are real. The angular part ®(¢p) = exp (imy @) is
complex. Figure 1.19 shows the flow of the tube of volume current (equivalent of

the circular loop in classical theory), the component J, of the probability current
density vector and the area do of the cross-section of the current tube.

Figure 1.19. Tube of volume current

(1) Specify the values of the components J; and Jy of the probability current
density vector. Prove that J, can be written in the form:
h Rl 4

Jy,=—myX
? m ‘ rsin@

(2) Express the intensity dl, of the current through do (which is the flux of the
probability current density vector through the elementary surface do).

(3) Prove that the magnetic moment dM ,verifies the relation:

My =+ dr
=y

where d7 designates the elementary volume of the current tube of cross-section do.
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(4) Express the orbital magnetic moment of the electron. Deduce the expression
of Bohr’s magneton.

Given data. Components of the gradient in spherical coordinates:

8 18

(), = 2L () =190 T, - oY

rsin&%

1.7.15. Exercise 15— Schrédinger’s equation in the presence of a
magnetic field, Zeeman—Lorentz triplet

Schrodinger’s equation offers a simple way to find the previous Zeeman—Lorentz
triplet (result [3.188]). This proves once more the broad range of applications of this
equation for the correct interpretation of various physical phenomena such as the
Zeeman effect, which is the focus of this exercise. In the absence of a field of
external forces, the Schrodinger equation describing the evolution of the state of a
free particle is written as follows:

AP+ 2 E—ryw =0
h2

In the presence of a magnetic field, an additional term appears [CHP 78]:

_i2T vy (equation 1)
h

This term is due to the action of the magnetic field on the particle and A4
corresponds to the vector potential and satisfies the equation B=V A 4.

Schrodinger’s equation in the presence of a magnetic field is in this case:

A‘{‘—z;A V\P+7(E V¥ =0 (equation 2)

Let us consider a hydrogen-like system (fixed nucleus) subjected to a uniform
magnetic field of arbitrary direction Oz. The wave function of the hydrogen-like
system considered is ¥ (,6¢) = R () X © (6) X ® (). It is worth recalling that
functions R () and © (&) are real and @ (@) = exp (im, ¢).

In the Zeeman effect, only the function @ (¢) containing the orbital magnetic
quantum number plays an essential role.
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(1) Passing to spherical coordinates and assuming that variables » and 6 are
constant, prove the relation:

v _ oY ¥

X——py—

3 Ty T

(2) Prove that the applied magnetic field is deduced from the vector potential, the
components of which are:

1 |
Ax:_EBy;AyZEBx’AZ 0
(3) Prove the relation:

i VY = B,

h no

(4) Write the Schrodinger equation describing the evolution of the state of the
electron along the direction of the magnetic field using equation (2). Prove that it
can be written in the form:

AY + 2—’f(E' —V)¥=0 (equation 3)
h

In this equation, £’ is an energy that will be defined and expressed.
(5) For a hydrogen-like system whose potential energy is V' (r) = —Ze*/r and total

energy is E, Schrodinger’s equation can be written as follows:

A‘P+2—’;1(E—V)‘P=O
h

Knowing that solving this equation yields discrete values E, of the energy E (see
the exercise in section 1.7.13), prove without solving equation (3) that energy E’ is
quantized. Then find the Zeeman—Lorentz triplet.

Given data. x = r sin@cos@; y = r sin@sing; z = r cosé.
1.7.16. Exercise 16 — Deduction of the stationary Schrédinger equation
from the De Broglie relation

The wave function describing the evolution of a system makes it possible to

calculate the probability of finding the system at a point 7in space. This function
can also be used to calculate the mean values of the physical quantities
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characterizing the system, such as energy and linear momentum. The problem is
then knowing how to find such a wave function.

Obviously, the De Broglie plane wave cannot be used, as its temporal and spatial
uniformity is incompatible with the space localization of the system. Schrodinger
holds the merit of postulating in 1926 the fundamental equation of quantum
mechanics describing the evolution of any wave function. There is no logical
approach to proving this equation (since it originates in a postulate). Its validity is
confirmed by the significant physical consequences following from it. There is,
nevertheless, a purely inductive way to find the Schrédinger equation.

The objective of this exercise is to find this equation from the De Broglie
relation. For this purpose, let us consider a one-dimensional problem. The
generalized coordinate is designated by g, ¢ = x, y or z.

Let W(q, ?) be an electromagnetic wave propagating in vacuum. It satisfies the
general differential equation:
*Y 1 9%y

= (equation 1)
8q2 2 o

Schrédinger’s equation being verified for any quantum state, we consider the
particular case of a stationary state for which the wave function solution to the
propagation (equation (1)) has the form:

W (q,t) = P(q)xexp(iaxr)

As chosen, the stationary wave function ¥(g, t) oscillates in time with angular
frequency o, its amplitude varying with the generalized coordinate g.

(1) Express equation (1) as a function of the wavelength and of the frequency
with which the electromagnetic wave ¥(q, f) oscillates in time.

(2) Use De Broglie’s relation to prove:

9’P(q) _
qu

2
—4r? Lo a(g)
h

(3) Express the energy E of a conservative system subjected to potential V{(g).
(4) Find the one-dimensional stationary Schrodinger equation.

(5) Make a generalization of the previous result to three dimensions.
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1.8. Solutions
1.8.1. Solution 1 — Probability current density

(1) Hamiltonian expression, operator actions

The Hamiltonian A of the system and the equations resulting from the action of
operators Q and V' (Q, t) on the wave function ¥ (g, ¢) are given by the relations:

2
Hz—h—Aq +V(0,1) [1.149]
2m
QY (¢, 0=q¥ (g, 0:; V(Q, 0¥ (¢, ) =V (¢, ¥ (¢, 1) [1.150]
(2) Proof
The one-dimensional probability density is written according to [1.48]:

pla.0) =[¥(@.0" =¥(g.0%*(g,0) [1.151]

For simplicity purposes, variables ¢ and ¢ in relation [1.151] are omitted. We
express the first derivative with respect to time of the probability density. We obtain:

alzaw*w+w*a£=_i
ot ot ot ih

() *)¥ +%‘P*[H‘P] [1.152]
l

In [1.152], we substitute H by its expression [1.149], hence:

p 1| n 1 n?
e DA W 4V (g, )0 * ¥ +—F*| - A P +V(q,0)F
o | am ¢ (q)} i {mq (@.1)
This is:
op h
Eo T WA P (A PP E [1.153]
py 2im[ (A ¥ -(A,Y) ]

Moreover, the one-dimensional expression of the linear momentum operator is
written according to [1.14]:

. ., 0
Fy =—ihAy =—ih— [1.154]

dq
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Using [1.154], relation [1.153] is written as:

I _ b | GfReE| [P, [1.155]
ot 2im 9g> 9q>
(3) Proof

Let us consider the following system of equations:

2
d [q,aw*]_waw*+w[a ‘}‘*J

o\ 3 ) 3 og 92 [1.156]
2

a[\y*wjza‘l’*a‘ﬂr?* Y

oq dq ) dq 9q dg?

Subtracting one relation from the other, member by member, we have:

2 2
g 97*| [07Y T*:a(lya\y*}a[wa\yj
oq> 9q> og\ 9dq ) oq oq

Hence:
2 2
VE= AN RN AR
g oq dg\ dg g
which then leads to:
N7 Gl _ 827._}, \p*:_a(\p*a\}’_aly*\yj [1.157]
qu qu dq dg  dq

Using [1.157], equation [1.155] can be written in the following form:

9p__ I [y 9F 9", [1.158]
ot 2im dq dq Jdq

(4) Probability conservation

Probability conservation is reflected by an analogous continuity equation [1.42].
Taking [1.158] into account, the probability current density J,=J (q, t) is written as:
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g ol [gad¥ _0¥*y, [1.159]
T 2im dq 9q

Highlighting variables g and ¢z, the conservation of probability can finally be
written as:

Iplg.1) , dJ(g.0) _, [1.160]

ot oq

1.8.2. Solution 2 — Heisenberg’s spatial uncertainty relations

Given data:
)=0;¢P)=0 [1.161]
2 +oo
J‘ux‘l‘+wdlp dx>0: (\P*‘”’j —0 [1.162]
x dx )|_

(1) Mean value, root mean square deviation

Let us consider the one-dimensional wave function W(x, 7). The mean value (x) is
defined by the relation:

2 dx [1.163]

<x> =£:x“{‘(x,t)

Moreover, the root mean square deviations are given by the relations:

Ax= ()= (x)" sap = [(p) - (p.) [1.164]

Taking [1.161] into account, the following relations can be deduced from
[1.164]:

sz\/@;Apx=\/@ [1.165]
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(2) Proof; sign of A

We consider:

avrd¥ [1.166]

A =Ix2‘l“{’*dx; B:—Ixi(WT*)dx; C=
dx dx dx

Let us find the expressions under the integral sign of inequality [1.162]. We

have:

a¥ d¥ Y

uxV + w—/| = (ux‘l’ + w)x(ux‘{’ + wj
dx dx

dx

Knowing that u and w are real variables, we have:

2 % *
ux‘l’+wﬁ =uzxz‘{"{”“+uwx(‘{‘*d‘{’+‘{‘dkF j+w2dqj ﬂ
dx dx dx dx dx
Hence:
2 %
ux‘l’+w£ =ul PP * 4 uwxi(‘l’*‘I‘)+wzﬂﬁ [1.167]
dx dx dx dx

Integrating [1.167], we have:

2 %
ux‘I’+wﬁ dx=u? | x>V * dx + uw xi(‘l’*‘l-‘) dx+w? ¥ ﬁdx
dx dx dx dx
Or taking inequality [1.167] into account, we have:
Au* —uwB + Cw* >0 [1.168]

Moreover, considering the expression of 4 according to [1.166], we see that:
A=(x")=[" & M dx 20 [1.169]

(3) Expressions of A and B, inequality verified by the product AC
— Expression of A
Taking [1.165] and [1.169] into account, we get:

A= (Ax)? [1.170]
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— Expression of B
To find the expression of B, let us integrate by parts. We have:

teo + oo
B:—j xd—(\w*):—(x\w*xf: +J‘ (WY*)dx [1.171]
X

— oo — oo

The wave function W being square-summable, [¥|* — 0 when x — oo,
Consequently:

()

Knowing that the wave function ‘¥ is normed, relation [1.171] then yields:

oo
=0

—o0

—+ oo
B:j wPdx=1 [1.172]

— oo

— Inequality verified by the product AC

Integrating by parts as previously, we have:

+oo + oo 2
—I ‘I’*d;}ldx
o -0 dx

+ oo %
c=| rd¥  _[y«d¥
dx dx dx

Taking [1.162] into account, we get:

2
c=—j*°°\11*d‘ydx [1.173]
- dx?

Let us now determine the mean value < pf> .

Operator
d
=—ih—
D, dx
We have:

v
d

dx

()T e v



70 Introduction to Quantum Mechanics 2

Using this result, we see that, according to [1.173] and [1.165], we have:

C:@:CZ(APJZ [1.174]

n? n
(4) Expression of the product AC
Let us consider the second-degree equation in u according to [1.168]. We obtain:
A’ — uwB + Cw’= 0 =A = w’B* - 44Cw*

Knowing that 4 > 0 according to [1.169] and B = 1 according to [1.172], this
means:

B*—44C<0=44C>1 [1.175]

(5) Heisenberg uncertainty relations

Considering results [1.170] and [1.174], inequality [1.175] is written as:
2 2 2 h
4(Ax) (Ap,) 2h"= AxAp, = 5 [1.176]
Applying circular permutation, Heisenberg spatial uncertainty relations are

written in the following form:

AxAp, Zg;AyApy = g ;AzAp, 2% [1.177]

1.8.3. Solution 3 — Finite-depth potential step
(1) First case: E >V,

(1.1) Nature of the states of the particle, Schrédinger equation

Potential depends only on variable x in zones I and II. The Hamiltonian is
therefore time independent: consequently, the states of the particle are stationary
states. The Schrodinger equation is written for a zone i under consideration:

2
LD L 20—y (o) =0 [1.178]
dx h




Schrédinger’s Equation and its Applications 71

In zones I (x < a) and II (x > a), the stationary Schrodinger equation is written
respectively as:

2
L2 L 2% 5 4oy (0 =0 [1.179]
dx h
d*®y(x)  2m
1;( )+—2[E—V1]CDH(x)=O [1.180]
dx /]

(1.2) Solutions in zones I and 11

We consider:

2 _2m(E-1)

qzzzm(E;VZ);p h [1.181]
h n
Equations [1.179] and [1.180] admit the following solutions:
Dp(x) = 417D 4 pemia(x=a)
[1.182]

@y (x) = CeP¥=9) 4 pemir(x=a)
Knowing there is no reflected wave in zone II, then D = 0. This finally leads to:

D (x) = 417D 4 pemia(x=a)

[1.183]
Dy (x) = C P
(1.3) Expressions of transmission and reflection probabilities
Let us express the boundary conditions for the wave function in x = a:
@, (0) =Dy (0)
@’ (0) =D (0) [1.184]

D’ (x — a) = dD; (x — a)/dx
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Applying these boundary conditions to equations [1.183], we find:

{A+B=C q(4+B)=4C [1.185]

q<A—B>=pc:'{q<A—B>=pc

We express the coefficients B and C as a function of 4 (coefficient assigned to
the incident wave). Making the sum and then the difference of the two equations
[1.185], we find:

c=—24 4.p-9=P [1.186]
q+p q+p

Using [1.186], the probabilities of reflection and transmission are written as:

2

2
RZE%:RZW—PL [1.187]
4 q+p)
2
Tzﬁx‘g?:v:—ﬂ’i7 [1.188]
7 14 (g+p)

(1.4) Classical and quantum predictions

Considering [1.187] and [1.188], we have:

(g+p)  (g+p)

CONCLUSION.— R + T = 1: The particle is either reflected or transmitted, contrary to
the predictions of classical mechanics, according to which the particle can in no way
be reflected since E > V.

(2) Second case: =V, <E <V,

(2.1) Schrédinger equation, solutions

The stationary Schrédinger equation in zones I (x < a) and II (x > a) is given by
[1.179] and [1.180], respectively. To determine the solutions @; (x) and @y (x), let
us consider:
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2 -F
2o 2mESY) o dm-E)

e e —p’= p=ic [1.189]

Equations [1.179] and [1.180] admit the following solutions (replacing p by i0):

D (x) = 4D 4 pe=id(x=a)
[1.190]

@y (x) = Ce” 94 4 peox=a)

Knowing that a wave function must be square-summable, the coefficient D = 0.
Therefore, we finally have:

Op(x) = Ae1=a) 4 pp=iq(x—a)
[1.191]

®jp(x) = Ce” oG

(2.2) Expressions of T and R

Let us express the boundary conditions [1.184] in x = a:

A+B=C _, Jig(4+ B )=iqC [1.192]
ig(A4-B)=-0C |ig(4-B)=-0oC

Using [1.192], we obtain:

c-_2%1_

g+ic :R:BE:q_iaz—l [1.193]
4710 4~ |g+io|

q+io

Since R =1, then T=0.

CONCLUSION.— Reflection is total, according to the predictions of classical
mechanics. Nevertheless, the wave in zone II is not zero, as shown by the second
equation [1.191].
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1.8.4. Solution 4 — Multistep potential

(1) Schrédinger’s equation, solutions

Schrodinger’s equation for stationary states in zones I, II and III is written as:

2
dLIZ(x)JrL’z”(EHVO)q)I(x):o [1.194]
dx /i
d*®(x)  2m
1;( )+7(E+Vo)<1>n(X)=0 [1.195]
dx h

42Dy (x) | 2mE

2 " Opp(x)=0 [1.196]
x
We consider:
2mE
k2:2m(EJ2r4V0); 42 :T’; [1.197]
fi

(2) Expression of the solutions in the three zones
Zone I

The solution to equation [1.194] has the form:
@ (x) = de™™ + Be ¥ [1.198]

Zone Il

For E = -V}, the second term of the right member of equation [1.195] is zero.
Hence:

2
dLg(”zo:¢II(x):c'x+D [1.199]

dx
C’ and D are constant.

Since zone I starts at the connection point x = a, only the values of x > a can be
taken into account. Consequently the solution in zone II is written as:

O(x)=C(x—a)+D [1.200]
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Zone 111

Equation [1.196] admits the following solution:
Oy (x) = Fe'** 4 Ge™F'>
Since E < 0, let us consider k&* = ig. This yields:
Oy (x) = Fe ¥ + Ge?
As the wave function ®y; must be square-summable (therefore bounded), the

second term of the right member of the above equation is physically inconceivable.
Hence G = 0. Moreover, as previously, let us change x into x — 3a. We obtain:

Dy (x) = F e 9739) [1.201]

(3) Expression of the wave functions

For x < 0, the wave function is zero, since the potential is infinite. Using [1.198],
the connection conditions in x = 0 require 4 + B = 0. Hence: 4 = —B. The wave
function @ (x) is then written as:

D (x) = A(™ - )= @y (x) = 24sin kx [1.202]
According to [1.199], it can be noted that:
K’=3¢> = k=43¢ [1.203]

Inserting [1.203] into [1.202], and considering X = 24, we find:

@;(x) = X sin(v3gx)
Op(x)=C(x—a)+D [1.204]

Dy (x) = F e 10739

(4) Proof

Let us express the boundary conditions in x = a, then in x = 3a. We have:
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D, (a) = Dy (a); Py (3a) = Dy (3a)

@ (@) = D’y (a); @'y (3a) = @'y (3a) [1.205]
O’ = dD/dx
Using [1.205] and [1.204], we have:
e {Xsm(wfaq) ;x=3a:{2aC+D=F [1.206]
\qucos(\faq) C=—qF
Using [1.206], the ratios D/C are written as:
g Mtan(\f 3aq) 2 =24 —; [1.207]
Using [1.207], we have:
\/%qtan(\ﬁaq)z —2a — 611
This leads to:
tan(\@aq)z —2a\@q -3 [1.208]
Hence:
tanY =-2Y -3 [1.209]
with ¥ = ﬁaq .
(5) Obtaining a bound state of energy
The condition for obtaining a bound state of energy E = — Vs satisfied for all

the solutions of equation [1.209]. The set of these solutions at a bound state of
energy E =— V} is given by the points of intersection of the curves of equations:

y =tanYand 2 =-2¥ -3 [1.210]

(6) Graphical solutions

Some solutions of equations [1.210] are indicated in Figure 1.20.
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~Y

T,

Curve y,

Figure 1.20. Graphical solution to equation [1.210] providing the possible values of
equation Y =+/3aq, for which a bound state of energy E = — V, is reached. Only
three solutions Y1, Y2and Ysare indicated in the figure

1.8.5. Solution 5 — Particle confined in a rectangular potential

(1) Description

From a classical point of view, the particle is confined in the rectangular well,
since the potential is infinite outside of it. Moreover, its energy can have any value:
its spectrum is continuous.

From the perspective of quantum mechanics, the wave function of the particle is
zero outside of the dot. The evolution of the state of the particle inside the well is
governed by the Schrodinger equation.

(2) Differential equations

Schrodinger’s equation in zone I is written in two dimensions:

2( ;2 2
[_Zn[ic+2J+V(X’Y)]W(X’Y)=E‘P(x,y) [1.211]
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The potential being zero inside the rectangle, this equation becomes:

w2 [P (y) +82‘I’(x,y) — E¥(ry) [1.212]
2m ox dy ’

Let us use the variable separation method by writing the global wave function in
the form: ¥ (x, y) = ® (x) Xy (). Equation [1.212] can be written as:

2 2 2
_h(m”d¢m+@”dmw}*ﬂﬂmw [1213]
2m dx dy

Dividing both sides of equation [1.212] by the functions ®(x) and y(y) and
knowing that E = E, + E, = constant, we get:

_hz[ L doe) 1 dh//(y)]:EerE [1.214]
2m| D(x) dx  y(y) dy g

By identification, we find:

2 2
B dew

X

2m d(x)  dx [1.215]
_B 1 dyo)
2my(y) dy g

(3) Solutions @, (x) and y,(y)

Solutions ®,(x) and y,(») to these equations are already known (see [1.129]). We
find:

®,(x) = ism(”f‘j

mm=2mﬁw)

[1.216]

b b

In [1.216], the quantum numbers n and ¢ are strictly positive. Since values
n=q = 0 lead to zero energy, they are forbidden by the uncertainty principle.
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(4) Expression of the normed wave function, minimal values of n and q

The normed wave function ¥, (x, y) = ®, (x) X y, (). Or, using [1.216]:

_ 2 ). (9 [1.217]
W q(x,») \/Esm( ; jsm( 5 j

(5) Expression of the density of probability

The density of the probability of finding the particle at point M (x, y) is given by
the square of the amplitude of probability [V, (x, »)I*. Hence:

Dygl )= sin? (";D‘)smz [‘?j [1.218]
This density is maximal if the two functions sin® (nmx/a) and sin® (¢my/b) are
simultaneously maximal. Therefore:
nnx/a = 2k, +1)w/2 (1 <k, <n-1)and
qrylb=Q2k,+1) 2 (1<k,<g-1)

In the particular case of k. = k, = 0, we have:

sinz(@jzljﬂzﬁ
a a 2
smz[W]:l:@_E
b 2
which finally leads to:
a
o [1.219]
M(xy,y4) = b .
Ym _Tq

(6) Quantization of the total energy, case of square potential

According to [1.62], we already know that for one dimension the total energy £
is quantized. Designating the width of the well as /, we have:

B n’r? 2

E =" 4
2mi?

n

[1.220]
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If, in this formula, we replace / with a or b as applicable, we get:

2.2
hnt o

E, = n 22( 2 2
2ma’® :Enq:hﬂ 'Lz Lz [1.221]
h2 2 ’ 2m \ g b
T 2

Ey= 24
2mb

Result [1.221] shows that the spectrum of the particle is discrete, contrary to the
predictions of classical mechanics, according to which the spectrum is continuous.

(7) Square well, degeneracy of the energy levels

For a square potential well (a = b =), the energy E’ is:

2.2
hm ' 2 2
By =T (2 4 q?) = By= Bl + )
2ml [1.222]
hznz
EO = b
2ml

Expression [1.222] shows that there are various pairs of values (n, g) giving the
same value of the energy £',,. For this reason, the levels are said to be degenerate.
To illustrate this, Table 1.2 summarizes the degree (or order) of degeneracy of these
levels. The degree of degeneracy is the number of quantum states characterized by
the same value of the energy of the system.

n|q| E,, Degree of degeneracy (g,,,)

1|1 E, g1.1 = 1: non-degenerate ground level

1|2 ) )

R 5E, g12 = g1 = 2: twice degenerate first excited level
2 12| 8E, &2 = 1: non-degenerate second excited level
1|3

R 10E, g13 = g3, = 2: twice degenerate third excited level
213 ) )

31 13E, 823 = g3 = 2: twice degenerate fourth excited level
313 18E, g33 = 1: non-degenerate fifth excited level

Table 1.2. Degeneracy of the levels of energy of a particle confined
in a square potential well
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The degeneracy of the levels of energy E' is due to the symmetry of potential for
which @ = b =1 : the two axes Ox and Oy are therefore equivalent.

1.8.6. Solution 6 — Square potential well: unbound states

(1) Behavior of the particle

From a classical point of view, the particle passes over the well and carries on its
uniform rectilinear motion. The particle has the same speed before reaching the well
and after leaving it; let v, be this speed. Its speed v, above the well is constant:

W = /%; . /@ [1.223]

From a quantum point of view, the state of the particle is described by a wave
function. The particle has a non-zero probability of being reflected.

(2) Schrédinger’s equation, solutions @y (x), Dy (x) and Dy (x)
— Schrédinger’s equation

In zones I, II and I1I, Schrodinger’s equation is written as, respectively:

d’®;(x) 2mE

+ 2@ (x)=0
dx? n?
2
7O L 2M Yy () = 0 [1.224]
dx? n?

2
d“On(x) 2mE
1121 + =P (x) =0

dx h

— Solutions @y (x), @Dy (x) and Dy (x)

Since the backward wave is absent in zone III, then G = 0 in the expression of
@y (x). The solutions to the above equations are written as, respectively:

Di(x)= Ae™ 4 Bemik
@[ (x) = De'P* + D' [1.225]

Dy (x) = Fe™
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In relations [1.225]:

_2mE. 5 2m(E+V))

2
g h? 2

[1.226]

To ease the calculation, the origin of coordinates undergoes translation:
(x+a)forx<—-a;(x—a)forx>+a;(x—a)for-a<x<+a
Solutions [1.227] are then written as:
Oy (x) = Aeik(x+a) + Be—ik(x+a)

Dpy(x) = CePx=a) | pe~ip(x-a)
Dy (x) = Fe* (74

[1.227]

This writing clearly shows that at the well connection points in x = —a and in
x = + a, the exponential factors are equal to unity. This makes the calculations
simpler.
(3) Probability of transmission
Let us express the boundary conditions in x = —a and then in x = +a:
D (= a) =Py (- a); Py (a) = P (a)
D’ (—a) =Py (—a);, Pu(a) =P (a) [1.228]
D’ = dd/dx

Using [1.227] and [1.228], we find:

A+ B=Ce 2Pa4 pe?iPa
fe—a e e | [1.229]
ikd —ikB = ipCe™>'P*—ijpDe?P?
C =
rog CTPEE [1.230]
ipC —ipD =ikF

The transmission coefficient is defined by the relation (knowing that
km :k[ :k):

T:szku]jT:
A

[1.231]
ky

A

i
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Using [1.230], we express C and D as functions of F, and 4 as a function of C
and D. We then have:

_[ptk
2C—( » jF ;2A:C('Ok"'kje—2ipa_D(pk_kjezipa [1.232]

2D= [H]F
P

Using [1.232], we have:

sy F(ptk (p+kje—2ipa_F p-k (p_kjeZipa
20 p k 20 p k

which is
A 1 2 . 2 4
g0 +k —2ipa _ —k 21pai|
F 2 L[(p ) e (P ) e

Expanding the expression between brackets and then simplifying, we have:
2, 12

é=0052m_iu)sinzm [1.233]

F 2 pk
Knowing that cosx + sin’x = 1, we get:

2

4|2 . i)
— =1—sm22pa +l th sm22pa
F 4 p2k2
Factorizing the second member by sin” 2pa, after arrangement we obtain:

2
) 4p2k2+{(,02+k2) —4p2k2}sin22pa

2k2

4

or after expansion and simplification of the terms between brackets:

2 .
2 _ 4p2k2 + (pz— k2) s1n22pa [1.234]
4p%>

A
F
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The inverse of relation [1.234] gives the expression of the barrier transmission.
We finally have:

2,2
7= 4p7k [1.235]
2,2 (2 2.2
4p% +(p—k ) sin“2pa

Using the expressions of &* and p” according to [1.226], we express the
transmission coefficient T as a function of £ and V. Hence:

4E+Vy) [1.236]

AE+Vy)+ V¢ sin? {ng(EWO)a}

h

T =

(4) Definition, expression

Taking [1.230] into account, the reflection probability R = |B/A| is written as:

B Z%F 2 [1.237]
F| |4
or as a function of the barrier transmission:
PRI [1.238]
F

It is then sufficient to express the ratio B/F. Using [1.237], we express B as a
function of C and D. We obtain:

2B = C(k—k/’j 2P D("Z/’je 2ipa [1.239]

Using the first relations [1.232], relation [1.239] is written as:

2B=F("_pj k+p e—2ipa_F(p+k) k=p ) 2ipa
2\ k P 2\ k P

which is:

2 2
%: k4;}f[g—2ipa _ eZipa]
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Expanding the term between brackets, we have:

B ik®-p?

F 2 pk

sin2pa

Using the last equality, we have:

2
2 22
- Msirﬂz pa [1.240]

4 pzk2

B
F
Inserting [1.240] and [1.236] into [1.238], after simplification we get:

2
(= p2) sin22p0 [1.241]
R= . :
4,02k2 + (pz— kz) sin22pa

(5) Predictions
We determine the sum 7'+ R. Using [1.237] and [1.242], we obtain:

2
2,2 2. 2V .2
T+R= 4p%%k . + (k p)sm22pa
4p2k2+(p2— k2) sin22pa 4p2k2+(p2— k2) sin22pa

or, after arrangement and expansion:

22, (k4 + p4 —2k2p2 )sin22pa [1.242]

r+r=2° _
4p%2 + (0%~ 2] sin22p0

Which gives after simplification: 7+ R = 1.

CONCLUSION.— From a quantum point of view, the particle is either reflected or
transmitted. The predictions of classical mechanics are quite different: the particle is
transmitted without being able to turn back.

(6) Spectrum of the particle

The energy spectrum of the particle is continuous. This is due to the fact that the
states of energy £ > 0 are unbound states.
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1.8.7. Solution 7 — Square potential well: bound states

(1) Wave functions

Let us consider:

2_ 2mE . 2 _2m(E+Vp)
n n*

[1.243]

Schrodinger’s equations in zones I, IT and III are given by the previous relations
[1.224].

