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Preface 

I take it to be an unassailable truth that what Taoism, Confucianism, Zen 
Buddhism, and the writings of Carlos Castaneda have in common, they 
have in common with quantum mechanics. As truths go, however, this one 
isn't very illuminating. Quantum mechanics, one of the two great and 
revolutionary theories of physics to appear during the first thirty years of 
this century, is essentially a mathematical theory; one will gain little genuine 
insight into it without some awareness of the mathematical models it em
ploys. 

That is one of the two beliefs which have guided the writing of this book. 
The other is that the requisite mathematical knowledge is not, after all, 
fearsomely difficult to acquire. In fact, one kind of reader I have in mind is 
the reader who, while not seized by paralysis at the sight of a mathematical 
formula, does not happen to have a working knowledge of vector-space 
theory. In this respect the book is self-contained; the mathematical back
ground it assumes is that of high school mathematics, and the additional 
mathematics needed, the mathematics of vector spaces, is presented in 
Chapters 1 and 5. 

Another kind of reader has taken physics courses, and solved textbook 
problems in quantum mechanics, but, like most of us, continues to find the 
theory deeply mysterious. Perhaps rashly, this reader hopes that a philo
sophical account will clarify matters. Between these two ideal types there is, 
if not a continuous spectrum, at least a considerable diversity of readers to 
whom the book will prove accessible. 

In presenting the mathematics, the strategy I have used is to treat finitely 
dimensional spaces, particularly two-dimensional spaces, in some detail, 
and then to indicate in general terms how the same ideas are applied in the 
infinitely dimensional case. Correspondingly, the quantum-mechanical 
quantities I deal with are usually spin components, rather than position and 
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momentum. It turns out that most of the problematic features of quantum 
theory can be presented in terms of the behavior of the spin-! particle, 
whose representation requires no more than the two-dimensional space C2• 

The first half of the book not only sets out the mathematics of vector 
spaces; it also shows how elegantly these structures can model a probabilis
tic world. But if, as quantum mechanics suggest, the world they represent is 
the actual world, then we face deep problems of interpretation. Defying as it 
does any .I.I natural" interpretation, whether in terms of causal processes or of 
systems and their properties, quantum theory challenges some of our most 
basic metaphysical assumptions. 

These issues of interpretation are the subject of the second half of the 
book (Chapters 6-10). Most of the well-known problems are aired-like 
those of Schrodinger's cat, the two-slit experiment, and the EPR 
correlations-but certain topics, such as hidden-variable theories, get very 
scanty treatment, and others, like the Pauli exclusion principle, are not 
mentioned at all. I confine myself to orthodox (nonrelativistic) quantum 
mechanics; I do not discuss, for example, Dirac's relativistic account of the 
hydrogen atom, nor do I deal with quantum field theories. This book is in no 
sense an encyclopedia of the interpretation of quantum theory. 

noth my exposition of the structure of the theory and the positive sugges
tions I make concerning its interpretation are, in the broadest sense, quan
tum-logical. My account of the theory's structure is essentially that given by 
John von Neumann and by George Mackey. The interpretation I lean to, and 
which I call the .I.I quantum event interpretation," is in many respects conso
nant with that advocated by Jeffrey Bub, by William Demopoulos, and by 
Allen Stairs. The general account of physical theories which acts as a back
drop to these specific discussions of quantum theory is the semantic view 
associated with Patrick Suppes and Bas van Fraassen: theories are seen as 
supplying models for the phenomena they deal with. 

Having thus outlined my program and declared my allegiances, I leave 
the reader to decide whether to proceed further, or to open another beer, or 
both. 

* * * 

Among those to whom I owe thanks are Malcolm McMillan and M. H. L. 
Pryce of the University of British Columbia, in whose physics classes I 
learned about quantum mechanics; I hope that in the pages that follow they 
can recognize the beautiful theory that they taught me. For what I learned 
when I came to teach courses myself I owe a debt to my students at the 
University of British Columbia, at the University of Toronto, at Princeton, 
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and at Yale. Allen Poteshman, in particular, read most of the manuscript in 
his senior year at Yale and would return to me weekly, politely drawing my 
attention to obscurities, fallacies, and simple errors of fact. Roger Cooke, 
Michael Keane, and W. Moran have kindly allowed me to reprint their 
"elementary proof" of Gleason's theorem, and my commentary on it has 
been much improved by Roger Cooke's suggestions. For detailed comments 
on a late draft of the book I am also indebted to Jon Jarrett, while for specific 
advice, .encouragement, and appropriate reproof I would like to thank 
Steven Savitt, Michael Feld, Clark Glymour, David Malament, and Lee 
Smolin. 

· 

Sections of the book were written in railway carriages, airport lounges, 
and theatrical dressing rooms, but for more tranquil environments I am 
grateful to Sue Hughes and Paul Schleicher, to Susan Brison, and to Margot 
Livesey, in whose houses whole chapters took shape. The final manuscript 
was typed up swiftly and accurately by Caroline Curtis, and the diagrams 
elegantly rendered by Mike Leone; Patricia Slatter is even now at work on 
the index. At Harvard University Press, Lindsay Waters has been a source of 
great encouragement over several years, and Kate Schmit edited the manu
script with great care and sensitivity. My thanks to all of them. 

I saved my two greatest personal debts till last. I met Ed Levy within days 
of my arrival at U.B.C.; he it was who first stimulated my interest in the 
philosophical foundations of quantum mechanics, who later supervised my 
dissertation in that area, and who has continued to help me to clarify my 
thoughts on the subject. Bas van Fraassen and I met at the University of 
Toronto; since then we have discussed the problems quantum theory raises 
(along with the architecture of the Renaissance and the plays of Friedrich 
Diirrenmatt) on two continents and in half a dozen countries. Both have 
helped me more, perhaps, than they know. 

I would also like to express my gratitude to the following firms and 
institutions: 

To Addison-Wesley Publishing Company, Reading, Massachusetts, for 
permission to reprint a diagram from The Feynman Lectures on Physics 
(1965), by R. P. Feynman, R. B. Leighton, and M. Sands. 

To Kluwer Academic Publishers, Dordrecht, Holland, for permission to 
reprint a diagram from J. Earman's A Primer on Determinism (1986). 

To Cambridge University Press, Cambridge, U.K., for permission to re
print in Appendix A "An Elementary Proof of Gleason's Theorem," by R. 
Cooke, M. Keane, and W. Moran, from Mathematical Proceedings of the 
Cambridge Philosophical Society (1985). 

To the Frederick W. Hilles Publication Fund of Yale University, with 
whose assistance the manuscript was prepared. 



I seik about this warld unstabille 
To find ane sentence convenabille, 

Bot I can nocht in all my wit 
Sa trew ane sentence fynd off it 

As say, it is dessaveabille. 
- WILLIAM DUNBAR 



INTRODUCTION 

The Stern-Gerlach Experiment 

Quantum mechanics is at once one of the most successful and one of the 
most mysterious of scientific theories. Its success lies in its capacity to clas
sify and predict the behavior of the physical world; the mystery resides in 
the problem of what the physical world must be like to behave as it does. 
The theory deals with the fundamental entities of physics-particles like 
protons, electrons, and neutrons, from which matter is built; photons, 
which carry electromagnetic radiation; and the host of "elementary parti
cles" which mediate the other interactions of physics. We call these "parti
cles" despite the fact that some of their properties are totally unlike the 
properties of the particles of our ordinary, macroscopic world, the world of 
billiard balls and grains of sand. Indeed, it is not clear in what sense these 
"particles" can be said to have properties at all. 

Physicists have been using quantum mechanics for more than half a 
century; yet there is still wide disagreement about how the theory is best 
understood. On one interpretation, the so-called state functions of quantum 
mechanics apply only to ensembles of physical systems, on another, they 
describe individual systems themselves; on one view we can say something 
useful about a particle only when it interacts with a piece of measuring 
equipment, on another such a particle can be perfectly well described at all 
times, but to do so we need a language in which the ordinary laws of logic do 
not hold. 

Are we, perhaps, foolish to seek an interpretation of this theory? Maybe 
we should take the advice Richard Feynman (1965, p. 129) offers in one of 
his lectures on The Character of Physical Law: 

I am going to tell you what nature behaves like . . . Do not keep saying to yourself, 
if you can possibly avoid it, "But how can it be like that?" because you will get 
"down the drain," into a blind alley from which nobody has yet escaped. Nobody 
knows how it can be like that. 
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Feynman illustrates this pessimistic conclusion with a well-known 
thought-experiment, the two-slit experiment to show interference effects 
with electrons (see also Feynman, Leighton, and Sands, 1965, vol. 3, lecture 
1) .  To the problems raised by this experiment I will return in Chapter 8; in 
the meantime, another example will allow us to taste the peculiar flavor of 
quantum theory. 

In late 19  21 Otto Stem and Walther Gerlach performed the first of a series 
of experiments on the magnetic properties of various atoms (see Jammer, 
1966, pp. 134- 136). They vaporized silver in an enameling oven and al
lowed some of the atoms to escape, collimating them into a narrow beam by 
means of diaphragms. The beam then passed between the poles of a spe
cially shaped magnet and, some distance further on, it struck a glass plate. 
The trace the atoms left on the plate showed that they had been deflected as 
they traversed the magnetic field, and that the beam had been split into two, 
one half of it being deflected downward and the other upward (Figure I. 1 ). 
How was this simple result to be explained? 

Clearly an interaction between the atoms and the magnetic field was 
responsible for their behavior. It seemed that each atom acted as a tiny 
magnet (or, more formally, each had a magnetic moment), and that the 
splitting was due to the nonunif ormity of the field. The DuBois magnets 
used in the experiment were designed to give a very intense field near the 
V-shaped pole piece and a less intense field near the other. In a uniform field 
a small magnet (a compass needle, say) feels no overall force in any one 
direction: if, like a compass needle, it is constrained by a pivot, it will tend to 
rotate until it aligns itself with the field; if not so constrained it will precess 
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Figure 1.1 The Stem-Gerlach apparatus (Experiment V). 
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round the direction of the field, like a spinning top precessing round the 
vertical. In a nonuniform field, on the other hand, the magnet will feel a net 
force in one direction or the other, depending on which pole is in the 
stronger part of the field. 

But to picture a silver atom as a tiny compass needle would be wrong. For 
if the atoms behaved in that way we would expect to find their magnetic 
axes oriented randomly as they entered the field; that being so, those de
flected most in one direction would be those with their axes aligned parallel 
with the field gradient, and those deflected most in the other would be those 
with their axes antiparallel with the field. In addition, however, there would 
be large numbers of atoms that were not aligned exactly upward or down
ward and that would suffer deflections intermediate between these two 
extremes. In other words, instead of two spots of silver on the glass plate, 
Stem and Gerlach would have seen a smeared line. 

Of course, we could take the two spots they observed to show that the 
magnetic axes of the atoms were oriented either upward or downward but 
nowhere in between. When the magnets were rotated 90 °, however, the 
beam was again split into two, but now one part was deflected to the left and 
the other to the right; by parallel reasoning, this would show that the 
magnetic axes of all the atoms were oriented horizontally. Clearly, the 
simple compass-needle model of a silver atom will not do. 

More formally, we can contrast the behavior of these atoms with that of a 
compass needle as follows. A classical magnet has a magnetic axis; its 
magnetic moment is directed along this axis, but this moment has a compo
nent in any direction we choose, whose value ranges continuously from a 
maximum in the direction of the axis through zero along a line perpendicu
lar to it, to a maximum negative value in the opposite direction (see Figure 
1.2). However, it seems that the components in any direction in space of the 
magnetic moment of a silver atom can have only one of two values; these are 
numerically the same as each other, but one is positive with respect to that 
direction and the other is negative. 

At first the experiment was explained in terms of the umagnetic core" 
hypothesis of Sommerfeld and Lande, a hypothesis long since discarded, 
which attributed the deflection of the beam to the magnetic properties of the 
nucleus and inner electrons of an atom. In 1925 an alternative explanation 
was to hand, proposed by Goudsmit and Uhlenbeck, and it is this explana
tion which was incorporated into quantum theory as we now know it. 

The explanation is roughly this. An electron possesses an intrinsic angular 
momentum, known as uspin," which gives rise to a magnetic moment. A 
component of the spin in any direction has one of two values, + ! h or-! h; 
hence we list electrons among the .I.I spin-! particles." (The constant h is the 
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Figure I. 2 If the magnetic momentµ of the compass needle is directed along the dotted 
line, then the component ofµ along AB will equal µcos8. 

so-called natural unit of action, the omnipresent constant of quantum 
theory; it is now usually referred to as Planck's constant, though it would be 
historically more accurate to reserve that term for h, equal to 2n h.) Like the 
direction given to a magnetic field, the positive and negative signs are 
attached conventionally. A silver atom contains 47 electrons; 46 of these are 
arranged in pairs, with the result that the effects of their spin cancel out and 
the observed effect is due to the electron left over. In the experiment shown 
in Figure 1.1,  which I will call ,,Experiment V" (for vertical), it is the magnetic 
moment due to the vertical component of spin of this unpaired electron 
which the Stem-Gerlach apparatus measures: a positive value for this com
ponent means that the silver atom will enter one beam (the ,, spin-up" beam) 
while a negative value means that it will enter the other (,,spin-down") 
beam. Incidentally, the protons within the nucleus of the atom are also 
charged spin-!- particles, but because of their comparatively large mass, their 
magnetic moment is much smaller than that of the electrons. The nucleus 
does contribute to the total magnetic moment of the atom, but to a negligible 
extent. In this discussion no problem arises when we talk of an atom as a 
whole, rather than the unpaired electron within it, as having a particular 
component of spin. 

The account just given is, in its broad outlines, correct. But in at least one 
respect it is seriously misleading. From it we might infer that, when the 
atoms entered the magnetic field of the apparatus, some were aligned spin
up and some spin-down and that the device just sorted them into two 
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separate beams accordingly. This conclusion would be confirmed were we 
to block off one of the beams as it left the apparatus, the spin-down beam, 
let us say. The emerging atoms would now all be spin-up, as we can verify 
by placing a second magnet in tandem with the first (Figure 1.3). No further 
splitting of the beam would take place, though the beam as a whole would 
be deflected further upward. Let us call this ,,Experiment VV ." 

Now consider a different experiment (Experiment VH) in which the sec
ond apparatus is rotated 90 ° (Figure1.4). The incoming beam- that is, the 
spin-up beam from the first apparatus -will be split into two horizontally 
separated beams, spin-left and spin-right. (So far our account and quantum 
theory are entirely in harmony.) However, now let us block off the spin
right beam. What are we to say of the atoms which now emerge? Our 
account suggests that they have been through two filters: they have passed 
the first by virtue of having a spin-up vertical component of spin, and the 
second by virtue of a spin-left horizontal component of spin. In other words, 
it suggests that we can specify both the horizontal and the vertical compo
nents of spin these atoms possess: were a third apparatus set up to receive 
this beam, whether the magnetic field gradient were vertical or horizontal, 
no further splitting would occur. 

Unfortunately, this is not the case (Feynman, Leighton, and Sands, 1965, 
vol. 3, lecture 5). With the axis of the third apparatus set in any direction but 
horizontal, the emergent beam will be split into two. With it vertical (Exper
iment VHV, Figure 1.5) the two parts of the beam will be equal in intensity. 
This, at least, is what quantum theory predicts for idealized experiments of 
this kind, and all the evidence from actual experiments, some of which are 
very close in principle to those described, confirms its predictions. It seems 
that, somewhere along the line, there is a divergence between the quantum
theoretic analysis of what happens and our account of it: at some point an 

Figure I. 3 Experiment VV. 
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Figure 1.4 Experiment VH. 

unwarranted assumption or two has found its way into the latter. Within it 
we find at least four separate assumptions at work: 

(1) That when we assign a numerical value to a physical quantity for a 
system (as when we say that the vertical component of spin of an electron is 
+th), we can think of this quantity as a property of the system; that is, we 
can talk meaningfully of the electron having such and such a vertical compo
nent of spin. 

(2) That we can assign a value for each physical quantity to a system at 
any given instant-for example, that we can talk of a silver atom as being 
both spin-up and spin-left. 

(3) That the apparatus sorts out the atoms according to the values of one 
particular quantity (such as the values of the vertical component of spin), in 
other words, according to the properties they possess. 

(4) That as it does so the system's other properties remain unchanged. 
The evidence of Experiments VV and VH is consistent with all of these 

assumptions; that of Experiment VHV with (1), (2), and (3), but not (4). It 
looks as though the spin-left, spin-right measurement effected by the sec
ond apparatus disturbs the values of the vertical components of spin. But, 
oddly enough, it disturbs only half of them. According to our interpretation 
of Experiment VV, all the atoms entering the second apparatus of VH have 
spin-up vertical components of spin, but as they emerge half of them are 
spin-up and half spin-down. Or so Experiment VHV informs us, as inter
preted on the basis of assumptions (1), (2), and (3). 

On this analysis, quantum theory owes us an explanation for the selectiv
ity displayed by the second apparatus. Why is it, we may ask, that half the 
atoms entering this apparatus are tipped upside down, while the other half 
journey on undisturbed? Quantum theory declines to tell us. Rather, it 
suggests that we not only abandon (4) but also look severely at the other 
principles involved. Assumption (2) may be the first casualty: there may be 
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distinct properties which are incompatible. These properties would not just 
be mutually exclusive values of one quantity, like spin-up and spin-down, 
but also properties associated with two different quantities, vertical and 
horizontal components of spin, for example, or the possibly more familiar 
pair, position and momentum. The possession of a well-defined value for 
one such quantity would rule out its possession for the other: to say that an 
atom was spin-up would rule out our saying that it was also spin-left. But if 
this is the case, then measurement will not be the simple process suggested 
by (3); if the vertical and horizontal components of spin are incompatible, 
and a system has a well-defined vertical component, then a measurement of 
the horizontal component will not merely reveal what value of the latter the 
system possesses. The measurement process may have to be seen as in some 
sense bringing this value about. To say that properties are not revealed by 
measurement, however, serves to point out an oddity, not only in the 
quantum concept of measurement but also in the notion of a property at 
work here. If we accept assumption (1)-that is, the identification of a 
property with a particular value of a physical quantity-then we may find 
ourselves dealing with properties of a very peculiar kind. All four assump
tions, not just the last of them, need careful scrutiny. 

The Stem-Gerlach experiment was highly significant: it supplied the first 
nonspectroscopic evidence for the quantization of physical quantities. Only 
discrete values of the components of magnetic moment of a system were 
permissible, compared with the continuum of values possible on the classi
cal view. The importance of the work was immediately recognized, Som
mer£ eld stating that, ,,With their bold experimental method Stem and Ger
lach demonstrated not only the existence of space quantization, they also 

Figure 1.5 Experiment VHV. 



8 Introduction 

proved the atomistic nature of the magnetic moment, its quantum-theoretic 
origin and its relation to the atomic structure of electricity" (Jammer, 1966, 
p. 134). 

Yet, notwithstanding its success, the Stem-Gerlach experiment immedi
ately presents us with some of the problems to which Feynman alluded.* 
These problems arise when we try to reconcile quantum theory, and the 
experimental results with which it deals, with intuitively appealing princi
ples of interpretation. To see these problems more clearly, we need to 
become better acquainted with the theory itself. As for the principles with 
which the theory conflicts, they may be just the legacy of an outmoded 
physics, old bottles into which, with the usual result, we are pouring new 
wine. It may be that our way of describing the world is inadequate, and the 
metaphysical notions implicit in it inappropriate, for dealing with a realm so 
far removed in scale from our everyday experience. This, I take it, is what 
Feynman suggests, albeit with a more graphic turn of phrase. 

* For a contemporary view of the problems it raises, see Einstein and Ehrenfest (1922), 
reprinted in Ehrenfest (1959), pp. 452 -455. 
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Quantum Theory 





1 
Vector Spaces 

No real insight into quantum theory is possible without an acquaintance 
with the mathematics it employs. Luckily it isn't hard to get some feeling for 
this mathematics; in fact, apart from some supplementary material in Chap
ter 5, the present chapter contains virtually all the background material 
drawn on in the rest of this book. 

The mathematics in question is the theory of vector spaces (sometimes 
called ,,Hilbert spaces"). In this chapter I give a three-part sketch of 
the vector-space theory developed, with quantum mechanics in mind, by 
P. A. M. Dirac and John von Neumann in the early 1930s (Dirac, 1930; von 
Neumann, 1932; see Bub, 1974, pp. 3-8, on differences between the two). 
Sections 1. 1-1.4 deal with a simple geometrical example of a vector space, 
the plane. This is a two-dimensional real space which we call IR2; that is to 
say, each point on it can be specified by two real numbers (x and y coordi
nates in a standard Cartesian system). Sections 1.5-1.7 generalize this 
material to the case of a two-dimensional complex space, C2, in which each 
point is represented by two complex numbers. The remaining sections (1.8-
1. 16) carry the generalization a stage further and present an abstract charac
terization of a vector space. These spaces can be of any, even infinite, 
dimensionality; however, it so happens that a great many of the problematic 
features of quantum theory can be presented in terms of electron spin, and 
the quantum theory of the spin-t particle involves just the two-dimensional 
space C2• For this reason-and of course for the delectation of the reader
Section 1.7 comprises a set of problems dealing with C2• Apart from one 
exercise in Section 1. 14, these are the only problems set in the chapter, but 
many of the results quoted without proof in other sections can be obtained 
by a few minutes work with paper and pencil. I have indicated the approxi
mate level of difficulty of each proof by stars (*): the harder the proof, the 
greater the number of stars. 



1 2  The Structure of Quantum Theory 

1.1 Vectors 

Consider the two-dimensional real space of the plane of the paper, IR2• We 
pick a particular point in IR2 and call it the zero vector, 0. The other vectors in 
IR2 are arrows of finite length which lie within the plane with their tails at 
zero; any arrow of this kind is a nonzero vector of IR2• (See Figure 1. 1.) 

We can define vector addition, the operation by which we add two vectors 
to form a third, as follows. Given two vectors u and v, we construct a 
parallelogram with u and v as adjacent sides (see Figure 1.2). The diagonal 
of this parallelogram, which passes through 0, will also be a vector: call it w. 
This vector is the vector sum of u and v. We write, 

w = u + v  

We also define scalar multiplication, that is, the operation of multiplying a 
vector by a number. The vector 2v, for instance, is the arrow like v but twice 
as long. Multiplying v by a negative number, -1.5 say, yields an arrow in 
the opposite direction to v and half as long again as v (see Figure 1.3). It 
follows that, for any v, 

v + (- l)v = 0 

Note that 0 here denotes the zero vector, not the number zero. 
So far we have proceeded entirely geometrically, using a geometrical 

construction to obtain u + v and giving a geometrical meaning to av (where 
a is a real number). However, an alternative, arithmetical approach is open 
to us. We may impose a coordinate system on our space and then refer to 
each vector by the coordinates of its tip. Each vector will be designated by a 
pair of numbers, which we write as a column, thus: 

(�) 
The numbers x and y by which we denote a particular vector v will of course 

v 

0 
Figure 1. 1 
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Figure 1. 2 
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vary according to the coordinate system we have chosen (see Figure 1.4), or, 
as we say, according to the basis we use. Provided we are consistent and 
don't switch haphazardly from one to another, in principle it doesn't matter 
what basis we choose, though one may be more convenient than another. In 
every basis the zero vector is represented by 

(�) 
Unless otherwise stated, we shall assume from now on that we are using a 
single (arbitrarily chosen) fixed basis. 

Corresponding to the operations of vector addition and scalar multiplica
tion carried out on vectors, we can perform very simple arithmetical opera
tions on representations of vectors. It is easily shown th�t, 

if v = (�) and u = (�:), then 

(x + x') v + u =  y + y' and av = (:�) <*> 

Figure 1 .3  
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Figure 1 .4 v = (;) in basis 1; v = (�) in basis 2; thus the same vector can be repre

sented in many different ways. 

Note that 

v + (- 1 )v = (�) + ( = �) = (� = �) = ( �) = 0 

as required. 

1. 2 Operators 

We now consider operators on our set of vectors. An operator transforms any 
vector in the space into another vector; one example is a rotation operator, 
which swings any vector round through a certain angle without altering its 
length. We will denote operators by boldface capital letters and write Av for 
the vector which results when the operator A acts on the vector v. In Figure 
1 .5 v' is the vector we get by swinging v round through an angle (} (counter-

. clockwise), and so we write, 

where R8 is the operator which produces this rotation. 
Another kind of operator is a reflection operator, which, as the name 

indicates, produces the reflection of any vector on the other side of a given 
line. Figure 1 .6 shows the effect of the reflection operator Sy which reflects 
vectors about the y-axis. Note that if u is a vector lying along this axis, then 
Syu = u .  In other words, u is mapped onto itself by Sy . 



v' R9v 
' 

\ 

Figure 1.5 
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Neither reflection nor rotation operators change the lengths of vectors, 
but some operators do. We can consider, for instance, the operator which 
just doubles the length of each vector, or the one which reduces its length by 
half. There is also a zero operator, which trans£ orms every vector in the space 
into the zero vector. 

One of the most important classes of operators we deal with is that of 
projection operators. An example of such an operator is shown in Figure 1.7. 
This is the projection operator Px , which, as we say, projects a vector onto the 
x-axis. This takes any vector 

(�) 
and transforms it into the vector 

(�) 
y 

U=SyU 
v'-Syv --- v 

0 x 

Figure 1.6 
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y 

Figure 1 . 7 

x 

lying along the x-axis with its tip immediately below 

(�) 
Notice that, while for a given vector v there is only one vector Pxv (or else Px 
would not be an operator), nevertheless we may well have distinct vectors u 
and v such that Pxu = Pxv (see Figure 1.8). In this way projection operators 
differ from rotation and reflection operators . 

We may, of course, perform a series of operations on a given vector v. We 
may, for instance, rotate it through an angle (} to produce R8v and then 
project the resulting vector onto the x-axis, producing P x(R8v). Now, pro
vided (} is neither 0 ° nor 180 °, this vector is different from the one we get if 
we perform the operations in the reverse order. In other words, RBCPxv) =I= 
Px(R8v) (unless v is  the zero vector) . To see this, consider that any vector 
Px(R8v) must lie along the x-axis, while any vector RBCPxv) must be along a 
line at an angle (} to this axis. 

We can define the operator AB as that operator which, when applied to 
an arbitrary vector v, yields the vector A(Bv). In other words, the operator 
AB is effectively an instruction to apply first the operator B and then the 
operator A. We have just shown that, in general, AB =I= BA, but the equality 
may hold for particular operators A and B; for example, if A and B are both 
rotation operators, then AB = BA. We say then that A and B commute. On a 
point of notation: in the concatenation AB, both A and B are operators, and 
AB, which is also an operator, is called the product of A and B. In the 
concatenation Av, however, A is an operator but vis a vector, and one 
.;hould not think of what is happening as multiplication. 

We saw in the previous section that any vector of IR2 can be represented by 
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a pair of numbers. Does a similar arithmetical representation of operators 
exist? Yes, provided we restrict ourselves to linear operators. An operator A is 
linear provided that, for all vectors u and v and for any number c, 

(1 . 1) A(u + v) = Au +  Av 

(1 . 2) A(cv) = c(Av). 

All the operators discussed in this book are linear. 
Any linear operator on IR2 may be represented by a 2 X 2 matrix of real 

numbers 

such that if 

then 

(1 . 3) 

v = (�) 

Av = (a b)(x) = (ax + by) c d y ex +  dy <**> 

It is trivial to prove the converse, that any such matrix represents a linear 
operator. 

To perform the manipulations in (1 .3), think of taking the top line (a b) of 
the matrix, rotating it so that it matches up with the vector v (multiply a by x 
and b by y), and then adding ax to by to get the top entry of the vector Av. 

x 

Figure 1.8 
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The bottom entry is obtained by doing the same with the bottom line of the 
matrix. (For help with the proof of this theorem, or for a fuller account of 
elementary vector-space theory, consult any book on linear algebra, such as 
Lang, 1972.) 

The operators we have looked at all have simple matrix representations. 
For instance, 

(*) 

A little thought should show why these operators have the representations 
shown, and it is a useful exercise to show that 

R =
(cos(} -sin(}) 8 sin(} cos(} 

We include in our class of operators the identity operator 

I =
(� n 

This is the operator that leaves any vector as it found it: Iv = v, for all v. 
If we have two operators A and B, with representations 

(: :) and 
(; l) 

what is the representation of their product AB? It is the matrix which, when 
we operate with it on the vector v according to the rule (1 .3), yields the same 
results as operating with B and A, in that order. A little brisk manipulation 
shows that 

AB = (ae + bg af + bh) 
ce + dg cf + dh <*> 

(We obtain the top left-hand entry by matching the top line of A with the left 
column of B, the top right entry by matching the top line of A with the right 
column of B, and so on.) 

It's worth going into this in more detail. Let 

v =
(�) 
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Then if 

(AB)v = (px + qy) rx +  sy 

we will know that the matrix representation of AB is 

Now 

and so 

(� :) 

Bv = (; 0(�)-(;: Z) 

A(Bv) = (: b) ( ex + fy ) = (a( ex + fy) + b(gx + hy)) d gx + hy c(ex + fy) + d(gx + hy) 

-( (ae + bg)x + (af + bh)y) (ce + dg)x + (cf + dh)y) 

Since, by definition, (AB)v = A(Bv), it follows that, 

AB = (ae + bg af + bh) ce + dg cf + dh 

We can now confirm a previous result. Examining the matrix representa
tions of ReP x and P xR8 we find that 

Thus, as we showed before, in general Px and R8 do not commute. (Note, 
however, what happens when (} = 0 ° or (} = 1 80 °.) 

This is a convenient point at which to start what will be a successive 
generalization of the notion of a projection operator. So far we have just 
considered projections onto the x and y axes; however, we can project onto 
any line through 0 .  That is, given any line L, at an angle (} to the x-axis, say, 
and an arbitrary vector v, we can think of v as the sum of two other vectors 
Vi and Vi.L, such that Vi is in L and Vi.Lis in the line L1- at right angles to L (see 
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Figure 1.  9 P 8 projects onto L. 

Figure 1 .  9). That is, the vector v can be written as the sum: v = v L + v v-. We 
now define the projection operator P 8 onto the line L as the operator P 8 such 
that P8v =Vi. As an exercise it's worth showing that 

(1.4) 
p = ( cos28 cos(} · sin(}) 
8 cos(} · sin8 sin28 

<**> 

The addition of two linear operators is easily defined: we write, for all 
vectors v, 

(A + B)v = Av +  Bv 

We obtain the matrix representation of A +  B by simply adding corre
sponding entries; if, as before, 

A = (a b) and B = ( e f) then c d g h I 

A + B = (a + e b + f ) 
c + g d + h  (*) 

We can also define the multiplication of the operator A by the scalar a: we 
specify that, for all vectors v, (aA)v = a(Av). Each element in the matrix of 
aA is then a times the corresponding entry in the matrix for A. 

Alternatively, we could regard this multiplication as a special case of the 
multiplication of operators; to multiply any vector by the scalar a is effec
tively to operate on it with the matrix 

(� �) 



Hence we have the operator equation: 
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Note finally that we write A - B for the operator A +  (- l )B. 

1.3 Eigenvectors and Eigenvalues 

Consider the operator A with matrix representation 

(� �) 
acting on the vector 

v= C) 
In this case 

Av= (�) = 2v 

That is, the vector which results is just a multiple of the vector we started 
with. This is not always so with this operator; if we evaluate Au, where 

u = ( �), we get Au = ( �) * 2u 

Thus A does not simply double the length of all vectors. In fact, if we 
interpret A geometrically, we find that it corresponds to the operation of 
first doubling the length of a vector, then rotating it 90 ° counterclockwise, 
and finally reflecting the result about the y-axis. (To see this, check that 

(*) 

using the method of matrix multiplication given in Section 1 .2 .) 
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Figure 1.10 v and w are eigenvectors of A, where A = ( � �). 
However, for any vector v', lying along the same line as 

(n 
(that is, any vector lying along the line L1at 45 ° to our axes -Figure 1 . 10), 
and hence of the form 

(�) 
we find that Av' = 2v' (*). Also, we can check very quickly that if w is a 
vector of the form 

that is, a vector lying along L2 , then 

Aw = ( 2x) = - 2w - 2x 

Vectors of the form v' and w are known as eigenvectors of A, and the 
eigenvalues corresponding to them are 2 and - 2, respectively. More for
mally, 
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(1 .5) v is said to be an eigenvector of a linear operator A, with correspond
ing eigenvalue a, if v =I= 0 and Av = av. 

Note that we do not allow the zero vector to be an eigenvector of any vector. 
Not all operators have eigenvectors. For instance, the rotation operator R8 

has, in general, no eigenvectors, since, unless (} = 0 ° or (} = 180 °, the vector 
R8v cannot lie along the same line as the vector v. When (} =  0 °, R8 is the 
identity operator I; for the two special cases, I and R180, every vector is an 
eigenvector; the corresponding eigenvalues are + 1 and - 1, respectively. 
Likewise, any purely multiplicative operator has every vector in the space as 
an eigenvector. 

Now consider the reflection operator Sy and the projection operator P 8• 
Do these admit eigenvectors, and, if so, how many? In general, obviously, 
the vector Syv does not lie along the same line as v. However, it does so in 
two special cases: first, when v lies along the y-axis (so that Syv = v); and, 
second, when v lies along the x-axis (so that Syv = -v). Thus we have two 
classes of eigenvector and two eigenvalues, + 1 and -1 .  The projection 
operator P 8 maps all vectors onto the line L8 at an angle (} to the x-axis (see 
Figure 1 . 1 1) .  Thus any vector in this line is an eigenvector of P8, with 
eigenvalue 1 .  Now consider a vector v along the line L8+90• at right angles to 
L8• For this vector we have P8v = 0 = Ov. As always, the symbol 0 denotes 
the zero vector, while the symbol 0 denotes the number zero. In fact we have 
here a special case of the eigenvector equation Av = av in which a =  0. 
(Note that, although the zero vector is not an admissible eigenvector, the 
number zero is a perfectly good eigenvalue. )  We see that the eigenvectors of 

y 

x 

\ 
\ 

Figure 1. 1 1  Eigenvectors of Sy lie along y-axis (eigenvalue 1) or along x-axis (eigenvalue 
-1 ); eigenvectors of P 8 lie along L8 (eigenvalue 1) or along L8+90 (eigenvalue 0). 
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P 8 lie along either L8 or L8+90, and the corresponding eigenvalues are 1 and 0 
in the two cases. 

These examples suggest some very general conclusions. The operators we 
have looked at fall into three classes. One class has no eigenvectors at all: 
this class includes all the rotation operators except Ro and R1so. In the 
second class we find the projection and reflection operators and the example 
A used at the beginning of this section. In each of these cases all the 
eigenvectors lie along one or the other of two lines. With each set of eigen
vectors (that is, with all the eigenvectors lying along a particular line) is 
associated a particular eigenvalue; thus to each operator of this type we can 
associate a pair of distinct eigenvalues. Now, in the examples we looked at, 
the two lines containing the eigenvectors are at right angles one to the other. 
While this is not the case for all the operators on IR2 that (as we say) admit 
two eigenvectors with distinct eigenvalues, nevertheless this result holds for 
a very significant subclass of such operators, namely those among them 
which are symmetric. The matrix representing a symmetric operator on IR2 
may be recognized by the fact that its top right element is equal to its bottom 
left element. 

The third class contains operators like I and R1so. They admit all the 
vectors in the space as eigenvectors, all sharing a common eigenvalue. Note 
that these operators are also symmetric. 

We can now use the operator 

A = (� �) 
to illustrate an important result. Clearly A is symmetric: further, it has two 
eigenvalues, a1 and a2 , where a1 = 2 and a2 = - 2. The eigenvectors lie 
along two lines, at 45 ° and at 135 °  to the x-axis; to the eigenvalue a1 
corresponds the line L1 in Figure 1 . 10, and to the eigenvalue a2 corresponds 
L2 • We can find the matrices which represent the projection operators onto 
these lines. Using (1 .4), we obtain: 

Now compute the operator a1P1 + a2P2 • 



= (1 1) (-1 1) 1 1 + 1 -1 
= (� �)= A 
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This result turns out to be quite general. That is, if we take a symmetric 
operator A which admits two eigenvectors with distinct eigenvalues a1 and 
a2 , then the eigenvectors corresponding to a1 all lie within a line L1 , and 
those corresponding to a2 all lie within a line L2 (L1 .l L2). If P1 projects onto 
L1 and P2 onto L2 , then, as in the case above, 

It's worth approaching these ideas in a slightly different way. Any linear 
operator A on IR2 may be " decomposed" into the sum of other linear opera
tors, as follows. Let 

Then 

A= (� !) 
B1 = (� �) 

However, we are interested in a more narrowly defined sense of " decompo
sition." 

(1 . 7) If A is a symmetric operator on IR2, then there exists a pair of projec
tion operators P1 and P2 1 projecting onto mutually perpendicular 
lines, such that A= a1P1 + a2P2 . 

This is called the spectral decomposition theorem for IR2• There are two cases: 
(i) a1 =I= a2 , (ii) a1 = a2 • 

In both cases (that is, whenever A is symmetric), A admits eigenvectors . 
When a1 =I= a2 , the decomposition of A into the weighted sum of two projec
tion operators is unique. Furthermore, all eigenvectors of A lie either along 
the line onto which P 1 projects or along the line onto which P 2 projects. 
Those in the first line have corresponding eigenvalue a1 ,  while those in the 
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second have corresponding eigenvalue a2 • When a1 = a2 , all vectors of IR2 
are eigenvectors of A, and the decomposition is not unique. For any pair of 
projection operators, P1 and P2 1 projecting onto mutually perpendicular 
lines, we have A =  a1P1 + a2P2 • 

1.4 Inner Products of Vectors in IR2 
The introduction of the notion of the inner product of two vectors, also called 
the dot product or the scalar product, enables us to give numerical expression 
to such geometrical ideas as the length of a vector and the orthogonality of 
vectors. (Vectors at right angles one to the other are said to be orthogonal. ) 
Using the notation introduced by Dirac, we denote the inner product of two 
vectors u and v by (ulv). We define it for IR2 as follows: 

(1 .8) If u = (�:) and v = (�:) , then (ulv) = X1X2 + Y1 Y2 · 

The + here is the plus sign of ordinary arithmetical addition. We see that, 
although u and v are vectors, their inner product is just a number. For 

instance, let u = (i) and v = ( !) ; then ( ulv) = (2)(3) + (1)(4) = 10 .  

How does this number acquire a geometrical significance? Consider the 
case when 

u=v= (�) 
In this case (ulv) = (ulu) = x2 + y2• Here the geometrical significance is 
clear; by Pythagoras' theorem, (ulu) is equal to the square of the length of 
the vector u. We denote the length of the vector v by lvl and observe that 

(1. 9) lvl = "'(vlv) 
If lvl = 1, then we say that v is normalized. Given any vector v, we can 

always produce a normalized vector collinear with v by dividing v by its 
own length; in other words v / lvl is a normalized vector along the same line 
as v. 

In general, the inner product of two vectors yields a number proportional 
to the length of each and to the cosine of the angle between them. Thus, 
surprisingly, the inner product of two vectors is independent of our choice 
of x and y axes; I say ,,surprisingly" because the way we calculate inner 
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products (using x and y coordinates) involves reference to a particular coor
dinate system. The general result, for two vectors u and v at an angle <P to 
each other, is: 

(1 . 10) (ulv) = lu l lv l  cos<P 

I will not prove this general result, but will show that it yields the right 
answer in the case of two normalized vectors, u and v, such that u lies along 
the x-axis and v is at an angle <P to it (see Figure 1 . 12) .  In this case 

u = ( �) and v = ( �::) 
(vis normalized, since cos2<P + sin2<P = 1 ,  for all <b) . We obtain (u lv) = 
(l)(cos<P) + (O)(sin<P) = cos<P, as (1 . 10) requires. 

(To prove the more general result, first see what the effect on ( u lv) would 
be if u and v were not normalized but were along the same lines as before� 
and then compare the inner products (u lv) and (R8ulR8v) for an arbitrary 
angle 8.) 

Equation (1 . 10) tells us that when cos<P = 0, then (u lv) = 0. Thus for two 
vectors at right angles, the inner product is zero. Such vectors are said to be 
orthogonal to each other. 

Now consider a normalized vector v and a line L at an angle <P to v. If Pis 
the projection operator onto L, then 

(1 . 1 1) (v lPv) = cos2<P 

y 

(COS<!>) V= sin <t> 

Figure 1. 1 2  

x 
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Before we obtain a general proof of this, consider the case when P = P .r .  In 
this case 

(See Figure 1 . 13 . ) It follows that (v lP.rv) = cos2¢ + (sincp)(O) = cos2¢, in 
accordance with (1 . 1 1) . In the general case, we see from trigonometry that 
IPv l = lv f cos¢. By (1 . 10), 

(v lPv) = lv l lPv l  cos¢ = lv l 2cos2¢ = cos2¢ 

since v is normalized. It is also clear that (v lPv) = 1Pv l 2 = (Pv lPv) . 
Further, if P 1 and P 2 are projection operators onto two perpendicular lines 

(see Figure 1 . 14), then lv l 2 = IP1v l2 + IP2v l 2, for any vector v. Both these 
considerations show that, if v is normalized, then 0 < 1Pv l2  < 1 ,  for any 
projection operator P. The significance of these and analogous results will 
be evident when we look at quantum theory. Within the theory, the proba
bilities of events are given by expressions of the form 1Pv l 2, hence the 
importance of showing that when v is normalized this expression can take 
values only between zero and one. 

1. 5 Complex Numbers 

In the vector space IR2 we have permitted multiplication of vectors by real 
numbers. We say that IR2 is a vector space over the field of the reals. The next 
step is to consider a vector space over the field of complex numbers. The 
generalization is straightforward, once we have a grasp of what such num
bers are. 

y 

I I I I 

(COS<f>) V= sin <t> 

Figure 1. 13 

x 
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As is well known, the number 36 is the square of 6, and also the square of 
- 6; there is no real number x such that x 2 = - 36. However, we can imagine 
the sort of properties such a number would have, if it existed. It would be 
twice the square root of - 9, for instance, so that it would conform to the 
equation (x/2)2 = x2 /4, and it would be a root of the equation x2 + 36 = 0. 

In fact, if we included ,,imaginary" numbers like x in our set of numbers, 
then every quadratic equation would be capable of solution. Equations like 
x2 - 36 = 0 would have real solutions, whereas those like x2 + 36 = 0 
would have imaginary solutions, the square roots of negative numbers. If 
the inclusion of imaginary numbers is worrying, it is worth considering the 
sense in which a negative number, - 6 say, is real-or, come to that, the 
sense in which 6 itself is real. Of course, the sum of your worries may not be 
decreased by such considerations. 

From what has been said, if a is a positive real number, then - a is 
negative, and '1 a will be imaginary. Our imaginary numbers are to con
form to the same rules as the real numbers, so 

'1 a =  '1(a)(- l)  = (fa)('1 1 )  

Because a is positive, fa is a real number. Thus any imaginary number can be 
written as the product of a real number and the square root of - 1 . (We can in 
fact define an imaginary number in this way if we wish.) We denote the 
square root of - 1  by i; thus '1 36 = 6i. 
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We can add and subtract imaginary numbers: 

2i + O.Si = 2.Si = 4i - 1 .Si 

We can multiply them by real numbers: 

2(3i) = 6i = (3i)2 

We can also multiply two imaginary numbers together; if we do so the 
answer is real. For example, 

(2i)(3i) = 6i 2 = (6)(- 1) = -6  

When we add a real number a to an imaginary number ib we obtain a 
complex number, a + ib. This expression for a complex number cannot be 
further simplified. 

Notice that a and b are both real numbers; in this section and the next, I 
will use a, b, d, e, . . . to denote real numbers; when I wish to talk of 
complex numbers I will use c1 , c2 , • . .  

We add and subtract complex numbers in a straightforward way: 

(a + ib) + (d + ie) = (a + d) + i(b + e) 

The sum of two complex numbers is thus the sum of their real parts plus the 
sum of their imaginary parts, and is again a complex number. 

Similarly, consider the product of two complex numbers: 

(a + ib)(d + ie) = ad + a(ie) + (ib)d + (ib)(ie) 
= ad + iae + ibd - be 
= (ad - be) + i(ae + bd) 

This is again a complex number. 
We may remark that both real and imaginary numbers are special cases of 

complex numbers. The complex number a + ib is real provided b = 0, and it 
is imaginary whenever a =  0. 

Now consider the product of a +  ib and a - ib. The formula for the 
product yields 

(a + ib)(a - ib) = a2 + b2 

This is both real and positive. We call a - ib the complex conjugate of a +  ib, 
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and conversely. We denote by c* the complex conjugate of the complex 
number c. Thus (a + ib)* = a - ib, and (a - ib)* = a + i b. For all c, (c*)* = 
c, but c* = c if and only if c is real. We have just shown that (c*)(c) is always 
real and positive. 

Observe that the use of complex numbers enables us to factorize expres
sions like a 2 + b 2, which previously resisted factorization. 

The quantity l c l  = '1(c)(c*) is known as the norm of c. We are often inter
ested in complex numbers of norm 1 ;  from the definition of the norm, it 
follows that if c = a  + ib and l c l  = 1 ,  then a 2 + b 2 = 1 .  This in turn implies 
that there is an angle (} such that a = cos(} and b = sin8. Thus any complex 
number of norm 1 can be written in the form: 

c = cos(} + i sin8 = e iB 

(The number e is the base of so-called natural logarithms; it is the sum of the 
infinite series: 

1 1 e = 1 + 1 + 2! + 3! + 

For any x, 

For our purposes, however, we can think of e i8 simply as a notational 
convenience for cos(} isin8.) 

Finally, I should add that many mathematicians find this approach to 
complex numbers, which emphasizes the role of '1 1, faintly disreputable. 
They define complex numbers as ordered pairs (a, b) of reals which obey 
certain algebraic relations, so that, for instance, (a, b) + (d,e) = (a +  d, b + e), 
and (a, b)* = (a, - b) . The reader is invited to reconstruct the material of this 
section along these lines. 

1. 6 The Space C2 
Let us now return to the study of vectors, and look at the complex space C2• 
Whereas in IR2 each vector was represented by a pair of real numbers 

(:) 
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to each vector of C2 we associate a pair of complex numbers 

In contrast with the situation in IR2, however, no direct geometrical repre
sentation of a vector in C2 is possible. For present purposes we say that the 
pair of numbers is the vector. 

Vector addition and scalar multiplication go on much as before. 

If u = (c1) and v = (c3) , then u + v = (c1 + c3) 
� � � + � 

as in the case when our vectors were pairs of reals. We allow scalar multipli
cation by any complex number: 

if v = (c1) , then CV = (CCi) C2 CC2 
The number 0 is a complex number, and so, as before, the zero vector is 
given by 

o = (�) 
An operator on a complex space is like an operator on a real space: it is an 

instruction to transform a vector into some other vector. As in IR2, to each 
linear operator on C2 there corresponds a 2 X 2 matrix of numbers, but in 
this case the numbers are complex. For instance, a typical operator on C2 is 
represented by the matrix 

( 2 1 - i) 
l + i 3 = A 

The algorithm for determining Av, given A and v, is the same as before, as is 
the procedure for finding the matrix AB, the product of A and B, given those 
matrices. For example, let A be as above, and let 
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_ ( 2 1 - i) ( 1 ) - ((2)(1 ) + (1 - z)(l + z)) Av - 1 + i 3 1 + i - (1 + z)(l) + (3)(1 + z) 

= (4(14+ z)) = 4v 

We see that v is  an eigenvector of A, with corresponding eigenvalue 4. It 
turns out that the vector 

is also an eigenvector of A. In this case the corresponding eigenvalue is 1 
(thus Au = u). 

These eigenvalues are real. In this respect the operator A is not quite 
typical; it is a member of a particular class of operators known as Hermitian 
operators. These operators are going to play an important role when we look 
at quantum theory: they will represent physical quantities, and their eigen
values will be the possible values of those quantities; clearly it befits a 
measurable quantity that its possible values should be real. I will postpone a 
formal definition of a Hermitian operator until Section 1 . 1 2; it is the ana
logue in complex space of a symmetric operator on a real space, and it has 
similar identifying characteristics. Whereas the off-diagonal elements of a 
symmetric matrix on IR2 were equal, those of a Hermitian operator on C2 are 
complex conjugates of each other. (The diagonal elements of a 2 X 2 matrix 
are the top left and bottom right elements; the off-diagonals, therefore, are 
the bottom left and top right elements.) In the example above, the elements 
in question are 1 - i and 1 + i. We also require that the diagonal elements (2 and 3 in this case) be real. As in this example, the sum of the diagonal 
elements of a Hermitian operator is always equal to the sum of its eigen
values. 

For operators on complex spaces, as for those on real spaces, the maxi
mum number of distinct eigenvalues is equal to the dimensionality of the 
space. In the case of a real space we also found that eigenvectors of symmet
ric operators whose eigenvalues were distinct were always at right angles to 
each other. The Hermitian operators on C2 have the same property, but it's 
not informative to say so until we know what meaning we can give to "at 
right angles" in the complex case. We approach this via the notion of inner 
product. 
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It is in the definition of inner product that the first important amendment 
to our computational rules appears. 

Let u = (�:) and v = (�:) .  Then 

(1 . 1 2) (ulv) = C1*C3 + C2*C4 

and so, in general, (ulv) is not equal to (v lu) . In fact we can prove that one 
is the complex conjugate of the other: 

(1 . 13) (v lu) = (ulv) * 

But now consider the inner product (u lu) .  From (1 . 12), (u lu) = c1*c1 + 
c2 *c2 . We know that, for any complex number c, c*c is a positive real number; 
thus, for any vector u of C2, (ulu) is real and positive. 

This means that even in complex space we can talk of the length of a 
vector; we define it by writing 

(1 . 14) lv l  = '1 (v lv) 

without the risk of having a length turn out to be either an imaginary 
number or the square root of such a number. 

As before, we say that v is normalized if l v l  = 1, and that u and v are 
orthogonal if (ulv) = 0 = (v lu) .  This gives us a definition of orthogonality 
for use in complex spaces, where the geometrical idea of a right angle is 
inappropriate. If u and v are orthogonal, we write u .l v. 

Armed with this definition, we can return briefly to the topic of eigen
vectors and eigenvalues. We find that, if v1 and v2 are both eigenvectors 
of a Hermitian operator A on a complex space, such that Av 1 = a1v1 , 
Av2 = a2v2 1 and a1 =I= a2 1 then v1 .l v2 . In the example given, 

We see that 

(v1 lv2) = (1 *)(1 - i) + (1 + i)*(- 1) 
= (1)(1 - z) + (1 - z)(- 1)  
= O 

as required. 
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As with the definitions of inner product, length, and orthogonality, wher
ever possible we find suitable generalizations in C2 of the concepts familiar 
from the real space IR2• For instance, the analogues in C2 of the lines of IR2 are 
the one-dimensional subspaces of C2• If two vectors of IR2 lie along the same 
line, then one is a multiple of the other; similarly, if two vectors v and v' lie 
within the same one-dimensional subspace of C2, then v' = CV, where C is 
some (complex) number, and conversely. We usually use the term ray in
stead of the cumbersome one-dimensional subspace. 

Let us now generalize the notion of a projection operator. We do this by 
following the route taken in Section 1 .2; we can usefully use a diagram 
(Figure 1 . 15), provided that we remember that what we see in the diagram is 
only the analogue in IR2 of what we have in C2 • 

Let L be any ray of C2, and v be any vector of C2• Then there exist two 
vectors Vi and vv. , such that (i) Vi + Vi.L = v, (ii) Vi lies within L, and (iii) 
Vi.L ..l Vi . Further, for a given vector v and ray L, Vi and vv. are unique. As in 
the analogous case in IR2 (see Figure 1 . 15), we can define the projection 
operator P onto L by writing, for any vector v, Pv = Vi , where v, Vi , and Vi.L 
stand in the relations given by (i), (ii), and (iii) above. 

As in IR2 we find that, for every vector v and every projection operator P, 

(v lPv) = 1Pv l 2  = (Pv lPv)  

This is always real and positive; furthermore, whenever v is normalized, 

0 < (v lPv) < 1 

y 

\ \ 

Figure 1. 1 5  

\ \ 
\ __J----VL=PV 

x 
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A Hermitian operator on C2, like a symmetric operator on IR2, can be 
decomposed into a weighted sum of projection operators. Consider the 
Hermitian operator A on C2 with distinct (real) eigenvalues a1 and a2 • Let v 1 
and v 2 be corresponding eigenvectors, and P 1 and P 2 be projection operators 
onto the rays containing v1 and v2 1 respectively. (We call these rays the 
subspaces spanned by the vectors.) Then, as before, the spectral decomposi
tion theorem gives us: 

For example, consider again the operator 

( 2 1 - i) 
A = l + i 3 

The projection operator P 1 onto the ray containing 

( 1 ) . 1 ( 1 1 - i) 
l + i IS J l + i 2 

and the projection operator P 2 onto the ray containing 

( 1 - i) is .!. ( 2 . - 1 + i) 
- 1  3 - 1 - z  1 

The eigenvalues are 4 and 1 ,  respectively, and a brisk calculation shows that 
(1 . 15) holds. As an exercise <**), it is worth considering how one could 
show that P 1 and P 2 are given by these particular matrices. 

1. 7 The Pauli Spin Matrices 

To echo Eco (1979), every book defines the role of its ideal reader. Even so, 
some do it less subtly than others. Here are a few problems on the space C2• 

These problems are not simply mathematical exercises; in later chapters 
the results will be applied to a particular physical example, namely to the 
quantum theory of the fermion or spin- ! particle. As indicated in the pre
vious section, in quantum mechanics physical quantities like momentum 
and energy are represented by Hermitian operators; Chapter 2 shows how 
these operators enter into theoretical calculations. The exercises below in
volve three operators used to represent the components of spin of a fermion 
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-the quantities we met in the discussion of Stem and Gerlach's results in 
the Introduction. The matrix representations of these operators are shown 
below. 

1 (o 
0
1) Sx= 2 1 

s = .!. (0 - i) y 
2 i 0 

The three matrices involved are known as the Pauli spin matrices. 

PROBLEMS 
1 . Show that Sx and Sy do not commute, and evaluate S;rSy - SySx . Express 

this difference in terms of Sz , and show that this relation holds cyclically 
among the three operators . 

2 . Let 

1 ( 1 - i) Y+ = 
2 1 + i 

1 ( 1 - i) 
y_ =

2 - 1 - i  

Show that X+ and x_ are eigenvectors of Sx , and that Y+ and Y- are 
eigenvectors of Sy . In each case, what are the corresponding eigenvalues? 

3 .  Show (i) that X+ and y + are both normalized; and (ii) that X+ is orthogonal 
to x_, and that y+ is orthogonal to y_ . Why might one expect (ii) to be the 
case? 

4. Determine the eigenvectors and corresponding eigenvalues of Sz . 
5 .  Let P x+ be the projection operator onto the one-dimensional subspace of 

C2 containing X+ . We extend the notation in an obvious way to p x- 1 p y+ I 

and so on. Then 

1 ( 1 - 1) Px- = 
2 - 1  1 

-�) 
(i) Show that Px_x_ = x_ and Py+Y+ = Y+ · (ii) Determine the vector 
Py+Y- · (iii) Show that Py+ is indeed the projection operator onto the ray 
containing Y+ · (iv) Evaluate Px+Px- and P�y+ (= P;+)· Why are these 
results predictable? 

6. Evaluate (X+ IPy+X+), (x_IPy+x_), (Y+ IPy+Y+) ,  and (y- IPy+Y-) .  Confirm 
that these are equal to 1Py+X+l2, IPy+X-12, 1Py+Y+ l2, and IPy+Y-1 2, respec
tively. 
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7. Given Sy and Py+ ' use the decomposition theorem to determine Py- · 
Confirm that Py-Y- = Y- and Py-Y+ = 0. 

8. Evaluate !Px+ - !Px- · Why is this result predictable? 

1 . 8  Mathematical Generalization 

The comparatively simple mathematics of C2, where no manipulation more 
difficult than multiplying complex numbers is involved, enables us to an
swer basic questions about electrons and their components of spin. To deal 
with quantum systems in full generality requires an extension and general
ization of these ideas. As a preliminary to this generalization, this section is 
devoted to the topic of mathematical structures; we will return to the subject 
of vector spaces in Section 1 .9 .  

A mathematical structure consists of a collection of objects (usually math
ematical "objects"), together with the relations between those objects, and 
the operations we can perform on them. Consider, for instance, the set of the 
rotation operators on IR2 whose effect is to rotate vectors through multiples 
of 90 ° .  Call this set Rot, 

There are just four members of this set, since a rotation of 360 ° is equivalent 
to no rotation at all; in fact, we have R360 = Ro = I. Now, given any pair of 
linear operators A and B, we can form their product AB. A distinguishing 
feature of the set Rot is that the product of any pair of these operators 
(including the product of any one of them with itself) is again a mem
ber of the set. We have, for example: �oR1so = R21o 1 Ro�o = �o , 
R270R270 = R180 , and so on. We say that multiplication is a binary operation 
on the set. 

Consider now the set of four numbers, two real and two imaginary, 
{1 ,i,- 1 ,- i} . We can of course multiply any two of them together in the 
usual way, and if we do so we find that they have the same property that we 
observed in the set of four rotation operators: the product of any two of 
them is also a member of the set: (i)(- 1) = - i, (l)(i) = (i), (- i)(- i) = - 1, 
and so on. Observe that these equations involving numbers exactly match 
up with the earlier equations involving operators. 

We find that each operator from the first set, Rot, corresponds to a number 
from the second; furthermore, to the operation of operator multiplication on 
Rot corresponds the operation of arithmetical multiplication on the set of 
numbers. The two sets are alike, not in the objects they contain, but in their 
mathematical structure. When, as in this case, the structural similarity is 
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such that a perfect one-to-one correspondence exists between two sets, we 
say that they are isomorphic. 

However, we're interested in a weaker kind of similarity. We want to 
specify, for instance, the way in which Rot is similar to the set of rotations 
through multiples of 60 ° . In fact, this set and the two we started with, 
together with the product operations on them, are all examples of a very 
general kind of mathematical structure known as a group, and defined as 
follows. 

(1 . 1 6) g is said to be a group if g comprises a set G of elements and a binary 
operation ° on G; one of the elements of G has particular properties 
and is known as the identity element of the group; for all elements, a, 
b, c, of G, 

(1 . 1 6a) (a 0 b) o c = a o ( b o c) 

(1 . 1 6b) a 0 I = a = I 0 a 

(1 . 1 6c) 

where I is the identity element. Additionally, for any element a of G, 
there is a unique element a' of G such that 

a 0 a' = I = a' 0a 

We may regard ' as a singulary operation on G, mapping each member of G 
into another. (For a general introduction to groups, see Eddington, 1935a, 
rpt. Newman, 1956, vol. 3, pp. 155 8 - 1573; see also MacLane and Birkhoff, 
1979, chap. 2.) 

In defining a group I have abstracted certain features of these structures 
while ignoring others; it is not part of the general definition, for instance, 
that a group just have four elements. It is not even required that the opera
tion ° be commutative -that, for all a and b in G, a 0 b = b 0 a - although 
this was the case with both of the groups described here. These two groups 
belong to a special subclass of groups, the commutative, or Abelian, groups. 

I hope I have said enough to indicate what is involved when we say of a 
set that it is a structure of a certain kind, like a group. In saying this we are 
not saying what sorts of objects are in the set, nor how many of them there 
are (though we may specify this to some degree, as we do when talking of 
finite groups) . We are merely saying that we have a set of objects and that we 
can perform operations on these objects, or on pairs or perhaps trios of these 
objects, to yield others of the same kind; further, that these operations 
conform to certain rules, like (l . 1 6a) - (l . 1 6c), above. We may also require 
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that there exist objects in the set with particular properties: for example, 
every group has to contain an identity element. To describe a structure, we 
make a list: first on the list is the relevant set of objects, then come the 
operations performed on that set, and finally we list the elements with 
specific properties. Thus the first structure we looked at in this section is the 
group (Rot, 0 ,  ', Ro), which includes the set Rot, the binary operation of 
multiplication, the singulary operation which gives the inverse of any ele
ment of Rot, and the identity element of Rot. 

I should emphasize that our present concern is not the mathematical 
theory of groups per se. It so happens that a group is a particularly simple 
form of mathematical structure and that by talking about groups we can see 
what is meant by an operation on a set, by one structure being isomorphic to 
another, and so on. Armed with these ideas, we can move to a more compli
cated structure, that of a vector space-recalling, as we go, Russell's (19 17, 
p. 59) suggestion that ,,Mathematics may be defined as the subject in which 
we never know what we are talking about, nor whether what we are saying 
is true." 

1 . 9 Vector Spaces 

What, then, are the defining properties of a vector space, considered ab
stractly in this way? We have already seen examples of such spaces: the set 
of arrows in a plane radiating from a given point, and the set of pairs of 
numbers. In fact, if the numbers are real numbers, the two sets are eff ec
tively the same, in that we can translate talk of arrows into talk of pairs of 
real numbers, and conversely. To use the vocabulary of Section 1 .8, the set 
of arrows in the plane and the set of pairs of real numbers are isomorphic. 

When the spaces IR2 and C2 were introduced, in both cases the operations 
we met first were vector addition and scalar multiplication. The latter in
volves multiplying a vector by a scalar, that is, by a number; thus prior to any 
definition of a vector space we need an analysis of the structure of the set of 
numbers. The relevant operations on this set are the binary operations of 
addition and multiplication and the operation which takes us from the 
number a to the number 1 /a. The elements with special properties are 0 and 
1 .  The structure in question is that of afield, ;J = (F, +, · ,- 1, 0, 1 ) ,  where the 
operations and designated elements have familiar properties, such as 
a +  0 = a  and (a)(a-1) = 1 ,  for all a in F (see MacLane and Birkhoff, 1979, 
chaps. 3 and 8). 

Both the set of real numbers and the set of complex numbers have the 
structure of a field. Omitting the formal definition of a field, I will move 
straight on to the definition of a vector space over a field. 
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Let ;J = (F, +0, • 0 , -1, 0 ° , 1 )  be a field. (The binary operations and zero 
element are tagged with degree signs to distinguish them from the opera
tions on the vector space, which are customarily represented by the same 
symbols.) The elements of F will be called scalars. Then 

(1 . 1 7) <y is called a vector space over ;J if <y = ( V, +, · , 0) , where 

(1. 1 7a) 

(1. 1 7b) 

(1. 1 7c) 

(1 . 1 7d) 

(1 . 1 7e) 

(1. 1 7f) 

(1 . 1 7g) 

(1 . 1 7h) 

V is a nonempty set whose elements are called vectors; 
+ is  an operation which takes any pair of vectors and yields a 
vector (that is, + is a binary operation on V); 

· is an operation which takes a scalar and a vector and yields a 
vector; 
0 is a member of V (the zero vector); 
for all u, v, and w in V, and for all a and b in F, the following 
identities hold: 

(u + v) + w = u + (v + w) 

u + v = v + u  

v + O = v  

a · (b · v) = (a · 0 b) · v 

(a +0 b) · v = a  · v + b · v 

a · (v + u) = a · v + a · u 

0 °  . v = 0 
1 · v = v  

Clearly the examples of vector spaces we have looked at satisfy these 
axioms. However, so do various other sets of mathematical objects. Con
sider the set of infinite sequences of numbers; let x and y be members of this 
set, so that x = (x1 , Xv . . . ) and y = (y1 , y2 , • • • ), where x1 , y1 , Xv y2 are 
numbers. We can define vector addition and scalar multiplication by 

If we do so, then, because all the clauses of (1 . 1 7) are satisfied, we have 
defined a vector space in which the sequences are the vectors. 

Alternatively, consider the set of all complex-valued functions of a real 
number. Examples are the squaring function, which maps a real number 
onto itG square, the function which maps a real number x onto the complex 
number x + ix, the function which yields the cosine of x, and so on. This set 



42 The Structure of Quantum Theory 

can be made into a vector space as follows. The functions themselves are the 
vectors in the space; given any two functions, <P and l/f, we define their sum 
<P + l/f, so that, for all real numbers x, 

( <P + l/l)(x) = cp(x) + 0 lJl(x) 

and we define scalar multiplication by the equation 

(a · cp)(x) = a · 0 cp(x) 

If we do so (1 . 17) is satisfied and again the result is a vector space. (The 
symbol 0 used to distinguish operations performed on numbers from those 
performed on vectors has now served its purpose. It may be omitted without 
loss of clarity; however, it is still a useful exercise to see which operation is 
being referred to by a particular symbol on any given occasion.) 

Unless otherwise stated, in what follows vector spaces are assumed to be 
over the field of the complex numbers. 

1 . 1 0  Linear Operators 

The definition of a linear operator given earlier may be repeated without 
change. An operator A when applied to any vector v of vector space CV 
yields another vector v'; we write Av = v'. We use the general term mapping 
to indicate the application of an operator to a vector; a mapping is a rule that 
associates every element of a set with an element of another set, or, as in this 
case, with an element in the same set. An operator is just a special kind of 
mapping, and so is a function. We denote a mapping as we would an 
operator or function. 

(1 . 1 8) A mapping A of the set V into itself is called a linear operator if for all 
vectors u and v and for any scalar a, 

(1 . 18a) A(v + u) = Av +  Au 

(1 . 18b) A(av) = a(Av) 

Examples of linear operators on the space of functions of x are easy to 
come by. For instance, given a function cp(x), the expression x · cp(x) also 
represents a function of x, whose value is obtained by multiplying the value 
of cp(x) by x. Thus x is  here an operator, and since (l . 1 8a) and (l . 1 8b) hold 
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(writing x for A, <P and l/f for v and u), it is a linear operator. Again, the 
differential operator d / dx is a linear operator on the space of functions of x. 
However, though the process of squaring any function <P of x-so that 
cp2(x) = [¢(x)]2- could be regarded as the action of an operator, such an 
operator would not be linear, because both (l . 1 8a) and (l . 1 8b) would be 
violated. 

The definitions of an eigenvector and an eigenvalue of an operator carry 
through to the general case: 

(1 . 1 9) A vector v is said to be an eigenvector of A, with corresponding 
eigenvalue a, if v =I= 0 and Av = av. 

We observe, for example, that in our space of functions of x, e 3.r is an 
eigenvector of d / dx with eigenvalue 3, since 

d 
- (e 3� = 3e 3.r 
dx 

Sums and products of linear operators are defined as before. 

(1 . 20) If A and B are linear operators on CV, then A +  B and AB are linear 
operators such that, for all v in V, 

(1 . 20a) (A + B)v = Av +  Bv 

(1 . 20b) (AB)v = A(Bv) 

1 . 1 1  Inner Products on <\f 
Alongside our abstract definition of a vector space we now want a definition 
of an inner product. Since the vector spaces we now deal with are not 
necessarily geometrical, we will not usually be able to give a direct interpre
tation of this quantity, as we could in the case of IR2• Instead, we pick certain 
features of that inner product, like the fact that the inner product of any two 
vectors is a number, and use them as the defining properties of an inner 
product in general. 

Let CV =  (V, +, · ,  0)  be a vector space over a field ;J. (It is assumed here 
that ;J is the field of complex numbers; if ;J is the field of the reals then the 
complex conjugation signs below are redundant.) Then to each pair of 
vectors u and v in V we assign a scalar, denoted by (u lv) . 
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(1. 21) (u lv) is said to be an inner product on CV if 

(1. 21a) (v lv) > 0, and (v lv) = 0 if and only if v = 0 
(1 . 21 b) (ulv) = (v lu)* 

(1. 21c) (ulav) = a(ulv) 

(1. 21d) (ulv + w) = (u lv) + (u lw) 

It is clear that the inner products we defined on IR2 and C2 conform to 
these conditions. We can extend those definitions of inner product to pro
vide a definition of an inner product on the state of infinite sequences of 
complex numbers, provided we restrict the space to those sequences 
(x1 , x2 , . . . ) such that �ixi*xi is finite. Given this restriction, we can write, 
for two vectors x and y in the space such that x = (x1 , x2 , • • •  ) and 
y = (Y1 I Y2 1 . . .  ) : 

(x ly) = X1*Y1 + X2*Y2 + · · · = � xi*Yi 
i 

The restriction on the sequences is needed to ensure that the inner product 
defined in this way will always be finite, that is, will be a scalar. The space of 
such sequences is called l 2. 

Similar considerations lead us to define an inner product, not on the 
vector space of all functions of x, but on the vector space of all square-inte
grable functions of x, that is, functions cp(x) such that f �oo<P(x)*cp(x)dx is 
finite. This space is known as L 2; we define an inner product on it by writing, 
for vectors <P and l/f, 

(</>II/I) = L: </>(x)*lfl(x)dx 

A remarkable mathematical fact now presents itself, that the spaces l2 
and L2 are isomorphic. (See Fano, 1971,  p. 269 .) That is, we can find a 
correspondence between sequences in l 2 and square-integrable functions in 
L 2 such that, if to the sequences x and y there correspond functions <P and l/f, 
then (i) to the sequence x + y corresponds the function <P + l/f, (ii) to the 
sequence ax corresponds the function acp, and (iii) (x ly) = ( <P ll/I) (provided 
that each of these inner products is evaluated in the way appropriate to the 
vectors involved) . This isomorphism is relevant to the history of the devel
opment of quantum mechanics. The early formulations of the theory, by 
Heisenberg and Schrodinger, were, respectively, in terms of sequences and 
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of functions; subsequently Schrodinger established that, by virtue of this 
isomorphism, the two formulations were equivalent (von Neumann, 1932, 
chap. 1.4; see also Stein, 1972, p. 427, n. 10). 

Armed with a definition of inner product on a given space, we can define 
the length of a vector, what it is for a vector to be normalized, and what it is 
for two vectors to be orthogonal, just as we did when discussing C2: 

(1. 22) For all v and u in V, 

(1. 22a) lv l  = '1 (v lv) 

(1. 22b) v is said to be normalized if l v l  = 1 

(1. 22c) v is said to be orthogonal to u if (v lu) = 0 

1 . 1 2  Subspaces and Projection Operators 

While we were dealing with arrows radiating from a point, the notion of a 
subspace of the vector space had a readily visualized geometrical interpre
tation. Given the fact that we confined the arrows to the plane, we had the 
following subspaces: the plane itself, all the lines through the zero vector, 
and the zero vector itself, or, more strictly, the set containing just the zero 
vector - see (1 .23), below. If we had investigated the three-dimensional 
real space IR2, then the whole space IR3 would have been a subspace, as 
would every plane which included the zero vector and, as before, every line 
containing the zero vector, and the set containing only the zero vector. In 
other words, we would have had subspaces of dimension 3, 2, 1 ,  and 0. 
Notice that if we add any two vectors lying in a plane, then the result is 
another vector lying in the same plane; again, if we multiply a vector v by 
any number a, the result av is in the same plane as v. These results hold not 
only for the planes of IR3, but for any of its subspaces, and so a generalized 
definition of a subspace, applicable to all vector spaces, presents itself. 

Let <y be the vector space ( V, +, · ,  0) . 

(1 . 23) L is said to be a subspace of <y if L is a subset of V, and 

(1. 23a) if u and v are in L, then so is u + v 

(1. 23b) if v is in L, then so is av (where a is any scalar) 

How does this apply to vector spaces of functions of x? As an example, 
consider the vector space (call it &fJ) which contains just those functions 
which are polynomials in x, that is, functions of the form a0 + a1 x + a2 x 2 + 
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+ anxn. Then a typical subspace of 1J contains all the polynomials of 
order two or less. (A function of the form a0 + aix + a2 x 2 is a polynomial of 
order 2.) Clearly, the addition of two such functions yields another of the 
same kind, as does multiplication by an arbitrary number a, and this is all we 
require. 

Orthogonality between vectors was defined in Section 1 . 1 1 .  We also say 
that a vector vis  orthogonal to a subspace L if vis orthogonal to every vector in 
L, and that two subspaces Li and L2 are orthogonal if every vector in Li is 
orthogonal to every vector in L2 • Note that in Figure 1 . 16  the planes Li and L2 
are at right angles to each other but are not orthogonal, since Li contains 
vectors which are not orthogonal to all vectors in L2 • In particular, the vector 
v is common to both. 

Note that the zero subspace (containing just the vector 0) is orthogonal to 
all subspaces. 

The projection operators we encountered on IR2 and C2 were projection 
operators onto rays (one-dimensional subspaces) of IR2 and C2, respectively. 
We can define projection operators onto subspaces of any dimension; if L is 
a plane of IR3, then Pu the projection operator onto L, maps vectors into L, as 
shown in Figure 1 . 1 7. 

We define projection operators in the general case just as we did for C2• 
That is, given a subspace L, we can decompose any vector v into two parts, 
Vi and Vv .. , so that Vi lies in L, vu is orthogonal to L (and hence to vi), and 
v =Vi + Vv .. . We then write Piv =Vi, thereby defining the action of Pi on 
an arbitrary vector v. 

However, an alternative, elegant, and equivalent definition is available, 
as follows. 

Figure 1. 1 6  
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x 

We first define a Hermitian operator on a complex space equipped with an 
inner product, and then say what it is for an operator to be idempotent. 

(1 . 24) A linear operator A on CV is said to be Hermitian if, for all vectors u, 
and v, (u lAv) = (Aulv) . 

(1 . 25) A linear operator A on CV is said to be idempotent if AA = A. (We 
write A2 = A.) 

We saw in Section 1 . 7, for example, that the operator 

on C2 is idempotent. 
Our new definition of a projection operator is: 

(1. 26) A linear operator A on CV is said to be a projection operator if A is both 
Hermitian and idempotent. 

It can be shown that such an operator is an operator which has the property 
of .(.{projecting onto a subspace" in the way described above, and conversely 
<**). (See Jordan, 1969, pp. 26 - 27.) 

The set of projection operators (or projectors) on a vector space is in 
one-to-one correspondence with the set of subspaces of that space. It in-
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eludes the zero operator (which projects onto the zero subspace) - the 
operator P0 such that, for all v, P0v = 0 - and also the identity operator I, 
which projects onto the whole space: for all v, Iv = v. As we shall see, 
projectors play an enormously important role in quantum theory; in fact, the 
discussions of the theory in later chapters are almost entirely in terms of 
these operators. 

I conclude this section with a general proof of a relation we have met a 
couple of times already. Let P be any projection operator and v be any 
vector, then: 

(1. 27) (v lPv) = 1Pv l 2 

As proof, consider: 

(v lPv) = (v lP2v) 

= (v lP(Pv) ) 

= (PvlPv) 

= 1Pv l2 

1 . 1 3  Orthonormal Bases 

[idempotence] 

[Hermiticity] 

A set { v 1 , v 2 , • • • , v n} of vectors spans a space CV if any vector v in CV can be 
written as a linear combination of v1 , v2 , • • • , v n - if, that is, for any v in CV 
there exist scalars a1 ,a2 , • • • ,an such that v = a1v1 + a2 v 2 + · · · + an v n . 

(1. 28) The set { v 1 , v 2 , • • • , v n} of vectors is said to be an orthonormal basis 
for CV if 

(1. 28a) {v1 ,v2 , • • •  ,vn} spans CV; and for each vi and V; m 
{ v l / v 2 f • • • Iv n} 

(1. 28b) vi .l v; whenever i =I= j, and 

(1. 28c) lvi l = 1 

The set 

{(�) , (�)} 
forms a convenient orthonormal basis for IR2, and also for C2• Notice that 
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there is no unique orthonormal basis for any space. For example, we see 
from Section 1 . 7 that each of the three sets {X+ ,x_), {y+ ,y-}, and {.z+ ,z_) is an 
orthonormal basis for C2, as are nondenumerably many other pairs of 
vectors. 

An n-dimensional space can be spanned by n mutually orthogonal vec
tors. If the space is infinitely dimensional, an infinite set { v;} is required. 

If { v 1 ,  v 2 , • • • , v n} is an orthonormal basis for a vector space CV, then any 
subset of this basis is an orthonormal basis for a subspace of CV.  The set 
{v1 ,v3}, for example, is an orthonormal basis for a two-dimensional sub
space L; we say that L is spanned by {v1 ,v3}, and we also talk of the rays 
containing v1 and v3 spanning L. These rays, of course are themselves 
spanned by {v1} and {v3}, respectively. 

A result that will be important in Section 8.8 is the following. Let 
{ v 1 , . . . , v n} be any orthonormal basis for CV. Then any linear operator A 
on CV is uniquely determined by the vectors Av 1 ,  . . . ,Av n • In other 
words, to specify A we need only specify its action on an arbitrary ortho
normal basis. This result follows immediately from the definition of linear
ity in (1 . 1 8). For let v be an arbitrary vector in CV; then for some c1 , . . . ,en 
we have: 

+ CnVn = � CiVi 

And, by linearity, 

(1. 29) Av = A (� civi) = � (Acivi) = � ci(Avi) 
I I I 

1 . 14  Operators with a Discrete Spectrum 

A Hermitian operator which admits eigenvectors is said to have a discrete 
spectrum, and in this case the spectrum consists of the set of eigenvalues of 
the operator. All Hermitian operators on a finitely dimensional vector space 
have a discrete spectrum; in the infinitely dimensional case this isn't always 
so, and I'll discuss the exceptions, and give a general definition of a spec
trum, in the next section. 

It is easily shown, by use of (1 .21) and (1 .24), that eigenvectors and 
eigenvalues of Hermitian operators have striking properties. 

(1. 30) 

(1. 31) 

If A is a Hermitian operator, then its eigenvalues are real. 

If A is a Hermitian operator, such that Av1 = a1v1 , 
Av2 = a2v2 1 and a1 =I= a2 1 then v1 .L v2 •  

(*) 

(*) 
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In words, eigenvectors corresponding to distinct eigenvalues are mutually 
orthogonal. Thus the maximum number of distinct eigenvalues of a Hermi
tian operator A on CV is equal to the dimensionality of CV.  This result we have 
already seen for IR2 and C2; we now consider a vector space CV with dimen
sionality n. 

Let A be a Hermitian operator on CV. There are two possible cases: (i) A has 
exactly n distinct eigenvalues; (ii) A has m distinct eigenvalues, 0 < m < n. 

In case (i), all the eigenvectors corresponding to a particular eigenvalue, ai 
say, lie within one ray Li of CV, and every vector in Li is an eigenvector of A 
with eigenvalue ai . These rays span CV and are mutually orthogonal. If from 
each ray Li we select one normalized vector vi , then the set {v;} forms an 
orthonormal basis for CV. 

In case (ii), to each eigenvalue ai there again corresponds a subspace Li of 
CV such that Av = aiv if and only if v is in Li , and again these subspaces are 
mutually orthogonal; in this case, however, they are not all one-dimen
sional. Instead, the following general result holds. Denote by di the dimen
sionality of the subspace corresponding to eigenvalue ai . Then 

d + d  + · · · + d  = n  1 2 m 

[Case (i) corresponds to the case where m = n and, for all i, di = 1 .] By a 
curious usage, when di > 1, we say that ai is degenerate. As in case (i), we can 
still choose an orthonormal basis for CV consisting only of eigenvectors of A: 
we first choose an orthonormal basis for each Li (each of which will consist, 
obviously, only of eigenvectors of A) and then form the union of these sets 
of vectors. 

With this as background, here is the general form of the spectral decom
position theorem for a finitely dimensional vector space CV. 

(1 . 32) Let A be a Hermitian operator on a finitely dimensional vector space 
CV. Then there are real numbers a1 , • • •  ,am and projectors 
P 1 ,  . . . ,Pm projecting onto mutually orthogonal subspaces of CV 
(m < n), such that 

(1. 32a) 

m 

A = � a -P · � I I 
i= 1 

If we add the condition that 

a ·  =I= a - unless i = 1· I J 

then this decomposition of A is unique. 
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Note that in the expression for A above we are adding operators: we have 

m 
A = a1P1 + a2P2 + · · · + amPm = � aiPi 

i- 1 

This sum can now be unpacked in terms of familiar quantities. Each number 
ai is an eigenvalue of A. The corresponding Pi is the projection operator onto 
Li , the subspace of eigenvectors with eigenvalue ai . If A has n distinct 
eigenvalues, as in case (i), above, then each projector projects onto a one
dimensional subspace, and uniqueness of decomposition is guaranteed. If, 
as in case (ii), degeneracy occurs, then condition (1 .32a) ensures that each 
projector Pi projects onto a subspace Li containing all the eigenvectors with 
eigenvalue ai . Now Li may be more than one-dimensional, and in such a 
case a further decomposition violating condition (1 .32a) is possible. Con
sider the case when Li is two-dimensional, and let Li1 and Li2 be any two 
orthogonal rays spanning Li , with projectors Pi1 , Pi2 , respectively. We can 
show that Pi = Pi1 + Pi2 <**), and so the term aiPi in the decomposition of A 
may be replaced by aiPi1 + aiPi2 • Notice particularly that any pair of mutu
ally orthogonal rays in Li could be used for this construction, and so this 
further decomposition is itself not uniquely specifiable by, for example, the 
requirement that all the Pi project onto rays. 

