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Preface 

The topic of the foundations of quantum mechanics has a vast and very 
interesting literature and a great many papers and books have been 
written about the difficulties of interpreting quantum mechanics, in 
general, and the wavefunction, in particular. I will not make any attempt 
to review this literature since it stands on its own. One of the relatively 
most active modern periods was in the 1960s and 1970s and especially 
from 1973 to around 1979. 

Quantum mechanics can only present the probability of a particle 
being found in any given region of spacetime. This raises the question of 
whether the position of a discrete particle can in principle only be 
predicted statistically by quantum mechanics or, whether the formalism 
of quantum mechanics applies not to a single particle, but rather to an 
ensemble of identical systems. The various approaches to interpreting  
the mathematics of quantum mechanics are motivated by somehow 
attempting to maintain our ideas about a classical particle in the context 
of the quantum world as found in nature.  

This has led to great confusion not only among those approaching 
quantum mechanics for the first time, but also for those who have used 
the formalism to perform highly successful calculations for many years. 
In the end, it is the historical approach to the teaching of quantum 
mechanics that could be the root of the problem. Those brave enough to 
try and understand the conceptual foundations of quantum mechanics 
when being taught from this perspective, and often discouraged from 
doing so by the apocryphal advice given by many physicists to “ignore 
the issue and just calculate”, are generally left in a state of cognitive 
dissidence well expressed by the adaptation of a cartoon drawn by an 
anonymous artist that appeared, in a completely different context, in a 
government sponsored report from the mid-1980s, shown below.  
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A poor soul who tries to understand the foundations of quantum 
mechanics after being taught the subject using an historical approach. 

It is hoped that this book can relieve some of the dismay, frustration, 
and confusion so well expressed by this cartoon. 
 

Gerald E. Marsh
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Introduction 

The statistical interpretation of the wavefunction, 𝜓, is due to Max Born 
who, in his 1954 Nobel prize acceptance speech, ascribed his inspiration 
for the statistical interpretation to an idea of Einstein’s. Here is the 
relevant quote from Born’s speech: “He had tried to make the duality of 
particles — light quanta or photons — and waves comprehensible by 
interpreting the square of the optical wave amplitudes as probability 
density for the occurrence of photons. This concept could at once be 
carried over to the 𝜓-function: |𝜓|ଶ ought to represent the probability 
density for electrons (or other particles).” 

Einstein, in a December 1926 letter to Max Born, speaking of the 
“secret of the Old One,” said that he was “convinced that He does not 
throw dice.” And when Philipp Franck pointed out to Einstein, around 
1932, that he was responsible for the idea because of papers he published 
during his annus mirabilis in 1905, Einstein responded that “Yes, I may 
have started it, but I regarded these ideas as temporary. I never thought 
that others would take them so much more seriously than I did.” Later, 
Einstein put it this way to James Franck: “I can, if the worse comes to the 
worst, still realize that the Good Lord may have created a world in which 
there are no natural laws. In short, a chaos. But that there should be 
statistical laws with definite solutions, i.e. laws which compel the Good 
Lord to throw the dice in each individual case, I find highly disagree-
able.”  

Einstein was not alone in being uncomfortable with the statistical 
nature of quantum mechanics and since then the vast literature that has 
appeared on the foundations of quantum mechanics was driven at least in 
part by an attempt to come to terms with the unusual and counterintuitive 
features inherent in the subject.  
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There were many attempts in the past to find hidden variables to 
avoid the statistical interpretation of the wavefunction, and there was 
even an informal monthly set of briefs called the Epistemological Letters 
put out by the Association F. Gonset or Institut de la Methode, which was 
distributed to, and contained theoretical correspondence from, some 100 
prominent people in the field. In particular there was much discussion of 
Bell’s theorem,1 which ruled out the possibility of hidden variables, by 
Bell and others. I mention this in particular since those studying this 
period may not be aware of the past existence of this “Symposium”, and 
it would be a very valuable resource for those working in the history of 
this area. Those who nonetheless choose to pursue the issue of hidden 
variables will sooner or later come across a poem written on the subject 
by Abner Shimony for a conference in the early 1970s (a Google trans-
lation for the poem is included below):2 
  

 
1 J.S. Bell, “On the Einstein Podolsky Rosen Paradox,” Physics 1 (1964), 195–200; for a 
review of the subject, see: J.S. Bell, “On the problem of hidden variables in quantum 
mechanics,” Rev. Mod. Phys. 18 (1966), 447. 
2 B. d’Espagnat (ed.), Foundations of Quantum Mechanics (Proceedings of the Interna-
tional School of Physics “Enrico Fermi”, course 49), Academic Press, New York, 1971, 
pp. 56–76. 
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Tout le monde cherche les variables cachées 
Hélas, avec quel insuccès! 
Elles sont timides, elles sont petites, 
De courte durée, toujours en fuite. 
Elles sont partout en déguisement, 
Empruntant bien des vêtements 
Aux particules élémentaires. 
Pour décider ce qu'on doit faire, 
Une assemblée de quarante mille 
Savants se tient à Célesteville. 
«Haute énergie!» Rataxès crie, 
«Pour pénétrer le dernier nid 
De créatures si décevantes.» 
«Hourrah! les rhinoceros chantent, 
«Agrandissons les cyclotrons!» 
Babar pourtant conseille: «Non, 
La nature ouvre sa richesse 
Non par force, mais par finesse. 
On verra les variables cachées 
Aux rayonnements polarisés.» 
«Il a raison», dit Gregory, 
Et la vieille dame fièrement sourit. 
Toute l'assemblée acclame son plan 
Et autorise avec élan 
Un projet international, 
Créant le centre mondial 
Des appareils ingénieux. 
Les techniciens méticuleux 
Olur et Hatchibombotar 
Sous la conduite de Babar, 
Commencent la grande expérience. 
Pour en connaître les conséquences 
Variables cachées, oui ou non 
Lisez la prochaine livraison. 

Everyone is looking for the hidden variables 
Alas, with what failure! 
They are shy, they are small, 
Short lived, always on the run. 
They are everywhere in disguise, 
Borrowing many clothes 
Elementary particles. 
To decide what to do 
An assembly of forty thousand 
Savants is held in Célesteville. 
“High energy!” Rataxès cries out, 
“To penetrate the last nest 
Such disappointing creatures.” 
“Hurray! the rhinoceros are singing, 
“Let’s make the cyclotrons bigger!” 
Babar, however, advises: “No, 
Nature opens up its wealth 
Not by force, but by finesse. 
We will see the hidden variables 
Polarized radiation.” 
“He’s right,” says Gregory, 
And the old lady proudly smiles. 
The whole assembly applauds his plan 
And emphatically authorizes 
An international project, 
Creating the world center 
Ingenious devices. 
Meticulous technicians 
Olur and Hatchibombotar 
Under the leadership of Babar, 
Begin the great experiment. 
To know the consequences 
Hidden variables, yes or no 
Read the next issue. 

 
There was no next issue and hidden variables were soon ruled out as 

a possibility. Babar the elephant first appeared in a French children’s 
book written in 1931 by Jean de Brunhoff. The tale was made up and told 
to their children by Brunhoff ’s wife Cécile. Célesteville was the capital 
of Babar’s kingdom where Olur was a mechanic and Hatchibombotar a 
street cleaner. Lord Rataxès, a rhinoceros, is the monarch of Rhinoland in 
Babar’s kingdom. 

While fully consistent with the usual quantum mechanics, a 
different interpretation of the wavefunction will be offered here. The 
classical conception of a point particle is replaced with one consonant 
with the quantum world. 
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Chapter 1 

The Photon: History of a 
Misrepresentation 

The Schrödinger equation describes the wave nature of matter and 
Schrödinger’s approach had its origin in the works of Louis de Broglie, 
which will be discussed shortly. The solutions to this differential 
equation describe the motion of a particle and solving it gives the 
wavefunction 𝜓 associated with the particle. The value of 𝜓 is a function 
of the location in space and time chosen to evaluate it and the square of 
its modulus is conventionally interpreted to be a probability density 
which, when integrated over a volume, gives the probability of a particle 
being found in the volume of integration. 

It is very important to realize that the wave properties of particles 
described by the Schrödinger wavefunction have nothing to do with waves 
that carry energy such as electromagnetic, acoustic, or water waves.  

Consider electromagnetic radiation. The experimental situation is that 
light, or any electromagnetic radiation, displays a particle nature in that 
Einstein’s photoelectric effect shows that it is composed of “photons”. 
And this is where confusion often begins. The term “photon” is often 
taken to mean that electromagnetic radiation is composed of individual 
particles called photons.  

What is true is that the radiation is composed of discrete energy 
packets whose magnitude is determined by their frequency. Intense radia-
tion has enormous numbers of these packets, while the minimum energy 
that can be radiated is a single packet of energy 𝐸 = ℎ𝜈, where ℎ is 
Planck’s constant1 and 𝜈 the frequency of the wave. In short, the photon 
is not a particle! 

 
1 In 1900 Max Planck introduced the idea that the emission and absorption of radiation by 
matter takes place in finite quanta of energy, while Einstein, in 1905, maintained that this 
was an inherent property of radiation itself. 
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What picture does this bring to mind, for example, for radio waves? 
Consider the simplest case of dipole radiation. The wave pattern is 
composed of a vast number of photons, which are in phase with each 
other and each having an energy ℎ𝜈. Because the individual photons are 
generated from electrons with slightly different energies, the radiation 
has a bandwidth. Some of the radiated photons (a very large number) 
interact with the electrons in an antenna, thereby producing a detectable 
current.  

It was Einstein who introduced the idea of a photon in an attempt  
to deal with the wave-particle dilemma early in the history of quantum 
mechanics. To quote Leon Rosenfeld, Einstein made the qualitative 
suggestion “that the photons, or the light quanta as they were called then, 
were some kind of singularity, of concentration of energy and momentum 
inside a radiation field. The radiation field would so to speak guide the 
photons in such a way as to produce also the interference and diffraction 
phenomena . . .” This confused interpretation of a photon as a particle 
continues to this day. For massive particles, Einstein’s suggestion of 
guidance is also found in the de Broglie–Bohm interpretation of quantum 
mechanics. 

The problems raised by the concept of the photon are beautifully 
described by M. Sachs. Henri Bacry quotes him in his book Localiza-
bility and Space in Quantum Physics in the Lecture Notes in Physics 
series: 

“A very old, yet unresolved problem in physics concerns  
the basic nature of light . . . Still, logical dichotomy and 
mathematical inconsistency remain in the usual answers to 
the question: What, precisely, is light?” [And a few pages 
later he discusses the conceptual difficulties.] “. . . a single 
photon, which, by definition, has a precise energy, is 
described mathematically in terms of a plane wave — a 
function that has an equally weighted value at all points in 
space at any given time. With this description, then, one 
would have to say that the single photon is everywhere, 
rather than somewhere — although it can be annihilated 
somewhere by looking for it at that particular place! Along 
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with this spatial description of the single photon, it is 
specified to be continually traveling at the speed of light. To 
the (perhaps naïve) inquirer, the logical difficulty appears in 
trying to answer the question: if the photon is everywhere at 
the same time, and is traveling continually on its own at the 
speed of light, where is it going to?” 

And with regard to where the photon is, one can do no better than to 
again quote Henri Bacry:  

“The photon is not localizable! It is not exaggerate [sic]  
to say that almost every physicist knows this fact but does 
not care. A position operator is not an important object. The 
important operators in quantum physics are the energy,  
the linear and angular momenta. The spectroscopist, what-
ever is his field (particle, nuclear or atomic), is not con-
cerned with position! The position operator is only for 
students and, more precisely, only for beginners in quantum 
mechanics . . . and for people interested in the sex of the 
angels, this kind of people you find among mathematical 
physicists, even among the brightest ones as Schrödinger or 
Wigner . . .” 

One does not need to know the details of position operators to understand 
the point of this quote!  

Newton and Wigner2 and Pryce3 have given thorough discussions of 
position operators. It is the spin that is responsible for the photon’s 
nonlocalizability; if the photon had spin zero, it would be localizable. 
Newton–Wigner derive an expression for the position coordinate for 
arbitrary spin, but for spin ½, it agrees with Pryce who defines the center 
of mass in coordinates where the coordinates taken in pairs have van-
ishing Poisson brackets. In such a frame, the total momentum vanishes, 

 
2 T. D. Newton and E. P. Wigner, “Localized states for elementary systems,” Rev. Mod. 
Phys. 21 (1949), 400–406. 
3 M. H. L. Price, “The mass-centre in the restricted theory of relativity and its connexion 
with the quantum theory of elementary particles,” Proc. Roy. Soc. 195A (1948), 62. 
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and the center of mass is at rest — a result that is frame dependent. Note 
that the center of mass of a single particle is the same as the position of 
the particle. Pryce concludes, “From the point of view of relativistic 
quantum mechanics the only ‘position vector’ that has much interest is 
the one which is relativistically covariant . . . The fact that its components 
do not commute leads to an uncertainty in the simultaneous measurement 
of order ℏ/𝑚𝑐.” Or, as put by Bacry, “either it is impossible to measure 
any coordinate, that is, there is no position operator, or the position 
operator has three non-commuting components.” In particular, massive 
particles with spin can be localized to a minimal uncertainty in one frame 
of reference, but in another frame, it will not be localized — localized 
states are not transformed into localized states under Lorentz trans-
formations. 

It might be useful to note here that the radiation field pattern or 
wavefunction of a single “photon” has a transverse character and related 
spin that is responsible for its nonlocalizability. As discussed earlier, this 
was shown historically by Newton and Wigner. They also found that 
localized states do exist for both massive and massless particles if their 
spin is zero. For massive particles that have spin, while a state can be 
localized for one observer it is not necessarily localized for another.  
As mentioned earlier, localized states are not transformed into localized 
states under a Poincaré transformation.  

Does the photon really have a wavefunction associated with it, like 
massive particles? Perhaps somewhat surprisingly the answer is that it 
does and that its wavefunction can be used to show that the photon also 
displays the phenomenon of zitterbewegung or “trembling motion”. It 
can be shown4 that the photon wavefunction is given by 𝑖ℏ𝜕௧𝜓 = ∓𝑐൫𝑆 ∙ 𝑝⃗൯𝜓 . 
 

 
4 See my book An Introduction to the Standard Model of Particle Physics for the Non-
Specialist (World Scientific, New Jersey, 2018), p. 124. Also: Zhi Yong Wang, Cai-Dong 
Xiong, and Qi Qiu, “Photon wave function and zitterbewegung,” Phys. Rev. A 80 (2009), 
032118; arXiv:0905.3420 [quant-ph]. 
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Here 𝜓 is a three-component spinor whose components 𝑆௜  are scalar 
functions. The Hamiltonian for the photon is then ∓𝑐൫𝑆 ∙ 𝑝⃗൯. For positive 
energy, one chooses the positive sign, which corresponds to positive 
helicity. The 𝑆௜ turn out to be pure imaginary so that sign reversal corre-
sponds to complex conjugation. 

That the photon, a familiar electromagnetic wave, perhaps surpris-
ingly displays zitterbewegung means that the phenomenon can be dis-
associated from the conception of a point particle. For massive particles, 
it is generally thought to be due to interference between negative and 
positive frequency states as was originally proposed by Schrödinger. 

Kobe5 has shown that for a single photon, which satisfies a rela-
tivistic analog of the Schrödinger equation, a velocity operator can be 
defined that has the photon moving with a constant velocity 𝑐 and 
exhibiting an oscillation orthogonal to the photon’s momentum with an 
amplitude approximately equal to the classical wavelength. This is iden-
tified as the photon’s zitterbewegung and the spin of the photon is the 
associated orbital angular momentum. 

 
5 D. H. Kobe, “Zitterbewegung of a photon,” Phys. Lett. A 253 (1999), 7–11. 
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Chapter 2 

The Concept of a Particle* 

What is a particle? We all know that the concept of a particle comes from 
Democritus’ idea of atoms. His conception, and what today we would 
call Brownian motion, was related by Lucretius to the origin of all 
motion in his poem On the Nature of Things (50 B.C.E.): 

Whence Nature all creates, and multiplies 
And fosters all, and whither she resolves 
Each in the end when each is overthrown. 
This ultimate stock we have devised to name 
Procreant atoms, matter, seeds of things, 
Or primal bodies, as primal to the world. 

  • • • 

For thou wilt mark here many a speck, impelled 
By viewless blows, to change its little course, 
And beaten backwards to return again, 
Hither and thither in all directions round. 
Lo, all their shifting movement is of old, 
From the primeval atoms; for the same 
Primordial seeds of things first move of self, 
And then those bodies built of unions small 
And nearest, as it were, unto the powers 
Of the primeval atoms, are stirred up 

 
* A small portion of this chapter also appears in an appendix of my book An Introduction 
to the Standard Model of Particle Physics (World Scientific, NJ, 2018) 
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By impulse of those atoms’ unseen blows, 
And these thereafter goad the next in size; 
Thus motion ascends from the primevals on, 
And stage by stage emerges to our sense, 
Until those objects also move which we 
Can mark in sunbeams, though it not appears 
What blows do urge them. 
 

With a little license, Lucretius’ “Procreant atoms, matter, seeds of things, 
Or primal bodies, as primal to the world,” formed the basis of physical 
thought until quite late into modern times. In the ancient world, however, 
while it was accepted there might be different kind of atoms, the number 
of types was small and sometimes related to geometrical shapes. The 
advent of modern chemistry and spectroscopy in the 19th century began 
the formation of the current understanding of the nature of atoms. 

Science up until the beginning of the 20th century could be traced 
back to its ancient Greek origins beginning perhaps in the sixth century 
B.C. Its evolution became what is known as the classical view of the 
world, and in particular, of physics. It also forced physicists, in partic-
ular, to learn a great deal more mathematics. But the use of sophisticated 
mathematics to describe the world raises some fundamental issues. 

Mathematics studies the relations between arbitrarily defined 
abstract entities restricted only by the requirement that the definitions not 
lead to a contradiction. Mathematics now plays an enormous role in 
describing the physical universe, in general and in theoretical physics, in 
particular. But care must be taken since what may be true in mathematics 
is not necessarily a true reflection of the physical universe. If one can 
identify some of these “abstract entities” with elements of reality, then 
the mathematical relationships between the mathematical entities may 
contribute to an understanding of the physical interactions between these 
elements of reality with which the abstract entities are identified.  

Consider complex numbers. There is nothing in the physical world 
to directly suggest that complex numbers would be useful in under-
standing the real world. Yet, we find, for example, that a complex Hilbert 
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space along with a Hermitian1 scalar product can be used to formulate 
two basic concepts in quantum mechanics: quantum states and 
observables. The quantum states are vectors in this Hilbert space and the 
observables are self-adjoint operators on these vectors.  

Here is some history: The use of Hilbert space dates back to  
von Neumann. Max Jammer2 has given an axiomatized presentation of 
von Neumann’s approach, which incorporates Born’s probabilistic 
interpretation of the wavefunction. Von Neumann originally assumed that 
there was a one-to-one correspondence between observables and self-
adjoint operators. This was later abandoned in 1952 when G. C. Wick,  
E. P. Wigner and A. S. Wightman discovered the existence of “super 
selection rules”. These restrict the set of self-adjoint operators that 
correspond to physically realizable states. When this is the case, it 
implies that the relevant Hilbert space decomposes to a direct sum of 
orthogonal subspaces.  

The point of all this is to emphasize that how one interprets or maps 
elements of mathematical structures — particularly quantum mechanical 
ones — into the real world is far from trivial. The nature of space, time, 
and matter, as they are now understood, is very different from that of the 
classical world and it is these differences that lead to the difficulty in 
interpreting quantum mechanics.  

The beginning of the 20th century brought with it two great revolu-
tions in physics both due to Albert Einstein. The first was special rela-
tivity to be followed later by general relativity or the theory of gravity; 
the second was quantum mechanics initiated by Einstein’s discovery of 
the photoelectric effect. The attempts to reconcile quantum mechanics 
with concepts brought over from classical mechanics has led to an 
enormous literature on the foundations of quantum mechanics and much 
confusion especially among non-physicists and students of physics. As 
mentioned in the Preface, this is due to the historical approach to 
teaching the subject coupled with the understandable struggle to carry 
over the basic concepts of particle and wave from classical physics.  

 
1 This is also spelled Hermitean by some authors. 
2 M. Jammer, The Philosophy of Quantum Mechanics (John Wiley & Sons, New York, 
1974). 
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Today, it is believed that the elementary building blocks of matter 
are leptons and quarks, all of which are called fermions and obey the 
Dirac equation for a particle of spin of ½. In addition, there is electro-
magnetic radiation carrying a spin of 1. Lucretius’ understanding of 
atoms has been carried over into the modern conception of “particle” 
although the basic fermions are thought to be “structureless” or “point” 
particles. Nonetheless, there have been many attempts to construct 
“classical” models for the electron.  

Examples of attempts to maintain the concept of a point particle are 
the de Broglie–Bohm interpretation of quantum mechanics and the work 
of David Hestenes.3 But retaining the idea of a massive charged point 
particle requires that both mass and charge be renormalized, a process 
that has never rested comfortably with many physicists.  

The greatest challenge to the ancient idea of a particle came from 
the work of Louis de Broglie, who introduced in 1924 the idea that each 
particle had associated with it an internal clock4 of frequency 𝑚଴𝑐ଶ/ℎ. 
From this idea he found his famous relation showing particles of matter 
were associated with a wave. He did not believe a particle like the 
electron was a point particle, but rather that the energy of an electron was 
spread out over all space with a strong concentration in a very small 
region: “L’électron est pour nous le type du morceau isolé d’énergie, 
celui que nous croyons, peut-être à tort, le mieux connaître; or, d’après 
les conceptions reçues, l’énergie de l’électron est répandue dans tout 
l’espace avec une très forte condensation dans une région de très petites 
dimensions dont les propriétés nous sont d’ailleurs fort mal connues.”5 
[Here is a rather free translation: The electron, we believe, perhaps 
wrongly, is known to us as an isolated piece of energy; but the energy of 
the electron is generally conceived to be spread throughout all of space 
with a very strong condensation in a region of very small dimensions, the 
properties of which are besides very little known to us]. 

 
3 D. Hestenes, “The zitterbewegung interpretation of quantum mechanics,” Found. Phys. 
20 (1990), 1213–1232; “Electron time, mass and zitter,” available on-line; “Zitterbewe-
gung in quantum mechanics—a research program,” arXiv:0802.2728 [quant-ph] 2008. 
4 This “internal clock” is also built into the Dirac equation. 
5 L. de Broglie, Recherches sur la Théorie des Quanta (Masson & Cie, Paris, 1963). 
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The concept of a wave being associated with the motion of elemen-
tary particles was introduced by de Broglie in his 1924 publication 
“Recherches sur la Théorie des Quanta.” The hypothesis that matter as 
well as light have a wave-particle duality, and that this is a general 
property of microscopic particles, originates with him. What we call the 
wavefunction was called by de Broglie an “onde de phase” or a phase 
wave. It is a consequence of the relation 𝐸 = ℎ𝜈. He also makes it clear 
that this wave cannot transport energy: “qu’il ne saurait être question 
d’une onde transportant de l’énenergie.”  

Notice that de Broglie first says that the energy of the electron is 
diffused throughout space and in the second quote that it is not a question 
of a wave that transports energy. Both cannot be true since any localiza-
tion of the electron by an interaction means that the wavefunction must 
collapse to the local region of space where the localization took place. 
This essentially occurs instantaneously so that if the energy was diffused 
throughout all space, collapsing the wavefunction means energy would 
have to propagate faster than the speed of light. This problem led to the 
vast literature associated with the “collapse of the wavefunction,” which 
is required in some interpretations of the wavefunction and not in others 
such as the many-worlds or ensemble interpretations.  

Historically the root of the difficulty is the concept of electron 
waves where one makes an analogy with electromagnetic waves and 
constructs electron wave packets.6 There, one sets the group velocity 𝑣௚ = 𝜕𝜔/𝜕𝑘 to be the classical particle velocity, and the phase velocity  
is 𝑣௣ = 𝜔/𝑘. In a non-dispersive medium, such as a vacuum, the angular 
frequency is proportional to the wave number so that the group and phase 
velocities are the same and equal to 𝑐. If the medium is normally dis-
persive, a small increase in wavelength results in an increase in phase 

 
6 For physicists, the idea of a wave packet comes from electrodynamics where, by use of 
a Fourier integral, one can superimpose waves that are plane-wave solutions to the wave 
equation derived from the source-free Maxwell equations. The derivation does not 
depend on the waves being electromagnetic in nature and the wave packets formed also 
apply to de Broglie “matter waves.” The use of the term “matter waves” is unfortunate 
since it gives the impression that the waves carry energy. A clear exposition of the sub-
ject is given in J. D. Jackson Classical Electrodynamics (John Wiley & Sons, New York, 
1999), 3rd Ed. Sect. 7.8.  
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velocity and the energy propagation is approximately the group velocity, 
which remains less than the phase velocity. If the dispersion is anom-
alous, this is no longer true and group velocity can exceed phase velocity. 

In essence, the concept of electron wave packets should be rejected. 
An alternative conception of the wavefunction and its role in the motion 
of an electron is given in Chapter 4 titled Matter and its Motion.  

There is some historical support for not relying on wave packets in 
the literature. In 1929 Mott7 used the example of 𝛼-decay to show how 
the path in a Wilson cloud chamber due to 𝛼-decay need not involve the 
introduction of wave packets to explain the tracks observed. The problem 
is that the 𝛼-particle is represented as “a spherical wave which slowly 
leaks out of the nucleus.” So how is a straight track produced by an ex-
panding spherical wave? Intuitively, one would expect the wave to ionize 
gas atoms at random locations in the cloud chamber. His answer was that 
one must “consider the 𝛼-particle and the gas together as one system.” 
He does this by defining the wavefunctions not in three-dimensional 
space but rather the multidimensional space formed by the coordinates of 
the 𝛼-particle and those of the atoms making up the gas. Mott does the 
calculations for two atoms, enough to establish the direction of the track. 
In the process, one need not consider the 𝛼-ray to be a particle at all. It is 
important to note that the direction of the track cannot be determined. 

Let us return to the issue of the de Broglie phase wave. Its wave-
length is given by the formula 𝜆 = ℎ/𝑝, where 𝜆 is the wavelength, 𝑝 is 
the particle’s momentum (mass times its velocity) and ℎ is again Planck’s 
constant. Notice that for 𝑝 = 0, the wavelength is infinite, which implies 
that there is no oscillation and thus no phase wave.8 What this tells us  
is that de Broglie’s phase wave is related to a particle’s motion through 
space and time. Wavefunctions describe how particles can travel through 

 
7 N. F. Mott, “The wave mechanics of 𝛼-ray tracks,” Proc. Roy. Soc. A126 (1929), 79–
84; an analysis of this paper including a proof of Mott’s result has been given by R. 
Figari and A. Teta in a SpringerBriefs in Physics volume titled Quantum Dynamics of  
a Particle in a Tracking Chamber (Springer, 2014).  
8 The discussion here excludes relativistic effects. A relativistic formulation would show 
that when a particle is stationary, it has a frequency of oscillation associated with it called 
the zitterbewegung, which de Broglie thought of as the inherent frequency of the electron. 
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space from one moment to the next and this motion is not deterministic, 
as it is in classical physics. 

The connection of the phase wave with motion can also be seen by 
keeping in mind that since material particles have mass, special relativity 
tells us that we can always choose a frame of reference where the particle 
is at rest; i.e., we can catch up with a moving massive particle so that it is 
at rest with respect to us. This means that in one frame of reference, the 
particle has an associated phase wave while in another it does not. This is 
not the case for a wave carrying energy like electromagnetic radiation. 
There the velocity of propagation is the velocity of light and special 
relativity tells us that we cannot catch up with the wave and make it stop.  

