From Spinors to
Quantum Mechanics

Gerrit Coddens

Imperial College Press




From Spinors to
Quantum Mechanics



This page intentionally left blank



From Spinors to
Quantum Mechanics

Gerrit Coddens

Commissariat a 'énergie atomique et aux énergies alternatives,
France

s

e
==
==
=TS

T
e
e
o

\‘E}\Q\\\\
oy
“13. \\5

S
T r b

e ‘\.}:.}\\\{\
=

s -
V— %%‘%“%‘%‘%n:&tﬁggﬁ\_\_
i

eSS S e

= N
S

e

N c&;‘:‘:@. S
\

@ Imperial College Press



Published by

Imperial College Press
57 Shelton Street
Covent Garden
London WC2H 9HE

Distributed by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data
Coddens, Gerrit, author.
From spinors to quantum mechanics / Gerrit Coddens, Commissariat a I'énergie atomique et aux
énergies alternatives, France
pages cm
Includes bibliographical references and index.
ISBN 978-1-78326-636-4 (hardcover : alk. paper)
1. Group theory. 2. Spinor analysis. 3. Quantum theory. I. Title.
QC174.17.G7C63 2015
530.1201'5122--dc23
2015000300

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2015 by Imperial College Press

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.

Typeset by Stallion Press
Email: enquiries@stallionpress.com

Printed in Singapore



“I came to offer thee a flower,
But thou must have all my garden,-
It is thine.”

(Rabindranath Tagore)

To the memory of my parents

To Claude, Isabelle, Felice and Chantal
To José, Poesje, Guy and Kenzie

To Théo and Sarah



This page intentionally left blank



Preface

This book has a two-fold objective: giving the reader a non-conventional
introduction to the representation theory for the rotation and the homo-
geneous Lorentz groups, that will allow them to understand these topics
better, and to show how the insights gained this way can lead to a better
understanding of quantum mechanics. Contrary to what a knowledgeable
reader may expect on the basis of this statement, it will not be something
he has seen elsewhere, neither for group theory nor for quantum mechanics.

This alternative approach to the representation theory is geometrical.
Rotations are just Euclidean geometry; it should be a piece of cake. But
textbooks keep it abstract, only covering the algebraic aspects of the rep-
resentation theory while not explaining what the geometric counterpart of
that algebra is. One can readily check that the SU(2) matrices behave like
they should do. But somebody must have discovered this, based on insight,
and that geometrical insight is not explained in textbooks. When one tries
to figure it out oneself, one will have to pay an unreasonable price in amount
of time spent and frustration endured. The reason for this is that a radical
change in approach is required. The underlying idea is not difficult but it
can take the unwary completely off guard: one has to modify the definition
of a rotation as a function, by changing both its domain and range.

We are used to seeing the rotations as functions g from R? to R3, that
rotate vectors r € R? to other vectors g(r) = r’ € R3. But one can see a
rotation g also as a function on the group of rotations G, that transforms
group elements g; € G into other group elements ¢°g; = g; € G. Instead
of operating with rotations on vectors coded in the form of 3 x 1 column
matrices (rotating vectors), one operates then with rotations on (other)
rotations coded in the form of 2 x 1 column matrices (rotating rotations).
The explicit mention of this prerequisite change in imagery is the only link
that is missing; the rest is straightforward.

vii
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One can derive the representation theory for the Lorentz group follow-
ing the same principles. This is more difficult because there a few more
quirky mathematical twists to it. But once these have been ironed out,
group theory will no longer appear as a concatenation of tedious and mys-
terious algebraic calculations. The algebraic quantities will have acquired
a recognizable geometrical meaning, just as one recognizes a circle in the
equation of a circle.

In learning quantum mechanics, one goes through the same feelings of
alienation and dismay as with learning group theory. Here is this intricate
set of rules with this very disorienting explanation for it. It just comes out of
the blue, and it looks ever so hard to make sense of it. Much as with group
theory, the reader is invited to just stick to the algebra without asking any
further questions as to what it means. Certain claims, for instance that a
particle cannot have a well-defined position and a well-defined momentum
at the same time, render the subject even more impervious. The Hungarian
philosopher Imre Lakatos summarized it wittily as follows: “When a particle
is accelerated in Brookhaven, it is not in Brookhaven”. Even more puzzling
is that this is being derived from a mathematical formalism wherein the
momentum and position vectors p and r appear as very well-defined quan-
tities in the equations.

The narrative appears thus to run a bit as follows: these quantities do
not exist simultaneously, but by starting from an incorrect theory based on
the assumption that they do exist simultaneously, one can derive mathe-
matically another, correct theory wherein they do not exist simultaneously.
It just happens that there exists some magic that can be used to find the
right starting from the wrong. It is hard to understand how this could be.
Quantum mechanics is full of such mysteries.

What is proposed in this book is that the geometrical insights from
group representation theory can be very helpful in making sense of quantum
mechanics. It will take even some more surprising mathematical leaps, but
ultimately many mysterious aspects of quantum mechanics become clear
when one bases the reasoning on the true geometrical meaning of a spinor.
From the results I have obtained up to now, I am convinced that this method
is the only one that might permit us to eventually understand the whole
of quantum mechanics. I think that this book could function as a welcome
complement to anyone who wishes to obtain a better understanding of the
group representation theory and of quantum mechanics.

The contents of this book have all been rethought from scratch; it has
been a long and winding road. None of the results derived are novel; they
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have all been well known within the traditional approach for a long time.
But the work cannot be assessed using a criterion of novelty of results.
What counts in this book is the additional insight that can be gained from
an alternative approach.

I would like to thank my employer, the Commissariat a I’Energie Atom-
ique et aux Energies Alternatives, and my directors Guillaume Petite,
Martine Soyer and Kees van der Beek for having offered me the opportunity
to carry out this work, and my colleagues for their moral support. Finally
I would like to thank Sébastien Ceste for his help with the figures.

Palaiseau,
Gerrit Coddens August 2011
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Chapter 1

Introduction

1.1 Motivation

Cartan’s work is by all reckoning fundamental for modern physics, both
within the realms of general relativity and quantum mechanics. In his book
about spinors [Cartan (1981)], Cartan writes that physicists “use spinors
like vectors”. One has to understand what a spinor is to understand that
this is a terrible blame. Unfortunately, Cartan’s book is not very helpful
for a physicist who would want to understand what a spinor is.

As described by the prominent mathematician Jean Dieudonné in his
book Pour l’honneur de l’esprit humain [Dieudonné (1987)], even a top
mathematician can have a very hard time in trying to decipher what the
underlying ideas of a mathematical work are. He may be able to verify the
proofs mechanically but still feel very perplexed and mystified. Mathemat-
ical presentations are written that way for the sake of rigour. As reported
by Blumenthal [Blumenthal (1935)], Hilbert explained that in mathematics
we could rephrase the axiom “two points define a single straight line”as a
statement “two chairs define a single table”, and that it would not matter,
as the intuitive meaning of the mathematical objects that occur within a
theorem should not interfere with its proof. Knowing the intuitive meaning
of a mathematical object could have the consequence that one smuggles
something taken as granted into a proof while it is not, and this must be
avoided. But all this is hardly of any help for a physicist who wants to use
these mathematics just as a tool. A physicist cannot afford to attempt to
reinvent the mathematics; it may take months of running around in circles
before one sees the light. He will therefore find himself forced to skip the
true learning process described by Dieudonné.

What Dieudonné describes is exactly what happens when one opens a
textbook about group theory. It is ever so easy to verify the mathemati-
cal proofs, but what it all means remains a mystery. This has led to the
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nickname Gruppenpest. Abdus Salam’s comment [Salam (1963)], about
the dismay he experienced after attending a set of lectures by Racah, is
also worth citing: “After attending these lectures I thought this is really
too hard. I can never learn this. One is hardly ever likely to need all this
complicated matter.” To which he added: “I was wrong.”

I have therefore tried to make a book that should allow the reader to
gain a good understanding of group theory without going through the fight
and loss of time involved in the true learning process. By presenting this
as research, I would expose myself to polemics. Do we really need another
text about a subject that is well known? To avoid this I will simply answer
by presenting a paradox in Section 1.2.

The results of Chapters 3 and 4 of this book were obtained in a personal
attempt [Coddens (2002, 2008)] to gain an understanding of what spinors
are. The original motivation of this work was not to derive new results
about the mathematics of spinors. In this respect, the existing literature
[Cartan (1981); Chaichian and Hagedorn (1998); Cornwell (1984); Hladik

(1996); Inui et al. (1990); Jones (1990); Misner et al. (1970); Penrose and
Rindler (1984); Smirnov (1972); Sternberg (1994)] contains very complete
accounts that we cannot aim to surpass. The goal was rather to obtain a
better understanding of the underlying mathematical ideas.

The motivation for this was a profound conviction that a thorough
understanding of the ideas behind the mathematics is absolutely necessary
if one wants to overcome the conceptual difficulties inherent to quantum
mechanics. As both the mathematics and the physics involved are difficult,
one might at a certain stage not even be able to figure out which diffi-
culties are purely mathematical (and therefore not mysterious) and which
ones belong to physics. It would be futile to try to search for a physical
explanation of some difficult point if the difficulty in question is in reality
purely mathematical. If one wants to avoid such situations, one has to know
exactly where the demarcation line lies between the physics and the mathe-
matics, i.e. one must master all the underlying ideas of the mathematics. As
described by Dieudonné [Dieudonné (1987)], in an axiomatic presentation,
some of these ideas can remain totally hidden, and it can be quite an effort
to figure them out. It is this effort the author of this book wanted to save
the reader.

Insofar as the initial motivation for this book is concerned, it is thus
entirely personal, and as the reader will notice, the presentation is also
entirely personal and non-standard, because I was not concerned about an
axiomatic presentation or about deriving theorems.
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At a certain stage one cannot remain blind to the fact that all the results
derived resemble a lot to standard quantum mechanics. It is in fact quite
surprising to see that a lot of “physics” turns out to be just pure math-
ematics. For example, we are able to derive the Dirac equation with very
few additional assumptions. What comes out is a clear geometrical descrip-
tion, of which it is perfectly possible to make simple mental pictures. In a
more conventional algebraic approach these geometrical ideas remain hid-
den. The visual pictures offer interesting new viewpoints and a good insight
into the mathematical language that is used in the formalism of quantum
mechanics. What I have found is that in many instances our difficulties to
understand quantum mechanics reside within the mathematics rather than
i the physics.

What is described above is a kind of communication problem. Due to
the austerity of certain presentations it becomes difficult to decode the full
message. The problem does not only reside in the lack of clarity that might
result from the austerity of mathematical presentations. An additional
problem resides in the lack of rigour in the way physicists use the mathemat-
ics. This can be illustrated by the way Dirac introduced his famous “delta
function” 6, for a € R. He defined it! as a function J, € F(R,R), with the
properties Ve € R: (z # a = §(x —a) =0), (x =a = §(z — a) = ), and:

+00

Vf € F(R,R): / F@)(x — a)dz = f(a). (L.1)
—00
In the preceding lines, §(x — a) is just another way to write §,(x).2 It is a
very obvious fact that such a function §, does not exist. A function that is
zero everywhere except in one point can only have integral zero. The pages
of old-fashioned books on quantum mechanics are fraught with such “delta

1We will in general note a set of functions whose domain is a set A and who take
their values in a set B as F(A, B). Defining the sets A and B is as important for
defining a function as giving its “formula” f(z). Consider the catch question to calculate
the derivative Df(z) of f(x) = Inlnsinz. Using the chain rule one finds Df(z) =
(cosz)/(|sinz||Insinx|) whose definition domain is a non-empty subset of R. But this
is wrong as there is not a single point z € R where InInsinz is defined. This caveat will
play a prominent role throughout Section 3.10 and in Subsection 3.11.3.

2We can see here a formal analogy with the definition of the Kronecker delta symbol
over a set S = {1,2,3---n} C N, which is defined by the properties: V(j,k) € S? :
(J#k =0, =0)&( =k = d;; = 1). The Kronecker symbol has the property
(V5 € S) (Xk=1 djkar = aj). In Dirac’s “definition” z € R and a € R play the same role
as the indices 7 € S and k € S in the Kronecker symbol, while the integral plays the
same role as the sum.
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functions”, without any mention of the fact that this is a problem. One may
think then that the whole of quantum mechanics is based on mathematical
nonsense. Fortunately, there exists a mathematically exact way to save the
procedure. This was outlined in the fifties by the French mathematician
Laurent Schwartz in his book about the theory of distributions [Schwartz

(1973)]. One can then settle the problems for physics by postulating that
(1.1) is only a symbolic shorthand for the mathematically correct treatment.

Physicists very often take the liberty of using mathematics in their own
casual strides as described above, and most of the time they get away with
it. But in quantum mechanics they do not, because it backfires on physi-
cal issues. In quantum mechanics physicists ignore the correct geometrical
meaning of the spinor formalism they use. They invent one of their own,
following their intuition, and in doing so they treat spinors like vectors as
identified by Cartan, and even vectors like scalars.® With these wrong inter-
pretations of the mathematics they obtain physically right answers, because
the algebra remains correct. This time, however, the wrong interpretations
come at a price. The parallel approach to the mathematics leads to revolu-
tionary ad hoc interpretations that are highly counterintuitive and deeply
shake our vision of the world that surrounds us. The naturally inborn resis-
tance against these counterintuitive new paradigms is just waved aside by
arguing that the ensuing absurdity is a quantum mystery. But a mathemat-
ically rigorous approach shows that not all of this is absolute compelling
necessity. Hence, for once mathematical rigour reveals itself here as a tool
that is of interest to physicists permitting one to investigate physical inter-
pretations, rather than a tedious time-consuming goal in its own right.

In adopting the rigorous approach, we cannot evade the unpleasant
necessity of spotting the errors we will come across. But one ought not to
do this by just pinpointing the errors and leaving one’s colleagues behind to
pick up the pieces. We must behave far more responsibly and try to resolve
the problems when they arise. This book aims to bring an outright positive
message that might sow some seeds of optimism, viz. that there might exist
a way to better enlightenment in quantum mechanics. I apologize for the
times when this may become hidden by the personal style when we oppose
the traditional textbooks treatments to the new approach for comparison.

The fundamental concern is to gain more clarity by correcting confusing
errors and eliminating unnecessary ad hoc interpretations. It can then be

3We refer the reader to Footnote 11 of Chapter 3 and to Section 5.7, to discover how
very grave some of the mistakes can be.
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confidently proclaimed that quantum mechanics gives the right answers
and that we can continue to use it, while feeling more comfortable in doing
so. The aim is thus to show that there are alternative, mathematically
correct derivations for the physics, and that in a rigorous approach some
of the quantum mysteries disappear. This justifies a posteriori the initial
motivation for the quest to understand spinors.

1.2 Paradox: Does quantum mechanics tacitly
imply that 0 = 17

To give the reader an inkling of the kind of mathematical paradoxes he is
in for, I will give just this example of what I will call the 0 = 1 paradox. As
described in Section 3.4, to define a spinor in the rotation group one uses
isotropic vectors (X, Y, Z) € C3, for which X2+Y?+ Z2 = 0. These spinors
code rotations, i.e. group elements. Of course, these complex quantities
cannot be particle coordinates (x,v, 2z) € R?, since for particle coordinates
one has 22 + y? + 22 = r2 £ 0,V(x,y,2) # (0,0,0). A position vector of a
particle is something very different from a rotation or a group element. To
follow a particle under rotations we could take r = 1. Following a particle
with 7 = 1 this way can be done with 3 x 3 rotation matrices in R3. But
in SU(2) things are not that way; the paradigm is completely different.
When Cartan says physicists use spinors like vectors, he pinpoints the fact
that they act as though (X,Y,Z) = (z,y,2). Now |(X,Y,Z)| = 0, while
|(z,y,2)| = 1. The Dirac equation can be derived from a reasoning based
on the isotropic vector (X,Y,Z), but afterwards, in the calculations, one
identifies this isotropic vector with a position vector (z,y, z). This happens
in the solution of the wave equation for the hydrogen atom, when one
introduces spherical coordinates and harmonic polynomials. In other words,
physicists are acting all the time as though 0 = 1, which is, admittedly, a
well-known fact of elementary mathematics. This is only one example of a
mathematical paradox; there are scores of others.

Such contradictions will not scare those of course, who are unaware of
them. They may then proclaim that everything about group theory as used
in physics is well known and that there is thus no need to re-explain what
spinors are and how group theory is used in quantum mechanics. I may have
appeared extremely sarcastic in bringing this to the reader’s attention. May
he or she forgive me. I am doing it only as a captatio benevolentiae, in order
to ask him not to hastily make up his mind about this book. Why should
I still derive the group theory if it is well known? Is this really suitable
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as subject matter for a whole book? Still, I do have my reasons to insist
on expressing myself and making my points in this way. Even if the group
theory is well known, for the aims of the present book, it is just not good
enough. The reader will have to learn to see group theory through the eyes
of the author. And to get this vision across it will not suffice to merely
make reference to an existing textbook.

There is also really nothing to be sarcastic about. Because, miraculously,
these calculations, despite all the confusion about the 1 = 0 issue and other
paradoxes, turn out the right physical answers with amazing precision.

1.3 Guiding the reader through this book

There are two proposed paths through the book. The fast track should allow
the reader to get an idea of the general structure. Therefore, on a number
of occasions the parts of it that the reader might skip on a first reading are
flagged. Chapter 2 introduces the reader to some aspects of group theory.
The goal here is just to make the readers acquainted with some basic notions
that will allow them to read this book without having a prior background
in group theory. For most of the readers this kind of introduction might not
be necessary, in which case it can be skipped. But on reading it they will
probably discover angles of approach they are not familiar with. Chapter
3, about the rotation group, is essential reading as it contains information
new even to the reader who is thoroughly acquainted with the subject
matter. The fast track-reader can then jump to Chapter 5 to see how the
Dirac equation just describes a rotating frame. In fact, Chapter 5 contains
a mathematically rigorous proof that the Dirac equation just describes the
electron as a spinning top using the language of spinors as the natural tool
to describe such dynamical rotations. That spinors are indeed the natural
tool to describe a spinning top will have become clear from a reading of
Chapter 3. The whole set of Chapters 2-5 constitute a mathematically
rigorous, completely self-contained derivation of the Dirac equation from
the intuitive idea of a spinning top, that should be accessible to any reader,
even if he does not have any prior group-theoretical background. The reader
will then know what the Dirac equation means and have a clear visual
picture for this meaning. This presentation stands thus in marked contrast
with the traditional presentation where the Dirac equation is presented
as a kind of God-given. Dirac just guessed it, it was then validated by
comparison with experiment and we had no further theoretical foundation
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for it other than the fact that it works. Instead of this inductive approach
we have now a deductive approach for the Dirac equation.

Extremely important is the part about the meaning of spin and the link
of this with the isomorphism introduced in Chapter 3. In Chapter 5 a few
passages have been flagged to indicate that they could be skipped on a first
reading.

Chapter 6 contains a very interesting part of the book, viz. a derivation
of standard quantum mechanics that allows the reader to understand some
of its paradoxes much better. This chapter just builds further on Chapter
5. In Chapter 7 the Bell inequalities are discussed and it is shown that their
derivation contains an loophole. This is necessary to validate the approach,
as it can be considered as a hidden-variables approach. Chapter 9 is an
extension of Chapter 6 for the special and more difficult case of magnetism,
while in Chapter 10 the double-slit experiment is discussed.

The reader may then take, on the second reading, the longer path to fill
in the gaps.
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Chapter 2

Introduction to Groups

(This chapter can be skipped by readers who are familiar with group theory.)

2.1 Definition
A group (G, o) is defined as a set G with a composition law o for elements
g; € G with the following properties:
e The set is closed under the composition law, which means:
Vg; € G, VgL € G:gjogr €G. (2.1)
e The composition law is associative, which means:
Vg; € G, Vgr € G,Yg1 € G : gjo(grog) = (gjogx) o g (2.2)
e There is an identity element e € G characterized by:
JdeeG,Vg; € G:gjoe=eog; =g;. (2.3)

e Each group element g; € G has an inverse element noted as gj_1 € G and
characterized by:

ngEG,Hg;lEG:gjogjlzgjlogj:e. (2.4)

It is not necessary that the composition law o be commutative. The group
law is commutative when:

Vg; € G, VgL € G:gjogr = grogj. (2.5)

When the latter axiom is also satisfied, then the group is called commutative
or Abelian. In the reverse case, the group is called non-commutative or non-
Abelian.
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Axiom (2.3) is sufficient to show that e must also be unique. Imagine
two people who claim they have found an identity element for the group.
The first person calls his find ey, the second person calls his find e;. As
ey is an identity element, there must be e; 0 e = es. As ey is an identity
element, we must have e; o e; = e1. From this it follows that e; = es.

2.2 Remarks on axioms

When we have a set of axioms, we can worry whether the axioms are inde-
pendent, consistent, and complete.

Independence of a set S of axioms A; is proved by giving for each axiom
A € S an example of a case whereby all other axioms A; € S\{A} are satis-
fied, but A itself is not satisfied. The example of hyperbolic geometry shows
that the parallels postulate of Euclidean geometry is independent. Hyper-
bolic geometry shares all its axioms and postulates with Fuclidean geome-
try, except the parallel postulate. It was discovered (by Bolyai, Lobachevsky
and Gauss) when many people had the intuition that the parallels postu-
late would not be independent from the other postulates and tried to prove
it, by a reduction ad absurdum. That is, they started from the negation of
the parallel postulate and they tried to derive a contradiction from it. That
would prove the assumption was wrong and this way prove the parallel
postulate. They assumed, thus, that there would be no straight line I’ par-
allel to a given straight line [ through a point P ¢ [, or they assumed that
there would be more than just one such straight line. They derived conse-
quences from that assumption and the other axioms of Euclidean geometry,
obtaining a whole body of would-be incorrect theorems meant to lead to
a contradiction, but the contradiction they were searching for so eagerly
refused to materialize. From this, the idea grew that perhaps the paral-
lel postulate was independent after all. The problem was entirely settled
by Poincaré [Dieudonne (1987, p. 220)] who made a one-to-one mapping
between the axioms of hyperbolic and Euclidean geometry by building a
model of hyperbolic geometry inside Euclidean geometry. This made sure
that if there were a contradiction in hyperbolic geometry, there would be
one in Euclidean geometry, and wvice versa.

Getting back to our axioms of a group, we can prove by that same
approach of finding a counter-example that the axiom of commutativity for
Abelian groups is independent, as non-Abelian groups also exist. Counter-
examples for the other axioms exist as well. The one for the associative law
is certainly the most difficult one to find.
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A set of axioms is self-consistent if one cannot derive a contradiction
from them. The simplest way to convince oneself of the self-consistence is to
find a model from the physical world that satisfies all the axioms. This is not
a rigorous mathematical proof, but at least a good indication that we could
call experimental evidence. In this respect, one can believe that Euclidean
geometry is self-consistent, and therefore hyperbolic geometry also.

Completeness implies that the whole theory we want to develop can be
completely derived from the axioms. According to Godels theorem a set of
axioms is almost always incomplete. We can then add a new independent
axiom to the set to render the theory more complete. But as the new axiom
is independent, we can also take its negation as a new axiom, such as the
example of Euclidean and hyperbolic geometry shows.

2.3 Examples

What the story about hyperbolic geometry illustrates very clearly is that
intuition can be dangerous and can lead one astray. It has been explained
in Chapter 1 that this is the reason why in mathematics there is so much
emphasis on abstraction. We have also explained that the counterpart of
this is a kind of lack of intuition. To learn hyperbolic geometry one has to
build up a new kind of intuition that runs contrary to the daily-life intu-
ition of Euclidean geometry that feels so comfortable. We cannot say that
physicists have not taken the point about the danger of relying too much
on “common-sense” intuition to heart. We are confronted with counterin-
tuitive notions in physics on a routine basis. Relativity was considered as
counterintuitive when it was introduced and quantum mechanics continues
to feel highly counterintuitive. Confronted with that, physicists have built
up quantum intuition.

But the tension between rigour and intuition is permanent. The dan-
ger of relying too much on one’s intuition is constantly lurking around the
corner, even within the context of a renewed intuition. Worse, in physics
we do not even know what the axioms are supposed to be. They have to
be guessed by induction, relying on one’s intuition in interpreting experi-
mental evidence. But in the process one should of course not transgress the
demarcation line between physics and mathematics and start also interpret-
ing purely mathematical results that might intervene in the calculations.
It will be demonstrated in this book that physicists have the tendency
to be over-confident about their intuition regarding the meaning of the
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mathematics they are using. Dirac’s delta function discussed in Chapter 1
is a good example of this.

The set of axioms for a group is a choice example of a mathemati-
cal presentation that is of an abstraction rendering it a priori devoid of
any intuition. For the sake of mathematical rigour, this is perfect. For one
thing, we will not run head over heels into taking something erroneously
for granted based on an unproved intuition, because for the moment, we
have not got one. This is what mathematical rigour is about.

But working without intuition is very unpleasant; one has the impression
of not understanding what is going on behind the scenes. It is also more
difficult to learn things when we have no intuition for what they mean.
Examples below are given, which will allow the reader to build up intuition
for what groups are and to show him that he is in reality very familiar with
them.

The reader who is still unfamiliar with group theory may want to verify
in the examples that the four axioms for a group are satisfied and if the
group is Abelian or otherwise. He should be able to check what the identity
element and the inverse elements are.

e A first example is the symmetry group D5 of the regular pentagon (see
Figure 2.1). The name Dj reflects that this is a so-called dihedral group.

Fig. 2.1 A regular pentagon PiP>P3P4+Ps and the lines dy, with n € [1,5] NN that
serve to define the reflections A, in the text.
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By this is meant the set of operations that map the pentagon to itself.
The five vertices P; of the pentagon can be represented by the complex
numbers: z; = ¢270=1/5 ¢ C. There are five rotations R, € F(C,C),
where Vk € [0,4]|NZ, Vz € C : Ri(z) = ze*™*/5 that map the pentagon
onto itself. As summarized by the notation Ry € F(C,C), these rotations
are functions. The set (G, o) of the five functions Ry, is a group when the
composition law for functions © is taken for o. This is a finite group as it
contains a finite number of elements. The identity element is Ry. The inverse
element of Ry is R5_j, when k > 0 and Ry if £k = 0. The group is Abelian
as adding up the rotation angles is commutative. But these operations are
not the only ones which leave the pentagon invariant. There are also five
reflections A4,, € F(C,C) with respect to the lines d, = {z € C || Ir e R:
z = rel(”*%)%"}. These lines are illustrated in Figure 2.1. The reflections
A,, are defined by: Vn € [1,5] NN, Vz € C : A,(2) = 2~ ' 2m@n=1)/5,
The inverse element of A, is A, itself. However, the set G5 of the five
reflections A,, is not a group as the product of two reflections is a rotation,
not a reflection, such that the set (G5 is not closed under the composition
law of functions. But the set G = G1 UG5 that contains both the reflections
and the rotations is closed under the composition law and makes up a group
(G, 0), which is the symmetry group of the pentagon. The “multiplication
table” for this group is written in Table 2.1. Such a “multiplication table”
is called a Cayley table. The table has been written using the convention
that the element on line £ and column j corresponds to the group element
gk © gj, where by definition operation g is executed after operation g;.
This is really important as the group is not Abelian, such that the order
of the operations does matter. The reader can check this in the table: for
example, Az3oR; = As and Rj0A3 = Aj, such that AsoR; # Ri10As. The
nomenclature “Cayley table” is in principle only used for finite groups, but
I will take the liberty to use it also for infinite groups in the next chapter,
even if one cannot really write down an infinite table. The Cayley table
of the non-Abelian group (G, o) contains the Cayley table of the Abelian
group (Gy,0) in its top left corner. As G; C G, the group (Gp,0) is an
example of what one calls a subgroup of the group (G, o). This concept
will be defined in Section 2.4. In the bottom right corner of the table one
can also check that the composition of two reflections is not a reflection
but a rotation. As all elements of the group can be written as products of
reflections, it is said that the reflections alone do not constitute a group,
but that they generate a group.
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Table 2.1 Cayley table for the symmetry group of the regular pentagon

o Ro Ry Ry R3 Ry Ay Ay As Ay As

Ro Ro Ry Ro R3 Ry Ay Az As Ay As
Ry Ry Rs R3 Ry Ro Ay As Ay Az As
Ro Ry R3 Ry Ro Ry Az Az Ay As Ay
R3 R3 R4 Ro Ry R> As Aq Az As Ay
Ry Ry Ro Ry Ro R3 Az Ay As Ay Az
Ay Ay As As Az Ay Ro Ro Ry Ry R3
Az Az Ay Ay As As R3 Ro Ro Ry Ry
As As As Az Ay As Ry R3 Ro Ro Ry
Ay Ay Ay As As Ay Ry Ry R3 Ro Ry
As As Az Ay Ay As Ro Ry Ry R3 Ro

e The set Z of integer numbers forms an Abelian group (Z,+) under the
operation of addition. This is an infinite group because it contains an infi-
nite number of elements. The identity element is 0. The inverse element
of j € Z is —j. This group is Abelian. However, (Z, X) is not a group.
The first three axioms are satisfied, the identity element being the number
1, but (2.4) is not satisfied. This example shows the independence of the
axiom expressed in (2.4).

e Of course also (R, +), where R is the set of real numbers under addition is
an infinite Abelian group. It is a continuous group in contrast with (Z, +)
which is discrete. Also the vector spaces (R™,R,+) of R™ over the field R
are groups with respect to vector addition.

e Figure 2.2 illustrates a two-dimensional crystal lattice and its unit cell.
It illustrates the specific example of a square lattice. In the most general
case, a two-dimensional lattice is defined by a basis of two vectors a; and
a, that are linearly independent, but not necessarily of unit length and
orthogonal as in the example of Figure 2.2, where a; = e, and ax = e,,.
Using this basis, one then constructs the set L of all linear combinations
OP = 25:1 cja; with ¢; € Z. Such a set is sometimes called a Z-module.
This set L is a group (L, +) under vector addition and called the Bravais
lattice of the two-dimensional crystal. It is the group generated by the two
translations with vectors a; and as (and their inverses). The translation
and position vectors of the Bravais lattice are of the type OP illustrated
in Figure 2.2. The identity element is the null translation OO. The inverse
element of OP is the vector —OP. Like all translation groups, (L,+) is
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Fig. 2.2 A (metaphorical) two-dimensional crystal lattice with two different atoms (the
pentagons A and B) in the unit cell (shown in the inset). The position vectors of the
atoms B (of the type O1Q) with respect to the nodes of the Bravais lattice do not belong
to the Bravais lattice and the symmetry group. They belong to the unit cell U. Those
of the atoms A belong in this example accidentally to the symmetry group, because the

atoms A are situated at nodes of the Bravais lattice. The lattice vector OP belongs to
the Bravais lattice.

Q

crystal lattice

Abelian. However the position vectors of the type O1Q within a unit cell U
do not belong to the symmetry group. In fact, the crystal lattice is the con-
volution L U of the Bravais lattice L and the unit cell U. In an analogous
way one can construct the Bravais lattice of a three-dimensional crystal
by using three linearly independent vectors a;, as and as to generate the
three-dimensional translation group of the lattice. Group theory is very
important for the classification of crystal lattices.

e The set R is not a group for multiplication as 0 has no inverse. However,
(R\{0}, x) is an Abelian group, with 1 as identity element. The same can
be said about the set C and the Abelian group (C\{0}, x).

e The permutations of the first n integer numbers j € [1,n]NN form a group
under the composition of permutations (understood as the composition °
of functions) called the symmetric group (S,,° ). This is a really nice group
to play with. For n = 5 the sequence 31452 is a permutation of 12345. It is
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generally noted as:

1 2 3 45
(3 1 4 5 2) ' (26)
The identity element is:
1 2 3 45
(1 2 3 4 5) ’ 27)

and the inverse element is:
—1

13353 =0 2
:@ : Z) (2.8)

It is thus obtained by reversing the order of the lines and then restoring
the order of the columns. Permutation groups for n > 2 are non-Abelian,

e.g.
1 3\ /1 2 3\ (1 23 hile
9 WAV 29) " \2 1 3) W
12 3\ /1 2 3, (1 2 3
1 32/ 3 1) \3 2 1)

We see in this example that we omit the symbol ° for the composition
law of functions and just proceed by juxtaposition. We thereby keep the
convention for the composition of functions that the operation on the left

[N N
— W W

LW = = Ot

[\

w
w

(2.9)

always comes after the operation on the right. In other words, when group
elements are functions then g;gr stands for g; °gr. A transposition is a
special permutation that permutes two adjacent numbers, e.g.:

G ; g j g>=(23). (2.10)

The transpositions (j,j + 1) can be used to generate the whole group.

This implies that every permutation can be written as a number of trans-
positions. A permutation is called odd if it is generated by an odd number
of transpositions, it is called even if it is generated by an even number of
transpositions. Of course, to be meaningful this definition must be indepen-
dent of the way one decomposes the permutation in terms of transpositions;
the reader might try to construct a proof of this independence. The even
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permutations form themselves a smaller group, the alternating group A,.
The alternating group A, is a subgroup of S, such that it is a further
illustration of the concept of subgroups to be introduced in Section 2.4.

e The special orthogonal group SO(2) of 2 x 2 matrices M of the type:

cosa —sina

SO(2): M = ( ) , where a € R (2.11)

sin o COos (v
forms a group under matrix multiplication. This is a so-called matriz group,
and is also an Abelian group. It is called “special” because det(M) = 1 and
“orthogonal” as the matrices are orthogonal. The number 2 in the notation
indicates that the matrices are 2 x 2. The reader will recognize here the
matrices for rotations in the plane. The identity element is the unit matrix
and the inverse element is obtained by the substitution «| — a. The set of
rotation matrices is not closed under the operation of addition of matrices.

e The set of numbers ¢, o € R forms an Abelian group. The identity
element corresponds to @ = 0, and the inverse element is obtained by the
substitution | — cv. This group is often noted as U(1). It will be shown that
U(1) and SO(2) are isomorphic. Isomorphism is a very important concept
that will be introduced below. Both groups are isomorphic to a third group,
viz. the group of the rotations around the origin O of a plane.

e The set of three-dimensional rotations R around a fixed point O of R? are
a group, under the composition of rotations. For the two rotations R; and
Ry, RoR; is the operation involved in applying rotation Re after Ry, i.e.
Vr € R?: [RoR1] (r) = Ra(Ri(r)). An elegant proof that the composition
of two rotations is another rotation is given in Section 3.5 of Chapter 3, by
describing a rotation as the product of two reflections. But it can also be
proved in another way, by defining a rotation as an operation that leaves
the length r of a vector r = OP, the point O and the handedness of a ref-
erence frame invariant. The inverse rotation is the rotation about the same
axis but with the opposite angle. The identity element is the operation
that leaves all points of R? fixed. The group of three-dimensional rotations
is non-Abelian.

e The set of 3x 3 matrices used to calculate with rotations is a matrix group,
called the special orthogonal group SO(3). It is isomorphic with the group
of the rotations itself. The terms “special” and “orthogonal” have the same



18 From Spinors to Quantum Mechanics

meaning as for SO(2), while 3 stands for the dimension of R3. The ortho-
gonality of the matrices refers to the property that the columns of these
matrices define vectors that are orthogonal (when a normalized orthogonal
basis for R? is used). The set of rotation matrices is not closed under the
operation of addition of matrices. We will see later in this book that this
is the reason why we cannot use spinors like vectors (see Subsections 5.1.3
and 5.1.5, and Section 5.2). This fact will become extremely important in
the discussion of the superposition principle in quantum mechanics. The
structure obtained by making all linear combinations M = }°. ¢;M; of
elements M; € G of a matrix group G, whereby these linear combinations
themselves are not necessarily group elements, is called the group ring.

An even number of reflections in R? defines a rotation, while an odd
number of reflections defines a reversal. The determinants of the 3 x 3
matrices that can be used to make the calculations on rotations, reflec-
tions, and reversals are 1 or —1. Reflections are not a group because the
product of two reflections is not a rotation. However, reflections can be used
to generate the group of rotations and reversals.

e The special unitarian matrix group SU(2) consists of all 2 x 2 matrices
M of the form:
a —b*
SU(2): M =
@im=(y
The group is called “special” because det(M) = 1, and “unitarian” because
M’ = M~!. The matrices show some structural similarity with those of
SO(2). In fact, by making the restriction a € R, b € R, we fall back onto
SO(2). This is another example of the notion of a subgroup, to be developed
in Section 2.4.

) , where (a,b) € C? & aa™ +bb* =1. (2.12)

e The homogeneous Lorentz transformations of special relativity form a
group under the operation of composition. They are generated by the boosts
but they also contain rotations. A general transformation is the composi-
tion of a boost and a rotation. The group is non-Abelian as it contains the
group of three-dimensional rotations.

e The special linear complex matrix group SL(2,C) consists of all 2 x 2
matrices M of the form:

a b

SL(2,C): M = (c d) ., where (a,b,c,d) € C* & ad —bc=1. (2.13)
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Once again “special” means that the determinants of the matrices are 1.
Linear means that there are no further special constraints on the matrices,
as matrices are a notation for linear transformations. The symbol C indi-
cates that the entries of the matrices are complex. We will see this used in
Chapter 4 to represent the homogeneous Lorentz group.

e The icosahedral group Y is the group of rotations that leave the icosa-
hedron invariant [Duneau (1994)]. The icosahedron is one of the five
regular Platonic solids, illustrated in Figure 2.3. The icosahedral group
is isomorphic to the alternating group (A4s,°), and contains 60 elements.
It can be abstractly defined by two generators, R, and Ry, such that
R> = R? = (R,R,)? = e, where e is the identity. This abstract defini-
tion expresses that R, is a rotation with a five-fold axis, R; a rotation with

Fig. 2.3 A regular icosahedron is a regular solid with 12 vertices (e.g. P), 30 edges (e.g.
PB) and 20 faces (e.g. the triangles PBC'). It has six five-fold axes (e.g. n5), joining the
centre O of the icosahedron with one of its vertices, 15 two-fold axes (e.g. n2) joining
O with one of the midpoints of its edges, and ten three-fold axes (e.g. n3) joining O
with one of the centres of gravity of a face. A set of coordinates for the points of the
icosahedron is given by: (0,+1, +a), (£1, £, 0) and (Fa, 0, +1) where a = 14—2_\/5 is the
golden ratio. The figure was constructed using this algorithm. The following attributions
were made: P(0,1, ), A(—1,,0), B(1,«,0), C(«,0,1), D(0,—1,«) and E(—a,0,1).
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a two-fold axis and R, Rp a rotation with a three-fold axis in R3. This is
illustrated by a buckyball model in Figure 2.4. The Cayley table for the
icosahedral group can be found in [Harter and Weeks (1989)].

2.4 Subgroups

A set G; C G will be called a subgroup (Gi,0) of the group (G, o) if it
is itself a group. The only thing one has to check for this is if G; remains
closed under the operation o, and if the inverse elements of g € GG; within
G also belong to G1. The other axioms remain satisfied. Some examples
of subgroup have already been given, but a few more can be provided,
for instance (R? x {0},+) is a subgroup of (R3 +). The group of two-
dimensional rotations around O in the Ozy plane is a subgroup of the
group of three-dimensional rotations around O in R3. SO(2) is a subgroup
of SU(2), and we will see that SU(2) has indeed also something to do with
three-dimensional rotations.

2.5 Homomorphism

A group homomorphism f between groups (G1,0) and (Gz, x) is a mapping
fe F(Gl,GQ) such that: ng € G1,Vg, € Gy : f(gj o gk) = f(gj) * f(gk)
Homomorphism is a concept that is not only restricted to its use in groups.
The basic idea is always that what one does in G5 mirrors what one does
in Gy, e.g. %’ = et can be used to define a homomorphism between
the groups (R\{0}, x) and (R,+). A homomorphism does not need to be
one-to-one. Not every element of G5 needs to be an image. It can be that
f(G1) C Gy, in which case (f(G1), ) is a subgroup of (Ga, *) as the reader
may check. It can also be that an element h € G is the image of several
elements g; € G1, such that in other words f~*(h) is a subset of Gy, rather
than a single element g € Gy. In this respect the reverse image f~!(e) of
the identity element e € G5 is called the kernel of f.

When a homomorphism is a one-to-one mapping then it is called an
tsomorphism. When the two sets involved in the mapping are the same, i.e.
Go = (1, the isomorphism is called a group automorphism. More generally,
when G C Gs it is called a group endomorphism. An automorphism is thus
an endomorphism for which G; = G5. An example of a group isomorphism
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is the mapping between SO(2) and U(1) provided by the one-to-one corre-
spondence:

sin « COS (v

( cosa  —sina )<—>ew‘, (2.14)

as the reader may easily check. Both are isomorphic to the group of rotations
of the plane. Similarly the group of 3 x 3 rotation matrices are isomorphic
to the group of rotations in R3.

2.6 Equivalence classes

A relation R between elements of a set S is a subset of S x S. The relation
will consist of the ordered couples (a,b) € S? between which one draws an
arrow from a to b in visualizing the relation. A relation R between elements
of S, is an equivalence relation if it satisfies the three axioms:

e The relation is reflerive, which means that any element of the set is
equivalent to itself:

Va € S:a=a. (2.15)

e The relation is symmetric. When a is equivalent to b, then b is equivalent
to a:

Yae S,Vbe S:a=b=b=a. (2.16)

e The relation is transitive:
Ya e S,Vbe S,¥Vee S:a=b&b=c=a=c. (2.17)

Here a = b is a notation for (a,b) € R. For example, in Z, the relation
j=k<3ImeZ]| j—k=5mis an equivalence relation that is noted
as j = k (mod 5). When we have an equivalence relation we can build
equivalence classes: Cl(a) = {b € S || b = a}. For the equivalence relation
modulo 5 in Z, the classes are CI1(0), CI(1), Cl(2), CI(3), Cl(4). The set
of these classes is noted as Z/5. Each element of the class can be used to
represent the whole class; e.g. both 218 and 3 can be used to represent the
class C1(3). In an abus de langage we can say that within the context of Z/5,
218 and 3 are the same thing. On this set one can define an operation B that
renders (Z/5,H) a group. One defines Cl(a)BCI(b) = Cl(a+0b). A different



22 From Spinors to Quantum Mechanics

symbol H is used on the left-hand side, to highlight the fact that it does
not have the same meaning as the symbol + on the right-hand side, but in
practice the symbol + will be used for both. To prove that the definition of
the operation B makes sense, one must prove that the definition does not
depend on the elements a and b that one choses to represent their classes
Cl(a) and CI(b). This is straightforward. In general, the set Z/n of integer
numbers modulo n for a given positive integer number n € N forms an
Abelian group (Z/n,+) under the operation of addition. The classes Cl(j)
are in general noted as j. The group of equivalence classes modulo n € N is
one of the simplest examples of a finite group. The identity element is 0. The
inverse element of j € Z/n is n—j for j # 0 and 0 for j = 0. The reader may
try to write the Cayley tables for some groups (Z/n,+). These groups are
isomorphic to the rotation groups of the regular polygons with n vertices.

Isomorphism is an equivalence relation. The concept of equivalence rela-
tion permits us also to give a mathematically rigorous formulation of the
intuitive notion that isomorphic groups are “the same thing”. The matrix
group SO(2) is the “same thing” as the group U(1), and both are the “same
thing” as the group of two-dimensional rotations in the plane. The groups
are isomorphic. We can use one freely to represent the other, because they
belong to the same equivalence class. When we use 3 x 3 rotation matri-
ces to make calculations on three-dimensional rotations, we might as well
consider in an abus de langage that the rotation matrices are rotations.

When physicists speak about group theory they actually refer to a spe-
cific field of it, viz. group representation theory. We will see that the abus de
langage which identifies a group with an isomorphic matrix group is the gist
of the representation theory used in physics. An isomorphic matrix group
is an extremely convenient tool because it turns everything into algebra,
permitting us to make all the necessary calculations.

2.7 The assets of abstraction

We have seen that abstraction serves the purpose of mathematical rigour.
But there is another reason why abstraction is important in mathematics.
We can already see that the definition of a group applies to vastly differ-
ent sets and vastly different operations. The composition law is sometimes
called alternatively a product or a sum, and even then there are different
kinds of products and different kinds of sums. But they all satisfy the same
four axioms. This is the reason why the definition of the group is rendered
abstract. Even the introduction of the unusual symbols o and * for the
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composition laws has been motivated here by the concern to emphasize
this abstractness. The specific realization is not specified. The consequence
is that when you are able to derive in an abstract way a property of the
group from the four abstract axioms, then you will have proved that prop-
erty for all possible realizations. That is why it is so useful to have abstract
structures in mathematics: you save the time of writing out the “same”
proof hundreds of times in different guises, i.e. proofs that all have the same
structure. The abstraction reflects the desire to lay bare the essence of the
common structure and proofs with clinical precision.

For instance, it can be proven that in any group (G, o) one can always
solve the equation a o x = b in z, and that the equation has just one single
and unique solution. Here a € G and b € G are given group elements, and
x € G is the solution of the equation we want to find. The proof runs in
two steps. The first one is heuristic. Suppose first that we have a solution
xo of this equation, such that truly a o zop = b. That is a priori an invalid,
gratuitous assumption, but in cheating by making this assumption, it will
be possible to obtain some valuable information and eventually cover up
for the cheat. Now, a has an inverse element a~'. By multiplying both sides
in the identity a o 9 = b to the left with a~' we obtain the new identity:
ato(aoxz) =a"tob Now we use the associative law to transform this
“loa)oxzg=a"tob. Then we use the definition of the inverse to
transform this into: e o xyp = a~! o b. The definition of the identity element
transforms this into g = a~! o b. We know thus that if there is a solution,
then it must be g = a~'ob, such that the solution xg is unique if it exists.
This is the valuable piece of information we “stole by cheating”. Let us now
cover up for our foul play. In a further step we will now check that it is
indeed a solution. We plug the value of x( into a oz = b to check if it really
satisfies the equation. Now aoxg = ao(a ' ob) = (aca"t)ob=ecob=b,
where we have used the associative law, the definition of the inverse element
and of the identity element. The result a o xyp = b proves then that xzq is
indeed a solution of a o x = b.

We could have now made this proof for the equation a + x = b in R
using the specific notations in R, or for the equation R, R, = R} for three-

into: (a

dimensional rotations. We would then have written out two proofs. But
within the abstract approach, we only need to write up one proof, and it
will be valid for all possible realizations. We know thus also automatically
that the equation:

1 2 3 1 2 3 1 2 3
= 2.1
<2 3 1) (jl J2 jg) <2 1 3) (2.18)
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will be solvable, that it will have a unique solution, and that we have an
algorithm to compute this solution. The solution has actually been given in
(2.9) above. The point is that the various proofs in the various realizations
have the same mathematical structure, just like the axioms we use have
the same mathematical structure. This is why abstract structures are very
important and useful in mathematics.

Establishing that two different problems have the same structure in
mathematics can lead to cross-fertilization between various disciplines. A
very successful example of this is the relation between algebra and geome-
try in analytic geometry. Everything in the algebra can be translated into
geometry and wvice versa. Solutions from one field can be transposed auto-
matically to another field. We see thus that group theory interconnects a
large number of realms that at first sight might seem completely unrelated.
The point is that the very small set of axioms for a group is already a very
powerful set, such that it occupies a very important place in mathematics.

2.8 Intuition and rigour

We can see in the proof that in a group the equation a o x = b in = always
has a solution, mathematical rigor at work. Every single step is justified
by referring to an axiom or a previously established theorem. But we also
need examples to be able to make sense of it. The only viable way to learn
mathematics is to go backwards and forwards between the two approaches,
a rigorous one and a looser and more intuitive one. In good teaching the
two approaches must be developed in parallel. Like young lovers, rigour
and intuition should walk side by side and hand in hand. That is why the
above examples have been given. Intuition can become the poor child of
a very rigorous mathematical presentation, while rigour can become the
poor child of a very intuitive physical presentation. A treatment of classical
mechanics gives one the impression that it is pure mathematics and that one
understands everything. This is due to the perfect match between rigour
and intuition. When the balance between rigour and intuition is upset,
things may start to go wrong in the sense that some things are no longer
perfectly understood.

As already described in the Chapter 1, the group theory of the rotation
and Lorentz groups is a good example of a situation where this balance
has been lost. Because quantum mechanics is formulated in terms of the
theory of these groups, it reproduces these problems. The texts are purely
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algebraic, and the intuition about what the algebra means is missing. It is
to this situation one refers by stating: “shut up and calculate”. In many
instance physicists may provide some intuition of their own, by stipulating
how the algebra in the calculations should be interpreted, but this can
be wrong if it is at variance with the interpretation already defined by the
mathematics itself. Therefore, acquiring a good insight into the geometrical
meaning of the group theory must be the first necessary step of any attempt
to understand the physical meaning of quantum mechanics.

2.9 Symmetry

In this section it will be explained that group theory is of utmost importance
in physics because it is the prime tool to deal with symmetries. It is often
possible to make a drawing that models a group, especially for finite groups.
Figure 2.4 gives a drawing for the icosahedral group Y. Figure 2.5 gives a
drawing of the group Sy. In both cases, one associates the identity element
with a point P with position vector r = OP on the map. All other group
elements g can then be associated with the points P, with position vectors
g(r). The group elements are thus symbolized by their action on the position
vectors OP, = g(r) of points. The points P, serve as images of the group
elements g.

It is worth pointing out that the icosahedron I, illustrated in Figure 2.3
and the icosahedral group Y, illustrated in Figure 2.4 are different things,
belonging to different worlds. The icosahedron I C R? in Figure 2.3 can
be thought of as representing a real three-dimensional physical object in
Euclidean space R3, that one could hold in one’s hand. But Figure 2.4
represents a completely abstract mathematical object that is not tangible
and that one cannot hold in one’s hand. We can try to imagine this abstract
object by visualizing it by a physical model in a model space V = R3. With-
out the model it would be very hard to imagine the abstract mathematical
object of the group Y, as it is a set of functions g € F(R?, R?), that map vec-
tors OP € R? onto the vectors OP, € R3, with the property that g(I) = I.
We can model this set of functions G C F(R3,R?) by showing how each
function works on an arbitrary point P with position vector OP € R3\[I.
It is normal to make this choice of model space V = R3 of points Py, as we
try to model functions g € F(V, V). The functions g are nothing other than
the group elements g that occur in the axioms (2.1)—(2.4). They are thus
the objects of study in group theory, not the icosahedron. The icosahedron
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Fig. 2.4 The 60 vertices of the truncated icosahedron in this figure represent the 60 ele-
ments of the icosahedral group Y. Well-known physical materializations of this truncated
icosahedron are the soccer ball and the Cgo molecule (often called “buckyball” or buck-
minsterfullerene). The centre of the buckyball, called O, is not shown. The points P with
position vectors OP model the icosahedral group. By acting with the icosahedral group
on OP we obtain the position vectors that model the group elements. As can be seen
on the figure by comparing the configuration PABC with the configuration P’ A’B’C’,
each group element has the same environment (reproduced on the right for the first
neighbours), such that it is impossible to find out from an inspection of the environment
of a group element which group element it is. In the Cgp molecule, each carbon atom
has three first neighbours: one along a double (7-) bond (shared by two hexagons with
three-fold symmetry), and two along a simple (o-) bond (shared by a hexagon and a pen-
tagon (with five-fold symmetry)). The distance along the mw-bonds is shorter than along
the o-bonds, such that the truncated icosahedron has no six-fold axes, and contains only
three-fold axes. The icosahedral group contains two-fold, three-fold, and five-fold axes,
as illustrated in Figure 2.3. If P corresponds to the identity element, A to g4 € Y and
P’ to g €Y, then A’ corresponds to g°g5g~".

can be used to establish the Cayley table of the group, but is not under dis-
cussion in the four axioms. In group theory we are also not talking about
the vectors OP that we use to construct the physical model and which
belong to the world V = R3. We are talking about objects of the world
G C F(V,V) = F(R? R?). This idea of denying citizenship to the vectors
will come back in Chapter 3 in an even more radical form, and is a part of
the abstract nature of group theory.

Imagine now that such a drawing was a map of the world in which
you were living, and that you were trying to figure out where you were by
using the map. To your great discomfort you find that from a comparison of
your environment with the map you are unable to establish your location,
because all local environments look the same. This also implies that you
could have identified any point on the map with the identity element, the
resulting map is always the same. This is the reason why Galois called group
theory the theory of ambiguity.
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Fig. 2.5 The 24 vertices of the truncated cuboctahedron in this figure represent the 24
elements of the permutation group Sy, whereby the lines represent the transpositions. We
see that each vertex has three nearest neighbours. and that each vertex is surrounded
by two regular hexagons and a square. Also here one could distinguish two kinds of
bonds. Each vertex has two bonds that belong to a square and one bond that does not
belong to a square. We see that all points have an identical environment. Each hexagon
is isomorphic to S3. In fact, in each of the hexagons, there is one of the four numbers
that remains fixed.

On the Cgo buckyball, every carbon atom has a double bond and two
single bonds. On the cuboctahedron, every vertex has three nearest neigh-
bours, and each vertex is surrounded by a square and a regular hexagon.
One can extend this analysis to neighbours of any order. You can also check
this in the drawing of the Bravais lattice of a crystal (which visualizes a
discrete translation group) in Figure 2.2. The crystal looks the same every-
where.

This is a property of a group. It is due to the existence of group automor-
phisms Cy defined by: Vg € G : Cy € F(G,G), whereby Va € G : Cy(a) =
goaog~! € G. The group automorphisms are themselves a group under the
composition law of automorphisms. This looks extremely abstract, but it
is extremely important to appreciate that it corresponds with the intuition
that the group looks the same everywhere. The automorphism C; maps
each group element a in the environment of the identity element e onto
the group element Cy(a) in the environment of the group element g, mak-
ing the environments look strictly identical. It maps the photograph of one
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local environment onto the photograph of another local environment, with
the effect that all photographs look the same. On the commuting diagram
(2.19) we see that applying g to all group elements maps the vertical arrow
e — a to the vertical arrow goe — goa. The first vertical arrow corresponds
to a while the second vertical arrow corresponds to Cy(a). We see thus that
Cy is an “arrow mapper”, mapping arrows onto arrows, as summarized in
the commuting diagram (2.19). This diagram shows the action of Cy in
function space F(V,V):

—1
eeG L — goe=geG
la lcg(a):goaog_l' (2.19)

aceG —2— goae@

The vertical arrows function as “position vectors” for the elements in the
environments. The “arrow mapper” C, maps position vectors on the pho-
tograph of the environment of e to position vectors on the photograph of
the environment of g. The action of Cy can also be represented by a dia-
gram in model space. In such a diagram the vectors OP = v € V and
OP, = g(v) € V of the model space V are represented. The maps intro-
duced at the beginning of this section are examples of this approach. The
vectors OP, here are true “position vectors” associated with group ele-
ments. The action of Cy can then be shown on the following commuting
diagram for the vectors in model space V', which is used to represent the
group elements in function space F(V,V):

—1

veV & gv)eV
la lcg(a):goaog—l. (220)

vi=a(v)eV —L— g(v)eV

It can for instance be imagined that G is a rotation group acting on
V =R"™. The rotation a rotates the vector v to v/ = a(v). The rotation
goaog ! rotates g(v) to g(v'). It is therefore the “same” rotation as
a, after all vectors v € V have been bodily rotated to g(v) by ¢g. It can
be said that a and g o a o g~! are conjugate. The “arrow mapper” Cy

maps a onto its conjugate g o a o g~'. When there is an isomorphic matrix
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representation for the rotation group, then the matrices A and GAG ! will
have the same eigenvalues. In the icosahedral group all products RR,R™!
are five-fold axes, all products RR,R~! are two-fold axes, and all products
RR,RyR~ ' = RR,R"'RR,R~! are three-fold axes.

It should be noted that in constructing the Figures 2.4 and 2.5, the
choice made for the position vector OP is special with the aim of enhancing
the visual appeal, although this is not a necessity and only a matter of
aesthetics. Any vector OP € R3\I can be taken to generate a diagram
that illustrates Y. But to obtain a nice diagram with a buckyball a specific
choice must be made. However, the choice OP € [ is not appropriate as this
would make the diagram degenerate, due to the symmetry of I. In other
words, a model based on I would not be an isomorphism, as each point of I
would represent five different group elements. One says in this respect that
the icosahedron I is not a faithful model of Y.

The model of the crystal lattice for a translation group is in this respect
somewhat special in that the model is based not on a single position vector
OP but a set U of position vectors of model space. This set U is called the
unit cell. This set consists of the vectors of the type O1Q in Figure 2.2,
which link a node of a Bravais lattice L to a point in the unit cell U
attached to that node. The nodes of the Bravais lattices are position vectors
OP in Figure 2.2, that correspond to elements of the discrete translation
group, but the position vectors of atoms in a unit cell, which are not on a
node, are not translation vectors of the translation group. Actually, it could
be stated that unit cells are used rather than single vectors to model the
translation group. A unit cell of a crystal lattice is also a photograph of a
local environment, but without group elements.

It is very important that the reader be able to see this intuitive idea of
the overall similarity and the reason for it through the forest of abstract
notations. The same kind of commuting diagrams as (2.19) and (2.20) relate
double bonds to double bonds on the buckyball. So to say, when two persons
are living on a same group, then when the first person faxes a photograph
of his environment with a church at eight o’clock and a tree at four o’clock
to the second person, then the second person will see that it is a perfect
photograph of his own environment, with an identical church at eight o’clock
and an identical tree at four o’clock. It is the “arrow mapper” C, that will
provide the one-to-one correspondence between the two photographs.

Conjugacy is an equivalence relation, and the corresponding equivalence
classes are called conjugacy classes. To prove that a is conjugated to itself,
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we use ¢ = e. We obtain then goaog ™' = eoaoe ! = a. To prove

a =b= b= a, we just express a = b by its definition 3g € G || b =
goaog~'. The notation implies that the group element that provides for the
equivalence a = b has been called g. From this it follows that a = g 'obog,
showing that the group element that provides the equivalence b = a is g .
Finally, to prove a = b & b = ¢ = a = ¢, we use again the definitions:
B3 eG|b=gioaog; &g € G| c=gaobogy'). Feeding b from
the first equation into the second equation we obtain: 3¢g; € G,3 g2 € G ||
c= g2 ogloaogfloggl = (g20g1)oao(ga0g1) !, which completes the proof.

In the icosahedral group, the map C,; will map a two-fold axis to another
two-fold axis, a three-fold axis to another three-fold axis, and a five-fold axis
to another five-fold axis. A conjugacy class is thus a set of operators of the
same type. This similarity will transpire through the fact that the matrices
A and GAG ! are linked by a similarity transformation and have the same
eigenvalues. It may finally be noted that the mapping: C' € F(G, F(G,Q))
with Vg € G : C(g) = Cy is also a homomorphism. In fact, is is easy to check
by using the definitions that C'(g20g1) = Cyyog, = Cy, °Cyy, = C(g2) °Clg1).

