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Preface

Geometry of symplectic and Poisson manifolds is well known to provide the

adequate mathematical formulation of autonomous Hamiltonian mechanics.

The literature on this subject is extensive.

This book presents the advanced geometric formulation of classical and

quantum non-relativistic mechanics in a general setting of time-dependent

coordinate and reference frame transformations. This formulation of me-

chanics as like as that of classical field theory lies in the framework of general

theory of dynamic systems, Lagrangian and Hamiltonian formalism on fibre

bundles.

Non-autonomous dynamic systems, Newtonian systems, Lagrangian and

Hamiltonian non-relativistic mechanics, relativistic mechanics, quantum

non-autonomous mechanics are considered.

Classical non-relativistic mechanics is formulated as a particular field

theory on smooth fibre bundles over the time axis R. Quantum non-

relativistic mechanics is phrased in the geometric terms of Banach and

Hilbert bundles and connections on these bundles. A quantization scheme

speaking this language is geometric quantization. Relativistic mechan-

ics is adequately formulated as particular classical string theory of one-

dimensional submanifolds.

The concept of a connection is the central link throughout the book.

Connections on a configuration space of non-relativistic mechanics describe

reference frames. Holonomic connections on a velocity space define non-

relativistic dynamic equations. Hamiltonian connections in Hamiltonian

non-relativistic mechanics define the Hamilton equations. Evolution of

quantum systems is described in terms of algebraic connections. A con-

nection on a prequantization bundle is the main ingredient in geometric

quantization.

v
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vi Preface

The book provides a detailed exposition of theory of partially integrable

and superintegrable systems and their quantization, classical and quantum

non-autonomous constraint systems, Lagrangian and Hamiltonian theory

of Jacobi fields, classical and quantum mechanics with time-dependent pa-

rameters, the technique of non-adiabatic holonomy operators, formalism of

instantwise quantization and quantization with respect to different refer-

ence frames.

Our book addresses to a wide audience of theoreticians and mathemati-

cians of undergraduate, post-graduate and researcher levels. It aims to be a

guide to advanced geometric methods in classical and quantum mechanics.

For the convenience of the reader, a few relevant mathematical topics

are compiled in Appendixes, thus making our exposition self-contained.
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Introduction

We address classical and quantum mechanics in a general setting of arbi-

trary time-dependent coordinate and reference frame transformations.

The technique of symplectic manifolds is well known to provide the

adequate Hamiltonian formulation of autonomous mechanics [1; 104; 157].

Its familiar example is a mechanical system whose configuration space is

a manifold M and whose phase space is the cotangent bundle T ∗M of M

provided with the canonical symplectic form

Ω = dpi ∧ dqi, (0.0.1)

written with respect to the holonomic coordinates (qi, pi = q̇i) on T ∗M . A

Hamiltonian H of this mechanical system is defined as a real function on a

phase space T ∗M . Any autonomous Hamiltonian system locally is of this

type.

However, this Hamiltonian formulation of autonomous mechanics is not

extended to mechanics under time-dependent transformations because the

symplectic form (0.0.1) fails to be invariant under these transformations.

As a palliative variant, one develops time-dependent (non-autonomous) me-

chanics on a configuration space Q = R×M where R is the time axis [37;

102]. Its phase space R× T ∗M is provided with the presymplectic form

pr∗2Ω = dpi ∧ dqi (0.0.2)

which is the pull-back of the canonical symplectic form Ω (0.0.1) on T ∗M .

A time-dependent Hamiltonian is defined as a function on this phase space.

A problem is that the presymplectic form (0.0.2) also is broken by time-

dependent transformations.

Throughout the book (except Chapter 10), we consider non-relativistic

mechanics. Its configuration space is a fibre bundle Q → R over the time

1
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axis R endowed with the standard Cartesian coordinate t possessing tran-

sition functions t′ = t+const (this is not the case of time-reparametrized

mechanics in Section 3.9). A velocity space of non-relativistic mechanics is

the first order jet manifold J1Q of sections of Q→ R, and its phase space

is the vertical cotangent bundle V ∗Q of Q→ R endowed with the canonical

Poisson structure [106; 139].

A fibre bundle Q → R always is trivial. Its trivialization defines both

an appropriate coordinate systems and a connection on this fibre bundle

which is associated with a certain non-relativistic reference frame (Section

1.6). Formulated as theory on fibre bundles over R, non-relativistic mechan-

ics is covariant under gauge (atlas) transformations of these fibre bundles,

i.e., the above mentioned time-dependent coordinate and reference frame

transformations.

This formulation of non-relativistic mechanics is similar to that of clas-

sical field theory on fibre bundles over a smooth manifold X of dimension

n > 1 [68]. A difference between mechanics and field theory however lies

in the fact that all connections on fibre bundles over X = R are flat and,

consequently, they are not dynamic variables. Therefore, this formulation

of non-relativistic mechanics is covariant, but not invariant under time-

dependent transformations.

Second order dynamic systems, Newtonian, Lagrangian and Hamilto-

nian mechanics are especially considered (Chapters 1–3).

Equations of motion of non-relativistic mechanics almost always are first

and second order dynamic equations. Second order dynamic equations on

a fibre bundle Q → R are conventionally defined as the holonomic con-

nections on the jet bundle J1Q → R (Section 1.4). These equations also

are represented by connections on the jet bundle J1Q → Q and, due to

the canonical imbedding J1Q → TQ, they are proved to be equivalent to

non-relativistic geodesic equations on the tangent bundle TQ of Q (Section

1.5). In Section 10.3, we compare non-relativistic geodesic equations and

relativistic geodesic equations in relativistic mechanics. The notions of a

free motion equation (Section 1.7.) and a relative acceleration (Section 1.8)

are formulated in terms of connections on J1Q→ Q and TQ→ Q.

Generalizing the second Newton law, one introduces the notion of a

Newtonian system characterized by a mass tensor (Section 1.9). If a mass

tensor is non-degenerate, an equation of motion of a Newtonian system is

equivalent to a dynamic equation. We also come to the definition of an

external force.

Lagrangian non-relativistic mechanics is formulated in the framework of
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conventional Lagrangian formalism on fibre bundles [53; 68; 106] (Section

2.1). Its Lagrangian is defined as a density on the velocity space J 1Q, and

the corresponding Lagrange equation is a second order differential equa-

tion on Q→ R. Besides Lagrange equations, the Cartan and Hamilton–De

Donder equations are considered in the framework of Lagrangian formal-

ism. Note that the Cartan equation, but not the Lagrange one is associated

to a Hamilton equation in Hamiltonian mechanics (Section 3.6). The rela-

tions between Lagrangian and Newtonian systems are established (Section

2.4). Lagrangian conservation laws are defined in accordance with the first

Noether theorem (Section 2.5).

Hamiltonian mechanics on a phase space V ∗Q is not familiar Poisson

Hamiltonian theory on a Poisson manifold V ∗Q because all Hamiltonian

vector fields on V ∗Q are vertical. Hamiltonian mechanics on V ∗Q is formu-

lated as particular (polysymplectic) Hamiltonian formalism on fibre bundles
[53; 68; 106]. Its Hamiltonian is a section of the fibre bundle T ∗Q→ V ∗Q

(Section 3.3). The pull-back of the canonical Liouville form on T ∗Q with

respect to this section is a Hamiltonian one-form on V ∗Q. The correspond-

ing Hamiltonian connection on V ∗Q → R defines the first order Hamilton

equation on V ∗Q.

Furthermore, one can associate to any Hamiltonian system on V ∗Q

an autonomous symplectic Hamiltonian system on the cotangent bundle

T ∗Q such that the corresponding Hamilton equations on V ∗Q and T ∗Q

are equivalent (Section 3.4). Moreover, the Hamilton equation on V ∗Q also

is equivalent to the Lagrange equation of a certain first order Lagrangian

system on a configuration space V ∗Q. As a consequence, Hamiltonian con-

servation laws can be formulated as the particular Lagrangian ones (Section

3.8).

Lagrangian and Hamiltonian formulations of mechanics fail to be equiv-

alent, unless a Lagrangian is hyperregular. If a Lagrangian L on a velocity

space J1Q is hyperregular, one can associate to L an unique Hamiltonian

form on a phase space V ∗Q such that Lagrange equation on Q and the

Hamilton equation on V ∗Q are equivalent. In general, different Hamilto-

nian forms are associated to a non-regular Lagrangian. The comprehensive

relations between Lagrangian and Hamiltonian systems can be established

in the case of almost regular Lagrangians (Section 3.6).

In comparison with non-relativistic mechanics, if a configuration space

of a mechanical system has no preferable fibration Q→ R, we obtain a gen-

eral formulation of relativistic mechanics, including Special Relativity on
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the Minkowski space Q = R4 (Chapter 10). A velocity space of relativistic

mechanics is the first order jet manifold J1
1Q of one-dimensional subman-

ifolds of a configuration space Q [53; 139]. This notion of jets generalizes

that of jets of sections of fibre bundles which is utilized in field theory and

non-relativistic mechanics. The jet bundle J1
1Q→ Q is projective, and one

can think of its fibres as being spaces of three-velocities of a relativistic

system. Four-velocities of a relativistic system are represented by elements

of the tangent bundle TQ of a configuration space Q, while the cotangent

bundle T ∗Q, endowed with the canonical symplectic form, plays a role of

the phase space of relativistic theory. As a result, Hamiltonian relativistic

mechanics can be seen as a constraint Dirac system on the hyperboloids of

relativistic momenta in the phase space T ∗Q.

Note that the tangent bundle TQ of a configuration space Q plays a

role of the space of four-velocities both in non-relativistic and relativistic

mechanics. The difference is only that, given a fibration Q → R, the

four-velocities of a non-relativistic system live in the subbundle (10.3.14)

of TQ, whereas the four-velocities of a relativistic theory belong to the

hyperboloids

gµν q̇
µq̇ν = 1, (0.0.3)

where g is an admissible pseudo-Riemannian metric in TQ. Moreover, as

was mentioned above, both relativistic and non-relativistic equations of

motion can be seen as geodesic equations on the tangent bundle TQ, but

their solutions live in its different subbundles (0.0.3) and (10.3.14).

Quantum non-relativistic mechanics is phrased in the geometric terms

of Banach and Hilbert manifolds and locally trivial Hilbert and C∗-algebra

bundles (Chapter 4). A quantization scheme speaking this language is

geometric quantization (Chapter 5).

Let us note that a definition of smooth Banach (and Hilbert) manifolds

follows that of finite-dimensional smooth manifolds in general, but infinite-

dimensional Banach manifolds are not locally compact, and they need not

be paracompact [65; 100; 155]. It is essential that Hilbert manifolds satisfy

the inverse function theorem and, therefore, locally trivial Hilbert bundles

are defined. We restrict our consideration to Hilbert and C∗-algebra bun-

dles over smooth finite-dimensional manifolds X , e.g., X = R. Sections of

such a Hilbert bundle make up a particular locally trivial continuous field

of Hilbert spaces [33]. Conversely, one can think of any locally trivial con-

tinuous field of Hilbert spaces or C∗-algebras as being a module of sections

of some topological fibre bundle. Given a Hilbert space E, let B ⊂ B(E) be
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some C∗-algebra of bounded operators in E. The following fact reflects the

non-equivalence of Schrödinger and Heisenberg quantum pictures. There

is the obstruction to the existence of associated (topological) Hilbert and

C∗-algebra bundles E → X and B → X with the typical fibres E and B,

respectively. Firstly, transition functions of E define those of B, but the

latter need not be continuous, unless B is the algebra of compact operators

in E. Secondly, transition functions of B need not give rise to transition

functions of E . This obstruction is characterized by the Dixmier–Douady

class of B in the Čech cohomology group H3(X,Z) (Section 4.4).

One also meets a problem of the definition of connections on C∗-algebra

bundles. It comes from the fact that a C∗-algebra need not admit non-zero

bounded derivations. An unbounded derivation of a C∗-algebra A obey-

ing certain conditions is an infinitesimal generator of a strongly (but not

uniformly) continuous one-parameter group of automorphisms of A [18].

Therefore, one may introduce a connection on a C∗-algebra bundle in terms

of parallel transport curves and operators, but not their infinitesimal gen-

erators [6]. Moreover, a representation of A does not imply necessarily

a unitary representation of its strongly (not uniformly) continuous one-

parameter group of automorphisms (Section 4.5). In contrast, connections

on a Hilbert bundle over a smooth manifold can be defined both as par-

ticular first order differential operators on the module of its sections [65;

109] and a parallel displacement along paths lifted from the base [88].

The most of quantum models come from quantization of original clas-

sical systems. This is the case of canonical quantization which replaces

the Poisson bracket {f, f ′} of smooth functions with the bracket [f̂ , f̂ ′] of

Hermitian operators in a Hilbert space such that Dirac’s condition

[f̂ , f̂ ′] = −i{̂f, f ′} (0.0.4)

holds. Canonical quantization of Hamiltonian non-relativistic mechanics

on a configuration space Q → R is geometric quantization [57; 65]. It

takes the form of instantwise quantization phrased in the terms of Hilbert

bundles over R (Section 5.4.3). This quantization depends on a reference

frame, represented by a connection on a configuration space Q→ R. Under

quantization, this connection yields a connection on the quantum algebra

of a phase space V ∗Q. We obtain the relation between operators of energy

with respect to different reference frames (Section 5.5).

The book provides a detailed exposition of a few important mechanical

systems.

Chapter 6 is devoted to Hamiltonian systems with time-dependent con-

straints and their geometric quantization.
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In Chapter 7, completely integrable, partially integrable and superinte-

grable Hamiltonian systems are described in a general setting of invariant

submanifolds which need not be compact. In particular, this is the case of

non-autonomous completely integrable and superintegrable systems. Ge-

ometric quantization of completely integrable and superintegrable Hamil-

tonian systems with respect to action-angle variables is considered. Using

this quantization, the non-adiabatic holonomy operator is constructed in

Section 9.6.

Given a mechanical system on a configuration space Q→ R, its exten-

sion onto the vertical tangent bundle V Q → R of Q → R describes the

Jacobi fields of the Lagrange and Hamilton equations (Chapter 8). In par-

ticular, we show that Jacobi fields of a completely integrable Hamiltonian

system of m degrees of freedom make up an extended completely integrable

system of 2m degrees of freedom, where m additional integrals of motion

characterize a relative motion.

Chapter 9 addresses mechanical systems with time-dependent parame-

ters. These parameters can be seen as sections of some smooth fibre bundle

Σ → R called the parameter bundle. Sections 9.1 and 9.2 are devoted to

Lagrangian and Hamiltonian classical mechanics with parameters. In order

to obtain the Lagrange and Hamilton equations, we treat parameters on the

same level as dynamic variables. Geometric quantization of mechanical sys-

tems with time-dependent parameters is developed in Section 9.3. Berry’s

phase factor is a phenomenon peculiar to quantum systems depending on

classical time-dependent parameters (Section 9.4). In Section 9.5, we study

the Berry phase phenomena in completely integrable systems. The reason

is that, being constant under an internal dynamic evolution, action vari-

ables of a completely integrable system are driven only by a perturbation

holonomy operator without any adiabatic approximation

Let us note that, since time reparametrization is not considered, we

believe that all quantities are physically dimensionless, but sometimes refer

to the universal unit system where the velocity of light c and the Planck

constant ~ are equal to 1, while the length unit is the Planck one

(G~c−3)1/2 = G1/2 = 1, 616 · 10−33cm,

where G is the Newtonian gravitational constant. Relative to the universal

unit system, the physical dimension of the spatial and temporal Cartesian

coordinates is [length], while the physical dimension of a mass is [length]−1.

For the convenience of the reader, a few relevant mathematical topics

are compiled in Chapter 11.
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Chapter 1

Dynamic equations

Equations of motion of non-relativistic mechanics are first and second order

differential equations on manifolds and fibre bundles over R. Almost always,

they are dynamic equations. Their solutions are called a motion.

This Chapter is devoted to theory of second order dynamic equations

in non-relativistic mechanics, whose configuration space is a fibre bundle

Q → R. They are defined as the holonomic connections on the jet bundle

J1Q → R (Section 1.4). These equations are represented by connections

on the jet bundle J1Q → Q. Due to the canonical imbedding J1Q → TQ

(1.1.6), they are proved equivalent to non-relativistic geodesic equations on

the tangent bundle TQ of Q (Theorem 1.5.1). In Section 10.3, we compare

non-relativistic geodesic equations and relativistic geodesic equations in

relativistic mechanics. Any relativistic geodesic equation on the tangent

bundle TQ defines the non-relativistic one, but the converse relitivization

procedure is more intricate [106; 107; 109].

The notions of a non-relativistic reference frame, a relative velocity, a

free motion equation and a relative acceleration are formulated in terms of

connections on Q→ R, J1Q→ Q and TQ→ Q.

Generalizing the second Newton law, we introduce the notion of a New-

tonian system (Definition 1.9.1) characterized by a mass tensor. If a mass

tensor is non-degenerate, an equation of motion of a Newtonian system is

equivalent to a dynamic equation. The notion of an external force also is

formulated.

1.1 Preliminary. Fibre bundles over R

This section summarizes some peculiarities of fibre bundles over R.

7
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Let

π : Q→ R (1.1.1)

be a fibred manifold whose base is treated as a time axis. Throughout

the book, the time axis R is parameterized by the Cartesian coordinate

t with the transition functions t′ = t+const. Of course, this is the case

neither of relativistic mechanics (Chapter 10) nor the models with time

reparametrization (Section 3.9). Relative to the Cartesian coordinate t, the

time axis R is provided with the standard vector field ∂t and the standard

one-form dt which also is the volume element on R. The symbol dt also

stands for any pull-back of the standard one-form dt onto a fibre bundle

over R.

Remark 1.1.1. Point out one-to-one correspondence between the vector

fields f∂t, the densities fdt and the real functions f on R. Roughly speak-

ing, we can neglect the contribution of TR and T ∗R to some expressions

(Remarks 1.1.3 and 1.9.1). However, one should be careful with such sim-

plification in the framework of the universal unit system. For instance, co-

efficients f of densities fdt have the physical dimension [length]−1, whereas

functions f are physically dimensionless.

In order that the dynamics of a mechanical system can be defined at

any instant t ∈ R, we further assume that a fibred manifold Q → R is a

fibre bundle with a typical fibre M .

Remark 1.1.2. In accordance with Remark 11.4.1, a fibred manifold Q→
R is a fibre bundle if and only if it admits an Ehresmann connection Γ,

i.e., the horizontal lift Γ∂t onto Q of the standard vector field ∂t on R is

complete. By virtue of Theorem 11.2.5, any fibre bundle Q→ R is trivial.

Its different trivializations

ψ : Q = R×M (1.1.2)

differ from each other in fibrations Q→M .

Given bundle coordinates (t, qi) on the fibre bundle Q → R (1.1.1),

the first order jet manifold J1Q of Q → R is provided with the adapted

coordinates (t, qi, qit) possessing transition functions (11.3.1) which read

q′it = (∂t + qjt∂j)q
′i. (1.1.3)

In non-relativistic mechanics on a configuration space Q→ R, the jet ma-

nifold J1Q plays a role of the velocity space.
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Note that, if Q = R ×M coordinated by (t, qi), there is the canonical

isomorphism

J1(R×M) = R× TM, qit = q̇
i
, (1.1.4)

that one can justify by inspection of the transition functions of the co-

ordinates qit and q̇
i

when transition functions of qi are time-independent.

Due to the isomorphism (1.1.4), every trivialization (1.1.2) yields the cor-

responding trivialization of the jet manifold

J1Q = R× TM. (1.1.5)

The canonical imbedding (11.3.5) of J1Q takes the form

λ(1) : J1Q 3 (t, qi, qit)→ (t, qi, ṫ = 1, q̇i = qit) ∈ TQ, (1.1.6)

λ(1) = dt = ∂t + qit∂i, (1.1.7)

where by dt is meant the total derivative. From now on, a jet manifold

J1Q is identified with its image in TQ. Using the morphism (1.1.6), one

can define the contraction

J1Q×
Q
T ∗Q →

Q
Q× R,

(qit; ṫ, q̇i)→ λ(1)c(ṫdt+ q̇idq
i) = ṫ + qit q̇i, (1.1.8)

where (t, qi, ṫ, q̇i) are holonomic coordinates on the cotangent bundle T ∗Q.

Remark 1.1.3. Following precisely the expression (11.3.5), one should

write the morphism λ(1) (1.1.7) in the form

λ(1) = dt⊗ (∂t + qit∂i). (1.1.9)

With respect to the universal unit system, the physical dimension of λ(1)

(1.1.7) is [length]−1, while λ(1) (1.1.9) is dimensionless.

A glance at the expression (1.1.6) shows that the affine jet bundle

J1Q → Q is modelled over the vertical tangent bundle V Q of a fibre bun-

dle Q → R. As a consequence, there is the following canonical splitting

(11.2.27) of the vertical tangent bundle VQJ
1Q of the affine jet bundle

J1Q→ Q:

α : VQJ
1Q = J1Q×

Q
V Q, α(∂ti ) = ∂i, (1.1.10)

together with the corresponding splitting of the vertical cotangent bundle

V ∗
QJ

1Q of J1Q→ Q:

α∗ : V ∗
QJ

1Q = J1Q×
Q
V ∗Q, α∗(dqit) = dqi, (1.1.11)
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where dqit and dqi are the holonomic bases for V ∗
QJ

1Q and V ∗Q, respec-

tively. Then the exact sequence (11.4.30) of vertical bundles over the com-

posite fibre bundle

J1Q −→Q −→R (1.1.12)

reads

?
α−1

0 −→VQJ
1Q

i−→V J1Q
πV−→ J1Q×

Q
V Q −→ 0.

Hence, we obtain the following linear endomorphism over J1Q of the ver-

tical tangent bundle V J1Q of the jet bundle J1Q→ R:

v̂ = i ◦ α−1 ◦ πV : V J1Q→ V J1Q, (1.1.13)

v̂(∂i) = ∂ti , v̂(∂ti ) = 0.

This endomorphism obeys the nilpotency rule

v̂ ◦ v̂ = 0. (1.1.14)

Combining the canonical horizontal splitting (11.2.27), the correspond-

ing epimorphism

pr2 : J1Q×
Q
TQ→ J1Q×

Q
V Q = VQJ

1Q,

∂t → −qit∂ti , ∂i → ∂ti ,

and the monomorphism V J1Q→ TJ1Q, one can extend the endomorphism

(1.1.13) to the tangent bundle TJ1Q:

v̂ : TJ1Q→ TJ1Q,

v̂(∂t) = −qit∂ti , v̂(∂i) = ∂ti , v̂(∂ti ) = 0. (1.1.15)

This is called the vertical endomorphism. It inherits the nilpotency prop-

erty (1.1.14). The transpose of the vertical endomorphism v̂ (1.1.15) is

v̂∗ : T ∗J1Q→ T ∗J1Q,

v̂∗(dt) = 0, v̂∗(dqi) = 0, v̂∗(dqit) = θi, (1.1.16)

where θi = dqi − qitdt are the contact forms (11.3.6). The nilpotency rule

v̂∗◦v̂∗ = 0 also is fulfilled. The homomorphisms v̂ and v̂∗ are associated with

the tangent-valued one-form v̂ = θi ⊗ ∂ti in accordance with the relations

(11.2.52) – (11.2.53).
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In view of the morphism λ(1) (1.1.6), any connection

Γ = dt⊗ (∂t + Γi∂i) (1.1.17)

on a fibre bundle Q → R can be identified with a nowhere vanishing hori-

zontal vector field

Γ = ∂t + Γi∂i (1.1.18)

on Q which is the horizontal lift Γ∂t (11.4.3) of the standard vector field

∂t on R by means of the connection (1.1.17). Conversely, any vector field

Γ on Q such that dtcΓ = 1 defines a connection on Q→ R. Therefore, the

connections (1.1.17) further are identified with the vector fields (1.1.18).

The integral curves of the vector field (1.1.18) coincide with the integral

sections for the connection (1.1.17).

Connections on a fibre bundle Q → R constitute an affine space mod-

elled over the vector space of vertical vector fields on Q→ R. Accordingly,

the covariant differential (11.4.8), associated with a connection Γ onQ→ R,

takes its values into the vertical tangent bundle V Q of Q→ R:

DΓ : J1Q →
Q
V Q, q̇i ◦DΓ = qit − Γi. (1.1.19)

A connection Γ on a fibre bundle Q → R is obviously flat. It yields a

horizontal distribution on Q. The integral manifolds of this distribution are

integral curves of the vector field (1.1.18) which are transversal to fibres of

a fibre bundle Q→ R.

Theorem 1.1.1. By virtue of Theorem 11.4.1, every connection Γ on a

fibre bundle Q → R defines an atlas of local constant trivializations of

Q→ R such that the associated bundle coordinates (t, qi) on Q possess the

transition functions qi → q′i(qj) independent of t, and

Γ = ∂t (1.1.20)

with respect to these coordinates. Conversely, every atlas of local constant

trivializations of the fibre bundle Q→ R determines a connection on Q→ R

which is equal to (1.1.20) relative to this atlas.

A connection Γ on a fibre bundle Q → R is said to be complete if the

horizontal vector field (1.1.18) is complete. In accordance with Remark

11.4.1, a connection on a fibre bundle Q → R is complete if and only if it

is an Ehresmann connection. The following holds [106].

Theorem 1.1.2. Every trivialization of a fibre bundle Q → R yields a

complete connection on this fibre bundle. Conversely, every complete con-

nection Γ on Q→ R defines its trivialization (1.1.2) such that the horizontal
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vector field (1.1.18) equals ∂t relative to the bundle coordinates associated

with this trivialization.

Let J1J1Q be the repeated jet manifold of a fibre bundle Q → R pro-

vided with the adapted coordinates (t, qi, qit, q̂
i
t, q

i
tt) possessing transition

functions

q′it = dtq
′i, q̂′it = d̂tq

′i, q′itt = d̂tq
′i
t ,

dt = ∂t + qjt∂j + qjtt∂
t
j , d̂t = ∂t + q̂jt∂j + qjtt∂

t
j .

There is the canonical isomorphism k between the affine fibrations π11

(11.3.10) and J1π1
0 (11.3.11) of J1J1Q over J1Q, i.e.,

π11 ◦ k = J1
0π01, k ◦ k = Id J1J1Q,

where

qit ◦ k = q̂it, q̂it ◦ k = qit, qitt ◦ k = qitt. (1.1.21)

In particular, the affine bundle π11 (11.3.10) is modelled over the vertical

tangent bundle V J1Q of J1Q → R which is canonically isomorphic to the

underlying vector bundle J1V Q→ J1Q of the affine bundle J1π1
0 (11.3.11).

For a fibre bundle Q→ R, the sesquiholonomic jet manifold Ĵ2Q coin-

cides with the second order jet manifold J2Q coordinated by (t, qi, qit, q
i
tt),

possessing transition functions

q′it = dtq
′i, q′itt = dtq

′i
t . (1.1.22)

The affine bundle J2Q→ J1Q is modelled over the vertical tangent bundle

VQJ
1Q = J1Q×

Q
V Q→ J1Q

of the affine jet bundle J1Q→ Q. There are the imbeddings

J2Q
λ(2)−→TJ1Q

Tλ(1)−→ VQTQ = T 2Q ⊂ TTQ,
λ(2) : (t, qi, qit, q

i
tt)→ (t, qi, qit, ṫ = 1, q̇i = qit, q̇

i
t = qitt), (1.1.23)

Tλ(1) ◦ λ(2) : (t, qi, qit, q
i
tt) (1.1.24)

→ (t, qi, ṫ = ṫ = 1, q̇i = q̇i = qit, ẗ = 0, q̈i = qitt),

where (t, qi, ṫ, q̇i, ṫ, q̇i, ẗ, q̈i) are the coordinates on the double tangent bundle

TTQ and T 2Q ⊂ TTQ is second tangent bundle the second tangent bundle

given by the coordinate relation ṫ = ṫ.

Due to the morphism (1.1.23), any connection ξ on the jet bundle

J1Q→ R (defined as a section of the affine bundle π11 (11.3.10)) is repre-

sented by a horizontal vector field on J1Q such that ξcdt = 1.
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A connection Γ (1.1.18) on a fibre bundle Q → R has the jet pro-

longation to the section J1Γ of the affine bundle J1π1
0 . By virtue of the

isomorphism k (1.1.21), every connection Γ on Q → R gives rise to the

connection

JΓ = k ◦ J1Γ : J1Q→ J1J1Q,

JΓ = ∂t + Γi∂i + dtΓ
i∂ti , (1.1.25)

on the jet bundle J1Q→ R.

A connection on the jet bundle J1Q → R is said to be holonomic if it

is a section

ξ = dt⊗ (∂t + qit∂i + ξi∂ti )

of the holonomic subbundle J2Q→ J1Q of J1J1Q→ J1Q. In view of the

morphism (1.1.23), a holonomic connection is represented by a horizontal

vector field

ξ = ∂t + qit∂i + ξi∂ti (1.1.26)

on J1Q. Conversely, every vector field ξ on J1Q such that

dtcξ = 1, v̂(ξ) = 0,

where v̂ is the vertical endomorphism (1.1.15), is a holonomic connection

on the jet bundle J1Q→ R.

Holonomic connections (1.1.26) make up an affine space modelled over

the linear space of vertical vector fields on the affine jet bundle J 1Q→ Q,

i.e., which live in VQJ
1Q.

A holonomic connection ξ defines the corresponding covariant differen-

tial (1.1.19) on the jet manifold J1Q:

Dξ : J1J1Q −→
J1Q

VQJ
1Q ⊂ V J1Q,

q̇i ◦Dξ = 0, q̇it ◦Dξ = qitt − ξi,
which takes its values into the vertical tangent bundle VQJ

1Q of the jet

bundle J1Q → Q. Then by virtue of Theorem 11.3.1, any integral section

c : ()→ J1Q for a holonomic connection ξ is holonomic, i.e., c = ċ where c

is a curve in Q.

1.2 Autonomous dynamic equations

Let us start with dynamic equations on a manifold. From the physical view-

point, they are treated as autonomous dynamic equations in autonomous

non-relativistic mechanics.
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Let Z, dimZ > 1, be a smooth manifold coordinated by (zλ).

Definition 1.2.1. Let u be a vector field u on Z. A closed subbundle u(Z)

of the tangent bundle TZ given by the coordinate relations

żλ = uλ(z) (1.2.1)

is said to be an autonomous dynamic equation!first order on a manifold

Z. This is a system of first order differential equations on a fibre bundle

R× Z → R in accordance with Definition 11.3.5.

By a solution of the autonomous first order dynamic equation (1.2.1) is

meant an integral curve of the vector field u.

Definition 1.2.2. An autonomous dynamic equation!second order on a

manifold Z is defined as an autonomous first order dynamic equation on

the tangent bundle TZ which is associated with a holonomic vector field

Ξ = żλ∂λ + Ξλ(zµ, żµ)∂̇λ (1.2.2)

on TZ. This vector field, by definition, obeys the condition

J(Ξ) = uTZ ,

where J is the endomorphism (11.2.55) and uTZ is the Liouville vector field

(11.2.34) on TZ.

The holonomic vector field (1.2.2) also is called the autonomous second

order dynamic equation.

Let the double tangent bundle TTZ be provided with coordinates

(zλ, żλ, żλ, z̈λ). With respect to these coordinates, an autonomous sec-

ond order dynamic equation defined by the holonomic vector field Ξ (1.2.2)

reads

żλ = żλ, z̈λ = Ξλ(zµ, żµ). (1.2.3)

By a solution of the second order dynamic equation (1.2.3) is meant a curve

c : (, )→ Z in a manifold Z whose tangent prolongation ċ : (, )→ TZ is an

integral curve of the holonomic vector field Ξ or, equivalently, whose second

order tangent prolongation c̈ lives in the subbundle (1.2.3). It satisfies an

autonomous second order differential equation

c̈λ(t) = Ξλ(cµ(t), ċµ(t)).

Remark 1.2.1. In fact, the autonomous second order dynamic equation

(1.2.3) is a closed subbundle

z̈λ = Ξλ(zµ, żµ) (1.2.4)

of the second tangent bundle T 2Z ⊂ TTZ.
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Autonomous second order dynamic equations on a manifold Z are ex-

emplified by geodesic equations on the tangent bundle TZ.

Given a connection

K = dzµ ⊗ (∂µ +Kν
µ ∂̇ν) (1.2.5)

on the tangent bundle TZ → Z, let

K̂ : TZ×
Z
TZ → TTZ (1.2.6)

be the corresponding linear bundle morphism over TZ which splits the

exact sequence (11.2.20):

0 −→V TZ −→TTZ −→TZ×
Z
TZ −→ 0.

Note that, in contrast with K (11.4.20), the connection K (1.2.5) need not

be linear.

Definition 1.2.3. A geodesic equation on TZ with respect to the connec-

tion K (1.2.5) is defined as the range

żλ = żλ, z̈µ = Kµ
ν ż

ν (1.2.7)

in T 2Z ⊂ TTZ of the morphism (1.2.6) restricted to the diagonal TZ ⊂
TZ × TZ.

By a solution of a geodesic equation on TZ is meant a geodesic curve c

in Z whose tangent prolongation ċ is an integral section (a geodesic vector

field) over c ⊂ Z for a connection K.

It is readily observed that the range (1.2.7) of the morphism K̂ (1.2.6)

is a holonomic vector field

K̂(TZ) = żλ∂λ +Kµ
ν ż

ν ∂̇µ (1.2.8)

on TZ whose integral curve is a geodesic vector field. It follows that any

geodesic equation (1.2.6) on TZ is an autonomous second order dynamic

equation on Z. The converse is not true in general. Nevertheless, there is

the following theorem [118].

Theorem 1.2.1. Every autonomous second order dynamic equation (1.2.3)

on a manifold Z defines a connection KΞ on the tangent bundle TZ → Z

whose components are

Kµ
ν =

1

2
∂̇νΞ

µ. (1.2.9)
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However, the autonomous second order dynamic equation (1.2.3) fails

to be a geodesic equation with respect to the connection (1.2.9) in general.

In particular, the geodesic equation (1.2.7) with respect to a connection K

determines the connection (1.2.9) on TZ → Z which does not necessarily

coincide with K.

Theorem 1.2.2. An autonomous second order dynamic equation Ξ on Z

is a geodesic equation for the connection (1.2.9) if and only if Ξ is a spray,

i.e.,

[uTZ ,Ξ] = Ξ,

where uTZ is the Liouville vector field (11.2.34) on TZ, i.e.,

Ξi = aij(q
k)q̇iq̇j

and the connection K (1.2.9) is linear.

1.3 Dynamic equations

Let Q → X (1.1.1) be a configuration space of non-relativistic mechanics.

Refereing to Definition 11.3.5 of a differential equation on a fibre bundle,

one defines a dynamic equation on Q→ R as a differential equation which

is algebraically solved for the highest order derivatives.

Definition 1.3.1. Let Γ (1.1.18) be a connection on a fibre bundle Y →
R. The corresponding covariant differential DΓ (1.1.19) is a first order

differential operator on Y . Its kernel, given by the coordinate equation

qit = Γi(t, qi), (1.3.1)

is a closed subbundle of the jet bundle J1Y → R. By virtue of Definition

11.3.5, it is a first order differential equation on a fibre bundle Y → R called

the first order dynamic equation on Y → R.

Due to the canonical imbedding J1Q→ TQ (1.1.6), the equation (1.3.1)

is equivalent to the autonomous first order dynamic equation

ṫ = 1, q̇i = Γi(t, qi) (1.3.2)

on a manifold Y (Definition 1.2.2). It is defined by the vector field (1.1.18).

Solutions of the first order dynamic equation (1.3.1) are integral sections

for a connection Γ.
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Definition 1.3.2. Let us consider the first order dynamic equation (1.3.1)

on the jet bundle J1Q→ R, which is associated with a holonomic connec-

tion ξ (1.1.26) on J1Q→ R. This is a closed subbundle of the second order

jet bundle J2Q→ R given by the coordinate relations

qitt = ξi(t, qj , qjt ). (1.3.3)

Consequently, it is a second order differential equation on a fibre bundle

Q → R in accordance with Definition 11.3.5. This equation is called a

second order dynamic equation. The corresponding horizontal vector field

ξ (1.1.26) also is termed the second order dynamic equation.

The second order dynamic equation (1.3.3) possesses the coordinate

transformation law

q′itt = ξ′i, ξ′i = (ξj∂j + qjt q
k
t ∂j∂k + 2qjt∂j∂t + ∂2

t )q
′i(t, qj), (1.3.4)

derived from the formula (1.1.22).

A solution of the second order dynamic equation (1.3.3) is a curve c

in Q whose second order jet prolongation c̈ lives in (1.3.3). Any integral

section c for the holonomic connection ξ obviously is the jet prolongation ċ

of a solution c of the second order dynamic equation (1.3.3), i.e.,

c̈i = ξi ◦ ċ, (1.3.5)

and vice versa.

Remark 1.3.1. By very definition, the second order dynamic equation

(1.3.3) on a fibre bundle Q → R is equivalent to the system of first order

differential equations

q̂it = qit, qitt = ξi(t, qj , qjt ), (1.3.6)

on the jet bundle J1Q → R. Any solution c of these equations takes its

values into J2Q and, by virtue of Theorem 11.3.1, is holonomic, i.e., c = ċ.

The equations (1.3.3) and (1.3.6) are therefore equivalent. The equation

(1.3.6) is said to be the first order reduction of the second order dynamic

equation (1.3.3).

A second order dynamic equation ξ on a fibre bundle Q→ R is said to be

conservative if there exist a trivialization (1.1.2) of Q and the corresponding

trivialization (1.1.5) of J1Q such that the vector field ξ (1.1.26) on J1Q is

projectable onto TM . Then this projection

Ξξ = q̇i∂i + ξi(qj , q̇j)∂̇i
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is an autonomous second order dynamic equation on the typical fibre M of

Q→ R in accordance with Definition 1.2.2. Its solution is seen as a section

of the fibre bundle R × M → R (1.1.2). Conversely, every autonomous

second order dynamic equation Ξ (1.2.2) on a manifold M can be seen as

a conservative second order dynamic equation

ξΞ = ∂t + q̇i∂i + Ξi∂̇i (1.3.7)

on the fibre bundle R×M → R in accordance with the isomorphism (1.1.5).

The following theorem holds [106].

Theorem 1.3.1. Any second order dynamic equation ξ (1.3.3) on a fi-

bre bundle Q → R is equivalent to an autonomous second order dynamic

equation Ξ on a manifold Q which makes the diagram

J2Q −→ T 2Q

ξ 6 6 Ξ

J1Q
λ(1)−→ TQ

commutative and obeys the relations

ξi = Ξi(t, qj , ṫ = 1, q̇j = qjt ), Ξt = 0.

Accordingly, the second order dynamic equation (1.3.3) is written in the

form

qitt = Ξi |ṫ=1,q̇j=qj
t
,

which is equivalent to the autonomous second order dynamic equation

ẗ = 0, ṫ = 1, q̈i = Ξi, (1.3.8)

on Q.

1.4 Dynamic connections

In order to say something more, let us consider the relationship between

the holonomic connections on the jet bundle J1Q→ R and the connections

on the affine jet bundle J1Q→ Q (see Propositions 1.4.1 and 1.4.2 below).

By J1
QJ

1Q throughout is meant the first order jet manifold of the affine

jet bundle J1Q→ Q. The adapted coordinates on J1
QJ

1Q are (qλ, qit, q
i
λt),

where we use the compact notation λ = (0, i), q0 = t. Let

γ : J1Q→ J1
QJ

1Q
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be a connection on the affine jet bundle J1Q→ Q. It takes the coordinate

form

γ = dqλ ⊗ (∂λ + γiλ∂
t
i ), (1.4.1)

together with the coordinate transformation law

γ′iλ = (∂jq
′iγjµ + ∂µq

′i
t )
∂qµ

∂q′λ
. (1.4.2)

Remark 1.4.1. In view of the canonical splitting (1.1.10), the curvature

(11.4.13) of the connection γ (1.4.1) reads

R : J1Q→ 2∧T ∗Q ⊗
J1Q

V Q,

R =
1

2
Riλµdq

λ ∧ dqµ ⊗ ∂i =

(
1

2
Rikjdq

k ∧ dqj +Ri0jdt ∧ dqj
)
⊗ ∂i,

Riλµ = ∂λγ
i
µ − ∂µγiλ + γjλ∂jγ

i
µ − γjµ∂jγiλ. (1.4.3)

Using the contraction (1.1.8), we obtain the soldering form

λ(1)cR = [(Rikjq
k
t +Ri0j)dq

j −Ri0jqjt dt]⊗ ∂i
on the affine jet bundle J1Q → Q. Its image by the canonical projection

T ∗Q→ V ∗Q (2.2.5) is the tensor field

R : J1Q→ V ∗Q⊗
Q
V Q, R = (Rikjq

k
t +Ri0j)dq

j ⊗ ∂i, (1.4.4)

and then we come to the scalar field

R̃ : J1Q→ R, R̃ = Rikiq
k
t +Ri0i, (1.4.5)

on the jet manifold J1Q.

Proposition 1.4.1. Any connection γ (1.4.1) on the affine jet bundle

J1Q→ Q defines the holonomic connection

ξγ = ρ ◦ γ : J1Q→ J1
QJ

1Q→ J2Q, (1.4.6)

ξγ = ∂t + qit∂i + (γi0 + qjt γ
i
j)∂

t
i ,

on the jet bundle J1Q→ R.

Proof. Let us consider the composite fibre bundle (1.1.12) and the mor-

phism ρ (11.4.25) which reads

ρ : J1
QJ

1Q 3 (qλ, qit, q
i
λt) (1.4.7)

→ (qλ, qit, q̂
i
t = qit, q

i
tt = qi0t + qjt q

i
jt) ∈ J2Q.

A connection γ (1.4.1) and the morphism ρ (1.4.7) combine into the desired

holonomic connection ξγ (1.4.6) on the jet bundle J1Q→ R. �
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It follows that every connection γ (1.4.1) on the affine jet bundle J 1Q→
Q yields the second order dynamic equation

qitt = γi0 + qjt γ
i
j (1.4.8)

on the configuration bundle Q → R. This is precisely the restriction to

J2Q of the kernel Ker D̃γ of the vertical covariant differential D̃γ (11.4.36)

defined by the connection γ:

D̃γ : J1J1Q→ VQJ
1Q, q̇it ◦ D̃γ = qitt − γi0 − qjt γij . (1.4.9)

Therefore, connections on the jet bundle J1Q→ Q are called the dynamic

connections. The corresponding equation (1.3.5) can be written in the form

c̈i = ρ ◦ γ ◦ ċ,

where ρ is the morphism (1.4.7).

Of course, different dynamic connections can lead to the same second

order dynamic equation (1.4.8).

Proposition 1.4.2. Any holonomic connection ξ (1.1.26) on the jet bundle

J1Q→ R yields the dynamic connection

γξ = dt⊗
[
∂t + (ξi − 1

2
qjt∂

t
jξ
i)∂ti

]
+ dqj ⊗

[
∂j +

1

2
∂tjξ

i∂ti

]
(1.4.10)

on the affine jet bundle J1Q→ Q [106; 109].

It is readily observed that the dynamic connection γξ (1.4.10), defined

by a second order dynamic equation, possesses the property

γki = ∂tiγ
k
0 + qjt∂

t
iγ
k
j , (1.4.11)

which implies the relation

∂tjγ
k
i = ∂tiγ

k
j .

Therefore, a dynamic connection γ, obeying the condition (1.4.11), is said

to be symmetric. The torsion of a dynamic connection γ is defined as the

tensor field

T : J1Q→ V ∗Q⊗
Q
V Q,

T = T ki dq
i ⊗ ∂k, T ki = γki − ∂tiγk0 − qjt∂tiγkj . (1.4.12)

It follows at once that a dynamic connection is symmetric if and only if its

torsion vanishes.
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Let γ be the dynamic connection (1.4.1) and ξγ the corresponding sec-

ond order dynamic equation (1.4.6). Then the dynamic connection (1.4.10)

associated with the second order dynamic equation ξγ takes the form

γξγ

k
i =

1

2
(γki + ∂tiγ

k
0 + qjt∂

t
iγ
k
j ), γξγ

k
0 = γk0 + qjt γ

k
j − qitγξγ

k
i .

It is readily observed that γ = γξγ
if and only if the torsion T (1.4.12) of

the dynamic connection γ vanishes.

Example 1.4.1. Since a jet bundle J1Q→ Q is affine, it admits an affine

connection

γ = dqλ ⊗ [∂λ + (γiλ0(q
µ) + γiλj(q

µ)qjt )∂
t
i ]. (1.4.13)

This connection is symmetric if and only if γiλµ = γiµλ. One can easily

justify that an affine dynamic connection generates a quadratic second or-

der dynamic equation, and vice versa. Nevertheless, a non-affine dynamic

connection, whose symmetric part is affine, also defines a quadratic second

order dynamic equation. The affine connection (1.4.13) on an affine jet

bundle J1Q→ Q yields the linear connection

γ = dqλ ⊗ [∂λ + γiλj(q
µ)q̇jt ∂̇i]

on the vertical tangent bundle V Q→ Q.

Using the notion of a dynamic connection, we can modify Theorem 1.2.1

as follows. Let Ξ be an autonomous second order dynamic equation on a

manifold M , and let ξΞ (1.3.7) be the corresponding conservative second

order dynamic equation on the bundle R ×M → R. The latter yields the

dynamic connection γ (1.4.10) on a fibre bundle

R× TM → R×M.

Its components γij are exactly those of the connection (1.2.9) on the tangent

bundle TM →M in Theorem 1.2.1, while γi0 make up a vertical vector field

e = γi0∂̇i =

(
Ξi − 1

2
q̇j ∂̇jΞ

i

)
∂̇i (1.4.14)

on TM →M . Thus, we have shown the following.

Proposition 1.4.3. Every autonomous second order dynamic equation Ξ

(1.2.3) on a manifold M admits the decomposition

Ξi = Ki
j q̇
j + ei

where K is the connection (1.2.9) on the tangent bundle TM →M , and e

is the vertical vector field (1.4.14) on TM →M .
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1.5 Non-relativistic geodesic equations

In this Section, we aim to show that every second order dynamic equation

on a configuration bundle Q → R is equivalent to a geodesic equation on

the tangent bundle TQ→ Q [56; 107].

We start with the relation between the dynamic connections γ on the

affine jet bundle J1Q→ Q and the connections

K = dqλ ⊗ (∂λ +Kµ
λ ∂̇µ) (1.5.1)

on the tangent bundle TQ → Q of the configuration space Q. Note that

they need not be linear. We follow the compact notation (11.2.30).

Let us consider the diagram

J1
QJ

1Q
J1λ(1)−→ J1

QTQ

γ 6 6 K

J1Q
λ(1)−→ TQ

(1.5.2)

where J1
QTQ is the first order jet manifold of the tangent bundle TQ→ Q,

coordinated by

(t, qi, ṫ, q̇i, (ṫ)µ, (q̇
i)µ).

The jet prolongation over Q of the canonical imbedding λ(1) (1.1.6) reads

J1λ(1) : (t, qi, qit, q
i
µt)→ (t, qi, ṫ = 1, q̇i = qit, (ṫ)µ = 0, (q̇i)µ = qiµt).

Then we have

J1λ(1) ◦ γ : (t, qi, qit)→ (t, qi, ṫ = 1, q̇i = qit, (ṫ)µ = 0, (q̇i)µ = γiµ),

K ◦ λ(1) : (t, qi, qit)→ (t, qi, ṫ = 1, q̇i = qit, (ṫ)µ = K0
µ, (q̇

i)µ = Ki
µ).

It follows that the diagram (1.5.2) can be commutative only if the com-

ponents K0
µ of the connection K (1.5.1) on the tangent bundle TQ → Q

vanish.

Since the transition functions t→ t′ are independent of qi, a connection

K̃ = dqλ ⊗ (∂λ +Ki
λ∂̇i) (1.5.3)

with K0
µ = 0 may exist on the tangent bundle TQ→ Q in accordance with

the transformation law

K ′i
λ = (∂jq

′iKj
µ + ∂µq̇

′i)
∂qµ

∂q′λ
. (1.5.4)
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Now the diagram (1.5.2) becomes commutative if the connections γ and K̃

fulfill the relation

γiµ = Ki
µ ◦ λ(1) = Ki

µ(t, q
i, ṫ = 1, q̇i = qit). (1.5.5)

It is easily seen that this relation holds globally because the substitution of

q̇i = qit in (1.5.4) restates the transformation law (1.4.2) of a connection on

the affine jet bundle J1Q→ Q. In accordance with the relation (1.5.5), the

desired connection K̃ is an extension of the section J1λ ◦ γ of the affine jet

bundle J1
QTQ → TQ over the closed submanifold J1Q ⊂ TQ to a global

section. Such an extension always exists by virtue of Theorem 11.2.2, but

it is not unique. Thus, we have proved the following.

Proposition 1.5.1. In accordance with the relation (1.5.5), every second

order dynamic equation on a configuration bundle Q→ R can be written in

the form

qitt = Ki
0 ◦ λ(1) + qjtK

i
j ◦ λ(1), (1.5.6)

where K̃ is the connection (1.5.3) on the tangent bundle TQ → Q. Con-

versely, each connection K̃ (1.5.3) on TQ → Q defines the dynamic con-

nection γ (1.5.5) on the affine jet bundle J1Q → Q and the second order

dynamic equation (1.5.6) on a configuration bundle Q→ R.

Then we come to the following theorem.

Theorem 1.5.1. Every second order dynamic equation (1.3.3) on a con-

figuration bundle Q→ R is equivalent to the geodesic equation

q̈0 = 0, q̇0 = 1,

q̈i = Ki
λ(q

µ, q̇µ)q̇λ, (1.5.7)

on the tangent bundle TQ relative to the connection K̃ (1.5.3) with the com-

ponents K0
λ = 0 and Ki

λ (1.5.5). We call this equation the non-relativistic

geodesic equation Its solution is a geodesic curve in Q which also obeys the

second order dynamic equation (1.5.6), and vice versa.

In accordance with this theorem, the autonomous second order equa-

tion (1.3.8) in Theorem 1.3.1 can be chosen as a non-relativistic geodesic

equation. It should be emphasized that, written relative to the bundle

coordinates (t, qi), the non-relativistic geodesic equation (1.5.7) and the

connection K̃ (1.5.5) are well defined with respect to any coordinates on

Q.
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From the physical viewpoint, the most relevant second order dynamic

equations are the quadratic ones

ξi = aijk(q
µ)qjt q

k
t + bij(q

µ)qjt + f i(qµ). (1.5.8)

This property is global due to the transformation law (1.3.4). Then one

can use the following two facts.

Proposition 1.5.2. There is one-to-one correspondence between the affine

connections γ on the affine jet bundle J1Q→ Q and the linear connections

K (1.5.3) on the tangent bundle TQ→ Q.

Proof. This correspondence is given by the relation (1.5.5), written in

the form

γiµ = γiµ0 + γiµjq
j
t = Kµ

i
0(q

ν)ṫ+Kµ
i
j(q

ν)q̇j |ṫ=1,q̇i=qi
t

= Kµ
i
0(q

ν) +Kµ
i
j(q

ν)qjt ,

i.e., γiµλ = Kµ
i
λ. �

In particular, if an affine dynamic connection γ is symmetric, so is the

corresponding linear connection K.

Corollary 1.5.1. Every quadratic second order dynamic equation (1.5.8)

on a configuration bundle Q→ R of non-relativistic mechanics is equivalent

to the non-relativistic geodesic equation

q̈0 = 0, q̇0 = 1,

q̈i = aijk(q
µ)q̇j q̇k + bij(q

µ)q̇j q̇0 + f i(qµ)q̇0q̇0 (1.5.9)

on the tangent bundle TQ with respect to the symmetric linear connection

K̃ (1.5.3):

Kλ
0
ν = 0, K0

i
0 = f i, K0

i
j =

1

2
bij , Kk

i
j = aikj , (1.5.10)

on the tangent bundle TQ→ Q.

The geodesic equation (1.5.9), however, is not unique for the second

order dynamic equation (1.5.8).

Proposition 1.5.3. Any quadratic second order dynamic equation (1.5.8),

being equivalent to a non-relativistic geodesic equation with respect to the

symmetric linear connection K̃ (1.5.10), also is equivalent to the geodesic

equation with respect to an affine connection K ′ on TQ→ Q which differs

from K̃ (1.5.10) in a soldering form σ on TQ→ Q with the components

σ0
λ = 0, σik = hik + (s− 1)hikq̇

0, σi0 = −shikq̇k − hi0q̇0 + hi0,

where s and hiλ are local functions on Q.
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Proposition 1.5.3 also can be deduced from the following lemma.

Lemma 1.5.1. Every affine vertical vector field

σ = [f i(qµ) + bij(q
µ)qjt ]∂

0
i (1.5.11)

on the affine jet bundle J1Q→ Q is extended to the soldering form

σ = (f idq0 + bikdq
k)⊗ ∂̇i (1.5.12)

on the tangent bundle TQ→ Q.

Proof. Similarly to Proposition 1.5.2, one can show that there is one-to-

one correspondence between the VQJ
1Q-valued affine vector fields (1.5.11)

on the jet manifold J1Q and the linear vertical vector fields

σ = [bij(q
µ)q̇j + f i(qµ)q̇0]∂̇i

on the tangent bundle TQ. This linear vertical vector field determines the

desired soldering form (1.5.12). �

In Section 10.3, we use Theorem 1.5.1, Corollary 1.5.1 and Proposi-

tion 1.5.3 in order to study the relationship between non-relativistic and

relativistic equations of motion [56].

Now let us extend our inspection of dynamic equations to connections

on the tangent bundle TM → M of the typical fibre M of a configuration

bundle Q → R. In this case, the relationship fails to be canonical, but

depends on a trivialization (1.1.2) of Q→ R.

Given such a trivialization, let (t, qi) be the associated coordinates on

Q, where qi are coordinates on M with transition functions independent of

t. The corresponding trivialization (1.1.5) of J1Q → R takes place in the

coordinates (t, qi, q̇
i
), where q̇

i
are coordinates on TM . With respect to

these coordinates, the transformation law (1.4.2) of a dynamic connection

γ on the affine jet bundle J1Q→ Q reads

γ′
i
0 =

∂q′i

∂qj
γj0 γ′ik =

(
∂q′i

∂qj
γjn +

∂q̇
′i

∂qn

)
∂qn

∂q′
k
.

It follows that, given a trivialization of Q→ R, a connection γ on J 1Q→ Q

defines the time-dependent vertical vector field

γi0(t, q
j , q̇

j
)
∂

∂q̇
i : R× TM → V TM

and the time-dependent connection

dqk ⊗
(

∂

∂qk
+ γik(t, q

j , q̇
j
)
∂

∂q̇
i

)
: R× TM → J1TM ⊂ TTM (1.5.13)



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

26 Dynamic equations

on the tangent bundle TM →M .

Conversely, let us consider a connection

K = dqk ⊗
(

∂

∂qk
+K

i

k(q
j , q̇

j
)
∂

∂q̇
i

)

on the tangent bundle TM →M . Given the above-mentioned trivialization

of the configuration bundle Q→ R, the connectionK defines the connection

K̃ (1.5.3) with the components

Ki
0 = 0, Ki

k = K
i

k,

on the tangent bundle TQ→ Q. The corresponding dynamic connection γ

on the affine jet bundle J1Q→ Q reads

γi0 = 0, γik = K
i

k. (1.5.14)

Using the transformation law (1.4.2), one can extend the expression

(1.5.14) to arbitrary bundle coordinates (t, qi) on the configuration space

Q as follows:

γik =

[
∂qi

∂qj
K
j

n(qj(qr), q̇
j
(qr, qrt )) +

∂2qi

∂qn∂qj
q̇
j
+
∂Γi

∂qn

]
∂kq

n, (1.5.15)

γi0 = ∂tΓ
i + ∂jΓ

iqjt − γikΓk,

where

Γi = ∂tq
i(t, qj)

is the connection on Q → R, corresponding to a given trivialization of Q,

i.e., Γi = 0 relative to (t, qi). The second order dynamic equation on Q

defined by the dynamic connection (1.5.15) takes the form

qitt = ∂tΓ
i + qjt∂jΓ

i + γik(q
k
t − Γk). (1.5.16)

By construction, it is a conservative second order dynamic equation. Thus,

we have proved the following.

Proposition 1.5.4. Any connection K on the typical fibre M of a config-

uration bundle Q→ R yields a conservative second order dynamic equation

(1.5.16) on Q.
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1.6 Reference frames

From the physical viewpoint, a reference frame in non-relativistic mechanics

determines a tangent vector at each point of a configuration space Q, which

characterizes the velocity of an observer at this point. This speculation

leads to the following mathematical definition of a reference frame in non-

relativistic mechanics [106; 112; 139].

Definition 1.6.1. A non-relativistic reference frame is a connection Γ on

a configuration space Q→ R.

By virtue of this definition, one can think of the horizontal vector field

(1.1.18) associated with a connection Γ on Q → R as being a family of

observers, while the corresponding covariant differential (1.1.19):

q̇iΓ = DΓ(qit) = qit − Γi,

determines the relative velocity with respect to a reference frame Γ. Ac-

cordingly, qit are regarded as the absolute velocities.

In particular, given a motion c : R → Q, its covariant derivative ∇Γc

(11.4.9) with respect to a connection Γ is a velocity of this motion relative to

a reference frame Γ. For instance, if c is an integral section for a connection

Γ, a velocity of the motion c relative to a reference frame Γ is equal to

0. Conversely, every motion c : R → Q defines a reference frame Γc such

that a velocity of c relative to Γc vanishes. This reference frame Γc is an

extension of a section c(R) → J1Q of an affine jet bundle J1Q → Q over

the closed submanifold c(R) ∈ Q to a global section in accordance with

Theorem 11.2.2.

Remark 1.6.1. Bearing in mind time reparametrization, one should define

relative velocities as elements of V Q ⊗Q T ∗R. They as like as absolute

velocities possess the physical dimension [q]− 1.

By virtue of Theorem 1.1.1, any reference frame Γ on a configuration

bundle Q → R is associated with an atlas of local constant trivializations,

and vice versa. A connection Γ takes the form Γ = ∂t (1.1.20) with respect

to the corresponding coordinates (t, qi), whose transition functions qi → q′i

are independent of time. One can think of these coordinates as also being a

reference frame, corresponding to the connection (1.1.20). They are called

the adapted coordinates to a reference frame Γ. Thus, we come to the

following definition, equivalent to Definition 1.6.1.
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Definition 1.6.2. In non-relativistic mechanics, a reference frame is an

atlas of local constant trivializations of a configuration bundle Q→ R.

In particular, with respect to the coordinates qi adapted to a reference

frame Γ, the velocities relative to this reference frame coincide with the

absolute ones

DΓ(qit) = q̇
i
Γ = qit.

Remark 1.6.2. By analogy with gauge field theory, we agree to call trans-

formations of bundle atlases of a fibre bundle Q→ R the gauge transforma-

tions. To be precise, one should call them passive gauge transformations,

while by active gauge transformations are meant automorphisms of a fibre

bundle. In non-relativistic mechanics, gauge transformations also are refer-

ence frame transformations in accordance with Theorem 1.1.1. An object

on a fibre bundle is said to be gauge covariant or, simply, covariant if its

definition is atlas independent. It is called gauge invariant if its form is

maintained under atlas transformations.

A reference frame is said to be complete if the associated connection Γ

is complete. By virtue of Proposition 1.1.2, every complete reference frame

defines a trivialization of a bundle Q→ R, and vice versa.

Remark 1.6.3. Given a reference frame Γ, one should solve the equations

Γi(t, qj(t, qa)) =
∂qi(t, qa)

∂t
, (1.6.1)

∂qa(t, qj)

∂qi
Γi(t, qj) +

∂qa(t, qj)

∂t
= 0 (1.6.2)

in order to find the coordinates (t, qa) adapted to Γ. Let (t, qa1 ) and (t, qi2)

be the adapted coordinates for reference frames Γ1 and Γ2, respectively. In

accordance with the equality (1.6.2), the components Γi1 of the connection

Γ1 with respect to the coordinates (t, qi2) and the components Γa2 of the

connection Γ2 with respect to the coordinates (t, qa1 ) fulfill the relation

∂qa1
∂qi2

Γi1 + Γa2 = 0.

Using the relations (1.6.1) – (1.6.2), one can rewrite the coordinate

transformation law (1.3.4) of second order dynamic equations as follows.

Let

qatt = ξ
a

(1.6.3)
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be a second order dynamic equation on a configuration space Q written

with respect to a reference frame (t, qn). Then, relative to arbitrary bundle

coordinates (t, qi) on Q → R, the second order dynamic equation (1.6.3)

takes the form

qitt = dtΓ
i+∂jΓ

i(qjt −Γj)− ∂qi

∂qa
∂qa

∂qj∂qk
(qjt −Γj)(qkt −Γk)+

∂qi

∂qa
ξ
a
, (1.6.4)

where Γ is a connection corresponding to the reference frame (t, qn). The

second order dynamic equation (1.6.4) can be expressed in the relative

velocities q̇iΓ = qit−Γi with respect to the initial reference frame (t, qa). We

have

dtq̇
i
Γ = ∂jΓ

iq̇jΓ −
∂qi

∂qa
∂qa

∂qj∂qk
q̇jΓq̇

k
Γ +

∂qi

∂qa
ξ
a
(t, qj , q̇jΓ). (1.6.5)

Accordingly, any second order dynamic equation (1.3.3) can be expressed

in the relative velocities q̇iΓ = qit −Γi with respect to an arbitrary reference

frame Γ as follows:

dtq̇
i
Γ = (ξ − JΓ)it = ξi − dtΓ, (1.6.6)

where JΓ is the prolongation (1.1.25) of a connection Γ onto the jet bundle

J1Q→ R.

For instance, let us consider the following particular reference frame

Γ for a second order dynamic equation ξ. The covariant derivative of a

reference frame Γ with respect to the corresponding dynamic connection γξ
(1.4.10) reads

∇γΓ = Q→ T ∗Q× VQJ1Q, (1.6.7)

∇γΓ = ∇γλΓkdqλ ⊗ ∂k, ∇γλΓk = ∂λΓ
k − γkλ ◦ Γ.

A connection Γ is called a geodesic reference frame for the second order

dynamic equation ξ if

Γc∇γΓ = Γλ(∂λΓ
k − γkλ ◦ Γ) = (dtΓ

i − ξi ◦ Γ)∂i = 0. (1.6.8)

Proposition 1.6.1. Integral sections c for a reference frame Γ are solutions

of a second order dynamic equation ξ if and only if Γ is a geodesic reference

frame for ξ.

Proof. The proof follows at once from substitution of the equality (1.6.8)

in the second order dynamic equation (1.6.6). �

Remark 1.6.4. The left- and right-hand sides of the equation (1.6.6) sep-

arately are not well-behaved objects. This equation is brought into the

covariant form (1.8.6).
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Reference frames play a prominent role in many constructions of non-

relativistic mechanics. They enable us to write the covariant forms:

(1.8.5) – (1.8.6) of dynamic equations, (2.3.5) of quadratic Lagrangians

and (3.3.17) of Hamiltonians of non-relativistic mechanics.

With a reference frame, we obtain the converse of Theorem 1.5.1.

Theorem 1.6.1. Given a reference frame Γ, any connection K (1.5.1) on

the tangent bundle TQ→ Q defines a second order dynamic equation

ξi = (Ki
λ − ΓiK0

λ)q̇
λ |q̇0=1,q̇j=qj

t
.

This theorem is a corollary of Proposition 1.5.1 and the following lemma.

Lemma 1.6.1. Given a connection Γ on a fibre bundle Q → R and a

connection K on the tangent bundle TQ → Q, there is the connection K̃

on TQ→ Q with the components

K̃0
λ = 0, K̃i

λ = Ki
λ − ΓiK0

λ.

1.7 Free motion equations

Let us point out the following interesting class of second order dynamic

equations which we agree to call the free motion equations.

Definition 1.7.1. We say that the second order dynamic equation (1.3.3)

is a free motion equation if there exists a reference frame (t, qi) on the

configuration space Q such that this equation reads

qitt = 0. (1.7.1)

With respect to arbitrary bundle coordinates (t, qi), a free motion equa-

tion takes the form

qitt = dtΓ
i + ∂jΓ

i(qjt − Γj)− ∂qi

∂qm
∂qm

∂qj∂qk
(qjt − Γj)(qkt − Γk), (1.7.2)

where Γi = ∂tq
i(t, qj) is the connection associated with the initial frame

(t, qi) (cf. (1.6.4)). One can think of the right-hand side of the equation

(1.7.2) as being the general coordinate expression for an inertial force in

non-relativistic mechanics. The corresponding dynamic connection γξ on

the affine jet bundle J1Q→ Q reads

γik = ∂kΓ
i − ∂qi

∂qm
∂qm

∂qj∂qk
(qjt − Γj), (1.7.3)

γi0 = ∂tΓ
i + ∂jΓ

iqjt − γikΓk.



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

1.7. Free motion equations 31

It is affine. By virtue of Proposition 1.5.2, this dynamic connection defines

a linear connection K on the tangent bundle TQ → Q, whose curvature

necessarily vanishes. Thus, we come to the following criterion of a second

order dynamic equation to be a free motion equation.

Proposition 1.7.1. If ξ is a free motion equation on a configuration

space Q, it is quadratic, and the corresponding symmetric linear connection

(1.5.10) on the tangent bundle TQ→ Q is a curvature-free connection.

This criterion is not a sufficient condition because it may happen that

the components of a curvature-free symmetric linear connection on TQ→ Q

vanish with respect to the coordinates on Q which are not compatible with

a fibration Q→ R.

The similar criterion involves the curvature of a dynamic connection

(1.7.3) of a free motion equation.

Proposition 1.7.2. If ξ is a free motion equation, then the curvature R

(1.4.3) of the corresponding dynamic connection γξ is equal to 0, and so

are the tensor field R (1.4.4) and the scalar field R̃ (1.4.5).

Proposition 1.7.2 also fails to be a sufficient condition. If the curvatureR

(1.4.3) of a dynamic connection γξ vanishes, it may happen that components

of γξ are equal to zero with respect to non-holonomic bundle coordinates

on an affine jet bundle J1Q→ Q.

Nevertheless, we can formulate the necessary and sufficient condition of

the existence of a free motion equation on a configuration space Q.

Proposition 1.7.3. A free motion equation on a fibre bundle Q→ R exists

if and only if a typical fibre M of Q admits a curvature-free symmetric linear

connection.

Proof. Let a free motion equation take the form (1.7.1) with respect to

some atlas of local constant trivializations of a fibre bundle Q → R. By

virtue of Proposition 1.4.2, there exists an affine dynamic connection γ on

the affine jet bundle J1Q → Q whose components relative to this atlas

are equal to 0. Given a trivialization chart of this atlas, the connection γ

defines the curvature-free symmetric linear connection (1.5.13) on M . The

converse statement follows at once from Proposition 1.5.4. �

Corollary 1.7.1. A free motion equation on a fibre bundle Q → R exists

if and only if a typical fibre M of Q and, consequently, Q itself are locally

affine manifolds, i.e., toroidal cylinders (see Section 11.4.3).
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The free motion equation (1.7.2) is simplified if the coordinate transition

functions qi → qi are affine in coordinates qi. Then we have

qitt = ∂tΓ
i − Γj∂jΓ

i + 2qjt∂jΓ
i. (1.7.4)

Example 1.7.1. Let us consider a free motion on a plane R2. The cor-

responding configuration bundle is R3 → R coordinated by (t, r). The

dynamic equation of this motion is

rtt = 0. (1.7.5)

Let us choose the rotatory reference frame with the adapted coordinates

r = Ar, A =

(
cosωt − sinωt

sinωt cosωt

)
. (1.7.6)

Relative to these coordinates, a connection Γ corresponding to the initial

reference frame reads

Γ = ∂tr = ∂tA · A−1r.

Then the free motion equation (1.7.5) with respect to the rotatory reference

frame (1.7.6) takes the familiar form

rtt = ω2r + 2

(
0 −1

1 0

)
rt. (1.7.7)

The first term in the right-hand side of the equation (1.7.7) is the centrifugal

force −Γj∂jΓ
i, while the second one is the Coriolis force 2qjt∂jΓ

i.

The following lemma shows that the free motion equation (1.7.4) is

affine in the coordinates qi and qit [106].

Lemma 1.7.1. Let (t, qa) be a reference frame on a configuration bundle

Q → R and Γ the corresponding connection. Components Γi of this con-

nection with respect to another coordinate system (t, qi) are affine functions

in the coordinates qi if and only if the transition functions between the co-

ordinates qa and qi are affine.

One can easily find the geodesic reference frames for the free motion

equation

qitt = 0. (1.7.8)

They are Γi = vi = const. By virtue of Lemma 1.7.1, these reference frames

define the adapted coordinates

qi = kijq
j − vit− ai, kij = const., vi = const., ai = const. (1.7.9)

The equation (1.7.8) obviously keeps its free motion form under the trans-

formations (1.7.9) between the geodesic reference frames. Geodesic refer-

ence frames for a free motion equation are called inertial.
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1.8 Relative acceleration

In comparison with the notion of a relative velocity, the definition of a

relative acceleration is more intricate.

To consider a relative acceleration with respect to a reference frame Γ,

one should prolong a connection Γ on a configuration space Q → R to a

holonomic connection ξΓ on the jet bundle J1Q → R. Note that the jet

prolongation JΓ (1.1.25) of Γ onto J1Q → R is not holonomic. We can

construct the desired prolongation by means of a dynamic connection γ on

an affine jet bundle J1Q→ Q.

Lemma 1.8.1. Let us consider the composite bundle (1.1.12). Given a

reference frame Γ on Q → R and a dynamic connections γ on J 1Q → Q,

there exists a dynamic connection γ̃ on J1Q→ Q with the components

γ̃ik = γik, γ̃i0 = dtΓ
i − γikΓk. (1.8.1)

Proof. Combining a connection Γ on Q → R and a connection γ on

J1Q → Q gives the composite connection (11.4.29) on J1Q → R which

reads

B = dt⊗ (∂t + Γi∂i + (γikΓ
k + γi0)∂

t
i ).

Let JΓ be the jet prolongation (1.1.25) of a connection Γ on J 1Q → R.

Then the difference

JΓ−B = dt⊗ (dtΓ
i − γikΓk − γi0)∂ti

is a VQJ
1Q-valued soldering form on the jet bundle J1Q→ R, which also is

a soldering form on the affine jet bundle J1Q→ Q. The desired connection

(1.8.1) is

γ̃ = γ + JΓ−B = dt⊗ (∂t + (dtΓ
i − γikΓk)∂ti ) + dqk ⊗ (∂k + γik∂

t
i ). �

Now, we construct a certain soldering form on an affine jet bundle

J1Q → Q and add it to this connection. Let us apply the canonical pro-

jection T ∗Q → V ∗Q and then the imbedding Γ : V ∗Q → T ∗Q to the

covariant derivative (1.6.7) of the reference frame Γ with respect to the

dynamic connection γ. We obtain the VQJ
1Q-valued one-form

σ = [−Γi(∂iΓ
k − γki ◦ Γ)dt+ (∂iΓ

k − γki ◦ Γ)dqi]⊗ ∂tk
on Q whose pull-back onto J1Q is a desired soldering form. The sum

γΓ = γ̃ + σ,



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

34 Dynamic equations

called the frame connection, reads

γΓ
i
0 = dtΓ

i − γikΓk − Γk(∂kΓ
i − γik ◦ Γ), (1.8.2)

γΓ
i
k = γik + ∂kΓ

i − γik ◦ Γ.

This connection yields the desired holonomic connection

ξiΓ = dtΓ
i + (∂kΓ

i + γik − γik ◦ Γ)(qkt − Γk)

on the jet bundle J1Q→ R.

Let ξ be a second order dynamic equation and γ = γξ the connection

(1.4.10) associated with ξ. Then one can think of the vertical vector field

aΓ = ξ − ξΓ = (ξi − ξiΓ)∂ti (1.8.3)

on the affine jet bundle J1Q→ Q as being a relative acceleration with re-

spect to the reference frame Γ in comparison with the absolute acceleration

ξ.

For instance, let us consider a reference frame Γ which is geodesic for

the second order dynamic equation ξ, i.e., the relation (1.6.8) holds. Then

the relative acceleration of a motion c with respect to a reference frame Γ

is

(ξ − ξΓ) ◦ Γ = 0.

Let ξ now be an arbitrary second order dynamic equation, written with

respect to coordinates (t, qi) adapted to a reference frame Γ, i.e., Γi = 0.

In these coordinates, the relative acceleration with respect to a reference

frame Γ is

aiΓ = ξi(t, qj , qjt )−
1

2
qkt (∂kξ

i − ∂kξi |qj
t =0). (1.8.4)

Given another bundle coordinates (t, q′i) on Q→ R, this dynamic equation

takes the form (1.6.5), while the relative acceleration (1.8.4) with respect

to a reference frame Γ reads

a′iΓ = ∂jq
′iajΓ.

Then we can write the second order dynamic equation (1.3.3) in the form

which is covariant under coordinate transformations:

D̃γΓq
i
t = dtq

i
t − ξiΓ = aΓ, (1.8.5)

where D̃γΓ is the vertical covariant differential (1.4.9) with respect to the

frame connection γΓ (1.8.2) on an affine jet bundle J1Q→ Q.
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In particular, if ξ is a free motion equation which takes the form (1.7.1)

with respect to a reference frame Γ, then

D̃γΓq
i
t = 0

relative to arbitrary bundle coordinates on the configuration bundle Q→ R.

The left-hand side of the second order dynamic equation (1.8.5) also

can be expressed in the relative velocities such that this dynamic equation

takes the form

dtq̇
i
Γ − γΓ

i
k q̇
k
Γ = aΓ (1.8.6)

which is the covariant form of the equation (1.6.6).

The concept of a relative acceleration is understood better when we deal

with a quadratic second order dynamic equation ξ, and the corresponding

dynamic connection γ is affine.

Lemma 1.8.2. If a dynamic connection γ is affine, i.e.,

γiλ = γiλ0 + γiλkq
k
t ,

so is a frame connection γΓ for any frame Γ.

Proof. The proof follows from direct computation. We have

γΓ
i
0 = ∂tΓ

i + (∂jΓ
i − γikjΓk)(qjt − Γj),

γΓ
i
k = ∂kΓ

i + γikj(q
j
t − Γj)

or

γΓ
i
jk = γijk ,

γΓ
i
0k = ∂kΓ

i − γijkΓj , γΓ
i
k0 = ∂kΓ

i − γikjΓj , (1.8.7)

γΓ
i
00 = ∂tΓ

i − Γj∂jΓ
i + γijkΓ

jΓk. �

In particular, we obtain

γΓ
i
jk = γijk , γΓ

i
0k = γΓ

i
k0 = γΓ

i
00 = 0

relative to the coordinates adapted to a reference frame Γ.

A glance at the expression (1.8.7) shows that, if a dynamic connection

γ is symmetric, so is a frame connection γΓ.

Corollary 1.8.1. If a second order dynamic equation ξ is quadratic, the

relative acceleration aΓ (1.8.3) is always affine, and it admits the decompo-

sition

aiΓ = −(Γλ∇γλΓi + 2q̇λΓ∇γλΓi), (1.8.8)

where γ = γξ is the dynamic connection (1.4.10), and

q̇λΓ = qλt − Γλ, q0t = 1, Γ0 = 1

is the relative velocity with respect to the reference frame Γ.



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

36 Dynamic equations

Note that the splitting (1.8.8) gives a generalized Coriolis theorem. In

particular, the well-known analogy between inertial and electromagnetic

forces is restated. Corollary 1.8.1 shows that this analogy can be extended

to an arbitrary quadratic dynamic equation.

1.9 Newtonian systems

Equations of motion of non-relativistic mechanics need not be exactly dy-

namic equations. For instance, the second Newton law of point mechanics

contains a mass. The notion of a Newtonian system generalizes the second

Newton law as follows.

Let m be a fibre metric (bilinear form) in the vertical tangent bundle

VQJ
1Q→ J1Q of J1Q→ Q. It reads

m : J1Q→ 2∨
J1Q

V ∗
QJ

1Q, m =
1

2
mijdq

i
t ∨ dqjt , (1.9.1)

where dqit are the holonomic bases for the vertical cotangent bundle V ∗
QJ

1Q

of J1Q→ Q. It defines the map

m̂ : VQJ
1Q→ V ∗

QJ
1Q.

Definition 1.9.1. Let Q→ R be a fibre bundle together with:

(i) a fibre metric m (1.9.1) satisfying the symmetry condition

∂tkmij = ∂tjmik, (1.9.2)

(ii) a holonomic connection ξ (1.1.26) on a jet bundle J1Q→ R related

to the fibre metric m by the compatibility condition

ξcdmij +
1

2
mik∂

t
jξ
k +mjk∂

t
i ξ
k = 0. (1.9.3)

A triple (Q,m, ξ) is called the Newtonian system.

We agree to call a metric m in Definition 1.9.1 the mass tensor of a

Newtonian system (Q,m, ξ). The equation of motion of this Newtonian

system is defined to be

m̂(Dξ) = 0, mik(q
k
tt − ξk) = 0. (1.9.4)

Due to the conditions (1.9.2) and (1.9.3), it is brought into the form

dt(mikq
k
t )−mikξ

k = 0.

Therefore, one can think of this equation as being a generalization of the

second Newton law.
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If a mass tensor m (1.9.1) is non-degenerate, the equation of motion

(1.9.4) is equivalent to the second order dynamic equation

Dξ = 0, qktt − ξk = 0.

Because of the canonical vertical splitting (1.1.11), the mass tensor

(1.9.1) also is a map

m : J1Q→ 2∨
J1Q

V ∗Q, m =
1

2
mijdq

i ∨ dqj . (1.9.5)

Remark 1.9.1. To be precise, one should define a mass tensor as a map

m : J1Q→ 2∨
J1Q

V ∗
QJ

1Q ⊗
J1Q

T ∗R,

but we follow Remark 1.1.1, without considering time reparametrization.

In the universal unit system, a mass tensor m is of physical dimension

−2[q] + 1. For instance, the physical dimension of a mass tensor of a point

mass with respect to Cartesian coordinates qi is [length]−1, while that with

respect to the angle coordinates is [length].

A Newtonian system (Q,m, ξ) is said to be standard, if its mass tensor

m is the pull-back onto VQJ
1Q of a fibre metric

m : Q→ 2∨
Q
V ∗Q (1.9.6)

in the vertical tangent bundle V Q → Q in accordance with the isomor-

phisms (1.1.10) and (1.1.11), i.e., m is independent of the velocity coordi-

nates qit.

Given a mass tensor, one can introduce the notion of an external force.

Definition 1.9.2. An external force is defined as a section of the vertical

cotangent bundle V ∗
QJ

1Q→ J1Q. Let us also bear in mind the isomorphism

(1.1.11).

It should be emphasized that there are no canonical isomorphisms be-

tween the vertical cotangent bundle V ∗
QJ

1Q and the vertical tangent bundle

VQJ
1Q of J1Q. One must therefore distinguish forces and accelerations

which are related by means of a mass tensor (see Remark 1.9.2 below).

Let (Q, m̂, ξ) be a Newtonian system and f an external force. Then

ξif = ξi + (m−1)ikfk (1.9.7)

is a dynamic equation, but the triple (Q,m, ξf ) is not a Newtonian system

in general. As it follows from a direct computation, if and only if an external

force possesses the property

∂tifj + ∂tjfi = 0, (1.9.8)
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then ξf (1.9.7) fulfills the compatibility condition (1.9.3), and (Q, m̂, ξf )

also is a Newtonian system.

Example 1.9.1. For instance, the Lorentz force

fi = eFλiq
λ
t , q0t = 1, (1.9.9)

where

Fλµ = ∂λAµ − ∂µAλ (1.9.10)

is the electromagnetic strength, obeys the condition (1.9.8). Note that the

Lorentz force (1.9.9) as like as other forces can be expressed in the relative

velocities q̇Γ with respect to an arbitrary reference frame Γ:

fi = e
∂qj

∂qi

(
∂qn

∂qk
Fnj q̇

k
Γ + F 0j

)
,

where q are the coordinates adapted to a reference frame Γ, and F is an

electromagnetic strength, written with respect to these coordinates.

Remark 1.9.2. The contribution of an external force f to a second order

dynamic equation

qitt − ξi = (m−1)ikfk

of a Newtonian system obviously depends on a mass tensor. It should be

emphasized that, besides external forces, we have a universal force which

is a holonomic connection

ξi = Ki
µλq

µ
t q
λ
t , q0t = 1,

associated with the symmetric linear connection K̃ (1.5.3) on the tangent

bundle TQ → Q. From the physical viewpoint, this is a non-relativistic

gravitational force, including an inertial force, whose contribution to a sec-

ond order dynamic equation is independent of a mass tensor.

1.10 Integrals of motion

Let an equation of motion of a mechanical system on a fibre bundle Y →
R be described by an r-order differential equation E given by a closed

subbundle of the jet bundle JrY → R in accordance with Definition 11.3.5.

Definition 1.10.1. An integral of motion of this mechanical system is

defined as a (k < r)-order differential operator Φ on Y such that E belongs

to the kernel of an r-order jet prolongation of the differential operator dtΦ,

i.e.,

Jr−k−1(dtΦ)|E = Jr−kΦ|E = 0. (1.10.1)



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

1.10. Integrals of motion 39

It follows that an integral of motion Φ is constant on solutions s of a

differential equation E, i.e., there is the differential conservation law

(Jks)∗Φ = const., (Jk+1s)∗dtΦ = 0. (1.10.2)

We agree to write the condition (1.10.1) as the weak equality

Jr−k−1(dtΦ) ≈ 0, (1.10.3)

which holds on-shell, i.e., on solutions of a differential equation E by the

formula (1.10.2).

In non-relativistic mechanics (without time-reparametrization), we can

restrict our consideration to integrals of motion Φ which are functions on

JkY . As was mentioned above, equations of motion of non-relativistic

mechanics mainly are of first or second order. Accordingly, their integrals

of motion are functions on Y or JkY . In this case, the corresponding weak

equality (1.10.1) takes the form

dtΦ ≈ 0 (1.10.4)

of a weak conservation law or, simply, a conservation law.

Different integrals of motion need not be independent. Let integrals

of motion Φ1, . . . ,Φm of a mechanical system on Y be functions on JkY .

They are called independent if

dΦ1 ∧ · · · ∧ dΦm 6= 0 (1.10.5)

everywhere on JkY . In this case, any motion Jks of this mechanical system

lies in the common level surfaces of functions Φ1, . . . ,Φm which bring JkY

into a fibred manifold.

Integrals of motion can come from symmetries. This is the case of

Lagrangian and Hamiltonian mechanics (Sections 2.5 and 3.8).

Definition 1.10.2. Let an equation of motion of a mechanical system be

an r-order differential equation E ⊂ JrY . Its infinitesimal symmetry (or,

simply, a symmetry) is defined as a vector field on J rY whose restriction

to E is tangent to E.

For instance, let us consider first order dynamic equations.

Proposition 1.10.1. Let E be the autonomous first order dynamic equa-

tion (1.2.1) given by a vector field u on a manifold Z. A vector field ϑ on

Z is its symmetry if and only if [u, ϑ] ≈ 0.
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Proof. The first order dynamic equation (1.2.1) is a subbundle of TZ.

The functorial lift of ϑ into TZ is (11.2.31). Then the condition of Definition

(1.10.2) leads to a desired weak equality. �

One can show that a smooth real function F on a manifold Z is an

integral of motion of the autonomous first order dynamic equation (1.2.1)

(i.e., it is constant on solutions of this equation) if and only if its Lie

derivative along u vanishes:

LuF = uλ∂λΦ = 0. (1.10.6)

Proposition 1.10.2. Let E be the first order dynamic equation (1.3.1)

given by a connection Γ (1.1.18) on a fibre bundle Y → R. Then a vector

field ϑ on Y is its symmetry if and only if [Γ, ϑ] ≈ 0.

Proof. The first order dynamic equation (1.3.1) on a fibre bundle Y → R

is equivalent to the autonomous first order dynamic equation (1.3.2) given

by the vector field Γ (1.1.18) on a manifold Y . Then the result is a corollary

of Proposition 1.10.1. �

A smooth real function Φ on Y is an integral of motion of the first order

dynamic equation (1.3.1) in accordance with the equality (1.10.4) if and

only if

LΓΦ = (∂t + Γi∂i)Φ = 0. (1.10.7)

Following Definition 1.10.2, let us introduce the notion of a symmetry

of differential operators in the following relevant case. Let us consider an

r-order differential operator on a fibre bundle Y → R which is represented

by an exterior form E on JrY (Definition 11.3.4). Let its kernel KerE be

an r-order differential equation on Y → R.

Proposition 1.10.3. It is readily justified that a vector field ϑ on J rY is

a symmetry of the equation KerE in accordance with Definition 1.10.2 if

and only if

LϑE ≈ 0. (1.10.8)

Motivated by Proposition 1.10.3, we come to the following.

Definition 1.10.3. Let E be the above mentioned differential operator. A

vector field ϑ on JrY is called a symmetry of a differential operator E if

the Lie derivative LϑE vanishes.
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By virtue of Proposition 1.10.3, a symmetry of a differential operator E
also is a symmetry of the differential equation KerE .

Note that there exist integrals of motion which are not associated with

symmetries of an equation of motion (see Example 2.5.4 below).
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Chapter 2

Lagrangian mechanics

Lagrangian non-relativistic mechanics on a velocity space is formulated

in the framework of Lagrangian formalism on fibre bundles [53; 68;

106]. This formulation is based on the variational bicomplex and the first

variational formula, without appealing to the variational principle. Besides

Lagrange equations, the Cartan and Hamilton–De Donder equations are

considered in the framework of Lagrangian formalism. Note that the Cartan

equation, but not the Lagrange one is associated to the Hamilton equation

(Section 3.6). The relations between Lagrangian and Newtonian systems

are investigated. Lagrangian conservation laws are defined by means of the

first Noether theorem.

2.1 Lagrangian formalism on Q → R

Let π : Q→ R be a fibre bundle (1.1.1). The finite order jet manifolds JkQ

of Q→ R form the inverse sequence

Q
π1
0←−J1Q←− · · · Jr−1Q

πr
r−1←− JrQ←− · · · , (2.1.1)

where πrr−1 are affine bundles. Its projective limit J∞Q is a paracompact

Fréchet manifold. One can think of its elements as being infinite order jets of

sections of Q→ R identified by their Taylor series at points of R. Therefore,

J∞Q is called the infinite order jet manifold. A bundle coordinate atlas

(t, qi) of Q→ R provides J∞Q with the manifold coordinate atlas

(t, qi, qit, q
i
tt, . . .), q′

i
tΛ = dtq

′i
Λ, (2.1.2)

where Λ = (t · · · t) denotes a multi-index of length |Λ| and

dt = ∂t + qit∂i + qitt∂
t
i + · · ·+ qitΛ∂

Λ
i + · · ·

43
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is the total derivative.

Let O∗
r = O∗(JrQ) be a graded differential algebra of exterior forms on

a jet manifold JrQ. The inverse sequence (2.1.1) of jet manifolds yields the

direct sequence of differential graded algebras O∗
r :

O∗(Q)
π1
0
∗

−→O∗
1 −→ · · ·O∗

r−1

πr
r−1

∗

−→ O∗
r −→ · · · , (2.1.3)

where πrr−1
∗ are the pull-back monomorphisms. Its direct limit

O∗
∞Q =

→

limO∗
r (2.1.4)

(or, simply, O∗
∞) consists of all exterior forms on finite order jet mani-

folds modulo the pull-back identification. In particular, O0
∞ is the ring

of all smooth functions on finite order jet manifolds. The O∗
∞ (2.1.4) is

a differential graded algebra which inherits the operations of the exterior

differential d and exterior product ∧ of exterior algebras O∗
r .

Theorem 2.1.1. The cohomology H∗(O∗
∞) of the de Rham complex

0 −→ R −→ O0
∞

d−→O1
∞

d−→· · · (2.1.5)

of the differential graded algebra O∗
∞ equals the de Rham cohomology

H∗
DR(Q) of a fibre bundle Q [68].

Corollary 2.1.1. Since Q (1.1.1) is a trivial fibre bundle over R, the de

Rham cohomology H∗
DR(Q) of Q equals the de Rham cohomology of its typ-

ical fibre M in accordance with the well-known Künneth formula. There-

fore, the cohomology H∗(O∗
∞) of the de Rham complex (2.1.5) equals the

de Rham cohomology H∗
DR(M) of M .

Since elements of the differential graded algebra O∗
∞ (2.1.4) are exterior

forms on finite order jet manifolds, this O0
∞-algebra is locally generated by

the horizontal form dt and contact one-forms

θiΛ = dqiΛ − qitΛdt.

Moreover, there is the canonical decomposition

O∗
∞ = ⊕Ok,m∞ , m = 0, 1,

of O∗
∞ into O0

∞-modules Ok,m∞ of k-contact and (m = 0, 1)-horizontal forms

together with the corresponding projectors

hk : O∗
∞ → Ok,∗∞ , hm : O∗

∞ → O∗,m
∞ .
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Accordingly, the exterior differential on O∗
∞ is decomposed into the sum

d = dV + dH of the vertical differential

dV : Ok,m∞ → Ok+1,m
∞ , dV ◦ hm = hm ◦ d ◦ hm,

dV (φ) = θiΛ ∧ ∂Λ
i φ, φ ∈ O∗

∞,

and the total differential

dH : Ok,m∞ → Ok,m+1
∞ , dH ◦ hk = hk ◦ d ◦ hk, dH ◦ h0 = h0 ◦ d,

dH(φ) = dt ∧ dtφ, φ ∈ O∗
∞. (2.1.6)

These differentials obey the nilpotent conditions

dH ◦ dH = 0, dV ◦ dV = 0, dH ◦ dV + dV ◦ dH = 0,

and make O∗,∗
∞ into a bicomplex.

One introduces the following two additional operators acting on O∗,n
∞ .

(i) There exists an R-module endomorphism

% =
∑

k>0

1

k
% ◦ hk ◦ h1 : O∗>0,1

∞ → O∗>0,1
∞ , (2.1.7)

%(φ) =
∑

0≤|Λ|

(−1)|Λ|θi ∧ [dΛ(∂Λ
i cφ)], φ ∈ O>0,1

∞ ,

possessing the following properties.

Lemma 2.1.1. For any φ ∈ O>0,1
∞ , the form φ − %(φ) is locally dH -exact

on each coordinate chart (2.1.2). The operator % obeys the relation

(% ◦ dH )(ψ) = 0, ψ ∈ O>0,0
∞ . (2.1.8)

It follows from Lemma 2.1.1 that % (2.1.7) is a projector, i.e., % ◦ % = %.

(ii) One defines the variational operator

δ = % ◦ d : O∗,1
∞ → O∗+1,1

∞ . (2.1.9)

Lemma 2.1.2. The variational operator δ (2.1.9) is nilpotent, i.e., δ ◦ δ =

0, and it obeys the relation

δ ◦ % = δ. (2.1.10)

With operators % (2.1.7) and δ (2.1.9), the bicomplex O∗,∗ is brought

into the variational bicomplex. Let us denote Ek = %(Ok,1∞ ). We have

...
...

...

dV 6 dV 6 −δ 6

0 → O1,0
∞

dH→ O1,1
∞

%→ E1 → 0

dV 6 dV 6 −δ 6

0 → R → O0
∞

dH→ O0,1
∞ ≡ O0,1

∞

(2.1.11)



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

46 Lagrangian mechanics

This variational bicomplex possesses the following cohomology [68].

Theorem 2.1.2. The bottom row and the last column of the variational

bicomplex (2.1.11) make up the variational complex

0→ R→ O0
∞

dH−→O0,1
∞

δ−→E1
δ−→E2 −→· · · . (2.1.12)

Its cohomology is isomorphic to the de Rham cohomology of a fibre bundle Q

and, consequently, the de Rham cohomology of its typical fibre M (Corollary

2.1.1).

Theorem 2.1.3. The rows of contact forms of the variational bicomplex

(2.1.11) are exact sequences.

Note that Theorem 2.1.3 gives something more. Due to the relations

(2.1.6) and (2.1.10), we have the cochain morphism

O0
∞

d→ O1
∞

d→ O2
∞

d→ O3
∞ → · · ·

h0

?
h0

?
%

?
%

?
O0,0

∞
dH→ O0,1

∞
δ→ E1

δ→ E2 −→ · · ·
of the de Rham complex (2.1.5) of the differential graded algebra O∗

∞ to its

variational complex (2.1.12). By virtue of Theorems 2.1.1 and 2.1.2, the cor-

responding homomorphism of their cohomology groups is an isomorphism.

A consequence of this fact is the following.

Theorem 2.1.4. Any δ-closed form φ ∈ Ok,1, k = 0, 1, is split into the

sum

φ = h0σ + dHξ, k = 0, ξ ∈ O0,0
∞ , (2.1.13)

φ = %(σ) + δ(ξ), k = 1, ξ ∈ O0,1
∞ , (2.1.14)

where σ is a closed (1 + k)-form on Q.

In Lagrangian formalism on a fibre bundle Q → R, a finite order La-

grangian and its Lagrange operator are defined as elements

L = Ldt ∈ O0,1
∞ , (2.1.15)

EL = δL = Eiθi ∧ dt ∈ E1, (2.1.16)

Ei =
∑

0≤|Λ|

(−1)|Λ|dΛ(∂Λ
i L), (2.1.17)

of the variational complex (2.1.12). Components Ei (2.1.17) of the Lagrange

operator (2.1.16) are called the variational derivatives. Elements of E1 are

called the Lagrange-type operators.
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We agree to call a pair (O∗
∞, L) the Lagrangian system.

Corollary 2.1.2. A finite order Lagrangian L (2.1.15) is variationally triv-

ial, i.e., δ(L) = 0 if and only if

L = h0σ + dHξ, ξ ∈ O0,0
∞ , (2.1.18)

where σ is a closed one-form on Q.

Corollary 2.1.3. A finite order Lagrange-type operator E ∈ E1 satisfies

the Helmholtz condition δ(E) = 0 if and only if

E = δL+ %(σ), L ∈ O0,1
∞ , (2.1.19)

where σ is a closed two-form on Q.

Given a Lagrangian L (2.1.15) and its Lagrange operator δL (2.1.16),

the kernel Ker δL ⊂ J2rQ of δL is called the Lagrange equation. It is locally

given by the equalities

Ei =
∑

0≤|Λ|

(−1)|Λ|dΛ(∂Λ
i L) = 0. (2.1.20)

However, it may happen that the Lagrange equation is not a differential

equation in accordance with Definition 11.3.2 because Ker δL need not be

a closed subbundle of J2rQ→ R.

Example 2.1.1. Let Q = R2 → R be a configuration space, coordinated

by (t, q). The corresponding velocity phase space J1Q is equipped with the

adapted coordinates (t, q, qt). The Lagrangian

L =
1

2
q2q2t dt

on J1Q leads to the Lagrange operator

EL = [qq2t − dt(q2qt)]dq ∧ dt

whose kernel is not a submanifold at the point q = 0.

Theorem 2.1.5. Owing to the exactness of the row of one-contact forms

of the variational bicomplex (2.1.11) at the term O1,1
∞ , there is the decom-

position

dL = δL− dHL, (2.1.21)

where a one-form L is a Lepage equivalent of a Lagrangian L [68].
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Let us restrict our consideration to first order Lagrangian theory on

a fibre bundle Q → R. This is the case of Lagrangian non-relativistic

mechanics.

A first order Lagrangian is defined as a density

L = Ldt, L : J1Q→ R, (2.1.22)

on a velocity space J1Q. The corresponding second-order Lagrange opera-

tor (2.1.16) reads

δL = (∂iL− dt∂tiL)θi ∧ dt. (2.1.23)

Let us further use the notation

πi = ∂tiL, πji = ∂tj∂
t
iL. (2.1.24)

The kernel Ker δL ⊂ J2Q of the Lagrange operator defines the second

order Lagrange equation

(∂i − dt∂ti )L = 0. (2.1.25)

Its solutions are (local) sections c of the fibre bundle Q→ R whose second

order jet prolongations c̈ live in (2.1.25). They obey the equations

∂iL ◦ ċ−
d

dt
(πi ◦ ċ) = 0. (2.1.26)

Definition 2.1.1. Given a Lagrangian L, a holonomic connection

ξL = ∂t + qit∂i + ξi∂ti

on the jet bundle J1Q → R is said to be the Lagrangian connection if

it takes its values into the kernel of the Lagrange operator δL, i.e., if it

satisfies the relation

∂iL − ∂tπi − qjt∂jπi − ξjπji = 0. (2.1.27)

A Lagrangian connection need not be unique.

Let us bring the relation (2.1.27) into the form

∂iL − dtπi + (qjtt − ξj)πji = 0. (2.1.28)

If a Lagrangian connection ξL exists, it defines the second order dynamic

equation

qitt = ξiL (2.1.29)

on Q → R, whose solutions also are solutions of the Lagrange equation

(2.1.25) by virtue of the relation (2.1.28). Conversely, since the jet bundle

J2Q → J1Q is affine, every solution c of the Lagrange equation also is an
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integral section for a holonomic connection ξ, which is a global extension of

the local section J1c(R)→ J2c(R) of this jet bundle over the closed imbed-

ded submanifold J1c(R) ⊂ J1Q. Hence, every solution of the Lagrange

equation also is a solution of some second order dynamic equation, but it

is not necessarily a Lagrangian connection.

Every first order Lagrangian L (2.1.22) yields the bundle morphism

L̂ : J1Q −→
Q

V ∗Q, pi ◦ L̂ = πi, (2.1.30)

where (t, qi, pi) are holonomic coordinates on the vertical cotangent bundle

V ∗Q of Q→ R. This morphism is called the Legendre map, and

πΠ : V ∗Q→ Q, (2.1.31)

is called the Legendre bundle. As was mentioned above, the vertical cotan-

gent bundle V ∗Q plays a role of the phase space of non-relativistic me-

chanics on a configuration space Q → R. The range NL = L̂(J1Q) of the

Legendre map (2.1.30) is called the Lagrangian constraint space.

Definition 2.1.2. A Lagrangian L is said to be:

• hyperregular if the Legendre map L̂ is a diffeomorphism;

• regular if L̂ is a local diffeomorphism, i.e., det(πij) 6= 0;

• semiregular if the inverse image L̂−1(p) of any point p ∈ NL is a

connected submanifold of J1Q;

• almost regular if a Lagrangian constraint space NL is a closed imbed-

ded subbundle iN : NL → V ∗Q of the Legendre bundle V ∗Q→ Q and the

Legendre map

L̂ : J1Q→ NL (2.1.32)

is a fibred manifold with connected fibres (i.e., a Lagrangian is semiregular).

