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PREFACE 

During the last century organic chemistry has developed far from its 
empirical beginnings, where each observation constituted an isolated fact. 
As a result of a century's accumulation of experimental fact, generalizations 
have evolved. Most have proven understandable from a qualitative theo-
retical viewpoint. This framework of generalization interwoven with quali-
tative theory constitutes the basis of the so-called organic chemist's intui-
tion. Organic intuition is a powerful tool not yet formulated on a quantita-
tive basis. 

Part of the theoretical framework has been resonance, or qualitative 
valence bond, reasoning. Thus the structures of organic molecules are repre-
sented in valence bond symbolism, and such representation is efficaciously 
used in formulating reactions and reactivity. Following three decades of 
the use of this approach in organic chemistry, it now appears that there is 
much to be gained from the use of molecular orbital theory in formulating 
organic systems. In certain instances where the resonance approach is 
unsatisfactory, molecular orbital theory can provide acceptable rationaliza-
tion of facts and the prediction of new ones. Even the most simplistic of 
molecular orbital methods lead to molecular conclusions and provide insight 
which are in remarkable agreement with experimental observation. More 
generally, a look at the same phenomenon from this second viewpoint is 
refreshing. 

As for the level of sophistication required in this approach, one must 
consider the following aspects. For practicality, there is no point in com-
plexity exceeding need. In fact, resonance reasoning has had such a pro-
found impact on organic chemistry because it can be used quickly and 
conveniently. Often where one desires only a prediction of the order of 

ix 
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reactivity of a set of reactants or of different sites in one reactant or where 
one wishes insight into the source of some peculiar pattern of experimental 
results, the simpler methods of quantum mechanics such as the Hiickel 
theory suffice. When this level of sophistication is inadequate, then it is 
necessary to employ more sophisticated methods. Even where the simplest 
(e.g. Hiickel) theory predicts molecular behavior correctly, it is worth-
while for the interested organic chemist to penetrate further into more 
sophisticated quantum mechanics. A most intriguing endeavor is the com-
parison of prediction by various levels of sophistication with one another 
and with experimental reality. 

In the past, quantum mechanics was a difficult field for organic chemist s 
Some excellent texts have, however, become available during the last 
decade. The present text is based on the author's lecture notes used at 
Wisconsin since 1960 in a first-year graduate course for organic majors 
and also used in a series of American Chemical Society "Short Courses/' 
The treatment begins on a very elementary level and proceeds through the 
Hiickel level into more advanced methods such as polyelectron theory. 
The transition from elementary to advanced material is purposely gradual. 
Often a given topic is reconsidered several times with equivalent but 
alternative treatments. Where possible, the organic chemist is taught the 
language and its use prior to its theoretical justification. It is the author's 
experience that this approach develops in the student an intuitive feeling 
for the "how" and "why" of quantum mechanics. A number of items not 
appearing elsewhere are included. The pedagogical method employed is 
that of gradual escalation of difficulty while maintaining the organic 
chemist's interest. It is the author's hope that the reader will experience 
the joy in learning an intriguing subject unimpeded by an often justified 
concern in succeeding. 
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Chapter 7 

DELINEATION OF THE METHODS AND RESULTS OF THE 

LCAO-MO HÜCKEL APPROACH 

1.1 Some Preliminary Basic Definitions and Introductory Material 

1.1a Orbitals 

An orbital is the locus in space in which an electron is distributed. Quali-
tatively, it may be pictured as an electron cloud. An orbital localized at 
one atom is called an atomic orbital while one which is distributed around a 
molecular framework is termed a molecular orbital. Each orbital, atomic or 
molecular, has two characteristics of particular interest, its energy and its 
spatial description. 

By the energy of an orbital, atomic or molecular, is actually implied the 
energy of an electron spread about this orbital. An orbital will be seen to 
have mathematical significance but no physical reality until it is occupied 
by an electron. 

The spatial description of an orbital can be qualitatively and pictorially 
indicated by the drawing of a surface encompassing some large fraction 
of the electron population of the orbital; this has been common in organic 
chemistry. Thus carbon 2s and 2p orbitale are depicted in Fig. 1.1-A. How-
ever, an orbital is more precisely formulated as a mathematical function of 
position in some coordinate system. If x, y, z coordinates are used, the fol-
lowing formulations of 2s, 2px, 2py, and 2pz orbitals (χ2δ, Χ2ΡΧ, X2PV, X2Pz, 
respectively), termed Slater orbitale,1-5 may be given: 

fc5/2 

x^j^pe~k' L1"la 

1 



2 J. The LCAO-MO HUckel Approach 

2s 2p 

FIG. 1.1-A 

£5/2 

* 2 ™ = ~^^e'kp L M b 

fc5/2 

X2px = —^~kP L U C 

£5/2 

X2p* = ^ * * " * ' 1.1-ld 

where p = (x2 + y2 + z2)1/2 is the distance of a given point in space under 
consideration from the origin; the origin is taken as the center of the (e.g.) 
carbon atom.* In the above k = 1.625 when p is in angstroms and the atom 
is carbon. 

What we are saying is that an orbital is nothing other than a function 
of space coordinates x, y} and z; the value of the orbital at each point P in 
space will depend on the magnitude of x, yy and z at P. I t is instructive to 
analyze the spatial characteristics of the four Slater atomic orbitale given 
in Eqs. 1.1-1. 

The case of atomic orbital 2s is simplest. The Slater orbital function 
X28 (note Eq. 1.1-la) has no directionality; that is, χ2β is weighted equally 
in x, y, and z, χ2β, being a simple exponential, is positive everywhere in 
space (Fig. 1.1-B). This is the first spatial characteristic to be noted. 
Second, χ2β will have the same value at all points of equal distance p from 
the atomic nucleus (i.e., the origin), and hence χ2* has spherical symmetry. 
Finally, we note that χ2β is a constant times a negative exponential and we 
know that a negative exponential function decreases rapidly to zero as the 
variable taken negatively in the exponent increases. Thus as p, the dis-
tance from the nucleus, increases, the value of the orbital χ2β decreases. 
From these three observations we can depict χ2β pictorially as in Fig. 
1.1-B. Here the everywhere positive value of χ28 is noted, the spherical 

* The reasons for the exact formulation of the constant preceding the exponent are 
given later in another connection. 
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P{x,y,z) 

Plus sign of orbital 

FIG. 1.1-B 

symmetry is indicated, and the increasing diffuseness of the orbital at 
increasing distances outward is suggested. 

One may now pick one of the three 2p atomic orbitals, as given in Eqs. 
1.1-1, and inspect its characteristics. In looking at χ2ΡΖ, we note that it is 
a product of the coordinate z (of the point P under consideration) and 
the negative exponential term e~kp discussed above in connection with the 
2s orbital. The following observations may be made in sequence: 

(a) Since the exponential term is positive at all points in space, the 
sign of X2Pz will be that of z, the distance of the point P under consideration 
from the horizontal xy plane. Therefore, χ2ρζ will be positive above the 
(horizontal) xy plane, zero in the xy plane, and negative below this plane 
(cf. Fig. 1.1-C). 

(b) Next we can see that as the distance from the origin increases to 
infinity in the plus or minus z direction the orbital χ2ρ* approaches zero. 
The z component (i.e., its absolute value) increases while the e~kp decreases 

kz x2pz approaching zero at z —*- +oO 

*2ρζ P ° s' t î ve 

xZpz negative 

x2pz approaching zero at z —► - co 

FIG. 1.1-C. Sign characteristics of pe orbital. 
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in proceeding upward or downward from the center of the atom, but the 
negative exponential is a "stronger function" and dominates.* 

(c) Third, since χ2ρζ is zero at the origin, positive above and negative 
below the xy plane, and zero at z = ± oo, it is a logical consequence that 
the 2pz atomic orbital must reach a maximum somewhere along the z axis 
above the origin and a minimum somewhere below.f 

(d) Finally, let us consider how χ2ρζ varies in a horizontal plane parallel 
to xy and m units above the plane (cf. Fig. 1.1-D). The atomic orbital 

FIG. 1.1-D 

function then is given by (k5l2vi/(w)ll2)e-kp. Inspection of Fig. 1.1-D shows 
that as points in this plane increasingly distant from the z axis are con-
sidered, p increases and thus the negative exponential term decreases. 
Thus X2PZ diminishes in horizontal directions away from the z axis. 

From the prior four observations it is apparent that χ2ρζ is schematically 
depicted by Fig. 1.1-E. In a similar manner, χ2ρχ is found to lie along the 
x axis and χ2ρν along the y axis, each with a positive and negative lobe. 

* The product ze~Ä'is said to be "indeterminate" as z approaches plus or minus infinity. 
The simplest question is the limiting value of this product in proceeding along the z 
axis to plus or minus infinity; here p = z. 

lim ze~k* = lim — = lim 
dz/dz 

= lim 
d(ek')/dz t^±a>kek* 

= 0 

The first equality derives from the L'Hospital rule that the limit of an indeterminant 
quotient is given by the limit of the quotient of numerator and denominator derivatives. 

A similar proof can be used to show that X2PZ vanishes as one proceeds in any direction 
from the nucleus, that is, as p —■> <». 

+ By considering only points along the z axis, that is, setting p == «, differentiating 
X2PZ (cf. Eq. 1.1-1), and setting the derivative equal to zero, the reader can quickly 
demonstrate that these extrema occur at z = ± (l/k). 
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@ Plus sign of orbital 

Π Minus sign of orbital 

F I G . 1.1-E 

1.26 Electron Density and Normalization 

More related to observational reality than an orbital itself is the square 
of the orbital, for it is the squared orbital function* which gives electron 
density. Thus, for example, the value of χ2ΡΖ

2 = (kb/w)z2e~2kp at any point 
in space will give the fraction of an electron in this orbital per unit volume 
at this point. 

As a result of this definition, an integration of an orbital squared over 
all space—that is, from x = — ©o to + oo, ?/ = —ooto+oo , and z = — oo 
to + oo—must afford a value of one, for it is adding the electron density at 
all points in space. For example, 

/ : / : / : 
X2s2dxdydz = 1, en X2Py

2 dxdy dz = 1 
— oo —a 

/

oo /»oo roo /»oo /·οο /·οο 

/ / X2Px2dxdydz = 1 , I I I XiVz2dxdydz = 1 - oo — 00 — 00 — 00 — 00 — 00 

1.1-2 

Actual integration of the squares of 2s and 2p orbitals is given as a problem 
for the reader to do. This is seen in each case to give unity. This would not 
be so, if it were not for the coefficients k5l2/(3ir)112 and /c5/2/V/2 occurring 
in the 2s and 2p orbitals of expression 1.1-1. These coefficients are called 
normalizing constants, and the process of multiplying an orbital by the 

* A more involved statement would be required if complex orbital expressions were 
being considered. 
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proper constant to make the total electron density over all space equal 
to one is termed normalization. 

1.1c Molecular Orbitals as Linear Combinations of Atomic 
Orbitals (LCAO) 

When atomic orbitals overlap, the ensuing interaction results in forma-
tion of molecular orbitals. To the organic chemist, π systems are of par-
ticular importance; here the molecular orbitals result from interaction of 
all of the atomic p orbitals not involved in sigma bonding and generally 
parallel to one another. Mathematically, the molecular orbitals are taken 
as linear combinations of the component atomic orbitals (i.e., LCAO-MO). 
That is, the %'s (χι from atom 1, χ2 from atom 2, etc.) are added—however, 
not necessarily with equal weighting. Any given molecular orbital ψ, 
having n interacting atomic orbitals, thus may be written as 

Ψ = CiXi + C2X2 + CzXz H h CnXn 1 . 1 - 3 

The c's are the weighting constants or molecular orbital coefficients indi-
cating the extent to which each atomic orbital is weighted in the molecular 
orbital. 

The LCAO-MO method can be termed a "mixing" process, for one does 
mix together atomic orbitals to obtain molecular orbitals. Several aspects 
of this process are presently noteworthy. First, when one quantum mechan-
ically mixes a given number of atomic orbitals, more than one molecular 
orbital results. Each of the molecular orbitals obtained ( ψι, ψϊ, ψΖι... ) 
has its own set of molecular orbital coefficients; that is, the weighting of 
the component atomic orbitals will differ in different molecular orbitals. 
Second, each molecular orbital has its own characteristic energy. Third, 
there will be as many molecular orbitals resulting from the mixing process 
as there were atomic orbitals mixed; in quantum mechanics orbitals are 
neither lost nor gained. 

Let us consider the specific case of ethylene first. Here there are two 
atomic p orbitals to be mixed, χι at atom 1 and χ2 at atom 2. The method of 
mixing atomic orbitals is detailed subsequently; it affords both the energy 
of each molecular orbital resulting from mixing and also the LCAO form 
(i.e., the MO coefficients). However, for the present, the results of mixing 
of xi and χ2 will merely be given, for there are advantages to describing 
molecular orbitals further prior to detailing methods for obtaining them. 

The two molecular orbitals resulting from interaction and quantum 
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mechanical mixing of χι and χ2 are 

1 1 1 1 

*1 = v i x l + v i X 2 ' *2 = v i x i ~ v i X 2 L1"4a 

Since χι and χ2 are simple functions of coordinates, it is apparent that the 
two ethylenic molecular orbitals ψι and ψ2 in turn can be expressed as 
analytic functions of x, y) and z; that is, at every point P in space having 
a given set of coordinates, ψι and ψ2 will each have a definite value. Let 
us then ascertain the geometric properties of ψι and ψ2. If atomic orbitals 
χι and χ2 are taken centering at Oi and 02 and separated by the ethylenic 
interatomic distance R\2 (cf. Fig. 1.1-F), then these are given by 

kb!2 £5/2 

Xi = — sexp(-fcpi), X2 = —;zexp(-/cp2) 1.1-5 

and ψι and ψ2, as given by l.l-4a, may be rewritten* 

£5/2 

Ψι = , ) 1 / 2s[exp(--fcpi) + e x p ( - / c P 2 ) ] 

£5/2 

^2 ^ /o xi/o^CexP(--'fePi) - exp(-/cp2)] l.l-4b 

One could evaluate ψι at several points in space. However, inspection of 
ψι as given either in Eq. l.l-4a or l.l-4b indicates that it is the superposi-
tion of xi, centering at 0\ and χ2 centering at 02. Thus knowing the general 
geometric properties of atomic pz orbitals, as discussed earlier we can begin 
by concluding that the superposition is reasonably depicted by Fig. 1.1-G. 
This is the ethylenic τ orbital depicted in most elementary textbooks and 
familiar to most organic chemists. Several aspects are easily derived from 
the mathematical formulation of ψι as given in Eq. 1.1-5. First, for points 
in the XY plane, where z = 0, ψι is zero and has a node. Second, since 

* Using the formula, dab = l(xa — Xb)2 -f (ya — 2/&)2 + (za — z*>)2]1/2, for the distance 
between two points in space A (xa, y a, za) and B (xb, yb, Zb) f one could reformulate Eqs. 
1.1-5 explicitly in terms of the variables xf y, and z alone; i.e., 

k5l2z 
Φι = 7ΓΤ77, (exp{-*[(a? + I)2 + y2 + z2]1'2} + exp{-fc[> - I)2 + y2 + z*Ji*}) 

(27Τ)1/2 

k6l2z 

** - τ τ τ τ^ ( e xpf-*£(* + w + y2 + 22]1/2f - β χ ρ ί - * ι > - *>2 + ̂ 2 + *231/2i) 
(2π)1/2 

where 2Z = Ru, the interatomic distance. 
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λ) 
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Um 
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# 
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J/ 
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i | 
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\\ψν 

t i l 
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0 2 * 

if 
/ 

1 

FIG. 1.1-F 

exponentials are always positive, the sign of ψι is determined by z\ and 
ψι is positive above the XY axis where Z is positive and negative below 
the XY plane. As with the components χι and X2, ψι approaches zero as 
Pi and p2, the distances from the nuclei, increase toward infinity, ψι must 
then be a maximum somewhere between z = 0 and <*>. For points on any 
circle symmetrical about the X axis, pi and p2 are constant, and ψι is 
maximized in the XZ plane since Z is then maximized. Now looking at 
^2, we see that this normalized difference between χι and χ2 is equivalent 
to the superposition of χι and an inverted χ2. This is clear once one realizes 
that taking χ2 with a negative sign in the linear combination is equivalent 

§ Positive 

□ Negative 

FIG. 1.1-G 
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to replacing z by -z. Thus ( —χ2) = 05/2/ττ1/2) {-z) exp(-fcp2) is an 
inverted χ2, for whenever z is positive (— χ2) is negative and vice versa. 

There is one salient feature of ψ2, resulting from the equivalence but 
opposite signs of χι and — χ2; this is the cancellation of these orbitals in 
the YZ plane. This is easily seen from the expression for ψ2 as given in 
Eq. 1.1-5 once it is realized (cf. Fig. 1.1-F) that in the YZ plane pi = p2 

and thence ψ2 = 0. Thus ψ2 has a node not only in the XY plane but also 
in the YZ plane. Note Fig. 1.1-H describing ^2. 

While ψι is of lower energy than either of the component p orbitals, ψ2 

g] Positive 

□ Negative 

FIG. 1.1-H 

is higher. A molecular orbital whose energy is lower than a single p orbital 
is said to be bonding while a molecular orbital of higher energy than a single 
and isolated p orbital is termed antibonding. A molecular orbital whose 
energy is the same as that of an isolated p orbital is nonbonding. In the 
ethylenic case ψι is bonding and φ2 is antibonding; taking the energy of 
noninteracting p orbitals as the arbitrary reference zero of energy, one can 
formulate the interaction of ethylenic p orbitals schematically and energy-
wise (Fig. 1.1-1). 

Two final aspects are to be noted in connection with the ethylene situa-
tion. First, since the τ system of ethylene contains two electrons which will 
fill the low-energy molecular orbital, the π energy of ethylene may be said 
to be —2\β\ (i.e., — l|ß| per electron).* Clearly this is energetically better 
than having two "insulated" p orbitals containing two electrons, in which 
case the energy is zero. Second, in its simplest (Hückel) form the LCAO 

* Pending a discussion of /3, we can use the ethylenic case to define the energy units 
|/ö| of Fig. 1.1-1 as half the w bonding energy in ethylene. 
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1 ' 
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"11 
1 R 

Removal 
hypothetical 
insulation 

°» Η / Π Ξ 

Noninteracting 
p-orbitals 

Interacting 
/?-orbitals 

+ 1 

X 
Energy 

+ 1 ψ2 (Antibonding MO) 

ψ, (Bonding M0) 

FIG. 1.1-1. Formation of two MOs from two AOs. 

theory gives the electron density per electron in a given molecular orbital 
and at a given atom (i) by the square of the LCAO-MO coefficient ( c;2). 
Thus in the bonding MO of ethylene (ft) Ci2 = (1/V2)2 = \ and also 
C22 = \ give the ττ-electron density at atoms 1 and 2 for one electron. Since 
electron density contributions are additive and ethylene has two electrons 
in ft, the π-electron density at atom 1 is q\ — 1 and at atom 2 is qi = 1. 
The even electron distribution is no great surprise. 

l.ld Summary of Salient Features of LCAO-MO Mixing 

(a) Mixing or quantum mechanical interaction of n atomic p orbitals 
(the x's) gives n π molecular orbitals, some of higher energy (antibonding), 
some of lower energy (bonding), and sometimes some of the same energy 
(nonbonding) compared to the atomic orbitals mixed. 

(b) Orbitals in general and molecular orbitals specifically can accom-
modate at most two electrons per orbital. The lowest energy orbitals are 
preferentially populated. 

(c) The 7Γ energy of the system is the sum of the energies of all the π 
electrons. The energy of an electron is that of the orbital it occupies. 

(d) Each molecular orbital has its own LCAO form of the type ψ = 
Cixi + C2X2' - - CnXnj where the c's indicate the extent to which each 
atomic orbital is weighted in the MO. 
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(e) The 7r-electron density contributed by an electron to a given atom 
is given by the square of the coefficient of that atom in the MO containing 
the electron. 

(f) The total 7r-electron density at a given atom is the sum of the 
τΓ-electron density contributions, as outlined in (e), due to all electrons. 

(g) Since the sum of the squares of the coefficients in any particular 
MO gives the total electron density for one electron in that MO and since 
this total must be one electron, the sum of squares of coefficients of a MO 
should equal unity. Such an orbital is said to be normalized. 

1.2 Basic Procedure for Quantum Mechanical Mixing of Atomic 
Orbitals; Solution for Molecular Orbital Energies 

1.2a The Secular Determinant and Its Solution for Molecular 
Orbital Energies 

In the preceding section the results of mixing two parallel p orbitale to 
give the ethylenic molecular orbitale were given without justification; this 
had the advantage of giving the reader a feeling for the phenomenon of 
orbital mixing prior to his actually learning how the mixing is done. The 
procedure followed in mixing atomic orbitale is now detailed; however, the 
theoretical justification is postponed until the reader has acquired a famil-
iarity with the language and practicalities of quantum mechanical orbital 
mixing. 

The general rules for mixing any set of atomic orbitale are given first 
and then applied to specific examples. 

Rules for Quantum Mechanical Mixing 

1. Write a determinant having as many columns and as many rows as 
atomic orbitale to be mixed. The propertiee of déterminante will be given 
ae needed; for the preeent, a determinant can be coneidered to be a equare 
array of numbere and variablee evaluated in a epecific way to be ehown. 

2. Label the columne succeeeively with the atomic orbitale to be mixed. 
That is, above column 1 place χι; above column 2, place X2, and eo on. Then 
in the eame order label the rowe of the determinant. 

3. Beginning with the upper left element, where column 1 intereecte 
row 1, and proceeding diagonally to the bottom right element, fill in X'e 
along the diagonal. Each element of a determinant can be labeled in general 
ar8 where r refere to the row of the element and s réfère to the column, and 
thie rule eete ar8 = X when r = s. 

4. Where a row correeponding to a given atomic orbital (χΓ) intereects 
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a column headed by another atomic orbital (χβ), we have element ars which 
is a measure of the overlap of these two atomic orbitale. The number ars 

to be filled in is zero if the two atomic orbitals χτ and χβ are distant and 
noninteracting, while it is one if the orbitals are adjacent and overlapping. 
Although it is clear that there will be intermediate and varying extents of 
atomic orbital overlap, for the present we will consider only the extreme 
approximation where all nonvicinal orbital interactions are taken as zero. 

5. Set the determinant equal to zero. 
6. Solve the determinant for X. Each value of X obtained is a molecular 

orbital energy. The determinant described above is called the secular 
determinant and the equation in which the determinant is set equal to zero 
is the secular determinantal equation. 

1.2b Application of LCAO Mixing to Ethylene 

The simplest case to which the rules just given for mixing atomic orbitals 
can be applied is that of ethylene. Here χι and χ2, atomic p orbitals cen-
tering at atoms 1 and 2, are to be mixed. Since two atomic orbitals are 
being mixed, the determinant will have two rows and two columns (rule 1). 
Columns 1 and 2 are labeled with χ% and %2, and rows 1 and 2 are labeled 
in the same way (rule 2). The main diagonal elements (upper left to lower 
right) are filled in with X's (rule 3). The only nondiagonal elements in the 
ethylene example are an and α2ι; both of these are filled in as 1, since these 
elements represent the interaction between χ\ and χ2 which are adjacent 
and overlapping atomic orbitals (rule 4). There are no nonoverlapping 
and noninteracting atomic orbitals and therefore no zero elements to be 
filled in. Finally, the resulting secular determinant is set equal to zero 
(rule 5), to give 

= 0 1.2-la 

Two-by-two, or second-order, determinants are simply evaluated by 
taking the product of elements along the main diagonal, indicated by the 
dashed arrow below, and subtracting the product of elements along the 
alternative diagonal, indicated by the dotted arrow below*: 

* This mnemonic device for evaluation of a 2 X 2 determinant derives from the 
general definition of determinants. A determinant, written as a square array of numbers 
and variables, is evaluated by definition as the sum of all possible products of the type 
±aria82(itz, etc., that is, products obtained by selecting an element from each column 
of the determinant—however, with the proviso that in this selection of elements for 

Xi 

X2 

Xi 

X 

1 

X2 

1 

X 
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Γχ A'\ 

/ \ 
to give to give X*X 
- ( l ) - ( l ) equals X2 

equals —1 

Thus value of determinant is X2 — 1 

Hence on expansion, or evaluation, of the secular determinant, the secular 
equation 1.2-la becomes 

X2 - i = o or X2 = 1 and X = ± 1 1.2-lb 

X = — 1 gives the energy of the (low-energy) bonding MO of ethylene. 
X = + 1 gives the energy of the (high-energy) antibonding MO of ethylene. 
Energy is expressed in the positive unit \β\, "the absolute value of beta." 
It is to be remembered that the energies are relative to the energy of an 
isolated p orbital whose energy is therefore taken as zero. Thus solution of 
the ethylenic secular determinantal equation 1.2-1 has resulted in precisely 
the molecular orbital energies given earlier without justification (cf. Fig. 
1.1-1). One molecular orbital (X = — 1) of lower energy and one molecular 
orbital (X = +1) of higher energy than either of the two atomic p orbitals 
mixed (X = 0) have resulted. 

Although ethylene is indeed the simplest example for illustrating atomic 

any given product the same row must not be used more than once. Additionally, each 
product ariaS2atz, etc., is given a plus or minus sign depending on the ''evenness or 
oddness" of the number of permutations required to convert the term into the zeroth 
permutation 011022033 · · · · Thus we keep the second subscripts in order and exchange 
only the first subscripts as many times as needed to give the zeroth permutation. For 
example, in a 3 X 3 determinant, one of the products obtained by selecting an element 
from each column is 031022013- This is related to the zeroth permutation 011022033 by a 
single exchange of the first and third elements, however keeping the second subscripts 
in order and moving only the first subscript with the term. With a single permutation 
(i.e., an odd number of permutations), this term is given a negative sign. Had two 
permutations been needed, it would have been given a positive sign. A 2 X 2 determinant 
(i.e., Eq. 1.2-1) can be written generally as 

On «12 

I 021 0221 

There are two possible products, each containing an element from one of the two columns; 
these products are απθ22 and O21O12. The first has no inversions of order and the second 
has one. Hence the determinant has the value 011022 — a^au, fitting the mnemonic 
device given above. 
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orbital mixing, there is the simpler case of a single, isolated atomic orbital; 
this does not involve mixing. The secular determinant set up for (e.g.) 
Xr as in Eq. 1.2-2 is 1 X 1 with a single element corresponding to the inter-
section of row Xr with column χτ and therefore taken as X. Using the defini-
tion of a determinant (footnote, p. 12), we see that in a 1 X 1 determinant 
there is only one possible "product" of elements, namely the single element 
itself. A 1 X 1 determinant is hence equal to the element. In the present 
instance this gives the energy X of the isolated p orbital χτ as zero in accord 
with the earlier statement 

Xr 

Xr\X\ = 0 or X = 0 1.2-2 

that the energy of an isolated p orbital would be taken as our reference 
point and as zero. 

1.2c Application to the Allyl Species and Determination of Its 
Molecular Orbital Energies 

The next level of difficulty involves molecules having 3 X 3 secular 
determinants; there are two of these, the allyl and the cyclopropenyl 
species. The allyl species is considered first. 

By the allyl species is meant the linear chain of trigonal carbon atoms 
1 2 3 

CH2—CH—CH2 

having parallel p orbitals: χι at carbon-1, χ2 at carbon-2, and χζ at carbon-3. 
Note Fig. 1.2-A. The ordinary C—C and C—H single, or sigma bonds, are 
assumed in the present approximation to be composed of relatively non-
mobile electrons which do not have to be included in the calculation. The 
LCAO calculation mixes χι, %2, and χ3 and determines the molecular or-
bitals (i.e., here, their energies) available to the molecule. Only once the 

FIG. 1.2-A 
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MO energies are found and it is desired to total the τ energy, is it important 
to know which allyl species is being considered and relatedly how many 
π electrons are to be accommodated in the MOs. If there are two w elec-
trons, we are dealing with the allyl carbonium ion; if three, the allyl radical; 
if four, then the allyl carbanion. However, the secular determinant and its 
solutions are independent, in the present approximation, of the number of 
7Γ electrons; the determinant and its solutions are functions only of the 
geometric ordering of the component p orbitale in space. 

The secular equation for the allyl species is written by inspection (Eq. 
1.2-3) using the rules of Section 1.2a: 

Xi 

X2 

Xl X2 X3 

X 1 0 

1 X 1 

X3 0 1 X 

= 0 1.2-3 

The three atomic orbitale χι, χ2, and χ3 label the rows and columns as 
required by rule 2; the ordering must be the same for the rows as for col-
umns. According to rule 3, X's are written along the main diagonal (i.e., 
as elements an, α22, «33). Element au (i.e., row 1, column 2) derives from 
the interaction of χι (row 1) and χ2 (column 2). Since the atomic orbitale 
χι and χ2 are adjacent and overlapping, a one is filled in as this element in 
accord with rule 4. Similarly, element α2ι, deriving from the interaction of 
the same two AOs, is filled in as a one. Elements a23 and a32 correspond to 
the interaction of adjacent and overlapping AOs χ2 and χ3 and are filled 
in as ones. Contrariwise, elements au and a3i are filled in as zeros since AOs 
Xi and X3 are not vicinal and are assumed not to interact. It now remains 
to evaluate the 3 X 3 secular determinant in Eq. 1.2-3 and then solve for X. 

There is a simple mnemonic device for evaluation of third-order deter-
minants somewhat similar to that given earlier for the second-order case. 
This can be demonstrated by its application to the secular determinant 
in 1.2-3. To solve such a third-order determinant, one repeats rows 1 and 
2 in order below row 3. Through elements an, a2i, and α3ι three dashed 
diagonal arrows are drawn as shown in the diagram below, each through 
three elements; the three elements lying on each dashed arrow are multi-
plied. Three triple products with a positive sign result. Now three dotted 
diagonal arrows are drawn through elements ai3, a23, and a33, each through 
three elements as shown. The three elements lying along each arrowT are 
multiplied and the triple product obtained is given a minus sign; three such 
negative triple products result. The determinant then is the algebraic sum 
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of the three positive (dashed) and the three negative (dotted) triple 
products*'f; 

XZ 1 0 
\ 

\ \ .· 
i x r 

.o Nr Nx] 

.·" x Y vo \ 
μ . - ' \ \ X 

togive (-1)·0·Ζ·0 = 0 ·' . ' \ \ to give Z-Z-Z = Z8 

.' 1 X \ \ 
Ϊ .' \ \ 

to give ( - l ) - l - l - Z = - Z · \ to give 1-1-0 = 0 \ 
to give ( - l ) - Z - l - l = -X to give 0-1-1 = 0 

Total of negative 
triple products: — 2X 

Total of positive triple 
products: Z3 

Total value of determinant is Z3 — 2X 

The secular determinantal equation 1.2-3 can now be rewritten as the 
cubic polynomial 

X3 - 2X = 0 or X(X2 - 2) = 0 1.2-4 

Therefore, the solutions are X = 0 and X = ±V2. Three atomic orbitals 
were mixed and three molecular orbitals have resulted. As in the ethylenic 
problem, one may envisage as in Fig. 1.2-B some imaginary insulators, 
capable of preventing interatomic orbital overlap, being removed. The 
interaction on removal of the insulator leads to splitting of the energy 
levels and formation of three molecular orbitals: a bonding MO at —V2, 
a nonbonding MO (i.e., at 0), and an antibonding MO at +V2 (cf. Fig. 

* It may be seen that this mnemonic device merely provides an easy way to select 
all triple products of the type αΓια82α*3 as required by the definition of a determinant (cf. 
footnote p. 12) and also automatically determines whether the number of inversions of 
order is even or odd. All of the dashed products have zero or an even number of inversions 
of order while the dotted products have an odd number; this is why the dashed products 
are taken positively while the dotted ones are taken negatively. 

t I t is important for the reader to realize that the device used for second- and third-
order determinants cannot be extended to higher order (e.g., 4 X 4 ) determinants. 
One can readily prove to himself that all (e.g.) quadruple products are not provided 
by such a scheme. 
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FIG. 1.2-B 

x\ o 

-72 

Xi X2 X3 

/ * 2 
►^ — 

Quantum \ 
mechanical\ \^, 
mixing of v» 
AOs 

X = + ^2 

X -- 0 

X = - - / I " 

FIG. 1.2-C 

1.2-C). The three molecular orbitals formed are designated ψι, φ2) and ψζ. 
For the present only the energy characteristics of the MOs will be con-
sidered; although each MO has its own spatial distribution as given by its 
LCAO-MO coefficients, the determination of coefficients will be delayed. 

I t is of interest nowj to determine the π energy of the allyl carbonium 
ion, the allyl radical, and the allyl earbanion. The allyl carbonium ion 
CH2=CH—CH2® has two electrons. The allyl free radical CH2=CH—CH2 
has three, while the allyl earbanion CH 2 =CH—CH 2 : e has four. Figure 
1.2-D gives the MO energy diagrams with electrons assigned to the lowest 
possible orbitals, each orbital accommodating at most two electrons. The 

Carbonium ion 

► , / z -

0 -

- ^ 2 - tt 

Total 
electron 
energy -2^Έ\β\ 

Free radical 

-2./2Ί/3Ι 

Carbanion 

-H-
-H-

-z-/T\ß\ 

FIG. 1.2-D. Allyl carbonium ion, free radical, and carbanion ^electron energies. 
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π-electron energies, obtained by summing the π energies of the individual 
electrons, are given below each diagram. I t is noted that all three species 
have the same 7r-electron energy of —2V2|0|; this is because the third and 
fourth electrons are introduced into the nonbonding MO and neither add 
to nor detract from the π energy of the system. The π energy of a system 
of carbon p orbitale can be pictured to be the energy gained on allowing 
the component p orbitals to interact; in the present instance this is the 
energy gained by removal of the hypothetical insulators as depicted in 
Fig. 1.2-B. 

We have compared the allyl species with a hypothetical system in which 
the three atomic orbitals are completely noninteracting. Another model for 
comparison is both of present interest and of general significance. In this 
comparison we use a model corresponding to one of the contributing reso-
nance structures of the system being considered. By determining the τ 
energy of such a system "frozen" into one resonance contributor and com-
paring this with the τ energy of the actual species in which complete 
overlap and delocalization is possible, we obtain the energy resulting from 
allowing resonance or delocalization. Thus the x-energy difference between 
the "frozen" and the delocalized species is termed the delocalization, or 
resonance, energy. In the present instance the "frozen" model has one 
ethylenic double bond and one isolated p orbital. Again one can picture 
removal of a hypothetical insulator, this time from between the ethylenic 
system and the single p orbital. Such a process leading to the fully delocal-
ized allyl species is pictured in Fig. 1.2-E. In energy-level terminology we 
can write the process as in Fig. 1.2-F. Here we see that the starting frozen 
species prior to complete delocalization has the π systems of ethylene plus 
that of an isolated carbon p orbital. The former will contain two electrons, 

H— 

Removol of 
hypothetical 
insulator 
and gain of 
delocalization 
energy 

H — 

Frozen species 

7Γ En. » -21/31 

Delocalized species 

7Γ En. = - 2 / 2 1/31 

FIG. 1.2.-E 
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Frozen species 

Ethylenic Single 
moiety p orbitol 

Delocolized species 

V2 
+ I 

0 

V2 

- 2 | / 3 | 7Γ En. -Zjl\ß\ * En. 

or ( 2 - 2 Λ / 2 ) Ι / 3 | delocalization energy 

FIG. 1.2-F. Electron delocalization in the allyl carbonium ion. 

while in the case of the (e.g.) carbonium ion, the latter will not be occupied. 
After delocalization is allowed, the energy levels become those of the allyl 
species and two electrons fill the bonding MO. The increase in τ energy 
accompanying the delocalization process, that is, the delocalization energy, 
is thus (cf. Fig. 1.2-F) (2 - 2V5)|0|. One peculiarity of the allyl species, 
because of its nonbonding molecular orbital, is that the delocalization 
energy is the same for the carbonium ion, the free radical, and the car-
banion. This may be seen in Fig. 1.2-F by adding the extra electron needed 
for the radical, and the extra two electrons in the case of the carbanion. 

1.2d Determination of the Molecular Orbital Energies 
for the Cyclopropenyl Species 

The only other three-atom system of carbon p orbitale is cyclopropenyl 
( I ) , in which the three carbon p orbitale are arranged in a cyclic fashion. 

(* : © for cyclopropenyl cation, · for the radical, <Ξ> for the carbonion) 

Since there are no noninteracting and nonoverlapping p orbitale the secular 
determinant in Eq. 1.2-5 has no zeros and only ones in the off-diagonal 
elements. 

Xl X2 X3 

Xi IX 1 1 

X2 

X3 

1 X 1 

1 1 X 

0 1.2-5 



20 I. The LCAO-MO Hückel Approach 

Expanding this 3 X 3 secular determinant, using the mnemonic device 
given on page 16, one obtains 

X3 - SX + 2 = 0 
which factors into 

(X + 2 ) ( X - 1 ) ( X - 1) = 0 . 

Thus the solutions for Eq. 1.2-5· are 

X = -2, X = + l , and X = + 1 

One could have obtained these energy levels from trial solution of the 
expansion of the determinant or by plotting Y = Xz — 3X + 2 versus X 
and determining the values of X for which Y = 0. 

Figure 1.2-G gives the π energies of the cyclopropenyl cation, free 
radical, and carbanion as well as the delocalization energies. The frozen 
model used for calculation of the delocalization energies (DEs) is that of 
one resonance contributor, that is, one ethylenic double bond plus one 
isolated p orbital having the balance of the electrons. This model has the 
7Γ energy of — 2\β\ for all three cyclopropenyl species, since the p orbital 
contributes zero regardless of the number of electrons assigned to it. 

It is most interesting that the molecular orbital prediction is for greatest 
stabilization for the two-electron cationic species, less for the three-electron 
radical species, and least for the four-electron carbanionic species.* The 
simple resonance theory without added assumptionsf would not have 

Cation Free radical Carbanion 
(two electrons) (three electrons) (four electrons) 

♦ I -

0 -

- I -

- 2 -

7Γ En. -41/31 -3| /3| -2 | /3 | 

DE -21)31 -I 1,31 01/31 

F I G . 1.2-G. Delocalization and x energies of the cyclopropenyl species. 

* In the case of the cyclopropenyl carbanion there are two electrons available for the 
two levels a t + 1 , and in the present approximation one would predict these two electrons 
to occupy different + 1 levels with unpaired spins to give a triplet as a consequence of 
Hund's rule. An analogous situation obtains for the cyclobutadiene example discussed 
next. 

+ The Hückel rule (vide infra) provides such a differentiation, but this rule derives 
from molecular orbital theory. 
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provided this differentiation, since we have the same number of resonance 
contributors for all three species. Experimentally it is of course well known 
that the cationic species is most stable. Furthermore, this cyclic two-electron 
species constitutes the simplest example of the Huekel rule4 specifying 
special stability for cyclic species having 4n + 2 electrons. 

1.2e Application of Direct Approach to Larger Molecules 

Using the direct approach set forth for LCAO mixing thus far one can 
write the secular determinant for any π system composed of parallel p 
orbitals. However, expansion of even a fourth-order determinant requires 
a more involved treatment than encountered thus far. In many cases, 
especially where there is molecular symmetry, there are simpler approaches 
to the problem; and these are outlined shortly. Nevertheless, the present 
treatment is extended to two of the larger molecules. This allows introduc-
tion of cofactors which are of importance in the section to follow and also 
indicates the procedure available when simpler methods are not available. 

The expansion of a determinant by cofactors is a useful procedure. The 
cofactor of any element an in a determinant can be signified by An- It is 
obtained by deleting that row (i.e., i) and that column (i.e.,j) containing 
the element under consideration and then placing a plus sign in front of the 
resulting lower order determinant if the sum of i and j is even or a minus 
sign if the sum of i and j is odd. Thus in the fourth-order determinant D: 

D = 

an—ai2—a 13—au 

&21 #22 #23 ^ 2 4 

#31 #32 #33 #34 

&41 (I42 (Z43 CJ44 

An = -

(Z21 #23 #24 

#31 #33 #34 

«41 <243 #44 

1.2-6 

the cof actor An of element au is obtained by deleting rowT 1 and column 2 
to give a 3 X 3 determinant. A negative sign is prefixed since ai2 is an odd 
element; that is, the subscripts add to give an odd number. 

Any determinant of order n (i.e., a n n X n determinant) may be ex-
pressed as a linear combination of (n — 1)-order determinants; this is 
termed expansion of a determinant by cofactors. One selects any row or 
column of the determinant and multiplies each element of that row or 
column by its cofactor. The original determinant is then given by the 
algebraic sum of these products of element and cofactors. For example, the 
determinant D of Eq. 1.2-6 could be expanded using the first row to give 

D = an A u + #12^12 + #13^13 + auAi 1.2-7 
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Since each of the cofactors is a 3 X 3 determinant which we can expand by 
inspection by the device given on page 16, while the original fourth-order 
determinant is not subject to easy expansion, there is a clear advantage in 
expanding by cofactors. Actually one would select that row or column which 
had the maximum number of elements equal to zero, for this would give us 
the smallest number of 3 X 3 determinants (i.e., the cofactors) to expand. 
The same method can be used with a higher order determinant by successive 
application. Thus a fifth-order determinant can be expanded by cofactors 
into a linear combination of 4 X 4 determinants, each of which can then be 
expanded into 3 X 3's. Clearly, this method quickly reaches a practical 
limit. 

Let us apply the method to both cyclobutadiene and methylenecyclo-
propene. In the case of cyclobutadiene (II) the four atomic p orbitale are 
labeled in order around the four-membered ring where the positive lobes 

Xi & &X2 

X4& 0 X 3 

are pictured as projecting above the plane of the paper. The fourth-order 
secular determinant and the secular equation are then 

Xi 

X2 

X3 

X4 

Xi 

X 

1 

0 

X2 

1 

X 

1 

X3 

0 

1 

X 

X4 

1 

0 

1 

0 1 X 

= 0 1.2-8 

Using the first row, we expand this by cofactors to obtain 
0 X 1 

1 X 

0 1 X 

+ !·(-!) 

1 1 

0 X 1 

1 1 X 

+ !·(-!) 

1 X 1 

0 1 X 

1 0 1 

= 0 1.2-9 

It is noted that there is no term involving the element au and cofactor Au 
since the former is zero. Expansion of these determinants in 1.2-9 gives 

X(X3 - 2X) - (X2 + 1 - 1) - (1 + X2 - 1) = * 4 - 4Z2 

= X2(X2 - 4) = 0 
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+ 2 

d = 0 

-++-

7Γ En. = - 4 | / 3 | 
DE = 0 

F I G . 1.2-H. Cyclobutadiene M O S . 

giving MO energy levels of X = 0, X = 0, X = - 2 , X = + 2 . Cyclo-
butadiene has four π electrons, and the energy levels may be filled and the 
7Γ energy and π delocalization energy determined as in Fig. 1.2-H. The 
frozen model used for calculating delocalization energy here is one reso-
nance contributor of cyclobutadiene in which the two double bonds are 
assumed not to interact; this model therefore has π energy which is double 
that of ethylene, or — 4|/5|. This is precisely the π energy of the delocalized 
cyclobutadiene, so that MO theory predicts no stabilization by delocaliza-
tion. The organic chemist is well aware of the lack of stability of simple 
cyclobutadienes and we note its nonconformity with HuckeFs 4n + 2 
electron requirement for aromaticity. 

One further aspect is noteworthy. There are two energy levels at X = 0; 
these are said to constitute a degenerate pair. And, in general, the occurrence 
of more than one orbital of the same energy is termed degeneracy. With two 
electrons filling the bonding MO at —2, there are two electrons which are 
available for the degenerate pair of MOs. In such a case Hund's rule sug-
gests that the two electrons will go one into each member of the degenerate 
MOs and that the two electrons will have the same spin. The reason why 
this configuration, having two unpaired electrons and termed a triplet, is 
of lower energy than the alternative configuration in which the electrons 
have opposite, or paired, spins is the subject of a later discussion. The 
present example is similar to that of the cyclopropenyl carbanion (cf. foot-
note on p. 20). 

The case of methylenecyclopropene (III) is also instructive. Here the 

inn 
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secular determinant may be expanded as before. However, the resulting 
polynomial can only be partially factored. 

Xl X2 X3 X4 

X i | X 1 0 0 

X2 1 X 1 1 
D = 

X3 0 1 X 1 

χ4 |θ 1 I X 

D = X(X3 + 2 - 3X) - (X2 - 1) = X4 - 4X2 + 2X + 1 

= (X - 1) (X3 + X2 - 3X - 1) = 0 

Hence one energy level is given by X = 1. The other three MO energies 
are the roots of Y = X3 + X2 - 3X - 1 = 0. These are obtained by 
plotting Y versus X to determine for which values of X the function Y 
equals zero. These roots are found to be X = —2.17, —0.31, and +1-48. 
The energy levels, π En., and delocalization energy (DE) are given in 
Fig. 1.2-1. 

+ 1.48 

+ | .00 

-0.3 1 —-ft 

- 2 . . 7 — % — 
7Γ En. = -4.961/31 

DE = -0.961/81 

FIG. 1.2-1. Methylenecyclopropene MOs. 

1.2f Simple Mnemonic Device for Obtaining Molecular Orbital 
Energies for Unbranched Cyclic and Acyclic π Systems 

A simple procedure has been described by Frost and Musulin5 which 
allows one to write down quickly the MO energy levels for certain π sys-
tems. The case of simple, unbranched rings is considered first. 

One begins by drawing a circle of radius 2\β\. Then the appropriate regular 
polygon is inscribed in the circle; in doing this one vertex is placed at the 
bottom of the circle. If the molecular system is one of the cyclopropenyl 
species, an upside-down equilateral triangle (Fig. 1.2-J) is inscribed. If we 
are dealing with cyclobutadiene, we inscribe a square with one vertex 
down (Fig. 1.2-K). For any of the cyclopentadienyl species—carbanion, 
free radical, or cation—we draw in a pentagon (Fig. 1.2-L). For benzene, 

X· 

X 

1 

1 

1 

X 

1 

1 

1 

X 

- 1· 

1 1 1 

0 X 1 

0 1 X 

= 0 
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25 

MO Energies 

FIG. 1.2-J. Cyclopropenyl. 

MO Energies 

I + I . 6 I 8 

FIG. 1.2-K. Cyclobutadiene. 

MO Energies 

+ 2 

FIG. 1.2.-L. Cyclopentadienyl. 

MO Energies 

FIG. 1.2-M. Benzene. 

FIG. 1.2-N. Cycloheptatrienyl. FIG. 1.2-0. Cyclooctatetraene. 

a hexagon (Fig. 1.2-M); for cycloheptatrienyl, a heptagon (Fig. 1.2-N); 
cyclooctatetraene, an octagon (Fig. 1.2-0) ; and so on. 

Corresponding to each intersection of the polygon with the circle, there 
exists a MO whose energy is given by the vertical placement, that is, its 
projection on a vertical energy scale. The center of the circle is taken as the 
zero, the bottom as —2|0|, and the top as +2|ß | . The vertical displacements 
from zero can be obtained by simple trigonometry; for many purposes a 
qualitative idea of the placement of the molecular orbitals is sufficient. 
For example, inspection of Figs. 1.2-J through 1.2-M reveals the source of 
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the Hückel rule requiring 4n + 2 electrons for aromaticity, where n is an 
integer. I t may be seen that in all cases there is a single energy level at —2, 
thus requiring at least two electrons for a closed shell. Above the —2 level 
the MOs occur in degenerate pairs, requiring that all additional electrons 
be provided in (n) groups of four for each degenerate pair to give a closed-
shell species. The summation of the electron requirement for closed-shell 
species is therefore 4n + 2. Also, we note that species having 4n electrons 
are predicted in this approximation to be triplets, since two electrons are 
supplied for the highest occupied degenerate pair (cf. discussion on p. 23). 
Finally, since the low-energy species in each case will be those in which all 
of the bonding molecular orbitals are filled, making the π energy as negative 
as possible, inspection of these diagrams immediately suggests in each case 
which species should be heavily stabilized. From Fig. 1.2-J we correctly 
predict stability for the cyclopropenyl cation (two electrons) ; from Fig. 
1.2-K we predict the cyclobutadienyl dication (two electrons) and the 
cyclobutadienyl dianion (six electrons) to be preferred. Figure 1.2-L sug-
gests that the cyclopentadienyl carbanion (six electrons) should be favored 
over the radical and the cation in agreement with organic knowledge; 
similarly, Fig. 1.2-M leads us to the preference for neutral benzene in the 
six-ring system. Figure 1.2-N predicts special stability for tropylium cation 
(six electrons) compared to the anion and radical; the organic chemist is 
aware of the correctness here, too. Figure 1.2-0 suggests that the dication 
(six electrons) and the dianion (10 electrons) will be the favored eight-
ring aromatic species.* Thus, the Frost-Hückel circle mnemonic is, indeed, 
a convenient device. 

An extension given by Frost and Musulin5 allows application to un-
branched acyclic π systems. For a chain of m atoms we draw (note Figs. 

MO Energies MO Energies 

►72" 

-Λ /Γ 

FIG. 1.2-P. Ethylene. FIG. 1.2-Q. Allyl. 

* In the past cyclooctatetraene has often been said to be nonaromatic because ring 
strain led to puckering. The argument is belied by the existence of planar cyclooctate-
traene dianion where the x energy gained in attaining planarity is more than the strain 
energy resulting. Thus cyclooctatetraene may be said to be nonplanar for electronic 
rather than mere steric reasons. 
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MO Energies 

M.6I8 

FIG. 1.2-R. Butadiene. FIG. 1.2-S. Pentadienyl. 

1.2-P-1.2-S) the polygon having 2m + 2 sides inside the usual circle of 
radius 2\ß\ and with one vertex down as before. However, only those inter-
sections of the polygon which are to the right of the vertical diameter of the 
circle are used. This excludes the intersections at the bottom of the circle 
(i.e., at — 2\ß\) and at the top of the circle (i.e., at +2|/3|) as well as those 
to the left; the part of the polygon used corresponds to the linear w chain 
involved. 

1.3 Elucidation of the Electronic Nature of Molecular Orbitale; 
Determination of LCAO-MO Coefficients 

The preceding section concentrated on basic methods of eliciting molecu-
lar orbital energies. These were of value for determining the π and delocal-
ization energies of numerous species of organic interest. This section deals 
with determining the electronic nature of these molecular orbitals. This is 
done by finding the LCAO-MO coefficients. With these coefficients in hand, 
giving the linear combination of atomic orbitals of which a particular 
molecular orbital is composed, we can obtain a mental picture of the molecu-
lar orbital as some given superposition of component AOs. Additionally, as 
will be shown, we can derive molecular properties as charge densities and 
bond order, and various reactivity indices as free valence. 