One encounters the “arrow mapper” C, in many texts that contain
group theory, be it under the guise of more serious names. For instance the
moves you can make on a Rubik’s cube are a group, and the mathematical
theory [Halberstadt (1980)] that tells you how to “solve” a configuration is
based on elementary moves of the type goaog™!, because they allow you to
translate the instruction that tells you how to apply a particular move (an
“arrow” ) in one environment into an instruction that tells you how to apply
a “similar” move in another “similar” environment by conjugation. Con-
sequently one will have to formulate instructions for only a limited set of
configuration changes. In matrix form, conjugation corresponds to so-called
similarity transformations. Similarity transformations are heavily used in
quantum mechanics. In a more general abstract context where one does
not necessarily use matrix representations, the terminology “adjoint repre-
sentation” is being used for the group of transformations Cy as isomorphic
images for g.!

1The arrows are a kind of displacements, and displacements in physical space are
described by vectors. In a continuous group one can establish this conceptual link rigor-
ously, by considering infinitesimal arrows. In a limit procedure these infinitesimal arrows
will correspond to Lie derivatives, i.e. tangent vectors to the group manifold. The group
manifold is here the map that visualizes the continuous group as a curved hyper-surface
in some hyper-space. It is in general not a vector space due to the curvature. A pre-
cise definition of a Lie group is not given here, because this is a complicated matter
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Such an overall similarity (all the photographs look the same) is what
one calls symmetry and therefore groups embody symmetry. Groups are
therefore ideal tools in physics to express invariance and co-variance. In a
sense groups are the tools that best embody Einstein’s principle of relativity.
The equations of physics must be the same in all reference frames. This
means that the equations of physics you observe cannot tell you in which
reference frame you are, just as you can learn by inspecting the map of a
group that you will not be able to tell from your environment where on the
group you are. This shows why group theory is so important for physics.
With his principle of relativity, in a sense Einstein expressed the fact that
the Lorentz transformations form a group.

The all-important symmetry groups needed in physics are the trans-
lation groups, rotation groups, and the Lorentz group. They are groups
of geometrical transformations. The rotation and translation groups are
Euclidean geometry, while the Lorentz group occurs in the geometry of
Minkowski space-time: These three groups describe the geometry of physics.
Groups are the backbone of geometry. Klein’s Erlangen Program aimed at
describing all geometry based on groups and invariants. But the group the-
ory used in physics to express the geometry does that most of the time alge-
braically, by using the matrix representations, although the concepts remain
in principle purely geometrical. This is fine, as nothing is more convenient
than algebra to make calculations. But without the parallel geometrical
track that gives the intuitive meaning for the algebra, it very quickly starts
to look impenetrable, even for people like Abdus Salam (see Chapter 1). One
must therefore develop the geometrical track, which is why this book claims
to be about geometry. It is understood now that this geometrical approach
will take us on a journey into the abstract spaces F(R? R3) and F'(R*, R?),
but that we will be able to model these spaces by using the physical spaces
R3 or R%. Only the translation groups are Abelian, which is why the other
groups are really difficult. The difference between the conceptually simple-
looking Abelian groups and the more difficult non-Abelian groups must of
course transpire in the algebra of the representation theory. Real or com-
plex numbers are always commuting and can therefore be used to represent
Abelian groups, like in the example of U(1). They can of course not be used
to represent all details of non-Abelian groups, because they would not be
able to reflect the non-commuting character of the operations. To represent

(see[Cornwell (1984)]). The tangent vectors build the Lie algebra associated with a Lie
group.
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non-Abelian groups we need also non-commuting matrices. There is a
rigorous mathematical concept that corresponds to this notion. It is the
concept of reducible and irreducible representations, which we will develop
below.

2.10 Wave-like eigenfunctions

There is a second reason why group theory is very important. When you
move from a place to a similar place within a group you will experience
periodicity in your environment. The ideal tools to express such a period-
icity are periodic functions, i.e. waves. This can be checked in the simplest
case of discrete translation groups, which one uses in crystallography, for
example. This can be illustrated with a simple example, based on the model
illustrated in Figure 2.6. We start by considering a typical problem of prob-
ability calculus, viz. a simplified description of the jump diffusion of a single

P

6

Fig. 2.6 TIllustration of the jump model discussed in the text. A particle (indicated by the
filled circle) occupies one of the n = 7 sites P; of a regular polygon. The empty sites are
indicated by open circles. In the figure the particle is thus situated at site P3. It has the
ability to jump to its first-neighbour sites as indicated by the arrows. The probability of
making this jump is expressed in terms of a relaxation time 7. This relaxation time is the
same for all first-neighbour jumps, such that the problem has rotational symmetry. This
rotational symmetry can be described as translational symmetry with cyclic boundary
conditions.
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particle on a regular polygon of n vertices. The n vertices are considered to
be equivalent and the ability to jump to a nearest-neighbour site is given in
terms of a relaxation time 7. The precise jump mechanism itself is ignored
and assumed to be infinitely fast. Such models are sometimes used in quasi-
elastic neutron scattering studies in solid-state physics [Bée (1988)]. The
rate equations can be written in matrix form as:

d 1
— P=—-- MP. 2.21
dt T ( )

Here the n x n jump matrix M is defined by:
M, = =65 k—1+ 2055 — 0 k+1 (2.22)

where all indices are to be taken modulo n. The elements p;(t) of the n x 1
column matrix P give the probability to find the particle at site j at time ¢.
To solve the set of coupled linear differential equations (2.21) and (2.22) the
normal mathematical procedure is to diagonalize M = S™'AS such that it
can be reduced to n decoupled equations in the new variables (SP);:

d

dt

Let us now consider the problem of the harmonic vibrations (phonons)

of a linear chain of n identical atoms of mass p and linear spacing a, all

SP— L1 AsP. (2.23)
T

linked by identical springs with identical spring constants x. The normal
procedure is to introduce cyclic boundary conditions [Ziman (1972)]. This
spring model is symbolically illustrated in Figure 2.7. If we note as u;
the displacement of atom j from its equilibrium position, the dynamical
equations can be cast into the matrix form:

d2

K
— U=--— MU. 2.24
e m (2.24)

Here the elements U; of the nx 1 column matrix U are the the displacements
u,(t) of atom j with respect to its equilibrium position. The important
point here is that the matrix M in (2.24) is the same one as in (2.21) and
(2.22). Following the mathematics textbook (2.24) can be solved by the
same procedure as (2.21) and (2.22), i.e. by diagonalizing M:
2

© su- _"Asu (2.25)

dt? 1
where the quantities (SU); are again decoupled. However, in physics
textbooks this is at first sight not the solution adopted. Based on intu-
ition one expects the solutions to be wave-like; we are looking for lattice
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Fig. 2.7 Illustration of the spring model for a linear chain with cyclic boundary condi-
tions discussed in the text. The true geometry of a linear chain of atoms and springs is
not a circle, but picturing the n = 7 atoms symbolically on a circle at positions P; reflects
the symmetry and the first-neighbour connectivity of the model with its cyclic boundary
conditions. The positions on the circle define thus a regular polygon. The atoms all have
the same mass m and are linked to their first neighbours by springs of equal strength x.
Translational symmetry with cyclic boundary conditions is thus equivalent to rotational
symmetry.

vibrations in the form of phonons. One therefore uses the so-called Bloch
ansatz to postulate wave-like solutions of the form u;(t) = w,(t) e'% with
g = Q-aand w,(t) = wy(0)e ™ where Q is a reciprocal lattice vec-
tor and a is the basis vector that generates the lattice. This leads to n
decoupled equations (labelled g):

d2

a1
By comparing (2.23) or (2.25) with (2.26) it must now transpire that the
Bloch ansatz provides us with a very simple means of finding the eigenvec-
tors of M and thus to diagonalize M. In fact, the eigenvectors of M are the
column matrices V(@ defined by: (V(Q))j = ¢'J. This can be seen from:

2
—f (1 — cos q) wq. (2.26)

n

MV @), =3 M VD =37 (<801 + 2855 — i) €
k=1 k=1
— (+1) + 26“” o ezq(j—l) _ (_ezq +2— e—zq> eij

(2 =2 cosq) (VD); (2.27)
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from which we conclude MV? = 2 (1 — cosq) V@, One will recognize
that the algebra developed in the derivation of this result is exactly the
same as used in deriving (2.26) from (2.24). The Bloch theorem is thus a
concealed diagonalization procedure. It was formulated for situations with
translational invariance. This is actually our case here since the example
embodies the treatment of the problem of a linear chain where one has
introduced cyclic boundary conditions at distance n.

There is yet a third angle from which we can approach our jump prob-
lem. It permits us to formulate the arguments in a more general context
than the two very specific physical models we have used here. We could
already invoke the intuitive argument of periodicity described at the begin-
ning of this section, to justify the ansatz of a Bloch wave. But the following
ideas can also be used.

Consider two polynomials V,, V; in one variable z defined by: (Va €
R) (Va(z) = Yo axa®F) and (Vo € R) (Vi(z) = Y7_, bz’ 7). The
resultant R(V,,V;) of these polynomials is defined as the polynomial in
(ag,a1 -+ ax,bg,b1,...,b;) — which we will note as (a,b) — that van-
ishes if and only if V, and V4, have a common root. If the roots of V,
are called x1,x2 -+ xx and the roots of V, are called &,& -+ &; then:
R(Va, V) = agbg* [, (2 — &) According to Sylvester R(V,,Vy) =
det(M(a, b)) where:
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There are J lines with coefficients from V, and K lines with coefficients
from V4. This result can be derived by constructing J equations V, (z) 2/ =
0;5 =0,1,...,J — 1 and K equations Vy(z)2* = 0;k = 0,1,..., K — 1.
The matrix of this set of J 4+ K equations is exactly M(a,b). These J + K
equations will be satisfied simultaneously if and only if V, and V} have a
common root x,, in which case we will have:

M(a,b) (z 571 g B+7=2... 20T — (0,0,...,0)". (2.29)

Unless x,,, = 0 it follows from this that det(M(a,b)) =0, q.e.d. A superb
alternative proof is given in [Gel’fand et al. (1994)].

The derivation of the Sylvester determinant and especially the occur-
rence of (2.29) suggests interpreting the matrix M(a,b) as containing

K+J-1 . K+J-2_ . .0\T
xm ’xm xm)

the coefficients of polynomials, its eigenvectors (
being made from powers of a root x,,, of these polynomials. The most strik-
ing feature of the matrix M(a,b) is that it contains diagonal stripes, where
all lines are repeated identically.

Let us try this interpretation on the (n x n)-matrix —M defined by

(2.22) for the dynamics of a linear chain with cyclic boundary conditions:

-2 1 0 0 0 1
1 —2 1 0 0
0 1 —2 0 0 0
0 0 0 —2 1
0 0 1 —2 1
1 0 0 0 1 —2
(2.30)

This matrix contains in fact a diagonal stripe as described above. There is
only one disturbing feature that prevents us from developing the analogy
suggested, viz. that there are numbers 1 in the top-right and in the bottom-
left corners of this matrix. All other lines lead to equations of the type:
(% — (2+ Nz + 1) 2" k=1 = 0 with k running from 2 to n — 1. However,
it becomes clear, that the lines for £ = 1 and k£ = n are no exceptions
provided we accept " = 1 as a compatibility condition. But this compati-
bility equation now gives us exactly the values of the roots x,, to put into
0)T in order to obtain the eigenvectors of M. (2.29) then

(xn—l l’n_Q"'Jf
) m m
gives us the eigenvalues \,,, corresponding to the different eigenvectors built

m
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on the roots z,, = e>™/™ Our analogy makes sense and actually consti-
tutes the mathematical proof of the Bloch theorem for a periodic lattice,
where one identifies the term e’2™7%/™ with a wave vector k and a position
vector x; (or x if we ignore the discreteness of the lattice). The diagonal
stripes we referred to are in fact the visual expression of the translational
symmetry of the matrix M. This translational symmetry corresponds to
the fact that (2.22) has the same form for every value of j € [1,n] N N.
From all this it should now transpire that it is possible to diagonalize a
huge matrix with translational symmetry analytically by making use of the
symmetry. If there is one example that can illustrate the power of group
theory in a simple way, and that could convince the reader that it could
pay to learn the Gruppenpest, then it must be this example of using the
symmetry to diagonalize a matrix. Without the symmetry it would most
of the time be a hopeless task, as in general the brute-force diagonaliza-
tion of a n X n matrix requires the determination of the eigenvalues and
the eigenvectors through the solution of the characteristic equation, which
is of degree n. In terms of radicals, this is only possible for values of n
up to degree 4, such that in general, closed-form analytical expressions for
the eigenvalues and eigenvectors cannot be derived.? But in our example

2 As a matter of interest, it may be mentioned that Hermite has shown that the quintic
equation can be solved in terms of elliptic integrals rather than radicals, but his con-
struction must be considered more as an existence proof than a workable method. Most
of the time we will have to make do with numerical solutions. The reader will have prob-
ably heard that Galois invented group theory to tackle the problem if the quintic can
be solved with radicals. It is noteworthy here that a general method for the equations of
degree n < 4 can be derived by using the method we have used here to derive the Bloch
theorem. This permits us to see that a universal strategy underlies all four solutions.
One calls a matrix with translational symmetry and cyclic boundary conditions as in
(2.30) a circulant matriz. The Bloch waves permit us to solve easily the characteristic
equation of a circulant matrix as the example of the phonons has shown. The idea is
then to find a circulant matrix that has the equation to be solved as its characteris-
tic equation. Expressing the conditions to be fulfilled leads every time to an equation
of degree lower than n, such that the situation is simplified. Consider for instance the

b
equation z2 4+ ax + 3 = 0 and the circulant matrix (a a>' The identification with the

b
characteristic equation of the circulant matrix leads to: —2a = a and a? — b® = 3. This
can be solved in a straightforward way. The reader may try to find a solution for the
cubic equation based on an analogous approach. It will permit the reader to appreciate
how the three numbers 1, e*27/3 and e*47/3 (the cubic roots of 1) enter the scene. But
when we arrive at the quintic, something goes wrong, thwarting the universal strategy.
The conditions lead to an equation of degree 6, such that there is no simplification to an
equation of lower degree.
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the argument of translational invariance, viz. the fact that in a sense the
situation looks the same everywhere, allows one in a very elegant way to
come to terms with the a priori monstrous task of finding the eigenvalues
and eigenvectors. That the situation looks the same everywhere is embod-
ied by (2.22). Everywhere on the lattice this equation expresses the same
relationship between a point with label j and its nearest neighbours labelled
j—1landj+1.

This is a consequence of the symmetry pointed out in Section 2.9. For
an observer living on this lattice it would be impossible to find out from
an inspection of his surroundings where on the lattice he was, i.e. what his
personal value for j would be. We have seen that this is not a characteristic
feature of translational symmetry alone. It also occurs for other symme-
try groups. The example with translational invariance was simple, as the
underlying translation group is commutative or Abelian.

The eigenvectors of the translation matrices have a wave-like structure,
and we have seen that one calls the waves in question Bloch waves. The idea
is easily generalized to n-dimensional translation groups and lattices. Due
to the periodicity of the environments we can expect something analogous
for any symmetry group. In daily life, one can go from point A to point
B using different roads or different paths. The same applies to the group,
and one of the constraints that will tell you which waves you can use is
that the periodicities must turn out to be self-consistent when you walk
these different paths. The connectivity of the group manifold can therefore
be anticipated to play a role. The reader may check that the spherical
harmonics for the rotation group, expressed in the spherical coordinates
(0, ¢) also contain periodic functions in § and ¢. In solid-state physics the
presence of the underlying Bloch waves is not always manifestly visible.
They do come to the fore in the form of true physical waves within a phonon
problem, but they do not within the diffusion problem. Nevertheless, they
are present in the diffusion problem as well.

Now, in quantum mechanics we have a particle-wave duality that causes
significant, conceptual problems. It is relatively hard to imagine how a par-
ticle could also be a wave and wvice versa. It is an interesting speculation
one might conceive based on the story with the Bloch waves, that the waves
would just be a mathematical tool expressing the symmetry and that the
real physics would be just the particles. This is especially tempting because
the whole formalism of quantum mechanics seems to be written in group
theory. But we will see that group theory and symmetry are not the only cul-
prits for the presence of waves in the formalism. Nevertheless, the question
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remains interesting, even if the starting point we used to formulate this
question is not correct. Let us be home ludens and play the game of finding
out what kind of mileage one can get in trying to answer the question if the
waves could be just a mathematical tool. After going through the whole
book, it will be up to the reader to decide for himself what the answer
may be.

2.11 Group representations

A (matrix) representation of a group (G, o) is an isomorphism between
group elements g € G and n x n matrices D(g):

if g1 — D(q1)

then g2091 — D(g2)D(g1).

A well-known example is given by the 3 x 3 rotation matrices SO(3) as
a representation of the rotations in R?. In this case the matrices operate
on 3 x 1 column vectors which are images of vectors v € R3. The number
n is called the dimension of the representation. As already stated, matrix
representations permit us to treat the whole group theory algebraically.
There also exist infinite-dimensional representations of the rotation and
Lorentz groups, but these will not be covered in this book.

2.12 Reducible and irreducible representations

We have seen that C; maps a group element a to a similar, “conjugate”
group element goaog™!. In a matrix group it will map matrices A represent-
ing group elements a onto matrices GAG ™! representing group elements
goaog~'. This kind of mapping is a similarity transformation for matrices.
We can now also use matrices G that do not represent themselves group
elements but belong to the group ring to build similarity transformations.
The similarity transformations then connect groups that are isomorphic. In
fact, when A — GAG™! and B — GBG ™!, then AB - GABG ! =
GAG 'GBG . Similarly, GA~1G™' = (GAG")~! and GIG ™! = 1.
One can thus obtain equivalent representations of the group by similarity
transformations.
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A representation is described as reducible if a matrix G of the group ring
can be found for a similarity transformation that transforms every matrix
in the representation into the same pattern of n diagonal blocks D) (9),7 €
[1,m] NN, where each of the blocks D) (g) is itself a representation of the
group independent of the other blocks. The representation is then said to
be decomposed into a direct sum of the m € N matrices DY) (g):

DM (g)
D®(g)

D(g) = D)) . (2:32)

D™ (g)

In fact, the vector space (V, K, +) of column matrices on which the D(g)
matrices are working is the direct sum of the vector spaces (V(j),K ,+)
of column matrices on which the matrices DU (g) are working: V =
VO @ v®...v@ ... ¢ V), Here K is a notation for a general num-
ber field that can be R or C. If the representation is not reducible, then the
representation is called irreducible. It is a theorem that Abelian groups have
only irreducible representations of dimension 1, while non-Abelian groups
can have irreducible representations of dimension greater than 1. A group
always has a trivial one-dimensional irreducible representation which maps
every group element onto the number 1. The symmetric group (S,,° ), which
is non-Abelian, has another irreducible representation of dimension 1, viz.
the mapping that attributes to each even permutation the number 1, and
to each odd permutation the number —1. Similarly, the non-Abelian group
of rotations and reversals in R? can be given a one-dimensional “parity”
representation in terms of numbers —1 and 1 depending on the question of
whether the group element can be obtained from an even or an odd number
of reflections. There is a geometrical reason for this similarity. The symmet-
ric group (S,,° ) can be visualized as the group of rotations and reversals
that leave a regular simplex a,,_; in R® ™! invariant. A regular simplex o,
is a concept that generalizes the one of an equilateral triangle in R2, or of a
tetrahedron in R? to R™ (see [Coxeter 1963]). It is a regular polytope with
n+1 vertices in R”, and is thus a set of n+1 points P; with position vectors
r; € R" such that 3d € R,V(j,k) € ((1,n+1]NN)?: [r; —r| = (1 — ;5)d.
This turns the algebraic concept of a permutation group into a geometrical
concept of a symmetry group of a regular polytope, highlighting once more
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the intimate connection between group theory and symmetries of geomet-
rical objects.?

It is a vital task in group theory to find all irreducible representations of
a group, because they are the building blocks of all possible representations,
reducible or irreducible. That has been done for the Lorentz group and the
rotation group, but we will not develop this topic in this book.

There are special group-theoretical techniques to find the matrix G for
the similarity transformation that block-diagonalizes a matrix with a given
symmetry to the form given by (2.32), whereby all blocks correspond to
irreducible representations. In fact, one can base the heuristics on an idea
that is similar to the one we used to find the Bloch waves [Lyonnard
(1997)]. But as the group is non-Abelian we will work with eigenvectors
that contain non-commuting numbers, and the blocks matrices play the
role of such numbers. Block diagonalization of a matrix by exploiting its
non-Abelian symmetry is thus analogous to diagonalization of a matrix by
exploiting its translational symmetry. To take into account the non-Abelian
symmetry we use non-commutative numbers that can be represented by
block matrices. This block-diagonalization could be a first step towards the
complete diagonalization of the matrix, which should be always feasible
provided the dimension of the irreducible representation matrices do not
exceed 4. Symmetry can thus be used to block-diagonalize a matrix with a
non-Abelian symmetry, and thus also to calculate the exponential of such
a matrix, for example. Complete diagonalization of matrices with Abelian
symmetry can be obtained by using Bloch waves as described above.

2.13 Eigenvector spaces

The following remark is not really group-theoretical, but it will be of some
use later in the book. Figure 2.8 illustrates a jump model on an icosahedron.
All local environments on the icosahedron are the same. The figure illus-
trates the first-neighbour environment of an arbitrary point. We can now
imagine that an atom jumps with relaxation time 7 between the various
vertices of the icosahedron from neighbour to neighbour along the edges

3 Any choice of n — 1 points of the simplex a, defines a (n — 1)-dimensional hyperplane
in R™, and a permutation of the two remaining points of the simplex corresponds to a
reflection with respect to a hyperplane. Therefore, a transposition in the permutation
group (Sp+1,°) corresponds to a reflection in R™ with respect to a (n — 1)-dimensional
hyperplane of R™. These reflections generate the group of rotations and reversals.
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Fig. 2.8 Illustration of a jump model on the icosahedron. Only a pentagonal cap of
the icosahedron taken from Figure 2.3 is illustrated, because in each point P of the
icosahedron the jump probabilities are the same. The site P is thus situated above the
plane defined by the other sites, A, B, C, D, and E. When the atom is at P then it can
jump to the five nearest-neighbour sides (A, B, C, D, E') with a relaxation time 7.

that join the neighbouring points. The centre of the icosahedron is called
O, and the jump matrix M. Just like in the jump model of Figure 2.6
the equations are the “same” everywhere, such that it suffices to draw Fig-
ure 2.8 to define the whole jump model and the whole jump matrix. The set
of coupled rate equations can be written in matrix form as: %P = %MP7
where the entries of the matrix M are given by:

Mjk = =50k + Sjk, (2.33)

where (Vk € [1,12]NN) (sjr =1 ke S; & sj =0k ¢ S;). Here S is
the set of the five first neighbours of P;. We will not solve this jump model,
but only determine a few eigenvectors of it, using a symmetry argument.
Consider for this purpose the position vectors OP; = r; = (x;,y;,2;) of
the points P;. It is then obvious that:

{ 3 rk] | ;. (2.34)
PeES,

In fact, the points P, € S; are symmetrically distributed around OP; such
that their sum must be parallel to OP;. From this it is easy to see that
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the 12 x 1 column vector [ry,T2,...,T12] "

matrix M. Using the coordinates provided in the caption of Figure 2.3 one
can actually check that:

is an “eigenvector” of the jump

[ 3 rk} = (20— 1)1;, (2.35)

PkESj

such that the corresponding eigenvalue for the jump problem is A = (2a —
6)/7. However, we are used to considering eigenvectors strictly as 12 x 1
column vectors whose entries are scalars. We can remedy this by using an
expedient that will often be used in this book: imagine that a ny X ng
matrix A consists of n3 column matrices a;, where j € [1,n3] NN and the
ng matrices a; are of the type ng x 1. Consider an n; x ny matrix B. Then
BA is of the type n1 X ng and due to the definition of matrix multiplication,
it consists of the n3 column matrices Ba;. Working by multiplication on
an n3 X ng matrix A is thus nothing other than working simultaneously
by multiplication on n3 different ny x 1 column matrices a;. Rather than
considering A as a fixed rigid mathematical entity, A will often be treated
as a loose set of column matrices a;, where the set is assembled by mere
juxtaposition, and we can move elements in or out of sets at will, in this
way defining various different matrices.

The matrices can be thought of in terms of a kind of Meccano game.
The individual pieces of this game are the column matrices. These indi-
vidual pieces can be put together to make a construction and the con-
structions can be taken apart again. In this spirit, we can write r;
as an assembly of three coordinates (xj,y;, ;). The latter implies that
[21,%2,...,212] ", [y1,Y2,---,y12] ", and [21,22,...,212]" are three lin-
early independent eigenvectors with the same eigenvalue A. That is, we can
consider [ry,ra,...,T2 ]T as a 12 x 3 matrix, which is the juxtaposition of
three 12 x 1 eigenvectors with eigenvalue .

These three eigenvectors build a three-dimensional vector space V' of
eigenvectors. The eigenvalue A is degenerate. The three eigenvectors we
obtained are expressed with respect to a given choice of basis. By changing
the basis they acquire new expressions, and by taking all possible orienta-
tions of the basis, the corresponding expressions will run through the whole
vector space V. It is however much easier to make physical sense of the 12x3
eigenvector as a whole, than of the separate 12 x 1 matrices, which are in a
sense mere vector projections that depend on an arbitrary choice of basis.
In the analogy of the Meccano game, it will be easier to understand what is
happing by explaining that the idea is to rotate a crane than by describing
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one by one the rotations of all the individual Meccano pieces used in the
crane. In the latter case one might just miss out on the overall coherence
of the global picture and on the general idea. A vector r; is a meaning-
ful quantity that does not depend on the choice of a basis. This idea will
be used in Chapter 4, where it will be argued that it makes much more
physical sense to use two-column quantities as spinors than single-column
quantities, as the single-column quantities (which in following Cartan will
be called semi-spinors) contain only half of the information. This is also the
reason why the matrices of SL(2,C) will be used as spinors for the Lorentz
group. In a surprising further development it will turn out that the 4 x 1
matrices of the Dirac theory contain the same information as the SL(2,C)
matrices.

2.14 Groups and physics — final remarks

This subsection contains some general remarks about the relationships
between physics and group theory, that will permit the reader to see the
philosophy behind the methodology and the conceptual links. We have seen
that the symmetry of a group corresponds to an idea reminiscent of Ein-
stein’s principle of relativity. This can be taken as a first hint of the impor-
tance of group theory for physics. There is another angle of approach that
illustrates this importance further. In the monumental work of Misner et
al. [Misner et al. (1970)] the authors try to convey the insight to the reader
that physics is geometry. But according to Felix Klein’s Erlangen Program,
geometry is group theory. Combining the two, we can then conclude that
physics should be group theory, and this seems to be confirmed in Wigner’s
work.

An argument developed in Section 2.10 explains why group theory con-
tains waves. This could perhaps be one of the reasons why quantum mechan-
ics is wave mechanics. Quantum mechanics is also matrix mechanics. What
we use in quantum mechanics is more specifically group representation the-
ory. The great idea of Descartes was to establish an isomorphism between
geometry and algebra. With analytic geometry it becomes possible to check
the truth of geometrical theorems mechanically. One could adopt the eccen-
tric viewpoint that one does not need any additional insight to prove the
theorems, because all one has to do is process the algebra. One could even
go further and make a stand against wanting anything more: intuition kills
rigour. (There is another taboo in physics with rather similar discouraging
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traits: it is generally admitted that quantum mechanics is beyond classi-
cal intuition). But for learning the subject matter and gaining insight it
is much better to combine both rigour and intuition, such that one can
swap constantly from one to the other. In fact, the algebra might prove
terribly cumbersome without some clever moves prompted by visual clues
on the geometrical side. The reader might try for instance his luck in find-
ing a proof of Morley’s theorem that the trisectors of the three angles of a
triangle meet at the vertices of an equilateral triangle by purely algebraic
methods. He will quickly discover that it is not a trivial task to disentangle
the algebra without applying some dedicated identities.

The isomorphism that does the Descartes-like trick for group theory is
matrix representation theory. It turns the whole geometry of group theory
into matrix algebra just as analytic geometry turns the whole of Euclidean
geometry into algebra. The whole subject becomes just a matter of calcu-
lating with matrices. Presumably, one may then expect to be able to carry
out all the calculations without any insight into the underlying geometry.
This is what quantum mechanics is about. In matrix mechanics one can just
stick to the algebra without knowing what is going on behind the scenes
and blindly follow the leitmotiv summarized in Mermin’s witty slogan “Shut
up and calculate”. Nevertheless, the high level of abstraction and the lack
of insight are considered disturbing by many people. In Feynman’s words:
“I think I can safely say that nobody understands quantum mechanics”
[Feynman et al. (1964)]. The only way to tackle this problem is finding the
meaning of the corresponding geometry, and this is what this book aims to
be about.

The reader should be warned, however, that success is not automatically
guaranteed. We have seen that the models visualized in Figures 2.6 and 2.7
lead to the same wave functions, even though the physical mechanisms
that underly the models are very different. A mechanism for diffusion is
all together different from a mechanism for phonon propagation. The wave
functions only contain information about the symmetry, not the underlying
mechanism. Group theory only deals with the symmetry. In as far as the
mere algebra seems to reproduce with great accuracy all we can measure,
such that quantum mechanics appears to be a complete theory, it might
thus prove impossible to recover the physical mechanism from the theory.
Further musings on this theme are given in Chapter 11.



Chapter 3

Spinors in the Rotation Group

No one fully understands spinors. Their algebra is formally under-
stood but their general significance is mysterious. In some sense
they describe the “square root” of geometry and, just as under-
standing the square root of —1 took centuries, the same might be
true of spinors.

— Michael Atiyah [Farmelo (2009)]

3.1 Preamble

This section starts with some further remarks about group representation
theory, using the group of three-dimensional rotations as a case in point.
Some parts of the theory of spinors in the rotation group will be further
developed starting from Section 3.2. The reader should remember that it is
not the aim to reproduce the full theory of spinors in SO(3) or SU(2). An
ample description is already given in many textbooks (for example [Cartan
(1981); Chaichian and Hagedorn (1998); Cornwell (1984); Hladik (1996);
Inui et al. (1990); Jones (1990); Misner et al. (1970); Smirnov (1972);
Sternberg (1994)]). The aim of this chapter is rather to present the results
of the theory in a new light. Wigner identified how important group theory
is for quantum mechanics. The approach presented in this book will give a
better geometrical insight into this important link. It will focus on a number
of important points in the development, that will clarify the spinor idea and
by analogy will also make it possible to understand the meaning of spinors
in the Lorentz group.

47
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3.2 Tensor products

With two representations D) and D) of dimensions d; and ds respec-
tively, one can construct a new representation D of dimension d;ds, namely:

g —D(g9) =D (9) @ DY (g), (3.1)

which works on vectors a = w ® v. This is a compact form to state that
starting from quantities and transformation laws w}; = »_ Dﬁ,)l Wy, and
v =, D,(;l) vp, one can define quantities a;-k = w}v}c, A = Wiy Uy, With
a transformation law a;k = in Dikmn Gmn, Where Djj = Dﬁ)l D,(fln)7
as is easily checked. It is also easily checked that these new matrices
D®) (g) ® DM (g) do indeed build a representation. If the eigenvalues cor-
responding to the eigenvectors w; of D® are Aj, and the eigenvalues cor-
responding to the eigenvectors vi of D) are piy,, then the eigenvectors of
D® (g)@DW(g) will be w; @ v}, with eigenvalues \;j. When the vectors v
and w are identical, indices (jk) and (kj) must be grouped together, which
will reduce the dimension to less than dids. In the rotation group, this
point summarizes the derivation of the whole set of harmonic polynomials
(with one additional complication due to the fact that the polynomials are
subject to constraints; see below).

3.3 What is a spinor or what kind of thing does a matrix
of SU(2) work on?

In applying this idea inversely to the rotation group in R?, we observe that
the eigenvalues for a rotation over an angle ¢ are 1, e*¥, e~ "¢, which is of the
type AMjin, Mo = Aafin, Aopo, with Ay = €?/2, Ay = e7%/2 and py = e"#/2,
o = e~ /2. This suggests that there might exist a two-dimensional repre-
sentation D wherein the eigenvalues are \; = /2 and \y = e’“"/Q, and
for which the reduction of D ® D (that is necessary due to Ajpue = Aapq)
corresponds to the three-dimensional representation. The three-dimensional
vectors would then in reality be composed quantities of the type £ ® £ in
terms of more basic quantities £€. (Of course, the two-dimensional represen-
tation referred to, viz. SU(2) is well known. The reader is supposed here to
have some knowledge about it in order to be able to follow the argument,
but at the end of this chapter, he will perfectly understand this). This
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finding corresponds to Atiyah’s remark [Farmelo (2009)] that the object &,
called a spinor, should be the square root of a vector that is of the type
& ® €. This surprising possibility has profound consequences: there must
exist representations of the rotation group whose matrices do not work on
images of vectors, as the two eigenvalues mentioned do not fit into a scheme
for vector images. The question arises then on what kind of images these
representations might work. The answer is simple: they work on images of
rotations. In fact, the group structure of the rotation group exists without
any reference to a vector of R?. All that the group structure really defines
is the multiplication table of group elements. Such a multiplication table
can be considered as the extrapolation to an infinite group G of what a
Cayley table is for a finite group.

Considering the rotations as elements of a group introduces a real
paradigm shift: a rotation is considered as a function acting on other rota-
tions rather than on vectors.! The action of this function on the other
rotations is just a left multiplication with a group element in the abstract
group, as illustrated for the group element g € G in the multiplication
table for the group G with composition law o below:

o g1 g2 g3 9
g1 g1o0g1 g1 0492 g1°93 g10g;
g2 g2°04g1 g2 0 g2 929033 g204g;
0] 0] 0] ) s
| o | gkogr  groge  grogs 9 0 g, o

(3.2)
where the function g : G — G; g; — gx(9;) = grog;. The function g
is no longer defined by all its function values gi(r),Vr € R3, but all its
values gx(g;),Vg; € G. More rigorously, an arbitrary group element g € G

1 The reader will recognize here the ideas developed in the discussion about the difference
between the icosahedron I and the icosahedral group Y in Section 2.9. The true objects
of study in group theory are not the vectors but the elements of F(R3 R3), as the
abstract axioms of a group deny citizenship to the vectors by completely ignoring them
and excluding them from the formulation. The composition law that is the subject of
study is the composition of functions.
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is identified with the function f, € F(G, G) that maps G to G according to
fq:9; € G— fq(g;) = gogj. The identification is introduced by noting for
the sake of simplicity fj; as g. It implies that f, € F(G,G) represents g € G.
Let this representation f, of g be called the automorphism representation.
The simplification of notation that identifies f; with g is an abus de langage
but permits us to write g : g; € G — g(g;) = gog; as we did in (3.2) and
permits grasping more easily the idea of interpreting a rotation as a function
that works on other rotations rather than on vectors.?

The rotations are no longer considered as functions f € F(R3,R?) act-
ing on vectors coded by their coordinates. There is no longer any mention
of any vector r € R? in such an abstract description in terms of rotations
as functions acting on other rotations, nor of any length r of such a vec-
tor; all the attention is focused on the abstract structure of the group. This
results in a minimal description, from which everything that is not essential
has been stripped away; for example, any reference to vectors is removed,
because while it might be necessary to consider vectors for carrying out the
task of creating the group multiplication table, once its structure is in place,
these vectors are no longer an indispensable part of the formulation. Per-
haps we could reason then as follows: The most fundamental representation
of a group should be devoid of any reference to such quantities like vectors.
In this minimal approach, all a rotation can work on is another rotation,
as this is all the group is about. The most basic representation must there-
fore be one that works on images of group elements. Therefore, the 2 x 1
column vectors the 2 x 2 matrices of the representation work on must code
rotations. It will be shown that this reasoning holds for the rotation group,
and that it can be developed by analogy into a guiding principle for the
Lorentz group. This paradigm shift in the quantities that are represented
by the column matrices can be summarized in the following diagram:

2By noting fy € F(G,G) as g € G the group element g is identified with its auto-
morphism representation fg. This is analogous to identifying a group element with its
representation matrix D(g). Eventually, the group element and a representation of it
become intuitively the same thing and one can be substituted for the other. The auto-
morphism representation is based on a homomorphism, e.g. fi 04 = fr °fg, as is eas-
ily proved. The symbol © on the right-hand side stands here for the composition law
for functions from F(G,G). The proof follows then from: Vg; € G : (fy °fg)(g;) =
Fn(fa(97)) = fa(g o 95) = ho (g0 g;) = (h0g) 0 g; = froy(gy). One can also check that
fn—1 = (fn)~ ! and fe = 1, where e notes the unit element of the group, and 1 the identity
mapping.
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Se]
r; eR? =2 g(r) =1, eR?

3 x 3 rotation matrices R, working on vectors r.

ﬂ (3.3)
gi€G % gg)=gogi—g, €@

l |

o] = wa g =[]

2 x 2 rotation matrices D, working on rotations §.

In this diagram a group element g is identified with the function f, : g; €
G — f4(g9;) = gog;. Such functions f, are called group automorphisms.?
This way, the definition of a rotation has been changed from an element
g € F(R3,R?) to an element f, € F(G,G). The 2 x 1 column matrices that
code the rotations g; € G and fy(g;) € G, are the so-called spinors. The
2 x 2 SU(2) matrices code f, € F(G,G). The representation is thus based
on group automorphisms, i.e. the 2 x 2 representation matrices correspond
to group automorphisms, while the spinors correspond to group elements.
Whereas r = (z,y,2) € R? serve as coordinates for vectors, the spinors &,
with €7 = (&, &) € C2, fulfill the role of complex coordinates for rotations.
At this point, the reader can already get an inkling that the point we want

3This rigorous treatment defines first the functions fy; and then the homomorphism
f € F(G,F(G,G)), f : g — fg, that maps group elements on corresponding group
automorphisms. But such scientific rigour tends to hide the true motivation. To get the
initial intuitive idea across it is therefore better to use the abus de langage discussed in
the text.
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to make for the rotation group must be true. In fact, as identified in (2.12),
and as will be proved in this chapter (in the discussion preceding (3.14)),
a rotation matrix in SU(2) is of the form:

(o). (3.4)

where aa* + bb* = 1. It is obvious that the information contents of the
second column are completely defined by those of the first column. Hence,
within a 2 x 1 column vector [a,b]" the whole information content of the
representation is found, and the formalism wherein 2 X 2 matrices work on
2 x 2 matrices can be replaced by one wherein the 2 x 2 matrices work on
such 2 x 1 column matrices. The development will explain in which way
this information about the rotation is coded into such column matrices.

It may also be observed that the simplified notation used for the auto-
morphism representation fy of the group element g by the group element g
itself, shows some analogy with the dual-vector notation a € R™ for linear
mappings fa € F(R",R) :r € R" — fa(r) =a-r e R.

3.4 Why we need a “Vielbein”

This raises the question of the coding: how can one turn the image of a rota-
tion into a 2 x 1 column vector? A rotation is a linear mapping, and a linear
mapping is entirely defined by its restriction to a basis. Hence, to know a
rotation completely one must know how it works on the triad (Dreibein in
German) of three basis vectors of an orthonormal reference frame.

The three vectors have nine components in total, but they are not
all independent: the vectors are normalized (three conditions) and mutu-
ally orthogonal (three more conditions). Only three independent variables
remain: the direction of a first unit vector (e.g. e; = (x1,¥y1,21)) can be
coded with two independent variables, while the direction of a unit vec-
tor that is orthogonal to it (e.g. ea = (x2,¥a2, 22)) can then be coded with
just one more independent variable. This fixes the value of the third vector
e3 = e; A es. That a rotation is defined by three independent real param-
eters is also obvious by its description based on Euler angles («, 3,7), or
its description in terms of a rotation axis (which can be defined by a unit
vector n, i.e. two independent parameters) and a rotation angle ¢.

A scheme for coding the information contained within a triad has been
developed by Cartan [Cartan (1981)], clearly showing the leap from vectors
to rotations. Two unit vectors of the triad are combined into a single vector
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by blending them into a single quantity e; +ies = (x,y, z). That is x = 21+
1o,y = Y1 + 1o, 2 = 21 + 122, where e1 = (x1,y1,21) and e = (x2, Y2, 22).
By doing so all the information about the triad is coded unambiguously.
It can always be decoded back again: Whatever rotations are performed
on this quantity, it will always be possible to identify the rotated images
of the two basis vectors €] and e}, afterwards by separating the real and
imaginary parts.*

4In Chapter 2 it was argued that group theory does not contain vectors as the group
elements g are functions g € G C F(V,V). But as these are rather abstract quantities,
the concept of a model space has been introduced in an attempt to visualize them. When
this idea is applied to the rotation group, the natural choice for the model space would
thus be V = R3, but it turns out that R3 cannot function as the model space. The vector
space R3 on which the matrices of SO(3) are acting could be considered as a model space
for the rotation group according to a diagram of the type of (2.20), but this betrays the
original idea of excluding the physical vectors, and using model spaces only to visualize
the group elements g. The vector space R? cannot function as the model space, because
it does not have a subset S of vectors that would represent the group faithfully. As
explained in Figure 3.2, each vector of R3 corresponds to an infinity of group elements.
This is reminiscent of the situation with the icosahedral group Y, where the model of
the icosahedron I in model space V = R? is not an isomorphism for Y, because each
point of the icosahedron represents five group elements, and the model is degenerated.
For the icosahedral group the degeneracy can be avoided by restricting the model space
to V\I, i.e. by excluding the points that lead to the degenerated model from the model
space. The buckyball is a subset S C V\I of this restricted model space. But the same
thing cannot be done for the rotation group as the degenerated model is a sphere, which
is already the whole model space wherein one would want to build the model. In other
words the restriction would be empty.

Could one nevertheless find a genuine vector model according to a diagram of the
type of (2.20) to visualize the abstract concept of a rotation group that represents the
group faithfully, just like the buckyball does for the icosahedral group? This may look
impossible, but against all odds, the group can be represented faithfully by searching
for a better vector model based on a less obvious choice V/ # V for the model space.
This choice can be found by going back to the original idea, i.e. a diagram of the type of
(2.19). The first faithfull representation of the rotation group that has been proposed in
this book visualizes the rotations in terms of triads. Due to the isomorphism, the triads
are rotations. A triad is a perfect visual picture for a rotation, but it is a set of three
vectors rather than a single vector. This suggests that the model space would instead be
something like RY. Fortunately, the triads are themselves already faithfully represented
by two vectors, which reduces the model space to RS, and these can in turn be represented
faithfully by isotropic vectors which are elements of C3 = R®. Due to this second series of
isomorphisms, the isotropic vectors are triads, and due to the first isomorphism they are
thus rotations. In summary, this means that isotropic vectors constitute a faithful vector
model for the rotation group in the less obvious model space V/ = C3. As it is faithful,
it really can be said that group elements are rotated when these isotropic vectors are
rotated. This idea thus permits visualizing the abstract concept of the rotation group by
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The extrapolation of the algebra involved in the Euclidean distance
function of R? to C? leads to the finding that the quantity e; +2e, obtained
this way by combining two orthogonal unit vectors is a so-called isotropic
vector, i.e. a vector of “zero length”, but the latter formulation is a misuse
of language, since after the extrapolation of the Euclidean distance function
towards C? it no longer defines a distance function. In fact, 22 + y2 + 22 =
(w1 +122)? + (y1+2y2)% + (21 +1222)? = 0, which is completely at odds with a
basic axiom for a distance function, viz. that it should be positive-definite.
(The distance function to be used in C? is za* +yy* + zz*.) The transition
from vectors to rotations can be made through the use of isotropic vectors.
Note that in reality it is not necessary to work on the unit vectors, but
only on their directions: a vector remains isotropic when multiplied with
a constant. This is why homogeneous coordinates can be used and why
representations in terms of homogeneous coordinates (i.e. the harmonic
polynomials) are found in the example of the three-dimensional rotation
group.

The generalization to higher dimensions of the idea that one must code
the whole n-bein is a leading principle for representation theory, although it
is a priori not obvious how one can, for instance, code the four unit vectors
of the tetrad (Vierbein) in R* into one quantity. One runs out of quanti-
ties like 2. There is no commutative number field beyond C and therefore
it looks at first sight as though one can only proceed further by introduc-
ing non-commutative algebra. (It will be explained later how to overcome
these difficulties for R*, and especially for the Lorentz group of special
relativity.)

Eventually, it will be possible to appreciate that the idea of coding the n-
bein as an image of the group element is rigorously respected and the guiding
principle for the development; spinors are nothing other than the appropri-
ate coding in the form of (a set of) column matrices of the elements of the
rotation group in R™ pictured as an n-bein. This is precise and clear, and it
is noteworthy that such a clear statement is hard to find in the specialized
literature, with the immediate consequence that to many the spinor concept
looks impenetrable and shrouded in mystery.® But if the argument about

a vector model according to a diagram of the type of (2.20). The model is not artificial
as it is an isomorphism; the model vectors are the isotropic vectors.

5Understanding spinors involves thus two things: (1) Understanding the intuitive idea of
considering a rotation as a function working on other rotations rather than on vectors,
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Fig. 3.1 Images of a spinor and a rotated spinor, represented at the origin O of a
reference frame. The triad of the three unit vectors ez, ey, e, (along the axes z,y, z of
the frame) is the reference spinor that defines the identity element of the rotation group.
The rotated spinor is the rotated triad of unit vectors €/, e;, e’ (along the rotated axes
z/,y’, 2" of the rotated frame).

what is the minimal information which defines a group is combined with
the idea that a group element can be visualized as an n-bein, the further
development looks quite cogent.

To conclude this discussion, we visualize a spinor for the three-
dimensional rotation group and its rotation in Figure 3.1. The crucial dif-
ference with the rotation of a vector is visualized in Figure 3.2. These two
figures summarize one of the major messages of this book. Classical mechan-
ics is very intuitive. The calculations are performed on vectors and using
intuition it is possible to visualize such objects. But quantum mechanics
looks abstract and devoid of images. This is because the calculations of
quantum mechanics are made on spinors, for which a mental picture is not
readily available. Figures 3.1 and 3.2 give such an image of a spinor. A
spinor is just a set of coordinates for a group element. Any complete set of
coordinates will do, and to visualize them the triads of basis vectors that
are in one-to-one correspondence with their associated rotations are very
convenient. With this image of a spinor we will be able to visualize things
again like in classical mechanics.

as this is all the structure of a group is about. This corresponds to introducing the
automorphism representation. (2) Visualizing the rotations in terms of a triad (as will
be further explored in Sections 3.6 and 3.7).



56 From Spinors to Quantum Mechanics

Fig. 3.2 Images of a spinor and a rotated spinor represented on the surface of a sphere
(for comparison with the rotation of a vector). The triad of the three unit vectors
ez,ey,e; in P(0,0,r) is the reference spinor that defines the identity element of the
rotation group. The rotated spinor is the triad in P’ of the three rotated unit vectors
e;,e;,e’z. In a description based on vectors, we would represent the rotation by the
rotated vector OP’ that defines the new z-axis 2/, with two parameters (6, ¢) that define
OP' = (rsinfcos ¢, rsinfsin ¢, r cos ). The vector OP’ (0, ¢) does not define the rota-
tion unambiguously, while the spinor does. In fact, after the rotation of OP to OP’,
the rotated z-axis z¢ and y-axis yo may still not be aligned with 2’ and 3’. A further
rotation over an angle x around OP’ will make the z and y axes coincide with z’ and y’.
The supplementary angle x permits us to define the spinor and the rotation completely.
When one must simultaneously visualize several spinors, it is preferable for the sake of
clarity to represent them (like we have done here) in different positions P on the surface
of a sphere defined by e, rather than all together at the origin.

3.5 Dirac’s method to code 3D vectors as 2D
complex quantities

For the two-dimensional representation of the rotation group, the two
three-dimensional vectors must be combined into an isotropic vector. But
there is a problem: how can three-dimensional vectors be coded into a
two-dimensional formalism in the first place? The spinors are elements
of C?, while the isotropic vectors are elements of C3. This is where Dirac’s
expedient comes in. The reader will recognize in the following heuristics
a construction that Dirac used in introducing his famous equation (see
Chapter 5). Consider a unit vector a = (a4, ay,a.). This unit vector will
be used to code a reflection with respect to the plane that is normal to this
vector.

In fact, as illustrated in Figure 3.3, reflections are the generators of the
rotation group and the group can be built starting from these generators.
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Fig. 3.3 A rotation R in R3 as the product of two reflections defined by their reflection
planes A; and Ag. Starting from two arbitrary planes A; and As in R3 that intersect
along a straight line n, the plane of the figure is taken perpendicular to the line n and
intersects n in the point O. The names A; and Az of the planes are used to label both
their intersections with the plane of the figure and the reflection operations they define.
The position vector OP of the point P to be reflected, is at an angle a with respect to
A1, where A1(P) = P;. The position vector OP; is at angle 8 with respect to As. The
angle between A; and Ag is then « + (3. As can be seen from their operations on the
butterfly, reflections have negative parity, but the product of two reflections conserves
the parity. The product of the two reflections is therefore a rotation R = As ® Ay, with
axis n and rotation angle 2(a + ). Only the relative angle o + 3 between A; and Az
appears in the final result, not its decomposition into o and (3. Hence, the final result will
not be changed when the two planes are turned together as a whole around n keeping
a+ [ fixed. This shows that there is an infinite number of ways to decompose a rotation
into two reflections. (This is useful for calculating the product of two spatial rotations
R; = A2° A; with axis n; and Ry = A4 © A3z with axis ny by using the freedom to choose
Ag = Az as the plane that contains both n; and na, such that Rz ° R1 reduces then to
A4 ° A1.) On the other hand, when the plane A; is fixed and the plane As allowed to
turn, such that a+ (3 increases starting from zero, the rotation angle 2(a+ () runs twice
as fast as the angle a4 (8 between the reflection planes. When a4+ (3 reaches the value 7,
the planes A1 and Az will coincide again (but with opposite orientation normals). The
corresponding rotation angle will be 27 and the rotation obtained corresponds to the
identity element. To recover the same orientation normal, the plane must turn over 27,
resulting in a 47 rotation.

The first step is to attempt to code the reflections into 2 x 2 matrices. This
leap from vectors to reflections is easier than that from isotropic vectors to
rotations. Rotations will follow by combining reflections. The components
of the vector a that defines the reflection A will appear somewhere in the
matrix being sought as parameters, but it is not clear how or where. There-
fore, we decompose the matrix A that codes the reflection A defined by a
linearly as a0, + ayo, + a.o., where o, 0y, 0. are unknown matrices, as
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summarized in the following diagram:

a defines a

a=(az,ay,a,) €R? 2 X 2 matrix A

reflection A
ldeﬁnition J{Dirac’s heuristics
(3.5)

analogy of A = Gp0y + ayoy + a0

a = aze,; + aye, + a,e, —
v decompositions

noted as a-o

If the matrix o, is known, it will indicate where and with which coeffi-
cients a, appears in A. The matrices 0., 0y, 0., for reflections within R3,
can be found by expressing isomorphically through AA = 1 what defines
a reflection, viz. that the reflection operator A is idempotent. This will be
the case provided the three matrices simultaneously satisfy the six condi-
tions 0,0, + 0,0, = 20,1, i.e. provided one takes the Pauli matrices for
0z,0y,0,. The matrix A will be given by:

A =a,0, +ayoy +az0, = <a$ j—zmy am_@i%) . (3.6)

The Pauli matrices are thus reflection operators. For readers used to an
approach based on Lie algebra, this may come as a surprise (see Subsection
5.10.1). The diagram in (3.5) shows how within the set of complex 2 x 2
reflection matrices, the matrices o, 0y, 0, play a role that is analogous to
that of the basis vectors e, e,, e, within R3.

Going beyond the idea that unit vectors identify reflections, o, 0,0
can be used to code a vector v of R3 of any length as a 2 x 2 matrix
V = v,0, + vy0, + v,0.. It is found then that V2 = v.vl codes v - v.
More generally, 2w - vl = VW + WV. As a reflection defined by a unit
vector a maps a vector v onto v — 2(a - v) a, the outcome of operating the
reflection A on the vector represented by the matrix V is given by —AVA.
This presents a major problem, because the result is quadratic in the matrix
A. In other words, the representation is not linear.°

It is obvious that a rotation resulting from two successive reflections
A and B respectively defined by unit vectors a and b, will then be given
by BAVAB, which is of the form SVS™!, with S = BA. To render the

6 An example of a similar quadratic dependence of a rotation on certain parameters is
the expression in R3 for a rotation with axis n and angle ¢, as given, for example, in
equation (3.3.4) in [Chaichian and Hagedorn (1998)].
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formalism linear, an attempt will be made to split it by writing V as
SlKSfl, such that in the end the group can be represented linearly as
matrices A working on the left on S; and/or as matrices A~! = A work-
ing on the right-hand side of Sl_l. This is self-consistent as S; — AS; is
equivalent to S;* — S;TATL

To obtain more clarity regarding this problem V can be diagonalized
as SlKSfl. By doing so, the structure of SlKSf1 perfectly matches the
structure of SVS~! for a rotation.

3.6 From vectors to spinors: Preliminary description

The representation is not linear because it was applied to vectors rather
than to rotations. It should be remembered that the eigenvalues in a repre-
sentation based on vectors were of the type A7, A\; A2, A3, and that the goal
is to find the representation that turns out eigenvalues A1, Ao. The idea of
halving the formalism should therefore not come as a surprise, and a vector
can be expected to be of the second degree in the more basic quantities. This
confirms the fact that V is a vector, which should in some way be turned
into a rotation, by taking a kind of square root (to get from eigenvalues of
the type Aj A, to eigenvalues of the type A;).

The full calculations that show how this can be achieved will be given
in Section 3.7. The underlying ideas will be described here. As it is the
isotropic vectors that must code a rotation, V must be replaced by a matrix
M that codes an isotropic vector. Suppose as a matter of heuristics that
it is also possible to diagonalize the matrix M as TWT~!. Because the
structures TWT ™! and SVS~! are the same, it will then no longer be
possible to tell isotropic vectors and rotations apart if the two diagonaliza-
tions are identifiable, provided W can be identified with the value of K for
some element of the group. This will then be a way to jump logically from
a representation in the form of vectors towards a representation in the form
of rotations.

But this idea is totally thwarted by the fact that an isotropic vector
has “zero length”. This implies that M? = 0 and therefore that M cannot
be diagonalized because both its eigenvalues are zero. The way out of this
impasse is a re-normalization procedure. First, diagonalize the matrix V
corresponding to a non-isotropic vector. The eigenvalues turn out to be r
and —r where 7 is the length of the vector. But the amplitude r can be
factorized into two terms 4/r, one of which is relegated to the left to combine
it with S;, and one which is moved to the right to combine it with Sl’l. The



60 From Spinors to Quantum Mechanics

magic is that when after doing this r is allowed to tend to zero, all quantities
remain finite and non-trivial, and this renders the idea of identifying the
diagonalization procedures viable again, be it in a modified form.

Simultaneously, a principle of homogeneity is recovered that becomes
enabled by the prior re-normalization. All remaining expressions become
homogeneous in the coordinates (z,y, z). This principle is a kind of surpris-
ing mental leap, embodying the leap from vectors to rotations. Without it,
all is still in terms of vectors, and it is therefore crucial. The homogene-
ity principle and the obligation to code the triad become simultaneously
enabled by taking the limit » — 0. As mentioned earlier, logically the
precise length r of a vector has a priori no place in a formulation of the
group. Everything should be independent of the precise value of r. It was
also stated early on that it is only the directions of the unit vectors of the
triad that count. This transpires in the final formalism through the obvi-
ous property that the formalism is scale-invariant. This is exactly what the
homogeneity principle is about: it leaves scale-invariant homogeneous coor-
dinates. But this is achieved in the most radical fashion: by dismissing the
quantity r altogether by making it equal to zero. r is removed from the for-
malism because r does not appear in the group multiplication table. It has
no role in the minimal set of parameters that should allow discussing the
group table. This reflects the metaphor used in the Introduction that “two
chairs define a single table”. The mathematical structure should appear
from the reasoning without any reference to the underlying meaning that
“two points define a straight line”. The mathematical structure is provided
by the group table, not by interpreting the group elements in terms of how
they are operating on vectors. By taking that interpretation too much into
account, the fact that a different interpretation exists with a deeper mean-
ing was overlooked, viz. one in terms of group elements working on other
group elements. Moreover, putting » = 0 for a vector renders it easier to
express the constraint 2 +y2+ 22 = r2 that defines rotations as isometries,
and turns the rotation group into a manifold rather than a vector space.
What is left of W after taking r out can be identified with a reflection
matrix, such that the initial goals are fully satisfied.

3.7 From vectors to spinors: Detailed derivation
of the expression of the spinors

The ideas applied to the diagonalization of an isotropic vector do indeed
reproduce exactly the definition of the spinors for the rotation group as
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given by Cartan[Cartan (1981)]. It also shows that vectors are second-degree
tensor products of spinors. The detail of the calculations described is as
follows: the matrix R that codes the vector r = (z,y, z) of length r # 0 is
given by:

B B z T —y
R =20, +yo, +z20.= (x -z ) . (3.7)

Here the notation (z,y, z) represents a vector that is not of “zero-length”,
anticipating that eventually it will be replaced by the isotropic vector
(z,y, z) defined above. The eigenvalues of this matrix are r and —r. Diag-
onalization leads to:

1 (J;—zy x—zy) <7‘ O)
R=—r—r=———
—2r(x —wy) \—z+r —z—r) \0 —r

) <_ZZ—_TT _Ef—_%;y)> \/ﬁ (3.8)

and after applying the re-normalization procedure:
R 1 (x—zy x—zy) (1 0)
—2(r—y) \—z+71r —z—r) \0 -1

y (—z—r —(x—zy)) 1
z2—r T —y V=20 —w) (3.9)
After taking the limit » — 0 the following is obtained after some algebra
for both columns in the left-hand matrix:

( Z ): IF% , (3.10)

in agreement with the result given by Cartan. Note that in the limit » — 0,
(z,y,2) = (x1 4122, y1 +1Y2, 21 +122) as discussed above and therefore codes
the whole triad of a rotated reference frame. Based on the definitions:

v =& - &, (3.11)
y =& + D), (3.12)
zZ = —25051, (313)

from which it can be seen that (£p,&1) code the whole triad of the rotated
reference frame. It must be noted that x, y and z are complex numbers.
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For this reason, complex conjugation should not be too routinely used on
&0, &1, and other quantities like x + 2y: e.g. the complex conjugate of x + 1y
is not x — 1y but x* — ™, ete. ...

There is an alternative way to deduce (3.10-3.13), viz. by calculating
the representation GVG 1! of the isotropic vector (x,y, z) that is the image
of e, + 1€, under a general element G of SU(2) as given by (3.4) (which
can now be proved by writing the rotation matrix G as a product of two
reflection matrices G = BA following the procedure outlined in Figure 3.3,
and deriving from this that GT = G™! and det G = 1):

z z—w\ [(a —b° 0 2 a* b*
T4y —z S \b a* 0 0 —b a
—ab a?
=2 (—b2 ab) (3.14)

—9 (Z) ® (—b, a).