The historical gyrations on the meaning of the Schrödinger wave-
function are derived from the experimental fact that the quantum world, 
as captured in the wavefunction or other equivalent formulations, cannot 
be explained in terms of the classical concepts of a particle or wave. In 
trying to understand the meaning of the wavefunction, the first question 
that should be asked is whether it represents a single system or an 
ensemble of systems; i.e., does the wavefunction apply to the motion of a 
single particle or does it represent the relative frequencies resulting from 
measuring an ensemble of identically prepared systems. If one holds that 
the first is true, then there is the question of whether the wavefunction is 
a complete description of the system, raising the possibility that there 
may be unknown or hidden variables that could be specified to make the 
results consistent with the classical world. By now, as mentioned in the 
Preface, it has been established both theoretically and experimentally that 
the possibility of hidden variables can be ruled out by Bell’s theorem. 
Bell’s theorem basically deals with the concept of what is now known as 
entanglement, where the state of two quantum particles is correlated.  

The second possibility, suggested and supported by Einstein, is that 
Born’s statistical postulate should be accepted but interpreted so that the 
wavefunction applies to an ensemble of systems — an idea that others 
further developed. Louis de Broglie also introduced another idea where 
the wavefunction could be considered as a kind of “pilot wave” that 
guides an essentially classical particle into regions where the wave-
function is large. This concept was further developed by David Bohm, 
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culminating in his by now classic papers that appeared in 1952. How-
ever, the de Broglie–Bohm theory has never been fully accepted by the 
scientific community.  

Ultimately, we must accept the fact that an “elementary particle”  
is not a “particle” in the sense of classical physics; rather it is some  
form of spacetime excitation that can be localized through interactions, 
and yet — even when not localized, inherently obeys all the relevant 
conservation rules and implicitly retains “particle” properties such as 
mass, spin, and charge. This conception is a radical departure from the 
classical physics notion of a particle, which itself derives from our 
everyday perceptions and experience.  

In what follows I will continue to use the word “particle” rather 
than make up a new word for the spacetime excitation corresponding to 
the “particle” for reasons of brevity, but this should be understood to be 
“particle” in quotes. 

Even the name “elementary particle” is deceptive; perhaps “ele-
mentary excitation”, or some such phrase, would pedagogically lead to 
less confusion. Instead, one is introduced to the concept of the “wave-
particle duality”. The problem is due to the use of ordinary language in 
trying to describe the quantum world. Max Born in his 1957 book Atomic 
Physics, put it this way: “The ultimate origin of the difficulty lies in the 
fact (or philosophical principle) that we are compelled to use the words 
of common language when we wish to describe a phenomenon, not by 
logical or mathematical analysis, but by a picture appealing to the 
imagination. . . . Every process can be interpreted either in terms of 
corpuscles or in terms of waves, but on the other hand it is beyond our 
power to produce proof that it is actually corpuscles or waves with which 
we are dealing, for we cannot simultaneously determine all the other 
properties which are distinctive of a corpuscle or of a wave, as the case 
may be.” Born’s use of the word “interpreted” should be taken to mean 
what can actually be measured in an experiment. The attempt to interpret 
quantum phenomena in terms of classical concepts should be eliminated 
in pedagogy and the dual nature of the excitations of spacetime that 
correspond to elementary particles be taught from the first introduction 
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of atoms in elementary school and the “solar system” model of the atom 
be eliminated at all educational levels.  

The concept of “spin” is also a carry-over from classical mechanics 
to quantum mechanics of the concept of angular momentum like that of  
a spinning top. But unlike classical mechanics where angular momentum 
can take continuous values, in quantum mechanics, angular momentum 
is quantized so that, for example, spin angular momentum (the intrinsic 
angular momentum of a particle) can only take half-integral values  
(that is, 0, ½, 1, . . . , where these values are in units of ℎ/2𝜋).  

One should not think of spin as the rotation of an elementary 
particle. As put by Born, “. . . the idea of a rotating electron, extended  
in space, possesses merely heuristic value; we must be prepared, on 
following out these ideas, to encounter difficulties. (For instance, a point 
at the surface of the electron would have to move with a velocity greater 
than that of light, if such values as have been determined experimentally 
for angular momentum and magnetic moment are to agree with those 
calculated by the classical theory.)” The heuristic value may have existed 
in the past, but today it is associated with the historical approach to 
teaching quantum mechanics and may introduce more confusion than 
insight. 

And, in addition, there is the Pauli exclusion principle: While any 
number of integral spin particles can occupy the same quantum state, 
only two half-integral spin particles can occupy the same state, and then 
only if their spin is opposed. Thus, only two electrons can occupy the 
same state in atoms; this, coupled with the indistinguishability of elec-
trons, is responsible for the existence of atoms and the periodic table of 
the elements. Put another way, the quantum numbers of two or more 
particles with half-integral spin cannot be the same.  

Think of a single atom. Its nucleus is localized by the continuous 
interactions of its constituent components mediated by what is known as 
the strong force, distinguishing it from electromagnetic and other forces. 
The electrons surrounding it are localized by their interactions with the 
nucleus and each other, but only partially, up to the appropriate quantum 
numbers that describe stable atomic states as a function of distance from 
the nucleus and total angular momentum and its possible projections 
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along the direction of a magnetic field, if one is present. One cannot 
localize electrons to definite positions in their “orbits” — that being yet 
another classical concept that does not apply to atoms. Two electrons 
cannot have the same 𝑛, 𝑙, 𝑗, and 𝑚 quantum numbers.9  

In general, the motion of a subatomic particle through space should 
be thought of as a sequential series of localizations along the particle’s 
path due to interactions. It is not possible to define a continuous path in 
the sense of classical mechanics, only a series of “snapshots.” Between 
localizations due to interactions, an elementary particle does not have a 
specific location. This is not a matter of our ignorance; it is a funda-
mental property of quantum mechanics; again, an “elementary particle” 
is not a “particle” in the sense of classical physics. One should not think 
of the particle existing between localizations due to interactions — there 
is no “classical little ball” being carried along by the de Broglie phase 
wave! To reiterate again: A particle is a spacetime excitation that can 
only be localized through interactions and which is characterized by its 
measurable “particle” properties such as mass, spin, and charge. The real 
mystery here is the nature of spacetime itself that allows such excitations 
to exist and have the properties they do. 

One might think that the relationship between the classical Poisson 
bracket and the quantum mechanical commutator might shed some 
additional light on the transition from the classical world to the quantum 
mechanical one. If so, it is not obvious. 

It is generally thought that the relation between classical and quan-
tum mechanics is characterized by “letting ℏ go to zero.” For example, a 
standard problem in textbooks is to show that limℏ→଴ 1𝑖ℏሾ𝐴,𝐵ሿ = {𝐴,𝐵} , (1)

 
9 In an atom, an individual electron may be characterized by four quantum numbers:   𝑛 = 1, 2, . . . ;  𝑙 = 0, 1, 2, . . .𝑛 − 1; 𝑗 = 1 − 1/2,  1 + 1/2; 𝑚 = −𝑗, −𝑗 + 1,  . . . + 𝑗. 𝑛 is 
known as the principal quantum number and is related to the distance from the nucleus;  𝑙 is the angular momentum around the nucleus (orbital angular momentum); and 𝑗 is the 
total angular momentum of a single electron, which combines its orbital angular 
momentum with its spin angular momentum. The quantum number 𝑚 exists if a magnetic 
field is present, and designates the possible projections of 𝑗 in the direction of the field. 
The details of the quantum numbers are not important for what follows. 
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where ሾ𝐴,𝐵ሿ is the commutator and {𝐴,𝐵} the Poisson bracket. This 
relationship applies independent of mass.  

Note that the left-hand side of this equation, the commutator, is an 
operator on a Hilbert space and the right-hand side is a function.10 It 
holds for most operators provided the Poisson bracket is considered to be 
an operator. And while there are some caveats, it always holds in the 
classical limit. What this tells us about the connection between the quan-
tum world and the classical one is very far from clear. Nonetheless, it is 
worth checking where this relation comes from. 

There are at least two ways to go to the classical limit: the first is  
to let ℏ → 0 as above; and the second is to go to the limit of large mass. 
For a large mass, this equation reduces to ሾ𝐴,𝐵ሿ = 0 except for the case 
where 𝐴 = 𝑞 and 𝐵 = 𝑝, in which case one gets ሾ𝑞,𝑝ሿ = 𝑖ℏ since {𝑞,𝑝} = 1. 

Before showing where Eq. (1) comes from, a little additional dis-
cussion might be worthwhile. In classical and quantum mechanics, 
geometrical transformations — either Galilean or special relativistic — 
do not change what we consider to be the intrinsic properties of a par-
ticle. What this means, of course, is that there is a group property 
associated with the particle. The group of particular interest for quantum 
mechanics is the Poincaré group. The standard model of particle physics 
has enlarged this group, but the idea that a particle is associated with its 
group properties — introduced by Wigner11 over fifty years ago — 
remains unchanged.  

What Wigner showed was that the physically relevant representa-
tions of the Poincaré group with 𝑝଴ ≥ 0 are parameterized by 𝑠 = 0, 1/2,  1, 3/2… for 𝑚ଶ > 0 and 𝑠 = 0, ±1/2, ±1, ±3/2,… for 𝑚ଶ > 0, where 𝑚 is the mass and 𝑠 the spin.12 Thus, each kind of elementary particle is 
associated with a unitary irreducible representation of the Poincaré 
group. In a real sense, the particle and the representation are identified. 
As put by Sternberg, “an elementary particle ‘is’ an irreducible unitary 

 
10 The momentum and position take the form of operators on the l.h.s. of this equation 
and coordinates in phase space on the r.h.s. 
11 E. P. Wigner, Ann. Math. 40 (1939), 149. 
12 S. Sternberg, Group Theory and Physics (Cambridge University Press, 1994), Sect. 3.9. 
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representation of the group, 𝐺 of physics, where these representations are 
required to satisfy certain physically reasonable restrictions . . . .” 

While the invariance of the intrinsic properties of a particle under 
the Poincaré group applies equally well in classical and quantum 
mechanics, irreducible representations are usually only associated with a 
particle in quantum mechanics since spin is not quantized in classical 
mechanics. But as pointed out by Bacry,13 Wigner did not restrict his 
approach to elementary particles, but referred to elementary systems. The 
example of an elementary system given by Bacry is that of the spin-zero 
hydrogen atom in its ground state with mass somewhat less than the sum 
of the proton and electron masses. While the set of all states of the 
hydrogen atom forms a representation space for a reducible represen-
tation of the Poincaré group, the proton and electron comprising the 
system no longer have irreducible representations associated with them 
since these particles are interacting and therefore do not form an isolated 
system. 

One lesson to be learned from the above example is that collections 
of elementary particles in a particular state, while they may continue to 
be associated with an irreducible representation of the appropriate group, 
may lose some group properties like spin that are purely quantum me-
chanical in nature. What remains when the purely quantum mechanical 
properties are lost is the mass of the aggregate system. Going in the 
direction of decreasing mass, Rudolph Haag14 has pointed out that “The 
physical interpretation of an irreducible representation of the Poincaré 
group (Newton and Wigner 1949) shows that the notion of a localized 
state of a particle becomes increasingly blurred with decreasing rest mass.” 
Put the other way around, the localization of a particle is increasingly 
sharp as the mass increases. This can also be seen from the form of the 
Newton–Wigner position operators. 

The original derivation of Eq. (1) was given by Dirac, but before 
turning to Dirac’s derivation of this equation, consider the non-

 
13 H. Bacry, Localizability and Space in Quantum Physics, Lecture Notes in Physics,  
No. 308 (Springer-Verlag, Berlin, 1988), Ch. 3; Commun. Math. Phys. 5 (1967), 97. 
14 Rudolph Haag, Quantum Theory and the Division of the World, Mind and Matter 2 
(2004), 53; T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21 (1949), 400. 
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commuting matrices 𝑈,𝑉,𝑈ଵ,𝑈ଶ,𝑉ଵ,𝑉ଶ. It is readily shown that the 
commutators [𝑈,𝑉ଵ𝑉ଶ] and [𝑈ଵ𝑈ଶ,𝑉] are [𝑈,𝑉ଵ𝑉ଶ] = [𝑈,𝑉ଵ]𝑉ଶ + 𝑉ଵ[𝑈,𝑉ଶ]    [𝑈ଵ𝑈ଶ,𝑉] = 𝑈ଵ[𝑈ଶ,𝑉] + [𝑈ଵ,𝑉]𝑈ଶ . (2)

Thus, the commutators on the left-hand side of these equations auto-
matically satisfy the Leibniz rule. Dirac, in his derivation begins with 
Poisson brackets and when he arrives at the analog of the above, holds 
the order of the corresponding commuting dynamical variables fixed; 
i.e., having satisfied the Leibniz rule, he henceforth treats these variables 
as if they were non-commuting matrices. To be quite explicit, Dirac 
obtains the equations  {𝑈,𝑉ଵ𝑉ଶ} = {𝑈,𝑉ଵ}𝑉ଶ + 𝑉ଵ{𝑈,𝑉ଶ} 

                            {𝑈ଵ𝑈ଶ,𝑉} = 𝑈ଵ{𝑈ଶ,𝑉} + {𝑈ଵ,𝑉}𝑈ଶ , (3)

and then requires that the order of 𝑈ଵ and 𝑈ଶ be preserved in the second 
equation and the order of 𝑉ଵ and 𝑉ଶ in the first. Dirac now evaluates {𝑈ଵ𝑈ଶ,𝑉ଵ𝑉ଶ} in two ways using Eqs. (3), and subsequently equates the 
result to obtain  

 {𝑈ଵ,𝑉ଵ}[𝑈ଶ,𝑉ଶ] = [𝑈ଵ,𝑉ଵ]{𝑈ଶ,𝑉ଶ} . (4) 

Since 𝑈ଵ and 𝑈ଶ are independent of 𝑉ଵ and 𝑉ଶ, Eq. (4) implies that 

 [𝑈,𝑉] = 𝑖ℏ{𝑈,𝑉} . (5) 

The value of the constant ℏ is arbitrary and set by experiment and the 
factor 𝑖 is introduced for the following reason: Dirac treats 𝑈 and 𝑉 as 
linear operators that could have an imaginary part and since the product 
of two real (i.e., Hermitian) operators is not necessarily real — unless they 
commute, Dirac introduces the factor of 𝑖 to guarantee that 𝑖(𝑈𝑉–𝑉𝑈) is 
real.  

Instead of using Dirac’s mixed approach of arbitrarily fixing the 
order of 𝑈ଵ and 𝑈ଶ, and 𝑉ଵ and 𝑉ଶ, as above, one can begin by initially 
treating these variables as non-commuting matrices in the Poisson 
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bracket — some matrix representation of the invariance group. Treating 𝑈,𝑉,𝑈ଵ,𝑈ଶ,𝑉ଵ,𝑉ଶ as matrices results in {𝑈,𝑉ଵ𝑉ଶ} = {𝑈,𝑉ଵ}𝑉ଶ + 𝑉ଵ{𝑈,𝑉ଶ} provided ൤𝜕𝑈𝜕𝑞 ,𝑉ଵ൨ = ൤𝜕𝑈𝜕𝑝 ,𝑉ଶ൨ = 0 

{𝑈ଵ𝑈ଶ,𝑉} = 𝑈ଵ{𝑈ଶ,𝑉} + {𝑈ଵ,𝑉}𝑈ଶ provided ൤𝜕𝑉𝜕𝑞 ,𝑈ଵ൨ = ൤𝜕𝑉𝜕𝑝 ,𝑈ଶ൨ = 0. 
  (6) 

These correspond to Dirac’s equations given by Eqs. (3). Note that the 
vanishing of the commutators on the right-hand side of Eqs. (6) guar-
antees that the Poisson brackets on the left side obey the Leibniz rule. If {𝑈ଵ𝑈ଶ,𝑉ଵ𝑉ଶ} is now evaluated à la Dirac, Eq. (5) is again obtained.  

Thus, the requirements imposed by Dirac to derive Eq. (5) are 
equivalent to starting with non-commuting variables in the Poisson brac-
ket to find a set of commutators whose vanishing guarantees that the 
Poisson brackets obey the Leibnitz rule. In the end, it is not clear how 
much light is shed by Eq. (1) on the transition from the classical world to 
the quantum mechanical one. 
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Chapter 3 

Reinterpreting the Wavefunction 

Problems with the conceptual foundations of quantum mechanics result, 
as discussed above, from the attempts by Niels Bohr and other physicists 
such as Werner Heisenberg and Max Born in the 1920s to continue to 
employ the classical concept of a particle in the context of the quantum 
mechanics, and in particular, in interpreting the wavefunction, given 
experimental observations.  

Today, modern physics tells us that spacetime1 supports a variety of 
excitations that can be identified with the various “particles” of matter 
whether short lived or stable; that the elementary building blocks of 
matter are leptons and quarks, which are fermions obeying the Dirac 
equation for a particle of spin ½. The proton and neutron are thus not true 
elementary particles. 

The conceptual basis of the Dirac equation is directly related to the 
theory of groups. One can derive a classical semblance of the Dirac equa-
tion from the properties of groups and special relativity alone. This 
equation may be written as (𝛾଴𝑝଴ + 𝛾௜𝑝௜ − 𝑚)𝜓(𝑝) = 0. 

It corresponds to the relationship between the two spinors that come 
from the representations (1/2, 0) and (0, 1/2) of the Lorentz group.  

The actual Dirac equation comes from the introduction of some 
minimal elements of quantum mechanics, namely 𝐸 = ℎ𝜈 and 𝜆𝑝 = ℎ. If 
these relations are substituted into the expression for a classical wave 
packet, the resulting equations, obtained by taking separately a time deriv-
ative and the gradient, show that 𝐸 = 𝑖ℏ𝜕௧ and 𝒑 = −𝑖ℏ𝛁. Substituting 
these into the expression for the 4-momentum 𝑝ఓ = (𝐸,−𝒑), turns the 
semblance of the Dirac equation into the actual Dirac equation. 

 
1 The nature of spacetime is, of course, crucial to the concept of an elementary particle or 
excitation. See Appendix A for a discussion of spacetime. 
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That the two equations 𝐸 = ℎ𝜈 and 𝜆𝑝 = ℎ, needed to explain 
actual experiment, coupled with classical group theory give the Dirac 
equation shows what Eugene Wigner meant by “The Unreasonable 
Effectiveness of Mathematics in the Natural Sciences”.2  

For a free fermion, the Dirac wavefunction is the product of a plane 
wave and a Dirac spinor 𝑢, which is a function of the relativistic momen-
tum 𝑝ఓ, i.e., 𝜓(𝑥ఓ) = 𝑢(𝑝ఓ)𝑒ି௜௣⋅௫ . Substituting this wavefunction into 
the Dirac equation (𝛾ఓ𝑝ఓ − 𝑚)𝑢(𝑝) = 0 for a particle at rest where 𝑝⃗ =0, results in the wavefunctions: 

 𝜓ଵ =  𝑒ି௜௠௧𝑢ଵ,𝜓ଶ =  𝑒ି௜௠௧𝑢ଶ,𝜓ଷ =  𝑒ା௜௠௧𝑢ଷ,  𝜓ସ =  𝑒ା௜௠௧𝑢ସ,  
where the eigenspinors 𝑢௜ are given by 

 𝑢ଵ = ቌ1000ቍ ,  𝑢ଶ = ቌ0100ቍ ,  𝑢ଷ = ቌ0010ቍ ,  𝑢ସ = ቌ0001ቍ . 
As is readily seen, there are two different spin states for each of the 
energies 𝐸 = 𝑚 and 𝐸 = −𝑚.3 Take, for example, 𝜓ଵ = 𝑒ି௜௠௧𝑢ଵ, or 
explicitly, 

 𝜓ଵ =  𝑒ି௜௠௧ ቌ1000ቍ .  

This equation does not in any way mandate that one interpret it as  
a physical particle, only that the wavefunction has implicit in it the 
property of mass and a particular spin state. At this point, it is again 
worthwhile to emphasize de Broglie’s description of the wavefunction as 
an “onde de phase” or a phase wave, and that “qu’il ne saurait être 
question d’une onde transportant de l’énenergie,” that energy and, of 
course, mass are not carried by the wavefunction! 

 
2 E. P. Wigner, Symmetries and Reflections (Indiana University Press, Bloomington & 
London, 1967), p. 222. 
3 As per usual, the units are such that ℏ = 𝑐 = 1. 
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The properties of mass and a particular spin state only play their 
role during an interaction with a second wavefunction. Rather than 
thinking of 𝜓 as a function whose modulus squared is the probability 
density which, when integrated over a volume, gives the probability of a 
particle being in the volume of integration, one should instead interpret 𝜓 
as a function whose modulus squared is a probability density which, 
when integrated over a volume, gives the probability of an interaction 
taking place in the volume of integration. The real question, in the 
context of a physical elementary particle, is then about how the implicit 
mass and spin states embodied in a wavefunction become concrete 
during the interaction with a second wavefunction so that the usual rules, 
such as the conservation of mass and energy, are preserved.  

And the answer is that it does not in the sense of a classical particle. 
It is not necessary that the “collapse of the wavefunction” yield a 
classical particle in order for the interaction to occur. The two wave-
functions alone interact in a way that the conservation rules are 
preserved. That is, the properties of each wavefunction (e.g., mass, 
charge and spin) combine to form a variety of new possible wavefunc-
tions consistent with the conservation laws. Which combination actually 
exits the interaction region can vary. For example, when a high energy 
beam of particles from an accelerator interacts with a target, each 
interaction does not always result in the same set of particles.  

We will see later that the key to understanding the interaction is the 
recognition of the fact that the phase of a wavefunction should be treated 
as a new physical degree of freedom dependent on spacetime position. If 
an electric field, for example, is present when a wavefunction repre-
senting a charged excitation of the vacuum comes under its influence, it 
affects the wavefunction by changing its phase as a function of position 
and hence the subsequent motion of the excitation.  

In the rest frame of the excitation, the wavefunction has a spherical 
symmetry, while if it has momentum in some direction, the constant 
phase surfaces of the wavefunction will be elongated in the direction of 
the momentum. A series of localizations due to interactions with the 
electric field will show that the trajectory of the excitation follows that 
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would be expected for a classical charged particle. The wavefunction, at 
any given time, tells us the possible interaction locations in spacetime. 

One reason to revise the usual interpretation of the wavefunction is 
to avoid divergences. For point particles, quantum electrodynamics allows 
calculations of exceptional accuracy despite the divergences that occur in 
several types of Feynman diagrams, i.e., those dealing with radiative 
corrections where the diagrams have closed loops of virtual particles. An 
example is the photon self-energy diagram that is responsible for the 
phenomenon of vacuum polarization (also known as charge screening), 
which has no classical counterpart. The obvious question is how the 
revised interpretation of wavefunction given above would affect QED 
calculations.  

When doing calculations, one generally works in the interaction 
“picture”, also called the Dirac or Tomonaga picture. Using this picture, 
the Dyson operator (that relates the wavefunction at a time 𝑡଴ to that at 
time 𝑡ଵ) in the form of an integral equation is given by 

𝑈෡(𝑡, 𝑡଴) = 1 + (−𝑖)න 𝑑𝑡ᇱ𝐻෡ଵ(𝑡ᇱ)௧
௧బ 𝑈෡(𝑡ᇱ, 𝑡଴) , 

where  𝐻෡ = 𝐻෡଴ + 𝐻෡ଵ and 𝐻෡଴ is for the free propagator. 
Successive iteration of this equation gives a Neumann series, which 

one then time orders. The decomposition of the chronological product  
is then normally ordered so that all the creation operators appear to the 
left of all destruction operators. The 𝑆መ operator is then given by 𝑆መ =𝑈෡(−∞,∞). Normal ordering is equivalent to listing all the matrix 
elements of the scattering matrix 𝑆 in a representation where the free-
particle occupation numbers are diagonal. Feynman graphs are then a 
concise way of representing normal products.  

The infinities encountered in QED are obtained by a process of 
renormalization. As an example, consider the electron self-energy. The 
full electron propagator 𝐺ி(𝑝)  includes order-by-order the corrections  
to the Feynman Green function. The diagram for 𝐺ிଵ(𝑝)  looks like 

. The first step in renormalization is regularization, which 
makes the integral associated with 𝐺ிଵ(𝑝) finite by introducing a 
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parameter Λ, sometimes known as the “cut-off scale”, which has the 
property that 𝐺ிଵ(𝑝,Λ) → 𝐺ிଵ(𝑝) as Λ → ∞. 𝐺ிଵ(𝑝) is then split into a 
divergent part and a finite part, which is known as a radiative correction 
and it is the finite part that leads to physically observable effects. The 
next step is the renormalization where the divergent part is incorporated 
into the tree-level propagator by a rescaling and a normalized mass 
parameter. One then takes the limit Λ → ∞. In doing so, the original bare 
mass and charge parameters 𝑚଴ and 𝑒଴ become singular and the new 
physical parameters 𝑚 and 𝑒 are finite and the perturbation expansion 
becomes a series in 𝑒 rather than 𝑒଴.  

At this point, it is worth quoting Schweber, Bethe, and de Hoffman 
from Volume 1 of their 1955 book Mesons and Fields: 

“. . . even in the absence of infinities, we still would have to 
renormalize the theory. The origin of renormalization is due 
to the fact that we describe the state of the system in terms 
of unperturbed bare wavefunctions, whereas in the actual 
world we can never switch off the interaction between 
fields. Therefore, corrections to the bare mass and charge 
will occur. However, since only the bare mass (charge) plus 
the corrections to it can ever be observed, we must always 
express the observables in terms of the renormalized 
constants. In some sense, therefore, the questions of diver-
gences and renormalization are separate ones. Nonetheless, 
since all local relativistic field theories with interactions  
are divergent, we shall use the term “renormalization” to 
express the fact that when the observable quantities are re-
expressed in terms of the renormalized charge and mass, no 
divergences appear.” 

A second case of interest here is the diagram  for vacuum 

polarization or charge screening. This leads to the Uehling effect where 
the electrostatic potential of two charges in a vacuum is not precisely that 
given by Coulomb’s law. The effect of vacuum polarization is to smear 
the effective charge of a point particle over a distance similar to the 
Compton wavelength ℎ 𝑚𝑐⁄ . If one observes the charge at a distance 
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large compared to this wavelength, the effective charge is less than 𝑒଴, 
while at distances increasingly smaller, the charge approaches the bare 
charge 𝑒଴. The Uehling effect also introduces a correction to the Lamb 
effect, the difference in energy between the 𝑆ଵ ଶ⁄ଶ  and 𝑃ଵ ଶ⁄ଶ  energy 
levels of the hydrogen atom, of −27MHz. Note that the Dirac equation 
predicts no difference between these states. 

In the approach used to define the wavefunction introduced above 
point particles do not exist. Localizing the wavefunction by an interac-
tion to less than the Compton wavelength means that the uncertainty in 
energy could exceed that of the rest mass associated with the vacuum 
excitation so that additional excitations could be created in the inter-
action. Thus, excitations could not be expected to be localized to much 
below the Compton wavelength. Nonetheless, the observable phenomena 
of QED, such as vacuum polarization, would remain undisturbed. 

Rudolf Haag has thrown a monkey wrench into the edifice of 
quantum field theory with his eponymous theorem. It has to do with the 
interaction picture, which is used for calculations involving small pertur-
bations of a well understood Hamiltonian in conventional Lagrangian 
field theory. Under the usual postulates and assumptions of quantum 
field theory, such as causality and the CPT theorem holding as well as 
the relation between spin and statistics, Haag’s theorem essentially states 
that the interaction picture of canonical field theory cannot exist unless 
there are no interactions.4 Nonetheless, the interaction picture is used to 
obtain the perturbation series often represented by the graphical notation 
introduced by Feynman. This approach to QED leads to reasonably 
accurate results in spite of Haag's theorem. But, except for those whose 
field is the Philosophy of Science, Haag’s theorem seems to have been 
steadfastly ignored. After all, calculations are what matter! 