Remark 2.1.1. A glance at the equation (2.1.27) shows that a regular

Lagrangian L admits a unique Lagrangian connection

ξjL = (π−1)ij(−∂iL+ ∂tπi + qkt ∂kπi). (2.1.33)

In this case, the Lagrange equation (2.1.25) for L is equivalent to the second

order dynamic equation associated to the Lagrangian connection (2.1.33).

2.2 Cartan and Hamilton–De Donder equations

Given a first order Lagrangian L, its Lepage equivalent L in the decompo-

sition (2.1.21) is the Poincaré–Cartan form

HL = πidq
i − (πiq

i
t −L)dt (2.2.1)



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

50 Lagrangian mechanics

(see the notation (2.1.24)). This form takes its values into the subbundle

J1Q×
Q
T ∗Q of T ∗J1Q. Hence, we have a morphism

ĤL : J1Q→ T ∗Q, (2.2.2)

whose range

ZL = ĤL(J1Q) (2.2.3)

is an imbedded subbundle iL : ZL → T ∗Q of the cotangent bundle T ∗Q.

One calls ĤL the homogeneous Legendre map and T ∗Q the homogeneous

Legendre bundle. Let (t, qi, p0, pi) denote the holonomic coordinates of T ∗Q

possessing transition functions

p′i =
∂qj

∂q′i
pj , p′0 =

(
p0 +

∂qj

∂t
pj

)
. (2.2.4)

With respect to these coordinates, the morphism ĤL (2.2.2) reads

(p0, pi) ◦ ĤL = (L − qitπi, πi).
A glance at the transition functions (2.2.4) shows that T ∗Q is a one-

dimensional affine bundle

ζ : T ∗Q→ V ∗Q (2.2.5)

over the vertical cotangent bundle V ∗Q (cf. (11.2.19)). Moreover, the

Legendre map L̂ (2.1.30) is exactly the composition of morphisms

L̂ = ζ ◦HL : J1Q →
Q
V ∗Q. (2.2.6)

It is readily observed that the Poincaré–Cartan form HL (2.2.1) also is

the Poincaré–Cartan form HL = HL̃ of the first order Lagrangian

L̃ = ĥ0(HL) = (L+ (qi(t) − qit)πi)dt, ĥ0(dq
i) = qi(t)dt, (2.2.7)

on the repeated jet manifold J1J1Y [53; 68]. The Lagrange operator for L̃

reads (called the Lagrange–Cartan operator)

δL̃ = [(∂iL − d̂tπi + ∂iπj(q
j
(t) − q

j
t ))dq

i + ∂tiπj(q
j
(t) − q

j
t )dq

i
t] ∧ dt. (2.2.8)

Its kernel Ker δL ⊂ J1J1Q defines the Cartan equation

∂tiπj(q
j
(t) − q

j
t ) = 0, (2.2.9)

∂iL − d̂tπi + ∂iπj(q
j
(t) − q

j
t ) = 0 (2.2.10)

on J1Q. Since δL̃|J2Q = δL, the Cartan equation (2.2.9) – (2.2.10) is equiv-

alent to the Lagrange equation (2.1.25) on integrable sections of J 1Q→ X .
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It is readily observed that these equations are equivalent if a Lagrangian L

is regular.

The Cartan equation (2.2.9) – (2.2.10) on sections c : R → J 1Q is

equivalent to the relation

c∗(ucdHL) = 0, (2.2.11)

which is assumed to hold for all vertical vector fields u on J1Q→ R.

The cotangent bundle T ∗Q admits the Liouville form

Ξ = p0dt+ pidq
i. (2.2.12)

Accordingly, its imbedded subbundle ZL (2.2.3) is provided with the pull-

back De Donder form ΞL = i∗LΞ. There is the equality

HL = Ĥ∗
LΞL = Ĥ∗

L(i∗LΞ). (2.2.13)

By analogy with the Cartan equation (2.2.11), the Hamilton–De Donder

equation for sections r of ZL → R is written as

r∗(ucdΞL) = 0, (2.2.14)

where u is an arbitrary vertical vector field on ZL → R.

Theorem 2.2.1. Let the homogeneous Legendre map ĤL be a submersion.

Then a section c of J1Q→ R is a solution of the Cartan equation (2.2.11)

if and only if ĤL ◦ c is a solution of the Hamilton–De Donder equation

(2.2.14), i.e., the Cartan and Hamilton–De Donder equations are quasi-

equivalent [68; 74].

Remark 2.2.1. As was mentioned above, the vertical cotangent bundle

V ∗Q plays a role of the phase space of non-relativistic mechanics on a

configuration space Q. Accordingly, the cotangent bundle T ∗Q is its ho-

mogeneous phase space (Section 3.3).

2.3 Quadratic Lagrangians

Quadratic Lagrangians provide the most physically relevant case of non-

relativistic mechanical systems.

Given a configuration bundle Q → R, let us consider a quadratic

Lagrangian

L =

(
1

2
aijq

i
tq
j
t + biq

i
t + c

)
dt, (2.3.1)
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where a, b and c are local functions on Q. This property is global due to the

transformation law of the velocity coordinates qit. The associated Legendre

map reads

pi ◦ L̂ = aijq
j
t + bi. (2.3.2)

Lemma 2.3.1. The Lagrangian (2.3.1) is semiregular.

Proof. For any point p of the Lagrangian constraint space NL (2.3.2),

the system of linear algebraic equations (2.3.2) for qit has solutions which

make up an affine space modelled over the linear space of solutions of the

homogeneous linear algebraic equations

0 = aij q̇
j ,

where q̇j are the holonomic coordinates on a vertical tangent bundle V Q.

This affine space is obviously connected. �

Let us assume that the Lagrangian L (2.3.1) is almost regular, i.e., the

matrix aij is of constant rank.

The Legendre map (2.3.2) is an affine morphism over Q. It defines the

corresponding linear morphism

L : V Q →
Q
V ∗Q, pi ◦ L = aij q̇

j ,

whose range N is a linear subbundle of the Legendre bundle V ∗Q → Q.

Accordingly, the Lagrangian constraint space NL, given by the equations

(2.3.2), is an affine subbundle NL → Q, modelled over N , of the Legendre

bundle V ∗Q → Q. Hence, the fibre bundle NL → Q has a global section.

For the sake of simplicity, let us assume that this is the canonical zero

section 0̂(Q) of V ∗Q→ Q. Then N = NL.

The kernel

Ker L̂ = L̂−1(0̂(Q))

of the Legendre map is an affine subbundle of the affine jet bundle J1Q→
Q, which is modelled over the vector bundle

KerL = L
−1

(0̂(Q)) ⊂ V Q.
Then there exists a connection

Γ : Q→ Ker L̂, (2.3.3)

aijΓ
j + bi = 0, (2.3.4)

on the configuration bundle Q → R, which takes its values into Ker L̂. It

is called the Lagrangian frame connection.
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Thus, any quadratic Lagrangian defines a reference frame given by some

Lagrangian frame connection (2.3.3). It is called the Lagrangian reference

frame.

With a Lagrangian frame connection, the quadratic Lagrangian (2.3.1)

can be brought into the covariant form

L =

(
1

2
aij(q

i
t − Γi)(qjt − Γj) + c′

)
dt, (2.3.5)

i.e., it factorizes trough relative velocities q̇iΓ = qit − Γi with respect to the

Lagrangian reference frame (2.3.3).

For instance, if the quadratic Lagrangian (2.3.1) is regular, there is a

unique solution (2.3.3) of the algebraic equations (2.3.4). Thus, the regular

Lagrangian admits a unique Lagrangian frame connection and a Lagrangian

reference frame.

The matrix a in the Lagrangian L (2.3.1) can be seen as a degenerate

fibre metric of constant rank in V Q→ Q. Then the following holds.

Lemma 2.3.2. Given a k-dimensional vector bundle E → Z, let a be a

section of rank r of the tensor bundle
2∨E∗ → Z. There is a splitting

E = Kera⊕
Z
E′, (2.3.6)

where E′ = E/Kera is the quotient bundle, and a is a non-degenerate fibre

metric in E′.

Proof. Since a exists, the structure group GL(k,R) of the vector bun-

dle E → Z is reducible to the subgroup GL(r, k − r; R) of general linear

transformations of Rk which keep its r-dimensional subspace, and to its

subgroup GL(r,R)×GL(k − r,R). �

Theorem 2.3.1. Given an almost regular quadratic Lagrangian L, there

exists a linear map

σ : V ∗Q→ V Q, q̇i ◦ σ = σijpj , (2.3.7)

over Q such that

L ◦ σ ◦ iN = iN .

Proof. The map (2.3.7) is a solution of the algebraic equations

aijσ
jkakb = aib. (2.3.8)

By virtue of Lemma 2.3.2, there exist the bundle slitting

V Q = Kera⊕
Q
E′ (2.3.9)
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and a (non-holonomic) atlas of this bundle such that transition functions of

Kera and E′ are independent. Since a is a non-degenerate fibre metric in

E′, there exists an atlas of E ′ such that a is brought into a diagonal matrix

with non-vanishing components aAA. Due to the splitting (2.3.9), we have

the corresponding bundle splitting

V ∗Q = (Kera)∗⊕
Q

Im a. (2.3.10)

Then a desired map σ is represented by the direct sum σ1⊕σ0 of an arbitrary

section σ1 of the bundle

2∨(Kera∗)→ Q

and a section σ0 of the bundle
2∨E′ → Q, which has non-vanishing com-

ponents σAA = (aAA)−1 with respect to the above mentioned atlas of E ′.

Moreover, σ satisfies the particular relations

σ0 = σ0 ◦L ◦ σ0, a ◦ σ1 = 0, σ1 ◦ a = 0. (2.3.11)

�

Remark 2.3.1. Using the relations (2.3.11), one can write the above as-

sumption, that the Lagrangian constraint space NL → Q admits a global

zero section, in the form

bi = aijσ
jk
0 bk. (2.3.12)

If the quadratic Lagrangian (2.3.1) is regular, the map (2.3.7) is uniquely

defined by the equation (2.3.8).

With the relations (2.3.7), (2.3.8) and (2.3.12), we obtain the splitting

J1Q = S(J1Q)⊕
Q
F(J1Q) = Ker L̂⊕

Q
Im(σ0 ◦ L̂), (2.3.13)

qit = Si + F i (2.3.14)

= [qit − σik0 (akjq
j
t + bk)] + [σik0 (akjq

j
t + bk)].

It is readily observed that, with respect to the coordinates S i and F i
(2.3.14), the Lagrangian (2.3.1) reads

L =
1

2
aijF iFj + c′, (2.3.15)

where

F i = σik0 akj(q
j
t − Γj) (2.3.16)

for some Lagrangian reference frame Γ (2.3.3) on Y → X .
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Example 2.3.1. Let us consider a regular quadratic Lagrangian

L =

[
1

2
mij(q

µ)qitq
j
t + ki(q

µ)qit + φ(qµ)

]
dt, (2.3.17)

where mij is a non-degenerate positive-definite fibre metric in the vertical

tangent bundle V Q→ Q. The corresponding Lagrange equation takes the

form

qitt = −(m−1)ik{λkν}qλt qνt , q0t = 1, (2.3.18)

where

{λµν} = −1

2
(∂λgµν + ∂νgµλ − ∂µgλν)

are the Christoffel symbols of the metric

g00 = −2φ, g0i = −ki, gij = −mij (2.3.19)

on the tangent bundle TQ. Let us assume that this metric is non-

degenerate. By virtue of Corollary 1.5.1, the second order dynamic equation

(2.3.18) is equivalent to the non-relativistic geodesic equation (1.5.9) on the

tangent bundle TQ which reads

q̈0 = 0, q̇0 = 1, q̈i = {λiν}q̇λq̇ν − gi0{λ0ν}q̇λq̇ν . (2.3.20)

Let us now bring the Lagrangian (2.3.17) into the form (2.3.5):

L =

[
1

2
mij(q

µ)(qit − Γi)(qjt − Γj) + φ′(qµ)

]
dt, (2.3.21)

where Γ is a Lagrangian frame connection on Q → R. This connection

defines an atlas of local constant trivializations of a fibre bundle Q → R

and the corresponding coordinates (t, qi) on Q such that the transition

functions qi → q′i are independent of t, and Γi = 0 with respect to (t, qi).

In these coordinates, the Lagrangian (2.3.21) reads

L =

[
1

2
mijq

i
tq
j
t + φ′(qν(qµ))

]
dt. (2.3.22)

Let us assume that φ′ is a nowhere vanishing function on Q. Then the

Lagrange equation (2.3.18) takes the form

qitt = {λiν}qλt qνt , q0t = 1,

where {λiν} are the Christoffel symbols of the metric (2.3.19), whose com-

ponents with respect to the coordinates (t, qi) read

g00 = −2φ′, g0i = 0, gij = −mij . (2.3.23)

The corresponding non-relativistic geodesic equation (1.5.9) on the tangent

bundle TQ reads

q̈
0

= 0, q̇
0

= 1,

q̈
i
= {λiν}q̇λq̇ν . (2.3.24)

Its spatial part (2.3.24) is exactly the spatial part of a geodesic equation

with respect to the Levi–Civita connection for the metric (2.3.23) on TQ.
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2.4 Lagrangian and Newtonian systems

Let L be a Lagrangian on a velocity space J1Q and L̂ the Legendre map

(2.1.30). Due to the vertical splitting (11.2.27) of V V ∗Q, the vertical tan-

gent map V L̂ to L̂ reads

V L̂ : VQJ
1Q→ V ∗Q×

Q
V ∗Q.

It yields the linear bundle morphism

m̂ = (IdJ1Q, pr2 ◦ V L̂) : VQJ
1Q→ V ∗

QJ
1Q, m̂ : ∂ti → πijdq

j
t , (2.4.1)

and consequently a fibre metric

m : J1Q→ 2∨
J1Q

V ∗
QJ

1Q

in the vertical tangent bundle VQJ
1Q → J1Q. This fibre metric m obvi-

ously satisfies the symmetry condition (1.9.2).

Let a Lagrangian L be regular. Then the fibre metric m (2.4.1) is

non-degenerate. In accordance with Remark 2.1.1, if a Lagrangian L is

regular, there exists a unique Lagrangian connection ξL for L which obeys

the equality

mikξ
k
L + ∂tπi + ∂jπiq

j
t − ∂iL = 0. (2.4.2)

The derivation of this equality with respect to qjt results in the relation

(1.9.3). Thus, any regular Lagrangian L defines a Newtonian system char-

acterized by the mass tensor mij = πij .

Remark 2.4.1. Any fibre metric m in V Q → Q can be seen as a mass

metric of a standard Newtonian system, given by the Lagrangian

L =
1

2
mij(q

µ)(qit − Γi)(qjt − Γj), (2.4.3)

where Γ is a reference frame. If m̂ is positive-definite, one can think of the

Lagrangian (2.4.3) as being a kinetic energy with respect to the reference

frame Γ.

Now let us investigate the conditions for a Newtonian system to be the

Lagrangian one.

The equation (1.9.4) is the kernel of the second order differential La-

grange type operator

E : J2Q→ V ∗Q, E = mik(ξ
k − qktt)θi ∧ dt. (2.4.4)
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A glance at the variational complex (2.1.12) shows that this operator is

a Lagrange operator of some Lagrangian only if it obeys the Helmholtz

condition

δ(Eiθi ∧ dt) = [(2∂j − dt∂tj + d2
t∂
tt
j )Eiθj ∧ θi

+ (∂tjEi + ∂tiEj − 2dt∂
tt
j Ei)θit ∧ θj + (∂ttj Ei − ∂tti Ej)θjtt ∧ θi] ∧ dt = 0.

This condition falls into the equalities

∂jEi − ∂iEj +
1

2
dt(∂

t
iEj − ∂tjEi) = 0, (2.4.5)

∂tjEi + ∂tiEj − 2dt∂
tt
j Ei = 0, (2.4.6)

∂ttj Ei − ∂tti Ej = 0. (2.4.7)

It is readily observed, that the condition (2.4.7) is satisfied since the mass

tensor is symmetric. The condition (2.4.6) holds due to the equality (1.9.3)

and the property (1.9.2). Thus, it is necessary to verify the condition

(2.4.5) for a Newtonian system to be a Lagrangian one. If this condition

holds, the operator E (2.4.4) takes the form (2.1.19) in accordance with

Corollary 2.1.3. If the second de Rham cohomology of Q (or, equivalently,

M) vanishes, this operator is a Lagrange operator.

Example 2.4.1. Let ξ be a free motion equation which takes the form

(1.7.8) with respect to a reference frame (t, qi), and let m be a mass tensor

which depends only on the velocity coordinates qit. Such a mass tensor may

exist in accordance with affine coordinate transformations (1.7.9) which

maintain the equation (1.7.8). Then ξ and m̂ make up a Newtonian system.

This system is a Lagrangian one if m is constant with respect to the above-

mentioned reference frame (t, qi). Relative to arbitrary coordinates on a

configuration space Q, the corresponding Lagrangian takes the form (2.4.3),

where Γ is the connection associated with the reference frame (t, qi).

Example 2.4.2. Let us consider a one-dimensional motion of a point mass

m0 subject to friction. It is described by the equation

m0qtt = −kqt, k > 0, (2.4.8)

on the configuration space R2 → R coordinated by (t, q). This mechanical

system is characterized by the mass function m = m0 and the holonomic

connection

ξ = ∂t + qt∂q −
k

m
qt∂

t
q, (2.4.9)
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but it is neither a Newtonian nor a Lagrangian system. The conditions

(2.4.5) and (2.4.7) are satisfied for an arbitrary mass function m(t, q, qt),

whereas the conditions (1.9.3) and (2.4.6) take the form

−kqt∂tqm− km+ ∂tm+ qt∂qm = 0. (2.4.10)

The mass function m = const. fails to satisfy this relation. Nevertheless,

the equation (2.4.10) has a solution

m = m0 exp

[
k

m0
t

]
. (2.4.11)

The mechanical system characterized by the mass function (2.4.11) and the

holonomic connection (2.4.9) is both a Newtonian and Lagrangian system

with the Havas Lagrangian

L =
1

2
m0 exp

[
k

m0
t

]
q2t (2.4.12)

[133]. The corresponding Lagrange equation is equivalent to the equation

of motion (2.4.8).

In conclusion, let us mention mechanical systems whose motion equa-

tions are Lagrange equations plus additional non-Lagrangian external

forces. They read

(∂i − dt∂ti )L+ fi(t, q
j , qjt ) = 0. (2.4.13)

Let a Lagrangian system be the Newtonian one, and let an external force

f satisfy the condition (1.9.8). Then the equation (2.4.13) describe a New-

tonian system.

2.5 Lagrangian conservation laws

In Lagrangian mechanics, integrals of motion come from variational symme-

tries of a Lagrangian (Theorem 2.5.3) in accordance with the first Noether

theorem (Theorem 2.5.2). However, not all integrals of motion are of this

type (Example 2.5.4).

2.5.1 Generalized vector fields

Given a Lagrangian system (O∗
∞, L) on a fibre bundle Q→ R, its infinites-

imal transformations are defined to be contact derivations of the real ring

O0
∞ [64; 68].
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Let us consider the O0
∞-module dO0

∞ of derivations of the real ring O0
∞.

This module is isomorphic to the O0
∞-dual (O1

∞)∗ of the module of one-

forms O1
∞. Let ϑcφ, ϑ ∈ dO0

∞, φ ∈ O1
∞, be the corresponding interior

product. Extended to a differential graded algebra O∗
∞, it obeys the rule

(11.2.48).

Restricted to the coordinate chart (2.1.2), any derivation of a real ring

O0
∞ takes the coordinate form

ϑ = ϑt∂t + ϑi∂i +
∑

0<|Λ|

ϑiΛ∂
Λ
i ,

where

∂Λ
i (qjΣ) = ∂Λ

i cdqjΣ = δji δ
Λ
Σ.

Not concerned with time-reparametrization, we restrict our consideration

to derivations

ϑ = ut∂t + ϑi∂i +
∑

0<|Λ|

ϑiΛ∂
Λ
i , ut = 0, 1. (2.5.1)

Their coefficients ϑi, ϑiΛ possess the transformation law

ϑ′i =
∂q′i

∂qj
ϑj +

∂q′i

∂t
ut, ϑ′iΛ =

∑

|Σ|≤|Λ|

∂q′iΛ
∂qjΣ

ϑjΣ +
∂q′iΛ
∂t

ut.

Any derivation ϑ (2.5.1) of a ring O0
∞ yields a derivation (a Lie deriva-

tive) Lϑ of a differential graded algebra O∗
∞ which obeys the relations

(11.2.49) – (11.2.50).

A derivation ϑ ∈ dO0
∞ (2.5.1) is called contact if the Lie derivative Lϑ

preserves an ideal of contact forms of a differential graded algebra O∗
∞, i.e.,

the Lie derivative Lϑ of a contact form is a contact form.

Lemma 2.5.1. A derivation ϑ (2.5.1) is contact if and only if it takes the

form

ϑ = ut∂t + ui∂i +
∑

0<|Λ|

[dΛ(ui − qitut) + qitΛu
t]∂Λ

i . (2.5.2)

A glance at the expression (2.5.2) enables one to regard a contact deriva-

tion ϑ as an infinite order jet prolongation ϑ = J∞u of its restriction

u = ut∂t + ui(t, qi, qiΛ)∂i, ut = 0, 1, (2.5.3)

to a ring C∞(Q). Since coefficients ui of u (2.5.3) generally depend on jet

coordinates qiΛ, 0 < |Λ| ≤ r, one calls u (2.5.3) the generalized vector field.

It can be represented as a section of the pull-back bundle

JrQ×
Q
TQ→ JrQ.
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In particular, let u (2.5.3) be a vector field

u = ut∂t + ui(t, qi)∂i, ut = 0, 1, (2.5.4)

on a configuration space Q → R. One can think of this vector field as

being an infinitesimal generator of a local one-parameter group of local

automorphisms of a fibre bundle Q → R. If ut = 0, the vertical vector

field (2.5.4) is an infinitesimal generator of a local one-parameter group

of local vertical automorphisms of Q → R. If ut = 1, the vector field u

(2.5.4) is projected onto the standard vector field ∂t on a base R which is

an infinitesimal generator of a group of translations of R.

Any contact derivation ϑ (2.5.2) admits the horizontal splitting

ϑ = ϑH + ϑV = utdt +


uiV ∂i +

∑

0<|Λ|

dΛu
i
V ∂

Λ
i


 , (2.5.5)

u = uH + uV = ut(∂t + qit∂i) + (ui − qitut)∂i. (2.5.6)

Lemma 2.5.2. Any vertical contact derivation

ϑ = ui∂i +
∑

0<|Λ|

dΛu
i∂Λ
i (2.5.7)

obeys the relations

ϑcdHφ = −dH(ϑcφ), Lϑ(dHφ) = dH(Lϑφ), φ ∈ O∗
∞. (2.5.8)

We restrict our consideration to first order Lagrangian mechanics. In

this case, contact derivations (2.1.1) can be reduced to the first order jet

prolongation

ϑ = J1u = ut∂t + ui∂i + dtu
i∂ti (2.5.9)

of the generalized vector fields u (2.5.3).

2.5.2 First Noether theorem

Let L be a Lagrangian (2.1.22) on a velocity space J 1Q. Let us consider

its Lie derivative LϑL along the contact derivation ϑ (2.5.9).

Theorem 2.5.1. The Lie derivative LϑL fulfils the first variational formula

LJ1uL = uV cδL+ dH(ucHL), (2.5.10)

where L = HL is the Poincaré–Cartan form (2.2.1). Its coordinate expres-

sion reads

[ut∂t + ui∂i + dtu
i∂ti ]L = (ui − qitut)Ei + dt[πi(u

i − utqit) + utL]. (2.5.11)
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Proof. The formula (2.5.10) results from the decomposition (2.1.21) and

the relations (2.5.8) [68]. �

The generalized vector field u (2.5.3) is said to be the variational sym-

metry of a Lagrangian L if the Lie derivative LJ1uL is dH -exact, i.e.,

LJ1uL = dHσ. (2.5.12)

Variational symmetries of L constitute a real vector space which we denote

GL.

Proposition 2.5.1. A glance at the first variational formula (2.5.11)

shows that a generalized vector field u is a variational symmetry if and

only if the exterior form

uV cδL = (ui − qitut)Eidt (2.5.13)

is dH -exact.

Proposition 2.5.2. The generalized vector field u (2.5.3) is a variational

symmetry of a Lagrangian L if and only if its vertical part uV (2.5.6) also

is a variational symmetry.

Proof. A direct computation shows that

LJ1uL = LJ1uV
L+ dH(utL). (2.5.14)

�

A corollary of the first variational formula (2.5.10) is the first Noether

theorem.

Theorem 2.5.2. If a contact derivation ϑ (2.5.2) is a variational sym-

metry (2.5.12) of a Lagrangian L, the first variational formula (2.5.10)

restricted to the kernel of the Lagrange operator Ker δL yields a weak con-

servation law

0 ≈ dH(ucHL − σ), (2.5.15)

0 ≈ dt(πi(ui − utqit) + utL− σ), (2.5.16)

of the generalized symmetry current

Tu = ucHL − σ = πi(u
i − utqit) + utL− σ (2.5.17)

along a generalized vector field u. The generalized symmetry current

(2.5.17) obviously is defined with the accuracy of a constant summand.
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The weak conservation law (2.5.15) on the shell δL = 0 is called the

Lagrangian conservation law. It leads to the differential conservation law

(1.10.2):

0 =
d

dt
[Tu ◦ Jr+1c],

on solutions c of the Lagrange equation (2.1.26).

Proposition 2.5.3. Let u be a variational symmetry of a Lagrangian L.

By virtue of Proposition 2.5.2, its vertical part uV is so. It follows from

the equality (2.5.14) that the conserved generalized symmetry current Tu

(2.5.17) along u equals that TuV
along uV .

A glance at the conservation law (2.5.16) shows the following.

Theorem 2.5.3. If a variational symmetry u is a generalized vector field

independent of higher order jets qiΛ, |Λ| > 1, the conserved generalized

current Tu (2.5.17) along u plays a role of an integral of motion.

Therefore, we further restrict our consideration to variational symme-

tries at most of first jet order for the purpose of obtaining integrals of

motion. However, it may happen that a Lagrangian system possesses inte-

grals of motion which do not come from variational symmetries (Example

2.5.4).

A variational symmetry u of a LagrangianL is called its exact symmetry

if

LJ1uL = 0. (2.5.18)

In this case, the first variational formula (2.5.10) takes the form

0 = uV cδL+ dH(ucHL). (2.5.19)

It leads to the weak conservation law (2.5.15):

0 ≈ dtTu, (2.5.20)

of the symmetry current

Tu = ucHL = πi(u
i − utqit) + utL (2.5.21)

along a generalized vector field u.

Remark 2.5.1. In accordance with the standard terminology, if variational

and exact symmetries are generalized vector fields (2.5.3), they are called

generalized symmetries [21; 42; 87; 124]. Accordingly, by variational and

exact symmetries one means only vector fields u (2.5.4) on Q. We agree to

call them classical symmetries. Classical exact symmetries are symmetries

of a Lagrangian, and they are named the Lagrangian symmetries.



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

2.5. Lagrangian conservation laws 63

Remark 2.5.2. Given a Lagrangian L, let L̃ be its partner (2.2.7) on the

repeated jet manifold J1J1Q. Since HL (2.2.1) is the Poincaré–Cartan both

for L and L̃, a Lagrangian L̃ does not lead to new conserved currents.

Remark 2.5.3. Let us describe the relation between symmetries of a La-

grangian and and symmetries of the corresponding Lagrange equation. Let

u be the vector field (2.5.4) and

J2u = ut∂t + ui∂i + dtu
i∂ti + dttu

i∂tti

its second order jet prolongation. Given a Lagrangian L on J 1Q, the

relation

LJ2uδL = δ(LJ1uL) (2.5.22)

holds [53; 124]. Note that this equality need not be true in the case of a

generalized vector field u. A vector field u is called the local variational

symmetry of a Lagrangian L if the Lie derivative LJ1uL of L along u is

variationally trivial, i.e.,

δ(LJ1uL) = 0.

Then it follows from the equality (2.5.22) that a local (classical) variational

symmetry of L also is a symmetry of the Lagrange operator δL, i.e.,

LJ2uδL = 0,

and vice versa. Consequently, any local classical variational symmetry u

of a Lagrangian L is a symmetry of the Lagrange equation (2.1.25) in

accordance with Proposition 1.10.3. By virtue of Theorem 2.1.2, any local

classical variational symmetry is a classical variational symmetry if a typical

fibre M of Q is simply connected.

Remark 2.5.4. The first variational formula (2.5.10) also can be utilized

when a Lagrangian possesses symmetries, but an equation of motion is the

sum (2.4.13) of a Lagrange equation and an additional non-Lagrangian ex-

ternal force. Let us substitute Ei = −fi from this equality in the first

variational formula (2.5.10), and let us assume that the Lie derivative of a

Lagrangian L along a vector field u vanishes. Then we have the transfor-

mation law

(ui − qit)fi ≈ dtTu (2.5.23)

of the symmetry current Tu (2.5.21).
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2.5.3 Noether conservation laws

It is readily observed that the first variational formula (2.5.11) is linear in

a generalized vector field u. Therefore, one can consider superposition of

the identities (2.5.11) for different generalized vector fields.

For instance, if u and u′ are generalized vector fields (2.5.3), projected

onto the standard vector field ∂t on R, the difference of the corresponding

identities (2.5.11) results in the first variational formula (2.5.11) for the

vertical generalized vector field u− u′.
Conversely, every generalized vector field u (2.5.4), projected onto ∂t,

can be written as the sum

u = Γ + v (2.5.24)

of some reference frame

Γ = ∂t + Γi∂i (2.5.25)

and a vertical generalized vector field v on Q.

It follows that the first variational formula (2.5.11) for the generalized

vector field u (2.5.4) can be represented as a superposition of those for a

reference frame Γ (2.5.25) and a vertical generalized vector field v.

If u = v is a vertical generalized vector field, the first variational formula

(2.5.11) reads

(vi∂i + dtv
i∂ti )L = viEi + dt(πiv

i).

If v is an exact symmetry of L, we obtain from (2.5.20) the weak conserva-

tion law

0 ≈ dt(πivi). (2.5.26)

By analogy with field theory [68], it is called the Noether conservation law

of the Noether current

Tv = πiv
i. (2.5.27)

If a generalized vector field v is independent of higher order jets qiΛ, |Λ| > 1,

the Noether current (2.5.27) is an integral of motion by virtue of Theorem

2.5.3.

Example 2.5.1. Let us assume that, given a trivialization Q = R×M in

bundle coordinates (t, qi), a Lagrangian L is independent of a coordinate

q1. Then the Lie derivative of L along the vertical vector field v = ∂1 equals

zero, and we have the conserved Noether current (2.5.27) which reduces to
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the momentum Tv = π1. With respect to arbitrary bundle coordinates

(t, q′i), this conserved Noether current takes the form

Tv =
∂q′i

∂q1
π′
i.

It is an integral of motion.

Example 2.5.2. Let us consider a free motion on a configuration space Q.

It is described by a Lagrangian

L =

(
1

2
mijq

i
tq
j
t

)
dt, mij = const., (2.5.28)

written with respect to a reference frame (t, qi) such that the free motion

dynamic equation takes the form (1.7.1). As it follows from Example 2.5.1,

this Lagrangian admits dimQ− 1 independent integrals of motion πi.

Example 2.5.3. Let us consider a point mass in the presence of a central

potential. Its configuration space is

Q = R× R3 → R (2.5.29)

endowed with the Cartesian coordinates (t, qi). A Lagrangian of this me-

chanical system reads

L =
1

2

(∑

i

(qit)
2

)
− V (r), r =

(∑

i

(qi)2

)1/2

. (2.5.30)

The vector fields

vab = qa∂b − qb∂a (2.5.31)

are infinitesimal generators of the group SO(3) acting on R3. Their jet

prolongation (2.5.9) reads

J1vab = qa∂b − qb∂a + qat ∂
t
b − qbt∂ta. (2.5.32)

It is readily observed that vector fields (2.5.31) are symmetries of the La-

grangian (2.5.30). The corresponding conserved Noether currents (2.5.27)

are orbital momenta

Ma
b = Tba = (qaπb − qbπa) = qaqbt − qbqat . (2.5.33)

They are integrals of motion, which however fail to be independent.
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Example 2.5.4. Let us consider the Lagrangian system in Example 2.5.3

where

V (r) = −1

r
(2.5.34)

is the Kepler potential. This Lagrangian system possesses the integrals of

motion

Aa =
∑

b

(qaqbt − qbqat )qbt −
qa

r
, (2.5.35)

besides the orbital momenta (2.5.33). They are components of the Rung–

Lenz vector. There is no Lagrangian symmetry whose generalized symme-

try currents are Aa (2.5.35).

2.5.4 Energy conservation laws

In the case of a reference frame Γ (2.5.25), where ut = 1, the first variational

formula (2.5.11) reads

(∂t + Γi∂i + dtΓ
i∂ti )L = (Γi − qit)Ei − dt(πi(qit − Γi)−L), (2.5.36)

where

EΓ = −TΓ = πi(q
i
t − Γi)−L (2.5.37)

is the energy function relative to a reference frame Γ [36; 106; 139].

With respect to the coordinates adapted to a reference frame Γ, the first

variational formula (2.5.36) takes the form

∂tL = (Γi − qit)Ei − dt(πiqit −L), (2.5.38)

and EΓ (2.5.37) coincides with the canonical energy function

EL = πiq
i
t −L.

A glance at the expression (2.5.38) shows that the vector field Γ (2.5.25) is

an exact symmetry of a Lagrangian L if and only if, written with respect

to coordinates adapted to Γ, this Lagrangian is independent on the time t.

In this case, the energy function EΓ (2.5.38) relative to a reference frame

Γ is conserved:

0 ≈ −dtEΓ. (2.5.39)

It is an integral of motion in accordance with Theorem 2.5.3.

Example 2.5.5. Let us consider a free motion on a configuration space

Q described by the Lagrangian (2.5.28) written with respect to a reference
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frame (t, qi) such that the free motion dynamic equation takes the form

(1.7.1). Let Γ be the associated connection. Then the conserved energy

function EΓ (2.5.37) relative to this reference frame Γ is precisely the kinetic

energy of this free motion. With respect to arbitrary bundle coordinates

(t, qi) on Q, it takes the form

EΓ = πi(q
i
t − Γi)−L =

1

2
mij(t, q

k)(qit − Γi)(qjt − Γj).

Example 2.5.6. Let us consider a one-dimensional motion of a point mass

m0 subject to friction on the configuration space R2 → R, coordinated

by (t, q) (Example 2.4.2). It is described by the dynamic equation (2.4.8)

which is the Lagrange equation for the Lagrangian L (2.4.12). It is readily

observed that the Lie derivative of this Lagrangian along the vector field

Γ = ∂t −
1

2

k

m0
q∂q (2.5.40)

vanishes. Consequently, we have the conserved energy function (2.5.37)

with respect to the reference frame Γ (2.5.40). This energy function reads

EΓ =
1

2
m0 exp

[
k

m0
t

]
qt

(
qt +

k

m0
q

)
=

1

2
mq̇2Γ −

mk2

8m2
0

q2,

where m is the mass function (2.4.11).

Since any generalized vector field u (2.5.3) can be represented as the sum

(2.5.24) of a reference frame Γ (2.5.25) and a vertical generalized vector field

v, the symmetry current (2.5.21) along the generalized vector field u (2.5.4)

is the difference

Tu = Tv −EΓ

of the Noether current Tv (2.5.27) along the vertical generalized vector field

v and the energy function EΓ (2.5.37) relative to a reference frame Γ [36;

139]. Conversely, energy functions relative to different reference frames Γ

and Γ′ differ from each other in the Noether current along the vertical

vector field Γ′ − Γ:

EΓ −EΓ′ = TΓ−Γ′ .

One can regard this vector field Γ′−Γ as the relative velocity of a reference

frame Γ′ with respect to Γ.
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2.6 Gauge symmetries

Treating gauge symmetries of Lagrangian field theory, one is tradition-

ally based on an example of the Yang–Mills gauge theory of principal

connections on a principal bundle. This notion of gauge symmetries

is generalized to Lagrangian theory on an arbitrary fibre bundle [67;

68], including non-relativistic mechanics on a fibre bundle Q→ R.

Definition 2.6.1. Let E → R be a vector bundle and E(R) the C∞(R)

module of sections χ of E → R. Let ζ be a linear differential operator on

E(R) taking its values into the vector space GL of variational symmetries

of a Lagrangian L (see Definition 11.5.1). Elements

uζ = ζ(χ) (2.6.1)

of Im ζ are called the gauge symmetry of a Lagrangian L parameterized by

sections χ of E → R. These sections are called the gauge parameters.

Remark 2.6.1. The differential operator ζ in Definition 2.6.1 takes its

values into the vector space GL as a subspace of the C∞(R)-module dO0
∞,

but it sends the C∞(R)-module E(R) into the real vector space GL ⊂ dO0
∞.

Equivalently, the gauge symmetry (2.6.1) is given by a section ζ̃ of the

fibre bundle

(JrQ×
Q
JmE)×

Q
TQ→ JrQ×

Q
JmE

(see Definition 11.3.3) such that

uζ = ζ(χ) = ζ̃ ◦ χ
for any section χ of E → R. Hence, it is a generalized vector field uζ on

the product Q×E represented by a section of the pull-back bundle

Jk(Q×
R

E)×
Q
T (Q×

R

E)→ Jk(Q×
R

E), k = max(r,m),

which lives in

TQ ⊂ T (Q×E).

This generalized vector field yields the contact derivation J∞uζ (2.5.2) of

the real ring O0
∞[Q×E] which obeys the following condition.

Condition 2.6.1. Given a Lagrangian

L ∈ O0,n
∞ E ⊂ O0,n

∞ [Q×E],
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let us consider its Lie derivative

LJ∞uζ
L = J∞uζcdL+ d(J∞uζcL), (2.6.2)

where d is the exterior differential of O∗
∞[Q × E]. Then for any section χ

of E → R, the pull-back χ∗LJ∞uζ
L is dH -exact.

It follows at once from the first variational formula (2.5.10) for the Lie

derivative (2.6.2) that Condition 2.6.1 holds only if uζ is projected onto a

generalized vector field on Q and, in this case, if and only if the density

(uζ)V cE is dH -exact (Proposition 2.5.1). Thus, we come to the following

equivalent definition of gauge symmetries.

Definition 2.6.2. Let E → R be a vector bundle. A gauge symmetry of a

Lagrangian L parameterized by sections χ of E → R is defined as a contact

derivation ϑ = J∞u of the real ring O0
∞[Q×E] such that:

(i) it vanishes on the subring O0
∞E,

(ii) the generalized vector field u is linear in coordinates χaΛ on J∞E,

and it is projected onto a generalized vector field on Q, i.e., it takes the

form

u = ∂t +


 ∑

0≤|Λ|≤m

uiΛa (t, qjΣ)χaΛ


∂i, (2.6.3)

(iii) the vertical part of u (2.6.3) obeys the equality

uV cδL = dHσ. (2.6.4)

For the sake of convenience, the generalized vector field (2.6.3) also is

called the gauge symmetry. In accordance with Proposition 2.5.2, the u

(2.6.3) is a gauge symmetry if and only if its vertical part is so. Owing to

this fact and Proposition 2.5.3, we can restrict our consideration to vertical

gauge symmetries

u =


 ∑

0≤|Λ|≤m

uiΛa (t, qjΣ)χaΛ


 ∂i. (2.6.5)

Gauge symmetries possess the following particular properties.

(i) Let E′ → R be another vector bundle and ζ ′ a linear E(R)-valued

differential operator on a C∞(R)-module E′(R) of sections of E′ → R.

Then

uζ′(χ′) = (ζ ◦ ζ ′)(χ′)



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

70 Lagrangian mechanics

also is a gauge symmetry of L parameterized by sections χ′ of E′ → R. It

factorizes through the gauge symmetry uζ (2.6.1).

(ii) Given a gauge symmetry, the corresponding conserved symmetry

current Tu (2.5.17) vanishes on-shell (Theorem 2.6.2 below).

(iii) The second Noether theorem associates to a gauge symmetry of a

Lagrangian L the Noether identities of its Lagrange operator δL.

Theorem 2.6.1. Let u (2.6.5) be a gauge symmetry of a Lagrangian L,

then its Lagrange operator δL obeys the Noether identities (2.6.6).

Proof. The density (2.6.4) is variationally trivial and, therefore, its vari-

ational derivatives with respect to variables χa vanish, i.e.,

Ea =
∑

0≤|Λ|

(−1)|Λ|dΛ(uiΛa Ei) = 0. (2.6.6)

These are the Noether identities for the Lagrange operator δL [68]. �

For instance, if the gauge symmetry u (2.6.3) is of second jet order in

gauge parameters, i.e.,

u = (uiaχ
a + uita χ

a
t + uitta χ

a
tt)∂i, (2.6.7)

the corresponding Noether identities (2.6.6) take the form

uiaEi − dt(uita Ei) + dtt(u
itt
a Ei) = 0. (2.6.8)

If a Lagrangian L admits a gauge symmetry u (2.6.5), i.e., LJ1uL = σ,

the weak conservation law (2.5.16) of the corresponding generalized sym-

metry current Tu (2.5.17) holds. We call it the gauge conservation law.

Because gauge symmetries depend on derivatives of gauge parameters, all

gauge conservation laws in first order Lagrangian mechanics possess the

following peculiarity.

Theorem 2.6.2. If u (2.6.5) is a gauge symmetry of a first order La-

grangian L, the corresponding conserved generalized symmetry current Tu

(2.5.17) vanishes on-shell, i.e., Tu ≈ 0.

Proof. Let a gauge symmetry u be at most of jet order N in gauge

parameters. Then the corresponding generalized symmetry current Tu is

decomposed into the sum

Tu =
∑

1<|Λ|≤N

JΛ
a χ

a
Λ + J taχ

a
t + Jaχ

a. (2.6.9)
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The first variational formula (2.5.11) takes the form

0 =




N∑

|Λ|=1

uiV
Λ
aχ

a
Λ + uiV aχ

a


 Ei + dt




N∑

|Λ|=1

JΛ
a χ

a
Λ + Jaχ

a


 .

It falls into the set of equalities for each χatΛ, χaΛ, |Λ| = 1, . . . , N , and χa as

follows:

0 = JΛ
a , |Λ| = N, (2.6.10)

0 = uiV
tΛ
a Ei + JΛ

a + dtJ
tΛ
a , 1 ≤ |Λ| < N, (2.6.11)

0 = uiV
t
aEi + Ja + dtJ

t
a, (2.6.12)

0 = uiV aEi + dtJa. (2.6.13)

With the equalities (2.6.10) – (2.6.12), the decomposition (2.6.9) takes the

form

Tu = −
∑

1<|Λ|<N

[(uiV
tΛ
a Ei + dtJ

tΛ
a ]χaΛ

− (uiV
tt
a Ei + dtJ

tt
a )χat − (uiV

t
aEi + dtJ

t
a)χ

a.

A direct computation leads to the expression

Tu = −


 ∑

1≥|Λ|<N

uiV
tΛ
a χ

a
Λ + uiV

t
aχ

a


Ei (2.6.14)

−


 ∑

1≥|Λ|<N

dtJ
tΛχaΛ + dtJ

t
aχ

a


 .

The first summand of this expression vanishes on-shell. Its second one

contains the terms dtJ
Λ, |Λ| = 1, . . . , N . By virtue of the equalities (2.6.11),

every dtJ
Λ, |Λ| < N , is expressed in the terms vanishing on-shell and the

term dtdtJ
tΛ. Iterating the procedure and bearing in mind the equality

(2.6.10), one can easily show that the second summand of the expression

(2.6.14) also vanishes on-shell. Thus, the generalized symmetry current Tu

vanishes on-shell. �

Note that the statement of Theorem 2.6.2 is a particular case of the fact

that symmetry currents of gauge symmetries in field theory are reduced to

a superpotential [68; 143].
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Chapter 3

Hamiltonian mechanics

As was mentioned above, a phase space of non-relativistic mechanics is the

vertical cotangent bundle V ∗Q of its configuration space Q → R. This

phase space is provided with the canonical Poisson structure (3.3.7). How-

ever, Hamiltonian mechanics on a phase space V ∗Q is not familiar Poisson

Hamiltonian theory on a Poisson manifold V ∗Q (Section 3.2) because all

Hamiltonian vector fields on V ∗Q are vertical. Hamiltonian non-relativistic

mechanics on V ∗Q is formulated as particular (polysymplectic) Hamilto-

nian formalism on fibre bundles [53; 68; 106]. Its Hamiltonian is a section

of the fibre bundle T ∗Q→ V ∗Q (2.2.5). The pull-back of the canonical Li-

ouville form (2.2.12) on T ∗Q with respect to this section is a Hamiltonian

one-form on V ∗Q. The corresponding Hamiltonian connection (3.3.21) on

V ∗Q→ R defines a first order Hamilton equation on V ∗Q.

Note that one can associate to any Hamiltonian non-relativistic system

on V ∗Q an autonomous symplectic Hamiltonian system on the cotangent

bundle T ∗Q such that the corresponding Hamilton equations on V ∗Q and

T ∗Q are equivalent (Section 3.4). Moreover, a Hamilton equation on V ∗Q

also is equivalent to the Lagrange equation of a certain first order Lagran-

gian on a configuration space V ∗Q (Section 3.5).

Lagrangian and Hamiltonian formulations of mechanics fail to be equiv-

alent, unless a Lagrangian is hyperregular. The comprehensive relations

between Lagrangian and Hamiltonian systems can be established in the

case of almost regular Lagrangians (Section 3.6).

3.1 Geometry of Poisson manifolds

Throughout the book, all Poisson manifolds are assumed to be regular.

We start with symplectic manifolds which are non-degenerate Poisson

manifolds.

73
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3.1.1 Symplectic manifolds

Let Z be a smooth manifold. Any exterior two-form Ω on Z yields the

linear bundle morphism

Ω[ : TZ →
Z
T ∗Z, Ω[ : v → −vcΩ(z), v ∈ TzZ, z ∈ Z. (3.1.1)

One says that a two-form Ω is of rank r if the morphism (3.1.1) has a rank

r. The kernel KerΩ of Ω is defined as the kernel of the morphism (3.1.1).

If Ω is of constant rank, its kernel is a subbundle of the tangent bundle

TZ. In particular, KerΩ contains the canonical zero section 0̂ of TZ → Z.

If KerΩ = 0̂ (one customarily writes KerΩ = 0), a two-form Ω is said to

be non-degenerate. It is called an almost symplectic form. Equipped with

such a form, a manifold Z becomes an almost symplectic manifold. It is

never odd-dimensional. Unless otherwise stated, we put dimZ = 2m.

A closed almost symplectic form is called symplectic. Accordingly, a

manifold equipped with a symplectic form is a symplectic manifold. A

symplectic manifold (Z,Ω) is orientable. It is usually oriented so that
m∧Ω

is a volume form on Z, i.e., it defines a positive measure on Z.

A manifold morphism ζ of a symplectic manifold (Z,Ω) to a symplectic

manifold (Z ′,Ω′) is called a symplectic morphism if Ω = ζ∗Ω′. Any sym-

plectic morphism is an immersion. A symplectic isomorphism is sometimes

called a symplectomorphism [104].

A vector field u on a symplectic manifold (Z,Ω) is an infinitesimal gen-

erator of a local one-parameter group of symplectic local automorphisms if

and only if the Lie derivative LuΩ vanishes. It is called the canonical vector

field. A canonical vector field u on a symplectic manifold (Z,Ω) is said to

be Hamiltonian if the closed one-form ucΩ is exact. Any smooth function

f ∈ C∞(Z) on Z defines a unique Hamiltonian vector field ϑf , called the

Hamiltonian vector field of a function f such that

ϑfcΩ = −df, ϑf = Ω](df), (3.1.2)

where Ω] is the inverse isomorphism to Ω[ (3.1.1).

Remark 3.1.1. There is another convention [1], where a Hamiltonian vec-

tor field differs in the minus sign from (3.1.2).

Example 3.1.1. Given an m-dimensional manifold M coordinated by (qi),

let

π∗M : T ∗M →M
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be its cotangent bundle equipped with the holonomic coordinates (qi, pi =

q̇i). It is endowed with the canonical Liouville form

Ξ = pidq
i

and the canonical symplectic form

ΩT = dΞ = dpi ∧ dqi. (3.1.3)

Their coordinate expressions are maintained under holonomic coordinate

transformations. The Hamiltonian vector field ϑf (3.1.2) with respect to

the canonical symplectic form (3.1.3) reads

ϑf = ∂if∂i − ∂if∂i. (3.1.4)

Of course, ΩT (3.1.3) is not a unique symplectic form on the cotangent

bundle T ∗M . Given a closed two-form φ on a manifold M and its pull-

back π∗
∗Mφ onto T ∗M , the form

Ωφ = Ω + π∗
∗Mφ (3.1.5)

also is a symplectic form on T ∗M .

The canonical symplectic form (3.1.3) plays a prominent role in sym-

plectic geometry in view of the classical Darboux theorem [104].

Theorem 3.1.1. Each point of a symplectic manifold (Z,Ω) has an open

neighborhood equipped with coordinates (qi, pi), called canonical or Darboux

coordinates, such that Ω takes the coordinate form (3.1.3).

One defines the following special submanifolds of a symplectic manifold.

Let iN : N → Z be a submanifold of a symplectic manifold (Z,Ω). The

subset

OrthΩTN =
⋃

z∈N

{v ∈ TzZ : vcucΩ = 0, u ∈ TzN} (3.1.6)

of TZ|N is called orthogonal to TN relative to the symplectic form Ω or,

simply, the Ω-orthogonal space to TN . There are the following bijections

OrthΩ(OrthΩTN) = TN ⊂ TZ|N ,
Ω[(OrthΩTN) = AnnTN ⊂ T ∗Z|N ,
Ann (OrthΩTN) = Ω[(TN) ⊂ T ∗Z|N .

If N1 and N2 are two submanifolds of Z, then TN1 ⊂ TN2 implies

OrthΩTN1 ⊃ OrthΩTN2
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over N1 ∩N2, and vice versa. We also have

OrthΩ(TN1 ∩ TN2) = OrthΩTN1|N1∩N2 + OrthΩTN2|N1∩N2 ,

TN ∩OrthΩTN = OrthΩ(OrthΩTN + TN).

It should be emphasized that

TN ∩OrthΩTN 6= 0, TZ|N 6= TN + OrthΩTN,

in general. The first set is exactly the kernel of the pull-back ΩN = i∗NΩ of

the symplectic form Ω onto a submanifold N .

As was mentioned above, one considers the following special types of

submanifolds of a symplectic manifold such that this pull-back ΩN is of

constant rank. A submanifold N of Z is said to be:

• coisotropic if OrthΩTN ⊆ TN , dimN ≥ m;

• symplectic if ΩN is a symplectic form on N ;

• isotropic if TN ⊆ OrthΩTN , dimN ≤ m;

• Lagrangian if N is both coisotropic and isotropic, i.e., OrthΩN = TN ,

dimN = m.

Clearly, ΩN = 0 ifN is isotropic. A one-dimensional submanifold always

is isotropic, while that of codimension 1 is coisotropic.

3.1.2 Presymplectic manifolds

A two-form ω on a manifold Z is said to be presymplectic if it is closed, but

not necessarily non-degenerate. A manifold equipped with a presymplectic

form is called presymplectic.

Example 3.1.2. Let (Z,Ω) be a symplectic manifold and iN : N → Z its

coisotropic submanifold. Then i∗NΩ is a presymplectic form on N .

The kernel Kerω of a presymplectic form ω of constant rank is an invo-

lutive distribution, called the characteristic distribution [104]. It defines the

characteristic foliation of a presymplectic manifold (Z, ω). The pull-back

of the presymplectic form ω onto any leaf of this foliation equals zero.

The notion of a Hamiltonian vector field on a symplectic manifold is

extended in a straightforward manner to a presymplectic manifold. How-

ever, a function on a presymplectic manifold need not admit an associated

Hamiltonian vector field.

Any presymplectic form has a symplectic realization, i.e., can be repre-

sented as the pull-back of a symplectic form. Indeed, a presymplectic form

ω on a manifold Z is the pull-back

ω = 0̂∗Ωω = 0̂∗(Ω + π∗
∗Zω)
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of the symplectic form Ωω (3.1.5) on the cotangent bundle T ∗Z of Z by its

zero section 0̂. It is easily justified that the zero section 0̂(Z) ⊂ T ∗Z is a

coisotropic submanifold with respect to the symplectic form Ωω on T ∗Z.

Therefore, the morphism 0̂ of the presymplectic manifold (Z, ω) into the

symplectic manifold (T ∗Z,Ωω) exemplifies the coisotropic imbedding. This

construction can be refined as follows.

If a presymplectic form is of constant rank, it admits the following

symplectic realization [72].

Proposition 3.1.1. Given a presymplectic manifold (Z, ω) where ω is of

constant rank, there exists a symplectic form on a tubular neighborhood of

the zero section 0̂ of the dual bundle (Kerω)∗ to the characteristic distri-

bution Kerω → Z such that (Z, ω) can be coisotropically imbedded onto

0̂(Z).

If the characteristic foliation of a presymplectic form is simple, there

is another important variant of symplectic realization, namely, along the

leaves of this foliation [73].

Proposition 3.1.2. Let a presymplectic form ω on a manifold Z be of

constant rank, and let its characteristic foliation be simple, i.e., a fibred

manifold π : Z → P . Then the base P of this fibred manifold is equipped

with a symplectic form Ω such that ω is the pull-back of Ω by π.

3.1.3 Poisson manifolds

A Poisson bracket on the ring C∞(Z) of smooth real functions on a manifold

Z (or a Poisson structure on Z) is defined as an R-bilinear map

C∞(Z)× C∞(Z) 3 (f, g)→ {f, g} ∈ C∞(Z)

which satisfies the following conditions:

• {g, f} = −{f, g};
• {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0, called the Jacobi identity;

• {h, fg} = {h, f}g + f{h, g}.
A manifold Z endowed with a Poisson structure is called a Poisson

manifold. A Poisson bracket makes C∞(Z) into a real Lie algebra, called

the Poisson algebra. A Poisson structure is characterized by a particular

bivector field as follows.

Theorem 3.1.2. Every Poisson bracket on a manifold Z is uniquely
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defined as

{f, f ′} = w(df, df ′) = wµν∂µf∂νf
′ (3.1.7)

by a bivector field w whose Schouten–Nijenhuis bracket [w,w]SN vanishes.

It is called a Poisson bivector field [157].

Example 3.1.3. Any manifold admits the zero Poisson structure charac-

terized by the zero Poisson bivector field w = 0.

Example 3.1.4. Let vector fields u and v on a manifold Z mutually com-

mute. Then u ∧ v is a Poisson bivector field.

A function f ∈ C∞(Z) is called the Casimir function of a Poisson struc-

ture on X if its Poisson bracket with any function on Z vanishes. Casimir

functions form a real ring C(Z). Obviously, the Poisson algebra C∞(X)

also is a Lie C(Z)-algebra.

Any bivector field w on a manifold Z yields a linear bundle morphism

w] : T ∗Z →
Z
TZ, w] : α→ −w(z)bα, α ∈ T ∗

z Z. (3.1.8)

One says that w is of rank r if the morphism (3.1.8) is of this rank. If a

Poisson bivector field is of constant rank, the Poisson structure is called

regular. Throughout the book, only regular Poisson structures are consid-

ered. A Poisson structure determined by a Poisson bivector field w is said

to be non-degenerate if w is of maximal rank.

Remark 3.1.2. The morphism (3.1.8) is naturally generalized to the homo-

morphism of graded commutative algebras O∗(Z) → T∗(Z) in accordance

with the relation

w](φ)(σ1, . . . , σr) = (−1)rφ(w](σ1), . . . , w
](σr)),

φ ∈ Or(Z), σi ∈ O1(Z).

It is an isomorphism if the bivector field w is non-degenerate.

There is one-to-one correspondence Ωw ↔ wΩ between the almost sym-

plectic forms and the non-degenerate bivector fields which is given by the

equalities

wΩ(φ, σ) = Ωw(w]Ω(φ), w]Ω(σ)), φ, σ ∈ O1(Z), (3.1.9)

Ωw(ϑ, ν) = wΩ(Ω[w(ϑ),Ω[w(ν)), ϑ, ν ∈ T (Z), (3.1.10)

where the morphisms w]Ω (3.1.8) and Ω[w (3.1.1) are mutually inverse, i.e.,

w]Ω = Ω]w, wανΩ Ωwαβ = δνβ .
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Furthermore, one can show that there is one-to-one correspondence be-

tween the symplectic forms and the non-degenerate Poisson bivector fields.

However, this correspondence is not preserved under manifold morphisms

in general.

Namely, let (Z1, w1) and (Z2, w2) be Poisson manifolds. A manifold

morphism % : Z1 → Z2 is said to be a Poisson morphism if

{f ◦ %, f ′ ◦ %}1 = {f, f ′}2 ◦ %, f, f ′ ∈ C∞(Z2),

or, equivalently, if

w2 = T% ◦ w1,

where T% is the tangent map to %. Herewith, the rank of w1 is superior

or equal to that of w2. Therefore, there are no pull-back and push-forward

operations of Poisson structures in general. Nevertheless, let us mention

the following construction [157].

Theorem 3.1.3. Let (Z,w) be a Poisson manifold and π : Z → Y a

fibration such that, for every pair of functions (f, g) on Y and for each

point y ∈ Y , the restriction of the function {π∗f, π∗g} to the fibre π−1(y)

is constant, i.e., {π∗f, π∗g} is the pull-back onto Z of some function on Y .

Then there exists a coinduced Poisson structure w′ on Y for which π is a

Poisson morphism.

Example 3.1.5. The direct product Z × Z ′ of Poisson manifolds (Z,w)

and (Z ′, w′) can be endowed with the product of Poisson structures, given

by the bivector field w+w′ such that the surjections pr1 and pr2 are Poisson

morphisms.

Example 3.1.6. Let (Z1,Ω1) and (Z2,Ω2) be symplectic manifolds

equipped with the associated non-degenerate Poisson structures w1 and

w2. If dimZ1 > dimZ2, a Poisson morphism % : Z1 → Z2 need not be a

symplectic one, i.e., w2 = T% ◦w1 and Ω1 6= %∗Ω2.

A vector field u on a Poisson manifold (Z,w) is an infinitesimal generator

of a local one-parameter group of Poisson automorphisms if and only if the

Lie derivative

Luw = [u,w]SN (3.1.11)

vanishes. It is called the canonical vector field for the Poisson structure w.

In particular, for any real smooth function f on a Poisson manifold (Z,w),

let us put

ϑf = w](df) = −wbdf = wµν∂µf∂ν . (3.1.12)
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It is a canonical vector field, called the Hamiltonian vector field of a function

f with respect to the Poisson structure w. Hamiltonian vector fields fulfil

the relations

{f, g} = ϑfcdg, (3.1.13)

[ϑf , ϑg] = ϑ{f,g}, f, g ∈ C∞(Z). (3.1.14)

For instance, the Hamiltonian vector field ϑf (3.1.2) of a function f on

a symplectic manifold (Z,Ω) coincides with that (3.1.12) with respect to

the corresponding Poisson structure wΩ. The Poisson bracket defined by a

symplectic form Ω reads

{f, g} = ϑgcϑfcΩ.
Since a Poisson manifold (Z,w) is assumed to be regular, the range

T = w](T ∗Z) of the morphism (3.1.8) is a subbundle of TZ called the

characteristic distribution on (Z,w). It is spanned by Hamiltonian vector

fields, and it is involutive by virtue of the relation (3.1.14). It follows that a

Poisson manifold Z admits local adapted coordinates in Theorem 11.2.14.

Moreover, one can choose particular adapted coordinates which bring a

Poisson structure into the following canonical form [157].

Theorem 3.1.4. For any point z of a Poisson manifold (Z,w), there exist

coordinates

(z1, . . . , zk−2m, q1, . . . , qm, p1, . . . , pm) (3.1.15)

on a neighborhood of z such that

w =
∂

∂pi
∧ ∂

∂qi
, {f, g} =

∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
. (3.1.16)

The coordinates (3.1.15) are called the canonical or Darboux coordinates

for the Poisson structure w. The Hamiltonian vector field of a function f

written in this coordinates is

ϑf = ∂if∂i − ∂if∂i.
Of course, the canonical coordinates for a symplectic form Ω in Theorem

3.1.1 also are canonical coordinates in Theorem 3.1.4 for the corresponding

non-degenerate Poisson bivector field w, i.e.,

Ω = dpi ∧ dqi, w = ∂i ∧ ∂i.
With respect to these coordinates, the mutually inverse bundle isomor-

phisms Ω[ (3.1.1) and w] (3.1.8) read

Ω[ : vi∂i + vi∂
i → −vidqi + vidpi,

w] : vidq
i + vidpi → vi∂i − vi∂i.



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

3.1. Geometry of Poisson manifolds 81

Given a Poisson manifold (Z,w) and its characteristic distribution T,

the above mentioned notions of coisotropic and Lagrangian submanifolds

of a symplectic manifold are generalized to a Poisson manifold as follows.

A submanifold N of a Poisson manifold is said to be:

• coisotropic if w](Ann TN) ⊆ TN ,

• Lagrangian if w](Ann TN) = TN ∩T.

Integral manifolds of the characteristic distribution T of a Poisson ma-

nifold (Z,w) constitute a (regular) foliation F of Z whose tangent bundle

TF is T. It is called the characteristic foliation of a Poisson manifold. By

the very definition of the characteristic distribution T = TF , the Poisson

bivector field w is subordinate to
2∧TF . Therefore, its restriction w|F to

any leaf F of F is a non-degenerate Poisson bivector field on F . It provides

F with a non-degenerate Poisson structure {, }F and, consequently, a sym-

plectic structure. Clearly, the local Darboux coordinates for the Poisson

structure w in Theorem 3.1.4 also are the local adapted coordinates

(z1, . . . , zk−2m, zi = qi, zm+i = pi), i = 1, . . . ,m,

(11.2.65) for the characteristic foliation F , and the symplectic structures

along its leaves read

ΩF = dpi ∧ dqi.

Remark 3.1.3. Provided with this symplectic structure, the leaves of the

characteristic foliation of a Poisson manifold Z are assembled into a sym-

plectic foliation of Z. Moreover, there is one-to-one correspondence between

the symplectic foliations of a manifold Z and the Poisson structures on Z

(Section 3.1.5).

Since any foliation is locally simple, a local structure of an arbitrary

Poisson manifold reduces to the following [157; 163].

Theorem 3.1.5. Each point of a Poisson manifold has an open neighbor-

hood which is Poisson equivalent to the product of a manifold with the zero

Poisson structure and a symplectic manifold.

Let (Z,w) be a Poisson manifold. By its symplectic realization is meant

a symplectic manifold (Z ′,Ω) together with a Poisson morphism Z ′ → Z

which is a surjective submersion.

Theorem 3.1.6. Each point of a Poisson manifold has an open neighbor-

hood which is realizable by a symplectic manifold.
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Proof. In local Darboux coordinates, this symplectic realization is de-

scribed as follows. The Poisson structure given by the Poisson bracket

(3.1.16) with respect to the canonical coordinates is coinduced from the

symplectic structure given by the symplectic form

Ω = dpi ∧ dqi + dzλ ∧ dzλ
with respect to the coordinates

(z1, . . . , zk−2m, z1, . . . , zk−2m, q
1, . . . , qm, p1, . . . , pm)

by the surjection

(zλ, zλ, q
i, pi)→ (zλ, qi, pi). �

Remark 3.1.4. It follows from Theorem 3.1.5 that each point of a Poisson

manifold has an open neighborhood which is a presymplectic manifold with

respect to the presymplectic form

Ω = dpi ∧ dqi,
written relative to the local Darboux coordinates (zλ, qi, pi). Moreover,

let the direct product in Theorem 3.1.5 be global, i.e., a Poisson manifold

(Z,w) is the Poisson product Z = P × Y of a symplectic manifold (P,Ω)

and a manifold Y with the zero Poisson structure. Then Z is provided with

the presymplectic form pr∗1Ω. Conversely, let the characteristic foliation

π : Z → P of a presymplectic form ω on a manifold Z in Proposition 3.1.2

be a trivial bundle Z = P × Y . Then Z is a Poisson manifold given by the

Poisson product of the symplectic manifold (P,Ω) and Y equipped with

the zero Poisson structure.

3.1.4 Lichnerowicz–Poisson cohomology

Given a Poisson manifold (Z,w), let us introduce the operator

ŵ : Tr(Z)→ Tr+1(Z), ŵ(ϑ) = −[w, ϑ], ϑ ∈ T∗(Z), (3.1.17)

on the graded commutative algebra T∗(Z) of multivector fields on Z, where

[., .] is the Schouten–Nijenhuis bracket. This operator is nilpotent and obeys

the rule

ŵ(ϑ ∧ υ) = ŵ(ϑ) ∧ υ + (−1)|ϑ|ϑ ∧ ŵ(υ). (3.1.18)

Called the contravariant exterior differential [157], it makes T∗(Z) into

a differential algebra. Its de Rham complex is the Lichnerowicz–Poisson

complex

0→ SF (Z) −→C∞(Z)
ŵ−→T1(Z)

ŵ−→· · · (3.1.19)

Tr−1(Z)
ŵ−→Tr(Z)

ŵ−→· · · ,
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where SF (Z) denotes the center of a Poisson algebra C∞(Z). Accord-

ingly, the cohomologyH∗
LP(Z,w) of this complex is called the Lichnerowicz–

Poisson cohomology (henceforth the LP cohomology) of a Poisson manifold.

Example 3.1.7. If f ∈ T0(Z) = C∞(Z) is a function,

−ŵ(f) = [w, f ] = ϑf

is its Hamiltonian vector field. Hence, the LP cohomology groupH0
LP(Z,w)

coincides with the center SF of the Poisson algebra C∞(Z). The first LP

cohomology groupH1
LP(Z,w) is the space of canonical vector fields u for the

Poisson bivector field w (i.e., Luw = −ŵ(u) = 0) modulo Hamiltonian vec-

tor fields −ŵ(f), f ∈ C∞(Z). The second LP cohomology groupH2
LP(Z,w)

contains an element [w] whose representative is the Poisson bivector field

w. We have [w] = 0 if there is a vector field u on Z such that

w = ŵ(u) = −Luw.

If [w] = 0, a Poisson manifold (Z,w) is called exact or homogeneous.

The contravariant exterior differential ŵ is related to the exterior dif-

ferential by means of the formula

ŵ(w](φ)) = −w](dφ), φ ∈ O∗(Z).

This formula shows that w] is a cochain homomorphism of the de Rham

complex (O∗(Z), d) of exterior forms on Z to the Lichnerowicz–Poisson

complex (T∗,−ŵ) (3.1.19). It yields the homomorphism

[w]] : H∗
DR(Z)→ H∗

LP(Z,w) (3.1.20)

of the de Rham cohomology to the LP cohomology.

3.1.5 Symplectic foliations

There is above-mentioned one-to-one correspondence between the symplec-

tic foliations of a manifold Z and the Poisson structures on Z. We start

with some basic facts on geometry and cohomology of foliations.

Let F be a (regular) foliation of a k-dimensional manifold Z provided

with the adapted coordinate atlas (11.2.65). The real Lie algebra T1(F) of

global sections of the tangent bundle TF → Z to F is a C∞(Z)-submodule

of the derivation module of the R-ring C∞(Z) of smooth real functions on

Z. Its kernel SF (Z) ⊂ C∞(Z) consists of functions constant on leaves of
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F . Therefore, T1(F) is the Lie SF(Z)-algebra of derivations of C∞(Z),

regarded as a SF (Z)-ring. Then one can introduce the leafwise differential

calculus [58; 65] as the Chevalley–Eilenberg differential calculus over the

SF(Z)-ring C∞(Z). It is defined as a subcomplex

0→ SF (Z) −→C∞(Z)
d̃−→F1(Z) · · · d̃−→FdimF (Z)→ 0 (3.1.21)

of the Chevalley–Eilenberg complex of the Lie SF(Z)-algebra T1(F) with

coefficients in C∞(Z) which consists of C∞(Z)-multilinear skew-symmetric

maps

r
×T1(F)→ C∞(Z), r = 1, . . . , dimF .

These maps are global sections of exterior products
r∧TF∗ of the dual

TF∗ → Z of TF → Z. They are called the leafwise forms on a foliated

manifold (Z,F), and are given by the coordinate expression

φ =
1

r!
φi1 ...ir d̃z

i1 ∧ · · · ∧ d̃zir ,

where {d̃zi} are the duals of the holonomic fibre bases {∂i} for TF . Then

one can think of the Chevalley–Eilenberg coboundary operator

d̃φ = d̃zk ∧ ∂kφ =
1

r!
∂kφi1...ir d̃z

k ∧ d̃zi1 ∧ · · · ∧ d̃zir

as being the leafwise exterior differential. Accordingly, the complex (3.1.21)

is called the leafwise de Rham complex (or the tangential de Rham com-

plex). This is the complex (A0,∗, df ) in [155]. Its cohomologyH∗
F (Z), called

the leafwise de Rham cohomology, equals the cohomology H∗(Z;SF ) of Z

with coefficients in the sheaf SF of germs of elements of SF (Z) [119]. We

aim to relate the leafwise de Rham cohomology H∗
F(Z) with the de Rham

cohomology H∗
DR(Z) of Z and the LP cohomology H∗

LP(Z,w) [58].

Let us consider the exact sequence (11.2.67) of vector bundles over Z.

Since it admits a splitting, the epimorphism i∗F yields that of the algebra

O∗(Z) of exterior forms on Z to the algebra F∗(Z) of leafwise forms. It

obeys the condition i∗F ◦ d = d̃ ◦ i∗F , and provides the cochain morphism

i∗F : (R,O∗(Z), d)→ (SF (Z),F∗(Z), d̃), (3.1.22)

dzλ → 0, dzi → d̃zi,

of the de Rham complex of Z to the leafwise de Rham complex (3.1.21)

and the corresponding homomorphism

[i∗F ]∗ : H∗
DR(Z)→ H∗

F(Z) (3.1.23)
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of the de Rham cohomology of Z to the leafwise one. Let us note that

[i∗F ]r>0 need not be epimorphisms [155].

Given a leaf iF : F → Z of F , we have the pull-back homomorphism

(R,O∗(Z), d)→ (R,O∗(F ), d) (3.1.24)

of the de Rham complex of Z to that of F and the corresponding homo-

morphism of the de Rham cohomology groups

H∗
DR(Z)→ H∗

DR(F ). (3.1.25)

Proposition 3.1.3. The homomorphisms (3.1.24) – (3.1.25) factorize

through the homomorphisms (3.1.22) – (3.1.23) [65].

Let us turn now to symplectic foliations. Let F be an even dimensional

foliation of a manifold Z. A d̃-closed non-degenerate leafwise two-form ΩF

on a foliated manifold (Z,F) is called symplectic. Its pull-back i∗FΩF onto

each leaf F of F is a symplectic form on F . A foliation F provided with a

symplectic leafwise form ΩF is called the symplectic foliation.

If a symplectic leafwise form ΩF exists, it yields the bundle isomorphism

Ω[F : TF →
Z
TF∗, Ω[F : v → −vcΩF(z), v ∈ TzF . (3.1.26)

The inverse isomorphism Ω]F determines the bivector field

wΩ(α, β) = ΩF(Ω]F (i∗Fα),Ω]F (i∗Fβ)), α, β ∈ T ∗
z Z, z ∈ Z, (3.1.27)

on Z subordinate to
2∧ TF . It is a Poisson bivector field (see the relation

(3.1.34) below). The corresponding Poisson bracket reads

{f, f ′}F = ϑfcd̃f ′, ϑfcΩF = −d̃f, ϑf = Ω]F(d̃f). (3.1.28)

Its kernel is SF(Z).

Conversely, let (Z,w) be a Poisson manifold and F its characteristic

foliation. Since AnnTF ⊂ T ∗Z is precisely the kernel of a Poisson bivector

field w, the bundle homomorphism

w] : T ∗Z →
Z
TZ

factorizes in a unique fashion

w] : T ∗Z
i∗
F−→
Z

TF∗ w]
F−→
Z

TF iF−→
Z

TZ (3.1.29)

through the bundle isomorphism

w]F : TF∗ →
Z
TF , w]F : α→ −w(z)bα, α ∈ TzF∗. (3.1.30)
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The inverse isomorphism w[F yields the symplectic leafwise form

ΩF (v, v′) = w(w[F (v), w[F (v′)), v, v′ ∈ TzF , z ∈ Z. (3.1.31)

The formulas (3.1.27) and (3.1.31) establish the above mentioned equiva-

lence between the Poisson structures on a manifold Z and its symplectic

foliations, though this equivalence need not be preserved under morphisms.

Let us consider the Lichnerowicz–Poisson complex 3.1.19. We have the

cochain morphism

w] : (R,O∗(Z), d)→ (SF (Z), T∗(Z),−ŵ), (3.1.32)

w](φ)(σ1, . . . , σr) = (−1)rφ(w](σ1), . . . , w
](σr)), σi ∈ O1(Z),

ŵ ◦ w] = −w] ◦ d,
of the de Rham complex to the Lichnerowicz–Poisson one and the corre-

sponding homomorphism (3.1.20) of the de Rham cohomology of Z to the

LP cohomology of the complex (3.1.31) [157].

Proposition 3.1.4. The cochain morphism w] (3.1.32) factorizes through

the leafwise complex (3.1.21) and, accordingly, the cohomology homomor-

phism [w]] (3.1.20) does through the leafwise cohomology

H∗
DR(Z)

[i∗
F

]−→H∗
F(Z) −→H∗

LP(Z,w). (3.1.33)

Proof. Let T∗(F) ⊂ T∗(Z) denote the graded commutative subalgebra

of multivector fields on Z subordinate to TF , where T0(F) = C∞(Z).

Clearly, (SF(Z), T∗(F), ŵ) is a subcomplex of the Lichnerowicz–Poisson

complex (3.1.19). Since

ŵ ◦ Ω]F = −Ω]F ◦ d̃, (3.1.34)

the bundle isomorphism w]F = Ω]F (3.1.30) yields the cochain isomorphism

Ω]F : (SF (Z),F∗(Z), d̃)→ (SF(Z), T∗(F),−ŵ)

of the leafwise de Rham complex (3.1.21) to the subcomplex (T∗(F), ŵ) of

the Lichnerowicz–Poisson complex (3.1.19). Then the composition

iF ◦ Ω]F : (SF(Z),F∗(Z), d̃)→ (SF (Z), T∗(Z),−ŵ) (3.1.35)

is a cochain monomorphism of the leafwise de Rham complex to the

LP one (3.1.19). In view of the factorization (3.1.29), the cochain mor-

phism (3.1.32) factorizes through the cochain morphisms (3.1.22) and

(3.1.35). Accordingly, the cohomology homomorphism [w]] (3.1.20) fac-

torizes through the cohomology homomorphisms [i∗F ] (3.1.23) and

[iF ◦ Ω]F ] : H∗
F(Z)→ H∗

LP(Z,w). (3.1.36)

�
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3.1.6 Group action on Poisson manifolds

By G throughout is meant a real connected Lie group, g is its right Lie

algebra, and g∗ is the Lie coalgebra (see Section 11.2.9). We start with the

symplectic case [1; 104].

Let a Lie group G act on a symplectic manifold (Z,Ω) on the left by

symplectomorphisms. Such an action of G is called symplectic. Since G

is connected, its action on a manifold Z is symplectic if and only if the

homomorphism ε → ξε, ε ∈ g, (11.2.69) of the Lie algebra g to the Lie

algebra T1(Z) of vector fields on Z is carried out by canonical vector fields

for the symplectic form Ω on Z. If all these vector fields are Hamiltonian,

the action of G on Z is called a Hamiltonian action. One can show that, in

this case, ξε, ε ∈ g, are Hamiltonian vector fields of functions on Z of the

following particular type.

Proposition 3.1.5. An action of a Lie group G on a symplectic manifold

Z is Hamiltonian if and only if there exists a mapping

Ĵ : Z → g∗, (3.1.37)

called the momentum mapping, such that

ξεcΩ = −dJε, Jε(z) = 〈Ĵ(z), ε〉, ε ∈ g. (3.1.38)

The momentum mapping (3.1.37) is defined up to a constant map. In-

deed, if Ĵ and Ĵ ′ are different momentum mappings for the same symplectic

action of G on Z, then

d(〈Ĵ(z)− Ĵ ′(z), ε〉) = 0, ε ∈ g.

A symplectic manifold provided with a Hamiltonian action of a Lie group

is called the Hamiltonian manifold.

Given g ∈ G, let us us consider the difference

σ(g) = Ĵ(gz)−Ad∗g(Ĵ(z)), (3.1.39)

where Ad∗g is the coadjoint representation (11.2.72) on Γ∗. One can show

(see, e.g., [1]) that the difference (3.1.39) is constant on a symplectic ma-

nifold Z and that it fulfils the equality

σ(gg′) = σ(g) + Ad∗g(σ(g′)). (3.1.40)

This equality (3.1.40) is a one-cocycle of cohomologyH∗(G; g∗) of the group

G with coefficients in the Lie coalgebra g∗ [65; 105]. This cocycle is a

coboundary if there exists an element µ ∈ g∗ such that

σ(g) = µ−Ad∗g(µ). (3.1.41)
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Let Ĵ ′ be another momentum mapping associated to the same Hamiltonian

action of G on Z. Since the difference Ĵ − Ĵ ′ is constant on Z, then the

difference of the corresponding cocycles σ − σ′ is the coboundary (3.1.41)

where µ = Ĵ − Ĵ ′. Thus, a Hamiltonian action of a Lie group G on a

symplectic manifold (Z,Ω) defines a cohomology class [σ] ∈ H1(G; g∗) of

G.

A momentum mapping Ĵ is called equivariant if σ(g) = 0, g ∈ G. It

defines the zero cohomology class of the group G.

Example 3.1.8. Let a symplectic form on Z be exact, i.e., Ω = dθ, and

let θ be G-invariant, i.e.,

Lξε
θ = d(ξεcθ) + ξεcΩ = 0, ε ∈ g.

Then the momentum mapping Ĵ (3.1.37) can be given by the relation

〈Ĵ(z), ε〉 = (ξεcθ)(z).
It is equivariant. In accordance with the relation (11.2.72), it suffices to

show that

Jε(gz) = JAd g−1(ε)(z), (ξεcθ)(gz) = (ξAd g−1(ε)cθ)(z).
This holds by virtue of the relation (11.2.70). For instance, let T ∗Q be

a symplectic manifold equipped with the canonical symplectic form ΩT

(3.1.3). Let a left action of a Lie group G on Q have the infinitesimal

generators τm = εim(q)∂i. The canonical lift of this action onto T ∗Q has

the infinitesimal generators (11.2.29):

ξm = τ̃m = veim∂i − pj∂iεjm∂i, (3.1.42)

and preserves the canonical Liouville form θ on T ∗Q. The ξm (3.1.42) are

Hamiltonian vector fields of the functions Jm = εim(q)pi, determined by the

equivariant momentum mapping Ĵ = εim(q)piε
m.

Now a desired Poisson bracket of functions Jε (3.1.38) is established as

follows.

Theorem 3.1.7. A momentum mapping Ĵ associated to a symplectic ac-

tion of a Lie group G on a symplectic manifold Z obeys the relation

{Jε, Jε′} = J[ε,ε′] − 〈Teσ(ε′), ε〉 (3.1.43)

(see, e.g., [1] where the left Lie algebra is utilized and Hamiltonian vector

fields differ in the minus sign from those here).
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In the case of an equivariant momentum mapping, the relation (3.1.43)

leads to a homomorphism

{Jε, Jε′} = J[ε,ε′] (3.1.44)

of the Lie algebra g to the Poisson algebra of functions on a symplectic

manifold Z (cf. Proposition 3.1.6 below).

Now let a Lie group G act on a Poisson manifold (Z,w) on the left by

Poisson automorphism. This is a Poisson action. Since G is connected, its

action on a manifold Z is a Poisson action if and only if the homomorphism

ε → ξε, ε ∈ g, (11.2.69) of the Lie algebra g to the Lie algebra T1(Z) of

vector fields on Z is carried out by canonical vector fields for the Poisson

bivector field w, i.e., the condition (3.1.11) holds. The equivalent conditions

are

ξε({f, g}) = {ξε(f), g}+ {f, ξε(g)}, f, g ∈ C∞(Z),

ξε({f, g}) = [ξε, ϑf ](g)− [ξε, ϑg](f),

[ξε, ϑf ] = ϑξε(f),

where ϑf is the Hamiltonian vector field (3.1.12) of a function f .

A Hamiltonian action of G on a Poisson manifold Z is defined similarly

to that on a symplectic manifold. Its infinitesimal generators are tangent

to leaves of the symplectic foliation of Z, and there is a Hamiltonian action

of G on every symplectic leaf. Proposition 3.1.5 together with the notions

of a momentum mapping and an equivariant momentum mapping also are

extended to a Poisson action. However, the difference σ (3.1.39) is constant

only on leaves of the symplectic foliation of Z in general. At the same time,

one can say something more on an equivariant momentum mapping (that

also is valid for a symplectic action) [157].

Proposition 3.1.6. An equivariant momentum mapping Ĵ (3.1.37) is a

Poisson morphism to the Lie coalgebra g∗, provided with the Lie–Poisson

structure (11.2.73).

3.2 Autonomous Hamiltonian systems

This Section addresses autonomous Hamiltonian systems on Poisson, sym-

plectic and presymplectic manifolds.
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3.2.1 Poisson Hamiltonian systems

Given a Poisson manifold (Z,w), a Poisson Hamiltonian system (w,H) on

Z for a Hamiltonian H ∈ C∞(Z) with respect to a Poisson structure w is

defined as the set

SH =
⋃

z∈Z

{v ∈ TzZ : v − w](dH)(z) = 0}. (3.2.1)

By a solution of this Hamiltonian system is meant a vector field ϑ on Z

which takes its values into TN ∩ SH. Clearly, the Poisson Hamiltonian

system (3.2.1) has a unique solution which is the Hamiltonian vector field

ϑH = w](dH) (3.2.2)

of H. Hence, SH (3.2.1) is an autonomous first order dynamic equation

(Definition 1.2.1), called the Hamilton equation for the Hamiltonian H
with respect to the Poisson structure w.

Relative to local canonical coordinates (zλ, qi, pi) (3.1.15) for the

Poisson structure w on Z and the corresponding holonomic coordinates

(zλ, qi, pi, ż
λ, q̇i, ṗi) on TZ, the Hamilton equation (3.2.1) and the Hamil-

tonian vector field (3.2.2) take the form

q̇i = ∂iH, ṗi = −∂iH, żλ = 0, (3.2.3)

ϑH = ∂iH∂i − ∂iH∂i. (3.2.4)

Solutions of the Hamilton equation (3.2.3) are integral curves of the Hamil-

tonian vector field (3.2.4).

Let (Z,w,H) be a Poisson Hamiltonian system. Its integral of motion

is a smooth function F on Z whose Lie derivative

LϑH
F = {H, F} (3.2.5)

along the Hamiltonian vector field ϑH (3.2.4) vanishes in accordance with

the equality (1.10.6). The equality (3.2.5) is called the evolution equation.

It is readily observed that the Poisson bracket {F, F ′} of any two inte-

grals of motion F and F ′ also is an integral of motion. Consequently, the

integrals of motion of a Poisson Hamiltonian system constitute a real Lie

algebra.

Since

ϑ{H,F} = [ϑH, ϑF ], {H, F} = −LϑF
H,

the Hamiltonian vector field ϑF of any integral of motion F of a Poisson

Hamiltonian system is a symmetry both of the Hamilton equation (3.2.3)

(Proposition 1.10.3) and a Hamiltonian H (Definition 1.10.3).
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3.2.2 Symplectic Hamiltonian systems

Let (Z,Ω) be a symplectic manifold. The notion of a symplectic Hamil-

tonian system is a repetition of the Poisson one, but all expressions are

rewritten in terms of a symplectic form Ω as follows.

A symplectic Hamiltonian system (Ω,H) on a manifold Z for a Hamil-

tonian H with respect to a symplectic structure Ω is the set

SH =
⋃

z∈Z

{v ∈ TzZ : vcΩ + dH(z) = 0}. (3.2.6)

As in the general case of Poisson Hamiltonian systems, the symplectic one

(Ω,H) has a unique solution which is the Hamiltonian vector field

ϑHcΩ = −dH (3.2.7)

of H. Hence, SH (3.2.6) is an autonomous first order dynamic equation,

called the Hamilton equation for the Hamiltonian H with respect to the

symplectic structure Ω. Relative to the local canonical coordinates (qi, pi)

for the symplectic structure Ω, the Hamilton equation (3.2.6) and the Ha-

miltonian vector field (3.2.7) read

q̇i = ∂iH, ṗi = −∂iH, (3.2.8)

ϑH = ∂iH∂i − ∂iH∂i. (3.2.9)

Integrals of motion of a symplectic Hamiltonian system are defined just

as those of a Poisson Hamiltonian system.

3.2.3 Presymplectic Hamiltonian systems

The notion of a Hamiltonian system is naturally extended to presymplectic

manifolds [70; 106]. Given a presymplectic manifold (Z,Ω), a presymplectic

Hamiltonian system for a Hamiltonian H ∈ C∞(Z) is the set

SH =
⋃

z∈Z

{v ∈ TzZ : vcΩ + dH(z) = 0}. (3.2.10)

A solution of this Hamiltonian system is a Hamiltonian vector field ϑH ofH.

The necessary and sufficient conditions of its existence are the following [70;

106].

Proposition 3.2.1. The equation

vcΩ + dH(z) = 0, v ∈ TzZ, (3.2.11)

has a solution only at points of the set

N2 = {z ∈ Z : Ker zΩ ⊂ Ker zdH}. (3.2.12)
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Proof. It is readily observed that the fibre (3.2.11) of the set SH (3.2.10)

over z ∈ Z is an affine space modelled over the fibre

Ker zΩ = {v ∈ TzZ : vcΩ = 0}
of the kernel of the presymplectic form Ω. Let a vector v ∈ TzZ sat-

isfy the equation (3.2.11). Then the contraction of the right-hand side of

this equation with an arbitrary element u ∈ Ker zΩ leads to the equal-

ity ucdH(z) = 0. In order to prove the converse, it suffices to show that

dH(z) ∈ Im Ω[. This inclusion results from the injections

dH(z) ∈ Ann(Ker dH(z)) ⊂ Ann(Ker zΩ) = Im Ω[.
�

Let us suppose that a presymplectic form Ω is of constant rank and that

the set N2 (3.2.12) is a submanifold of Z, but not necessarily connected.

Then KerΩ is a closed vector subbundle of the tangent bundle TZ, while

SH|N2 is an affine bundle over N2. The latter has a section over N2, but

this section need not live in TN2, i.e., it is not necessarily a vector field on

the submanifold N2. Then one aims to find a submanifold N ⊂ N2 ⊂ Z

such that

SH|N ∩ TzN 6= ∅, z ∈ N,
or, equivalently,

dH(z) ∈ Ω[(TN), z ∈ N.
If such a submanifold exists, it may be obtained by means of the following

constraint algorithm . Let us consider the overlap SH|N2 ∩ TN2 and its

projection to Z. We obtain the subset

N3 = πZ(SH|N2 ∩ TN2) ⊂ Z.
If N3 is a submanifold, let us consider the overlap SH|N3 ∩ TN3. Its pro-

jection to Z gives a subset N4 ⊂ Z, and so on. Since a manifold Z is

finite-dimensional, the procedure is stopped after a finite number of steps

by one of the following results.

• There is a number i ≥ 2 such that a set Ni is empty. This means that

a presymplectic Hamiltonian system has no solution.

• A set Ni, i ≥ 2, fails to be a submanifold. It follows that a solution

need not exist at each point of Ni.

• If Ni+1 = Ni for some i ≥ 2, this is a desired submanifold N . A local

solution of the presymplectic Hamiltonian system (3.2.10) exists around

each point of N . If Ω[|TN is of constant rank, there is a global solution on

N .
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Sections of the vector bundle KerΩ → Z are sometimes called gauge

fields in order to emphasize that, being solutions of the presymplectic Ha-

miltonian system (Ω, 0) for the zero Hamiltonian, they do not contribute to

a physical state, and are responsible for a certain gauge freedom [152]. At

the same time, there are physically interesting presymplectic Hamiltonian

systems, e.g., in relativistic mechanics when a Hamiltonian is equal to zero

(Section 10.5). In this case, Ker dH = TZ and the Hamiltonian system

(3.2.11) has a solution everywhere on a manifold Z.

The above mentioned gauge freedom also is related to the pull-back

construction in Proposition 3.1.2. Let a presymplectic form Ω on a manifold

Z be of constant rank and let its characteristic foliation be simple, i.e., a

fibred manifold π : Z → P . Then Ω is the pull-back π∗ΩP of a certain

symplectic form ΩP on P . Let a Hamiltonian H also be the pull-back

π∗HP of a function HP on P . Then we have

KerΩ = V N ⊂ Ker dH,

and the presymplectic Hamiltonian system (Ω,H) has a solution everywhere

on a manifold Z. Any such a solution ϑH is projected onto a unique solution

of the symplectic Hamiltonian system (ΩP ,HP ) on the manifold P , while

gauge fields are vertical vector fields on the fibred manifold Z → P .

3.3 Hamiltonian formalism on Q → R

As was mentioned above, a phase space of non-relativistic mechanics on a

configuration space Q→ R is the vertical cotangent bundle (2.1.31):

V ∗Q
πΠ−→Q

π−→R,

of Q → R equipped with the holonomic coordinates (t, qi, pi = q̇i) with

respect to the fibre bases {dqi} for the bundle V ∗Q→ Q [106; 139].

Remark 3.3.1. A generic phase space of Hamiltonian mechanics is a fibre

bundle Π → R endowed with a regular Poisson structure whose charac-

teristic distribution belongs to the vertical tangent bundle V Π of Π → R

[81]. It can be seen locally as the Poisson product over R of a fibre bun-

dle V ∗Q → R and a fibre bundle over R, equipped with the zero Poisson

structure.

The cotangent bundle T ∗Q of the configuration space Q is endowed with

the holonomic coordinates (t, qi, p0, pi), possessing the transition functions
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(2.2.4). It admits the Liouville form Ξ (2.2.12), the symplectic form

ΩT = dΞ = dp0 ∧ dt+ dpi ∧ dqi, (3.3.1)

and the corresponding Poisson bracket

{f, g}T = ∂0f∂tg − ∂0g∂tf + ∂if∂ig − ∂ig∂if, f, g ∈ C∞(T ∗Q). (3.3.2)

Provided with the structures (3.3.1) – (3.3.2), the cotangent bundle T ∗Q

of Q plays a role of the homogeneous phase space of Hamiltonian non-

relativistic mechanics.

There is the canonical one-dimensional affine bundle (2.2.5):

ζ : T ∗Q→ V ∗Q. (3.3.3)

A glance at the transformation law (2.2.4) shows that it is a trivial affine

bundle. Indeed, given a global section h of ζ, one can equip T ∗Q with the

global fibre coordinate

I0 = p0 − h, I0 ◦ h = 0, (3.3.4)

possessing the identity transition functions. With respect to the coordinates

(t, qi, I0, pi), i = 1, . . . ,m, (3.3.5)

the fibration (3.3.3) reads

ζ : R× V ∗Q 3 (t, qi, I0, pi)→ (t, qi, pi) ∈ V ∗Q. (3.3.6)

Let us consider the subring of C∞(T ∗Q) which comprises the pull-back

ζ∗f onto T ∗Q of functions f on the vertical cotangent bundle V ∗Q by the

fibration ζ (3.3.3). This subring is closed under the Poisson bracket (3.3.2).

Then by virtue of Theorem 3.1.3, there exists the degenerate coinduced

Poisson structure

{f, g}V = ∂if∂ig − ∂ig∂if, f, g ∈ C∞(V ∗Q), (3.3.7)

on a phase space V ∗Q such that

ζ∗{f, g}V = {ζ∗f, ζ∗g}T . (3.3.8)

The holonomic coordinates on V ∗Q are canonical for the Poisson structure

(3.3.7).

With respect to the Poisson bracket (3.3.7), the Hamiltonian vector

fields of functions on V ∗Q read

ϑf = ∂if∂i − ∂if∂i, f ∈ C∞(V ∗Q), (3.3.9)

[ϑf , ϑf ′ ] = ϑ{f,f ′}V
. (3.3.10)
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They are vertical vector fields on V ∗Q→ R. Accordingly, the characteristic

distribution of the Poisson structure (3.3.7) is the vertical tangent bundle

V V ∗Q ⊂ TV ∗Q of a fibre bundle V ∗Q→ R. The corresponding symplectic

foliation on the phase space V ∗Q coincides with the fibration V ∗Q→ R.

It is readily observed that the ring C(V ∗Q) of Casimir functions on a

Poisson manifold V ∗Q consists of the pull-back onto V ∗Q of functions on

R. Therefore, the Poisson algebra C∞(V ∗Q) is a Lie C∞(R)-algebra.

Remark 3.3.2. The Poisson structure (3.3.7) can be introduced in a dif-

ferent way [106; 139]. Given any section h of the fibre bundle (3.3.3), let

us consider the pull-back forms

Θ = h∗(Ξ ∧ dt) = pidq
i ∧ dt,

Ω = h∗(dΞ ∧ dt) = dpi ∧ dqi ∧ dt (3.3.11)

on V ∗Q. They are independent of the choice of h. With Ω (3.3.11), the

Hamiltonian vector field ϑf (3.3.9) for a function f on V ∗Q is given by the

relation

ϑfcΩ = −df ∧ dt,
while the Poisson bracket (3.3.7) is written as

{f, g}V dt = ϑgcϑf cΩ.
Moreover, one can show that a projectable vector field ϑ on V ∗Q such that

ϑcdt =const. is a canonical vector field for the Poisson structure (3.3.7) if

and only if

LϑΩ = d(ϑcΩ) = 0. (3.3.12)

In contrast with autonomous Hamiltonian mechanics, the Poisson struc-

ture (3.3.7) fails to provide any dynamic equation on a fibre bundle

V ∗Q → R because Hamiltonian vector fields (3.3.9) of functions on V ∗Q

are vertical vector fields, but not connections on V ∗Q → R (see Defini-

tion 1.3.1). Hamiltonian dynamics on V ∗Q is described as a particular

Hamiltonian dynamics on fibre bundles [68; 106; 139].

A Hamiltonian on a phase space V ∗Q→ R of non-relativistic mechanics

is defined as a global section

h : V ∗Q→ T ∗Q, p0 ◦ h = H(t, qj , pj), (3.3.13)

of the affine bundle ζ (3.3.3). Given the Liouville form Ξ (2.2.12) on T ∗Q,

this section yields the pull-back Hamiltonian form

H = (−h)∗Ξ = pkdq
k −Hdt (3.3.14)
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on V ∗Q. This is the well-known invariant of Poincaré–Cartan [4].

It should be emphasized that, in contrast with a Hamiltonian in au-

tonomous mechanics, the Hamiltonian H (3.3.13) is not a function on V ∗Q,

but it obeys the transformation law

H′(t, q′i, p′i) = H(t, qi, pi) + p′i∂tq
′i. (3.3.15)

Remark 3.3.3. Any connection Γ (1.1.18) on a configuration bundle Q→
R defines the global section hΓ = piΓ

i (3.3.13) of the affine bundle ζ (3.3.3)

and the corresponding Hamiltonian form

HΓ = pkdq
k −HΓdt = pkdq

k − piΓidt. (3.3.16)

Furthermore, given a connection Γ, any Hamiltonian form (3.3.14) admits

the splitting

H = HΓ − EΓdt, (3.3.17)

where

EΓ = H−HΓ = H− piΓi (3.3.18)

is a function on V ∗Q. It is called the Hamiltonian function relative to a

reference frame Γ. With respect to the coordinates adapted to a reference

frame Γ, we have EΓ = H. Given different reference frames Γ and Γ′, the

decomposition (3.3.17) leads at once to the relation

EΓ′ = EΓ +HΓ −HΓ′ = EΓ + (Γi − Γ′i)pi (3.3.19)

between the Hamiltonian functions with respect to different reference

frames.

Given a Hamiltonian form H (3.3.14), there exists a unique horizontal

vector field (1.1.18):

γH = ∂t − γi∂i − γi∂i,
on V ∗Q (i.e., a connection on V ∗Q→ R) such that

γHcdH = 0. (3.3.20)

This vector field, called the Hamilton vector field, reads

γH = ∂t + ∂kH∂k − ∂kH∂k. (3.3.21)

In a different way (Remark 3.3.2), the Hamilton vector field γH is defined

by the relation

γHcΩ = dH.
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Consequently, it is canonical for the Poisson structure {, }V (3.3.7). This

vector field yields the first order dynamic Hamilton equation

qkt = ∂kH, (3.3.22)

ptk = −∂kH (3.3.23)

on V ∗Q → R (Definition 1.3.1), where (t, qk, pk, q
k
t , ṗtk) are the adapted

coordinates on the first order jet manifold J1V ∗Q of V ∗Q→ R.

Due to the canonical imbedding J1V ∗Q→ TV ∗Q (1.1.6), the Hamilton

equation (3.3.22) – (3.3.23) is equivalent to the autonomous first order

dynamic equation

ṫ = 1, q̇i = ∂iH, ṗi = −∂iH (3.3.24)

on a manifold V ∗Q (Definition 1.2.1).

A solution of the Hamilton equation (3.3.22) – (3.3.23) is an integral

section r for the connection γH .

Remark 3.3.4. Similarly to the Cartan equation (2.2.11), the Hamilton

equation (3.3.22) – (3.3.23) is equivalent to the condition

r∗(ucdH) = 0 (3.3.25)

for any vertical vector field u on V ∗Q→ R.

We agree to call (V ∗Q,H) the Hamiltonian system of k = dimQ − 1

degrees of freedom.