Here V is the representation of e, + te,. From this we can appreciate
that actually (a,b) = (&o,&1), which means that the spinors also occur in
the rotation matrices. This also confirms the initial observation that the
rotation matrix can be split into two parts.” This demonstrates that a
vector is not a tensor product £ ® £ of two spinors £ as might have been
anticipated in Section 3.3, but rather a tensor product of the type &; ® 55.
What was not anticipated at the time is that 5; does indeed contain the
components of &;, but in a reshuffled way. Rather than stating that a spinor
is the square root of a vector, it should rather be stated that a vector is a
bilinear expression of spinors.®

"In the initial form of (3.7), the isotropic vector (1,7,0) leads to two zeros [0,0] " in the
first column, while the corresponding spinor is [1,0]T. The re-normalization procedure
removes a very inconvenient zero from the formalism. A rotation over an angle ¢ around
the z-axis transforms [1,0] T into €*?/2[1,0]T, from which it is seen that two quantities
that are equal up to a normalization factor nevertheless represent different group ele-
ments. This is routinely neglected in quantum mechanics, where spinors are treated like
vectors, that one can normalize at will.

8The spinor &, corresponds to the second column of the rotation matrix R that rep-
resents the rotation R and whose first column is &;. It is the first column of the matrix
R [e;-o ] that represents the reversal R’ = RA,. Here A is the reflection with respect
to the Oyz plane, as its representation matrix is indeed [eg-0] = oz. As we always
take the first columns of the representation matrices to be our spinors, the spinor &,
represents the reversal R’. This spinor is orthogonal to the spinor &; with respect to the
Hermitian in-product that is used for complex vector spaces. As the vector space C2 is
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It may finally be noted that when one tries to generalize the presently
described method to the Lorentz group, one discovers that the derivation
based on the tensor product is more fundamental than the diagonalization
procedure (see Footnote 13 in Subsection 3.10.4 and the discussion at the
end of Section 4.5). The major issue is to find a way to write a matrix with
zero determinant as a tensor product. In the Lorentz group it will not be
possible to achieve this by diagonalization.

The basic idea is that a vector V transforms quadratically according to
V — —AVA or V — RVR', where Rf = R™!. The isotropic vector which
pictures a rotation is a vector and will thus also transform quadratically
according to these transformation laws. But this vector is the image of a
rotation which transforms linearly. The paradox is solved by showing that
the isotropic vector can be written as a tensor product as shown in (3.14)
and that the information content of the part of the formalism wherein
the column spinor is multiplied to the left is completely equivalent to the
information content of the part of the formalism wherein the row spinor
is multiplied to the right. In the Lorentz group representation SL(2,C)
vectors will still transform according to V.— LVL', but now in general
L £ L~ It is still possible to code a frame by vectors of “zero length” and
to write such vectors as tensor products, but now the information content
of the parts that transform by left-hand multiplication and of the parts
that transform by right-hand multiplication will no longer be equivalent.
This will be discussed in Chapter 4.

The spinors are thus a system of coordinates that define a rotation.
As with all systems of coordinates it is defined with respect to a reference
frame; in fact, the rotation is represented by a rotated triad. The identi-
fication of this rotated triad with a rotation depends on the choice of the
reference frame, viz. the initial triad one chooses to represent the identity
element. This remark will play a role in attempts to define the spin. As the
spin is a physical quantity, its definition must be frame-independent.

3.8 A treatment based on the stereographic projection
as a source of confusion

There exists an alternative derivation of the two-dimensional representation
of the rotation group starting from the stereographic projection of a vector

two-dimensional, the relation between &; and &, is bijective, such that the two spinors
are isomorphic representations for the group SU(2) of the rotations (without reversals).
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Fig. 3.4 Notations used in the calculations based on the stereographic projection. N
and S note the North pole and the South pole of the sphere with centre O and radius
r = 1. The centre of the stereographic projection is the South pole, such that P is
projected onto P’. The point Q is the orthogonal projection of P on the z-axis.

(see [Naimark (1964) and Smirnov (1972)]). A similar derivation for the
Lorentz group has been established in [Penrose and Rindler (1984)]. As
shown in Figure 3.4, a point P(x3,ys, 23) on the sphere is projected onto
the point P’(z%,y4, 25) of the equatorial plane. The sphere has centre O
and its radius r is assumed to be r = 1, such that 23 + y3 + 25 = 1. It
may appear pedantic to use the index 3 in the coordinates, but this is done
for consistency in the notations of what will follow. Using the theorem of
Thales we obtain then:

SP'OP' &y oy 1 ahtwh  ah—wh (3.15)
SP QP w3 ys 1423 as+ws ax3—wys '
Introducing ¢ = z% + vy} one finds:
1 _ o« <% (3.16)

(1+23)?2 23493 (1—z)(1+2s)

It can be shown then that a general rotation is a homographic transform-
ation in the variable (:

aC — b*

TN ta

(3.17)
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where aa* + bb* = 1. This represents quite a bit of work, which can
be skipped as it is only of secondary importance for the main line of
developments. For the interested reader who wishes to check it, the best way
to proceed is perhaps to decompose the rotation into the three rotations
that define the Euler angles, prove (3.17) for these three Euler rotations sep-
arately, and finally use the fact that the homographic transformations form
a group. Homographic transformations are the basis of projective geometry,
so it should not be a surprise that they appear in an approach based on a
stereographic projection.

The next step in the derivation really feels like a rabbit that has been
pulled out of a head. One introduces laconically homogeneous coordinates,
by putting ¢ = &1 /&o. This permits the homographic transformation to be
presented as a matrix transformation:

©)-G @) 315)

and this way the group structure of SU(2) based on rotation matrices of the
form given in (3.4) appears. Simultaneously, one postulates {o&f + &1&7 = 1.
From this, 23, 3 +1y3 and x3 —ys can be calculated successively such that
one obtains finally:

w3 =& + 6581, ys = u(oéT — &5&1), 23 = &oép — &t (3.19)

Introducing ¢ = &p/&; leaves the reader wondering about the motivation
behind it. Moreover, it stirs confusion as it gives the impression that the
representation works on column vectors that are images of a single unit vec-
tor rather than an isotropic vector corresponding to a triad, contradicting
all the results that have been proved before. As discussed in the preceding
lines and in [Coddens (2002)], the substitution ¢ = & /& embodies the
leap from vectors to group elements, just like the homogeneity principle
discussed in the present chapter. In fact, in the substitution ¢ = &/,
originally £ = 1 is real, but under the action of the group, & can acquire
complex values. Normalization of the spinors is possible as aa™ + bb* = 1
implies that the norm of a spinor is a group invariant. This normalization
reduces the number of independent parameters to three. After the introduc-
tion of homogeneous coordinates, («ép, a&1) is as good a spinor as (£p,&1).
The normalization £5&y + £7€1 = 1 can remove most of the effect of the
equivalence (£p,&1) = (o, ), expressing that both spinors lead to the
same (-value, but it cannot remove a phase factor e"X. It is this phase factor
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that stealthily introduces information about the second vector coded into
an isotropic vector, as illustrated in Figure 3.2.°

All this corresponds to coding a rotation as an isotropic vector, viz. cod-
ing rotations rather than vectors. This derivation using the stereographic
projection is awkward; in Cartan’s words, it treats spinors like vectors. The
construction defines a unit ray {i, : 1), = €90} rather than a spinor 1,
keeping the variable e’X hidden. This tends to prevent discovering a crucial
underlying idea rather than helping in discovering it. This is a nice illus-
tration of the point made in the Introduction, viz. that it can be extremely
difficult to grasp underlying ideas if the presentation is austere or mislead-
ing as is the case here.

There is an important consequence of this fact that spinors are not vec-
tors: spinors can, in principle, not be added like vectors. Spinors belong
to a manifold, wviz. the isotropic cone ., not to a vector space. The sum
of two isotropic vectors is not necessarily a new isotropic vector. Hence,
although the column matrices used in SU(2) look very much like vectors,
it has a priori no geometrical meaning to add two such column matrices,
even though this is perfectly possible algebraically. Similarly, in group rep-
resentation theory, the only matrices that have a meaningful counterpart
in the isomorphism g < D(g) are products D(g;)D(g2) of representation

91t is perhaps easier to understand this point by remembering that the natural approach
consists in deriving (3.17) from (3.18), rather than (3.18) from (3.17). The approach based
on the stereographic projection presented here only tries to revert this derivation arti-
ficially. To derive (3.17) from (3.18) it suffices to prove that for any spinor [&p,&1]T
the stereographic projection of the vector e of its triad (e}, e}, el) is ¢ = &o/&1.
It is then easy to see that ( contains less information than [fo,fl]T. Calculate the
matrix R(e’,,x) that corresponds to the rotation over an angle x around e/, (this
can be done by using a similarity transformation). Consider a rotation with rotation
matrix Ro that aligns e, with e.. The rotation matrix R(e’,, ) is then just given by
R(el,x) = Ral R(e:,x) Ro. This expression for R(e’,x) permits us to check that
R(e.,x)[€0,€1]T is just eX/2[£g,£1]T (see the derivation of (9.25) in Chapter 9). A
rotation by an angle x around the z’-axis of the triad represented by [0, &1 ]T is thus
given by the straightforward multiplication: [£o,&1]T — e™X/2[£o,¢1]". The multipli-
cation by e'X/2 modifies the spinor but it does not affect the ratio ¢ = &p/&1, because
it is divided out. This shows that the phase factor e*X/2 within a spinor eZX/Q[fo,ﬁl 1T
codes a rotation angle y around the z’-axis coded by (. The phase factor thus contains a
piece of information that is lost when only the stereographic projection ( is used rather
than the spinor [£g,£1]7, and the variable ¢ = £/&; therefore codes less information
than the spinor [£g,£&1]7. To revert this derivation and turn it into a derivation of (3.18)
from (3.17), one must recover the information contained within e'X/2 that was lost by
putting ¢ = £9/€1. This is achieved by “reintroducing” the spinor [&p,&1]T as a set
of homogeneous coordinates for ¢. This relationship between ¢ and [&o, &1 }T plays an
important role in Klein’s solution of the quintic [Klein (1884)].
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matrices. However, one also uses linear combinations };¢;D(g;) in the
algebra. These linear combinations define the so-called group ring.

Whereas the approach based on the stereographic projection lacks ele-
gance, it nevertheless cannot be ignored, as it is used in a very important
isomorphism between representations based on harmonic polynomials. This
isomorphism will be defined in Section 3.10, and its importance for quan-
tum mechanics illustrated in Subsection 3.11.3. This isomorphism is the
key to the problem of to what extent one may use spinors as vectors. We
give here thus some additional results that we will need at that moment.
The calculations based on the stereographic projection work on the real
vector e, instead of the isotropic vector e, + e,. It is therefore that the
coordinates of this vector e, have been noted as (x3,ys,z3). It is clear
from the structure of these equations in (&,&1) that (x3,ys,23) € R3.
The quantities (x3,ys,23) used here thus contain less information than
the quantities (z,y,2) € C* used in (3.10)—(3.13), which were defined as
(x,y,2) = (21 +1w2, Y1 +1y2, 21 +122), i.e. the coordinates of e, +1e,. From
(3.11)—(3.13) we can calculate:

w1 =5(8 - +E&* - &),y =38+ - &7 &),
z1 = (&1 +£547),
(3.20)

v = 5(=&F + G+ &7 - &7, 2 =3(@ +EE+&7+ &),

z2 = (L1 — £5€7)-
From this the expression of e, = e, A e, can be calculated in terms of
the spinors & and &;. Using &5 + &1&7 = 1 it can be seen that this
expression of e, corresponds exactly to (zs,ys,z3) as given in (3.19). This
shows that the definition of (§p,&;) derived from the approach based on
the stereographic projection is equivalent to the definitions (3.10)—(3.13)
(up to the ambiguity that the exact value of the phase factor x remains
unspecified in this construction). While it is possible to determine this way
(z3,ys, 23) from (x,y, z), the converse is of course not true, as (xs,ys, 23)
does not contain enough information; it contains only two independent real
parameters, and the missing parameter is the phase factor y.

3.9 Harmonic polynomials

3.9.1 Harmonic polynomials from tensor products

As explained in the preamble, it is possible, starting from the SU(2) repre-
sentation, to construct a whole series of higher-dimensional representations



68 From Spinors to Quantum Mechanics

that work on tensor products (§o,&1) ® (£0,&1) @ -+ ® (§0,&1). This will
lead to representations of dimension n + 1 on nth degree polynomials £,

TR, T, g

Let us now introduce harmonic polynomials P ,, € F(.#,C), where
# C C3 is the set {(z,y,2) € C* | 2% + y? + 22 = 0}, called the
isotropic cone. The values of Py, (x,y,z) are defined by considering the
tensor product:

(60,61) ® (§0,61) ® - @ (60, &1)-

n times

(3.21)

This tensor product of power n contains the n + 1 single-term polynomials
P/, in & and &:

& &, e TR e e, & (3.22)

where P} ;. (£0,61) = n=kek and k € [0,n] N Z. The coefficients of the
polynomials are less important here. They can be defined by a normalization
procedure later on. The point of interest is their functional dependences.
The polynomials P,’h . actually belong to F'(C?,C). They have all the same
total degree n, i.e. the degrees d¢, = n — k in & and d¢, = k in & satisfy
dfo + d€1 =n.

For even values of n = 2/, it is possible to transform, by using (3.10)—
(3.13), the n+1 = 2¢+ 1 polynomials P, ; € F(C2,C) into harmonic poly-
nomials P, in the variables (z,y,z), such that Py, (§o,61) = 2kek =
Py (z,y,2). By using (3.10)—(3.13), the constraint 22 4 y* + 2% = 0 will be
implicitly respected. These polynomials will have all the same total degree
Cin (z,y,2), le dy +dy+d. = L.

The idea is to write 522 kfl = % 2k§0§1, when 2¢ — k > k; that is,
to take k further terms &, out of §2£ ¥ with the idea of combining them
with the k terms &;. For this to be possible, there must be enough terms
&o within fgefk to do this. This means that there must be more terms in
&o than in & within 526 kfl. Next, £o&; is substituted by —z/2 in the part
¢her and €2 by (z —wy)/2 in the part fgefzk For k = ¢ this transforms

24 kfl = ¢5¢! into an expression proportional to z*

When 2¢ — k < k then there are more terms in §1 than in &y, and it is
therefore possible to take terms & out of £¥ to make combinations &&;.
When 2¢ — k < k one can put 2¢ — k = k. It is then possible to rewrite

2-kek — ¢pe27% For 20 — k > k (which is the same as 20 — k < k) it is
pos51ble to rewrite E5EXTR = €HEFE T2 substituting &7 by —(z + 1y)/2
in the part £2/=2% and 5051 by —z/2 in the part £§&r. This way the 20 + 1
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polynomials P, are obtained, where m € [—{,¢{]NZ, and m = { — k.
These polynomials are thus characterized by a total degree ¢ and a degree
|m| in z.

3.9.2 A generating polynomial

The rotation matrices for the tensor representation will also be tensor prod-
ucts of the rotation matrices from SU(2). Here the elements of a rotation
matrix in SU(2) will be represented with A, B, C, and D rather than a,
a*, b and, —b* as in (3.4). A rotation will then yield &, = A& + B¢,
and in the n + 1-dimensional representation of degree n it can be shown
that " = (A& + B&;)™. Cartan [Cartan (1981)] calls (A& + B&)" the
generating polynomial, as the coefficients of the various monomials in A
and B yield the polynomials of the representation. One can imagine in an
analogous way a generating polynomial P : P(x,y, 2) = (ku@ + kyy + k. 2)*
for these polynomials, but this still does not account for the constraints.
By using (3.11)-(3.13) and identifying (A& + B&1)% = (kex + kyy + k. 2)*
it can be seen that:

P(x,y,2) = [(A? — Bz —1(A? + B?)y — 2ABz]", (3.23)

where k, = A% — B2, k, = —1(A? 4+ B?), k, = —2AB. It is easy to check
from this that k2 + k2 + k2 = (A? — B?)? — (A% + B?)? + (—24B)? = 0.
From this it follows also that P satisfies the Laplace equation A P = 0,
since AP(x,y,z) = 00 — 1)(kZ + k2 + k2)(kax + kyy + k.z)*=2. This
fact often serves as a definition for the harmonic polynomials. Apply-
ing the identity k2 + kg + k? = 0 systematically on the coefficients in
the development of P(z,y,z) = (kyz + kyy + k.2)* permits the recov-
ery of the correct expressions for all harmonic polynomials in terms of
z, y and z. (It may be noted that AP = 0 is the Fourier transform of
(k2 + k2 + k2)P = 0.) We have merely worked out here in more detail a
method that has been described by Cartan. We have nevertheless intro-
duced it because it will permit us to touch upon a very important point in
Subsection 3.11.3.19

101t is perhaps helpful to check the relationship between harmonic polynomials and

spinors on an example. Those with £ =2 are Yo > = i % (x—w)?/r? < &, Yo,_1 =
LI (@ - w)e/r x 661, Yoo = 1/2 22 = a® — )2 = 1[0 32202 o 363,
Yo1 = —%, / % (4 1)z/r? < €3, Yoo = % / % (z +1y)?/r? o &}, where one uses
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3.9.3 Completing the definition

The harmonic polynomials as described thus far are not yet entirely defined
by their construction based on & and & . To complete the definition,
it can be stipulated that every harmonic polynomial Py, must satisfy
the Laplace equation APy, = 0, just like the generating function. With
a polynomial P(z,y,z) = (z — wy)™z", for no = 1 or ng = 0, it is
immediately apparent that AP = 0. But for no > 2 the result is that
(% + 38—;)P(x7y,z) = 0, such that AP = 3‘9—;P(x,y,z) = 2(z —wy)™,
which is obviously not zero. The fact that z? + y? + 22 = 0 can now
be used to repair this situation. This will be illustrated on the example
ng = 2. Consider Q(z,vy,2) = Az?(z — )™ — B(z? + y?)(x —1y)™. Using
2?2 +y% + 22 = 0 it can be shown that this is equivalent to (A + B)z%(z —
)™ = (A4 B)P(z,y, z). For the calculation of 88—:2@(:10, y, z) only the term
Q1(z,y,2) = —B(x® +y?)(z — )™ of Q(x, v, z) needs to be considered, as
it is known that (%4— ‘%)(Aﬁ(ac—zy)"l) = 0. Straightforward calculation
shows that 38—;2Q1($,y72) = —B(z —w)™ 2 [n1(n1 — 1)(z% + y?) + dnz
(x — w) + 2z — w)?], then £:Q1(z,y,2) = —B(x — )™ 2[—na(n1 —
1) (2% + y?) — 4y y (z — ) + 2(x — y)?], and finally %Q(x,%z) =
2A(x —y)™ . Summing it all up yields then AQ(z,y,2) = (z —wy)™ [24—
4B(n1+1)]. By choosing A = 2(ny+1)B, one can then satisfy the condition
that AQ(w,y,z) = 0. For the example of the polynomial P(z,y,z) = 22,
n1 = 0. One must then take A = 2B, such that Q(z,y, z) = B (222—2%—y?).

implicitly 2 +y2+22 = 0, and which clearly shows how these polynomials are defined by
taking a tensor power of (&g, &1). Here r? = 22 432 + 22 # 0, which seems to contradict
22 + y2 + 22 = 0 but this is due to an isomorphism that allows the replacement of
(z,9,2) € . with (z,y,2) € R3 as will be explained in Section 3.10. The polynomials
Yy m are of degree |m| in z (and — after introducing spherical coordinates (7,6, ¢) — of
degree m in €'?, if one considers them as functions of F(R3,C) rather than of F(C?,C).
Tt is only for the functions of F(R3,C) that one can introduce the spherical coordinates
(r, 6, $) needed to define e*?, as discussed in Section 3.10). The normalization factors are
defined in such a way that the polynomials become an orthonormal set with respect to
the scalar product fYZ,‘,m,(G,qS)Yg’m(H, @) sin0dfdp = 6441 8,m/, if one considers them
as functions of F(R3,C) rather than of F(C3,C). As functions of F(C3,C), they can
be normalized using hyper-spherical coordinates (r, 6o, 01, ¢). By cyclic permutation of
x,y,z one obtains a different set of harmonic polynomials. These sets correspond to a
different choice of basis for the spinors. Finally, the fact that the different representations
are just based on different tensor powers indicates how Clebsch-Gordon coefficients must
be calculated.
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3.10 A very important isomorphism within representations
based on harmonic polynomials

3.10.1 First approach

The method to derive SU(2) that starts from the stereographic projection,
while lacking elegance, is needed to establish the existence of an isomor-
phism used in quantum mechanics. From (3.19) it can be seen that the rep-
resentation using the stereographic projection is based on the same spinors
(€0,&1) as the representation constructed starting from an isotropic vector,
but that the (vector) images it uses are different. It is thus actually a
different representation, but it is nevertheless isomorphic to the one based
on the images of e, +te,. The rotation matrices of the type (3.4) operating
on (§o,&1) as an image of e, + e, are identical to those obtained from
(3.17) and operating on the image of e, under stereographic projection. To
prove this, it will first be necessary to find a result that can be derived from
(3.7) and (3.11)—(3.13) and that is actually equivalent to (3.14).

As already explained, the three-dimensional representation with the
homogeneous (harmonic) polynomials z,y, z (that are the coordinates of
the isotropic vector e, + e, with representation matrix V) can be derived
from the two-dimensional one using the tensor product:

vV - z T —y
T \x+ Y —z
_ 9 <—§0 & o fo)
& &
=2 @) ® V2(~£&1,&). (3.24)

There is some consistency checking to be done here, for instance that the
determinant of the 2 x 2 matrix with the quantities &y, &; is indeed zero,
and also that z/(x +wy) = —(z —wy)/z = & /&1, ete. Now a rotation with
matrix R will operate on the vector representation V as V.— RVR, where
R = R™!. Hence:

v=va(g) e vicea -

w5 )3 () w5 1)

(3.25)
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From the transformation properties of (£p,&1), those of (&5,&F) can be

derived:
él b a* él

ﬂ Calculating (§5,&7) from (0,&1)  (3.26)

(4)-G o) ()

—& b a*) \=&

from which it can be seen that & transforms as £ while &; transforms as
—¢;. This can also be appreciated from the fact that R[¢p,&1]" is equiv-

alent to [¢,&7]RT and from a comparison with (3.25), where [—¢7, &) is
also transformed with Rf. Hence % (z3 — w3) = V2&E; transforms as

V28, —z3 = —(&& — &1&F) transforms as 2€p&1, and \% (x5 + wys3) =
V2&5€ transforms as —+/2¢7. These transformation laws for the vector
(z3,ys, 23) are thus isomorphic to those of the isotropic vector (x,y, z) for
which from (3.11)-(3.13) it follows that @ — 1y = 2£2, z = —2£& and
T +ay = —263.

3.10.2 An tmportant remark on notation

Before continuing the development it is necessary to introduce a more
compact vector notation a-o for the representation matrix a,o, + ayo, +
a.o, that codes a vector a € C3 within SU(2). The reader may notice that
this notation has actually already been introduced in (3.5). In order to
avoid confusion, it is very important to stress that the notation is purely
conventional, especially as it will be further used throughout the rest of
the book. It is based on the convention to write the set of the three Pauli
matrices o, 0y, 0, symbolically together as o = (0, 0y, 0.) as though they
would constitute a vector of C3. Note that despite the (potentially mislead-
ing) notation, o is not a vector, such that a-o does not represent a scalar
quantity, but a vector. Hence, B-o should not be confused with the scalar
product of the vector B with a vector o; it is merely the way the vector B
is represented within the group theory of SU(2). Similarly, L-o is not the
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scalar product of the vector L with a vector o but just the notation for the
vector L used within the group theory of SU(2).!!

3.10.3 Conjugated spinors

The spinor formalism has thus far been developed on the left-hand column-
type spinors in (3.24) but could also have been done on right-hand side
line-type spinors in that equation, by multiplication with R on (—&;,&).
By taking Hermitian conjugates, this is equivalent to the column spinor
formalism:

a

(~€1,60) — (~€1, &) (ﬁ‘b b*)

Hermitian conjugation (3.27)

(8)-G ) (3)
&) \b o)\ g)

as this is equivalent to (3.26). The Hermitian conjugates of the line spinors
can be called the conjugate spinors. They are operated on by R. It has
already been noted that the column spinors correspond to the first column
of the rotation matrix in (3.4), but now it can be seen that the conjugated
spinors correspond to the second column in this rotation matrix. A rep-
resentation based on the conjugated spinors, or on the line spinors from
which they are obtained by taking the Hermitian conjugates, is completely
equivalent to the one based on the column spinors.

hg
2mgc

product between vectors guB and %o’ in the treatment of the anomalous g-factor of the

11In quantum mechanics, the expression

B-.o has been interpreted as a true scalar

electron (see Section 5.7), and the expression L-o has been interpreted as a scalar product
between true vectors L and o in the Pauli and Dirac equations, where it has been dubbed
“spin-orbit coupling”. Finally, u-o, with u = p/p has been over-interpreted in terms of
a helicity, related to the projection of the “spin” %o’ on the direction of motion u. The
over-interpretations lead to the introduction of unadapted concepts and imagery. The
occurrence of the terms B-o and L-o in the Dirac equation is due to the introduction of
a perfectly analogous notation a-vy = Zi:o auyy for a four-vector a = (act, az, ay,az)7
where the gamma matrices play the role of a generalization of the Pauli matrices. There is
thus no loophole of escape from the inconvenient truth contained in this critical remark.
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3.10.4 The explicit construction of the isomorphism

More insight into the isomorphism can be obtained from the following ele-
gant explicit construction. The representation matrix of €, = (z3,ys3, 23) is
e’ -o. This matrix has determinant —z% —y3 — 23 = —1 and eigenvalues —1
and 1 (as it is related by similarity transformation to e,-o = o). In fact,
any representation matrix of a vector has two opposite eigenvalues r and
—r, where r is its length. The matrix 1 +e’-o0 will therefore have one eigen-
value 0 and one eigenvalue 2. Hence, it will have determinant 0, just like an
isotropic vector. It will, however, not correspond to an isotropic vector, nor
any vector at all as its two eigenvalues are not opposite. The determinant
of the representation matrix V of an isotropic vector (z,y, z) is zero, while
both its eigenvalues are also zero as it is a “zero-length” vector. Using the
results of (3.19) and 1 = (&5 + €1£7)1 we obtain then:

o (26065 26080\ _ 5 (0 -
1+e o= (25851 2&5{) = ﬁ(&) ® V2(£,6),  (3.28)
which fits isomorphically into the scheme of (3.25) and (3.26) for the
isotropic vector (x,%,z), because RIR! = 1, as Rf = R™!. Hence, the
incomplete real vector representation based on the coding of the coordi-
nates x3 — wys, 23 and xg + wys of the vector e/, = (z3,ys, z3) is isomorphic
to the complete complex vector representation based on the coding of the
triad in terms of the coordinates of the isotropic vector e, + e,. In the
incomplete representation the coordinates (z3,ys3,23) € R3 are real and
satisfy @3 + y3 + 23 = 1 (as expressed by —det(e’,-o) = 1), while in the
complete representation the coordinates (z,y,z) € C3 are complex and
satisfy 22 + 32 + 22 = 0 (as expressed by — det((x,y,2)-0) = 0).

The fact that 22 + y2 + 23 = 1 # 22 + 3? + 22 = 0 does not negate
the existence of such an isomorphism and definitely can be part of it can
be understood by decomposing the isomorphism in two steps. The first
step is the isomorphism between e -0 and 1 + e’-o. The presence of the
matrix 1 is benign as R™' = R, such that it can be taken in and out
of the calculations at any time.'? This shows that an isomorphism can

127ts presence would no longer be benign within SL(2,C) since L~! # LT, as discussed
in Subsection 5.5.2.1. In SL(2,C), the matrix 1 + €/,-o does correspond to the coding of
some vector, viz. the zero-length vector e.t + e’z. After a general Lorentz transformation
L on this vector, the unit matrix will have been will transformed to LTLT # 1 as
L~ # L. But for those Lorentz transformations L that are mere rotations, such that
R~1 = R, the transformations 1 — R1 R’ will preserve the unit matrix. In a sense,
1+e/, -0 corresponds to a vector after all in the extension SU(2) — SL(2,C). The fact that
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change the determinant from —1 to 0. The second step is the isomorphism
between the quantity 1 + e.-o (which does not code a vector) and the
quantity (z,y, z)-o (which codes the isotropic vector (z,vy,z)). This is an
isomorphism between the spinor (£§,&;) (occurring on the right-hand side
in the tensor product decomposition of 1 + €’,-0") and the spinor (=&, &)
(occurring on the right-hand side in the tensor product decomposition of
(x,y,2)-0) and is expressed in (3.26).

The existence of the isomorphism is in some way compulsory: (z3,ys, z3)
and (z,y, z) are vector quantities. It is thus natural that they transform the
same way in a representation based on vector quantities. Of course (z, vy, 2)
is complex, while (x3,ys, z3) is real, but the construction of the group rep-
resentation has been developed from the argument that it would always
be possible to separate (z1,y1,21) and (2, y2, 22) out again.'® However, it
should not be forgetten that the stereographic projection entails in reality
a homographic transformation, such that this result is all but trivial.'4

3.10.5 Degrees of the harmonic polynomials
and degree operators

3.10.5.1  The degree of a harmonic polynomial as an eigenvalue
of an operator

The harmonic polynomials Py, € F(.#,C) are of total degree ¢ and
degree |m| in z. After applying the isomorphism they can be considered

I+el-0= V2 [€o, 51]T®\/§ [56:51‘] and (z,y,2)-0 = V2 [€o, 51}T®\/§ [—£1, €o] share the
left-hand side spinor [€g, 1] T but differ in the right-hand side spinors (655651 # [—¢€1, o]
confirms that 1 + e’ .o is not an isotropic vector in SU(2). For an isotropic vector in
SU(2), the right-hand side spinor is unambiguously defined by the left-hand side spinor
to be [—£1,&0] and nothing else. But again, this ceases to be true in SL(2,C) where
ect + €, is indeed of the form v/2[a,c]T ® v2[a*,c*] (see (4.12)).

BFor any real unit vector n € R3, the matrix 1 + n-o can be cast in the form
[e0,€1]T ® [¢§,e7]. The determinant of the matrix 1 + n-o is zero, therefore its two
lines are proportional, as well as its two columns. It can thus be written in the form
[€0,€1] T ®[e2,e3]. The matrix 1 + n-o is Hermitian as the Pauli matrices are Hermitian
and the components of n are real. This proves then that e3 = € and €3 = €], which
corresponds to the result of (3.28). We see thus that (£5,£&) # (—£§1,&0) (as it would
imply & = &1 = 0) in agreement with what was claimed in the previous footnote.
14There is a link here with projective geometry where it is proved that there is a per-
spective mapping between sets of four points on a circle and sets of four straight lines
in a beam of lines. Perspective mapping preserves the harmonic ratios involved and is
governed by homographic transformations. Projective geometry uses also homogeneous
coordinates.
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as polynomials P, € F(R3,C) in real variables (z,y,2) € R3, and spheri-
cal coordinates (r, 0, ¢) for (z,y, z) can then be introduced. When they are
expressed in spherical coordinates, the polynomials will be noted as Yy ,,,. In
what follows scalar coefficients in the polynomials will be ignored, as only
their functional dependences are here of interest. Expressed in spherical
coordinates, the resulting polynomials are of “degree” m in e'® (whereby the
“degree” m can be positive or negative), which permits distinguishing the
two polynomials of degree |m| in z just on the basis of their “degree”. The
polynomials are then of the form Yy, (0, ¢) o €™ f(sin®,cosf) because

2kl o et =Rdin® =k (9) 2% (where 2 oc cosf). This was not possible
beforehand when |m| # 0, as |m| corresponded both to m and —m at the
point.

In the following, operators will be introduced that project out the
degrees ¢ and m from these polynomials. A representation of degree ¢
is characterized by the fact that for all its polynomials we have d, +
dy+d, = (. It ib easy to see that -2 will transform a term x4y 29
into d,x% y% 2%, But, as within a polynomlal there are several terms
with different Values of d,, the operator xa—m will not have the polyno-
mial as an eigenfunction. However, as d, + d, + d. = /, the operator
D=rV = xa% + ya—ay + z% will have all the polynomials of a given
representation as eigenfunctions with eigenvalue ¢, therefore D=rVisa
total-degree operator. This is true for the general case Py, € F(#,C), and
by isomorphism for P, € F(R3,C).

The degree operator D is a derivation operator. Suppose we have a
derivation operator D working on a product H;L:1 Uj = ULU -~ Uj - - Up.
The derivation yields D(HJ LUj) = Z?Zl urUs - - Uj—1 (Duj) g1 -+ - Un.
The point of interest here in the rotation group is the analogous counter-
part ]5(®J 1 &) of D(HJ 1 u;), where there is a tensor product ®J X3,
expressed in (3.21), instead of a normal product []. =1 uj, and where each
term of the tensor product takes the same value &; = (£p,&1). This way a
total degree n/2 is obtained, which corresponds to ¢ for n = 2¢.

Using the spherical coordinates within Yy, € F(R3 C), £m can be

projected out by the operator LZ = —z(x 9 _y (%), which in spherical

coordinates is equivalent to —1+= a 3 But the mathematlcal operator L. can
also be considered as a more general dimensionless operator that can be
defined on functions that belong to F(C?,C). It is then also defined on the
restrictions F(.#,C) and F(R3,C). It is only in the restriction F(R3,C)

that it makes sense to replace it with the expression —2-% a - In quantum
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mechanics we use also the physical operator —i(zZ — y2), which dif-

fers from L, only through the factor /. (New notatlon to distinguish the
mathematical and physical operators will not be introduced.) The physical
operator is defined only on the restriction F(R3, C) and thus a special real-
ization of the more general mathematical operator L.. The same applies for
the companion operators L, and ﬂy The rotation matrices transform the
tensors of the /-dimensional representation, and the degree m will only be
projected out as an eigenvalue for the operator L. when the polynomials
have been transformed according to a rotation around the z-axis. Similar
statements apply to L, and I:y

Let us now check what the true meaning of L. is when defined for
Py € F(C3,C). It will initially be defined for P, € F(#,C), start-

ing from the expression 5(015"{?51 that defines the harmonic polynomials.

Using the definitions, this reduces to: [z —zy]dfo/Q[ x—y| e /? 2*(d50+d51)/2.
Applying L. to this yields 3 (d¢, —dg,) 5050 €7 where the term 2 1 (de, —dg,)
is invariant under the substitution £y§; = —z/2 that one uses in the defini-

tions. The polynomials are thus labelled (¢,m) = 3(dg, + de, , de, — dg, ). It
is easy to see that 3 (d¢, — dg,) coincides exactly with m in spherical coor-
dinates, as & contains e~*/2 and & contains et*?/2. To define L, and L,
one must define the spinors differently, for instance by cyclic permutation.
The required change of definition corresponds to a change of basis (that
can be obtained by a rotation of the triad). For P, € F(C3,C), L, is not
necessarily a degree operator. In fact, L. will only be a degree operator for
polynomials that represent a rotation around the z-axis. In general, m-L
will only be a degree operator for polynomials that represent rotations that
orient the triad such that e, = m.

3.10.5.2 Intermezzo: The link with angular momentum

At the present stage of development, it is not yet possible to define the
physical operator in an intelligible way. This will become only possible in
a later stage after introducing the four-vector (E,cp) into the formalism
through the phase (Et—p - r)/h. That will only become feasible in Chapter
5. At that point the space-time coordinates (ct,r) will also be introduced
through a different approach than the isomorphism of Section 3.10, and the
operators can then be defined through the prescriptions E — —75 and
p— %V. This is due to the fact that a Lorentz transformation in free
space introduces the coordinates (r,t) into the phase e *Ft=P 1)/ of the
wave function.
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The interpretation of I:# as an angular momentum operator is a third
guise of the operator initially introduced for F(C3 C). It will become
mathematically equivalent to the one defined by restricting F(C3?,C) to
F(R3,C).

It will be necessary to reconsider the problem of the definition of the
operators ﬁm,ﬂy,ﬁz several times during this book in order to discuss all
their different facets. We cannot discuss all these different aspects at once at
some well-chosen strategic point in the presentation. We will have to build
up the whole realm of angular-momentum and degree operators gradually,
and what we derive at a given step will be necessary for intermediate devel-
opments until we introduce the next step. There will be several stages and
at each stage we will be able to complete the picture a bit more and dis-
cover new faces for these angular-momentum operators. But their most
general definition will remain one based on degree operators. There is thus
a profound link between angular momentum and the degrees of harmonic
polynomials, and the notion of a degree operator is more general and more
fundamental.

Here it is already possible to discuss the angular-momentum operators
as degree operators defined on polynomials P, € F(C3 C), and their
restrictions P, € F(#,C) and Y, € F(R3 C). They will become phys-
ical operators following the introduction of Et — p - r. Their relationship
with the spin operators in SU(2) will be considered in terms of how they
operate on the original spinor (&p,&;). To give this a meaning, it will be
necessary to return to the initial definition of L. as operating on func-
tions Py, € F(C3 C). With reference to the Dirac equation, it will be
necessary to consider SU(2) as a subgroup of SL(2,C) where the single
spinor (£p,&1) will give rise to two “semi-spinors” (a,c) and (b,d). Their
application to the solution of the wave equations for the hydrogen atom
will necessitate a discussion of what they become in the case of planar
motion. This corresponds to the restriction of the rotation group to the
Abelian subgroup of the rotations in a plane, when the essential parts of
the polynomials then become similar to polynomials encountered in solid-
sate physics for problems with translational invariance with cyclic boundary
conditions.

3.10.5.3 The operator L2

In order to allow us to present the relation between spin and statistics
in Subsection 3.11.4 one further consideration is needed. L? operates on
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functions P, € F(C3,C) as an operator that yields information about the
total degree £. In fact, on the set of harmonic polynomials P € F(C3,C),
characterized by AP = 0, the operator L? = ﬂi + ﬂ?/ + 133 reduces to
D? + D, such that it automatically projects out ¢(¢ 4+ 1). (This will be
discussed in more detail in Section (12.2)). The fact that the polynomials
should satisfy the Laplace equation AP = 0 (already described in Sec-
tion 3.9) is essential here. L2 can thus be used to obtain information
about the degree £, which is just a fact of Euclidean geometry. There is
thus no such thing as the square of the length of an angular-momentum
vector, that would take a strange expectation value h2/(¢ + 1) and would
not be a true square due to some mysterious quantum effect. The term
£(£+1) already exists within the mathematics before any application of it to
physms as the operator L2 corresponds to the much more general operator
D2 + D where D can be defined without any reference to angular momen-
tum. (Also L. can be defined on F(R3, C) without any reference to angular
momentum.)

3.10.5.4 The importance of the interpretation of L2 in terms
of a degree operator

It is apparent that the operator L2 does not project out the square of the
value projected out by the operator ﬂ, even not in mathematics. The issue
here is that the correspondence between physical quantities and operators
as introduced in physics textbooks is wrong. This will be discussed further
in Section 12.2. The fact that the operators are not correctly defined in
textbooks is proved beyond any appeal by the fact that they yield £(¢ + 1)
rather than ¢2 for the eigenvalue of the operator L2, which is supposed
to correspond to the quantity ¢2. It is for this reason that the alternative
interpretation of the operators in terms of degree operators will also be
pursued. Such a change of perspective will not upset the traditional calcu-
lations, such as those for the energy levels of the hydrogen atom. Of course,
degrees of polynomials are quantized quantities.

3.10.5.5  The importance of the interpretation of L. in terms
of a degree operator

While it has been proved above that L. is a degree operator, there is noth-
ing that supports the idea that one can interpret L. as an operator that
would correspond to an angular momentum component, according to some
rule. The rule fails for L2 as it yields a nonsensical eigenvalue L0+1). Tt is



80 From Spinors to Quantum Mechanics

admittedly tempting to use the rule as it looks as though physical operators
can be derived by just considering their action on e “Et=P)/h byt this is
not part of group theory.

The way physical operators are defined is an extrapolation that can
only be introduced using three ingredients: restricting F'(C3, C) to F(R?, C),
then invoking the isomorphism of Section 3.10 (as further developed in Sub-
section 3.11.3), and most importantly, by not asking what happens with the
definition of the angular momentum after a minimal substitution is intro-
duced to account for the presence of a potential, especially if that potential
does not have rotational symmetry.

The third ingredient is highly questionable as it just corresponds to a
lack of rigor. After the minimal substitution (to be justified in Section 5.6),
the operators will in general no longer act on a wave function that has the

—1(Et—p-r)

structure e /" There are several problems that arise here:

e First, imagine a motion characterized by k, = z* and k, = y*. We have
then 1) = et(kevthyy—wt) — el(w3+y3*“’t> There is then an ambiguity in
the definition of the operator —za . Used on (. y, z,t) = eFerthyy—wt)
the operator yields —zgi’ = kytp. Used on (z,y, z,t) = @+’ —wt)
it yields —1 aw = 32°¢. The true meaning of —¢ 8‘9 would certainly be
—zgi’ = 32°1 as 1 is considered as a function of the type 1 € F(R*,C) :
(x,y,2,t) — ¥(x,y,2,t). By introducing a second meaning for —z(r?—x,
the procedure that should enable us to recover k, can then be saved.'®
The rule is thus that k, and k, should be replaced by their values only
after the derivation is performed. This means that k., and &, are treated
as numerical values without taking into account how they depend on
(z,y,2,1).

e In Section 5.6, it will be demonstrated that the minimal substitution
serves to define the purely kinetic part of p and E in the presence of
a potential. In fact, the prescriptions E — ——m and p — hV yield
the values for the total energy-momentum, not for the purely kinetic
part of the energy-momentum. These purely kinetic parts are needed
to define the instantaneous Lorentz transformation. It is the precise
meaning of the minimal substitution that will indicate that p, and p,

15The true meaning of e~ “(Et=Pr)/h will only survive in the case of uniform motion.
For uniform circular motion it will be possible to derive an expression e~ *(@t=k<<) where

¢ is a path length along the circle.
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must be replaced by their values only after the partial derivations have
been performed. In a sense, the minimal substitution lifts an ambiguity
between the total energy-momentum and the kinetic energy-momentum
that exists when the particle is in free space, by showing that the quanti-
ties needed in a Lorentz transformation are the kinetic part of the energy-
momentum.

o After establishing this rule it would Seem then that the generalization is
still valid. But the definitions E — —LZ E and p — hV have been derived
for a scalar wave function within the context of the Schrodmger equation.
It will be shown (in Section 9.5 and more particularly in Subsection 9.5.2)
that the definitions must be reconsidered when we use a multi-component
spinor wave function.

e Even with a scalar wave function, ﬂj are not the operators for the ;-
components of the angular momentum. This follows from an analysis of
the action of the operators ﬂj on the harmonic polynomials (see Sub-
section 6.2.9.3). The operator I:j expresses the total angular momentum
when this angular momentum is aligned with the zj-axis. In general,
when the angular momentum is aligned with the unit vector m, the
angular momentum operator will be m-L, where L = (I:z,ﬁy,ﬂz). This
is consistent with the result obtained in Subsection 3.10.5.1.

A large number of paradoxes about angular momentum in quantum
mechanics can be avoided by rejecting the procedure by which physical
operators are defined using these three ingredients. And on the basis of our
findings with L2 and our criticism of the third ingredient of the procedure,
we have good grounds for doing so. We are not forced to accept at face
value that ﬁm, ﬁy, and L, are operators that would correspond to the z-,
y- and z-components of the angular momentum for a particle in orbital
motion around an arbitrary axis m. If one rejects the procedure, then L.,
Ly, and L, will only keep the meaning of degree operators. But L. has a
physical role, as it intervenes in the calculation of the Zeeman splitting in a
magnetic field. It will take a long journey before we will be able to sort this
out. We will have to clarify the meaning of spin before we can address this
problem. The reader is not asked at this stage to reject the definition of
the angular-momentum operators in physics. For the time being the reader
is only asked to accept that a certain caution will be observed in the text.
This caution will consist in interpreting angular momentum operators only
in terms of degree operators.
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3.11 Important consequences for quantum mechanics

3.11.1 Why the probability densities are expressed as ™y
or Uiy

From the quadratic expressions in equations (3.11, 3.12, 3.13), we see
already transpire here an essential feature that we find back in quantum
mechanics. Probabilities behave like charges; they are conserved quanti-
ties. In relativity, they become parts of a more general probability “charge-
current” four-vector, subject to a continuity equation. The continuity equa-
tion expresses that probability is a conserved quantity. As also in the
Lorentz group four-vectors will be second-degree tensors of spinors, this
will explain why probability densities are expressed through a quadratic
expression WIW, which is part of a probability charge-current four-vector
(UTW, Ul U) subject to a continuity equation, whereby W is a spinor. Here,
a stands for the triplet of Dirac matrices (a, oy, ). This will be rendered
more precise later on.

3.11.2 Topology and 4w turns

It may be noted that rotations operate on reflections in a different way
than they operate on vectors: there is a factor of two in the respective
angles involved. This only becomes paradoxical if these different represen-
tations based on reflections and based on vectors become confused. In fact,
the rotations around an axis can be considered as the product of two reflec-
tions, as illustrated in Figure 3.3. Consider the first reflection as fixed and
the second reflection allowed to turn. When the second reflection plane has
turned over an angle ¢, the rotation will have an angle 2. When the reflec-
tion plane of the second reflection (or its normal) is turned over an angle
of 7, in terms of the ensuing rotation a full turn will have been made, but
the normal vector will have been multiplied by —1. Hence, a 47 turn must
be made to recover the initial normal vector. This is of course algebraically
related to the fact that vectors are second-rank tensors in terms of spinors.
This is a property of the wave function in quantum mechanics that is consid-
ered as counterintuitive, but it follows from the mathematics of the rotation
group. This fact has often been mapped onto a topological argument that
describes the same concept but creates more mystery rather than clarifying
it. In fact, as two opposite vectors define the same reflection, it is perti-
nent to identify them within the rotation group. Through the arguments
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permitting the removal r from the formalism and the introduction of homo-
geneous coordinates it transpired that the relevant parameters needed to
define reflections within the context of the rotation group are not really the
unit vectors but the directions of these vectors. This set of directions is RP2.
These directions must be represented in one-to-one correspondence with a
hemisphere rather than with a sphere. There is thus a necessity to identify
opposite points on the sphere as both representing the same element of
RP?, and to glue the hemisphere to itself along its edge. But an inspection
of two nearby directions OP and OQ), where P and () are both on the edge of
the hemisphere, to see how this gluing must be done, will reveal that gluing
simultaneously both P to its counterpart P’ and () to its counterpart @’ can
only be achieved by doing it in a Mobius-like fashion. This is illustrated in
Figure 3.5.

The analogy is nice. When a full loop is made on a Mobius ring, the
surface normal becomes inverted. When a full turn is made in the rotation
group, the normal to the second reflection plane that defines a family of
rotations is also inverted. This is a topological argument and a number
of topological constructions have been developed to illustrate this, viz. in
Figure 41.6 of [Misner et al. (1970)] and in [Feynman and Weinberg
(1987)]. In Figure 41.6 of [Misner et al. (1970)] it is possible to follow the
fate of four threads that can be considered as materializing four elements
of RP2.

3.11.3 Two movies for the price of one

Attention must also be drawn to a further particularity, an important
remark, that will allow us to discover also something quite beautiful about
the formalism of quantum mechanics. It has been shown that the harmonic
polynomials build representations. This is all fine if we think about the
polynomials in (z,y,z) as abstract quantities. But as physicists, we are
used to thinking of (z,v, 2) as the coordinates of a particle in R?, while on
the other hand, in the spinor formalism, (z,y, z) are not the coordinates of
a particle, but of an isotropic vector that codes a rotation, and the numbers
(7,9, z) belong to the isotropic cone .# of C3. Let us note for this subsection
the coordinates of the isotropic vector as (X, Y, Z) to make the distinction.

We could hit here the same kind of confusion between vectors and group
elements as with the stereographic projection. It is obvious from the struc-
ture of the harmonic polynomials that they are deduced from the con-
straint V(X,Y,Z) € .#, X2 +Y? + Z2? = 0, while for particle coordinates
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Fig. 3.5 The hemisphere with centre O and radius ON represents the set of all reflec-
tion normals OP. The two antipodal points P and P’ on the edge of the hemisphere
correspond to an identical reflection, as do the two antipodal points Q and Q’. When P
leaves the hemisphere, P’ enters it, such that P seems to “jump” to P’. There is no real
discontinuity in this; it is only like jumping from 12 to zero on the reading of a clock at
midnight. To visualize the true connectivity, the hemisphere must be glued to itself along
its edge, such that in the end a surface without boundaries is obtained. For instance P
must be glued to P’ and Q to Q’. This can only be achieved by doing it in a M&bius fash-
ion, gluing the outside of the hemisphere to its inside, resulting in a surface that has only
one side. This is illustrated by the arrows on the twisted ribbon introduced to connect P
to P’ and @ to Q’. The ribbon is entirely metaphorical and only serves to illustrate the
connectivity. It shows parts that must be “glued” together because they are connected
and indicates how they are connected by illustrating how they must be “glued” together.
The ribbon must be considered as attached to the whole equator, rather than just to
the segments PQ and P’Q’. Its length PP’ can be considered as zero as the topological
argument is independent from the choice of a metric.

(7,y,2) € R? it must follow that (z,y, z) # (0,0,0) = 22 +y*+22 =12 £ 0.
Quantum mechanics describes the rotation of the electron by coding it as
a spinor based on an isotropic vector (X,Y,Z) with X2 +Y?2 + Z2 = 0.
But when it comes to solving the Dirac or Schrédinger equation one sub-
stitutes quite happily the particle coordinates (z,y,z) into the variables
(X,Y, Z) that occur in the harmonic polynomials P(X,Y, Z). This is the
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0 = 1 paradox mentioned in Section 1.2. This can be summarized in the
following schemas:

r= (a:,y,z) 6R3
lspinor field of triads (£o,&1)
(§o(r), &1(r))
J (€0.&) ® (¢0,6) — (X, V,Z2)es cCC?
——

2 spinors isotropic vector
(X(r), Y (r), Z(r))
(X7Y7Z)®(X7Y)Z)®(X)Y7Z) - PZ,m(X’Yzz)

l ¢ terms in (X,Y, Z) polynomials Py .,
Py (X (r), Y (r), Z(r))
Quantum mechanics: ‘ (X,Y,2) = (z,y,2) ‘
Isomorphism .# = R?

Y(r) = Ppm(r)

lSpherical coordinates r — (7,0, ¢)

Y(r) = F(r)Ye,m (0, ¢).

(3.29)

This schema is valid for the Schrédinger equation for the hydrogen atom
and has to be modified for the Dirac equation, which uses a different type of
wave function. Comprehensive understanding of what a spinor is, is essen-
tial to discern that the apparent contradiction, which consists in identify-
ing (X,Y,Z) = (x,y, 2) in this schema, constitutes a serious conceptual
difficulty. The quantities (6, ¢) in Yy (6, ¢) contain less information than
(X,Y, Z) in the original harmonic polynomials Py ,, (X, Y, Z). From Section
3.10, the reader will already be able to guess the solution. It is the power
of analyticity in C that accomplishes a miracle here. The algebra from the
isotropic cone .# can be extended to the whole of C3, and then restricted
again to R3. The original and final domains only have the trivial 0 vector
in common but the whole algebraic group structure remains the same and
carries through by isomorphism. The vector 0 cannot be used to represent
a triad of basis vectors whose length would not be normalized to 1. It also
does not correspond to a spinor that is normalized to 1. The concept that
spinor space would contain just one point 0 of physical space R? is thus
incorrect (see Subsection 5.3.3).

Due to this isomorphism, it will be possible to identify the particle coor-
dinates with the spinor parameters, remembering that the meaning of the
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symbols (z,y, z) and (X,Y, Z) is totally different. A priori one might fear
that the structure of the equation X2 + Y2 + Z2 = 0 will be preserved in
the isomorphism such that it can never correspond to x? 442+ 22 = r? £ 0.
But as shown in Section 3.10, there is an isomorphism that maps spinor
coordinates (X, Y, Z) onto vector coordinates (x,y, z), in conformity with
the two equations. It is therefore that we really needed it to define this
isomorphism, as it is crucial for the validity of the calculations of quan-
tum mechanics. This may be summarized by stating that besides the iso-
morphism .# = SU(2) between isotropic vectors and rotations (coded by
spinors), quantum mechanics uses an isomorphism .# = R? between vectors
and spinors.

Construction of the spinor began by choosing (1,2,0) as the isotropic
vector. It therefore looked as though the coordinates (z, y, z) would be those
of e, i.e. of the normal to the plane of motion if this motion were in the
Ozy plane. But it would have been equally possible to take the isotropic
vector (X,Y,Z) = (0,1,1) = e, + te, rather than the isotropic vector
(X,Y,Z) = (1,1,0) = e, +1e, as the starting point for the development.
The point is that (3.10)—(3.13) would have remained the same, and only
the values of (X,Y, Z) in these equations change. With this choice of basis,
in a right-handed frame, the starting value (z,y,2) that is isomorphic to
the starting value (X,Y, Z) = (0,1,2) is (1,0, 0).*¢ Thus, (z,y, 2) can really
be made to correspond to particle coordinates.

The isomorphism carries through in the different representations based
on harmonic polynomials of degree ¢. In the original harmonic polynomials
P(X,Y,Z), P € F(C3 C) is a function of complex variables that takes com-
plex values, while in the isomorphic image, P(z,y,z), P € F(R3R)V P €
F(R?,C) is a function of real variables that takes real or complex val-
ues. In this respect, a change to spherical coordinates (6,¢) based on
the sequence of substitutions (x,y,z) — (2/,y',2") = (a/r,y/r,z/r),
(z',y',2") = (sin 6 cos ¢, sin @ sin ¢, cos #), and finally (z' + 1/, 2" —1y/,2') =
(e'?sinf,e=*? sin 6, cos 0) to go from real spherical harmonics P € F(R3, R)
to complex spherical harmonics P € F(R3 C), can only be defined

161t follows then that 1 + ez-0 = (1 i) =2 (§0> ® (fg,ff)\/i where & = &1 =
1

v/ —1/2, which can be calculated from the values of (X,Y,Z). A rotation over an angle
¢ around the z-axis in the spinor formalism will then correspond exactly to a rotation
over the same angle ¢ around the z-axis of the vector e,.
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within the isomorphic representation with P € F(R3 R).!1” This repre-
sentation is incomplete, as transpires from the fact that it is based on
only two independent variables (0, ¢) rather than three. It is not possi-
ble to define an analogous set of angular variables (0, ®) for (X,Y, %),
not even with (©,®) € C?, as it is impossible to satisfy an equation
cos? ©+sin? O cos? ®+sin® @ sin? & = 0, since (Vo € C)(cos? a+sin a = 1).
Certainly, sines and cosines of imaginary arguments introduce hyperbolic
functions, but the relation cosh? z — sinh? z = 1 still has 1 and not a zero
on its right-hand side.'®

The fact that the isomorphism is not trivial, and perhaps even acciden-
tal, is evident from the unusual nature of the relationship between 1 +¢’,-o
and (e}, + €] )-o discussed in Section 3.10. This suggests that the textbook
solutions of the Schrodinger and Dirac equations for the hydrogen atom
are ad hoc. It is not the introduction of spherical coordinates that results
in the rotational symmetry, but the use of harmonic polynomials. These
should preferably be taken from F(C3,C), as the ones from F(R3,C) based
on real spherical coordinates are not able to reflect the spinor symmetry. A
much more relevant set of parameters would be the rotation angle and the

171t is worth noting in this respect that in textbooks the normalization of the spher-
ical harmonics, expressed in the coordinates (z,y,z) and the ensuing Clebsch-Gordon
coefficients are (somewhat aberrantly) defined on the basis of the polynomials P €
F(R3,R) vV P € F(R3,C) rather than P € F(C3,C), since they are explicitly based on
the introduction of spherical coordinates. One could also define a normalization proce-
dure for P € F(C3,C), based on the fact that a rotation is defined by three indepen-
dent real parameters. The normalized volume element ﬁ sin?(¢/2) sin @ dp db d¢ of the
Haar integral for the rotation group (see for example Appendix C of the book of H.F.
Jones [Jones (1990)]) can in this respect be considered as derived from the volume ele-
ment 73 sin? 6y sin 61 dr dfy df d¢, that occurs when one introduces the four-dimensional
hyper-spherical coordinates (r, 0o, 61, ¢) discussed in Footnote 10 of Subsection 3.9.2. One
just has to make the correspondence (6g,01,¢) < (¢/2,60,¢) with r = 1. In the Haar
integral the coordinate ¢ of a rotation defines its rotation angle, and the coordinates
(6, ¢) its rotation axis n. These are the coordinates to be used in the generalization
towards P € F(C3,C), as generalizing (0, ¢) € R? — (0,®) € C? is not viable. This
could lead to more complete hyper-spherical harmonics Y (¢, 6, ¢). This study has not
investigated this possibility, nor how they could be put into correspondence with the
traditional spherical harmonics in terms of functional dependence, normalization factors
and Clebsch-Gordon coefficients. The fact that these more general functions are of no
use in for example, the solutions of the Schrodinger or Dirac equations for the hydrogen
atom, is due to the fact that they use the isomorphism defined in Section 3.10.
8Equations of the type (A+V(r))y = 0 are of course related to equations Az = 0 that
define both types of harmonic polynomials P(X,Y,Z) and P(z,y, z). The solutions of
At =0 in terms of (X,Y, Z) or (z,y, z) do not depend on the real or complex character
of the arguments.
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spherical coordinates of the rotation axis. It will be necessary to refine this
statement in Subsection 5.4.3.

It is quite beautiful that due to this analytic extension the algebra plays
us two movies at the same time. On the isotropic cone .# the algebra with
the variables (X,Y, Z) € .# plays us the movie of the rotations, while on
R3 the same algebra plays us the movie of particle motion.

In a perfectly analogous way, the algebra on the light cone ¢ in C* in the
Lorentz group will describe the orientation of the axes of a reference frame,
while on R* the very same algebra will describe its translational motion, and
vectors such as the probability current-density four-vector (U1, UfaW).
It is important to remember that the variables (x,y,z,t) in VU(z,y, z,t)
used to describe the probability density will have a completely different
meaning and range of values when U(X,Y,Z,T) is used to describe the
orientation of the basic tetrad. Not making the distinction between the
variables (X,Y, Z,T) on the light cone ¢ that serve to code a tetrad or
a part of a tetrad, and the coordinates (z,y,z,t) € R?* of a particle, will
suggest the wrong notion of an electron that would travel at the speed of
light although it does not have zero rest mass.!?

In fact, a physically clear picture of a wave function ¥(z,y, z,t) can be
given: it defines in each point (z,y, z,t) € R* of space-time an orientation
of the tetrad coded by the four complex parameters (X,Y, Z,T) that will
occur in the 4 x 1 matrix ¥ € %. These components are traditionally
expressed as functions of (z,y,z,ct) € R* in a way that one can easily
confuse the variables (X,Y, Z,¢T) € € with the coordinates (z,y, 2, ct) €
R* themselves.