Solutions ®y(x), ®y(x) and Py(x) to the above equations are the following (to
facilitate the calculation, x changes into x + a for x < —a or x — a for x > a for the
solutions in zones I and III):

q)I(x) — Aeik'(x+a) +Be—ik'(x+a)
@y (x) = Ce™ + Dk [1.244]

Oy (x) = Aeik'(x—a) + Be—ik'(x—a)
Since E < Vy, we consider k' = ip. We obtain:

@ (x) = Ae PTA) 4 peP(X+a)
@y (x) = Ce™™ + De™* [1.245]
@y (x) = Fe P39 1 GeP (3=

The wave function being bounded, then for x < —a, the function 4e™ © is
divergent. Moreover, for x > a, the wave function Ge ”* ~ 9 is also divergent.
Consequently, we must simultaneously have 4 = 0 and G = 0. In summary, solutions
[1.245] are written as:

@ (x) = BeP XD
DOpp(x) = Ce™ + De~ik [1.246]
Dy (x) = Fe P
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(2) Proof, energy quantization
— Proof

Let us express the connection conditions of the wave function in x = —a and then
in x = +a, which are:

@ (—a) = Oy (-a); Py(a) = Pu(a)
D’y(—a) = D’y(-a); P’n(a) = P’'m(a) [1.247]
D’ = db/dx

Using [1.247] and [1.246], we find:

_ v —ika ika
a: {B =Ce HDe [1.248]

'x = . .
pB = ikCe ™ _ jkD*
ika —ika _
x=q:|C6 tDe T =E [1.249]
ikCe*— ikDe "= — pF

Let us express the coefficients C and D as a function of B. Considering the first
system of equations [1.249], we multiply the two equations by ¢*. Then we divide
the second equation by ik and multiply the obtained result by ¢*“. We obtain:

eikaB =C+ DeZika
[1.250]
eika ,073 =C— De2ika
ik

Similarly, we multiply the first equation in [1.249] by e__ik”. We then divide the
second equation by —ik. Multiplying the obtained result by ™, we find:

e—ikaB _ Ce—2ika+D

o _ [1.251]
_ e—lkap.i —_ Ce—21ka+ D
ik
Using [1.250] and [1.251], we have:
20 = (1 + f’)eik“B = (p *ik jeikaB
ik ik [1.252]

2D = (1 - p]e_ikaB - (p L )e_ikaB
ik ik
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2% [1.253]
D — Me—ikaB
2k

We then express F as a function of C and D. For this purpose, we use the second
system of equations [1.249] and then proceed as previously. We have:

C+De—2ika :Fe—ika - Ce2ika+ D= Feika
C — Do 2ika =_%Fe—ika _ Cplika +D:£Feika
1 1

From these equations, we deduce:

20= (1 - 'Zje_ikaF =— (p —ik )e_ikaF

i ik

2D= (1 + p)eﬂmF - (’””‘je""“F
ik ik

[1.254]

Using [1.254], we express F as a function of C and then as a function of D.
Hence:

F=-2 (”‘,Je"’“’c
p—ik [1.255]

F=gf & |oikap
p+ik
It is easy to express F as a function of B using [1.253]. This leads to:
I Z_(Pﬂk}zl’kaB
p—ik

F:_[p_ik]e—ZikaB
p+ik

[1.256]

Equalizing the two relations [1.256], after arrangement we find:

N2
p—ik)” _ Jlika [1.257]
p +ik
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— Quantization of energy

Let us recall the relations [1.243]:

e 2mE . 2 _ 2m(E +Vp)

n? n?

These relations prove that p and k& depend on the energy E. Consequently,
equation [1.257] can only be satisfied for certain values of E: the energy is therefore
quantized (the possible values are discrete). Hence, requiring the wave function to
be square-summable in zones I and III drives a quantization of the energy of the
particle.

(3) Graphical solution, parity of the wave functions

Two cases are possible:

p —ik =_ez,'ka; p —ik =eZika [1258]
p+ik p +ik

The first equation of [1.258] gives:

This yields:
,0(1 + eZika )= ik (1 _ eZika )

which is:

_—= l =
(1 _ e2ika) (e—ika + eika)

’Z . (1_ezika) _, (e—ika _eika)

Expanding the terms between brackets in the second member of the above
expression, we have:

%: tan( ka ) [1.259]

where tan (ka) > 0.
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The solution to equation [1.259] is not convenient due to the ratio p/k, since the
parameters p and k both depend on the energy E.

To find a more convenient equation to solve, we consider relations [1.243]. We
then note that:

2 2mE  2ml) 2. 2mV
o n? 2
which is:
2, 2 2mly 1.260
k* + p =2 [ ]

For £E=0, p=0 and k = k;. Equation [1.260] can then be written in the following
form:

2mV,
ke = ’;’20 =k =k + p? [1.261]

The constant k&, independent of the energy E, makes it possible to set a simple
equation, the graphic solution of which is easy. For this purpose, we also note that:

1

cos“ka

=1+ tan’ka

Considering relation [1.259], we thus obtain:

! p2=k2+/’2:1:k3_(k0]2

k

=1+~ =
cosZka k2 K> cos’ka  k?

Using the last equality, we finally get:

cos ka| = - [1.262]
kO :
tan(ka) > 0

The system of equations [1.262] is equivalent to equation [1.259]. The function
coska being even, equation [1.262] is verified provided that tan (ka) > 0. The
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discrete values of energy E are then given by the intersection of a sine function y,
and the line y, given by the expressions:

V= \cos ka\

k [1.263]
Y2 = %
tan(ka) > 0

We now study the second scenario, considering [1.258]:

p—ik)_ lika [1.264]
p +ik

Expanding this equation as previously, we get:

k =—tan(ka)
P [1.265]

with tan (ka) < 0.

We consider the trigonometric transformation:

1

3 =1—sin %ka
1+ tan“ka

cos?ka =

Equation [1.264] can thus be written as:

0?2

.2
sin“ka=1-—"——
02+ k2

After arrangement, the above relation becomes:

2
sin%ka = %
pe+k
Taking [1.261] into account, we have:

s (k)P [linke = 1.266
sin“ka :[kj = ko [1.266]
0 tan(ka) <0
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The function sinka is odd, hence equation [1.266] is satisfied with the additional
condition tan (ka) < 0. The discrete values of energy £ are given by the intersection
of a sine function y; and the line y, given by the following expressions:

= ‘sin ka‘

_k [1.267]
Y2 ko
tan(ka) <0

(4) Let us now solve equation [1.262] graphically using the equivalent equations
[1.266] and [1.267]. We obtain the curves represented in Figure 1.21.

A Y2 = k/ko7
< -<
\ P J
\
P \ \
! \
‘ ——
0 2 T 3n/2 o1 ka

Figure 1.21. Graphic solution of equation [1.257] giving the discrete values of energy
of the bound states of a particle confined in a square potential well. The values at the
points of intersection P (thick line curve) correspond to the solutions to equation
[1.263], and those at the points of intersection | (dotted line curve) correspond to the
solutions to equation [1.267]

For 0 < ka < m/2, m < ka < 3m/2, etc., we have tan ka > 0. This satisfies the
condition imposed for solution [1.263] and the corresponding curves are represented
in thick line in Figure 1.21.

Similarly, for /2 < ka <, 3n/2 < ka < 27, etc., we have tan ka < 0. This meets
the condition imposed to solution [1.267] and the corresponding curves are
represented in dotted lines in Figure 1.21. Only four bound states are marked in this
figure. Two of them are associated with points P and the other two with points /.

— Parity of the wave function

To prove that the associated wave functions are either even or odd, we express
the ratios C/D and F/B using the relations [1.253] and [1.256]; then we take [1.258]
into account. Hence:
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C_ k—izp 2ika pP—ik) _ ik

D \k+ip =\p+ik)” ¢ e
F:_(Ng]ezlka p—ik = J2ika

B p—ik p+ik

— Even wave functions

Using the first relations of systems [1.268], we get:
S:_ k—ip y p—ik -1
D k+ip p+ik [1.269]
F_ p+ik v p—ik -1
B \p—ik) \ p+ik

NOTE.— We have multiplied both the numerator and the denominator of the first
equation [1.269] by the imaginary number 7; this effectively leads to C/D = 1:

C _(p+ik y p—ik -1
D \ p-ik p +ik
Knowing that C = D and F = B according to [1.269], the wave functions
[1.248] are:

®;(x) = BeP XD
11 (x) = Cle 1+ ¥
Dy (x) = Be P

[1.270]

A wave function is even if ¥ (— x) = ¥ (x). Given [1.270], we have:

@y (—x) = BePT¥D = P — @y (x)
Dy (—x) = C(e”“ +ek )= Dy (x) [1.271]
Oy (—x) = Be P(—x—a) _ g p(x+a) _ ®y(x)

Using [1.271] it can be verified that ®; (— x) = ®; (x): the bound states associated
with the energies corresponding to the solutions to equation [1.263] are therefore
even (in other words, the wave functions are symmetrical). Figure 1.21 shows the
two even bound states associated with points P (therefore this point marks the even
solution).
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— Odd wave functions

Using the two relations of systems [1.268], and proceeding as previously, we get:
5ot )
D \k+ip p+ik [1.272]
F__ p+ik « p—ik -1
B p—ik p +ik

Using these results, the wave functions [1.270] are written as follows:

Dy(x) = —BeP )
Oy (x) = _C(eikx N e—i/cx) [1.273]

Dy (x) = —Be PO

A wave function is considered odd if ¥ (— x) = —¥(x). Considering [1.273], it
can be verified that ®; (— x) = —®; (x): the bound states associated with energies
corresponding to solutions to equation [1.267] are therefore odd (which corresponds
to antisymmetric wave functions). As Figure 1.21 shows, the two odd bound states
are associated with points 7 (therefore this point marks the odd solution).

1.8.8. Solution 8 — Infinitely deep rectangular potential well

(1) Determination of the wave function

The particle is confined to zone II where the potential is zero. It is in this zone
that the Schrodinger equation must be written (it is already known that the wave
function is zero in the other zones, where the potential is infinite). Then we obtain:

2
d“dp(x 2mE
I;( )+ - Dy (x)=0 [1.274]
dx fi

The solution to this equation has the form:

Dy (x) = Ade™™ + B~ [1.275]
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(2) Condition imposed on k, quantization of the energy
— Condition imposed on k

Let us express the connection conditions of the wave function for x = —a/2 and
then for x = +a/2: @ (- a/2) = @y (— a/2) = 0; Dy (a/2) = Dy (a/2) = 0. Using [1.275]
this leads to:

x=_%:Ae—ika/2+Beika/2=O

a . .
=4 :Aelka/z-i—Be lka/2:0
2
These equations are transformed as follows:

0

ka .. ka ka .. ka
Al cos——isin— |+ B| cos—+isin—
2 2 2 2

A cosk—a+isink—a + B cosk—a—isink—a 0
2 2 2 2

After factorization we have:
(A+B)cos@ +1'(B—A)sin&Z =0
2 2 [1.276]
ka . . ka
(A+B)c0s? +1(A—B)s1n? =0

This system of equations is solved if: (4 + B) = 0 and (4 —B) = 0. This gives:

A:—B:sin%zo

[1.277]
A=B= cos@ =0
2
The system [1.277] admits the following solutions:
. ka ka nmw niw
sin—=0=>—=—=k,=—, neven
2 2 2 a [1.278]

cosk—a=0:>@=ﬂ:>k =ﬂ, n odd
2 2 2 a

n
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Finally, the condition imposed on & is written as:
k,=— [1.279]

where 7 is a strictly positive integer.

— Quantization of energy

Knowing that k* = 2mE/ n? , relation [1.279] gives:

k2 = =S, = n? 2] [1.280]

(3) Expressions of wave functions, normalization
— Expressions of wave functions

The even and odd wave functions describing the bound states of the particle are
deduced from solutions [1.277]. Let us study the two possible cases.

First case: 4 = B
In this case, expression [1.275] gives:
Dy(x) = A(eik”x + e_ik"x) =>®,(x)=2A4cosk,x

Or taking condition [1.279] into account:
@, (x) = 2Acos(mxj [1.281]
a

In this expression, the integer » is odd according to [1.278]. The wave function
[1.281] is even (therefore symmetric) since @, (— x) = D, (x).

Second case: 4 = -B

In this case, expression [1.275] is written as:

Oy (x) = A(eik"x — ¢ knx ):» @, (x) = 2id cosk,x
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or taking condition [1.279] into account:
@, (x) = 2idsin (”” xj [1.282]
a

In expression [1.278], the quantum number # is even and the wave function is
odd (therefore antisymmetric). It can be verified that ®@, (— x) = —®,(x). In summary,
let us consider C =24 and D = 2i4. The wave function @y (x) satisfies the following
conditions:

D, (x)= Ccos(mxj
a
Dy (x) = [1.283]

@, (x) = Dsin [ij

a

It is worth recalling that the integer n is even for the first function and odd for the
second function. Outside of the well, ®(x) = 0. Operating a translation of the origin
of coordinates such that x’ = x — a/2, expressions [1.283] are written as:

d)n(x)chos(naﬂx—nzﬂj | osa
Dy (x) = o nx [1.284]
d)n(x):Dsin(x—j
a 2

Knowing that cos (nmt/2) = 0 (n is odd) and sin (n7t/2) = 0 (n is even), we have:

@, (x)=*Csin [ij
a
P (x) = [1.285]

@, (x)=*Dsin ("”x)
a

withn=1,2,3,....

— Normed wave functions

Using wave functions [1.283] and applying the normalization condition, and
knowing that the particle is confined to the well, we have:
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al2 al2
‘C‘zj‘ cos? (ijdx=2C2 J cos? (ij dx=1
—al2 a 0 a

—al2 a

/2 /2
sza sin? (Mx)dx=2qzja sin’ (ijdle
a 0

After integration this leads to:

2

Z\C\zx%:I:Cng [1.286]
ApPx%=1=D= |2
4 a

Using results [1.286], the normed wave functions are written as follows:

2 nw
d)n(x)z\/;cos(axJ [1.287]

Dyp(x) =
@, (x) = | % sin (Mx)
a a

Let us note that in [1.287], C and D have been chosen real and positive. Complex
numbers can be chosen, which involves multiplying the factors in equations [1.288]
by i; this does not change the physical predictions (two proportional wave functions
represent the same physical state).

Moreover, physical predictions involve the density of probability; this eliminates
the number i. As a general rule, it is always possible to choose real and positive
normalization constants.

(4) Graphical representation

Let us express the wave functions and the densities of probability for the ground
level (n = 1) and for the first three excited levels (n = 2; n = 3; n = 4) of the particle.
These are summarized in Table 1.3 (where “S” stands for the symmetric wave
function and “AS” for the antisymmetric wave function).

The graphical representation of the wave functions [1.287] and of the
corresponding probability densities poses no difficulty (see Figure 1.3).
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N | Wave function ®,(x) Density of probability |®,(x)* Symmetry
2 i
1 \Fcosnx Zcos? =x S
a a a a
\F . 2n 2 . 922m
2 —sin—=x —sin” —x
a a a a AS
2 2 3n
3 \fcoshx Zcos? = x B
a a a a
2 . 24m
4 \Fsin‘mx Zsin® = x AS
a a a a

Table 1.3. Parity of the wave function describing the bound states of a particle
confined in an infinitely deep square potential well

1.8.9. Solution 9 — Metal assimilated to a potential well, cold emission

Let us consider an electron of energy W at point M of abscissa x, (barrier
thickness at point M) tunneling out of the metal.

(1) Determination of the expression of the potential energy

As shown in Figure 1.17, the potential energy V (x) varies linearly with x
between B and D for x > 0. Hence: V' (x) = ax + b; slope a is negative, as the function
V (x) is decreasing.

The potential energy V (x) is the sum of the potential energy K outside the metal
and the potential energy E,(x) is due to the interaction between the electron and
the electric field of intensity £. By definition:

Ey(x) = gEx = —eEx =V (x) = —eEx + K [1.288]
In summary, the potential energy function V' (x) varies as follows:
0, <0
V(x)= X [1.289]
—eEx+K,x >0

(2) Expression of x;

The thickness x; of the barrier in M is determined by the condition V (x) = W
(Figure 1.22). Or, using [1.290]:
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K-W,

—eEx1+K:Wx:>x1 = X [1290]
el

(3) Proof, numerical applications

The transmission probability T of the barrier is given by the expression:

T =exp— ZJ' 2mV(x) 2my(x) =Wy, [1.291]

Using [1.289], we obtain for x > 0 and knowing that ¢=K — W:

X1 —
T =exp_2 J‘ [2m[p 2eEx] 0 [1.292]
0 h

In the exponential of [1.293], we insert:

[=22m I |lo ;fx [1.293]

Integration leads to:

_ 2@[ P2 _¢3/2] [1.294]
3eE

Since ¢ = K — W, according to [1.290] we have x; = ¢/eE = ¢ = eEx;. Result
[1.294] is then written as:

3/2 3
[ RO 2T L [1.295]
3eE 3eh E

Finally, this leads to:
T=exp—Ey/E [1.296]

with:

4\ 2me’
EO =

© 3eh
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NA-E=4%x109V -m ™ E,=7.66x10"°V -m™; T=5 X107,

CONCLUSION.— The probability of cold emission of electrons from a metal is very
low. On the other hand, this probability is measurable, since the number of electrons
is very large.

1.8.10. Solution 10 — Ground state energy of the harmonic oscillator

(1) Expression of the elastic potential energy

The oscillator under consideration is subjected at any instant to an opposing
spring force F' = —kx. This force derives from the potential energy (it can be verified
that VAF =0):

V(>6)=—J‘Fabc=kJ.xabc:u/(x):%kx2 [1.297]
The origin of potential energies has been chosen at point O, origin of
coordinates, and the integration constant in [1.298] is therefore zero.

(2) Proof

By definition, the classical harmonic oscillator is a conservative system if its
mechanical energy E is constant. By definition, £ = E, + V' (x). Hence:

2
E=tn[ &)+ 1p2
2 \dt) 2

Differentiating this expression with respect to time, we have:

dE de) d>x . dx
—=m| — | X—+kx—
dt dt) g2 dt

This leads to:

2
dE:(dxj mdE [1.298]
dt dt dt?

Applying Newton’s second law, we get:

2
Fzma:—kxzmd—g
dt
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This finally leads to:
m d_;‘ t =0 [1.299]
dt

Considering [1.298] and [1.299], we finally have: dE/dt = 0 =E = C,: the
classical harmonic oscillator is definitely a conservative system (in fact, all fluid
friction is assumed zero).

(3) Behavior of the quantum harmonic oscillator
(3.1) Proof

The stationary Schrédinger equation of the quantum oscillator has the following
form:

n? a?
— S V() | @(x) = B(x) [1.300]
2m dy?

Using [1.297], after arrangement equation [1.300] becomes:

_dow)
dx2

Zq)( )_Mi@( ) [1.301]
n?

The angular frequency of the oscillator described by equation [1.299] verifies the
well-known relation & = k/m = m = kl & Equation [1.301] can be written as:

2(I)(JC)+( J B(x) = ( j k O(x) [1.302]
hw

dx? ho)hw

We introduce the dimensionless quantities & and ¢ such that:

ho [1.303]

We now express the second derivative of the wave function with respect to the
variable x. Taking the second relation of [1.303] into account, we have:

d®(q) _ d®(x) dx _ |ho dP(x)
dq dx dq k  dx
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Using this equality, we have:

d’@(q) _ [ho d (ddxx)jxdx
dq2 k dx\  dx dq

Hence:

d*®(q) _ ho d*®(x)
dq2 ko ax?

We finally have:

d*0(x) _ k d’®(q) [1.304]
dx? ho qu

Using [1.303] and [1.304], equation [1.302] can be written after simplification:

_d*®(9)

L+ g?0(g) = a 0(q) [1.305]
dq

(3.2) Proof

The wave function of the ground state has the form ®(q) = exp (S4°), where Bis
a constant. Using this solution, equation [1.305] is written as:

2
U0 = ag) 00
q

This leads to:
(-4p?)s*2p=a [1.306]

(3.3) Possible values

Equation [1.306] only has a solution if it is identically verified with respect to
variable g. Hence: (1 —4/%) = 0 and — 28= a. We then have =+ 1/2. The value
= 1/2 gives a wave function ®, (q) = exp (¢*/2), which is divergent when g — oo.
The value = - is retained.
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(3.4) Expression of the ground state energy

It is known that — 2= ¢. Since we know that f=—1/2, o= 1. If the energy of
the ground state of the quantum harmonic oscillator is designated by £y, the first
relation of system [1.303] thus becomes:

Ey =12 [1.307]

1.8.11. Solution 11 — Quantized energy of the harmonic oscillator

The dimensionless quantities are:

g= "2 o =2E [1.308]
h hw

(1) Proof

The stationary Schrodinger equation of the quantum harmonic oscillator is given
by [1.305] where o must be replaced by & We obtain:

2
T, (o 42)a(g) =0 [1.309]
dq
(2) Differential equation
The solution to equation [1.309] has the form:
~q%/2
@(q) = Au(q)e” ? [1.310]

where 4 is a constant and the function u (g) is a complete series of powers of ¢:
- Sadk [1.311]
u(q)= Xarq :
k=0

Differentiating twice the wave function [1.310], we have:

dd(q) _ | du(q) ~*2
dq _A{ dgq (Q)}

2 2
d @gq)z 44 u(zq) dug) ol A{du(q)_qu(q)} e
dq dq dq dq
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The second of these equations can be written as:

d’® d*u du )
dq dg dq

If we insert this result in [1.309], after arrangement we get:

2
d “(2‘1)—2q du(q)+(€_1)u(q):0 [1.312]
dq dq

(3) Expression
Using [1.311], we have:

du - -
(@) _ Z kay, ¢!
dq
k=0 [1.313]
2 oo
d“u _
TUD N kk -1y 42
L
Using [1.313], equation [1.312] can be written as:
Zk(k—l)ak qk_2 -2q Zkak qk_l +(e-1) Zak qk =0
k=0 k=0 k=0
Hence:
Zk(k—l)akq Ze 2k—1)ay ¢* =0 [1.314]
k=0 k=0

Identifying the terms of the same power in ¢*, we find (it suffices to replace & by
k + 2 in the first term of equation [1.314]):

(k+2)(k+1)agn +(e = 2k—1)a; =0
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This finally leads to:
ak+2=7(2k+1_£) a [1315]
(k+2)(k+1)

(4) Quantization of energy

The wave function [1.310] is finite or convergent for all the values of g
(including ¢ — *e), provided that the series [1.315] stops for a certain value n of
the integer k. This cut-off condition requires the coefficient a, + , = 0. Or, according
to the series [1.315]:

m+1-e=0=e=2n+1 [1.316]

Using [1.309], after arrangement we have:
! 1317
En =hw|n+ 5 [ . ]

The ground state energy of the oscillator is obtained for the minimal value n» = 0.
This yields E =/iw/2 according to [1.307].
(5) Potential energy variation curve

Expression [1.297] shows that the representative curve of the potential energy
V (x) is a parabola (Figure 1.22).

V (x) A
n=4- 'E4:9E0
.\ |
n=3-r |E3:7E0
1 1
1 /I
1 1
n=24- r-E,=5E,
1 (|
1 '
1! v
n:1—|—{- —|—|—-E1*3E0
1 1 :I
1 (|
[ [
n=0-r+4-- -4--tEy
[ p bl
I 11 >
-x; -x3 O X1 X4 X

Figure 1.22. Curve of the variation of the potential energy of a
harmonic oscillator with position x
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From the perspective of classical mechanics, the particle is subjected to the
opposing spring force F' = —kx and oscillates around its equilibrium position at the
origin O of abscissa xo = 0.

In quantum mechanics, the notion of opposing spring force is devoid of meaning.
The harmonic oscillator is defined as a particle (atoms in vibration motion in a polar
molecule such as HCI (see the solution in section 1.8.12), thermal agitation of atoms
or nuclei in a crystal lattice, etc.) whose potential energy is given by the expression
[1.297]. The particle is then confined in a parabolic potential well (Figure 1.22) in
which the energy levels are discrete and equidistant.

(6) Classical and quantum predictions

According to Figure 1.22, the harmonic oscillator is at rest at its equilibrium
position in xo = 0. From a classical point of view, its energy is therefore zero. On the
other hand, from the quantum perspective, the ground state energy of the oscillator
is non-zero (given the uncertainty principle) and is equal to £y = 2@/2 . This means
there is an essential difference between the classical and quantum predictions of the
behavior of the harmonic oscillator.

NOTE.— At absolute zero temperature, the oscillator does not oscillate. The energy at
absolute zero is thus a purely quantum quantity and it corresponds to the oscillation
energy of the quantum vacuum. Indeed, in quantum electrodynamics, any
electromagnetic field can be assimilated to a set of independent virfual harmonic
oscillators for which the principal quantum number 7 in the quantized expression
[1.317] refers to the number of photons. Hence, the situation of the ground state for
which n = 0 corresponds to the absence of photons, which is a photonic vacuum in
the enclosure initially filled by a radiation field (see Appendix 1, Volume 1).
The residual energy E, is thus called zero-oscillation energy (T = 0 K) of the
photonic vacuum.

(7) Ground state energy

From a classical point of view, the total energy of the harmonic oscillator is
given by the sum of its kinetic and potential energies. Knowing that the potential
energy is defined up to an additive constant, we obtain:

E=Ytm?+ Ll 4o [1.318]
2 2
If the particle is at rest in x = 0, then the total energy is equal to C*. We can

intuitively consider C” = Ey=hw/2. This reconciles the predictions of classical

mechanics and those of quantum mechanics. Caution is however recommended, as
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there is no classical law that makes it possible to prove that £y =%@/2 . The energy

Ey is a purely quantum property of the harmonic oscillator studied in this exercise.

1.8.12. Solution 12 — HCI molecule assimilated to a linear oscillator

The potential energy of a HCI dipole has the following form:
1 2
V(x)=Ek(x—a) [1.319]

The wave function @, (x) of the ground state and that of the first excited state
@, (x) are given by the following expressions:

2 2 2 2
Do (x) = dge” ¥ D20, (x) = 4 (x—a)e” AT O72 [1.320]

In relations [1.320], 4o and A;are normalization constants, and o and S are
strictly positive constants.

(1) Schrodinger’s equation of stationary states, proof
— Schrédinger’s equation

The Schrodinger equation of vibration stationary states of the HCI molecule is
given by the following expression:

2 42
l:—;lmjz + V(x)}b(x) = ED(x)
x

Using [1.320], we obtain:

2

di§x)+2—’;1[E—lk(x—a)2}d)(x)=0 [1.321]
dx 7 2

— Relation between o and

Let us determine the second derivatives of the wave functions [1.321] with
respect to variable x. We obtain:

d@o(x) _ 2

T_[—a (x—a)]q)o(x) [1.322]
2

09 _ 2 [o2 (= o - 1] )

dx?
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d®;(x) _ [1 ~ B (x- a)2 } Ale—ﬂz(x—a)2/2

dx [1.323]
2 2
L) g2 {—3 +p*(x-a) } @) (x)
dx
Taking [1.322] into account, after arrangement equation [1.321] gives:
[0{4(x a 0{2] |:2mE0 km( —a) }
Hence:
VL S = (1 N B [1.324]
n* n*
This equation is verified in all cases if:
[0/‘ —kT]:O:wF = k—rzn
7 h [1.325]
n* n*
Similarly, using [1.323], after arrangement equation [1.321] gives :
(520 - 221352 0 [1326)
n 1’

As previously explained, this equation is verified in all cases if:

h h [1.327]

2mkE; 2mE
(s )omn-
> RY/]

Comparing the first relations in [1.325] and [1.327], we have: o= f.
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(2) Expressions of energies

For the studied harmonic oscillator, the angular frequency of the oscillations
verifies the relation & = k/m. Hence, we have: km = @'m®. Therefore, the first
relation of equations [1.325] gives:

2_ Mmoo _mo [1.328]

Since o= f3, we have:
Sy T [1.329]
h

The expressions of the respective energies £, and £, of the ground state and of
the first excited state of the HCl molecule are automatically expressed considering
the second relations of equations [1.325] and [1.327]. Hence:

2mEO
_ szl ma)
V3n2 Vo

From the previous relations, we deduce:

o
072 [1.330]
El ==ho

Results [1.330] can be directly obtained from the general expression [1.317] of
the energy E, considering n = 0 and n = 1, respectively.

(3) Expressions of the normed wave functions

Family of integrals:

oy 2 —
1,=[xPe P¥ dx;lp:pllp_z;lozl\/;; zlzi [1.331]
0 2p 2\ p
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Constants A, and A4, are determined by the normalization condition satisfied by
the wave function. Or, using [1.320]:

oo 2 2
. W [ e
J () dr=1= e [1.332]

- oo 202
‘Al‘z J. (x—a)?e @ O~ g =1

—o0

Let us make the change of variable: y = x — a. Considering that the wave
functions are even, equations [1.332] are written as:

too 272
Z‘AO‘ZJ‘ eV dy=1
0
too 22
204 I Y2 Y dy=1
0
After integration, we have:

1
2|A0|2 ]0 =1= |A0|2 Zm

2 2 L _p
A4 L =1= |4 =—==
21, Iy
where p= o Using [1.329] and [1.331], if 4y and 4, are real, we have:

0{3

2_Q L p_,0
|4o| —\/;:|A1| 2\/;

_m_O)l/4
AO‘(nh]

SECIN

Using [1.333], the normed wave functions are written according to [1.320]:

[1.333]
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Qo(X)z(":;))4 c2n [1.334]

1
3a
¢1<x>=[;(’mj ] (x—a)e™ B (=012 .