I have offered a discussion and not a proof of the theorem. (See Jordan, 
1969, sec. 14; Fano, 1971, chap. 2 .3 . ) On the basis of this discussion, how
ever, and given one important assumption (which happens to be true), the 
reader should be able to supply one. 

Exercise. Given that every Hermitian operator on a finitely dimensional 
vector space admits eigenvectors, prove (1 .32) <**).  Hint: Compare the 
transformation of an arbitrary vector v effected by A with that effected by 
�iaiPi , using the fact that an orthonormal basis for CV exists consisting only 
of eigenvectors of A. 

1 . 1 5  Operators with a Continuous Spectrum 

When CV is infinitely dimensional, not all Hermitian operators admit eigen
vectors. Some do, and for them an infinitary version of (1 .32) holds. Among 
those that do not, however, are some operators of great importance in 
quantum theory, like those which represent position and momentum. 

Before seeing what form the spectral decomposition theorem takes for 
them, I will present some of the material of the previous section in a slightly 
different way. I first define a straight£ orward ordering relation between 
projectors in terms of the inclusion relation between subspaces, and then 
introduce the idea of the spectral measure associated with an operator on CV.  
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(1. 33) Let Pi and P 2 project onto subspaces Li and L2 of a vector space CV; we 
define the relation < (''less than or equal to") by: Pi < P 2 if and only if 
Li C L2 if and only if every vector in Li is in L2 . 

A spectral measure is a family of projection operators on CV parameterized 
by the real numbers. In other words, for any real number x there is in the 
family a projector P(x) corresponding to it. We don't require that different 
real numbers always be paired with different projectors. However, as we 
move along the real line from - oo  to + oo, we require that, if a <  b, then 
P(a) < P(b). Consistent with this is a second requirement: that, as x goes 
toward - oo, then P(x) goes toward P0 (the zero operator) and that, as x goes 
toward +oo, P(x) goes toward I. A third requirement (''continuity from the 
right'') I will explain below. 

A spectral measure can be associated with any Hermitian operator. Let us 
look first at the case discussed in Section 1 . 14, that of a Hermitian operator 
A on an n-dimensional vector space CV, such that A has m distinct eigen
values. We can arrange these eigenvalues in ascending order, so that 
ai < a2 • • • < am . Associated with each eigenvalue ai there is a subspace 
(not necessarily one-dimensional) containing all the corresponding eigen
vectors. Let Pi be the projector onto this subspace. The spectral measure P(x) 
for A is now specified as follows. 

For x < ai , 

for ai < x < a2 , 

for a2 < x < a3 , 

P(x) = P0 

P(x) = Pi 

P(x) = Pi + P2 

P(x) = Pi + P2 + 

P(x) = Pi + P2 + 

+ Pm-i 

+ P  = I  m 

We can prove that these sums of projection operators, Pi + P 2 , 
P 1 + P 2 + P 3 ,  and so on, are themselves projection operators, because the 
subspaces Li , L2 , and so on that Pi and P2 project onto are all mutually 
orthogonal (**). In fact, the projection operator Pi + P2 is the projection 
operator onto the subspace spanned by Li and L2 , that is, the subspace 
spanned by the set of eigenvectors with eigenvalue ai or a2 • Clearly, since 
the set of all eigenvectors spans CV, Pi + P 2 + · · · + Pm = I. 

The picture is this. As we move along the real line from - oo  to oo, P(x) 
increases, in the sense given by (1 .33), by m "steps."  The subspace onto 
which P(x) projects just after a step includes the subspace projected onto just 
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before the step, and each step is itself a projection operator Pi . These steps 
occur at the eigenvalues; the requirement of continuity from the right sim
ply means that, for example, P(x) = P 1 when a1 < x < a2 , rather than when 
a1 < x < a2 • 

The spectrum of A is the set of points where P(x) changes value, in this 
case the set of eigenvalues of A. 

Now, when A is a Hermitian operator on an infinitely dimensional space 
it is still possible to associate a spectral measure P(x) with A, but it can 
happen that, where P(x) increases, it increases continuously rather than by 
steps. The sets of points over which A ·increases are in this case intervals on 
the real line. Again, the set of all such points is called the spectrum of A, but 
now we say that A has a continuous rather than a discrete spectrum. 

What does it mean to say, in the continuous case, that P(x) is associated 
with A? We can explain this by analogy with the discrete case. In the discrete 
case we have, by (1 .32), 

A = � a -P· � I I i 

Whence, for any vector v, 

(1 . 34) (v lAv) = ( v � a;P;v) 
= � ai (v lPiv) [by (1 .20) and (1 .2 1)] 

i 

Let us look at the inner products (v lPiv) . We know from (1 .27) that any 
expression of this form yields a real number. Now, in terms of the spectral 
measure of A, the projector Pi is the ,,step" by which P(x) changes at ai . 
Writing P(< ai) for the greatest value of P(x) when x < ai , we have P(ai) = 
P(< ai) + Pi , and so 

(v lP(ai)v) = (v lP(< ai)v) + (v lPiv) 

whence 

(v lPiv) = (v lP(ai)v) - (v lP(< ai)v) 

We see that (i) (v lP(x)v) increases monotonically as x moves up the real 
number line, and that (ii) (v lPiv) is the change in value of (v lP(x)v) at 
x = ai . Thus each term in the sum in (1 .34) is the product of a real number ai 
and the change of value of (v lP(x)v) which occurs there. 
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Turning to the continuous case, and forsaking mathematical rigor, we can 
think of d(v lP(a)v) as the infinitesimal change in (v lP(x)v) which occurs at 
x = a. An analogue to (1 .34), using an integral, now gives a generalized 
version of the spectral decomposition theorem (see Fano, 1971,  chap. 5.8). 

(1 . 35) For any Hermitian operator A there is a spectral measure {P(x)} such 
that, for any vector v, 

(v!Av) = L: x d(v lP(x)v) 

As an example of the spectral measure associated with an operator with a 
continuous spectrum, consider the operator x (the ''position operator'') on 
the space L 2 of square-integrable complex-valued functions of x (see Section 
1 . 1 1 ) . The spectral measure of x (which we parameterize by the real number 
y to avoid confusion) is the family {E( y)} of operators on L 2 such that, for any 
function <P in L 2, 

""' cp(x) for x < y 
E(y)o/(x) = 

0 for x > y 

Notice that E(y) is indeed an operator on L2, mapping functions onto func
tions as required. It is easily shown to be linear, idempotent, and Hermitian, 
and is thus a projection operator. (To show Hermiticity, we need the defini
tion of an inner product on L2 given in Section 1 . 1 1 .) Equation (1 .35) can be 
shown to hold in four steps (Jordan, 1969, p. 43), as the reader may care to 
verify <**). 

To revert to the general case, the spectral measure P(x) associated with an 
operator A is a mapping of real numbers to projectors. We can extend this to 
provide a mapping of measurable subsets of the real line to projectors by 
writing, for every semi-closed interval � =  {x : a <  x < b}, 

PA = P(b) - P(a) 

and extending this to other measurable sets of reals in a straightforward way 
(see Fano, 1971,  chap. 4). 

We see that, to each Hermitian operator A and measurable subset � of the 
reals, there corresponds a projection operator P� defined in terms of the 
spectral measure P(x) associated with A. The existence of P(x), and hence of 
P� for any measurable set �, is guaranteed by the spectral decomposition 
theorem. 
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To summarize: Let .13(1R) be the set of all Borel subsets (measurable sub
sets) of the reals. Then, given a Hermitian operator A on a vector space CV, 
the spectral decomposition theorem specifies, for each � in .13(1R), a unique 
projection operator P�. Stretching our previous usage, we call the family 
{P� : � E .13(1R)} the spectral decomposition of A. It has the following proper
ties. 

(1. 36) In the family {P�:  � E .13(1R)} 

(1. 36a) 

(1.36b) 

(1.36c) 

Pil = I; P� = P0 

and, for all �, r E i3(1R) 

if � c r, then p� < p� 

if � and r are disjoint (� n r = ¢), then p� and p� project 
onto orthogonal subspaces of CV.  

We will meet these operators all the time in our discussion of quantum 
theory. 

1 . 1 6  Hilbert Spaces 

The vector spaces we shall use are known as .l.IHilbert spaces," a term coined 
by von Neumann (see Stein, 1972, p. 427, n. 1 0). A Hilbert space is just a 
vector space on which an inner product has been defined, and which is also 
complete: a vector space is said to be complete if any converging sequence of 
vectors in the space converges to a vector in the space. All finitely dimen
sional vector spaces are complete. To show what's involved in the infinite 
case, let us look at a space which does not meet this condition. 

Consider the space S of all finite sequences of real numbers. S includes 

So = (1 ) 

S1 = (1, !) 
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Now s0 , s1 , • • •  forms a converging sequence on S, but its limit, that is, the 
sequence to which it converges, is infinite, and so does not lie in S. Thus S is 
not complete and so is not a Hilbert space. 

On a related topic: in the infinitely dimensional case one should distin
guish between subspaces and closed subspaces. Any subspace contains all 
linear combinations of any finite set of vectors within it [see (1 .23)]; a 
subspace is closed if, additionally, it contains the limit vector of any con
verging sequence of vectors within it. Thus a closed subspace of a Hilbert 
space is itself a Hilbert space. Quantum mechanics deals with closed sub
spaces; however, since the examples presented in this book are almost all 
finitely dimensional, the distinction will largely be ignored in what follows. 

This concludes our hasty introductory survey of vector-space theory. In 
Chapter 5 I return to a few selected topics, prompted by some questions 
which arise in the discussion of quantum theory in Chapters 2 - 4 . 



2 
States and Observables in 
Quantum Mechanics 

To understand the conceptual structure of quantum mechanics we need to 
see how such notions as the state of a system and an observable quantity are 
represented within the theory, and how they are used in making predic
tions. The mathematics used is the mathematical theory of vector spaces, 
and in Chapter 3 I will discuss why this is a suitable candidate for the job in 
hand. Prior to any discussion of quantum theory, however, I will look at the 
way states and observables appear in classical mechanics. This approach 
offers a useful introduction to these topics on two counts. In the first place, 
classical mechanics is more familiar to many of us than is quantum theory; 
second, it's instructive to compare the roles these concepts play in the two 
theories, since quantum mechanics appears anomalous to us precisely 
where it departs from our classical expectations .  

2. 1 Classical Mechanics: Systems and Their States 

The formulation of classical mechanics I shall use is essentially that given by 
Hamilton and Jacobi in the nineteenth century (see also Gillespie, 1970). A 
classical system consists of a single particle or of a set of particles. Some of 
the particles' properties, like their masses, remain constant with time; 
others, like their positions, vary. Thus, for a complete description of the 
system and its behavior we need to know, first, the set Ile of its constant, 
unchanging properties and, second, how it is at a particular time, that is, the 
set IIv of the instantaneous values of those quantities which vary with time. 
We also need to know the set A of laws which govern both the interactions 
between the particles and also their interactions with their environment. For 
instance, if the particles are electrically charged, they will attract or repel 
each other, and they will also experience forces if the system is placed in an 



58 The Structure of Quantum Theory 

electric field. It is these laws which determine how the system will evolve as 
time goes on. 

The position and momentum of each particle are particularly significant 
members of flv .  (The momentum of a particle is the product of its mass and 
its velocity.) We express this by saying that specification of the position and 
the momentum of each particle at time t gives us the state of the system at 
time t. Once the state at time t is specified, then specification of Ile and A 
determines the values of all the properties in Ilv at that time. 

As an example, consider a system of charged particles. The electrostatic 
potential energy of that system at time t is determined by (a) the relative 
positions of the particles at that time (given by the state), (b) the charge on 
each particle (given in flc) and (c) the Coulomb law of electrostatic force 
(given in A). 

Classical mechanics is usually taken to be deterministic; a complete speci
fication of Ile and the state at a given time would determine the values of nv 
at all other times, provided the system remains isolated. I return to this point 
in Section 2. 4. 

As I mentioned, the state of a system is given by the positions and the 
momenta of the particles which compose it. Since physical space is three
dimensional, to specify the position of each particle we need three numbers 
(or position coordinates) q:x:, qy , and qz to locate it relative to an appropriate 
coordinate system. Similarly, in order to specify the momentum fully, so 
that we know not only how fast the particle is going but also in what 
direction, we need three more numbers P:x:1 py , and Pz 1 the momentum coordi
nates, often called the components of momentum, parallel to the three axes of 
our coordinate system. For each particle these six numbers are independent 
of one another. Thus, given a system of n particles, the state is specified by a 
total of 6n numbers. 

In the same way that we can think of a pair of numbers as specifying a 
point in a two-dimensional space like the plane of the paper, and of a trio of 
numbers as representing a point in three-dimensional space, we can say that 
the state of a system is represented by a point in 6n-dimensional real space. 
All that we mean by this is that 6n independent real numbers are needed to 
specify the state. This abstract 6n-dimensional space just consists of all 
possible sequences of 6n real numbers; it is called the phase space for the 
system. We denote the phase space by Q and the state of the system by w. 
Clearly, w E Q. 

For illustration I will often consider the simple case of a single particle 
constrained to move in one dimension. For this particle the phase space can 
be represented by a plane (that is, it can be drawn on the paper); specifica
tion of the x and y coordinates of any point in the plane picks out a possible 
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state of the particle by telling us its (single coordinate of) position, q, and its 
momentum, p; we have w = (q,p) . 

2. 2 Observables and Experimental Questions 

Let us look in more detail at the way, from Ile, A, and the present state of a 
system, its other properties are deduced. The total kinetic energy, for exam
ple, is determined by the kinetic energy of each particle, T, and this in tum is 
determined by its mass and its momentum. For each particle we have, 

1 
T = 

2m (pi + p: + pi) 

where m is the mass of the particle in question. I mentioned electrostatic 
potential energy in the last section. In contrast, kinetic energy is just the 
energy due to motion; the position coordinates of the particles are irrelevant. 
The kinetic energy of the whole system is just the sum of the kinetic energies 
of the individual particles. 

We call physical quantities like kinetic energy observables. Like most com
mentators, I find this usage unfortunate; like them, I will continue to employ 
it. The simplest examples of observables are position and momentum: their 
components can be read off from the state by looking at the appropriate 
coordinates. More generally, with each observable quantity A we associate a 
function f A which, for every point in the phase space (in other words, for 
every state of the system), gives us a real number, the value of A. In mathe
matical terms, to each observable A there corresponds a function f A :  Q --+ IR. 
Thus, in the case of the single particle moving in one dimension we have, 

2 
T = f T (q,p) = f m 

Most theoretically significant quantities in classical mechanics have a 
continuum of possible values, but experimentally, of course, we content 
ourselves with the rationals, and it is possible to construct artificial .I.I observ
able quantities" which take on only certain discrete values; an example is 
uthe observable whose value is 1 when the momentum is positive, and 0 
otherwise." To call such quantities uartificial" is not to dismiss them: any 
method of testing a system which just gives a yes/no (or pass/fail) answer 
measures an observable of this kind, and we can develop an alternative 
account of the notion of ustate" in terms of such tests. I will return to our 
simple example to show what is involved. 
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Any measurement made on a system yields answers to questions we can 
ask about it. If we obtain a measurement of kinetic energy, for example, we 
answer a whole set of questions of the form, .I.tis the kinetic energy greater 
than 1 ?'' ''Is the kinetic energy between 1 and 2?'' and so on. If we know the 
state of the system we can give a definite yes or no answer to each such 
question. We can now ask, uWhat does the state have to be in order that the 
kinetic energy shall lie between 1 and 2?" In this case the answer is that q can 
take any value but that IP I  must lie between ,J2m and 2fm, values which we 
obtain from the formula for kinetic energy given above. For a particle of unit 
mass (that is, for which m = 1) the region of the phase space for which either 
,J2m < p < 2Jm or - ,./2m > p > - 2fm is shown in Figure 2. 1 .  If, and only if, 
the state of the system lies within this shaded area can we say that its kinetic 
energy lies between 1 and 2. 

Similarly, for any question we care to ask, there is a region of the phase 
space that corresponds to it. Consider the vertical line on the diagram: this 
corresponds to the question, .I.tis the position of the particle 3 units to the 
right of the origin?" As the state of the system alters, the point representing 
it moves around the diagram, and at any time the answer to any experimen
tal question will be yes or no, depending on whether at that time the point 
lies within the corresponding region or not. Formally, we may regard any 
given state as acting as a two-valued function on the set of experimental 
questions, that is, as assigning to each question in the set either the number 1 

p 

............ _ ...... _., __ q 1 2 

-3 

Figure 2. 1 
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(for yes) or 0 (for no) . In this vein let us denote the question, ,,Does observ
able A have a value within �?" (where � is some subset of the reals) by (A,�), 
and the value assigned to it by the state by w(A,�), thus making it clear that 
w is a function. We then obtain 

w(A,�) = 1 if and only if fA(w) E � 

To see that this equivalence holds, consider the conditions under which 
each side is true. The left-hand side, w(A,�) = 1,  is true when the state of the 
system is such that the experimental question ,,(A,�)" - that is, the question 
,,Does the observable A have a value within �?" -receives the answer yes. 
But, on the right-hand side, fA(w) gives us the value of the observable A 
when the system is in state w; it follows that/A(w) E � just when w(A,�) = 1 .  

The experimental questions we deal with are all of the form (A,�), and to 
each of them corresponds a region, technically a subset of the phase space. 
Later on we shall be concerned with the algebraic structure of the set of 
experimental questions in classical mechanics; unsurprisingly, it has the 
structure of the set of subsets of a space. 

In the analysis above, the state appeared as a function mapping experi
mental questions into 1 (yes) or 0 (no). If this account of it seems willfully 
obscure, the following implausible narrative may be helpful. Two experi
menters, one in Moose Jaw and one in Medicine Hat, regularly receive 
consignments of identical physical systems. Both of them proceed in the 
same way: each new system is treated in some way or other ('"prepared") 
and then tested. Figure 2.2, which should be thought of as a pair of flow 

Preparation Test 
Pass 

Fail 

Pass 

Fail 
Figure 2. 2 Experiments in Moose Jaw and Medicine Hat. 
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charts rather than as sketches of experimental arrangements, shows the 
principle. Now imagine that each of the experimenters has a variety of 
methods of preparation at his or her disposal and that the methods they use 
are quite different. All methods of testing, on the other hand, are common to 
both, and all their tests are of the pass/fail sort. Clearly, they can soon find 
out whether, despite the differences in the modes of preparation, systems 
prepared using Method X by Medicine Hat Man are in effectively the same 
state as those prepared using Method Y by Moose Jaw Woman. They just list 
the tests run on these systems and compare the results. They will also find it 
convenient to refer to a prepared state not by specifying its method of 
preparation (since these are not common to both experimenters), but in 
terms of the test performances which identify it. Thus the state specification 
might read, ,,Test A, pass; Test B, pass; Test C, fail; . . ." and so on. But this 
is just to regard a state as assigning a value to each experimental question, in 
other words, to treat it as a function. To a set theoretician, in fact, a function 
is precisely a set of ordered pairs like those we have here. 

The two experimenters cannot know whether their specification of a state 
is complete, that is, whether there is no further test which, with additional 
equipment, would sort out some apparently homogeneous state still further. 
If their systems are classical, this knowledge would of course be available to 
them if they could establish the components of position and momentum for 
all the particles of their prepared systems. As we have seen, classical me
chanics tells us that all significant tests are tests of the values of various 
functions of these variables. 

From this discussion it seems that in classical mechanics we have two 
ways of thinking of the state of a system. We defined it as a sequence of 6n 
coordinates (where n is the number of particles in the system), each of which 
tells us a component of position or momentum of a particle. This can be 
regarded as a description of the system: the specification of the state is 
effectively a list of some of the system's properties. On the other hand, 
when we regard it as a two-valued function of the set of experimental 
questions, then we are drawing attention to the system's dispositions to 
behave in certain ways. The distinction between properties and dispositions 
may be challenged; all properties, it may be argued, are just dispositions to 
certain kinds of behavior. I will put this question to one side; for the present I 
will assume that such a distinction can be made (but see Section 1 0 .2). This 
granted, then the specification of the state in classical mechanics can be said 
to have two distinct aspects. As we shall see, in quantum mechanics this is 
less clearly so: while the specification of the state still serves to summarize a 
system's dispositions, its descriptive role is moot. 
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2. 3 States and Observables in Quantum Theory 

The states I deal with in this section are the so-called pure states of quantum 
mechanics; in Chapter 5 I extend the discussion to mixed states. In quantum 
theory a pure state of a system is given by a vector in a Hilbert space. For 
certain purposes we need not specify all the components of this vector: for 
instance, if we are only interested in the spin of an electron we need only 
look at two components, whereas if we are interested in observables which 
depend only on position and momentum we can disregard those compo
nents which refer to the spin. This is why for certain examples (those to do 
with spin) I shall use pairs of complex numbers to represent the state of an 
electron, while for others I shall represent its state by a function (which, as 
we saw in Chapter 1, is an element of a vector space of infinite dimension
ality). Effectively, an electron has both a spin-state and a position-state. 
When these states are pure, each of them can be represented by a vector; the 
spin-state vector lies in a two-dimensional Hilbert space and the position 
vector lies in an infinitely dimensional space. Both vectors are normalized, 
that is, of unit length. Because the spin-state and the position-state are 
independent, and much of what I say applies equally well to either, I will 
usually use the term "state" to refer to just one of them. I will call the Hilbert 
space in which any state is represented the state space for the system. 

Thus, as in classical mechanics, states are represented by points in a space. 
However, a classical phase space is finitely dimensional (unless electromag
netic field theory, which requires infinite dimensionality, is being consid
ered), whereas the Hilbert spaces used in quantum theory may be infinitely 
dimensional. Further, two different vectors u and v may both refer to the 
same state, if they both lie within the same ray (if, that is, there is a complex 
number c such that u = cv). Indeed, it is somewhat more precise to regard a 
ray as representing a pure state (and I will adopt this approach in Chapter 5), 
but at present the manipulations we perform will involve a representative 
vector from that ray, and so we take the vector itself to specify the state. 
And, as I have mentioned, it is assumed that the vector is normalized. 

The radical differences between classical mechanics and quantum me
chanics appear with the representation of observables. Instead of the real
valued functions of classical theory, quantum mechanics uses Hermitian 
operators in the Hilbert space to represent observables. Typical examples 
are the 2 X 2 matrices which represent the components of spin of a fermion, 
and the operators x and - id/ dx (on the set of square-integrable functions of 
x) which represent position and momentum, or, more strictly, their compo
nents in the x-direction. 
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Many but not all of these operators admit eigenvectors; as noted in Sec
tion 1 . 15, a notable exception is the positir:n. operator x. Such exceptions we 
will return to later; for the moment we wi.ti confine discussion to the opera
tors which admit eigenvectors, that is, to the case when, for the operator A, 
there are vectors v1 , v2 1 . . .  such that, for each i, Avi = aivi (and, since A is 
Hermitian, each ai is a real number). 

In these cases, the eigenvalues a1 , a2 1 • • • of the operator are the possi
ble values of the observable quantity which the operator represents. We can 
see immediately that this aspect of the theory gives us very different results 
from classical theory: instead of a continuum of possible values, the observ
ables we are now dealing with can have only certain specific values. A 
measurement of the observable A represented by A will yield a given value 
ai with certainty, provided that ai is an eigenvalue of A and that the state of 
the system on which the measurement is carried out is represented by the 
corresponding eigenvector. In general, however, the state, v, of the system 
will not be an eigenvector of A; in such a case we cannot say with certainty 
what the result of such a measurement would be. Inste i we assign to each 
eigenvalue (or possible value) of A a probability calculated as follows. 

Let vi be the eigenvector with ai as corresponding eigenvalue, and denote 
by Pf the projection operator onto the ray containing vi (see Figure 2.3). 
Then, according to quantum theory, the probability Pv(A,ai) that a measure
ment of A conducted on a system in state v will yield a result ai is given by 

(2. 1) Pv(A,ai) = (v lPfv) = 1Pfv l 2 

Figure 2.3 
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Since v is  normalized, we know from a previous discussion (Section 1 .6) that 
the inner product ( v lPfv ) can only take values 0 and 1 .  In other words its 
values are appropriate to probability measurements. 

As examples, consider the operators S. v Sy, and Sz used to represent three 
components of spin of a fermion. They have familiar matrix representations: 

s = .!.(? - i) y 
2 l 0 

These are just the spin matrices encountered in Section 1 . 7. Each operator 
has eigenvalues + ! and - !, and these eigenvalues are the only possible 
values of each component of spin of a fermion. (Note that we are working in 
natural units of spin, measuring spin in multiples of Planck's constant h.) 

The eigenvectors of S.x are the vectors X+ and x_ ,  where, as in Section 1 .7, 

Similarly, for Sy and Sz we have, respectively, 

1 ( 1 - i) Y+ = 2 1 + i 
1 ( 1 - i) y_ = 2 - 1 - i  

Z+ = (�) z_ = (�) 
Recall also that the projection operator Py+ onto the (one-dimensional) 
subspace spanned by y + is given by 

In Section 1 . 7 we found that (1) (Y+ IP y+Y+) = 1; (2) (y-IP y+Y-) = O; and 
(3) (X+ IP y+X+) = !. We can now interpret each of these results as the proba
bility that, when a measurement of a particular observable is carried out on a 
system in a certain state, one particular value will appear. In each of the 
three cases we are evaluating the probability that an Sy measurement will 
yield the result + !. The eigenvector of Sy with corresponding eigenvalue + !  
is Y+ , and so Py+ is the appropriate projection operator to use in Equation 
(2 . 1 ) .  The three results correspond to three different states of the particle, 
the states Y+, y_ ,  and X+ , respectively. In the first case a measurement of Sy 
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will yield +t with certainty (we say that Y+ is an eigenstate of Sy); in the 
second the probability of such a result is zero, and in the third the chances of 
such a result are fifty-fifty. Of course, the state of the particle need not be an 
eigenstate of any of these particular components of spin. For instance, it 
might be represented by the (normalized) vector 

Call this state u. Then we can quickly show that, if a measurement of Sy is 
performed 

1 49 
Pu(Sy , +t) = 50 and Pu(Sy , -t) = 50 

If a measurement of S:r or Sz is performed 

1 1 
pu(S:r , +t) = 2 and Pu(S:r , -t) = 2 

9 16  
Pu(Sz , +t) = 25 and Pu(Sz , -t) = 25 

(*) 

In each case, there are only two possible outcomes, and so the probabili
ties of these outcomes add to unity. 

Before dealing with operators which do not admit eigenvectors, I will 
amplify a remark made earlier. 

We denote by Lf the one-dimensional subspace containing the eigenvec
tor vi of the operator A, to which corresponds the eigenvalue ai . Briefly, Lf is 
the subspace onto which Pf projects. Then a measurement of A yields ai 
with certainty if, and only if, the vector v representing the system's state lies 
within Lf . In that case Pfv = v, and 

Pv(A,ai) = (v lPfv) 

= (v lv) 

= 1 

With this result in mind, we can now extend the discussion to include 
those operators which, like the position operator x on the Hilbert space of 
square-integrable functions of x, admit no eigenvectors. The possible values 
of position lie anywhere along a continuum, and the operator has a continu-
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ous spectrum (see Section 1 . 15). But, whatever species of observable we are 
dealing with, the following holds true. 

Let A be an operator representing an observable A. Then to each interval 
Ll on the real line there corresponds a subspace L� of the Hilbert space, such 
that a measurement of A yields a value within Ll with certainty if and only if 
the state v of the system lies within L� . Let P� be the projector onto L� . The 
expression (2 . 1 ) for the probability of a particular experimental outcome 
now has a straightforward generalization. We write Pv(A,il) for the probabil
ity that a measurement of the observable A conducted on a system in state v 
will yield a result in the interval il, and obtain 

(2. 2) Pv(A,Ll) = (v lP�v) 

This is the fundamental equation, sometimes called the statistical algo
rithm, of quantum mechanics, relating experimental outcomes to the prob
abilities of their occurrence. What are the projectors P�? They are the op
erators we met at the end of Section 1 . 15, belonging to the spectral 
decomposition of A. 

At the risk of tedious repetition, let me review what has been said, once 
more using the Pauli spin matrices to illustrate the general result. In quan
tum mechanics all observable quantities are represented by Hermitian oper
ators on a state space 7i. Associated with each such operator A is a family 
{P� : Ll E.13(�)} of projectors on 7i. If two subsets Ll and r of the reals are 
disjoint (have nothing in common), then two projection operators P� and P� 
project onto orthogonal subspaces. (The converse, however, is not true.) In 
the case of the spin matrix Sy , there are just four projectors in the family, 
corresponding to these four cases: 

( 1 )  If - t  � Ll and + t  � Ll, then P� = P0 ; 

(2) if - t  E Ll and + t  � Ll, then P� = Py- ; 

(3) if - t  � Ll and + t  E il, then P� = Py+ ; 

(4) if - t  E Ll and + t  E il, then P� = I . 

When Ll contains both + t  and - t, as in case (4), the projection operator P� 
is the identity operator, which maps every vector in 7i onto itself; it is the 
projector onto the whole space. In case (4), for any pure state v, Pv(Sy ,il) = 
(v l lv) = (v lv) = 1 .  Experiments are certain to yield a result within il, since 
each outcome is either + t or - t. When Ll contains neither of these numbers, 
as in case (1 ), the projection operator is the zero operator, which maps all 
vectors onto the zero vector. In this case we have, Pv(Sy ,il) = (v lP0v) = 
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(v lO)  = 0. The interpretation of this result is obvious. In cases (2) and (3), Ll 
contains just one eigenvalue of Sy ; in these cases the projectors P� are the 
projection operators onto the rays containing the corresponding eigenvec
tors, and so (2.2) reduces to (2 . 1  ): 

[case (2)] 

[case (3)] 

The generalization of this example, to the case of an arbitrary Hermitian 
operator which admits eigenvectors, is straightforward. Consider, for in
stance, an operator A admitting .eigenvectors v1 , v2 1 . . .  , with corre
sponding eigenvalues a1 , a2 , • • •  Then for any interval Ll on the real line 
which contains just one of these eigenvalues, ai· say, we have P� = Pf , 
where Pf projects onto the one-dimensional subspace containing vi . If Ll 
contains just ai and ai , then P� projects onto the two-dimensional subspace 
spanned by vi and vi , and so on. 

With complete generality, whether we are dealing with an observable 
with a discrete or with a continuous spectrum, we can say that to each 
question of the form, "Will a measurement of A on the system yield a result 
in the interval il?" there corresponds a projection operator P� onto a sub
space L� of the appropriate phase space. The subspace L� (or, equivalently, 
the projector P�) can be said to represent the experimental question (A,il). 
Now, when the idea of an experimental question was introduced in the 
discussion of classical mechanics, each such question corresponded to a 
subset rather than to a subspace of the state space (indeed, the notion of a 
subspace applies only to vector spaces) . In the classical case, a knowledge of 
the state enables us to answer yes or no to each experimental question 
(depending on whether or not the point representing the state lies within the 
relevant subset of state space). We said that the state acted as a two-valued 
measure on the set of experimental questions. In contrast, knowledge of the 
quantum-theoretical state only enables us to give a definite yes or no in a 
few special cases. In general, the state gives us the probability of a certain 
result: the state is effectively a probability function on the set of experimen
tal questions, giving to each question a value in the (closed) interval from 0 
to 1 .  

Let us express this formally. To the question "Will a measurement of A 
yield a result in the interval il?" there corresponds a subspace L� of the 
Hilbert space. Let P� be the projection operator onto L� . Then each state v of 
a system defines a functionJlv such that 0 < Jlv(L�) < 1 ,  namely, the function 
such that Jlv(L�) = (v lP�v) = Pv(A,Ll). 

In quantum mechanics there are strong reasons for denying that specify-
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ing the state does more than assign probabilities to experimental questions. 
On this view, the function� is conceptually prior to the vector v; this vector 
then appears as a convenient mathematical way to represent the function in 
question, and, whereas in classical mechanics the state could be said to have 
both a descriptive and a dispositional aspect, in quantum theory the de
scriptive aspect disappears and we are left with the dispositional aspect 
alone. 

This is a view which, ultimately, I will reject (see Section 10 .2), but it is 

Table 2. 1 States and observables in classical and quantum mechanics 

State space 

Pure state 

Observable A 

Possible values of 
observables 

Experimental question, 
"Will measurement of 
A yield result in L1?'' 
Answer to question 

Alternative way to 
regard state 

Classical mechanics 

6n-dimensional real 
space, n (the phase 
space) 

Point in phase space: 
<.o E Q  

Real-valued function on 
phase space f A :  n --+ R 
Range (/A), usually a 
continuum 

Subset of phase space 
fA.1 (L1) c n 

Yes/no answer: 
yes if and only if 
f A(ro) E L1 
Two-valued function on 
set of experimental 
questions 

Quantum mechanics 

Hilbert space (complex 
vector space) often 
infinitely dimensional 

(Normalized) vector in 
state space: v E 7t, 
lvl = 1 

Hermitian operator on 
state space A: 11--+ 7t 
Two cases: 
(1)  A has a discrete 
spectrum (admits 
eigenvectors); possible 
values are eigenvalues 
of A 
(2) A has a continuous 
spectrum (no eigenvec
tors); continuum of 
possible values 

Subspace of state space 
LA C 7t � -

Probability answer: 
Pv(A,L1) = (vlP�v) 

Function mapping 
experimental questions 
into [0,1] 
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true that there is no obvious analogue in quantum theory for the equation 
w = (p,q) of classical mechanics, which specifies the state in terms of the 
properties of the system. On this, more later; this is a good point at which to 
pause and summarize what has been said. To this end, Table 2. 1 sets out the 
main differences between the mathematical representation of quantum 
theory and that of classical mechanics. 

2. 4 Probabilities and Expectation Values 

Two short mathematical notes appear as addenda to the previous section. 
Both show how we can use the fundamental Equation (2 . 1 ) to get further 
results. 

The first applies whenever we have a Hermitian operator, A, with a 
discrete spectrum. Then a set of normalized eigenvectors, v 1 ,  v 2 1 • • • , 
spans the whole space; for simplicity I will assume that the corresponding 
eigenvalues, a1 ,  a2 , • • •  , are all distinct (that there is no degeneracy) . It is 
trivial to show that in that case the eigenvectors are all mutually orthogonal, 
as noted in (1 .3 1 ). Since they span the whole space, we have, for any vector 
v, v = c1v1 + c2v2 + . . .  , and their orthogonality guarantees that the 
values of the complex numbers, c1 ,  c2 , • • • , are uniquely determined for a 
given v, and also that �i lci l 2 = 1 ,  provided v is normalized. 

We now obtain a very simple expression for Pv(A,ai), the probability that a 
measurement of A upon a system in state v will yield result ai : in this case, 

The proof is simple. Let Pi be the projection operator onto the one-dimen
sional subspace spanned by the eigenvector vi . Since the eigenvectors are 
mutually orthogonal, we have Piv = civi .  It follows that 

Pv(A,ai) = (v lPiv) 
= (v lPiPiv) 
= (Piv lPiv) 
= ( civi lcivi) 
= C·* (v- lc -v-) I I I I 

= c -*c -(v - lv -) I I I I 

= C ·*C · I I 

[by (2 . 1 )] 

(idempotence, by (1 .26)] 

(Hermiticity, by (1 .26)] 

[normalization] 
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The second result is an expression for the expectation value of an observ
able, that is, the average value we would expect to obtain if we measured the 
value of A in a large number of trials on systems all of which were in the 
same state. 

We denote the expectation value of A by (A) .  It is obtained by weighting 
each possible outcome, ai , of the measurement by its probability pv(A,ai). As 
before, we confine ourselves to those observables with a discrete spectrum; 
en route to our conclusion we use a result argued for at the end of Section 
1 . 14, that, for an operator A admitting eigenvectors, A =  LiaiPi (where Pi 
projects onto the space spanned by the eigenvector vi , as before). 

We have, then, 

(A) = LPv(A,ai)ai 
i 

= L<vlPiv )ai 
i 

= (v lLaiPiv) 
i 

(by the properties of the inner product), and so 

(2. 4) (A ) = (v lAv) 

Clearly, although it does not appear in the conventional notation, (A) is a 
function of v. 

Those with a taste for such things may note that the summation sign 
appears in three distinct usages in this brief derivation; I leave to them the 
task of justifying these procedures. 

More important, note that although (2 .4) was derived only for an operator 
with a discrete spectrum, it also holds quite generally. The general case, of 
course, would involve deriving (2 .4) from (2 .2) rather than from (2 . 1 ) .  

Note also that, in our presentation of quantum theory, we could have 
postulated (2 .4) rather than (2 . 1  ); in fact, when A is the projection operator 
Pi , (2 . 1 ) appears as a special case of (2 .4). A projection operator (and the 
subspace it projects onto) acts as an experimental question, which, as we 
saw in Section 2.2, is a special kind of observable. To (Pi , 1 )  corresponds the 
question, "Will a measurement of A yield the result ai?" Pi is thus the 
observable whose value is 1 when the measurement of A yields ai and 0 
when the measurement yields any other result. (Recall that the eigenvalues 
of any projection operator are 1 and 0.) Its expectation value is the weighted 
average of yes and no answers it elicits, the probability, in other words, that 
a measurement of A will yield ai . Thus (Pi) = pv(A,ai), and since, from (2 .4), 
(Pi) = (v lPiv) ,  we obtain Equation (2 . 1 ) :  pv(A,ai) = (v lPiv) . 
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2. 5 The Evolution of States in Classical Mechanics 

Both classical mechanics and quantum mechanics specify how the state of a 
system evolves with time. Obviously, at any instant that a classical system 
has a nonzero momentum, its position is changing with time, and under the 
action of a force it will change its momentum. The forces dealt with by 
classical mechanics are those, like gravity, which depend on the relative 
positions of pairs of particles or the position of each particle in a field of 
forces. In the Hamilton-Jacobi treatment of the evolution of states, talk of 
such forces is replaced by talk of energy, and anything that can be said in 
terms of the former can also be said in terms of the latter; for instance, if we 
have a particle on the end of a spring, we can specify the behavior of the 
spring- and hence the motion of the particle - either in terms of the force 
needed to stretch or compress it by a given amount, or in terms of the 
mechanical energy stored in it when we do so. 

Like any other property of the system, its total energy is determined by its 
state. It is a function of the position and momentum coordinates of the 
particles comprising the system. Write q for the sequence of the numbers 
giving all the (components of) position coordinates for the particles, and p 
for the sequence giving all the momentum coordinates; then (q,p) specifies 
the point in phase space which represents the system's state. Thus we have 

Total energy = H(q,p) 

where H is a function known as the Hamiltonian function for the system. 
It is this function which dictates how the state of a classical system evolves 

through time. Since the state is specified by 6n coordinates, to establish how 
it changes with time we need to know how each coordinate changes. It turns 
out that their rates of change can be elegantly expressed by Hamilton's 
equations, simple formulae involving the Hamiltonian function H. The rate 
of change of any position coordinate qi (for example, the y-coordinate of 
position of the mth particle) is expressed in terms of the dependence of H on 
the corresponding momentum coordinate (in the example, the y-coordinate 
of momentum of the mth particle), and conversely. For the whole system we 
have 3n pairs of equations: 

(2. 5) dqi 
= 

aH 

dt api 

Note that H is assumed to be differentiable, a point I will return to in the next 
section. Provided that this assumption holds, the coordinates which specify 
the state of the system at any time t appear as solutions to this set of 
differential equations. 
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Just to see the theory in action, let us take a particularly simple example. 
Consider a system consisting of a single particle moving in one dimension, 
along a line. Assume further that this particle is in a force field such that the 
forces it experiences are just those it would experience were it on the end of a 
spring; in fact, we will talk as though that were the case. For simplicity, we 
set the origin of our coordinate system to be the point occupied by the 
particle when the "spring" is unextended, that is, when the force on it is 
zero. (See Figure 2 .4 .) 

Since we have a single particle moving in one dimension, two numbers, q 
and p, suffice to specify the state. The phase space for the particle is a 
two-dimensional space representable in the plane of the paper. As the 
particle oscillates to and fro under the influence of the ''spring,'' the energy 
of the system at any instant is the sum of the kinetic energy of the particle, 
p2 /2m, and the energy stored in the "spring," kq2 /2, where p is momentum, 
m is mass, k is the force on the particle per unit displacement from the origin 
(numerically, the force needed to stretch the "spring" a unit distance), and q 
is the position coordinate. We have, then, 

2 k 2 
Total energy = H(q,p) = L + _.!!.__ 

2m 2 

It follows that 

dq = aH = ]!_ 
dt ap m 

dp aH - = - - = - kq 
dt aq 

A propos of these equations, note that dq/dt is the rate of change of 
position with time -in other words, the velocity v of the particle - and also 
that p = mv; thus the left-hand equation informs us that v = v, which is 
reassuring, if not very enlightening. Note, however, that the right-hand 
equation yields Newton's second law of motion, since kq is the force pushing 

I I 

--- 1 --···•·w t hw .... a q 
I 

I 
q=o 

Figure 2. 4 
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q 

Figure 2.5 Variation of position and momentum with time. 

the particle back toward the origin. More relevant to our present concerns is 
that these equations govern the evolution of the system's state. Assume for 
argument's sake that the particle is displaced by a distance d and instanta
neously at rest at the time t = 0, so that its initial state is (d,O). Then the 
equations tell us that the particle's position and momentum as time goes on 
are given by the graphs shown in Figure 2.5 .  To put this another way, as 
time goes by the state of the particle will follow the trajectory in phase space 
shown by Figure 2.6; in the absence of retarding forces like friction, this will 
be an ellipse. 

2. 6 Determinism 

In the last decade of the eighteenth century, the Marquis de Laplace wrote: 

We ought then to regard the present state of the universe as the effect of its anterior 
state and as the cause of the one which is to follow. Given for one instant an 
intelligence which could comprehend all the forces by which nature is animated and 
the respective situations of the beings who compose it- an intelligence sufficiently 
vast to submit these data to analysis -it would embrace in the same formula the 
movements of the greatest bodies of the universe and those of the lightest atom; for 
it, nothing would be uncertain, and the future, as well as the past, would be present 
to its eyes. (1951 [1814], pp. 3-4) 

In this way he formulated the doctrine of determinism, the doctrine that, 
given the present state of the world, all future events are inexorably deter-
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mined by the laws of nature. Laplace put this metaphysical thesis in episte
mic terms by talking of the knowledge available to a "supermind"; this 
supermind could work out the answer to any question about the future or 
the past if it had a complete description of how things are now- the 
"situation of the beings" who comprise the world- and the forces which 
determine how the world changes with time. 

The epistemic thesis is stronger than the metaphysical one. The meta
physical thesis is that (1)  there is exactly one state w1 of the world at time t1 
which is physically compatible with its state w0 at t0 (t1 > t0); further, (2) 
these states, w0 and w1 ,  determine the values of all physical quantities in the 
world at the times in question. The metaphysical thesis might be true, and 
the epistemic one false: w1 might not be calculable from w0 , even by a 
supermind. (For a discussion, see Earman, 1986, chap. 2.) Both theses have 
been associated with the classical world picture. Indeed, the stronger, epi
stemic, thesis finds precise expression in the Hamilton-Jacobi version of 
classical mechanics. Or so it would appear. 

Consider a system of particles. We may think of the specification of its 
state as a precise formulation of what Laplace meant by the "situation of the 
beings" which comprise it. In order to know all there is to know about the 
present, a Laplacean supermind would have to know the state of the entire 
universe. To deduce from this a description of the universe at any time in the 
past or future, this supermind would need in addition to "comprehend all 
the forces by which nature is animated," or, equivalently, to know the 
Hamiltonian function for the entire cosmos. 

Our minds, alas, fall short of the Laplacean ideal. Given a system of any 
complexity, the Hamiltonian may be impossible for us to ascertain, or too 
cumbersome for us to employ. Nonetheless, Laplace's vision can, and in
deed did, function as a regulative ideal for classical physics. That is to say, a 
metaphysical presupposition, that the universe is deterministic, can govern 

p 

Figure 2. 6 Trajectory of state of particle through phase space. 
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the search for scientific laws. And even our finite intelligences can work out 
what happens to a particle on the end of an (ideal) spring, as the example in 
the previous section shows. We obtained the graphs in Figure 2.5 by solving 
Hamilton's equations. Because Hamilton's equations are first-order differ
ential equations, they can only be solved within a constant term; to obtain 
unique solutions we plug in the particular values of p and q at one specified 
time (in this case, when t = 0). But from the resulting graphs we can now 
read off the state of the particle (qt,Pt) at any time t in the future, and from 
this state we can deduce all its (mechanical) properties at that time. All this 
knowledge is available to us through our knowledge of " the forces by which 
nature is animated" (or, equivalently, the Hamiltonian for the system we are 
looking at), and the "situation of the beings who compose it," in this case the 
initial state of the single particle involved. 

We can see why Laplace took the universe to be both classically governed 
and deterministic, but the link between the two is not as clear-cut as he 
assumed; the laws of classical physics do not entail the thesis of determi
nism. As Earman (1986, chap. 3) has pointed out, classical physics can be 
made deterministic only by the adoption of seemingly ad hoc assumptions. 
Such assumptions are needed, for example, to ensure that the universe is a 
closed system; within a framework of Newtonian space-time, they turn out 
to be deeply problematic. Thus, far from entailing the deterministic thesis, 
classical physics may not even be compatible with it. 

Here I will set these fundamental problems on one side and merely 
indicate how less problematic, but certainly nontrivial, assumptions must be 
made if the Hamilton-Jacobi formulation of classical mechanics is to be a 
deterministic theory. 

If the state of a classical system of n particles is to evolve deterministically, 
then all 6n differential equations describing this evolution must have unique 
solutions for any time t. To guarantee this, H must be continuously differ
entiable (more precisely, it must be differentiable in principle) with respect 
to q and p for all physically possible states of the system. The curves showing 
the variation of H with each position and momentum coordinate must be 
smooth, and exhibit no singularities. This is not an empty requirement. It 
rules out, for instance, the view that atoms are incompressible spheres of a 
certain definite radius which exert forces on each other only when they 
touch. If they were, then the graph representing the force exerted by one 
atom on another would leap incontinently to infinity as they made contact, 
and the requirement would be violated (see Figure 2.7). On the assumption 
that classical mechanics is true, this would mean not merely that no solu
tions to the set of equations governing the evolution of the universe were 
calculable, either by our finite minds or by a supermind, but that no unique 
solutions to these equations existed. Both versions of the thesis of determi-
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Figure 2. 7 Force-distance graphs for Oeft) incompressibl� and (right) compressible 
spheres. 

nism, the epistemic and the metaphysical, would fail to hold; there could be 
(at least) two distinct states of the world at time t1 , both of which were 
compatible with a given state at t0 • 

2. 7 The Evolution of States in Quantum Mechanics 

Like classical mechanics, quantum theory tells us how the state of a system 
evolves with time. The key role in the equation governing this evolution is 
played by an operator rather than by the Hamiltonian function, in line with 
the general principle that, in quantum mechanics, operators represent phys
ical quantities. As in the classical case, the quantity in question is the total 
energy of the system; it is represented in quantum theory by a Hermitian 
operator H which we call the Hamiltonian operator for the system. The rate 
of change of the state v of a system is given by 

(2. 6) ih av = Hv 
at 

and this equation is known as Schr6dinger's time-dependent equation, or 
sometimes simply as Schr6dinger's equation. 

There is an equivalent way to describe what happens as time goes on. It is 
possible to use H to construct an operator Ut which, as the notation implies, 
is a function of the time. We use this operator to obtain a simple expression 
for the state vt of a system at some time t in  terms of its present state v0: 

(2. 7) vt = Utvo 
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Ut is the sum of an infinite series of operators: 

Each term in this series is well defined in the algebra of operators, and the 
series converges. Its sum is more easily expressed (see Section 1 .5) as 

(2. Bb) ut = e-itH/h 

Ut is not Hermitian; it is a unitary operator. 

(2. 9) We say that U is a unitary operator on CV if U is a linear operator on CV 
which has an inverse, u-1 , such that uu-1 = I = u-1u, and, for all v 
in CV, IUvl = lv l. 

Unitary operators are the analogues in complex spaces of rotation operators 
on �2 and �3 • They leave the lengths of vectors unchanged; thus if v0 is 
normalized, so is Utvo = vt ; a pure state evolves into a pure state. 

The details of the calculation in Equations (2 .8  a-b) need not concern us. 
The important point brought out by Equations (2 .8) and (2 .9) is that, since Ut 
is determined by the operator H and the time t, the future state is uniquely 
specified by these two quantities and the present state. 

Thus, as far as the evolution of states is concerned, quantum mechanics 
seems thoroughly Laplacean. How is it, then, that the theory is usually taken 
to model an indeterministic world? The answer lies in the relation between 
the quantum state and the values assigned to physical quantities. Recall 
from Section 2. 6 that a deterministic theory is one that ( 1 )  not only specifies 
uniquely the evolution of a system's state, but (2) also assigns, via the state, 
values to all the physical quantities associated with a system. Quantum 
theory fulfills the first requirement, but not the second. As I remarked in 
Section 2.3, a crucial difference between quantum theory and classical 
mechanics is perhaps this: whereas classical states are essentially descrip
tive, quantum states are essentially predictive; they encapsulate predictions 
concerning the values that measurements of physical quantities will yield, 
and these predictions are in terms of probabilities. 

But a bit more needs to be said. It's also true of classical mechanics that the 
state descriptions it supplies yield predictions about the values that observ
ables will be found to have. Ideally, however, the probability assigned to 
any experimental question by a pure state of classical theory will be either 1 
or O; classically, probabilities can take values between 0 and 1 either because 



States and Observables in Quantum Mechanics 79 

measurement processes are less than ideal or because information about the 
state is less than complete. In the quantum case, even given ideal measure
ments and a precise specification of the state, we obtain nonextremal values 
of probability. 

Thus, in the state-space models we supply for determinist (classical) pro
cesses on the one hand and inherently probabilistic (quantum) processes on 
the other, the distinction between them appears neither as a radical diver
gence between accounts of the evolution of states, nor simply as a distinc
tion between descriptive and dispositional accounts of states. It appears as a 
difference between the kinds of predictions a state makes available. Only in 
the determinist case are these predictions, as we say, dispersion-free. 

But at this point we can scent a problem. Assume we have a quantum 
system Q and a measurement apparatus M. If the measurement process is to 
conform to quantum theory, we would expect the state of the coupled 
system Q + M to evolve according to Schrodinger's equation, that is, deter
ministically; nothing so far suggests that a complex system offers an excep
tion to that equation. But if we associate different experimental results with 
different states of M (its "pointer readings"), and if the evolution of Q + M is  
deterministic, how is it that results have probabilities other than 1 or O? I 
postpone discussion of this question to Chapter 9; for the present, a faint 
whiff of the problem of measurement can be left to hang in the air. 

2. 8 Theories and Models 

Table 2. 1 shows how states and observables are represented in quantum 
theory; in Section 2 .7  we saw how the time-evolution of states is expressed 
in terms of the action of a family of unitary operators on the vector repre
senting the state. Quantum mechanics, we may say, uses the models sup
plied by Hilbert spaces. 

Implicit in this way of presenting quantum mechanics is a general account 
of scientific theories. A theory T displays a set of models within which the 
behavior of ideal "possible systems" (or "T-systems") can be represented. 
For a realist, at least, to accept T is to say that there exist actual systems 
which are T-systems. (For an antirealist but still model-theoretic view, see 
van Fraassen, 1980.)  The actual solar system, for example, is (approxi
mately) a Newtonian system, that is, a system representable within the math
ematical models supplied by the theory of classical mechanics. A system S is 
a quantum system if the behavior of S is representable within a Hilbert-space 
model in the way I have outlined. 

This model-theoretic account of a scientific theory is by no means 
original - it can even be called "the new orthodoxy" in the philosophy of 
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science. (See Suppes, 1967; Giere, 1979; Suppe, 1977, pp. 221 - 230.) It 
stands in contrast to "the received view" (the phrase is Putnam's: Putnam, 
1962), which takes an axiomatic approach to theories and emphasizes the 
role of theoretical laws (see Suppe, 1977, pp. 3 - 61 ). While I don't quite 
share Schopenhauer's view of the Euclidean method (it is, he said, as if a 
man were to cut off both legs in order to be able to walk on crutches; 
Blanche, 1962), I would reject any claim that an axiom system is the ideal, 
canonical form for the expression of a scientific theory. The point is this. For 
any axiom system there exists a class of models; Peano's axioms for arith
metic, for example, have as a model the set of natural numbers. And within 
science we are not interested in axioms for their own sake, but in the class of 
models they define. It does not matter how this class is specified, provided 
that the specification is precise. When we investigate a theory, demands 
typical of the axiomatic approach -like the requirement that the specifica
tion be expressed in a first-order language, or that the predicates of this 
language be divided into two classes, observational and theoretical -give 
undue prominence to linguistic matters and are extraneous to our concerns. 
Thus van Fraassen (1980, p. 44): 

The syntactic picture of a theory identifies it with a body of theorems, stated in one 
particular language chosen for the expression of that theory. This should be con
trasted with the alternative of presenting a theory in the first instance by identifying 
a class of structures as its models. In this second, semantic, approach the language 
used to express the theory is neither basic nor unique; the same class of structures 
could well be described in radically different ways, each with its own limitations. 
The models occupy center stage. 

But when we say that quantum theory uses the models supplied by 
Hilbert spaces, what sort of models are these? They are models in two 
apparently dissimilar senses. In the first place, they are models as that term 
is used in contemporary mathematics; in other words, they are mathemati
cal structures of the kind described in Section 1 .8, containing sets of ele
ments on which certain operations and relations are defined. More surpris
ingly, they are also models in the way that a Tinkertoy construction can be a 
model of the Eiffel Tower. Just as a point on the model can represent a point 
on the tower, so, for example, an operator on a Hilbert space can represent a 
physical quantity. 

The two senses are linked in the following way. When we recognize that 
the Tinkertoy model is a model of the Eiffel Tower, we not only see that 
points on the model represent points on the tower, but also that certain 
important relations are preserved in this representation; for example, we 
would expect the ratio of the overall height to the length of one side of the 



States and Observables in Quantum Mechanics 81 

base to be the same for both the tower and the model. That is to say, we 
expect the tower and the model to be isomorphic. But isomorphic structures 
are just the subject matter of model theory in the first, mathematical, sense. 

The outline of quantum theory given in this chapter uses the mathemati
cal structure of Hilbert space (a model in the first sense) to provide a repre
sentation (a model in the second sense) of the behavior of systems. This 
behavior has itself been described in very abstract terms; there is a wide gap 
between the way a working physicist uses quantum theory and the account 
of the theory I have offered. Of such accounts, Cartwright (1983, pp. 135 -
136) says, 

One may know all of this and not know any quantum mechanics. In a good under
graduate text these . . .  principles are covered in one short chapter. It is true that 
the Schrodinger equation tells how a quantum system evolves subject to the Hamil
tonian; but to do quantum mechanics, one has to know how to pick the Hamiltonian. 
The principles that tell us how to do so are the real bridge principles of quantum 
mechanics. 

Cartwright gives an instructive account of how an inventive physicist 
bridges the gap by using models of particular processes "to hook up phe
nomena with intellectual constructions" (p. 144). "To have a theory of the 
ruby laser, or of bonding in a benzene molecule," she says, "one must have 
models for those phenomena which tie them to descriptions in the mathe
matical theory" (p. 159). These models, however, have a very different 
function from the mathematical model in which we represent states and 
observables. They are essentially models in the second, Tinkertoy, sense, 
which represent actual entities, like a ruby laser, in terms of fictional ele
ments ("two-level atoms" in this instance) whose behavior is amenable to 
theoretical treatment. These are just useful representations, simulacra of 
what they represent, and are contrasted with the underlying mathematical 
theory: ''a model - a  specially prepared, usually fictional description of the 
system under study - is employed whenever a mathematical theory is ap
plied to reality . . .  Without [models] there is just abstract mathematical 
structure, formulae with holes in them, bearing no relation to reality" (pp. 
158 - 159). This view of the mathematical theory is at odds with my sugges
tion that the mathematical models supplied by Hilbert spaces are also re
presentational. Such models are not simulacra, nor are they to be contrasted 
with the theory; in fact, to present the theory is just to exhibit this class of 
models. In what sense, then, are they more than "abstract mathematical 
structures"? What, we may ask, do they represent? 

Well, to ask this question is precisely to seek an interpretation of quantum 
theory. When we construct models of the Eiffel Tower or of the ruby laser, 
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we start from these objects and proceed to the task of model building. In the 
case of quantum theory, we have certain notions like "state" and "observ
able" which find a representation in the model. Antecedent to the theory, 
however, these are very insubstantial concepts. We rely on the theory's 
models to tell us how they are to be understood. The process of interpreting 
quantum theory is thus the reverse of that of building a model of a preexist
ing object. We judge our models of the Eiffel Tower and the ruby laser by 
how well they represent the objects modeled. When we try to interpret 
quantum theory we assume that the representation the theory offers is a 
good one and ask Feynman's forbidden question: what sort of world could it 
represent? In the most abstract, perhaps metaphysical sense, what must the 
world be like, if it is representable by the mathematical models that quan
tum theory employs? 



3 
Physical Theory and 
Hilbert Spaces 

The previous chapter outlined, in rather summary fashion, the way Hilbert 
spaces supply mathematical models for quantum theory. In fact, Hilbert
space theory was developed for just this purpose. If someone were to ask, 
"Why Hilbert spaces?" we might think the question a little peculiar; the 
obvious answer would be, "Because that's the way the world is." But we 
can refine the question, and ask what it is about the mathematical theory of 
Hilbert spaces which makes it clearly suitable for the representation of the 
physical world. More specifically, given the task of representing the quan
tum world within a mathematical framework, why might we tum to Hil
bert-space theory? 

The example of classical mechanics shows us that there are possible 
representations of physical theories which do not involve Hilbert spaces. Of 
course, this doesn't mean that classical mechanics could not be reformulated 
in this way. In fact, our strategy for providing a partial answer to the 
question, "Why Hilbert spaces?" will be to show that the theory of vectors 
has very general application. We will take as an example a particular physi
cal situation and model it mathematically. The situation will be paradig
matically of the kind with which physical theory deals, but our description 
will be general enough to leave open the question of what sorts of processes, 
deterministic or indeterministic, are involved. Similarly its representation, 
in terms of a vector space, will be general enough to be employed for a 
variety of physical theories; the particular features of quantum mechanics 
on the one hand, or classical mechanics on the other, will then appear as 
additional constraints on these mathematical structures. 

The key to the representation is the fact that Pythagoras' theorem, or its 
analogue, holds in any vector space equipped with an inner product. Con
sider the space �3. For any vector v in �3, 
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Here v .x ,  v y ,  and v z are the projections of v onto an orthogonal triple of rays 
spanning �3 - or, as we can call them, the axes of our coordinate system (see 
Figure 3 . 1  ) . 

Pythagoras' theorem tells us that 

and so, if v is  normalized, 

Let us now assume that we wish to represent three mutually exclusive 
events that together exhaust all possibilities, and that each event has a 
certain probability. For instance, if we were rolling a die, the events might 
be: x = die shows even number; y = die shows 1 ;  z = die shows 3 or 5 .  If we 
use the axes of �3 to represent the events x, y, and z, we can construct a 
normalized vector v to represent any probability assignment to these events. 

We simply take vectors V.x , Vy , and Vz along these axes such that lvxl 2 = 
p(x), lvy l 2 = p(y) and lvz l 2 = p(z), and then add them (vectorially) to yield v. 

Since the events x, y, and z are mutually exclusive and jointly exhaustive, 
we know that p(x) + p(y) + p(z) = 1 and it follows from (3 . 1 ) that v is 
normalized. 

This almost trivial construction lies at the heart of the use of vector spaces 
in physical theory. 
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Figure 3. 1 
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3.1 Minimal Assumptions for Physical Theory 

In developing our general representation of a physical theory we start from 
one assumption, that the world is such that in certain specifiable circum
stances various events can be assigned definite probabilities. I take this 
assumption to be minimal if we are to have any physical theory at all : we 
assume that there are links, albeit only probabilistic ones, between one set of 
occurrences (the initial circumstances) and another (the resulting events). 

If the world were fully determined then the assumption would still hold, 
although ultimately all the probabilities involved would take either one or 
zero as values. 

To place our theory in a specific context, let us imagine modified versions 
of the schematic experiments described in Section 2.2 .  In each of those 
experiments, a preparation of a system was followed by a test, and the result 
of this test was assumed to depend on the mode of preparation. The tests 
were all of the pass/fail kind, and it was tacitly assumed that a given method 
of preparation would always yield the same test results. We may relax both 
these conditions. We will consider a test for which there are a number of 
possible outcomes: for present purposes we will assume their number to be 
at most denumerably infinite, so that they may be labeled x1 , x2 , x3 , and so 
on. This allows us to consider any test which involves assigning a rational 
number to some physical quantity (indeed, it goes beyond the bounds of 
physical plausibility). Further, we will assume that there is a statistical 
correlation between a given mode of preparation and a particular outcome; 
in other words, that once a system has been prepared, each outcome xi 
acquires a certain probability p(xi) whose value depends on the method of 
preparation used. 

The question arises whether, by talking in terms of these schematic ex
periments, we introduce additional assumptions, thereby losing the gener
ality of approach we are after. In particular, are such assumptions brought 
into play by our talk of a system, which is first to be prepared and then 
tested? As long as we talk only of one particular preparation-measurement 
procedure, they are not. Effectively, all we are assuming is that there is a 
physical interaction between one piece of equipment, the preparation appa
ratus, and another, the measurement apparatus; we express this by saying 
that a system prepared by one is tested by the other, but this could be 
thought of purely as a figure of speech. 

Perhaps the situation becomes more problematic when we discuss how 
experimental outcomes using one apparatus are related to outcomes from 
another. Certainly the term system then refers (or, to the scrupulous, appears 
to refer) to whatever is in common between two, possibly very different, 
preparation-measurement procedures. But this just shows that the minimal 
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assumption we started with, that in certain circumstances various events 
can be assigned definite probabilities, does not, on its own, ground the 
activity of theorizing. If indeed talk of "systems" betrays a second assump
tion, that there can be something in common between two different pro
cesses, this is scarcely problematic. How else does theorizing proceed? No 
doubt "something" is vague, and we may be inclined to mistake the nature 
of the beast in question - after all, experiment clearly showed phlogiston to 
have a negative weight -but that is just to say that our theory may be 
wrong. It's not the aim of this chapter to show that only correct theories can 
use a vector-space representation. 

3. 2 The Representation of Outcomes and Events 

As we shall see in Section 3 .7, a crucial distinguishing feature of quantum 
mechanics is the way in which observable quantities are related one to the 
other. Nonetheless, for the next five sections I will consider a single observ
able, measured, moreover, by one specific type of experiment. 

We assume that this measurement allows a set {x;} of outcomes. (The 
labels x1 , x2 , and so on need not refer to numerical values: they are merely 
our way of distinguishing one outcome from another and so could abbre
viate such phrases as "Light D went on," "An explosion occurred," and so 
forth.) This list of outcomes is to be exhaustive, and they are to be mutually 
exclusive: each repetition of the measurement must yield exactly one out
come from the set. Our first task is to represent this set mathematically. We 
could, for instance, represent each outcome by a sequence of zeroes and 
ones, x1 by ( l ,0,0,0, . . . ) , x2 by (0, 1 ,0,0, . . .  ) , x3 by (0,0,1 ,0, . . .  ) , and 
so on. (Of course, if we have a finite set of outcomes then each sequence can 
also be finite.) Or, more obscurely, we could raise the index so that it 
becomes an exponent and think of each outcome as an integral power of x, 
of x3 as x3, for example. As it happens, in both cases, our representation of an 
outcome is as a basis vector of a vector space (see Section 1 . 1 3); in the first 
instance the space is the space of sequences of real numbers, and in the 
second it is the space of the polynomials of x with no constant term. This 
suggests a more general approach. We represent each outcome, not by a 
vector, but by a subspace of a vector space CV; to emphasize that the out
comes are mutually exclusive we make these subspaces mutually orthogo
nal, and to show that they exhaust the alternatives we specify the vector 
space to be the span of the set of subspaces. (ff L is the span of two subspaces 
M and N, expressed L = M EB N, then L is the set of vectors au + bv where 
u E M, v E N, and a and b are scalars: the span of a plane in �3 and a line 
perpendicular to it is the whole of �3.) 
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Need the subspaces be one-dimensional? No: by  leaving the dimension 
unspecified we allow for the fact that our tests may be coarse-grained. 
Another test which we regard as a refinement of our original procedure 
might persuade us that what we had previously regarded as one outcome, 
x2 , say, should properly be regarded as two: x2a and x2b . In that case we 
would come to regard the subspace corresponding to x2 as the span of two 
others. Of course, if we have reason to believe that no further discrimination 
is possible, that the outcomes are in a sense atomic, then we are at liberty to 
make the subspaces representing them one-dimensional. 

Let us take our original set of outcomes and enlarge it so that it is closed 
under various operations. We do this by considering subsets of the set {x;} of 
outcomes: each such subset we call an event, ei . The operations of union 
(e1 U e2), intersection (e1 n e2), and complementation (e1) can now be 
brought into play. 

To each outcome there corresponds an event: to x2 (for instance) corre
sponds the event e2 = {x2} .  If e1 = {x1} and e2 = {x2}, then e1 U e2 = {x1 , x2}; 
we may say that e1 U e2 occurs provided either that x1 occurs or that x2 
occurs. A parallel infinitary operation, Ui , yields, for instance, the event 
Ui { x;}, which is certain to occur, since we took the original set { x1 , x2 , • • • } to 
be exhaustive. We see that, although to every outcome corresponds an 
event, not every event corresponds to a single outcome. 

In like manner, if ea is the event e1 U e3 and eb is the event e2 U e3 , then the 
intersection ea n eb will be the event e3 ; and if we have an infinite set of 
events {ej }, then ni {ei } will be the set of those outcomes which all the 
members of that infinite set have in common. Notice that if U and n are 
everywhere defined, then our set of events has to contain the null event, 
which never happens; this is the event E0 (which, of course, is not an 
outcome). 

The set of events, together with the operations on it, finds a ready repre
sentation in our vector space CV. The subspace Li corresponding to the 
outcome xi also represents the event {xi} . To the operations U and n corre
spond, respectively, the operations of span (EB) and intersection (n) on the 
set of subspaces of CV, and infinitary versions of these correspond to Ui and 
ni . Not every subspace of CV represents an event, just those subspaces which 
are (possibly infinitary) spans of the mutually orthogonal subspaces repre
senting the outcomes, together with the zero subspace to represent the null 
event. As we would hope, the resulting set of subspaces is closed under the 
operations. 

All this is very nice, but one might wonder what it achieves; after all, the 
set of events already has a structure, that of a field of sets. What is the point, 
one may well ask, of introducing all the extra structure built into a vector 
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space- a  vector space, moreover, on which an inner product must be 
defined, since we talk of "orthogonality." The answer comes with the intro
duction of probabilities. 

3. 3 The Representation of States 

As a result of any given method of preparation, each outcome xi acquires a 
certain probability p(xi) of occurrence. If we regard the outcome xi as the 
event {xi}, then the function p can be extended over the whole set 8 of events 
in such a way that the Kolmogorov probability axioms hold; in other words 
so that 

(3. 2a) p(E0) = 0 

(3. 2b) p(E1) = 1,  where E1 = Ui {xi} 

(3. 2c) for events ei and ei , p(ei U ei ) = v(ei) + p(ej), provided ei n ei = E0 • 

Two methods of preparation are identified if and only if to each outcome 
one gives the same probability as the other. Then, by definition, each dis
tinct method of preparation results in a different assignment of probabili
ties, that is, a different function p. 

Now let us tum to the vector space CV. Let Li be the subspace correspond
ing to the event ei , and Pi the projection operator onto Li . Since subspaces 
and projection operators are in one-to-one correspondence we may regard 
Pi as representing ei . Note that the zero operator, P0 , corresponds to E0 and 
the identity operator, I, to E1 • We define the length of a vector v E V, as 
usual, in terms of the inner product with which we have equipped CV and 
denote it by Iv 1 - The projection P iv of the vector v onto the subspace Li will be 
of length IPiv l .  

Now let v be a normalized vector of CV .  We have P0v = 0 and Iv = v, 
whence 

and 

(3. 3b) llv l2 = lv l 2 = 1 

Further, if Pi and Pi project onto orthogonal subspaces Li and Li , then Piv is 
orthogonal to Piv; writing Li EB Li = Lk , we obtain 

by Pythagoras' theorem. 
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Within the limited set of subspaces we are considering, two subspaces are 
orthogonal if and only if they have just the zero subspace in common. Thus 
the condition on (3 .3c) is that Li n Li = 0 (the zero subspace), and the match 
between (3 .3a - c) and the probability axioms (3 .2a - c) is evident. 

We can make the match more explicit as follows. Let any (normalized) 
vector v E V define a function µ,, on the set of subspaces of CV with values in 
the interval [0, 1 ], such that 

For the present we restrict this function to the set of subspaces in corre
spondence with the set of events. We then obtain 

(3.4a) µ,,(O) = 0 

(3.4b) µv(V ) = 1 

(3.4c) for subspaces Li and Li , µ,,(Li EB Li ) = µ,,(Li) + µv(Lj) provided 
Li n Li = 0. 

It appears that our representation of the set of outcomes within the vector 
space CV has enabled us to represent not only each possible event in &, but 
also the probability measures on that set. The probabilities of the various 
events are physically determined by the method of preparation, or, as we 
may say, by the state of the system being tested. Thus, already, from our 
generalized ''theory'' we can begin to see the rationale behind the use of 
vectors to represent quantum-mechanical states; further, if we look back at 
Equation (2 . 1 ) we find that, both here and in quantum mechanics, probabili
ties are computed in the same way from the state vector: for any vector v and 
projection operator Pi we have 

(3. 5) [see (1 .27)] 

Equation (3 .5) shows that to every normalized vector v E V  there corre
sponds a probability measure on 8, namely the probability function p such 
that, for any outcome xi , 

(where the subspace Li and the projection operator Pi represent the outcome 
in question). We can also show the converse, that any probability function p 
on the particular set of events we are dealing with can be represented by a 
vector. Let each outcome xi be represented by the subspace Li . Now we 
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choose within each subspace Li a normalized vector vi , and construct the 
vector v as a weighted vector sum of all the vectors vi : we write 

v =  � C ·V · kJ I I 
i 

and specify that, for each i, 

Notice that all the vectors vi are mutually orthogonal; whence, by Pytha
goras' theorem, we know that 

lv l 2 = L l civi l 2 = L l ci l 2 
i i 

(since lvi l  = 1 for each i), and also that 

Thus 

L lci l 2 = L p(xi) = 1 
i i 

lv l 2 = 1 

or in other words, v is normalized. 
Before showing how v could be constructed, I emphasized that the proba

bility function it represented was a function defined on a specific set of 
events, namely the set 8 of events associated with the particular experiment 
we are concerned with. This emphasis is necessary because quantum theory 
assigns probabilities to events associated with whole families of observ
ables, and these may be measured by a variety of experimental arrange
ments. It turns out that, although all the events in this enlarged set 8 *  can be 
represented by subspaces of the same vector space, only one of the results 
shown above is generalizable to 8*. It remains true that any vector 
on the space can represent a probability function on &*; however, not all 
probability functions on 0* are representable by normalized vectors in the 
space. I discuss the representation of the others in Section 3 .5 .  

Let us return to the limited class of events associated with a single type of 
measurement procedure and to the construction which yielded a vector v 
for each probability measure on 8.  It is clear from this construction that p 
does not have a unique representation in CV, or, to put it another way, each 
vector in CV does not define a distinct state. During the construction we 
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chose from each subspace Li an arbitrary normalized vector vi : a different 
choice would have resulted in a different vector v representing the same 
probability measure. There are two reasons why a choice of vectors is 
available to us. The first is that we have not claimed that our test outcomes 
are atomic: we have given each subspace Li arbitrary dimensionality. The 
second is that, even within a one-dimensional subspace, there is more than 
one normalized vector. If CV is a vector space over the reals, and vi is a 
normalized vector within a one-dimensional subspace Li , then so is -vi; if 
CV is a complex vector space (and nothing we have said so far rules it out), 
then each one-dimensional subspace Li contains an infinite number of nor
malized vectors: if vi E Li and l vi l  = 1 ,  then cvi will also be a normalized 
vector within Li provided that l c l  = 1,  that is, provided c is expressible in 
the form cos(} + isin8 (see Section 1 .5). In passing, we may recall from 
Section 2.3 that, in quantum mechanics too, the second of these considera
tions applies, and that a pure state is properly thought of as represented by a 
one-dimensional subspace of a Hilbert space. 

3. 4 Determinism, Indeterminism, and the Principle 
of Superposition 

Although the previous sections have dealt with the representation of a 
single experiment, in another respect they have been entirely general: no 
constraints have been laid on the kind of processes to be modeled. The 
models supplied by vector-space theory are, thus far, suitable for represent
ing all sorts of possible physical processes, deterministic and probabilistic 
alike. In this section and the next I will show how· the differences between 
such processes are modeled in the theory; they will appear as differences 
between the sets of possible states which the theory permits. 

In Section 3 .3  I showed that every normalized vector v E V  defines a 
probability measure on the set of events associated with a particular experi
ment, and also that there is a vector corresponding to each probability 
measure on that set. Further, I have up to now equated these probability 
measures with the possible states of the system tested. Among all the var
ious theories which we can formulate using vector spaces, however, there 
are some in which only certain vectors are eligible to represent states, and, as 
noted in the last section, there are others in which some states are not 
representable by a vector at all. I turn now to physical theories of the first 
kind, and defer discussion of the second to Section 3 .5 .  

Consider, for instance, a theory modeling testing procedures which were 
fully deterministic: in our description of the experiments there is nothing to 
say that we must be dealing with indeterministic processes. In the determin-
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istic case, if we could specify our preparation procedures with sufficient 
precision, then each mode of preparation would yield one outcome with 
certainty. Let us call the states corresponding to these modes of preparation 
the pure states of the theory. The only probability measures involved would 
then be those which yielded p(xi) = 1 for some outcome xi and p(xi) = 0 for 
each other outcome xi ; thus the only vectors which would represent pure 
states in this theory would be normalized vectors lying within the subspaces 
representing the individual outcomes: only for a (normalized) vector vi 1 ying 
within Li do we have 

IPivi l = 1 but 

IPjvi l  = 0 whenever j =I= i 

Bearing this in mind, let us look at one of the ways in which the difference 
between classical mechanics and quantum theory has been characterized. 
In chapter 1 of his Principles of Quantum Mechanics, Dirac (1930, pp. 1 0 - 1 8) 
locates the major difference between the two theories in the role played by 
the principle of superposition in quantum mechanics. Put in general terms, 
the principle states that, 

If there are pure states of a system which yield probability measures 
Pt and p2 on a set of outcomes, then, if a and b are a pair of real 
numbers such that 0 < a < 1 and 0 < b < 1,  and a + b = 1 ,  and p3 is 
the probability measure p3 = apt + bp2 , then there is a pure state of 
the system which yields the probability measure p3 • 

In terms of the vectors representing the pure states, it reads, 

If v t and v 2 represent possible pure states of a system, then any vector 
v3 = Ct Vt + c2v2 such that lv3 1 = 1 also represents a possible pure 
state of that system. 

We can now see the significance of this principle. It is clear that no deter
ministic theory can include it, for on such a theory the only vectors allowed 
to represent pure states lie within the subspaces Lt , L2 , • • •  which repre
sent the outcomes Xt ,  x2 , • • • •  Though these vectors span the whole space, 
that is, any vector v can be written as a sum �icivi of such vectors, we are not 
free to regard every vector constructed in this way as representing a physi
cally possible pure state. In the two-dimensional case, where there are two 
possible outcomes Xt and x2 represented by the one-dimensional subspaces 
Lt and L2 1 respectively (see Figure 3.2), then, on a deterministic theory, the 
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Figure 3. 2 The principle of superposition: v 3 = (v 1 + v 2) /Ji. 

(normalized) vectors v1 E L1 and v2 E L2 may represent pure states, but the 
vector v3 = (1/J2)v1 + (1/J2)v2 may not. 

Within quantum mechanics, on the other hand, the principle holds; thus 
all vectors in the space CV can represent possible physical states, and they 
may all be written in the form �icivi , that is, as linear sums of vectors within 
the subspaces which represent outcomes. 

3. 5 Mixed States 

Let us now look at a theory in which certain states are not represented by 
vectors. Consider, for instance, the theory which represents an experimen
tal apparatus of the kind used to demonstrate a binomial distribution. A 
steel ball is "prepared" by being dropped down a vertical funnel slightly 
greater in diameter than the ball itself. As it emerges it is "tested" by 
dropping into an array of horizontal pins, as shown in Figure 3 .3 .  The pins 
are arranged in horizontal lines, and in any line the distance between adja
cent pins is again slightly greater than the diameter of the ball. The pins of 
each line are staggered with respect to those in the lines immediately above 
and below, so that, when a ball passes through a gap in one line, it will strike 
a pin in the line below. Beneath the array there is a series of boxes, each box 
directly below a gap in the lowest line of pins. Each box corresponds to a 
different outcome of the test, and each outcome has a certain probability of 
occurrence. 

If the apparatus were symmetrical we would expect it to be equally likely 
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that a ball would bounce to the left as to the right after striking a pin. In that 
case we could assign an expected probability to each outcome as follows. 
Given n rows of pins there will be n + 1 different outcomes, which we can 
label from the left to right, x0 , x1 ,  • • •  , Xn , and the binomial theorem 
would lead us to expect that: 

1 n !  
p(xk) = 2n k!(n - k) ! 

However, we need not confine ourselves to the symmetrical case: we may 
just assume that some definite probability distribution or other results from 
the way the apparatus is set up. 

Now we may want to accommodate this experiment within a determinist 
account; we may believe that if we had a truly precise description of the 
trajectory of the ball as it left the funnel, then we could predict with certainty 
its path through the array and the outcome that would result. But the 
probabilities assigned to any outcome by the pure states of a determinist 
system can only be zero or one, while here we have probabilities lying 
between these extremes. If we are to deal with these probabilities without 
abandoning our determinist views, we will have to call on a new notion of 
state. What we do, in fact, is to describe the ball as it leaves the funnel as 
being a mixed state and to regard each mixed state as a weighted sum of pure 
states. Let us see first how these mixed states can be represented, and then 
how they may be interpreted. 
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In a detenninist system each pure state yields probability one to some 
outcome or other. Given n outcomes there are effectively n distinct pure 
states, each corresponding to a probability function Pi such that 

Pi(xi) = 1 for some xi 

and Pi(xi) = 0 for i =I= j .  Now, because of the way the apparatus is set up, 
each of these pure states may have a particular probability of occurring. Let 
the probability of occurrence of the pure state corresponding to Pi be bi .  Then 
the probability function p on the set of outcomes can be expressed as a 
weighted sum of the functions pi : for each outcome xi , we have: 

p(xj) = L bipi(xj) where L bi = 1 
i i 

and we can write, 

We see that, provided there are at least two coefficients bi and bk greater than 
zero, p will be the probability function corresponding to a mixed state rather 
than a pure state. 

Within our vector-space representation, each probability function Pi is 
represented by the function µi on the set of subspaces such that 

Thus p is  represented by the function �i biµi . 
Now recall that each function µi is such that 

where vi is some pure state corresponding to Pi . Note, incidentally: for the 
reasons given in Section 3 .3, more than one vector can represent a given 
pure state. We may, however, pick a representative vi E Li and proceed as 
though there was no such degeneracy. Given, then, a mixed state repre
sented by the weighted sum �i biµi ,  one may ask why we may not represent 
it by a vector which is a suitable weighted sum of the vectors vi . It is certainly 
not mathematically impossible to do so. In Section 3 .3 we saw that, as long 
as we are confining ourselves to events associated with one particular ex
periment, we can represent any probability measure on the set of these 
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events by a vector. In fact, if we write 

then, for any outcome xi , 

�(Li) = p(xi) 

By doing so, however, we violate the principle that we use vectors to repre
sent only pure states; in a determinist theory the only vectors that do this are 
the vectors vi . To put it another way, by doing so we use the principle of 
superposition. 