1.3a A General Method of Determining LCAO-MO Coefficients 

In the linear combination of atomic orbital-molecular orbital 
(LCAO-MO) method each molecular orbital is expressed in the form 

Ψί = CijXi + C2JX2 + CzjXz + CifXi H l· CnjXn 1.3-1 

where the x's are the atomic orbitals available to the π system being con-
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sidered. This is similar to Eq. 1.1-3 except for the addition of subscript j 
which refers to MO j . This subscript is necessary, since for each different 
molecular orbital ψ; there will be not only a characteristic energy (Xj) but 
also a different and characteristic set of LCAO coefficients, the c/s. There-
fore, for each different molecular orbital there will be a different admixture 
of atomic orbitale, as each c»y indicates the weighting of atomic orbital χ» 
in molecular orbital \pj. In labeling the coefficients it is customary to use 
the first subscript to refer to the atom and the second subscript to indicate 
the molecular orbital. 

The same secular determinant which is used to derive the MO energies 
is now employed to ascertain the LCAO-MO coefficients. To do this, one 
selects any row or column; it is convenient to use row 1 routinely.* The 
elements of this first row of the secular determinant can be generally 
designated an, ai2, ai3, . . . , aln for an n X n determinant representing a mole-
cule having n component atomic orbitale. The cofactors of the first-row 
elements can then parallel-wise be labeled An, Au, An, . . . , A\n. I t is now 
stated that these cofactors of the elements of the first row of the secular 
determinant give the unnormalized LCAO-MO coefficients ciy, cay, CZJ, . . . , 
cny. That is, the cofactor of each element of the first row of the secular 
determinant gives the weighting constant for the orbital heading that 
column in which the element appears. 

Thus if the secular determinant D is given by 

Xl X2 X3 · ' · Xn 

Xi 

X2 

D = X3 

Xn 

then Ciy = An, c2j = An, c3y = An, etc.; or in generalf 

Ct-y = An 1.3-2 

The cofactors are functions of X, the molecular orbital energy, and thus 
they give LCAO-MO coefficients which are functions of which energy 
level (X) is being considered. This is in agreement with the earlier state-
ment that each energy level has its own set of coefficients. 

* In a few situations it will prove to be advantageous to select some other row. 
t A derivation of this relationship is given later. 

i an ai2 ai3 · · · a\n ι 
I i 

tt21 &ΊΊ &ΊΖ ' ' ' 0,1η 

a%\ az2 a33 · · · a3n 

am an2 an3 · · · a n n 
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Xi 

\X 

1 

X2 

i ! 

X 

The method of determining LCAO-MO coefficients is most readily learned 
from applications to molecules which have been considered from the energy 
viewpoint in Section 1.2. The simplest example is ethylene, whose MO has 
the general form 

Φΐ = CliXi + C2j\2 1.3-3 

Depending on which MO is considered (i.e., whether y = 1 or 2), we will 
obtain one or the other of two sets of c\ and c2. 

The first row of the ethylenic secular determinant is enclosed in a dotted 
rectangle to emphasize that we plan to take the cofactors of each element 
of this row and use these cofactors as unnormalized LCAO coefficients 
(cf. p. 21 for the method of obtaining cofactors*). I t is to be 

Xi 

D = | i n = X, Ai2= - 1 
X2 I 

noted that each atomic orbitales weighting (i.e., its coefficient) in the 
LCAO expression is given by the cofactor of the element immediately 
below that orbital. The cofactors, or unnormalized coefficients, thus ob-
tained are listed in Table 1.3-1. As obtained by the method of cofactors 

TABLE 1.3-1 
UNNORMALIZED COEFFICIENTS FOR ETHYLENE 

General Value for ψι Value for ψ2 

Cofactor value (X = - 1 ) (X = 1) 

An (giving unnormalized ci) X —1 + 1 
Au (giving unnormalized C2) —1 —1 —1 

the relative value of the coefficients is seen to depend on X, that is, on 
which MO is being considered, the bonding MO with X = — 1 or the anti-
bonding MO with X = + 1 . The last two columns of this table give the 
unnormalized coefficients. The unnormalized MOs are given by 

ψι = — Xi — X2 or ψι = χι + X2 1.3-4 
and 

Ψ2 = Xi — X2 1.3-5 
* Actually, in obtaining these cofactors, we get 1 X 1 determinants. But as noted 

previously, the general definition of a determinant as a summation of all permutations 
reveals tha t a 1 X 1 determinant is just the single number in the determinant. 
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The method of cofactors merely gives the relative values of the coefficients 
in any single MO, nothing more. Therefore the negative sign in the cofac-
tors An = — 1 and Ai2 = — 1 (i.e., for ψι and X = —1) is without sig-
nificance. Multiplying through by —1 we obtain the second and more 
convenient form of Eq. 1.3-4. 

The unnormalized MOs of Eqs. 1.3-4 and 1.3-5 are unsatisfactory. We 
have noted in Section 1.1b that the square of a coefficient gives the 7r-elec-
tron density qr at that atom (r) due to one electron in the given molecular 
orbital (j) under consideration: 

qrj = Crj2 1.3-6 

A respectable molecular orbital will have a total electron density, summed 
over all atoms, of one electron for each electron put into that MO; that is, 
the sum of the squares of the coefficients in a MO should be one for the MO 
to be properly normalized* The sum of the coefficients in Eq. 1.3-4 is 
l2 + l2 = 2. Similarly, Eq. 1.3-5 gives l2 + ( - 1 ) 2 = 2. These MOs 
have the peculiar property of giving a total electron density of 2 when 
containing one electron, thus the requirement for normalization. The rule 
is to take the sum of the squares of the unnormalized coefficients and to divide 
each coefficient by the square root of this sum. In this case we divide each un-
normalized coefficient by V2 to obtain 

* i = l / ( V 2 ) X i + l / ( V 2 ) X 2 1.3-7 

ψ2= l / ( V 2 ) x i - 1/(V2)X2 1.3-8 

Now the squares of the coefficients do add to one in each MO, and we note 
that these are the bonding and antibonding molecular orbitals of ethylene 
as given in Section 1.1. Also, the 7r-electron density at each atom of the 
ethylene molecule may be calculated. This is the sum of the individual 
contributions by each electron to that atom : 

qr = J2n3qrj = E W 1-3-9 
j j 

Equation 1.3-9 generalizes this statement, giving the total x-electron 
density qr at atom r of a molecule as the sum of the individual contributions 
(the qr/s) by each electron in MO j to atom r. Here nj is the number of 
electrons in each MO j and may be termed the occupation number, and the 
summation is over all filled MOs. Applied to the case of ethylene, Eq. 
1.3-9 gives 2-(l/V2)2 = 1 τ density at each atom. Since the ethylenic 
double bond contains two π electrons and ethylene is symmetrical, we shall 
have to await more complex molecules to observe values which could not 
intuitively have been predicted. 

* This statement is true for the present Hiickel method but will need modification 
in some future instances. 



1.3 Elucidation of the Electronic Nature of Molecular Orbitals 31 

Since the present section deals with LCAO-MO coefficients, it is presently 
desirable to define another molecular property derivable from a knowledge 
of these coefficients. This is bond order. The contribution to the bond order 
between atoms r and s by an electron in MO j is given by Eq. 1.3-10 and 
has been termed6 the partial bond order : 

Prs,j — CrjCsj 1.3-10 

Just as the total electron density was given as the sum of the individual 
contributions, similarly the total bond order is given by such a summation: 

J)r& — 2—j fljiPrs,] — 21* iljCrjCs, 1.3-11 

Here again n, is the occupation number of MO j . 
Applied to the ground state of ethylene in which there are two electrons 

in ψι and where the contribution per electron is (1/V2)(1/V2) = | , this 
affords a bond order of one. Again this is not surprising, for ethylene does 
have one localized τ bond. 

It is of some interest to determine the bond order of an electronically 
excited ethylene in which one electron has been promoted to fa, The bond 
order contribution in fa is (1/V2)(— 1/V2) = —h which cancels the \ bond 
order contributions from one electron in ψι giving a zero total bond order. 
Thus in this excited state one would expect relatively free rotation due to 
the absence of π bonding and energy gain by parallel p-orbital overlap. 

1.3b Application to Determination of Coefficients of the Allyl 
Species 

The secular determinant's first row is used again to determine the cofac-
tors—Any An, Au—of this row's elements. These cofactors are 2 X 2 
determinants which are expanded to give respectively the weighting (un-
normalized coefficients) of the orbitale heading the columns of the deter-
minant. 

A n « 
X 

1 

1 

X 

Xi 

D = X2 

X3 

9 An 

Xi 

\X 

X2 

1 

1 X 

0 1 

= — 
1 

0 

X3 

0 ! 

1 

X 

1 

X 
> An = 

1 

0 

X 

1 

Table 1.3-2 gives the values of the cof actors and unnormalized coefficients 
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TABLE 1.3-2 
UNNORMALIZED LCAO COEFFICIENTS FOR ALLYL AND 

NORMALIZING FACTORS 

General For ψι For ψ2 For ψ3 

Cofactor value (X = -V2) (X = 0) (X = + V 2 ) 

Au X2 - 1 1 - 1 1 
A12 -X +V2 0 - V 2 
An 1 1 1 1 

Sum of squares of 
unnormalized 
coefficients 4 2 4 

Normalizing factor J 1/V2 J 

for the three MOs (X = -V2, X = 0, X = +V2). Also, for each MO the 
sum of the squares of the unnormalized coefficients is given along with 
the reciprocal of the square root of the sum. The latter are the normal-
izing factors by which each unnormalized MO is multiplied to effect 
normalization. Using the data in Table 1.3-2, we obtain the unnormalized 
allyl MOs as 

(X = +V2) φζ = xi - V§X2 + X3 

(X = 0) φ2 = X! - X3 1.3-12 

( Z = -V2) ^! = Xl+V2X 2 + X3 

Multiplying each by the appropriate normalization factor from Table 1.3-2 
we can write the normalized allyl MOs: 

(X = +V2) φ3 = i X l - (i/V2)X2 + èx3 

(X = 0) h = (1/V2)xi - (1/V2)x3 1.3-13 

(X = -V2) φ1 = | X 1 + (i/V2)x2 + iX3 

We note from the coefficients that an electron in ψι distributes itself more 
heavily at the central carbon than at the ends of the molecule, whereas in 
ψ2 electrons are localized at the two end carbon atoms. We recognize from 
our earlier discussion in Section 1.1 that the consequence of a change in 
sign of coefficients of adjacent AOs is the appearance of a node, or region of 
no electron density. Said differently, in proceeding along the top side of a 
7Γ system, from atom to atom, we can be certain that somewhere in between 
two points where the wave function has changed signs, there is a point 
where the wave function and therefore the electron density goes through 
zero. In ψι there is no such node; in \[/2 there is a node at atom 2; and in 
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TABLE 1.3-3 
ΤΓ-ELECTRON DENSITIES AND BOND ORDERS FOR THE 

ALLYL SPECIES 

Species 

Cation 
Radical 
Carbanion 

Qi 

0.5 
1.0 
1.5 

<?2 

1.0 
1.0 
1.0 

Qs 

0.5 
1.0 
1.5 

Pl2 

1/V2 
1/V2 
1/V2 

P23 

1/V2 
1/V2 
1/V2 

(Pi·) 

0 
-i 

ψζ there are two nodes, one between atoms 1 and 2 and one between atoms 
2 and 3. 

The total π-electron densities and bond orders are given in Table 1.3-3 
for the allyl cation (two π electrons), allyl radical (three electrons), and 
the allyl carbanion (four electrons). Realizing that a carbon atom having 
a τΓ-electron density of one has a zero formal charge, we see that the cation 
has no formal charge at the central carbon atom but half a formal positive 
charge at the end carbon atoms. This is in agreement with the resonance 
prediction. The radical has unit 7r-electron density and a zero formal charge 
at all atoms. The carbanion has no charge at the central carbon atom but 
a half-negative formal charge at atoms 1 and 3, which again accords with 
the resonance theory. It is noteworthy that τ bond orders between atoms 
1 and 3 can be calculated although, strictly speaking, a bond order should 
not be calculated between two atoms which in the original calculations 
were assumed not to overlap. The results obtained are presently used to 
indicate the tendency toward bonding rather than pursued quantitatively 
since we are dealing here with a rough perturbation calculation. We find 
that for the allylic carbanion, atoms 1 and 3 are antibonding; that is, the 
total bond order is negative and overlap would lead to destabilization. 
This is reasonable, since complete 1-3 overlap would afford the cyclopro-
penyl anion which has no delocalization energy compared to 2 — V2 for the 
allyl carbanion. The zero 1-3 bond order for the allyl radical, suggesting 
little change in π energy on forming a 1-3 bond, predicts approximately 
correctly, for there is little gained in forming a 1-3 bond and converting 
the allyl radical (τ En. — 2.83|0|) to the cyclopropenyl radical (π En. 
— 3.OO|0|). For the allyl carbonium ion the 1-3 bond order is + i and we 
would predict 1-3 bonding and formation of the cyclopropenyl cation to be 
favorable, which is correct. The allyl carbonium ion has a π energy of 
only — 2V2|0|, or — 2.83|0|, compared to the more stable cyclopropenyl 
cation, of π energy — 4|β|. This approach, informing us which added π 
bonds will lead to more stable species and which will lead to less stable 
species, is discussed from a more quantitative and rigorous viewpoint in a 
later discussion of first-order perturbation theory. 
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1.3c Cyclopropenyl Coefficients; Difficulties Due to Degeneracy 

Logically, we would next proceed to the cyclopropenyl system and deter-
mine the MO coefficients. However, as will be seen, this is only partially 
possible using the present level of sophistication. The secular determinant 
and cofactors of the first row are 

X 

1 

1 

X 

Xi 

D = X2 

X3 

^ 1 2 

Xl 

1 

1 

= — 

X2 

1 

X 

1 

1 

1 

X3 

1 

X 

1 

X 
) Au = 

1 

1 

X 

1 
Au = 

Table 1.3-4 gives the values of the cofactors for the different cyclopro-
penyl MOs (i.e., X = — 2, X = + 1 , X = + 1). This calculation reveals 
that for the bonding MO (X = —2) of cyclopropenyl the cofactors, and 
thus the LCAO coefficients, are all equal. When properly normalized these 
coefficients become 1/V3 and the bonding MO is 

Ψι = (1/V3)xi + (1/V3)X2 + (1/V3)X3 1.3-14 

The 7r-electron density per electron in the bonding MO is £ and therefore 
is f for the two electrons in the bonding MO of the cyclopropenyl cation 
(IV). The formal charge at each of the three carbon atoms is predicted to 
be + | in accord with the resonance picture. 

However, the coefficients for the antibonding, degenerate pair of MOs 
at + 1 cannot be obtained from the 2 X 2 cofactors, since these cofactors 

TABLE 1.3-4 

COFACTORS DERIVED FROM CYCLOPROPENYL SECULAR 

DETERMINANT 

Cofactor 
General 

value 
For X = - 2 

(Ψ0 
For X = + 1 

(Ψ2 or ψ8) 

An 
An 
A13 

X2 - 1 
-X + l 
1 - X 

3 
3 
3 

0 
0 
0 
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® 
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become zero for X = + 1 . Because the cofactors merely give us the rela-
tive magnitude of the LCAO coefficients, obtaining zero for all cofactors 
does not imply that the coefficients are zero. The ratio is said to be inde-
terminate, and the unnormalized coefficients cannot be obtained in this 
way. We shall return to determining these coefficients once we have reached 
the next level of sophistication. 

For the present, it can be stated generally that the cofactors derived 
from any given secular determinant will necessarily be zero whenever 
these correspond to a degenerate pair of MOs. The basis of this rule is 
discussed in Chapter 2. 

I t can be predicted that due to degeneracy at X — 0 all of the cyclo-
butadiene coefficients will not be derivable from the cofactors of the fourth-
order secular determinant. The coefficients for the butadiene problem could 
be determined by the methods presented thus far; but, at this stage of 
molecular complexity, the calculations are sufficiently laborious compared 
to simpler available methods that we postpone the discussion of butadiene 
and larger molecules until Chapter 3 as well as the introduction of methods 
of simplification by use of symmetry properties. 

1.4 Choice of the Basis Set of Atomic Orbitals in LCAO-MO 
Calculations 

In the preceding examples, the atomic 2p orbitals which were quantum 
mechanically "mixed" through use of the secular determinantal equation 
were taken as all oriented with the plus signs aimed in the same direction. 
The molecular orbital coefficients obtained then indicated how these atomic 
orbitals were to be oriented and weighted in each MO; a plus sign indicated 
that the atomic orbital was to be aimed upward while a negative sign speci-
fied that in the given MO the AO was to be aimed downward. 

Now the original set of AOs prior to mixing is termed the "basis set" 
employed. This merely means that we have somewhat arbitrarily chosen a 
set of orbitals to use in the mixing process. Actually, a different set might 
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have been chosen, although there are some restrictions imposed.* For 
example, another permissible set of basis orbitals would have one (e.g., χΓ) 
or more of the complete set of p orbitals inverted with the plus and minus 
signs exchanged. When using such a basis set, one must not forget that in 
any MO each atomic orbital symbol represents that AO as it occurs in the 
basis set. Thus, a positive coefficient for χΓ signifies an inverted AO at 
atom r. In setting up a secular determinant with some of the basis orbitals 
inverted, we put in a — 1 for each adjacent set of orbitals in which the plus 
lobe of one orbital is near the minus lobe of the other orbital, and vice versa. 

I t is found that the molecular orbital energies afforded by quantum 
mechanical mixing are independent of the orientation of the basis set of 
atomic orbitals mixed. Conversely, the molecular coefficients will be a func-
tion of the choice of the basis set. However, it will be noted that, although 
the algebraic form of the MOs depends on the choice of the basis set, the 
actual molecular orbital will not depend on this choice. Thus the coefficients 
will merely rein vert those orbitals in a MO which were taken upside down 
in the basis set; that is, if the orbital \r is an inverted one, it is the negative 
of a more conventionally chosen orbital aimed upward, and in each MO 
obtained using the inverted orbital χτ the coefficient will be the negative 
of that obtained in the conventional calculation. Thus the direction of the 
AOs in the molecular orbitals found will be independent of the definition 
of the basis set. 

A simple example is found in the case of the allyl species if we choose the 
basis, or starting, set of AOs with the p orbital at earbon-3 inverted (Fig. 
1.4-A). Here the secular determinant becomes 

Xi 

X2 

X3 

Xi 

X 

1 

0 

X2 

1 

X 

- 1 

X3 

0 

- 1 

X 

= X» - 2X = 0 and X = 0, ±V2 1.4-1 

X ' Ä
 χ 2 - χ3 

Ö 
c c c 

0 0 
FIG. 1.4-A 

* It is necessary that a ''complete set" be chosen. For the present purpose this merely 
requires that all atomic orbitals be included. 
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TABLE 1.4-1 

37 

Cofactor 
(normalized 
coefficient0) 

General 
value 

For X = -V2 For X = 0 
( « 

For X = +V2 
( « 

A n (Ci) 
Ai2 (c2) 
Ais (C3) 

X 2 - l 
- X 
- 1 

1 (i) 
i/5 (1/V2) 

- i ( - i ) 

- 1 (1/V2) 
0 (0) 

- 1 (1/V2) 

1 (i) 
-Ϋ2 (-1/V2) 
- 1 ( - J ) 

° Normalized coefficients are given in parentheses. 

The LCAO-MO coefficients are given in Table 1.4-1. Inspection of the 
coefficients of Table 1.4-1 shows that it gives the usual allyl coefficients 
with the exception that in every instance the sign of the coefficient Cz is 
inverted. However, this is the coefficient weighting the present χζ which is 
the negative of the more common convention, and the coefficient serves 
to give an MO in each instance which has the AOs aimed with positive 
signs in the usual direction*. 

1.5 Cases Where Negative Overlap Is Enforced in the Basis Set 

Occasionally a molecular situation is encountered in which it is impossible 
to assign the direction of the basis set of AOs so that lobes of equal sign 
overlap. Thus "twist-hydrotrimethylenemethane" (I) might have its 
basis set of AOs chosen either as in la or in lb, but in no case could one 
find a basis set with only plus lobes overlapping plus lobes and only minus 
lobes overlapping minus lobes. As we have recognized, either basis set will 
afford the same solution. However, for convenience the basis set lb is 

H H H H 

( Ι α ) ( l b ) 

* There is one consequence of choosing a basis set with lobes of unequal sign over-
lapping. This is that bond order definitions given by Eqs. 1.3-10 and 1.3-11 must be 
modified to p„,j = θτ&*μτ* (1.3-10a) and prt = 2/ njCrjC8j€r* (1.3-lla) where «„ is + 1 
or — 1 depending on whether lobes of the same or opposite sign overlap. 
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+ Lobes tilting outward 

Point of sign inversion 
in basis set 

- Lobes tilting outward 

FIG. 1.5-A. Möbius strip problem. 

better since all of the off-diagonal elements will be the same, namely — 1. 
As a problem (Problem 7 at the end of this chapter) it is suggested that 
the reader obtain the MO energies for "twist-hydrotrimethylenemethane"; 
these turn out to be X = — 1, — 1, and + 2 . 

If one focuses attention on basis set la, he notes the presence of a cyclic 
array of contiguous p orbitals with like signs overlapping except for one 
inversion. This is related to the Möbius strip problem described by Heil-
bronner.7 We may envisage a large cyclic polyene in which each p orbital is 
twisted a bit relative to the adjacent p orbital and finally the ends of this 
twisted chain are joined to give a cyclic polyene with a single inversion of 
p-orbital sign in proceeding from one atom to the next (Fig. 1.5-A). It has 

Mobius cyclopropenyl 

-V2 

Mobius cyclobutadiene 

0.618 

-1.618 

+ 1.732 

-1.732 

Mobius cyclopentadienyl Mobius benzene 

FIG. 1.5-B. Möbius cyclic polyenes. 
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been noted by Heilbronner that in such a cyclic polyene the MO energy is 
given by the general expression* 

x = 2 c o s [?^±iTj. 

Here n is the number of AOs and L has the values 0, 1, . . . , (n — 1) with 
each value of L giving one molecular orbital. 

It is not difficult to demonstrate8 that for such Möbius systems a simple 
mnemonic trick similar to the Frost-Hückel device is available. As with the 
Frost device, one inscribes the appropriate polygon in a circle of radius 
2|0|, and again the center of the circle is taken as the zero. As before, inter-
sections of the polygon with the circle correspond to MO energy levels. 
However, in the case of Möbius strip cyclic polyenes, one orients one side 
of the polygon horizontally at the bottom of the circle (cf. Fig. 1.5-B). 

1.6 The Hiickel and Möbius Rules 

Having developed the circle mnemonics for the Hiickel and Möbius 
systems, we find it appropriate to use these in explaining the well-known 
Hiickel rule which states that for a cyclic system of basis orbitals, 4n + 2 
confers particular stability. Also, we can inquire if this rule applies to 
Möbius systems, and if not, what rule is appropriate. 

Looking at the circle mnemonic as applied to Hiickel systems we note 
that invariably a single MO occurs at — 2 and that this will accommodate 
two electrons. Above this in energy, the MOs occur in degenerate pairs 
(except for the highest occupied MO of even systems). Each pair will 
accommodate four electrons; if there are n degenerate pairs, 4n electrons 
are needed for these. This means that the total number of electrons required 
for a closed shell in a Hiickel system will be 4n + 2. 

I t is readily seen from the Möbius mnemonic8 that a different rule is 
required since there is no single nondegenerate bonding MO. Since all the 
MOs (except for a highest energy MO in odd cases) come in degenerate 
pairs, the number of electrons needed for a stable, closed shell is 4n. Thus 
for aromaticity, the Möbius rule is quite different. 

In Hiickel systems, a molecule having the wrong number of electrons 
for a closed shell has been defined9 as "antiaromatic." The same definition 

* Heilbronner's expression actually contained an extra factor to take into account 
the decreased overlap of noncoplanar p orbitals. For simplicity we merely use the de-
creased resonance integral as our energy unit. 
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TABLE 1.6-1 
SUMMARY OF AROMATICITY AND ANTIAROMATICITY 

REQUIREMENTS OF HÜCKEL AND MÖBIUS SYSTEMS 

Number of electrons 
Type of 
system 4w + 2 4n 

Hückel Aromatic Antiaromatic 
Möbius Antiaromatic Aromatic 

could now be applied for Möbius systems, except that 4n + 2 leads to 
antiaromaticity. Table 1.6-1 summarizes the situation.8,10·11 

It has been noted8 that not just twisted cyclic polyenes but any cyclic 
array of orbitals having an odd number of sign discontinuities constitutes 
a Möbius system. The Hückel systems similarly are more general. Also, 
both Zimmerman8·11 and Dewar10 have pointed out that the generalizations 
above apply not only to molecules but also to transition states. 

1.7 Relation between the LCAO-MO Coefficients and the 
Molecular Orbital Energies 

A very useful relation exists between the LCAO-MO coefficients of a 
given MO and the MO's energy. It will be shown later that minus twice the 
sum of the partial (one electron) bond orders, including all pairs of adja-
cent atoms, gives the energy of that particular MO in the usual units of 
\ß\. We can picture the π bonding energy in any single MO as being dissected 
into contributions with the contribution from any given bond being given 
by the negative of twice the partial bond order 

AXrs,i = — 2pr8ii 1.7-1 

Thus a positive partial bond order between atoms r and s in MO i affords 
a negative contribution to the π energy (i.e., stabilization) while a negative 
bond order signifies antibonding. 

We could, for example, take the LCAO-MO coefficients for allyPs lowest 
molecular orbital and obtain from these the MO energy. Thus the 1,2-par-
tial bond order is (cf. Table 1.3-2 or 1.4-1 for coefficients) 1/2V2; and the 
2,3-partial bond order is the same. The total bond order in the bonding 
MO is therefore 1/V2; and the π bonding energy in this MO is hence —V2 
per electron. This is synonomous with the MO energy. 

This energy-coefficient relationship has another use, that of deriving the 
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Allyl M Os Approximate cyclopropenyl M Os 

I 4l4|ß| ^ Δ * = -0 .500 
l CT, - y ; c-3 - y ; Pi3 - 4 ' ^ ^ + | .000 

„'^ + 0 . 9 1 4 

0 ' 0 

1.414 ^ ^ Δ * = -0.500 
( C | = T ; C 3 = i P"Zi} ^ ^ ,.914 

FIG. 1.7-A. Perturbation calculation of cyclopropenyl MO energy levels. 

energy levels of one molecule from those of a structurally related one. For 
example, it is possible for each allyl MO to derive (Fig. 1.7-A) the energy 
change on allowing 1,3-bonding. We then obtain an approximation to the 
MO energies of cyclopropenyl. Since the original coefficients are derived 
from the allyl secular determinant which assumed no overlap between 
atoms 1 and 3, we cannot expect the energies obtained to be exact for 
cyclopropenyl. Precise Hückel energies could be derived, of course, using 
the cyclopropenyl coefficients. 

Problems 

1. Show that a Slater 2s orbital vanishes as p —-> infinity. 
Hint: From the calculus of variations we know 

r f(u) f{u) 
hm —— = lim — — 
u^gw u^g (u) 

and we note that χ2β can be written in this quotient form. 
2. In a p orbital, locate the point of maximum electron density. 
3 . Set up the secular determinant for benzene. 
4. Obtain the Hückel molecular orbital energy levels for the species 
trimethylenemethane : 

CH2 

C H 2 = C 
CH 2 

5. Show that without methods beyond those given in Chapter 1 it is 
impossible to obtain all of the molecular orbital coefficients due to de-
generacy in trimethylenemethane. 
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6. Convince yourself that a linear (i.e., acyclic) three-orbital system, in 
which AO 1 is perpendicular to AO 2, breaks down into a problem of two 
separate molecules. Which two? Set this problem up in a 3 X 3 determinant. 
What characteristic of the 3 X 3 determinant correlates with its ability 
to be "broken down" into two simpler problems? 
7. Given "twist-hydrotrimethylenemethane," with three p orbitale in a 

ΧΎ 
planar cyclic array, obtain the eigenvalues. How does this compare with 
the array of MO energies in cyclopropenyl itself? In each case decide which 
should be the stable species: the cation, the radical, or the carbanion? 
8. Assume that the off-diagonal elements representing the interaction 
between AOs r and s are given by cos 0re. Then obtain the MO energies 
for twisted ethylene as a function of angle of twist: for 0°, 30°, 60°, 90°, 
120°, 150°, and 180°. Put all this together then into a correlation diagram, 
plotting MO energies against θι2. 
9. How does the number of MOs correspond to the number of basis 
AOs? Which of the following has the MOs symmetrically disposed about 
zero: Cyclopropenyl, ethylene, methyl, allyl? Can you correlate any molecu-
lar situation to the symmetrical disposition? 
10. Derive the molecular orbital energies for butadiene. To do this use the 
method of expansion by cofactors of the fourth-order secular determinant. 
11. Show that the molecular orbital energies obtained for the cyclopro-
penyl problem are the same despite a basis set of atomic orbitals being 
chosen having χ3 inverted. 
12. Derive the MO energy levels for "Möbius cyclobutadiene" by setting 
up and solving the usual secular determinant. Check your answer against 
that obtained using the circle mnemonic trick. Compare the resonance 
energy with that for cyclobutadiene. 
13. We are given the following energies and MO expressions for butadiene. 

X = -1.618 

X = -0.618 

X = +0.618 

X = +1.618 

ψ! = 0.3717χι + 0.6014χ2 + 0.6014χ3 + 0.3717χ4 

φ2 = 0.6014Χ1 + 0.3717χ2 - 0.3717χ3 - 0.6014χ4 

ψζ = 0.6014χι - 0.3717Χ2 - 0.3717χ3 + 0.6014χ4 

ψ4 = 0.3717χι - 0.6014χ2 + 0.6014χ3 - 0.3717χ4 

Use this information to calculate (to the second decimal place) the molecu-
lar orbital energy levels of the cyclobutadiene. Compare this with the 
energies obtained by exact Hückel solution of the cyclobutadiene problem. 
14. Using the same butadiene MOs as given in Problem 13, derive the 
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approximate energy levels of methylenecyclopropene. Here the 1,3-partial 
bond orders are used. 
15. Again using the butadiene MOs of Problem 13, derive the approximate 
energy levels of "Möbius cyclobutadiene" and compare your answer with 
that obtained in Problem 12. 
16. What is the effect of a methoxyl group substituted on (a) a carbonium 
ion center, (b) a free radical center, (c) a carbanion center? That is, which 
centers are stabilized or destabilized and by what relative amount? Explain 
this in MO terms: For simplicity simulate an oxygen p orbital by a carbon 
p-orbital. 
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Chapter 2 

INTRODUCTION TO SOME CONCEPTS OF QUANTUM 

MECHANICS AND THE THEORETICAL BASIS OF THE 

LCAO-MO METHOD 

The preceding chapter dealt with the simplest methods of the Hückel 
version of the LCAO-MO approach. Justification of these methods was 
delayed with the conviction that there is a pedagogical advantage in pre-
senting the utility of the method prior to detailing its theoretical basis. 
For the inquisitive and physically inclined the present chapter, giving the 
basis of the LCAO-MO method, has been delayed long enough. 

2.1 Fundamental Concepts of Quantum Mechanics 

2.1a Eigenvalues, Eigenf unctions9 and Operators 

We can begin by defining the terms eigenvalues and eigenfunctions which 
are basic to quantum mechanics. Eigenvalues are allowed values of some 
observable property, for example energy. In fact, throughout Chapter 1 
we determined the energy eigenvalues, or molecular orbital energies, for 
electrons in different molecular systems. The logic of the term eigenvalue 
(characteristic value) is clear once we remember that each molecule was 
found to have its own characteristic set of MO energy levels or energy 
eigenvalues; that is, only very particular energies were allowed. The energy 
is said to be quantized. However, observables besides energy may be 
quantized and therefore have sets of allowed values or eigenvalues; pres-
ently we are most interested in energy. 

An eigenfunction is a function describing the system with a given eigen-
value. Our LCAO molecular orbital expressions are eigenfunctions, since 

44 
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each ψί describes the state of an electron having the corresponding eigen-
value Xi or MO energy. We see that for each eigenvalue there corresponds 
an eigenfunction. We are most interested in eigenfunctions describing the 
allowed states of an electron; such eigenfunctions are termed orbit als. We 
use the symbol χ» and term atomic orbital to describe the state of an elec-
tron confined to an atom, while the symbol ψί is reserved for molecular 
eigenfunctions (MOs) describing the state of an electron in a molecule. 

Finally, before proceeding we need one further definition. An operator 
is a symbol prefixing some variable and signifying that the particular 
operation is to be performed on the variable. The operator (d/dx) signifies 
"take the first derivative with respect to z of . . . " . The operator (d2/dx2) 
similarly specifies "take the second derivative of." It is the variable to the 
right of the operator which is operated upon. 

2.1b A Basic Postulate of Quantum Mechanics 

A fundamental postulate is used to obtain the eigenvalues and corre-
sponding eigenfunctions for some observable property of a given system 
(e.g., energy and orbital of an electron). This postulate is given by 

(Ορ)Φ» = k&i 2.1-1 

Here (0P) is an operator, Φ is the function describing the system (as an 
orbital), and ki is a constant corresponding to an allowed value of some 
observable property of the system (as energy). This equation then in effect 
states that for every observable property of a system described by the func-
tion Φ, there can be found an operator (Op) such that when (0P) is per-
formed on an allowed value of Φ, Φ* (i.e., the eigenfunction), one obtains 
back Φΐ multiplied by a constant ki, where ki is the eigenvalue, or allowed 
value, corresponding to the eigenfunction Φΐ. 

In principle, all we have to do is to select the proper operator (0V) 
corresponding to the observed property we wish to obtain, and then to 
solve Eq. 2.1-1 for the allowed values (the ki's) of the observable; in the 
process of obtaining these eigenvalues we also obtain the eigenfunctions 
(the Φ/s) describing the system in its allowed states. Table 2.1-1 gives 
some examples of observables and their corresponding quantum mechanical 
operators. Inspection of Table 2.1-1 reveals that physical properties ex-
pressed classically in terms of coordinates x, y, and z have quantum me-
chanical operators which correspond exactly to the classical expression; 
such physical properties are position in space (x, y, z, r), relative position in 
space (7*12), and potential energies of electrons. We note, however, that the 
momentum and kinetic energy operators are different from their classi-
cal counterparts. The operator equivalent of momentum (P — mv) is 
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TABLE 2.1-1 
SOME OBSERVABLES AND T H E I R QUANTUM MECHANICAL OPERATORS0 , 6 

Observable Classical expression QM operator 

Position in space 

Momentum of a particle of 
mass m 

Kinetic energy of a particle 
of mass m 

Potential energy of an elec-
tron near a nucleus of 
effective positive charge Z 

Potential energy of two 
interacting electrons (1 
and 2) 

Total energy of an electron 

x (similarly6: y and z) 

P — mv 

T = \mv2 

= (l/2m)P2 

V = -Ze2/r 

V = e2Ai2 

E = T + Ftc 

x (similarly6: y and z) 

(h/2iri) (d/dx) 

- (h2/8rmr2) (d2/dx2) 

-Ze2/r 

e2/rn 

3C = - (h2/8mw2) (d2/dx2) 
+ Ftot 

α h is Planck's constant, v is velocity, i is V—l> r is the distance of the electron from 
the nucleus, ri2 is the distance between two electrons, and e is the charge of an electron. 

6 In expressions involving coordinates where only the x component has been listed, if 
motion in all directions is considered, then one must add equivalent terms in which y and 
z replace x. 

(h/2iri) (d/dx). To obtain the kinetic energy operator we replace each P 
in the classical expression ( l /2m)P 2 by the momentum operator. This gives 
(l/2m)(h/2iri) (d/dx) (h/2iri) (d/dx). Since (d/dx) (d/dx) means "dif-
ferentiate twice with respect to x" and i = \ / ~ ï > ^ n e kinetic energy 
operator becomes — (h2/8mir2) (d2/dx2) for motion in the x direction. For 
motion allowed in all directions (d2/dx2) is replaced by the sum (d2/dx2) + 
(d2/dy2) + (d2/dz2). 

We can now rewrite the eigenvalue equation 2.1-1 for the special case 
employing the electron energy operator 3C and giving the energy eigen-
values Ei\ 

3C<i\ = E&i 2.1-2 

Equation 2.1-3 is the equivalent one in which the energy operator is 
written explicitly (here Vtot is the potential energy characteristic of the 
specific system considered) : 

l-(h2/S7UT2)(d2/dx2 + d2/dy2 + d2/dz2) + Vtot^i = E&i 2.1-3 

This is the form of the Schrödinger equation most commonly given in 
undergraduate textbooks. 
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A second postulate of quantum mechanics, which can be considered to 
be a corollary to that already given, states that the value (Ob) of the 
observable property corresponding to the operator (0P) when a system is 
described by the function ψ is given by* 

m-SH^1Vz 21-4 

J ψλ dx dy dz 
Here (Ob) represents the measured value of the observable. In the special 
case of interest now, the energy of any orbital is given by 

E = J ψΚψ dx dy dz 2 

f ψ2 dx dy dz 

This will correctly give an orbital's energy even when the orbital ψ is not 
an eigenfunction and additionally even when it is not normalized. The 
integration in these equations is performed over all space, that is, from 

£ = — 0 0 t o + 0 0 , y = — oo t o + 0 0 a n d Z = — oo t o + oo 

If the wavefunction or orbital is normalized, the denominator becomes 
unity. If, additionally, the orbital is an eigenfunction, Eq. 2.1-5 becomes 

Ei = J φίΜ,ψί dx dy dz 2.1-6 

where ψί is an eigenfunction and Ei is its energy. This equation can be con-
sidered to be the integrated form of the Schrödinger equation (Eq. 2.1-2), 
for if we multiply each side of 2.1-2 by the eigenfunction Φ; (symbol used 
in 2.1-2 instead of ψί) and then integrate over all space, we obtain 

J ΦίΕίΦί dx dy dz = E{ f Φ;2 dx dydz = Ei = J Φ^Φ,- dx dy dz 2.1-6' 

which is the equivalent of 2.1-6. In this, we have made use of the facts that 
Ei is a constant and may be removed from under the integral sign and that 
Φ» is normalized and as a result the integration of its square affords unity. 

2.2 The Variation Method; Minimization of LCAO-MO Energy 
to Give the Secular Equation and Secular Determinant 

We shall now apply the preceding to finding the eigenvalues and eigen-
functions (here allowed energies and orbitals, respectively) for an electron 

* Throughout this discussion we are assuming that the wavefunctions, or orbitals, 
used are real (i.e., noncomplex). 
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placed into the π system of an organic molecule. For mathematical sim-
plicity we begin with a three-atom molecule. We shall assume that the 
eigenfunction is of the LCAO form, that is, 

Ψ = cixi + C2X2 + C3X3 2.2-1 

However, the molecular orbital given by Eq. 2.2-1 will be the desired 
eigenfunction only if ci, C2, and Cz are correctly chosen. We use Eq. 2.1-5 to 
obtain the energy of the molecular orbital, because we have not assumed 
it to be normalized and an eigenfunction. The energy of φ will depend on 
the choice of Ci, C2, and Cz, but we desire that choice which will minimize the 
orbital energy. It will be found that the eigenfunctions correspond to 
energy minima for bonding MOs. 

We begin by substituting the LCAO-MO expression of Eq. 2.2-1 into 
the energy expression of 2.1-5, cross multiplying in the process to obtain 

E I (cixi + C2X2 + c3xz)2dv 

= / (cixi + C2X2 + C3X3)3C(cixi + C2X2 + C3X3) dv 2.2-2 

where dv represents the volume element dx dy dz. We may now expand the 
squared term on the left and the product on the right; in so doing, we must 
make certain to keep the 3C operator in its present order, that is, operating 
only on terms to the right of itself. We obtain 

E I ci2 j xi2 dv + C22 f X22 dv + C32 j X32 dv 

+ 2cic2 / X1X2 dv + 2ciCz I χιχ3 dv + 2c2c3 / X2X3 dv 

= C12 / xiJCxi dv + c2
2 / X23CX2 dv + c3

2 / xz^Xz dv 

+ C1C2 I xi3Cx2 dv + C1C2 J X2^Cxi dv + dCz I Xi5Cxs dv 

+ CiCz I χ3Χχι dv + C2C3 / X2̂ Cx3 dv + C2C3 / χ3Χχ2 dv 2.2-3 

I t is convenient to use shorthand notation for integrals of the type which 
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appear in Eq. 2.2-3, since these occur in many usages. The integrals are of 
four types : 

Hrr = I Xr̂ Cxr dv is termed the Coulomb integral, 

Hrs = / Χτ3£χδ dv where χτ and χ8 are different atomic orbitals, is 
called the resonance integral, 

Srr = / Xr2 dv is a normalization integral, equal to one if the atomic 
orbitals used are normalized, 

Srs = / XrXs dv is termed the overlap integral. 

Prior to substituting this symbolism into Eq. 2.2-3, let us consider 
briefly the nature of the four integrals. The integral Hrr can be considered 
to give the energy of an electron in the (isolated*) atomic orbital. Hrs, the 
resonance integral, is the two-center analog of Hrr, and can be considered 
to give the stabilization resulting from overlap and interaction of the two 
atomic orbitals χτ and χ8 with the electron being allowed to distribute 
itself between both orbitals rather than being confined to one. It is shown 
later that Hr8 = Hsr. Srs) as the designation "overlap integral'' implies, is 
a measure of the extent to which the atomic orbitals χτ and χ8 overlap in 
space. To the extent that %r and χ8 are simultaneously large in certain 
regions in space, the integral Srs will also be large. If χΓ is always small 

* This is only approximately true, since 3C in this derivation is the energy operator 
for the entire molecular orbital Ψ rather than just the atomic orbital χΓ. Thus 

J X&Xrdv - J XrWdx* + d*/dy* + #/<&« - Zé/fr - Zé*/rs - Z^/r^Xr 

= J XrXrXr dv + J Xr [~6 2 Z / r 8 - β^Ζ/τ^ Xr dv = Er + L. 

Thus the operator 3C contains in addition to 5Cr (the operator corresponding to the atomic 
orbital χΓ), the extra terms —e2/rs and —e2/rt which are the potential energy contribu-
tions due to attraction of the electron by nuclei s and t. Thus the integral Hrr = / Xr5Cxr dv 
gives the energy Er of (an electron in) atomic orbital χΓ plus an increment L. The 
absolute value of L is, however, small, since when χΓ is large (i.e., near atom r), then 
rs and rt (the distances from atoms s and t) are also large and their reciprocals are small. 
All this is equivalent to saying that the Hamiltonian for the MO is not quite the Hamil-
tonian operator for a single atom. 

dv 
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where χ8 is large and vice versa, then Srs will be small. Srr is the normal-
ization integral. Since χτ

2 gives the probability of an electron in χτ being 
found (i.e., its electron density) at a particular point in space, the integral 
Srr gives the total electron density. If χτ is properly normalized, Srr will 
thus equal one. 

Returning now to our derivation, we rewrite Eq. 2.1-9 using the sym-
bolism for the four types of integrals. In doing this we use the fact that 
Hrs — Hsr. We obtain 

#[Cl2Sll + C22S22 + C32&3 + 2ClC2Sl2 + 2ClC3£l3 + 2c2C3Ä23] 

= ci2Hu + c2
2#22 + cfHu + 2dC2Hi2 + 2aczHu + 2c2c3#23 2.2-4 

Now all of the integrals are fixed quantities characteristic of the geometry 
of the molecule being considered. The energy E of the system is a function 
of the variables c\, C2, and C3. To obtain the first secular equation we par-
tially differentiate Eq. 2.2-4 implicitly with respect to ci, keeping c2 and 
Cz constant. We obtain* 

(dE/dCi)lCi2Su + C2
2S22 + cJSzz + 2CiC2Si2 + 2CiC3£i3 + 2C2C3AS23] 

+ El2ciSu + 2c2Si2 + 2C3ASI3] = 2ciHu + 2c2Hi2 + 2czHu 2.2-5 

For an energy minimum (dE/dci) = 0 and the first term drops out. Divid-
ing through by 2 and grouping terms, we find 

(Hn - ESn)ci + (#12 - ESu)c2 + (Hu - ESu)c* = 0 2.2-6 

which is the first of three secular equations which can be obtained. The 
second and third are obtained similarly from Eq. 2.2-4 by partially differ-
entiating with respect first to c2 to give the second secular equation (2.2-7) 
and then with respect to c3 to give the third (2.2-8) : 

(H21 - ESn)ci + (H22 ~ ES22)c2 + (#23 - ES2s)cz = 0 2.2-7 

(Hn - ESn)ci + (#32 - #£32)c2 + (#33 - ESu)c9 = 0 2.2-8 

Now if the three secular equations 2.2-6, 2.2-7, and 2.2-8 are not to have 
the trivial solution Ci = 0, C2 = 0, cs = 0, then the following condition 
must be metf: 

* In this differentiation we remember that the derivative of a product d (uv) /dx is 
given by u(dv/dx) + v(du/dx). 

t A corollary of Cramer's rule states that a necessary condition for a nontrivial solu-
tion of a set of simultaneous, linear equations is the disappearance of the determinant 
of the coefficients of the unknown variables. In the present instance the unknown 
variables are ci, C2, and c$ while the coefficients of the variables are the terms in 
parentheses in the secular equations. 
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Xi 

X2 

X3 

(Hn — ESn) 

(H21 — ES21) 

(Hzi — ESzi) 

(H12 — ES12) 

(H22 — ES22) 

{Hz2 — ESzz) 

(Hu — ESiz) 

(H2Z — ES2Z) 

(Hzz — ESzz) 

= 0 2.2-9 

This is termed the secular determinantal equation. Each element of the 
determinant has subscripts indicating which atomic orbitals appear in that 
element's resonance and overlap integrals; and the columns and rows are 
labeled with these interacting orbitals. The reader can readily demonstrate 
to his satisfaction that the preceding derivation can be applied to larger 
systems, or to the smaller system ethylene for that matter, and will afford 
secular equations and secular determinants of exactly the same form. How-
ever, there will be as many secular equations and rows and columns of the 
secular determinant as there are orbitals mixed (i.e., taken in linear com-
bination) . Thus, in general the secular equations are 

Σ (Hr8-ESrs)cs = 0 for r = l , 2 , 3 , 2.2-10 

and the secular determinantal equation is 

\(Hr.-ESr.)\ = 0 2.2-11 

Turning now to the specific case of allyl and Eq. 2.2-9, we find that sim-
plification is possible. Thus Hn, H22, and #33 can all be taken as equal and 
designated by the symbol a representing the Coulomb integral for a carbon 
p orbital. Ηί2> Η2ι, #23, and Hz2 are the resonance integrals reflecting the 
extent of electronic interaction between two adjacent p orbitals, and all of 
these can be replaced by the general symbol β. Η\ζ and Hz\ can be neglected 
since these integrals involve nonadjacent p orbitals. Su, S22, and Szz are 
normalization integrals equal to one. S12 ( = S21) and S23 ( = S32) are ne-
glected in the Hückel approximation; these overlap integrals are relatively 
small (about 0.25). As will be noted later, the results which we obtain here 
with the "neglect of overlap" assumption can readily be corrected to in-
clude overlap. 

As a result of these substitutions Eq. 2.2-9 becomes 

Xi 

X2 

X3 

Xi 

(a-E) 

ß 

0 

X2 

ß 

(a-E) 

P 

X3 

0 

ß 

(a-E) 

= 0 2.2-12 
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Now determinant algebra allows us to multiply or divide all elements of 
any row or column by a constant. The effect of such an operation is to 
multiply or divide the value of the entire determinant by that constant. 
In the present instance we shall divide each column by ß, giving 

Xi 

X2 

Xi 

(a-E)/ß 

1 

X2 

1 
X3 

0 

(*-E)/ß 

X3| 0 1 (a 

Now let us define 

X = (a-E)/ß = (E-a)/(-ß) -

E)/ß 

= 0 2.2-13 

(E-a)/(\ß\) 2.2-14a 

and we note that Eq. 2.2-13 becomes the secular determinantal equation 
of the form utilized in Chapter 1 : 

Xi 

X2 

X3 

Xi 

X 
X2 

1 

1 X 1 

0 1 X 

1.2-3 

The X's are found as diagonal elements; the ones are found where columns 
and rows headed by adjacent and interacting atomic orbitale intersect. 
Zeros are found where columns and rows of noninteracting atomic orbitals 
intersect. 

The definition of X as given in Eq. 2.1-20a is important. We see that X 
is defined as the energy E of the system in excess of a and in units of \ß\, 
the absolute value of beta. Thus in view of the significance attached to 
a = Hrr, the energy of an electron in an isolated p orbital is taken as our 
arbitrary zero of energy. Thus 

E = a + X\ß\ 2.2-14b 

We have now justified the method of obtaining molecular orbital energies 
given in Chapter 1. 

It is of some considerable interest to inquire whether the solutions to the 
secular determinantal equation (e.g., 2.2-9) really do correspond to energy 
minima. Thus far in our derivation we merely required that the first 
derivative of the energy with respect to each of the LCAO coefficients be 
zero; this could correspond to an energy minimum, a maximum, or an 
inflection point. Let us return to Eq. 2.2-5 and implicitly partially dif-
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ferentiate again with respect to c\. A positive second derivative (d2E/dci2) 
is a requirement for an energy minimum with respect to C\ when the secular 
equation is satisfied; similarly the second derivatives with respect to the 
other LCAO coefficients should be positive. Implicit partial differentiation 
affords 

(dlE/dCi2)[ci2Äi + c2
2S22 + Cz2Szz + 2clC2Äi2 + 2clCzSn + 2c2csS2z'] 

+ 4(dE/dCi)lciSn + c2S12 + C3S13] + # [ 2 S u ] = 2HU 

or 

(d^/aci*) = 2(Hn-ESu) 2 2 l 5 

Ci2Sn + C2
2AS22 + Cz2Szz + 2ciC2Su + 2c2CzS2z + 2ciCzSiz 

(d2E/dci2) = 2(Hn - ESu) = 2 (a - E) 2.2-16 

or* in terms of X: 

(d2X/dci2) = -2X 2.2-17 
The denominator of the expression in 2.2-15 is unity since this is just the 
expansion of f\//2dv = /(cixi + C2X2 + czxz)2dv with substitution for the 
symbols used for the overlap and normalization integrals.f Analogous 
expressions are obtained for the second derivatives with respect to the 
other LCAO coefficients. 

Thus we have arrived at the interesting answer in Eq. 2.2-17 that the 
second derivatives (d2X/dcr

2) will be positive for a molecular orbital having 
a value of X less than zero. A positive second derivative provides a necessary 
condition that the extremum we have located is a minimum, and we can 
state that all bonding MOs (i.e., negative X's) correspond to energy 
minima. Any deviation from the value of X afforded by the secular equa-
tions will raise the energy of the MO. Furthermore, Eq. 2.2-17 reveals that 
antibonding MOs, where X is positive, correspond to energy maxima. For 
nonbonding MOs where X = 0, we have an inflection or saddle point. In 
real organic systems, the bonding MOs will be populated largely or com-
pletely while a much smaller number of nonbonding and antibonding 
MOs will be filled. As a result the energy of the total system will be at a 
minimum. 