3.11.4 The relation between spin and statistics

All the finite-dimensional representations of the rotation group are tensor
powers (£0,£1) ® (£0,1) ® -+ - ® (&, &1). The tensor power can be even, such
that the tensor components can than be identified with Yy ,,. The tensor
power can also be odd and can then be identified with the components of a
tensor product Yy, ® (€o,&1). As can be seen from the Rodrigues formula
to be discussed in Subsection 5.1.2, and as already discussed in Subsection
3.11.2, when we make a rotation of 27 on a spinor (&g, &), it changes sign.
This is often paraphrased by stating that SU(2) is a double covering of

190ne can find this confusion in textbooks, where it is discussed in terms of a so-called
Zitterbewegung, an alleged quantum mystery.
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SO(3). It is now possible to see what happens in the tensor representations
with these changes of sign. In the even-power tensor representations, they
will mutually cancel each other out two by two, as there is an even number of
spinors (£p, &1 ) in the tensor product. But in the odd-power tensor represen-
tations the change of sign within one of the terms will not be cancelled out.
As discussed in Subsection 3.10.5 and will be further discussed in Subsection
5.10.1.6 and Section 12.2, the quantum number ¢ in the expectation value
¢(¢ + 1)h? of the physical operator L2 corresponds to the degree ¢ of the
representation, such that odd and even powers correspond to half-integer
and integer angular momenta respectively. This relationship between the
mathematical operator L2 and D2 + D was discussed in Subsection 3.10.5.

There is an isomorphism between the isotropic cone .# (as a manifold to
visualize SU(2)) and R3 that is used in quantum mechanics. From a radical
viewpoint, this means that R? can be used to visualize SU(2). Imagine now
a circular orbit for a particle (centred at the origin). On this circular orbit,
the particle can be considered as moving on SU(2), due to the isomorphism
that was introduced. There is then a problem due to the fact that when a
full turn 27 is made on the circular orbit in R?, a rotation of 27 is performed
in SU(2). But this means that the wave function will have changed sign,
while we will have come back to the initial position r. The wave function
is then not a true function.

An attempt could be made to avoid this by only choosing representations
with an even power in the tensor product. But such an even power leads
to a representation with an odd number of spherical harmonics. There will
be physical considerations that constrain the choice of representation. One
of these is that the experimentally observed Zeeman effect is explained by
assuming that electron spin represents a magnetic moment. The current
induced by the orbital motion of the electron also represents a magnetic
moment.

When an external magnetic field is activated both the intrinsic and
orbital magnetic dipole moments will have different energies depending
on the question of whether they are parallel or anti-parallel to the exter-
nal magnetic field. This means that there must always be an even num-
ber of magnetic sub-states within the degenerated state obtained when
there is no magnetic field, because they manifest themselves when the
degeneracy is lifted as momentum-up and momentum-down states. It is
therefore necessary to use an odd-power tensor product representation in
order to obtain a description that accounts successfully and consistently
for the experimentally observed Zeeman splitting. Even before adopting
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the physical explanation in terms of some magnetic dipole moments, it is
necessary to take a representation that contains an even number of sub-
states in order to be in agreement with the observed Zeeman splitting. It is
clear from this that an electron should always be described with an SU(2)
representation in order to account for the observed Zeeman splitting. Other
physical problems could however be treated by a harmonic-polynomial rep-
resentation. It will be discussed in Subsection 6.2.6 how it is possible to
make sure that the SU(2) wave function remains a true function, by replac-
ing R? with a Riemann surface. However, difficulties remain in describing
the combined state of several electrons.

Consider a problem with two electrons. These two electrons with their
spin could also be described by a tensor product. Imagine these two elec-
trons are on a circular orbit. When both electrons are rotated by m, each
electron will have taken up the previous position of its counterpart. The
combined wave function will then be multiplied by —1 while the state can-
not be distinguished from the initial one. As one rotation corresponds to
two spinors, 11 = (£,&1) could be chosen for one electron and — (&g, &1)
for the other electron right from the start. But the problem will return
in various different guises when there are more electrons. There is how-
ever a simple and convenient general rule to settle this problem once and
for all: replace the simple tensor products with anti-symmetrical tensor
products in the spirit of Slater determinants.?® The explanation described
here for the so-called Pauli exclusion principle was discovered by Feynman
[Feynman and Weinberg (1987)], even if he did not discuss it really within
the context of group theory.

Confusing (z,y,z) € R3 and (X,Y,Z) € ., or more generally
(z,y,2,ct) € R* and (X,Y,Z,cT) € € on the light cone in C*, leads
to the notion that the wave function changes sign when the positions of
two fermions are exchanged [Feynman and Weinberg (1987); Gross et al.
(1991)]. The canonical notion, however, is that the wave function changes
sign when the orientations of two tetrads is exchanged. In the French trans-
lation of Feynman’s work there is a footnote from the French physicist Lévy-
Leblond who points out the confusion between R* and % in this argument.
He was right to do so, but the isomorphism .# = R? introduced in Section
3.10 provides the missing link in this puzzle.

20The analogue of a Slater determinant for spinors has actually to be defined. If & =
[€0,&1]T € F(R3,.%) and = [no, 1] | € F(R3,.¥) are two spinor-valued functions, this
could be ¥ € F(R3 xR3,C2 x C2) : (r1,r2) — U(r1,r2) = &(r1) @n(r2) — &(r2) @n(r1).
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It must be clear now that there are two different types of representations
of the rotation group that one uses in quantum mechanics. To characterize
the position of an electron on its orbit, one can use the incomplete vector-
type representations based on spherical harmonics Y7 ,,,. For the spin of the
electron we will need a two-component spinor (£, &1) of SU(2).

It may be finally noted that in his treatment of the spinors in the
rotation group Cartan[Cartan (1981)] also jumps backwards and for-
wards between (X,Y,Z) € C® when they are on the isotropic cone .#
and (z,y, z) € R® when they describe the coordinates of a real vector with-
out any warning or acknowledgement. This is a real distraction for the
reader and a further illustration of the point made in the Introduction
about the difficulty of understanding the underlying ideas from an austere
presentation.
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Chapter 4

Spinors in the Homogeneous
Lorentz Group

(This chapter can be skipped on a first reading.)

4.1 It takes two different zero-length vectors to code
the whole tetrad

In this chapter it will be attempted to build a representation of the group of
Lorentz transformations in R* based on the same principle that the column
matrices the representation matrices work upon must be images of Lorentz
transformations through the coding of a tetrad. However, this turns out to
be more difficult than one would expect on the basis of experience gained
in developing SU(2). Therefore, even though the chapters of this book are
placed in a logical order, some readers may find it helpful on a first reading
to jump to Chapter 5, where we derive the Dirac equation, and then come
back to Chapter 4. This will give a good idea about the motivation for the
construction of the Lorentz spinors in Chapter 4.

The Vielbein needed will now be a tetrad as illustrated in Figure 4.1. One
of the difficulties is that in SL(2,C) it is not possible to code the whole tetrad
into a single column vector along the same lines as in the rotation group.
In fact, it will be necessary to code the tetrad into two column vectors. The
origin of this difference with the rotation group resides in the fact that there
are no further quantities like 2 to combine the components of the tetrad
into one single expression in a way that would still allow retrieval of these
components from the linear combination. The whole problem is thus rooted
in the fact that there is no commutative field of numbers beyond C. Due to
this, coding the information content of four vectors into a single vector such
that after applying Lorentz transformations on it, this information could
be retrieved again unambiguously (like in SU(2)), is just impossible.

93
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Fig. 4.1 Just like in the rotation group, the Lorentz transformations are completely
defined by the unit vectors of a normalized orthogonal basis es, ey, €., ect. Such a
tetrad can be considered as a spinor. Combinations like e, + 1ey, ect = e, were called
semi-spinors by Cartan.

Nevertheless, the leading principle behind group representation theory
remains finding a way to code the Vielbein. This idea will also be true for
spinors in the Lorentz group: a spinor is the image of a group element L and
codes the image (e, e}, e, e’,) = (L(e.), L(e), L(e,), L(e.)) of a com-
plete tetrad or Vierbein (ect, €s, €y, €;) of mutually orthogonal unit vectors
of an orthonormal basis of R* under the action of this group element L.
This means that it should be possible to code the whole tetrad of basis
vectors into a spinor.

First, a remark about the special nature of the Minkowski pseudo-metric
used in the Lorentz group should be made. Let us assume that the signa-
ture of the pseudo-metric is (1,—1, —1,—1) such that the pseudo-norm of
(ct,x,y, z,) is ¢?t? — 22 — y? — 22, There are then two very distinct ways of
obtaining a vector of “zero length”. In fact, one possibility is to take e.g.
e; + 1ey, which is an isotropic vector built according to the same idea as
in the rotation group. But it is also possible to take e. + e, which is a
null vector or a point on the light cone %" in Minkowski space-time. As then
(Va € R)(a(eqs+e,) € F), eq +e. defines the light ray to which it belongs.

One can imagine an analogy of the latter quantity with an isotropic vec-
tor, by assuming that the quantities are not combined as e, + e.;, due to
the fact that the signature is not (1,1,1,1). With an isotropic vector like
e, +1e,, both parts e, and e, can be reconstructed by separating the real
and imaginary parts. Is it also possible to reconstruct e, and e.; from the
null vector e.; +e.?

It will be shown how the whole information content of the tetrad is
coded in an element of SL(2,C), such that in a sense these 2 x 2 matrices

1The notation L is used to note a representation of an element L of the Lorentz group,
just as R and B are used to note matrices that represent rotations and boosts. In general
this should not lead to confusion with the angular-momentum operator L.
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can be seen as the spinors of the Lorentz group. In conformity with a
terminology used by Cartan, each column of such a 2 x 2 matrix can be
considered as a semi-spinor. Together these two semi-spinors are coding two
zero-length vectors, e, +1e, and e, + e..2 From the knowledge of these
two zero-length vectors, the whole tetrad can be reconstructed. In fact from
e, +1e, the vectors e, and e, can be reconstructed by separating the real
and imaginary parts. The vector e.; — e, can then also be reconstructed as
the unique vector with the proper norm that is simultaneously orthogonal
to e,, ey and e, + e.. And this allows us to reconstruct e.; and e, from
e, + e, and e.; — e,. This gives a clear and neat geometrical meaning to
the concept of a spinor: spinors code group elements, and this is achieved
by coding the complete image of an orthonormal basis.

2This will be discussed in Section 4.6. Some authors consider the 2 x 1 column matri-
ces as the spinors. This is of course a matter of definition. But the information content
of the semi-spinors is always larger than that of the 2 x 1 column matrices that can
be “derived” from the “zero-length” vectors. The introduction of a “zero-length” vec-
tor looks arcane and has no further natural justification if the basic idea that we want
to define a tetrad is abandoned. It is the definition of the tetrad that necessitates the
combination of two orthogonal unit vectors into a pair, and it is this orthogonality of
unit vectors that implies then that the pair forms a “zero-length” vector. Furthermore,
two complementary “zero-length” vectors must be chosen. Two “zero-length” vectors
will be considered as truly complementary only when they permit reconstruction of
the whole tetrad (see Section 4.6). It is for these reasons that it is more suitable to
consider the 2 x 2-matrices of SL(2,C) as the true spinors. This choice of definition
permits eluding Atiyah’s verdict cited at the beginning of Chapter 3. The true spinors
contain then the complete information about the tetrad, but scattered over the two
semi-spinors. One could try to consider the two semi-spinors as separate entities, but
the necessity of the constraint ad — bc = 1 (see (4.9)) imposed on these two semi-
spinors is difficult to interpret geometrically. There is thus little hope that one could
make sense of the semi-spinors separately as truly meaningful mathematical objects,
that one could call then spinors. The constraint ad — bc = 1 rather seems to empha-
size that one must consider the 2 X 2 matrices of SL(2,C) as indivisible wholes. The
image of the Meccano game introduced in Section 2.13 can be used here. A group ele-
ment corresponds to a tetrad, and the tetrad is a Meccano construction of four unit
vectors. Each Vielbein introduced in Section 3.4 as an image of a group element is
such a Meccano construction of unit vectors. In the formalism, the Vielbein can be
expressed as a set of complex column vectors which are themselves constructions con-
taining two unit vectors. Rather than describing the transformation of the individual
pieces of the construction, it is much easier to make sense of the construction when
described as a whole. It is the global structure that counts, not the individual build-
ing blocks. In SU(2) isotropic vectors were used as an equivalent construction for two
mutually orthogonal unit vectors, allowing the pair to be treated as a whole and describ-
ing the rotations of the triads as a whole. The whole issue is thus to find equivalent
constructions.
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4.2 The representations SL(2,C)

At this stage it may be noted that it is possible to code a four-dimensional
vector v = (z,v, 2, ct) in a two-dimensional formalism, by taking:

v=(2,9,2ct) = V=ctl+ (0,0 +0yy + 0.2)

B <ct—|—z x—zy) (4.1)

S \z+ W ct—=z
There is an alternative vector representation given by:

v=(x,y,2,ct) > V' =ctl — (0,2 + oyy + 0.2)

PR R

Note that the symbol « is different from the symbol * used for complex
conjugation. The * operation is also different from Hermitian conjuga-
tion for which the symbol { will be used. The elements of V* are the
minors of the matrix V', therefore in these representations V** = V and
V*V = (det V)1 = (c?t? — 22 — % — 22) 1. For unit vectors a, we thus
have A* = A~!. Two representations V and V* are linked by a parity
transformation, as V = ct1l + r-o is related to V* = ¢tl — r-o through a
parity transformation r| — r. The two SL(2,C) representations can thus be
called left-handed and right-handed representations.

The scalar product of two four-vectors v * w is now given by % (V*W +
W*V). The notation x is used for the Minkowski scalar product in R*
in order to distinguish it from the dot product in R3. In this formalism,
the reflection defined by a unit vector a whose matrix is A operates on
a vector v whose matrix is V. as V. — —AV*A. A rotation leads to
V — BA*VA*B, showing it is necessary to leap backwards and forwards
between two different vector representations in order to obtain a complete
formalism for the Lorentz group, including the reflection operators that
generate it. The formalism is, however, a true representation for the group
of the Lorentz transformations that does not include these reflections.

4.3 Dirac’s expedient again

It is possible to return to a complete and pure reflection formalism as was
present in the rotation group by combining the two vector representations
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into a single one as follows:

0V
v = (z,y,2,ct) > (V* 0) = cter + Yz + YV + 272 (4.3)

since the reflection then works according to:

(v o)== o) (9 D)

(4.4)
_ 0 AV*A
N A*VA* 0 ’
with the reflection operator:
0 A
Aet Vet + QzYa + Gy Yy +a.y. = (A* 0) = 157 (45)

squaring to unity:

(o) (& 0)=0 1) 4o

and A*VA* = (AV*A)*. Here, Yet, Ya, Yy, 7=, are the Dirac gamma matrices
with the usual commutation relations: 7,7, + v, v, = 29, 1. This becomes
then equivalent to the four-dimensional description that can be derived
from Dirac’s expedient, and actually it would be more logical to start the
development from (4.6). The notation A will be used for the 4 x 4 matrices
to distinguish them from the 2 x 2 matrices A and A*, as they will often
be used all within the same context.

The difficulty resides in choosing the correct form of (4.6) that is needed
to fall back onto (4.1) and (4.2). The form of (4.6) is a standard form used
by Cartan. It may not be the standard form a physicist is used to, but
it can be argued that this is not important as Pauli has shown that all
representations are equivalent up to a similarity transformation (see also
Footnote 3 below). But with these other equivalent representations it would
not be as easy to discover the representations defined by (4.1) and (4.2).

The two-dimensional matrices can only yield a representation of
the proper Lorentz transformations. The Lorentz reflections cannot be
accounted for in a single two-dimensional representation, due to the fact
that there is not a fourth 2 x 2 matrix that anti-commutes with o, 0y, 0.

It is thus not possible to build up the representation SL(2,C) from reflec-
tions as with SU(2); a different kind of heuristics is needed. The need for
four anti-commuting y-matrices requires the use of a four-dimensional rep-
resentation, which is the Dirac representation.
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In deriving (4.6) by using the Dirac expedient, there is some liberty
in the choice of the matrix 7., even after having fixed v,, 7, and v.. In
fact, one can find five mutually anti-commuting ~-matrices. The fifth one

in Cartan’s choice is:
1 0

which is thus a matrix that anti-commutes with all of the matrices v.¢, Vs,
7y and 7y,. In Dirac’s choice the roles of 7. and s have been inverted. In
his choice,® the matrix corresponding to (z,v, z, ct), is then:

ctl ro

ro _ctﬂ) =clys + 2y + Yy + 2y (4.8)

v:@,y,z,dH(

Cartan’s choice appears much simpler, because it permits the use of only
matrices that have a block form, where the blocks on one diagonal (the
main or the secondary one) are always zero. Appendix A contains a discus-
sion on how one can discover the representation SL(2,C) from the Cartan
representation.

The situation in SL(2,C) will be analogous to the one in the rotation
group SU(2). Considering the representation as working on group elements,

3Intuitively it is obvious that it should be immaterial if v¢; or 75 is chosen to build
the representation. In fact, the five matrices vet, Yo, Yy, 7z, 75 can be used to build
a representation of the transformation group SO(3,2) of R® that preserves the metric
with signature (+ + — — —). Replacing et by 5 then just corresponds to changing
the way Minkowski space-time is embedded within this space R°. The way a space is
embedded into a higher-dimensional space can of course not affect its geometry. Just
imagine that Euclidean geometry would depend on the way we orient the plane within
R"™, with n > 3. The plane geometry would then contain information about these other
dimensions! Therefore the representations must be equivalent. This can be also checked
algebraically by calculating the eigenvalue equations in both representations for the
matrices that code a four-vector, e.g. (E,cp). One finds (A2 — (E2 — ¢2p?))2 = 0 in both
representations, such that the two matrices have the same eigenvalues —mqc? (twice),
and moc? (twice). The fact that they have the same eigenvalues implies that these two
matrices can be obtained from one another by a similarity transformation. As 7. and
~5 anti-commute, any linear combination 4 = (cos @)yt + (sin a)vys will also satisfy the
anti-commutation relations v,v, + Yo yu = 2guv 1. These ideas of equivalence between
different four-dimensional subspaces of R® with the ones of Subsection 5.4.2.3 (see also
the discussion of the analogy with the buckyball model for the icosahedral group from
Section 2.9) may give a geometrical insight into Pauli’s theorem. The ideas of Subsection
5.4.2.3 are needed here to cover any further internal similarity transformations that may
occur within a given four-dimensional subspace of R.
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the representation is already linear. But if it is considered as working on
four-vectors, then it acts quadratically. The four-vectors are associated
with reflection matrices. These cannot be coded within SL(2,C). However,
the four-dimensional Dirac representation, given by (4.4), is generated by
such reflections and it acts quadratically on reflection matrices as defined
by (4.5). It will be possible to derive the linear formalism for the group
elements from the quadratic formalism for four-vectors by considering two
special zero-length four-vectors that together will code the whole tetrad.
This will be shown in Section 4.6 for SL(2,C).

4.4 Coding a tetrad in SL(2,C) using tensor products
that involve the two semi-spinors

The problem with attempting to code the tetrad within SL(2,C) is that
there is no linear combination that would allow one to code the whole
information content of a tetrad into a single zero-length vector. It is possible
to code e, + e, and e, + e, separately, but combining them linearly into
a single vector within the 2 x 2 matrix formalism in such a way that they
can be separated out again unambiguously fails due to the non-existence
of another commuting number « that could be used like ¢ to code the
whole tetrad as e, + 1, + a(e + e.). One way would be to try to use
a quaternion for o but this would imply immediately that the dimension
of the representation has to be increased from 2 to 4. In order to obtain
unambiguous coding and decoding wusing a commutative number field, it
would be necessary to consider « as a variable, such that the coding would
become a linear polynomial in «. Finally, also combining the two zero-length
vectors by using the tensor product leads to a 4 x 4 matrix formalism rather
than a 2 x 2 one. Despite these problems a matrix with zero determinant
in the 2 x 2 matrix formalism of SL(2,C) seems to have exactly the right
amount of independent real parameters, viz. six, that are required to code
a general Lorentz transformation, and it does not require the presence of
a variable « for that. As the determinant of a matrix that codes a vector
corresponds to the square of the length of that vector, it is tempting to
identify a matrix with zero determinant with a zero-length vector. This
will have to be rendered more precise later on when it will be shown that
one must also keep track of a phase factor. In fact, in general one will
construct the zero-length vectors using two orthogonal unit vectors, and
this procedure defines only five independent parameters. The lacking sixth
parameter is this phase factor.
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The coding can be achieved by exploring another, much less obvious
possibility. The idea is to develop two separate “spinor”-like quantities (in
the sense of the construction developed within the rotation group) which
will acquire the status of semi-spinors within the Lorentz group, e.g. n =
(Mo, m) for et + e, and & = (o, &1) for e, + 1€y, and to construct (several)
tensor products from them, such as fT ® m, which then in principle should
be able to code the whole tetrad. (It will be revealed later that the correct
expression should actually be fT ®@n*.)

The idea is thus that in order to avoid a situation in which a tensor
product would raise the dimension of the representation matrices from 2 x
2 to 4 x 4, the tensor product is coded at “spinor” level rather than at
vector level. It is the fact that a “spinor” behaves like a “square root of
a vector” which enables one to construct a tensor product whereby the
matrix formalism remains at the 2 x 2 level. The development will show
that it will be necessary to slightly modify this idea to make things work.

4.5 A very important difference between
SL(2,C) and SU(2)

In the 4 x 4 representation, a general Lorentz group reflection is repre-
sented by the transformation: V. — —AVA. Therefore, in SL(2,C) a

general Lorentz group reflection is represented by the transformations:
V — —AV*A and V* — —A*VA*. Here, A and A are the matrices

that correspond to the four-vector a that is normal to the reflection hyper-
plane. As the reflections can be used to generate the Lorentz group, a
general rotation, boost, or Lorentz transformation are thus of the form:
to V- BA*VA*B and V* — B*AV*AB*. Now the matrices A and B
are Hermitian, such that A*B = (BA*). The general form of a rotation,
a boost, or a Lorentz transformation is thus: V. — LVLT.* Note that in
general L # LT, as L must code six real parameters rather than three. A
general Lorentz transformation matrix L is given by:

L(a, b, c,d) = (‘C‘ Z) 7 (4.9)

4With L = BA*, and using the Hermitian properties of the matrices A and B in
SL(2,C) it follows then also that: A*B = LT, AB* = L~! and B*A = Lt~!, and we
also have: V* — LT=1V*L~1. This shows that the 4 x 4 Lorentz matrix L must contain

the blocks L and LT~1 while its inverse IN_Fl must contain L~! and LT.



Spinors in the Homogeneous Lorentz Group 101

with ad — be = 1. Based on this definition it follows that:

a b a* c*
pu— T:
L= (0 ) v (i )

L= (_CCZ _2> , (L) = (_Zi _Cf) . (4.10)

This is quite natural; it is obvious that an alternative representation can
be built through the isomorphism of group elements g — ¢~
D(g) is a representation built on left multiplication, then g — D~1(g) is
a representation built on right multiplication, and vice versa. Similarly, if
g — D(g) is a representation built on left multiplication, then g — DT(g)
is a representation built on right multiplication, and vice versa.

This is then achieved by isomorphisms of representation matrices
D(g) <> D'(g) and D(g) <> D~'(g). The 4 x 4 Lorentz matrix L is given by:

L= (L LT—l)’ L' = (L_l LT>' (4.11)

This is easy to check by using the identities derived in Footnote 4. (See
Subsection 5.5.2.1.) Due to the way the rotation matrices R act on vectors in
SU(2), viz. V — RVR! with Rf = R™!, the composition of isomorphisms
D(g) «+» DT7(g) does not lead to a new, different matrix formalism in the
rotation group. But in the Lorentz group the situation is more complicated
than in the rotation group because LT and L~ are different matrices. If we
use the transposition of matrices rather than Hermitian conjugation then
even more different representations can be derived. One of these corresponds
to punctuated spinors (see below).

The discussion of some subtle points has at this stage been relegated to
Appendix B. From this discussion it emerges that the codings of the two
zero-length vectors must contain contributions of both types (19,71) " and
(ng,m7). The circumstance that L=! # LT, is responsible for the fact that it
is no longer possible to use within the Lorentz group the same diagonaliza-
tion procedure to jump from vectors to group elements, as has been used
in Section 3.7 for the rotation group. In the Lorentz group it is no longer
possible to identify something that has a structure LVL' with something
that has a structure SVS™!. Tt is here indeed no longer possible to “halve”
the formalism by a diagonalization procedure to render it linear, as the
operations on the left hand side are no longer identical to the operations on
the right hand side, as was the case in the rotation group. In other words,
the two halves would not be identical. Within the Lorentz group a proce-
dure other than diagonalization is thus required to “halve” the formalism

LI g —
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into two parts that are identical. To obtain two halves the vector V must
be written in the form &€ ® n*, where n* is identical to 5.

4.6 The two types of zero-length vectors in the Lorentz
group that define a tetrad

Defining the tetrad requires the following codings:

ect—|—ezz(1,0,0,1)—>V1:<(2) 8),

(4.12)
e; +1e, =(0,1,2,0) > Vy = 0 2
T y y Ly by 2 — 0 0 .

A general Lorentz transformation with matrix L is given by (4.9), with
ad—be = 1, and transforms the two vectors V; into V/; = LV LT, given by:

2aa* 2ac* a
'V/ — — 2 * *
1 (26a* 266*) (c) @ (a%, ),

2ab*  2ad* a
V/ — — 2 * *
2 <2cb* 20d*) (c) @ (07,4,
from which it can be seen that the tetrad is coded by two spinor-like quan-
tities (£o,&1) and (o, n1), that combine into a quantity:

V, =2 (?) ® (15, 17)s (4.13)
1
with &en1 — &1mo = 1 and whereby
vi=2(8) o 6.6 (414

automatically codes V}. SU(2) and SL(2,C) can then be compared accord-
ing to the following diagram for the isotropic vector e, + e, € & :

V=e,+1e,€5 _— V=e,+1e,€5
lV’ = RVR/' V' = LVL,
R € SU(2) L € SL(2,C)
V= V3 (g) SV &) V' = V3 () 2 VAl )
1
V' =e +e, €I V'i=e, +ie, €7

(4.15)
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In SU(2) a single spinor [& &1]T codes a whole rotation because [&, &1]"
and [ =& & ] can be derived one from another. In SL(2,C), the two quan-
tities [a ¢]T and [b* d*] cannot be derived from one another. They are
only related by the constraint ad — bc = 1. One of them alone is thus
not capable of coding the full information about the tetrad. This is the
reason why the name “semi-spinors” is preferred. The two semi-spinors
must thus be subjected to Lorentz transformations to obtain a complete
representation of the homogeneous Lorentz group, viz. [a ¢]T acted upon
by left multiplication by a Lorentz matrix L, and [b* ¢*]| acted upon by
right multiplication by a Lorentz matrix L. The latter is equivalent to a
semi-spinor [b d]" being acted upon by left multiplication by a Lorentz
matrix L. The matrix in (4.9) can thus be considered as a full spinor. It is
in fact obtained as the juxtaposition of the two semi-spinors. The reader
will recognize that this way of writing a spinor as the juxtaposition of two
semi-spinors corresponds to the derivation of the linear formalism for the
SL(2,C) representation matrices when they work on group elements, from
the quadratic action of these representation matrices when they work on
four-vectors. As for SU(2), it was necessary to start from a special “zero-
length” vector to obtain this derivation, a result anticipated in Section 4.3.
In (4.15) e, + e, € € has been noted for SL(2,C) because the original
isotropic vector e, +1e, € & C € can acquire a time-component under the
action of Lorentz transformations. This does not happen under the action
of rotations in SU(2).

The fact that V| and V), are written as tensor products automatically
reflects that they are zero-length vectors. The canonical starting values are
(&0,&1) = (1,0) and (no,m1) = (0,1). From the knowledge of the spinors,
the images of e.; + e, and e, + e, can be reconstructed unambiguously.

The converse is not true. The quantity (£p,&1) is only determined by
e/, + €. up to a “phase factor”. It is easy to see that [a,c]T — eX[a,c]T,
[a*,c*] — e ™X[a*, "] does not modify V. Similarly, (£,&1) and (o, 1)
are not completely determined by e/, + 1ej. Even the combined knowledge
of €/, + €’ and e, — €., is not sufficient to reconstruct (£y,&1) and (1o, 71)
completely. In fact, a rotation around the z-axis, with rotation matrix R,
will leave the two zero-length vectors Vi < e, + e, and V4 < e, — e,
unchanged (i.e. R.V;Rl = V|, R, V,R! = V,), such that LR,V ;RIL'
= LV,L', and LRZV4RLLT = LV,Lf. The resulting quantities will thus
not contain information about R, as this information has been “squared”
out. The quantities (£, &1) and (79, 71) (which do contain the information
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about R.) are thus not completely determined. Similarly, the combined
knowledge of V5 < €], — e, and V3 « e/, +1e; will not be sufficient to
reconstruct (&p,&1) and (1o, 71) completely. Here, it is a boost along the
z-axis with boost matrix B, that will leave V5 and V3 unchanged. The
combined knowledge of V)| and V/, does, however, permit reconstruction
of (&,&) and (no,71). The same applies for the combinations (V}, V%),
(V4. V5), and (V) V5).

These results can be obtained after some tedious algebra, by just
attempting to reconstruct (£p,&1) and (no,n1) from the zero-length vec-
tors one assumes to be given. But the point can also be understood (in a
less detailed way) geometrically. Once the starting values for the spinors
have been fixed, e.g. by adopting the canonical values (§y,&1) = (1,0) and
(mo,m) = (0,1) for them, the values of the four zero-length vectors V; will
be unambiguously defined for any subsequent Lorentz transformation with
matrix L(a, b, ¢, d). Imagine now that both V| « ef,+e’ and Vj < e/ +1e;
are known. By separating the real and imaginary parts in e/, + ey, e, and
e; can then be reconstructed unambiguously. The combined knowledge of
e, + e}, e, and e permits then reconstructing also e, — e, unambigu-
ously. Finally, combining e/, — €/, and e/, + €/, will permit recovering the
whole tetrad. As each Lorentz transformation with matrix L(a, b, ¢, d) is in
one-to-one correspondence with the tetrad it generates by operating on the
canonical basis, knowing the whole tetrad means that the whole Lorentz
transformation is known. Hence, in order to know if it is possible to recon-
struct (€o,&1) and (19, n1) completely from the knowledge of a combina-
tion of zero-length vectors, it suffices to check if one can reconstruct the
other zero-length vectors of the tetrad from the combination given. It takes
the presence of three of the four unit vectors e;L within the combination
(V7,V}) to have a complete description.

4.7 Dotted spinors

In addition to the four matrices defined in (4.10), one can introduce the
2 x 2 matrices: L = LT. We then have L = LyLq, such that LT = LILE7
and LTT = L;TLIT, which again respects the same order of operations
as in L = LyL;. The entries in the matrix LT will thus all be calculated
correctly. The only thing that has changed is that the places of the elements
with indices 12 and 21 have been swapped. It is possible to make an error
of interpretation about the meaning of the elements of the matrices, by
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basing oneself on the places where these elements occur in their matrix.
If the operation is performed twice, the entries 12 and 21 will be in the
same place again. The important point is however the self-consistency of
the calculations, not on which place in a matrix formalism the elements
are positioned. The matrices L are used in the representation theory. Their
advantage is that they can be used in left multiplication. The point is that
(4.13) and (4.14) show that two representations of the SL(2,C)-type out of
the four given in (4.10) are needed to perform all the necessary calculations,
one with the elements of L in (4.10), and one based on the elements of L.
The disadvantage of L is that it requires right multiplication. By pulling
back Lt to L it will be possible to perform all the calculations by left
multiplication. The indices of the elements involved in the representation
based on LT are then written with punctuated indices. This pull-back from
L to L changes the equations according to the substitution:

(69) ® (ny,my) = L <§0> ® (o, m )L —
& &1

& m\ - (&0 1o
<§i>®<ni>_L®L(£l>®(m)’

which is a way to write the formalism in terms of transformations of 4 x 1
matrices rather than 2 x 2 matrices. The components 79,7, correspond thus
to the punctuated indices, as they transform according to L rather than
according to L. They are therefore written as 7),,7; in order to keep track
of the transformation matrix required. This shows that it is possible to use
a representation in terms of quantities (£o7)g, 07, 1709, €171) T and obtain
this way a representation working on 4 x 1 matrices. While this pull-back
expedient permits the calculations to be transcribed much more mechan-
ically by carrying them all out in left multiplication, the disadvantage is
that the intricate technicalities of the algebraic moves involved are beyond
reckoning, such that the formalism will appear inscrutable if these moves
are not described in minute detail. If the Dirac representation is described
properly in terms of matrices of SL(2,C), and these 2 x 2 matrices used as
spinors, it will be apparent that the natural combination to be used is L,
L~ rather than L, L (see for instance (5.33) below) such that the punctu-
ated spinors can then be avoided. The dotted spinors are also essential when
one wishes to use differential operators in tensor representations. Perhaps it
is possible to define a formalism that would allow for a distinction between
left and right differentiation, but it would certainly be quite complicated.

(4.16)
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4.8 Missing phase factors or boost parameters

To know if a given combination of zero-length vectors is sufficient to recon-
struct the whole tetrad, it suffices to count the total number of independent
parameters. Only if this number is six will the information be complete; for
instance, e; +1e, does not contain the complete information as it only con-
tains five independent real parameters. A boost parameter is still needed
to make the description of the tetrad complete. (Such a boost parameter
will also be refered to as a phase factor in an abus de language.) This boost
parameter will also be present in the quantities (£o,&1) and (1o, 71) after
applying subsequent Lorentz transformations on the canonical starting val-
ues (1,0) and (0, 1). Similarly, a and ¢ contain four real parameters. They
contain the information about the three parameters contained in e, + e,
and the phase factor. That e.; + e, contains three parameters can be seen
from the fact that V7 is Hermitian. This can also be appreciated from the
fact that from knowing e.; + e, alone, it is impossible to reconstruct e,
and e, separately.

This situation of a phase factor that is easily overlooked is quite ana-
logous to the one with the phase factor that is missed in describing the
spinors of the rotation group starting from the stereographic projection of
a unit vector, as discussed in Section 3.8. There, the information about a
second unit vector that is needed to make the description of the triad com-
plete, is also missing, and this information must also be coded as a phase
factor, inadvertently introduced at a later stage when one makes a transi-
tion from Cartesian to homogeneous coordinates, and from a homographic
transformation to a linear mapping embodied by a 2 X 2 matrix.

4.9 The coding of the tetrad in the Dirac representation

A nice result can be obtained by considering also the “zero-length” vectors:

e, —te, =(0,1,—¢,0) = V3 = (g 8),

eut — e = (1.0.0.-) = Vi = ({ 3).
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The Lorentz transformation with matrix L transforms these two vectors

V; into:
, (2ba® 2bc*\ (b . %
V3_<2da* 2der ) ~2g) © @)

2bb*  2bd* b (4.18)
Vi= <2db* 2dd*) =2 (d) ® (b7, d°).
The 4 x 4 matrix built on the tensor product:
C0eG 03,
c d b* d* 2 v, V)
(4.19)

1 e, +e, e, —e,

PN

2 / /
e, t+we, e,;—e,

mimics then the structure ctl+xzo,+yoy+z0, < e, 1+e,0, +e;cry +elo,
of the 2 x 2 representation matrices on a larger scale. (4.19) depends on the
choice of in which order the components of the tensor product are noted.
Here, the “spinor-preserving” order is used:

i_(a b a* c*
LoL ( d)®(b* d*)

aa®* ac*  ba* bc* (4.20)
ca* cc*  da* dc*

ab*  ad* bb*  bd* |’

cb*  ed*  db* dd*

which is perhaps less obvious than the order:

t_(a b a* c*
LeL <c d) © (b* d*)

aa®™ ab*  ba*  bb* (4.21)

ac* ad*  bc*  bd*

ca* c¢b*  da* db* |’

cc*  cd* de*  dd*
which might look more logical but scatters the components of spinors
& = (a,b) and i = (b,d) over different blocks, thereby rendering the block
structure in terms of SL(2,C) less evident. Of course these choices are linked
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by a similarity transformation. The whole four-dimensional coding can then
be written as § > V/, \N/'u = 1> V), ® V,, where each 4 x 4 matrix \N/'u
has a block structure 1 ® V, that is obtained from the corresponding 2 x 2
matrix V,, by replacing its elements vfj” ) by vl(j“ 1. (In other words, three
blocks of %\7# are zero matrices and one block is a unit matrix. The “coeffi-
cients” 'V, are supposed to work on the unit matrix, thereby transforming
it into the matrix V|, that codes V, in the new frame.)

This shows that the most simple and symmetrical coding of a Lorentz
transformation is done with two light rays travelling in opposite directions,
by using Vi and V4. The matrix V4 can now be considered as the rep-
resentation of €/, + € in the alternative representation, i.e. V4 = V7. In
other words, an isomorphism can be built thus:

Vl 0 V1 0
. 4.22
(o v) = (0 v) 42
This leads to the conclusion that in the representation based on the Dirac

matrices, the operator on the left-hand side (which is defined by the single
“zero-length” vector e.; + e,), or alternatively the reflection operator:

0 V3 0 Vg

(V2 ! ) <V2 ! ) , (4.23)
(which is defined by a single isotropic vector e, + 1e,), is able to code the
whole tetrad, provided the phase factors in the matrices Vi and V4 (or Vo
and V3) are monitored when following the formalism. The phase factor is
essential as the couples of vectors (ec,e.) or (e, e,) that can be recon-
structed from the “zero-length” vectors coded in (Vi1,Vy) and (Va, Vs)
respectively only contain five independent real parameters. The physical
meaning of the isomorphism V7 < Vy is clear. The second quantity codes
the light ray in the opposite direction of the light ray coded by Vi in one
two-dimensional representation. The first quantity codes the principal light
ray in the representation based on the inverse matrices. But it is obvious
that in the Lorentz group, the inverse transformation is given by making
the substitution v| — v. All this becomes possible by the fact that the
Dirac representation contains the two alternative two-dimensional repre-
sentations combined with the fact that the coding V7 of a light ray in the
alternative two-dimensional representation is equivalent to the coding V4
of the light ray that travels in the opposite direction of V7 in the original
two-dimensional representation.
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4.10 The last parameter in any group SO(n1,n2) is always
a “phase factor”

In summary, the coding of a general Lorentz transformation can be seen
conceptually in terms of an isotropic vector plus a phase factor, or two
light rays travelling oppositely plus a “phase factor”: The situation will
be discussed first from the viewpoint that the Lorentz transformation is
coded with the aid of an isotropic vector, using an analogy with SO(4) and
assuming the fourth coordinate is called u. The idea is to try to imagine
what a four-dimensional rotation could be. Let us start from the Oxy plane.
Both the z and the w axis are then orthogonal to this plane. By definition
a rotation in the Oxy plane will leave both these axes fixed, as it only
affects the coordinates x and y in (x,y, z,u). But under an exchange of
roles this also means that a rotation in the Ozu plane will not have any
effect in the Ozy plane. A phase factor must therefore be used to keep track
of this “twist” between the two couples of axes z,y and z,u. The phase
factor codes the direction of the actual z axis within the one-dimensional
continuum of directions in the Ozu plane that are orthogonal to the Oxy
plane. The fact that the fourth dimension cannot be seen makes this phase
factor easily overlooked. In the Lorentz group making a rotation about an
axis in the Ozu plane that is different from the z-axis implies that there
has been previously a boost. This implies that in the frame wherein this
rotation takes place, the clocks will not be ticking at the same rate as they
would have ticked in a rest frame, if a rotation had been carried out in that
rest frame. When the Lorentz transformation is coded by two light rays
travelling in opposite directions along the z-axis, the presence of a phase
factor indicates that the Lorentz transformation is not a pure boost along
the z-axis, but also contains a rotation in the Oxy-plane.

It has already been noted that an analogous situation with a phase factor
that is easily overlooked exists within the rotation group. In fact, in R™ the
Vielbein is completely coded by the n — 1 unit vectors eq, es,...e,_1 of an
orthonormal basis. The first unit vector e; brings in n—1 free parameters, as
it has n coordinates satisfying a normalization condition. The second unit
vector e brings in n — 2 free parameters since it is not only normalized
but also is orthogonal to e;. The last vector e,_; must only bring in one
number that defines the orientation of both e, _; and e,, with respect to all
other vectors. Both in the rotation and in the Lorentz group, this last free
parameter occurs as a phase factor. Without this phase factor, the vectors
es and (in the Lorentz group) es would still be able to twist with respect
to the other unit vectors.
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4.11 Expressing the tetrad in terms of more
physical parameters

From all this it can be appreciated that the coding in terms of an isotropic
vector plus a phase factor is closer to the geometrical viewpoint of rotations
than the coding in terms of two opposite light rays plus a phase factor,
which is more physical. The whole tetrad becomes unambiguously defined
by coding the space-like triad (e, ey, e.) through the expression eX(e, +
ey ), whereby the phase factor e'X indirectly defines the third element e, of
this triad. The fourth element of the tetrad e is uniquely defined by the
triad due to the orthonormality of the basis.

In the rotation group a general rotation can also be expressed in terms
of other parameters like the three Euler angles, or the rotation axis and the
rotation angle. These expressions are derived in many textbooks. Similar
expressions for a general homogeneous Lorentz transformation in terms of
the more physical parameters like the boost vector v and rotation axis and
angle (n, ) have been derived in Appendix C. It is shown there how the
tetrad parameters (a,b,c,d) can be derived from the parameters (v, n, p)
and wvice versa. In conclusion, it is thus possible to find the coding of a
general Lorentz transformation in two different sets of six parameters, viz.
the ones that define the tetrad and those that define the intrinsic physical
parameters.

4.12 Final considerations

The problem of the physical contents of a spinor has not always been coped
with satisfactorily in the literature. For example, in [Misner et al. (1970)] a
description in terms of flags and flag poles has been developed based on the
idea that the whole information content of the six parameters would not be
contained in the formalism. This is due to the bias introduced by wanting
to represent the spinors on a single sphere. A very nice description is then
introduced in terms of the appearance of the night sky. But this represents
only one semi-spinor, while the whole information content is scattered over
two complementary semi-spinors. The complete information content should
be represented in terms of two spheres.

It is in this respect perhaps worthwhile to point out that other authors
have coded the tetrad of the Lorentz group through more elaborate for-
malisms. For example, Newman and Penrose [Newman and Penrose (1962)]
have coded the four vectors e, +1e,, e, £ e, (which make up the so-called
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null tetrad) separately. The coding through SL(2,C) as developed here is,
however, the most concise one possible, and it is not necessary to layer more
structure upon the formalism to be able to work with null tetrads, as they
are already perfectly accounted for in SL(2,C).

The Lorentz group has a six-dimensional real-parameter set. The two
columns in a matrix of SL(2,C) belong both to C2. Together, they would
be equivalent to C%, i.e. eight real parameters, but the constraint that the
metric should be conserved reduces the number of free real parameters to
six. It must be stressed that after allowing for the constraints due to the
metric, the six remaining real parameters are now completely free and not
subject to any further constraints. The construction detailed here squeezes
the whole null tetrad with its six independent real parameters into a two-
dimensional formalism, and this might help in keeping the calculations as
simple as possible.

It may be noted that by definition:

(£)=2()= ()
(m)=e()=()

It can be seen from this that in a sense the spinors of the Lorentz group
are the elements of SL(2,C) themselves, as given by (4.9). This is consistent
with the fact that SL(2,C) is already linear in its own right.

From a single representation, one can build a set of eight equivalent
representations by taking various combinations of the inverse, the Hermi-
tian conjugate, or the transposed of the matrices. Four of the combinations
are given in (4.10). The other combinations are the dotted counterparts
of these. For each of these eight types of matrices one can derive the cor-
responding type of semi-spinors. In most texts this plethora of different
types of spinors are introduced ex cathedra, together with a terminology
of normal and conjugated, punctuated and non-punctuated, covariant and
contra-variant spinors, without referring to the fundamental reason for their
existence. This can be a source of awe and puzzlement, especially since the
notations become freighted with additional marks in order to make the
distinction between the various types. These notations become necessary
if one really wishes to carry out detailed calculations in practical applica-

(4.24)

tions, but the reader may appreciate from the present chapter that for the
needs of identifying the underlying ideas a notation based on the quantities
a, b, c,d and complex conjugation is sufficient.
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With some perspicacity it could have been anticipated from the very
form of (4.9) that it should not be possible to code the whole tetrad into
one column vector and that two were required. In fact, from the knowledge
of one column and the condition ad — bc = 1 it is not yet possible to
determine the elements from the other column as in SU(2) on the basis
of (3.4).



Chapter 5

The Dirac Equation from Scratch

Philosophy is written in this grand book — I mean the uni-
verse — which stands continually open to our gaze, but it cannot
be understood unless one first learns to comprehend the language
and interpret the characters in which it is written. It is written
in the language of mathematics, and its characters are triangles,
circles, and other geometrical figures, without which it is humanly
impossible to understand a single word of it; without these, one is
wandering around in a dark labyrinth.

— Galileo Galilei [Galilei (1623)]

5.1 The Dirac equation in free space — first approach

5.1.1 Introduction

In this chapter it is shown that the Dirac equation can be derived from
the Rodrigues equation. In a first approach the underlying ideas will
be described, but in a more critical examination of the results obtained
this way two worrisome features will gradually emerge. The first is the
absence of a one-to-one equivalence between the Rodrigues formula and
the Dirac equation. The second is the fact that the definition of spin
that one can introduce based on this approach is not covariant. By the
time we start realizing this it will become compulsory to revise our copy
and start all over again. We could have skipped this first “wrong” heuris-
tic approach to obtain a more compact presentation, but it would then
be difficult for the reader to understand how we obtained the definitive
version.

113
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A useful identity that will be used throughout the rest of the book, and
that is obtained by straightforward calculation, is the following:

[a:g|[bo]=a-bl+:(aAb)o. (5.1)

The reader is advised to learn it by heart or to keep it close at hand, in
order to avoid performing the same calculation over and over gain.

5.1.2 The Rodrigues equation for a rotating frame

The contents of this chapter can be no better summarized then by para-
phrasing Galilei’s quotation at the beginning of it.

Quantum mechanics cannot be understood unless one first learns to
comprehend the language and interpret the characters in which it is writ-
ten. It is written in the language of spinors. Without understanding spinors
it is humanly impossible to understand a single word of it. Without under-
standing spinors, one is wandering around in a dark labyrinth.

In this chapter it will be proved that the Dirac equation describes spin-
ning particles in the language of spinors. A spinor codes a rotation or a
Lorentz transformation by coding the complete orientation of the basic
triad or tetrad. Up to now, only purely mathematical results have been
derived, but from now on the demarcation line between the mathematics
and the physics will be crossed. As soon as this happens it becomes possi-
ble to question the assumptions introduced. Therefore, the transgressions
should be limited to a strict minimum.

Let us turn back to rotations. They are a subgroup of the Lorentz group.
Using the precise meaning of a spinor it can now be checked if the spin as
described in the Dirac equation corresponds to a rotating particle. The fol-
lowing example will be instrumental in illustrating how the spinor formalism
works. The Rodrigues formula:

cos g]l - Zn-asing (5.2)

for a rotation R(n, ) over an angle ¢ around an axis with unit vector n,
can be derived by considering two reflections A and B defined by planes
which have unit normals a and b and intersect along n at an angle /2, such
that a-b = cos £. (On (5.2) it is easy to check the properties RT = R™!
and det R = 1 needed to prove (3.4).) This construction was introduced
in Figure 3.3. The rotation will then have an angle ¢ and an axis, which
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is the intersection of the two planes and coded by a unit vector n defined
by sin ¥n = a A b. Here n will give the sense of the rotation according
to the right-hand rule if the reflection B comes after the reflection A. In
representation theory (with the conventions of Eq. (3.7)) and using (5.1)
this leads to R(n, ¢) = [b-o][a-c] = (a-b)1+:[(bAa)-o], which is the
result announced.!

Let us check (5.2) for a rotation around the z-axis. The reference frame
is given by e, = (1,0,0), ¢, = (0,1,0), n = e, = (0,0,1), such that
e, +1e, = (1,1,0). Hence, we have 2 = 1, y = 2. According to (3.10) the
spinor is given by:

€o (x —y)/2 1
= = (5.3)
& (-2 —w)/2 0
Now cos 1 — 10 sin & becomes:
w2 o
(5.4)
0 el
Operating on the spinor, this yields:
T\ (& [
= = , (5.5)
—w)  \é 0

such that (z/ —/)/2 = e and (—2' —wy’)/2 = 0. From this 2’/ = e™*?
and ¢y = 1e”"Pcan be derived, and ] = cosp, x4, = —singp, y} = siny,
Yy = cosp, such that e, = (cosp,siny), and e) = (—singp, cos ¢), which
corresponds indeed to a rotation over an angle ¢ around the z-axis.

INote that the conventions used in (3.7) for the rotation group are consistent with
those used in (4.1) for the Lorentz group, such that the rotation group is embedded
correctly within SL(2,C). Alternative conventions exist for (3.7) and (4.1), which can be
obtained by replacing ¢| — ¢ in both equations. Such substitutions lead to isomorphic
representations. It suffices to make the substitution 2| — 2 throughout to swap from one
representation to the other. With these conventions, (3.7) and (4.1) are compatible, and
we have 0,0y = 10, 0yo, = 10z, 0.0, = 10y, which may be noted as o0y = 10 (cycl.).
With the alternative choice we have 0,0y = —10:(cycl.) and the Rodrigues equation

would have been cos %]l + .o sin %.
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Let us now code a dynamical rotation with angular velocity w around the
axis with unit vector n. According to the Rodrigues formula this must be:

t t
cos %]l —1[n-o] sin % (5.6)

For the example of a spinning motion around the z-axis, (5.4) becomes:

efzwt/2 0

L b(l) = et (é) . (5.7)

0 e+lwt/2

Here, ¢ = [£0,&1]7 is the corresponding spinor, taken from (5.5). In the
general case of (5.6), the spinor will thus evolve with time according to:

w(t) = (cos%tll —[n-o]sin %) »(0). (5.8)

Of course the Rodrigues formula is not directly intuitive, but the reader
can replace ¢ by wt in the example worked out in (5.3)—(5.5) to convince
himself of the fact that this represents a rotating frame and to “see” in
these equations the frame turning “with his own eyes”. In Figure 5.1 the
Rodrigues formula is illustrated for a fixed axis n and varying ¢ = wt.
Derivation of (5.8) produces a differential equation for ¢ (t). From:

d w . wt wt
Ew(t) =5 (— sin 7]1 —1[n-o] cos 7) (0), (5.9)
and using [n-o’]? = 1 we obtain:
d w
70 = —[n-a] Sv(t). (5.10)

By applying the equation to itself one can also derive:

d2 2
b= —% . (5.11)

5.1.3 Lifting the equation from the SU(2) representation
to the Dirac representation

From now on the variable 7 will represent the time in a frame where the
electron is translationally at rest. The four-vector (¢7,0,0,0) in a moving
frame will be noted as (ct,x,y, 2). By putting iw/2 = moc? (which could
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S

Fig. 5.1 Theimage €/, e;, €, of the spinor that corresponds to a rotation over an angle ¢

around the fixed axis n || OM’. The identity element corresponds to the triad ez, ey, e-.
The vector OP gives the direction of e,,. When ¢ varies, the point P describes the circle
I' with centre M € OM’. The point P that corresponds to the identity element is N € T.
The point N belongs to I' as the identity element corresponds to the rotation with angle
¢ = 0, whatever the value of n. For the sake of clarity, the triads are represented at
different positions P on the surface of a sphere rather than all together in a big tangle
at the origin. This convention was introduced in Figure 3.2.

be interpreted loosely by stating that the whole rest energy of the electron
is due to its rotation with angular momentum /,/2)? we obtain:

R O L B
2dr2 " T |2 ot2 ox2  Oy2 022" K2

2
v, (5.12)

which is the Klein-Gordon equation. From this it becomes obvious that the
Dirac operator:

1d 1d 0

el e — = S 5.13

car ' cdr Z”‘axu ( )
where the gamma matrices are defined by v,v, + 77 = 29,1 and g,

is the metric tensor, expresses the derivation with respect to proper time
in the representation of the Lorentz group spanned by the Dirac matrices.

20f course, introducing fw/2 = mgc? is completely ad hoc. In a sense it is a cheat

as it is done only to obtain the same results as in quantum mechanics. However, an a
posteriori motivation for it will be found unexpectedly in Subsection 6.2.10.
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When this and hw/2 = mgc? is used on (5.10) we obtain:

mopc

0
ZW@TMw ~ —[n-o] Tw, (5.14)

which is, except for the factor n-o, the Dirac equation for a free electron.
The symbol ~ has been used here because the matrices on the two sides of
this would-be equation are not of the same dimensions. On the left-hand
side there are quantities from a four-dimensional formalism, while on the
right-hand side there still remain quantities from a two-dimensional formal-
ism, thus requiring the right hand side to be lifted to a four-dimensional
formalism.

In the example of the rotation around the z-axis it is possible to check
that [n-o ] ¥(t) = 9 (t), because for n = e, the matrix n-o becomes diago-
nal (with entries 1 and —1) and the element on the second row of a spinor
that codes a rotation around the z-axis is zero. But this is not general.
Without the assumption n = e,, it is not obvious that the Dirac equation
can be derived from the Rodrigues equation. Hence, the derivation that
would apply for n = e, is not generally valid.?

However, let us decompose the spinor 1 (t) in the wvector basis of the
eigenvectors of n-o. It must be emphasized that this is a strange and hybrid
construction, which has no directly obvious geometrical meaning, as spinors
do not belong to a vector space.* It is only a calculation expedient. As

3There exists a brute-force shortcut to this problem. It consists in deriving the Dirac
equation for the special case n = e, where [n-o|1 can be replaced by ¢ and the
Lorentz covariance of the resulting simplified equation used to claim that it is generally
valid. This leads to the desired result, and could be considered as a derivation of the
Dirac equation from scratch. But it is a logically flawed proof for a correct result. The
derivation hides two important difficulties, that will necessitate reconsidering how one
can derive the Dirac equation in a logically correct way:

(1) The Dirac equation derived this way is not equivalent to the Rodrigues formula. This
issue will be addressed in the lines of the main text that follow immediately after
this footnote, where an alternative derivation will be given that does not rely on the
shortcut outlined here. This non-equivalence could be summerized symbolically by:
(Rodrigues = Dirac), but = (Dirac = Rodrigues). This non-equivalence transpires
in the fact that the Dirac equation does not contain the explicit mention of the
rotation axis n, while the Rodrigues formula does.

(2) The simplification [e.-o] 1 = 1) is not Lorentz covariant.

The lack of equivalence mentioned under point (1) implies that the equation could have
unwanted solutions that are physically meaningless. This problem will lead to a whole
discussion of the definition of spin in Section 5.4.

4This point has been discussed on several occasions in Chapter 3, e.g. in Section 3.8,
based on preliminary remarks made during the discussion of the groups SO(2) and SO(3)
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the matrix n-o is Hermitian, its eigenvalues (1 and —1) are real, and its
eigenvectors are orthogonal. In other words, ¥ splits into two parts, ¢y
and c_1_. These two quantities are not spinors, but vector projections of
spinors.” But 14 is a solution of L4, (t) = —1%¢, (¢) and therefore of the
Dirac equation:

moc

0
ZW%M =t (5.15)

while ¢_ is a solution of L1 (t) = +1%¢_(t), and therefore of another
Dirac-like equation with a reversed sign:

0 _ ., mgc
Z%@W =1t (5.16)

As the two equations (5.15) and (5.16) have the same solutions, it fol-
lows ultimately that 1 as a whole is a solution of the Dirac equa-
tion. But this derivation does not run both ways, and only allows for
a special linear combination of the type ¢y ¢4 e e P et In fact,
in the two-dimensional formulation given by (5.10), the rotation matrix

in Section 2.3. This implies that not every linear combination of two spinors is a new
spinor, nor does the vector projection of a spinor need to be a spinor. Note that concep-
tually, a linear combination of two isotropic vectors in the context of the rotation group is
not necessarily an isotropic vector. Also, the linear combination of two rotation matrices
is not necessarily a new rotation matrix. Such a linear combination belongs to the group
ring rather than to the group itself. Summing spinors is thus only defined on the group
ring. Of course this may look as a nitpicking remark from a purely algebraic viewpoint,
if one lacks the geometrical insight about the true meaning of a spinor. In Section 5.2
it will be demonstrated that in quantum mechanics this remark is conceptually very
important.

5For n = e, we have ¢ = 1 as only ¢4 = [1,0]Te~*?/2 is non-zero. This can be
considered as corresponding to a clockwise rotation with matrix R(e:, ¢) operating on
[1,0] 7. The combination of “spin up” with a negative frequency in the argument of the
exponential corresponds then to a clockwise rotation of a right-handed frame. The “spin
down” spinor [0,1]T = 04[1,0]T corresponds then to a left-handed frame. Operating
R(e:, ) on this spinor yields [0, 1}Te“’/2. The combination of spin down with a positive
frequency in the argument of the exponential corresponds thus to a clockwise rotation
of a left-handed frame. These two solutions R(ez, »)[1,0]T and R(e.,p)ox[1,0]T are a
vector basis for the two-dimensional vector space that contains the spinors, but also non-
spinor elements. To span a four-dimensional vector space, a left-handed representation
of SL(2,C) is added. This will become very clear in Subsection 5.5.2.2.

6The initial motivation for the statement that the two equations have the same solutions
was the idea that the four eigenvectors proposed in physics textbooks are claimed to cor-
respond to “spin up” and “spin down” combined with “positive” and “negative” energies.
But this is a physical argument and not mathematically rigorous. The four solutions can
be obtained from one another by substitutions n| — n and/or w| — w. The substitution
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cos 21 —1[n-o] sin £ corresponds to the spinor ¢ = (cos £t — wn, sin £,
—1(ny + wmy)sin®)" as can be seen by operating the matrix on the
reference starting spinor (1,0)". The eigenvectors of the matrix n-o in
(5.10) are ¢4 = (n, + 1,n, +n,)" for the eigenvalue +1 and ¢ =
(n. — 1,n,; +m,)" for the eigenvalue —1. The meaningful linear combi-

wt

nation cy ¥4 e T 4ol _ et 2 that permits recovery of v corresponds

to the choice ¢y = 1/2, ¢ = —1/2. By identifying the pre-factors of
cos%t and sin%t in cy vy eV 4 oo P et it is easy to check that

the only linear combination that leads to a meaningful spinor structure

¥ = (cos 4 — . sin %, —u(fiy +ity) sin ) T is the one given by ¢y = 1/2,
c_ = —1/2. Here, (ny, Ny, 7.) is the general solution for the rotation axis

that one would be searching for, assuming that the solution (ng,ny,n.) is
not unique and an attempt is made to find the other solutions. These other
solutions would be alien to the original problem that brought us to (5.10).
But such other solutions do not exist, and therefore other linear combina-
tions are not meaningful. It may also be noted that both eigenvalues of
the Dirac equation have a two-dimensional vector space of eigenvalues. The
liberty to choose a basis corresponds to a choice of n. In textbooks, the
choice n = e, is made.

n| — n corresponds to a change between a right-handed and a left-handed representa-
tion SL(2,C). As discussed before, the four-dimensional representation contains both,
and has, of course, four eigenvectors. Each of the two SL(2,C) representations contains
only two eigenvectors, with opposite associated frequencies. It would thus be better to
state that we try to combine the four possibilities into one equation, whereby one pair of
solutions corresponds to a right-handed representation SL(2,C) and the other pair to a
left-handed representation SL(2,C). In a certain presentation of this approach one may
even reshuffle the contents of the pairs, but this is not important.