NOTE.— A detailed study of the properties of the classical harmonic oscillator is
provided in the references [COH 77, GRI 95, MAR 00]. The wave functions
associated with the stationary states of the harmonic oscillator are given by the
general expression:

@,,m{ ! m”]
2" I\ ma

Thus we find the expressions [1.334] and [1.335] by changing in the general
wave function [1.336] x into x — a for n = 0 and n = 1, respectively.

N | —

1
[mwyx[mwx_d}"e‘ 20" [1.336]
n h dx

1.8.13. Solution 13 — Quantized energy of hydrogen-like systems

Schrodinger equation describing the evolution of the radial function of
hydrogen-like systems:

2
d <D2(r) L 2do(r) (5_ gz)q)(r) _o [1.337]
dr rodr r

In this equation:

2
&2 =_2mE;§=2kZme [1.338]
n? h?
k= 1/4mng,
- k
oy =2 e s ()= 3 a;r [1.339]
r k=v

where v is a positive integer.
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(1) Differential equation
Using [1.339], the first derivative of function @ (r) is:

do(r) _(_x  ldy &) o [1.340]
dr P2 ordr v
hence:
rodr r3 2 dr P2

The second derivative is:

dzd)(r): 2y 2 d;(+2g;( oy ld;( 2£d;( e EX | ~er [1.342]
ar? P 2 dr 72 rdr? r dr r

Moreover, using [1.340], we have:

[5 }D() (51 z;{je—gr [1.343]
r

7 r

Summing equations [1.341], [1.342] and [1.343], we find:

”gr) 26201 8 4y =0 [1.344]
dr

(2.1) Proof

We express the first and second derivatives of function y () using [1.339]. This
leads to:

ax _ § kakrk_l
dr g=y [1.345]

2 oo
L~ § kk=Dag 2
dr k=v
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Using [1.340], the differential equation [1.344] gives:

oo

- _ N 4.6 [1.346]
zkk—l kz—zzk "1+—§ k=9

2 ( ay r Ek ayr . apr

=V =V

Two cases can be distinguished.

— First case: k= V.

Using equation [1.346], we have:
vv=Da, "2 +(5-2ev)a, V™ =0
This equation is verified in all cases if:

{V(V‘l): 0 [1.347]
(0-2&ev)=0

— Second case: k # V.

Expanding equation [1.346], we obtain the terms of the same power in #*. The
identification of these terms leads to:

k(k+Dag ¥ =2ekapr* ' + a7 =0
Hence:
[k(k+1)ay - 2ekay +8a, )" =0 [1.348]

Considering [1.348] and the results [1.347], we finally get:

{V(V D =0 [1.349]

k(k+Da,,, —2cka, +5a, =0
(2.2) Possible values of v

The first solution of [1.348] leads to v=0 or v= 1. For v= 0, the series [1.339]
contains one constant term and is written as:

2 =ag+ 3 art [1.350]
k#0



Schrédinger’s Equation and its Applications 115

The wave function [1.346] has the form:

o)=L 5 o hxeE [1351]
r T kz0

Expression [1.351] shows that for v = 0, the wave function has a term that tends
toward infinity when r = 0 (a, is not zero). Since the wave function must be
bounded, the only solution to be retained is v = 1. For this solution, we have:

O(r)=ae & [1.352]

This corresponds to the solution characterizing the ground state of the hydrogen-
like system. The only difference between this solution and [1.144] resides in the
factor a;, which is determined from the normalization condition that must be met by
the wave function ®(r).

(3) Expression, asymptotic behavior

Using the second equation of results [1.349], we have:

Ayl _ 26k=96 [1.353]
aj k(k+1)
At infinity (k — oo), the ratio a;.1/a; tends toward:
el _ 2& [1.354]
aj k+1

(4) Comparison

The expansion in complete series of the function ¢** can be written as follows:

— — 1 1.
ez;:rzzbkrkzzﬁ(zg)krk [1.355]
k=0 k=0

The coefficients by of this expansion are given by the relation:

by = %(281/)]( [1.356]
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Using this expression, the ratio by.,/b; can be written as follows:

bt _ 2€ [1.357]
bk k+1

This corresponds to the convergence limit [1.354] of the ratio ay./ay.
Consequently, at infinity the series [1.339] behaves as the function ¢*. It can be
noted that the wave function [1.339] diverges if we consider y (r) = €. This
justifies the cut-off condition.

CONCLUSION.— The series [1.339] is therefore convergent. It presents a cut-off,
meaning that it stops for a certain well-determined integer value of .

(5) Expression of the quantized energy

The cut-off condition of the series [1.339] is obtained for k = n, where n is a
positive integer taking the values 1, 2, 3... (it is worth recalling that the smallest
value of & is equal to kn;, = v=1). Hence, the series stops for & = n. It follows from
this that the coefficient a; 1y in [1.353] is zero. Hence: 2en = &. Using [1.338], we
have:

2mE _ Zme? zxi
n? 2 n?

Arranging this relation, we finally have:

2 4
E, __Zme” [1.358]
21%n?

1.8.14. Solution 14 — Line integral of the probability current density
vector, Bohr’s magneton

Probability current density:

.7(?,1):2i P+ VP PV [1.359]

mi

Wave function:

¥ (0 9) =R ()% O () x D (¢); D(¢) = exp (im ¢) [1.360]
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¥

T (VW) = Lo¥ (?\P)(p:La‘P [1.361]
or

V), = 19, il
V), r a6 rsiné dg
(1) Components of the probability current density vector

According to expression [1.359], the components J; and Jy involve the real parts
R () and O (), respectively: these components are therefore zero.

The component J,, is written as:

h
Jy :Tm[\P*V(p‘I’)—‘PV¢‘I’*] [1362]

Taking [1.360] and [1.361] into account, we have:

WAV W=y
rsin@ [1.363]

WV =y g
4 rsin @

Expression [1.362] is then written as follows:

J(pz—h X ZW
2mi  rsin@

¥ *Y

This leads to:

Iy =T, x
? m ! rsin @

[1.364]

(2) Expression of intensity

Intensity dl, of the current through do (the flux of the current density vector
through the elementary surface do) is defined by the following relation:

dl,=j, do [1.365]

By definition, the component of the current density vector is j, = —eJ,. Using
[1.364] and [1.365], we get:

eh Yoy
—my—
m rsin@

j(z):
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Hence, we have:

*
dly=-Lm, T2 4o [1.366]
m  rsin@

(3) Expression of the elementary magnetic moment

The magnetic moment is the product of the intensity and the area delimited by
the current. Knowing that the delimited area is S = mp* = n(rsin6)*, we have:

dM ; = dl ,S = dM; = dl 7 (rsin 6) [1.367]

Inserting [1.366] into [1.367], we find:

%
dM( Z—ﬁmg \P ¥ lt(rsiné?)de'
m rsin
This leads to:
eh 1.368
dM/ 2—7}’}’!@\11*\{’ dt [ . ]
) 2m

In relation [1.368], the elementary volume is d7= 2nrsin@do.

(4) Orbital magnetic moment, Bohr’s magneton
— Magnetic moment

Integrating [1.368] on all the current tubes (which amounts to integration
throughout the space), we obtain:

M, :de/ :_ﬂm/jxpw dr [1.369]
: ==y

Knowing that the wave function is normed:

My ==, [1.370]
2m

— Bohr’s magneton

Expression [1.370] shows that the orbital magnetic moment is the product of the
dimensionless magnetic quantum number 72, and a magnetic moment denoted us,

known as Bohr’s magneton. By definition, ug =—M /m,. Hence:
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g _eh [1.371]

2m
Numerical expression:

up=9.274 X10"* Am’.

1.8.15. Solution 15 — Schrédinger’s equation in the presence of a
magnetic field, Zeeman-Lorentz triplet

In the absence of a field of external forces, the stationary Schrodinger equation
describing the evolution of the state of a free particle is written as:

A+ 22—y =0 [1.372]
/]

In the presence of a magnetic field, equation [1.372] takes the form:

A‘P—i%Z.V‘I‘+2—’;(E—V)‘P:0 [1.373]
h

The wave function of the hydrogen-like system ¥ (r,8 ¢) = R () X © (6) X
® (@), the imaginary angular part ®(¢) = exp (im, ¢). The relations between

Cartesian coordinates and spherical coordinates are:
x=rsinfcosg; y =rsin@sing, z = r cos@ [1.374]
(1) Proof
The wave function depends on x, y, z through ». Hence:

oY _o¥ox J¥dy oY oz [1.375]
dp Ox dp Jdy dp Jz d@

Taking [1.374] into account, expression [1.375] leads to:

0¥ .. ¥ . ¥
——=-rsin@sin (pa— +rsin@cosp—
x

dg
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Therefore, after arrangement we have:

o B‘P oY

oY [1.376]
3 Ty T

(2) Deduction of the magnetic field

The vector potential 4 is given by the relation of definition B=VAA. To
answer the question, it is sufficient to prove that the direction of the magnetic field is
that of the Oz axis, hence: B = B,. Let us consider the following relations:

1 1 _
AX:—EBy; Ay:szandAZfO [1.377]
We have
o o4. 04
B, =(VAd) =22 Y -0
* ( )x dy oz
— - 04 04
By:(VAA)y oz axz
— —~\ 04, 94. B B
_ _ Y _ _
R e TR

In conclusion, the magnetic field derives from the vector potential whose
coordinates are given by relations [1.377].

(3) Proof

Let us determine the quantity A V¥ in the expression [1.373]. We have:

Avwoa Wy Y oY [1.378]
ox ) 0z

Taking [1.376] into account, we have:

oY a‘*’} [1.379]

Ave=1p 2
2 ay ox
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Using [1.376] and [1.379], we obtain:

Z.V\p:lgai
2 de

This leads to:

_i2G.Tw =Y [1.380]
Knowing that ¥ (.6 ¢) =R (r) X © (6) X exp (imy ¢), [1.380] is finally written

as:

~i284- T = £ B, Y [1.381]

(4) Schrodinger’s equation
Inserting [1.381] into equation [1.373], we find:

A\P+§Bmﬂ' +2—’;“(E—U)\y=o [1.382]
h

The Schrodinger equation in the presence of a magnetic field [1.382] can be
written as:

A‘P+‘P+2m(E+mgehB—Vj‘P=0
72 2m

Writing this equation in the form of the Schrodinger equation [1.372], we have:

N+ 22—V =0 [1.383]
n

In equation [1.383], £’ is the total energy of the studied hydrogen-like system in
the presence of a magnetic field with:

E’=E+méﬂB [1.384]
2m
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(5) Expression of total energy, Zeeman—Lorentz triplet
— Expression of total energy

For a hydrogen-like system with potential energy ¥ (r) = —Ze*/r and total energy

E, the solution to the stationary Schrodinger equation [1.372] gives the discrete
values [1.359] of the energy E, which are the following:

Z%me*

E, =-22°
21%n?

n

Consequently, the solution [1.383] of the Schrédinger equation in the presence of
the magnetic field can be written as follows:

E =E,+m B [1.385]
2m

Result [1.385] expresses the quantization of the total energy of the hydrogen-like
system, which now depends on the angular momentum quantum number.

— Zeeman—Lorentz triplet

During a transition between states ¢ = 0 and ¢ = 1, the energy varies by the
quantity:

AE, = AE, + < Bam, [1.386]
2m
Knowing that AE = hw and Larmor’s frequency is Q = eB/2m, we have:
eB
a)=a)0+2—Amé:>w=wo+QAm4 [1.387]
m

The result [3.187] effectively gives the Zeeman—Lorentz triplet [3.188].
1.8.16. Solution 16 — Deduction of Schrédinger’s equation from the
De Broglie relation

(1) Differential equation

Let us recall the propagation differential equation:

3’ & o '
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For an electromagnetic wave, the frequency v= c¢/A = ¢ = Av. Equation [1.388]
can be written in the form:

207 _ 1 907 [1.389]
0> A7 o

(2) Proof

The solution to the propagation equation [1.389] has the form:
Y(q,t) = D(g)xexp(iox) [1.390]

According to the De Broglie relation, 4 = h/p. Using this relation, the wave
equation [1.389] is written as:
,0°¥ _ Lz °’Y
a¢>  h* o

[1.391]

Moreover, using [1.390], the second-order derivatives of the wave function with
respect to the generalized coordinate ¢ and with respect to time are:

9"¥(q,0) _ 0’ ®@(q,1)

xexp(iar)

v o [1.392]
2
% =— 0’ ®(q)xexp(iar)

Using [1.392], after simplification equation [1.391] becomes:

2 2
2 %z_%w@(q) [1.393]
q h

Since @w=2mnv, we finally find:

2 2
9 ;D(Z‘I) =_4ﬂ-2%q)(q) [1.394]
q

This equation is valid for a free particle.
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(3) Expression of energy

We generalize equation [1.394] to the case of a particle subjected to a potential.
For this, we consider the particular case of a conservative system subjected to
potential V(q). Energy E is given by the relation:

2
E=P V(q) [1.395]
2m

This expression gives the total energy of a non-relativistic particle (which
already gives the idea that the Schrédinger equation is a non-relativistic equation).

(4) Schrédinger’s equation for stationary states

Expression [1.395] can be used to deduce the linear momentum p of the particle:

P> =2mlE -V (9)] [1.396]

Inserting [1.396] into [1.394], and knowing that A*/4n = 7%, we find:

_p? aaq;(f) =2m[E -V (9)J@(q)

or, after arrangement:

2 2
9@ 1y [1.397]
2m  dgq
This is the stationary Schrodinger equation.

(5) Generalization to three dimensions

Equation [1.397] can be written in three dimensions (x, y, z) as follows:

2 2
_§BE§%Q=m—wmbm»ﬂ
m X
" 1.398
_LM:[EV —V(»)p(x, 3, 2) -
2m dy '
_ I 0’0(x,y,2)

D -5 - v ,2)

2m 9z*
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Summing equations [1.398], we find:
> &
_2m|:axz +y +aZz:| P ()C,y,Z) = [(Ex +Ey +Ez) _{V(x)+V(y)+V(Z)}] N (X,y,Z)
Making use of the Laplacian, we have:
2 - - -
-— V()= [E - V(r)]CI)(r)
2m
which can be finally written as:

{— LR V(;)}é(;) = EO(r) [1.399]
2m

This is the stationary Schrédinger equation [1.28].
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Hermitian Operator,
Dirac’s Notations

General objective
The general objective is to know the properties of Hermitian operators and the
usefulness of Dirac’s notations.
Specific objectives
On completing this chapter, the reader should be able to:
— define the space of square-summable wave functions;
— know the properties of the scalar product of two functions;
— define a discrete orthonormal basis;
— define the Kronecker symbol;
— define the components of a wave function;
— define the norm of a wave function;
— know the orthonormalization relation;
— write the expansion of a wave function;
— know the closing relation;
— define the space of states;

— know Dirac’s notations;
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— write the expansion of a state vector;

— distinguish between a ket vector and a bra vector;

— distinguish between a linear operator and a linear functional;
— define the components of a ket and a bra;

— define a matrix element;

— define the projection operator on a ket and on a sub-space;
— define a self-adjoint operator;

— define a Hermitian operator;

— give examples of Hermitian operators;

— know the rules of Hermitian conjugation;

— define a function of operators;

— know the commutation rules;

— define the Poisson brackets;

— know the properties of commutators;

— define the trace of an operator;

— define a unitary operator;

— define the density operator;

— define the evolution operator;

— define an observable;

— know the properties of observables associated with spin;
— know the properties of Pauli matrices;

— know the properties of an orbital angular momentum operator.

Prerequisites
— Wave function.
— Properties of Cartesian space.

— Vector space.
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2.1. Orthonormal bases in the space of square-summable wave
functions

2.1.1. Subspace of square-summable wave functions

As already noted in Chapter 1, the wave function ‘P(;) describing the physical

state of a system satisfies the normalization condition (see [4.51], Chapter 4,
Volume 1). The set of square-summable wave functions belongs to Hilbert space L
[COH 77, MAR 00, HLA 00, NEU 18]. Since the dimension of Hilbert space is too
large, a subspace of L? denoted F is considered. This is constituted of square-
summable wave functions that are defined everywhere, continuous and indefinitely
differentiable. As the set F has the structure of a vector space, every wave function

‘P(;) € F satisfies the superposition principle [1.1].

In addition, if ® (;)e F and l//(;)e F, the scalar product of ® (;) and l//(;)

considered in this order is a complex number and denoted as (y,®) and given by the
relation [1.2] (this will be widely used in this chapter). The properties of the scalar
product are expressed by the relations [1.3].

2.1.2. Definition of discrete orthonormal bases

Let {u; (;) } € Fbe adiscrete set, where i is a discrete index: i=1,2, 3....

{ui(;) } is an orthonormal set if:

(uj,u;)=08;

3 k- - [2.1]
(ul-,uj)zjd ru; (r)uj(r):b‘ij

where:

s _[ri=i
Ploifi

0; is defined as the Kromecker symbol. The name of this symbol honors the
German mathematician and logician Léopold Kronecker (1823-1891).
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The set {ui(;_;)} constitutes a basis, if any wave function W € F is uniquely

expanded on the basis vectors u; (r ) such that:

W)=Y cu (r)
o B [2.2]
W(r,t) =2 ci(Ou;(r)

2.1.3. Component and norm of a wave function

Let us consider the expansion [2.2] and then express the scalar product (;,'¥)
using [1.2]. We obtain:

(), W) = (g, 2cuy) = Xei(uou) = 260

or:

cj=(uj,‘I‘)Dcl~=(ui,‘I’) [23]

Result [2.3] shows that component ¢; of the wave function ‘P(;) on the discrete

basis {ui(;)} is equal to the scalar product of ul-(;) and ‘P(;) .

Let us now consider two functions ¥ and @ of F and then express the scalar
product (¥, ®) as a function of their respective components b; and ¢;. We obtain:

Y= Zbl'l/li

1 *
=W, 0)=| Y by, > ciui (=D bici(uu;)
(I):Zc]u] [illjjj i,jl] LEaaw
J

Taking [2.1] into account, we have:

1

(P, @)=Y bc;0; = (¥.®)=Ybc; [2.4]
i,j i

In particular, if ® =¥, the squared norm of the wave function is (‘¥,¥), with:

RAINS [2.5]
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APPLICATION 2.1.—

Calculate the norm of the wave function below and draw a conclusion.

1 i
g L, L, [2.6]
N

Solution. We use [2.5]:

2
2 2 2 1 i

Y)Y =Y e = S L R [2.7]
=Tl =lef” el = | + -

1 1 3
Y.¥)=—+—==
(£.1) 2+4 4
Hence:

NEAD =\E=‘§ [2.8]

CONCLUSION.— The wave function is not normed to unity.

2.1.4. Closing relation

The orthonormalization relation [2.1] reflects the fact that the basis vectors
ui(;) are orthogonal and normed to unity. In what follows, a relation will be

established expressing that the set {ui(;)} is a basis in the space of square-

summable wave functions. Taking [2.2] and [2.3] into consideration, we have:

W)=Y e (r) R
; ==Y, V) u(r)
¢ :(ui’lP) ‘

Using [2.3] in terms of variable ;‘, we have:

6 =l (). W)= [ a3 () W) [2.9]
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Hence:
W) =X [dPru (W)
This means:
¥(r)=[d 3r‘{2u7 ) uﬁ)} W) [2.10]

By definition, Dirac’s delta function (8) has the property that, for any wave

function lI’(;) , satisfies the equation:
W) = [dree)S(r - ) [2.11]

The comparison of expansions [2.10] and [2.11] reveals that the function ;
must satisfy the relation:

> ur () u(r)=8(r —r') [2.12]

The closing relation [2.12] expresses the fact that the set {ui(;)} constitutes a

basis in the space of square-summable wave functions.

2.2. Space of states, Dirac’s notations
2.2.1. Definition

The previous section focused on the study of the properties of wave functions
Y(r)e F. In quantum mechanics, the state of a physical system is described by a

state vector denoted |'¥') or [¥(¢)) belonging to the space E, of states. The passage
from the space of square-summable wave functions to the space of states can be
formally expressed as follows:

Y(r)e F — |¥)eE,
Y(r,)eF — |¥(@)eE,

[2.13]
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Let us note that in the writing of the state vector, the dependence with respect to
variable r is no longer present. Only the temporal variable ¢ is highlighted in the
symbol of the state vector. The wave function W(r)is then interpreted as the set of

components of the state vector on a particular basis denoted {| P »} in which P plays
the role of a continuous index, the components of r varying between — co and + eo.
The relation of the passage from the state vector |'¥') to the wave function W(r) will

be revisited in section 2.2.2.

2.2.2. Ket vector, bra vector

The symbol |) involved in writing the state vector is known as ket and the state
vector |'¥) or [¥(¢)) is known as a ket vector or simply ket. Therefore, any square-

summable wave function ‘P(;) is associated with a ket vector denoted |¥) belonging

to the space of states E,. By definition, a bra (®| is a linear functional that
establishes a correspondence between any ket |¥) and a complex number A such
that:

(DY) = (DY) = 4 [2.14]

It can be proven that the set of linear functional defines a vector space denoted
by E*, known as the dual of E..

Paul Adrien Maurice Dirac was a British physicist. In 1927, he published the results
concerning the statistical distribution of the half-integer spin particles known as
fermions in cooperation with the Italian physicist Enrico Fermi (1901-1954). This led to
the elaboration of the Fermi-Dirac distribution or statistics, which is commonly employed
in the physics of semiconductors. In 1928, Dirac established the relativistic wave equation
in order to unify quantum mechanics and the theory of special relativity. The development
of this relativistic theory of quantum mechanics made it possible to predict in 1931 the
existence of a positron (positive electron), which was discovered in 1932 by the American
physicist Carl David Anderson (1905-1991). In 1930, Dirac introduced linear operator
algebra as a generalization of Heisenberg’s and Schrodinger’s theories. He also
introduced the notions of ket and bra known as Dirac’s notations, greatly simplifying the
mathematical formalism of quantum mechanics. In 1933, he was awarded the Nobel Prize
for physics, which he shared with Schrédinger for their important contributions to
quantum mechanics.

Box 2.1. Dirac (1902-1984)
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The symbol (|) is known as bracket. This explains the origin of the names ket for
the symbol |) and bra for the symbol (|. The ket |) and bra (| notations are known as
Dirac’s notations to honor Paul Dirac who introduced them to quantum mechanics.

2.2.3. Properties of the scalar product

The scalar product has been defined for two square-summable wave functions
[1.2] and its properties have also been established [1.3]. They are established here
once again in the space of states. Using Dirac’s notations, the scalar product of ket
|'¥') and ket |®@) is defined by the relation:

(|P),|'¥)) = (P[Y) [2.15]
This scalar product verifies the following properties:
(@)= (¥|®)
(Plhen+ ps) = h(@[¥) + (o |¥)
(a1 + 2000 ¥) = (@ |¥) + 2o 0 ')

[2.16]

If (®|'¥) = 0, then ket |®) and ket [¥) are orthogonal.
If |®) = |'¥), then the squared norm of the ket is equal to (‘P|'¥).

If the ket |'¥') is normed to unity, then (‘¥|'¥) = 1.

2.2.4. Discrete orthonormal bases, ket component

Discrete orthonormal bases have been previously defined [2.3] for the space of
square-summable wave functions. They are redefined here in the space of states and
their properties are studied using Dirac notations.

Let us consider a discrete set {|u;)}€ E,, where i is a discrete index: i=1,2,3, ... .

The set {|u;)} is an orthonormal set if:

(uiluz) = [2.17]
0; is the previously defined [2.3] Kronecker symbol.

The set {|u;)} constitutes a basis in the space of states if any ket [¥) in the space
of states E, is uniquely expanded on {|u;)}, hence:
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“I’>=ch~‘u,~> [218]
i
Let us determine the scalar product (|u;), |'¥)). Using [2.18], we get:

o)

which means:

)| o) el |- Ee o) =S

(fup,|¥)) = ') = ¢ [2.19]

Therefore, the component ¢; of the state vector |'¥') on the basis {|u;)} is equal to
the scalar product of |¥) and |u;), hence:

¢ = (i) [2.20]
Moreover, relation [2.17] expresses the fact that the set {|u;)} is orthonormal. We
will establish a further relation that expresses that this set is a basis in the space of

states. For this purpose, we substitute ¢; by its expression [2.20] in the expansion
[2.18] of the state vector. We obtain:

)= o) =S ] Sl )

1

Knowing that |\P') is arbitrary, the closing relation satisfied by the set {|u;)} can
then be written as:

Z|ul><ul | =1 [2.21]

Relation [2.21] is the equivalent of the closing relation [2.12] satisfied by the set
{ui(;) }in the space of the square-summable wave functions.

2.3. Hermitian operators
2.3.1. Linear operator, matrix element

Linear operators are similar to those defined in the space of square-summable
functions. They are redefined here using Dirac notations.
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According to a Dirac notation system, a linear operator 4 is a mathematical
being that establishes a correspondence between any ket |'¥) of the space of states E,
and another ket [¥’) belonging to the same space, the correspondence being linear.
Hence:

{A ¥) =) [2.22]
AA|vn) + hlvo) = 4 Ayn) + A Aly,)

Properties [2.22] reflect the action of operator 4 on the kets. While operator 4
acts on the left of a ket, it always acts on the right of a bra. The action of operator 4
on the bras can then be written as follows:

(A |+ w2 D4 =2y |4+ Ly, |4 [2.23]
Expressing the scalar product of ket A|'¥) and ket |®), we obtain:
(1), AlY)) = (D|(A['F)) = (P|A)'F) = (DIA]'Y) [2.24]

By definition, a matrix element of A between kets |®@) and |¥) is the complex
number denoted by [COH 77]:

(@|4|'Y) [2.25]

2.3.2. Projection operator on a ket and projection operator on a sub-
space

In the previous section, we have defined the linear operator using Dirac
notations. Let us give a simple example of the linear operator known as the
projection operator, which will be defined in the space of states. An interpretation of
the action of such an operator on the kets will then be provided by an analogy with
the Cartesian space.

Let us consider the quantity P, =|y)(y| and then express its action on the ket ['V').
We obtain:

Py|'¥) =[w)Xwl¥) = (w'P)lw) = Ay), with 1= (y|'¥)
Hence

PyY) = Ay) =¥") [2.26]
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Result [2.26] shows that the quantity P, establishes a correspondence between
any ket |'¥) and another ket ['¥”): P, = |y){y| is therefore an operator. Let us prove
that it is linear.

Let us consider the action of P,, on the ket /@) + A|@,). We obtain:

Py (A|@1) + Al02) = WXWI(Ai]@1) + l2))

Hence:

WXWI(AilQ1) + Aol 92)) = LXWI01) + AolwX(wlg2)

And finally:

Py(Ai|@1) + Al92) = LiPyle1) + A Pyl9a) [2.27]
Result [2.27] actually expresses the fact that operator P, is linear.

Before providing a “geometrical” interpretation of relation [2.26], let us make
sure that P, is actually a projection operator. If Py, is a projection operator, then the
following property is verified: (Pw)2 =P,.

We then consider a normed ket |y) that means: (yy) = 1. The squared operator
P is written as:

(Py)’ = Pyx Py= ((W)XW)) X ((w)(y))

Hence:

(Py)* = WXWIWXY| = WXy = Py,

CONCLUSION.— From a “geometrical” point of view, P, is the “orthogonal
projection operator” on the ket [y) (see Figure 2.1).

As shown in Figure 2.1, the projection operator on the ket |@) can also be
defined. The projection operator on the two-dimensional subspace generated by the
kets |y) and |@) is then defined by the relation:

Py + Py = W)Xyl + [oX¢l [2.28]

In order to generalize result [2.28], let us consider the subspace £, generated by
g basis vectors {|@)}, i =1, 2, 3,..., ¢ with (@|@) = J;. Let P, be the projection
operator defined by the relation:
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B, =30l [2.29]

i=1
o

A

)

K Ao

Figure 2.1. “Geometrical” interpretation of the projection operator P, on the ket |y)

By analogy to orthogonal projection in the Cartesian space:

Ps, OM = (i -OM)i = xi » we have: Py|¥) = (y|¥)|y) = Ay)

Let us verify that Py is actually a projection operator. We obtain:

{_ﬁzl«pi><¢i}x[il«zf><¢j}=i¢f><¢i<o,»><¢j=i¢f><¢j<w,~>
This finally leads to:

Zm m P, [2.30]

Z\% Kol

We then prove that P, is a projection operator acting all over the subspace Ej.
For this purpose, we consider the ket |¥) and we obtain:

- {z(p, @}v -Siaiol)- Sloeie)
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Hence:

Fy|¥) ZM@ = 1[1) + Aa|2) + 25| @3) + oA 2 2.31]

Result [2.31] actually proves that projection operator Pg acts on the subspace £,
subtended by the ¢ basis vectors {|@)}.
2.3.3. Self-adjoint operator, Hermitian conjugation
Let 4 be a linear operator. The ket:
AW)e E; - (A¥)* € E*, [2.32]
with:
A¥)* = (PlA" [2.33]

This is the definition of the adjoint operator 4" of 4 that uses Dirac’s notations.
The matrix element [2.24] then leads to the simple relation:

(D|A|P)* = (P|4"|D) [2.34]

If 4 is linear, then 4" is also linear. If A is a complex number, the following
Hermitian conjugations using Dirac’s notations are verified:

(A) T = A*4"; (1x4h) = A4 [2.35]
(DAAP))* = 1*(P|4T|D) [2.36]
(@it Aagald)* = Ao+ Aga)= d|@n) +AA"|p) [2.37]
(KQA|P))* = 2%(P|4"|p) [2.38]

As a general rule, in order to obtain the Hermitian conjugate of an arbitrary
expression that involves kets, bras, operators and complex numbers, it is sufficient
to write the vectors and operators in reverse order replacing:

— complex numbers by their complex conjugates;

— kets by their associated bras;
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— bras by their associated kets;

— operators by their adjoints and the inverse.