If we are not to lose an important distinction, we need to find a way of 
representing the weighted sum of two or more probability functions which 
is distinct from merely adding the (suitably weighted) vectors which repre
sent them. We do so by finding an alternative representation of pure states. 
We have already noted that a ray in CV serves to represent a pure state; we 
use, not the ray, but the projection operator onto it. Mixed states are then 
represented by weighted sums of projection operators in a very direct way: 
if each Pi is represented by the projection operator Pi , then �i bipi is repre
sented by �i biPi . Since �i biPi is not a projector unless there is exactly one 
coefficient bi which is nonzero (and hence equal to one), the distinction 
between pure states and mixed states is made clear. 

This treatment of states is developed in Chapter 5 .  There I will treat the 
problem of finding an algorithm to relate probabilities to these weighted 
sums of projectors in the way that the equation 

relates probabilities to the vectors which represent pure states. 
Within the situation I have described, mixed states find a ready interpre

tation: they represent our ignorance of the precise state of affairs as the ball 
leaves the funnel. For example, if the mixed state were given by 

and so was representable by tPi + iPk , this would be taken to mean that the 
ball was actually in one of the states µi or µk ; the cumulative effect of factors 
individually too small to allow for means that we do not know which state it 
is in, but we do know that the ball is three times as likely to be in µk as µi . 
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Clearly, any classical theory dealing with systems about which our infor
mation is less than complete can use the notion of a mixed state interpreted 
in this way. Perhaps more surprisingly, mixed states appear in quantum 
theory as well, but there the "ignorance interpretation," as we may call it, 
gives rise to a number of problems. I discuss these in Chapter 5 .  

One question we can pose at this stage is this: what, in quantum me
chanics, distinguishes the mixed state represented by �i biPi from the state 
represented by the vector �icivi , where lci l2 = bi? Each yields the same 
probability to any given outcome xi of our experiment (which we may take 
as measuring some quantum-mechanical magnitude). To put the question 
more generally: what is the empirical content of the principle of superposi
tion? 

A full answer to this is given in Section 3 .9, but this much can be said in 
anticipation. If we are to distinguish operationally between the mixed state 
Sm represented by �i biPi and the pure state SP represented by the vector 
�icivi , then we need a new experiment for which the probability functions 
given by Sm and SP will differ. In other words, in order to give content to the 
principle of superposition we need to consider more than the single experi
ment which has occupied us so far. 

· 3. 6 Observables and Operators 

I hope the preceding sections have shown how well-suited vectors are to 
represent the pure states of a quantum-mechanical system. In the same vein 
we can indicate why it is natural to use an operator to represent a physical 
magnitude, or observable. The easiest approach is to consider these observ
ables from an operationalist standpoint. (A devout operationalist views the 
meaning of a physical quantity as being wholly determined by the experi
mental procedure used to measure it; we can adopt an operationalist ap
proach in this instance, however, without thereby committing ourselves to 
the whole doctrine.) 

To speak guardedly then, at least some physical quantities are the sorts of 
things which may be measured by the kinds of tests we have described. In 
such cases the different outcomes of the tests correspond to different values 
of the quantity in question. Let us take as a simple example an observable A 
whose value can only be one of the numbers a1 , a2 , • • • , an .  (Thus, in the 
language of Chapter 2, A has a finite discrete spectrum.) We assume that our 
test effectively measures A; this means that the test has as fine a mesh as A 
requires, so that with each outcome xi of the test we can associate some 
single value ai of the quantity A. 

Consider the vector space CV in which we have represented the set of 
outcomes of the test, each outcome xi being represented by a subspace Li . 
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Since each outcome corresponds to a particular value of the observable A, 
we could regard it as atomic (in the sense described in Section 3 .2), and make 
each subspace Li one-dimensional. We need not do this, however, and in the 
remainder of this section I shall not assume we have done so. As before, we 
denote by Pi the projection operator onto Li . We now construct the operator 
�iaiP i on CV, and claim that this operator represents the observable A: in fact, 
we show this by using the same letter for the operator as for the observable 
and writing 

A = � a -P· � I I 
i 

It remains to show just what this claim involves and how it is justified. 
As a preliminary, let us distinguish what is happening here from what 

was going on in the previous section when we constructed the mixed state 
�i biPi . There each Pi represented a pure state, and (on the ignorance inter
pretation) each bi represented the probability of its occurrence. Here every Pi 
represents an outcome of an experiment, and each ai the value of the observ
able to which the outcome corresponds. Now let us consider the claim itself. 

First, we may observe that any operator on CV of the form �iaiPi (where all 
the numbers ai are real) is Hermitian. Conversely, the spectral decomposi
tion theorem (1 .32) tells us (i) that any Hermitian operator on a finitely 
dimensional vector space is expressible in this way, as a weighted sum of 
projectors onto mutually orthogonal subspaces, and (ii) that, if all the ai are 
distinct, then this decomposition is unique. (One further condition, the 
compactness of the operator, is required if the space is infinitely dimen
sional: see Fano, 1971, pp. 81,  29 1 .) This means that we cannot construct the 
same operator in two distinct ways: if 

A = � a -P· = � b -P� � I I � J J i j 
(where all the ai are distinct from one another, as are all the bi), then 
{a1 , . . .  , an} = {b1 ,  . . .  , bn}, {P;} = {Pj), and, for any i and j, if Pi =  Pj 
then ai = bi . Thus, locked up, as it were, in the operator A is all the informa
tion we have about the observable A: that the observable can take the values 
a1 , a2 , and so on; that we take an outcome xi of the test to mean that the value 
of this observable for the system is ai ; and that we represent this outcome xi 
within our vector space by the subspace Li (projection operator Pi). 

It is worth noting that the values ai are the eigenvalues of the operator A 
we have constructed, and that each corresponding eigenvector vi lies within 
the subspace Li . As in quantum theory, eigenvalues of an operator are the 
permissible values of the corresponding observable. 
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But this mathematical object, the operator A, is not just a memory bank 
within which we store information about the observable in question. That 
alone might be enough to justify the claim that A represents the observable, 
but more can be said. For we may use this operator, together with the vector 
representing the (pure) state of the system, to calculate probabilities and 
expectation values. The algorithms are exactly as they are in quantum 
theory: from Equation (2 . 1 )  we know that, in quantum mechanics, the 
probability that a measurement of observable A will yield value ai is given by 

Pv(A,ai) = IPfv l 2 

where Pf is the projection operator onto the subspace Lf containing the 
eigenvector vi with corresponding eigenvalue ai . In our experiment, this 
possible value ai of the observable is associated with outcome xi , and that in 
turn is represented by the subspace Li ,  or, equivalently, by the projection 
operator Pi .  This operator Pi ,  like the operator Pf in quantum theory, is a 
projection operator from the spectral decomposition of the operator A, 
which represents our observable. Both projection operators enter in the 
same way into the calculation of probabilities, for in Section 3 .3  we defined 
the state vector v as the vector which yielded probabilities to the experimen
tal outcomes according to Equation (3 .5) 

From what has been said it is obvious that we should identify p(xi) in this 
equation with Pv(A,ai) from the earlier one. 

Given identical procedures for assigning probabilities to the various pos
sible values of a given observable, we could hardly compute expectation 
values, denoted (A) ,  differently in our general representation and in quan
tum theory: in each case they are calculated by weighting the various possi
ble values by the probability of their occurrence. As in Section 2.4, we obtain 

(A) = L IPiv l 2ai 
i 

= (v lAv) 

3.  7 Relations between Observables: Functional Dependence 
and Compatibility 

So far we have looked at experiments involving a single type of measure
ment; though different modes of preparation have been considered, we 
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have not investigated how the results of one kind of test might be related to 

those of another. We saw in the last section that each test can be thought of 
as a measurement of a physical quantity, or observable; in this section we 
will look at some of the ways in which two observables can be related. 

As before, we associate an observable with a measurement procedure; the 
various outcomes from the measurement correspond to values of the ob
servable in question. Again, for simplicity, I will not consider observables 
with a continuous spectrum; for an observable of that kind, an outcome 
corresponds to a range of values (a Borel set of the reals), rather than to one 
value in particular. Most of what we could say about such observables can 
be inferred from the discussion of observables with a point (or discrete) 
spectrum. 

Let us consider, then, two observables A and B :  the values of A are 
associated with the various outcomes x1 , x2 , • • •  of a suitable experiment, 
and values of B with outcomes y1 , y2 1 • • •  of another. We now ask, what 
relationships can exist between the probabilities p(xi) assigned to the out
comes of an A-experiment by a given state and the probabilities p(yj) which 
that state assigns to the outcomes of the B-experiment? More formally, let 
'JI A be the vector space within which we represent the (outcomes associated 
with) observable A, and 'JIB the vector space within which we represent 
observable B. Then within 'JI A there is a set { v A} of normalized vectors which 
represent admissible probability measures on the outcomes of measure
ments of A: we may call these the admissible pure A-states. Similarly, let { v B} 
be the set of admissible pure B-states. Then an ordered pair (vA,vB) will 
represent a probability measure which simultaneously assigns probabilities 
to A-outcomes and to B-outcomes. Any relationship that obtains between 
observables A and B will effect a constraint on the set of ordered pairs which 
we regard as admissible pure AB-states. 

Consider first the relation (or nonrelation) of independence. In this case 
there are no constraints on the set: if A and B are independent, then the 
ascription of a set of probabilities to A-outcomes gives us no information 
about the B-outcomes. We may say that A and B are independent if and only 
if each ordered pair (v A1 v B) represents an admissible AB-state. Within classi
cal mechanics each component of linear momentum and of position is 
independent of all the others, and within quantum theory each component 
of linear momentum is independent of each component of spin. The condi
tion for the independence of A and B requires us to treat 'JI A and 'JIB as two 
distinct vector spaces. We may, if we wish, think of the state of a system as a 
vector in the direct sum of these, 'JI A EB 'JIB, and use the ordered pair (v A ,vB) 
to 1represent this vector. If we do so, vA and vB will be the components of 
(vA,vB) in the subspaces 'HA and 'JIB of 'HA EB 'JIB . This, in fact, is how the 
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independent observables linear momentum and spin are dealt with in 
quantum theory. Of course, both v A and vB need to be normalized, and so, 
while we may allow superpositions on 'HA ,  and on 'JIB, we do not allow 
superpositions on 'JI A EB 'JIB . Such a superposition could yield a component 
in 'JIB,  say, with norm different from one, and this component would not act 
as a probability measure on the possible values of B. 

Of more interest are the cases in which we can represent A-outcomes and 
B-outcomes in such a way that both sets of subspaces span the same space, 
so that 'JI A = 'JIB . Although we can represent independent observables A 
and B by an operator on a common vector space 'JI A EB 'JIB , neither the set of 
subspaces representing the A-outcomes nor the set of those representing the 
B-outcomes span the whole of this space. Clearly, however, if 'HA = 'JIB , 
consistency demands that (v A,vB) represents an admissible AB-state only if 
v A = v B ,  and so the constraints on (v Ai v B) take a particularly simple form. All 
the relations we will consider from now on will be of this kind. 

To deal first with the most trivial case, it could be that A and B both 
measure exactly the same physical quantity; although they may use differ
ent experimental arrangements, a one-to-one correspondence exists be
tween the outcomes {xi} of the A-experiment and the outcomes {yi} of the 
B-experiment such that, for any state and any corresponding pair of out
comes (xi, Yi), we have p(xi) = p(yi) . In this case it is somewhat less than 
remarkable that we can find a representation in which 'JI A = 'JIB . Here, 
where the relation is that of identity, we use the same subspace to represent 
each of a corresponding pair of outcomes (xi , yi) . In general, when observ
ables A and B are related to each other, these relations will appear within the 
Hilbert-space representation as relations between the subspaces represent
ing the A- and the B-outcomes. 

Let us take a slightly more complex relationship, that of functional de
pendence. 

(3. 6) A is functionally dependent on B provided that each value (outcome) 
ai of A corresponds to a set of values (outcomes) {bi1 , • • •  , bi; ' . . .  } 
of B in the following sense: the probability p(ai) assigned to ai by any 
state is the sum p(bi1) + · · · + p(bi;) + · · · of the probabilities the 
state assigns to bi1 , • • • , bi; , . . . 

It follows that each state which assigns probability 1 to any of the outcomes 
bi1 , • • • , bi; , . . . of B also assigns probability 1 to the outcome ai of A. 
Hence the sets {bi) corresponding to different a/s are mutually exclusive. 
In terms of the vector-space representation, we represent an outcome ai 
of A by the span Lf of the subspaces L� corresponding to different outcomes 
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bi1 , • • •  , bi; ' . . .  of B. Thus, by construction, 'HA = 'JIB . It also follows 
that the projector Pf = �ip� . 

If bk is any one of the possible values of B which correspond to the value ai , 
then we write f (bk) = ai , and so define a function f that maps the set of 
possible values of B onto the set of possible values of A. It follows immedi
ately that, if we represent B in our vector space by 

B = � b -P� � J J i 

we obtain 

(3. 7) A = L aiPt = L ai L p� = L f (bk)Pr df f (B) 
j k 

As the notation suggests, the last equality is a definition of f (B) . 
Classical mechanics offers many examples of functional dependencies, 

albeit between observables with continuous spectra. Consider, for instance, 
the observables momentum p and kinetic energy T for a single particle 
moving in one dimension. Since T = p2 /2m, to each value of T there corre
spond two values of p, one positive and one negative, and so T is function
ally dependent on p. In fact, as the formula shows, it is a continuous func
tion of p. Similar dependencies exist within quantum theory. 

In passing, note that in the three-dimensional (classical) case, T = 
(p; + p; + p;)/2m, and so T is functionally dependent on three indepen
dent observables, P:x: 1 py, and Pz · I won't discuss these more complicated 
functional dependencies here, though they could be accommodated within 
the framework we are using. 

Instead, let us tum to the case when two observables, A and B, are both 
functionally dependent on an observable C. In this case A and B are compati
ble. We obtain a representation in which 'HA = 'He = 'JIB by starting with 
the mutually orthogonal subspaces Lf corresponding to C-outcomes. Then, 
since A is functionally dependent on C, each A-outcome can be represented 
by the span of some of the spaces Lf. So can each B-outcome, and so within 
'JI c we obtain subspaces corresponding to A- and B-outcomes. The A-sub
spaces, as we may call them, and the B-subspaces are mutually orthogonal 
where they do not overlap. 

It is convenient to extend the use of the word compatible to this relation 
between subspaces. As an illustration of what the condition involves, we 
can ask which subspaces within �3 are compatible with the plane L shown 
in Figure 3 .4 .  The zero subspace is orthogonal to every subspace, and so is 
compatible with L. Of the lines through 0, all those within L are compatible 
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L 
Figure 3.4 Subspaces compatible with L are (a) the zero subspace {O}; (b) any line in L, 
and the line L J.. perpendicular to L; ( c) the plane L, and any plane obtained by rotating La 
about the line LJ.. (for example, La , Lb , L,); (d) the whole space R3• 

with L, as is the line through 0 at right angles to L. Of the planes in �3 only 
these are compatible with L: L itself and the planes (shown by dotted lines in 
the diagram) at right angles to it. Finally, the whole space �3 is compatible 
with L. Formally, 

(3. 8) In any vector space CV, subspaces La and Lb are said to be compatible if 
there exist mutually orthogonal subspaces La0 ,  Lb0 and L, in CV (any or 
all of which may be the zero subspace) such that 

In the theory of vector spaces it is not hard to show that two projection 
operators p n and pm commute (that is, p np m = p mp n) if and only if they 
project onto compatible subspaces. This theorem gives us an alternative, 
and highly convenient, definition of the relation of compatibility between 
subspaces. 

To summarize, if two observables A and B are compatible, then (1)  their 
representations can span a common vector space, and (2) in this representa
tion any pair of subspaces corresponding to their outcomes are compatible. 
Consider now the operators A and B on this space, corresponding to these 
observables. In our usual notation, 

A = � a -P� � I I B = � b -P� � J J i j 
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From (2), all the projection operators Pf and Pf commute with each other; 
this in turn guarantees that the operators A and B commute. Thus we obtain 
the elegant result that compatible observables may be represented by com
muting operators. 

3. 8 Incompatible Observables 

This chapter began with the question: what is it about the mathematical 
theory of Hilbert spaces that makes it suitable for providing models for a 
physical theory? The introduction of incompatible observables prompts a 
different question: what is it about quantum mechanics that makes its 
representation in Hilbert spaces so natural? For in quantum mechanics we 
find observables which are not compatible but yet have a minimal represen
tation on the same Hilbert space. By a "minimal representation" I mean a 
representation on which each value of the observable is represented by a 
one-dimensional subspace of the space. (Thus, for the moment, I am con
tinuing to talk only of observables with a discrete spectrum .) 

To see what's involved, consider a pair of observables, each of which has 
two possible values: observable A has values a1 and a2 , and observable B has 
values b1 and b2 • We look first at a single mode of preparation (or state), 
which assigns probabilities p(a1), p(a2), p(b1), and p(b2) to the values of these 
observables, such that p(a1) + p(a2) = 1 = p(b1) + p(b2) . 

We can represent the A-state as a vector vA in a two-dimensional space 
whose axes correspond to (A,a1) and (A,a2); likewise the B-state can be 
represented by vB in another two-dimensional space. (See Figures 3 .5 and 
3 .6 .) Now, as long as we deal with just one state, we can always superim
pose the two diagrams, so that the same vector yields both pairs of probabili
ties. As Figure 3 .7 shows, it is just a matter of picking up the B-diagram and 
rotating it until the vector vB in it coincides with vA in the A-diagram. 

In general, however, we wouldn't expect that this particular superim
posed picture would be useful in representing a different preparation pro
cedure. A new state would assign new probabilities to the A-outcomes and 
to the B-outcomes, representable by two new vectors, v� and v� ; we would 
not expect that exactly the same rotation of the B-diagram as before would 
suffice to make v� and v� coincide (see Figure 3 .8) . But the remarkable 
feature of _quantum ��chanics (or of the systems quantum mechanics de
scribes) is precisely

-thiS-
:-th;tcertain observables are related in a way that 

makes tb.e s�perimposed picture work_ (o�.-�.ZLs��tes. 
Consider the components of spin of a fermion, S:r, Sy, and Sz . Each of these 

components has two possible values, +t and -t. (These values are in 
"natural units," such that h = 1 .) Accordingly, we can represent the out
comes x+ and x- of an S:r-experiment within a two-dimensional Hilbert space 
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Figure 3. 6 Figure 3. 7 

Figure 3. 8 

'JI x i  those of an Sy-experiment within a two-dimensional Hilbert space 'JI 
Y

' 

and those of an Sz-experiment within a two-dimensional Hilbert space 
'JI z .  Thus, vis-a-vis this trio of observables, any state can be represented by a 
triple (v.x ,Vy ,Vz) of vectors, where V.x E 'H.x , Vy E 'Hy, and Vz E 'Hz . But it 
turns out that these vectors are not independent; we can use the same 
two-dimensional Hilbert space to represent all three observables, so that, 
for any pure state, v.x = Vy = Vz , and this vector will assign probabilities to all 
three pairs of outcomes. To do so we first need to make 'H.x , 'Hy , and 'Hz 
complex -that is, to use the space C2 for all three of them - and then to 
rotate 'Hx and 'Hy, as it were, to fit them on top of 'Hz . 

To speak geometrically- that is, analogically, since C2 is complex rather 
than real - within C2 the rays we use to represent, say, x+ and z+ can be 
obliquely inclined to each other in a way that captures the relation between 
p(x+) and p(z+) for all states of the system. For any pair of spin observables, 
some, though not all, states are representable in �2; within the partial 
representation of S.x and Sz which �2 affords, the x+ ray must be at 45 ° to the 
z+ ray, as shown in Figure 3 .9 .  Any normalized vector in �2 represents a 
possible assignment of probabilities both to x+ and x- and also to z+ and z-. 

Both in C2 and in the partial representation in �2, the rays corresponding 
to x+ and to z+ are oblique one to the other, and hence are, in the technical 
sense, incompatible. The observables S.x and Sz are likewise incompatible: 
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Figure 3. 9 Partial representation of Sz and Sx . 

the operators representing them do not commute (see problem 1 in Section 
1 .7) .  

The term incompatible here is a bit misleading. When, for example, we say 
of two spin components that they are incompatible, we do not merely mean 
to deny that they are compatible; we also mean to say that a very strong 
relationship holds between them, of being representable in the same Hilbert 
space. We are particularly interested in incompatible observables which are, 
to speak loosely, of the same sort. S:r , Sy , and Sz are all "of the same sort," 
whereas S:r and s: are not, despite the fact that they are representable on the 
same Hilbert space.* We can begin to make this intuitive notion more precise 
as follows. Consider first a Hilbert space on which Sz is represented. A pair of 
orthogonal rays in this space represents outcomes z+ and z- associated with 
positive and negative values of Sz . Now observe what happens when we 
rotate these axes (or perform the complex-space analogue): the axes will 
come to represent the same values, but of a different component of spin. In 
the partial representation supplied by �2, when we have rotated them 
through 45 ° they will represent the outcomes x+ and x- of s:r . 

It turns out that a very simple rela1ion-between the operators Sx and Sz 
corresponds to the fact that we can "rotate" axes to transform a representa
tion of Sz-outcomes into a representation of S:r-outcomes, and we can use 
this relation to specify what exactly being " of the same sort" involves. Recall 
from Section 2 .  7 that a unitary operator U is the complex-space analogue of 
a rotation operator. 

(3. 9) We say that two observables are mutually transformable if (a) they are 
representable in a Hilbert space 'JI by operators A and B, and (b) 
there exists a unitary operator U on 'JI such that A =  uuu-1 . 

* S � is the observable quantity that is representable by the operator s: . 
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This relation, which it is tempting to call the Jarry-relation, is reflexive, 
symmetric, and transitive. Note in particular that, if A =  uuu-1, then 
B = u-1Au. 

As an example, let A =  S.x and B = Sz ; the matrix representations of S.x 
and Sz appear in Section 1 .7. We now choose U, and hence u-1, so that, 

U =
../2 ( 1 - 1) 
2 1 1 u-i = 

..J2 ( 1 1 ) 
2 - 1  1 

It is simple to show that S.x and Sz are mutually transformable. 
Where there are no incompatible observables, the relationship of mutual 

transformability becomes trivial, as the "transformations" involved reduce 
to a relabeling of the outcomes of a single experiment. However, mutual 
transformability is an important characteristic of sets of observables in 
quantum mechanics, and I discuss one such set in detail in Chapter 4 .  

Unlike Definition (3 .9), the definitions of functional dependence and 
compatibility given in Section 3 .7  made no direct reference to the represen
tation of observables within a Hilbert space. Both definitions, however, can 
be reformulated in these terms; the definition of functional dependency is a 
bit cumbersome, and I omit it, but a definition of compatibility of striking 
simplicity presents itself: 

(3. 1 0) Two observables are said to be compatible if they are representable on 
a Hilbert space 'JI by commuting operators, A and B. 

One advantage of Definitions (3 . 9)  and (3 . 1 0) is that neither is restricted to 
observables with a discrete spectrum. Note in particular that the position 
and momentum observables, represented by operators Q and P on L2 
(where Q = x and P = - id/dx), are mutually transformable. There is a 
unitary operator U on L2 such that UPu-1 = Q (see Busch and Lahti, 1985, 
pp. 65 - 66). It is known as the Fourier-Plancherel operator on L 2, and P and Q 
are said to be Fourier-connected; this is just a special case of mutual trans
formability. 

3. 9 The Representational Capacity of Hilbert Spaces 

No physical theory is in fact developed merely by setting up experiments 
and observing the frequency of occurrence of each of the possible outcomes. 
The reason is obvious: no experiment takes place in a conceptual vacuum. 
Only within the context of a theory do we know what experiments are 
worth performing, or even what procedure is to count as an experiment. 
Nonetheless, let us imagine this approach being taken. Then the existence of 
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incompatible observables A and B could be shown as follows: for a range of 
states -that is, modes of preparation of the system dealt with -the proba
bilities of the various A-outcomes and B-outcomes could be compared and 
the incompatibility of A and B inferred from the relations among these 
probabilities. In contrast, on an orthodox approach to quantum theory, we 
deduce these probability relations from the fact that the operators corre
sponding to incompatible observables do not commute. 

On both approaches, "operational" or orthodox, probability relations 
associated with incompatible observables give rise to the uncertainty princi
ple. I discuss this principle in detail in Chapter 9; roughly, it tells us that 
certainty about the anticipated result of a given experiment can only be 
bought at the expense of uncertainty about the anticipated results of others. 
For the present (and without gross distortion) we can take it to say that there 
are incompatible observables. 

While Dirac took the principle of superposition to be the crucial innova
tive principle of quantum mechanics, others have cast the uncertainty prin
ciple in this role; witness Hanson's remark (1967, p. 45) that "John von 
Neumann generated all of quantum mechanics from an operationally suit
able statement of the uncertainty relations alone." The principle of super
position tells us something about the set of admissible states, the uncertainty 
principle something about the set of observables encountered in the theory. 
Any theory which includes either of these principles is, we may say, inher
ently probabilistic; that is, each principle entails that there are pure states 
which assign to the outcomes of certain experiments probabilities other than 
one or zero. When the principle of superposition holds we can construct 
such states from any pair of states which assign a probability of one to 
different outcomes of a given experiment. For instance, given states Pi and Pi 
such that, for two distinct outcomes xi and xi , Pi(xi) = 1 and Pi(xi) = 1 ,  we 
can construct a third pure state, pk , such that, for any outcome Xn of the 
experiment in question, Pk(xn) = cipi(xn) + cipi(xn), where 0 < ci < ci < 1 
and ci + ci = 1 .  Then 0 < Pk(xi) = ci < 1 .  Likewise, when observables A and 
B are incompatible, there are noncompatible subspaces corresponding to 
outcomes xi and Yi of A- and B-experiments, respectively. (In geometrical 
terms these subspaces are oblique one to the other.) In this case, if for some 
state p(xi) = 1 ,  then 0 =I= p(yi) =I= 1 ;  as an example, consider the observables 
S:r and Sz , with their outcomes x+ and z+. Only if all (nonindependent) 
observables are compatible can we have a deterrninist theory, if by that we 
understand that the pure states of the theory assign to experimental ques
tions no values other than one and zero. 

Note that, even if we accept (as empirically adequate) an inherently 
probabilistic theory T, we do not therefore have to deny the thesis of deter
minism. The theory could be true but incomplete: by proper supplementa-
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tion it might be made into a determinist theory T* (see Bohm, 1957). Of 
course this would mean that the "pure states" of T had, so to speak, been 
misidentified; presumably they would appear as mixed states in T*. Supple
mentary "hidden-variable" theories of this kind have in fact been proposed 
for quantum mechanics, and I discuss them in Section 7.8.  

Although both the principles under discussion entail that the theory is ( 
inherently probabilistic, they are conceptually independent. The existence '. r  

of incompatible observables does not entail that we can add any (suitably 
weighted) pair of pure states to obtain another; conversely, we can envisage 
a theory in which all pairs of observables are either compatible or indepen
dent but in which the principle of superposition holds. In the latter case, 
however, when all pairs of nonindependent observables are compatible, the 
principle of superposition may have no empirical content. In the absence of 
incompatible observables there may be no way to distinguish a superposi
tion of two pure states from a mixture of them. 

To see what's involved here, let us return to the familiar incompatible 
observables S:r and Sz and the (pure) states Pz+ and Pz- which assign probabil
ity 1 to outcomes z

+ 
and z-, respectively, of an Sz-experiment. Note that we 

have 

In the space C2 the states Pz+ and Pz- (the eigenstates of the observable Sz) are 
represented by the vectors 

(�) and (�) 
(the eigenvectors of the Sz matrix: see Section 1 .7).  Now consider the state 
represented by the vector 

(see Figure 3.2). This is a superposition of the two eigenvectors of Sz ; it is an 
eigenvector of the S:r matrix, and represents an eigenstate of the observable 
Sx . If Px+ is the probability function defined by this eigenvector, then 
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This function P:x:+ is thus a pure state such that, for each Sz-outcome zi , 

1 1 1 
P:x:+(zi) = 2 Pz+(zi) + 2 Pz-(zi) = 2 

On the other hand, if we construct a mixed state p from the equally 
weighted sum of Pz+ and Pz- 1 then, while as before, for each Sz-outcome zi , 

we now obtain 

or, in other words, 

The (pure) superposition P:x:+ is distinguished from the mixture p not by the 
probabilities it assigns to the Sz-outcomes, but by those assigned to the 
S:x:-outcomes. It is the existence of an observable S:x: incompatible with Sz 
which enables us to distinguish the mixed state p from the pure state P:x:+ . 
The fact that different probabilities are assigned to the S:x:-outcomes by p and 
P:x:+ is associated with the fact that the subspaces in C2 representing these 
outcomes are (geometrically speaking) obliquely inclined to those repre
senting the Sz-outcomes: as we noted, in the partial representation of S:x: and 
Sz available in �2 (see Figure 3. 9), the x

+ line is at 45 ° to both the z+ line and 
the z- line. 

If all the outcomes in question could be represented by mutually orthogo
nal subspaces, or by subspaces all of which were generated from one set 
of mutually orthogonal rays -if, in other words, the observables were 
compatible - then such differences would not occur. Assume, for instance, 
that each outcome a of observable A, and each outcome b of observable B 
(which is not independent of A), can be represented by subspaces Ma and Mb 
such that 
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where each of the subspaces Lai and Lb; is a member of a set {L;} of mutually 
orthogonal rays of a space 'JI. Assume further that the set {Ma} of subspaces 
corresponding to A-outcomes spans 'JI, as does the set {Mb} of those corre
sponding to B-outcomes. Clearly, A and B are compatible. 

We see that any function µ on the set {L;}, such that (a) 0 < µ(Li) < 1 for 
each L; in {Li} and (b) �;µ(Li) = 1 ,  determines a probability function p on the 
sets of A-outcomes and of B-outcomes such that 

p(a) = L µ(La) i 
p(b) = L µ(Lb) 

j 

Also, to any probability function p there corresponds a function µ, though 
the latter is not necessarily unique. 

Using these ideas, one can easily show that, if p1 , p2 , and p3 are probabil
ity functions on these sets of outcomes, then we can only choose numbers d1 
and d2 such that 

provided that 

(*) 

Thus, where all observables are compatible, if one probability function is 
the weighted sum of two others with respect to one set of outcomes, then it 
must be so with respect to all sets of outcomes. 

The conclusion that emerges from this analysis is that, in the absence of 
incompatible observables, the evidence of experiments like those we are 
considering would provide no way to distinguish pure states which yielded 
probabilities other than zero and one from mixtures which gave the same 
probabilities. We may say that the principles of uncertainty and superposi
tion are conceptually but not epistemically independent. Where no incom
patibility obtains, it is consistent with any evidence of the kind we are 
considering to regard the appearance of all probabilities in the theory (save 
zero and one) as the result of our ignorance about an essentially determined 
state of affairs. On this view the only possible pure states would be those 
represented by functions µi such that 

µi(Li) = <>ii = 1 if i = j 
= O if i =#= j 

All other states would be mixtures. 
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Some final remarks about the significance of incompatible observables 
need to be made. We have seen that a Hilbert-space representation is possi
ble for a wide class of theories; we would, however, regard it as peculiarly 
fitted for a theory which had these features: in the space in which we 
represent the states and observables of the theory, (1)  each ray (or normal
ized vector within that ray) represents a pure state, (2) every subspace of 'JI 
represents an experimental question, and (3) every Hermitian operator rep
resents an observable. To echo a point made just now, these features are not 
entirely distinct. If all observables were compatible, not only would the 
Hilbert space have, as it were, some surplus capacity for the representation 
of observables, but a number of rays would represent the same pure state; in 
the simple two-dimensional case shown in Figure 3 . 10, if any outcome of 
any experiment could be represented using just one pair of mutually orthog
onal subspaces, L1 and L2 , then no distinction could be made between the 
pure states represented by v1 and v2 : whichever we projected onto L1 and 
L2 , we would obtain the same probabilities. 

Be that as it may, a theory with all these features would employ all the 
representational capacity, so to speak, of the Hilbert space. The question is, 
does quantum mechanics do so? Well, the principle of superposition, when
ever it obtains, guarantees the first feature. There are systems which do not 
exhibit strictly quantum behavior, however, and for which the principle 
fails. These include, obviously, classical systems which can be, at different 
times, in distinct states 51 and 52 but can never be in a superposition of the 
two. There are also other, nonclassical examples: for example, it is useful to 
consider a proton and a neutron as two different states of a nucleon, but no 
superposition of proton-state and neutron-state exists (Beltrametti and Cas
sinelli, 1981,  chap. 5). However, there are many systems for which feature 
(1)  does hold, and for which, therefore, any vector in the Hilbert space can 
represent a pure state. 

Figure 3. 10 
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Now the existence of incompatible observables is not enough to guaran
tee either (2) or (3). For example, in the Hilbert space of square-integrable 
functions of x there are incompatible observables P and Q (momentum and 
position) but, it seems, no genuine observables corresponding to the Hermi
tian operators P + Q or PQ + QP, to name but two (see Wigner, 1973, 
p. 369). For the Hilbert spaces representing spin systems, however, (1), (2) 
and (3) all hold; this was established by Swift and Wright (1980) . To dem
onstrate (3) Swift and Wright showed that under certain idealizing 
assumptions -in particular, the assumption that we can create in the labo
ratory any electromagnetic field consistent with Maxwell's equations - an 
arbitrary Hermitian operator on a spin system can be measured using a 
suitable generalization of the Stem-Gerlach experiment. (They also ignore 
masking effects due to charge; see Section 10 . 1 .) 

Thus, at least in the case of spin systems, quantum theory makes use of 
the full representational capacity of a Hilbert space. 

3. 1 0  The Schrodinger Equation 

In quantum theory, the state of a system at any time ti specifies the probabil
ities attaching to outcomes of any experiment performed at that time. If the 
experiment is carried out at a later time t2 (ti < t2), the probabilities will not, 
in general, be the same as at ti ; we say that between ti and t2 the state of the 
system has evolved. Whereas at ti it was representable by a vector Vi in the 
appropriate Hilbert space 'JI, at t2 it is representable by v 2 • (I assume here 
that the initial state is a pure state.) It is the latter state v2 which assigns 
probabilities to outcomes of experiments conducted at time t2 • 

The Schrodinger equation of quantum theory describes how the state 
evolves through time. That is to say, it enables us to use the present state of 
the system to assign probabilities to future experiments. As we saw in 
Section 2 .7, if t2 - ti = t, then the dynamical evolution of a system's state is 
described by the equation 

where Ut is a unitary operator on 'JI. Furthermore, this operator is a complex 
function of the Hamiltonian operator H, which represents the total energy 
of the system; we have Equation (2 .8b): 

Ut = e- iHt 

(I have here suppressed the constant h .) 
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As this equation shows, H defines not just a single unitary operator U, but 
a family {Ut} of such operators indexed by the time t. The question we now 
address is: why should the dynamical evolution of states be given by opera
tors of this kind? Is there, so to speak, an a priori derivation of Schrodinger's 
equation? 

Note first that the family {Ut} has a structure: it forms a one-parameter 
group parameterized by the real numbers. This statement needs some am
plification. 

Consider two sets of numbers, the set � = {t: t is  a real number} and the 
set P = {et: t is a real number} . � forms a group under the operation of 
addition, and the identity element of this group is the number zero (see 
Section 1 .8). Since (i) for all t1 , t2 E �, e t1 +ti = et1 • et2 and (ii) e0 

= 1 ,  it 
follows that (�1+,0 ) is isomorphic to (P, · , 1  ) .  In other words, P also forms a 
group (under multiplication) whose identity element is 1 .  

The set we are interested in, {Ut}, is a set not of numbers but of operators, 
each expressible in the form e-iHt. However, the rules for operator multipli
cation echo those for arithmetical multiplication: 

Hence the set {Ut} also forms a group isomorphic to (�1+,0 );  the group 
operation is operator multiplication, and the identity element is the identity 
operator I. It should be clear what is meant when we say that this group is 
parameterized by the real numbers. 

We can show that, 

(3. 1 1) If A is any Hermitian operator on 'JI, then 

(i) e-iAt is a unitary operator on 'JI; 

(ii) { e-iAt} forms a group parameterized by the real numbers. 

Of more interest to us is the converse theorem, due to Stone. (Fano, 1971,  
shows this for the finitely dimensional case; see also Jordan, 1969, 
pp. 5 1 -52.) 

(3. 1 2) If {Ut} forms a (weakly) continuous group of unitary operators on 'JI 
parameterized by the real numbers, then there is a unique Hermitian 
operator A on 'JI such that, for all t, 

Ut = e-iAt 
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The significance of this theorem is this: if we can show why the dynamical 
evolution of states should be given by a weakly continuous one-parameter 
group of unitary operators, then it will follow from the theorem that there is 
a single Hermitian operator governing this evolution. (See Jordan, 1969, 
p. 52; weak continuity is defined below, but see also Fano, 1971,  p. 331 .) 
What such an investigation will not show is why this operator should be the 
Hamiltonian (the energy operator) for the system. 

Let us ignore, for the moment, the fact that a Hilbert-space representation 
of the states of systems exists, and consider a state just as a probability 
function on a set of experimental questions, a set {(A,ai): A an observable, ai 
an outcome of an A-experiment} . We assume that the state p2 at time t2 is 
specifiable in terms of the state p1 at t1 {t1 < t2), whatever the latter may be. 
Thus we can write, 

where V�! is some function on the set S of states; formally V�! : S --+  S is  a 
mapping of the set of states into itself. 

If the state p1 is in tum specifiable in terms of the state Po at t0 {t0 < t1)
that is, if 

P 1 = V��(Po) 

-then 

and, using the standard notation for the composition of functions, we may 
write 

We have, of course, V�� = V�! = I, where I is the identity function. In 
general, if time is homogeneous -if, that is, no point in time is to be 
distinguished from any other - V  �! will depend only on the interval t2 - t 1 ,  
so that 

This simplifies our notation considerably. We define Vt1 by 

V = Vto t1 df f1 
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and obtain 

V�! = Vt where t = t2 - ti 

The definition of the product of these functions now gives us, for all ti , t2 , 
and t3 , 

(3. 13a) Vt1 • vt2 = Vt1+t2 = Vt2 • Vt1 

(3. 13b) vt1 • (Vt2 • vt3) = (Vt1 • vt2) • vt3 

(3. 13c) Vt1 • V0 = Vt1 = V0 • Vt1 

(3. 13d) V0 = I 

Thus from just two assumptions, (1) statistical determinism, that the state 
at time t2 is a function of the state at time ti (ti < t2), and (2) homogeneity, that 
time is homogeneous, it follows that the evolution of states is governed by a 
family {Vt} of functions having the structure of a one-parameter commuta
tive semigroup. By adding the further assumption, (3) continuity, that the 
probabilities given by the state vary continuously with time (so that small 
changes in time result in small changes in probability), we give {Vt} the 
structure of a continuous one-parameter commutative semigroup. 

If {Vt} is to be a group, then (4) each mapping Vt of S into S must be 
one-to-one. That is, to each mapping Vt : S --+ S there must correspond an 
inverse mapping v;-i : S � S, so that 

(3. 1 3e) Vt · v;-i  = V0 = V;-1 • Vt 

Mackey (1963, p. 81)  called this assumption (4) "reversibility, "but this name 
is "not quite appropriate," as Stein (1972, p. 390 and n. 21 ) has remarked, 
because the assumption does not imply that, for each possible dynamical 
evolution of the system, there is another evolution like the first but in the 
reverse order. 

We may associate each inverse mapping v;-i with a negative number - t 
by writing 

V-i - v t - -t 

and thus obtain what we want, a continuous one-parameter group parame
terized by the reals; note, however, that on this account each mapping V -t 
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(each mapping that, so to say, moves the state backward through time) 
obtains its physical significance only from Vt , the member of the original 
semigroup of which it is the inverse. 

Two more assumptions are needed to ensure that each operator Vt can be 
represented by a unitary operator Ut on a Hilbert space 'JI. The first is (5) 
preservation of pure states, that Vt maps pure states into pure states. Then its 
representation in 'JI maps vectors into vectors, and so is an operator Ut on 
'JI. Furthermore, since all vectors representing pure states are normalized, 
Ut leaves the lengths of such vectors unchanged. 

A second assumption is needed to ensure that Ut is linear; this may be 
expressed by either of two requirements. The first is (6a) preservation of 
superpositions, that Ut preserves superpositions on 'JI :  that for all scalars a 
and b, and for all vectors u and v, 

Ut (au + bv) = aUtu + bUtv 

The second requirement- equivalent, given (4), to (6a) -is (6b) preserva
tion of inner product, that, for all u, v E 'JI, 

(u lv)  = (Utu lUtv)  

We may get some feel for the physical consequences of (6b) from the 
following considerations. Let p0 and q0 be two pure states, and let us assume 
that for some experimental question (A,a), p0(A,a) = 1 .  Now let p0 and q0 
evolve under the same evolution operator Vt to pure states Pt and qt , respec
tively, such thatpt(B,b) = 1 for some new experimental question (B, b) . Then, 
provided that (6b) holds for the operator Ut representing Vt , 

q0(A,a) = qt(B, b) 

To use a term we have not hitherto come across, (6b) guarantees that 
transition probabilities between states are preserved under dynamical evolu
tion. 

Assumptions (5) and (6) between them ensure that each Ut is a linear 
operator which leaves the lengths of vectors invariant. Since we have as
sumed (4) that each Ut has an inverse, it follows from Definition (2.9) that 
each ut is a unitary operator on 'JI. 

Hence, given assumptions (1) - (6), we know that the Hilbert-space repre
sentations of the evolution operators satisfy the antecedent of Stone's 
theorem (3 . 12) .  It follows that, if these assumptions are satisfied, then 
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Schrodinger's equation takes the form 

. 8v A z - = v 
at 

where A is a Hermitian operator. As was stated earlier, however, the as
sumptions do not tell us why this Hermitian operator should be the energy 
operator for the system.* 

* For an argument by analogy with classical mechanics, see Jordan, 1969, pp. 101 - 102. 



4 
Spin and I ts Representation 

In Chapter 3 I showed in general terms why a vector-space representation is 
appropriate for a theory involving probabilities. I noted that a characteristic 
feature of quantum theory was that the observables it deals with are, in the 
technical sense, incompatible, and I focused on observables having a finite 
number of values. In this chapter I will look at a particular family of such 
observables, namely the components of spin of the spin-! particle, and their 
representation. The representation of three of these observables (S.x , Sy , and 
Sz) has been discussed in Sections 1 . 7 and 2.3.  

In part, then, this chapter provides a specific example to illustrate the 
rather abstract discussion of the last one, but it also addresses a general 
question, first broached in Section 3 .8: from the point of view of physics, 
does any significance attach to the structure of Hilbert spaces? It might seem 
that the vector-space formalism is so well adapted to the representation of 
probabilistic theories that it could be adopted for pretty well any theory of 
that kind; perhaps its use in quantum theory merely indicates a decision to 
represent states and observables in a mathematically convenient way. 
Along these lines Cartwright writes (1983, pp. 135 - 136), in a passage I have 
already quoted, 

[Within quantum mechanics] states are to be represented by vectors; observable 
quantities are represented by operators; and the average value of a given quantity in 
a given state is represented by a certain product involving the appropriate operator 
and vector . . .  

But notice: one may know all of this and not know any quantum me
chanics . . . to do quantum mechanics, one has to know how to pick the Hamilton
ian. The principles that tell us how to do this are the real bridge principles of 
quantum mechanics. These give content to the theory . 

And Feyerabend (1975, p. 42, n. 9) suggests that 
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The quantum theory can be adapted to a great many difficulties. It is an open theory, 
in the sense that apparent inadequacies can be accounted for in an ad hoc manner, by 
adding suitable operators or elements to the Hamiltonian, rather than by recasting 
the whole structure. 

Both sets of remarks are true, but both ignore the fact that the Hilbert
space formalism is, in an important sense, not theory-neutral. This fact has 
been hinted at in the discussion of minimal representations in Section 3 .8 
and of representational capacity in Section 3. 9 .  In this chapter it is illustrated 
by an analysis of one particular problem. 

The problem is this. Suppose that we neglect, for the moment, the physi
cal significance of spin, the interaction of spin with a magnetic field, for 
instance. Are there very general constraints to which the family {Sa} of 
components of spin conform, and which guarantee that the family is repre
sentable in C2 in just the way that quantum theory tells us? According to 
quantum mechanics, we can represent S:r , Sy , and Sz by the Pauli spin 
matrices; we can also produce a general form of matrix by which to repre
sent any component of spin. What is it about spin that establishes that this 
representation must be the right one? Come to that, what is it about spin that 
establishes that a minimal representation in a Hilbert space exists? We shall 
find that the possibility of such a representation depends crucially on certain 
features of the family {Sa}; we can portray systems, not very dissimilar to 
quantum systems, whose behavior cannot be modeled in this way. These 
results will give us good reason to think that Hilbert spaces provide repre
sentations of quantum behavior which are not only versatile and adaptable, 
but physically significant. 

4. 1 Symmetry Conditions and Spin States 

We are dealing here with a family {Sa} of observables. The index a picks out 
a direction in space; intuitively, we can set out to measure the component of 
spin in any direction we choose. We specify a as we would a point on a 
sphere, by picking out the azimuthal angle <P and the longitude (} (see Figure 
4 . 1 )  and writing 

a =  (</J,8) 
So that each point on the sphere is represented by just one pair of coordi
nates we set 

- 'TC 'TC 
- < {} < -

2 2 
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Figure 4. 1 Angular coordinates of points on the sphere. 

The point a.' on the sphere diametrically opposed to a has coordinates 
(</> - n,8) if <P is positive and (</> + n,8) if (} is  negative; a' represents the 
direction antiparallel to the a-direction. 

Each observable Sa is assumed to have just two values, "plus" and 
"minus." The units we use are not significant, and so we omit the customary 
t or th . For the questions (Sa, +) and (Sa , -) we write a.+ and a.-, respec
tively. If the two values + and - are associated with the directions parallel 
and antiparallel to a., then we have 

a.+ = a.'-

We assume that a state w of a system assigns a probability to each question 
a.+. In other words, to each point a. on the unit sphere of �3 a state w assigns 
a number Pw(a.+), so that, for all a., 

The pure states of the system are those which assign probability 1 to exactly 
one question a.+ (and hence probability 0 to the complementary question 
a.-). 

Let us now see what the effect is of imposing some very general con
straints, like symmetry and continuity, on the way that the probability 
varies over the sphere. We assume the following to be the case. 
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(4. 1a) There exists a family {Sa} of observables, indexed by points on the 
unit sphere S of �3 (in other words, by directions in physical space). 

(4. 1 b) For each point a on S, the observable Sa has two possible values, + 
and -, which we associate with directions parallel and antiparallel to 
a. 

(4. 1c) The pure states w of the system assign probabilities Pw to all values of 
the members of {Sa} . 

(4. 1d) (i) For each pure state w there is one direction in space aw such that 
Pw(at) = 1 .  
(ii) For each direction in space a there is one pure state w such that 
Pw(a+) = 1 .  

Alternatively: 

(4. 1d) 

(4. 1e) 

(4. 1f) 

(4. 1g) 

There is a one-to-one correspondence between states w and direc
tions in space a, such that for w and the corresponding direction in 
space aw , Pw(at) = 1 .  For ease of notation we write Pa for the proba
bility function corresponding to a. 

For any pure state w, the probability assignments vary continuously 
over the sphere. 

For any pure state w, the assignments of probability over the sphere 
are symmetric about the axis defined by aw . 

The set of pure states displays spherical symmetry. 

Assumptions (4 . le-g) need some commentary. Let us take the case of a 
pure state w associated with a particular point x on the sphere, that is, the 
pure state w such that aw = X· For ease of description I will use a geographi
cal vocabulary and refer to X as the N-pole of the sphere, to x' as the S-pole, 
and so on. To X the state w assigns probability 1, and to x' it assigns 0 .  
Assumption ( 4 .  le) tells us that, as we move from x to x', we don't get sudden 
jumps in probability between neighboring points. It rules out, for example, 
an assignment whereby all points on the northern hemisphere (except X) are 
assigned t, and all points on the equator and the southern hemisphere 
(except x') are assigned t. 

Assumption (4 . lf) tells us that the assignments of probability are sym
metrical with respect to the polar axis v_'. Thus all points on the same line of 
latitude will be given the same probability, and for every point a on the 
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More formally, assumption (4 . lf) guarantees that the probability assigned 
to a+ is a function of the angular separation of a and X on the sphere's 
surface. 

Assumption (4 . lg) now tells us that this function is independent of the 
particular point x we choose in specifying the state. For example, if the state 
wx assigns probability t to points on the sphere at an angular separation of 
60 ° from Xi then the state We; (associated with a point e on the sphere) will 
assign t to those points on the sphere at an angle of 60 ° from e. 

In sum, under the assumptions (4 . l a - g), 

(4. 2) A continuous function t exists, mapping angles into probabilities 
(t : [0,n] � [0, 1 ]), such that, for all pairs of points a and fi on the unit 
sphere of �3, 

............... 

where ap is the angular separation of a and p. Further, t(O) = 1 and 
t(n) = 0 .  

We have also seen that t(n/2) = ! and, in general, that 

(4. 3) t(n - A.) = 1 - t(A.) for all A. such that 0 < A. < n 

4. 2 A Partial Representation of Spin in lR2 
We now come to the question of whether the family {Sa} of observables, 
together with a set W of states, can be represented in a Hilbert space. There 
are two possible values for every observable in the family, and so an ideally 
simple Hilbert-space representation would use a space of two dimensions. 
In fact quantum theory tells us that there exists a representation of {Sa} in (:2. 
But before we look at this representation, it will be instructive to see why, for 
a family {Sa} of observables and a set W of states conforming to (4 . 1 ), a 
representation in �2 is ruled out. 

It will be useful to use a rectangular coordinate system for �3 as well as the 
angular coordinates we have used so far. We label as the Z+ , X+ , and Y+ axes 
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of this rectangular coordinate system the directions in space passing 
through the points (0,0), (n/2,0), and (n/2, n/2) on S, respectively, as in 
Figure 4 . 1 .  The corresponding observables, Sz , S:r , and Sy , have values de-

t d b  + - + - + d -no e y z , z , x , x , y , an y . 
Let us restrict ourselves, for the moment, to the subset {Sq,} of observables, 

where {Sq,} = {Sa : a = (</>,O)} . In other words, we limit ourselves to the ob
servables associated with the great circle G on the unit sphere through 
which both the z-axis and the x-axis pass. For this set {Sq,} of observables we 
consider in turn three sets of pure states, W1 , W G 1  and W5 , and the probabili
ties they assign. From (4 . ld), we know that each set corresponds to a set of 
points on the unit sphere S. W1 contains just the state corresponding to the 
point (0,0); using an obvious notation, we denote by Pz+ the associated 
probability function, so that PzJz+) = 1 and, from (4 .3), PzJx+) = t = 
PzJx-). W c is the set of all states corresponding to points on G, while W5 is the 
set of all pure states and corresponds to the whole sphere S. 

For each set W the question is: are the states in W and the observables in 
{Sq,} representable within the two-dimensional space �2? It turns out that 
when W = W1 a representation in �2 is always available; when W = W c a 
representation is possible provided that a certain condition holds; however, 
when W = W5 no representation in �2 is possible. A fortiori, no representa
tion of W5 and {Sa} in �2 is possible. 

To avoid ambiguity we must distinguish between the physical space con
taining the directions (</>,O) and the representation space from which, by the 
usual algorithm, we can generate probability assignments. The two values 
of any Sq, in {Sq,} must be represented by orthogonal rays in the representa
tion space, and so we are required to map the points (</>,O) on the unit circle G 
in physical space onto rays L(</>) in the representation space, in such a way 
that any two diametrically opposed points on G are represented by orthogo
nal rays in �2 (see Figure 4.2) .  Arbitrarily, we show the ray L(</>) in the first 
quadrant when </> >  0 and in the fourth quadrant when </> < 0. 

The mapping we need is obvious. Recall that in the first instance we are 
concerned with a single pure state Pz+ . This is to be represented by a unit 
vector Z+ in L(z+)· As usual, the square of the length of the projection of this 
vector onto a ray L(</>) is to give the probability of (</>,O)+. [I write (</>,O)+ for 
the question a+ when a =  (</>,O).] To obtain, for example, pZ+(x+) = t = 
PzJx-), we orient L(x+) and L(x_) at 7t / 4 ( 45 ° ) to the ray L(z+)· In general, for 
any point (</>,O) in G, we orient the ray L(</>) at an angle l/fq, to the ray L(z+) 
given by 



(0 ,0) 

( <f>-'IT '0) 
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L(z_)=L{1T) 

L{z+)=L{O) 

Figure 4. 2 Unit circle in physical space Oeft) and representation space R2 (right). 

Since, for all a, pZ+(a) = 1 - pZ+(a'), L(</J) is orthogonal to L(n - </>), as re
quired. 

In this way we obtain a representation of {Sq,} and W1 within �2• Can this 
construction also give us a representation of {Sq,} and W G? The question to be 
answered is this. We have mapped the unit circle G into the set of rays of �2 
in a way that yields the probabilities pZ+[(</J,O)+] for each Sq, in {Sq,} . These are 
the probabilities assigned by the pure state Z+ . But does the construction 
hold good for pure states associated with other points on G? Are the rays 
L(</J) oriented in such a way as to yield the correct probabilities for all such 
states? For instance, consider the state X+, such that pX+(x+) = 1 .  This state 
must be represented by a unit vector in L(n/2). Now this certainly gives the 
correct probabilities to the possible values of Sz , since we have 

and, by our previous construction, L(x+) is at 45 ° to L(z+) and L(z_) (see 
Figure 4 .3). 

However, consider the angle <P such that l/fq, = n/8, in other words, the 
point (</J,O) on G such that pZ+[(</J,O)+] = cos2(n/8) .  The subspace L(</J) is at an 
angle n/8 (22.5 ° )  to L(z+)· Clearly, if our representation is to hold good for 
the state X+, then the question (</J,O)+ has to be assigned the same value by X+ 
as by Z+ · But, on the assumptions (4 . 1 ), this means that the point (n/4,0), 
equidistant from (0,0) and (n/2,0), must be among the points of G mapped 
onto L(</J) . (Note that, on the assumptions (4 . 1 ), the function t need not be 
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L(Z-) 

L(<\>) 
l!J(cf>)='TI/8 L (z+) 

Figure 4. 3 

one-to-one.) This implies that t(n/4) = cos2(n/8), where, as in (4 .2), 
./"'..... 

t(ap) = Po:(p+). But now observe, using the results from Section 4 . 1 , that 

t(n) = 0 = cos2 (�) 
t ( �) = � = cos2 (:) 
t (:) = cos2 (;) 

In fact, an extension of the argument given above to pure states associated 
with the points (n/4,0), (n/8,0), and so on, shows that, for every nonnega
tive integer n, 

Use of the relation t(.A) = 1 - t(n - .A), together with the continuity as
sumption, now gives us: 

(4. 4) t(.il) = cos2 ( �) for 0 < .il < n 

Thus the only consistent representation of {Sq,} and W c in �2 is remarkably 
simple: the ray L(</J) must be at an angle </J/2 to L(z+), and only if (4 .4) holds 
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does our vector-space representation hold good for all the pure states asso
ciated with points on the great circle G. 

To recapitulate, (4 .2) told us that, given certain assumptions about {Sa}, 
the prob a bill ty pa( p+) is a function of the angular separation of a and p; ( 4 .  4) 
tells us what this function must be if we are to represent the subset {Sq,} of 
{Sa}, together with its associated pure states, in �2; (4 .4) is a necessary 
condition for obtaining a representation of {Sq,} and We in �2• 

Equation (4 .4) does indeed hold for spin-! probabilities, and so the repre
sentation we have constructed is perfectly adequate, as far as it goes. But it 
does not go far enough. The only states that find representation in it are 
those associated with points on G; for full generality we need to consider, 
and to represent, the full set W5 of states, or every state corresponding to a 
point on S. The state Y+, for example, such that, in accordance with ( 4 .2) and 
( 4 .3), 

cannot be represented in Figure 4 .3 .  Thus, even as regards all possible 
probability assignments to members of {Sq,}, the representation in �2 is 
inadequate. 

Moreover, any attempt to represent other members of {Sa} on Figure 4 .3  is 
doomed to fail . For what ray is to correspond to (Sy , +)? The fact that, for the 
state Z+ , pZ+(y+) = ! = pZ+(x+) suggests that L(y+) = L(x+); but, by parallel 
reasoning in terms of the state X+, L(Y+) = L(z+) · 

Limited though its success is, nevertheless the representation of {Sq,} and 
W c in �2 is not without interest. Effectively, the only consistent representa
tion available is a uniform map of points on the great circle G in physical 
space to points on a semicircle in the representation space, such that the 
angular separation of any two points on G is twice the angular separation of 
their images. This suggests that any consistent representation of the set {Sa} 
of observables and the set W 5 of states must respect the symmetries of the set 
{a} of points in physical space. And, in a very precise sense, this is what is 
achieved by the representation of {Sa} and W5 within C2• 

4. 3 The Representation of {Sa} in C2 
By a symmetry of a set of objects we mean a set of mappings of the set onto 
itself (or automorphisms of the set) which leave invariant some relation or 
identity characteristic of the set (see Weyl, 1952). If we rotate the unit sphere 
S of �3, for example, about an axis through its center, so that the point 
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x� + y� + z� = x� + y� + z� 

The identity x2 + y2 + z2 = 1 is invariant under rotations. 
We can readily show that a set of transformations under which an identity 

is invariant forms a group (see Section 1 .8). The symmetry group of S is just 
the set SU(3) of all rotations of S about its center. Inter alia, this leaves 
invariant the angular separation of pairs of points on the sphere. 

Let us now look at the way symmetry considerations enter into the prob
lem of finding the conditions under which a Hilbert-space representation of 
{Sa} and W5 exists. As we have seen, one task is to find a mapping of points of 
S onto the rays of some two-dimensional representation space which yields 
probability assignments consistent with assumptions (4 . 1 ) . Within the rep
resentation space these probabilities are determined by the "angles" be
tween rays. (The term angle is metaphorical, if we are in a complex space: in 
general, probabilities are given by expressions of the form I< u lv>I ,  where u 
and v are normalized vectors within the two rays.) The symmetry assump
tions (4 . l f) and (4 . lg) require that, to any automorphism of S under which 
the angular separation of points of S is invariant (that is, to any rotation of S), 
there correspond an automorphism of the set of rays of the representation 
space which leaves invariant the "angles" between them; to such an auto
morphism, in turn, will correspond a unitary operator on the representation 
space (see Section 2 .7). 

We may express this by saying that assumptions (4 . lf) and (4 . lg) require 
the group SU(3) of rotations of S to have a representation in the representa
tion space. A group 9 is said to have a representation within a space CV if there 
exists a set of unitary operators on CV which, under the operation of operator 
multiplication, forms a group isomorphic to 9 .  Using this terminology, we 
can attribute the partial success and ultimate inadequacy of �2 as the repre
sentation space to the fact that, while (obviously) there exists within �2 a 
representation of SU(2) (the group of rotations of the unit circle G), there is 
no representation within it of SU(3). 

But, as Felix Klein showed in the late nineteenth century, SU(3) does have 
a representation within C2 which is effectively unique (see Goldstein, 1950, 
chap. 4 .5 and bibliography on p. 140). (I say the representation is "effec
tively" unique because any rotation can be mapped onto two matrices, M 
and - M, in C2.) Further, this representation (which is a mapping of rotation 
operators on �3 onto unitary operators on C2) is consistent with a particular 
mapping of points of S onto subspaces of C2, namely the mapping which 
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takes the point a =  (</J,8) E S  into the ray L(a), whose projector P(a) is given 
by 

(4. 5) P(a) = 
cos2 ( �) 

cos <P sin <P ei8 
2 2 

<P . <P -1"8 cos - sm - e 
2 2 

sm2 (�) 
(Compare this projector with P8, discussed in Section 1 .2 .) 

The argument so far has shown that, if the probabilities associated with 
{Sa} conform to assumptions ( 4 .  la  -g), then the only possible representation 
of {Sa} within C2 will use the mapping given above. But it has not yet been 
shown that the probability function given by this representation is the 

./"'..... 

function t(ap) = Pa(p+), which actually obtains in quantum theory, still less 
that it is the one which must obtain. In the remainder of this section I will 
deal with the first of these issues; the second I postpone to Section 4 .4 .  

The subspace L(a) projected onto by P(a) is to represent the experimental 
question a+. The pure state w such that Pw(a+) = 1 can be represented by a 
normalized vector a+ in L(a), where 

(4. 6) a+ =  

It is trivial to show that a+ is indeed in L(a) . 
If we choose the polar axis to be the z-axis of our coordinate system, as in 

Figure 4 . 1 , then we obtain, for X+, x_, Y+, y_ , Z+ , and z_ , vectors familiar 
from Section 1 . 7 as the eigenvectors of S.x , Sy , and Sz . These are shown in 
Table 4. 1 .  

Notice, incidentally, the vectors Z+ , z_ , X+, and x_ ,  and compare them 
with Figure 4 .3 .  We see that the �2-representation obtained in Section 
4.2 - the representation, that is, of states and observables associated with 
points in S for which (} = 0 -is embeddable in the C2-representation of {Sa} . 

In order to obtain a general expression for t({;JJ), we need only take the 
most straightforward case, since we know that spherical symmetry obtains. 
Accordingly, let us assume that the system is in the state Z+ . We then expect, 
from ( 4 .2), that the probability of a result a+, where a = ( </J,8), depends only 
on the angle </J. In fact we get 
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and, using the expressions for P(a) and Z+ , we obtain 

P(a)z+ = 

whence 

<P 
cos2 -

2 

sin 
<P 

cos 
<P ei8 

2 2 

Given this representation, the function t has a particularly simple form. 
It has become apparent that the representation of SU(3) we are forced to 

by symmetry considerations (provided, that is, some representation is possi
ble) is exactly that used in quantum theory. As a final confirmation of 
this - and also to display a result of great elegance - let us consider the 
matrices on C2 which, on this account, are to represent the observables Sa . 

Since we are effectively assuming the possible values of Sa to be + 1 and 
- 1, we know by the spectral decomposition theorem that, for any a = 
( </J,8), 

Sa = P(a) - P(a') 

Before doing this calculation note that, for each point a on the unit sphere S 
of �3, there will be an operator Sa . Although the steps of the calculation are 
best performed using the angular coordinates of a, in the final stages it is 
worth moving to Cartesian coordinates, so that a = (x,y,z), where x2 + 
y2 + z2 = 1 .  We set <P = 0 along the z-axis and (} = 0 along the x-axis, as 
before. 

(4. 7) 

A wonderfully simple result now presents itself: 

s = ( z a 
x + iy 

x - iy) 
-z <**> 

The Pauli matrices Sx , Sy, and Sz appear as special cases of (4 .7). In terms of 
these matrices we obtain 

(4. 8) (*) 



Spin and Its Representation 131  

cos q, e-ie 12 

Table 4. 1 Special cases of the formula: a+ = 2 

sin q, eie/2 
2 

Spin states of the spin-! particle 

Z+ z� = z_ X+ x� = x_ Y+ y� = y_ 
n n n n 

0 
2 2 2 2 

n n 
(} 0 0 0 0 

2 2 

q, 1 1 1 1 
cos - 1 0 - - - -

2 J2 J2 J2 J2 
. q, 1 1 1 1 

sm - 0 1 - -- - --
2 J2 J2 J2 J2 

e-;e;2 1 1 1 1 1 1 - (1 - i) - (1 - i) 
J2 J2 

eiB/2 1 1 1 1 1 1 - (1 + i) - (1 + i) J2 J2 

G) m � G) �U1) ! e - j) 2 1 + i 

1 ( 1 - j ) 2 - 1 - i  
4.4 Conclusion 

The conditions imposed by (4 . 1 )  guarantee that, if a representation of {Sa} 
and W5 exists in (:2, then it is the one which employs the Pauli spin matrices. 
Further, if this representation is faithful, then the function t of (4 .2) is given 
by 

(4. 9) 
./"-... 1 ./"-... t(a.p) = cos2 

2 
(a.fi) 

It follows that, unless we can show why this is the only t-function possible, 
we have not established that {Sa} must be representable in C2• But (4 .9) 
cannot be derived from (4 . l a-g). Any monotone function t"' of the form 
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(where, as the notation implies, f//(</J) is a function of </J) is consistent with 
these assumptions, provided that 

Typical admissible variations of f//(</J) with <P are shown in Figure 4 .4 .  
As an illustration, consider this whimsical example, proposed by Mielnik 

(1968, p. 55; see also Beltrametti and Cassinelli, 1981 ,  pp. 204 - 207). Imag
ine that we have a spherical container, exactly half full of some liquid. 
Imagine, further, that the surf ace of the liquid in the sphere is always a plane 
through the sphere's center. This container, we assume, can be divided in 
half by a thin partition along any plane through its center, and whenever 
this is done we find that all the liquid ends up on one side or other of the 
partition; thus the liquid exhibits quantum behavior. Furthermore, the side 
of the partition that the liquid moves to is not determined; rather, there is a 
certain probability of the liquid's moving to one side of the partition rather 
than the other, and this probability depends on the orientation of the parti
tion to the original surface of the liquid, as follows. If VL is the (volume of 
the) hemisphere originally occupied by the liquid, and VA is the hemisphere 
on side A of the partition, then the probability that all the liquid will be 
found on side A of the partition is given by 

I 

/ 
/ 

/ ,... 

,,,,.,..... 

I I 
/ 

/ 

I 
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/ / I 
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/ 
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Figure 4.4 Functions rp( c/J) such that I/I (; - c/J) = ; - rp( c/J ). 



Spin and I ts Representation 1 33 

Thus, for example, if the partition is introduced along the existing surface of 
the liquid, there is zero probability that the liquid will move to occupy the 
other half of the sphere. 

This imaginary device conforms to (4 . l a - g) .  For any point a on the 
sphere (see Figure 4 .5) there is an observable Sa which we "measure" by the 
experiment of introducing a partition along the plane equatorial with re
spect to a. The "value" of this observable is positive if the liquid moves to 
that side of the partition where a lies, and negative if it moves to the other 
side. The state w of the system is given by the original orientation of the 
liquid's surf ace; the point aw is the polar point of the hemisphere originally 
occupied by the liquid. 

It's easy to verify that all seven clauses of (4 . 1 )  hold but, as Mielnik points 
out, there is no Hilbert-space representation of such a device. And, in the 
light of our previous discussion, we can see why: the dependence of the 

� 

probability Pa(p+) on the angle ap is given not by 

1 � 

Pa(p+) = cos2 2 (ap) 

but instead by 

What constraint, then, must we add to (4 . 1 ) to guarantee that (4 .9) holds? 
Well, what is nowhere expressed in the assumptions (4 . 1 ) is the sense in 

liquid surface 

B 

nw 
Figure 4. 5 
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which the members of {Sa} are components of a physical quantity. From 
(4 .8) we see that, if we assume that {Sa} is representable as a set of Hermitian 
operators in C2, then these are indeed vector operators, which can be re
solved into components (Messiah, 1958, vol. 2, p. 509). But it's not obvious 
how such a relation might be expressible just in terms of the probabilities 
that states assign to values of Sa . Clearly such probabilities cannot add 
vectorially, on pain of yielding probabilities less than zero. 

However, a possible condition on expectation values presents itself. We 
write ( Sa )w  for the expectation value of Sa, as in Section 2.4; then 

With respect to an arbitrarily chosen Cartesian coordinate system, let a have 
coordinates ax , ay, and az (see Figure 4 .6). Thus a =  (</Ja ,Oa) = (ax ,a.y,az) · 
We now add to assumptions (4 . 1 ) the assumption 

Given (4 . 10) it follows that 

./"'-. 1 ./'-... t(ap) = cos2 
2 

(ap) 

To see this, assume that the system is in a pure state w and that the angular 
separation of a and aw is </>. We now choose a coordinate system such that 

Z+ 
a: z  --- cx=(<f>, O) 

I I I I I I I 

Figure 4. 6 Components of a = (cP,0). 
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a =  (</J,O) = (sin</J,O,cos</J) and aw = (0,0) = (0,0, 1 ) . Then 

whence, from (4 . 1 0), 

( Sa )w = cos</>( Sz )w = cos</> 

2pw(a+) - 1 = cos</> 

1 Pw(a+) = cos2 
2 (</>) [Q.E.D.] 

Equivalent to (4 . 10), given assumptions (4 . 1 ), is: 

(4. 1 1) For any mutually orthogonal triple of points (a,p,y) in �3, 

The question posed at the beginning of the chapter now has an answer. 
Under the assumptions (4 . 1 ) and (4 . 10), a family {Sa) of observables and a 
set W5 of states has a representation in C2, and this representation, involving 
the Pauli spin matrices, is just that employed in quantum mechanics for the 
spin-! particle. Further, these assumptions are nontrivial; as Mielnik's ex
ample shows, there could be "quantum systems" for which no such mini
mal representation was possible. 

Two more general conclusions can be drawn. The first is that any inter
pretation of quantum mechanics must recognize that the theory deals with 
families of observables which are knitted together in a way precisely cap
tured by the Hilbert-space representation. The mutual interdependence of 
the members of {Sa) is not a functional interdependence of the kind found in 
classical mechanics, but an essentially probabilistic interdependence; the 
observables are, in the technical sense, mutually transformable, as dea.11ed 
in (3 .9). Prima facie, any interpretation which invites us to consider them 
independently should be mistrusted. 

The second is that the way in which the relations between the observables 
Sa in quantum mechanics are determined by the symmetries of three
dimensional physical space typifies the way in which the relations within 
any family of mutually transformable observables are determined by un
derlying symmetries in nature. 



5 
Density Operators and 
Tensor-Product Spaces 

When the idea of a mixed state was introduced in Chapter 3, I suggested that 
a weighted sum of projectors could represent such a state but postponed the 
problem of providing a statistical algorithm. The problem is that of finding a 
natural generalization of Equation (2. 1 ): 

that is, of the equation whereby to each experimental question (A,il) the 
state assigns a probability. 

I will attend to this problem first. In the rest of the chapter I will discuss 
the vector-space representation of states of complex systems; when two 
hitherto independent systems interact, they behave as one complex system, 
and we can represent the states of this complex system, and observables on 
it, within a new vector space, the tensor product of the spaces appropriate to 
the two component systems. 

5. 1 Operators of the Trace Class 

As a first step toward the discussion of mixed states, I introduce the concept 
of the trace of an operator. 

Consider a Hermitian operator A on a Hilbert space 'JI. A is said to be 
positive if, for all v in 'JI, (v lAv) > 0. In fact it follows from this condition 
alone that, if A is positive, then (i) A is Hermitian, and (ii) the eigenvalues of 
A are positive (*). Now let {vi} be an orthonormal basis for 'JI (see Section 
1 . 1 3). If A is positive and 'JI is finitely dimensional, we can always evaluate 
�i( vii Av i),  and even in the infinitely dimensional case there are still positive 
operators A for which �i(vi lAvi) is finite. We say that an operator A belongs 
to the trace class provided A is positive and �i(vi lAvi) is finite. (See Fano, 
19 71, chap. 5 . 12 .) 
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This definition is acceptable because, surprisingly, the value of �i(vi lAvi) 
is independent of the particular orthonormal basis {v;} which is chosen. [It's 
a comparatively simple exercise (**) to show this.] Thus its value depends 
only on A, and we call it the trace of A: 

where { v;} is any orthonormal basis for 'JI. 
Since we're at liberty to choose any orthonormal basis whatever to evalu

ate Tr(A), we may as well use the basis which makes life easiest. For in
stance, let P be a projection operator onto a ray of 'JI. In this case we choose 
an orthonormal basis {vi} in which one vector, vi , lies within the ray in 
question. The other vectors in this basis are all orthogonal to this ray, and so 
we have 

Pvi = vi and Pvi = 0 whenever i =I= j 

whence 

It is easy to show that, for any projection operator P onto an n-dimensional 
subspace of 'JI (where n is finite), 

(5. 3) Tr(P) = n 

In addition, we can use the spectral decomposition theorem (1 .32) to 
show that if A is in the trace class and there is no degeneracy, then the trace 
of A is the sum of its eigenvalues (-tr); since A is Hermitian, it follows that 
Tr(A) is always real. When A is given a matrix representation, the sum of its 
diagonal elements gives the trace of A. 

The trace has the following properties. If a is any real number and A and B 
are operators in the trace class, we have 

(5.4) 

(5. 5) 

Tr(aA) = aTr(A) 

Tr(A + B) = Tr(A) + Tr(B) 

(*) 

(*) 

An important result involves the product of a trace-class operator and a 
bounded linear operator. B is bounded if there is a real number b such that, 
for all v E 'JI, IBv l < b lv l ; all continuous operators are bounded (and 
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conversely- see Jordan, 1969, sec. 6), and all linear operators on a finitely 
dimensional vector space are bounded. 

(5. 6) If A is a trace-class operator and B is a bounded linear operator, then 
AB and BA are both in the trace class, and 
Tr(AB) = Tr(BA). (***) 

(See Jordan, 1969, sec. 22.) 

5. 2 Density Operators 

We are particularly interested in a subset of the trace class: 

(5. 7) D is said to be a density operator if D is a trace-class operator and 
Tr(D) = 1 .  

The terms statistical operator and density matrix are also used. 
From what has been said, any projection operator P projecting onto a ray 

of 7f is a density operator. Further, let {Pi} be a family of projection opera
tors projecting onto rays of 7f.  Then, by (5 .4) and (5 .5), 

(5. 8) D = �iaiPi is a density operator, provided (a) 0 < ai , for each 
ai , and (b) �iai = 1 .  (*) 

We see that (5 .8) gives us a recipe for constructing density operators from 
projectors. But does it also give us a prescription for decomposing a density 
operator? Specifically, (i) can we always express a density operator as a 
weighted sum of projectors, and (ii) is this decomposition unique? 

The answer to (i) is yes. Every density operator D admits a set {a;) of 
eigenvalues. (This is because every density operator is compact: see Fano, 
1971, pp. 376, 29 1 .) Assume, for the moment, that there is no degeneracy 
(see Section 1 . 14). From the discussion in the previous section, these eigen
values are all positive and add to one, and the spectral decomposition 
theorem (1 .32) then guarantees that a set {P;} of projectors exists (each 
projector Pi projecting onto a ray containing eigenvectors of D with eigen
value a ·) and that D = �·a ·P· I I I I "  

Even if there is degeneracy, we can still apply the spectral decomposition 
theorem and stipulate that each Pi project onto a ray of 7f.  We will then find 
that not all the ai are distinct, that ai = ak , for instance. But all this means is 
that some ai are going to appear more than once in the summation that yields 
�iai = 1 in clause (b) of (5 .8). 
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The possibility of degeneracy, however, is one reason we cannot guaran
tee a unique decomposition for D (in other words, why the answer to the 
second question is no) . Assume, for instance, that we have a; = ak . Then the 
rays onto which Pi and Pk project span a plane Ljk in 'JI, and, if Pj and P� 
are projectors onto any two orthogonal rays of Lik '  we can replace Pi and Pk 
in {P;} by Pj and P� to form a new family {Pi} of projectors (such that, for j =I= 
i =I= k, P� = Pi)· We then obtain, 

D = �a ·P · = �a .P� � I I  � I I  i i 

As an example, consider the projection operators associated with the 
Pauli spin matrices (see Section 1 .  7). The rays projected onto by P x+ and P x

span the whole space C2 I as do those projected onto by p y+ and p y- and 
those projected onto by P z+ and P z- . Numerical computation confirms that 

1 1 1 1 1 1 
2 

p x+ + 
2 

p x- = 
2 

p y+ + 
2 

p y- = 
2 

p z+ + 
2 

p z- <*> 

More fundamentally, the very construction employed in (5 .8) ensures 
that density operators do not, in general, have a unique decomposition. For 
in that construction there was no requirement that the rays onto which the 
projectors Pi projected were to be mutually orthogonal. Yet we know from 
the spectral decomposition theorem that for each D there exists a set {Pj} of 
projectors onto mutually orthogonal rays such that D = �ibiP� . Thus, in 
general, we have 

D = LaiPi = LbiPj but {P;} =I= {Pj} 
i j 

and so a density operator has a nonunique decomposition. In fact, any 
density operator D which is not itself a projector is expressible in an infinite 
number of ways as a weighted sum of projectors onto rays, according to the 
formula D = �iaiPi (with ai > 0 for each ai and �iai = 1) .  

5. 3 Density Operators on C2 
In this section, following Bel trametti and Cassinelli ( 19 81,  chap. 4. 2), I quote 
a number of results for the operators on C2 • They are generalized for opera
tors on the space en by U. Fano (1957, sec. 7) . The reader is invited to supply 
the proofs of these statements. 
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Consider the four operators on C2 : 

(0 - i) (12 = i 0 I
= G �) 

These are, of course, familiar: at = 2Sx, a2 = 2Sy, and a3 = Sz (see Section 
1 .7). 

Let A be a linear operator on C2 • 

(5. 9) If A is Hermitian, then there are real numbers Pt , p2 , p3 , and p4 such 
that 

(5. 1 0) 

(5. 1 1) 

If A is a density operator, then p4 = t. 

If A is a projection operator, then 
(i) p4 = t and 
(ii) Pi + p� + p� = t (by idempotence). 

[see Section 1 .  6] <*> 

<*> 

(*) 

Hence, writing rt = 2p1 1 and so on, 

(5. 1 2) If A is a projection operator, then A may be written in the form 

where ri + r� + r� = 1 .  <*> 

(5. 13) Any three real numbers rt , r2 1 and r3 such that ri + r� + r� = 1 spec
ify a projection operator on C2 ; the set of all projection operators on 
C2 is in one-to-one correspondence with the set of points 
on the unit sphere of �3 . (*) 

Let Pt and p2 be the points on the unit sphere of �3 corresponding to the 
projectors pt and p 2 on C2 • 

(5. 14) A density operator on C2 expressible as the weighted sum of Pt and 
P 2 is represented by a point within the unit sphere of �3 on the 
line PtP2 (see Figure 5 . 1) .  (*) 
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Figure 5. 1 The set of density operators on C2; D = a1P1 + a2P2 = b1P3 + b2P4 ; P1 is 
orthogonal to P 2 • 

(5. 15) If A is a density operator on C2 I then A may be written in the form 

where ri + ri + ri < 1 .  <**) 

The last two results of this section are included solely on account of their 
elegance; they will not be used in what follows. 

(5. 1 6) The set of Hermitian operators on C2 forms a four-dimensional vec
tor space over the reals, and {a11a2,a3, I} forms a basis for this 
space. (*) 

(5. 1 7)  ! Tr( AB) supplies an inner product for this space; with respect to this 
inner product, the basis {a11a2,a3, I} is orthonormal (see Section 
1 .9) .  (*) 

5.4 Pure and Mixed States 

We can now answer the question posed at the beginning of this chapter: 
what algorithm can generate the quantum-mechanical probabilities for 
mixed states? 

Let P v be the projector onto the ray containing a normalized vector v, and 
let Q be any projector on the space 'JI.  If { v;} is any orthonormal basis for 'JI, 
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then, by definition, 

Tr(QPv) = L(v;IQPvv; ) i 
= Tr(PvQ) [by (5 .6)] 

Using the strategy used to derive (5 .2), let us take a basis {v;} containing v as 
one of its members. Then Pvv = v, and Pvvi = 0 when V; -::fo v, whence 

Tr(PvQ) = L<v; IQPvv;) = (v lQv) 
i 

But this is exactly the expression occurring in the statistical algorithm of 
quantum theory; if Q = P� -that is, Q is the projector onto the subspace 
representing the experimental question (A,L\) - we have, by (2 .2), 

(v lQv) = (v lP�v) = pv(A,L\) 

It follows that, if we represent a pure state by the projector P v rather than the 
vector v, then pv(A,L\), the probability that this pure state assigns to (A,L\) is 
given by 

(5. 1 8) pv(A,L\) = Tr(P vP�) 

Notice that, by taking P v to represent a certain pure state, we eliminate the 
oddity we noticed in Section 3.3, that two distinct vectors can represent the 
same state. This happens when u = cv and l c l = 1 .  Since any two such 
vectors lie within the same ray, there is only one projector corresponding to 
the state they represent. 

We see that a projector P v onto a ray acts as a probability measure µP on the 
set 5(11) of subspaces of 11, such that, for any L E 5(11), 

(where PL projects onto L). It is straightforward to show that, if we have a 
(finite) set of probability measures {µ;}, then any weighted sum 'L;a;µ; of 
such measures is also a probability measure, provided that (a) a; > 0, for 
each a;, and (b) 'L;a; = 1 .  (To see this, confirm that the Kolmogorov axioms 
(3 .2) and their generalizations (8 .4) all hold.) 