In order to describe evolution of a Hamiltonian system at any instant,

the Hamilton vector field γH (3.3.21) is assumed to be complete, i.e., it

is an Ehresmann connection (Remark 1.1.2). In this case, the Hamilton

equation (3.3.22) – (3.3.23) admits a unique global solution through each

point of the phase space V ∗Q. By virtue of Theorem 1.1.2, there exists a

trivialization of a fibre bundle V ∗Q → R (not necessarily compatible with

its fibration V ∗Q→ Q) such that

γH = ∂t, H = pidq
i (3.3.26)

with respect to the associated coordinates (t, qi, pi). A direct computa-

tion shows that the Hamilton vector field γH (3.3.21) satisfies the rela-

tion (3.3.12) and, consequently, it is an infinitesimal generator of a one-

parameter group of automorphisms of the Poisson manifold (V ∗Q, {, }V ).

Then one can show that (t, qi, pi) are canonical coordinates for the Poisson

manifold (V ∗Q, {, }V ) [106], i.e.,

w =
∂

∂pi
∧ ∂

∂qi
.
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Since H = 0, the Hamilton equation (3.3.22) – (3.3.23) in these coordinates

takes the form

qit = 0, pti = 0,

i.e., (t, qi, pi) are the initial data coordinates.

3.4 Homogeneous Hamiltonian formalism

As was mentioned above, one can associate to any Hamiltonian system

on a phase space V ∗Q an equivalent autonomous symplectic Hamiltonian

system on the cotangent bundle T ∗Q (Theorem 3.4.1).

Given a Hamiltonian system (V ∗Q,H), its Hamiltonian H (3.3.13) de-

fines the function

H∗ = ∂tc(Ξ− ζ∗(−h)∗Ξ)) = p0 + h = p0 +H (3.4.1)

on T ∗Q. Let us regard H∗ (3.4.1) as a Hamiltonian of an autonomous

Hamiltonian system on the symplectic manifold (T ∗Q,ΩT ). The corre-

sponding autonomous Hamilton equation on T ∗Q takes the form

ṫ = 1, ṗ0 = −∂tH, q̇i = ∂iH, ṗi = −∂iH. (3.4.2)

Remark 3.4.1. Let us note that the splitting H∗ = p0 +H (3.4.1) is ill

defined. At the same time, any reference frame Γ yields the decomposition

H∗ = (p0 +HΓ) + (H−HΓ) = H∗
Γ + EΓ, (3.4.3)

where HΓ is the Hamiltonian (3.3.16) and EΓ (3.3.18) is the Hamiltonian

function relative to a reference frame Γ.

The Hamiltonian vector field ϑH∗ of H∗ (3.4.1) on T ∗Q is

ϑH∗ = ∂t − ∂tH∂0 + ∂iH∂i − ∂iH∂i. (3.4.4)

Written relative to the coordinates (3.3.5), this vector field reads

ϑH∗ = ∂t + ∂iH∂i − ∂iH∂i. (3.4.5)

It is identically projected onto the Hamilton vector field γH (3.3.21) on

V ∗Q such that

ζ∗(LγH
f) = {H∗, ζ∗f}T , f ∈ C∞(V ∗Q). (3.4.6)

Therefore, the Hamilton equation (3.3.22) – (3.3.23) is equivalent to the

autonomous Hamilton equation (3.4.2).
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Obviously, the Hamiltonian vector field ϑH∗ (3.4.5) is complete if the

Hamilton vector field γH (3.3.21) is complete.

Thus, the following has been proved [31; 65; 108].

Theorem 3.4.1. A Hamiltonian system (V ∗Q,H) of k degrees of freedom

is equivalent to an autonomous Hamiltonian system (T ∗Q,H∗) of k + 1

degrees of freedom on a symplectic manifold (T ∗Q,ΩT ) whose Hamiltonian

is the function H∗ (3.4.1).

We agree to call (T ∗Q,H∗) the homogeneous Hamiltonian system and

H∗ (3.4.1) the homogeneous Hamiltonian.

3.5 Lagrangian form of Hamiltonian formalism

It is readily observed that the Hamiltonian formH (3.3.14) is the Poincaré–

Cartan form of the Lagrangian

LH = h0(H) = (piq
i
t −H)dt (3.5.1)

on the jet manifold J1V ∗Q of V ∗Q→ R [109; 110; 139].

Remark 3.5.1. In fact, the Lagrangian (3.5.1) is the pull-back onto J 1V ∗Q

of the form LH on the product V ∗Q×Q J1Q.

The Lagrange operator (2.1.16) associated to the Lagrangian LH reads

EH = δLH = [(qit − ∂iH)dpi − (pti + ∂iH)dqi] ∧ dt. (3.5.2)

The corresponding Lagrange equation (2.1.20) is of first order, and it coin-

cides with the Hamilton equation (3.3.22) – (3.3.23) on J1V ∗Q.

Due to this fact, the Lagrangian LH (3.5.1) plays a prominent role in

Hamiltonian non-relativistic mechanics.

In particular, let u (2.5.4) be a vector field on a configuration space Q.

Its functorial lift (11.2.32) onto the cotangent bundle T ∗Q is

ũ = ut∂t + ui∂i − pj∂iuj∂i. (3.5.3)

This vector field is identically projected onto a vector field, also given by

the expression (3.5.3), on the phase space V ∗Q as a base of the trivial fibre

bundle (3.3.3). Then we have the equality

LũH = LJ1ũLH = (−ut∂tH + pi∂tu
i − ui∂iH+ pi∂ju

i∂jH)dt. (3.5.4)

This equality enables us to study conservation laws in Hamiltonian me-

chanics similarly to those in Lagrangian mechanics (Section 3.8).
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3.6 Associated Lagrangian and Hamiltonian systems

As was mentioned above, Lagrangian and Hamiltonian formulations of me-

chanics fail to be equivalent. For instance, there exist physically interesting

systems whose phase spaces fail to be the cotangent bundles of config-

uration spaces, and they do not admit any Lagrangian description [149].

The comprehensive relations between Lagrangian and Hamiltonian systems

can be established in the case of almost regular Lagrangians [106; 108;

139]. This is a particular case of the relations between Lagrangian and

Hamiltonian theories on fibre bundles [55; 68].

In order to compare Lagrangian and Hamiltonian formalisms, we are

based on the facts that:

(i) every first order Lagrangian L (2.1.15) on a velocity space J 1Q in-

duces the Legendre map (2.1.30) of this velocity space to a phase space

V ∗Q;

(ii) every Hamiltonian form H (3.3.14) on a phase space V ∗Q yields the

Hamiltonian map

Ĥ : V ∗Q −→
Q

J1Q, qit ◦ Ĥ = ∂iH (3.6.1)

of this phase space to a velocity space J1Q.

Remark 3.6.1. A Hamiltonian form H is called regular if the Hamiltonian

map Ĥ (3.6.1) is regular, i.e., a local diffeomorphism.

Remark 3.6.2. It is readily observed that a section r of a fibre bundle

V ∗Q→ R is a solution of the Hamilton equation (3.3.22) – (3.3.23) for the

Hamiltonian form H if and only if it obeys the equality

J1(πΠ ◦ r) = Ĥ ◦ r, (3.6.2)

where πΠ : V ∗Q→ Q.

Given a Lagrangian L, the Hamiltonian form H (3.3.14) is said to be

associated with L if H satisfies the relations

L̂ ◦ Ĥ ◦ L̂ = L̂, (3.6.3)

Ĥ∗LH = Ĥ∗L, (3.6.4)

where LH is the Lagrangian (3.5.1).

A glance at the equality (3.6.3) shows that L̂◦Ĥ is the projector of V ∗Q

onto the Lagrangian constraint space NL which is given by the coordinate

conditions

pi = πi(t, q
j , ∂jH(t, qj , pj)). (3.6.5)
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The relation (3.6.4) takes the coordinate form

H = pi∂
iH−L(t, qj , ∂jH). (3.6.6)

Acting on this equality by the exterior differential, we obtain the relations

∂tH(p) = −(∂tL) ◦ Ĥ(p), p ∈ NL,
∂iH(p) = −(∂iL) ◦ Ĥ(p), p ∈ NL, (3.6.7)

(pi − (∂iL)(t, qj , ∂jH))∂i∂aH = 0. (3.6.8)

The relation (3.6.8) shows that an L-associated Hamiltonian form H is not

regular outside the Lagrangian constraint space NL.

For instance, let L be a hyperregular Lagrangian, i.e., the Legendre map

L̂ (2.1.30) is a diffeomorphism. It follows from the relation (3.6.3) that, in

this case, Ĥ = L̂−1. Then the relation (3.6.6) takes the form

H = piL̂
−1i −L(t, qj , L̂−1j). (3.6.9)

It defines a unique Hamiltonian form associated with a hyperregular La-

grangian. Let s be a solution of the Lagrange equation (2.1.25) for a La-

grangian L. A direct computation shows that L̂ ◦ J1s is a solution of the

Hamilton equation (3.3.22) – (3.3.23) for the Hamiltonian form H (3.6.9).

Conversely, if r is a solution of the Hamilton equation (3.3.22) – (3.3.23)

for the Hamiltonian form H (3.6.9), then s = πΠ ◦ r is a solution of the La-

grange equation (2.1.25) for L (see the equality (3.6.2)). It follows that, in

the case of hyperregular Lagrangians, Hamiltonian formalism is equivalent

to Lagrangian one.

If a Lagrangian is not regular, an associated Hamiltonian form need not

exist.

Example 3.6.1. Let Q be a fibre bundle R2 → R with coordinates (t, q).

Its jet manifold J1Q = R3 and its Legendre bundle V ∗Q = R3 are coordi-

nated by (t, q, qt) and (t, q, p), respectively. Let us put

L = exp(qt)dt. (3.6.10)

This Lagrangian is regular, but not hyperregular. The corresponding Leg-

endre map reads

p ◦ L̂ = exp qt.

It follows that the Lagrangian constraint space NL is given by the coordi-

nate relation p > 0. This is an open subbundle of the Legendre bundle,

and L̂ is a diffeomorphism of J1Q onto NL. Hence, there is a unique Ha-

miltonian form

H = pdq − p(ln p− 1)dt

on NL which is associated with the Lagrangian (3.6.10). This Hamiltonian

form however is not smoothly extended to V ∗Q.
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A Hamiltonian form is called weakly associated with a Lagrangian L if

the condition (3.6.4) (namely, the condition (3.6.8) holds on the Lagrangian

constraint space NL.

For instance, any Hamiltonian form is weakly associated with the La-

grangian L = 0, while the associated Hamiltonian forms are only HΓ

(3.3.16).

A hyperregular Lagrangian L has a unique weakly associated Hamil-

tonian form (3.6.9) which also is L-associated. In the case of a regular

Lagrangian L, the Lagrangian constraint space NL is an open subbundle of

the vector Legendre bundle V ∗Q→ Q. If NL 6= V ∗Q, a weakly associated

Hamiltonian form fails to be defined everywhere on V ∗Q in general. At the

same time, NL itself can be provided with the pull-back symplectic struc-

ture with respect to the imbedding NL → V ∗Q, so that one may consider

Hamiltonian forms on NL.

Note that, in contrast with associated Hamiltonian forms, a weakly

associated Hamiltonian form may be regular.

In order to say something more, let us restrict our consideration to

almost regular Lagrangians L (Definition 2.1.2) [106; 108; 139].

Lemma 3.6.1. The Poincaré–Cartan form HL (2.2.1) of an almost regular

Lagrangian L is constant on the inverse image L̂−1(z) of any point z ∈ NL.

A corollary of Lemma 3.6.1 is the following.

Theorem 3.6.1. All Hamiltonian forms weakly associated with an almost

regular Lagrangian L coincide with each other on the Lagrangian constraint

space NL, and the Poincaré–Cartan form HL (2.2.1) of L is the pull-back

HL = L̂∗H, πiq
i
t −L = H(t, qj , πj), (3.6.11)

of such a Hamiltonian form H.

It follows that, given Hamiltonian forms H and H ′ weakly associated

with an almost regular Lagrangian L, their difference is a density

H ′ −H = (H−H′)dt

vanishing on the Lagrangian constraint space NL. However, Ĥ |NL
6= Ĥ ′|NL

in general. Therefore, the Hamilton equations for H and H ′ do not neces-

sarily coincide on the Lagrangian constraint space NL.

Theorem 3.6.1 enables us to relate the Lagrange equation for an almost

regular Lagrangian L with the Hamilton equation for Hamiltonian forms

weakly associated to L.
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Theorem 3.6.2. Let a section r of V ∗Q→ R be a solution of the Hamilton

equation (3.3.22) – (3.3.23) for a Hamiltonian form H weakly associated

with an almost regular Lagrangian L. If r lives in the Lagrangian constraint

space NL, the section s = π◦r of π : Q→ R satisfies the Lagrange equation

(2.1.25), while s = Ĥ ◦ r obeys the Cartan equation (2.2.9) – (2.2.10).

The proof is based on the relation

L̃ = (J1L̂)∗LH ,

where L̃ is the Lagrangian (2.2.7), while LH is the Lagrangian (3.5.1). This

relation is derived from the equality (3.6.11). The converse assertion is more

intricate.

Theorem 3.6.3. Given an almost regular Lagrangian L, let a section s

of the jet bundle J1Q → R be a solution of the Cartan equation (2.2.9) –

(2.2.10). Let H be a Hamiltonian form weakly associated with L, and let

H satisfy the relation

Ĥ ◦ L̂ ◦ s = J1s, (3.6.12)

where s is the projection of s onto Q. Then the section r = L̂ ◦ s of a fibre

bundle V ∗Q→ R is a solution of the Hamilton equation (3.3.22) – (3.3.23)

for H.

We say that a set of Hamiltonian forms H weakly associated with an

almost regular Lagrangian L is complete if, for each solution s of the La-

grange equation, there exists a solution r of the Hamilton equation for a

Hamiltonian form H from this set such that s = πΠ ◦ r. By virtue of Theo-

rem 3.6.3, a set of weakly associated Hamiltonian forms is complete if, for

every solution s of the Lagrange equation for L, there exists a Hamiltonian

form H from this set which fulfills the relation (3.6.12) where s = J1s, i.e.,

Ĥ ◦ L̂ ◦ J1s = J1s. (3.6.13)

In the case of almost regular Lagrangians, one can formulate the follow-

ing necessary and sufficient conditions of the existence of weakly associated

Hamiltonian forms.

Theorem 3.6.4. A Hamiltonian form H weakly associated with an almost

regular Lagrangian L exists if and only if the fibred manifold (2.1.32):

L̂ : J1Q→ NL, (3.6.14)

admits a global section.



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

104 Hamiltonian mechanics

In particular, any point of V ∗Q possesses an open neighborhood U such

that there exists a complete set of local Hamiltonian forms on U which

are weakly associated with an almost regular Lagrangian L. Moreover, one

can construct a complete set of local L-associated Hamiltonian forms on U
[138].

3.7 Quadratic Lagrangian and Hamiltonian systems

Let us study an important case of the almost regular quadratic Lagrangian

L (2.3.1). We show that there exists a complete set of Hamiltonian forms

associated with L.

Given the almost regular quadratic Lagrangian L (2.3.1), there is the

splitting (2.3.10) of a phase space V ∗Q. It takes the form

V ∗Q = R(V ∗Q)⊕
Q
P(V ∗Q) = Kerσ0⊕

Q
NL, (3.7.1)

pi = Ri + Pi = [pi − aijσjk0 pk] + [aijσ
jk
0 pk], (3.7.2)

where σ = σ0 + σ1 is the linear bundle map (2.3.7) whose summands σ0

and σ1 satisfy the relations (2.3.11). These relations lead to the equalities

σjk0 Rk = 0, σjk1 Pk = 0. (3.7.3)

It is readily observed that, with respect to the coordinatesRi and Pi (3.7.2),

the Lagrangian constraint space (2.3.2) is defined by the equations

Ri = pi − aijσjk0 pk = 0. (3.7.4)

Given the linear map σ (2.3.7) and the arbitrary connection Γ (2.3.3),

let us consider the morphism

Φ = ĤΓ + σ : V ∗Q→ J1Q, Φ = ∂t + (Γi + σijpj)∂i, (3.7.5)

and the Hamiltonian form

H(σ,Γ) = −ΦcΘ + Φ∗L (3.7.6)

= pidq
i −
[
piΓ

i +
1

2
σ0
ijpipj + σ1

ijpipj − c′
]
dt

= (Ri + Pi)dqi −
[
(Ri + Pi)Γi +

1

2
σij0 PiPj + σij1 RiRj − c′

]
dt.

Theorem 3.7.1. The Hamiltonian form (3.7.6) is weakly associated with

the Lagrangian (2.3.1) (and (2.3.5)), and it is L-associated if σ1 = 0.
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Proof. A direct computation shows that the Hamiltonian form (3.7.6)

satisfies the condition (3.6.3) and the condition (3.6.4) on the constraint

space (3.7.4). This condition holds everywhere on V ∗Q if σ1 = 0. �

Theorem 3.7.2. The Hamiltonian forms

H(σ,Γ) = pidq
i −
[
piΓ

i +
1

2
σ0
ijpipj − c′

]
dt (3.7.7)

parameterized by Lagrangian frame connections Γ (2.3.3) constitute a com-

plete set of L-associated Hamiltonian forms.

Proof. Let s be an arbitrary section of Q→ R, e.g., a solution of the La-

grange equation. There exists a connection Γ (2.3.3) such that the relation

(3.6.13) holds. Namely, let us put Γ = S ◦ Γ′ where Γ′ is a connection on

Q→ R which has s as an integral section. �

3.8 Hamiltonian conservation laws

As was mentioned above, integrals of motion in Lagrangian mechanics usu-

ally come from variational symmetries of a Lagrangian (Theorem 2.5.3),

though not all integrals of motion are of this type (Section 2.5). In Hamilto-

nian mechanics, all integrals of motion are conserved generalized symmetry

currents (Theorem 3.8.12 below).

An integral of motion of a Hamiltonian system (V ∗Q,H) is defined as

a smooth real function F on V ∗Q which is an integral of motion of the

Hamilton equation (3.3.22) – (3.3.23) (Section 1.10). Its Lie derivative

LγH
F = ∂tF + {H, F}V (3.8.1)

along the Hamilton vector field γH (3.3.21) vanishes in accordance with the

equation (1.10.7). Given the Hamiltonian vector field ϑF of F with respect

to the Poisson bracket (3.3.7), it is easily justified that

[γH , ϑF ] = ϑLγH
F . (3.8.2)

Consequently, the Hamiltonian vector field of an integral of motion is a

symmetry of the Hamilton equation (3.3.22) – (3.3.23).

One can think of the formula (3.8.1) as being the evolution equation of

Hamiltonian non-relativistic mechanics. In contrast with the autonomous

evolution equation (3.2.5), the right-hand side of the equation (3.8.1) is not

reduced to the Poisson bracket {, }V .
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Given a Hamiltonian system (V ∗Q,H), let (T ∗Q,H∗) be an equivalent

homogeneous Hamiltonian system. It follows from the equality (3.4.6) that

ζ∗(LγH
F ) = {H∗, ζ∗F}T = ζ∗(∂tF + {H, F}V ) (3.8.3)

for any function F ∈ C∞(V ∗Q). This formula is equivalent to the evolution

equation (3.8.1). It is called the homogeneous evolution equation.

Proposition 3.8.1. A function F ∈ C∞(V ∗Q) is an integral of motion of

a Hamiltonian system (V ∗Q,H) if and only if its pull-back ζ∗F onto T ∗Q

is an integral of motion of a homogeneous Hamiltonian system (T ∗Q,H∗).

Proof. It follows from the equality (3.8.3) that

{H∗, ζ∗F}T = ζ∗(LγH
F ) = 0. (3.8.4)

�

Proposition 3.8.2. If F and F ′ are integrals of motion of a Hamiltonian

system, their Poisson bracket {F, F ′}V also is an integral of motion.

Proof. This fact results from the equalities (3.3.8) and (3.8.4). �

Consequently, integrals of motion of a Hamiltonian system (V ∗Q,H)

constitute a real Lie subalgebra of the Poisson algebra C∞(V ∗Q).

Let us turn to Hamiltonian conservation laws. We are based on the fact

that the Hamilton equation (3.3.22) – (3.3.23) also is the Lagrange equation

of the Lagrangian LH (3.5.1). Therefore, one can study conservation laws

in Hamiltonian mechanics similarly to those in Lagrangian mechanics [110].

Since the Hamilton equation (3.3.22) – (3.3.23) is of first order, we

restrict our consideration to classical symmetries, i.e., vector fields on V ∗Q.

In this case, all conserved generalized symmetry currents are integrals of

motion.

Let

υ = ut∂t + υi∂i + υi∂
i, ut = 0, 1, (3.8.5)

be a vector field on a phase space V ∗Q. Its prolongation onto V ∗Q×Q J1Q

(Remark 3.5.1) reads

J1υ = ut∂t + υi∂i + υi∂
i + dtυ

i∂ti .

Then the first variational formula (2.5.11) for the Lagrangian LH (3.5.1)

takes the form

−ut∂tH− υi∂iH+ υi(q
i
t − ∂iH) + pidtυ

i (3.8.6)

= −(υi − qitut)(pti + ∂iH) + (υi − ptiut)(qit − ∂iH)

+ dt(piυ
i − utH).
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If υ (3.8.5) is a variational symmetry, i.e.,

LJ1υLH = dHσ,

we obtain the weak conservation law, called the Hamiltonian conservation

law,

0 ≈ dtTυ (3.8.7)

of the generalized symmetry current (2.5.17) which reads.

Tυ = piυ
i − utH− σ. (3.8.8)

This current is an integral of motion of a Hamiltonian system.

The converse also is true. Let F be an integral of motion, i.e.,

LγH
F = ∂tF + {H, F}V = 0. (3.8.9)

We aim to show that there is a variational symmetry υ of LH such that

F = Tυ is a conserved generalized symmetry current along υ.

In accordance with Proposition 2.5.1, the vector field υ (3.8.5) is a

variational symmetry if and only if

υi(pti + ∂iH)− υi(qit − ∂iH) + ut∂tH = dt(Tu + utH). (3.8.10)

A glance at this equality shows the following.

Proposition 3.8.3. The vector field υ (3.8.5) is a variational symmetry

only if

∂iυi = −∂iυi. (3.8.11)

For instance, if the vector field υ (3.8.5) is projectable onto Q (i.e.,

its components υi are independent of momenta pi), we obtain that ui =

−pj∂iuj . Consequently, υ is the canonical lift ũ (3.5.3) onto V ∗Q of the

vector field u (2.5.4) on Q. Moreover, let ũ be a variational symmetry of

a Lagrangian LH . It follows at once from the equality (3.8.10) that ũ is

an exact symmetry of LH . The corresponding conserved symmetry current

reads

Tũp = piu
i − utH. (3.8.12)

We agree to call the vector field u (2.5.4) the Hamiltonian symmetry if

its canonical lift ũ (3.5.3) onto V ∗Q is a variational (consequently, exact)

symmetry of the Lagrangian LH (3.5.1). If a Hamiltonian symmetry is

vertical, the corresponding conserved symmetry current Tũ = piu
i is called

the Noether current.

Proposition 3.8.4. The Hamilton vector field γH (3.3.21) is a unique

variational symmetry of LH whose conserved generalized symmetry current

equals zero.
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It follows that, given a non-vertical variational symmetry υ, ut = 1,

of a Lagrangian LH , there exists a vertical variational symmetry υ − γH
possessing the same generalized conserved symmetry current Tυ = Tυ−γH

as υ.

Theorem 3.8.1. Any integral of motion F of a Hamiltonian system

(V ∗Q,H) is a generalized conserved current F = TϑF
of the Hamiltonian

vector field ϑF (3.1.4) of F .

Proof. If υ = ϑF and TϑF
= F , the relation (3.8.10) is satisfied owing

to the equality (3.8.9). �

It follows from Theorem 3.8.1 that the Lie algebra of integrals of motion

of a Hamiltonian system in Proposition 3.8.2 coincides with the Lie algebra

of conserved generalized symmetry currents with respect to the bracket

{F, F ′}V = {TϑF
,TϑF ′ }V = T[ϑF ,ϑF ′ ].

In accordance with Theorem 3.8.1, any integral of motion of a Hamil-

tonian system can be treated as a conserved generalized current along a

vertical variational symmetry. However, this is not convenient for the study

of energy conservation laws.

Let EΓ (3.3.18) be the Hamiltonian function of a Hamiltonian system

relative to a reference frame Γ. Given bundle coordinates adapted to Γ, its

evolution equation (3.8.1) takes the form

LγH
EΓ = ∂tEΓ = ∂tH. (3.8.13)

It follows that, a Hamiltonian function EΓ relative to a reference frame Γ

is an integral of motion if and only if a Hamiltonian, written with respect

to the coordinates adapted to Γ, is time-independent. One can think of EΓ
as being the energy function relative to a reference frame Γ [36; 106; 110;

139]. Indeed, by virtue of Theorem 3.8.1, if EΓ is an integral of motion, it

is a conserved generalized symmetry current of the variational symmetry

γH + ϑEΓ = −(∂t + Γi∂i − pj∂iΓj∂i) = −Γ̃.

This is the canonical lift (3.5.3) onto V ∗Q of the vector field −Γ (1.1.18)

on Q. Consequently, −Γ̃ is an exact symmetry, and −Γ is a Hamiltonian

symmetry.

Example 3.8.1. Let us consider the Kepler system on the configuration

space Q (2.5.29) in Example 2.5.4. Its phase space is

V ∗Q = R× R6
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coordinated by (t, qi, pi). The Lagrangian (2.5.30) and (2.5.34) of the Ke-

pler system is hyperregular. The associated Hamiltonian form reads

H = pidq
i −
[

1

2

(∑

i

(pi)
2

)
− 1

r

]
dt. (3.8.14)

The corresponding Lagrangian LH (3.5.1) is

LH =

[
piq

i
t −

1

2

(∑

i

(pi)
2

)
+

1

r

]
dt. (3.8.15)

The Kepler system possesses the following integrals of motion [49]:

• an energy function E = H;

• orbital momenta

Ma
b = qapb − qbpa; (3.8.16)

• components of the Rung–Lenz vector

Aa =
∑

b

(qapb − qbpa)pb −
qa

r
. (3.8.17)

These integrals of motions are the conserved currents of:

• the exact symmetry ∂t,

• the exact vertical symmetries

υab = qa∂b − qb∂a − pb∂a + pa∂
b, (3.8.18)

• the variational vertical symmetries

υa =
∑

b

[pbυ
a
b + (qapb − qbpa)∂b] + ∂b

(
qa

r

)
∂b, (3.8.19)

respectively. Note that the vector fields υab (3.8.18) are the canonical lift

(3.5.3) onto V ∗Q of the vector fields

uab = qa∂b − qb∂a
on Q. Thus, these vector fields are vertical Hamiltonian symmetries, and

integrals of motion Ma
b (3.8.16) are the Noether currents.

Let us remind that, in contrast with the Rung–Lenz vector (3.8.19)

in Hamiltonian mechanics, the Rung–Lenz vector (2.5.35) in Lagrangian

mechanics fails to come from variational symmetries of a Lagrangian. There

is the following relation between Lagrangian and Hamiltonian symmetries

if they are the same vector fields on a configuration space Q.
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Theorem 3.8.2. Let a Hamiltonian form H be associated with an almost

regular Lagrangian L. Let r be a solution of the Hamilton equation (3.3.22)

– (3.3.23) for H which lives in the Lagrangian constraint space NL. Let

s = πΠ ◦ r be the corresponding solution of the Lagrange equation for L so

that the relation (3.6.13) holds. Then, for any vector field u (2.5.4) on a

fibre bundle Q→ R, we have

Tũ(r) = Tu(πΠ ◦ r), Tũ(L̂ ◦ J1s) = Tu(s), (3.8.20)

where Tu is the symmetry current (2.5.21) on J1Y and Tũ is the symmetry

current (3.8.12) on V ∗Q.

Proof. The proof is straightforward. �

By virtue of Theorems 3.6.2 – 3.6.3, it follows that:

• if Tu in Theorem 3.8.2 is a conserved symmetry current, then the

symmetry current Tũ (3.8.20) is conserved on solutions of the Hamilton

equation which live in the Lagrangian constraint space;

• if Tũ in Theorem 3.8.2 is a conserved symmetry current, then the

symmetry current Tu (3.8.20) is conserved on solutions s of the Lagrange

equation which obey the condition (3.6.13).

3.9 Time-reparametrized mechanics

We have assumed above that the base R of a configuration space of non-

relativistic mechanics is parameterized by a coordinate t with the transition

functions t→ t′ = t+ const. Here, we consider an arbitrary reparametriza-

tion of time

t→ t′ = f(t) (3.9.1)

which is discussed in some models of quantum mechanics [83].

In the case of an arbitrary time reparametrization (3.9.1), a configura-

tion space of non-relativistic mechanics is a fibre bundle Q→ R over a one-

dimensional base R, diffeomorphic to R. Let R be coordinated by t with the

transition functions (3.9.1). In contrast with R, the base R admits neither

the standard vector field ∂t nor the standard one-form dt. We can not use

the simplifications mentioned in Remark 1.1.1 and, therefore, should strictly

follow the (polysymplectic) Hamiltonian formalism on fibre bundles [55; 68;

138]. Nevertheless, Hamiltonian formalism of time-reparametrized mechan-

ics possesses some peculiarities because of a one-dimensional base R.
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• There exists the canonical tangent-valued one-form

θR = dt⊗ ∂t
on the base R of a configuration space of time-reparametrized mechanics.

• The velocity space J1Q of time-reparametrized mechanics is not an

affine subbundle of the tangent bundle TQ, whereas a phase space is iso-

morphic to the vertical cotangent bundle V ∗Q → Q. It follows that a

phase space of time-reparametrized mechanics is provided with the canon-

ical Poisson structure (3.3.7). Moreover, this Poisson structure is invariant

under time reparametrization (3.9.1) which, consequently, is a canonical

transformation.

• A phase space V ∗Q is endowed with the canonical polysymplectic

form

Λ = dpi ∧ dqi ∧ θR.
Then the notions of a Hamiltonian connection and a Hamiltonian form are

the repetitions of those in Hamiltonian field theory [68]. At the same time,

since the homogeneous Legendre bundle of time-reparametrized mechanics

is the cotangent bundle T ∗Q of Q, Hamiltonian forms and Hamilton equa-

tions of time-reparametrized mechanics are defined as those in Section 3.3.

The difference is only that the Hamiltonian function EΓ in the splitting

(3.3.17) is a density, but not a function under the transformations (3.9.1).

• Since a Lagrangian and a Hamiltonian of time-reparametrized mechan-

ics are densities under the transformations (3.9.1), one should introduce a

volume element on the base R in order to construct them in an explicit

form. A key problem of models with time reparametrization lies in the fact

that the time axis R of time-reparametrized mechanics has no canonical

volume element. Another problem is concerned with a mass tensor. Since

a velocity space J1Q of time-reparametrized mechanics is an affine bundle

J1Q → Q modelled over the vector bundle T ∗R⊗
Q
V Q, a mass tensor fails

to be invariant under time reparametrization (3.9.1).
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Chapter 4

Algebraic quantization

Algebraic quantum theory follows the hypothesis that an autonomous quan-

tum system can be characterized by a topological involutive algebra A and

continuous positive forms f on A treated as mean values of quantum observ-

ables. In quantum mechanics, C∗-algebras are considered. In accordance

with the Gelfand–Naimark–Segal (henceforth GNS) construction, any posi-

tive form on a C∗-algebraA determines its cyclic representation by bounded

operators in a Hilbert space (Section 4.1.5).

Quantum non-relativistic mechanics is phrased in the geometric terms

of Banach and Hilbert manifolds and locally trivial Hilbert and C∗-algebra

bundles over smooth finite-dimensional manifolds, e.g., R [65; 148]. For

instance, this is the case of time-dependent quantum systems (Section 4.4)

and quantum models depending on classical parameters (Section 9.3).

4.1 GNS construction

We start with a brief exposition of the conventional GNS representation of

C∗-algebras [33; 65].

4.1.1 Involutive algebras

A complex algebra A is called involutive, if it is provided with an involution

∗ such that

(a∗)∗ = a, (a+ λb)∗ = a∗ + λb∗, (ab)∗ = b∗a∗, a, b ∈ A, λ ∈ C.

Let us recall the standard terminology. An element a ∈ A is normal if

aa∗ = a∗a, and it is Hermitian or self-adjoint (Section 4.1.6) if a∗ = a. If

113
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A is a unital algebra, a normal element such that

aa∗ = a∗a = 1

is called unitary.

An involutive algebra A is called a normed algebra (resp. a Banach

algebra) if it is a normed (resp. complete normed) vector space whose

norm ‖.‖ obeys the multiplicative conditions

‖ab‖ ≤ ‖a‖‖b‖, ‖a∗‖ = ‖a‖, a, b ∈ A.

A Banach involutive algebra A is called a C∗-algebra if

‖a‖2 = ‖a∗a‖

for all a ∈ A. If A is a unital C∗-algebra, then ‖1‖ = 1. A C∗-algebra

is provided with the normed topology, i.e., it is a topological involutive

algebra.

Let I be a closed two-sided ideal of a C∗-algebra A. Then I is self-

adjoint, i.e., I∗ = I. Endowed with the quotient norm, the quotient A/I
is a C∗-algebra.

Remark 4.1.1. It should be emphasized that by a morphism of normed

involutive algebras is customarily meant a morphism of the underlying invo-

lutive algebras, without any condition on the norms and continuity. At the

same time, an isomorphism of normed algebras means always an isometric

morphism. Any morphism φ of C∗-algebras is automatically continuous

due to the property

‖φ(a)‖ ≤ ‖a‖, a ∈ A. (4.1.1)

Any involutive algebra A can be extended to a unital algebra Ã = C⊕A
by the adjunction of the identity 1 to A (Remark 11.1.1). The unital

extension of A also is an involutive algebra with respect to the operation

(λ1 + a)∗ = (λ1 + a∗), λ ∈ C, a ∈ A.

If A is a normed involutive algebra, a norm on A is extended to Ã, but not

uniquely. If A is a C∗-algebra, a norm on A is uniquely prolonged to the

norm

‖λ1 + a‖ = sup
‖a′‖≤1

‖λa′ + aa′‖

on Ã which makes Ã into a C∗-algebra.
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Remark 4.1.2. Any C∗-algebra admits an approximate identity. This is a

family {uι}ι∈I of elements of A, indexed by a directed set I , which possesses

the following properties:

(i) ‖uι‖ < 1 for all ι ∈ I ,
(ii) ‖uιa− a‖ → 0 and ‖auι − a‖ → 0 for every a ∈ A.

It should be noted that the existence of an approximate identity is an

essential condition for many results. In particular, the GNS representation

is relevant to Banach involutive algebras with an approximate identity.

However, there is no loss of generality if we restrict our study of the GNS

representation to C∗-algebras because any Banach involutive algebraA with

an approximate identity defines the so called enveloping C∗-algebra A† such

that there is one-to-one correspondence between the representations of A

and those of A† [33].

Remark 4.1.3. Unless otherwise stated, by a tensor product A ⊗ A′ of

C∗-algebras A and A′ is meant their minimal (or spatial tensor) product.

This is the C∗-algebra defined as the completion of the tensor product of

involutive algebras A and A′ with respect to the minimal norm which obeys

the condition

||a⊗ a′|| = ||a|| ||a′||. a ∈ A, a′ ∈ A.

For instance, if A and A′ are operator algebras in Hilbert spaces E and E ′,

this norm is exactly the operator norm (4.1.8) of operators in the tensor

product E ⊗ E′ of Hilbert spaces E and E ′. In general, there are several

ways of completing the algebraic tensor product of C∗-algebras in order to

obtain a C∗-algebra [137].

4.1.2 Hilbert spaces

An important example of C∗-algebras is the algebra B(E) of bounded (and,

equivalently, continuous) operators in a Hilbert space E. Every closed

involutive subalgebra of B(E) is a C∗-algebra and, conversely, every C∗-

algebra is isomorphic to a C∗-algebra of this type (see Theorem 4.1.1 below).

Let us recall the basic facts on pre-Hilbert and Hilbert spaces [17].

A Hermitian form on a complex vector space E is defined as a sesquilin-

ear form 〈.|.〉 such that

〈e|e′〉 = 〈e′|e〉, 〈λe|e′〉 = 〈e|λe′〉 = λ〈e|e′〉, e, e′ ∈ E, λ ∈ C.

Remark 4.1.4. There exists another convention where 〈e|λe′〉 = λ〈e|e′〉.
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A Hermitian form 〈.|.〉 is said to be positive if 〈e|e〉 ≥ 0 for all e ∈ E.

Throughout the book, all Hermitian forms are assumed to be positive. A

Hermitian form is called non-degenerate if the equality 〈e|e〉 = 0 implies

e = 0. A complex vector space endowed with a (positive) Hermitian form is

called a pre-Hilbert space. Morphisms of pre-Hilbert spaces, by definition,

are isometric.

A Hermitian form provides E with the topology determined by the

seminorm

‖e‖ = 〈e|e〉1/2. (4.1.2)

Hence, a pre-Hilbert space is Hausdorff if and only if the Hermitian form

〈.|.〉 is non-degenerate, i.e., the seminorm (4.1.2) is a norm. In this case,

the Hermitian form 〈.|.〉 is called a scalar product.

A family {ei}I of elements of a pre-Hilbert space E is called orthonormal

if its members are mutually orthogonal and ‖ei‖ = 1 for all i ∈ I . Given

an element e ∈ E, there exists at most a countable set of elements ei of an

orthonormal family such that 〈e|ei〉 6= 0 and
∑

i∈I

〈e|ei〉2 ≤ ‖e‖2.

A family {ei}I is called total if it spans a dense subset of E or, equivalently,

if the condition 〈e|ei〉 = 0 for all i ∈ I implies e = 0. A total orthonormal

family in a Hausdorff pre-Hilbert space is called a basis for E. Given a

basis {ei}I , any element e ∈ E admits the decomposition

e =
∑

i∈I

〈e|ei〉ei, ‖e‖2 =
∑

i∈I

|〈e|ei〉|2.

A basis for a pre-Hilbert space need not exist.

Proposition 4.1.1. Every Hausdorff pre-Hilbert space, satisfying the first

axiom of countability (e.g., if it is second-countable), has a countable or-

thonormal basis.

Remark 4.1.5. The notion of a basis for a pre-Hilbert space differs from

that of an algebraic basis for a vector space.

A Hilbert space is defined as a complete Hausdorff pre-Hilbert space.

Any Hausdorff pre-Hilbert space can be completed to a Hilbert space so

that its basis, if any, also is a basis for its completion. Every Hilbert space

has a basis, and any orthonormal family in a Hilbert space can be extended

to its basis. All bases for a Hilbert space have the same cardinal number,
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called the Hilbert dimension. Moreover, given two bases for a Hilbert space,

there is its isomorphism sending these bases to each other. A Hilbert space

has a countable basis if and only if it is separable. Then it is called a

separable Hilbert space. A separable Hilbert space is second-countable.

Remark 4.1.6. Unless otherwise stated, by a Hilbert space is meant a

complex Hilbert space. A complex Hilbert space (E, 〈.|.〉) seen as a real

vector space ER is provided with a real scalar product

(e, e′) =
1

2
(〈e|e′〉+ 〈e′|e〉) = Re 〈e|e′〉, (4.1.3)

which makes ER into a real Hilbert space. It also is a Banach real space.

Conversely, the complexification E = C⊗V of a real Hilbert space (V, (., .))

is a complex Hilbert space with respect to the Hermitian form

〈e1 + ie2|e′1 + ie′2〉 = (e1, e
′
1) + i((e2, e

′
1)− (e1, e

′
2)) + (e2, e

′
2). (4.1.4)

The following are the standard constructions of new Hilbert spaces from

old ones.

• Let (Eι, 〈.|.〉Eι) be a set of Hilbert spaces and
∑
Eι denote the direct

sum of vector spaces Eι. For any two elements e = (eι) and e′ = (e′ι) of∑
Eι, the sum

〈e|e′〉⊕ =
∑

ι

〈eι|e′ι〉Eι (4.1.5)

is finite, and defines a non-degenerate Hermitian form on
∑
Eι. The com-

pletion ⊕Eι of
∑
Eι with respect to this form is a Hilbert space, called

the Hilbert sum of {Eι}. This is a subspace of the Cartesian product
∏
Eι

which consists of the elements e = (eι) such that
∑

ι

‖eι‖Eι <∞.

The union of bases for Hilbert spaces Eι is a basis for their Hilbert sum

⊕Eι.
• Let (E, 〈.|.〉E) and (H, 〈.|.〉H ) be Hilbert spaces. Their tensor product

E ⊗H is defined as the completion of the tensor product of vector spaces

E and H with respect to the scalar product

〈w1|w2〉⊗ =
∑

ι,β

〈eι1|eβ2 〉E〈hι1|hβ2 〉H ,

w1 =
∑

ι

eι1 ⊗ hι1, w2 =
∑

β

eβ2 ⊗ hβ2 , eι1, e
β
2 ∈ E, hι1, h

β
2 ∈ H.
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Let {ei} and {hj} be bases for E and H , respectively. Then {ei ⊗ hj} is a

basis for E ⊗H .

• Let E′ be the topological dual of a Hilbert space E. Then the

assignment

e→ e(e′) = 〈e′|e〉, e, e′ ∈ E, (4.1.6)

defines an antilinear bijection of E onto E ′, i.e., λe = λe. The dual E′ of a

Hilbert space is a Hilbert space provided with the scalar product

〈e|e′〉′ = 〈e′|e〉 (4.1.7)

such that the morphism (4.1.6) is isometric. The E ′ is called the dual

Hilbert space, and is usually denoted by E. A Hilbert space E and its dual

E′ seen as real Hilbert and Banach spaces are isomorphic to each other.

4.1.3 Operators in Hilbert spaces

Unless otherwise stated (Section 4.1.6), we deal with bounded operators

a ∈ B(E) in a Hilbert space E. They are continuous, and vice versa.

Bounded operators are provided with the operator norm

‖a‖ = sup
‖e‖E=1

‖ae‖E, a ∈ B(E). (4.1.8)

This norm makes the involutive algebra B(E) of bounded operators in a

Hilbert space E into a C∗-algebra. The corresponding topology on B(E)

is called the normed operator topology.

One also provides B(E) with the strong and weak operator topologies,

determined by the families of seminorms

{pe(a) = ‖ae‖, e ∈ E},
{pe,e′(a) = |〈ae|e′〉|, e, e′ ∈ E},

respectively. The normed operator topology is finer than the strong one

which, in turn, is finer than the weak operator topology. The strong and

weak operator topologies on the subgroup U(E) ⊂ B(E) of unitary opera-

tors coincide with each other.

Remark 4.1.7. It should be emphasized that B(E) fails to be a topological

algebra with respect to strong and weak operator topologies. Nevertheless,

the involution in B(E) also is continuous with respect to the weak operator

topology, while the operations

B(E) 3 a→ aa′ ∈ B(E),

B(E) 3 a→ a′a ∈ B(E),
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where a′ is a fixed element of B(E), are continuous with respect to all the

above mentioned operator topologies.

Remark 4.1.8. Let N be a subset of B(E). The commutant N ′ of N is

the set of elements of B(E) which commute with all elements of N . It is

a subalgebra of B(E). Let N ′′ = (N ′)′ denote the bicommutant. Clearly,

N ⊂ N ′′. An involutive subalgebra B of B(E) is called a von Neumann

algebra if B = B′′. This property holds if and only if B is strongly (or,

equivalently, weakly) closed in B(E) [33]. For instance, B(E) is a von

Neumann algebra. Since a strongly (weakly) closed subalgebra of B(E)

also is closed with respect to the normed operator topology on B(E), any

von Neumann algebra is a C∗-algebra.

Remark 4.1.9. An operator in a Hilbert space E is called completely

continuous if it is compact, i.e., it sends any bounded set into a set whose

closure is compact. An operator a ∈ B(E) is completely continuous if and

only if it can be represented by the series

a(e) =

∞∑

k=1

λk〈e|ek〉ek, (4.1.9)

where ek are elements of a basis for E and λk are positive numbers which

tend to zero as k → ∞. For instance, every degenerate operator (i.e., an

operator of finite rank which sends E onto its finite-dimensional subspace)

is completely continuous. Moreover, the set T (E) of completely continuous

operators in E is the completion of the set of degenerate operators with

respect to the operator norm (4.1.8). Every completely continuous operator

can be written as a = UT , where U is a unitary operator and T is a positive

completely continuous operator, i.e., 〈Te|e〉 ≥ 0 for all e ∈ E.

4.1.4 Representations of involutive algebras

In this Section, we consider a representation of and involutive algebra A

by bounded operators in a Hilbert space [33; 128]. It is a morphism π of

an involutive algebra A to the algebra B(E) of bounded operators in a

Hilbert space E, called the carrier space of π. Representations throughout

are assumed to be non-degenerate, i.e., there is no element e 6= 0 of E such

that Ae = 0 or, equivalently, AE is dense in E. A representation π of

an involutive algebra A is uniquely prolonged to a representation π̃ of the

unital extension Ã of A.
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Theorem 4.1.1. If A is a C∗-algebra, there exists its isomorphic

representation.

Two representations π1 and π2 of an involutive algebra A in Hilbert

spaces E1 and E2 are said to be equivalent if there is an isomorphism

γ : E1 → E2 such that

π2(a) = γ ◦ π1(a) ◦ γ−1, a ∈ A.

Let {πι} be a family of representations of an involutive algebra A in

Hilbert spaces Eι. If the set of numbers ‖πι(a)‖ is bounded for each a ∈ A,

one can construct the continuous linear operator π(a) in the Hilbert sum

⊕Eι which induces πι(a) in each Eι. For instance, this is the case of a

C∗-algebra A due to the property (4.1.1). Then π is a representation of A

in ⊕Eι, called the Hilbert sum of representations πλ.

Given a representation π of an involutive algebra A in a Hilbert space

E, an element θ ∈ E is said to be a cyclic vector for π if the closure of

π(A)θ is equal to E. Accordingly, π is called a cyclic representation.

Theorem 4.1.2. Every representation of an involutive algebra A is a

Hilbert sum of cyclic representations.

A representation π of an involutive algebra A in a Hilbert space E is

called topologically irreducible if the following equivalent conditions hold:

• the only closed subspaces of E invariant under π(A) are 0 and E;

• the commutant of π(A) in B(E) is the set of scalar operators;

• every non-zero element of E is a cyclic vector for π.

Let us recall that irreducibility of π in the algebraic sense means that the

only subspaces of E invariant under π(A) are 0 and E. If A is a C∗-algebra,

the notions of topologically and algebraically irreducible representations are

equivalent. Therefore, we will further speak on irreducible representations

of a C∗-algebra without the above mentioned qualification.

An algebraically irreducible representation π of an involutive algebra A

is characterized by its kernel Kerπ ⊂ A. This is a two-sided ideal, called

primitive. The assignment

Â 3 π → Kerπ ∈ Prim(A) (4.1.10)

defines the canonical surjection of the set Â of the equivalence classes of

algebraically irreducible representations of an involutive algebra A onto the

set Prim(A) of primitive ideals of A. It follows that algebraically irreducible

representations with different kernels are necessarily inequivalent.
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The set Prim(A) is equipped with the so called Jacobson topology [33].

This topology is not Hausdorff, but it obeys the Fréchet axiom, i.e., for

any two distinct points of Prim(A), there is a neighborhood of one of the

points which does not contain the other. Then the set Â is endowed with

the coarsest topology such that the surjection (4.1.10) is continuous. It is

called the spectrum of an involutive algebra A.

Proposition 4.1.2. If the spectrum Â satisfies the Fréchet axiom (e.g.,

Â is Hausdorff), the map Â → Prim(A) is a homeomorphism, i.e., alge-

braically irreducible representations with the same kernel are equivalent.

Proposition 4.1.3. If an involutive algebra A is unital, Prim(A) and Â

are quasi-compact, i.e., they satisfy the Borel–Lebesgue axiom, but need not

be Hausdorff.

Proposition 4.1.4. The spectrum Â of a C∗-algebra A is a locally quasi-

compact space.

A C∗-algebra is said to be elementary if it is isomorphic to the algebra

T (E) ⊂ B(E) of compact operators in some Hilbert space E. Every non-

trivial irreducible representation of an elementary C∗ algebra A = T (E) is

equivalent to its isomorphic representation by compact operators in E [33].

Hence, the spectrum of an elementary algebra is a singleton set.

4.1.5 GNS representation

Let f be a complex form on an involutive algebra A. It is called positive if

f(a∗a) ≥ 0 for all a ∈ A. Given a positive form f , the Hermitian form

〈a|b〉 = f(b∗a), a, b ∈ A, (4.1.11)

makes A into a pre-Hilbert space. In particular, the relation

|f(b∗a)|2 ≤ f(a∗a)f(b∗b), a, b ∈ A, (4.1.12)

holds. If A is a normed involutive algebra, positive continuous forms on A

are provided with the norm

‖f‖ = sup
‖a‖=1

|f(a)|, a ∈ A.

One says that f is a state of A if ‖f‖ = 1. Positive forms on a C∗-algebra

are continuous. Conversely, a continuous form f on an unital C∗-algebra is

positive if and only if f(1) = ‖f‖. In particular, it is a state if and only if

f(1) = 1.
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For instance, let A be an involutive algebra, π its representation in a

Hilbert space E, and θ an element of E. Then the map

ωθ : a→ 〈π(a)θ|θ〉 (4.1.13)

is a positive form on A. It is called the vector form determined by π and θ.

This vector form is a state if the vector θ is normalized. Let ωθ1 and ωθ2
be two vector forms on A determined by representations π1 in E1 and π2

in E2. If ωθ1 = ωθ2 , there exists a unique isomorphism of E1 to E2 which

sends π1 to π2 and θ1 ∈ E1 to θ2 ∈ E2.

The following theorem states that, conversely, any positive form on a

C∗-algebra equals a vector form determined by some representation of A

called the GNS representation [33].

Theorem 4.1.3. Let f be a positive form on a C∗-algebra A. It is extended

to a unique positive form f̃ on the unital extension Ã of A such that f̃(1) =

‖f‖. Let Nf be a left ideal of Ã consisting of those elements a ∈ A such

that f̃(a∗a) = 0. The quotient Ã/Nf is a Hausdorff pre-Hilbert space with

respect to the Hermitian form obtained from f̃(b∗a) (4.1.11) by passage to

the quotient. We abbreviate with Ef the completion of Ã/Nf and with θf
the canonical image of 1 ∈ Ã in Ã/Nf ⊂ Ef . For each a ∈ Ã, let τ(a)

be the operator in Ã/Nf obtained from the left multiplication by a in Ã by

passage to the quotient. Then the following hold.

(i) Each τ(a) has a unique extension to an operator πf (a) in the Hilbert

space Ef .

(ii) The map a→ πf (a) is a representation of A in Ef .

(iii) The representation πf admits a cyclic vector θf .

(iv) f(a) = 〈π(a)θf |θf 〉 for each a ∈ A.

The representation πf and the cyclic vector θf in Theorem 4.1.3 are

said to be determined by the form f , and the form f equals the vector form

determined by πf and θf . Conversely, given a representation π of A in a

Hilbert space E and a cyclic vector θ for π, let ω be the vector form on A

determined by π and θ. Let πω and θω be the representation in Eω and

the vector of Eω determined by ω in accordance with Theorem 4.1.3. Then

there is a unique isomorphism of E to Eω which sends π to πω and θ to θω.

Example 4.1.1. In particular, any cyclic representation of a C∗-algebra

A is a summand of the universal representation ⊕fπf of A, where f runs

through all positive forms on A.
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It may happen that different positive forms on a C∗-algebra determine

the same representation as follows.

Proposition 4.1.5. (i) Let A be a C∗-algebra and f a positive form on A

which determines a representation πf of A and its cyclic vector θf . Then

for any b ∈ A, the positive form a → f(b∗ab) on A determines the same

representation πf .

(ii) Conversely, any vector form f ′ on A determined by the representa-

tion πf is the limit a→ F (b∗i abi), where {bi} is a convergent sequence with

respect to the normed topology on A.

Now let us specify positive forms on a C∗-algebra A which determine

its irreducible representations.

A positive form f ′ on an involutive algebra A is said to be dominated

by a positive form f if f − f ′ is a positive form. A non-zero positive form

f on an involutive algebra A is called pure if every positive form f ′ on A

which is dominated by f reads λf , 0 ≤ λ ≤ 1.

Theorem 4.1.4. The representation of πf of a C∗-algebra A determined

by a positive form f on A is irreducible if and only if f is a pure form [33].

In particular, any vector form determined by a vector of a carrier space

of an irreducible representation is a pure form. Therefore, it may happen

that different pure forms determine the same irreducible representation.

Theorem 4.1.5. (i) Pure states f1 and f2 of a C∗-algebra A yield equiv-

alent representations of A if and only if there exists an unitary element U

of the unital extension Ã of A such that

f2(a) = f1(U
∗aU), a ∈ A.

(ii) Conversely, let π be an irreducible representation of a C∗-algebra A

in a Hilbert space E. Given two different elements θ1 and θ2 of E (they are

cyclic for π), the vector forms on A determined by (π, θ1) and (π, θ2) are

equal if and only if there exists λ ∈ C, |λ| = 1, such that θ1 = λθ2.

(iii) There is one-to-one correspondence between the pure states of a

C∗-algebra A associated to the same irreducible representation π of A in a

Hilbert space E and the one-dimensional complex subspaces of E. It follows

that these states constitute the projective Hilbert space PE in Section 4.3.5.

Let P (A) denote the set of pure states of a C∗-algebra A. Theorem

4.1.5 implies a surjection P (A) → Â, where Â is the spectrum of A. This
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surjection is a bijection if and only if any irreducible representation of A

is one-dimensional, i.e., A is a commutative C∗-algebra. In this case, A is

the C∗-algebra of continuous complex functions vanishing at infinity on Â,

while a pure state on A is a Dirac measure εx, x ∈ Â, on Â, i.e., εx(a) = a(x)

for all a ∈ A.

Being a subset of the topological dual A′ of the Banach space A, the set

P (A) is provided with the normed topology. However, one usually refers

to P (A) equipped with the weak∗ topology. In this case, the canonical

surjection P (A)→ Â is continuous and open [33].

4.1.6 Unbounded operators

There are algebras whose representations in Hilbert spaces need not be

normed. Therefore, let us consider a generalization of the conventional GNS

representation of C∗-algebras to unnormed topological involutive algebras.

By an operator in a Hilbert (or Banach) space E is meant a linear

morphism a of a dense subspace D(a) of E to E. The D(a) is called

a domain of an operator a. One says that an operator b on D(b) is an

extension of an operator a in D(a) if D(a) ⊂ D(b) and b|D(a) = a. For the

sake of brevity, let us write a ⊂ b. An operator a is said to be bounded in

D(a) if there exists a real number r such that

‖ae‖ ≤ r‖e‖, e ∈ D(a).

If otherwise, it is called unbounded. Any bounded operator in a domain

D(a) is uniquely extended to a bounded operator everywhere in E. There-

fore, by bounded operators in E are usually meant bounded (continuous)

operators defined everywhere in E.

An operator a in a domain D(a) is called closed if the condition that

a sequence {ei} ⊂ D(a) converges to e ∈ E and that the sequence {aei}
does to e′ ∈ E implies that e ∈ D(a) and e′ = ae. Of course, any operator

defined everywhere in E is closed. An operator a in a domain D(a) is called

closable if it can be extended to a closed operator. The closure of a closable

operator a is defined as the minimal closed extension of a.

Operators a and b in E are called adjoint if

〈ae|e′〉 = 〈e|be′〉, e ∈ D(a), e′ ∈ D(b).

Any operator a has a maximal adjoint operator a∗, which is closed. Of

course, a ⊂ a∗∗ and b∗ ⊂ a∗ if a ⊂ b. An operator a is called symmetric if

it is adjoint to itself, i.e., a ⊂ a∗. Hence, a symmetric operator is closable.
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One can obtain the following chain of extensions of a symmetric operator:

a ⊂ a ⊂ a∗∗ ⊂ a∗ = a∗ = a∗∗∗.

In particular, if a is a symmetric operator, so are a and a∗∗. At the same

time, the maximal adjoint operator a∗ of a symmetric operator a need not

be symmetric. A symmetric operator a is called self-adjoint if a = a∗, and

it is called essentially self-adjoint if a = a∗ = a∗. It should be emphasized

that a symmetric operator a is sometimes called essentially self-adjoint if

a∗∗ = a∗. We here follow the terminology of [129; 130]. If a is a closed

operator, the both notions coincide. For bounded operators, the notions of

symmetric, self-adjoint and essentially self-adjoint operators coincide.

Let E be a Hilbert space. The pair (B,D) of a dense subspace D

of E and a unital algebra B of (unbounded) operators in E is called the

Op∗-algebra (O∗-algebra in the terminology of [146]) on the domain D if,

whenever b ∈ B, we have:

(i) D(b) = D and bD ⊂ D,

(ii) D ⊂ D(b∗),

(iii) b∗|D ⊂ B [86; 129].

The algebra B is provided with the involution b → b+ = b∗|D, and its

elements are closable.

A representation π(A) of a topological involutive algebra A in a Hilbert

space E is an Op∗-algebra if there exists a dense subspace D(π) ⊂ E such

that

D(π) = D(π(a))

for all a ∈ A and this representation is Hermitian, i.e., π(a∗) ⊂ π(a)∗ for

all a ∈ A. In this case, one also considers the representations

π : a→ π(a) = π(a)|D(π), D(π) =
⋂

a∈A

D(π(a)),

π∗ : a→ π∗(a) = π(a∗)∗|D(π∗), D(π∗) =
⋂

a∈A

D(π(a)∗),

π∗∗ : a→ π∗∗(a) = π∗(a∗)∗|D(π∗∗), D(π∗∗) =
⋂

a∈A

D(π∗(a)∗),

called the closure of a representation π, an adjoint representation and a

second adjoint representation, respectively. There are the representation

extensions

π ⊂ π ⊂ π∗∗ ⊂ π∗,

where π1 ⊂ π2 means D(π1) ⊂ D(π2). The representations π and π∗∗ are

Hermitian, while π∗ = π∗ = π∗∗∗. A Hermitian representation π(A) is
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said to be closed if π = π, and it is self-adjoint if π = π∗. Herewith, a

representation π(A) is closed (resp. self-adjoint) if one of operators π(A) is

closed (resp. self-adjoint).

The representation domain D(π) is endowed with the graph-topology.

This is generated by the neighborhoods of the origin

U(M, ε) =

{
x ∈ D(π) :

∑

a∈M

‖π(a)x‖ < ε

}
,

where M is a finite subset of elements of A. All operators of π(A) are con-

tinuous with respect to this topology. Let us note that the graph-topology

is finer than the relative topology on D(π) ⊂ E, unless all operators π(a),

a ∈ A, are bounded [146].

Let N
g

denote the closure of a subset N ⊂ D(π) with respect to the

graph-topology. An element θ ∈ D(π) is called strongly cyclic (cyclic in the

terminology of [146]) if

D(π) ⊂ (π(A)θ)
g
.

Then the GNS representation Theorem 4.1.3 can be generalized as follows
[86; 146].

Theorem 4.1.6. Let A be a unital topological involutive algebra and f a

positive continuous form on A such that f(1) = 1 (i.e., f is a state). There

exists a strongly cyclic Hermitian representation (πf , θf ) of A such that

φ(a) = 〈π(a)θφ|θφ〉, a ∈ A.

4.2 Automorphisms of quantum systems

Let us consider uniformly and strongly continuous one-parameter groups of

automorphisms of C∗-algebras. In particular, they characterize evolution

of quantum systems. Forthcoming Remarks 4.2.1 and 4.2.2 explain why we

restrict our consideration to these automorphism groups.

Remark 4.2.1. Let V be a Banach space and B(V ) the set of bounded

endomorphisms of V . The normed, strong and weak operator topologies on

B(V ) are defined in the same manner as in Section 4.1.3. Automorphisms

of a C∗-algebra obviously are its isometries as a Banach space. Any weakly

continuous one-parameter group of endomorphism of a Banach space also

is strongly continuous and their weak and strong generators coincide with

each other [19].
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Remark 4.2.2. There is the following relation between morphisms of a

C∗-algebra A and the set E(A) of its states which is a convex subset of

the topological dual A′ of A. A linear morphism γ of a C∗-algebra A as a

vector space is called the Jordan morphism if the relations

γ(ab+ ba) = γ(a)γ(b) + γ(b)γ(a), φ(a∗) = γ(a)∗, a, b ∈ A,

hold. One can show the following [39]. Let γ be a Jordan automorphism of

a unital C∗-algebra A. It yields the dual weakly∗ continuous affine bijection

γ′ of E(A) onto itself, i.e.,

γ′(λf + (1− λ)f ′) = λγ′(f) + (1− λ)γ′(f ′),

f, f ′,∈ E(A), λ ∈ [0, 1].

Conversely, any such a map of E(A) is the dual to some Jordan auto-

morphism of A. However, we are not concerned with groups of Jordan

automorphisms because of the following fact. If G is a connected group of

weakly continuous Jordan automorphisms of a unital C∗-algebra A which

is provided with a weak operator topology, then it is a weakly continuous

group of automorphisms of A.

One says that a one-parameter group G(R) is a uniformly (resp.

strongly) continuous group of automorphisms of a C∗-algebra A if it is

a range of a continuous map of R to the group Aut (A) of automorphisms

of A which is provided with the normed (resp. strong) operator topology,

and whose action on A is separately continuous. A problem is that, if a

curve G(R) in Aut (A) is continuous with respect to the normed operator

topology, then the curve G(R)(a) for any a ∈ A is continuous in the C∗-

algebra A, but the converse is not true. At the same time, a curve G(R) is

continuous in Aut (A) with respect to the strong operator topology if and

only if the curve G(R)(a) for any a ∈ A is continuous in A. By this reason,

strongly continuous one-parameter groups of automorphisms of C∗-algebras

are most interesting. However, the infinitesimal generator of such a group

fails to be bounded, unless this group is uniformly continuous.

Remark 4.2.3. If G(R) is a strongly continuous one-parameter group of

automorphisms of a C∗-algebra A, there are the following continuous maps
[19]:

• R 3 t→ 〈Gt(a), f〉 ∈ C is continuous for all a ∈ A and f ∈ A′;

• A 3 a→ Gt(a) ∈ A is continuous for all t ∈ R;

• R 3 t→ Gt(a) ∈ A is continuous for all a ∈ A.
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Let A be a C∗-algebra. Without a loss of generality, we assume that

A is a unital algebra. The space of derivations of A is provided with the

involution u→ u∗ defined by the equality

δ∗(a) = −δ(a∗)∗, a ∈ A. (4.2.1)

Throughout this Section, by a derivation δ of A is meant an (unbounded)

symmetric derivation of A (i.e., δ(a∗) = δ(a)∗, a ∈ A) which is defined

on a dense involutive subalgebra D(δ) of A. If a derivation δ on D(δ) is

bounded, it is extended to a bounded derivation everywhere on A. Con-

versely, every derivation defined everywhere on a C∗-algebra is bounded
[33]. For instance, any inner derivation

δ(a) = i[b, a],

where b is a Hermitian element of A, is bounded. There is the following

relation between bounded derivations of a C∗-algebra A and one-parameter

groups of automorphisms of A [19].

Theorem 4.2.1. Let δ be a derivation of a C∗-algebra A. The following

assertions are equivalent:

• δ is defined everywhere and, consequently, is bounded;

• δ is the infinitesimal generator of a uniformly continuous one-

parameter group [Gt] of automorphisms of the C∗-algebra A.

Furthermore, for any representation π of A in a Hilbert space E, there

exists a bounded self-adjoint operator H ∈ π(A)′′ in E and the uniformly

continuous representation

π(Gt) = exp(−itH), t ∈ R, (4.2.2)

of the group [Gt] in E such that

π(δ(a)) = −i[H, π(a)], a ∈ A, (4.2.3)

π(Gt(a)) = e−itHπ(a)eitH, t ∈ R. (4.2.4)

A C∗-algebra need not admit non-zero bounded derivations. For in-

stance, no commutative C∗-algebra possesses bounded derivations. The

following is the relation between (unbounded) derivations of a C∗-algebra A

and strongly continuous one-parameter groups of automorphisms of A [18;

129; 130].

Theorem 4.2.2. Let δ be a closable derivation of a C∗-algebra A. Its clo-

sure δ is an infinitesimal generator of a strongly continuous one-parameter

group of automorphisms of A if and only if

(i) the set (1 + λδ)(D(δ) for any λ ∈ R \ {0} is dense in A,

(ii) ‖(1 + λδ)(a)‖ ≥ ‖a‖ for any λ ∈ R and any a ∈ A.
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It should be noted that, if A is a unital algebra and δ is its closable

derivation, then 1 ∈ D(δ).

Let us mention a more convenient sufficient condition for a derivation

of a C∗-algebra to be an infinitesimal generator of a strongly continuous

one-parameter group of its automorphisms. A derivation δ of a C∗-algebra

A is called well-behaved if, for each element a ∈ D(δ), there exists a state

f of A such that

f(a) = ‖a‖, f(δ(a)) = 0.

If δ is a well-behaved derivation, it is closable [92], and it obeys the condition

(ii) of Theorem 4.2.2 [18; 129; 130]. Then we come to the following.

Proposition 4.2.1. If δ is a well-behaved derivation of a C∗-algebra A

and it obeys condition (i) of Theorem 4.2.2, its closure δ is an infinitesimal

generator of a strongly continuous one-parameter group of automorphisms

of A.

For instance, a derivation δ is well-behaved if it is approximately inner,

i.e., there exists a sequence of self-adjoint elements {bn} in A such that

δ(a) = lim
n
i[bn, a], a ∈ A.

In contrast with the case of a uniformly continuous one-parameter group

of automorphisms of a C∗-algebra A, a representation of A does not imply

necessarily a unitary representation (4.2.2) of a strongly continuous one-

parameter group of automorphisms of A, unless the following.

Proposition 4.2.2. Let Gt be a strongly continuous one-parameter group

of automorphisms of a C∗-algebra A and δ its infinitesimal generator. Let

A admit a state f such that

|f(δ(a))| ≤ λ[f(a∗a) + f(aa∗)]1/2 (4.2.5)

for all a ∈ A and a positive number λ, and let (πf , θf ) be a cyclic repre-

sentation of A in a Hilbert space Ef determined by f . Then there exist a

self-adjoint operator H in a domain D(H) ⊂ Aθf in Ef and a strongly con-

tinuous unitary representation (4.2.2) of Gt in Ef which fulfils the relations

(4.2.3) – (4.2.4) for π = πf .

Let us note that the condition (4.2.5) of Theorem 4.2.2 is sufficient in

order that the derivation δ is closable [92].

There is a general problem of a unitary representation of an automor-

phism group of a C∗-algebra.
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For instance, let B(E) be the C∗-algebra of bounded operators in a

Hilbert space E. All its automorphisms are inner. Any (unitary) automor-

phism U of a Hilbert space E yields the inner automorphism

a→ UaU−1, a ∈ B(E), (4.2.6)

of B(E). Herewith, the automorphism (4.2.6) is the identity if and only if

U = λ1, |λ| = 1, is a scalar operator in E. It follows that the group of

automorphisms of B(E) is the quotient

PU(E) = U(E)/U(1), (4.2.7)

called the projective unitary group of the unitary group U(E) with respect

to the circle subgroup U(1). Therefore, given a group G of automorphisms

of the C∗-algebra B(E), the representatives Ug in U(E) of elements g ∈ G
constitute a group up to phase multipliers, i.e.,

UgUg′ = exp[iα(g, g′)]Ugg′ , α(g, g′) ∈ R.

Nevertheless, if G is a one-parameter weakly∗ continuous group of auto-

morphisms of B(E) whose infinitesimal generator is a bounded derivation

of B(E), one can choose the phase multipliers

exp[iα(g, g′)] = 1.

Representations of groups by unitary operators up to phase multipliers are

called projective representations [24; 159].

In a general setting, let G be a group and A a commutative algebra.

An A-multiplier of G is a map ξ : G×G→ A such that

ξ(1G, g) = ξ(g,1G) = 1A, g ∈ G,
ξ(g1, g2g3)ξ(g2, g3) = ξ(g1, g2)ξ(g1g2, g3), gi ∈ G.

For instance,

ξ : G×G→ 1A ∈ A
is a multiplier. Two A-multipliers ξ and ξ′ are said to be equivalent if there

exists a map f : G→ A such that

ξ(g1, g2) =
f(g1g2)

f(g1)f(g2)
ξ′(g1, g2), gi ∈ G.

An A-multiplier is called exact if it is equivalent to the multiplier ξ = 1A.

The set of A-multipliers is an Abelian group with respect to the pointwise

multiplication, and the set of exact multipliers is its subgroup.

Proposition 4.2.3. Let G be a simply connected locally compact Lie group.

Each U(1)-multiplier ξ of G is brought into the form ξ = exp iα, where α

is an R-multiplier. Moreover, ξ is exact if and only if α is well. Any

R-multiplier of G is equivalent to a smooth one [24].
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Let G be a locally compact group of strongly continuous automorphisms

of a C∗-algebra A. Let M(A) denote the multiplier algebra of A, i.e., the

largest C∗-algebra containing A as an essential ideal, i.e., if a ∈ M(A)

and ab = 0 for all b ∈ A, then a = 0. For instance, M(A) = A if A is

a unital algebra. Let ξ be a multiplier of G with values in the center of

M(A). A G-covariant representation π of A [34] is a representation π of A

(and, consequently, M(A)) in a Hilbert space E together with a projective

representation of G by unitary operators U(g), g ∈ G, in E such that

π(g(a)) = U(g)π(a)U∗(g), U(g)U(g′) = π(ξ(g, g′))U(gg′).

4.3 Banach and Hilbert manifolds

We start with the notion of a real Banach manifold [100; 155]. Banach

manifolds are defined similarly to finite-dimensional smooth manifolds, but

they are modelled on Banach spaces, not necessarily finite-dimensional.

4.3.1 Real Banach spaces

Let us recall some particular properties of (infinite-dimensional) real Ba-

nach spaces (see Section 11.7 for topological vector spaces). Let us note

that a finite-dimensional Banach space is always provided with an Euclidean

norm.

• Given Banach spaces E and H , every continuous bijective linear map

of E to H is an isomorphism of topological vector spaces.

• Given a Banach space E, let F be its closed subspace. One says that F

splits in E if there exists a closed complement F ′ of F such that E = F⊕F ′.

In particular, finite-dimensional and finite-codimensional subspaces split in

E. As a consequence, any subspace of a finite-dimensional space splits.

• Let E and H be Banach spaces and f : E → H a continuous injection.

One says that f splits if there exists an isomorphism

g : H → H1 ×H2

such that g ◦ f yields an isomorphism of E onto H1 × {0}.
• Given Banach spaces (E, ‖.‖E) and (H, ‖.‖H), one can provide the set

Hom 0(E,H) of continuous linear morphisms of E to H with the norm

||f || = sup
||z||E=1

||f(z)||H , f ∈ Hom 0(E,H). (4.3.1)
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In particular, the norm (11.7.1) on the topological dual E ′ of E is of this

type. If E, H and F are Banach spaces, the bilinear map

Hom 0(E,F )×Hom 0(F,H)→ Hom 0(E,H),

obtained by the composition f ◦ g of morphisms γ ∈ Hom 0(E,F ) and

f ∈ Hom 0(F,H), is continuous.

• Let (E, ‖.‖E) and (H, ‖.‖H) be real Banach spaces. One says that

a continuous map f : E → H (not necessarily linear and isometric) is a

differentiable function between E and H if, given a point z ∈ E, there

exists an R-linear continuous map

df(z) : E → H

(not necessarily isometric) such that

f(z′) = f(z) + df(z)(z′ − z) + o(z′ − z),

lim
‖z′−z‖E→0

‖o(z′ − z)‖H
‖z′ − z‖E

= 0,

for any z′ in some open neighborhood U of z. For instance, any continuous

linear morphism f of E to H is differentiable and df(z)z = f(z). The linear

map df(z) is called a differential of f at a point z ∈ U . Given an element

v ∈ E, we obtain the map

E 3 z → ∂vf(z) = df(z)v ∈ H, (4.3.2)

called the derivative of a function f along a vector v ∈ E. One says

that f is two-times differentiable if the map (4.3.2) is differentiable for

any v ∈ E. Similarly, r-times differentiable and infinitely differentiable

(smooth) functions on a Banach space are defined. The composition of

smooth maps is a smooth map.

The following inverse mapping theorem enables one to consider smooth

Banach manifolds and bundles similarly to the finite-dimensional ones.

Theorem 4.3.1. Let f : E → H be a smooth map such that, given a point

z ∈ E, the differential df(z) : E → H is an isomorphism of topological

vector spaces. Then f is a local isomorphism at z.

4.3.2 Banach manifolds

Let us turn to the notion of a Banach manifold, without repeating the

statements true for both finite-dimensional and Banach manifolds.
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Definition 4.3.1. A Banach manifold B modelled on a Banach space B

is defined as a topological space which admits an atlas of charts ΨB =

{(Uι, φι)}, where the maps φι are homeomorphisms of Uι onto open subsets

of the Banach space B, while the transition functions φζφ
−1
ι from φι(Uι ∩

Uζ) ⊂ B to φζ(Uι∩Uζ) ⊂ B are smooth. Two atlases of a Banach manifold

are said to be equivalent if their union also is an atlas.

Unless otherwise stated, Banach manifolds are assumed to be connected

paracompact Hausdorff topological spaces. A locally compact Banach ma-

nifold is necessarily finite-dimensional.

Remark 4.3.1. Let us note that a paracompact Banach manifold admits

a smooth partition of unity if and only if its model Banach space does.

For instance, this is the case of (real) separable Hilbert spaces. Therefore,

we restrict our consideration to Hilbert manifolds modelled on separable

Hilbert spaces.

Any open subset U of a Banach manifold B is a Banach manifold whose

atlas is the restriction of an atlas of B to U .

Morphisms of Banach manifolds are defined similarly to those of smooth

finite-dimensional manifolds. However, the notion of the immersion and

submersion need a certain modification (see Definition 4.3.2 below).

Tangent vectors to a smooth Banach manifold B are introduced by anal-

ogy with tangent vectors to a finite-dimensional one. Given a point z ∈ B,

let us consider the pair (v; (Uι, φι)) of a vector v ∈ B and a chart (Uι 3 z, φι)
on a Banach manifold B. Two pairs (v; (Uι, φι)) and (v′; (Uζ , φζ)) are said

to be equivalent if

v′ = d(φζφ
−1
ι )(φι(z))v. (4.3.3)

The equivalence classes of such pairs make up the tangent space TzB to

a Banach manifold B at a point z ∈ B. This tangent space is isomorphic

to the topological vector space B. Tangent spaces to a Banach manifold

B are assembled into the tangent bundle TB of B. It is a Banach mani-

fold modelled over the Banach space B ⊕B which possesses the transition

functions

(φζφ
−1
ι , d(φζφ

−1
ι )).

Any morphism f : B → B′ of Banach manifolds yields the corresponding

tangent morphism of the tangent bundles Tf : TB → TB′.

Definition 4.3.2. Let f : B → B′ be a morphism of Banach manifolds.
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(i) It is called an immersion at a point z ∈ B if the tangent morphism

Tf at z is injective and splits.

(ii) A morphism f is called a submersion at a point z ∈ B if Tf at z is

surjective and its kernel splits.

The range of a surjective submersion f of a Banach manifold is a sub-

manifold, though f need not be an isomorphism onto a submanifold, unless

f is an imbedding.

4.3.3 Banach vector bundles

One can think of a surjective submersion π : B → B′ of Banach manifolds

as a Banach fibred manifold. For instance, the product B × B′ of Banach

manifolds is a Banach fibred manifold with respect to pr1 and pr2.

Let B be a Banach manifold and E a Banach space. The definition of

a (locally trivial) vector bundle with the typical fibre E and the base B
is a repetition of that of finite-dimensional smooth vector bundles. Such a

vector bundle Y is a Banach manifold and Y → B is a surjective submersion.

It is called the Banach vector bundle. The above mentioned tangent bundle

TB of a Banach manifold exemplifies a Banach vector bundle over B.

The Whitney sum, the tensor product, and the exterior product of Ba-

nach vector bundles are defined as those of smooth vector bundles. In

particular, since the topological dual E ′ of a Banach space E is a Banach

space with respect to the norm (11.7.1), one can associate to each Banach

vector bundle YE → B the dual Y ∗
E = YE′ with the typical fibre E′. For

instance, the dual of the tangent bundle TB of a Banach manifold B is the

cotangent bundle T ∗B.

Sections of the tangent bundle TB → B of a Banach manifold are called

vector fields on a Banach manifold B. They form a locally free module

T1(B) over the ring C∞(B) of smooth real functions on B. Every vector

field ϑ on a Banach manifold B determines a derivation of the R-ring C∞(B)

by the formula

f(z)→ ∂ϑf(z) = df(z)ϑ(z), z ∈ B.

Different vector fields yield different derivations. It follows that T1(B) pos-

sesses a structure of a real Lie algebra, and there is its monomorphism

T1(B)→ dC∞(B) (4.3.4)

to the derivation module of the R-ring C∞(B).
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Let us consider the Chevalley–Eilenberg complex of the real Lie algebra

T1(B) with coefficients in C∞(B) and its subcomplex O∗[T1(B)] of C∞(B)-

multilinear skew-symmetric maps by analogy with the complex O∗[dA] in

Section 11.6. This subcomplex is a differential calculus over an R-ring

C∞(B) where the Chevalley–Eilenberg coboundary operator d (11.6.8) and

the product (11.6.9) read

dφ(ϑ0, . . . , ϑr) =

r∑

i=0

(−1)i∂ϑi
(φ(ϑ0, . . . , ϑ̂i, . . . , ϑr)) (4.3.5)

+
∑

i<j

(−1)i+jφ([ϑi, ϑj ], ϑ0, . . . , ϑ̂i, . . . , ϑ̂j , . . . , ϑk),

φ ∧ φ′(ϑ1, ..., ϑr+s) (4.3.6)

=
∑

i1<···<ir ;j1<···<js

sgni1···irj1···js1···r+s φ(ϑi1 , . . . , ϑir )φ
′(ϑj1 , . . . , ϑjs),

φ ∈ Or [T1(B)], φ′ ∈ Os[T1(B)], ϑi ∈ T1(B).

There are the familiar relations

ϑcdf = ∂ϑf, f ∈ C∞(B), ϑ ∈ T1(B),

d(φ ∧ φ′) = dφ ∧ φ′ + (−1)|φ|φ ∧ dφ′, φ, φ′ ∈ O∗[T1(B)].

The differential calculus O∗[T1(B)] contains the following subcomplex.

Let O1(B) be the C∞(B)-module of global sections of the cotangent bundle

T ∗B of B. Obviously, there is its monomorphism

O1(B)→ dC∞(B)∗ (4.3.7)

to the dual of the derivation module dC∞(B). Furthermore, let
r∧T ∗B be

the r-degree exterior product of the cotangent bundle T ∗B and Or(B) the

C∞(B)-module of its sections. Let O∗(B) be the direct sum of C∞(B)-

modules Or(B), r ∈ N, where we put O0(B) = C∞(B). Elements of O∗(B)

obviously are C∞(B)-multilinear skew-symmetric maps of T1(B) to C∞(B).

Therefore, the Chevalley–Eilenberg differential d (4.3.5) and the exterior

product (4.3.6) of elements of O∗(B) are well defined. Moreover, one can

show that dφ and φ ∧ φ′, φ, φ′ ∈ O∗(B), also are elements of O∗(B). Thus,

O∗(B) is a differential graded commutative algebra, called the algebra of

exterior forms on a Banach manifold B.

At the same time, one can consider the Chevalley–Eilenberg differential

calculus O∗[dC∞(B)] over the R-ring C∞(B). Because of the monomor-

phism (4.3.4), we have a homomorphism of C∞(B)-modules

O1[dC∞(B)] = dC∞(B)∗ → T1(B)∗ = O1[T1(B)]←O1(B). (4.3.8)
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It follows that the differential calculi O∗[T1(B)], O∗(B) and O1[dC∞(B)]

over the R-ring C∞(B) are not mutually isomorphic in general. However,

it is readily observed that the minimal differential calculi in O∗[T1(B)] and

O∗(B) coincide with the minimal Chevalley–Eilenberg differential calculus

O∗C∞(B) over the R-ring C∞(B) because they are generated by the ele-

ments df , f ∈ C∞(B), where d is the restriction (4.3.5) to T1(B) of the

Chevalley–Eilenberg coboundary operator (11.6.8).

A connection on a Banach manifold B is defined as a connection on the

C∞(B)-module T1(B) [155]. In accordance with Definition 11.5.4, it is an

R-module morphism

∇ : T1(B)→ O1C∞(B)⊗ T1(B),

which obeys the Leibniz rule

∇(fϑ) = df ⊗ ϑ+ f∇(ϑ), f ∈ C∞(B), ϑ ∈ T1(B). (4.3.9)

In view of the inclusions,

O1C∞(B) ⊂ O1(B) ⊂ T1(B)∗, T1(B) ⊂ T1(B)∗∗ ⊂ O1(B)∗,

it is however convenient to define a connection on a Banach manifold as an

R-module morphism

∇ : T1(B)→ O1(B)⊗ T1(B), (4.3.10)

which obeys the Leibniz rule (4.3.9).

4.3.4 Hilbert manifolds

Hilbert manifolds are particular Banach manifolds modelled on complex

Hilbert spaces, which are assumed to be separable (Remark 4.3.1).

Remark 4.3.2. We refer the reader to [100] for the theory of real Hilbert

and (infinite-dimensional) Riemannian manifolds. A real Hilbert manifold

is a Banach manifold B modelled on a real Hilbert space V (Remark 4.1.6).

It is assumed to be connected Hausdorff and paracompact space admitting

the partition of unity by smooth functions (this is the case of a separable

V ). A Riemannian metric on B is defined as a smooth section g of the

tensor bundle
2∨ T ∗B such that g(z) is a positive non-degenerate continuous

bilinear form on the tangent space TzB. This form yields the maps TzB →
T ∗
z B and T ∗

z B → TzB. It is said to be non-degenerate if these maps are

continuous isomorphisms. In infinite-dimensional geometry, the most of
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local results follow from general arguments analogous to those in the finite-

dimensional case. In particular, a Riemannian metric makes B into a metric

space. Just as in the finite-dimensional case, B admits a unique Levi–

Civita connection. The global theory of real Hilbert manifolds is more

intricate. For instance, an infinite-dimensional real (and, consequently,

complex) Hilbert space V is proved to be diffeomorphic to V \ {0}, and the

unit sphere in V is a deformation retract of V [10].

A complex Hilbert space (E, 〈.|.〉) can be seen as a real Hilbert space

E 3 v → vR ∈ ER, (vR, v
′
R) = Re 〈v|v′〉,

in Remark 4.1.6 equipped with the complex structure JvR = (iv)R. We

have

(JvR, Jv
′
R) = (vR, v

′
R), (JvR, v

′
R) = Im (v′R, vR).

Let EC = C ⊗ ER denote the complexification of ER provided with the

Hermitian form 〈.|.〉C (4.1.4). The complex structure J on ER is naturally

extended to EC by letting J ◦ i = i ◦ J . Then EC is split into the two

complex subspaces

EC = E1,0 ⊕E0,1, (4.3.11)

E1,0 = {vR − iJvR : vR ∈ ER},
E0,1 = {vR + iJvR : vR ∈ ER},

which are mutually orthogonal with respect to the Hermitian form 〈.|.〉C.

Since

〈vR − iJvR)|v′R − iJv′R〉 = 2〈v|v′〉,
〈vR + iJvR|v′R + iJv′R〉 = 2〈v′|v〉,

there are the following linear and antilinear isometric bijections

E 3 v → vR →
1√
2
(vR − iJvR) ∈ E1,0,

E 3 v → vR →
1√
2
(vR + iJvR) ∈ E0,1.

They make E1,0 and E0,1 isomorphic to the Hilbert space E and the dual

Hilbert space E, respectively. Hence, the decomposition (4.3.11) takes the

form

EC = E ⊕E. (4.3.12)
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The complex structure J on the direct sum (4.3.12) reads

J : E ⊕E 3 v + u→ iv − iu ∈ E ⊕E, (4.3.13)

where E and E are the (holomorphic and antiholomorphic) eigenspaces of

J characterized by the eigenvalues i and −i, respectively.

Let f be a function (not necessarily linear) from a Hilbert space E to a

Hilbert space H . It is said to be differentiable if the corresponding function

fR between the real Banach spaces ER and HR is differentiable. Let dfR(z),

z ∈ ER, be the differential (4.3.2) of fR on ER which is a continuous linear

morphism

ER 3 vR → dfR(z)vR ∈ HR

between real topological vector spaces ER and HR. This morphism is nat-

urally extended to the C-linear morphism

EC 3 vC → dfR(z)vC ∈ HC (4.3.14)

between the complexifications of ER and HR. In view of the decomposition

(4.3.12), one can introduce the C-linear maps

∂fR(z)(v + u) = dfR(z)v, ∂f(z)(v + u) = dfR(z)u

from E ⊕ E to HC such that

dfR(z)vC = dfR(z)(v + u) = ∂fR(z)v + ∂fR(z)u.

Let us split

fR(z) = f(z) + f(z)

in accordance with the decomposition HC = H ⊕H . Then the morphism

(4.3.14) takes the form

dfR(z)(v + u) = ∂f(z)v + ∂f(z)u+ ∂f(z)v + ∂ f(z)u, (4.3.15)

where ∂f = ∂f , ∂ f = ∂f . A function f : E → H is said to be holomorphic

(resp. antiholomorphic) if it is differentiable and ∂f(z) = 0 (resp. ∂f(z) =

0) for all z ∈ E. A holomorphic function is smooth, and is given by the

Taylor series. If f is a holomorphic function, then the morphism (4.3.15)

is split into the sum

dfR(z)(v + u) = ∂f(z)v + ∂ f(z)u

of morphisms E → H and E → H.

Example 4.3.1. Let f be a complex function on a Hilbert space E. Then

fR = (Re f, Im f)
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is a map of E to R2. The differential dfR(z), z ∈ E, of fR yields the complex

linear morphism

E ⊕E 3 vC → (dRe f(z)vC, dIm f(z)vC)→ d(Re f + iIm f)(z)vC ∈ C,

which is regarded as a differential df(z) of a complex function f on a Hilbert

space E.

A Hilbert manifold P modelled on a Hilbert space E is defined as a real

Banach manifold modelled on the Banach space ER which admits an atlas

{(Uι, φι)} with holomorphic transition functions φζφ
−1
ι . Let CTP denote

the complexified tangent bundle of a Hilbert manifold P . In view of the

decomposition (4.3.12), each fibre CTzP , z ∈ P , of CTP is split into the

direct sum

CTzP = TzP ⊕ T zP

of subspaces TzP and T zP , which are topological complex vector spaces

isomorphic to the Hilbert space E and the dual Hilbert space E, respec-

tively. The spaces CTzP , TzP and T zP are respectively called the complex,

holomorphic and antiholomorphic tangent spaces to a Hilbert manifold P
at a point z ∈ P . Since transition functions of a Hilbert manifold are

holomorphic, the complex tangent bundle CTP is split into a sum

CTP = TP ⊕ TP

of holomorphic and antiholomorphic subbundles, together with the antilin-

ear bundle automorphism

TP ⊕ TP 3 v + u→ v + u ∈ TP ⊕ TP

and the complex structure

J : TP ⊕ TP 3 v + u→ iv − iu ∈ TP ⊕ TP . (4.3.16)

Sections of the complex tangent bundle CTP → P are called complex

vector fields on a Hilbert manifold P . They constitute the locally free

module CT1(P) over the ring C∞(P) of smooth complex functions on P .

Every complex vector field ϑ+ υ on P yields a derivation

f(z)→ df(z)(ϑ+ υ) = ∂f(z)ϑ(z) + ∂f(z)υ(z), f ∈ C∞(P), z ∈ P ,

of the C-ring C∞(P).

The (topological) dual of the complex tangent bundle CTP is the com-

plex cotangent bundle CT ∗P of P . Its fibres CT ∗
zP , z ∈ P , are topological
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complex vector spaces isomorphic to E⊕E. Since Hilbert spaces are reflex-

ive, the complex tangent bundle CTP is the dual of CT ∗P . The complex

cotangent bundle CT ∗P is split into the sum

CT ∗P = T ∗P ⊕ T ∗P (4.3.17)

of holomorphic and antiholomorphic subbundles, which are the annihilators

of antiholomorphic and holomorphic tangent bundles TP and TP , respec-

tively. Accordingly, CT ∗P is provided with the complex structure J via

the relation

〈v, Jw〉 = 〈Jv, w〉, v ∈ CTzP , w ∈ CT ∗
zP , z ∈ P .

Sections of the complex cotangent bundle CT ∗P → P constitute a locally

free C∞(P)-module O1(P). It is the C∞(P)-dual

O1(P) = CT1(P)∗ (4.3.18)

of the module CT1(P) of complex vector fields on P , and vice versa.

Similarly to the case of a Banach manifold, let us consider the differen-

tial calculi O∗[T1(P)], O∗(P) (further denoted by C∗(P)) and O1[dC∞(P)]

over the C-ring C∞(P). Due to the isomorphism (4.3.18), O∗[T1(P)] is

isomorphic to C∗(P), whose elements are called complex exterior forms on

a Hilbert manifold P . The exterior differential d on these forms is the

Chevalley–Eilenberg coboundary operator

dφ(ϑ0, . . . , ϑk) =

k∑

i=0

(−1)idφ(ϑ0, . . . , ϑ̂i, . . . , ϑk)ϑi (4.3.19)

+
∑

i<j

(−1)i+jφ([ϑi, ϑj ], ϑ0, . . . , ϑ̂i, . . . , ϑ̂j , . . . , ϑk), ϑi ∈ CT1(P).

In view of the splitting (4.3.17), the differential graded algebra C∗(P)

admits the decomposition

C∗(P) = ⊕
p,q=0

Cp,q(P)

into subspaces Cp,q(P) of p-holomorphic and q-antiholomorphic forms. Ac-

cordingly, the exterior differential d on C∗(P) is split into a sum d = ∂ + ∂

of holomorphic and antiholomorphic differentials

∂ : Cp,q(P)→ Cp+1,q(P), ∂ : Cp,q(P)→ Cp,q+1(P),

∂ ◦ ∂ = 0, ∂ ◦ ∂ = 0, ∂ ◦ ∂ + ∂ ◦ ∂ = 0.

A Hermitian metric on a Hilbert manifold P is defined as a complex

bilinear form g on fibres of the complex tangent bundle CTP which obeys

the following conditions:



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

4.3. Banach and Hilbert manifolds 141

• g is a smooth section of the tensor bundle CT ∗P ⊗ CT ∗P → P ;

• g(ϑz, ϑ′z) = 0 if complex tangent vectors ϑz, ϑ
′
z ∈ CTzP are simulta-

neously holomorphic or antiholomorphic;

• g(ϑz , ϑz) > 0 for any non-vanishing complex tangent vector ϑz ∈
CTzP ;

• the bilinear form g(ϑz, ϑ
′
z), ϑz, ϑ

′
z ∈ CTzP , defines a norm topology

on the complex tangent space CTzP which is equivalent to its Hilbert space

topology.

As an immediate consequence of this definition, we obtain

g(ϑz, ϑ′z) = g(ϑz , ϑ
′

z), g(Jϑz, Jϑ
′
z) = g(ϑz, ϑ

′
z).

A Hermitian metric exists, e.g., on paracompact Hilbert manifolds modelled

on separable Hilbert spaces.

The above mentioned properties of a Hermitian metric on a Hilbert ma-

nifold are similar to properties of a Hermitian metric on a finite-dimensional

complex manifold [65]. Therefore, one can think of the pair (P, g) as being

an infinite-dimensional Hermitian manifold.

A Hermitian manifold (P , g) is endowed with a non-degenerate exterior

two-form

Ω(ϑz , ϑ
′
z) = g(Jϑz, ϑ

′
z), ϑz, ϑ

′
z ∈ CTzP , z ∈ P , (4.3.20)

called the fundamental form of the Hermitian metric g. This form satisfies

the relations

Ω(ϑz, ϑ′z) = Ω(ϑz, ϑ
′

z), Ω(Jzϑz , Jzϑ
′
z) = Ω(ϑz , ϑ

′
z).

If Ω (4.3.20) is a closed (i.e., symplectic) form, the Hermitian metric g is

called a Kähler metric and Ω a Kähler form. Accordingly, (P , g,Ω) is said

to be an infinite-dimensional Kähler manifold.

A Kähler metric g and its Kähler form Ω on a Hilbert manifold P yield

the bundle isomorphisms

g[ : CTP 3 ν → νcg ∈ CT ∗P ,
Ω[ : CTP 3 ν → −νcΩ ∈ CT ∗P .

Let g] and Ω] denote the inverse bundle isomorphisms CT ∗P → CTP .

They possess the properties

Ω] = Jg],

g](wz)cw′
z = g](w′

z)cwz ,
Ω](wz)cw′

z = −Ω](w′
z)cwz , wz , w

′
z ∈ CT ∗P .
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In particular, every smooth complex function f ∈ C∞(P) on a Kähler

manifold (P , g) determines:

• the complex vector field

g](df) = g](∂f) + g](∂f), (4.3.21)

which is split into holomorphic and antiholomorphic parts g](∂f) and

g](∂f);

• the complex Hamiltonian vector field

Ω](df) = J(g](df)) = −ig](∂f) + ig](∂f); (4.3.22)

• the Poisson bracket

{f, f ′} = Ω](df)cdf ′, f, f ′ ∈ C∞(P). (4.3.23)

By analogy with the case of a Banach manifold, we modify Definition

11.5.4 and define a connection ∇ on a Hilbert manifold P as a C-module

morphism

∇ : CT1(P)→ C1(P)⊗ CT1(P),

which obeys the Leibniz rule

∇(fϑ) = df ⊗ ϑ+ f∇(ϑ), f ∈ C∞(P), ϑ ∈ CT1(P).

Similarly, a connection is introduced on any C∞(P)-module, e.g., on sec-

tions of tensor bundles over a Hilbert manifold P . Let D and D denote the

holomorphic and antiholomorphic parts of ∇, and let ∇ϑ = ϑc∇, Dϑ and

Dϑ be the corresponding covariant derivatives along a complex vector field

ϑ on P . For any complex vector field ϑ = ν+υ on P , we have the relations

Dϑ = ∇ν , Dϑ = ∇υ, DJϑ = iDϑ, DJϑ = −iDϑ.

Proposition 4.3.1. Given a Kähler manifold (P , g), there always exists a

metric connection on P such that

∇g = 0, ∇Ω = 0, ∇J = 0,

where J is regarded as a section of the tensor bundle CT ∗P ⊗ CTP.

Example 4.3.2. If P = E is a Hilbert space, then

CTP = E × (E ⊕E).

A Hermitian form 〈.|.〉 on E defines the constant Hermitian metric

g : (E ⊕E)× (E ⊕E)→ C,

g(ϑ, ϑ′) = 〈v|u′〉+ 〈v′|u〉, ϑ = v + u, ϑ′ = v′ + u′, (4.3.24)

on P = E. The associated fundamental form (4.3.20) reads

Ω(ϑ, ϑ′) = i〈v|u′〉 − i〈v′|u〉. (4.3.25)

It is constant on E. Therefore, dΩ = 0 and g (4.3.24) is a Kähler metric.

The metric connection on E is trivial, i.e., ∇ = d, D = ∂, D = ∂.
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4.3.5 Projective Hilbert space

Given a Hilbert space E, a projective Hilbert space PE is made up by

complex one-dimensional subspaces (i.e., complex rays) of E. This is a

Hilbert manifold with the following standard atlas. For any non-zero el-

ement x ∈ E, let us denote by x a point of PE such that x ∈ x. Then

each normalized element h ∈ E, ||h|| = 1, defines a chart (Uh, φh) of the

projective Hilbert space PE such that

Uh = {x ∈ PE : 〈x|h〉 6= 0}, φh(x) =
x

〈x|h〉 − h. (4.3.26)

The image of Uh in the Hilbert space E is the one-codimensional closed

(Hilbert) subspace

Eh = {z ∈ E : 〈z|h〉 = 0}, (4.3.27)

where z(x)+h ∈ x. In particular, given a point x ∈ PE, one can choose the

centered chart Eh, h ∈ x, such that φh(x) = 0. Hilbert spaces Eh and Eh′

associated to different charts Uh and Uh′ are isomorphic. The transition

function between them is a holomorphic function

z′(x) =
z(x) + h

〈z(x) + h|h′〉 − h
′, x ∈ Uh ∩ Uh′ , (4.3.28)

from φh(Uh ∩ Uh′) ⊂ Eh to φh′(Uh ∩ Uh′) ⊂ Eh′ . The set of the charts

{(Uh, φh)} with the transition functions (4.3.28) provides a holomorphic

atlas of the projective Hilbert space PE. The corresponding coordinate

transformations for the tangent vectors to PE at x ∈ PE reads

v′ =
1

〈x|h′〉 [〈x|h〉v − x〈v|h〉]. (4.3.29)

The projective Hilbert space PE is homeomorphic to the quotient of

the unitary group U(E) equipped with the normed operator topology by

the stabilizer of a ray of E. It is connected and simply connected [26].

The projective Hilbert space PE admits a unique Hermitian metric g

such that the corresponding distance function on PE is

ρ(x, x′) =
√

2 arccos(|〈x|x′〉|), (4.3.30)

where x, x′ are normalized elements of E. It is a Kähler metric, called the

Fubini–Studi metric. Given a coordinate chart (Uh, φh), this metric reads

gFS(ϑ1, ϑ2) =
〈v1|u2〉+ 〈v2|u1〉

1 + ‖z‖2 (4.3.31)

− 〈z|u2〉〈v1|z〉+ 〈z|u1〉〈v2|z〉
(1 + ‖z‖2)2 , z ∈ Eh,
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for any complex tangent vectors ϑ1 = v1 +u1 and ϑ2 = v2 +u2 in CTzPE.

The corresponding Kähler form is given by the expression

ΩFS(ϑ1, ϑ2) = i
〈v1|u2〉 − 〈v2|u1〉

1 + ‖z‖2 − i 〈z|u2〉〈v1|z〉 − 〈z|u1〉〈v2|z〉
(1 + ‖z‖2)2 . (4.3.32)

It is readily justified that the expressions (4.3.31) – (4.3.32) are preserved

under the transition functions (4.3.28) – (4.3.29). Written in the coordinate

chart centered at a point z(x) = 0, these expressions come to the expressions

(4.3.24) and (4.3.25), respectively.