* This is obtained by substitution of the definition of X into the rightr-hand side of 
2.2-16 and the second derivative of this definition into the left-hand side. 

t Although we have not required the original ψ, whose energy we were extremizing 
to be normalized, we are requiring that it be a properly behaved MO once the correct 
c's are chosen. 
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2.3 Justification of the Method of Cofactors for Determining 
LCAO Coefficients 

Consider a secular determinantal equation as 

ÖU ai2 #13 * * ' Clln 

a2\ a22 «23 

#31 #32 #33 

« 2 n 

ÜSn 

dnl 

= 0 2.3-1 

where each element ar8 = (Hrs — ESr8) · This is then just a convenient 
shorthand abbreviation of the secular determinantal equation of the form 
given in 2.2-9. The secular equations from which 2.3-1 derives are 

anCi + auc2 + auC3 + · 

a2\C\ + a22C2 + a2zCz + · 

«3lCl + a32C2 + a33C3 + · 

•  ' + dlnCn = 0 

• + a2ncn = 0 

•  + CtznCn = 0 

2.3-2a 

2.3-2b 

2.3-2c 

dn\C\ + i Q>nnCn — " 2.3-2n 

where these represent equations such as 2.2-6 through 2.2-8. Now let us 
see to what extent a valid solution for the molecular orbital coefficients is 
given by 

cs = kAu 2.3-3 

where c8 is the LCAO coefficient for atom s, Au represents the cofactor of 
element au, and k is an undetermined constant. Equation 2.3-3 is just a 
restatement of the method of cofactors, presented in Chapter 1, in which 
the relative values of the LCAO coefficients were given by the cofactors of 
the elements of row 1 of the secular determinant. 

We can show in the following way that Eq. 2.3-3 does afford a proper 
solution to all of the secular equations. If we substitute the values of the 
LCAO coefficients as given by 2.3-3 into the left-hand side of any of the 
secular equations, for example the rth one, we obtain a quantity 

L = k(ariAn + ar2Au + arzAu -\ h arnAin) 2.3-4 
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Now it can be seen* that the portion of Eq. 2.3-4 in parentheses is just an 
expansion by cofactors, using row 1, of the determinant 

ar\ ari arz 

#21 #22 

#31 #32 #33 

#2n 

#3n = L/k 2.3-5 

# n l - · Ctr 

This determinant is zero independent of the value of r, that is, regardless 
of which secular equation was selected for testing the validity of our choice 
of coefficients. If we selected the first secular equation and hence r = 1, 
then this determinant is identical with the secular determinant of Eq. 
2.3-1, which is equal to zero. If r has any value other than unity (i.e., we 
selected one of the other secular equations), then the determinant above 
will have its first row identical with one of the succeeding rows, and any 
determinant having two identical rows (or columns) is equal to zero. As a 
consequence L = 0 and we see that all of the secular equations are satisfied 
by choosing the LCAO coefficients as prescribed by the method of cofactors. 

2.3a Orthogonality of Eigenf unctions 

Two wavefunctions or orbitals are said to be orthogonal when the integral 
of the product is zero. I t is general that two molecular orbitals of the same 
molecule, or any two eigenf unctions of the same operator for that matter, 
will be orthogonal if they correspond to different eigenvalues. A general 
proof is now given. We begin by pointing out that operators of interest in 
molecular orbital theory satisfy the relation 

f ViWVj dv = J *j3Q,*i dv 2.3-6 

These are termed Hermitian operators, and this property is discussed in 
the next section. Now if both Ψ{ and Ψ3 are eigenfunctions of the operator, 
and here 3C is the energy operator as an example, then the Schrödinger 
equation tells us that 

3C*t = E&i and 3C*; = Ej*j 2.3-7a,b 

* It is necessary to note that the determinant in Eq. 2.3-5 has the same cofactors of 
its first-row elements as the secular determinant (i.e., in 2.3-1). 
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Substitution of 2.3-7a into the right-hand side of 2.3-6 and 2.3-7b into the 
left-hand side affords after extraction of the constants Ei and Ej} 

Ei f V&j dv = Ej J V&i dv 2.3-8 

But since Ei and Ej are different eigenvalues, the equality 2.3-8 can be 
true only if 

/ ^i^y dv = 0 2.3-9 

The orthogonality relationship of Eq. 2.3-9 can be extended to the 
special case of two LCAO-MOs by letting 

^ t = CuXi + C2iX2 + CziXz H h Cn%Xn 

and 
V3 = CljXl + C2jX2 + CzjXz H h CnjXn-

Then on substitution into Eq. 2.3-9 we obtain 
r i p n 

Σ CriC8j I XrXs dv = Σ CriC8jSrs = 0 2 . 3 - 1 0 
r,8 r ,8 

With the more stringent neglect of overlap assumption in which Srs is 
zero except for r = s, when Srr = 1, we obtain 

Σ CriCrj = 0 2.3-11 
r 

That is, when a summation is taken of the products of corresponding LCAO 
coefficients for two nondegenerate MOs, the result is zero. 

Another consequence of this proof is that 

f ^3Ctf y dv = 0 2.3-12 

since 

f ^t5C^y dv = f ^jEßi dv = Ej f ¥<¥,· dv = 0 2.3- 13 

This is the basis of the off-diagonal elements being zero in a secular deter-
minant expressed in terms of molecular orbitale (i.e., the determinant 
becomes diagonalized). Each off-diagonal element, Hrs — ESr8, becomes 
composed of two vanishing portions. The first is zero since it is now the 
integral in 2.3-13 and the second is zero due to orthogonality of the two 
MOs as in Eq. 2.3-9. 
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2.4 The Hermitian Character of the Molecular Orbital Operators 

The relationship assumed in Eq. 2.3-6 derives from the nature of the 
operators used in quantum mechanics and more specifically here, in MO 
theory. Thus, the energy operator we commonly deal with has two parts, 
a potential energy term of the form —Ze2/rij and a kinetic energy term 
involving second derivatives. 

If we had only the potential energy component, we would have no doubt 
about the Hermitian character of the operator, since — Ze2/rij is just a 
multiplier and thus the order of terms under the integral sign is unimpor-
tant. That is, 

r Ze2 f Ze2 f Ze2 

/ Ψ; — Ψ3 dv = I Vj — Ψ; dv = / — Ψ{&3 dv, . . . 2.4-1 

However, the Hermitian character of the kinetic energy portion of the 
operator is not as obvious. For simplicity we will test the operator (d2/dx2) 
since the x, y> and z second derivatives are additive in the operator and if 
one is Hermitian, the rest will be so also. Thus the question is whether the 
following equation is valid: 

/ *{ — Ψ3 dx = / * y — *i dx 2.4-2 
./-co dx2 J^ dx2 

We note that the integrals have limits allowing x to run from minus infinity 
to plus infinity, since in principle orbitale may extend this far. 

To test 2.4-2 we use the method of integration by parts. We remember 
that 

u dw = [mtf]iî ~~ / w du 2.4-3 
el M l 

For the left-hand side of Eq. 2.4-2 we allow Ψί to be u and (d2Vj/dx2) dx 
to be dw. This gives us 

/•+00 d2
 7 Γ d*/l+ 0° Γ+00 d*j d*i , 

/ ¥< —*yds = \*i—-\ - / -T-J-dx 2.4-4a 
J-oo sQX2 y L «£_Loo ./__«, dx dx t 

u dw u w w du 

Similar treatment of the right-hand side of 2.4-2, however with ^y being 
u and (d2^i/dx2) dx being dw, affords 

/ *y — ^ d x = k y — · - / - i — dx 2.4-4b 
_̂oo dx2 L tt^J-oo •'-o o dx dx 
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In each of Eqs. 2.4-4a and 2.4-4b, we find that the term in brackets is zero. 
Thus when evaluating this term at its limits a reasonable wavefunction 
will vanish at plus or minus infinity (as will the derivative). The second 
term is seen to be the same for the two equations, since the integrals differ 
only in order of multiplication of two derivatives. Hence we have proved 
the equality in Eq. 2.4-2 and this leads to completion of the proof of 2.3-6. 

2.5 Rank of Secular Determinants as Affecting Determination of 
Coefficients 

In Chapter 1 it was noted that the method of cofactors could not be used 
to obtain LCAO-MO coefficients for degenerate MOs. In order to explain 
the basis of this it is necessary to define rank. The rank of a determinant is 
the size of the largest subdeterminant one can obtain by striking out rows 
and columns such that the subdeterminant is nonzero. If we have a secular 
determinant of order (e.g.) 3 (as in cyclopropenyl), we see immediately 
that the rank cannot also be 3, since the secular determinant by definition 
is zero. If by deleting one row and one column, we can obtain a nonzero 
2 X 2 subdeterminant, then the rank will be 2. In the case of the secular 
determinant for cyclopropenyl, all 2 X 2 determinants become zero when 
we substitute in the value of X = + 1 . This was the reason the ratio of 
cofactors could not be used to give the LCAO-MO coefficients. The problem 
here is that the rank of the cyclopropenyl secular determinant is 1 and not 2 
when degenerate eigenvalues are substituted in. Thus, all cofactors will 
vanish. 

More generally, the rank of secular determinants of order n will be n — 1 
for nondegenerate eigenvalues and n — 1 — m where there are m degenera-
cies, i.e., m degenerate pairs. The proof of this is left for the reader to con-
sider in connection with later discussions of diagonalization of secular de-
terminants and matrices. 
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Chapter 3 

THE USE OF MOLECULAR SYMMETRY FOR 

SIMPLIFICATION OF SECULAR DETERMINANTS; 

INTRODUCTION TO GROUP THEORY 

At the end of Chapter 1 it became clear that the difficulty of direct solu-
tion of secular determinants increases rapidly with the size of the molecule 
studied and a mathematical impasse is quickly reached. When the molecu-
lar system has symmetry, as is frequently the case, this impasse can be 
delayed by the use of group theory. However, the approach of this chapter 
is not to present group theory immediately but rather to develop the use 
of symmetry properties more gradually and then to demonstrate the equiv-
alence of group theory to the methods employed. 

3.1 Conversion of Secular Determinants Expressed in Terms of 
Atomic Orbitals into Secular Determinants Expressed in 
Terms of Group (Symmetry) Orbitals 

3,1a Method of Addition and Subtraction of Rows and Columns 

For a molecule which has an element of symmetry such as a plane, there 
is a useful method for simplification of the secular determinant. Ethylene 
is the first case to be considered. As before the secular determinant is 
written in terms of the atomic orbitale which then label the rows and 
columns. The simplification involves a first step of writing a new deter-
minant in which each pair of columns of the original secular determinant 
headed by equivalently located atomic orbitale has been added to give one 
new column and then subtracted to give a second new column. In the same 
way, in a second step, the rows are added and subtracted. 

59 
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Original Secular Determinant 

Xi 

X 

1 

Xi 

1 

X 

of Step 1 (Column Add-Sub) 

(xi + x%) 
Xi 

Xi 

X+l 

1 + X 

(Xi - Xi) 

X - 1 i 

1 - X 

Result of Step 2 (Row Add-Sub) 

(Xi + Xi) 

(Xi - Xi) 

(Xi + X2) ( x i — X2) 

2X + 2 ! 0 

0 2 X - 2 
= 0 

Hence 

and 

(Xi + X2) 

(χι + χ2)| 2Χ + 2 | = 0 or X = - 1 

(Xi — X2) 

( χ ι - χ , ) | 2 Χ - 2 | = 0 or X = + 1 
Addition-subtraction operations as performed above do not alter the 
equality of a determinant to zero.* These operations afford a secular deter-
minant which can be dissected into two 1 X 1 determinants. In general, 
a determinant which can be separated into such nonoverlapping blocks of 
smaller determinants is equal to the product of these smaller determinants. 
Then each determinant equaling zero provides a solution to the secular 
equation. In the present instance, since a 1 X 1 determinant of a quantity 
is equal to the quantity itself, the addition-subtraction method has led 
directly to the final solutions of X = —1 and X = + 1 . Furthermore, the 
group orbitale labeling the column and row of each of the 1 X 1 secular 
determinants are the corresponding unnormalized molecular orbitale. 

In the utilization of the addition-subtraction method it is important to 
* Each addition-subtraction operation (e.g., on two columns) has the effect of multi-

plying the determinant by 2. However, since the determinant is equal to zero, multi-
plication by a constant is of no concern. The overall operation is equivalent to a "simi-
larity transformation'' and multiplication by a constant; this matrix equivalent is 
considered subsequently. 
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group the added columns together and separately from the subtracted 
columns. The rows should follow the same sequence as the columns. The 
group orbitals heading the added columns can be termed "symmetric" 
group orbitals while those labeling the subtracted columns can be desig-
nated "antisymmetric." The order in which the symmetric orbitals occur 
is unimportant as long as the same order is observed for columns and rows. 
The same is true of the separately grouped antisymmetric orbitals. 

A second example is found in the treatment of the allyl species (I) . 

( I ) 

Here there is a plane of symmetry bisecting the molecule through atom 2 
and χ2. Since χι and χ3 are the equivalently located atomic orbitals, the 
columns and rows headed by these will be added and subtracted to give a 
secular determinant expressed in terms of symmetric and antisymmetric 
group orbitals. Since X2 has no similarly situated orbital, it is not subjected 
to addition-subtraction operations. Since it is bisected by the plane of 
symmetry, it is symmetrical with respect to this plane and is grouped with 
the symmetrical group orbitals. The operations are then 
Original Secular Determinant 

Xi 

X2 

X3 

Xi 

X 

1 

0 
Result of Column Operations 

(xi + x«) 
Xi 

X2 

X3 

X 

2 

X 

X2 

1 

X 

1 

X2 

1 

X 

1 

X3 

0 

1 

X 

= 0 

(Xi — X») 

X 

0 

-X 

= 0 
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Result of Further Row Operations 

(Xl + Xi) X2 (Xl — Xz) 

(Xi + xz) 

X2 

(Xi — Xz) 

2X 

2 

0 

2 

X 

0 

0 

0 

2X 

= 0 

Hence 

(Xi + Xz) X2 

(χι + χζ) I 2X 2 

Χ2| 2 X 

for the symmetric orbitals 

= 0 and X = ±V2 

(Xl — Xs) 

( X i - X s ) | 2 Z | = 0 and X = 0 

/or £fte antisymmetric orbital 

In the present instance addition-subtraction operations have broken the 
third-order secular determinant into a 2 X 2 composed of symmetric 
orbitals, plus a 1 X 1 of the antisymmetric orbital χι — χζ whose energy is 
X = 0 and is the nonbonding MO found by the earlier direct approach. 
Whenever a 1 X 1 determinant is obtained, not only does this yield the 
energy of an orbital directly but also the heading of the determinant is 
more than just a group orbital—it is the unnormalized molecular orbital 
having the energy given by the determinant. Contrariwise, when simplifi-
cation by symmetry has left a determinant headed by several orbitals of 
the same symmetry, as in the case of the second-order determinant above, 
these orbitals must be mixed further to afford a solution. This is done by 
solving the determinantal equation for the energy, here X = ±V2 and 
then using the method of cofactors to determine the coefficients weighting 
the orbitals heading the columns and rows of the simplified secular deter-
minant. Thus the second-order secular determinant obtained for the allyl 
species has its elements expressed in terms of the two orbitals ψβ = (χι + χζ) 
and χ2· The molecular orbitals whose energies are given by this determinant 
will have the form 

Ψ = c8<k + c2X2 = c8(xi + χζ) + C2X2 3.1-1 

and the coefficients obtained from the cofactors of the first-row elements 
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of the second-order determinant are then 

Coefficient Cofac tor in genera l F o r X = - V 2 F o r X = + V 2 

c8 X - V 2 +V2 

Co - 2 - 2 - 2 

and the unnormalized MOs are 

Φ-Λ = V§*. + 2χ2 = V2Xl + V2X3 + 2X2 3.1-2 

ψ+^ = \ΐ2φ8 - 2X2 = V2Xl + V2X3 - 2χ2 3.1-3 

These are equivalent to the orbitale given in Eqs. 1.3-13 except for a con-
stant factor of V2. The normalized MOs are presently obtained by division 
by the square root of the sum of the unnormalized coefficients squared 
(i.e., V § ) : 

Ψ-π = ixi + ix3 + (1/V2)X2 3.1-4 

Ψ+*= k i + è x 3 - (1/V2)X2 3.1-5 

3.1b Some Comments on Symmetry and Antisymmetry of Group 
Orbitals 

In the preceding discussion, the subtracted group orbitale have been 
referred to as antisymmetric while the groups consisting of added atomic 
orbitals have been termed symmetric. The significance of this designation 
can be conveyed either pictorially or algebraically. Thus inspection of 
(xi + Xs) (Fig. 3.1-A) and (χι — χ3) (Fig. 3.1-B) indicates that the orbital 
(xi + X3) is symmetrically disposed about the plane of symmetry. How-
ever, (xi — χ3) is antisymmetric with respect to the plane since for every 
point on one side of the plane there is an equal but negative value of the 
orbital found at the equivalently located point on the other side of the 
plane. χ2 is symmetric; for this reason it was grouped with the summed 
symmetric orbital. 

+xt +x3 +x, - x 3 

0 1 0 θ ί θ 
CH2 CH CH2 CH2 CH CH2 

0 I Ô 0 ! Ô 
FIG. 3.1-A. The group orbital (χι + χ3). FIG. 3.1-B. The group orbital (χι — χ3). 
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For this to be seen algebraically, we need to define a symmetry operator 
σ, which means "reflect in the plane of symmetry.,, This symmetry operator 
will now be applied to the group orbitals of interest: 

If 
φ8 = xi + X3 and Φ*. = xi — χ3 

then 
σφ8 = σ(χ ι + χ3) = σχι + σχ3 = χ3 + Χι = φ8 

σφα = σ(χ ι — χ3) = σχι — σχ3 = χ3 — χι = — φ& 

σχ2 = Χ2 

since 
σ-χι Χ3 and σχζ = Χι 

3.1-6 

3.1-7 

3.1-8 

3.1-9 

3.1-10 

Equation 3.1-10 follows from inspection of Fig. 3.1-A and recognition that 
performance of the operation σ on χι converts it into χ3 and the same opera-
tion on χ3 transforms it into χι. 

One further point is noteworthy. Equations 3.1-7 and 3.1-8 reveal that 
our group orbitals φ8 and φ& are eigenfunctions of the operator σ, for appli-
cation of this operator to each of these results in the same orbital, φ8 and 
φ& respectively, multiplied by a constant + 1 in the case of φ8 and by a 
constant — 1 in the case of φΕ. Thus the net result of the symmetry operator 
on a group orbital is to multiply the orbital by its eigenvalue + 1 if the 
orbital is symmetric and — 1 if it is antisymmetric. 

3.1c Application to Cyclobutadiene 

Cyclobutadiene is a molecule which has two planes of symmetry (cf. 
Fig. 3.1-C) and hence two reflection operations σ and σ'. The present use of 
symmetry in the addition-subtraction method is of interest not only be-
cause of the great simplification of the secular determinant but also because 

Χ4ζ> o> 

,Ο -o> 

FIG. 3.1-C 
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as noted on pages 34 and 35 we are unable to obtain the LCAO-MO coeffi-
cients from the fourth-order secular determinant but are able to derive 
these presently. 

The fourth-order secular determinant can be first simplified by adding 
and subtracting rows and columns* headed by atomic orbitals symmetri-
cally placed about the σ plane. 
Original Secular Determinant 

Xi 

Xi 

X3 

Xi 

X 

1 

0 

Xi 

1 

X 

1 

X3 
0 

1 

X 

Xi 

1 

0 

1 

1 X 

= 0 3.1-1 la 

X4|l 0 
Addition-Subtraction of Columns 

(xi + Xi) (xs + xs) (xi — X4) (X2 — χ») 
Xi 

X2 

X3 

(X + 1) 

1 ( Z + l ) 

1 (1 + X) 

(X-D 

1 

- 1 

(X-l) 

(1-X) 

X4|(l + X) 1 (1-X) - 1 
Second Step: Addition-Subtraction by Rows 

(Xl + X4) (X2 + Xz) (Xl — X4) (X2 — Xs) 

= 0 3.1-1 lb 

(Xi + Xi) 

(X2 + Xs) 

(xi — Xi) 

(Xi — Xs) 

(2X + 2) 

2 

0 

0 

2 

(2X + 2) 

0 

0 

0 0 

0 0 

(2X - 2) 2 

2 (2X - 2) 

= 0 3.1-llc 

It is noted that there result two second-order secular determinants—one 
expressed in terms of group orbitals symmetric with respect to the hori-
zontal plane of symmetry and the other antisymmetric with respect to the 

* To avoid circumlocution we refer to addition (subtraction) of rows (columns). 
Addition (subtraction) of the corresponding elements of the rows (columns) is actually 
meant. 
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horizontal plane. These 2 X 2 determinants can now be solved for the 
molecular orbital energies and the LCAO coefficients. We can begin by 
dividing all columns by 2. Then 

(Xl + x O (X2 + Xi) 

(xi + xO 

(X2 + Xz) 

(x+i) 1 
= 0 or ( X + l ) 2 = l 3.1-12 

(X+l)\ or X = - 1 ± 1 
and X = - 2 , 0 
for the horizontally sym-
metric orbitals 

The weighting of these two horizontally symmetric orbitals in the LCAO 
molecular orbitals corresponding to X = —2 and 0 is obtained by the 
method of cof actors : 
LCAO coefficients General expression For X - - 2 For X « 0 

Cl4 
C23 - 1 

- 1 
- 1 

+1 
- 1 

LCAO-MO wavefunction 
MO energy (unnormalized) 

Normalized MO 
expression 

X = - 2 fc - - 1 ( χ ι + χ4) - 1 ( χ 2 + χ8) 

X - 0 ψ2 - 1(χι + χ4) - 1 ( χ 2 + χ3) 

^Ι = è (Xl + Χ2 + Χ3 4" Χ4> 
3.1-13 

^2 = \ (Χ1 — Χ2 — Χ3 4- Χ4> 
3.1-14 

Similarly, for the horizontally antisymmetric orbitals 

(Xl — XO (X2 — Xz) 

(xi - X4) I ( x - i) i I 
= 0 or (X - l ) 2 = 1 

(x* - X.) | 1 ( Z - 1) I or X = 1 ± 1 
and X = 0, + 2 3.1-15 

The method of cofactors is then applied to these MOs to give 

LCAO-MO coefficient General expression For X = 0 For X - 2 

Ci4 ( * - l ) 
- 1 

- 1 
- 1 

+ 1 
- 1 

LCAO-MO wavefunction 
MO energy (unnormalized) 

Normalized 
MO expression 

0 φ3 = — 1(χ! — χ4) — l(x2 — X3) Ψζ = i ( x i + X2 — X3 — X4) 3.1-16 

2 ^4 = 1 (xi — xi) - l(x2 - X3) Ψ* = è(xi - X2 + X3 - X4) 3.1-17 
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However, we have utilized only one of the two planes of symmetry for 
simplification. We could have employed this further symmetry to decom-
pose each of the second-order determinants into two 1 X 1 determinants. 
Thus addition-subtraction by columns and rows of the determinant in 
3.1-12 gives 3.1-18 while similar treatment of 3.1-15 affords 3.1-19: 

(Xl + X2 + XZ + Xi) (Xl — X2 — X3 + Xi) 

(Xl + X2 + X3 + Xi) 

(Xl - X2 ~ X3 + Xi) 

(2X + 4) 

0 

^ 3 

(Xl + X2 — X3 — Xi) 

2X 

Ö 

0 

2X 

(Xl — X2 + X3 ~ 

0 

(2X - 4) 

X4) 

= 0 

3.1-18 

= 0 

3.1-19 

(Xl + X2 — X3 — Xi) 

(Xl — X2 + X3 — Xi) 

Each of the resulting first-order secular determinants affords one of the 
MO energies found from 3.1-12 and 3.1-15. Additionally, the orbitals 
heading these determinants no longer occur together with other group 
orbitals in a secular determinant and thus no further mixing is required. 
This means that these orbitals are more than just group orbitals; they 
correspond to the molecular orbitals as determined earlier by the method 
of cofactors. Inspection of the symmetry properties of the four MOs reveals 
that ψι is symmetric with respect to both reflection operations, σ and σ'. 
Ψ2 is symmetric with respect to σ but antisymmetric with respect to σ'. 
φζ is antisymmetric with respect to σ but symmetric with respect to σ'. \(/Α 
is antisymmetric with respect to both operations. These molecular orbitals 
are pictured in Fig. 3.1-D. The final first-order secular determinants could 
have been obtained directly by a single process of taking linear combinations 
of rows and columns. Thus column 1 would be taken as the sum of all 
four columns of the original fourth-order determinant; column 2 as the 
sum of columns 1 and 4 minus columns 2 and 3; column 3 as the sum of 
columns 1 and 2 minus columns 3 and 4 ; column 4 as the sum of columns 
1 and 3 minus columns 2 and 4. The rows would then be added and sub-
tracted in the same way. This process leads to decomposition into the same 
four first-order secular determinantal equations as derived from the step-
wise decomposition. 

Two aspects of the preceding deserve further emphasis and generaliza-
tion. First, in general, group orbitals of different symmetry will not mix 
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FIG. 3.1-D. Cyclobutadiene molecular orbitals: ψι, symmetric with respect to σ and 
σ'; ^2, symmetric with respect to σ, antisymmetric with respect to σ'; ψζ, antisymmetric 
with respect to σ, symmetric with respect to σ'; ψί, antisymmetric with respect to σ and σ'. 

in a secular determinant. That is, all elements corresponding to the inter-
section of a row and a column headed by (e.g., group) orbitals of different 
symmetry will be zero. By reformulating a secular determinant (originally 
expressed in terms of atomic orbitals) in terms of group orbitals it is thus 
possible to transform this determinant into one composed of blocks of 
smaller determinants and equal to the product of these smaller deter-
minants. 

Second, different molecular orbitals will not mix in a secular determinant 
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FIG. 3.1-Ε Hypothetical sixth-order secular determinant transformed into two sec-

ond-order and two first-order determinants. The x's are atomic orbitals and the ^'s 
are group orbitals, all of different symmetry type except Φ2 and #3, which are the same, 
and 04 and φδ, which are the same. 

either.* Thus, if one had a "crystal ball" which told him the LCAO form 
of the molecular orbitals of a molecule, one could add and subtract columns 
and rows (or multiples of columns and rows as needed) so as to transform 
the original secular determinant into one expressed in terms of combina-
tions of the original atomic orbitals corresponding to the LCAO form of 
the molecular orbitals. Then a determinant having first-order determinants 
along the diagonal would result, since every off-diagonal element would 
correspond to the intersection of a column and a row headed by different 
MOs. Since each first-order determinant resulting directly affords the 
energy of the corresponding MO, such a "diagonalization process" is the 
goal of secular determinant simplification. Symmetry provides an only 
partially effective "crystal ball" leading to only partial diagonalization of 
the secular determinant (see, for example, Fig. 3.1-E). 

3.1d Direct Formulation of Symmetry Determinants 

Thus far we have used the addition-subtraction device for transforming 
secular determinants expressed in terms of atomic orbitals into secular 
determinants formulated in terms of group, or symmetry, orbitals. The 
addition-subtraction device had pedagogical value and is of interest. Never-
theless, there is a simple method of writing down the transformed deter-
minant directly. To obtain any element (ars) of a secular determinant 
expressed in terms of group orbitals, one multiplies the group orbital <f>r 

heading the row in which the element of interest appears by the group 
orbital φ8 heading the column. 

* A difficulty arises when a degenerate pair is considered. However, even here no mixing 
occurs when these are expressed in proper form. The nature of the "proper form" is 
discussed subsequently. 
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(1) For every squared term (i.e., χΓ
2) in the product φτφ8 we include 

one X in that element ar8. 
(2) For every cross product of two adjacent and interacting atomic 

orbitale, we add a one. 
(3) For every cross product of noninteracting atomic orbitale, we put 

in a zero. 

Elements at the intersection of columns and rows headed by group 
orbitale of different symmetry can be written as zero without using these 
rules; however, it may be worthwhile for the reader to convince himself 
that the rules arrive at the same prediction. 

Furthermore, since a secular determinant expressed in terms of group 
orbitals automatically decomposes itself into smaller determinants, each 
one of which is expressed in terms of group orbitals of only one symmetry 
type, one need not deal with the secular determinant as a whole but rather 
one can deal separately with each of these smaller secular determinants. 

The method just given can now be applied to molecules discussed pre-
viously from other viewpoints. In the case of ethylene (II) we can write 

ß 
CH2-

Ô 

29 
- C H 2 

Ô 

two group orbitals φ8 = xi + X2 and φ& = χι — χ2 which are, respectively, 
symmetric and antisymmetric with respect to the plane perpendicular to 
sigma bond 1-2. The 2 X 2 determinant written in terms of these is then 

X= + 1 
(Xi + X2) 

(Xi + X2) 

For an the 

(Xi + X2) (xi — X2) 
2X + 2 j 0 

0 2 1 - 2 

Drbital product is 

(Xi + X2) (xi + X2) 

= 0, x = - i , 

= Xi2 + X22 + 2χιχ2. 

There are two squared atomic orbital terms, hence an includes 2X. Two 
cross-product terms of interacting AOs are present; hence an includes 2. 

For a22 the orbital product is 

(Xi — X2) (Xi — X2) = Xi2 + X22 — 2χιχ 2 . 

Again, there are two squared AO terms, hence 022 includes 2X. Minus two 
cross product terms of interacting AOs requires 022 to include —2. 

For ai2 and α2ι the orbital product is 

(Xi — X2) (x i + X2) = Xi2 X2' 
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Plus one and minus one squared term are present, so for ai2 and 021 no X's 
are included and, no cross-product terms are found. 

Since the symmetric and antisymmetric orbitals did not mix, each could 
have been dealt with separately in a 1 X 1 determinant. 

For allyl (I) the antisymmetric group orbital φΛ = χι — xz will not 

1 2 3 
CH2—ÇH — CH2 

(I) 
mix with the two symmetric orbitals χ2 and φ8 = xi + xz, and consequently 
φ& is already an unnormalized MO. To get its energy we merely need to 
write down the first-order determinant 

(Xi — Xz) 

( χ ι - χ β ) Ι 2Χ | = 0 giving X = 0 3.1-20 

using the rules for writing down the single element. The symmetric orbitals, 
X2 and φ8, have to be mixed in a secular determinant 

(Xi + Xz) X2 
(χι + χ,) I 2X 2 

X21 2 X 
= 0 or 2 I 2 - 4 = 0 and 1 = ±V5 

3.1-21 

The LCAO coefficients of the two orbitals mixed, φΒ = χι + χ3 and χ2, are 
obtained from this second-order determinant by the method of cofactors : 

LCAO coefficient 

Cu 
c2 

MO energy 

-V5 

+V2 

0 

General expression 

X 
- 2 

LCAO-MO wavefunction 

Ψι 

ψζ 

φϊ 

(unnormalized) 

- -V2(X1 + X3) - 2 x 2 

= + \ ^ ( X 1 + X 3 ) - 2 X 2 

~ XI ~ X3 

F o r Z = -V2 F o r Z = + \ ^ 

Ψι = 

Π = 

ψι = 

-yß +y/2 
- 2 - 2 

Normalized 
MO expression 

= iXl + (1/V2)X2 + ÎX3 

= Jxi - (1/V2)X2 + 1x3 

= d/y/2)Xl - (i/V2)x3 

3.1-22 

3.1-23 

3.1-24 

The case of the cyclopropenyl species (III) is analogous. The antisym-
metric orbital φ& = χι — χζ is written by inspection and the corresponding 
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CH 
HC-4-CH 

(HI) 
first-order determinant formulated as 

(xi - Xt) 

( χ ι - χ , ) | 2 Χ - 2 | 0 and X = 1 3.1-25 

We note that this is different from the first-order determinant of the allyl 
system, for presently in the orbital product χι2 + χ3

2 — 2χιχ3 the term 
—2χιχ3 contributes —2 since χι and χ3 are adjacent and interacting unlike 
the situation in the allyl case. 

The symmetric cyclopropenyl orbitals are χ2 and φ8 = χι + χ3. Mixed 
together in a secular determinant these lead to two further eigenvalues: 

(Xi + Xe) 
(Xi + Xi) 

X2 

(2Z + 2) 
X2 

2 

X 

= 0 or 2X2 + 2X - 4 = 0 
or ( X - l ) ( X + 2) = 0 ; 

thus X = 1, - 2 3.1-26 
Using the method of cofactors we obtain after normalization 

Ψι = (1/V3)xi+ (1/V3)X 2+ (1/V3)X3 

ψ2 = ( l / \ / 6 ) x i - ( 2 / Λ / 6 ) Χ 2 + ( 1 / λ / 6 ) χ 3 
The asymmetrical group orbital φ& needs only to be normalized to afford 
the third MO ψζ = ( l /V2)X l - (1/V2)X3. Of these three MOs, because of 
difficulties due to degeneracy, we were previously able to obtain the LCAO 
coefficients only for ψι (cf. pp. 34-35). The present treatment has de-
composed the original third-order determinant into two smaller deter-
minants, neither one of which contains a degenerate pair; hence the original 
difficulty has been circumvented. 

In the case of cyclobutadiene the present treatment allows a facile solu-
tion. The four group orbitals of different symmetry have been given pre-
viously (pp. 66-67) ; these could be written by inspection of Fig. 3.1-F, 

Symmetry with respect to 

Group orbital 

XI + X2 + XZ 4- X4 
XI ~ X2 — X3 + X4 
XI + X2 ~ X3 — Xi 
XI ~ X2 + XZ — Xi 

Symmetric 
Symmetric 
Antisymmetric 
Antisymmetric 

Symmetric 
Antisymmetric 
Symmetric 
Antisymmetric 
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x,r> O 

X4Ô- <Jx3 

FIG. 3.1-F 

using the different combinations of equivalently situated atomic orbitals 
in such a manner to include all possible combinations of different sym-
metry. Since these four group orbitals do not mix, they are more than just 
group orbitals—they are unnormalized MOs. The energy of each is obtained 
from a first-order determinant. For example, 

(Xl + X2+ XZ + Xi) 

(χι + Χ2 + χ3 + χ4) | 4 Ζ + 8 | = 0 and X = - 2 

The remaining MO energies are similarly obtained as 0, 0, and + 2 . This 
is clearly less laborious than the addition-subtraction approach of page 65. 

The case of benzene is also illustrative of the present approach of for-
mulating the secular determinant directly in terms of group orbitals and 
then making use of the fact that group orbitals of different symmetry do 
not mix in a secular determinant. As seen in Fig. 3.1-G benzene has two 

Xe 

Xi 
I 

I r 
I 
I 

X4 

FIG. 3.1-G 
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perpendicular planes of symmetry, and the corresponding reflection opera-
tions are signified by σ and σ'. We could attack the problem by utilizing 
either one of these symmetry planes alone. Using only σ', we can write 
down by inspection the group orbitale which are symmetric and antisym-
metric with respect to this operation. The symmetric orbitale are χι, χ4, 
(X2 + Xe), and (χζ + Χδ). The antisymmetric orbitale are (χ2 — xe) and 
(X3 — XÖ) . All six are eigenfunctions of the σ' operator. The four symmetric 
orbitals have an eigenvalue of + 1 , while the two antisymmetric orbitals 
have an eigenvalue of — 1. The antisymmetric orbitals may be used to 
write down a second-order secular determinant and the symmetric orbitals 
lead to a fourth-order secular determinant. Here again we have used the 
rules given on page 70 to obtain the elements of these determinants: 

(X2 — Xe) 

(X3 — Χδ) 

(X2 - Xe) (X3 — Χδ) 

2X 2 

2 2X 
= 0 3.1-27a 

Xl X4 (X2 + Χδ) (X3 + Χδ) 

Xi I * 0 2 

X4 

(X2 + Xe) 

(X3 + Χδ) 

0 X 0 

2 0 2X 

0 2 2 

0 

2 

2 

2X 

= 0 3.1-27b 

While the second-order determinantal equation 3.1-27a can readily be 
solved for X = ± 1 , the fourth-order equation 3.1-27b is less obviously 
amenable to facile solution. In actual fact, 3.1-27b can be solved, for 
example, by expansion by cof actors and thence to a fourth-order polynomial 
which is found to be readily factored. However, dealing with fourth-order 
determinants is bothersome. 

Had we focused attention on the second symmetry operation σ, we could 
have written orbitals which are instead symmetric and antisymmetric 
with respect to this operation. The symmetric orbitals are then (χι + χ4), 
(x2 + xs), and (xö + xe)· The antisymmetric orbitals are (xi — χ θ , 
(X2 ~ xz), and (χδ — xe). All of these are eigenfunctions of the σ operator, 
the former three having eigenvalues of + 1 and the latter three having 
eigenvalues of — 1 . Again we may write down two secular determinants, 
although still in terms of these symmetry orbitals. This has an advantage 
since two third-order determinants result and third-order determinants are 
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readily amenable to solution: 

(Xi + XA) 

(X2 + Xz) 

(X6 + Xi) 

(xi + xO 
2X 

2 

2 

(X2 + Xz) 

2 

(2X + 2) 

0 

(X6 + Xe) 

2 

0 

(2X + 2) 

= 0 3.1-28a 

(Xi - XA) (X2 - χβ) (X6 ~ Χδ) 

(Xi — XA) 

(X2 - Xz) 

(Xe — Χδ) 

2X 

(2X - 2) 

0 (2X - 2) 

= 0 3.1-28b 

Expansion of 3. l-28a, after dividing each column by 2,affordsX(X + l ) 2 — 
2(X + 1) = (X + 1) (X2 + X - 2) = (X + 1) (X - 1) (X + 2) = 0 
and X = — 1, + 1 , —2. Similar expansion of 3.1-28b gives the MO energies 
X = + 1 , — 1 , + 2 . In the usual fashion the cofactors of row 3* of 3.1-28a 
could be used to determine the weighting of the group orbitale of this 
determinant for each of the MO energy levels deriving from this deter-
minant. Similarly, the cofactors of row 1 of the determinant of 3.1-28b 
give the weighting of the group orbitals of this determinant in the three 
MOs obtained from the solution of 3.1-28b. 

Still easier than either of the two preceding approaches is one that 
utilizes both planes of symmetry simultaneously. Thus we can write down 
symmetry orbitals of four types: those symmetric with respect to both σ 
and σ'; those symmetric with respect to σ but antisymmetric to σ'; those 
antisymmetric to σ but symmetric to σ'; and finally those antisymmetric 
with respect to both operations. These are given in Table 3.1-1. An entry 
of "symmetric" corresponds to an eigenvalue of + 1 for that group orbital 
and operator, while "antisymmetric" relates to an eigenvalue of —1. Thus 
for example, σ(χ2 — χ3 + Χδ — Xe) = —1· (x2 — xz + x& — xe) as can be 
demonstrated by carrying out the indicated operation using Fig. 3.1-G to 
determine the result of each individual σ operation on an atomic orbital; 
the procedure is the same as demonstrated on pages 63 and 64. Before 
proceeding to use of these four types of group orbitals, we might pause to 
question if additional planes of symmetry possessed by the benzene mole-

* Row 3 is selected as a second choice when it is observed that the cofactors of row 1 
are all zero for some of the eigenvalues. Where a secular determinant contains no de-
generacy one can find at least one row whose cofactors afford the coefficients. 
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TABLE 3.1-1 
BENZENE GROUP ORBITALS, SYMMETRY, AND SYMMETRY 

EIGENVALUES0 

Symmetry with respect to 

Group orbital 

X! + χ4 Symmetric ( + 1 ) Symmetric ( + 1 ) 

X2 -f X3 + Χδ + X6 Symmetric ( + 1 ) Symmetric ( + 1 ) 

X2 + X3 — X6 — X6 Symmetric ( - f l ) Antisymmetric ( — 1) 

xi — X4 Antisymmetric ( — 1) Symmetric ( + 1 ) 
X2 — X3 — Χδ + X6 Antisymmetric ( — 1) Symmetric ( + 1 ) 

X2 — X3 + X6 — X6 Antisymmetric ( — 1) Antisymmetric ( — 1) 

° The symmetry eigenvalues are given in parentheses. 

cule and not utilized here might be employed to break down our group 
orbitals into further categories. The answer is that additional planes of 
reflection are of no use, for the orbitals of Table 3.1-1 can be seen not to be 
eigenf unctions of such reflection operations; for example, reflection in a 
plane passing through χ2 and χ6 would not convert our group orbitals into 
themselves or their negatives. 

The use of two planes of symmetry allows us now to write down two 
second-order and two first-order secular determinants. Each of the group 
orbitals affording a first-order determinant is in fact a final, although 
unnormalized, MO since it will mix with none of the remaining five group 
orbitals. Accordingly, 

(X2 + X3 — X5 — Χδ) 

(X2 + X3 - X5 - xe) I 4X + 4 1 = 0 gives X = - 1 and 
^2 = Mx2 + X 3 - X 5 - X e ) 

wh i l e 

(X2 — X3 + X5 — Χβ) 

(X2 ~ X3 + X5 - xe) | 4X - 4 1 = 0 gives X = 1 and 
&> = Mx2 — X3 + X5 — Xe) 

as the eigenvalues and normalized MOs deriving from 1 X l's. The two 
second-order determinants, each based on two group orbitals of the same 
symmetry, lead to the remaining four eigenvalues; for each determinant 
we use the method of cofactors to obtain the coefficients. For the completely 
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symmetric orbitale : 

77 

(Xi + Xi) 

(X2 + X3 + X5 + Xe) 

(Xl + xO (X2 + X3 + X5 + Χβ) 
2X 4 

= 0 
4 4X + 4 

or X2 + X - 2 = 0 and X = + 1 , - 2 

Coefficient Relative general value For X = 1 For X — 

3.1-29 

- 2 

cu 
C2866 - 1 

+2 
- 1 

- 1 
- 1 

MO energy Normalized molecular orbital 

- 2 φ1 = (1 /V5) (Xl + X2 + X3 + X4 + XB + Χβ) 
+ 1 4̂ = (1/λ/Ϊ2) (2χι - Χ2 - X3 + 2χ4 - X6 - Χβ) 

For the σ symmetric and σ' antisymmetric orbitale : 

(Xl — XA) (X2 — X3 — X5 + Xe) 

(Xl — X4) 

(X2 — X3 - X5 + Χβ) 

2X 
= 0 

4 4X - 4 

or X 2 - X - 2 = 0 and X = 2, - 1 3.1-30 

Coefficient Relative general value For X = — 1 For X = 2 

Cl4 

C2366 

X - 1 
- 1 

+2 
+1 

+1 
- 1 

MO energy Normalized molecular orbital 

- 1 ψζ = (1Λ/Ϊ2) (2χι + X2 - xe - 2χ4 - xe + xe) 
+ 2 ψ6 = (Ι /λ/β) (Xl - X2 + X8 - X4 + X5 - Χβ) 

We may summarize the results obtained above for the benzene problem 
in Fig. 3.1-H. 

3.2 Matrix Methods for Diagonalizing Secular Determinants and 
Matrices; The Heisenberg Formulation of Quantum 
Mechanics 

For each secular determinant one can devise a determinant such that 
the secular determinant will have its columns added and subtracted as 
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X = 2 

ψ9 =(*A/SMX,-X2tX3-X4+-X5-X6) 
Six nodes 

X - 1 

V 1/2(X2-X3 + X 5 -X 6 ) 
Four nodes 

X = 1 
ψ4= 0Λ/Ϊ5)(2Χ,-Χ2-Χ3-2Χ4 - Χ 5 - Χ 6 ) 

X - -1 

φ2- i / 2 (X 2 + X s -X 9 -X«) 

Two nodes 

X = -1 

ψ = (lA/i2)(2X, + X 2 - X 5 - 2 X 4 - X 5 + X6) 

X = - 2 

y/, = (i/VS)(x, + x E f X3 + X4 + x 5 + x«) 
No nodes (excluding molecular plane) 

FIG. 3.1-H. The six benzene molecular orbitale. 
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required by symmetry if the secular determinant is postmultiplied by the 
new determinant. The following provide some examples: 

Secular Postmultiplying 
determinant determinant 

Resulting 
determinant 

Eihylene 

Xi Xi 

X 1 

1 X 

1 

1 

1 

- 1 

Allyl 
Xi Xi Xz 

X 1 0 

1 X 1 

0 1 X 
Cyclopropenyl 

X 1 1 

1 X 1 

1 1 X 
Cyclobutadiene 

1 1 0 1 

1 X 1 0 

0 1 X 1 

1 1 0 1 X 

1 0 

0 1 

0 1 

1 0 

0 

1 

- 1 

0 

1 

0 

0 

0 - 1 

Xl + X2 Xl — X2 

( X + l ) ( X - l ) 

( X + l ) (1-X) 

(Xi + Xs) X2 (Xl - Xe) 

1 0 

0 1 

1 0 

1 

0 

- 1 

1 0 

0 1 

1 0 

1 

0 

- 1 

X 

2 

X 

(X + i) 

2 

a + x) 

1 

X 

1 

1 

X 

1 

X 

0 

-X 

{X-D 

0 

( 1 - X ) 

(X+l) 1 1 ( X - l ) 

1 (X+l) (X-l) 1 

1 (1 + X) ( 1 - X ) - 1 

(l + X) 1 - 1 ( 1 - X ) 

We note that the postmultiplying determinant is so designed that each 
column will effect the desired addition and subtraction of columns to give 
a secular determinant expressed in terms of symmetry orbitals heading the 
columns. This is effectively the same operation as just adding and sub-
tracting columns as previously. Each column of the postmultiplying deter-
minant has a + 1 in an element corresponding to an orbital which is needed 
in the group orbital and needed positively. Minus ones are put in locations 
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in the column where the orbital is needed in minus linear combination. 
Where an atomic orbital is not needed in the particular group orbital, a 
zero is entered into that location in the column of the postmultiplying 
determinant. Thus far, each column of the postmultiplying determinant 
has had only two entries; this corresponds to use of only one element of 
symmetry. One could use two perpendicular planes of symmetry, for 
example, and this would require further entries into the columns. 

In similar fashion one could design a premultiplier determinant which 
added and subtracted rows in the same way. This premultiplying deter-
minant is seen to be the "transpose" of the postmultiplying one; that is, 
it is obtained by transposing (i.e., exchanging) rows and columns of the 
postmultiplying determinant. Thus pre- and postmultiplication is seen to 
simplify the determinant in the same way as addition-subtraction. 

We have already noted that if ever an addition-subtraction operation 
leads to a 1 X 1 determinant, then this determinant affords a final eigen-
value and the heading of the column and row is a final MO. Thus, if one 
knew in advance what the LCAO-MO coefficients were for a given problem, 
one could construct the postmultiplying determinant by using one column 
for each set of LCAO-MO coefficients corresponding to a given MO. The 
row vectors of the premultiplying determinant are chosen in the same way. 
This pre- and postmultiplication then totally diagonalizes the original 
secular determinant. Each resulting diagonal element has the form X — Ak. 
Since each element equals zero, the Ak's are the eigenvalues. 

If the column and row vectors are not normalized, the diagonal elements 
will have the form NX — NAk, but this does not affect the value of MO 
energy obtained by setting each 1 X 1 determinant equal to zero. 

One example is the cyclop] 

1 
V3 

1 
V2 

- 1 
V6 

1 
V3 

- 1 
V2 

- 1 
V6 

1 (X + 2) 

0 

0 

openyl problem where 

X 

1 

1 

1 

X 

1 

1 

1 

X 

• 

0 

( Z - l ) 

0 

- 1 n — 
V3 ° V6 

V3 V2 VB 

_L zl ζλ 
V3 V2 V6 

0 

0 

( X - l ) 

= 0 3.2-1 
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We note that in using X's and ones in the Hückel method, we have the 
negative of all elements of a secular determinant of the form 

Hn — E Hu Hu 

■it 21 H 22 — E ■" 23 

H 31 -"32 " 3 3 — E 

= 0 3.2-2 

but this just changes the sign of the entire determinant and does not change 
its equality to zero. Here the diagonal H's are zero due to our choice of our 
energy zero, and our off-diagonal H's are — 1, 0, or + 1 due to our choice of 
energy units. If one wanted, however, to use the exact form of 3.2-2 in 
terms of X's and ones, we would need to put —X's on the diagonal and — 1 
for every off-diagonal element corresponding to (plus-plus) or (minus-
minus) interaction. Since solution in this way only requires extra effort 
we will retain the use of +X's when secular determinants are solved in the 
Hückel approximation. However, the pre- and postmultiplication method 
will work equally well on a secular determinant of the form 3.2-2. 

I t is now of considerable help to use a different terminology in discussing 
the same problem. For this it is necessary to define a "matrix." A matrix 
is an array of numbers and superficially looks like a determinant. Unlike a 
determinant it need not be a square array. A matrix does not have a definite 
value in itself but rather merely provides a means of storing information. 
Each element of a matrix carries some significance depending on the user's 
problem. Thus one could use a matrix to store calendar dates, LCAO-MO 
coefficients, or other data. Presently we will be interested in an H matrix 
whose elements Hr8 are the resonance integrals. Additionally, a C matrix 
is needed; this will have its columns storing the LCAO-MO coefficients. 
Finally, we need an E matrix in which the diagonal elements are the eigen-
values and there are zeros everywhere else. 

In dealing with matrices, we note that these follow the same rules for 
multiplication which are used in multiplying determinants. One example 
is the following: 

C[H - E]C = 0 3.2-3 

where C is the transpose of C. 
The array [H — E] is the same as that in the secular determinant of 

Eq. 3.2-2, and Eq. 3.2-3 merely states that if we pre- and postmultiply 
the matrix [H — E] by the transposed and original untransposed arrays of 
coefficients, we will get a matrix which consists of all zeros. This is identical 
to what we have been doing with determinants except that previously we 
have been leaving the E's as symbols and then solving the 1 X 1 deter-
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minants left along the diagonal. Expansion of Eq. 3.2-3 gives 

CHC - SEC = o 

But it can be readily shown that the order of multiplication of a diagonal 
matrix as E does not affect the final value and thus CEC = EÔC. Also, the 
coefficient matrices C presently used are said to be orthonormal; that is, 
EC = 1 where 1 is the unit matrix with ones along the diagonal and zeros 
elsewhere. This is equivalent to saying that for orthonormal matrices the 
inverse C"1 is given by the transpose C. Thus 

CHC = E 3.2-4 

This pre- and postmultiplication by an orthonormal matrix and its trans-
pose (or inverse) thus diagonalizes the H matrix and is called a similarity 
transformation.* Equation 3.2-4 gives the Heisenberg formulation of 
quantum mechanics and is seen to be exactly equivalent to the secular 
equation solution of the Schrödinger equation. 