But now consider a density operator D, where D = 'L;a;P; . Each P; projects 
onto a ray of 11, and to each corresponds a probability measure µ; on 5(11). 
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For any subspace L and projector PL we have, using (5 .4) and (5 .5), 

Tr(DPi) = Tr( �a;P;Pi) 
= La;Tr(P;PL) 

i 

Since D is a density operator, the constraints on the a; are just those we need; 
thus to D there corresponds the probability measure µ0 = "'L;a#-; on the set 
S('H) of subspaces of 'H.  To each subspace L of 'H it assigns the weighted 
sum of the probabilities assigned by the pure states P; according to the 
algorithm 

(5. 1 9) µ0(L) = Tr(DPL) 

Thus, if L represents the experimental question (A,L\), we can now general
ize the statistical algorithm of quantum mechanics as follows: 

(5. 20) p0(A,L\) = Tr(DP�) 

Within this equation, the density operator D represents the state of a system. 
The use of density operators allows us to give a vector-space representa

tion to mixed states. Mathematically, these are just appropriately weighted 
sums of pure states, so that, for instance, if P 1 and P 2 represent distinct pure 
states, then any density operator D = a1P1 + a2P2 (with a1 > 0, a2 > 0, and 
a1 + a2 = 1 )  represents a mixed state. We express this fact by saying that the 
set of states forms a convex set, of which the extremal points are the pure 
states. This geometrical mode of expression seems particularly apt in the 
case of C2 , where the terms convex set and extremal point find a literal 
representation. Recall from Section 5 .3  that the set of density operators on 
C2 - that is, the set of all states - can be put into one-to-one correspon
dence with the set of points in the unit ball of �3 . Within the set of states, the 
extremal points, or pure states, represented by projectors onto the rays of 
C2 , are in one-to-one correspondence with the points on the surface of this 
ball (in other words, with the points on the unit sphere of �3). Of course, 
after the discussion of the spin-! particle in Chapter 4, this latter fact should 
hardly come as a surprise. 

Let me once more emphasize the distinction between a superposition 
and a mixture of two pure states, using, yet again, the example of spin. Con
sider the pure states Z+ and z_ (equivalently, Pz+ and Pz_). We can form a 
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superposition !Z+ + tz- of these states, which we normalize to yield 
"2Hz+ + tz-) = X+ (equivalently, Px+)· This is a pure state. However, 

!Pz+ + !Pz- represents a mixed state: as we saw in Section 5.2, 

This particular mixed state, in which the particle is, as we say, completely 
unpolarized, is one we shall come across again in future chapters. 

The customary interpretation of mixed states used to be the ignorance 
interpretation. According to this interpretation, a system in a state D = 
a1P1 + a2P2 was really in some pure state (P1 or P2), and the coefficients a1 
and a2 represented the likelihoods of its being in one or the other; these were 
epistemic probabilities, representing our best estimates of the chances. 

This interpretation of a mixed state is clearly appropriate to a classical 
theory (see Section 3.5), but it is open to two objections in the quantum-me
chanical case. The first stems from the nonuniqueness of decomposition: as 
we saw in Section 5.2, any density operator D which is not itself a projector 
can be decomposed in an infinite number of ways . Now this may just mean 
that our ignorance when we represent a state by D is (vastly) greater than we 
had assumed; still, it does seem odd that when we cannot say which are the 
possible pure states of a system, we can assign to a particular pair of them 
probabilities which add to one. In the case of the unpolarized spin-! particle, 
for instance, can we say that there is a probability of 0.5 that the particle is in 
the X+ state and a probability of 0.5 that it is in the x_ state, and that the same 
holds true for the Y+ state and the Y- state, and for the Z+ state and the z_ 
state, not to mention the nondenumerable infinity of other pairs of states 
associated with different directions in space? And this is not merely a diffi
culty associated with the central point of the set of states; all mixed states 
allow an infinite number of decompositions. 

It may be that the particular decomposition we should consider is in all 
cases determined for us by the preparation the system has undergone. If so, 
this is a fact that the formal specification of the state fails to reveal. And 
there still remains a second, possibly more telling, objection against the 
ignorance interpretation, which I will spell out in Section 5.8 .  

Nonetheless, even though the ignorance interpretation is suspect, the 
following remains true. 

Assume that we prepare an ensemble of systems in a mixed state D and 
that D can be decomposed according to the equation D = L;a;P; . Then our 
estimate of the relative frequency of any given experimental result from this 
ensemble is exactly what we would get if the ensemble consisted of various 
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subensembles, each in a pure state P; , and each of these subensembles were 
represented in the whole ensemble with relative frequency a; . This follows 
from the fact that, for any projector P, 

Tr(DP) = La;Tr(P;P) 
i 

5. 5 The Dynamical Evolution of States 

When we use density operators to represent states, Schrodinger's equation 
takes the form 

(5. 21) Dt = UtD0U;-1 

Ut is the same unitary operator that appears in (2 .8b): 

Equation (5 .21)  extends Schrodinger's equation to mixed states. A notable 
feature of the dynamical evolution it describes is that it leaves invariant the 
convex structure of the set of states. Assume, that is, that a mixture D is a 
weighted sum of two pure states, Pa and Pb , so that 

Let D, Pa , and Pb evolve under (5 .21)  in time t to D' , P� , and Pb, respectively. 
Then 

D' = aP� + bPb 

A corollary of this rule is that if we prepare an ensemble in a mixed state D 
which is statistically indistinguishable from a collection of subensembles, 
each in a pure state P; (as in the case discussed in the last paragraph of the 
previous section), then the ensemble and the collection will remain indistin
guishable under dynamical evolution. 

Of course, if the ignorance interpretation of mixed states is the correct 
one, this is as it should be; an ensemble in a mixed state is not just statistically 
indistinguishable from a collection of subensembles, it is such a collection 
and the preservation of the convex structure of the set of states is just what 
we would expect. 

If the ignorance interpretation is rejected, however, the assumption that, 
statistically, mixed states behave as though it were true is one that leads to 
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striking results. A theorem due to Kadison (195 1 ), effectively the converse 
of the result quoted above, shows the consequences of assuming (C) preser
vation of convexity: that the convex structure of the set of states is preserved 
under dynamical evolution. 

Let ft be a mapping of the set S of density operators on a Hilbert space 'H 
onto itself: ft : S --+ S. Then 

(5. 22) If ft preserves the convex structure of the set S, then there is a unitary 
operator ut on 'H (with inverse u;-1) such that, for every density 
operator D in S, 

ft(D) = utou;-1 

Recall now the "derivation" of the Schrodinger equation offered in Sec
tion 3 . 10 .  We see that the assumption (C) does the work of the assumptions 
(4), (5), and (6) made there. In other words, if we assume (1)  statistical 
determinism, (2) homogeneity of time, (3) continuity, and (C) preservation 
of convexity, then the dynamical evolution of a system is given by a family 
{Ut} of unitary operators forming a weakly continuous one-parameter group 
parameterized by the reals (see Simon, 19  7 6; also Beltrametti and Cassinelli, 
1981 ,  pp. 52 - 55, 252 - 254). As before, Stone's theorem tells us that there is 
a Hermitian operator A such that, for all t, 

Ut = e-iAt 

5. 6 Gleason 's Theorem 

In Section 5 .4 I showed that the probability measures on the set S('H) of 
subspaces of a Hilbert space include not only those representable by nor
malized vectors (the pure states), but also those representable by density 
operators on the space (both pure states and mixed states). The vectors and 
density operators generate probabilities according to the (by now) familiar 
algorithms 

respectively. 
The question arises: does this exhaust the set of possible probability 

measures on S('H)? In other words, is every probability measure on S('H) 
representable by a density operator? To this question, "The affirmative 
answer was assumed by von Neumann, conjectured by Mackey, and 
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proved by Gleason" (Beltrametti and Cassinelli, 1981,  p .  1 15; see Mackey, 
1963; Gleason, 1957). 

The formal statement of Gleason's theorem runs as follows. 

(5. 23) Let µ be any measure on the closed subspaces of a separable (real or 
complex) Hilbert space 'JI of dimension at least 3 .  There exists a 
positive self-adjoint operator T of the trace class such that, for all 
closed subspaces L of 'JI, 

µ(L) = Tr(TPL) 

The term self-adjoint is effectively synonymous with Hermitian (but see 
Fano, 1971,  p. 279). If we demand that µ be a probability measure, thus 
requiring that µ('JI) = 1,  then Tr(T) = 1 ;  in other words, T is a density 
operator. 

Note that Gleason's theorem only applies to Hilbert spaces of dimension
ality higher than two. Thus the space C2 used for most of our examples is in 
this regard anomalous. This doesn't mean that we can't represent spin states 
by density operators on C2 I but rather that we can't know that this exhausts 
the set of possible states. As will appear in Chapter 6, this fact is linked to the 
possibility of a "hidden-variable reconstruction" of the spin statistics for the 
spin-t particle. 

To use the discreet euphemism preferred by mathematicians, Gleason's 
original proof of the theorem is nontrivial. However, in 1985 an "elemen
tary" proof was given by Cooke, Keane, and Moran, and this is reproduced 
in Appendix A. 

The heart of the theorem is the proof that, in Gleason's terms, every frame 
function is regular. A frame function of weight W for 'JI is a real-valued 
function f defined on the unit ·sphere of 'JI (that is, an assignment of real 
numbers to the normalized vectors of 'JI) such that, for every orthonormal 
basis {v;} of 'JI, 

Lf<v;) = w i 

In other words, whatever orthonormal basis we choose, the assignments f 
makes to its members always add to the same result. 

It follows that a frame function for 'JI is also a frame function for a closed 
subspace of 'JI, albeit with a (possibly) different weight, and hence that all 
normalized vectors in a ray are assigned the same value by a given frame 
function (*). At the risk of belaboring the obvious, frame functions of 
weight 1 are significant to us because we regard any set of mutually orthog-
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onal rays which spans 'H as representing a set of mutually exclusive and 
jointly exhaustive outcomes of a possible experiment; the probabilities as
signed to these rays should therefore add to 1 .  

A frame function is said to be regular if there exists a self-adjoint (Hermi
tian) operator T on 'H such that, for all normalized vectors v, 

f(v) = (v lTv) 

It is straightforward (*) to show that (5 .23) follows from the fact that all 
frame functions are regular. 

The importance of the theorem can be summarized in this way. A quan
tum-mechanical state gives a simultaneous assignment of probabilities to all 
experimental questions involving observables in a given family (for exam
ple, to all questions involving components of spin) . Quantum theory allows 
us to represent all members of this family on the same Hilbert space 'H, and 
tells us that certain states are representable by vectors in 'H. With respect to 
these (pure) states, the structure of the set of all these experimental 
questions - the structure of the set of quantum-mechanical events-is that 
of the set S('H) of subspaces of 'H. Gleason's theorem tells us what the set of 
all possible states on this structure is: it contains just those states which are 
representable by density operators on 'H; they form a convex set with the 
pure states as its extremal points. 

As we shall see in the next chapter, any straightforward account of the 
properties of a quantum-mechanical system is ruled out by this result. 

5. 7 Composite Systems and Tensor-Product Spaces 

When two quantum-mechanical systems interact, they form a composite 
system. States and observables of this composite system are then repre
sented in a vector space 'JtA ® 'H8 formed from the spaces 'JtA and 'H8 in 
which the states of the two component systems, A and B, are represented; 
'JtA ® 'H8 is known as the tensor product of 'JtA and 'H8 . (See Jauch, 1968, 
chap. 1 1 .7, 1 1 .8; Beltrametti and Cassinelli, 1981, chap. 7.) 

We construct 'JtA ® 'H8 so that, if {vf} is an orthonormal basis for 'JtA and 
{ uf} is an orthonormal basis for 'H8, then the set of pairs (vf , uf) forms an 
orthonormal basis for 'JtA ® 'H8 . We use the notation vt ® uf for the pair 
(vf ,uf) .  

The inner product of the tensor-product space is defined in terms of the 
inner products on 'JtA and 'H8 : 

(5. 24) (vf ® u:Jvf ® u:) = (vflvf) (u!:JU:) 
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Since the set {vf ® uf} spans 1fA ® 1fB, this equation defines an inner 
product on the whole tensor-product space. In any vector space, lv l  = 0 if 
and only if v is the zero vector [see (1 .21)]; it follows from (5 .24) that, for any 
vA E 1fA and uB E 1fB, 

(5. 25) vA ® 0 = 0 = 0 ® uB 

For our purposes, the details of the construction of 1fA ® 1fB are not 
important (see Jauch, 1968), chap. 1 1 .7; van Fraassen, 1972, pp. 35 1 - 362) . 
But a highly significant result of this construction is that the set of vectors 
expressible in the form vA ® uB is only a proper subset of 1f A ® 1fB . In other 
words, although every vector in the space we construct is a linear sum of 
vectors expressible in the form vA ® uB , not every vector in the space is itself 
expressible in that form. Thus the tensor product of 1f A and 1fB is not simply 
the Cartesian (or topological) product of 1fA and 1fB, but includes it as a 
proper subset. 

Since all vectors in a space are linear sums of the basis vectors, we can 
define linear operators in terms of the transformations they effect on the 
latter (see Section 1 . 1 3) .  We use this fact to define an operator AA ® AB on 
1fA ® 1fB in terms of the action of linear operators AA and AB on 1fA and 
1fB, respectively, by writing: 

(5. 26) (AA ® AB)(vt ® uf) = AAvf ® A  Bur 

and extending this, by linearity, to the whole of 1fA ® 1fB. 
These operators are Hermitian, provided that A A and AB are. They repre

sent observables on the composite system, measurable by measuring AA for 
system A and AB for system B. If a measurement is performed on only one of 
the component systems (AB on system B, say), then we represent this as a 
measurement of I ® AB on the composite system. 

5. 8 The Reduction of States of Composite Systems 

We represent states of a composite system just as we do states of a simple 
system, by density operators, or (in the special case of pure states) by 
normalized vectors . But these operators and vectors are now to be defined 
on a tensor-product space. If the two component systems are in pure states 
vA and uB, then the composite system is also in a pure state vA ® uB . 
However, because not all vectors in 1fA ® 1fB are expressible in the form 
vA ® uB ,  the converse is not, in general, true. The question then arises, does 
every state, pure or mixed, of the composite system allow a unique reduction 
into states of the component systems? 
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Let us make this question more precise. Let D be a density operator on 
7-f A ® 7-fB representing a state of the composite system. Assume that the 
spectral decompositions of arbitrary Hermitian operators AA and AB on 7-fA 
and 7-fB are given by {PA) and {PB), respectively. The question is now, are 
there states DA and DB of the component system which, for all observables 
AA and AB , and for all L\ and r c �, satisfy the equations below? 

(5. 27a) Tr[D(P� ® I)] = Tr(DAP�) 

(5. 27b) Tr[D(I ® P¥)] = Tr(DBP¥) 

In each case, the trace is to be defined on the appropriate space. 
These equations just express a consistency requirement: probabilities of 

outcomes of measurements on either system are to be the same whether or 
not we consider that system as a component of a larger one. 

It turns out that, for any state D of the composite system, DA and DB are 
uniquely specified by (5 .27) (see Jauch, 1968, chap. 1 1 .8). But there are pure 
states D of the composite system which reduce into mixed states DA and DB 
of the component systems. (An example of this is discussed in Chapter 8.) 
This fact is of considerable importance for our interpretation of mixed states, 
since it shows that, in this case at least, an ignorance interpretation cannot 
be maintained. (See Section 5 .4.) Consider a composite system in the pure 
state D, of which the component states are the mixed states DA and DB . For 
the sake of argument, assume that DA = a1Pt + a2P� , while DB = b1Pf + 
b2P� , with a1 i:- a2 and b1 i:- b2 1 so that there are no problems of degeneracy. 
Then, according to the ignorance interpretation of DA and DB, system A is 
really in one of the pure states Pt or P� , and system B is really in one of the 
pure states Pf or P� . These four states may also be represented by vectors vt , 
v� , uf ,  and u�, respectively, such that Ptvt = vt , and so on. But this would 
mean that the composite system is really in one of the four states vt ® uf ,  
vt ® u� , v� ® uf , or v� ® u�, with probabilities a1b1 , a1b2 , a2b1 , a2b2 1 
respectively- in other words, that the composite system is in a mixed state. 
Since this contradicts our original assumption, the ignorance interpretation 
simply will not do. I return to this point in Section 9 .6. 

Another significant feature of the relation between composite and com
ponent states is that, in the event that the component states are mixed states 
DA and DB, then DA ® DB is not the only composite state satisfying (5 .27). In 
other words, the composite state is not uniquely defined by DA and DB . This 
suggests that there is, in general, more information available from a specifi
cation of a composite state than from a specification of its component states . 
The importance of this will appear in Chapter 8. 
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In sum, if the composite and component states satisfy (5 .27), then: 

(5. 28a) If the component states are pure (that is, representable by vectors 
vA and u8), then the composite state is pure and is represented by 
vA © uB . 

(5. 28b) If the component states are mixed, then the composite state is not 
uniquely defined by them; in particular, it may sometimes be a pure 
state not expressible in the form vA © u8 . 

(5. 28c) Any composite state D defines uniquely two component states, DA 
and 08 . 

(5. 28d) If (and only if) the composite state is expressible in the form vA © u8 
are the component states pure. 





II 
The Interpretation of 
Quantum Theory 





6 
The Problem of Properties 

This book is really an extended examination of the statistical algorithm of 
quantum mechanics, that is, of the equation 

p0(A,L\) = Tr(DP�) 

which, in the case of pure states, reduces to 

pv(A,L\) = (v lP�v) 

In Part One, I looked at the right-hand side of these equations; I was 
concerned to sort out the mathematical theory of Hilbert spaces and to show 
how naturally and elegantly they lend themselves to the representation of a 
probabilistic theory. In Part Two I turn to the left-hand side and to the 
problems which appear when we seek a deeper understanding of what the 
algorithm tells us. These problems are easier to state than to resolve. First, 
how are we to understand the quantities (A,L\) to which the theory assigns 
probabilities? Second, what concept of probability does the theory invoke? 
Third, what account can such a theory give of the measurements to which 
the algorithm implicitly refers? More briefly, in Part Two I ask whether 
looking for answers to the question, "How can the world be like that?" is as 
conducive to despair as Feynman suggests . 

6. 1 Properties, Experimental Questions, and the 
Dispersion Principle 

Recall from Chapter 2 that, in classical mechanics, a pair (A,L\) can be 
thought of as a property of a system. Associated with a system there are 
physical quantities (obseroables in our terminology); the values of these 
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observables change over time as the system's state changes, but at any time 
a measurement of any quantity will (ideally) yield a value within any de
sired range of accuracy. A specification of the state gives us these values; as 
we saw, the classical state w acts as a two-valued function on the set of pairs 
(A,i\): when w(A,L\) = 1, the system possesses the property in question; 
when w(A,L\) = 0, it does not. 

In this way classical mechanics allows us to preserve certain elements of 
the ontological structure of the world first enunciated in Aristotle's Catego
ries. * Where Aristotle had talked of "substance" and " quantity," in classical 
mechanics we speak of "system" and "property." The question this chapter 
addresses is whether these categorial elements can be preserved in an inter
pretation of quantum theory. 

In the discussion of quantum theory in Chapter 2, a pair (A,L\) was de
scribed as an "experimental question." But what exactly does such a ques
tion ask? In classical mechanics too, the pair can be thought of as a question: 
it asks of system whether it has the property (A,L\), to which the state gives 
the answer yes or no. The functions defined by the states of quantum 
theory, however, are not two-valued; their values lie anywhere in the inter
val [0, 1] .  Nor do classical states -states, that is, which assign to every 
question either a yes or a no - emerge as special cases . In any theory which 
uses the full representational capacity of a Hilbert space, there will be 
questions represented by incompatible subspaces to which no state simulta
neously assigns the limiting values 1 or 0. Thus there will be no dispersion
free states. This is easily seen geometrically. Consider, for example, (Sz ,+) 
and (Sx ,+) .  As we saw in Section 4.2, we can represent these experimental 
questions, together with a selection of states (including .z+, z_ , X+, and x_), 
in IR2 (Figure 4.3).  Clearly, any vector lying in, or at right angles to, the (Sz , +) 
ray will be at 45 ° to the (Sx,+) ray. But these are the only vectors which 
assign limiting values to (Sz ,+), and they all assign a probability of t to 
(Sx ,+). In fact, imagine the state vector v moving round the representation 
space IR2• Then pv(Sz ,+) = cos2 l/f, but Pv(Sx ,+) = cos2(l/f - n/4), and we see 
that each probability approaches a limiting value only when the other 
approaches t (Figure 6. 1 ). This holds even if we move to C2, for none of the 
additional states representable in C2 but not in IR2 assigns a limiting value to 
either question. 

For observables with a continuous spectrum, the situation is even more 

• In Categories 6 Aristotle suggests that the only quantities of substance are position, length, 
area, and volume, but in Physics IV. 14 locomotion (speed) also appears as a quantity. These 
works are included in Aristotle (1984), among many other editions. 
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Figure 6. 1 Probabilities of (Sz , +) and (Sx, +) for the state a + ,  where a = ( cf>,0), as cP varies 
from 0 to n. 

striking. Consider the noncommuting observables position (Q) and mo
mentum (P). If the system is, as we say, localized in a finite interval [a, b], that 
is, if it is in a state v such that 

pv(Q,[a, b]) = 1 

then the only L\ C � such that 

pv(P,L\) = 1 

is the set � itself (Busch and _Lahti, 1985; see also Section 9 . 1) .  
In quantum theory the dispersion principle holds: there are no dispersion

free states (see Section 9 . 1) .  But neither the claim that the pairs (A,L\) repre
sent properties nor the claim that individual systems possess a full range of 
such properties is necessarily at odds with this principle. Imagine the fol
lowing hypothetical situation. At all times each observable for a system has 
a well-defined value. Thus, for any putative property (A,L\) at any juncture, 
either the system has that property or it does not. Our present theory, 
however, can only predict the probability that a given system has the prop
erty in question; as a description of reality the theory is incomplete. If, in this 
situation, we were to rest content with the theory we had, then there would 
be serious and systematic limitations to our knowledge of the world. On 
Einstein's view, this is just the situation in which we are placed by quantum 
mechanics . 
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6. 2 The EPR Argument 

Einstein's reservations about quantum theory are well known. It was not 
that he rejected the theory; rather, he declined to regard any theory which 
just yielded probabilities as a candidate for an ultimate, complete account of 
the world. His remark chiding Born for believing in "the God who plays 
dice" is now proverbial (letter of September 7, 1944, reprinted in French, 
1979,  pp. 275 - 276; for an interesting analysis of Einstein's views, see Fine, 
1984). 

But these reservations went beyond expressions of distaste for probabilis
tic theories . With Podolsky and Rosen, in 1935 Einstein coauthored a re
markable paper, now often ref erred to simply as "EPR." The title asks, "Can 
Quantum Mechanical Description of Reality Be Considered Complete?" 
The answer given is that it cannot; surprisingly, the argument uses results 
obtained from the theory itself. 

Einstein, Podolsky, and Rosen sometimes talk of the completeness of a 
theory, sometimes of the completeness of the description of physical reality 
given by a theory. They use the former as an abbreviation for the latter; the 
assumption of the paper, that a physical theory should provide a represen
tation of physical reality, is explicitly stated: "The physical concepts with 
which the theory operates . . . are intended to correspond with the objec
tive reality" (EPR, p. 777). 

The relation their account suggests between physical reality, on the one 
hand, and its mathematical representation by a theory, on the other, is this. 
Theoretical physics employs mathematical models. Of these models only 
certain elements represent existing features of the physical world. Ptolemaic 
astronomy, to take a historical example, used a complex array of rotating 
circles mounted one on another. Yet (for Ptolemy at any rate) not all the 
points on these circles represented elements of reality, but only those points 
which represented the Sun, the Moon, Mercury, Venus, and so on. EPR 
looks at the mathematical model supplied by quantum theory and gives us a 
sufficient condition for an element of that model to represent an element of 
reality: 

It without in any way disturbing a system, we can predict with certainty (i. e., with 
probability equal to unity) the value of a physical quantity, then there exists an element of 
physical reality corresponding to this physical quantity. (P. 777) 

I will call this the EPR criterion for physical reality. The quotation above 
makes it clear that the ''elements of physical reality'' they are concerned 
with are values of physical quantities. These are thought of as properties 
(A,a) of systems, as in classical mechanics, and (on our account) are repre-
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sentable by subspaces L:- of a Hilbert space. A necessary condition for the 
completeness of a theory, EPR says, is that "every element of the physical 
reality must have a counterpart in the physical theory" (p. 777). 

What Einstein, Podolsky, and Rosen now claim about position and mo
mentum applies equally well to the _two noncommuting observables Sz and 
S:r for the spin- ! particle: 

If both of them had simultaneous reality - and thus definite values - these values 
would enter into the complete description, according to the condition of complete
ness. If then the wave function provided such a complete description of reality, it 
would contain these values . . . (P. 778) 

As we have seen, the spin state vector cannot " contain" the values of Sz and 
S:r simultaneously. However, the fact that they both can't enter at one time 
into the kind of description which the state vector provides may just indicate 
that they cannot have simultaneous reality. We could say, for instance, that 
in the state Z+ the particle has the property (Sz ,+); the value of Sz is predict
able with certainty, and so there is an element of reality corresponding to it. 
However, we could also say that, in this state, the particle has neither the 
property (S:r ,+) nor the property (S:r ,-), that neither of these properties 
constitutes an element of reality. 

Einstein, Podolsky, and Rosen saw that the fact that quantum mechanics 
admits no dispersion-free states does not, on its own, tell us whether the 
theory is complete or not. As they write, 

From [the dispersion principle] it follows that either (1) the quantum-mechanical 
description of reality given by the wave function [in our terminology the state vector] is 
not complete or (2) when operators corresponding to two physical quantities do not 
commute the two quantities cannot have simultaneous reality. (P. 778) 

Now it may be surprising that, by using the theory itself, one could ever be 
led to embrace alternative (1) of this disjunction. Although the EPR criterion 
is only a sufficient condition for the ascription of reality, if this is the only 
criterion we have, then what we regard as real will be limited by what we 
can predict with certainty. But these predictions are provided by the theory. 
How can a theory fail to predict with certainty something which it predicts 
with certainty? 

6. 3 Bohm 's Version of the EPR Experiment 

The EPR strategy is to describe an experimental arrangement involving 
correlated pairs of particles. These particles interact and then separate; 
thereafter measurements made on one particle can be used, via the correla-
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tions, to generate predictions about the other. These predictions have prob
ability one, and so, according to the EPR criterion, properties of the second 
particle acquire the status of elements of reality. Furthermore, since we may 
choose what measurement to carry out on the first particle, such predictions 
can be made about either of two incompatible observables. But it is implau
sible that the reality of a property of the second particle depends on what 
measurement is carried out on the first; hence values of both of these observ
ables should be considered elements of reality. Since this contradicts alter
native (2) of the EPR disjunction, we are therefore led to alternative (1) :  the 
quantum-mechanical description of reality is not complete. 

In the thought experiment the paper describes, the incompatible observ
ables in question are position and momentum. I will describe an analogous 
experiment suggested in 1951 by Bohm, in which the observables are dif
ferent components of spin of the spin- ! particle. 

It is possible to prepare pairs of particles, such as an electron-positron 
pair, whose total spin in any direction is zero. If the pair then separates, 
theory suggests that if, for instance, an Sz experiment is carried out on each 
system, then the results will always be opposite in sign: if the result of 
measuring Sz on the electron is +, then on the positron it will be -, and vice 
versa. The same holds for all directions in space (that is, for S:r , Sy , and so on), 
provided that both experiments measure the same component of spin. 

It's worth sketching the formalism by which quantum mechanics reaches 
this result; the general result, Equation (6. 1 ), will be important later. We 
represent the spin state of a single spin- ! particle on a two-dimensional 
complex space; call it 'JI. States of the composite system, electron + 
positron, will be represented in the tensor-product space 'JI e ® 'JI P of two 
such spaces (see Section 5 .7). Now let V+ and v_ be the eigenvectors for 
some component of spin S� for the electron, and let U+ and u__ be the 
eigenvectors of the same component of spin, S�, for the positron. The singlet 
spin state in which the system is prepared is given by 

1 1 
'I' =  .J2 (v+ ® u_) - .J2 (v_ ® U+) 

The intriguing thing about this state is that it is independent of the direction 
a; that is, we get the same vector in 'He ® 'JI P no matter what component of 
spin we choose to work with, provided only that we choose the same 
component for both systems. Compare this with the single system, for 
which 

1 1 1 1 
- z+ - - z_ = x_ + - X+ - - x_ J2 J2 J2 J2 
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'I' gives us a specification of the state of the composite system. To measure 
an observable on the composite system we can perform an experiment on 
each of the component systems; for instance, we may measure S�  on the 
electron and Sp on the positron. Such a (joint) observable is represented by 
the operator s� ® Sp on 11 e ® 11 P. The probabilities computed by using the 
standard quantum-mechanical algorithm on the tensor-product space are 
joint probabilities, the probability, for instance, that a measurement of S � on 
the electron will yield + and that a measurement of Sp on the positron will 
also yield +. It turns out that, for the singlet spin state, this joint probability 
is given by 

(6. 1) 
1 1 /'.. 

P'l'[(S� ,+),(Sp,+)] = 2 sin2 2 (ap) 

/'.. 

where ap is the angle between the directions a and p. 
:.............. 

<**) 

Notice that when ap = 0 (when a and p coincide) there is zero probability 
that both measurements will yield +; this is exactly in line with what was 
said earlier, that if the result of measuring S�  (say) is +, then the result of 
measuring S�  must be -. In fact we have, for any direction a, 

(6. 2) 

� 

Effectively, in these cases ap = 1 80 ° .  
The argument now runs as follows. Assume that we perform an Sa mea

surement on the electron of a given pair. Then, without disturbing the 
positron, we will be able to predict with certainty what value of Sa a mea
surement would reveal for it. Thus, according to the EPR criterion, the value 
of Sa for the positron is an element of reality. But we could as easily have 
measured Sp for the electron (where P is  distinct from a), and thereby been 
able to predict with certainty the value of Sp for the positron. It follows that 
the value of Sp for the positron is equally an element of reality. The represen
tation furnished by the state vector for a single particle is therefore incom
plete, since it does not contain elements which are counterparts of both 
these elements of reality. 

The crucial moves in the argument are these. After the interaction, the 
second particle (the positron in our example) is regarded as physically inde
pendent of the first. (This condition is sometimes known as the locality 
condition. ) Because of the correlations resulting from the interaction we may 
obtain information about the properties of the positron by means of experi
ments performed on the electron, but these properties are assumed to exist 
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independently of what happens to the electron once the pair has separated. 
In particular they are assumed to exist independently of the fact that we 
perform measurements upon it. Notice that although certainty of prediction 
is a sufficient condition for ascription of reality, what exists is not to be 
identified with what we can predict. This lifts the paradox we met at the end 
of Section 6.2: there is no suggestion that we can predict with certainty the 
values, for example, of both S�  and S� at the same time. For any given pair, 
we can choose to perform either an S �  or an S� experiment. Each of these 
experiments would reveal an element of reality associated with the positron. 
It is because (if locality obtains) our choice will not disturb the positron in 
any way that we can claim that both these elements of reality exist simulta
neously. In the words of EPR, to make "the reality [of S �  and S�] depend on 
the process of measurement carried out on the first system, which does not 
disturb the second system in any way" is something that "no reasonable 
definition of reality could be expected to permit" (EPR, 1935, p. 780) . 

The summary I have given departs from EPR, not only by reworking the 
argument in terms of spin components as Bohm suggested, but also by 
putting it in terms of incompatible properties of the second particle, whereas 
EPR assigns it two distinct states. (I discuss EPR in terms of states in Chapter 
8; see also Beltrametti and Cassinelli, 1981,  pp. 69 - 72.) I have rewritten it in 
this way partly to emphasize that the argument, if valid, does not convict 
quantum theory of internal inconsistency. Nor was that its aim. As will 
appear, there are other deep problems which the EPR experiment raises, but 
here I have been concerned to bring out the thesis argued by the original 
authors, that we can regard quantum mechanics as complete only at the cost 
of abandoning a particular -and appealing -account of physical reality.* 

6.4 The Statistical Interpretation 

Einstein's realism about the properties of systems went hand in hand with a 
specific interpretation of quantum theory, now generally called the statisti
cal interpretation. At one time the phrase referred to any account of quantum 
theory which accepted Born's rule for deriving probabilities from the 
squares of projections of the state vector (or "wave-function," as it was 
generally called); in fact von Neumann (1932, p. 210) used the phrase in just 
this sense. Now, however, the Born rule is effectively part of quantum 
theory, and we understand by the ''statistical interpretation" an interpreta
tion of quantum theory which views the state description provided by the 

• For a detailed analysis of EPR, see Hooker (1972); for a full account of responses to it, see 
Jammer (1974, chap. 6). 
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state vector or density operator as applicable to an ensemble of similarly 
prepared systems, rather than to an individual system (Ballentine, 1970). 

The term ensemble is borrowed from statistical thermodynamics; it refers 
to a conceptual entity: a set of similarly prepared particles . As Ballentine 
(1970, p. 361) points out, this should not be confused with a beam of 
particles, whose individual members may well interact with each other. 

On this interpretation, the state description provides statistical informa
tion about such ensembles; a natural, though not necessary, concomitant of 
this is the view that quantum mechanics is a classical statistical theory, in 
that the probabilities yielded by the state vector give the relative frequencies 
of occurrence of properties among the members of the ensemble. If, for 
example, an ensemble of spin- ! particles were in the z+ state, so that 
p(Sx ,+i) = p(Sx ,-!) = !, then half of the members of the ensemble would 
have the property (Sx ,+i) and half the property (Sx ,-!) .  Which property 
any particular system had would be revealed upon measurement. 

It is clear that, on this interpretation, the description of individual systems 
offered by quantum mechanics is invariably less than complete. 

The view I have sketched here has three components, which can be called 
the Precise Value Principle (PVP), the Relative Frequency Principle (RFP), 
and the Faithful Measurement Principle (FMP). (I use the nomenclature of 
Healey, 1979, here, and the general direction of this chapter is closely 
aligned with that of his paper. RFP is implicit in his account, though not 
explicitly stated.) According to PVP, whatever the state of a system (or, more 
properly, of the ensemble containing the system), each observable has a 
precise value for the individual system. According to RFP, the quantum
mechanical statistics represent the relative frequency of occurrence of these 
values within the ensemble. FMP suggests that every successful measure
ment reveals the (preexisting) value of that observable for the particular 
system under test. FMP thus tells us that, if the value a of an observable A 
occurs in an ensemble with relative frequency n, then (ideal) measurements 
of A will yield that value with the same frequency.* Thus the measured 
frequencies coincide with the existing frequencies of particular values, pro
vided, that is, that the measured sample can be thought of as a genuine 
ensemble. 

Elements of this view are to be found in the work of Einstein and of 
Popper. Certainly, both believed that the quantum-mechanical formalism 
applied to ensembles of systems, and both espoused PVP. (See, for example, 
Einstein, 1948; Popper, 1982; Ballentine, 1972.) And, as Healey points out, 
without FMP, PVP has little empirical content. Note, however, that Popper 

• In  an acidulous footnote Fine (1979, p. 152) disputes this correlation, but his rejection to it 
seems, instead, to be a rejection of FMP. 
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(1982, pp. 64 - 74) did not interpret probabilities as relative frequencies, 
preferring instead a propensity interpretation. 

Independently of any cachet bestowed by its pedigree, the statistical 
interpretation is prima facie a very plausible and attractive view of quantum 
theory. Unfortunately it cannot be maintained-at least, not in the simple 
form in which I have presented it. 

6. 5 Kochen and Specker's Example 

The statistical interpretation, as presented in the previous section, will be 
threatened by any counterexample to PVP. Such a counterexample is of
fered by Kochen and Specker (1967); if their result holds, then we cannot 
regard the properties of systems in the way that the statistical interpretation 
suggests. 

The example they use involves a spin-1 system. Whereas for the spin- ! 
particle there are only two possible values, +! and -!, of any component of 
spin, for a spin-1 system there are three: + 1 ,  0, and - 1 . Thus the square S� 
of any component of spin can take as values only + 1 and 0. Kochen and 
Specker show, first, that, if we take any triple of these squares, S�, Sj, and 
S � ,  corresponding to three mutually perpendicular directions in space, a, p, 
and )', then for all states of the system a measurement will show two of them 
to have value 1 and the third 0. PVP would then require us to assign 1 or 0 to 
each direction in space, and to do so in such a way that, of any three 
mutually perpendicular axes, a, p, y, two receive value 1 and the third 0 .  By a 
geometrical argument, Kochen and Specker show that this cannot be done. 

This is a very remarkable result-how remarkable can be seen by com
paring this situation with that of the components of spin of the spin- ! 
particle, whose possible values are just +!  and -t. In this case, PVP sug
gests that each direction in space must receive a value different from that 
given to the diametrically opposed direction. Clearly, one elementary way 
to do this is to imagine a sphere split into two; to one hemisphere we assign 
+!, and to the other we assign -t. Whether or not we could ever generate 
the quantum-mechanical statistics from such an assignment of values is, of 
course, a very different question. The point is that Kochen and Specker's 
example shows that, for certain systems, even that trivial kind of assignment 
is denied us. Recall, in this connection, that Gleason's theorem applies only 
to a space of dimensionality three or greater. (See Section 5 .6.) 

Let us look at Kochen and Specker's argument in more detail. Since, for 
the spin-1 particle, there are three possible values of each component of 
spin, a three-dimensional vector space is needed to represent the spin states 
of such a system. We use the space C3, on which operators are given by 
3 X 3 matrices of complex numbers; the rules for manipulating them are 
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natural extensions of those used for the 2 X 2 matrices of C2 (see Section 
1 .6). The analogues of the Pauli spin matrices for the x-, y-, and z-compo
nents of spin are 

Sx = G 0 -0 0 
l � )  

We see that 

S
�

= o 0 0 ) 
1 0 
0 1 

( 1 0 0 ) 
s; = o o o 

0 0 1 

( 1 0 0 ) 
s; = o 1 o 

0 0 0 

The operators Sx , Sy
, and Sz do not commute with each other; like the Pauli 

matrices, they obey a cyclic commutation relation (see Section 1 .7). The 
operators s; I s; I and s; I on the other hand, commute with each other. Each 
of them has eigenvalues 0 and 1, and so these are the possible values of the 
observables they represent. Their sum is given by 

S2 + S2 + S2 = 21 % y z 
Since all vectors in C3 are eigenvectors of 21, with eigenvalue 2, it follows 
that measurements of the sum of s; , s; , and s; (strictly, of the observable 
represented by their sum) will always yield value 2. Thus, of the trio of 
observables, s; I s; ,  s; I two have value 1 and the third 0. By symmetry this is 
true for any trio S�, Sj, S � ,  provided that a, p, and y are mutually perpendic
ular directions in space. 

Two assumptions are being made here (compare Healey, 1979; Stairs, 
1983b) . The first is that there are (unique) observables which are repre
sented by s; I s; I s; I and I. Second, we assume that when one operator is 
written as a function of others, as when we write 

S2 + S2 + S2  = 21 % y z 
then the possible values of the corresponding observables are functionally 
related in just the same way, so that we can add the values of s; ,  s; ,  and s;  
to obtain a value for 21. (I is the "observable" whose value for any system is 
always 1 .) 

As for this second assumption, there seems little reason to doubt it, at least 
when, as here, the observables are compatible, and the functions involved 
are simple sum and product functions. For, as was shown in Section 3 .7, 
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such functional relations among compatible operators are defined on just 
this basis. Kochen and Specker address the first assumption by proposing an 
experiment which would yield values to the observable represented by 

K = aS2 + bS2 + cS2 
% y z 

The system they consider is an atom of orthohelium. Thus they establish not 
only that 21 represents a genuine observable (when a = b = c), but also that 
s; ,  s; , and s; are actually commeasurable as well as being compatible. For 
the possible values of K (its eigenvalues) are a + b, b + c, and c + a, which 
will be distinct provided that a, b, and c are. From our second assumption, 
these values correspond to the cases when s; I s; , and s;  I respectively, have 
value 0 .  

There remains the question of the uniqueness of the observables repre
sented by the S matrices (by s;,  for example), but I will defer discussion of 
this until Section 6.8 .  

I will give the impossibility proof in an elegant version due to Friedberg 
(first published in Jammer, 1974, p. 325). 

Let us assume (A): We can assign a value of 0 or 1 to each point on a sphere 
in such a way that, of any orthogonal triple of points, just one receives value 
0. Call such an assignment an A-assignment. We then show: (I) There is an 
angle p such that, if any point p on the sphere receives value 0 on an 
A-assignment, then so does any point q at an angular distance P from p. (II) If 
one point on the sphere receives value 0 on an A-assignment, then, from (I), 
so do all the others. But (II) contradicts our original assumption; it follows 
that no A-assignment exists. 

In what follows, our notation shows A-assignments assigning values to 
vectors rather than to points on the unit sphere; for example, we understand 
by v(x + y) the value given by an A-assignment to the point q on the sphere 
where it is pierced by the vector x + y (in its positive direction). 

To show (I): Consider an orthonormal triple of vectors, {x,y,z}, from the 
center of the sphere. From this triple we generate two more orthogonal (but 
not normalized) triples of vectors: {x + y, x - y, z}, {x + z, y, x - z} . We 
now show that there is no A-assignment v such that, 

(6. 3) v(x + y) = 1 = v(x - y) 
(6. 4) v(x + z) = 1 = v(x - z) 

For such an assignment would yield, from (6.3), v(z) = 0 and, from (6.4), 
v(y) = 0, thus violating assumption (A). 
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Now consider the vectors (y + z) - x and (y + z) + x. It is easy to show 
by vector geometry that 

(x + y) 1- [(y + z) - x] 1- (x + z) 

(x - y) 1- [(y + z) + x] 1- (x - z) 

Since no two perpendicular vectors can both be assigned 0 by an A-assign
ment, it follows that there is no A-assignment v such that 

v[(y + z) + x] = 0 = v[(y + z) - x] 

since this would yield 

1 = v(x + y) = v(x + z) = v(x - y) = v(x - z) 

and we have already proved that such assignments are forbidden. 
In this way we have found two vectors, (y + z) - x and (y + z) + x, 

which cannot both be assigned 0 by an A-assignment. By taking their inner 
product (see Section 1 .4) we see that the angle a between them is 
cos- t(t) = 70 ° .  Since the choice of the basis {x,y,z} was arbitrary, it follows 
that no two points on the sphere whose angular separation is a can be 
assigned 0 by an A-assignment. 

Now let w be a normalized vector in the x-y plane, lying between x and y, 
and making an angle a with y. Then w makes an angle p with x, where 

If v is any A-assignment for which v(w) = 0, then v(y) = 1, and, since 
w 1- z, v(z) = 1 .  It follows that v(x) = 0. 

Again, this may be generalized: if the angular separation of two points p 
and q on the sphere is p, then for any A-assignment v, v(p) = 0 implies 
v(q) = 0. This proves (I) . 

To show (II), let p and q be any two distinct points on the sphere. We show 
that there is a finite sequence of points ( Pt ,p2 1 • • • ,pn ) where n > 2, such 
that Pt = p, Pn = q, and the angular separation between any pair of succes
sive points, p; and Pi+ t 1 is p. Then, from (I), any A-assignment assigning 0 to 
p also assigns 0 to q. Starting at p, we mark on the great circle through p and q 
a sequence of points, so that the angular separation of each from its prede
cessor is p, and such that the last, P; say, has an angular separation from q 
less than or equal top. Clearly, if the angular separation of P; and q is equal to 
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Figure 6. 2 

p, then the required sequence is {p, . . .  ,p;,q} .  If the angular separation of 

P; from q is less than p, then, by continuity, there is a Pk whose angular 
separation from both P; and q is equal to P (see Figure 6.2), and the required 
sequence is { p, . . .  ,p;,pklq} . 

This concludes the proof. 

6. 6 Generalizing the Problem 

The formalism of quantum mechanics entered the argument of the previous 
section in one place only: it was used to establish that the sum of the values 
of S; ,  S; ,  and S; must be equal to 2.  However, we can use an extension of the 
impossibility proof to show that PVP cannot hold in any physical theory 
that uses the full representational capacity of a Hilbert space of three or 
more dimensions, that is, in which there is a one-to-one correspondence 
between experimental questions pertaining to a certain class of observables 
and the set of subspaces of such a space. 

Let us assume that we have, as we may say, a full set, {A;}, of observables, 
each with n values (n > 3), representable on a Hilbert space 'JI.  'JI will have 
n dimensions, and to any orthogonal n-tuple of rays will correspond 
the values a1 ,  • • • , an of some observable A; in the set. (I assume that 
there is no degeneracy.) These rays will represent the properties (A; ,a1), 
(A; ,a2), . . . , (A;, an) . 

If PVP held we should be able to assign a value to every observable 
simultaneously. That is, of each orthogonal n-tuple of rays, exactly one 
would be given the value 1 ["The system has property (A;,ak)," say] and the 
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others the value 0 ["The system does not have the properties (A;,a1), (A; ,a2), 
etc."]. The impossibility proof in the previous section showed that in a 
three-dimensional real space we cannot assign the values 0, 1 ,  and 1 consist
ently to each orthogonal triple of rays; trivially, we cannot assign the values 
1, 0, and 0, either. The proof extends straightforwardly to complex spaces 
within which there are orthogonal triples of vectors, that is, to any space of 
dimension three or greater. The crucial condition on assignments, the con
dition impossible to fulfill, is that, of any mutually orthogonal set of rays 
spanning the space, exactly one be assigned the value 1 while the others are 
all assigned 0. In this extended proof, we replace talk of angular separation 
of points on the sphere by formulations involving the inner product of two 
vectors . (Recall that, in �3, (x ly ) = lx l · IY I  · cos£J.) 

Alternatively, the (generalized) impossibility proof can be viewed as a 
corollary of Gleason's theorem (see Section 5 .6).  For assume a function f 
exists mapping all rays of a Hilbert space 'JI onto {0,1}, which has value 1 for 
exactly one ray of each set of mutually orthogonal rays which span 'JI .  Such 
a function would, in Gleason's terminology, be a frame function, and from 
his theorem it follows that, provided 'JI has dimensionality higher than two, 
there exists a density operator D on 'JI such that 

f(a) = Tr(DP a) 

for each ray a (and associated projection operator Pa)· 
Now consider the spectral decomposition of D: D = 'L; b;P; . We can find a 

set of mutually orthogonal rays spanning 'JI, such that each P; of this 
decomposition projects onto one member of the set. (However, if not all the 
coefficients b; are distinct, this set will not be uniquely specified by D; see 
Section 1 . 14 .) The function f represented by D will take value 1 for exactly 
one member of this set: call this ray i. Then 

Since P;P; = 0 except when i = j, and Pr = P; , it follows that 

1 = Tr(b ·P ·) = bTr(P ·) = b · I I I I I 

But D is a density operator; we have b; > 0 for all j, and 'L; b; = 1 .  Thus D is 
the projection operator P; , and hence, for any ray a in 'JI distinct from i, 
Pa -::P P; , and so 

f(a) = Tr(P;P a) < 1 
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(Recall from Section 5 .4 that Tr(P;P a) = (valP;v a) ,  where Va is a normalized 
vector in a.) 

Hence i is the only ray in 'JI assigned 1 by f, contrary to our assumptions. It 
follows that no such function exists. 

All the proofs given here are open to the following objection. They make 
the assumption that a full (and hence nondenumerable) set of observables 
exists for the space 7i (as does the version given by Bell; see Bub, 1974, pp. 
69 - 70) . Now, as we saw in Section 3 .9, while this assumption may be 
well-founded for the space C2 of the spin- t particle, it may not be true in 
general in quantum theory. Kochen and Specker's own proof, on the other 
hand, makes no such assumption. They show that the required mapping 
fails in three-dimensional space for a set of triples involving only 1 1 7 points. 
As they point out, this avoids the objection that "it is not meaningful to 
assume that there are a continuum number of quantum mechanical proposi
tions" (Kochen and Specker, 1967, p. 70). 

6. 7 The Bell-Wigner Inequality 

In 1964, J. S. Bell dealt another blow to the straightforward statistical inter
pretation outlined in Section 6.4, by taking the discussion of EPR a step 
further; he showed that the assumptions made by Einstein, Podolsky, and 
Rosen did not simply show that the quantum-mechanical formalism was 
incomplete, but led to results which were actually at odds with quantum
mechanical predictions. Here is his argument in the form in which it was 
later presented by Wigner (1970). 

Let us assume that, for each particle in a (Bohm-style) EPR experiment, 
the values of three arbitrary components of spin are all elements of reality. 
Call these components S ! , S i ,  S: , and S; ,  S � , S � . Then we can write the 
values of these three components for the pair of particles in the form 
(i,j, k;l,m,n), where i, j, k represent the values of S ! , S i ,  S : ,  and l, m, n those of 
s; ,  S � , s; ,  respectively. Each of i, j, k, l, m, n can have two values (+ or -), 
and these are anticorrelated, so that if j = + then m = -, and so on. Hence 
(+,-,+;-,+,-) is a possible assignment of values, whereas (+,-,+;+,-,-) is 
not. There are then only eight possible assignments of values which can 
have a nonzero probability of occurrence; we can label these assignments 
1 - 8, and write: 

p(l)  = p(+,+,+;-,-,-) 

p(2) = p(+,+,-;-,-,+) 

p(3) = p(+,-,+;-,+,-) 

p(4) = p(+,-,-;-,+,+) 

p(S) = p(-,+,+;+,-,-) 

p(6) = p(-,+,-;+,-,+) 

p(7) = p(-,-,+;+,+,-) 

p(B) = p(-,-,-;+,+,+) 



Now 

p[(S ! ,+);(S � ,+)] = p(3) + p(4) 

p[(SL+);(S � ,+)] = p(2) + p(6) 

p[(S ! ,+);(S � ,+)] = p(2) + p(4) 

The Problem of Properties 1 71 

Since all these probabilities are nonnegative, it follows that, 

(6.5) p[(S ! ,+);(S � ,+)] < p[(S ! ,+);(S � ,+)] + p[(S l ,+);(S � ,+)] 

This relation is known as "the Bell-Wigner inequality." 
As we saw in Section 6.3, quantum mechanics gives us a formula for 

computing these joint probabilities. We have, from Equation (6 . 1 ), 

But consider the case when a, b, and c are coplanar, tiC= 120 ° , and the 
direction b bisects the angle between a and c. In this case, 

1 . 2 1 (�) 1 . 260 0 3 
- sm - ac = -sm = -
2 2 2 8 

1 1 � 1 1 �  1 1 
-sin2-(ab) = -sin2-(bc) = -sin230 ° = -
2 2 2 2 2 8 

And, contrary to what the Bell-Wigner inequality requires, 

1 1 ....-.... 1 1 ....-.... 1 1 /"... 
-sin2- (ac) > -sin2-(ab) + -sin2-(bc) 
2 2 2 2 2 2 

We see that, although the derivation of the Bell-Wigner inequality given 
here starts from the anticorrelations predicted by quantum theory, its con
clusion conflicts with other predictions that the theory makes. How does 
this happen? If we examine the derivation, we find that a cluster of assump
tions, largely unacknowledged, does most of the work within it. This cluster 
of assumptions, therefore, is responsible for the divergency. The assump
tions are (1) that the principles PVP, RFP, and FMP characteristic of the 
statistical interpretation all hold, and (2) that the properties of one system 
are unaffected by measurements conducted on the other. All of these would 
be congenial to Einstein, Podolsky, and Rosen; in fact most are either as-
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sumed (explicitly or implicitly) or entailed by their argument. Collectively 
we can refer to them as the assumption of "local realism." 

Bell's result gives a surprising turn to discussions of EPR. It was never 
suggested by Einstein, Podolsky, and Rosen that quantum theory was wrong 
in its predictions, but rather that it failed to satisfy a particular criterion of 
completeness. But it now appears that to accept their conclusion is to make 
certain assumptions which are actually inconsistent with quantum theory. 

Thus, if we test the theory's predictions for coupled systems, we are also, 
surprisingly, testing a cluster of metaphysical assumptions. For, should the 
theory's predictions be confirmed, and the Bell-Wigner inequality be vio
lated, this would offer a severe challenge to these assumptions; one might 
even be tempted to say that they were falsified. 

I return to this topic in Chapter 8, but a few preliminary remarks are in 
order. Since the difference between what quantum theory predicts and 
what the Bell-Wigner inequality demands was first pointed out, a number of 
experiments have been performed to see whether the inequality holds (see 
Clauser and Shimony, 1978; d'Espagnat, 1979). The results, though not 
unanimous, have largely borne out the predictions of quantum theory; we 
may take the evidence of those favorable to quantum theory as particularly 
significant, since the requirement that certain predictions are precisely real
ized is more stringent than the requirement that a certain inequality obtains. 
The consensus of opinion is that these results have been a remarkable test of 
the theory, which it has survived. 

6. 8 Hidden Variables 

The theorems of Bell and of Kochen and Specker make it clear that, if the 
quantities (A,L\) appearing in the statistical algorithm are indeed properties 
of a system, then these properties don't attach to the system in a straightfor
wardly classical way. However, the two papers in which these theorems 
were originally presented addressed a different, though related question 
(Bell, 1966; Kochen and Specker, 1967), the question of whether a hidden
variable reconstruction of quantum mechanics is possible. 

A "hidden-variable" theory, as the name implies, postulates that along
side (or, more graphically, beneath) the measurable quantities dealt with by 
the theory (position, momentum, spin, and so on) there are further quanti
ties inaccessible to measurement, whose values determine the values 
yielded by individual measurements of the observables. The quantum
mechanical statistics are to be obtained by "averaging" over the values of 
the hidden variables. The inaccessibility of these variables may be a contin
gent and temporary matter, to be remedied as we develop new experimental 
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procedures, or these quantities may be in principle inaccessible (see Jammer, 
1974, p. 267) .  

The suggestion that there may be such "hidden variables" is as old as the 
probabilistic interpretation of the state vector. It was made by Born (1962b, 
p. 825) a few months after he first proposed that interpretation: "Anyone 
dissatisfied with these ideas may feel free to assume that there are additional 
parameters not yet introduced into the theory which determine the individ
ual event." But almost as old is the denial that such hidden variables can 
exist. By considering sequences of experiments like the sequence VH, VHV, 
and so on described in the Introduction, von Neumann was led to believe 
that the existence of hidden variables would contradict quantum theory. 
For, on a natural account of hidden variables, these experiments would act 
as quantum theory tells us they cannot, that is, as a sequence of filters which 
would eventually yield a homogeneous beam; the value of the hidden 
variable would be the same for all its members, and it would be incapable of 
being split further (see Jammer, 1974, p. 267). 

Von Neumann's book, The Mathematical Foundations of Quantum Theory 
(1932, chap. 4), contains the first "no-go" theorem for hidden-variable 
theories (henceforth "HV theories") . A "no-go" theorem is a theorem to 
show that no HV theory which satisfies certain constraints can reproduce 
the quantum mechanical statistics. 

The constraints suggested by von Neumann have since been challenged 
as overly stringent, and the theorems of Kochen and Specker and of Bell are 
now considered much more decisive. Although a survey of HV theories 
would take us too far afield, I will indicate the kinds of HV theories which 
these two theorems disallow. (For a survey see Belinfante, 1973, or Jammer, 
1974, chap. 7; Bub, 1974, has a good discussion of certain no-go theorems.) 

Kochen and Specker ask whether it is possible to construct a classical 
phase space .Q, involving hidden variables, which allows a "reconstruction" 
of the quantum statistics. Recall from Chapter 2 that, in a classical theory, a 
physical quantity A is represented as a real-valued function f A :  .Q � � on 
the phase space. Kochen and Specker require that the algebraic relations 
obtaining among quantum-mechanical observables are preserved in the 
algebra of these real-valued functions on n. 

The relations they consider are just those involving compatible (they 
write "commeasurable") operators on the quantum-mechanical Hilbert 
space 'JI ;  to use a term we shall meet in Chapter 7, they require that the 
partial algebra of Hermitian operators on 'JI be embeddable in the set �n of 
functions from a classical phase space .Q to the reals. It turns out that a 
necessary condition for this embedding is that a mapping exists of the rays 
of 'JI (equivalently, the projectors onto these rays) onto {0, 1} such that, of 
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any mutually orthogonal set of rays spanning 'JI, exactly one ray receives 
value 1 .  But, as we saw in Sections 6.5 and 6.6, there are no such mappings. 
Hence no HV theory satisfying their requirements is possible. 

To see exactly what kind of HV theory this rules out, we need to examine 
the assumptions Kochen and Specker make. I drew attention to these as
sumptions in Section 6.5 . One of them in particular might be questioned, 
namely the assumption that a Hermitian operator on a Hilbert space repre
sents a unique observable. The proof rests on the requirement that, if a, p, 
and y are any three directions in physical space, then of the observables S �, 
S j, and S �, two must be given value 1 and the third 0. It is then assumed that 
if we assign to Si ,  say, the value 0 when we encounter it as a member of the 
triple s;,  s; , Si - for example, when we measure s;  + s; + Si-then it 
must also be given value 0 when it is viewed as a member of the triple S ;, , 
s;, I Si I where X1 and y' are directions in space different from X and y. It is 
assumed, in other words, that the value to be assigned to Si  is not contextual. 

A contextualist HV theory would not require this consistency of assign
ment to Si . On such a theory, a Hermitian operator which belonged to more 
than one set of mutually compatible operators would not be taken to repre
sent one single observable. Gudder (1970) has shown that (provided we 
restrict ourselves to a single system) we can always, as it were, piece together 
HV theories, each dealing with a mutually compatible set of Hermitian 
operators, and thus produce a contextual HV theory. 

Gudder's theorem shows no more than the mathematical possibility of 
producing such a theory, nor did he claim more for it . It gives no physical 
grounding for one, and indeed one may think that the move to a contextual 
theory has sapped the project of much of its motivation. 

This reservation apart, it's important to note the restriction to a single 
system. For if Kochen and Specker' s result limits us to contextualist HV 
theories, then Bell's theorem limits us to nonlocal ones (as does a result by 
Stairs, 1983b, which applies an argument like Kochen and Specker's to 
coupled systems). A local theory is one in which the hidden variables de
scribing spatially separated systems are independent of one another. How
ever, as soon as we seek an HV theory to deal with composite systems, we 
are faced with the correlations typical of EPR-type experiments. By aban
doning Einstein's assumption that spatially separated systems are indepen
dent of each other, and appealing to interactions between the systems 
concerned, it may be possible to reproduce the quantum-mechanical predic
tions for these experiments. However, it's not possible to reproduce them by 
recourse to a classical probability space, and a fortiori not by recourse to a 
classical probability space wherein such frequencies appear as relative fre
quencies of classical states . 
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The Bell theorem has implications extending beyond the topic of HV 
theories, and I discuss these implications in Chapter 8. The conclusion to be 
drawn from it in this section is that no local HV theory for quantum me
chanics is possible. 

To sum up, any HV theory that reproduces the quantum-mechanical 
statistics must be both contextual and nonlocal. 

6. 9 Interpreting Quantum Theory: Statistical States and 
Value States 

It seems that quantum mechanics cannot, via an appeal to hidden variables, 
be reformulated as a theory whose underlying phase space is classical. 
Furthermore, a straightforwardly classical interpretation of quantum theory 
itself is ruled out. Where, then, are we to look for another? Come to that, 
armed with thimbles and care, what exactly are we seeking? To obtain a 
more precise idea of what is involved in interpreting a theory, let us return to 
a suggestion made in Section 2 .8, that to interpret quantum mechanics is to 
see what kind of world is representable within the class of models the theory 
employs. 

Recall that, on the semantic view of theories, a scientific theory provides a 
representation, or model, of a certain domain. Thus geometrical optics pro
vides a geometrical representation of the transmission, reflection, and re
fraction of light, the Bohr theory of the atom a model of atomic structure . 
Sometimes these models have a physical representation, sometimes they 
are wholly abstract mathematical structures, but in both cases they supply 
representations of the phenomena, or, as in the case of the Bohr model, of 
the structures postulated as underlying the phenomena. The Hilbert spaces 
of quantum theory are, obviously, of the second, abstract kind. 

We interpret the theory by recognizing, in the models the theory provides, 
elements of a particular conceptual scheme. For example, in the Hamilton
Jacobi theory of classical mechanics for a single particle, the element w of 
the phase space is interpreted as an encapsulated summary of the pri
mary qualities of the particle, and the mathematical expression - VH(w) 
[= (- iJH/ox) - (iJH/oy) - (iJH/oz), where H is  the Hamiltonian function 
for the system] is interpreted as the force acting on the particle, such forces 
being the efficient causes responsible for the processes the theory describes. 

Thus the theory is interpreted within a particular categorial framework. I 
borrow the phrase from Komer (1969, pp. 192 - 210); a categorial frame
work is a set of fundamental metaphysical assumptions about what sorts of 
entities and what sorts of processes lie within the theory's domain. The loci 
classici for the articulation of the categorial framework of classical me-
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chanics are Kant's Metaphysical Foundations of Natural Science and his Cri
tique of Pure Reason. This categorial framework was well established prior to 
the appearance of the Hamilton-Jacobi theory; correspondingly, the task of 
interpreting the theory was that of looking for familiar sorts of things. If the 
fit between the categorial framework and the models that the Hamilton
Jacobi theory provided had been less than perfect -if, for example, there 
had been nothing in the model to correspond to the concept of a primary 
quality (or objective property), or if what was identified as an efficient cause 
had allowed a multiplicity of effects (or of what were identified as effects) 
-then the Hamilton-Jacobi theory would not have been classical me
chanics.*  

However, in the case of quantum mechanics, a very different situation 
obtains. The theory uses the mathematical models provided by Hilbert 
spaces, but it's not clear what categorial elements we can hope to find 
represented within them, nor, when we find them, to what extent the 
quiddities of these representations will impel us to modify the categorial 
framework within which these elements are organized. To interpret the 
theory is to articulate the categorial framework whose elements have their 
images within it; we obtain an interpretation by the dialectical process of 
bringing to the theory a conceptual scheme, and then seeing how this 
conceptual scheme needs to be adjusted to fit it. Because there are several 
solutions to this problem, there can be competing interpretations of the 
same theory. (Compare Holdsworth and Hooker, 1983, who talk of one 
"quantum mechanics" but several "quantum theories.") 

The concept of a property can serve to illustrate this rather abstract discus
sion. Does quantum mechanics allow us to say that a system "has proper
ties"? Certainly we can find represented in Hilbert space values of physical 
quantities: the subspace L:- (equivalently the projector P:-) represents the 
value a of the observable A. But if these subspaces are to be interpreted as 
properties, then, in addition to the now familiar state represented by a 
density operator (and called variously the statistical state [Kochen, 1978] or 
the dynamical state [van Fraassen, 1981b]), a value-state A. (alternatively, a 
micro-state [Hardegree, 1980]) must be attributed to the system. Regardless 
of whether the statistical state is thought of as applying to individual sys
tems or to ensembles of systems, the value-state must be thought of as 
applying to individual systems. The value-state will be purely descriptive; 
whereas the statistical state assigns a probability to each pair (A, a) (regarded 
as an experimental question), the value-state will specify at any juncture 

• "Classical mechanics" is here identified with a class (T1 ,11), (T2 ,I2), • • •  of theories and 
interpretations. 
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which of these pairs can be regarded as the system's properties. A value
state will thus map pairs (A,a) onto 1 or 0, depending on whether the system 
possesses the property in question or not, and so will resemble a classical 
state. 

Two remarks need to be made about this value-state. In the first place, the 
attribution of properties it provides is over and above the work done by the 
theory simpliciter. We use it to yield an interpretation of the theory which 
accommodates the notion of the properties of a system, but another alterna
tive is always open to us, that of finding a categorial framework in which the 
notion does not appear. Second, even if we hang on to properties, the 
concomitant value-states cannot be just like their classical counterparts. For 
Kochen and Specker's theorem tells us that, for most quantum systems, 
there can be no function A. mapping all pairs (A,a) onto 1 or 0 in accordance 
with PVP -in other words, so that for each A there is exactly one value a for 
which A.(A,a) = 1 .  Any workable account of a value-state must therefore be 
modified away from adherence to PVP. Different modifications will yield 
different interpretations of quantum theory. 

A number of these interpretations can best be explicated using the vocab
ulary of "quantum logic"; partly for that reason the next chapter is devoted 
to that topic. 



7 
Quantum Logic 

Various enterprises are subsumed under the heading quantum logic. Two 
useful introductions to the topic, Mittelstaedt (1981)  and van Fraassen 
(1981a), appear in the same volume; more extended accounts are given by 
Beltrametti and Cassinelli (1981) and Holdsworth and Hooker (1983). 
Common to all quantum-logical enterprises is the aim of giving, or utilizing, 
an algebraic account of quantum theory. 

In Sections 7.2 - 7.4 I define the algebraic structures that quantum logic 
makes use of (Boolean algebras, partial Boolean algebras, and orthomodular 
lattices), and show how these structures can be found embedded within 
Hilbert spaces. In Section 7.5 I look at the work of a group of writers 
(Mackey, Maczinski, Finkelstein, Jauch, and Piron) who have sought to 
recapture the Hilbert-space formalism of quantum theory by looking at the 
algebraic constraints to which the event structure of any theory must con
form. Finally, in Sections 7.6 - 7.9 I show how quantum logic can be thought 
of as a logic, in the sense in which that word is used when we speak of 
"deductive logic," and I discuss whether a "quantum-logical" interpreta
tion of quantum mechanics will allow us to salvage the notion of a property 
of a system. 

To illustrate how all these enterprises hang together, I start by examining 
a very simple classical system, showing, first, how the algebraic structure of 
a field of sets can coincide with the structure of the set of properties the 
system can possess and, second, how this structure can also be viewed as a 
logical structure. 

7. 1 The Algebra of Properties of a Simple Classical System 

Consider a simple classical "system" consisting of a box with a transparent 
lid; the box contains a penny and a quarter and is large enough for the coins 
to rattle around inside it . At any juncture, each of the coins can be either 
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heads-up or tails-up. We represent this on a two-dimensional classical 
phase space. (Hughes, 1981, presents this space in living color.) Using 
standard Cartesian coordinates, let the set P of points such that y > 0 repre
sent the experimental question (penny, heads-up), and the set P such that 
y < 0 represent (penny, tails-up) . Similarly, let the set Q of points such that 
x > 0 represent (quarter, heads-up), while the set Q such that x < 0 repre
sents (quarter, tails-up): see Figure 7. 1 .  Since the system is classical, these 
experimental questions are also possible properties of the system. 

The state of the system is represented by a point w in the phase space; w 
specifies which face of each coin is uppermost. For example, if w lies in the 
upper left segment of the phase space, P n Q, then the penny is heads-up 
and the quarter is tails-up. The phase space is classical, not (obviously) in the 
sense that it involves position or momentum coordinates, but because ex
perimental questions are represented by subsets of the phase space. Note 
that not all questions are maximally specific; the question P U  Q, for exam
ple, receives the answer yes when the system is in any configuration except 
(penny, tails-up; quarter, tails-up). 

We can represent relations between various subsets of this phase space by 
drawing a network, in which each node represents a subset. Part of this 
network is shown in Figure 7 .2; below the nodes representing P and Q is the 
node representing P n Q, and above them is the node representing P U  Q. 
We now embed this in a diagram which displays all possible subsets of the 
space obtainable by union and intersection from P, Q, P, and Q (Figure 7.3). 

p P {penny, heads-up) 
P (penny, tails-up) 

Q Q  

Figure 7. 1 
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p 

Figure 7. 2 

At the top of the diagram is the whole space, and at the bottom is the empty 
set ¢ .  

If any point on the diagram can be reached from another by traveling 
upwards along the lines of the diagram, then the subset represented by the 
higher node properly contains the subset represented by the lower. Thus a 
line running upwards between two points (possibly passing through others 
en route) represents the relation of set inclusion. 

p j5 

Figure 7.3 
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p 

Figure 7.4 

Each of these subsets, and hence each node, represents a possible prop
erty of the system and so the diagram also displays the relations between 
these properties .  Now, associated with each property is a sentence express
ing the fact that the system has the property in question. In f act, the sentence 
w E P (where w is the state of the system) expresses the fact that the penny 
is heads-up. 

Let p be synonymous with w E P, and q with w E Q. Then, using the 
standard logical connectives & and v for "and" and "or," we can write p & q 
for w E P n Q, and p v q for w E P U Q. * Clearly, to each node on the 
diagram we can attach the corresponding sentence: to the nodes represent
ing P and Q we attach p and q, respectively, and to the nodes representing P 
and Q we attach - p and - q, where - is to be read as, "It is not the case 
that . . ." Let Le be the set of sentences which can be formed from p and q 
by using the connectives &, v, an<!_-. These three connectives mimic the 
set-theoretic operations n, U, and , as Figure 7.4 shows. 

• Throughout this chapter sentences and sentence schemata of the logical language will not 
be marked off by quotation marks or quasi-quotation marks. Quelle horreur. 
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The lowest node on this diagram represents p & -p, which is always 
false, while the highest point represents the sentence p v -p, which is 
always true. The lines on the diagram represent the relation of entailment 
between sentences. Thus, for example, p & q entails p. (We write p & q I= p.) 

Notice that more than one sentence gets attached to a given node. To the 
lowest node, for example, we attach not only p & -p, but also q & - q, 
(p  & q) & (-p & - q), and so on. Thus, strictly, each node represents a class 
of sentences, each of which is logically equivalent to all the others in the 
class. We may say that each node represents a proposition. 

Thus the same diagram can show (1) the set-theoretic relations among the 
members of a family of sets, (2) the conceptual relations between the mem
bers of a set of properties of a system, and (3) the logical relations holding 
between the propositions in a certain set. These sets are isomorphic one to 
another; they all share a common structure. Our next move is to give an 
abstract characterization of that structure, of the kind discussed in Section 
1 .8 .  

7. 2 Boolean Algebras 

The structure shown in Figure 7.3 is an example of a Boolean algebra. 

(7. 1) We say that :B is a Boolean algebra if :B = (B,V,/\,1-,0,1 ) ,  where B is a 
set containing at least two elements, 0 and 1 are designated elements 
of B, V and /\ are binary operations and .L a  singulary operation on B, 
satisfying the identities, for all a, b, c in B, 

(7. l a) a V b = b V a  a /\ b = b /\ a  

(7. l b) a V (b V c) = (a V b) V c a /\ (b /\ c) = (a /\ b) /\ c 

(7. l c) a V (a /\ b) = a  a /\  (a V b) =  a 

(7. ld) a /\ (b V c) = (a /\ b) V (a /\ c) a V (b /\ c) = (a V b) /\ (a V c) 

(7. l e) a V (b /\ b.L) = a a /\ (b V b.L) = a 

This axiomatization is due to Sikorsky (1964). At the cost of some redun
dancy, it displays neatly the symmetry between V and /\; we say that the 
axioms on the right are the duals of those on the left (and vice versa). Clauses 
(7. la) and (7. lb) say that both V and /\ are commutative and associative; 
(7. lc) is known as an "absorption" axiom; (7. l d) tells us that /\ is distribu
tive over V and conversely, and (7. le) gives us the properties of the com
plementation operation .L .  The operations V and /\ are known, respectively, 
as "join" and "meet." 
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From these axioms it follows that, for all a and b in B, 

a V a = a  a /\ a = a  

a V al. = b V bJ.. a /\ al. = b /\ bl. 

In view of (7.3), there are elements of B, namely a V al. and a /\ al. , which, 
although they are obtained from a single element a by Boolean operations, 
do not depend on the choice of a. These are the designated elements 1 and 0 
respectively. We have then, by definition, 

(7.4) 1 = a  V al. 0 = a /\  al. 

We also find that, for all a and b in B, 

(7. 5) 

(7. 6) 

(aJ..)J.. = a  

(a /\ b)J.. = al. V bJ.. 

The identities (7 .6) are known as "De Morgan's laws." 
An important, though elementary, Boolean algebra Z2 has just two ele

ments, 0 and 1, as the subscript suggests. In all Boolean algebras, and hence 
in Z2 , 

(7. 7) OJ_ = 1 
O V l = l = l V O 

lJ_ = 0 
0 /\ 1 = 0 = 1 /\ 0 

O V O = O = O /\ O  
l V l = l = l /\ 1  

These equations completely characterize the Boolean operations on Z2 • 
Any Boolean algebra :B can be homomorphically mapped onto Z2 (Bell 

and Slomson, 1969); that is, there are mappings from :B onto Z2 which, as 
we say, "preserve the operations" V, /\, and J.. . Formally: 

(7. 8) For any Boolean algebra :B = (B,V,f\,1-,0, l ) , there exist functions 
h :B � {0,1} such that for all a and b in B, 

h (a V b) = h(a) V h (b) h (a /\ b) = h (a) /\ h(b) 

The operations V, /\, and J.. on the right-hand sides of these equations are 
operations on Z2 • 
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The importance of this mapping for classical logic is clear. Consider the 
Boolean algebra 1316 pictured in Figure 7.4; this is the algebra of the set Il16 of 
propositions expressible using just two atomic sentences, p and q, together 
with the usual connectives. If we think of the two elements, 1 and 0, of Z2 as 
true and false, respectively, then each of the homomorphisms of 1316 onto Z2 
offers a systematic way of assigning truth-values to the propositions of Il16 
(or, more precisely, to the sentences expressing them). On these assign
ments, as we shall see, the connectives &, v, and - are the familiar truth
functional connectives given by truth tables in any introductory logic text 
(such as Kleene, 1967, p.  9). In the case of 1316 , there are just four such 
homomorphisms, each corresponding to a possible assignment of truth
values to p and q. 

Each homomorphism is associated with one of the four atoms of 1316 , that 
is, with one of the points immediately above 0 in the diagram. Each homo
morphism maps just one of these atoms onto 1, together with all the points 
lying above that atom. The set of these elements is said to form an ultrafilter 
on 1316 • Figure 7.5 shows the elements of 1316 which are mapped onto 1 by 
the homomorphism associated with the atom a. The remainder are mapped 
onto 0.  

1 

0 
Figure 7.5 A typical ultrafilter on 0016 • 
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The generalization of this example to any atomic Boolean algebra is 
straightforward, but some preliminary work is required. 

In the discussion of 1316 , I have talked of the atoms as points "immedi
ately above" 0. We need an algebraic specification of that relation. Note first 
that, for all a and b in B, 

(7. 9) b = a V b if and only if a = a /\ b 

We use this biconditional to define a relation R on B: we say that 

(7. 1 0) aRb if and only if b = a  V b (if and only if a = b /\ a) 

The relation R is reflexive, transitive, and antisymmetric. That is, for all a 
and b in B, 

(7. 1 1 a) aRa 

(7. 1 1 b) aRb and bRc together imply aRc 

(7. 1 1 c) aRb and bRa together imply a =  b 

Such a relation is known as a partial ordering. We write a < b when aRb; < is 
the relation represented by the lines of the Hasse diagram, as it is called, of 
1316 in Figure 7.3 . 

(7. 1 2) We say that a is an atom of 13 if a +  0 and, for all b in B, b < a  implies 
b = 0 or b =  a. 

While all finite Boolean algebras are atomic (that is, they contain atoms), 
some infinite ones do not. I will restrict present discussion to atomic Boolean 
algebras, although, in fact, (7. 13) and (7. 14) below are perfectly general 
results . 

An ultrafilter U on an atomic Boolean algebra 13 is a set of elements of B 
containing just one atom a and all points b such that a < b. We find that, if U 
is an ultrafilter on a Boolean algebra 13, then, for all a and b in B, 

(7. 13a) a V b  E U  if and only if either a E U  or b E U  (or both); 

(7. 13b) a /\ b E U if and only if both a E U and b E U; 

(7. 13c) aJ.. E U  if and only if a �  U. 
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There is a one-to-one correspondence between the set of ultrafilters on :B 
and the set of homomorphisms of :B onto Z2 such that, if U is an ultrafilter on 
:B and hu is the corresponding homomorphism, then, for all a in B, 

(7. 1 4) hu(a) = 1 if and only if a E U  

From (7. 13) and (7. 14) we can see why, if we have a Boolean algebra of 
propositions, the connectives of the language expressing them behave 
truth-functionally. 

The definition of a Boolean algebra given by (7. 1 )  is purely structural, and 
so the theorems (7.2) - (7. 12) are completely general; no interpretation of V, 
/\, and J.. is assumed, nor are there restrictions on what B may contain. To 
emphasize the general nature of a Boolean algebra, and to provide an 
example which will be useful in the next section, let us look at an interpreta
tion of :1316 very different from those we have considered. 

Let A be the algebra (A,LCM,HCF,COMP,l,210) ,  such that A contains 
the sixteen numbers 1 ,  2, 3, 5, 7, 6, 10, 14, 15, 21,  35, 30, 42, 70, 105, 210, 
while the two binary operations on A yield the lowest common multiple 
(LCM) and the highest common factor (HCF) of any two numbers in A, and 
COMP(a) = 210/a, for all a in A. This algebra is isomorphic to :1316 , that is, 
we can attach each number to a node on Figure 7.3; the maximum element 
(1) of this algebra is 210, the minimum element (0) is 1,  and the atoms are the 
primes 2, 3, 5, and 7. 

Nonetheless, among all the possible realizations of Boolean algebras, one 
type of realization has a privileged status: we know from a representation 
theorem due to M. H. Stone that every Boolean algebra is isomorphic to a 
field of sets (Bell and Slomson, 1969). 

The significance of this theorem for our present purposes is this. The 
presentation in Section 7. 1 may suggest that, because the propositions of a 
classical theory are represented by subsets of a phase space, their algebraic 
structure, or logic, is Boolean; however, it is more accurate to say that, 
because their logic is Boolean, they can be represented by the subsets of a 
phase space. 

7. 3 Posets and Lattices 

Quantum logic deals with a wider class of structures than that of Boolean 
algebras. Accordingly, in this section we look at the effect of applying 
successive constraints to a very basic sort of structure, a partially ordered set, 
or poset. The effect of these constraints is shown in Figure 7.6, which shows 
Hasse diagrams of structures which get eliminated at each step. 
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A 
bye 

b 
D 

a 

B I� E 

c c c ..l.. 
F 

c 

Figure 7. 6 Some finite posets and lattices. A is a poset with no maximum element: (7. 1 8) 
fails. (7. 1 8) holds for B, but B is not complemented: (7. 1 9) fails. (7. 19) holds for C, but C is 
not orthocomplemented: (7.20) fails. (The arrows show how complementation works.) 
(7.20) holds for D, but D is not orthomodular: (7.22) fails. E is a poset with maximum and 
minimum elements, but it is not a lattice. (Nor is A.) F is an orthocomplemented distribu
tive lattice; it is a Boolean algebra. Compare Figure 7.3 and Figure 7.8. 

(7. 1 5) A = (A,< ) is said to be a partially ordered set (poset) if A is a nonempty 
set and < is a reflexive, transitive, and antisymmetric relation on A 
[see (7. 1 1 )] . 

We do not require that, for all a and b in  A, either a < b or b < a. (A set for 
which this holds is said to be totally ordered by <.) In the rest of this section, 
A is taken to be the poset (A,<) . 

If a and b are elements of A, then there may exist an element c such that 

(7. 1 6a) a <  c and b < c; 

(7. 1 6b) if a <  d and b < d, then c < d. 

Element c is then known as the supremum of {a,b) : c = sup{a,b} = 
a V b . Likewise an element e may exist such that 
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(7. 1 7a) e < a and e < b; 

(7. 1 7b) if f < a and f < b, then / <  e. 

In this case e is the infimum of {a,b) : e = inf{a,b} = a /\  b. 
The supremum of { a,b} is also known as the least upper bound of { a,b }, and 

the infimum of {a,b) as the greatest lower bound of {a,b) . As intuitive exam
ples of these bounds, think of LCM and HCF in the Boolean algebra of 
numbers given in the previous section (in which a <  b provided that a is a 
factor of b) .  Note, however, that though we use the symbols /\ and V for 
sup and inf, we cannot (yet) identify them with the binary operations on a 
Boolean algebra. 

A poset may have a maximum element, 1, or a minimum element, 0, or 
both, such that, for all a in A, 

(7. 1 8) O < a a < l 

A poset is said to be complemented if it has a maximum and a minimum 
element and if, for all a in A, there exists an element aJ.. in A such that 

(7. 1 9) a V aJ.. = 1 a /\  al. = 0 

These equations should be read, "Sup{a,aJ..} exists and is equal to l ," and 
"lnf{a,aJ..} exists and is equal to O." 