The order in which the complex numbers and their conjugates are placed is not
important.

If operator 4 is Hermitian, then 4 =4". Relation [2.34] is then written as:

(DA|)* = (P|4|D) [2.39]

APPLICATION 2.2.—

Prove the following property:

(AB) =B'4" [2.40]

Solution. Given the ket [¥) = (4B)|®) = A(B|D)), we put: B|®) = |y) ; [¥) = A|y).

We then obtain:

(¥| =(D|(4B)" = (y|A'= (®|B'A'= (4B)" =B'A"

Therefore, when the adjoint of the product of two operators is set, the initial order
of the operators is reversed.

2.3.4. Operator functions

An example of an operator function has already been provided in Chapter 1. It is
the evolution operator denoted U (¢, t;) defined by relation [1.34]. The objective is
here to define operator functions in the general case and then express several of their
properties.

Let A be a linear operator and F (1) a function of the variable u that can be
expanded in the form of an integer series such that:

Fuy= S fyu” [2.41]

n=0

By definition, the operator F' (4) of the linear operator 4 is defined by the
expression:
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Fia)= S fod” [2.42]

n=0
If A4 is Hermitian, then F (4) is Hermitian if coefficients f; are real.
APPLICATION 2.3.—
Let 4 be an observable. Prove that the operator F (4) = ¢ is Hermitian.

Solution. Let us expand the operators F(A) and F (4) in integer series using
relation [2.42]. We obtain:

1

“n!

A3 A"+ [2.43]

A = z (A) =1 + (Af) + - (AT)3+... l(A*)u...
0" 3! n!

Since A4 is Hermitian, then:
AT = Z (A) =1 +_ (A) + 2 (A) = (A)”+... [2.44]
n!
n= 0

Comparing [2.43] and [2.44], it can be noted that F (A) = F (4"): F (A) is actually
Hermitian.

2.4. Commutator algebra
2.4.1. Poisson brackets

As already noted throughout Chapter 1, the operators representing fundamental
observables are the position and linear momentum operators, which are used in
building various other operators, such as the Hamiltonian, based on the
correspondence principle stated in section 1.3.4.

Let us consider two arbitrary functions F (g, px) and G (qi, pi) defined in the
space of phases characterized by the canonical coordinates q, (generalized
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coordinate) and py (generalized linear momentum), i =1, 2, 3... Poisson’s bracket is
defined as the quantity denoted [F, G], which is given by the expression [CHP 78]:

[F G]zz OF 6G _ 6G OF [2.45]
| - Opk 0qx  Opk 04y

Let A be a complex number. Poisson’s bracket verifies the following properties:

[F, F1=[G, G1=0; [F, 2] =[G, 4] = 0; [F, G] = - [G, F] [2.46]
[F, G +K]=[F, Gl +[F,K]; [G+K, F]=[G, F]1 + [K, F] [2.47]
[F, GK] = [F, G] K + G[F, KJ; [GK, F] = G[K, F] + [G, FIK [2.48]

The properties below are also satisfied if ' and G are operators and if the
operator [F, G] represents their commutator (see further below).

APPLICATION 2.4.—
Prove the first of relations [2.47].

Solution. Using [2.45], we have:

[F,G+K]:Z[ SF 5(G+K) S8(G+K) 5FJ
Opr o4y Opr Oy

Hence:
[F,G+K]:Z(§F 3G 6G 5FJ+Z(5F 5K 6K 5Fj
=i\ Opi Sqx Opi 845 ) Lmi\Opi Sqi Opy Suy

Or:

[F, G+ K]=[F, G]+[F,K]
APPLICATION 2.5.—

Prove that the product (4B) of two Hermitian operators 4 and B is not Hermitian
unless the two operators commute.
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Solution. Let 4 and B be two arbitrary operators. The commutator of 4 and B is
the operator denoted [4, B] defined by the relation:

[4, B]=AB — B4 [2.49]
If A and B commute, then:

[4,B]=0= 4B =BA [2.50]
If A and B are Hermitian, then according to [2.40] we have:

(4B)'=B'A" = B4 [2.51]
Knowing that 4 and B commute, then relation [2.52] can be written as:

(4B)" = (4B) [2.52]

Therefore, the product (4B) of two Hermitian operators 4 and B is not Hermitian
unless the two operators commute.

APPLICATION 2.6.—

The quantum Poisson bracket is defined as the operator [F, G] given by the
relation:

[F,G]=%(FG—GF) [2.53]

Prove that if F and G are Hermitian, then operator [F, G] defined by [2.53] is
Hermitian because of the introduction of factor i.

Solution. Using the property [2.40], we have:

i U i
[F,G]" = (h (FG - GF)] = (FG- GF)' = - GTFT-FfGgh
Hence:

. + . .
[F,G]" = (; (FG - GF)) = —é(FG -GF)' = %(FTGT ~GTFTy [2.54]

If F and G are Hermitian, then:
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[F,G]" = %(FG —GF)=[F,G] [2.55]

The introduction of factor 7 in the definition relation [2.53] is a requirement for
ensuring the Hermiticity of the quantum Poisson bracket.
2.4.2. Commutation of operator functions

As a general rule, any operator 4 commutes with its function F (4). Moreover, if
A and B commute, then:

[4, F (A)]=0; [B, F (4)] =0; [4, F(B)] =0 [2.56]
Furthermore, as seen in Volume 1, Chapter 4, according to Heisenberg
uncertainty relations, it is impossible to simultaneously measure the position x and

the linear momentum p = p,. In other terms, the associated operators X and P are
anticommutative. To verify these assertions, let us first calculate commutator [.X, P].

We consider the continuous set {|x)} and express the number (x|[.X, P]|¥):
(x|l Py} = (P~ P ) = (x| Py~ (o] Py

Hence:
(x[lX.Ply) = (x| Ply) = (x| Prly) = =itee— < \w>+lhx*< V) s

Expanding the left member of [2.57], we have:

<x\[X3P]1/f>——lhx S \W)ﬂhx < (xly) in(xly)
After simplification and arrangement, we find:
(x|[x, Ply) = (x|ir|w) [2.58]

Which finally leads to:

[X,P]=ii [2.59]
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APPLICATION 2.7.—
Calculate the commutators [X, P], [X, P°] and [X, P"], n > 0.
Solution.

— Commutator [X, P°]
Using the first property [2.48], we obtain:

[X, P’] = [X, PP] = [X, P]P + [X, P]P

Using [2.59] (for the sake of simplification, the identity operator is omitted), we
find:

[X, P*] = 2ihP [2.60]

— Commutator [X, P°]

Similarly, we obtain:

[X, P’] = [X, P°]P + PY[X, P]

Using results [2.59] and [2.60], we find:

[X, P*] = 3ihP [2.61]

— Commutator [X, P"]

Let us consider the commutator:

[X, P** '] = [X, PP"] = [X, P]P"+ PX, P’]

According to [2.60] and [2.61], we obtain by recurrence:
[X,PP]= pinPP™!

This involves:

[X, PP =inPP+ pihPPP ™= in(p +1)PP

This relation is valid for any integer p in particular for p = n — 1. Hence:

[X,P"]=ifnP" ! [2.62]
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We now consider the function £ (P) of operator P defined by relation [2.42], in
which the operator 4 is replaced by P. Then we express the commutator [X, F(P)].
We obtain:

[X,F(P))=) f[X.,P" =ik fynP"~! [2.63]

The last term of equation [2.63] features the derivative of the operator function
F(P) with respect to P, which is:

dF(P) _d -
FO= 0= =Y

Therefore, we finally get:
[X,F(P)]=ihF'(P) [2.64]
Let us also express the commutator [P, G(X)]. In this commutator, G (X) is a

function of the position operator X defined by relation [2.42] in which 4 must be
replaced by X. We obtain:

[P,G(X)]= D g,[P.X"] [2.65]

n

Or:
[P, X" =[P, XX" =[P, X1X" % X[P, X"} [2.66]

Using the third property [2.46], we obtain [P, X ]= —ih according to [2.59].
Relation [2.66] is finally written as:

[P, X" =—ihX" ™= ihX (n—-1)X"">
Or after arrangement:

[P.X"|=—ifnX " [2.67]
Inserting [2.67] in [2.65], we find:

[P,G(X)]==ihY g,nX""!

n
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The derivative of function G(X) with respect to X is written as:

dG(X) d n n—1
G'(X ——7———2 X'= E X
@) ax dX " En " Enlt

Hence:
[P,G(X)]=—-ihG'(X) [2.68]

Results [2.64] and [2.68] feature the derivatives of the operator functions F (P)
and G (X) with respect to P and X, respectively. We now consider the case when F'
and G are time dependent. The rules of differentiation with respect to time ¢ are
identical to the rules of differentiation commonly used for classical quantities.
Hence:

dF+G) _dF  dG [2.69]
dt dt dt
A6 _dr .. 46 [2.70]
dr - dt dt

The order of operators in relation [2.70] should be respected. If F and G
commute, then this order has no importance.

APPLICATION 2.8.—

Let A and B be two time-dependent operators that do not commute. We consider

the operator function F (4, B, 1) = ¢"'¢”. Under what condition we can write:

%:(A+B)F [2.71]

Solution. Let us differentiate the function F (4, B, f) = ¢*¢® with respect to time.
We get:

di_ de™ B 4 et de”
dt dt dt [2.72]

Using [2.43], we have:

de“ _d i n" i nCM"!
dt  dt,Z, n! noo 7!
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Hence:

N (o) L NN (o) LIRS 273
- _cgl(n_l)! =CYy ——=Ce [2.73]

p=0 p!

Using [2.73], relation [2.72] can be written as:

ar = Aedt B! 4 oA BBt [2.74]

dt

Relation [2.74] cannot be written in the form [2.71] unless 4 and B commute. They
commute with their functions, hence e*Be® = B ™. Factoring the right member
of [2.74] by e, we actually obtain [2.71].

Siméon Denis Poisson was a French mathematician, physicist and geometrician. His
contributions to physics essentially relate to electricity and magnetism. Relying on the
Laplace (1749-1827) equation, Poisson published, in 1813, the differential equation
satisfied by any electrostatic potential. This Poisson equation expresses that the Laplacian
of the potential in a point in space depends only on the volume charge density in this
point. Based on the notion of vector field flux, Gauss (1777-1855) formulated, in 1840,
the local Poisson equation at macroscopic scale (Gauss theorem). In quantum mechanics,
Poisson brackets are named in his honor.

Box 2.2. Poisson (1781-1840)

2.4.3. Trace of an operator

By definition, the trace of an operator A, denoted Tr4, is the sum of its diagonal
matrix elements. In the discrete orthonormal basis {|u;)}, the trace of operator 4 can
be written as:

Trd4 = Z<ul~ ‘A‘ui> [2.75]

1

We prove that the trace of an operator is an invariant, meaning that it does not
depend on the chosen basis. Then we consider another discrete basis {|uy)} in the
space of states. Let U be a matrix. A change of basis involves the passage from the
set {|u;)} to the set {|v;)} by means of the transformation:

luiy=>"Us|v) [2.76]
k
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Vectors {|v;)} form a discrete orthonormal basis in the space of states, if matrix
U is unitary, therefore:

%U U jic = 6 [2.77]
Then we have:

Tr(4) =Z<Ml- ;)= Z(%U;\r@k }{;Uﬂv»]
Hence:

Tr(4) = Z{Z U;cUl-,]@k Av;) =" (v |4 vy) S

kl ki

It finally leads to:

Tr(A) = (up|Alu;) =D (v |4 v ) [2.78]
i k

Result [2.78] actually expresses the fact that the trace of an operator is an
invariant.
2.5. Exercises
2.5.1. Exercise 1 — Properties of commutators

Let 4, B and C be three operators.

(1) Prove the following properties:
a)[4, B] =—[B, 4]; b) [4, (B + O)]=[4, B] +[4, C]
¢) [4, BC]=[4, BIC + B[4, C]; d)[4, B]'=[B', 4N

(2) Fill in the following equations (A and y are complex numbers):

a) ANF=...... by (M) = o) (M+urB) = :

dyUBH =.......
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(3) Prove the following relations [for ¥ (x) — 0 when x — oo]:

2 2
a) [dJT :_i ; b) d” = a- ;¢) P "= P (linear momentum operator)
dx dx a2 dx?

2.5.2. Exercise 2 — Trace of an operator

Let 4 be a linear operator. We consider the case when 4 is an observable. Let
uh)> 17123 g

u,’1> be a ket of A4 verifying the equation 4 |u }’7 > = a,
where g, is the degree of degeneracy.

(1) Prove the relation:

TrdA=3%g,a,
n

(2) Prove the following properties:

a) Tr AB=Tr BA; b) Tr ABC = Tr BCA = Tr CAB

2.5.3. Exercise 3 — Function of operators

Let 4 and B be two operators that commute. We consider the functions of
operators F' (4) and F (B) defined by:

F(A)=X [, A" > F(B)=Xg, B"
n n
Let A" be the operator obtained by n successive applications of operator 4 on
itself and let |®@) be a ket of 4 such that A|®) = a|®).
(1) Express the action of operator F(4) on the ket |®).

(2) Given the matrix:

10
%270 -1

Find €°7 .

(3) Find the commutators [4, F(A)], [4, F(B)] and [F(A), F(B)].
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2.5.4. Exercise 4 - Infinitesimal unitary operator
Let us consider an infinitesimal unitary operator U (€) defined by the relation:
U=>A0+4°
In this relation, £is an infinitesimal quantity.
(1) Prove that the product of two unitary operators is also unitary.
(2) Expand U (¢) to the first order approximation.

(3) Express in this approximation, the products U’ (&)U (¢) and U (§)U' () as a
function of & A4 and A

(4) Is the operator 4 Hermitian?

(5) Prove that there is a Hermitian operator B such that B = F (4).

2.5.5. Exercise 5 — Properties of Pauli matrices

An orthonormal basis {|+) ; |-) is chosen. In this basis, dimensionless operators
O, 0,, and o are represented by Pauli matrices and defined by:

0 1). 0 —i). 1 0
= s O, = ) =
%= o) o) %27 0 -1

The spin angular momentum is given by the expression:

S=_o

N |

(1) Prove that o, o;, and o are self-adjoint operators.

(2) Compare O'f, Gf and 03

(3) Express Tr (0;), i = x, y and z.

(4) Prove that oy0,+ 0,0, = 0 and that o0, — 0,0,= 2i0;.
(5) Express the commutators [0y, 0], [0y, 0] and [0, 0;].

(6) Deduce from the above the commutators [Sy, Sy], [Sy, S,] and [S, Sk].
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2.5.6. Exercise 6 — Density operator

Let us consider a discrete orthonormal basis {|u,)} in the space of states of a
particle. At instant ¢, a ket vector of this state can be written as:

W)=Y cy(O)u)

n

(1) Express the relation that must be satisfied by coefficients ¢, (¢) so that the
state vector [W(£)) is normed (this is the assumption in what follows).

(2) The density operator is defined in the representation {Ju,)}:
PO =[F@O)X ¥
Prove that p (¢) is Hermitian and idempotent (hence a projection operator).

(3) Find the trace of the density operator.

2.5.7. Exercise 7 — Evolution operator

Let us consider an observable 4 acting in the space of states with #» dimensions.
We designate by |®y), the kets of 4 such that 4|®;) = a;|®,) (k= 1, 2.. n). Moreover,
we consider a linear operator U (k, m) defined by the relation:

U (k, m) =|@;){(D,|
(1) Establish the relation between U (k, m) and its adjoint.
(2) Find the commutator [4, U (k, m)]. Deduce from it [4, U (k, k)].
(3) Prove that Tr U (k, m) = Oy

(4) Let B be an observable of matrix elements By,,. Prove that:

B =" By, Uk.m)

k,m
(5) Prove the relation:

By = Tr {BU" (k, m)}
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(6) Let us consider a normed ket |'¥'(¢)) whose evolution in time is described by
the equation:

[¥(0) = U (t, 10)¥ (%))
In this equation, U(¢, #y) is the evolution operator.

(6.1) Prove that U (¢, t,) is a unitary operator.

(6.2) Using the Schrodinger equation, prove the relation:

i dU(t,ty)

= HU(t,t
5 (t,%9)

In this relation, A is the Hamiltonian of a conservative system.

(6.3) Deduce from it the expression of the evolution operator U(t, f).

2.5.8. Exercise 8 — Orbital angular momentum operator

We consider the orbital angular momentum operator defined by the relation:

[=rnp
The component p, of the linear momentum operator is defined by the relation:

., 0
pq :_lhg

(1) Express the components /, /, and /, of the angular momentum operator.
(2) Establish the expressions of the products of operators //, and /y/x.

(3) Deduce from them the commutators [/, §j] (i = x, y, z # ).

2.6. Solutions
2.6.1. Solution 1 - Properties of commutators

(1) Proof
a) [A, B]=AB—BA=—-(BA - AB)=—[B, 4].
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2)

3

b)[4, (B+C)]=AB+C)—B+C)A=AB+ AC — BA— CA = (4B — BA) +

(AC - CA)=1[A, B] +[4, C].

¢) [4, BIC+ B[4, C] = (4B — BA) C + B(AC — CA) = ABC — BAC + BAC — BCA

= (ABC- BCA) = [4, BC].

d) [4, B]' = (4B — BA)' = (4B)' — (BA) = B'4"— A'B" = [B', 4".

Solutions

a) (AN =4 ;b) ()" = 24" ©) (U'+ p* B)' = (A*4 + uB' 3 d) (4B") = A'B.

Proof

a) Let us consider the scalar product:

d d
w2 i

Using {|x)} representation, the closing relation is written as follows:

j dx|x><x| =1
Inserting [2.80] in [2.79], we get:

d¢>
dx

(viso) ol ot

It is given as:

“+oo
dp\ *(x)2
<;udxq>>_ Idxw () P()
Using the integration by parts, we have:
d T d
- — *  _ AR YR
<w dx¢> ly*@l'Z - [arom v+

It is given as:

400
d —hy*xapt>™ _ i *
<"’dx‘p>‘[‘” ol jw dx= oy * ()D(x)

[2.79]

[2.80]

[2.81]
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The functions y(x) and ®(x) related to bound states tend to 0 when x — =& oo,
hence the product y*(x) ®(x) — 0 when x — * . Therefore, the first term of the
right member in [2.81] is zero. Hence:

~+oo
d d .
<y/dxq>> =—_j dv oy (D)D)
It is given as:
<y/d¢> =— +Ji° dx (dl//(x))*¢(x)
dx - dx

Or:

dq>>=<_d,/,q>> [2.82]

Moreover, it is known that if B is the adjoint of 4, then the following equality is
verified:

(YlAD) = (By|®) = (4"y|®) [2.83]

with B = 4". We put:

4= .p-_4 [2.84]
dx dx

Inserting [2.84] into [2.82] and taking [2.83] into account, we get:

(djT :_i [2.85]
dx dx

b) The adjoint of the second derivative operator with respect to variable x is
written as:

L) () () (2)
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Using [2.85], we find:

A2\t ( d)?_ d? [2.86a]
a2 Ud) ol '

c) Using {|r)} representation, the linear momentum operator is defined by the
expression:

- — d - d — —

P=—ihV =—ih—i —ih—j —ih—k [2.86b]
dx dy dz

The adjoint of this operator is written as:

_ ~ _ _AF
P = —ihii—ihij _inx
d d

X dy 7

It is given as:

— AT _AF RN
PTz—(ihdiJ - ihij —[ihdk)
dx dy dz

which then gives:

i T i
=t (d-= L d = L[ d
P ﬂh(dxl) +lh(dy]j ﬂh[dzkj [2.87a]

Taking property [2.85] into account, expression [2.87a] becomes:

-7 d - d — d —
P =—ih—i—ih—j—ih—k
: dx t dy S dz [2.87b]

Comparing [2.86b] and [2.87b], it can be noted that P:Pr. This equality
proves that the linear momentum operator is Hermitian. It is worth noting that d/dx
is not Hermitian because of the change of sign introduced by the integration by parts
(see [2.81] and [2.85]). On the other hand, operator id/dx is Hermitian due to
factor i.
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2.6.2. Solution 2 — Trace of an operator

(1) Proof

Let us consider the equation:

i\= i
Mn> a un>

i=1,2,3,.... g

A

Equation [2.87] is written as:

n , . .
TrA:ZZ<u; uf,>
no i

A

This leads to:

Sn s
TrA=ZZan<uz u,l1>
noi

It is given as:

En
Trd = ZanZJnné}i
n i
which finally leads to:

TrA =Zgn ay
n

(2) Proof
a) By definition:

TrAB = (u;|4B|u;)

1

[2.88]

Inserting the closing relation defined in the basis {|u)} between A4 and B, we get:

TrdAB = Z(ul \Azk:\ukxuk 1Blu;)
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This leads to:

TrAB = Zk:z (u |Blu; Yu;|Aluy )

which is:
1B = 3" (e |BY s
k i
Hence:

TrAB = (uy |BA|uy ) = TrBA
k

b) By definition:

TrABC =) (u;|ABClu;)

i

[2.89]

As previously, let us insert between operators 4 and B the closing relation
defined in the basis {|u;)} and between B and C the closing relation defined in the

basis {|u;}. We get:

1r4BC = 3 1 \AZk:\uquk \le:\uzxul |Clus)

Arranging this expression, we have:

1r48C = 353l o ol

This leads to:

TrABC = Zk: ; Z <”k ‘B‘ul><ul ‘C‘ui><ui ‘A‘uk>

Hence:

TrABC = Zuk‘BZ‘u, ul‘CZ‘u

[2.90]
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which finally leads to:
TrABC =) (uy|BCAluy ) = TrBCA [2.91]
k

Using [2.91], we have:

TrABC = z Z Z <ul ‘C‘ui><u,~ ‘A‘uk><uk ‘B‘u1>

k1 i

Or after arrangement:
TrABC =) (u;|CAB|u;) = TrCAB [2.92]
l
2.6.3. Solution 3 — Function of operators

(1) Expression

According to the problem statement, we have:
A|D) = a|D) [2.93]
Using [2.93], we get by recurrence:

A D)= ad|®)= a*|®); A’|®)=a’|®);.... ; A" |®)=0a""'|®)

or:
A\®)=a"" ' A|®) = A"|®) = a"|D) [2.94]
Moreover:
FA)@)=) 1, 4"|®)
n
or:

F(A)| @)=Y f,d"|®@) = F(a) ®) [2.95]
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(2) Finding ™
Using the property [2.95], we find:

oz -[¢ 0 [2.96]
01/e

(3) Finding the commutators

Commutators [4, F(A4)], [4, F(B)] and [F(4), F(B)] can, respectively, be written

as:
[4,F(A)]= AF(A) - F(A)A
We get:
[A.F(A)] =AY fud" =D fpA"4
n n
which is:
[AF()]= £, =3 f,4™ =0 [2.97]
n n
According to this result, operator 4 commutes with any function of 4.
[4, F(B)]=A F(B)-F(B) A
Similarly:
[4,F(B)]=Y g,4B" - g,B"4
n n
Factoring by g,, we get:
[4,F(B)]=Y  g,(4B" - B" 4)
n
which is:

[4.F(B)|=Y g,(4B" - B" 4) [2.98]

n
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If A and B commute, then AB" = B"A = [A, F(B)] = 0 according to [2.98].
[F(4), F(B)] = F(A)F(B) — F(B)F(A)

or:

[F(A), F(B)=D £,4" ) 2,B" = g,B" Y f,4"

Since 4 and B commute, then:
AB=BA = A"B" =B'A"
which leads us to:

[F(4).F(B)|= f,g,(4"B" —B"4")=0 [2.99]
n
2.6.4. Solution 4 — Infinitesimal unitary operator
Let us consider an infinitesimal unitary operator U (€) defined by the relation:
U =1 +4)F° [2.100]

(1) Proof

By definition, an operator is unitary if its adjoint coincides with its inverse. If U
is unitary, then:

u=u-' [2.101]
which leads to the relations:
U'u=uuU" =1 [2.102]
Let U and V be two unitary operators. According to [2.101], we have:
vu=uu =1, 1rv=rr'=1 [2.103]
Let us now express the product of operators (UV) (UV). We get:

wnwn =r'uhwr)
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Hence:
wnfwvy=rviutur=rty=1 [2.104]
Result [2.104] shows that the product of two unitary operators is also unitary.

(2) Expansion to first-order approximation

In first-order approximation, equation [2.100] gives:
U@e=1+e4+... [2.105]

(3) Expression
Let us express the adjoint of U using [2.105]. We get:

Ue=1+ed"+ ... [2.106]

Using [2.105] and [2.106], the products U'(&)U (&) and U (€)U" (&) can be written
as:

U'(eU(e)=1+ e +4)+ 474
U@U (&) =1+ e+ A) + £44"
Approximating to the first order, we get:
U@U (&) =U' (U (e) =1+ (A" + 4) [2.107]

(4) Hermiticity
Using [2.107], the equation gives:

e +AH)=0=>4"=-4 [2.108]
The last equality [2.108] reflects the fact that 4 is an anti-Hermitian operator.

(5) Proof
We put F(A4) = iA. Taking result [2.108] into account, we get:

[F(]'=(@i4) =—id =id=F (4) [2.109]

Therefore, operator B = F (A) = i4 is Hermitian.
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2.6.5. Solution 5 — Properties of Pauli matrices

We consider the Pauli matrices.

0 1 0 —i 10
%= o) Tl o) % T o - [2.110]

The spin angular momentum operator is:

S =

[

o [2.111]

(1) Proof

It is known than a Hermitian operator is represented by a Hermitian matrix such
that two arbitrary elements that are symmetrical with respect to the main diagonal
are complex conjugates. Consequently, the operators represented by matrices
[2.111] are self-adjoints or Hermitian.

(2) Comparison

We successively calculate the squared operators [2.110] as follows:
5 (0 1Y}0 1 1 0
O'x = =
1 OA1 O 0 1
> (0 =0 —i) (1 0
o, = =
P loooli o) (o1
1 0Y1 0) (1 O
O—Zz = =
0 —-1p0 -1) (0 1

These results show that the squared Pauli matrices are all equal to the identity
operator / in the space of states with two dimensions. Hence:

0')%=0'2=0'22=1=(1 0] [2.112]

(3) Expressions of the trace

Knowing that the frace of an operator is the sum of its diagonal matrix elements,
using [2.110], it can be seen that:
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Tr () =Tr(6) =Tr (0) =0 [2.113]

(4) Proof

0.0,+ 6,0, = 0?