Another motivation is that there is no way in mathematics to tell 2 and — apart. Both
quantities are just defined simultaneously as the two solutions of the equation 22 = —1.
There is nothing in their definition that differentiates them. There is thus ambiguity
between them in the sense given by Galois (discussed in Section 2.9). The substitution
2| — 2 is an isomorphism. This is only a heuristic argument based on a mathematical
intuition. The isomorphism is seen at work for the first time in Footnote 1. Extending
these two SU(2) representations leads to the left- and right-handed SL(2,C) represen-
tations, which are combined together in a single Dirac equation according to Footnote
5, rendering the Dirac equation isomorphic to itself. But the counter-examples of the
SU(2) representations and the SL(2,C) representations, which are not self-isomorphic
shows that the heuristic argument alone is not sufficient to justify the statement. With-
out noting the self-isomorphism, the heuristic argument is only a logically flawed proof
for a correct result.
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We may note that this derivation is very different from the traditional
scheme proposed by Dirac. Historically, Dirac proposed to write:

‘E]l = avcp + Bmoc?. ‘ (5.17)

Here, oo = (g, vy, v;) and G are so-called Dirac matrices. They are defined
by the request that (a-cp + fmoc?)? = (c2p? +mict) 1, such that squaring
(5.17) leads to the relativistic energy-momentum conservation law:

‘Ez = c?p? + (moc?)%. ‘ (5.18)

The request leads to the conditions:
ajoy + agoy = 20411, 6% =1, Baj + a8 = 01. (5.19)

Finally, Dirac made the substitutions:

E———— f)—>;V (5.20)

These substitutions had already been used in the “derivation” of the
Schrodinger equation. Dirac merely guessed his equation. The ultimate jus-
tification for what Dirac proposed is that the equation passed the test of
comparison with experiment with flying colours. But it is completely unsat-
isfactory not to have any other justification for an equation other than the
fact that it works without knowing what is going on behind the scenes. In
the present approach, we make tabula rasa with the derivations and the
rules of traditional quantum mechanics that are so difficult to understand.
The Dirac equation is derived from the picture of a spinning electron, and
the rules then derived from it. For example, the rules of (5.20) will be a
simple consequence of the Dirac equation, rather than axiomatic elements
needed to derive the equation.”

"Inspection of (5.38) reveals that it is the left-handed representation —% [2 54— V0]

that works on the spinor W. This is due to the fact that in products of SL(2,C) matrices
one must always alternate between left-handed and right-handed representation matrices.

It is then from the expression —% [@ — V . 0]V that one can naturally derive the
definitions E = —7% and p = %V o. The reason why the energy-momentum four-

vector and the four-gradient can be substituted for one another in the schematic of (5.17)
is that they are both four-vectors and that the schematic is just the way one has to code
four-vectors in the Dirac representation of the Lorentz group.

Let us also introguce a notatlon The operator on the left-hand side of (5.38) can be

written as —%'yct@ — —yz 8_1 — —'yy@ - —yz 6 . All signs in it are of the same type.

Using the operator definitions this becomes: EE'}/ct DPzYz —DyYy — P27z, Where the signs
are no longer all of the same type. Therefore, one introduces the conventions vt = 7.,
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5.1.4 Embedding of SU(2) within SL(2,C)

The notation c4 ¥4 eV 4o P et shows that negative frequencies
already occur within the rotation group. This has no relationship with
anti-particles, as the context is purely geometrical. In general, it suffices to
change the sense of the rotation to change the sign of the frequencies. As
stated in Footnote 1 the representation SU(2) has been embedded within
SL(2,C) self-consistently. The rotation matrix cos 4t 1 — 1n-o sin 4t can
then be used also in SL(2,C) and written as 1 N e ™!/2 4 I N*etwt/2,
Here N and N* correspond to 1 + n-o and 1 — n-o.® The coding of a
vector (z,y,z) = r as a 2 X 2-matrix R in the representation SU(2) with
signature +++ is given by (3.24). As det R = —r2, this coding is compatible
with the embedding of r as a four-vector (ct,z,y,z) = (0,r) in SL(2,C)
where the signature is + — —— (corresponding to the metric ¢?t? — 2% —
y?—22). The change of signs in the signatures from +++ for r? = 2 +y?+4 22
in SU(2) to — — — for —r? in SL(2,C) is automatically introduced by the

change of rule from R? = r?1 to det R = —r2.

5.1.5 Caveat: This is not yet quantum mechanics

This way the Dirac equation has been derived and it has been found that it
describes a particle by attaching a reference frame to it and by treating this
co-rotating frame with the aid of group representation theory. The equation
just expresses (5.6) using the derivative 7. % =2 ”y#% with respect
to the proper time 7 of the co-moving frame. As the derivation operator
%% is part of a four-vector (% %, V), it is treated as a reflection operator.
Thus, the Dirac equation treats a spinning particle subjected to Lorentz
transformations. The spinning particle is first treated in its rest frame, and
then Lorentz invariance is used to express this in any other moving frame.

Y ==Yz, 7Y = —vy, ¥¥ = —7z, which can be summarized as v* = Y=, g"”~,. These
conventions permit %E’yct — Pz¥x — DyYy — P27z to be rewritten as Eu Y Py wherein
again all signs are of the same type. Dirac defined the gamma matrices starting from
(Yot B + Yacpz + Yyepy + vzepz)? = (moc?)?1 rather than (y*E +y%cpy + v Yepy +
yZepz)? = (moc?)?1, such that the text book definitions are the exact opposite of those
described in this book. But in both cases it must be remembered that in the expressions
that contain only one type of sign, (E,cp) and (%,V) are combined with gamma
matrices of opposite types.

8]t is tempting to interpret here N and N* as the “zero-length” vectors ec; + n and
e+ — n, which would give a beautiful interpretation of the formalism in terms of light
rays. But this is not correct. It will be explained later that the fact that the unit matrix
seems to be associated with eq¢ in SL(2,C) is a very subtle point.
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The pure-state solutions of the Dirac equation and the original Rodrigues
equation are not equivalent, as the pure states of the Dirac equation are
vector projections of the Rodrigues spinors, which are only identical to
the true spinors when n || e.. In all other cases, the vector projections no
longer keep their clear initial geometrical meaning. As the Dirac equation
has simply been guessed, it may be necessary to call upon the Rodrigues
equation for matters of deciding what is a pure state.

The substitutions that are needed to introduce the electromagnetic
potentials into the Dirac equation will be discussed in Section 5.6. As the
Schrédinger equation can be derived from the Dirac equation with an elec-
tromagnetic four-potential, it is evident that a lot can be derived about
two prominent equations that are used in quantum mechanics from a sim-
ple ansatz of a rotating particle. The only unjustified issue is the gimmick
of replacing w according to hw/2 = mgc?, which is inspired by the relations
of Planck and Einstein. Hence it seems that the demarcation line between
physics and mathematics has not been transgressed too much. A possible
justification for introducing the Planck-Einstein relations will be discussed
in Subsection 6.2.10.

Of course, it cannot possibly be claimed at the present stage of the devel-
opment in the book that a derivation of quantum mechanics would have
been given. What the reader has been able to discover up to now, are only
the geometrical contents of a mathematical language, upon which quantum
mechanics is built. There are two reasons for this:

(1) Hitherto, all the ingredients used in the approach have been classical,
while quantum mechanics contains aspects (like the superposition prin-
ciple) that appear totally counterintuitive from a classical viewpoint.
Therefore, these aspects have certainly not been touched upon in this
derivation.

(2) Another aspect that has not yet been touched upon in the preceding
pages is the probabilitistic character of quantum mechanics, as every-
thing that has been derived is conceptually deterministic. This is not
necessarily counterintuitive, as classically there is no impediment to
swapping from a deterministic formulation to a probabilistic one by
averaging over certain variables. However, there is no such free choice
between two alternatives in the standard interpretation of quantum
mechanics, where a description in terms of probabilities is considered
an absolutely necessity. These two aspects are thus beyond what has
been achieved up to now by pure mathematics.
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5.2 A warning about the superposition principle
and the negative energies

Physicists use spinors like vectors. — Elie Cartan

It may come as a surprise that the structure of the Dirac equation and the
Schrodinger equation rather lies on the mathematical side of the demar-
cation line between the mathematics and the physics. In fact, it is very
often stated that the superposition principle in quantum mechanics is a
direct consequence of the linearity of the Dirac equation or the Schrodinger
equation. The superposition principle intervenes for instance in the double-
slit experiment, which Feynman called “the only mystery of quantum
mechanics”. The superposition principle corresponds thus to something
that is beyond classical intuition. One would therefore expect that the
Dirac equation cannot be derived from purely geometrical arguments as in
this book.

e Superposition principle. The superposition principle is not as obvious
a consequence of the linearity of the Dirac equation as is commonly stated,
due to the fact that the wave functions are spinors. As it is not meaningful
to add spinors like vectors, the superposition principle is not granted by
the linearity of the equation. Only one special linear combination will lead
to a true spinor. The superposition principle implies that spinors can be
treated as vectors. From this it must be obvious that the superposition
principle is definitely not part of the entirely classical derivation that has
been presented in the preceding pages. This difficulty will be returned to
later on.

e Negative energies. In the present first approach, the correlated notion
that the negative frequency solution c4 ¥4 e~*7 alone makes physical sense
in its own right, rather than merely being a further meaningless vector
projection of a true spinor c; ¥4 e "% 4 c_1p_ e is alien to the con-
ceptually classical derivation given above. Furthermore, there is absolutely
nothing in this derivation of the Dirac equation that implies that negative
frequencies would correspond to advanced waves or negative energies. It
could be asserted also that negative frequencies correspond to clockwise
rather than anticlockwise rotations, because changing the sign of the fre-
quency corresponds in essence to changing the sense of the rotation. A
spinor corresponds to a single rotation of a single particle.
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e Conclusion. With the proviso that the present derivation of the Dirac
equation is still flawed (see Section 5.3), it can already be stated that

the Dirac equation belongs to the realm of (relativistic) classical
physics. It is only the way in which it will be used which will turn it
into quantum mechanics.

There are several reasons for this. Spinors are not vectors, such that the
superposition principle is not an immediate consequence of the linearity of
the Dirac equation. The use of a vector formalism based on spinors will
be discussed in the Section 5.4 in terms of the group ring. Further reasons
supporting this assertion are the issues of the negative frequencies and the
probabilities.”

5.3 Guidance through the rest of this chapter

5.3.1 Free-space Dirac equation

The preceding sections aimed to show the reader that the free-space Dirac
equation can be derived by just expressing that an electron spins. The
approach adopted so far will reveal itself only as a first approximation. The
rest of this chapter will be devoted to ironing out the difficulties arising
from the fact that the derivation so far proposed in this book is not as neat
as it could be. Eventually it will be possible to give an exact and rigorous
mathematical proof that

the Dirac equation describes in a relativistically covariant way and
by using the language of spinors that the electron spins like a top.

This will not be easy to prove. The major steps are summarized in Table 5.2
and briefly described below.

9 At least in the present first approach, a true spinor contains both positive and negative
frequencies, and the two contributions must have equal weights c4 = % and c_— = —%. It
is known that Feynman searched for an explanation for the fact that the wave functions
he had to use contained both “advanced” and “retarded” waves on a same footing. In the
Rodrigues equation something similar is obtained in a very simple way, such that this
seems to offer an explanation for Feynman’s result. But this is superficial and incorrect.
In fact, this “property” will be dismissed in Section 5.4.
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That the actual approach is only a first heuristic approximation will
start to transpire at the time it will be attempted to understand the for-
malism that is used to describe the spin of the electron within quantum
mechanics. In Footnote 3 a brute-force derivation of the Dirac equation was
proposed. Taking n = e, in the Rodrigues equation yields the Dirac equa-
tion, but the derivation is only valid for the special case n = e,. One can
then try to show that the Dirac equation is generally valid by transforming
the equation obtained for n = e, covariantly to other frames where n # e, .
As it seems obvious that n is a vector, one may expect that in changing
reference frames the identity n = e, will be transformed into n’ = e/, but
this is not true. This will reveal that the definition of spin must be based
on the quantity €, rather than on the quantity n’, and that the deriva-
tion of the Dirac equation cannot be based on the Rodrigues formula when
n # e,. This is the subject of Section 5.4. This section is lengthy, as it
is necessary that the reader understands that at the onset there are two
plausible alternative ways (n’ and €,) to build up the theory. Only one
choice is viable. If this choice were introduced without discussing why the
alternative is wrong, then it may look to the reader as coming out of the
blue. It is also because the development of this point is rather lengthy that
we outline here how it fits into the larger picture, such that the reader does
not lose sight of what we eventually are aiming at.

In developing Section 5.4, a new difficulty will be encountered, and it is a
major one. It will look as though it is impossible to derive the Dirac equation
without making an approximation, such that the Dirac equation would not
be rigorously exact and general. Therefore in Section 5.5 an exact Dirac-like
equation will be derived that does not contain this approximation.

Surprisingly, it will be possible to derive the Dirac equation from this
Dirac-like equation, without introducing any approximations at all. It will
require a non-trivial move: it consists in adopting solutions that are different
from the ones we naively had in mind at the outset, but by the context this
tricky move will just present itself quite naturally. This will also allow one
to understand the nature of the solutions of the equation and to see how
eventually all the pieces fall into place.

5.3.2 Dirac equation with potential

A further concern is justifying the minimal substitution, because this should
in principle open the door to a complete understanding of full-fledged quan-
tum mechanics. Indeed, the whole of quantum mechanics is derived from
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two master equations: the Dirac equation and the Schrodinger equation
(which can be derived from the Dirac equation). Full understanding of the
origin of this minimal substitution enables full understanding of the whole
formalism of quantum mechanics. But in traditional treatments, the mini-
mal substitution is introduced by analogy with classical mechanics, without
any further discussion or justification as though it were trivial and self-
evident. Ironically enough, we are simultaneously being told that quantum
mechanics is radically different from classical mechanics. Why then should
it be taken for granted that this substitution can yield the correct equation?
Has this not just been a serendipitous guess? This problem will be solved in
Section 5.6. The solution will lead to a good understanding of the meaning
of the minimal substitution in quantum mechanics.

5.3.3 Strategy

The goal of this chapter will then have been reached, viz. deriving the
two wave equations on which all further quantum mechanical calculations
are based. This part of quantum mechanics will have then been derived
deductively from the ansatz that the electron spins, in marked contrast
with the historical evolution where it was derived inductively from experi-
mental observations by Heisenberg or guessed by Dirac and experimentally
validated. The inductive derivation can only be presented as a set of rules.
Not knowing where these rules come from makes it hard to analyse diffi-
cult theoretical problems in depth.!? The deductive derivation puts us in a
much more comfortable position to investigate paradoxes and the meaning
of the results. In reading this chapter, the reader will perhaps draw strength
from the perspective that the ultimate aim is to obtain such a deductive
derivation based on a clear visual picture.

The approach in this book is at variance with a viewpoint that spinors
are not rotating in physical space, in a way similar to the one encountered
with isospin. This viewpoint was summarized by Cartan who stated in
[Cartan (1981)]:

100f course one can try to justify a posteriori the rules obtained inductively by presenting
them as deductively derived from a set of axioms. This is then what could be called an
interpretation of quantum mechanics. While the interpretation of classical mechanics is
very intuitive, the set of axioms in traditional quantum mechanics is much less so. It really
presents a number of arcane traits and traditional quantum mechanics even contains some
errors. In the approach of this book the interpretation must follow naturally from the
mathematical meaning of the spinor quantities used.
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Certain physicists regard spinors as entities which are, in a sense,
unaffected by the rotations which classical geometrical entities (vec-
tors etc.) can undergo, and of which the components in a given
reference frame are susceptible to undergo linear transformations
which are in a sense autonomous.

Cartan qualified this viewpoint as “startling”. In fact, the claim that spinors
do not turn in physical space could be attributed to a lack of understand-
ing of the geometrical meaning of spinors. As they are based on coordinates
(r,y,2) || 22 + y* + 22 = 0, one may quickly come to the conclusion that
spinors cannot have anything to do with real Euclidean space (see for exam-
ple [Biedenharn and Louck (1985)]). Too quickly, as a matter of fact, since
it has been explained that (x,y, z) are used to represent a triad of basis vec-
tors, which indeed turns in physical space. Therefore, this isospin-inspired
viewpoint may be ad hoc and neither compelling nor unique. It is certainly
justifiable to question this traditional viewpoint on the basis of the exact
derivation of the Dirac equation that will be presented here. The viewpoint
based on the analogy with isospin contains even more exceptional assump-
tions than the isospin model itself, as in the spin operator S., the index
z refers to physical space despite the denial that the spinor would turn in
physical space. In the isospin operator I the index z does not refer to phys-
ical space, such that the postulates of this formalism are less demanding.

The traditional approach also applies the Dirac equation to neutrinos
for which a zero rest mass is assumed. It could be held against the present
approach that it cannot describe neutrinos, as it assumes a non-zero rest
mass for the particle described. But the existence of neutrino oscillations
indicates that neutrinos do not have zero rest mass. We could thus turn
this argument around and use it against the traditional approach, because
it “predicts” neutrinos of zero rest mass.

It may finally be noted that a rotating frame is a problem in a rela-
tivistic context. At a large enough distance from the origin of the frame it
would imply motion faster than light. There is also the problem of Lorentz
contraction as identified by Einstein in his example of a rotating disk. How-
ever, the spinors and the frame are only used here as a useful set of coor-
dinates to describe the spinning electron, not to describe the space-time as
it would be observed in a macroscopic frame that would co-rotate with the
electron.

In the next chapters the Schrédinger and Dirac equations will be used
to tackle quantum mechanical problems. It will then become apparent that
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alternative derivations exist for the theoretical results that are quite differ-
ent from those presented in traditional treatments. These alternative deriva-
tions have a clear geometrical meaning and there is no need to invoke mys-
terious quantum effects to explain or interpret them. The whole becomes
then more clear and physical. This is really what the analogy with the prob-
lem of Dirac’s “delta function” introduced in (1.1) is all about. The main
aim of this book is actually to investigate to what extent we can solve the
so-called quantum mysteries by using a purely deductive approach.

5.4 Spin and the group ring

5.4.1 Spin as a set of spinors
5.4.1.1 Something puzzling

The meaning of the eigenvector vy = (n, + 1,n, + my)T of the matrix
n-o (that codes the vector n) in Subsection 5.1.3 can be understood as
follows. It is not a true spinor, as it is obtained from cutting the true spinor
into two parts v; and v_. The reflection operator n-o does not work on
images of vectors from R? because it is working quadratically on vectors:
vectors behave as tensors of rank 2 within SU(2). The reflection operator
n-o must thus work on images of rotations, reflections, and reversals, which
can be represented by true spinors. It follows that a reflection operator
cannot have another group element as an eigenvector under the form of a
true spinor, whereby the corresponding eigenvalue would be 1. In fact, the
reflection operator n-o will transform a reflection into a rotation, a rotation
into a reversal, and a reversal into a rotation. In other words, it changes
the nature of the group element. If the eigenvector 1 were a true spinor
corresponding to the eigenvalue 1, this would imply that it corresponds to a
group element that remains invariant under the reflection, and thus has not
changed its nature. Hence, the eigenvector of a reflection operator cannot
possibly be a spinor that corresponds to a group element. Nevertheless,
these eigenvectors are definitely used in physics. This is puzzling and leaves
one wondering what the meaning of the eigenvector could be.

5.4.1.2 The eigenvector is a set

The answer is that it is a hybrid quantity that corresponds to an element
of the group ring. In fact, the algebra does not work only on the group
but on the entire group ring. If the eigenvector has a meaning at all, then
this meaning can only be searched for within the calculus of the group
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ring. There is thus a need to find a linear combination of several group
elements, for example (in the simplest possible approach) of two operators
O; and O, such that [n-o) 01 = Oy and [n-o]| Oy = O;. These two iden-
tities summarize how a reflection operator is supposed to work on a group
element.

Let us establish what kind of operator could be associated this way
with a reflection defined by its reflection normal n. The effect of n-o on
another reflection is a rotation, unless we take n-o itself, and then it yields
the identity operator. It thus seems indicated to take 1 and n-o together.
According to the same logic as has been used for spinors, the eigenvector
with eigenvalue 1 codes 1+n-o (as it corresponds to the first column of this
quantity). In fact, the spinor of a group element was obtained by taking the
first column of the 2 x 2 matrix that corresponds to the group element, and
here v is obtained by taking the first column of 1 +n-o. The quantity
actually codes sets €’X {1, n-o}, where e'X is a phase factor (which, as will be
demonstrated, is not immaterial). The idea is thus to code the set {1,n-o}
by the sum of its two elements. We have in fact (n-o’) (1 +n-0) =1 +n-o.
This would correspond to n-o {l1,n-o} = {1,n-0}, such that the set is
an eigenvector. The transition from the 2 x 2 matrix 1 + n-o to its 2 x 1
counterpart ¥y = (n, + 1,0y +1ny) "
[1,0]T, which comes down to just taking its first column.

can be made by operating with it on

5.4.1.3 Rotations

Let us now show that the sets e {1,n-o}, with x # 0 can code rotations.
A general rotation over an angle ¢ around an axis n will be given by:
0, = cos 21 —[n.o] sin §. The group element 05 = [n:0] O; must then
be taken to complete the set that contains O;. One can verify that this
leads to O; + Oy = e */2(1 +n-0). From this form it is easy to see that
[n:0] (01 4 03) = O; + Oy. It can be rewritten as:

(14 n:0)0; = e ¥/2(1 + n-o). (5.21)

This shows that the eigenvector does not code a state of the system, but
merely a set e ?/2{1,n-6} ~ {O1,05}. The symbol ~» is used here to
indicate that summing the elements of the sets yields the same result. Of
course, only the decomposition into 01 and 02 makes sense in terms of
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group elements; the decomposition into e~*?/21 and e **/2 n.o is just
algebra. The ray {1, (n) : 1,(n) = e~**/24)(n)} based on 1 + n-o, coding
¥(n) = {1,n-0} corresponds then to the infinite set of all the rotations and
reversals which have n as the rotation axis. It can therefore be stated that
it is the ray based on n. Each member e*“@/zz/)(n) of the ray corresponds
to the two-element subset of the ray that contains the rotation and the
reversal whose rotation angle is .

5.4.1.4 Reversals

The “spin down” eigenvector ¢_ is also a set, viz. e *?/2 {1, —n.g}. In
fact, (n-o) (1 —n-o) = —(1 — n-o). For this case it is wise to start from a
rotation around —n, e.g. 0} = cos % +m-osin £. Now O/ must be defined
as —[n-o ] O}, to make sure that an eigenvalue of —1 is obtained such
that Of = v (cos (“‘°+”) +1[n-o] sin (‘p+”)) Then [n.o] 0} = —0) and
[n-o] 0, = —0]. The eigenvector (0} + 0) is equal to e “"/2 (1 —n-o),
and thus codes the set e=*?/2 {1, —n-o'} ~ {0}, 0}}.

5.4.1.5 Conceptual remarks

The phase factor e~*#/2 is not scrutable in the eigenvector calculations
for the operator n-o. In classical vector calculus, two eigenvectors with a
different pre-factor are considered to be equivalent, and therefore can be
normalized. However, for spinors the phase in the pre-factor is important,
and two two-element subsets with different phase vectors code different
sets of rotations. The reflection operator n-o has an infinity of two-element
sets as eigenvectors, that differ only by a phase vector in their coding, but
are very distinct sets. (One can also consider that the reflection operator
n-o has the infinite set that is the union of all two-element sets as an
eigenvector.)

The eigenvectors are eigenvectors of the reflection operator n-o, not of
the rotation matrix that describes the motion of the electron, and they code
sets. For rotations, the eigenvalue for a set is +1 for a rotation around n
and —1 for a rotation around —n. If one assumes that n is only allowed
to take values in one hemisphere, then this formalism serves to distinguish
clockwise and anticlockwise rotations. In the exceptional case that n = e,
the eigenvectors correspond to true spinors. We can then interpret them as
clockwise and anticlockwise rotations. But in all other cases, an eigenvector
is only a vector projection of a spinor, such that it does not correspond to
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a group element. The case with n = e, can be considered as a numerical
coincidence, due to the fact that one of the two spinor components is zero.'!

5.4.2 Alas, the definition of spin introduced
18 not covariant

5.4.2.1 The sets defined do not survive rotations
A paradox ...

There is a problem with the transformation properties of (5.21). If both
sides of this equation are multiplied to the left by a general rotation
matrix R, the left-hand side can be rewritten as R(1+n-o)R~'RO;. Here
R(1 + n-o)R~! makes then sense as the transformation of the operator
1 4 n-o under a rotation R (in the sense given by (2.19)). The concept of
this operator is adding the identity element 1 to a reflection operator n-o
defined by a vector n, which is also coded as n-o. Within SU(2), vectors
a-o are indeed transformed according to a-:o — R[a-0]R™!. Following
this concept to the letter, R(1 +n-o)R~! will be the value of the operator
after a rotation R. One might be tempted to think of interpreting this as
proof that adding 1 to the coding n-o of a vector transforms like a vector.
But the quantity 1+n-o occurs also on the right-hand side of this equation,
such that there seems to be a contradiction, as the right-hand side is only
transformed by left multiplication with R, instead of being transformed
also by a similarity transformation as on the left-hand side.

. and its solution:

The origin of this paradox is that contrary to what might be inferred from
the way it is noted, the quantity n is not a vector. It cannot be considered
as a vector as it does not transform like a true vector. This is a really
surprising fact, which must be explained carefully. It should be noted that
n occurs with two different meanings in (5.21). It is not a true vector when
considered as a quantity that defines the axis of a rotation. On the other
hand, when n is considered as an instantaneous quantity used to define
an “instantaneous” reflection operator n-o, then it is a true vector. It is
necessary to introduce two different notations to clearly distinguish the

11 The coincidence resides in the fact that the general expression of the eigenvector is
i = [1 4+ nz,ng +ny] T, which reduces to [2,0]T for n = e.. This is then blindly
normalized to [1, O]T7 creating the illusion of the presence of a true spinor by hiding the
true structure e’X(1 4 n-o).
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true vector and the rotation axis, by noting the reflection operator rather
as s-o, in order to analyse the problem with (5.21). That the quantity n
that defines the rotation axis of a rotation R; is not a true vector, but a
vector-valued function, follows from the fact that for an arbitrary rotation
R, the quantity R(n) will not be the rotation axis of RR;.!2 On the other
hand, after an arbitrary rotation R, the new value of a true vector like e,
will definitely become R(e.).

The construction of the left-hand side of the equation starts from the
rotation axis n of the rotation Ol. Howere, n is not a true vector; it corre-
sponds to a rotation axis and as such does not transform as a vector. But
an instantaneous real vector s can be associated with it, which could be
transformed like a vector. The real vector s instantaneously takes the same
value as n. Perhaps a good analogy would be to consider n € F(G,R3) as
a function defined on the group G of the rotations, while s would be the
instantaneous value s = n(R;) € R3 that this function takes at the point
R, € G. After an arbitrary rotation R, we have that R(s) # n(RR;). The
quantities s and n are thus different quantities, but they momentarily take
the same value. This existence of an instantaneous equality could be called
a local illusion. The reflection operator s-o defined by the true vector s
transforms under a rotation R as s-0 — R[s-0]R™!. From the way the
quantities have been defined on the left-hand side of (5.21) it is thus obvious
that the quantity that intervenes here is 1 + s-o, which truly transforms as
1 +s-0 — R(1 +s-0)R7L. In fact, the whole discussion started from the
question of what the meaning of an eigenvector of the reflection operator s
could be, and then the eigenvector was constructed from Oy by operating
1-+s-0o0n 01

The right-hand side of the equatlon is, however, derived from the cal-
culation of the eigenvector 01 + 02 constructed this way from 01 In the

12This can be easily proved in two steps:

(1) Prove that the rotation axis n of an arbitrary rotation R is not €, = R(e.), unless
n = e,. When n # e, there will be an angle x # 0 between n and e,. R is now
applied to the identity element. Under the rotation R the vector e, will turn around
n to e/, preserving the angle x # 0 with n. This implies that e, # n.

(2) Consider the case that R is a rotation around the z-axis, whereby the rotation axis
n’ of R is not the z-axis. For R1, n = €, = e,. For the rotation RRi, R(n) =
R(e,) = R(e.) = €. Let the rotation axis of RR1 be noted as n’’. As for the
rotation RR the value of €/ = RR(e.) will be different from the value of n”,
owing to the first step, it follows that n’”” # R(n), which completes the proof. A
rotation about n is illustrated in Figure 5.1.
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term O; = [(1 + n-o)e /2" 4+ (1 — n-0)e"¥/2]/2, the quantity n has
the meaning of a rotation axis. In the term O, = [s-0] O1, however, s
is a vector that defines a reflection operator in the part s-o, while n
defines again a rotation axis within the explicit expression for the part
O;. The part [s-o][n-o] in the detailed further calculation of the right-
hand side yields 1, while the part [s-o] 1 yields s-o. But the equality of
[s:o][n-o] = 1 will not be conserved under a similarity transformation,
clearly revealing that the local illusion is just an illusion. The quantity s-o
corresponds to a true vector and will thus transform according to a simi-
larity transformation under a rotation, but the quantity n-o does not code
a true vector. The transformation of [s-o | [n-0 ]+ [s-o | will then become:
R[s:c]R"'R[n-0]+R[s-0]=[s-0|R[n-0]+R[s-0]. The right-hand
side should thus in principle not transform as a vector. But even if it did,
then it should contain a multiplication by R™! to the right, which would
have to be done on both sides. This would leave Rol ~1 on the left-hand
side, which would not agree with the transformation properties of 01 which
must transform according to 01 — R01

This way it can be seen that under rotation the original meaning of
the equation gets completely lost, because the definition is based on a local
illusion. The meaning of the equation is thus not rotationally invariant. In
fact, if an arbitrary rotation R is applied to two rotations Rj(n, ;) and
R3(n, ¢2) which have the same rotation axis but different rotation angles,
the corresponding products RR1(n, ¢1) and RR2(n, ¢2) will no longer have
the same rotation axis; the rotation axis does not transform as a vector.
Therefore, the set of all rotations that share the same rotation axis n and
is defined by the spin breaks apart under a subsequent rotation R if R has
a rotation axis that is different from n. The spin defined this way is thus
an ephemeral phenomenon.'® The definition and the interpretation of the
spin in terms of the set {O1, 05} by means of (5.21) are not rotationally
invariant. On the left-hand side of (5.21), the rotated vector s’ = R(s)
calculated from s’-0 = R[s-0]R™! will not correspond to the rotation
axis n’ of RO;. Let us call Of = RO;. Then the set {O}, 04} (where

131t is easy to check with the Rodrigues formula that starting from rotations cos % 1-
2sin ‘Pl [ni-o] that share the same rotation axis n1 but have diﬁerent rotation angles
®1, the products (cos 2 1 —2sin %2 [n2-0]) (cos G- 1 —2sin %' [n1-o]) where nz and
2 are fixed, will no longer share the same rotatlon axis if n1 # ny. The geometrical
counterpart of this algebraic argument has already been used in a special case, viz. in
the second part of the proof in Footnote 12.
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0% = [n-0] 0Y), that will define the new spin will not be {RO;, RO,}, as
in general O} # ROs.

5.4.2.2 Intermezzo: What now?

Eventually, the fact that the definition of the spin based on the “fake” vector
n is not rotationally invariant and based on a local illusion will necessitate
a reconsideration of the definition of spin and the true meaning of the Dirac
equation. It will be shown why that conclusion is compelling.

Dirac just guessed his equation. The first time one comes across it, it
really looks arcane, and one does not know what it means. Discovering
the true meaning of a spinor has made it possible to obtain a nice visual
interpretation of the Dirac equation. The idea is very natural as it is just
based on the true mathematical meaning of the spinor quantities. There is
no need to invent this meaning using a very ingenious mental construction.
It is already there, just by the fact that the mathematical language that
we use describes group elements. We have therefore become convinced that
this must be the way to give meaning to this equation. If this does not work,
then it will be very hard to find another way to give meaning to it. We have
also discovered a very appealing interpretation of the difficult concept of
spin.

But for the time being, all these kindergarten dreams have been smashed
to smithereens. As announced in Subsection 5.1.1, two problems remain.
The relationship between the Dirac equation and the Rodrigues formula
does not seem to be a one-to-one correspondence. This raises the fear that
the Dirac equation may not keep track of the complete information about
the spin, and then the dynamics derived from it might be wrong. It has
also been discovered that it was naive to think that the physical spin axis
of an electron would be just the mathematical rotation axis n-o, because
n does not transform like a vector. An attempt will now be made to try to
repair this situation.

5.4.2.3 Concepts of covariance

e Mathematical formalism. During the preceding developments it has
become clear that the idea to base the definition of spin on n is not viable,
because such a definition is not covariant. It is not even covariant in a
restriction to the rotation group. Checking the covariance under transforma-
tions of a group is a simple mathematical procedure. The discussion of this
procedure can be enriched by adding more physically intuitive arguments
to it. The wrong definition of spin based on n-o will be referred to as the
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“spinning-frame model”. The new covariant definition of spin will be based
on €, -0, and corresponds to the description of what will be referred to as
the “spinning-top model”.

Let us try to render covariant within SU(2) an equation that is of the
type:

w [w-o ]y, (5.22)

where w is some vector, e.g. w =

der

is equivalent to:

%Rw R[w-0c|R"'Ry, (5.23)
where the 2 x 2 matrix R is an arbitrary fixed element of SU(2). The
equation is obtained by multiplying both sides of (5.22) to the left with R
and inserting R™1R = 1. As in SU(2), true vectors w transform according
to w-o — w0 = R[w-0] R}, and spinors transform according to: 1) —
) = Rap, the equation can be rewritten as:

d

der

which proves the covariance of the equation. In this equation w can be
replaced by —172%e’, because e, is a true vector. It cannot be replaced by
—zTn because n is not a true vector. The fact that w can be replaced
by —2™0%€’, is important. This covariance of —1™2%e’, will be used together
with the coincidence that e/, = n for a rotation around the z-axis to derive
an alternative, covariant Dirac-like equation from the Rodrigues formula
for a rotation around the z-axis.

=[w'a]y/, (5.24)

e Frame-independent definitions. This principle of covariance has a
mathematical counterpart, viz. that the definition of a meaningful mathe-
matical quantity should not depend on the choice of a particular reference
frame or of a set of coordinates. It is this requirement that distinguishes n
and e,. Given any triad, it is possible to tell what the value of €, is with-
out knowing what the initial triad was that defined the identity element.
The decision will not depend on the reference frame. But it is not possible
to tell what the value of n is without knowing what the initial triad that
defines the identity element was. The definition of n is therefore frame-
dependent. For this reason, n is not a meaningful mathematical quantity.
In more physical language, postulating that n has some value in some sit-
uation would imply that an absolute reference frame had been selected.
There is thus a very logical mathematical requirement that is equivalent
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with the absence of an absolute reference frame in physics. The value of
e’ can be defined without any knowledge about the original orientation of
the z-axis. There is thus no need to keep track of the original orientation
of the reference frame. Completely the opposite is true for the value of n,
whose definition is frame-dependent, and depends completely on the origi-
nal orientation of the reference frame. Due to this memory effect, the simple
steady-state situation whereby the triad spins around a fixed axis a # e’,
will be described as a spinning motion around a varying rotation axis if,
following the mathematical tradition, one specifies the rotation axis by the
value of n, whose definition depends on the choice of a reference frame.

e Physically meaningful definition of a spin axis. There is a difference
between the physical and mathematical notions of a rotation axis. The
mathematical rotation axis corresponds to the value of n for one rotation
of SU(2) in a given reference frame. The physical rotation axis does not
correspond to a single group element; it corresponds to a rotational or
spinning motion. This physical rotation axis can be defined by instant-
aneous inspection of the motion. There is no need to know the previous
history. It is not necessary to know which frame has historically been used
to define the identity element, as is the case for the mathematical rotation
axis for a single group element. Such a single group element is not a set
containing several spinors that can be used to describe rotational motion.
Therefore, it can at the very best only be considered as a snapshot of a
spinning motion.

e Principle of relativity and groups. The fact that vectors transform
according to a similarity transformation is an example of Einstein’s princi-
ple of relativity, as discussed in Section 2.9. A nice example of this is the
Cgp molecule as a model for the icosahedral group (illustrated in Figure
2.4). Each carbon molecule can be identified with a group element. It suf-
fices to identify one arbitrarily selected carbon atom Cy with the identity
element 1 and then identify any other carbon atom C, with the group ele-
ment g that turns Cq into the position of C,. Each carbon atom has three
first neighbours, one first neighbour at a shorter distance along a double
bonding, and two first neighbours at a longer distance along a single bond-
ing. For every carbon atom its local environment looks the same. It is also
for this reason that any carbon atom can be selected to be identified with
the identity element. To know which neighbour of C, will be at the other
end of the double bonding, it suffices to calculate g°h°g~!, where h is the
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group element that corresponds to the neighbour along the double bond-
ing of the carbon atom that corresponds to the identity element. The group
element g°h°g~! corresponds then to the neighbour along the double bond-
ing of Cg4. All the local environments are this way equivalent by similarity
transformations. This impossibility of establishing location on the group is
also evidenced by the fact that the buckyball has the same radius of cur-
vature all over. This principle is also valid for the group of homogeneous
Lorentz transformations and for the Poincaré group, where the fact that it
is impossible to locate a group element on the basis of information about its
environment corresponds to Einstein’s principle of relativity. In an infinites-
imal environment, the analogue of the the bonds OA, OB and OC' for the
buckyball in Figure 2.4 can be written as Ah. By choosing an appropriate
parameter € one can then calculate dh/de, which defines a vector of tangent
space. These tangent vectors will be discussed in Subsection 5.10.1.2.4

141t will be possible to appreciate the present footnote fully in Section 5.10 in the discus-
sion on the Lie algebra. To compare local environments, it is necessary to use similarity
transformations. The infinitesimal bonds Ah will then transform as Ah — g°Ah°g~1,
such that the tangent vectors will transform according to dh/de — ¢°(dh/de)°g~?'. In
SU(2), this corresponds to exactly the same transformation law as for the vectors of
R3. In this sense the tangent vectors transform quadratically. But the tangent vectors
of SU(2) cannot be identified with the vectors of R3. This becomes very clear for the
homogeneous Lorentz group where the tangent space is six-dimensional, while R* is four-
dimensional. However, the vectors of R3 or R* could be incorporated into the tangent
space to the group manifold by considering in both cases the inhomogeneous group that
contains also the translations. In a homogeneous group, the transformations are of the
type v.— Mv + vo. The matrix calculations then no longer comply with the defini-
tion of a representation of a group as given in (2.31), as this definition only allows for
transformations of the type v — Mv. This problem is analogous to the one of rotations
and translations in the plane R2. By introducing homogeneous coordinates (z,y, z), the
inhomogeneous equation Az + By + C = 0 is transformed into a homogeneous equation
Axz+ By+ Cz = 0. The projective plane with its points characterized by the coordinates
(z,y, z) can be geometrically interpreted as the set of directions of R3. This is projective
geometry (in the projective space ]RP2) and it permits the recovery of homogeneous
transformation laws. The same thing can be done for the Poincaré group by introducing
the projective space RP%. The vectors of R3 or R* will then also transform quadrati-
cally under the transformations of homogeneous groups. Of course, the group elements
of such homogeneous groups transform like h — ¢°h, i.e. linearly. The group elements
correspond to the spinors: as explained in Section 3.3, spinors are group elements. It is
possible to see then that vectors transform “quadratically”, while spinors transform lin-
early. In a more loose approach, one can define spinors as corresponding only to column
matrices rather than a set of column matrices. Such spinors will also transform linearly
but they no longer have a nice, geometrical meaning, as will be discussed in Footnote
22. This way, the spinors seem to be in Atiyah’s word “the square root of geometry”
(see the citation at the beginning of Chapter 3). A more rigorous formulation would be
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Fig. 5.2 The specificity of the spinning-top model is that the fixed rotation axis is e,
rather than n. This way, it becomes possible to identify it with something material that
transforms like a vector, such as a symmetry axis of the mass distribution. This can be
compared with the spinning-frame model which corresponds to Figure 5.1.

5.4.2.4 The axis of a spinning top

The spinning-top model is illustrated in Figure 5.2. It is not equivalent
to the Rodrigues formula, like the spinning-frame model, but to a
Rodrigues-like formula. This Rodrigues-like formula expresses a spinning
motion around e/, that can be derived from the Rodrigues formula by con-
sidering the special case €/, = n = e, where it coincides with the Rodrigues
formula. The Rodrigues-like formula can afterwards be generalized to cases
where €/, # e,. It is an equation with spin axis.

In the image of a spinning top, the rotation axis always corresponds to
the physical axis of the mass distribution. It could be identified by putting
marks at the two points on the surface of the top defining the axis, and
using these marks to define the vector €/, of the triad. Observers inspecting
the top in different frames will agree that the top is spinning around the

that vectors transform as rank-2 tensors in a context where spinors transform like rank-1
tensors.
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axis e/, of the triad (that some observer may have attached to the top ages
ago), even if they will attribute different values to the coordinates of €’,.

Such a steady state whereby the rotation axis of the spinning motion
remains fixed is not the most general possible motion. The spin axis may
undergo precession around an axis. If this precession axis is fixed, the situa-
tion would also correspond to a steady state, but of a different kind than the
steady state without precession. This precession axis could then be called
a rotation axis of order 2, as compared with the axis of a rotation with-
out precession, where the rotation axis would be of order 1. The precession
axis itself may undergo secondary precession around a fixed axis of order
3. And this can go on to any order. This way, a whole hierarchy of steady
states of different types corresponding to rotation axes of different orders
can be defined. Each of these steady states will have its own Rodrigues-like
formula that could then possibly be rendered Lorentz-covariant in the form
of a Dirac-like equation. It is thus possible to conceive a whole series of
Dirac-like equations of increasing complexity.

The lesson to be taken from this is that it is not possible to think of €/,
as a rotation axis, because this would overly restrict the types of motion
and steady states that must be considered. For the most general motion it
will only be possible to define an instantaneous axis. Only when the top
is in some steady state will it become possible to define a rotation axis of
some order. Instead it is necessary to think of €/, as a physical vector that
is not defined by some rotation, but by some other criterion that is more
physical, such as the symmetry axis of the mass distribution, and that can
be used to keep track of the rotational motion.

5.4.3 Spinning tops: A definition of spin that
survives rotations

5.4.3.1 An ambiguity due to the choice of the z-axis as the rotation azis

In the preceding lines the construction of the spin operator has been based
on n-o, where n is the mathematical rotation axis. However, textbooks
always treat the case that n is aligned with the z-axis. There is thus some
ambiguity in that the spin operator could also be based on the vector €/, of
the triad e}, = R(e;), e, = R(e,), e, = R(e.) that characterizes a general
rotation R, rather than the rotation axis n of R. However, that possible
ambiguity is never discussed. This is not suprising as it is hard to spot. One
must indeed have worked extensively with group theory before one starts
wondering about the difference between n and e’,.



The Dirac Equation from Scratch 141

The author noticed that his colleagues who where discussing about spin,
were thinking about it as an object that they could truly rotate like €/, and
how this was different from the concept of spin used in the first approach
to the Dirac equation described in the preceding pages where the spin is
identified with n. By trying to figure out the difference between the eigen-
vectors of n-o and of e/-o it is possible to discover that the definition of
spin based on n is not covariant while the definition based on € is. At
face value, this finding seems to require the withdrawal of the whole set of
assumptions from which the Dirac equation was derived earlier, but it will
turn out that the gist of the idea can be preserved.!? 16

To study the case of the definition of spin for the spinning top, it is
necessary to start from the situation where the two possible concepts of
spin coincide, viz. the case where the rotation axis is the z-axis, since then
n = e,. This special case can be used as the starting point. The new
definition can then be generalized by covariance to the case where n # €’,.
Actually, this has already been done in (5.22)—(5.24), where it was pointed
out that the equations are covariant for w = €/, but not for w =n’.

15There is thus a clear distinction between the pictures of the spinning top (defined by

e’,) and the spinning frame (defined by n). For a given rotation with its well-defined

z
associated values of n and €’,, both reflection operators n-o and €’,-o will define sets,
but these sets are very different. The sets based on n contain rotations whose triads
have different values of €/, as illustrated in Figure 5.1, while the sets based on €/, contain
rotations whose axes n are different (see also Footnote 18).

The sets based on n cannot be transformed as a whole, as no similarity transformation
exists that would transform n as a vector according to n-o — R [n-o]R~!. (For exam-
ple, the radius of the circle I' in Figure 5.1 varies with n such that it is obvious that the
sets of end points P of e/, cannot be transformed into one another.) They “evaporate”
under rotations.

It will be shown that the sets based on €/, are robust against rotations and can be

rotated as a whole.
16 As already noted, there is a difference in the behaviour of n and e/, under rotations.
It can already be appreciated that there is a difference in behaviour between €/, and n
for the identity element, for which n can be given any value, while e/, must be e.. One
can make the difference even more clear by the following consideration:

When a rotation with a value €/, is continually transformed to another rotation with
value €/, the vector e/, will describe a continuous path on the unit sphere between e/,
and e?/. But n does not have to describe such a continuous path if one wishes to go
continuously from a rotation R(ni,¢1) to a rotation R(nz,¢2). Let us start from a
rotation with parameters (ni, p1). First, continuously reduce the rotation angle ¢ from
1 to 0, keeping n; fixed. But as ¢ = 0 corresponds to the identity element it follows that
(n1,0) = (n2,0). A discontinuous jump can thus be made in the value of the parameter n
from n; to n2, while in reality nothing happens. Finally, ¢ can be increased continuously
from 0 to g2, keeping no fixed.



142 From Spinors to Quantum Mechanics
(The reader might on a first reading consider jumping to Subsection 5.4.4.)

5.4.3.2 Ideas to preserve about negative energies and the mystery
of quantum superposition

After replacing n by €/, in order to repair the spinning-frame model for the
fact that it is not physical, some of the nice properties of the spinning-frame
model continue to be valid within the spinning-top model that results. They
deal with the two objections raised in Section 5.2, viz. the unjustified use
of the superposition principle and the fact that the negative frequencies
do not correspond to antiparticles. The fact that spin corresponds to a set
can resolve these problems. This will be demonstrated here only for the
spinning-frame model, because the arguments become somewhat masked
by a coincidence in the spinning-top model as will be explained later.

The Rodrigues rotation matrix is e /(1 +n-0)+et¥/2(1—n-0)].
By taking 01+ 05 with Oy = n-o O; this yields just ¢y = e‘“f’/Q(]H—n o),
as though ¢_ = e**¥/2(1 — n-o) would have been dropped. Hence, the
spinor is cut into two parts, which should in principle not be done, as
spinors are not vectors. Moreover the parts contain only one frequency

e Superposition of states. On first inspection, the set {01,02} occurs
in the calculations as a mysterious quantum superposition of two states. It
should be obvious, however, that there is no quantum mystery here; we just
use the superposition to define a set that corresponds to a vector state. This
way, provided the real normalization factors are ignored, a vector state 1
appears as the superposition of two spinor states ¢ and [n-o ] 1. Simultane-
ously, a spinor state ¢ appears as the superposition of two vector states ¢
and 1_. These superposition states are not mysterious but simply a way
to treat both spinors and vectors within a single framework and to link
them to one another. The superposition of states has been discussed here
within a purely geometrical framework, such that there is no mystery. The
same will be true in the spinning-top model.'” The superposition of states
is an expedient to treat vectors within a formalism that is not originally
designed for them. The spin of an electron has to be a vector as it does not
correspond to a single spinor. It corresponds to a movie of rotating spinors;
a single spinor is only a still of this movie.

17The duality between the notions that “two vectors define a spinor” and “two spinors
define a vector” is related to the duality between the notions that “two straight lines
through the origin define a plane through the origin” and “two planes through the origin
define a straight line through the origin”.
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e Negative energies. The solutions ¥4+ and 1_ now contain only one
frequency. The same will be true for the eigenvectors of the spinning-top
model. Single negative frequencies can then be interpreted in two ways: viz.
as a consequence of inverting the sense of the rotation, or of inverting the
charge. The generic SU(2) solution consists of course in inverting the sense
of the rotation ¢ — —p. But as ¢ = wt, a formalism for antiparticles based
on negative frequencies w — —w (or alternatively a picture t — —t of trav-
elling backwards in time, as described by Feynman) can be added on. All
the fuss about the Dirac sea to explain negative energies (F = hw) within
the choice w — —w results from interpreting the negative frequencies too
literally. The description given here represents an alternative solution for
the paradox of the negative frequencies, and is very different from Majo-
rana’s solution. It is based on the observation that negative frequencies
already exist within the geometry of SU(2), such that they should not be
over-interpreted in terms of negative energies. This does not exclude the
possibilities that Majorana fermions could exist.

5.4.3.3  An alternative definition of spin based
on the spinning-top model

The choice of €,-0 as the spin operator will also be able to explain why the
eigenvector of the spin operator contains only one sign of the frequency. The
reason for this is the same as evoked previously, viz. that the superposition
of states simply serves to treat vectors within the framework of the group
theory by considering them as sets of spinors. There is also no quantum
mystery here in the definition of spin and in the superposition of states.
But accidentally, it will be possible here to consider that the superposition
of states, needed to define a vector state, behaves as a single state, due to
a coincidence.

In defining the set that defines the axis of the spinning frame, the quan-
tity 1 + n-o is used to correspond to n. In the isomorphism discussed in
Section 3.10, the spinor [y, &;] " related to the isotropic vector e/, + 1e), is
also related to the corresponding axis vector €, by a procedure of adding a
unit matrix to its coding so as to obtain 1 4 €’,-o from €,-o. It has been
shown that e contains less information than e} + ze;. It is due to this
incompleteness that e, does not correspond to a single spinor but defines
a whole set of them, characterizing a state. This stands in marked contrast
with the isotropic vector €], + e which contains the complete information
about a single spinor.
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This incompleteness can be used to describe spinning tops. In general,
n # e,. It is only for a rotation around the z-axis that n = e/,
In the following description, the images €/, of the triad vector e, under
the rotations will be considered as the axis of a solid top.'® Rather than
starting from spinors and figuring out how a vector can be built from them,
the discussion for a spinning top starts from a vector and checks how it can
be decomposed it into a set of spinors.

As already mentioned, it will appear in the following as though a sin-
gle element from a ray is a pure spinor state rather than a vector state
constructed as a set containing spinors of opposite handedness. The eigen-
vectors will in fact have a form that conjures up the illusion that they
are true spinors. One should, however, not forget that a pure spinor can
never be the eigenvector of a reflection operator, as a reflection changes the
handedness of a spinor. But we will first start from this illusion and show

afterwards that the true result must nevertheless be interpreted as a sum
19

= e,.

of two spinors.

The problem of the spin of the top can now be addressed with a simi-
larity transformation. For n = e, we have e,-0 = 0. The eigenvectors of
e’ -0 are then 1, = eX[1,0] " with eigenvalue +1, and _ = eX[0,1] T with
eigenvalue —1. An attempt can now be made to interpret the eigenvector as
a pure spinor state using (3.10), despite the fact that a reflection operator
can never have a pure spinor state as an eigenvector, because a reflection
operator changes the handedness of the spinors. As already intimated, the
solution will look just like a pure spinor state, and the same will also be
true for ¢_.

From the definition of a spinor in (3.10), it follows that the value of
4 for x = 0 corresponds to (z,y,z) = (1,1,0). It corresponds thus to the

18The set of points N on the unit sphere that are the end points of the axes n of all
rotations that map e, (with end point Z) onto some fixed value of €/, (with end point
Z') is the great circle that bisects the segment ZZ’ of the great circle through Z and
Z'. The set of end points Z’ that image €/, for all triads that have n as rotation axis is
the small circle with centre N that contains Z. Now a rotation can transform a great
circle into another great circle, but it cannot move a small circle into a small circle of
a different radius. The great circles, which are sets defined by vectors e/, are therefore
robust against rotations, while the small circles, which are sets defined by vectors n, are
not. This confirms why the definition of spin based on € is covariant, while the one
based on n is not.

19The fact that we can interpret the spinor as a single state is due to the fact that it
contains only the first column of the matrix 1 + €’,-o. The second column of that matrix
is a null-vector (in contrast with the second column of a true rotation matrix).
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starting value of the isotropic vector, which is the identity operation. For
X # 0, it corresponds to a rotation around the z-axis (over an angle —2y).

By using again the definition of the spinor in (3.10), one finds that ¥_
corresponds to (z,y,z) = (—1,1,0) for x = 0. This corresponds (for a right-
handed frame) to e, = —e,, e; = e,, and e, = —e,, i.e. to a rotation over
an angle m around the y-axis. For x # 0, this corresponds to a subsequent
rotation (over an angle +2x) around the z-axis, as can be checked by apply-
ing this rotation to the spinor. The rotation over an angle 7 around the
y-axis, is coded by the matrix —u0,. A rotation over an angle 2y around
the z-axis is coded by a diagonal matrix, with e=X and e™*X on the diag-
onal. After calculation of the product and identifying it with the general
Rodrigues formula, it is possible to see then that this product codes a rota-
tion over an angle m around the axis (—siny, cos x, 0). The mathematical
rotation axes n form thus a fan that contains all the unit vectors of the
Oxy plane (as already anticipated geometrically in Footnote 18). In other
words, the various elements of the unit ray {¢, : 1, = eX¢} do not even
share the same mathematical rotation axis n. This is a heteroclitic set of
rotations, which only have in common that €/, ends up in —e,.

It is much more simple to interpret these two sets of rotations as a kind
of representation of the vector e, or the vectors +e.. This should not come
as a surprise, as it has been derived within a logic of vector calculus rather
than within a logic of spinors. Spinors cannot be eigenvectors of reflection
operators. When x is varying with time, one can only make sense of the set
by considereing it as describing a frame rotating around e, whereby the
previous history (concerning the change of the tilt of the rotation axis (e.g.
from e, to —e;)) no longer matters.

What has been described here for e, will be valid for any other axis.
The vector e, is coded by o,. After a rotation R it will be transformed to
e’ coded by e,-0 = Ro.R™!. The new eigenvectors will be ¢/, = Ry,
and ¢’ = Ra)_, as is easily checked. Hence, everything obtained for the
spin operator e.-o, will be valid for the spin operator e’ -o by similarity
transformation. In such situations, it may even be more difficult to make
sense of the sets of rotations in terms of n. Only the fact that all these
rotations share e/, will characterize them.

5.4.3.4 Comparison of the spinning-top
and the spinning-frame models

There are a number of features that the models for the spinning top and
the spinning frame have in common. The eigenvalue equation for the spin
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operator does not define a single wave function or spinor, but a whole
infinite set of them. This set defines a vector state rather than a spinor
state. The spin operator is thus an expedient to treat vector states in a group
theory that in principle would not allow for their existence; it describes a
vector state as an infinite set of spinor states. Within SU(2), the equation
[n-o ]y = A\ contains three unknown real parameters (which define the
complete spinor ¢) and only two independent known parameters (contained
in n-o). This clearly shows that it defines an infinite one-parameter set of
spinors, that can be identified with a vector state corresponding to n. The
equation [n-o ]y = M defines thus a set of spinors that we call a vector,
just as the equation z? 4+ y? = r? in analytic geometry defines a set of
points that we call a circle, but the routine of calculating eigenvectors and
eigenvalues in linear algebra, where no attention needs to be paid to phase
factors, is a serious barrier to realizing that it defines a set. The same
argument can be applied to the eigenvector equation [e -0 |1 = A.

If the axis e, of a spinning top is tilted by a rotation R(nj,¢1) such
that it becomes €,
knowing the complicated values for the axis n and rotation angles ¢ of
R(el,,wt)°R(ny, 1), where R(e,,wt) are the further rotations of the tilted
top around its tilted axis e,. The only part worthy of attention will be
R(el,,wt).

The difference between the spinning top and the spinning frame is that
it is possible to rotate e, as a vector, while under a rotation the rotation
axis n does not rotate like a vector, but “evaporates”. In other words, there
is a difference between the physical rotation axis of a spinning top, which
is given by the common axis €, of the whole set of rotations R(e’,,wt), and
the mathematical rotation axes that correspond to all the absolute instan-
taneous rotation axes n(t) # €/, of the rotations R(e’,,wt)°R(ny, ¢1). For a
spinning top, the true axes n(t) are not important. The physical parameters
of a spinning top that are needed are €/, and its angular velocity w. For the
spinning top, the description in terms of this alternative spin matches these
needs perfectly, and the unit ray {1, : ¢, = X9} corresponds exactly to
the physical rotation axis. We can identify a spinning top with the unit ray
{o 1 Y, = etp}, and this unit ray is exactly the eigenvector of the spin
operator €0 defined by the physical rotation axis €, of the top.

The physics of the spinning top requires thus that €, is used as the spin
vector rather than n. Here again the quantity i1 + 2 that codes the set
{01, Og}, is a superposition of states, that in principle would not seem to
correspond to anything that is easy to mentally visualize or make sense

then in physics there is not so much interest in
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of. The solution to this problem of superposition is the same as earlier
stated, but there are differences in the details between the spinning top
and the spinning frame. When the sets used are defined with respect to e,
rather than with respect to n, the sum 1 + 12 will become algebraically
undistinguishable from a pure state, such that it then no longer will appear
to be a superposition, despite the fact that it truly is. Let us take for
O a rotation around the z-axis. The corresponding spinor 17 will then
be [e7*#/2,0]T. The associated group element Oy = [e.-0] Oy, will have
as corresponding spinor ¢y = [e,-o |11 = 91. The eigenvector 1), of the
reflection operator e,-o will be ¥ = 11 +12 = 211, and after normalizing,
the eigenvector is a true spinor due to the coincidence that ¥ = 105.20

5.4.3.5 A quantum superposition of states that looks like a spinor

Let us imagine that it has not yet been decided what the meaning of the
spin operator e,-o is, such that it can still be interpreted in two ways: As
the value of the rotation axis n of the rotation O; or as the value of the
vector €, of the triad that defines the rotation Oj.

But it is now possible to ask if such an eigenvector equation that leads
to a pure spinor state exists for all orientations of the rotation axis. For
01, the eigenvector 1, will be ¥y 4 1o with 103 = [w-o]1)1. Let us now
operate on O; with an arbitrary rotation R such as to obtain a general
rotation. This will change the value of w to w' and ¢ to ¥} = Ra)y.
To obtain a pure state, it is necessary that 5 = [w'-0]] obtained
with w’-o from ] is again proportional to t¢]. By operating with R on
both sides of 92 = [w-0 ], we obtain Rys = R[w-0]1;. But this
can be rewritten as: Ry = R[{w-o]R7'Ry; = R[w-0]R™¢|. Now,
if w = e, then R[w-0|R™! = w'-0, as e, is a vector, while if w = n,
R[w-0]R™! # w'-0, as n is not a true vector. Moreover, in the option
where w corresponds to €, (rather than to n), Ry will be the value of
Ph. As (Ix € R) (Y1 = eX1h2), we will have that ] = e} for the same
value of y, such that )] + ¢} will again lead to a pure state after normal-
ization.?! An analogous reasoning on the conjugate spinors can be made
for the spin-down eigenvectors.