What we have here is a perfectly reasonable set of axioms for QFT 
that are inconsistent in that they produce a result (the perturbation series) 
that correlates well with reality but which cannot exist because of Haag's 
theorem. This is reminiscent of the problems in mathematics resulting 

 
4 This, it should be noted, is not related to the problem of defining the 𝑆-matrix as the 
limit for 𝑡଴ → −∞, 𝑡 → +∞ of 𝑈(𝑡, 𝑡଴). 
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from Gödel’s incompleteness theorem,5 which shows that there are state-
ments whose truth or falsity cannot be proved in any axiomatic system 
strong enough to derive the natural numbers. More precisely, if the 
axioms are consistent, there are statements that are formally undecidable 
in the technical sense that neither the formula nor its negation can be 
formally deduced from the axioms.  

Is there an analogy here? Could the real world exhibit effects related 
to Gödel’s theorem? There is some evidence that undecidable problems 
do actually exist in physics as was shown by Cubitt et al.6 The axioms of 
QFT are certainly consistent and one could speculate that in QFT, the 
“statement” would correspond to the perturbation series. Is this statement 
true or false? It is false given the axiomatic structure of QFT because of 
Haag's theorem, and true with regard to physical reality. Note that this 
has nothing to do with renormalization, which only multiplies the state 
vectors by constants and cannot change Haag’s proof so as to introduce 
an interaction. This is, of course, not the same as is usually the case for 
Gödel’s theorem where neither the statement’s truth nor its falsity can be 
proved. Instead, we have a proof (Haag’s theorem) of its falsity and a 
proof that it is true by comparing the calculated results to physical realty. 
Of course, only Haag’s theorem follows from the axioms of QFT.  

Interestingly enough, the well-known physicist Stephen Hawking 
did believe Gödel’s theorem applies to physics. Here is a quote form a talk 
he gave in a public lecture at Texas A&M on 8 March 2017: 

“What is the relation between Gödel’s theorem, and 
whether we can formulate the theory of the universe, in 
terms of a finite number of principles. . . . Some people will 
be very disappointed if there is not an ultimate theory, that 
can be formulated as a finite number of principles. I used to 
belong to that camp, but I have changed my mind. I’m now 

 
5 K. Gödel, “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter 
Systeme I” (On Formally Undecideable Propositions of Principia Mathematica and 
Related Systems I), Monatshefte (1931). A very readable book is: E. Nagel and J. R. 
Newman, Gödel’s Proof (New York University Press, New York, 1960). 
6 T. Cubitt et al., “Undecidability of the spectral gap,” arXiv: 1502.04973v4 (15 June 2020); 
https://www.nature.com/articles/nature.2015.18983. 

https://www.nature.com/articles/nature.2015.18983
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glad that our search for understanding will never come to an 
end, and that we will always have the challenge of new 
discovery. Without it, we would stagnate. Gödel’s theorem 
ensured there would always be a job for mathematicians. I 
think M theory will do the same for physicists. I’m sure 
Dirac would have approved.”7 

How Wavefunctions Combine in an Interaction 

The decay of parapositronium is a good example of how wavefunctions 
combine. Nonrelativistically, the wavefunction of positronium is the 
product of a spin vector and a Bohr atom wavefunction using the reduced 
mass for the positron and electron; relativistic corrections only differ by 
factors of two. The wavefunction for parapositronium, where the ground 
state has 𝑛 = 1, 𝑙 = 0, and a total spin of zero is given by 𝜓௡,௟,௠(𝑟)  𝜓(𝑆total, 𝑠௭) where the spin part is given by 

𝜓(𝑆୲୭୲ୟ୪, 𝑠௭) = 𝜓(0, 0) = 1√2 ቂ𝑒ା ቀ+ ଵଶቁ  𝑒ି ቀ− ଵଶቁ − 𝑒ା ቀ− ଵଶቁ  𝑒ି ቀ+ ଵଶቁቃ . 
Notice here that one simply takes the product of the two wavefunctions 
to obtain a multiparticle wavefunction. In other words, the state space of 
the spin 1/2 particle is given by the direct product of the particle’s 
spatial state and the two-dimensional quantum space related to spin. The 
coordinates of the particle, which can only be localized to the 𝑛 = 1 
ground state, do not appear. The origin of the minus sign on the right-
hand side of this equation will be discussed below. 

Now photons, uncharged mesons, and uncharged bound states like 
positronium are eigenstates of the charge symmetry operator 𝐶. For the 
state of 𝑛 photons, one has 𝐶|𝑛 𝛾⟩  = (−1)௡|𝑛 𝛾⟩ . 
Thus, parapositronium in the ground or singlet state, which decays with a 𝐶 conserving process, can only decay into two photons.  

 
7 S. W. Hawking, Gödel and the End of Physics, http://yclept.ucdavis.edu/course/215c.S17/ 
TEX/GodelAndEndOfPhysics.pdf. 

http://yclept.ucdavis.edu/course/215c.S17/TEX/GodelAndEndOfPhysics.pdf
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We now turn to the origin of the minus sign in the spin part of  
the wavefunction for the ground state of parapositronium. Because the 
ground state has zero angular momentum, it has a single wavefunction, 
which could have either even or odd parity; scalar when the wavefunc-
tion does not change sign on a parity inversion, or pseudoscalar when it 
does change sign. Both parity and angular momentum are conserved 
when parapositronium decays.  

The parity possibilities are distinguishable experimentally by the 
polarization of the two 𝛾-rays produced by the annihilation of the elec-
tron and positron composing the parapositronium. The scalar possibility 
implies that the 𝛾-rays are polarized in the same plane, while the pseudo-
scalar has the 𝛾-rays polarized in perpendicular planes. Experimental 
results show that the polarization of the 𝛾-rays is perpendicular so that 
the spin-zero ground state is a pseudoscalar, which then has odd parity. 
The electron and positron must consequently have opposite parity.  

For a positron and electron pair, the charge symmetry operator is 
equivalent to charge exchange, which is the same as a parity (space 
inversion process) followed by a spin exchange. The order of the parity 
and spin inversion is irrelevant. Graphically, this looks as below: 

 

What the figure shows is that charge conjugation is equivalent to using 
the parity operator and spin exchange. This means that since charge is 
conserved in the singlet decay process, a singlet state is odd with respect 
to spin exchange. 

Because the polarization of the two 𝛾-rays is perpendicular, one  
can represent them as both being circularly polarized, thereby showing 
the direct connection with the spin of the electron and positron in the 
spin-zero ground state. As shown in the figure below, there are two 
possibilities. 
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The two 𝛾-rays from the annihilation are emitted in opposite direc-
tions so as to conserve momentum and must have the same handedness 
to conserve the spin-zero condition from the positronium ground state. 
The two possibilities differ from each other by a mirror inversion across 
the dotted line. Because the parity of the positronium is odd, the ampli-
tude for the two possible decay processes must have opposite signs. If 
the 𝛾-rays in the first decay process are labeled 𝑹ଵ and 𝑹ଶ, and similarly 
for the second decay process 𝑳ଵ and 𝑳ଶ, then the final state, 𝑭 must be 

 |𝐹⟩  =  |𝑹𝟏𝑹𝟐⟩  −  |𝑳𝟏𝑳𝟐⟩ 
A parity inversion changes this state to 𝑃|𝐹⟩  =  |𝑳𝟏𝑳𝟐⟩  −  |𝑹𝟏𝑹𝟐⟩  = − |𝐹⟩ . 
Thus, the final state |𝐹⟩ has negative parity consistent with the initial 
spin-zero state of the positronium. The final state |𝐹⟩ should be com-
pared with the ground state wavefunction 𝜓(0,0) above.  

Positronium was introduced here to help answer the question: How 
does the implicit mass and spin state contained in a wavefunction become 
concrete during the interaction with a second wavefunction so that the 
usual rules, such as the conservation of mass and energy, are preserved? 
As the discussion above shows, the concept of a classical point particle 
plays no role whatsoever in this example. 
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Again, the ground state of positronium has essentially the same 
wavefunction as a Bohr atom, if one uses the reduced mass for the 
positron and electron. In both cases, the wavefunction is generally con-
sidered to be a probability density for the two electrons in the case of a 
Bohr atom or of the positron and electron in the case of positronium. 
Both probability or density distributions have the geometry of a spherical 
shell. These are stationary states having no dipole moment and therefore 
do not emit electromagnetic radiation, which is not possible in Bohr’s 
theory where the electrons revolve about the nucleus or the electron and 
positron revolve about each other in the case of positronium.  

This contradiction was resolved in the case of the Bohr atom, by Max 
Born, as follows: “In wave mechanics this absence of emitted radiation is 
brought about by the fact that the elements of radiation, emitted on [sic] 
the classical theory by the individual moving elements of the electronic 
cloud, annul each other by interference.” Presumably, “the elements of 
radiation” refer to the two electrons or possibly “the distribution of 
charge.” There are two ways to interpret this: Born may have considered 
the absolute value of the wavefunction to be an actual “distribution of 
charge”; or that the “distribution of charge” corresponds to the time a 
particle spent in a given volume of space.  

Whatever Born had in mind, this kind of interpretation led to calcu-
lations that gave superb results, but conceptually it is nonetheless the 
product of trying to retain the classical concept of a particle that has no 
real place in the quantum world.   

Wavefunctions in Atoms 

Once the Schrödinger equation for the hydrogen atom was solved, the 
solution for the helium would be expected to follow. This was and is not 
the case. So long as the electrons were considered to be classical point 
particles, albeit with quantum properties, the solution involved solving 
the three-body problem. And while very accurate approximations were 
developed, no exact solution has been found. It is the electrostatic inter-
action of the two electrons, involving the term 1 |𝒓ଶ − 𝒓ଵ|⁄ , where 𝒓ଵ 
and 𝒓ଶ are the position vectors of the two electrons, that causes the 
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difficulty. Without this term, the wavefunction would be separable; i.e., 𝜓(𝑟ଵ, 𝑟ଶ) = 𝜓ଵ(𝑟ଵ)𝜓ଶ(𝑟ଶ). The solutions of the two wavefunctions are 
the same as that for the hydrogen atom with a nuclear charge of 2𝑒. If 
one assumes that both electrons are in their lowest energy states, these 
can be written as 𝜓଴(𝑟) = 4√2𝜋  𝑎଴ଷ/ଶ  exp ൬− 2𝑟𝑎଴൰ , 
where 𝑎଴ is the Bohr radius. The energy associated with each component 
of the separated wavefunction is 4𝐸଴, where 𝐸଴ = −13.6eV, the hydrogen 
ground state or ionization energy. This gives a value of −108.8eV for  
the ground state energy of helium, which is experimentally determined  
to be −78.98eV.  

So, the repulsion between the electrons in the ground state of helium 
cannot be neglected. Physically, what is happening in the ground state is 
that each electron partially shields the nuclear charge from the other. 
Alternatively, one can view the repulsion of the electrons as contributing 
a positive potential energy partially offsetting the negative potential energy 
from the attractive force of the nuclear charge. In practice, one chooses a 
trial wavefunction like  𝜓(𝒓ଵ, 𝒓𝟐) = ℤଷ𝜋𝑎଴ଷ  exp ൬−ℤ [𝑟ଵ + 𝑟ଶ]𝑎଴ ൰ , 
uses the variation principle, and then minimize the result with respect to ℤ < 2, the effective nuclear charge number. By choosing more compli-
cated trial wavefunctions with more adjustable parameters, one can get 
very close to the measured ground state energy.  

Pragmatically, the effective shielding can be determined as follows: 
The energy needed to remove the first electron is 24.6eV; and for the 
second, it is 54.4eV, which is what one would expect by modeling  
the singly charged helium ion as a hydrogen atom with two protons in the 
nucleus. Since the hydrogen energy levels depend on the square of  
the nuclear charge, the energy needed to remove the remaining helium 
electron would be four times the ionization potential of hydrogen of 
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−13.6eV or −54.4eV, which is what is measured. The effective shielding 
can then be determined from ℤଶ(−13.6eV) = −24.6eV, or ℤ = 1.34.   

Some of the difficulties described above in determining the helium 
ground state energy would not arise if the electrons were not considered 
to be point particles whose positions can be determined in their orbit. The 
electrons in helium are localized in space by their interactions with each 
other and the nucleus, but only up to the appropriate quantum numbers 
— 𝑛, 𝑙, 𝑚, and 𝑠, where for the parahelium ground state 𝑛 = 1 and the 
rest of the quantum numbers are zero.  

In any case, the Heisenberg uncertainty relation precludes localizing 
an electron to dimensions significantly smaller than the 𝑛 = 1 Bohr 
radius of about half an Angstrom. At this radius the uncertainty in energy 
is already about 3eV. Further localization would soon exceed the ioniza-
tion potential of hydrogen.  

The spacetime excitation corresponding to an electron embeds in its 
wavefunction the properties of mass, charge, and spin, which become 
apparent during an interaction. The wavefunction itself, being a phase 
wave, does not itself carry these physical properties. In the case of the 
helium ground state, the only difference between the wavefunctions of 
the two electrons is the spin part where in the singlet state, the wavefunc-
tions combine so that this spin part of the wavefunction, as was discussed  
above, is given by 𝜓(𝑆୲୭୲ୟ୪, 𝑠௭) = 𝜓(0, 0) = ଵ√ଶ ൣ𝑒ା൫+ భమ൯ 𝑒ି൫− భమ൯ −𝑒ା൫− భమ൯ 𝑒ି൫+  భమ൯൧. 

For two electrons the total wavefunction must be antisymmetric 
under an exchange of the particles, and since the singlet wavefunction 
must be symmetric, the spin part of the wavefunction must be anti-
symmetric as is shown in the above expression. 

Rather than the individual point electron approach to the problem of 
atomic electrons, one can think of the electrons as standing waves with 
their charge distributed in space as a continuous distribution, propor-
tional at any point to the squared magnitude of their wavefunctions. This 
is the approach used in modern quantum chemistry where one generally 
also uses the atomic orbital model to describe the electron charge distri-
bution in matter. The orbitals of an electron in the hydrogen atom are 
shown below for different energy levels. 
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In the figure, the principal quantum number 𝑛 > 0 is an integer that 
describes the primary energy level and could be associated with several 
orbitals, which make up what is often called the electron shells; 𝑙 is the 
orbital angular momentum and is also a non-negative integer; and the 
magnetic quantum number 𝑚௟ is an integer having the range −𝑙 ≤ 𝑚௟ ≤𝑙  and describes the magnetic moment of the electron. In general, 𝑛 deter-
mines the energy and size of an orbital, 𝑙 determines the orbital’s shape, 
and 𝑚௟ its orientation. While the individual orbitals are generally shown 
as being independent of each other, the orbitals actually coexist at the 
same time. 

It is interesting to note that Unsöld’s theorem tells us that the sum of 
the electron densities for all orbitals of a given 𝑙 of the same shell 𝑛, 
where all are occupied by an electron or an electron pair, the angular 
dependence vanishes and the density of the subshell with the same 𝑙 has  
a spherical shape. 
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While the approach to interpreting the wavefunction as above may 
not be fully satisfying, it is certainly better than attempting to extend the 
concept of a classical particle into the quantum domain. 

The examples in the above discussion were primarily about com-
bining wavefunctions. In high energy collision of “particles,” the colli-
sion may not be simple scattering where the final wavefunctions are the 
same as the initial ones associated with the incident “particles.”  

If the energy is high enough, new “particles” may be created that are 
consistent with the usual conservation laws. If the original wavefunctions 
are 𝜓ଵ and 𝜓ଶ, the interaction would lead to 𝜓ଵ + 𝜓ଶ → 𝜓ଷ + 𝜓ସ +𝜓ହ .  .  .   In a scattering interaction, one would simply have 𝜓ଵ + 𝜓ଶ →𝜓ଵ + 𝜓ଶ. 

When the wavefunctions leaving the interaction region remain cor-
related, as in the Einstein, Podolsky, Rosen case, one can have a macro-
scopic quantum state. Currently, it is stated that the particles represented 
by these wavefunctions are “entangled.” In the usual example, the orien-
tation of the spin of two electrons prepared in a spin-zero state is not 
specified so that a measurement forcing one of the pairs into a specific 
orientation forces the other into the opposite orientation so as to preserve 
the spin-zero state of the pair. This happens instantaneously independent 
of the distance between the particles. Remember, the wavefunctions  
are phase waves à la de Broglie, whose velocities are not constrained by 
the speed of light. One also has macroscopic quantum phenomena in 
superconductivity and fluidity. For example, a macroscopic supercon-
ducting ring, which can carry a current for an indefinite period of time, is 
a quantum mechanical system that results from the occupation of a single 
quantum state and, when a current is present, the coherent motion of the 
Cooper pairs. 

Wavefunctions in the Early Universe 

It is generally believed that the universe expanded from a compact, 
dense, state where its energy was dominated by black body thermal 
radiation not matter. Because the photons interact only minimally, the 
radiation cannot reach thermal equilibrium. If the interaction with what-
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ever matter there was is also negligible, the universe will expand 
homogeneously allowing the radiation to cool in an essentially adiabatic 
manner so as to preserve a thermal spectrum. This is because the heat 
capacity of the radiation8 is far greater than that of the matter present.9 
This is the process thought to be responsible for today’s isotropic 2.7 °K 
background radiation. 

This is important since in the radiation dominated phase of the early 
universe, one conventionally assumes complete thermo-dynamic equilib-
rium10 (which requires the presence of massive particles) and calculates 
the number density of the various particles produced thermally from the 
vacuum, where equal numbers of particles and antiparticles must be 
produced. Photons cannot alone produce pairs because of the need to 
conserve momentum and thus must interact with virtual particles from 
the vacuum to allow pair production. But, as discussed in Appendix B 
such vacuum fluctuations may not exist.  

The fundamental particles resulting from the assumed fluctuations 
of the vacuum — quarks and leptons — are also thought to be point 
particles, and the radiation to arrive at their equilibrium is supposed to be 
electromagnetic and thus composed of photons. It should be remembered 
that photons are not particles and are not localizable. Photons would of 
course be localized should they interact with the quarks and leptons 
assumed to be present.  

The evidence that the radiation is of a thermal nature comes from 
the expansion of the universe seen from the red shift of light from distant 
galaxies and the almost perfect 2.8 °K black body background radiation 
that dates from about 400,000 years after the birth of the universe. 
Previous to this time, the universe was opaque to all radiation. 

 
8 The specific heat of the radiation is 𝐶௩ = (16𝜎/𝑐)𝑇ଷ𝑉, where 𝜎 is the Stefan–
Boltzmann constant. 
9 See P. J. E. Peebles, Principles of Physical Cosmology (Princeton University Press,  
New Jersey, 1993), Ch. 6. See also: R. E. Kelly, “Thermodynamics of black body 
radiation,” Am. J. Phys. 49 (1981), 714–719. 
10 For a discussion and implications of assuming complete thermodynamic equilibrium in 
the Classical Hot Big Bang Picture, see: G. Börner, The Early Universe (Springer-Verlag, 
Berlin, 1993), Ch. 3. 
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This scenario, often called the “Big Bang” cosmological model, is  
a term that was coined by Fred Hoyle during a BBC radio program in 
1949. He was thought by many to have used the term derogatorily.  

When the expansion of the early universe, which lengthens the 
wavelength of all the photons, drops the temperature below a critical 
temperature, 𝑇௖, there is what is known as a phase transition where the 
actual existence of quarks and their subsequent binding into protons and 
neutrons becomes possible. 

Note that if quarks had zero mass they would travel at the speed of 
light and their spin would be aligned either in the direction of motion or 
opposite to it. This chirality (handedness) is Lorentz invariant, and this 
symmetry is explicitly broken when the quark mass is not neglected. The 
critical temperature 𝑇௖ corresponding to the chiral and confinement tran-
sitions (where quarks become bound) is thought to be similar. 

Below 𝑇௖, the spacetime allows the existence of excitations that we 
identify with massive particles and their associated wavefunctions. Of 
course, the wavefunctions for photons exist both above and below the 
critical temperature. 
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Chapter 4 

Matter and Its Motion 

Quantum mechanically, motion consists of a series of localizations due  
to repeated interactions that, taken close to the limit of the continuum, 
yields a world line. If a force acts on a “particle”, its probability distri-
bution is accordingly modified. This must also be true for macroscopic 
objects, although now the description is far more complicated by the 
structure of matter and associated surface physics. Given the reinterpre-
tation of the wavefunction in Chapter 3, how this will affect the issue on 
motion is the subject of this chapter. 

The conceptual elements that comprise the presentation below are 
based on well founded and accepted physical principles, but the way they 
are put together — as well as the view of commonly accepted forces and 
the resulting motion of macroscopic objects that emerges — is unusual. 
What will be shown is that classical motion can be identified with 
collective quantum mechanical motion. Not very surprising, but the con-
ception of motion that emerges is somewhat counterintuitive. After all, 
we all know that the term ℏ/2𝑚 in the Schrödinger equation becomes 
ridiculously small for 𝑚 corresponding to a macroscopic object.  

Spacetime and Quantum Mechanics 

What do we really know about the fundamental nature of spacetime? In 
essence, despite the enormous amount of material written about both, 
very little.1 I have referred to spacetime rather than space and time as 
distinct entities because I will argue shortly that the two cannot be 
separated in any physically meaningful sense.  

 
1 See Appendix A. 
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To begin with, our concept of space itself is derived from the funda-
mental sense perceptions of the space around us, often formalized in 
science and mathematics as a manifold with a distance function that can 
be used to define a metric space. While conceptually very seductive, 
representing space in this way is also very deceptive in the sense that 
there is little reason to believe that the mathematical elements of points, 
neighborhoods, and open sets capture the essence of real physical space.  

Space, without the concept of time, is — by definition — static. If 
space contains several objects, their orientation with respect to each other 
cannot change. To do so, the objects must move, and implicit in the 
concept of motion is time. Even if the change is instantaneous, there 
must be a “before” and “after”. Think of any space-like hypersurface in 
spacetime. By definition — independent of what is contained in the 
hypersurface — it is static and changeless. Such a hypersurface cannot 
physically exist except in the limit where time slows to zero. Only null 
hypersurfaces are known to have this property. They do not, however, 
constitute a counter example because they could not exist outside the 
context of spacetime. While static space and an independent time exist as 
concepts, I maintain, but cannot offer a real proof, that in the real world, 
one could not exist without the other. 

With the introduction of time, changes in the spatial location of 
objects become possible. Motion then depends on some type of wave 
equation, which means there is a wave front that propagates with finite 
velocity so that the region where the solution to the equation does not 
vanish may be localized in space and time.  

For simplicity and clarity of exposition, the type of equations to be 
considered here will generally be linear equations of the second order.2 
These have linear differential operators of the form 

𝐿[Ψ] = 𝑎௜௞ 𝜕ଶΨ𝜕𝑥௜𝜕𝑥௞ + 𝑏௜ 𝜕Ψ𝜕𝑥௜ + 𝐶Ψ 

 
2 An unusually clear exposition is given by G. F. D. Duff, Partial Differential Equations 
(University of Toronto Press, Toronto, 1956). 
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where 𝑎௜௞, 𝑏௜, and 𝑐 are functions of 𝑥௜. If 𝜉௜ is a covariant vector 
representing a surface element at some point 𝑃, from the 𝑎௜௞ one may 
form the invariant characteristic form relative to the operator 𝐿[Ψ] given 
by Q(𝜉) = 𝑎௜௞𝜉௜𝜉௞. Under a coordinate transformation given by 𝜑(𝑥௜), 
the surface element 𝜉௜ ≡ 𝜕ఝ/𝜕𝑥௜ transforms the quadratic form Q(𝜉) to 𝑄(𝜑) = 𝑎௜௞ 𝜕𝜑𝜕𝑥௜ 𝜕𝜑𝜕𝑥௞   . 
Now the point of all this is that whether the equation is elliptic, hyper-
bolic, or parabolic depends respectively on whether the quadratic form Q(𝜑): non-singular and positive definite, non-singular and indefinite, or 
singular in the sense that the determinant of 𝑎௜௞ vanishes. While the defi-
nite or indefinite character of the invariant quadratic form is independent 
of the coordinate system, because the coefficients 𝑎௜௞ may depend on the 
point 𝑃, an operator 𝐿[Ψ] may change type at different points in space. 
However, if all of the 𝑎௜௞ are constant in some coordinate system, then 
the type (whether the operator is elliptic, hyperbolic, or parabolic) must 
be the same at all points. This is the case for many of the equations of 
importance in the physical sciences.  

Since our interest is in wave equations, the 𝑎௜௞ of interest are those 
such that Q(𝜉), referred to its principal axes, contains only one sign 
differing from all the others. It is this one that is identified with time.  

At this point, we have arrived at the pre-quantum mechanical space-
time continuum of the early twentieth century. With the advent of quan-
tum mechanics, the nature of the vacuum — usually identified with 
empty spacetime — dramatically changed. This occurred when it was 
found that at high energies or in strong fields, it was possible to create 
particles from the vacuum.  

Today, the vacuum of spacetime is not considered to be empty, but 
is filled with various condensates. Among these is that composed of 
bound quark-antiquark pairs that goes under the name of “chiral 
symmetry breaking condensate.” These are real particles not virtual 
particles associated with vacuum fluctuations. Data from the Supernova 
Cosmology Project has also shown that the vacuum contains a “dark 
energy” that differs little, if any, from Einstein’s cosmological constant. 
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Quantum electrodynamics tells us that the vacuum is polarizable due to 
the presence of virtual electron-positron pairs and in quantum chromo-
dynamics may be treated semiclassically by representing vacuum polari-
zation by an effective dielectric constant, which gives the same result as 
quantum field theory. In essence, the modern concept of the vacuum has 
returned to that of some type of plenum, albeit one consistent with 
special and general relativity. In what follows, however, none of this will 
play a role. All that is required is spacetime as described above and non-
relativistic quantum mechanics. Unfortunately, spacetime and quantum 
mechanics have consistency problems. 

To deal with the concept of motion, we must begin with the well-
known problem of inconsistency inherent in the melding of quantum 
mechanics and special relativity. One of the principal examples that can 
illustrate this incompatibility is the Minkowski diagram, where well-
defined world lines are used to represent the paths of elementary 
particles while quantum mechanics disallows the existence of any such 
well-defined world lines. Despite this conceptual dissonance, the fusion 
of quantum mechanics and special relativity has proved to be enormously 
fruitful. This point has been made by Sklar3 in his book Space, Time, and 
Spacetime: “Despite the rejection in quantum theory of the very notions 
used in the original justification of the construction of the spacetime of 
special relativity, it is still possible to formulate quantum theory in terms 
of the spacetime constructed in special relativity.” 