Using [2110], we get:
S (U CURE AT
ol ooli o) Lo —i
0 —i)0 1 —i 0
0,0, =
Yl ool o) Lo i

These expressions prove that:
0.0,=~ 0,0, = 0.0, + 0,0, =0

[2.114]
0,0y — 0,05 = 2i0,?
According to [2.114],
0,0y = — 0,04 = O0xOy — 0,05 = — 20,0
which is:
0.0, — 0,0,= 2i° 0,0, [2.115]
Let us express the matrix i°0,0;. We get:
0 —-i)Y0 1 -i 0
2i%0,0,=2i%| =2:% .
i OA1 O 0 i
which is:
) -’ 0 10 [2.116]
2ioy0, =21 =2i =2io, )
0o 0 -1

After simplification, we find:

0.0, - 6,0,= 2ic [2.117]
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(5) Expressions of commutators

Commutators [o;, 6;], [0, 0] and [0, 0,] are written, respectively:
(0w 0]
Taking property [2.217] into account, we have:
[0w, 6] = 0:0,— 0,0, = [0, 6] = 2i0,
[2.118]
[0y, 0]
Proceeding as previously, we get:

[0, ] = 6,0.— 0.0, [2.119]

Using [2.110], we get:

ooy alo S o)
S Y K

Hence:

(O 1) .
0,0, =i =io
yvz 1 O X

This relation leads to:

(01 .
o-zo-y:_l(1 O]:_lo-x [2.120]

Using these expressions, relation [2.119] finally gives:

[0y, 0] = 2io;
[2.121]
-[o, o]
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Similarly:
o, 6] = 0,0, — 0.0,

Using matrices [2.110], we successively get:

o P R
sl ofo S0 )

which is:

Using these results, relation [2.122] finally leads to:

[o., o] = 2io,

Summarizing the properties of Pauli matrices:

1 0
2 2 2
o'xzo'yzo'zzlz[o lj

Tr (o) =Tr (o) =Tr(0) =0
0:0,t 0,0, =0 ; 0:0, — 6,0, = 2io.
o, ] =2i0, ; [0, ] =2ia; [0, 6] = 2i0,

(6) Deduction
Using [2.111] and properties [2.123], we get:

/i /] /]
Sx =50'x, Sy ZEO'JNSZ ZEO-Z

[2.122]

[2.123]

[2.124]
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Hence:
n? 2 n?
[stSy]ZY[O-xao-y]; [Syssz]zj[o-yvo-z]; [SZﬂSx]ZT[O-zao-x]
or:
|S,.8,|=ins, :[s,.5,. |=ins, ;[s..5. ]=ins, [2.125]

2.6.6. Solution 6 — Density operator

In the discrete orthonormal basis {|u,)}, the vector state is written as:

()= cy(®|uy) [2.126]

n
The density operator is defined by the relation:
PO =[YO)X Y| [2.127]

(1) Expression
If ket | (7)) is normed, then (W (¢)|'¥'(¢)) = 1. According to [1.126], we get:

> cp O Ot uy) =1

Introducing the Kronecker symbol, we have:

D en (O (O =1

n

Or finally:

Sleaf =1 [2.128]

(2) Proof
Considering [2.127], we get:

PO = OO =p (1) [2.129]
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Relation [2.129] indicates that the density operator is Hermitian.
Furthermore, we calculate the square of this operator. We get:

P (0= W) (POFOXEO] = p (1) [2.130]
Operator p (t) is therefore idempotent.

(3) Trace of density operator

The sum of the diagonal elements of the density matrix is determined by its
trace. We then obtain:

Trp(t) =Y (u, |p(0)|uy,) [2.131]

Inserting [2.127] in [2.131], we get:

Trp(t) =Y (u, [ PO)¥(©O)|u,) = | | PO) |

Knowing that coefficient c,(f) = (u,|'¥(?)), and taking [2.128] into account,
we get:

Trp(t) =Y Je, (o) =1 [2.132]

2.6.7. Solution 7 — Evolution operator

(1) Relation

The linear operator U (k, m) is defined by the relation:

U (k, m) =@ D, [2.133]
Using [2.133], we get:

U (k, m) = |, XD = U (k, m)=U (m, k) [2.134]

Let us note that operator U (k, m) is not Hermitian since indices k& and m are
different.
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(2) Commutator

The observable A4 verifies the property:
A|DPy) = @@y [2.135]
Commutator [4, U (k, m)] is:
[4, U (k, m)] = AU (k, m) — U (k, m)A
Using [2.135], this commutator can be written as:
[4, U (k, m)] = AIDY®D,| — XD, | 4
Hence:
[4, U (k, m)] = af @)X Pp| — QX DLl a*y
Since A4 is Hermitian (it is an observable), then a*,, = a,,. Hence:
[4, U (k, m)] = (a5 a,)| DX, |
which is finally given as:
[4, U (k, m)] = (ar— an)U (k, m)] [2.136]
This expression leads to:
[4, U(k, k)]1=0
(3) Proof

Let us express Tr U(k, m) using the basis {|D)}:

TrU (k,m) =Y (@, U (k,m)|®;)
/

That means using [2.133]:

TrU (kym) = Y (@, |( @ )@, | @, )
/
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Hence:
w(k,m)=;<q>z|<Dk><d>m|®z>=<¢m|{;|®z><®z|}|¢k>

So we finally get:
Tr U (k, m) ={D,|Dy ) = O [2.137]
The closing relation satisfied by the set {|{®@;)} has been used.
(4) Proof
The observable B of matrix elements By, can be written as follows:
B=1B9 [2.138]

Using the closing relations verified by the sets {|®,)} and {|®,)}, relation
[2.138] gives:

B= Z|q)k><q)k|B|(DM><q)m|

k,m

H

Hence:

B= Z|q3k>Bkm<q)m|: ZBkm|(Dk><q)m|
k,m k,m

H H

which leads to:

B= ZBkmU(k,m) [2.139]
k,m

(5) Proof
Let us find the trace of BU'. We get:

Tr[BUT(k,m)] =3 (@, |BUT (k,m)| @)
/A

Knowing that Ut (k, m) = |@,, (D], we get:
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Tr[BUT(k,m)] =3 (@, [B|®,, @ |®;)
[
Hence:

Tr[BUT(k,m)] =Y By (@i @)
l

So we finally get:
By = Tr{BU" (k, m)} [2.140]

(6) Evolution equation

[P(0) = U (t, to) ¥ (t0)) [2.141]
In this equation, U(¥, #y) is the evolution operator.

(6.1) Proof
Let us express the norm of ket vector [ (¢)) using [2.141]. We get:

W O @) =¥ )| U1, 1) U, 1) ¥ (10))
Knowing that (¥ (H)|¥ (¢)) = 1, we have:
U'(t, to) U(t, (¥ )| ¥ (10)) = 1
which finally leads to:
U'(e, to) U(t, t,) =1 [2.142]
Result [2.142] indicates that U’ (¢, 1)) = U ™' (1, t): U(t, 1,) is therefore unitary.

(6.2) Proof

The Schrodinger equation that governs the evolution of the conservative system
is:

ihw =H|¥(,19)) [2.143]
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Inserting [2.141] in [2.143], we get:

0 dU (t,t9)|W(ty))

" = HU(1,t0)|¥(tp))

Hence:

i dU(t,ty)

= HU(t,t 2.144
” (t.tp) (2.144]

(6.3) Expression

As the Hamiltonian H is time independent (the system is conservative),
expression [6.220] leads to the relation, which involves the variables ¢ and #,:

dU(t,tp) _Edt
Ul(t,ty) ih

Or after integration:
U(t,tg)=e ' G0)/T [2.145]

Since U (t, t,) =1

2.6.8. Solution 8 — Orbital angular momentum operator
Orbital angular momentum operator with respect to the origin point O is:
[=rap [2.146]
The component p, of the linear momentum operator is given by the relation:

P =_,-hai [2.147]
q

(1) Expressions of components

Using [2.146], operators /, I, and /, are written, respectively:
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L 9 0
Ly=(p; —2py) = lh[zay - yaZJ
L, =(zp, — X )—ih(xa—za) 12145]
y =@y —XPz) = % i
. ) d
I, = (xPy = VPx) = lh(yax - xayj
(2) Expressions of products
Considering [2.148], we have:
LyL,=- n? zi —yi (xi—zij
dy ~dz)\ dz  ox
That means:
L.L, =—p? Zixi_ 9.9 _Zi 9 yi 9
dy dz ~0dz Oz dy ox = dz ox
After expansion, we find:
2 2 2 2
L.L,=—h?| zx J —yxa—z— J +yz J +yi [2.149]
dyoz oz dyox dzdx  ox
Using the same reasoning as previously, we find:
2 2 2 2
LyL, ——n? zy —xya——z 8_ Xz xi [2.150]
0x0z 022 oxdy 0zdy  dy

It is worth noting that partial derivatives with respect to two independent

variables are commutative, hence:

2?2 9
oxdy - ayﬁ

[2.151]
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(3) Commutators

Subtracting the two equalities [2.149] and [2.150], member by member, we find
after simplification and arrangement:

Ll =1y, =inl,

Circular permutation can be used to obtain the other commutation relations:

Il =1l =ihl,
Ll =11, =ihl,
Summarizing, we have:

(Lo )= inl, 5 [ 0 ] =inls [ 1 ] = inl, [2.152]

NOTE.— Relations [2.152] express that two arbitrary components of the angular
momentum operator are not commutative. Consequently, there is no physical state in
which the three or two projections of the angular momentum have determined
values. In other words, there is no physical state in which the magnitude and
direction of the angular momentum are fully determined, contrary to the predictions
of classical mechanics. Only the squared angular momentum operator and one of its
projections can be simultaneously determined (see Exercise 3.5.4, Chapter 3).
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Eigenvalues and Eigenvectors
of an Observable

General objective
The general objective is to know the properties of the eigenvalues and
eigenvectors of an observable.
Specific objectives
On completing this chapter, the reader should be able to:
— define a representation;
— represent a ket and a bra;
— represent an operator;
— represent the adjoint of an operator;
— recognize a Hermitian matrix;
— determine the properties of the eigenvalues of an observable;
— determine the properties of the eigenvectors of an observable;
— distinguish between a simple eigenvalue and a degenerate eigenvalue;
— use the characteristic equation;

— know the properties of the eigenvectors and eigenvalues of a Hermitian
operator;

— establish the evolution equation of the mean value of an observable;
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— define a complete set of commuting observables (CSCO);
— know the properties of conservative systems;
— integrate Schrodinger’s equation applied to conservative systems;

— establish Ehrenfest’s theorem.

Specific objectives
— Matrix calculus.
— Observable.
— Hamiltonian.

— Properties of the space of states.

3.1. Representation
3.1.1. Definition

In quantum mechanics, the passage from vector calculus introduced in the space
of states to matrix calculus in the same space is based on the choice of a
representation. For this purpose, a discrete or continuous orthonormal basis is
chosen, in which:

— kets and bras are represented by numbers (their components on the basis
vectors);

— operators are represented by their matrix elements.

This study focuses on the case of discrete bases {|u;)}, i = 1, 2, 3,... . It requires
using the orthonormalization relations [2.17] and the closing relations [2.21], as well
as the relation of definition of a matrix element [2.25] between kets |®) and |'¥)
which are summarized as follows:

(uiluj) = 65 ¢; = (wi|'¥) ; Z|”i><“i | =1; (D|4¥) [3.1]
i

As will be seen in section 3.2, the choice of a representation in the space of states
makes it possible to determine the eigenvectors and eigenvalues of a given
observable based on operations on matrices.
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3.1.2. Representation of kets and bras

By convention,

— a ket is represented by a single column matrix with a countable infinity of
rows. The matrix elements being the components ¢; given by the second of relations
[2.20];

—a bra is represented by a single row matrix with a countable infinity of
columns. The matrix elements are complex conjugates c*; of the components c¢; of
the state vector on the chosen basis, hence: ¢;* = (|u;).

The representations of ket |'¥') and bra (¥| are given below (Figure 3.1).

(u1|‘-P> Cl
("‘2|lp) %) r N\
...................... (¥ fur) (Flua) ..o (¥]u)

\ J
........... or | e or
(] ¥) ¢i . \

........... 4] C2 e GE L
........... N ;
a) b)

Figure 3.1. Representation of a) kets and b) bras in the space of states

3.1.3. Representation of operators
This section covers only the linear operators.

Let us consider the discrete set {|u;)}. The matrix elements denoted A4; of an
operator A are defined by the expression:

Aij = <M,|A|I/IJ> [32]

Operator 4 is represented by a square matrix N X N of elements A4j;. It is a matrix
with N rows and N columns; index i identifies the row, while index j identifies the
column. The representation shown in Figure 3.2 is thus obtained.
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Ay A Az . 4y
Ay Ay Ay . . Ay
A3y Azp Azz . . Az
(4)=
Ay Ap Ao . Aij
\ 4

Figure 3.2. Representation of an operator A

APPLICATION 3.1. —
We represent the projection operator Py, = [y){y] in the basis {|u)},i=1,2

Solution. In the two-dimensional basis {|u;)}, vectors ket |y) and bra (y| are
provided by the expansions:

: —cl‘u1>+cz‘u2>

u ‘—Cl u1‘+02<1/l2‘

Mw I Ml\)
—
(98]
[0%)
]

i=l

Using expansions [3.3], the representations of ket [y) and bra {y| can be written
according to Figure 3.1:

(ly) = “ C ()= o of [3.4]
(%) -

The projection vector Py, = |[y)(y]| is then represented by the following square
matrix 2 X 2:
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T ‘ aa’® ae®
(Py) = a* o =(Py) = . J [3.5]
(52 I (%181 (%1%)

3.1.4. Hermitian matrix

As already mentioned, an operator 4 is Hermitian if it coincides with its adjoint
A", Tt is important to be able to recognize if A4 is Hermitian based on its matrix
representation. For this purpose, we first need to state the principle for the
representation of the adjoint of an operator.

Let us thus consider the complex conjugate of the matrix elements 4;; of operator
A defined by relation [3.2]. We have:

(Ag)* = (Al * = Cud sy = (A7) [3.6]

According to [3.6], the adjoint A" of operator 4 is represented by a square matrix
N X N of matrix elements (AT)ji = (4;)*. In order to represent A", we consider the
complex conjugates of matrix elements 4;; of 4 followed by an inversion with
respect to the main diagonal.

As an illustration, let us represent the adjoint A” of operator A represented by the
first matrix below. We have:

(o2 (-o=2) o (=i =3 37
(A)_(y J (4 _[—31' 1) > 4 )_[—21' J B>

Let us now consider the specific case of Hermitian operators.
If 4 is Hermitian, then 4 = A". Hence according to [3.6]:
(Ay)* = (4);i and (4;)* = (A [3.8]

CONCLUSION.— A Hermitian operator is represented by a Hermitian matrix such that
the diagonal matrix elements are real. Moreover, two arbitrary matrix elements
symmetrical with respect to the main diagonal are complex conjugates.



180 Introduction to Quantum Mechanics 2

APPLICATION 3.2.—

Represent the adjoints 4, B" and C" of operators 4, B and C represented below.
Identify those that are Hermitian.

(A){(.) 2] : (B>=['%i ":] ; <C)=(l. 'l] 3]
i 0 I I i 1

Solution. We have:

(A)*=[2 'O’J : (B)*{_Z.i - j : (C>T=[l. _l’j [3.10]
l —1 1

According to [3.10], only C is Hermitian. B is not Hermitian because its diagonal
matrix elements are not real.

3.2. Eigenvalues equation, mean value
3.2.1. Definitions, degeneracy

As already noted, a linear operator establishes a correspondence between any
ket |¥) in the space of states E,, and another ket [¥’) belonging to the same space
such that A|'Y) = |¥’).

Let us consider the specific case when the initial ket A|y) is proportional to
ket [y). Let A be the coefficient of proportionality. We have:

Aly) = Aly) [3.11]
By definition, equation [3.11] is known as equation with eigenvalues of operator
A. In this equation, A designates the eigenvalue of operator A and |¥) represents the

eigenket or the eigenvector of operator A associated with the eigenvalue A.

An important example is that of the Hamiltonian H of a system whose total
energy is E. The equation with eigenvalues can be written as: H|y) = E|y).

When equation [3.11] is considered, two cases can be distinguished.
First case: The eigenvalue A is non-degenerate (or simple).

The eigenvalue A is known as non-degenerate or simple if, ignoring a
multiplicative factor, only one eigenvector or ket is associated with it.
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A simple example is the case of a particle of mass m confined in a potential well
of infinite depth and width a. The eigenvalue of the Hamiltonian is quantized, and is
given by the expression [1.63], which is:

2.2 2_2
E, zh ”2n2§ E():h 7[2112
2ma 2ma
or:
E,=Ep’ [3.12]

The eigenvalue equation can be written as follows:

H,) = EolW,) [3.13]

— for the ket [y): E; = Eg;
— for the ket [y,): E, = 4E;
— for the ket |y3): E5 = 9E;

— for the ket |y,): £, = n°E,.

These results actually show that the eigenvalue E, is non-degenerate since it is
associated with a single ket |y,,).

Second case: The eigenvalue A is degenerate.

The eigenvalue A is known as degenerate if it is associated with two or more
eigenvectors or kets.

A simple example is that of a particle of mass m confined in a square potential

well. The eigenvalue of the Hamiltonian is given by the expression [1.223], which is
recalled below:

Eyq=Eo (7* +q°)
The equation with eigenvalues can be written in the following form:

Hog) = EpglYng) [3.14]
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Using [3.14], we have:
— for the ket |y, 1): E1 ;| = 2E); non-degenerate eigenvalue £ ;;
— for the ket [y 5): E15=5E);
— for the ket |\lf2’1>: E2,1 = 5E).
The eigenvalue E,; or E| , is therefore twice degenerate since two different kets

[w12) and [y, ) are associated with it. The same is true for all the eigenvalues £, ,
when n # q.

As previously explained, this degeneracy is due to the symmetry of the potential.
For a rectangular well, the eigenvalues E,,, are all simple, as shown by the
expression [1.222].

Therefore, in the general case, the eigenvalue A is g, times degenerate if it is
associated with g, different eigenkets. In this case, the eigenvectors of 4 form a

vector subspace of the eigenvalue A of dimension g,,.

Denoting by

ufz > the eigenvalues of 4, the vector subspace of the eigenvalue A is

then subtended by the set {‘u; > },i=1,2,3,..., g.. The expansion of the state vector

is then:

u;> [3.15]

o g,
¥)=2.2.¢h
n=1li=1

APPLICATION 3.3. —

Let A = a, be the eigenvalues of an operator 4 associated with the eigenvectors
ul > . What can be said about the following ket:

g

“/’i>:chz

i=1

uf;> [3.16]
Solution. The equation with eigenvalues of 4 is:

. g
y u;,>:>A\z//i>=Zc;A

i=1

u£,>=an ui}> 3.17]
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Knowing that summing is not applicable over n, we have:

g" . .
Awi)=an Y chlun )= Ayi) = anlvi) 18]
i=

According to [3.18], |l//l.> is an eigenket of 4 associated with the same eigenvalue

ap.

3.2.2. Characteristic equation

Equation [3.11] expresses the relation between the eigenvalue A and the
eigenvector ) of the observable 4. The issue is to find out how to determine A and
|w). In what follows, we establish an equation that makes it possible to determine the
eigenvalues of an observable. Once these eigenvalues are known, it becomes easy to
deduce from them the associated eigenvectors using equation [3.11].

Let {|u;)} be a discrete orthonormal set. Projecting the equation with eigenvalues
[3.11] on the ket |u;), we obtain:

(uiAI) = (uiy) [3.19]

Inserting the closing relation verified by the set {|u;)} in the right member of
equation [3.19], we have:

(S =

This yields:

”t‘A‘ J>< /“/’> Aluily)

which is:

Z cj = [3.20]
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Knowing that (see proof leading to relation [2.19]):
&= ¢
J
we have:

D Aijej =AY ¢y
7 7

which is:

> (4= 48 )e; =0 [3.21]
j

Relation [3.21] can be considered as a system of equations whose unknowns are
the components c; of the eigenvector |y) on the basis {|u;)}. It is a homogeneous and
linear system with N unknowns ¢; (j = 1, 2, .., N) involving N equations
(i =1, 2, ... N). Because the system [3.21] is homogeneous and linear, it has one
solution (other than the trivial solution for which all ¢; are zero) if and only if the
determinant of the coefficients is zero, which means:

Det[A—-A=0 [3.22]

Equation [3.22] is known as a characteristic equation or secular equation. In this

equation, 4 is a square matrix N X N of matrix elements 4;;, and / designates the unit
matrix.

APPLICATION 3.4. —

Determine the eigenvalues and the eigenvectors of operator 4 represented by the
following matrix:

1 2i

(A):[ | l] [3.23]
-i 0

Solution.

1) Eigenvalues of A

The matrix of 4 is a square matrix 2 x 2. Let |y) be the eigenvector of 4 associated
with the eigenvalue A. Using the secular equation [3.22] and the matrix [3.23], we
obtain:
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Det(ﬂ—iz):(l__’1 _;ij=o [3.24]

Then this equation is written as follows:
-A(l-AH-2=0=>A4=-1land 4, =2
2. Eigenvectors of A

The equation with eigenvalues of 4 is given by [3.11]. Equation [3.24] provides
two eigenvalues of operator 4. Let |y;) and |y,) be, respectively, the associated
eigenvectors. The ket expansion in the orthonormal basis {|u;)} is written as
follows:

2
)= cilur) = et u) + e uz) [3.25]

i=1
According to the condition for the normalization of |y), we have:
2 2 2 2
wly)=1= la|" =la] +|e| =1 [3.26]
i=1

In the orthonormal basis {|u;)}, the matrix equation corresponding to the equation
with eigenvalues [3.11] is written using [3.23]:

1 2i
—-i 0 )\ c
This leads to:

[3.27]

c+ 2i02 = /101
—iCl =ﬂC2

— Case of eigenvalue A, =—1

The second equation of system [3.27] yields: ic; = ¢,. Using [3.26] and making an
arbitrary choice for a real and positive c;, we get:

|cl|2 +|icl|2 =l=¢ = !

i
R %) 2 [3.28]
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The eigenvector of 4 is then written using the expansion [3.25]:

1 .
‘W1>=f\u1>+ﬁ\uz> [3.29]

— Case of the eigenvalue A, =2

Using the same reasoning as previously, the eigenvector of 4 associated with the
eigenvalue 4, = 2 can be written as:

[3.30]

va) =2l +pelue)

3.2.3. Properties of eigenvectors and eigenvalues of a Hermitian
operator

The eigenvectors and eigenvalues of a Hermitian operator verify the following
two fundamental properties.

First property: The eigenvalues of a Hermitian operator are real.
Proof.

Let us consider the equation with eigenvalues [3.11]. We project this equation
onto the ket [y). We obtain:

(WlAlw) = Kyly) = 4 [3.31]

The complex conjugate of [3.31] can be written knowing that 4 is Hermitian:

CulAl)* = 2% = (ylATv) = (yld|y) = 2* [3.32]

Comparing [3.31] and [3.32], we see that A* = A. The property is therefore
proved.

Second property: Two eigenvectors of a Hermitian operator associated with two
different eigenvalues are orthogonal.

Proof.

Let 4, and 4, be two eigenvalues of a Hermitian operator A, associated with the
respective eigenvectors |y;) and |y,). The equations with the corresponding
eigenvalues are written according to [3.11]:
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Al = Ai); A = o) [3.33]

We project the first of equations [3.33] on the ket |y,) and the second on the ket
|w1). We obtain:

(Waldly) = A{yalw); (whl4|wa) = Ly w,) [3.34]

Knowing that A, and 4, are real and 4 is Hermitian, the complex conjugate of the
first equation [3.34] is then written as follows:

(yildlv2) = Awilyz) [3.35]

Equalizing [3.35] and the second equation [3.34], and knowing that A; # 4,, we
have:

(A=) (ilwz) = 0 = (yyfy) =0 [3.36]

The result [3.36] reflects the orthogonality of eigenvectors |y;) and |y).

3.2.4. Evolution of the mean value of an observable

Let |'P(?)) be a ket normed in the space of states; by definition, the mean value of
an observable A (t) denoted by (A(?)) is given by the relation:

(A(0) = (YOIA@)F(®) [3.37]

If the state vector |'P(¢)) is not normed, then [3.37] should be divided by the
squared norm (¥'(¢)|'P(¢)). Let us differentiate (4(f)) with respect to time taking into
account the fact that the observable 4 may depend on other quantities, such as the
position (case of potential V' (r, t)). We obtain:

d{A(t))
dt

) {%“(‘)'}A@)W’“» + (¥ 52 i) + <‘P<t>|A(r){%|w<t)>} [3.38]

Using Schrédinger’s equation [1.20], we have:

d|¥(1))
dt

ih———"L=H()|¥(t)) = —ih <d() =(Y()|H (1) [3.39]
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Using [3.39], the evolution equation [3.38] is written as:

d{A(t)) _ (W(0)|HA Y (1)) (%) 9A(1) B(0)+ (P()|AH|¥ (1))
dt ih ot ih
Hence:
d4
<dt(t)> = l%[(‘l’(t) |AH|W(0)) - (W () |HA W (1)) )+ <W(z)\%\ ¥(1))
= $<‘I’(t) [4H — HA] P (1)) + (¥ ()] ?\‘P(r))
Finally:
d(A(r) 1 <8A(t)> 3.40
dt  ih (L4 1)+ ot 3401

Relation [3.40] expresses the equation of evolution of the mean value (A(?)) of
the observable 4 (¢). This equation involves two remarks.

If the two terms of the right member of equation [3.40] are simultaneously equal
to zero, then (4(f)) = constant. Hence: d(A(f))/dt = 0. Let us put:

[4,H]=0
0 _, [3.41]
o

An arbitrary observable that simultaneously satisfies the two equations [3.41] is
known as a constant of motion.

By definition, an observable 4 is a constant of motion if:
1) It commutes with the Hamiltonian H;
2) It does not explicitly depend on time.

The Hamiltonian H of a conservative system is an example of a constant of
motion (see section 3.3).
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3.2.5. Complete set of commuting observables

Throughout this chapter, it has been shown that Hermitian operators play a very
important role in quantum mechanics due to the possibility to build a basis in the
space of states from their eigenvectors. Moreover, a constant of motion such as the
observable 4 commutes with the Hamiltonian H. There is a particularly interesting
case in which one can choose a single basis (ignoring a multiplicative factor)
constituted of eigenvectors common to observables 4 and H. In this particular case,
the set 4 and H constitutes a complete set of commuting observables (CSCO).

In the general case, a set of observables 4, B, C,...... , 1s known as complete set
of commuting observables if [COH 77]:

— all the observables 4, B, C,..., commute;

— given the eigenvectors of 4, B, C,..., it is sufficient to define a single basis
(ignoring a multiplicative factor) that is common to the set of observables.

The notion of CSCO plays a very important role in quantum mechanics. It is, for
example, the case of conservative systems, where a basis can be built in the space of
states from eigenvectors common to the Hamiltonian H, to the component L, and to

-2
the square / of the angular momentum operator defined in Chapter 2 (Volume 2).

3.3. Conservative systems
3.3.1. Definition

A conservative system is a system whose Hamiltonian does not depend on time:
H (f) = constant. Or, according to [3.40], putting 4 (¢) = H (¢):

d(H(®) _ 1 (L, 1)+ <8H (t)> o [3.42]
dt ih ot

This equation shows that the Hamiltonian of conservative systems is actually a
constant of motion. The fact that A is a constant of motion entails the conservation
of the total energy E. This corresponds to the classical case of the system not being
subjected to any friction force.

Moreover, the states of the conservative system are stationary states and its
evolution is governed by the time-independent Schrédinger equation [1.29]. Many
conservative systems have been studied in Chapter 1. It is the case of a particle
confined in a potential well, a quantum harmonic oscillator, the hydrogen atom, etc.
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3.3.2. Integration of Schrédinger’s equation

Let {|@.4)} be a set of eigenkets of the Hamiltonian H of a conservative system.
The equation with eigenvalues is written as follows:

H@ 10 = EnlQni [3.43]

In the equation [3.43], E, is the eigenvalue of the Hamiltonian H and the index &

identifies the eigenstates of the observables that, together with H, constitute a
CSCO.

Let us consider the simple case when the basis {|@, )} is common to the set H

and 4. The equation with eigenvalues of the observable 4 of eigenvalues a, is then
written as follows:

AlQui) = arl @, [3.44]

The state vector is given by the expression:

(W)= Y ke (O] @nk) [3.45]
nk
In [3.45], the components ¢, (¢) are defined by the relation:
i (1) = (@il () [3.46]

Let us apply the bra (¢ ;| to Schrédinger’s equation [1.20]. We obtain:

d b4
ihw = (i [H[¥©) = (9 4 |EW ) [3:47]

Using [3.46], equation [3.47] is written as:

 de, i (2)

ih 2 = EyCp 1 (1)
Hence:

dcn,k _ En dr
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By integration, we find:

n(—f )
en k(D) =Cppltp)e [3.48]

The state vectors at instants #, and 7 are then written as, respectively:

W(19))= Zk,cn,k (10)| @) [3.49]
(W)= cpk 0| @uy ) = ch k(to)e i \% k) [3.50]
n,k

In the particular case of the conservative systems described by stationary states,
the initial ket |V (%)) is itself eigenstate of the Hamiltonian H. Consequently, the
expansion of ket [V (#)) involves only the eigenstates of A associated with the same
eigenvalues £,. Summing is then done over index &, hence:

[W(10)) =D e (t0)| Pk ) [3.51]
k

Taking [6.51] into account, the state vector [3.50] at instant ¢ is written as:
En En 1)
W)= ch ) @)=t W) [3.52]
n,k

Equation [3.52] can be put in the form:

i(—o

H
(-
W) =eh \‘P(zo)> =eih W (t0)) [3.53]

The evolution operator U (t, t,) [1.34] has already been introduced. Equation
[3.53] is then written as:

¥ (@) =U (1) ¥ () [3.54]
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A comparison between [3.53] and [3.54] leads to the expression of the
evolution operator [1.34] which can be rewritten as follows:

ﬁ(t—to)
Ut,ty)=e'l [3.55]

3.3.3. Ehrenfest’s theorem
The Hamiltonian for a conservative system is written as:
-2

a=L_v® [3.56]
2m

Let us study the particular case of the evolution of the respective mean values

(72) and (F’) of the observables position R and linear momentum P . Using [3.40],
we get:

) (250

e (20)-L

Using the expression [3.56] of the Hamiltonian, we obtain:

B —2
d(P _ P L
9:; [P, )+ [PV (®) 3.58)

As already noted, an observable 4 commutes with its function: [4, F(4)] = 0.
Moreover, according to [2.60], [ R, 132] =2ihP .
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@ B 2ih<7>>

i in 2m
This yields:
4R _{7) (359
dt m

Similarly, taking [2.67] into account, we have:

a@ - é .(—ih)<61cjl§)> —-(VG(®)) [3.60]

Summarizing results [3.59] and [3.60], we have:

dt m

aP)
) [3.61]

The equations [3.61] of the evolution of the respective mean values of the
observables position and linear momentum express what is known as Ehrenfest’s
theorem. Let us find the classical equivalent of these equations to make the
connection with classical mechanics.