A is said to be orthocomplemented if it is complemented and, for all a in A, 

(7. 20a) (aJ..)J.. = a; 

(7. 20b) a <  b implies bl. < al.. 

For an orthocomplemented poset, De Morgan's laws hold for sup and inf 
wherever they are defined; see (7.6). Notice that, if A is orthocomple
mented, then sup{a,b} is defined if and only if inf{a,b} is. 

We can define a relation of orthogonality on an orthocomplemented poset 
by the following condition: 

(7. 21) a J_ b if and only if a < bl. 

(7.20) guarantees that this relation is symmetric -in other words, that a J_ b 
implies b J_ a. 

An important constraint, which will get more attention in the next section, 
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is that of orthomodularity. The following is known as the orthomodular 
identity. 

(7. 22) a < b implies b = a V (b /\ a.L) 

To define an orthomodular poset in a way applicable to infinite posets we 
need also the notion of orthocompleteness. We first extend the definitions of 
supremum and infimum in an obvious way to countably infinite sets {a;} of 
elements of A. Then, 

(7. 23) A is said to be orthocomplete if it is orthocomplemented and every 
pairwise orthogonal countable subset of A has a supremum. 

(7. 24) A is said to be an orthomodular poset if A is orthocomplete and the 
orthomodular identity holds. 

It may be that sup{a,b} and inf{a, b} are defined for all pairs, {a,b}, of 
elements of A. In that case, A is said to be a lattice. We can now regard V and 
/\ as binary operations on A and refer to them (unsurprisingly) as ' 'join'' and 
''meet.'' 

Notice that the lattice condition is independent of conditions (7. 1 8)
(7.20) and (7.23) - (7.24). We can apply these constraints to the class of 
lattices to obtain, successively, lattices with maximum and minimum ele
ments, complemented lattices, orthocomplemented lattices, orthocomplete 
lattices, and orthomodular lattices. 

It is easy to show that, for all lattices, clauses (7. la - c) of the definition of a 
Boolean algebra hold (that is, commutativity, associativity, and absorption), 
as do (7.2) (idempotence) and (7. 1 0), which now appears as a theorem 
rather than a definition. (7. le) and (7.4) hold for complemented, and (7.5) 
(7.6) for orthocomplemented lattices. 

A lattice for which (7. ld) holds is known as a distributive lattice. An 
orthocomplemented distributive lattice is a Boolean algebra. 

Now let A be a complemented distributive lattice. Take a, b EA such that 
a <  b. Then 

b = b /\ (a V a.L) 
= (b /\ a) V (b /\ a.L) 
= a V (b /\ a.L) 

[(7. le)] 

[(7. ld)] 

[(7. 10)] 

Thus the modular identity is a special case of distributivity. Hence all ortho-
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complete distributive lattices are orthomodular. However, the converse is 
not true: in the next section I describe a lattice (Figure 7.8) that is orthomod
ular but not distributive. 

7. 4 The Structure of S(1i) 

We now have a vocabulary in which to give an algebraic account of the set of 
experimental questions in quantum mechanics; in conformity with standard 
usage, I shall call this set the set of quantum events, or just events. Since each 
quantum event is representable by a (closed) subspace of a Hilbert space, 
quantum logic involves giving an algebraic characterization of the set S('H) 
of these subspaces. 

S('H) forms a lattice L('H); it is partially ordered by inclusion, and for any 
pair of subspaces, L and M, there is a greatest subspace which is common to 
both and a least subspace which contains them both. We may define meet 
and join on L('H) by: 

(7. 25a) L /\ M = L n M 
(7. 25b) L V M = n{N: N E  5(1/) and L c N, M c  N} 

Notice that the latter is not the union of two subspaces, but their span. The 
union of two rays, for example, contains just the vectors in the two rays; 

Figure 7. 7 Some subspaces of R3• 



Figure 7. 8 The lattice G12  • 
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since it does not contain all linear superpositions of these vectors, it is not a 
subspace. The span of two rays is the plane containing them both and it is 
this which, in lattice-theoretic terms, is the join of the two rays. 

11 is the maximum element and {O} the minimum element of L(11). The 
closure (see Section 1 .1 6) of the set of vectors orthogonal to L forms a 
subspace LJ.. , which is the orthocomplement of L, obeying (7. 19) and (7.20). 

Thus the set of subspaces of 7i forms an orthocomplemented lattice. It is 
not distributive, however, as we can see by considering a selection of spaces 
of �3 . Consider the subspaces shown in Figure 7.7. These are the subspaces 
generated by two triples of orthogonal vectors, {x,y,z} and {u,v,z}. We use 
an obvious notation: 4c is the ray spanned by x, Lxy the plane spanned by x 
and y, and so on. Note that four of the vectors, x, y, u, and v, lie in one plane; 
thus Lxy = Luv = Lxu = Lyv, and so on. 

The lattice G12 of these subspaces (named after Greechie; see Beltrametti 
and Cassinelli, 1981, p. 102) is shown in Figure 7.8 .  In this diagram, each 
one-dimensional subspace is shown immediately below its orthocomple
ment. 

Now consider the subspace 4c /\ (Lu V Lv). Since Lu V Lv = Luv = Lxy, we 
have Lx /\ (Lu V Lv) = 4c /\ Lxy = 4c .  On the other hand, since 4c /\ Lu  = {O}, 
and Lx /\ Lv = {O}, we have (4c /\ Lu) V (4c /\ Lv) = {O} V {O} = {O} . It follows 
that, 

and so G12 is not distributive, and, a fortiori, neither is £(�3). However, the 
orthomodular identity (7.22) holds of L(�3), and, indeed, of the lattice 
L(11) of subspaces of any Hilbert space 11.  Such lattices are orthomodular. 
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Our first characterization of S('H), then, is that it has the structure of an 
orthomodular lattice. 

I noted in Section 7.3 that all distributive lattices are orthomodular, and 
it's also true that within any orthomodular lattice we can find sublattices 
which are distributive. In particular, the set of subspaces which can be 
generated from any set of mutually orthogonal rays spanning a Hilbert 
space 'JI by join, meet, and (ortho)complementation forms a distributive 
sublattice of L('H). 

G12 , for example, contains two distributive sublattices of eight elements, 
each isomorphic to the lattice shown in Figure 7.6(F); one is generated by Lx, 
Ly, and Lz , and the other by Lu,  Lv,  and Lz . These two sublattices are, so to 
speak, "pasted together" (the term is Bub's) at the points {O}, �3 , Lz , and L-;. 
Each of them is a complemented, distributive lattice -in other words, a 
Boolean algebra -the elements of which are mutually compatible sub
spaces of �3 . 

This gives an alternative way to characterize algebraically the structure of 
the set of subspaces of a Hilbert space. Rather than describe it as an ortho
modular lattice, we may describe it as a partial Boolean algebra (PBA). (The 
definition given here is equivalent to that in Kochen and Specker, 1965; for a 
review of work on PBAs, see Hughes, 1985a.) 

Consider an indexed family :B = { :B; : i E I} of Boolean algebras: :B; = 
(B; ,V; , /\ ,1-i ,0; , 1 ; ) . (I is a set, possibly infinite, of convenient indices.) 

:B is said to be a Boolean manifold (Hardegree and Frazer, 1981)  if 

(7. 26a) if i,j E I, then there is a k E I  such that B; n B; = Bk; 

(7. 26b) for all i,j E I, O; = O; and 1 ;  = 1; ; 

(7. 26c) if a,b E B; n B; , then 

a v. b = a v. b I J a f\. b = a f\. b I J 

:B is said to be a partial Boolean algebra if :B is a Boolean manifold and, 

(7. 27) for all a,b,c E U{B;}, if there are i,j,k E I  such that 

a,b E B; b,c E B; 

then there is an m E I  such that a,b,c E Bm . 

Let :B be a partial Boolean algebra. We define partial operations, V and /\, 
on :B by: 



(7. 28) If, for some i E I, a, b E B; , then 

a V b =  a v. b I a /\  b = a f\.  b I 

A complementation operation is defined on :B by: 

(7. 29) If a E B; , then al. = al.; . 
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A partial Boolean algebra is thus a set of Boolean algebras pasted together 
in a consistent way, so that, where two or more Boolean algebras overlap, 
their operations agree with each other. This consistency is assured by (7.26) . 
The condition (7.27) is sometimes called the coherence condition (Hardegree 
and Frazer, 1981,  p. 57). 

The set S('H) of subsets of a Hilbert space constitutes a partial Boolean 
algebra :B('H), within which each maximal Boolean algebra :B; is generated 
by a set of mutually orthogonal rays spanning 'JI.  

We have, it seems, two ways to characterize S('H), as an orthomodular 
lattice and as a PBA. What exactly is the relation between these two struc
tures? And, further, does either of them fully characterize S('H)? 

The first question has been answered by two theorems due to Finch and 
Gudder. It turns out that any orthomodular poset which satisfies a coher
ence condition is a PBA (Finch, 1969) and, conversely, that any PBA satisfy
ing a transitivity condition is an orthomodular poset (Gudder, 1972) . (The 
coherence condition for posets is given by (7.31 )  below; a PBA is transitive if 
a <  b and b < c together imply a <  c, for all a, b, and c in the algebra. For an 
example of an intransitive PBA, see Hughes, 1985b, p. 444, n. 1 1 .) The class 
of coherent orthomodular posets thus coincides with the class of transitive 
PBAs. The difference between the lattice and the PBA is this: whereas the 
lattice operations V and /\ are defined for all pairs of points on the lattice, 
the operations V and /\ on a PBA are partial operations, defined only for 
pairs of points, both of which are in the same Boolean subalgebra of the 
PBA. We call such points compatible, noting that in the PBA :B('H) two 
points are compatible in this sense if and only if the subspaces they corre
spond to are compatible in the sense of (3 .8) .  But now notice that (3 .8), 
suitably rewritten, gives a purely algebraic definition of compatibility: 

(7.30) If a and b are elements of a poset, we say that a is compatible with b 
(a$b), if there are mutually orthogonal elements a0 , b0 , and c in the 
poset such that a = a0 V c and b = b0 V c. 

[The orthogonality relation here is, of course, the algebraic relation defined 
by (7.21).]  This definition allows the coherence condition mentioned above 
to be simply stated: 
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(7.31) An orthomodular poset A is said to be coherent if, for all a, b, and c in 
A, a$b, b$c, and c$a together imply (a V b)$c. 

This condition on posets does the work of (7.27) (Hardegree and Frazer, 
1981) .  

It turns out that the feature we noted in the case G12 is perfectly general: 
every maximal set of mutually compatible elements of a coherent ortho
modular lattice is a Boolean algebra. Thus, to obtain a PBA from a coherent 
orthomodular lattice L, we just define partial operations on L which are the 
restrictions of lattice join and meet to pairs of compatible elements within L. 
Conversely, there is a natural ordering definable on the transitive PBA 
:B('H), and there are unique extensions of the partial operations on :B('H) to 
meet and join with respect to that ordering; the resulting structure is a 
coherent orthomodular lattice. 

The second question remains open. It is not known whether there is a 
purely algebraic way to specify those partial algebras (or those orthomodu
lar lattices) which are isomorphic to S('H). The sorts of considerations at 
work in Chapter 4 suggest that the most promising approach would be to 
consider PBAs on which groups of transformations were definable which 
reproduced the symmetry groups within Hilbert spaces. These transforma
tions would map one Boolean subalgebra of the PBA onto another; recall 
that a selection of subspaces �3 giving rise to G12 was obtained by taking one 
orthogonal triple in �3 and rotating it about the z-axis to yield another. (See 
Gudder, 1973, for work along these lines; see also Holdsworth and Hooker, 
1983, pp. 135 - 136, for further references.) 

7. 5 The Algebra of Events 

To the extent that the structure of a Hilbert space can be given algebraically, 
an algebraic reconstruction of quantum mechanics is possible. The question 
arises, what is gained by such a reformulation? One attractive possibility is 
that we can thereby achieve more insight into the way in which the structure 
of quantum mechanics relates, on the one hand, to that of predecessor 
theories like classical mechanics, and, on the other, to that of possible 
successor theories. But, from where we stand now, can anything useful be 
said about the structure of as yet unformulated theories? 

One approach to this project is to consider a linked pair of problems. First, 
are there a priori algebraic constraints which the set of events dealt with by 
any physical theory must satisfy? Second, what further constraints, peculiar 
to individual theories, lead us to the Boolean algebra of events characteristic 
of classical mechanics, or to the non-Boolean structure of S('H) we find in 
quantum theory? 
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These problems are similar to those broached in Chapter 3 .  However, that 
chapter did not set out to deduce the algebraic structure of the set of experi
mental questions (events) of a theory from an analysis of what constitutes 
an experimental procedure. Rather, it addressed the question of whether the 
algebra of events could always be embedded into a Hilbert space, and 
sought the differences between classical and quantum theory in the extent 
to which each utilized the machinery that Hilbert-space models made avail
able. In other words, it started with the algebraic models with which the 
present project, if successful, would conclude. It displayed the structure of 
Hilbert space and looked at its suitability for representing a physical theory; 
it did not deduce that structure from pretheoretical considerations. 

My aim is to produce a formal specification of the algebra 8 of events of a 
theory; however, I will preface this with some discussion of the operational 
procedures the algebra is to model and of the problems the approach en
counters. 

As in Chapter 3, I start with a schematic account of a preparation-mea
surement procedure. (For a very careful account of a a-algebra of events 
along similar lines, see Stein, 1972, pp. 374 - 378.)  Let us divide measure
ments into two kinds. Those of the first kind yield results on the continuum 
of real numbers, or within a small range of the reals. Typically we write "i = 
2.21 + 0.02 A" as a measurement of current. The ranges involved may 
overlap: 2 .21 + 0.02 A overlaps with 2.20 + 0.02 A. Experiments of the 
second kind yield mutually exclusive outcomes, as when the spin compo
nent of a fermion is measured as being either up or down. In each case the 
set of possible outcomes is exhaustive. We take as the elements of the 
algebra we are constructing, not outcomes, but events: as in Section 3 .2, an 
event is a set (possibly empty) of outcomes associated with one specific 
measurement device. 

The set 8 A of events associated with a specific measurement A then forms 
a field of sets, that is, a Boolean algebra :BA , whose operations are (as usual) 
union, intersection, and complementation and whose maximum and mini
mum elements are, respectively, the null event (the empty set) and the 
certain event (the set of all possible outcomes of A). If we temper operation
alism with idealization, we can say that each event in 8 A will receive the 
answer yes or no when A is performed. Note that, particularly in the contin
uous case, we may want to extend :BA to a Boolean a-algebra, on which 
infinitary versions of union and intersection are defined. For simplicity, 
however, I will confine myself to the finite case from now on. 

So far, each measurement procedure has been treated independently. 
The whole set of events - the set, that is, of events associated with all 
possible measurement procedures - has been carved up into Boolean alge
bras, but no relations have been assumed to exist between events associated 
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with different procedures. Note, however, that a complementation opera
tion is everywhere defined, since each event a has a complement al. in the 
(unique) Boolean algebra which contains it. In addition, we may plausibly 
identify the null events of all measurement procedures, and also the certain 
events. The intuition at work here is that two events are identical if no 
preparation will yield a different result for one than for the other. This rather 
vague criterion will be made more precise shortly, but for the present it will 
serve. For since we stipulated that for each measurement procedure the set 
of outcomes was to be exhaustive, it follows that, whatever preparation 
procedure is used, the null event, 0, will receive the answer no, and the 
certain event, 1 ,  the answer yes, no matter what measurement we carry out. 

Thus 8 is a family of Boolean algebras in one-to-one correspondence with 
the set of measurement procedures. This family is pasted together at top and 
bottom; it is an example of a very elementary kind of structure known as an 
orthoalgebra. I defer discussion of such structures until Section 8 . 1; the 
present question is, what further constraints can we lay upon 8? In particu
lar, in order to relate events associated with different measurement proce
dures, can we make precise the criterion used just now, when we identified 
all the null events associated with different measurements, on the grounds 
that no preparation yielded a different result for one than for another? 

Well, every preparation gives a certain probability to the various events of 
8.  We associate with each preparation a state, w, which assigns a probability 
w(a) to each event a of 8 .  This enables us to define a relation < on 0: 

(7.32) We say that a < b if, for all states w, w(a) < w(b). 

If, further, we identify two events a and b whenever, for all states w, w(a) = 
w(b), then < is a partial ordering on 8.  

It  seems that, without significant loss of generality, we have shown that 8 
must be a poset- a  poset, moreover, with maximum and minimum ele
ments and on which a complementation operation has been defined. Alas, 
dancing in the streets would be premature; without making some significant 
assumptions we can't expect the complementation operation to mesh prop
erly with the ordering relation. Consider, for instance, the experiment 
shown diagrammatically in Figure 7.9, which consists of coupling together 
two Stem-Gerlach apparatuses, one to measure Sz and the other to measure 
Sy, so that just one of the beams emerging from the Sz apparatus, the z- beam, 
say, passes through the Sy apparatus. (This example comes from Beltrametti 
and Cassinelli, 1981, p. 145; see also Cooke and Hilgevoord, 1981 .) If we 
consider the coupled apparatuses as one experiment, then there will be 
three possible outcomes, z+ , y+, and y- . 



Quantum Logic 1 97 

Figure 7. 9 Coupled Stem-Gerlach devices. 

In this case we will find that, for all states w, w(y+) = w(y-). It follows 
that, if a =  {z+ ,y+} and b = {y-}, then b < a. Hence b V a = a. But since a and 
b are mutually exclusive and jointly exhaustive, a = bl. . It follows that b V 
bl. = b V a =  a i:- 1, contrary to (7. 19). Thus the operation J_ is not an 
orthocomplementation with respect to <. 

How might one outlaw such experimental arrangements? One strategy is 
to make explicit the assumption that we are dealing with measurement 
procedures: we may demand that each event have an internal conceptual 
structure and be recognizable as an experimental question (A,L\). Then 
anomalous cases like this one are ruled out, on the grounds that the appa
ratus does not measure a specific observable. In doing so, however, we lose 
some of the generality we sought; we confine discussion to possible theories 
couched in terms of observable quantities and their values. We also assume 
that we can recognize which experimental devices provide measurements 
of these quantities and which do not. To the extent that our project is that of 
prescribing a logical form for the event structure of all successor theories, 
these constraints seem unduly restrictive. Nonetheless, the approach is still 
general enough to accommodate theories like quantum theory and classical 
mechanics. 

With these general considerations in mind, let us move to a more formal 
mode. (The exposition essentially follows Mackey, 1963; see also Mac
zynski, 1967.) We take as primitive notions those of observable and state; we 
also use the resources of number theory, in particular, the notion of a Borel 
set of the reals. (All physically significant sets of reals, and many others, are 
Borel sets; see Fano, 1 971, p.  215 .) Let 0 be the set of observables, S the set of 
states, B(�) the set of Borel subsets of the reals . A pair (A,L\), where, as usual, 
A E 0 and L\ E B(�), we call an experimental question. 

Each state w defines a probability function on the set of questions, such 
that for all A E 0 and for all i\, r E B(�), w(A,L\) E [0,1 ], w(A, ¢ )  = 0, 
w(A,�) = 1, and w(A,L\ U r) =  w(A,L\) + w(A,r) provided L\ n r = ¢ .  

We identify two states (w1 = w2) if they give the same probability to each 
question (A,L\), and we identify two observables A and B if, for all w E S  and 
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for all L\ E B(�), w(A,L\) = w(B,L\). Respectively, these identifications state 
that the set of questions and the set of states are complete. 

We say that two questions are equivalent, (A,L\) - (B,r), if, for all w E S, 
w(A,L\) = w(B,r). Each equivalence class of questions, [(A,i\)], contains all 
and only questions equivalent to (A,L\) . Modifying our previous usage, we 
refer to an equivalence class of questions as an event; this modification does 
not affect the substance of what is said. As before, let 8 be the set of events. 

Clearly, any state w can also be thought of as a function on the set of 
events such that, for all a in 0, if a =  [(A,i\)], then w(a) = w(A,L\). We define a 
relation of orthogonality on 8 as follows. 

(7. 33) For all a,b E 0, we say that a is orthogonal to b (a J_ b) if, for all w E S, 
w(a) + w(b) < 1 .  

Now consider the following postulate (Postulate M) . 

(7. 34) If {a;} is a pairwise orthogonal set of events of 8, then there is an 
event b in 8 such that, for all states w E S, w(b) + w(a1) + 
w(a2) + · · · = 1 .  

The Mackey-Maczynski theorem (see Beltrametti and Cassinelli, 1981,  
chap. 13 .6) tells us that 

(7. 35) If Postulate M holds, then 8 is an orthomodular poset with respect to 
the ordering < defined by (7.32). 

[The < relation, remember, defined in (7 .32) is such that a < b if, for all w E 
S, w(a) < w(b) .] Orthocomplementation on this poset is defined by: 

(7. 36) a = b1- if, for all w E S, w(a) = 1 - w(b). 

The existence of the orthocomplement of any event is guaranteed by Postu
late M; clearly the strength of this postulate is considerable. How might one 
justify it? 

Consider the case when, for some A E 0, a = [ (A,L\)] and b = [(A,r) ], and L\ 
is disjoint from r. In this case, a J_ b. It is also plausible to assume that a 
converse relation holds: that, if a J_ b, then there exists a single observable, A, 
and disjoint Borel sets, L\ and r, of real numbers, such that a =  [(A,i\)] and 
b = [(A,r)] . This would be true, for instance, if a were the null event, since in 
that case a =  [(A, ¢ )] for every observable A. Note that if neither event is the 
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null event, then the plausibility of the assumption is increased by the exis
tence of certain states in S. Observe, for example, what happens if there 
exists a state Wa such that Wa(a) = Wa(A,L\) = 1 .  Then for any event b = [(B,r)] 
such that a J_ b, we have Wa(b) = 0, and, to use the language of Sections 3 .7  
and 3 . 8, B can be neither independent of A nor (in the quantum-r,echanical 
sense) incompatible with A. But if B is  either functionally dependent on A or 
otherwise compatible with A, then the assumption holds. Of course, in a 
successor theory, this may not exhaust the list of relations between observ
ables, but it is hard to envision a relation that would produce a counterex
ample. 

Given two orthogonal events, a =  [(A,i\)] and b = [(A,r)], associated with 
a single observable A, we may reasonably postulate the existence of others, 
specifically of the events c = [(A,L\ U r)] and d = [(A,� - (L\ U r))], such that, 
for all w E S, w(c) = w(a) + w(b) and w(c) + w(d) = 1 .  Considerations of this 
kind do not compel assent to Postulate M, but nevertheless they do give it 
plausibility. 

Notice in this regard the effect of defining each event in 8 as an equiva
lence class of questions, and thereby giving it an internal structure. Al
though the specification of the structure of 8 contained in (7.32) - (7.36) is 
independent of this definition, we look to the internal structure of events, on 
the one hand, for a criterion for distinguishing well-behaved events from 
impostors, and, on the other, for arguments to motivate Postulate M. 

Let us now look back at the problem we started with, whether a priori we 
can specify any algebraic constraints that the set of events dealt with by a 
theory must satisfy. We see (1)  that, if we think of these events purely 
experimentally, then the event structure of any theory will be an orthoalge
bra, and (2) that, given certain assumptions, the event structure of a theory 
whose expression involves reference to observables and their values will be 
an orthomodular poset. 

A stronger claim than (1)  has sometimes been made (for example, by 
Finkelstein, 1969; Jauch 1968, chap. 5; and Piron, 1972) that the set of 
experimentally specifiable events of any theory must form an orthocomple
mented lattice. As these authors point out, classical mechanics and quantum 
theory both conform to this requirement; the lattice for classical mechanics 
is characterized by the additional assumption of distributivity, and that of 
quantum theory by the weaker assumption of modularity. However, there 
are (to my mind) serious inadequacies in their accounts. In particular, to 
claim that the set of all events has the structure of a lattice is to claim that, for 
every pair of events a and b, there exist events a /\  b and a V b  which are the 
infimum and supremum, respectively, of {a,b) with respect to a particular 
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ordering of events. For these authors, events are specified in operational 
terms; thus to make good their claim they need to give a general prescription 
whereby, from two recipes - one for asking a and the other, possibly using 
a totally different experimental arrangement, for asking b - there can be 
generated two more, for a /\ b and a V b, with the required properties. It is 
this problem, of giving experimental definitions of the lattice-theoretic 
operations, which resists adequate solution.* 

The question arises: what further assumptions guarantee that the ortho
modular poset (0,<) suggested by the Mackey-Maczynski approach will be 
a lattice? We find (Beltrametti and Cassinelli, 1981,  pp. 1 1 8, 152, and 297 -
298) that 

(7. 37) If (a) (0,<) is a separable orthomodular poset, 
(b) S is a sufficient (a-)convex set of states, 
(c) for all a,b E 0, if, for some w E S, w(a) = w(b) = 1 ,  then there 

exists c E 8 such that c < a, c < b, and w(c) = 1,  
then (0,<) is an orthomodular lattice. 

Briefly, ( 8, <) is separable if every set of mutually orthogonal events in it is at 
most countably infinite; S is sufficient if, for all a E 8 except the null event, 
there is a w E S  such that w(a) = 1 ;  for an account of convexity, see Section 
5.4 .  Although an assumption like (b) above was at work in our informal 
justification of Postulate M, the trio (a), (b), and (c) are, to put it politely, 
nontrivial. Indeed, assumption (c) virtually posits the existence of a lower 
bound of the pair of events {a,b) . 

Quantum mechanics conforms to the antecedent conditions of (7 .3 7), and 
so does classical mechanics, though, in the latter case, some work has to be 
done to show that (0,<) is indeed separable. What then distinguishes the 
two theories, algebraically speaking? 

In Section 3 .9, the principle of superposition and the uncertainty principle 
(there glossed as the existence of incompatible observables) were put for
ward as peculiar to quantum mechanics. Each of these has an algebraic 
counterpart, as follows. The superposition principle states that 

(7. 38) If r1 and r2 are nonnegative real numbers such that r1 + r2 = 1,  then, if 
w11 w2 are pure states in S, there exists a pure state w3 in S such that, 
for all events a in 0, w3(a) = r1w1(a) + r2w2(a) . 

• For detailed criticisms, see Hughes, 1982; note that the relations on lines 27 and 31  of page 
249 of that article should read "O < w(q · qJ.) < 1" and "T $ (q · qJ.)J.," respectively. See also 
Holdsworth and Hooker, 1983, pp. 136- 141 .  
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A pure state is defined as an extremal point in the convex set S. Incompatibil
ity is defined thus: 

(7.39) Let a and b be any two orthogonal elements of 8 distinct from the null 
event; then there exists a non-null event c in 0, distinct from both a 
and b, such that c < a  V b. 

No lattice conforming to assumptions (a), (b), and (c), of (7.37) can be 
distributive if either the superposition principle or the incompatibility prin
ciple holds. Neither principle is true of the event structure of classical me
chanics. 

There is no doubt that algebraic reformulations of these principles add 
something to our understanding of quantum theory. But no interpretive 
work is being done by such reformulations. Indeed, no such work can be 
done by the algebraic approach as long as its aim is seen as that of recaptur
ing algebraically the Hilbert-space formalism of the theory. Furthermore, 
any algebraic reformulation remains a partial reformulation of quantum 
mechanics, for two reasons. The first is the gap, already remarked on in 
Section 7.4, between algebraically specifiable structures and the structure of 
S('H). The second, related, reason is the absence of a dynamical principle 
from the reformulation. Although, as we saw in Section 3 . 10, under certain 
assumptions the set of mappings ft : S � S describing the dynamical evolu
tion of a system forms a group, it is only when these states are representable 
in a Hilbert space that we can apply Stone's theorem to show that all these 
mappings are functions of a single observable. To date, quantum logic has 
provided no equivalent to Schrodinger's equation. 

7. 6 A Formal Approach to Quantum Logic 

"Quantum logic" can refer just to the study of certain algebraic structures 
and the probability measures definable on them. But traditionally logic has 
been the science which investigates a family of notions - consistency, va
lidity, entailment, and the like - all of which pertain to (sets of ) sentences of 
a language. Thus a set of sentences can be consistent, one sentence may be 
entailed by another, and so on. In the remainder of this chapter I look at 
quantum logic from this viewpoint, and I will use the phrase "quantum 
logic" in this sense from now on. 

We saw in Section 7 . 1  that the set Le of sentences of a simple language can 
be mapped onto the set of elements of the Boolean algebra 1316 , and that the 
logical relations between the sentences can be "read off" from the algebraic 
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relations between the elements of 1316 • The connectives of the language are 
& (conjunction), v (disjunction), and - (negation), and the mapping/ taking 
sentences of Le into elements of 1316 is such that, for all sentences 
A, B E  Le , 

(7.40) f (A & B) = f(A) /\ f(B) 

f (A v B) = f (A) V f (B) 

f (-A) = [f (A)]j_ 

As in Section 7.2, the elements of 1316 represent the propositions expressed 
by the sentences of Le . 

A full algebraic treatment of classical logic would consider every mapping 
f of the (syntactically defined) set Le into an arbitrarily chosen Boolean 
algebra 13 which conformed to (7.40). Here we confine ourselves to a spe
cific algebra and a single mapping, and so talk of consistent sets of proposi
tions, and of one proposition entailing another, without doing violence to 
these logical notions. Note, however, that the results (7.41) - (7.43) below 
hold both in general and (a fortiori) for the particular mapping f we choose. 

We found that the natural ordering < of the elements of the algebra 
corresponded to a relation I= of entailment among sentences of Le : for 
sentences A, B E }:e, 

(7.41) A I= B if and only if f (A) < f (B) 

The following purely algebraic theorem also holds. Let 13 be a Boolean 
algebra; then for all a, b E 13, 

(7.42) a < b if and only if every ultrafilter on 13 containing a also contains b. 

Whence we obtain, 

(7. 43) A I= B if and only if every ultrafilter on 1316 containing f (A) also 
contains f(B). 

Recall from Section 7.2 that the ultrafilters of 1316 play a special role: they 
represent maximal consistent sets of propositions. Each possible truth-as
signment to the sentences of Le is associated with a homomorphism of 1316 
onto Z2 , that is, with a function that maps all and only the members of some 
ultrafilter of 1316 onto the element 1 of Z2 • Only the propositions lying in the 
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ultrafilter are assigned the value "True" by the associated truth-assignment. 
Thus (7.43) is the algebraic equivalent of: 

(7. 44) A I= B if and only if B is true on every truth-assignment to Le on 
which A is true. 

The algebra of propositions of classical logic is Boolean. The question now 
is this: what are the characteristics of a logic, the algebra of whose proposi
tions has the non-Boolean structure of S('H)? 

In the present section I will look only at the formal characteristics of such a 
logic; no prior interpretation of the propositions of this logic is assumed. 
This contrasts with what we did in Section 7. 1 ,  where it was always clear 
what propositions we were dealing with: each node of 1316 represented the 
fact that the penny-quarter system had a certain property - that the penny 
was tails-up, for example. 

With regard to the connectives, the situation is a little different. Since they 
are logical connectives they derive their interpretation from their formal 
behavior. But again , in contrast to the classical case, no prior interpretation 
is assumed. Whereas in the example used in Section 7. 1 the connectives 
were assumed to be the truth-functional connectives of classical logic, no 
such assumption is at work here. 

Classically, entailment is usually defined by (7.44), in terms of truth-as
signments. Given this definition, (7.41) and (7.43) appear as theorems, 
capable of proof. In quantum logic, however, comparable statements ap
pear as definitions of logical relations. Any interpretation of the connectives 
is to be 0read off" the algebraic structure; no independent route to it is 
available. 

I will present re�ults quite generally, using the structure G12 for illustra
tion. From this one example, we can see straight away that there are two 
approaches open to us. Like the set of subspaces of a Hilbert space, G12 can 
be considered either as an orthomodular lattice or as a partial Boolean 
algebra. In this section a lattice-theoretic quantum logic will be described. 
This may be called orthomodular quantum logic. I will indicate later how 
this account needs to be qualified on the PBA approach. 

Consider a language LQ containing a set LQ of sentences. These sentences 
are mapped by a function f onto the elements of an orthomodular lattice L. 
Assume, for example, that LQ contains the atomic sentences p, q,  r, s, and t, 
which are mapped onto the atoms of G12 1 as shown in Figure 7. 10 .  LQ also 
contains two binary connectives, /\ and V, and a singulary connective, ----. 
We impose a condition analogous to (7.40), thus establishing a connection 
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t 

Figure 7. 10 Mapping of sentences of IQ onto G12 • 

between the connectives of LQ and the operations on the lattice. For all 
sentences A, B E LQ , 

(7.45) f (A /\ B) = f (A) /\ f (B) 

f (A V B) = f (A) V f (B) 

f (--A) =  [f(A)]j_ 

We can see from Figure 7. 10  that, in our example, f(--.p) = f(q V r), and 
hence that --.p is equivalent to q V r under the mapping /. As in the classical 
case, I will confine myself to a single mapping; thus, in what follows, I will 
omit the phrase "under the mapping /" which, ideally, should accompany 
all statements about logical relations between the members of LQ . As be
fore, the restriction to a single mapping licenses talk of logical relations 
between propositions, in this case, quantum propositions. 

The orthomodular lattice L('H) of the set of subspaces of a Hilbert space is 
atomic; that is, there are elements of L('H), to wit the rays of 'JI, immediately 
above the zero of L('H). [(7. 12) provides a formal definition.] In what 
follows I restrict myself to atomic orthomodular lattices. 

As in the case of an atomic Boolean algebra, an ultrafilter U on such a 
lattice can be simply defined: 

(7.46) U is said to be an ultrafilter on L if there is an atom a of L such that 
U =  {b: a <  b) . 

U is then the ultrafilter generated by a. In Figure 7. 1 1  I show a typical 
ultrafilter on G12 • 
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Now (7.42) holds for L as for a Boolean algebra; for all a, b, E L, 

(7.47) a < b if and only if every ultrafilter on L containing a also contains b. 

We can use each ultrafilter U on L to define a buth-assignment u (or its 
analogue) to quantum propositions: for any a E L, 

(7.48) We say that a holds under the assignment u if and only if a is in the 
ul trafil ter U. 

The function u : L --+  {0, 1} is the characteristic function of U; we write 
u(a) = 1 if a E U, and u(a) = 0 if a � U. (7.47) now tells us that the semantic 
entailment relation on the set of quantum propositions will coincide with 
the ordering relation on the lattice; for all a, b, E L, 

(7.49) a l=Qb if and only if a holds whenever b holds if and only if a <  b. 

As Putnam (1969, p. 233) pointed out, in many ways the behavior of 
quantum connectives resembles that of their classical counterparts. The 
lattice sbucture of L guarantees that, for any sentences A, B, and C of LQ , 

(7.SOa) A l=Q A V B 
if A l=Q C and B l=Q C, then A V B l=Q C 

(7.SOb) A,B l=Q A /\ B 

Figure 7. 1 1  Typical ultrafilter on G12 • 
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(7. 50c) A l=Q --.--.A and --.--.A l=Q A 
l=Q A V --.A 
l=Q --.(A /\ --.A) 

[We write l=Q A if A holds on all truth-assignments; note also that the upper 
line of (7.SOb) involves a modest extension of our notation.] There are of 
course casualties among the theorems of classical logic. Notoriously, A /\ 
(B V q �Q (A /\ B) V (A /\ q, since, in general, an orthomodular lattice is 
not distributive. (Friedman and Glymour, 1972, provide an axiomatization 
of orthomodular quantum logic which was proved complete by Hughes, 
1979; see also Dalla Chiara, 1986, and Gibbins, 1987, chap. 9 . ) 

More fundamentally, we may think, the assignments provided by the 
ultrafilters on L do not behave truth-functionally, as classical truth-assign
ments do. That is to say, the truth-values of compound sentences are not 
uniquely determined by the truth-values of their components. 

Consider, for example, the assignment u determined by the ultrafilter Uq 
on G12 which contains the atom q (see Figure 7. 1 1) .  On this assignment q 
holds, but the other atoms do not. The proposition p V q lies in the ultrafilter 
Uq and therefore holds on this assignment. But p V q is identical with the 
proposition s V t. Hence, on this assignment, we have 

(7.51) u(s) = 0, u(t) = 0, and u(s V t) = 1 

but we also have 

(7. 52) u(p) = 0, u(r) = 0, and u(p V r) = 0 

Algebraically, the fact that the truth-assignments of orthomodular quan
tum logic are not truth-functional appears as the absence of two-valued 
homomorphisms on nondistributive lattices. Kochen and Specker's 
theorem tells us that there are none such on L('H); Jauch and Piron (1963) 
have shown that the existence of such mappings from an orthomodular 
lattice L onto Z2 implies the distributivity of L. 

We can mimic some of the idiosyncracies of orthomodular quantum logic 
within a classical modal logic. This is done by "translating" the propositions 
of quantum logic into modal propositions. The "translations" all use the 
modal operator D, which can be read as, "It is necessary that . . . " (For an 
introduction to modal logic, see Hughes and Cresswell, 1968.) We now 
"translate" a given sentence in LQ by rewriting it, with its quantum connec
tives replaced by classical, and with the necessity operator added at the front 
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of the sentence; thus A /\  -.B is translated as D (a & -p) (a and P are A and B 
rewritten, with classical connectives replacing quantum connectives). 

G12 provides illustrations of the nonclassical features of quantum logic 
which find analogues in these modal translations. Let u be the quantum-log
ical truth-assignment determined by the ultrafilter Uq , as before (Figure 
7. 1 1  ), and let v be a truth-assignment to a classical modal logic (54, say). We 
have already seen that u(s) = 0 = u(t), but that u(s V t) =l . Similarly, we 
may have v(Da) = 0 = v(Dp), but v[D(a V P)] = 1 ,  as in the case when a is a 
contingent proposition and p = - a. Again, from Figure 7 . 1 1 we see that 
u(t) = u(-.t) = 0. Likewise, if a is any contingent proposition we have 
v(Da) = v[D(- a)] = 0. 

These remarks bring to mind Godel's (1933) demonstration that intui
tionistic logic can be translated into the classical modal system 54 . In fact, 
Dalla Chiara (1986) has shown that a comparable result holds for quantum 
logic and a modified Brouwer system. The modal translation she uses is, 
however, more complex than the one given above, and nothing as precise or 
as comprehensive as that result is being claimed here; I have merely pointed 
out some formal affinities between orthomodular quantum logic and the 
logic of a particular class of modal sentences. 

7. 7 An Unexceptionable Interpretation of Quantum Logic 

In Section 7.6 we saw that, within the lattice of quantum propositions, 
ultrafilters can be used to define functions which are the analogues of 
truth-assignments. Let us call these functions "valuations" to avoid making 
unjustified assumptions. Each valuation u is the characteristic function of 
some ultrafilter U [see (7.48)] on the lattice. 

If L is atomic, as we assume, then each ultrafilter contains just one atom. 
Thus, for each valuation u there is exactly one atom a such that u(a) = 1 ,  and 
for all b E L, 

(7. 53) u(b) = 1 if and only if a < b 

Let us now cash this out in terms of quantum systems and their states, and so 
obtain an interpretation of the propositions of a logic based on the lattice 
L(11). We need first to distinguish three kinds of things: quantum events, 
quantum propositions, and subspaces of a Hilbert space. The subspaces of a 
Hilbert space act as mathematical representations both of quantum events 
and of quantum propositions . A quantum proposition is whatever is ex
pressed by a sentence of quantum logic: just what this is we rely on our 
interpretation to tell us . A quantum event (also called an "experimental 
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question") is a pair (A,L\). The fact that we are not at this stage giving any 
further account of these entities does not mean that none is needed; on the 
contrary, we are still engaged in the project, announced at the beginning of 
Chapter 6, of gaining more insight into their nature, and, indeed, one reason 
for seeking an interpretation of quantum logic is that it may help us to do so. 

Propositions, events and subspaces are in one-to-one-to-one correspon
dence; I will use lowercase italic letters a, b, c, . . . for propositions, Ea , Eb , 
E, , . . .  for the corresponding quantum events, and La , Lb , L, , . . .  for the 
corresponding subspaces of 'JI. Strictly, the three sets form three isomorphic 
lattices, but I will refer to all three structures indiscriminately as L('H), 
relying on context to make clear what the elements of the lattice in question 
are. 

Each atom La of L('H) is a one-dimensional subspace of 'JI and so repre
sents a pure state of a system. Thus the set of pure states is in one-to-one 
correspondence with the set of valuations of our quantum logic. Now let Pa 
be the projector onto the atom La , and for any element Lb of L('H) (that is, 
any subspace of 'JI), let Pb be the projector onto Lb . As we know, each 
subspace Lb (alternatively, each projector Pb) represents a quantum event Eb , 
and every such event is assigned a probability by the state; if the state is Pa 
this probability is given by, 

where v is a normalized vector in La . We know that 

(7. 54) Tr(PaPb) = 1 if and only if v E Lb if and only if La C Lb 

An event Eb is assigned probability 1 by a pure state Pa if and only if the 
subspace Lb includes La . But the latter holds if and only if the proposition b 
lies in the ultrafilter defined by a. We see that p(Eb) = 1 provided that u(b) = 
1 ,  where u is the valuation corresponding to the (pure) state of the system. 

A straightforward and unexceptionable interpretation of quantum logic 
now presents itself. Let us unpack each quantum event E, so that E = (A,L\); 
the corresponding quantum proposition may be read as, "A measurement 
of A will yield a result within L\ with probability 1 ." The truth or falsity of 
this statement is determined by the state. 

Given the possibility of interpreting quantum logic in this way, its resem
blance to a logic of modal sentences is not surprising, since the sentential 
operator, "There is probability 1 that . . . ," is the probabilistic equivalent 
of the necessity operator D. 

I have called this interpretation of quantum logic "unexceptionable." It is 
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also unambitious. On the proposed reading of quantum propositions, these 
propositions are just a subset of the predictions quantum mechanics makes 
about the probabilities of quantum events, and quantum logic offers merely 
a partial reformulation of quantum theory in the formal mode - that is, a 
reformulation expressed in terms of sentences and the relations between 
them. But many devotees of quantum logic were after bigger game. In 
particular, they took the logico-algebraic approach to quantum theory to 
offer a way, or various ways, to talk of the properties of systems. The next 
section looks at one such proposal. 

7. 8 Putnam on Quantum Logic 

For an example of a nontrivial logic based on orthomodular lattices, we turn 
to Hilary Putnam. Though his 1969 paper, "Is Logic Empirical?" only 
sketched the outlines of such a logic, it presented with splendid vigor some 
of the most ambitious claims made on quantum logic's behalf. The claims 
made are these. 

(1)  Logic is an empirical science; some of the "necessary truths" of 
classical logic could turn out to be false for empirical reasons (Put
nam, 1969, pp. 216, 226). 

(2) Just as the general theory of relativity requires us to move to a non
Euclidean geometry, so our best interpretation of quantum me
chanics requires the adoption of a nonclassical logic (p. 234). 

(3) By adopting a quantum logic we can retain a strong account of the 
properties of a system (p. 229). 

I will discuss (1) in Section 7.9; it turns out to be rather less revolutionary a 
thesis than one might think. The analogy proposed in (2) is suggestive, and I 
will myself make use of it in Section 8.9; however, the sense in which I will 
use the term "quantum logic" is some distance from Putnam's. This section 
and the next will largely be occupied with claim (3), which I take to be false. 
Indeed, in a correspondence quoted by Stairs (1983b, p. 588),* Putnam has 
written that he no longer subscribes to it. In these sections "Putnam" will 
refer to the Putnam of 1969, continuous with, but epistemically distinct 
from, his present counterpart. 

In formal respects the logic Putnam advocates is that presented in Section 
7.6; we are to "read the logic off from the Hilbert space 11" (p. 222), and the 

• I  am much indebted to this paper. 
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set of subspaces of 'JI is to be regarded as a lattice. This lattice is nondistrib
utive (see Section 7.3); thus in the corresponding logic the distributive law is 
not valid, and the inference from A /\ (B V C) to (A /\ B) V (A /\ C) fails . 
Putnam boldly asserts that " all so-called ' anomalies' in quantum mechanics 
come down to the non-standardness of the logic" (his emphases); once these 
are given up, he assures us, "every single anomaly vanishes" (pp. 222, 226). 

The propositions represented by the subspaces of 'JI are, for Putnam, 
property ascriptions, and among the anomalies which will disappear with 
the adoption of quantum logic are, presumably, those associated with such 
ascriptions. As examples Putnam uses the values of position and momen
tum. Observables like these, which have continuous spectra, are indepen
dently problematic (see Teller, 1979), and so I will restate his position in 
terms of two noncommuting observables A and B, each of which has three 
possible outcomes: respectively, a1 , a2 1 a3 , and b1 1 b2 1 b3 • I will use these 
lowercase letters to refer to the lattice points corresponding to (A,a1), et 
cetera, and also as sentences, "The system has the property (A,a1)." I assume 
further that the operators corresponding to A and B share no eigenvectors, 
so that the lattice we are dealing with is the 14-element lattice shown in 
Figure 7. 12 .  

Figure 7. 1 2  Fourteen-element orthomodular lattice. 
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In this lattice, 

Since Putnam reads 'a1 V a2 V a3' as "The system has an A-value," he 
regards the conjunction "The system has an A-value and the system has a 
B-value" as logically true. It is thus a truth of (quantum) logic that every 
observable for a system has a value (at all times) . Note that a1 V a2 V a3 is 
true even if the system is in a state which makes b1 (say) true. However, in 
that state the sentence 

is true, but the sentence 

is false, since, in the lattice, 

reflecting the fact that no state makes either b1 and a1 , or b1 and a2 , or b1 and 
a3 simultaneously true. The fact that we cannot infer (II) from (I) is, of 
course, one example of the failure of the (classical) distributivity law. 

Consider now the objection to Putnam made by Harrison (1983). (He too 
talks of "position" and "momentum," and in the quotations below I have 
replaced these words by "B-value" and "A-value," respectively.) Harrison 
suggests first that, according to quantum theory, if a system has a determi
nate B-value, it is false that it has any of the A-values specified in the second 
conjunct of (I) . He continues: 

Hence, if quantum theory is true, the truth of the first conjunct in (I) implies the 
falsity of the second, and (I) itself must be false. Thus the very circumstance, that a 
particle cannot have a determinate B-value and A-value, which implies the falsity 
of (11), also implies the falsity of (1), and the difficulty for classical logic is removed. 
(P. 84) 

But his argument from the falsity of a1 , a2 , and a3 to the falsity of a1 V a2 V 
a3 relies entirely on his treating V as classical truth tables prescribe. Clearly, 
it is no objection to Putnam's system just to say that truth-table analysis tells 
us that the truth of a disjunction requires the truth of at least one of the 
disjuncts . This merely tells Putnam something he already knows: that his 
system is not classical. 
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Again, consider Harrison's objection to Putnam's claim that a1 V a2 V a3 
is a logical truth: 

If the second conjunct in (I) is a logical truth, then quantum theory must be false, for 
quantum theory just asserts that a particle does not have to have an A-value a1 , or an 
A-value a2 , etc. for all the A-values there are. (P. 84) 

And, of course, if quantum theory were false, then quantum logic would be 
unnecessary. But once more, and for the same reason, the criticism fails. 

Nonetheless, an important question emerges from Harrison's paper. Even 
if we accept a1  V a2 V a3 as true, why should we read it as "The system has 
an A-value"? Indeed, what is the content of the claim that the system has an 
A-value if it can be accompanied by the four statements that (i) this A-value 
is not a1 , (ii) nor is it a2 , (iii) nor is it a3 , and (iv) these three values of A are all 
the A-values there are? (See Stairs, 1983b, sec. IV.) 

Certainly, Putnam runs into trouble when he makes the further (indepen
dent) claim that, not only does the system have an A-value in all states, but 
that "if I measure I will find it" (Putnam, 1969, p. 230). Assume, for the sake 
of argument, that the system is prepared in a state which makes b1 true, and 
that an A-measurement now yields a3 • If I have simply "found" the A-value 
of the system, then surely a3 was true of �he system before the measurement, 
along with b1 • But, as we have noted, on Putnam's quantum logic the 
conjunction b1 /\ a3 is always false. 

We may relinquish the claim about measurement, even though it carries 
away with it Putnam's purported resolution of the measurement problem, 
and therewith much of the motivation of his project, but then we are left 
with the odd notion of a "disjunctive property." Apparently the system can 
have the property (A, a1  V a2 V a3) while having none of the "atomic" 
properties (A,a1), (A,a2), or (A,a3) . Disjunctive properties are not wholly 
implausible; in fact Teller (1979) has argued that all properties involving 
continuous quantities are disjunctive, since quantum mechanics never spec
ifies a sharp value for, say, momentum, but at most an interval within which 
it lies. Nevertheless, in the case of an observable with a discrete spectrum, 
the acceptance of disjunctive properties seems to dilute to insipidity the 
claim that, for any system, every observable has a value at all times. The 
package we have bought seems markedly less attractive than the product 
which was advertised. 

7. 9 Properties and Deviant Logic 

Let us review the situation. Section 7.6 gave a formal account of quantum 
logic . A set of sentences, closed under the logical connectives _,, V, and /\, is 
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supplied with a semantics which maps them systematically onto the ele
ments of a lattice. The purported logical relations between the sentences are 
then read off from the algebraic relations which hold between these ele
ments. But the logic that results constitutes an alternative to classical logic 
only when the sentences of this formal language are given a specific inter
pretation; as Section 7.7 showed, an unexceptionable, if unadventurous 
interpretation of the lattice elements as modal propositions, D(A,i\), is avail
able. Under this interpretation quantum logic formalizes a particular ac
count of necessity; it supplements but does not supplant classical logic. 

When Putnam says that the rules of quantum logic " conflict with classical 
logic" and that the lesson to be drawn is that "we must change our logic" 
(p. 221), he has another interpretation of the formal system in mind. As we 
saw in Section 7.8 he reads the propositions of quantum logic as indicative 
propositions ascribing properties to microsystems. 

It is this interpretation that has given quantum logic that hint of philo
sophical perversity - delicious or detestable according to taste - conveyed 
in the phrase "deviant logic." On the one hand, these are propositions of a 
kind to which, prim a f acie, we would expect classical logic to apply; on the 
other, they are just the statements which results like the Kochen and 
Specker theorem tell us behave in a nonstandard way: given an exhaustive 
list of the possible values of each observable for a system, at no time can we 
truly ascribe exactly one of these values to each observable. 

Now this problem is going to be faced by anyone who offers an interpre
tation of quantum mechanics which involves ascribing properties to sys
tems. And no matter what kind of account is given of why the properties 
behave as they do, this account will always have a counterpart in the formal 
mode. Assume, for example, that the account posits states of affairs which 
can or cannot obtain. Then, corresponding to each of these states of affairs 
there will be a statement which may or may not be truly asserted. Con
straints on possible states of affairs will appear in the formal mode as 
restrictions on what may be truly said about them. It follows that anyone 
who talks of the properties of systems is committed to some version of 
"quantum logic." 

Witness Harrison, whom we met inveighing " Against Quantum Logic" in 
Section 7.8.  He writes, "I had always supposed that, according to quantum 
theory, . . .  [if ] a particle's position is determinate, it is false that it has any 
of the velocities specified in [an exhaustive list of velocities]" (Harrison, 
1983, p. 84). In other words, in quantum mechanics the truth of one atomic 
proposition- an ascription of position - entails the falsity of another
any specific ascription of velocity. Now any systematic account of such 
entailments constitutes a logic; further, since no classical conjunction of 



214 The Interpretation of Quantum Theory 

atomic propositions is a contradiction, this logic will be nonclassical. Thus 
the arguments Harrison presents do not speak against quantum logic, but in 
favor of one system rather than another. 

In f act, the quantum logic proposed by Reichenbach (1944, secs . 29 - 33) 
was concerned with this very question: how should we formalize the rela
tion of mutual exclusivity, or, as he called it, complementarity between 
ascriptions of precise values to incompatible observables. Reichenbach's 
solution was to move to a three-valued truth-functional logic. Sentences 
could be true, false, or indeterminate; sentences expressing complementary 
propositions were such that, if one received the value true (or false), then the 
other received the value indeterminate. Conjunctions of such sentences 
were perfectly well formed, but they could never receive the value true. 

Reichenbach contrasted his three-valued logic, not with the algebraic 
analysis of Birkhoff and von Neumann (1936) (the ancestor of all algebraic 
approaches), but with the Copenhagen interpretation of quantum theory, 
or, as he termed it, "the Bohr-Heisenberg interpretation" (Reichenbach, 
1944, p. 139). The account of property ascriptions offered by this interpre
tation has a markedly operationalist flavor. According to Bohr, one may 
ascribe properties to a system, but the concepts involved (position, momen
tum, and so on) are not applicable to the system at all times. Each becomes 
applicable only when certain experimental conditions are realized: 

Closer examination reveals that the procedure of measurement has an essential 
influence on the conditions on which the very definition of the physical quantities 
rests. (Bohr, 1935b, p. 65) 

Note that, as so often, Bohr is here making a point about the conditions of 
meaningful discourse. These conditions are contextual; if we are dealing 
with an experimental procedure designed to measure, say, momentum, 
then we cannot talk meaningfully of the position of a system. Bohr writes of 
"essentially different experimental arrangements and procedures which are 
suited either for an unambiguous use of the idea of space location, or for a 
legitimate application of the conservation theorem of momentum" (Bohr, 
1935a, p. 699). 

Bohr's account is amenable to formal presentation (though this runs 
contrary to his own views on semantics; see MacI<innon, 1984). Bub (1979, 
p. 1 18) suggests that 

. . . Bohr regards the notion of truth as meaningful only in the context of a Boolean 
possibility structure, i.e., to ascribe a property to a system only makes sense with 
respect to a structure of possible properties which form a Boolean algebra. In the case 
of a quantum mechanical system this possibility structure is non-Boolean. The ap
plication of the classical notion of truth, or the attribution of physical properties to 
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such a system, requires reference to a classical measuring system, which fixes a 
particular Boolean algebra in the non-Boolean possibility structure. 

The resulting logic of property ascriptions is strongly reminiscent of one 
proposed by Kochen in 1978. 

On Kochen's account, the set of possible properties of a system is subdi
vided into Boolean subalgebras, each of which comprises a set of available 
properties, as we may call them. Which properties are available at a given 
time is determined by the interaction the system has most recently under
gone; each interaction will leave the system with a set of available proper
ties, and this set has the structure of an interaction algebra (Kochen's term). 
The spin-! particle is a particularly simple case; the interaction algebras are 
each associated with a direction a in physical space, and have just four 
elements apiece: { ¢ ,(Sa ,+!),(Sa ,- !),(Sa ,+!)} . Hence any such set is a set of 
available properties. 

Among the available properties, only some (at most a half) will be actual; 
typically, a spin-! particle may have actual properties {(Sx ,- ·t),(Sx ,+ i)} . The 
property ¢ is never actual; it is available only in a purely technical sense. To 
use the terminology of Section 6.9, the system has, at any time, a value-state, 
A.. When this is maximally specific - and sometimes it is not, as in the case of 
the completely unpolarized electron (see Section 8 .6) -A. picks out an ultra
filter in the (Boolean) interaction algebra. 

The value-state in tum determines the statistical state. A new interaction 
will leave the system with properties in a specific new interaction algebra, 
but the transitions are not deterministic; each of these (new) available prop
erties is assigned a probability of occurrence by the (old) statistical state. The 
statistical state assigns a probability to every possible property - in other 
words, to every property in every interaction algebra. Statistically, the var
ious Boolean algebras all hang together in a familiar way. The family of 
these algebras forms the partial Boolean algebra characteristic of S('H), each 
property is representable by a subspace of 'JI, and, as usual, the (pure) 
statistical states are represented by normalized vectors or by projection 
operators onto rays of 'JI.  

On this interpretation the descriptive and the dispositional aspects of 
states are distinguished; these two functions of a classical state are per
formed by two distinct kinds of state. In this division of labor the value-state 
gives us information about present properties and the statistical state tells us 
what we may expect from future interactions. 

The logic of property ascriptions that emerges is nonclassical; the set of 
propositions which ascribe properties to systems forms a partial Boolean 
algebra. Within the language we use to express these propositions, not all 
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sentences can be meaningfully connected; the connectives /\ and V are thus 
"partial connectives" in the same sense that the operations on a PBA are 
partial operations. At any time only one maximal Boolean subalgebra of 
propositions applies to the system. The ultrafilters on that subalgebra act as 
two-valued truth-assignments to the propositions within it, and to each 
ultrafilter corresponds a value-state. Among the propositions within this 
subalgebra the laws of classical logic obtain. The propositions that lie out
side it may conveniently be given some third truth-value, neither true nor 
false, to indicate that neither they nor their negations are true. (Hughes, 
1985b, gives a detailed account of the semantics of this logic.) 

Algebraically, this is precisely the quantum logic that Bub finds implicit in 
Bohr's writings . This is not to say that Bohr and Kochen share a common 
interpretation of quantum theory. Rather, they offer interpretations which 
differ both in detail and in the metaphysical attitudes they express. In the 
first place, whereas on Kochen's account the Boolean interaction algebras 
are selected by any kind of interaction, on Bohr's view the classical nature of 
measuring instruments gives measurement interactions a special status. 
Secondly, the ontological commitment urged by Kochen is not shared by 
Bohr, who indeed took pains to distance himself from others (also associated 
with the Copenhagen tradition) who held that physical attributes were 
"created by measurement" (Bohr, 1949). 

Nonetheless, formally the logics are exactly the same; on the partial 
Boolean semantics they employ, sentences conjoining a position ascription 
and a momentum ascription are not well formed, and hence are meaning
less. Thus, although this algebraic logic can be made to collapse to a three
valued semantics, what results is very unlike the logic Reichenbach pro
posed as an alternative to the Bohr-Heisenberg interpretation. As we have 
noted, on Reichenbach's logic, conjunctions of complementary propositions 
are perfectly well formed, though never true; furthermore, unlike the col
lapsed algebraic logic, Reichenbach's is truth-functional. 

These analogies and disanalogies, however, serve only to underscore our 
previous conclusion: that much of the debate between advocates of quan
tum logic and their opponents has been misdirected. If Kochen, on the one 
hand, and Bub, acting on Bohr's behalf, on the other, can start from radically 
different interpretations of quantum theory and yet produce formally iden
tical quantum logics, then this adds strong support to the view that, what
ever interpretation we adopt, the logic of property ascriptions to quantum 
systems will be nonclassical. The choice we confront is not between adopt
ing, for example, the Copenhagen interpretation and embarking on "the 
heroic course" of changing our logic (Putnam, 1969, p. 222); it is between 
adopting a deviant logic and eschewing the notion of a property. 
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Though it is flattering to believe that talk of properties makes heroes of us 
all, we may well enquire what work is being done by this notion in any of the 
proffered interpretations. The answer is, surely, very little. Rather, a meta
physical nostalgia is prompting various responses to the question, how can 
we make room for the notion of a property within quantum mechanics? If, 
for example, a particular interpretation-cum-logic either yielded something 
resembling the Precise Value Principle or resolved the measurement prob
lem, then there would be clear-cut reasons, not only for preferring it to the 
others, but for accepting it. But none do so. 

The most we can say is this. If we retain the notion of a property, then 
either (a) the possession of properties associated with an observable A rules 
out the simultaneous possession of properties associated with observables 
incompatible with A; or (b) we have to make sense of the notion of a 
disjunctive property, so that, for example, a particle can have the property 
(S. v+ t) but neither the property (S.x ,+ t) nor the property (S.x ,- t) . Kochen, 
Bohr, and Reichenbach adopt alternative (a), though for different reasons; 
Putnam, along with other advocates of a lattice-theoretic approach, is 
forced to alternative (b). Neither alternative, however, is very enticing. 

In Section 6.9 I described the task of interpreting quantum theory as that 
of finding, within the models the theory provides, images of the elements of 
a categorial framework. The search for properties has yielded only pallid, 
scarcely recognizable variants of these creatures. Perhaps we should call off 
the hunt, acknowledge that properties are the unicorns of quantum theory, 
and confess that none of us is innocent enough to capture one. In doing so 
we need not condemn all of quantum logic, specifically algebraic quantum 
logic, as misguided. Even if an emphasis on sentential quantum logics may 
have proved unhelpful, a more general algebraic program remains. And, 
just as earlier we distinguished between formal sentential logic and the 
interpretation of the sentences it manipulated, so now we can distinguish 
the core of the quantum-logical program from our interpretation of that core 
(this distinction is due to Stairs, 1 9 83b, p.  5 78). The core is the idea that the 
non-Boolean algebraic structures appearing in quantum theory provide the 
key to our understanding of the quantum world. This core can be retained 
even when we jettison the interpretation which regards the elements of 
these structures as properties of systems, the promise of which has proved 
illusory. On another interpretation, quantum logic provides, in Bub's terms, 
a non-Boolean possibility structure for quantum events. This interpretation 
is the subject of the next chapter. 



8 
Probabil ity, Causality, 
and Explanation 

The term probability has, up to now, been treated as though it were entirely 
unproblematic. Surely this is too optimistic by far. There is, for instance, the 
problem of the interpretation of probability: does it represent a degree of 
belief, or a relative frequency, or a mysterious propensity, or something else 
again? The view taken in this book is that nearly all the probabilities ap
pearing in theoretical quantum mechanics are objective probabilities. That is 
to say, they inhere in the world and do not simply reflect the degrees of 
belief of an observer; rather, they determine what this degree of belief 
should ideally be: if an event E is assigned an objective probability of, say, 
0. 1 ,  then a fully informed observer should assign a subjective probability of 
0 . 1  to E and place her bets accordingly (see Lewis, 1980). I wrote just now 
that "nearly all" quantum-theoretic probabilities are objective. The possible 
exceptions occur when a system is in a mixed state. If we adopt the igno
rance interpretation of a given mixture, then we assign a subjective proba
bility to each of the pure states represented in it, and each of these in turn 
assigns objective probabilities to events. Heisenberg, for one, suggested that 
the interplay between objective and subjective components of probability 
assignments could be made to do interpretive work, and I discuss his sug
gestions in Section 9 .5 . Note, however, that, as we saw in Section 5 .8, not all 
mixtures can be given the ignorance interpretation. 

Leaving aside the possible exception of mixtures, I will assume that quan
tum theory deals with objective probabilities. However, I will not discuss 
how the concept of objective probability is to be interpreted (see, for exam
ple, Giere, 1973, 1976; Skyrms, 1980, chap. IA; van Fraassen, 1980, chap. 
6), but will instead focus on a problem raised by quantum mechanics for the 
mathematical theory of probability. Quantum mechanics requires us to 
modify this theory, or rather to generalize the mathematical account of it 
given by Kolmogorov (1933). But, surprisingly, this revision yields remark-
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able benefits; it helps us to provide explanations of the "causal anomalies" 
which beset quantum theory. Or so I shall suggest. 

Running through this chapter, in what I hope will be a euphonious 
counterpoint, are three main themes: (1 )  the generalization of probability 
theory, (2) the "causal anomalies" of quantum mechanics, and (3) the reso
lution of these anomalies in terms of generalized probability theory. A 
discussion of scientific explanation appears as a coda. 

8. 1 Probability Generalized 

The classical presentation of probability theory was given by Kolmogorov 
(1933). On this account, probabilities are assigned to sets. In Kolmogorov's 
original presentation, these sets were said to be subsets of a set E of ''elemen
tary events." These "elementary events," however, played no further part 
in the discussion; following standard practice, I will use the term event to 
refer to any subset of a set E to which a probability is assigned. If a probabil
ity is assigned to two events A and B, we also require it to be defined for their 
union, A U B, for their intersection, A n B, and for their complements, E - A 
and E - B. That is to say, a probability function is defined on a field ;J of 
subsets of E. 

(8. 1) We say that the triple ( E, ;J ,p ) is a classical probability space if ;J is a 
field of subsets of E and p is a function p :  ;J � [0, 1]  satisfying 

(8. 1a) p(E) = 1 and p(¢ )  = O; 

(8. 1 b) p(A U B) = p(A) + p(B), for all A,B E ;J such that A n  B = ¢ .  

In fact it's now usual to define the measure on a a-field of sets, that is, one 
which is closed not only under finite union and intersection, but also under 
(denumerably) infinite union and intersection. In this case (8 . lb) becomes: 

(8. 1b*) If {A;} is any denumerable family of pairwise disjoint members of ;J 
(that is, if Ai n Ai = ¢ whenever i ::/= j), then p(U i{A;}) = �ip(Ai). 

Of course, if (8. 1 b*) is confined to finite families {A;}, then it reduces to 
Kolmogorov' s original axiom. 

We see that a classical probability measure is a (countably) additive real
valued set function. 

Now the "probabilities" defined by quantum-mechanical states are not 
defined on sets but on quantum events (A,�) ("experimental questions"). 
Thus, in one obvious way, they don't conform to Kolmogorov's definition. 
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This would be trivial if the algebraic structure of the set of quantum events 
were isomorphic to a field of sets, that is, if the algebra of quantum events 
were Boolean. For, as we noted, the fact that Kolmogorov defines events as 
sets of "elementary events" plays no part in the ensuing mathematical 
theory. What is important in his account is that the algebraic structure of the 
set of events is that of a a-field of sets, that it is a Boolean a-algebra. In fact, 
from the point of view of classical probability theory, by defining a probabil
ity field in terms of a field of sets rather than a Boolean a-algebra, Kolmo
gorov loses no generality (contra Popper, 1959, app. *iv; see Bub, 1975), 
since, by Stone's theorem, any Boolean algebra is isomorphic to some field 
of sets. (See Section 7.2.) 

As we saw in Section 7.4, however, the algebraic structure of the set of 
quantum events is non-Boolean; the set of subspaces of a Hilbert space can 
be regarded either as an orthomodular lattice or as a transitive partial Bool
ean algebra, within which not all pairs of elements are compatible. It seems 
that the functions assigning probabilities to quantum events are, paradoxi
cally, not probability functions at all, at least, not in Kolmogorov's sense. 
The importance of this was pointed out by Suppes (1966); clearly, we need 
to generalize the concept of a probability function so that it is defined on a 
wider class of algebraic structures than the class of Boolean a-algebras. 
Within this wider class, a a-field of sets, on the one hand, and the set S(7i) of 
subsets of a Hilbert space, on the other, should appear as special cases. 

I will confine myself here to a generalization of finitely additive probabil
ity functions, defined on orthoalgebras. 

(8. 2) ( A,_l_,E9,-1,0,l ) is said to be an orthoalgebra if A is a set containing 
designated elements 0 and 1 ,  J_ is a binary relation on A, E9 is a partial 
binary operation on A such that a E9 b exists if and only if a J_ b, .L 
is a singulary operation on A, and, for all a,b in A, 

(8. 2a) if a J_ b, then b J_ a, and a E9 b = b E9 a; 

(8. 2b) a J_ 0 and a E9 0 = a; 

(8. 2c) a J_ a.L and a E9 a.L = 1;  

(8. 2d) a J_ a.L E9 b only if b = O; 

(8. 2e) a J_ a E9 b only if a =  O; 

(8. 2f) if a J_ b, then a J_ (a E9 b).i and b.L J_ a E9 (a E9 b).i . 

These axioms are due to Hardegree and Frazer (1981) .  From them we may 
derive the following theorems: 



(8. 3a) Q.L = 1;  1.1. = O; 

(8. 3b) (a.L).L = a; 
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(8. 3c) a E9 b = a  E9 c only if b = c; 

(8. 3d) a E9 b = 1 only if b = a.L. 

The symmetric relation J_ is known as the orthogonality relation, the opera
tion E9 is known as the operation of orthogonal sum, .L is the complementation 
operation. Note that 0 is the only element orthogonal to itself. 

We have already met one example of an orthoalgebra in Section 7 .5, and it 
will be useful to review that account here. (As then, the reader is referred to 
Stein, 1972, pp. 374 - 378, for a more careful account.)  Assume that we can 
conduct any one of a number of experiments, each of which has a number of 
mutually exclusive possible outcomes. The set E of events is then generated 
from the set of possible outcomes of all experiments, to form an orthoalge
bra, as follows. 

An event is any set of outcomes associated with a single experiment. Two 
events are orthogonal (e J_ /) if they are disjoint sets of outcomes associated 
with the same experiment. For any pair of orthogonal outcomes, e and f, 
their orthogonal sum, e E9 t is defined as the union of the two events. Note 
that this operation is not defined for two events associated with different 
experiments; E9 is thus a partial operation on E. The set of all possible 
outcomes associated with a particular experiment is the certain event for that 
experiment. The complement e.L of an event e is the set-theoretic complement 
of e relative to the certain event for the experiment in question. The empty 
set, ¢ ,  is the null event, and is common to all experiments; it is orthogonal to 
all events, and is the zero, 0, of the orthoalgebra. The certain event for any 
experiment is also identified with the certain event for all others; it is the 
unit, 1 ,  of the orthoalgebra. 

Though the elements of this particular algebra are all sets, the structure 
8 = ( E,_l_,E9,.L,Q, l ) is clearly an orthoalgebra and not, in general, a field of 
sets. But it does have some properties not shared by all orthoalgebras. For 
instance, within 8, the operation E9 is associative: for all e, f, and g in E, 

e E9 (/ E9 g) = (e E9 /) E9 g 

whenever these operations are defined. Successive constraints on orthoal
gebras yield a hierarchy of algebraic structures. (See Hardegree and Frazer, 
1981 ; for a summary, see Hughes, 1985a.) A Boolean algebra is an associa
tive orthoalgebra in which all sets of elements are jointly compatible: a set B 
of elements of an orthoalgebra A is said to be jointly compatible if there 
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exists a set C of pairwise orthogonal members of A such that each member b 
of B is the orthogonal sum of some subset of C; in other words, for each 
b E B, there exist c1 ,c2 1 • • •  ,en E C  such that b = E9i ci . When B is  the pair 
{a, b}, this condition reduces to the familiar definition (7.30). 

In the "operational" orthoalgebra 8 sketched above, we could regard all 
events as compatible if all the possible experiments could be performed 
simultaneously without interfering one with the other. In that case the 
algebra of events would be embeddable within a Boolean algebra, in fact 
within a field of sets. 

Less stringent constraints than the requirement of universal joint compat
ibility yield the transitive partial Boolean algebras (equivalently, coherent 
orthomodular posets) of quantum logic. 

We now define a generalized probability function p. 

(8.4) A function p : A � [0, 1]  is said to be a generalized probability function 
if the set A forms an orthoalgebra (A = ( A,_l_,E9,-1,0, 1 ) ), and 

(8. 4a) p(O) = 0, p(l) = 1;  

(8.4b) for all a and b in A, if a J_ b, then p(a E9 b) = p(a) + p(b) . 

An infinitary version of this is not problematic (see Gudder, 1976). It re
quires us to define an operation of infinitary orthogonal sum on an orthoal
gebra, defined for countable sets of pairwise orthogonal elements; implicit 
in this definition is the condition that the orthoalgebra be associative. 

Any orthoalgebra A contains Boolean algebras as substructures. The 
restriction of a generalized probability function p on A to a Boolean subal
gebra of A is a Kolmogorov probability function. In fact: 

(8.5) If :B is a partial Boolean algebra, any function p :  B � [0, 1]  whose 
restriction to a Boolean subalgebra of :B is a Kolmogorov probability 
function is a generalized probability function on :B. 

8. 2 Two Uniqueness Results 

The probability functions we have dealt with throughout this book are 
functions p :  S(7i) � [O, 1]  mapping the set S(7i) of closed subspaces of a 
Hilbert space 7i into the interval [O, 1 ] .  Since S(7i) forms a partial Boolean 
algebra, but not a Boolean algebra, these functions are generalized probabil
ity functions rather than Kolmogorov probability functions. Within this 
PBA, however, there are (maximal) Boolean subalgebras. In fact, any set of 
subspaces which can be generated from a set of mutually orthogonal rays 
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spanning 7i by span, intersection, and orthocomplementation forms a 
Boolean algebra, and the restriction of any generalized probability function 
(GPF) to this subalgebra is a Kolmogorov probability function. In the termi
nology of Section 5 .5, any GPF on S(7i) is a frame function, and we have a 
representation theorem for all functions of this kind. 

Gleason's theorem tells us that the set of GPF's on a Hilbert space 7i of 
dimensionality three or higher is in one-to-one correspondence with the set 
of density operators on 7i; to the GPF p there corresponds exactly one 
density operator D such that, for every subspace L of 7i and associated 
projection operator P, we have 

(8. 6) p(L) = Tr(DP) 

Note that if 7i has dimension two, while each density operator on 7i yields a 
GPF, the converse does not hold, witness the probability function on �2 
which assigns 1 to points in the first and third quadrants and 0 to points in 
the second and fourth. 

Gleason's theorem is a very strong result; the measures supplied by the 
density operators on 7i are the only natural extensions of classical probabil
ity functions to the non-Boolean structure of the set of quantum-mechanical 
propositions. 

In 1977 Bub (1977) pointed out another highly significant result, that the 
non-Boolean structure of S(7i) also necessitates a revised account of condi
tional probability. In classical probability theory every Kolmogorov proba
bility function p defines a conditional probability measure I?; the probability 
l?(A IB) of event A conditional on event B is given by 

l?(A IB) = p(A n B) 

p(B) 
[provided p(B) =I= O] 

For any given nonzero event B, the function l?(X IB) (where X is any event in 
E) is itself a classical probability measure. In fact, it is the only classical 
probability measure on the set E of events such that, for all A in E, 

If A c B, then l?(A IB) = ;��� 
Thus, in the classical case, for events A contained in B, conditionalizing on B 
just involves a renormalization of p to p', where p'(B) = 1 .  

Now let p be a generalized probability function on S(7i), with corre
sponding density operator D, and let L8 be a subspace such that p(L8) =I= 0.  
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Then there exists a unique GPF l?(XILB) on S(7i) such that, whenever LA C 
LB ,  

The proof of this is given in Appendix B. 
By Gleason's theorem, this GPF is representable by a density operator DB . 

In Appendix B it is shown that 

where PB projects onto LB . 
The denominator is just a normalizing factor, to ensure that DB has unit 

trace. By the properties of the trace [see (5 .6)] and idempotence, we obtain 

From (8.6) it follows that, if LA and LB are subspaces of 7t with projection 
operators PA and PB , then 

(8. 7) I? L IL ) = Tr(PBDPBPA) 
( A 8 Tr(DP8) 

[Liiders' rule] 

Note that in (8 .7) there is no restriction on LA ; we do not require that LA C LB . 
However, we see that, as in the classical case, the Liiders rule gives the only 
probability measure that, for events LA C LB , just involves a renormalization 
of the GPF given by the operator D. This offers strong grounds for regarding 
it as the appropriate conditionalization rule for GPFs on S(7i). Additional 
grounds for thinking of it as the natural extension of the classical condition
alization rule appear from its behavior in two special cases (see also Bub, 
1977, and Section 9 .3). 

First of all, consider the case when LA and LB are compatible. In this case 
we have 

where Pc projects onto LA n LB . (If LA J_ LB , then Pc is the zero operator.) 
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Using (5 .6) we obtain 

(8. 8) 

By taking compatible subspaces LA and LB we remain in one Boolean subal
gebra of S(7i); in this case, whatever our approach to quantum logic, LA /\ LB 
is well defined, and is equal to LA n LB . For such subspaces the Liiders rule 
reduces to classical conditionalization. 

Let us look at another kind of situation where we can meaningfully speak 
of the conjunction of two quantum events. (To reduce the number of sym
bols floating around, I will use projection operators to represent these 
events .) 

Consider a composite system with two components a and b; the states of 
the composite system will be represented in the tensor-product space 71a @  
7fb. Let pa be a projector on 71a representing a quantum event associated 
with system a, and pb a projector on 7fb representing a quantum event 
associated with system b. 

Assume that the density operator D on 71a @  7fb represents the state of 
the composite system. Then the joint probability of pa and pb is given, in 
accordance with (8 .6), by 

The probabilities of the individual events are given by 

p(Pa) = Tr[D(Pa @ P)] and p(Pb) = Tr[D(I° @ Pb)] 

where I° and P are the identity operators on 71a and 7f b, respectively. 
Now by Liiders-rule conditionalization, 

Tr[(I° ® pb)D(I° ® pb)(Pa ® P)] 
l?(Pa lpb) = --------

TrD' 

where D' = D(I° @ Pb). 
Using the properties of the trace, operator multiplication on 71a @  7fb, 

and idempotence, we see that 

Tr[D(I° ® pb)(Pa ® Jb)(I° ® pb)] 
l?(Pa lpb) = --------

TrD' 

_ Tr[D(Pa @  Pb)] 

TrD' 
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But TrD' = Tr[D(I° @ Pb)] = p(Pb), and it follows that 

(8. 9) 

exactly as in the classical case. 
Before we leave this formal development of generalized probability 

theory, one thing should be emphasized. The conditional probability given 
by the Liiders rule is a probability of a quantum event Q given another 
quantum event P. Though each event can be regarded as a pair (A,�), this 
internal structure of events is irrelevant to the generalized probability 
theory given here. In particular, nothing in this discussion of quantum 
conditionalization bears directly on the question of whether the expression 
p(A,�) should itself be regarded as a conditional probability and be read as 
"The probability that a result in the Borel set � will occur, given that a 
measurement of A takes place" (p(RA IMA), for short). I postpone this ques
tion to Section 10 .3 .  

8. 3 The Two-Slit Experiment: Waves and Particles 

A discussion of quantum theory which made no mention of the two-slit 
experiment would not quite be Hamlet without the Prince; nonetheless, it 
might be thought an eccentric departure from tradition. However, I include 
the experiment here not from a desire to preserve ancestral pieties, but 
because of its relevance to our present concerns, a relevance which will 
appear in Section 8.4 .  

In the experiment -or rather in the idealized version of an experiment* 
-a source E emits electrons at a steady rate toward a sensitive screen S. 
Between the source and the screen is a diaphragm, in which there are two 
slits, A and B.  Three experiments are performed. In the first, a, only slit A is 
open; in the second, b, only slit B is open; in the third, c, both A and B are 
open. The time of each experiment is long enough for averaging effects to 
come into play, and in each case the distribution of "hits" on the screen is 
recorded. The distribution pattern for c (shown at the far right of Figure 8 . 1) 
is not just the sum of the patterns for a and b, as it would be if the electrons 

* A neutron interference experiment which is the exact analogue of the two-slit experiment 
has been performed by a group led by Summhammer. It is simply described in Leggett (1986). 
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Figure 8. 1 The two-slit experiment; curves show distribution of "hits" in experiments a 
and b and (far right) experiment c. (From Feynman, Leighton, and Sands, 1965 .) 

behaved like classical particles. Instead, it resembles the interference pat
terns characteristic of waves that have passed through two small apertures 
(see, for example, PSSC, 1960, pp. 286 - 294). That is, if we take a small area 
X of the screen and write 

NA = number of hits on X per unit time in experiment a 

NB = number of hits on X per unit time in experiment b 

NAB = number of hits on X per unit time in experiment c 

we find that 

On a wave interpretation of the interaction between source and screen 
this is perfectly explicable. If two waves spread out from A and B, only at a 
few places on S will they arrive in phase; for the most part they will arrive 
somewhat out of step -in fact when the "crest" of one exactly coincides 
with the "trough" of the other the two will cancel each other out. 

Each of the two classical models of causal processes, the particle model 
and the wave model, offers a partial description of the source-screen inter
action, but neither is fully adequate. Either model, taken on its own, leaves 
us with a "causal anomaly." (The term is Reichenbach's, 1944, secs. 6, 7.) 
Anomalous on the wave account is the fact that electrons are individually 
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detectable at the screen; for this "collapse of the wave packet" the account 
offers no explanation. But the particle account fares no better. Let us assume 
that, when both apertures are open, a number N� of particles reach X per 
unit time after passing through A, and that a number N� reach X per unit 
time by passing through B. Then, since on a wholehearted particle analysis 
each particle reaching X must pass through exactly one aperture, 

But we know that 

and so, either NA ::/= N� or N8 ::/= N� . 
On this account, the causal anomaly lies in the fact that the opening of B 

either affects the number of electrons passing through A or else affects the 
propensity of these electrons to strike the region X on the screen; the parti
cles passing through A mysteriously ''know'' whether B is open or not. 

Each model accounts adequately for some of the phenomena, but neither 
accommodates them all. 