Feynman4 in his famous paper “The Theory of Positrons” partially 
avoids the above conundrum, implicit in drawing spacetime diagrams, by 
observing that solutions to the Schrödinger and Dirac equations can be 
visualized as describing the scattering of a plane wave by a potential. In 
the case of the Dirac equation, the scattered waves may travel both 
forward and backward in time and may suffer further scattering by the 
same or other potentials. An identity is made between the negative 
energy components of the scattered wave and the waves traveling 
backward in time. This interpretation is valid for both virtual and real 

 
3 Lawrence Sklar, Space, Time, and Spacetime (University of California Press, Berkeley, 
1974), p. 328. 
4 R. P. Feynman, Phys. Rev. 76 (1949), 749. 
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particles. While one generally does not indicate the waves, and instead 
draws world lines in Minkowski space between such scatterings, it is 
generally understood that the particle represented by these waves does 
not have a well-defined location in space or time between scatterings.5 

The Feynman approach visualizes a non-localized plane wave 
impinging on a region of spacetime containing a potential, and the par-
ticle the wave represents being localized6 to a finite region of Minkowski 
space by interaction with the potential. The waves representing the 
scattered particle subsequently spread through space and time until there 
is another interaction in the same potential region or in a different region 
also containing a potential, again localizing the particle. Even this picture 

 
5 This is best exemplified by the path integral formulation of non-relativistic quantum 
mechanics. The latter also has the virtue of explicitly displaying the non-local character 
of quantum mechanics. 
6 The use of the term “localization” is deliberate. There is no need to bring in the concept 
of measurements with its implicit assumption of the existence of an “observer.”  It is  
not necessary that an interaction having occurred, it needs to somehow enter human 
consciousness in order for the particle to be localized in space and time. The argument 
that it must enter human consciousness has been used, for example, by Kemble [E. C. 
Kemble, The Fundamental Principles of Quantum Mechanics with Elementary Applica-
tions, Dover Publications, Inc., 1958, p. 331] who states that “If the packet is to be 
reduced, the interaction must have produced knowledge in the brain of the observer. If 
the observer forgets the result of his observation, or loses his notebook, the packet is not 
reduced.”  It is not our purpose here to enter into a discussion of quantum measurement 
theory, but interpretations such as that expressed by Kemble often — but not always —
rest on a lack of clarity as to what the wavefunction is assumed to represent. That is, 
whether the wavefunction applies to a single system or only to an ensemble of systems. 
While the ensemble interpretation has proven conceptually quite valuable in a number of 
expositions of measurement theory, it is difficult to understand how the wavefunction 
cannot apply to an individual system given the existence of many interference experi-
ments using a series of individual electrons — where each electron participating in the 
production of the interference pattern must interfere with itself. Perhaps the most well-
known attempt to bring consciousness into quantum mechanics is that of Eugene Wigner. 
The interested reader is referred to Wigner’s book Symmetries and Reflections (Indiana 
University Press, Bloomington & London, 1967), Section III and references therein. In 
many circumstances a “measurement” done by an “observer” can be replaced by the role 
of the environment. The effect of such environmental decoherence has been discussed by 
Zurek and Halliwell: W. H. Zurek, “Decoherence and the transition from quantum to 
classical,” Physics Today (October 1991); J. J. Halliwell, “How the quantum universe 
became classical,” Contemporary Physics 46 (March–April 2005), 93. 
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is problematic since the waves are not observable between interactions. 
For the Dirac equation, the now famous Fig. 4.1 is intended to represent 
electron scattering from two different regions containing a scattering 
potential. The plane electron wave comes in from the lower left of the 
figure, and is scattered by the potential at A(3): (a) shows the scattered 
wave going both forward and backward in time; (b) and (c) show two 
second order processes where (b) shows a normal scattering forward in 
time and (c) the possibility of pair production. Feynman meant this figure 
to apply to a virtual process, but — as discussed by Feynman — with the 
appropriate interpretation, it applies to real pair production as well. 
Although the lines are drawn to represent these particles, no well-defined 
world lines exist.  

 
Fig. 4.1. Different electron scattering possibilities from a potential 
region. (a) a first order process, (b) and (c) second order. [Based on 
Fig. 2 of R. P. Feynman, “Theory of positrons,” Phys. Rev. 76 (1949), 
749–759.] 

In a bubble chamber, for example, where the path followed by the 
charged particles is made visible by repeated localizing interactions with 
the medium, one would observe a pair creation event at A(4), an electron 
coming in from the lower left, and an annihilation event at A(3). Of 
course, since the particles involved here are massive, in the case of real 
pair production, the interval between A(3) and A(4) is time-like and the 
spatial distance between these events depends on the observer. 
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To reiterate, a world line is a classical concept that is only approx-
imated in quantum mechanics by the kind of repeated interactions that 
make a path visible in a bubble chamber.7 Minkowski space is the space 
of events — drawing a world line in a Minkowski diagram implicitly 
assumes such repeated interactions taken to the limit of the continuum.8 
While the characterization of Minkowski space as the space of events is 
often obscured by drawing world lines as representing the putative path 
of a particle in spacetime independent of its interactions, remembering 
that each point in Minkowski space is the position of a potential event 
removes much of the apparent incompatibility between quantum 
mechanics and special relativity, but it leaves us with a revised view of 
what constitutes motion.  

Quantum Mechanical Motion 

The picture of motion that emerges after the melding of quantum 
mechanics and special relativity is very unlike that of the classical 
picture of the path of a massive particle — like a marble — moving in 
spacetime. Consider a Minkowski diagram showing the world lines of  
 

 
7 Because the discussion to follow will give a different picture of a particle path, this is  
a good point to illustrate how motion is often described in quantum mechanics. Bohm  
[D. Bohm, Quantum Theory, Prentice-Hall, Inc., NJ, 1961, p. 137.] in describing how a 
particle path is produced in a cloud chamber maintains that “. . . when the electron wave 
packet enters the chamber, it is quickly broken up into independent packets with no 
definite phase relation between them . . . the electron exists in only one of these packets, 
and the wavefunction represents only the probability that any given packet is the correct 
one. Each of these packets can then serve as a possible starting point for a new trajectory, 
but each of these starting points must be considered as a separate and distinct possibility, 
which, if realized, excludes all others.” If the particle has large momentum, “. . . the 
uncertainty in momentum introduced as a result of the interaction with the atom results  
in only a small deflection, so that the noninterfering packets all travel with almost the 
same speed and direction as that of the incident particle.” [emphasis in the original] 
8 There is a considerable — and quite interesting — literature dealing with repeated 
“measurements” of a particle and what is known as “Turing’s Paradox” or the  
“Quantum Zeno Effect.” See, for example: B. Misra and E. C. G. Sudarshan, J. Math. 
Phys. 18 (1977), 756; D. Home and M. A. B. Whitaker, Ann. of Phys. 258 (1997), 237, 
lanl.arXiv.org, quant-ph/0401164. 
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several marbles at different locations. Given a space-like hypersurface 
corresponding to an instant of time in some frame, all the marbles would 
be visible at some set of locations. If one chooses a neighboring instant 
of time, these marbles would all still be visible at slightly different 
locations. This is because of the sharp localization of the marbles in 
space and time due to the continual interactions of their constituent 
components. Now consider the case of several elementary particles such 
as electrons. On any space-like hypersurface, the only particles “visible” 
would be those that were localized by an interaction to a region of 
spacetime that included the instant of time corresponding to the hyper-
surface.9 After any localization, the wavefunction of a particle spreads 
both in space and in either direction in time. Consequently, neighboring 
hypersurfaces (in the same reference frame) corresponding to slightly 
different times could have a different set of particles that were “visible.” 
If motion consists of a sequential series of localizations along a particle’s 
path, it is not possible to define a continuum of movement in the classical 
sense — there exists only a series of “snapshots.” 

Haag,10 has put this somewhat in different terms: “The resulting 
ontological picture differs drastically from a classical one. It sketches a 
world, which is continuously evolving, where new facts are permanently 
emerging. Facts of the past determine only probabilities of future 
possibilities. While an individual event is considered as a real fact, the 
correlations between events due to quantum mechanical entanglement 
imply that an individual object can be regarded as real only insofar as it 
carries a causal link between two events. The object remains an element 
of potentiality as long as the target result has not become a completed 
fact.”  

 
9 The term “visible” is put in quotes as a short-hand for the physical processes involved: 
the interaction of the particle needed to localize it on the space-like hypersurface and the 
detection of that interaction by the observer. It should also be emphasized that locali-
zation is in both space and time. Just as localization in space to dimensions comparable  
to the Compton wavelength corresponds to an uncertainty in momentum of ∼ 𝑚𝑐, 
localization in time must be ≥ ℎ/𝑚𝑐ଶ if the uncertainty in energy is to be less than or 
equal to the rest mass energy. For electrons, this corresponds to ≥ 10ିଶ଴ second. 
10 Rudolph Haag, “Quantum theory and the division of the world,” Mind and Matter 2 
(2004), 53. 
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It is important to emphasize that between localizations due to inter-
actions, an elementary particle does not have a specifiable location, 
although — because it is located with very high probability11 somewhere 
within the future and past light cones associated with its most recent 
localization — it would contribute to the local mass-energy density. This 
is not a matter of our ignorance, it is a fundamental property of quantum 
mechanics; Bell’s theorem tells us that there are no hidden variables that 
could specify a particle’s position between localizations.  

As an example of how localization works, consider a single atom. 
Its nucleus is localized by the continuous interactions of its constituent 
components. The electrons are localized due to interactions with the 
nucleus, but only up to the appropriate quantum numbers — 𝑛, 𝑙, 𝑚,  
and 𝑠. One cannot localize the electrons to positions in their “orbits.” 

Implicit in the discussion above is that an “elementary particle” is 
not a “particle” in the sense of classical physics. The advent of quantum 
mechanics mandated that the classical notion of a particle be given up.  

Above, the flat spacetime of special relativity was used in the 
discussion. When the spacetime curvature due to gravitation is included, 
Minkowski diagrams become almost impossible to draw: Given a space-
like hypersurface, the rate of clocks at any point on the hypersurface 
depends on the local mass-energy density and on local charge. Compared 
to a clock in empty spacetime, a clock near a concentration of mass-
energy will run slower and will run faster near an electric charge of either 
sign. Thus the hypersurface does not remain “planar” as it evolves in 
time. To draw world lines one must take into account the general 
relativistic metric. This is why one uses light cone indicators at points 
contained in regions of interest. 

The concepts of quantum mechanical localization and the resulting 
picture of motion are especially important in discussing many-particle 
problems and the transition to the classical world. In considering the 
penetration of a potential barrier, for example, one often restricts the 
problem to a single particle and calculates the probability that it will be 

 
11 If one uses only positive energy solutions of the Dirac equation to form a wave packet, 
the probability of finding a particle outside the light cone nowhere vanishes, although the 
propagator becomes very small for distances greater than the Compton wavelength ℏ/𝑚𝑐. 
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found on the far side of the barrier. For the many-particle case, say the 
surface barrier of a metal treated as a free-electron gas in a smeared 
positive background — an example that will be relevant later in this 
chapter — one would find that those electron wavefunctions that have 
been localized on the far side of the barrier will contribute to a real 
negative charge density. This charge density will interact with the 
smeared positive background. 

Force, Fields, and Motion 

Fields in classical physics are defined in terms of forces on either 
massive particles — in the case of Newtonian mechanics, or charges in 
the case of electromagnetism. General Relativity changed our way of 
thinking about the gravitational field by replacing the concept of a force 
field with the curvature of spacetime.  

Starting with Einstein and Weyl,12 there have been many attempts to 
geometrize electromagnetic forces. In all these attempts, charge — like 
mass in Newtonian mechanics — is treated as an irreducible element of 
electromagnetic theory that must be introduced ab initio. Its origin is not 
really a part of the theory. It does, nevertheless, have a unique spacetime 
signature.13 Charge of either sign causes a negative curvature of space-
time. The Einstein–Maxwell system of equations does not, however, 
allow different geometric representations for the electric fields due to 
positive and negative charges. This is a direct result of the fact that the 
sources of the Einstein–Maxwell system are embodied in the energy-
momentum tensor, which depends only on the (non-gravitational) energy 
density. Charge, due to its geometrical effect on spacetime, always enters 
as 𝑄ଶ so that both positive and negative charges affect spacetime in the 
same way. Consequently, the electric field due to positive and negative 
charges cannot be identified with distinct changes in spacetime geometry. 
This also follows from the fact that, if we ignore the very small curvature 

 
12 L. O’Raifeartaigh, The Dawning of Gauge Theory (Princeton University Press, 
Princeton, New Jersey, 1997), pp. 24–37. 
13 G. E. Marsh, “Charge, geometry, and effective mass,” Found. Phys. 38 (2008), 293–
300. 
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of spacetime due to the energy density of the field, only charged particles 
are directly affected by the presence of an electromagnetic field. Thus, a 
full geometrization of charge does not appear to be possible within the 
framework of the Einstein–Maxwell equations.  

The advent of modern gauge theory, incorporating the concepts of 
symmetry breaking and compensation fields, radically changed the 
understanding of fields. The electromagnetic interaction of charged par-
ticles in particular could be interpreted in terms of a local — as opposed 
to global — gauge theory within the framework of quantum mechanics. 
Interpreting the electromagnetic field as a local gauge field takes into 
account the existence of positive and negative charges and gives a good 
representation of the electromagnetic forces. It also gives us a concept of 
the electric field somewhat more enlightening than the classical one 
where the field is defined as the ratio of the force on test charge to the 
charge in the limit when it goes to zero.  

The key concept for representing the electromagnetic force as a 
gauge field is the recognition that the phase of a particle’s wavefunction 
must be treated as a new physical degree of freedom dependent on the 
particle’s spacetime position. The four-dimensional vector potential plays 
the role of a connection relating the phase from point-to-point. Thus, the 
vector potential becomes the fundamental field for electromagnetism. 
The Aharonov and Bohm effect is generally cited to prove that this 
potential can produce observable effects, thereby confirming its reality. 

The “gauge principle”, as it is often called, is well illustrated by 
considering the non-relativistic Schrödinger equation in the context of 
electromagnetism.14 It is also possible to give a relativistic version of the 
argument that appears below. 

The Schrödinger equation for a free particle, 

− ℏଶ2𝑚∇ଶΨ(𝑥⃗, 𝑡) = 𝑖ℏ𝜕௧Ψ(𝑥⃗, 𝑡) , (1)

 
14 I. J. R. Aitchison and A. J. G. Hey, Gauge Theories in Particle Physics (Institute of 
Physics Publishing, Bristol and Philadelphia, 1993), 2nd edition. 
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is not invariant under the local phase transformation  Ψ(𝑥⃗, 𝑡) ⟶Ψᇱ(𝑥⃗, 𝑡) = 𝑒௜ఈ(௫⃗,௧)Ψ(𝑥⃗, 𝑡) . (2)

To be invariant under such a transformation, the free particle Schrödinger 
equation must be modified so that it no longer represents a free particle, 
but rather one moving under the influence of a force. For the case of 
electromagnetism, the free particle Schrödinger equation must be 
replaced by ൤ 12𝑚 (−𝑖ℏ∇ − 𝑞𝐴)ଶ + 𝑞𝑉൨Ψ(𝑥⃗, 𝑡) = 𝑖ℏ𝜕௧Ψ(𝑥⃗, 𝑡) , (3)

 
where 𝐴 and 𝑉 transform according to  𝐴 ⟶ 𝐴ᇱ = 𝐴 + 𝑞ିଵ∇𝛼(𝑥⃗, 𝑡) 𝑉 ⟶ 𝑉ᇱ = 𝑉 − 𝑞ିଵ ∂௧𝛼(𝑥⃗, 𝑡) 

(4)

when Ψ(𝑥⃗, 𝑡) ⟶Ψᇱ(𝑥⃗, 𝑡). 
The essence of the “gauge principle” is that demanding invariance 

under a local phase transformation corresponds to the introduction of a 
force. Of course, one can argue in the reverse: the introduction of a force 
can be represented as a local phase transformation. A simple example 
will be given below. 

A free particle at rest samples a volume of space at least as large as 
its Compton wavelength, and the wavefunction associated with this 
sampling is such that a spherical volume is sampled in the absence of 
external forces. One might think here of a Gaussian packet (the lowest 
order wavefunction for the simple harmonic oscillator) which has the 
property of minimizing the uncertainty in both 𝑥 and 𝑝, thereby giving 
the maximum localization possible.  

If a force acts on the particle — say along the 𝑥-axis — this 
symmetry is broken by an extension of the probability distribution  
(the volume sampled) along the 𝑥-axis. To actually be “seen” to move, 
the particle must participate in a series of interactions so as to repeatedly 
localize it along its path of motion. If the force acting on the particle is 
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modeled as a virtual exchange of quanta, such an exchange — viewed as 
an interaction — would serve to localize the particle. The propagation of 
a Gaussian wave packet representing the propagation of a charged 
particle under the influence of a constant force is an example well worth 
discussing further. This problem has recently been extensively treated by 
Robinett15 and Vandegrift.16 

The Gaussian wave packet 𝜓଴(𝑥, 𝑡) is a solution to the free-particle, 
one-dimensional Schrödinger equation 

𝑖ℏ𝜕௧Ψ(𝑥, 𝑡) = − ℏଶ2𝑚𝜕ଶΨ(𝑥, 𝑡)𝜕𝑥ଶ − 𝐹𝑥Ψ(𝑥, 𝑡) (5) 

with 𝐹 = 0. This solution has the property that it will remain centered at 𝑥 = 0 for all values of 𝑡. Now let 𝐹 be a time-independent, uniform 
force, implying a constant acceleration. In classical mechanics, such a 
force has the kinematic relation  𝑥(𝑡) = 𝑥଴ + 𝑣଴𝑡 + 12 𝑎𝑡ଶ , (6)

where 𝑥଴ and 𝑣଴ are the initial position and velocity, and 𝑎 is the accel-
eration. What Vandegrift shows is that the Gaussian packet solution to 
the Schrödinger equation with 𝐹 being a uniform force becomes a wave 
packet centered at 𝑥(𝑡), that is Ψ(𝑥, 𝑡) = 𝜓଴ ൬𝑥 − 𝑥଴ − 𝑣଴𝑡 − 12 𝑎𝑡ଶ, 𝑡൰ 𝑒௜ௌ(௫,௧) (7)

is a solution to the Schrödinger equation. The phase 𝑒௜ௌ(௫,௧) is a local 
phase transformation corresponding to 𝑒௜ఈ(௫,௧) above, and 𝑆(𝑥, 𝑡) is 
explicitly given by ℏ𝑚 𝑆(𝑥, 𝑡) = 𝑣଴𝑥 + 𝑎𝑥𝑡 − 12 𝑎𝑣଴𝑡ଶ − 16 𝑎ଶ𝑡ଷ − 12 𝑣଴ଶ𝑡 . (8)

 
15 R. W. Robinett, “Quantum mechanical time-development operator for the uniformly 
accelerated particles,” Am. J. Phys. 64 (1996), 803–808. 
16 G. Vandegrift, “Accelerating wave packet solution to Schrödinger’s equation,” Am. J. 
Phys. 68 (2000), 576–577. 
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This solution to Schrödinger’s equation shows that the imposition of a 
uniform force is equivalent to making a non-relativistic transformation  
to an accelerating reference frame. It is also an example of the gauge 
principle. 

Quantum Electrostatics 

The gauge principle should also be able to explain macroscopic phe-
nomena. The example to be used here will be that of electrostatics. Dis-
cussing electrostatics in a quantum mechanical framework is perhaps one 
of the most counterintuitive examples of collective quantum phenomena 
leading to classical behavior. What will be shown here is that the electric 
field, best interpreted as a phase field, affects the electron wavefunctions 
at the surface of a conductor and collectively this is what is responsible 
for the force acting on the conductor. Of course, one could simply use the 
classical electric field concept to achieve the same result, but — recalling 
the example of the Gaussian packet — greater insight into how the 
classical motion emerges is gained by considering the electric field as a 
phase field.  

If a sphere holding a net positive charge 𝑄 is placed in an initially 
uniform electric field 𝑬଴, it will experience a force in the direction of the 
applied field. In solving Laplace’s equation in terms of spherical har-
monics, this force results from the term 𝑄/4𝜋𝑎ଶ, where 𝑎 is the radius  
of the sphere. The total charge density on the surface of the sphere is 3𝜀଴𝐸଴ cos 𝜃 + 𝑄/4𝜋𝑎ଶ. The electric field lines and associated surfaces 
of constant potential are shown in Fig. 4.2. 

Notice that the constant potential surface corresponding to the 
potential of the sphere intersects the sphere and divides its surface so that 
those electric field lines terminating on negative surface charges are on 
one side of the intersection, and those whose origin is on positive surface 
charges are on the other. The value of 𝜃 giving the location of the inter-
section is given by the solution to the equation cos 𝜃 + 𝑄12𝜋𝜀଴𝐸଴𝑎ଶ = 0 . (9)
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Fig. 4.2. Electric field 𝑬଴ and associated surfaces of constant poten-
tial 𝑈 for a positively charged sphere of radius 𝑎 in an initially 
uniform field. The induced surface charge density varies with 𝜃, 
whereas that due to 𝑄 does not.  

For 𝑄 > 12𝜋𝜀଴𝐸଴𝑎ଶ, the electric field is directed outward from the sur-
face for all 𝜃. As can be readily seen from the figure, ∇𝑈|ఏୀ଴ > ∇𝑈|ఏୀగ, 
which implies a net force in the positive 𝑧-direction. 

From a quantum mechanical perspective, the wavefunction at the 
surface is modified by the electric field interpreted as a phase field — 
similar to the example of the Gaussian wave packet discussed above. A 
net positive charge corresponds to removing a portion of the electron 
cloud of the nuclei near the surface, thereby unshielding these nuclei, 
which are the source of the positive charge. The wavefunction at the 
surface, as will be seen, is affected asymmetrically by the presence of an 
external electric field. 
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In order to calculate the wavefunction one has to simplify the 
problem and often the so-called jellium model17 is used where the metal 
is modeled as a uniform positive background and an interacting electron 
gas. The surface of the metal is represented by the jellium (or geomet-
rical) edge and is located at one half of the lattice spacing from the 
surface atom nuclei. The rapidly decaying electron cloud density extends 
beyond the geometrical surface.  

The centroid of the excess charge distribution18 (also known as the 
electrical surface) linearly induced by an external electric field is given 
by 𝑧୰ୣ୤ = ׬ 𝑥𝑛ఙ(𝑥)𝑑𝑥ஶିஶ׬ 𝑛ఙ(𝑥)𝑑𝑥ஶିஶ  . (10)

Here 𝑛ఙ(𝑥) is the surface-charge density induced by the electric field 
perpendicular to the surface.19 This centroid, calculated for 0 ≤ 𝜃 ≤ 2𝜋, 
gives the position of the electrical surface — that surface where the 
external electric field appears to start. This surface is also the analog of 
the image plane (for the jellium and excess charge distribution) in the 
case of a plane conductor. Because we will be considering the position of 
the electrical surface at 𝜃 = 0 and 𝜃 = 𝜋, its position will be denoted by 𝑧ref. The geometry and notional wavefunctions are shown in Fig. 4.3. 

The symmetry of the electron-probability distribution along the  𝑥-axis is broken by the charge 𝑄. This results in a change in the position 
of 𝑧ref, which is determined by the net electric field due to the charge on 
the sphere and the external electric field.  

 
17 J. R. Smith, “Theory of electronic properties of surfaces,” contained in: R. Gomer, ed., 
Interactions on Metal Surfaces (Springer-Verlag, New York, 1975). The term “jellium” 
was apparently first introduced by Conyers Herring. 
18 The excess charge distribution is also known as the screening or induced charge 
distribution. 
19 N. D. Lang and W. Kohn, “Theory of metal surfaces: Work function,” Phys. Rev. B3 
(1971), 1215–1223. 
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Fig. 4.3. Surface wavefunctions for a positively charged metal sphere 
in an initially uniform electric field 𝐸଴. 𝑧ref is the centroid of the 
excess charge distribution at 𝜃 = 0 and 𝜃 = 𝜋. Notice that the loca-
tion of 𝑧ref is closer to the geometrical edge on positively charged 
portion of the sphere. The actual magnitude of the distance 𝑧ref is 
around 3 a.u., or about 1.6 Å. 

Thus, for an uncharged sphere placed in an initially uniform field, 
classically the gradient of the potential giving the field near the surface at  𝜃 = 0 and 𝜃 = 𝜋 is equal in magnitude, but opposite in direction with 
respect to the surface of the sphere. The net force therefore vanishes. 
Quantum mechanically, the location of the image surface is at the same 
distance from the jellium edge at  𝜃 = 0 and 𝜃 = 𝜋, so that the excess 
charge distribution interacts with the jellium equally yielding no net 
force in the direction of the field. 

This will no longer be the case if the sphere is charged: the electric 
field at the surface due to the charge will asymmetrically sum up with 
that due to the external field 𝑬଴. For a positively charged sphere, the net 
field at 𝜃 = 0 will be greater than at 𝜃 = 𝜋. As the magnitude of the 
external electric field increases, the image surface moves inward towards 
the surface20 at 𝜃 = 0, but less so than at 𝜃 = 𝜋. Because the electrical 

 
20 R. G. Forbes, “Charged surfaces, field adsorption, and appearance-energies: an 
unsolved challenge,” Journal de Physique IV (Colloque C5, supplement au Journal  
de Physique III, Vol. 6 Septembre), (1996) C-25–C-30. 
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image surface is now closer to the jellium at 𝜃 = 0 than at 𝜃 = 𝜋, there 
is a net force in the positive 𝑧-direction (the positive charge on the sphere 
can be pictured as residing on the geometrical surface).  

For a negatively charged sphere, the image surface moves outward 
(away from the surface) as the magnitude of the external field 
increases,21 but more so at 𝜃 = 𝜋 than at 𝜃 = 0. The negative charge on 
the geometrical surface is then further away from the effective negative 
charge due to the excess charge distribution. The separation is greater  
at 𝜃 = 𝜋 than at 𝜃 = 0. This results in a net force in the negative  𝑧-direction.  

Quantum mechanically, the origin of the force is similar to the 
example given earlier of the Gaussian packet, but in the case of the more 
complicated problem of a charged macroscopic sphere, one must adopt 
some simplifying model of the surface and its associated wavefunction. 
Above, the jellium model was used for the surface of a charged sphere 
with notional electron wavefunctions to illustrate the origin of the 
classical force. Thus, the collective force due to the asymmetric excess 
charge distribution that results from the localization of the underlying 
electron wavefunctions is the classical force. 

Recapitulation 

Quantum mechanically, motion consists of a series of localizations due to 
repeated interactions that, taken close to the limit of the continuum, 
yields a world-line. If a force acts on the particle, its probability distri-
bution is accordingly modified. This must also be true for macroscopic 
objects, although now the description is far more complicated by the 
structure of matter and associated surface physics. The motion of macro-
scopic objects, as was illustrated in the context of electrostatic forces, is 
governed by the quantum mechanics of its constituent particles and their 
interactions with each other. The result may be characterized as such: 
collective quantum mechanical motion is classical motion. 
 

 
21 E. Hult et al., “Density-functional calculation of van der Waals forces for free-electron-
like surfaces,” Phys. Rev. B 64, 195414. 
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Since electromagnetic forces may be represented as a gauge field, 
electrostatic forces arise from the non-constant phase character of the 
electric field affecting many-particle wavefunctions. The example used 
was that of the force on a charged or uncharged metallic, conducting 
sphere placed in an initially constant and uniform electric field.  

There is little that is new in this chapter. On the other hand, quantum 
mechanics is widely viewed as being imposed on the well-understood 
classical world of Newtonian mechanics and Maxwell’s electromag-
netism. This dichotomy is part of the pedagogy of physics and leads to 
much cognitive dissonance.  

In the discussion above, the problems associated with transitioning 
from the reality of a quantum mechanical, many-body world to a 
classical one was avoided by using the jellium model — where a metal is 
modeled as a uniform positive background and an interacting electron 
gas. This was necessary since few if any many-particle problems with 
realistic interactions are exactly soluble. The theoretical approach to 
solving many-body problems often relies on the use of models to obtain 
approximations to specific problems. But care must be taken to 
determine the domain of validity of the model. Realistic interactions  
can create quantum correlations and collective states of matter — such  
as superfluidity and superconductivity — that have no counterparts  
in classical physics.  

In the end, there is no classical world, only a many-particle quantum 
mechanical one that — due to localizations from environmental interac-
tions — allows the emergence of the classical world of human percep-
tion. Newtonian mechanics and Maxwell’s electromagnetism should be 
viewed as effective field theories for the “classical” world. 
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Appendix A 

Spacetime 

It was the mathematician Hermann Minkowski who joined space and 
time together in his 1908 talk to the 80th Assembly of German Natural 
Scientists and Physicians stating that “Henceforth, space by itself, and 
time by itself, are doomed to fade away into mere shadows, and only a 
kind of union of the two will preserve an independent reality.” Interest-
ingly enough, Einstein was not initially comfortable with the reformula-
tion of special relativity by Minkowski, his former teacher, into four-
dimensional spacetime. Let us begin with this union of space and time. 