In order to use Eq. 3.2-4 exactly one needs to have normalized MOs to 
construct C and its transpose. As noted above we can fill in the elements of 
the H matrix as minus ones or zeros since these are the resonance integrals. 
Thus each nonzero element Hr8 = ß or — 1 units of \ß\ = — ß. 

Some applications are 

Allyl 

C 

1 _1_ 
2 V5 

V2 ü 

1 - 1 
2 V2 

1 
2 

- 1 
V2 

1 
2 

0 

-1 

0 

H 

- 1 

0 

- 1 

1 
2 

1 

1 
2 

1 
V2 

0 

- 1 
V2 

1 
2 

- 1 
V2 

1 
2 

= 

" - V 2 0 

0 0 

0 0 

0 ' 

0 

+V2 

* Such a similarity transformation does not change the sum of the diagonal elements 
of the matrix (i.e., the "trace" of the matrix). Therein lies the proof of the statement 
made earlier that the rank of a nondegenerate secular determinant is n — 1 and that the 
rank is diminished by 1 for each degeneracy. Thus, we can include a — E (or a — X) 
in each diagonal element to use the usual formulation. In a determinant having no 
degeneracy, only one element of the final, diagonalized determinant is zero (i.e., 
Hrr — X = 0 for X — Hrr). If two diagonal elements have the same eigenvalue Η„, 
then two elements will be zero after diagonalization, and so on. Thus, the rank after 
diagonalization will be n — 1 — (the number of degeneracies). And we know that the 
rank is not changed by the diagonalization process. 
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Cyclopropenyl 

1 
V3 

1 

V2 

2 
V6 

1 
V3 

0 

-1 
V6 

1 1 
V3 | 

-1 

V2 

-l 1 
V B | 

0 - 1 - 1 

- 1 0 - 1 

- 1 - 1 0 

1 

V3 

1 

V3 

1 

V3 

1 

V2 

0 

-1 

V2 

2 

V6 

-1 

VB 

-1 

V6 

= 

- 2 0 0" 

0 + 1 0 

0 0 + 1 

Here again the columns of the C matrix are composed of the LCAO-MO 
coefficients. Taken alone the array of a single MO's coefficients is called a 
row or column vector. Now instead of using the entire C matrix, we could 
use merely the vector corresponding to one MO. That is, 

e*Hc* = Ek 3.2-5 
Here 2 and c are the row and column vectors for MO k and Ek is the energy 
eigenvalue for MO k. Equation 3.2-5 can thus be used conveniently to get 
the MO energies for a single MO. Some examples are found in the following: 
Ethylene; MO 1 

0 - I I 
CiHCi = [1/V2 1/V2] 

Allyl; MO 3 
- 1 0 

C3HC3 = ö - 1 / V 2 1 ] 

1/V2 

L1/V2. 

-1 /V2 

= - 1 

Benzene; MO 2 

fcHc, = [0 § \ 0 - \ -\~\ 

0 - 1 0 

- 1 0 - 1 

. 0 - 1 0. 

0 - 1 0 0 0 - 1 

- 1 0 - 1 0 0 0 

0 - 1 0 - 1 0 0 

0 0 - 1 0 - 1 0 

0 0 0 - 1 0 - 1 

- 1 0 0 0 - 1 0 

= +V2 

0 

i 

= - 1 
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Finally, in connection with the matrix formulation of the eigenvalue 
problem, it is interesting to note that expansion of the triple vector-
matrix-vector multiplication (i.e., ÎEHc) for some specific MO gives a 
series of terms of the form crHr8cs, where r and s refer to the basis set of 
orbitals. The expansion is 

CHC = d 2 # n + C2
2#22 + C32#33 + · · · + Cn2Hnn + 2ClC2#i2 

+ 2ciCzHlz + · · · + 2c2c3#23 + · · · 3.2-6 

This is more briefly written as 
SHc = Σ CrC8Hr8 3.2-7 

which assumes that Hr8 = H8r, which will be true for the operators used. 
We note that the energy of this one MO then consists of (1) one-center 

contributions which are just Coulomb integrals weighted by the square 
of the coefficients, that is, by the electron density contribution, and (2) 
bond order contributions of twice each product of LCAO coefficients 
multiplied by the resonance integral between the two orbitals. This is in 
agreement with what we derived earlier by expanding the integrated form 
of the Schrödinger equation and is really quite equivalent. 

3.3 Matrix Methods for Perturbation Calculations 

The preceding matrix treatment requires that one know what the LCAO-
MO coefficients are in order to solve the matrix equation for MO energies. 
However, it is possible to use the LCAO-MO coefficients for a molecule 
closely related to the one under study. Here the H matrix for the mole-
cule whose energy is desired should be used. Thus, to get the MO energies 
for cyclopropenyl, we could use the C matrix built from the LCAO-MO 
coefficients of allyl together with the H matrix for cyclopropenyl. This C 
matrix will not diagonalize the H matrix but the diagonal elements of the 
resulting matrix, nevertheless, will be close to those for cyclopropenyl. 

I t is simpler for purposes of discussion to deal with the vector-matrix-
vector treatment in which only one MO is treated at a time. It is seen that 
we can use the c vector for a given molecule together with the H matrix 
for a derived molecule in which there is some new overlap introduced. A 
reasonable approximation to the MO energy of the derived molecule is ob-
tained. Even simpler is to break the H matrix into two parts, H0 and H'. H0 
is the matrix for the original molecule before introducing the new overlap and 
H' is a matrix containing only the elements deriving from the new overlap. 
That is, H = Ho + H'. But if this H matrix is to be pre- and postmultiplied 
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by the vector corresponding to a molecule before introduction of new bond-
ing, then the vector used corresponds exactly to the molecule from which 
Ho is derived and thus c0H0Co = E0 where E0 is the exact MO energy for 
the original molecule. This can be written as 

CoHco = Co(H0 + H')c0 = CoHoCo + CoH'c0 = E0 + E' 3.3-1 

where E' = CoH'c0. This means that the energy change on introducing a 
geometric and overlap perturbation, i.e., E', can be obtained by pre- and 
postmultiplication of the H' matrix by the original c vectors (i.e., c0). 

An example is the case of MO 1 of allyl where we wish to know the energy 
change on introducing 1,3-top-top overlap to the point where this is 
equivalent in magnitude to normal ethylenic overlap. Written out, this is 

E' = ih 1/V2 « 

0 0 - 1 

0 0 

• 1 0 0 

1/V2 

1 
2 J 

= - 0 . 5 

Since the original energy of MO 1 of allyl is —1.414 and the energy change 
on introducing 1,3-top-top overlap is —0.5, the approximate new energy 
is seen to be —1.914. Actually, with an exact Hückel calculation, we would 
get —2.000. Thus the approximation we are using is reasonably good. This 
method is really equivalent to the bond order approach described earlier 
and it is seen that the triplet matrix multiplication does afford twice the 
negative of the bond order between the two interacting atoms. The method 
is most useful in determining what types of interactions will be energetically 
favorable and what overlap will instead raise the energy. 

3.4 The Jacobi Method for Diagonalization of Matrices 

We have already considered the problem of diagonalizing, or partially 
diagonalizing, an H matrix by use of appropriate similarity transformations, 
that is, postmultiplying the H matrix by an appropriately designed matrix 
Q and premultiplying by the inverse of Q. For complete diagonalization, 
we noted that the use of the coefficient matrix C and its transpose was 
effective. When final eigenfunctions were still unknown, we found we could 
resort to symmetry to design a Q and its inverse. 

The present method is one which does not rely on knowledge of either 
final eigenfunctions or symmetry but rather proceeds systematically to 
eliminate off-diagonal elements. For this approach to be practical for any 
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H matrix larger than a 2 X 2, a reiterative computer program is used, and 
the method is one of the more reliable methods of diagonalizing matrices by 
computer. 

Let us assume an H matrix but with just three rows and columns shown 
explicitly as in Eq. 3.4-1. Our plan is to find an orthonormal matrix Q so 
that post- and premultiplication by Q and Q converts elements hr8 and h8r 

to zero. 

cos0 sin Θ θΊΓ/irr hr8 KiTcos Θ — sin0 0 

— sin0 cos0 0 

3.4-1 

Inspection of the Q and Q matrices reveals that they are orthonormal. That 
is, for any column or row the sums of squares of the elements add up to 
unity; and, any two columns, when taken as vectors, give zero products 
when multiplied. This means that Q is the inverse of Q, since the inverse of 
orthonormal matrices is the transpose. Such pre- and postmultiplication 
by a matrix and its inverse has been termed earlier a ' 'similarity trans-
formation." Such a similarity transformation of a matrix does not change 
the eigenvalues of the matrix transformed. Previously, we used the C 
matrix and its transpose to diagonalize the H matrix totally. However, 
presently we will be satisfied with eliminating one element hr8 and its sym-
metrically disposed element h8r. 
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We wish to find what value of 0 will lead to hr8 becoming zero. The H 
matrix is symmetrical (i.e., hr8 = h8r) and the similarity transformation 
leaves it symmetrical. Thus, annihilating hr8 also removes h8r. Setting the 
second element in the first row of the transformed matrix (i.e., hr8 after 
similarity transformation) equal to zero, affords Eq. 3.4-2; this has assumed 

Urs == Her ' 

hrs(cos2 0 - sin2 0) - (krr - h88) sin 0 cos Θ = 0 3.4-2 

From this we obtain 
sin (20) 2hrs 

COS (20) hrr — h88 
3.4-3a 

and 

± (hrr — hss) 
COS2Ö = C(^-W^ + 4^]- 3-4"3b 

where the plus sign is chosen in Eq. 3.4-3b for a positive hrs but the minus 
sign is used if hrs is negative. We can now obtain cos 0 and sin 0 from the 
standard relationships: 

/ l + cos 20\1/2 , . / I - cos 20\1/2
 n A A cos 0 = I 1 and sin 0 = ί 1 3.4-4 

The quantities cos 0 and sin 0 are obtained from the value of cos 20 which, 
in turn, is obtained by use of Eq. 3.4-3b and the elements of the original 
H matrix. These two quantities are then used for the quantities in the 
transformed matrix as given in Eq. 3.4-1. The two quantities are also 
employed to evaluate the matrix Q used in the similarity transformation. 

This first similarity transformation has succeeded only in converting the 
original hr8 and h8r elements to zero. A second similarity transformation is 
now designed to convert another large off-diagonal element of the H 
matrix to zero. As these similarity transformations are continued, it is 
observed that elements which were once annihilated, may become nonzero 
again while zeroing some other off-diagonal element. Nevertheless, the sum 
of the squares of the off-diagonal elements does systematically diminish 
and we repeat the operation until all such elements have vanished and only 
the eigenvalues are left on the diagonal. 

While Eq. 3.4-1 uses only a 3 X 3 matrix for illustration, larger systems 
are handled in the same way. In each case the transforming matrix Q has 
the cos-sin square matrix so positioned that it occupies rows and columns 
r and s to eliminate element hrs and the rest of the Q matrix has ones along 
the diagonal. Finally, all of the Q matrices used are multiplied in order to 
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obtain a product which must be identical with the desired C matrix, since 
it is this product which has succeeded in complete diagonalization. That is, 

Q1Q2Q3 Qn = C 3.4-5 

3.5 More Formal Use of Symmetry by Means of Group Theory 

3.5a Symmetry Operators 

Hitherto, we have made use of the symmetry operator σ, which means 
''reflect in a plane of symmetry." Sometimes the specific plane of reflection 
is indicated when more than one plane of symmetry exists. Thus σν signifies 
"reflect in a vertical plane" while ah indicates "reflect in a horizontal plane." 
There are additional symmetry operators which may be applied to orbitals 
of interest; these orbitals may be atomic, group, or molecular orbitals. 
Table 3.5-1 lists a number of these symmetry operators of interest. We 
shall be most interested in eigenfunctions of such symmetry operators and 
in building up eigenfunctions of these operators. Thus we note that group 
orbitals of interest and the final molecular orbitals are eigenfunctions of 
symmetry operators appropriate to the molecular system under considera-
tion. 

TABLE 3.5-1 
COMMON SYMMETRY OPERATIONS 

Symbol Operation signified 

σν Reflect in a vertical plane of symmetry (going through a vertical axis of 
symmetry) 

ah Reflect in a horizontal plane of symmetry (perpendicular to the vertica* 

axis) 

E Do nothing 

C2 Rotate by (360°)/2 = 180° about a molecular vertical axis of symmetry 

Cz Rotate by (360°)/3 = 120° about a molecular vertical axis of symmetry 

Cn Rotate by (360°) /n 

i Invert the molecule using a center of symmetry 

S2 Rotate by 180° and then reflect in a horizontal plane (i.e., chC*) 

R A general symbol signifying some symmetry operation to be specified 
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3.5b Character Tables of Nondegenerate Symmetry Groups 

For nondegenerate orbitals, whether they be symmetry or molecular 
orbitals, we can define the character of the orbital under a given symmetry 
operation as the eigenvalue of the orbital corresponding to the given sym-
metry operator. For nondegenerate orbitals the eigenvalue and hence the 
character for a given operation will be either + 1 or — 1, corresponding to 
the orbital being symmetric or antisymmetric with respect to that opera-
tion. The case of degenerate orbitals is considered later. 

Each character table consists of a group of symmetry operations and a 
listing of the characters for all of the conceivable types of symmetry orbitals 
which might exist. Two common examples are the Ci group and the Cu 
group for which the character tables are given in Tables 3.5-2 to 3.5-4. In 
designation of the symmetry types possibly occurring, A is used for an 
orbital type which is symmetrical (eigenvalue and character of 1) with 

TABLE 3.5-2 

The C2 group 
representation 

A 
B 

Group operations 

E C2 

1 1 
1 - 1 

TABLE 3.5-3 

The C2v group 
representation 

A1 

A2 

B1 

B2 

E 

1 
1 
1 
1 

Group operations 

c2 

1 
1 

- 1 
- 1 

(Tv CTv 

1 1 
- 1 - 1 

1 - 1 
- 1 1 

TABLE 3-5.4 

Group operations 
The Cs group 
representation E ah 

A' 1 1 
A" 1 - 1 
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respect to the principal rotational operation Cn (e.g., C2 in the cases of the 
two group tables given as examples in Tables 3.5-2 and 3.5-3). B is used to 
signify an orbital type antisymmetric (eigenvalue and character of —1) 
with respect to the principal rotation. Subscript 1 connotes symmetry 
(character 1) for the σν operation while subscript 2 implies antisymmetry 
(character — 1) with respect to this operator. It will be further noted that 
the different symmetry types are termed representations. A representation 
consists of the entire sequence of characters for each of the operations and 
of the given symmetry type. 

3.5c Utilization of Character Tables and Symmetry Operators in 
Formulating Symmetry Orbitals 

In any given molecular problem we are interested only in those symmetry 
operators which are capable of transforming individual atomic orbitals 
into equivalently situated atomic orbitals in the molecule. We wish to 
employ just enough of these symmetry operators so that there is an operator 
available to transform each original atomic orbital into all of its equivalent 
atomic orbitals. This is the best criterion in selecting a group character 
table for use; this selection will minimize the complexity of the manipula-
tions but will ensure full use of molecular symmetry. 

Let us use "rectangular cyclobutadiene"* as an example for illustration 
which is interesting per se (Fig. 3.5-A). Inspection of the C2 group table 
and its operators shows that there are insufficient group operators (i.e., 
only E and C2) to convert any one AO into all of its equivalents. Thus we 
can convert χι to χζ by the operator Ci which rotates the molecule by 180°; 
but we find no operator capable of converting χχ into χι or χ4. We need a 
more powerful group. The Cu group does satisfy the requirement. χ\ is 

FIG. 3.5-A. The center dot represents 
the C% axis of rotation perpendicular to 
the molecular plane. 

* This would be a cyclobutadiene species in which there were alternating bond lengths, 
and in resonance terminology would correspond to a more heavy weighting of one of 
the two resonance contributors for cyclobutadiene. Whether in fact square or rectangular 
cyclobutadiene corresponds to the lower energy situation is a matter of considerable 
interest. 
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TABLE 3.5-5 
RESULTS OF THE GROUP OPERATIONS ON THE A O S OF 

RECTANGULAR CYCLOBUTADIENE 

Atomic orbital χΓ Εχτ 02χΓ *Xr σ'χτ 

Xi 

X2 

X3 

X4 

4 

X3 

X4 

XI 

X2 

0 

X4 

X3 

X2 

XI 

0 

X2 

Xi 

X4 

X3 

0 

converted into itself by the operator E, into χ3 by the operator C2, into χ2 
by σ' and into χ\ by σ. Having selected the C2v group and its operators, we 
proceed by listing vertically all of the AOs in the molecule. Then in adjacent 
columns we list the result of each of the group operators on these AOs. For 
rectangular cyclobutadiene this is carried out in Table 3.5-5. Below each 
column, at the bottom of the table, is listed the number of AOs unchanged, 
by the operator heading the column; this will be used later. The following 
rule (Rule II) will now give all of the needed group orbitals of any specified 
symmetry type. To obtain a group orbital one uses a linear combination of 
the atomic orbitals (e.g., given as a row in Table 3.5-5) obtained by the 
action of all the group operations on any one atomic orbital of the molecule. 
The coefficients used in this linear combination are just the corresponding 
characters for the desired symmetry type as selected from the group char-
acter table, Thus to obtain an orbital of A\ symmetry we would use the 
characters 1, 1, 1, 1 as coefficients; applied to the atomic orbitals of row 1 
of Table 3.5-5 this gives the A\ symmetry orbital χι + χ3 + χ\ + Χ2· 
Applied to the last three rows of the table we obtain the same symmetry 
orbital written in different order and thus obtain nothing new. 

To generate an A2 group orbital we use the characters for the A 2 repre-
sentation as taken from the C2v table, namely 1, 1, — 1, — 1, and use these 
as coefficients of the atomic orbitals given in row 1 of Table 3.5-5. This 
gives us the A2 orbital xi + X3 — X4 — X2. Similarly, use of the characters 
of the Bi representation (i.e., 1, — 1 , 1, —1) as coefficients leads to the Bi 
symmetry orbital xi — X3 + X4 — X2; and the characters of the B2 repre-
sentation (1, — 1 , — 1 , 1) afford χχ + χ2 — X3 — X4, the Β2 symmetry 
orbital. As it happens in the present problem, application of the characters 
of any of the representations to more than the first row of Table 3.5-5 
gives us no new group orbitals. Since we have obtained only one orbital 
of each symmetry type, these will not mix in a secular determinant and are 
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final, although unnormalized, molecular orbitale for the rectangular cyclo-
butadiene molecule.* 

We can restate the rule just given for obtaining symmetry orbitals by 
group theory in the following formula. This gives the symmetry orbital φι 
of symmetry type i as 

Rule II φ{ = Σ XiR'Rxr 3.5-1 
R 

Here X;E is the character of representation (symmetry type) i for opera-
tion R. If xr is any arbitrarily selected atomic orbital in the molecule, Rxr 

is therefore the atomic orbital resulting from the symmetry operator R 
acting on %r. In the treatment of rectangular cyclobutadiene above we 
obtained the X ^ ' s from a row (of the desired symmetry type) of Table 
3.5-3 and we obtained the Αχ/s from (e.g.) row 1 of Table 3.5-5. These 
products were taken for all symmetry operations of the character table used. 

If the reader reflects on this use of group theory to construct the sym-
metry orbitals, he will see that it is equivalent in every way to the approach 
used earlier. Thus Table 3.5-5 is a formal way to obtain a set of atomic 
orbitals equivalently located in the molecule; and use of the characters of 
a given representation (symmetry type) as coefficients of these equivalently 
located AOs merely ensures the desired symmetry or antisymmetry with 
respect to the operators of the group. As an example, in construction of 
the A2 orbital, one of the four terms used is X^.^ 'ovxi · The portion σνχι 
is equal to X4 (cf. Table 3.5-5) ; this is just the AO located in the molecule 
in a position equivalent to χι. The portion X A 2 ^ V is equal to — 1 (cf. Table 
3.5-3) and gives χ4 a negative sign in the summation and ensures antisym-
metry with respect to σν. 

There is another rule (Rule I) of use in constructing symmetry orbitals 
by use of group theory. This makes use of the total character X ^ of the 
molecular set of atomic orbitals. This total character for each operator R is 
merely the number of atomic orbitals in the molecule unchanged by that 
operator. Looking at Table 3.5-5 we see that for the E operator four AOs 
are unchanged and X ^ = 4. For each of the remaining operators no AOs 
are left unaltered, and Χίί?2, Χίσ and Χ<σ> are each zero. These four charac-
ters 4, 0, 0, 0 constitute a representation which is said to be reducible.f 

* We note with interest that these are the same as for the cyclobutadiene molecule 
itself (cf. p. 72). However, the energy levels will differ in the rectangular and square 
molecules. Discussion of this problem is postponed despite its intrinsic interest. 

t In group theoretical terms the X^'s are called characters of a reducible representa-
tion and the series of these for the different group operators R is called a reducible 
representation. The set of characters for a given symmetry type (e.g., Bh etc.) is said to 
constitute an irreducible representation. Thus a reducible representation may be re-
duced, or dissected, into its component irreducible representations. 
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The C2v group Group operations 

Representation E Ci σν <rv' 

Rectangular 
cyclobutadiene 
reducible 
representation 

Fig. 3.5-B 

These characters, when individually multiplied by the corresponding 
characters of one of the symmetry types and then the sum divided by the 
number of operations (the order of the group), will give the number of 
symmetry orbitals of the desired symmetry type. This procedure is most 
readily remembered by adding a row corresponding to this reducible 
representation below the C2v group table presently being used (see Fig. 
3.5-B). Then these characters are multiplied by the corresponding charac-
ters of the symmetry representation of interest; for the A\ representation 
we would multiply the pairs of characters connected by arrows in Fig. 
3.5-B. The sum of products is then divided here by 4, the order of the C2v 
group. 

Number of A\ symmetry orbitals in 1 - 4 4 1 - 0 4 1-04-1-0 
rectangular cyclobutadiene ÖUI = = 1 

ΛΤ K * A u-x i 1 . 4 + 1 - 0 - 1 - 0 - 1-0 Number of A2 orbitals aÄ2 = = 1 4 

ivr K * * w, 1 1 - 4 - 1 - 0 + 1 . 0 - 1 - 0 Number of Bi orbitals aBl = = 1 

M K * » κ·+ i 1 - 4 - 1 - 0 - 1 - 0 + 1 - 0 Λ 

Number of B2 orbitals aB2 = = 1 
4 

This rule may be formulated algebraically as 
h 

Rule I ai = (1/A) Σ XiR-^tR 3.5-2 
R 

where h is the order of the group and a» is the number of group orbitals of 
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symmetry i. XiÄ and X*« are the characters of the irreducible and reducible 
representations, respectively, for operation R. 

We see that Rule I does predict that there will be one group orbital of 
each symmetry type (Ah A2) Bh B2) in agreement with the finding by 
Rule II . Normally one would begin by determining the number of orbitals 
of each type using Rule I and follow this by finding precisely what these 
symmetry orbitals are. 

One further point may be made with regard to the number and type of 
irreducible representations in the reducible representation provided by 
the characters of a molecule of interest. The sum of the characters of all 
of the component irreducible representations will add up to the total 
character of the reducible representation.* That is, 

X<Ä = Σ ciiX-iR 3.5-3 
i 

Using this, which will be true for each of the group operations, one can 
often tell by inspection what combination of symmetry types (irreducible 
representations) is required to afford the distribution of characters in the 
reducible representation. Looking at Fig. 3.5-B we can see that the only 
combination of the Ah A2} Bi, and B2 rows which will give the total char-
acters below the group table is one of each symmetry type. Then the total 
of E characters adds to 4, the total of C2 characters gives 0, the total of σ 
characters gives 0, and the total of σ' characters gives 0. Any other com-
bination would not fit this criterion. For example, if there were two A\ 
symmetry orbitals and one each of type B\ and B2l the reducible represen-
tation would consist of characters 4, 0, 2, 2, which are not the X/s we ob-
tained in Table 3.5-5. 

Another way of considering the dissection of a reducible representation 
into its irreducible components is to view the representations as vectors. 
Thus the Ai representation is the vector [ 1 1 1 1 ] , while the A2 representa-
tion is the vector [ 1 1 — 1 — 1 ] , and so forth. I t is seen that in general the 
product of any two vectors of different representations (i.e., of differing 
symmetry) is zero and the product of any vector multiplied by itself is the 
order of the group, h, here 4 for the C2v group. Also, a reducible representa-
tion is a vector, too, and the vector for cyclobutadiene is rred = [ 4 0 0 0] . 
However, this reducible vector is the sum of the four vectors Ai, A2) B\, 
and B2, each taken once. Accordingly, if one multiplies this reducible vector 
rred by one of the four irreducible vectors, for example the B\ vector Γβ ι , 
he will get contributions to the product only from the Bi components. 
Each Bi component when multiplied by the vector ΓΒι then gives a con-
tribution of 4 (i.e., the order of the group CW). If this multiplication given 

* If any representation occurs more than once, it is included this number of times. 
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4, there will be one B\ irreducible vector in the reducible sum rred. If the 
product were to turn out to be 8, this would mean that there were two B\ 
irreducible representations included in the reducible one. A product of 12 
would mean three B\ components, and so on. 

This can be stated in the form of what is a general proof for Rule I of 
group theory. First, the reducible vector in a general case can be said to be 
the sum of irreducible component vectors : 

r r e d = αιΓι + α2Γ2 + α3Γ3 H h α,·Γ< 3.5-4 

where each ay is the number of vectors of the j th symmetry type in the 
summation. If we now multiply this sum of vectors by one of the irreducible 
vectors, say Γ», only one of the irreducible vectors on the right-hand side 
of Eq. 3.5-4 will give a nonzero product, and this is aài. Thus we get 

r r e d · I \ = 0 + 0 + 0 \-aJi 3.5-5 

since I V Γ» = h. Therefore, we can solve for the number of vectors of the 
ith variety o» to obtain 

ai = Γ„α·Γ<(1/Α) 3.5-6 

But this can be seen to be just a vector language restatement of Rule I 
(noteEq. 3.5-2). 

We shall now consider a second molecule amenable to treatment by the 
C2v group, namely 1,4-dehydrobenzene (IV), in resonance language (Fig. 
3.5-C). Any less complex group than C2v will not convert each of the atomic 

(IV) 

* 6 o 
! X, o1- - 0 X 2 

.0- <>x7—à: 

σ 

FIG. 3.5-C 
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Atomic orbital 

Xi 

X2 

X3 

X4 

Xc 

X6 

TABLE 3.5-6 

Total character of 
reducible representation 

Result of group 
operator 

E 

Xi 

X2 

X3 

X4 

Χδ 

X6 

6 

c2 

X4 

X5 

X6 

XI 

X2 

X3 

0 

σ 

X4 

X3 

X2 

XI 

X6 

Χδ 

0 

σ' 

Xi 

X6 

Χδ 

X4 

X3 

X2 

2 

orbitals into all of its equivalent orbitals, while those more complex involve 
more than the minimum necessary operations.* 

Rule I is employed first in order to determine the number of symmetry 
orbitals of each type. A table detailing the results of the CW group's opera-
tors on all of the AOs is assembled (Table 3.5-6). The characters of the 
reducible representation are seen to be 6, 0, 0, 2. Equation 3.5-2 now gives 
the total number of group orbitals (reducible representations) of each 
symmetry type. Following this first for the A\ representation whose charac-
ters are 1, 1, 1, 1, we obtain the number of A\ orbitals as 

Analogously 

aAl = 1(1-6 + 1-0 + 1-0 + 1-2) = 2 3.5-7 

aA2 = 1(1-6 + 1-0 - 1-0 - 1-2) = 1 3.5-8 

aBl = 1(1-6 - 1-0 + 1-0 - 1-2) = 1 3.5-9 

aB2 = 1(1-6 - 1-0 - 1-0 + 1-2) = 2 3.5-10 

Alternatively, we might have come to this conclusion by inspection by 
noting that it would require this combination of irreducible representations 
to afford the reducible representation (6, 0, 0, 2) provided by the dehydro-
benzene molecule. This is seen in Fig. 3.5-D. 

Knowing the number of each type of symmetry orbital, we proceed to 

* To be precise one would assign the molecule to the C2h group which also includes a 
horizontal reflection operation using the plane of the molecule. However, the only 
additional interconversions accomplished by this group is to transform upper lobes of 
p orbitals into lower lobes. This transformation has no value in providing further sym-
metry orbitals but instead entails considerable extra work. 
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Operators of the 
C2v group 

Representation E d σ σ' 

Ai 1 1 1 1 Two needed ' 
A% 1 1 — 1 —1 One needed 
B\ 1 — 1 1 — 1 One needed 
B2 1 - 1 - 1 1 Two needed , 

Reducible représenta- 6 0 0 2 
tion of molecule 
equal to total of above 

FIG. 3.5-D 

determining what these group orbitals are; Rule II is used. We employ the 
sequence of AOs given in the rows of Table 3.5-6 and apply the characters 
of the appropriate symmetry representation as coefficients to these AOs. 
Accordingly, for the one A2 orbital we use the characters 1, 1, — 1, —1 as 
coefficients. Applied to the first row of Table 3.5-6 this gives χι + X4 — 
X4 — xi or zero; thus row 1 of Table 3.5-6 is of no use. Application of the 
same four characters to row 2 of the table gives X2 + X5 — xs — xe (better 
written χ2 — χ3 + Χδ — Xe), which is the desired single A2 symmetry 
orbital. Further application of the same characters to the remaining rows 
of Table 3.5-6 gives either no orbital (zero) or the same A2 orbital; hence 
we see that the prediction of one A2 orbital by Rule I is fulfilled. 

The energy of the A2 orbital is obtained in the usual fashion as 

(X2 — X3 + X5 — Xe) 

( χ 2 - χ 3 + χ 5 - χ 6 ) | 4 X - 4 | = 0 or X = l 3.5-11 

and the normalized MO is 

Φδ = è(x2 — X3 + X5 — xe) 3.5-12 

Use of the B\ characters as coefficients for the AOs of Table 3.5-6 gives 
X2 - X5 + X3 ~ xe (or better, χ2 + χ3 - xs - xe) whose energy is given by 

(X2 + X3 ~ X5 — Xe) 

(X2 + X 3 - X 6 - X e ) [ 4X + 4 | = 0 or X = - 1 3.5-13 

Here the normalized MO is 

Ψ2 = è(x2 + Χ3 — X5 — Xe) 3.5-14 

The A\ and B2 orbitals give more difficulty, since there are two group 
orbitals of each symmetry type which must be mixed in second-order 

to give totals of characters 
I equaling those for reducible 
[ representation 



98 3, Molecular Symmetry for Simplification of Secular Determinants 

determinants. Beginning with the Ai case, we obtain the first of the two 
group orbitale by application of the Ai representation characters 1, 1, 1, 1 
to the first row of Table 3.5-6. This gives xi + X4 + X4 + xi, or just 
Xi + X4-* The second A\ orbital results from application of the characters 
to row 2 of Table 3.5-6 to yield (after rearrangement of terms) χ2 + χζ + 
Χδ + Χ6· The reader can demonstrate that application of the characters 
to the last four rows of the same table merely gives repetition of the same 
orbital. The two Ai orbitale are now mixed in a second-order secular deter-
minant to give 

(X2 + X3 + Χδ + Xe) (xi + XA) 

(X2 + X3 + X5 + Xe) 

(Xi + XA) 

(4Z + 4) 
= 0 3.5-15 

4 (2X + 2) 
This can be expanded in the usual way to give the two energy levels and 
then the two sets of coefficients weighting the symmetry orbitals. However, 
when a determinant having a set of rows and columns of the general form 

2A B 

B A 
= 0 3.5-16 

is encountered, there is a convenient trick. Row 1 and column 1 are indi-
vidually divided by V2. Application of this gives a symmetrical deter-
minant of the form 

(i/V5)5 

(1/V2)£ 
= 0 3.5-17 

which can be diagonalized by adding and subtracting rows and columns. 
With this approach 3.5-15 becomesf 

(1/V2) (X2 + X3 + X5 + X6) (Xl + XA) 

( 1 / ^ ) ( X 2 + X 3 + XB + X6) 

(Xi + XA) 

(2X + 2) 

2V2 

2V2 

(2Z + 2) 
= 0 

3.5-18 

Using our rules for filling in secular determinant elements, we could have 

* The form of the group oribtal is important but not the absolute magnitude, since 
the extent of its contribution to the total MO remains to be determined in the mixing 
process. 

t Note that any multiplication or division of row i and column i of a determinant also 
multiplies or divides the orbital labeling row and column i. 
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By this device we have found the proper linear combination of the Ai 
symmetry orbitals corresponding to the final (although unnormalized) 
MOs; these are given as headings of the columns and rows. The correspond-
ing energies result from solution of the separate 1 X 1 determinants. The 
normalized MOs are 

Ψι = i (x i + x0 + (1/2V2) (X2 + X3 + X5 + χβ), X = ~ 1 -V2 3.5-20 

*4 = i (x i + X4) - (1/2V2) (X2 + X3 + X5 + χβ), X = - 1 +V2 3.5-21 

The two Z?2 group orbitals, obtained by application of the Bi characters 
1, — 1, — 1, 1 to the rows of Table 3.5-6, are found to be χι — χ\ and 
X2 — X3 ~ X5 + X6. The second-order secular determinantal equation mix-
ing these two orbitals is 

(X2 — X3 — X5 + Xe) 

(Xi — Xi) 

(X2 ~ X3 — X5 + Χβ) (Xl — X4) 

(4Z - 4) 4 

4 (2X - 2) 
= 0 3.5-22 

Precisely parallel simplification as followed with 3.5-15 affords the two 
MOs and their energies as 

Ψ* = *(X1 - X4) + (1/2V2) (X, - X3 - X5 + X·) 

with 

and 

with 

X = 1 - V 2 

^6 = KXI - X4) ~ (1/2V2) (X2 ~ X3 - X 5 + Χβ) 

X = 1 + V 2 

3.5-23 

3.5-24 

3.5-25 

3.5-26 

■é 
1.000 

fl\ 

ω—■ 
® — | · 

—A 
* 5 

w 
0.414 

-1.000 

-2.414 

FIG. 3.5-E. 1,4-Dehydrobenzene MOs. The shaded areas represent the positive 
orbital, the unshaded areas the negative orbital sign above the molecular plane. 
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The six 1,4-dehydrobenzene MOs can be depicted in qualitative shorthand 
as in Fig. 3.5-E. Here the shaded portions represent positive orbital signs 
above the plane of the paper while unshaded portions represent negative 
signs above this plane. The τ energy of 1,4-dehydrobenzene is seen to total 
— 7.656|β|, giving a resonance energy of — 1.656|β|. Interestingly, this π 
energy is less than for benzene itself (—8|/S|). We have here one of a general 
class of compounds wherein extra overlap leads to destabilization of the 
molecule. 

3.5d Use of Character Tables of Degenerate Groups 

Consider species such as cyclopropenyl (Fig. 3.5-F). The approach used 
in Section 3. Id can be used to afford the MOs and energies. This employed 
group orbitale symmetric and antisymmetric with respect to σνι: 

φ1 = (1/V3) (Xl + X2 + χ«), X = - 2 3.5-27 
ψ2 = (1/V2) (χ2 - xs), X = + 1 3.5-28 
ψ3 = (1/VB) (2χι - X2 - xs), X = + 1 3.5-29 

However, we might wish to use the formal group theoretical approach 
delineated in the preceding subsection. There is indeed a group table, Czx 

(Table 3.5-7), which makes use of all of the symmetry operations of 

TABLE 3.5-7 
CHARACTERS OF THE CW GROUP 

C3v group 

Ax 

A, 
E 

E 

1 
1 
2 

2Cz 

1 
1 

- 1 

3σν 

1 
- 1 

0 

FIG. 3.5-F. Cyclopropenyl and its 
symmetry operations. 

'V3 
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interest* to us in dealing with the cyclopropenyl species. The reader doubt-
lessly will note that there are several new features in the C3v table not found 
in the character tables considered thus far. First of all, there is more than 
one Cz operation possible; one can rotate (e.g.) cyclopropenyl by 120° 
(i.e., Cz) and also by 240° (i.e., Cz2). Each of these rotations has the same 
character for any given irreducible representation; and, rather than list 
Cz and Cz2 as separate columns we give only one column and head this 
with the label 2C3. In the same way the heading 3σν is shorthand notation 
indicating that one should really envisage three columns, each with the same 
characters; these columns correspond to the three vertical reflection opera-
tions σνι, σν2, and σν3 (cf. 3.5-A for definitions of these operations). 

Second, the reader will note that there is an E representation. "E" 
signifies a (twofold) degenerate representation. The characters of this 
representation are 2 , - 1 , and 0. Clearly 2 and 0 are not the usual symmetry 
eigenvalues. In degenerate representations the characters are no longer 
identical with symmetry eigenvalues, and the reasons can now be discussed. 

In looking at the degenerate pair of MOs given in Eqs. 3.5-28 and 3.5-29 
(X = + 1 for both), we note that not all of the C3v group symmetry 
operators transform these MOs into themselves (eigenvalue then +1 ) or 
into their negative (eigenvalue then — 1). For example, the result of Cz on 
ypi is seenf to give (1/V2) (χ3 — χι) . I t can be shown that this result, al-
though not derived from ψ2 alone, can be expressed as a linear combination 
of both \f/2 and ψ3. Thus 

Cz^ = (1/V2) (X3 _ χ ι ) = - J f t - (V3/2)^3 3.5-30 

Similarly 

C3*3 = (1/VS) (2X2 - xz - xi) = (^3/2)^2 - Uz 3.5-31 

In each case (3.5-30 and 3.5-31) the reader may verify the results by in-
spection of Fig. 3.5-F, using the C3 operator and then by taking the appro-
priate combinations of ^2 and ψζ as given by 3.5-28 and 3.5-29. Further, 
the reader can demonstrate to his satisfaction that linear combinations of 
the two degenerate pairs of MOs, ψ2 and ψζ, result when other C3v group 
operations are performed on either MO. Thus in general 

Rfc = αψ2 + b\f/z 3.5-32 
and 

ϋψζ = c^2 + d\pz 3.5-33 

* It does not include σ^ reflection in the molecular plane, for this operation merely 
inverts all of the p orbitale and does not aid in finding symmetry orbitale. 

t This is obtained by inspection of Fig. 3.5-F and noting the result of C8 on the in-
dividual AOs of ψ2 as given by 3.5-28. 
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Given a symmetry operator and a set of orbitale, whether they be atomic 
orbitals as considered earlier or MOs as ^2 and φζ of Eqs. 3.5-32 and 3.5-33, 
we find that the operator R acting on each orbital will give some fraction 
of this orbital unchanged plus some additional orbitals. The fraction un-
changed for each orbital member of the set is the orbitaPs contribution to 
the total character of the set. In the instance of the degenerate set of MOs 
Ψ2 and ψζ, the symmetry operator R leaves the fraction a of \p2 unchanged 
while the fraction d of ψζ remains unaltered by R. Thus a and d may be 
considered to be contributions to the total character for operation R of the 
degenerate set of MOs and (a + d) is the total character. While the indi-
vidual contributions depend on the precise form of the degenerate MOs, and 
this has a degree of flexibility,* the total character is independent of the 
form of the MOs selected. 

For the case of the Cz operation on the MOs Ψ2 and ψζ as given in Eqs. 
3.5-30 and 3.5-31 we see a and d individually to be — i and the total char-
acter (a + d) to be — 1 ; this is the character as given in Table 3.5-7 for 
the E (degenerate) representation and the Cz operator. 

The characters of degenerate groups can be more readily derived by use 
of matrix methods, but for present purposes attention is focused on prac-
tical use of character tables of degenerate groups. Actually, the procedure 
in dealing with degenerate groups is essentially the same as followed in 
Section 3.5c for nondegenerate groups. 

Assuming that we have not obtained the cyclopropenyl system energies 
and MOs by use of the single symmetry plane σνι (cf. Fig. 3.5-F), we proceed 
to use Rule I of Section 3.5c. The AOs are listed in Table 3.5-8 together 
with the result of the Czv group operators on these. By inspection of Table 
3.5-7 we can see that it will require the characters of the E plus the A\ 

* Any normalized linear combination of a set of degenerate MOs will be an acceptable 
MO having the same energy, giving the option of an infinite choice in selecting the form 
of the first member of such a degenerate pair. However, the second MO is then fixed 
by the requirement that it be orthogonal to the first member as chosen. 

The first statement is readily seen as follows. If ψα and ^0 are an orthonormal set of de-
generate MOs of energy E, the energy of any linear combination, say αψα + b̂ &, is given 
by 

J {αφα + διΜ0Ο(α*. + &**) dv 

= a2 I φα3<ΐφα dv -f 2ab ί ψα&Ψυ dv + b2 / iMty6 dv 

- a2E + 0 + b*E = (a2 + b*)E, 

which will afford E if a2 + b2 is chosen equal to 1. Note that the orthogonality of ψα 

and ^6 is utilized to set JVaWb dv = 0. 
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TABLE 3.5-8 

Atomic orbital 

Xi 

X2 

X3 

Total character of the 
reducible representation 

E 

Xi 

X2 

X3 

3 

Result of group operator 

Cz 

X2 

X3 

Xi 

0 

Cs2 

X3 

Xi 

X2 

0 

σνι 

Xi 

X3 

X2 

1 

σν2 σ"ν3 

X3 X2 

X2 XI 

XI X3 

1 1 

representations to give the total character found. More formally, Rule I 
gives 

Number of A\ symmetry orbitals a AI 

= i [ l - 3 + 1-0 + 1-0 + 1-1 + 1 -1+ 1-1] = 1 3.5-34 

Number of A2 symmetry orbitals ÜÄ2 

= i [ l - 3 + 1-0 + 1-0 - 1-1 - 1-1 - 1-1] = 0 3.5-35 

Number of E degenerate pairs as 

= J[2-3 - 1 - 0 - 1-0 + 0-1 + 0 - 1 + 0 - 1 ] = 1 3.5-36 

Now we proceed to use the AOs of the rows of Table 3.5-8 and the charac-
ters of Table 3.5-7 as coefficients according to Rule II of Section 3.5c. 
Row 1 of Table 3.5-8 together with the A\ characters of Table 3.5-7 affords 
the Ai orbital 2χι + 2χ2 + 2χ3. Use of rows 2 and 3 merely repeats this 
as would be anticipated from the prediction by Rule I of only one A\ 
orbital. This orbital when normalized is then the same as Eq. 3.5-27. 

Despite the prediction of no A^ orbitals by Rule I, we could attempt to 
obtain one using the A2 characters of the CzY table together with the AOs 
of Table 3.5-8. This is to no avail, as zero results in each case. 

Application of the E characters (2, — 1 , — 1, 0, 0, 0) of the C3v table 
(3.5-7) as coefficients for the AOs of Table 3.5-8 gives us (after dividing 
by 2) the three group orbitals: 

Φι = 2χι — Χ2 — Χ3 3.5-37 

Φ2 = — χι + 2χ2 — Χ3 3.5-38 

Φζ = — χι — Χ2 + 2χ3 3.5-39 

We soon see that Rule I, predicting only one pair of degenerate orbitals 
(E representation), has not led us astray. Of the three group orbitals, only 
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two are independent. φ\ is the first of the two which may be selected; it is 
just the unnormalized form of the MO ψζ given in 3.5-29. φ2 — Φζ = 3χ2 — 3χ3 
is the second of the degenerate pair; this is the unnormalized form of \p% as 
given in 3.5-28. Φ2 + Φζ = — 2χι + X2 + X3 is a repetition of φι, being just 
the negative of this. The trick of adding and subtracting two MOs* is a 
convenient device for obtaining a set of degenerate MOs orthogonal to 
each other. 

In similar fashion the C6v group operations are found sufficient to inter-
convert every pair of equivalent p orbitale of benzene; and this group, con-
taining two degenerate representations, may be used to afford the solution 
to the benzene problem (Fig. 3.5-G). The C6v group has 12 operators: the 
E operator, one C2 operator, two C3 operators (Cz and C3

2), two C6 operators 
(Ce and Ce5), three reflection operators utilizing planes of symmetry bisect-
ing sides of the benzene ring (the av's), and the three diagonal reflection 
operators using planes passing through carbon atoms (the aa's). The result 
of these group operators on the six benzene AOs is given in Table 3.5-9. 
The C6v group characters are given in Table 3.5-10. At the bottom of the 

FIG. 3.5-G 

* For this device to work the degenerate MOs should either already be individually 
normalized or should be unnormalized by the same factor as in the example above. Thus 
in general we see that 

J « i + H) (Φι - H) dv = J ti*dv - / ψίάο = 0. 

and hence (̂ 1 + 2̂) and (̂ 1 — ^2) are indeed orthogonal. 
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TABLE 3.5-9 
EFFECT OF CW GROUP OPERATORS IN BASIC SET OF BENZENE A O S 

AO 

Xi 

X2 

X3 

X4 

X6 

X6 

Total character of 
the reducible 
representation 

E 

Xi 

X2 

X3 

X4 

Χδ 

X6 

6 

c2 

X4 

X6 

X6 

XI 

X2 

X3 

0 

Cz 

X3 

X4 

X5 

X6 

Xl 

X2 

0 

ft1 

X5 

X6 

Xl 

X2 

X3 

X4 

0 

Result of group operator 

c6 

X2 

X3 

X4 

Χδ 

X6 

Xi 

0 

tv 

X6 

Xi 

X2 

X3 

X4 

Χδ 

0 

σνι 

X2 

Xi 

X6 

X5 

X4 

X3 

0 

σ2τ 

X4 

X3 

X2 

Xi 

X6 

X5 

0 

<T$y 

X6 

Χδ 

X4 

X3 

X2 

Xi 

0 

σ-di 

Xi 

X6 

Χδ 

X4 

X3 

X2 

2 

<^d2 

X3 

X2 

Xi 

X6 

Χδ 

X4 

2 

σάζ 

X6 

X4 

X3 

X2 

Xi 

X6 

2 

TABLE 3.5-10 
Cev CHARACTER TABLE 

Representation 

Ä! 
A2 
■Bi 

B2 

Et 

Ei 

Reducible representation 
of benzene AOs 

E 

1 
1 
1 
1 
2 
2 

6 

Symmetry operators 

c2 

1 
1 

- 1 
- 1 
- 2 

2 

0 

2C3 

— 1 
— 1 

0 

2C6 

— 1 
— 1 

— 1 

0 

3σν 

1 
- 1 

1 
- 1 

0 
0 

0 

3<rd 

1 
- 1 
- 1 

1 
0 
0 

2 

group table there are given the characters of the reducible representation 
of the benzene system of AOs. We must remember that each of the third 
and fourth columns in actuality represents two columns of characters while 
the last two columns are each shorthand for three columns. This abbrevia-
tion is possible because the characters for any individual representation 
(e.g., A2) will be the same for all symmetry operations of the same class 
(e.g., Cz and Cz2). However, the order of the group (A) is 12; and in using 
Rules I and II , we must use each column as many times as is indicated by 
the number preceding the operator heading the column. This is the number 
of columns which would be written were the group table written out in full. 

Application of Rule I gives the number of symmetry orbitale of each 



3.5 More Formal Use of Symmetry by Means of Group Theory 107 

symmetry type (irreducible representation) : 

aAl = ^ ( 6 + 2 + 2 + 2) = 1 

<U2 = A ( 6 - 2 - 2 - 2 ) = 0 

aBl = A ( 6 - 2 - 2 - 2 ) = 0 

aB2 = Λ ( 6 + 2 + 2 + 2) = 1 
α^ι = Ä(12) = 1 (i.e., one E\ degenerate pair) 
aE2 = I T ( 1 2 ) = 1 (i.e., one E2 degenerate pair) 

Application of Rule II , using successive rows of Table 3.5-9 together 
with the characters of the C6v table as coefficients, gives us the eight group 
orbitals listed below, 

ΦΑΧ = 2 (χ ι + Χ2 + χζ + Χ4 + Xh + Χβ) 

which after normalization is the MO ψι of page 77. 

φυ2 = 2 (χ ι — X2 + X3 — X4 + X6 — Xe) 

which after normalization is the MO ^6 of page 77. 

ΦΒΙ = 2χΐ + Χ2 — Χ3 — 2χ4 — Χδ + Χ6 

ΦΑ/' = XI + 2χ2 + Χ3 — Χ4 — 2χ5 — Χ6 

ΦΒ"' = —XI + Χ2 + 2χ3 + Χ4 — Χ5 — 2χ6 

only two of which are independent. ΦΕ/ is, after normalization, the ψζ of 
page 77. The sum and difference of φΕ" and φΕ"' give unnormalized ψ2 

and ^3, the latter being a repetition. 

ΦΕ2' = 2χι — Χ2 — X3 + 2χ4 — X5 — X6 

< W = Xl — 2χ2 + X3 + X4 — 2χδ + X6 

ΦΕ2" = Xl + X2 — 2χ3 + X4 + X5 - 2χ6 

of which, similar to the E\ situation, only two are linearly independent; the 
sum and difference of ΦΕ2" and ΦΕ2" give the MOs ψ^ and ψ6 after normal-
ization. 

Having obtained the benzene MOs by group theory, we would proceed 
to find the energies in the usual manner. If more than one group orbital of 
the same symmetry resulted from Rules I and II , these symmetry orbitals 
would have to be mixed in the usual manner in a secular determinant and 
the weighting of these determined by the method of cofactors. In fact, 
even with degenerate pairs of a given symmetry, in place of orthogonalizing 
by addition-subtraction, we could have mixed any pair in a 2 X 2 secular 



108 3, Molecular Symmetry for Simplification of Secular Determinants 

determinant and obtained final MOs and coefficients in the traditional 
way. 

3.5e Use of Group Tables with Complex Characters and Use of 
Complex Wavefunctions 

Thus far we have avoided using group theoretical tables which have 
complex characters. Among these are the Cn tables. However, these are 
not difficult to use, and there are instances where they are used to ad-
vantage. 

For illustration some of the Cn group tables are given in Table 3.5-11. 

TABLE 3.5-11 
T H E Cn GROUP TABLES" 

E 
\E' 

\E" 

E C3 Cs* 

ω" ω" ω" 

ω" ωχ ω* 

ω" ω * ω 

c4 

A 

Ei 

Β 

\Ει' 

[Ei" 

E 

ω° 

ω° 

ω° 

ω° 

c4 

ω° 

ω1 

ω"1 

ω2 

c2 

ω° 

ω2 

ω"2 

ω4 

C4
3 

ω° 

ω3 

ω~3 

ω6 

c6 

A 

E! 