One response to this, and similar anomalies, has been to say that quantum 
mechanics requires us to forswear a unified description of nature. According 
to Hanson (1967, p. 43), "The Copenhagen interpretation of quantum me
chanics is the view that fundamental nature is indivisibly bipartite - the 
wave-particle duality." Despite the fact that it has been held by some of the 
theory's most distinguished practitioners, this view turns out to have 
slender justification. Let us look at it as it appears in the writings of Niels 
Bohr. (He discusses the two-slit experiment in Bohr, 1949, pp. 2 1 6 - 21 8 .) 

Bohr took the necessity of using two seemingly incompatible descriptions 
of phenomena as a general epistemological principle and called it the Princi
ple of Complementarity. In the case of the wave-particle duality, the princi
ple takes this form: 

(8. 1 0) As a description of microentities and microprocesses, neither a parti
cle description nor a wave description is fully adequate. Between 
them, however, they form a complete, complementary description. 

Underlying this principle is a doctrine which we may summarize as follows. 

( 1 )  Conditions for the applicability of scientific concepts are determined 
by the experimental situation (see, for example, Bohr, 1935a, p. 699). 
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(2) Experiments can be unambiguously described only in classical terms 
(see Bohr, 1949, p. 209). 

(3) "Any given application of classical concepts precludes the simulta
neous use of other classical concepts which in a different connection 
are equally necessary for the elucidation of the phenomena" (Bohr, 
1934, p. 10) .  

The llinitations on classical concepts announced in (3) are due to the inde
terminacies associated with the quantum of action: there is always a "finite 
and uncontrollable interaction between the objects and the measuring in
struments in the field of quantum theory" (Bohr, 1935a, p. 700), and this 
precludes simultaneous ascription of, for example, position and momentum 
to a particle. I discuss Bohr's interpretation of these indeterminacy relations 
in Section 9 .2. (For a full and sympathetic discussion of Bohr's views, see 
Hooker, 1972.)  

We have met (1)  already, in Section 7.9;  on Bohr's account, the use of a 
particular concept (such as momentum or position) presupposes the exis
tence of a particular physical situation; only when that situation obtains is 
discourse involving that concept meaningful. Similarly with the wave-par
ticle duality. The language associated with a particle model of physical 
processes acquires meaning in specific experimental contexts. Further, con
cepts are readily linked to particular models- momentum to the wave 
model (as the wave number of the wave), and position to the particle model. 

Bohr's position is elegantly summarized by Petersen (1963, p. 12): 

In the language of physics there are various sets of concepts such as space and time, 
and the so-called dynamical concepts like momentum and energy. Corresponding to 
these different sets of concepts are different types of measuring tools. For example, 
to determine the position of the object, one must use rulers firmly attached together 
to form a reference frame. On the other hand, to measure an object's momentum one 
may let it collide with a freely movable body of known mass, and then measure the 
resultant velocity of the test body . . . 

In quantum physics we use the same concepts [as in classical physics] and thus the 
same measuring tools, but . . .  the dissimilarity between the measuring tools be
comes crucially important. Here we cannot use the different types of instruments in 
combination. We cannot combine the information about the system that we get from 
one type of instrument with the information we get from another. Therefore a 
quantum physical phenomenon is characterized by the type of measuring instru
ment we use.  Two phenomena obtained by observing the same system with two 
different types of instruments are mutually exclusive. Bohr called this logical rela
tion of exclusion complementarity. 

The lesson to be drawn is that if we use the same set of concepts in 
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quantum physics as in classical, then we can never obtain a unified descrip
tion of the behavior of a system. But this prompts the obvious question: why 
should we accept (2)? Why are the concepts of classical physics to be ac
corded privileged status? Bohr writes (and italicizes), "However far the phe
nomena transcend the scope of classical physical explanation, the account of all 
evidence must be expressed in classical terms. " And he argues that only by a 
"suitable application of the terminology of classical physics" can we de
scribe our experiments to others without ambiguity (1949, p. 209). 

This seems wholly implausible. It may be that we need to use a classical 
categorial framework to describe experiments, and hence that such a frame
work is implicit in the formulation of quantum theory; in fact, I will argue as 
much in Chapter 10 .  Nonetheless, this is a far cry from saying (i) that the 
only vocabulary we can meaningfully employ is that of classical physics, a 
vocabulary familiar to physicists at the end of the nineteenth century, and 
(ii) that its operational meaning must forever remain unchanged. 

One could challenge this (and with it much of what Bohr says) by denying 
that there were such things as "operational meanings" (see Hempel, 1954, 
for a discussion). Similarly, Bohr's views would be instantly rejected by 
anyone who subscribed to a principle of meaning incommensurability, the 
view that with a move from one theory to another all terms suffer a radical 
change in meaning. (This view is discussed by Hacking, 1983, chap. 5 .) For 
example, of the move in question, from classical physics to quantum me
chanics, Schrodinger (1935, p. 155) remarked gloomily, "Does not one get 
the impression that here one deals with fundamental properties of new 
classes of characteristics, that keep only the name in common with classical 
ones?" But one can take less extreme views and still disagree with Bohr. 
Without inconsistency, indeed with considerable plausibility, one could 
maintain (a) that to know what a term means is, among other things, to 
know the experimental contexts in which its use would be appropriate, (b) 
that there is some preservation of meaning between theories, and (c) that 
new theories both bring new concepts into physics and modify the mean
ings of the concepts that are retained. 

According to Rosenfeld, ' 'The classical concepts to which Bohr appeals 
directly . . . are (in the last resort) not formalizable, but immediately given 
(as part of common experience)" (pers. com.; see Daneri, Loinger, and 
Prosperi, 1962, p. 298). Hooker (1972, p. 135) too suggests that classical 
concepts are ''regarded by Bohr as being refined versions of our ordinary, 
everyday concepts" and that this is the reason Bohr accords them a privi
leged status. But this position (though not its ascription to Bohr) is unten
able. Take, for instance, as ordinary and everyday an instrument as an 
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ammeter. I can, without further elaboration, use the term ammeter in de
scribing an experiment to any living physicist. This is because we share a 
common theoretical vocabulary which includes electric current. But the con
cept of electric current is not a "refined version" of any concept at all that 
was available to, say, Galileo. Still less can Bohr's claim be made on behalf of 
magnetic flux density or electrostatic potential, both perfectly good classical 
concepts. 

My point is simply this, that the vocabulary of the experimenter and that 
of the theoretical physicist (to make a dubious distinction) have always been 
intertwined; as terms for radically new concepts enter the theoretician's 
vocabulary, so they will enter the experimenter's. This process did not stop 
at the stroke of midnight on December 3 1 , 1 899 .  

What holds for the concepts used in the theory holds also for the models 
in which they appear. One problem which a new theory should not be 
called upon to answer is why it makes only partial use of the models used by 
its predecessors. Given the historical matrix from which quantum me
chanics emerged, it is not surprising that a great deal of early quantum 
theory was expressed in terms of wave and particle concepts. For every 
physicist at the turn of the century, these were ready-to-hand pieces of 
theoretical equipment. For sound pragmatic reasons physicists were loath to 
discard them. In 1900, however, with Planck's attribution of particle prop
erties to electromagnetic waves, they began to be used in unorthodox ways; 
Planck's move was mirrored twenty-five years later by de Broglie's attribu
tion of wave properties to electrons. 

What, then, of the so-called wave-particle duality that results? I say more 
about this duality in Section 10 .2; however, we can agree with Bohr that 
each model, while proving heuristically valuable, offers only a partial anal
ogy to the behavior of light and matter. Further we can agree (how could we 
not?) that the two models are mutually at odds. We can deny, however, that 
there is any radical epistemological lesson to be drawn from all this. 

These episodes in the prehistory of quantum theory do not teach us to 
abjure a unified understanding of quantum phenomena in favor of a doc
trine of epistemological complementarity, according to which we are com
pelled to move to and fro between two incompatible ways of picturing the 
world. They teach us merely that neither of these ways is fully adequate. We 
can draw a different conclusion than did Bohr, even while agreeing with 
him that ''The two views on the nature of light are rather to be considered as 
different attempts at an interpretation of experimental evidence, in which 
the limitations of the classical concepts are expressed in complementary 
ways" (1934, p. 56). 
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8.4 The Two-Slit Experiment: Conditional Probabilities 

Schrodinger (1953), with whom the concept of the "wave function" origi
nated, maintained to the end of his life that it should be thought of as a 
mathematical representation of a physical wave, even if this compelled us to 
a dualist ontology. In contrast, in 1926 Born pointed out that one could 
interpret wave functions in probabilistic terms. In a discussion of collisions 
between electrons and atoms he proposed that the function Cl>(a.,p,y) gave 
"the probability that the electron will be thrown out in the direction given 
by the angles a.,p,y," and added in a celebrated footnote, "More careful 
consideration shows that the probability is proportional to the square of the 
quantity Cl>" (Born, 1926a, p. 865; Wheeler and Zurek, 1983, p. 54). 

Effectively, this is the interpretation of the wave function (or state func
tion) used in this book. For Born it was the key to providing a unified particle 
interpretation of quantum theory: "If one wants to understand [collision 
processes] in corpuscular terms, only one interpretation [the probabilistic 
interpretation of Cf>] is possible" (Born, 19 26a, p. 865). But, initially at least, 
the use of probabilities still leaves the particle interpretation with the anom
aly we met in the last section. 

Let A be the event that the electron passes through aperture A, B the event 
that the electron passes through aperture B, and X the event that the electron 
strikes the region X of the screen. Then A v B is the event that the electron 
passes through either A or B, A & X is the event that the electron passes 
through A and strikes region X, and so on. We can write down three condi
tional probabilities: 

(8. 1 1) 

(8. 1 2) 

(8. 1 3) 

p(XIA) = p(X & A) 

p(A) 

p(X IB) = p(X & B) 

p(B) 

p(XIA v B) = p[X & (A v B)] 

p(A v B) 

By expanding (8 . 1 3) we obtain 

(8. 14) p(X IA v B) = p[(X & A) v (X & B)] 

p(A v B) 

and, since 

(8. 15) X & A and X & B are mutually exclusive events, 
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it follows that 

(8. 1 6) (X IA v B) = p(X & A) +  p(X & B) 
p 

p(A v B) 

For simplicity we consider the case when 

(8. 1 7) p(A) = p(B) 

Again, since A and B are mutually exclusive, 

(8. 1 8) p(A v B) = p(A) + p(B) = 2p(A) 

and so 

(8. 1 9) (X IA v B) = p(X & A)
+ 

p(X & B) 
p 

2p(A) 2p(B) 
1 1 = 
2 

p(X IA) + 
2 

p(X IB) 

If we cash out (8 . 19) in terms of the relative frequencies with which the 
event X occurs in experiments a, b, and c (see Section 8.3), we get 

(The factor ! disappears because we deal with twice as many electrons in 
experiment c as in a and b.) But, as noted previously, (8 .20) is at odds both 
with quantum theory and with experiment. 

One thing that the derivation of (8 . 19) reveals is that the problem is not 
just a problem for any particular model of causal processes. For equations 
(8 . 1 1  ) - (8. 19) were established without mention of the particle model; they 
dealt solely with the probability of an event X conditional on other events A, 
B, and A v  B. They give us a purely probabilistic analysis, albeit one that can 
be supplemented by a causal story involving particles. 

Where might the derivation of (8 . 19) be challenged? First, forsaking the 
particle model, one might deny (8 . 15); if A and B (and hence A & X, B & X) are 
not mutually exclusive, then the additivity law appealed to in (8. 1 6) and 
(8 . 1 8) doesn't hold. 

Attempts to check (8 . 15) experimentally have distinctly odd effects. Let us 
assume, for example, that counters are set up immediately behind the aper
tures A and B to register whether both events can take place simultaneously. 
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Then we find that each electron arriving at the screen has triggered exactly 
one of the counters, and exclusivity seems to be verified. But the presence of 
the counters also destroys the pattern at the screen; when they are present 
(8 .20) holds (see Feynman, Leighton, and Sands, 1965, vol. 3, pp. 1 .6 - 1 .9). 
This effect is certainly peculiar, and, as with many quantum effects, it is 
tempting to see it as symptomatic of a deep-seated epistemological recalci
trance at the quantum level. But I think this temptation should be resisted. 
The experiment with counters is designed to answer a specific question: are 
the events A and B mutually exclusive? The answer it gives is unambiguous: 
they are. 

Of course, our interest in this particular question is a by-product of our 
search for an account of the interference pattern at the screen, and a remark
able effect of the experiment is that this pattern is replaced by another. 
Nonetheless, although we would like to know why this effect takes place, 
that's a separate problem. Even if we couldn't solve it there would be no 
obvious reason why we shouldn't take the evidence the counters supply at 
face value; they show that A and B are indeed mutually exclusive. (A similar 
point is made by Fine, 1972, p. 25 .)  

If we accept this result, then we need to locate the problem in the deriva
tion of (8 . 19) elsewhere. Putnam (1969) suggested that the illicit move in 
this derivation is that from (8. 13) to (8 . 14) (see Section 7.8). As he pointed 
out, this move is an application of the distributive law, which doesn't hold 
within quantum logic. It is certainly true that if we reject the distributive law, 
then the inference from (8. 1 3) to (8 . 14), and hence the derivation of (8. 19), is 
blocked. The trouble is, this is a purely negative result. It merely tells us that 
the additive pattern is not guaranteed at the screen. It gives us no reason 
why, in general, the interference pattern occurs, nor why the interference 
pattern becomes the additive pattern when the screen is moved close 
enough to the diaphragm. (Compare Bub, 1977; see also Gibbins, 198lb, 
and 1987, pp. 147 - 15 1 .) 

Clearly, the simple rejection of a particular law of logic will not supply 
much in the way of an explanation of what goes on. And, from Putnam's 
1969 paper, one might well think that the only important thing about 
quantum logic was that it gave up the distributive law. However, as Putnam 
has recognized (Friedman and Putnam, 1978), the quantum-logical ap
proach can offer a much deeper analysis of the problem than this. This 
alternative analysis suggests that, rather than sniffing suspiciously at indi
vidual moves in the derivation of (8. 19), we should reject the whole deriva
tion. For the probabilities we are dealing with are assigned, not by probabil
ity functions on a classical probability space, as the derivation assumes, but 
by generalized probability functions defined on a Hilbert space. In fact Bub 
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has shown that, by replacing classical conditional probabilities by quantum 
conditional probabilities, and then allowing for one further factor affecting 
the probability of event X, we obtain the quantum statistics. (See Bub, 1977, 
and 1979, pp. 100 - 104; Beltrametti and Cassinelli, 1981 ,  pp. 283- 285 .) 
The further factor is the evolution of the system's state between the dia
phragm and the screen. 

Since the calculations involve an observable with a continuous spectrum 
(the y-coordinate of position), they look more complicated than those we are 
used to. However, the principle behind them is very simple. We assume that 
the electrons arrive at the diaphragm in a pure state 'I'. At the diaphragm a 
quantum event occurs. In each of the three experiments this event is asso
ciated with the y-coordinate of position; events A = (y,�A), B = (y,�8), and 
A v  B = (y,�A U �8) occur in experiments a, b, and c, respectively (at least for 
those electrons which make it to the screen) . Conditionalization on any 
event, using the Liiders rule, yields a new generalized probability function 
in the Hilbert space, in other words, a new state. Conditionalizing on the 
event A yields the pure state 'l'A , while conditionalizing on B yields the pure 
state '¥8 • If at this point we appealed to classical probability theory, then 
conditionalizing on A v B would yield a mixture of 'l'A and '¥8 , and the 
resulting probabilities would be half of the sum of those obtained from 'l'A 
and '¥8 , in accordance with (8 . 19). The surprising and nonclassical feature 
of Liiders' conditionalization is this, that conditionalizing on A v  B yields not 
a mixture of 'I' A and 'I' 8 ,  but instead a superposition of the two, the pure state 
'l'A v B ·  

Now, if the screen were very close to the diaphragm, the probability of X 
would be given by 'l'A in experiment a, by '1'8 in experiment b, and by 'l'A v 8 in 
experiment c. However, since an event at the screen occurs a time t after the 
corresponding event at the diaphragm, we must use the Schrodinger equa
tion to see how each of the three states 'l'A , '¥8 , and 'l'A v 8 evolves in this time 
and calculate the probabilities of X accordingly. It is this temporal evolution 
which produces the effects which prompt a wave account of the phenom
ena, and which we can refer to as the "diffraction" of the state function. 
Indeed, as we have noted, when the screen and diaphragm are very close 
together, there are no such effects, and the probabilities given by 'l'A and '¥8 
add in a thoroughly classical way. 

Let us run this formally. The spectral measure associated with the position 
operator was discussed in Section 1 . 15 .  The projection operator corre
sponding to event A is the operator PA such that, for the pure state 'l'(y), 

PA 'l'(y) = 'l'(y) for y E �A 

PA 'l'(y) = 0 for y � �A 
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Conditionalizing on A (using the Liiders rule) yields a "truncated" wave 
function 'l'A ,  which vanishes outside �A , and within it is just 'I' renormal
ized. Similarly, conditionalizing on B and A v B yields '¥8 and 'l'A v 8 ,  respec
tively. 

Now if 

then A and B are equiprobable, and 

which is a superposition of 'l'A and '¥8 • 
In the case when A and B are not equiprobable, we still get a superposition 

of 'l'A and '¥8, but one which is unequally weighted. 
Now let Ut be the evolution operator which modifies the state between 

the diaphragm and the screen, and let �x be the range of y-values covered 
by the region X. Then, in the experiment c, the state of the system at the 
screen is Ut'l'A v 8 ,  and, using the usual statistical algorithm (2 . 1 ) together 
with the definition of inner product in L2 (Section 1 . 1 1  ), we obtain 

(8. 21) p,(X) = p,(y,�x) = ( Ut'l'A v B IPxUt'l'A v B )  
= IPxUt'l'A v B l 2 

= L Ut � ('PA +  'l'B) 
2 
dy 

Within the expansion of (8 .21) we find the so-called interference term: 

This term gives the difference between p,(X) and t[(p0(X) + pb(X)] . It only 
vanishes for all �x when t = 0, that is, when the screen is very close to the 
diaphragm. 

Finally, consider the case when there are counters present. Assume, for 
example, that, with both apertures open, the counter beside the A-aperture 
registers an electron. Then, after the event A v B, another event A has 
occurred, to wit, the restriction of the electron to the region round the 
A-counter. Provided that the counter is sufficiently close to the aperture for 
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no significant evolution of the state to occur between the two, the effect will 
be a two-stage transition, 

With the counters present, the ensemble of electrons will be divided into 
two subensembles in states 'l'A and '¥8 • At the screen this will give the 
statistics of a mixture of the states Ut'l'A and Ut'l'8 , and the additive pattern 
characteristic of classical particles will appear. What was previously an odd 
and inexplicable effect drops out quite naturally from the analysis. 

How does this analysis relate to previous chapters, and where does it 
leave us? The lesson of Chapters 6 and 7 was that we might be better off if 
we dispensed with talk of the "properties" of a quantum system. Probably 
the hardest property to free ourselves from conceptually is that of the 
system's position in space. For if we stop attributing a position to a system at 
all times, we will no longer be able to describe the electron in experiment c as 
passing either through aperture A or through aperture B. Thus we will no 
longer be able to regard it as mediating a causal process, at least insofar as we 
require such processes to be characterized by spatio-temporal continuity. 
We will be left with a story told, not in terms of causal processes, but in terms 
of quantum events and their probabilities conditional on other quantum 
events. 

Of course, similar stories can be told for classical processes involving 
probabilities. The difference is that in the classical case, when the probabili
ties are Kolmogorov probabilities, causal supplements of these stories are 
available; for an example, consider the way in which the derivation of (8 . 19) 
earlier in this section could be supplemented by a causal account in terms of 
particles. However, when quantum probabilities defined on a Hilbert space 
are involved, no such causal supplementation is possible. Nevertheless, 
contra Kant, this doesn't make a quantum story unintelligible. And, for all its 
unfamiliarity, the account of the two-slit experiment outlined above has one 
great merit: it tallies with the facts. 

8. 5 The Bell-Wigner Inequality and Classical Probability 

Like the two-slit experiment, the Bohm version of the EPR experiment raises 
questions both about causality and about probabilities in quantum me
chanics. In Chapter 6, the problem posed by Bell's theorem was presented as 
a problem for a version of local realism, the thesis that (1)  quantum proposi
tions (A,�) represent properties possessed by individual systems and which 
measurement reveals, and that (2) the properties of one system cannot be 
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affected by what is done to a second system spatially separated from the 
first. Although Wigner's formulation of the theorem, in terms of probabili
ties, was used, these probabilities were interpreted as the statistical inter
pretation suggests, that is, as relative frequencies of the occurrence of prop
erti.es within an ensemble. 

However, we can now redescribe Wigner's result in terms of probability 
theory alone. His proof demonstrates that no probability function on a 
certain kind of classical probability space can yield the probability assign
ments of quantum theory. 

As we saw, Wigner considers assignments of probabilities to sextuples 
(i,j,k;l,m,n). Each member of a sextuple is either + or -; i, j, and k represent 
values of certain components of spin, S! , Sl, and s: , for parti.cle 1, and l, m, 
and n values for the same components of spin for parti.cle 2, s; I s� I and s� • 

These 26 sextuples provide a partition of a classical probability space, that is, 
a set of mutually exclusive and jointly exhaustive events. It turns out that no 
classical probability assignment to this parti.tion can yield the quantum 
statistics for S! I s; I et cetera. 

Bub (1974, chap. 6) has argued that this version of Bell's theorem just 
provides further evidence that quantum mechanics requires a nonclassical 
account of probability. Indeed, the problem with the postulated probability 
space is not far to seek. Effectively, the sextuples defining the members of 
the partition are assumed to be sixfold classical conjunctions; thus the set 
{(S! ,+), (SL+), cs: ,+)}, for instance, is assumed jointly compatible. In the 
event structure of quantum mechanics, however, this is just not so. Nor, 
crucially, can the quantum Hilbert-space structure be embedded into a 
classical (Boolean) structure on which this parti.tion might be defined; we 
know this from Kochen and Specker's (extended) theorem. The postulated 
classical probability space was therefore doomed to inadequacy, indepen
dently of considerations involving coupled systems. Bub concludes that the 
Bell argument "has nothing whatsoever to do with locality" and empha
sizes the point by generating a similar inequality for a single parti.cle, using a 
classical parti.tion with 23 members, each of form (i,j,k) (p. 83) . 

Accardi and Fedullo (1982) have done likewise. Nonetheless, as Bub now 
acknowledges, more can be said about the two-parti.cle version of Bell's 
inequality, in parti.cular about the problems it raises for our concept of 
causality. 

8. 6 Bell Inequalities and Einstein-Locality 

Let us review and amplify the account of the Bohm version of the EPR 
experiment given in Section 6.3 . 
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Electron-positron pairs are produced, with the composite system in the 
so-called singlet spin state 'I'. This is a pure state in the tensor-product space 
71e @ 7f P: 

1 1 
'I' = 

Fi 
(v+ ® 

u_
) - Fi 

(v_ ® 11+) 

where v + and v _ are the eigenvectors of some component of spin, S� for the 
electron, and 11+ and u_ are the eigenvectors of the same component of spin 
for the positron, S�. 

To the vector 'I' corresponds the density operator D'I' on 71e @ 7f P: 

This yields the two reduced states De and DP for the two components of the 
coupled system; however, these are mixed states rather than pure states (see 
Section 5 .8). In fact, they are mixed states without unique orthogonal de
compositions; we have: 

1 1 
De = _ pe + - Pe 

2 a+ 2 a
-

1 1 
DP = - P�+ + - p� 

2 2 -

where a and P are any directions in physical space. If we represent possible 
states of a spin-! particle by points on or within the unit sphere of �3, as in 
Section 5 .3, then De and DP both lie exactly in the center of the sphere. That 
is to say, the individual particles are completely unpolarized: whatever 
component of spin is measured on, say, the electron, the probability of the 
result + !  is exactly equal to the probability of the result - !. 

However, as we saw in Section 6.3, a strong anticorrelation exists: for any 
direction a:, 

(8. 22) p'l'{S�, + ! ;  S�, + !) = Tr[D'l'(P�+ @ P�+)] = 0 

and, in general, 

(8. 23) 
1 1 .,,,-..... P __ 15e + i · s�  + .i) = - sin2 - a:p 'I'\ QI 2 1  JJ '  2 2 2 
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The problem is, how are we to explain these correlations? We can sort out 
putative explanatory accounts into rough groups; interaction accounts sug
gest that the correlations are due to interactions between the component 
systems after they have separated, while preparation accounts trace the 
correlations back to the original preparation, either of the composite system 
(type S), or of the experimental set-up (type E). Each kind of account, it turns 
out, runs counter to our basic beliefs about causality. (Note that a causal 
preparation account would involve what Salmon, 1984, chap. 6, calls an 
interactive fork. Ah, well.) 

As an elementary example of an interaction account, let us hypothesize 
that the performance of an experiment on one particle (the positron, say) 
changes the state of the other. Assume, for the sake of argument, that the 
a-component of spin is measured for the positron and found to have value 
+t. Then the probabilities assigned to measurement results on the electron 
of the same pair will change. Whereas we had, for any A_irection p, 
p(SjJ,+t) = 0.5, the correlation now gives us p(SjJ,+t) = sin2taP. But these 
are just the probabilities assigned to events (SjJ,+t) when the electron is in 
the a _  eigenstate of spin (see Chapter 4). 

On our hypothesis, the measurement on the positron has effected a 
change in the state of the electron. Prior to the measurement it was in the 
mixed state De; subsequently it is in the pure state P�- .  However, the 
hypothesis seems to raise as many problems as it solves. In particular, how 
can we account for this interaction without contravening the special theory 
of relativity (STR)? For it is a fundamental result of that theory, variously 
called the principle of Einstein-separability or Einstein-locality, that no causal 
signals can propagate at a speed faster than light. And, in the first place, 
most of the experimental tests confirming quantum-mechanical predictions 
for coupled systems have looked not at spin correlations for an electron
positron pair, but at polarization correlations between photons; these pho
tons travel (of course) at the speed of light, and so only a signal traveling 
faster than that could pass between them (see Clauser and Shimony, 1978; 
d'Espagnat, 1979). Second, even if the interaction involved an electron
positron pair (and some have been done using proton-proton pairs), it 
should be possible to perform an experiment on particle 2 which, although 
performed later than the experiment on particle 1 in the laboratory frame of 
reference, is nevertheless space-like separated from it (Taylor and Wheeler, 
1963), so that, according to STR, no causal transaction could take place 
between the two. 

STR is one of the most firmly established and best corroborated theories 
of modern physics. We should be, at least, deeply suspicious of any account 
of the EPR correlations which violates it. However, as Bell (1964, p. 199) 
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pointed out, it would not be a direct contravention of STR to postulate that 
the setting of one measurement device affected the results obtained on the 
other. Such interactions would violate locality in one sense, in that the 
devices would not function independently of one another, but it would not 
necessarily violate Einstein-locality; the postulated interactions could prop
agate at a speed less than that of light and achieve their effects before the 
actual measurements occurred. The proposed solution is, in effect, a prepa
ration account of type E, and traces the correlations to the experimental 
set-up. It recalls Bohr's dictum: "The problem again emphasizes the neces
sity of considering the whole experimental arrangement, the specification of 
which is imperative for any well-defined application of the quantum-me
chanical formalism (Bohr, 1949, p. 230). Though Bohr is (again) making a 
point about the conditions for meaningful discourse, rather than offering a 
causal account of the correlations, any experiment which puts this particular 
causal account to the test will also tell us whether Bohr's holistic resolution 
of the EPR problem is adequate (contra Leggett, 1986, p. 44; for Bohr's 
treatment of EPR see Bohr, 1935a, 1949). 

Such an experiment, using correlated polarizations of photons, was sug
gested by Aspect (1976). His idea was to change "rapidly, repeatedly and 
independently the orientations of the polarizers.'' Each change of orienta
tion of a polarizer was to be space-like separated from the corresponding 
experiment carried out with the other. Aspect continued, "Thus one finds as 
a consequence of the principle of separability [Einstein-locality] that the 
response of one polarizer, when analyzing a photon, cannot be influenced 
by the orientation of the other polarizer at the same time (when analyzing 
the coupled photon)." The experiment was performed by Aspect, Dalibar, 
and Roget. They reported that, "The result violates the generalized Bell 
Inequality . . .  and is in good agreement with [the quantum-mechanical 
prediction]" (Wheeler and Zurek, 1983, p. 442n). 

On the one hand, their result both undercuts Bohr's response to the EPR 
paper and effectively rules out type-E preparation accounts of the statistical 
correlations between the measurements. In order to avoid invoking super
luminal signals, these accounts appeal to the prior configuration of the 
apparatus; however, the statistical relations are the same even when there 
is, so to speak, no prior configuration. On the other hand, the result also 
confirms our earlier suspicions about interaction accounts. It suggests that 
all interaction accounts of the EPR correlations, whether they trace these 
correlations to interactions between the component systems or between the 
measurement devices, will violate the principle of Einstein-locality. 

A statement which is at the same time more general and more precise than 
this has been proved by Hellman (1982a) . He shows that, if any determinis-
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tically Einstein-local theory gives anticorrelation results for two distinct 
observables, so that, for example, 

p[(S!,+) and (S;,+)] = 0 

and 

p[(Sl,+) and (S�,+)] = 0 

for distinct a and b, then the theory also yields a version of the Bell inequality 
known as the CHSH inequality, and is inconsistent with quantum me
chanics. (The CHSH inequality was first derived by Clauser et al. ,  1969; 
Hellman's proof uses a theorem by Eberhard, 1977.) 

Einstein-locality is here precisely defined in terms of models of the physi
cal theory T. These are the possible worlds consistent with T. We assume 
that T specifies a background of a four-dimensional Minkowski space-time 
(see Taylor and Wheeler, 1963, chap. 1) . Pairs (x,t) in space-time, where x is 
a position vector and t a time-coordinate, are referred to as events; thus 
"event" is not here to be taken as synonymous with "experimental ques
tion." We can talk of two models agreeing at an event e (that is, at a particular 
point e in space-time) if the same sentences are true at e in each model. 

Consider any event e and any "slice" Se through the backward light cone 
from e . Se is part of a plane of simultaneity for some observer; it is a set of 
events, all with light-like or time-like separation from e, and all prior to e. 
(See Figure 8.2 .) Then T is said to be deterministically Einstein-local if, for 

t 

Figure 8. 2 Light-cone of event e. 

x 
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every event e and every Se , any two models agreeing at all events in Se also 
agree at e. 

The intuition behind this definition is that if the definiens is satisfied, then 
any differences at e are attributable to differences in events that could, 
according to STR, be causally related to e.  

Notice that Hellman's theorem does not merely sharpen the problem we 
run into if we try to explain EPR correlations by an interaction hypothesis. It 
also tells us, first, that quantum mechanics is not a deterministically Ein
stein-local theory, and, second, that no such theory can generate the quan
tum-mechanical predictions. In the language of Section 6.8, it rules out the 
possibility of a noncontextual, deterministically Einstein-local hidden-vari
able reconstruction of quantum theory. 

As Hellman (1982b) emphasizes, his proof disbars deterministic Einstein
local theories, but not stochastic Einstein-local theories . A stochastic Ein
stein-local theory requires the probability of a particular measurement out
come on particle 1 to be unaffected by whether or not a measurement is 
conducted on particle 2. Hellman shows that the requirement of stochastic 
Einstein-locality is not on its own sufficient to yield Bell-type inequalities. 
As we shall see in Section 8 .8, this is confirmed by the fact that quantum 
theory is itself stochastically Einstein-local. 

To generate Bell-type inequalities we need to supplement this condition 
by another; Jarrett (1984) suggests that the condition most frequently (and 
often implicitly) invoked is essentially a completeness condition. "Complete
ness" here is not to be understood in the sense in which Einstein used it (see 
Section 6.2); like stochastic Einstein-locality, it is a requirement of condi
tional statistical independence, but whereas stochastic Einstein-locality re
quires the probability of a particular outcome for particle 1 to be indepen
dent of whether or not a measurement is conducted on particle 2, 
completeness requires it to be independent of the outcome of such a mea
surement, given that the measurement actually takes place. To bring out this 
difference, Shimony (1986) refers to the two conditions as "Parameter 
Independence" and "Outcome Independence," respectively. I will state the 
completeness condition (Outcome Independence) in terms of measure
ments of spin, though Jarrett's presentation is more general. To avoid clum
siness, however, a change in notation is called for.* 

* "Parameter Independence" is also known as "Surface Locality"; see Section 8.7. The 
variety of names may seem unfortunate; each was chosen to bring out one feature of the 
condition in question. The formulation of the completeness condition I use is taken not from 
Jarrett (1984) but from his 1989 paper, which contains a particularly good-and accessible 
discussion of determinism, locality, and completeness. 
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We write ae for "an Sa-measurement is performed on the electron," and 
PP for "an Sp-measurement is performed on the positron"; we also write +e 
for "the outcome of the electron-measurement is +t," and +P for "the 
outcome of the positron-measurement is +t." Thus, when ae is the case, +e 
is the event (S�,+t) . 

Now let A. be the conjunction of all statistically relevant information that 
the theory supplies via the state description of the systems plus their source. 
Then the theory is complete provided that, according to the theory, 

And, in this notation, the condition of stochastic Einstein-locality appears as 
the pair of equations 

All these probabilities are classical conditional probabilities. The conditions 
(8 .24a) and (8 .24b) tell us that, given a certain preparation of the system plus 
environment, and given certain settings of the measurement apparatuses 
(that is, given A., ae, and PP), the occurrence of a particular outcome of the 
positron-measurement will not affect the probability of occurrence of a 
particular outcome of the electron-measurement, and vice versa. To quote 
Jarrett (1984, p. 588): 

The point is, that if the state descriptions are complete in the relevant sense, then 
conditionalization on the outcome of a measurement on [one] particle entails no 
further restriction on the physical possibilities that would serve to better define the 
probabilities for the outcome of possible measurements on [the other] . 

With justification, he regards this kind of completeness as characteristic of 
classical theories. 

The Bell inequality can be derived from the requirement of stochastic 
Einstein-locality plus completeness (Jarrett, 1984, p. 582, though the proof 
is not given). Since quantum mechanics contravenes the Bell inequality, but 
is stochastically Einstein-local, it is therefore, in Jarrett's sense, incomplete. 
But, as he says (p. 585), 

Incomplete theories (e.g. quantum mechanics) are not ipso facto defective. On the 
contrary, when the results of Bell-type experiments are taken into account, the truly 
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remarkable implication of Bell's Theorem is that incompleteness, in some sense, is a 
genuine feature of the world itself. 

To take stock of the various possible accounts of the EPR correlations, we 
have so far seen that, 

(8. 25a) deterministic Einstein-local interactive accounts are ruled out by 
Hellman's result; 

(8. 25b) type-E preparation accounts are ruled out by the Aspect experiments; 

(8. 25c) any kind of stochastic Einstein-local preparation account that in
vokes complete state descriptions is ruled out by Jarrett's result. 

In anticipation of Section 8 .7 I might also add that the completeness 
requirement (8 .24) strongly resembles part of Reichenbach's and of 
Salmon's specification of what it is for A. to be the common cause of two 
statistically governed events +e and +P. As we shall see, it is not only 
deterministic causality which is threatened by the violation of the Bell 
inequalities. 

8. 7 Bell Inequalities and Causality 

Bell's inequality, or, more accurately, Bell-type inequalities, have been used 
in a variety of arguments. But, if we leave to one side the versions involving 
just one particle, these arguments all have a common structure. (This was 
pointed out by Shimony, 1981;  for a comprehensive discussion of Bell's 
inequality, see Cushing and McMullin, 1989 .) The arguments all involve an 
experimental situation in which pairs of particles are jointly prepared and 
then separately tested. The inequality is then derived from two distinct sets 
of premises. The first set, Pexp1 consists of statements of correlations (or 
anticorrelations) between experimental results on the two particles, the 
second, P met 1 of premises of a more metaphysical kind. From the union of 
P exp and P met the inequality I is derived: 

P exp U P met � I 

Quantum mechanics predicts the correlations of P erp but also predicts results 
at odds with I. Experimental results which bear out the quantum-mechani
cal predictions thus tell us that I does not hold but that the premises in P erp 
do. It follows that some or all of the premises in P met must be discarded. 

The usual Duhemian reservations of course apply. We might, for in
stance, consider the allegedly theory-neutral correlation experiments to be 
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so infected with theoretical assumptions that P met could be rescued (see 
Shimony, 1981). But in the cases to hand there seems little doubt that we are 
genuinely, and remarkably, putting metaphysical theses to experimental 
test. 

Furthermore, it follows that as many different theses are being tested as 
there are sets of premises from which Bell-type inequalities can be derived. 
New derivations of I are thus interesting insofar as they start from different 
premises and make explicit the set P met of assumptions at work. For example, 
we have already seen tested (a) the thesis that the quantum statistics may be 
reconstructed on a classical probability space (Wigner), and (b) the thesis 
that quantum mechanics (and the world) is deterministically Einstein-local 
(Hellman). 

As with both of these examples, negative results do two related things. 
They rule out certain kinds of reconstructions or amplifications of quantum 
theory (hidden-variable theories), and they also rule out the possibility of 
explaining the EPR correlations in certain kinds of ways. Hellman's result, 
for instance, tells us that we will look in vain for a deterministically Ein
stein-local account of them, Jarrett's that we should not accept any stochas
tically Einstein-local account involving complete state descriptions. 

A particularly striking derivation of the inequality, by van Fraassen 
(1982), is closely related to Jarrett's. It tells us that the correlations are not to 
be explained by reference to a common cause, and threatens any preparation 
account which invokes that concept. In van Fraassen's derivation, Pe;rp con
tains, together with the usual anticorrelation statements, premises which he 
calls statements of "Surface Locality." We have already met them as state
ments of Parameter Independence (stochastic Einstein-locality): they state 
that the probability of a particular outcome of an experiment on one particle 
is not affected by the fact that a measurement is being performed on the 
other, whatever the latter experiment may be. Van Fraassen makes the point 
that these premises, like all the others in Pe;rp i  are, indeed, obtainable by 
induction from experiment. 

P met contains three different kinds of premises, labeled "Causality," 
"Hidden Locality," and "Hidden Autonomy." The notion of a common 
cause which these premises are designed to capture is due to Reichenbach 
(1956, pp. 160 - 161; see also Salmon, 1984, chap. 6, especially pp. 158 -
163). He sought an account of a causal mechanism which affected probabili
ties, and so would be appropriate in a nondeterministic setting. In particular, 
he wished to supply a causal account of statistical correlations. 

He suggested that a correlation between events A and B is  attributable to a 
common cause C provided that C precedes A and B in time, and 
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(8. 26a) p(A & B IC) = p(A IC) · p(B IC) 

(8. 26b) p(A & B IC )  = p(A IC) · p(B IC )  

(8. 26c) p(A IC) > p(A IC) p(B IC) > p(B IC )  

(Here C is the negation of C.) 
Condition (8 .26a) may be rewritten as 

(8. 27) p(A IC) = p(�
(
!

l
��C) = p(A IB & C) 

(8. 28) p(B IC) = p�
(
!l��C) = p(B IA & C) 

(8 .27) tells us that, given C, the probability of A is unaffected by the occur
rence of B, and (8 .28) that, given C, the probability of B is unaffected by the 
occurrence of A. Similarly for condition (8 .26b). Thus, like Jarrett's com
pleteness condition, conditions (8 .26a) and (8 .26b) are requirements of con
ditional statistical independence: given C, the two events A and B are inde
pendent; likewise they are independent given C. These can be intuitively 
justified as part of the specification of a common cause, either by the argu
ments used in the last section on behalf of the completeness condition, or in 
epistemic terms. We may think that two events are independent if knowl
edge concerning one does not affect our estimate of the probability of the 
other; condition (8 .26a) then says that no extra information would be avail
able, should A occur, which would affect the probability of event B, other 
than that contained in the common cause C. 

Van Fraassen's postulated common cause is represented by a "hidden 
variable," A.. The Causality premises are statements of conditional statistical 
independence, like (8 .26a) above, and Hidden Locality and Hidden Auton
omy are designed to ensure the temporal priority of the common cause and 
to locate it in the preparation procedure, rather than in, say, the orientation 
of the measurement devices, which (as in the Aspect experiments) may be 
established after the preparation. 

From these premises van Fraassen derives the Bell inequality. It follows 
that another casualty must be recorded in the list begun at the end of Section 
8 .6: 

(8. 29) Type-S preparation accounts invoking a common cause are ruled out 
by van Fraassen' s result. 
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However, Reichenbach's analysis is the best, arguably the only, causal 
account we have of statistical correlations between separated events . No 
preparation account, it seems, can both save the quantum phenomena and 
explain them in terms of causal processes. But, from (8 .25a), any interaction 
account which does so will need to invoke superluminal causal signals. 
Either way, the prospects for a causal explanation of these correlations look 
bleak. 

8. 8 Coupled Systems and Conditional Probabilities 

As was noted in Section 8.7, van Fraassen derives a Bell-type inequality 
from five (sets of) premises. Three of these (Causality, Hidden Locality, and 
Hidden Autonomy) constitute the set P met of "metaphysical" premises cap
turing the notion of a common cause; the experimental premises of Perp are 
the assumptions of Perfect Correlation and Surface Locality. Van Fraassen 
presents the latter assumptions within a very general experimental context, 
but we can reformulate them without loss in terms of the electron-positron 
pair that has served as our example of a coupled system. As before, we take 
the system to be in the singlet spin state. Each of the assumptions is a set of 
statements about the probability, under certain conditions, of an event 
(S�+), where a is an arbitrary direction in space. There are three such 
probabilities involved: (a) the probability p(S�+) simpliciter; (b) the proba
bility of (S�+), conditional on an Sp measurement being performed on the 
system p; (c) the probability of (S�+), conditional on the event (S�,+). We 
denote these probabilities by Pa , Pb , and Pc , respectively. Perfect Correlation 
tells us that Pc = 0 (for all directions a in space), and Surface Locality that 
Pa = Pb for all directions a and P in space [compare (8 .24c)] . 

On van Fraassen's account these statements are to be justified empiri
cally: "These probability statements are directly testable by observed fre
quencies" (1982, p. 30). The problem is, how are they to be explained? 

I will offer a two-part answer to this. In this section I will show that the 
probability statements are obtainable by straightforward application of the 
Liiders rule for quantum conditionalization, and then (in Section 8.9) I will 
justify the claim that this fact alone constitutes an explanation of them. 

Throughout this discussion I will talk of a Hilbert space 7i as a probability 
space; strictly, I should talk of the probability space isomorphic to the set 
S(7i) of subsets of 7i.  

As a preliminary, let me deal with a possible objection to applying the 
Liiders rule in this context. It might seem that in doing so one would be 
guilty of an equivocation, for the Liiders rule gives conditional probabilities 
on a non-Boolean set of quantum events whereas, when we regard Perfect 
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Correlation and Surface Locality as empirical principles, the conditional 
probabilities appearing in them are thought of as classical conditional prob
abilities. (Note, in this regard, that van Fraassen's analysis is entirely in 
terms of a classical probability space.) However, in the cases we are dealing 
with here, it turns out that the two conditionalizations coincide. It was 
shown in Section 8 .2 that, if A and B are quantum events associated with the 
two components of a composite system, then the Liiders rule reduces to its 
classical counterpart (see also Appendix C); we have 

l?(A IB) = p(A & B) 

p(B) 

Let us then return to the electron-positron pair in the singlet spin state D'I' 
(see Section 8.6). This state of the composite system yields the two reduced 
states, De and DP, for the components. The probability Pa is given by 

and for these states, for all a and p, 

1 1 .,,,-..... 

p(S�+; si,+) = 2 sin2 2 ap 

Here, and in what follows, the function p is the union of three generalized 
probability functions; it takes as arguments events associated with the elec
tron, events associated with the positron, and conjunctions of an electron 
event and a positron event, giving them the values assigned by the states De, 
DP, and D'I', respectively. 

Perfect Correlation follows trivially from (8 .9): 

(8. 30) l?[(Se +) l (SP.. +)] = p(S�+;Sp,+) 
a.I ll' p(si,+) 

1 .,,,-..... = sin2 2 ap 

And when a = p we obtain 
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Note in passing that the probabilities p(S�,+) and p(si,+) are not statisti
cally independent; quantum mechanics, as we expected, violates Jarrett's 
completeness condition (8 .24a -b ). 

The account of Perfect Correlation given above starts from (8 .9), and this 
in turn is derived by Liiders-rule conditionalization on a tensor-product 
space. Thus the electron-positron pair is treated as a whole even when the 
two components are spatially separated. The correlation is not predictable 
from the states De and DP of the two components, but from the state D'I' of 
the composite system; the system e + p is therefore not reducible to the sum 
of its parts. Indeed, it is a consequence of the way that quantum mechanics 
constructs the probability space rte @ 7f P for e + p from the probability 
spaces rte and 7f P of the components that this is so. In this respect the tensor 
product of two quantum probability spaces differs radically from the prod
uct of two classical probability spaces. Stairs (1984, p. 357; see also 1983a) 
puts the point admirably: 

Because of the way Boolean algebras (or, more importantly, classical probability 
spaces) combine, every measure on the product space will either render the systems 
statistically independent or else will be a statistical mixture of such measures. On the 
other hand, if the systems are associated with quantum logical fields of propositions, 
then their product need not exhibit this feature. That is, there may be propositions 
about the pair of systems which are neither equivalent to nor implied by conjunc
tions such as a & b, and there may be measures which are not decomposable into 
measures which render the subsystems independent. 

In general, more information is available when we specify a state D for a 
composite quantum system than when we specify the reduced states D0 and 
Db of its components. For, as noted in Chapter 5, while every state D yields 
unique states D0 and Db for the components, the converse holds only when 
D0 and Db are projectors (pure states). Unless this is the case there is more 
than one state D of the composite system which will reduce to D0 and Db. 

This " quantum holism" is at odds with Einstein's view that, once spatially 
separated, the two systems could be regarded as independent, but, perhaps 
surprisingly, it is entirely compatible with Surface Locality -that is, with 
stochastic Einstein-locality. This principle, like Perfect Correlation, may 
also be derived by straightforward application of the Liiders rule. It appears 
as a result of a more general principle which applies both to simple and to 
composite systems. Assume that, for a given system, a family of mutually 
exclusive and jointly exhaustive compatible events exists, representable by 
the set {Pi} of projectors on 7i.  (We have LiPi = I.) We may think of {Pi} as 
the spectral decomposition of some observable A. Now let Q be any event 
compatible with all the Pi . Then, for any initial state D of the system, 
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(8. 32) Po(Q) = L Po(Pi)IP'(Q IPi) 

This equation is provable, either as a corollary of (8 .8) or (more directly) as 
shown below. 

Tr(PiDPi Q) � p0(P;)l?(Q IP;) = � Tr(DP;) Tr(DP;) 
= LTr(PiDPiQ) 

i 
= LTr(DQPi) 

i 

(by properties of the trace, idempotence of Pi , and compatibility of Q with 
Pi) . 

But 

L Tr(DQPi) = Tr LCDQPi) 
i i 

= Tr(DQ L Pi) 

= Tr(DQI) 
= Tr(DQ) 
= Po(Q) 

i 

[by (5 .5)] 

Equation (8 .32) may be interpreted as follows. Consider an observable A 
represented by an operator A and a quantum event represented by a projec
tor Q compatible with A. Provided that we can treat each possible outcome 
of a measurement of A as a quantum event Pi , the initial probability of Q 
when the system is in state D is equal to its probability conditional on a 
measurement of A taking place. The latter is calculated as a weighted sum of 
conditional probabilities l?(Q IPi), and the weight given to each of them is the 
probability that the A-measurement will yield the Pi in question. 

In the case of a composite system, events associated with one system are 
always compatible with events associated with the other, since all pairs of 
operators A @ I and I @ B commute. The application of (8 .32) to the elec
tron-positron system is thus straightforward. We take the set {Jt @ P�+ , 
ie @ P�_) to be the family {Pi} of mutually exclusive and jointly exhaustive 
events. The observable ie @ � is then the observable A, and we measure A 
by measuring Sp for the positron. By taking P�+ @ IP as the event Q, and 
noting that 

p(S�+) = Tr(DeP�+) = Tr[D�P�+ @ IP)] 
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we obtain 

Given our interpretation of (8 .32), this yields Surface Locality. 
Note, however, the proviso expressed in this interpretation, that each 

possible outcome of a measurement of A be treated as a quantum event Pi . 
The exact relation between quantum events and measurement outcomes 
will be discussed in Section 9 .4; for the present, we will treat their identifi
cation as unproblematic. 

The implication of Surface Locality is that no series of experiments per
formed on the electrons of an ensemble of similarly prepared pairs could 
give us information about whether any measurements had been performed 
on the positrons of those pairs. For if we took such an ensemble and per
formed an �-measurement on a subensemble of them, then the probability 
of any event (S� +) would be the same for the subensemble as for the whole 
ensemble. (Pagels, 1982, pp. 143 - 152, is very good on this.) 

The derivation of Surface Locality just given shows why this is the case. 
Assume that the pairs are prepared in the singlet spin state D"' . Then, within 
the subensemble, 

and 

l?[(S�+) i (S§,+)] = sin2 �{;fl 

Thus the weighted sum of these conditional probabilities is given by 

1 ( 1 � 1 ....-....) 1 
- sin2 - a.P + cos2 - a.P = -
2 2 2 2 

which is just the probability of (S�,+) within the whole ensemble. 
In this illustration I have used the probabilities given by the singlet spin 

state. Note, however, that Surface Locality (unlike Perfect Correlation) ob
tains whatever the state of the pairs, as can be seen from the derivation of 
(8 .33). 
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In some respects the account of the EPR correlations which this analysis 
gives us resembles an interaction account, in others a preparation account. It 
is a preparation account in that the source of these correlations is the prepa
ration of pairs of particles in the singlet spin state. It is an interaction account 
in that an experiment performed on one particle effectively changes the 
state of the other; conditionalization on an event (9a,+) associated with the 
positron "projects" the state of the electron into the eigenstate a: - of spin. 
The proof of this last result, to be given shortly, provides a summary of this 
section. And an examination of this proof will show the crucial respect in 
which the present account of the EPR correlations differs from those pro
posed in Section 8.6 . There it was tacitly assumed that, whatever type of 
account was forthcoming, whether interaction or preparation, it would tell a 
causal story. But, as we saw in Section 8.7, there is good reason to think that 
no causal explanation can yield the quantum-mechanical statistics. In con
trast, the present account has no causal component. To recapitulate, it traces 
the EPR correlations to three nonclassical features of quantum probability 
spaces. The first is that, in these spaces, probability measures and density 
operators are in one-to-one correspondence, the second is that conditionali
zation on these spaces is given by the Liiders rule, and the third is the way in 
which the tensor-product spaces associated with composite quantum sys
tems are related to the spaces associated with their components. 

As I commented earlier, this third feature tells us that the components of 
such systems cannot be treated independently, even when they are spatially 
separated from each other. But we can now see that this particular "nonlo
cality" need not be thought to conflict with the Special Theory of Relativ
ity.* No superluminal transmission capable of carrying information is in
volved. If we deal with an ensemble of pairs, this fact is shown by Surface 
Locality. In the case of a single pair, the occurrence of, say, the event (S�+) 
associated with the electron could never on its own tell us that an event 
(9a,-) had taken place. True, it would tell us that, if an 9a-event of any kind 
had occurred - that is, if Sa had been measured for the positron -then it 
must have been the event (9a,-). But this fact on its own is not inconsistent 
with relativity theory. It is easy to imagine unproblematic, everyday exam
ples involving pairs of billiard balls in which similar "superluminal signals" 
are sent and received, as when, from a prior configuration, the red falls into 
pocket a if and only if the black falls into pocket b. 

It remains, then, to show how the event (S�,+) "projects" the electron's 
state from oe to P�- .  Here I will give a purely formal account; the interpre
tation of this "projection" is discussed in Chapters 9 and 10 .  

• See Shimony (1980, p. 4); Jarrett (1984, pp. 575 -578); Cushing and McMullin (1989). But 
see also Shimony (1986); and Section 10.2, below. 
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For any system, complex or composite, in state D, the probability of any 
quantum event B conditional on an event A is that given (via the usual 
statistical algorithm) by a state D', obtainable from D by the Liiders rule. We 
may say that the event A "projects" the system's state into D'. In the case of 
the composite system e + p we shall find that the event (.9a,+) projects the 
singlet spin state D,, of the composite system into the state D', where 
D' = p�_ @ P�+;  hence, whereas D,, reduced to the mixed states oe and DP 
(of e and p, respectively), D' reduces to the pure states P�- and P�+ ·  The 
effect of the event (.9a,+) is to project the electron's state from oe to P�- · 

To show that, indeed, D' = P�- @ P�+,  we use OC+- and �, and � and 
a.P_, for the eigenvectors of the a-component of spin of the electron and the 
positron, respectively, and define vectors on 7-1e @ 7f P as follows. 

V++ = OC+-@ � 

V+- = OC+-@ a!!... 
V_+ = a.�@ � 

v __ = �@ a.P_ 

The set {v++ , V+_ , v_+ , v __ ) is an orthonormal basis for 7-1e @ 7f P. (See 
Section 5 .7.)  

The singlet spin state D,, for the composite system is the projector onto the 
1 

vector ..fi. (v+- - v_+). 

According to the Liiders rule, conditionalization on (S�,+) projects D,, 
into D', where 

D' = (P @ P�+)D,,(P @ P�+) 

Tr[(D,,(P @ P�+)] 

We now evaluate D'vi; for i = +, j = +. From (5 .26), (5 .25) - and, for 
(8.39), from Section 1 . 12* - we obtain 

(8. 34) (P @  P�+)V++ = V++ 

(8. 35) (P @  P�+)V+- = 0 

(8. 36) (P @  P�+)V-+ = V_+ 

(8. 37) (P @  P�+)v __ = 0 

(8. 38) D,,v++ = 0 

(8. 39) 
1 

D,,v_+ = 
2 

(v-+ - V+-) 

* Equation (8 .39) is easily obtained using the Dirac notation for projectors, since D"' = 
-! Iv+- - v_+) (V+- - v-+ 1; see Dirac (1930, p. 25). 
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(8. 40) (P @ P�+)D,,(P @ P�+)vi; = 0 

unless i = - and j = +, in  which case 

1 
(P @  P�+)D,, (P @ P�+)V-+ = 2 V_+ 

(8. 41) Tr[D,, (P @ P�+)] = L ( vi; ID,,(P @ P�+)Vi; ) 
ij 
1 2 

From (8.40) and (8.41 ), and the discussion at the end of Section 1 . 1 3, we 
obtain 

(8. 42) D' = P�- @ P�+ 

This result is generalized in Appendix C. 

8. 9 Probability, Causality, and Explanation 

The two experiments this chapter deals with, the two-slit experiment dis
cussed in Sections 8.3 and 8.4 and the EPR-type experiment discussed in 
Sections 8.5 - 8.8, have a number of things in common. Both give rise to 
problematic quantum effects, and in each case the problem can be stated in 
two ways. On the one hand these effects resist causal explanation; on the 
other they involve probability assignments which cannot be embedded in a 
classical probability space. However, straightforward analyses of both ex
periments can be given in terms of generalized probability functions, func
tions defined not on the subsets of a Kolmogorov event space, but on the 
subspaces of a Hilbert space. In this section I will argue that such analyses 
constitute genuine explanations of the effects in question. 

This claim is open to an obvious objection. All that accounts in terms of 
generalized probability functions do, the objection runs, is to deploy the 
mathematical machinery of quantum theory in another guise. True, it is now 
evident why Kolmogorov probability theory runs into trouble, but no expla
nation is being offered, either of the interference pattern or of the EPR 
correlations. 

In particular, this objection might be made by someone who shared 
Salmon's views on scientific explanation. In Scientific Explanation and the 
Causal Structure of the World (1984), Salmon argues that we provide an 
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explanation of a phenomenon by tracing the causal processes that bring it 
about. And, as he shows by a wealth of corroborative examples, this is just 
what many explanations do. The consequence of this view, however, is that 
certain quantum phenomena are simply inexplicable, despite the fact that 
they are predicted by the best physical theory that we have. Satisfactory 
causal accounts are available neither of the interference patterns character
istic of the two-slit experiment, nor of the correlations observed in EPR-type 
experiments. Further, these are not merely gaps in our knowledge, to be 
repaired at some future date; we have good reason to believe that no such 
accounts could ever be provided. 

Notice that what we lack are accounts of the causal processes involved. It 
seems quite natural to say, for instance, that the event (� ,+) in the electron
positron experiment causes the probability of the event (S� ,-) to rise to unity, 
or even to say that it causes that event to happen. Indeed to say so would be 
in line with the statistical analysis of causation, which says, roughly, that 
event A causes event B if, within otherwise causally homogeneous ensem
bles, p(B IA) > p(B) . (See Cartwright, 1983, pp. 22 - 26.) But it is one thing to 
point to the positron-event (S� ,  +) as the cause of the electron-event (S� ,-); it 
is another to give an account of the causal process involved. Lacking the 
latter, on Salmon's view we have no explanation of (S� ,-). 

Salmon responds to this problem in two ways. One response is to suggest 
that a future physics may bring a new conception of what constitutes a 
causal process; the other is to voice "the suspicion that explanations of 
quantum phenomena may be radically different from explanations of mac
roscopic phenomena" (p. 253n; see pp. 252 - 259). 

Neither response is very specific. I will offer three comments on them: the 
first is to agree that accounts of quantum phenomena in terms of quantum 
probability functions will certainly be different from accounts of macro
scopic phenomena, if only because such functions are not classical; the 
second is to claim that these accounts will, nevertheless, not only be expla
nations of the phenomena but be explanations of a general type found 
elsewhere in physics, and which I will call structural explanations;* the third 
is to suggest that any revamped notion of causal processes that a future 
physics provides will be, at bottom, such an explanation. 

The idea of a structural explanation can usefully be approached via an 
example from special relativity. Suppose we were asked to explain why one 
particular velocity (in fact the speed of light) is invariant across the set of 

* I  now find that McMullin (1977) has already used this phrase; he has in mind something 
closer to Cartwright's simulacrum account of explanation (see below) than to my structural 
explanations. 



Probability, Causality, and Explanation 25 7 

inertial frames. The answer offered in the last decade of the nineteenth 
century was to say that measuring rods shrank at high speeds in such a way 
that a measurement of this velocity in a moving frame always gave the same 
value as one in a stationary frame. This causal explanation is now seen as 
seriously misleading; a much better answer would involve sketching the 
models of space-time which special relativity provides and showing that in 
these models, for a certain family of pairs of events, not only is their spatial 
separation x proportional to their temporal separation t, but the quantity x/t 
is invariant across admissible (that is, inertial) coordinate systems; further, 
for all such pairs, x/t always has the same value. This answer makes no 
appeal to causality; rather it points out structural features of the models that 
special relativity provides. It is, in fact, an example of a structural explana
tion. 

If one believes (as I do) that scientific theories - even those expressed in 
highly abstract form - provide explanations, then one's account of expla
nations will be tied to one's account of scientific theories. Consider, for 
example, the view that an ideal scientific theory should be laid out axiomat
ically, in the manner of Euclid's geometry, with particular results deducible 
from general laws, and those in turn deducible from a few fundamental 
axioms. This axiomatic view of theories ties in naturally with a "covering 
law" account of explanation of the kind favored by Hempel (1965), who 
suggested that one event, or set of events, could explain another if the 
second could be deduced from the first, given the laws of nature. We may 
contrast this view with the semantic view of theories appealed to in this 
book. On this view a theory provides a set of models, and ground-level 
explanation consists in exhibiting relevant features of these mathematical 
structures. 

The term ground-level is important. Explanation comes at many levels, as 
does scientific theorizing. It is the foundational level which concerns us 
here, since it is at this level that structural explanation occurs. Cartwright 
(1983), who also distinguishes two levels of explanation, calls them 
"causal" and "theoretical" (p. 75) and argues convincingly for a simulacrum 
account of the former. She writes, "To explain a phenomenon is to find a 
model that fits it into the basic framework of the theory" (p. 152). The 
models she refers to here she calls "simulacra" to emphasize the partial 
representation of phenomena which they provide. In Section 2.9 I distin
guished models of this kind from the mathematical models which, on the 
semantic view of theories, appear in the exposition of the "basic framework 
of the theory." It is this second kind of model which is appealed to in a 
theoretical explanation. 

A related distinction, between different kinds of theories, was first made 
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by Einstein, and has been emphasized by Bub (1974, pp. viii, 143) and 
Demopoulos (1976, p. 721) .  For these authors, quantum mechanics, like 
special relativity, is a "principle theory." Such theories may be contrasted 
with "constructive theories," like the kinetic theory of gases, which show 
how one theory (such as the phenomenological theory of gases) can be 
embedded in another (in this case Newtonian mechanics) . Principle 
theories, in contrast, are foundational. They "introduce abstract structural 
constraints that events are held to satisfy" (Bub, 1974, p. 143). They do so by 
supplying models which display the structure of a set of events. The four
dimensional manifold postulated by special relativity models the structure 
of the set of physically localizable events; the Hilbert spaces of quantum 
mechanics are models of the possibility structure of the set of quantum 
events. (Here I echo Bub, 1974, and, in particular, Stairs, 1982; see also 
Stairs, 1984.) 

Whenever we appeal to a principle theory to provide a theoretical expla
nation, I claim, the explanation consists in making explicit the structural 
features of the models the theory employs. In the same way that we explain 
the constancy of one particular velocity with respect to all inertial frames by 
appealing to the structure of Minkowski space-time, we explain paradoxical 
quantum-mechanical effects by showing, first of all, how Hilbert spaces 
provide natural models for probabilistic theories (as in Chapters 3 and 4), 
and, second, what the consequences of accepting these models are (as in the 
present chapter) . 

A theory of the kind Salmon looks forward to, which brings with it a new 
conception of causality, will also, presumably, be a principle theory. And 
should we identify certain processes as causal in this new theory, and appeal 
to them within scientific explanations, it seems likely that these explana
tions will effectively be structural explanations; that is to say, in providing 
them we will isolate a particular class of elements and relations within the 
representations the theory provides. 



9 
Measurement 

In the last three chapters we have seen the pairs (A,�) treated variously as 
properties of systems, as propositions in a quantum logic, and as quantum 
events. The last interpretation seems the most promising: as we saw, talk of 
the properties of quantum systems is problematic, and talk of the proposi
tions of a quantum logic is uninstructive unless these propositions are 
themselves interpreted. 

But these pairs were originally introduced as experimental questions, to 
which the theory assigned probabilities and to which individual experi
ments gave the answers yes or no. In Chapter 2 the question (A,�) was 
glossed as, "Will the measurement of observable A yield a result in the set � 
of the reals?" During the course of this chapter I will clarify the relation 
between quantum events and experimental questions, but the main topic 
addressed is the measurement process itself and the account of it available 
in quantum theory: can the theory tell us what goes on when "a measure
ment of A yields a result in the set �"? As a preliminary, I discuss a principle 
which has often been taken to imply a constraint on possible measurements, 
namely, the uncertainty principle. 

9. 1 Three Principles of Limitation 

In this section I distinguish three principles of quantum mechanics, each of 
which derives from the existence of incompatible, mutually transformable 
observables (see Section 3 .8). There is no uniform nomenclature for these 
principles; I will refer to them as the dispersion principle, the support princi
ple, and the indeterminacy principle. The first two we have already met in 
Section 6. 1,  but both can be set out more precisely, using the vocabulary of 
quantum logic. Each of the three principles takes a particularly strong form 
when we deal with the Fourier-connected observables, position (Q) and 
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momentum (P), for a particle constrained to move in one dimension. Recall 
that both these observables have a continuous spectrum. 

The dispersion principle: 

(9. 1a) There is no quantum state which maps the totality of quantum events 
into {1 ,0} .  

(9. 1 b) If, for a state D, p0(P,�) = 1,  where � is a bounded subset of the reals, 
then p0(Q ,r) < 1,  for every bounded subset r of the reals . 

The general principle (9 . l a) follows from Gleason's theorem (alternatively, 
from Kochen and Specker' s theorem); (9 . 1  b) follows from a theorem proved 
by Busch and Lahti (1985, pp. 66 - 67). 

The support of a state, with respect to a given observable, is, intuitively, 
the set which contains just the values of that observable to which the state 
assigns nonzero probability. More formally, 

(9 . .2) (A,�) is said to be the support of D with respect to A [we write: 
sA(D) = (A,�)] if p0(A,�) = 1 and if, for each (A,I) such that 
Po(A,I) = 1, � c r. 

Quantum-logically, the event which is the support of D with respect to A is 
the lowest A-event in the lattice of events which is assigned probability 1 by 
D. 

The support principle: 

(9. 3a) If A and B are incompatible observables, then there is a pure state D 
whose supports with respect to A and B are not both atoms of the 
lattice of quantum events. 

(9. 3b) If the support of D with respect to Q is (Q,�), where � is any bounded 
subset of the reals, then the support of D with respect to P is (P,�), 
and conversely (Gibbins, 1981a; Busch and Lahti, 1985). (� is the 
whole real line.) 

Apropos of (9 .3a), it is typically the case that operators A and B representing 
incompatible observables share no eigenvectors; in that case, there is no 
pure state D whose supports with respect to A and B are both atomic. The 
support principle entails the dispersion principle. 

A few preliminaries are in order before we can formulate the principle of 
indeterminacy. Consider an ensemble of systems, all in the same state. 
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Unless this state is an eigenstate of the observable A, measurements of A will 
not yield the same value for each member of the ensemble, but a series of 
different values, each occurring with a certain frequency. These values 
scatter round a mean, the expectation value (A )  of observable A. In the case 
when A admits eigenvectors we obtain (A) ,  as in Section 2.4, by weighting 
each of the different eigenvalues by the probability of its occurrence. Thus, 
in this case, 

(9.4a) (A) = L Piai 

When A has a continuous spectrum we write, for an ensemble in the state 
'l'(x), 

(9.4b) (A) = L: 'l'*A'I' dx 

Note that the value of (A)  depends on the state of the system. If, for 
example, the state of an ensemble of spin- ! particles is z+ , then 

(S ) = .!. (+ .!.) + .!_ (- .!.) = O 
% 2 2 2 2 

Thus the average value of Sz is zero. As we saw in Chapter 4, 

and so 

(S�) = ( + �) cos2 �<P + (- �) sin2 �<P 
1 ( 1 1 ) = - cos2-cp - sin2-cp 
2 2 2 

1 
= -coscp 

2 

(Sq, is the component of spin in a direction at an angle <P to the z-axis.) 
Any given measurement of the observable may differ (and in the exam

ples above, does differ) from the mean. Writing Sz for the actual value 
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obtained in a particular experiment to measure the x-component of spin, we 
see that 

The mean value of the square of these deviations from the mean is given by 

(We take the squares in order that the differences between the observed 
values and the mean should effectively be regarded as positive.) Now we 
define the variance, 'V 0(S.r) = �S.r, of S.r in state D as the square root of this 
mean square deviation: 

Thus, for the system in state Z+ (in other words, such that D = Pz+), 

1 
�s = -.r 

2 

Similarly, �Sy = !, whereas �Sz = 0, since every measurement of Sz yields 
the same answer. In general, let a be the result of a measurement of the 
observable A. Then, 

(9. 5) (�A)2 = ((a - (A))2)  

�A is sometimes called the uncertainty of A.  Given the state of the system, 
�A can be calculated by an extension of the method used for (A ) .  For 
example, for the system in the Z+ state: 

either sq, - (Sq,) = � - �cos</> (with probability cos2 � </>) 
or sq, - (Sq,) = - � - �cos</> (with probability sin2 � </>) 

And so 

1 ( 1 1 )2 1 ( 1 1 )2 
( (sq, - (Sq,) )2 ) = cos2-cp - - -coscp + sin2-cp -- - -coscp 

2 2 2 2 2 2 
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= ! [ cos2 � <P(l - cos<W + sin2 � <P(l + cosc/>)2] 
= ! [ 1 - 2cos<P( cos2 � <P - sin2 � <P) + cos2<P] 

1 = 
4 

(1 - cos2cp) 

1 . = -sm2cp 
4 

It follows that 

dStf> = .!.sin<P 
2 

Now let A and B be two Hermitian operators on a Hilbert space. We 
define their commutator [A,B] as follows: 

[A,B] df AB - BA = C 

Note that C is itself an operator (though not, in general, Hermitian); for 
example, we saw in Section 1 . 7 that [S.r,Sy] = iSz . It turns out that the 
uncertainties in two observables A and B are related to the mean value of 
their commutator. In fact, the product of the uncertainties inA and B is never 
less than half the (absolute value of the) mean value of [A,B] (Jordan, 1969, 
pp. 84 - 85). 

The principle of indeterminacy: 

(9. 6a) There exist observables A and B such that [A,B] = C ::/= 0 and, for all 
observables A and B, M · �B > t i ( C )  1 -

It is important to emphasize that all three quantities involved, M, �B, and 
( C ) ,  are state-dependent. 

In our special case, that of the spin-t particle in state Z+ , we saw that 

and so 

1 
�S = �S = -.r y 2 
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Now SxSY - SyS.r = iSz ,  and, since every measurement of Sz on a system in 
state Z+ yields +t, it follows that 

Hence, in conformity with the principle, we have* 

All the values of spin used in this example are in natural units, that is, they 
are multiples of Planck's constant, h .  In the next paragraph, h has not been 
''suppressed'' in this way. 

Consider the position and momentum observables Q and P, represented 
by the operators x and - i ti a/ ax on the space of square-integrable functions 
'l'(x) (see Section 1 . 1 1) .  

For any function 'l'(x) we have 

But 

PQ'l'(x) = - ih 
a[x'l'(x)] 

ax 

= - ihx 
a'l'(x) 

- ih 'l'(x) 
ax 

ax ax 
. a'l'(x) "

h
\U = - lhX  

ax 
- l T(X) 

Clearly, 

(PQ - QP)'l'(x) = - i h 'l'(x) 

and so 

[P,Q] = - ih 

• By a slight abuse of notation, we use " ( [Sx,Sy] }" to signify the expectation value of the 
observable represented by the operator [Sx,Sy]· 
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Thus the product of the uncertainties in P and Q is given by, 

(9. 6b) (M)(�Q)  > � h 

We see that, if for a certain state we can obtain a very small uncertainty in 
the predictions made about momentum measurements, this will be accom
panied by a correspondingly large uncertainty in those we make about 
position measurements, and vice versa. The product of these uncertainties 
never falls below a certain value. 

P and Q are incompatible operators with continuous spectra. They are 
nontypical in that there is no state for which the product of their uncertain
ties lies below a certain (nonzero) value. However, whenever one of a pair of 
observables A and B admits eigenvectors, then the product M · �B can be 
made as small as we wish by a judicious choice of state . For, if ai is an 
eigenvalue of A, and vi the corresponding eigenvector, then when the 
system is in the state vi, �A = 0, and so, for any observable B, M · �B = 0 .  
For example, given an ensemble in the state X+ ,  

�S = O · .r 
1 

�s = y 
2 

Note that this does not violate the indeterminacy principle, since [S.r,Sy] = 
iSZ I and, for the state X+ ,  ( Sz) = 0.  Thus, in general, the indeterminacy 
principle does not tell us that the product of the variances associated with 
incompatible observables has a least value greater than zero. (For a careful 
discussion of this, see Beltrametti and Cassinelli, 1981 ,  pp. 24 - 26.) 

9. 2 Indeterminacy and Measurement 

Of the three principles discussed in the last section, the principle of indeter
minacy has received the most attention. Indeed, Busch and Lahti (1985, 
p. 68) suggest that the support principle was not enunciated, and distin
guished from the indeterminacy principle, until Ludwig did so in 1954. 
Since both principles rest on the same fact - namely, the existence of mutu
ally transformable incompatible operators in quantum theory - one may 
wonder why it's important to distinguish them. The reason is that there has 
been considerable conflict, not to say muddle, over the significance to be 
attached to the quantities �A which appear in the indeterminacy principle. 

M is defined as the variance 'V 0(A) in measurements of A conducted on 
an ensemble of particles in state D. For some writers (Popper 1982, pp. 
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53 - 54, and Margenau, 1950, p. 375, for example), this is the only signifi
cance to be attached to it. We may call this the statistical reading of �A, in 
contrast with the ontic reading and the reading under which it expresses a 
limitation on measurement. (Note also that there is a fourfold classification 
proposed by McMullin and reported by Jammer, 19 74, p. 79; see below.) 

The ontic reading is more often used than mentioned. Very few writers 
are as explicit as Davies (1984, p. 8): 

It must not be supposed that the quantum uncertainty is somehow purely the result 
of an attempt to effect a measurement- a  sort of unavoidable clumsfrtess in probing 
delicate systems. The uncertainty is inherent in the microsystem -it is there all the 
time whether or not we actually choose to measure it. 

Gibbins (1981a) offers some other examples. More typical is Bohr, who 
oscillates between an implicit reliance on the ontic reading and an explicit 
adherence to a reading in terms of constraints on measurements. Thus, in 
his account of a thought-experiment involving a single slit in a diaphragm, 
he writes (1949, pp. 2 13 -2 14): 

Consequently the description of the state involves a certain latitude Lip in the mo
mentum component of the particle and, in the case of a diaphragm with a shutter, an 
additional latitude LiE of the kinetic energy. 

Since a measure for the latitude Liq in location of the particle in the plane of the 
diaphragm is given by the radius a of the hole, and since 8 = 1 / aa, we get . . . 
just Lip = 8p = h /Liq in accordance with the indeterminacy relation . . . 

As Popper (1982, p. 53n38a) has pointed out, Bohr's analysis of thought
experiments like this one is remarkable for its reliance on classical models. In 
the example above, u is the wave number of the "train of plane waves" 
associated with the particle, and the "latitudes" Bohr speaks of are readily 
identifiable as features of these waves. The passage continues, 

. . .  Due to the limited extension of the wave-field at the place of the slit, the 
component of the wave-number parallel to the plane of the diaphragm will involve a 
latitude Lia = 1/a = 1/  Liq. 

However, five pages earlier, Bohr has introduced the indeterminacy princi
ple rather differently 

The commutation rule imposes a reciprocal limitation on the fixation of two conju
gate parameters q and p expressed by the relation 

where Liq and Lip are suitably defined latitudes in the determination of these vari
ables. (p. 209) 
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Here the latitudes are not in the quantities themselves, but in their '' determi
nation"; Bohr is explicitly endorsing Heisenberg's view that the indeter
minacy principle expresses a limitation on measurement. 

This interpretation of the principle was for many years the dominant one. 
In Robertson's words (1929, p. 1 63), 

The principle, as formulated by Heisenberg for two conjugate quantum-mechanical 
variables, states that the accuracy with which two such variables can be measured 
simultaneously is subject to the restriction that the product of the uncertainties in the 
two measurements is at least of order h. 

It was Robertson who first derived the indeterminacy principle in the gen
eral form in which we now have it, so that it applies to any pair of observ
ables representable in the same Hilbert space. The quotation above is from 
his preamble to the derivation; the uncertainties are clearly identified with 
the limits of accuracy obtainable in simultaneous measurements of these 
observables . Yet, half a dozen lines into the derivation itself, we find Robert
son writing, 

The "uncertainty" � in the value A is then defined, in accordance with statistical 
usage, as the root mean square of the deviation of A from [the] mean. (P. 163) 

No account is given of why these uncertainties "defined in accordance with 
statistical usage" should be identified with the accuracy to which a single 
measurement can be carried out. Indeed, there seem to be two distinct 
principles under discussion. The principle that Robertson announced his 
intention of deriving (Heisenberg's principle, as we may call it) places limits 
on simultaneous measurements. The principle that he in fact derived (the 
indeterminacy principle) places limits on predictions. 

These two principles may well be related, but before we can enquire into 
that we need to know whether Heisenberg's principle is actually true. Is it 
the case (1)  that there are limits on the accuracy to which noncommuting 
observables can be simultaneously measured, and (2) that the product of 
these uncertainties has a lowest value of the order of Planck's constant, so 
that, formally at least, Heisenberg's principle resembles the indeterminacy 
principle? 

Now (1)  may be true, but (2) false. For example, it may be the case, as von 
Neumann (1932, p. 230) suggested, that "simultaneous measurements [of 
incompatible observables] are, in general, not possible."  I will return to his 
arguments for this in the next section. But, given his conclusion, it is a bit 
surprising to find him, eight pages later, presenting and endorsing Heisen
berg's arguments to illustrate why simultaneous measurements of P and Q 
cannot be performed "with arbitrarily high accuracy" (p. 238). Surely, given 



268 The Interpretation of Quantum Theory 

von Neumann's own conclusions, the reason they cannot be performed 
with arbitrarily high accuracy is that they cannot be performed at all. 

Be that as it may, let us look at Heisenberg's arguments. These are plausi
bility arguments, the best-known of which (and the one used by von Neu
mann) involves "Heisenberg's microscope" (1927, p. 1 74; von Neumann, 
1932, pp. 239 - 247) .  This is an idealized instrument sirnilar in principle to an 
optical microscope, but which uses radiations of short wavelengths, like 
y-rays, to form images of very small particles. If a small particle were in the 
field of view of the microscope (see Figure 9 . 1 ) then it would be observed if a 
photon (that is, a y-ray particle) struck it and were deflected upward into the 
aperture of the microscope. 

We can estimate the coordinate of position of the particle under observa
tion by finding the position of the image formed by the instrument. Let (} be 
the angle subtended at the aperture of the instrument by the particle. Then, 
writing �x for the uncertainty in our measurement of the x-coordinate of 
position and A. for the wavelength of the radiation, we get 

A. 
�x - 

(} 

Now, when the photon strikes the particle, a certain amount of momen
tum is transferred to the particle by the collision; thus any estimate we make 
of the particle's momentum will have to allow for this. By our conservation 
laws, we expect the momentum transferred to the particle to be equal and 
opposite to the change of momentum of the photon. The trouble is, we don't 
know exactly how much this is. If we knew the path followed by the photon 

Figure 9. 1 Heisenberg's microscope. 
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through the microscope, then it would be easy to evaluate it, but we don't 
know exactly where in the aperture the photon enters the instrument. In 
fact, making (} large (in order to obtain a high resolution) has the effect of 
increasing the uncertainty �p in our estimate of momentum. We have 

and so 

h (}  
�p - 

A. 

The product of these uncertainties is of the order of Planck's constant, as 
Heisenberg's principle suggests. 

But does this example indeed illustrate what I have called Heisenberg's 
principle? In the first place, it says nothing about simultaneous measure
ments. It shows that the price of obtaining a sharp value of, say, position is 
that we transfer an imprecisely known amount of momentum to the parti
cle, thus rendering any previous estimate of its momentum inaccurate. (This 
is McMullin's fourth reading of the uncertainty relation; see Jammer, 1974, 
p. 79 .) Second, it's not clear what the significance is of the fact that the two 
quantities are, in the technical sense, incompatible. The general lesson to be 
drawn from it is that any measurement may involve a disturbance of the 
object we are looking at, and that, because these disturbances cannot be 
made small compared with the quantities to be measured, we cannot ideal
ize them away, as we do in classical physics. 

To take stock, an ontic reading of the indeterminacy relation relies on the 
partial picture of quantum effects supplied by the wave model. As Gibbins 
(198 la, pp. 1 23 - 125) points out, if any principle governing the localization 
of a system in Q-space and P-space emerges from the theory itself, it is not 
the indeterminacy principle but the support principle. Likewise, Heisen
berg's arguments, which became part of the folklore of quantum theory, 
off er slender grounds for reading the indeterminacy principle as a principle 
which limits the accuracy with which incompatible observables can be 
simultaneously measured. Grounds for suggesting that it does not do so are 
provided by the fact, remarked on in Section 9 . 1 , that for many pairs, A and 
B, of incompatible observables, there are states such that the product 
M · �B is zero. It would be peculiar, but not I suppose wholly incredible, if 
the very feasibility of certain (double) measurement processes were depen
dent on the states of the systems under test. 

Whether, as von Neumann claimed, there are independent reasons for 
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thinking that incompatible observables are not commeasurable is another 
matter. Various authors have suggested otherwise; in fact Margenau, both 
on his own and later in collaboration with Park, proposed a number of 
experiments whereby values for position and momentum could be obtained 
simultaneously with no more limitation of accuracy than one might expect if 
they were measured individually (Margenau, 1950, p. 376; Park and Mar
genau, 1968, 1971 ). These proposals, however, have not gone unchallenged 
(see Busch and Lahti, 1984). 

I return to the question of simultaneous measurability in the next section; I 
suggest there that, where it is forbidden, it is forbidden by the support 
principle. Again, it is this principle, rather than the indeterminacy principle, 
which summarizes fundamental features of the theory. 