In Euclidean space, which has a positive definite metric, the time 
coordinate has the same status as the space coordinates; in relativity 
theory, the time coordinate has a special status due to the indefinite 
metric of Einstein spacetime. The most important thing to remember is 
that, just like the space coordinates, the time coordinate itself is not 
associated with a “flow” in any particular time direction. It does not have 
an intrinsic orientation, asymmetry, or arrow associated with it. Put 
another way, there is no “arrow of time” associated with the time 
coordinate itself except for what we give it for illustrative purposes. 

The concept of “time” has multiple meanings: there is the coor-
dinate itself; and there is the asymmetry of time in our three-dimensional 
space — which never changes its direction of flow; thermodynamic time, 
associated with the increase of entropy; psychological time, which each 
of us experiences as a present moment moving into the future; and 
finally, the concept of “cosmic time” associated with the expansion of the 
universe. Although these different concepts may be related, they are not 
identical and should not be confused. 

The Minkowski diagrams of special relativity are made up of a 
continuum of space-like three-dimensional hypersurfaces along the time 
axis and perpendicular to it. The general view of time is that if one were 
to travel backwards in time one would see, for example, a sphere repre-



64 The Quantum Particle Illusion  

 

senting a propagating light pulse getting smaller and taking the size it 
had at an earlier time. That is, moving backward in time takes one to a 
three-dimensional space as it was in the past with the configuration of 
matter being what it was at each instant of past time. In this conception 
of time, three-dimensional hypersurfaces continue to exist in the sense 
that moving backward in time, were that possible, recapitulates three-
dimensional space exactly as it was in the past. This concept of time 
leads to the usual conundrum that one could go back in time and murder 
one’s grandfather. There is an even deeper problem. 

The Einstein field equations of general relativity (the theory of 
gravity) have solutions that apply to objects like the earth or sun or to the 
universe as a whole. In the case of objects like the earth or the strong 
gravitational fields of massive neutron stars, these solutions have been 
tested to a very great accuracy. But the field equations also have perfectly 
good solutions, such as the infamous Gödel solution, that allow closed 
time curves.1 Not only does this solution allow closed time curves, but in 
addition, closed timelike curves pass through every point of this space-
time, and even more problematic is that there exists no embedded three-
dimensional spaces without boundary that are spacelike everywhere, nor 
does a global Cauchy hypersurface exist.2 Under the usual conception of 
time, moving in one direction along closed timelike curves is the 
equivalent to traveling backwards in time in that one may not only 
eventually arrive at the time when one began, but the configurations of 
three-dimensional space repeat themselves over and over again.  

The Gödel solution and others like it are generally dismissed as 
being non-physical, but that simply begs the problem raised by their 
existence. The famous Kerr solution, representing the spacetime around a 
rotating mass, and which has no known interior solution — unlike the 
static Schwarzschild solution for a non-rotating mass — also has closed 

 
1 This solution caused enormous ferment in physics and philosophical circles. See: P. 
Yourgrau, Gödel Meets Einstein: Time Travel in the Gödel Universe (Open Court, 
Chicago, 1999); A World Without Time: The Forgotten Legacy of Gödel and Einstein 
(Basic Books, Cambridge, MA, 2005). 
2 A global Cauchy surface is a spacelike hypersurface such that every non-spacelike 
curve intersects it only once. 
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timelike curves if the angular momentum in appropriate units is greater 
than the mass, and one passes through the ring singularity. Yet, this 
solution is not dismissed as being non-physical.  

Stephen Hawking has tried to get around the problem of closed time 
curves by introducing what he called the chronology protection con-
jecture: “The laws of physics do not allow the appearance of closed 
timelike curves.” But thus far there has been no proof of this conjecture. 
Einstein’s field equations alone, being partial differential equations, only 
tell us about the value of a function and its derivatives in an arbitrarily 
small neighborhood of a point. Whether closed time curves exist or not is 
a global question that may also depend on the topology of the spacetime. 
Some things about closed time lines are known. For example, for asymp-
totically flat spacetimes, if certain energy conditions are satisfied, closed 
timelike curves can only occur if spacetime singularities are present. 

If a signal may be sent between two points in spacetime only if the 
points can be joined by a non-spacelike curve, then the signal is said to 
be causal (this type of formulation allows for the possibility that the two 
points can only be joined by light rays). The spacetime will be causal if 
there are no closed non-spacelike curves. The non-rotating solutions to 
Einstein’s field equations, such as the Schwarzschild and Friedman–
Robertson–Walker cosmological solutions are causally simple. For most 
“physically realistic” solutions it has been shown that the chronology 
condition — that there are no closed timelike curves — is equivalent to 
the causality condition stating that there are no closed non-spacelike 
curves.3 

 
3 While there is no need to discuss the time orientability of a spacetime here, it might be 
useful to give an example of a non-orientable spacetime. If one draws a circle repre-
senting the space axis along a Möbius strip and imposes a time direction perpendicular to 
the circle, after starting at any point and traversing the circle so as to return to the same 
point (on the other side of the strip of a paper model — a real Möbius strip only has one 
side), the time direction will be reversed. Such behavior implies that this (1 + 1)  
dimensional spacetime is not time orientable. While a spacetime that is non-orientable 
has a double covering space, which is orientable, that does not eliminate the problem in 
the underlying base space. Covering spaces are very useful in mathematics, but in terms 
of the physics, it does not seem to be possible to jump between the two spaces. Either the 
base space or the covering space must be chosen as representing physical spacetime. 
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More generally, the Einstein field equations belong to a class of 
partial differential equations known as symmetric hyperbolic systems.4 
Such equations have an initial-value formulation in the sense that once 
initial data are specified on a spacelike hypersurface, the subsequent time 
evolution follows from this data. Unlike the Gödel solution, where a 
global Cauchy hypersurface does not exist, if a Cauchy surface does 
exist, and initial conditions are imposed on it for its future evolution 
governed by the Einstein field equations, closed timelines — the equiv-
alent of a “time machine” — cannot occur. As put by Geroch, “. . . there 
exist solutions of Einstein’s equation in general relativity that manifest 
closed causal curves. But we do not, in light of this circumstance, allow 
observers to build time-machines at their pleasure. Instead, we permit 
observers to construct initial conditions — and then we require that they 
live with the consequences of those conditions. It turns out that a ‘time-
machine’ is never a consequence, in this sense, of the equations of 
general relativity, . . .”5 

The usual conception of time, with its past three-dimensional hyper-
surfaces that continue to exist, imposes itself on our own psychological 
sense of time. But while we can remember and think of how things were 
in the past, this does not mean that the physical past continues to exist.  

Another reason that the past, as conceived generally, does not exist 
has to do with microreversibility — the symmetry under time reversal — 
of the wavefunction given by Schrödinger's equation. For a system of 
particles, this symmetry is generally broken; i.e., the equation of motion 
describes the possible future evolution that a system may follow, but the 
time-reversal of the actual evolution of the system will not in general 
follow the same path backwards in time.  

As pointed out earlier, just like spatial coordinates, the time 
coordinate itself is not associated with a “flow” in any particular time 
direction. If we measure the time distance around a closed timelike 

 
4 R. Geroch, “Partial differential equations of physics,” arXiv:gr-qc/9602055v1 (27 Feb 
1996). 
5 R. Geroch, Advances in Lorentzian Geometry: Proceedings of the Lorentzian Geometry 
Conference in Berlin, M. Plaue, A. Rendall, and M. Scherfner (Eds.) (American Math-
ematical Society, 2011), p. 59. arXive: gr-qc/1005.1614v1. 
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curve, there is no prima facie reason to expect the answer to be modulo 
the circumference.  

Instead, one may think of the evolution of time as being a one-
dimensional covering space over the original closed timelike curve as 
shown in Fig. A.1 below.6 It is not necessary to identify the covering 
space as being the actual time curve in our universe since causality 
violations occur only if past three-dimensional hypersurfaces continue to 
exist. With this conception of time, one could go around a closed time 
curve many times without a causality violation. The need for Hawking’s 
chronology protection conjecture is eliminated.  

 
Fig. A.1. Closed time curve with a covering space. The original 
closed curve can be thought of as a projection of an infinite spiral 
over the closed time curve. Time changes monotonically in the 
covering space as one loops around the closed time curve. 

Time and the Expansion of the Universe 

The Friedmann–Lemaître spacetimes thought to represent our universe 
have exact spherical symmetry about every point, which implies that the 

 
6 A relevant concept is called “unwrapping”: S. Slobodov, “Unwrapping closed timelike 
curves,” Found. Phys. 38 (2008), 1082. Unfortunately, the process of extending a space-
time containing closed timelike curves generally introduces other pathologies. 
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spacetime is spatially homogeneous and isotropic, admitting a six-
parameter group of isometries whose orbits are space-like three-surfaces 
(constant time) of constant curvature (positive, negative, or flat). One may 
choose the coordinates such that the line element has the form 𝑑𝑠ଶ =𝑑𝑡ଶ − 𝑅ଶ(𝑡)𝑑𝑙ଶ , where 𝑑𝑙ଶ  is the line element of a time-independent 
Riemannian three-space of constant curvature, be it positive, negative, or 
flat, and 𝑅(𝑡) is the expansion function. What this form of the metric tells 
us is that the proper physical distance 𝑑𝑙 between a pair of comoving 
galaxies scales with time as 𝑙(𝑡) ∝ 𝑅(𝑡) . For flat three-dimensional 
space, now believed to represent the actual universe, the function 𝑅(𝑡) 
monotonically increases with time.7 One can readily show from the form 
of the metric that the velocity of separation of two comoving galaxies, 𝑉, is given by 𝑉 = ቂோሶ (௧)ோ(௧)ቃ 𝑙, where the “dot” means the derivative with  

respect to time. This is the origin of the cosmological red shift. Thus, if 𝑅(𝑡) is constant, 𝑉 = 0, and motion freezes. 
The parameter 𝑡 of the Friedmann–Lemaître spacetimes is explicitly 

identified with the time parameter used to express physical relationships 
such as in Newton’s and Maxwell’s equations. This implies that if the 
time is set equal to a constant number so that the universe freezes at 
some radius, the time associated with physical processes also freezes —
nothing can propagate or change in three-dimensional space. Motion  
and the flow of time are inexplicably linked, as originally pointed out by 
Hermann Weyl. This would also be true in more general spacetimes 
where time may pass at different rates depending on the local mass-
energy concentration. Thus, identification of the Friedmann–Lemaître 
time parameter (often called cosmic time) with physical time implies that 
the “flow” of time in three-dimensional space is due to the expansion of 
the universe.  

The connection would seem to be even deeper. These spacetimes 
begin with an initial singularity — the term being used loosely. This 
means space and time came into being together and, in the real as 
opposed to mathematical world, may not be able to exist independently. 

 
7 The flatness of three-dimensional space does not necessarily imply that the full space-
time is flat. 
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This is an obvious point: without time, there would be no space since 
expansion after the initial singularity would not be possible; and the 
expansion of space from the initial singularity implicitly introduces time 
and induces a time asymmetry in three-dimensional space.  

This induced cosmic time is quite distinct from the thermodynamic 
time direction arising from increasing entropy when matter is present. It 
is also different from time as measured by “clocks” whose rate will vary 
according to both special and general relativity, but always in the implicit 
time direction induced in three-dimensional space by its expansion. 

The Friedmann–Lemaître spacetimes can also have spatial sections 
that have positive curvature so that 𝑅(𝑡) is a cyclic function of time;  
i.e., the universe expands and then contracts (Fig. A.2). But time is not 
reversed during the contraction phase; the initial asymmetry in time 
persists.8 Thus, either the expansion or contraction of the universe leads 
to a time asymmetry in the same direction. The term “expansion” alone 
will continue to be used here since the real universe appears to be flat. 

 
Fig. A.2. The Cyclic Friedmann–Lemaître spacetime with positive 
curvature that first expands from an initial singularity and then con-
tracts to a singularity. The equation for 𝑅(𝑡) is a cycloid. 

 
8 In this connection, I should mention the work of Hawking who considered quantum 
gravity and metrics that are compact and without boundary. He showed that the observed 
asymmetry of time defined by the direction of entropy increase is related to the 
cosmological arrow of time defined by the expansion of the universe. S. W. Hawking, 
“Arrow of time in cosmology,” Phys. Rev. D 32 (1985), 259.  
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If the singularities at the times indicated in Fig. A.2 are identified so 
that one has a closed time curve and the time asymmetry persists in the 
same direction as indicated in the figure, then time could increase mono-
tonically through the cycles (see Fig. A.1 and associated discussion). 

There is one additional point that should be made. The cosmological 
solutions to the Einstein field equations discussed above all have an 
initial singularity where spacetime itself is generally assumed to have 
come into being. The Einstein field equations themselves, however, do 
not inform us about what if anything existed “before” the initial singu-
larity. The existence of the singularity simply indicates the limits of 
applicability of the field equations. In particular, these equations do not 
rule out the existence of some form of space or spacetime before the 
initial singularity. Most theoreticians assume that some form of quantum 
gravity will illuminate this issue. Unfortunately, current attempts in this 
direction — as exemplified by some forms of string theory, loop quan-
tum gravity, non-commutative geometries, etc., have not had any con-
vincing success. Also, to state a heretical view, there is no experimental 
evidence that space, time, or spacetime is quantized or that it need be 
quantized.9 The desire to do so is primarily a matter of esthetics. It is 
based on the idea that because spacetime is a dynamical entity in its own 
right — due to its interactions with matter and energy — spacetime 
should in some sense be quantized.  

The Asymmetry of Time 

The standard “big bang” model of cosmology assumes that at the very 
beginning of the universe, there was no matter present but only energy in 
the form of enormously hot thermal radiation. The actual nature of this 
radiation, associated with a temperature similar to 10ଷଶ °K at the Planck 
time of 10ିଶସ sec, is not really known, although it is generally charac-
terized as thermal radiation, which is, of course, of electromagnetic 

 
9 One often hears Heisenberg’s uncertainty relations incorrectly raised in this context. But 
they have to do with the theory of measurement in quantum mechanics and are directly 
derivable from classical wave theory and the relations 𝐸 = ℎ𝜈 and 𝑝𝜆 = ℎ. They do not 
apply to the fundamental limits of spacetime itself. 
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origin. The extremely hot origin of the universe is confirmed by the 
existence of the isotropic 3 °K background radiation. The conversion of 
this early radiation into particle-antiparticle pairs, as the expanding 
universe cooled through a series of phase changes, is widely believed to 
be the source of the matter that exists today. The 3 °K background 
radiation itself comes from a time about half a million years after the 
initial singularity, by which time the plasma of ions (primarily hydrogen 
and helium, as well as electrons and photons) had formed and cooled to 
the point where it became a transparent gas. But there is a fundamental 
problem with this scenario that has not yet been resolved.  

Consider the baryons (particles like neutrons and protons). From the 
observed ratio of the number of baryons to the number of photons in the 
background radiation — something like 10ିଽ — it is apparent that only  
a small fraction of the matter survived the annihilation of the particle-
antiparticle pairs. This means that somehow there must have been a small 
excess of matter over antimatter before the annihilation occurred. For 
this to be the case, the symmetry between baryons and antibaryons must 
be broken. Baryon number conservation must be violated so that the 
various allowed decay schemes resulting in baryons can lead to a 
difference between the number of baryons and anti-baryons. The criteria 
for breaking this symmetry was established by Sakharov10 quite some 
time ago: both 𝐶 and 𝐶𝑃 invariance must be violated, or otherwise for 
each process that generates a baryon-antibaryon asymmetry there would 
be a 𝐶 or 𝐶𝑃 conjugate process that would eliminate the possibility of a 
net asymmetry; and there must be a departure from thermal equilibrium, 
or 𝐶𝑃𝑇 invariance — which must hold for any local, relativistic field 
theory — implying that there would be a balance between processes 
increasing and decreasing baryon number. There is some confusion in the 
literature about the meaning of the last requirement with regard to 
“time”.  

 
10 A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5 (1967), 32 [JETP Lett. 5 (1967), 24] 
[Sov. Phys. Usp. 34 (1991), 392] [Usp. Fiz. Nauk 161 (1991), 61]. Here 𝐶, 𝑃, and 𝑇 are 
the discrete symmetries associated with charge, parity, and time respectively. 
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For example, Börner11 states that, “Loosely speaking, the CPT-
invariance of local, relativistic field theories and thermodynamic equilib-
rium imply the invariance under CP, because in thermodynamic equi-
librium there is no arrow of time.”  Grotz and Klapdor12 state that only if 
there is a departure from thermodynamic equilibrium will CP-violating 
interactions permit “. . . the rates of reactions which lead to the formation 
of baryons, to be larger than the rates of reactions which lead to anti-
baryons, but in thermodynamic equilibrium, no time direction is given, 
and the same would also apply to the inverse reactions.”  

Both statements argue that in thermodynamic equilibrium there is 
no Arrow of Time; i.e., no time direction is given. As it stands, this is 
certainly true, but as shown below in the discussion of thermodynamic 
time, this Arrow of Time has no relation to the kinematic time reversal 
transformation (see the book by Sachs referenced below). There is often 
confusion between the Arrow of Time and 𝑇-violation. As put by Sean 
Carroll in November 20, 2012 “blog” of the popular magazine Discover, 
referring to the recent results from BaBar on 𝑇 violation, “. . . the entire 
phenomenon of 𝑇 violation — has absolutely nothing to do with that 
arrow of time [emphasis in the original].”  

With regard to Sakharov’s requirement that there be a departure 
from thermodynamic equilibrium, Kolb and Turner13 argue that, “The 
necessary non-equilibrium condition is provided by the expansion of the 
Universe. . . . if the expansion rate is faster than key particle interaction 
rates, departures from equilibrium can result.” Calculations by Kolb and 
Turner show that only a very small 𝐶 and 𝐶𝑃 violation can result in the 
necessary baryon-antibaryon asymmetry. 

Systems in thermodynamic equilibrium (while they do not have an 
Arrow of Time) called “thermodynamic time” in this book, in the hopes 
of avoiding the kind of confusion found in the literature, do of course 
move through time in a direction given by the time asymmetry in the 
three-dimensional space within which we live.  

 
11 G. Börner, The Early Universe (Springer-Verlag, Berlin, 1993). 
12 K. Grotz and H. V. Klapdor, The Weak Interaction in Nuclear, Particle and Astro-
physics (Adam Hilger, Bristol, 1990). 
13 E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley, New York, 1990).  
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Because of 𝐶𝑃𝑇 conservation, it is clear that 𝐶𝑃 violation means 
that 𝑇-invariance is also violated. Now these symmetry violations are 
generally discussed in the context of particle decays. For example, the 
decay of the 𝐾-meson tells us that the violation of 𝑇-symmetry is very 
small. But no matter how small the breaking of time reversal invariance, 
the fact that it exists at all implies that there is a direction of time in 
particle physics; i.e., a time asymmetry, which — to reiterate it once 
again — has nothing to do with the thermodynamic Arrow of Time.  

Before beginning the discussion of the asymmetry of time in quan-
tum mechanics, we turn to thermodynamic time so as to both complete 
the discussion above and introduce the Poincaré recurrence theorem. 

Thermodynamic Time 

Thermodynamic time has to do with the increase of entropy.14 To begin 
with, the Poincaré recurrence theorem,15 associated with thermodynamic 
and classical systems in general, states that for an isolated and bounded 
non-dissipative system, any particular state will be revisited arbitrarily 
closely; for macroscopic systems composed of many particles, the recur-
rence time will be very, very large. A simple example is a perfect gas 
confined to one side of a chamber by a membrane with the other side of 
the chamber being evacuated. If a hole in the membrane is opened, the 
gas will flow into the vacuum side; but ultimately all the gas will return 
to its original configuration after the Poincaré recurrence time has 
elapsed. From the point of view of thermodynamic time, it is possible to 
return to where the physical configuration of matter is arbitrarily close to 
its original configuration provided the assumptions given above on the 
nature of the system hold. What has been called cosmic time above 
always increases monotonically into the future even for such systems. 

 
14 An extensive and interesting discussion of time and entropy is contained in I. 
Prigogine, From Being to Becoming: Time and Complexity in the Physical Sciences  
(W. H. Freeman and Company, 1980). 
15 A clear and elegant proof of this theorem has been given by V. I. Arnold, 
Mathematical Methods of Classical Mechanics (Springer-Verlag, New York, 1989),  
p. 72. 
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Let us explore this issue more quantitatively. Consider a one-
dimensional lattice of 𝑁 particles of mass 𝑚 elastically coupled to their 
nearest neighbors by springs with a force constant 𝐾, and let one particle 
have a mass 𝑀 ≫ 𝑚, which at 𝑡 = 0 is given some velocity, the other 
particles being at rest. Rubin16 computed the subsequent motion of the 
lattice and for large 𝑁 found that the motion of the single particle with 
mass 𝑀  was damped nearly exponentially. But the time symmetry is  

preserved and after a time ேଶ ቀ௠௄ቁଵ/ଶ the lattice system completes a  
Poincaré cycle and returns to the original configuration at 𝑡 = 0. A 
similar effect occurs with quantum systems as will be shown later in this 
book.  

While a bounded system may therefore return to its initial state, 
there is no asymmetry in time involved. Nonetheless, one often hears  
of the “thermodynamic arrow of time” established by the second law of 
thermodynamics and the increase of entropy. The situation with thermo-
dynamic time is quite murky. As put by Brown and Uffink,17 “All 
traditional formulations of the Second Law presuppose the distinction 
between past and future (or ‘earlier’ and ‘later’, or ‘initial’ and ‘final’). 
To which pre-thermodynamic arrow(s) of time were the founding fathers 
of thermodynamics implicitly referring? It is not clear whether this was a 
question they asked themselves, or whether, if pushed, they would not 
have fallen back on psychological time.”  

The idea that the thermodynamic arrow of time coincides with the 
psychological arrow of time led Hawking to observe that “. . . the second 
law of thermodynamics is really a tautology. Entropy increases with 
time, because we define the direction of time to be that in which entropy 
increases.”18 There has been some objection to this pithy characterization 
of the second law, but it suffices for our purposes. The connection 
between the thermodynamic arrow of time and the physics of time  
 

 
16 R. J. Rubin, J. Amer. Chem. Soc. 90 (1968), 3061. 
17 H. R. Brown and J. Uffink, Stud. Hist. Phil. Mod. Phys. 32 (2001), 525–538. 
18 S. Hawking, The No Boundary Condition And The Arrow Of Time, in J. J. Halliwell,  
J. Pérez-Mercador, and W. H. Zurek, (eds), Physical Origins of Time Asymmetry 
(Cambridge University Press, Cambridge, 1994). 
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reversal has been put quite succinctly by Sachs, “. . . the Arrow of Time 
has little to do with the time variable as measured by physicists. In 
particular, it has no bearing on the physics of time reversal.”19 The 
thermodynamic arrow of time will play no further role here. On the other 
hand, the Poincaré recurrence theorem will appear again in the next 
section. 

Time Asymmetry in Quantum Mechanics 

Below, in discussing Feynman’s picture of the scattering of the Dirac 
wavefunction by a potential, waves will be allowed to travel backwards 
in time. These waves correspond to the negative energy states of the 
Dirac equation. That is, positrons may be interpreted as electrons prop-
agating backwards in time. This may be explicitly shown by the transfor-
mation properties of the Dirac equation under the combination of parity, 
charge conjugation, and time reversal.  

The Feynman interpretation of a positron as a backward-in-time 
moving electron is not inconsistent with the interpretation of time given 
above where past three-dimensional spacelike hypersurfaces do not 
continue to exist. The propagation into the past is very limited and the 
Feynman interpretation only applies to elementary particles. One way to 
accommodate this is to think of the three-dimensional space or hyper-
surface within which we live with a very small thickness in the time 
dimension.20 

To simplify the discussion of time asymmetry in quantum mechan-
ics, let us consider the Schrödinger equation 𝐻|Ψ⟩ = 𝑖𝜕௧|Ψ⟩. Like the 
Dirac equation, the probability amplitude Ψ is invariant under the 𝑇 
operator so that the physical content of the theory is unchanged. What 
will now be shown is that even though the physical content of quantum 
mechanics is preserved under time reversal (micro-reversibility under the 

 
19 R. G. Sachs, op. cit. 
20 R. P. Feynman, Quantum Electrodynamics (W. A. Benjamin, Inc., New York, 1962),  
pp. 84–85. 
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𝑇 operator), when one considers multiple systems, an asymmetry in time 
results. The discussion here follows that given by Davies.21 

The Poincaré recurrence theorem associated with thermodynamic 
and classical systems that was discussed above has a quantum mechan-
ical analog: Consider a collection of systems having only a ground state 
and one excited state whose energy can vary with the system. Now 
assume all systems are in their ground states save for one that is in its 
excited state. Assume further that all the systems are coupled by an 
interaction Hamiltonian 𝐻୧୬୲. After some time passes, there is a prob-
ability that the original excited system is in its ground state and one of 
the other systems is in its excited state. Davies finds that for two identical 
coupled systems, the Schrödinger equation gives a probability amplitude 
for the original excited system of cosଶ( |𝐻୧୬୲|𝑡). Here the Poincaré 
recurrence period is 2𝜋 |𝐻୧୬୲|⁄ . On the other hand, for a large number of 
systems, the probability amplitude for the original excited system is 𝑒ିଶగ|ு౟౤౪|మ௧/∆ா, where Δ𝐸ିଵ is the density of states available. This is the 
usual time asymmetrical decay of an excited state with a half-life of  ∆𝐸/2𝜋|𝐻୧୬୲|ଶ. As the number of systems increases, the density of states 
available goes to zero and the probability of the original state returning to 
its original excited state tends to zero.  

While quantum mechanics satisfies what is known as the principle 
of micro-reversibility, processes that appear asymmetric in time are 
related to special initial conditions and the openness of the system, a 
good example being radioactive decay.  

When we say we are “understanding” something, we generally mean 
we can relate it to something simpler that we already understand; and in 
the case of spacetime, this usually means quantum mechanics. And many 
attempts have been made to do this, none with outstanding success. All 
are based on the idea that general relativity tells us that spacetime is a 
dynamical entity, while quantum mechanics tells us that a dynamical 
entity has quanta associated with it, and consequently this entity can be 
in a superposition of quantum states. The implication is that there are  
“quanta” of space and time. But what does this mean? Does it mean that 

 
21 P. C. W. Davies, The Physics of Time Asymmetry (University of California Press, 
Berkeley, 1977), § 6.1. 
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space is made up of elemental little parcels of three-dimensional space? 
What role would time play with such parcels? Are there four-dimensional 
parcels of spacetime? Is time itself infinitely divisible? If not, is it made 
up of minimal steps? Is the ordering of such steps fixed? 

The usual approach to quantum gravity is to treat the dynamical 
variable as being the spacetime metric 𝑔௜௝(𝒙). Then the usual procedure 
of quantization leads to the infamous Wheeler–DeWitt equation, which 
DeWitt was known to refer to as “that damned equation”. The Wheeler–
DeWitt equation is essentially the Schrödinger equation for the gravita-
tional field, and its wavefunction, Ψ[𝑔௜௝(𝒙)] , is the “wavefunction of the 
universe”. Time does not explicitly appear in the equation and there are 
conceptual problems with regard to the definition of probability, not to 
speak of the fact that the resulting theory is not renormalizable.  

An analogy that may help with regard to these questions is to repre-
sent spacetime as a piece of cloth: from a distance, it is quite smooth, but 
as one comes closer, it begins to show the structure of its weave. The 
argument is made that if we look at space and time at the Planck distance 
and time, it would show a structure that we could understand and use to 
explain the nature of spacetime. It is string theory and loop quantum 
gravity that attempt to address these questions.  