Ei 

Ei' 

Ei" 

E2 

ET / / 
JÎI2 

E Ce C3 C2 C32 Ce6 

<ow ω" ω" ω" ω" ω" 

ω" ω* ω* ω° ω* ωϋ 

ω" ω χ ω * ω β ω * ω 

ωυ ω' ω* ω° ω° ω11 

ω ù) co co co ω 

co" ω β ω" ω" ω " ω " 

c6 

A 

Ei 

Ε2 

\Ει' 
\ 
[Ei" 

l-ß'2 

1 
[Hi 2 

E 

ω° 

ω° 

ω° 

ω° 

ω° 

c5 

ω° 

ω1 

ω"1 

ω2 

ω"2 

C52 

ω° 

ω2 

ω"2 

ω4 

ω"4 

C6
3 

ω° 

α>3 

αΓ3 

ω6 

ω~6 

Cs* 

ω° 

ω* 

ω"4 

ω8 

ω~8 

α In C , ω = e2«'/3 and C3
3 = E. In C4, ω = e2"'4 and C4

4 = # . In C6, ω = e2** and 
C5

5 = # . In C6, ω = e2'1"/6 and C6
6 = J57. 
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The characters are given as functions of a variable ω. It is seen that the 
tables have a simple pattern. Thus, the group operators correspond to 
rotations by multiples of 1/n in each Cn group table. The first operator in 
each case then is a zero-degree rotation (i.e., the E operator) corresponding 
to Cn°. The next operator is Cn1, followed by Cn

2, Cn
3, etc., until all possible 

rotations are considered. In cases where Cn to some power is more simply 
expressed, such as Ce2 = Cz in the C6 table, this is done. The symmetric 
representation is just a row vector of ones but to emphasize the pattern, 
in each table this is given as [ω° ω° ω° ω°· · -co0]. 

Next we note that the variable ω is defined as a function of an angle Θ 
and that 0 is just the angle of rotation corresponding to the group operator 
C„. Note 

ω = eie 3.5-40 
where 

0 = (2ττ/η) 3.5-41a 
and thus 

ω = e2™'/n 3.5-41b 
However, we can express ω as a linear combination of real and imaginary 
parts as in the following: 

ω = cos Θ + i sin 0 3.5-42a 

ω = cos(27r/n) + isin(27r/w) 3.5-42b 

I t can be seen that doubling the angle of rotation 0 corresponds to squaring 
ω; i.e., co2 = em. Tripling the angle 0 likewise corresponds to cubing ω. In 
general, raising ω to any power (e.g., r) is equivalent to multiplying the 
angle by that power (i.e., giving an angle r0). Thus, 

cor = cos(r0) + isin(r0) == cos(27rr/n) + isin(2irr/n) 3.5-43 

Two further generalities are of use. First it can be seen from Eq. 3.5-43 
that 

ωη = 1 3.5-44 
(i.e., here r = n). This results since the cosine term in Eq. 3.5-43 becomes 
unity while the sine term becomes zero. The other generality is that 

ω1 + ω2 + ω3 + ω4 + · · · + ωη = 0 3.5-45 

This is seen by setting S equal to this sum as in 3.5-46 and subtracting the 
quantity œS as in 3.5-47 to give 3.5-48: 

S = ω1 + ω2 + ω3 + ω4 + · - · + ωη 3.5-46 

ω £ = ω2 + ω3 + ω4 + · · · + ωη+ι 3.5-47 

5 ( 1 - ω) = ω1 - ωη+ι = ω(1 - ωη) 3.5-48 
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From Eq. 3.5-44, we know that ωη = 1, and thus the right-hand side of 
3.5-48 vanishes. Since we know that ω has a variety of values and is not 
generally unity, the left-hand side of 3.5-48 can be zero only if S = 0, thus 
proving 3.5-45. 

In inspecting the group tables we find that all of these begin with a 
symmetric (i.e., A) representation followed by a series of degenerate repre-
sentations. The even-dimensioned groups also have a B; the odd groups 
do not. Also, we see that the degenerate representations are given explicitly 
for both members of each degenerate pair. Further examination shows that 
in each representation the characters of the successive operators differ by 
an increment in the exponent. Beyond this, in proceeding from the sym-
metric representation through the first members of each degenerate repre-
sentation and onward to the B representation, where it exists, this incre-
ment in the powers increases by one as each new representation is en-
countered. Thus the A representation characters are functions of an angle 
which does not increase at all in proceeding from operator to operator; the 
Ei representation characters are functions of an angle which increases by 
2π/η in going from one character to the next of the representation; the 
Eir increment is 4π/η; the E% increment is 6ττ/η; and so on. 

For complex representations the characters of the second member of each 
degenerate pair are the complex conjugate of the corresponding characters 
of the first member; that is, each pair of characters from the same repre-
sentation and the same rotation gives unity when multiplied together. 

Also, for complex groups we need a more general definition of ortho-
normality as can be seen from multiplication of the two vector members of 
a degenerate pair. This does not give zero but rather gives h, the order of 
the group. Similarly, the result of taking the sums of squares of t^e charac-
ters of a single member of a degenerate pair is zero rather than h. 

Thus the test for normalization is taking the sum of the products of the 
characters multiplied by their complex conjugates which should equal the 
order of the group. And, the test for orthogonality is that the products of 
the characters of one member multiplied by the complex conjugates of the 
corresponding characters of the other member should sî rn to give zero. 
These two tests are given in Eqs. 3.5-49 and 3.5-50. 

(l/h) Σ Xrß*X*Ä = 0 (summation over all group operators, R) 3.5-49 
R 

(l/h) Σ Χ Λ Α = 1 3.5-50 
R 

One example of the use of such complex group tables is the cyclopropenyl 
problem (note Fig. 3.5-H). If we apply Rule I to the reducible representa-
tion derived in Fig. 3.5-H, we find that one of each of the three irreducible 
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X2 

rred = [ 3 0 0] 

FIG. 3.5-H. The cyclopropenyl basis set and its reducible representation. 

representations that follows is present: 

α Λ = ( l A ) r r e d * r \ i = i [ 3 0 0 ] = 1 3.5-51 

aE> = (1/A)r„d*f^ = | [ 3 0 0] = 1 3.5-52 

aE„ = {\IK)T^YE" = | [3 0 0] = 1 3.5-53 

Now we proceed to apply Rule II to obtain the group orbitals. For con-
venience we select the first row of the transformed basis orbitals in Fig. 
3.5-H, and we use the characters in the C3 group table as LCAO-MOs. 
coefficients. This gives us three orbitals of different symmetry, and these 
are therefore eigenfunctions directly. They are 

0i = ω°χι + ω°χ2 + ω°χ3 

02 = ω°χι + ωΧχ2 + ω2χ3 

03 = ω°χι + ω~"1χ2 + ω~2χ3 

3.5-54a 

3.5-54b 

3.5-54c 

These are still unnormalized, as can be shown, and need a factor of 1/V3. 
Although ω° is unity it is retained to show the equivalence of all three 
cyclopropenyl centers. Each AO is weighted similarly by a function of an 
angle (i.e., some power of ω), and the angle changes by a constant incre-
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ment in proceeding from AO to AO. Thus the successive coefficients in one 
MO differ only by a phase factor. The phase factor has opposite sign for 
degenerate MOs and these "rotate" in opposite directions. Also, we can 
multiply all MOs by any power of ω and still have an acceptable set of MOs. 

In using complex wavefunctions such as 3.5-54a,b,c to obtain electron 
densities, bond orders, MO energies, and so on, we must use a more general 
form of the appropriate integrals in which one of the two wavefunctions is 
written as the complex conjugate. With real MOs this assumes the simple 
form we have already been using. For example, to get energy, we proceed 
as follows (MO 2 is used as an example) : 

E2 = [ 02*3C02 dr 

= * / (Xi + ω-^2 + ω-2χ3)3€(χ ι + ωΧ2 + ω2χ3) dr 

= | [ 3 α + 3(ω-' + ω1)/?] = a + 2 cos(27r/3)/3 

= a - β i.e., X = + 1 3.5-55 

In the case of electron densities and bond orders, one can obtain meaningful 
results from one member of a degenerate pair, in contrast to the situation 
with the real form of the MOs where one needs to take a degenerate pair 
of MOs together in order to obtain results which are not dependent on what 
linear combination is selected for use. 

One other point needs to be made about the complex wavefunctions in 
Eqs. 3.5-54b and 3.5-54c. This point is illustrated by taking linear combina-
tions of the degenerate MOs 02 and 03; here we will take the sum and dif-
ference. We obtain 

ψ+ = (02 + θζ) = [2ω°χι + (ω1 + ω-^χΐ + (co2 + ω~2)χ3] , 3.5-56a 

φ_ = (02 _ θζ) = [ (ω 1 - ω~1)χ2 + (ω2 - ω~2)χ3] 3.5-56b 

But reference to Eq. 3.5-43 allows us to express ω1, ω2, ω"1, and ω~2 explicitly. 
We find that (ω1 + or1) = 2 COS(2TT/3) = - 1 . Similarly, (ω2 + ω~2) = - 1 . 
This allows us to express 3.5-56 as 

ψ+ = 2χι - X2 - X3 3.5-57a 

which is still unnormalized but is seen to be the usual real form of one 
of the two degenerate MOs of cyclopropenyl. In similar fashion we obtain 
( ω 1 - ^ - 1 ) =2isin(2ir /3) and (ω2 - ω~2) = -2 is in(2i r /3) . Thus the 
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two coefficients of χι and χζ have equal magnitudes but opposite signs. 
Since the MOs are not yet normalized we might just as well use + 1 and 
— 1 as coefficients and write the resulting MO as 

ψ_ = X2 — X3 3.5-57b 

which is seen to be the usual form for the real, unnormalized second 
degenerate member for cyclopropenyl. 

In general, one can convert the complex MOs into real forms by just 
adding and subtracting the degenerate pairs in this way followed by 
normalization. 

3.6 Complex Characters in Deriving the Hiickel and Möbius 
Solutions 

Previously we introduced the Hiickel and Möbius formulas without 
proof. However, now that we have considered complex characters it is of 
interest to reconsider the problem. 

We begin with the matrix formulation of the eigenvalue problem as 

He = Xc or [H - X]c = 0 3.6-la,b 

[X - H]c = 0 3.6-lc 

The form in 3.6-lc is identical to that which we have formerly used, with a 
determinant of X's and zeros, in dealing with all types of delocalized 
systems. We now rewrite this explicitly in Eq. 3.6-2 with a trial vector 
for c. The plus sign for the corner elements is used for Hiickel systems and 
the minus sign for Möbius ones. For simplicity a 5 X 5 secular matrix is 
used but the result can be thought of generally. 

X 

1 

0 

0 

± 1 

1 

X 

1 

0 

0 

0 

1 

X 

1 

0 

0 

0 

1 

X 

1 

±1~] 

0 

0 

1 

x J 

IV 

1,1 

„2 

„3 

L"4. 
The vector resulting on performing the multiplication shown in Eq. 3.6-2 
is zero, and thus each element must be zero. This vector is given in the 
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following equation: 

vOX + v1 ±p* 

v° + vlX + v2 

V1 + V2X + Ϊ/3 

V2 + VZX + V* 

±l>° + V* + V*X 

'(X + vl + v~l)v^' 

(X + v' + v-^v1 

(X + vl + v~l)v2 

(X + v1 + v~l)v* 

{X + vl + v~l)v\ 

= 0 3.6-3 

In setting up Eq. 3.6-2 we have made use of the implicit assumption that 
the molecule will conform to a Cn type of group and that we can therefore 
use a Cn type of representation for the c vector. Here, if v is taken as some 
power of ω, it can be seen that the c vector is indeed a generalized Cn 

irreducible representation. We keep the exact form of v undefined for the 
time being except that, in simplifying the vector obtained (note Eq. 3.6-3), 
we do assume that 

= ±1 3.6-4 

where the plus sign is used for Hückel systems and the minus sign for 
Möbius systems. This has allowed us to deal with the ±i>4 and ±v° terms 
in Eq. 3.6-3. 

Looking at the resulting vector in this equation, we recognize that the 
v°, v1, v2, Ï>3, and vA terms are nonzero and thus the vector will vanish only if 

X = _ v - v-i 3.6-5 

for both Hückel and Möbius systems. 
For Hückel systems, where vb = + 1 , a solution is obtained if we take 

v = βχρ[(Λ/^)2ττ] 3.6-6 

where n = 5 presently for the five-orbital system. That this is a solution 
to Eq. 3.6-4 taken with a plus sign is readily seen by considering the trigo-
nometric form (note eie = cos Θ + i sin Θ) of a complex variable. Also, 
using this form, we can rewrite Eq. 3.6-5 as 

X = -exp[(zV^)27r] - exp[-(i7b/tt)27r] = - 2 cos(2/c7r/n) 3.6-7 

which is the Hückel formula. Here k = 0, 1, 2, . . . , n — 1 and is the MO 
number. 

In the case of the Möbius system, where vh must equal — 1, we can select 
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v as in Eq. 3.6-8a; however, a more general solution is seen in Eq. 3.6-8b: 

v = exp(tV/n) 3.6-8a 

v = exp[(2fc + l ) iV/n] 3.6-8b 

Using the form in 3.6-8b, we can evaluate the energy expression in Eq. 
3.6-5 for Möbius systems. Thus 

X = -exp[(2fc + 1 W n ] - e x p [ - (2k + l ) i x / n ] = - 2 cos(2fc + l)r/n 

3.6-9 

which is the general formula for Möbius systems. Again k is the MO number. 
For both Hückel and Möbius systems there is another result from our 

efforts above. Thus, having obtained a general expression for these eigen-
values, we know that the vector [V vl v2 νζ· · ·*>*] used in Eq. 3.6-2 is the 
eigenvector c and its elements thus give the LCAO-MO coefficients. In 
the Hückel case, these come from the Cn group tables, and in the Möbius 
case a similar set of characters applies except with a different definition of v. 
We can readily convince ourselves that the complex conjugate vector 
[v° v~~l v~~2 v~z - · · vn 2 applies to the second degenerate member in cases of 
degenerate pairs. Also we could use sums and differences of the two vectors. 
Thus the LCAO-MO coefficients in the case of the degenerate molecular 
orbitale are: 

Crk+ = [ l / (2n) 1 / 2 ] (^ + v~r) = (2/n)1/2cos(2/cr7r/n) 3.6-10a 

Crk- = [ l / (2n) 1 / 2 ] (^ - v-r) = (2/n)1/2sin(2/cr7r/n) 3.6-10b 

In the case of 3.6-10b, we have dropped a factor of i which was present, 
since it is a constant multiplier. The trigonometric form for the LCAO-MO 
coefficients is convenient and common for Hückel cyclic polyenes. 

For the nondegenerate Hückel bonding MO we have more simply just 

cr = 1/yfn, 3.6-lOc 

In the case of Möbius systems our treatment differs only in the value of 
v employed. Here we obtain 

Crk+ = (1/V2) (vr + v~r) = (2/n)1'2 cos(2/c + l ) rx /n 3.6-lla 

CriT = (1/V2)(^ - ir*) = (2/n)1/2sin(2/b + l)n/n 3.6-llb 

for the degenerate pairs of MOs. If there is a nondegenerate antibonding 
MO, its LCAO-MO coefficients are given by 

cr = l / \ fo( l ) - r 3.6-12 

Thus, our use of the c vector chosen initially has been justified. In the 
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Hückel case the Cn group table has proved exactly applicable with v = ω*"1. 
For the Möbius case, a Cn group table with special requirements is seen to 
apply. Here ω(*"~1)η = v

n = —1, where k again is the MO number. 

3.7 Use of Moiety Eigenfunctions in Construction of Molecular 
Orbitals 

Hitherto we have been restricted to symmetry in the simplification of 
secular determinants. In using symmetry, we assume we know^ the relative 
weighting of basis orbitals which are equivalently located in a molecule. 
However, there are other instances where basis orbitals can be known in 
advance of calculation to have certain relative weightings. Thus, a group 
of three orbitals in a linear array is an allyl-like moiety and the final MOs 
obtaiued will have allyl-like relative weightings of these basis orbitals as 
long as the only other moieties in the molecule are also allyl-like and interact 
in a symmetrical fashion. 

Thus, we might consider the layered compound shown in Fig. 3.7-A. 
Such compounds have been synthesized and have their rings held together 
with méthylène bridges; however, we will ignore the méthylène bridges and 
consider only the p-orbital system. We may deal with this molecule as a 
sixfold set of linear allyl-like arrays, each consisting of three colinear p 
orbitals. For example, p orbitals la, 16, and lc make up one such array. 

FIG. 3.7-A. Orbitals for triple-layered compound. 

2c Zc 
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TABLE 3.7-1 
IRREDUCIBLE REPRESEN-
TATIONS FOR ALLTL-LIKE 

MOIETIES" 

Γι 

r2 
Γ8 

Äl 

V2 
1 
1 

it2 

0 
V2 

-V2 

Xt3 

' - V S 
1 
1 

a Normalized to a sum of 
squares of 4. 

Alternatively, we may consider the molecule made up of benzene-like 
MOs for each of the three layers and then look at the problem of admixing 
of these MOs. 

If we take the first approach, we note that each of the six colinear allyl-
like arrays has three MOs. The weighting of allyl MO coefficients will be 
those in Table 3.7-1. It is now of interest to mix the three allyl-like MOs 
derived from atoms la, 16, and lc with the other five sets making up the 
triple-layered compound. I t is quickly found that allyl orbitale of different 
representations do not admix. Thus, for example, the lowest energy MO 
of moiety 1 (i.e., corresponding to representation Γ2) does not admix with 
the nonbonding MO of moiety 2 (here corresponding to representation ΓΊ). 
Thus, all we need to do is to admix the six bonding MOs of the six allyl-like 
colinear arrays as if we were doing the benzene problem, to mix the six 
nonbonding arrays in the same way, and finally to mix the six antibonding 
arrays. In these mixing processes one can use either the sixfold symmetry 
of benzene or instead the two planes of symmetry (i.e., as in C2v)· Thus 
each of the sixth-order determinants will break up into two 2 X 2's and 
two 1 X Vs. Below we give the original sixth-order determinant derived 
from the bonding allyl MOs and leave it to the reader to complete the 
treatment. 

01 02 03 04 05 06 
0ι \4Χ + 4V2e 4 0 0 0 4 

02 

04 

06 

4 4X + 4V2€ 4 0 0 0 

0 4 4Z + 4V2€ 4 0 0 

0 0 4 4X + 4V2e 4 0 

0 0 0 4 4X + 4V26 4 

4 0 0 0 4 4X + 4V2e 

= 0 
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The diagonal elements of the 6 X 6 result from such interactions as 
(χΐα + V2xi& + xic) with itself (i.e., φι with φι) to afford 4 squared terms 
and 4V2 cross-product terms. In this case the cross-product terms are of 
the type xuXib and thus each contributes € which depends on the amount of 
coaxial p-p overlap. The off-diagonal elements result from interactions of 
the type (χια + V2xi& + xic) with (χ2α + V2x2& + χ2β), and it is seen that 
there are four cross-product contributions of the normal parallel p-orbital 
overlap type. 

The second approach involves taking three MOs at a time, one from each 
benzene moiety and all three of the same symmetry in C2v. These three 
mix only with one another but not with the other benzene MOs of different 
symmetry. I t can be seen then that each of the six benzene MOs will be 
split in an "allyl-like fashion" by —V2e, 0, and +V2e. With either approach 
the 18 resulting MOs become - 2 - V^e, - 2 , --2 + V2e, - 1 - V2*, - 1 , 
- 1 +V2é, 1 -V2e , + 1 , + 1 +V2e, + 2 - V2e, + 2 , + 2 + V2e. The under-
lined MOs are degenerate pairs. 

One final point of interest is that if we populate the bonding MOs, that 
is, with the 18 electrons of the three benzene rings, we obtain a π energy 
which is that of isolated benzene rings and the total π energy does not 
contain any e terms, meaning that the π energy is independent of distance 
between rings. Only if the rings are compressed to the point where e ex-
ceeds l / \ 5 is stabilization derived. Thus, like barrelene, we have a mole-
cule whose MOs are not those of the isolated component parts, and yet the 
electrons are delocalized. Howrever, there is no accompanying delocaliza-
tion energy. 

This situation is common to like moieties approaching one another sym-
metrically. Hence, the method is very general and can be applied to a va-
riety of systems. Thus, the 1,4-dehydrobenzene problem on page 95 could 
be done more simply by taking plus and minus combinations of the corre-
sponding pairs of the three allyl molecular orbitals. Alternatively, but less 
simply, one could solve the problem by taking the ethylenic MOs in "allyl-
like" linear combinations. First one would use the bonding ethylene MOs 
and then the antibonding ethylene MOs. Among the problems that follow 
is included the solution of the barrelene problem by using three ethylenic 
MO systems, which is still another use of the method. 

Problems 

1. Using symmetry do all problems at the end of Chapter 1 where sym-
metry allows direct formulation of the secular determinant. 
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2. Devise a way to use the circle device to solve the barrelene problem for 
all six MO energies. Be prepared to justify the application of the monocyclic 
device to this six-orbital, non-monocyclic problem. 
3. Use symmetry to do the naphthalene problem. 
4. Use symmetry to do the 7-norbornadienyl problem, and decide whether 

the cation, radical, or carbanion is the stable species. Take 2-7 overlap to 
be € and take the other transannular overlap for simplicity to be e as well. 
Neglect 2-5 and 3-6 overlap. 
5. Redo Problem 4 without carbon-7 having a p orbital (i.e., the nor-
bornadiene problem). 

(a) Which MOs are common to Problem 4 and why? 
(b) Is the delocalization energy a function of e? 

6. Get the MO energies for barrelene. Use a basis set with plus lobes 
aiming clockwise and the bridges labeled 1,2; 3,4; and 5,6. Use 1 for the 
intrabridge overlap and e for interbridge overlap if plus-plus. 
7. If you premultiply the ethylene secular determinant by the row vector 
[1 —1] and postmultiply by the column vector [1 —1], what operation 
have you performed? What value of X does this give? Try premultiplying 
by the matrix 

Π - I l 

[1 lj 
and postmultiplying by the matrix 

Γ 1 1] 

[-1 lj 
What does this do, which should be familiar. These are called similarity 
transformations. 
8. Having used one plane of symmetry for solution of a trigonal problem 
as cyclopropenyl, why can you not proceed to further simplify using a 
second plane of symmetry (i.e., as a plane going through X2 after using one 
going through xO? 
9. Get one solution (i.e., one eigenvalue) for a generalized secular deter-
minant for a cyclic polygon (e.g., benzene) by addition of the elements of 
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rows 2 through n (here 6) to row 1. Note this is an allowed operation. How 
does this help? What MO energy is obtained? 
10. Show that MOs 1 and 2 of allyl are truly orthogonal. Use the defini-
tion of orthogonality as a starting point. That is, use the overlap integral 
between MOs ψι and ψ2 and the knowledge of the LCAO-MO coefficients 
for allyl. 
11. Use the integrated form of the Schrödinger equation and the LCAO 
expression for MO 1 of allyl to obtain the energy of MO 1. 
12. Premultiply the secular determinant for allyl by 

Γ 1 0 1~| 

0 1 0 

L-l 0 l j 
and postmultiply by 

[1 0 - I l 

0 1 0 . 

[_1 0 lj 
The allyl determinant should have the AOs in the order χι, χ2, χ$. What 
operation have you performed which is familiar? Mathematically, you 
have carried out a similarity transformation except for a scalar "fudge 
factor." 
13. Using two planes of symmetry, set up the separate group orbitale and 
secular determinants for the naphthalene problem. Use a numbering system 
beginning with 1 at the junction position. Solve for the eigenvalues and 
those eigenfunctions which do not require the method of cofactors. Which 
MOs have you seen before in other molecules? 
14. Use symmetry to solve the following problems. Get the eigenvalues 
for these molecules: 

•ce- M ;όσ 
3 2 3 4 5 

(a) (b) (c) 

(d) In the problem above, one might have started with MOs for known 
moieties rather than with atomic orbitale as a basis set. For example, in 
(b) you might begin with the MOs for the ethylenic moieties. Try this 
and see whether or not you can predict in advance which MOs from the 
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left ring will interact with which MOs from the right ring? If so, in what 
general situation will there be interaction? 
15. Use the simplified method of setting up determinants directly to solve 
the barrelene problem for any one of the symmetry types. Use two per-
pendicular planes. Then list the other symmetry orbitale in groups; how-
ever, these need not be solved explicitly. 
16. What happens when the p orbital of 7-norbornadienyl is brought in 
from infinity to the diene moiety? That is, which MOs of norbornadiene 
itself interact with the p orbital? What are the final MOs? 
17. Use three planes of symmetry to solve the paracyclophane problem. 
Ignore the (CH2)n bridges and assume the planarity of the rings. Use an 
overlap of e = S/S0. Number the two rings la, 2a, 3a , . . . , 6a and 16, 2b,..., 
66. Take one plane through atom la. Use the D2h group table and set up 
the subdeterminants directly. Is there appreciable delocalization energy 
in this molecule beyond that of the two benzene rings? How much? 
18. (a) Given a reducible vector Vr = 2NAl + Vßl + Vß2, multiply by 
the irreducible vector V^i and divide by h, the order of the vector. What is 
the answer and its significance? 

(b) Generalize this into a proof of Rule I. [Hint: Start with Vr = 
aiVi + 02V2 + a3V3 + ■ · · · + anVn.] 
19. (a) Take aliène as in the accompanying figure, where there is a 
modified Newman projection diagram, χι is at atom 1, χι and χ3 at atom 2, 
and X4 at atom 3. X2 and χ3 are kept 45° from horizontal and are not turned. 
Now consider the 90° twisting of the terminal méthylènes, increasing 
012 = 034 the angle between the first two AOs and between the last two to 
90° each. Use the relationship (ßu/ßo) = cos0i2 as giving the form of 
resonance integrals between two twisted orbitale. Set up two 2 X 2 deter-
minants of symmetry orbitals using the Ci axis. Now solve for energy as a 
function of angle of twist (i.e., 0 = 0 —► 90°). Use this to draw a correlation 



122 3. Molecular Symmetry for Simplification of Secular Determinants 

diagram. Is the noncrossing rule violated? How do you explain the result? 
[Note: This requires some thinking!] 

(b) What result would you get if you picked the central orbitals as 
horizontal and vertical instead of diagonal? 

(c) Consider the molecule as set up in 19a at Θ = 45° and the molecule 
as set up in 196 at initial geometry. Which of the systems is Hückel and which 
is Möbius? What then is predicted about the MO array at these geometries? 
Is this what you actually found? 
20. Use the pictured unit as a basis. This consists of two p orbitals aimed 

a 

b 

at one another colinearly. Obtain bonding and antibonding molecular 
orbitals for the system. Use these resulting molecular orbitals (six bonding 
and six antibonding such bases are needed) to solve the paracyclophane 
problem in a fashion reminiscent of the benzene problem. 
21. In a similar way, do the barrelene problems by using the MOs of 
twist-dihydrotrimethylenemethane as bases. Why do you not have to mix 

all six MOs together to solve the problem (i.e., all three from the front face 
of barrelene and all three from the rear face) ? 
22. Do the paracyclophane problem using symmetry to simplify. To 
what extent is there stabilization in bringing two aromatic rings together 
in this fashion? 
23. What happens as two cyclobutadiene molecules approach one another 
face to face with p orbitals approaching coaxially? Take each intermolecular 
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overlap as € for each pair of atomic orbitals. Do the problem by using 
pairs of final cyclobutadiene MOs. Give the final MO energies as a function 
of € but do not bother to get final eigenfunctions. Do justify at the end your 
mixing only certain MOs and show your work explicitly, indicating which 
MOs are mixed and what the secular determinant elements are. 

v3tf 

24. Given the representation [4 0 —2 —2] in the C2 group, decide how 
many times the B2 representation occurs in this. Show how you obtained 
your answer. 
25. Do the 1,3-dehydrocyclobutadiene problem using two planes of sym-
metry and setting up the secular determinants of each symmetry type 
separately. Do your work explicitly to obtain the eigenvalues. Label each 

/ σ ϊ 3 

Ή' 
/ \ <T24 

0 
Id. LI 

determinant with its symmetry and with the basis orbitals used. Give the 
final eigenvalues, and only those eigenfunctions which can be obtained 
without the use of cofactors. (Note overlap 1-3 and assume this is the 
normal vicinal overlap.) 
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Chapter 4 

EXTENSIONS, MODIFICATIONS, AND APPLICATIONS OF 

THE HÜCKEL APPROACH 

This chapter deals with calculations for molecules with heteroatoms, the 
means of including overlap into calculations, methods of constructing and 
using hybrid orbitale and orbitals with unusual orientation, the matrix 
formulation of the eigenvalue problem, special properties and uses of non-
bonding molecular orbital coefficients, and construction of correlation 
diagrams. 

4.1 Calculations for Molecules Containing Heteroatoms 

As has been shown by Pauling and Wheland,1 the secular determinant for 
a molecule containing a heteroatom (e.g., oxygen or nitrogen) may be 
written in the usual fashion except that the diagonal element corresponding 
to the heteroorbital column and row becomes (X + δ) rather than the 
usual X. Here δ is a measure of the electronegativity of the heteroatomic 
orbital. The more positive values correspond to a more electronegative 
orbital, and conversely. That δ represents an increment in the Coulomb 
integrals, which occur along the diagonal, will be shown below. 

A wide assortment of different values of δ have been used for each ele-
ment; Table 4.1-1 gives a compilation of values recommended by Streit-
wieser2 for oxygen and nitrogen. 

In the same way that having a heteroatom present requires adjustment 
of the Coulomb integral along the diagonal, one might anticipate that the 
off-diagonal elements, which represent the resonance integrals, might also 
require adjustment. Thus, for a heteroatom having a shorter covalent 
radius, overlap with adjacent carbon p orbitals may be increased with a 

125 
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parallel increase in the absolute value of the resonance integral occurring 
in the off-diagonal element corresponding to interaction of the two atomic 
orbitale. Where such overlap is increased, the off-diagonal element e is 
taken as greater than unity; where overlap with the heteroorbital is de-
creased, a value of e of less than unity is utilized. Table 4.1-1 includes typical 
values for oxygen and nitrogen. 

TABLE 4.1-1 

Ether oxygen 
Ketone oxygen 
Amine nitrogen 
Imine nitrogen 

2.0 
1.0 
1.5 
0.5 

0.8 
1.0 
0.8 
1.0 

The detailed rationale for the use of these new diagonal and off-diagonal 
elements is seen by considering a secular determinant such as that given 
in Eq. 2.2-12—however, now for a molecule having carbon atom 1 replaced 
by some heteroatom Z. The Coulomb integral for this atom now becomes 

oiz = I Xz^Xz dv 

rather than the usual value for carbon 

« = J XĉCXc dv. 

The resonance integral linking the heteroatomic to the adjacent carbon 
atom(s) is now 

ßzc 

rather than the usual 

0 = 

= / XzWxcdv 

= J Xcr^Xc. dv. 

Secular determinant 2.2-12 then becomes 

Xi 

Xi 

X2 

X3 

(a. ~ E) 

ßcz 

0 

Xi X% 

ßcz 0 

(a-E) ß 

ß (a-E) 

= 0 4.1-1 
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If we make the substitution (az — E) = (a2 — a) + (a — E) and then 
divide each column through by the constant factor ß, the top left diagonal 
element becomes (az — ά)/β + (a — Ε)/β, or (δ + X) if we remember the 
definition of X given on page 52 and additionally define δ = (az — α)/β. 
The remaining diagonal elements become X as in the absence of further 
heteroatoms. Also we define e = ßze/ß. Secular equation 4.1-1 then becomes 

Xl X2 X3 

Χι\Χ + δ e 0 

X2 

X3 0 

X 1 

1 X 

= 0 4.1-2 

It can be seen from the definition of 5 that this quantity is the incremental 
value of the heteroatom Coulomb integral, in units of β, over that of an 
ordinary carbon p orbital. Since β is a negative unit, the lower the energy 
and the more negative the heteroatomic orbital energy, the more positive 
will be the value of δ. 

The secular determinant in 4.1-2 is, of course, a special case. In the general 
situation there may be several heteroatoms. In these cases, each diagonal 
element corresponding to a heteroatomic orbital will have its own value of 
δ inserted, and each off-diagonal element will have a value of e proportional 
to the resonance integral between the atomic orbitals heading the par-
ticular row and column. 

4.2 Inclusion of Overlap 

Hitherto in simplification of secular determinants (e.g., p. 51) we have 
been setting all overlap integrals Sr8 = 0. This "neglect of overlap" made 
in the Hückel approximation was only partially justified by indicating 
that the overlap integrals between adjacent π-bonded carbon orbitals are 
small, ranging from 0.25 to 0.29 or so. However, this neglect is not entirely 
justified.3 

If we are to include overlap, the simplest situation is encountered if it is 
assumed that all overlap integrals are equal. However, almost as manage-
able is the assumption4 that the resonance integrals and the overlap in-
tegrals are proportional. 

er8 = Hr8/ß = Sr8/S and Hr8 - ESr8 = er8(ß - ES) 4.2-1 

where e is a proportionality constant, ß is the exchange integral for a 
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standard bond length, and S is the corresponding standard overlap integral. 
The standard may be taken as that of benzene. 

We may now use the definition of the off-diagonal elements Hr8 — ESr8, 
as given in Eq. 4.2-1, to substitute in a secular determinant such as 2.2-9. 
For the diagonal elements (Hrr — ESrr) we substitute (a — E), as was 
done on page 51 in the case of neglect of overlap. These substitutions 
afford the secular determinant in 4.2-2* where all nonzero off-diagonal 
elements contain the common factor (0 — ES). Each column may be 
divided by this common factor without changing the equality to zero of 
the determinant. This affords a secular determinant of form similar to that 
of 2.2-13 where overlap was neglected. The new secular determinant is 
given in Eq. 4.2-3. 

Xi 

Xi I (a-E) 

X2 

X2 X3 

ei,(0 - ES) €13(0 - ES) 

€2ι(0 - ES) (a - E) €23(0 - ES) 

Χ3 I €3l(0 - ES) €32(0 - ES) (a - E) 

= 0 4.2-2 

Xi 

Xi 

X2 

X3 

(a-E)/(ß-ES) 
X2 

€12 

€21 

€31 

(a-E)/(ß- ES) 

X3 

€13 

€23 

€32 (a- E)/(ß-ES) 

= 0 

4.2-3 

If we now let X = (a — E) / (ß — ES) and substitute for the diagonal 
elements, we obtain a secular determinant of the same form as when overlap 
is neglected. Where the overlap and resonance integrals are taken equal to 
the standard S and 0, respectively, then the off-diagonal elements become 
the usual Ts: 

X 

€21 

€12 €13 

X €23 

€31 €32 

or 

X 1 1 

1 X 1 

1 X 

4.2-4 

(for the special 
case of 

cyclopropenyl) 
* It is seen that if atoms r and s do not overlap at all, ers becomes zero. 
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While solution of the secular equations with retention of overlap thus 
leads to secular determinants of the usual form, the significance of the 
eigenvalues of X obtained no longer is the same as in the case of neglect 
of overlap as can be seen from the new definition of X above. Solving this 
definition of X for E, we find we may rearrange* the result to give a more 
meaningful form: 

_, a-Xß (a - aXS) + (aXS - Χβ) , X ,„ _. 
E = T^xs = Ï^Ys β + n r rä I '- β5Ι 

or 

where 

and 

4.2-5 

E = a + X'\y\ 4.2-6 

X' = — ^ τ - ζ 4.2-7 
1 - XS 

y = (β - aS) 4.2-8 

We note that Eq. 4.2-6 giving the energy when overlap is included has 
the same form as 

E = a + Χ\β\ 4.2-9 
(2.2-14b) 

which was derived on page 52 with neglect of overlap and which may be 
seen to result from 4.2-5 when S is set equal to zero.f In Eq. 4.2-6, with 
inclusion of overlap, we find that the energy is still expressed relative to a 
but the units of energy are now \β — aS\ (i.e., |γ | ) . The eigenvalues of X 
as derived from the Hückel secular determinant are not linear with energy 
(E) and are not directly useful. However, by use of 4.2-7 we can use our 
Hückel eigenvalues (i.e., the X's) to give us the X"s which are directly 
linear with energy (Eq. 4.2-6). 

Since the overlap integral between two adjacent p orbitals of a π system 
is relatively constant (M).25), we may investigate how our new energy X' 

* We note that both β and (β — a S) are negative numbers. Since it is convenient 
to work with positive units of energy, we take the absolute value of each to give energy 
units having the values \β\ = —β and \β — aS\ = — (β — aS). 

f There is an interesting point here. When we make the approximation of setting 
S — 0 in Eq. 4.2-5, we cannot expect that the original value of β used will still give a 
satisfactory approximation to the energy E. Thus β of Eq. 4.2-5 and the β of Eq. 4.2-9 
represent different quantities; the latter is no more than an empirical parameter assigned 
a value to correct for the approximations leading to 4.2-9. The former is a theoretical 
quantity, the resonance integral. 
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FIG. 4.2-A. Plots of X' vs. X (solid 
curve) and ΔΧ' vs. AX (dashed curve). 

- 3 - 2 - 1 0 1 2 3 
X (ΔΧ) 

varies with X. In addition and more pertinent is the way the calculated 
delocalization energy per electron compares in the two approaches. Plots 
of X' versus X and AX' versus AX are shown in Fig. 4.2-A. Here ΔΧ = 
(X + 1) and AX' = (X + 0.8) are the delocalization energies; the values 
1 and 0.8 derive from our subtracting the values of X and X', respectively, 
for the bonding MO of ethylene as is necessary to obtain the DEs. We note 
that in the region of interest, namely, from X equal to ~ — 3 to about zero, 
both plots are only roughly linear. The slope of these plots determines 
what ratio of y to ß will successfully give the same π energies or one-electron 
delocalization energy for any given molecular orbital. Clearly, with the 
nonlinear plot, the ratio of y to β optimum for one value of X will not be 
optimum for the other energy levels. However, often single molecular 
orbital energies are of less interest than the total π energy and the delocal-
ization energy. Inspection of Table 4.2-1 shows that for the benzenoid 
compounds there is a good constancy of the 7-to-0 ratio with a value of ~2. 
Accordingly, the commonly used values of β = 18 kcal/mole and y = 36 
kcal/mole not only reproduce the empirical resonance energy of benzene 
(36 kcal/mole) but also assure that calculation with or without overlap 
will give about the same delocalization energies for other benzenoid aro-
matics. For nonbenzenoid compounds, calculation using these values of β 
and y will give only approximately the same results without as with 
overlap. 

There is another consequence of inclusion of overlap; this might be 
termed "overlap destabilization." It can be seen that when overlap is 
included the bonding MOs are compressed toward zero (i.e., being non-
bonding) and the antibonding MOs are expanded. Thus, looking at the 
expression for X' in Eq. 4.2-7, we see that for a negative eigenvalue of X} 

the denominator is greater than unity and X' becomes less negative than 
X. For a positive eigenvalue of X, the denominator becomes less than 
unity and X' becomes more positive than X. The net result is that where 
there is pairing of MOs (i.e., where a bonding and an antibonding pair of 

r* 2 
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TABLE 4-2.1 
DELOCALIZATION ENERGIES WITH AND WITHOUT NEGLECT OF OVERLAP 

FOR SELECTED COMPOUNDS 

Compound 

Butadiene 
Hexatriene 
3-Vinylhexatriene 
Fulvene 
Pentalene 
Heptalene 
Azulene 
Heptafulvene 
Fulvalene 
Styrene 
Stilbene 
1,1-Diphenylethylene 
Triphenylethylene 
Tetraphenylethylene 
Naphthalene 
Benzene 

DE neglecting 
overlap 

0.4721 ß 
0.9879 ß 
1.466 
1.466 
2.456 
3.618 
3.637 
4.005 
2.799 
2.424 
4.878 
3.814 
7.290 
9.719 
3.684 
2.000 

ß 
ß 
ß 
ß 
ß 
ß 
ß 
ß 
ß 
ß 
ß 
ß 
ß 
ß 

DE with 
overlap 

0.1747 
0.3868 
0.5609 
0.6376 
1.087 
1.465 
1.597 
1.496 
1.204 
1.211 
2.445 
2.402 
3.656 
4.879 
1.860 
1.000 

7 

y 

y 

y 

y 

y 

y 

y 

y 

y 

y 

y 

y 

y 

y 

y 

Ratio of 
DES (ß/y) 

2.702 
2.554 
2.578 
2.299 
2.259 
2.471 
2.278 
2.676 
2.315 
2.001 
1.994 
2.004 
1.994 
1.992 
1.981 
2.000 

MOs have opposite and equal values), the antibonding MO is more anti-
bonding than the bonding MO is bonding. If both MOs are doubly occupied, 
there is net destabilization. This contrasts with the situation with neglect 
of overlap, where the stabilization due to two electrons in a bonding MO 
would exactly cancel the destabilization of two electrons in a paired anti-
bonding MO. 

For example, in the dianion formed from addition of two electrons to 
ethylene, neglect of overlap would give us zero delocalization energy whereas 
inclusion of overlap leads to net destabilization. 

This result has been used to explain the reluctance of such systems to 
accept extra electrons. 

4.3 Treatment of Hybrid and Unusually Oriented Orbitals 

Hitherto we have utilized as a basis set of atomic orbitale only 2p orbitale 
oriented parallel-wise. There are a number of molecular systems of interest 
where the basis set includes 2s orbitale, sp hybrid orbitale, or 2p orbitale 
with other than the common parallel orientation. We wish now to deal 
with such situations. 
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4.3a The Form of Hybrid and Unusually Oriented Orbitals 

A particularly useful means of defining the direction of a vector in an 
x, y) z coordinate system is by its "direction cosines." These are the cosines 
a, ßy and 7 of the angles made by the vector with the x, y, and z axes, respec-
tively (cf. Fig. 4.3-A) .* Referring to this figure, we note that the coordinates 
of point P are given by 

x = rot, y = rß, and z = ry 4.3-1 

where r is the distance of point P from the origin. Equations 4.3-1 allow 
us now to rewrite the Slater atomic orbitale (Eq. 1.1-1) in more conven-
ient form, a form useful in writing a general expression for hybrid and 
unusual orbitale. Thus the Slater atomic orbitale become 

X2e = : rerkr 4.3-2 
Λ / S Ï ' 

^5/2 

X2px = - p - are-* 4.3-3 
V7T 

fc5/2 
X2pv = -r ßre"kr 4.3-4 

V7T 

fc5/2 

X2pz = T F yre~kr 4 · 3 " 5 

Now a hybrid orbital will be an admixture of these four atomic orbitale 

φ = € 8 χ β "T* CpxXpx ~T~ CpyXpy \ CpzXpz *χ.ό-Ό 

which on substitution of the Slater orbitale given in 4.3-2 to 4.3-5 becomee 

&5/2
 u Γ c8 = -= rerkr -η= 

\ ί LV3 
φ = — re~kr -f= + acpx + ßcpv + ycpg 4.3-7 

Now we would like to know what aeeortment of conetante (c8} Cpx, cpy, cpz) 
will maximize the orbital in a given direction a, ß, 7. Toward thie end we 
may recognize that the orbital φ ie a function of the direction cosines α, β, 
and 7 and then extremize φ with respect to these variablee. Since 7 may be 
expreeeed in terme of a and ßy i.e., 7 = (1 — a2 — ß2)112 Eq. 4.3-6 ie 

* We note that the three direction cosines are not mutually independent but are 
related by a2 + /32 + y2 = 1. However, it does require all three to uniquely define the 
direction of vector OP. With only two cosines known, (e.g., a and ß) two vectors sym-
metrically disposed about a plane (here XY) are possible. 
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Plx, y, z) 

^x 

expressed as 

W2
 h Γ c8 

φ = -=■ re~kr -j= 

FIG. 4.3-A 

+ aCpx + ßcpv + Çpt(l — a2 — ß2) 1/2 4.3-8 

Taking the partial derivatives with respect to a and ß, setting these equal 
to zero for an extreme, and designating the values of the cosines giving the 
maximum as ay ß, and γ, we obtain 

Ua\ß \ ί Τβ YCpx ( l - 0 E » - p » H 

Γ*1 = *L re-, \c fe- 1 . 0 

4.3-9 

4.3-10 

Using the relation a2 + 02 + γ2 = 1, we can solve these equations for the 
desired constants: 

Cpx = α(<5ρ,/γ) 4.3-11 

<W = ß(cP«/Y) 4.3-12 

cpi = Y(Cp,/v) 4.3-13 

Thus the coefficients weighting the three different 2p orbitals are propor-
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tional to the direction cosines α, β, and y defining the vector along which 
the orbital is maximized.* If we let the quantity (cpz/y) be represented by 
the symbol Np, we may substitute the coefficients obtained in Eqs. 4.3-11 
through 4.3-13 into 4.3-6 to write the form of a hybrid orbital aimed in the 
(a, ß, y) direction: 

Φ = CsXs + Νρ(αχρχ + βχρΐ/ + yXpz) 4.3-14 

Thus we have here a general prescription for writing a hybrid orbital aimed 
in any given direction. It can be shown that for proper normalization 
Cs2 + Np

2 must equal unity. The s character of the hybrid is determined by 
the relative weightings of c8 and Np. Specifically, if n = c8

2 and m = Np
2

y 

then Eq. 4.3-14 gives an snpm hybrid. 
A summary of the prescription for writing a hybrid orbital is then as 

follows : 

1. Write the orbital of the form given in Eq. 4.3-14 with the direction 
cosines α, β, and y being selected to orient the orbital as desired. 

2. c8 and Np are chosen to give the wanted hybridization. The ratio of 
c8

2 to Np
2 affords the relative s t o p character. For an snpm hybrid, take 

c8 = \fo and Np = \/m. 
3. Normalize the orbital. This is done by dividing the entire orbital by 

(c2 + NP
2yi2. 

In order to better understand the reasons for the choice of c8 and Np it is 
instructive to determine the energy of a hybrid orbital of the form given in 
Eq. 4.3-14. We do this by using the integrated form of the Schrödinger 
equationf 

E = J φΚφ dv = j [β8χ8 + Νρ(αχχ + ßXy + 7Xz)~]WZCsXs 

+ Νρ(αχχ + βχυ + yXz)] dv. 4.3-15 

In the expansion of Eq. 4.3-15 we obtain integrals of the type fxr^Xt dv 
where χτ and xt are two different atomic orbitals of the same atom. These 
integrals are zero. That this is so may be seen by considering two examples. 
First consider the integral /χ8Χχ2 dv. Implicit in the integral sign is the 
instruction to integrate from x = — <x> to + oo, /̂ = — oo t o + o o , and 

* When we substitute γ = + (1 — a2 — (52)1/2 we obtain a maximum. With the alter-
native of 7 being taken negatively we find a minimum for φ. In the latter case cpxy 

Cpy, and cpz have their signs reversed and the orbital obtained is aimed oppositely with 
a negative lobe oriented in the a, (5, γ direction. 

f For simplicity a, β, and y will now be used to represent the orbital orientation and 
Xx, Xv> ana* Xz will t>e utilized for p orbitals. 
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z = — oo to + oo. In this triple integration, there is no reason that one of 
the integrations cannot be split into two parts, an integration from (e.g.) 
2 = — oo to 0 plus an integration from z = 0 to + °° ; it will be seen that 
these two parts are equal in magnitude but opposite in sign and hence 
self-canceling. Thus in the case of /χβΧχ* dv for every point P+ in the 
upper hemisphere (cf. Fig. 4.3-B) there is a point P~ below the xy plane 
where the sign and magnitude of χ8 is the same. But at P~ and P+ χχ and 
hence 3£χζ will have equal magnitudes but opposite signs. This derives 
from p orbitals having equivalent lobes of opposite sign. As a consequence, 
the value of χ*3£χζ at P~ will be equal but opposite in sign to the value at 
P + . The integration from z = — oo to 0 must afford a value equal but 
opposite in sign from the integration from 0 to + oo ; and the total integra-
tion from 2 = — oo to + oo will be zero. With similar reasoning we conclude 
that the integrals 

J XsWXx dv, j XsWxy dv, j χχΖΖχυ dv, j χχ30,χζ dv and j Xy3CXg dv 

are composed of AOs of different symmetry and are zero. 
Returning to Eq. 4.3-15 and expanding, we may now discard cross-

product-type integrals and are left with 

E = c,2 j XsWxs dv + NP
2 a* J χχΚχχdv + β* jXyKxy dv + y* f χ£0,χζ dv 

4.3-16 

The Coulomb integrals may be abbreviated as H88 and Hpp and represent 
the energy of an electron in an isolated s or p orbital. Clearly the three 
Coulomb integrals involving χΧ} χν, and χ2 are equal since they differ only 
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in spatial orientation. Equation 4.3-16 then simplifies as 

E = c2H88 + Np
2£a2 + ß2 + y2lHpp = c2H88 + NP

2HPP 4.3-17 

We see now that the energy of the hybrid orbital has an s component and 
a p contribution and that these are weighted as c8

2 and Np
2. Herein lies the 

justification of our using the ratio of these squares as giving the (snpm) 
hybridization. 

An exactly parallel expansion of the integral f<t>2 dv = 1 leads to the 
normalization requirement that c8

2 + Np
2 = 1. 

Having discussed the basis for the rules given above for writing hybrid 
orbitals aimed at odd angles, we might illustrate use of this prescription. 
As a first example, suppose we wish to set up an sp2 hybrid orbital centered 
at the origin and oriented in the +Z direction. Since the orbital is per-
pendicular to the X and Y axes, a and ß drop out of Eq. 4.3-14 (i.e., 
cos 90° = 0). As a second step we note that the ratio of cs to Np must be 
1:V2. This would give us the unnormalized orbital φ' = χ8 + V2x* where 
c8 and Np, before normalization, are 1 and V2, respectively. The third step 
of normalization requires division by the square root of the sum of squares 
of unnormalized c8 and NP} that is, division by V3. Thus normalized 
c8 = 1/V3 and normalized Np = V2/V3; and the normalized sp2 hybrid 
orbital aimed in the positive z direction is φ = (1/V3)x« + (v^2/V3)%z. If 
one considers the spatial superposition of the two contributing atomic 
orbitals as in Fig. 4.3-C, one can see that the popular conception of an 
sp2 orbital results (cf. Fig. 4.3-D). In the upper hemisphere in Fig. 4.3-C 
the positive lobe of the pz atomic orbital adds to the positive value of the 
s orbital while in the lower hemisphere the negative value of the pz orbital 
cancels the still positive value of the s orbital; the result is a large positive 
upper lobe and a small negative lower lobe. 