4.4 Hilbert and C∗-algebra bundles

This Section addresses particular Banach vector bundles whose fibres are

C∗-algebras (seen as Banach spaces) and Hilbert spaces, but a base is a

finite-dimensional smooth manifold.

Note that sections of a Banach vector bundle B → Q over a smooth

finite-dimensional manifold Q constitute a locally free C∞(Q)-module

B(Q). Following the proof of Serre–Swan Theorem 11.5.2 [65], one can

show that it is a projective C∞(Q)-module. In a general setting, we there-

fore can consider projective locally free C∞(Q)-modules, locally generated

by a Banach space. In contrast with the case of projective C∞(X) modules

of finite rank, such a module need not be a module of sections of some

Banach vector bundle.

Let C → Q be a locally trivial topological fibre bundle over a finite-

dimensional smooth real manifold Q whose typical fibre is a C∗-algebra

A, regarded as a real Banach space, and whose transition functions are

smooth. Namely, given two trivialization charts (U1, ψ1) and (U2, ψ2) of C,
we have the smooth morphism of Banach manifolds

ψ1 ◦ ψ−1
2 : U1 ∩ U2 ×A→ U1 ∩ U2 ×A,

where

ψ1 ◦ ψ−1
2 |q∈U1∩U2

is an automorphism of A. We agree to call C → Q a bundle of C∗-algebras.

It is a Banach vector bundle. The C∞(Q)-module C(Q) of smooth sections

of this fibre bundle is a unital involutive algebra with respect to fibrewise

operations. Let us consider a subalgebra A(Q) ⊂ C(Q) which consists of

sections of C → Q vanishing at infinity on Q. It is provided with the norm

||α|| = sup
q∈Q
||α(q)|| <∞, α ∈ A(Q), (4.4.1)
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but fails to be complete. Nevertheless, one extends A(Q) to a C∗-algebra

of continuous sections of C → Q vanishing at infinity on a locally compact

space Q as follows.

Let C → Q be a topological bundle of C∗-algebras over a locally compact

topological space Q, and let C0(Q) denote the involutive algebra of its

continuous sections. This algebra exemplifies a locally trivial continuous

field of C∗-algebras in [33]. Its subalgebra A0(Q) of sections vanishing

at infinity on Q is a C∗-algebra with respect to the norm (4.4.1). It is

called a C∗-algebra defined by a continuous field of C∗-algebras. There are

several important examples of C∗-algebras of this type. For instance, any

commutative C∗-algebra is isomorphic to the algebra of continuous complex

functions vanishing at infinity on its spectrum.

Hilbert bundles over a smooth manifold are similarly defined. Let

E → Q be a locally trivial topological fibre bundle over a finite-dimensional

smooth real manifold Q whose typical fibre is a Hilbert space E, regarded as

a real Banach space, and whose transition functions are smooth functions

taking their values in the unitary group U(E) equipped with the normed

operator topology. We agree to call E → Q a Hilbert bundle. It is a Banach

vector bundle. Smooth sections of E → Q make up a C∞(Q)-module E(Q),

called a Hilbert module. Continuous sections of E → Q constitute a locally

trivial continuous field of Hilbert spaces [33].

There are the following relations between bundles of C∗-algebras and

Hilbert bundles.

Let T (E) ⊂ B(E) be the C∗-algebra of compact (completely continu-

ous) operators in a Hilbert space E (Remark 4.1.9). Every automorphism

φ of E yields the corresponding automorphism

T (E)→ φT (E)φ−1

of the C∗-algebra T (E). Therefore, given a Hilbert bundle E → Q with

transition functions

E → ριζ(q)E, q ∈ Uι ∩ Uζ ,
over a cover {Uι} of Q, we have the associated locally trivial bundle of

elementary C∗-algebras T (E) with transition functions

T (E)→ ραβ(q)T (E)(ραβ(q))
−1, q ∈ Uα ∩ Uβ , (4.4.2)

which are proved to be continuous with respect to the normed operator

topology on T (E) [33]. The proof is based on the following facts.

• The set of degenerate operators (i.e., operators of finite rank) is dense

in T (E).
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• Any operator of finite rank is a linear combination of operators

Pξ,η : ζ → 〈ζ|η〉ξ, ξ, η, ζ ∈ E,

and even of the projectors Pξ onto ξ ∈ E.

• Let ξ1, . . . , ξ2n be variable vectors of E. If ξi, i = 1, . . . , 2n, converges

to ηi (or, more generally, 〈ξi|ξj〉 converges to 〈ηi|ηj〉 for any i and j), then

Pξ1,ξ2 + · · ·+ Pξ2n−1,ξ2n

uniformly converges to

Pη1,η2 + · · ·+ Pη2n−1,η2n
.

Note that, given a Hilbert bundle E → Q, the associated bundle of C∗-

algebras B(E) of bounded operators in E fails to be constructed in general

because the transition functions (4.4.2) need not be continuous.

The opposite construction however meets a topological obstruction as

follows [22; 23].

Let C → Q be a bundle of C∗-algebras whose typical fibre is an ele-

mentary C∗-algebra T (E) of compact operators in a Hilbert space E. One

can think of C → Q as being a topological fibre bundle with the struc-

ture group of automorphisms of T (E). This is the projective unitary group

PU(E) (4.2.7). With respect to the normed operator topology, the groups

U(E) and PU(E) are the Banach Lie groups [84]. Moreover, U(E) is con-

tractible if a Hilbert space E is infinite-dimensional [97]. Let (Uα, ραβ) be

an atlas of the fibre bundle C → Q with PU(E)-valued transition functions

ραβ . These transition functions give rise to the maps

ραβ : Uα ∩ Uβ → U(E),

which however fail to be transition functions of a fibre bundle with the

structure group U(E) because they need not satisfy the cocycle condition.

Their failure to be so is measured by the U(1)-valued cocycle

eαβγ = gβγg
−1
αγgαβ.

This cocycle defines a class [e] in the cohomology group H2(Q;U(1)Q) of

the manifold Q with coefficients in the sheaf U(1)Q of continuous maps of

Q to U(1). This cohomology class vanishes if and only if there exists a

Hilbert bundle associated to C. Let us consider the short exact sequence of

sheaves

0→ Z −→C0
Q

γ−→U(1)Q → 0,
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where C0
Q is the sheaf of continuous real functions on Q and the morphism

γ reads

γ : C0
Q 3 f → exp(2πif) ∈ U(1)Q.

This exact sequence yields the long exact sequence of the sheaf cohomology

groups [68; 85]:

0→ Z −→C0
Q −→U(1)Q −→H1(Q; Z) −→· · ·

Hp(Q; Z) −→Hp(Q;C0
Q) −→Hp(Q;U(1)Q) −→Hp+1(Q; Z) −→· · · ,

where H∗(Q; Z) is cohomology of Q with coefficients in the constant sheaf

Z. Since the sheaf C0
Q is fine and acyclic, we obtain at once from this exact

sequence the isomorphism of cohomology groups

H2(Q;U(1)Q) = H3(Q; Z).

The image of [e] in H3(Q; Z) is called the Dixmier–Douady class [33]. One

can show that the negative −[e] of the Dixmier–Douady class is the ob-

struction class of the lift of PU(E)-principal bundles to the U(E)-principal

ones [23].

4.5 Connections on Hilbert and C∗-algebra bundles

There are different notions of a connection on Hilbert and C∗-algebra bun-

dles whose equivalence is not so obvious as in the case of finite-dimensional

bundles. These are connections on structure modules of sections, connec-

tions as a horizontal splitting and principal connections.

Given a bundle of C∗-algebras C → Q with a typical fibre A over a

smooth real manifold Q, the involutive algebra C(Q) of its smooth sections

is a C∞(Q)-algebra. Therefore, one can introduce a connection on the fibre

bundle C → Q as a connection on the C∞(Q)-algebra C(Q). In accordance

with Definition 11.5.3, such a connection assigns to each vector field τ on

Q a symmetric derivation ∇τ of the involutive algebra C(Q) which obeys

the Leibniz rule

∇τ (fα) = (τcdf)α + f∇τα, f ∈ C∞(Q), α ∈ C(Q),

and the condition

∇τα∗ = (∇τα)∗.

Let us recall that two such connections ∇τ and ∇′
τ differ from each other in

a derivation of the C∞(Q)-algebra C(Q). Then, given a trivialization chart

C|U = U × A
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of C → Q, a connection on C(Q) can be written in the form

∇τ = τm(q)(∂m − δm(q)), q ∈ U, (4.5.1)

where (qm) are local coordinates on Q and δm(q) for all q ∈ U are symmetric

bounded derivations of the C∗-algebra A.

Remark 4.5.1. Bearing in mind the discussion in Section 4.2, one should

assume that, in physical models, the derivations δm(q) in the expression

(4.5.1) are unbounded in general. This leads us to the notion of a general-

ized connection on bundles of C∗-algebras [6].

Let E → Q be a Hilbert bundle with a typical fibre E and E(Q) the

C∞(Q)-module of its smooth sections. Then a connection on a Hilbert

bundle E → Q is defined as a connection ∇ on the module E(Q). In

accordance with Definition 11.5.2, such a connection assigns to each vector

field τ on Q a first order differential operator ∇τ on E(Q) which obeys both

the Leibniz rule

∇τ (fψ) = (τcdf)ψ + f∇τψ, f ∈ C∞(Q), ψ ∈ E(Q),

and the additional condition

〈(∇τψ)(q)|ψ(q)〉 + 〈ψ(q)|(∇τψ)(q)〉 = τ(q)cd〈ψ(q)|ψ(q)〉. (4.5.2)

Given a trivialization chart E|U = U ×E of E → Q, a connection on E(Q)

reads

∇τ = τm(q)(∂m + iHm(q)), q ∈ U, (4.5.3)

where Hm(q) for all q ∈ U are bounded self-adjoint operators in a Hilbert

space E.

In a more general setting, let B → Q be a Banach vector bundle over

a finite-dimensional smooth manifold Q and B(X) the locally free C∞(Q)-

module of its smooth sections s(q). By virtue of Definition 11.5.2, a con-

nection on B(Q) assigns to each vector field τ on Q a first order differential

operator ∇τ on B(Q) which obeys the Leibniz rule

∇τ (fs) = (τcdf)s+ f∇τs, f ∈ C∞(Q), s ∈ B(Q). (4.5.4)

One can show that such a connection exists ([65], Proposition 1.8.11). Con-

nections (4.5.1) and (4.5.3) exemplify connections on Banach vector bun-

dles C → Q and E → Q, but they obey additional conditions because these

bundles possess additional structures of a C∗-algebra bundle and a Hilbert
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bundle, respectively. In particular, the connection (4.5.3) is a principal con-

nection whose second term is an element of the Lie algebra of the unitary

group U(E).

In a different way, a connection on a Banach vector bundle B → Q can

be defined as a splitting of the exact sequence

0→ V B → TB → TQ⊗
Q
B → 0,

where V B denotes the vertical tangent bundle of B → Q. In the case

of finite-dimensional vector bundles, both definitions are equivalent. This

equivalence is extended to the case of Banach vector bundles over a finite-

dimensional base. We leave the proof of this fact outside the scope of our

exposition because it involves the notion of jets of Banach fibre bundles.

Turn now to principal connections. Given a Banach-Lie group G, a

principal bundle over a finite-dimensional smooth manifold Q, a principal

connection, its curvature form and that a holonomy group are defined sim-

ilarly to those in the case of finite-dimensional Lie groups. The main differ-

ence lies in the facts that there are Banach-Lie algebras without Lie groups

and the holonomy group of a principal connection need not be a Lie group.

Referring the reader to [96] for theory of Lie groups and principal bundles

modelled over so called convenient locally convex vector spaces (including

Fréchet spaces), we here formulate some statements adapted to the case of

Banach-Lie groups and Banach principal bundles over a finite-dimensional

manifold.

• Any Banach-Lie group G admits an exponential mapping which is

a diffeomorphism of a neighborhood of 0 in the Lie algebra g of G onto

a neighborhood of the unit in G. In a general setting, one can always

associate to a Banach-Lie algebra a local Banach-Lie group which however

fails to be extended to the global one in general [84].

• Let G be a Banach-Lie group and g its Lie algebra. If h is a closed Lie

subalgebra of g, there exists a unique connected closed Banach-Lie subgroup

H of G with the Lie algebra h [134].

• Given a Banach-Lie group, the definition of a G-principal bundle P →
Q over a finite-dimensional smooth manifold Q, a principal connection with

a structure Banach-Lie group and its curvature form in [96] follows those in

the case of a locally compact Lie group [93]. A principal connection Γ on P

defines the global parallel transport and a holonomy group. In particular,

the following generalizations of the reduction theorem ([93], Theorem 7.1)

and the Ambrose–Singer theorem ([93], Theorem 8.1) to Banach principal

bundles hold [160].



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

150 Algebraic quantization

Theorem 4.5.1. Let P → Q be a principal bundle with a Banach-Lie

structure group G over a simply connected finite-dimensional manifold Q.

Let H be a Banach-Lie subgroup of G. Let us assume that there exists a

principal connection on P whose curvature form ω possesses the following

property. For any smooth one-parameter family of horizontal paths Hcs
starting at a point p ∈ P and arbitrary smooth vector fields u, u′ on Q,

[0, 1]2 3 s, t→ ωcs(t)(u, u
′) (4.5.5)

is a smooth h-valued map. Then the structure group G of P is reduced to

H.

Theorem 4.5.2. Let us consider closed Lie subalgebras of the Lie algebra

g which contain the range of the map (4.5.5). Their overlap is the minimal

closed Lie subalgebra gred of g possessing this property. The corresponding

Banach-Lie group Gred is the minimal Banach-Lie group which contains

the holonomy group of a connection Γ. By virtue of Theorem 4.5.1, the

structure group Γ of P is reduced to Gred.

• Given a trivialization chart of a Banach principal bundle P → Q with

a structure Banach-Lie group G, a principal connection on P is represented

by a g-valued local connection one-form Γmdq
m with the corresponding

transition functions. Let

B = (P × V )/G

be a Banach vector bundle associated with P whose typical fibre V is a

Banach space provided with a continuous effective left action of the struc-

ture group G. Then a principal connection Γ on P yields a connection on

B given by the first order differential operators

∇τ = τm(∂m − Γm) (4.5.6)

on the C∞(Q) module B(Q) of sections of B → Q which obey the Leibniz

rule (4.5.4).

For instance, let G = U(E) be the unitary group of a Hilbert space

E. Its Lie algebra consists of the operators iH, where H are bounded self-

adjoint operators in the Hilbert space E. It follows that a U(E)-principal

connection takes the form (4.5.3).

In conclusion, let us mention the straightforward definition of a connec-

tion on a Hilbert bundle as a parallel displacement along paths lifted from a

base [88]. Roughly speaking, such a connection corresponds to parallel dis-

placement operators whose infinitesimal generators are (4.5.3). Due to the

condition (4.5.2), these operators are unitary. If a path is closed, we come

to the notion of a holonomy group of a connection on a Hilbert bundle.
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4.6 Instantwise quantization

As it is shown in Section 5.3.3, geometric quantization of Hamiltonian non-

relativistic mechanics takes a form of instantwise quantization, and results

in a quantum system described by a Hilbert bundle over the time axis R.

This Section addresses the evolution of such quantum systems which can

be viewed as a parallel displacement along time.

It should be emphasized that, in quantum mechanics based on the

Schrödinger and Heisenberg equations, the physical time plays a role of

a classical parameter. Indeed, all relations between operators in quantum

mechanics are simultaneous, while computation of mean values of operators

in a quantum state does not imply integration over time. It follows that, at

each instant t ∈ R, there is an instantaneous quantum system characterized

by some C∗-algebra At. Thus, we come to instantwise quantization. Let us

suppose that all instantaneous C∗-algebras At are isomorphic to some uni-

tal C∗-algebra A. Furthermore, let they constitute a locally trivial smooth

bundle C of C∗-algebras over the time axis R. Its typical fibre is A. This

bundle of C∗-algebras is trivial, but need not admit a canonical trivial-

ization in general. One can think of its different trivializations as being

associated to different reference frames.

Let us describe evolution of quantum systems in the framework of in-

stantwise quantization. Given a bundle of C∗-algebras C → R, this evo-

lution can be regarded as a parallel displacement with respect to some

connection on C → R [6; 65; 140]. Following Section 4.5, we define ∇
as a connection on the involutive C∞(R)-algebra C(R) of smooth sections

of C → R. It assigns to the standard vector field ∂t on R a symmetric

derivation ∇t of C(R) which obeys the Leibniz rule

∇t(fα) = ∂tfα+ f∇tα, α ∈ C(R), f ∈ C∞(R),

and the condition

∇tα∗ = (∇tα)∗.

Given a trivialization C = R×A, a connection ∇t reads

∇t = ∂t − δ(t), (4.6.1)

where δ(t), t ∈ R, are symmetric derivations of a C∗-algebra A, i.e.,

δt(ab) = δt(a)b+ aδt(b), δt(a
∗) = δt(a)

∗, a, b ∈ A.
We say that a section α of the bundle of C∗-algebras C → R is an

integral section of the connection ∇t if

∇tα(t) = [∂t − δ(t)]α(t) = 0. (4.6.2)
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One can think of the equation (4.6.2) as being the Heisenberg equation

describing quantum evolution.

In particular, let the derivations δ(t) = δ in the Heisenberg equation

(4.6.2) be the same for all t ∈ R, and let δ be an infinitesimal generator of

a strongly continuous one-parameter group [Gt] of automorphisms of the

C∗-algebra A (Theorem 4.2.2). A pair (A, [Gt]) is called the C∗-dynamic

system. It describes evolution of an autonomous quantum system. Namely,

for any a ∈ A, the curve α(t) = Gt(a), t ∈ R, in A is a unique solution with

the initial value α(0) = a of the Heisenberg equation (4.6.2).

It should be emphasized that, if a derivation δ is unbounded, the con-

nection ∇t (4.6.1) is not defined everywhere on the algebra C(R). In this

case, we deal with a generalized connection. It is given by operators of a

parallel displacement, whose generators however are ill defined [6]. More-

over, it may happen that a representation π of the C∗-algebra A does not

carry out a representation of the automorphism group [Gt] (Proposition

4.2.2). Therefore, quantum evolution described by the conservative Heisen-

berg equation, whose solution is a strongly (but not uniformly) continuous

dynamic system (A, [Gt]), need not be described by the Schrödinger equa-

tion (see Remark 4.6.1 below).

If δ is a bounded derivation of a C∗-algebra A, the Heisenberg and

Schrödinger pictures of evolution of an autonomous quantum system are

equivalent. Namely, by virtue of Theorem 4.2.1, δ is an infinitesimal gener-

ator of a uniformly continuous one-parameter group [Gt] of automorphisms

of A, and vice versa. For any representation π of A in a Hilbert space E,

there exists a bounded self-adjoint operator H in E (called the Hamilton

operator) such that

π(δ(a)) = −i[H, π(a)], π(Gt) = exp(−itH), a ∈ A. (4.6.3)

The corresponding autonomous Schrödinger equation reads

(∂t + iH)ψ = 0, (4.6.4)

where ψ is a section of the trivial Hilbert bundle R×E → R. Its solution

with an initial value ψ(0) ∈ E is

ψ(t) = exp[−itH]ψ(0). (4.6.5)

Remark 4.6.1. If the derivation δ is unbounded, but obeys the assump-

tions of Proposition 4.2.2, we also obtain the unitary representation (4.6.3)

of the group [Gt], but the curve ψ(t) (4.6.5) need not be differentiable, and

the Schrödinger equation (4.6.4) is ill defined.
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Let us return to the general case of a quantum system characterized by

a bundle of C∗-algebras C → R with a typical fibre A. Let us suppose that a

phase Hilbert space of a quantum system is preserved under evolution, i.e.,

instantaneous C∗-algebras At are endowed with representations equivalent

to some representation of the C∗-algebra A in a Hilbert space E. Then

quantum evolution can be described by means of the Schrödinger equation

as follows.

Let us consider a smooth Hilbert bundle E → R with the typical fibre

E and a connection ∇ on the C∞(R)-module E(R) of smooth sections of

E → R (Section 4.5). This connection assigns to the standard vector field

∂t on R an R-module endomorphism ∇t of E(R) which obeys the Leibniz

rule

∇t(fψ) = ∂tfψ + f∇tψ, ψ ∈ E(R), f ∈ C∞(R),

and the condition

〈(∇tψ)(t)|ψ(t)〉 + 〈ψ(t)|(∇tψ)(t)〉 = ∂t〈ψ(t)|ψ(t)〉.

Given a trivialization E = R×E, the connection ∇t reads

∇tψ = (∂t + iH(t))ψ, (4.6.6)

where H(t) are bounded self-adjoint operators in E for all t ∈ R. It is a

U(E)-principal connection.

We say that a section ψ of the Hilbert bundle E → R is an integral

section of the connection ∇t (4.6.6) if it fulfils the equation

∇tψ(t) = (∂t + iH(t))ψ(t) = 0. (4.6.7)

One can think of this equation as being the Schrödinger equation for the

Hamilton operator H(t). Its solution with an initial value ψ(0) ∈ E exists

and reads

ψ(t) = U(t)ψ(0), (4.6.8)

where U(t) is an operator of a parallel displacement with respect to the

connection (4.6.6). This operator is a differentiable section of the trivial

bundle

R× U(E)→ R,

which obeys the equation

∂tU(t) = −iH(t) ◦ U(t), U(0) = 1. (4.6.9)
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The operator U(t) plays a role of the evolution operator. It is given by the

time-ordered exponential

U(t) = T exp


−i

t∫

0

H(t′)dt′


 , (4.6.10)

which uniformly converges in the operator norm [29]. Under certain condi-

tions, U(t) can be written as a true exponential

U(t) = expS(t)

of an anti-Hermitian operator S(t) which is expressed as the Magnus series

S(t) =

∞∑

k=1

Sk(t)

of multiple integrals of nested commutators [98; 126].

It should be emphasized that the evolution operator U(t) has been de-

fined with respect to a given trivialization of a Hilbert bundle E → R.
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Geometric quantization

To quantize classical Hamiltonian systems, one usually follows canonical

quantization which replaces the Poisson bracket {f, f ′} of smooth functions

with the bracket [f̂ , f̂ ′] of Hermitian operators in a Hilbert space such

that Dirac’s condition (0.0.4) holds. Canonical quantization of Hamiltonian

non-relativistic mechanics on a configuration space Q → R is geometric

quantization [57; 65]. It takes a form of instantwise quantization phrased

in terms of Hilbert bundles over R (Section 5.4.3).

We start with the standard geometric quantization of symplectic man-

ifolds (Section 5.1). This is the case of autonomous Hamiltonian sys-

tems. In particular, we refer to geometric quantization of the cotan-

gent bundle (Section 5.2). Developed for symplectic manifolds [38;

148], the geometric quantization technique has been generalized to Poisson

manifolds in terms of contravariant connections [156; 157]. Though there

is one-to-one correspondence between the Poisson structures on a smooth

manifold and its symplectic foliations, geometric quantization of a Poisson

manifold need not imply quantization of its symplectic leaves [158].

Geometric quantization of symplectic foliations disposes of these prob-

lems (Section 5.3). A quantum algebra of a symplectic foliation also is a

quantum algebra of the associated Poisson manifold such that its restriction

to each symplectic leaf is a quantum algebra of this leaf. Thus, geometric

quantization of a symplectic foliation provides leafwise quantization of a

Poisson manifold. For instance, this is the case of Hamiltonian systems

whose symplectic leaves are indexed by non-quantizable variables, e.g., in-

stants of time (Section 5.4.3) and classical parameters (Section 9.3).

For the sake of simplicity, symplectic and Poisson manifolds through-

out this Chapter are assumed to be simple connected (see Remark 5.1.2).

Geometric quantization of toroidal cylinders possessing a non-trivial first

155
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homotopy group is considered in Section 7.8.

5.1 Geometric quantization of symplectic manifolds

Geometric quantization of a symplectic manifold falls into the following

three steps: prequantization, polarization and metaplectic correction.

Let (Z,Ω) be a 2m-dimensional simply connected symplectic manifold.

Let C → Z be a complex line bundle whose typical fibre is C. It is coordi-

nated by (zλ, c) where c is a complex coordinate.

Proposition 5.1.1. By virtue of the well-known theorems [85; 109], the

structure group of a complex line bundle C → Z is reducible to U(1) such

that:

• given a bundle atlas of C → Z with U(1)-valued transition functions

and associated bundle coordinates (zλ, c), there exists a Hermitian fibre

metric

g(c, c) = cc (5.1.1)

in C;

• for any Hermitian fibre metric g in C → Z, there exists a bundle atlas

of C → Z with U(1)-valued transition functions such that g takes the form

(5.1.1) with respect to the associated bundle coordinates.

Let K be a linear connection on a fibre bundles C → Z. It reads

K = dzλ ⊗ (∂λ + Kλc∂c), (5.1.2)

where Kλ are local complex functions on Z. The corresponding covariant

differential DK (11.4.8) takes the form

DK = (cλ −Kλc)dzλ ⊗ ∂c. (5.1.3)

The curvature two-form (11.4.18) of the connection K (5.1.2) reads

R =
1

2
(∂νKµ − ∂µKν)cdzν ∧ dzµ ⊗ ∂c. (5.1.4)

Proposition 5.1.2. A connection A on a complex line bundle C → Z

is a U(1)-principal connection if and only if there exists an A-invariant

Hermitian fibre metric g in C, i.e.,

dH(g(c, c)) = g(DAc, c) + g(c,DAc).

With respect to the bundle coordinates (zλ, c) in Proposition 5.1.1, this

connection reads

A = dzλ ⊗ (∂λ + iAλc∂c), (5.1.5)

where Aλ are local real functions on Z.
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The curvature R (5.1.4) of the U(1)-principal connection A (5.1.5) de-

fines the first Chern characteristic form

c1(A) = − 1

4π
(∂νAµ − ∂µAν)cdzν ∧ dzµ, (5.1.6)

R = −2πic1 ⊗ uC , (5.1.7)

where

uC = c∂c (5.1.8)

is the Liouville vector field (11.2.33) on C. The Chern form (5.1.6) is closed,

but it need not be exact because Aµdz
µ is not a one-form on Z in general.

Definition 5.1.1. A complex line bundle C → Z over a symplectic ma-

nifold (Z,Ω) is called a prequantization bundle if a form (2π)−1Ω on Z

belongs to the first Chern characteristic class of C.

A prequantization bundle, by definition, admits a U(1)-principal con-

nection A, called an admissible connection, whose curvature R (5.1.4) obeys

the relation

R = −iΩ⊗ uC , (5.1.9)

called the admissible condition.

Remark 5.1.1. A criterion of the existence of an admissible connection is

based on the fact that the Chern form c1 is a representative of an integral co-

homology class in the de Rham cohomology group H2
DR(Z). Consequently,

a symplectic manifold (Z,Ω) admits a prequantization bundle C → Z and

an admissible connection if and only if the symplectic form Ω belongs to

an integral de Rham cohomology class.

Remark 5.1.2. Let A be the admissible connection (5.1.5) and B = Bµdz
µ

a closed one-form on Z. Then

A′ = A+ icB ⊗ ∂c (5.1.10)

also is an admissible connection. Since a manifold Z is assumed to be

simply connected, a closed one-form B is exact. In this case, connections

A and A′ (5.1.10) are gauge conjugate . This means that there is a vertical

principal automorphism Φ of a complex line bundle C and a C-associated

U(1)-principal bundle P such that A′ = J1Φ ◦ A, where A and A′ are

treated as sections of the jet bundle J1P → P [109].
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Given an admissible connection A, one can assign to each function f ∈
C∞(Z) the C-valued first order differential operator f̂ on a fibre bundle

C → Z in accordance with Kostant–Souriau formula

f̂ = −iϑfcDA − fuC = −[iϑλf (cλ − iAλc) + fc]∂c, (5.1.11)

where DA is the covariant differential (5.1.3) and ϑf is the Hamiltonian

vector field of f . It is easily justified that the operators (5.1.11) obey

Dirac’s condition (0.0.4) for all elements f of the Poisson algebra C∞(Z).

Remark 5.1.3. In order to obtain Dirac’s condition with the physical co-

efficients

[f̂ , f̂ ′] = −i~{̂f, f ′}, (5.1.12)

one should take the operators

f̂ = −
[
i~ϑfcDA +

1

~
fc

]
∂c.

The Kostant–Souriau formula (5.1.11) is called prequantization because,

in order to obtain Hermitian operators f̂ (5.1.11) acting on a Hilbert space,

one should restrict both a class of functions f ∈ C∞(Z) and a class of

sections of C → Z in consideration as follows.

Given a symplectic manifold (Z,Ω), by its polarization is meant a max-

imal involutive distribution T ⊂ TZ such that

Ω(ϑ, υ) = 0, ϑ, υ ∈ Tz , z ∈ Z.

This term also stands for the algebra TΩ of sections of the distribution

T. We denote by AT the subalgebra of the Poisson algebra C∞(Z) which

consists of the functions f such that

[ϑf , TΩ] ⊂ TΩ.

It is called the quantum algebra of a symplectic manifold (Z,Ω). Elements

of this algebra only are quantized.

In order to obtain the carrier space of the algebra AT , let us assume

that Z is oriented and that its cohomology H2(Z; Z2) with coefficients in

the constant sheaf Z2 vanishes. In this case, one can consider the met-

alinear complex line bundle D1/2[Z] → Z characterized by a bundle atlas

{(U ; zλ, r)} with the transition functions

r′ = Jr, JJ =

∣∣∣∣det

(
∂zµ

∂z′ν

)∣∣∣∣ . (5.1.13)



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

5.1. Geometric quantization of symplectic manifolds 159

Global sections ρ of this bundle are called the half-densities on Z [38; 165].

Note that the metalinear bundle D1/2[Z] → Z admits the canonical lift of

any vector field u on Z such that the corresponding Lie derivative of its

sections reads

Lu = uλ∂λ +
1

2
∂λu

λ. (5.1.14)

Given an admissible connection A, the prequantization formula (5.1.11)

is extended to sections s⊗ ρ of the fibre bundle

C ⊗
Z
D1/2[Z]→ Z (5.1.15)

as follows:

f̂(s⊗ ρ) = (−i∇ϑf
− f)(s⊗ ρ) = (f̂ s)⊗ ρ+ s⊗ Lϑf

ρ, (5.1.16)

∇ϑf
(s⊗ ρ) = (∇Aϑf

s)⊗ ρ+ s⊗ Lϑf
ρ,

where Lϑf
ρ is the Lie derivative (5.1.14) acting on half-densities. This

extension is said to be the metaplectic correction, and the tensor product

(5.1.15) is called the quantization bundle. One can think of its sections

% as being C-valued half-forms. It is readily observed that the operators

(5.1.16) obey Dirac’s condition (0.0.4). Let us denote by EZ a complex

vector space of sections % of the fibre bundle C ⊗D1/2[Z]→ Z of compact

support such that

∇υ% = 0, υ ∈ TΩ, (5.1.17)

∇υ% = ∇υ(s⊗ ρ) = (∇Aυ s)⊗ ρ+ s⊗ Lυρ.

Lemma 5.1.1. For any function f ∈ AT and an arbitrary section % ∈ EZ ,

the relation f̂% ∈ EZ holds.

Thus, we have a representation of the quantum algebra AT in the space

EZ . Therefore, by quantization of a function f ∈ AT is meant the re-

striction of the operator f̂ (5.1.16) to EZ . It should be emphasized that a

non-zero space EZ need not exist (see Section 5.2).

Let g be an A-invariant Hermitian fibre metric in C → Z in accordance

with Proposition 5.1.2. If EZ 6= 0, the Hermitian form

〈s1 ⊗ ρ1|s2 ⊗ ρ2〉 =

∫

Z

g(s1, s2)ρ1ρ2 (5.1.18)

brings EZ into a pre-Hilbert space. Its completion EZ is called a quan-

tum Hilbert space, and the operators f̂ (5.1.16) in this Hilbert space are

Hermitian.
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5.2 Geometric quantization of a cotangent bundle

Let us consider the standard geometric quantization of a cotangent bundle
[38; 148; 165].

Let M be an m-dimensional simply connected smooth manifold coordi-

nated by (qi). Its cotangent bundle T ∗M is simply connected. It is provided

with the canonical symplectic form ΩT (3.1.3) written with respect to holo-

nomic coordinates (qi, pi = q̇i) on T ∗M . Let us consider the trivial complex

line bundle

C = T ∗M × C→ T ∗M. (5.2.1)

The canonical symplectic form (3.1.3) on T ∗M is exact, i.e., it has the same

zero de Rham cohomology class as the first Chern class of the trivial U(1)-

bundle C (5.2.1). Therefore, C is a prequantization bundle in accordance

with Definition 5.1.1.

Coordinated by (qi, pi, c), this bundle is provided with the admissible

connection (5.1.5):

A = dpj ⊗ ∂j + dqj ⊗ (∂j − ipjc∂c) (5.2.2)

such that the condition (5.1.9) is satisfied. The corresponding A-invariant

fibre metric in C is given by the expression (5.1.1). The covariant deriva-

tive of sections s of the prequantization bundle C (5.2.1) relative to the

connection A (5.2.2) along the vector field u = uj∂j + uj∂
j on T ∗M reads

∇us = uj(∂j + ipj)s+ uj∂
js. (5.2.3)

Given a function f ∈ C∞(T ∗M) and its Hamiltonian vector field

ϑf = ∂if∂i − ∂if∂i,
the covariant derivative (5.2.3) along ϑf is

∇ϑf
s = ∂if(∂i + ipi)s− ∂if∂is.

With the connection A (5.2.2), the prequantization (5.1.11) of elements f

of the Poisson algebra C∞(T ∗M) takes the form

f̂ = −i∂jf(∂j + ipj) + i∂jf∂
j − f. (5.2.4)

Let us note that, since the complex line bundle (5.2.1) is trivial, its sec-

tions are simply smooth complex functions on T ∗M . Then the prequantum

operators (5.2.4) can be written in the form

f̂ = −iLϑf
+ (Lυf − f), (5.2.5)



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

5.2. Geometric quantization of a cotangent bundle 161

where υ = pj∂
j is the Liouville vector field (11.2.33) on T ∗M →M .

It is readily observed that the vertical tangent bundle V T ∗M of the

cotangent bundle T ∗M → M provides a polarization of T ∗M . Cer-

tainly, it is not a unique polarization of T ∗M (see Section 6.5). We

call V T ∗M the vertical polarization. The corresponding quantum algebra

AT ⊂ C∞(T ∗M) consists of affine functions of momenta

f = ai(qj)pi + b(qj) (5.2.6)

on T ∗M . Their Hamiltonian vector fields read

ϑf = ai∂i − (pj∂ia
j + ∂ib)∂

i. (5.2.7)

We call AT the quantum algebra of a cotangent bundle.

Since the Jacobain of holonomic coordinate transformations of the

cotangent bundle T ∗M equals 1, the geometric quantization of T ∗M need

no metaplectic correction. Consequently, the quantum algebra AT of the

affine functions (5.2.6) acts on the subspace ET∗M ⊂ C∞(T ∗M) of complex

functions of compact support on T ∗M which obey the condition (5.1.17):

∇υs = υi∂
is = 0, TΩ 3 υ = υi∂

i.

A glance at this equality shows that elements of ET∗M are independent

of momenta pi, i.e., they are the pull-back of complex functions on M

with respect to the fibration T ∗M → M . These functions fail to be of

compact support, unless s = 0. Consequently, the carrier space ET∗M

of the quantum algebra AT is reduced to zero. One can overcome this

difficulty as follows.

Given the canonical zero section 0̂(M) of the cotangent bundle T ∗M →
M , let

CM = 0̂(M)∗C (5.2.8)

be the pull-back of the complex line bundle C (5.2.1) over M . It is a trivial

complex line bundle CM = M × C provided with the pull-back Hermitian

fibre metric g(c, c′) = cc′ and the pull-back (11.4.7):

AM = 0̂(M)∗A = dqj ⊗ (∂j − ipjc∂c)
of the connection A (5.2.2) on C. Sections of CM are smooth complex

functions on M . One can consider a representation of the quantum algebra

AT of the affine functions (5.2.6) in the space of complex functions on M

by the prequantum operators (5.2.4):

f̂ = −iaj∂j − b.
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However, this representation need a metaplectic correction.

Let us assume that M is oriented and that its cohomology H2(M ; Z2)

with coefficients in the constant sheaf Z2 vanishes. Let D1/2[M ] be the

metalinear complex line over M . Since the complex line bundle CM (5.2.8)

is trivial, the quantization bundle (5.1.15):

CM ⊗
M
D1/2[M ]→M (5.2.9)

is isomorphic to D1/2[M ].

Because the Hamiltonian vector fields (5.2.7) of functions f (5.2.6)

project onto vector fields aj∂j on M and Lυf − f = −b in the formula

(5.2.5) is a function on M , one can assign to each element f of the quan-

tum algebra AT the following first order differential operator in the space

D1/2(M) of complex half-densities ρ on M :

f̂ρ = (−iLaj∂j
− b)ρ = (−iaj∂j −

i

2
∂ja

j − b)ρ, (5.2.10)

where Laj∂j
is the Lie derivative (5.1.14) of half-densities. A glance at the

expression (5.2.10) shows that it is the Schrödinger representation of the

quantum algebra AT of the affine functions (5.2.6). We call f̂ (5.2.10) the

Schrödinger operators.

Let EM ⊂ D1/2(M) be a space of complex half-densities ρ of compact

support on M and EM the completion of EM with respect to the non-

degenerate Hermitian form

〈ρ|ρ′〉 =

∫

Q

ρρ′. (5.2.11)

The (unbounded) Schrödinger operators (5.2.10) in the domain EM of the

Hilbert space EM are Hermitian.

5.3 Leafwise geometric quantization

As was mentioned above, the geometric quantization technique has been

generalized to Poisson manifolds in terms of contravariant connections [156;

157], but geometric quantization of a Poisson manifold need not imply

quantization of its symplectic leaves [158].

• Firstly, contravariant connections fail to admit the pull-back opera-

tion. Therefore, prequantization of a Poisson manifold does not determine

straightforwardly prequantization of its symplectic leaves.
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• Secondly, polarization of a Poisson manifold is defined in terms of

sheaves of functions, and it need not be associated to any distribution. As

a consequence, its pull-back onto a leaf is not polarization of a symplectic

manifold in general.

• Thirdly, a quantum algebra of a Poisson manifold contains the center

of a Poisson algebra. However, there are models where quantization of this

center has no physical meaning. For instance, a center of the Poisson alge-

bra of a mechanical system with classical parameters consists of functions

of these parameters [58].

Geometric quantization of symplectic foliations disposes of these prob-

lems. A quantum algebra AF of a symplectic foliation F also is a quantum

algebra of the associated Poisson manifold such that its restriction to each

symplectic leaf F is a quantum algebra of F . Thus, geometric quantiza-

tion of a symplectic foliation provides leafwise quantization of a Poisson

manifold [58; 65].

Geometric quantization of a symplectic foliation is phrased in terms

of leafwise connections on a foliated manifold (see Definition 5.3.1 below).

Firstly, we have seen that homomorphisms of the de Rham cohomology of

a Poisson manifold both to the de Rham cohomology of its symplectic leaf

and the LP cohomology factorize through the leafwise de Rham cohomol-

ogy (Propositions 3.1.3 and 3.1.4). Secondly, any leafwise connection on

a complex line bundle over a Poisson manifold is proved to come from a

connection on this bundle (Theorem 5.3.1). Using these facts, we state the

equivalence of prequantization of a Poisson manifold to prequantization of

its symplectic foliation (Remark 5.3.2), which also yields prequantization

of each symplectic leaf (Proposition 5.3.2). We show that polarization of

a symplectic foliation is associated to particular polarization of a Poisson

manifold (Proposition 5.3.3), and its restriction to any symplectic leaf is

polarization of this leaf (Proposition 5.3.4). Therefore, a quantum algebra

of a symplectic foliation is both a quantum algebra of a Poisson manifold

and, restricted to each symplectic leaf, a quantum algebra of this leaf.

We define metaplectic correction of a symplectic foliation so that its

quantum algebra is represented by Hermitian operators in the pre-Hilbert

module of leafwise half-forms, integrable over the leaves of this foliation.

5.3.1 Prequantization

Let (Z, {, }) be a Poisson manifold and (F ,ΩF ) its symplectic foliation such

that {, } = {, }F (Section 3.1.5). Let leaves of F be simply connected.
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Prequantization of a symplectic foliation (F ,ΩF) provides a represen-

tation

f → f̂ , [f̂ , f̂ ′] = −i{̂f, f ′}F , (5.3.1)

of the Poisson algebra (C∞(Z), {, }F) by first order differential operators on

sections s of some complex line bundle C → Z, called the prequantization

bundle. These operators are given by the Kostant–Souriau prequantization

formula

f̂ = −i∇F
ϑf
s+ εfs, ϑf = Ω]F (d̃f), ε 6= 0, (5.3.2)

where ∇F is an admissible leafwise connection on C → Z such that its

curvature form R̃ (5.3.11) obeys the admissible condition

R̃ = iεΩF ⊗ uC , (5.3.3)

where uC is the Liouville vector field (5.1.8) on C.

Using the above mentioned fact that any leafwise connection comes from

a connection, we provide the cohomology analysis of this condition, and

show that prequantization of a symplectic foliation yields prequantization

of its symplectic leaves.

Remark 5.3.1. If Z is a symplectic manifold whose symplectic foliation

is reduced to Z itself, the formulas (5.3.2) – (5.3.3), ε = −1, of leafwise

prequantization restart the formulas (5.1.11) and (5.1.9) of geometric quan-

tization of a symplectic manifold Z.

Let SF(Z) ⊂ C∞(Z) be a subring of functions constant on leaves of a

foliation F , and let T1(F) be the real Lie algebra of global sections of the

tangent bundle TF → Z to F . It is the Lie SF (Z)-algebra of derivations

of C∞(Z), regarded as a SF(Z)-ring.

Definition 5.3.1. In the framework of the leafwise differential calculus

F∗(Z) (3.1.21), a (linear) leafwise connection on a complex line bundle

C → Z is defined as a connection ∇F on the C∞(Z)-module C(Z) of

global sections of this bundle, where C∞(Z) is regarded as an SF (Z)-ring

(see Definition 11.5.2). It associates to each element τ ∈ T1(F) an SF(Z)-

linear endomorphism ∇F
τ of C(Z) which obeys the Leibniz rule

∇F
τ (fs) = (τcd̃f)s+ f∇F

τ (s), f ∈ C∞(Z), s ∈ C(Z). (5.3.4)

A linear connection on C → Z can be equivalently defined as a con-

nection on the module C(Z) which assigns to each vector field τ ∈ T1(Z)

on Z an R-linear endomorphism of C(Z) obeying the Leibniz rule (5.3.4).
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Restricted to T1(F), it obviously yields a leafwise connection. In order to

show that any leafwise connection is of this form, we appeal to an alterna-

tive definition of a leafwise connection in terms of leafwise forms.

The inverse images π−1(F ) of leaves F of the foliation F of Z provide

a (regular) foliation CF of the line bundle C. Given the (holomorphic)

tangent bundle TCF of this foliation, we have the exact sequence of vector

bundles

0→ V C −→
C

TCF −→
C

C ×
Z
TF → 0, (5.3.5)

where V C is the (holomorphic) vertical tangent bundle of C → Z.

Definition 5.3.2. A (linear) leafwise connection on the complex line bun-

dle C → Z is a splitting of the exact sequence (5.3.5) which is linear over

C.

One can choose an adapted coordinate atlas {(Uξ; zλ, zi)} (11.2.65) of

a foliated manifold (Z,F) such that Uξ are trivialization domains of the

complex line bundle C → Z. Let (zλ, zi, c), c ∈ C, be the corresponding

bundle coordinates on C → Z. They also are adapted coordinates on the

foliated manifold (C,CF ). With respect to these coordinates, a (linear)

leafwise connection is represented by a TCF -valued leafwise one-form

AF = d̃zi ⊗ (∂i +Aic∂c), (5.3.6)

where Ai are local complex functions on C.

The exact sequence (5.3.5) is obviously a subsequence of the exact

sequence

0→ V C −→
C

TC −→
C

C ×
Z
TZ → 0,

where TC is the holomorphic tangent bundle of C. Consequently, any

connection

K = dzλ ⊗ (∂λ +Kλc∂c) + dzi ⊗ (∂i +Kic∂c) (5.3.7)

on the complex line bundle C → Z yields a leafwise connection

KF = d̃zi ⊗ (∂i +Kic∂c). (5.3.8)

Theorem 5.3.1. Any leafwise connection on the complex line bundle

C → Z comes from a connection on it.
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Proof. Let AF (5.3.6) be a leafwise connection on C → Z and KF

(5.3.8) a leafwise connection which comes from some connectionK (5.3.7) on

C → Z. Their affine difference over C is a section

S = AF −KF = d̃zi ⊗ (Ai −Ki)c∂c
of the vector bundle

TF∗⊗
C
V C → C.

Given some splitting

B : d̃zi → dzi −Biλdzλ (5.3.9)

of the exact sequence (11.2.67), the composition

(B ⊗ Id V C) ◦ S = (dzi −Biλdzλ)⊗ (Ai −Ki)c∂c : C → T ∗Z⊗
C
V C

is a soldering form on the complex line bundle C → Z. Then

K + (B ⊗ Id V C) ◦ S =

dzλ ⊗ (∂λ + [Kλ −Biλ(Ai −Ki)]c∂c) + dzi ⊗ (∂i + Aic∂c)

is a desired connection on C → Z which yields the leafwise connection AF

(5.3.6). �

In particular, it follows that Definitions 5.3.1 and 5.3.2 of a leafwise

connection are equivalent, namely,

∇Fs = d̃s−Aisd̃zi, s ∈ C(Z).

The curvature of a leafwise connection ∇F is defined as a C∞(Z)-linear

endomorphism

R̃(τ, τ ′) = ∇F
[τ,τ ′] − [∇F

τ ,∇F
τ ′ ] = τ iτ ′jRij , Rij = ∂iAj − ∂jAi, (5.3.10)

of C(Z) for any vector fields τ, τ ′ ∈ T1(F). It is represented by the vertical-

valued leafwise two-form

R̃ =
1

2
Rij d̃z

i ∧ d̃zj ⊗ uC . (5.3.11)

If a leafwise connection ∇F comes from a connection ∇, its curvature leaf-

wise form R̃ (5.3.11) is an image R̃ = i∗FR of the curvature form R (11.4.13)

of the connection ∇ with respect to the morphism i∗F (3.1.22).

Now let us turn to the admissible condition (5.3.3).

Lemma 5.3.1. Let us assume that there exists a leafwise connection KF

on the complex line bundle C → Z which fulfils the admissible condition
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(5.3.3). Then, for any Hermitian fibre metric g in C → Z, there exists a

leafwise connection AgF on C → Z which:

(i) satisfies the admissible condition (5.3.3),

(ii) preserves g,

(iii) comes from a U(1)-principal connection on C → Z.

This leafwise connection AgF is called admissible.

Proof. Given a Hermitian fibre metric g in C → Z, let Ψg = {(zλ, zi, c)}
an associated bundle atlas of C with U(1)-valued transition functions such

that g(c, c′) = cc′ (Proposition 5.1.1). Let the above mentioned leafwise

connection KF come from a linear connection K (5.3.7) on C → Z written

with respect to the atlas Ψg . The connection K is split into the sum Ag +γ

where

Ag = dzλ ⊗ (∂λ + Im(Kλ)c∂c) + dzi ⊗ (∂i + Im(Ki)c∂c) (5.3.12)

is a U(1)-principal connection, preserving the Hermitian fibre metric g. The

curvature forms R of K and Rg of Ag obey the relation Rg = Im(R). The

connection Ag (5.3.12) defines the leafwise connection

AgF = i∗FA = d̃zi ⊗ (∂i + iAgi c∂c), iAgi = Im(Ki), (5.3.13)

preserving the Hermitian fibre metric g. Its curvature fulfils a desired

relation

R̃g = i∗FR
g = Im(i∗FR) = iεΩF ⊗ uC . (5.3.14)

�

Since Ag (5.3.12) is a U(1)-principal connection, its curvature form Rg

is related to the first Chern form of integral de Rham cohomology class

by the formula (5.1.7). If the admissible condition (5.3.3) holds, the rela-

tion (5.3.14) shows that the leafwise cohomology class of the leafwise form

−(2π)−1εΩF is an image of an integral de Rham cohomology class with

respect to the cohomology morphism [i∗F ] (3.1.23). Conversely, if a leafwise

symplectic form ΩF on a foliated manifold (Z,F) is of this type, there ex-

ist a prequantization bundle C → Z and a U(1)-principal connection A on

C → Z such that the leafwise connection i∗FA fulfils the relation (5.3.3).

Thus, we have stated the following.

Proposition 5.3.1. A symplectic foliation (F ,ΩF ) of a manifold Z admits

the prequantization (5.3.2) if and only if the leafwise cohomology class of

−(2π)−1εΩF is an image of an integral de Rham cohomology class of Z.
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Remark 5.3.2. In particular, let (Z,w) be a Poisson manifold and (F ,ΩF )

its characteristic symplectic foliation. As is well-known, a Poisson mani-

fold admits prequantization if and only if the LP cohomology class of the

bivector field (2π)−1εw, ε > 0, is an image of an integral de Rham coho-

mology class with respect to the cohomology morphism [w]] (3.1.20) [156;

157]. By virtue of Proposition 3.1.4, this morphism factorizes through the

cohomology morphism [i∗F ] (3.1.23). Therefore, in accordance with Propo-

sition 5.3.1, prequantization of a Poisson manifold takes place if and only

if prequantization of its symplectic foliation does well, and both these pre-

quantizations utilize the same prequantization bundle C → Z. Herewith,

each leafwise connection∇F obeying the admissible condition (5.3.3) yields

the admissible contravariant connection

∇wφ = ∇F
w](φ), φ ∈ O1(Z),

on C → Z whose curvature bivector equals iεw. Clearly, ∇F and ∇w lead

to the same prequantization formula (5.3.2).

Let F be a leaf of a symplectic foliation (F ,ΩF) provided with the

symplectic form

ΩF = i∗FΩF .

In accordance with Proposition 3.1.3 and the commutative diagram
H∗(Z; Z) −→ H∗

DR(Z)

? ?
H∗(F ; Z) −→ H∗

DR(F )

of groups of the de Rham cohomologyH∗
DR(∗) and the cohomologyH∗(∗; Z)

with coefficients in the constant sheaf Z, the symplectic form −(2π)−1εΩF
belongs to an integral de Rham cohomology class if a leafwise symplectic

form ΩF fulfils the condition of Proposition 5.3.1. This states the following.

Proposition 5.3.2. If a symplectic foliation admits prequantization, each

its symplectic leaf does prequantization too.

The corresponding prequantization bundle for F is the pull-back com-

plex line bundle i∗FC, coordinated by (zi, c). Furthermore, let AgF (5.3.13)

be a leafwise connection on the prequantization bundle C → Z which obeys

Lemma 5.3.1, i.e., comes from a U(1)-principal connection Ag on C → Z.

Then the pull-back

AF = i∗FA
g = dzi ⊗ (∂i + ii∗F (Agi )c∂c) (5.3.15)

of the connection Ag onto i∗FC → F satisfies the admissible condition

RF = i∗FR = iεΩF ,

and preserves the pull-back Hermitian fibre metric i∗F g in i∗FC → F .
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5.3.2 Polarization

Let us define polarization of a symplectic foliation (F ,ΩF) of a manifold Z

as a maximal (regular) involutive distribution T ⊂ TF on Z such that

ΩF(u, v) = 0, u, v ∈ Tz, z ∈ Z. (5.3.16)

Given the Lie algebra T(Z) of T-subordinate vector fields on Z, let

AF ⊂ C∞(Z) be the complexified subalgebra of functions f whose leaf-

wise Hamiltonian vector fields ϑf (3.1.28) fulfil the condition

[ϑf ,T(Z)] ⊂ T(Z).

It is called the quantum algebra of a symplectic foliation (F ,ΩF) with

respect to the polarization T. This algebra obviously contains the center

SF(Z) of the Poisson algebra (C∞(Z), {, }F), and it is a Lie SF (Z)-algebra.

Proposition 5.3.3. Every polarization T of a symplectic foliation (F ,ΩF )

yields polarization of the associated Poisson manifold (Z,wΩ).

Proof. Let us consider the presheaf of local smooth functions f on Z

whose leafwise Hamiltonian vector fields ϑf (3.1.28) are subordinate to

T. The sheaf Φ of germs of these functions is polarization of the Poisson

manifold (Z,wΩ) (see Remark 5.3.3 below). Equivalently, Φ is the sheaf of

germs of functions on Z whose leafwise differentials are subordinate to the

codistribution Ω[FT. �

Remark 5.3.3. Let us recall that polarization of a Poisson manifold

(Z, {, }) is defined as a sheaf T∗ of germs of complex functions on Z

whose stalks T∗
z, z ∈ Z, are Abelian algebras with respect to the Pois-

son bracket {, } [158]. Let T∗(Z) be the structure algebra of global

sections of the sheaf T∗; it also is called the Poisson polarization [156;

157]. A quantum algebra A associated to the Poisson polarization T∗ is

defined as a subalgebra of the Poisson algebra C∞(Z) which consists of

functions f such that

{f,T∗(Z)} ⊂ T∗(Z).

Polarization of a symplectic manifold yields its Poisson one.

Let us note that the polarization Φ in the proof of Proposition 5.3.3)

need not be maximal, unless T is of maximal dimension dimF/2. It belongs

to the following particular type of polarizations of a Poisson manifold. Since

the cochain morphism i∗F (3.1.22) is an epimorphism, the leafwise differen-

tial calculus F∗ is universal, i.e., the leafwise differentials d̃f of functions
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f ∈ C∞(Z) on Z make up a basis for the C∞(Z)-module F1(Z). Let Φ(Z)

denote the structure R-module of global sections of the sheaf Φ. Then the

leafwise differentials of elements of Φ(Z) make up a basis for the C∞(Z)-

module of global sections of the codistribution Ω[FT. Equivalently, the

leafwise Hamiltonian vector fields of elements of Φ(Z) constitute a basis for

the C∞(Z)-module T(Z). Then one can easily show that polarization T

of a symplectic foliation (F ,ΩF ) and the corresponding polarization Φ of

the Poisson manifold (Z,wΩ) in Proposition 5.3.3 define the same quantum

algebra AF .

Let (F,ΩF ) be a symplectic leaf of a symplectic foliation (F ,ΩF). Given

polarization T→ Z of (F ,ΩF), its restriction

TF = i∗FT ⊂ i∗FTF = TF

to F is an involutive distribution on F . It obeys the condition

i∗FΩF (u, v) = 0, u, v ∈ TFz , z ∈ F,

i.e., it is polarization of the symplectic manifold (F,ΩF ). Thus, we have

stated the following.

Proposition 5.3.4. Polarization of a symplectic foliation defines polariza-

tion of each symplectic leaf.

Clearly, the quantum algebra AF of a symplectic leaf F with respect to

the polarization TF contains all elements i∗F f of the quantum algebra AF

restricted to F .

5.3.3 Quantization

Since AF is the quantum algebra both of a symplectic foliation (F ,ΩF )

and the associated Poisson manifold (Z,wΩ), let us follow the standard

metaplectic correction technique [38; 165].

Assuming that Z is oriented and that H2(Z; Z2) = 0, let us consider

the metalinear complex line bundle D1/2[Z]→ Z characterized by an atlas

ΨZ = {(U ; zλ, zi, r)}

with the transition functions (5.1.13). Global sections ρ of this bundle are

half-densities on Z. Their Lie derivative (5.1.14) along a vector field u on

Z reads

Luρ = uλ∂λρ+ ui∂iρ+
1

2
(∂λu

λ + ∂iu
i)ρ. (5.3.17)



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

5.3. Leafwise geometric quantization 171

Given an admissible connection AgF , the prequantization formula (5.3.2)

is extended to sections % = s⊗ ρ of the fibre bundle

C ⊗
Z
D1/2[Z] (5.3.18)

as follows

f̂ = −i[(∇F
ϑf

+ iεf)⊗ Id + Id ⊗ Lϑf
] (5.3.19)

= −i[∇F
ϑf

+ iεf +
1

2
∂iϑ

i
f ], f ∈ AF .

This extension is the metaplectic correction of leafwise quantization. It is

readily observed that the operators (5.3.19) obey Dirac’s condition (5.3.1).

Let us denote by EZ the complex space of sections % of the fibre bundle

(5.3.18) of compact support such that

(∇F
ϑ ⊗ Id + Id ⊗ Lϑ)% = (∇F

ϑ +
1

2
∂iϑ

i)% = 0

for all T-subordinate leafwise Hamiltonian vector fields ϑ.

Lemma 5.3.2. For any function f ∈ AT and an arbitrary section % ∈ EZ ,

the relation f̂% ∈ EZ holds.

Thus, we have a representation of the quantum algebra AF in the space

EZ . Therefore, by quantization of a function f ∈ AF is meant the restric-

tion of the operator f̂ (5.3.19) to EZ .

The space EZ is provided with the non-degenerate Hermitian form

〈ρ|ρ′〉 =

∫

Z

ρρ′, (5.3.20)

which brings EZ into a pre-Hilbert space. Its completion carries a represen-

tation of the quantum algebra AF by (unbounded) Hermitian operators.

However, it may happen that the above quantization has no physical

meaning because the Hermitian form (5.3.20) on the carrier space EZ and,

consequently, the mean values of operators (5.3.19) are defined by integra-

tion over the whole manifold Z. For instance, it implies integration over

time and classical parameters. Therefore, we suggest a different scheme of

quantization of symplectic foliations.

Let us consider the exterior bundle
2m∧ TF∗, 2m = dimF . Its structure

group GL(2m,R) is reducible to the group GL+(2m,R) since a symplectic

foliation is oriented. One can regard this fibre bundle as being associated

to a GL(2m,C)-principal bundle P → Z. As earlier, let us assume that
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H2(Z; Z2) = 0. Then the principal bundle P admits a two-fold covering

principal bundle with the structure metalinear group ML(2m,C) [38]. As

a consequence, there exists a complex line bundle DF → Z characterized

by an atlas

ΨF = {(Uξ; zλ, zi, r)}

with the transition functions r′ = JFr such that

JFJF = det

(
∂z′i

∂zj

)
. (5.3.21)

One can think of its sections as being complex leafwise half-densities on

Z. The metalinear bundle D1/2[F ] → Z admits the canonical lift of any

T-subordinate vector field u on Z. The corresponding Lie derivative of its

sections reads

LF
u = ui∂i +

1

2
∂iu

i. (5.3.22)

We define the quantization bundle as the tensor product

YF = C ⊗
Z
D1/2[F ]→ Z. (5.3.23)

Its sections are C-valued leafwise half-forms. Given an admissible leafwise

connection AgF and the Lie derivative LF
u (5.3.22), let us associate the first

order differential operator

f̂ = −i[(∇F
ϑf

+ iεf)⊗ Id + Id ⊗ LF
ϑf

] (5.3.24)

= −i[∇F
ϑf

+ iεf +
1

2
∂iϑ

i
f ], f ∈ AF ,

on sections %F of YF to each element of the quantum algebra AF . A direct

computation with respect to the local Darboux coordinates on Z proves

the following.

Lemma 5.3.3. The operators (5.3.24) obey Dirac’s condition (5.3.1).

Lemma 5.3.4. If a section %F fulfils the condition

(∇F
ϑ ⊗ Id + Id ⊗ LF

ϑ )%F = (∇F
ϑ +

1

2
∂iϑ

i)%F = 0 (5.3.25)

for all T-subordinate leafwise Hamiltonian vector field ϑ, then f̂%F for any

f ∈ AF possesses the same property.



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

5.3. Leafwise geometric quantization 173

Let us restrict the representation of the quantum algebra AF by the

operators (5.3.24) to the subspace EF of sections %F of the quantization

bundle (5.3.23) which obey the condition (5.3.25) and whose restriction to

any leaf of F is of compact support. The last condition is motivated by the

following.

Since i∗FTF∗ = T ∗F , the pull-back i∗FD1/2[F ] of D1/2[F ] onto a leaf

F is a metalinear bundle of half-densities on F . By virtue of Propositions

5.3.2 and 5.3.4, the pull-back i∗FYF of the quantization bundle YF → Z onto

F is a quantization bundle for the symplectic manifold (F, i∗FΩF ). Given

the pull-back connection AF (5.3.15) and the polarization TF = i∗FT, this

symplectic manifold is subject to the standard geometric quantization by

the first order differential operators

f̂ = −i(i∗F∇F
ϑf

+ iεf +
1

2
∂iϑ

i
f ), f ∈ AF , (5.3.26)

on sections %F of i∗FYF → F of compact support which obey the condition

(i∗F∇F
ϑ +

1

2
∂iϑ

i)%F = 0 (5.3.27)

for all TF -subordinate Hamiltonian vector fields ϑ on F . These sections

constitute a pre-Hilbert space EF with respect to the Hermitian form

〈ρF |ρ′F 〉 =

∫

F

%F %
′
F .

The key point is the following.

Proposition 5.3.5. We have i∗FEF ⊂ EF , and the relation

i∗F (f̂%F) = (̂i∗F f)(i∗F %F ) (5.3.28)

holds for all elements f ∈ AF and %F ∈ EF .

Proof. One can use the fact that the expressions (5.3.26) and (5.3.27)

have the same coordinate form as the expressions (5.3.24) and (5.3.25)

where zλ =const. �

The relation (5.3.28) enables one to think of the operators f̂ (5.3.24) as

being the leafwise quantization of the SF (Z)-algebra AF in the pre-Hilbert

SF(Z)-module EF of leafwise half-forms.
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5.4 Quantization of non-relativistic mechanics

Let us develop geometric quantization of Hamiltonian non-relativistic me-

chanics on a configuration space Q → R which is assumed to be simply

connected. In contrast with the existent geometric quantizations of non-

relativistic mechanics [148; 165], we do not fix a trivialization

Q = R×M, V ∗Q = R× T ∗M. (5.4.1)

The key point is that, in this case, the evolution equation is not reduced to

the Poisson bracket on a phase space V ∗Q, but can be expressed in the Pois-

son bracket on the homogeneous phase space T ∗Q. Therefore, geometric

quantization of Hamiltonian non-relativistic mechanics on a configuration

space Q→ R requires compatible geometric quantization both of the sym-

plectic cotangent bundle T ∗Q and the Poisson vertical cotangent bundle

V ∗Q of Q.

The relation (3.3.8) defines the monomorphism of Poisson algebras

ζ∗ : (C∞(V ∗Q), {, }V )→ (C∞(T ∗Q), {, }T ). (5.4.2)

Therefore, a compatibility of geometric quantizations of T ∗Q and V ∗Q im-

plies that this monomorphism is prolonged to a monomorphism of quantum

algebras of V ∗Q and T ∗Q.

Of course, it seems natural to quantize C∞(V ∗Q) as a subalgebra (5.4.2)

of the Poisson algebra C∞(T ∗Q). However, geometric quantization of the

Poisson algebra (C∞(T ∗Q), {, }T ) need not imply that of its Poisson sub-

algebra ζ∗C∞(V ∗Q).

We show that the standard prequantization of the cotangent bundle

T ∗Q (Section 5.2) yields the compatible prequantization of the Poisson

manifold V ∗Q such that the monomorphism ζ∗ (5.4.2) is prolonged to a

monomorphism of prequantum algebras. However, polarization of T ∗Q

need not induce any polarization of V ∗Q, unless it contains the vertical

cotangent bundle VζT
∗Q of the fibre bundle ζ (3.3.3) spanned by vectors ∂0.

A unique canonical real polarization of T ∗Q, satisfying the above condition

VζT
∗Q ⊂ T, (5.4.3)

is the vertical tangent bundle V T ∗Q of T ∗Q → Q. The associated quan-

tum algebra AT consists of functions on T ∗Q which are affine in momenta

(p0, pi). We show that this vertical polarization of T ∗Q yields polarization

of a Poisson manifold V ∗Q such that the corresponding quantum algebra

AV consists of functions on V ∗Q which are affine in momenta pi. It fol-

lows that AV is a subalgebra of AT under the monomorphism (5.4.2). After
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metaplectic correction, the compatible Schrödinger representations (5.4.15)

of AT and (5.4.17) of AV by operators on complex half-densities on Q is

obtained.

The physical relevance of the Schrödinger quantization of T ∗Q however

is open to question. The scalar product of half-densities on Q implies in-

tegration over time, though the time plays a role of a classical evolution

parameter in quantum mechanics, based on Schrödinger and Heisenberg

equations. At the same time, the Schrödinger quantization of V ∗Q provides

instantwise quantization of non-relativistic mechanics. Indeed, a glance at

the Poisson bracket (3.3.7) shows that the Poisson algebra C∞(V ∗Q) is a

Lie algebra over the ring C∞(R) of functions of time alone, where algebraic

operations in fact are instantwise operations depending on time as a param-

eter. We show that the Schrödinger quantization of the Poisson manifold

V ∗Q induces geometric quantization of its symplectic fibres V ∗
t Q, t ∈ R,

such that the quantum algebra At of V ∗
t Q consists of elements f ∈ AV

restricted to V ∗
t Q. This agrees with the instantwise quantization of sym-

plectic fibres {t} × T ∗M of the direct product (5.4.1) in [148]. Moreover,

the induced geometric quantization of fibres V ∗
t Q, by construction, is de-

termined by their injection to V ∗Q, but not projection of V ∗Q. Therefore,

it is independent of the trivialization (5.4.1).

Let us turn now to quantization of the evolution equation (3.8.1) in non-

relativistic mechanics. Since this equation is not reduced to the Poisson

bracket, quantization of the Poisson manifold V ∗Q fails to provide quan-

tization of this evolution equation. Therefore, we quantize the equivalent

homogeneous evolution equation (3.8.3) expressed in the Poisson bracket

on the symplectic manifold T ∗Z. A problem however is that the homo-

geneous Hamiltonian H∗ (3.4.1) in the formula (3.8.3) does not belong to

the algebra AT , unless it is affine in momenta. Let us assume that H∗ is a

polynomial of momenta. This is the case of all physical models. Then we

show below that H∗ can be represented by a finite sum of products of ele-

ments of AT , though this representation by no means is unique. Thereby,

it can be quantized as an element of the enveloping algebra AT of the Lie

algebra AT .

Remark 5.4.1. An ambiguity of an operator representation of a classical

Hamiltonian is a well-known technical problem of Schrödinger quantization

as like as any geometric quantization scheme, where a Hamiltonian does

not preserve polarization (see [148] for a general, but rather sophisticated

analysis of such Hamiltonians). One can include the homogeneous Hamil-
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tonian H∗ (3.4.1) in a quantum algebra by choosing polarization of T ∗Q

which contains the Hamiltonian vector field ofH∗. This polarization always

exists, but does not satisfy the condition (5.4.3) and, therefore, does not de-

fine any polarization of the Poisson manifold V ∗Q. Let us note that, given

a trivialization (5.4.1), symplectic fibres V ∗
t Q, t ∈ R, of the Poisson bundle

V ∗Q → R can be provided with the instantwise polarization spanned by

vectors

(∂1H∂1 − ∂1H∂1, · · · , ∂mH∂m − ∂mH∂m).

However, this polarization need not be regular. It is a standard polarization

in autonomous Hamiltonian mechanics of one-dimensional systems, but it

requires an exclusive analysis of each physical model.

Given a homogeneous Hamiltonian H∗ (3.4.1) and its representative H∗

in AT , the map

∇ : f → {H∗
, f}T

is a derivation of the enveloping algebra AV ⊂ AT of the Lie algebra AV .

Moreover, this derivation obeys the Leibniz rule

∇(rf) = ∂trf + r∇f, r ∈ C∞(R),

and, consequently, is a connection on the instantwise algebraAV . Since this

property is preserved under quantization, geometric quantization of non-

relativistic mechanics leads to its instantwise quantization (Section 4.6).

5.4.1 Prequantization of T ∗Q and V ∗Q

We start with the standard prequantization of the cotangent bundle T ∗Q

coordinated by

(qλ, pλ) = (q0 = t, qi, p0, pi)

(Section 5.2). Since the symplectic form ΩT on T ∗Q is exact and, conse-

quently, belongs to the zero de Rham cohomology class, a prequantization

bundle is the trivial complex line bundle

C = T ∗Q× C→ T ∗Q (5.4.4)

of zero Chern class. Coordinated by (qλ, pλ, c), this bundle is provided with

the admissible linear connection (5.2.2):

A = dpλ ⊗ ∂λ + dqλ ⊗ (∂λ − ipλc∂c), (5.4.5)
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whose curvature form equals −iΩT ⊗ uC . The A-invariant Hermitian fibre

metric in C → Q is given by the expression (5.1.1). The covariant deriva-

tive of sections s of the prequantization bundle C (5.4.4) relative to the

connection A (5.4.5) along the vector field u on T ∗Q reads

∇us = uλ(∂λ + ipλ)s+ uλ∂
λs. (5.4.6)

Given a function f ∈ C∞(T ∗Q) and its Hamiltonian vector field

ϑf = ∂λf∂λ − ∂λf∂λ

the covariant derivative (5.4.6) along ϑf is

∇ϑf
s = ∂λf(∂λ + ipλ)s− ∂λf∂λs.

By virtue of the Kostant–Souriau formula (5.1.11), one assigns to each

function f ∈ C∞(T ∗Q) the first order differential operator (5.2.4):

f̂(s) = −i(∇ϑf
+ if)s = [−i(∂λf∂λ − ∂λf∂λ) + (pλ∂

λf)− f ]s, (5.4.7)

on sections s of the prequantization bundle C (5.4.4). These operators

satisfy Dirac’s condition (0.0.4). The prequantum operators (5.4.7) for

elements f of the Poisson subalgebra

ζ∗C∞(V ∗Q) ⊂ C∞(T ∗Q)

read

f̂(s) = [−i(∂kf∂k − ∂λf∂λ) + (pk∂
kf − f)]s. (5.4.8)

Let us turn now to prequantization of the Poisson manifold (V ∗Q, {, }V ).

The Poisson bivector w of the Poisson structure (3.3.7) on V ∗Q is

w = ∂k ∧ ∂k = −[w, uV ]SN, (5.4.9)

where [, ]SN is the Schouten–Nijenhuis bracket and uV = pi∂
i is the Liouville

vector field on the vertical cotangent bundle V ∗Q→ Q. The relation (5.4.9)

shows that the Poisson bivector w is ŵ-exact (see the formula (3.1.17)) and,

consequently, possesses the zero LP cohomology class. Therefore, let us

consider the trivial complex line bundle

CV = V ∗Q× C→ V ∗Q (5.4.10)

of zero Chern class. Since the line bundles C (5.4.4) and CV (5.4.10) are

trivial, C can be seen as the pull-back ζ∗CV of CV , while CV is isomorphic

to the pull-back h∗C of C with respect to a section h (3.3.13) of the affine

bundle (3.3.3). Since CV = h∗C and since the covariant derivative of the
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connection A (5.4.5) along the fibres of ζ (3.3.3) is trivial, let us consider

the pull-back

h∗A = dpk ⊗ ∂k + dqk ⊗ (∂k − ipkc∂c) + dt⊗ (∂t − iHc∂c) (5.4.11)

of the connection A (5.4.5) onto CV → V ∗Q. This connection defines the

contravariant derivative

∇φsV = ∇w]φsV (5.4.12)

of sections sV of CV → V ∗Q along one-forms φ on V ∗Q. This contravariant

derivative corresponds to a contravariant connection AV on the line bundle

CV → V ∗Q [157]. Since the vector fields w]φ = φk∂k−φk∂k are vertical on

V ∗Q→ R, this contravariant connection does not depend on the choice of

a section h. By virtue of the relation (5.4.12), the curvature bivector of AV
is equal to −iw [158], i.e., AV is an admissible connection for the Poisson

structure on V ∗Q. Then the Kostant–Souriau formula

f̂(sV ) = (−i∇ϑf
−f)sV = [−i(∂kf∂k−∂kf∂k)+(pk∂

kf−f)]sV (5.4.13)

defines prequantization of the Poisson manifold V ∗Q. In particular, the

prequantum operators of functions f ∈ C∞(R) of time alone are reduced

to the multiplication f̂sV = fsV . Consequently, the prequantum algebra

of V ∗Q inherits the structure of a C∞(R)-algebra.

It is immediately observed that the prequantum operator f̂ (5.4.13)

coincides with the prequantum operator ζ̂∗f (5.4.8) restricted to the pull-

back sections s = ζ∗sV . Thus, the above mentioned prequantization of

the Poisson algebra C∞(V ∗Q) is equivalent to its prequantization as a

subalgebra of the Poisson algebra C∞(T ∗Q).

Let us note that, since the complex line bundles C (5.4.4) and CV
(5.4.10) are trivial, their sections are simply smooth complex functions on

T ∗Q and V ∗Q, respectively. Then the prequantum operators (5.4.7) and

(5.4.13) can be written in the form

f̂ = −iLϑf
+ (f − Lυf), (5.4.14)

where υ is the Liouville vector field υ = pλ∂
λ on T ∗Q→ Q or υ = pk∂

k on

V ∗Q→ Q.

5.4.2 Quantization of T ∗Q and V ∗Q

Given compatible prequantizations of the cotangent bundle T ∗Q and the

vertical cotangent bundle V ∗Q, let us now construct their compatible po-

larizations and quantizations. We assume that Q is an oriented manifold

and that the cohomology H2(Q; Z2) is trivial.
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Let T∗ be polarization of the Poisson manifold (T ∗Q, {, }T ) (Remark

5.3.3). Its direct image in V ∗Q with respect to the fibration ζ (3.3.3) is

polarization of the Poisson manifold (V ∗Q, {, }V ) if the germs of T∗ are

constant along the fibres of ζ [158], i.e., are germs of functions indepen-

dent of the momentum coordinate p0. It follows that the corresponding

symplectic polarization T of T ∗Q is vertical with respect to the fibration

T ∗Q→ V ∗Q.

The vertical polarization T = V T ∗Q of T ∗Q obeys this condition. The

associated quantum algebra AT ⊂ C∞(T ∗Q) consists of functions which

are affine in momenta pλ. The algebra AT acts by operators (5.4.14) on

the space of smooth complex functions s on T ∗Q which fulfill the relation

∇us = 0 for any T-valued (i.e., vertical) vector field u = uλ∂
λ on the

cotangent bundle T ∗Q → Q. Clearly, these functions are the pull-back of

complex functions on Q with respect to the fibration T ∗Q→ Q.

Following the general metaplectic technique, we come to complex half-

densities on Q which are sections of the metalinear bundle D1/2[Q] → Q

over Q. Then the formula (5.4.14), where Lϑf
is the Lie derivative of half-

densities, defines the Schrödinger representation

f̂ρ = (−iLaλ∂λ
− b)ρ =

(
−iaλ∂λ −

i

2
∂λa

λ − b
)
ρ, (5.4.15)

f = aλ(qµ)pλ + b(qµ) ∈ AT ,
of the quantum algebra AT by operators in the space D1/2(Q) of complex

half-densities ρ on Q.

From now on, we assume that a coordinate atlas of Q and a bundle atlas

of D1/2[Q]→ Q are defined on the same covering of Q, e.g., by contractible

open sets.

Let EQ ⊂ D1/2(Q) consist of half-densities of compact support, and let

EQ be its completion with respect to the non-degenerate Hermitian form

〈ρ|ρ′〉 =

∫

Q

ρρ′. (5.4.16)

The (unbounded) Schrödinger operators (5.4.15) in the domain EQ in the

Hilbert space EQ are Hermitian.

The vertical polarization of T ∗Q defines the polarization T∗
V of the

Poisson manifold V ∗Q which contains the germs of functions, constant on

the fibres of V ∗Q → Q. The associated quantum algebra AV consists of

functions on V ∗Q which are affine in momenta. It is a C∞(R)-algebra.

This algebra acts by operators (5.4.14) on the space of smooth complex
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functions sV on V ∗Q which fulfill the relation ∇usV = 0 for any vertical

vector field u = ui∂
i on V ∗Q → Q. These functions also are the pull-

back of complex functions on Q with respect to the fibration V ∗Q → Q.

Similarly to the case of AT , we obtain the Schrödinger representation of

the quantum algebra AV by the operators

f̂ρ = (−iLak∂k
+ b)ρ =

(
−iak∂k −

i

2
∂ka

k − b
)
ρ, (5.4.17)

f = ak(qµ)pk + b(qµ) ∈ AV ,
on half-densities on Q and in the above mentioned Hilbert space E. More-

over, a glance at the expressions (5.4.15) and (5.4.17) shows that (5.4.17)

is the representation of AV as a subalgebra of the quantum algebra AT .

5.4.3 Instantwise quantization of V ∗Q

As was mentioned above, the physical relevance of the space of half-densities

on Q with the scalar product (5.4.16) is open to question. At the same

time, the representation (5.4.17) preserves the structure of AV as a C∞(R)-

algebra. Therefore, let us show that this representation defines the leafwise

quantization of the symplectic foliation V ∗Q→ R which takes the form of

instantwise quantization of AV .

(i) The prequantization (5.4.13) of a Poisson manifold V ∗Q yields pre-

quantization of its symplectic leaves V ∗
t Q, t ∈ R, as follows. The symplectic

structure on V ∗
t Q is

Ωt = (h ◦ it)∗ΩT = dpk ∧ dqk, (5.4.18)

where h is an arbitrary section of the fibre bundle ζ (3.3.3) and it : V ∗
t Q→

V ∗Q is the natural imbedding. Since w]φ is a vertical vector field on V ∗Q→
R for any one-form φ on V ∗Q, the contravariant derivative (5.4.12) defines

a connection along each fibre V ∗
t Q, t ∈ R, of the Poisson bundle V ∗Q→ R.

It is the pull-back

At = i∗th
∗A = dpk ⊗ ∂k + dqk ⊗ (∂k − ipkc∂c)

of the connection h∗A (5.4.11) onto the trivial pull-back line bundle

i∗tCV = V ∗
t Q× C→ V ∗

t Q.

It is readily observed that this connection is admissible for the symplectic

structure (5.4.18) on V ∗
t Q, and provides prequantization of the symplectic

manifold (V ∗
t Q,Ωt) by the formula

f̂t = −iLϑft
+ (Lϑt

− ft) = −i(∂kft∂k− ∂kft∂k) + (pk∂
kft− ft), (5.4.19)
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where

ϑft
= ∂kft∂k − ∂kft∂k

is the Hamiltonian vector field of a function ft on V ∗
t Q with respect to

the symplectic form Ωt (5.4.18). The operators (5.4.19) act on smooth

complex functions st on V ∗
t Q. In particular, let ft, st and (f̂ s)t be the

restriction to V ∗
t Q of a real function f and complex functions s and f̂(s)

on V ∗Q, respectively. We obtain from the formulas (5.4.13) and (5.4.19)

that (f̂ s)t = f̂tst. This equality shows that the prequantization (5.4.13) of

the Poisson manifold V ∗Q is leafwise prequantization.

(ii) Let T∗
V be the above mentioned polarization of the Poisson manifold

V ∗Q. It yields the pull-back polarization T∗
t = i∗tT

∗
V of a fibre V ∗

t Q with

respect to the Poisson morphism

it : V ∗
t Q→ V ∗Q.

The corresponding distribution Tt coincides with the vertical tangent bun-

dle of the fibre bundle V ∗
t Q → Qt. The associated quantum algebra At

consists of functions on V ∗
t Q which are affine in momenta. In particular,

the restriction to V ∗
t Q of any element of the quantum algebra AV of V ∗Q

obeys this condition and, consequently, belongs to At. Conversely, any el-

ement of At is of this type. For instance, using a trivialization (5.4.1) and

the corresponding surjection πt : V ∗Q→ V ∗
t Q, one can define the pull-back

π∗
t ft of a function ft ∈ At which belongs to the quantum algebra AV and

ft = i∗t (π
∗
t ft). Thus, At = i∗tAV and, therefore, the polarization T∗

V of the

Poisson bundle V ∗Q→ R is fibrewise polarization.

(iii) The Jacobian S of transition function between coordinate charts

(U ; t, qk) and (U ′; t, q′k) possesses the property

S = det

(
1 ∂tq

′k

0 (∂iq
′k)

)
= det(∂iq

′k). (5.4.20)

It follows that the metalinear complex line bundle D1/2[Q]→ Q with tran-

sition functions J such that JJ = S on U ∩U ′ also is the metalinear bundle

of fibrewise half-densities on a fibre bundle Q→ R.

(iv) Any atlas {(U ; t, qk)} of bundle coordinates on a fibre bundleQ→ R

induces a coordinate atlas {(Qt ∩ U ; qk)} of its fibre Qt, t ∈ R. Due to the

equality (5.4.20), the Jacobian S on Q coincides with the Jacobian St of the

transition function between coordinate charts (Qt∩U ; qk) and (Qt∩U ′; q′k)

on Qt at points of Qt∩U∩U ′. It follows that, for any fibre Qt of Q, the pull-

back i∗tD → Qt of the complex line bundle D → Q of complex densities on

Q with transition functions v′ = Sv is the complex line bundle of complex
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densities on Qt with transition functions St = S|Qt
. Accordingly, any

density L on Q yields the pull-back section Lt = L ◦ it of the line bundle

i∗D → Qt, i.e., Lt is a density on Qt. The pull-back L → Lt takes the

coordinate form

L = L(t, qk)dmq ∧ dt→ Lt = L(t, qk)dmq|t=const = Lt(qk)d
m
q,

where {dqk} are holonomic fibre bases for V ∗Q. It is maintained under

transformations of bundle coordinates on Q.

Let D1/2[Q]→ Q be the metalinear complex line bundle over Q in item

(iii). Its pull-back i∗tD1/2[Q] is a complex line bundle over a fibre Qt, t ∈ R,

with transition functions Jt = J |Qt
. These transition functions obey the

relation

JtJ t = S|Qt
= St,

i.e., i∗tD1/2[Q] → Qt is the metalinear complex line bundle over Qt. Then

the formula (5.4.19) defines the Schrödinger representation of the quantum

algebra At of the symplectic fibre Qt by (unbounded) Hermitian operators

f̂tρt = (−iLak∂k
− b)ρt =

(
−iak∂k −

i

2
∂ka

k − b
)
ρt, (5.4.21)

ft = ak(qi)pk + b(qi) ∈ At,
in the Hilbert space Et which is the completion of the pre-Hilbert space

Et of half-densities on Qt of compact support with respect to the scalar

product

〈ρt|ρ′t〉 =

∫

Qt

ρtρ
′
t.

If Qt is compact, the operators (5.4.21) in Et are self-adjoint. Pre-Hilbert

spaces Et constitute a trivial bundle over R.

As in the case of densities in item (iv), any half-density ρ on Q yields

the section ρ◦ it of the pull-back bundle i∗tD1/2[Q]→ Qt, i.e, a half-density

on Qt. Given an element f ∈ AV and its pull-back ft = i∗tf ∈ At, we

obtain from the formulas (5.4.17) and (5.4.21) that

f̂ρ ◦ it = f̂t(ρ ◦ it).
This equality shows that the Schrödinger quantization of the Poisson ma-

nifold V ∗Q can be seen as the instantwise quantization.

Following this interpretation and bearing in mind that ρ ∈ D1/2[Q] are

fibrewise half-densities on Q → R, let us choose the carrier space ER of
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the Schrödinger representation (5.4.17) of AV which consists of complex

half-densities ρ on Q such that, for any t ∈ R, the half-density ρ ◦ it on Qt
is of compact support. It is a pre-Hilbert C∞(R)-module with respect to

the fibrewise Hermitian form

〈ρ|ρ′〉t =

∫

Qt

ρρ′. (5.4.22)

The pre-Hilbert module ER also is the carrier space for the quantum algebra

AT , but its action in ER is not instantwise.

5.4.4 Quantization of the evolution equation

Let us turn now to quantization of the evolution equation (3.8.3). As was

mentioned above, the problem is that, in the framework of the Schrödinger

quantization, the homogeneous Hamiltonian H∗ (3.4.1) does not belong to

the quantum algebra AT , unless it is affine in momenta. Let us restrict our

consideration to the physically relevant case ofH∗, polynomial in momenta.

We aim to show that such H∗ is decomposed in a finite sum of products of

elements of the algebra AT .

Let f be a smooth function on T ∗Q which is a polynomial of momenta

pλ. A glance at the transformation laws (2.2.4) shows that it is a sum of

homogeneous polynomials of fixed degree in momenta. Therefore, it suffices

to justify a desired decomposition of an arbitrary homogeneous polynomial

F of degree k > 1 on T ∗Q. We use the fact that the cotangent bundle T ∗Q

admits a finite bundle atlas (Theorem 11.2.7). Let {Uξ}, ξ = 1, . . . , r, be

the corresponding open cover of Q and {fξ} a smooth partition of unity

subordinate to this cover. Let us put

lξ = fξ(f
k
1 + · · ·+ fkr )−1/k.

It is readily observed that {lkξ} also is a partition of unity subordinate to

{Ui}. Let us consider the local polynomials

Fξ = F |Uξ
=

∑

(α1...αk)

aα1...αk

ξ (q)pα1 · · · pαk
, q ∈ Uξ.

Then we obtain a desired decomposition

F =
∑

ξ

lkξFξ =
∑

ξ

∑

(α1...αk)

[lξa
α1...αk

ξ pα1 ][lξpα2 ] · · · [lξpαk
], (5.4.23)

where all terms lξa
α1...αk

ξ pα1 and lξpα are smooth functions on T ∗Q.

Clearly, the decomposition (5.4.23) by no means is unique.
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The decomposition (5.4.23) shows that one can associate to a polynomial

homogeneous Hamiltonian H∗ an element H∗
of the enveloping algebra AT

of the Lie algebra AT . Let us recall that A consists of finite sums of tensor

products of elements of AT modulo the relations

f ⊗ f ′ − f ′ ⊗ f − {f, f ′}T = 0.

To be more precise, a representative H∗
belongs to AT + AV , where AV

is the enveloping algebra of the Lie algebra AV ⊂ AT . The enveloping

algebra AV is provided with the anti-automorphism

∗ : f1 ⊗ · · · ⊗ fk → (−1)kfk ⊗ · · · ⊗ f1,
and one can always make a representative H∗

Hermitian.

Since Dirac’s condition (0.0.4) holds, the Schrödinger representation of

the Lie algebras AT and AV in the pre-Hilbert module ER is naturally

extended to their enveloping algebras AT and AV , and provides the quan-

tization Ĥ∗ of a homogeneous Hamiltonian H∗.

Moreover, since p̂0 = −i∂t, the operator iĤ∗ obeys the Leibniz rule

iĤ∗(rρ) = ∂trρ + r(iĤ∗ρ), r ∈ C∞(R), ρ ∈ ER. (5.4.24)

Therefore, it is a connection on the C∞(R)-module ER. Then the quantum

constraint

iĤ∗ρ = 0, ρ ∈ ER, (5.4.25)

plays a role of the Schrödinger equation (4.6.7) in quantum non-relativistic

mechanics.

Given an operator Ĥ∗, the bracket

∇f̂ = i[Ĥ∗, f̂ ] (5.4.26)

defines a derivation of the quantum algebra AV . Since p̂0 = −i∂t, the

derivation (5.4.26) obeys the Leibniz rule

∇(rf̂ ) = ∂trf̂ + r∇f̂ , r ∈ C∞(R).

Therefore, it is a connection on the instantwise algebra AV . In particular,

f̂ is parallel with respect to the connection (5.4.26) if

[Ĥ∗, f̂ ] = 0. (5.4.27)

By analogy with the equation (4.6.2), one can think of this equality as being

the Heisenberg equation in quantum non-relativistic mechanics. It is readily

observed that an operator f̂ is a solution of the Heisenberg equation (5.4.27)

if and only if it preserves the subspaces of solutions of the Schrödinger

equation (5.4.25). We call Ĥ∗ the Heisenberg operator.
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5.5 Quantization with respect to different reference frames

In accordance with the Schrödinger representation (5.2.10), the homoge-

neous Hamiltonian (3.4.1):

H∗ = p0 +H, (5.5.1)

is quantized as the operator

Ĥ∗ = p̂0 + Ĥ = −i∂t + Ĥ. (5.5.2)

A problem is that the decomposition (5.5.1) and the corresponding splitting

(5.5.2) of the Heisenberg operator Ĥ∗ are ill defined.

At the same time, any reference frame Γ yields the decomposition

H∗ = (p0 +HΓ) + (H−HΓ) = H∗
Γ + EΓ,

where HΓ is the Hamiltonian (3.3.16) and EΓ (3.3.18) is the energy function

relative to a reference frame Γ (Remark 3.4.1). Accordingly, we obtain the

splitting of the Heisenberg operator

Ĥ∗ = Ĥ∗
Γ + ÊΓ,

where

Ĥ∗
Γ = −i∂t − iΓk∂k −

i

2
∂kΓ

k (5.5.3)

and ÊΓ is the operator of energy relative to a reference frame Γ [110].

Note that the homogeneous Hamiltonian H∗
Γ (3.3.16) is affine in mo-

menta and, therefore, it belongs to the quantum algebra AT of T ∗Q. Its

Schrödinger representation (5.5.3) is well defined. Written with respect to

Γ-adapted coordinates, it takes the form Ĥ∗
Γ = −i∂t.

Remark 5.5.1. Any connection Γ (1.1.18) on a configuration bundle Q→
R induces the connection (5.4.26):

∇̂Γf̂ = i[ĤΓ, f̂ ] (5.5.4)

on the algebra AV which also is a connection on the quantum algebra

AV ⊂ AV . The corresponding Schrödinger equation (5.4.25) reads

−i
(
∂t + Γk∂k +

1

2
∂kΓ

k

)
ρ = 0.

Its solutions are half-densities ρ ∈ ER which, written relative to Γ-adapted

coordinates (t, qj), are time-independent, i.e., ρ = ρ(qj).
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Given a reference frame Γ, the energy function EΓ is quantized as ÊΓ =

Ĥ∗ − Ĥ∗
Γ. As a consequence, the Schrödinger equation (5.4.25) reads

(ĤΓ + ÊΓ)ρ = −i
(
∂t + Γk∂k +

1

2
∂kΓ

k

)
ρ+ ÊΓρ = 0. (5.5.5)

For instance, let a classical Hamiltonian system be autonomous, and let

Γ be a reference frame such that the energy function EΓ is time-independent

relative to Γ-adapted coordinates. In this case, the Schrödinger equation

(5.5.5) takes the familiar form

(−i∂t + ÊΓ)ρ = 0. (5.5.6)

It follows from the Heisenberg equation (5.4.27) that a a quantum Hamil-

tonian system is autonomous if and only if there exists a reference frame Γ

such that

[Ĥ∗, ÊΓ] = 0.

Given different reference frames Γ and Γ′, the operators of energy ÊΓ
and ÊΓ′ obey the relation

Ĥ∗
Γ + ÊΓ = Ĥ∗

Γ′ + ÊΓ′ (5.5.7)

taking the form

ÊΓ′ = ÊΓ − i(Γk − Γ′k)∂k −
i

2
∂k(Γ

k − Γ′k). (5.5.8)

In particular, let ÊΓ be a time-independent energy operator of an au-

tonomous Hamiltonian system, and let ρE be its eigenstate of eigenvalue

E, i.e., ÊΓρE = EρE . Then the energy of this state relative to a reference

frame Γ′ at an instant t is

〈ρE |ÊΓ′ρE〉 = E + i〈ρE |
(

Γ′k∂k +
1

2
∂kΓ

′k

)
ρE〉t

= E + i

∫

Qt

ρE

(
Γ′k(qj , t)∂k +

1

2
∂kΓ

′k(qj , t)

)
ρE .

Example 5.5.1. Let us consider a Hamiltonian system on Q = R × U ,

where U ⊂ Rm is an open domain equipped with coordinates (qi). These

coordinates yield a reference frame on Q given by the connection Γ such

that Γi = 0 with respect to these coordinates. Let it be an autonomous Ha-

miltonian system whose energy function EΓ, written relative to coordinates

(t, qi), is time-independent. Let us consider a different reference frame on

Q given by the connection

Γ′ = dt⊗ (∂t +Gi∂i), Gi = const, (5.5.9)
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on Q. The Γ′-adapted coordinates (t, q′j) obey the equations (1.6.1) –

(1.6.2) which read

Gi =
∂qi(t, q′j)

∂t
,

∂q′j(t, qi)

∂qk
Gk +

∂q′j(t, qi)

∂t
= 0. (5.5.10)

We obtain q′i = qi − Git. For instance, this is the case of inertial frames.

Given by the relation (3.3.19), the energy function relative to the reference

frame Γ′ (5.5.9) reads

EΓ′ = EΓ −Gkpk.

Accordingly, the relation (5.5.8) between operators of energy ÊΓ′ and ÊΓ
takes the form

ÊΓ′ = ÊΓ + iGk∂k. (5.5.11)

Let ρE be an eigenstate of the energy operator ÊΓ. Then its energy with

respect to the reference frame Γ′ (5.5.9) is E −GkPk, where

Pk = 〈ρE |p̂kρE〉t
are momenta of this state. This energy is time-independent.

In particular, the following condition holds in many physical models.

Given an eigenstate ρE of the energy operator ÊΓ and a reference frame Γ′

(5.5.9), there is the equality

ÊΓ′(p̂j , qj)ρE = (ÊΓ(p̂j , qj)−Gk(qj)p̂k)ρE
= (ÊΓ(p̂j + Aj , q

j) +B)ρE , Aj , B = const.

Then exp(−iAjqj)ρE is an eigenstate of the energy operator ÊΓ′ possessing

the eigenvalue E +B.

For instance, any Hamiltonian

Ĥ = ÊΓ =
1

2
(m−1)ij p̂i ◦ p̂j + V (qj)

quadratic in momenta p̂i with a non-degenerate constant mass tensor mij

obeys this condition. Namely, we have

Ai = −mijG
j , B = −1

2
mijG

iGj .

Let us consider a massive point particle in an Euclidean space R3 in the

presence of a central potential V (r). Let R3 be equipped with the spherical

coordinates (r, φ, θ). These coordinates define an inertial reference frame
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Γ such that Γr = Γφ = Γθ = 0. The Hamiltonian of the above mentioned

particle with respect to this reference frame reads

Ĥ = ÊΓ =
1

m

(
−1

r
∂r −

1

2
∂2
r +

Î2

r2

)
+ V (r), (5.5.12)

where Î is the square of the angular momentum operator. Let us consider a

rotatory reference frame Γ′φ = ω =const, given by the adapted coordinates

(r, φ′ = φ − ωt, θ). The operator of energy relative to this reference frame

is

ÊΓ′ = ÊΓ + iω∂φ. (5.5.13)

Let ρE,n,l be an eigenstate of the energy operator ÊΓ (5.5.12) possessing

its eigenvalue E, the eigenvalue n of the angular momentum operator Î3 =

p̂φ, and the eigenvalue l(l + 1) of the operator Î2. Then ρE,n,l also is an

eigenstate of the energy operator ÊΓ′ with the eigenvalue E′ = E − nω.
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Chapter 6

Constraint Hamiltonian systems

In Section 3.6, we have observed that Hamiltonian systems associated

with non-regular Lagrangian systems are necessarily characterized by con-

straints. This Chapter is devoted to Hamiltonian systems with time-

dependent constraints and their geometric quantization. Let us note that,

in Chapter 10, Hamiltonian relativistic mechanics is treated as such a con-

straint system.

6.1 Autonomous Hamiltonian systems with constraints

We start with constraints in autonomous Hamiltonian mechanics.

Let (Z,Ω) be a 2m-dimensional symplectic manifold and H a Hamilto-

nian on Z. Let N be a (2m−n)-dimensional closed imbedded submanifold

of Z called a primary constraint space or, simply, a constraint space. We

consider the following two types of autonomous constraint systems:

• a constraint Hamiltonian system

SH|N =
⋃

z∈N

{v ∈ TzN : vcΩ + dH(z) = 0}, (6.1.1)

whose solutions are solutions of the Hamiltonian system (Ω,H) (3.2.6) on

a manifold N which live in the tangent bundle TN of N ;

• a Dirac constraint system

Si∗
N
H =

⋃

z∈N

{v ∈ TzN : vci∗N(Ω + dH(z)) = 0}, (6.1.2)

which is the restriction of a Hamiltonian system (Ω,H) on Z to a con-

straint spaceN , i.e., it is the presymplectic Hamiltonian system (i∗NΩ, i∗NH)

(3.2.10) on N .

189



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

190 Constraint Hamiltonian systems

Remark 6.1.1. If a non-zero presymplectic form i∗NH of a Dirac constraint

system (6.1.2) is of constant rank, N is necessarily coisotropic.

This Section addresses constraint Hamiltonian systems (6.1.1).

Given a closed imbedded submanifoldN of a symplectic manifold (Z,Ω),

let us consider the set

IN = Ker i∗N ⊂ C∞(Z) (6.1.3)

of functions f on Z which vanish on N , i.e., i∗Nf = 0. It is an ideal of the

R-ring C∞(Z). Then, since N is a closed imbedded submanifold of Z, we

have the ring isomorphism

C∞(Z)/IN = C∞(N). (6.1.4)

Let us consider a space of all vector fields u on Z restrictable to vector

fields on N , i.e., u|N ⊂ TN . It is

TN = {u ∈ T (Z) : ucdf ∈ IN , f ∈ IN}. (6.1.5)

Then we obtain at once that the Hamiltonian vector field ϑf of a function

f on Z belongs to TN if and only if

ϑf cdg = {f, g} ∈ IN , g ∈ IN .
Hence, the functions whose Hamiltonian vector fields are restrictable to

vector fields on N constitute the set

I(N) = {f ∈ C∞(Z) : {f, g} ∈ IN , g ∈ IN}, (6.1.6)

called the normalizer of IN . Owing to the Jacobi identity, the normalizer

(6.1.6) is a Poisson subalgebra of C∞(Z). Let us put

I ′(N) = I(N) ∩ IN . (6.1.7)

This is a Poisson subalgebra of I(N) which is non-zero since I2 ⊂ I ′(N) by

virtue of the Leibniz rule.

Let us assume that the sets w](AnnTN) and

C(N) = w](AnnTN) ∩ TN (6.1.8)

of the tangent bundle TN of a constraint space N are distributions. All

sections of w](Ann TN)→ N are the restriction toN of Hamiltonian vector

fields of elements of IN , while all sections of C(N)→ N are the restriction

to N of Hamiltonian vector fields of elements of I ′(N). In particular, if N

is coisotropic, then IN ⊂ I(N), i.e., IN = I ′(N) is a Poisson subalgebra of

C∞(Z).