We consider the derivatives with respect to time of the position vector and linear
momentum vector. Hence:

[3.62]

A comparison between the systems of equations [3.61] and [3.62] reveals that
Ehrenfest’s theorem is the quantum equivalent of the derivative with respect to time
of the position vector and of the fundamental law of dynamics.
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Paul Ehrenfest was an Austrian theoretical physicist. In 1899, he studied at the
Technische Hochschule of Vienna, where he attended Boltzmann’s lectures (see
Box A.3, Volume 1) on the “mechanical theory of heat”. In 1904, under Boltzmann’s
supervision, in Vienna he defended his thesis on “The motion of rigid bodies in fluids and
the mechanics of Hertz”. Ehrenfest was the successor of Lorentz (see Box 3.9, Volume
1) at the chair of theoretical physics at the University of Leyde. In quantum mechanics, he
is especially well known for the theorem bearing his name and reflecting the equations of
evolution of the mean values of the observables position and linear momentum of a
conservative system.

Box 3.1. Ehrenfest (1880-1933)

3.4. Exercises
3.4.1. Exercise 1 - Pauli matrices, eigenvalues and eigenvectors

Let us consider an orthonormal basis constituted by the eigenvectors |[+) and |-)
of the S, observable. S, is the component of the kinetic spin momentum operator
according to the Oz direction. The expressions [2.110] of the Pauli matrix are
recalled below:

o ) o=\ (10
o) 0)%% o -1

It is also worth recalling the spin angular momentum operator:

S=Zo

N | S

(1) Determine the eigenvalues of o, oy and 0, Deduce from them the
eigenvalues of operators Sy, Sy and S,.

(2) Determine the eigenvectors of oy, 0, and o, Deduce from them the
eigenvectors of operators Sy and S,.

3.4.2. Exercise 2 — Observables associated with the spin

Let us consider the two-dimensional spin states space subtended by the
eigenvectors |[+) and |-) of the spin observable S,.
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\ A

Figure 3.3. Unit vector u defined by the polar coordinates 6 and ¢

Furthermore, let /, be the component of ! along a unit vector u defined by the
polar coordinates and ¢ (Figure 3.3).

The components /,, I, and /, of the spin-related angular momentum f are

associated, respectively, with the spin observables Sy, Sy and S, represented in the
basis [+) and |-) by the square matrices:

n(0 1 n(0 —i (1 0
Se== S, == S, ==
* 2[1 oj 7 2(1' OJ : 2[0 —J

(1) Write the orthonormalization and closing equations satisfied by the vectors
|[+) and |-).

(2) Express /, in the basis |[+) and |-) as a function of [, [, /,,6 and ¢. Then
deduce the matrix representing the observable S, associated with /, in the very same
basis.

(3) Determine the eigenvectors |+), and |-), of the observable S,.

For all practical purposes, the following trigonometric transformations are given:

(cosx+1)= 2cos2 (gj ; (cosx—1)=-2 sin2 (%)
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3.4.3. Exercise 3 — Evolution of a 1/2 spin in a magnetic field: CSCO,
Larmor precession

Let us consider a silver atom subjected to a uniform magnetic field Ealong
direction Oz. The silver atom is in ground state.

(1) Express the potential energy of interaction W of the magnetic moment of the
silver atom with the magnetic field. Then deduce the expression of the Hamiltonian
H associated with 7 as a function of @ = 2€Q (£: Larmor frequency) and of the spin
observable to be specified.

(2) Prove that H and S, constitute a CSCO.

(3) Then determine the eigenvalues £ and E~ of H associated, respectively, with
the eigenvectors |+) and |-).

(4) The purpose is now to evidence the Larmor precession. For this, we con51der
the evolution in the magnetic field of the spin magnetic moment )/ =M, u, where

4 is the unit vector identifying the direction of M in polar coordinates (Figure 3.4).

Figure 3.4. Spin magnetic moment M =M., in polar coordinates

We assume that at the initial instant 7, = 0, the eigenstate of the spin associated
with the eigenvalue +7 /2 is given by the ket vector:

[W(1g=0))= Cosge_w/z‘ﬂ + singei¢/2‘_>
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(4.1) Express the expansion of the state vector [(¢)) over the eigenstates of
Hamiltonian H.

(4.2) Prove that |'¥'(¢)) can be written in the following form:

90 40
“P(t)>=cosae 2 ‘+>+sin5e 2 |-)

Draw a conclusion.

(4.3) Specify the polar coordinates of the unit vector “ (¢) . Prove that the spin

magnetic moment is in Larmor precession motion.
3.4.4. Exercise 4 — Eigenvalue of the squared angular momentum
operator

Let [,, [, and /. be the operators of angular momentum operator projections on the
. -2
axes of coordinates x, y and z. Let / be the square angular momentum operator.

Moreover, we introduce the operators denoted by /. and /. and defined by the
expressions:

L=l +ily; L =1,—il,

-2 .
(1) Prove that the square /~ of the angular momentum operator commutes with

one of its components, for example /,. Draw a conclusion.

(2) Calculate the commutators [I., I_], [L,, [.] and [Z,, L].

(3) Express iz as a function of its components. Prove the relations:
72 _ 2 _ 2
I7 =10 +12—hl, =1 1, +1>+hi,

(4) Let 2> be the eigenvalue of /. Moreover, |®) designates the eigenstate
common to /* and /,. Write the equations with eigenvalues of operators /*and /,.

(5) Then prove that the states /.|®) and / |®) are eigenstates of [, associated,
respectively, with the eigenvalues ¢ and . to be specified.
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(6) Which one of the eigenvalues & or ¢ is incompatible with the principle of
quantization of operator /, for its maximal eigenvalue? Justify the answer.

(7) Then justify the fact that we must put /,|®) = 0. Deduce the expression of the

. -2
eigenvalue A of the square angular momentum operator / .

(8) Draw a vector diagram to represent the possible orientations of the angular
momentum operator in unit # when ¢ = 2.

3.4.5. Exercise 5 — Constant of motion, good quantum numbers

Let us consider an observable A4 that is explicitly time independent and
commutes with the Hamiltonian H, which is itself explicitly time independent. Let
{|®@,.m} be a system of eigenkets common to 4 and H, the discrete index m
identifying the eigenvalues of observables forming a CSCO with H and 4. The
eigenvalues of H and 4 are denoted by E, and g, respectively.

(1) Write the equations with eigenvalues of observables H and A4.

(2) Prove that H and A4 are constants of motion.

(3) The system is assumed in state |®, ;) at the initial instant #,. Explain why the
eigenvalues of 4 are known as good quantum numbers.

(4) Express the expansions of state vectors [V (#)) and [V (¢)) over the
eigenstates |®,, . ,,) common to observables H and 4.
3.4.6. Exercise 6 — Evolution of the mean values of the operators

associated with position and linear momentum

We consider the operators X and P (for Py) associated, respectively, with the
position x and the linear momentum p of a free particle.

(1) Using Ehrenfest’s theorem, establish the equations of evolution of the mean
values (X) and (P). Make the connection with classical mechanics.

(2) Establish also the equations of evolution of the mean values (X?), (P*) and
(XP + PX). Make the connection with classical mechanics.

(3) Express the quadratic deviation AX. What happens when ¢ increases? Draw a
conclusion. We consider that at = 0, (XP + PX), = (X)q= 0.
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3.4.7. Exercise 7 — Particle subjected to various potentials

A particle of mass m is immersed in a field of forces whose potential is
V(x) = a x", where a is a constant and » is an integer.

(1) Establish the equations of evolution of (X) and (P) when the particle is:
(1.1) Free.

(1.2) Subjected to a uniform potential.

(1.3) Subjected to a parabolic potential.

(2) Then make the connection with classical mechanics.

(3) Does the particle behave as a classical system when n = 3? Draw a
conclusion in the general case.

3.4.8. Exercise 8 — Oscillating molecular dipole, root mean square
deviation

We reconsider the model of the hydrogen chloride molecule assimilated to an
oscillating dipole such as that described in the exercise in section 1.7.12 in
Chapter 1 (Volume 2).

The lighter hydrogen atom is maintained at a mean distance a from the center of
inertia of chlorine. The potential energy thus constituted is:

V(x)= %k(x—a)z

Moreover, the normed wave functions @, (x) of the fundamental state and ®;(x)
of the first excited state are given by the following expressions:

1 1mo 2
mo\g —, (@)
j o 2

Dp(x)= (ﬂﬁ
1

4 — O
ol
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(1) Calculate the mean value (X) of the observable X when the oscillator is in
ground state and when it is in the first excited state.

(2) The uncertainty involved in the measurement of position of the hydrogen
atom relative to that of the chlorine atom is defined by the relation:

AX = (D)X —a)?| @)

(2.1) Calculate the uncertainties (AX), and (AX); when the oscillating system is in
ground state and in the first excited state.

(2.2) Provide an interpretation of the observed difference between (AX), and
(AX);.

Given data. For the family of integrals of the type:

< 2
I, =.[xpe_px dx (p>0),
0

the recurrence relation is written as:

j iy owith 7y =L % andg = L
Poop P 2\ p 2p

3.4.9. Exercise 9 - Infinite potential well, time—energy uncertainty
relation

Let us consider a particle confined in an infinitely deep potential well of width /
such that:

Vx)=0,if0<x </
V(x) = oo, elsewhere.

The Hamiltonian of the particle is:

m

H +V(X)

The eigenvalues of the Hamiltonian H are quantized and given by the expression
(see formula [1.62]):
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hzﬂ'z 2
2ml

n

Moreover, the eigenfunctions of H are given by (see formula [1.67]):

0,0 [Fsn[222). f0 <<

D, (x) =0, elsewhere.
Wave functions @, (x) are associated with kets |®,).

At t = 0, the state of the particle is described by the ket |'¥(0)) whose expansion
in the basis {|®,)} is written as:

V0= (@) +|2)

(1) Express the wave function ¥ (x, 0) in {|x)} representation.
(2) Prove that at instant z, the state vector |\ (¢)) is written as:

W(0)) == 1| @y + 12|,

V2

In this relation, &4 and @, are constants to be specified.

(3) Prove that the density of the probability of presence D (x, ¢) of the particle
can be put in the form:

D(x,t) = %(CI)%(X) + @3 (x) + 20 (x) D, (x) cos a)ZIt)
In this expression, @, is a Bohr angular frequency to be specified. Draw a

conclusion.

(4) Calculate the mean value (X) (f) representing the motion of the center of the
wave packet associated with the particle. We put X* = X — /2.

(5) Represent the variations of the mean value (X) () as a function of time
compared to the predictions of classical mechanics (a classical particle that is
moving back and forth in a well with angular frequency a»;is considered).
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(6) Calculate (H)(7) and (H*)(f). Deduce the root mean square deviation AH. Are
these quantities time-dependent? Explain why.

(7) Knowing that the wave packet significantly evolves after a period of time of
about 1/, find the time—energy uncertainty relation.

Given data.

(q _aj sin? (nﬂq)dq =0
2 a

2
q sin(ﬂ-q]sin(Zﬂ-qjdq =-— 16 a2
a a 187

3.4.10. Exercise 10 — Study of a conservative system

O ey

O© Ly

Let us consider a conservative system whose Hamiltonian is H,. The space of
states of the system is generated by the basis vectors |®,), n =1, 2, 3. Let E, be the
eigenvalue of H, such that:

H0|q)n> = E0|q)n>

Moreover, an operator W generating a coupling between various vectors |D,) is
considered, with:

(@ 7| @3) = (@3 || @) = (@[] @5) = (@, \W\@Q:%

where A is a constant such that 0 < 4 < E,

(1) Write the matrix representing the Hamiltonian H = Hy + W in the discrete set

{[@)}-

(2) We designate by |0_), |0y and |¢.) the eigenstates of H associated,
respectively, with eigenvalues &, o and «;. Express:

(2.1) The eigenvalues o, 0oy and ¢ as a function of 4 and E,.
(2.2) The eigenstates |d_), |do) and |d.) of H.

(3) At instant ¢ = 0, the system is in the state |V (0)) = |®)).
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(3.1) Find the state |V (£)) of the system at instant ¢.

(3.2) Calculate the mean value (H)(¢). Draw a conclusion.

3.4.11. Exercise 11 — Evolution of the density operator
Let us consider a statistical mixture of states of a system. In the context of
quantum mechanics, it can be proven that it is not possible to describe the mixture

by a “mean vector” [COH 77]. The introduction of the density operator facilitates a
simple description of the statistical mixture of states.

In this exercise, we consider the case of a system in a pure state (the state of the
system is perfectly determined). Let {|u,)} be a discrete orthonormal basis in the

space of states of the system. At the instant #, a normed ket vector of the system can
be written as:

[P (0) =2 ¢, ()| uy)

Moreover, the density operator is defined in {|u,)} representation as:
) =P O) ()|
Let A be an observable.
(1) Find the trace of p (f) and then express (A4) as a function of p (¢) and 4.
(2) Find the equation of evolution followed by p (7).

(3) We designate by |u,) the eigenkets of the Hamiltonian H associated with the
eigenvalues E,. Prove the relation:

L d
lthn,k = (En - Ek)'pn,k(l)

(4) Prove that the populations p,, (f) are constant and that coherences py (f)
oscillate at Bohr’s frequency, v, to be specified.

3.4.12. Exercise 12 — Evolution of a spin 1/2 in a magnetic field

Let us consider a silver atom subjected to a uniform magnetic field B along

direction Oz. The silver atom is in ground state. The Hamiltonian H describing the
spin evolution in the magnetic field is given by the relation:



204  Introduction to Quantum Mechanics 2

H=wS,
In this relation, S, is the observable associated with the spin along direction Oz
and whose eigenstates are |[+) and |-), @ = — 2B, where yis the gyromagnetic ratio

of the electron. Moreover, using the equation with eigenvalues of the Hamiltonian,
we get:

hw
HI=E*[+)= Z2))

We assume that the spin at # = 0 is in the state:
“P(0)> = cosge_i¢/2‘+> + singewu‘—)

(1) Verify that the physical quantities associated with observables H and S, are
simultaneously measurable.

(2) Calculate the mean values (H), and {S,) at = 0. Draw a conclusion.

(3) The system is now considered at a given instant 7.

(3.1) Express the state vector at instant ¢.

(3.2) Find the mean values (H) (¢) and {S.) (f). Draw a conclusion.

(3.3) Is it possible to simultaneously measure the energy E and the components
associated with S, and Sy of the spin angular momentum? Justify the answer.

(3.4) Calculate the mean values (S,) (¢) and (S,) (f). Draw a conclusion.

Given data. The matrices representing the observables Sy and S, in the basis
constituted of kets |+) and |-):

Cn(0 1), af0 i
(Sx)_z(l oj’(Sy)_z(i oj
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3.5. Solutions

3.5.1. Solution 1 — Pauli matrices, eigenvalues and eigenvectors

(1) Finding the eigenvalues

Let us consider the characteristic equation Det [4 —A/] = 0 and then evaluate the
matrices 0, — Al, 6, — Al and o, — Al Using Pauli matrices [2.110], we find:

B PR
o I P ]
R T P iy

These expressions show that the three matrices have the same secular equation:
F-1=0=1=+1 [3.63]
The eigenvalues of operators o, 0, and o; are therefore A== 1.

The spin angular momentum operator is given by the relation:

S=o [3.64]

N | S

Using [3.63], we deduce the eigenvalues of operators S,, S, and S.:

P [3.65]

o | S

(2) Finding the eigenvectors

Relation [3.64] shows that operators ¢, and S, have the same eigenvectors |+) and
|-). The equations with eigenvalues of ¢, are thus written as:

{az +) =+ |4}

o [)=-1) 5.6
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Let us designate by [+), and [t+),, respectively, the eigenvectors of operators o
and o0,. We express their expansions on the basis vectors of operator S, The
equations with eigenvalues of o and o, are written as follows:

[3.67]

Let oz and f: be the coefficients of the expansions of the eigenvectors of ¢, and
o,. We have:

+), =asl+) + Bel-) [3.68]

— Eigenvectors of o

According to [3.68], the vectors |1), are represented in the basis of eigenstates of
S, by the single column matrices:

i)ty
L) B
Using [3.69] and Pauli matrices, we get, according to [3.67]:
e
1 OAA: Br) lo-=-p

Moreover, the kets |t), being normed, according to the normalization condition
we have:

o +|8:* =1 _ 2o =2 =1
If coefficients oz and . are arbitrarily chosen real, we get:

o =+p, =
[3.71]

o_=—p_=

SEESE
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Using [3.71], the eigenvectors of operator o, are written according to [3.67]:

1
4, =5 1)+ .

1
). :ﬁ[ [+)-1-)]
— Eigenvectors of o,

According to the above, vectors [£), are represented in the basis of states of S. by
the same matrices [3.69] (a change in coefficients is not required). Using Pauli
matrices [2.110], we get according to [3.67]:

ool

This leads to:
—ipp=toy =i =-o [3.73]
ia, =+ B, |io_=-p_

Considering [3.73] and taking advantage of the normalization condition, we
have:

o, =—if _ L
{a+=—iﬂ+ N N Y [3.74]
e P

Y

Inserting results [3.74] into equation [3.68] where index x should be replaced by
¥, we find the expressions of eigenvectors of the operator ;. Hence:

1 .
‘+>y:ﬁ“+>+l‘—>] [3.75]

), =5l =)

According to [3.64], it can be noted that operators S, and S, have, respectively,
the same eigenvectors [3.72] and [3.75] as operators o, and o;.



208 Introduction to Quantum Mechanics 2

3.5.2. Solution 2 — Observables associated with the spin

The matrices representing the spin observables S, S, and S. in the basis [+)
and |-) are:

0 1 0 i 10
s = L o [3.76]
2(1 0 2l 0 210 -1

(1) Orthonormalization and closing equations

The orthonormalization and closing relations satisfied by the eigenvectors |+)
and |-) are the following:

— Orthonormalization relation

{GH=G#=1 [3.77]

— Closing relation

X+ =X =1 [3.78]

(2) Expression, matrix of the observable S,

Let us consider Figure 3.5.

\

Q]

Figure 3.5. Orthonormal basis { €, k }
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In the { ;,% } basis, the unit vector u is expressed by the following relation:

U= (u.e)e+ (17.;).; = u =sinf.e +cosb.z [3.79]

But the unit vector g is written as:

e =cos(Q.x +sin@.y
The unit vector [3.79] is then written as:

u =sinBcos (p.; +sin Bsin (p.; +cosO.z [3.80]
Moreover, /, is written as:

b=lu,with [ =1,x +1,y +1.z
Considering [3.80], we get:

l, =1, sin@cos @ +1,sinGsin g +1,cos @ [3.81]

The expression of the observable S, associated with /, can be deduced from
[3.81]. Hence:

S, =Sy sin@cosp+S,,sinPsin g+, cos @ [3.82]

Using [3.76], we express the matrix representing the observable S, in this same
basis {|+),]—)}. Hence:

_hfcos@ sinf(cosp—ising)
) sin@(cos@p+ising) —cosf

Finally:

[3.83]
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(3) Eigenvectors

The equations with eigenvalues of the observable S, are:

h

h

[3.84]

Let o4 and B be the coefficients of the expansion of kets [£), on the basis {|+),
|-)}. We have:

{% =af+)+ i) [3.85]
=), =+ + B|-)

According to [3.85], the kets |[t), are represented in the basis {|+),|-)} by the

matrices:
ny {?]; .y :(Z—] [3.86]

Using [3.83] and [3.86], the equations with eigenvalues [3.84] are written as:

cosé sinfe™'? (aijzi(w_rJ [3.87]
singe'?  —cos® \Pr B

This equality leads to:

apcos®  +fisinfe? =t ay [3.88]
oy sin@e'?— B, cosf =+p4

Let us solve the first system of equations [3.88] relative to coefficient ¢,. We
have:

o, (cosf@—1) +f,sinfe'?=0
[3.89]

o, singe'? — Pi(cosf+1) =0
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Using the following transformations:
(cos@+1)= 2cos? (gj >(cos@—1)=— 2sin® (gj
The system [3.89] is then written as:

— o, Sin— + /3, cos—e T =0
48t Jin 5

04 o [3.90]
o, sin—e’? - B cos_ = 0
These equations lead to:
B.=0o, tangei(p P+ |8 =1 [3.91]

The last relation [3.91] expresses the normalization condition verified by the
ket [+),. Then we obtain:

|0(+|2 (1 + tan? gj =1= ‘0{+‘ = cosg [3.92]

Knowing that coefficients ¢ and _,B+ depend on ¢, we choose ¢ so that it is
proportional to e ~ “#? (the factor e ~ '? would yield a coefficient 3. that does not
depend on ¢, as shown by the relation [3.91]). Hence:

o, = cosge_i(p/2
2 [3.93]

.0
B = s1nael(p/2

Using the second system of equations [3.89] relative to coefficient o, and
adopting a similar reasoning as previously, we get:

o —igp/2

)
=-—SIn Ee
[3.94]

p= cosgei(p/2
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Using [3.93] and [3.94], the eigenvectors [3.85] are written as:

l+) = cosge_i(p/2|+> +sin Qei¢/2|—>
' ? ? [3.95]
|—>u =—sin ge_i¢/2|+> + cosgei¢/2|—>

3.5.3. Solution 3 — Evolution of a 1/2 spin in a magnetic field: CSCO,
Larmor precession

(1) Potential energy

The potential energy W of interaction between the magnetic moment of the silver
atom and the magnetic field is:

—

W=-M-B=-g.ys-B= W=—g,Bs, [3.96]

Inserting the Larmor frequency €2 = —)8B into the expression above and knowing
the Land¢ factor g, = 2, we get:

W =2Qs, [3.97]

We consider = 2Q. The observable associated with spin S,, the Hamiltonian A
associated with J7, is then written as:

H= af, [3.98]

(2) CSCO

Relation [3.98] expresses that observables H and S, commute. Indeed, we have:
[H, S]=[wS,, S,]= @[S, S,] =0 [3.99]

Moreover, H is proportional to S, according to [3.98], and therefore they have the
same eigenvectors (eigenvectors [+) and |-) of S,): H and S, therefore constitute a
CSCO.

(3) Eigenvalues

Let us designate by £ and £ the eigenvalues of H associated, respectively, with
eigenvectors [+) and |-). The equation with eigenvalues is written as follows:
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ho
Hi¥)=0S:|%)=="1%) _ (H}+)=E*])

[3.100]
haw N gl
H-) = @5.|-) == 22-) H|5)=E7|)
or:
E+=h—w;E_=—h—w [3.101]
2 2

Relations [3.101] show that in the magnetic field, the silver atom has two energy
levels. The energy gap between the higher level £ (positive angular frequency @)
and the lower level £ is equal to Ziw.

(4) Spin magnetic moment
M =M,u

The initial state of the spin associated with the eigenvalue +7/2 is described by
the ket:

N 9
_i? 2
(w0 =cosZe 2[+) +sine 2]
2 2 [3.102]
(4.1) Expression of the state vector
At the instant ¢, the evolution of ket [V (¢)) is governed by the equation:
— . _ _—iHt/h

Using [3.102], the evolution equation [3.103] is written as:
6 —ip/2 in 8 oiv2
|W(1)) = cos—e U(t,tg)|+) + sin—-e U(t,to)|-)
Hence:

“I’(t)> = Cosge—i(p/ze—th/h‘+> n Singei¢/2e—iH1/h‘_>
2 2



214 Introduction to Quantum Mechanics 2

Or:
“P([)> — Cosge—i¢)/26—iE+t/h‘+> 4 Singei¢/2€_iE_t/h‘—> [3.104]

Using [3.101], the evolution equation [3.104] can be written after arrangement:
_ortg) g @0
W) =cosze 2 [+)+sinze 2 |-) [3.10]
2 2
Putting ¢ (f) = ax + @, the ket [3.105] is finally written as:
_i9® 20

“I’(t)>=cosze T‘+>+sinze 2 |-) [3.106]

CONCLUSION.— Since @= — 2)B, then:

G()=—21Bt+ ¢ [3.107]

Relation [3.107] shows that the magnetic field introduces a phase difference
between the coefficients assigned to eigenstates [+) and |-) of the spin observable S,.

(4.2) Polar coordinates, Larmor precession
In the presence of the magnetic field, the coordinates of the unit vector u (¢) are:

u(t) = {90) =¢=Cte [3.108]
o) =ar+g

The angle 6 (f) between the directions of vector w (¢) and the magnetic field is
constant throughout time. On the other hand, u (¢) and therefore M =M u u turns

around the field direction with a speed w= d@/dt. This phenomenon is known as
Larmor precession.

3.5.4. Solution 4 — Eigenvalue of the square angular momentum
operator

[ and [_ are defined by the expressions:

L=l +ily; L=1—il, [3.109]
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(1) Proof

-2 . .
The square angular momentum operator / is given by the relation:

-2

2,472,452
I =I5 +ly+lz [3.110]
=2, .
The product /,/ is then written as:

)
LIT =15 +15 +12)

Hence:

-2
L1T =)L + ()0, +13) [3.111]

Similarly, we obtain:

-2
UL = L)+ () + 12 [3.112]

Deducing the products L[l [, LI and L/, from the commutation relations
[2.152] and inserting the obtained results in [3.111] and [3.112], we respectively
find:

1T =1l —ihl )+ 1, (1L, + ikl )+ 1)

-2
171, = (Ul +ihl )+ (1 =L, +13)

Subtracting member by member the two equalities above, we have:

-2 -2
171, -1, =0 [3.113]

The square angular momentum operator commutes with /, (it goes without saying
that the same commutation relation is valid for the other components /, and /).

. -2 . . . .
CONCLUSION.— Since [ and /, commute, there is a physical state in which these two

operators have determined values. In other words, these two operators are
simultaneously measurable observables.
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(2) Commutators
Let us calculate the respective commutators [/, [_], [Z, /1] and [Z,, L].

Q.1 [, L]
By definition:

Uyl 1=1_—-1_1, [3.114]
Using [3.109], we have:

L=y +il,)(l ~il)
L1y =y —il,)(ly +il,)

Hence:
L =12 =il d, +il I+ 1}
Ly =17 +ild, —il I, +1}

Subtracting these equalities member by member, after arrangement we get:
Llo=1==2i(l,—-LL)

Using the commutation relations [2.152], we finally find:

Ll —1_1, =2hl,

[3.115]
(2.2)[L, I.]and [L, ]
Similarly:
(.0 =11 — 1,1, [3.116]

Using [3.109], we get:
LIy =10 +ily)=1,1, +il,l,
Ll =y +il )l =10, +il 1,
Subtracting these equalities member by member, we have:

Ll =1l = (1 _lxlz)+i(lzly _lylz) [3.117]
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Using [2.152], equality [3.117] gives:

Il =11, =inl, +hl, =h(l, +il,)
Or according to [3.109]:

I, =10, =hl, [3.118]
Similarly, we find:

lI_—1_1,=-hi_ [3.119]

(3) Expression, proof

Let us deduce from [3.109] the expressions of /; and /, as a function of /. and L.
Inserting the results obtained in [3.110], we find:

2 2
22=(1+”—j +(’+‘l—j 12 [3.120]
2 2i

Expanding this expression, we have:
i’ %(13 12400+, )—%(13 1210 -1, )+ 12
Hence:
?2=%(1+1_+1_1+)+1§ [3.121]

Using [3.115], we finally find:

I7 =10 +12—nl, =1_1, +1%+nl, [3.122]
(4) Equations with eigenvalues
The highest value of the magnetic quantum number m is /. In the eigenstate |®)

-2
common to / and I, the eigenvalue of [, is therefore /1. If A* designates the

. -2 . o -2 .
eigenvalue of / , the equations with eigenvalues of operators / and /, are written
as:
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1’| @)= 22| @) [3.123]
1| @) = my o B @) = (5] D)

(5) Proof

Let us put that /,|®) and [ |®) are eigenstates of /, associated, respectively, with
the eigenvalues ¢ and o to be specified. We have:

{IZM(D) =) [3.124]

1I_|®)=a_|®)
Using [3.118] and [3.119], we obtain:
11| @) = (I41, +hly)| @)
Hence:
1,14|®) = 141, | @)+ iy | D)
Or according to [3.123]:
1,14 ®) = h(L £ 1) | D) [3.125]
A comparison between equations [3.124] and [3.125] reveals that vectors /,|®)
and /_|®) are eigenstates of /, associated, respectively, with the eigenvalues ¢, and
o. given by:
o, =h(l{+1D;0_=h{-1) [3.126]

(6) Incompatible eigenvalue

The eigenvalue ¢, is incompatible with the principle of quantization of/,.
Indeed, the eigenvalues of /, are equal to m % . Knowing that the maximal m, is l,

it follows that o, =7(¢ + 1) cannot be an eigenvalue of /,.