Let us try the reverse approach in illustrating the writing of hybrid and 
oddly oriented orbitals. We can ask ourselves what sort of orbitals are 
given in the following: 

*! = (1/VB)X. + (1/V5)x, + (l/V2)Xz 4.3-18a 

Φ2 = (1/V8)x. + (1/V3)x, - (lV2)Xz 4.3-18b 

First of all, we can determine the sp hybridization from the ratio of the 
sum of squares of the p-orbital coefficients relative to the square of the 
s-orbital coefficient; this is equivalent to determining the energy contribu-
tion of the s- and p-type atomic orbitals. The ratio of s to p character is 
thus seen to be J: (J + \) or J:f and both </>i and φ2 are seen to be sp5 

hybrids. Second, we can concern ourselves with orientation in space. Know-
ing that c8 is 1/V6 in each case and that cs

2 + Np
2 = 1, we recognize that 
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FIG. 4.3-C 

when put into the form of Eq. 4.3-14 our orbitals ψι and Φ2 will have 
Np = V5/VB. When we factor this out of the p-orbital portions of Eqs. 
4.3-18a,b we obtain 

φι = (l/V6)Xe + (V5/VB)[(\5/V5)x, + (V3/V5)x2] 4.3-19a 

φ2 = (1/VB)X. + (V5/V6)[(\5/V5)x, - (V3/V5)Xz] 4.3-19b 

In these equations we can find the direction cosines a, β, and y as the 
respective coefficients of χΧ} χυ) and χζ. Since χ„ does not appear in these 
equations we can conclude that β = 0 and that the orbitals, being perpen-
dicular to the Y axis, are in the XZ plane. For both φ\ and φ2(χ = cos θχ = 
V2/V5; and therefore θχ, the angle made by these orbitals with the Xaxis, 

Z 

1 + 

^ \ X„2 

FIG. 4.3-D 
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FIG. 4.3-E 

is found to be 50.77°. For φι, y = V3/V5 and θζ = 39.23°. For φ2, y = 
-V3/V5 and θζ = 180° - 39.23°. Thus we have a pair of sp5 hybrid orbitale 
in the XZ plane and symmetrically disposed above and below the X axis 
as shown in Fig. 4.3-E. 

There is an additional interesting aspect to the problem. Let us consider 
two new orbitale which are the normalized sum and difference of φι and fa\ 

φ3 = (1/V2) (φι + Φ2) 4.3-20a 
and 

φ4 = (1Λ/2) (φ ι -φ 2 ) 4.3-20b 
Substituting in for φι and Φ2 in Eq. 4.3-20 we obtain the striking result that 

Φζ = (l/V3)X e + (V2/V3)x* 4.3-21a 
and 

φ4 = χζ 4.3-21b 

where φζ is seen to be an sp2 hybrid directed positively along the X axis. 
It is seen that these are the orbitale used by one carbon atom of ethylene 
to form a σ and a π bond with a second such atom; φζ and ΦΑ are depicted 
in Fig. 4.3-F. As has been noted previously, in forming molecular orbitale 
we arrive at the same final eigenvalues and eigenfunctions independent of 
the choice of the basis set of orbitale to be combined as long ae a complete 
set ie eelected. Group orbitale formed ae the eum and difference of two 
members of a basis set are as acceptable as the original two members. In 
the preeent inetance we obtained φ3 and φ4 ae the eum and difference of 
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FIG. 4.3-F 

φι and Φ2. Actually, we could have started with φζ and φ^ since as is easily 
shown the normalized sum and difference of these orbitale are φ\ and Φ2. 
Thus for constructing the central σ and τ bond of ethylene it makes no 
difference whether we use the familiar sp2 orbital φζ to form the σ bond 
and then use the pz orbital φ4 (i.e., χζ) to form the π bond or instead use 
two equivalent orbitale φ\ and <fe. The equivalent orbital representation 
of the double bond in ethylene is depicted in Fig. 4.3-G. Because these 
orbitale are aimed away from the interatomic axis and appear in the orbital 
picture drawn to interact to form a pair of orbitale splayed outward* the 
bonds thus formed have been termed "banana bonds." One might question 
whether the electron density directly between the two carbon atoms in this 
model would not be different from the ordinary σ + IT representation of a 
double bond, for Fig. 4.3-G seems to imply little such internuclear electron 
density, while the σ bond of the common model clearly provides such elec-
tron density. The difference is only apparent and derives from the diminu-

FIG. 4.3-G. Basis set of sp6 orbitale used in equivalent orbital double bond formulation. 

* The similarity to the old spring model of a double bond is obvious. 
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F I G . 4.3-H. Approximate model for a migrating phenyl group. 

tive representation of atomic orbitals generally used by organic chemists. 
Such orbitals, as in Fig. 4.3-G, have the advantage of not cluttering up a 
molecular representation; however, a disadvantage results if one construes 
such drawings to imply the corresponding excessive electron localization. 
Thus, more liberally drawn orbital contours would be seen to provide the 
expected internuclear electron density. As a final point, it should be recog-
nized that the basis set shown in Fig. 4.3-G will afford the same result as 
the sp2 and pz set only if all possible interaction is included in setting up the 
secular determinant. Thus the interaction between φ4α and φ3& and between 
φζα and φ4δ must be included although such interaction will be considerably 
smaller than between orbitals φ3α and φ3& and between φ4α and φ4&. 

Having shown how to set up and identify miscellaneous hybrid and oddly 
oriented orbitals, it remains for us to show how these may be used in obtain-
ing elements of secular determinants. As an example involving hybrid 
orbital and odd-angle orbital interaction let us select the model for the 
1,2-phenyl migration depicted in Fig. 4.3-H.5 The idealized model selected 
assumes cyclopropane distances between atoms bearing orbitals χι, χ2, and 
χ4. Also, all orbitals shown are taken as p except for φ3 which is an sp2 

hybrid. The naivete of these assumptions is justified only by lack of infor-
mation about the precise hybridization and the recognition that the model 
will afford only qualitatively useful information. 

By use of group theory as outlined in Chapter 3, we can set up the follow-
ing symmetry orbitals : 

Ai: xi + χ 2 , Φζ Α 2 : χ5 — XQ, Xe — Xs 

Βχ'. Xi - X 2 , X5 +X9 , X6 +X8 , X4, X? 
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It is clear that to set up the Ai and B\ secular determinants, the interaction 
elements between orbitals φ3 and χι and χ2 as well as between χ4 and χι and 
X2 will be needed. Since overlap integrals are easier to obtain than exchange 
integrals and since it is commonly assumed that these are proportional, the 
primary goal is to obtain the overlap integrals. The geometric relationships 
between χι and χ4 and between χι and φ3 are seen most readily by trans-
posing these orbitals to the double coordinate systems of Figs. 4.3-1 and 
4.3-J. Our approach will be to write the analytical form for each of the 
hybrid and oddly oriented orbitals in Figs. 4.3-1 and 4.3-J, and then to 
write down and expand the overlap integrals between pairs of these orbitals. 
The rationale behind this approach derives from the availability of tables 
of overlap integrals between common types of atomic orbitals oriented 
parallel-wise or perpendicularly and as a function of distance. These are 
the integrals which result from our expansion. 

The orbitals whose linear combinations will be used are depicted in Fig. 
4.3TK. In this figure as well as in 4.3-1 and 4.3-J, we use a set of coordinates 
having two origins, a and 6, 1.54 A apart. At each origin there is a Z axis 
(Za and Zb). The positive X directions are taken as facing the center so 
that the basis set will have the positive lobes of the orbitals directed toward 
each other. Each of the hybrid and oddly oriented orbitals of our bridged 
species (i.e., χι, χ2, χ4, and ψ3) may be written as a linear combination of 
the orbitals of Fig. 4.3-K; we use the geometry of Figs. 4.3-1 and 4.3-J 

FIG. 4.3-1 
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Xb 

together with our approach to obtain c„ Np, a, ß, and y. 

X! = (V5/2)x* + ix* 

X4 = hxsa + (V5/2)x„ 

<h = ( l / ^ ) x „ + (1/V§)jfe. - (1/V6)x,„ 

-»- + + -*-
Xb 

4.3-22a 

4.3-22b 

4.3-22c 

JT 

FIG. 4.3-K 
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Having the necessary orbitals formulated, let us proceed with determi-
nation of the required overlap integrals; for example, 

#(03, Xl) = J 03X1* 

= / [(l/V3)Xsa + (lM)xs« - (1/V6)x*a] 

\ j XsaXxi, dv + (V3/2V5) f XxaXxb dv 

- (l/2\£) J ΧζαΧχ* dv + (1/2V3) j XsaXzb dv 

+ (l/2\£) j XxaXzh dv - (1/2VB) j XzaXzh dv 

= \S{Xsa,X*) + (V3/2^)Ä(X,a ,X i C &) 

- ( l /2V6)£(x, a ,X z 6) 4.3-23a 

In the expansion of the overlap integral $(φ3, -ΧΊ) all terms except those 
enclosed in boxes disappear due to differing symmetry of the two orbitals 
comprising the overlap integral. The reasoning is the same as on pages 
134r-135 in connection with resonance integrals involving orbitals at the 
same atom. Thus, for example 

/ XsaXzbdv = — / XsaXzbdv; and / XsaXzbdv = 0. 

The remaining integrals of interest are obtained in the same way and are 
found to be 

S(xi, X4) = (V3/4)Ä(Xxa, Xxh) + (V3/4)S(Xfe, Xzb) 4.3-23b 

5 ( » , χύ = 5(X l , x0 4.3-23c 

S(*·, X2) = S(fc, xi) 4.3-23d 

Thus, each of the specialized overlap integrals has been found as a linear 
combination of overlap integrals between regularly oriented orbitals, and 
the latter are conveniently available in tables, as has been noted. Table 
4.3-1 contains values of special interest for organic calculations; these are 
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TABLE 4.3-1 
SELECTED VALUES OF OVERLAP INTEGRALS" 

R(k) 

0 
0.49 
0.98 
1.24 
1.30 
1.37 
1.43 
1.50 
1.56 
1.63 
1.95 
2.28 
2.60 
2.93 
3.26 

^ \Xpz> Xpz) 

1.00 
0.809 
0.468 
0.318 
0.287 
0.258 
0.221 
0.207 
0.184 
0.164 
0.089 
0.046 
0.023 
0.011 
0.005 

^ \Xpx) Xpx) 

- 1 . 0 0 
- 0 . 4 8 3 

0.159 
0.303 
0.319 
0.328 
0.332 
0.332 
0.327 
0.319 
0.250 
0.171 
0.107 
0.063 
0.035 

S(Xpx, Xs) 

0 
0.386 
0.509 
0.463 
0.444 
0.425 
0.402 
0.380 
0.357 
0.334 
0.226 
0.141 
0.083 
0.046 
0.025 

S(x»t Xs) 

1.00 
0.890 
0.637 
0.491 
0.456 
0.423 
0.390 
0.360 
0.330 
0.302 
0.188 
0.111 
0.062 
0.034 
0.018 

° For 2s and 2p Slater orbitale on adjacent carbon atoms. 

abstracted from the tables of Mulliken et al.G Thus by interpolating we 
obtain the orthodox integrals S(xsay Xxb), S(xxa, Xxb), and S(xza, χ*&) 
needed for Eqs. 4.3-23a-d, which then afford the desired overlap integrals 
S(xi, Xi), S(x2, χ4), S(xh φ3), and £(χ2, φ3). These overlap integrals may 
then be used to determine the off-diagonal elements of the secular deter-
minant by assuming proportionality of these resonance integrals with the 
overlap integrals just found.* Although not part of the problem of deter-
mining the overlap integrals in unique situations, the results of the MO 
calculation on the bridged species in Fig. 4.3-H are interesting and deserve 
mention. Of the nine molecular orbit als found on solution of the secular 
equation, four are bonding and one is slightly antibonding besides the four 
strongly antibonding orbitals. Since the phenonium cation species corre-
sponding to this structure has only eight delocalized electrons, the anti-
bonding orbital is not utilized. However, in the corresponding free radical 

* One might assume for qualitative purposes that the chief variation in secular deter-
minant elements derives from differences in overlap.6 However, a more detailed cal-
culation would take into account the energy effects of s-orbital admixture. Diagonal 
elements corresponding to s-hybrids would be lower in energy by a difference which 
can be taken as the difference in the ionization potential of the 2s and 2p orbitals. The 
off-diagonal elements also would be adjusted by use of Mulliken's magic formula7 which 
in the present case would give the off-diagonal element as #,·,· = %Sij(Hu + //"//). Other 
related versions8 have been employed. 
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species and even more so in the carbanion analog, the antibonding orbital's 
contribution by virtue of occupation by one and two electrons, respec-
tively, leads to destabilization. Nevertheless, a calculation similar to that 
just described, in which, however, an alkyl group migrates, indicates that 
the antibonding orbital is considerably higher in energy, with the radical 
and carbanion counterparts being less stable. This, of course, finds experi-
mental support in organic chemistry.5 We should note that the procedure 
followed in Eq. 4.3-23a may be generalized. We may assume orbitale of 
general form as given in Eq. 4.3-6, these orbitals being centered at points 
a and b. The overlap integral, determined as in the specific case, becomes 

Sab = c8aCsbS(sa, sb) + cxacxbS(xa, xb) + cyacybS(ya, yb) 

+ czacZbS(za, zb) + c8acXbS(sa, xb) + cxac8bS(xa, sb) 4.3-24 

We note that S(ya} yb) and S(za, zb) are equivalent; they represent the 
overlap between parallel p orbitals. We may call such an integral 5(ρπ, ρπ). 
Similarly, if we are dealing with carbon atoms, the last two overlap integrals 
are equal; we can designate these by S(pa, s). Here ρ-κ or ρσ merely tells us 
whether the p orbital is perpendicular or coaxial with the interatomic axis 
(respectively). With the same descriptive notation the second integral can 
be briefly written S(pa, ρσ). Then Eq. 4.3-24 is simplified to 

Sab = C8aC8bS(s, s) + CxaCxbS{pa, ρσ) 

+ (CyaCyb + CzaCzb)S(pT, ρτ) + (c8aczb + cxac8b)S{pay s) 4.3-25 

Another convenient form is obtained by substituting (cf. pp. 133-134) 
Npaaa for Cxa, Νραβα for Cya, and so on. We obtain 

Sab = C8aC8bS(sy s) + NPaNpb[aaabS(pa, ρσ) + ßaßbS(pw, ρπ) 

+ yaybS{pw, ρπ)2 + c8aNPb<xbS(s, ρσ) + c8bNpaaaS(s, ρσ) 4.3-26 

4.4 Properties of Alternant Hydrocarbons 

Alternant hydrocarbons are defined as those 7r-system molecules where 
the carbon atoms may be separated into two sets, one which is starred and 
the other which is unstarred, and so that no two atoms of the same set are 
adjacent. Thus ethylene (I) , butadiene (II) , allyl (III) , benzene (IV), 
and naphthalene (V) represent alternant systems while cyclopropenyl 
(VI), fulvene (VII), and azulene (VIII) are typical nonalternant molecules. 
I t is seen in the nonalternant molecules that it is not possible to avoid 
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having two starred or two unstarred atoms adjacent. Also, the common 
convention is to select the more numerous set of atoms for starring in the 
case of molecules having an uneven number of atoms; such molecules are 
termed odd alternant. 

(I) (ID (III) (IV) (V) 

Alternant 

(VI) (VII) (VIE) 

Nonalternant 

There are a number of properties which are characteristic of alternant 
7Γ systems. One is that alternant hydrocarbons (i.e., the neutral species) do 
not have any uneven electron density distribution and the 7r-electron 
density is unity at each center. The nonalternant molecules tend to have 
uneven electron density distributions; for example, both fulvene and 
azulene have large dipole moments. 

A second property is that the MOs of the alternant hydrocarbons are 
symmetrically disposed about zero. A consequence of this is that the odd-
alternant hydrocarbons then must have a nonbonding MO. This is so, 
since all of the MOs come in bonding-antibonding pairs, and one is left 
over; to be symmetrical the set then must have this remaining MO at zero. 

Still another property of interest is that the LCAO-MO coefficients of 
alternant hydrocarbons are the same numerically for the bonding and anti-
bonding pairs except that the sign is reversed at every unstarred atom. 
Alternatively we could reverse the sign of each starred orbital. 

One further point deals with the odd-alternant hydrocarbons. This is 
that the free radical has its odd-electron density appearing at the starred 
atoms. The same is true of the positive charge of the carbonium and the 
negative charge of the corresponding carbanion. 

The pairing theorems derive simply from a typical secular determinant 
of an alternant hydrocarbon. Thus, if we label the rows and columns corre-
sponding to the starred atoms of the alternant system, we obtain in a 
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typical (e.g., 4 X 4 ) system the secular determinant 

ΧΓ 

X2 

X* 

ΧΓ 
X 

(hi 

0 

X2 

Ö12 

X 

«32 

Xt* 

0 

«23 

X 

X* 

au 

0 

«34 

4.4-1 

χ4|α4ι 0 α43 X 

Here the are elements merely represent the nonzero off-diagonal terms. 
The zeros present result from the fact that in an alternant hydrocarbon no 
two starred atoms will be adjacent and no two unstarred atoms will be 
adjacent, and there the orbitals which are starred correspond to starred 
atoms. If we now multiply the starred rows and columns by —1, we have 
in effect multiplied the determinant by — 1 an even number of times, since 
each multiplication of a row or column of a determinant by a constant 
merely multiplies the value of the determinant by that constant. Thus we 
have not changed the equality to zero, and obtain 

-Xi 

- Χ Γ 
*i x 

X2 

- X 3 * 

X4 

X2 

- « 1 2 

-X3* X4 

0 — du 

— (hi X — Ö23 0 

0 —^32 X — Ö34 

— α4ι 0 — a43 X 

= 0 4.4-2 

The eigenvalues of 4.4-2 are most readily seen from 

~" Λ1 Λ2 — Λ" 

* - X i 

X2 

- X 3 * 

X4 

"Xi 

-X 

X2 

Ö12 

-Xz 

0 
X4 

du 

(hi 

0 

«41 

-X 

α32 

0 

θ23 

-X 

«43 

0 

«34 

-X 

= 0 4.4-3 

which is just 4.4-2 negated; algebraically this is done by multiplying all 
columns and rows by the imaginary i which does not change the relative 
weightings of the basis functions. 
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In any case, it is seen that the eigenvalues of 4.4-3 are the negative of 
those of the original secular determinant 4.4-1, since the determinants of 
4.4-1 and 4.4-2 differ only in having X's along the diagonal in the former 
and —X's in the latter. Since 4.4-1 and 4.4-3 correspond to the same molecu-
lar problem, we see that for every eigenvalue X from 4.4-1, there is a corre-
sponding eigenvalue —X from 4.4-3. Thus the eigenvalues for the problem 
come in pairs equally displaced about the usual zero. 

Turning to the eigenfunctions, we see that the eigenfunction from 4.4-1 
corresponding to X and that from 4.4-3 corresponding to —X will differ 
only in the signs of the coefficients of the starred basis orbitals. This can 
be seen from comparison of the orbitals heading the rows and columns in the 
two determinants. The only difference is in minus signs weighting the 
starred basis orbitals in 4.4-2. 

4.5 The Dewar Nonbonding MO Method9 

For odd-alternant hydrocarbons it has been noted that there is of neces-
sity a nonbonding MO. Although one might not think that knowledge of 
this single MO of a system could be of use, a remarkable amount of infor-
mation does result. 

Refer to the secular equations of an odd-alternant hydrocarbon (e.g., 
benzyl; note Fig. 4.5-A and Eqs. 4.5-la-4.5-lg) : 

Cl*X + C2° 

Cl* + cfX + c,* +c7* 
c2° + CiX* + c4° 

cs* + c4°X + c6* 
d0 + c6*X + c6° 

d* + c6°X + c7* 
C2° +c6° +c7*X 

= 0 
= 0 
= 0 
= 0 
= 0 
= 0 

= o 

4.5-la 
4.5-lb 
4.5-lc 
4.5-ld 

4.5-le 
4.5-lf 
4.5-lg 

In these secular equations we use either * or ° as the superscript to label the 
type of orbital weighted with the coefficient. This procedure reveals that the 

FIG. 4.5-A. The starred and unstarred positions of benzyl. 
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-0^*^.-0 FIG. 4.5-B. Derivation of NBMO coefficients, a = l/\/l by 

normalization. 
Is 4] 

0 \ s ^ 0 

LCAO-MO coefficients can be obtained essentially by inspection. Thus, we 
set all of the terms containing X = 0. The first equation then gives c2° = 0. 
The second equation gives the sum of the coefficients bonded to the un-
starred position 2, which equals zero; i.e., ci* + cz* + ci* = 0. Proceed-
ing to the third secular equation and setting both X and c2° equal to zero, 
we get the result that the unstarred coefficient C40 = 0. Continuing in the 
same fashion we find in general that all of the unstarred coefficients for 
benzyl are zero and that in each case the sum of the starred coefficients 
surrounding any unstarred position adds up to zero. In fact, inspection of 
the general form of any set of secular equations such as 4.3-2 shows that 
when X in the rth secular equation is set equal to zero, there is left the 
sum of starred coefficients, and this sum generally equals zero. Similarly, 
it is general that the unstarred coefficients are zero. 

With this generalization available, it is possible to obtain the non-
bonding MO coefficients by inspection. Thus, we begin in the case of benzyl 
by assigning the value a to the para LCAO-MO coefficient. The coefficients 
at the meta positions are zero since these are unstarred positions. Now, the 
LCAO coefficient at carbon-5 is seen to be —a since the sum of the coe-
fficients surrounding C-4 (an unstarred position) must total zero. Similarly, 
the coefficient at C-7 is —a. Since two of the LCAO-MO coefficients sur-
rounding C-2 are known and are —a, the coefficient for C-1 must be +2a. 
Finally, the coefficient at C-2 is zero since this is an unstarred carbon. Now, 
with the coefficients known relative to one another, and with the knowledge 
that the sums of their squares must equal unity by normalization, one can 
solve to obtain a = \/y/ï. 

NBMO coefficients can be obtained in general in the same manner (Fig. 
4.5-B). A useful point to keep in mind is that it is usually simpler to 
begin by assigning the unknown value a to a starred position which is dis-
tant from the carbon bonded to only a single unstarred position. If we had 
begun by assigning a value to the coefficient at C-1 first, we could have 
obtained the same answer but with slightly more difficulty. 

4.6 Nonbonding MOs in Möbius Systems 

Dewar's treatment given in Section 4.5 was predicated on the assumption 
of a simple π system with no plus-minus overlaps in the basis set. An 
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exactly parallel treatment of an odd-alternant system having a sign dis-
continuity (i.e., a plus-minus overlap) in the basis set leads us to a result 
differing only slightly. For example, consider the species having a Möbius 
cyclobutadiene ring and one exocyclic atom (note Fig. 4.6-A). 
The secular equations are 

d*X + C2° 

ci* + c2°Z + c3* - c6* 

C2° + CS*X + C4° 

c3* + Ci°X + c6* 

- c2° c4
Q + c6*Z 

= 0 

= 0 

= 0 

= 0 

= 0 

4.6-1 

4.6-2 

4.6-3 

4.6-4 

4.6-5 

Realizing that we can star alternant atoms, we know that pairing of 
MOs occurs for such Möbius systems. In odd systems as presently con-
sidered there then must be a nonbonding MO. With X set equal to zero, 
we can see that the unstarred coefficients again must be zero as for the 
Hiickel and acyclic situations. For example, in Eq. 4.6-1, with X = 0, c2 
becomes zero. However, Eq. 4.6-2 shows a slight difference from the normal 
Dewar treatment. Here, with X = 0, C\ + cz — c5 = 0. Thus the rule be-
comes that the coefficients surrounding any unstarred position are added; 
however, in this addition they are taken with a negative sign if they overlap 
with that unstarred basis orbital in a plus-minus fashion. With ordinary 
overlap the starred coefficients are added as usual with a positive sign. 
The sum must be zero as in the normal Hiickel cases. We can then gen-
eralize the Dewar rule as 

Σ *rsCr* = 0 4.6-6 
r 

where s is the unstarred atom, the summation is over all overlapping atoms 
r, and er8 is + 1 for plus-plus or minus-minus overlap between basis orbitale 
r and s while it is — 1 for plus-minus overlap. 
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4.7 Uses of the NBMO Coefficients 

A number of different practical results can be derived with knowledge of 
the NBMO coefficients.9 One allows us to obtain the electron distribution 
in the odd-alternant carbanion or carbonium ion. Thus, in the benzyl 
radical, having seven π electrons, we have a unit π-electron density at all 
atoms of the π system as is characteristic of all the uncharged alternant 
hydrocarbons. In looking at Fig. 4.7-A, we see that the carbanion differs 
only in the addition of one extra nonbonding MO electron, and we know 
the distribution of this electron from the LCAO-MO coefficients we have 
derived. The squares of these coefficients give the electron densities which 
are then seen to be f at the benzylic carbon (C-l) and y at each of the 
ortho and para carbons. These values then correspond to the distribution 
of formal negative charge in this species. In the case of the corresponding 
cation, we have the same configuration as in the free radical except that 
the single nonbonding electron is removed. Since the distribution of this 
nonbonding electron is known, we then know the distribution of formal 
positive charge in the cation. I t is again T benzylic and T ortho and para. 
The results obtained are identical to those resulting from complete solu-
tion of the Hückel secular determinant. 

A number of other uses of the nonbonding MO coefficients have been 
demonstrated, especially by Dewar.9 One is estimation of the energy gained 
by juxtaposition of two odd-alternant hydrocarbon fragments to generate 
an even-alternant system of interest. As an approximation, we assume that 
the energy resulting from fusion of the two fragments derives from mixing 
of the two nonbonding MOs, one from each fragment and with the two 
electrons then populating the lower energy of the two MOs. In effect then 
we need to mix together the two NBMOs ψΑ and ΨΒ in a 2 X 2 secular 

o—i —H— 
—M— —H— —ή 
—h— i ί —1+ 

Radical Carbanion Cation 

FIG. 4.7-A. Configurations of the benzyl radical, carbanion, and carbonium ion. 
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determinant. It can be readily seen that the determinant has off-diagonal 
elements as in the following equation: 

ΨΑ 

ΨΛ 

X 

(CrACsß) 

ΨΒ 

(C,AC,B) 

X 
4.7-1 

and with X's along the diagonal. Actually with normalized MOs, here ΨΑ 
and ψβ, the number of squared terms obtained along the diagonal is always 
unity. The product CTAC8B is based on the assumption that fragments A 
and B overlap only at one place, where atom r of A overlaps with atom s 
of B. If there are more sites of overlap, then we have a sum of such terms 
off the diagonal. In any case, the off-diagonal term is arrived at in the 
usual way in which we consider the number of adjacent overlaps. 

Solving the 2 X 2 thus obtained gives us 

X = ±\_CrAC8B + CtACuB H ] 4.7-2 

Since the splitting of the two nonbonding MOs gives a bonding MO which 
is doubly occupied, the energy lowering due to this splitting is 

ΔΕ = — 2(CrAC8B + 2CtACuB H ) 4.7-3 

In words, this means that we can put two odd-alternant fragments together 
and approximate the stabilization energy by taking the product of the 
NBMO coefficients, one from each fragment, at each site of new bonding. 
The sum of products is then doubled and taken negatively. We note here 
that the absolute sign of LCAO-MO coefficients is arbitrary, so that after 
the summation we may end up with a positive or negative summation, but 
this has no significance. 

One example which is of some interest has been noted by Dewar. This is 
the formation of naphthalene and azulene from the nonatetraenyl and the 
one-carbon fragments: 

A£ = -6 ab 4.7-4 
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Here b derives from a single p-orbital fragment and is therefore 1 on nor-
malization. The value of a is obtained in the usual way as 1/V5. However, 
one does not need the actual values of a and b in order to see that there 
is energy lowering at two sites in azulene compared with three in the 
formation of naphthalene. The energy changes on formation of these two 
species are thus given in the equations above. The main difference results 
from the fact that all sites of bonding have the same contribution of 2ab 
in the case of naphthalene but for azulene one term less occurs due to 
bonding at an unstarred position. Even worse energetically would be an 
example where bonding led to terms with opposite sign as in the formation 
of cyclobutadiene from a methyl fragment and allyl: 

— »I .b AF = 0 L=J 
a * 

Here we have one contribution of +2ab and one negative contribution of 
— 2ab. Although b is still unity, the value of a in this case is not the same 
as in the preceding example but is the usual 1/V2 (i.e., the nonbonding 
MO coefficients of allyl). 

4.8 The Mulliken-Wheland-Mann and Omega Techniques 

Thus far in doing MO calculations we have assumed that all adjacent 
overlaps are equal and that all carbon atoms are equally electron attracting. 
Although this simplistic set of assumptions is incorporated in the secular 
determinant prior to solution, the results of such Hückel calculations are 
less naive. Thus, bond orders do not come out all equal except where 
demanded by symmetry. Similarly, in nonalternant hydrocarbons and also 
in charged species, one finds unequal electron densities at different molecu-
lar sites. 

One attempt to take this information into account in setting up the 
initial secular determinant was proposed by Mulliken and Wheland and 
students.4,10·11 Thus it is assumed that the resonance integral used, repre-
senting interaction between two atoms, should be linearly dependent on 
the bond order between the two atoms. Similarly, it is assumed that the 
Coulomb integral used should be scaled so that it is a function of the elec-
tron density at each atom. The relationships used are 

or = ω(1 - Qr) 4.8-1 

ßrs = ßo(SJSo) 4.8-2 
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where 

SJSo = [0.08 ( i V + J V ) + 0.115]/0.276 4.8-3 

Here Qr is the total 7r-electron density at carbon r, ß0 is the standard 
resonance integral (e.g., for ethylene), ßr8 is the adjusted resonance integral 
between atoms r and s, Pr8

T is the π bond order between atoms r and s, 
while Prsa is generally taken as unity. Also, <5r is the increment in the 
diagonal element of the secular determinant used earlier for an atom r of 
different electronegativity than carbon. It can be seen that both resonance 
integrals and diagonal secular determinant elements are adjusted. For a 
more electronegative atom than carbon, a positive δ was employed. Equa-
tion 4.8-1 indicates that δ is taken as a function of the 7r-electron density 
at the given carbon. If this electron density, Qr, is less than the unit density 
found for an uncharged alternant hydrocarbon, then δ will be positive, 
since the proportionality factor ω is positive; a typical value of ω is 0.8. If 
the electron density is greater than unity at a carbon, the value of δ will 
be negative. However, one can determine the electron density only from 
the LCAO-MO coefficients and these are not available prior to setting up 
the secular determinant. Thus a reiterative method is needed. Similarly, 
Eqs. 4.8-2 and 4.8-3 allow one to obtain new off-diagonal elements (i.e., 
the jSre's) if one uses the bond orders derived from the preceding iteration. 
The first iteration is an ordinary Hückel solution of the MO problem. The 
LCAO-MO coefficients obtained are then used via Eqs. 4.8-1, 4.8-2, and 
4.8-3 to obtain the elements of the secular determinant for a second itera-
tion. This determinant, on solution, then gives new coefficients which are 
then used again. The process is continued until the eigenvalues and coeffi-
cients reach constant values. 

While Mulliken, Wheland, and co-workers used both variations of the 
Coulomb integrals and resonance integrals, Streitwieser has shown that 
in many instances variation of only the diagonal elements provides a useful 
improvement. This has been termed the omega technique.12 

Another approach is to use only the variation of off-diagonal elements 
with bond orders, and this has been used by the present author. One 
example of the utility of this last approach is in the application to the 
pentadienyl anion. Here a simple Hückel calculation suggests that the 
τΓ-electron densities at carbons-2 and -4 are zero but 0.333 at each of atoms 
1, 3, and 5. Reasons have been given13 as to why the electron density seems 
experimentally to be more heavily localized at the center carbon of such 
systems in disagreement with this simple calculation. However, the Hückel 
approach is less naive in giving bond orders. The bond order between atoms 
1 and 2 is calculated to be different than that between 2 and 3. Furthermore, 
the improved bond orders are seen to lead to the correct concentration of 
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TABLE 4.8-1 
^-ELECTRON DENSITIES CALCULATED FOR THE PENTADIENYL 
CARBANION BY SUCCESSIVE LCAO-MO APPROXIMATIONS WITH 

CHANGING BOND ORDERS0 

Approximation 

First 
Second 
Third 

Qi 

0.333 
0.317 
0.316 

Î« 

0.000 
0.000 
0.000 

?3 

0.333 
0.365 
0.368 

Pn 

0.788 
0.802 
0.802 

^ 2 3 

0.578 
0.564 
0.562 

α Adopted from Zimmerman.13 

charge at the central carbon. The results of successive approximations for 
the pentadienyl anion are given in Table 4.8-1. 

4.9 Correlation Diagrams ; Reaction Allowedness and Forbiddenness 

One application of molecular orbital theory which is of particular use to 
the organic chemist is the prediction of the "allowedness" or "forbidden-
ness" of an organic reaction. One suitable definition is that allowed ground-
state reactions are those in which there are no crossings of MOs during 
reaction except where the two MOs crossing have the same occupation of 
electrons. This means that the product configuration will have the elec-
trons in the lowest possible arrangement. For a reactant with only bonding 
electrons (e.g., a neutral, nonradical hydrocarbon) this means that an 
allowed reaction will be one in which all of the bonding MOs remain bonding 
during reaction and all of the antibonding MOs remain antibonding. This 
situation is shown in Fig. 4.9-A. 

Conversely, a forbidden reaction is one in which, as the reaction pro-
ceeds, the MOs cross in such a way that one ends up with a higher energy 
electron population of product MOs than one had in the reactant. For a 

F I G . 4.9-A. A typical allowed reac-
tion. All bonding MOs remain bonding. 
The abscissa is the reaction coordinate 
and the ordinate is the energy X. 

F I G . 4.9-B. A typical forbidden re-
action. Bonding and antibonding MOs 
cross X = 0. The abscissa and ordinate 
are the same as in Fig. 4.9-A. 
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simple reactant with only bonding electrons this means that there will be 
a bonding MO (with two electrons) which becomes antibonding and an 
antibonding MO (unoccupied) which becomes bonding. This situation is 
illustrated in Fig. 4.9-B. Here we see that in the allowed reaction (Fig. 
4.9-A), all the bonding MOs remain bonding and the product is obtained 
in its lowest configuration with all the bonding MOs occupied but no anti-
bonding MOs containing electrons. In contrast, in the forbidden reac-
tion (Fig. 4.9-B) \pz of reactant gradually transforms itself into ψζ of 
product and ψζ is antibonding. Since ψζ is doubly occupied, assuming that 
the reaction is adiabatic (i.e., there is no change in electron occupation), 
ypz will be doubly occupied as well and thus an (exceptionally high energy) 
excited state of product would result. While in such forbidden reactions 
one does not expect to get a doubly excited state as the product, one can 
expect that the molecular energy will rise sharply as the molecule proceeds 
along the reaction coordinate. 

Now the question is how one determines which MOs of reactant become 
which MOs of product. One approach can be used in cases where there is 
molecular symmetry in the reactant which does not change along the 
reaction coordinate. I t is important, though, to note that it is not sufficient 
for reactant and product merely to have the same symmetry but rather 
it is necessary for the symmetry to be maintained in between these extreme 
molecular geometries. In such cases, one is able to draw the correlation 
lines (i.e., as in Figs. 4.9-A and 4.9-B) by use of the noncrossing rule which 
states that two eigenfunctions (here two MOs) of the same symmetry will 
not cross. It is found that there is one unique correlation possible in each 
case which satisfies the criterion. This method is the one introduced by 
Woodward and Hoffmann.14·15 

As an example, we can apply the method to the electrocyclic closure of 
allyl. The orbital drawings at the top of Fig. 4.9-C are for the basis set. We 
see that the disrotatory motion allows the allyl species to maintain a verti-
cal plane of symmetry as twisting continues until finally the cyclopropyl 
species is generated. Conversely, conrotatory motion maintains a horizontal 
axis of symmetry throughout the process. The symmetries are designated as 
A or S representing antisymmetry or symmetry with respect to these 
elements (i.e., the plane or axis). We find only one way to connect reactant 
and product MOs in each case. 

If we now consider a given occupation of electrons—two electrons for 
allyl cation giving cyclopropyl cation or four electrons for allyl anion giving 
cyclopropyl anion—we find that the disrotatory motion is favored for the 
cation since here there is no crossing of MO 1 with any unoccupied MO as 
does happen in the conrotatory twisting. For the anion, with four delocalized 
electrons in MOs 1 and 2, we see that conrotatory motion is preferred 
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FIG. 4.9-C. Correlation diagrams for disrotatory and conrotatory electrocyclic 
closures of allyl species, (a) Disrotatory twisting of basis set; (b) conrotatory twisting 
of basis set. 

since here MOs 1 and 2 are each doubly occupied; these cross in the con-
rotatory mode and we obtain a ground-state configuration. Alternatively, 
if we had disrotatory motion, the two electrons in MO 2 become strongly 
antibonding, since with this motion MO 2 becomes the antibonding σ 
orbital of product; also, MO 3 of reactant is unoccupied and transforms 
itself into the nonbonding MO of the carbanion. Thus, disrotatory motion 
leads to a cyclopropyl anion with two electrons in an antibonding σ orbital 
but none in the p orbital at atom 2. Hence, for the carbanion conrotatory 
motion is allowed and disrotatory motion is forbidden. 

Another approach to drawing the correlation lines and following energy 
change along a reaction coordinate involves looking at the reacting species 
half-way along the reaction coordinate. This is the Möbius-Hückel method 
of Zimmerman.16 For example, if we refer to Figs. 4.9-A and 4.9-B, we see 
that half-way between reactant and product there are degeneracies at the 
point along the reaction coordinate where MOs cross. This half-way point 
along the reaction coordinate is marked with an h. What we need then is a 
way to determine what the array of MOs looks like at half-reaction, since 
for every degeneracy there is a crossing of MOs and this would allow us to 
draw the correlation diagram. 

Turning to the specific case of the allyl species closure, we note that at 
half-reaction the disrotatory transition state is composed of a Huckel-like 
array of basis orbitale, since nowhere do we have a plus-minus overlap 
between basis MOs (see Fig. 4.9-D). As noted earlier in connection with 
basic MO theory, the MOs deriving from mixing of the basis orbitals are 
independent of our choice of orientation of the basis orbitals; and here our 
definition of Hückel and Möbius is independent of just how we orient the 



158 4, Extensions, Modifications, and Applications of the Hiickel Approach 

(a) (b) 

FIG. 4.9-D. Disrotatory (Hiickel) and conrotatory (Möbius) transition states for 
allyl closure, (a) Hiickel transition state; (b) Möbius transition state. 

basis orbital selected. If we invert one (e.g., p orbital) in the set of either 
system, we do not change the Hiickel or Möbius character. The former 
always has zero or an even number of inversions in proceeding around the 
cyclic array and the latter has an odd number of plus-minus overlaps. 

Presently, we know that a Möbius cyclopropenyl system has a bonding 
degeneracy and a single antibonding MO. This tells us that MOs 1 and 2 
cross at the point A, as actually occurs in Fig. 4.9-C. In contrast, the Hiickel 
cyclopropenyl system has a single bonding MO and an antibonding de-
generacy. This tells us that for the Hiickel reaction geometry (i.e., dis-
rotatory) , MOs 2 and 3 cross, as does happen. 

Thus the Möbius-Hückel approach of Zimmerman16 allows one to 
obtain correlation diagrams readily, and the method is not dependent on 
symmetry. 

Problems 

1. Using symmetry, derive the correlation diagram for the disrotatory 
closure of the allyl cation to give the cyclopropyl cation. Now do the same 
for the conrotatory closure. 
2. Use the Hückel-Möbius method to do the two problems in Problem 1. 
3. Use the bond order-perturbation method to draw the correlation dia-
gram for this same reaction. Have you obtained the same result from the 
three different approaches? In each case indicate if the reaction is forbidden 
or allowed. 
4. Use the LCAO-MO coefficients given for butadiene in Chapter 1 to 
determine if either disrotatory twisting or conrotatory twisting is forbidden. 
Do the other approaches give the same result? 
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5. Consider the transformation of "rectangular cyclobutadiene," in 
which the long bonds are 1-2 and 3-4 and the short bonds are 2-3 and 1-4, 
into its isomer in which the short bonds have been stretched into the long 
bonds and the long bonds have become the short bonds (i.e., the long bonds 
now are 2-3 and 1-4 and the short bonds are now 1-2 and 3-4). Obtain the 
correlation diagram and, show that this is a forbidden transformation. 
[Hint : One approach is to use symmetry and another is to use the Möbius-
Hückel approach to obtain the half-reaction MO array.] Generalize this; 
for example, what is the result with cyclooctatetraene? How about other 
4N systems? If only ^-electronic factors are controlling, what is the pre-
ferred geometry? 
6. In view of the result of Problem 5, inspect a similar transformation of 
a 4:N + 2 system such as benzene, here a benzene where bonds 1-2, 3-4, 
and 5-6 are short and 2-3, 4-5, and 6-1 are long in one species while 1-2, 
3-4, and 5-6 are long and 2-3, 4-5, and 6-1 are short in the other. Is this 
transformation forbidden or allowed? What is the preferred molecular 
geometry of (e.g.) benzene as a consequence. 
7. Categorize the transition states for each of the following transforma-
tions as either Möbius or Hückel. Then determine the number of delocal-
ized electrons involved in each of the transition states. Finally, draw the 
correlation diagram and decide if the reaction is forbidden or allowed. 

(a) A disrotatory electrocyclic closure of butadiene to give cyclobutene. 
(b) The conrotatory version of part (a). 
(c) A 1,3-antarafacial hydrogen migration in propylene. 
(d) A 1,3-suprafacial hydrogen migration in propylene. 
(e) A process analogous to that in part (c), however, where a carbon 

with a p orbital is doing the 1,3-migrating and both lobes of the p orbital 
are overlapping, one lobe with the top of C-l and the other lobe with the 
bottom of C-3. 
8. Consider the 1,4-closure of benzene to Dewar benzene with top-top 
overlap between AOs 1 and 4 of benzene. Draw the correlation diagram 
using symmetry. Is the reaction forbidden or allowed? Now consider the 
problem from another approach. Dissect the two MOs which are anti-
symmetric with respect to a plane bisecting carbon atoms 1 and 4 and note 
that two of the six delocalized electrons populate one of these two; also 
note that this MO remains bonding throughout the reaction and does not 
affect the allowedness or forbiddenness. Now inspect the remaining four 
MOs and note that each of these can be written as composed of group 
orbitale of the form χι, (χ2 + xe), (χ3 + xs), X4 and that these four basis 
group orbitals form a cyclic array and must accommodate the remaining 
four delocalized electrons. What type of array is this, Hückel or Möbius? 
Is the reaction allowedness or forbiddenness predictable on this basis? Can 
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you now generalize the Möbius-Hückel treatment to such bicyclic transi-
tion state reactions? 
9. Using the Dewar method of nonbonding MO coefficients, predict the 
charge distribution on the méthylène carbons of (a) the benzyl anion and 
(b) the α-naphthylmethyl anion (i.e., a-naphthyl-CH2ö :) in order to 
decide which is more basic. 
10. Draw the correlation diagram for the thermal fission of cyclobutane 
into ethylene. Label the diagram explicitly and conclude if the reaction is 
forbidden or allowed. 
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Chapter 5 

MORE ADVANCED METHODS; THREE-DIMENSIONAL 

TREATMENTS AND POLYELECTRON WAVEFUNCTIONS 

Thus far we have used MO methods which apply to a truncated set of 
basis orbitals. Either the truncated set has been the π system of a planar 
molecule where then we neglect the σ system, or the set has been a group 
of orbitals assumed to be able to be dissected from the rest of the molecule. 
Also, hitherto we have included only one electron at a time in our energy 
minimization and have not included electron-electron interaction effects. 
This chapter deals with the polyelectron methods and the extension of 
Hückel theory to three dimensions. 

5.1 Polyelectron Wavefunctions ; Slater Determinants 

Thus far we have been considering wavefunctions which are single 
molecular orbitals, each of which is considered as contributing separately 
and independently to the state of the molecule. However, a better wave-
function would consist of a product of single molecular orbitals and have a 
spin assignment as well as having electrons assigned to molecular orbitals 
in the product. This would then give the simultaneous contribution of all 
MOs. Such a product would be 

Φ = *ι(1)Φι(2) 5.1-1 

for ethylene. Here the presence of the bar over the MO indicates that a β 
spin is assigned to that MO and the absence of a bar indicates an a spin 
for that MO. This product, in effect, says that while electron 1 is assigned 
to MO 1 with a requirement for a spin, electron 2 is assigned to MO 1 
with imposition of β spin. The overall wavef unction then is the product 

161 
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of the two space-spin orbitals. It can be seen that the wavefunction squared, 
which gives the probability and electron distribution at any point in space, 
is then just the product of the individual MOs squared and thus just the 
product of the individual one-electron probabilities. 

Each of the constituent orbitals is called a space-spin orbital, or often 
just a spin orbital, since it describes both the spatial and the spin properties 
of an electron assigned to it. What is meant is that the orbital is a product 
of the ordinary spatial MO of the type we have previously been using, 
signified presently as ψι, \l/2, · . ·, and a spin function which is a or β. Each 
function, spatial or spin, has following it parentheses to which an electron 
is assigned. Then we can write the space-spin orbitals as 

*x(l) = *ι(1)α(1), Φι(2) = φι(2)β(2) 5.1-2 

However, it is artificial to assume that electron 1 is uniquely assigned to 
Ψι and electron 2 confined to Φι. Rather, it is more reasonable to include 
the alternative assignment 

Φι(1)*!(2) 5.1-3 

in linear combination with the original assignment Ψι(1)Ψι(2). The nega-
tive linear combination in Eq. 5.1-4 is taken with the philosophy that the 
total wavefunction should be antisymmetric with respect to exchange of 
electrons 1 and 2. 

Φ = -g {Φ1(1)Φ1(2) - * ! ( l )* i (2) J 5.1-4 

Thus, if the operator P signifies permuting electrons 1 and 2, the poly-
electron wavefunction Φ is seen to be converted to its negative by permuting 
with the P operator. Accordingly, 

Ρ Φ = ^ Ρ { * ι ( 1 ) Φ ι ( 2 ) - Φ ι ( 1 ) * ι ( 2 ) } =^{Φι (2 )Φχ(1) - ^ ( 2 ) ^ ( 1 ) } 

= ± { ^ ( 1 ) ^ ( 2 ) - ^ ( 1 ) ^ ( 2 ) } = - Φ 5.1-5 

A wavefunction which is antisymmetric with respect to electron exchange 
is said to be antisymmetrized. 

We note that the wavefunction Φ corresponds to the expansion of a 
determinant and may be written as 

1 
Φ V2 *ι(2) Φι(2) 
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In general antisymmetrized wavefunctions may be written as such deter-
minants where the columns contain the occupied space-spin MOs and each 
row has a different electron assignment. Hence for a closed-shell system 

Φ = r2n\ 

Φι(1)Φι(1)Φ2(1)Φ2(1)Φ«(1)Φ.(1)· 

Φι(2)Φ1(2)Φ,(2)Φ2(2)Φ,(2)Φ,(2) -

* ι ( 3 ) · · · 

•*n(l ) 

*i(2n) *n{2n) 

δ.1-6 

One feature of the Slater determinant worth noting at this point is the 
behavior of the function Φ if one attempts to consider an electronic con-
figuration where the same space-spin MO is used more than once, that is, 
where two electrons are assigned with the same spin to the same space MO. 
In this case two columns of the Slater determinant become identical and 
determinant algebra tells us that the polyelectron wavefunction Φ vanishes. 
Thus Slater determinants enforce the Pauli principle. 

A common short and convenient notation allows us to write Eq. 5.1-6 as 

Φ = 
1 

—^=|Φι(1)Φ1(2)Φΐ(3)Φ,(4)Φ,(5)Φ,(6) · · ·Φ»(2η) | 5.1-7 

Here we write only the diagonal terms of the full Slater determinant with 
the understanding that the full determinant is implied. Another useful 
notation is 

Φ = ΡΦι(1)Φι(2)Φ2(3)Φ,(4)Φ8(5)Φ.(6)···Φ»(2η) 

or 

Φ = 

or 

Φ = 

Λ / 2 ^ ! 

'2n! 

ΡΦι(1)Φι(2)Φ,(3)Φ,(4)Φ|(δ)Φ.(β) · · ·Φ»(2η) 

5.1-7a 

5.1-7b 

Σ(-1)ρ/>Φι(1)Φι(2)Φί(3)Φ2(4)Φ8(5)Φι(6) · · ·¥»(2η) 5.1-7c 

Here the P operator in Eq. 5.1-7a signifies take all permutations and add 
these up with appropriate plus or minus signs and then normalize the sum. 
The P operator takes all permutations but omits the normalization. The 
P operator merely says to permute the product of n space-spin MOs. The 
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summation in Eq. 5.1-7c includes all permutations. Even permutations 
with two or some even number of permutations are given positive signs 
[note ( — l ) p then is + 1 ] and odd permutations are given a minus sign 
[here ( — l ) p is —1]. For example, 

P* i ( l )¥ 2 (2 ) = -¥ ι (2)Φ 2 (1) = - * 2 ( 1 ) * ι ( 2 ) 5.1-8 

We note that it does not make any difference if we permute the electrons 
or instead keep the electron assignments in the same order and, instead, 
permute the space-spin MOs. 

Finally, thinking about the full secular determinant in Eq. 5.1-6, we 
realize that the determinant is, by definition, just the same sum of n-fold 
products as in Eq. 5.1-7. Thus the definition of a determinant tells us to 
select one space-spin MO with its electron assignment from column 1, to 
multiply this by an MO with electron assignment selected from column 2, 
and to multiply this from such a function selected from column 3, etc. In 
selecting functions from each column to make up a product we must not 
use the same row twice and we must affix a plus or minus sign depending 
on whether the product is even or odd (i.e., whether the permutation is 
even or odd). We then add together all such permutations and normalize 
to get Φ. Our shorthand notation of Eq. 5.1-7 explicitly gives the zeroth 
permutation. 

5.2 Energy of a Single Slater Determinantal Wavefunction 

To obtain the energy of a single Slater determinant including effects due 
to mutual electron-electron repulsion we have to consider two operators 
and derived integrals. One operator we have already discussed, namely 
5C», defined by 

/* = f*k(i)W*k(i) dr = j tk(i)W>Mi) dr 5.2-1 

gives the energy Ik of electron i in MO k as a result of its kinetic energy 
and also potential energy due to attraction by molecular nuclei. 

A new operator g*y = e2/ra represents the potential energy resulting 
from mutual repulsion of two electrons i and j . Using this we can write 
two-electron integrals such as 

Gklkl™° = j ΜϋΜ i)StfM*)*i( 3) dr 5.2-2 

which represents the mutual repulsion of electrons i and j with electron i 
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assigned to space MO k and electron j assigned to space MO I: 

Note that here spin is not involved. For example, if k and I were to apply to 
MOs 1 and 2 of ethylene, the term GW then gives us the energy of repulsion 
between an electron in the bonding MO and an electron in the antibond-
ing MO (i.e., the repulsion between the two one-electron clouds in Fig. 
5.2-A, dotted area and hatched area). Note that the subscripts in Gkm are 
in the same order as in the terms under the integral in Eq. 5.2-2 where 
the MOs are listed in the order of functions of electrons i, j , i, j sequentially. 