Lemma 6.1.1. The distribution C(N) is involutive [157].
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Theorem 6.1.1. Let the foliation determined by C(N) be simple, i.e., a

fibred manifold N → P . Then there is the ring isomorphism

C∞(P ) = I(N)/I ′(N). (6.1.9)

Since the quotient in the right-hand side of this isomorphism is a Poisson

algebra, a base P is provided with a Poisson structure [90].

Theorem 6.1.1 describes a particular case of Poisson reduction which,

in a general setting, is formulated in the following algebraic terms [65;

90].

Definition 6.1.1. Given a Poisson manifold Z, let J be an ideal of the

Poisson algebra C∞(Z) as an associative algebra, J ′′ its normalizer (6.1.6),

and J ′ = J ′′∩J ′. One says that the Poisson algebra J ′′/J ′ is the reduction

of the Poisson algebra C∞(Z) via the ideal J .

In accordance with this definition, an ideal J of a Poisson algebraC∞(Z)

is said to be coisotropic if J is a Poisson subalgebra of P .

Remark 6.1.2. The following local relations are useful in the sequel. Let

a constraint space N be locally given by the equations

fa(z) = 0, a = 1, . . . , n, (6.1.10)

where fa(z) are local functions on Z called the primary constraints. Let us

consider the ideal IN ⊂ C∞(Z) (6.1.3) of functions vanishing on N . It is

locally generated by the constraints fa, and its elements are locally written

in the form

f =

n∑

a=1

gafa, (6.1.11)

where ga are functions on Z. We agree to call {fa} a local basis for the ideal

IN . Let dIN be the submodule of the C∞(Z)-module O1(Z) of one-forms

on Z which is locally generated by the exterior differentials df of functions

f ∈ IN . Its elements are finite sums

σ =
∑

i

gidfi, fi ∈ IN , gi ∈ C∞(Z).

In view of the formula (6.1.11), they are given by local expressions

σ =
n∑

a=1

(gadfa + faφ
a), (6.1.12)

where ga are functions and φa are one-forms on Z.
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Turn now to the constraint Hamiltonian system (6.1.1). Its solution

obviously exists if a Hamiltonian vector field ϑH, restricted to a constraint

space N , is tangent to N . Then integral curves of the Hamiltonian vector

field ϑH do not leave N . This condition is fulfilled if and only if

{H, IN} ⊂ IN , (6.1.13)

i.e., if and only if the Hamiltonian H belongs to the normalizer I(N) (6.1.6)

of the ideal IN . With respect to a local basis {fa} of the ideal IN , the

relation (6.1.13) reads

ϑHcdfa = {H, fa} =

n∑

c=1

gcafc, (6.1.14)

where gca are functions on Z. If the relation (6.1.13) (and, consequently,

(6.1.14)) fails to hold, one introduces secondary constraints

f (2)
a = {H, fa} = 0.

If a collection of primary and secondary constraints is not closed (i.e.,

{H, f (2)
a } is not expressed in fa and f

(2)
a ) let us add the tertiary constraints

f (3)
a = {H, {H, fa}} = 0,

and so on. If a solution of the constraint Hamiltonian system exists any-

where on N , the procedure is stopped after a finite number of steps by

constructing a complete system of constraints. This complete system of

constraints defines the final constraint space, where the Hamiltonian vector

field ϑH is not transversal to the primary constraint space N .

From the algebraic viewpoint, we have obtained the minimal extension

Ifin of the ideal IN such that {H, Ifin} ⊂ Ifin.

In algebraic terms, a solution of a constraint Hamiltonian system can be

reformulated as follows. Let N be a closed imbedded submanifold of a sym-

plectic manifold (Z,Ω) and IN the ideal of functions vanishing everywhere

on N (though any ideal of the ring C∞(Z) can be utilized). All elements

of IN are said to be constraints. One aims to find a Hamiltonian, called

admissible, on Z such that a symplectic Hamiltonian system (Ω,H) has

a solution everywhere on N , i.e., N is a final constraint space for (Ω,H).

In accordance with the condition (6.1.13), only an element of the normal-

izer I(N) (6.1.6) is an admissible Hamiltonian. However, the normalizer

I(N) also contains constraints I(N) ∩ IN . In order to separate Hamiltoni-

ans and constraints, let us consider the overlap I ′(N) (6.1.7). Its elements

are called the first-class constraints, while the remaining elements of IN
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are the second-class constraints. As was mentioned above, the set I ′(N)

of first-class constraints is a Poisson subalgebra of the normalizer I(N)

and, consequently, of the Poisson algebra C∞(Z) on a symplectic manifold

(Z,Ω). Let us also recall that I2
N ⊂ I ′(N), i.e., products of second-class

constraints are the first-class ones. Admissible Hamiltonians which is not

reduced to first-class constraints are representatives of non-zero elements

of the quotient I(N)/I ′(N), which is the reduction of the Poisson algebra

C∞(Z) via the ideal IN in accordance with Definition 6.1.1.

If H is an admissible Hamiltonian, the constraint Hamiltonian sys-

tems (Z,Ω,H, N) is equivalent to the presymplectic Hamiltonian system

(N, i∗NΩ, i∗NH), i.e., their solutions coincide.

Example 6.1.1. If N is a coisotropic submanifold of Z, then IN ⊂ I(N)

and I ′(N) = IN . Therefore, all constraints are of first-class. The presym-

plectic form i∗NΩ on N is of constant rank. Let its characteristic foliation

be simple, i.e., it defines a fibration π : N → P over a symplectic manifold

(P,ΩP ). In view of the isomorphism (6.1.9), one can think of elements of

the quotient I(N)/I ′(N) as being the Hamiltonians on a base P . It fol-

lows that the restriction of an admissible Hamiltonian H to the constraint

space N coincides with the pull-back onto N of some Hamiltonian H on P ,

i.e., i∗NH = π∗H. Thus, (N, i∗NΩ, i∗NH) is a gauge-invariant Hamiltonian

system which is equivalent to the reduced Hamiltonian system (P,ΩP ,H),

and the original constraint Hamiltonian system (Z,Ω,H, N) is so if H is an

admissible Hamiltonian.

6.2 Dirac constraints

As was mentioned above, the Dirac constraint system SN∗H (6.1.2) really

is the pull-back presymplectic Hamiltonian system

(ΩN = i∗NΩ,HN = i∗NH)

on the primary constraint space N ⊂ Z. By virtue of Proposition 3.2.1, it

has a solution only at the points of the subset

N2 = {z ∈ N : ucdHN (z) = 0, u ∈ Ker zΩN},
which is assumed to be a manifold. Such a solution however need not

be tangent to N2. Then the above mentioned constraint algorithm for

presymplectic Hamiltonian systems can be called into play. Nevertheless,

one can say something more since the presymplectic system SN∗H (6.1.2)

on N is the pull-back of the symplectic one on Z.
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Let us assume that a (2m−n)-dimensional closed imbedded submanifold

N of Z is already a desired final constraint space of the Dirac constraint

system (6.1.2), i.e., the equation

vcΩN + dHN (z) = 0, v ∈ TzN, (6.2.1)

has a solution at each point z ∈ N . As was mentioned above, this is

equivalent to the injection

KerΩN = TN ∩OrthΩTN ⊂ Ker dHN . (6.2.2)

Let us reformulate this condition in algebraic terms of the ideal of con-

straints IN (6.1.3), its normalizer I(N) (6.1.6) and the Poisson algebra of

first-class constraints I ′(N) (6.1.7). It is readily observed that, restricted

to N , Hamiltonian vector fields ϑf of elements f of I ′(N) with respect to

the symplectic form Ω on Z take their values into TN ∩ OrthΩTN [90].

Then the condition (6.2.2) can be written in the form

{H, I ′(N)} ⊂ IN . (6.2.3)

At the same time, {H, IN} 6⊂ IN in general. This relation shows that,

though the Dirac constraint system (ΩN ,HN ) on N has a solution, the

Hamiltonian vector field ϑH of a Hamiltonian H on Z is not necessarily

tangent to N , and its restriction to N need not be such a solution. The

goal is to find a constraint f ∈ IN such that the modified Hamiltonian

H+ f would satisfy the condition

{H+ f, IN} ⊂ IN (6.2.4)

and, consequently, the condition

{H+ f, I ′(N)} ⊂ IN . (6.2.5)

It is called a generalized Hamiltonian system.

The condition (6.2.5) is fulfilled for all f ∈ IN , while (6.2.4) is an

equation for a second-class constraint f . Therefore, its solution implies

separating first- and second-class constraints. A general difficulty lies in the

fact that the set of elements generating I2
N ⊂ I ′(N) is necessarily infinitely

reducible [90]. At the same time, the Hamiltonian vector fields of elements

of I2
N vanish on the constraint space N . Therefore, one can employ the

following procedure [120].

Since N is a (2m − n)-dimensional closed imbedded submanifold of Z,

the ideal IN is locally generated by a finite basis {fa}, a = 1, . . . , n, whose

elements determine N by the local equations (6.1.10). Let the presymplec-

tic form ΩN be of constant rank 2m − n − k. It defines a k-dimensional
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characteristic foliation of N . Since N ⊂ Z is closed, there locally exist

k linearly independent vector fields ub on Z which, restricted to N , are

tangent to the leaves of this foliation. They read

ub =

n∑

a=1

gabϑfa
, b = 1, . . . , k,

where gab are local functions on Z and ϑfa
are Hamiltonian vector fields of

the constraints fa. Then one can choose a new local basis {φb}, b = 1, . . . , n,

for IN where the first k functions take the form

φb =

n∑

a=1

gab fa, b = 1, . . . , k.

Let ϑφb
be their Hamiltonian vector fields. One can easily justify that

ϑφb
|N = ub|N , b = 1, . . . , k.

It follows that the constraints φb, b = 1, . . . , k, belong to I ′(N) \ I2
N , i.e.,

they are first-class constraints, while the remaining ones φk+1, . . . , φn are

of second-class. We have the relations

{φb, φc} =
n∑

a=1

Cabcφa, b = 1, . . . , k, c = 1, . . . , n,

where Cabc are local functions on Z. It should be emphasized that the first-

class constraints φ1, · · · , φk do not constitute any local basis for I ′(N).

Now let us consider a local Hamiltonian on Z

H′ = H+

n∑

a=1

λaφa, (6.2.6)

where λa are functions on Z. Since H obeys the condition (6.2.5), we find

{H, φb} =

n∑

a=1

Bab φa, b = 1 . . . , k,

where Bab are functions on Z. Then the equation (6.2.4) takes the form

{H, φc}+

n∑

a=k+1

λa{φa, φc} =

n∑

b=1

Db
cφb, c = k + 1, . . . n, (6.2.7)

where Db
c are functions on Z. It is a system of linear algebraic equations

for the coefficients λa, a = k + 1, . . . n, of second-class constraints. These

coefficients are defined uniquely by the equations (6.2.7), while the coef-

ficients λa, a = 1, . . . , k, of first-class constraints in the Hamiltonian H′

(6.2.6) remain arbitrary.
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Then, restricted to a constraint space N , the Hamiltonian vector field

of the Hamiltonian H′ (6.2.6) on Z provides a local solution of the Dirac

constraint system on N .

We refer the reader to [120] for a global variant of the above procedure.

A generalized Hamiltonian system (Z,Ω,H + f,N) is a constraint Ha-

miltonian system with an admissible Hamiltonian H + f . It is equivalent

to the original Dirac constraint system.

Example 6.2.1. Let a final constraint space N be a coisotropic subman-

ifold of the symplectic manifold (Z,Ω). Then IN = I ′(N), i.e., there are

only first-class constraints. In this case, the Hamiltonian vector fields both

of the Hamiltonian H and all the Hamiltonians H+ f , f ∈ IN , provide so-

lutions of the Dirac constraint system on N . If the characteristic foliation

of the presymplectic form i∗NH on N is simple, we have the reduced Hamil-

tonian system equivalent to the original Dirac constraint one (see Example

6.1.1).

Example 6.2.2. If N is a symplectic submanifold of Z, then I ′(N) = I2
N .

Therefore, all constraints are of second-class, and the Hamiltonian (6.2.6)

of a generalized Hamiltonian system is defined uniquely.

6.3 Time-dependent constraints

Given a non-relativistic mechanical system on a configuration bundle Q→
R, time-dependent constraints on a phase space V ∗Q can be described

similarly to those in autonomous Hamiltonian mechanics.

Let N be a closed imbedded subbundle

iN : N → V ∗Q

of a fibre bundle V ∗Q→ R, treated as a constraint space. It is neither La-

grangian nor symplectic submanifold with respect to the Poisson structure

on V ∗Q in general. Let us consider the ideal IN of real functions f on V ∗Q

which vanish on N , i.e., i∗Nf = 0. Its elements are constraints. There is

the isomorphism

C∞(V ∗Q)/IN = C∞(N) (6.3.1)

of associative commutative algebras. Let I(N) be the normalize (6.1.6) and

I ′(N) the set (6.1.7) of first-class constraints, while the remaining elements

of IN are the second-class constraints.



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

6.3. Time-dependent constraints 197

Remark 6.3.1. Let N be a coisotropic submanifold of V ∗Q, i.e.,

w](AnnTN) ⊂ TN . Then IN = I ′(N), i.e., all constraints are of first

class.

The relation (3.3.8) enables us to extend the constraint algorithms of

autonomous mechanics and time-dependent mechanics on a product R×M
(see [25; 103]) to mechanical systems subject to time-dependent transfor-

mations.

LetH be a Hamiltonian form on a phase space V ∗Q. In accordance with

the relation (3.4.6), solutions of the Hamilton equation (3.3.22) – (3.3.23)

does not leave the constraint space N if

{H∗, ζ∗IN}T ⊂ ζ∗IN . (6.3.2)

If the relation (6.3.2) fails to hold, let us introduce secondary constraints

{H∗, ζ∗f}T , f ∈ IN , which belong to ζ∗C∞(V ∗Q). If the collection of

primary and secondary constraints is not closed with respect to the relation

(6.3.2), let us add the tertiary constraints {H∗, {H∗, ζ∗fa}T }T , and so on.

Let us assume that N is a final constraint space for a Hamiltonian form

H . If a Hamiltonian formH satisfies the relation (6.3.2), so is a Hamiltonian

form

Hf = H − fdt (6.3.3)

where f ∈ I ′(N) is a first-class constraint. Though Hamiltonian forms H

and Hf coincide with each other on the constraint spaceN , the correspond-

ing Hamilton equations have different solutions on the constraint space N

because

dH |N 6= dHf |N .
At the same time, we have

d(i∗NH) = d(i∗NHf ).

Therefore, let us introduce the constrained Hamiltonian form

HN = i∗NHf (6.3.4)

which is the same for all f ∈ I ′(N). Let us note that HN (6.3.4) is not

a true Hamiltonian form on N → R in general. On sections r of the fibre

bundle N → R, we can write the equation

r∗(uNcdHN ) = 0, (6.3.5)

where uN is an arbitrary vertical vector field on N → R. It is called the

constrained Hamilton equation.
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Proposition 6.3.1. For any Hamiltonian form Hf (6.3.3), every solution

of the Hamilton equation which lives in the constraint space N is a solution

of the constrained Hamilton equation (6.3.5).

Proof. The constrained Hamilton equation can be written as

r∗(uNcdi∗NHf ) = r∗(uNcdHf |N ) = 0. (6.3.6)

It differs from the Hamilton equation (3.3.22) – (3.3.23) for Hf restricted

to N which reads

r∗(ucdHf |N ) = 0, (6.3.7)

where r is a section of N → R and u is an arbitrary vertical vector field

on V ∗Q → R. A solution r of the equation (6.3.7) satisfies obviously the

weaker condition (6.3.6). �

Remark 6.3.2. One also can consider the problem of constructing a gen-

eralized Hamiltonian system, similar to that for Dirac constraint system in

autonomous mechanics [106]. LetH satisfy the condition {H∗, ζ∗I ′(N)}T ⊂
IN , whereas {H∗, ζ∗IN}T 6⊂ IN . The goal is to find a constraint f ∈ IN
such that the modified Hamiltonian form H − fdt would satisfy the condi-

tion

{H∗ + ζ∗f, ζ∗IN}T ⊂ ζ∗IN .

This is an equation for a second-class constraint f .

The construction above, except the isomorphism (6.3.1), can be applied

to any ideal J of C∞(V ∗Q). Then one says that the Poisson algebra J ′′/J ′

(see Definition 6.1.1) is the reduction of the Poisson algebra C∞(V ∗Q) via

the ideal J . In particular, if an ideal J is coisotropic (i.e., a Poisson algebra),

it is a Poisson subalgebra of the normalize J ′′ (6.1.6), and it coincides with

J ′.

Example 6.3.1. Let A be a Lie algebra of integrals of motion of a Hamil-

tonian system (V ∗Q,H) (see Proposition 3.8.2). Let IA denote the ideal

of C∞(V ∗Q) generated by these integrals of motion. It is readily observed

that this ideal is coisotropic. Then one can think of IA as being an ideal of

first-class constraints which form a complete system.
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6.4 Lagrangian constraints

As was mentioned above, Hamiltonian systems associated with non-regular

Lagrangian systems are constraint systems in general.

Let L be an almost regular Lagrangian on a velocity space J 1Q and

NL = L̂(J1Q) ⊂ V ∗Q

the corresponding Lagrangian constraint space. In view of Theorem 3.6.4,

let us assume that the fibred manifold

L̂ : J1Q→ NL (6.4.1)

admits a global section. Then there exist Hamiltonian forms weakly asso-

ciated with a Lagrangian L. Theorems 3.6.2 – 3.6.3 establish the relation

between the solutions of the Lagrange equation (2.1.25) for L and the so-

lutions of the Hamilton equation (3.3.22) – (3.3.23) for H which live in the

Lagrangian constraint space NL. Therefore, let us consider the constrained

Hamilton equation on NL and compare its solutions with the solutions of

the Lagrange (2.1.25) for L.

Given a global section Ψ of the fibred manifold (6.4.1), let us consider

the pull-back constrained form

HN = Ψ∗HL = i∗NH (6.4.2)

on NL. By virtue of Lemma 3.6.1, this form does not depend on the choice

of a section of the fibred manifold (3.6.14) and, consequently, HL = L̂∗HN .

For sections r of the fibre bundle NL → R, one can write the constrained

Hamilton equation (6.3.5):

r∗(uNcdHN ) = 0, (6.4.3)

where uN is an arbitrary vertical vector field on NL → R. This equation

possesses the following important property.

Theorem 6.4.1. For any Hamiltonian form H weakly associated with an

almost regular Lagrangian L, every solution r of the Hamilton equation

which lives in the Lagrangian constraint space NL, is a solution of the

constrained Hamilton equation (6.4.3).

Proof. Such a Hamiltonian form H defines the global section Ψ = Ĥ ◦ iN
of the fibred manifold (6.4.1). SinceHN = i∗NH due to the relation (3.6.11),

the constrained Hamilton equation can be written as

r∗(uNcdi∗NH) = r∗(uNcdH |NL
) = 0. (6.4.4)
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Note that this equation differs from the Hamilton equation (3.3.25) re-

stricted to NL. This reads

r∗(ucdH |NL
) = 0, (6.4.5)

where r is a section of NL → R and u is an arbitrary vertical vector field

on V ∗Q → R. A solution r of the equations (6.4.5) obviously satisfies the

weaker condition (6.4.4). �

Theorem 6.4.2. The constrained Hamilton equation (6.4.3) is equivalent

to the Hamilton–De Donder equation (2.2.14).

Proof. Since L̂ = ζ ◦ĤL (2.2.6), the fibration ζ (2.2.5) yields a surjection

of ZL (2.2.3) onto NL. Given a section Ψ of the fibred manifold (6.4.1), we

have the morphism

ĤL ◦Ψ : NL → ZL.

By virtue of Lemma (3.6.1), this is a surjection such that

ζ ◦ ĤL ◦Ψ = IdNL.

Hence, ĤL ◦Ψ is a bundle isomorphism over Q which is independent of the

choice of a global section Ψ. Combination of (2.2.13) and (6.4.2) results in

HN = (ĤL ◦Ψ)∗ΞL

that leads to a desired equivalence. �

This proof gives something more. Namely, since ZL and NL are iso-

morphic, the homogeneous Legendre map ĤL (2.2.2) fulfils the conditions

of Theorem 2.2.1. Then combining Theorem 2.2.1 and Theorem 6.4.2, we

obtain the following.

Theorem 6.4.3. Let L be an almost regular Lagrangian such that the fibred

manifold (3.6.14) has a global section. A section s of the jet bundle J 1Q→
R is a solution of the Cartan equation (2.2.11) if and only if L̂ ◦ s is a

solution of the constrained Hamilton equation (6.4.3).

Theorem 6.4.3 also is a corollary of Lemma 6.4.1 below. The constrained

Hamiltonian form HN (6.4.2) defines the constrained Lagrangian

LN = h0(HN ) = (J1iN )∗LH (6.4.6)

on the jet manifold J1NL of the fibre bundle NL → R.

Lemma 6.4.1. There are the relations

L̃ = (J1L̂)∗LN , LN = (J1Ψ)∗L̃, (6.4.7)

where L̃ is the Lagrangian (2.2.7).
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The Lagrange equation for the constrained Lagrangian LN (6.4.6) is

equivalent to the constrained Hamilton equation (6.4.3) and, by virtue of

Lemma 6.4.1, is quasi-equivalent to the Cartan equation (2.2.9) – (2.2.10).

Example 6.4.1. Let us consider the almost regular quadratic Lagrangian

L (2.3.1). The corresponding Lagrangian constraint space NL is defined by

the equations (3.7.4). There is a complete set of Hamiltonian forms H(σ,Γ)

(3.7.6) weakly associated with L. All of them define the same constrained

Hamiltonian form

HN = Pidqi −
[
1

2
σij0 PiPj − c′

]
dt

and the constrained Lagrangian

LN =

[
Piqit −

1

2
σij0 PiPj + c′

]
dt.

6.5 Geometric quantization of constraint systems

We start with autonomous constraint systems. Let (Z,Ω) be a symplectic

manifold and iN : N → Z its closed imbedded submanifold such that the

presymplectic form i∗NΩ on N is non-zero. We assume that N is a final

constraint space and H is an admissible Hamiltonian on Z. In this case,

the constraint Hamiltonian system (Z,Ω,H, N) is equivalent to the Dirac

constraint system (N, i∗NΩ, i∗NH). Therefore, it seems natural to quantize

a symplectic manifold (Z,Ω) and, afterwards, replace classical constraints

with the quantum ones.

In algebraic quantum theory, quantum constraints are described as fol-

lows [77; 78]. Let E be a Hilbert space and H ∈ B(E) a Hermitian operator

in E. By a quantum constraint is meant the condition

He = 0, e ∈ E. (6.5.1)

A Hermitian operator H defines the unitary operator exp(iH). Then the

quantum constraint (6.5.1) is equivalent to the condition

exp(iH)e = e.

In a general setting, let A be a unital C∗-algebra and I some subset of

its unitary elements called state conditions. Let SI denote a set of states

f of A such that f(a) = 1 for all a ∈ I. They are called Dirac states. One

has proved that f ∈ SI if and only if

f(ba) = f(ab) = f(b)
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for any a ∈ I and b ∈ A [77]. In particular, if f ∈ SI , it follows at once

from the relation (4.1.12) that

|f(b(a− 1))|2 ≤ f(bb∗)f((a− 1)(a∗ − 1)) = 0.

One can similarly show that, if a, a′ ∈ I and f ∈ SI , then

f((a− 1)(a′ − 1)) = 0.

Thereby, elements a−1, a ∈ I, generate an algebra which belongs to Kerf

for any f ∈ SI . The completion of this algebra in A is a C∗-algebra AI such

that f(a) = 0 for all a ∈ AI and f ∈ I. The following theorem provides

the important criterion of the existence of Dirac states [77].

Theorem 6.5.1. The set of Dirac states SI is not empty if and only if

1 6∈ AI .

Let us return to quantization of constraint systems. In a general setting,

one studies geometric quantization of a presymplectic manifold via its sym-

plectic realization. There are the following two variants of this quantization
[5; 12; 71].

(i) Let (N,ω) be a presymplectic manifold. There exists its imbedding

iN : N → Z (6.5.2)

into a symplectic manifold (Z,Ω) such that ω = i∗NΩ. This imbedding is

not unique and different symplectic realizations (Z,Ω) of (N,ω) fail to be

isomorphic. They lead to non-equivalent quantizations of a presymplectic

manifold (N,ω). For instance, if a presymplectic form ω is of constant

rank, one can quantize a presymplectic manifold (N,ω) via its canonical

coisotropic imbedding in Proposition 3.1.1 [71]. Geometric quantization of

(N,ω) via its imbedding into T ∗N has been studied in [12].

Given an imbedding iN (6.5.2), we have a constraint system where clas-

sical constraints are smooth functions on Z vanishing on N . They consti-

tute an ideal IN of the associative ring C∞(Z). Then one usually attempts

to provide geometric quantization of a symplectic manifold (Z,Ω) in the

presence of quantum constraints, but meets the problem how to associate

quantum constraints to the classical ones.

• Firstly, prequantization procedure f → f̂ does not preserve the asso-

ciative multiplication of functions. Consequently, prequantization ÎN of the

ideal IN of classical constraints fails to be an ideal in a prequantum algebra,

i.e., if f ∈ IN then f ′f ∈ IN for any f ′ ∈ C∞(Z), but f̂ ′f̂ 6∈ ÎN in gen-

eral. Therefore, one has to choose some set of constraints φ1, . . . φn ∈ IN ,
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n = dimN , which (locally) defines N by the equations φi = 0 and associate

to them the quantum constraint conditions φ̂iψ = 0 on admissible states.

Though another set of constraints {φ′
i} characterizes the same constraint

space N as {φi}, the quantum constraints {φ̂i} and {φ̂′i} define different

subspaces of a prequantum space in general. By the same reason, the di-

rect adaptation of the notion of first and second class constraints to the

quantum framework fails [77].

• Secondly, given a set {φi} of classical constraints, one should choose

a compatible polarization of the symplectic manifold (Z,Ω) such that pre-

quantum operators φ̂i belong to the quantum algebra. Different sets of

constraints imply different compatible polarizations in general. Moreover,

a compatible polarization need not exist.

• If a presymplectic form ω is of constant rank and its characteristic

foliation is simple, there is a different symplectic realization (P,Ω) of (N,ω)

via a fibration N → P (see Proposition 3.1.2 and Example 6.1.1). Then

the reduced symplectic manifold (P,Ω) is quantized [5].

Let us apply the above mentioned quantization procedures to the Pois-

son manifold (V ∗Q, {, }V ) in Section 3.3. A glance at the equation (3.3.20)

shows that one can think of the vector field γH as being the Hamiltonian

vector field of a zero Hamiltonian with respect to the presymplectic form

dH on V ∗Q. Therefore, one can examine quantization of the presymplectic

manifold (V ∗Q, dH). Given a trivialization (5.4.1), this quantization has

been studied in [165].

(i) We use the fact that the range

Nh = h(V ∗Q)

of any section h (3.3.13) is a one-codimensional imbedded submanifold and,

consequently, is coisotropic. It is given by the constraint

H∗ = p0 +H(t, qk, pk) = 0.

Then the geometric quantization of the presymplectic manifold (V ∗Q, dH)

consists in geometric quantization of the cotangent bundle T ∗Q and setting

the quantum constraint condition

Ĥ∗ψ = 0 (6.5.3)

on admissible states. It serves as the Shrödinger equation. The condition

(6.5.3) implies that, in contrast with geometric quantization in Section 5.4,

the Hamiltonian Ĥ∗ always belongs to the quantum algebra of T ∗Q. This

takes place if one uses polarization of T ∗Q which contains the Hamiltonian
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vector field ϑH∗ (3.4.4). Such a polarization of T ∗Q always exists. Indeed,

any section h (3.3.13) of the affine bundle ζ (3.3.3) defines a splitting

aλ∂
λ = ak(∂

k − ∂kH∂0) + (a0 + ak∂
kH)∂0

of the vertical tangent bundle V T ∗Q of T ∗Q → Q. Then elements

(∂k − ∂kH∂0) together with the Hamiltonian vector field ϑH∗ (3.4.4) span

a polarization of T ∗Q. Clearly, this polarization does not satisfy the con-

dition (5.4.3), and does not define any polarization of the Poisson manifold

V ∗Q.

(ii) In application to (V ∗Q, dH), the reduction procedure leads to quan-

tization along classical solutions as follows. The kernel of dH is spanned

by the vector field γH and, consequently, the presymplectic form dH is of

constant rank. Its characteristic foliation is made up by integral curves of

this vector field, i.e., solutions of Hamilton equations. If the vector field

γH is complete, this foliation is simple, i.e., is a fibration of V ∗Q over a

symplectic manifold N of initial values. In this case, we come to the in-

stantwise quantization when functions on V ∗Q at a given instant t ∈ R are

quantized as functions on N .
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Integrable Hamiltonian systems

Let us recall that the Liouville–Arnold (or Liouville–Mineur–Arnold) the-

orem for completely integrable systems [4; 101], the Poincaré – Lya-

pounov – Nekhoroshev theorem for partially integrable systems [51; 122]

and the Mishchenko–Fomenko theorem for the superintegrable ones [16;

41; 115] state the existence of action-angle coordinates around a com-

pact invariant submanifold of a Hamiltonian integrable system. However,

their global extension meets a well-known topological obstruction [7; 30;

35],

In this Chapter, completely integrable, partially integrable and super-

integrable Hamiltonian systems are described in a general setting of in-

variant submanifolds which need not be compact [44; 46; 47; 48; 62; 65;

143; 161]. In particular, this is the case of non-autonomous completely

integrable and superintegrable systems [45; 59; 65].

Geometric quantization of completely integrable and superintegrable

Hamiltonian systems with respect to action-angle variables is considered
[43; 60; 65; 66]. Using this quantization, the non-adiabatic holonomy oper-

ator is constructed in Section 9.6.

Let us note that throughout all functions and maps are smooth. We

are not concerned with the real-analytic case because a paracompact real-

analytic manifold admits the partition of unity by smooth functions. As a

consequence, sheaves of modules over real-analytic functions need not be

acyclic that is essential for our consideration.

205
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7.1 Partially integrable systems with non-compact

invariant submanifolds

We start with partially integrable systems because: (i) completely inte-

grable systems can be regarded both as particular partially integrable and

superintegrable systems, (ii) invariant submanifolds of any superintegrable

system are maximal integral manifolds of a certain partially integrable sys-

tem (Proposition 7.3.2).

7.1.1 Partially integrable systems on a Poisson manifold

Completely integrable and superintegrable systems are considered with re-

spect to a symplectic structure on a manifold which holds fixed from the

beginning. A partially integrable system admits different compatible Pois-

son structures (see Theorem 7.1.2 below). Treating partially integrable sys-

tems, we therefore are based on a wider notion of the dynamical algebra [62;

65].

Let we have m mutually commutative vector fields {ϑλ} on a connected

smooth real manifold Z which are independent almost everywhere on Z,

i.e., the set of points, where the multivector field
m∧ ϑλ vanishes, is nowhere

dense. We denote by S ⊂ C∞(Z) the R-subring of smooth real functions f

on Z whose derivations ϑλcdf vanish for all ϑλ. Let A be an m-dimensional

Lie S-algebra generated by the vector fields {ϑλ}. One can think of one of

its elements as being an autonomous first order dynamic equation on Z and

of the other as being its integrals of motion in accordance with Definition

1.10.1. By virtue of this definition, elements of S also are regarded as

integrals of motion. Therefore, we agree to call A a dynamical algebra.

Given a commutative dynamical algebra A on a manifold Z, let G be

the group of local diffeomorphisms of Z generated by the flows of these

vector fields. The orbits of G are maximal invariant submanifolds of A (we

follow the terminology of [153]). Tangent spaces to these submanifolds form

a (non-regular) distribution V ⊂ TZ whose maximal integral manifolds co-

incide with orbits of G. Let z ∈ Z be a regular point of the distribution

V , i.e.,
m∧ ϑλ(z) 6= 0. Since the group G preserves

m∧ ϑλ, a maximal integral

manifold M of V through z also is regular (i.e., its points are regular). Fur-

thermore, there exists an open neighborhood U of M such that, restricted

to U , the distribution V is an m-dimensional regular distribution on U .

Being involutive, it yields a foliation F of U . A regular open neighborhood

U of an invariant submanifold of M is called saturated if any invariant
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submanifold through a point of U belongs to U . For instance, any compact

invariant submanifold has such an open neighborhood.

Definition 7.1.1. Let A be an m-dimensional dynamical algebra on a

regular Poisson manifold (Z,w). It is said to be a partially integrable

system if:

(a) its generators ϑλ are Hamiltonian vector fields of some functions

Sλ ∈ S which are independent almost everywhere on Z, i.e., the set of

points where the m-form
m∧ dSλ vanishes is nowhere dense;

(b) all elements of S ⊂ C∞(Z) are mutually in involution, i.e., their

Poisson brackets equal zero.

It follows at once from this definition that the Poisson structure w is

at least of rank 2m, and that S is a commutative Poisson algebra. We

call the functions Sλ in item (a) of Definition 7.1.1 the generating func-

tions of a partially integrable system, which is uniquely defined by a family

(S1, . . . , Sm) of these functions.

If 2m = dimZ in Definition 7.1.1, we have a completely integrable

system on a symplectic manifold Z (see Definition 7.3.2 below).

If 2m < dimZ, there exist different Poisson structures on Z which bring

a dynamical algebra A into a partially integrable system. Forthcoming

Theorems 7.1.1 and 7.1.2 describe all these Poisson structures around a

regular invariant submanifold M ⊂ Z of A [62].

Theorem 7.1.1. Let A be a dynamical algebra, M its regular invariant

submanifold, and U a saturated regular open neighborhood of M . Let us

suppose that:

(i) the vector fields ϑλ on U are complete,

(ii) the foliation F of U admits a transversal manifold Σ and its holon-

omy pseudogroup on Σ is trivial,

(iii) the leaves of this foliation are mutually diffeomorphic.

Then the following hold.

(I) The leaves of F are diffeomorphic to a toroidal cylinder

Rm−r × T r, 0 ≤ r ≤ m. (7.1.1)

(II) There exists an open saturated neighborhood of M , say U again,

which is the trivial principal bundle

U = N × (Rm−r × T r) π−→N (7.1.2)

over a domain N ⊂ RdimZ−m with the structure group (7.1.1).
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(III) If 2m ≤ dimZ, there exists a Poisson structure of rank 2m on U

such that A is a partially integrable system in accordance with Definition

7.1.1.

Proof. We follow the proof in [28; 101] generalized to the case of non-

compact invariant submanifolds [62; 65].

(I). Since m-dimensional leaves of the foliation F admit m complete

independent vector fields, they are locally affine manifolds diffeomorphic to

a toroidal cylinder (7.1.1).

(II). By virtue of the condition (ii), the foliation F of U is a fibred

manifold [116]. Then one can always choose an open fibred neighborhood

of its fibre M , say U again, over a domain N such that this fibred manifold

π : U → N (7.1.3)

admits a section σ. In accordance with the well-known theorem [125;

127] complete Hamiltonian vector fields ϑλ define an action of a simply

connected Lie group G on Z. Because vector fields ϑλ are mutually com-

mutative, it is the additive group Rm whose group space is coordinated by

parameters sλ of the flows with respect to the basis {eλ = ϑλ} for its Lie

algebra. The orbits of the group Rm in U ⊂ Z coincide with the fibres of

the fibred manifold (7.1.3). Since vector fields ϑλ are independent every-

where on U , the action of Rm on U is locally free, i.e., isotropy groups of

points of U are discrete subgroups of the group Rm. Given a point x ∈ N ,

the action of Rm on the fibre Mx = π−1(x) factorizes as

Rm ×Mx → Gx ×Mx →Mx (7.1.4)

through the free transitive action on Mx of the factor group Gx = Rm/Kx,

where Kx is the isotropy group of an arbitrary point of Mx. It is the same

group for all points of Mx because Rm is a commutative group. Clearly, Mx

is diffeomorphic to the group space of Gx. Since the fibres Mx are mutually

diffeomorphic, all isotropy groups Kx are isomorphic to the group Zr for

some fixed 0 ≤ r ≤ m. Accordingly, the groups Gx are isomorphic to

the additive group (7.1.1). Let us bring the fibred manifold (7.1.3) into a

principal bundle with the structure groupG0, where we denote {0} = π(M).

For this purpose, let us determine isomorphisms ρx : G0 → Gx of the group

G0 to the groups Gx, x ∈ N . Then a desired fibrewise action of G0 on U

is defined by the law

G0 ×Mx → ρx(G0)×Mx →Mx. (7.1.5)

Generators of each isotropy subgroup Kx of Rm are given by r linearly

independent vectors of the group space Rm. One can show that there
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exist ordered collections of generators (v1(x), . . . , vr(x)) of the groups Kx

such that x → vi(x) are smooth Rm-valued fields on N . Indeed, given

a vector vi(0) and a section σ of the fibred manifold (7.1.3), each field

vi(x) = (sαi (x)) is a unique smooth solution of the equation

g(sαi )σ(x) = σ(x), (sαi (0)) = vi(0),

on an open neighborhood of {0}. Let us consider the decomposition

vi(0) = Bai (0)ea + Cji (0)ej , a = 1, . . . ,m− r, j = 1, . . . , r,

where Cji (0) is a non-degenerate matrix. Since the fields vi(x) are smooth,

there exists an open neighborhood of {0}, say N again, where the matrices

Cji (x) are non-degenerate. Then

A(x) =

(
Id (B(x) −B(0))C−1(0)

0 C(x)C−1(0)

)
(7.1.6)

is a unique linear endomorphism

(ea, ei)→ (ea, ej)A(x)

of the vector space Rm which transforms the frame {vλ(0)} = {ea, vi(0)}
into the frame {vλ(x)} = {ea, ϑi(x)}, i.e.,

vi(x) = Bai (x)ea + Cji (x)ej = Bai (0)ea + Cji (0)[Abj(x)eb +Akj (x)ek ].

Since A(x) (7.1.6) also is an automorphism of the group Rm sending K0

onto Kx, we obtain a desired isomorphism ρx of the group G0 to the group

Gx. Let an element g of the group G0 be the coset of an element g(sλ) of

the group Rm. Then it acts on Mx by the rule (7.1.5) just as the element

g((A−1
x )λβs

β) of the group Rm does. Since entries of the matrix A (7.1.6) are

smooth functions on N , this action of the group G0 on U is smooth. It is

free, and U/G0 = N . Then the fibred manifold (7.1.3) is a trivial principal

bundle with the structure group G0. Given a section σ of this principal

bundle, its trivialization U = N × G0 is defined by assigning the points

ρ−1(gx) of the group space G0 to the points gxσ(x), gx ∈ Gx, of a fibre

Mx. Let us endow G0 with the standard coordinate atlas (rλ) = (ta, ϕi)

of the group (7.1.1). Then U admits the trivialization (7.1.2) with respect

to the bundle coordinates (xA, ta, ϕi) where xA, A = 1, . . . , dimZ − m,

are coordinates on a base N . The vector fields ϑλ on U relative to these

coordinates read

ϑa = ∂a, ϑi = −(BC−1)ai (x)∂a + (C−1)ki (x)∂k . (7.1.7)

Accordingly, the subring S restricted to U is the pull-back π∗C∞(N) onto

U of the ring of smooth functions on N .
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(III). Let us split the coordinates (xA) on N into some m coordinates

(Jλ) and the rest dimZ − 2m coordinates (zA). Then we can provide the

toroidal domain U (7.1.2) with the Poisson bivector field

w = ∂λ ∧ ∂λ (7.1.8)

of rank 2m. The independent complete vector fields ∂a and ∂i are Hamil-

tonian vector fields of the functions Sa = Ja and Si = Ji on U which are

in involution with respect to the Poisson bracket

{f, f ′} = ∂λf∂λf
′ − ∂λf∂λf ′ (7.1.9)

defined by the bivector field w (7.1.8). By virtue of the expression (7.1.7),

the Hamiltonian vector fields {∂λ} generate the S-algebra A. Therefore,

(w,A) is a partially integrable system. �

Remark 7.1.1. Condition (ii) of Theorem 7.1.1 is equivalent to that U →
U/G is a fibred manifold [116]. It should be emphasized that a fibration

in invariant submanifolds is a standard property of integrable systems [4;

13; 20; 51; 59; 122]. If fibres of such a fibred manifold are assumed to

be compact then this fibred manifold is a fibre bundle (Theorem 11.2.4)

and vertical vector fields on it (e.g., in condition (i) of Theorem 7.1.1) are

complete (Theorem 11.2.12).

7.1.2 Bi-Hamiltonian partially integrable systems

A Poisson structure in Theorem 7.1.1 is by no means unique. Given the

toroidal domain U (7.1.2) provided with bundle coordinates (xA, rλ), it is

readily observed that, if a Poisson bivector field on U satisfies Definition

7.1.1, it takes the form

w = w1 + w2 = wAλ(xB)∂A ∧ ∂λ + wµν (xB , rλ)∂µ ∧ ∂ν . (7.1.10)

The converse also holds as follows.

Theorem 7.1.2. For any Poisson bivector field w (7.1.10) of rank 2m on

the toroidal domain U (7.1.2), there exists a toroidal domain U ′ ⊂ U such

that a dynamical algebra A in Theorem 7.1.1 is a partially integrable system

on U ′.

Remark 7.1.2. It is readily observed that any Poisson bivector field w

(7.1.10) fulfills condition (b) in Definition 7.1.1, but condition (a) imposes

a restriction on the toroidal domain U . The key point is that the charac-

teristic foliation F of U yielded by the Poisson bivector fields w (7.1.10)
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is the pull-back of an m-dimensional foliation FN of the base N , which is

defined by the first summand w1 (7.1.10) of w. With respect to the adapted

coordinates (Jλ, z
A), λ = 1, . . . ,m, on the foliated manifold (N,FN ), the

Poisson bivector field w reads

w = wµν (Jλ, z
A)∂ν ∧ ∂µ + wµν(Jλ, z

A, rλ)∂µ ∧ ∂ν . (7.1.11)

Then condition (a) in Definition 7.1.1 is satisfied if N ′ ⊂ N is a domain of

a coordinate chart (Jλ, z
A) of the foliation FN . In this case, the dynam-

ical algebra A on the toroidal domain U ′ = π−1(N ′) is generated by the

Hamiltonian vector fields

ϑλ = −wbdJλ = wµλ∂µ (7.1.12)

of the m independent functions Sλ = Jλ.

Proof. The characteristic distribution of the Poisson bivector field w

(7.1.10) is spanned by the Hamiltonian vector fields

vA = −wbdxA = wAµ∂µ (7.1.13)

and the vector fields

wbdrλ = wAλ∂A + 2wµλ∂µ.

Since w is of rank 2m, the vector fields ∂µ can be expressed in the vector

fields vA (7.1.13). Hence, the characteristic distribution of w is spanned by

the Hamiltonian vector fields vA (7.1.13) and the vector fields

vλ = wAλ∂A. (7.1.14)

The vector fields (7.1.14) are projected onto N . Moreover, one can derive

from the relation [w,w] = 0 that they generate a Lie algebra and, conse-

quently, span an involutive distribution VN of rankm on N . Let FN denote

the corresponding foliation of N . We consider the pull-back F = π∗FN of

this foliation onto U by the trivial fibration π [116]. Its leaves are the inverse

images π−1(FN ) of leaves FN of the foliation FN , and so is its characteristic

distribution

TF = (Tπ)−1(VN ).

This distribution is spanned by the vector fields vλ (7.1.14) on U and the

vertical vector fields on U → N , namely, the vector fields vA (7.1.13) gen-

erating the algebra A. Hence, TF is the characteristic distribution of the

Poisson bivector field w. Furthermore, since U → N is a trivial bundle,

each leaf π−1(FN ) of the pull-back foliation F is the manifold product of
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a leaf FN of N and the toroidal cylinder Rk−m × Tm. It follows that the

foliated manifold (U,F) can be provided with an adapted coordinate atlas

{(Uι, Jλ, zA, rλ)}, λ = 1, . . . , k, A = 1, . . . , dimZ − 2m,

such that (Jλ, z
A) are adapted coordinates on the foliated manifold

(N,FN ). Relative to these coordinates, the Poisson bivector field (7.1.10)

takes the form (7.1.11). Let N ′ be the domain of this coordinate chart.

Then the dynamical algebraA on the toroidal domain U ′ = π−1(N ′) is gen-

erated by the Hamiltonian vector fields ϑλ (7.1.12) of functions Sλ = Jλ.�

Remark 7.1.3. Let us note that the coefficients wµν in the expressions

(7.1.10) and (7.1.11) are affine in coordinates rλ because of the relation

[w,w] = 0 and, consequently, they are constant on tori.

Now, let w and w′ be two different Poisson structures (7.1.10) on the

toroidal domain (7.1.2) which make a commutative dynamical algebra A
into different partially integrable systems (w,A) and (w′,A).

Definition 7.1.2. We agree to call the triple (w,w′,A) a bi-Hamiltonian

partially integrable system if any Hamiltonian vector field ϑ ∈ A with

respect to w possesses the same Hamiltonian representation

ϑ = −wbdf = −w′bdf, f ∈ S, (7.1.15)

relative to w′, and vice versa.

Definition 7.1.2 establishes a sui generis equivalence between the par-

tially integrable systems (w,A) and (w′,A). Theorem 7.1.3 below states

that the triple (w,w′,A) is a bi-Hamiltonian partially integrable system in

accordance with Definition 7.1.2 if and only if the Poisson bivector fields w

and w′ (7.1.10) differ only in the second terms w2 and w′
2. Moreover, these

Poisson bivector fields admit a recursion operator as follows.

Theorem 7.1.3. (I) The triple (w,w′,A) is a bi-Hamiltonian partially in-

tegrable system in accordance with Definition 7.1.2 if and only if the Poisson

bivector fields w and w′ (7.1.10) differ in the second terms w2 and w′
2. (II)

These Poisson bivector fields admit a recursion operator.

Proof. (I). It is easily justified that, if Poisson bivector fields w (7.1.10)

fulfil Definition 7.1.2, they are distinguished only by the second summand

w2. Conversely, as follows from the proof of Theorem 7.1.2, the charac-

teristic distribution of a Poisson bivector field w (7.1.10) is spanned by
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the vector fields (7.1.13) and (7.1.14). Hence, all Poisson bivector fields w

(7.1.10) distinguished only by the second summand w2 have the same char-

acteristic distribution, and they bring A into a partially integrable system

on the same toroidal domain U ′. Then the condition in Definition 7.1.2 is

easily justified. (II). The result follows from forthcoming Lemma 7.1.1. �

Given a smooth real manifold X , let w and w′ be Poisson bivector

fields of rank 2m on X , and let w] and w′] be the corresponding bundle

homomorphisms (3.1.8). A tangent-valued one-form R on X yields bundle

endomorphisms

R : TX → TX, R∗ : T ∗X → T ∗X. (7.1.16)

It is called a recursion operator if

w′] = R ◦ w] = w] ◦R∗. (7.1.17)

Given a Poisson bivector field w and a tangent valued one-form R such that

R ◦ w] = w] ◦ R∗, the well-known sufficient condition for R ◦ w] to be a

Poisson bivector field is that the Nijenhuis torsion (11.2.60) of R, seen as

a tangent-valued one-form, and the Magri–Morosi concomitant of R and w

vanish [27; 123]. However, as we will see later, recursion operators between

Poisson bivector fields in Theorem 7.1.3 need not satisfy these conditions.

Lemma 7.1.1. A recursion operator between Poisson structures of the

same rank exists if and only if their characteristic distributions coincide.

Proof. It follows from the equalities (7.1.17) that a recursion operator

R sends the characteristic distribution of w to that of w′, and these distri-

butions coincide if w and w′ are of the same rank. Conversely, let regular

Poisson structures w and w′ possess the same characteristic distribution

TF → TX tangent to a foliation F of X . We have the exact sequences

(11.2.66) – (11.2.67). The bundle homomorphisms w] and w′] (3.1.8) fac-

torize in a unique fashion (3.1.29) through the bundle isomorphisms w]F
and w′]

F (3.1.29). Let us consider the inverse isomorphisms

w[F : TF → TF∗, w′[
F : TF → TF∗ (7.1.18)

and the compositions

RF = w′]
F ◦ w[F : TF → TF , R∗

F = w[F ◦ w′]
F : TF∗ → TF∗. (7.1.19)

There is the obvious relation

w′]
F = RF ◦ w]F = w]F ◦R∗

F .
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In order to obtain a recursion operator (7.1.17), it suffices to extend the

morphisms RF and R∗
F (7.1.19) onto TX and T ∗X , respectively. For this

purpose, let us consider a splitting

ζ : TX → TF ,
TX = TF ⊕ (Id − iF ◦ ζ)TX = TF ⊕E,

of the exact sequence (11.2.66) and the dual splitting

ζ∗ : TF∗ → T ∗X,

T ∗X = ζ∗(TF∗)⊕ (Id − ζ∗ ◦ i∗F)T ∗X = ζ∗(TF∗)⊕E′,

of the exact sequence (11.2.67). Then the desired extensions are

R = RF × IdE, R∗ = (ζ∗ ◦R∗
F )× IdE′.

This recursion operator is invertible, i.e., the morphisms (7.1.16) are bundle

isomorphisms. �

For instance, the Poisson bivector field w (7.1.10) and the Poisson bivec-

tor field

w0 = wAλ∂A ∧ ∂λ
admit a recursion operator w]0 = R ◦ w] whose entries are given by the

equalities

RAB = δAB , Rµν = δµν , RAλ = 0, wµλ = RλBw
Bµ. (7.1.20)

Its Nijenhuis torsion (11.2.60) fails to vanish, unless coefficients wµλ are

independent of coordinates rλ.

7.1.3 Partial action-angle coordinates

Given a partially integrable system (w,A) in Theorem 7.1.2, the bivector

field w (7.1.11) can be brought into the canonical form (7.1.8) with respect

to partial action-angle coordinates in forthcoming Theorem 7.1.4. This

theorem extends the Liouville–Arnold theorem to the case of a Poisson

structure and a non-compact invariant submanifold [62; 65].

Theorem 7.1.4. Given a partially integrable system (w,A) on a Poisson

manifold (U,w), there exists a toroidal domain U ′ ⊂ U equipped with par-

tial action-angle coordinates (Ia, Ii, z
A, τa, φi) such that, restricted to U ′,

a Poisson bivector field takes the canonical form

w = ∂a ∧ ∂a + ∂i ∧ ∂i, (7.1.21)

while the dynamical algebra A is generated by Hamiltonian vector fields of

the action coordinate functions Sa = Ia, Si = Ii.
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Proof. First, let us employ Theorem 7.1.2 and restrict U to the toroidal

domain, say U again, equipped with coordinates (Jλ, z
A, rλ) such that the

Poisson bivector field w takes the form (7.1.11) and the algebra A is gen-

erated by the Hamiltonian vector fields ϑλ (7.1.12) of m independent func-

tions Sλ = Jλ in involution. Let us choose these vector fields as new

generators of the group G and return to Theorem 7.1.1. In accordance

with this theorem, there exists a toroidal domain U ′ ⊂ U provided with

another trivialization U ′ → N ′ ⊂ N in toroidal cylinders Rm−r × T r and

endowed with bundle coordinates (Jλ, z
A, rλ) such that the vector fields ϑλ

(7.1.12) take the form (7.1.7). For the sake of simplicity, let U ′, N ′ and

yλ be denoted U , N and rλ = (ta, ϕi) again. Herewith, the Poisson bivec-

tor field w is given by the expression (7.1.11) with new coefficients. Let

w] : T ∗U → TU be the corresponding bundle homomorphism. It factorizes

in a unique fashion (3.1.29):

w] : T ∗U
i∗
F−→TF∗ w]

F−→TF iF−→TU

through the bundle isomorphism

w]F : TF∗ → TF , w]F : α→ −w(x)bα.
Then the inverse isomorphisms w[F : TF → TF∗ provides the foliated

manifold (U,F) with the leafwise symplectic form

ΩF = Ωµν(Jλ, z
A, ta)d̃Jµ ∧ d̃Jν + Ωνµ(Jλ, z

A)d̃Jν ∧ d̃rµ, (7.1.22)

Ωαµw
µ
β = δαβ , Ωαβ = −ΩαµΩβνw

µν . (7.1.23)

Let us show that it is d̃-exact. Let F be a leaf of the foliation F of U . There

is a homomorphism of the de Rham cohomology H∗
DR(U) of U to the de

Rham cohomology H∗
DR(F ) of F , and it factorizes through the leafwise

cohomology H∗
F (U) due to (3.1.33). Since N is a domain of an adapted

coordinate chart of the foliation FN , the foliation FN of N is a trivial fibre

bundle

N = V ×W →W.

Since F is the pull-back onto U of the foliation FN of N , it also is a trivial

fibre bundle

U = V ×W × (Rk−m × Tm)→W (7.1.24)

over a domain W ⊂ RdimZ−2m. It follows that

H∗
DR(U) = H∗

DR(T r) = H∗
F (U).
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Then the closed leafwise two-form ΩF (7.1.22) is exact due to the absence

of the term Ωµνdr
µ ∧ drν . Moreover, ΩF = d̃Ξ where Ξ reads

Ξ = Ξα(Jλ, z
A, rλ)d̃Jα + Ξi(Jλ, z

A)d̃ϕi

up to a d̃-exact leafwise form. The Hamiltonian vector fields ϑλ = ϑµλ∂µ
(7.1.7) obey the relation

ϑλcΩF = −d̃Jλ, Ωαβϑ
β
λ = δαλ , (7.1.25)

which falls into the following conditions

Ωλi = ∂λΞi − ∂iΞλ, (7.1.26)

Ωλa = −∂aΞλ = δλa . (7.1.27)

The first of the relations (7.1.23) shows that Ωαβ is a non-degenerate matrix

independent of coordinates rλ. Then the condition (7.1.26) implies that

∂iΞ
λ are independent of ϕi, and so are Ξλ since ϕi are cyclic coordinates.

Hence,

Ωλi = ∂λΞi, (7.1.28)

∂icΩF = −d̃Ξi. (7.1.29)

Let us introduce new coordinates Ia = Ja, Ii = Ξi(Jλ). By virtue of the

equalities (7.1.27) and (7.1.28), the Jacobian of this coordinate transforma-

tion is regular. The relation (7.1.29) shows that ∂i are Hamiltonian vector

fields of the functions Si = Ii. Consequently, we can choose vector fields

∂λ as generators of the algebra A. One obtains from the equality (7.1.27)

that

Ξa = −ta +Ea(Jλ, z
A)

and Ξi are independent of ta. Then the leafwise Liouville form Ξ reads

Ξ = (−ta +Ea(Iλ, z
A))d̃Ia +Ei(Iλ, z

A)d̃Ii + Iid̃ϕ
i.

The coordinate shifts

τa = −ta +Ea(Iλ, z
A), φi = ϕi −Ei(Iλ, zA)

bring the leafwise form ΩF (7.1.22) into the canonical form

ΩF = d̃Ia ∧ d̃τa + d̃Ii ∧ d̃φi

which ensures the canonical form (7.1.21) of a Poisson bivector field w. �
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7.1.4 Partially integrable system on a symplectic manifold

Let A be a commutative dynamical algebra on a 2n-dimensional connected

symplectic manifold (Z,Ω). Let it obey condition (a) in Definition 7.1.1.

However, condition (b) is not necessarily satisfied, unless m = n, i.e., a sys-

tem is completely integrable. Therefore, we modify a definition of partially

integrable systems on a symplectic manifold.

Definition 7.1.3. A collection {S1, . . . , Sm} of m ≤ n independent smooth

real functions in involution on a symplectic manifold (Z,Ω) is called a

partially integrable system.

Remark 7.1.4. By analogy with Definition 7.1.1, one can require that

functions Sλ in Definition 7.1.3 are independent almost everywhere on Z.

However, all theorems that we have proved above are concerned with par-

tially integrable systems restricted to some open submanifold Z ′ ⊂ Z of

regular points of Z. Therefore, let us restrict functions Sλ to an open sub-

manifold Z ′ ⊂ Z where they are independent, and we obtain a partially

integrable system on a symplectic manifold (Z ′,Ω) which obeys Definition

7.1.3. However, it may happen that Z ′ is not connected. In this case, we

have different partially integrable systems on different components of Z ′.

Given a partially integrable system (Sλ) in Definition 7.1.3, let us con-

sider the map

S : Z →W ⊂ Rm. (7.1.30)

Since functions Sλ are everywhere independent, this map is a submersion

onto a domain W ⊂ Rm, i.e., S (7.1.30) is a fibred manifold of fibre di-

mension 2n−m. Hamiltonian vector fields ϑλ of functions Sλ are mutually

commutative and independent. Consequently, they span an m-dimensional

involutive distribution on Z whose maximal integral manifolds constitute

an isotropic foliation F of Z. Because functions Sλ are constant on leaves

of this foliation, each fibre of a fibred manifold Z → W (7.1.30) is foliated

by the leaves of the foliation F .

Ifm = n, we are in the case of a completely integrable system, and leaves

of F are connected components of fibres of the fibred manifold (7.1.30).

The Poincaré – Lyapounov – Nekhoroshev theorem [51; 122] generalizes

the Liouville – Arnold one to a partially integrable system if leaves of the

foliation F are compact. It imposes a sufficient condition which Hamilto-

nian vector fields vλ must satisfy in order that the foliation F is a fibred
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manifold [51; 52]. Extending the Poincaré – Lyapounov – Nekhoroshev the-

orem to the case of non-compact invariant submanifolds, we in fact assume

from the beginning that these submanifolds form a fibred manifold [62;

65].

Theorem 7.1.5. Let a partially integrable system {S1, . . . , Sm} on a sym-

plectic manifold (Z,Ω) satisfy the following conditions.

(i) The Hamiltonian vector fields ϑλ of Sλ are complete.

(ii) The foliation F is a fibred manifold

π : Z → N (7.1.31)

whose fibres are mutually diffeomorphic.

Then the following hold.

(I) The fibres of F are diffeomorphic to the toroidal cylinder (7.1.1).

(II) Given a fibre M of F , there exists its open saturated neighborhood

U whose fibration (7.1.31) is a trivial principal bundle with the structure

group (7.1.1).

(III) The neighborhood U is provided with the bundle (partial action-

angle) coordinates

(Iλ, ps, q
s, yλ)→ (Iλ, ps, q

s), λ = 1, . . . ,m, s = 1, . . . n−m,

such that: (i) the action coordinates (Iλ) (7.1.42) are expressed in the values

of the functions (Sλ), (ii) the angle coordinates (yλ) (7.1.45) are coordinates

on a toroidal cylinder, and (iii) the symplectic form Ω on U reads

Ω = dIλ ∧ dyλ + dps ∧ dqs. (7.1.32)

Proof. (I) The proof of parts (I) and (II) repeats exactly that of parts

(I) and (II) of Theorem 7.1.1. As a result, let

π : U → π(U) ⊂ N (7.1.33)

be a trivial principal bundle with the structure group Rm−r×T r, endowed

with the standard coordinate atlas (rλ) = (ta, ϕi). Then U (7.1.33) admits

a trivialization

U = π(U)× (Rm−r × T r)→ π(U) (7.1.34)

with respect to the fibre coordinates (ta, ϕi). The Hamiltonian vector fields

ϑλ on U relative to these coordinates read (7.1.7):

ϑa = ∂a, ϑi = −(BC−1)ai (x)∂a + (C−1)ki (x)∂k . (7.1.35)
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In order to specify coordinates on the base π(U) of the trivial bundle

(7.1.34), let us consider the fibred manifold S (7.1.30). It factorizes as

S : U
π−→π(U)

π′

−→S(U)

through the fibre bundle π. The map π′ also is a fibred manifold. One can

always restrict the domain π(U) to a chart of the fibred manifold π′, say

π(U) again. Then π(U)→ S(U) is a trivial bundle π(U) = S(U)× V , and

so is U → S(U). Thus, we have the composite bundle

U = S(U)× V × (Rm−r × T r)→ S(U)× V → S(U). (7.1.36)

Let us provide its base S(U) with the coordinates (Jλ) such that

Jλ ◦ S = Sλ. (7.1.37)

Then π(U) can be equipped with the bundle coordinates (Jλ, x
A), A =

1, . . . , 2(n − m), and (Jλ, x
A, ta, ϕi) are coordinates on U (7.1.2). Since

fibres of U → π(U) are isotropic, a symplectic form Ω on U relative to the

coordinates (Jλ, x
A, rλ) reads

Ω = ΩαβdJα ∧ dJβ + ΩαβdJα ∧ drβ (7.1.38)

+ ΩABdx
A ∧ dxB + ΩλAdJλ ∧ dxA + ΩAβdx

A ∧ drβ .

The Hamiltonian vector fields ϑλ = ϑµλ∂µ (7.1.35) obey the relations

ϑλcΩ = −dJλ which result in the coordinate conditions

Ωαβϑ
β
λ = δαλ , ΩAβϑ

β
λ = 0. (7.1.39)

The first of them shows that Ωαβ is a non-degenerate matrix independent

of coordinates rλ. Then the second one implies that ΩAβ = 0. By virtue

of the well-known Künneth formula for the de Rham cohomology of mani-

fold products, the closed form Ω (7.1.38) is exact, i.e., Ω = dΞ where the

Liouville form Ξ is

Ξ = Ξα(Jλ, x
B , rλ)dJα + Ξi(Jλ, x

B)dϕi + ΞA(Jλ, x
B , rλ)dxA.

Since Ξa = 0 and Ξi are independent of ϕi, it follows from the relations

ΩAβ = ∂AΞβ − ∂βΞA = 0

that ΞA are independent of coordinates ta and are at most affine in ϕi.

Since ϕi are cyclic coordinates, ΞA are independent of ϕi. Hence, Ξi are

independent of coordinates xA, and the Liouville form reads

Ξ = Ξα(Jλ, x
B , rλ)dJα + Ξi(Jλ)dϕ

i + ΞA(Jλ, x
B)dxA. (7.1.40)
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Because entries Ωαβ of dΞ = Ω are independent of rλ, we obtain the

following.

(i) Ωλi = ∂λΞi−∂iΞλ. Consequently, ∂iΞ
λ are independent of ϕi, and so

are Ξλ since ϕi are cyclic coordinates. Hence, Ωλi = ∂λΞi and ∂icΩ = −dΞi.
A glance at the last equality shows that ∂i are Hamiltonian vector fields. It

follows that, from the beginning, one can separate m generating functions

on U , say Si again, whose Hamiltonian vector fields are tangent to invariant

tori. In this case, the matrix B in the expressions (7.1.6) and (7.1.35)

vanishes, and the Hamiltonian vector fields ϑλ (7.1.35) read

ϑa = ∂a, ϑi = (C−1)ki ∂k. (7.1.41)

Moreover, the coordinates ta are exactly the flow parameters sa. Substi-

tuting the expressions (7.1.41) into the first condition (7.1.39), we obtain

Ω = ΩαβdJα ∧ dJβ + dJa ∧ dsa + CikdJi ∧ dϕk

+ ΩABdx
A ∧ dxB + ΩλAdJλ ∧ dxA.

It follows that Ξi are independent of Ja, and so are Cki = ∂kΞi.

(ii) Ωλa = −∂aΞλ = δλa . Hence, Ξa = −sa+Ea(Jλ) and Ξi = Ei(Jλ, x
B)

are independent of sa.

In view of items (i) – (ii), the Liouville form Ξ (7.1.40) reads

Ξ = (−sa +Ea(Jλ, x
B))dJa +Ei(Jλ, x

B)dJi

+ Ξi(Jj)dϕ
i + ΞA(Jλ, x

B)dxA.

Since the matrix ∂kΞi is non-degenerate, we can perform the coordinate

transformations

Ia = Ja, Ii = Ξi(Jj), (7.1.42)

r′a = −sa +Ea(Jλ, x
B), r′i = ϕi −Ej(Jλ, xB)

∂Jj
∂Ii

.

These transformations bring Ω into the form

Ω = dIλ ∧ dr′λ + ΩAB(Iµ, x
C)dxA ∧ dxB + ΩλA(Iµ, x

C)dIλ ∧ dxA. (7.1.43)

Since functions Iλ are in involution and their Hamiltonian vector fields ∂λ
mutually commute, a point z ∈M has an open neighborhood

Uz = π(Uz)×Oz, Oz ⊂ Rm−r × T r,
endowed with local Darboux coordinates (Iλ, ps, q

s, yλ), s = 1, . . . , n −m,

such that the symplectic form Ω (7.1.43) is given by the expression

Ω = dIλ ∧ dyλ + dps ∧ dqs. (7.1.44)
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Here, yλ(Iλ, x
A, r′α) are local functions

yλ = r′λ + fλ(Iλ, x
A) (7.1.45)

on Uz. With the above-mentioned group G of flows of Hamiltonian vector

fields ϑλ, one can extend these functions to an open neighborhood

π(Uz)× Rk−m × Tm

of M , say U again, by the law

yλ(Iλ, x
A, G(z)α) = G(z)λ + fλ(Iλ, x

A).

Substituting the functions (7.1.45) on U into the expression (7.1.43), one

brings the symplectic form Ω into the canonical form (7.1.32) on U . �

Remark 7.1.5. If one supposes from the beginning that leaves of the foli-

ation F are compact, the conditions of Theorem 7.1.5 can be replaced with

that F is a fibred manifold (see Theorems 11.2.4 and 11.2.12).

7.1.5 Global partially integrable systems

As was mentioned above, there is a topological obstruction to the existence

of global action-angle coordinates. Forthcoming Theorem 7.1.6 is a global

generalization of Theorem 7.1.5 [110; 143].

Theorem 7.1.6. Let a partially integrable system {S1, . . . , Sm} on a sym-

plectic manifold (Z,Ω) satisfy the following conditions.

(i) The Hamiltonian vector fields ϑλ of Sλ are complete.

(ii) The foliation F is a fibre bundle

π : Z → N. (7.1.46)

(iii) Its base N is simply connected and the cohomology H2(N ; Z) of N

with coefficients in the constant sheaf Z is trivial.

Then the following hold.

(I) The fibre bundle (7.1.46) is a trivial principal bundle with the struc-

ture group (7.1.1), and we have a composite fibred manifold

S = ζ ◦ π : Z −→N −→W, (7.1.47)

where N →W however need not be a fibre bundle.

(II) The fibred manifold (7.1.47) is provided with the global fibred

action-angle coordinates

(Iλ, x
A, yλ)→ (Iλ, x

A)→ (Iλ), λ = 1, . . . ,m, A = 1, . . . 2(n−m),
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such that: (i) the action coordinates (Iλ) (7.1.56) are expressed in the values

of the functions (Sλ) and they possess identity transition functions, (ii) the

angle coordinates (yλ) (7.1.56) are coordinates on a toroidal cylinder, (iii)

the symplectic form Ω on U reads

Ω = dIλ ∧ dyλ + ΩλAdIλ ∧ dxA + ΩABdx
A ∧ dxB . (7.1.48)

Proof. Following part (I) of the proof of Theorems 7.1.1 and 7.1.5, one

can show that a typical fibre of the fibre bundle (7.1.46) is the toroidal

cylinder (7.1.1). Let us bring this fibre bundle into a principal bundle with

the structure group (7.1.1). Generators of each isotropy subgroup Kx of

Rm are given by r linearly independent vectors ui(x) of a group space Rm.

These vectors are assembled into an r-fold covering K → N . This is a

subbundle of the trivial bundle

N × Rm → N (7.1.49)

whose local sections are local smooth sections of the fibre bundle (7.1.49).

Such a section over an open neighborhood of a point x ∈ N is given by a

unique local solution sλ(x′)eλ, eλ = ϑλ, of the equation

g(sλ)σ(x′) = exp(sλeλ)σ(x′) = σ(x′), sλ(x)eλ = ui(x),

where σ is an arbitrary local section of the fibre bundle Z → N over an

open neighborhood of x. Since N is simply connected, the coveringK → N

admits r everywhere different global sections ui which are global smooth

sections ui(x) = uλi (x)eλ of the fibre bundle (7.1.49). Let us fix a point

of N further denoted by {0}. One can determine linear combinations of

the functions Sλ, say again Sλ, such that ui(0) = ei, i = m − r, . . . ,m,

and the group G0 is identified to the group Rm−r × T r. Let Ex denote an

r-dimensional subspace of Rm passing through the points u1(x), . . . , ur(x).

The spaces Ex, x ∈ N , constitute an r-dimensional subbundle E → N of

the trivial bundle (7.1.49). Moreover, the latter is split into the Whitney

sum of vector bundles E ⊕ E ′, where E′
x = Rm/Ex [85]. Then there is a

global smooth section γ of the trivial principal bundle N ×GL(m,R)→ N

such that γ(x) is a morphism of E0 onto Ex, where

ui(x) = γ(x)(ei) = γλi eλ.

This morphism also is an automorphism of the group Rm sending K0 onto

Kx. Therefore, it provides a group isomorphism ρx : G0 → Gx. With these

isomorphisms, one can define the fibrewise action of the group G0 on Z

given by the law

G0 ×Mx → ρx(G0)×Mx →Mx. (7.1.50)
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Namely, let an element of the group G0 be the coset g(sλ)/K0 of an element

g(sλ) of the group Rm. Then it acts on Mx by the rule (7.1.50) just as the

coset g((γ(x)−1)λβs
β)/Kx of an element g((γ(x)−1)λβs

β) of Rm does. Since

entries of the matrix γ are smooth functions on N , the action (7.1.50) of

the group G0 on Z is smooth. It is free, and Z/G0 = N . Thus, Z → N

(7.1.46) is a principal bundle with the structure group G0 = Rm−r × T r.
Furthermore, this principal bundle over a paracompact smooth manifold

N is trivial as follows. In accordance with the well-known theorem [85], its

structure group G0 (7.1.1) is reducible to the maximal compact subgroup

T r, which also is the maximal compact subgroup of the group product
r
×GL(1,C). Therefore, the equivalence classes of T r-principal bundles ξ

are defined as

c(ξ) = c(ξ1 ⊕ · · · ⊕ ξr) = (1 + c1(ξ1)) · · · (1 + c1(ξr))

by the Chern classes c1(ξi) ∈ H2(N ; Z) of U(1)-principal bundles ξi over

N [85]. Since the cohomology group H2(N ; Z) of N is trivial, all Chern

classes c1 are trivial, and the principal bundle Z → N over a contractible

base also is trivial. This principal bundle can be provided with the following

coordinate atlas.

Let us consider the fibred manifold S : Z → W (7.1.30). Because

functions Sλ are constant on fibres of the fibre bundle Z → N (7.1.46), the

fibred manifold (7.1.30) factorizes through the fibre bundle (7.1.46), and we

have the composite fibred manifold (7.1.47). Let us provide the principal

bundle Z → N with a trivialization

Z = N × Rm−r × T r → N, (7.1.51)

whose fibres are endowed with the standard coordinates (rλ) = (ta, ϕi) on

the toroidal cylinder (7.1.1). Then the composite fibred manifold (7.1.47)

is provided with the fibred coordinates

(Jλ, x
A, ta, ϕi), (7.1.52)

λ = 1, . . . ,m, A = 1, . . . , 2(n−m), a = 1, . . . ,m− r, i = 1, . . . , r,

where Jλ (7.1.37) are coordinates on the base W induced by Cartesian co-

ordinates on Rm, and (Jλ, x
A) are fibred coordinates on the fibred manifold

ζ : N → W . The coordinates Jλ on W ⊂ Rm and the coordinates (ta, ϕi)

on the trivial bundle (7.1.51) possess the identity transition functions, while

the transition function of coordinates (xA) depends on the coordinates (Jλ)

in general.
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The Hamiltonian vector fields ϑλ on Z relative to the coordinates

(7.1.52) take the form

ϑλ = ϑaλ(x)∂a + ϑiλ(x)∂i. (7.1.53)

Since these vector fields commute (i.e., fibres of Z → N are isotropic), the

symplectic form Ω on Z reads

Ω = ΩαβdJα ∧ drβ + ΩαAdr
α ∧ dxA + ΩαβdJα ∧ dJβ (7.1.54)

+ ΩαAdJα ∧ dxA + ΩABdx
A ∧ dxB .

This form is exact (see Lemma 7.1.2 below). Thus, we can write

Ω = dΞ, Ξ = Ξλ(Jα, x
B , rα)dJλ + Ξλ(Jα, x

B)drλ (7.1.55)

+ ΞA(Jα, x
B , rα)dxA.

Up to an exact summand, the Liouville form Ξ (7.1.55) is brought into the

form

Ξ = Ξλ(Jα, x
B , rα)dJλ + Ξi(Jα, x

B)dϕi + ΞA(Jα, x
B , rα)dxA,

i.e., it does not contain the term Ξadt
a.

The Hamiltonian vector fields ϑλ (7.1.53) obey the relations ϑλcΩ =

−dJλ, which result in the coordinate conditions (7.1.39). Then following

the proof of Theorem 7.1.5, we can show that a symplectic form Ω on Z is

given by the expression (7.1.48) with respect to the coordinates

Ia = Ja, Ii = Ξi(Jj), (7.1.56)

ya = −Ξa = ta −Ea(Jλ, xB), yi = ϕi − Ξj(Jλ, x
B)
∂Jj
∂Ii

.
�

Lemma 7.1.2. The symplectic form Ω (7.1.54) is exact.

Proof. In accordance with the well-known Künneth formula, the de

Rham cohomology group of the product (7.1.51) reads

H2
DR(Z) = H2

DR(N)⊕H1
DR(N)⊗H1

DR(T r)⊕H2
DR(T r).

By the de Rham theorem [85], the de Rham cohomology H2
DR(N) is iso-

morphic to the cohomologyH2(N ; R) of N with coefficients in the constant

sheaf R. It is trivial since

H2(N ; R) = H2(N ; Z)⊗ R

where H2(N ; Z) is trivial. The first cohomology group H1
DR(N) of N is

trivial because N is simply connected. Consequently, H2
DR(Z) = H2

DR(T r).

Then the closed form Ω (7.1.54) is exact since it does not contain the term

Ωijdϕ
i ∧ dϕj . �
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7.2 KAM theorem for partially integrable systems

Introducing an appropriate Poisson structure for a partially integrable sys-

tem and using the methods in [20], one can extend the well-known KAM

theorem to partially integrable systems [62].

Let {Sλ}, λ = 1, . . . ,m, be a partially integrable system on a 2n-

dimensional symplectic manifold (Z,Ω). Let M be its connected compact

invariant submanifold which admits an open neighborhood satisfying The-

orem 7.1.5. In this case, Theorem 7.1.5 comes to the above mentioned

Nekhoroshev theorem. By virtue of this theorem, there exists an open

neighborhood of M which is a trivial composite bundle

π : U = V ×W × Tm → V ×W → V (7.2.1)

(cf. (7.1.36)) over domains W ⊂ R2(n−m) and V ⊂ Rm. It is provided

with the partial action-angle coordinates (Iλ, x
A, φλ), λ = 1, . . . ,m, A =

1, . . . , 2(n−m), such that the symplectic form Ω on U reads

Ω = dIλ ∧ dφλ + ΩAB(Iµ, x
C)dxA ∧ dxB + ΩλA(Iµ, x

C)dIλ ∧ dxA (7.2.2)

(cf. (7.1.43)), while the generating functions Sλ depend only on the action

coordinates Iµ.

Note that, in accordance with part (III) of Theorem 7.1.5, one can

always restrict U to a Darboux coordinate chart provided with coordinates

(Ii, ps, q
s;ϕi) such that the symplectic form Ω (7.2.2) takes the canonical

form

Ω = dIλ ∧ dϕλ + dps ∧ dqs.
Then the partially integrable system {Sλ} on this chart can be extended to a

completely integrable system, e.g., {Sλ, ps}, but its invariant submanifolds

fail to be compact. Therefore, this is not the case of the KAM theorem.

Let H be a Hamiltonian of a partially integrable system on U (7.2.1)

such that the generating functions Sλ are integrals of motion of H. There-

fore, H is independent of the angle variables. Let us assume that it depends

on only the action ones. Then its Hamiltonian vector field

ξ = ∂µH(Iλ)∂µ (7.2.3)

with respect to the symplectic form Ω (7.2.2) yields the Hamilton equation

İλ = 0, ẋA = 0, φ̇µ = ∂µH(Iλ) (7.2.4)

on U . Let us consider perturbations

H′ = H+H1(Iµ, x
A, φµ). (7.2.5)
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We assume the following. (i) The Hamiltonian H and its perturbations

(7.2.5) are real analytic, although generalizations to the case of infinite and

finite order of differentiability are possible [20]. (ii) The Hamiltonian H is

non-degenerate, i.e., the frequency map

ω : V ×W 3 (Iµ, x
A)→ (ξλ(Iµ)) ∈ Rm

is of rank m.

Note that ω(V ×W ) ⊂ Rm is open and bounded. As usual, given γ > 0,

let

Ωγ =



ω ∈ Rm : |ωµaµ| ≥ γ

(
m∑

λ=1

|aλ|
)−m−1

, a ∈ Zm \ {0}





denote the Cantor set of non-resonant frequencies. The complement of

Ωγ ∩ ω(V ×W ) in ω(V ×W ) is dense and open, but its relative Lebesgue

measure tends to zero with γ. Let us denote Γγ = ω−1(Ωγ), which also is

called the Cantor set.

A problem is that the Hamiltonian vector field of the perturbed Hamil-

tonian (7.2.5) with respect to the symplectic form Ω (7.2.2) leads to the

Hamilton equation ẋA 6= 0 and, therefore, no torus (7.2.4) persists.

To overcome this difficulty, let us provide the toroidal domain U (7.2.1)

with the degenerate Poisson structure given by the Poisson bivector field

w = ∂λ ∧ ∂λ (7.2.6)

of rank 2m. It is readily observed that, relative to w, all integrals of motion

of the original partially integrable system (Ω, {Sλ}) remain in involution

and, moreover, they possess the same Hamiltonian vector fields ϑλ. In

particular, a Hamiltonian H with respect to the Poisson structure (7.2.6)

leads to the same Hamilton equation (7.2.4). Thus, we can think of the pair

(w, {Sλ}) as being a partially integrable system on the Poisson manifold

(U,w). The key point is that, with respect to the Poisson bivector field

w (7.2.6), the Hamiltonian vector field of the perturbed Hamiltonian H′

(7.2.5) is

ξ′ = ∂λH′∂λ − ∂λH′∂λ, (7.2.7)

and the corresponding autonomous first order dynamic equation on U reads

İλ = −∂λH′(Iµ, x
B , φµ), ẋA = 0, φ̇λ = ∂λH′(Iµ, s

B , φjµ). (7.2.8)

This is a Hamilton equation with respect to the Poisson structure w (7.2.6),

but it is not so relative to the original symplectic form Ω. Since ẋA = 0
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and the toroidal domain U (7.2.1) is a trivial bundle over W , one can think

of the dynamic equation (7.2.8) as being a perturbation of the dynamic

equation (7.2.4) depending on parameters xA. Furthermore, the Poisson

manifold (U,w) is the product of a symplectic manifold (V × Tm,Ω′) with

the symplectic form

Ω′ = dIλ ∧ dφλ (7.2.9)

and a Poisson manifold (W,w = 0) with the zero Poisson structure. There-

fore, the equation (7.2.8) can be seen as a Hamilton equation on the sym-

plectic manifold (V × Tm,Ω′) depending on parameters. Then one can

apply the conditions of quasi-periodic stability of symplectic Hamiltonian

systems depending on parameters [20] with respect to the perturbation

(7.2.8).

In a more general setting, these conditions can be formulated as fol-

lows. Let (w, {Sλ}), λ = 1, . . . ,m, be a partially integrable system on a

regular Poisson manifold (Z,w) of rank 2m. Let M be its regular connected

compact invariant submanifold, and let U be its toroidal neighborhood U

(7.2.1) in Theorem 7.1.4 provided with the partial action-angle coordinates

(Iλ, x
A, φλ) such that the Poisson bivector w on U takes the canonical form

(7.2.6). The following result is a reformulation of that in ([20], Section 5c),

where P = W is a parameter space and σ is the symplectic form (7.2.9) on

V × Tm.

Theorem 7.2.1. Given a torus {0} × Tm, let

ξ = ξλ(Iµ, x
A)∂λ (7.2.10)

(cf. (7.2.3)) be a real analytic Hamiltonian vector field whose frequency

map

ω : V ×W 3 (Iµ, x
A)→ ξλ(Iµ, x

A) ∈ Rm

is of maximal rank at {0}. Then there exists a neighborhood N0 ⊂ V ×W
of {0} such that, for any real analytic Hamiltonian vector field

ξ̃ = ξ̃λ(Iµ, x
A, φµ)∂λ + ξ̃λ(Iµ, x

A, φµ)∂λ
(cf. (7.2.7)) sufficiently near ξ (7.2.10) in the real analytic topology, the

following holds. Given the Cantor set Γγ ⊂ N0, there exists the ξ̃-invariant

Cantor set Γ̃ ⊂ N0× Tm which is a C∞-near-identity diffeomorphic image

of Γγ × Tm.

Theorem 7.2.1 is an extension of the KAM theorem [101] to partially

integrable systems on Poisson manifolds (Z,w). Given a partially integrable

system (Ω, {Sλ}) on a symplectic manifold (Z,Ω), Theorem 7.2.1 enables

one to obtain its perturbations (7.2.7) possessing a large number of invariant

tori, though these perturbations are not Hamiltonian.
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7.3 Superintegrable systems with non-compact invariant

submanifolds

In comparison with partially integrable and completely integrable systems

integrals of motion of a superintegrable system need not be in involution.

We consider superintegrable systems on a symplectic manifold. Completely

integrable systems are particular superintegrable systems.

Definition 7.3.1. Let (Z,Ω) be a 2n-dimensional connected symplectic

manifold, and let (C∞(Z), {, }) be the Poisson algebra of smooth real func-

tions on Z. A subset

F = (F1, . . . , Fk), n ≤ k < 2n, (7.3.1)

of the Poisson algebra C∞(Z) is called a superintegrable system if the

following conditions hold.

(i) All the functions Fi (called the generating functions of a superinte-

grable system) are independent, i.e., the k-form
k∧ dFi nowhere vanishes on

Z. It follows that the map F : Z → Rk is a submersion, i.e.,

F : Z → N = F (Z) (7.3.2)

is a fibred manifold over a domain (i.e., contractible open subset) N ⊂ Rk

endowed with the coordinates (xi) such that xi ◦ F = Fi.

(ii) There exist smooth real functions sij on N such that

{Fi, Fj} = sij ◦ F, i, j = 1, . . . , k. (7.3.3)

(iii) The matrix function s with the entries sij (7.3.3) is of constant

corank m = 2n− k at all points of N .

Remark 7.3.1. We restrict our consideration to the case of generating

functions which are independent everywhere on a symplectic manifold Z

(see Remarks 7.1.4 and 7.3.2).

If k = n, then s = 0, and we are in the case of completely integrable

systems as follows.

Definition 7.3.2. The subset F , k = n, (7.3.1) of the Poisson algebra

C∞(Z) on a symplectic manifold (Z,Ω) is called a completely integrable

system if Fi are independent functions in involution.

If k > n, the matrix s is necessarily non-zero. Therefore, superintegrable

systems also are called non-commutative completely integrable systems. If

k = 2n− 1, a superintegrable system is called maximally superintegrable.
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The following two assertions clarify the structure of superintegrable sys-

tems [41; 46].

Proposition 7.3.1. Given a symplectic manifold (Z,Ω), let F : Z → N be

a fibred manifold such that, for any two functions f , f ′ constant on fibres

of F , their Poisson bracket {f, f ′} is so. By virtue of Theorem 3.1.3, N is

provided with an unique coinduced Poisson structure {, }N such that F is a

Poisson morphism.

Since any function constant on fibres of F is a pull-back of some function

on N , the superintegrable system (7.3.1) satisfies the condition of Propo-

sition 7.3.1 due to item (ii) of Definition 7.3.1. Thus, the base N of the

fibration (7.3.2) is endowed with a coinduced Poisson structure of corank

m. With respect to coordinates xi in item (i) of Definition 7.3.1 its bivector

field reads

w = sij(xk)∂
i ∧ ∂j . (7.3.4)

Proposition 7.3.2. Given a fibred manifold F : Z → N in Proposition

7.3.1, the following conditions are equivalent [41; 104]:

(i) the rank of the coinduced Poisson structure {, }N on N equals

2dimN − dimZ,

(ii) the fibres of F are isotropic,

(iii) the fibres of F are maximal integral manifolds of the involutive

distribution spanned by the Hamiltonian vector fields of the pull-back F ∗C

of Casimir functions C of the coinduced Poisson structure (7.3.4) on N .

It is readily observed that the fibred manifold F (7.3.2) obeys condi-

tion (i) of Proposition 7.3.2 due to item (iii) of Definition 7.3.1, namely,

k −m = 2(k − n).

Fibres of the fibred manifold F (7.3.2) are called the invariant

submanifolds.

Remark 7.3.2. In many physical models, condition (i) of Definition 7.3.1

fails to hold. Just as in the case of partially integrable systems, it can be

replaced with that a subset ZR ⊂ Z of regular points (where
k∧ dFi 6= 0)

is open and dense. Let M be an invariant submanifold through a regular

point z ∈ ZR ⊂ Z. Then it is regular, i.e., M ⊂ ZR. Let M admit a regular

open saturated neighborhood UM (i.e., a fibre of F through a point of UM
belongs to UM ). For instance, any compact invariant submanifold M has

such a neighborhood UM . The restriction of functions Fi to UM defines a
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superintegrable system on UM which obeys Definition 7.3.1. In this case,

one says that a superintegrable system is considered around its invariant

submanifold M .

Let (Z,Ω) be a 2n-dimensional connected symplectic manifold. Given

the superintegrable system (Fi) (7.3.1) on (Z,Ω), the well known

Mishchenko – Fomenko theorem (Theorem 7.3.2) states the existence of

(semi-local) generalized action-angle coordinates around its connected com-

pact invariant submanifold [16; 41; 115]. The Mishchenko – Fomenko the-

orem is extended to superintegrable systems with non-compact invariant

submanifolds (Theorem 7.3.1) [46; 48; 143]. These submanifolds are diffeo-

morphic to a toroidal cylinder

Rm−r × T r, m = 2n− k, 0 ≤ r ≤ m. (7.3.5)

Note that the Mishchenko – Fomenko theorem is mainly applied to

superintegrable systems whose integrals of motion form a compact Lie al-

gebra. The group generated by flows of their Hamiltonian vector fields is

compact. Since a fibration of a compact manifold possesses compact fibres,

invariant submanifolds of such a superintegrable system are compact. With

Theorem 7.3.1, one can describe superintegrable Hamiltonian system with

an arbitrary Lie algebra of integrals of motion (see Section 7.6).

Given a superintegrable system in accordance with Definition 7.3.1, the

above mentioned generalization of the Mishchenko – Fomenko theorem to

non-compact invariant submanifolds states the following.

Theorem 7.3.1. Let the Hamiltonian vector fields ϑi of the functions Fi
be complete, and let the fibres of the fibred manifold F (7.3.2) be connected

and mutually diffeomorphic. Then the following hold.

(I) The fibres of F (7.3.2) are diffeomorphic to the toroidal cylinder

(7.3.5).

(II) Given a fibre M of F (7.3.2), there exists its open saturated neigh-

borhood UM which is a trivial principal bundle

UM = NM × Rm−r × T r F−→NM (7.3.6)

with the structure group (7.3.5).

(III) The neighborhood UM is provided with the bundle (generalized

action-angle) coordinates (Iλ, ps, q
s, yλ), λ = 1, . . . ,m, s = 1, . . . , n − m,

such that: (i) the generalized angle coordinates (yλ) are coordinates on

a toroidal cylinder, i.e., fibre coordinates on the fibre bundle (7.3.6), (ii)

(Iλ, ps, q
s) are coordinates on its base NM where the action coordinates (Iλ)
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are values of Casimir functions of the coinduced Poisson structure {, }N on

NM , and (iii) the symplectic form Ω on UM reads

Ω = dIλ ∧ dyλ + dps ∧ dqs. (7.3.7)

Proof. It follows from item (iii) of Proposition 7.3.2 that every fibreM of

the fibred manifold (7.3.2) is a maximal integral manifolds of the involutive

distribution spanned by the Hamiltonian vector fields υλ of the pull-back

F ∗Cλ of m independent Casimir functions {C1, . . . , Cm} of the Poisson

structure {, }N (7.3.4) on an open neighborhood NM of a point F (M) ∈ N .

Let us put UM = F−1(NM ). It is an open saturated neighborhood of M .

Consequently, invariant submanifolds of a superintegrable system (7.3.1)

on UM are maximal integral manifolds of the partially integrable system

C∗ = (F ∗C1, . . . , F
∗Cm), 0 < m ≤ n, (7.3.8)

on a symplectic manifold (UM ,Ω). Therefore, statements (I) – (III) of

Theorem 7.3.1 are the corollaries of Theorem 7.1.5. Its condition (i) is

satisfied as follows. Let M ′ be an arbitrary fibre of the fibred manifold

F : UM → NM (7.3.2). Since

F ∗Cλ(z) = (Cλ ◦ F )(z) = Cλ(Fi(z)), z ∈M ′,

the Hamiltonian vector fields υλ on M ′ are R-linear combinations of Hamil-

tonian vector fields ϑi of the functions Fi It follows that υλ are elements of

a finite-dimensional real Lie algebra of vector fields on M ′ generated by the

vector fields ϑi. Since vector fields ϑi are complete, the vector fields υλ on

M ′ also are complete (see forthcoming Remark 7.3.3). Consequently, these

vector fields are complete on UM because they are vertical vector fields on

UM → N . The proof of Theorem 7.1.5 shows that the action coordinates

(Iλ) are values of Casimir functions expressed in the original ones Cλ. �

Remark 7.3.3. If complete vector fields on a smooth manifold constitute

a basis for a finite-dimensional real Lie algebra, any element of this Lie

algebra is complete [127].

Remark 7.3.4. Since an open neighborhood UM (7.3.6) in item (II) of

Theorem 7.3.1 is not contractible, unless r = 0, the generalized action-

angle coordinates on U sometimes are called semi-local.

Remark 7.3.5. The condition of the completeness of Hamiltonian vector

fields of the generating functions Fi in Theorem 7.3.1 is rather restrictive

(see the Kepler system in Section 7.6). One can replace this condition

with that the Hamiltonian vector fields of the pull-back onto Z of Casimir

functions on N are complete.
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If the conditions of Theorem 7.3.1 are replaced with that the fibres of the

fibred manifold F (7.3.2) are compact and connected, this theorem restarts

the Mishchenko – Fomenko one as follows.

Theorem 7.3.2. Let the fibres of the fibred manifold F (7.3.2) be connected

and compact. Then they are diffeomorphic to a torus Tm, and statements

(II) – (III) of Theorem 7.3.1 hold.

Remark 7.3.6. In Theorem 7.3.2, the Hamiltonian vector fields υλ are

complete because fibres of the fibred manifold F (7.3.2) are compact. As

well known, any vector field on a compact manifold is complete.

If F (7.3.1) is a completely integrable system, the coinduced Poisson

structure on N equals zero, and the generating functions Fi are the pull-

back of n independent functions on N . Then Theorems 7.3.2 and 7.3.1

come to the Liouville – Arnold theorem [4; 101] and its generalization

(Theorem 7.3.3) to the case of non-compact invariant submanifolds [44;

65], respectively. In this case, the partially integrable system C∗ (7.3.8) is

exactly the original completely integrable system F .

Theorem 7.3.3. Given a completely integrable system, F in accordance

with Definition 7.3.2, let the Hamiltonian vector fields ϑi of the functions Fi
be complete, and let the fibres of the fibred manifold F (7.3.2) be connected

and mutually diffeomorphic. Then items (I) and (II) of Theorem 7.3.1 hold,

and its item (III) is replaced with the following one.

(III’) The neighborhood UM (7.3.6) where m = n is provided with the

bundle (generalized action-angle) coordinates (Iλ, y
λ), λ = 1, . . . , n, such

that the angle coordinates (yλ) are coordinates on a toroidal cylinder, and

the symplectic form Ω on UM reads

Ω = dIλ ∧ dyλ. (7.3.9)

7.4 Globally superintegrable systems

To study a superintegrable system, one conventionally considers it with re-

spect to generalized action-angle coordinates. A problem is that, restricted

to an action-angle coordinate chart on an open subbundle U of the fibred

manifold Z → N (7.3.2), a superintegrable system becomes different from

the original one since there is no morphism of the Poisson algebra C∞(U)

on (U,Ω) to that C∞(Z) on (Z,Ω). Moreover, a superintegrable system
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on U need not satisfy the conditions of Theorem 7.3.1 because it may hap-

pen that the Hamiltonian vector fields of the generating functions on U

are not complete. To describe superintegrable systems in terms of general-

ized action-angle coordinates, we therefore follow the notion of a globally

superintegrable system [143].

Definition 7.4.1. A superintegrable system F (7.3.1) on a symplectic ma-

nifold (Z,Ω) in Definition 7.3.1 is called globally superintegrable if there

exist global generalized action-angle coordinates

(Iλ, x
A, yλ), λ = 1, . . . ,m, A = 1, . . . , 2(n−m), (7.4.1)

such that: (i) the action coordinates (Iλ) are expressed in the values of

some Casimir functions Cλ on the Poisson manifold (N, {, }N), (ii) the

angle coordinates (yλ) are coordinates on the toroidal cylinder (7.1.1), and

(iii) the symplectic form Ω on Z reads

Ω = dIλ ∧ dyλ + ΩAB(Iµ, x
C)dxA ∧ dxB . (7.4.2)

It is readily observed that the semi-local generalized action-angle coordi-

nates on U in Theorem 7.3.1 are global on U in accordance with Definition

7.4.1.

Forthcoming Theorem 7.4.1 provides the sufficient conditions of the

existence of global generalized action-angle coordinates of a superinte-

grable system on a symplectic manifold (Z,Ω) [110; 143]. It generalizes

the well-known result for the case of compact invariant submanifolds [30;

41].

Theorem 7.4.1. A superintegrable system F on a symplectic manifold

(Z,Ω) is globally superintegrable if the following conditions hold.

(i) Hamiltonian vector fields ϑi of the generating functions Fi are

complete.

(ii) The fibred manifold F (7.3.2) is a fibre bundle with connected fibres.

(iii) Its base N is simply connected and the cohomology H2(V ; Z) is

trivial

(iv) The coinduced Poisson structure {, }N on a base N admits m in-

dependent Casimir functions Cλ.

Proof. Theorem 7.4.1 is a corollary of Theorem 7.1.6. In accordance

with Theorem 7.1.6, we have a composite fibred manifold

Z
F−→N

C−→W, (7.4.3)
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where C : N → W is a fibred manifold of level surfaces of the Casimir

functions Cλ (which coincides with the symplectic foliation of a Poisson

manifold N). The composite fibred manifold (7.4.3) is provided with the

adapted fibred coordinates (Jλ, x
A, rλ) (7.1.52), where Jλ are values of

independent Casimir functions and (rλ) = (ta, ϕi) are coordinates on a

toroidal cylinder. Since Cλ = Jλ are Casimir functions onN , the symplectic

form Ω (7.1.54) on Z reads

Ω = ΩαβdJα ∧ rβ + ΩαAdy
α ∧ dxA + ΩABdx

A ∧ dxB . (7.4.4)

In particular, it follows that transition functions of coordinates xA on N

are independent of coordinates Jλ, i.e., C : V → W is a trivial bundle. By

virtue of Lemma 7.1.2, the symplectic form (7.4.4) is exact, i.e., Ω = dΞ,

where the Liouville form Ξ (7.1.55) is

Ξ = Ξλ(Jα, y
µ)dJλ + Ξi(Jα)dϕi + ΞA(xB)dxA.

Then the coordinate transformations (7.1.56):

Ia = Ja, Ii = Ξi(Jj), (7.4.5)

ya = −Ξa = ta −Ea(Jλ), yi = ϕi − Ξj(Jλ)
∂Jj
∂Ii

,

bring Ω (7.4.4) into the form (7.4.2). In comparison with the general case

(7.1.56), the coordinate transformations (7.4.5) are independent of coordi-

nates xA. Therefore, the angle coordinates yi possess identity transition

functions on N . �

Theorem 7.4.1 restarts Theorem 7.3.1 if one considers an open subset

V of N admitting the Darboux coordinates xA on the symplectic leaves

of U .

Note that, if invariant submanifolds of a superintegrable system are

assumed to be connected and compact, condition (i) of Theorem 7.4.1 is

unnecessary since vector fields ϑλ on compact fibres of F are complete.

Condition (ii) also holds by virtue of Theorem 11.2.4. In this case, Theorem

7.4.1 reproduces the well known result in [30].

If F in Theorem 7.4.1 is a completely integrable system, the coinduced

Poisson structure on N equals zero, the generating functions Fi are the

pull-back of n independent functions on N , and Theorem 7.4.1 takes the

following form [110].

Theorem 7.4.2. Let a completely integrable system {F1, . . . , Fn} on a sym-

plectic manifold (Z,Ω) satisfy the following conditions.
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(i) The Hamiltonian vector fields ϑi of Fi are complete.

(ii) The fibred manifold F (7.3.2) is a fibre bundle with connected fibres

over a simply connected base N whose cohomology H2(N,Z) is trivial.

Then the following hold.

(I) The fibre bundle F (7.3.2) is a trivial principal bundle with the

structure group R2n−r × T r.
(II) The symplectic manifold Z is provided with the global Darboux co-

ordinates (Iλ, y
λ) such that Ω = dIλ ∧ dyλ.

It follows from the proof of Theorem 7.1.6 that its condition (iii) and,

accordingly, condition (iii) of Theorem 7.4.1 guarantee that fibre bundles

F in conditions (ii) of these theorems are trivial. Therefore, Theorem 7.4.1

can be reformulated as follows.

Theorem 7.4.3. A superintegrable system F on a symplectic manifold

(Z,Ω) is globally superintegrable if and only if the following conditions hold.

(i) The fibred manifold F (7.3.2) is a trivial fibre bundle.

(ii) The coinduced Poisson structure {, }N on a base N admits m inde-

pendent Casimir functions Cλ such that Hamiltonian vector fields of their

pull-back F ∗Cλ are complete.

Remark 7.4.1. It follows from Remark 7.3.3 and condition (ii) of Theo-

rem 7.4.3 that a Hamiltonian vector field of the the pull-back F ∗C of any

Casimir function C on a Poisson manifold N is complete.