Some Metaphysical Thoughts 

Notwithstanding the discussion above, there is little that is really known 
about the empty spacetime continuum itself — or the vacuum in the 
context of quantum field theory — except for what hints we have from 
special and general relativity, and those given by the Standard Model of 
particle physics. Unfortunately, the greatest fundamental conceptual issue 
with the Standard Model is that its redefinition of the vacuum begins to 
make it look like some form of æther, albeit a relativistic one! This 
results from the imposition of analogies from condensed matter physics, 
and in particular, superconductivity. Surely these analogies should not be 
taken literally. The fact that they “work” should only be taken as a hint 
about the real nature of the vacuum.  

• • • 



78 The Quantum Particle Illusion  

 

In the end, there could be limitations to the phenomenological approach 
of science to addressing epistemological or metaphysical issues. The 
situation with regard to our current understanding of space and time may, 
perhaps, be characterized by a portion of the ~1959 lecture of Professor 
Walter von der Vogelweide:22 

Introduction: “And now, ladies and gentlemen, Professor 
Walter von der Vogelweide will present A Short Talk on 
The Universe: 

Now, why, you will ask me, have I chosen to speak on the 
Universe rather than some other topic. Well, it’s very 
simple. There isn’t anything else! 

Now, in the universe we have time, space, motion, and 
thought. Now, you will ask me, what is this thing called 
time? [several second pause] THAT is time. 

Now, you will ask me, what is space? Now this over here —
this is some space. However, this is not all space. However, 
when I said that was time that was all the time there was 
anywhere in the universe — at that time. Now, if you were 
to take all of the space that there is in the universe and 
CRAM it into this little tiny place, this would be ALL the 
space there was! Unless of course, some leaked out. Which 
it could. And did! Hence the universe!”  

 

 
22 From Severn Darden’s A Short Talk on the Universe. This portion of professor von der 
Vogelweide’s talk can be heard by clicking on http://www.gemarsh.com/wp-content/
uploads/SpaceTimeM.mp3. The kind of improvisation that this slightly edited extract 
comes from began in the back of a bar called the Compass in Chicago’s Hyde Park 
neighborhood near the University of Chicago campus. The Compass Players, including 
Mike Nichols, Elaine May, Shelley Berman, and Severn Darden, performed in Hyde Park 
from 1955–1958 and several of the members went on to form The Second City Theater in 
1959. 

http://www.gemarsh.com/wp-content/uploads/SpaceTimeM.mp3
http://www.gemarsh.com/wp-content/uploads/SpaceTimeM.mp3
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Appendix B 

Curved Spacetime:  
Illusory Particles? 

Thus far it has been assumed that spacetime is the flat spacetime of 
Minkowski space. If a “particle” is real, one would expect it to exist near 
a massive body whether the spacetime is curved or not. In addition, one 
would expect that the coordinate frame used should not affect the 
existence of the particle nor should it generate particles. The Unruh effect 
and Hawking radiation, discussed below, show that this assumption 
could be incorrect.1 

Vacuum Fluctuations 

As was discussed earlier, both Schwinger and Pauli cast doubt on the 
reality of vacuum fluctuations. In Schwinger’s source theory, the vacuum 
is “the state of zero energy, zero momentum, zero angular momentum, 
zero charge, zero whatever,” and Pauli who stated that “it is quite 
impossible to decide whether the field fluctuations are already present  
in empty space or only created by the test bodies” and as late as 1946, he 
is quoted as saying that “zero-point energy has no physical reality.”  

There is some ambiguity about the term “vacuum fluctuations”  
and “zero-point energy” in the literature. If one is discussing the lowest-
energy or ground state of some quantum mechanical system, the uncer-
tainty principle tells us that the Hamiltonian must contain the term ℏ𝜔/2.  

If an electric, magnetic or vector potential field is present in the 
vacuum, the vacuum expectation of its field operator will vanish, but the 

 
1 A key reference for the Unruh and Hawking effects is: R. M. Wald, Quantum Field 
Theory in Curved Spacetime and Black Hole Thermodynamics (The University of 
Chicago Press, Chicago, 1994). Clear derivations are also given in: P. W. Milonni, The 
Quantum Vacuum (Academic Press, Inc., Boston, 1994). 
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expectation of the square of the field operators will not, which implies 
there are what are often called vacuum fluctuations of the field. In 
quantum field theory, each point in space has this zero-point energy 
associated with it, thus leading to infinite energy in any finite volume.  

Zero-point energy, and fluctuations associated with it, may be 
eliminated by normal (Wick) ordering. But expectation values of normal-
ordered operators vanish only for the free theory. In the interaction 
picture of quantum field theory, normal ordering eradicates Feynman 
diagrams with internal lines that begin and end on the same internal 
vertex. Higher order Feynman diagrams can be eliminated by what is 
known as complete normal ordering.2 

It is often said that even the vacuum empty of all fields still retains 
the zero-point energy, whose average energy vanishes. What is left are 
the vacuum fluctuations of the so-called virtual particles that satisfy Δ𝐸Δ𝑡 ≥ ℏ so that energy can be taken from the vacuum to allow particles 
to appear for very short times. These are the type of vacuum fluctuations 
that apply to the Unruh and Hawking effects and whose reality 
Schwinger and Pauli doubted. 

More recently, Jaffe3 has pointed out that the Casimir effect, often 
cited as the proof that vacuum fluctuations are real, and its experimental 
confirmation does not establish the reality of zero-point fluctuations. He 
points out that vacuum-to-vacuum Feynman graphs, that essentially 
define the zero-point energy, are not involved in the calculation of the 
Casimir force, which only involves graphs with external lines. In 
conclusion, he states that there is “no known phenomenon, including the 
Casimir effect, [that] demonstrates that zero point energies are ‘real’.” 

Casimir calculated the attractive force between two uncharged 
parallel conducting plates due to the quantum electromagnetic zero-point 
energy of the normal modes between the plates. But whether the force  

 
2 J. Ellis, N. E. Mavromatos, and D. P. Skliros, “Complete normal ordering 1: Foundations,” 
Nucl. Phys. B 909 (2016), 840–879. 
3 R. L. Jaffe, “Casimir effect and the quantum vacuum,” Phys. Rev. D 72 (2005), 021301; 
arxiv:hep-th/0503158 (2005). 
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is attractive or repulsive depends on the geometry of the uncharged 
conductor.4 

A discussion of how the vacuum is defined and the relation of 
vacuum fluctuations to the Casimir effect and the cosmological constant 
problem are contained in Appendix C. 

The Unruh Effect 

The Unruh or Davies–Unruh effect occurs for a uniformly accelerated 
detector in a vacuum that would measure a temperature given by 𝑇 = ℏ𝑎/2𝜋𝑐𝑘஻, where 𝑎 is the local acceleration and 𝑘஻ is the Boltzmann 
constant. This temperature has the same form as the Hawking temper-
ature of a black hole 𝑇ு = ℏ𝑔/2𝜋𝑐𝑘஻, where 𝑔 is the surface gravity of 
the hole. In the case of the hole, there is spontaneous particle creation. 
Although the two effects are mathematically and physically distinct, they 
are superficially related by the equivalence principle between accelera-
tion and gravitation.  

The electromagnetic zero-point fluctuation of the vacuum may be 
regarded as a propagating electromagnetic field with a spectral energy 
density5 𝜌(𝜔)𝑑𝜔 = ℏ𝜔ଷ2𝜋ଶ𝑐ଷ 𝑑𝜔 . 
There has been some debate over whether this field should be regarded 
as real or virtual. The evidence given to support the reality of the various 
contributions to the vacuum energy is the Casimir effect, which is a con-
sequence of the lowest order vacuum fluctuations, and higher order effects 
like the Lamb shift. But there are alternative explanations. The Casimir 
effect could result from fluctuations associated with the constituents of 
the plates rather than vacuum fluctuations. Schwinger’s source theory 
takes this point of view and avoids vacuum fluctuations in both the 

 
4 T. H. Boyer, Phys. Rev. 174 (1968), 1764. See also: W. Lukosz, Physica 56 (1971), 
109; Z. Physik 258 (1973), 99. 
5 T. H. Boyer, Phys. Rev. 182, 1374; P. W. Milonni, The Quantum Vacuum (Academic 
Press, Inc., Boston, 1994), p. 49. 
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Casimir and higher order QED effects. And Pauli’s opinion was quoted 
above.  

The spectral energy density given above is Lorentz invariant, but  
in a uniformly accelerated reference frame with proper acceleration 𝑎 
one finds a pseudo-Planckian spectrum with a radiation temperature 𝑇 =ℏ𝑎/2𝜋𝑐𝑘஻, the same as that for the Unruh effect. In this frame, the 
spectral energy density has the form 

𝜌(𝜔)𝑑𝜔 = ቈ 𝜔ଶ𝜋ଶ𝑐ଷ቉ ൤1 + ቀ 𝑎𝜔𝑐ቁଶ൨ ቎ℏ𝜔2 + ℏ𝜔exp ቀ2𝜋𝑐𝜔𝑎 ቁ − 1቏ 𝑑𝜔 . 
Notice that at high frequencies this reduces to the previous expression. 
The Unruh effect is thus due to the lower frequencies.6  

The two above spectral energy densities tell us that the vacuum state 
is not the same in an unaccelerated inertial frame and an accelerated one. 
But general relativity tells that the coordinates used are arbitrary and 
have no geometrical or physical meaning. As put by Misner, Thorne  
and Wheeler in their book Gravitation: “The laws of physics, written in 
component form, change on passage from flat spacetime to curved space-
time by a mere replacement of all commas by semicolons,” where the 
comma represents ordinary partial differentiation and the semicolon 
covariant differentiation. The laws of classical physics are local in nature 
and the comma-goes-to-semicolon rule is directly related to the equiva-
lence principle. If one believes vacuum fluctuations are real, then one 
must accept that not all coordinate systems are physically equivalent in 
quantum mechanics.  

In spite of the enormous literature on the Unruh effect, this has been 
unpalatable for many and some maintain that the effect does not exist.7 I 
will not go through the technical details of the argument, but simply give 
an outline. 

 
6 See B. Haisch, A. Rueda, and H. E. Puthoff, “Inertia as a zero-point-field Lorentz force, 
Phys. Rev. A 49 (1994), 678–694. 
7 See, for example, V. A. Belinskii et al., JETP Lett. 65 (25 June 1997), 902.  
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The coordinates of a reference frame in Minkowski space accel-
erating with a constant proper acceleration are, in the context here, often 
called Rindler coordinates. The figure below shows the left (L) and 
right (R) Rindler wedges in Minkowski space. The hyperbolic paths of 
two objects undergoing constant proper acceleration are shown. The 
closer the hyperbola is to the origin, the greater the acceleration. The 
light cone represents the event horizons bordering the part of Minkowski 
space accessible to “Rindler observers”. The interior of the R wedge, an 
incomplete manifold, is called Rindler space.  

 

Narozhny et al.,8 showed that one can attach physical meaning to the 
Unruh method of quantization only in the double Rindler wedge con-
sisting of L and R, with their regions not being causally connected. The 
Unruh construction requires that boundary conditions be imposed on the 
origin (or two-dimensional plane in the case of (3 + 1) dimensional 
spacetime). These boundary conditions constitute a topological obstacle 
that disallows any correlation between particles in the L and R wedges. 
This means that the averaging over quantum field states in one wedge 
cannot lead to thermalization of states in the other wedge. A free 
quantum field in Minkowski space cannot be decomposed into two 
noninteracting fields, one in the L wedge and the other in the R wedge.  

At this point, I will quote the very well supported conclusion of 
Narozhny et al.: “Hence, considerations of the Unruh problem, both in 

 
8 Narozhny et al., Phys. Rev. D 65 (2001), 025004. 
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the standard and algebraic formulations of quantum field theory as of 
now do not give convincing arguments in favor of a universal thermal 
response of detectors uniformly accelerated in Minkowski space.” Given 
the intense controversy over the issue, it is worth looking at the 
Acknowledgements list in this paper.  

Hawking Radiation 

Although the Unruh and Hawking effects are generally thought to be 
mathematically and physically distinct, there is a good argument which 
shows that their relationship through the equivalence principle is closer 
than one might think.  

One often finds Hawking radiation described as the thermal 
radiation predicted to be spontaneously emitted by black holes, which 
arises from vacuum fluctuations of particle and antiparticle pairs. One of 
the particles of the pair is absorbed by the horizon and the other is 
identified with the Hawking radiation. However, the best way to 
understand Hawking radiation is to consult Hawking’s very clear original 
1975 paper.9  

Numerous authors have discussed the fact that the vacuum and 
particle states arising in the canonical quantization of the free scalar field 
depend upon the coordinate system within which the Klein–Gordon 
equation is solved. The procedure used is to solve the Klein–Gordon 
equation for the normal modes appropriate for a given curvilinear 
coordinate system, and relate these to the plane-wave mode solutions in 
rectilinear Minkowski coordinates via a Bogoliubov transformation.10 If 
the coefficient in this transformation corresponding to an admixture of 
positive and negative frequency modes is non-zero, particles will be 
present. The mixing of positive and negative frequency modes also 
implies that the vacuum states will differ. What follows is a brief 
introduction to these concepts. 

 
9 S. Hawking, Commun. Math. Phys. 43 (1975), 199–220.  
10 These transformations were introduced by Bogoliubov in the context of solid-state 
physics (Zh. ETF 34 (1958), 58 [JETP 7 (1958), 51]). 



 Appendix B — Curved Spacetime 85 

 

A distinction between positive and negative frequency solutions to a 
general spacetime is possible only if the spacetime possesses a global 
Killing vector field. This will be assumed to be the case. The generali-
zation of the Klein–Gordon equation to a general spacetime is  

 𝜓 + 𝑚ଶ = 0 , (B.1) 

where 

= |𝑔|ି భమ𝜕ఓ ቀ|𝑔|భమ𝑔ఓఔ𝜕ఔቁ = 𝑔ఓఔ∇ఓ∇ఔ , (B.2) 

and ∇ is the covariant derivative. Since the existence of a global time-like 
Killing vector 𝐾 is assumed, the normal mode solutions of Eq. (B.2) may 
be chosen to satisfy ℒ௄𝜓 = −𝑖𝐸𝜓 , (B.3) 

Where ℒ௄ is the Lie derivative with respect to 𝐾. The presence of a 
Killing vector means that ℒ௄𝑔ఓఔ = 𝐾ఓ;ఔ + 𝐾ఔ;ఓ = 0 . (B.4) 

If the coordinate system is chosen such that only the non-zero component 
of the Killing vector is a unit vector along 𝑥଴, then Eq. (B.3) can be 
written as 𝜕௫బ𝜓 = −𝑖𝐸𝜓 , (B.5) 

and Eq. (B.1) can be solved by separation of variables by the substitution 𝜓 = 𝜓௝(𝑥⃗)𝑒ି௜ாೕ௫బ . (B.6) 

If 𝜓ଵ and 𝜓ଶ are complex solutions of Eq. (B.1) and Σ is any complete 
Cauchy hypersurface for this equation, an inner product can be defined 
as 〈𝜓ଵ,𝜓ଶ〉 = 𝑖 න 𝜓ଵ∗𝑓ఓሬ⃖ሬሬ⃗ஊ 𝜓ଶ 𝑑Σఓ (B.7) 
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where, 𝑓ఓሬ⃖ሬሬ⃗ = 𝑔ଵ/ଶ𝑔ఓఔ𝜕௫ഌሬሬሬሬሬሬ⃗ − 𝜕௫ഌሬ⃖ሬሬሬሬሬ𝑔ଵ/ଶ𝑔ఓఔ (B.8) 

and 𝑑Σఓ is the outwardly directed surface element of Σ. The value of 〈𝜓ଵ,𝜓ଶ〉 is independent of Σ. The arrows above the partial derivatives 
denote whether the derivative is acting to the left or the right. 

The field may then be quantized by defining a field operator11 

Φ = ෍(𝑎௜௜ 𝜓௜ + 𝑎௜ற𝜓௜∗) , (B.9) 

its conjugate momentum Πఓ = 𝑔ଵ/ଶ𝑔ఓఔ𝜕௫ഌΦ, and imposing the usual 
commutation relations, [Φ(𝑥଴, 𝑥⃑),Φ(𝑥଴, 𝑥⃑′)] = [Π(𝑥଴, 𝑥⃑),Π(𝑥଴, 𝑥⃑′)] = 0 [Φ(𝑥଴, 𝑥⃑),Π(𝑥଴, 𝑥⃑′)] = 𝑖𝛿ଷ(𝑥⃑ − 𝑥⃑ᇱ) . (B.10)

Using the definition of Πఓ and Eq. (B.9) gives, when combined with  
Eq. (B.10), the commutation relations for the annihilation and creation 
operators 𝑎 and 𝑎ற, ൣa௜ , a௝൧ = ൣa௜ற, a௝ற൧ = 0, ൣa௜ , a௝ற൧ = 𝛿௜௝ (B.11)

Note that 𝑎 and 𝑎ற are operators with no time or space dependence, and 𝜓௜ and 𝜓௜∗ correspond respectively to positive and negative frequency 
solutions. 

Consider now a second set of modes 𝜓ሜ௜, which in the present con-
text arise from solving the Klein–Gordon equation, (B.1), in some flat-
space coordinate system other than rectangular Minkowski coordinates. 
The new modes 𝜓ሜ௜ can be expanded in terms of the old modes of Eq. (B.9) 
as  𝜓ത௜ = ෍(𝛼௜௝௝ 𝜓௝ + 𝛽௜௝𝜓௝∗) . (B.12)

 
11 The symbol * is the complex conjugate and † is the adjoint or Hermitian conjugate. 



 Appendix B — Curved Spacetime 87 

 

The inner product, Eq. (B.7), can be used to determine the 𝛼௜௝ and 𝛽௜௝ as 𝛼௜௝ = 〈𝜓ത௜ ,𝜓௝〉 ,       𝛽௜௝ = −〈𝜓ത௜ ,𝜓௝∗〉 . (B.13)

If the field operator Φ is to be expanded in terms of the new modes as 

Φ = ෍(𝑎ത௜௜ 𝜓ത௜ + 𝑎ത௜ற𝜓ത௜∗) , (B.14)

the new creation and destruction operators 𝑎ത௜ and 𝑎ത௜ற must be related to 
the old by 𝑎ത௜ = ෍(𝛼௜௝∗௝ 𝑎௝ − 𝛽௜௝∗ α௝ற),   𝑎ത௜ற = ෍(𝛼௜௝𝑎௝ற௝ − 𝛽௜௝𝑎௝) . (B.15)

These equations are known as a Bogoliubov transformation of the oper-
ators 𝑎 and 𝑎ற.  

For Eqs. (B.9) and (B.14) to be consistent, and if 𝑎ത and 𝑎തற are  
to satisfy the same commutation relations as 𝑎 and 𝑎ற, the Bogoliubov 
coefficients introduced above must satisfy 

෍(𝛼௜௞௞ 𝛼௝௞∗ − 𝛽௜௞𝛽௝௞∗ ) = 𝛿௜௝ 
෍(𝛼௜௞௞ 𝛽௝௞ − 𝛽௜௞𝛼௝௞) = 0 , (B.16)

or, in equivalent but somewhat redundant matrix notation, 

෍൬𝛼 𝛽𝛽∗ 𝛼∗൰௜௞ ቆ 𝛼ற −𝛽෨−𝛽ற 𝛼෤ ቇ௞௝௞ = ቀ1 00 1ቁ 𝛿௜௝  , (B.17)

where the tilde corresponds to matrix transposition. 
One can now define the particle number operator, which is the sum 

of the particle-number operator for each of the states. It is possible to 
find a common set of eigenstates for these commuting operators, each of 
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which are fully characterized by specifying the particle numbers. In this 
way, one can form the basis of the particle number representation of the 
Hilbert space, sometimes called the Fock space. 

However, since there are two vacuum states, |0⟩ and |0ത⟩, where 𝑎௜|0⟩ = 0 and 𝑎ത௜|0ത⟩ = 0 for all 𝑖, two Fock spaces are necessary and 
they will differ if 𝛽௜௝ ≠ 0. This can be seen by direct computation of the 
matrix element 𝑁ഥ௜:  𝑁ഥ௜ = ൻ0ห𝑎ത௜ற𝑎ത௜ห0ൿ = ෍ห𝛽௜௝หଶ௝ , (B.18)

which can be written, by summing over 𝑖, as the number operator, 𝑁ഥ, 

𝑁ഥ = ෍ൻ0ห𝑎ത௜ற𝑎ത௜ห0ൿ௜ = 𝑇𝑟𝛽𝛽ற . (B.19)

𝑁ഥ௜ is interpreted as the average number of 𝜓ത௜-mode particles in the 
vacuum state |0⟩. Note that if 𝑁ഥ diverges, the two vacuum states |0⟩ and |0ത⟩ are not related by a unitary transformation. 

The Underlying Physics of Hawking Radiation 

Over twenty-five years ago Punsly12 proposed that a global quantum 
field theory such that in a Schwarzschild background space when 
restricted to any point in that space is consistent with the field theory 
found by a freely falling observer at that point. This can be expanded to 
small regions of spacetime much less than the radius of curvature.  

The equivalence principle demands that the field theory found by a 
freely falling observer be locally the same as that in flat spacetime. 
Punsly’s approach predicts that an isolated black hole will emit thermal 
radiation that can be identified with Hawking radiation. He showed that 
the renormalized stress-energy tensor is a measure of the change in the 
energy of the zero-point oscillations of the field theory as formulated by 

 
12 B. Punsly, “Black-hole evaporation and the equivalence principle,” Phys. Rev. D 46 
(1992), 1288–1311. 
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a freely falling observer; an observer at infinity sees the zero-point 
energy decrease as this observer approaches the black hole horizon. The 
freely falling observer sees no particles in the local vacuum; i.e., 
Hawking radiation does not exist for a freely falling observer.  

• • • 

What is shown above is that both the Unruh effect and Hawking radia-
tion depend on the reality of vacuum fluctuations as defined in the first 
part of this Appendix. Because there is as yet no truly compelling 
evidence that these fluctuations actually exist, the Unruh effect and 
Hawking radiation may well be illusory. 

Charge, Spacetime Geometry, and Effective Mass13 

When one thinks of solutions to the Einstein gravitational field equa-
tions, it is often thought that the solutions only have a positive curvature 
of spacetime associated with them. But this is not always true even for 
spherically symmetric non-rotating solutions or those having angular 
momentum. This section shows how negative curvature arises due to 
electric charge. 

Charge, like mass in Newtonian mechanics, is an irreducible element 
of electromagnetic theory that must be introduced ab initio. Its origin is 
not really a part of the theory. Fields are then defined in terms of forces 
on either mass — as in the case of Newtonian mechanics, or charges in 
the case of electromagnetism. General Relativity changed our way of 
thinking about the gravitational field by replacing the concept of a force 
field with the curvature of spacetime. Mass, however, remained an 
irreducible element. It is shown here that the Reissner–Nordström solu-
tion to the Einstein field equations tells us that charge, like mass, has a 
unique spacetime signature. 

The Reissner–Nordström solution is the unique, asymptotically flat, 
and static solution to the spherically symmetric Einstein–Maxwell field 
equations. Its accepted interpretation is that of a charged mass charac-

 
13 This section originally appeared in: G. E. Marsh, Found. Phys. 38 (2008), 293–300. 
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terized by two parameters, the mass 𝑀 and the charge 𝑞. While this 
solution14 has been known since 1916, there still remains a good deal to 
be learned from it about the nature of charge and its effect on spacetime.  

It will be shown here that if the source of the field is the singularity 
of the vacuum Reissner–Nordström solution, only the Schwarzshild mass 
is seen at infinity, with the charge and its electric field making no 
contribution. In particular, if the charge alone is the source of the field, 
the effective mass seen at infinity vanishes. This is not the case when the 
source of the field is a “realistic” source characterized by a mass and 
proper charge density. It will also be seen that the presence of charge 
results in a negative curvature of spacetime. 

The Reissner–Nordström solution is given by  

𝑑𝑠ଶ = −ቆ1 − 2𝑚𝑟 + 𝑄ଶ𝑟ଶቇ 𝑑𝑡ଶ + ቆ1 − 2𝑚𝑟 + 𝑄ଶ𝑟ଶቇିଵ 𝑑𝑟ଶ 

 + 𝑟ଶ(𝑑𝜃ଶ + sinଶ𝜃 𝑑𝜙ଶ) , (B.20)

where 𝑚 = 𝐺𝑀/𝑐ଶ and 𝑄 = (𝐺ଵ/ଶ/𝑐ଶ)𝑞. The Reissner–Nordström metric 
reduces to that of Schwarzschild for the case where 𝑄 = 0. Notice that 
this metric takes the Minkowski form when 𝑟 = 𝑄ଶ/2𝑚.  

If 𝑄ଶ ≤ 𝑚ଶ , this solution has two apparently singular surfaces  
located at 𝑟± = 𝑚 ± (𝑚ଶ − 𝑄ଶ)భమ. These are coordinate singularities that 
may be removed by choosing suitable coordinates and extending the 
manifold. If 𝑄ଶ = 𝑚ଶ, these surfaces coalesce into a single surface 
located at 𝑟 = 𝑚, and if 𝑄ଶ > 𝑚ଶ the metric is non-singular everywhere 
except for the origin. These singular surfaces play no role in what 
follows. An extensive discussion of the vacuum Reissner–Nordström  
and Schwarzschild solutions, along with their Penrose diagrams was 
given by Hawking and Ellis.15 

 
14 H. Reissner, “Über die eigengravitation des elektrischen feldes nach der Einstein’schen 
Theorie,” Ann. Physik 50 (1916), 106–120; G. Nordström, “On the energy of the gravi-
tational field in Einstein’s theory,” Verhandl. Koninkl. Ned. Akad. Wetenschap., Afdel. 
Natuurk., Amsterdam 26 (1918), 1201–1208. 
15 S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time 
(Cambridge University Press, Cambridge, 1973), pp. 156–161. 
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Most applications of the Reissner–Nordström solution would be 
outside a body responsible for the charge and mass. Here it is the vacuum 
solution to the field equations, considered to be valid for all values of 𝑟, 
that is of interest. 

Like the vacuum Schwarzschild solution, the Reissner–Nordström 
vacuum solution has an irremovable singularity (in the sense that it is not 
coordinate dependent) at the origin representing the source of the field. 
In what follows, only the Reissner–Nordström solution having this 
singularity as a source of the field will be considered. 

The interesting thing about the singularity is that it is time-like so 
that clocks near the singularity run faster than those at infinity. It is also 
known that the singularity of the Reissner–Nordström solution is repul-
sive in that time-like geodesics will not reach the singularity.  

Curvature in the Reissner–Nordström Solution 

If one computes the Gaussian curvature associated with the Schwarzschild 
solution, it is readily seen that the curvature vanishes. Higher order 
scalars, such as the Kretschmann scalar given by 𝐾 = 𝑅ఈఉఊఋ𝑅ఈఉఊఋ, do 
not vanish, but their interpretation is problematic.16 Of course, the 
curvature of spacetime around a Schwarzschild black hole does not 
vanish since the curvature tensor does not vanish. More important for  
the present discussion is that a simple way to determine the sign of the 
curvature is well known. 

Consider first the Schwarzschild solution. Draw a circle on the 
equatorial plane where 𝜃 = 𝜋/2 is centered on the origin. The circum-
ference of this circle is 2𝜋𝑟. The proper radius from the origin to the 
circle is given by 

න ඥ𝑔ଵଵ𝑑𝑟 = න ൬1 − 2𝑚𝑟 ൰ିଵ/ଶ 𝑑𝑟 ≥ 𝑟 .௥
଴

௥
଴  (B.21)

 
16 The divergence of the Kretschmann scalar as 𝑟 → 0 indicates a real — as opposed to a 
coordinate dependent — singularity. It has been proposed that the Kretschmann scalar be 
called “the spacetime curvature” of a black hole; see: R. C. Henry, “Kretschmann scalar 
for a Kerr–Neuman Black Hole”, Astrophys. J. 535 (2000), 350–353. 
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Consequently, the ratio of the circumference of the circle to the proper 
radius is less than or equal to 2𝜋. This tells us that the space is positively 
curved. Now consider a negative mass. The inequality sign in Eq. (B.21) 
reverses so that the ratio of the circumference of a circle to its proper 
radius is greater than 2𝜋, telling us that the space surrounding a negative 
mass has a negative curvature.  