(7) Eigenvalue of the square angular momentum operator

The equation with eigenvalues [3.125] results from the commutation relations
[3.117]. Consequently, equation [3.125] is well defined, though it leads to an
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eigenvalue ¢ that is unacceptable for /,. To eliminate the contradiction, the
condition /,|®) = 0 must be imposed. This condition implies:

LL]®)=0 [3.127]
Using [3.122], we have:

-2 )

1| @)= (I l_+17 +hl,)| D)
Taking equations [3.123] and [3.127] into account, we get:

-2 2

[|®)=n"0(+1)| D) [3.128]
Comparing the first equation [3.123] and [3.128], it can be noted that the

-2
eigenvalue A of the square angular momentum operator /  is equal to:
2 =h20(0+1) [3.129]

(8) Representation

In the context of the vector diagram model, the angular momentum operator [ is

represented by a vector of module:

fz\/lzzh 00+ [3.130]

For a given state, m, takes values from — ¢ to +/, hence (2 / +1) values.

In 7 unit, the possible values of m, are figured on the axis Oz, being considered

projections on this axis of vector / of length /¢(¢ +1) .

For ¢ =2, the module of vector 7 is /6 . These results, which determine the

-2
various possible values of operators [/ and /,, are known as spatial quantization,

which is generally represented in the form of a vector diagram, as illustrated in
Figure 3.6 for ¢ =2.
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Figure 3.6. Vector diagram reflecting the spatial quantization
of the angular momentum operator

3.5.5. Solution 5 — Constant of motion, good quantum numbers

(1) Equations with eigenvalues

The system {|®, )} of eigenkets is common to observables 4 and H with
eigenvalues E, and q, respectively. The discrete index m identifies the eigenvalues
of the observables that potentially form a CSCO with H and 4. The equations with
eigenvalues of observables H and A4 are then written as follows:

H‘q)n,k,m> = En‘q)n,k,m>

[3.131]
A‘q)n,k,m> = ak‘q)n,k,m>

(2) Constant of motion

Operator A4 is explicitly time independent and commutes with Hamiltonian H,
which is itself explicitly time independent: therefore, H and 4 are constants of
motion.

(3) Good quantum numbers

The states |®, ) of H being stationary states (H is time independent), if the
system is in state |, s ), it will remain so indefinitely. Or, according to [3.131], the
states |®,, ;) are also eigenstates of 4 with eigenvalues a;. Hence, if 4 is a constant
of motion, there are eigenstates of the system that remain at any instant eigenstates
of A with eigenvalues a;. For this reason, the eigenvalues a; are known as good
quantum numbers.
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(4) Expressions of the state vectors

The expansions of the state vectors [V (¢,)) and |V (f)) on the eigenstates |D,, ;.
are written as, respectively:

¥(ty)) = chn,k,m(to)\q>n,k,m> [3.132]
W ()= chn,k,m(t)\¢n,k,m> [3.133]

In these expressions, the components ¢, x,, () are deduced from [3.48]. Hence:

Cngm®O=cnim(to) e iEn(t=t0)/ [3.134]

3.5.6. Solution 6 — Evolution of the mean values of the operators
associated with position and linear momentum

(1) Evolution equations, connection with classical mechanics

According to Ehrenfest’s theorem, the equations of evolution of the mean values
(X) and (P) are written as follows:

4x)_{P)

d m [3.135]

di? =—(VV (X))

For a free particle, V(X) = 0. Therefore, according to [3.135]:

7\ X)=—(P)
%(P):o [3.136]

System [3.136] leads to the following result:

(P)=(P)o=Cst [3.137]
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Hence, the first of equations [3.136] is written as:

Z(X)=—(P
4 ix)=Lim),
Therefore:

)=y

m

. [3.138]

The classical equivalent of equation [3.138] is the equation of motion of a
vehicle of mass m in uniform rectilinear motion: x (f) = vy + xo. Knowing that
p = mv, this leads to:

x(t)=L 1+ x [3.139]
m

The classical equation [3.139] is quite similar to the quantum equation [3.138].

(2) Evolution equations, connection with classical mechanics

The observables X and P are time independent.
—For (P°)

%<p2> _ $<[sz H) [3.140]

The commutator:

2
(P2, H]=[P%, 2=+ v(xy)=[P2, v (x)]
2m

Or:

[P*,V(X)]=P[P,V(X)|+[P,V(X)]|P

—2ipp V)
X

For a free particle, V(X) = 0. Hence:

[P?, H]=[P*,V(X)]=0 [3.141]
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Equation [3.140] is then written as:

%<P2>=0 N <P2>:<p2>0:c5t [3.142]
— For (X°)
(o) = {x2 ) [3.143]

Let us determine the commutator in [3.143]. Knowing that [X*, V (X)] = 0, we
obtain:

2 2 p? p?
(X5 H]=[X5 —+V(X)]=[XX,—] [3.144]
2m 2m
Or:
P 1 5 )
[H,fzm]—fzm(X[X,P ]+[X, P ]X)

Knowing that [X ,Pn]zithn_l(see result [2.62]), the last commutator in
[3.144] is written as:
P2 in

[XX,—]=—(XP+PX) [3.145]
2m- m

Using result [3.145], equation [3.143] can then be written as:

i<x2> - Lixp+px) [3.146]

dt m
The integration of equation [3.146] requires the calculation of { XP + PX).

Considering the equation of evolution of the mean ( XP + PX), according to
Ehrenfest’s theorem we obtain:

d

—(XP+PX)= l[XP+ PX,H] [3.147]
dt i
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The commutator in the right member of [3.147] is:
[XP + PX, H] = [XP, H] + [PX, H]

which is:

[XP+ PX,H|=X[P,H] +[X,H|P+P[X,H +[P,H| X

For a free particle, (X) = 0 and H = P*/2m. Therefore, [3.148] becomes:

[XP + PX H]= —— X[P,P2]+—[X,P2]P +
2m 2m

+ LP[X,P2]+ L[P,PZ]X
2m 2m

which is:

[XP + PX.H]=-inP2+ L inp?
m m

or:

[XP + PX 1] =2 p2
m

Using result [3.149], equation [3.147] is written as:

< xp+Px) =3<P2>
dt m

Taking [3.142] into account, equation [3.150] is written as:

1 xp+pPx) =5<P2>
dt m 0

The integration of this equation leads to:

(XP+PX)= %<P2>Ot +(XP+PX),

[3.148]

[3.149]

[3.150]

[3.151]

[3.152]
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Using [3.152], equation [3.146] can be written in the form:

i<X2> =i<P2>Ot + %(XP+PX>O

dt m?

Or after integration:

<X2>(t):%<P2>0t2 +i<XP+PX>0t+<X2>0 [3.153]
m

The mean value [3.153] evolves according to the classical law of uniformly
accelerated motion along the axis Ox:

1
x(t) :Ea 2+ vot + Xo

(3) Root mean square deviation

By definition, the root mean square deviation AX is defined by the following
relation:

AX = <X2> —(x)? [3.154]
Using [3.138] and [3.153], we obtain according to [3.154]:

2 1/ o\ 2 1 2 1 ’ 3.155
(AX) :F<P >Ot +;<XP+PX>Ot+<X >O—(;<P>Ot+<X>0j [3.155]

Knowing that at =0, { XP + PX), = (X)y, equation [3.155] becomes:

(AX)? :#<P2>0t2 +<X2>0 —ﬁ(P)é 2 [3.156]

Let us insert into the first term of the right member of equation [3.156] the

mean<X>é ,

(AX)> =#(<P2>0 _<P>§j;2 +(<X2>0 —(X>(2)j

though it is zero. We obtain:
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It can be noted that the second member of this relation contains the square of
root mean square deviations (4X),-( and (4P),- . Hence:

(Ax=—= (AP} 2 + (A
m

or:

AX = i\/(AP)% 2 + (AX)} [3.157]

CONCLUSION.— When ¢ increases, the width AX of the wave packet increases: this
reflects the packet spreading.

3.5.7. Solution 7 — Particle subjected to various potentials

(1) Evolution equations

According to Ehrenfest’s theorem, the mean values (X) and (P) evolve
according to the laws [3.135]. The potential to which a particle is submitted has the
following form: V(x) = ax".

(1.1) Free particle
For a free particle, the potential is zero. We obtain [3.137] and [3.138].

(1.2) Particle subjected to uniform potential

For a particle subjected to a uniform potential: ¥(x) = a (n = 0) = Cst. Equations
[3.137] and [3.138] are still verified since VV(X) = 0.
(1.3) Particle subjected to parabolic potential

For a particle subjected to a parabolic potential, V(x) = ax’. Using [3.135], we
find knowing that VI(X) = 2aX:

n [3.158]
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Using equations [3.158], we have:

d? 1d
dt_2<X>_;E<P> [3.159]

Taking the second of equations [3.158] into account, equation [3.159] can be
written as:

d2 2a
dt—2<X>+?<X> =0 [3.160]

The integration of this equation finally leads to:

(X)) =(X),, cos(apt+¢o) [3.161]

where @y =+v2a/m .

(2) Connection with classical mechanics

The differential equation of a classical harmonic oscillator can be written as:
m 72 =— kx
dt [3.162]

The classical equation [3.162] is the equivalent of the quantum equation [3.160].
Moreover, the solution to the differential equation [3.162] has the well-known form:

x(t) = X( cos (wot + ¢0)

orwy =~vk/m

Comparing the laws [3.163] and [3.161], it can be seen that the center of the
wave packet behaves as a classical particle.

[3.163]

(3) Behavior of the particle
For V(x) = ax’, using [3.135] and knowing that V¥(X) = 3aX, we obtain:

4x)_(P)

dt m

d<P>=_3a<X2>
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which then yields:
2
d—2<X>=—3—a<X2> [3.164]
dt m

Equation [3.164] has no classical equivalent. Consequently, the center of the
wave packet does not behave as a classical particle.

GENERAL CONCLUSION.— The center of the wave packet does not rigorously follow
the laws of classical mechanics for the free particle and for the particle subjected to
uniform or parabolic potential.

3.5.8. Solution 8 - Oscillating molecular dipole, root mean square
deviation

The potential energy of the HCI dipole has the form:
1 2
V(x)=5(x—a) [3.165]

The normed wave functions ®(x) of the ground state and ®,(x) of the first
excited state are given by the expressions:

1

_(moYa 5w’ [3.166]
Dp(x)= E e :
1
34
‘Dl(x){%[%w” (v—a)e= A lx-a*/2 [3.167]

(1) Mean value

In the general case, the kets |®,) being normed, the mean value (X) is:
X) = (D| XD, ) [3.168]
Using the closing relation in {|x)} representation, we have:

+ oo

(x), =(®,] [ddx)(x|x|®,) [3.169]

—o0
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Hence:
+o0
(X), = Jdx(@, |x)x{x|®,)
Therefore:
+ oo
(X), = [dvad@, @) [3.170]

—o0

— Case of the ground state
Considering [3.166], relation [3.170] gives:

mo\2 T -"lx-a)
(x), {) [axze [3.171]
ﬂh -
Putting:
1
y =x—a,and Az(’"“’jz, p="2 [3.172]
7h h

then equation [3.171] is written in the form:

+o0 2 +oo 5
(X),=4 jdyye—py +2a jdy e PY [3.173]
—oo 0

. 2. .
Knowing that ye 7" is an odd function, then:

+00 )
Idyye_py =0

—oo
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Using [3.172], equation [3.173] yields:

I 1
(X), =24aly = Aa | % =ax| 22 |2 x| 2|2
0 P 7h ma

or finally:

Xo=a [3.174]

— Case of the first excited state

Considering the wave function [3.167], relation [3.170] yields:

1

3 g+ _ma x—a)?
(X)l{i[mTw” [ dex(x—a)xe n [3.175]

Let us use the changes of variables [3.172] where:

i)

Equation [3.175] then gives (with y =x —a):

“+ oo +o0

<X>1 =4 J dyy3e_py2 +a _[ a’yyze_py2
That means:
+oo ) +o0 )
(X), =4y [ dyy’e™PY" 424 [ dyyPe PV [3.176]

—o0 —oo
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2
Knowing that y3e_p Y is an odd function, we have:

+o0 )
_[ dyy3e_py =0

—oo

Then, using [3.176] we obtain:

(X), =24aly = da~Iy =a 4 =
P 4p

Replacing 4 and p by their expressions, we get:

or finally:

X1 =a. [3.177]

NOTE.— Results [3.174] and 3.177] are identical. This is justified in the context of
the adopted model, which does not reflect reality, as the potential is not perfectly
harmonic.

(2) Uncertainty in the measurement of the position of the hydrogen atom

AX =/(®|(X - a)’|®) [3.178]

(2.1) Calculation of uncertainties

Using the closing relation satisfied in {|x)} representation, the square of the
uncertainty (AX), is written according to [3.178]:

+ o0
ax);= | dx (x—a)?|®,, (x)* [3.179]

—oo

— Case of the ground state
Using [3.166], we get, according to [3.179]:
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ﬂ(x_a)z

4o
(AX)%:(’"—“’FJ dx(x—a)?e N [3.180]
T

Using the same changes of variables [3.180], we have:

2 T —py? 4
(AX)g =24 [ dyy’e =24l =;IO

0

Hence:

1 3 1

2_ | _(m@\2 [(h\2 (7)2
wop=ai (e )

or:
» 1 h
(AX)p=5——
2 mw
which finally leads to:

(AX)g = .~ [3.181]
2 mw

— Case of the first excited state
Using [3.167], equation [3.179] yields:
+oo _mTa)(x_a)Z

A =4 [ de(x-a)'e

—oo

[3.182]

Using the same changes of variables as previously, we have:

2 Ty —py? 34
(AX)] =24 j dyyte =24l4 =712

0
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which is:

34 34 | &
AN =—FTy="" |5

2p 4\p°

Replacing 4 and p by their expressions [6.328], we have:

ST
(M);:lei(m_w” SERT
4 |7\ *h mo
Hence:
(AX)12=3><[E)
2 \mw
or finally:
(AX)) = 3 [3.183]
2 mw

NOTE.— Integrating the general equation [3.179], we find:

(AX)? =[n+;)hw [3.184]
m

Result [3.184] actually gives the specific cases [3.181] and [3.183], respectively,
for the ground state (n = 0) and for the first excited state (n = 1).
(2.2) Interpretation

Results [3.181] and [3.183] show that the uncertainty (AX), increases with the
excitation (when »n increases). This becomes clearer when the general expression
[3.184] is considered.

3.5.9. Solution 9 - Infinite potential well, time—energy uncertainty
relation

The particle is confined in an infinite potential well of width /, such that:
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Vx)=0, if0<x </
V(x) = oo, elsewhere

The Hamiltonian of the particle is:

m

H +V(X)

The eigenvalues of the Hamiltonian H are given by the expression:

n’r? 2
2ml

E

n

The eigenfunctions of A are such that:
2 . (nmx) .
D, (x)= 7s1n - ) if0<x<!

D, (x)=0, elsewhere.

At instant ¢ = 0, the state of the particle is described by the ket:

|w<o>>=%<|¢l>+|®z>>

(1) Expression of the wave function

Using [3.188], we get in {|x)} representation:

(O == (o) (x| 2)
Hence:

\P(x)=i2[c1>1<x)+<bz(x>]

NG

Using [3.187], the wave function [3.189] is written as:

[3.185]

[3.186]

[3.187]

[3.188]

[3.189]



Eigenvalues and Eigenvectors of an Observable 235

P(x) = %{sin [%}+sin (ZT’DCJ} [3.190]

(2) Proof

At instant ¢, the state vector is given by the expression:

2 )
W)= Y e, e Bt o) [3.191]
n=1
Hence:
() = c1(0)e E @) + ¢y (0 E2 | D) [3.192]

This expression is valid for any ¢. In particular, at £ = 0, we have:
|¥(0)) = 1 (0)| @) )+c2(0)|@3) [3.193]
Comparing [3.189] and [3.193], we see that:

1(0)=¢,(0) = % [3.194]

Moreover, according to [3.186]:

2.2 2_2
her hr
E1=—2 ;E2=2 5
2ml 2ml

[3.195]

Using [3.194] and [3.195], expression [3.192] is written in the following form:

hr? hr?
1 —12 lzt —1 lzt
|\P(r))=E e 2m” @) +e M |D,) [3.196]
We put:
o = hn? hr?
1

= o = 3.197
omi2’ 2T 2 [3.197]
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Taking [3.198] into account, the wave function [3.196] is written in the form:

\xp(t»=%[e-mﬂ\cm)M—mzf\qaZ)] [3.198]

(3) Density of probability of presence
The density of the probability of presence D (x, ¢) of the particle is written as:
D(x, ) =|W(x,0)|* [3.199]
Considering [6.354], we get in {|x)} representation:
W(x,1) = L[e"'El” "y (x)+e 2! hcbz(x)] [3.200]
V2
The complex conjugate of the wave function [3.200] is written as:
¥ (x,0) = i[e"El’ ', (x) +F2 hq)z(x)} [3.201]
V2
Using expressions [3.200] and [3.201], the density of probability is written as:
D(x.1) = % O3 (x)+ % D} (x)+ D, (x)D, (x)[e—iElt IhiEgtIt | JiEit/h ~iEpt] hJ
Hence:
D(x,1) = %(I)lz(x) +%<D%(x) +<D1(x)(D2(x)[e (Ey=ENt/h o =i(Ex=Ep)t/ ’1 [3.202]
We put:
) = Lz; f) [3.203]

Taking [3.203] into account, expression [3.202] is written in the following form:

D(x,t) =%(I)12(x) +%(I>%(x) + q)l(x)@z(x)[ei@lt " e—ia)zlt}
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Hence:
D(x,t) = %{@f(x) + %@%(x) + 2@ (x)®;(x)cos (amt)} [3.204]

CONCLUSION.— Expression [3.204] shows that the variation in time of the density of
probability is due to the interference term, which is proportional to the product
@, (x) D, (x). This term, which is responsible for the evolution of the wave packet,
oscillates in time with the single Bohr angular frequency given by [3.203].

NOTE.— Figure 3.7 indicates the plots of the density of the probability of presence for
the ground state, for the first excited state and for the interference term responsible
for the evolution of the shape of the wave packet.

@7 (x) 3(x) @ (x)@;(x)

0 2 I x 0 12 I x
(a) (b)

(©)

Figure 3.7. Plots of the densities of probability of presence of the particle ®?(x) for
the ground state (a) and ®Z(x) for the first excited state (b) and of the interference
term @4 (x) @ (x) (c) responsible for the evolution of the wave packet

(4) Mean value

Taking [3.199] into account, the mean value (X)(¢) representing the motion of the
center of the wave packet associated with the particle is given by the following
equation:

+oo +oo
(X)) = (POX[PO) = [ dex]¥0en® = [dvxDixo) [3.205]

Using [3.204], relation [3.205] yields:

+oo +oo Foo
(X)(t)z% j dxxd>12(x)+% j drx®2(x) + jdqu>1(x)q>2(x)cos(a>21t) [3.206]

—oo —oo —oo
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Knowing that the wave function does not differ from zero unless 0 < x < /,
[3.206] is written as:

I I I
(X)) = %J.dxxtl)lz(x) +% J.dxxd)%(x) + J'dqu>1(x)q>2(x)cos(a>21r) [3.207]
0 0 0

To facilitate the integration of [3.207], we put X’ = X — //2 for symmetry reasons.
This leads to:

(X)) =(X")0) +é [3.208]

The mean value of the observable X is equal to:
+oo
(XN =(Y()|X-1/2]¥ ()= j dx[x—éjD(x, ) [3.209]
According to [3.199], this yields:
(X)) = ljdx(x - ijcb%(x) +1 jdx(x—i]cb%(x)
2 0 2 2 0 2

[
+ Idx(x—é}q)l(x)d)z(x)cos(wzlt)
0

[3.210]

Deducing the wave functions @; (x) and @, (x) from the general expression
[3.187] and inserting the resulting expressions in [3.210], we get:

oot
el

[3.211]
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The two first integrals of [3.211] are zero, as they are of the type:

oo

We then obtain:
< >(t) == cos(amt)jdx(x ——j sm(mjsm [z—mj
/ /
Hence:

/
<X'>(t) = % cos(anit) Idxxsin(?jsm(zmj - —desm(?jsin(szj [3.212]
0

The last term of equation [3.212] is zero. It can be more easily verified without
integration, as shown below.

Knowing that (|]®,),|®,)) constitutes a basis in the space of states, then the two
kets are orthonormal. Hence, using the closing relation satisfied by the continuous

set {|x)}: <CI>1 |<I)2> =0. We then obtain:

(®1] [adx)(x]@2) =0

—o0

Hence:

4oo
j x| (x) D (x) = 0

—o0

or finally:

/
Eja’xsin ~ sin Z—M =0
/ 0 l l
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Considering this result, expression [3.212] is then written as:

/
2 . . (2
<X'>(t) =7 cos (a)zlt)j dx xsin (?j sin (TMJ [3.213]
0
The integral in relation [3.213] is of the type:
T 2 8 a2
qu sin (ﬂ] sin (_ﬂq] =22
a a 9 72
0
which then yields:
16/
X)(t)=———=cosay t [3.214]
< > 9”2 )

Taking [3.208] into account, the mean value (X)(f) of the observable X
representing the motion of the center of the wave packet associated with the particle
is then:

<X>(t)=é—l—6lcosamt [3.215]

972

(5) Graphical representation

The variations of the mean value (X)(f) compared to the law of motion of a
classical particle in a back-and-forth motion in the well with the same angular
frequency @, are indicated in Figure 3.8. For the classical particle, the law of
motion is reflected by the equation:

S, o< E
T
) @ [3.216]

_@.t+2[;igtgzi

74 [2p) [2p)
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Figure 3.8. Variation of the mean value (X)(t) representing the motion of the center of
the wave packet compared to the law of motion of a classical particle that is moving
back and forth in the well with the same angular frequency ;1

Figure 3.8 shows how the classical particle turns back after having reached the
higher limit of the well in x = /. The quantum mechanics predictions are very
different: the center of the wave packet makes a half turn before the particle even
gets to x = /. This can be explained by the sudden variations of potential at the well
boundaries where it passes from zero to infinity: the potential then acts on the packet
in such a way that it makes a half-turn before reaching the boundaries x = 0 and
x=1

(6) Mean values, root mean square deviation

— Mean values

The mean values (H)(f) and (H >)(¢) are written as:

(H)t)=(w)|H|w () = %[(@1 |H|®)+ (P, |H|(I>2>] [3.217]

<H2>(t) = (y(0)|H?|w () = %[(cpl |H 2| @) +(D) |H2|<I)2>] [3.218]

Knowing that the eigenkets |®,) are orthonormal, and using the equation with
eigenvalues H|®, = E,|D,) we get:

(=S B2 B 8RS g
2 2 2 2 2
2 2 2 2
E E E 16 E
<H2>(t):_1+_2:_1+ 1 :£E12
2 2 2 2

[3.219]
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— Root mean square deviation AH

Using [3.219], the root mean square deviation AH is equal to:

_ a2 = [ 25 -3
AH—\/<H >(t) (H) (1) = > 4E1 2E1 [3.220]

The mean values [3.219] and the root mean square deviation [3.220] are time
independent. This is due to the fact that the Hamiltonian of the system is a constant
of motion.

(7) Time—energy uncertainty relation

Taking [3.195] into account, the Bohr angular frequency is:

_(Ex-Ep) _3E
h h [3.221]

As shown in Figure 3.8, the wave packet evolves significantly after a time period
of about 1/a»;. Let us put At = 1/ay;. Using [3.221], we get:

Amn o [3.222]

Using [3.320] and [3.322], we get:

AHAtzEElxi:E [3.223]
2 3E 2

1
Result [3.223] satisfies the lower limit of Heisenberg’s time—energy uncertainty
relation.
3.5.10. Solution 10 — Study of a conservative system
The equation with eigenvalues of the Hamiltonian H, is written as follows:
Hy®,) = Ej|D,) [3.224]

Operator W generating a coupling between various eigenkets {|®,)} of the
Hamiltonian H, satisfies the following conditions:



Eigenvalues and Eigenvectors of an Observable 243

(@ |W|@3) = (D3| @) = (@, || @3) = (@ V| Py) = [3.225]

A
V2
where A is a constant such that 0 < 4 < E,.

(1) Matrix representing the Hamiltonian

In the orthonormal set {|®,)}, the Hamiltonian H = H, + W is represented by the
square matrix 3 X 3 of matrix elements:

Hyw = Hown + Wom [3.226]
This yields:
HopitW1  HonatMa  Hoz+Wis
(H)=| Hop1+W21  Hopa+Waa  Hooz+Wa3 [3.227]
Ho31+W31  Hozp+W3p  Hosz+Wa3
Using [3.224], we find:
Hopm = (@ |Ho| @y ) = Ho( D | @) = Hopm = EoSum [3.228]

Using [3.225] and [3.228], matrix [3.227] is finally written as:

A A
ron
A
(m:ﬁ Ey 0 [3.229]
A
ez Yk

(2) Expressions of the eigenvalues and of the eigenstates

The eigenkets |0_), |0o) and |0.) of H are associated with the eigenvalues &, o
and a, respectively.

(2.1) Expressions of the eigenvalues

The eigenvalues ¢, g and o are determined by the characteristic equation:

Det [(H) - ad] = 0 [3.230]
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where (H) designates the matrix [3.229], o designates o, ¢ or ¢ and [ is the unit
matrix. Then we obtain:

Ey-a i i
2 2
Det % Ey-a 0 |=0 [3.231]
% 0 Ey-a
This leads to:
(Eo— @l(Eo— )’ = X1=0 [3.232]

The eigenvalues of the Hamiltonian H can be deduced from the equation:
w=Eya=Ey—-A, . =Ey+ A [3.233]

(2.2) Expressions of the eigenstates

We write the equations with eigenvalues of the Hamiltonian H. We get:

H|p-)=a_|¢-)
H|go) = ao| o) [3.234]
H|¢y) = ai|o:)

In the basis {|®,)} forming the eigenstates of H, the eigenstates of H satisfy the
expansion:

3
o) = Zlcnvl®n> [3.235]

Then we obtain:

|0-) =1 @1)+er[@2)+e3|@3)
|#0) = c10|®1) +c20| @2 ) + 30| 3) [3.236]
|64) = c1e| @1) +e24 [ @2) + c34 | @3)
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Let us summarize the system of equations [3.234] as follows:

H|g,)=ay|d,) [3.237]

Equation [3.237] can be written using [3.229] and [3.235] in matrix form:

Ey

A
V2
A
— E
\/5 0
A

0 E
\/E (0]

51% v

=) §||>a

Qu |=ay| Oy

[3.238]
Gy Ay

From equation [3.238], we deduce the following system:

A
Eyey E(CZV toy)=acy (D)

ﬁclv +Egcoy =oycyy (2) [3.239]

A
—cy + Epe =03, (3)
\/5 v 03y vC3y

The coefficients ¢,, in [3.239] are fully determined taking the normalization
condition into consideration:

‘clv‘z + \sz\z + \031/\2 =1 [3.240]

Making the sum of equations (2) and (3) of the system [3.239] and deducting (3)
from equation (2), we get:

{‘/Eﬂclv =(cqy a3y, —Ep) (4) (3.241]
oy (coy —c3y)=Ep(cay —c3y) (5)

Equation (5) of system [3.241] has two solutions: ¢, = Ey and ¢, # E.
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—Foro,=Ey=o

Equations (1) and (4) of systems [3.239] and [3.241] yield:

{QO=0
0=-030

Using [3.240] and [3.242], we find:

1

€20="60=

The eigenstate ‘¢0> of H is then written according to [3.235]:

1 1
=—|D))——|D
|¢b> /—2| 1> \/5| 2)
—For a, #Ey (v #0)

Equations (5) and (4) of [3.241] yield, respectively:

{CZV =Cqy
Acyy, = ‘/ECZV(“V —Ep)

—Fora, =a_.=Ey—1

Using [3.245], we get:

c_=c3_
c-=—v2cy_
Similarly, taking [3.240] into account, we find:

1 1

cyo JC)_ =3 =——
2 \/E 2 3 5

Using the expansion [3.235], the eigenstate ‘ ¢_> of H is written as:

)=o)~ @2) o)

[3.242]

[3.243]

[3.244]

[3.245]

[3.246]

[3.247]

[3.248]
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—Fora, =a.=Ey+ A
Considering the system [6.402], we get:
€2+ =C3+
+ = V2 €2+
According to [3.240], this leads to:

1 1
Cle =——=;Cyy =C3y =—
1+ Fz 2+ 3+ 7

The eigenstate |g, ) of H is then written as:

1 1 1
|2) =ﬁ|‘bl>+§|q’2>+5|‘1’3>

In summary, the eigenstates of the Hamiltonian H are written as:

o) =5l = [2) - o)

1 1
\¢o>=ﬁ\q’z>—ﬁ\q’3>

1 1 1
60) =5+ @)+ 1 o)

(3.1) State of the system

[3.249]

[3.250]

[3.251]

[3.252]

We express the initial state | (0)) = |®,) of the system in the basis of eigenstates
of the Hamiltonian H. Let us add the first and third of the expansions of system

[3.352]. We obtain:
1 1
¥ () =ﬁ|¢—>‘ﬁ|¢+)

The state of the system at instant 7 is then written as:

+1 2 —i@l
lw®)= 3 den@e 7 |g,)

v=-—ln=1

[3.253]

[3.254]
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which is:

—iac it [3.255]

W) =a_(0)e @) +er 0 e % Mg )

Taking [3.233], [3.247] and [3.250] into account, we have:

‘lﬂ(l)> :\/li{e—i(EQ—ﬂ)t/h¢_>+e—i(Eo—ﬂ)t/h¢+>}
or after factorization:

—iEgt/h| - .
\l//(t)>=%e " {e’lt/h\¢_>+e_’l’/h\¢+>} [3.256]

(3.2) Calculation of the mean value

The mean value (H) (f) of the observable H is given by the relation:

(H)® = (wO)|H|p(®) [3.257]
Using [3.256], we get:

1

H|y(0)) =5 e_iEOt/h{eM’/hhﬂ ¢ )+e MMy ¢+)} [3.258]

Q‘

Hence:

—iFyt/ . .
Hyw)) =\ée o h{e’ﬂ”h&\ﬂ)+e_’l’/h0@\¢+>} [3.259]

Moreover, the bra corresponding to ket [3.256] is written as:

e

{701 =5¢ g |+e Wm(%\} [3.260]
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Using [3.259] and [3.260], the mean value [3.257] is written as:
1
(H)1)= E(a‘ +ay) [3.261]
Using [3.233], relation [3.261] is written as:

(H)(1) = %[(Eo M)+ (Eg + )]

or finally:

(H)(?) = Ey [3.262]

CONCLUSION.— The mean value (H)(f) does not depend on time. This is due to the
fact that the system is conservative.