7.5 Superintegrable Hamiltonian systems

In autonomous Hamiltonian mechanics, one considers superintegrable sys-

tems whose generating functions are integrals of motion, i.e., they are in

involution with a Hamiltonian H, and the functions (H, F1, . . . , Fk) are

nowhere independent, i.e.,

{H, Fi} = 0, (7.5.1)

dH ∧ (
k∧ dFi) = 0. (7.5.2)

.

In order that an evolution of a Hamiltonian system can be defined

at any instant t ∈ R, one supposes that the Hamiltonian vector field of

its Hamiltonian is complete. By virtue of Remark 7.4.1 and forthcoming

Proposition 7.5.1, a Hamiltonian of a superintegrable system always satisfies

this condition.
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Proposition 7.5.1. It follows from the equality (7.5.2) that a Hamiltonian

H is constant on the invariant submanifolds. Therefore, it is the pull-back

of a function on N which is a Casimir function of the Poisson structure

(7.3.4) because of the conditions (7.5.1).

Proposition 7.5.1 leads to the following.

Proposition 7.5.2. Let H be a Hamiltonian of a globally superintegrable

system provided with the generalized action-angle coordinates (Iλ, x
A, yλ)

(2.3.15). Then a Hamiltonian H depends only on the action coordinates Iλ.

Consequently, the Hamilton equation of a globally superintegrable system

take the form

ẏλ =
∂H
∂Iλ

, Iλ = const., xA = const.

Following the original Mishchenko–Fomenko theorem, let us mention

superintegrable systems whose generating functions {F1, . . . , Fk} form a k-

dimensional real Lie algebra g of corank m with the commutation relations

{Fi, Fj} = chijFh, chij = const. (7.5.3)

Then F (7.3.2) is a momentum mapping of Z to the Lie coalgebra g∗

provided with the coordinates xi in item (i) of Definition 7.3.1 [65; 79]. In

this case, the coinduced Poisson structure {, }N coincides with the canonical

Lie–Poisson structure on g∗ given by the Poisson bivector field

w =
1

2
chijxh∂

i ∧ ∂j .

Let V be an open subset of g∗ such that conditions (i) and (ii) of Theorem

7.4.3 are satisfied. Then an open subset F−1(V ) ⊂ Z is provided with the

generalized action-angle coordinates.

Remark 7.5.1. Let Hamiltonian vector fields ϑi of the generating func-

tions Fi which form a Lie algebra g be complete. Then they define a locally

free Hamiltonian action on Z of some simply connected Lie group G whose

Lie algebra is isomorphic to g [125; 127]. Orbits of G coincide with k-

dimensional maximal integral manifolds of the regular distribution V on Z

spanned by Hamiltonian vector fields ϑi [153]. Furthermore, Casimir func-

tions of the Lie–Poisson structure on g∗ are exactly the coadjoint invariant

functions on g∗. They are constant on orbits of the coadjoint action of G

on g∗ which coincide with leaves of the symplectic foliation of g∗.
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Theorem 7.5.1. Let a globally superintegrable Hamiltonian system on a

symplectic manifold Z obey the following conditions.

(i) It is maximally superintegrable.

(ii) Its Hamiltonian H is regular, i.e, dH nowhere vanishes.

(iii) Its generating functions Fi constitute a finite dimensional real Lie

algebra and their Hamiltonian vector fields are complete.

Then any integral of motion of this Hamiltonian system is the pull-back of

a function on a base N of the fibration F (7.3.2). In other words, it is

expressed in the integrals of motion Fi.

Proof. The proof is based on the following. A Hamiltonian vector field of

a function f on Z lives in the one-codimensional regular distribution V on

Z spanned by Hamiltonian vector fields ϑi if and only if f is the pull-back of

a function on a base N of the fibration F (7.3.2). A Hamiltonian H brings

Z into a fibred manifold of its level surfaces whose vertical tangent bundle

coincide with V . Therefore, a Hamiltonian vector field of any integral of

motion of H lives in V . �

It may happen that, given a Hamiltonian H of a Hamiltonian system

on a symplectic manifold Z, we have different superintegrable Hamiltonian

systems on different open subsets of Z. For instance, this is the case of the

Kepler system.

7.6 Example. Global Kepler system

We consider the Kepler system on a plane R2 (see Example 3.8.1). Its

phase space is T ∗R2 = R4 provided with the Cartesian coordinates (qi, pi),

i = 1, 2, and the canonical symplectic form

ΩT =
∑

i

dpi ∧ dqi. (7.6.1)

Let us denote

p =

(∑

i

(pi)
2

)1/2

, r =

(∑

i

(qi)2

)1/2

, (p, q) =
∑

i

piqi.

An autonomous Hamiltonian of the Kepler system reads

H =
1

2
p2 − 1

r
(7.6.2)

(cf. (3.8.14)). The Kepler system is a Hamiltonian system on a symplectic

manifold

Z = R4 \ {0} (7.6.3)
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endowed with the symplectic form ΩT (7.6.1).

Let us consider the functions

M12 = −M21 = q1p2 − q2p1, (7.6.4)

Ai =
∑

j

Mijpj −
qi
r

= qip
2 − pi(p, q)−

qi
r
, i = 1, 2, (7.6.5)

on the symplectic manifold Z (7.6.3). As was mentioned in Example 3.8.1,

they are integrals of motion of the Hamiltonian H (7.6.2) where M12 is an

angular momentum and (Ai) is a Rung–Lenz vector. Let us denote

M2 = (M12)
2, A2 = (A1)

2 + (Aa)
2 = 2M2H+ 1. (7.6.6)

Let Z0 ⊂ Z be a closed subset of points whereM12 = 0. A direct compu-

tation shows that the functions (M12, Ai) (7.6.4) – (7.6.5) are independent

of an open submanifold

U = Z \ Z0 (7.6.7)

of Z. At the same time, the functions (H,M12, Ai) are independent nowhere

on U because it follows from the expression (7.6.6) that

H =
A2 − 1

2M2
(7.6.8)

on U (7.6.7). The well known dynamics of the Kepler system shows that

the Hamiltonian vector field of its Hamiltonian is complete on U (but not

on Z).

The Poisson bracket of integrals of motion M12 (7.6.4) and Ai (7.6.5)

obeys the relations

{M12, Ai} = η2iA1 − η1iA2, (7.6.9)

{A1, A2} = 2HM12 =
A2 − 1

M12
, (7.6.10)

where ηij is an Euclidean metric on R2. It is readily observed that these

relations take the form (7.3.3). However, the matrix function s of the rela-

tions (7.6.9) – (7.6.10) fails to be of constant rank at points where H = 0.

Therefore, let us consider the open submanifolds U− ⊂ U where H < 0 and

U+ where H > 0. Then we observe that the Kepler system with the Hamil-

tonian H (7.6.2) and the integrals of motion (Mij , Ai) (7.6.4) – (7.6.5) on

U− and the Kepler system with the Hamiltonian H (7.6.2) and the integrals

of motion (Mij , Ai) (7.6.4) – (7.6.5) on U+ are superintegrable Hamiltonian

systems. Moreover, these superintegrable systems can be brought into the

form (7.5.3) as follows.
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Let us replace the integrals of motions Ai with the integrals of motion

Li =
Ai√
−2H (7.6.11)

on U−, and with the integrals of motion

Ki =
Ai√
2H

(7.6.12)

on U+.

The superintegrable system (M12, Li) on U− obeys the relations

{M12, Li} = η2iL1 − η1iL2, (7.6.13)

{L1, L2} = −M12. (7.6.14)

Let us denote Mi3 = −Li and put the indexes µ, ν, α, β = 1, 2, 3. Then the

relations (7.6.13) – (7.6.14) are brought into the form

{Mµν ,Mαβ} = ηµβMνα + ηναMµβ − ηµαMνβ − ηνβMµα (7.6.15)

where ηµν is an Euclidean metric on R3. A glance at the expression (7.6.15)

shows that the integrals of motionM12 (7.6.4) and Li (7.6.11) constitute the

Lie algebra g = so(3). Its corank equals 1. Therefore the superintegrable

system (M12, Li) on U− is maximally superintegrable. The equality (7.6.8)

takes the form

M2 + L2 = − 1

2H . (7.6.16)

The superintegrable system (M12,Ki) on U+ obeys the relations

{M12,Ki} = η2iK1 − η1iK2, (7.6.17)

{K1,K2} = M12. (7.6.18)

Let us denote Mi3 = −Ki and put the indexes µ, ν, α, β = 1, 2, 3. Then the

relations (7.6.17) – (7.6.18) are brought into the form

{Mµν ,Mαβ} = ρµβMνα + ρναMµβ − ρµαMνβ − ρνβMµα (7.6.19)

where ρµν is a pseudo-Euclidean metric of signature (+,+,−) on R3. A

glance at the expression (7.6.19) shows that the integrals of motion M12

(7.6.4) and Ki (7.6.12) constitute the Lie algebra so(2, 1). Its corank equals

1. Therefore the superintegrable system (M12,Ki) on U+ is maximally

superintegrable. The equality (7.6.8) takes the form

K2 −M2 =
1

2H . (7.6.20)
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Thus, the Kepler system on a phase space R4 falls into two different

maximally superintegrable systems on open submanifolds U− and U+ of

R4. We agree to call them the Kepler superintegrable systems on U− and

U+, respectively.

Let us study the first one and put

F1 = −L1, F2 = −L2, F3 = −M12, (7.6.21)

{F1, F2} = F3, {F2, F3} = F1, {F3, F1} = F2.

We have a fibred manifold

F : U− → N ⊂ g∗, (7.6.22)

which is the momentum mapping to the Lie coalgebra g∗ = so(3)∗, endowed

with the coordinates (xi) such that integrals of motion Fi on g∗ read Fi =

xi. A base N of the fibred manifold (7.6.22) is an open submanifold of g∗

given by the coordinate condition x3 6= 0. It is a union of two contractible

components defined by the conditions x3 > 0 and x3 < 0. The coinduced

Lie–Poisson structure on N takes the form

w = x2∂
3 ∧ ∂1 + x3∂

1 ∧ ∂2 + x1∂
2 ∧ ∂3. (7.6.23)

The coadjoint action of so(3) on N reads

ε1 = x3∂
2 − x2∂

3, ε2 = x1∂
3 − x3∂

1, ε3 = x2∂
1 − x1∂

2. (7.6.24)

The orbits of this coadjoint action are given by the equation

x2
1 + x2

2 + x2
3 = const. (7.6.25)

They are the level surfaces of the Casimir function

C = x2
1 + x2

2 + x2
3

and, consequently, the Casimir function

h = −1

2
(x2

1 + x2
2 + x2

3)
−1. (7.6.26)

A glance at the expression (7.6.16) shows that the pull-back F ∗h of this

Casimir function (7.6.26) onto U− is the HamiltonianH (7.6.2) of the Kepler

system on U−.

As was mentioned above, the Hamiltonian vector field of F ∗h is com-

plete. Furthermore, it is known that invariant submanifolds of the superin-

tegrable Kepler system on U− are compact. Therefore, the fibred manifold

F (7.6.22) is a fibre bundle in accordance with Theorem 11.2.4. Moreover,

this fibre bundle is trivial because N is a disjoint union of two contractible
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manifolds. Consequently, it follows from Theorem 7.4.3 that the Kepler

superintegrable system on U− is globally superintegrable, i.e., it admits

global generalized action-angle coordinates as follows.

The Poisson manifold N (7.6.22) can be endowed with the coordinates

(I, x1, γ), I < 0, γ 6= π

2
,
3π

2
, (7.6.27)

defined by the equalities

I = −1

2
(x2

1 + x2
2 + x2

3)
−1, (7.6.28)

x2 =

(
− 1

2I
− x2

1

)1/2

sin γ, x3 =

(
− 1

2I
− x2

1

)1/2

cos γ.

It is readily observed that the coordinates (7.6.27) are Darboux coordinates

of the Lie–Poisson structure (7.6.23) on U−, namely,

w =
∂

∂x1
∧ ∂

∂γ
. (7.6.29)

Let ϑI be the Hamiltonian vector field of the Casimir function I (7.6.28).

By virtue of Proposition 7.3.2, its flows are invariant submanifolds of the

Kepler superintegrable system on U−. Let α be a parameter along the flow

of this vector field, i.e.,

ϑI =
∂

∂α
. (7.6.30)

Then U− is provided with the generalized action-angle coordinates

(I, x1, γ, α) such that the Poisson bivector associated to the symplectic

form ΩT on U− reads

W =
∂

∂I
∧ ∂

∂α
+

∂

∂x1
∧ ∂

∂γ
. (7.6.31)

Accordingly, Hamiltonian vector fields of integrals of motion Fi (7.6.21)

take the form

ϑ1 =
∂

∂γ
,

ϑ2 =
1

4I2

(
− 1

2I
− x2

1

)−1/2

sin γ
∂

∂α
− x1

(
− 1

2I
− x2

1

)−1/2

sin γ
∂

∂γ

−
(
− 1

2I
− x2

1

)1/2

cos γ
∂

∂x1
,

ϑ3 =
1

4I2

(
− 1

2I
− x2

1

)−1/2

cos γ
∂

∂α
− x1

(
− 1

2I
− x2

1

)−1/2

cos γ
∂

∂γ

+

(
− 1

2I
− x2

1

)1/2

sin γ
∂

∂x1
.
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A glance at these expressions shows that the vector fields ϑ1 and ϑ2 fail to

be complete on U− (see Remark 7.3.5).

One can say something more about the angle coordinate α. The vector

field ϑI (7.6.30) reads

∂

∂α
=
∑

i

(
∂H
∂pi

∂

∂qi
− ∂H
∂qi

∂

∂pi

)
.

This equality leads to the relations

∂qi
∂α

=
∂H
∂pi

,
∂pi
∂α

= −∂H
∂qi

,

which take the form of the Hamilton equation. Therefore, the coordinate

α is a cyclic time α = tmod2π given by the well-known expression

α = φ− a3/2e sin(a−3/2φ), r = a(1− e cos(a−3/2φ)),

a = − 1

2I
, e = (1 + 2IM2)1/2.

Now let us turn to the Kepler superintegrable system on U+. It is a

globally superintegrable system with non-compact invariant submanifolds

as follows.

Let us put

S1 = −K1, S2 = −K2, S3 = −M12, (7.6.32)

{S1, S2} = −S3, {S2, S3} = S1, {S3, S1} = S2.

We have a fibred manifold

S : U+ → N ⊂ g∗, (7.6.33)

which is the momentum mapping to the Lie coalgebra g∗ = so(2, 1)∗, en-

dowed with the coordinates (xi) such that integrals of motion Si on g∗ read

Si = xi. A base N of the fibred manifold (7.6.33) is an open submanifold

of g∗ given by the coordinate condition x3 6= 0. It is a union of two con-

tractible components defined by the conditions x3 > 0 and x3 < 0. The

coinduced Lie–Poisson structure on N takes the form

w = x2∂
3 ∧ ∂1 − x3∂

1 ∧ ∂2 + x1∂
2 ∧ ∂3. (7.6.34)

The coadjoint action of so(2, 1) on N reads

ε1 = −x3∂
2 − x2∂

3, ε2 = x1∂
3 + x3∂

1, ε3 = x2∂
1 − x1∂

2.

The orbits of this coadjoint action are given by the equation

x2
1 + x2

2 − x2
3 = const.
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They are the level surfaces of the Casimir function

C = x2
1 + x2

2 − x2
3

and, consequently, the Casimir function

h =
1

2
(x2

1 + x2
2 − x2

3)
−1. (7.6.35)

A glance at the expression (7.6.20) shows that the pull-back S∗h of this

Casimir function (7.6.35) onto U+ is the HamiltonianH (7.6.2) of the Kepler

system on U+.

As was mentioned above, the Hamiltonian vector field of S∗h is com-

plete. Furthermore, it is known that invariant submanifolds of the superin-

tegrable Kepler system on U+ are diffeomorphic to R. Therefore, the fibred

manifold S (7.6.33) is a fibre bundle in accordance with Theorem 11.2.4.

Moreover, this fibre bundle is trivial because N is a disjoint union of two

contractible manifolds. Consequently, it follows from Theorem 7.4.3 that

the Kepler superintegrable system on U+ is globally superintegrable, i.e.,

it admits global generalized action-angle coordinates as follows.

The Poisson manifold N (7.6.33) can be endowed with the coordinates

(I, x1, λ), I > 0, λ 6= 0,

defined by the equalities

I =
1

2
(x2

1 + x2
2 − x2

3)
−1,

x2 =

(
1

2I
− x2

1

)1/2

coshλ, x3 =

(
1

2I
− x2

1

)1/2

sinhλ.

These coordinates are Darboux coordinates of the Lie–Poisson structure

(7.6.34) on N , namely,

w =
∂

∂λ
∧ ∂

∂x1
. (7.6.36)

Let ϑI be the Hamiltonian vector field of the Casimir function I (7.6.28).

By virtue of Proposition 7.3.2, its flows are invariant submanifolds of the

Kepler superintegrable system on U+. Let τ be a parameter along the flows

of this vector field, i.e.,

ϑI =
∂

∂τ
. (7.6.37)

Then U+ (7.6.33) is provided with the generalized action-angle coordinates

(I, x1, λ, τ) such that the Poisson bivector associated to the symplectic form

ΩT on U+ reads

W =
∂

∂I
∧ ∂

∂τ
+

∂

∂λ
∧ ∂

∂x1
. (7.6.38)
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Accordingly, Hamiltonian vector fields of integrals of motion Si (7.6.32)

take the form

ϑ1 = − ∂

∂λ
,

ϑ2 =
1

4I2

(
1

2I
− x2

1

)−1/2

coshλ
∂

∂τ
+ x1

(
1

2I
− x2

1

)−1/2

coshλ
∂

∂λ

+

(
1

2I
− x2

1

)1/2

sinhλ
∂

∂x1
,

ϑ3 =
1

4I2

(
1

2I
− x2

1

)−1/2

sinhλ
∂

∂τ
+ x1

(
1

2I
− x2

1

)−1/2

sinhλ
∂

∂λ

+

(
1

2I
− x2

1

)1/2

coshλ
∂

∂x1
.

Similarly to the angle coordinate α (7.6.30), the generalized angle coor-

dinate τ (7.6.37) obeys the Hamilton equation

∂qi
∂τ

=
∂H
∂pi

,
∂pi
∂τ

= −∂H
∂qi

.

Therefore, it is the time τ = t given by the well-known expression

τ = s− a3/2e sinh(a−3/2s), r = a(e cosh(a−3/2s)− 1),

a =
1

2I
, e = (1 + 2IM2)1/2.

7.7 Non-autonomous integrable systems

The generalization of Liouville – Arnold and Mishchenko – Fomenko the-

orems to the case of non-compact invariant submanifolds (Theorems 7.3.1

and 7.3.3) enables one to analyze completely integrable and superintegrable

non-autonomous Hamiltonian systems whose invariant submanifolds are

necessarily non-compact [59; 65].

Let us consider a non-autonomous mechanical system on a configuration

space Q→ R in Section 3.3. Its phase space is the vertical cotangent bundle

V ∗Q → Q of Q → R endowed with the Poisson structure {, }V (3.3.7).A

Hamiltonian of a non-autonomous mechanical system is a section h (3.3.13)

of the one-dimensional fibre bundle (3.3.3) – (3.3.6):

ζ : T ∗Q→ V ∗Q, (7.7.1)

where T ∗Q is the cotangent bundle of Q endowed with the canonical sym-

plectic form ΩT (3.3.1). The Hamiltonian h (3.3.13) yields the pull-back
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Hamiltonian form H (3.3.14) on V ∗Q and defines the Hamilton vector field

γH (3.3.21) on V ∗Q. A smooth real function F on V ∗Q is an integral of

motion of a Hamiltonian system (V ∗Q,H) if its Lie derivative LγH
F (3.8.1)

vanishes.

Definition 7.7.1. A non-autonomous Hamiltonian system (V ∗Q,H) of

n = dimQ− 1 degrees of freedom is called superintegrable if it admits n ≤
k < 2n integrals of motion Φ1, . . . ,Φk, obeying the following conditions.

(i) All the functions Φα are independent, i.e., the k-form dΦ1∧· · ·∧dΦk
nowhere vanishes on V ∗Q. It follows that the map

Φ : V ∗Q→ N = (Φ1(V
∗Q), . . . ,Φk(V

∗Q)) ⊂ Rk (7.7.2)

is a fibred manifold over a connected open subset N ⊂ Rk.

(ii) There exist smooth real functions sαβ on N such that

{Φα,Φβ}V = sαβ ◦ Φ, α, β = 1, . . . , k. (7.7.3)

(iii) The matrix function with the entries sαβ (7.7.3) is of constant

corank m = 2n− k at all points of N .

In order to describe this non-autonomous superintegrable Hamiltonian

system, we use the fact that there exists an equivalent autonomous Ha-

miltonian system (T ∗Q,H∗) of n + 1 degrees of freedom on a symplectic

manifold (T ∗Q,ΩT ) whose Hamiltonian is the function H∗ (3.4.1) (Theo-

rem 3.4.1), and that this Hamiltonian system is superintegrable (Theorem

7.7.4). Our goal is the following.

Theorem 7.7.1. Let Hamiltonian vector fields of the functions Φα be com-

plete, and let fibres of the fibred manifold Φ (7.7.2) be connected and mu-

tually diffeomorphic. Then there exists an open neighborhood UM of a fibre

M of Φ (7.7.2) which is a trivial principal bundle with the structure group

R1+m−r × T r (7.7.4)

whose bundle coordinates are the generalized action-angle coordinates

(pA, q
A, Iλ, t, y

λ), A = 1, . . . , k − n, λ = 1, . . . ,m, (7.7.5)

such that:

(i) (t, yλ) are coordinates on the toroidal cylinder (7.7.4),

(ii) the Poisson bracket {, }V on UM reads

{f, g}V = ∂Af∂Ag − ∂Ag∂Af + ∂λf∂λg − ∂λg∂λf,
(iii) a Hamiltonian H depends only on the action coordinates Iλ,

(iv) the integrals of motion Φ1, . . .Φk are independent of coordinates

(t, yλ).
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Let us start with the case k = n of a completely integrable non-

autonomous Hamiltonian system (Theorem 7.7.3).

Definition 7.7.2. A non-autonomous Hamiltonian system (V ∗Q,H) of

n degrees of freedom is said to be completely integrable if it admits n

independent integrals of motion F1, . . . , Fn which are in involution with

respect to the Poisson bracket {, }V (3.3.7).

By virtue of the relations (3.3.10) and (3.8.2), the vector fields

(γH , ϑF1 , . . . , ϑFn
), ϑFα

= ∂iFα∂i − ∂iFα∂i, (7.7.6)

mutually commute and, therefore, they span an (n+ 1)-dimensional invo-

lutive distribution V on V ∗Q. Let G be the group of local diffeomorphisms

of V ∗Q generated by the flows of vector fields (7.7.6). Maximal integral

manifolds of V are the orbits of G and invariant submanifolds of vector

fields (7.7.6). They yield a foliation F of V ∗Q.

Let (V ∗Q,H) be a non-autonomous Hamiltonian system and (T ∗Q,H∗)

an equivalent autonomous Hamiltonian system on T ∗Q. An immediate

consequence of the relations (3.3.8) and (3.4.6) is the following.

Theorem 7.7.2. Given a non-autonomous completely integrable Hamilto-

nian system

(γH , F1, . . . , Fn) (7.7.7)

of n degrees of freedom on V ∗Q, the associated autonomous Hamiltonian

system

(H∗, ζ∗F1, . . . , ζ
∗Fn) (7.7.8)

of n+ 1 degrees of freedom on T ∗Q is completely integrable.

The Hamiltonian vector fields

(uH∗ , uζ∗F1 , . . . , uζ∗Fm
), uζ∗Fα

= ∂iFα∂i − ∂iFα∂i, (7.7.9)

of the autonomous integrals of motion (7.7.8) span an (n+ 1)-dimensional

involutive distribution VT on T ∗Q such that

Tζ(VT ) = V , Th(V) = VT |h(V ∗Q)=I0=0, (7.7.10)

where

Th : TV ∗Q 3 (t, qi, pi, ṫ, q̇
i, ṗi)

→ (t, qi, pi, I0 = 0, ṫ, q̇i, ṗi, İ0 = 0) ∈ TT ∗Q.
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It follows that, if M is an invariant submanifold of the non-autonomous

completely integrable Hamiltonian system (7.7.7), then h(M) is an invariant

submanifold of the autonomous completely integrable Hamiltonian system

(7.7.8).

In order do introduce generalized action-angle coordinates around an

invariant submanifold M of the non-autonomous completely integrable Ha-

miltonian system (7.7.7), let us suppose that the vector fields (7.7.6) on M

are complete. It follows that M is a locally affine manifold diffeomorphic

to a toroidal cylinder

R1+n−r × T r. (7.7.11)

Moreover, let assume that there exists an open neighborhood UM of M

such that the foliation F of UM is a fibred manifold φ : UM → N over a

domain N ⊂ Rn whose fibres are mutually diffeomorphic.

Because the morphism Th (7.7.10) is a bundle isomorphism, the Ha-

miltonian vector fields (7.7.9) on the invariant submanifold h(M) of the

autonomous completely integrable Hamiltonian system are complete. Since

the affine bundle ζ (7.7.1) is trivial, the open neighborhood ζ−1(UM ) of the

invariant submanifold h(M) is a fibred manifold

φ̃ : ζ−1(UM ) = R× UM
(Id R,φ)−→ R×N = N ′

over a domain N ′ ⊂ Rn+1 whose fibres are diffeomorphic to the toroidal

cylinder (7.7.11). In accordance with Theorem 7.3.3, the open neighbor-

hood ζ−1(UM ) of h(M) is a trivial principal bundle

ζ−1(UM ) = N ′ × (R1+n−r × T r)→ N ′ (7.7.12)

with the structure group (7.7.11) whose bundle coordinates are the gener-

alized action-angle coordinates

(I0, I1, . . . , In, t, z
1, . . . , zn) (7.7.13)

such that:

(i) (t, za) are coordinates on the toroidal cylinder (7.7.11),

(ii) the symplectic form ΩT on ζ−1(U) reads

ΩT = dI0 ∧ dt+ dIa ∧ dza,
(iii) H∗ = I0,

(iv) the integrals of motion ζ∗F1, . . . , ζ
∗Fn depend only on the action

coordinates I1, . . . , In.

Provided with the coordinates (7.7.13),

ζ−1(UM ) = UM × R
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is a trivial bundle possessing the fibre coordinate I0 (3.3.4). Consequently,

the non-autonomous open neighborhood UM of an invariant submanifold

M of the completely integrable Hamiltonian system (7.7.6) is diffeomorphic

to the Poisson annulus

UM = N × (R1+n−r × T r) (7.7.14)

endowed with the generalized action-angle coordinates

(I1, . . . , In, t, z
1, . . . , zn) (7.7.15)

such that:

(i) the Poisson structure (3.3.7) on UM takes the form

{f, g}V = ∂af∂ag − ∂ag∂af,
(ii) the Hamiltonian (3.3.13) reads H = 0,

(iii) the integrals of motion F1, . . . , Fn depend only on the action coor-

dinates I1, . . . , In.

The Hamilton equation (3.3.22) – (3.3.23) relative to the generalized

action-angle coordinates (7.7.15) takes the form

zat = 0, Ita = 0.

It follows that the generalized action-angle coordinates (7.7.15) are the

initial date coordinates.

Note that the generalized action-angle coordinates (7.7.15) by no means

are unique. Given a smooth function H′ on Rn, one can provide ζ−1(UM )

with the generalized action-angle coordinates

t, z′a = za − t∂aH′, I ′0 = I0 +H′(Ib), I ′a = Ia. (7.7.16)

With respect to these coordinates, a Hamiltonian of the autonomous Ha-

miltonian system on ζ−1(UM ) reads H′∗ = I ′0 −H′. A Hamiltonian of the

non-autonomous Hamiltonian system on U endowed with the generalized

action-angle coordinates (Ia, t, z
′a) is H′.

Thus, the following has been proved.

Theorem 7.7.3. Let (γH , F1, . . . , Fn) be a non-autonomous completely in-

tegrable Hamiltonian system. Let M be its invariant submanifold such that

the vector fields (7.7.6) on M are complete and that there exists an open

neighborhood UM of M which is a fibred manifold in mutually diffeomor-

phic invariant submanifolds. Then UM is diffeomorphic to the Poisson

annulus (7.7.14), and it can be provided with the generalized action-angle

coordinates (7.7.15) such that the integrals of motion (F1, . . . , Fn) and the

Hamiltonian H depend only on the action coordinates I1, . . . , In.
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Let now (γH ,Φ1, . . . ,Φk) be a non-autonomous superintegrable Hamil-

tonian system in accordance with Definition 7.7.1. The associated au-

tonomous Hamiltonian system on T ∗Q possesses k + 1 integrals of motion

(H∗, ζ∗Φ1, . . . , ζ
∗Φk) (7.7.17)

with the following properties.

(i) The functions (7.7.17) are mutually independent, and the map

Φ̃ : T ∗Q→ (H∗(T ∗Q), ζ∗Φ1(T
∗Q), . . . , ζ∗Φk(T

∗Q)) (7.7.18)

= (I0,Φ1(V
∗Q), . . . ,Φk(V

∗Q)) = R×N = N ′

is a fibred manifold.

(ii) The functions (7.7.17) obey the relations

{ζ∗Φα, ζ∗Φβ} = sαβ ◦ ζ∗Φ, {H∗, ζ∗Φα} = s0α = 0

so that the matrix function with the entries (s0α, sαβ) on N ′ is of constant

corank 2n+ 1− k.
Referring to Definition 7.3.1 of an autonomous superintegrable system,

we come to the following.

Theorem 7.7.4. Given a non-autonomous superintegrable Hamiltonian

system (γH ,Φα) on V ∗Q, the associated autonomous Hamiltonian system

(7.7.17) on T ∗Q is superintegrable.

There is the commutative diagram

T ∗Q
ζ−→ V ∗Q

Φ̃
? ?

Φ

N ′ ξ−→ N

where ζ (7.7.1) and

ξ : N ′ = R×N → N

are trivial bundles. It follows that the fibred manifold (7.7.18) is the pull-

back Φ̃ = ξ∗Φ of the fibred manifold Φ (7.7.2) onto N ′.

Let the conditions of Theorem 7.3.1 hold. If the Hamiltonian vector

fields

(γH , ϑΦ1 , . . . , ϑΦk
), ϑΦα

= ∂iΦα∂i − ∂iΦα∂i,
of integrals of motion Φα on V ∗Q are complete, the Hamiltonian vector

fields

(uH∗ , uζ∗Φ1 , . . . , uζ∗Φk
), uζ∗Φα

= ∂iΦα∂i − ∂iΦα∂i,
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on T ∗Q are complete. If fibres of the fibred manifold Φ (7.7.2) are connected

and mutually diffeomorphic, the fibres of the fibred manifold Φ̃ (7.7.18) also

are well.

Let M be a fibre of Φ (7.7.2) and h(M) the corresponding fibre of

Φ̃ (7.7.18). In accordance Theorem 7.3.1, there exists an open neighbor-

hood U ′ of h(M) which is a trivial principal bundle with the structure

group (7.7.4) whose bundle coordinates are the generalized action-angle

coordinates

(I0, Iλ, t, y
λ, pA, q

A), A = 1, . . . , n−m, λ = 1, . . . , k, (7.7.19)

such that:

(i) (t, yλ) are coordinates on the toroidal cylinder (7.7.4),

(ii) the symplectic form ΩT on U ′ reads

ΩT = dI0 ∧ dt+ dIα ∧ dyα + dpA ∧ dqA,
(iii) the action coordinates (I0, Iα) are expressed in the values of the

Casimir functions C0 = I0, Cα of the coinduced Poisson structure

w = ∂A ∧ ∂A
on N ′,

(iv) a homogeneous Hamiltonian H∗ depends on the action coordinates,

namely, H∗ = I0,

(iv) the integrals of motion ζ∗Φ1, . . . ζ
∗Φk are independent of the coor-

dinates (t, yλ).

Provided with the generalized action-angle coordinates (7.7.19), the

above mentioned neighborhood U ′ is a trivial bundle U ′ = R× UM where

UM = ζ(U ′) is an open neighborhood of the fibre M of the fibre bundle Φ

(7.7.2). As a result, we come to Theorem 7.7.1.

7.8 Quantization of superintegrable systems

In accordance with Theorem 7.3.1, any superintegrable Hamiltonian sys-

tem (7.3.3) on a symplectic manifold (Z,Ω) restricted to some open neigh-

borhood UM (7.3.6) of its invariant submanifold M is characterized by

generalized action-angle coordinates (Iλ, pA, q
A, yλ), λ = 1, . . . ,m, A =

1, . . . , n−m. They are canonical for the symplectic form Ω (7.3.7) on UM .

Then one can treat the coordinates (Iλ, pA) as n independent functions in

involution on a symplectic annulus (UM ,Ω) which constitute a completely

integrable system in accordance with Definition 7.3.2. Strictly speaking,
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its quantization fails to be a quantization of the original superintegrable

system (7.3.3) because Fi(Iλ, q
A, pA) are not linear functions and, conse-

quently, the algebra (7.3.3) and the algebra

{Iλ, pA} = {Iλ, qA} = 0, {pA, qB} = δBA (7.8.1)

are not isomorphic in general. However, one can obtain the Hamilton oper-

ator Ĥ and the Casimir operators Ĉλ of an original superintegrable system

and their spectra.

There are different approaches to quantization of completely integrable

systems [69; 80]. It should be emphasized that action-angle coordinates

need not be globally defined on a phase space of a completely integrable

system, but form an algebra of the Poisson canonical commutation rela-

tions (7.8.1) on an open neighborhood UM of an invariant submanifold

M . Therefore, quantization of a completely integrable system with re-

spect to the action-angle variables is a quantization of the Poisson algebra

C∞(UM ) of real smooth functions on UM . Since there is no morphism

C∞(UM ) → C∞(Z), this quantization is not equivalent to quantization of

an original completely integrable system on Z and, from on a physical level,

is interpreted as quantization around an invariant submanifold M . A key

point is that, since UM is not a contractible manifold, the geometric quanti-

zation technique should be called into play in order to quantize a completely

integrable system around its invariant submanifold. A peculiarity of the ge-

ometric quantization procedure is that it remains equivalent under symplec-

tic isomorphisms, but essentially depends on the choice of a polarization [11;

131].

Geometric quantization of completely integrable systems has been stud-

ied at first with respect to the polarization spanned by Hamiltonian vector

fields of integrals of motion [121]. For example, the well-known Simms

quantization of a harmonic oscillator is of this type [38]. However, one

meets a problem that the associated quantum algebra contains affine func-

tions of angle coordinates on a torus which are ill defined. As a con-

sequence, elements of the carrier space of this quantization fail to be

smooth, but are tempered distributions. We have developed a different

variant of geometric quantization of completely integrable systems [43; 60;

65]. Since a Hamiltonian of a completely integrable system depends only on

action variables, it seems natural to provide the Schrödinger representation

of action variables by first order differential operators on functions of angle

coordinates. For this purpose, one should choose the angle polarization of a

symplectic manifold spanned by almost-Hamiltonian vector fields of angle

variables.
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Given an open neighborhood UM (7.3.6) in Theorem 7.3.1, us consider

its fibration

UM = NM × Rm−r × T r → V × Rm−r × T r =M, (7.8.2)

(Iλ, pA, q
A, yλ)→ (qA, yλ). (7.8.3)

Then one can think of a symplectic annulus (UM ,Ω) as being an open

subbundle of the cotangent bundle T ∗M endowed with the canonical sym-

plectic form ΩT = Ω (7.3.7). This fact enables us to provide quantization of

any superintegrable system on a neighborhood of its invariant submanifold

as geometric quantization of the cotangent bundle T ∗M over the toroidal

cylinder M (7.8.2) [66]. Note that this quantization however differs from

that in Section 5.2 becauseM (7.8.2) is not simply connected in general.

Let (qA, ra, αi) be coordinates on the toroidal cylinderM (7.8.2), where

(α1, . . . , αr) are angle coordinates on a torus T r, and let (pA, Ia, Ii) be the

corresponding action coordinates (i.e., the holonomic fibre coordinates on

T ∗M). Since the symplectic form Ω (7.3.7) is exact, the quantum bundle is

defined as a trivial complex line bundle C over T ∗M. Let its trivialization

hold fixed. Any other trivialization leads to an equivalent quantization of

T ∗M. Given the associated fibre coordinate c ∈ C on C → T ∗M, one can

treat its sections as smooth complex functions on T ∗M.

The Kostant–Souriau prequantization formula (5.1.11) associates to ev-

ery smooth real function f on T ∗M the first order differential operator

f̂ = −iϑfcDA − fc∂c
on sections of C → T ∗M, where ϑf is the Hamiltonian vector field of f

and DA is the covariant differential (5.1.3) with respect to an admissible

U(1)-principal connection A on C. This connection preserves the Hermitian

fibre metric g(c, c′) = cc′ in C, and its curvature obeys the prequantization

condition (5.1.9). Such a connection reads

A = A0 − ic(pAdqA + Iadr
a + Iidα

i)⊗ ∂c, (7.8.4)

where A0 is a flat U(1)-principal connection on C → T ∗M.

The classes of gauge non-conjugate flat principal connections on C are

indexed by the set Rr/Zr of homomorphisms of the de Rham cohomology

group

H1
DR(T ∗M) = H1

DR(M) = H1
DR(T r) = Rr

of T ∗M to U(1). We choose their representatives of the form

A0[(λi)] = dpA ⊗ ∂A + dIa ⊗ ∂a + dIj ⊗ ∂j + dqA ⊗ ∂A + dra ⊗ ∂a
+ dαj ⊗ (∂j − iλjc∂c), λi ∈ [0, 1).
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Accordingly, the relevant connection (7.8.4) on C reads

A[(λi)] = dpA ⊗ ∂A + dIa ⊗ ∂a + dIj ⊗ ∂j (7.8.5)

+ dqA ⊗ (∂A − ipAc∂c) + dra ⊗ (∂a − iIac∂c)
+ dαj ⊗ (∂j − i(Ij + λj)c∂c).

For the sake of simplicity, we further assume that the numbers λi in the

expression (7.8.5) belong to R, but bear in mind that connections A[(λi)]

and A[(λ′i)] with λi − λ′i ∈ Z are gauge conjugate.

Let us choose the above mentioned angle polarization coinciding with

the vertical polarization V T ∗M. Then the corresponding quantum algebra

A of T ∗M consists of affine functions

f = aA(qB , rb, αj)pA + ab(qB , ra, αj)Ib + ai(qB , ra, αj)Ii + b(qB , ra, αj)

in action coordinates (pA, Ia, Ii). Given a connection (7.8.5), the corre-

sponding Schrödinger operators (5.2.10) read

f̂ =

(
−iaA∂A −

i

2
∂Aa

A

)
+

(
−iab∂i −

i

2
∂ba

b

)
(7.8.6)

+

(
−iai∂i −

i

2
∂ia

i + aiλi

)
− b.

They are Hermitian operators in the pre-Hilbert space EM of complex half-

densities ψ of compact support on M endowed with the Hermitian form

〈ψ|ψ′〉 =
∫

M

ψψ
′
dn−mqdm−rrdrα.

Note that, being a complex function on a toroidal cylinder Rm−r×T r, any

half-density ψ ∈ EM is expanded into the series

ψ =
∑

(nµ)

φ(qB , ra)(nj ) exp[injα
j ], (nj) = (n1, . . . , nr) ∈ Zr , (7.8.7)

where φ(qB , ra)(nµ) are half-densities of compact support on Rn−r. In

particular, the action operators (7.8.6) read

p̂A = −i∂A, Îa = −i∂a, Îj = −i∂j + λj . (7.8.8)

It should be emphasized that

âp̂A 6= âpA, âÎb 6= âIb, âÎj 6= âIj , a ∈ C∞(M). (7.8.9)

The operators (7.8.6) provide a desired quantization of a superintegrable

Hamiltonian system written with respect to the action-angle coordinates.

They satisfy Dirac’s condition (0.0.4). However, both a Hamiltonian H and
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original integrals of motion Fi do not belong to the quantum algebra A, un-

less they are affine functions in the action coordinates (pA, Ia, Ii). In some

particular cases, integrals of motion Fi can be represented by differential

operators, but this representation fails to be unique because of inequalities

(7.8.9), and Dirac’s condition need not be satisfied. At the same time, both

the Casimir functions Cλ and a Hamiltonian H (Proposition 7.5.2) depend

only on action variables Ia, Ii. If they are polynomial in Ia, one can asso-

ciate to them the operators Ĉλ = Cλ(Îa, Îj), Ĥ = H(Îa, Îj), acting in the

space EM by the law

Ĥψ =
∑

(nj)

H(Îa, nj + λj)φ(qA, ra)(nj) exp[injα
j ],

Ĉλψ =
∑

(nj)

Cλ(Îa, nj + λj)φ(qA, ra)(nj) exp[injα
j ].

Example 7.8.1. Let us consider a superintegrable system with the Lie

algebra g = so(3) of integrals of motion {F1, F2, F3} on a four-dimensional

symplectic manifold (Z,Ω), namely,

{F1, F2} = F3, {F2, F3} = F1, {F3, F1} = F2

(see Section 7.6). Since it is compact, an invariant submanifold of a super-

integrable system in question is a circle M = S1. We have a fibred manifold

F : Z → N (7.6.22) onto an open subset N ⊂ g∗ of the Lie coalgebra g∗.

This fibred manifold is a fibre bundle since its fibres are compact (Theorem

11.2.4). Its base N is endowed with the coordinates (x1, x2, x3) such that

integrals of motion {F1, F2, F3} on Z read

F1 = x1, F2 = x2, F3 = x3.

The coinduced Poisson structure on N is the Lie–Poisson structure (7.6.23).

The coadjoint action of so(3) is given by the expression (7.6.24). An orbit of

the coadjoint action of dimension 2 is given by the equality (7.6.25). Let M

be an invariant submanifold such that the point F (M) ∈ g∗ belongs to the

orbit (7.6.25). Let us consider an open fibred neighborhood UM = NM×S1

of M which is a trivial bundle over an open contractible neighborhood NM

of F (M) endowed with the coordinates (I, x1, γ) defined by the equalities

(7.6.27). Here, I is the Casimir function (7.6.28) on g∗. These coordinates

are the Darboux coordinates of the Lie–Poisson structure (7.6.29) on NM .

Let ϑI be the Hamiltonian vector field of the Casimir function I (7.6.28).

Its flows are invariant submanifolds. Let α be a parameter (7.6.30) along

the flows of this vector field. Then UM is provided with the action-angle
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coordinates (I, x1, γ, α) such that the Poisson bivector on UM takes the

form (7.6.31). The action-angle variables {I,H1 = x1, γ} constitute a su-

perintegrable system

{I, F1} = 0, {I, γ} = 0, {F1, γ} = 1, (7.8.10)

on UM . It is related to the original one by the transformations

I = −1

2
(F 2

1 + F 2
2 + F 2

3 )1/2,

F2 =

(
− 1

2I
− F 2

1

)1/2

sin γ, F3 =

(
− 1

2I
−H2

1

)1/2

cos γ.

Its Hamiltonian is expressed only in the action variable I . Let us quantize

the superintegrable system (7.8.10). We obtain the algebra of operators

f̂ = a

(
−i ∂
∂α
− λ
)
− ib ∂

∂γ
− i

2

(
∂a

∂α
+
∂b

∂γ

)
− c,

where a, b, c are smooth functions of angle coordinates (γ, α) on the cylinder

R× S1. In particular, the action operators read

Î = −i ∂
∂α
− λ, F̂1 = −i ∂

∂γ
.

These operators act in the space of smooth complex functions

ψ(γ, α) =
∑

k

φ(γ)k exp[ikα]

on T 2. A Hamiltonian H(I) of a classical superintegrable system also can

be represented by the operator

Ĥ(I)ψ =
∑

k

H(I − λ)φ(γ)k exp[ikα]

on this space.
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Chapter 8

Jacobi fields

Given a mechanical system on a configuration space Q → R, its extension

onto the vertical tangent bundle V Q → R of Q → R describes the Jacobi

fields of the Lagrange and Hamilton equations [54; 65; 106].

In particular, we show that Jacobi fields of a completely integrable Ha-

miltonian system of m degrees of freedom make up an extended completely

integrable system of 2m degrees of freedom, where m additional integrals

of motion characterize a relative motion [61].

In this Chapter, we follow the compact notation (11.2.30).

8.1 The vertical extension of Lagrangian mechanics

Given Lagrangian mechanics on a configuration bundle Q → R, let us

consider its extension on a configuration bundle V T → R equipped with

the holonomic coordinates (t, qi, q̇i). [65; 106].

Remark 8.1.1. Let Y → X be a fibre bundle and V Y and V ∗Y its ver-

tical tangent and cotangent bundles coordinated by (xλ, yi, vi = ẏi) and

(xλ, yi, pi = ẏi), respectively. There is the canonical isomorphism (11.2.23):

V V ∗Y =
V Y

V ∗V Y, pi ←→ v̇i, ṗi ←→ ẏi. (8.1.1)

Accordingly, any exterior form φ on Y gives rise to the exterior form

φV = ∂V φ = ẏi∂iφ, (8.1.2)

∂V dx
λ = 0, ∂V dy

i = dẏi,

called the vertical extension of φ onto V Y so that

(φ ∧ σ)V = φV ∧ σ + φ ∧ σV , dφV = (dφ)V

257
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[106; 109]. There also is the canonical isomorphism (11.3.9):

J1V Y =
J1Y

V J1Y, ẏiλ = (ẏi)λ. (8.1.3)

As a consequence, given a connection Γ : Y → J1Y on a fibre bundle

Y → X , the vertical tangent map

V Γ : V Y → J1V Y = V J1Y

to Γ defines the connection

V Γ = dxλ ⊗ (∂λ + Γiλ∂i + ∂jΓ
i
λẏ
j ∂̇i) (8.1.4)

on the vertical tangent bundle V Y → X . It is called the vertical connection

to Γ. Accordingly, we have the connection

V ∗Γ = dxλ ⊗ (∂λ + Γiλ∂i − ∂iΓjλẏj ∂̇i) (8.1.5)

on the vertical cotangent bundle V ∗Y → X . It is called the covertical

connection to Γ.

Given an extended configuration space V Q, the corresponding veloc-

ity space is the jet manifold J1V Q of V Q → R. Due to the canonical

isomorphism (8.1.3), this velocity space

J1V Q =
J1Q

V J1Q (8.1.6)

is provided with the coordinates (t, qi, qit, q̇
i, q̇it). First order Lagrangian

formalism on the velocity space (8.1.6) can be developed as the vertical

extension of Lagrangian formalism on J1Q as follows.

Let L be a Lagrangian (2.1.22) on J1Q. Its vertical extension (8.1.2)

onto V J1Q is

LV = ∂V L = ∂V Ldt = (q̇i∂i + q̇it∂
t
i )Ldt = LV dt. (8.1.7)

The corresponding Lagrange equation read

δ̇iLV = (∂̇i − dt∂̇ti )L = δiL = 0, (8.1.8)

δiLV = ∂V δiL = 0, (8.1.9)

∂V = q̇i∂i + q̇it∂
t
i + q̇itt∂

tt
i .

The equation (8.1.8) is exactly the Lagrange equation for an original La-

grangian L, while the equation (8.1.9) is the well-known variation equation

of the equation (8.1.8) [32; 106]. Substituting a solution si of the Lagrange

equation (8.1.8) into (8.1.9), one obtains a linear differential equation whose

solutions s̃i are Jacobi fields of a solution s. Indeed, if Q → R is a vector
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bundle, there is the canonical splitting V Q = Q ⊕ Q over R, and s + s

is a solution of the Lagrange equation (8.1.8) modulo the terms of order

exceeding 1 in s.

Let us consider the regular quadratic Lagrangian (2.3.17) in Example

2.3.1. The corresponding Lagrange equation takes the form (2.3.18). By

virtue of Corollary 1.5.1, the second order dynamic equation (2.3.18) is

equivalent to the non-relativistic geodesic equation (1.5.9) on the tangent

bundle TQ with respect to the symmetric linear connection K̃ (1.5.10) on

TQ→ Q possessing the components

Kλ
0
ν = 0, Kλ

i
ν = −(m−1)ik{λkν}. (8.1.10)

Then one can write the well-known equation for Jacobi fields uλ along the

geodesics of this connection [93]. Since the curvature R (11.4.22) of the

connection K̃ (8.1.10) has the temporal component

Rλµ
0
β = 0, (8.1.11)

this equation reads

q̇β q̇µ(∇β(∇µuα)−Rλµαβuλ) = 0, ∇β q̇α = 0, (8.1.12)

where ∇µ denote the covariant derivatives relative to the connection K̃.

Due to the equality (8.1.11), the equation (8.1.12) for the temporal com-

ponent u0 of a Jacobi field takes the form

q̇β q̇µ(∂µ∂βu
0 +Kµ

γ
β∂γu

0) = 0.

We chose its solution u0 = 0 because all non-relativistic geodesics obey

the constraint q̇0 = 0. Then the equation (8.1.12) coincides with the La-

grange equation (8.1.9) for the vertical extension LV (8.1.7) of the original

quadratic Lagrangian L (2.3.17) [106; 107].

8.2 The vertical extension of Hamiltonian mechanics

A phase space of a mechanical system on the extended configuration bun-

dle V Q is the vertical cotangent bundle V ∗V Q of V Q → R. Due to the

canonical isomorphism (8.1.1), this phase space

V ∗V Q =
V Q

V V ∗Q (8.2.1)

is coordinated by (t, qi, pi, q̇
i = vi, ṗi). Hamiltonian formalism on the phase

space (8.2.1) can be developed as the vertical extension of Hamiltonian
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formalism on V ∗Q, where the canonical conjugate pairs are (qi, ṗi) and

(q̇i, pi).

Note that the vertical extension LV (8.1.7) of any Lagrangian L on J1Q

yields the vertical tangent map

L̂V = V L̂ : V J1Q −→
V Q

V V ∗Q, (8.2.2)

pi = ∂̇tiLV = ∂tiL, ṗi = ∂V (∂tiL),

∂V = q̇i∂i + ẏit∂
t
i ,

to the Legendre map L̂ (2.1.30). It is called the vertical Legendre map. Ac-

cordingly, the phase space (8.2.1) is the vertical Legendre bundle. The cor-

responding vertical homogeneous Legendre bundle is the cotangent bundle

T ∗V Q of V Q which is coordinated by (t, qi, p, pi, q̇
i = vi, ṗi). It is provided

with the canonical Liouville form (2.2.12):

Ξ = pdt+ ẏidy
i + v̇idv

i = pdt+ ṗidq
i + pidv

i. (8.2.3)

Let V T ∗Q be the vertical tangent bundle of the fibre bundle T ∗Q →
R. It is equipped with the coordinates (t, qi, p, pi, q̇

i, ṗ, ṗi). We have the

composite bundle

V ζ : V T ∗Q
χ−→
V Q

T ∗V Q
ζV−→
V Q

V ∗V Q = V V ∗Q, (8.2.4)

(t, qi, p, pi, q̇
i, ṗ, ṗi)→ (t, qi, vi = q̇i, p = ṗ, q̇i = ṗi, v̇i = pi)

→ (t, qi, vi = q̇i, q̇i = ṗi, v̇i = pi),

where V ζ (8.2.4) is the vertical tangent map of the fibration ζ (2.2.5). With

the canonical Liouville form Ξ (8.2.3) on T ∗V Q, the fibre bundle V T ∗Q is

provided with the pull-back form

χ∗Ξ = ṗdt+ ṗidq
i + pidq̇

i = ΞV = ∂V Ξ, (8.2.5)

∂V = ṗ∂p + q̇i∂i + ṗi∂
i,

which coincides with the vertical extension ∂V Ξ (8.1.2) of the canonical

Liouville form Ξ (2.2.12) on the cotangent bundle T ∗X .

Hamiltonian formalism on the vertical Legendre bundle V ∗V Q is for-

mulated similarly to that on an original phase space V ∗Q in Section 3.3.

Given the canonical symplectic form dΞ on T ∗V Q, the vertical Legendre

bundle V ∗V Q is endowed with the coinduced Poisson structure

{f, g}V V = ∂if∂̇ig − ∂̇if∂ig + ∂̇if∂ig − ∂if∂̇ig.
Due to the isomorphism (8.1.1), the canonical three-form (3.3.11) on V ∗V Q

can be obtained as the vertical extension

ΩV = ∂V Ω = (dṗi ∧ dqi + dpi ∧ dq̇i) ∧ dt (8.2.6)
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of the canonical three-form Ω (3.3.11) on V ∗Q.

Given a section h of the affine bundle ζV (8.2.4), the pull-back

H = (−h)∗Ξ = ṗidq
i + pidq̇

i −Hdt (8.2.7)

of the canonical Liouville form Ξ (8.2.3) is a Hamiltonian form on V ∗V Q.

The associated Hamilton vector field (3.3.21) is

γH = ∂t + ∂̇iH∂i − ∂̇iH∂i + ∂iH∂̇i − ∂iH∂̇i. (8.2.8)

It is a connection on the fibre bundle V V ∗Q→ R which defines the corre-

sponding Hamilton equation on V ∗V Q.

Our goal is forthcoming Theorem 8.2.1 which states that any Hamilto-

nian system on a phase space V ∗Q gives rise to a Hamiltonian system on

the vertical Legendre bundle V ∗V Q = V V ∗Q.

Theorem 8.2.1. Let γH be a Hamilton vector field (3.3.21) on the original

phase space V ∗Q→ R for a Hamiltonian form (3.3.14). Then the vertical

connection (8.1.4):

V γH = ∂t + ∂iH∂i − ∂iH∂i + ∂V ∂
iH∂̇i − ∂V ∂iH∂̇i, (8.2.9)

to γH on the vertical phase space V V ∗Q → R is the Hamilton vector field

for the Hamiltonian form

HV = ∂VH = ṗidq
i + pidq̇

i − ∂VHdt, (8.2.10)

∂VH = (q̇i∂i + ṗi∂
i)H,

which is the vertical extension of H onto V V ∗Q.

Proof. The proof follows from a direct computation. �

The Hamilton vector field V γH (8.2.9) defines the Hamilton equation

qit = ∂̇iHV = ∂iH, (8.2.11)

pti = −∂̇iHV = −∂iH, (8.2.12)

q̇it = ∂iHV = ∂V ∂
iH, (8.2.13)

ṗti = −∂iHV = −∂V ∂iH. (8.2.14)

The equations (8.2.11) – (8.2.12) coincide with the Hamilton equation

(3.3.22) – (3.3.23) for an original Hamiltonian form H , while the equations

(8.2.13) – (8.2.14) are their variation equation. Substituting a solution r

of the Hamilton equation (8.2.11) – (8.2.12) into (8.2.13) – (8.2.14), one

obtains a linear dynamic equations whose solutions r are Jacobi fields of

the solution r.
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The Hamiltonian form HV (8.2.10) defines the Lagrangian LHV
(3.5.1)

on J1(V ∗V Q) which reads

LHV
= h0(HV ) = [ṗi(q

i
t − ∂iH) + pi(q̇

i
t − ∂iH)]dt. (8.2.15)

Owing to the isomorphism (8.1.3), this Lagrangian is exactly the vertical

extension (LH)V (8.1.7) of the Lagrangian LH (3.5.1) on J1V ∗Q. Accord-

ingly, the Hamilton equation (8.2.11) – (8.2.14) is the Lagrange equation

of the Lagrangian (8.2.15), and Jacobi fields of the Hamilton equation for

H are Jacobi fields of the Lagrange equation for LH .

In conclusion, lets us describe the relationship between the vertical ex-

tensions of Lagrangian and Hamiltonian formalisms [106; 109]. The Hamil-

tonian form HV (8.2.10) yields the vertical Hamiltonian map

ĤV = V Ĥ : V V ∗Q −→
V Q

V J1Q = J1V Q,

qit = ∂̇i(∂VH) = ∂iH, q̇it = ∂V ∂
iH.

Proposition 8.2.1. Let H be a Hamiltonian form on V ∗Q associated with

a Lagrangian L on J1Q. Then its vertical extension HV (8.2.10) is weakly

associated with the Lagrangian LV (8.1.7).

Proof. If the morphisms Ĥ and L̂ satisfy the relation (3.6.3), then the

corresponding vertical tangent morphisms obey the relation

V L̂ ◦ V Ĥ ◦ V L̂ = V L̂.

The condition (3.6.4) reduces to the equality (3.6.7) which is fulfilled if H

is associated with L. �

8.3 Jacobi fields of completely integrable systems

Given a completely integrable autonomous Hamiltonian system, derivatives

of its integrals of motion need not be constant on trajectories of a motion.

We show that Jacobi fields of a completely integrable system provide linear

combinations of derivatives of integrals of motion which are integrals of

motion of an extended Hamiltonian system and can characterize a relative

motion.

Let us consider an autonomous Hamiltonian system on a 2m-

dimensional symplectic manifoldM , coordinated by (xλ) and endowed with

a symplectic form

Ω =
1

2
Ωµνdx

µ ∧ dxν . (8.3.1)
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The corresponding Poisson bracket reads

{f, f ′} = wαβ∂αf∂βf
′, f, f ′ ∈ C∞(M), (8.3.2)

where

w =
1

2
wαβ∂α ∧ ∂β , Ωµνw

µβ = δβν , (8.3.3)

is the Poisson bivector associated to Ω. Let a function H ∈ C∞(M) on M

be a Hamiltonian of a system in question. Its Hamiltonian vector field

ϑH = −wbdH = wµν∂µH∂ν (8.3.4)

defines the autonomous first order Hamilton equation

ẋν = ϑνH = wµν∂µH (8.3.5)

on M . With respect to the local Darboux coordinates (qi, pi), the expres-

sions (8.3.1) – (8.3.4) read

Ω = dpi ∧ dqi, w = ∂i ∧ ∂i,
{f, f ′} = ∂if∂if

′ − ∂if∂if ′,

ϑH = ∂iH∂i − ∂iH∂i.
The Hamilton equation (8.3.5) takes the form

q̇i = ∂iH, ṗi = −∂iH. (8.3.6)

Let a Hamiltonian system (M,Ω,H) be completely integrable, i.e., there

exist m independent integrals of motion Fa in involution with respect to

the Poisson bracket (8.3.2). Of course, a Hamiltonian H itself is a first

integral, but it is not independent of Fa. Moreover, one often put F1 = H.

Let us consider Jacobi fields of the completely integrable system

(M,Ω,H, Fa). (8.3.7)

They obey the variation equation of the equation (8.3.6) and make up an

autonomous Hamiltonian system as follows [61].

Let TM be the tangent bundle of a manifold M provided with the

holonomic bundle coordinates (xλ, ẋλ). The symplectic form Ω (8.3.1) on

M gives rise to the two-form (11.2.46):

Ω̃ =
1

2
(ẋλ∂λΩµνdx

µ ∧ dxν + Ωµνdẋ
µ ∧ dxν + Ωµνdx

µ ∧ dẋν), (8.3.8)

on TM . Due to the condition (11.2.47), it is a closed form. Written with

respect to the local Darboux coordinates (qi, pi) on M and the holonomic

bundle coordinates (qi, pi, q̇
i, ṗi) on TM , the two-form (8.3.8) reads

Ω̃ = dpi ∧ dq̇i + dṗi ∧ dqi. (8.3.9)
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A glance at this expression shows that Ω̃ is a non-degenerate two-form, i.e.,

it is a symplectic form. Note that the conjugate pairs of coordinates and

momenta with respect to this symplectic form are (qi, ṗi) and (q̇i, pi). The

associated Poisson bracket on TM is

{g, g′}TM = ∂ig∂̇ig
′ − ∂̇ig∂ig′ + ∂̇ig∂ig

′ − ∂ig∂̇ig′. (8.3.10)

With the tangent lift

H̃ = ∂TH, ∂T = (q̇j∂j + ṗj∂
j), (8.3.11)

of a Hamiltonian H, we obtain the autonomous Hamiltonian system

(TM, Ω̃, H̃) on the tangent bundle TM of M . Computing the Hamilto-

nian vector field

ϑH̃ = ∂̇iH∂i − ∂̇iH∂i + ∂iH∂̇i − ∂iH∂̇i

of the Hamiltonian (8.3.11) with respect to the Poisson bracket (8.3.10),

we obtain the corresponding Hamilton equation

q̇i = ∂̇iH̃ = ∂iH, ṗi = −∂̇iH̃ = −∂iH, (8.3.12)

q̈i = ∂iH̃ = ∂T ∂
iH, p̈i = −∂iH̃ = −∂T∂iH, (8.3.13)

where (qi, pi, q̇
i, pi, q̇

i, ṗi, q̈
i, p̈i) are coordinates on the double tangent bun-

dle TTM . The equation (8.3.12) coincides with the Hamilton equation

(8.3.6) of the original Hamiltonian system onM , while the equation (8.3.13)

is the variation equation of the equation (8.3.12). Substituting a solution

r of the Hamilton equation (8.3.12) into (8.3.13), one obtains a linear dy-

namic equation whose solutions r are the Jacobi fields of the solution r.

Turn now to integrals of motion of the Hamiltonian system (Ω̃, H̃) on

TM . We will denote the pull-back onto TM of a function f on M by

the same symbol f . The Poisson bracket {., .}TM (8.3.10) possesses the

following property. Given arbitrary functions f and f ′ on M and their

tangent lifts ∂T f and ∂T f
′ on TM , we have the relations

{f, f ′}TM = 0, {∂T f, f ′}TM = {f, ∂T f ′}TM = {f, f ′}, (8.3.14)

{∂T f, ∂T f ′}TM = ∂T {f, f ′}.

Let us consider the tangent lifts ∂TFa of integrals of motion Fa of the orig-

inal completely integrable system (8.3.7) on M . By virtue of the relations

(8.3.14), the functions (Fa, ∂TFa) make up a collection of 2m integrals of

motion in involution of the Hamiltonian system (Ω̃, H̃) on TM , i.e., they

are constant on solutions of the Hamilton equation (8.3.12) – (8.3.13). It



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

8.3. Jacobi fields of completely integrable systems 265

is readily observed that these integrals of motion are independent on TM .

Consequently, we have a completely integrable system

(TM, Ω̃, H̃, Fa, ∂TFa) (8.3.15)

on the tangent bundle TM . We agree to call it the tangent completely

integrable system.

Since integrals of motion ∂TFa of the completely integrable system

(8.3.15) depend on Jacobi fields, one may hope that they characterize a

relative motion. Given a solution r(t) of the Hamilton equation (8.3.6),

other solutions r′(t) with initial data r′(0) close to r(0) could be approx-

imated r′ ≈ r + r by solutions (r, r) of the Hamilton equation (8.3.12) –

(8.3.13). However, such an approximation need not be well. Namely, if M

is a vector space and r′(0) = r(0)+s(0) are the above mentioned solutions,

the difference r′(t) − (r(t) + r(t)), t ∈ R, fails to be zero and, moreover,

need not be bounded on M . Of course, if Fa is an integral of motion, then

Fa(r
′(t))− Fa(r(t)) = const.,

whenever r and r′ are solutions of the Hamilton equation (8.3.6). We aim

to show that, under a certain condition, there exists a Jacobi field r of a

solution r such that

Fa(r
′) = Fa(r) + ∂TFa(r, r) (8.3.16)

for all integrals of motion Fa of the completely integrable system (8.3.7).

It follows that, given a trajectory r of the original completely integrable

system (8.3.7) and the values of its integrals of motion Fa on r, one can

restore the values of Fa on other trajectories r′ from Fa(r) and the values

of integrals of motion ∂TFa for different Jacobi fields of the solution r.

Therefore, one may say that the integrals of motion ∂TFa of the tangent

completely integrable system (8.3.15) characterize a relative motion.

In accordance with Theorem 7.3.3, let

U = V × Rm−k × T k (8.3.17)

be an open submanifold ofM endowed with generalized action-angle coordi-

nates (Ii, y
i), i = 1, . . . ,m, where (yi) are coordinates on a toroidal cylinder

Rm−k×T k. Written with respect to these coordinates, the symplectic form

on U reads

Ω = dIi ∧ dyi,
while a Hamiltonian H and the integrals of motion Fa depend only on

action coordinates Ii. The Hamilton equation (8.3.6) on U (8.3.17) takes

the form

ẏi = ∂iH(Ij), İi = 0. (8.3.18)
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Let us consider the tangent completely integrable system on the tangent

bundle TU of U . It is the restriction to

TU = V × R3m−k × T k

of the tangent completely integrable system (8.3.15) on TM . Given action-

angle coordinates (Ii, y
i) on U , the tangent bundle TU is provided with the

holonomic coordinates

(Ii, y
i, İi, y

i). (8.3.19)

Relative to these coordinates, the tangent symplectic form Ω̃ (8.3.8) on TU

reads

Ω̃ = dIi ∧ dẏi + dİi ∧ dyi.
The Hamiltonian (8.3.11):

H̃ = ∂TH = İi∂
iH,

and integrals of motion (Fa, ∂TFa) of the tangent completely integrable sys-

tem on TU depend only on the coordinates (Ij , İj). Thus, the coordinates

(8.3.19) are the action-angle coordinates on TU .

The Hamilton equation (8.3.12) – (8.3.13) on TU read

İi = 0, Ïi = 0, (8.3.20)

q̇i = ∂iH(Ij), q̈i = İk∂
k∂iH(Ij), (8.3.21)

where (Ii, y
i, İi, ẏ

i, İi, ẏ
i, Ïi, ÿ

i) are holonomic coordinates on the double

tangent bundle TTU .

Let r and r′ be solutions of the Hamilton equation (8.3.6) which live in

U . Consequently, they are solutions of the Hamilton equation (8.3.18) on

U . Hence, their action components ri and r′i are constant. Let us consider

the system of algebraic equations

Fa(r
′
j)− Fa(rj) = ci∂

iFa(rj), a = 1, . . . ,m,

for real numbers ci, i = 1, . . .m. Since the integrals of motion Fa have no

critical points on U , this system always has a unique solution. Then let us

choose a solution (r, r) of the Hamilton equation (8.3.20) – (8.3.21), where

the Jacobi field r of the solution r possess the action components ri = ci.

It fulfils the relations (8.3.16) for all first integrals Fa. In other words, first

integrals (Fa, ∂TFa) on TU can be replaced by the action variables (Ii, İi).

Given a solution I of the Hamilton equation (8.3.18), its another solution

I ′ is approximated well by the solution (I, İ = I ′ − I) of the Hamilton

equation (8.3.20).
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Example 8.3.1. Let us consider a one-dimensional harmonic oscillator

M = R2, Ω = dp ∧ dq, H =
1

2
(p2 + q2). (8.3.22)

It is a completely integrable system whose integral of motion is H(q, p).

The action-angle coordinates (I, y) are defined on U = R2 \ {0} by the

relations

q = (2I)1/2 sin y, p = (2I)1/2 cos y. (8.3.23)

Since H = I , the corresponding Hamilton equation reads

İ = 0, ẏ = 1. (8.3.24)

The tangent extension of the Hamiltonian system (8.3.22) is the Hamilto-

nian system

Ω̃ = dp ∧ dq̇ + dṗ ∧ dq, H̃ = ṗp+ q̇q.

It is a completely integrable system whose integrals of motion are H and H̃.

The action-angle coordinates (I, İ, y, ẏ) are defined on TU by the relations

q̇ = (2I)−1/2İ sin y + (2I)1/2ẏ cos y,

ṗ = (2I)−1/2İ cos y − (2I)1/2ẏ sin y,

together with the relations (8.3.23). Since H̃ = İ , the corresponding Hamil-

ton equation (8.3.20) – (8.3.21) read

İ = 0, Ï = 0, ẏ = 1, ÿ = 0. (8.3.25)

Let

r = (y = tmod 2π, I = const 6= 0)

be a solution of the Hamilton equation (8.3.24). Then, for any different

solution

r′ = (y = tmod 2π, I ′ = const 6= 0)

of this equation, there exists a solution

(r, r), r = (ẏ = 0, İ = I ′ − I)
of the Hamilton equation (8.3.25) such that the equality (8.3.16):

H(I ′) = I ′ = I + İ = H(I) + H̃(İ), (8.3.26)

holds. Relative to the original coordinates (q, p, q̇, ṗ), the above mentioned

solutions r, r′ and r read

q(t) = (2I)1/2 sin t, p(t) = (2I)1/2 cos t,

q′(t) = (2I ′)1/2 sin t, p′(t) = (2I ′)1/2 cos t,

q̇(t) = (I ′ − I)(2I)−1/2 sin t, ṗ(t) = (I ′ − I)(2I)−1/2 cos t.

Then the equality (8.3.26) takes the form
1

2
(p′(t)2 + q′(t)2) =

1

2
(p(t)2 + q(t)2) + ṗ(t)p(t) + q̇(t)q(t).

It should be emphasized that

q′(t) 6= q(t) + q̇(t), p′(t) 6= p(t) + ṗ(t).
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Chapter 9

Mechanics with time-dependent

parameters

At present, quantum systems with classical parameters attract special at-

tention in connection with holonomic quantum computation.

This Chapter addresses mechanical systems with time-dependent pa-

rameters. These parameters can be seen as sections of some smooth fibre

bundle Σ→ R called the parameter bundle. Then a configuration space of

a mechanical system with time-dependent parameters is a composite fibre

bundle

Q
πQΣ−→Σ −→R (9.0.27)

[65; 106; 140]. Indeed, given a section ς(t) of a parameters bundle Σ→ R,

the pull-back bundle

Qς = ς∗Q→ R (9.0.28)

is a subbundle iς : Qς → Q of a fibre bundle Q→ R which is a configuration

space of a mechanical system with a fixed parameter function ς(t).

Sections 9.1 and 9.2 are devoted to Lagrangian and Hamiltonian classical

mechanics with parameters. In order to obtain the Lagrange and Hamilton

equations, we treat parameters on the same level as dynamic variables.

The corresponding total velocity and phase spaces are the first order jet

manifold J1Q and the vertical cotangent bundle V ∗Q of the configuration

bundle Q→ R, respectively.

Section 9.3 addresses quantization of mechanical systems with time-

dependent parameters. Since parameters remain classical, a phase space,

that we quantize, is the vertical cotangent bundle V ∗
ΣQ of a fibre bundle

Q → Σ. We apply to V ∗
ΣQ → Σ the technique of leafwise geometric quan-

tization [58; 65].

Berry’s phase factor is a phenomenon peculiar to quantum systems de-

pending on classical time-dependent parameters [3; 15; 91; 117; 166]. It is

269
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described by driving a carrier Hilbert space of a Hamilton operator over a

parameter manifold. Berry’s phase factor depending only on the geometry

of a path in a parameter manifold is called geometric (Section 9.4). It is

characterized by a holonomy operator. A problem lies in separation of a

geometric phase factor from the total evolution operator without using an

adiabatic assumption.

In Section 9.5, we address the Berry phase phenomena in completely

integrable systems. The reason is that, being constant under an internal

dynamic evolution, action variables of a completely integrable system are

driven only by a perturbation holonomy operator without any adiabatic

approximation [63; 65].

9.1 Lagrangian mechanics with parameters

Let the composite bundle (9.0.27), treated as a configuration space of a

mechanical system with parameters, be equipped with bundle coordinates

(t, σm, qi) where (t, σm) are coordinates on a fibre bundle Σ→ R.

Remark 9.1.1. Though Q→ R is a trivial bundle, a fibre bundle Q→ Σ

need not be trivial.

For a time, it is convenient to regard parameters as dynamic variables.

Then a total velocity space of a mechanical system with parameters is the

first order jet manifold J1Q of the fibre bundle Q→ R. It is equipped with

the adapted coordinates (t, σm, qi, σmt , q
i
t) (see Section 11.4.4).

Let a fibre bundle Q→ Σ be provided with a connection

AΣ = dt⊗ (∂t +Ait∂i) + dσm ⊗ (∂m +Aim∂i). (9.1.1)

Then the corresponding vertical covariant differential (11.4.36):

D̃ : J1Q→ VΣQ, D̃ = (qit −Ait −Aimσmt )∂i, (9.1.2)

is defined on a configuration bundle Q→ R.

Given a section ς of a parameter bundle Σ→ R, the restriction of D̃ to

J1iς(J
1Qς) ⊂ J1Q is the familiar covariant differential on a fibre bundle

Qς (9.0.28) corresponding to the pull-back (11.4.37):

Aς = ∂t + [(Aim ◦ ς)∂tςm + (A ◦ ς)it]∂i, (9.1.3)

of the connection AΣ (9.1.1) onto Qς → R. Therefore, one can use the

vertical covariant differential D̃ (9.1.2) in order to construct a Lagrangian
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for a mechanical system with parameters on the configuration space Q

(9.0.27).

We suppose that such a Lagrangian L depends on derivatives of param-

eters σmt only via the vertical covariant differential D̃ (9.1.2), i.e.,

L = L(t, σm, qi, D̃i = qit −Ait −Aimσmt )dt. (9.1.4)

Obviously, this Lagrangian is non-regular because of the Lagrangian con-

straint

∂tmL+Aim∂
t
iL = 0.

As a consequence, the corresponding Lagrange equation

(∂i − dt∂ti )L = 0, (9.1.5)

(∂m − dt∂tm)L = 0 (9.1.6)

is overdefined, and it admits a solution only if a rather particular relation

(∂m +Aim∂i)L+ ∂tiLdtAim = 0

is satisfied.

However, if a parameter function ς holds fixed, the equation (9.1.6) is

replaced with the condition

σm = ςm(t), (9.1.7)

and the Lagrange equation (9.1.5) only should be considered One can think

of this equation under the condition (9.1.7) as being the Lagrange equation

for the Lagrangian

Lς = J1ς∗L = L(t, ςm, qi, D̃i = qit −Ait −Aim∂tςm)dt (9.1.8)

on a velocity space J1Qς .

Example 9.1.1. Let us consider a one-dimensional motion of a point mass

in the presence of a potential field whose center moves. A configuration

space of this system is a composite fibre bundle

Q = R3 → R2 → R, (9.1.9)

coordinated by (t, σ, q) where σ, treated as a parameter, is a coordinate

of the field center with respect to an inertial reference frame and q is a

coordinate of a point mass relative to a field center. There is the natural

inclusion

Q×
Σ
TΣ 3 (t, σ, q, ṫ, σ̇)→ (t, σ, ṫ, σ̇, ẏ = −σ̇) ∈ TQ
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which defines the connection

AΣ = dt⊗ ∂t + dσ ⊗ (∂σ − ∂q) (9.1.10)

on a fibre bundle Q→ Σ. The corresponding vertical covariant differential

(9.1.2) reads

D̃ = (qt + σt)∂q .

This is a relative velocity of a point mass with respect to an inertial reference

frame. Then a Lagrangian of this point mass takes the form

L =

[
1

2
(qt + σt)

2 − V (q)

]
dt. (9.1.11)

Given a parameter function σ = ς(t), the corresponding Lagrange equation

(9.1.5) reads

dt(qt + ς) + ∂qV = 0. (9.1.12)

9.2 Hamiltonian mechanics with parameters

A total phase space of a mechanical system with time-dependent parameters

on the composite bundle (9.0.27) is the vertical cotangent bundle V ∗Q of

Q→ R. It is coordinated by (t, σm, qi, pm, pi).

Let us consider Hamiltonian forms on a phase space V ∗Q which are

associated with the Lagrangian L (9.1.4). The Lagrangian constraint space

NL ⊂ V ∗Q defined by this Lagrangian is given by the equalities

pi = ∂tiL, pm +Aimpi = 0, (9.2.1)

where AΣ is the connection (9.1.1) on a fibre bundle Q→ Σ.

Let

Γ = ∂t + Γm(t, σr)∂m (9.2.2)

be some connection on a parameter bundle Σ→ R, and let

γ = ∂t + Γm∂m + (Ait +AimΓm)∂i (9.2.3)

be the composite connection (11.4.29) on a fibre bundle Q → R which

is defined by the connection AΣ (9.1.1) on Q → Σ and the connection Γ

(9.2.2) on Σ→ R. Then a desired L-associated Hamiltonian form reads

H = (pmdσ
m + pidq

i) (9.2.4)

− [pmΓm + pi(A
i
t +AimΓm) + Eγ(t, σm, qi, pi)]dt,
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where a Hamiltonian function Eγ satisfies the relations

∂tiL(t, σm, qi, D̃i = ∂iEγ(t, σm, qi, ∂tiL) = ∂tiL, (9.2.5)

pi∂
iEγ − Eγ = L(t, σm, qi, D̃i = ∂iEγ). (9.2.6)

They are obtained by substitution of the expression (9.2.4) in the conditions

(3.6.3) – (3.6.4). A key point is that the Hamiltonian form (9.2.4) is affine

in momenta pm and that the relations (9.2.5) – (9.2.6) are independent of

the connection Γ (9.2.2).

The Hamilton equation (3.3.22) – (3.3.23) for the Hamiltonian form H

(9.2.4) reads

qit = Ait +AimΓm + ∂iEγ , (9.2.7)

pti = −pj(∂iAjt + ∂iA
j
mΓm)− ∂iEγ , (9.2.8)

σmt = Γm, (9.2.9)

ptm = −pi(∂mAit + Γn∂mA
i
n)− ∂mEγ , (9.2.10)

whereas the Lagrangian constraint (9.2.1) takes the form

pi = ∂tiL(t, qi, σm, ∂iEγ(t, σm, qi, pi)), (9.2.11)

pm +Aimpi = 0. (9.2.12)

If a parameter function ς(t) holds fixed, we ignore the equation (9.2.10) and

treat the rest ones as follows.

Given ς(t), the equations (9.1.7) and (9.2.12) define a subbundle

Pς → Qς → R (9.2.13)

over R of a total phase space V ∗Q → R. With the connection (9.1.1), we

have the splitting (11.4.35) of V ∗Q which reads

V ∗Q = AΣ(V ∗
ΣQ)⊕

Q
(Q×

Q
V ∗Σ),

pidq
i + pmdσ

m = pi(dq
i −Aimdσm) + (pm +Aimpi)dσ

m,

where V ∗
ΣQ is the vertical cotangent bundle of Q → Σ. Then V ∗Q → Q

can be provided with the bundle coordinates

pi = pi, pm = pm +Aimpi

compatible with this splitting. Relative to these coordinates, the equation

(9.2.12) takes the form pm = 0. It follows that the subbundle

iP : Pς = i∗ς (AΣ(V ∗
ΣQ))→ V ∗Q, (9.2.14)

coordinated by (t, qi, pi), is isomorphic to the vertical cotangent bundle

V ∗Qς = i∗ςV
∗
ΣQ
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of the configuration space Qς → R (9.0.28) of a mechanical system with

a parameter function ς(t). Consequently, the fibre bundle Pς (9.2.13) is a

phase space of this system.

Given a parameter function ς , there exists a connection Γ on a parameter

bundle Σ→ R such that ς(t) is its integral section, i.e., the equation (9.2.9)

takes the form

∂tς
m(t) = Γm(t, ς(t)). (9.2.15)

Then a system of equations (9.2.7), (9.2.8) and (9.2.11) under the conditions

(9.1.7) and (9.2.15) describes a mechanical system with a given parameter

function ς(t) on a phase space Pς . Moreover, this system is the Hamilton

equation for the pull-back Hamiltonian form

Hς = i∗PH = pidq
i − [pi(A

i
t +Aim∂tς

m) + ς∗Eγ ]dt (9.2.16)

on Pς where

Ait +Aim∂tς
m = (i∗ςγ)

i
t

is the pull-back connection (11.4.37) on Qς → R.

It is readily observed that the Hamiltonian formHς (9.2.16) is associated

with the Lagrangian Lς (9.1.8) on J1Qς , and the equations (9.2.7), (9.2.8)

and (9.2.11) are corresponded to the Lagrange equation (9.1.5).

Example 9.2.1. Let us consider a Lagrangian mechanical system on the

configuration space (9.1.9) in Example 9.1.1 which is described by the La-

grangian (9.1.11). The corresponding Lagrangian constraint space is

pq + pσ = 0, (9.2.17)

where (t, σ, q, pσ , pq) are coordinates on a phase space V ∗Q. Let

Γ = ∂t + Γ(t, σ)∂σ

be a connection on a parameter bundle Σ = R2 → R. Given the con-

nection AΣ (9.1.10) on Q → Σ, the composite connection γ (9.2.3) on a

configuration bundle Q→ R reads

γ = ∂t + Γ∂σ − Γ∂i.

Then the L-associated Hamiltonian form (9.2.4) reads

H = pqdq + pσdσ −
[
−pqΓ− pσΓ +

1

2
p2
q + V (q)

]
dt.

Given a parameter function σ = ς(t), the corresponding Hamilton equation

(9.2.7) – (9.2.9) take the form

qt = −Γ + pq,

ptq = −∂qV (q),

∂tς = Γ.

This Hamilton equation is equivalent to the Lagrange equation (9.1.12).
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9.3 Quantum mechanics with classical parameters

In Sections 9.1 and 9.2 we have formulated Lagrangian and Hamiltonian

classical mechanics with parameters on the composite bundle Q (9.0.27). In

order to obtain Lagrange and Hamilton equations, we treat parameters on

the same level as dynamic variables so that their total velocity and phase

spaces are the first order jet manifold J1Q and the vertical cotangent bundle

V ∗Q of a fibre bundle Q→ R, respectively.

This Section is devoted to quantization of mechanical systems with

time-dependent parameters on the composite bundle Q (9.0.27). Since

parameters remain classical, a phase space that we quantize is the ver-

tical cotangent bundle V ∗
ΣQ of a fibre bundle Q → Σ. This phase space is

equipped with holonomic coordinates (t, σm, qi, pi). It is provided with the

following canonical Poisson structure. Let T ∗Q be the cotangent bundle

of Q equipped with the holonomic coordinates (t, σm, qi, p0, pm, pi). It is

endowed with the canonical Poisson structure {, }T (3.3.2). There is the

canonical fibration

ζΣ : T ∗Q
ζ−→V ∗Q −→V ∗

ΣQ (9.3.1)

(see the exact sequence (11.4.31)). Then the Poisson bracket {, }Σ on the

space C∞(V ∗
ΣQ) of smooth real functions on V ∗

ΣQ is defined by the relation

ζ∗Σ{f, f ′}Σ = {ζ∗Σf, ζ∗Σf ′}T , (9.3.2)

{f, f ′}Σ = ∂kf∂kf
′ − ∂kf∂kf ′, f, f ′ ∈ C∞(V ∗

ΣQ). (9.3.3)

The corresponding characteristic symplectic foliation F coincides with the

fibration V ∗
ΣQ → Σ. Therefore, we can apply to a phase space V ∗

ΣQ → Σ

the technique of leafwise geometric quantization in Section 5.3 [58].

Let us assume that a manifold Q is oriented, that fibres of V ∗
ΣQ → Σ

are simply connected, and that

H2(Q; Z2) = H2(V ∗
ΣQ; Z2) = 0.

Being the characteristic symplectic foliation of the Poisson structure (9.3.3),

the fibration V ∗
ΣQ → Σ is endowed with the symplectic leafwise form

(3.1.31):

ΩF = d̃pi ∧ d̃qi.

Since this form is d̃-exact, its leafwise de Rham cohomology class equals

zero and, consequently, it is the image of the zero de Rham cohomology

class with respect to the morphism [i∗F ] (3.1.23). Then, in accordance
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with Proposition 5.3.1, the symplectic foliation (V ∗
ΣQ → Σ,ΩF) admits

prequantization.

Since the leafwise form ΩF is d̃-exact, the prequantization bundle C →
V ∗

ΣQ is trivial. Let its trivialization

C = V ∗
ΣQ× C (9.3.4)

hold fixed, and let (t, σm, qk, pk, c) be the corresponding bundle coordinates.

Then C → V ∗
ΣQ admits a leafwise connection

AF = d̃pk ⊗ ∂k + d̃qk ⊗ (∂k − ipkc∂c).
This connection preserves the Hermitian fibre metric g (3.5.3) in C, and its

curvature fulfils the prequantization condition (5.3.3):

R̃ = −iΩF ⊗ uC .
The corresponding prequantization operators (5.3.2) read

f̂ = −iϑf + (pk∂
kf − f), f ∈ C∞(V ∗

ΣQ),

ϑf = ∂kf∂k − ∂kf∂k.
Let us choose the canonical vertical polarization of the symplectic foli-

ation (V ∗
ΣQ → Σ,ΩF) which is the vertical tangent bundle T = V V ∗

ΣQ of

a fibre bundle

πV Q : V ∗
ΣQ→ Q.

It is readily observed that the corresponding quantum algebra AF consists

of functions

f = ai(t, σm, qk)pi + b(t, σm, qk) (9.3.5)

on V ∗
ΣQ which are affine in momenta pk.

Following the quantization procedure in Section 5.3.3, one should con-

sider the quantization bundle (5.3.23) which is isomorphic to the prequanti-

zation bundle C (9.3.4) because the metalinear bundle D1/2[F ] of complex

fibrewise half-densities on V ∗
ΣQ→ Σ is trivial owing to the identity transi-

tion functions JF = 1 (5.3.21). Then we define the representation (5.3.24)

of the quantum algebra AF of functions f (9.3.5) in the space EF of sec-

tions ρ of the prequantization bundle C → V ∗
ΣQ which obey the condition

(5.3.25) and whose restriction to each fibre of V ∗
ΣQ → Σ is of compact

support. Since the trivialization (9.3.4) of C holds fixed, its sections are

complex functions on V ∗
ΣQ, and the above mentioned condition (5.3.25)

reads

∂kf∂
kρ = 0, f ∈ C∞(Q),
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i.e., elements of EF are constant on fibres of V ∗
ΣQ→ Q. Consequently, EF

reduces to zero ρ = 0.

Therefore, we modify the leafwise quantization procedure as follows.

Given a fibration

πQΣ : Q→ Σ,

let us consider the corresponding metalinear bundle D1/2[πQΣ] → Q of

leafwise half-densities on Q→ Σ and the tensor product

YQ = CQ ⊗D1/2[πQΣ] = D1/2[πQΣ]→ Q,

where CQ = C×Q is the trivial complex line bundle over Q. It is readily

observed that the Hamiltonian vector fields

ϑf = ak∂k − (pj∂ka
j + ∂kb)∂

k

of elements f ∈ AF (9.3.5) are projectable onto Q. Then one can associate

to each element f of the quantum algebra AF the first order differential

operator

f̂ = (−i∇πV Q(ϑf ) + f)⊗ Id + Id ⊗ LπV Q(ϑf ) (9.3.6)

= −iak∂k −
i

2
∂ka

k − b
in the space EQ of sections of the fibre bundle YQ → Q whose restriction to

each fibre of Q→ Σ is of compact support. Since the pull-back of D1/2[πQΣ]

onto each fibre Qσ of Q → Σ is the metalinear bundle of half-densities on

Qσ, the restrictions ρσ of elements of ρ ∈ EQ to Qσ constitute a pre-Hilbert

space with respect to the non-degenerate Hermitian form

〈ρσ |ρ′σ〉σ =

∫

Qσ

ρσρ′σ .

Then the Schrödinger operators (9.3.6) are Hermitian operators in the pre-

Hilbert C∞(Σ)-module EQ, and provide the desired geometric quantization

of the symplectic foliation (V ∗
ΣQ→ Σ,ΩF ).

In order to quantize the evolution equation of a mechanical system on a

phase space V ∗
ΣQ, one should bear in mind that this equation is not reduced

to the Poisson bracket {, }Σ on V ∗
ΣQ, but is expressed in the Poisson bracket

{, }T on the cotangent bundle T ∗Q [58]. Therefore, let us start with the

classical evolution equation.

Given the Hamiltonian form H (9.2.4) on a total phase space V ∗Q,

let (T ∗Q,H∗) be an equivalent homogeneous Hamiltonian system with the

homogeneous Hamiltonian H∗ (3.4.1):

H∗ = p0 + [pmΓm + pi(A
i
t +AimΓm) + Eγ(t, σm, qi, pi)]. (9.3.7)
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Let us consider the homogeneous evolution equation (3.8.3) where F are

functions on a phase space V ∗
ΣQ. It reads

{H∗, ζ∗ΣF}T = 0, F ∈ C∞(V ∗
ΣQ), (9.3.8)

∂tF + Γm∂mF + (Ait +AimΓm + ∂iEγ)∂iF
− [pj(∂iA

j
t + ∂iA

j
mΓm) + ∂iEγ ]∂iF = 0.

It is readily observed that a function F ∈ C∞(V ∗
ΣQ) obeys the equality

(9.3.8) if and only if it is constant on solutions of the Hamilton equation

(9.2.7) – (9.2.9). Therefore, one can think of the relation (9.3.8) as being a

classical evolution equation on C∞(V ∗
ΣQ).

In order to quantize the evolution equation (9.3.8), one should quantize

a symplectic manifold (T ∗Q, {, }T ) so that its quantum algebraAT contains

the pull-back ζ∗ΣAF of the quantum algebraAF of the functions (9.3.5). For

this purpose, we choose the vertical polarization V T ∗Q on the cotangent

bundle T ∗Q. The corresponding quantum algebra AT consists of functions

on T ∗Q which are affine in momenta (p0, pm, pi) (see Section 5.2). Clearly,

ζ∗ΣAF is a subalgebra of the quantum algebra AT of T ∗Q.

Let us restrict our consideration to the subalgebraA′
T ⊂ AT of functions

f = a(t, σr)p0 + am(t, σr)pm + ai(t, σm, qj)pi + b(t, σm, qj),

where a and aλ are the pull-back onto T ∗Q of functions on a parameter

space Σ. Of course, ζ∗ΣAF ⊂ A′
T . Moreover, A′

T admits a representation

by the Hermitian operators

f̂ = −i(a∂t + am∂m + ai∂i)−
i

2
∂ka

k − b (9.3.9)

in the carrier space EQ of the representation (9.3.6) of AF . Then, if H∗ ∈
A′
T , the evolution equation (9.3.8) is quantized as the Heisenberg equation

(5.4.27):

i[Ĥ∗, f̂ ] = 0, f ∈ AF . (9.3.10)

A problem is that the function H∗ (9.3.7) fails to belong to the algebra

A′
T , unless the Hamiltonian function Eγ (9.2.4) is affine in momenta pi. Let

us assume that Eγ is polynomial in momenta. This is the case of almost all

physically relevant models.

Lemma 9.3.1. Any smooth function f on V ∗
ΣQ which is a polynomial of

momenta pk is decomposed in a finite sum of products of elements of the

algebra AF .

Proof. The proof follows that of a similar statement in Section 5.4.4. �
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By virtue of Lemma 9.3.1, one can associate to a polynomial Hamilto-

nian function Eγ an element of the enveloping algebraAF of the Lie algebra

AF (though it by no means is unique). Accordingly, the homogeneous Ha-

miltonian H∗ (9.3.7) is represented by an element of the enveloping algebra

A′

T of the Lie algebra A′
T . Then the Schrödinger representation (9.3.6)

and (9.3.9) of the Lie algebras AF and A′
T is naturally extended to their

enveloping algebras AF and A′

T that provides quantization

Ĥ∗ = −i[∂t+Γm∂m+(Akt +AkmΓm)∂k]−
i

2
∂k(A

k
t +AkmΓm)+ Êγ (9.3.11)

of the homogeneous Hamiltonian H∗ (9.3.7).

It is readily observed that the operator iĤ∗ (9.3.11) obeys the Leibniz

rule

iĤ∗(rρ) = ∂trρ + r(iĤ∗ρ), r ∈ C∞(R), ρ ∈ EQ. (9.3.12)

Therefore, it is a connection on pre-Hilbert C∞(R)-module EQ. The cor-

responding Schrödinger equation (4.6.7) reads

iĤ∗ρ = 0, ρ ∈ EQ.

Given a trivialization

Q = R×M, (9.3.13)

there is the corresponding global decomposition

Ĥ∗ = −i∂t + Ĥ,
where Ĥ plays a role of the Hamilton operator. Then we can introduce the

evolution operator U which obeys the equation (4.6.9):

∂tU(t) = −iĤ∗ ◦ U(t), U(0) = 1.

It can be written as the formal time-ordered exponent

U = T exp


−i

t∫

0

Ĥdt′

 .

Given the quantum operator Ĥ∗ (9.3.11), the bracket

∇f̂ = i[Ĥ∗, f̂ ] (9.3.14)

defines a derivation of the quantum algebra AF . Since p̂0 = −i∂t, the

derivation (9.3.14) obeys the Leibniz rule

∇(rf̂ ) = ∂trf̂ + r∇f̂ , r ∈ C∞(R).
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Therefore, it is a connection on the C∞(R)-algebra AF , which enables one

to treat quantum evolution of AF as a parallel displacement along time

(see Section 4.6). In particular, f̂ is parallel with respect to the connection

(9.3.14) if it obeys the Heisenberg equation (9.3.10).

Now let us consider a mechanical system depending on a given param-

eter function ς : R → Σ. Its configuration space is the pull-back bundle

Qς (9.0.28). The corresponding phase space is the fibre bundle Pς (9.2.14).

The pull-back Hς of the Hamiltonian form H (9.2.4) onto Pς takes the form

(9.2.16).

The homogeneous phase space of a mechanical system with a parameter

function ς is the pull-back

P ς = i∗PT
∗Q (9.3.15)

onto Pς of the fibre bundle T ∗Q → V ∗Q (3.3.3). The homogeneous phase

space P ς (9.3.15) is coordinated by (t, qi, p0, pi), and it isomorphic to the

cotangent bundle T ∗Qς . The associated homogeneous Hamiltonian on P ς
reads

H∗
ς = p0 + [pi(A

i
t +Aim∂tς

m) + ς∗Eγ ]. (9.3.16)

It characterizes the dynamics of a mechanical system with a given param-

eter function ς .

In order to quantize this system, let us consider the pull-back bundle

D1/2[Qς ] = i∗ςD1/2[πQΣ]

over Qς and its pull-back sections ρς = i∗ςρ, ρ ∈ EQ. It is easily justified

that these are fibrewise half-densities on a fibre bundle Qς → R whose

restrictions to each fibre it : Qt → Qς are of compact support. These

sections constitute a pre-Hilbert C∞(R)-module Eς with respect to the

Hermitian forms

〈i∗t ρς |i∗t ρ′ς〉t =

∫

Qt

i∗tρς i
∗
tρ

′
ς .

Then the pull-back operators

(ς∗f̂)ρς = (f̂ρ)ς ,

ς∗f̂ = −iak(t, ςm(t), qj)∂k −
i

2
∂ka

k(t, ςm(t), qj)− b(t, ςm(t), qj),

in Eς provide the representation of the pull-back functions

i∗ςf = ak(t, ςm(t), qj)pk + b(t, ςm(t), qj), f ∈ AF ,
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on V ∗Qς . Accordingly, the quantum operator

Ĥ∗
ς = −i∂t − i(Ait +Aim∂tς

m)∂i −
i

2
∂i(A

i
t +Aim∂tς

m)− ς̂∗Eγ (9.3.17)

coincides with the pull-back operator ς∗Ĥ∗, and it yields the Heisenberg

equation

i[Ĥ∗
ς , ς

∗f̂ ] = 0

of a quantum system with a parameter function ς .

The operator Ĥ∗
ς (9.3.17) acting in the pre-Hilbert C∞(R)-module Eς

obeys the Leibniz rule

iĤ∗
ς (rρς) = ∂trρς + r(iĤ∗

ς ρς), r ∈ C∞(R), ρς ∈ EQ, (9.3.18)

and, therefore, it is a connection on Eς . The corresponding Schrödinger

equation reads

iĤ∗
ςρς = 0, ρς ∈ Eς , (9.3.19)[

∂t + (Ait +Aim∂tς
m)∂i +

1

2
∂i(A

i
t +Aim∂tς

m)− iς̂∗Eγ
]
ρς = 0.

With the trivialization (9.3.13) of Q, we have a trivialization of Qς → R

and the corresponding global decomposition

Ĥ∗
ς = −i∂t + Ĥς ,

where

Ĥς = −i(Ait +Aim∂tς
m)∂i −

i

2
∂i(A

i
t +Aim∂tς

m) + ς̂∗Eγ (9.3.20)

is a Hamilton operator. Then we can introduce an evolution operator Uς
which obeys the equation

∂tUς(t) = −iĤ∗
ς ◦ Uς(t), Uς(0) = 1.

It can be written as the formal time-ordered exponent

Uς(t) = T exp


−i

t∫

0

Ĥςdt′

 . (9.3.21)



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

282 Mechanics with time-dependent parameters

9.4 Berry geometric factor

As was mentioned above, the Berry phase factor is a standard attribute of

quantum mechanical systems with time-dependent classical parameters [15;

109].

Let us remind that the quantum adiabatic Berry phase has been discov-

ered as a phase shift in the eigenfunctions of a parameter-dependent Hamil-

tonian when parameters traverse along a closed curve [8]. J.Hannay in [82]

found a classical analogue of this phase associated to completely integrable

systems and called the Hannay angles (see [9] for its non-adiabatic general-

ization). B.Simon in [147] has recognized that the Berry phase arises from

a particular connection, called the Berry connection, on a Hermitian line

bundle over a parameter space (see [117] for an analogous geometric frame-

work of Hannay angles, determined by a parameter-dependent Hamiltonian

action of a Lie group on a symplectic manifold). F.Wilczek and A.Zee in
[164] generalized a notion of the adiabatic phase to the non-Abelian case

corresponding to adiabatically transporting an n-fold degenerate state over

the parameter manifold. They considered a vector bundle over a param-

eter space as a unitary bundle. E.Kiritsis in [91] has studied this bundle

using homotopy theory. The reader is addressed to [166] for the case of a

Hamiltonian G-space of parameters and to [151] for a homogeneous Kähler

parameter manifold. The adiabatic assumption was subsequently removed

by Aharonov and Anandan in [3] who suggested to considered a loop in a

projective Hilbert space instead of a parameter space [2] (see [14] for the

relation between the Berry and Aharonov–Anandan connections).

The Berry phase factor is described by driving a carrier Hilbert space

of a Hamilton operator over cycles in a parameter manifold. The Berry

geometric factor depends only on the geometry of a path in a parameter

manifold and, therefore, provides a possibility to perform quantum gate op-

erations in an intrinsically fault-tolerant way. A problem lies in separation

of the Berry geometric factor from the total evolution operator without

using an adiabatic assumption. Firstly, holonomy quantum computation

implies exact cyclic evolution, but exact adiabatic cyclic evolution almost

never exists. Secondly, an adiabatic condition requires that the evolution

time must be long enough.