The total energy operator is taken as 

$ = 3C + 8 5.2-3 

We can now proceed to obtain the energy of a Slater determinant includ-
ing both one-electron and two-electron terms. Thus 

Φ = - = ΡΨ1(1)Ψ1(2)Ψ2(3) · · -Ψη(2η) 5.2-4 
\2n\ 

and the integrated form of the Schrödinger equation gives us 

E = - ^ / ' Ρ , Φ Ι ( 1 ) Φ Ι ( 2 ) Φ 2 ( 3 ) · · ·Ψη(2η)ί?Ρ,,Ψ1(1)Ψ1(2)Ψ2(3) · · ·ΦΛ(2η) dr 
2η! J 

5.2-5 

The designation of the permutation operators by a prime (') and a double 
prime (") merely indicates that each permutation is independent of the 
other. 

Equation 5.2-5 can be simplified since it is not necessary to permute both 
the MO products before and after the operator; it is sufficient to permute 
only one. To show this, let us premultiply the integral in 5.2-5 by a per-
mutation operator Pq so designed that each permutation resulting from 
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P' is reversed to restore the original product of MOs. We note that Pq 

affects the electron assignment in both the MO products before and after 
$ but permuting all the electrons does not change the value of the integral. 

We also note that P' has the 2n\ terms and after this reverse permutation 
we have 2n\ identical permutations preceding $. Thus the normalization 
factor of l/2n! in 5.2-6a is canceled in 5.2-6b 

E = ^P*f Ρ^ ι (1)^ ι (2)Ψ 2 (3)Φ 2 (4) · . .φ η (2η) 

X ^Ρ,,Ψ1(1)Φ1(2)^2(3)Φ2(4) · . ·Φη(2η) dr 5.2-6a 

= j *ι(1)Φι(2)¥2(3)Φ2(4) · · ·Φ»(2η) 

X ίίΡ5Ρ, ,^1(1)Φ1(2)^2(3)Φ2(4) · - ·Φη(2η) dr 5.2-6b 

= j * i ( l )* i (2)¥ 2 (3)* 2 (4) · · ·¥η(2η) 

X ΐΡΦ1(1)Φι(2)Ψ2(3)Φ2(4) · · ·Ψ»(2η) dr 5.2-6e 

But PqP' is just equivalent to an ordinary unnormalized sum of permuta-
tions P since all permutations are included. Equation 5.2-6c then gives a 
very convenient form for writing this and similar integrals involving two 
Slater determinantal wavefunctions. All we must do is to include all per-
mutations in the second term but without any normalization needed. 

To evaluate 5.2-6c it is helpful to consider the 5C and 9 components of 
tf = 3C + 8 separately, or, 

E = EH + E0 5.2-7 

The 5C component includes the one-electron energy effects, kinetic and 
potential energy, for all electrons. That is, 

JC = 5Ci + 5C2 + 3C3 H h 3C2n 5.2-8 

where 3Ci is the operator for electron 1, JC2 for electron 2, and so on. Thus, 
the one-electron component of the energy E is given by 

EH = / * x ( l )* i (2)* 2 (3)* 2 (4) · · -¥n(2n) 

X [3Ci + 5C2 + 3C3 + · · · ] ^ ι (1 )* ι (2 )¥*(3)Φ 2 (4) - · ·Φη(2η) dr 

5.2-9 
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Similarly, the two-electron component of the energy 

EG = f Φ1(1)Φ1(2)Φ2(3)Φ2(4) · · ·¥»(2η) 

X 9ΡΦι(1)Φ1(2)Φ2(3)Φ2(4) · · ·Φ»(2η) dr 5.2-10 

Here the two-electron operator represents the sum of all sets of repulsions 
between two electrons and thus 

9 = 9i2 + 9i3 + Su + · · · + 823 + S24 + · · · + 834 + · · · 5.2-11 

Turning first to the one-electron integral, we note that this is the sum of 
separate integrals, the first using JCi, the second using 3C2, the third using 
3C3, and so on. We also note that each of these integrals can be broken up 
into the product of integrals, each one of which is a function of only one 
electron. For example, if wre consider the integral with the energy operator 
for electron 1, we find this to be 

EH1 = f ¥i(l)3Ci*i(l) dn ί *ι(2)Φι(2) dr2 
J1 J2 

X f *2(3)*2(3) dn ί Φ2(4)Φ2(4) dr4- · -dr2n 5.2-12 

This has assumed only the zeroth permutation of the operator P, and we 
will have to justify the lack of permutation in arriving at this result. How-
ever, first let us evaluate the integral product which gives EH\ (note Eq. 
5.2-12). In this product we see that each integration involves functions of 
just one electron; in fact, it was this which allowed dissection of the original 
integration over all electrons into the simpler form above. We note that 
except for the first integration, all the integrals have the value of 1 by 
virtue of normalization. The first integral is just 7i (note Eq. 5.2-1) which 
is the one-electron energy of MO 1 : 

Effi = I\ 5.2-13 

In arriving at this equation we have assumed that all permutations except 
for the original one (i.e., the zeroth one) lead to zero integrals. This can 
be seen in the following. Thus, in Eq. 5.2-9, if we still retain consideration 
of only 3Ci and permute any two space-spin MOs, we obtain a vanishing 
integral. If the two MOs permuted are Ψι and Φι, we obtain the integral 
in Eq. 5.2-14. This is zero due to two integrals being zero, namely the 
integral involving electron 1 and also the integral involving electron 2. The 
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two integrals vanish due to spin orthogonality.* The integrals of Eq. 5.2-9 
which are not permuted are still unity and are not explicitly written out in 
the following: 

ί Ψι(1)ΧιΦι(1) dn [ ¥ι(2)Φι(2) dr2 

= [ Ψι(1)Κιφι(1) dn ί ψ1(2)φ1(2) dr2 

X f a( l) |8(l) dn f «(2)0(2) dr2 = 0 5.2-14 

If we try to avoid the spin orthogonality problem and again try to per-
mute terms in Eq. 5.2-9, we might try exchanging Ψι and Ψ2. Again con-
sidering only the 3Ci operator, we obtain from 5.2-9 terms which are zero: 

[ * i ( l )X i* 2 ( l ) dn ί Φι(2)Φι(2) dr2 ί ¥2(3)*i(3) dn = 0 5.2-15 

In this case it can be seen that the permuted integral product vanishes due 
to the third integral which is zero as a result of spatial orthogonality. Also 
the first integral in the product will be zero if ψι and ψ2 are eigenfunctions 
of the one-electron operator 3Ci. 

In the same fashion we can evaluate the part of the energy deriving from 
the other one-electron operators, namely JC2, X3, etc., and conclude that 
each of these affords a contribution of h where k is the MO containing the 
electron of the one-electron operator. Thus, 

EH = Σ nkh 5.2-16 
k 

Here rik is the number of electrons assigned to MO k. We next need to 
evaluate EG (note Eq. 5.2-10). In evaluating 5.2-10 we recognize that the 
operator is the summation of all two-electron operators in Eq. 5.2-11. 
Without any permutation, we find that each use of an operator g^ results 
in a two-electron integral of the type in Eq. 5.2-2, and this is multiplied 
by a product of integrals that are all unity by normalization. For example, 

* Integrals of products of spin functions are unity when the two spin functions under 
the integral sign are the same and zero when they are not. For example 

/ «2(1) dr = 1 while / :2(1) dr = 1 While / «(1)/3(1) dr = 0. 
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use of the 9i3 component gives 

E<m° = [ *i(l)*2(3)gia*i(l)*2(3) dTldr3 ί Ψ^(2) dr2 ί Ψ2
2(4) du 

J1,3 J 2 J A 

= Gi2i2MO 5.2-17 

Using all components of the operator we see that we will obtain one Gmh 

four GW, one G2222, and so on, terms. This can be formulated as 

E</> = Σ nklGklkl
M0 5.2-18 

k,l 

where this gives the terms arising without permutation. Here nk\ is the 
number of possible pairs of electrons with one in MO k and the other in 
MOZ. 

We now have to consider terms arising from 5.2-10 if we include permu-
tation of the electrons in the space-spin MOs following the repulsion 
operator. Perfectly equivalent to permuting the electrons is permutation 
of the MOs, thus keeping the terms in order of increasing electron number, 
and this is used here. First, we can see that any permutation of space-spin 
MOs of different spin leads to spin orthogonality. Second, we can also see 
that any two space-spin MOs permuted must be those containing the two 
electrons of the operator. Otherwise, we will obtain vanishing orthogonality 
integrals in the product. The preceding leads to terms such as 

EGls
p = - ί * ι (1 )* 2 (3 )8 ΐ3* 2 (1 )* ι (3 ) dndrz f * i 2 ( 2 ) dr2 ί Φ2

2(4) ώ 

= - f fc(l)fc(3)8ufc(l)iM3) dndT, 
1.3 

- -Gi22iM O 5.2-19 

The negative sign results from use of the permutation operator. The total 
energetic contribution from such permuted terms is 

EG
p = - Σ mklGkUk 5.2-20 

k,l 

Here mki is the number of possible pairs of electrons with one in MO k 
and the other in MO I; in contrast to nkh however, the two electrons con-
stituting each pair must have the same spin. 

Thus we have three types of contributions to the total electronic energy. 
One is just the sum of the one-electron energies (note Eq. 5.2-16). If the 
MOs are Hückel MOs, then the energy will be the same as that which we 
have considered thus far. 

The second contribution is a sum of electron repulsions as given in Eq. 

T4-
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5.2-18. This is destabilizing and derives from mutual electron-electron 
repulsion. We can obtain this term very simply from consideration of all 
repelling pairs. 

The third contribution is given in Eq. 5.2-20 and this is seen to be stabil-
izing. The integrals are termed exchange integrals and the stabilization 
derives from the ability of electrons of like spin to permute with the result 
of diminution of electron repulsion. 

The three energy contributions are shown schematically in Fig. 5.2-B 
for a four-MO system (e.g., butadiene). 

*» 

(a) (b) (c) 
FIG. 5.2.B. Schematic representation of contributions to the energy of a closed-

shell system, (a) One-electron terms, contribution 21\ + 272; (b) electron-electron re-
pulsion, contribution Gun -f 4Gim + #2222; (c) electron-electron exchange terms, 2Gmi» 

We can now combine all the contributions to the energy of a Slater 
determinant and obtain the general expression 

E = Σ ndk + Σ KkiGkM — Σ mkiGkiik 5.2-21 
k k<l k<l 

It should be recognized that this expression gives the energy of any Slater 
determinant, independent of whether or not it is a closed-shell system. 
However, we have not yet discussed the significance of open-shell Slater 
determinants and these are not always proper wavefunctions. 

Since we are presently dealing with closed-shell systems, we can put in 
definite values of the n*'s, the nki's, and the m*z's. I t can be seen that n* 
is 2 for each doubly occupied MO. Second, nki will be 1 for each Gkkkk-type 
term and will be 4 (note Fig. 5.2-B for example) for each Gkm term where 
k and I are different MOs. Similarly, mki will be 2 for each Gkm-type term 
where k and I are different but mki is zero for k = I since of necessity the 
electrons in this one MO (i.e., termed k or I) are of opposite spin and mu 
gives contributions only for pairs of electrons of the same spin. 

We can write the total energy for a closed-shell system as 
OCO OCC 000 OOC 

E = 2 Σ Ik + Σ Gkkkk + 4 Σ Gkiki "~ 2 Σ Gkm 5.2-22 
k k k<l k<l 
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By keeping k < I in these summations, we assure ourselves that the same 
electron-electron repulsion term is not counted twice. However, we can 
rewrite the last two terms in 5.2-22 allowing all values of occupied MOs 
for both k and I. But, then we have to divide these summations by 2 
since each term is duplicated. Hence 

ooo occ oco oco 

E — 2 £ /it + 2 J Gkkkk + 2 2] Gkiki — Σ Gkiik 5.2-23 
k k k^l k^l 

If in the last two terms of 5.2-23 we were to omit the restriction that k 7^ I, 
the last term would be increased negatively by a summation of Gkkkk terms 
and the next to last term would be increased positively by twice a summa-
tion of the same terms. Thus, we can omit the k 9^ I restriction in the last 
two summations by just compensating and not including the second term 
in 5.2-23. Thus 

000 occ 000 

£ = 2 Σ / * + 2 Σ Gkm - Σ Guik 5.2-24 
k k,l k,l 

We note that these summations are over all occupied MOs. 
In considering equations such as 5.2-21 and 5.2-24, we have to recognize 

that these merely give the total electronic energy of the MOs we are using. 
If these are Hückel MOs, for example, the energies derived will be correct 
for these orbitale but will be higher than if we use better molecular orbitals. 
This point has to be considered subsequently. 

We still have not discussed the nature of the terms in the summations 
except by definition in Eq. 5.2-2. Terms of the type Gkm have been noted 
to derive from electron-electron repulsion with one electron in MO k and 
one in MO I. However, these integrals can be evaluated further as in the 
next section. 

Turning to one other point, we find it is convenient to define single-elec-
tron (i.e., MO) energies as 

ek = h + 2 Σ Gkikiuo - Σ Gkm™0 5.2-25 
l l 

This gives the energy of a single electron in MO A; as a consequence of its 
one-electron contribution (i.e., the Ik) and also including its repulsion by 
the other electrons and taking into account stabilization by exchange with 
electrons of like spin. But note that the total electronic energy is not the 
sum of these one-electron energies. Thus, 

occ occ occ occ 

£ ^ Σ 2 ί * = 2 Σ / * + 4 Σ Gkm - 2 Σ Gkm 5.2-26 
k k k,l k,l 
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since this would include each electron repulsion and exchange term twice as 
needed. (Compare with Eq. 5.2-24.) Hence Eq. 5.2-25 gives only the energy 
experienced by each electron as a result of interactions with all of the other 
electrons. By adding such energies together we thus are including each 
electron-electron repulsion and each electron-electron exchange twice. 

5.3 Evaluation of MO Repulsion Integrals 

If one were dealing with the butadiene problem, one would obtain terms 
such as (?ιιιιΜ0, (?ι2ι2ΜΟ, GW*10, and (?i22iM°. These may or may not be 
explicitly labeled with a superscript "MO," but they do represent inter-
action between MOs. Since each molecule requires its own set of such 
integrals it is not realistic to have these tabulated and available. 

However, such integrals can be evaluated in terms of more available 
quantities. To do this we write down the definition of a general MO repul-
sion integral (e.g., Gkimn) and substitute in the LCAO-MO expansion for 
each MO in the integral. 

Gklmn= [ **(l)^i(2)g,^m(l)^n(2) dridr, 5.3-la 

= / Σ CrkXr(l) Σ c8ix8(2)ç £ ctmXt(l) Σ cunxu(2) dn dr2 5.3-lb 
r 8 t u 

Xr(Dx.(2)8xi(l)x«(2) dridr2 5.3-lc 
T8tU 

The last integral involves atomic rather than molecular orbitale. There are 
a number of conventions for writing such repulsion integrals. Among these 
are (rs |8 |^) , (rt \ su), and Grsiw

A0. In the first of these, the orbital subscripts 
are kept in the same order as in the integral (i.e., electron 1, electron 2, 
electron 1, electron 2). In the second notation, the subscripts before the 
vertical bar refer to functions of electron 1 and those after the bar refer to 
electron 2. 

This integral often has been simplified by an approximation termed 
neglect of differential overlap, or zero differential overlap. This is based 
on the idea that χΓχ« will be vanishingly small unless r = t. One can see 
that if these orbitale are not identical, then any volume element dv present 
in one where the value of the atomic orbital is appreciable will be in a 
region in space where the value of the other orbital is small (Fig. 5.3-A). 
This is a more restrictive assumption than the usual neglect of overlap 
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8T 
Xr Xt 

FIG. 5.3-A 
where merely the entire overlap integral is taken to be zero. Here we are 
assuming that the orbital product is zero even before integration. 

If we assume zero differential overlap (ZDO), then Eq. 5.3-lc simplifies 
considerably. For the integral not to vanish, it is then required that t = r 
and that u = s. We then obtain 

Gkimn
M0 = Σ CrkCsiCrmCsn / χΓ(1)χ.(2)8χΓ(1)χ.(2) dn dr2 5.3-2a 

r,8 J1,2 

= Σ CrkCsiCrmCsn / %r
2( 1 ) 9 χ β

2 ( 2 ) άτχ dr2 5 .3-2b 
r,8 Jl,2 

The integral in Eq. 5.3-2b can be seen to be the atomic orbital analog of 
the MO repulsion integral in Eq. 5.2-2. Presently the integral represents 
the energy of repulsion of electron 1 in atomic orbital xr with electron 2 in 
atomic orbital χβ. Thus the term xr

2(l) gives the electron density as a 
function of position in space of electron 1. Similarly, xs

2(2) gives the electron 
density of electron 2 as a function of its coordinates. For any two points in 
space, one having electron 1 and the other giving the position of electron 2, 
the product 

χ,2(1)(β2Αι2)χ,2(2) 

gives the electrostatic repulsion energy between the two electron densities. 
Then the integral in Eq. 5.3-2b merely affords the total repulsion when one 
integrates over all space. Finally, a shorthand abbreviation for the repul-
sion integral is just yrs so that Eq. 5.3-2b becomes 

(jklmn = 2-f CrkCsiCrmCsn)/rs Ο.ό-ό 
r ,8 

If we define a quantity œr,km = crkCrm, then we can rewrite 5.3-1 con-
veniently in matrix form as a vector-matrix-vector triple product : 

GklmnU° = Σ 0)r,kmyrsUs,ln = ftkmTtoln 5.3-4 
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where 

S>Äm = [ßlkC\m C2JfcC2m CzkCzm CikC^m ' * * ] 

and ω in is a similar vector whose elements are the same type of products 
of the LCAO-MO coefficients deriving from MOs I and n. Thus, if k and 
m were equal in <ùkm or I and n were equal in ω*η, the elements of that vector 
would be electron density terms (i.e., just the LCAO-MO coefficients 
squared). As it is, the elements of the omega vectors are products of coeffi-
cients for a given atom but derived from two different MOs. Finally, the 
yr8 terms used, which are noted above to be the energy of repulsion between 
two electrons with one in atomic orbital r and the other in atomic orbital s, 
depend on the elements bearing the two orbitale, the nature of the orbitals, 
and their distance apart. 

There is a very simple way of evaluating the triple vector-matrix-vector 
product in Eq. 5.3-4. This can be demonstrated most easily for a specific 
case. For example, suppose we wish to obtain Gmiuo, that is [12 | 12]M0, 
for ethylene. For this we need the vector 

<δΐ2 = [cnCi2 C21C22] = [ i — i ] 5.3-5 

as well as its transpose. To solve for Gmiuo = [12 | 12]M0 we need S t r a t e . 
This is written out as 

Til 712 

L72I 722_ 

2 

1 
2_J 

The product of the vector-matrix multiplication (i.e., the first two terms) 
is a vector and multiplication by the final vector then gives a scalar value 
for the repulsion integral in terms of the AO repulsion integrals. However, 
one can do this more simply by just remembering that post-multiplication 
by a vector is equivalent to taking a linear combination of the columns and 
premultiplication is equivalent to taking a linear combination of the rows. 
Thus, we use the elements of the postmultiplying vector and label the 
columns of the Γ matrix in order with these elements. Each column is 
multiplied through by its label. Similarly, we use the elements of the pre-
multiplying row vector to label and multiply the rows. After these multi-
plications one adds up all elements. This process affords the same scalar 
result that formal triple matrix multiplication would. However, it allows 
one to see, prior to the actual operation, just how many times each repul-
sion integral in the Γ matrix is used in the final result. 
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This is illustrated in 5.3-7*: 

\2 2 

+ ï7n -ÏT12I 

— 472I +ï722j 

= éTll - ï 7 l2 ~ï721 + Î722 5.3-7 

For illustration purposes all of the terms resulting are kept separate. But 
we recognize that 711 = 722 are identical as are 712 and 721. The former are 
just repulsion integrals indicating the energy raising due to two electrons 
in a single p orbital and the latter are comparable terms but where the 
electrons are in adjacent (i.e., vicinal) p orbitale. Thus, we can see imme-
diately from simple inspection of the left matrix in 5.3-7 that each diagonal 
term is taken (è) (è) times and that there are two equal such terms. We 
can see each off-diagonal term is multiplied by a positive term (i.e., + 5 ) 
and by a negative term (i.e., — j ) and that we have a total of two off-
diagonal terms, each then multiplied ( | ) ( —2) times. We thus come out 
with O.5711 — O.5712 as the value of GW110. For larger systems the method 
proves especially useful, since often it is quickly possible to tell when an 
MO repulsion integral vanishes and it generally is easy to total up the 
number of each type of atomic orbital repulsion integrals. It turns out 
to be general that when the symmetry of the pre- and postmultiplying 
vectors differs, the integral becomes zero, and consideration of the multi-
plication of columns and rows by elements derived from omega vectors of 
different symmetries reveals that a cancellation of terms will occur. 

5.4 Energy of a Slater Determinant for a Closed Shell in Terms of 
Atomic Orbital Integrals 

We have now obtained in Eq. 5.2-24 an expression for the total electronic 
energy of a closed-shell system. However, the result is in terms of MO 
repulsion and exchange integrals of the type Gkm

MO and GmiF0. We now 
would like to obtain the electronic energy in terms of atomic orbital repul-

*The 

© 
operator indicates the summation of all matrix elements. 

+h 

- i 

7u 

721 

712 

722 

—-P \M 
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sion integrals. We need to expand Ik in terms of atomic orbital integrals 
prior to completing this. We see that 

h = f ^( l )OC^(l ) dr = ίΣ CrkXrWK Σ crtxi(l) dr 
J J r t 

= YjCrkCtk I Xr(l)3Cx«(l) ^Τ = Σ CrkCtkHrt 5.4-1 

If we now take Eq. 5.2-24 and substitute for the MO one-electron energy 
terms (using 5.4-1) and also for the MO repulsion integrals (i.e., using 
5.3-1), we obtain 

E = 2 Σ crkctkHrt + Σ CrkCsiCtkCui(2GrstuA0 - Gr8Ut
A0) 5.4-2a 

rt,k r8tu,kl 

or equivalently 

E = 2 Σ CrkCtkHrt + Σ (ZCrkCnCtkCul - CrkC8iCtlCuk)Gr8tu
KO 5 . 4 - 2 b 

In Eq. 5.4-2b we have exchanged the subscripts £ and w in the last summa-
tion of 5.4-2a. This is acceptable since we are summing over all values 
(i.e., over all atoms t and u) and the letter used to designate an atom is 
arbitrary. 

We might assume zero differential overlap now. Then Gratu
A0 vanishes 

unless t = r and u = s; this deletes all other terms in the summation in 
5.4-2b to give 

E = 2 Σ crkCtkHrt + Σ (2crk
2c8i

2 — CrkC8icriC8k)yr8 5.4-3a 
rt,k r8,kl 

where yr8 = Gr8r8
A0. 

If we designate one-electron bond orders by prt,k = crkctk, one-electron 
densities by qrk = crk

2, and again use the notation that œr,ki = crkcri, we 
obtain 

E = 2 Σ Vrt,kHrt
A0 + 2 Σ Qrkqaiyrs - Σ C*>r,fciC0e,fcl7r« 5 . 4 - 3 b 

Here we see that the energy of a Slater determinant includes the one-
electron energies of Hückel theory in the first term (i.e., remember our 
treatment of bond order contributions to energy). The second term is a 
pure Coulombic repulsion term involving two-electron densities, qrk and 
q8h repelling one another with an energy of yr8 per unit electron density in 
each atomic orbital. The final term is stabilizing and derives from our 
ability to exchange (permute) two electrons of the same spin and thus 
minimize electron repulsion by allowing an electron at atom r and one at 
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atom s to avoid one another. The terms œr,u and ω8,π each give a measure 
of the exchange occurring. 

5.5 Minimization of the Energy of a Slater Determinant; 
Roothaan's SCF Equations 

One can minimize the energy E as given in Eq. 5.4-2a with respect to 
the LCAO-MO coefficients used. In doing this we have to maintain the 
requirement for orthonormahty of the eigenfunctions. The result given is 
that derived by Roothaan1: 

Σ ILHrt + Σ c8iCui{2Gr8iu^ - (?rettf
A0)] - eSrt}crt = 0 5.5-la 

t 8U,l 

which holds for r = 1, 2, 3 , . . . , n. It is seen that Eq. 5.5-la is reminiscent 
of our usual secular equations except that the quantity in the brackets 
replaces the usual Hrt; actually Hrt has an addition to it of 

Σ CsiCul(2Gr8tu
AO - GrsutA0) 

8U,l 

We define the entire quantity as 

FriA° = Hrt*° + Σ Csicui(2Gr8tu
AO - Gr8Ut±°) 5.5-2 

su,l 

which then gives 

Σ (FrtA° - eSrt)Crt = 0 5.5-lb 
t 

Thus to solve the secular equations we would proceed in the usual manner, 
here diagonalizing the F matrix, except that the matrix elements, that is, 
the Frt's, need to be obtained from Eq. 5.5-2. The matrix elements are 
not the simple Hrt

AO's (i.e., a's and ß's) which we have previously been 
using. Rather they are additional terms which can be seen to include elec-
tron repulsion and exchange effects on the electron. Unfortunately, evalua-
tion of each Frt element requires the LCAO-MO coefficients. Since these 
are not available until after diagonalization the best we can do is to start 
with an approximation to these (e.g., with Hückel coefficients) and then 
use the resulting coefficients for a second iteration. The process then is 
repeated until the MO energies and coefficients converge to self-consistency. 

Finally, let us write the total energy in terms of the matrix elements we 
have defined. Thus, we can factor Eq. 5.4-2a to give 

E = Σ crkCtkl2Hrt + Σ c8icui(2Gr8tu*° - Greut^)-] 5.5-3 
rt,k 8u,l 
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We can substitute the definition of Frt
A0 (note Eq. 5.5-2) into this to give 

E = Σ CrkCtktHrt*0 + Fr i
A°] 5.5-4 

rt,k 

Then we use this to evaluate the energy obtained at the end of each itera-
tion. 

5.6 Pople's SCF Equations 

Thus far, the Roothaan SCF equations have not assumed zero differen-
tial overlap. If we wish to introduce this assumption (ZDO), it is con-
venient to consider the effect of the assumption on the value of Frt in 
Eq. 5.5-2 in two separate cases. 

In the first case where we are dealing with diagonal matrix elements (i.e., 
Frr), t = r. Then the first term of 5.5-2 becomes Hrr

A0. Additionally, the 
summation 

2 Σ CsiCuiGr8tu
A0 becomes 2 Σ Csi2Gr8r8

AO 5.6-1 
8U,I 8,1 

since t must equal r and u = s by our ZDO assumption. Finally the summa-
tion 

— YJ c8iCuiGr8utAO becomes — ]£crz2Grrrr 5.6-2 
8U, I I 

since here u = r, s = t from ZDO, and also t = r by our initial assumption 
of the diagonal nature of Frt. Thus 

FrS° = # r r
A 0 + 2 £ C8fyr8 ~ Σ Crl2Jrr 5 .6-3 

8,1 I 

where yr8 = Grere and yrr = Grrrr. We can simplify this further using the 
definition of electron density and separating out the term for s = r from 
the second term; thus 

Frr^ = #rrA° + £ q9'7n + \qr'yrr 5.6-4 
8*r 

where qr' is the total electron density at atom r (i.e., Σ niQri)-
i 

For off-diagonal terms Frt is again obtained from Eq. 5.5-2. The first 
term is now Hrt

A0. The second term involving G>eiM
A0 disappears by ZDO, 

since t =̂  r for an off-diagonal element. The third term 
— Σ CsicuiGr8Ut

AO becomes —Σ CticriGrtrt
AO 5.6-5 

8U,l I 
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since s must equal t and u = r by ZDO. Also we can use the definition of 
bond order to further simplify this last term. We then obtain 

Frt^ = Hrt™ - \Prtyrt 5.6-6 

We use the diagonal and off-diagonal elements as defined by 5.6-4 and 
5.6-6 in the usual secular equations, except that now we also neglect overlap 
integrals off the diagonal. The secular equations are 

Σ (Frt - Edrdct = 0 5.6-7 

5,7 Configuration Interaction 

Thus far we have aimed at optimizing LCAO-MO coefficients either so 
that single MOs would be minimized in energy or so that Slater determinant 
wavefunctions would have minimum energy. 

Now we consider using Slater determinants as basis functions and mixing 
these. This will give us a linear combination of Slater determinants. Since 
each Slater determinant represents an electronic configuration, we are 
really mixing configurations. For such mixing we will use the full $ operator, 
thus including electron-electron repulsion. 

As an example, let us consider the situation of a molecule (e.g., ethylene) 
having one electron promoted from MO k to MO I. We can write four 
configurations: 

t 2̂ *3 £ 

♦■ -f- H- H- - I -

* H— +- -H- -\-
The Slater determinantal functions are 

fc« |*»(1)*,(2)| , * = | * » ( 1 ) * , ( 2 ) | 

& = |**(1)*,(2)| , * - | * » ( l ) * , ( 2 ) | 5.7-1 

Our intention is to mix these four configurational functions in a 4 X 4 
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secular determinant 

Ψι 

<h 

Φζ 

ΦΑ 

Φι 
(F11-

Fn 

Fzi 

Fn 

E) 
<t>2 

F12 

(F22 - E) 

Fzi 

F42 

(F 

Φζ 

F\Z 

Fn 

33 — E) 

F43 (F 

Φ* 
Fu 

J?24 

FZA 

u-E) 

= 0 5.7-2 

where each Fr8 matrix element is defined as 

Fr8 = J Φτ$Φ* dr = J <f>r(3C + 9)φβ dr 5.7-3 

where φτ and φ8 represent Slater determinants, or permuted product 
functions. 

We now proceed to evaluate each of the elements. In this we remember 
that we do not need to permute the configuration before the $F operator. 
In the case of Fn 

Fn = j ¥»(1)¥,(2)0#¥*(1)¥,(2) dm = h + h + Gkm"° - Gkllk*° 

5.7-4 

This is just the energy of the closed-shell Slater determinant φχ before any 
mixing with other Slater determinants. We can write this result by inspec-
tion as discussed earlier or can consider the integral in detail. The first two 
terms arise from use of the 3C portion of the $ operator, the Gkmuo term 
comes from use of the g operator without permutation, and the —Gkiikuo 

derives from use of the 9 operator with permutation. 
In exactly parallel fashion 

F22 = h + Ii + Gklkl*° - Gkllk*° 5.7-5 

In the case of 3̂3 and F44 the one-electron terms and the nonpermuted two-
electron term arise similarly, but spin orthogonality leads to no exchange 
terms. We obtain 

F33 = J Ψ*(1)Φ,(2)ί^*(1)Φϊ(2) dr = Ik + h + Gkm*° 5.7-6 

and 

Fu = Ik + Ii + Gk 
,MO 5.7-7 
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Proceeding to the off-diagonal elements we find that Fu = 0. Spin 
orthogonality wipes out all one- and two-electron terms. 

Fl2 = f ^ ( 1 ) ^ 1 ( 2 ) ^ ^ ( 1 ) ^ ( 2 ) dr = 0 5.7-8 

Continuing, we have 

Fn = f Ψ*(1)¥,(2)*ΡΦ*(1)Φι(2) dr = 0 5.7-9 

and similarly Fu = 0 again as a consequence of spin orthogonality. Also, 
JF23 and F24 = 0 in identical fashion. 

In the case of F34 we have 

Fu = j ¥*(l)*i(2)ffP¥*(l)*,(2) dr = -Gkllk*
0 5.7-10 

Here, without permutation we have spin orthogonality and only — GWM0 

results. Secular determinant 5.7-2 now can be filled in as 

Φι 

Ψ2 

to\ 0 0 ( Λ + / Ι + <?ΜΗ"°. -Ghm
m 

-E) 

0 0 G»»*0 (h + h + Gkm 

-E) 

5.7-11 

Thus φι and to are final eigenfunctions. The 2 X 2 involving φζ and <£4 has 
equal diagonal elements and is reminiscent of the Hückel ethylene problem. 
Thus this can be diagonalized by addition-subtraction, thus giving 
(1/V2) (to + φ4) and( — 1/V2) (to—φυ as eigenfunctions. The former gives 
the lower energy eigenvalue, i.e., 

E = h + h + Gklu
uo - Gmk

uo for (1/V2) (φ3 + ΦΑ) 5.7-12 
The latter gives an energy of 

E = /» + / , + G>a?° + Gkm*° 5.7-13 

ψΐ 02 

(h + Ιι + Gkm"° 0 
- G*mM0 - # ) 

0 (/* + h + Gklk?° 
- G*«*MO - m 

to 
0 

0 

φ4 
0 

0 
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Hence the original problem of configuration interaction in this case has 
led to the three degenerate wavefunctions 

φι, <fe and (1/V2) (φ3 + φ4) 5.7-14 

all with an energy Ik + h + Gkmuo — Gkiikuo and also to a higher energy 
eigenfunction 

(1/V2) ( φ 3 - φ 4 ) with an energy /* + /* + Gkm*° + G*n*M0 5.7-15 

The first three (Eq. 5.7-14) constitute the three components of a triplet 
species and the last one (Eq. 5.7-15) is an excited singlet. The energy dif-
ference between these is twice the exchange integral, i.e., 

AE = 2Gkm
M0 5.7-16 

and this proves to be general. 
This result gives us the general form in which to write excited singlets 

and triplets. These have the form 

3Φ = ( ΐ /ν5){ |Φ 1 (1)Φ 1 (2)Φ,(3)Φ,(4) · · .Φ,(2η- 1)Φ»(2η)| 

=F | ^ i ( l ) * i ( 2 ) ^ ( 3 ) * « ( 4 ) . . - * , ( 2 n - l)*m(2n)\} 5.7-17 

where the singlet *Φ has the minus sign and the triplet 3Φ is assigned the 
plus sign. 

Another example of configuration interaction arises in connection with 
the use of correlation diagrams for organic reactions. A forbidden ground-
state reaction is one in which an occupied bonding MO becomes anti-
bonding during the reaction. Figure 5.7-A shows the situation where a 
closed-shell reactant configuration with only bonding MOs occupied 
adiabatically transforms itself into a product set of MOs. Since reactant 

FIG. 5.7-A. Ground-state reactant FIG. 5.7-B. Doubly excited state re-
giving doubly excited state product. actant giving ground-state product. 
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MO 3 becomes antibonding during the reaction, the product configuration 
is doubly excited. The entire wavefunction for this configuration can be 
expressed as Slater determinant Φι. It is clear that Φι becomes increasingly 
high in energy as the reaction proceeds: 

Φι = | Ψ Ι ( 1 ) Ϋ Ι ( 2 ) Ϋ , ( 3 ) Ϋ 2 ( 4 ) Φ Ι ( 5 ) Ψ 8 ( 6 ) | 5.7-18 

Although the present situation is written for a six-electron, six-MO species, 
the example applies generally. 

A second configuration is Φπ given in Fig. 5.7-B. This reaction diagram 
starts with a doubly excited configuration and ends with a ground-state 
one. Clearly, this begins as being of rather high energy and ends being low 
in energy. The configurational wavefunction is given by 

Φπ = |^ι(1)Φι(2)Ψ2(3)Ψ2(4)^4(5)Ψ4(6)| 5.7-19 

We now consider the consequences of interaction of these two Slater 
determinantal wavefunctions (i.e., configuration interaction). The secular 
matrix is given by 

Φι 

ί·ιι 

Φι 
"Fu 

Fu i 

Φιι 
Fi I I 

Fu nj 
5.7-20 

Φπ L^II i ^ιι iij 
where 

Fuv = / Φ^Φ» dr 5.7-21 

We obtain Fi i and Fu π in the usual way as 

Fi i = 2Ιι + 2 / 2 + 2/3 + d m + (72222 + G3333 + 4(?i2i2 + 4C?i3i3 

+ 4(x2323 — 2G1221 — 2(?i33i — 2^2332 5.7-22a 

Fu II = 2 / i + 2 / 2 + 2/4 + (?im + (?2222 + (?4444 + 4(?1212 + 4Gi414 

-\- 4C?2424 — 2G122I — 2(?1441 — 2(?2442 5 .7-22b 

In the case of Fi π we evaluate the integral 

Fin = ^ ^ ( 1 ) ^ 1 ( 2 ) ^ , ( 3 ) ^ ( 4 ) ^ , ( 5 ) ^ , ( 6 ) 

X ^Ρ^ι(1)Φι(2)Ψ2(3)Φ2(4)^4(5)^4(6) dr 

= (?3344MO = [-34 1 34] 57.23 



184 5. More Advanced Methods 

II II 

Fi i 

Reaction coordinate 

FIG. 5.7-C. Non crossing of φτ and φπ along the reaction coordinate as a result of 
configuration interaction. 

We evaluate G3344MO = [34 | 34] as follows: 

[34 | 34] = Σ cor,347rSw8f34 = ώ34Γω34 5.7-24 
r,s 

and find that in general this quantity does not vanish. With a nonvanishing 
off-diagonal element Fi π we find that the secular matrix in expression 
5.7-20 will diagonalize to give energies higher and lower than Fn and Fn u 

even when these two approach one another and become degenerate. Thus, 
there is a splitting of states which results in noncrossing as shown in Fig. 
5.7-C. 

5.8 General Expressions for Use in Configuration Interaction 

Configuration interaction is normally used for more general purposes 
than in the two examples presented thus far. Usually, after one has obtained 
one-electron MOs, either of the Hückel or SCF variety, a further improve-
ment in the energy of the ground state can be obtained by admixing the 
closed-shell ground state with as large a number of excited configurations 
as is practical. Also, if possible, doubly excited configurations should be 
included. From such admixing one obtains the energies of both singlets and 
triplets. The wavefunctions obtained are in the form of linear combinations 
of Slater determinantal polyelectron wavefunctions. While the eigenfunc-
tions thus are not quite as convenient to work with as simple one-electron 
MOs, as in Hückel or SCF approximations, they nevertheless can be used 
to give all the desired physical properties as electron densities, bond orders, 
and so on. Furthermore, the energies for the lower excited states are found 
to be decreased relative to the unmixed Slater determinantal forms, and 
thus configuration interaction also gives us better excited state energies 
and good excited state wavefunctions. 



5,8 General Expressions for Use in Configuration Interaction 185 

In order to carry out configuration interaction practically, we need to 
use general expressions for the matrix elements in order to avoid having to 
calculate these from first principles each time we do such a calculation. 
Since the expressions given below can be derived by the reader using the 
methods given thus far, the details are omitted and it is suggested that the 
reader try deriving some of these as problems. For matrix elements between 
singly excited configurations:* 

3 * 3 3 3 
lFkm

l« = j ^kl $ 'Φ^ dr = 8kmÔlnE0 + bkmFln - hnFkm + lG 5.8-1 

3 

where the superscript l refers to the two possible singly excited states (i.e., 
singlet and triplet) and one selects either the 1 or the 3 superscript. The 
k, Z, m, and n refer to four MOs of the Hückel or SCF variety and the 
ôpq's are the usual Kronecker deltas, which are zero if p ^ q and unity if 
V = q. EQ is the energy of the closed-shell ground-state configuration (i.e., 
in absence of configuration interaction). The F terms are defined as 

Fln = Hlr*° + 2 Σ Gwlwn*° - Σ Gwln*° 5.8-2a 
w w 

Fkm = Hkm*° + 2 Σ Gwkwm*° - Σ Gœfenw
M0 5.8-2b 

w w 

3 
lG — Gknlm — Gknml ^ Gknlm 5.8-3 

The summations are over all N MOs of the ground configuration. In Eq. 
5.8-3 the plus or minus sign depends on whether the singlet or the triplet 
is being considered. 

Matrix elements between singlet and triplet configurations disappear. 
Interaction elements between the ground-state configuration and singly 
excited configurations are given by 

W = V2F« = V2(#**M0 + 2 Σ Gkwlw™ - Σ Gkwwl"°) 5.8-4 
w w 

In the case where the MOs used are SCF orbitale, then Brillouin's theorem 
leads to zero matrix interaction elements between the closed-shell ground 
state and singly excited singlet configurations (i.e., as in Eq. 5.8-4). In any 
case matrix elements between different multiplicity configurations also 
vanish. 

* The notation Φ** is used to represent the configuration in which an electron has been 
promoted from MO k to MO I. The configuration is given in Slater determinantal form 
(e.g., note Eq. 5.7-17). 
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One interesting point arises if we attempt to take a closed-shell Slater 
determinant consisting of non-SCF MOs and admix each of these with small 
increments of other members of the complete set of MOs. Let us take a 
four-MO system (e.g., butadiene) as an example. We write the usual Slater 
determinant, except that to each space-spin MO we add an increment of 
all of the other MOs: 

Φ = |{Φχ(1) + «l2*2(l) + δ13*3(1) + «14*4(1)} 

X {*χ(2) + «12*2(2) + W 3 ( 2 ) + «ι4*4(2)} 

X (*2(3) + δ2ι*ι(3) + δ23*3(3) + «14*4(3)} 

X {*2(4) + «21*i(4) + δ23*3(4) + «24*4(4)} I 5.8-5 

If we expand this Slater determinant, we will obtain a total of 44 deter-
minants. We obtain 

Φ = |* i ( l )* ! (2 )* 2 (3 )* 2 (4 ) | + a 

«i2{l*2(D*i(2)*2(3)*2(4)| + |*i( l )*2(2)*2(3)*2(4)l} + b 

«2i{i*i(l)*i(2)*1(3)*2(4)| + |* i ( l )* i (2)* 2 (3)*i (4) i ) + c 

«i3{l*3(l)*i(2)*2(3)*2(4)| + l*i( l )*3(2)*2(3)*2(4) |} + d 

«1 4{l*4(l)*i(2)*2(3)*2(4) | + l*i( l )*4(2)*2(3)*2(4) |} + e 

«23{l*i(D*i(2)*3(3)*2(4)| + |* i ( l )* i (2)* 2 (3)* 3 (4) |} + f 

«2 4{ |*i( l)*i(2)*4(3)*2(4) | + |*1(1)*1(2)*2(3)*4(4) |} g 

plus terms representing doubly excited configurations and 
weighted with «i32, «i4

2, «23
2, «24

2, «i3«i4, etc. 5.8-6 

For MOs which are nearly SCF the improvements to each MO (i.e., the 
«'s) will be small and we can neglect the squared terms, the terms consisting 
of the product of two different «'s, and terms of still higher order in the «'s. 

If we now turn our attention to the expansion in Eq. 5.8-6, we note that 
the term on line a is just the original closed-shell Slater determinant before 
improvement. Interestingly, the determinants on lines b and c are zero 
since these are determinants each of which has two identical columns, and 
such determinants vanish. The Slater determinantal wavefunctions in lines 
b and c are seen to result from admixture (note the coefficients «^ and «2i) 
of MOs within the closed shell with other closed-shell MOs which need 
improvement. The result is that there is no improvement by different 
linear combinations of the same MOs already utilized. 

Even more interesting are the terms in lines d, e, f, and g. Each of these 
can be seen to be a Slater determinantal combination corresponding to a 
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singlet excited state, although one must note that the form is slightly dif-
ferent than that given in Eq. 5.7-17 for singlets. One can permute the 
first two terms of the second determinant in lines d and e and the last two 
terms of the first Slater determinant in each of lines f and g. In doing this 
we obtain the negative sign between the two determinants and thus have 
the characteristic excited singlet form. 

This means then that improvement of the original non-SCF single deter-
minantal wavefunction to self-consistency is equivalent to configuration 
interaction mixing in all singly excited state configurations. Also, we have 
here a proof of Brillouin's theorem, since as the variation needed to reach 
self-consistency approaches zero, the contribution of the singly excited 
configurations also becomes zero. Thus for SCF MOs, there will be no 
matrix interaction elements between the ground-state Slater determinant 
wavefunction and the singly excited singlet configurational wavefunctions. 
Actually, one might use Eqs. 5.8-5 and 5.8-6 to obtain an approximate 
SCF set of MOs by using the coefficients weighting the singly excited 
singlet determinantal wavefunctions as derived from a simple configuration 
interaction calculation. This would give only the bonding MOs. However, 
if one wanted the antibonding MOs, one could use a similar treatment based 
on an initial determinant in which other sets of MOs (e.g., all antibonding) 
were doubly occupied. 

Still another point of interest concerns the significance of the matrix 
elements (e.g., Fin) in Eqs. 5.8-2a and 5.8-2b. We take Eq. 5.8-2a and 
substitute for i/zn

M0, for Gwiwn
M0 and for G^™*10 as follows: 

#*nM0 = Σ crlctnHrt™ 5.8-7 
r,t 

Gwiwn
uo = GivnJ10 = Σ CriCswCtnCuwGr8tu

AO (note Eq. 5.3-1) 5.8-8a 
rstu 

Gwinw
M0 = Giwwn

M0 = Σ CriCswCuwCtnGr8utA0 (again note Eq. 5.3-1) 
rstu 

5.8-8b 
This affords 

F,„M0 = Σ cric,n{Hrt™ + Σ ciWcuw(2Grstu
A0 - Gmt

A0)} 5.8-9 
rt 8u,w 

However, we notice that the quantity in the braces has the same form as 
Frt

A0 of Eq. 5.5-2 and substitution into 5.8-9 gives us 

Fln*° = Σ crlctnFrt*° 5.8-10 
rt 

Thus we see that Fin
uo is just a matrix element between MOs I and n 

quite as Hin
M0 would be except that here the full $ operator is used rather 
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than just X. If ψι and ψη are eigenfunctions of $F, then off-diagonal elements 
FinU0 will vanish unless I = n (i.e., for Fn). If I does equal w, note that 
Eq. 5.8-2a becomes identical with 5.2-25 which gives the single MO energy 
including electron-electron repulsion. 

5.9 Three-Dimensional Hiickel Theory; The Extended Hückel 
Treatment 

The methods we have used in Hückel treatments thus far have assumed 
either a set of p orbitals or some other truncated set of orbitals which has 
excluded part of the molecular framework. The part excluded often has 
been a planar σ framework or in other instances it has been a part of the 
molecule not particularly of interest and assumed not to interact with the 
truncated, delocalized system of orbitals considered. While symmetry does 
allow one to separate a planar σ framework from the π system of p orbitals 
perpendicular to this plane, the dissection into two separate sets of MOs, 
one studied and the other disregarded, is not ideal. 

If we decide to include all valence shell atomic orbitals in a calculation 
and thus admix three p orbitals and one carbon 2s for each carbon atom 
and admix a hydrogen Is for each hydrogen atom, we have what is termed 
extended Hiickel theory. Alternatively, we could use a basis set consisting 
of hybrid orbitals but then orbitals at any carbon have Hr8 matrix elements 
between them while px, pVJ pz, and 2s orbitals centered at each carbon differ 
in symmetry and do not have such matrix elements. 

If we select the px, pv, pz, and 2s orbitals at each center as our basis, it 

/ 
y 

FIG. 5.9-A. Orientation of basis orbitals at two carbon atoms of a molecule. 
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is clear that the Hiickel solution requires knowledge of the overlap between 
orbitale at different carbons and oriented at odd angles relative to one 
another (e.g., note Fig. 5.9-A). In Fig. 5.9-A we have depicted only two 
of the many atoms of a typical system of interest; but the relations derived 
will apply to all sets of two adjacent atomic centers. 

Thus, using the methods described previously for obtaining overlap 
between orbitale with unusual geometric relationships relative to one 
another, we can derive the expressions in the following equations: 

Οχχ 

&yy = 

Szz = 

ÏJxy ~~ 

Sxz = 

Syz = 

Sxe = 

Sy, = 

Szs — 

(Ax/PyS„ + [ ( Δ ^ + Az*)/p>lSTT 

(Ay/PyS„ + [(Δζ2 + Δζ2) /Ρ
2]£„ 

(Az/PyS„ + [(Δζ2 + Δ2/2)/ρ2]&τ 

(AyAx/fîS,, - (AxAy/p>)Srr 

(ΔζΔζ/ρ2)£„„- (AxAz/pi)S,T 

{AyAz/p^S,,- (AyAz/p^Sr* 

(Ax/p)S„ 

(Ay/p)S„ 

(Az/P)S„ 

5.9-1 

5.9-2 

5.9-3 

5.9-4 

5.9-5 

5.9-6 

5.9-7 

5.9-8 

5.9-9 

Here SXX) Svv, Szz, Sxv, Sxz, and Syz give us the overlap integrals between 
two p orbitals with the indicated orientations and at two centers. Similarly, 
SX8, Sy8, and SZ8 give us the overlap integrals between a px, py, or pz orbital 
and a carbon 2s orbital at another center. The p's are the distances between 
the two atomic centers, Sa<r is a standard overlap integral, available from 
tables, for two p orbitals oriented colinearly at the distance p apart. Simi-
larly, STT is the standard overlap integral value, again available from tables, 
where the two p orbitals are oriented parallel to one another. Ασ8 is the 
standard integral between an s orbital and a p orbital at the second center 
aimed at the s orbital. The ax, Ay, and Δζ values are just the difference in 
x, y, and z coordinates at the two centers considered. Finally, in using these 
relationships, we adopt the convention that Sff8 is positive if the first sub-
script is σ and the second is s while this overlap is negative if the first sub-
script is s and the second is <T, as in $βσ. οσσ is always negative. 

These relationships thus give us the required overlaps between the basis 
orbitals, although in terms of standard overlap integrals. 

With the overlap integrals available, we now need to discuss the Hr8 

elements, namely the resonance integrals. For the diagonal elements (i.e., 
the Hrr's) the valence state ionization potential of the given element for the 
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s orbital or p orbital used is generally used directly. Thus, for hydrogen 
Is Hrr is taken as —13.60 eV (i.e., the valence state ionization potential). 
For carbon 2s we use —21.01 eV, and for carbon 2p we use —11.27 eV. 

For the off-diagonal matrix elements (Hr8 where r 9e s) the Mulliken 
"magic formula" in Eq. 5.9-10 is used: 

Hrs = K(Hrr + H8S) Srs/2 5.9-10 

This provides a resonance integral which is proportional to the overlap 
integral and which gives an energy that is intermediate between the valence 
ionization potentials of the two orbitale r and s. K is a proportionality 
constant commonly taken about 1.75. 