3.5.11. Solution 11 — Evolution of the density operator

The state vector is given by the expansion:

lw(0) = cnlun) [3.263]

The density operator is defined by the relation:
PO =)W @) [3.264]

(1) Trace, mean value

—Trace of p (¥)
Using [3.264], the trace of the density operator is written as:

Trp(t) = 2 tn | (O ttn |9 )

n

Hence:

Tip(0) = Y (| = e =1 [3.265]
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— Mean value of A

The state vector [3.263] being normed, the mean value (4)(¢) of the observable 4

is given by the relation:

()=l ®)

[3.266]

We insert in [3.266] the closing relation satisfied by the discrete set {|u,)}. We

have:

(A)0) = (w(®)|A]u, )y | (1))

Hence:

(A)O) =D (uy |w O )N w ()| A|uy)

Taking [3.264] into account, relation [3.267] is written as:

{4)©) =2 un lo) Alu )

or finally:
(4)0)=Trlp(0)4]

(2) Evolution equation

Let us differentiate [3.264] with respect to time. We get:

dp(t) | d d
90 | &) o+ o) o]

[3.267]

[3.268]

[3.269]

Moreover, Schrodinger’s equation describing the temporal evolution of the

system is given by the relation:

L d
i |w) = Holy (o)

[3.270]

Knowing that H is Hermitian, the complex conjugate of equation [3.270] is

written as:
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—ih%(l//(tﬂ =(w|H(®) [3.271]

Using [3.270] and [3.271], the evolution equation [3.269] is written as follows:

dp(t) _ 1 1
= HO 0)~— [wO) 0| @)
which is:
dp(t) _

1
e CLOVIORYOLIO) [3272]

The commutator of operators A and p can be identified in [3.272]. Finally:

dp(®) _

1
~ E[H(r),pm] [3.273]

(3) Proof
Using [3.273], we get:

(u,

Hence:

dp(t) 1
a0

[H (@), p(1)]|u,)

ih%@n P ) = (un [HOpOfue) = (un [pOHOlure) — [3274)

Using the equation with eigenvalues of the Hamiltonian A and taking its
hermiticity into account, the equation gives:

m%@n o0 i) = Ep{utn | o0 ) = Eg (1 | PO )

Finally, the evolution equation of the density operator is written as follows:

d
ih— P (1) = (Ey = Ei) Py (1) [3.275]
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(4) Proof

By definition, populations are the elements of matrix p,, (f). For n = k, the
evolution equation [3.275] gives:

Pun = Cst [3.276]
Populations are therefore constant.

By definition, coherences are the elements of matrix p,; (¢) for n # k. Integrating
[3.275], we get:

_ (En _Ek)t
Pnj(®)=pur©@e N [3.277]

Result [3.277] shows that coherences oscillate with the single Bohr frequency
given by v, = (E, — Ep)/h.

3.5.12. Solution 12 — Evolution of a 1/2 spin in a magnetic field

We summarize the essential given data:

— Hamiltonian H describing the spin evolution in the magnetic field:
H=wS§, [3.278]
with o=-2)8

— Equation with eigenvalues of the Hamiltonian H:

H|+) = E*|+) =124
hzw [3.279]
Hl-) =) =221
— State of the spin at = 0:
o —i¥ 0 i
|y/(0))=cos5e 2 |+>+s1n5e 2]-) [3.280]

(1) Verification

Relation [3.278] shows that A and S, commute (HS, — S.H = 0). Consequently,
the physical quantities associated with them are simultaneously measurable.
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(2) Calculation of mean values, conclusion

Mean value is given as:
(H)o = (w(0)|H|w(0)) [3.281]
Using [3.280], we have:

4

_i? 1
2E7|-) [3.282]

H|l//(0)>:cos§e 5E+|+)+sin§e

i

Moreover, the bra corresponding to ket [3.280] is written as:

i i
2

(w(0)| = cosge (+|+sin§e 2(- [3.283]

Using [3.282] and [3.283], the mean value [3.281] is written as:
(H), = E* cos? 9y Esin2? [3.284]
0 2 2
Using [3.279], relation [3.284] gives:

_hof 28 28
<H>O_ 2 (cos 2 sin 2)

or finally:

(H), = hTa)cos@ [3.285]

We have used the trigonometric transformation:

6 6 20 . 280
cos| —+— [=| cos” ——sin“ —
2 2 2 2

The mean value (S.), is deduced from [3.278], taking [3.285] into account.
Hence:

(Sz)0= i(H)O = %cose [3.286]
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CONCLUSION.— The angle @being constant, results [3.285] and [3.286] show that the
observables H and S, are constants of motion.

(3) Study of the system at an instant t
(3.1) Expression of the state vector

The state vector at instant ¢ is given by the expression:

E
W)= ilc,,«))e_’ |#) [3.287]
Hence:
ik, _B,
[p@o)=ci(@e " |@)+cr0e T @) [3.288]
Att =0, we have:
|[Y(0)) =c10)|@h) +2(0)| ) [3.289]

Comparing [3.289] and [3.280], we can see that:

N 9

—=

c1(0)=cos§e 2, cZ(0)=Sin§e 2 [3.290]
|o1) =[+):102) =)

Taking into account the evolution operator [3.55] and using [3.290], the state
vector [3.288] is written as:

p N

H H
|l//(t)>—cos§e lze ht| >+s1n§e12e lht| -)

That means:
o ET 9

; E”
-t —i—t i~ —i—t

|l//(t)>—cos§e 2¢ N |+>+sin3e 2¢ h |—> [3.291]



Eigenvalues and Eigenvectors of an Observable 255

or, using [3.279]:
_{a+g) AT

|y1(t)>=cosEe 2 |+>+sin5e z2 |9 [3.292]

The evolution equation [3.292] shows that the presence of the magnetic field
introduces a phase difference that is proportional to the time between the
coefficients assigned to the eigenvectors [t) of the observable of spin S..

(3.2) Finding the mean values, conclusion

Let us express the mean value (H)(¢):
(H)® = () |Hly©) = (p©O)|H|y©) [3.293]

Using [3.293], we find as previously:

U =Bt os? Or psin2 81O
(H)(0)=(H),=E" cos S HEsin” 2= ——cosd [3.294]

and:
(S.)(0)=(8), = gcos 0 [3.295]

(3.3) Simultaneous measurement

The simultancous measurement of the energy EF and of the components
associated with observables S, and S, is impossible since H, S, and S, do not form a
CSCO. Indeed, the observables ., S, and S, satisfy the commutation relations:

[S..8, ]=inS.:[S,.5.] =S, :[S..S,]=insS, [3.296]

Since H = w S., it follows that H commutes with neither S, nor S,.

(3.4) Calculation of mean values

Matrices representing the observables S, and S, in the basis {[+) and |-)}:

a0 1 n(0 —i
(Sx)—z[l OJ,(Sy)—E(i OJ [3.297]
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The mean values (S,)(¢) and (S,)(¥) are written as, respectively:
(S )0 = (POl ©)5(Sy )0 = (o3, |w ) [3.298]

Knowing that a ket is represented by a single column matrix and a bra by a
single line matrix, using [3.280] and [3.283], expressions [3.298] are written as:

_la+9)
(ax (ax = 2
(a+o) 9 _la+o) 01 cosze
(S )t)==|cos—e 2 sin—e 2 [3.299]
2 2 2 10 (@t+)
sin—e 2
2
and:
_jla+o)
;(a+9) _lat9) cos—e 2
(s )(z):E wsle 2 snle 2 |7 [3.300]
x 2 i 0 (@1t9) '
sin—e 2
We finally obtain:
(S )0 =  sinfcos(ar + (/));<Sy>(t) =2 sinBsin(ax +9) [3.301]

CONCLUSION.— The mean values (S,) (¢) and (S,) (¢) oscillate in time with the single
Bohr frequency v = a/2r. This explains the fact that observables S, and S, are not
constants of motion.



Appendix 1

Quantum Well of Semiconductor Materials

A1.1. 2D, 1D and 0D confinement

At temperature 7 = 0 K, the energy bands of a crystal are filled with valence
electrons. The last of these bands is known as a valence band (VB) of energy E,
separated from a conduction band (CB) of energy E. by a forbidden band (FB)
corresponding to the material gap of positive energy E, = E. — E, (Figure Al.1). In
these energy bands, Schrodinger’s equation has no solution.

4 Meta ‘1 o )

§vs
Ec

CB

Insulator
Semiconductor ‘ FB

N - v

Figure A1.1. Relative arrangement of the energy bands in a material

Three categories of materials can be distinguished, according to the gap value:
metals, insulators and semiconductors. As an example, let us consider several values
of the gap at 300 K [SAK 15]. Metal: tin (Sn): 0.0 eV; insulator: diamond (C): 6.0
eV; semiconductor: silicon (Si): 1.12 eV; germanium: 0.67 eV, gallium arsenide
(GaAs): 1.40 eV.

Introduction to Quantum Mechanics 2: Wave-Corpuscle, Quantization &
Schrédinger’s Equation, First Edition. Ibrahima Sakho.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.
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— Metals have low resistivity at ambient temperature (of about 107 Qcm).
Conduction is due to the free electrons in the CB (density: 10* to 10** cm™). An
increase in temperature drives only a small increase in resistivity, because the
motion of free electrons is hindered by the vibrations of metal atoms.

— The resistivity of insulators is above 10® Q cm. This is the case for glass, mica,
silica (Si0,), carbon, etc. In insulators, the release of electrons is triggered by an
increase in temperature. This drives a decrease in resistivity.

— Semiconductors are materials whose resistivity ranges between 10 and
10* Q cm (or more). Conduction is ensured by the charge carriers (electrons and
holes). Two types of semiconductors can be distinguished: intrinsic semiconductors
(Si, Ge, As, etc.) and extrinsic semiconductors (GaAs, GaAlAs, etc.).

In a perfect three-dimensional crystal (3D), energy is not discrete. When
the charge carriers are confined in a sufficiently low volume (of about
De Broglie wavelength (A1 = h/p) of the charge carrier), discretization of the energy
values can be observed. The nanocrystal is then described in a purely quantum
context. Three types of nanostructures can be identified [SAK 15]:

— Quantum well (material deposited in a 2D layer): an electron confinement is
introduced along a direction (Oz, for example). This is known as 2D confinement
(Figure A1.2). A discretization of the energy levels (£,,,) is associated with this
confinement. In the 2D confinement, electrons can freely move along two directions.

N —a )

2D confinement

vy vy
K 3D Crystal Quantum well/

Figure A1.2. Quantum well (2D confinement)

— Quantum wire (material deposited in a 1D layer): An electron confinement is
introduced along two directions (Ox and Oy, for example). This is known as /D
confinement (Figure A1.3).
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1D confinement

z
x Jooood P
e . y
y
3D crystal Quantum wire

Figure A1.3. Quantum wire (1D confinement)

A discretization of the energy levels (£,..,y) is associated with this confinement.
In this 1D confinement, electrons are free to move along a single direction (Oz).

— Quantum dot (material deposited in 0D layer): An electron confinement is
introduced along three directions (Ox, Oy and Oz). This is a 0D confinement (Figure
Al1.4). A total discretization of the energy levels (£, ,.-) is associated with this
type of confinement. In a 0D confinement, electrons are not free to move along any
direction: the nanostructure is assimilated to a quantum dot.

- -

0D confinement

2
K 3D Crystal Quantum dot /

Figure A1.4. Quantum dot (0D confinement)

There are few systems that can be assimilated to model quantum wires (these are
wires that are to little or no extent perturbed by disorder). Such an example are
carbon nanotubes; semiconductor wires obtained by sophisticated techniques of
nanostructuring by epitaxy. Epitaxy is the technique that enables crystal growth on a
crystal. Polydiacetylene (known as poly-3BCMU) is an example of ideal quantum
wire having the perfect structure of a carbon nanotube [DUB 04, BAR 06]. The
chains of poly-3BCMU are obtained by triggering the polymerization of the
diacetylene monomer by exposure to various radiations (UV, slow electrons or
gamma radiations). The reaction takes place in solid phase. The average length of
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chains easily exceeds a dozen microns (over 20,000 chained monomer units). The
following sections focus on a brief study of the quantum wells and quantum dots of
semiconductor materials as a connection to the quantum wells and dots studied in
sections 1.6.1 and 1.6.4 of Chapter 1.

A1.2. Description of the quantum wells of semiconductors

In semiconductors, a quantum well can be obtained by the successive stacking of
plane layers of various materials [BAR 06]. For example, a well material (B) of a
small gap surrounded on each side by a barrier material (A) of a larger gap (Figure
A1.5). In this case, electrons see a square potential well with a finite height barrier.

/ 7e) |

Vo

/

-L/2 O + L,/2
77 .

Figure A1.5. Quantum well: (a) quantum well of width Lz and height VO. (b) Quantum
well constituted of a layer of width Lz of semiconductor material (B) of a small gap
surrounded on each side by a layer of semiconductor material (A) of a larger gap

The development of quantum wells has greatly benefitted from the progress
achieved in the growth of materials. Quantum wells are mainly manufactured by
molecular beam epitaxy or by chemical plating in vapor phase. The discontinuity
between energy bands in the two materials creates a potential barrier that confines
the charge carriers (electrons and holes) in the quantum well. Depending on the
nature of the discontinuity of the FBs at the well-barrier interface, three types of
quantum wells can be identified [LAH 17]:

1) quantum well of type I: electrons and holes are confined in the same material
constituting the well. The energy of the emitted photon depends on the confinement
energies of the carriers and of the well material gap;
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2) quantum well of type II, in which electrons and holes are confined in the same
material constituting the well. The energy of the emitted photon depends on the
confinement energies of the carriers and on the well material gap;

3) quantum well of type III, which is a particular case of type II; the lower level
of the CB is below the highest level of the VB. In this configuration, known as
semimetallic, the energy of the emitted photon is only a function of the confinement
energies of electrons and holes.

A1.3. Wave function and levels of energy
In a semiconductor, the moving mass of the charge carriers is the “effective
mass” denoted by m*, which differs from the rest mass of the electron m,. If m*, =
m, designates the mass of an electron in the CB and m*, = m, is the mass of a hole in
the VB, then [SAK 15]:
m, = 1.05 mg; m, = 0.62 mo; my=9.1 x10 *g. [Al.1]

Unless otherwise specified, we put: m. = m, = my.

Let us then consider the quantum well of height V, and width L, (Figure
A1.5(a)). The potential V (z) is defined by:

0 ifle <L,2 [A1.2]
V(z)=
V, ifle >L,2

In the absence of electron-hole interaction, Schrodinger’s equation is (m = m*):
hz
_%V"'V(Z) Y(x,y,2)=EY(x,y,2) [A1.3]

As the potential V(z) is a function of the single variable z, the wave function can
be built as the product of a function @ (x, y) describing the motion of the particle in
the xy plane of the quantum well and a function y (z) for the motion along direction
z, hence:

¥ (x,,2) =@ (x,») XY (2) [Al.4]
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The energy E of the particle is the sum of two terms and is written as follows:

pepn M2 2 [ALS]
Fom Y o2m Y

The first term in the right-hand side of equation [A1.5] designates the
confinement energy and the second and the third terms designate the sum of the
kinetic energies of the particle in the xy plane. The exponent n represents
the quantum number characterizing the discrete character of the energy along the
confinement direction Oz. Considering [Al.4], the resolution of Schrodinger’s
equation [A1.3] gives the following solutions for the wave function y (z) (see
exercise in section 1.7.7):

—1if n is even:

Acosk z if‘z‘ <L,2
FE= oo if |4 > L,2 [AL.6]

—if n is odd:

Bsink.z  if |z <L,2
x(2)=

+Ce™ if | > L2 [ALT]
In equations [A1.6] and [A1.7]:
* on * n
k2 _ 2mWEz . K‘2 _ 2mb (VO _Ez)
z = = [A1.8]

n? n?

In these expressions:

— m,,* is the mass of the particle in the quantum well material;
— my* is the mass of the particle in the barrier material.

It is worth noting that these expressions are similar to relations [1.244],
reproduced below:

2__ 2mE W2 = 2m(E + V)
hZ . h2

B

It can be seen that in the case of a potential well of a semiconductor material, the
mass m in expressions [1.244] must be indexed so that it takes into account the state
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of the particle in the barrier material and in the well material, as indicated by

relations [A1.8]. The confinement energy E!' is the solution to equations:

%
tan Mok L |= = A
2h2 z E? ,if n is even [A1.9]

*
cot me;l __ VO_Eg
w2 ¢ E" ,if n is odd [A1.10]

The graphical resolution of equations [A1.41] and [A1.42] is similar to the
resolution of equations [1.267] and [1.268]. The resulting curves are similar to those
represented in Figure 1.21.

For a quantum well of depth V; = o, the particle is confined in the well.
Schrodinger’s equation resolution in zone II yields the energy:

2.2
L z 5 n’ [AL11]
2mgL7
This leads to expression [1.63] that is reproduced below (putting mZ) =m and
L,=a):




Appendix 2

Quantum Dot of Semiconductor Materials

A2.1. Definition, qubits

A quantum dot is a heterostructure obtained by 0D confinement of
semiconductor materials. Current research on the properties of quantum dots is
motivated by the fact that they constitute potential elementary bricks of the quantum
processing of information, known as quantum bits or qubits. On a long term, it may
be possible to use the properties of quantum dots at a nanometric scale in order to
get an infinitely more rapid coding and processing of information.

The unit in classical computer science is the bit, which follows a binary logic. It
takes only two values denoted as 0 or 1. On the other hand, a quantum bit is
associated with the quantum state of a quantum dot assimilated with a system with
two levels characterized by the states [0) and |1). Any linear superposition |®) of
these two states is also a state materializing the quantum bit with:

|@)=0f0)+ A1), |of + |57 =1 [A2.1]

The existence of superpositions of type [A2.1] makes it possible to develop
quantum computers that are far more rapid than a classical computer.

A.2.2. Quantum dots emergence

Many quantum dots are generated by interface defects of the quantum wires such
as those engraved in V. This is particularly the case of the quantum wires of gallium
arsenide (GaAs) that are used as quantum wells, and of the alloy of gallium arsenide
and aluminum (GaAlAs), which operates as a potential barrier. These two materials
are deposited by vapor phase epitaxy on a GaAs substrate. V-grooves have
previously been engraved on this substrate by photolithography (set of operations
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enabling the transfer of an image on a substrate), spaced at 4 um and with a depth
of 1 pum. Growth takes place in the following order [END 07]:

1) GaAs layer serves as buffer;
2) barrier layer of GaAlj¢As and then GaAlj;As;
3) 5 nm layer of GaAs well material;

4) another barrier of GaAlj¢As and then GaAlj3As.

The electron microscopy image of the stacking is shown in Figure A2.1. The
studied sample has a surface of 2 mm X 2 mm, which represents 500 wires.

Figure A2.1. Electron microscopy image of a cross-section of a GaAs quantum wire
[END 07]

Since the axis of the wire is Ox, the confinement is realized along the two
directions Oy and Oz. It is, nevertheless, worth noting that the origin of the
confinement is different in the two directions Oy and Oz perpendicular to the wire.
In the growth direction (Oy), it is the gap difference (600 meV) between the two
materials that allows the confinement of carriers in the material whose gap is the
lowest (here GaAs). On the other hand, in the Oz direction, confinement is due to the
fact that the GaAs film is thicker at the bottom of the V-groove.

A2.3. Confinement energy

The energy of an electron (a hole), calculated at the lowest level of the band, in
the conduction band (valence band) is given by the sum of a confinement energy
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E*" and a band energy E™°. Knowing that m.* (m,*) represents the effective mass
of the particle in the conduction (valence) band and L, and L. are the confinement
transversal dimensions, we have:

e(h)

) 2_2 n2 2 272
B, = B+ Ely =2 (—’zv+n—;j+ nk, [A2.2]
Zme(h) Ly L 2m

Expression [A2.2] shows that the energy in the GaAs quantum wire is only
partially discretized, since the conduction electrons can freely move along the free
direction Ox of the wire. Confining the carriers in the third direction of space (free
axis x of the wire), we obtain a quantum dot. Because real structures are not perfect,
having various defects and inhomogeneities, this confinement naturally emerges
when quantum dots are maintained at a temperature below 10 K.

To obtain this, the sample is immersed in a cryostat that enables the operation at
10 K. It is worth noting that the cryostat comprises a tank filled with liquid nitrogen
at 77 K surrounding a tank with liquid helium at 4.2 K, the two tanks being
separated by a vacuum enclosure that limits thermal diffusion between the two
tanks. The sample is fixed on a sample holder that is itself in contact with the cold
finger containing liquid helium. This is how the sample is maintained at a
temperature of 10 K during the experiment. When 0D confinement is realized, the
energy of an electron (e) (respectively of a hole (h)) in a quantum dot is therefore
uniquely a confinement energy given by the following expression [END 07]:

2.2 2 2 2
E zh_’f n_§+”_§+”_; [A2.3]
2me(h) Ly L, L,

In [A2.3], the quantum numbers n,, n, and . are strictly positive. The lowest
confinement energy is given by the triplet (ny, n,, ny) = (1, 1, 1). Moreover, the
energy [A2.3] is similar to expression [1.133] corresponding to the confinement
energy in a cubic quantum dot of edge a. In the present case, the quantum dot
constituted of GaAs-based quantum wires is parallelepipedic. The transversal
dimensions of confinement are L, = 5 nm, L, = 15 nm and L, = 50 nm.
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Transparency of a
Potential Barrier, Resonance

A3.1. Expression of transparency

Physical phenomena related to the transparency of a rectangular potential
barrier of height V;, and width a have been studied in Chapter 1. We have studied
the particular case of a particle of total energy £ < V, that moves toward the barrier
from a point of abscissa x < 0. The profile of the barrier is schematically represented
in Figure 1.7. This appendix completes the description of the behavior of the particle
in contact with the barrier and analyzes Schrodinger’s equation in the three zones I,
II and III for E >V,

If Schrodinger’s stationary equation is applied to zones I, II and III, expressions
[1.102], [1.103] and [1.104] are obtained as follows:

d’®,(x) 2mE Cd*®(x)  2m
LT T (0 =05 T SR E -, )by () =0 [A3.1]
d*®(x) 2mE
2 s D (x)=0
o 72 m (%)
We put:
2mE 2m(E —Vy)
ki =kiy = - ki = p 0 [A3.2]
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Solutions to equations [A3.1] can be written as follows:

@I(x) = Aelkx +Be*ikx ) (I)" (x) — Ceik'x +D€7[k'x
’ [A3.3]

Dy (x) = Fe™

Let us now express the boundary conditions in x = 0, and then in x = a. Using
[A3.3], we get:

x=0:4+B=C+D
) o [A3.4]
x=a:Ce"% + De "I = Fet1e
x=0:k (A~ B)=ky(C—D)
ikyra —ik1pa ikya [A35]
x=a:ky(Ce™ — De”™ 1) = | Fe™

The transparency of the barrier is 7 = |F|*/|4|*. Let us eliminate the coefficients C
and D expressing them as a function of F. Using [A3.4] and [A3.5], we get:

20=R 4 B)+a+B)
ky [A3.6]

=-F 4 By+(4+B)
kII

CezkHa +De—lk11a — Fetkla

CeikHa _ De—ikna — ﬁFeikla [A37]
1
Using [A3.7], we have:
2Ce" M = [1 + kIJFe”“”
I [A3.8]

2De e = (1 - liFe”‘I“
I
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Let us transform equations [A3.8] as follows:

2C = [kﬂl:_kIJFeikIa X (COSkHa —isin k[]a)

1 [A3.9]
kII - kI ikra o
2D =| ——— [Fe""x(coskya +isinkya)
|
Taking systems [A3.6] and [A3.9] into account, we get:
ﬁ(A —B)+(A+B)= (Werfkl“ x (coskya —isin kya)
ke kg [A3.10]
kI kl[ — kl ikra ‘o
——(A-B)+(A+B)=| ——— |Fe"“x(coskya +isinkya)
k k
| |
Using [A3.10], we express the quantities (4+B) and (4 — B) as follows:
ikta ko
(A+ B)=Fe"% x| coskyja— r— kyja
i [A3.11]

(A-B) = Fef19x [cos kypa— i%sin kuaj
I

It is now easy to express 4 and B as functions of F and to deduce the expression
of the transparency T of the barrier. Then using [A3.11], we get:

2, .2
A =(coskna ik R G kHa]XFe’kI"
11 [A3.12]
2 42 .
p=ifihi sin kya x Fe™1
AT
Using [A3.12], transparency T of the barrier is:
Ff 4
:‘_ =—— 21 1; — [A3.13]
Al Akikf + (k7 = k)7 sin” kya
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In order to verify the law of conservation of mass, let us express the probability
of reflection R. According to [A3.12], we have:

? (k2 = k2)? sin® kya

T4k 1 (k2 —k2)Psin’ kya

R :‘E [A3.14]

A

Summing [A3.13] and [A3.14], it can actually be verified that 7+ R = 1.

A3.2. Resonance

Let us express the transparency T as a function of E and V} inserting [A3.2] in
expression [A3.2]. We get:

4E(E-TV))

4E(E~V)+V sin {V 2m(E-Vo) a}

T= [A3.15]

7

The denominator of equation [A3.15] shows that there are values of the width a
of the barrier for which transparency is maximal, therefore 7= 1. These values have
been obtained for:

J2m(E—V,
sinz{ua}zsinz kyja=0=> kya =nx [A3.16]

h

Let us take into account the wavelength in zone II. According to [A3.16], we get:

kg =2 = a=n L [A3.17]

Fixing E and V), the representative curve of the transparency variations as a
function of the width a of the barrier shows that T oscillates periodically between its

minimal value T,;, = 4E(E —V,)/[4E(E - V) + V] and its maximal value T = 1 as

m
shown in Figure A3.1.
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4E(E-V,)

4EE-TV)+1E | "':'" o
| |

k 0 o/ ky 21/ ky 3n/ky y

Figure A3.1. Variations of transparency T of a potential barrier as a function of the
width a of the barrier

Therefore, in zone Il a resonance phenomenon occurs each time the width a is
equal to an integer number of half wavelengths in zone II [A3.17].

Reflected waves undergo constructive interference. For this reason, the
resonance condition kya = nm corresponds to the values of the width a for which a
system of stationary waves can be established in zone II. On the other hand, far from
resonances, the waves reflected at the points of discontinuity of the potential
undergo destructive interference. The values of the wave function become weak.
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vectors
bra, 128, 133
calculus, 176
density
probability current, 16, 18, 44,
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potential, 62, 63, 120
state, 3, 15, 128, 132, 133, 135,
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235,249,250, 254
subspace, 182

w

wave
backward, 26, 81
evanescent, 28, 29, 32, 37, 38, 48
incident, 30, 35, 72

packet, 202, 226, 237, 242
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241
reflected, 30, 34, 71, 273
well
-barrier interface, 260
potential
finite depth, 54
infinite depth, 181
infinitely deep, 19, 22, 24, 41,
50, 53, 200
parabolic, 107
square, 51, 52, 80, 81, 86, 92,
99, 181, 260
quantum, 2, 258, 260, 261, 262,
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