In a general setting, let us consider a linear (not necessarily finite-

dimensional) dynamical system

∂tψ = Ŝψ
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whose linear (time-dependent) dynamic operator Ŝ falls into the sum

Ŝ = Ŝ0 + ∆ = Ŝ0 + ∂tς
m∆m, (9.4.1)

where ς(t) is a parameter function given by a section of some smooth fibre

bundle Σ→ R coordinated by (t, σm). Let assume the following:

(i) the operators Ŝ0(t) and ∆(t′) commute for all instants t and t′,

(ii) the operator ∆ depends on time only through a parameter function

ς(t).

Then the corresponding evolution operator U(t) can be represented by the

product of time-ordered exponentials

U(t) = U0(t) ◦ U1(t) = T exp




t∫

0

∆dt′


 ◦ T exp




t∫

0

Ŝ0dt
′


 , (9.4.2)

where the first one is brought into the ordered exponential

U1(t) = T exp




t∫

0

∆m(ς(t′))∂tς
m(t′)dt′


 (9.4.3)

= T exp



∫

ς[0,t]

∆m(σ)dσm




along the curve ς [0, t] in a parameter bundle Σ. It is the Berry geometric

factor depending only on a trajectory of a parameter function ς . Therefore,

one can think of this factor as being a displacement operator along a curve

ς [0, t] ⊂ Σ. Accordingly,

∆ = ∆m∂tς
m (9.4.4)

is called the holonomy operator.

However, a problem is that the above mentioned commutativity condi-

tion (i) is rather restrictive.

Turn now to the quantum Hamiltonian system with classical parameters

in Section 9.3. The Hamilton operator Ĥς (9.3.20) in the evolution operator

U (9.3.21) takes the form (9.4.1):

Ĥς = −i
[
Akm∂k +

1

2
∂kA

k
m

]
∂tς

m + Ĥ′(ς). (9.4.5)

Its second term Ĥ′ can be regarded as a dynamic Hamilton operator of a

quantum system, while the first one is responsible for the Berry geometric

factor as follows.
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Bearing in mind possible applications to holonomic quantum computa-

tions, let us simplify the quantum system in question. The above mentioned

trivialization (9.3.13) of Q implies a trivialization of a parameter bundle

Σ = R×W such that a fibration Q→ Σ reads

R×M Id×πM−→ R×W,
where πM : M → W is a fibre bundle. Let us suppose that components

Akm of the connection AΣ (9.1.1) are independent of time. Then one can

regard the second term in this connection as a connection on a fibre bundle

M →W . It also follows that the first term in the Hamilton operator (9.4.5)

depends on time only through parameter functions ςm(t). Furthermore, let

the two terms in the Hamilton operator (9.4.5) mutually commute on [0, t].

Then the evolution operator U (9.3.21) takes the form

U = T exp


−

∫

ς([0,t])

(
Akm∂k +

1

2
∂kA

k
m

)
dσm


 (9.4.6)

◦ T exp


−i

t∫

0

Ĥ′dt′


 .

One can think of its first factor as being the parallel displacement operator

along the curve ς([0, t]) ⊂W with respect to the connection

∇mρ =

(
∂m +Akm∂k +

1

2
∂kA

k
m

)
ρ, ρ ∈ EQ, (9.4.7)

called the , Berry connection on a C∞(W )-module EQ. A peculiarity of this

factor in comparison with the second one lies in the fact that integration

over time through a parameter function ς(t) depends only on a trajectory

of this function in a parameter space, but not on parametrization of this

trajectory by time. Therefore, the first term of the evolution operator U

(9.4.6) is the Berry geometric factor. The corresponding holonomy operator

(9.4.4) reads

∆ =

(
Akm∂k +

1

2
∂kA

k
m

)
∂tς

m.

9.5 Non-adiabatic holonomy operator

We address the Berry phase phenomena (Section 9.4) in a completely inte-

grable system of m degrees of freedom around its invariant torus Tm. The
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reason is that, being constant under an internal evolution, its action vari-

ables are driven only by a perturbation holonomy operator ∆. We construct

such an operator for an arbitrary connection on a fibre bundle

W × Tm →W, (9.5.1)

without any adiabatic approximation [63; 65]. In order that a holonomy

operator and a dynamic Hamiltonian mutually commute, we first define

a holonomy operator with respect to initial data action-angle coordinates

and, afterwards, return to the original ones. A key point is that both

classical evolution of action variables and mean values of quantum action

operators relative to original action-angle coordinates are determined by

the dynamics of initial data action and angle variables.

A generic phase space of a Hamiltonian system with time-dependent

parameters is a composite fibre bundle

P → Σ→ R,

where Π → Σ is a symplectic bundle (i.e., a symplectic foliation whose

leaves are fibres of Π→ Σ), and

Σ = R×W → R

is a parameter bundle whose sections are parameter functions. In the case

of a completely integrable system with time-dependent parameters, we have

the product

P = Σ× U = Σ× (V × Tm)→ Σ→ R,

equipped with the coordinates (t, σα, Ik , ϕ
k). Let us suppose for a time

that parameters also are dynamic variables. The total phase space of such

a system is the product

Π = V ∗Σ× U

coordinated by (t, σα, pα = σ̇α, Ik, ϕ
k). Its dynamics is characterized by

the Hamiltonian form (9.2.4):

HΣ = pαdσ
α + Ikdϕ

k −HΣ(t, σβ , pβ, Ij , ϕ
j)dt,

HΣ = pαΓα + Ik(Λ
k
t + ΛkαΓαt ) + H̃, (9.5.2)

where H̃ is a function, ∂t+Γα∂α is the connection (9.2.2) on the parameter

bundle Σ→ R, and

Λ = dt⊗ (∂t + Λkt ∂k) + dσα ⊗ (∂α + Λkα∂k) (9.5.3)
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is the connection (9.1.1) on the fibre bundle

Σ× Tm → Σ.

Bearing in mind that σα are parameters, one should choose the Hamiltonian

HΣ (9.5.2) to be affine in their momenta pα. Then a Hamiltonian system

with a fixed parameter function σα = ςα(t) is described by the pull-back

Hamiltonian form (9.2.16):

Hς = Ikdϕ
k − {Ik[Λkt (t, ϕj) (9.5.4)

+ Λkα(t, ςβ , ϕj)∂tς
α] + H̃(t, ςβ , Ij , ϕ

j)}dt
on a Poisson manifold

R× U = R× (V × Tm). (9.5.5)

Let H̃ = H(Ii) be a Hamiltonian of an original autonomous completely

integrable system on the toroidal domain U (9.5.5) equipped with the

action-angle coordinates (Ik , ϕ
k). We introduce a desired holonomy op-

erator by the appropriate choice of the connection Λ (9.5.3).

For this purpose, let us choose the initial data action-angle coordinates

(Ik , φ
k) by the converse to the canonical transformation (7.7.16):

ϕk = φk − t∂kH. (9.5.6)

With respect to these coordinates, the Hamiltonian of an original com-

pletely integrable system vanishes and the Hamiltonian form (9.5.4) reads

Hς = Ikdφ
k − Ik[Λkt (t, φj) + Λkα(t, ςβ , φj)∂tς

α]dt. (9.5.7)

Let us put Λkt = 0 by the choice of a reference frame associated to the initial

data coordinates φk, and let us assume that coefficients Λkα are independent

of time, i.e., the part

ΛW = dσα ⊗ (∂α + Λkα∂k) (9.5.8)

of the connection Λ (9.5.3) is a connection on the fibre bundle (9.5.1). Then

the Hamiltonian form (9.5.7) reads

Hς = Ikdφ
k − IkΛkα(ςβ , φj)∂tς

αdt. (9.5.9)

Its Hamilton vector field (3.3.21) is

γH = ∂t + Λiα∂tς
α∂i − Ik∂iΛkα∂tςα∂i, (9.5.10)

and it leads to the Hamilton equation

dtφ
i = Λiα(ς(t), φl)∂tς

α, (9.5.11)

dtIi = −Ik∂iΛkα(ς(t), φl)∂tς
α. (9.5.12)
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Let us note that

V ∗ΛW = dσα ⊗ (∂α + Λiα∂i − Ik∂iΛkα∂i) (9.5.13)

is the lift (8.1.5) of the connection ΛW (9.5.8) onto the fibre bundle

W × (V × Tm)→W,

seen as a subbundle of the vertical cotangent bundle

V ∗(W × Tm) = W × T ∗Tm

of the fibre bundle (9.5.1). It follows that any solution Ii(t), φ
i(t) of the

Hamilton equation (9.5.11) – (9.5.12) (i.e., an integral curve of the Hamilton

vector field (9.5.10)) is a horizontal lift of the curve ς(t) ⊂W with respect

to the connection V ∗ΛW (9.5.13), i.e.,

Ii(t) = Ii(ς(t)), φi(t) = φi(ς(t)).

Thus, the right-hand side of the Hamilton equation (9.5.11) – (9.5.12) is

the holonomy operator

∆ = (Λiα∂tς
α,−Ik∂iΛkα∂tςα). (9.5.14)

It is not a linear operator, but the substitution of a solution φ(ς(t)) of the

equation (9.5.11) into the Hamilton equation (9.5.12) results in a linear

holonomy operator on the action variables Ii.

Let us show that the holonomy operator (9.5.14) is well defined. Since

any vector field ϑ on R×Tm such that ϑcdt = 1 is complete, the Hamilton

equation (9.5.11) has solutions for any parameter function ς(t). It follows

that any connection ΛW (9.5.8) on the fibre bundle (9.5.1) is an Ehresmann

connection, and so is its lift (9.5.13). Because V ∗ΛW (9.5.13) is an Ehres-

mann connection, any curve ς([0, 1]) ⊂W can play a role of the parameter

function in the holonomy operator ∆ (9.5.14).

Now, let us return to the original action-angle coordinates (Ik, ϕ
k) by

means of the canonical transformation (9.5.6). The perturbed Hamiltonian

reads

H′ = IkΛ
k
α(ς(t), ϕi − t∂iH(Ij))∂tς

α(t) +H(Ij),

while the Hamilton equation (9.5.11) – (9.5.12) takes the form

∂tϕ
i = ∂iH(Ij) + Λiα(ς(t), ϕl − t∂lH(Ij))∂tς

α(t)

−tIk∂i∂sH(Ij)∂sΛ
k
α(ς(t), ϕl − t∂lH(Ij))∂tς

α(t),

∂tIi = −Ik∂iΛkα(ς(t), ϕl − t∂lH(Ij))∂tς
α(t).



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

288 Mechanics with time-dependent parameters

Its solution is

Ii(ς(t)), ϕi(t) = φi(ς(t)) + t∂iH(Ij(ς(t))),

where Ii(ς(t)), φ
i(ς(t)) is a solution of the Hamilton equation (9.5.11)

– (9.5.12). We observe that the action variables Ik are driven only by

the holonomy operator, while the angle variables ϕi have a non-geometric

summand.

Let us emphasize that, in the construction of the holonomy operator

(9.5.14), we do not impose any restriction on the connection ΛW (9.5.8).

Therefore, any connection on the fibre bundle (9.5.1) yields a holonomy

operator of a completely integrable system. However, a glance at the ex-

pression (9.5.14) shows that this operator becomes zero on action variables

if all coefficients Λkλ of the connection ΛW (9.5.8) are constant, i.e., ΛW is a

principal connection on the fibre bundle (9.5.1) seen as a principal bundle

with the structure group Tm.

In order to quantize a non-autonomous completely integrable system on

the Poisson toroidal domain (U, {, }V ) (9.5.5) equipped with action-angle

coordinates (Ii, ϕ
i), one may follow the instantwise geometric quantization

of non-autonomous mechanics (Section 4.6). As a result, we can simply

replace functions on Tm with those on R × Tm [43]. Namely, the corre-

sponding quantum algebra A ⊂ C∞(U) consists of affine functions

f = ak(t, ϕj)Ik + b(t, ϕj) (9.5.15)

of action coordinates Ik represented by the operators (9.3.6) in the space

E = C∞(R× Tm) (9.5.16)

of smooth complex functions ψ(t, ϕ) on R × Tm. This space is provided

with the structure of the pre-Hilbert C∞(R)-module endowed with the non-

degenerate C∞(R)-bilinear form

〈ψ|ψ′〉 =
(

1

2π

)m ∫

Tm

ψψ
′
dmϕ, ψ, ψ′ ∈ E.

Its basis consists of the pull-back onto R× Tm of the functions

ψ(nr) = exp[i(nrφ
r)], (nr) = (n1, . . . , nm) ∈ Zm. (9.5.17)

Furthermore, this quantization of a non-autonomous completely inte-

grable system on the Poisson manifold (U, {, }V ) is extended to the associ-

ated homogeneous completely integrable system on the symplectic annulus

(7.7.12):

U ′ = ζ−1(U) = N ′ × Tm → N ′
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by means of the operator Î0 = −i∂t in the pre-Hilbert module E (9.5.16).

Accordingly, the homogeneous Hamiltonian Ĥ∗ is quantized as

Ĥ∗ = −i∂t + Ĥ.
It is a Hamiltonian of a quantum non-autonomous completely integrable

system. The corresponding Schrödinger equation is

Ĥ∗ψ = −i∂tψ + Ĥψ = 0, ψ ∈ E. (9.5.18)

For instance, a quantum Hamiltonian of an original autonomous com-

pletely integrable system seen as the non-autonomous one is

Ĥ∗ = −i∂t +H(Îj).

Its spectrum

Ĥ∗ψ(nr) = E(nr)ψ(nr)

on the basis {ψ(nr)} (9.5.17) for E (9.5.17) coincides with that of the au-

tonomous Hamiltonian Ĥ(Ik) = H(Îk). The Schrödinger equation (9.5.18)

reads

Ĥ∗ψ = −i∂tψ +H(−i∂k + λk)ψ = 0, ψ ∈ E.
Its solutions are the Fourier series

ψ =
∑

(nr)

B(nr) exp[−itE(nr)]ψ(nr), B(nr) ∈ C.

Now, let us quantize this completely integrable system with respect to

the initial data action-angle coordinates (Ii, φ
i). As was mentioned above,

it is given on a toroidal domain U (9.5.5) provided with another fibration

over R. Its quantum algebra A0 ⊂ C∞(U) consists of affine functions

f = ak(t, φj)Ik + b(t, φj). (9.5.19)

The canonical transformation (7.7.16) ensures an isomorphism of Poisson

algebras A and A0. Functions f (9.5.19) are represented by the operators

f̂ (9.3.6) in the pre-Hilbert module E0 of smooth complex functions Ψ(t, φ)

on R× Tm. Given its basis

Ψ(nr)(φ) = [inrφ
r],

the operators Îk and ψ̂(nr) take the form

Îkψ(nr) = (nk + λk)ψ(nr),

ψ(nr)ψ(n′
r) = ψ(nr)ψ(n′

r) = ψ(nr+n′
r). (9.5.20)
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The Hamiltonian of a quantum completely integrable system with respect

to the initial data variables is Ĥ∗
0 = −i∂t. Then one easily obtains the

isometric isomorphism

R(ψ(nr)) = exp[itE(nr)]Ψ(nr), 〈R(ψ)|R(ψ′)〉 = 〈ψ|ψ′〉, (9.5.21)

of the pre-Hilbert modules E and E0 which provides the equivalence

Îi = R−1ÎiR, ψ̂(nr) = R−1Ψ̂(nr)R, Ĥ∗ = R−1Ĥ∗
0R (9.5.22)

of the quantizations of a completely integrable system with respect to the

original and initial data action-angle variables.

In view of the isomorphism (9.5.22), let us first construct a holonomy

operator of a quantum completely integrable system (A0, Ĥ∗
0) with respect

to the initial data action-angle coordinates. Let us consider the perturbed

homogeneous Hamiltonian

Hς = H∗
0 + H1 = I0 + ∂tς

α(t)Λkα(ς(t), φj)Ik

of the classical perturbed completely integrable system (9.5.9). Its pertur-

bation term H1 is of the form (9.5.15) and, therefore, is quantized by the

operator

Ĥ1 = −i∂tςα∆̂α = −i∂tςα
[
Λkα∂k +

1

2
∂k(Λ

k
α) + iλkΛ

k
α

]
.

The quantum Hamiltonian Ĥς = Ĥ∗
0 +Ĥ1 defines the Schrödinger equa-

tion

∂tΨ + ∂tς
α

[
Λkα∂k +

1

2
∂k(Λ

k
α) + iλkΛ

k
α

]
Ψ = 0. (9.5.23)

If its solution exists, it can be written by means of the evolution operator

U(t) which is reduced to the geometric factor

U1(t) = T exp


i

t∫

0

∂t′ ς
α(t′)∆̂α(t′)dt′


 .

The latter can be viewed as a displacement operator along the curve

ς [0, 1] ⊂W with respect to the connection

Λ̂W = dσα(∂α + ∆̂α) (9.5.24)

on the C∞(W )-module C∞(W ×Tm) of smooth complex functions on W ×
Tm (see Section 4.6). Let us study weather this displacement operator

exists.
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Given a connection ΛW (9.5.8), let Φi(t, φ) denote the flow of the com-

plete vector field

∂t + Λα(ς, φ)∂tς
α

on R×Tm. It is a solution of the Hamilton equation (9.5.11) with the initial

data φ. We need the inverse flow (Φ−1)i(t, φ) which obeys the equation

∂t(Φ
−1)i(t, φ) = −∂tςαΛiα(ς, (Φ−1)i(t, φ))

= −∂tςαΛkα(ς, φ)∂k(Φ
−1)i(t, φ).

Let Ψ0 be an arbitrary complex half-form Ψ0 on Tm possessing identical

transition functions, and let the same symbol stand for its pull-back onto

R× Tm. Given its pull-back

(Φ−1)∗Ψ0 = det

(
∂(Φ−1)i

∂φk

)1/2

Ψ0(Φ
−1(t, φ)), (9.5.25)

it is readily observed that

Ψ = (Φ−1)∗Ψ0 exp[iλkφ
k] (9.5.26)

obeys the Schrödinger equation (9.5.23) with the initial data Ψ0. Because

of the multiplier exp[iλkφ
k ], the function Ψ (9.5.26) however is ill defined,

unless all numbers λk equal 0 or ±1/2. Let us note that, if some numbers

λk are equal to ±1/2, then Ψ0 exp[iλkφ
k ] is a half-density on Tm whose

transition functions equal ±1, i.e., it is a section of a non-trivial metalinear

bundle over Tm.

Thus, we observe that, if λk equal 0 or ±1/2, then the displacement

operator always exists and ∆ = iH1 is a holonomy operator. Because of

the action law (9.5.20), it is essentially infinite-dimensional.

For instance, let ΛW (9.5.8) be the above mentioned principal connec-

tion, i.e., Λkα =const. Then the Schrödinger equation (9.5.23) where λk = 0

takes the form

∂tΨ(t, φj) + ∂tς
α(t)Λkα∂kΨ(t, φj) = 0,

and its solution (9.5.25) is

Ψ(t, φj) = Ψ0(φ
j − (ςα(t)− ςα(0))Λjα).

The corresponding evolution operator U(t) reduces to Berry’s phase

multiplier

U1Ψ(nr) = exp[−inj(ςα(t)− ςα(0))Λjα]Ψ(nr), nj ∈ (nr).

It keeps the eigenvectors of the action operators Îi.
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In order to return to the original action-angle variables, one can employ

the morphism R (9.5.21). The corresponding Hamiltonian reads

H = R−1HςR.

The key point is that, due to the relation (9.5.22), the action operators Îi
have the same mean values

〈Ikψ|ψ〉 = 〈IkΨ|Ψ〉, Ψ = R(ψ),

with respect both to the original and the initial data action-angle variables.

Therefore, these mean values are defined only by the holonomy operator.

In conclusion, let us note that, since action variables are driven only

by a holonomy operator, one can use this operator in order to perform

a dynamic transition between classical solutions or quantum states of an

unperturbed completely integrable system by an appropriate choice of a

parameter function ς . A key point is that this transition can take an ar-

bitrary short time because we are entirely free with time parametrization

of ς and can choose it quickly changing, in contrast with slowly varying

parameter functions in adiabatic models. This fact makes non-adiabatic

holonomy operators in completely integrable systems promising for several

applications, e.g., quantum control and quantum computation.
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Relativistic mechanics

If a configuration space of a mechanical system has no preferable fibra-

tion Q → R, we obtain a general formulation of relativistic mechanics.

A velocity space of relativistic mechanics is the first order jet manifold

J1
1Q of one-dimensional submanifolds of a configuration space Q [106;

139]. This notion of jets generalizes that of jets of sections of fibre bun-

dles which are utilized in field theory and non-relativistic mechanics [68;

106]. The jet bundle J1
1Q → Q is projective, and one can think of its fi-

bres as being spaces of the three-velocities of relativistic mechanics (Section

10.2).

The four-velocities of a relativistic system are represented by elements

of the tangent bundle TQ of the configuration space Q, while the cotangent

bundle T ∗Q, endowed with the canonical symplectic form, plays a role of

the phase space of relativistic theory. As a result, Hamiltonian relativistic

mechanics can be seen as a constraint Dirac system on the hyperboloids of

relativistic momenta in the phase space T ∗Q.

10.1 Jets of submanifolds

Jets of sections of fibre bundles are particular jets of submanifolds of a

manifold [53; 68; 95].

Given an m-dimensional smooth real manifold Z, a k-order jet of n-

dimensional submanifolds of Z at a point z ∈ Z is defined as an equivalence

class jkzS of n-dimensional imbedded submanifolds of Z through z which

are tangent to each other at z with order k ≥ 0. Namely, two submanifolds

iS : S → Z, iS′ : S′ → Z

through a point z ∈ Z belong to the same equivalence class jkzS if and only

293
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if the images of the k-tangent morphisms

T kiS : T kS → T kZ, T kiS′ : T kS′ → T kZ

coincide with each other. The set

JknZ =
⋃

z∈Z

jkzS

of k-order jets of submanifolds is a finite-dimensional real smooth manifold,

called the k-order jet manifold of submanifolds. For the sake of convenience,

we put J0
nZ = Z.

If k > 0, let Y → X be an m-dimensional fibre bundle over an n-

dimensional baseX and JkY the k-order jet manifold of sections of Y → X .

Given an imbedding Φ : Y → Z, there is the natural injection

JkΦ : JkY → JknZ, jkxs→ [Φ ◦ s]kΦ(s(x)), (10.1.1)

where s are sections of Y → X . This injection defines a chart on JknZ.

These charts provide a manifold atlas of JknZ.

Let us restrict our consideration to first order jets of submanifolds.

There is obvious one-to-one correspondence

λ(1) : j1zS → Vj1zS ⊂ TzZ (10.1.2)

between the jets j1zS at a point z ∈ Z and the n-dimensional vector sub-

spaces of the tangent space TzZ of Z at z. It follows that J1
nZ is a fibre

bundle

ρ : J1
nZ → Z (10.1.3)

with the structure group GL(n,m− n; R) of linear transformations of the

vector space Rm which preserve its subspace Rn. The typical fibre of the

fibre bundle (10.1.3) is the Grassmann manifold

G(n,m− n; R) = GL(m; R)/GL(n,m− n; R).

This fibre bundle possesses the following coordinate atlas.

Let {(U ; zA)} be a coordinate atlas of Z. Though J0
nZ = Z, let us

provide J0
nZ with an atlas where every chart (U ; zA) on a domain U ⊂ Z

is replaced with the
(
m

n

)
=

m!

n!(m− n)!

charts on the same domain U which correspond to different partitions of

the collection (z1 · · · zA) in the collections of n and m− n coordinates

(U ;xλ, yi), λ = 1, . . . , n, i = 1, . . . ,m− n. (10.1.4)
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The transition functions between the coordinate charts (10.1.4) of J 0
nZ

associated with a coordinate chart (U, zA) of Z are reduced to exchange

between coordinates xλ and yi. Transition functions between arbitrary

coordinate charts of the manifold J0
nZ take the form

x′λ = x′λ(xµ, yk), y′i = y′i(xµ, yk). (10.1.5)

Given the coordinate atlas (10.1.4) – (10.1.5) of a manifold J 0
nZ, the first

order jet manifold J1
nZ is endowed with an atlas of adapted coordinates

(ρ−1(U) = U × R(m−n)n;xλ, yi, yiλ), (10.1.6)

possessing transition functions

y′iλ =

(
∂y′i

∂yj
yjα +

∂y′i

∂xα

)(
∂xα

∂y′k
y′kλ +

∂xα

∂x′λ

)
. (10.1.7)

It is readily observed that the affine transition functions (11.3.1) are a

particular case of the coordinate transformations (10.1.7) when the transi-

tion functions xα (10.1.5) are independent of coordinates y′i.

10.2 Lagrangian relativistic mechanics

As was mentioned above, a velocity space of relativistic mechanics is the

first order jet manifold J1
1Q of one-dimensional submanifolds of a configu-

ration space Q [106; 139].

Given an m-dimensional manifold Q coordinated by (qλ), let us consider

the jet manifold J1
1Q of its one-dimensional submanifolds. Let us provide

Q = J0
1Q with the coordinates (10.1.4):

(U ;x0 = q0, yi = qi) = (U ; qλ). (10.2.1)

Then the jet manifold

ρ : J1
1Q→ Q

is endowed with coordinates (10.1.6):

(ρ−1(U); q0, qi, qi0), (10.2.2)

possessing transition functions (10.1.5), (10.1.7) which read

q′0 = q′0(q0, qk), q′0 = q′0(q0, qk), (10.2.3)

q′i0 =

(
∂q′i

∂qj
qj0 +

∂q′i

∂q0

)(
∂q′0

∂qj
qj0 +

∂q′0

∂q0

)−1

. (10.2.4)
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A glance at the transformation law (10.2.4) shows that J 1
1Q→ Q is a fibre

bundle in projective spaces.

Example 10.2.1. Let Q = M4 = R4 be a Minkowski space whose Carte-

sian coordinates (qλ), λ = 0, 1, 2, 3, are subject to the Lorentz transforma-

tions (10.2.3):

q′0 = q0chα− q1shα, q′1 = −q0shα+ q1chα, q′2,3 = q2,3. (10.2.5)

Then q′i (10.2.4) are exactly the Lorentz transformations

q′10 =
q10chα− shα

−q10shα+ chα
q′2,30 =

q2,30

−q10shα+ chα

of three-velocities in relativistic mechanics [106; 139].

In view of Example 10.2.1, one can think of the velocity space J 1
1Q of

relativistic mechanics as being a space of three-velocities. For the sake of

convenience, we agree to call J1
1Q the three-velocity space and its coordinate

transformations (10.2.3) – (10.2.4) the relativistic transformations, though

a dimension of Q need not equal 3 + 1.

Given the coordinate chart (10.2.2) of J1
1Q, one can regard ρ−1(U) ⊂

J1
1Q as the first order jet manifold J1U of sections of the fibre bundle

π : U 3 (q0, qi)→ (q0) ∈ π(U) ⊂ R. (10.2.6)

Then three-velocities (qi0) ∈ ρ−1(U) of a relativistic system on U can be

treated as absolute velocities of a local non-relativistic system on the con-

figuration space U (10.2.6). However, this treatment is broken under the

relativistic transformations qi0 → q′i0 (10.2.3) since they are not affine. One

can develop first order Lagrangian formalism with a Lagrangian

L = Ldq0 ∈ O0,1(ρ−1(U))

on a coordinate chart ρ−1(U), but this Lagrangian fails to be globally de-

fined on J1
1Q (see Remark 10.2.1 below). The graded differential algebra

O∗(ρ−1(U)) of exterior forms on ρ−1(U) is generated by horizontal forms

dq0 and contact forms dqi−qi0dq0. Coordinate transformations (10.2.3) pre-

serve the ideal of contact forms, but horizontal forms are not transformed

into horizontal forms, unless coordinate transition functions q0 (10.2.3) are

independent of coordinates q′i.

In order to overcome this difficulty, let us consider a trivial fibre bundle

QR = R×Q→ R, (10.2.7)
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whose base R is endowed with a Cartesian coordinate τ [68]. This fibre

bundle is provided with an atlas of coordinate charts

(R× U ; τ, qλ), (10.2.8)

where (U ; q0, qi) are the coordinate charts (10.2.1) of the manifold J0
1Q.

The coordinate charts (10.2.8) possess transition functions (10.2.3). Let

J1QR be the first order jet manifold of the fibre bundle (10.2.7). Since the

trivialization (10.2.7) is fixed, there is the canonical isomorphism (1.1.4) of

J1QR to the vertical tangent bundle

J1QR = V QR = R× TQ (10.2.9)

of QR → R.

Given the coordinate atlas (10.2.8) of QR, the jet manifold J1QR is

endowed with the coordinate charts

((π1)−1(R× U) = R× U × Rm; τ, qλ, qλτ ), (10.2.10)

possessing transition functions

q′λτ =
∂q′λ

∂qµ
qµτ . (10.2.11)

Relative to the coordinates (10.2.10), the isomorphism (10.2.9) takes the

form

(τ, qµ, qµτ )→ (τ, qµ, q̇µ = qµτ ). (10.2.12)

Example 10.2.2. Let Q = M4 be a Minkowski space in Example 10.2.1

whose Cartesian coordinates (q0, qi) are subject to the Lorentz transforma-

tions (10.2.5). Then the corresponding transformations (10.2.11) take the

form

q′0τ = q0τchα− q1τ shα, q′1τ = −q0τ shα+ q1τchα, q′2,3τ = q2,3τ

of transformations of four-velocities in relativistic mechanics.

In view of Example 10.2.2, we agree to call fibre elements of J 1QR → QR
the four-velocities though the dimension of Q need not equal 4. Due to the

canonical isomorphism qλτ → q̇λ (10.2.9), by four-velocities also are meant

the elements of the tangent bundle TQ, which is called the space of four-

velocities.

Obviously, the non-zero jet (10.2.12) of sections of the fibre bundle

(10.2.7) defines some jet of one-dimensional subbundles of the manifold

{τ}×Q through a point (q0, qi) ∈ Q, but this is not one-to-one correspon-

dence.
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Since non-zero elements of J1QR characterize jets of one-dimensional

submanifolds of Q, one hopes to describe the dynamics of one-dimensional

submanifolds of a manifold Q as that of sections of the fibre bundle (10.2.7).

For this purpose, let us refine the relation between elements of the jet

manifolds J1
1Q and J1QR.

Let us consider the manifold product R× J1
1Q. It is a fibre bundle over

QR. Given a coordinate atlas (10.2.8) of QR, this product is endowed with

the coordinate charts

(UR × ρ−1(U) = UR × U × Rm−1; τ, q0, qi, qi0), (10.2.13)

possessing transition functions (10.2.3) – (10.2.4). Let us assign to an el-

ement (τ, q0, qi, qi0) of the chart (10.2.13) the elements (τ, q0, qi, q0τ , q
i
τ ) of

the chart (10.2.10) whose coordinates obey the relations

qi0q
0
τ = qiτ . (10.2.14)

These elements make up a one-dimensional vector space. The relations

(10.2.14) are maintained under coordinate transformations (10.2.4) and

(10.2.11) [68]. Thus, one can associate:

(τ, q0, qi, qi0)→ {(τ, q0, qi, q0τ , qiτ ) | qi0q0τ = qiτ}, (10.2.15)

to each element of the manifold R×J1
1Q a one-dimensional vector space in

the jet manifold J1QR. This is a subspace of elements

q0τ (∂0 + qi0∂i)

of a fibre of the vertical tangent bundle (10.2.9) at a point (τ, q0, qi). Con-

versely, given a non-zero element (10.2.12) of J1QR, there is a coordinate

chart (10.2.10) such that this element defines a unique element of R× J 1
1Q

by the relations

qi0 =
qiτ
q0τ
. (10.2.16)

Thus, we have shown the following. Let (τ, qλ) further be arbitrary

coordinates on the product QR (10.2.7) and (τ, qλ, qλτ ) the corresponding

coordinates on the jet manifold J1QR.

Theorem 10.2.1. (i) Any jet of submanifolds through a point q ∈ Q defines

some (but not unique) jet of sections of the fibre bundle QR (10.2.7) through

a point τ × q for any τ ∈ R in accordance with the relations (10.2.14).

(ii) Any non-zero element of J1QR defines a unique element of the

jet manifold J1
1Q by means of the relations (10.2.16). However, non-zero

elements of J1QR can correspond to different jets of submanifolds.

(iii) Two elements (τ, qλ, qλτ ) and (τ, qλ, q′λτ ) of J1QR correspond to the

same jet of submanifolds if q′λτ = rqλτ , r ∈ R \ {0}.
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In the case of a Minkowski space Q = M 4 in Examples 10.2.1 and 10.2.2,

the equalities (10.2.14) and (10.2.16) are the familiar relations between

three- and four-velocities.

Based on Theorem 10.2.1, we can develop Lagrangian theory of one-

dimensional submanifolds of a manifold Q as that of sections of the fibre

bundle QR (10.2.7). Let

L = L(τ, qλ, qλτ )dτ (10.2.17)

be a first order Lagrangian on the jet manifold J1QR. The corresponding

Lagrange operator (2.1.23) reads

δL = Eλdqλ ∧ dτ, Eλ = ∂λL − dτ∂τλL. (10.2.18)

It yields the Lagrange equation

Eλ = ∂λL− dτ∂τλL = 0. (10.2.19)

In accordance with Theorem 10.2.1, it seems reasonable to require that,

in order to describe jets of one-dimensional submanifolds of Q, the Lagran-

gian L (10.2.17) on J1QR possesses a gauge symmetry given by vector fields

u = χ(τ)∂τ on QR or, equivalently, their vertical part (2.5.6):

uV = −χqλτ ∂λ, (10.2.20)

which are generalized vector fields on QR. Then the variational derivatives

of this Lagrangian obey the Noether identity

qλτ Eλ = 0 (10.2.21)

(see the relations (2.6.7) – (2.6.8)). We call such a Lagrangian the relativis-

tic Lagrangian.

In order to obtain a generic form of a relativistic Lagrangian L, let us

regard the Noether identity (10.2.21) as an equation for L. It admits the

following solution. Let

1

2N !
Gα1...α2N

(qν)dqα1 ∨ · · · ∨ dqα2N

be a symmetric tensor field on Q such that the function

G = Gα1...α2N
(qν)q̇α1 · · · q̇α2N (10.2.22)

is positive:

G > 0, (10.2.23)
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everywhere on TQ \ 0̂(Q). Let A = Aµ(q
ν)dqµ be a one-form on Q. Given

the pull-back of G and A onto J1QR due to the canonical isomorphism

(10.2.9), we define a Lagrangian

L = (G1/2N + qµτAµ)dτ, G = Gα1...α2N
qα1
τ · · · qα2N

τ , (10.2.24)

on J1QR \ (R × 0̂(Q)) where 0̂ is the global zero section of TQ→ Q. The

corresponding Lagrange equation reads

Eλ =
∂λG

2NG1−1/2N
− dτ

(
∂τλG

2NG1−1/2N

)
+ Fλµq

µ
τ (10.2.25)

= Eβ [δ
β
λ − qβτGλν2...ν2N

qν2τ · · · qν2N
τ G−1]G1/2N−1 = 0,

Eβ =

(
∂βGµα2...α2N

2N
− ∂µGβα2...α2N

)
qµτ q

α2
τ · · · qα2N

τ (10.2.26)

− (2N − 1)Gβµα3...α2N
qµττq

α3
τ · · · qα2N

τ +G1−1/2NFβµq
µ
τ ,

Fλµ = ∂λAµ − ∂µAλ.

It is readily observed that the variational derivatives Eλ (10.2.25) satisfy the

Noether identity (10.2.21). Moreover, any relativistic Lagrangian obeying

the Noether identity (10.2.21) is of type (10.2.24).

A glance at the Lagrange equation (10.2.25) shows that it holds if

Eβ = ΦGβν2...ν2N
qν2τ · · · qν2N

τ G−1, (10.2.27)

where Φ is some function on J1QR. In particular, we consider the equation

Eβ = 0. (10.2.28)

Because of the Noether identity (10.2.21), the system of equations

(10.2.25) is underdetermined. To overcome this difficulty, one can com-

plete it with some additional equation. Given the function G (10.2.24), let

us choose the condition

G = 1. (10.2.29)

Owing to the property (10.2.23), the function G (10.2.24) possesses a

nowhere vanishing differential. Therefore, its level surface WG defined by

the condition (10.2.29) is a submanifold of J1QR.

Our choice of the equation (10.2.28) and the condition (10.2.29) is mo-

tivated by the following facts.

Lemma 10.2.1. Any solution of the Lagrange equation (10.2.25) living in

the submanifold WG is a solution of the equation (10.2.28).
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Proof. A solution of the Lagrange equation (10.2.25) living in the sub-

manifold WG obeys the system of equations

Eλ = 0, G = 1. (10.2.30)

Therefore, it satisfies the equality

dτG = 0. (10.2.31)

Then a glance at the expression (10.2.25) shows that the equations (10.2.30)

are equivalent to the equations

Eλ =

(
∂λGµα2...α2N

2N
− ∂µGλα2 ...α2N

)
qµτ q

α2
τ · · · qα2N

τ

− (2N − 1)Gβµα3...α2N
qµττq

α3
τ · · · qα2N

τ + Fβµq
µ
τ = 0, (10.2.32)

G = Gα1...α2N
qα1
τ · · · qα2N

τ = 1.
�

Lemma 10.2.2. Solutions of the equation (10.2.28) do not leave the sub-

manifold WG (10.2.29).

Proof. Since

dτG = − 2N

2N − 1
qβτEβ ,

any solution of the equation (10.2.28) intersecting the submanifold WG

(10.2.29) obeys the equality (10.2.31) and, consequently, lives in WG. �

The system of equations (10.2.32) is called the relativistic equation. Its

components Eλ (10.2.26) are not independent, but obeys the relation

qβτEβ = −2N − 1

2N
dτG = 0, G = 1,

similar to the Noether identity (10.2.21). The condition (10.2.29) is called

the relativistic constraint.

Though the equation (10.2.25) for sections of a fibre bundle QR → R

is underdetermined, it is determined if, given a coordinate chart (U ; q0, qi)

(10.2.1) of Q and the corresponding coordinate chart (10.2.8) of QR, we

rewrite it in the terms of three-velocities qi0 (10.2.16) as an equation for

sections of a fibre bundle U → π(U) (10.2.6).

Let us denote

G(qλ, qi0) = (q0τ )
−2NG(qλ, qλτ ), q0τ 6= 0. (10.2.33)

Then we have

Ei = q0τ

[
∂iG

2NG
1−1/2N

− (q0τ )
−1dτ

(
∂0
iG

2NG
1−1/2N

)
+ Fijq

j
0 + Fi0

]
.
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Let us consider a solution {sλ(τ)} of the equation (10.2.25) such that ∂τs
0

does not vanish and there exists an inverse function τ(q0). Then this solu-

tion can be represented by sections

si(τ) = (si ◦ s0)(τ) (10.2.34)

of the composite bundle

R× U → R× π(U)→ R

where si(q0) = si(τ(q0)) are sections of U → π(U) and s0(τ) are sections

of R × π(U) → R. Restricted to such solutions, the equation (10.2.25) is

equivalent to the equation

E i =
∂iG

2NG
1−1/2N

− d0

(
∂0
iG

2NG
1−1/2N

)
(10.2.35)

+ Fijq
j
0 + Fi0 = 0,

E0 = −qi0E i.
for sections si(q0) of a fibre bundle U → π(U).

It is readily observed that the equation (10.2.35) is the Lagrange equa-

tion of the Lagrangian

L = (G
1/2N

+ qi0Ai +A0)dq
0 (10.2.36)

on the jet manifold J1U of a fibre bundle U → π(U).

Remark 10.2.1. Both the equation (10.2.35) and the Lagrangian (10.2.36)

are defined only on a coordinate chart (10.2.1) of Q since they are not

maintained by transition functions (10.2.3) – (10.2.4).

A solution si(q0) of the equation (10.2.35) defines a solution sλ(τ)

(10.2.34) of the equation (10.2.25) up to an arbitrary function s0(τ). The

relativistic constraint (10.2.29) enables one to overcome this ambiguity as

follows.

Let us assume that, restricted to the coordinate chart (U ; q0, qi) (10.2.1)

of Q, the relativistic constraint (10.2.29) has no solution q0
τ = 0. Then it is

brought into the form

(q0τ )
2NG(qλ, qi0) = 1, (10.2.37)

where G is the function (10.2.33). With the condition (10.2.37), every

three-velocity (qi0) defines a unique pair of four-velocities

q0τ = ±(G(qλ, qi0))
1/2N , qiτ = q0τq

i
0. (10.2.38)
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Accordingly, any solution si(q0) of the equation (10.2.35) leads to solutions

τ(q0) = ±
∫

(G(q0, si(q0), ∂0s
i(q0))

−1/2Ndq0,

si(τ) = s0(τ)(∂is
i)(s0(τ))

of the equation (10.2.30) and, equivalently, the relativistic equation

(10.2.32).

Example 10.2.3. Let Q = M4 be a Minkowski space provided with the

Minkowski metric ηµν of signature (+,−−−). This is the case of Special

Relativity. Let Aλdqλ be a one-form on Q. Then

L = [m(ηµνq
µ
τ q

ν
τ )

1/2 + eAµqµτ ]dτ, m, e ∈ R, (10.2.39)

is a relativistic Lagrangian on J1QR which satisfies the Noether identity

(10.2.21). The corresponding relativistic equation (10.2.32) reads

mηµνq
ν
ττ − eFµνqντ = 0, (10.2.40)

ηµνq
µ
τ q

ν
τ = 1. (10.2.41)

This describes a relativistic massive charge in the presence of an electro-

magnetic field A. It follows from the relativistic constraint (10.2.41) that

(q0τ )
2 ≥ 1. Therefore, passing to three-velocities, we obtain the Lagrangian

(10.2.36):

L =

[
m(1−

∑

i

(qi0)
2)1/2 + e(Aiqi0 +A0)

]
dq0,

and the Lagrange equation (10.2.35):

d0


 mqi0

(1− ∑
i

(qi0)
2)1/2


+ e(Fijq

j
0 + Fi0) = 0.

Example 10.2.4. Let Q = R4 be an Euclidean space provided with the

Euclidean metric ε. This is the case of Euclidean Special Relativity. Let

Aλdqλ be a one-form on Q. Then

L = [(εµνq
µ
τ q

ν
τ )

1/2 +Aµqµτ ]dτ

is a relativistic Lagrangian on J1QR which satisfies the Noether identity

(10.2.21). The corresponding relativistic equation (10.2.32) reads

mεµνq
ν
ττ − eFµνqντ = 0, (10.2.42)

εµνq
µ
τ q

ν
τ = 1. (10.2.43)

It follows from the relativistic constraint (10.2.43) that 0 ≤ (q0
τ )

2 ≤ 1.

Passing to three-velocities, one therefore meets a problem.
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10.3 Relativistic geodesic equations

A glance at the relativistic Lagrangian (10.2.24) shows that, because of

the gauge symmetry (10.2.20), this Lagrangian is independent of τ and,

therefore, it describes an autonomous mechanical system. Accordingly, the

relativistic equation (10.2.32) on QR is conservative and, therefore, it is

equivalent to an autonomous second order equation on Q whose solutions

are parameterized by the coordinate τ on a base R of QR. Given holo-

nomic coordinates (qλ, q̇λ, q̈λ) of the second tangent bundle T 2Q (see Re-

mark 1.2.1), this autonomous second order equation (called the autonomous

relativistic equation) reads
(
∂λGµα2...α2N

2N
− ∂µGλα2...α2N

)
q̇µq̇α2 · · · q̇α2N

− (2N − 1)Gβµα3...α2N
q̈µq̇α3 · · · q̇α2N + Fβµq̇

µ = 0, (10.3.1)

G = Gα1...α2N
q̇α1 · · · q̇α2N = 1.

Due to the canonical isomorphism qλτ → q̇λ (10.2.9), the tangent bundle

TQ is regarded as a space of four-velocities.

Generalizing Example 10.2.3, let us investigate relativistic mechanics on

a pseudo-Riemannian oriented four-dimensional manifold Q = X , coordi-

nated by (xλ) and provided with a pseudo-Riemannian metric g of signature

(+,− − −). We agree to call X a world manifold. Let A = Aλdx
λ be a

one-form on X . Let us consider the relativistic Lagrangian (10.2.24):

L = [(gαβx
α
τ x

β
τ )

1/2 +Aµx
µ
τ ]dτ,

and the relativistic constraint (10.2.29):

gαβx
α
τ x

β
τ = 1.

The corresponding autonomous relativistic equation (10.2.32) on X takes

the form

ẍλ − {µλν}ẋµẋν − gλβFβν ẋν = 0, (10.3.2)

g = gαβẋ
αẋβ = 1, (10.3.3)

where {µλν} is the Levi–Civita connection (11.4.24). A glance at the equal-

ity (10.3.2) shows that it is the geodesic equation (1.2.7) on TX with respect

to an affine connection

Kλ
µ = {µλν}ẋν + gλνFνµ (10.3.4)

on TX .
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A particular form of this connection follows from the fact that the

geodesic equation (10.3.2) is derived from a Lagrange equation, i.e., we

are in the case of Lagrangian relativistic mechanics. In a general setting,

relativistic mechanics on a pseudo-Riemannian manifold (X, g) can be for-

mulated as follows.

Definition 10.3.1. The geodesic equation (1.2.7):

ẍµ = Kµ
λ (xν , ẋν)ẋλ, (10.3.5)

on the tangent bundle TX with respect to a connection

K = dxλ ⊗ (∂λ +Kµ
λ ∂̇µ) (10.3.6)

on TX → X is called a relativistic geodesic equation if a geodesic vector

field of K lives in the subbundle of hyperboloids

Wg = {ẋλ ∈ TX | gλµẋλẋµ = 1} ⊂ TX (10.3.7)

defined by the relativistic constraint (10.3.3).

Since a geodesic vector field is an integral curve of the holonomic vector

field K̂(TQ) (1.2.8), the equation (10.3.5) is a relativistic geodesic equation

if the condition

K̂(TQ)cdg = (∂λgµν ẋ
µ + 2gµνK

µ
λ )ẋλẋν = 0 (10.3.8)

holds.

Obviously, the connection (10.3.4) fulfils the condition (10.3.8). Any

metric connection, e.g., the Levi–Civita connection {λµν} (11.4.24) on TX

satisfies the condition (10.3.8).

Given a Levi–Civita connection {λµν}, any connection K on TX → X

can be written as

Kµ
λ = {λµν}ẋν + σµλ(xλ, ẋλ), (10.3.9)

where

σ = σµλdx
λ ⊗ ∂̇µ (10.3.10)

is some soldering form (11.2.61) on TX . Then the condition (10.3.8) takes

the form

gµνσ
µ
λ ẋ

λẋν = 0. (10.3.11)

With the decomposition (10.3.9), one can think of the relativistic

geodesic equation (10.3.5):

ẍµ = {λµν}ẋν ẋλ + σµλ(xν , ẋν)ẋλ, (10.3.12)
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as describing a relativistic particle in the presence of a gravitational field g

and a non-gravitational external force σ.

In order to compare relativistic and non-relativistic dynamics, let us

assume that a pseudo-Riemannian world manifold (X, g) is globally hyper-

bolic, i.e., it admits a fibration X → R over the time axis R such that

its fibres are spatial. One can think of the bundle X → R as being a

configuration space of a non-relativistic mechanical system. It is provided

with the adapted bundle coordinates (x0, xi), where the transition func-

tions of the temporal one are x′0 = x0+const. The velocity space of this

non-relativistic mechanical system is the first order jet manifold J 1X of

X → R, coordinated by (xλ, xi0).

By virtue of the canonical imbedding J1X → J1
1X (10.1.1), one also can

treat the velocities xi0 of a non-relativistic system as three-velocities of a

relativistic system on X restricted to an open subbundle J1X ⊂ J1
1X of the

bundle J1
1X → X of three-velocities. Due to the canonical isomorphism

qλτ → q̇λ (10.2.9), a four-velocity space of this relativistic system is the

tangent bundle TX so that the relation (10.2.16) between four- and three-

velocities reads

xi0 =
ẋi

ẋ0
. (10.3.13)

The relativistic constraint (10.3.3) restricts the space of four-velocities of a

relativistic system to the bundle Wg (10.3.7) of hyperboloids which is the

disjoint union of two connected imbedded subbundles of W+ and W− of

TX . The relation (10.3.13) yields bundle monomorphisms of each of the

subbundles W± to J1X .

At the same time, there is the canonical imbedding (1.1.6) of J1X onto

the affine subbundle

ẋ0 = 1, ẋi = xi0. (10.3.14)

of the tangent bundle TX . Then one can think of elements of the subbun-

dle (10.3.14) as being the four-velocities of a non-relativistic system. The

relation (10.3.14) differs from the relation (10.3.13) between three- and

four-velocities of a relativistic system. It follows that the four-velocities of

relativistic and non-relativistic systems occupy different subbundles (10.3.7)

and (10.3.14) of the tangent bundle TX .

By virtue of Theorem 1.5.1, every second order dynamic equation

(1.3.3):

xi00 = ξi(x0, xj , xj0), (10.3.15)
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of non-relativistic mechanics on X → R is equivalent to the non-relativistic

geodesic equation (1.5.7):

ẍ0 = 0, ẋ0 = 1, ẍi = K
i

0ẋ
0 +K

i

j ẋ
j (10.3.16)

with respect to the connection

K = dxλ ⊗ (∂λ +Ki
λ∂̇i) (10.3.17)

possessing the components

K
0

λ = 0, ξi = K
i

0 + xj0K
i

j |ẋ0=1,ẋi=xi
0
. (10.3.18)

Note that, written relative to bundle coordinates (x0, xi) adapted to a

given fibration X → R, the connection K (10.3.18) and the non-relativistic

geodesic equation (10.3.16) are well defined with respect to any coordinates

on X . It also should be emphasized that the connection K (10.3.18) is not

determined uniquely.

Thus, we observe that both relativistic and non-relativistic equations of

motion can be seen as the geodesic equations on the same tangent bundle

TX . The difference between them lies in the fact that their solutions live

in the different subbundles (10.3.7) and (10.3.14) of TX .

There is the following relationship between relativistic and non-

relativistic equations of motion.

Recall that, by a reference frame in non-relativistic mechanics is meant

an atlas of local constant trivializations of the fibre bundle X → R such

that the transition functions of the spatial coordinates xi are independent

of the temporal one x0 (Definition 1.6.2). Given a reference frame (x0, xi),

any connection K(xλ, ẋλ) (10.3.6) on the tangent bundle TX → X defines

the connection K (10.3.17) on TX → X with the components

K
0

λ = 0, K
i

λ = Ki
λ. (10.3.19)

It follows that, given a fibrationX → R, every relativistic geodesic equation

(10.3.5) yields the non-relativistic geodesic equation (10.3.16) and, conse-

quently, the second order dynamic equation (10.3.15):

xi00 = Ki
0(x

λ, 1, xk0) +Ki
j(x

λ, 1, xk0)xj0, (10.3.20)

of non-relativistic mechanics. We agree to call this equation the non-

relativistic approximation of the relativistic equation (10.3.5).

Note that, written with respect to a reference frame (x0, xi), the connec-

tion K (10.3.19) and the corresponding non-relativistic equation (10.3.20)

are well defined relative to any coordinates on X . A key point is that, for

another reference frame (x0, x′i) with time-dependent transition functions
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xi → x′i, the connection K (10.3.6) on TX yields another connection K
′

(10.3.17) on TX → X with the components

K ′0
λ = 0, K ′i

λ =

(
∂x′i

∂xj
Kj
µ +

∂x′i

∂xµ

)
∂xµ

∂x′λ
+
∂x′i

∂x0
K0
µ

∂xµ

∂x′λ

with respect to the reference frame (x0, x′i). It is easy to see that the

connection K (10.3.19) has the components

K ′0
λ = 0, K ′i

λ =

(
∂x′i

∂xj
Kj
µ +

∂x′i

∂xµ

)
∂xµ

∂x′λ

relative to the same reference frame. This illustrates the fact that a non-

relativistic approximation is not relativistic invariant.

The converse procedure is more intricate. Firstly, a non-relativistic

dynamic equation (10.3.15) is brought into the non-relativistic geodesic

equation (10.3.16) with respect to the connection K (10.3.18) which is

not unique defined. Secondly, one should find a pair (g,K) of a pseudo-

Riemannian metric g and a connection K on TX → X such that K i
λ = K

i

λ

and the condition (10.3.8) is fulfilled.

From the physical viewpoint, the most interesting second order dynamic

equations are the quadratic ones (1.5.8):

ξi = aijk(x
µ)xj0x

k
0 + bij(x

µ)xj0 + f i(xµ). (10.3.21)

By virtue of Corollary 1.5.1, such an equation is equivalent to the non-

relativistic geodesic equation

ẍ0 = 0, ẋ0 = 1,

ẍi = aijk(x
µ)ẋj ẋk + bij(x

µ)ẋj ẋ0 + f i(xµ)ẋ0ẋ0 (10.3.22)

with respect to the symmetric linear connection

Kλ
0
ν = 0, K0

i
0 = f i, K0

i
j =

1

2
bij , Kk

i
j = aikj (10.3.23)

on the tangent bundle TX .

In particular, let the equation (10.3.21) be the Lagrange equation for

a non-degenerate quadratic Lagrangian. We show that there is a reference

frame such that this Lagrange equation coincides with the non-relativistic

approximation of some relativistic geodesic equation with respect to a

pseudo-Riemannian metric, whose spatial part is a mass tensor of a

Lagrangian.

Given a coordinate systems (x0, xi), compatible with the fibration X →
R, let us consider a non-degenerate quadratic Lagrangian (2.3.17):

L =
1

2
mij(x

µ)xi0x
j
0 + ki(x

µ)xi0 + φ(xµ), (10.3.24)
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in Example 2.3.1 where mij is a Riemannian mass tensor. Similarly to

Lemma 1.5.2, one can show that any quadratic polynomial on J 1X ⊂ TX

is extended to a bilinear form in TX . Then the Lagrangian L (10.3.24) can

be written as

L = −1

2
gαµx

α
0 x

µ
0 , x0

0 = 1, (10.3.25)

where g is the fibre metric (2.3.19):

g00 = −2φ, g0i = −ki, gij = −mij , (10.3.26)

in TX . The corresponding Lagrange equation takes the form (2.3.18):

xi00 = −(m−1)ik{λkν}xλ0xν0 , x0
0 = 1, (10.3.27)

where

{λµν} = −1

2
(∂λgµν + ∂νgµλ − ∂µgλν)

are the Christoffel symbols of the metric (10.3.26). Let us assume that this

metric is non-degenerate. By virtue of Corollary 1.5.1, the second order

dynamic equation (10.3.27) is equivalent to the non-relativistic geodesic

equation (10.3.22) on TX which reads

ẍ0 = 0, ẋ0 = 1,

ẍi = {λiν}ẋλẋν − gi0{λ0ν}ẋλẋν . (10.3.28)

Let us now bring the Lagrangian (2.3.17) into the form

L =
1

2
mij(x

µ)(xi0 − Γi)(xj0 − Γj) + φ′(xµ), (10.3.29)

where Γ is a Lagrangian frame connection on X → R. This connection

Γ defines an atlas of local constant trivializations of the bundle X → R

and the corresponding coordinates (x0, xi) on X such that the transition

functions xi → x′i are independent of x0, and Γi = 0 with respect to (x0, xi)

(see Section 1.6). In this coordinates, the Lagrangian L (10.3.29) reads

L =
1

2
mijx

i
0x
j
0 + φ′(xµ).

One can think of its first term as the kinetic energy of a non-relativistic

system with the mass tensor mij relative to the reference frame Γ, while

(−φ′) is a potential. Let us assume that φ′ is a nowhere vanishing function

on X . Then the Lagrange equation (10.3.27) takes the form

xi00 = {λiν}xλ0xν0 , x0
0 = 1, (10.3.30)
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where {λiν} are the Christoffel symbols of the metric (10.3.26) whose com-

ponents with respect to the coordinates (x0, xi) read

g00 = −2φ′, g0i = 0, gij = −mij . (10.3.31)

This metric is Riemannian if f ′ > 0 and pseudo-Riemannian if f ′ < 0. Then

the spatial part of the corresponding non-relativistic geodesic equation

ẍ
0

= 0, ẋ
0

= 1, ẍ
i
= {λiν}ẋλẋν

is exactly the spatial part of the relativistic geodesic equation with respect

to the Levi–Civita connection of the metric (10.3.31) on TX . It follows

that, as was declared above, the non-relativistic dynamic equation (10.3.30)

is the non-relativistic approximation (10.3.20) of the relativistic geodesic

equation (10.3.5) whereK is the Levi–Civita connection of the (Riemannian

or pseudo-Riemannian) metric (10.3.31).

Conversely, let us consider a relativistic geodesic equation

ẍµ = {λµν}ẋλẋν (10.3.32)

with respect to a pseudo-Riemannian metric g on a world manifold X . Let

(x0, xi) be local hyperbolic coordinates such that g00 = 1, g0i = 0. This

coordinates are associated to a non-relativistic reference frame for a local

fibration X → R. Then the equation (10.3.32) admits the non-relativistic

approximation (10.3.20):

xi00 = {λiµ}xλ0xµ0 , x0
0 = 1, (10.3.33)

which is the Lagrange equation (10.3.27) for the Lagrangian (10.3.25):

L =
1

2
mijx

i
0x
j
0, (10.3.34)

where g00 = 1, g0i = 0. It describes a free non-relativistic mechanical

system with the mass tensor mij = −gij . Relative to another reference

frame (x0, xi(x0, xj)) associated with the same local splitting X → R, the

non-relativistic approximation of the equation (10.3.32) is brought into the

Lagrange equation for the Lagrangian (10.3.29):

L =
1

2
mij(x

µ)(xi0 − Γi)(xj0 − Γj). (10.3.35)

This Lagrangian describes a mechanical system in the presence of the in-

ertial force associated with the reference frame Γ. The difference between

Lagrangians (10.3.34) and (10.3.35) shows that a gravitational force can

not model an inertial force in general.
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10.4 Hamiltonian relativistic mechanics

We are in the case of relativistic mechanics on a pseudo-Riemannian world

manifold (X, g). Given the coordinate chart (10.2.6) of its configuration

space X , the homogeneous Legendre bundle corresponding to the local

non-relativistic system on U is the cotangent bundle T ∗U of U . This fact

motivate us to think of the cotangent bundle T ∗X as being the phase space

of relativistic mechanics on X . It is provided with the canonical symplectic

form

ΩT = dpλ ∧ dxλ (10.4.1)

and the corresponding Poisson bracket {, }.

Remark 10.4.1. Let us note that one also considers another symplectic

form ΩT + F where F is the strength of an electromagnetic field [148].

A relativistic Hamiltonian is defined as follows [106; 136; 139]. Let H
be a smooth real function on T ∗X such that the morphism

H̃ : T ∗X → TX, ẋµ ◦ H̃ = ∂µH, (10.4.2)

is a bundle isomorphism. Then the inverse image

N = H̃−1(Wg)

of the subbundle of hyperboloids Wg (10.3.7) is a one-codimensional (con-

sequently, coisotropic) closed imbedded subbundle N of T ∗X given by the

condition

HT = gµν∂
µH∂νH− 1 = 0. (10.4.3)

We say that H is a relativistic Hamiltonian if the Poisson bracket {H,HT}
vanishes on N . This means that the Hamiltonian vector field

γ = ∂λH∂λ − ∂λH∂λ (10.4.4)

of H preserves the constraint N and, restricted to N , it obeys the equation

(6.2.1):

γcΩN + i∗NdH = 0, (10.4.5)

which is the Hamilton equation of a Dirac constrained system on N with a

Hamiltonian H.

The morphism (10.4.2) sends the vector field γ (10.4.4) onto the vector

field

γT = ẋλ∂λ + (∂µH∂λ∂µH− ∂µH∂λ∂µH)∂̇λ
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on TX . This vector field defines the autonomous second order dynamic

equation

ẍλ = ∂µH∂λ∂µH− ∂µH∂λ∂µH (10.4.6)

on X which preserves the subbundle of hyperboloids (10.3.7), i.e., it is the

autonomous relativistic equation (10.3.1).

Example 10.4.1. The following is a basic example of relativistic Hamilto-

nian mechanics. Given a one-form A = Aµdq
µ on X , let us put

H =
1

2
gµν(pµ −Aµ)(pν −Aν). (10.4.7)

Then HT = 2H − 1 and, hence, {H,HT } = 0. The constraint HT = 0

(10.4.3) defines a one-codimensional closed imbedded subbundle N of T ∗X .

The Hamilton equation (10.4.5) takes the form γcΩN = 0. Its solution

(10.4.4) reads

ẋα = gαν(pν −Aν),

ṗα = −1

2
∂αg

µν(pµ −Aµ)(pν −Aν) + gµν(pµ −Aµ)∂αAν .

The corresponding autonomous second order dynamic equation (10.4.6) on

X is

ẍλ − {µλν}ẋµẋν − gλνFνµẋµ = 0, (10.4.8)

{µλν} = −1

2
gλβ(∂µgβν + ∂νgβµ − ∂βgµν),

Fµν = ∂µAν − ∂νAµ.

It is a relativistic geodesic equation with respect to the affine connection

(10.3.4).

Since the equation (10.4.8) coincides with the generic Lagrange equation

(10.3.2) on a world manifold X , one can think of H (10.4.7) as being a

generic Hamiltonian of relativistic mechanics on X .

10.5 Geometric quantization of relativistic mechanics

Let us consider geometric quantization of relativistic mechanics on a

pseudo-Riemannian simply connected world manifold (X, g), [65; 141]. We

follow the standard geometric quantization of a cotangent bundle (Section

5.2). Let the cohomology group H2(X ; Z2) be trivial.
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Because the canonical symplectic form ΩT (10.4.1) on T ∗X is exact, the

prequantum bundle is defined as a trivial complex line bundle C over T ∗X .

Let its trivialization (5.2.1):

C ∼= T ∗X × C, (10.5.1)

hold fixed, and let (xλ, pλ, c), c ∈ C, be the associated bundle coordinates.

Then one can treat sections of C (10.5.1) as smooth complex functions on

T ∗X . Let us note that another trivialization of C leads to an equivalent

quantization of T ∗X .

The Kostant–Souriau prequantization formula (5.1.11) associates to

each smooth real function f ∈ C∞(T ∗X) on T ∗X the first order differ-

ential operator

f̂ = −i∇ϑf
− f (10.5.2)

on sections of C, where

ϑf = ∂λf∂λ − ∂λf∂λ

is the Hamiltonian vector field of f and∇ is the covariant differential (5.2.3)

with respect to the admissible U(1)-principal connection A (5.2.2):

A = dpλ ⊗ ∂λ + dxλ ⊗ (∂λ − icpλ∂c), (10.5.3)

on C. This connection preserves the Hermitian metric g(c, c′) (5.1.1) on

C, and its curvature form obeys the prequantization condition (5.1.9). The

prequantization operators (10.5.2) read

f̂ = −iϑf + (pλ∂
λf − f). (10.5.4)

Let us choose the vertical polarization V T ∗X of T ∗X . The correspond-

ing quantum algebra AT ⊂ C∞(T ∗X) consists of affine functions of mo-

menta

f = aλ(xµ)pλ + b(xµ) (10.5.5)

on T ∗X . They are represented by the Schrödinger operators (5.2.10):

f̂ = −iaλ∂λ −
i

2
∂λa

λ − b, (10.5.6)

in the space E of complex half-densities ρ of compact support on X .

For the sake of simplicity, let us choose a trivial metalinear bundle

D1/2 → X associated to the orientation of X . Its sections can be written

in the form

ρ = (−g)1/4ψ,



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

314 Relativistic mechanics

where ψ are smooth complex functions on X . Then the quantum algebra

AT can be represented by the operators

f̂ = −iaλ∂λ −
i

2
∂λa

λ − i

4
aλ∂λ ln(−g)− b, g = det(gαβ),

in the space C∞(X) of these functions. It is easily justified that these

operators obey Dirac’s condition.

Remark 10.5.1. One usually considers the subspace E of complex func-

tions of compact support on X . It is a pre-Hilbert space with respect to

the non-degenerate Hermitian form

〈ψ|ψ′〉 =

∫

X

ψψ
′
(−g)1/2d4x.

It is readily observed that f̂ (10.5.6) are symmetric operators f̂ = f̂∗ on E,

i.e.,

〈f̂ψ|ψ′〉 = 〈ψ|f̂ψ′〉.
In relativistic mechanics, the space E however gets no physical meaning.

Let us note that the function HT (10.4.3) need not belong to the quan-

tum algebra AT . Nevertheless, one can show that, if HT is a polynomial of

momenta of degree k, it can be represented as a finite composition

HT =
∑

i

f1i · · · fki (10.5.7)

of products of affine functions (10.5.5), i.e., as an element of the enveloping

algebra AT of the quantum algebra AT [57]. Then it is quantized

HT → ĤT =
∑

i

f̂1i · · · f̂ki (10.5.8)

as an element of AT . However, the representation (10.5.7) and, conse-

quently, the quantization (10.5.8) fail to be unique.

The quantum constraint

ĤTψ = 0.

serves as a relativistic quantum equation.

Example 10.5.1. Let us consider a massive relativistic charge in Example

10.4.1 whose relativistic Hamiltonian is

H =
1

2m
gµν(pµ − eAµ)(pν − eAν).
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It defines the constraint

HT =
1

m2
gµν(pµ − eAµ)(pν − eAν)− 1 = 0. (10.5.9)

Let us represent the function HT (10.5.9) as the symmetric product

HT =
(−g)−1/4

m
· (pµ − eAµ) · (−g)1/4 · gµν · (−g)1/4

· (pν − eAν) ·
(−g)−1/4

m
− 1

of affine functions of momenta. It is quantized by the rule (10.5.8), where

(−g)1/4 ◦ ∂̂α ◦ (−g)−1/4 = −i∂α.
Then the well-known relativistic quantum equation

(−g)−1/2[(∂µ − ieAµ)gµν(−g)1/2(∂ν − ieAν) +m2]ψ = 0

is reproduced up to the factor (−g)−1/2.
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Chapter 11

Appendices

For the sake of convenience of the reader, this Chapter summarizes the

relevant material on differential geometry of fibre bundles and modules

over commutative rings [68; 76; 109; 150].

11.1 Commutative algebra

In this Section, the relevant basics on modules over commutative algebras

is summarized [99; 105].

An algebra A is an additive group which is additionally provided with

distributive multiplication. All algebras throughout the book are associa-

tive, unless they are Lie algebras. A ring is a unital algebra, i.e., it contains

the unit element 1 6= 0. Non-zero elements of a ring form a multiplicative

monoid. If this multiplicative monoid is a multiplicative group, one says

that the ring has a multiplicative inverse. A field is a commutative ring

whose non-zero elements make up a multiplicative group.

A subset I of an algebra A is called a left (resp. right) ideal if it is a

subgroup of the additive group A and ab ∈ I (resp. ba ∈ I) for all a ∈ A,

b ∈ I. If I is both a left and right ideal, it is called a two-sided ideal. An

ideal is a subalgebra, but a proper ideal (i.e., I 6= A) of a ring is not a

subring because it does not contain a unit element.

Let A be a commutative ring. Of course, its ideals are two-sided. Its

proper ideal is said to be maximal if it does not belong to another proper

ideal. A commutative ring A is called local if it has a unique maximal

ideal. This ideal consists of all non-invertible elements of A. A proper two-

sided ideal I of a commutative ring is called prime if ab ∈ I implies either

a ∈ I or b ∈ I. Any maximal two-sided ideal is prime. Given a two-sided

ideal I ⊂ A, the additive factor group A/I is an algebra, called the factor

317
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algebra. If A is a ring, then A/I is so.

Given an algebra A, an additive group P is said to be a left (resp. right)

A-module if it is provided with distributive multiplication A × P → P by

elements of A such that (ab)p = a(bp) (resp. (ab)p = b(ap)) for all a, b ∈ A
and p ∈ P . If A is a ring, one additionally assumes that 1p = p = p1 for

all p ∈ P . Left and right module structures are usually written by means

of left and right multiplications (a, p) → ap and (a, p) → pa, respectively.

If P is both a left module over an algebra A and a right module over

an algebra A′, it is called an (A − A′)-bimodule (an A-bimodule if A =

A′). If A is a commutative algebra, an (A −A)-bimodule P is said to be

commutative if ap = pa for all a ∈ A and p ∈ P . Any left or right module

over a commutative algebraA can be brought into a commutative bimodule.

Therefore, unless otherwise stated, any module over a commutative algebra

A is called an A-module.

A module over a field is called a vector space. If an algebra A is a

module over a ring K, it is said to be a K-algebra. Any algebra can be seen

as a Z-algebra.

Remark 11.1.1. Any K-algebra A can be extended to a unital algebra Ã
by the adjunction of the identity 1 to A. The algebra Ã, called the unital

extension of A, is defined as the direct sum of K-modules K ⊕A provided

with the multiplication

(λ1, a1)(λ2, a2) = (λ1λ2, λ1a2 + λ2a1 + a1a2), λ1, λ2 ∈ K, a1, a2 ∈ A.

Elements of Ã can be written as (λ, a) = λ1+a, λ ∈ K, a ∈ A. Let us note

that, if A is a unital algebra, the identity 1A in A fails to be that in Ã. In

this case, the algebra Ã is isomorphic to the product of A and the algebra

K(1− 1A).

From now on, A is a commutative algebra.

The following are standard constructions of new A-modules from old

ones.

• The direct sum P1⊕P2 of A-modules P1 and P2 is the additive group

P1 × P2 provided with the A-module structure

a(p1, p2) = (ap1, ap2), p1,2 ∈ P1,2, a ∈ A.

Let {Pi}i∈I be a set of modules. Their direct sum ⊕Pi consists of elements

(. . . , pi, . . .) of the Cartesian product
∏
Pi such that pi 6= 0 at most for a

finite number of indices i ∈ I .
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• The tensor product P ⊗Q of A-modules P and Q is an additive group

which is generated by elements p⊗ q, p ∈ P , q ∈ Q, obeying the relations

(p+ p′)⊗ q = p⊗ q + p′ ⊗ q, p⊗ (q + q′) = p⊗ q + p⊗ q′,
pa⊗ q = p⊗ aq, p ∈ P, q ∈ Q, a ∈ A,

and it is provided with the A-module structure

a(p⊗ q) = (ap)⊗ q = p⊗ (qa) = (p⊗ q)a.

If the ring A is treated as an A-module, the tensor product A ⊗A Q is

canonically isomorphic to Q via the assignment

A⊗A Q 3 a⊗ q ↔ aq ∈ Q.

• Given a submodule Q of an A-module P , the quotient P/Q of the

additive group P with respect to its subgroup Q also is provided with an

A-module structure. It is called a factor module.

• The set Hom A(P,Q) of A-linear morphisms of an A-module P to an

A-module Q is naturally an A-module. The A-module P ∗ = Hom A(P,A)

is called the dual of an A-module P . There is a natural monomorphism

P → P ∗∗.

An A-module P is called free if it has a basis, i.e., a linearly indepen-

dent subset I ⊂ P spanning P such that each element of P has a unique

expression as a linear combination of elements of I with a finite number

of non-zero coefficients from an algebra A. Any vector space is free. Any

module is isomorphic to a quotient of a free module. A module is said to

be finitely generated (or of finite rank) if it is a quotient of a free module

with a finite basis.

One says that a module P is projective if it is a direct summand of a

free module, i.e., there exists a module Q such that P ⊕Q is a free module.

A module P is projective if and only if P = pS where S is a free module

and p is a projector of S, i.e., p2 = p. If P is a projective module of finite

rank over a ring, then its dual P ∗ is so, and P ∗∗ is isomorphic to P .

Now we focus on exact sequences, direct and inverse limits of modules
[105; 113].

A composition of module morphisms

P
i−→Q

j−→T

is said to be exact at Q if Ker j = Im i. A composition of module morphisms

0→ P
i−→Q

j−→T → 0 (11.1.1)
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is called a short exact sequence if it is exact at all the terms P , Q, and T .

This condition implies that: (i) i is a monomorphism, (ii) Ker j = Im i, and

(iii) j is an epimorphism onto the quotient T = Q/P .

One says that the exact sequence (11.1.1) is split if there exists a

monomorphism s : T → Q such that j ◦ s = IdT or, equivalently,

Q = i(P )⊕ s(T ) = P ⊕ T.
The exact sequence (11.1.1) is always split if T is a projective module.

A directed set I is a set with an order relation < which satisfies the

following three conditions:

(i) i < i, for all i ∈ I ;
(ii) if i < j and j < k, then i < k;

(iii) for any i, j ∈ I , there exists k ∈ I such that i < k and j < k.

It may happen that i 6= j, but i < j and j < i simultaneously.

A family of A-modules {Pi}i∈I , indexed by a directed set I , is called a

direct system if, for any pair i < j, there exists a morphism rij : Pi → Pj
such that

rii = IdPi, rij ◦ rjk = rik , i < j < k.

A direct system of modules admits a direct limit. This is a module P∞

together with morphisms ri∞ : Pi → P∞ such that ri∞ = rj∞ ◦ rij for all

i < j. The module P∞ consists of elements of the direct sum ⊕
I
Pi modulo

the identification of elements of Pi with their images in Pj for all i < j. An

example of a direct system is a direct sequence

P0 −→P1 −→· · ·Pi
ri

i+1−→· · · , I = N. (11.1.2)

It should be noted that direct limits also exist in the categories of commuta-

tive algebras and rings, but not in categories whose objects are non-Abelian

groups.

Theorem 11.1.1. Direct limits commute with direct sums and tensor prod-

ucts of modules. Namely, let {Pi} and {Qi} be two direct systems of mod-

ules over the same algebra which are indexed by the same directed set I, and

let P∞ and Q∞ be their direct limits. Then the direct limits of the direct

systems {Pi⊕Qi} and {Pi⊗Qi} are P∞⊕Q∞ and P∞⊗Q∞, respectively.

A morphism of a direct system {Pi, rij}I to a direct system {Qi′ , ρi
′

j′}I′
consists of an order preserving map f : I → I ′ and morphisms Fi : Pi →
Qf(i) which obey the compatibility conditions

ρ
f(i)
f(j) ◦ Fi = Fj ◦ rij .
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If P∞ and Q∞ are limits of these direct systems, there exists a unique

morphism F∞ : P∞ → Q∞ such that

ρf(i)
∞ ◦ Fi = F∞ ◦ ri∞.

Moreover, direct limits preserve monomorphisms and epimorphisms. To be

precise, if all Fi : Pi → Qf(i) are monomorphisms or epimorphisms, so is

Φ∞ : P∞ → Q∞. As a consequence, the following holds.

Theorem 11.1.2. Let short exact sequences

0→ Pi
Fi−→Qi

Φi−→Ti → 0 (11.1.3)

for all i ∈ I define a short exact sequence of direct systems of modules {Pi}I ,
{Qi}I , and {Ti}I which are indexed by the same directed set I. Then there

exists a short exact sequence of their direct limits

0→ P∞
F∞−→Q∞

Φ∞−→T∞ → 0. (11.1.4)

In particular, the direct limit of factor modules Qi/Pi is the factor

module Q∞/P∞. By virtue of Theorem 11.1.1, if all the exact sequences

(11.1.3) are split, the exact sequence (11.1.4) is well.

Example 11.1.1. Let P be an A-module. We denote P⊗k =
k
⊗P . Let us

consider the direct system of A-modules with respect to monomorphisms

A −→(A⊕ P ) −→· · · (A⊕ P ⊕ · · · ⊕ P⊗k) −→· · · .
Its direct limit

⊗P = A⊕ P ⊕ · · · ⊕ P⊗k ⊕ · · · (11.1.5)

is an N-graded A-algebra with respect to the tensor product ⊗. It is called

the tensor algebra of a module P . Its quotient with respect to the ideal

generated by elements p⊗p′+p′⊗p, p, p′ ∈ P , is an N-graded commutative

algebra, called the exterior algebra of a module P .

We restrict our consideration of inverse systems of modules to inverse

sequences

P 0 ←−P 1 ←−· · ·P i π
i+1
i←−· · · . (11.1.6)

Its inductive limit (the inverse limit) is a module P∞ together with mor-

phisms π∞
i : P∞ → P i such that π∞

i = πji ◦ π∞
j for all i < j. It consists

of elements (. . . , pi, . . .), pi ∈ P i, of the Cartesian product
∏
P i such that

pi = πji (p
j) for all i < j.
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Theorem 11.1.3. Inductive limits preserve monomorphisms, but not epi-

morphisms. If a sequence

0→ P i
F i

−→Qi
Φi

−→T i, i ∈ N,

of inverse systems of modules {P i}, {Qi} and {T i} is exact, so is the

sequence of the inductive limits

0→ P∞ F∞

−→Q∞ Φ∞

−→T∞.

In contrast with direct limits, the inductive ones exist in the category

of groups which are not necessarily commutative.

Example 11.1.2. Let {Pi} be a direct sequence of modules. Given another

module Q, the modules Hom(Pi, Q) make up an inverse system such that

its inductive limit is isomorphic to Hom (P∞, Q).

11.2 Geometry of fibre bundles

Throughout this Section, all morphisms are smooth (i.e., of class C∞), and

manifolds are smooth real and finite-dimensional. A smooth manifold is

customarily assumed to be Hausdorff and second-countable (i.e., possess-

ing a countable base for its topology). Consequently, it is a locally compact

space which is a union of a countable number of compact subsets, a sep-

arable space (i.e., it has a countable dense subset), a paracompact and

completely regular space. Being paracompact, a smooth manifold admits a

partition of unity by smooth real functions. Unless otherwise stated, man-

ifolds are assumed to be connected (and, consequently, arcwise connected).

We follow the notion of a manifold without boundary.

The standard symbols ⊗, ∨, and ∧ stand for the tensor, symmetric,

and exterior products, respectively. The interior product (contraction) is

denoted by c.
Given a smooth manifold Z, by πZ : TZ → Z is denoted its tangent

bundle. Given manifold coordinates (zα) on Z, the tangent bundle TZ is

equipped with the holonomic coordinates

(zλ, żλ), ż′λ =
∂z′λ

∂zµ
żµ,

with respect to the holonomic frames {∂λ} in the tangent spaces to Z. Any

manifold morphism f : Z → Z ′ yields the tangent morphism

Tf : TZ → TZ ′, ż′λ ◦ Tf =
∂fλ

∂zµ
żµ,
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of their tangent bundles.

The symbol C∞(Z) stands for the ring of smooth real functions on a

manifold Z.

11.2.1 Fibred manifolds

Let M and N be smooth manifolds and f : M → N a manifold morphism.

Its rank rankpf at a point p ∈M is defined as the rank of the tangent map

Tpf : TpM → Tf(p)N, p ∈M.

Since the function p → rankpf is lower semicontinuous, a manifold mor-

phism f of maximal rank at a point p also is of maximal rank on some

open neighborhood of p. A morphism f is said to be an immersion if Tpf ,

p ∈ M , is injective and a submersion if Tpf , p ∈ M , is surjective. Note

that a submersion is an open map (i.e., an image of any open set is open).

If f : M → N is an injective immersion, its range is called a submanifold

of N . A submanifold is said to be imbedded if it also is a topological

subspace. In this case, f is called an imbedding. For the sake of simplicity,

we usually identify (M, f) with f(M). If M ⊂ N , its natural injection is

denoted by iM : M → N . There are the following criteria for a submanifold

to be imbedded.

Theorem 11.2.1. Let (M, f) be a submanifold of N .

(i) A map f is an imbedding if and only if, for each point p ∈ M ,

there exists a (cubic) coordinate chart (V, ψ) of N centered at f(p) so that

f(M)∩V consists of all points of V with coordinates (x1, . . . , xm, 0, . . . , 0).

(ii) Suppose that f : M → N is a proper map, i.e., the inverse images

of compact sets are compact. Then (M, f) is a closed imbedded submanifold

of N . In particular, this occurs if M is a compact manifold.

(iii) If dimM = dimN , then (M, f) is an open imbedded submanifold

of N .

If a manifold morphism

π : Y → X, dimX = n > 0, (11.2.1)

is a surjective submersion, one says that: (i) its domain Y is a fibred

manifold, (ii) X is its base, (iii) π is a fibration, and (iv) Yx = π−1(x) is a

fibre over x ∈ X .

By virtue of the inverse function theorem [162], the surjection (11.2.1)

is a fibred manifold if and only if a manifold Y admits an atlas of fibred
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coordinate charts (UY ;xλ, yi) such that (xλ) are coordinates on π(UY ) ⊂ X
and coordinate transition functions read

x′λ = fλ(xµ), y′i = f i(xµ, yj).

The surjection π (11.2.1) is a fibred manifold if and only if, for each

point y ∈ Y , there exists a local section s of Y → X passing through y.

Recall that by a local section of the surjection (11.2.1) is meant an injection

s : U → Y of an open subset U ⊂ X such that π ◦ s = IdU , i.e., a section

sends any point x ∈ X into the fibre Yx over this point. A local section also

is defined over any subset N ∈ X as the restriction to N of a local section

over an open set containing N . If U = X , one calls s the global section.

A range s(U) of a local section s : U → Y of a fibred manifold Y → X is

an imbedded submanifold of Y . A local section is a closed map, sending

closed subsets of U onto closed subsets of Y . If s is a global section, then

s(X) is a closed imbedded submanifold of Y . Global sections of a fibred

manifold need not exist.

Theorem 11.2.2. Let Y → X be a fibred manifold whose fibres are diffeo-

morphic to Rm. Any its section over a closed imbedded submanifold (e.g.,

a point) of X is extended to a global section [150]. In particular, such a

fibred manifold always has a global section.

Given fibred coordinates (UY ;xλ, yi), a section s of a fibred manifold

Y → X is represented by collections of local functions {si = yi ◦ s} on

π(UY ).

Morphisms of fibred manifolds, by definition, are fibrewise morphisms,

sending a fibre to a fibre. Namely, a fibred morphism of a fibred manifold

π : Y → X to a fibred manifold π′ : Y ′ → X ′ is defined as a pair (Φ, f) of

manifold morphisms which form a commutative diagram

Y
Φ−→ Y ′

π
? ?

π′

X
f−→ X ′

, π′ ◦Φ = f ◦ π.

Fibred injections and surjections are called monomorphisms and epimor-

phisms, respectively. A fibred diffeomorphism is called an isomorphism or

an automorphism if it is an isomorphism to itself. For the sake of brevity,

a fibred morphism over f = IdX usually is said to be a fibred morphism

over X , and is denoted by Y −→
X

Y ′. In particular, a fibred automorphism

over X is called a vertical automorphism.
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11.2.2 Fibre bundles

A fibred manifold Y → X is said to be trivial if Y is isomorphic to the

product X × V . Different trivializations of Y → X differ from each other

in surjections Y → V .

A fibred manifold Y → X is called a fibre bundle if it is locally trivial,

i.e., if it admits a fibred coordinate atlas {(π−1(Uξ);x
λ, yi)} over a cover

{π−1(Uξ)} of Y which is the inverse image of a cover U = {Uξ} of X . In

this case, there exists a manifold V , called a typical fibre, such that Y is

locally diffeomorphic to the splittings

ψξ : π−1(Uξ)→ Uξ × V, (11.2.2)

glued together by means of transition functions

%ξζ = ψξ ◦ ψ−1
ζ : Uξ ∩ Uζ × V → Uξ ∩ Uζ × V (11.2.3)

on overlaps Uξ ∩ Uζ . Transition functions %ξζ fulfil the cocycle condition

%ξζ ◦ %ζι = %ξι (11.2.4)

on all overlaps Uξ ∩ Uζ ∩ Uι. Restricted to a point x ∈ X , trivialization

morphisms ψξ (11.2.2) and transition functions %ξζ (11.2.3) define diffeo-

morphisms of fibres

ψξ(x) : Yx → V, x ∈ Uξ, (11.2.5)

%ξζ(x) : V → V, x ∈ Uξ ∩ Uζ . (11.2.6)

Trivialization charts (Uξ, ψξ) together with transition functions %ξζ (11.2.3)

constitute a bundle atlas

Ψ = {(Uξ, ψξ), %ξζ} (11.2.7)

of a fibre bundle Y → X . Two bundle atlases are said to be equivalent

if their union also is a bundle atlas, i.e., there exist transition functions

between trivialization charts of different atlases. All atlases of a fibre bundle

are equivalent.

Given a bundle atlas Ψ (11.2.7), a fibre bundle Y is provided with the

fibred coordinates

xλ(y) = (xλ ◦ π)(y), yi(y) = (yi ◦ ψξ)(y), y ∈ π−1(Uξ),

called the bundle coordinates, where yi are coordinates on a typical fibre

V .

A fibre bundle Y → X is uniquely defined by a bundle atlas. Given an

atlas Ψ (11.2.7), there exists a unique manifold structure on Y for which

π : Y → X is a fibre bundle with a typical fibre V and a bundle atlas Ψ.
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There are the following useful criteria for a fibred manifold to be a fibre

bundle.

Theorem 11.2.3. If a fibration π : Y → X is a proper map, then Y → X

is a fibre bundle. In particular, a compact fibred manifold is a fibre bundle.

Theorem 11.2.4. A fibred manifold whose fibres are diffeomorphic either

to a compact manifold or Rr is a fibre bundle [114].

A comprehensive relation between fibred manifolds and fibre bundles is

given in Remark 11.4.1. It involves the notion of an Ehresmann connection.

Forthcoming Theorems 11.2.5 – 11.2.7 describe the particular covers

which one can choose for a bundle atlas [76].

Theorem 11.2.5. Any fibre bundle over a contractible base is trivial.

Note that a fibred manifold over a contractible base need not be trivial.

It follows from Theorem 11.2.5 that any cover of a base X by domains (i.e.,

contractible open subsets) is a bundle cover.

Theorem 11.2.6. Every fibre bundle Y → X admits a bundle atlas over

a countable cover U of X where each member Uξ of U is a domain whose

closure U ξ is compact.

If a base X is compact, there is a bundle atlas of Y over a finite cover

of X which obeys the condition of Theorem 11.2.6.

Theorem 11.2.7. Every fibre bundle Y → X admits a bundle atlas over a

finite cover U of X, but its members need not be contractible and connected.

A fibred morphism of fibre bundles is called a bundle morphism. A

bundle monomorphism Φ : Y → Y ′ over X onto a submanifold Φ(Y ) of

Y ′ is called a subbundle of a fibre bundle Y ′ → X . There is the following

useful criterion for an image and an inverse image of a bundle morphism to

be subbundles.

Theorem 11.2.8. Let Φ : Y → Y ′ be a bundle morphism over X. Given

a global section s of the fibre bundle Y ′ → X such that s(X) ⊂ Φ(Y ), by

the kernel of a bundle morphism Φ with respect to a section s is meant the

inverse image

Ker sΦ = Φ−1(s(X))

of s(X) by Φ. If Φ : Y → Y ′ is a bundle morphism of constant rank over

X, then Φ(Y ) and Ker sΦ are subbundles of Y ′ and Y , respectively.
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The following are the standard constructions of new fibre bundles from

old ones.

•Given a fibre bundle π : Y → X and a manifold morphism f : X ′ → X ,

the pull-back of Y by f is called the manifold

f∗Y = {(x′, y) ∈ X ′ × Y : π(y) = f(x′)} (11.2.8)

together with the natural projection (x′, y) → x′. It is a fibre bundle over

X ′ such that the fibre of f∗Y over a point x′ ∈ X ′ is that of Y over the

point f(x′) ∈ X . There is the canonical bundle morphism

fY : f∗Y 3 (x′, y)|π(y)=f(x′) → y ∈ Y. (11.2.9)

Any section s of a fibre bundle Y → X yields the pull-back section

f∗s(x′) = (x′, s(f(x′))

of f∗Y → X ′.

• If X ′ ⊂ X is a submanifold of X and iX′ is the corresponding natural

injection, then the pull-back bundle

i∗X′Y = Y |X′

is called the restriction of a fibre bundle Y to the submanifold X ′ ⊂ X . If

X ′ is an imbedded submanifold, any section of the pull-back bundle

Y |X′ → X ′

is the restriction to X ′ of some section of Y → X .

• Let π : Y → X and π′ : Y ′ → X be fibre bundles over the same base

X . Their bundle product Y ×X Y ′ over X is defined as the pull-back

Y ×
X
Y ′ = π∗Y ′ or Y ×

X
Y ′ = π′∗Y

together with its natural surjection onto X . Fibres of the bundle product

Y × Y ′ are the Cartesian products Yx × Y ′
x of fibres of fibre bundles Y and

Y ′.

• Let us consider the composite fibre bundle

Y → Σ→ X. (11.2.10)

It is provided with bundle coordinates (xλ, σm, yi), where (xλ, σm) are bun-

dle coordinates on a fibre bundle Σ → X , i.e., transition functions of co-

ordinates σm are independent of coordinates yi. Let h be a global section

of a fibre bundle Σ→ X . Then the restriction Yh = h∗Y of a fibre bundle

Y → Σ to h(X) ⊂ Σ is a subbundle of a fibre bundle Y → X .
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11.2.3 Vector bundles

A fibre bundle π : Y → X is called a vector bundle if both its typical fibre

and fibres are finite-dimensional real vector spaces, and if it admits a bundle

atlas whose trivialization morphisms and transition functions are linear

isomorphisms. Then the corresponding bundle coordinates on Y are linear

bundle coordinates (yi) possessing linear transition functions y′i = Aij(x)y
j .

We have

y = yiei(π(y)) = yiψξ(π(y))−1(ei), π(y) ∈ Uξ, (11.2.11)

where {ei} is a fixed basis for a typical fibre V of Y and {ei(x)} are the

fibre bases (or the frames) for the fibres Yx of Y associated to a bundle

atlas Ψ.

By virtue of Theorem 11.2.2, any vector bundle has a global section,

e.g., the canonical global zero-valued section 0̂(x) = 0.

Theorem 11.2.9. Let a vector bundle Y → X admit m = dimV nowhere

vanishing global sections si which are linearly independent, i.e.,
m∧ si 6= 0.

Then Y is trivial.

Global sections of a vector bundle Y → X constitute a projective

C∞(X)-module Y (X) of finite rank. It is called the structure module of

a vector bundle. Serre–Swan Theorem 11.5.2 states the categorial equiva-

lence between the vector bundles over a smooth manifold X and projective

C∞(X)-modules of finite rank.

There are the following particular constructions of new vector bundles

from the old ones.

• Let Y → X be a vector bundle with a typical fibre V . By Y ∗ → X is

denoted the dual vector bundle with the typical fibre V ∗, dual of V . The

interior product of Y and Y ∗ is defined as a fibred morphism

c : Y ⊗ Y ∗ −→
X

X × R.

• Let Y → X and Y ′ → X be vector bundles with typical fibres V and

V ′, respectively. Their Whitney sum Y ⊕X Y ′ is a vector bundle over X

with the typical fibre V ⊕ V ′.

• Let Y → X and Y ′ → X be vector bundles with typical fibres V and

V ′, respectively. Their tensor product Y ⊗X Y ′ is a vector bundle over

X with the typical fibre V ⊗ V ′. Similarly, the exterior product of vector

bundles Y ∧X Y ′ is defined. The exterior product

∧Y = X × R⊕
X
Y ⊕
X

2∧Y ⊕
X
· · · ⊕ k∧ Y, k = dimY − dimX, (11.2.12)
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is called the exterior bundle.

• If Y ′ is a subbundle of a vector bundle Y → X , the factor bundle

Y/Y ′ over X is defined as a vector bundle whose fibres are the quotients

Yx/Y
′
x, x ∈ X .

By a morphism of vector bundles is meant a linear bundle morphism,

which is a linear fibrewise map whose restriction to each fibre is a linear

map.

Given a linear bundle morphism Φ : Y ′ → Y of vector bundles over X ,

its kernel Ker Φ is defined as the inverse image Φ−1(0̂(X)) of the canoni-

cal zero-valued section 0̂(X) of Y . By virtue of Theorem 11.2.8, if Φ is of

constant rank, its kernel and its range are vector subbundles of the vector

bundles Y ′ and Y , respectively. For instance, monomorphisms and epimor-

phisms of vector bundles fulfil this condition.

Remark 11.2.1. Given vector bundles Y and Y ′ over the same base X ,

every linear bundle morphism

Φ : Yx 3 {ei(x)} → {Φki (x)e′k(x)} ∈ Y ′
x

over X defines a global section

Φ : x→ Φki (x)e
i(x)⊗ e′k(x)

of the tensor product Y ⊗ Y ′∗, and vice versa.

A sequence

Y ′ i−→Y
j−→Y ′′

of vector bundles over the same base X is called exact at Y if Ker j = Im i.

A sequence of vector bundles

0→ Y ′ i−→Y
j−→Y ′′ → 0 (11.2.13)

over X is said to be a short exact sequence if it is exact at all terms Y ′,

Y , and Y ′′. This means that i is a bundle monomorphism, j is a bundle

epimorphism, and Ker j = Im i. Then Y ′′ is isomorphic to a factor bundle

Y/Y ′. Given an exact sequence of vector bundles (11.2.13), there is the

exact sequence of their duals

0→ Y ′′∗ j∗−→Y ∗ i∗−→Y ′∗ → 0.

One says that the exact sequence (11.2.13) is split if there exists a bundle

monomorphism s : Y ′′ → Y such that j ◦ s = IdY ′′ or, equivalently,

Y = i(Y ′)⊕ s(Y ′′) = Y ′ ⊕ Y ′′.

Theorem 11.2.10. Every exact sequence of vector bundles (11.2.13) is

split [85].
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The tangent bundle TZ and the cotangent bundle T ∗Z of a manifold Z

exemplify vector bundles.

Given an atlas ΨZ = {(Uι, φι)} of a manifold Z, the tangent bundle is

provided with the holonomic bundle atlas

ΨT = {(Uι, ψι = Tφι)}. (11.2.14)

The associated linear bundle coordinates are holonomic coordinates (żλ).

The cotangent bundle of a manifold Z is the dual T ∗Z → Z of the

tangent bundle TZ → Z. It is equipped with the holonomic coordinates

(zλ, żλ). ż′λ =
∂zµ

∂z′λ
żµ,

with respect to the coframes {dzλ} for T ∗Z which are the duals of {∂λ}.
The tensor product of tangent and cotangent bundles

T = (
m
⊗TZ)⊗ (

k
⊗T ∗Z), m, k ∈ N, (11.2.15)

is called a tensor bundle, provided with holonomic bundle coordinates

żα1···αm

β1···βk
possessing transition functions

ż′α1···αm

β1···βk
=
∂z′α1

∂zµ1
· · · ∂z

′αm

∂zµm

∂zν1

∂z′β1
· · · ∂z

νk

∂z′βk
żµ1···µm
ν1···νk

.

Let πY : TY → Y be the tangent bundle of a fibred manifold π : Y → X .

Given fibred coordinates (xλ, yi) on Y , it is equipped with the holonomic

coordinates (xλ, yi, ẋλ, ẏi). The tangent bundle TY → Y has the subbundle

V Y = Ker (Tπ), which consists of the vectors tangent to fibres of Y . It

is called the vertical tangent bundle of Y , and it is provided with the

holonomic coordinates (xλ, yi, ẏi) with respect to the vertical frames {∂i}.
Every fibred morphism Φ : Y → Y ′ yields the linear bundle morphism over

Φ of the vertical tangent bundles

V Φ : V Y → V Y ′, ẏ′i ◦ V Φ =
∂Φi

∂yj
ẏj . (11.2.16)

It is called the vertical tangent morphism.

In many important cases, the vertical tangent bundle V Y → Y of a

fibre bundle Y → X is trivial, and it is isomorphic to the bundle product

V Y = Y ×
X
Y , (11.2.17)

where Y → X is some vector bundle. One calls (11.2.17) the vertical

splitting. For instance, every vector bundle Y → X admits the canonical

vertical splitting

V Y = Y ⊕
X
Y. (11.2.18)
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The vertical cotangent bundle V ∗Y → Y of a fibred manifold Y →
X is defined as the dual of the vertical tangent bundle V Y → Y . It is

not a subbundle of the cotangent bundle T ∗Y , but there is the canonical

surjection

ζ : T ∗Y 3 ẋλdxλ + ẏidy
i → ẏidy

i ∈ V ∗Y, (11.2.19)

where the bases {dyi}, possessing transition functions

dy′i =
∂y′i

∂yj
dyj ,

are the duals of the vertical frames {∂i} of the vertical tangent bundle V Y .

For any fibred manifold Y , there exist the exact sequences of vector

bundles

0→ V Y −→TY
πT−→Y ×

X
TX → 0, (11.2.20)

0→ Y ×
X
T ∗X → T ∗Y → V ∗Y → 0. (11.2.21)

Their splitting, by definition, is a connection on Y → X (Section 11.4.1).

Let us consider the tangent bundle TT ∗X of T ∗X and the cotangent

bundle T ∗TX of TX . Relative to coordinates (xλ, pλ = ẋλ) on T ∗X

and (xλ, ẋλ) on TX , these fibre bundles are provided with the coordinates

(xλ, pλ, ẋ
λ, ṗλ) and (xλ, ẋλ, ẋλ, ẍλ), respectively. By inspection of the co-

ordinate transformation laws, one can show that there is an isomorphism

α : TT ∗X = T ∗TX, pλ ←→ ẍλ, ṗλ ←→ ẋλ, (11.2.22)

of these bundles over TX . Given a fibred manifold Y → X , there is the

similar isomorphism

αV : V V ∗Y = V ∗V Y, pi ←→ ÿi, ṗi ←→ ẏi, (11.2.23)

over V Y , where (xλ, yi, pi, ẏ
i, ṗi) and (xλ, yi, ẏi, ẏi, ÿi) are coordinates on

V V ∗Y and V ∗V Y , respectively.

11.2.4 Affine bundles

Let π : Y → X be a vector bundle with a typical fibre V . An affine bundle

modelled over the vector bundle Y → X is a fibre bundle π : Y → X whose

typical fibre V is an affine space modelled over V , all the fibres Yx of Y

are affine spaces modelled over the corresponding fibres Y x of the vector

bundle Y , and there is an affine bundle atlas

Ψ = {(Uα, ψχ), %χζ}
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of Y → X whose local trivializations morphisms ψχ (11.2.5) and transition

functions %χζ (11.2.6) are affine isomorphisms.

Dealing with affine bundles, we use only affine bundle coordinates (yi)

associated to an affine bundle atlas Ψ. There are the bundle morphisms

Y ×
X
Y −→

X
Y, (yi, yi)→ yi + yi,

Y ×
X
Y −→

X
Y , (yi, y′i)→ yi − y′i,

where (yi) are linear coordinates on a vector bundle Y .