20The necessity to consider things this way follows from the general form of the eigen-
vector ¥4 for a general reflection operator w-o. Before normalization this eigenvector
takes the form ¢4 = e™X[1 4+ w,,wy + zwy]T. From this it can be seen that the true
eigenvector must contain 1+ w,. But in the limit w — e, the quantity 14w, can after
normalization become confused with w, or 1.
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From this discussion it is possible to see that the definition of the spin
operator for a spinning top must be based on the vector e, of the triad,
that it corresponds to the physical axis of the dynamical rather than the
geometrical rotation of the spinning top, and that its eigenvector corres-
ponds to a pure energy state that contains only one sign for fiw, even if a
rotation matrix itself in general contains contributions with both w and —w.
The vector state is also obtained here by describing it as a superposition
of spinor states, even if this is masked by the fact that vy and 5 are
proportional. This superposition is just a means to describe vector states.
The eigenvector is thus also here not a mysterious quantum superposition
of two states that would be difficult to understand on the basis of common
sense.

The solution proposed here for the paradox of the quantum superposi-
tion of states is not claimed to be general. In the discussion of the double-slit
experiment it will be shown that the superposition principle and the mys-
terious quantum superposition states can be avoided by using a completely
different strategy.

5.4.4 Generalization of the spin concept to space-time
5.4.4.1 From rotational covariance to Lorentz covariance

The previous lengthy discussions show that the definition of spin is a very
subtle problem and a Gordian knot where a whole bunch of difficulties come
together.

(1) The problem of the “negative energies”.

(2) The problem of the meaning of the superposition principle.

(3) The ambiguity between n and €.

(4) The absence of a parameter specifying the spin axis in the Dirac equa-
tion, while such a parameter is present in the Rodrigues equation.

(5) The difference between spinors and vectors.

(6) The difference between physical and mathematical rotations.

(7) The need to invoke Einstein’s principle of relativity to choose between
the models of the spinning top and the spinning frame, etc. ...

21 This proportionality between ¢} = [£9,£1]T and o) = [e),-0] 9} can also be checked
by using the expression for 1 + e,-o given by (3.28) to calculate [1 + e,-o][&,¢1]"
using &oég + £1€7 = 1.
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Let us give an outline of the path that must be followed to render
the spinning-top model Lorentz covariant. The intention is to describe a
spinning top whose physical rotation axis is given by e/, where the triad
of the top is defined by the spinor ¢ = [£y,&;]T. The spinor [£,&;]T thus
describes an arbitrary triad of the set a spinning top runs through if its spin

axis is aligned with €/,. The vector €/, is then, according to (3.19), coded by:

z

o — (Sofg —&i&7 260&T

. _ T_
© 26561 glff—sogf;) et (5.25)

It is easy to check that [e -0 ] = 9. In fact, (2¢) ® T — 1)y = 9. For
arbitrary 2 x 1 matrices A, B, C, one can change the order of the calculations
(A®@ B)C = A(B'C), such that (¢ @11y = (pT4)). Using 119 = 1 leads
to the desired result.

The result [€e}-0 ]9 = 1) has been derived already (towards the end of
Subsection 5.4.3.3) by considering a rotation R that maps e, onto e’. Let
the spinor for a rotation around e, be called 1y. The special case of the
equation [e,-0 ]y = 1 is trivially valid. The general case [€/,-0]¢ = 1
follows then from R[e,-0 | R™!Ry = Ryg. This approach was thus based
on rotational covariance. This way (21 ® )T — 1)1 = 1) can also be derived
from (2t ®¢S — 1)1 = 1o by using rotational covariance. When a rotation
matrix R is applied on the left to vy, a rotation matrix R must also be
applied on the right to 1/18. This yields (2 Ry ® ngT — 1) Ry = Ray,
as R = R™! It can thus be considered that 1 stands for RIR! in this
calculation. This way, the result for ¢ is derived from the result for ¢y by
rotational covariance. From now on we will use wq for the value of w in a
rest frame, and use w for its value in a moving frame.

As %"/}0 = —1% [e.-a] o, also Rd%wo = —1%9Re..d] R~! Ry, as
long as the group elements remain restricted to the subgroup of rotations.
Hence, the equation %1/) = —1% [e/ -0 ] ¢ is also covariant under rotations.
As [e,-o]t = 9, the equation “L¢p = —122[el-0]1) can be simplified
to %z/) = —1p, which transforms covariantly under rotations. It even
transforms covariantly under all operations of the homogeneous Lorentz
group and it has the form of the textbook Dirac equation. At first sight
it seems as though the Dirac equation is the perfect generalization to the
Lorentz group of the equation for the spinning-top model.

But the simplification [e,-0 |1 = 1 is only covariant under rotations.
It is not Lorentz covariant, because the identity (21 ® ¢! — 1)1 = ¥ is
not Lorentz covariant. In fact, for a general Lorentz transformation with
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matrix L in SL(2,C), (2Lt ® LT — 1)Leyg # Ly, because LT # L1,
as stressed in Section 4.5. Therefore, the equation cannot be simplified to
the Dirac form if it must be possible to transform its information content
covariantly. The textbook Dirac equation is itself covariant, but is not the
covariant generalization of L1 = —1%2 [el-0'] ).

When (5.25) (with s = €,) is used on (5.22):

—p = -1 [s-0 ], (5.26)

the equation can be written as

W

d _ _wo P
== ey —1)y. (5.27)

The metric of the Lorentz group does not warrant ¢+ = 1 within SL(2,C),
such that this equation cannot be further simplified. By using the quan-
tity (210 ® ¥T — 1) to express .- in the equation it is important that
e .o = (21 @ T — 1) always co-moves with v as it should, such that the
information about €’,-o is not lost. This new equation is non-linear; worse, it
is not covariant in SL(2,C). But it can be rendered covariant by lifting it to
the Dirac representation, because in the Dirac representation vectors trans-
form again by a similarity transformation e,y — L[e.-y] INfl rather than

by a transformation of the type e,-0 — L|[e,-o| L' that prevails within
SL(2,C). A large effort will be made hereafter to develop a generalization
of the equation ‘L) = —1% [e/-0'] ¢ that is covariant and allows recovery
of the information about the rotation axis at any time. The development
will actually result in a generalization that keeps track of the information
content of the whole 2 x 2 spinor of SL(2,C), rather than of the partial
information contained in the 2 x 1 SU(2)-spinor ¢ used here.

5.5 Fully deterministic free-space Dirac-like equation:
Exact derivation of the Dirac equation

5.5.1 Possible loss of information about the spin axis in
the traditional Dirac equation

It has been shown that the Dirac equation does not contain an explicit
mention of the actual value of the spin axis. It is not immediately obvious
if this is physically damaging. It is difficult to obtain a clear insight in
this situation. Accepting the standard viewpoint that the rotation of the
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electron corresponds to a magnetic dipole moment that is parallel to the
spin axis, for an electron at rest, this magnetic dipole moment will not
interact with, for instance, the electric Coulomb field of the nucleus in the
hydrogen problem. But it will interact with an external magnetic field. This
magnetic field can be postulated to be aligned with the z-axis, in order
to keep the treatment of the corresponding Dirac equation close to the
textbook treatment. When the electron moves within the Coulomb field of
a nucleus, the moving magnetic dipole will give rise to an induced electric
dipole, which will interact with the Coulomb field of the nucleus. Non-
relativistically this will not change the motion of the centre of mass, but
relativistically it will. This can be seen from a reasoning ex absurdo. In fact,
even if one assumed initially that it would not alter the motion of the centre
of mass and only introduced a change in the rotation, just as in the non-
relativistic case, the ensuing change of rotational energy would change the
relativistic mass. It would then be natural to conclude that the orientation
of the electric dipole within the Coulomb field affects the motion of the
centre of mass anyway. This could be a tiny loophole in the Dirac equation
that does not follow the spin axis.

That the information about the spin axis n (or €’) is not coded explic-
itly into the equation is very obvious from the fact that the eigenvalues
—1 and +1 of the free-space equation both have a two-dimensional vec-
tor space of eigenvectors wherein any set of basis vectors can be chosen;
there is no further information available that would prompt the choice
of one basis over another.?? Now, in a different point of space-time there
will be again such a two-dimensional subspace with its possible arbitrary

22This can be seen very clearly in the Cartan representation. The argument can be
translated to the Dirac representation by a similarity transformation. Within the Car-
tan representation the matrices of SL(2,C) are used as spinors rather than one-column
matrices, because the one-column quantities contain only half of the information, and
as such do not have geometrical meaning. This argument was preempted in Section 2.13
by the description of a jump model on an icosahedron. The situation with the Dirac
equation is analogous with the situation in this jump model. The eigenvalues of the 4 x 4
matrix Zu YHcpy that occurs in the Dirac equation are twofold degenerate. Based on
the discussion in Section 2.13 it is preferable to consider two-column eigenvectors rather
than one-column eigenvectors, because this allows the preservation of the geometrical
meaning of the “eigenvectors” and does not break up the SL(2,C) matrices. (See also
Footnote 26 of this chapter.) In the Dirac equation, the information content of a single
column should in principle have even less geometrical meaning, because spinors are not
vectors. Having established that it is possible to reason on the SL(2,C) matrices rather
than on one-column vectors, the following analogy can be drawn: in the jump model
presented in Section 2.13 the choice of the basis ey, ey, e, for R? is arbitrary. When an
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choices. But arbitrary choices in both spinors may not be consistent with
the Lorentz transformation that transforms the first spinor into the sec-
ond spinor. One may hope that the differential equation takes care of this
consistently. It is in principle possible to calculate the spin axis from a
spinor, but as the simplification made here is not Lorentz covariant, there
is a concern that no longer the correct spinor is selected in the second
point of space time. In a spinor field, such as for the hydrogen atom, it
is possible that the exact spinor values, 1 (r1) and ¥(r2), in two differ-
ent points r; and ro, could be incorrectly defined, and that this may lead
to values for the spin that are mutually inconsistent. It would therefore
be convenient if it were possible to introduce a correct Lorentz-covariant
constraint for the choice of the second spinor, by introducing and follow-
ing explicitly the spin axis s (or €’). Transforming this constraint covari-
antly would then make sure that the choices are also Lorentz-transformed
covariantly.

If the information about the spin axis could be preserved, it might
be possible to obtain a derivation that runs mathematically both ways
in the sense that the complete solutions i that belong to a state could
be reconstructed. This complete solution ¥ must contain six independent
parameters.?3

As keeping track of the information about the spin axis in a self-
consistent way could be necessary to obtain a correct description of the
physics, it will be attempted to derive an equation that does so. As a
Lorentz transformation contains both a boost and a rotational part, one
might thus postulate that it is also important to keep track of the boost

eigenvalue is n-fold degenerate, then it has an n-dimensional vector space of eigenvec-
tors, e.g. C™. Within this vector space any basis can be chosen. This corresponds only
to a change of orientation of the reference frame. The analogue for the Dirac equation
consists in choosing different 2 x 2 spinors with a different direction for the spin axis s.
The spin axis s is thus not specified by the equation and any such can be chosen.

231t was extremely difficult to decide with complete certainty if the Dirac equation was
really wrong in that it would not keep track of the information about the spin axis.
In fact, even if one does not specify this information explicitly, it could still implicitly
be carried along within the calculations by covariance. In fact, this is the case within
the subgroup of rotations due to the identity e, -0 = 2¢ ® T — 1, but not within the
homogeneous Lorentz group as has become obvious from the discussion that lead to
(5.27). It is this discussion that suggests that the textbook Dirac equation may not be
complete, because the simplification (29 ® Pt — 1)1 = v is not Lorentz covariant. As
already suggested, incompleteness could be a problem. The best way to settle this issue
is to keep track of the information explicitly and to compare the solutions of the equation
obtained with those of the textbook one.
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vector. This would lead to yet another equation than will be derived here.
In that equation it would be necessary to replace s by a six-component
complex (tensor) quantity s; + 182. This would correspond to the classical
notion that when all initial conditions are fixed, the whole orbit can be
described. But if everything is fixed, so will be the total energy. It is only
by not fixing the total energy that it will be possible discover later on that
not all values for the total energy are allowed.

5.5.2 Keeping track of the spin axis
5.5.2.1 Preliminaries

First, the equation will be derived within the rest frame of the electron,
then it will be generalized covariantly to an arbitrary frame. Let the 2 x 2
spinor matrix of SL(2,C) that corresponds to the representation wherein
v corresponds to V be called ¥, and the 2 x 2 spinor that corresponds
to the representation wherein v corresponds to V* be called ¥*. It was
demonstrated in Subsection 5.4.4.1 that in generalizing the simplification:

ey —1)p=1y (5.28)

to SL(2,C), the derivation no longer works because for a 2 x 2 Lorentz
transformation matrix L within SL(2,C), we have in general LT # L~!.
Vectors in SL(2,C) transform according to V — LVL' rather than accord-
ing to V.— LVL™!. The vector s-o = 2¢ ® ¢’ — 1 transforms within
SU(2) according to V. — RVR ™' only because RT = R~!. This seems
to suggest that the Dirac equation is only an approximation based on a
treatment of the spin as a three-dimensional quantity. When 2¢ ® ¢ — 1
is considered as an Euclidean vector that is only transformed by rotations
according to Galilean invariance, the derivation works. But when it becomes
a four-vector following Lorentz invariance, everything breaks down.

With the Dirac representation, however, vectors transform again accord-
ingtoV —-LV INJ_l (the symbol ~ is used here to flag 4 x 4 matrices that

belong to the Cartan representation, such that they can be distinguished
from 2 x 2 matrices that belong to an SL(2,C) representation). This is con-
fusing as one starts to wonder why the simplification does not then hold
sway anyway. [t must now be explained why moving from SL(2,C) to the
Dirac representation does not change this state of affairs. In fact, it leads to
a different simplification than the one that would lead to the Dirac equation,
and thus leads to a different covariant equation. For a four-vector a,, of unit
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length that is coded by A = a1 + a-o in SL(2,C) the reflection operator:

A= ( N A) (5.29)

can be considered. Here, A* = A~! for a four-vector of unit length. This
reflection operator corresponds to the 4 x 4 Dirac representation of a, and
satisfies the condition 52 = 1. (For spatial reflections one would obtain

rather —1. This problem can be avoided by using a different choice for the
signature of the metric.) It will operate on another four-vector v, according
to: V- AV efl. The effect of a reflection is explicitly:

YZ(V* V)H_éYé

The result is (see also (4.4)):

AV*A) . (5.31)

a (A*VA*

This implies that V. — —AV*A and V* — —A*VA*. This way, reflections
cause a jump between the two different SL(2,C) representations. This is
due to the fact that SL(2,C) is not able to accommodate for reflections.
Treating reflections goes beyond the framework of the SL(2,C) represen-
tation. Only even products of reflections, i.e. true Lorentz transformations
do not force a change of representation. Those true right-handed Lorentz
transformations are composed of an even number of reflections, and are
therefore block diagonal within the Dirac representation. Two such reflec-
tions will define a Lorentz transformation L = B A, acting on v, according

too V-BAVA'B'=LVL " From:

e D@ O DR D o)-

( 0 BA*VA*B)

B*AV*AB* 0 (5:32)

we obtain L = BA*. From this and using AA* = 1 (which is true by
definition), we obtain AB* = L~!. As the matrices A and B are Hermitian,
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we have A*B = LT, and so we obtain:

(L 0 (L7 o
L—<0 L”) & L _<O LT)' (5.33)

Hence, the four different quantities from (4.10) all play a role. The matrix
L and its inverse work as follows on a general four-vector in a similarity

transformation:
0 Vv t x B
v o) V — LVL', VY S LHVALTL (5.34)

From this it can be seen that the Lorentz transformation corresponds to:
V — LVL! and V7! — L1'V-IL~! This proves V — LVL' within
SL(2,C) as stated, even if V — L'V L™" within the Dirac representation.?*
Now the wave function corresponds to a group element, and the SL(2,C)
matrices can be used as spinors containing all the information about the
group elements ¥ and ¥~! which become this way simply notations for
the group elements L and LT~!. The wave function is thus of the form:

o - (‘I’ \I/_H> . (5.35)

5.5.2.2  The correct Dirac-like equation

The wave functions contain the blocks ¥ and ¥t on the diagonal. Here
U1 is the counterpart U* of ¥ in the x-representation. As a general
Lorentz transformation is obtained from an even number of reflections,
the block-diagonal structure is correct. (5.27) becomes then:

( %1) (W )
1 v
moc S-o g
- e (S'a ) ( \P_H> , (5.36)
41\ (v
= v

— _Z% (-s* S) (‘I' qf—”)' (5.37)

1

or:

24For any group element a € G the G — G map hq : g — ha(g) = aogoa~! is an
isomorphism, as hq(g2091) = ha(g2)oha(g1). This is seen at work here and the structure
of the equations is preserved due to this isomorphism. This is Einstein’s principle of
relativity. It expresses the fact that the transformations of physics must build a group.
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Here S = [s-0']. When U is a rotation, ¥T~1 = ¥, as RT = R™1. It is due to
this fact that there is certainty about the sign in front of the term s-o that
operates on Wi~!. The fact that S* = —s-o explains then the term —S*.
This way (5.27) is reproduced in the two SL(2,C) representations, and it can
be seen that the spin transforms as an axial vector, as it has the same sign
in the left-handed representation as in the right-handed representation. For
the columns ; € {1,%!} of ¥ we obtain then the simplification [s-o ]ib; =
+1); that is not covariant, but yields the Dirac equation. The operator %
will later become a four vector (%, V). It is therefore normal to combine
it with 7. Similarly, s = €/, has been coded as a vector (that will become
a four-vector). A truly covariant form of (5.36) could be:

0 Cat]l—i—Vcr v 0
121-Vo 0 0 Yl

vector spinor
(5.38)
_,mac 0 Setl + s-o \ 0
h — (81 — s°0) 0 0 wi)
azxial vector spinor

The symmetry of the various quantities that intervene in this equation has
also been indicated in the equation. (5.38) could perhaps be rewritten in a
more familiar notation with Einstein summation convention:

[W#Cf)p«} v = 'rnOC2 ['75’7#3;1] v, (539)

where E = — % % and p = %V. It reduces to (5.36) for a rotation around the
z'-axis within a frame at rest. We have then s; = 0 and can drop the terms
V-o. (5.38) “squares” to a Klein-Gordon equation (as will be proved in
Subsection 5.5.2.4). But (5.38) does not need “squaring” to decouple ¥ and
U* (as in the traditional Dirac equation) as they are already decoupled.?’

25Tn the traditional Dirac equation the vector matrix on the right-hand side of (5.36) is
replaced by 1, such that this results in a set of two coupled equations [ 1 6 1-V.o|¥ =

—2 08U * and [%% 1+ Vo] ¥* = — 2020, To decouple these two equatlons it is

necessary to operate with %% 1+ V-0 on [— =1—-V-o|U = —zJL‘l/*, which leads
2

to a Klein-Gordon equation (¥ = _mr02¢ W in W. Similarly it is possible to obtain a

Klein-Gordon equation for W*. It is in this sense that the Dirac equation “squares” to
the Klein-Gordon equation, and this is needed to decouple the two equations.
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As will be seen below, it is due to the structure “vector x spinor” on both
sides that this equation will be covariant and (5.36) is only a special case
of (5.38).

5.5.2.3 Covariance

Let (5.38) be noted in short-hand as follows: DW¥ = —70¢SW. To
prove that it is covariant it is necessary to show that L]NDQAI:\II =
—10C L §IN.711N.J\II obtained from D W = —72¢S W by left-multiplication
with L and inserting L™'L = 1, reduces to D’ ¥’ = —72<§' ¥’ This
is indeed the case due to the fact that four-vectors in the Dirac equation
transform according to V.— L'V {fl. The result can be noted as:

21+ V’-a) (qu _

<%11 ~-V'o LTlxplT)

(5.40)
mocC

Th (—LT—l [—s-o ] L}

L[s-oc]L"\ /(LU
Li-tg-11 )"

where accents have been used to indicate that the Dirac operator has also
been Lorentz-transformed by transforming it as a four-vector. ¥ can be
considered as the original rotation around the z-axis, for which a Lorentz-
covariant formulation has been obtained.

5.5.2.4  Simplifications in SL(2,C)

This equation is actually fairly useless because S and D must be trans-

formed by the same Lorentz transformation, and it is not known which
value of S will correspond to a given value of D. There is in this respect
no liberty of choice for the explicit arbitrary value of S(r,#) that must be
associated with D. Now it is known that the equation is covariant, the
quantity S(r,?) must be rendered implicit again by expressing it in terms
of W. This can be done in a covariant way and it leads to a difficult non-
linear equation, in the same way as (5.28) is not linear in %. Fortunately, as
already promised, the result allows for a simplification that is different from
the one that would lead to the Dirac equation, and which is now rigorously
covariant.

Let ¥ be the original rotation around the z-axis in the rest frame. Note
that s-o = S. The various transformations of the equations that will be
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Table 5.1 Outline of the operations intervening in the simplification of (5.38)

Equation Comments
1Lw = —1 0SSP U = U=t is a rotation
l l Left multiplication by L
L1Lw = —/ZCLSY
1 1 LiLit=1,0=y!
[LILALIJ LI = —4mecLSy
1 1 Definitions D’z and ¥/,
R = —TELSUg ¥’ may not be a rotation
l l taking the first columns
RVL = —12CLSyYr
1 1 St¢r = ¥g, definition %
RYL = —1 0% U’z may not be a rotation
described are summarized in Table 5.1. Start with [152 | ¥ = —2¢S¥

(from (5.26)) and multiply it by L on both sides.

Left-hand side. The four-gradient D = %]l + V.o is a four-vector. It will
transform as D — LDLT7 therefore insert LTLT=! = 1. For the rotation
U, we have ¥1~1 = W. Replace thus ¥ with U~ because it is Wi~!
which transforms with the operator LT~! that has been inserted.
Right-hand side 1. On the right-hand side, the same operation can be
performed. The quantity S is a four-vector, and it will thus transform
as S — LSL'. One can therefore insert here also LILi~1 = 1, and use
Ui=1 = ¥ because it is ¥T~! which transforms with L.

With these transformations the equation will become: [LI-LLT]
[LI-1wi=1] = [LSLT] [LT-1W¥T-1] which corresponds then exactly to
the result of the operations carried out on the block Lf=1¥ 1T within
(5.40).
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o Right-hand side 2. The right-hand side will be transformed differently.
It is pointless to insert LYLf~! = 1, because the simplification aimed at
now is SYyp = 1. After inserting LTLT~! = 1 one would obtain two
terms S, = LSL" and LI=1Wi~1 but the first column of Li—1wi-1 ig
7. This would lead to two quantities S;v; and it would no longer be
possible to simplify this product as can be done with Sy g = ¥g.

e In the last line of Table 5.1, indices R and L have been added in order
to indicate to which representations the quantities belong.

e Equation for the spinors. The first columns of Wi and ¥ are called
respectively ¥ r and ¥ r. We have thus proved the covariance of Dy, =
—1Myp = Dy = —1Z0%¢, where D, = LoZ1LF = 2
1+V'o.

e Companion equation. The companion equation is Dpir = —172%9r.
The development is, mutatis mutandis, completely analogous. To see this
we start from []l%} = +270°S* W, which is equivalent to (5.26), as
S* = —S. We multiply both sides to the left with Lf~!. The left-hand-
side then becomes LT~! [1-L ]L™!'L¥ = D} ¥, where L™'L = 1 has
been inserted. The resulting equation corresponds then exactly to what
happens to the block L¥ in (5.40). Again L~'L is not inserted on the
right-hand side in order to be able to simplify. The right-hand side then
stays LT=! S* W, This is then changed to LI=!'S*¥i~1 ysing ¢i-1 =
U, which allows S*¢r = —9r to be simplified, such that D} ¢}, =
—MOCL i1y, = —M0%) is obtained. Here, D} = Li~1-L1L-1 =

12} l
W]l—V'U

This shows that the equations [ 21 + V-0 ]y = -1 and [451 —
V.o |yp = =175, are covariant. It can be seen from this that the sim-
plified covariant equation is not [%]1 — V.o ]y = -7 1), which would

lead to the Dirac equation, but the equation:

0 _ mgc
{%]1 — V-O’} YR = —ZT¢L, (5.41)

and its companion equation:

Oct

[in + V-U} Wi = —Z%W, (5.42)
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which shows that (5.38) squares to the Klein-Gordon equation. These two
equations share a feature with Majorana’s equation in that they contain a
“twist”, linking a spinor on one side of the equation to another “conjugated”
spinor on the other side of the equation. This necessitates moving to and
fro between the two SL(2,C) representations. But the conjugation at stake
here is not charge conjugation.

This equation has not been guessed, but derived from a well-defined
set of assumptions. In (5.41), the first column 17, of ¥, = Ui~! is a kind
of “conjugated” spinor. The operation Wi — W, leaves rotation matrices
invariant, but does not leave general homogeneous Lorentz transformations
invariant. Conjugation is an expedient that allows us to work on WT (which
transforms by right-hand multiplication: W7 — WLT) by left-hand mul-
tiplication. Right-hand multiplication is transformed into left-hand multi-
plication by taking the inverses. The conjugation used here is not charge
conjugation. Let the rotation matrix in (3.4) be written as a lexicographic
juxtaposition of two 2 x 1 spinors: [ 13 |. For the restriction of the charge
conjugation C' : 1 — —i0,¥* to SU(2) we would have: Cipo = —iPy and
C1 = 1. For the different type of conjugation P encountered here we
have Py; = 91 and Pis = 19 in the restriction to SU(2). The conjuga-
tion here is a parity transformation that transforms left- into right-handed
representations and wvice versa.

5.5.2.5  Most general non-linear form of the equation

(5.38) must now be generalized to its most general form whereby we also
express how €, is related to ¥ according to (5.27). Again, as in Chapter 4:

U= (‘c‘ 2) . (5.43)

The derivation of (5.27) is based on the introduction of 1 + e}-o. The
fuss of finding an expression for 1 4 e’ -0 can be avoided by the following

considerations. (5.33) shows that a general spinor will be of the type:
a b
c d
v = . 44
s —c* (5.44)

—-b*  a*

As €/ is a vector, its generalization in the Dirac-like equation will thus
automatically enter into a covariant formulation of the Rodrigues formula.
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The generalization of e/, can be calculated from the rules V. — LVLT and
V~! - L=YV~IL~! This leads to the following generalization:

aa* — bb* ac* — bd*
ca* — db*  cct — dd*

/
€0 cc* —dd*  bd* — ac* (5.45)

db* — ca® aa* — bb*

It is also known how %ect should be written in terms of the four-gradient
using the Dirac matrices. We can thus write the non-linear generalization of
the Rodrigues equation that corrects the Dirac equation. Using the spinors:

n=(0) w=(}). w=("2). w=-(75) 6o

(5.45) can be rewritten elegantly as:

Y1 @Y — P @ P}
U5 @ Yft — 95 @ st ’

while (5.44) becomes:

e/ o — (547)

¢1 ) ¢2

U = , 5.48

—¢§ ’ ¢f ( )

where 11 , 12 just notes the 2 x 2 matrix obtained by the juxtaposition of
11 and ¥y. We obtain then:

U1 ® 1/J;J{ — Y ® 1/’; v
¥s @Y —¢§ @i ’
(5.49)

3
zﬁz VO | ¥ = —myc
=0

where it has been taken into account that the true vector e, must be
replaced by the corresponding axial vector. This gives a modified Dirac
equation that keeps track of the spin.?® (5.49) can be considered as the
relativistic counterpart of (5.27) in SU(2).

26The meaning of the one-column spinor quantities used as solutions for the conventional
free-space Dirac equation can be addressed by inspecting their meaning in the Cartan
representation, which directly works on decoupled SL(2,C) spinors. In the decoupled
equations, one must ultimately make a special linear combination of two one-column solu-
tions in order to be able to reconstruct a meaningful spinor. But by using €/, instead of n,
only one frequency will occur in the solutions, such that a single one-column solution then
obtains a meaning (as long as we restrict ourselves to SU(2), as in SL(2,C) single-column
quantities do no longer contain the complete information). This must then also be cor-
rect in the Dirac representation which is equivalent to the Cartan representation by a
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5.5.3 The Dirac equation: At last!

An inspection of (5.38), with its shorthand notation D ¥ = —™°S ¥,

reveals quickly that it would be absurd to change it into the Dirac equation.
The substitution:

_Zmoc 0 Setl + s-0 v 0 .
h \—(sx41 —s-0) 0 0 U-if
_Moc \\ 0
7 \o wt)

that would permit us to recover the genuine Dirac equation, can never
be made because on the left-hand side the non-zero blocks are off-diagonal,
while on the right-hand side they are on-diagonal. The reader may recognize
here an analogy with the remark made about the definition of the spin
in Subsection 5.4.1: a reflection operator can never have a spinor as an
eigenvector. Nevertheless, it was possible to give a sense to the eigenvalue
equation for the spin by introducing sets of spinors. A completely analogous
development can be used here, which will finally reveal the true meaning
of the Dirac equation. Let us note L = ¥ and introduce the two-column

quantities:
1 v
- -

and construct the sets . = {Ey,SEy} and % = {1,S}. As §* =
1, then 8. = ., 8% = . Simultaneously S(1 +S) = (1 + S) and
S(1 +S)Ey = (1 + S)Ey, such that we can consider representing the sets

(5.50)

similarity transformation, as discussed in Footnote 3 of Chapter 4. One could also build
one-column quantities by using a tensor product containing dotted spinors, as introduced
in Section 4.7. To make the transition to a rank-2 representation, in principle also the 4 x4
reflection matrices would have to be formulated as tensor products L®L. But as discussed
in Subsection 6.2.6 we can give a meaning to such one-column matrices of rank 2 with-
out reformulating the 4 x 4 reflection matrices as tensor products. This gives then a new
meaning to the equation. However, in its original meaning the Dirac equation definitely
corresponds to a rank-1 equation. This will even remain true for the bi-vector transfor-
mations that will be discussed in deriving (5.67). In the Dirac equation we are thus not
dealing with a tensor product of two SL(2,C) representations but with a direct sum of two
SL(2,C) representations. Such a direct sum permits then to accommodate for reversals.
The same result will be reached by a completely different reasoning in Subsection 5.5.3.
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by the sums of their elements. We will have:

T=(1+S)Ey = <_§q,) . (5.52)

Under a Lorentz transformation K we will have ¥ — KW¥ = ¥, and
—S*V — Ki=![-S*|K~'K¥ = —S*' ¥’. The quantity —S*¥ transforms

thus like U* = Ui~ with K~ and is therefore noted as Y*. This leads
to the correspondences:

W T = (1+S)Ey = @) . 1—T=(1+S)E; = (_ﬂs> (5.53)

Under a Lorentz transformation K, and noting Kf~! = K*, then:

- = KU g
IS\IJ =V = (K*T*) - (T*/> . (554)

Here ¥’ can be defined through the relation IN(E = 6/7 but also by a

construction of the type given in (5.52), as the Lorentz covariance of this
procedure has been proved. We have now: SW = VU by construction. Let us

check the covariance of this result. From I§§§ = IN(W we derive:
¥ = KU = KSU = KSK 'KV = ST (5.55)

Finally, one can show that Y* = ¥*¢..2” This will show that (5.38) can
always be simplified to the Dirac equation. In fact, both sides of (5.38) can
be multiplied to the right with:
1
<02> , (5.56)

270ne considers a spinning motion around the z-axis given by (5.7). For this rota-
tion the spin vector is —S{ = o0.. A general Lorentz spinor will now be given by
¥ = LR. All calculations must now be made for this quantity. Both the new spin vector
—S8* = LT-1[-S5]L~!, and the new left-handed representation matrix ¥* = wi—1
must be calculated. Then T* = —S* ¥ must be calculated as well. But this is:
T* = LI-1[-S}]L7'LR = Lt~!0,R. We must now check that T* = ¥*o.. But
o:R = Ro. such that T* = LT-1s.R = L'~!Ro.. As LI~1R = LT-1RI~! = ¥~
this completes the proof. With the notation of (4.9) for L, the final expression for T* is:
d*e—ZLL)()T/Q C*e+zw07/2

T =
(_b*e—szT/Q —a*etwoT/2

. Note that the gimmick of not transforming the

factor o, that occurs in T* is also used in the derivation in Subsection 5.5.2.4 as can be
seen from the last transition in the overview of this derivation given in Table 5.1.
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such that W is always obtained by the procedure:

T - (‘I’ W) (i) . (5.57)

Note that the term o, occurs here only as the proof was based on covari-
ance and started from a rotation around the z-axis. If we had started with
another spin vector S in the rest frame of the electron we should have
replaced o, by S. This shows that the 4 x 2 matrix in (5.57) is a kind of
initial condition, very much in the same way as ¢ (7) = R(7)¥(0) could be
used for the time evolution of a 2 x 1 spinor in SU(2). (It is different in the
fact that it does not relate the situation at ¢ to t = 0 in the lab frame but
to 7 = 0 in the rest frame.) This way, the quantity ¥ can be introduced
also on the left-hand side of (5.38). We have thus finally derived the Dirac
equation (the necessary steps are summarized in Table 5.2).

For the spin in SU(2), it was shown that it was possible to multiply
the eigenvector by e’X and that this led to another meaningful two-element
set. However, in SL(2,C), multiplying ¥ by a phase factor e¢’X no longer
leads to a meaningful result. It is also meaningless to define spinors as
one-column quantities in SL(2,C). The solutions of the Dirac equation thus
describe sets that contain two elements. A set contains a left-handed and
a right-handed spinor, that can be imagined to represent states with a
same rest mass. It is this move that finally completes the validation of the
Dirac equation. But it can be noted that the sets . and %y are different
solutions of the same Dirac equation. Therefore, the sets defined by the
Dirac equation are not defined up to a phase factor, but up to a spinor W.
This corresponds to the fact that the eigenvalues are degenerate and define
two-dimensional vector spaces of eigenvectors. The degeneracy explains why
it is preferable to write the solutions using a two-column matrix formalism,
in conformity with Section 2.13. As already expressed, the Dirac equation
does not specify the direction of the spin axis. In this sense it is thus not
complete. But there is no obligation to make the simplification to the Dirac
equation.

The two-column quantity T is an eigenvector of S. However, it is not the
eigenvector ¥ that would be needed to reduce the Dirac-like equation (5.38)
to the traditional Dirac form. (Note for comparison that in the solution of
(5.38) there would be no blocks 1, and there would be null blocks 0.)

In the standard form of the Dirac equation one uses a different set of
gamma matrices as in the Weyl representation used earlier. Actually, the
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Table 5.2 Overview of the various steps required in the proof of the Dirac equation

Rodrigues formula, (5.2) W = cos(p/2)1 —1sin(¢/2)[n-o]
Substitution ¢ = woT 1

Rotating frame, (5.8) b = cos(woT/2)1 — 1sin(woT/2)[n-o ]
Derivation 1

Differential form, (5.10) 2 = —wo[n-o]y
Einstein-Planck relations 1
Spinning-frame model %1/} =2 [no]y

n not covariant in SU(2) !

Spinning-top model, (5.26) % = —zm};) [s-o ]y
[so ] = 1 not covariant in SL(2,C) !

Dirac-like equation, (5.39) ‘ [YHepu ] ® = moc? [y5yus, | ® ‘
Introducing sets through ¥ !

Dirac equation ‘ [V cpp ¥ = moc? ¥ ‘

Dirac equation uses 75 as its 7o and wice versa. It is well known that all
choices for the gamma matrices lead to equivalent solutions. The paradox
that it was not possible to make the substitution of (5.50) occurs thus
also in the Dirac representation. But there it may go unnoticed due to the
fact that the standard representation also contains block matrices on the
diagonal.

Note that there is absolutely no obstacle to adding the spinors of the two
elements that belong to .%. One of them corresponds to a block matrix along
the main diagonal, the other to a block matrix on the secondary diagonal.
Therefore, after any odd or even combination L of Lorentz reflections, the
blocks LY and L*U* will always occupy non overlapping positions in the
formalism, such that they can always be seperated out from the sum W. The
blocks ¥ and ¥* will also always be operated on by the right representation
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matrices. It is like adding up e, + e, in SU(2): both contributions can
always be recovered from their sum.

For the moment, the solutions of the Dirac equation are not spinors,
but two-element sets of spinors. By proving the covariance in (5.55), it is
shown that these solutions are always of the form:

a b
— v c d
-b* —a*

But this shows now that a one-column quantity 12) taken from U contains
the complete information of a spinor. This is somewhat unexpected and it
is satisfying to see how the pieces of the jigsaw puzzle finally come together.
It is in line with the result of the discussion in Footnotes 2 of Chapter 4
and 26 of the present chapter. Using the analogy of the Meccano game
introduced in Section 2.13, it can be said that ¥ has been taken apart and
reassembled into an equivalent Meccano construction, viz. a single column
vector taken out of the construction W. We see that this corresponds very
much to the philosophy promoted in Section 2.13. We take matrices apart
and then put the individual column matrices together in other ways, ending
up with different matrices containing the same or equivalent geometrical
information. The “superposition” used to define ¥ eventually serves only
to extend the possibilities of the Meccano game. It makes sense after all
to calculate with one-column quantities rather than with SL(2,C) matrices,
and the traditional Dirac equation thus perfectly keeps track of the spin of
the electron without any loss of information. The freedom to choose values
for the spin that caused so much concern is thus just a freedom to choose
initial conditions for the spin.?® However, by “squaring” the Dirac equation
to decouple the parts coming from ¥ and ¥*, in the form of two decoupled
Klein-Gordon equations in 2 x 1 matrices, information will be lost. The two

28The quantity 72) = [a,c,d*, —b*]T is often called a bi-spinor in the literature. This is
actually a misnomer, because it is the combination of two semi-spinors containing each
only half of the information into a true spinor quantity that contains the full information.
It is also often encrypted in the abstract statement that the bi-spinor is a representation
that belongs to D%’O) ® D(O’%), which is perhaps easier to understand with hindsight
than when first confronted with it. Note that in the Dirac representation, it takes more
effort to grasp the meaning of the bi-spinor D(%’O) &) D(O’%) because the essence of the
structure becomes blurred by the fact that the Lorentz transformation matrices are not
block-diagonal as in the Weyl representation.
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coupled equations are:

01 _v. a _  _,moc d
P pa—y)

(5.59)
[Z1+ Vo] @ = —gmec (@
dct —b* h c)’
But after squaring they will become:
g a\ _ mac? (a
O) \¢)  nm \c¢)’
(5.60)

g &\ mge? d*
C o) ()= (4 )
where [J = Cizg—:z — 59% — % — %. This way a single equation will only
determine, for example, a and ¢, or only b and d while this cannot be the
complete solution. The loss of information can be avoided by using the two-
column spinors rather than the single-column spinors. For a rotation, the
two 2 x 1 spinors become identical, because b = —c* and d = a*. The spin-up

solutions will both become:

R

It is only after also applying boosts to them that the spinors become differ-
ent.?? It follows thus that the exact equation (5.38) does not stand in exact

29Note that in the physics literature, the one-column quantity 12) is usually normalized
according to %@T@Z = % (aa™ + bb* + cc* + dd*) = ~ (see (C.12)). From the viewpoint
of pure group theory, the normalization condition should be always ad — bc = 1, i.e.
%@T 7012) = 1. The alternative normalization procedure used in physics is suggested
by the derivation of a continuity equation for the probability charge-current density
from the Dirac equation —% Y0 %1/) - % vV b = moc? 1 (a), where v = (v1,72,73)-
By Hermitian conjugation and using the identities ’y(]; = v and ~t = —~ this yields:
% %QJT')@ — % (V{Z)T)-'y = moc? 17;T (b). Combining the equations according to [@Tyg}
[(a)] — [(b)] [y0%] and using 4y0 = —70 yields then an equation that we can interpret
as a continuity equation, whereby 17;“2) is identified with a probability density. For the
complete probability charge-current density one finds j,, = ¥y, with the definition ¢ =
12)T’yo. In SU(2), aspinor v = [& &1]7 is normalized according to ¢y = &g +E1ér = 1.

This normalization condition is the counterpart of % 17;T Yo 17; =1 for the spinor ’IZJ From
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correspondence with the 2 x 1 single-column solutions of the Dirac equa-
tion. We must solve two equations, and we must combine the two solutions
in such a way that it does not result in a spurious solution, such as:

<¢0+) : (5.62)

This is not too much of a concern, because it is an easily avoidable error. It
is necessary to check that the quantities a, ¢, d* and —b* satisfy ad—bc = 1.
As seen earlier, a three-dimensional approximation is also apt to produce
the Dirac equation, while the three-dimensional approximation is not exact.
One must thus always keep an eye open to avoid picking inadvertently a
spurious solution.

It may finally be noted that the derivation shows that the Dirac equation
and the Dirac-like (5.38) are both correct. The Dirac-like equation applies
to single particles, while the Dirac equation applies to sets of particles,
coded as sums of spinors. The probabilistic character of the Dirac equation
will become even more clear in the next subsection.

5.5.4 From orbits to orbitals

We may jubilate now at the idea that we have proved the Dirac equation
by deriving it deductively from the image of a spinning top, thus giving the
equation an exact intuitive interpretation. But the ultimate piece of the
proof is still lacking! We have considered an electron at rest and derived
an equation for it that defines the spin. In the overview in Table 5.2, this
is (5.26) for the spinor (7). We have then generalized this equation by

the Rodrigues-like equation %7/) = —1%2 [s-o ]t (see (5.9)) one can derive %wﬁ/) =0
in the same way as one derives the continuity equation from the Dirac equation. This
equation is thus the counterpart of the continuity equation obtained from the Dirac
equation. According to (5.61), it corresponds to 1T =1 in a rest frame. The Rodrigues
equation describes a spinning electron at rest, whose position is not known as it has not
been specified. This complete lack of information corresponds to a probability density
that is constant over the whole of R3. Because the probability density and 1T are both
constants in the rest frame and are both parts of a four-vector that satisfies a continuity
equation, they will always transform the same way under Lorentz transformations and
always remain proportional. It is thus logical to identify the probability density with
T4, where 1) contains a normalization constant that can be fixed by introducing a
condition of the form [ i (r, t)a(r,t) dr = 1 for it. This analysis leads to an extension
of the definition of a spinor to that of a probability charge-current density, whereby

the generalization starts from the identity %’IZJT’IZJ = ~ rather than from the identity
~—i- ~
L'y =1
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covariance to a moving frame. These are the further steps in the overview
in Table 5.2. Transforming ¥ (r¢, 7) to a moving frame by using the Lorentz
transformation changes it into ¥ (r,t). Here, the position vectors rq in the
frame at rest and r in the moving frame enter the scene because it is neces-
sary to know the position of the electron to make the Lorentz transformation
for the time correctly. In principle, this construction only defines the wave
functions 1(r,t), ¥(r,t), U*(r,t) and U(r,t) on the path r(t) of the elec-
tron. But this is not the way in which wave functions are used in quantum
mechanics. They are considered as defined over the whole of space-time.
We must thus still introduce a change of the definition domain for the wave
function and prove that it is self-consistent. It is not always common prac-
tice in physics to worry about definition domains of functions, even if it is
important in mathematics, as observed in Footnote 1 of Chapter 1. We have
therefore always been rigorous about defining the definition domains of the
functions we used, even if this might have come over as pedantic. But in the
specific case of the wave function it will turn out to be extremely impor-
tant to be rigorous about what the definition domains are. Fortunately, this
extension of the definition domain of the wave function from the path of
the electron to the whole of space-time comes about naturally. It intervenes
on two occasions in different guises: in trying to define the wave function
in a moving frame by covariance, and when trying to solve the differential
equation (which can be considered as an alternative definition of the wave
function):

e When we solve the differential equation, it is done over the whole
of space-time, without any forethought about the question what the def-
inition domain is supposed to be. This is really generous as the equation
needs only to be solved on the path of the electron. Even if it might be
done unwittingly, this transgression of the conceptual boundaries of the
initially intended definition domain of the wave function defines a natural
extension of it. This extension is self-consistent and can be considered as
natural because it satisfies the differential equation over the whole of space-
time. That the definition domain can this way become extended beyond
the classically expected definition domain is well illustrated by the tunnel
effect.

e When the Lorentz transformation is introduced for the actual posi-
tion (rg, 7o) of the electron on its path, the same Lorentz transformation
applies to any other possible position (ri,71) that is not on that path.
When we write (r,¢) in the moving frame we may then think in complete
ignorance that it applies already for any value of (r,t) in space-time. Again
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this defines inadvertently a natural extension of i (r,t), ¥(r,t), U*(r,t)
and U(r,t) to the whole of space-time. This way other possible positions
for the electron are added to the definition domain. It is the inclusion of
these additional possible positions in the definition domain that will render
the wave function probabilistic. In the extension we lose track of the actual
path of the electron that gave rise to it. We cease to describe the actual
positions and start to describe possible positions. This is why the issue of
the definition domain is crucial to the meaning of the wave function in
quantum mechanics.

In fact, after the extension of the definition domain of the wave func-
tion, one can ask if the single-valued extension constructed this way has
a meaning, and if so, what this meaning would be. One can then argue
that the extension describes a probability distribution. This intuition can
be further justified by deriving a continuity equation for the probability
charge-current density from the wave equation, as is done in textbooks.
The continuity equation ensures that the probability calculus will be self-
consistent over the whole of space-time.

The consequences of the extension in the context of the free-space Dirac
equation will be discussed in more depth in Chapter 6. When potentials are
introduced, defining the extension in a self-consistent way will become truly
non-trivial in the second procedure. Solving this problem leads to the Bohr-
Sommerfeld quantization conditions and becomes tied up with applying the
procedure of separating the variables in partial differential equations to the
Dirac equation. This will be discussed in Chapter 8. The complete rigorous
construction of the wave function and its corresponding wave equation is
thus an elaborate and dazzling piece of mathematics. Quantum mechanics
is a poem of mathematics. We can only marvel with awe at the thought that
physicists have been able to guess this mathematical construct with all its
inherent subtleties by mere intuition. To seize the beauty of a poem we must
have an excellent command of the language it has been written in. In the
case of quantum mechanics, we only poorly understood this language. We
are not all gifted with Dirac’s phenomenal intuition, such that to most of
us the equation comes out of the blue and looks beyond our grasp. Filling
this gap in our understanding by bringing down the language barrier of
group theory has been the leitmotiv behind the present derivation, that,
for the reasons explained in Chapter 2, wanted to be at once rigorous and
intuitive.

(On a first reading the reader may jump from here directly to Section 5.6.)
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5.5.5 Further justification of the criterion
for Lorentz covariance

The similarity transformations used to prove the covariance of the Dirac-like
equation (5.38) correspond to Lorentz transformations for four-vectors. Let
us check the consequences of the Lorentz covariance for a similarity trans-
formation based on a boost. The form of the boost with velocity v = vu

in a right-handed SL(2,C) representation is B(v) = ”’TH 1- 7771 u-o.
Such matrices correspond to unit vectors since B(v)B*(v) = 1. Moreover,

Bf(v) = B(v). Here u is of course defined as u = v/v. The matrices:

*

(13 P?*) and (% ]2) (5.63)
are respectively a boost and its inverse in the Dirac representation. Oper-
ating with a boost on a four-vector we obtain V— BVB, V* — B*V*B*.
For an axial vector we have —V* — —B*V*B*  such that the differ-
ence between true and axial vectors does not affect their transformation
properties. As for a boost Bf = B, the transformation of the vector

V = s41+s-0 — BVB = BVB/ corresponds to a general boost. Explicit
calculation shows that it is:

V-s VSe
S — 7y [sct—?}]H—’y[sH—?t} ‘o +s] 0, (5.64)

where s is the part of s that is parallel with u and s, is the part of
s that is perpendicular to u. This expression corresponds to the Lorentz
transformation of the vector s.;1 + s-o under the boost with boost vector
v. This is a traditional Lorentz transformation where s.; plays the role of ct
and s the role of r. The calculation on B*V*B* shows that it corresponds
to the Lorentz transformation of the vector s.;1 —s-o under the same boost.
The point of interest here is the special case where s.; = 0, such that the
Lorentz transformations of S = s-o and S* = —s-o are obtained. The very
same derivation applies also to the operator (%,V), since it applies to
a general four-vector (e.g. (E,cp)). A similar operation can be performed
for the transformations under rotations, working again on a general four-
vector. For a rotation matrix the simplifying relation is different from that
for a boost, as here Rt = R~!. The rotation matrix and its inverse are here:

(f)‘ g) and (fg I‘{)T) (5.65)
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respectively, where the rotation with axis a and angle ¢ is given by: R =
cos(p/2) 1 —1sin(p/2) [a-0]. The calculation on s.+1 + s-o yields:

s —s' =sul+ (s +cosps, —sinp(aisy))o. (5.66)

This presents the image under the rotation with axis a and angle ¢ of the
vector s. The idea is thus to take the initial value s, search for its component
s; =s— (a-s)a that is perpendicular to a, calculate a A's;, and then use
these calculated values to calculate the value of the image s’ using the value
of . If a-s = cosx, then both s; and a A's; will have length sin y, such
that s’ still has indeed unit length. In summary, this means that for vectors
the similarity transformation corresponds to a Lorentz transformation. In
the same way, it is possible to check that IJ('th%)l;J_l indeed corresponds
e}

0 2, Mnge

As already mentioned, in the new Dirac-like equation (5.38) it is tac-
itly implied that the Lorentz transformation L that permits Eu ’yu%

to be obtained as g(vct%){fl, is the same one that permits %§£‘_1 to
be obtained from S, and transforms § into S'. Here, S = 3 5,7,. Only

when this condition is satisfied will the equation “square” to a Klein-Gordon
equation for L. (In other words, the Klein-Gordon equation can only be

derived from from (5.49) if > | 7#3% is expressed as Ll(%t%)Lfl, if the
B ~ =

the matrix S’ that contains the entries S’ is expressed as LoSLy ! and if it

is postulated that L; = Lo.)

5.5.6 Lorentz covariance of the equation: Unitary matrices

In textbooks, the problem of covariance is discussed in terms of unitary
matrices, using arguments that the measured quantities must be real in
all frames. This book, however, has pursued an approach to the same
covariance by using similarity transformations. It must now be explained
why this difference in approaches is not a contradiction.

The true covariance argument is one based on similarity transforma-
tions. To make the argument in terms of unitary matrices, one first mul-
tiplies both sides of the Dirac equation by .. This is performed on the
final result of derivation, not on one of the embryonic equations presented
along the way. Once the Dirac equation has been multiplied on both sides
with 7., the operator %]1 (which is part of the operator that projects
out the total energy F from the equation) is diagonal. Whatever similarity
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transformation is applied now on the equation, it will not be possible to
change the operator %]l, because it is a scalar. This implies that the total
energy is kept constant. This is puzzling because it is difficult to see how
one would not change the energy by making Lorentz transformations. The
answer is given by the operations on the right-hand side of the equation on
which the Lorentz transformations are made. Working at constant energy is
of course useful in calculating stable radiation-less orbits for the hydrogen
atom, for example, because by keeping the energy constant, it is certain that
there can be no loss of energy due to radiation. But proving Lorentz covari-
ance for transformations at fixed total energy is not general: in the textbook
case without electromagnetic fields, the only elements of the Lorentz group
that keep the energy fixed are of a rotational type. Let us now show that
by multiplying both sides of the equation by 7. the operations on the
right-hand side have been limited to rotations.

The operation that consists in multiplying both sides of the Dirac
equation will be called the . swap. In the Dirac equation, the matrices
associated with (mgc?,cp) used after the v, swap are (et o, y, @) =
(Vets YetYas Vet Yys Vet V=), which satisfy the commutation relations oo, +
ayay = 20, 1. In other words, in these cases it is possible to identify the
group of operations used with the group SO(4) of rotations of Euclidean
space R* with the ordinary metric signature + + ++4. The intervening
matrices o, are therefore unitary. This shows that only rotations have been
treated in this kind of proof of Lorentz covariance. Before the 7., swap, there
is a situation with a constant rest mass myg, such that E? —c?p? = (mgc?)?,
leading to the metric signature + — —— for the left-hand side. After the
Yet swap, the total energy E is a constant, such that E? = c¢?p? + (mgc?)?,
leading to the metric signature + + ++ for the right-hand side. In the free-
space Dirac equation the rest mass remains a constant anyway, such that
the treatment is restricted to three-dimensional rotations. This is then not
truly a four-dimensional rotation group with a signature + 4+ +-+. It will
be explained later that within a potential the velocity can be changed even
when the total energy is fixed. The paths then no longer need to be circu-
lar. It will be discussed in Subsection (6.2.10.2) how for a central potential
with rotational symmetry in the context of the Schrédinger equation only
three-dimensional rotations are needed. Note that in the situation with the
signature + 4+ ++ the potential V is coupled to the unit matrix, rather
then to .. It can thus be stated that we have two different metrics, with
signature + + ++ for radiationless motion and with signature + — ——,
when radiation can be present.
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Yet another way of seeing this is as follows. In the Dirac-like equation
(5.38), moc? is no longer associated with a unit matrix before the ~.; swap.
The quantity moc? does not appear in an association with a unit matrix,
but with the three matrices 7,,7y,7. in a rest frame, and with the four
matrices Yet, Va,Vy, V> I @ moving frame. After the ~y.-swap, the term
SetVet Will have been transformed to sq1. In the absence of a potential,
the motion will be uniform such that s.;y.; will be a constant. Hence, in
the absence of a potential there will be, after the v.; swap, only three anti-
commuting matrices present in the equation, namely (o, oy, ;). In other
words, the system could be described within SO(3).

An inspection of (5.49) prior to the . swap reveals that the matrix
> . CPuY" is not unitary. However, multiplication by 7.; changes the struc-
ture of the matrices. The proof of Lorentz covariance that was made on the
seeding equation (5.26) (with (5= ‘9 ,0) rather than (5%, V) on the left-hand
side) would simply break down 1f it was first multiplied by ~e;.

The solution to this apparent contradiction with textbook proofs is that
they treat Lorentz covariance for bi-vectors rather than for vectors. The
structure of a matrix corresponding to a vector becomes block-diagonal
after multiplication with ~.;. A block-diagonal structure corresponds to the
structure for the transformation of bi-vectors. Hence, the argument about
unitary matrices after performing the v.; swap on the Dirac-like equation
(5.39) (with ( ddt, V) on the left-hand side) applies to representations of
bi-vectors, rather than of vectors. As already mentioned, the approach to
the proof of Lorentz covariance made above breaks down after the v.; swap.
But the transformation laws that can be derived for the modified equation
do make sense for bi-vectors. If s were treated as part of a bi-vector, we
would obtain:

1 —1 ~1
s —s = %s— PyTu—zﬂw(u/\S)— 7T(Ul/\(ll/\s))
= S” —f—’ySJ_ — zﬂ'y(u/\ SJ_). (567)

This can be completed by the equation for the transformation of u A s,
which is the second vector component of the bi-vector, and the whole shows
then emphatically that bi-vectors do not transform like vectors. An exam-
ple of how a Lorentz transformation of a bi-vector looks is given by the
electromagnetic-field tensor (see Section C.5 of Appendix C). The compo-
nents of a bi-vector that are parallel to the spatial part v of the velocity
four-vector (vet, v) of a boost are not affected by Lorentz transformations,
while the perpendicular components are. Bi-vectors appear like a complex



The Dirac Equation from Scratch 175

vector of the type E 4B in this formalism, but a bi-vector is a tensor, not
a complex vector.

For a single vector component V of a bi-vector, one finds that it is
no longer transformed to MVMT, but to MVM~!. For rotations, where
MT = M1, this does not introduce changes, but for boosts, where M
M1, there is a real change between the situations before and after the
Yot swap. Therefore, this swap installs a difference between rotations and
boosts. For a rotation with axis a after the swap, one obtains the result
of (5.66) again. This equation presents analogies with (5.67). We can add
to (5.66) the equation for the transformation of a A's, and the set of two
equations can then be interpreted as describing the rotation of two vectors
s and a A's around a, whereby s remains constant. In summary, without
the v.; swap, the covariance is proved for vector solutions, while with the
et swap the covariance is proved for bi-vector solutions at constant energy.

In the SL(2,C) representations, the transformation of a vector V obeys
the rule V/ = LVL', with L % L=1. But in the Dirac representation, the
transformation rule for vectors becomes Y' = QYE‘_l for the 4 x 4 Dirac
matrices L constructed from L, and V constructed from V such that the
vectors transform conveniently by similarity transformation, according to
unitary transformations in SL(2,C). Unitary transformations in SL(2,C) are
at a fixed value moc? with a variable value for the total energy E (which is
just Lorentz invariance), while the unitary transformations discussed in the
Dirac representation keep both the total energy E and the rest energy moc?
simultaneously constant. True Lorentz covariance where the total energy F
2 is kept fixed is taken care of by
similarity transformations. The differences between the rules in SL(2,C)
and in the Dirac equation, and the subtlety that the four matrices from
(4.10) can in principle all be different, is something that requires great care
in using the formalism. Both for rotations and boosts, the set of the four
matrices defined by (4.10) contains eventually only two different matrices.

can vary and only the rest energy mgc

But the way the four matrices combine two by two to pairs of equal values
is different for rotations and boosts.

Note that in the frame at rest, s is fixed, such that g—f = 0. When this
is expressed in a moving frame by replacing % by %]l —o0-V,and s-o
by s¢:1 + s-o this leads to a whole set of equations. Operating, once more
%]l + 0-V on these equations we obtain a full set of Maxwell equations,
including an equation that is analogous to Faraday’s law of induction % %B —
V AE = 0 (see Appendix C). From this approach it can be appreciated
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that the rotation axis behaves like an electromagnetic potential. A magnetic
dipole associated with s induces an electric dipole in a moving frame.

5.6 The Dirac equation in the presence
of an electromagnetic potential

To justify the minimal substitution requires two ideas:

e [dea 1: Coding Lorentz transformations by using E and cp as param-
eters. In free space, it is possible to calculate quantities in other frames by
using Lorentz transformations. One can ask if the converse is true. In fact,
when E and cp are known in some frame for a particle with rest energy
moc? it is possible to calculate the time part of a pure Lorentz boost that
will yield the values F and cp. This can be illustrated by multiplying the
textbook equations for the transformation of the time under a simple boost

with velocity v by mgc?:

T = Aft-v-r/c?) — me*r = Et—p-r. (5.68)

Here, the proper time 7 is calculated in the frame of the travelling electron
in terms of the coordinates (¢,r) in the lab frame in which the electron has
a velocity v. The velocity parameters are v and B = v/c. Here ymoc? is
substituted by E, and Bymoc? by cp. Therefore, in general E and cp can
be considered as boost parameters.

Of course, the quantities £ and cp contain only three independent
parameters, such that the information about the Lorentz transformation
will not be complete. A general Lorentz transformation is the composi-
tion of a boost and a rotation. Supplementary information (about angular
momentum, for instance) may be needed to reconstruct the full transforma-
tion. However, this is not the case when only the time coordinate needs to
be Lorentz transformed, as then the knowledge of E and cp is sufficient. In
conclusion, the quantities E' and cp can be seen as parameters that contain
all the information needed to Lorentz transform the time coordinate.°

As all four-vectors transform the same way, the values of the quanti-
ties E and cp contain all the information we need to make the Lorentz
transformation of mgc?.

Similarly, the value of the four-gradient 0, = (%7 %, 6%, %), which
is coded as E# Yu0u and transforms like y*cp, also defines everything

30This reasoning will be questioned in Chapter 8.