Some recent work by Busch and Lahti (1985) offers an interesting foot
note to this section. They point out that, in orthodox quantum mechanics, 
no joint probability measures exist on the set of pairs of Q-events and 
P-events. That is, no probability function exists that maps all conjunctions 
of Q-events and P-events into [0,1 ]  and that reduces to the usual quantum
mechanical assignments of probabilities to Q-events when the P-event is 
the certain event (P,IR), and vice versa (see Beltrametti and Cassinelli, 1981 ,  
pp. 23 - 24) . However, it is possible to define "unsharp" position and mo
mentum operators with respect to which such measures are well-defined 
(Davies, 1976). The operators are the usual Q and P operators on L2 , modi
fied by functions f and g to become the operators Q1 and Pg . (I omit the 
technical details of the modifications.) The modifiers f and g are probability 
density functions with mean values equal to zero and variances �f and �g; 
they are designed to represent the fact that position and momentum mea
surements are not sharp, that is, not localized at a point on the real number 
line. An "uncertainty" relation now holds between �f and �g; we have 

h 
�f· �g > -2 

The significance Busch and Lahti attach to this result depends on an 
assumption which is intuitively plausible, but hard to justify conclusively: 
that joint probability distributions for two observables exist if and only if the 
two observables are simultaneously measurable. If this is true, then the 
"unsharp" observables Q1 and Pg are simultaneously measurable, whereas 
Q and P are not. But "in order to speak of simultaneous values (X,Y) of 
position and momentum, one has to pay the price - that not both values 
may be sharply defined" (1985, p. 73) .  
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Von Neumann (1932, pp. 223 - 230) gave a general proof that two incom
patible observables are not simultaneously measurable with arbitrarily high 
precision. A simplified version of this proof in four steps can be given for the 
case when both observables have discrete spectra and there is no degen
eracy. 

(1)  Assume that a particular experiment to measure the value of observ
able A for a system gives result a. Then a second measurement of A per
formed on the system immediately after the first will yield the same result. 

(2) Immediately prior to the second measurement the result a has proba
bility 1; thus the first experiment leaves the system in an eigenstate Va of A 
(with eigenvalue a) . 

(3) Simultaneous precise measurements of observables A and B would 
therefore leave the system in a state which was both an eigenvector Va of A 
and an eigenvector vb of B. 

Assume that A and B are incompatible. There are two cases: (a) A and B 
have no eigenvectors in common, and (b) A and B share one or more 
eigenvectors. 

(4a) If A and B share no eigenvectors, then no state is an eigenvector of 
both A and B. Hence no simultaneous precise measurements of A and B can 
take place. 

(4b) No incompatible operators A and B share all their eigenvectors; thus 
there would be values of the observables A and B which could never be 
obtained in any putative joint measurement process. Such a process should 
therefore not properly be called a "measurement process"; rather the kind 
of measurement available in case (4b) would be like the measure of time 
provided by a stopped clock, which is correct twice a day. 

Note that the principle appealed to in step (4) is the support principle . 
The first of the four steps is the one most often challenged. Von Neumann 

sought to justify it by appealing to experiments by Compton and Simon on 
"Compton scattering" (von Neumann, 1932, pp. 223 - 230), but whether 
these experiments in fact offer much in the way of support for it is doubtful 
(see, for example, van Fraassen, 1974a, p. 297) . I will discuss the Compton 
and Simon experiments in the next section; in the meantime I will enlist an 
experiment suggested by Heitler (1949, p. 190) to give step (1)  some plausi
bility (see also Margenau, 1950, p. 3). 

Suppose we pass electrons through a small hole in a diaphragm and then 
allow them to hit a screen some distance away. Because diffraction occurs 
(to use the vocabulary of the wave model), the probability distribution for 
the electron will be spread out over a large area of the screen. Nonetheless 
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we can record the spot where any individual electron strikes the screen. If 
we now replace the screen by two thin photographic plates, placed together 
and parallel to each other, the electron will go through both, and the mark 
where the electron strikes the second will be very close to the mark where it 
struck the first. What we have here are two consecutive experiments, both of 
which measure the position of the electron in a plane perpendicular to the 
axis of the experiment. The second yields the same result as the first, as step 
(1) requires. Of course, this second experiment must be "immediately after" 
the first; that is, between the two measurements the system's state must 
neither be changed discontinuously, by interactions with other devices, nor 
must it evolve significantly according to Schrodinger's equation. In the 
example given, the further apart the plates are, the further apart the two 
marks may be, because diffraction occurs again after the first impact. 

One of the problems with step (1), however, is that some measurements 
- perhaps most measurements -do not allow a second look at the system; 
the electron, photon, or whatever is effectively annihilated by the measure
ment process. Additionally, Landau and Peierls (193 1)  suggested that, 
among experiments which allow repetition, we can find, and distinguish 
between, those which yield the same result the second time as the first and 
those which do not (see Jammer, 1974, p. 487n). Following Pauli (1933), we 
call the former "experiments of the first kind." These considerations restrict 
the scope of von Neumann's proof. They show that incompatible observ
ables are not measurable to arbitrarily high precision by measurements of 
the first kind. Thus, although von Neumann's result is consistent with the 
stronger claim, that no possible measurement could do the job, Margenau 
(1950, pp. 360 - 364) could accept the proof and still maintain that simulta
neous measurability of incompatibles is feasible. Note, however, that a 
proof of the strong claim, resting on a particular account of the measure
ment process, has been offered by van Fraassen (1974a, pp. 301 - 303). 

Let us turn to step (2) of the argument, or rather its analogue for the case of 
an observable with a continuous spectrum, like position. In the experiment 
described just now, prior to striking the screen the electron behaves like a 
wave; its probability distribution is spread out in space. The event of its 
striking the screen is often called "the collapse of the wave packet."  It is 
sometimes described as a change in the properties of the electron -from 
being spread out in space the electron becomes localized in a small region 
and sometimes as a passage from potentiality to actuality - of all the possi
ble events associated with small areas of the screen, just one is actualized. 
Von Neumann postulates that this collapse (however regarded) is accompa
nied by a change in the state of the electron: the state changes in such a way 
that a repetition of the experiment will with certainty yield the same result as 
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before. Margenau (1950) baptized this postulate the projection postulate, and 
it is now generally referred to by that name. We can revert to the case of an 
observable with a discrete spectrum to see a particularly simple instance of 
the postulate. 

Let us assume that there is no degeneracy and that the result of the first 
measurement of observable A is ai . Such an experiment is a maximal mea
surement of A. If the original state is a pure state v, then the projection 
postulate requires that the transformation 

V (A,a;) > V· z 

takes place, where vi is the eigenvector with eigenvalue ai . 
In this maximal case, (A,ai) is the support of vi with respect to A (see 

Section 9 . 1) .  Von Neumann's demand, that in all cases a repetition of an 
experiment will yield the same result as before, can be put in terms of a 
support requirement, as follows. Assume that a measurement of A localizes 
the value of A within the Borel set � of the reals; we require that the resulting 
state of the system have support (A,�) with respect to A. I will generalize the 
term projection postulate to refer to any rule governing the state transitions 
induced by measurement which satisfies this requirement. 

Effectively, von Neumann's (generalized) projection postulate was that 
after a measurement of A had localized the value of A within �, the projec
tion operator P� from the spectral decomposition of A would serve as the 
state description for the system (von Neumann, 1932, p. 218; his specific 
example involves a discrete spectrum with degeneracy). I write "serve as" 
because only in the case when P� projects onto a ray (which is to say, when 
the measurement is maximal) is it of trace one, and hence a density operator. 
When it projects onto a subspace of higher but finite dimensionality, we can 
normalize it so that the transformation becomes 

(9. 7) D (A,a) > D' = p� 

TrP� 

In the infinitely dimensional case - and so in any case where A has a 
continuous spectrum -P� cannot be normalized in this way; Bub (1979, pp. 
73 - 74) suggests that in this case it would be consistent with von Neu
mann's ideas to use the operator P� to give the relative probabilities of 
outcomes of future experiments. 

Although this projection postulate meets the support requirement, it nev
ertheless yields counterintuitive results. Consider, for example, a particle in 
an initial state which assigns the probabilities p1(y) shown at the left side of 
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Figure 9. 2 Probability transition according to the von Neumann projection postulate. 

Figure 9 .2  to measurements of position along the y-axis . Assume further 
that a first coarse measurement of y locates the particle within the region AB. 
Then, according to the von Neumann projection postulate, if a second, more 
refined measurement is made, the probabilities would be given by p2(y), 
shown at the right of the figure, rather than by p1(y) again. Note in particular 
that, whereas there was initially virtually zero probability of detecting the 
particle at point C, after the first measurement has localized it within AB 
there is as high a probability of finding it at C as at anywhere else in the 
region. 

Now this is not inconceivable. Quantum mechanics teaches us so often 
that the implausible happens that the unlikely becomes as likely as not. 
Nonetheless, it is an odd feature of the von Neumann postulate that the 
state of the system after a measurement is wholly independent of its initial 
state, and in 195 1 an alternative postulate was suggested. This takes the 
form 

(9. 8) D (A,a> ) D' = P�DP� 

Tr(P�D) 

According to this postulate, D' is dependent on the initial state D, and 
nevertheless has support (A,�) with respect to A. 

The form of (9 .8) is familiar; it is the Liiders rule we met in Chapter 8. 
There it appeared as a conditionalization rule for nonclassical probability 
spaces, but Liiders (195 1)  first proposed it as an alternative to von Neu
mann's projection postulate, that is, as a rule governing the changes of state 
induced by measurements. In Section 8.2 we saw why it was a natural 
generalization of the classical conditionalization rule. As a projection postu
late it is characterized by the following features. (Teller, 1983, pp. 415 - 418, 
provides a valuable discussion of them.) 
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(a) According to the rule, if a measurement of A is followed successively 
by a measurement of B and a second measurement of A, then the two values 
of A will coincide. 

(b) Assume we prepare two ensembles of systems in state D. One ensem
ble is just subjected to a B-measurement; the other is subjected to an A-mea
surement followed by a B-measurement. Then, according to the rule, the 
relative frequencies of the various B-outcomes will be the same for both 
ensembles. 

These results can be shown by using the arguments used in the proofs of 
(8 .8) and (8 .32), respectively. The support requirement appears as a special 
case of (a), either by setting A = B and assuming that flip-flop results do not 
occur, or by setting B = I (the trivial ''measurement' ' which locates the value 
of every observable within �). 

Stairs (1982, pp. 426 - 427) has shown that when the premeasurement 
state is a pure state, then the Liiders rule is the only possible projection rule 
for which (a) holds. As he points out, this means that this rule is the projec
tion postulate that best captures the classical ideal of a nondisturbing mea
surement; in the quantum case it is the rule of minimal disturbance. Note 
also that, if the transformation of states by measurement is governed by a 
rule which guarantees, first, that (a) and (b) both hold and, second, that 
measurement preserves the convex structure of the set of states (see Section 
5 .4), then the rule in question must be the Liiders rule. 

9.4 Measurement and Conditionalization 

In Chapter 8 the Liiders rule appeared as the natural extension of classical 
conditionalization to the set of quantum events; in the last section it was 
shown to be the projection postulate which most nearly approached a 
classical account of measurement. In this section I will show how these two 
uses of the rule may be brought together. For brevity I will use the term 
"quantum event" sometimes to ref er to a particular kind of event - as in 
"the event (A,�)" - and sometimes to refer to a specific occurrence of that 
event; context will disambiguate between the type and the token. 

Von Neumann's views on measurement, though not of course his choice 
of projection postulate, suggest a natural account of these events. On this 
account, a quantum event (A,�) involves the localization of the observable A 
within the set � of the reals. The event is realized by an interaction between 
a quantum system and a macroscopic apparatus. This interaction may be 
one which we would call a measurement, but it need not be. For example, 
assume that we seek to bring about a localization of the y-coordinate of 
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position of a particle within a small region �- We may either use a photo
graphic plate and wait until one particle from an ensemble strikes the region 
� of the plate, or we may use a diaphragm with a small aperture in it and 
wait until a particle is detected on the far side of the diaphragm. In each case 
the quantum event (y,�) has taken place, and the probability that it would 
occur is no different in the photographic plate experiment than in the other. 

But unless the photographic plate is very thin (as in the Heitler thought
experiment described in Section 9 .3), the particle will not pass through it but 
will be absorbed; to use Pauli's terminology, the experiment will not be a 
measurement of the first kind, and the projection postulate will not apply. 
Thus not all quantum events are events on which we can conditionalize. 

On the other hand, we can and do conditionalize on the event (y,�) 
occurring in the diaphragm experiment, witness the discussion of the two
slit experiment in Section 8.4. However, we may be justifiably reluctant to 
call what occurs in the experiment a measurement. Certainly the diaphragm 
alone does not measure the position of the particle; only when an additional 
detection device is placed on the far side of the diaphragm will we know that 
a particle was ever around being "measured." As Margenau has empha
sized, in the absence of such a detector, the most we can say is that if a 
particle passed through the diaphragm, then at the diaphragm its y-coordi
nate was localized within �-Thus not all quantum events are measurements. 

For Margenau (1936, 1963) there is a crucial distinction between mea
surements and preparations. Measurements yield a value for a particular 
observable, while preparations produce an ensemble of particles in the 
same state. According to Margenau, it was a defect of von Neumann's 
analysis that it confused the two; the projection postulate suggested that an 
ideal measurement on a system would not only yield a precise value for an 
observable, but would also project that system's state into the correspond
ing eigenstate of that observable. 

It is a virtue of the "quantum event" interpretation of the theory - about 
which more will be said in Chapter 1 0 - that it allows some reconciliation of 
these views. The phrase "the localization of the observable A within �

,, 

conceals an ambiguity that is fruitful rather than fatal. Quantum events may 
be measurements; they may also, via conditionalization, serve as prepara
tions. On the one hand, the observable may be being measured and the 
result found to lie within �; on the other, the system may be being prepared 
in a state D with support (A,�) with respect to A .  In a type-1  measurement 
both would happen together, but there may in fact be no such events. In 
their absence, could any quantum event serve both as a measurement and as 
a preparation? 

Surprisingly, the answer is yes. As we saw in Section 8.8, if we have a 
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coupled system of the kind used in EPR-type experiments, then an event 
associated with one subsystem may be both a measurement of an observ
able for that subsystem and an event which projects the other system into an 
eigenstate of that observable. The Compton-Simon experiment to which 
von Neumann (1932, p. 212) appealed for evidence in support of the projec
tion postulate is similar in kind. 

In this experiment light was scattered by electrons and the scattering process was 
controlled in such a way that the scattered light and the scattered electrons were 
subsequently intercepted, and their energy and momentum measured. 

Given the initial trajectories of a photon and an electron, 

the measurement of the path of the light quanta of the electron after collision 
suffices to determine the position of the central line of the collision. The Compton
Simons [sic] experiment now shows that these two observations give the same 
result. (P. 213) 

The two observations need not occur simultaneously; if they do not, we 
can infer the result of the second from the result of the first. Prior to the first 
observation, we could only make statistical predictions about the second, 
whereas after the first one has been made, the second is "already deter
mined causally [sic] and uniquely" (p. 213). 

As an argument for the projection postulate, this has recently come under 
heavy fire. Van Fraassen (19 74a, p. 297), for example, writes, 

Upon what slender support dogma may be founded! In the experiment described, 
measurements are made directly on two objects . . . which have interacted and 
then separated again. The observables directly measured are ones which have be
come correlated by the interaction . . .  And on the basis of this, an inference is 
made about what would happen if a single experiment could be immediately re
peated on the same object! 

Indeed, one wonders why von Neumann chose this particular experiment 
for his purposes. Einstein, in contrast, was content to illustrate the projec
tion postulate by two polarizers P1 and P2 ; if their axes of polarization are 
parallel, then any photon passing the first will also pass the second (Ein
stein, in correspondence with Margenau; see Jammer, 1974, p. 228). 

One motivation was von Neumann's desire to use the Compton-Simon 
experiment to make a further point. The experiment shows that, contrary to 
a suggestion made by Bohr, Kramers, and Slater (1924; see Jammer, 1966, 
pp. 1 83 - 1 88), the principles of conservation of energy and momentum 
hold in individual cases and are not merely statistical laws. As von Neu
mann (1932, p. 213) pointed out, this implies that the quantum world lies 
somewhere between a purely statistical world and a wholly determined 
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world; for him the projection postulate was an expression of this interme
diate "degree of causality." With hindsight, we can reread von Neumann's 
argument as an argument not for his version of the projection postulate, but 
for the Liiders rule viewed as a rule of probability conditionalization. Both 
rules indicate where, within a statistical theory, deterministic correlations 
may obtain. 

That said, in the remainder of this chapter I will leave aside the connection 
between conditionalization and measurement, and look solely at the latter. 
In particular, I postpone a discussion of Teller's views until Section 1 0. 1 .  

9. 5 The Measurement Problem and Schrodinger's Cat 

By the projection postulate, wrote von Neumann (1932, p. 2 1 7), "we have 
then answered the question as to what happens in the measurement of a 
quantity. To be sure, the 'how' remains unexplained for the present." And, 
fifty years later, this second question is still with us. 

On the " orthodox view" of measurement, as von Neumann's account has 
come to be called, a system's state can evolve in two different ways. It can 
change continuously through time: we may have, in accordance with the 
Schrodinger equation, 

where ut is a unitary operator. It may also change discontinuously in ac
cordance with the Liiders rule: 

(9. 10) D D' 
_ P�DoP� 

o � - ----
Tr(P�D0) 

as a result of the quantum event (A,�). The " quantum event" interpretation 
of quantum mechanics I propose in Chapter 1 0  accepts this "strange dual
ism" (Wigner, 1963, p. 7) within quantum theory; however, many theorists 
have found it unacceptable. In particular, one may ask what it is that physi
cally distinguishes the kinds of interactions governed by Schrodinger's 
equation from those in which discontinuous changes (allegedly) occur. 

The latter kind of state transition is, of course, not only discontinuous but 
often nonunique. Assume, for example, that a system is in a pure state v 
which is a superposition of eigenvectors {vi} of some observable represented 
by A: v = Licivi .  Then a maximal measurement of A will yield, as a special 
case of (9 . 1 0), 

(9. 10*) v � vi with probability l ci l 2 
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and a transition to any one of the vi for which ci ::/= 0 has a nonzero probabil
ity of occurrence. 

As this shows, the problem of the projection postulate is just one element 
of another, larger problem confronting quantum theory, the problem of 
measurement. What account can quantum mechanics offer of the statisti
cally governed but individually undetermined events characteristic of mea
surement processes? The problem has two aspects . First, whatever theoreti
cal account we give, the processes it describes may have more than one 
possible outcome. Second, this account, though couched in quantum theo
retical terms, must include some treatment of the classical measuring device. 

Apropos of the second point, Schrodinger (1935, pp. 156 - 157) has 
pointed out that we are led to bizarre conclusions if we try to apply the 
quantum-mechanical formalism to a macroscopic object. He instances the 
case of a radioactive atom and a detector. An alpha-particle within a radio
active nucleus evolves into a superposition of states, so that as time goes on 
there is an increasing probability of its being detected outside the nucleus. (It 
"tunnels through" the potential barrier which the nucleus provides; Bohm, 
195 1,  pp. 240 - 242.) Schrodinger (1935, pp. 156 - 157) writes colloquially of 
the state being "blurred": 

The state of a radioactive nucleus is presumably blurred in such a degree and fashion 
that neither the instant of decay nor the direction in which the emitted a-particle 
leaves the nucleus is well-established. Inside the nucleus, blurring doesn't bother us. 
The emerging particle is described, if one wants to explain intuitively, as a spherical 
wave that continuously emanates in all directions from the nucleus and that im
pinges continuously on a surrounding luminescent screen over its full expanse. 

But while we may accept this "blurred" picture of the microscopic system, 
we cannot accept a similar picture of the macroscopic measurement appa
ratus. Schrodinger continues, 

The screen however does not show a more or less constant uniform surface glow, but 
rather lights up at one spot- or, to honor the truth, it lights up now here, now there, 
for it is impossible to do the experiment with only a single radioactive atom. 

And, as a further illustration, he introduces the legendary creature who now 
appears in every philosophical bestiary, Schrodinger's cat.* 

One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, 
along with the following diabolic device (which must be secured against direct 
interference by the cat); in a Geiger counter there is a tiny bit of radioactive sub
stance, so small, that perhaps in the course of one hour one of the atoms decays, but 
also, with equal probability, perhaps none; if it happens, the counter tube discharges 
and through a relay releases a hammer which shatters a small flask of hydrocyanic 

* Tierliebhaber (1939) discusses the relationship of this animal to Buridan's ass. 
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acid. If one has left this entire system to itself for one hour, one would say that the cat 
still lives if meanwhile no atom has decayed. The first atomic decay would have 
poisoned it. The 'II-function of the entire system would express this by having in it 
the living and the dead cat (pardon the expression) mixed or smeared out in equal 
parts. 

As a specification of indicator states of a measurement apparatus, "cat 
alive" and " cat dead" may seem a trifle outre. But, as the previous paragraph 
makes clear, Schrodinger's point is that, however these indicator states are 
chosen, no superposition of them can exist, since they are states of a classical 
measuring apparatus. 

With Schrodinger's cat in mind, let us review the measurement problem. 
We are looking for an account of a particular kind of process, whereby a 
system S interacts with a measurement apparatus M; during the interaction 
M evolves to a state indicating a value of some observable A associated with 
S. We may call such an account an "internal account" of the measurement 
process if the evolution is governed by Schrodinger's equation. 

For simplicity let us consider an observable A with a discrete spectrum 
{a1,a2 , . • .  } .  Then the account must satisfy the following requirements. 

(9. 1 1a) M must have a set {11o ,u1 ,u2 • • •  } of possible states; Uo is the 
ground state of the apparatus, and u1 ,u2 , • • •  correspond to the 
outcomes of the measurement (pointer readings) associated with 
values a1 ,a2 , • • • of A. Since M is classical, the indicator states 
{Uo ,UvU2 1 • • •  } must be pairwise orthogonal, and no (nontrivial) 
superposition of these states can be a state of M. 

(9. 1 1  b) As a result of a measurement of A, the state of M must evolve from Uo 
to one of u1 , u2 , • • •  

(9. 1 1c) The probability that the transition Uo � u1 takes place must equal the 
probability assigned to (A,ai) by the state v of the system S. 

The projection postulate appears as a further requirement, independent of 
requirements (9 . 1  l a - c). 

(9. 1 1d) Whenever the evolution takes M to state ui , then it takes S to the 
eigenstate vi of A which has eigenvalue ai . 

From (9 . l lc) it follows that, if S is  in the eigenstate vi of A which has 
eigenvalue ai , then M must evolve to ui during a measurement of A on S. In 
general (9 . l lb) and (9 . l lc) require that at the end of the measurement 
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process M be in a state ui with probability pv(A,ai)· Let Pi = Pv(A,ai); then the 
general requirement can be expressed by saying that, after the measure
ment, M must be in the mixed state OM =  'LipiPr (where Pr projects onto ui)· 
Prima facie this does not violate (9 . 1  l a) since, in contrast to superpositions, 
mixtures of classical states are perfectly respectable. 

Along these lines Heisenberg (1958, p. 53) wrote that 

The probability function [of quantum mechanics] combines objective and subjective 
elements . . .  In ideal cases the subjective element . . .  may be practically negli
gible as compared with the objective one. The physicists then speak of a "pure case." 

Although in this passage Heisenberg doesn't use the term, we may add that, 
conversely, a mixture is a probability function within which a subjective 
element, "our incomplete knowledge of the world," may be represented. 
Any measurement process, says Heisenberg (p. 54), produces an interplay 
between these two elements: 

After the interaction has taken place, the probability function contains the objective 
element of tendency and the subjective element of incomplete knowledge, even if it 
has been in a "pure case" before. 

In other words, during the measurement process the apparatus evolves 
into a mixture of indicator states; of these one will be actualized, but which 
one we cannot predict. 

Heisenberg shows how the state of the classical measurement apparatus 
can be described in quantum-mechanical terms. The question now is, can 
we give a quantum-theoretical account of the process he describes? In 
particular, how can this process start with S in a pure state v and with M in 
the pure state no ,  finish with M in the mixed state 'LipiPr I and yet be 
governed by Schrodinger's equation? 

9. 6 /auch 's Model of the Measurement Process 

An account of such a process was given by J . M. Jauch (1968, chap. VI. 9).  
On his account, while the measurement is being performed the system S and 
the measurement apparatus M form a coupled system S + M, whose states 
are represented in a tensor-product space as follows. 

Assume that the observable being measured is representable by the oper
ator A on 715, and that there are just two values of the observable, eigenval
ues of the eigenvectors v + and v _ of A. The measurement device is then 
assumed to have (at least) three mutually orthogonal possible states, a 
ground state and two indicator states. Let Uo be the state before any mea
surement takes place (the ground state), U+ the state when the device regis-
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ters a positive value for A, and u_ the state when it registers a negative value 
for A. We assume that the quantum-mechanical formalism can be applied to 
M, and that these three states are representable by vectors u0 , u1 , and u2 , 
respectively, in a Hilbert space 7-fM. No assumption is made that superposi
tions of u0 , u1 , and u2 are also possible states of M. 

We represent the states of the coupled system S + M in the tensor-product 
space 7-f 5 @ 7-fM . Assume that, before the measurement begins, the system S 
is in the pure state v, where v = C+V+ + c_v_ , and that M is in the state u0 ; 
then the original state of S + M will be 'I' 0 = v @ Uo .  During the course of the 
measurement interaction this state will evolve continuously, according to 
Schrodinger's equation. Accordingly, at the end of the interaction, S + M 
will again be in a pure state 'I' E 7-f 5 @ 7-fM, where 'I' = U'l'0 , and U is some 
unitary operator on 7-f 5 @ 7-fM. U must obey the following constraints: when 
v = V+ (that is, when c_ = 0), we require that 'I' = 'I'+ = V+ ® U+; when v = 
v_ (that is, when C+ = 0), we require that 'I' = 'I'_ =  v_ @ u_ . 

In each of these two cases U takes '1'0 into a state of S + M reducible into a 
pure state of S and the corresponding pure state of M. By the linearity of U 
we obtain, for the general case, 

However, this state, although a pure state of S + M, is in general not 
reducible to pure states S and of M (see Section 5 .8). In fact, using the density 
operator notation, we have, for the state of the composite system, 

P,, = 05 @ l)M 

where 

and 

The operators Pi , P� , P�, P� project onto rays in 715 and 7-fM containing, 
respectively, V+ , v_ , U+ , u_ . 

This seems to give precisely what we want. The measurement process 
evolves according to Schrodinger's equation, but the final state of the mea
surement device is a weighted sum of the indicator states. These weights are 
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exactly the probabilities which quantum theory assigns to the correspond
ing outcomes (see Section 2.4). 

Moreover, as Jauch points out, we can also show that indicator states are 
correlated with final states of S. For assume that we carry out a measurement 
P� ® P� on the composite system in the state 'I'. That is, we test for the joint 
event [(A,+);(AM,-)], where AM is the act of observing M. In this case, 

(P�® P�)'I' = (P�® P�)[c+(v+ ® U+) + c_(v_ ® u_)] 

= C+(V+ ® 0) + c_(O ® u_) 
= O  

(0 is here the zero vector in 715 ® 7fM.) It follows that 

('l'l (P�® P�)'I') = 0 

and the joint event has zero probability of occurrence. 
The consistency of any further measurements with the one that has been 

carried out -whether these further measurements are conducted on S or on 
M - is thus assured; the projection postulate has appeared within the anal
ysis as an added bonus. 

Alas, elegant as the treatment is, as an account of the transition from the 
possible to the actual it won't do. The interpretation of mixed states which 
motivates it cannot be applied to the mixtures which appear within it. What 
we would like to say, when we speak of the measurement device being in a 
mixture of P� and P�, is that it actually is in one of these pure states but we 
don't know which; in other words we would like to use the ignorance 
interpretation of mixtures. But, as we saw in Section 5 .8, this interpretation 
cannot be used for those mixtures which arise from a reduction of a pure 
state in a tensor-product space. (This argument is due to Feyerabend, 1962 .) 

For, to return to our example, the mixed state of S after the measurement 
interaction has taken place is given by l c+ l 2Pi + l c- 1 2P� and that of M by 
l c+ l 2P� + l c- l 2P�. On the ignorance interpretation of mixtures, this means 
that the system is actually either in the state V+ or v_, and that M is actually 
in the correlated state U+ or u_ . The state of the composite system S + M is 
then either V+ ® U+ or v_ ® u_ ,  each of these having a certain probability. 
But this means that S + M is in a mixture, contrary to our claim that it is in the 
superposition 'I'. It is crucial to the analysis that the final state of S + M is 
indeed pure; if it is not, then the evolution of the composite system has not 
accorded with Schrodinger's equation, and no internal account of the mea
surement process has been given. 
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The move to an analysis of the composite system in terms of a tensor
product space has not, therefore, done what was hoped of it; the "collapse 
of the wave packet" remains as anomalous as ever. 

9. 7 A Problem for Internal Accounts of Measurement 

As was pointed out in Section 9 .5, the measurement problem remains a 
problem whether or not measurement interactions are required to conform 
to the projection postulate (9 . 1  ld). The problem is crucially one of describ
ing in quantum-mechanical terms an evolution of the state of the apparatus 
M (or of the combined system S + M) which conforms to requirements 
(9 . 1  la - c). A promising candidate was presented in the last section, and was 
shown to fail. In this section I will show that there is good reason to believe 
that no internal account of such a process can be given. 

Requirement (9 . 1  la) stipulates that all the admissible states of M, 
{u0 ,u1 ,u2 1 • • •  }, must be pairwise orthogonal, so that M will behave clas
sically. If this requirement is accepted, there are then two reasons for de
manding that a corresponding requirement should hold for S + M. 

In the first place, if being a classical system is a matter of scale, then the 
classical nature of M will impose itself on any system of which M is a 
subcomponent. Second, it seems plausible to require that the only admissi
ble states D of S + M be those which reduce into admissible states of S and of 
M. Now nontrivial superpositions of admissible states of M are prohibited; it 
also seems justifiable to allow, as mixed states of M, only those mixtures 
which can be interpreted classically, that is, only those which can be given 
an ignorance interpretation. As we saw in Section 9 .6, this would rule out as 
states of M all nontrivial mixed states arising through reduction of a pure 
state of S + M. The only admissible pure states of S + M would then have 
the form v @ ui (where v E 715 and ui is an indicator state or the ground state 
of M). If this is so, then any two admissible pure states of S + M, v @ ui and 
v' @ U;, where i ::/= j, will inherit the orthogonality of ui and U; . The admissi
ble pure states of S + M will fall within a set of pairwise orthogonal sub
spaces of 715 @ 7-f M, indexed by the admissible pure states of M. 

This restriction on the pure states of S + M implies that no evolution of the 
state of S + M which is governed by the Schrodinger equation can ever 
involve a transition of the state of M from its ground state to one of its 
indicator states. More precisely, let 'l'i = v ® ui and 'I'; = v' @ u; be two 
orthogonal admissible pure states of S + M; then, although there exists a 
unitary operator U on 715 @ 7-fM such that U'l'i = 'I'; , this operator is not a 
member of a continuous one-parameter group of unitary operators mapping 
admissible pure states of S + M into each other. That is, if 'l'is to be restricted 
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to the set of admissible pure states, we cannot write i(d'I.' / dt) = H'I', as this 
would require 'I' to pass through the "no-man's-land" between admissible 
pure states. 

Since an internal account of the measurement process is, by definition, 
one that conforms to Schrodinger' s equation, it would seem that no internal 
account conforming to (9 . 1  la) can be given. 

A way out is suggested by Beltrametti and Cassinelli ( 1981 ,  chap. 8) and 
independently by Wan (1980). Beltrametti and Cassinelli's strategy is to 
distinguish between the mathematical account of the time-evolution of the 
state vector and the interpretation of this as the evolution of a particular 
kind of state. On their account of the measurement process, the state vector 
'I' of S + M evolves according to the Schrodinger equation. However, only 
when 'I' has the form v @ ui (where v E 115 and ui is an indicator state of M) 
does 'I' represent a pure state; when it does not, it is interpreted as a (classi
cal) mixture of such states. 

Before assessing this account, let us see how quantum theory treats situa
tions in which not every normalized vector in the relevant Hilbert space can 
represent a pure state of a system. 

A rule forbidding us to form a pure state by the superposition of other 
pure states is called a superselection rule. Such a rule restricts pure states to 
those representable by vectors in orthogonal subspaces L0 , Li , . . .  of the 
Hilbert space 7i for the system; L0 , Li , . . . are known as the superselection 
subspaces (sometimes the coherent subspaces) of 7i.  In the presence of super
selection rules, not every Hermitian operator on the space can represent an 
observable (see Jordan, 1969, sec. 28; Beltrametti and Cassinelli, 1981 ,  chap. 
5). In fact a Hermitian operator A on 7i can represent an observable only if 
each superselection subspace Li of 7i reduces A - in other words, only if 
A 'I' E Li whenever 'I' E Li . This condition holds if and only if every projector 
in the spectral decomposition of A projects onto a subspace of some super
selection subspace Li of 7i. It follows that, in the presence of superselection 
rules, (1)  any function of an observable A is reduced by every superselection 
subspace, and (2) every projector PE representing a quantum event E pro
jects onto a subspace of some superselection subspace (or is the sum of such 
projectors); hence PE is also reduced by every superselection subspace. 

Now consider a normalized vector 'I' which is a nontrivial superposition 
of two normalized vectors 'I'i and '1'2 in distinct superselection subspaces Li 
and L2 of 71: 'I' = ci'I'i + c2'1'2 • Note that 'I'i J_ '1'2 1 and lci l 2 + l c2 1 2 = 1 . Let P,, 
be the projector onto the ray containing 'I', and Pi and P 2 the projectors onto 
the rays containing 'I'i and '1'2 1 respectively. 

In the absence of superselection rules the superposition 'I' = ci'I'i + c2'1'2 
would not be statistically equivalent to the mixture D = lci l 2Pi + l c2 1 2P2 • 
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That is, there would be a quantum event E for which P'l'(E) ::/= p0(E). For let E 
be represented by the projector PE on 7i. Then p0(E) = Tr(PED); using an 
orthonormal basis which includes 'I'i and '1'2 1 we obtain 

Po(E) = ('I'i IPED'I'i ) + ('l'2 IPED'l'2) 
= lci l 2('1'i lPE'l'i ) + lc2 l 2 ('1'2 IPE'l'2) 

On the other hand, 

p'l'(E) = Tr(PEP'I') = ('l'IPE'I') 

= ( Ci 'I' i + C2 'I' 2 Ip E( Ci 'I' i + C 2 'I' 2) )  

= lci l 2('1'i lPE'l'i ) + l c2 l 2('1'2 IPE'l'2) 

+ Ci *c2('I'i IPE'l'2) + C2 *ci ('1'2 IPE'I'i ) 

In the presence of superselection rules, however, the cross terms vanish 
because (a) Li and L2 both reduce PE , and (b) Li and L2 are mutually 
orthogonal - and we obtain 

p'l'(E) = lei l2 ('I'i lPE'I'i ) + l c2 l2 ('1'2 IPE'l'2) = Po(E) 
We see that, in the presence of superselection rules, 'I' and D are statisti

cally equivalent. (Recall, in this connection, the discussion in Section 3 .9 .) 
Thus although, in accordance with the superselection rule, 'I' may not 
represent a pure state of the system, we may use it to represent a mixture; D 
and 'I' become two mathematically equivalent ways to represent the same 
state. 

Let us now return to Beltrametti and Cassinelli's account of the measure
ment process. They too argue that S + M inherits the superselection rules 
characteristic of M, and that the superselection subspaces of 715 + M are 715 @ 
Lif, 715 @ Ltt, and so on, where Lit, Ltt, . . . are the rays in 7fM containing 
the indicator states 11o ,  Ui , . . .  of M (Beltrametti and Cassinelli, 1981 ,  
p.  84, though their argument to this conclusion is not the same as the one 
given here). 

As in Section 9 .6, we consider the case when the admissible pure states of 
M are u0 , U+ ,  and u_ ,  and U+ and u_ correspond to the two values of an 
observable A associated with eigenstates V+ and v_ of S, respectively. We 
take the initial state of S + M to be '1'0 = v @  11o ,  where v = C+V+ + c_v_ . 
Like Jauch, Beltrametti and Cassinelli suggest that '1'0 evolves during the 
measurement process in accordance with the Schrodinger equation, so that 

U'l'o = 'I' =  C+ 'I'+ + c_ 'I'_ 
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where 'I'+ = v+ ® U+ and 'I'_ =  v_ @ u_ . Contra Jauch, however, they do 
not assume that the vector 'I' must represent a pure state of S + M. H neither 
C+ = 0 nor c_ = 0, then 'I' does not lie within a superselection subspace of 
7-f 5 + M .  When it does not, Beltrametti and Cassinelli interpret it as a classical 
mixed state. That is, they regard it as a mixture of 'I'+ and 'I'_, and interpret 
this mixture according to the ignorance interpretation. The pure state 'I'+ 
(respectively, 'I'_) is assigned probability l c+ l 2 (respectively, l c- 1 2) . Thus in 
the course of a measurement the objective probabilities built into the state v 
of S evolve into the subjective probabilities associated with a classical mix
ture of states 'I'+ and 'I'_ of S + M in accordance with (9 . 1  lc) .  Each compo
nent of this mixture reduces to pure states of S and of M ('I'+ to V+ and U+ ,  
and 'I'_ to v_ and u_) so that the projection postulate is also satisfied. 

This offers a neat resolution of the measurement problem, which evades 
the snag on which Jauch's proposal was shipwrecked. But it does so at 
considerable cost. As van Fraassen has pointed out to me (pers. com., No
vember 1986), it faces a difficulty exactly analogous to that raised earlier in 
this section for all internal accounts of measurement. 

Consider the operator U that maps '1'0 into 'I'. Since '1'0 E 715 @ L� but 'I'� 
715 @ L�, the superselection subspaces of 715 +M do not reduce U. Hence U 
can be neither an observable for S + M, nor a function of one. But, on the 
Schrodinger picture of the evolution of states, U = e-zHt ,  where H is the 
infinitesimal generator of the group {Ut} (see Section 2. 7), and is also the 
operator corresponding to the total energy of the system. For all purely 
quantum systems, H is taken to represent an observable quantity; when 
superselection rules apply to quantum systems, H, like every other operator 
representing an observable, is reduced by the superselection subspaces of 
the system (Jordan, 1969, sec. 32). In other words, in order for Beltrametti 
and Cassinelli's account of the measurement interaction to succeed, we 
must postulate that, when we deal with a macroscopic system, either the 
infinitesimal generator of the evolution group does not represent the energy 
of the system, or the energy is not an observable for the system. 

Wan (1980, p. 980) acknowledges this problem, and points in the direc
tion of a couple of responses, but neither of these seems promising. On the 
one hand he instances other theories (Dirac's Hamiltonian formulation of 
general relativity, the Gupta-Bleuler formulation of quantum electrody
namics) in which it seems inappropriate to regard H as the energy observ
able; on the other he points out that, if the measurement apparatus is treated 
as an infinite system, as it is in some other accounts of the measurement 
process, then "the total energy of an infinitely large system is not something 
having an obvious meaning which can be taken for granted." 

But notice, first of all, that these examples only address the issue of 
whether H should represent the energy of the system; they do not touch the 
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basic question of whether H should represent an observable. Second, both 
responses lose sight of the original project, which was not to establish where 
quantum theory is inadequate, but to show that a consistent, if schematic, 
account of measurement can be given within the formalism of the theory. 
Within orthodox quantum theory, the proposal that H does not represent 
the energy observable is entirely ad hoc; it has no independent motivation, 
examples from sundry field theories notwithstanding. And the second sug
gestion, that the measurement system be idealized as an infinite system, 
raises as many problems as it solves. To take one example, due to van 
Fraassen (see Hughes and van Fraassen, forthcoming), why should it be a 
permissible idealization to regard Schrodinger's cat (which contains about 
1 024 particles) as an infinite system, if we may not regard a pot of liquid 
helium, which is equally macroscopic but yet exhibits quantum behavior, in 
the same way? 

9. 8 Three Accounts of Measurement 

In Chapter 10 I will suggest that, if it is seen as a problem within quantum 
mechanics, the measurement problem is insoluble. In the remainder of this 
chapter I will give thumbnail sketches of three different accounts of mea
surement; each of them, I will argue, while philosophically interesting, is 
finally unacceptable. 

I have contrasted internal accounts of the measurement process with the 
dualist position presented by von Neumann. From what was said in Section 
9 .7, it seems that in order to give an internal account, we must drop the 
requirement that all the permissible pure states of M are mutually orthogo
nal. But having done so, we then need to explain why the behavior of this 
system seems to be classical. Two of the accounts of measurement I will look 
at reject the requirement but give different explanations of the apparently 
classical behavior of M; the third is a dualist account of a rather remarkable 
kind. 

THE DANERI-LOINGER-PROSPERI THEORY 
The most sober of the three accounts is offered by Daneri, Loinger, and 
Prosperi (1962). It may seem odd that I portray them as showing why a 
macroscopic system merely seems to behave classically, since they write 
that 

In order that objective meaning may be attributed to the macro-states of large 
bodies, it is of course necessary that . . . states incompatible with the macroscopic 
observables be actually impossible. (P. 298; Wheeler and Zurek, 1983, p. 658) 

It sounds as though, like Beltrametti and Cassinelli, they are going to rule 
out superpositions of indicator states as possible pure states of S + M. (Here I 



Measurement 289 

am stretching previous usage by using "indicator states" to refer not merely 
to states of M but to those states of S + M which would be admissible on a 
wholly classical picture.) However, this is not what they do. Rather, they 
show that, because S +M is a very large system, the pure states into which it 
evolves behave like mixtures. Starting from the fact that a measuring instru
ment is a system of many particles and with correspondingly many degrees 
of freedom, they argue from thermodynamical considerations that, when 
such a system is in a superposition of indicator states, the interference terms 
characteristic of superpositions effectively cancel out (pp. 301/661 and 
305 / 665). As a result, a superposition will be statistically indistinguishable 
from a mixture with respect to all relevant observables. H we measure the 
macroscopic system S + M (call it "I") by using another macroscopic system 
("II"), then 

A statistical operator . . .  for the system I which corresponds to a pure state de
scribed by a superposition of vectors belonging to different [macroscopic states] is 
equivalent, so far as the macroscopic observables on II are concerned, to a statistical 
operator which is a mixture of the above macroscopic states. (Pp. 314/674) 

This resembles the move made by Beltrametti and Cassinelli (see Section 
9 .7). On both approaches, the state to which S + M evolves, and which is 
given mathematically by a linear superposition, is shown to be indistin
guishable from one given by the weighted sum of projection operators. The 
difference is this. Beltrametti and Cassinelli suggest that the state in question 
is a mixed state, Daneri, Loinger and Prosperi that it is pure; however, 
according to the latter this pure state is statistically indistinguishable from a 
mixture. But, unless we think that a state-function refers essentially to an 
ensemble of systems, statistical indistinguishability is not enough. What 
Daneri, Loinger, and Prosperi conclude is that an ensemble of macroscopic 
quantum systems will behave like an ensemble of classical systems. As 
Cartwright (1983, pp. 1 69 - 1 71 )  has pointed out, however, what we need is 
an account within which individual systems exhibit classical behavior; if a 
superposition of indicator states does not represent a classically permissible 
pure state, then Daneri, Loinger, and Prosperi have failed to provide us with 
one (see also Bub, 1968; Putnam, 1965). 

In brief, their account does not produce the final state we want; Beltra
metti and Cassinelli, on the other hand, show us the desired state, but in 
doing so they make it unattainable. 

THE MANY-WORLDS INTERPRETATION 
Arguably the most fantastic of interpretations of quantum theory, certainly 
the one most beloved by writers of fantasy, is the many-worlds interpretation 
(MWI). Here I will follow de Witt (1 970) in presenting the interpretation as a 
resolution of the problem of measurement; however, I should mention that 
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for other advocates of the interpretation, Everett ( 19 5 7) and Wheeler ( 19 5 7), • 

its main attraction was that it offered " a reformulation of quantum theory in 
a form believed suitable for application to general relativity" (Everett, 1957, 
p. 141).* 

On this interpretation a measurement interaction occasions a splitting of 
this world into a large number of copies of itself. When the measurement 
leaves S + M in a superposition, each of the indicator states represented in 
the superposition is the state of S + M in at least one of the worlds. S + M 
seems to behave classically because the observer is multiply cloned, to
gether with the system; no clone has access to any world other than her own; 
hence only one of the indicator states presents itself to any one clone, while 
the others present themselves to counterpart observers in other worlds. 
Schrodinger's cat, predicted by the theory to be in a superposition of live 
and dead states, is alive in some worlds, dead in others. 

Since quantum systems are continually interacting with one another, 
every world continually divides into different branches; each of these 
branches is a fully realized world, which in turn divides into other possible 
worlds, and so on. To quote de Witt, 

This universe is constantly splitting into a stupendous number of branches, all 
resulting from the measurementlike interactions between its myriads of compo
nents. Moreover, every quantum transition taking place on every star, in every 
galaxy, in every corner of the universe is splitting our local world into myriads of 
copies of itself. (De Witt, 1970, p. 1 6 1 ;  page references are to de Witt and Graham, 
1973) 

Without irony- well, perhaps not wholly without irony- this can be 
described as a wonderfully extravagant and poetic vision of the cosmos; 
here imagination is bodying forth the forms of things not only unknown but 
unknowable. But bold metaphysical speculation of this kind can be sub
jected to various types of criticism. To impose a distinctly procrustean tax
onomy, (1)  the internal consistency of MWI can be challenged; (2) its philo
sophical coherence can be doubted; (3) one can object to the lack of fit 
between MWI and other physical theories; or (4) one can criticize it on 
general methodological grounds. Criticisms of all these kinds have been 
leveled at the many-worlds interpretation. 

To consider an internal criticism first: after any interaction, so the account 
runs, the world "branches" so that the interaction yields a number of possi
ble worlds, or rather, as Everett emphasizes, a number of worlds all equally 

* As  J. P. Jarrett has pointed out to me, not all proponents of the "relative state" approach 
(Everett's term) accept the many-worlds interpretation of it; see, for example, Geroch (1984). I 
discuss MWI from a slightly different perspective (and with greater charity) in Section 10.4. 
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"actual." This branching is determined by the states of the systems in
volved. Now a feature of Everett's presentation is that, in an interaction, the 
state of one system is specified with respect to the other; indeed, Everett 
(195 7) called the interpretation the " 'Relative State' Formulation of Quan
tum Mechanics."  However, this specification of states is not symmetrical. 
(This follows from an argument due to Cartwright, 1974 .) In other words, 
the set of possible worlds reachable from the perspective of one participant 
in an interaction will not mesh with the set reachable from the perspective of 
the other. There is thus no specifiable set of worlds into which the preinter
action world divides. 

Nice examples of criticisms of the second type are given by Healey (1984, 
pp. 59 1 - 593), who spends several pages outlining the "antinomies" to 
which MWI has been thought to give rise; with one exception, which I 
discuss below, I will not rehearse them here. (Healey also discusses the 
problem of space-time structure and the modal realist version of MWI; see 
below.) 

A criticism of the third kind has been voiced by Earman (1986, p. 224): 

What has rarely been explored is the implication for space-time structure of taking 
[MWI] seriously. To make sure that the different branches cannot interact even in 
principle they must be made to lie on sheets of space-time that are topologically 
disconnected after measurement, implying a splitting of space-time something like 
that illustrated [in Figure 9 .3]. I do not balk at giving up the notion, held sacred until 
now, that space-time is a Hausdorff manifold. But I do balk at trying to invent a 
causal mechanism by which a measurement of the spin of an electron causes a global 
bifurcation of space-time. 

time] 
Figure 9.3 Splitting of space-time (from Earman, 1986, p. 225). 



292 The Interpretation of Quantum Theory 

No doubt the many-worlds theorist would reject the demand for a causal 
explanation, but, if he does, he needs to say what alternative he has up his 
sleeve. Lacking one, he is open to the fourth kind of objection. 

That is, even if advocates of MWI can respond to criticisms of the first two 
kinds, one is led by Earman's objection to doubt on general grounds 
whether the speculative metaphysics they offer provides a genuine answer 
to a physical problem. In particular, I would question whether what has 
been produced is anything more than a semantic model for probability 
statements associated with the measurement process. In the last twenty 
years philosophers have offered illuminating analyses of a great number of 
modal concepts in terms of " possible worlds." (See Lowe, 19  79, for a careful 
introduction to the literature.) To take a couple of trivial examples, a logi
cally necessary statement is analyzed as a statement that is true in all possible 
worlds, whereas a contingent statement is one that is true in some worlds but 
not in others. Now probability is itself a modal concept (van Fraassen, 1980, 
chap. 6, calls it "The New Modality of Science") and it too has been ana
lyzed in terms of possible worlds (Bigelow, 1976; Giere, 1976). The suspi
cion that this kind of conceptual analysis is all that the many-worlds inter
pretation supplies is strengthened by de Witt's claim (1970, p. 1 61 )  that "the 
mathematical formalism of the quantum theory is capable of yielding its own 
interpretation" (emphasis in the original). 

But perhaps the many-worlds theorist could accept the description of his 
enterprise as one of providing a semantic analysis of the probability state

ments of quantum theory and claim nonetheless that it was true that each 
measurement interaction resulted in a division of the world into multiple 
copies of itself. Our possible-world analyses of modal concepts, he might 
say, are not merely formal; on our best metaphysical picture of the universe, 
this world is one of many equally real worlds. David Lewis (1986, p. 3) 
writes, 

Why believe in a plurality of worlds? -Because the hypothesis is serviceable, and 
that is a reason to think that it is true. The familiar analysis of necessity as truth in all 
possible worlds was only the beginning. In the last two decades philosophers have 
offered a great many more analyses that make reference to possible worlds, or to 
possible individuals that inhabit possible worlds. I find that record most impressive. 
I think it is clear that talk of possibilia has clarified questions in many parts of the 
philosophy of logic, of mind, of language, and of science -not to mention meta
physics itself. Even those who officially scoff often cannot resist the temptation to 
help themselves unabashedly to this useful way of speaking. 

Lewis is not here discussing the many-worlds interpretation of quantum 
theory (nor does he elsewhere in the book I have just quoted from). And he 
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readily acknowledges that many will find the ontological price of his modal 
realism too much to pay for the theoretical benefits it brings (p. 5). Let us 
assume, however, that we are willing to make the purchase on the many
worlds theorist's behalf. This still won't give the theorist what he needs. 
Consider the fact that, on Lewis's account, although all possible worlds are 
equally real, for us only this world is the actual world. In the grand meta
physical scheme of things, from the perspective of the Almighty, actuality 
may only function as an indexical marker on the set of worlds (like "here" 
and "present" across the set of points in space and time; pp. 92 -94), but for 
each observer there is only one actual world, the one which she inhabits. 
Compare Everett's insistence that "all elements of a superposition (all 
'branches') are 'actual, ' none are more 'real' than the rest" (Everett, 1957, 
p. 146n). This, it might be said, is a purely verbal difference: Everett uses 
"actual" and "real" synonymously, where Lewis would use only "real." But 
what, on Everett's account, has become of the world which is actual in 
Lewis's? If there is no such privileged world, then something odd happens 
to our conception of probability. For if all (relevant) events with nonzero 
probability are realized in some world or other, then are not all those events 
certain of occurrence? (This was pointed out by Healey, 1984, p. 593.)  And if 
I wager on what the outcome of a measurement will be, will it not pay ''me'' 
to place my bet on whatever outcome is quoted at the highest odds, without 
regard to the probabilities involved? We cannot just say, for example, that 
there are three times as many worlds, and hence three times the total payoff, 
corresponding to an event A, which has probability -f, as there are corre
sponding to event B, which has probability t, since no principle of indivi
duation distinguishes one A-world from another. (Before an epidemic of 
long-odds betting is upon us, however, I should add that even the National 
Security Council would be hard put to divert funds from my Swiss bank 
account in one world to its counterpart in another.) 

These levities aside, we may ask what new understanding of the measure
ment process MWI gives us. After a measurement each observer will inhabit 
a world (for her the actual world) in which a particular result of the measure
ment has occurred. And the "total lack of effect of one branch on another 
also implies that no observer will ever be aware of any 'splitting' process" 
(Everett, 1957, p. 147n). What is this observer to say about the physical 
process which has just occurred? From where she stands, the wave packet 
has collapsed no less mysteriously, albeit no more so, than before. 

We are still left with the dualism that the interpretation sought to eradi
cate. As de Witt (1970, pp. 1 64 - 1 65) himself remarks, the many-worlds 
interpretation of quantum mechanics "leads to experimental predictions 
identical with the (dualist) Copenhagen view."  The difference is that any 
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transition not governed by Schrodinger's equation is now accompanied by 
an ontological cloudburst beside which the original modest dualism of von 
Neumann looks unremarkable, if not pusillanimous. 

WIGNER'S FRIEND 
It is time to make the acquaintance of Wigner's friend. Wigner's account, the 
last account of measurement I will discuss here, is a dualist account; mea
surement produces a discontinuous change of state of the measured object 
(Wigner, 1961 ). The radical difference between this and a more orthodox 
view is that, to qualify as a measurement, an interaction must involve a 
conscious observer. Note that this is not just an account of why the system 
S + M seems to behave classically; it is not merely that the conscious ob
server can register information only in a certain (classical) way. The event of 
registration is not merely passive; it is this event which brings about the 
projection of the system's state into an eigenstate of the observable mea
sured. Wigner, a dualist with respect to the mind-body problem, sees the 
measurement process as an example of mind-body interaction. 

He illustrates his view with an example. As the system S he takes a 
radiation field whose wave function .(.(will tell us with what probability we 
shall see a flash if we put our eyes at certain points, with what probability it 
will leave a dark spot on a photographic plate if this is placed at certain 
positions" (Wigner, 1961 ,  pp. 1 73 - 1 74; page references are to Wigner, 
1967). The system S is represented as having two eigenstates v1 and v2 
which give probabilities 1 and 0, respectively, to the occurrence of the flash. 
Thus, if the initial state of S is some superposition v of v1 and v2 , then, on the 
orthodox view, the registration of the flash, whether at the observer's eye or 
the photographic plate, will cause the wave packet to collapse. On the other 
hand, if the radiation field interacts with a quantum system M, such as an 
atom, then the evolution of the joint system S + M is governed by the 
Schrodinger equation and the resulting state will be a superposition 'I' = 
c1(v1 ® u1) + c2(v2 ® u2) of the kind we saw in section 9 .5 .  (Here u1 and u2 
are states of the atom.) As we saw there, this is inconsistent with the state of 
S + M being either v1 ® u1 or v2 ® u2 • Nevertheless, if an observer 0 now 
performs a measurement on the system M, this will project M into an 
eigenstate (u1 , say) . Since the systems are correlated, S will ulso be projected 
into v1 , and the information received by the observer 0 will be equivalent to 
the registration of a flash. (The consistency of direct and indirect measure
ments is discussed further in Section 10 .4.) 

Wigner now considers the situation when the system S is observed by a 
friend. Wigner can find out about the system by asking her whether or not 
she has observed the flash. In doing so Wigner puts himself in the position 
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of the observer 0 and his friend in the position of the system M. His 
"measurement" consists in asking her whether she has seen a flash. But, 
Wigner continues (pp. 1 79 - 1 80), after completing the whole experiment he 
can ask his friend, "What did you feel about the flash before I asked you?" If 
he does so, she will reply, "I told you already, I did (did not) see a flash." 
Short of giving himself a solipsistically privileged position, Wigner must 
accept that this report is indeed true, and hence that the interaction between 
S and his friend has already induced the collapse of the wave packet. The 
friend and the atom are therefore radically different kinds of systems, and 
(to quote Wigner, p. 180), "It follows that the being with a consciousness 
must have a different role in quantum mechanics than the inanimate mea
suring device, the atom considered above." 

Stated in this way the conclusion is true but misleading. It  has been shown 
that an atom behaves differently from a conscious observer. However, it has 
not been shown that the crucial difference is the consciousness of the ob
server. His friend is not merely a single atom which (who?) happens to be 
equipped with consciousness; though the event labeled as "seeing a flash" 
may have been triggered by an interaction involving one specific molecule 
in his friend's retina, his friend is a highly complex organism of macroscopic 
dimensions. What Wigner has done is to emphasize the fact, familiar to 
every dualist, that measurements, even of quantum systems, are to be 
described in classical terms - where this means simply that statements 
about measurement results are bivalent, either true or false. He has also 
claimed that the place where the discontinuity between the quantum and 
the classical worlds is located is in the distinction between a conscious 
observer and an inanimate measuring device. But this claim his argument by 
no means proves. 

I do not wish to underestimate the difficulty for the dualist in specifying 
where the quantum/ classical cut is to be made, and I will return to the topic 
in section 10 .4.  The strength of Wigner's proposal is that it points to a 
difference in kind, the distinction between the mental and the physical, to 
explain the discontinuity. But is this difference as clear-cut as Wigner as
sumes? The weakness of his account is that it relies on a dubious theory of 
mind and body, ironically the very theory which Wigner hoped to bolster by 
his argument. If, contra Wigner, we accept a materialist theory of mind (of 
whatever stripe), then Wigner's location of the cut between the quantum 
and the classical worlds no longer looks so precise; it becomes another 
distinction based on the size and complexity of a measurement system. 



10 
An Interpretation of Quantum Theory 

Part One of this book gave an abstract summary of a physical theory; Part 
Two has asked, what must the world be like if this theory accurately de
scribes it? In this final chapter I offer a tentative answer to this question. In 
Section 10 .2  I present an interpretation of the theory which I call the "quan
tum event interpretation"; in Section 3 I compare it with a version of the 
Copenhagen interpretation; and lastly, in Sections 10 .4  and 10 .5, I discuss 
the relation between the quantum world and the classical, macroscopic 
world. 

Prior to this, however, I consider the implications, some might say the 
hazards, of working with an account of the theory that is as abstract as the 
one presented in the first half of the book. 

1 0. 1  Abstraction and Interpretation 

To a physicist the "theory" outlined in Part One would be very meager fare. 
I have already quoted Cartwright's comment (1983, p. 135) on such ac
counts: "One may know all of this and not know any quantum mechanics." 
(See Section 2.8.) For example, the treatment of spin in Chapter 4 never 
alluded to its physical significance; I never mentioned the fact that spin 
contributes to the magnetic moment of a system and that, in consequence, 
the Hamiltonian for the system will contain a term depending on its spin 
and the magnetic field in which it is placed. 

Indeed, in at least one regard, my discussion of spin has flagrantly over
simplified matters. I have written as though the measurement of any com
ponent of spin of a free electron presented no difficulties. This is not the 
case. In 1929 Bohr showed that no Stem-Gerlach apparatus could perform 
such a measurement, owing to the masking effect produced by. the interac
tion between the electron's charge and the magnetic field used to measure 
the spin component (see Mott and Massey, 1965, p. 215). In this respect a 
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free electron behaves differently from the electrically neutral atoms experi
mented on by Stern and Gerlach. Bohr also claimed that measurements of 
the electron's spin components were, for conceptual reasons, impossible 
(Rosenfeld, 1971,  in Cohen and Stachel, 1979, p. 694). However, in the 
19 50s Crane devised a technique for performing such measurements which 
evaded the problems of the Stem-Gerlach approach, and since then pro
ton-proton pairs have been used by Lameti-Rachti and Mittig in experi
ments to show that Bell's inequality is violated. (See Clauser and Shimony, 
1978, pp. 19 1 7 - 19 1 8; d'Espagnat, 1979.)  There is also no masking problem 
when the spin of a neutron is measured (see Leggett, 1986, p. 39). Thus spin 
components are indeed measurable, though not as easily as I have sug
gested. 

To return to the threatened criticism, that my account has been too ab
stract, the obvious response is to say that the aim of Part One was precisely 
that of showing the abstract conceptual structure of the theory. Philoso
phers of science may rashly tend to equate such abstract structures with the 
whole of a theory, and thereby be led to mistakes of assessment, but that is 
another matter. For example, the rejection of the wave picture urged in 
Section 8.3 may possibly be a mistake of this kind; although at the abstract 
level the picture is unhelpful, perhaps it is indispensable for pragmatic 
reasons when physical applications of the theory are at issue. It may be so. 
Nonetheless, although discussions of these applications would be needed to 
flesh out an abstract, skeletal account of the theory and give it breath, all 
these applications will involve a common set of mathematical models, and 
these abstract structures repay investigation. 

A separate question is whether or not the significant features of these 
structures are being correctly identified. Here I am thinking in particular of 
the importance attributed, both in Chapter 8 and in the remainder of this 
chapter, to quantum conditionalization. In contrast, Teller (1983, p. 428) 
suggests that the Liiders rule is simply a ,,fortuitous approximation," an 
approximation because actual processes do not localize the state in precisely 
the sharp way that the rule suggests, and fortuitous because ,,there can be 
no uniform way, no formula which even in principle could be fixed in 
advance for turning the approximation into exact statements." 

I agree on both counts; how then can I resist Teller's conclusion that 

If the projection postulate is a fortuitous approximation, we have no reason to think 
that it gives even an approximate description of some one specific process which 
might then stand in need of interpretation. (P. 428) 

Teller's paradigm example of a fortuitous approximation is Hooke's law. 
This law, that strain is proportional to stress (less esoterically, that the 
deformation of a material object is proportional to the load applied to it) is 
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approximately true of all kinds of materials in all sorts of configurations, 
from steel wires to foam rubber mattresses. For Teller it is a fortuitous 
approximation because there is no uniform way to correct it to allow for the 
individual idiosyncracies of the materials involved. In this way, he suggests, 
it differs from the uniform approximation afforded by, for example, the 
pendulum law: T = 2n'1l/g . We know wherein the approximation of the 
pendulum law exists; its derivation involves the approximation that, for 
small (), () = sinO. Hence there is a clear-cut way in which it is correctable. 
Hooke's law, on the other hand, is just a pragmatically useful approxima
tion, roughly true for many materials below their elastic limit (Noakes, 195 7, 
pp. 141 - 142). Of the latter we can agree with Teller that (1)  it is an approxi
mately true law for which no uniform method of approximation exists, and 
(2) it describes no single and theoretically significant process. 

However, there is little reason to think that, in general, (1)  entails (2). 
Consider the ideal gas law, pV = nRT. This is only approximately true for 
real gases. The models supplied by the kinetic theory of gases, within which 
this law can be derived, represent molecules as point systems, undergoing 
perfectly elastic collisions, and exerting forces on each other only during 
these collisions. Molecules of real gases are not like that. In fact, so many 
different idealizations are involved in the theory that there is no uniform 
way to correct the ideal gas law. True, judicious choices of a and b make van 
der Waals' law, [p + (a/V 2)](V - b) = nRT, more nearly true for many 
gases, but near the critical point it too goes astray, and whence are a and b to 
be derived? (See Noakes, 1957, p. 375 .) Nevertheless, the absence of a 
systematic mode of correction would hardly justify our dubbing the ideal 
gas law a fortuitous approximation, unless that term were shorn of its pejor
ative implications and became merely a term of art. 

The question of a uniform mode of correction is essentially subordinate to 
another: are we dealing with an idealization within the models that the 
theory supplies, or with an empirical approximation with no theoretical 
support? Teller (1983, p. 428) writes that .(.(virtually all descriptions of actual 
processes idealize or approximate, " but he does not thereafter distinguish 
between the two. The Liiders rule, I suggest, like the ideal gas law, appears 
as an idealization, Hooke's law as an empirical approximation. 

Still, Teller could disagree; he could accept the distinction I have just 
made and nevertheless claim that his arguments justify his placing the 
Liiders rule and Hooke's law in the same basket. He points out that the final 
projected state that the Liiders rule predicts for the system depends on its 
initial state. Now, during the measurement process the system's state will be 
continuously evolving in accordance with Schrodinger's equation. If the 
system also suffers a discontinuous change of state given by the Liiders rule, 
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then, because the .(.(initial state" is continuously changing, the result of this 
projection will depend on the time at which it occurs. But there is no theoret
ical reason to locate the projection at any one time in the measurement 
process rather than another: uNo formulation of the projection postulate 
tells us exactly at which point to apply it" (Teller, 1983, p. 425). Hence, 
Teller could continue, there is no warrant for thinking of the postulate as 
giving an idealization of a physical process. 

This is a powerful argument, but it draws its strength, I think, from the 
fact that Teller looks at the projection postulate solely in terms of its relation 
to the measurement process. As I pointed out in Sections 9 .4 and 9 .5, the 
question of the projection postulate is conceptually separable from the main 
problem of measurement. Considered just as a constraint on accounts of 
measurement, the postulate is a seemingly arbitrary stipulation which lacks 
obvious links with the rest of quantum theory. On the other hand, if we 
view the Liiders rule as Bub suggests, as the rule of conditionalization 
appropriate to quantum event structures, we see it in a different light. As the 
quantum analogue of the classical conditionalization rule, it is built into the 
non-Boolean event structures around which quantum theory is constructed. 

I acknowledge that the Liiders rule differs from the ideal gas law in an 
important respect. The deviations of real gases from the ideal gas law have 
explanations (the finite size of actual molecules, their mutual attraction, and 
so on); further, these explanations also tell us, in general terms, why van der 
Waals' equation is an improvement. In contrast, we have no decent account 
of when and why the Liiders rule is a less than adequate idealization. But my 
reaction to this is not to revise my view of the Liiders rule, but to say that 
quantum mechanics still faces a major empirical and conceptual task, that of 
sorting out the relation of quantum systems to the classical, macroscopic 
world. Take, for example, the simple case of an electron striking a dia
phragm with a hole in it (as in Section 8 .3). We need to know what it is about 
the physical structure of a real diaphragm that makes the wave function of 
an electron passing through it differ from the ideal localized wave function 
predicted by the Liiders rule. But these gaps in our knowledge do not make 
the rule a fortuitous approximation; the idealizations it relies on are those 
assumed by quantum theory itself. 

This fact, however, that there is no systematic way to explain deviations 
from the Liiders rule, prompts a return to the question of the value of 
abstract theory, since it hints at a deeper issue than the particular problems I 
have looked at so far. 

Duhem (1906) thought that what are often called .(.(fundamental" physi
cal theories (Maxwell's theory of the electromagnetic field, for instance) did 
no more than provide a formal unification of a wide range of phenomena. 
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He endorses the view that "a physical theory . . .  is an abstract system 
whose aim is to summarize and classify logically a group of experimental 
laws" (p. 7). And he quotes approvingly Hertz's dictum that "Maxwell's 
theory is the system of Maxwell's equations" (p. 80) . Whether or not he is 
right about Maxwell's theory, Duhem's description accurately fits the ver
sion of quantum mechanics given here. This yokes together a disparate 
group of phenomena in a purely formal way. The analogies between these 
phenomena, one might think, do no more than allow a unified mathemati
cal treatment of diverse aspects of nature; no further significance attaches to 
them. 

Certainly, the deployment of abstract analogies is part of the physicist's 
repertoire. For example, in his Lectures on Physics Feynman introduces the 
idea at an early stage, in his discussion of damped harmonic oscillations, by 
displaying the pair of equations (Feynman, Leighton, and Sands, 1965, vol. 
1 ,  p. 25-8): 

(1 0. 1) 

(1 0. 2) 

d2x dx 
m dt2 + ym 

dt 
+ kx = F 

L 
d 2q + R dq + _i = V dt2 dt c 

Equation (1 0 . 1 )  describes the mechanical motion of a mass m on the end of a 
spring, under the influence of a varying force F; Equation (10 .2), the electri
cal oscillation set up in a circuit by a varying voltage V. The formal corre
spondence between the two is evident. Any solution for one becomes a 
solution for the other when corresponding terms are substituted for each 
other (V for F, 1/C for k, and so on). For Duhem, however, this is where the 
correspondence ends; we simply have two disparate sets of phenomena 
each of which can be modeled (mathematically) in the same way. There is 
no more to be said. 

Here our views differ. And the greater the number of fields that could be 
modeled in the same way, and the more heterogeneous they were, the more 
significant I would find it. But significant in what sense? To go back to the 
example, it is clearly not the case that the same physical processes are at 
work in the two types of oscillation. 

The formal nature of the correspondence tells us that any underlying 
commonality between the two exists at the most abstract, conceptual level, 
and is to be found by examining the form of the mathematical equations in 
which the analogy between the two is expressed. These equations are sec
ond-order differential equations in x and q, respectively. Implicit in the use 
of these equations is the assumption that both position (x) and charge (q) are 



An Interpretation of Quantum Theory 301 

continuous, and continuously differentiable, quantities. If similar differen
tial equations appeared throughout our fundamental physical theories, then 
the implication would be that all physical quantities were continuous in 
nature. This would then be a significant element within our metaphysical 
picture of the world. In fact we no longer believe in the continuity of electric 
charge, and so Equation (10 .2) is in this respect misleading: charge is a 
discrete, not a continuous quantity. The equation is a pragmatically useful 
approximation, not a part of our foundational theory. (Recall the discussion 
of Hooke's law.) That, I suggest, is the salient difference in significance 
between the modeling of oscillations given by the two equations (particu
larly the latter) and the models furnished by our abstract account of quan
tum theory. 

My point is this. Even if- or especially if - we accept Duhem's account 
of physical theories, it is nevertheless worthwhile to examine the models a 
theory employs, to see what metaphysical picture is implicit in them. This is 
precisely what goes on when we look to Hilbert spaces in order to find a 
categorial framework within which to interpret quantum theory . To this 
end, the more abstract the presentation of the theory the better. 

To seek such a categorial framework is the reverse of a process Duhem 
elsewhere condemns, whereby physical theories are assessed in the light of 
prior metaphysical commitments; instead, we are asking the theory to pro
vide our metaphysics. Nonetheless, a resolute Duhemian skeptic might 
insist that the search for a categorial framework was not a useful philosophi
cal occupation. This itself, however, would betray a certain metaphysical 
commitment, albeit one expressed in anti.metaphysical terms. There seems 
no a priori reason to think that the search should be either fruitless or 
uninteresting. And should the skeptic persist - so weak is the power of 
rational argument to persuade - one could only say, ult was not you for 
whom Part Two of this book was written." 

1 0. 2  Properties and Latencies: The Quantum Event Interpretation 

In this section I will outline a possible interpretation of quantum mechanics, 

which I will call the quantum event interpretation. That is, I will propose a 
categorial framework whose elements find representation in the Hilbert
space models the theory displays. 

The categorial framework I will outline can be compared to that found 
within classical mechanics, where we see, first of all, a distinction between a 
system and its attributes (or properties), and, second, a fully causal account of 
processes. Analogues of all these elements appear within the quantum 
event interpretation of quantum theory. 
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The concept of a system I have taken for granted; presupposed by the 
representation supplied by the theory is the assumption that parts of the 
world are, for the purposes of theory, isolable. However, this presupposi
tion is very much an idealization; indeed it is challenged by the theory itself. 
In quantum theory, coupled systems are more than the sum of their parts, 
witness the behavior of the coupled systems used in EPR experiments. To 
isolate a section of this world is to say that its couplings to other systems 
have become so attenuated that we may disregard them. This said, the 
notion of a system will not be further examined.* 

The classical notion of a property is inappropriate to quantum theory, as 
was seen in Chapter 6. Nor is much interpretive work done by retaining this 
notion within a quantum-logical framework, for the reasons given in Sec
tion 7.9 . Heisenberg and Margenau have both suggested that quantum 
theory requires instead a concept that recognizes the inherently probabilis
tic nature of the quantum world. Heisenberg (1958, p. 53) talked of .(.(tend
encies" and suggested that these resembled the upotentia" of Aristotelian 
science. This particular analogy is very remote; instead, I am adopting the 
term ''latency'' suggested by Margenau (1954). 

The properties of classical systems were summarized by its state. Given 
the state we could predict the values which ideal measurements of observ
ables would reveal. The latencies of quantum physics are also represented 
by the state -here the state vector. These latencies assign probabilities to 
measurement outcomes. We term these measurement outcomes quantum 
events and no longer treat them as corresponding to possible properties of 
the quantum system. A quantum measurement should be regarded neither 
as revealing a property of the system nor as creating that property, for the 
simple reason that quantum systems do not have properties. Rather, the 
measurement involves the realization of a particular quantum event from 
the Boolean algebra of such events associated with the measurement appa
ratus. And, although only one Boolean algebra of events can be selected at a 
time, the latency represented by the state vector determines probabilities for 
a whole orthoalgebra of events. 

The so-called wave-particle duality of quantum systems, shorn of its 
mechanistic associations, fits naturally within this interpretation. For, as 
Born pointed out, the .(.(waves" which the wave-particle account portrays as 
spreading through space are .(.(probability waves"; the square of the ampli
tude of the wave at any point in space gives the probability of finding the 
.(.(particle" there. Similarly, to ascribe a latency to a system with respect to its 

• But see Teller (1989). And, in addition, Ned Hall has pointed out to me the problems raised 
by the Pauli exclusion principle. 
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position is just to say that there is an extended region of space within which 
there is a nonzero probability of finding it. The wave formalism offers a 
convenient mathematical representation of this latency, for not only can the 
mathematics of wave effects, like interference and diffraction, be expressed 
in terms of the addition of vectors (that is, their linear superposition; see 
Feynman, Leighton, and Sands, 19 65, vol. 1 ,  chap. 29-5), but the converse 
also holds. Clearly, this mathematical equivalence is independent of the fact 
that vectors can represent probability assignments; hence the propriety of 
talking of the .(.(interference effects" obtained in, for example, the two-slit 
experiment. In contrast, .(.(particle" effects typically occur when position is 
localized; in other words, when a quantum event occurs, latency is actual
ized and the uwave packet" collapses. 

Thus the quantum event interpretation offers both an abstraction and a 
generalization of the thesis of wave-particle duality; on the one hand, it 
severs the thesis from its classical nineteenth-century antecedents, and, on 
the other, it accommodates all quantum observables, not merely position 
and momentum. 

The sense in which a latency is a natural probabilistic generalization of a 
property can be made more precise. Although the exact ontological status of 
a property (greenness, for example) may be questioned, one thing is not in 
dispute (Staniland, 1972). If we say of a billiard ball that it is green, then our 
statement entails that, if viewed under normal conditions, it will have a 
certain appearance; simply put, that it will appear green. In classical physics, 
the ascription of a property to an object entails the truth of various condi
tionals of the form, ulf an (ideal) measurement of A is made, then the result 
will lie within il." I will call such a conditional a .(.(measurement conditional" 
and write it as MA -+  (A,il). (A,il) is, as usual, the event that an A-measur
ing device gives a result within il. 

A complete description of a classical system would give us all its proper
ties, so that every measurement conditional would be assigned .(.(True" or 
.(.(False."* (This description is familiar from Chapter 2 .) In contrast, the 
ascription of a latency to a quantum system entails the truth or falsity of a 
host of conditionals of the form: 

MA -+ [ p(A,il) = x] 

Such quantum measurement conditionals also carry reference to a set of 
events (A,il), but this set, as we have seen, has a radically non-Boolean 
structure; it has the structure of the set of subspaces of a Hilbert space. The 

• I am relying here on an intuitive account of the truth-conditions for conditionals. 
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result is that we can never find a probability function p such that, for every 
event (A,�), either p(A,�) = 1 or p(A,�) = 0. That is to say, these latencies 
can never be reduced to properties. 

The pure states of quantum mechanics give complete descriptions in the 
following sense. (1)  A pure state assigns to each quantum measurement 
conditional a value .(.(True" or .(.(False," and (2) the probabilities occurring in 
these conditionals are not just epistemic probabilities, but objective propen
sities. We can regard the description as complete with respect to latencies, 
rather than to properties. In the case of a mixed state, the answer is not so 
clear-cut. If the mixture can be given an ignorance interpretation, then it 
does not give a complete description since (2) fails; if an ignorance interpre
tation is ruled out, then, on this interpretation, there is no reason to think 
that the description that a mixture provides is less than complete. Of course, 
quantum theory is not complete in Jarrett's sense of the word (see Section 
8 .6); one could argue, however, that it is complete in Einstein's sense after all 
(see Section 6 . 2) : whenever the probability of an event (A,�) is one, then 
there is a state specified by the theory whose support with respect to A is a 
subset of �, and only when the system is in that, or one of those, states can 
one predict the value of A with certainty without disturbing the system. 

How does the latency of a system change? In two ways, which exactly 
match the two modes of evolution of the state function, as von Neumann 
depicted them. Latencies, like state vectors, can change continuously or 
discontinuously. The first type of change is not causally problematic. The 
second is. In the first place, it is stochastic; since the event which induces it is 
not in general determined by the state, but has just a nonzero probability of 
occurrence, it differs in at least one respect from a classical cause. Second, it 
may be nonlocal; the kind of transition which (on the account given in 
Section 8.8) characterizes EPR experiments is an example. 

I don't want to underestimate this last problem; a discussion by Shimony 
(1986, pp. 193 - 196) shows just how severe it is. Assume that, in an EPR
type experiment, the measurements performed on two systems a and b are 
simultaneous in the laboratory frame of reference; call the events associated 
with these measurements Ea and Eb , respectively. Then the special theory of 
relativity (STR) tells us that there is a frame of reference CJ a in which Ea 
precedes Eb and another frame CJb in which Eb precedes Ea . But, on the 
interpretation I am offering, this means that within CJ a the event Ea occasions 
a projection of the state of b to a new state (with support Eb) prior to the event 
Eb . Within CJ b , on the other hand, this projection is produced, if at all, by the 
event Eb itself, and Eb also occasions a change of state of a. 

There is no outright inconsistency here; however, the occurrence or non-
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occurrence of a change of latency becomes frame-relative, and this certainly 
offends the spirit, if not the letter, of STR. 

Indeed, at this point I can hear the objection that the interpretation of
fered has just too many unpalatable features. On the one hand, so the 
criticism runs, nonlocal conditionalization might be acceptable as a conve
nient mathematical way to summarize the correlations associated with cou
pled systems; on the other, the suggestion that there is a new ontological 
category called .(.(latency" seems fairly inoffensive. But when it transpires 
that (1)  these physical significant latencies can be changed by nonlocal 
actions, and that (2) these alleged changes are not relativistically invariant, 
that is just too much to swallow. 

Not much can be said, I fear, to sweeten this particular pill, but perhaps 
we can say more on behalf of the individual ingredients which together 
prove so distasteful. To reiterate what was said in Section 10 .  l _,  in seeking an 
interpretation of a theory we start from Duhem's thesis that a theory pro
vides an abstract summary and logical classification of a group of experi
mental laws. However, that is only where we start. Though our final con
victions may be instrumentalist, we are setting these attitudes aside for the 
time being and asking, what sort of world could be represented by the 
mathematical models the theory provides? Further, if we are not instru
mentalists, we may hope that this way of proceeding sidesteps Duhem's 
argument that, since .(.(explanations" are formulated only with respect to a 
set of prior metaphysical assumptions, to think that theories provide expla
nations is misguided. We perform this sidestep by looking within the theory 
for the categorial framework it suggests, and which is to be appealed to in 
explanations. 

Within quantum mechanics we find, in a word, probabilities. However, 
the probability functions the theory uses cannot be regarded as weighted 
sums of dispersion-free probability functions - that is, as weighted sums of 
property ascriptions; quantum theory is irreducibly probabilistic. Rejecting 
properties from our categorial framework, we replace them with their prob
abilistic analogues, latencies . But why replace them with anything? Why 
grant ontological status to these remote and shadowy quasi-attributes? A 
specific argument for doing so will be offered in the next section; mean
while, here are some general considerations. 

We invoke latencies for much the same reasons that, in the macroscopic 
world, we invoke properties. Attempts to give a purely phenomenalistic 
account of properties notoriously failed (see, for example, Hirst, 1967); a 
property ascription is more than the logical product of a set of conditionals 
of the kind, ulf I were looking at object X now, under normal conditions of 
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illumination, then I would be having sensations of greenness." Similarly for 
latencies; these too license infinitely many subjunctive conditionals (of 
which a proper subset are quantum measurement conditionals), but, for 
much the same reasons, are not reducible to them. 

What then of the projection postulate? This too emerges from the non
classical nature of the probability spaces we deal with. Regarded not just as a 
postulate applying (occasionally) to the measurement process, but as the 
quantum version of conditionalization, it provides explanations of the 
otherwise inexplicable. In Section 8.9 I called these explanations .(.(struc
tural" but, if conditionalization is seen as a change in the latencies of a 
system, they also acquire an ontological foundation. 