By virtue of Theorem 11.2.2, affine bundles have global sections, but

in contrast with vector bundles, there is no canonical global section of an

affine bundle. Let π : Y → X be an affine bundle. Every global section s

of an affine bundle Y → X modelled over a vector bundle Y → X yields

the bundle morphisms

Y 3 y → y − s(π(y)) ∈ Y , (11.2.24)

Y 3 y → s(π(y)) + y ∈ Y. (11.2.25)

In particular, every vector bundle Y has a natural structure of an affine

bundle due to the morphisms (11.2.25) where s = 0̂ is the canonical zero-

valued section of Y .

Theorem 11.2.11. Any affine bundle Y → X admits bundle coordinates

(xλ, ỹi) possessing linear transition functions ỹ′i = Aij(x)ỹ
j [68].

By a morphism of affine bundles is meant a bundle morphism Φ : Y →
Y ′ whose restriction to each fibre of Y is an affine map. It is called an affine

bundle morphism. Every affine bundle morphism Φ : Y → Y ′ of an affine

bundle Y modelled over a vector bundle Y to an affine bundle Y ′ modelled

over a vector bundle Y
′
yields an unique linear bundle morphism

Φ : Y → Y
′
, y′i ◦Φ =

∂Φi

∂yj
yj , (11.2.26)

called the linear derivative of Φ.

Every affine bundle Y → X modelled over a vector bundle Y → X

admits the canonical vertical splitting

V Y = Y ×
X
Y . (11.2.27)
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11.2.5 Vector fields

Vector fields on a manifold Z are global sections of the tangent bundle

TZ → Z.

The set T1(Z) of vector fields on Z is both a C∞(Z)-module and a real

Lie algebra with respect to the Lie bracket

u = uλ∂λ, v = vλ∂λ,

[v, u] = (vλ∂λu
µ − uλ∂λvµ)∂µ.

Remark 11.2.2. A vector field u on an imbedded submanifold N ⊂ Z is

said to be a section of the tangent bundle TZ → Z over N . It should be

emphasized that this is not a vector field on a manifold N since u(N) does

not belong to TN ⊂ TX in general. A vector field on a submanifold N ⊂ Z
is called tangent to N if u(N) ⊂ TN .

Given a vector field u on X , a curve

c : R ⊃ (, )→ Z

in Z is said to be an integral curve of u if Tc = u(c). Every vector field

u on a manifold Z can be seen as an infinitesimal generator of a local

one-parameter group of local diffeomorphisms (a flow), and vice versa [93].

One-dimensional orbits of this group are integral curves of u.

Remark 11.2.3. Let U ⊂ Z be an open subset and ε > 0. Recall that

by a local one-parameter group of local diffeomorphisms of Z defined on

(−ε, ε)× U is meant a map

G : (−ε, ε)× U 3 (t, z)→ Gt(z) ∈ Z
which possesses the following properties:

• for each t ∈ (−ε, ε), the mapping Gt is a diffeomorphism of U onto

the open subset Gt(U) ⊂ Z;

• Gt+t′(z) = (Gt ◦Gt′)(z) if t+ t′ ∈ (−ε, ε).
If such a map G is defined on R× Z, it is called the one-parameter group

of diffeomorphisms of Z. If a local one-parameter group of local diffeomor-

phisms of Z is defined on (−ε, ε)× Z, it is uniquely prolonged onto R× Z
to a one-parameter group of diffeomorphisms of Z [93]. As was mentioned

above, a local one-parameter group of local diffeomorphisms G on U ⊂ Z

defines a local vector field u on U by setting u(z) to be the tangent vector

to the curve s(t) = Gt(z) at t = 0. Conversely, let u be a vector field on a

manifold Z. For each z ∈ Z, there exist a number ε > 0, a neighborhood

U of z and a unique local one-parameter group of local diffeomorphisms on

(−ε, ε)× U , which determines u.
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A vector field is called complete if its flow is a one-parameter group of

diffeomorphisms of Z.

Theorem 11.2.12. Any vector field on a compact manifold is complete.

A vector field u on a fibred manifold Y → X is called projectable if it

is projected onto a vector field on X , i.e., there exists a vector field τ on X

such that

τ ◦ π = Tπ ◦ u.
A projectable vector field takes the coordinate form

u = uλ(xµ)∂λ + ui(xµ, yj)∂i, τ = uλ∂λ. (11.2.28)

A projectable vector field is called vertical if its projection onto X vanishes,

i.e., if it lives in the vertical tangent bundle V Y .

A vector field τ = τλ∂λ on a base X of a fibred manifold Y → X

gives rise to a vector field on Y by means of a connection on this fibre

bundle (see the formula (11.4.3) below). Nevertheless, every tensor bundle

(11.2.15) admits the functorial lift of vector fields

τ̃ = τµ∂µ + [∂ντ
α1 ẋνα2···αm

β1···βk
+ . . .− ∂β1τ

ν ẋα1···αm

νβ2···βk
− . . .]∂̇β1···βk

α1···αm
, (11.2.29)

where we employ the compact notation

∂̇λ =
∂

∂ẋλ
. (11.2.30)

This lift is an R-linear monomorphism of the Lie algebra T1(X) of vector

fields on X to the Lie algebra T1(Y ) of vector fields on Y . In particular,

we have the functorial lift

τ̃ = τµ∂µ + ∂ντ
αẋν

∂

∂ẋα
(11.2.31)

of vector fields on X onto the tangent bundle TX and their functorial lift

τ̃ = τµ∂µ − ∂βτν ẋν
∂

∂ẋβ
(11.2.32)

onto the cotangent bundle T ∗X .

Let Y → X be a vector bundle. Using the canonical vertical splitting

(11.2.18), we obtain the canonical vertical vector field

uY = yi∂i (11.2.33)

on Y , called the Liouville vector field. For instance, the Liouville vector

field on the tangent bundle TX reads

uTX = ẋλ∂̇λ. (11.2.34)

Accordingly, any vector field τ = τλ∂λ on a manifold X has the canonical

vertical lift

τV = τλ∂̇λ (11.2.35)

onto the tangent bundle TX .
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11.2.6 Multivector fields

A multivector field ϑ of degree |ϑ| = r (or, simply, an r-vector field) on a

manifold Z is a section

ϑ =
1

r!
ϑλ1...λr∂λ1 ∧ · · · ∧ ∂λr

(11.2.36)

of the exterior product
r∧TZ → Z. Let Tr(Z) denote the C∞(Z)-module

space of r-vector fields on Z. All multivector fields on a manifold Z make

up the graded commutative algebra T∗(Z) of global sections of the exterior

bundle ∧TZ (11.2.12) with respect to the exterior product ∧.
The graded commutative algebra T∗(Z) is endowed with the Schouten–

Nijenhuis bracket

[., .]SN : Tr(Z)× Ts(Z)→ Tr+s−1(Z), (11.2.37)

[ϑ, υ]SN = ϑ • υ + (−1)rsυ • ϑ,
ϑ • υ =

r

r!s!
(ϑµλ2...λr∂µυ

α1...αs∂λ2 ∧ · · · ∧ ∂λr
∧ ∂α1 ∧ · · · ∧ ∂αs

).

This generalizes the Lie bracket of vector fields. It obeys the relations

[ϑ, υ]SN = (−1)|ϑ||υ|[υ, ϑ]SN, (11.2.38)

[ν, ϑ ∧ υ]SN = [ν, ϑ]SN ∧ υ + (−1)(|ν|−1)|ϑ|ϑ ∧ [ν, υ]SN, (11.2.39)

(−1)|ν|(|υ|−1)[ν, [ϑ, υ]SN]SN + (−1)|ϑ|(|ν|−1)[ϑ, [υ, ν]SN]SN (11.2.40)

+ (−1)|υ|(|ϑ|−1)[υ, [ν, ϑ]SN]SN = 0.

The Lie derivative of a multivector field ϑ along a vector field u is defined

as
Luυ = [u, ϑ]SN,

Lu(ϑ ∧ υ) = Luϑ ∧ υ + ϑ ∧ Luυ.

Given an r-vector field ϑ (11.2.36) on a manifold Z, its tangent lift ϑ̃

onto the tangent bundle TZ of Z is defined by the relation

ϑ̃(σ̃r, . . . , σ̃1) = ˜ϑ(σr , . . . , σ1) (11.2.41)

where [75]:

• σk = σkλdz
λ are arbitrary one-forms on a manifold Z,

• by

σ̃k = żµ∂µσ
k
λdz

λ + σkλdż
λ

are meant their tangent lifts (11.2.46) onto the tangent bundle TZ of Z,

• the right-hand side of the equality (11.2.41) is the tangent lift (11.2.44)

onto TZ of the function ϑ(σr, . . . , σ1) on Z.
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The tangent lift (11.2.41) takes the coordinate form

ϑ̃ =
1

r!
[żµ∂µϑ

λ1...λr ∂̇λ1 ∧ · · · ∧ ∂̇λr
(11.2.42)

+ ϑλ1...λr

r∑

i=1

∂̇λ1 ∧ · · · ∧ ∂λi
∧ · · · ∧ ∂̇λr

].

In particular, if τ is a vector field on a manifold Z, its tangent lift (11.2.42)

coincides with the functorial lift (11.2.31).

The Schouten–Nijenhuis bracket commutes with the tangent lift

(11.2.42) of multivectors, i.e.,

[ϑ̃, υ̃]SN = [̃ϑ, υ]SN. (11.2.43)

11.2.7 Differential forms

An exterior r-form on a manifold Z is a section

φ =
1

r!
φλ1...λr

dzλ1 ∧ · · · ∧ dzλr

of the exterior product
r∧T ∗Z → Z, where

dzλ1 ∧ · · · ∧ dzλr =
1

r!
ελ1...λr

µ1...µr
dzµ1 ⊗ · · · ⊗ dzµr ,

ε...λi...λj ...
...µp...µk... = −ε...λj ...λi...

...µp...µk ... = −ε...λi...λj ...
...µk...µp...,

ελ1...λr
λ1...λr

= 1.

Sometimes, it is convenient to write

φ = φ′λ1...λr
dzλ1 ∧ · · · ∧ dzλr

without the coefficient 1/r!.

Let Or(Z) denote the C∞(Z)-module of exterior r-forms on a manifold

Z. By definition, O0(Z) = C∞(Z) is the ring of smooth real functions on

Z. All exterior forms on Z constitute the graded algebra O∗(Z) of global

sections of the exterior bundle ∧T ∗Z (11.2.12) endowed with the exterior

product

φ =
1

r!
φλ1...λr

dzλ1 ∧ · · · ∧ dzλr , σ =
1

s!
σµ1 ...µs

dzµ1 ∧ · · · ∧ dzµs ,

φ ∧ σ =
1

r!s!
φν1 ...νr

σνr+1...νr+s
dzν1 ∧ · · · ∧ dzνr+s

=
1

r!s!(r + s)!
εν1...νr+s

α1...αr+s
φν1...νr

σνr+1...νr+s
dzα1 ∧ · · · ∧ dzαr+s ,
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such that

φ ∧ σ = (−1)|φ||σ|σ ∧ φ,

where the symbol |φ| stands for the form degree. The algebra O∗(Z) also

is provided with the exterior differential

dφ = dzµ ∧ ∂µφ =
1

r!
∂µφλ1...λr

dzµ ∧ dzλ1 ∧ · · · ∧ dzλr

which obeys the relations

d ◦ d = 0, d(φ ∧ σ) = d(φ) ∧ σ + (−1)|φ|φ ∧ d(σ).

The exterior differential d makes O∗(Z) into a differential graded algebra,

called the exterior algebra.

Given a manifold morphism f : Z → Z ′, any exterior k-form φ on Z ′

yields the pull-back exterior form f∗φ on Z given by the condition

f∗φ(v1, . . . , vk)(z) = φ(Tf(v1), . . . , T f(vk))(f(z))

for an arbitrary collection of tangent vectors v1, · · · , vk ∈ TzZ. We have

the relations

f∗(φ ∧ σ) = f∗φ ∧ f∗σ, df∗φ = f∗(dφ).

In particular, given a fibred manifold π : Y → X , the pull-back onto

Y of exterior forms on X by π provides the monomorphism of graded

commutative algebras O∗(X) → O∗(Y ). Elements of its range π∗O∗(X)

are called basic forms. Exterior forms

φ : Y → r∧ T ∗X, φ =
1

r!
φλ1 ...λr

dxλ1 ∧ · · · ∧ dxλr ,

on Y such that ucφ = 0 for an arbitrary vertical vector field u on Y are said

to be horizontal forms. Horizontal forms of degree n = dimX are called

densities.

In the case of the tangent bundle TX → X , there is a different way to

lift exterior forms on X onto TX [75; 102]. Let f be a function on X . Its

tangent lift onto TX is defined as the function

f̃ = ẋλ∂λf. (11.2.44)

Let σ be an r-form on X . Its tangent lift onto TX is said to be the r-form

σ̃ given by the relation

σ̃(τ̃1, . . . , τ̃r) = ˜σ(τ1, . . . , τr), (11.2.45)
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where τi are arbitrary vector fields on X and τ̃i are their functorial lifts

(11.2.31) onto TX . We have the coordinate expression

σ =
1

r!
σλ1···λr

dxλ1 ∧ · · · ∧ dxλr ,

σ̃ =
1

r!
[ẋµ∂µσλ1···λr

dxλ1 ∧ · · · ∧ dxλr (11.2.46)

+

r∑

i=1

σλ1 ···λr
dxλ1 ∧ · · · ∧ dẋλi ∧ · · · ∧ dxλr ].

The following equality holds:

dσ̃ = d̃σ. (11.2.47)

The interior product (or contraction) of a vector field u and an exterior

r-form φ on a manifold Z is given by the coordinate expression

ucφ =

r∑

k=1

(−1)k−1

r!
uλkφλ1...λk ...λr

dzλ1 ∧ · · · ∧ d̂zλk ∧ · · · ∧ dzλr

=
1

(r − 1)!
uµφµα2...αr

dzα2 ∧ · · · ∧ dzαr ,

where the caret ̂ denotes omission. It obeys the relations

φ(u1, . . . , ur) = urc · · ·u1cφ,
uc(φ ∧ σ) = ucφ ∧ σ + (−1)|φ|φ ∧ ucσ. (11.2.48)

A generalization of the interior product to multivector fields is the left

interior product

ϑcφ = φ(ϑ), |ϑ| ≤ |φ|, φ ∈ O∗(Z), ϑ ∈ T∗(Z),

of multivector fields and exterior forms. It is defined by the equalities

φ(u1 ∧ · · · ∧ ur) = φ(u1, . . . , ur), φ ∈ O∗(Z), ui ∈ T1(Z),

and obeys the relation

ϑcυcφ = (υ ∧ ϑ)cφ = (−1)|υ||ϑ|υcϑcφ, φ ∈ O∗(Z), ϑ, υ ∈ T∗(Z).

The Lie derivative of an exterior form φ along a vector field u is

Luφ = ucdφ+ d(ucφ), (11.2.49)

Lu(φ ∧ σ) = Luφ ∧ σ + φ ∧ Luσ. (11.2.50)

In particular, if f is a function, then

Luf = u(f) = ucdf.
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An exterior form φ is invariant under a local one-parameter group of dif-

feomorphisms Gt of Z (i.e., G∗
tφ = φ) if and only if its Lie derivative along

the infinitesimal generator u of this group vanishes, i.e.,

Luφ = 0.

Following physical terminology (Definition 1.10.3), we say that a vector

field u is a symmetry of an exterior form φ.

A tangent-valued r-form on a manifold Z is a section

φ =
1

r!
φµλ1...λr

dzλ1 ∧ · · · ∧ dzλr ⊗ ∂µ (11.2.51)

of the tensor bundle
r∧T ∗Z ⊗ TZ → Z.

Remark 11.2.4. There is one-to-one correspondence between the tangent-

valued one-forms φ on a manifold Z and the linear bundle endomorphisms

φ̂ : TZ → TZ, φ̂ : TzZ 3 v → vcφ(z) ∈ TzZ, (11.2.52)

φ̂∗ : T ∗Z → T ∗Z, φ̂∗ : T ∗
zZ 3 v∗ → φ(z)cv∗ ∈ T ∗

zZ, (11.2.53)

over Z (Remark 11.2.1). For instance, the canonical tangent-valued one-

form

θZ = dzλ ⊗ ∂λ (11.2.54)

on Z corresponds to the identity morphisms (11.2.52) and (11.2.53).

Remark 11.2.5. Let Z = TX , and let TTX be the tangent bundle of TX .

It is called the double tangent bundle. There is the bundle endomorphism

J(∂λ) = ∂̇λ, J(∂̇λ) = 0 (11.2.55)

of TTX over X . It corresponds to the canonical tangent-valued form

θJ = dxλ ⊗ ∂̇λ (11.2.56)

on the tangent bundle TX . It is readily observed that J ◦ J = 0.

The space O∗(Z)⊗ T1(Z) of tangent-valued forms is provided with the

Frölicher–Nijenhuis bracket

[, ]FN : Or(Z)⊗ T1(Z)×Os(Z)⊗ T1(Z)→ Or+s(Z)⊗ T1(Z),

[α⊗ u, β ⊗ v]FN = (α ∧ β)⊗ [u, v] + (α ∧ Luβ)⊗ v (11.2.57)

− (Lvα ∧ β)⊗ u+ (−1)r(dα ∧ ucβ)⊗ v + (−1)r(vcα ∧ dβ) ⊗ u,
α ∈ Or(Z), β ∈ Os(Z), u, v ∈ T1(Z).
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Its coordinate expression is

[φ, σ]FN =
1

r!s!
(φνλ1...λr

∂νσ
µ
λr+1...λr+s

− σνλr+1...λr+s
∂νφ

µ
λ1 ...λr

− rφµλ1 ...λr−1ν
∂λr

σνλr+1...λr+s
+ sσµνλr+2...λr+s

∂λr+1φ
ν
λ1...λr

)

dzλ1 ∧ · · · ∧ dzλr+s ⊗ ∂µ,
φ ∈ Or(Z)⊗ T1(Z), σ ∈ Os(Z)⊗ T1(Z).

There are the relations

[φ, σ]FN = (−1)|φ||ψ|+1[σ, φ]FN, (11.2.58)

[φ, [σ, θ]FN]FN = [[φ, σ]FN, θ]FN (11.2.59)

+(−1)|φ||σ|[σ, [φ, θ]FN]FN,

φ, σ, θ ∈ O∗(Z)⊗ T1(Z).

Given a tangent-valued form θ, the Nijenhuis differential on O∗(Z) ⊗
T1(Z) is defined as the morphism

dθ : ψ → dθψ = [θ, ψ]FN, ψ ∈ O∗(Z)⊗ T1(Z).

By virtue of (11.2.59), it has the property

dφ[ψ, θ]FN = [dφψ, θ]FN + (−1)|φ||ψ|[ψ, dφθ]FN.

In particular, if θ = u is a vector field, the Nijenhuis differential is the

Lie derivative of tangent-valued forms

Luσ = duσ = [u, σ]FN =
1

s!
(uν∂νσ

µ
λ1...λs

− σνλ1...λs
∂νu

µ

+ sσµνλ2...λs
∂λ1u

ν)dxλ1 ∧ · · · ∧ dxλs ⊗ ∂µ, σ ∈ Os(Z)⊗ T1(Z).

If φ is a tangent-valued one-form, the Nijenhuis differential

dφφ = [φ, φ]FN (11.2.60)

= (φµν∂µφ
α
β − φµβ∂µφαν − φαµ∂νφ

µ
β + φαµ∂βφ

µ
ν )dz

ν ∧ dzβ ⊗ ∂α
is called the Nijenhuis torsion.

Let Y → X be a fibred manifold. We consider the following subspaces

of the space O∗(Y )⊗ T1(Y ) of tangent-valued forms on Y :

• horizontal tangent-valued forms

φ : Y → r∧T ∗X ⊗
Y
TY,

φ = dxλ1 ∧ · · · ∧ dxλr ⊗ 1

r!
[φµλ1...λr

(y)∂µ + φiλ1...λr
(y)∂i],
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• projectable horizontal tangent-valued forms

φ = dxλ1 ∧ · · · ∧ dxλr ⊗ 1

r!
[φµλ1...λr

(x)∂µ + φiλ1...λr
(y)∂i],

• vertical-valued form

φ : Y → r∧T ∗X ⊗
Y
V Y, φ =

1

r!
φiλ1 ...λr

(y)dxλ1 ∧ · · · ∧ dxλr ⊗ ∂i,

• vertical-valued one-forms, called soldering forms,

σ = σiλ(y)dx
λ ⊗ ∂i, (11.2.61)

• basic soldering forms

σ = σiλ(x)dx
λ ⊗ ∂i.

Remark 11.2.6. The tangent bundle TX is provided with the canonical

soldering form θJ (11.2.56). Due to the canonical vertical splitting

V TX = TX×
X
TX, (11.2.62)

the canonical soldering form (11.2.56) on TX defines the canonical tangent-

valued form θX (11.2.54) on X . By this reason, tangent-valued one-forms

on a manifold X also are called soldering forms.

We also mention the TX-valued forms

φ : Y → r∧T ∗X ⊗
Y
TX, (11.2.63)

φ =
1

r!
φµλ1 ...λr

dxλ1 ∧ · · · ∧ dxλr ⊗ ∂µ,

and V ∗Y -valued forms

φ : Y → r∧T ∗X ⊗
Y
V ∗Y, (11.2.64)

φ =
1

r!
φλ1...λridx

λ1 ∧ · · · ∧ dxλr ⊗ dyi.

It should be emphasized that (11.2.63) are not tangent-valued forms, while

(11.2.64) are not exterior forms. They exemplify vector-valued forms.

Given a vector bundle E → X , by a E-valued k-form on X , is meant a

section of the fibre bundle

(
k∧T ∗X)⊗

X
E∗ → X.
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11.2.8 Distributions and foliations

A subbundle T of the tangent bundle TZ of a manifold Z is called a regular

distribution (or, simply, a distribution). A vector field u on Z is said to

be subordinate to a distribution T if it lives in T. A distribution T is

called involutive if the Lie bracket of T-subordinate vector fields also is

subordinate to T.

A subbundle of the cotangent bundle T ∗Z of Z is called a codistribution

T∗ on a manifold Z. For instance, the annihilator Ann T of a distribution

T is a codistribution whose fibre over z ∈ Z consists of covectors w ∈ T ∗
z

such that vcw = 0 for all v ∈ Tz .

There is the following criterion of an involutive distribution [162].

Theorem 11.2.13. Let T be a distribution and AnnT its annihilator. Let

∧Ann T(Z) be the ideal of the exterior algebra O∗(Z) which is generated

by sections of Ann T→ Z. A distribution T is involutive if and only if the

ideal ∧Ann T(Z) is a differential ideal, i.e.,

d(∧Ann T(Z)) ⊂ ∧AnnT(Z).

The following local coordinates can be associated to an involutive dis-

tribution [162].

Theorem 11.2.14. Let T be an involutive r-dimensional distribution on

a manifold Z, dimZ = k. Every point z ∈ Z has an open neighbor-

hood U which is a domain of an adapted coordinate chart (z1, . . . , zk) such

that, restricted to U , the distribution T and its annihilator AnnT are

spanned by the local vector fields ∂/∂z1, · · · , ∂/∂zr and the local one-forms

dzr+1, . . . , dzk, respectively.

A connected submanifold N of a manifold Z is called an integral ma-

nifold of a distribution T on Z if TN ⊂ T. Unless otherwise stated,

by an integral manifold is meant an integral manifold of dimension of

T. An integral manifold is called maximal if no other integral mani-

fold contains it. The following is the classical theorem of Frobenius [93;

162].

Theorem 11.2.15. Let T be an involutive distribution on a manifold Z.

For any z ∈ Z, there exists a unique maximal integral manifold of T through

z, and any integral manifold through z is its open subset.

Maximal integral manifolds of an involutive distribution on a manifold

Z are assembled into a regular foliation F of Z.
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A regular r-dimensional foliation (or, simply, a foliation) F of a k-

dimensional manifold Z is defined as a partition of Z into connected r-

dimensional submanifolds (the leaves of a foliation) Fι, ι ∈ I , which pos-

sesses the following properties [132; 154].

A manifold Z admits an adapted coordinate atlas

{(Uξ; zλ, zi)}, λ = 1, . . . , k − r, i = 1, . . . , r, (11.2.65)

such that transition functions of coordinates zλ are independent of the re-

maining coordinates zi. For each leaf F of a foliation F , the connected

components of F ∩ Uξ are given by the equations zλ =const. These con-

nected components and coordinates (zi) on them make up a coordinate

atlas of a leaf F . It follows that tangent spaces to leaves of a foliation F
constitute an involutive distribution TF on Z, called the tangent bundle

to the foliation F . The factor bundle

V F = TZ/TF ,
called the normal bundle to F , has transition functions independent of

coordinates zi. Let TF∗ → Z denote the dual of TF → Z. There are the

exact sequences

0→ TF iF−→TX −→V F → 0, (11.2.66)

0→ Ann TF −→T ∗X
i∗
F−→TF∗ → 0 (11.2.67)

of vector bundles over Z.

A pair (Z,F), where F is a foliation of Z, is called a foliated manifold.

It should be emphasized that leaves of a foliation need not be closed or

imbedded submanifolds. Every leaf has an open saturated neighborhood

U , i.e., if z ∈ U , then a leaf through z also belongs to U .

Any submersion ζ : Z →M yields a foliation

F = {Fp = ζ−1(p)}p∈ζ(Z)

of Z indexed by elements of ζ(Z), which is an open submanifold of M , i.e.,

Z → ζ(Z) is a fibred manifold. Leaves of this foliation are closed imbedded

submanifolds. Such a foliation is called simple. Any (regular) foliation is

locally simple.

Example 11.2.1. Every smooth real function f on a manifold Z with

nowhere vanishing differential df is a submersion Z → R. It defines a

one-codimensional foliation whose leaves are given by the equations

f(z) = c, c ∈ f(Z) ⊂ R.
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This is the foliation of level surfaces of the function f , called a generating

function. Every one-codimensional foliation is locally a foliation of level

surfaces of some function on Z. The level surfaces of an arbitrary smooth

real function f on a manifold Z define a singular foliation F on Z [89].

Its leaves are not submanifolds in general. Nevertheless if df(z) 6= 0, the

restriction of F to some open neighborhood U of z is a foliation with the

generating function f |U .

11.2.9 Differential geometry of Lie groups

Let G be a real Lie group of dimG > 0, and let Lg : G → gG and Rg :

G → Gg denote the action of G on itself by left and right multiplications,

respectively. Clearly, Lg and Rg′ for all g, g′ ∈ G mutually commute, and

so do the tangent maps TLg and TRg′ .

A vector field ξl (resp. ξr) on a group G is said to be left-invariant (resp.

right-invariant) if ξl◦Lg = TLg◦ξl (resp. ξr◦Rg = TRg◦ξr). Left-invariant

(resp. right-invariant) vector fields make up the left Lie algebra gl (resp.

the right Lie algebra gr) of G.

There is one-to-one correspondence between the left-invariant vector

field ξl (resp. right-invariant vector fields ξr) on G and the vectors ξl(e) =

TLg−1ξl(g) (resp. ξr(e) = TRg−1ξl(g)) of the tangent space TeG to G at

the unit element e of G. This correspondence provides TeG with the left

and the right Lie algebra structures. Accordingly, the left action Lg of a

Lie group G on itself defines its adjoint representation

ξr → Ad g(ξr) = TLg ◦ ξr ◦ Lg−1 (11.2.68)

in the right Lie algebra gr.

Let {εm} (resp. {εm}) denote the basis for the left (resp. right) Lie

algebra, and let ckmn be the right structure constants

[εm, εn] = ckmnεk.

There is the morphism

ρ : gl 3 εm → εm = −εm ∈ gr

between left and right Lie algebras such that

[εm, εn] = −ckmnεk.
The tangent bundle πG : TG→ G of a Lie group G is trivial. There are

the following two canonical isomorphisms

%l : TG 3 q → (g = πG(q), TL−1
g (q)) ∈ G× gl,

%r : TG 3 q → (g = πG(q), TR−1
g (q)) ∈ G× gr.
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Therefore, any action

G× Z 3 (g, z)→ gz ∈ Z
of a Lie group G on a manifold Z on the left yields the homomorphism

gr 3 ε→ ξε ∈ T1(Z) (11.2.69)

of the right Lie algebra gr of G into the Lie algebra of vector fields on Z

such that

ξAd g(ε) = Tg ◦ ξε ◦ g−1. (11.2.70)

Vector fields ξε are said to be the infinitesimal generators of a representation

of the Lie group G in Z.

In particular, the adjoint representation (11.2.68) of a Lie group in its

right Lie algebra yields the adjoint representation

ε′ : ε→ ad ε′(ε) = [ε′, ε], ad εm(εn) = ckmnεk, (11.2.71)

of the right Lie algebra gr in itself.

The dual g∗ = T ∗
eG of the tangent space TeG is called the Lie coalgebra).

It is provided with the basis {εm} which is the dual of the basis {εm} for

TeG. The group G and the right Lie algebra gr act on g∗ by the coadjoint

representation

〈Ad∗g(ε∗), ε〉 = 〈ε∗,Ad g−1(ε)〉, ε∗ ∈ g∗, ε ∈ gr, (11.2.72)

〈ad∗ε′(ε∗), ε〉 = −〈ε∗, [ε′, ε]〉, ε′ ∈ gr,

ad∗εm(εn) = −cnmkεk.

Remark 11.2.7. In the literature (e.g., [1]), one can meet another defini-

tion of the coadjoint representation in accordance with the relation

〈Ad∗g(ε∗), ε〉 = 〈ε∗,Ad g(ε)〉.

The Lie coalgebra g∗ of a Lie group G is provided with the canonical

Poisson structure, called the Lie–Poisson structure [1; 104]. It is given by

the bracket

{f, g}LP = 〈ε∗, [df(ε∗), dg(ε∗)]〉, f, g ∈ C∞(g∗), (11.2.73)

where df(ε∗), dg(ε∗) ∈ gr are seen as linear mappings from Tε∗g
∗ = g∗ to R.

Given coordinates zk on g∗ with respect to the basis {εk}, the Lie–Poisson

bracket (11.2.73) and the corresponding Poisson bivector field w read

{f, g}LP = ckmnzk∂
mf∂ng, wmn = ckmnzk.

One can show that symplectic leaves of the Lie–Poisson structure on the

coalgebra g∗ of a connected Lie group G are orbits of the coadjoint repre-

sentation (11.2.72) of G on g∗ [163].
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11.3 Jet manifolds

This Section collects the relevant material on jet manifolds of sections of

fibre bundles [68; 94; 109; 145].

11.3.1 First order jet manifolds

Given a fibre bundle Y → X with bundle coordinates (xλ, yi), let us con-

sider the equivalence classes j1xs of its sections s, which are identified by

their values si(x) and the values of their partial derivatives ∂µs
i(x) at a

point x ∈ X . They are called the first order jets of sections at x. One can

justify that the definition of jets is coordinate-independent. A key point is

that the set J1Y of first order jets j1xs, x ∈ X , is a smooth manifold with

respect to the adapted coordinates (xλ, yi, yiλ) such that

yiλ(j
1
xs) = ∂λs

i(x), y′
i
λ =

∂xµ

∂x′λ
(∂µ + yjµ∂j)y

′i. (11.3.1)

It is called the first order jet manifold of a fibre bundle Y → X . We call

(yiλ) the jet coordinate.

A jet manifold J1Y admits the natural fibrations

π1 : J1Y 3 j1xs→ x ∈ X, (11.3.2)

π1
0 : J1Y 3 j1xs→ s(x) ∈ Y. (11.3.3)

A glance at the transformation law (11.3.1) shows that π1
0 is an affine bundle

modelled over the vector bundle

T ∗X ⊗
Y
V Y → Y. (11.3.4)

It is convenient to call π1 (11.3.2) the jet bundle, while π1
0 (11.3.3) is said

to be the affine jet bundle.

Let us note that, if Y → X is a vector or an affine bundle, the jet bundle

π1 (11.3.2) is so.

Jets can be expressed in terms of familiar tangent-valued forms as fol-

lows. There are the canonical imbeddings

λ(1) : J1Y →
Y
T ∗X ⊗

Y
TY,

λ(1) = dxλ ⊗ (∂λ + yiλ∂i) = dxλ ⊗ dλ, (11.3.5)

θ(1) : J1Y →
Y
T ∗Y ⊗

Y
V Y,

θ(1) = (dyi − yiλdxλ)⊗ ∂i = θi ⊗ ∂i, (11.3.6)



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

11.3. Jet manifolds 347

where dλ are said to be total derivatives, and θi are called contact forms.

We further identify the jet manifold J1Y with its images under the

canonical morphisms (11.3.5) and (11.3.6), and represent the jets j1xs =

(xλ, yi, yiµ) by the tangent-valued forms λ(1) (11.3.5) and θ(1) (11.3.6).

Sections and morphisms of fibre bundles admit prolongations to jet man-

ifolds as follows.

Any section s of a fibre bundle Y → X has the jet prolongation to the

section

(J1s)(x) = j1xs, yiλ ◦ J1s = ∂λs
i(x),

of the jet bundle J1Y → X . A section of the jet bundle J1Y → X is called

integrable if it is the jet prolongation of some section of a fibre bundle

Y → X .

Any bundle morphism Φ : Y → Y ′ over a diffeomorphism f admits a

jet prolongation to a bundle morphism of affine jet bundles

J1Φ : J1Y −→
Φ

J1Y ′, y′
i
λ ◦ J1Φ =

∂(f−1)µ

∂x′λ
dµΦ

i. (11.3.7)

Any projectable vector field u (11.2.28) on a fibre bundle Y → X has a

jet prolongation to the projectable vector field

J1u = r1 ◦ J1u : J1Y → J1TY → TJ1Y,

J1u = uλ∂λ + ui∂i + (dλu
i − yiµ∂λuµ)∂λi , (11.3.8)

on the jet manifold J1Y . In order to obtain (11.3.8), the canonical bundle

morphism

r1 : J1TY → TJ1Y, ẏiλ ◦ r1 = (ẏi)λ − yiµẋµλ,
is used. In particular, there is the canonical isomorphism

V J1Y = J1V Y, ẏiλ = (ẏi)λ. (11.3.9)

11.3.2 Second order jet manifolds

Taking the first order jet manifold of the jet bundle J1Y → X , we obtain

the repeated jet manifold J1J1Y provided with the adapted coordinates

(xλ, yi, yiλ, ŷ
i
µ, y

i
µλ)

possessing transition functions

y′iλ =
∂xα

∂x′λ
dαy

′i, ŷ′iλ =
∂xα

∂x′λ
d̂αy

′i, y′
i
µλ =

∂xα

∂x′µ
d̂αy

′i
λ,

dα = ∂α + yjα∂j + yjνα∂
ν
j , d̂α = ∂α + ŷjα∂j + yjνα∂

ν
j .



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

348 Appendices

There exist two different affine fibrations of J1J1Y over J1Y :

• the familiar affine jet bundle (11.3.3):

π11 : J1J1Y → J1Y, yiλ ◦ π11 = yiλ, (11.3.10)

• the affine bundle

J1π1
0 : J1J1Y → J1Y, yiλ ◦ J1π1

0 = ŷiλ. (11.3.11)

In general, there is no canonical identification of these fibrations. The

points q ∈ J1J1Y , where

π11(q) = J1π1
0(q),

form an affine subbundle Ĵ2Y → J1Y of J1J1Y called the sesquiholonomic

jet manifold. It is given by the coordinate conditions ŷiλ = yiλ, and is

coordinated by (xλ, yi, yiλ, y
i
µλ).

The second order (or holonomic) jet manifold J2Y of a fibre bundle

Y → X can be defined as the affine subbundle of the fibre bundle Ĵ2Y →
J1Y given by the coordinate conditions yiλµ = yiµλ. It is modelled over the

vector bundle
2∨T ∗X ⊗

J1Y
V Y → J1Y,

and is endowed with adapted coordinates (xλ, yi, yiλ, y
i
λµ = yiµλ), possessing

transition functions

y′iλ =
∂xα

∂x′λ
dαy

′i, y′
i
µλ =

∂xα

∂x′µ
dαy

′i
λ. (11.3.12)

The second order jet manifold J2Y also can be introduced as the set of

the equivalence classes j2xs of sections s of the fibre bundle Y → X , which

are identified by their values and the values of their first and second order

partial derivatives at points x ∈ X , i.e.,

yiλ(j
2
xs) = ∂λs

i(x), yiλµ(j
2
xs) = ∂λ∂µs

i(x).

The equivalence classes j2xs are called the second order jets of sections.

Let s be a section of a fibre bundle Y → X , and let J1s be its jet

prolongation to a section of a jet bundle J1Y → X . The latter gives rise

to the section J1J1s of the repeated jet bundle J1J1Y → X . This section

takes its values into the second order jet manifold J2Y . It is called the

second order jet prolongation of a section s, and is denoted by J 2s.

Theorem 11.3.1. Let s be a section of the jet bundle J1Y → X, and let

J1s be its jet prolongation to a section of the repeated jet bundle J 1J1Y →
X. The following three facts are equivalent:

• s = J1s where s is a section of a fibre bundle Y → X,

• J1s takes its values into Ĵ2Y ,

• J1s takes its values into J2Y .
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11.3.3 Higher order jet manifolds

The notion of first and second order jet manifolds is naturally extended to

higher order jet manifolds.

The k-order jet manifold JkY of a fibre bundle Y → X comprises the

equivalence classes jkxs, x ∈ X , of sections s of Y identified by the k + 1

terms of their Tailor series at points x ∈ X . The jet manifold JkY is

provided with the adapted coordinates

(xλ, yi, yiλ, . . . , y
i
λk···λ1

),

yiλl···λ1
(jkxs) = ∂λl

· · · ∂λ1s
i(x), 0 ≤ l ≤ k.

Every section s of a fibre bundle Y → X gives rise to the section Jks of a

fibre bundle JkY → X such that

yiλl···λ1
◦ Jks = ∂λl

· · ·∂λ1s
i, 0 ≤ l ≤ k.

The following operators on exterior forms on jet manifolds are utilized:

• the total derivative operator

dλ = ∂λ + yiλ∂i + yiλµ∂
µ
i + · · · , (11.3.13)

obeying the relations

dλ(φ ∧ σ) = dλ(φ) ∧ σ + φ ∧ dλ(σ),

dλ(dφ) = d(dλ(φ)),

in particular,

dλ(f) = ∂λf + yiλ∂if + yiλµ∂
µ
i f + · · · , f ∈ C∞(JkY ),

dλ(dx
µ) = 0, dλ(dy

i
λl···λ1

) = dyiλλl···λ1
;

• the horizontal projection h0 given by the relations

h0(dx
λ) = dxλ, h0(dy

i
λk ···λ1

) = yiµλk ...λ1
dxµ, (11.3.14)

in particular,

h0(dy
i) = yiµdx

µ, h0(dy
i
λ) = yiµλdx

µ;

• the total differential

dH (φ) = dxλ ∧ dλ(φ), (11.3.15)

possessing the properties

dH ◦ dH = 0, h0 ◦ d = dH ◦ h0.
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11.3.4 Differential operators and differential equations

Jet manifolds provide the standard language for the theory of differential

equations and differential operators [21; 53; 95].

Definition 11.3.1. Let Z be an (m+ n)-dimensional manifold. A system

of k-order partial differential equations (or, simply, a differential equation)

in n variables on Z is defined to be a closed smooth submanifold E of the

k-order jet bundle JknZ of n-dimensional submanifolds of Z.

By its solution is meant an n-dimensional submanifold S of Z whose

k-order jets [S]kz , z ∈ S, belong to E.

Definition 11.3.2. A k-order differential equation in n variables on a ma-

nifold Z is called a dynamic equation if it can be algebraically solved for the

highest order derivatives, i.e., it is a section of the fibration JknZ → Jk−1
n Z.

In particular, a first order dynamic equation in n variables on a manifold

Z is a section of the jet bundle J1
nZ → Z. Its image in the tangent bundle

TZ → Z by the correspondence λ(1) (10.1.2) is an n-dimensional vector

subbundle of TZ. If n = 1, a dynamic equation is given by a vector field

żλ(t) = uλ(z(t)) (11.3.16)

on a manifold Z. Its solutions are integral curves c(t) of the vector field u.

Let Y → X be a fibre bundle. There are several equivalent definitions

of (non-linear) differential operators. We start with the following.

Definition 11.3.3. Let E → X be a vector bundle. A k-order E-valued

differential operator on a fibre bundle Y → X is defined as a section E of

the pull-back bundle

pr1 : EkY = JkY ×
X
E → JkY. (11.3.17)

Given bundle coordinates (xλ, yi) on Y and (xλ, χa) on E, the pull-back

(11.3.17) is provided with coordinates (xλ, yjΣ, χ
a), 0 ≤ |Σ| ≤ k. With re-

spect to these coordinates, a differential operator E seen as a closed imbed-

ded submanifold E ⊂ EkY is given by the equalities

χa = Ea(xλ, yjΣ). (11.3.18)

There is obvious one-to-one correspondence between the sections E
(11.3.18) of the fibre bundle (11.3.17) and the bundle morphisms

Φ : JkY −→
X

E, (11.3.19)

Φ = pr2 ◦ E ⇐⇒ E = (Id JkY,Φ).
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Therefore, we come to the following equivalent definition of differential

operators on Y → X .

Definition 11.3.4. A fibred morphism

E : JkY →
X
E (11.3.20)

is called a k-order differential operator on the fibre bundle Y → X . It

sends each section s(x) of Y → X onto the section (E ◦ Jks)(x) of the

vector bundle E → X [21; 95].

The kernel of a differential operator is the subset

KerE = E−1(0̂(X)) ⊂ JkY, (11.3.21)

where 0̂ is the zero section of the vector bundle E → X , and we assume

that 0̂(X) ⊂ E(JkY ).

Definition 11.3.5. A system of k-order partial differential equations (or,

simply, a differential equation) on a fibre bundle Y → X is defined as a

closed subbundle E of the jet bundle JkY → X .

Its solution is a (local) section s of the fibre bundle Y → X such that

its k-order jet prolongation Jks lives in E.

For instance, if the kernel (11.3.21) of a differential operator E is a closed

subbundle of the fibre bundle JkY → X , it defines a differential equation

E ◦ Jks = 0.

The following condition is sufficient for a kernel of a differential operator

to be a differential equation.

Theorem 11.3.2. Let the morphism (11.3.20) be of constant rank. Its

kernel (11.3.21) is a closed subbundle of the fibre bundle JkY → X and,

consequently, is a k-order differential equation.

11.4 Connections on fibre bundles

There are different equivalent definitions of a connection on a fibre bundle

Y → X . We define it both as a splitting of the exact sequence (11.2.20)

and a global section of the affine jet bundle J1Y →Y [68; 109; 145].
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11.4.1 Connections

A connection on a fibred manifold Y → X is defined as a splitting (called

the horizontal splitting)

Γ : Y ×
X
TX →

Y
TY, Γ : ẋλ∂λ → ẋλ(∂λ + Γiλ(y)∂i), (11.4.1)

ẋλ∂λ + ẏi∂i = ẋλ(∂λ + Γiλ∂i) + (ẏi − ẋλΓiλ)∂i,
of the exact sequence (11.2.20). Its range is a subbundle of TY → Y called

the horizontal distribution. By virtue of Theorem 11.2.10, a connection on

a fibred manifold always exists. A connection Γ (11.4.1) is represented by

the horizontal tangent-valued one-form

Γ = dxλ ⊗ (∂λ + Γiλ∂i) (11.4.2)

on Y which is projected onto the canonical tangent-valued form θX (11.2.54)

on X .

Given a connection Γ on a fibred manifold Y → X , any vector field τ

on a base X gives rise to the projectable vector field

Γτ = τcΓ = τλ(∂λ + Γiλ∂i) (11.4.3)

on Y which lives in the horizontal distribution determined by Γ. It is called

the horizontal lift of τ by means of a connection Γ.

The splitting (11.4.1) also is given by the vertical-valued form

Γ = (dyi − Γiλdx
λ)⊗ ∂i, (11.4.4)

which yields an epimorphism TY → V Y . It provides the corresponding

splitting

Γ : V ∗Y 3 dyi → dyi − Γiλdx
λ ∈ T ∗Y, (11.4.5)

ẋλdx
λ + ẏidy

i = (ẋλ + ẏiΓ
i
λ)dx

λ + ẏi(dy
i − Γiλdx

λ),

of the dual exact sequence (11.2.21).

In an equivalent way, connections on a fibred manifold Y → X are

introduced as global sections of the affine jet bundle J1Y → Y . Indeed, any

global section Γ of J1Y → Y defines the tangent-valued form λ1◦Γ (11.4.2).

It follows from this definition that connections on a fibred manifold Y → X

constitute an affine space modelled over the vector space of soldering forms

σ (11.2.61). One also deduces from (11.3.1) the coordinate transformation

law of connections

Γ′i
λ =

∂xµ

∂x′λ
(∂µ + Γjµ∂j)y

′i.
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Remark 11.4.1. Any connection Γ on a fibred manifold Y → X yields

a horizontal lift of a vector field on X onto Y , but need not defines the

similar lift of a path in X into Y . Let

R ⊃ [, ] 3 t→ x(t) ∈ X, R 3 t→ y(t) ∈ Y,
be smooth paths in X and Y , respectively. Then t → y(t) is called a

horizontal lift of x(t) if

π(y(t)) = x(t), ẏ(t) ∈ Hy(t)Y, t ∈ R,

where HY ⊂ TY is the horizontal subbundle associated to the connection

Γ. If, for each path x(t) (t0 ≤ t ≤ t1) and for any y0 ∈ π−1(x(t0)), there

exists a horizontal lift y(t) (t0 ≤ t ≤ t1) such that y(t0) = y0, then Γ is

called the Ehresmann connection. A fibred manifold is a fibre bundle if and

only if it admits an Ehresmann connection [76].

Hereafter, we restrict our consideration to connections on fibre bundles.

The following are two standard constructions of new connections from old

ones.

• Let Y and Y ′ be fibre bundles over the same base X . Given connec-

tions Γ on Y and Γ′ on Y ′, the bundle product Y ×
X
Y ′ is provided with the

product connection

Γ× Γ′ = dxλ ⊗
(
∂λ + Γiλ

∂

∂yi
+ Γ′j

λ

∂

∂y′j

)
. (11.4.6)

• Given a fibre bundle Y → X , let f : X ′ → X be a manifold morphism

and f∗Y the pull-back of Y over X ′. Any connection Γ (11.4.4) on Y → X

yields the pull-back connection

f∗Γ =

(
dyi − Γiλ(f

µ(x′ν), yj)
∂fλ

∂x′µ
dx′µ

)
⊗ ∂i (11.4.7)

on the pull-back bundle f∗Y → X ′.

Every connection Γ on a fibre bundle Y → X defines the first order

differential operator

DΓ : J1Y →
Y
T ∗X ⊗

Y
V Y, (11.4.8)

DΓ = λ1 − Γ ◦ π1
0 = (yiλ − Γiλ)dx

λ ⊗ ∂i,
on Y called the covariant differential. If s : X → Y is a section, its covariant

differential

∇Γs = DΓ ◦ J1s = (∂λs
i − Γiλ ◦ s)dxλ ⊗ ∂i (11.4.9)
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and its covariant derivative ∇Γ
τ s = τc∇Γs along a vector field τ on X are

introduced. In particular, a (local) section s of Y → X is called an integral

section for a connection Γ (or parallel with respect to Γ) if s obeys the

equivalent conditions

∇Γs = 0 or J1s = Γ ◦ s. (11.4.10)

Let Γ be a connection on a fibre bundle Y → X . Given vector fields τ ,

τ ′ on X and their horizontal lifts Γτ and Γτ ′ (11.4.3) on Y , let us consider

the vertical vector field

R(τ, τ ′) = Γ[τ, τ ′]− [Γτ,Γτ ′] = τλτ ′µRiλµ∂i, (11.4.11)

Riλµ = ∂λΓ
i
µ − ∂µΓiλ + Γjλ∂jΓ

i
µ − Γjµ∂jΓ

i
λ. (11.4.12)

It can be seen as the contraction of vector fields τ and τ ′ with the vertical-

valued horizontal two-form

R =
1

2
[Γ,Γ]FN =

1

2
Riλµdx

λ ∧ dxµ ⊗ ∂i (11.4.13)

on Y called the curvature form of a connection Γ.

Given a connection Γ and a soldering form σ, the torsion of Γ with

respect to σ is defined as the vertical-valued horizontal two-form

T = [Γ, σ]FN = (∂λσ
i
µ + Γjλ∂jσ

i
µ − ∂jΓiλσjµ)dxλ ∧ dxµ ⊗ ∂i. (11.4.14)

11.4.2 Flat connections

A flat (or curvature-free) connection is a connection Γ on a fibre bundle

Y → X which satisfies the following equivalent conditions:

• its curvature vanishes everywhere on Y ;

• its horizontal distribution is involutive;

• there exists a local integral section for the connection Γ through any

point y ∈ Y .

By virtue of Theorem 11.2.15, a flat connection Γ yields a foliation of Y

which is transversal to the fibration Y → X . It called a horizontal foliation.

Its leaf through a point y ∈ Y is locally defined by an integral section sy for

the connection Γ through y. Conversely, let a fibre bundle Y → X admit a

horizontal foliation such that, for each point y ∈ Y , the leaf of this foliation

through y is locally defined by a section sy of Y → X through y. Then the

map

Γ : Y 3 y → j1π(y)sy ∈ J1Y
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sets a flat connection on Y → X . Hence, there is one-to-one correspondence

between the flat connections and the horizontal foliations of a fibre bundle

Y → X .

Given a horizontal foliation of a fibre bundle Y → X , there exists the

associated atlas of bundle coordinates (xλ, yi) on Y such that every leaf of

this foliation is locally given by the equations yi =const., and the transition

functions yi → y′i(yj) are independent of the base coordinates xλ [68]. It is

called the atlas of constant local trivializations. Two such atlases are said

to be equivalent if their union also is an atlas of the same type. They are

associated to the same horizontal foliation. Thus, the following is proved.

Theorem 11.4.1. There is one-to-one correspondence between the flat con-

nections Γ on a fibre bundle Y → X and the equivalence classes of atlases

of constant local trivializations of Y such that Γ = dxλ ⊗ ∂λ relative to the

corresponding atlas.

Example 11.4.1. Any trivial bundle has flat connections corresponding

to its trivializations. Fibre bundles over a one-dimensional base have only

flat connections.

Example 11.4.2. Let (Z,F) be a foliated manifold endowed with the

adapted coordinate atlas ΨF = {(U ; zλ, zi)} (11.2.65). With respect to

this atlas, the normal bundle V F → Z to F is provided with coordinates

(zλ, zi, żλ) whose fibre coordinates żλ have transition functions indepen-

dent of coordinates zi on leaves of the foliation. Therefore, restricted to a

leaf F , the normal bundle V F|F → F has transition functions independent

of coordinates on its base F , i.e., it is equipped with a bundle atlas of local

constant trivializations. In accordance with Proposition 11.4.1, this atlas

provides the fibre bundle V F|F → F with the corresponding flat connec-

tion, called Bott’s connection. This connection is canonical in the sense

that any two different adapted coordinate atlases ΨF and Ψ′
F on Z also

form an atlas of this type and, therefore, induce equivalent bundle atlases

of constant local trivializations on V F|F .

11.4.3 Linear connections

Let Y → X be a vector bundle equipped with linear bundle coordinates

(xλ, yi). It admits a linear connection

Γ = dxλ ⊗ (∂λ + Γλ
i
j(x)y

j∂i). (11.4.15)
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There are the following standard constructions of new linear connections

from old ones.

• Any linear connection Γ (11.4.15) on a vector bundle Y → X defines

the dual linear connection

Γ∗ = dxλ ⊗ (∂λ − Γλ
j
i(x)yj∂

i) (11.4.16)

on the dual bundle Y ∗ → X .

• Let Γ and Γ′ be linear connections on vector bundles Y → X and

Y ′ → X , respectively. The direct sum connection Γ ⊕ Γ′ on the Whitney

sum Y ⊕ Y ′ of these vector bundles is defined as the product connection

(11.4.6).

• Similarly, the tensor product Y ⊗ Y ′ of vector bundles possesses the

tensor product connection

Γ⊗ Γ′ = dxλ ⊗
[
∂λ + (Γλ

i
jy
ja + Γ′

λ
a
by
ib)

∂

∂yia

]
. (11.4.17)

The curvature of a linear connection Γ (11.4.15) on a vector bundle

Y → X is usually written as a Y -valued two-form

R =
1

2
Rλµ

i
j(x)y

jdxλ ∧ dxµ ⊗ ei, (11.4.18)

Rλµ
i
j = ∂λΓµ

i
j − ∂µΓλij + Γλ

h
jΓµ

i
h − Γµ

h
jΓλ

i
h,

due to the canonical vertical splitting V Y = Y ×Y , where {∂i} = {ei}. For

any two vector fields τ and τ ′ on X , this curvature yields the zero order

differential operator

R(τ, τ ′)s = ([∇Γ
τ ,∇Γ

τ ′ ]−∇Γ
[τ,τ ′])s (11.4.19)

on section s of a vector bundle Y → X .

An important example of linear connections is a connection

K = dxλ ⊗ (∂λ +Kλ
µ
ν ẋ

ν ∂̇µ) (11.4.20)

on the tangent bundle TX of a manifold X . It is called a world connection

or, simply, a connection on a manifold X . The dual connection (11.4.16)

on the cotangent bundle T ∗X is

K∗ = dxλ ⊗ (∂λ −Kλ
µ
ν ẋµ∂̇

ν). (11.4.21)

The curvature of the world connection K (11.4.20) reads

R =
1

2
Rλµ

α
β ẋ

βdxλ ∧ dxµ ⊗ ∂α, (11.4.22)

Rλµ
α
β = ∂λKµ

α
β − ∂µKλ

α
β +Kλ

γ
βKµ

α
γ −Kµ

γ
βKλ

α
γ .
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Its Ricci tensor Rλβ = Rλµ
µ
β is introduced.

A torsion of a world connection is defined as the torsion (11.4.14) of

the connection K (11.4.20) on the tangent bundle TX with respect to the

canonical vertical-valued form dxλ ⊗ ∂̇λ. Due to the vertical splitting of

V TX , it also is written as a tangent-valued two-form

T =
1

2
Tµ

ν
λdx

λ ∧ dxµ ⊗ ∂ν , Tµ
ν
λ = Kµ

ν
λ −Kλ

ν
µ, (11.4.23)

on X . The world connection (11.4.20) is called symmetric if its torsion

(11.4.23) vanishes.

For instance, let a manifold X be provided with a non-degenerate fibre

metric

g ∈ 2∨O1(X), g = gλµdx
λ ⊗ dxµ,

in the tangent bundle TX , and with the dual metric

g ∈ 2∨T 1(X), g = gλµ∂λ ⊗ ∂µ,
in the cotangent bundle T ∗X . Then there exists a world connection K such

that g is its integral section, i.e.,

∇λgαβ = ∂λ g
αβ − gαγKλ

β
γ − gβγKλ

α
γ = 0.

It is called the metric connection. There exists a unique symmetric metric

connection

Kλ
ν
µ = {λνµ} = −1

2
gνρ(∂λgρµ + ∂µgρλ − ∂ρgλµ). (11.4.24)

This is the Levi–Civita connection, whose components (11.4.24) are called

Christoffel symbols.

A manifold X which admits a flat world connection is called paralleliz-

able. However, the components Kλ
µ
ν (11.4.20) of a flat world connection

K need not be zero because they are written with respect to holonomic

coordinates. Namely, the torsion (11.4.23) of a flat connection need not

vanish. A manifold X possessing a flat symmetric connection is called lo-

cally affine. Such a manifold can be provided with a coordinate atlas (xµ)

with transition functions x′µ = xµ+cµ, cµ =const. Therefore, locally affine

manifolds are toroidal cylinders Rm × T k.

11.4.4 Composite connections

Let us consider the composite bundle Y → Σ → X (11.2.10), coordinated

by (xλ, σm, yi). Let us consider the jet manifolds J1Σ, J1
ΣY , and J1Y of
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the fibre bundles Σ → X , Y → Σ and Y → X , respectively. They are

parameterized respectively by the coordinates

(xλ, σm, σmλ ), (xλ, σm, yi, ỹiλ, y
i
m), (xλ, σm, yi, σmλ , y

i
λ).

There is the canonical map

% : J1Σ×
Σ
J1

ΣY −→
Y

J1Y, yiλ ◦ % = yimσ
m
λ + ỹiλ. (11.4.25)

Using the canonical map (11.4.25), we can consider the relations between

connections on fibre bundles Y → X , Y → Σ and Σ→ X [109; 145].

Connections on fibre bundles Y → X , Y → Σ and Σ→ X read

γ = dxλ ⊗ (∂λ + γmλ ∂m + γiλ∂i), (11.4.26)

AΣ = dxλ ⊗ (∂λ +Aiλ∂i) + dσm ⊗ (∂m +Aim∂i), (11.4.27)

Γ = dxλ ⊗ (∂λ + Γmλ ∂m). (11.4.28)

The canonical map % (11.4.25) enables us to obtain a connection γ on

Y → X in accordance with the diagram

J1Σ×
Σ
J1

ΣY
%−→ J1Y

(Γ,A) 6 6 γ

Σ×
X
Y ←− Y

This connection, called the composite connection, reads

γ = dxλ ⊗ [∂λ + Γmλ ∂m + (Aiλ +AimΓmλ )∂i]. (11.4.29)

It is a unique connection such that the horizontal lift γτ on Y of a vector

field τ on X by means of the connection γ (11.4.29) coincides with the com-

position AΣ(Γτ) of horizontal lifts of τ onto Σ by means of the connection

Γ and then onto Y by means of the connection AΣ. For the sake of brevity,

let us write γ = AΣ ◦ Γ.

Given the composite bundle Y (11.2.10), there is the exact sequence

0→ VΣY → V Y → Y ×
Σ
V Σ→ 0, (11.4.30)

0→ Y ×
Σ
V ∗Σ→ V ∗Y → V ∗

ΣY → 0, (11.4.31)

where VΣY denotes the vertical tangent bundle of a fibre bundle Y → Σ

coordinated by (xλ, σm, yi, ẏi). Let us consider the splitting

B : V Y 3 v = ẏi∂i + σ̇m∂m → vcB (11.4.32)

= (ẏi − σ̇mBim)∂i ∈ VΣY,

B = (dyi −Bimdσm)⊗ ∂i ∈ V ∗Y ⊗
Y
VΣY,
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of the exact sequence (11.4.30). Then the connection γ (11.4.26) on Y → X

and the splitting B (11.4.32) define a connection

AΣ = B ◦ γ : TY → V Y → VΣY,

AΣ = dxλ ⊗ (∂λ + (γiλ −Bimγmλ )∂i) (11.4.33)

+ dσm ⊗ (∂m +Bim∂i),

on the fibre bundle Y → Σ.

Conversely, every connection AΣ (11.4.27) on a fibre bundle Y → Σ

provides the splittings

V Y = VΣY ⊕
Y
AΣ(Y ×

Σ
V Σ), (11.4.34)

ẏi∂i + σ̇m∂m = (ẏi −Aimσ̇m)∂i + σ̇m(∂m +Aim∂i),

V ∗Y = (Y ×
Σ
V ∗Σ)⊕

Y
AΣ(V ∗

ΣY ), (11.4.35)

ẏidy
i + σ̇mdσ

m = ẏi(dy
i −Aimdσm) + (σ̇m +Aimẏi)dσ

m,

of the exact sequences (11.4.30) – (11.4.31). Using the splitting (11.4.34),

one can construct the first order differential operator

D̃ : J1Y → T ∗X ⊗
Y
VΣY, D̃ = dxλ ⊗ (yiλ −Aiλ −Aimσmλ )∂i, (11.4.36)

called the vertical covariant differential, on the composite fibre bundle

Y → X .

The vertical covariant differential (11.4.36) possesses the following im-

portant property. Let h be a section of a fibre bundle Σ → X , and let

Yh → X be the restriction of a fibre bundle Y → Σ to h(X) ⊂ Σ. This is

a subbundle ih : Yh → Y of a fibre bundle Y → X . Every connection AΣ

(11.4.27) induces the pull-back connection (11.4.7):

Ah = i∗hAΣ = dxλ ⊗ [∂λ + ((Aim ◦ h)∂λhm + (A ◦ h)iλ)∂i] (11.4.37)

on Yh → X . Then the restriction of the vertical covariant differential

D̃ (11.4.36) to J1ih(J
1Yh) ⊂ J1Y coincides with the familiar covariant

differential DAh (11.4.8) on Yh relative to the pull-back connection Ah
(11.4.37).

11.5 Differential operators and connections on modules

This Section addresses the notion of a linear differential operator on a

module over an arbitrary commutative ring [95; 109].
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Let K be a commutative ring and A a commutative K-ring. Let P and Q

be A-modules. The K-module Hom K(P,Q) of K-module homomorphisms

Φ : P → Q can be endowed with the two different A-module structures

(aΦ)(p) = aΦ(p), (Φ • a)(p) = Φ(ap), a ∈ A, p ∈ P. (11.5.1)

For the sake of convenience, we refer to the second one as an A•-module

structure. Let us put

δaΦ = aΦ− Φ • a, a ∈ A. (11.5.2)

Definition 11.5.1. An element ∆ ∈ Hom K(P,Q) is called a Q-valued

differential operator of order s on P if

δa0 ◦ · · · ◦ δas
∆ = 0

for any tuple of s+1 elements a0, . . . , as of A. The set Diff s(P,Q) of these

operators inherits the A- and A•-module structures (11.5.1).

In particular, zero order differential operators obey the condition

δa∆(p) = a∆(p)−∆(ap) = 0, a ∈ A, p ∈ P,

and, consequently, they coincide with A-module morphisms P → Q. A first

order differential operator ∆ satisfies the condition

δb◦δa∆(p) = ba∆(p)−b∆(ap)−a∆(bp)+∆(abp) = 0, a, b ∈ A. (11.5.3)

The following fact reduces the study of Q-valued differential operators

on an A-module P to that of Q-valued differential operators on a ring A.

Theorem 11.5.1. Let us consider the A-module morphism

hs : Diff s(A, Q)→ Q, hs(∆) = ∆(1). (11.5.4)

Any Q-valued s-order differential operator ∆ ∈ Diff s(P,Q) on P uniquely

factorizes as

∆ : P
f∆−→Diff s(A, Q)

hs−→Q (11.5.5)

through the morphism hs (11.5.4) and some homomorphism

f∆ : P → Diff s(A, Q), (f∆p)(a) = ∆(ap), a ∈ A, (11.5.6)

of an A-module P to an A•-module Diff s(A, Q). The assignment ∆→ f∆

defines the isomorphism

Diff s(P,Q) = Hom A−A•(P,Diff s(A, Q)). (11.5.7)
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Let P = A. Any zero order Q-valued differential operator ∆ on A is

defined by its value ∆(1). Then there is an isomorphism

Diff 0(A, Q) = Q

via the association

Q 3 q → ∆q ∈ Diff 0(A, Q),

where ∆q is given by the equality ∆q(1) = q. A first order Q-valued

differential operator ∆ on A fulfils the condition

∆(ab) = b∆(a) + a∆(b)− ba∆(1), a, b ∈ A.

It is called a Q-valued derivation of A if ∆(1) = 0, i.e., the Leibniz rule

∆(ab) = ∆(a)b+ a∆(b), a, b ∈ A, (11.5.8)

holds. One obtains at once that any first order differential operator on A
falls into the sum

∆(a) = a∆(1) + [∆(a) − a∆(1)]

of the zero order differential operator a∆(1) and the derivation ∆(a) −
a∆(1). If ∂ is a Q-valued derivation of A, then a∂ is well for any a ∈ A.

Hence, Q-valued derivations of A constitute an A-module d(A, Q), called

the derivation module. There is the A-module decomposition

Diff 1(A, Q) = Q⊕ d(A, Q). (11.5.9)

If P = Q = A, the derivation module dA of A also is a Lie K-algebra

with respect to the Lie bracket

[u, u′] = u ◦ u′ − u′ ◦ u, u, u′ ∈ A. (11.5.10)

Accordingly, the decomposition (11.5.9) takes the form

Diff 1(A) = A⊕ dA. (11.5.11)

Definition 11.5.2. A connection on an A-module P is an A-module

morphism

dA 3 u→ ∇u ∈ Diff 1(P, P ) (11.5.12)

such that the first order differential operators ∇u obey the Leibniz rule

∇u(ap) = u(a)p+ a∇u(p), a ∈ A, p ∈ P. (11.5.13)
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Though ∇u (11.5.12) is called a connection, it in fact is a covariant

differential on a module P .

Let P be a commutative A-ring and dP the derivation module of P as

a K-ring. The dP is both a P - and A-module. Then Definition 11.5.2 is

modified as follows.

Definition 11.5.3. A connection on anA-ring P is anA-module morphism

dA 3 u→ ∇u ∈ dP ⊂ Diff 1(P, P ), (11.5.14)

which is a connection on P as an A-module, i.e., obeys the Leinbniz rule

(11.5.13).

For instance, let Y → X be a smooth vector bundle. Its global sections

form a C∞(X)-module Y (X). The following Serre–Swan theorem shows

that such modules exhaust all projective modules of finite rank over C∞(X)
[68].

Theorem 11.5.2. Let X be a smooth manifold. A C∞(X)-module P is

isomorphic to the structure module of a smooth vector bundle over X if and

only if it is a projective module of finite rank.

This theorem states the categorial equivalence between the vector bun-

dles over a smooth manifold X and projective modules of finite rank over

the ring C∞(X) of smooth real functions on X . The following are corol-

laries of this equivalence

The derivation module of the real ring C∞(X) coincides with the

C∞(X)-module T (X) of vector fields on X . Its dual is isomorphic to the

module T (X)∗ = O1(X) of differential one-forms on X .

If P is a C∞(X)-module, one can reformulate Definition 11.5.2 of a

connection on P as follows.

Definition 11.5.4. A connection on a C∞(X)-module P is a C∞(X)-

module morphism

∇ : P → O1(X)⊗ P, (11.5.15)

which satisfies the Leibniz rule

∇(fp) = df ⊗ p+ f∇(p), f ∈ C∞(X), p ∈ P.
It associates to any vector field τ ∈ T (X) on X a first order differential

operator ∇τ on P which obeys the Leibniz rule

∇τ (fp) = (τcdf)p + f∇τp. (11.5.16)
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In particular, let Y → X be a vector bundle and Y (X) its structure

module. The notion of a connection on the structure module Y (X) is

equivalent to the standard geometric notion of a connection on a vector

bundle Y → X [109].

11.6 Differential calculus over a commutative ring

Let g be a Lie algebra over a commutative ring K. Let g act on a K-module

P on the left such that

[ε, ε′]p = (ε ◦ ε′ − ε′ ◦ ε)p, ε, ε′ ∈ g.

Then one calls P the Lie algebra g-module. Let us consider K-multilinear

skew-symmetric maps

ck :
k
× g→ P.

They form a g-module Ck[g;P ]. Let us put C0[g;P ] = P . We obtain the

cochain complex

0→ P
δ0−→C1[g;P ]

δ1−→· · ·Ck[g;P ]
δk

−→· · · (11.6.1)

with respect to the Chevalley–Eilenberg coboundary operators

δkck(ε0, . . . , εk) =

k∑

i=0

(−1)iεic
k(ε0, . . . , ε̂i, . . . , εk) (11.6.2)

+
∑

1≤i<j≤k

(−1)i+jck([εi, εj ], ε0, . . . , ε̂i, . . . , ε̂j , . . . , εk),

where the caret ̂ denotes omission [50]. For instance, we have

δ0p(ε0) = ε0p, (11.6.3)

δ1c1(ε0, ε1) = ε0c
1(ε1)− ε1c1(ε0)− c1([ε0, ε1]). (11.6.4)

The complex (11.6.1) is called the Chevalley–Eilenberg complex, and its co-

homology H∗(g, P ) is the Chevalley–Eilenberg cohomology of a Lie algebra

g with coefficients in P .

Let A be a commutative K-ring. Since the derivation module dA of A
is a Lie K-algebra, one can associate to A the Chevalley–Eilenberg complex

C∗[dA;A]. Its subcomplex of A-multilinear maps is a differential graded

algebra.

A graded algebra Ω∗ over a commutative ring K is defined as a direct

sum

Ω∗ = ⊕
k

Ωk
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of K-modules Ωk, provided with an associative multiplication law α · β,

α, β ∈ Ω∗, such that α · β ∈ Ω|α|+|β|, where |α| denotes the degree of an

element α ∈ Ω|α|. In particular, it follows that Ω0 is a K-algebra A, while

Ωk>0 are A-bimodules and Ω∗ is an (A −A)-algebra. A graded algebra is

said to be graded commutative

α · β = (−1)|α||β|β · α, α, β ∈ Ω∗.

A graded algebra Ω∗ is called the differential graded algebra or the

differential calculus over A if it is a cochain complex of K-modules

0→ K −→A δ−→Ω1 δ−→· · ·Ωk δ−→· · · (11.6.5)

with respect to a coboundary operator δ which obeys the graded Leibniz

rule

δ(α · β) = δα · β + (−1)|α|α · δβ. (11.6.6)

In particular, δ : A → Ω1 is a Ω1-valued derivation of a K-algebra A. The

cochain complex (11.6.5) is said to be the abstract de Rham complex of

the differential graded algebra (Ω∗, δ). Cohomology H∗(Ω∗) of the complex

(11.6.5) is called the abstract de Rham cohomology.

One considers the minimal differential graded subalgebra Ω∗A of the

differential graded algebra Ω∗ which containsA. Seen as an (A−A)-algebra,

it is generated by the elements δa, a ∈ A, and consists of monomials

α = a0δa1 · · · δak, ai ∈ A,

whose product obeys the juxtaposition rule

(a0δa1) · (b0δb1) = a0δ(a1b0) · δb1 − a0a1δb0 · δb1
in accordance with the equality (11.6.6). The differential graded algebra

(Ω∗A, δ) is called the minimal differential calculus over A.

Let now A be a commutative K-ring possessing a non-trivial Lie alge-

bra dA of derivations. Let us consider the extended Chevalley–Eilenberg

complex

0→ K in−→C∗[dA;A]

of the Lie algebra dA with coefficients in the ring A, regarded as a dA-

module [68]. It is easily justified that this complex contains a subcomplex

O∗[dA] of A-multilinear skew-symmetric maps

φk :
k
× dA → A (11.6.7)
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with respect to the Chevalley–Eilenberg coboundary operator

dφ(u0, . . . , uk) =
k∑

i=0

(−1)iui(φ(u0, . . . , ûi, . . . , uk)) (11.6.8)

+
∑

i<j

(−1)i+jφ([ui, uj ], u0, . . . , ûi, . . . , ûj , . . . , uk).

In particular, we have

(da)(u) = u(a), a ∈ A, u ∈ dA,
(dφ)(u0, u1) = u0(φ(u1))− u1(φ(u0))− φ([u0, u1]), φ ∈ O1[dA],

O0[dA] = A,
O1[dA] = Hom A(dA,A) = dA∗.

It follows that d(1) = 0 and d is a O1[dA]-valued derivation of A.

The graded module O∗[dA] is provided with the structure of a graded

A-algebra with respect to the exterior product

φ ∧ φ′(u1, ..., ur+s) (11.6.9)

=
∑

i1<···<ir ;j1<···<js

sgni1···irj1···js1···r+s φ(ui1 , . . . , uir )φ
′(uj1 , . . . , ujs),

φ ∈ Or[dA], φ′ ∈ Os[dA], uk ∈ dA,
where sgn...... is the sign of a permutation. This product obeys the relations

d(φ ∧ φ′) = d(φ) ∧ φ′ + (−1)|φ|φ ∧ d(φ′), φ, φ′ ∈ O∗[dA],

φ ∧ φ′ = (−1)|φ||φ
′|φ′ ∧ φ. (11.6.10)

By virtue of the first one, O∗[dA] is a differential graded K-algebra, called

the Chevalley–Eilenberg differential calculus over a K-ring A. The relation

(11.6.10) shows that O∗[dA] is a graded commutative algebra.

The minimal Chevalley–Eilenberg differential calculus O∗A over a ring

A consists of the monomials

a0da1 ∧ · · · ∧ dak, ai ∈ A.
Its complex

0→ K −→A d−→O1A d−→· · ·OkA d−→· · · (11.6.11)

is said to be the de Rham complex of a K-ring A, and its cohomology

H∗(A) is called the de Rham cohomology of A.

For instance, the minimal Chevalley–Eilenberg differential calculus over

the ring C∞(Z) of smooth real functions on a smooth manifold Z coincides

with the differential graded algebra O∗(Z) of exterior forms on Z.
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11.7 Infinite-dimensional topological vector spaces

There are several standard topologies introduced on an infinite-dimensional

(complex or real) vector space and its dual [135]. Topological vector spaces

throughout the book are assumed to be locally convex. Unless otherwise

stated, by the dual V ′ of a topological vector space V is meant its topolog-

ical dual, i.e., the space of continuous linear maps of V → R.

Let us note that a topology on a vector space V is often determined by a

set of seminorms. A non-negative real function p on V is called a seminorm

if it satisfies the conditions

p(λx) = |λ|p(x), p(x+ y) ≤ p(x) + p(y), x, y ∈ V, λ ∈ R.

A seminorm p for which p(x) = 0 implies x = 0 is called a norm. Given any

set {pi}i∈I of seminorms on a vector space V , there is the coarsest topol-

ogy on V compatible with the algebraic structure such that all seminorms

pi are continuous. It is a locally convex topology whose base of closed

neighborhoods consists of the set

{x : sup
1≤i≤n

pi(x) ≤ ε}, ε > 0.

It is called the topology defined by a set of seminorms. A topology defined

by a norm is called the normed topology. A complete normed topological

space is called the Banach space.

Let V and W be two vector spaces whose Cartesian product V ×W
is provided with a bilinear form 〈v, w〉, called the interior product, which

obeys the following conditions:

• for any element v 6= 0 of V , there exists an element w ∈W such that

〈v, w〉 6= 0;

• for any element w 6= 0 of W , there exists an element v ∈ V such that

〈v, w〉 6= 0.

Then one says that (V,W ) is a dual pair. If (V,W ) is a dual pair, so is

(W,V ). Clearly, W is isomorphic to a vector subspace of the algebraic dual

V ∗ of V , and V is a subspace of the algebraic dual of W .

Given a dual pair (V,W ), every vector w ∈ W defines the seminorm

pw = |〈v, w〉| on V . The coarsest topology σ(V,W ) on V making all these

seminorms continuous is called the weak topology determined by W on

V . It also is the coarsest topology on V such that all linear forms in

W ⊂ V ∗ are continuous. Moreover, W coincides with the (topological)

dual V ′ of V provided with the weak topology σ(V,W ), and σ(V,W ) is the

coarsest topology on V such that V ′ = W . Of course, the weak topology

is Hausdorff.
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For instance, if V is a Hausdorff topological vector space with the (topo-

logical) dual V ′, then (V, V ′) is a dual pair. The weak topology σ(V, V ′) on

V is coarser than the original topology on V . Since (V ′, V ) also is a dual

pair, the dual V ′ of V can be provided with the weak∗ topology σ(V ′, V ).

Then V is the dual of V ′, equipped with the weak∗ topology.

The weak∗ topology is the coarsest case of a topology of uniform con-

vergence on V ′. A subset M of a vector space V is said to absorb a subset

N ⊂ V if there is a number ε ≥ 0 such that N ⊂ λM for all λ with |λ| ≥ ε.
An absorbent set is one which absorbs all points. A subset N of a topolog-

ical vector space V is called bounded if it is absorbed by any neighborhood

of the origin of V . Let (V, V ′) be a dual pair and N some family of weakly

bounded subsets of V . Every N ⊂ N yields the seminorm

pN (v′) = sup
v∈N
|〈v, v′〉|

on the dual V ′ of V . The topology on V ′ defined by the set of seminorms

pN , N ∈ N , is called the topology of uniform convergence on the sets of

N . When N is a set of all finite subsets of V , we have the coarsest topol-

ogy of uniform convergence which is the above mentioned weak∗ topology

σ(V ′, V ). The finest topology of uniform convergence is obtained by taking

N to be the set of all weakly bounded subsets of V . It is called the strong

topology. The dual V ′′ of V ′, provided with the strong topology, is called

the bidual. One says that V is reflexive if V = V ′′.

Since (V ′, V ) is a dual pair, the vector space V also can be provided with

the topology of uniform convergence on the subsets of V ′, e.g., the weak∗

and strong topologies. Moreover, any Hausdorff locally convex topology on

V is a topology of uniform convergence. The coarsest and finest topologies

of them are the weak∗ and strong topologies, respectively. There is the

following chain

weak∗ < weak < original < strong

of topologies on V , where < means ”to be finer”.

For instance, let V be a normed space. The dual V ′ of V also is equipped

with the norm

‖v′‖′ = sup
‖v‖=1

|〈v, v′〉|, v ∈ V, v′ ∈ V ′. (11.7.1)

Let us consider the set of all balls {v : ‖v‖ ≤ ε, ε > 0} in V . The topol-

ogy of uniform convergence on this set coincides with strong and normed

topologies on V ′ because weakly bounded subsets of V also are bounded

by the norm. Normed and strong topologies on V also are equivalent. Let



July 29, 2010 11:11 World Scientific Book - 9in x 6in book10

368 Appendices

V denote the completion of a normed space V . Then V ′ is canonically

identified to (V )′ as a normed space, though weak∗ topologies on V ′ and

(V )′ are different. Let us note that both V ′ and V ′′ are Banach spaces. If

V is a Banach space, it is closed in V ′′ with respect to the strong topology

on V ′′ and dense in V ′′ equipped with the weak∗ topology. One usually

considers the weak∗, weak and normed (equivalently, strong) topologies on

a Banach space.

It should be recalled that topology on a finite-dimensional vector space is

locally convex and Hausdorff if and only if it is determined by the Euclidean

norm.

In conclusion, let us say a few words about morphisms of topological

vector spaces.

A linear morphism between two topological vector spaces is called

weakly continuous if it is continuous with respect to the weak topologies

on these vector spaces. In particular, any continuous morphism between

topological vector spaces is weakly continuous [135].

A linear morphism between two topological vector spaces is called

bounded if the image of a bounded set is bounded. Any continuous mor-

phism is bounded. A topological vector space is called the Mackey space

if any bounded endomorphism of this space is continuous. Metrizable and,

consequently, normed spaces are of this type.

Any linear morphism γ : V →W of topological vector spaces yields the

dual morphism γ′ : W ′ → V ′ of the their topological duals such that

〈v, γ′(w)〉 = 〈γ(v), w〉, v ∈ V, w ∈W.
If γ is weakly continuous, then γ ′ is weakly∗ continuous. If V and W

are normed spaces, then any weakly continuous morphism γ : V → W is

continuous and strongly continuous. Given normed topologies on V ′ and

W ′, the dual morphism γ′ : W ′ → V ′ is continuous if and only if γ is

continuous.
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żµ, 330
∂̇λ, 334
∂V , 257
EF , 173
EQ, 277
ER, 182
EZ , 159
EF , 173
Eς , 280
F∗, 84
L, 47
Tu, 61
Tv, 64
γH , 96
γΓ, 33
γξ, 20
d(A, Q), 361
dA, 361
Hom 0(E, H), 131
Hom K(P, Q), 360
λ(1), 346

on Q → R, 9
λ(2), 12
∇Γ, 354
∇F , 164
∇γ , 29
∇Γ

τ , 354
∇u, 361
AT , 175
AV , 176
π1, 346
π1

0 , 346
πΠ, 49
πi, 48
π∗M , 75
π11, 348
πij , 48
AnnT, 342
OrthΩTN , 75
c, 322
τV , 334
θi, 347

on Q → R, 10
θi
Λ, 43, 44

θJ , 339
θX , 341

θZ , 339
θ(1), 347
∨, 322
%ξζ , 325
ϑf , 79
∧Y , 329
∧, 322
0̂(X), 328
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conservative dynamic equation, 17
constraint, 192
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complete, 192
Dirac, 189
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covariant differential, 353
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on a module, 362
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curvature
of a leafwise connection, 166
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integral, 333

cyclic representation, 120
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strongly, 126

Darboux coordinates
for a Poisson structure, 80
for a symplectic structure, 75
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de Rham cohomology

abstract, 364
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abstract, 364
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contact, 59
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differential
covariant, 353
exterior, 337
total, 349

differential calculus, 364
Chevalley–Eilenberg, 365
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differential equation, 351
on a manifold, 350

differential graded algebra, 337
differential ideal, 342
differential on a Banach space, 132
differential operator, 351

as a section, 350
on a module, 360

Dirac constraint system, 189
Dirac state, 201
Dirac’s condition, 5
direct limit, 320
direct product of Poisson structures,

79
direct sequence, 320
direct sum connection, 356
direct sum of modules, 318
direct system of modules, 320
directed set, 320
distribution, 342

characteristic
of a presymplectic form, 76

horizontal, 352
involutive, 342
non-regular, 206

Dixmier–Douady class, 147

domain, 326
of an operator, 124

double tangent bundle, 339
dual module, 319
dual morphism, 368
dual pair, 366
dual vector bundle, 328
dynamic connection

symmetric, 20
dynamic equation, 16

autonomous, 13
first order, 14
second order, 14

first order, 16
on a manifold, 350

first order, 350
second order, 17

conservative, 17
first order reduction, 17

dynamical algebra, 206

Ehresmann connection, 353
element

Hermitian, 113
normal, 113
unitary, 114

energy function
canonical, 66
relative to a reference frame, 66

Hamiltonian, 108
enveloping algebra, 175
equation

differential, 351
on a manifold, 350

dynamic, 16
first order, 16

geodesic, 15
of motion, 7

equivalent bundle atlases, 325
equivalent representations, 120
evolution equation, 105

autonomous, 90
homogeneous, 106

evolution operator, 154
exact sequence, 319

of vector bundles, 329
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short, 329
split, 329

short, 320
split, 320

extension of an operator, 124
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of forms, 337
exterior bundle, 329
exterior differential, 337

antiholomorphic, 140
contravariant, 82
holomorphic, 140
leafwise, 84

exterior form, 336
basic, 337
horizontal, 337
on a Banach manifold, 135
on a Hilbert manifold, 140

antiholomorphic, 140
holomorphic, 140

exterior product, 336
of vector bundles, 328

external force, 37

factor algebra, 318
factor bundle, 329
factor module, 319
fibration, 323
fibre, 323
fibre bundle, 325
fibre metric, 36
fibred coordinates, 324
fibred manifold, 323

Banach, 134
trivial, 325

fibrewise morphism, 324
field, 317
field of C∗-algebras, 145
first Noether theorem, 61
first variational formula, 60
first-class constraints, 192
flow, 333
foliated manifold, 343
foliation, 343

characteristic
of a Poisson manifold, 81

of a presymplectic form, 76
horizontal, 354
of level surfaces, 344
simple, 343
singular, 344
symplectic, 85

force
centrifugal, 32
Coriolis, 32
external, 37
gravitational, 38
inertial, 30
universal, 38

four-velocity, 297
of a non-relativistic system, 306

four-velocity space, 297
Frölicher–Nijenhuis bracket, 339
Fréchet axiom, 121
frame, 328

holonomic, 322
vertical, 330

frame connection, 34
free motion equation, 30
friction, 57
Fubini–Studi metric, 143
functions in involution, 207
fundamental form of a Hermitian

metric, 141

gauge
covariant, 28
field, 93
freedom, 93
invariant, 28
parameters, 68
symmetry, 68
transformation, 28

gauge conjugate connections, 157
generalized connection, 148
generalized Coriolis theorem, 36
generalized Hamiltonian system, 194
generalized vector field, 59
generating function of a foliation, 344
generating functions

of a partially integrable system,
207
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generator of a representation, 345
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geodesic equation, 15

non-relativistic, 23
relativistic, 305

geodesic vector field, 15
GNS construction, 113
GNS representation, 122
graded algebra, 363
graded commutative algebra, 364
graded Leibniz rule, 364
graph-topology, 126
Grassmann manifold, 294

half-density, 159
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leafwise, 172

half-form, 159
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Hamilton equation, 97
autonomous

on a Poisson manifold, 90
on a symplectic manifold, 91

constrained, 197
Hamilton operator, 152
Hamilton vector field, 96
Hamilton–De Donder equation, 51
Hamiltonian, 95

admissible, 192
autonomous, 90
homogeneous, 99
relativistic, 311

Hamiltonian action, 87
Hamiltonian conservation law, 107
Hamiltonian form, 95

associated with a Lagrangian, 100
weakly, 102

constrained, 197
regular, 100

Hamiltonian function, 96
Hamiltonian manifold, 87
Hamiltonian map, 100
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Hamiltonian symmetry, 107
Hamiltonian system, 97

homogeneous, 99
Poisson, 90
presymplectic, 91
symplectic, 91

Hamiltonian vector field, 74
complex, 142
of a function, 74

for a Poisson structure, 80
Havas Lagrangian, 58
Heisenberg equation, 184

of quantum evolution, 152
Heisenberg operator, 184
Helmholtz condition, 47
Hermitian element, 113
Hermitian form, 115

non-degenerate, 116
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Hermitian manifold, 141
Hermitian metric, 140
Hilbert bundle, 145
Hilbert dimension, 117
Hilbert manifold, 139

real, 136
Hilbert module, 145
Hilbert space, 116

dual, 118
projective, 143
real, 117
separable, 117

Hilbert sum, 117
of representations, 120

Hilbert tangent bundle, 139
holomorphic function on a Hilbert

space, 138
holonomic

atlas, 330
coordinates, 322
frame, 322

holonomy operator, 283
horizontal

distribution, 352
form, 337
lift

of a path, 353
of a vector field, 352

projection, 349
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splitting, 352
vector field, 11

ideal, 317
coisotropic, 191
essential, 131
maximal, 317
prime, 317
primitive, 120
proper, 317
self-adjoint, 114
two-sided, 317

imbedding, 323
immersion, 323
inductive limit, 321
inertial force, 30
inertial reference frame, 32
infinitesimal generator, 333
infinitesimal transformation

of a Lagrangian system, 58
initial data coordinates, 98
instantwise quantization, 151
integral curve, 333
integral manifold, 206, 342

maximal, 342
integral of motion, 38

of a Hamiltonian system, 105
autonomous, 90

of a Lagrangian system, 62
of a symplectic Hamiltonian

system, 91
integral section, 354
interior product, 366

left, 338
of vector bundles, 328
of vector fields and exterior forms,

338
invariant of Poincaré–Cartan, 96
invariant submanifold

of a partially integrable system,
206

of a superintegrable system, 229
regular, 206

inverse limit, 321
inverse mapping theorem, 132
inverse sequence, 321

involution, 113
involutive algebra, 113

Banach, 114
normed, 114

isotropic submanifold, 76

Jacobi field
along a geodesic, 259
of a Hamilton equation, 261
of a Lagrange equation, 258

Jacobi identity, 77
Jacobson topology, 121
jet

first order, 346
of submanifolds, 293
second order, 348

jet bundle, 346
affine, 346

jet coordinates, 346
jet manifold, 346

higher order, 349
holonomic, 348
infinite order, 43
of submanifolds, 294
repeated, 347
second order, 348
sesquiholonomic, 348

jet prolongation
of a morphism, 347
of a section, 347

second order, 348
of a vector field, 347

Jordan morphism, 127
juxtaposition rule, 364

Kähler form, 141
Kähler manifold, 141
Kähler metric, 141
Kepler potential, 66
Kepler system, 108
kernel

of a bundle morphism, 326
of a differential operator, 351
of a two-form, 74
of a vector bundle morphism, 329

Kostant–Souriau formula, 158
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Lagrange equation, 47
second order, 48

Lagrange operator, 46
second order, 48

Lagrange–Cartan operator, 50
Lagrange-type operator, 46
Lagrangian, 46

almost regular, 49
constrained, 200
first order, 48
hyperregular, 49
quadratic, 51
regular, 49
relativistic, 299
semiregular, 49
variationally trivial, 47

Lagrangian connection, 48
Lagrangian conservation law, 62
Lagrangian frame connection, 52
Lagrangian submanifold

of a Poisson manifold, 81
of a symplectic manifold, 76

Lagrangian symmetry, 62
Lagrangian system, 47
leaf, 343
leafwise

connection, 164
de Rham cohomology, 84
de Rham complex, 84
differential calculus, 84
exterior differential, 84
form, 84

symplectic, 85
Legendre bundle, 49

homogeneous, 50
vertical, 260

vertical, 260
Legendre map, 49

homogeneous, 50
vertical, 260

Leibniz rule, 361
for a connection, 361
graded, 364

Lepage equivalent, 47
Lichnerowicz–Poisson (LP)

cohomology, 83

Lichnerowicz–Poisson complex, 82
Lie algebra

left, 344
right, 344

Lie bracket, 333
Lie coalgebra, 345
Lie derivative

of a multivector field, 335
of a tangent-valued form, 340
of an exterior form, 338

Lie–Poisson structure, 345
lift of a vector field

functorial, 334
horizontal, 352
vertical, 334

linear derivative of an affine
morphism, 332

Liouville form, 51
canonical, 75

Liouville vector field, 334
local basis for an ideal, 191
Lorentz force, 38
Lorentz transformations, 296

Mackey space, 368
Magnus series, 154
manifold

Banach, 133
Hilbert, 139
locally affine, 357
parallelizable, 357
Poisson, 77
presymplectic, 76
smooth, 322
symplectic, 74

mass tensor, 36
metalinear bundle, 158

over a foliation, 172
metalinear group, 172
metaplectic correction, 159

of leafwise quantization, 171
metric connection, 357

on a Hilbert manifold, 142
Minkowski space, 296
module, 318

dual, 319
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finitely generated, 319
free, 319
of finite rank, 319
over a Lie algebra, 363
projective, 319

momentum mapping, 87
equivariant, 88

morphism
bounded, 368
dual, 368
fibred, 324
Poisson, 79
symplectic, 74
weakly continuous, 368

motion, 7
multiplier, 130

equivalent, 130
exact, 130
phase, 130

multiplier algebra, 131
multivector field, 335

Newtonian system, 36
standard, 37

Nijenhuis differential, 340
Nijenhuis torsion, 340
Noether conservation law, 64
Noether current, 64

Hamiltonian, 107
Noether theorem

first, 61
second, 70

non-degenerate two-form, 74
non-relativistic approximation of a

relativistic equation, 307
norm, 366
normal bundle to a foliation, 343
normal element, 113
normalizer, 190
normed operator topology, 118
normed topology, 366

observer, 27
on-shell, 39
open map, 323
operator, 124

adjoint, 124
maximal, 124

bounded, 118
on a domain, 124

closable, 124
closed, 124
compact, 119
completely continuous, 119
degenerate, 119, 145
of a parallel displacement, 153
of energy, 185
positive, 119
Schrödinger, 162
self-adjoint, 125

essentially, 125
symmetric, 124
unbounded, 124

operator norm, 118
operator topology

normed, 118
strong, 118
weak, 118

orbital momentum, 65
orthogonal relative to a symplectic

form, 75
orthonormal family, 116

parameter bundle, 269
parameter function, 269
partially integrable system, 207

on a symplectic manifold, 217
path, 353
phase multiplier, 130
phase space, 93

homogeneous, 94
relativistic, 311

Poincaré–Cartan form, 49
Poisson

algebra, 77
bivector field, 78
bracket, 77
Hamiltonian system, 90
manifold, 77

exact, 83
homogeneous, 83

morphism, 79
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structure, 77
coinduced, 79
non-degenerate, 78
regular, 78

Poisson action, 89
Poisson reduction, 191
polarization, 158

angle, 253
of a Poisson manifold, 169
of a symplectic foliation, 169
of a symplectic leaf, 170
vertical, 161

positive form, 121
dominated, 123
pure, 123

pre-Hilbert module, 173
pre-Hilbert space, 116
prequantization

leafwise, 164
of a Poisson manifold, 168
of a symplectic leaf, 168
of a symplectic manifold, 158

prequantization bundle, 157
over a Poisson manifold, 168
over a symplectic foliation, 164
over a symplectic leaf, 168

presymplectic
form, 76
Hamiltonian system, 91
manifold, 76

principal bundle with a structure
Banach-Lie group, 149

product connection, 353
projective Hilbert space, 143
projective representation, 130
projective unitary group, 130
proper map, 323
pull-back

bundle, 327
connection, 353
form, 337
section, 327

pure form, 123

quantization
canonical, 5

instantwise, 151
quantization bundle, 159

over a symplectic foliation, 172
quantum algebra

AF , 170
AT , 174
AV , 174
AF , 169
AT , 158
At, 175
of a cotangent bundle, 161
of a Poisson manifold, 169

quantum Hilbert space, 159
quasi-compact topological space, 121

rank
of a bivector field, 78
of a morphism, 323
of a two-form, 74

recursion operator, 213
reference frame, 27

complete, 28
geodesic, 29
inertial, 32
Lagrangian, 53
rotatory, 32

reflexive space, 367
regular point of a distribution, 206
relative acceleration, 34
relative velocity, 27

between reference frames, 67
relativistic

constraint, 301
equation, 301

autonomous, 304
geodesic equation, 305
Hamiltonian, 311
Lagrangian, 299
quantum equation, 314
transformation, 296

representation
of a C∗-algebra

G-covariant, 131
determined by a form, 122
GNS, 122
irreducible, 120
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universal, 122
of an involutive algebra, 119

adjoint, 125
cyclic, 120

Hermitian, 125
non-degenerate, 119

second adjoint, 125

restriction of a bundle, 327
Ricci tensor, 357

right structure constants, 344
ring, 317

local, 317
Rung–Lenz vector, 66

saturated neighborhood, 206, 343

scalar product, 116
Schouten–Nijenhuis bracket, 335

Schrödinger equation, 184
autonomous, 152

of quantum evolution, 153
Schrödinger operator, 162

Schrödinger representation, 162
second adjoint representation, 125

second Newton law, 36
second-class constraints, 193

second-countable topological space,
322

section
global, 324

integral, 354
local, 324

of a jet bundle, 347

integrable, 347
parallel, 354

zero-valued, 328
self-adjoint element, 113

seminorm, 366
separable topological space, 322

Serre–Swan theorem, 362
soldering form, 341

basic, 341
solution

of a Cartan equation, 51
of a differential equation, 351

on a manifold, 350

of a first order dynamic equation,
16

of a geodesic equation, 15
of a Hamilton equation, 97

autonomous, 90
of a Hamiltonian system, 90
of a Lagrange equation, 48
of a second order dynamic

equation, 17
of an autonomous first order

dynamic equation, 14
of an autonomous second order

dynamic equation, 14
spectrum of an involutive algebra, 121
split (subspace), 131
spray, 16
standard one-form, 8
standard vector field, 8
state, 121

admissible, 203
Dirac, 201

state condition, 201
strong operator topology, 118
strong topology, 367
strongly continuous group, 127
structure module of a vector bundle,

328
subbundle, 326
submanifold, 323

imbedded, 323
submersion, 323
superintegrable system, 228

globally, 233
maximally, 228
non-autonomous, 245

symmetry
classical, 62
exact, 62
gauge, 68
generalized, 62
Hamiltonian, 107
infinitesimal, 39
Lagrangian, 62
of a differential equation, 39
of a differential operator, 40
of an exterior form, 339
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variational, 61
symmetry current, 62

generalized, 61
symplectic

form, 74
canonical, 75

Hamiltonian system, 91
leafwise form, 85
manifold, 74
morphism, 74
orthogonal space, 75
submanifold, 76

symplectic action, 87
symplectic foliation, 85
symplectic realization

of a Poisson structure, 81
of a presymplectic form, 76

symplectomorphism, 74

tangent bundle, 322
double, 339
of a Banach manifold, 133
of a Hilbert manifold

antiholomorphic, 139
complexified, 139
holomorphic, 139

second, 12
to a foliation, 343
vertical, 330

tangent lift
of a function, 337
of a multivector field, 335
of an exterior form, 337

tangent morphism, 322
vertical, 330

tangent space
to a Banach manifold, 133
to a Hilbert manifold

antiholomorphic, 139
complex, 139
holomorphic, 139

tangent-valued form, 339
canonical, 339
horizontal, 340

projectable, 341
tensor algebra, 321

tensor bundle, 330
tensor product

of C∗-algebras, 115
of Hilbert spaces, 117
of modules, 319
of vector bundles, 328

tensor product connection, 356
three-velocity, 296
three-velocity space, 296
time-ordered exponential, 154
topological dual, 366
topology

defined by a set of seminorms, 366
normed, 366
of uniform convergence, 367
strong, 367
weak, 367

σ(V,W ), 366
weak∗, 367

torsion, 354
of a dynamic connection, 20
of a world connection, 357

total derivative
first order, 347
higher order, 349
infinite order, 44

total differential, 45, 349
total family, 116
transition functions, 325
trivialization chart, 325
trivialization morphism, 325
typical fibre, 325

uniformly continuous group, 127
unital algebra, 317
unital extension, 318
unitary element, 114
universal force, 38
universal unit system, 6

variation equation, 258
variational bicomplex, 45
variational complex, 46
variational derivative, 46
variational symmetry, 61

classical, 62
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local, 63
vector bundle, 328

Banach, 134
dual, 328

vector field, 333
canonical

for a Poisson structure, 79
for a symplectic structure, 74

complete, 334
generalized, 59
geodesic, 15
Hamiltonian, 74
holonomic, 14
horizontal, 11
left-invariant, 344
on a Banach manifold, 134
on a Hilbert manifold

complex, 139
projectable, 334
right-invariant, 344
standard, 8
subordinate to a distribution, 342
vertical, 334

vector form, 122
vector space, 318
vector-valued form, 341
velocity

absolute, 27

relative, 27
velocity space, 8
vertical automorphism, 324
vertical differential, 45
vertical endomorphism, 10
vertical extension

of a Hamiltonian form, 261
of a Lagrangian, 258
of an exterior form, 257

vertical splitting, 330
of a vector bundle, 330
of an affine bundle, 332

vertical-valued form, 341
von Neumann algebra, 119

weak conservation law, 39
weak equality, 39
weak operator topology, 118
weak topology, 367

σ(V,W ), 366
weak∗ topology, 367
Whitney sum of vector bundles, 328
world connection, 356
world manifold, 304

zero Poisson structure, 78
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