The Dirac Equation from Scratch 177

needed to make the Lorentz transformation of % Thib is seen when trans-

forming —% T ’yct to a moving frame by L (-2 dCT Vet ) L_1 and writing

the result as —7 Z# YuOy. Here, the coordinates (ct,x,y, z) used in the
differentiation are the coordinates in the moving frame. The operators

( aac 7 aax’ 86y7 gz) are thus frame-dependent values, because in another frame

they would be (act/’ 6‘2,, 6‘3,, 527)- The four-gradient 0, (%7 V) and the
energy-momentum cp,, = (I, cp) are four-vectors. We can obtain the trans-
formation for ( a‘zt,V) from the transformation for (E, cp) by making the
substitution v p, = —2+,8,, and vice versa.

e [dea 2: The rest mass changes in a potential. Imagine that the elec-
tron is at rest within a Coulomb potential V' of a point charge. There is
no magnetic field, such that we can put A = 0. Suppose that the electron
is at a finite distance r = 7 from the point charge such that V(r) # 0.
Of course, at infinite distance r — oo the electron would feel a potential
lim, o V(r) = 0. At infinite distance, the rest mass of the electron is
mo such that its rest energy is moc?. At finite distance r = rg, the rest
energy will now no longer be mgc? but m.c? = moc? + ¢V, because the
potential energy contributes to the total energy. Here, ¢ is the charge of
the electron. For example, in the Coulomb potential of a proton, ¢V < 0
and m,c? < moc?. The difference in energy moc? — m,c? has been radiated
away. When an electron comes from a situation at rest at » — oo to settle
on a stable orbit, it must emit radiation. On this stable orbit the electron
will not be at rest but have some finite velocity. To come to absolute rest,
it would have to emit further radiation. It would be elegant physically to
explain the whole change in rest energy in terms of radiation, but this is
complicated by the fact that it is not possible to go from a situation at
rest at r — oo to another situation at rest in » = r¢ by a single radiative
process. The conservation laws of energy and momentum must be applied
simultaneously, and this leads in general to the result that in a single radi-
ation process the particle must recoil to satisfy the conservation of both
energy and momentum simultaneously. The description in terms of radia-
tive processes can be made correct by assuming a globally recoilless series
of photon emissions from the initial state where the electron is at rest at
infinite distance » — oo to a final state where the electron is again at rest
at a finite distance » = r¢ from the nucleus. The treatment in terms of radi-
ation could also become more complicated for a Dirac equation describing
a charged particle that would be different from the electron and have inter-
nal rotational degrees of freedom. The laws of conservation of energy and
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momentum would then also have to allow for the possibility of “inelastic
processes” with internal transitions between the rotational energy levels of
the charged particle.

It may be asked in what respect this lower-energy electron at rest would
look different from the electron at rest at r — oo. The answer is probably
that it has a polarized charge distribution, analogous to the way a dielectric
solid lowers its energy within an external electric field. The electron may
contain only charges of one sign, such that it would have to be the shape of
the charge distribution that has to be changed, but this level of speculations
is unnecessary; it suffices to know that the rest energy is now m.c? =
moc® + qV < moc?.

e Combining the two ideas. The problem in a potential is now that the
relation between E, cp, and moc? used to define the Lorentz transformation
will no longer correctly determine the parameters v and 3, because E and
cp are no longer purely kinetic. However, it is possible to maintain the
correct relation between the parameters by Lorentz transforming m.c? =
moc® 4+ qV. Under a Lorentz transformation, both m.c? and ¢V will be
transformed, while mgc? is a constant of nature. The total energy m..c?
will transform to the four-vector (E, cp), and the static Coulomb potential
will transform to the four-potential (¢V,¢A). Putting the quantities that
transform on one side of the equation and the quantities that are constants
on the other, it becomes thus:

> epp — a A", (5.69)

o

which will be the four-vector that is the correct Lorentz transformation of
moc?y . In order to correctly describe the Lorentz transformation it is thus
necessary to make the substitutions £ — E — ¢V, cp — ¢p — qA. Further-
more, from classical mechanics it is known that this scheme works perfectly
to calculate the dynamics of a charged particle within an electromagnetic
field, such that the same conclusion is reached in two different ways.

In free space, (E, cp) transform the same way as (%, V). In the free-
space Dirac equation, Z# YOy = %t% + V .« is the correct Lorentz
transformation of %t%, and from this it can be inferred that u epy
is the correct Lorentz transformation of mgc?y ¢, or vice versa. This idea
can now also be applied the other way around to derive from the rules
E — E—qV, cp — cp — ¢A the substitution needed for the four-gradient
such as to obtain its correct Lorentz-transformed expression in the presence
of a potential. In fact, the whole derivation of the Dirac equation in this
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book has been made within a classical framework (see for example the
conclusion in Section 5.2). There is no reason to doubt the validity of the
classical rules £ — E — ¢V, ¢cp — ¢p — qA within this framework. This
justifies the minimal substitution, at least partly.

e The magnetic field. We must insist on the qualifier “partly”. It has not
been possible, for example to justify it for the case V =0, A # 0, where
in the rest frame there is no electric field and only a non-zero magnetic
field. Such a frame cannot be obtained by covariance from a frame where
V #0 & A = 0. Our demonstration is thus not complete. However, as the
context wherein the Dirac equation has been derived is entirely classical,
one can invoke the argument that the rule has already been established to
be generally valid within classical mechanics. But the arguments can also
be improved with the approach described here. In fact, the objection about
the failure of covariance is misleading as every magnetic field is produced by
a moving charge. In the case V =0 & A # 0, in reality (V, A) = (Vi, A1)+
(Va, Ag), where (V1, A1) is the four-potential of the moving electrons within
the atoms and (V2, As) is the four-potential of the nuclei of the atoms which
are at rest, such that As = 0. The electric field V; of the moving electrons
is thus compensated by the electric field of the nuclei at rest. This partly
resolves the problem, however it must be noted that certain magnetic fields
are not attributed to the orbital motion of the electrons but to their spin.
With respect to this point, it could be argued that the rule is expected only
to depend on A, not on the mechanism responsible for A.

o Minimal coupling. The substitution is called minimal because the
coupling introduced is minimal, considering that the electron only inter-
acts with the electromagnetic field as a point charge, and neglecting its
spin and current. It has not been taken into account that it could have a
magnetic dipole moment related to its spin that could couple to a magnetic
field. Nor has it been discussed that such a moving magnetic dipole could
give rise to an electric dipole, or that the electron could possess higher-order
multipole moments.

e Change in the meaning of the partial derivatives. The aim of the min-
imal substitution is to obtain the kinetic part (Egin, CPrin) of the energy-
momentum four-vector (E, cp), because it is the kinetic part that can be
used to write the instantaneous Lorentz transformation. What is needed
are the instantaneous boost parameters. These are instantaneous, local
numerical values and it is irrelevant how they are related to the values
(E(r,t),cp(r,t)) of these parameters in other points (r,t¢) of space-time.
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This is the reason why the partial derivatives should be defined in a way
that does not consider the functional dependence (E(r,t),cp(r,t)). This is
different from the true definition, which was just based on the fact that v
is a function of four arguments, 1 € F(R*, C). With the pristine definition
it was thus conceivable that the partial derivatives of (E(r,t),cp(r,t)) had
to be drawn into the calculations, but this is here definitely no longer the
case. This is the change of definition of the partial derivatives anticipated
in Subsection 3.10.5.5.

e The laboratory frame. In reality, the term “lab frame” that has been
used here regularly, is not exactly the lab frame, but the frame of the
nucleus. In fact, the minimal substitution for the case A # 0 can only
be correct in the frame of the nucleus, as this is the only frame wherein
the electromagnetic potential can be constant and attributed the values
given in these calculations. The frame of the nucleus is not the lab frame.
The frame of the nucleus is the only one wherein the potential is the same
before and after the radiative process, provided that the transitions do not
affect the internal state of the nucleus, which is fortunately the case. The
frame of the nucleus may itself recoil a little, it may also jiggle due to the
electron motion. But this will be ignored in the calculations undertaken in
this book by considering the nucleus so heavy that one can overlook the
fact that the rest frame of the nucleus, wherein the potential of the nucleus
remains fixed, is not just a single fixed frame but a whole set of them with
different velocities at different times. This is, however, an approximation.

We can Lorentz-transform the Dirac rule, and in doing so see that it
automatically corrects for previous radiation effects. Following the classical
knowledge, the particle emits radiation all of the time. However, this may
be due to the fact that only three degrees of freedom are attributed to
the electron, viz. the translational ones. By adding the rotational degrees,
the necessity of radiation loss can be avoided. It is by taking care of the
parameter s that this can be achieved.

5.7 The g-factor of the electron

As many know, the Chinese expression for “crisis” consists of two
characters side by side. The first is the symbol for “danger”, the
second the symbol for “opportunity”.

— Al Gore
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The fact that the Dirac equation has now been derived from a set of well-
defined assumptions introduces a completely new situation in physics. The
better understanding of the Dirac equation can now be used as a bistoury
with which one can analyze the meaning of the calculations. The historical
situation was different. In a sense, Dirac’s equation had to be accepted as
God-given. Dirac just guessed his equation. The equation was then vali-
dated by comparing its predictions with the experimental results and it
passed the test with flying colours. It was therefore a phenomenal break-
through. But such an approach has also its limitations. With such an equa-
tion we are entitled to conjecture that the set of axioms that would be
necessary to derive it might contain a number of mystery axioms that man-
age to capture some physical truth that is beyond intuition in a miraculous
way. One could marvel at the magic. But in the new situation there is not
too much space for such beliefs as the equation has been derived classically.
The mystery resides in the non-classical solutions that are adopted for the
equation.

It may be pertinent to add here perhaps a remark on the magnetic
moment of the electron within the context of the textbook Dirac equation.
In the presence of an external magnetic field, one can consider the non-
relativistic limit of this Dirac equation, which results in a term that contains
152 [B- o] W.

As explained in Subsection 3.10.2, the term B- o is merely the coding of
a single vector, viz. the magnetic field B. In fact, within SU(2) c SL(2,C)
any vector a = (ag, ay, @) is just coded as a-o. The “vector” o that occurs
in this notation is only a useful convention introduced to write the three
Pauli matrices o, 0y,0, simultaneously in a more compact form. These
matrices do not correspond to vector components, but rather to vectors in
their own right. One can consider them as the codings for the three basis
vectors e, ey, and e, such that o corresponds to a notation for the full
basis. The term B - o is thus not a genuine scalar product between the
vector B and some hypothetical vector . The quantity %B - o can be
rewritten as —upo-B, where up is the Bohr magneton. It is then possible to
write upo = pho = (2;;)%03 where p = 27200 is the classical gyromagnetic
ratio.3!

A very inconvenient truth must now be addressed, viz. that Dirac very
unfortunately got lost in Galileo’s dark labyrinth when he misinterpreted

31Sometimes one encounters p = ﬁ rather than p = 27305. The factor % just repre-

sents the transition from electrostatic to electromagnetic units.
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the notation as a genuine scalar product, whereby the term S = %o- would
correspond to the electron spin. This is incorrect; being a vector in its own
right, the spin S = %s is coded as % s-o. The spin is thus proportional to
s-o, where s is the unit vector along the spin axis. As already stated, every
vector quantity a is coded as a-o in SU(2), and o here has nothing to do
with spin; there is no direction (of spin) inside o. In the term s-o, it is s
which codes the spin, not . The coding of the spin vector must correspond
to one matrix, not to three matrices o, oy, 0,. The triplet of matrices o
should be considered as the representation of a basis of three vectors e,
ey, e, for R3, rather than a single vector. As such it only serves to denote
a choice of reference frame. The term —ppo-B represents a vector, while
the energy term —u-B is a scalar. Hence, —upo-B can never be identified
with —2uS-B.

It is the notation a-o for the coding of the vector quantity a within
SU(2) that misleadingly looks like a scalar product between the vector a
and some vector o, which fooled Dirac into believing that B - 2%100' would
correspond to the coding of a scalar product that would be the quantum

mechanical counterpart of the classical quantity 2:1%65 - B. Through the

over-interpretation, QZZCB -0 can then be replaced by —2uS-B, such that
one has to postulate the existence of a g-factor g = 2 inside the “mag-
netic moment” —2uS. This fiddle factor ¢ = 2, is thus just a gimmick
that must be introduced to make sure that the calculations keep produc-
ing the correct results within the context of the wrong interpretation. It is
needed to compensate for the term % introduced by error to get %cr into
the equation. There is thus absolutely no real physics related to it. This
can be seen as a mystifying, ad hoc physical argument intended to explain
away the difficulties produced by the over-interpretation S = %a. The ad
hoc argument leaves the uneasy impression that there is something that
can never be understood, while there is in reality nothing to understand.
Despite the incorrect interpretation that is given here for the rules that
must be followed to carry out the calculations, the rules themselves are

correct.??

32 A very scary problem must now be evoked. The whole traditional theory for magnetism
in the solid state capitalizes on Dirac’s picture of a magnetic dipole moment associated
with the spin %s whereby B-o is loosely identified with B -s, and it does this with
satisfactory results. An attempt will be made to find a solution that restores that picture
in Chapter 9.
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There are two problems with the traditional treatment of the spin in a
magnetic field33:

e Within the context of the Dirac equation, the spin is described by an
equation wherein the spin is not allowed to move in the rest frame of
the electron, because it is assumed that s is constant in the Rodrigues
equation it all started from.

e In the derivation of the minimal substitution no allowance has been made
for some possible interaction between the magnetic field and the spin of
the electron by introducing a corresponding coupling term. The minimal
substitution only describes the coupling of the electromagnetic field to
the charge of the electron.

One may think then that it is possible to restore the picture and get a cou-
pling between the spin and the magnetic field by getting the spin into the equa-
tions using the Dirac-like equation (5.38) that contains the spin explicitly.3*

33Within the context of the traditional Dirac equation, the solution to the paradox
created by the fact that B-o # B - s will (within a non-relativistic context of SU(2)) come

in Section 9.6, where it will be shown that the term 22;70 B-.o contains two ingredients:

(1) The fact that it behaves as a vector forces us to align the spin %s with the mag-
netic field B to obtain a solution that is stationary with respect to the energy. The
equations show, in fact, that the wave function must be an eigenfunction of B-o in
order to be stationary with respect to the energy.

(2) The alignment condition is certainly a consequence of the way the equation is set
up. It is assumed that s does not vary with time in the rest frame of the electron.
If a stick is placed in a gravitational field, the only way to prevent its orientation
from being varied with time is to put it in perfectly vertical position. To find a more
general situation for the electron spin, both the possibility that s(7) varies with time
and a coupling term that will define how it will vary must be allowed for.

It is possible to reconstruct the unit vector s(7) along the spin axis from the wave
function. In a rest frame this unit vector calculated from the wave function and the wave
function itself are related through [s(7)-0 ] = v, such that we must have s(7) || B. As
it is assumed that B = Be., this proves at once that we must have s(7) = e, to obtain
a state that is stationary with respect to the energy.
34Tt would be possible to modify the Dirac-like equation (5.38), knowing now exactly
what we are doing. Both the Dirac equation and the Dirac-like equation are set up to
yield states that are stationary with respect to the energy and they only describe such
states. If s || B must be true to obtain a stationary state, then a state with s | B cannot
be entered meaningfully into the equations, as the equations are only correct for the
stationary case s || B. It is thus necessary to set up a new equation that allows for s to
change with time in the frame of the electron and for a coupling between the magnetic
field B and s(t). But it would be impossible to guess the magnitude of this coupling.
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But as will be discovered in Subsection 9.2.1, the main term in the new
equation will still be the term thqOB'O'.SS

5.8 More over-interpretations in traditional
quantum mechanics

The same mistake of over-interpreting o as the unit vector along the spin
axis arises when one interprets L-o as a “spin-orbit coupling”, rather than
just the coding of the vector quantity L. This “spin-orbit” coupling has
nothing to do with coupling between orbital motion and spin, even if such
a coupling is a physically plausible effect. The misinterpretation of %cr as
a spin operator will be discussed in Subsection 9.2.2.

Another misinterpretation of the same type occurs in particle physics
with the definition of the “helicity” u-o, where u = p/|p|. Again, this is
just the transcription of the unit vector u in the language of SU(2), not
the projection of the spin on the direction of motion. This matter of pure
notation cannot be used to claim that the spin should be parallel with the
direction of motion, nor that the difference between chirality and helicity
would be a subtle issue. The notation says nothing more than that p is a
vector. Moreover, introducing u is not Lorentz covariant as p is part of a
four-vector rather than a Fuclidean vector.

Finally, the incorrect interpretation of o also leads to the erroneous idea
that the various components of the spin cannot exist or not be measured

A

35As the term <L B-.o forces the spin to be aligned with the magnetic field, it is impos-

2m
sible to check the veracity of the “potential-energy” term —gu-B. The interpretation of
2’2:110 B = QTZ‘]CS - B is thus not a strict logical necessity. It could be argued that every-

thing just works as though some magnetic dipole moment is associated with the spin,
and that the picture of a magnetic dipole moment can therefore be preserved as it is
compatible with the experimental results. But the pictorial interpretation raises the very
difficult question how it is possible that the calculations treat the corresponding physics
correctly, while it is impossible to spot any underlying assumptions in the derivation
of the equations that could be responsible for the success of the calculations. First of
all, the minimal substitution does not introduce a coupling term between a hypothetical
magnetic dipole moment and the magnetic field. Secondly, it could be imagined that the
hypothetical magnetic dipole moment of the electron is due to internal current loops, but
no information about such currents has been introduced into the equations. According to
Lorentz, such a mechanism can never explain the magnitude of the anomalous Zeeman
effect observed. One is forced to conclude that the term B-o only describes a coupling
between the charge of the electron and the magnetic field, as this is all the minimal coup-
ling can introduce. This is also confirmed by the derivation of the anomalous Zeeman
term ¢gB-o and the spin-orbit coupling term (g¢/c)(v A E)-o in (C.24) which does not
rely on any notion of spin or quantum mechanics and only couples the charge-current
four-vector to the electromagnetic-field tensor. This remark may even apply to the result
from quantum electrodynamics.
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simultaneously, because the operators do not commute. The operator S, =
%az does not express the z-component of the spin, but the spin when it is
aligned along the z-axis, as the general expression % [s-0] clearly shows,
by putting s = e,. The z- and y-components of s-o are then just zero. All
that [S.,S,] # 0 expresses is a tautology: when the spin is aligned with
e, then it cannot be aligned with e,, and vice versa. From what has been
explained in Chapter 3, it is easy to see that 02 +0z+02 = (0, +0y+0.)* =
[(1,1,1)-0]? = 31 just expresses (e, + e, + e.)? = 3. The square of the
unit vector s is obtained from the algebra: [s-0']?> = s2 1 = 1. Both sides in
these two equations can now be multiplied by %2 to show that the square
of the length of the spin vector gs is h?/4 rather than 3A%/4, as claimed in
textbooks, based on the incorrect interpretation of the algebra.

5.9 Conclusion

The results obtained up to now form a solid basis for further exploring quan-
tum mechanics. The master equations have been derived, it is known exactly
what they mean and there is nothing counter-intuitive about them. There
is evidence enough that the approach is reliable and innovating. Very obvi-
ously it could never have been successful without the constant concern of
being meticulous about the mathematics. To dilineate the frontier between
classical mechanics and quantum mechanics it is vital to continue working
classically in the further development and act as though the task were to
prove that quantum mechanics is just a part of the theory of relativity.
It must thus be avoided at all price to introduce special new assumptions
just to make it easier to obtain the proofs. The aim of this working philos-
ophy is to spot the counter-intuitive physical effects that cannot possibly
be explained without introducing special non-classical assumptions. These
special assumptions will then really be axioms of quantum mechanics. More-
over, working with classical ideas has the advantage that it does not require
the genius intuition of a “quantum mechanic”.

5.10 Complementary remarks on mathematics

5.10.1 Relation with the Lie algebra
5.10.1.1 Operators

It has been possible to introduce mgc?t = Et — p-r as a phase of a
spinor quantity v that looks like a wave. It is based on this fact that one
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traditionally introduces the operators B = E and p = hV for energy
and momentum.3® The Schrédinger equation is often “derived” by intro-
ducing such operators and requiring that an equation for the conservation
of energy must result. Analogously, the Dirac equation is “traditionally”
derived starting from ) ~*cp, with the condition that squaring it must
lead to E? — ¢2p? = (moc?)?. But in this kind of derivation, it is not clear
why operators should be introduced in the first place, and also why the
operator corresponding to the potential energy in the Schréodinger equation
is just a multiplication with V. The development requires the introduction
of the notion that there is a wave associated with a particle, and one must
explain why this wave is travelling faster than light.

The derivation of the Dirac equation based on the Rodrigues formula
and %t% = Zwu% comes about naturally while trying to express that
the electron is spinning. It is less puzzling than the traditional derivations
and gives meaning to them. The problem of the superluminal velocities
will receive a much simpler solution. We can appreciate that our derivation
improves our understanding of the traditional “derivations”. It provides so
to say a missing link. Taking the step from the derivation proposed in this
book with its introduction of the gamma matrices to Dirac’s postulate that
also introduces the gamma matrices just hinges on the fact that the energy-
momentum four-vector (E,cp) and the four-gradient (6ct7V) transform
the same way under Lorentz transformatlons because they are both four-
vectors. The traditional substitutions E = —2 2 and pP= hV allow then a
return to the original result.?”

As by this an operator formalism is introduced, it is now possible to con-
tinue the discussion of angular momentum started in Subsection 3.10.5. The

36The fact that the expression of E contains a mlnus sign Whlle the one for p does not

4 ; ; h d e
means that it is possible to write —2yet 7~ = —%t Bor — 771 67 — 7%‘ % — 772 87 as

—%'yct d(clT = > ~v"Ppu. Note that both v* and ~,, satisfy all the commutation relations
that define the gamma matrices. Therefore, a confusion between them does not lead to
equations that are a priori incorrect when one considers them out of context, because it
simply corresponds to a different choice for the gamma matrices. But within a context
it jeopardizes the overall consistency. Finally, it may be noted that the Dirac equation
is historically derived from (3" v,cpun)? = (moc?)?1, (i.e. with opposite conventions for
~# and v, to those described here, as noted in Footnote 7), which is why we have put
“traditionally” between quotes in the main text.

37The different signs in the operators — 2 2 and W come from the fact that these four-
gradient operators belong to a left-handed representation in the equatlons ‘We must work
on the right-handed spinor ¥ with the left-handed four-gradient —]1 V . o. The best
way to see this is perhaps by inspection of (5.38).
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operator formalism makes it possible to redefine the general mathematical
operators I:u in terms of the more specific angular-momentum operators.
The relationship between spin and angular momentum can now also be
discussed.

In SU(2), there is the particularity that the role of the operator %az
can also be fulfilled by the operator Lo, = z(xa% — y%)az working on
the spinor. This is generally true for the spinor [£,&;]T as a function of
(x,y,2) € C3. We must then express (£, &1) in terms of (x,y, 2) according
to (3.11)(3.13). Operating with Lo on [¢,&;]T we obtain the same result
as with %crz [€0,&1]T. The differentiation calculus remains the same when
(x,y, ) are restricted to R3.

But in considering (z,y, z) € R?, an alternative derivation can be used,
based on the fact that L. reduces to 23—% when spherical coordinates (r, 0, ¢)
are introduced for (z,y,z). Even more derivations become possible when
the spinor corresponds to a rotation around the z-as, such that its &;-
component is zero. Introducing spherical coordinates (7,0, ¢), the spinor
will then be [e*“b/ 2 0]T. Using the Rodrigues formula with rotation angle
¢ and axis n = e,, this will become [e=**/2,0]", such that ¢ = ¢. Then
L.o., 2%02, 2%0z7 and %az can be used on the spinor [e=**/2,0]T, and
with all the different forms the same result will be obtained, whereby the
spinor turns out to be an eigenvector. The other eigenvector is the conjugate
spinor [£1, —&o] 7.

There is thus no real need to introduce a different operator for spin
and angular momentum.?® It can be seen from the form %az = %ez-a
that (04,0y,0.) are a basis for the spin operators %s-a. The physically
meaningful choice is s = €/,. The Pauli matrices fulfill thus exactly the
same role in SU(2) as e, e,, e, in R3.

The Pauli matrices are reflection operators. The three fundamental spin
operators o, 0y, 0, are thus reflection operators. The Pauli matrices consti-
tute a canonical basis for the general reflection operators e’,-o. The reflec-
tions are the generators of the rotation group, which is true in general.

The infinitesimal generators I:# of the Lie algebra satisfy commutation
relations that are similar to those for the matrices %a#; they are thus very
similar to the reflection operators in the representation theory of SU(2).

38This will be the key to Dirac’s statement that it is necessary to use an operator
J=L+ 50 in the hydrogen atom. (Here, the pre-factor A is ignored in the operators.)
In reality, apart from the fact that they are both wrongly coded, L and %6’ are the same
operators.
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They are, however, not true reflection operators as in general they do not
square to the identity operator (due to the presence of a factor 2). It will now
be discussed how the differential form of the Rodrigues formula looks like
an operational definition of an infinitesimal generator of the Lie algebra.

5.10.1.2 Lie algebras

The term “infinitesimal generator” within the Lie algebra is somewhat
unfortunate, as it is not infinitesimal. It is also in general not a generator
of the group in the way the Pauli matrices can be considered as generators
for the rotation group. In the rotation group, the Pauli matrices can be
used to define reflection operators that generate the group of rotations and
reversals. The best way to understand conceptually what the “infinitesimal
generators” are about is to illustrate it on the homogeneous Lorentz group.
The Lie group operates on the four-dimensional four-vectors of Minkowski
space-time R* which is a vector space (with a metric). The Lie group of the
homogeneous Lorentz transformations itself is a six-dimensional manifold.
However, the playground of the Lie algebra is yet another mathematical
space: the six-dimensional tangent space RS to the six-dimensional manifold
at the identity element. The choice of the identity element is arbitrary, but
it has the advantage that it makes the expressions simpler.

Finding the “infinitesimal generators” consists only in choosing an
appropriate basis for this six-dimensional tangent space, which (in marked
contrast with the group manifold) is a true vector space. To find such a
basis it is not really necessary to introduce a number of well-chosen one-
parameter sets of infinitesimal group elements and deriving the tangent vec-
tors that correspond to them by a procedure of taking a Lie derivative. The
one-parameter sets are well chosen in the sense that they are “mutually”
orthogonal. One can choose any normalized orthogonal basis of the tangent
space right ahead. Any choice will do. It is for instance this approach that
is used in introducing the “infinitesimal operators” for SU(3). It is then not
immediately obvious how this can be related to the procedure based on Lie
derivatives. The number of “infinitesimal generators” will be the number
of independent parameters that are needed to specify the full Vielbein. In
SU(n), with its complex metric, this is n? — 1.

Textbook introductions to Lie algebras do not define explicitly what an
infinitesimal generator is. They proceed by giving examples for the simple
cases of the rotation group and the Lorentz group, from which the reader is
supposed to be able to pick up the idea. The approach consists in taking the
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Lie derivatives of well-selected one-parameter sets that lead to the correct
result. But it is not discussed how this selection of one-parameter sets has to
be performed. One may at that stage not feel the need for more clarification
as it all looks ever so easy. But in trying to work it out for a less obvious case
like SU(3) after finding a parameterization for it, it may not be obvious how
to express the one-parameter sets in terms of the parameters introduced.?®
The basic idea that one wishes to define a normalized orthogonal basis for
tangent space is needed to understand how one can make a proper selection
of one-parameter sets. One also needs a definition of this orthogonality. The
only valid definition is the one given above: the infinitesimal generators are
a normalized orthogonal basis for the tangent space at the identity element.

In other words, the one-parameter sets have to be chosen in such a
way that they define the proper complete normalized orthogonal basis for
tangent space evoked in the definition. Moreover, the orthogonality of the
six basis vectors is not an orthogonality in space-time but one in a six-
dimensional space of matrices that belong to the linear group L(4,C).
The reader is invited to consider a trivial basis of matrices e;r, with
(4,k) € ([1,n] N N)? for the n?-dimensional vector space L(n,C), defined
by (€jk)em = 9;edkm and to verify that:

n n
<AB>=>"%ajby =Tr(A'B) (5.70)
j=1k=1

defines a scalar product for two vectors A € L(n,C) and B € L(n,C). Here
the “vectors” A and B are actually complex n x n matrices. When the
matrices are real, one can replace AT by AT. It is with respect to this scalar

product that the orthogonality of the basis of tangent space is defined.
Here again the exception that the dimensions of the vector space R? and
of the manifold SU(2) are the same for the group of the rotations in R? can
be a source of confusion, leading to the misconception that generators and
infinitesimal generators would always coincide. The Pauli matrices can be
considered as a basis for the reflection operators that generate the rotation

39With certain parameterizations of the manifold it can become very difficult to express
the choices to be made in terms of special combinations of the given parameters. The
parameter sets correspond to curvilinear coordinates that may contain singularities. It
is tempting to take the coordinate lines as the one-parameter sets for which one could
calculate the tangent vectors by taking the Lie derivatives. But the coordinate lines are
not necessarily all mutually orthogonal, and the system of curvilinear coordinates may
even have a singularity at the identity element, just as spherical coordinates for a sphere
present singularities at the poles of the sphere. This results in confusion, because we do
not find a complete basis.
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group. In this sense, the Pauli matrices are a vector basis for the true
generators of the rotation group. They can also be considered as a basis for
the infinitesimal generators of the rotation group. In the rotation group the
two concepts coincide, but not in the Lorentz group. The fact that both
concepts go by the name “generator” can then only amplify the confusion.

When we generalize towards the Lorentz group, the resulting vector
space R* is four-dimensional while the resulting manifold SL(2,C) is six-
dimensional. The reflection operators are defined by unit vectors that are
normal to the reflection planes. When the Pauli matrices are considered as
a vector basis for the reflection operators that generate the rotation group,
it can thus be expected that their generalization will be a set of four Dirac
gamma matrices that will play the role of a vector basis for the reflection
operators of space-time that generate the Lorentz group. This is of course
because space-time R* is four-dimensional. But when the Pauli matrices are
considered as a vector basis for the infinitesimal generators of the rotation
group, then in the generalization we will need a set of six matrices, as the
manifold is six-dimensional.

Based on the way the Pauli matrices can be obtained as infinitesi-
mal generators for the rotation group by expressing that they are the
true generators defined by a rule of the type 0,0, + 0,0, = 24,1, one
could expect that the infinitesimal generators of the Lorentz group could
be orthogonal with respect to a rule of the type v,v, + vy, = 2k 1,
with |k,,| = 1. In reality, this expresses orthogonality of vectors of R*
when we take k,, = gu.. One can perhaps discover rather quickly that
it is impossible to find the infinitesimal generators by the Dirac trick, as
the Dirac representation contains only five gamma-matrices 7, that satisfy
Yu Yo + VoY = 2k, 1, while a six-dimensional basis is needed here.

What is needed is not to have an orthogonality of vectors in the vector
space R* on which the transformation matrices are working, but an orthog-
onality of the transformation matrices themselves in their own vector space.
This vector space is a subspace of SL(4,C), and has a different scalar prod-
uct than the vector space R*. There are thus two types of scalar products
for the 4 x 4 matrices that may occur in the Dirac representation: one for
four-vectors of space-time that can be coded by 4 x 4 matrices, and one for
Lorentz transformations of the group manifold that can also be coded by
4 x 4 matrices. The two scalar products are different. The scalar product
that can be used for the infinitesimal generators is defined in (5.70).

The infinitesimal generators of the Lorentz group are all mutually
orthogonal with respect to that scalar product in their six-dimensional
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vector space of matrices. The orthogonality in R® of the infinitesimal
generators of the Lorentz group is based on the definition of (5.70) for
the 4 x 4 matrices. Similarly, the infinitesimal generators of SU(3) are all
mutually orthogonal, not in C3, but in SL(3,C) according to (5.70). It is
for this reason that they do not look orthogonal with respect to a rule of
the type 7,7 + %Y = 20, 1.

The discussion which shows that we must use different scalar products
for the vector space and for the manifold clearly illustrates the difference
between “generators” and “infinitesimal generators”. The six-dimensional
“infinitesimal generators” that build the required normalized orthogonal
basis for the Lie algebra are not the “generators” of the group in the
sense that they could serve as a basis for reflection operators that gen-
erate the group. The true generators of the Lorentz group that gener-
alize the idea of the Pauli matrices in the form of reflection operators
are defined by a normalized four-dimensional four-vector of Minkowski
space-time.

5.10.1.3  The differential form of the Rodrigues formula
as an operational definition
of the infinitesimal generators

This chapter began with a derivation of the Rodrigues formula:

% = —% [n-o]. (5.71)
From this it can be appreciated that up to some factors, this corresponds
just to defining an infinitesimal generator. By choosing n = e,, n = e,,
n = e,, this leads (after normalization) to a proper basis of infinitesimal
generators 0,0y, 0,. As for e,, the operator % can be linked to xa% —yaa—m;
the angular momentum operators can be shown to correspond to generators
of the Lie algebra, according to the description given to derive the expres-
sions for the generators. This prescription starts, however, from infinitesimal
rotations, such that at first sight it may look confusing that they seem to
correspond to reflection operators (when one restricts them to SU(2)).
The infinitesimal rotation is not a reflection operator because there is
a factor ¢ that intervenes in the definition of an infinitesimal generator. As
already stated, the identity of the operators L.o. and %az only holds in
SU(2).
The angular-momentum operators can also be used in higher-degree
representations based on spherical harmonics obtained from the spinors by
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tensor products. Eventually, in such representations, the angular momen-
tum states will also be described in terms of two variables (the spherical
coordinates (6, ¢) rather than three.

Just as in the case of SU(2), the angular-momentum operators L.os,
£y0y7 L.o,, fulfill the role of a basis, for general angular-momentum
operators with an axis s = e,. The corresponding operator will be
smﬁm% + syﬂyay +sZI:Zaz. In spherical coordinates, these operators project
out the degree 1/2 in e from the expression [£y,&;]T. In higher-order
representations they therefore also project the degrees of the polynomials,
because these polynomials are obtained from tensor products of the spinors.
As already suggested in Subsection 3.10.5.5, the concept of degree operator
is more fundamental than the concept of angular momentum. This will be
discussed in more detail in Chapter 6 and in Chapter 12.

It is easy to check from a Taylor expansion of the Rodrigues formula
cos(p/2)1 —usin(p/2)n- o for small values of ¢, that an infinitesimal rota-
tion has the form 1 —3 ¢ n-o. From this it is obvious that in order to recover
the generator %n-a from this infinitesimal rotation, it is necessary to drop
the unit matrix, multiply by + and then take the factor that goes with .
But this prescription is exactly the definition of how to obtain a generator in
general for the Lie algebra. The operations involved in the whole procedure
in the case n = e, can be expressed as z%, which is nothing else than ﬂz.40

5.10.1.4  Transporting vectors

Introducing a differential form of the Rodrigues formula is thus similar to
introducing the Lie algebra. But it was important to render this differen-
tial equation Lorentz covariant. In fact, taking the Lie derivatives at the
identity element may simplify the expressions so much that it conceals the
true symmetry. To clearly display the full symmetry it is therefore useful
to write the equations in their most general covariant form. In a sense,
this permits co-transportation of vectors of space-time when moving on
the manifold. This procedure could perhaps be considered as mimicking

40Note that while an isotropic vector is used to code a rotation within SU(2), the matrix
representation of the isotropic vector is not a rotation matrix. This is obvious from the
fact that their determinants are different and it is due to the re-normalization procedure
that is needed to make the transition from an isotropic vector to a spinor. The procedure
of subtracting the unit matrix in the derivation of the expressions for the generators
of the Lie group has therefore no relationship with what occurs in the isomorphism
1+e,0<—e,o.
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the concept of parallel transport on a manifold. But as already identified,
we lift a degeneracy in the dimensions that exists in the rotation group
when we go to the Lorentz group. In the Lorentz group the dimension of
tangent space is six while the dimension of space-time is four. The real
case of parallel transport on the Lorentz group manifold would thus be one
from six-dimensional tangent space to six-dimensional tangent space. But
when covariance of spin is required, we are transporting four-dimensional
vectors. (To also incorporate the vectors of R* into the tangent space of
the Lie group, it may be necessary to use the Poincaré group rather than
the homogeneous Lorentz group. This may then serve to explain why the
vectors of R?* also transform by similarity transformations. These are points
not yet studied and must therefore be considered as guesses.)

It may be noted for fun that it is possible to render the differential form
of the Rodrigues formula £y = —1%2 [e, -0 | ¢ covariant within SL(2,C) by
considering e, as a locally simplified form of a complex quantity s € C? that
transforms under Lorentz transformations like an electromagnetic tensor
E + 2cB.*!' The special local value of e, for s is then a nice example of
a case where the simplification conceals the true symmetry of s € C3.
One can see this by just stipulating that s should transform according to:
s:0 — L[s-o]L7! rather than s:o — L[s-0]Lf.#? This demonstrates
that there is a lot of ambiguity in a Rodrigues formula with n = e,. In fact,
e, can be interpreted as n, as a special value of €, and even as a special

41The reason why the six-component quantity appears like a three-dimensional complex
vector from C3 can be traced back to the fact that the basis elements e, and e, ;3 of the
Lie algebra sl(2,C) are related by e, 13 = te;,. (See equation 17.16 of [Cornwell (1984)].)
42 Angular momentum can also be seen as a six-component real quantity (that can be
coded as a three-component complex quantity). In fact, by generalizing the vectors r
and p that occur within the matrix product [r-o][p-o] to four-vectors we obtain a
generalization of the concept of angular momentum. The algebra shows that the prod-
uct contains a scalar invariant (Et — p-r)l and a complex “vector” of C3. The real
part of this quantity corresponds to the angular momentum, such that the six real com-
ponents of the complex “vector” could be interpreted as a generalization of angular
momentum. Interpreting e. as the orientation of some angular momentum in R3, we
obtain then a six-component generalization of angular momentum, and the correspond-
ing real and imaginary components could give rise to the magnetic and induced electric
dipole moment of the electron. Note however, that we have not at all proved yet that
the six real components of angular momentum obtained this way transform according
to a rule s:e — L[s-a]L~1, where s is complex. This raises the question of whether
we have [r-o|[p-o] — L[r-o][p-o]L~!, which is not obvious. It can be proved by:
[r-o][p-oc] — L[ro]LILT=![p-e]L~!. From this it transpires that the alternative
ways to render the differential form of the Rodrigues formula covariant are full of non-
trivial technicalities.
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value of r A p/|r A p|. The interpretation in terms of n is not covariant,
but the other two interpretations can be rendered covariant. Here, the fact
that e, is a special value of €/, has served as a guiding principle. One of the
reasons for this was that it was not clear how the four-gradient d,, and the
four-potential A, could be generalized to some hypothetical six-dimensional
counterparts. With hindsight there is another reason: a six-parameter spin
would have to be block-diagonal in (5.38), while the four-gradient has a
block structure that is off-diagonal. The block-structures simply do not fit
into the same equation.

5.10.1.5 Bilinear covariants

The relationship between angular momentum and spin can be understood
by considering what the possible bilinear covariants of the Lorentz group
are. In R? the vectors constitute by definition a three-dimensional vector
space. These vectors are associated with reflection operators that generate
the rotation group. It can be asked if there exist representations that are
rank-0 in the vectors (these are the scalars), rank-1 (the vectors), rank-2
(the bi-vectors), and rank-3 (the tri-vectors). The number of basis vectors
in these representations are given by the binomial formula 1, 3, 3, 1, because
these numbers correspond to the ways we can choose zero, one, two, and
three different vectors in the set of three basis vectors. The rotations are
obtained as a product of two reflections. The reflections are thus rank-1,
while the rotations are rank-2. But the vectors and the bi-vectors can at
first sight be confused as their representations have the same dimensions.
In reality, they are different as the vector changes sign under a parity trans-
formation, while the bi-vector does not. For the same reason, a tri-vector is
not identical to a scalar as it changes sign under a parity transformation.
This can be seen at work algebraically in (5.1). In [a-o][bo] =
(Zj a;0;) (Z] brog) = ij a;biojoy, there are contributions where j =
k. We will have then o;0;, = 1, and this leads to the scalar contribution
a - bl. In this expression the unit vectors e; coded by o; have disappeared
because o; has cancelled with another o;. It is therefore an expression with
zero vectors. In the other terms, o;0; can be rewritten in terms of oy:
020y = 10, (cycl.). Doing this yields the bi-vector aAb. Thus, the bi-vector
is of the type >, ;. ¢jkojox (with an additional factor ¢). It is an expression
based on all combinations e;je; with two vectors, but due to the relations
020y =10 (cycl.) it can be written as a linear combination of the vectors.
The tri-vectors will be expressions of the type > ikl CiklOjOkOL- There
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will be only one such term. It is a pseudo-scalar because it changes sign
under a parity transformation. There are no other quantities, as adding
one more Pauli matrix to a product of three will lead to a simplification.

In R*, the numbers in the binomial formula are 1, 4, 6, 4, and 1, such
that rank-1 and rank-2 representations no longer have the same compo-
nents. They are four- and six-dimensional respectively. We have scalars, vec-
tors Zj ¢;7;, tensors Z#k CjkYiYk, tri-vectors Zﬁék## Ciki7 Yk, and
pseudo-scalars cp1237071723- As in the Weyl representation, the gamma
matrices have their non-zero blocks all off-diagonal, products of two gamma
matrices will be all block-diagonal, such that they cannot be expressed as
linear combinations of vy,. The combinations ej;ey, or v;v, with j # &, can
thus be considered as an additional set of basis vectors, with matrix repre-
sentation o, = 7,V It is possible to express the products of three different
gamma matrices as products of two gamma matrices by using the identity
Y5 = Yoy17Y27Y3 to simplify the equations. This way the possible expressions
are all of the form I' = Zaﬁ CaBYa?Y8, Where both o and 3 can run from 0
to 3, keep a constant value (e.g. @ = 5), or can be totally absent.

All possible bilinear covariants of the Lorentz group can then be created
by building expressions of the type 1, ', where ¥, = Ty and vy, 1o are
one-column 4 x 1 matrices. The transformation properties of the expressions
can be checked in Table 5.3.

In some of the expressions a factor » appears as for aAb in SU(2). They
can be multiplied with 2 to obtain expressions that are all real. To be sure of
obtaining a real expression for rank 0, we take 1)1 = )3 = ¥. To understand
the choice of the expression 1), ' as the starting point, it is necessary to
check the result of the operation ¥ — (y¥)f = Ty that consists in
multiplying by o and taking the Hermitian conjugate on the matrix ¥ in
(5.52). It can be seen then that (voW¥)" = (L~'; L) transforms with INfl7

which is a feature needed for the covariance. From the discussion of (5.58)
it is known that it is physically meaningful to take one-column quantities
in the expressions.

Subsection 5.5.2.2 showed that in space-time the spin corresponds to a
four-component axial vector. The angular-momentum bi-vector becomes
a six-component anti-symmetric tensor. Axial vectors (i.e. spin) and
bi-vectors (corresponding to generalized angular momentum) have then no
longer the same numbers of components as in R3. Relativistic spin and rela-
tivistic angular momentum can thus not be added as claimed in the solution
of the Dirac equation for the hydrogen problem by postulating J=S+L.
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Both spin and angular momentum cannot be three-component quantities,
as is assumed in the solution of the Dirac equation, since there are no three-
component bilinear covariants in the Lorentz group. This shows that the
corresponding operators that occur in the algebra will have to be inter-
preted differently in terms of parameters that define features (such as the
dimension) of the representations chosen.

Parity transformations r — —r have been used in R? to distinguish
between vectors and axial vectors or between scalars and pseudo-scalars.
Transformations of the type r — —r in R* are not able to distinguish
between vectors and axial vectors or between scalars and pseudo-scalars.
Another criterion is needed.

5.10.1.6  General angular momentum

Within higher-dimensional representations of the rotation group J. x %
can be considered as an operator for the number ¢ — k, where k counts
the number of single spin reflections T—| that are present in a polynomial
20— 1Y according to the schema of Table 5.4.

Starting from ¢2¢, the polynomial ¢2°7%¢F is obtained by k flips. In
the schema each symbol K stands for a combination | that annihilate
each other (according to —2&&; = z which reduces to e'?/2e=*¢/2 = 1
when 6 = 7/2). Thus, ¢ — k corresponds then to the remaining spin within
77+ T XK. K. As in SU(2) (where ¢ = 1), the remaining spin ¢ — k can
only be 1 (1) or —1 (]), it can be understood why (apart from the constant

2
h) L. coincides with 3o, within SU(2).



Chapter 6

Towards a Better Understanding
of Quantum Mechanics

6.1 The phase velocity of the de Broglie wave

In the very beginning of wave mechanics it was noted that the phase velocity
of a de Broglie wave is larger than c¢. When the electron in its rest frame is
pictured as a spinning top, then it can be considered both as a gyroscope
and as a watch. The gyroscope comparison is obvious: the spin axis of the
gyroscope is the spin axis of the electron. The watch comparison is also
valid as the rotation angle ¢ = wy7 is a measure for the total time 7 that
has elapsed starting from the reference time 7 = 0. The time can then
be measured by counting the number of turns the top has made around
its rotation axis. This number of turns can be taken as a non-integer, real
number wo7/27 and is, allowing for the conversion factor wg /27, a measure
for the time. The electron clock works in this sense in a way that is perfectly
analogous to the functioning of a regular clock. The rotation angle ¢ = woT
around the spin axis corresponds to twice the phase (/2 of the wave function
as e.g. discussed in Section 3.8, and as transpires e.g. from (5.5). (See also
(6.1) below.) The Dirac equation describes the time on this clock in the
rest frame.

Note that when this equation was set up in the rest frame, for example
in (5.26), the position of the particle was not specified. This is because
in daily life we take it for granted that all clocks in different places are
synchronized, such that the influence of the position of a clock on its reading
is not an issue. The assumed synchronization of the clocks in different places
r; and ro must follow the Einstein synchronization procedure, by sending
light signals to and fro between observers in ry and ry. If we wanted to
synchronize clocks in ry and ra by a one-way signal, then this signal would

199
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have to travel at infinite speed. This is of course impossible and is the reason
why it is necessary to use the Einstein synchronization procedure.

Due to the prior synchronization, the phases of the spinors ¢(r;, 7) in
different places r; are the same. The hypothetical one-way synchronization
wave from ry to ro thus ensures that the phases in r; and ry are the same,
such that there is no need to enter r in the expressions. This will change
in a frame wherein the electron is moving. The time part of the Lorentz
transformation 7 = y(t — v - r/c?) requires the information about the posi-
tion r, because the clock readings ¢ will now depend on the position r. In a
frame wherein the electron appears to be moving, the clocks are no longer
synchronized the same way as in the rest frame of the electron.

For an electron spinning around the z-axis we have in the rest frame:

e—inT/Q 0
R(T) = < 0 e+1wgr/2)7

to(r) = R() ((1)) _ nr2 ((1))

After a general Lorentz transformation L of ¥(rg, 7) for an arbitrary point
ro in the rest frame of the electron, we will obtain for a frame wherein the

(6.1)

electron appears to be moving:

a b\ [ewoT/2 0
\I/(I‘,t) = LR(I‘(),T) = (C d) < 0 e+zwor/2>

ae—iwo‘r/Q be—'r’Lu.)[)T/Q
ce—inT/Q de+1wor/2 ’

C

Y(r,t) = e"woT/2 (a).

The same notations as in (4.9) have been adopted here. Here (r,t) is the
Lorentz-transformed value of (rg, 7). This shows that the spinor continues
to contain a single frequency. The spin vector corresponding to R in the
rest frame is Sg = e,-0 = o, such that —S§ = So = o,. The Lorentz
transformation will transform —S¢ into:

dd* — cc*  —bd* + ac*)

_S* — LT*]- szl _
7 (—bd* +a*c  bb* —aa”

(6.3)
Rotations and boosts in the Ozy plane leave e, invariant, such that
—S* = 0, and S = o, will remain true. As for these boosts ¢ # 0, (6.2)
shows that the spinor ¥(r,t) will now no longer be an eigenvector of the
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spin matrices S and —S*. This may look paradoxical, but is due to an
inherent weakness of the SL(2,C) representation: it is not able to account
properly for space-time reflections, because there are not enough 2 x 2
matrices to satisfy the conditions v,v, + 77, = 2941, and is therefore
not able to express spin operators correctly. This is exactly what we dis-
cussed from Subsection 5.4.4.1 onwards. One needs the four-dimensional
Dirac representation in order to be able to treat all space-time reflec-
tions correctly. The paradox that ¥(r,t) seems no longer to be an eigen-
vector of its spin vector in the representation SL(2,C) is therefore solved
by lifting the calculations to the four-dimensional representation and con-
structing W(r,t) from W(r,t) and Y*(r,t) = —S* ¥(r,t) as explained in
Subsection 5.5.3.

What these considerations show is that the components of the spinor ¢
always have a common phase ’(L(T) = ¢~™07/2 Tt can therefore be called
the phase of the wave function. After a boost with velocity parameter

—woT/2 can be rewritten

v = vu, where u = v/v, the invariant scalar e
as e '3 (=°F) by applying wo = w/y and 7 = (t — ¥F). As explained
in the derivation of (5.68), the latter can be transformed into e~ *(Et—Pr)/n
by using the substitution Awy = 2mgc? (or hw = 2mc?) introduced in
Subsection 5.1.3. The phase of the wave function thus corresponds to
the phase of the de Broglie wave. This phase can also be rewritten as
O(r,t) = e w07/2 = = F(t=vr/*) Thig describes only the clock read-
ings of the electron in a frame where the electron is moving.

Let us nevertheless try to interpret {b( t) as a wave travelhng in space.
For this purpose ¥(r,t) can be rewritten as t(r,t) = etV v-r-wi)/e’
where w = —u By putting Awy = 2moc? as in Subsection 5.1.3, we obtaln
then hy=2 v/ ¢® = p. Introducing a second substitution p = ik we obtain
O(r,t) = e“‘ (r=wt) We have this way reproduced de Broglie’s derivation
that relates wt — k- r to Et — p - r by using his substitutions £ = hw and
p = Ak. It can then be said that z];(r, t) describes a matter wave travelling
in space with a phase velocity w and a wave vector k. The spinor field
W(r,t) = 1(0,0) e “Et=P1)/h ig also interpreted this way. This interpreta-
tion is summarized in Figure 6.1.

The electron spin is like a clock. The spinor 12} is thus describing the
proper time as read on this clock using variables of the lab frame. But the
formulation 121(1‘, t) = e (r=wt) Gyer-interprets the true meaning of 12} in a
weird way as a “matter wave” propagating in space. In the most elementary,
simplified form, this matter wave describes the probability density, which
is subject to a continuity equation. This continuity equation expresses that
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the probability density of an electron (which behaves completely analo-
gously to a charge density) is time-invariant in a reference frame wherein
the electron is translationally at rest. The wave equation therefore expresses
in spinor form translational invariance for the charge-current density vector
with respect to time translations, just like Bloch waves in a crystal express
translational invariance with respect to space translations. But this empha-
sizes in another way that the de Broglie wave is a time wave, rather than a
wave in space.

The slope of a time axis in Minkowski space-time is w = ¢?/v, which
is exactly the speed of the de Broglie wave, which confirms the idea that
the de Broglie wave should be understood as a time wave rather than a
wave “propagating” in space. The de Broglie wave is nothing other than
the hypothetical synchronization wave discussed earlier. In fact, w is the
velocity of this one-way synchronization wave in the reference frame of
the electron, transformed to a frame wherein the electron is moving with
velocity v. The synchronization wave serves to put the clock readings (i.e.
the phases) equal in all positions within the rest frame of the electron. It
is therefore a phase velocity. In the rest frame of the electron, this phase
velocity is infinite.

There is, therefore, no conflict with the theory of relativity in this super-
luminal velocity w = ¢?/v of the de Broglie wave for an electron moving
at a speed v. The apparent conflict is only due to over-interpreting the
“time wave” as a physically meaningful synchronization wave that would
propagate through space. It does not seem necessary to explain away these
superluminal velocities by introducing considerations about group veloci-
ties and wave packets. These considerations have their own problems, as
the different components of a wave packet should not move away from each
other with time due to possible dispersion. It is also never checked in prac-
tice if the solutions of the Schrodinger equation for a specific problem really
have all the necessary properties of a stable wave packet.

Note that in principle the spinor field only needs to be defined on the
actual path of the electron, not on the whole of space-time as already iden-
tified in Subsection 5.5.4. It is the extrapolation to space-time that turns
the spinor field into something that can be over-interpreted as a wave. In
the approach of this book, this wave corresponds to the description of a set
of possible electron histories. The electrons themselves are particles. This
is not a postulate, merely a working assumption. The aim is to check the
viability of this assumption.
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6.2 Quantization as a pure consequence
of Lorentz invariance

6.2.1 A puzzling result

By applying the Dirac equation to itself, we obtain the Klein-Gordon
equation:
2 2 2 2 2
%6——8——8——8— =0y, (6.4)
2 otz 0x2  Oyr 022 4
It may be surprising that the Klein-Gordon equation and the Dirac equa-
tion are obtained starting from the same ansatz for a rotating frame, as the
Klein-Gordon equation is known to apply to particles of spin 0, while the
Dirac equation applies to particles of spin % In obtaining the Klein-Gordon
equation by applying the Dirac equation to itself, the Klein-Gordon equa-
tion applies then only to the individual components of the Dirac spinor.
Using the standard mathematical approach a solution for (6.4) can be
proposed of the form W(r,t) = t(r) e"*. This leads to:

A = [ — w3 /4] . (6.5)

This equation is isomorphic to a time-independent Schrodinger equation for
a particle. In this isomorphism the role of the counterpart of the total energy
E is played by the quantity h?w?/2m while the role of the counterpart of
the potential V (r) is played by the constant h%w3/8. Neglecting further the
factors h%/2m, the quantity w?/4 will be called in an abuse of langauge the
“potential”. This constant “potential” w3 /4 is spherically symmetric with
respect to any point in R3. The solution of a time-independent Schrédinger
equation for a spherically symmetric potential V(r) is described in many
textbooks about quantum mechanics. It starts from expressing the Lapla-
cian in spherical coordinates, with respect to the centre of symmetry that
is taken as origin for the reference frame. The rotational symmetry of the
mathematical problem with respect to this point leads then to the final
solution. As in the case presented here the potential is constant, the choice
of the origin of the reference frame is arbitrary. The wave function solu-
tions are spherical harmonics. As already noted in Subsection 3.9, spherical
harmonics of degree n are obtained by taking tensor products of n identi-
cal spherical harmonics of degree 1. Mathematically, this corresponds to an
image where one particle with coordinates (z, y, z) is replaced by n identical
particles with the same coordinates. Actually, since (z,y, z) are quadratic
in the spinor components, we have an image of 2n identically spinning
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particles. It is hard at this point to imagine a physical image that would cor-
respond to this construction, such that the solutions remain rather abstract.
As the solutions of (6.4) are quantized and have rotational symmetry, one
may wonder what they mean. (This issue will be discussed in Section 6.4, by
showing a relationship with Feynman’s all-histories approach.) A full expla-
nation for the fact that (6.5) allows for solutions with rotational symmetry
will come in Subsection 6.2.10.4.

6.2.2 The seeds for a probabilistic approach

The quantities (z,y, z,t) occur in (6.4) as consequence of the fact that the
clock readings 7 and angular velocity wg of the rotating triad are expressed
via woT as wt—k - r in a moving frame. The quantity k is then related to the
velocity of the moving frame, and the selection of the origin is defined by
the coinciding positions at t = 7 = 0 of the reference frames chosen to define
the equation that links 7 and ¢ in the Lorentz transformation of the boost.
This origin does not need to coincide with the position of the rotating triad.
It may be noted that originally, the position of the triad is not specified, but
as in a Lorentz transformation clock readings in a moving frame depend
also on the position of the clock (as the transformation law of a boost
is of the type t' = ~(t — va/c?)), it becomes necessary to introduce the
position coordinates (z, y, z) of the triad in order to formulate wy7 correctly.
In general, a Lorentz transformation is used to calculate the new coordinates
(z,y,z,t) in a moving frame of one specific particle at (zo, yo, 20,to) in a
rest frame. But the transformation law of a boost gives simultaneously
the values of (z,y, z,t) for the whole of space-time, and thus of any other
particle that would travel at the same speed on some different world line.
This means that the coordinates (z,y, z) become hypothetical quantities.
The quantity ¥ (z,y, z,t) will code the orientation of the triad at time ¢ just
in case the particle happens to be in (z,y, z). In all other points (x,y, z, )
than the actual position and time that correspond to (xo,yo, 20,%0), the
quantity ¥ (x,y, z,t) will only be the hypothetical quantity that expresses
the orientation the triad would have had if the particle had been in this
point. This suggests that the situation carries the seeds for a probabilistic
approach (see Section 6.3). The structure of the Lorentz transformation
extends the definition of the spinor field ¢ (r,t) from the world line of the
particle to the whole of space-time. The true picture of this spinor field
is thus different from that of a wave that would propagate in space. The
“waves” are only the symmetry-adapted functions that one must use to
express Lorentz symmetry.
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6.2.3 Why is the wave function a function? Part 1

It has been shown that there are (incomplete) representations of the rota-
tion group in terms of sets of harmonic polynomials 1) € F(R3,C) of real
variables (x,v,2) € R®, that take complex values v (x,y, z). The complex
values of these polynomials no longer allow recovery of the full contents
of the information contained in a spinor (£, &1) that represents a rotation
or a triad. This is a consequence of a special isomorphism discussed in
Section 3.10.

The use of these representations based on spinors and harmonic poly-
nomials in quantum mechanics (e.g. in the calculation of the energy levels
of the hydrogen atom) raises some issues:

(1) A spherical harmonic of degree N is a component of the tensor con-
structed starting from the tensor product of 2V identical copies of the
basic spinor. This creates the impression that a coherent state of 2N
identical electrons is being described rather than a single electron. This
is certainly not the case, because it does not tally with the observed
mass of an atom (e.g. the hydrogen atom).

(2) Is it not necessary to use covariant derivatives for the spinors when
transforming to the curvilinear set of spherical coordinates? The same
question arises also for the spherical harmonics, as they are components
of a tensor.

(3) Moreover, the covariant derivatives would be different for the various
tensor products.