The case of the Reissner–Nordström solution is more interesting. 
Setting 𝑔଴଴ = ቆ1 − 2𝑚𝑟 + 𝑄ଶ𝑟ଶቇ  and  𝑔ଵଵ = ቆ1 − 2𝑚𝑟 + 𝑄ଶ𝑟ଶቇିଵ, 
and using the above method of determining the spatial curvature gives 
the results shown in Table 1. For 𝑟 < 𝑄ଶ/2𝑚, one has a negatively 
curved spacetime, which is embedded in a positively curved spacetime 
with a (2 + 1) dimensional boundary having the Minkowski form 
between them. In the region between the time-like singularity at the 
origin and the (2 + 1) dimensional hypersurface, the spacetime is 
negatively curved independent of the sign of the charge. This implies that 
charge manifests itself as a negative curvature — just as mass causes a 
positive curvature. 

Table B.1. The metric coefficients 𝑔଴଴ and 𝑔ଵଵ for different ranges of 𝑟, 
and the sign of the spatial curvature in these regions.

 
 r > Q2/2m r = Q2/2m r < Q2/2m 

g00 ≥ −1 −1 < −1 

g11 > 1 1 < 1 

Spatial Curvature Positive Flat Negative 
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That charge effectively acts as a negative mass can also be seen 
from the equations governing the motion of a test particle near a 
Reissner–Nordström singularity. For an uncharged particle falling inward 
towards the singularity the radial acceleration is,17  𝑑ଶ𝑟𝑑𝜏ଶ = − 1𝑟ଶ ቆ𝑚 − 𝑄ଶ𝑟 ቇ . (B.22)

The gravitational field that affects the test particle varies with distance 
from the singularity and becomes repulsive when the effective mass 𝑚ୣ୤୤ = ቀ𝑚 − ொమ௥ ቁ becomes negative at 𝑟 < 𝑄ଶ/𝑚. Neutral matter falling 
into the singularity would therefore ultimately accumulate on the  (2 + 1)-dimensional spherical hypersurface where 𝑚ୣ୤୤ = 0. 

Thus, by means of very straight-forward considerations, the 
Reissner–Nordström solution leads to the conclusion that charge — of 
either sign — causes a negative curvature of spacetime.  

The Electric Field 

This section is devoted to a general relativistic calculation of the effec-
tive mass of the vacuum Reissner–Nordström solution: first, of that 
contained within the interior of a spherical surface of radius 𝑅, centered 
on the singularity — and designated 𝑀Eff ୍୬ ; and second, the effective  
mass of the electric field alone outside that surface — designated 𝑀EffOut. 
The key references for what follows are Synge,18 and Gautreau and 
Hoffman.19  

 
17 V. de la Cruz and W. Israel, “Gravitational bounce,” Nuovo Cimento 51 (1967), 744;  
J. M. Cohen and D. G. Gautreau, “Naked singularities, event horizon, and charged 
particles,” Phys. Rev. D 19 (1979), 2273–2279; W. A. Hiscock, “On the topology of 
charged spherical collapse,” J. Math. Phys. 22 (1981), 215; F. de Felice and C. J. S. 
Clarke, Relativity on Curved Manifolds (Cambridge University Press, Cambridge, 1992), 
pp. 369–372. 
18 J. L. Synge, Relativity: The General Theory (North-Holland Publishing Company, 
Amsterdam, 1966), Ch. VII, §5 and Ch. X, §4. 
19 R. Gautreau and R. B. Hoffman, “The structure of the sources of Weyl-type electrovac 
fields in general relativity,” Nuovo Cimento 16 (1973), 162–171. 
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Synge gives the following Stokes relation20 for a three-dimensional 
volume, 𝑣ଷ, bounded by a closed two-surface 𝑣ଶ: ර 𝑉,௜  𝑛௜𝑑𝑣ଶ = 12න (𝐺ସସ −௩యజమ 𝐺௜௜)𝑉𝑑𝑣ଷ . (B.23)

Here, 𝑑𝑣ଶ and 𝑑𝑣ଷ are the invariant elements of area and volume, 𝐺 is 
the Einstein tensor, and 𝑉 is defined by the line element 𝑑𝑠ଶ = 𝑔௜௝𝑑𝑥௜𝑑𝑥௝ − 𝑉ଶ𝑑𝑡ଶ , (B.24)

which, at infinity, is assumed to take the form of the Minkowski metric. 𝑛௜ is the outward unit normal to the surface 𝑣ଶ. Einstein’s equations, 𝐺ఓఔ = −𝜅𝑇ఓఔ, with 𝜅 = 8𝜋, allow Eq. (B.23) to be written as 

ර 𝑉,௜  𝑛௜𝑑𝑣ଶ = 4𝜋න (𝑇௜௜ − 𝑇ସସ௩యజమ )𝑉𝑑𝑣ଷ . (B.25)

The integral on the right-hand side of this equation corresponds to the 
total effective mass enclosed by the surface 𝑣ଶ. This is known as 
Whittaker’s theorem.21 Thus, 

𝑀୉୤୤୍୬ = 14𝜋ර 𝑉,௜  𝑛௜𝑑𝑣ଶ .జమ  (B.26)

Note that the effective mass, as defined by Eqs. (B.25) and (B.26), 
depends only on the energy-momentum tensor and the 𝑔଴଴ component of 
the metric. Choose a spherical surface of radius 𝑅 with the Reissner–
Nordström singularity at the origin. From Eq. (B.20), 𝑉 is given on the 
surface as 𝑉 = ቆ1 − 2𝑚𝑅 + 𝑄ଶ𝑅ଶቇଵ/ଶ, (B.27)

 
20 Greek indices take the values 1, 2, 3, 4 and Latin indices 1, 2, 3. To avoid unnecessary 
confusion, the notation used here is generally consistent with that found in the relevant 
literature. 
21 E. T. Whittaker, “On Gauss’ theorem and the concept of mass in general relativity,” 
Proc. Roy. Soc. London A149 (1935), 384. 
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𝑑𝑣ଶ = 𝑅ଶ sin𝜃 𝑑𝜃𝑑𝜑 and 𝑛௜ = (𝑉, 0, 0). Substituting into Eq. (B.26) 
gives the result quoted above [just after Eq. (B.22)] for 𝑚eff at a distance 𝑅 from the singularity 𝑀୉୤୤୍୬ = 𝑚 − 𝑄ଶ𝑅  . (B.28)

For asymptotically flat spacetimes, global quantities such as the total 
energy can be defined as surface integrals in the asymptotic region. This 
is the basis for the definition of the ADM energy (or mass).22 What will 
be shown here is that for 𝑅 ≠ ∞, the sum of the effective mass within the 
surface 𝑣ଶ and that exterior to 𝑣ଶ is the Schwarzschild mass. This is true 
for the vacuum solution being considered here, not necessarily for 
realistic sources such as those considered by Cohen and Gautreau. 

Whittaker’s theorem allows the effective mass enclosed by the 
surface 𝑣ଶ, which is composed of the mass located at the origin and  
that corresponding to the electric field within 𝑣ଶ, to be written as in 
Eq. (B.28). 

One can also compute the effective mass exterior to the surface 𝑣ଶ. 
There, the only energy density to be found is that associated with the 
electric field. By summing the effective mass found in the volumes both 
interior and exterior to 𝑣ଶ, one obtains the effective mass enclosed by the 
surface at infinity; that is, the ADM mass. Given that global quantities 
defined by surface integrals in the asymptotic region cannot generally be 
written as volume integrals over the interior region, this is a somewhat 
surprising result. 

How to use the relation of Eq. (B.25) to compute the electric field 
energy in the volume exterior to the spherical surface of radius 𝑅 
centered on the singularity can be understood by referring to Fig. B.1. 
The volume of interest is 𝑣ଷᇱ  exterior to the surface 𝑣ଶ. It has two 
boundary components, the “surface at infinity” and 𝑣ଶ itself.  

 
22 R. Arnowitt, S. Deser, and C. W. Misner, “The dynamics of general relativity,” 
contained in L. Witten (ed.), Gravitation: An Introduction to Current Research  
(John Wiley & Sons, Inc., New York, 1962), pp. 227–265. 
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Fig. B.1. The Reissner–Nordström singularity is located at the center 
of the spherical surface 𝑣ଶ of radius 𝑅 enclosing the volume 𝑣ଷ. The 
outward pointing unit normal to 𝑣ଶ is 𝑛௜. The surface enclosing the 
volume 𝑣ଷᇱ  is composed of the point at infinity and 𝑣ଶ. The outwardly 
pointing unit normal to 𝑣ଶ, when acting as a boundary component of  𝑣ଷᇱ , is 𝑛ᇱ௜.  
Since the surface integral at infinity vanishes, Eq. (B.25) for the 

volume 𝑣ଷᇱ  may be written as 

4𝜋න (𝑇௜௜ − 𝑇ସସ௩యᇲ )𝑉ᇱ𝑑𝑣ଷᇱ =  ර 𝑉,௜ᇱ 𝑛ᇱ௜𝑑𝑣ଶ .జమ  (B.29)

The 𝑉 in Eq. (B.25) has been changed to 𝑉ᇱ in Eq. (B.29). The reason  
for this is that the energy-momentum tensor in the volume 𝑣ଷᇱ  must be 
restricted to the contribution from only the electric field since no masses 
exist in 𝑣ଷᇱ . The way to do this is to recognize that the Reissner–
Nordström solution remains a solution to the Einstein field equations 
even when the mass 𝑚 is set equal to zero. The resulting metric is that 
for a massless point charge, which — as discussed above — has a 
negative curvature and is repulsive. The energy-momentum tensor for  
the electric field nonetheless has a positive energy density. The 𝑉ᇱ that 
should be used in Eq. (10) is therefore that from the metric for a massless 



 Appendix B — Curved Spacetime 97 

 

point charge; i.e., 𝑉ᇱ = ቆ1 + 𝑄ଶ𝑟ଶቇଵ/ଶ
 (B.30)

Note that 𝑟 takes the fixed value 𝑅 when computing the surface integral. 
Because 𝑛௜ = −𝑛ᇱ௜, the effective mass contained in the volume 𝑣ଷᇱ  

exterior to 𝑣ଶ is 

𝑀୉୤୤୓୳୲ = 14𝜋ර 𝑉,௜ᇱ 𝑛ᇱ௜𝑑𝑣ଶజమ  

=  − 14𝜋ර 𝑉,௜ᇱ 𝑛௜𝑑𝑣ଶ = −න (𝑇௜௜ − 𝑇ସସஶ
ோ )𝑉ᇱ𝑑𝑣ଷᇱ .జమ  (B.31)

𝑀EffOut can be evaluated by simply using the second integral in Eq. (B.31), 
which was already evaluated for 𝑉 above. Taking account of the orienta-
tion of the surface and the substitution of 𝑉ᇱ, the result is 𝑀୉୤୤୓୳୲ = 𝑄ଶ𝑅  . (B.32)

Combined with Eq. (B.29), this results in 𝑀୉୤୤୍୬ + 𝑀୉୤୤୓୳୲ = 𝑚 . (B.33)

What this tells us is that the “negative mass” associated with the charge 𝑄 [see Eq. (B.28)] is exactly compensated by the effective mass con-
tained in the electric field present in the volume exterior to the surface 𝑟 = 𝑅. If the radius 𝑟 = 𝑅 → ∞, the effective mass contained within the 
surface at infinity is 𝑚, the Schwarzschild or equivalently, the ADM 
mass. 

One can also obtain the result given in Eq. (B.33) by directly 
evaluating the last integral on the right-hand side of Eq. (B.31). This will 
be done here for the sake of completeness as well as a confirmation of 
Eq. (B.32) above. To begin with, an identity relating the energy-
momentum tensor 𝐹  ఉఈ  of the electric field to the scalar potential is 
needed. 
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If the energy-momentum tensor 𝑇ఓజ = 𝐹ఓఈ𝐹ఈఔ − 14𝑔ఓజ𝐹ఈఉ𝐹ఈఉ , (B.34)

where 𝐹ఓఔ = 𝜕𝐴ఔ𝜕𝑥ఓ − 𝜕𝐴ఓ𝜕𝑥ఔ  

is restricted to the case where only electric fields are present, so that 𝐴ఓ = (0, 0, 0, 1√4𝜋 𝜙 , (B.35)

then it is readily shown that 𝐹௜ସ = 1√4𝜋 𝜙,௜    and   𝐹௜ସ = − 1√4𝜋 (𝑉ᇱ)ିଶ𝑔௜௝𝜙,௝  . (B.36)

Equations (B.36) allow the energy-momentum tensor to be written as 4𝜋𝑇௜௝ = 2𝑉ଶ ൬12𝑔௜௝∆ଵ𝜙 − 𝜙,௜𝜙,௝൰ , (B.37)

where Δଵ is a differential parameter of the first order defined23 by ∆ଵ𝜙 = 𝑔௜௝𝜙,௜𝜙,௝  . (B.38)

The needed identity may now be obtained from Eq. (B.37) as 4𝜋(𝑇௜௜ − 𝑇ସସ) = ∆ଵ𝜙𝑉ᇱ ଶ  , (B.39)

which, for spherical coordinates, may be written as 

4𝜋(𝑇௜௜ − 𝑇ସସ) = 𝑔ଵଵ(𝜙,௥)ଶ𝑉ᇱ ଶ . (B.40)

 
23 L. P. Eisenhart, Riemannian Geometry (Princeton University Press, Princeton, 1997),  
p. 41. 
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The total effective mass inside the three-volume 𝑑𝑣ଷᇱ  is then 

𝑀୉୤୤୓୳୲ = −න (𝑇௜௜ − 𝑇ସସ)𝑉ᇱ𝑑𝑣ଷᇱ = − 14𝜋ஶ
ோ න 𝑔ଵଵ(𝜙,௥)ଶ𝑉ᇱ 𝑑𝑣ଷᇱ .ஶ

ோ  (B.41)

Substitution of 𝑉ᇱ from Eq. (B.30), along with 𝑔ଵଵ = ቀ1 + ொమ௥మቁ, 𝜙 = 𝑄/𝑟, 

and 𝑑𝑣ଷᇱ = ௥మ௏′ sin𝜃 𝑑𝜃𝑑𝜑, yields 

𝑀୉୤୤୓୳୲ = −න 𝑄ଶ𝑟ଶஶ
ோ 𝑑𝑟 = 𝑄ଶ𝑅  . (B.42)

As expected, this is the same result as that given in Eq. (B.32). 

Summary 

The above results may then be summarized as in Eq. (B.33) 𝑀୉୤୤୍୬ + 𝑀୉୤୤୓୳୲ = 𝑚 

independent of the radius 𝑅. What this says is that the amount of 
“negative mass” due to the term −𝑄ଶ/𝑅 in Eq. (B.28) is exactly 
compensated by the amount of “positive mass” contained in the region 𝑟 > 𝑅. For 𝑅 infinite, 𝑀Eff୍୬  is the Schwarzschild mass; and if 𝑅 < ∞, 𝑀Eff୍୬  
is less than the Schwarzschild mass. 

In their 1979 paper, Cohen and Gautreau noted that: “As 𝑅 decreases, 𝑀் [here equal to 𝑀Eff୍୬ ] also decreases because the electric field energy 
inside a sphere of radius 𝑅 decreases.” And, one might add, as 𝑅 
decreases, the field energy exterior to 𝑅 increases. This is equivalent to 

𝑀୉୤୤୍୬ = ቆ𝑚 − 𝑄ଶ𝑅 ቇ    ⇒    𝑑𝑀୉୤୤୍୬𝑑𝑅 = 𝑄ଶ𝑅ଶ 

𝑀୉୤୤୓୳୲ = 𝑄ଶ𝑅      ⇒      𝑑𝑀୉୤୤୓୳୲𝑑𝑅 = −𝑄ଶ𝑅ଶ , (B.43)
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so that 𝑑𝑀୉୤୤୍୬𝑑𝑅 + 𝑀୉୤୤୓୳୲𝑑𝑅 = 0 . (B.44)

While charge of either sign causes a negative curvature of spacetime,  
the Einstein–Maxwell system of equations does not allow different geo-
metric representations for positive and negative charges. This is a direct 
result of the fact that the sources of the Einstein–Maxwell system are 
embodied in the energy-momentum tensor, which depends only on the 
(non-gravitational) energy density — which is why charge enters as 𝑄ଶ 
above. Thus, a full geometrization of charge does not appear to be 
possible within the framework of the Einstein–Maxwell equations. 

As mentioned earlier, no “realistic” sources for the Reissner–
Nordström metric are considered in this paper. Realistic sources raise 
many interesting questions, among them are: Can a lone, charged black 
hole actually exist? If so, how can global charge neutrality be 
maintained? 

•  •  • 

The above applied to the vacuum Reissner–Nordström metric, but  
the work can be extended to charged rotating vacuum solutions of the 
Einstein field equations, and in particular, to the Kerr–Newman 
solution.24  

The Kerr–Newman solution in generalized Eddington coordinates,25 
which are convenient for this approach, is given by 𝑑𝑠ଶ = 𝑑𝑟ଶ − 2𝑎 sinଶ𝜃 𝑑𝑟𝑑𝜙 + (𝑟ଶ + 𝑎ଶ)sinଶ𝜃 𝑑𝜙ଶ 

(B.45)

             + (𝑟ଶ + 𝑎ଶcosଶ𝜃)𝑑𝜃ଶ − 𝑑𝑡ଶ + 2𝑚𝑟 − 𝑄ଶ𝑟ଶ + 𝑎ଶcosଶ𝜃              − [𝑑𝑟 − 𝑎 sinଶ𝜃 𝑑𝜙 + 𝑑𝑡]ଶ , 
where the symbols have their conventional meanings. 

 
24 G. E. Marsh, “Charge geometry and effective mass in the Kerr-Newman solution to the 
Einstein field equations,” Found. Phys. 38 (2008) 959–968. 
25 An excellent discussion of these coordinates and their interpretation can be found in  
R. H. Boyer and R. W. Lindquist, “Maximal analytic extension of the Kerr metric,” J. 
Math. Phys. 8 (1967), 265–281. 
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It was pointed out above that for the Reissner–Nordström solution 
the metric takes the Minkowski form when 𝑟 = 𝑄ଶ/2𝑚. Interestingly 
enough, the same thing occurs in the Kerr–Newman metric except that 
now 𝑟 has a different meaning with surfaces of constant 𝑟 corresponding 
to confocal ellipsoids satisfying 𝑥ଶ + 𝑦ଶ𝑟ଶ + 𝑎ଶ + 𝑧ଶ𝑟ଶ = 1 . (B.46)

It will be seen, however, that unlike the Reissner–Nordström solution, 
where it was possible to show that for 𝑟 < 𝑄ଶ/2𝑚 the curvature was 
negative, the case of the Kerr–Newman solution is more complex. An 
indication of this is given in Fig. B.2. 

 
Fig. B.2. The ratio of the circumference to the radius 𝑅 in the equa-
torial plane of the Kerr–Newman solution in Eddington coordinates. 
The ring singularity of the Kerr–Newman metric is at 𝑟 = 0. The 
portion of the curve above the line 𝐶/𝑅 = 2𝜋 corresponds to a 
negative curvature and that below to positive curvature. 𝐶/𝑅 = 0 at  𝑟 ~ 0.404698 where 𝑔థథ = 0, and crosses the line 𝐶/𝑅 = 2𝜋 at 𝑟 =𝑄ଶ/2𝑚, which for the value of the parameters used here, 𝑎 = 𝑚 = 𝑄 = 1, is 0.5. 
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Here the negative contribution of rotation to the effective mass for 
the Kerr–Newman metric has been excluded. The “negative mass” due to 
charge has properties very similar to that of the Reissner–Nordström 
metric. Both take the Minkowski form at 𝑟 = 𝑄ଶ/2𝑚, even though the 
meaning of 𝑟 is different for the two metrics; the effective mass interior 
to this surface is −𝑚 in both cases; and both have an effective mass of 𝑚 
at infinity. In addition, the effective mass for both metrics satisfies, for 
any surface defined by 𝑟 = constant (again for either definition of 𝑟), 
the relation 𝑀୉୤୤୍୬୲ + 𝑀୉୤୤୉୶୲ = 𝑚 (B.47)

Thus, the positive effective mass of the electric field exterior to the 
surface exactly compensates for the “negative mass” associated with the 
charge located within the surface. 
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Appendix C 

The Vacuum and the 
Cosmological Constant Problem 

Introduction 

The cosmological constant problem exists because of a number of key 
assumptions. These will be identified in this introduction. The second 
section discusses the issue of vacuum instability and negative energy 
states. Following this is a section on the relation between gauge 
invariance, Schwinger terms, and the definition of the vacuum. Given 
recent observational data from the Supernova Cosmology Project — 
showing an acceleration of the expansion of the universe at great 
distances, it is attractive to look at definitions of the vacuum that could 
lead to reasonable, but non-zero values of the cosmological constant.  

While it has never caught a great deal of interest, the redefinition of 
the vacuum proposed by Solomon1 is one possible approach to achieving 
this goal. It is included here primarily for heuristic purposes. 

The final section looks at the origin of the difficulties in QFT and 
also serves as a summary. 

Perhaps the best introduction to the cosmological constant problem 
is the review by Weinberg2 published over twenty years ago. Although 
there have been a variety of approaches to the issue since then, the article 
can still serve to frame the problem, at least in the sense that it is to be 
addressed here. To avoid confusion, Weinberg’s notation will be used in 
this introduction. 

 
1 D. Solomon, “Gauge invariance and the vacuum state,” Can. J. Phys. 76 (1998), 111–
127. 
2 S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys. 61 (1989), 1–23. 
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The Einstein field equations, including the cosmological constant 𝜆, 
are 𝑅ఓఔ − 12𝑔ఓఔ𝑅 − 𝜆𝑔ఓఔ = −8𝜋𝐺𝑇ఓఔ . (C.1) 

The right-hand side of the equation contains the energy-momentum ten-
sor 𝑇ఓఔ, and it is here that the first assumption that leads to the cosmol-
ogical constant problem is made. It is assumed that the vacuum has a 
non-zero energy density. If such a vacuum energy density exists, Lorentz 
invariance requires that it have the form3 〈𝑇ఓఔ〉୚ୟୡ = −〈𝜌〉𝑔ఓఔ . (C.2) 

This allows one to define an effective cosmological constant and a total 
effective vacuum energy density 𝜆ୣ୤୤ = 𝜆 + 8𝜋𝐺〈𝜌〉 𝜌௏ = 〈𝜌〉 + 𝜆8𝜋𝐺 = 𝜆ୣ୤୤8𝜋𝐺 . (C.3) 

Observationally, it is known that the total effective vacuum energy den-
sity must be comparable to about 𝜌௏  ~ 10ିଶଽ ௚௖௠య.  

The second assumption that leads to the cosmological constant 
problem is that the vacuum energy density is due to the zero-point energy 
of a quantized field or fields. The concept of the zero-point energy 
originated with the quantization of the simple harmonic oscillations of a 
particle with non-vanishing mass. This energy is present for each energy 
level including the ground state. In QFT, at a given instant of time, the 
field is defined at each point in space — essentially an independent 
harmonic oscillation at each point with amplitude and phase depending 
on the initial conditions. By specifying an equation of motion depending 
on the amplitude of the field and its partial derivative with respect to 
time, one couples these otherwise independent oscillations. In the Klein–
Gordon equation, for example, this coupling is achieved by the presence 
of the Laplacian. 

 
3 The signature of the metric is +2. 
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The zero-point energy is also present in the relativistic QFT of the 
neutral Klein–Gordon field and the electromagnetic field. Of course, the 
zero-point energy of the Klein–Gordon field is infinite, but when used to 
formulate the cosmological constant problem, it is generally summed up 
to a cutoff that determines the magnitude of the vacuum energy density. 
The way this is done is to count the number of normal modes between  𝜈 and 𝜈 + 𝑑𝜈, multiply by the zero-point energy in each mode, and 
integrate up to the chosen cutoff. There is some question as to whether it 
makes sense to count the normal modes for a massive particle when 
addressing the energy density of the vacuum where no particles are 
present. The usual justification for this is somewhat confused in the 
literature, but is generally based on identifying the zero-point energy 
with vacuum fluctuations. 

The number of normal modes between 𝜈 and 𝜈 + 𝑑𝜈 is given by 𝑑𝑍 = 4𝜋𝑉𝑐ଷ 𝜈ଶ𝑑𝑣 . (C.4) 

Transforming to wave number, setting the volume equal to unity, and  
using units where ℏ = 𝑐 = 1, and integrating up to a wave number cutoff Λ ≫ 1 results in a vacuum energy density of  

〈𝜌〉 = න 12ஃ
଴ ඥ𝑘ଶ + 𝑚ଶ 4𝜋𝑘ଶ(2𝜋)ଷ 𝑑𝑘 ≃ Λସ16𝜋ଶ . (C.5) 

As a relativistic wave equation, the Klein–Gordon equation has an 
energy spectrum that includes both positive and negative energies, corre-
sponding to either sign for the radical in Eq. (C.5). Note that if the 
integral were performed for both signs and the results added, the vacuum 
energy density would vanish. In QFT, zero-point energies are inherent in 
the canonical field quantization method because the ordering of operators 
in the Hamiltonian is not fixed.  

In Eq. (C.5), the vacuum energy density up to a cutoff is calculated 
for the cosmological constant problem by using only the positive sign for 
the radical. The reason for this goes back to Dirac’s redefinition of the 
vacuum where electrons are assumed to fill the negative-energy states, 
and they and their infinite vacuum charge density are presumed to be 
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unobservable — as are the negative-energy state zero-point energies. In 
this way, the instability of the vacuum caused by the availability of 
negative energy states is eliminated. The normal ordering procedure of 
canonical QFT, in addition to eliminating the zero-point energies, also 
has the virtue of eliminating the infinite vacuum charge density of the 
Dirac vacuum. QFT does not, however, eliminate the problem of nega-
tive energies as will be seen below. 

The value of wave number cutoff to be chosen in Eq. (C.5) depends 
on one’s view of Einstein’s theory of gravitation. Fields are generally 
defined in the context of a background metric for spacetime — the 
Minkowski metric. General relativity has to do with the geometry of 
spacetime itself, and while there is no a priori reason (or experimental 
evidence) that the gravitational field need be quantized, it is generally 
believed that Einstein’s theory of gravitation will no longer hold at very 
small distances, and in particular, for distances comparable or smaller 
than the Planck length (𝐺ℏ/𝑐ଷ)ଵ/ଶ. At this length scale, quantum fluctua-
tions are thought to be the dominant influence on the local spacetime 
geometry. For this reason, the Planck length is generally chosen to define 
the cutoff. Such a cutoff is really an expression of our ignorance of the 
vacuum and the structure (if there is one) of spacetime itself at these 
distances. Unfortunately, no experimental data exists. 

Evaluating the right-hand side of Eq. (C.5) with Weinberg’s choice 
of Λ = (8𝜋𝐺)ିଵ/ଶ (the units are again such that ℏ = 𝑐 = 1) results in a 
value for the vacuum energy density of 〈𝜌〉 = 2 × 10଼ଽ 𝑔𝑐𝑚ଷ . (C.6) 

Comparing this with the observational value of 𝜌௏  ~ 10ିଶଽ g/cmଷ tells 
us that the two terms in the effective vacuum energy density of Eq. (C.3) 
must cancel to some 118 decimal places. This fine tuning is the cosmo-
logical constant problem as it is currently understood. 