With the [H — ES~] matrix elements available, it remains to diagonalize 
this. However, we notice that the eigenvalue symbol E occurs in both 
diagonal and off-diagonal terms. One approach to solving the diagonaliza-
tion problem is first to diagonalize the S matrix, as in Eq. 5.9-11, to give 
the Sd matrix. The Jacobi process described earlier can be used or some 
alternative, less time-consuming method (e.g., Gram-Schmidt orthonor-
malization) can be employed. Thus, there is a T matrix which can be used 
in a similarity transformation to convert S to Sd. Further, we could pre-
multiply Sd by a matrix Sd""1 in which each diagonal element is the reciprocal 
of the diagonal elements of the Sd matrix; this would give us the unit 
matrix (i.e., 1) with all ones along the diagonal and zeros elsewhere. 
Alternatively, we can accomplish the same result by employing the S<r1/2, 
or V, matrix twice, once before and once after as in a similarity transforma-
tion. We can do this since both V and Sd are diagonal matrices and thus 
commute (the order can be reversed) : 

TST = Sd 5.9-11 
and 

VTSTV = VSdV = 1 5.912a 

If we define the product TV as U, then 5.9-12a can be more simply rewritten 
as 

USU = 1 5.9-12b 

We can now apply this similarity transformation to the entire secular 
matrix and effectively remove the E terms from the off-diagonal elements 
as a consequence of the Sr8 terms disappearing from off the diagonal. Thus 
we can see in Eq. 5.9-13 that applying the similarity transformation using 
the U matrix converts the secular matrix into a form lacking off-diagonal 
E terms : 

Ü[H - #S]U = UHU - EOSU = [H' - Et] 5.9-13a 
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where 
H' = UHU 5.9-13b 

Hence solving the original secular matrix, including overlap, for its eigen-
values is equivalent to diagonalizing the new H' matrix which is expressed 
in terms of a new basis where the orbitals are orthogonal. To effect this 
diagonalization we proceed as usual : 

C'[H' - #1]C' = 0 5.9-14a 
or 

C'0[H - #S]UC = C[H - #S]C = 0 5.9-14b 

Here Eq. 5.9-14b formulates the diagonalization problem in the old basis 
where there is overlap between nonorthogonal orbitals while Eq. 5.9-14a 
formulates the diagonalization problem in terms of the new, orthogonalized 
basis. 

If we proceed as in Eq. 5.9-14a, we note that in addition to obtaining 
the eigenvalues, which are independent of which basis we select, we obtain 
the eigenvector matrix C. However, this set of eigenvectors (or eigenfunc-
tions) is not particularly useful since it gives weightings of the orthogonal-
ized basis orbitals rather than the set with which we began. However, 
reference to Eq. 5.9-14b reveals that we can easily convert this to the desired 
C matrix : 

C = UC 5.9-15 

This relationship is formulated in Eq. 5.9-15. 
The extended Hückel method thus can be carried out on organic systems 

including all bonds, both σ and π, and in fact it does not differentiate 
between these. As in the two-dimensional Htickel treatment it does not 
take into account electron-electron repulsion and exchange. In practice it 
gives useful results when used qualitatively but energy differences predicted 
are usually much too large. 

5.10 Three-Dimensional SCF Methods 

Just as it was possible to improve two-dimensional Hückel theory by 
proceeding to two-dimensional SCF approaches, three-dimensional quan-
tum mechanical treatments are improved by proceeding to methods includ-
ing electron-electron interaction. 

We begin with the Pople SCF equations 5.6-4 for diagonal matrix ele-
ments Frr and 5.6-6 for off-diagonal elements Frt. We first concentrate 
attention on the Hrr and Hrt terms in these expressions. For this we use the 
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one-electron Hamiltonian operator 3C: 

3C = -(Μ/&ΜΤ2)Ψ -VA-VB-VC 5.10-1 

where V2 represents the sum of second partial derivative operators with 
respect to the three coordinates. More commonly this is written in units 
such that the coefficient of V2 is — \y and for simplicity this will be used 
henceforth. Accordingly, Hrr may be written as 

Hrr = / Xr( l ) [ -^V 2 - VA - VB - Vc - · · -]xr(l) dr 5.10-2a 

or 
( r | _ i V 2 _ vA - vB - vc | r) 5.10-2b 

The notation in Eq. 5.10-2b is just an alternative way of writing integrals. 
More important, we note that we can partition the integral into two 
separate integrals. One gives us the energy of an electron in AO r. We 
designate this Urr and note that it includes both the kinetic energy of the 
electron in this AO on atom A and also the potential energy of attraction 
for the nucleus, or core, of this atom: 

Hrr = ( r | -£V2 - VA\r) - Σ (r\VB\r) 5.10-3a 
Br*A 

= Urr- Σ (r\VB\r) 5.10-3b 

The other term derived from the original integral consists of the sum of 
(r\VB\r) integrals and these represent the potential energy of attraction 
for the electron in AO r for all the nuclei other than A (i.e., where B corre-
sponds to each atom). 

Turning attention to the off-diagonal terms Hrt we can again use the 
same Hamiltonian operator in Eq. 5.10-1 and obtain 

Hrt = ( r | -§V2 - VA - VB - Vc 10 5.10-4 

If atomic orbitals r and t are on the same atom Ay then the portion of the 
integral corresponding to use of the operators — ̂ V2 and —VA vanishes 
due to symmetry; that is, r and t necessarily differ in symmetry (e.g., 
one being py and the other s, etc.) while the operator is totally symmetric. 
Also with r and t on the same atom but being different orbitals, the portions 
of the integral deriving from use of the other operators (e.g., VB) are zero 
due to zero differential overlap. 

Where atomic orbitals r and t are on different atoms, A and B, it is 
convenient to partition the integral in Eq. 5.10-4 into a part including 
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{ — Ψ — VA — VB) and a second part using ( — Vc — VD ). Thus, 

Hrt = ( r | - èV 2 - VA - VB\t) - Σ (r\Vc\t) 5.10-5 

The first operator affords the kinetic and potential energy contributions of 
an electron spread between orbitals r and t on atoms A and B; this includes 
the attraction for nuclei A and B. Thus in Eq. 5.10-5, the first term is just 
the usual resonance integral ßrt between the two orbitals r and t. However, 
the second term includes only the potential energy contributions due to 
attraction of the electron spread between orbitals r and t by nuclei C, Z), 
etc. These are taken as small and neglected in CNDO calculations. In 
summary Hrt is given by 

Hrt = ßrt = Srtßrt° 5.10-6 

We should note that the ßri°, in contrast to the usual resonance integrals 
connoted by this symbol, is independent of the extent of overlap between 
AOs r and t and is just a function of the energies of the orbitals r and t. 

We now substitute the value of Hrr (note Eq. 5.10-3b) into the Pople 
SCF expression for Frr (Eq. 5.6-4) and also remove the restriction over the 
summation so that s may equal r; to compensate for the latter we subtract 
qryrr* This gives us 

Frr = Urr~ Σ (r\VB\r) - * 0 Γ 7 Γ Γ + Σ q*7rs + Σ QsJrs 5 . 1 0 - 7 
Bj^A 8,r;8 on A 8,r;sonB 

Here we have also dissected the summation of q8y8S terms into those which 
correspond to orbitals on atom A and those on atom B, remembering that 
atomic orbital r is on A. 

Now, in CNDO (complete neglect of differential overlap) treatments the 
approximation is made that all repulsion integrals are a function only of 
which two atoms the two orbitals are on and are independent of the orienta-
tion and hybridization of each pair of AOs involved in a repulsion integral. 
Thus, in Eq. 5.10-7 we label yrr as YAA- In the fourth term in Eq. 5.10-7 we 
set all the yra terms equal to the same yAA since in this summation both 
orbitals r and s are on atom A. Clearly this assumption is a bit drastic 
since the integrals really differ appreciably; for example, yrr is much larger 
than yr8, for in the former case two electrons repelling one another are 
confined in one AO while in the latter they are in different AOs albeit on 
the same atom. Finally, for the last term, the yrs terms are set equal to a 
common parameter yAB. Here the error introduced tends to be smaller. 

* Here for simplicity we omit the prime on qr used earlier to signify total electron den-
sity on atom r. We recognize this term by its single subscript not involving any MO. 
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With these substitutions, Eq. 5.10-7 becomes 

Frr = U„ + (QA - kr)7AA + Σ (QB7AB ~ VrB) 5.10-8 
B9*A 

The term YTB represents the attraction for an electron in AO r on A for the 
nucleus of atom B; this is the same term as the last one in Eq. 5.10-3. 

We obtain the off-diagonal term from Eq. 5.6-6 by substitution for Hrt 

and use of a generalized repulsion integral : 

Frt = SrtßP - hPnyAB 5.10-9 

Finally, there is an advantage to rewriting the diagonal terms with 
inclusion of the definition for total electron density on atom B as 

qB = ZB- QB 5.10-10 

where QB is the charge on atom B and ZB is the nuclear charge of this 
atom. We obtain 

Frr = Urr + (qA - hqr)yAA + Σ 1-QBJAB + (ΖΒΎΑΒ - 7 r * ) ] 5.10-11 
B^A 

The quantity (ZBJAB — VrB) is termed a penetration integral. It can be 
seen to represent the energy of an electron in atomic orbital r or atom A 
as determined by its attraction by the positive core of atom B (i.e., a 
negative or stabilizing energy effect) and its repulsion by the full comple-
ment of electrons (ZB in number) surrounding atom B. 

In the CNDO/2 treatment, which is representative of a number of three-
dimensional SCF approaches, the following assumptions are made in 
approximating the diagonal and off-diagonal matrix elements of Eqs. 
5.10-9 and 5.10-11. 

(a) First, as in many of the methods, overlap is neglected in the secular 
determinant. Thus all of the coefficients are normalized so that the sums of 
the squares in any eigenfunction add up to unity. Also, as the name "com-
plete neglect of differential overlap" implies, differential overlap is ne-
glected so that only repulsion integrals of the type yrs are retained. This has 
already been assumed in these equations. Furthermore, these integrals are 
given the value y AB which is assumed to be independent of the type and 
orientation of the two orbitale r and s and dependent only on the distance 
between the two atoms bearing r and s (i.e., atoms A and B). Despite 
neglect of differential overlap for most integrals, the approximation is not 
invoked for the resonance integrals ; as in Hückel theory, this would prove 
too drastic. 

(b) Resonance integrals are taken as proportional to overlap integrals 
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despite the latter being neglected subsequently. This is again parallel to 
Hückel theory. 

(c) The penetration integrals are neglected. This means that we are 
assuming, as an approximation, that VrB = ΖΒ*ΥΑΒ· This is equivalent to 
saying that the attraction of an electron by a nucleus is exactly counter-
balanced by the repulsion of the electron by the valence shell electrons of 
that atom. 

(d) Finally, the term Urr is derived from Eq. 5.10-12 which uses both 
the ionization potential of the orbital of interest 

Urr = ~Wr + Ar) - (Zr ~ J)7rr 5.10-12 

as well as its electron affinity ( Ar). 

In using such three-dimensional self-consistent field calculations, one 
often can obtain satisfying ground-state properties which are in good 
agreement with experiment. Ideally, one would then like to use the wave-
functions for configuration interaction so that not only ground state but 
also excited states might be better approximated. One difficulty is that 
what is good parametrization for ground-state SCF methods without con-
figuration interaction is not optimum for inclusion of configuration inter-
tion. Also, configuration interaction with so many configurations possible 
proves less than simple. 

Problems 

1. Which of the following integrals is zero? Show why. 

(a) 1 ^ ( 1 ) ^ ( 2 ) ^ ( 3 ) ^ ( 4 ) ^ 1 ( 1 ) ^ ( 2 ) ^ ( 3 ) ^ ( 4 ) dr. 

(b) </ ,φι(1)Φι(2)Φ,(3)Φ,(4)σίΦι(1)Φι(2)Φ,(3)Φ,(4) dr. 

(c) j * i ( l ) * i ( 2 ) g P * i ( l ) * , ( 2 ) dr. 

(d) ^Φι (1 )Φ, (2 )9 ίΦι (1 )Φ , (2 ) ί τ . 

2. Calculate Gi2i2MO (a) for allyl and (b) for ethylene. Here do not use 
actual value of repulsion integrals but instead use 711, 712, 713, etc. Also, 
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assume neglect of differential overlap. Remember that 711 = 722, 712 = 721, 
etc., in these cases. 
3. What is the total electronic energy of benzene in its ground state if we 
assume Hückel MOs? Express this in terms of MO repulsion integrals and 
one-electron energies. 
4. What is the total electronic energy of the allyl anion expressed in 
terms of AO integrals? Assume the Hückel eigenfunctions as an approxima-
tion. 
5. Write the Slater determinant for the ground-state configuration of 
butadiene and then obtain its energy in terms of MO repulsion integrals. 
6. Given a set of one-electron (e.g., Hückel) MOs for butadiene, write 
the wavefunction for its first excited singlet (i.e., Si). Then write the wave-
functions for the lowest energy triplet (i.e., 7\) ; there should be three. 
7. Consider three configurations of cyclobutadiene, φι, Φ2, and </>3, where 
MOs 1 and 2 are filled, MOs 1 and 3 are filled, or where the usual excited 
singlet form is used with one electron in each of MOs 2 and 3 and two 
electrons in MO 1. Write the 3 X 3 matrix for interaction of the three con-
figurations and then obtain final energies in terms of one-electron integrals. 
For simplicity and as an approximation treat the problem as if MO 1 and 
its electrons were absent. Note that the problem is easier if one uses the 
linear combinations φ2 = UA^Ô (xi — X3) and ψ3 = (1/V5) (χ2 — χ4) for 
MOs 2 and 3. Show that the results are independent of the choice for these 
MOs. 
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ANSWERS TO PROBLEMS 

Chapter 1 

1. lim[fc5/y(37r) »'^pir*' = Um[fc5'2/(37r)1/2](p/e*'') 

= lim[/c6'V(37r)1'2](l/fce*") = 0. 
p-*00 

2. Since for any point off the z axis P(x, y, z), pis smaller for the corre-
sponding point P(0, 0, z), χζ is maximized somewhere on the z axis. Here 

since then p = z. 
(fc5'7vi)ze-*2 

dxjdz = (/c6'2/\i) (tr* - hze-"') = 0 

which gives z — l/k. [Note: We simplify the work by noting that when 
χ»2 is maximized, χ is a minimum or a maximum.] 

3. X 1 0 0 0 1 

1 X 1 0 0 0 

0 1 X 1 0 0 

0 0 1 X 1 0 

0 0 0 1 X 1 

1 0 0 0 1 X 

4. X = -V3, 0, 0, +V3. 

197 
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5. Using row 1, 

| X 1 

^ 1 1 = 

1 

An = 

1 X 0 

1 0 X 

1 X 1 

0 1 0 

0 1 X 

X3 - 2X, An = — 

= X, An = -

1 1 1 

0 X 0 

0 0 X 

1 X 1 

0 1 X 

0 1 0 

= - X 2 

= X 

for X = 0 all cofactors equal 0 and the ratios are indeterminate. The same 
situation results where cofactors of row 2 or of row 3 are used. 

6. 

Xi 

X2 

X3 

Xi 

X 

0 

0 

X2 

0 

X 

1 

X3 

0 

1 

X 

Here elements A-& and A2i are orbitale; χι and χ2 are perpendicular and do 
not interact. Expansion by cofactors gives 

X 
X 1 

1 X 
or X = 0 and 

X 1 

1 X 
0, 

corresponding to an AO secular determinant \X\ and a separate ethylenic 
2 X 2 secular determinant. 

The ability of a secular determinant to be broken down depends on 
there being all zeros outside the blocks of the subdeterminants and no 
elements simultaneously in the rows or columns of more than one of the 
resulting subdeterminants (i.e., "block diagonalization,,). 

7. X = — 1, — 1, + 2 . The array of energies is inverted from those of 
ordinary cyclopropenyl. For a closed shell, twist-hydrotrimethylenemethane 
should have four electrons in two orbitale and the anion is the preferred 
species. For cyclopropenyl, two electrons give a closed shell and the cation 
is favored. 
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8. X cos0 

cos ft X 
= 0, X2 = cos2 (9, X = dbcos ( 

For 0°, X = - 1 , + 1 ; for 30°, X = -0.866, +0.866; for 60°, X = -0 .5, 
+0.5; for 90°, X = 0, 0; for 120°, X = +0.5, -0 .5 ; for 150°, X = +0.866, 
-0.866; for 180°, X = + 1, - 1 . 

dXa Xa = — cos0, ——- = sin( 
άθ 

For 90°, slope = 1. 
Thus, twisting is forbidden. 

9. The number of MOs equals the number of basis AOs. The number of 
basis AOs determines the order of the secular determinant and the latter 
determines the number of solutions. 

Ethylene, methyl, and allyl have symmetrically disposed MO energy 
levels. This results in alternant hydrocarbons where alternating atoms may 
be designated as the "starred set" without two starred atoms or two un-
starred atoms being adjacent. 
10. X = -1.618, -0.618, +0.618, +1.618. 

11. Xi 

Xi | X 

X2 

X2 

1 

X3 

- 1 

X - 1 0 

X3' | — 1 - 1 X 

where χζ is χζ inverted. Multiplying column 3 and row 3 by — 1, we obtain 

Xi 

X2 

-X3 

Xl X2 

X 1 

1 1 

■X3 

1 

which affords the usual solutions for cyclopropenyl. However, we note that 
the heading now is — χ3' which we see is indeed equal to χ3. 

Alternatively, the secular determinant in terms of χι, χ2, and χζ could 
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have been expanded to give the usual cyclopropenyl solutions. 

12. 
Xi 

X2 

D = 

X3 

X4 

D = X 

Xl X2 X3 X4 

X 1 0 - 1 

1 X 1 0 

0 1 X 1 

- 1 0 1 X 

X 1 0 

1 X 1 

0 1 X 

= 0 

1 1 

0 X 

- 1 1 

0 

1 

X 

+ 

1 X 1 

0 1 X 

- 1 0 1 

= X* - 4X2 + 4, (X2 - 2)2 = 0, X = -V2, -V2, +V2, +V2 

The answers are the same as those from the circle mnemonic. Thus, Möbius 
cyclobutadiene is more stable. 
13. For MO 1, pu = 0.137 and AX = -2(0.137) = -0.276 X = 
-1 .618 - 0.276 = -1.894 (versus - 2 as the exact solution). For MO 2, 
Pu = -0 .36 ; AX = +0.72; X then becomes -0.618 + 0.72 = +0.10 
versus 0 for the exact solution. MO 3 gives X = —0.10 and MO 4 gives 
+ 1.894. 

14. For MO 1, pu = 0.224 and AX = -0.448; thus X = -1 .62 - 0.45 = 
-2 .07 . For MO 2, plz = -0.224, AX = +0.448, and X = -0.618 + 
0.448 = -0 .17 . For MO 3, pn = -0.224 and X = 1.07. For MO 4, X = 
1.17. Compare the exact solutions X = -2 .17 , - 0 . 3 1 , + 1 , +1.48. 
15. For MO 1, pu = -0.136 and ΔΧ = +0.276, giving X = -1 .62 + 
0.28 = -1 .34. For MO 2, pu = +0.36, AX = -0 .72, X = -0 .62 -
0.72 = -1 .34. For MO 3, pu = -0 .36 and Z = +1.34. For MO 4, 
X = 1.34. The exact solutions are - 1 . 4 1 , - 1 . 4 1 , +1.41, +1.41. 
16. The methoxyl stabilizes heavily the cationic system, moderately the 
radical, and does not stabilize the carbanion (note Chapter 4 for overlap 
destabilization effects indicating more than lack of stabilization for the 
anion). 

We predict this since two adjacent (carbon) orbitals are nonbonding 
when separate but ethylenic (e.g., X = ±1 ) when overlapping. In the 
cation with an adjacent electron pair, the two electrons occupy the bonding 
MO giving stabilization. In the radical, there are three electrons, one is 
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antibonding (X = + 1 ) but two are bonding (X = —1) and net stabiliza-
tion results. In the carbanion the bonding energy of two electrons is can-
celed by the antibonding energy of the remaining two electrons. 

Chapter 3 

1. For the benzene problem use one of the following approaches: 
(a) Use a plane of symmetry au and the symmetric group orbitale 

Xi, X2 + Xe, xz + Χδ, Χ4 to give a 4 X 4 and the antisymmetric orbitals 
X2 - X6, xz — X5 to give a 2 X 2. 

(b) Use a plane of symmetry through bonds 2-3 and 5-6 and the sym-
metric group orbitals χι + χ4, χ2 + χζ, Χδ + xe to give a 3 X 3 as well as the 
antisymmetric orbitals χι — χ4, χ2 — χζ, xs — χβ to give another 3 X 3 . 

(c) Use both planes of symmetry to get two 1 X l's and two 2 X 2's. 
(d) Use the Cev or the D6h group tables and formal group theory. 

For the remaining molecules use the appropriate symmetry and parallel 
procedures. 
2. Admix the three bonding MOs of ethylene in a Möbius fashion. This 
centers the circle at —1 (i.e., the energy of an isolated ethylenic orbital) 
and with a radius of 2e where — e is the resonance integral between trans-
annular orbitals. Then use the same method with the antibonding MOs of 
ethylene with the circle centered at + 1 and with a radius again of 2e. All 
of the bonding ethylenic orbitals are orthogonal to all of the antibonding 
orbitals and thus the two problems can be treated separately. 

Alternatively, use the circle device to do twist-hydrotrimethylene-
methane. Then take each MO from one such twist-hydrotrimethylene-
methane and admix it in a 2 X 2 with the corresponding MO of a second 
such moiety. 

3 . Use two planes of symmetry perpendicular to the molecule and informal 
group theory or instead the C2v group. One obtains two 2 X 2's and two 
3 X 3's. The eigenvalues are 

- i ± i ( 5 ) i / * , +J±4(5)1/*, - i ± i(l3)i/2, + i ± i(i3)i/2, - 1 , +1 

4 and 5. Three of the five MOs are norbornadiene ones which have the 
wrong symmetry to admix with the C-7 p orbital: These are 

Mx2 + xz + xs + xe), X = - 1 - € 

l(X2 - X3 - X5 + Xe), X = + 1 - € 

KX2 - Xz + X5 - Xe), X = +1 + e 
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The remaining norbornadiene MOs, §(χ2 + X3 — Χδ — xe) and χ7, admix 
in a 2 X 2 to give 

X= - ^ ± ^ [ ( 1 - 6 ) ^ + 1 6 6 ^ 

Without χΊ, this last norbornadiene MO has an energy of —1 + 6. The 
delocalization energy for the norbornadienyl cation is a function of 6, with 
stabilization increasing with overlap 6, while for the anion the DE is inde-
pendent of 6. 
6. X = - 1 - 6, - 1 - 6, - 1 + 26, + 1 - 6, + 1 - 6, + 1 + 26. 
7. Pre- and postmultiplication by the vector [1—1] and its column trans-
pose is equivalent to subtraction of the rows and then the columns. Pre-
and postmultiplication by the two 2 X 2's is equivalent to addition and 
subtraction of rows and columns of the ethylene secular determinant and 
diagonalizes it. 
8. Any second plane used must be perpendicular to the first. Otherwise, 
orbitals obtained with use of one plane will not be symmetry eigenfunctions 
relative to the other plane. 
9. Addition of all rows gives one row all of whose elements are X + 2. 
This allows factorization of (X + 2) from the secular determinant and 
gives the energy of the lowest MO (i.e., X — —2). 

10. f*i**dr = f^K + ̂ K + lx^K-^dr 

= 2W X x * d T - W2IX3*dT + 2 / X l X 2 d r "2/XiX3dr 

-L-.J-+ls - 1 
2V2 2V2 2 K 2 

11. ^ - / 0 » + ^ » + 5»)KQXI + ^ » + 5*)*-

= 4/Xl3CxidT + 2J X2KxidT + 4J XsKxsdT+yßf XlKx2 

+ j=JxWxzdT = «+V20 

or X = -V2. 
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12. This is equivalent to addition and subtraction of rows 1 and 3 and 
columns 1 and 3. 
13. The group orbitale used are SS: χι + χ6, χ2 + χβ + χ? + χιο, 
Χ3 + Χ4 + Χ8 + XS) ShAv\ χι — Χ6, Χ2 — Χδ - Χ7 + ΧΐΟ, Χ3 — Χ4 — Χ8 + X9Î 
Ah£v: Χ2 + xs — Χ7 — χιο, xs + Χ4 — xs ~ XQJ A A : χ2 — χ5 + Χ7 — χιο, 
Χ3 + Χ4 — xs — Χ9· Solution of the two 3 X 3's and two 2 X 2's gives as 
eigenvalues X = -2.308, -1.618, -1.303, -1.000, -0.618, +0.618, 
+ 1.000, +1.303, +1.618, +2.308. 

We have encountered the combinations involving χ2, X3, X4, Χδ, Χ7> xs, X9, 
and χιο alone in the butadiene problem. The MOs are just sums and dif-
ferences of two butadiene moiety MOs. 
14. (a) Use two perpendicular planes of symmetry and transannular 
overlap of e. One obtains X = ± 1 , - \ ± M5)1'2, \ ± \ (5 + 16e2)1'2. 

(b) Use two perpendicular planes of symmetry or the D2d group table 
to obtain X = - 1 , - 1 , 1 ± 2e. 

(c) Degenerate pairs at X = — \ ± \ (5)1/2, also X = \ — e ± \ (4e2 + 
4e + 5)1'2, X = + 1 + e ± i(4e2 - 4e + 5)1/2. [iVo<e: Picking the basis 
set orientation so that there is only plus-plus or minus-minus overlap, 
convenient symmetry orbitale are χι + χ4 mixing with χ2 + χ3, Χδ + xs 
mixing with χ6 + χ7, xi - Χ4 + Χδ - Xs mixing with χ2 - χ3 + χ6 — Χ7, 
and χι - Χ4 - Χδ + Xs mixing with χ2 - χ3 — Χβ + χτ·] 

(d) For molecule (a) the bonding ethylenic MO does not have the 
right symmetry to mix with any butadiene MOs. The antibonding ethylenic 
MO has the right symmetry to admix with Ψ2 and Ψ4 of butadiene. Ψι and 
Ψ3 of butadiene do not admix with any other MO. The reasoning for mole-
cules (b) and (c) is similar; in each case MOs symmetric in one ring will 
not mix with any MOs of the other ring. 
15. Using two planes of symmetry and the numbering 

the group orbitale which are totally antisymmetric are χι — χ2 and χ3 — 
X4 + Χδ — X6. This gives 1 + 2e and 1 — e as solutions. The SS orbital is 
Xs + X4 — Χδ - X6 (X = —1 - e). The SA orbital is χ3 - χ4 - Χδ + Χβ 
(X = 1 - €). The AS orbitale are χι + χ2 and χ3 + χ4 + Χδ + Χβ (X = 
- 1 + 2eand - 1 - e). 
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16. The p orbital (χι) has the correct symmetry to admix only with 
X2 + xz — Xb — X6, where χ2, χζ, X5, and χ6 are chosen all in the same direc-
tion. The final MO energies are 1 + e, 1 — e, — 1 — e, —\+ (e/2) ± 
\{\ - 2e+ 17e2)1/2. 

17. The eigenfunctions consist of normalized d= combinations of the 
separate benzene MOs. The eigenvalues are X = — 2 ± €, - l ± e , 
— l i e , + l ± e , + 1 ± € , and + 2 db €. This problem is really more readily 
done by admixing corresponding benzene MOs from the two rings in a 
series of 2 X 2's. There is no additional delocalization energy (i.e., DE is 
independent of e) until e reaches 1. 

18. (a) The multiplication gives 2h since V^IVAI = h but all other 
products are zero due to orthogonality. After division by A, we get 2 which 
is the number of times the irreducible vector V î occurs in Vr. This gives us 
a way to determine howr an irreducible vector (or representation) is con-
tained in a reducible one. 

(b) Note Eqs. 3.5-4 through 3.5-6. 
19. (a) One 2 X 2 mixes χι + χ4 and χ2 + χζ) the other mixes χι — χ4, 
Χ2 — X3. There is a crossing of MOs at Θ = 45°. Using geometric symmetry 
alone, one might have predicted no crossing since the MOs crossing have the 
same ordinary symmetry. But the symmetry element used (i.e., a C2 axis) 
does not go through any bonds which are changing and is not useful. 
Actually, there is a "hidden symmetry" since the four-orbital array is 
cyclobutadienoid and the crossing orbitale actually do differ if considered 
using cyclobutadienoid symmetry; crossing does occur as the explicit cal-
culation shows. 

(b) One obtains the same result. Any other linear combination of the 
two central basis orbitale is also acceptable. 

(c) In 19a with Θ = 45° we have Hückel system, χ\ overlaps with χ2, 
which overlaps with χ$, which overlaps with χ4, which overlaps with χ\—all 
plus-plus. 

In 19b with initial geometry the overlap is χι with χ2 with χ3 with χ4 

with xi but there is an odd number of plus-minus overlaps (e.g., χι with 
XA). 

20. The six (1Λ/2)(χα + x&) sets can be mixed as can the six (1/V2) 
(Xa — Xb) sets, each in benzenoid fashion. The MOs are exactly analogous 
to benzene MOs except here we have linear combinations of (1/V2) (xa + Xb) 
and(l /V2)(xa - X 6) . 
21. Here we mix each twist-hydrotrimethylenemethane MO with the same 
MO from a second molecule oriented face to face. Nonequivalent MOs do 
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not mix due to different symmetries. The eigenvalues and eigenfunctions 
are the same as obtained previously in more traditional but more tedious 
fashion. 

22. This is done somewhat analogously to Problem 17 except there we 
used three planes of symmetry rather than formal group theory. Here the 
C2v group can be used. 
23. Following the barrelene treatment in Problem 21, we mix correspond-
ing MOs of two cyclobutadiene molecules in a series of 2 X 2's. The energies 
are — 2 ± e, 0 ± €, 0 ± €, + 2 ± e. Again the justification for mixing only 
corresponding MOs is the failure of MOs of different symmetry to mix; 
this can be tested via a secular determinant. 
24. Once. Use Rule I. Thus transpose [ 1 - 1 - 1 1][4 0 - 2 - 2 ] i = 1. 

25. X = 0 , ^ ( X 2 χ4) ; X = 1, j= (xi - χζ) ; X = | ± | (17)«. 

Chapter 4 

-MS) 

o 

Ally I cation 

σ*(Α) Symmetries in paren-
theses are with respect 
to a plane through χ2. 

X 2 ( S ) 

σ ( S ) 

Disrotatory 
Cyclopropyl cation 

r A{A) 

ή (A) 
Allyl cation T Cyclopropyl cation 

Conrotatory 

Symmetries are with 
respect to a C2 axis 
through χ2. 

2. The results are the same. The correlation lines are obtained by noting 
the Hückel cyclopropenyl array of MOs for the disrotatory closure at the 
transition state; the degeneracy at + 1 shows MOs φ2 and ^3 cross. For 
conrotatory closure a Möbius cyclopropenyl array of MOs is used to deter-
mine transition state MO ordering and the — 1 degeneracy shows MOs ψι 
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and ψ2 cross. The transition state point along the reaction coordinate is 
shown above in the answer to Problem 1 by a i . 

3 . Refer to Fig. 1.7-A; however, note that the 1,3-bond order is ti&ikCzk 
for each MO h and that e will be larger than the ± 1 used for ordinary π 
overlap. Also for top-top (Hückel) closure e is positive and for top-bottom 
(Möbius) overlap e is negative. Take e = + 2 or —2 for two cases (note 
overlap for a σ bond will be stronger than for a π bond; hence e = ± 2 rather 
than ± 1 is reasonable). Then we get the correlation diagrams: 

+ 2 
+ 7 2 -

Π ..1 . 

-Λ — 

Z^<^ 
+0.414 

\ -2.414 

Top-top 

1 414 + ^ W 

n _ - 0 414 
■χ 

1 Λ 1 Λ \ 
1.414 — ~ -

Top-bottom 

4. This treatment is similar to that of Problem 13 in Chapter 1 except 
that, again, we use a large value of e to get the perturbation energy (i.e., 
AX) for each MO on initiation of 1,4-sigma bonding. For conrotatory 
twisting MOs 1 and 2 cross as do 3 and 4. For disrotatory twisting MOs 2 
and 3 cross. Use e = + 2 for Hückel closure and e = —2 for Möbius closure. 

5 and 6. At the half-way stage, we have "square cyclobutadiene,, and a 
degeneracy at zero. The correlation diagram is 

X. 
Square cyclobutadiene 

The interconversion of two "cyclohexatriene tautomers" goes through a 
Hückel, hexagonal system with no degeneracies at zero and is allowed. All 
the 4iV systems have nonbonding degeneracies and are forbidden while the 
4N + 2 do not have such degeneracies and are allowed. We predict Jahn-
Teller molecular distortion of the 4iV systems. 
7. (a) Hückel, 4e, forbidden; (b) Möbius, 4e, allowed; (c) Möbius, 
4e, allowed; (d) Hückel, 4e, forbidden; (e) Hückel, 4e, forbidden. 
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<|/S(A) + 2 <r'* (A ) 

V. (s) 

^ (s ) - f f 

Benzene 

T T ; 3 - < 6 ( A ) 

7Γ2*3+<(Α) 

7r23 + 7r56(S) 
7r23-7T56(S) 

fj crI4(S) 
Dewar benzene 

Symmetries are with 
respect to a horizontal 
plane σ^ 

The ground-state reaction is forbidden. 
The MOs which are antisymmetric with respect to a plane bisecting 

C-l and C-4 are ψ2 (becoming 7Γ23 — πκ) and ψ5 (becoming T23* — π5β*). 
These do not cross zero and ψ2 remains doubly occupied and bonding 
throughout; these do not affect the forbiddenness. The remaining four 
MOs are made up of a Hückel array of group orbitale and have 4e's. Thus, 
we have a forbidden reaction. For such bicyclic transition states, consider 
a single ring and localize the remaining electrons in the other with no double 
bonds at the overlapping carbons. The single ring then becomes deter-
mining. 
9. (a) 4/7 benzylic; (b) 9/20 α-naphthylic. Benzylic more basic. 
10. Symmetries are relative to a plane bisecting the bonds cleaving. 

gJ2 + °"g4(A) 

T ^ - T T ^ A ) 

7T|2 +7T34(S) 

77;2-7Γ34(Α) 

7ΪΪ2+ 7T34(S) 

The reaction is forbidden. 
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Chapter 5 

1. (a) Zero, spin orthogonality for electrons 3 as well as 4. 
(b) Nonzero since on permutation we obtain 

- / ,ψι(1)Φ1(2)Ψ2(3)Φ2(4)^ι(1)Ψι(2)Ψ2(3)Φ2(4) dr 

= - 2 / i - 2/2 - (? i m
M 0 - 4Gi2i2MO - G2222

MO 

(c) Zero, spin orthogonality. 
(d) Nonzero. Permutation gives Gi22iM0. 

2. (a) \yn + 27i2 + i7i3. (b) J711 + |7i2. 

3 . E = 2/1 + 2 / 2 + 2/3 + GiniM0 + G2222
MO + (?3333M° + 4(?l2i2

MO 

+ 4(?2323M° + 4Gi313
MO - 2(?i221MO - 2(?i33iMO - 2(?2332

M0. 

4 . E = 2/1 + 2/2 + GiniMO + G2222
MO + 4Gi2i2MO - 2Gi22iMO where 

h = -V2I0I, h = 0|/3|, GimM0 = | 7 i i + 1712 + i7i3, 

(?2222MO = i 7 n + i7i3, Gi2i2MO = Ϊ 7 Ι Ι + 37i2 + ï7i3, and 

Gi22iMO = i 7 n - i7i3. Thus E = — 2V2|/3| + ^711 + Î712 + ^713 . 
N 

5. Φ = |¥ι(1)Φι(2)¥2(3)Φ2(4)| (N implies normal-
E = 2/1 + 2/2 + ( W o + 4 & / 0 + G2222MO nation by 1/(4!)") ^ 2V iV 

6. *Φ = ^ = { | S h ( l ) * i ( 2 ) * 2 ( 3 ) * 3 ( 4 ) | - |Φ1(1)Φ1(2)Φ2(3)Φ,(4) |} 

*Φα = ^ { | * ι ( 1 ) Φ ι ( 2 ) * 2 ( 3 ) Φ , ( 4 ) | + | * Ι ( 1 ) Φ Ι ( 2 ) Φ 2 ( 3 ) * Β ( 4 ) | } 

»Φ* = |Φ 1 (1)Φ 1 (2)Φ 2 (3)Φ 8 (4) | and 3Φ0 = |^ 1 (1)Φ 1 (2)Φ 2 (3)Φ 3 (4) |. 

7 . -Fil == 2 / 2 + £?2222
Μ°, ^22 = 273 + (?3333

ΜΟ, FzZ = ^2 + 73 + £?2323 + £?2332, 
Fi2 = G2233, F13 = V2(?2223, F2 3 = V 2 G W All off-diagonal elements van-
ish with this choice of a basis. 

G2222M° = G3333
MO = ^711 + 1713. G2323

M° = 712. <?2332ΜΟ = 0 

Thus Es = 21 + 7i2, E2 = 21 + è7ii + s7i3 = Eh where I is the one-
electron energy of an electron in M O 2 or 3. 
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molecular orbital, 9 
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Antisymmetric group orbitals, 61, 63 
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B 

Banana bonds, 139 
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choice of, 35 
enforced negative overlap in, 37 
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Benzyl, 148 
carbanion, 151, 160 
carbonium ion, 151 
radical, 151 
ß, absolute value of, 52 
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Block decomposition of secular 
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Block diagonalization, 68, 198 
Bonding, 10 
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Brillouin's theorem, 187 
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C% group, 89 
C2 operator, 88 
dv group, 89 
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Cz group, 89 
Cz operator, 88 
Czv group, 101 
Ctv character table, 106 
Cev group, 105 
Cn group tables, 108 
Ci operator, 88 
Cn tables, 108 
Character table, 

optimum choice, 95 
utilization, 90 

Circle device applied to barrelene 
problem, 119 

Circle mnemonic 
for Hückel systems, 24 
for Möbius systems, 38 

Closed-shell system, energy of, 170 
1,4-closure of benzene to Dewar benzene, 

159 
C matrix, 81 
CNDO/2 , 194 
CNDO calculations, 193 
Coefficients 

for allyl factors, 32 
LCAO-MO, 115 
Möbius, 115 
molecular orbital energies and, 40 
trigonometric form, 115 

Cofactors, 21, 28 
method of, 54 

Column operations, 61 
Complete neglect of differential overlap, 

193 
Complete set, 36 
Complex characters, 108 
Configuration interaction, 179 

in forbidden reactions, 182 
general expressions, 184 
matrix elements, 185 

general expressions, 185 
relation to SCF theory, 186 

Configuration interaction-SCF theory, 
relation between, 186 

Conrotatory motion, 156 
Correlation diagrams, 155 

use of symmetry for, 156 
Coulomb integral, 49, 51, 126, 153 
Cramer's rule, 50 
Crossings of MOs, 155, 157 
Cyclobutadiene, 22, 25, 42, 72, 122, 153 

molecular orbitale, 25, 68 

Cyclobutadienyl 
dianion, 26 
dication, 26 

Cycloheptatrienyl, 25 
Cyclooctatetraene, 25, 26 
Cyclopentadienyl, 25 

carbanion, 26 
Cyclopropenyl, 24, 71, 101, 111, 128, 145 

cation, 19, 34 
coefficients, 34 
problem, 80, 110 
species, 19 
symmetry operations, 101 

D 

Degeneracy, 23 
along reaction coordinate, 157 

Degenerate MOs, 103 
orthogonalization, 103, 105 

Degenerate pair, 23 
Degenerate representations, 102 
1,4-Dehydrobenzene, 95, 100 
1,3 Dehydrocyclobutadiene, 123 
Delocalization energy, 18 

of allyl species, 20 
δ, 125, 154 
Determinants 

definition, 12 
first-order, 14, 60, 69 
second-order, 12 
third-order, 15 

Dewar benzene, 207 
Dewar nonbonding MO method, 148 
Dewar rule, generalized, 150 
Diagonalization, 69 

by matrix methods, 77 
Direction cosines, 132 
Disrotatory closure of allyl cation, 158 
Disrotatory electro cyclic closure of 

butadiene, 159 
Disrotatory twisting, 157 
Double bond, spring model, 139 

E 

Eigenfunction, 44 
orthogonality, 55 

Eigenvalues, 44 
symmetry, 64, 75, 76 
of X, 129 

significance of, 129 
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Electrocyclic closures of allyl species, 157 
Electron affinity, 195 
Electron density, 5 

distributions, 146 
Electron distribution in carbonium ion, 

151 
Electron-electron repulsion, 165 
E matrix, 81 
Energetic distribution of MOs about 

zero, 146 
Energy dissection, 84 
Energy eigenvalues, 44 
Energy perturbation, 84 
E operator, 88 
Equivalent orbital representation, 139 
E representation, 102 
Ethylene, 70, 83, 145 
Excited configurations, 179 
Excited singlet, 182 
Excited singlet and triplet species, 

energy of, 182 
Expansion by cofactors, 21 

F 

$ operator, 165 
F*nMO, 187 
Frt

AO, 177 
Fission of cyclobutane into ethylene, 160 
Forbiddeness, 155 
Frost-Hückel circle mnemonic, 26 
Fulvene, 145, 146 

G 

Gij, 164, 168 
Gkm*°, 164 
Gklmn, 172 
Gr8tu

A0, 172, 177 
7,129 
7r8, 173 
Γ matrix, 174 
y-to-/3 ratio, 130 
Group (symmetry) orbitale, 59, 61, 63 
Group tables 

C2, 89 
C2„ 89 
ft, 89 
C3v, 101 
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C6v, 105 
C», 108 
choice of, 95 
general, 106 

Group theory, 88 

H 

# r i
A O , 177 

H matrix, 81 
3C» operator, 164 
Headings of secular determinants, 60 
Heisenberg formulation, 77, 82 
Hermitian operators, 55 
Heteroatoms, 125 
Hückel LCAO-MO coefficients, 115 
Hückel and Möbius energies, 

generalized, 113 
Hückel and Möbius formulas, 113 
Hückel and Möbius rules, 39 
Hückel's rule, 21, 26 
Hückel systems, 40 
Hückel treatment, extended, 188 
Hund's rule, 20, 23 
Hybrid orbital, 132, 134 

I 

/*, 164 
i operator, 88 
Inclusion of overlap, 127 
Integral S(pT,pw), 145 
Integrals 

Coulomb, 126 
overlap, 194 
repulsion, 194 
resonance, 126 

Inverse matrix, 82 
Inverse of orthonormal matrices, 86 
Ionization potential, 195 
Irreducible representation, 92 

combination of, 94 
dissection into, 92, 94 
for allyl-like moieties, 117 

J 

Jacobi method for diagonalization, 85 
Jahn-Teller effect, 159, 206 
Jahn-Teller distortion, 159 
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K 

Kinetic energy, 46 

L 

LCAO form, 6, 10 
LCAO-MO coefficients 

determination of, 27 
difficulties due to degeneracy, 34 
trigonometric form, 115 

LCAO-MO energy, minimization of, 47 
LCAO-MO method, 27 
Linear combination of atomic orbitale, 6 
Linear combination of degenerate MO's, 

103 

M 

mu, 169 
Manipulation of column and row 

headings, 98 
Matrices 

C, 81 
E, 81 
H, 81 
inverse, 82, 86 
orthonormal, 82, 86 
similarity transformation, 86, 92 
trace, 82 
unit, 82 

Matrix, definition, 81 
Matrix elements between singlet and 

triplet configurations, 185 
Matrix methods 

for diagonalizing secular determinants, 
77 

for perturbation calculations, 84 
Methylenecyclopropene, 23 
Mnemonic 

for energy of Slater determinant, 170 
for Hückel MO energies, 24 
for Möbius MO energies, 39 
for unbranched cyclic and acyclic π 

systems, 24 
Möbius benzene, 38 
Möbius character, 158 
Möbius cyclic polyenes, 38, 39 
Möbius cyclobutadiene, 38, 42, 43, 200 
Möbius cyclopentadienyl, 38 

Möbius cyclopropenyl, 38, 158 
Möbius energy formula, 39 
Möbius formula, 113 
Möbius-Hückel method of Zimmerman, 

157 
Möbius and Hückel transition states, 158 
Möbius LCAO-MO coefficients, 115 
Möbius mnemonic, 39 
Möbius strip problem, 38 
Möbius systems, 39, 40 
Moiety eigenfunctions, 116 
Molecular orbital, 1 

antibonding, 9 
bonding, 9 
coefficients, 6 
distribution of eigenvalues in alternant 

systems, 146 
energy, 44 
LCAO, 6 
nonbonding, 9 
normalization, 5, 11, 30 
repulsion integrals, 172 

Molecular symmetry, 59 
Momentum, 46 
MO vectors, 83 
Mulliken's magic formula, 144, 190 
Mulliken-Wheland-Mann technique, 153 

N 

nk, 168 
nki, 169 
Naphthalene, 120, 145, 152 
α-Naphthylmethyl anion, 160 
NBMO coefficients 

derivation of, 149 
uses of, 151 

Negative overlap (enforced), 37 
Neglect of overlap, 51 

effect on delocalization energy, 131 
Node, 32 
Nonalternant molecules, 146 
Nonatetraenyl, 152 
Nonbonding, 10 
Nonbonding electrons, energy contributed 

by, 18 
Nonbonding molecular orbital, 9 

juxtaposition of, 151 
in Möbius systems, 149 

Noncrossing rule, 122, 156 
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Norbornadiene, 119, 121, 201 
7-Norbornadienyl species, 121, 202 
Normalization, 5, 11, 30 
Normalization integral, 49 

O 

Occupation number, 30 
Odd-alternant hydrocarbons, 146 
Odd permutations, 164 
ω1 + ω2 + ω3 + ω4 H + ω", 109 
ω», 109 
ωιη, 174 
Omega technique, 153, 154 
Omega vectors, 174 

of different symmetries, 175 
ω vectors, 174 
One by one determinant, 14, 60, 69 
Operators 

concept of, 45 
Hermitian, 55 
symmetry, 63, 88 
total energy, 165 

Order of a group, 93 
Orthogonality of eigenfunctions, 55 
Orthogonalization of degenerate MOs, 

105, 107 
Orthogonal symmetry planes, 

requirement for, 119 
Orthonormality, 110 
Orthonormal matrix, 82, 86 
Orthonormal set of degenerate MOs, 103 
Overlap 

destabilization, 130 
inclusion of, 127 
neglect of, 51 
between orbitale oriented a t odd angles, 

189 
Overlap integral, 49 

determination of, 143 
expansion of, 143 
values, 144 

P 

P operator, 162, 163 
P operator, 163 
P operator, 163 
Prs*, 154 
Pairing theorem, 146 

Paracyclophane, 121, 122 
Partial bond order, 31 
p orbital energy, isolated, 14 
2p atomic orbitals, 3 
Pauli principle, 163 
Pentadienyl, 27, 154 
Permutation operator, 162 
Perpendicular planes of symmetry, 74 
Phenyl group migration, 140 
7Γ bond order, 154 
7Γ electron density, 11, 30 
7Γ energy, 9, 10 

of allyl species, 20 
Poly electron wavef unctions, 161 
Pople's SCF equations, 178 
Postmultiplying determinant and 

premultiplication, 79 
Potential energy, 46 
Premultiplication and postmultiplication, 

80 
Prescription for writing hybrid orbital, 

134 
Product wavef unctions, 162 

Q 

Quantum mechanical mixing, rules for, 11 

R 

Rank of determinant, 58 
Rank of secular determinants, 58 
Reaction allowedness and forbiddeness, 

155 
Rectangular cyclobutadiene, 90, 159 
Reducible representation, 92 

dissection of, 92, 94 
Representations, 90 

characters of, 92 
Repulsion integrals, 172, 173, 174 

generalized, 194 
Repulsion between two one-electron 

clouds, 165 
Resonance energy, 18 
Resonance integral, 49, 126 
Roothaan's SCF equations, 177 
Row and column vectors, 83 
(re | g | i i i ) , 172 
(rt\su), 172 
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Rule I of group theory, 92, 93 
general proof, 95 

Rule II of group theory, 91, 92 

S 

$2 operator, 88 
Sxs, 189 
Sxx, 189 
Sxy, 189 
/SU 189 
Sys, 189 
Svv, 189 
Syz, 189 
S,,, 189 
Ste, 189 
2« atomic orbitale, 2 
Schrödinger equation, 46 
Secular determinant, 11, 12 

addition-subtraction treatment, 
59, 60, 62, 65, 69 

block decomposition, 68, 198 
diagonalization, 69 
direct formulation, 69 
equation, 12, 51 
headings, 60, 98 
matrix methods, 77 
rank, 58 
simplification, 59 

σκ operator, 88 
συ operator, 88 
Similarity transformation, 82, 86 
Simplification 

of secular determinants, 59 
by symmetry, 62 

Simultaneous use of two planes of 
symmetry, 75 

Single-electron energies, 171 
Slater atomic orbitals, 2, 132 
Slater determinants, 161, 163 

antisymmetry, 162 
closed shell, energy of, 171 
convenient form, 166 
energy, 164, 170, 171, 176, 177 

in atomic orbital integral terms, 176 
minimization of, 177 

Slater determinantal wavefunction 
single, energy of, 164, 170 
two, convenient form for integrals, 166 

Slater orbitals, 1 

(snpm) hybridization, 136 
sp2 hybrids, 138 
sp6 hybrids, 136, 138 
sp* orbitals in equivalent orbital double 

bond formulation, 139 
β(ρσ1ρσ)1 145 
S(pa,s), 145 
Space-spin orbital, 162 
Spatial MO, 162 
Spin orbital, 162 
Spring model of double bond, 139 
Starred coefficients surrounding 

unstarred position, sum of, 149 
Starred and unstarred atoms, 145 
1,3-Suprafacial hydrogen migration in 

propylene, 159 
Symmetric, 61 
Symmetry, 156 

correlation diagrams and, 156 
determinants, 69 
eigenvalues, 64, 75, 76 
formal use of, 88 
matrix operations and, 120 
operations, 88 
operators, 88 

σ, 63 
utilization of, 90 

treatment by matrix operations, 120 
use of planes, 74, 75, 119 

T 

Three-dimensional SCF methods, 191 
Total bond order, 31 
Total character, 92 

contribution to, 103 
Total energy operator, 165 
Total ir-electron density, 154 
Trace of matrix, 82 
Trimethylenemethane, 41 
Triple-layered compounds, 116 
Triplets, 23, 26, 182 
Tropylium cation, 26 
Twist-hydrotrimethylenemethane, 38, 

42, 122, 198 £ 5 
Two-electron integrals, 164 c 6 

D 7 

U E 8 
w F 9 

G 0 
Unit matrix, 82 H 1 
Units of | β | , 52 j \ 
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Unnormalized MOs, 30 
Unstarred coefficients, 149 
Unusually oriented hybrid Orbitals, 131 

V 

Variation method, 47 

W 

Wavefunctions for excited singlets and 
triplets, 182 

Woodward-Hoffmann method, 156 

X 

X, 52 
| X | , 60 

X', 129 

Z 

ZDO, 172, 173, 178 
Zero cofactors, 34, 35 
Zero differential overlap, 172,173, 178 