It turns out that there is a price to be paid. Some of the conditionalizations 
which figure in these explanations are nonlocal : latencies may be affected 
by action at a distance. Even though stochastic Einstein-locality is respected, 
the price may seem too high. The interpretation may still violate too many 
intuitions. But so may quantum theory. And, like Isabella on a different 
occasion, the fierce defender of intuitions may have got his priorities wrong. 
After all, what's so hot about intuitions? Aren't these the folks who gave us 
Bell's inequality? Duhem would have had little truck with them. 

10. 3  The Copenhagen Interpretation 

The quantum event interpretation should be distanced from the .(.(Copenha
gen agnosticism" van Fraassen (1985) advocates uwith respect to what 
happens to measurable physical magnitudes when they are not being mea
sured.'' Bohr's expression of this agnosticism was discussed in Section 7.9 . 
There we also saw how it could be set out in algebraic terms. In the same 
vein, van Fraassen and others offer a .(.(Copenhagen approach" to quantum
mechanical probabilities. On this approach, the fact that there is no simple 
Kolmogorov model of probabilities involving incompatible observables A, 
B, and C does not mean that we must jettison classical probability theory; it is 
a result of the fact that such observables are not jointly measurable. The 
apparent departures from Kolmogorov probability theory that we find in 
quantum mechanics occur because quantum probabilities are all conditional 
probabilities; p(A,�) should be read as, Uthe probability that a result within 
� will be found, conditional on an A-measurement being made." We obtain 
a perfectly good Kolmogorov probability space for incompatible observ
ables A, B, and C, so the story runs, by partitioning a classical probability 
space Q into three mutually exclusive sets of events, corresponding to mea
surements of A, B, and C, each of which forms a Boolean algebra. 

Assume for the sake of argument that each of A, B, and C has two values, 
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and call them {a1 ,a2}, {b1 ,b2}, {c1 ,c2}, respectively. Then a finer six-way 
partition {a1 ,a2 ,b1 ,b2 1C1 1C2} of Q is available, and quantum probabilities 
appear according to the recipe (for observable A, in this example): 

where PK is a Kolmogorov probability function defined on n. 
In this formula the term a1 U a2 represents the event that a measurement 

of A takes place. With a slight abuse of notation we can write 

Note that the event a1 U a2 is not identified with the events b1 U b2 and 
c1 U c2 , as it would be in the construction of an orthoalgebra of quantum 
events (see Section 8 . 1 ). On the contrary, these three events are mutually 
exclusive. 

The example may be generalized. That is, given any generalized probabil
ity function p defined on an orthoalgebra A, the probabilities p assigns to 
members of A may be reproduced as classical conditional probabilities on a 
Kolmogorov probability space as follows. Consider the family { .13i} of maxi
mal Boolean subalgebras of A. We embed these algebras individually in a 
Kolmogorov probability space in such a way that their maxima are mutually 
exclusive and jointly exhaustive: Ii n I; = 0 when i =I= j, and U;li = il. {Ii} is 
thus a partition of n, and if PK is any classical probability function on n, then 
2ipK(Ii) = 1 .  To reproduce the probabilities assigned by p to members of A, 
we stipulate that, for any event e in .13i , 

Such a probability function PK always exists, but since the assignments PK(Ii) 
are arbitrary (though they must all be nonzero), PK is not uniquely defined 
by p. 

To summarize. The Copenhagen view of quantum theory and the quan
tum event view differ significantly in their treatment of probabilities. 
Whereas on the quantum event view probabilities in quantum mechanics 
are assigned by generalized probability functions to members of an orthoal
gebra A of events, on the Copenhagen view the underlying probability 
space is classical. This classical space is coarsely partitioned, each member of 
the partition being the event that a particular measurement occurs, and each 
corresponding to a maximal Boolean subalgebra of A. Probabilities are 
assigned to events in this classical space by a Kolmogorov probability func-
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ti.on, and quantum-mechanical probabilities now appear as conditional 
probabilities, each conditional on some event in the coarse partition. 

From the point of view of the quantum event interpretation, this con
struction is not only formally respectable, but in some circumstances physi
cally significant. Assume, for example, that we are dealing with an experi
ment, like the Aspect experiment described in Section 8.6, in which there is a 
probability Pe(MB) that a B-measurement will be performed, and so on; Pe is 
of course a Kolmogorov probability function. Assume further that the state 
of the system assigns probability q to some event (A,ai) according to the 
usual algorithm, by specifying a generalized probability function on the set 
of quantum events. We can now construct a Kolmogorov space in the way 
prescribed, on which the function p e yields an u absolute probability" for the 
result ai , for example, according to the formula 

Pe(ai) = Pe(MA) · q 

On the quantum event interpretation the equation holds because (1 )  the 
state makes the conditional MA -+ [p(A,ai) = q] true, and (2) MA has proba
bility Pe(MA). On the Copenhagen interpretation we obtain the same equa
tion, since 

In the light of this one may ask, what does the quantum event interpreta
tion achieve that a Copenhagen interpretation does not? What is gained by 
the appeal to arcane nonclassical algebraic structures, let alone by the invo
cation of dubiously metaphysical .(.(latencies"? 

The same question was raised at the end of Section 10 .2, and I can now 
amplify the answer given there. One specific achievement is the ability to 
talk of the probability of one quantum event conditional on another. On the 
quantum event interpretation, to ask what the probability is that a measure
ment of A will yield result ai , given that an event (B, b;) has occurred, is to ask, 
for what value of x is  the statement MA -+  (p[(A,ai) l (B, b;)] = x) true? Since p 
is a generalized probability function (GPF) defined on the set of subspaces 
of a Hilbert space, the conditional probability p[(A, ai) l (B, b;)] is given 
straightforwardly by the Liiders rule. Chapter 8 demonstrated just how 
fruitful the application of this rule can be. In contrast, on the Copenhagen 
approach we have no ready means of dealing with sequences of events; 
px(ai l b;) will always be zero if A and B are incompatible. 

More generally and fundamentally, the Copenhagen approach offers no 
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account at all of the relations between incompatible observables. There are 
probability functions PK 1 definable on the Kolmogorov space n constructed 
according to the Copenhagen prescription, which do not generate quan
tum-mechanical probabilities. To return to our earlier example involving 
observables A, B, and C, a perfectly respectable classical probability measure 
on the partition {a1 ,a2 ,b1 ,b2 ,c1 ,c2} assigns to each of a1 , b1 , and c1 the value 
fs, and to each of a2 , b2 , and c2 the value -fs. This would yield the quantum 
probabilities 

Yet if A, B, and C are the familiar components of spin, S:r, Sy , and Sz , 
respectively, no quantum-mechanical state assigns probability t to the posi
tive value of each observable. (To be precise, no quantum state simulta
neously assigns to all three events probabilities greater than 1 /2 + 
13/6 = 0.786.) 

The Copenhagen interpretation offers no reason why such assignments 
are ruled out. In rewriting the probabilities assigned by any GPF to elements 
of an orthoalgebra as conditional probabilities defined on a classical proba
bility space, it takes no account of the fact that quantum mechanics uses 
orthoalgebras which have a very rich structure; each is isomorphic to the set 
of subspaces of some Hilbert space. 

Not only does the quantum event interpretation regard that fact as cen
tral, a partial explanation of it has already been offered which leads natu
rally to the concept of latency. 

The ascription of a particular latency to a system assigns probabilities to 
the values of a family of observables. With this in mind, consider the analy
sis of spin in Chapter 4.  The question that chapter asks is, what are the 
results of assuming that the probabilities associated with a particular family 
of observables are constrained in ways suggested by .(.(natural'' symmetries 
- the isotropy of space, for example? The answer is that only if all the 
observables in the family can in some sense be regarded as components of a 
vector is a model of the set of events available which uses the full represen
tational capacity of a Hilbert space; a condition must be put on the probabili
ties associated with the component observables, analogous to those obtain
ing when we deal with classical vector quantities. Equations (4 . 10) and 
( 4 . 1 1 ) give equivalent statements of the required condition. 

My suggestion is that we think of this intricately related set of probabili
ties as determined by some one feature of the system, and give the name 
.(.(latency" to this feature. Again, latencies appear as the probabilistic ana-
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logues of properties. In classical mechanics a vector property, that is, a 
particular value of a vector quantity like momentum, determines the values 
of all components of that quantity. Analogously, in quantum theory, the 
latency associated with, say, spin determines the probabilities assigned to 
the values of all its component observables. 

10.4  The Priority of the Classical World 

The quantum event interpretation has this in common with the Copenha
gen interpretation: both assume a classical world which is in some sense 
prior to the quantum world. But the kind of conceptual priority granted to 
the classical world needs to be spelled out with some care. 

First, there is the question of specificity. Bohr, in particular, thought that 
any statement about quantum systems acquired meaning only in the context 
of a particular experimental procedure (see, for example, Bohr, 1949, pp. 
218, 222). The quantum event interpretation, on the other hand, suggests 
that quantum theory carries with it an implicit reference, not to particular 
procedures, but to a set of events which are associated with classical devices 
of some kind or other, and with respect to which latencies are defined. 

The second question is the content of the term "classical." I have already 
(Section 8.3) criticized Bohr's insistence that physicists must restrict them
selves to the concepts bequeathed to us by late-nineteenth-century physics. 
The kind of conceptual priority assumed by the quantum event interpreta
tion is of a more abstract, structural kind. It allows for the possibility of 
quantum concepts which lack direct analogues in classical physics. What it 
takes from classical physics is the bare concept of an observable which can 
take different values. 

At the risk of repetition, I will spell out what this entails. The quantum 
events to which the theory assigns probabilities are all of the form (A,�); all 
events involve reference to some observable A and, if A is an observable, 
then every pair (A,�) represents an event - though this may be the null 
event even when � is not the empty set, as in the case of the electron-event 
(S.r ,[1 ,2]) . As we saw in Section 7.5, the classical concept of an observable 
thus imposes considerable structure on the set of events; this set is divided 
into Boolean algebras, each associated with an observable. Any measure
ment apparatus is associated with some observable A. When A, the operator 
that represents A, has a discrete spectrum, an ideal measurement apparatus 
would discriminate between all the distinct quantum events associated with 
A, but when A has a continuous spectrum this is, of course, impossible. 
Whether our apparatus is sensitive or insensitive, however, it is a classical 
device in two linked senses. First, the events it registers will form a Boolean 
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algebra, and so the statements describing these events will allow bivalent 
truth-assignments. Second, its indicator states are classical states, and can 
be thought of as a partial list of its properties. This second feature is in fact 
entailed by the first. 

We see that, although the latencies of quantum theory are latencies with 
respect to a set of events with a thoroughly non-Boolean structure, never
theless the set of events realizable at any given juncture - namely, the set of 
events associated with any experimental situation - will form a Boolean 
algebra. While the contribution of quantum theory is to show that the set of 
all events, together with the states that assign them probabilities, can be 
represented in a Hilbert space, the first requirement of this representation is 
that it respects the classical structure of the set of events associated with a 
given observable. This is the sense in which, on the quantum event inter
pretation, the classical world is conceptually prior to the quantum world. 

Implicit in quantum theory is a reference to a classical world. But where is 
the boundary to be drawn? And what is the relation between the worlds? 
Wigner, as we saw in Section 9 .8, located the boundary at the level of 
consciousness; the only classical device was a conscious observer. But this is 
undesirable on two grounds, (1) that it is too subjective for our tastes, and (2) 
that it relies on a dubious distinction between mind and body. In contrast, 
the original Copenhagen interpretation assumed a self-evident distinction 
between the quantum and the classical worlds. This, however, is unhelpful 
to those to whom the grounds for such a distinction do not immediately 
reveal themselves. Quantum systems, we may say, are smaller than macro
systems: an electron is paradigmatically the kind of system treated in quan
tum theory, a piece of polaroid plus a photographic plate can act as a 
classical measuring device. But is there a number N such that all systems of 
N particles are microsystems, whereas all systems of N + 1 particles are 
macrosystems? That sounds implausible. 

One of Everett's aims, in his .(.(relative state" formulation of quantum 
mechanics (see Section 9 .  8), was to present the theory in such a way that this 
u cut" between the quantum and the classical worlds disappears. Quantum 
theory, on this account, would be a global theory; it would not be concep
tually improper - as it is on the Copenhagen interpretation - to talk of the 
.(.(universal wave function" (Everett, 1973). In implementing this program, 
the .(.(relative state" formulation ran into a difficulty (see the appendix to 
Shimony, 1986): if the .(.(branching" of the universe was to correspond 
properly to the (apparent) collapse of the wave packet, then, contrary to 
quantum mechanics, there had to be one preferred basis in which the states 
of measurement systems were represented. Certain systems, in other words, 
could not be properly accommodated within the theory; the u cut" which 
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Everett sought to eliminate did not disappear after all, and the problem of 
the relation of the classical world to the quantum world was still with us. 

Everett's interpretation provokes the question whether we can talk 
meaningfully, as he thought we could, about the .(.(universal wave func
tion." If, as I have claimed, a reference to a classical world is implicit in 
quantum mechanics, does this mean that this kind of talk is conceptually 
confused? 

It does not. I have argued that a quantum-mechanical state represents, at 
least in part, dispositions to behave in certain ways in interactions with 
certain classical systems. These dispositions do not go away if the interac
tions are not realized; and even if, in our present universe, these dispositions 
cannot be realized, we can still speak counterfactually about what would 
happen were our universe to be embedded in another. It is thus not incoher
ent to suggest that the universe has a quantum-mechanical state which is 
unfolding as it should, even though there is (by definition) no external 
material agency available to scrutinize it. 

However, before arriving at a wave function for the universe, we need to 
obtain wave functions for its components -including those which, as mea
surement devices, furnish the classical world within which the latencies of, 
say, an electron are realized. This confronts us with the measurement prob
lem in its abstract form: if a particular set of quantum events is defined by 
reference to the classical behavior of a given system, can we give a quan
tum-mechanical account of that system? 

10. 5  Quantum Theory and the Classical Horizon 

The question is this: if a system could function as a measuring device, need 
this rule out the possibility of describing it in quantum-mechanical terms? (I 
am here speaking of the kind of description a Laplacean supermind might 
furnish; we cannot give a fully quantum-mechanical description of a large 
molecule, but that's our problem.) What are the consequences, we may ask, 
of allowing the boundary between the quantum and the classical worlds to 
float, so that it can be drawn and redrawn wherever we will, above a certain 
point? In order to proffer a quantum-mechanical description of a measure
ment device, may we not just redraw the classical horizon so that the system 
now falls below it? 

Quantum theory may require that we divide the world into two. Does it 
forbid us from making the location of the line a matter of convention, so that 
a particular system may lie now on one side of it, now on the other? The 
claim that it does not, I will call the thesis of the conventionality of the 
classical horizon. 
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Let us see how this thesis bears on the analysis of measurement. Assume 
that a measuring system M interacts with a quantum system S and that we 
describe this interaction as a measurement by M of the observable A for S. 
Then, according to the quantum event interpretation, the quantum event Ei 
occurs, where Ei = (A,ai), for some ai . Thus, when we describe M classically, 
Ei occurs. 

What happens if we now describe M quantum-mechanically, as, accord
ing to the conventionality thesis, we may? We now portray S + M as evolv
ing according to the Schrodinger equation; no quantum event occurs unless 
S + M interacts with a new measurement system M *  which lies above the 
new classical horizon and measures the value of some new observable, 
either for M or for S + M. Nonetheless, von Neumann (1932, pp. 436 -442) 
provides an argument to show that there is a sense in which the two ways of 
regarding M are equivalent. 

Using the notation of Section 9 .6, we assume that A has two values, and 
that the eigenvectors of A in 115 are V+ and v_ . The states of M are llo (the 
ground state) and the two indicator states U+ and u_ .  When we represent M 
quantum-mechanically, 11o ,  U+ ,  and u_ become orthogonal vectors in 1fM. 
Prior to the interaction with M, let the initial state of S be v = C+V+ + c_v_ ; 
we assume M to be in its ground state. then, if we regard M classically, 
quantum theory suggests that the event E+ = (A,+) will occur with probabil
ity l c+ l2; conditionalization on E+ projects the state of S into V+ · 

Let us now regard M as a quantum system. Consider the observable AM for 
system M whose eigenvectors (in 1f M) are 11o ,  U+ ,  and u_ ,  with eigenvalues 
0, + 1, and - 1 , respectively. If we apply the Schrodinger equation to the 
interaction between S and M, we obtain 

Assume that, when S + M is in state 'l'u a measurement of A is performed on 
S, and a measurement of AM on M. It was shown in Section 9 .6 that the 
results of these two measurements will be correlated. Hence to measure 
A ® AM on S + M it suffices to measure AM on M. 

If we now " observe" M with apparatus M * - that is, if we measure AM for 
M - it turns out that, when S + M is in state 'l't , the event E+ = (AM,+) has 
probability l c+ l2• Conditionalization on E+  projects the state of M into U+ 
and also, via the correlation of S and M, projects the state of S into V+ . 

Thus whether we think of the measurement of A as being done directly or 
at one remove, the probability of obtaining the value (A,+) is the same, and, 
in either case, conditionalization on the associated event projects the state of 
5 into V+ · 



314 The Interpretation of Quantum Theory 

Despite this reassurance, we still face a problem. Assume that we use M * 
to observe M, and that we obtain the result (AM,+). We are here regarding M 
not as a classical measuring device but as a quantum system. The question is, 
in this situation does the event E+ occur or not? It seems that, by deciding to 
draw the classical horizon below M rather than above it, we can bring about 
the event E+; in other words, it seems that a conventional choice of horizon 
has an ontological consequence. Prima facie, this seems to bode ill for the 
conventionalist thesis. 

In fact, as this analysis shows, it is the conventionalist thesis that creates 
the measurement problem. Note that only the least contentious aspect of the 
quantum event interpretation- the claim that the registration of a value by 
a measurement device can be called an event-is invoked in the generation 
of this problem. If, additionally, the projection postulate is accepted, then a 
further problem appears: does the state of S change to V+ as a result of the 
interaction with M or not? 

One strategy open to the conventionalist is this. He may say that when S 
interacts with M the quantum event (A,+) occurs, leaving M with the prop
erty corresponding to the positive value of A (call this property A+ ). To say 
this is to describe M in classical terms. This does not rule out the possibility of 
describing it quantum-theoretically, he may continue, but if we do so we 
forgo two things. We can no longer speak of a quantum event occurring, 
since that would involve reference to a classical system, nor can we speak of 
M as having a property. However, this means neither that no quantum 
event has taken place, nor that M does not in fact have a property; it is rather 
that quantum mechanics only allows us to speak of latencies. When M * 
.(.(looks at" M, we can describe that interaction classically: M * tells us what 
property M has; we may also describe it quantum-mechanically, as the 
occurrence of the event (AM,+). These two modes of description are, again, 
two alternative ways to describe M. 

There are two things to be said about this suggestion. The first is that it 
does not entirely dissolve the problem; it shifts it to a new location. It breaks 
the .(.(property-eigenvector link" usually assumed to hold of measuring sys
tems. We describe M classically as having the property A+, or we describe it 
quantum-mechanically as being in the eigenstate 11+ ;  the assumption is 
usually made that M has the property A+ if and only if it is in the indicator 
state 11+ .  On the suggested analysis, the conditional holds in one direction 
only: if M is in the state 11+ then it has the property A+. However, it may 
also have the property A+ even when it is in the mixed state l)M = 
l c+l2P� + lc-1 2P� as a result of its interaction with S (see Section 9 .6). 

Second, although the suggestion allows us to deal with properties, it will 
not work for the projection postulate. Whereas we can say without incon-
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sistency that M has the property A+ when it is in the mixed state l)M, we 
cannot say that S is both in the pure state V+ and in the mixed state 
05 = l c+l 2P� + l c-l 2P� . 

The strategy, together with the two corollaries just mentioned, moves us 
very close to van Fraassen' s "modal interpretation" of quantum theory. Van 
Fraassen (19 74a, pp. 300 - 301 )  presents in the formal mode what I have put 
in ontological terms: 

We distinguish two kinds of statements - state attributions and value attribu
tions . . . The state of the system describes what is possibly the case about values 
of observables; what is actual is only possible relative to the state and is not deduci
ble from it. 

Van Fraassen is happy to reject the projection postulate (p. 299) and, al
though he does not write in quite these terms, the severing of the property
eigenvector link appears as a small price to pay for allowing a measurement 
device to be given both a classical and a quantum-theoretic description. 

Ingenious though this interpretation is, I do not think it is right. I say this 
with some reluctance, since, as we shall see, it solves a number of intractable 
problems. My reservation stems in part from a belief in the explanatory 
value of the Liiders rule (which in one guise acts as a projection postulate), 
and in part from a belief that van Fraassen's partial rejection of the prop
erty-eigenvector link does not go far enough. I consider even a partial 
identification of classical properties of a macroscopic system with quantum 
states of that system to be problematic. 

For the question one cannot avoid is, are nontrivial superpositions of 
these quantum states also admissible pure states of the measurement de
vice? If so, then they are pure states in a wholly Pickwickian sense, since no 
observable distinguishes them from the corresponding mixtures of indicator 
states. If not, if the set of admissible pure states is restricted to the indicator 
states, then the account runs into the difficulty described in Section 9 .  7: this 
restriction on the set of admissible quantum states is incompatible with the 
application to the system of Schrodinger' s equation, and hence with treating 
it as a quantum system. This is not to say that classical systems admit no 
quantum-mechanical description, just that, to the extent that an indicator 
state is a classical property, it is implausible to treat it as a quantum state.* 

Von Neumann's consistency proof, in my view, has little to do with 
measurement or with the question of the classical horizon. If the system 
M + S evolves according to the Schrodinger equation, then the states llo ,  11+ ,  
and u__ of M cannot be regarded as classical indicator states of M, and so M 
cannot function as a measurement apparatus in the way the proof suggests. 

• See also Leggett (1986). This paper came to my attention too late to be discussed here. 
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What the proof shows is the possibility of a quantum amplification device or 
relay. 

The mere rejection of a particular identification of classical states with 
quantum states does nothing, however, to resolve the crucial and persistent 
question we are left with: what is the conceptual relation between the 
quantum world and the classical world? This is the touchstone, pyx, assay, 
ordeal, the High Noon, the Big Enchilada for all interpretations of quantum 
theory. 

Let us approach the question from the classical side, and ask: are there in 
the actual world systems which behave like classical systems? To reiterate a 
point made earlier, I am not asking whether there are systems whose behav
ior is governed by the laws of nineteenth-century physics. The question is: 
are there systems to which we can consistently ascribe properties, the set of 
which forms a Boolean algebra? If we permit ourselves the kind of idealiza
tion appropriate to any physical theory, the answer is clearly yes. Call these 
C-systems. It turns out that there are very small systems whose behavior 
with respect to certain C-systems differs markedly from that of other C-sys
tems. The most complete specification of the state of one of these small 
systems that we can obtain assigns probabilities to events associated with 
properties of the C-systems with which it interacts. Call these Q-systems. 

Are Q-systems and C-systems different in kind? Our best theory tells us 
that C-systems are made up of a great number of interacting Q-systems. 
Further, our theory of Q-systems includes an account of what happens 
when a number of Q-systems together form a larger syste�, and this ac
count has received exp�rimental confirmation. We are led to postulate six 
theses. 

(1) A C-system behaves like a large composite Q-system. 

(2) Differences between Q-systems and C-systems are to be attributed to 
the complexity of the latter. 

(3) With an increase of complexity of a Q-system classical behavior 
emerges. 

(4) Some systems large enough to be regarded as C-systems behave as 
follows: in an interaction between one of these and a Q-system S, 
classical properties of the C-system may be associated with pure 
states of S. 

(5) When this occurs, these properties of the C-system are realized prob
abilistically by the interaction. 
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(6) Together with the realization of a particular property of the C-sys
tem, there comes a localization of the state of S. (Conditionalization 
occurs .) 

With the exception of (6), I do not take these theses to be particularly 
controversial. Nonetheless, they are sometimes challenged, as will appear. 

The first thesis effectively restates the conventionality of the classical 
horizon. The others suggest that the differences between quantum and 
classical behavior which the complexity of a C-system brings about are of 
two kinds. (a) A description of a C-system in terms of properties is available 
which is not available in the case of a 0pure" Q-system (thesis 3). (b) The 
mode of interaction between a Q-system and a C-system differs from that 
between two Q-systems, at least in the way it is described (theses 4, 5, 6). 

From (a) it appears that, with an increase of complexity of a system, 
classical properties appear as emergent properties (and this phrase should 
perhaps be read as 0emergent properties"), supervenient on the quantum 
states. (To say that A-states are supervenient on B-states is just to say that a 
difference between A-states always involves a difference between B-states.) 
However, these classical properties need not be associated with particular 
quantum states; formally, the Boolean algebra of classical properties need 
not be embeddable in the Hilbert space which provides the quantum de
scription of the system. The facts summarized in (b) are familiar to all 
students of the measurement problem. 

I have no explanation of the differences between C-systems and Q-sys
tems. Theses (1) - (6) constitute a list of the problems such an account would 
have to resolve; to use Kant's nice phrase, the account itself remains ''set as a 
task." And it's not clear what such an account would look like. Whereas one 
might look to an analysis like the one provided by Daneri, Loinger, and 
Prosperi (see Section 9 .8) for an account of (3) consistent with (1) and (2), it is 
hard to see how (4)- (6) could be dealt with. In particular, what are we to say 
about (6), that is, about the way in which the emergence of properties in a 
classical system can °force" probabilistic and discontinuous changes on a 
Q-system coupled to it? 

Nor is this problem confined to the quantum event interpretation. Al
though these. theses have been formulated against the background of this 
interpretation, the problem they pose is the common sticking point for 
nearly all interpretations of quantum mechanics. One way to evade it is to 
reject (1) and (2) and to treat the quantum/ classical distinction as both sharp 
and self-evident. This is done, albeit in very different ways, by both Bohr 
and Wigner. As we saw earlier, another alternative is to adopt a modal 
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interpretation like van Fraassen's. He evades (2) by making no distinction 
between C-systems and Q-systems, and he denies (3) and (6). Value attri
butions to Q-systems are permissible; properties are not regarded as super
venient on quantum states. Rather they are underdetermined by them: a 
given quantum state delimits what is possible, specification of properties 
tells us what is actual. Theses (4) and (5) hold, in appropriately amended 
versions. Yet another suggestion, recently made by Bub, is that to describe a 
system as a C-system is to make the idealization that it consists of an infinite 
number of Q-systems. In the case of an infinite system, he argues, superse
lection rules come into play, giving rise to the classical behavior characteris
tic of C-systems. (This brief summary does not do justice to Bub's argument; 
see Bub, 1987.) Bub's account is compatible with the thesis of the conven
tionality of the classical horizon; its location depends on the point at which 
the idealization is made. Like van Fraassen's, however, this account falls 
foul of the difficulty raised in Section 9 .  7: if classical properties are asso
ciated with superselection subspaces, then it is not clear that an evolution of 
one into another can take place that is consistent with quantum theory. 

The rejection of these alternatives does nothing to solve the problem. 
However, not only do I have no explanatory account which encompasses 
theses (1)- (6), I also think that there is something very odd about requiring 
quantum theory to provide one. The oddity can be explained in this way. 

According to (the quantum event interpretation of ) quantum theory, a 
upure" Q-system is describable in terms of latencies with respect to a classi
cal horizon. That is to say, it is a system which interacts with certain C-sys
tems in specific, probabilistic ways. We have reason to tlunk that an increase 
in complexity of a system gives us an alternative way to describe it; we can 
describe it as having classical properties, that is, as a C-system. We may also 
hope to explain why these properties emerge. But note, to say that the 
system behaves like a C-system is to say that it is the sort of system in which 
probabilistic behavior may be induced by interactions with Q-systems. And 
this is where we came in. 

What else is there to say? I suggest that quantum theory can no more be 
called on to answer the question of why such probabilistic behavior occurs 
than the theory of geometrical optics can be required to explain why light 
travels in straight lines. Indeed, it is not clear what sort of explanation is 
being demanded; in each case the explanandum is the given from which the 
theory starts. As Chapters 3 and 4 showed, the Hilbert-space models which 
quantum theory uses are ideal for representing the probabilistic behavior of 
systems with respect to certain families of events. Given any specific piece of 
quantum behavior, quantum mechanics will happily provide us with a 
model within which it can be fitted. Is it also required to justify the use of 
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these models? If ''to justify'' here means more than ''to show that they save 
the phenomena," and what is required is some deeper analysis warranting 
their use, then it cannot do so. 

This argument is not intended to provide "a tranquilizing philoso
phy, . . .  a gentle pillow for the true believer from which he cannot easily 
be aroused" (Einstein, letter to Schrodinger, May 1928, on the Copenhagen 
interpretation; quoted in Bub, 1974, p. 46). It is an argument which claims 
that the scope of quantum theory is limited by its own structure. 

Landau and Lifschitz (1977, p. 3) write, 

Thus quantum mechanics occupies a very unusual place among physical theories: it 
contains classical mechanics as a limiting case, yet at the same time it requires this 
limiting case for its own formulation. 

I suggest that the explanation of how this can be so, how we can use the 
limiting cases of quantum theory in order to formulate the theory, cannot be 
given within the theory itself. It will have to await the arrival of a new 
physical theory, a theory which is not formulated against a classical horizon 
in the way that quantum mechanics is . 

Can there be such a theory? 
Probably. 
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Gleason 's Theorem 

Gleason's theorem is of fundamental importance, not only for the theory of 
Hilbert spaces, but for the interpretation of quantum mechanics. Though 
the original proof, published in 1957, was mathematically very difficult, in 
1984 an .(.(elementary proof" of the theorem was given by Cooke, Keane, 
and Moran (whom I shall refer to collectively as uCKM"), and it is repro
duced below. For the amateur mathematician, even this proof is arduous 
enough. To ease the reader's task I have added a commentary consisting 
partly of explanations of unfamiliar terms, but mostly of answers to the 
questions I asked myself as I worked through the proof. These questions 
were of two kinds: uWhy is this move being made here?" and uHow does 
this follow?" I assume a familiarity with Section 5 .6  of the text, and with the 
vocabulary and notation of set theory (see, for example, Monk, 1969).CKM 
also use one theorem from topology which I quote but do not explain. The 
theorem guarantees the existence of the limit of certain sequences; the 
reader will have to take it on trust, but in context the intuitive content of its 
conclusion will be clear. 

I have not altered the symbols used by CKM to make them conform to 
those used in the text and in my commentary, but since the symbols in the 
proof are all defined on first use, this should cause no problems; the reader 
need only be aware that such differences exist. 

An Elementary Proof of Gleason's Theorem 
by Roger Cooke, Michael Keane, and William Moran 

The following proof is reproduced from the Mathematical Proceedings of  the Cambridge Philo
sophical Society 98 (1985), pp. 1 1 7- 128. Copyright © 1985 Cambridge Philosophical Society. 
Reprinted with the permission of Cambridge University Press. 
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Abstract 

Gleason's theorem characterizes the totally additive measures on the closed 
subspaces of a separable real or complex Hilbert space of dimension greater 
than two. This paper presents an elementary proof of Gleason's theorem 
which is accessible to undergraduates having completed a first course in real 
analysis. 

Introduction 

Let H be a separable Hilbert space over the real or complex field. A (normal
ized) state on H is a function assigning to H the value 1 ,  assigning to each 
closed subspace of H a number in the unit interval, and satisfying the 
following additivity property: If any given subspace is written as an orthog
onal sum of a finite or countable number of subspaces, then the value of the 
state on the given subspace is equal to the sum of the values of the state on 
the summands. States should be thought of as 'quantum mechanical proba
bility measures'; they play an essential role in the quantum mechanical 
formalism. For an exposition of these ideas we refer to Mackey (1963). 

Examples of normalized states are obtained by considering positive self
adjoint trace class operators with trace 1 on H. Such operators correspond to 
preparation procedures in quantum mechanics. If A is such an operator, 
then it is easy to see that we can define a state by associating to each one 
dimensional subspace generated by a unit vector x E H  the inner product 
(Ax,x) and extending to subspaces of dimension greater than one by count
able additivity. States of this type are called regular states. 

In his course on the mathematical foundations of quantum mechanics 
Mackey (1963) proposed the following problem: determine the set of states 
on an arbitrary real or complex Hilbert space. This problem was solved by 
Gleason (195 7) and the principal result, known as Gleason's theorem, states 
that every state on a real or complex Hilbert space of dimension greater than 
two is regular. Gleason's proof uses the representation theory of 0(3), and 
relies on an intricate continuity argument. Because of the role which Glea
son's theorem plays in the foundations of quantum mechanics, there have 
been several attempts to simplify its proof. Using elementary methods, Bell 
(1966) proved a special case of the theorem, namely, that there exist no 
states on the closed subspaces of a Hilbert space of dimension greater than 
two taking only the values zero and one. Kochen and Specker (1967) proved 
a similar result for states restricted to a finite number of closed subspaces. 
Piron (1976) produced an elementary proof of Gleason's theorem for the 
special case that the state is extreme (i.e. assigns the value 1 to some one 
dimensional subspace). 

In this article we give an elementary proof of Gleason's theorem in full 
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generality. Although this proof is longer than Gleason's proof, we believe 
that it contributes to the intuitive understanding of the underlying reasons 
for the validity of the theorem. The structure of the argument is as follows. 
In § 1 we show that it is enough to handle the case H = IR3• This was part of 
Gleason's original argument, and is well understood; the essential difficulty 
of the proof is the treatment of the case H = IR3• For this purpose it is 
convenient to study a certain class of real-valued functions on the unit 
sphere of IR3, called frame functions. §§ 2 and 3 are devoted to an exposition 
of the properties of frame functions and the statement of the theorem in the 
case of IR3 in terms of frame functions. § 3 also contains two 'warm-up 
theorems' whose contents were essentially known to 19th century mathe
maticians. Coupled with a basic lemma in § 4 (essentially due to Gleason 
and Piron), they yield a new proof for the extreme case, which is given in § 5. 
In § 6 we show that a weak form of continuity in the general case follows 
from the result of § 5, and in § 7 we treat the general case. The proofs in §§ 
2 - 7 are accessible to undergraduates who have completed a first course in 
real analysis. 

1. Reduction to H = �3 
Let H be a real or complex separable Hilbert space, and let L be the set of 
closed subspaces of H. If A E L, and B E L, then we write A 1- B if A and B are 
orthogonal. For Ai E L, i E I, VieiAi denotes the smallest closed subspace 
containing Ai for all i E I. If x is a vector in H, then x denotes the one 
dimensional subspace generated by x. 

Definition. A function p : L � [O, l ]  is called a state if for all sequences 
{Ai}f== 1 ,  Ai E L, i = 1 . . .  ; with Ai 1- A; , for i =I= j :  

p (\! A;) = f p(A;) . 
1= 1 i==l 

Definition. p is  called regular if there exists a self-adjoint trace class opera
tor A on H such that for all unit vectors x E H 

p(x) = (Ax,x) . 

LEMMA. The following statements are equivalent: 
(i) p is regular. 
(ii) There is a symmetric continuous bilinear form B on H such that 

p(x) = B(x,x). 

Moreover, both A and B are uniquely determined in this way by p. 
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Proof. See Halmos (1957, §§ 2 and 3). 1 

LEMMA. If the restriction of p to every two-dimensional subspace of H is 
regular, then p is regular (the restriction need not be normalized). 

Proof. For each two-dimensional subspace E of H we can find a symmetric 
continuous bilinear form BE such that BE(x,x) = p(x) (x E E, llxll = 1) . For 
l lxll = l lyl l = 1, choose a two-dimensional subspace E(x,y) containing x and y 
and define 

B(x,y) = BE(x,y). 

It is straightforward to check that B can be uniquely extended to a symmetric 
continuous bilinear form on H, and that p(x) = B(x,x) (llxll = 1) . 1 

We shall call a closed real-linear subspace of H completely real if the inner 
product on this real linear subspace takes only real values. 

LEMMA. If p is a state on a two-dimensional complex Hilbert space H, and if p is 
regular on every completely real subspace, then p is regular. 

Proof. We first show that there is a one-dimensional subspace x such that 
p(x) is maximal. Put 

M = sup p(x). 
:rEH 

Choose a sequence Xn E H such that limn--+aoP(Xn) = M. By passing to a sub
sequence, assume limn_.aoXn = x. Clearly there exist On such that ( ei8"Xn ,x) is 
real and nonnegative, and passing again to a subsequence, we may assume 
that limn_.ao(}n = 8. By continuity of the scalar product, the limit ( ei8x,x) = 
ei811xll2 is also real, and hence ei8 = 1 .  Thus limn_.aoei8"Xn = x, and for each n 
the vectors x and ei8"Xn are in the same completely real subspace. By uniform 
equicontinuity of regular states it follows that p(x) = M. 

Now for any y E H  there exists (} such that (x,ei8y) is real; hence 
p(eiBy) (= p(y)) is equal to 

M( (x,ei8y) )2 + (1 - M)(l - ( (x,ei8y) )2) 

= Ml (x,y) l2 + (1 - M)(l - l (x,y) l2), 

and p is  therefore regular. I 
THEOREM. If every state on IR3 is regular, then every state on a real or complex 

separable Hilbert space H of dimension greater than two is regular. 



Gleason 's Theorem 325 

Proof. Every state on H necessarily induces a continuous symmetric bilin
ear form on every completely real three-dimensional subspace, and every 
completely real two-dimensional subspace can be embedded in a com
pletely real three-dimensional subspace. It follows that the restriction of a 
state on H to any two-dimensional completely real subspace is regular, and 
from the above lemmata it follows that every state on H is  regular. I 

2. Frame Functions 

In this section, we define frame functions, collect some of their properties, 
and give examples. Denote by S the unit sphere of a fixed three-dimensional 
real Hilbert space. If s and s' are elements (i.e. vectors) of S, the angle 
between s and s' is designated by O(s,s'). If O(s,s') = n/2, we write s 1- s'. 

Definition. A frame is an ordered triple (p,q,r) of elements of S such that 
p 1- q, p 1- r and q 1- r. 

Given a frame (p,q,r), each point in S (and in the vector space) can be 
uniquely expressed as xp + yq + zr, with x,y,z E IR. We call (x,y,z) the frame 
coordinates of the point with respect to the given frame. 

Definition. A frame function is a function f: S � IR such that the sum 

f(p) + f(q) + f (r) 

has the same value for each frame (p,q,r). This value, called the weight of f, 
will be denoted by w(f ). 

The following obvious properties of frame functions will be useful in the 
sequel. 

(P 1) The set of frame functions is a vector space, and 

w(af) = aw(f), 

w(f + g) = w(f) + w(g) (a E IR, f, g frame functions). 

(P2) If f is a frame function, f(- s) = f(s) (s E S). 
(P3) If f is a frame function, and if s, t, s', t' E S  all lie on the same great circle 

and s 1- t, s' 1- t', then 

f(s) + f(t) = f(s') + f(t'). 
To illustrate the use of P3 we prove: 

(P4) Let f be a frame function with sup f(s) = M < oo and inf f(s) = m > - oo. 
Let c; > 0 and let s E S with f(s) > M - c;. Then there is t E S with s 1- t and 
f(t) < m + e. 
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Proof. Given s with f(s) > M - e, choose � > 0 such that f(s) > M - e + �I 
and t' such that f(t') < m + �- Then s and t' determine a great circle on S, and 
if t, s' are chosen on this great circle with s 1- t, s' 1- t', P3 yields: 

f(t) = f(s') + f(t') - f(s) < M + m + � - (M - e + �) = m + c;. 1 
Next we give examples of frame functions. Obviously, constants are 

frame functions. If we fix a vector p0 E S, then for any frame (p,q,r) the 
frame coordinates of p0 with respect to (p,q,r) are given by: 

and the sum of the squares of these three numbers is one since p0 E S. Hence 

is a frame function, with w(f) = 1 .  Next, fix a frame (p0 ,q0 ,r0) and a triple 
(a.,p,y) of real numbers. Let (x0 ,y0 ,z0) denote the frame coordinates of a point 
s E S  with respect to (p0 ,q0 ,r0) . By the above and by P1 , 

f(s) = ax� + PY� + yz� (*) 

is a frame function, with w(f) = a +  P + y. Now recall that if Q is any 
quadratic form on our Hilbert space, then there exists a frame (p0 ,q0 ,r0) and 
a triple (a.,p,y) of real numbers such that the restriction of Q to S is given by 
(*). Hence we have proved the following result: 

PRoPosmoN. Let A be a linear operator from the given three dimensional 
Hilbert space to itselt and let 

Q(s) = (s,As ) 

be the quadratic form associated with A. Then the restriction of Q to S is a frame 
function whose weight is the trace of A. 

Note that p0 ,q0 ,r0 are eigenvectors of t(A + AT) with respective eigen
values a, p, y. 

Our last example shows that frame functions can be wildly discontin
uous. Let l/f :  IR � IR be any map such that l/f(X + y) = l/f(X) + 'll(y) for all 
x,y E IR. Then if f is a frame function, so is l/f(f), and l/f can be chosen to have 
arbitrary values on a basis of IR over Q. Of course Cauchy's classical theorem 
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on functional equations tells us that if l/f is bounded on an interval, then 
l/f(X) = ex for some constant c. This example shows that the restriction to 
bounded frame functions in the following theorem is essential. 

3. Statement of Gleason 's Theorem 

We now state the result to be proved. 

GLEASON'S THEOREM. Let f be a bounded frame function. Define 

M = sup f(s) 

m = inf f(s) 

a = w(f) - M - m. 

Then there exists a frame (p,q,r) such that if the frame coordinates with respect to 
(p,q,r) of s E S are (x,y,z), 

f(s) = Mx2 + ay2 + mz2 

for all s E S. 
In particular, the proposition of § 2 provides all bounded frame functions. 

We remark that the above representation implies that m < a < M; if m < 
a <  M, then the frame (p,q,r) is unique up to change of sign; if m < a <  M 
then p is unique up to change of sign, and similarly for m < a < M. 

In order to clarify the idea behind our proof of the above result, we now 
state and prove a theorem which might be called an ' abelianized' version of 
Gleason's theorem. Its content was essentially known to 19th century 
mathematicians. 

'WARM-UP' THEOREM I. Let f: [0, 1]  � IR  be a bounded function such that for all 
a, b, c E [0, 1 ]  with a + b + c = 1, f(a) + f(b) + f(c) has the same value w = 
w(f). Then f(a) = (w - 3f(O))a + f(O) for all a E [O, l ] .  

Proof. By subtracting a constant, we may assume f(O) = 0. Now take c = 0, 
b = 1 - a to obtain 

f (a) = w - f(l - a), 

and then set c = 1 - (a + b) to obtain 

f(a) + f(b) = w - f(l - (a + b)) = f(a + b) 
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for all a,b,a + b E [0, 1] . This implies immediately that 

f(a) = wa 

for all rational a, and for general a E [0, 1] and n > 1 with na < 1 we have 

f(na) = nf(a) . 

Hence as a tends to 0, f(a) must tend to 0 because f is bounded, and thus 

fun f(a + b) = f(b) 
a-+0 

for all b E [0, 1] . Thus f(a) = wa for all a E [0, 1] . I 
The above formulation was chosen in order to make the analogy with 

Gleason's theorem clear. Actually, we shall use the following modified 
version in our proof. 

'WARM-UP' THEOREM II . Let C be a finite or countable subset of (0, l ). Let 
f: [O, 1 ]\ C � IR be a function such that 

(1) f(O) = 0. 
(2) If a, b E [0,1 ]\C and a < b, then f(a) < f(b). 
(3) If a, b, c E [0, 1]\C and a +  b + c = 1, then f(a) + f(b) + f(c) = 1 .  

Then f(a) = a  for all a E [0, 1]\C. 

Proof. The set 

C = {re: c E C, r rational} U {r(l - c): c E C, r rational} 

is at most countable, so that there exists a point a0 E (0, 1 )  with a0 � C. Now 
if r is a rational number such that ra0 E [0, 1], then neither ra0 nor 1 - ra0 
belong to C, since a0 � C. As in the proof above, we conclude that 

f (ra0) + f (r' a0) = f ( (r + r')a0) 

for rational r, r' with ra0 , r' a0 , (r + r')a0 E [O, 1 ], and hence 

f (ra0) = rf (a0) 
for rational r with ra0 E [0, 1] .  It now follows from (2) that f(a) = a  for all 
a E [0,1 ]\C. 1 
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In this paragraph, we prove a basic lemma to be used in the following two 
sections. We fix a vector p E S, to be thought of as the north pole, and use the 
following notation. 

N = {s E S : O(p,s) < n/2} = 'northern hemisphere', 

E = {s E S : s 1- p} = 'equator' . 

For each s E N, set 

l(s) = cos28(p,s) = 'latitude' of s, 

and define for 0 < l < 1 :  

Li = {s E N : l(s) = l} = 'Ith parallel' . 

Thus L1 = {p} and L0 = E. 
For s E N\{p}, there is a unique vector sl. E N  such that s 1- sl. and 

l(s) + l(sl.) = 1 (sl. is the ' coldest' vector orthogonal to s) . The great half circle 
D s defined by 

(s E N\{p}) 

will be called the descent through s; it is the great circle through s which has s 
as its northernmost point. (For e E E, De = E). We can now state the basic 
lemma: 

BASIC LEMMA. Let f be a frame function such that 

(1 )  f(p) = SUPs esf(s), and 
(2) f(e) has the same value for all e E E. 

Then if s E N\{p} and if s' E Ds 

f(s) > f(s') . 

Proof Set f(p) = M. Property P4 implies that 

f(e) = m = inf f(s) (e E E). 
s ES 

Let s E N\{p} and s' E D5 • Choose t, t' E Ds with s 1- t, and s' 1- t' . By prop
erty P3 , 

f(s) + f(t) = f(s') + f(t'). 
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And using the fact that t E E we obtain 

f(s) - f(s') = f(t') - f(t) = f(t') - m > o. 1 
Later on we shall need an 

APPROXIMATE VERSION OF THE BASIC LEMMA. Let f be a frame function and e > 0 
such that 

(1)  f(p) > SUPsesf(s) - e, and 
(2) f(e) has the same value for all e E E. 

Then if s E N\{p} and if s' E D5 , f(s) > f(s') - c;. 
Proof. As above, property P4 yields 

f(e) < m + e (e E E), 

and with exactly the same choices of t and t': 

f(s) - f(s') = f(t') - f(t) > f(t') - m - e > - e. 1  

5. Simple Frame Functions 

In this paragraph, we show that Gleason's theorem is true under two addi
tional hypotheses on frame functions. We begin with a geometric lemma 
due to Piron (1976). 

GEOMETRIC LEMMA. Let s, t E N\{p} such that l(s) > l(t) . Then there exist n > 1 
and s0 , • • •  , Sn E N\{p} such that So = s, Sn = t, and for each 1 < i < n: 

Figure A1. 1 
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P ---����-----�-----� t-s2 5=50 

Figure A1. 2  

Proof To facilitate the calculations, we transfer this problem to the plane 
tangent to S at p by projecting each point of N onto this plane from the origin 
(center of the sphere S) . Points of the same latitude on S are projected onto 
circles centered at p, and the descent through s becomes the straight line 
through s tangent to the latitude circle at s (see Figure Al . 1  ) .  In the simplest 
case, s and t lie on a ray from the origin. In this case we may choose n = 2 
and pick s1 as in Figure Al .2. Now fix s0 = s = (x,O) (in IR2 coordinates) and 
n > 1 .  Choose s1 . . .  Sn successively such that si E Ds;- i and such that the 
angle between si and si+1 in the plane is n/n (see Figure Al .3). Then Sn has 
coordinates (- y,O) and we wish to show that y - x � 0 as n � oo. Let dk be 
the distance of sk from the origin. Then d0 = x and dn = y. For each i we have 

di+1/di = 1/cos(n/n), 

and hence 

n d- 1 1 
1 < y/x = dn/do = n -d,--�-1 = 

(cosn/n)" < -(l ___ n_2_/_2_n_2)-n ' 

which approaches 1 as n tends to infinity. The lemma is proved. I 
We now come to the main result of this section. 

THEOREM. Let f be a frame function such that for some point p E S 

(1 )  f(p) = M :  = SUPsesf(s), 
(2) f(e) takes the constant value m for all e E E. 

Then f(s) = m + (M - m)cos28(s,p), for all s E S. 

Proof By property P 4 ,  m = infsesf(s), so that if M = m the theorem is true. 
If M -=I= m, then we may assume that m = 0 and M = 1 (replace f by 
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Figure A1.3  

(1 /(M - m))(f - m)) . Let s,t E N\{p} with l(s) > l(t) . Then by the geometric 
lemma and the basic lemma of the preceding section, we have 

f(s) > f(t) . 

For each l E [0,1 ], define: 

f(l) = sup{f(s) : s E N, l(s) = l}, 

[(l) = inf {f(s) : s E N, l(s) = l} . 

- -
Then f (1 ) = [(l )  = 1,  f(O) = [(O) = 0, and if l, l' E [O, l ]  with l < l', it follows 
from the above that 

f (l) < [(l'). 
Hence the set C :  = {l : f(l) > [(l)} is at most countable, as 

L <f(l> - t<I>> < t . 
I E C  

For l E [0,1 ]\C, define 

f (l) = f (l) = [(l) . 

If l , l', l" E [0, 1 ] with l + l' + l" = 1,  then there exists a frame (q,q',q") with 
l(q) = l, l(q') = l', l(q") = l" . That is, the function f satisfies the hypotheses of 
Warm-up Theorem II, and we conclude that 

f(l) = l for l E [O, l ]\C. 
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But this implies that C = 0, so that for each s E N, 

f(s) = f(l(s)) = l(s) = cos28(s,p). 

The theorem now follows from property P2 • I 

6. Extremal Values 

In this section we use the results of the preceding section to show that 
bounded frame functions attain their extremal values. Let f be a bounded 
frame function, 

M = sup f(s), 
s E S  

and choose a sequence Pn E S, n > 1 , such that limn_.aof(Pn) = M. Since S is 
compact, we may assume by passing to a subsequence that Pn converges, 
and we set 

P = lim Pn · 
n--+ao 

Assume also Pn E N for all n. Our goal is to show that f(p) = M. 

STEP 1 .  Changing coordinates 
For each n, we would like to look at Pn as the north pole, instead of p. We 

do this as follows. Choose and fix a point e0 E E and let C0 denote the great 
circle segment from p to e0 • Letpn : S � S be the rigid motion of S which takes 
p to Pn and some point, say en , on C0 to p. Obviously 

lim Cn = p. 
n--+ao 

Now define the sequence gn of frame functions by setting 

(s E S). 

We note the following properties: 

(1 ) limn--+aogn(P) = M. 
(2) M = SUPsesgn(s) and m = infsesf(s) = infsesgn(s) for each n > 1 .  
(3) gn(cn) = f(p) for each n > 1 .  
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STEP 2. Symmetrization 
Denote by p : S � S the right-hand rotation by 90 ° of S around the pole p. 

For each n > 1, set 

(s E S). 

The sequence hn of frame functions (P1) has the following properties: 

(1) SUPseshn < 2M for all n > 1 . 
(2) infseshn > 2m for all n > 1 .  
(3) limn-+ahn(P) = 2M. 
(4) Each hn is constant on E (by P3). 
(5) hn(cn) < M + f(p) for all n > 1 .  

STEP 3. Limit 
We consider each hn as a point in the product space 

[2m,2M]5. 

Under the product topology, this space is compact, so that the sequence hn 
has an accumulation point, which we denote by h. Then: 

(1 ) h(p) = 2M = SUPsesh(s) .  
(2) h is constant on E. 
(3) h is a frame function, since the frame functions form a closed subset of 

[2m,2M]5. 

By the theorem of § 5, h is  continuous (and has a special form, which does 
not interest us here). 

STEP 4. f(p) = M 
Choose E > 0, and choose c E C0 such that h(c) > 2M - E. Applying the 

approximate version of the basic lemma to hn and noting that we can reach c 
from en in two steps (easiest case of the geometric lemma) for sufficiently 
large n, we obtain 

with �n > 2M - hn(P) � 0 as n � oo. Now choose a subsequence n; � oo 
such that 

lim hn.(c) > 2M - E. 
I j-+ao 
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It then follows that (step 2, 5) 

so that f(p) > M - E. Hence we have proved: 

THEOREM. Bounded frame functions attain their extremal values. 

7. The General Case 

We now prove the theorem stated in § 3. Choose p E S such that f(p) = M, 
and r E S, r 1- p, such that f(r) = m. This is possible because of P4 and the 
theorem of §6. Choose q orthogonal to p and r, and set f(q) = a. We may 
assume that m < a < M since otherwise the result of §4 applies to f or -f 
and the proof is finished. As in §6 we let p, q, f denote the 90 ° right-hand 
rotations about p, q, and r. 

We shall now use the theorem of § 5 to obtain information concerning f. It 
is sufficient to know that f belongs to the space of quadratic frame functions. 
Taking p as the north pole, the function 

f(s) + f(ps) 

takes the constant value m + a on the equator, and attains its supremum 2M 
at p. Letting 

g(s) = M cos28(s,p) + m cos28(s,r) + a cos28(s,q), 

we have from § 4 

f(s) + f(ps) = 2M cos28(s,p) + (m + a)(l - cos28(s,p)) 

= g(s) + g(ps), 

f(s) + f(fs) = g(s) + g(fs) 

(*) 

(the second equation follows by analogous reasoning, since -f is a frame 
function taking its supremum - m at r) . 

Now let (x,y,z) denote the (p,q,r)-frame coordinates of s E S. 

Claim. (a) If either x = y, x = z, or y = z, then f(s) = g(s); 
(b) If either x = -y, x = - z, y = -z, then f(s) = g(s). 
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Proof of claim. (a) Note that f(x,y,z) = (-y,x,z); p(x,y,z) = (x, -z,y) . Ap
plying these operations in succession, one verifies: 

ppf(x,x,z) = (-x, -x, -z), 

pff(x,z,z) = (-x, -z, -z), 

Fpppf(x,y,x) = (-x, -y, -x). 

Suppose s = (x,x,z). Since f(s) = f(-s), g(s) = g(- s) (by property P2), we 
conclude from (*): 

f(s) + f(fs) = g(s) + g(fs), 

f (fs) + f (pfs) = g(fs) + g(pfs), 

f (pfs) + f (ppfs) = g(pfs) + g(ppfs); 

subtracting the second equation from the sum of the first and third, we 
conclude that f (s) = g(s) . The other two cases under (a) are proved similarly. 

(b) Suppose s = (x, -x,z); then f(x, -x,z) = (x,x,z), which lies on the great 
circle x = y. From (a) we know that f (fs) = g(fs), and from (*) we conclude 
that also f (s) = g(s). The other two cases in (b) are proved similarly, and the 
claim is proved. 

Now define h :  = g - f. h is  clearly a frame function, and the claim implies 
that h(p) = h(q) = h(r) = O, so that the weight of h is  zero. We also know that 
h is zero on the six great circles x = + y, x = + z, y = + z. The proof is com
pleted by showing that h is identically zero. Assume that h is  not identically 
zero; then by §5 we may put 

M' : = sup h = h(p'), 

m' : = inf h = h(r'), 

a' : = h(q'); q' 1- r', q' 1- p' . 

The argument is broken into four steps. 
(i) M' = - m' : Assume that m' > -M'. Then a' < 0, and by P3 , a' is the 

maximal value of h on the great circle orthogonal to p' . However, the great 
circle x = y must intersect the former great circle in at least two points, and at 
these two points h must take the value zero. Considering - h, we derive a 
contradiction from the assumption m' < -M'  by the same argument. 



Gleason 's Theorem 337 

(ii) a' = 0: This follows immediately from (i) and the fact that h has 
weight zero. 

(iii) h(x',x',z') = M '(x '2 - z '2), where (x',y',z') denote the (p',q',r')-frame 
coordinates . Using the previous two steps, this follows from the claim, upon 
substituting h for f and M'(x '2 - z '2) for g. 

(iv) On the great circle x' = y', h takes the value zero at exactly the 
following four points: (x',x',x'), (x',x',-x'), (-x',-x',x') and (-x',-x',-x'). 

The great circles x = y, x = z and y = z intersect in the two points: (x,x,x) 
and (-x,-x,-x). As h  is zero on these great circles, we see that the great 
circle x' = y' must pass through the points (x,x,x) and (-x, -x, -x), since 
otherwise there would be six points on x' = y' at which h takes the value 
zero. The great circles x = - y  and x = -z intersect at (x,-x,-x) and 
(-x,x,x) . x' = y' must also intersect these points, since otherwise it would 
intersect x = -y and x = -z at four points, making six points at which h 
would take the value zero on x' = y' . However, there is only one great circle, 
passing through the four points (x,x,x), (-x, -x, -x), (x, -x, -x) and (-x,x,x), 
namely y = z. It follows that y = z and x' = y' describe the same great circle, 
and therefore h must take the value zero at all points of x' = y' . This contra
dicts step (iv) and the theorem is proved. I 

Commentary on the CKM Proof 
Commentary on §1 

The goal of this section is the theorem appearing at the end of it. The strategy 
of the proof is this: Assume that every state on IR3 is regular. Consider a 
Hilbert space 'JI on which a state p is  defined. Then the restriction of p to any 
completely real three-dimensional subspace L(3) of 'JI is a state Pi on L(3). By 
our assumption Pi is regular. The restriction of Pi to any two-dimensional 
subspace L(2) of L(3) is therefore a regular state on L(2). L(2) is, of course, also 
completely real. 

Thus, under the assumption, the restriction of p to any completely real 
two-dimensional subspace of 'JI is regular. But we can also show: 

(1 ) If Pc is a state on a two-dimensional complex space C2 and Pc is regular 
on every completely real subspace of C2, then Pc is regular (lemma 2). 

(2) If the restriction Pc of p to every two-dimensional (complex) subspace 
of 'JI is regular, then p is  regular (lemma 3). 

The theorem follows. 
Further notes. A bilinear form on 'JI is a function B mapping pairs (x,y) of 

vectors into (complex) numbers, such that, for all x, y E 'JI, c E C, 
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B(x,y + z) = B(x,y) + B(x,z) 

B(x + z,y) = B(x,y) + B(z,y) 

B(cx,y) = cB(x,y) 

B(x,cy) = c*B(x,y) 

B is symmetric if, for all x, y E 'JI, 

B(x,y) = [B(y,x)]* 

The restriction of B to pairs of vectors of the form (x,x) yields a quadratic form 
Q (see §2), such that 

Q(x) = B(x,x) 

It turns out that a bilinear form B is completely determined by its quadratic 
form Q (Halmos, 1957, p. 13). Note also that B is symmetric if and only if Q is 
real. 

The proof of the first lemma is given in Halmos (1957) §§22 - 24.  The 
move from regular states to bilinear forms achieves three things. First, we 
need bilinear (rather than quadratic) forms in the proof of Lemma 2.  Sec
ondly, regular states are already seen to be continuous functions (Lemma 3). 
Third, the constraint on states is put in terms of a function on the vectors 
within the space, rather than an operator on that space. Thus when we claim 
that the restriction of Pi to L(2) inherits the regularity of Pi on L(3) (see 
above), there is no problem of the kind that might arise were the regularity 
of the states just defined in terms of an operator on L(3). 

A closed real-linear subspace of 'JI forms a vector space over the field of 
the reals (see Section 1 .  9). 

Lemma 3 is the hardest of the three. It contains two arguments, the first of 
which is a continuity argument to show that, under the assumptions of the 
lemma, there is a vector x such that p(x) is the supremum of p. (For the 
definition of supremum, see Section 7.3.) The argument uses a topological 
fact about compact sets (see Kelley, 1955, p. 135): any infinite sequence {xn} 
of elements of a compact set X contains a converging subsequence {xn;} 
which converges to a point x in X (Kelley, 1955, p. 136). This property of 
compact sets is appealed to again (twice) in §6; I will refer to it as the 
accumulation point property, since x is called an accumulation point in X. 
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CKM consider a sequence { Xn} of normalized vectors such that p(xn) � M. 
Since the unit sphere S of 'JI is compact, there is an accumulation point x in S 
such that some subsequence {xn;} of {xn} converges to x, and, of course, 
p(xn; ) � M. (From now on it is this subsequence which is referred to as 
{xn} .) A further move takes us to a sequence {ei8"Xn} of vectors in S such that, 
for each n, the vectors x and ei8"Xn are in the same completely real subspace. 
(This uses the fact that, for any complex number c, there exists an angle e 
such that cei8 = a, where a is real and a2 = l c l 2; see Section 1 .5 .) The as
sumption of the lemma can then come into play, together with the fact that 
every regular state p is  continuous (see Lemma 1 ). This continuity ensures 
that p(x) = fun p(ei8"Xn)· Since, for each n, Xn = ei8"Xn, we obtain 

p(llin Xn) = p(x) = fun p(xn) = M 

In the second argument CKM show that, for an arbitrary vector y, p(y) is 
given by an expression involving just y, x, and M. The vectors x and y are 
assumed to be normalized, and, although the main result does not depend 
on it, so is p: that is, CKM assume that p('H) = 1; hence, for any xJ. orthogo
nal to x, p(xJ.) = 1 - M. For any angle (}, since ei8 is a scalar, y contains ei8y. 
We choose (} so that (x lei8y) is real; then within the two-dimensional com
plex space 'JI, there is a completely real two-dimensional space 'JI R contain
ing both x �nd ei8y. Let xJ. be a normalized vector in 'JI R orthogonal to x; then 
there exist real numbers b1 and b2 such that b� + b� = 1 and 
ei8y = b1x + b2xJ.. Note that b1 = (x lei8y) and b2 = (xJ. lei8y) . The restriction 
of p to 'HR is again a normalized state, and by the assumption of the lemma 
there is a self-adjoint trace-class operator A on 'JI R such that, for all normal
ized v in 'HR , p(v) = (Aviv) . Furthermore, we can show that, since A is a 
trace-class operator on 'JI R and ( Aviv)  is at a maximum when v = x, x is  an 
eigenvector of A. Since 'JI R is two-dimensional and A is self-adjoint, xJ. is 
also an eigenvector of A. For any normalized eigenvector v of A with 
corresponding eigenvalue a, we have ( Aviv)  = a; hence the eigenvalues of 
A corresponding to x and xJ. are, respectively, M and 1 - M. 

As Cooke has pointed out to me (pers. com., May 1988), the neatest way 
to obtain the result of the lemma is now to use the remark following equa
tion (*) in §2 . To see this, consult the commentary on §2 and consider the 
frame { x,xJ.} in the two-dimensional space 'JI R .  The coordinates of ei8y with 
respect to this frame are (x lei8y )  and (xJ. lei8y) , respectively, and, as we have 
noted, (x l ei8y) 2 + (xJ.lei8y) 2 = 1 .  By plugging in these coordinates and the 
eigenvalues of A into the (two-dimensional version of ) equation (+) of the 
commentary on §2, we get: 
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p(y) = p(eiBy) = (AeiBy leiBy) 
= M( (x leiBy)2) + (1 - M)( (xJ. l eiBy) 2) 
= M( (x leiBy) 2) + (1 - M)(l - (x leiBy) 2) 
= Ml (x ly) 1 2 + (1 - M)(l - I (x ly) 1 2) 

This expression defines a continuous real-valued quadratic form Q(y) on 'JI, 
and hence a symmetric continuous bilinear form B(y,z), and so the lemma is 
proved. 

Commentary on §2 

The injunction after the equation marked (*) may well tax the resources of 
memory. The result can be quickly shown for quadratic forms on IR3, as 
follows. 

To each quadratic form Q on IR3 there corresponds a unique symmetric 
bilinear form B on IR3, such that B(x,y) = B(y,x), and a symmetric operator A 
on IR3 such that, for all s E IR3, 

Q(s) = B(s,s) = (s lAs) 

(Halmos, 1957, §24; the properties of symmetric operators on a real space 
resemble those of Hermitian operators on a complex space: see Section 1 .2). 
Now let (p,q,r) be an arbitrary basis for lR3• Then for any s E S  there are x,y,z 
such that s = xp + yq + zr. Hence 

Q(s) = (s lAs) = (xp + yq + zrlA(xp + yq + zr))  

= x2(p 1Ap) + y 2(q1Aq) + z2(r lAr) 

+ xy((plAq) + (qlAp))  + yz((qlAr) + (r lAq)) 

+ zx((r lAp) + (plAr)) 

Now choose p0 ,  q0 ,  r0 to be a set of orthonormal eigenvectors of A; we 
know that such a basis exists because A is symmetric (see Sections 1 .2 and 
1 . 1 4). The cross terms in the expression above now vanish and we obtain: 

<+> 

where a, p, y are the eigenvalues of A. Further, 

w(Q) = a + p + y = Tr(A) 
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In the proposition at the end of the section, CKM treat a more general 
case, since A is not necessarily symmetric. To extend the above proof to the 
general case, we need to consider the symmetric operator !(A + AT) (see 
Fano, 1971,  p. 68). 

Further notes. (1 ) Property P4 plays a large part in what follows; note that it 
yields an inequality: f (t) < m + e. 

(2) Compare the frame function f(s) = cos20(p0 ,s) with equation (4 .4). 

Commentary on §3 

To recognize the theorem given by CKM at the beginning of this section as 
Gleason's theorem, note that (1 ) every state p on IR3 is a bounded frame 
function; we must also show (2) that from the conclusion of the CKM 
theorem it follows that there is a symmetric operator A on IR3 such that, for 
every s E S, p(S) = f(s) = (Asls) . (Recall that s is the ray containing s.) (2) is 
the converse of the proposition of §2. Proof by construction: Let 
A = MP p + aP q + mPr , where p P ' p q I pr project onto p, q, r, respectively. If 
the coordinates of s with respect to (p,q,r) are (x,y,z), then, since (s lP ps) = 
IP Ps l 2 = x2 (and similarly for q and r), we obtain 

(s lAs) = Mx2 + ay2 + mz2 = f (s) 

as required. 
The implicit quantifications in the proof of uwarm-up" theorem I may 

give trouble. Throughout this theorem we are considering a fixed (although 
arbitrary) f with the property f (a) + f (b) + f (c) = w for all triples (a,b,c) such 
that a + b + c = 1 .  We take an arbitrary a and obtain f (a) = w - f (1 - a), by 
considering a as part of the triple (a, l - a,0). This holds for all a E [0,1 ], and 
is applied to (a + b) to obtain 

(A1. 1) f (a) + f (b) = f (a + b) 

for all a, b, a +  b E [0, 1] .  By extending (Al . 1 )  we obtain, for any integer n 
1 1 -

(na < 1), nf(a) = f(na) .  Whence, for a = -, f(a) = - w. Applying (Al . 1 ) 
n n (m) m _ 

again, for any integer m (m < n), we obtain f n = n w; in other words, 

f(a) = wa for all
° 
rational a. 

We obtain the final conclusion of uwarm-up" theorem II as follows. From 
(1) and (2) f is bounded from below, and, for a0 E [0,1 ]  - C (in CKM nota-
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tion, a0 E [0, 1 ]\C), 

lim f (a0) = 0 = f (0) a0-0 

From (1)  and (3) f is bounded from above, and, using (2), we obtain 

(A1. 2) fun f(a0) = sup f(a0) = 1 
a0-1 

But now assume that, for some a0 , f(a0) =F a0 • Then for a sequence r0 , r1 , 
r2 • • • such that riao � 1, we have 

fun f (riao) = fun rd(a0) =F 1 i-oo i-oo 

This violates (Al .2) above; hence, for all a0 E [0,1 ] - C, f(a0) = a0 • 

Commentary on §4 

Figure Al .4 illustrates the two lemmata of this section. 

Commentary on §5 

The geometric lemma, together with the basic lemma of §4, shows that, 
given premises (1)  and (2) of the basic lemma, 

if l(s) > l(s ') then f (s) > f (s ') 

The geometric lemma itself shows that from any point s in N one can reach 
another of lower latitude via a sequence of descents, starting with the 

p 

Figure A1.4 
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Figure A1.5 Projection of N onto the tangent plane P. 

descent through s. The method of proof employs projective geometry: the 
strategy is to map each point s in N onto the tangent plane P to S at p, so that 
the image of s [Im(s)] is the point on the plane P where the extended radius 
through s meets the plane (see Figure Al .5). The result is as though the 
hemisphere N had been stretched out to an infinite plane. Although dis
tances on N are not preserved under the transformation, various relations 
carry over; thus, if s1 and s2 are equidistant from p, then their images are 
equidistant from Im(p), and, if l(s1) > l(s2), then Im(s2) is further from Im( p) 
than is lm(s1). Also, if s1 and s2 are on the same line of longitude on N, then 
Im(s1), Im(s2), and Im(p) are collinear. 

Any great circle on S lies in a plane through the center of S, and this plane 
will cut P in a straight line. It follows that the descent D5 through s is mapped 
onto a straight line Im(D5) in P, and Im(D5) is tangent to the image of the 
circle of latitude through s. The problem of finding a sequence of descents 
on N becomes a problem of finding a sequence of straight lines on P. 

From now on, like CKM, I will talk of points, such as p and s0 , on P, rather 
than of their images Im( p) and Im(s0). 

We take s, t such that l(s) > l(t) . Stage (1) of the proof deals with the case 
when s and t have the same longitude. For the general case CKM then 
construct what I will call an n-polygon (which actually has n + 1 sides) to 
show a sequence of descents starting from s0 and ending on Sn , where s0 and 
Sn are 180 °  of longitude apart. Now, given arbitrary s and t [l(s) > l(t)], any 
n-polygon starting from s and moving in the direction of t will intersect the 
line pt : call the point of intersection ten> . The next step of the CKM proof 
shows that, by making n big enough, we can obtain l<tcn» > l(t) . The required 
sequence of descents takes us round this n-polygon from s to ten> and then, 
using the maneuver of Stage (1), from ten> to t. 

Three points in the theorem deserve comment. 
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- -
(1) To show that �c[f(l) - [(l)] < 1 ,  note that, for l <_l ', f(l) < [(l '), so 

that, as we move up to p from the equator, the differences f (l) - [(l) will add 
up. But, by hypothesis, f(p) = 1,  and so the sum of these differences is no 
greater than 1 .  

(2) The existence of the frame (q,q',q") may be seen as follows. Let 
(q0 ,q� ,q0 )  be an arbitrary frame. For any 8, ()', (}" such that cos28 + 
cos28' + cos28" = 1, we can construct a normalized vector p0 with coordi
nates (cos8, cos8', cos8") with respect to (q0 ,  q� ,  q0) . We now choose (} =  l, 
O' = l', (}" = l", construct p0 ,  and rotate (q0 ,  q� ,  q0) within S to make p0 
coincide with p (the N-pole of S). This rotation transforms (q0 ,  q� ,  q0)  to the 
required frame (q,q',q"). 

(3) To show that C = ¢,  assume that l' E C; then, for l E [O,l') - C, we 
have 

fun f (l) = l' 
z�l' 

and, for l E (l', 1 ]  - C, 

fun f (l) = l' 
z�l' 

Whence l' < [(l') < f (l') < l', and so f (l') - [(l') = 0, contra hypothesis. 

Commentary on §6 

At this stage it is useful to compare the theorem of §5 with the statement of 
Gleason's theorem in §3 . The premises of the §5 theorem are stronger than 
the premises of Gleason's theorem: they impose both (1)  an extreme-value 
requirement and (2) a symmetry condition. The extreme-value requirement 
not only requires that f be bounded (sup f (s) = M, inf f (s) = m), but also that 
there exist a point p on S such that f (p) = M and a (set of ) points for which 
f (s) = m. Symmetry requires that for all s 1- p (that is, for s E E ), f (s) = m. 

§6 shows that the extreme-value requirement holds for any bounded 
frame function f; it also introduces a technique for symmetrization which is 
used again in §7. Note, however, that in general f does not satisfy the 
symmetry condition. 

The conclusion of the §5 theorem is a special case of the conclusion of the 
§3 version of Gleason's theorem; if the function f is expressed in terms of 
coordinates (x,y,z) with respect to the frame (p,q,r) (q, r E E ), it appears as: 



f (s) = m + (M - m)cos28(s,p) 
= Mcos28(s,p) + m[l - cos28(s,p)] 
= Mx2 + m(y2 + z2) 

Note that this is symmetrical about p. 

Gleason 's Theorem 345 

§6 has a preamble and four steps. To prove that a bounded frame function 
f attains its extremal values we use the same strategy as in lemma 3 of §2; we 
consider a sequence of points Pn E S  such that �-+ao f(Pn) = M. Since S is 
compact, the accumulation point property tells us that (if we pass to a 
subsequence {pn}) there is a point p such that p = limn-+ao (Pn ) · These limits 
must be shown to match, as it were, so that f (limn-+ao Pn) = f (p) = 
limn-+ao f (Pn) · This is a continuity requirement. It would be violated if, for 
example, f (p) dropped discontinuously to the value M - c; at p. 

The trick is to use f and the original sequence Pn of points to define a frame 
function h that satisfies the premises of the §5 theorem (steps 1 ,  2, and 3); 
any function which satisfies these premises is known to be continuous. At p 
the function h has value 2M; we then show (step 4) that, for any E > 0, 
M + f (p) > 2M - E. It follows that f (p) = M. 

Step 1. This takes the original function f and, so to speak, drags it around 
on the surface of the sphere; we obtain a sequence gn of functions, each just 
like f but dislocated over the sphere's surface. Each dislocation is equivalent 
to a rigid motion of the sphere that carries the function f with it, and that 
takes the N-pole p to the point Pn ; thus the sequence gn is in one-to-one 
correspondence with the sequence Pn . A rigid motion of S is a rotation of S. 
Obviously the angular separation of points of S is invariant under rigid 
motions. Any rotation can be specified by its effect on two points in N - E. 
We define Pn by selecting Cn on c0 such that O(p,cn) = O(p,pn); Pn is then the 
rotation that takes p to Pn and en to p . We define 

Step 2. Symmetrization of the functions gn yields a sequence hn of func
tions. This symmetrization (1 )  allows hn to satisfy the premises of the ap
proximate version of the basic lemma (see step 4) and (2) allows h to satisfy 
the premises of the §5 theorem (see step 3). 

Step 3. The existence of the function h is now proved by the accumulation 
point property. The space [2m,2M ]5 is the set of functions from S into the 
closed subset [2m,2M] of the reals; this set is compact, and so, by passing to a 
subsequence of hn , we obtain the limit h. CKM's emphasis here on the 
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Figure A1. 6 Great circles on S. 

product topology is important, since there are other topologies under which 
the space [2m,2M ]5 is not compact (see Kelley, 1955, pp. 21 7- 218). 

Step 4. The existence of this function h allows the final move to be made in 
the chain of inequalities that yields the desired result. 

Commentary on §7 

We now know that any bounded frame function f satisfies the extreme
value requirement, and we have a technique for using f to define a function 
f sym which fulfills the symmetry condition of the §5 theorem: we write 
f sym(s) = f (s) + f (ps) (§6, step 2) . By the §5 theorem we also know the form of 
f sym [§7, Equation (*)] . 

In §7 f is compared with a quadratic frame function g which has the same 
extreme values, M and m, and the same weight, M + m + a, as does f. We 
see first that gsym = f sym ,  and then that g(s) = f (s) for points on selected great 
circles [claims (a) and (b): see Figure Al .6] .  Lastly, the function h = g - f is 
shown to be zero, not merely for points on these great circles, but over all S. 
Hence any bounded frame function is a quadratic frame function, and 
Gleason's theorem is proved. 

Further notes. Step (iii) in showing that g - f = 0 is an elegant move 
whereby claim (a) is made on behalf of h and the quadratic frame function 
M'(x'2 - z'2); this quadratic frame function is constructed from the extreme 
values of h as was g from the extreme values of f. 
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The Liiders Rule 

In Section 8.2 it was shown that, if subspaces P and Q are compatible, then 
the Liiders rule yields classical conditionalization; in other words, if we 
conditionalize according to the rule, then 

l?(P I Q) = p(P n Q) 
p(Q) 

for any generalized probability function (GPF) p on S('H). It follows that, 
when P c Q (and hence P n Q = P), according to the Liiders rule: 

l?(P I Q) = p(P) = q(P) 
p(Q) 

The Liiders rule thus renormalizes the probabilities assigned to all P c Q, so 
that q(Q) = 1 .  We now show that the rule specifies the only GPF on S('H) 
which does this. 

In this proof, Q denotes both a subspace and the projector onto it, and QJ. 
denotes both the orthocomplement of Q and the corresponding projector. 
We write v for the ray containing a normalized vector v. 

Note first that, for any density operator D, the operator QDQ is a trace
class operator [see (5 .6)], and hence the operator 

QDQ 
Tr(QDQ) 

appearing in the Liiders rule is a density operator [see (5 .7)] . 
Now let q be any GPF on S('H) which yields the renormalization described 

above. We know that (1)  since any GPF is additive over orthogonal sub-



348 Appendix B 

spaces, q is completely defined by the probabilities it assigns to the rays of 
11; (2) by Gleason's theorem, q can be represented by a density operator Dq 
on 11, so that, for any ray v, q(i) = (v lDqv) ;  (3) if, for some GPF q, repre
sented by Dq , q(Q) = 1, then, for all v E QJ. , q(i) = 0 = (v lDqv);  since Dq is a 
(weighted) sum of projection operators, it follows that Dqv = 0 for all v E 
Ql. . 

Now let v be an arbitrary ray in 'JI. Then 

q(v) = (v lDqv) 
= (Qv + Ql.v lDq(Qv + Ql.v) ) 
= (Qv + Ql.v lDqQv) 
= (Dq(Qv + Ql.v) IQv) 
= (DqQv lQv) 
= (QvlDqQv) 

[(3), above] 

[Hermitici ty] 

[(3), above] 

[Hermiticity] 

Now Qv lies within Q, and so Qv = ex for some scalar c and normalized 
vector x in Q. Thus we obtain 

q(v) = l c l2 (x lDqx) = l c l 2q{i) 

We see that any GPF q on S('H) such that q(Q) = 1 is completely specified by 
the values which it assigns to the rays within Q. Hence, given any GPF p, 
there is a unique GPF q on S('H) such that, for all P C Q, 

q(P) = p(P) 
p(Q) 

In turn, q is uniquely represented by the density operator Dq . 
But the operator 

QDQ 
Tr(QDQ) 

appearing in the Liiders rule is a density operator. It follows that 

D = QDQ 
q Tr(QDQ) 

Thus the Liiders rule gives the unique GPF q with the property that, for all 
P C Q, 

q(P) = p(P) 
p(Q) 
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Coupled Sys tems and 

Conditional ization 

At the end of Section 8.8, it was shown that, when an electron-positron pair 
is prepared in the singlet spin state, Liiders-rule conditionalization on the 
event (9a, +), associated with the positron, projects the state of the electron 
into the pure state P�_ ;  further, that this state indeed yields the quantum
theoretic probabilities for measurements of spin on the electron, given that a 
measurement of Sa on the positron has yielded the result + .  

Here I generalize this result, by taking a coupled system in an arbitrary 
initial state D and looking at the effect of conditionalizing on an event 
associated with one of its components. I use the notation of the last part of 
Section 8.2, and the proof is an extension of the one which appears there. 

Consider a coupled system with components a and b, whose states are 
representable in a Hilbert space 'Ha ® 'Jib . Assume that a measurement of Ab 
is conducted on system b, and let A a be an observable associated with system 
a.  We can then form a classical probability space partitioned by the conjunc
tions (Pa · Pb) of A a-events and Ab-events. Since this space is classical, condi
tionalization on the event pb (the result of the measurement of Ab) will yield 
conditional probabilities for the Aa-events given by the classical rule: 

But Aa was an arbitrarily chosen a-observable, and so this rule holds for all 
a-events pa . 

Note that the probabilities appearing in the expression on the right of this 
equation are given by the statistical algorithm of quantum mechanics, if we 
know the initial state of the composite system. For if this system has been 
prepared in a quantum state 01 , which reduces to states Di and D� of the 
components, we then have 
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p(Pa . pb) = Tr[D1(Pa ® pb)] 

p(Pb) = Tr[D1(P ® Pb)] = Tr(D�Pb) [(5 .27)] 

According to the Liiders rule, conditionalization on the event pb yields the 
state 02 of the composite system, where 

D = 
(P ® pb)D1(P ® pb) 

2 Tr[D1(P ® Pb)] 

We write D� and D� for the reduced states of the components. 
We now show that 

for an arbitrary a-event pa ; in other words, that the conditional probabilities 
for all a-events are as though pb projects the state of system a to Di . 

Tr(D�Pa) = Tr[D2(Pa ® Jb)] 

= 
Tr[(P ® pb)D1(P ® pb)(Pa ® lb)] 

Tr[D1(P ® Pb)] 

= 
Tr[D1(Pa ® pb)] 
Tr[D1(P ® Pb)] 

[(5 .27)] 

[by (5 .6), idempo
tence, and operator 
multiplication on 
'Ha ® 'Jib] 
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