As discussed above, the Casimir effect, which in QFT is thought to 
be due to the presence of vacuum fluctuations, is used to argue that the 
zero-point energies are real. That is, zero-point energies and quantum 
fluctuations are identified. A key reference for the Casimir effect is the 
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work of Plunien, Müller, and Greiner.4 Vacuum fluctuations — which 
represent the terms of the perturbation series for the vacuum expectation 
value ⟨0|𝑆|0⟩ of the 𝑆-matrix — are generally ignored since they can 
only produce an overall phase factor. However, in the presence of 
external sources or boundaries, these fluctuations can no longer be so 
casually dismissed. Although the vacuum state must be invariant under 
rotations and translations — and therefore must have zero momentum, 
angular momentum, and energy — the presence of external sources or 
boundaries (as in the Casimir effect) breaks these fundamental sym-
metries, allowing vacuum fluctuations to have effects that are observable.  

Moreover, if the energy of the vacuum is defined as the difference 
of zero-point energies in the presence of boundaries 𝜕Γ of a region Γ and 
without boundaries, the vacuum energy can be negative; that is, 𝐸୴ୟୡ[𝜕Γ] = 𝐸଴[𝜕Γ] − 𝐸଴[0] , (C.7) 

where 𝐸଴[𝜕𝛤] is the zero-point energy in the presence of boundaries and 𝐸଴[0] is the zero-point energy in their absence.  
Because of the absence of boundaries or external sources, performing 

the kind of calculation given in Eq. (C.5) has raised questions in the liter-
ature with regard to the legitimacy of the approach of simply summing 
free field modes. See, for example, Lamoreaux5 where it is argued that 
we do not learn much about the properties of the vacuum of free space 
through the study of Casimir and related zero-point energy effects. 

In the absence of interactions as well as boundaries, one could make 
the argument that there appears to be no reason not to allow the vacuum 
to have a negative energy spectrum so that both signs of the energy in 
evaluating Eq. (C.5) should be used, thereby eliminating the cosmol-
ogical constant problem. In the presence of interactions the issue becomes 
more complicated, but — as will be seen below — the availability of a 
negative energy spectrum is one way to restore gauge invariance. 

 
4 G. Plunien, B. Müller, and W. Greiner, “The Casimir effect,” Phys. Rep. 134 (1986), 
87–193. 
5 S. K. Lamoreaux, “Casimir forces: Still surprising after 60 years,” Physics Today 
(February 2007) pp. 40–45. 
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Vacuum Instability and Negative Energy States 

At this point, it might be useful to examine the origin of the concern 
about vacuum instability in the presence of negative energy states. 
Consider a free electron in a positive energy state 𝐸 subjected to a 
periodic perturbation of frequency 𝜔. It is generally agreed that there is a 
non-vanishing probability for the electron to make a transition to a state 
of energy (𝐸 + ℏ𝜔) or (𝐸 − ℏ𝜔). If ℏ𝜔 > (𝐸 + 𝑚𝑐ଶ), it is argued that 
the transition to (𝐸 − ℏ𝜔) would be to a state of negative energy. Having 
set the stage, the argument continues by considering a bound state 
electron in a hydrogen atom. Since the electron is coupled to the electro-
magnetic field, such a bound state would rapidly make a radiative 
transition to a negative energy state, with the result that the hydrogen 
atom would have no stable existence. Worse yet, since the spectrum has 
no lower bound, there would be no limit to the radiated energy. 

There is an objection to the above argument that shows that such 
transitions could well be forbidden. Under the usual sign convention, 
quantum states of positive energy evolve in time as 𝑒ି௜ఠ௧. A state of 
negative energy, −𝐸, then evolves as 𝑒ା௜ఠ௧, which corresponds to the 
transformation 𝑡 → −𝑡. But there are two possibilities for a time reversal 
operator: it can be unitary or anti-unitary — where 𝑡 → −𝑡 and one also 
takes the complex conjugate of states and complex numbers. Under a 
unitary transformation, used for all other discrete and continuous sym-
metries, the time-reversed state corresponds to a state of negative energy −𝐸. It was Eugene Wigner who introduced the anti-unitary time reversal 
operator so as to eliminate negative energies. 

There are now two arguments that can be given against the tran-
sition from a bound state (as in the above argument) to a negative  
energy state under the periodic perturbation. First, if the Hamiltonian H 
governing the transition is to be 𝐶𝑃𝑇 invariant — as it must if it is  
to be an acceptable quantum electrodynamics Hamiltonian — it must 
satisfy 𝐶𝑃𝑇 H (𝑥) [𝐶𝑃𝑇]ିଵ = H (−𝑥). This will only be the case if the 
operator 𝐶𝑃𝑇 is anti-unitary, a consequence of the complex conjugation 
implicit in the time reversal operator 𝑇. But since the transformation 
from 𝑒ି௜ఠ௧ → 𝑒ା௜ఠ௧  corresponds to simply 𝑡 → −𝑡, we have instead  
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𝐶𝑃𝑇 H (𝑥) [𝐶𝑃𝑇]ିଵ = −H (−𝑥), giving the negative energy state. 
Thus, the Hamiltonian of the transition cannot satisfy 𝐶𝑃𝑇 invariance.  

The second argument has to do with the fact that if an electron in an 
external field obeys the (quantized) Dirac equation, one cannot rule out 
the negative energy solutions needed to make up a complete set of 
wavefunctions. But a wavefunction representing a negative energy state 
can only be non-zero if it has charge +𝑒.6 This means the argument given 
above for the transition of an electron to a negative energy state will 
violate charge conservation. 

Thus, a radiative transition of an electron to a negative energy state 
either violates 𝐶𝑃𝑇 invariance or the conservation of charge. So, it would 
appear that such transitions are effectively forbidden. This means there is 
no reason not to allow negative energies to be summed over in Eq. (C.5), 
yielding a vanishing vacuum energy density. The attractiveness of 
Solomon’s approach to redefining the vacuum, to be described below, is 
that it allows for incomplete cancellation of the zero-point energies 
leading to a small, but not vanishing vacuum energy density. 

QFT and Gauge Invariance 

The issue of the gauge invariance of QFT has been dealt with in a variety 
of ways over the years (an extensive discussion is contained in Solomon’s 
paper). In essence, the standard vacuum of QFT is only gauge invariant if 
non-gauge invariant terms are removed. There are two general approaches 
to the problem: the first is to simply ignore such terms as being physically 
untenable and remove them so as to maintain gauge invariance; and the 
second is to use various regularization techniques to cancel the terms. 
Pauli–Villars regularization7 is discussed below. 

 
6 S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, New York, 
1995), Vol. 1, Ch. 14. 
7 W. Pauli and F. Villars, “On the invariant regularization in relativistic quantum theory,” 
Rev. Mod. Phys. 21 (1949), 434–444. Because Pauli–Villars regularization does not 
preserve gauge invariance in non-Abelian gauge theories, dimensional regularization has 
become the means of choice.   
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Returning to Eq. (C.5), another problem with this equation is that the 
introduction of a momentum-space cutoff destroys translational invari-
ance and may make it difficult to maintain gauge and Lorentz invariance. 
If, instead of introducing a cutoff, an attempt is made to deal with this 
infinite integral by Pauli–Villars regularization, the result is the introduc-
tion of negative masses. This can be seen as follows. It can be guaranteed 
that the vacuum expectation value of the energy momentum tensor is 
Lorentz invariant and hence proportional to 𝜂ఓఔ if we use the relativistic 
formulation 

⟨0|𝑇ఓఔ|0⟩ = 12න 1(2𝜋)ଷ 𝑝ఓ𝑝ఔ𝑝଴ஶ
଴ 𝑑𝑝ଷ . (C.8) 

Here 𝑝଴ = E(𝒑) = (𝒑ଶ + 𝑚ଶ)ଵ/ଶ. The domain of integration can be trans-
formed to spherical coordinates in a space of any dimension by the use of 
the formula 

ෑ𝑑𝑝௜ =ௗ
௜ୀଵ 𝑝ௗିଵ𝑑𝑘ෑ sin௜ିଵ𝜃௜𝑑ௗିଵ

௜ୀଵ 𝜃௜  , (C.9) 

resulting in 

⟨0|𝑇଴଴|0⟩ = 12න 4𝜋2 1(2𝜋)ଷ 𝑝ଶஶ
଴ 𝑑𝑝 ඥ𝑝ଶ + 𝑚ଶ (C.10)

The Pauli–Villars regulator masses 𝑚௜, where 𝑚ଵ = 𝑚, and associated 
coefficients 𝑐௜, where 𝑐ଵ = 1, are then introduced as follows: 

⟨0|𝑇଴଴|0⟩ = 12න 4𝜋2 1(2𝜋)ଷ 𝑝ଶஶ
଴ 𝑑𝑝෍𝑐௜௜ 𝑝ඨ1 + 𝑚ଶ𝑝ଶ  . (C.11)

The number of regulator masses needed depends in general on the 
integral. Since we are interested in the convergence of the integral at the 
upper limit where 𝑚௜ଶ/𝑝ଶ < 1, the radical can be expanded in a series to 
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yield ⟨0|𝑇଴଴|0⟩ = 12න 4𝜋2 1(2𝜋)ଷ 𝑝ଶஶ
଴ 𝑑𝑝෍𝑐௜ ቆ𝑝 + 12𝑚ଶ𝑝 − 𝑚ସ8𝑝ଷ + . . .ቇ .௜  

  (C.12) 

This integral will converge at the upper limit provided the following 
relations are satisfied as 𝑚௜ → ∞: 

1 + ෍𝑐௝ = 0 ,௡
௝ୀଶ  

𝑚ଶ + ෍𝑐௝𝑚௝ଶ = 0,     𝑚ସ + ෍𝑐௝𝑚௝ସ = 0,     𝑚௝ ⟶ ∞ .௡
௝ୀଶ

௡
௝ୀଶ  

(C.13)

Moving 𝑝ଶ in the numerator of Eq. (C.12) into the series expansion 
shows that Eqs. (C.13) will be satisfied if 𝑛 = 3.  

Because some of the coefficients must be negative, this procedure 
introduces negative energies in the form of negative masses that are 
allowed to become infinite at the end of the calculation. The advantage, 
at least for QFT, is that gauge and Lorentz invariance are preserved. 

If one works in Euclidean space by first performing a Wick rotation, 
one is left with essentially the same problem: regulator fields for scalar 
fields obey Fermi statistics, and those for spinor fields obey Bose 
statistics. This violation of the spin-statistics theorem means that the 
Hamiltonian cannot be a positive definite operator, again implying the 
existence of negative energy states. 

Solomon has argued that for QFT to be gauge invariant the 
Schwinger term must vanish, and Schwinger8 long ago showed that for 
this to be the case the vacuum state cannot be the state with the lowest 
free field energy. The existence of non-zero Schwinger terms also 
impacts Lorentz invariance. Lev9 has shown that if the Schwinger terms 

 
8 J. Schwinger, “Field theory commutators,” Phys. Rev. Lett. 3 (1959), 296–297. 
9 F. M. Lev, “The problem of constructing the current operators in quantum field theory,” 
arXiv: hep-th/9508158v1 (29 August 1995). 
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do not vanish the usual current operator 𝒥መఓ(𝑥), where 𝜇 = 0, 1, 2, 3 and 𝑥 is a point in Minkowski space, is not Lorentz invariant. 
To begin with, however, it is important to understand the details of 

Schwinger’s argument. Using Solomon’s notation, the Schwinger term is 
given by 𝑆𝑇(𝑦⃗, 𝑥⃗) = ቂ𝜌ො(𝑦⃗), 𝐽መ(𝑥⃗)ቃ . (C.14)

Taking the divergence of the Schwinger term and using the relation 𝑖ൣ𝐻෡଴,𝜌ො(𝑥⃗)൧ = −∇ ∙ 𝐽መ(𝑥⃗) , (C.15)

where 𝐻෡଴ is the free-field Hamiltonian when the electromagnetic four-
potential vanishes, results in ∇௫⃗ ∙ ቂ𝜌ො(𝑦⃗), 𝐽መ(𝑥⃗)ቃ = ቂ𝜌ො(𝑦⃗),∇ ∙ 𝐽መ(𝑥⃗)ቃ = −𝑖 ቂ𝜌ො(𝑦⃗), ൣ𝐻෡଴,𝜌ො(𝑥⃗)൧ቃ . (C.16)

Expanding the commutator on the right-hand side of Eq. (C.16) yields 
the vacuum expectation value 𝑖∇௫⃗ ∙ ർ0ቚ𝜌ො(𝑦⃗), 𝐽መ(𝑥⃗)ቚ0඀ 

(C.17)

= −ൻ0ห𝐻෡଴𝜌ො(𝑥⃗)𝜌ො(𝑦⃗)ห0ൿ + ൻ0ห𝜌ො(𝑥⃗)𝐻෡଴𝜌ො(𝑦⃗)ห0ൿ +ൻ0ห𝜌ො(𝑦⃗)𝐻෡଴𝜌ො(𝑥⃗)ห0ൿ − ൻ0ห𝜌ො(𝑦⃗)𝜌ො(𝑥⃗)𝐻෡଴ห0ൿ. 
It is here that one makes the assumption that the vacuum is the lowest 
energy state. This is done by writing 𝐻෡଴|0⟩ = ⟨0|𝐻෡଴ = 0. As a result,  
Eq. (C.17) may be written as 𝑖∇௫⃗ ∙ ർ0ቚ𝜌ො(𝑦⃗), 𝐽መ(𝑥⃗)ቚ0඀ = ൻ0ห𝜌ො(𝑥⃗)𝐻෡଴𝜌ො(𝑦⃗)ห0ൿ + ൻ0ห𝜌ො(𝑦⃗)𝐻෡଴𝜌ො(𝑥⃗)ห0ൿ . 
  (C.18)    

Multiply both sides of the last equation by 𝑓(𝑥)𝑓(𝑦) and integrate over 𝑥 
and 𝑦. The right-hand side of Eq. (C.18) becomes න𝑑 𝑥⃗𝑑𝑦⃗൛ൻ0ห𝑓(𝑥⃗)𝜌ො(𝑥⃗)𝐻෡଴𝑓(𝑦⃗)𝜌ො(𝑦⃗)ห0ൿ+ ൻ0ห𝑓(𝑦⃗)𝜌ො(𝑦⃗)𝐻෡଴𝑓(𝑥⃗)𝜌ො(𝑥⃗)ห0ൿൟ . (C.19)
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If Schwinger’s “arbitrary linear functional of the charge density” is 
defined as 𝐹 = න𝑓(𝑥⃗)𝜌ො(𝑥⃗)𝑑𝑥⃗ = න𝑓(𝑦⃗)𝜌ො(𝑦⃗)𝑑𝑦⃗ , (C.20)

the right-hand side of Eq. (C.18) becomes 2ൻ0ห𝐹𝐻෡଴𝐹ห0ൿ = 2෍⟨0|𝐹|𝑚⟩௠,௡ ൻ𝑚ห𝐻෡଴ห𝑛ൿ⟨𝑛|𝐹|0⟩= 2෍𝐸௡⟨0|𝐹|𝑛⟩௡ ⟨𝑛|𝐹|0⟩= 2෍𝐸௡|⟨0|𝐹|𝑛⟩|ଶ௡ > 0 . 
(C.21)

The left-hand side of Eq. (C.21) — essentially the form used by Schwinger 
— is here expanded to explicitly show the non-vanishing matrix 
elements between the vacuum and the other states of necessarily positive 
energy. This shows that if the vacuum is assumed to be the lowest energy 
state, the Schwinger term cannot vanish, and the theory is not gauge 
invariant. Solomon also shows the converse, that if the Schwinger term 
vanishes, then the vacuum is not the lowest energy state and the theory is 
gauge invariant. 

For the sake of completeness, it is readily shown that the left-hand 
side of Eq. (C.18) becomes 

𝑖 න∇௫⃗ ∙ ർ0ቚ𝜌ො(𝑦⃗), 𝐽መ(𝑥⃗)ቚ0඀ 𝑓(𝑥⃗)𝑓(𝑦⃗)𝑑𝑥⃗𝑑𝑦⃗ = 𝑖⟨0|𝜕௧𝐹,𝐹|0⟩ , (C.22)

so that combining Eqs. (C.21) and (C.22) yields a somewhat more 
explicit form of the result given by Schwinger, 𝑖⟨0|𝜕௧𝐹,𝐹|0⟩ = 2෍𝐸௡|⟨0|𝐹|𝑛⟩|ଶ௡ > 0 . (C.23)
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Solomon’s Redefinition of the Vacuum 

In QFT, the invariant perturbation theory10 leads to the Dyson chrono-
logical operator  𝑃(eூ(𝐱ଵ) .  .  . eூ(𝐱௡)), where eூ is the interaction 
Hamiltonian. The adjective “invariant” refers to the fact that time 
ordering in the Dyson series is Lorentz invariant if the eூ(𝐱௜) all 
commute at space-like separations. The chronological product can be 
expressed in a form where the virtual processes are explicitly repre-
sented; that is, as a decomposition into normal products, where a 
Feynman graph can be used to represent each of the normal products. 
The vacuum state is empty (although vacuum fluctuations exist) and is 
the state of lowest energy. The theory is not, however, gauge invariant 
and a process of regularization and renormalization is used to make it so.  

The virtue of the vacuum state to be defined in this section is that it 
allows QFT to be mathematically consistent in the sense that it becomes 
gauge invariant without the need for regularization. Because the theory is 
gauge invariant, the Schwinger term vanishes. The reason for this is that 
the definition of the vacuum is such that the usual vacuum state, |0⟩, is no 
longer the state of minimum energy, and there exist states with negative 
energy. In the context of the cosmological constant problem, this means 
that even if one believes the summation of zero-point energies given in 
Eq. (C.5) is legitimate, it must be extended to the unoccupied negative 
energy states, leading to a significant cancellation in the summation.  

Redefining the vacuum state may provide a more elegant means of 
resolving both the gauge invariance difficulties of QFT and the cos-
mological constant problem. The specific definition of the vacuum state 
given below serves, at a minimum, as an heuristic example of this 
approach. 

Because of its intuitive nature, hole theory will be used to introduce 
Solomon’s redefinition of the vacuum in quantum electrodynamics. He 
has also implemented this redefinition in the context of QFT, and that 
will also be described here. It may therefore be useful to recall how the 
transition to QFT is made.  

 
10 S. S. Schweber, H. A. Bethe, and F. de Hoffman, Mesons and Fields Vol. I Fields  
(Row, Peterson & Co., White Plains, NY, 1955), p. 192. 
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In terms of positive and negative energy electrons, second quantiza-
tion gives the Hamiltonian for a free electron, 𝐻଴ = ෍𝐸௣൫𝑎௣௦ற 𝑎௣௦ − 𝑏௣௦ற 𝑏௣௦൯௣௦  , (C.24)

where 𝑎௣௦ற  is the creation operator for positive energy electrons and 𝑏௣௦ற  
creates negative energy electrons. In terms of the number operator 𝑁,  𝐻଴ = ෍𝐸௣൫𝑁௣௦ା − 𝑁௣௦ି൯௣௦  , (C.25)

where 𝐸௣ > 0 and 𝑁௣௦ି is the number of negative energy electrons. 
Dirac’s hole theory rescales the energy so that 𝐻଴ᇱ = ෍𝐸௣൫𝑁௣௦ା + (1 − 𝑁௣௦ି൯ .௣௦  (C.26)

If 𝑁ି (for a given 𝑝 and 𝑠) vanishes — i.e., when a negative-energy 
electron is missing, then 𝑁ା increases by one and we see a positive 
energy electron and a hole in the negative energy continuum, which is 
interpreted as a positron. 

For the hole theory approach to dealing with negative energies to 
work, it is essential that the particles filling the negative energy states 
obey the Pauli exclusion principle. The technique would not work for 
bosons associated with the Klein–Gordon equation. While the particles 
filling the negative energy states must not produce an electric field or 
contribute to the total charge, energy, or momentum, they nevertheless 
must respond to an external field.  

The transition to QFT is accomplished by setting 𝑎௣௦ = 𝑐௣௦  and   𝑏௣௦ = 𝑑௣௦ற  (C.27)

so that destroying a negative energy electron is equivalent to creating  
a positron. The Dirac negative energy sea vanishes since electrons and 
positrons are treated as separate entities. Provided the 𝑏’s satisfy the anti-
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commutation relations ൛𝑏௣௦ற , 𝑏௣ᇲ௦ᇲൟ = 𝛿௦௦ᇲ𝛿௣௣ᇲ  , (C.28)

we have that 𝑁௣௦୮୭ୱ୧୲୰୭୬ୱ = 1 −𝑁௣௦ି = 1 − 𝑏௣௦ற 𝑏௣௦ = 𝑏௣௦𝑏௣௦ற = 𝑑௣௦ற 𝑑௣௦ 
 𝑁௣௦ୣ୪ୣୡ୲୰୭୬ୱ = 𝑁௣௦ற = 𝑎௣௦ற 𝑎௣௦ = 𝑐௣௦ற 𝑐௣௦ . (C.29)

As a result, 𝑁௣௦୮୭ୱ୧୲୰୭୬ୱห0 > = 𝑁௣௦ୣ୪ୣୡ୲୰୭୬ୱห0 > = 0 , (C.30)

since |0⟩ contains neither positrons or electrons. The free-electron Hamil-
tonian in terms of the number operator, now sums over both electrons 
and positrons and is given by 𝐻௢ = ෍𝐸௣ቀ𝑁௣௦୮୭ୱ୧୲୰୭୬ୱ + 𝑁௣௦ୣ୪ୣୡ୲୰୭୬ୱቁ .௣௦  (C.31)

Thus, one can readily move between hole theory and QFT although, as 
Solomon has shown, one sometimes obtains differing results because of 
the way the vacua are defined. 

With reference to Fig. 1, Solomon defines a state vector |0,ΔE୛⟩  
as the state where a band of negative energy states extending from −𝑚  
to −(𝑚 + ΔE୛) is occupied by a single particle (the exclusion principle 
holds); all other single particle states are unoccupied.  

The vacuum state is defined by Solomon as |0,ΔE୛ → ∞⟩, where it 
is important to understand that the limit ΔE୛ → ∞ means that ΔE୛ goes 
to an arbitrarily large but finite number. If ΔE୛ were set equal to infinity 
one would be reproducing the Dirac vacuum. This definition of the 
vacuum allows transitions from the occupied negative energy states 
within the band to those beneath the band, thereby making the Schwinger 
term vanish, and the theory is consequently gauge invariant. 
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Fig. C.1. The state vector |0,ΔE୛⟩. Only the band of negative energy 
states extending from −𝑚 to −(𝑚 + ΔE୛) is occupied.  

The vacuum can be similarly redefined in the context of QFT. With 
reference to Eq. (C.27), the creation and destruction operators in QFT 
obey 𝑐௣௦|0⟩ = 𝑑௣௦|0⟩ > = 0 , (C.32)

while new states are created by 𝑐௣௦ற  and 𝑑௣௦ற  operating on the vacuum 
state |0⟩. Solomon11 redefines the vacuum to be |0ோ⟩, as 𝑅 → ∞ with the 
following restrictions: 𝑐௣௦|0ோ⟩ = 0,∀𝑝 ,      𝑑௣௦|0ோ⟩ = 0, |𝑝| < 𝑅 ,      𝑑௣௦ற |0ோ⟩ = 0, |𝑝| > 𝑅 . (C.33)

New states are created by 𝑐௣௦ற |0ோ⟩,∀𝑝 ,      𝑑௣௦|0ோ⟩, |𝑝| > 𝑅 ,         𝑑௣௦ற |0ோ⟩, |𝑝| < 𝑅 . (C.34)

 
11 D. Solomon, “Another look at the problem of gauge invariance in QFT,” arXiv:
0708.2888 (12 September 2007, V2). 
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Graphically, these conditions may be displayed as in Fig. C.2. 

 
Fig. C.2. Solomon’s redefinition of the vacuum in QFT. Note that 𝑑௣௦|0ோ⟩, |𝑝| > 𝑅 creates states with energy less than |0ோ⟩. 

As 𝑅 → ∞ the usual relations of Eq. (C.32) are recovered. Solomon 
shows that the Schwinger term vanishes using this redefinition of the 
vacuum so that the theory is gauge invariant. Again, to achieve this it 
was necessary to introduce negative energy states. 

The key question to be addressed, with this or any redefinition of 
the vacuum that allows negative-energy states, is stability. First, can 
positive energy particles be scattered into unoccupied negative energy 
states? And second, is the vacuum catastrophically unstable, in the sense 
that the transition rate from occupied negative energy states within the 
band shown in Fig. 1 to those below the band, so great that the band 
vanishes essentially instantaneously?  

With regard to the first question, the idea here is to make ΔE୛ large 
enough to make the probability of such transitions negligibly small. The 
answer to the second question is still open, but Solomon has determined 
that for a field theory of non-interacting zero-mass fermions in the 
presence of a classical electromagnetic field in a two-dimensional space-
time, the vacuum is stable. It remains to show that this remains the case 
for four-dimensional spacetime. 
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Origin of the Inconsistencies in QFT and Summary 

The problem of maintaining gauge invariance in QFT when interactions 
are present, and the difficulties with Schwinger terms discussed above, 
stem from the now well-known fact that the underlying assumptions of 
QFT are inconsistent. The essence is contained in Haag’s theorem,12 
which is concerned with the interaction picture that forms the basis for 
perturbation theory. Haag’s theorem is important not least for the fact 
that it identifies the reason regularization and renormalization are needed 
in QFT; that is, the underlying assumptions of relativistic QFT are 
inconsistent in the context of interacting systems. 

In QFT, relativistic transformations between states are governed by 
the continuous unitary representations of the inhomogeneous group 
SL(2,C) — essentially the complex Poincaré group. One might anticipate 
that when interactions are present, the unitarity condition might be 
violated. Indeed, Haag’s theorem states, in essence, that if 𝜙଴ and 𝜙 are 
field operators defined respectively in Hilbert spaces e଴ and e, with 
vacua |0⟩଴ and |0⟩, and if 𝜙଴ is a free field of mass 𝑚, then a unitary 
transformation between 𝜙଴ and 𝜙 exists only if 𝜙 is also a free field of 
mass 𝑚. Another way of putting this is that if the interaction picture is 
well defined, it necessarily describes a free field. 

The assumption that the vacuum state is the minimum energy state, 
invariant under a unitary transformation, is one of the fundamental 
assumptions of QFT. But it is now known that the physical vacuum state 
is not simple and must allow for spontaneous symmetry breaking and a 
host of other properties, so that the real vacuum bears little relation to  
the vacuum state of axiomatic QFT. Nevertheless, even if the latter type 
of vacuum is assumed, the violation of the unitarity condition in the 
presence of interactions opens up the possibility that the spectral condi-
tion, which limits momenta to being within or on the forward light cone, 
may also be violated thereby allowing negative energy states. 
 

 
12 R. F. Streater and A.S. Wightman, PCT, Spin & Statistics, and all That (W. A. 
Benjamin, Inc., New York, 1964), Sect. 4–5. See also, P. Roman, Introduction to 
Quantum Field Theory (John Wiley & Sons, Inc., New York, 1968), p. 388. 
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Of course, the way QFT gets around the formal weakness of using 
the interaction picture is to regularize the singular field functions that 
appear in the perturbation series followed by renormalization. There is 
nothing wrong with this approach from a pragmatic point of view, and it 
works exceptionally well in practice. The reason one may want to look at 
other approaches, such as redefining the vacuum state and the role of 
negative energies, is that it may lead to insights into the nature of the 
vacuum itself, and help resolve the outstanding cosmological constant 
problem, and could offer a new approach and possibly an alternative to 
the process of regularization and renormalization. 

If it is indeed possible to use the negative energy spectrum to cancel 
much of the vacuum energy density of Eq. (C.5), there is now observa-
tional evidence pointing to what the residual vacuum energy density 
must be. This comes from the observational data of the Supernova 
Cosmology Project.13 
 
 

 
13 S. Perlmutter, “Supernovae, dark energy, and the accelerating universe,” Physics Today 
(April 2003). 
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