This problem of the covariant derivatives raises an even more serious issue
that can be related to a remark due to Cartan, who pointed out that spinor
fields cannot be defined in curved space. The idea is that a rotation of
an angle ¢ around an axis s is given by the matrix R(yp) = cos(¢/2)1 —
1sin(¢/2) [s-o]. Now, after a rotation over 27, we obtain for the rotation
matrix: R(27) = —1. Hence, in trying to describe the orientation of a
triad along an orbit as a single-valued spinor field ¢ (x,y, z) in terms of the
coordinates (z,y, z) a problem is encountered. The quantity R will not be
a function because it is not single-valued. This quantity R is equivalent to
1, and the argument equally applies to 1. Hence, the spinor field is a priori
not a function. This is a mathematical problem that goes beyond the fact
that the wave functions used in quantum mechanics are fields of unit rays.
The problem exists independently of the way spinors are used in quantum
mechanics.
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The whole problem can be traced back to the difference that exists
between vectors in R? and reflections (and normals defining reflection
planes) within the rotation-reflection group. The rotation group has a differ-
ent topology from that of R?. The two topologies are incompatible, just as
the topology of the Moebius ring is incompatible with that of a normal ring.
In the topology of the rotation group, s and —s cannot be distinguished,
because they define the same reflection. In the representation SO(3), with
its different, Moebius-like topology, there is therefore only one copy of the
rotation group. But by defining the spinor quantities (§p,&1) in terms of
(X,Y, Z) through a square root, it is possible to distinguish again between
the two possible values s and —s. Making a turn of 27, — (&, £1) is obtained
instead of (£p,&1). The situation with —(&p,&1) corresponds exactly to the
situation with —s. But meanwhile, the rotation angle is no longer 7 but 2x.
The image in SU(2) is thus closer to the image in R?, but there is a factor
2 between the rotation angles that are being used. A rotation angle of 47
in SU(2) corresponds to an angle 27 in R3.

The incomplete spherical harmonics of F(R3, C) can be used to describe
the position of a particle on an orbit. This corresponds then to the angle
of rotation. In the same way, one can use such spherical harmonics of
F(R3,C) to describe the rotation angle of a triad. Note that wave functions
and orbitals may look superficially very different from classical orbits, but
can nevertheless be discussed in terms of orbits based on the relationship
described in Subsection 5.5.4. This will be developed in Chapter 8.

6.2.4 Why is the wave function a function? Part 2

In the solution of (6.5), one has at first sight the impression that the quan-
tization conditions emerge as an unavoidable part of the mathematics. This
may appear startling, as it relies only on the assumption of Lorentz invari-
ance and rotational symmetry with respect to some special point (which
serves as the origin of a reference frame in which the position of the triad
that describes the rotating frame is (z,y,2)). It is easy to pinpoint where
the quantization is introduced. At a certain stage in the development of
the solutions for (6.5), one finds ®(¢) = e™? for the part of the wave
function that contains its dependence on the angle ¢. It is then postulated
that ® must be single-valued. Of course, in stating this one makes abstrac-
tion of the fact that the wave function is in reality a unit ray. The wave
function should be single-valued for any phase factor that one might have
selected within the unit ray. The wave function is certainly single-valued
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for the free-space solution, as it was defined from a Lorentz transformation
applied to the single-valued function e*°7/2,

There is, however, no reason why a particle in uniform rectilinear motion
should be described by a spinor field with rotational invariance. Hence, the
solutions with rotational invariance are only potentialities that are of no
use in the original problem. The subset of the solutions of (6.5) that are
relevant for the initial differential equation must be selected. Eventually,
only the meaningful solutions 14 e~*% and ¢_ ™% (with “spin %”) will
be retained, as already discussed. All the rest must be thrown out again.

The additional solutions with rotational symmetry become essential and
can no longer be ignored when considering the presence of a 1/r-potential,
which imposes rotational symmetry (which is not necessarily the same thing
as 27-turn symmetry). It is in this context that postulating that the wave
function should be a function raises many questions. Postulating that
is a single-valued function of r, implies that the set of couples (r,(r))
corresponding to all the points r that constitute a closed loop becomes a
fibre. Here, 1(r) can be of the complete (triad) type (¢» € F(C?,C)) or of
the incomplete (vector) type (v € F(R3,C)). As shown by Chern [Frankel
(1997)] this leads to “topological quantization”. It should be realized that
there is a priori no reason to postulate the structure of a fibre by suggesting
that ¢(r) is a (wave) function. Hence, the postulate that v is single-valued
is a crucial ingredient for obtaining quantization.

6.2.5 Why is the wave function a function? Part 3:
A plethora of physical effects

There are several arguments to show that the 27r-turn symmetry introduced
by the postulate that the wave function should be single-valued is arcane.
There are both classical and relativistic arguments.

(1) Classical objection. Imagine classically that we put a gyroscope on
board a space station in orbit around the Earth. The fact that ¢ is a
function implies then that the gyroscope in the analogy will have made
exactly an integer number of revolutions around its axis when the space
station has made a full orbit around the Earth. This is exactly what Chern’s
theorem means and implies a phase lock that is reminiscent of the situation
of the Moon which in its orbit around the Earth always shows us the same
face. This phase lock condition turns out to be exactly equivalent to the
Bohr quantization condition. This has been expressed in a different way by
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de Broglie who observed that the length of an orbit in the hydrogen atom is
always a multiple of the wave length of the de Broglie wave [Bohm (1951)].
Classically, there is no reason why the gyroscope should have made
an integer number of revolutions after completing a full orbit. Of course,
it could be postulated that the electron has some internal distribution of
charges that renders it asymmetrical, and this could explain the phase lock
in a way completely analogous to the mechanism that is responsible for the
phase lock of the Moon. But this would require the introduction of addi-
tional assumptions about the asymmetry of the charge distribution within
the electron, about which nothing is known. The validity of such assump-
tions would be completely uncertain. This kind of uncertainty could very
quickly become a profound obstacle to further progress. The essential point
here is that by introducing the technique of separating the variables within
the Schrodinger or Dirac partial differential equations, we stipulate that
the motion is truly periodic. This contains the ansatz that the history can
be described by a truly periodic spinor field ¢ (z,y, z,t) = ¥(z,y, 2)e*?,
whereby ¥ (z,y, ) is a single-valued function. In the language of quantum
mechanics, the existence of the frequency w that is needed for this corre-
sponds to the existence of a fixed total energy. But the difficulty is that
there is no reason why the periods of the gyroscope and of the orbit should
match. Relativistically, there are a host of other objections. The relativistic
objections can also be visualized with such a gyroscope analogy.

(2) Local Lorentz contraction and time dilatation. Relativistically, a dis-
tinction must be made between a purely geometrical rotation and a phys-
ical rotation of the type that occurs in the kinematics on a circular orbit.
For uniform motion along a circular orbit, the instantaneous distances dg
covered and the times dt elapsed could be written: d<’ = ~,(ds — vdt),
dt' = ~,(dt — vds/c?). Here, the distances are not integrable, only the
time is. This is due to the fact that time is a local quantity, while distance
is not. The integrated covered distance is always subject to new instanta-
neous Lorentz transformations, therefore only integrated time can be used.

The starting point for the derivation of the Dirac equation was express-
ing a rotation with angular frequency wp in the electron’s own rest frame,
using the quantity wpdr to do so. Fortunately, the quantity wgd7r corre-
sponds to a relativistic invariant wdt —k-dr. From this it can be appreciated
that if woT = 27, then at least in principle wt # 2. It is then surprising
that the solutions can be factorized as 1) (r)e?, where the spatial part
is a function that uniquely depends on r, because the total angle during
one turn along the orbit will a priori no longer be 27; what is 27 for one
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observer will no longer be 27 for another observer. This argument of Lorentz
contraction and time dilatation along a circular orbit has been used by Ein-
stein to motivate the notion that space-time geometry is not Euclidean in
general relativity and must be curved.

(8) Thomas precession. There is a corollary to the relativistic argument
that it is not certain that the gyroscope should make an integer number
of revolutions in one orbit. The composition of two boosts that are not
collinear gives rise to a Lorentz transformation that is composed of a boost
followed by a rotation, called Thomas precession. Due to this Thomas pre-
cession, the rotation axis of a gyroscope in an orbit will in general no longer
be fixed. The only way to escape from this verdict is to postulate that the
orbit is planar and the rotation axis strictly perpendicular to the orbital
plane. (One can then prove using (5.64) that it will remain perpendicular to
this plane during the whole motion.) Hence, in general, not only the phase
wt in wt — k - r, but also the orientation of the rotation axis s must return
to the initial position to support the postulation that 1 is single-valued.

(4) Perihelion precession. Finally, relativistic orbits are no longer true
ellipses, but ellipses that undergo perihelion precession as observed for Mer-
cury. This type of effect exists already within the framework of special rel-
ativity, and does not only change the periodicity of the orientation of the
triad. When the orbit exhibits precession it will intersect itself. At the points
of intersection, again the problem that the function ¢ (z,y, z) is a priori not
single-valued will arise.

In summary, there are many arguments to show that the postulate that
the wave function should be single-valued is paradoxical: classically (as in
the example of the gyroscope on a space ship) and relativistically (time
dilatation, Thomas precession, perihelion precession). In establishing this
list, these effects have only been described geometrically. But it is because
these geometrical effects produce measurable physical interactions which
change the total energy of the system, that they must be described. Why
else would this be of any concern! In a general situation, these effects will
become physically coupled, resulting in a very complicated interplay. For
instance, it is generally admitted that the spin is equivalent to a magnetic
dipole. This magnetic dipole will not interact with the electric field of the
nucleus in the hydrogen atom, but it will interact with an external magnetic
field (Zeeman effect) and with the magnetic field of the nucleus produced
by its spin (hyperfine interaction).
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In a first approach, the magnetic effects could be ignored. The external
magnetic field could be switched off, arguing that the hyperfine splitting
is a minute effect. But some other physical effects can spoil the party.
The travelling magnetic dipole will give rise to an induced electric dipole
that will interact with the electric field of the nucleus, such that it will be
necessary to change the equations.

6.2.6 Solution to the paradoxr — part 1: The need
for a manifold M

The solution to this problem of why the wave function is a single-valued
function is again not physical but purely mathematical. In this solution the
isomorphism defined in Section 3.10 does not map (X,Y, Z) onto points
(2,9, 2) of the usual set R?, but onto points of a manifold, that is a multiple
copy of R3. Let us first address the problem raised by the fact that it
takes a rotation angle 47 to get a spinor back to its initial value. Consider
the restriction of the spinor field to R? when the orbit is planar. Let us
introduce a manifold My = R? x {—1, 1}, whereby the connectivity between
the elements (z,y,j) € My is defined through the use of polar coordinates
(r, ) for (z,y). In fact, (r,2m, —1) = (r,0,+1) and (r,27,+1) = (r,0,—1).
This is a Riemann surface (see Figures 6.2-6.4) and may be visualized by
a helicoidal ramp in a parking building with two levels, whereby the upper
level is back-connected to the lower level as in the visual paradox within
Escher’s drawing Waterfall. There is a much simpler way to visualize this
in the plane on a sheet of paper. It can be postulated that the physical
angle on the sheet of paper corresponds to twice the mathematical angle,
such that a full turn on the sheet of paper visualizes a mathematical angle
of 4.

On Ma, one can now define a spinor field ¢ (z,y, 7) unambiguously. The
spinor field is then periodic over My, rather than over R?, and it can serve
as a wave function. This means using spinor fields that are functions which
belong to the set F'(My, C) rather than F(R3,C).

The same approach could be used in the case of a periodic orbit that
crosses itself, when its true orbital period is 27N rather than 2. This
could happen for example when the perihelion shift of an “elliptical” orbit
is of magnitude 27¢/n, with (¢,n) € N2, ¢ < n, £ # 0, such that it
is only after going n times around the ellipse, that the starting position
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connection ribbon

T glue to o= 4n—,

T glue to p= 0+ A

Fig. 6.2 Instructions for constructing a paper model of the Riemann surface for the two-
valued square root “function” f € F(C,C): z — f(z) = z!/2. Start with two sheets of
paper labelled “floor 1”7 and “floor 2”. Both sheets of paper represent the complex plane
with origin T'. Make a cut along the positive xz-axis T'A in both sheets and lift upwards

the part on the side of the cut that corresponds to z = re*¥ with ¢ = or (noted as

2m—), such that it is higher then the part on the other side of the cut where ¢ =50
(noted as 0+). In consequence of this lift, somebody travelling along the unit circle in the
sense of increasing y-angles would then travel upwards in the same way as a car moves
up to a higher floor in a car park with several floors. Such a car park is in a sense a giant

helicoidal staircase. Next, repeat the action with the part where ¢ =, 47 on the second
floor. The point ¢ =, 27 marks the point where one reaches the second floor and one
can start the ascent from ¢ =, 27 to the third floor that could start at © =, 47. This

motion from ¢ = 27 to © = dr s represented by the second sheet of paper. The
interval of angles is noted as [0, 27| on the first sheet and [27, 47| on the second sheet.
The point is now that there is no further ascent from ¢ = 47 onwards because the second

floor corresponds to the ground floor again, such that the region ¢ = 47 must connect

back to the region ¢ =~ 0. A third sheet of paper labelled “connection ribbon” can
be used to take care of this connection. Just like in Figure 3.5 this connection sheet is
purely metaphorical and it serves only to establish the connectivity. The distance between
the two points T is therefore zero. The same applies for the distance between the two
points A. (As in topology distances do not matter, the zero distances can be represented
by finite distances.) In the physical world, it cannot be avoided that one intersects the
first floor in moving from the second floor to the ground floor such that the zero-length
connection ribbon will have to “traverse” ¢ = 27 even though in the mathematics it is
not the intention to have any intersection. (In a finite restriction of the model, this could
be avoided by fulfilling the cyclic boundary condition by bending the connection ribbon
and establishing the connection in the form of an external loop.) Mathematically, one
should not think of the surface as having a cut or a self-intersection. The Riemann surface
models the “two-valued function” f(z) = 21/2 = :I:\/Fe_“P/Q, with one sheet representing
the solution with the + sign and the other sheet the — sign. Other more complicated
Riemann surfaces can be used to represent the n-valued “function” f(z) = z'/™. The
manifold My used in the text corresponds exactly to the Riemann manifold for the
multivalued “function” f(z) = 21/m for n = N. Of course, taking the n-th power of f
makes the result again single-valued, and it is this gimmick that is used by introducing
harmonic polynomials based on the N-th tensor powers (£0,&1) ® (£0,61) -+ ® (€0, &1)-
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0
S

R

Fig. 6.3 Topology of the Riemann surface for the two-valued square root function f €
F(C,C) : z — f(z) = z'/2. The letters A to H correspond to a part of the surface
that can be imagined as similar to the surface of a cone with apex 7', with a cut along
the line AT, because there is no connectivity at A that would permit moving directly
from H to B. It has to be imagined that the view is taken from inside the cone in the
upward direction towards the apex 7' of the cone. The other part of the surface can
for convenience be imagined as a second cone with apex T and a cut along AT where
the view would be down towards the apex T from outside the cone. For the topology,
the exact shapes and distances do not matter; only the connectivity is important. The
connectivity is between S and B and between H and I, but not between H and B or
S and I. The part AT'D of the surface can be imagined as being almost vertical, while
the part TGHA is almost horizontal. Getting back to A after a first turn the surface
“traverses” itself on the line TTA and continues along IJK. The part of the surface
labeled LM NO is hidden behind the part ABCDEFG, becoming visible again in the
part PQRS. Only after completing a second turn the surface truly connects back to its
starting position along the line T'A. The surface is not supposed to intersect itself truly
along the line T'A in the sense that there would be points of the sector ST'B that would
also belong to the sector HT'I, because there is no connectivity between H and B, or
between S and I. The “intersection” only occurs when one tries to make a paper model
of it in the physical world as described in Figure 6.2. This is more clear in the model
shown in Figure 6.4.

is reached again. This is illustrated in Figure 6.5. Here again a mani-
fold My = R? x {"k=U7/N 'k € [1, N] NN} could be used. In the example,
N = 4. In general, we will have N = n+/, as it will take n turns around an
“ellipse” to become truly periodical, but we will also have gone through n
perihelion shifts 27¢/n. Here, spinor fields are being used that are functions
from the set F'(My, C). The orbit on the set My will then no longer inter-
sect itself. It might actually be necessary to introduce a manifold Myy. In
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P

Fig. 6.4 The simplest representation of the Riemann surface for the two-valued square
root function f € F(C,C) : z — f(z) = z1/2. 1t is based on a mapping between the
angle ¢ on the Riemann surface and the angle 1 of the Euclidean plane, defined by
@ = 2¢1. This way a 27 turn can be visualized as different from a 47 turn, while 47
can be connected to 0. The points ¢ — 0+, ¢ — 27—, ¢ — 27+, and ¢ — 47— in this
figure correspond exactly to those in Figure 6.2. It can be appreciated from this figure
that there is no self-intersection along ¢ — 2.

Fig. 6.5 Rosette-like orbit with a perihelion shift of QTW represented in real space (left)
and on the Riemann surface My (right). The fixed focus of the rotating ellipse is the
point F' located at the centre of the drawings. The other six points on the orbit are the
three perihelia P; and the three aphelia A;. The correspondence between the orbital
polar angle ¢ used in the drawing on the left-hand side and the orbital polar angle ¢’
used in the drawing on the right-hand side is given by ¢’ = 4¢. A full circle on the
drawing on the right-hand side would thus correspond to 8w. Orbital polar angles are
noted here by ¢ to distinguish them from spin polar angles ¢ in the previous figures.
On the Riemann manifold My the orbit no longer intersects with itself such that one can
define a spinor field on the orbit that is a true function.
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the factor 2 it must be remembered that spinors have periodicity 47 rather
than 27 in the rotation angle.!

6.2.7 Solution to the paradox — part 2: Equivalence of the
Bohr model and the Schrédinger equation in the
problem of the hydrogen atom (spin axis along
the z-axis)

The solution to the paradox consists in accepting that the gyroscope has
indeed not made exactly an integer number of full turns when the space
station has completed a full orbit. In a first, non-relativistic approach it can
be assumed that the orbit does not cross Itself. The following simplifying
assumptions will be made:

(1) The orbit is just a circle.

(2) The electron rotates uniformly.

(3) The rotation axis of the electron remains fixed in space parallel to the
z-axis.

A more general situation will be discussed later. The point is that the SU(2)
wave function for a spinning top with rotation axis parallel to the z-axis
can be written as e=*07/2[1,0]T such that the spinor will have only one
non-zero component (e~*°7/2). The whole situation can then be described
with two rotation angles: one for the orbit and one for the rotation of the
electron. As this is a non-relativistic approach, only the physical effect (1)
of the list given in Subsection 6.2.5 will play a role.

Let the starting position be called P;. The wave function is written
as ¥(s, ), whereby the variable s = e, denotes the rotation axis and the

1Cartan used a topological argument to prove that it is impossible to define a single-
valued spinor field in curved space, by considering a closed loop in the curved space, that
he made shrink to a point. It is thus important that this should not be possible. It will be
shown below how one can identify the group parameters of the rotation group (i.e. the
coordinates of the isotropic vector that codes the triad) with the particle coordinates by
using spherical coordinates as discussed in Section 3.10. To prevent a closed loop from
being shrunk to a point, one can exclude an open ball around the origin from the space
wherein the motion takes place. When in addition the motion is planar, the space will
then no longer be simply connected. This idea will be encountered several times in the
book. The introduction of the manifold serves then to render the topologies compatible.
As noted in the caption of Figure 6.2 the situation is similar to that encountered when
one tries to define the n-th root {¥/z of a complex number z € C for a natural number
n € N. The “function” z — {/z is also not single-valued. One introduces then exactly
the same types of Riemann surfaces to define a single-valued function.
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variable ¢ = wt describes the rotation angle of the electron spin around this
axis. If ever it were necessary to express the values of these quantities in the
rest-frame of the electron, the symbols ¢ and wy would be used for them
(¢o = woT). Even in non-relativistic quantum mechanics, the phase wt—k - r
corresponds to w7 after Lorentz transformation, and as such it contains
a relativistic element. But otherwise, w is not considered to vary with the
velocity, and it can be almost assumed that the phase can be written as
wot — k - r. Of course, this will change in relativistic quantum mechanics.?

The variable ¢ = @t corresponds to the position of the space station
along its orbit. As the orientation of the axis of the gyroscope is considered
as fixed in space, s is constant. Note that two different forms ¢ = wt and
¢ = @t of the Greek character phi are used to distinguish the two types of
angles. Up to now ¢ has always been used for a rotation about an axis s, to
clearly distinguish it from spherical coordinates (6, ¢). As a spinor codes a
rotation, its value will only contain the variable ¢, but ¢ can be a function
of the position (x,y, z) of the electron, and as such of ¢.

2For an ellipse with perihelion precession, where it takes turning N times around the
ellipse to get back to the starting position, it is in reality necessary to consider 2N turns
rather than N, in order to take into account that the periodicity of spinors is 47 rather
than 27. In what follows, other types of periodicity will be discussed, where it also takes
N turns to get back to the initial position, but the global periodicity is 2N due to the
4m-periodicity of spinors. The factors 2 and N in the number 2N have two very different
origins. It is the combination of both that is responsible for the number 2N. But for the
clarity of the discussion, one must be able to discuss both separately. Solutions for the
hydrogen atom will be discussed both within the context of the Schrédinger equation
and of the Dirac equation. In the context of the Schrédinger equation, single-component
wave functions are needed where it is as though the existence of two-component spinors
and the need for a factor 2 are ignored. Therefore, the factor of 2 will be ignored within
the context of the Schrédinger equation. This corresponds in a sense to a treatment with
a wave function expressed in the variables (z,y,2) € R3 (in the vector representation
based on the isomorphism defined in Section 3.10) rather than (£o,&1), where due to
the quadratic dependence of (z,y,z) on (£0,£1), and the possibility of defining polar
coordinates in the vector representation, a 27-turn will already bring the wave function
back to its original value. To discuss the wave functions that are expressed in terms of
harmonic polynomials rather than spinors (and this way take into account the factor 2)
the manifold will be noted as M7};. It will be as though we did not know that it takes
a rotation angle of 47 rather than 27 to get a wave function back to its initial value.
The discussion will be in terms of periods 27N rather than 47N, keeping in mind that
ultimately N may need to be doubled to 2N to take into account the 4m-periodicity
of spinors. When discussing a wave function that recovers its starting value after three
turns, it may thus also imply that in reality six turns should be considered to take into
account the 4r-periodicity, and when the “wave function” is discussed, it will be in terms
of how it would have been if it were not for this factor 2.
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At the starting position of the space station ¢ = 0 and thus ¢(P;) =
1(s,0). Imagine that after one period of the space station along its orbit
(i.e. when ¢ = 2m) the gyroscope has gone beyond its initial value ¢(n,0),
because wt # 0 (mod 2m), and that it has reached the value ¢ = 27 +27/3.
(In a case where the gyroscope is slower, we will have for example ¢ =
27 — 27/3.) The wave function then becomes 1(Py) = €?™/3¢)(n,0). The
space station will have recovered its initial position in physical space, but
the triad that codes the gyroscope will not have recovered its initial phase
angle, such that the combined motion has not yet come to a full period.
In order to address this difference, this combined situation of the space
station and the gyroscope will be noted as a “position” P». After two turns
A¢p =27 (le. twice Ap = 27 + 27/3) the space station will get to Ps, and
the wave function will be ¢(P3) = €'*™/34)(n, 0), assuming that the rotation
is uniform. Finally, after three turns Ay = 27+ 27/3 the wave function will
become equal to ©(P;) = ¥(n, 0) again. Hence, the full motion will be truly
periodic with an angular period that is 67 in physical space. It is therefore
necessary to introduce M7}, with N = 3. This is also the reason for the
introduction of three “positions” P;. This may at first appear meaningless,
as they are identical in physical space R?, but the point is that they are not
identical within My,. The full wave function will recover its starting value
after three turns of the type P, — P». This is illustrated in Figure 6.6.

Also, if the wave function takes an increment of 27 + 47/3 rather than
27 + 27 /3, the full motion will have a period that is three times as large as
the interval that is necessary to cover the turn P; — P,. In other words, in
the situation with an increment 27 + 27/3 as originally discussed, the real
period of the combined system of the gyroscope and the space station is 87
in the angular variable ¢ that describes the rotation of the gyroscope, and
67 in the angular value ¢ that describes the position on the orbit. (When
the gyroscope is trailing behind, such that the increment is 27 — 27/3, the
period in the angular variable ¢ will be 47.) To make sure that the wave
function is single-valued, M3 is introduced, because the true period of the
system corresponds to three turns in physical space.

Consider now three space stations along the orbit at positions Pyy1
in M3, with ¢-coordinates ¢ + k87/3, and k € [0,2] N Z. The copies are
purely mathematical constructions, without physical meaning; there is no
physical force between them. Their introduction is just a mathematical
expedient. The three space stations have wave functions 1), = e*27%/3 ¢,
with 1o = (0, ¢) = 1(0,0)e"?, where § = /2. The combined state is then
represented by W = 1)y ®11 @12 = €'2™ (0, 0)@1)(0,0)®(6, 0)]. When the
gyroscope is trailing behind, the phase factor will be e™*2™ instead of e**".
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Fig. 6.6 The Riemann manifold M3 with the spinning triad on a circular orbit. The
angle of rotation of the spin is ¢, while the angle that defines the position of the triad
on its orbit is ¢. The axis of the rotational motion of the spin is the z-axis, which is
perpendicular to the plane of the figure. The orbit is circular and the plane of the orbital
motion is the Oxy plane, such that the drawing corresponds to the assumptions made
in the text. The three copies of R3 that occur in M3 have been represented by the three
120-degree sectors of the Ozy plane and labelled (z,vy, j), where j € {0, 1, 2}. Each value
of j has been represented by a sector of a different shade. Successive orientations of the
triad are shown, but the x- and y-axes have been labelled for only one of them, in order
not to overburden the figure. To identify e, and ey in the frames with unlabelled axes
we have marked the e, vectors by a dot. In the figure the angle ¢ of the spin is varying
faster than the angle ¢ of the orbital motion. Both motions are uniform and related by

v =4¢/3.

Now, after one turn ¢ = 27 in physical space, each wave function
will have been multiplied by e’2™/3. Each space station will have taken the
previous position of its upstream neighbour in M3, and the total state will
be indistinguishable from the original state. The combined state ¥ in ¢-
space M}, will then contain the p-dependence e*3?, which is of the type e*V¥
for N = 3. The wave function tensor product ¥ belongs to the irreducible
representation in terms of harmonic polynomials of degree 3 (when 1y is
of degree 1). Actually, by introducing the tensor field corresponding to
the tensor product of N virtual identical copies of the spinor field (or N
identical copies of the spherical-harmonic field of degree 1), a tensor field is
defined on M}, that is again periodic with period 27 in the variable ¢. It is
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then no longer necessary to distinguish between R? and M. These tensor
fields are the spherical harmonics.

Hence, the original idea of introducing a spinor field failed, as it led to a
field that was not single-valued in physical space. We therefore introduced
the manifold M. In a second stage, we constructed an alternative wave
function that becomes single-valued again in R? by taking N copies of the
space station in M};. The states in My, are constructed by taking products
of wave functions of such virtual copies. In the end the distinction between
M3, and R? can be dropped because in both spaces the period has become
27. In other words, the introduction of the spherical harmonics is necessary
to render it possible to describe the triad (X,Y, Z) as a single-valued func-
tion of the orbit parameters (z,y, z), such that we could play the game of
“two movies for the price of one”, as we called it earlier on. The introduc-
tion of the spherical harmonics corrects for the error that the wave function
would not be single-valued. As the 1/r-potential has rotational symmetry,
its influence remains correctly expressed in the manifold M7},. Hence, the
harmonic polynomials of degree N can serve to represent solutions that
have a wave function with a ¢-dependence of the type e*¢/3 (with a period
67 in ¢) rather than €' (with a period 27 in ¢).

The argument can be formalized as follows. The rotation of the gyro-
scope is described by a spinor (&g, £1) based on the isotropic vector (X,Y, Z)
= ex +uey. Introducing spherical coordinates, and taking into account that
the rotations are only around the Z-axis, such that the spherical coordi-
nates reduce to polar coordinates, we have ey + 1€} = e"?(ex + ey ). The
motion along the circular orbit is also a rotation. This rotation is described
by a spinor (19, 7:1) based on the isotropic vector e, +1e,. Taking again into
consideration that the rotations are only around the z-axis, and introducing
again spherical coordinates that reduce to polar coordinates, we have e/, +
e, = e'? (e, + 1e,). For this motion, the coordinates of the particle can be
used to describe the rotation. It suffices to take (x,y, z) = r(cos ¢, sin ¢, 0).
Here, r does not really belong to the spherical wave function.

The quantity (X,Y, Z) is thus no longer (z/r,y/r, z/r) itself but a func-
tion of (z/r,y/r,z/r). Through the use of polar coordinates, the relation-
ship is expressed through ¢ = %gb. By introducing spherical harmonics of

degree 3, the period becomes 27 rather than 2?”.3 This way it is possible

3Taking the n-th tensor power of the spinor defined on a Riemann surface is like solving
the problem that ¢ = %¥/z is not a single-valued function of z € C by taking the n-th
power c¢" = 1.



220 From Spinors to Quantum Mechanics

to express the rotations of the gyroscope (which are rotations in a space
of spherical harmonics in (X,Y, 7)) as rotations in the space of harmonic
polynomials of degree 3 in (x/r,y/r, z/r). The present argument will be
elaborated for the case that s # e, in Subsection 6.2.9, such that it will
become more general. In the present approach in terms of Riemann surfaces,
the angular-momentum operators actually turn out to be mere degree oper-
ators, used to describe a difference between the periods of the spin and of
the orbital motion.

(The following two subsections serve to settle a lot of technical details, and are
not essential for the understanding of the ideas. The reader may therefore skip

them on a first reading and jump to Subsection 6.2.10.)

6.2.8 Mathematical equivalence between the Bohr model
and the solution of the Schrodinger equation for
the hydrogen atom — working out the details

6.2.8.1 Quverview of questions to be treated

In deriving the form of a spinor in SU(2) it was necessary to remove at a
certain stage the parameter r from the formalism by taking the limit » — 0.
The justification for this was that r is not a suitable parameter to describe
an element of the rotation group. In the same spirit, the space-time coordi-
nates of quantum mechanics are a priori not pertinent for a description of
the Lorentz group. One of the consequences of this is that an orbit, which
is a closed loop in the space part of space-time, does not necessarily cor-
respond to a closed loop on the Lorentz group. This is due to the physical
effects (2)—(4) described in Subsection 6.2.5. At least the physical effect (2)
will always be present. The quantization conditions express the additional
constraints that must be satisfied by a closed orbit to make it a closed loop
on the Lorentz group. These constraints ensure that the wave function is a
function. The wave function simultaneously defines the action of the group
element on the coordinates of space-time that do not belong to the actual
world line, opening the way for a probabilistic approach.

That the treatment in terms of spherical harmonics within the context
of the Schrodinger equation corresponds to the treatment of the periodicity
sketched using the manifold M}, is for the moment an intuition, but it does
not yet hold in all the details.

(1) The separation of variables in the differential equation removes
expressions of the type wt from the spatial dependence. As there is a rela-
tionship of the type ¢ = Wt < wt to describe the motion, one may fear that
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¢ will also have disappeared from the spatial dependence. It will have to
be explained why the separation of variables does not remove ¢ from the
spatial dependence, and what the exact meaning of ¢ is in the Schrédinger
equation.

(2) The exact number of modes there are within a representation will
also have to be discussed. In the Schrodinger equation this is 2¢ 4 1, which
is always an odd number. In the Dirac equation it is 2J + 1, which is
always an even number. As will become obvious, this difference between
20+ 1 and 2J + 1 cannot be discussed on the basis of purely geometrical
arguments. Consideration must also be given to angular momentum “up”
and angular momentum “down” states, with respect to a certain axis. This
is in accordance with considerations about the energy within a magnetic
field and with the fact that in the absence of an external magnetic field,
the modes are degenerate. Dirac’s solution with the even number 2J + 1
is necessary to reproduce the correct number of Zeeman sub-states in a
magnetic field when the degeneracy is lifted.

(3) The spherical harmonics are components of a tensor. When spher-
ical coordinates are introduced for the calculation of the energy levels of
the hydrogen atom, the derivatives must be replaced by covariant deriva-
tives. Moreover, the expression for the covariant derivatives will depend
on the rank of the tensor. This has not been done in the solutions for the
Schrodinger and Dirac equations for the hydrogen atom. In using only the
non-relativistic calculations (i.e. the Bohr model and the Schrodinger equa-
tion), it is possible to understand the reason for this, as will be explained
below. Contrary to popular belief, the Schrodinger equation does describe
the rotation of the electron when it moves along its orbit. The phase of
quantum mechanics corresponds to the rotation angle.

6.2.8.2  Why the variable ¢ does not disappear after the separation
of variables

Let us simplify for the moment the discussion by considering the spin-axis
as parallel to the orbital axis. Later on this will require a detailed discussion,
to avoid problems of degeneracy within the formalism. The initial form of
the spinor contains the (invariant) phase angle ¢y = wor. In a moving
frame this becomes of the form ¢y = wt — k - r. As discussed in Subsection
6.2.2, here r and t no longer correspond necessarily to the actual position
coordinates of the electron. They can also be hypothetical values.

It is then possible to write wt —k-r = &t + (w — @)t — k- r, where
@ corresponds to the orbital motion. Here @ must be considered to be a
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constant, even for non circular motion, because the energy is constant. This
will be discussed in Subsection 6.2.10.2, where it will also be clarified under
which circumstances (r,t) can become hypothetical values. The quantity
(w—@)t —k-r can be recast into the form ®(r(t)). The gimmick is then
that ®(r(t)) = (w — @)t — k- r can be expressed as a pure function ®(r)
of r because the wave function has been rendered a function. Note that for
circular orbits, k- r will be a constant with time, while for elliptical (or
other non-circular) orbits, k - r may vary with time.

It is now possible to assume that in the separation of variables it is
@ that should be removed from the total phase angle. After a separation
of variables in the differential equation, the variable that has not been
removed and that will become an argument of a harmonic polynomial is
then ®. Thus wt — k-r has been rewritten as wt + ®, expressing that
it is both periodic in spin (with angular frequency w) and in orbit (with
angular frequency @). First, determine the energy from the calculation of an
orbit for a point-like particle (@), and then add a quantization condition by
expressing that ® must be a function of r. This expression takes into account
the angular frequency of the spin. The spherical coordinate ® can thus be
identified with the phase of the wave function, even if it no longer exactly
corresponds to the value ¢ for the position on the orbit. This settles problem
(1) of Subsection 6.2.8.1, and also the problem of on which precise angular
variable the wave function truly depends. For uniform circular motion it
is possible to introduce a curvilinear coordinate ¢ = R¢ on the circle and
to define k = 1/R, such that k- r takes the form k¢ = ¢. The variable
ds occurs then in the instantaneous infinitesimal Lorentz transformation
dt = v(dr — vds/c?) that relates dt to dr. With a definition k = 27/ for
the relation between the wave vector and the wavelength, this corresponds
to a wavelength A = 27 R.

6.2.8.3 A set of several modes that can be treated
on the same manifold M}

We have N copies of the electron wave function, labelled with the variable
J € [I, N]NN. They are placed on positions P; with coordinates z; on a
circle. This circle symbolizes the manifold M7, if one does not take into
account the factor 2 that results from the 4m-periodicity of spinors. Each arc
between P; and P;; symbolizes a whole orbit. The positions P; symbolize
all the same position P on the orbit in real physical space. The point P;
is reached when the electron reaches the position P in physical space after
j orbital periods. The image of another physical position @ on the orbit
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after going around j times would thus correspond to a position @; on
the arc between P; and Pj;; in M}. These other positions are thus not
represented by the vertices of the regular polygon Py Py - - - Py_1, which only
images the position P. In each point of this polygon, there is a difference
of phase between the spin of the electron and the phase of the orbital
motion. If this difference is 6; in P, then it will be §; = jo; in P;. We
have thus a manifold M}, pictured as a circle. The angle on the circle is a
measure for the phase difference. The phase differences ¢; in P; take the
values 27j /N, where j € [0, N — 1] N N. A uniform motion on the circle
representing M}, describes exactly the phase difference between spin and
orbit rotation angles. The same circle can be used to describe a situation
where the phase difference grows faster, such that it is already §§k) = ko
in P;. The situations with the basic phase differences 6§k) = k27 /N, with
k € [0,N — 1] NN can all be described on the same circle. They lead to
phase differences 6§k) = 2mjk/N in P; for the “mode” k.

A mode with k£ = 27(N — 1)/N is then indistinguishable from a mode
with &k = —27/N, as the labels of the modes are defined modulo 27. But
physically the modes k = 27(N — 1)/N and k = —27/N are not the same
thing. In the mode k& = 27(N — 1)/N the rotation of the electron spin is
faster than the rotation along the orbit, while in the mode k = —27/N it
is slower. In terms of rotational energy this is not the same thing. Hence,
even if 27r(N —1)/N and —27/N are the same phase, k = 27(N —1)/N and
k = —2m /N are not the same mode. The slower modes can also be described
on the same circle. If the faster modes are described by wave functions Wy
it would suffice to take wave functions ¥_; = V¥j to describe them. This
implies thus that there are 2(N — 1)+ 1 = 2N — 1 modes that are described
with the aid of the same manifold. It has been taken into account that for
k = 0, the value —k does not correspond to a new mode. It can be under-
stood on this basis why in a representation based on harmonic polynomials
and the manifold M}, there must always be an odd number of sub-states.

In the Dirac approach this argument no longer applies. The reasoning
described above is not correct, as the case & = 0 corresponds to a phase
difference between the rotation angles involved in the electron spin and the
orbital motion at the positions P; on the orbit. But it neglects the fact
that the orbital and spin periods can be made to coincide in two different
ways: one with the electron spinning in the same direction as the orbital
motion, and one with the electron spinning in the opposite direction. If these
motions were thought of in terms of current loops, then this would really
make a difference within a magnetic field. (It is this point that is taken into
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account in the even number of states used in the Dirac approach and not
in the odd number of states within the Schrdodiger approach.)

6.2.8.4  Analogy with translational invariance: A key to the number
of modes

To treat the temporal translational invariance of the system on the manifold

N, symmetry-adapted functions are introduced. Using only the modes
k > 0, we have a simple paradigm for such symmetry-adapted functions,
viz. the model of translational invariance in space with cyclic boundary
conditions used in solid-state physics and described in Section 2.10. The
symmetry-adapted functions are there of the form v, (j) = e*727/N  As the
orbital motion is planar, the two approaches should in principle coincide.
This analogy will be developed as follows:

(1) It will be shown that in both systems, the different modes correspond
to different degrees of polynomials in some variable. In harmonic poly-
nomials this will be the variable e*?.

(2) The degrees will correspond to the various ratios between the electron
and orbital angular velocities. The angular momentum operator L.
projects out the degree in e?, and the harmonic polynomials of a given
representation also have a total degree that one can access by L2.

(3) One should then in principle also be able to understand the number of
modes through the analogy. But following the analogy it should also
be possible to obtain an even number of modes in the Schrodinger
approach, which is not the case.

It is for this reason that consideration must be given to clockwise and
anticlockwise de-phasing. The quantities k£ and « can be used to describe
the various symmetry-adapted functions, when k > 0. The number of modes
is equal to the number of sites. These modes could also be pictured as N
equally spaced points on a circle. It would then mean that k = 27(N—1)/N
and k = —27/N were considered to be the same mode. This is the case in
the solid-state physics model, but not in the electron model. The states
would rather have to be on an infinite line, where k € Z. However, treating
|k| > N — 1, will have to be done with another manifold than MY}. The
restricted set of modes with |k| < N, can thus be pictured as a line segment
without periodic boundary conditions. It can be avoided that the modes
—Fk and k are the same by giving them different pre-factors that contain a
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supplementary functional dependence. (This happens for example in solid-
state physics if there is more than one atom in a unit cell. In solid state
physics there is also an expedient to turn the topology of a line segment
into that of a circle with periodic boundary conditions by introducing mirror
images, which doubles the number of sites.)

6.2.8.5  Analogy with translational invariance: Use of polynomials
of various degrees

There are thus different functions which describe various rates for the phase
difference of the electron. These functions are labelled using k and they can
all be written in the form u* = €27%/N  where u = ¢2™9/N Hence, k is the
degree of the function in the variable u, and the function is thus a poly-
nomial in the variable u. Now, the symmetry-adapted functions for rota-
tional symmetry are obtained by taking the tensor product of the spinors.
As described in Section 3.9 and Subsection 3.10.5, they are of the form

2-KeK  where K € [0,2¢]. The variable |K| plays here the role of a
degree in z. The degree can vary between 0 and ¢ = N — 1. When the
isomorphism discussed in Section 3.10 is introduced, spherical coordinates
can be used, and the degree K gives rise to a degree m in the variable e*?.
The values of m can now also be negative, and they vary with integer steps
between —¢ = —(N — 1) and ¢ = (N — 1). As discussed in Section 3.9,
these steps are integer because combinations £y are made. The variable
m takes thus 2N — 1 = 2/ + 1 different values, if N = £+ 1. There is thus a
one-to-one correspondence between the two ways of introducing symmetry-
adapted functions, such that the number of modes can really correspond to
a number of the type 2¢ + 1. The point is that the development must start
from a model with N’ = 2¢+1 sites. The choice of the number of sites must
then not only be motivated by geometrical considerations (such as about
the number of perihelia in a closed orbit) but also by energy considerations
(in terms of clockwise and anticlockwise de-phasing).

In considering the harmonic polynomials Y7 ., (6, ¢) and restricting the
motion to a plane parallel to the Ozy plane such that 6 no longer is a
variable but becomes fixed, the functional dependence "™? of the modes
coincides with that for the modes in a model based on translational invari-
ance with cyclic boundary conditions. The modes with indices —m and m
are also related as ¥ and ¥*. It follows then that m can really be inter-
preted as the rate of electron de-phasing, and that the identification made
between the spherical harmonics and the various periodicity ratios holds.
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In the context of the Dirac equation, the viewpoint will become different.
The 2N modes will have to be interpreted as N modes with spin up and
N modes with spin down, such that the two modes for k£ = 0 will no longer
be identical, because they will represent different energies when a magnetic
field is switched on.

6.2.8.6  Spherical harmonics and their degrees

As discussed in Section 3.9 and Subsection 3.10.5, the spherical harmonics of
degree ¢ are of the type A§§£_K§{<, where A is a constant. The total degree
is indeed 2¢ in the spinor quantities, and ¢ in the variables (z,y, z). For a
given value of £, there are thus 2¢ + 1 different polynomials, corresponding
to the combinations &2~ X ¢ where K € [0,2()NZ. Putting m = { — K, it
can be seen that m € [—¢, {JNZ. For s = *e., the two matrices 1 [e~"¥/2(1+
s-a) + ¢*?/2(1 — s-0)] become diagonal with one of the two values e~*¥/2
and e*?/2 on the diagonal elements, and therefore transform & — e "¢/2,
&1 — £1"°/2. With £ — K = m, we obtain then &2~ K ¢ — emmeg2t=K el
such that the polynomials are really of degree m in the variable e~*#, which
can be identified with e*/27/N_ (This clearly shows that rotations around
the z-axis are special in that they do not mix the various polynomials, such
that each polynomial builds a one-dimensional representation. This is due
to the fact that the rotations around the z-axis build an abelian sub-group,
and representations of abelian groups are always one-dimensional. This is
simply a matter of choice of basis.) It is then possible to think of using the
various polynomials to describe the different ratios between the period of
the rotation of the electron and the period of the orbit, by identifying the
number ¢ + 1 (where ¢ is the degree of the polynomial) with the number
N in My, and by identifying the degree m with the number m in the ratio
(N +m)/N that links ¢ to ¢ in the relation ¢ = [(N £ m)/N Jp.t

6.2.8.7 Degree operators

As discussed in Subsection 3.10.5, the operators L. and L? have a mathe-
matical meaning that precedes any application of the mathematics to phys-
ical problems. These degrees have nothing to do with the tilt of a rotation
axis, even if this is at variance with what one might have anticipated, based

4The number N that is used here to specify M7, does not correspond at all to the
principal quantum number, which is traditionally noted as n in textbooks. But the
numbers ¢ and m, will correspond to the traditional corresponding quantum numbers.



Towards a Better Understanding of Quantum Mechanics 227

on the way physics textbooks present L by a vector model. For example,
the “coupling” of angular momenta is often pictured as vector summa-
tion, while in reality it corresponds to regrouping terms in tensor products,
based on the fact that all representations in terms of harmonic polynomials,
whatever their degree ¢, are based on tensor powers 2¢ of the same spinor
[€0,&1]T that just differ by the number 2/ used in the power.> The ratio
N/m will be independent from the tilt of the spin axis.®

6.2.8.8 Why we do not use covariant derivatives
in the hydrogen problem

We are dealing here with various polynomials of the same total degree ¢,
and different ratios between the orbital period N and the period of the
spin motion described by m. The essential point is that the number m €
[—¢,0] N Z. The differences in m (the expectation value of L,) between
two different polynomials are always integer. Remember that the formalism
deals with calculating products of rotations Ry o Ry. For a general rotation
Ry with rotation axis sy of a rotation Ry coded by a general spinor with
“spin axis” s1 # e,, the whole tensor of 2¢ + 1 polynomials will be linearly
transformed if s # e.. (The crucial point here is that s # e., not that
s1 # e,.) As this does not enter into consideration for the solution of the
Schrédinger equation for the hydrogen atom, this implies that the motion
is planar, and that the orbital rotation axis s, is fixed.

The representation matrix %[e™*/2(1 + s-0) + ?/3(1 — s-0)] of
a rotation remains diagonal if and only if s = e,. Hence, when the

5The identification of L. with an angular momentum operator is only valid for polyno-
mials from F(]R?’7 C) in the real-vector representation based on the stereographic projec-
tion discussed in Section 3.10. This operator truly works on particle coordinates (z,y, z)
introduced through the Lorentz transformation 7 = (¢t — v - r/c?) of the proper time.
Polynomials from F(C3, C) have nothing to do with particle coordinates, and the angular-
momentum operator L. = %%, where z would be a particle coordinate, can thus not be

defined for them. Only the more general meaning L. of a degree operator, where z € C
is the z-component of an isotropic vector, continues to exist for such polynomials, as
discussed in Subsection 3.10.5 and Section 12.2.

6Note that the symmetries with respect to a variable v are always expressed by an
operator %, Viz. % for time invariance, % for translational invariance, and % or %
for rotational invariance. The corresponding symmetry-adapted functions are always of
the type e’27kv? to obtain a periodicity that expresses the invariance. This is the reason
why quantum mechanics is “wave mechanics”. One of the goals of this book was to
elucidate the particle-wave duality by testing the idea that a particle is not a wave, and
that the wave functions are just a means to account for the symmetry.
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rotations are restricted to the Oxy-plane, the set of rotations considered
are restricted to an abelian subgroup. The representations become then
one-dimensional, and the group factorizes. The same will then apply to the
higher-dimensional representations based on tensor products. The set of
spherical harmonics of a representation will thus not transform as a tensor
under a rotation around the z-axis. Hence, we are working with the restric-
tion of the three-dimensional rotation group to two-dimensional rotations
in the orbital plane. As we are only rotating within the plane, the various
components of the tensor remain separate quantities, and can therefore be
treated as scalars, such that it is not necessary to consider the covariant
derivatives. The whole #-part of the wave function is therefore superfluous
at this level, but the representations of the three-dimensional rotation group
can be used nevertheless. The fact that harmonic polynomials are used as
scalars proves that the rotations considered are restricted to the plane.
This point also settles the apparent contradiction that resides in drawing
an analogy between a case with translational symmetry (which corresponds
to an abelian group) and the harmonic polynomials which have rotational
symmetry (and correspond to a non-abelian group).

6.2.9 Mathematical equivalence between the Bohr model
and the solution of the Schrédinger equation for the
hydrogen atom — tilted spin axis

6.2.9.1 Mathematical solution

As discussed, the way the two periods of the physical problem were identi-
fied with the numbers N and m needs justification. There are indeed two
problems with the approach taken up to now. The first is that when the
rotation axis of the electron is made to coincide with the z-axis, then its
spinor becomes [1,0]. This implies that all the terms &2~ % ¢ except the
one with K = 0 become zero.” It seems then futile to associate the cases

7One may note that this problem disappears if (0, 1,2) rather than (1,2,0) is taken
for the isotropic vector. This choice permits one to use the particle coordinates of the
Ozy plane within the isomorphism defined in Section 3.10. The problem of the wave
functions that become zero is actually solved by realizing that it is possible to move
on to a two-dimensional abelian description of the rotation group when the rotation
axis coincides with the z-axis. The spinors are then replaced by scalars, and the wave
functions defined in Subsection 6.2.8.5 can be used. In the three-dimensional formalism
the harmonic polynomials are obtained as (tensor) products of the spinor wave functions



Towards a Better Understanding of Quantum Mechanics 229

where the angular velocities of the electron spin around its axis and the
motion of the electron along its orbit are in a rational ratio with a wave
function with m # ¢. The second problem is that it seems arcane to claim
that the rotation axis of the electron would be always aligned with the
z-axis. These two problems solve each other mutually. It will be shown that
the approach also holds when the spin axis is tilted, i.e. when s; # e, (but
keeping the orbital axis so = e.). This will solve the problem of lack of
generality and also the issue that all components of the tensor except the
one for k = 0 would be zero. In fact, the case s; = e, is degenerate and
masks the true p-dependence. When s; # e, the k # 0 components of the
tensor will no longer be zero. The treatment of this case is less obvious; the
fact that the group is not abelian causes confusion.

When the electron is in orbital motion, the spin axis will co-move
because it is a true vector. Here, the revision of the definition of the spin
from the quantity n (spinning-sphere model) to s (spinning-top model),
discussed in Subsection 5.4.2, becomes crucial. Imagine the definition of
spin based on n had been maintained. The general form for a spinor
corresponding to a uniform rotation around n is ¥ = [cos(wt/2) —
mn, sin(wt/2), —1(ng + ) sin(wt/2)]7. When simultaneously a rotation
of an angle Q¢ around the z-axis is applied to this spinor, then the
second component will become e**/2 [ —(n,, + wn,)sin(wt/2)]. This kind
of reasoning would be dangerous relativistically, but let us consider it
non-relativistically. Using spherical coordinates, —(ng +n,) sin(wt/2) can
be rewritten as —1e'? sin @ sin(wt/2), and e**/2[ —a(n, +n,) sin(wt/2)] as
—1e{@H2/2) gin P sin(wt/2). The value of the term e (¢+24/2) in the latter
expression shows that the new spin axis is the initial spin axis rotated
around the z-axis by an angle of Qt/2 rather than Q¢. This nicely illus-
trates two points: (1) The rotation axis is not co-rotating because of the
factor 2 in the angles, showing that n does not behave as a vector. (2) A

with themselves. In the two-dimensional formalism, the wave functions are also obtained
by products of the wave functions with themselves, but these wave functions are now
scalars instead of spinors. This shows that the wave functions for the subgroup are not
obtained by blindly inserting the rotational parameters into the three-dimensional wave
functions. The new procedure used serves precisely to prevent obtaining only zero wave
functions. This change of wave functions accounts for the difference observed in the
wave functions used in the Schrodinger and the Dirac equations. It is a matter of the
dimension of the representation. After restriction of the motion to a plane, the rotation
group becomes commutative while the Lorentz group does not. The restriction of the
Lorentz group to a plane can thus not have a one-dimensional representation.
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spinor has to be rotated over 47 to come back to its starting position. But
as we use the notion that the spin axis should be s = e/, rather than n, the
spin axis that will be co-rotating as €/,

even more crucial in the discussion of Thomas precession.

is a true vector. This will become

6.2.9.2 Co-moving frames

By definition true vectors are co-rotating, and as the spin axis is a true
vector it will therefore co-rotate. The ideas can be easily visualized on the
rotating Earth. When you turn by 30 degrees around your vertical axis in
a room at ten o’clock, it will have the same final effect as when you do it at
eleven o’clock. When you rotate at ten o’clock, your rotation will be followed
by the rotation of the Earth during the lapse of time between ten and
eleven o’clock. When you turn at eleven o’clock, it will be preceded by this
rotation of the Earth. This shows why the rotation group is not commuting;
the rotations cannot be commuting within a fixed absolute frame because
the frame where they do commute is the co-moving frame. The rotations at
ten and at eleven o’clock are about an axis that has varied because it looks
constant in a relative, co-rotating frame. As this varying co-moving axis
is by definition not fixed within the absolute frame, the rotations cannot
commute within the absolute frame. If the rotation were made at eleven
o’clock about the “true” ten o’clock axis, the one that remains fixed within
the absolute frame, and which could clearly be identified by making a fixed
mark, the result would not be the same. The co-moving axis of rotation has
transformed as a vector as we have materialized it by associating it with
the vertical axis of your body, and it is therefore of the type €.

But from all this it can be seen that if the electron has made a 27 turn
around the orbit, then the orientation of its axis s will coincide again with
its original orientation, because the relative frame and the absolute frame
will coincide again. Therefore, it is still possible to write ¥ = 1)y @11 @1y =
e™ [1(0,0)®(0,0)®1 (0, 0)] at the special positions of the orbit considered
in the reasoning of Subsection 6.2.7.

From this proof it is obvious that L. has nothing to do with the ori-
entation of the spin axis. It has also nothing to do with the projection
of the orbital angular momentum onto the z-axis, as the orbital momen-
tum is aligned with the z-axis. It is related to a periodicity. It is a mea-
sure for the number of times the period of the spin goes into the true
total period of the combined motion, according to Chern’s theorem. The
quantum number m was defined in terms of a period also in Heisenberg’s
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initial paper. It would not make sense to relate it to a “quantized orien-
tation” of the spin axis. How could such a mysterious rotational disconti-
nuity possibly come out self-consistently of a mathematical formalism that
corresponds to the continuous rotation group SO(3)7 It would imply that
the mathematics are wrong! What can be understood perfectly, is that the
degrees N, m of a polynomial would be quantized quantities. That is true by
definition.

6.2.9.3  Degrees of polynomials and the paradozxical
“mutual incompatibility” of the operators L., Ly, L.
for the components of the angular momentum

The claim that the quantities £, m are only degrees of polynomials and that
they have nothing to do with the spin axis can be further justified. The
harmonic polynomials of total degree ¢ have been catalogued according to
their degree m in the variable €', where ¢, is an angle defined within
the Oxy-plane. In fact, e*™¢= is the common ¢.-part that can be factor-
ized out for polynomials of the type Y, cx (z +1y)™F(x —y)F2t-m=2F =
7t Py i (cos0,) e™?=. Here (r,0.,¢.) are the spherical coordinates. This is
useful for orbital motion restricted to the Ozy-plane. If one needed to
catalogue harmonic polynomials according to their degree in an analo-
gous variable €'+, where ¢, is an angle defined within the Oyz-plane,
it would be necessary to make first a change of basis. This would require
introducing a system of different spherical coordinates (r,6,, ¢,) wherein
x = cos b,y = rcosb, cos ¢y, z =1 cosbysin¢,. It would then be possible
to consider polynomials of the type Y, cx (y +12)™HF (y —12)kat—m=2F =
TePe,m(COS 0,)e"™ s of degree m in the variable e'?s. This would then be
useful for orbital motions restricted to the Oyz-plane. But in doing this we
would have introduced a different set of harmonic polynomials, i.e. a differ-
ent basis. The wave functions cannot have the same degree m. in e*® in all
their terms and the same degree m, in €'+ in all their terms at the same
time. The point is that there are various terms in the polynomial of degree
m. in e'?* and total degree ¢, which contain still different degrees in the
variables x +1y, © — 1y and z. Therefore, the operators L. and L, cannot be
used simultaneously. The operator L only makes sense as the value of the
operator L, within the (r, 0., . )-based basis. Within the basis defined with
(r,0.,¢.) the operator will not be able to project out a meaningful eigen-
value m, that would be the degree of a term ¢+ that could be factorized
out. In quantum mechanics it is argued that the operators L, and L. do not
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commute and therefore do not have simultaneous eigenvalues. But this does
not mean that the component of the orbital angular momentum along the
z-axis would not exist. This component does indeed exist and we know its
value: zero. The quantities that do not exist simultaneously are the degrees
m, and m, because they qualify basis vectors that belong to two differ-
ent bases corresponding to different reference frames. The classical physical
components L, and L, of the angular momentum are not the expectation
values of the operators L, and ﬂy They are zero for orbital motion in the
Ozy-plane, because the angular momentum is aligned with the z-axis.

6.2.9.4 Thomas precession and co-moving frames

Even with circular orbits, one may fear that the previous construction with
identical copies may break down in the relativistic case, because when the
spin axis €, and the normal to the orbit e, are not aligned, there may
be doubts that €, could remain fixed in the co-moving frame, due to the
Thomas precession (physical effect 3 in Subsection 6.2.5). But an under-
standing of Thomas precession shows that this fear is not justified. The
essence of Thomas precession is that the composition of two non-collinear
pure boosts is no longer a pure boost, but contains a rotation. Therefore,
four-vectors will also rotated. But of course, in the co-moving frame one
does not notice this rotation of the vectors. As the spin vector is a true
vector, it will therefore remain fixed in the co-moving frame.

The previous argument of commutativity in the co-moving frame will
still hold. This is the principle of relativity, which just corresponds to an
argument based on a similarity transformation in group theory; the group
looks the same all over.

Of course, the orientation of the spin axis in the lab frame will change.
But this can be accounted for by stipulating that what defines a true period
of the global system is that the spin axis must come back to its initial
position after a true period. It may thus be necessary to use a different
Riemann manifold with a different ratio of periodicities to that used in the
non-relativistic approach of the same orbit, but the general idea that two
periodicities must be adjusted remains the same. In reality, the problem is
solved abstractly: a certain set of quantum numbers is chosen, which comes
down to selecting a certain ratio. The orbits must then be reshuffled to keep
the same ratio, rather than reshuffling the quantum numbers to keep the
same orbit. The Lorentz contraction and time dilatation along the orbit
(physical effect 2) can then also be treated by the previous argument. The
situation will of course remain very obviously simple if s = e,.
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6.2.9.5 Degeneracy of the solutions for planar motion

The orbits treated up to now were thus planar. The use of the spherical har-
monics with the full three-dimensional symmetry is, however, instrumental
for understanding how they are linked together and for labelling them.
To make sure that the symmetry calculations are carried out correctly,
the couplings are calculated by constructing Yy ., = Yo, 445,mq+m, from
the set {Ye, my @ Yo, ms, fnzﬁizjmg within a three-dimensional approach.
This description can then be “cut” with a two-dimensional plane to
obtain the restriction to the two-dimensional subgroup, wherein L, +m, =
Ly, + Ly,. Coupling means here that a representation of higher dimension
Yo, +05,mq+m, 1s constructed from two representations of lower dimensions
Yo, m, and Yz, m,. This is possible as all representations of degree n’, (where
2n' € N can be odd), are constructed from tensor powers ®%"/ (&0, &1),
taking 2n’ identical copies of the basic spinor (£p,&1). This way, a better
insight into the relationships between the various polynomials is obtained.
An important point is that the labels (i.e. the quantum numbers) used to
denote the three-dimensional polynomials with the full spherical symmetry
do correspond to their restrictions to the plane, as the wave functions are
classified with respect to the values of (L, L.).

Within the restriction to the two-dimensional subgroup, the various
components of the tensor are degenerate and all have the same energy.
It is only when a magnetic field B is introduced that (in the traditional
interpretation of the formalism) the electron triad (or tetrad) starts to
undergo precession around the axis of B (for which one traditionally takes
the z-axis). The degeneracy is then lifted, and it becomes necessary to
rotate the whole tensor of 2¢ + 1 spherical harmonics to take into account
that the axis of rotation is no longer along the z-axis. Due to this linear
transformation, the various components of the tensor become mixed up; the
tensor is no longer diagonal in the frame wherein the rotation axis would be
the z-axis. One is then rea